 title prefix/class-number.revision

—
bc C MEMORY MANAGEMENT MM1,/W-1

checked authors i approval date |revision date
) 5/9/69
checked R. R. Van Tuyl classification
Working Paper
approved distribution pages
Company Private 25

ABSTRACT and CONTENTS

A description of the basic table, mechanisms, and inter-

faces of the swapper. This document will be very difficult

to change after 30 April.

becc P

A page may appear on more than one device. The cur-
rent version of the page may be on one or all of the de-
vices. The Memory Management (MM) tables allow one to

find the current incarnation of a page.

The Core Hash Table (CHT) is a bucket style, chained
Hash Table. The table is composed of two parts, CHT1 and
CHT2. CHT1 will reside in physical core between 100 and
477B. CHT1 is composed of 256 entries of one word each

for efficient hashing. The entry is a pointer into CHT2.

CHT2 is composed of six word nodes formatted as de-
picted in Table 1. CHT2's size will be a parameter and

depend on the amount of physical core in the main memory.

A free core list will be maintained through the CQHT2

entries. The index of each CHT2 entry is the page number.

of the entry. The entry will also contain this page num-

ber. When an entry is made, the algorithm is as follows:

Y

COPY INFO
INTO NODE

1

CREATE HASH CODE
& PUT NODE ON
FRONT OF LIST

RETURN

OBTAIN A No Free FAIL
FREE NODE —Core RETURN

bcc

p/c=n.r
MM1/W-1

page

The CHT collision lists are of type 3 (see appendix).

This is to facilitate removal of nodes from the free core

list.

CHT1 is entered by hashing the class code.

lowing program will calwulate a pointer into CHT1:

FUNCTION CHT HASH (UNf@, UN1);

T <«— UN@ EOR UN1

The fol-

RETURN ((T LCY 8) EOR (T RCY 8) EOR T EOR 264B)

AND 377B + CHTBA;

UN in
Addr
Cycle

Cycle

Addr

M&Q, result in Rf, and fetch begun.
MXQ,, (Q,Rl); Move =132000B,M; |
MXQ,M,8; Move =CHTBA,Z
MXQ,M,8; Move R1l,Q; Move =77777400B;
Bit TCONX; GOTO, S@,DR

MXQ,%,R@; PFETCH;

TABLE 1

GHT1 Entry

18-bit ptr into CHT2

GHT2 Entry

Hash (Unique Name) gives CHT1 entry

UNIQUE

NAME (Class Code)

DISK ADDRESS
A0
‘o 23

b U Page Core Page # Scheduled
1| iptatus|Index into CHT2 Count 8
23
F1 W Free Core Pointer (FCP) -
A

PAGE 23
LOCK (PL) . COLLISION PTR N

Core page address is given by index of entry

D - page must be put back onto drum.
U - Unavailable page
Page S8&atus 93 - Illegal
@@l - Read from drum in progress
P@l¥ - Write from core onto drum in progress
#ll - Illegal
199 - Illegal
191 - Read Error
119 - Write Erxrror

111 - TIllegal

bcc o

page

Scheduled Count - incremented once for each entry in CWS
of a process which points to the page in core.

Page Lock - Bits set by privileged processes to lock the
page into core.

F - FCP is a free list ptr

W - Page is on the write list

bec

Removal of Entry on Free Core List

In the event a page is required, it is taken off the FCL.
However, between the time it was placed on the FCL and the
time i& is to be removed it may be placed in use, or it may
be necessary to write the page out, or it may be locked into

core. In any of these cases, the swapper must take the

appropriate action.

l.
9 .
GET 0 FAIL
GET NEXT R RETURN
FIRST ENTRY
ENTRY entry
— -
REMOVE
ENTRY
FROM FCL
atomic —
REMOVE PLACE
ENTRY | » ENTRY
FROM FCL ON WRITE
LIST
REMOVE
ENTRY FROM
COLLISION
LIST OF CHT

bcc P -1 Paoe

disk

page

fast

which is 2000 to 3000 sectors. The table size will be para-

meterized on the size of drum.

mod any size table. The DHT table should be about 15% larger

than

DHT will be split into two parts, DHT1 and DHT2. DHT1 will
contain the disk address. This will allow efficient scanning
for a free slot. DHT2 will contain two words which are in-
dexed by the same index as the DHT1 word. This allows a

simple LSH to do the multiply.

Drum Hash Table Specifications

The DHT is a large table which is entered by hashing a
address. Its entries then determine the other place the

is located (either drum or fast disk area [FDA]).

The table has one entry for each page on the drum or

disk. The design is for a 4 to 6 million word drum(s),

The hashing scheme is as follows:

This algorithm assumes a disk address of 20 bits, and is

necessary to limit the number of probes required.
Function DHTHASH (KA); .
Tl w- (T ««- KA EOR (KA RCY 8) EOR 3152B) AND
7777B) -DHTSZ;
RETURN T IF T1 > @

RETURN T1;

p/c=n.r page

bCC ‘ MM1/W-1 5~

The collision strategy is to linearly scan forward to a
free word (@) in DHT1l. When a free word is found, the corres-
ponding DHT2 entry is used. When an entyy is deleted, all
entries between the deleted entry and a free space must be
rehashed and moved. This should be done infrequently and only

for about 2 moved entries/deletions.

DHT Entry (split into two tables)

DHT1 DHT2
4 13 o .
o Disk Address D/ 5| Drum or Disk Addr
E (KR) 20 Ka. :fu (DKa) zo
2 Use Count
A § (uc)
&4 EY to
Where:
Hash (Disk address) gives DHT entry
KA disk address of page
DKA current drum address or disk address (fast
disk)
DEST page is being destroyed
STATUS @9 new page, not on either address

#1 on DK& only
19 on KA only

11 on KA & DKA both

p/c=n.r page

bce s ;

ucC use count. When this goes to zero page may be
deleted from drum<orAfast disk
D/K g% no address
1g fast disk address
+1 drum address
g1 no address
WUN - Write Unique Name onto disk

ERROR Read error

b

REQUESTS WHICH CAN BE MADE TO SWAPPER

The mechanism for making a request to the AMC is to copy
the description of the request into a free node obtained from
a shared Free List and leaving it on the approrpiate gueue.
The queue pointers will reside in physical core between 40
64.

Types of requests which can be made:

a. Bring process into core:

1. Ptr to next entry on queue

2. Ptr to PRT entry for process

b. Write process onto drum:
1. Ptr to next entry on queue
2. Ptr to PRT entry for process
3. Mandatory or convenient write (latter for main-
taining at least one process in core if swapper
gets bogged down)
4, Pages put on top of bottom of free list (to ex-

tend the "life' of special pages in core).

c¢. Return page to drum
1. Ptr to next entry on gqueue

2. Unigue Name of page.

bec A

d. Transfer page from “drum“ to disk and delefe DHT

entry if Use Céunt = g;

1. Ptr to next entry on queue

2. Ptr to PRT for process making request

3. Real Name of page

4. Check class code or check class code for @ and
write class code

5. Wakeup condition
a. no wakeup
b. wakeup when transfer completed

\ 1"
e. Transfer page from disk to “drum.

1. Ptr to next entry on queue

2. Ptr to PRT

3. Real Name of page

4. Wakeup condition
a. seek begun (pages put on bottom of free list)
b. transfer completed
c. no wakeup

5. Pages put on top or bottom of free list

f. Write Unique Name (UN # @) on free page on disk.
1. Ptr to next entry on queue
2. Ptr to PRT

3. Real Name of page

bcc

p/c~n.r page
MM1/W-1 9

Write Unique Name on disk page with given élass code
(this is a special case not to be used generally in
the system).

1. Ptr to next entry on queue

2. Ptr to PRT

3. Real Name to be written

4. Class code expected on the disk

Delete information and class code at given Real
Name. Entire page set to d.

1. Ptr to next entry on queue

2. Ptr to PRT

3. Real Name of page to be deleted.

Disk to disk transfer
1. Ptr to next request
2. 01ld Real Name

3. New Real Name

4, Ptr to PRT

5. Wakeup condition

Request new page
1. Ptr to next request
2. Real Name of new page

3. PRT pointer

Wakeup generation by AMC

a.

does not apply - process is placed on in core gueue

when working set is completely in core.

bcc (O

b. If the write is at the convenience of the swapper

a wakeup is generated, when the write is started.
When a swapper receives a process which is to be
written at its convenience the unscheduler does not
know if it will be run again. Therefore, if the
swapper writes it out, it must be sure the scheduler
will consider the process again. The swapper does
this by generating a wakeup for the process.

c. Specified.

d. Specified.

e. Wakeup when operation completed.

£f. Wakeup when operation completed.

g. Wakeup when operation completed.

The following structure will allow several requests to
be treated as a group. The first node to be spliced into the
queue at the end will have two pointers:

a. Ptr to next entry in queue

b. Bit in ptr word to specify group

c. Ptr to first entry of group

All lists will end with a zero value for the pointer.

bcc

p/c~n.r
MM1/W-1

page
11

queue

g1

1]

Al

gl

If a wakeup is desired at end of request, the AMC will

set a count for the number of operations which will be per-

formed and cause a wakeup when the count goes to zero.

bec T

Detailed Discussion of Each ReQﬁést

1)

2)

3)

A. Bring Process into Core.

Take request from request gueue. If the Process in
Core (PIC) bit is set, get the PRT entry and go to
3)a). Otherwise, place the request on the appropriate
Drum Sector Read List (DSRL) to read the process’s
context block if the page is not in core. If the
page is in core do No. 2.

When context block is read, the following occurs:

a) The PRT entry is then chained on the end of the
Context Block Queue (CBQ).

b) 1If the convenient bit is on in the request, an un-
identified algbrithm will be used to determine if
the process is brought into core. If the process
is not, a wakeup is generated and the process is
written out of core.

When the swapper requires more reads, it will remove

a PRT entry from the front of the CBQ. The CWS will

be scanned and the following occurs:

a) If the SF bit is set continue scan.

b) oOtherwise, set the SF bit and do:

1. If the PIC bit is set do:
a. If the page is not in core (a page is con-
sidered not to be in core if the Status is
Read in Progress) queue the read such that
the Process is not put 6n QIC.
b. If the page is in core increment the Sche-

duled Count (SC) in the CHT for the page.

bcc

p/c=~n.r page
MM1/W-1 i3

4)

2. Otherwise

a'

b.

If the page is not in core increment the
Read Count in the PRT and gqueue the read
such that when the Read Count goes to zero
the process is put on QIC.

Otherwise, increment SC for the page.

At the end of the sean the PIC bit will be set. If

during the

disk:

scan it is discovered that a page is on the

a) If the PIC bit is set, the page is ignored.

b) Otherwise, the process will be removed from the

DSRI, and written back onto the drum. All the disk

reads in the CWS will be queued with a wakeup to

be generated when the seek for the last cylinder

ends.

Each time a read is begun the PRT is checked to make

sure that the PIC bit is set. If it is not, the read

is discarded. If it is, a search of CHT will be per-

formed.

a) 1If the page is found the SC count will be incre-

mented.

The count in the PRT will be decremented.

If it goes to zero, the process PRT entry will be

prut on QIC.

b) Otherwise, the read request to the TSU begins.

1. A free page is found on Free Core List (FCL)

via the algorithm for getting free pages.

2. The 0ld entry is deleted and the new entry in-

serted. (This requires rehashing the old UN

bcc

p/c=n.r page
MM1/W-1 14

a)

b)

and patching the collision chain.) The Read
in Progress Status bits are set. The entry is
then placed in CHT2. Its SC is set to #.

3. The read commands are sent to the TSU. The
request node will be pointed to by a Read

Cleanup Pointer (RCP).

5) When the read is completed, the following checks are

made:

The TSU error word is checked. If an error oc-

curred, there are two cases:

1. It is the first error, in which case the er-
ror and unavailable bits in the CHT entry are
set and the page put on the free list. Exit.

2. It is the second error. Set error and unavail-
able bits on page and proceed to Db).

The Unique Name will be checked against the class

code in the request node (which was copied from

the context block). If the UN’s do not match,
clear UN in CHT and put page on free list. Set

BADUN bit in CWS entry for the page. Exit.

Check PRT to make sure the PIC bit is set. TIf not,

put the page on the free list ifsc = fg.

We are now convinced that we want the page. In-

crement SC.

Scan the read sector list for additional entries

with same Unique Name. Remove each such entry and

do ¢) and d) for it.

bec

p/c=n.r page
MM1/W-1 15

1)

2)

3)

4)

B. Write Process onto Drum.

If convenient bit set, put process on Convenient Write

Queue (CWQ) and exit.

For each page in the CWS (with non-zero PMT entry) of

the process do:

a)

b)

c)

a)

If page not in CHT, consider next page.

Reset SF in PMT and decrement Scheduled Count (SC)
in CHT. (If page destroyed, SF is set but page
not in CHT.)

If (SC = @g?) and Dirty Bit = 1 queue write for the
page.

If sC = ¢ and Dirty Bit = @, put CHT entry on FCL.

When it is determined to do a write, the following

actions occur:

a)

b)

Get a write request off the Write Ljist

1f (SC V PL) = @, then reset the CHT dirty bit,

set status in CHT to Write in Progress, place re-
quest node on cleanup pointer and send commands

to TSU. Also zero the DHT drum address and replace
01ld drum address in Drum Free Page Bit Table
(DFPBT) .

Otherwise, if PL # @, put request on end of write
list. Otherwise, return the request to free

storage and go to a).

At the end of the write, the following actions occur:

a)

The error status of the write is checked.

1. If an error occurred, replace the write node

on the write list and set the dirty bit.

bec Y

b) If PL # @, put node on end of write 1ist; Other-
wise, if (SC VvV D) = #, put page on FCL. Update

DHT drum address and set status DKA bit and reset

KA bit.

C. Return page to drum. This is to be used to cause SC to be
decremented and the page written onto drum. There are two
steps.

1) Decrement SC

2) 1f sc { @, do
a) If dirty.bit set, queue write
b) Otherwise put page on FCL

D. Transfer page from drum to disk. The request is made
with an activate. |
1) Remove each entry on Request queue and check the use

count in DHT. If the use count is >1, success return.
Otherwise:
a) If the page is in core and if dirty bit in CHT

entry set, go to b)l).

b) oOtherwise, if the DHT status reflects that the
page is not on the disk, but is on the drum:

1. Place the request on the appropriate Disk
Ccylinder Queue (KCQ) and fail return the
activate.

c¢) 1If the page is not on the drum, generate a suc-
cess return and exit.
Note: a success return is made if no transfer is required

to satisfy the request.

bec

p/c=n.r page
MM1,/W~1 17

2)

When the seek begins for a cylinder, the KCQ is re-
formed onto the Disk Sector Source Queues (KSSQ).
There are 6 KSSQ’s. Also, the Disk Cleanup Pointer

(KCP) is cleared.

Note: The following description applies to reads as well

as writes.

3)

4)

When the seek ends, the first entry on each KSSQ is
removed. If the entry has the same disk address as
the entry on KCP, return the entry to KSSQ.

a) If it is a drum to disk transfer, decrement the
use count. If the use count is zero, the the fol-
lowing, other ignore the request.

1. If the class code is to be written, put the
request on the Disk Sector Action (KSAQ) for
the sector involved.

2. If the page is in core, increment SC and put
the request on the proper KSAQ.

3. Otherwise, setup‘the request as a drum-to-core
transfer, and put into the microcode branch
address field the address of a routine which
will move the request onto the proper KSAQ
after it has come in.

b) If it is a disk to drum transfer, it is put on
KSAQ.

At each time when another disk transfer is to be given

to the TSU, an inspection is made of the KSAQ for the

current disk sector.

bcc

p/c=n.r page
MM1/W-1 18

5)

b)

When the disk write is completed, the following oc-
curs for the entry on KCP and each entry on KSSQ and

KSAQ with the same disk address:

a)

b)

Otherwise, the entry is removed. If UC % g, we
ignore the request. If UC = g the entry is placed
on the Disgk CleanupbPointer (KCP). The appropri-
ate commands are issued to the TSU. The KSSQ for
the sector is inspected and if an entry exists, it

is removed &nd treated according to 3a, b above.

If the request is to write the class code (this
can result from F or from a DHT entry WUN bit being
set) and no error was made, then do:
1. If the cléss code was zero, do
a. If the page is to be transferred, generate
a drum to core transfer with a branch into
the routine to put request node on KSAQ.
b. Otherwise, put node on KSAQ changing opera-
tion to write class code.
2. If the class code was not zero, do:
a. Leave note in swapper error word in PRT.
b. Generate wakeup (cause punt).
Otherwise, check for errors. If error was made,
increment error count.
1. If Error Count » N, record disk address in
'Swapper Error Word (SEW) in PRT if SEW = d.
If SEW # @, set Swapper Error Waiting Word in

PRT and store request node on the Swapper Er-

ror Queue (SEQ). A central process.is

bec | Y £

responsible for maintaining the SEQ.
¢) Otherwise |
1. Decrement SC and return CHT entry to FCL if
sc = @.
2. Delete DHT entry if UC = d.
3. Decrement disk transfer field in PRT and gen-
erate wakeup if zero.
E. Transfer page from disk to drum. This request is made
with an activate.

1) Remove entry from request queue. Find the current in-
carnation of the page.

a) 1If page already in core or on drum (find out by
looking in DHT and checking status), ignore request
and success return from the activate.

b) Otherwise, put the request on the KCQ and fail re-
turn activate.

2) When the request is remowed from KSSQ (refer to D for
actions common to reads énd-writes), the following ac-
tions occur:

a) Check the current incarnation of the page. If it
is anywhere besides the disk, ignore the request.

b) Put the request on KSAQ.

3) The transfer is caused when the entry is removed from
the KSAR. The entry is pointed to by KCP.

4) When the transfer is completed
a) If there are errors, the error count field is in-

cremented and the read requeued. Exit.

b) The request is put on the DWL.

bee S

F. Write Unique Name on Deleted (Empty) Page on Disk.

1) Remove request from queue. |

2) Queue a class code read on KCQ.

3) When read takes place
a) 1If error, requeue class code read and exit.

b) 1If class code not zero, have a message in SEW for
the process if SEW = @, and exit.
c) Otherwise, queue class code write.

4) When class code write is finished, check errors. At-
tempt to write n times and generate interrupt if
writes unsuccessful.

G. Delete Information and Class Code at Given Real Name.

1) Remove entry from request queue.

2) Find page in DHT. Set destroyed bit. If no entry
exists, make one. Note: 1In disk and drum reads and
disk writes, if destroyed bit is set, the operation
must be aborted.

3) Find entry in CHT.

a) If in CHT
1. Set unavailable bit.
2. Remove page from CHT if clean - zeroing class
code and digk address.

4) Flush map of both CPU’s

5) Queue class code check on Disk Cylider Queue if DHT
CcC bit claims class code written on disk.

a) 1If class code checks ok, queue class code write of

@ and transfer @ to entire page.

bec o

b) If class code does not check, remove desfroyed bit
from DHT entry and exit;

6) Remove DHT entry and return drum page to free drum bit
table.

Disk to fast disk transfer

Same as disk to drum transfer, except that the sector on

which the page is written is picked from the current cyl-

inder on the fast disk. 1If that side is seeking, a core

to drum - drum to core - core to fast disk transfer is

gqueued. If the page is already on the drum, it is left

there.

Disk to disk transfer

The basic strategy is to create a copy of the information

on the drum with a new page status in DHT. Then if the

calling process places the page in its PMT & APS and

flushes the APS, the automatic mechanisms will cause the

disk writes. The detailed algorithm is as follows:

1) Remove request made from request queue. Make DHT en-
try for new real name. Mark it as a new page without

a class code written. Then find the old page.

a) If it is in the CHT, increment the scheduled count
and queue a write which will put the drum address
in DHT at the new name,

b) If it is on the drum, then queue a read into core
for the new real name. Then write it out.

¢) If it is on the disk, then cause a disk to core
transfer from the old address but putting it into

core under the new address. Then write it out.

bcc L o

J. Request New Page

The strategy for the monitor is to place a request in core
and place a ptr to it in the right place and alert the
swapper. The CPU will then wait until the swapper gives a
success or fail return. Success return implies the page
is in CHT and the appropriate DHT entry has been made.
However, the page has not been cleared. Failure implies
that nothing was done. The swapper strategy is to:
1) Look for page in CHT and DHT
a) If in CHT, generate fail return and set interrupt
for error.
b) If in DHT, same as a).
2) Attempt to remove a page from FCL.
a) 1If page removed, make DHT entry and set status as
new page. Set WUN bit. Generate success return.
b) 1If there is no free core, determine if this pro-
cess is more important than another process.
1. If it is, release a page from the least impor-
tant process and go to 2)a).
2. If a page cannot be released, generate a fail

return.

Miscellaneous Comments

Error collection

Errors will be made by drum and disk. Data collection on
the errors should be made to determine corrective proce-
dures. The following proposal is designed to facilitate

collection of such data.

Ve=n.
bcc S

Error information is dumped into a page pointed to by some
fixed cells in memory. When the page is half full, the
swapper wakes a small process whose goal in life is to
save the information in the page on a file. It might, for
instance, hash the information into the file and update
the counters where necessary . When a process gets awak-
ened, it could make a system call to change the Error Page

Pointer (Unique Name).

Diagnostic Routines

These will be specified and described in a document as
soon as those desiring these routines make their wishes

known to the author.

page
24

MM1/W-1

p/c=n.r

bec

Request Entry Field Definitions

sysenbsx 70 dnoxb ®© I0J IOpPESY B ST SpPOU STYL — dud

8T d
ANAN0 NO XSINZ IXEN OL ¥iLd -
)
0T c opoodo |¢ @poodo |¢ spoodo [opoodo
SS2IPPY Uoueldg SPOOOIDTH SITIM peay 93 TIM peay
NSTA ISTA unig unig
8t g!
dIgYL SSHOOYd OL dLd O uoT3TpuUOD
‘ _ J dnoyem
zL

sweN Tesy

bcc T e

Wakeup Condition (CW) -

Ag@d- No wakeup

@@F1l Wakeup before the transfer done (after seek com-—~
pleted for disk)

@P1lg Wakeup after the transfer completed

PgF11 Illegal

g1lgg Illegal

#1@1 Wakeup before the transfer of last page

g119 Wakeup after the transfer of last page

111 Illegal

If any-all bit set wakeup generated when any page is

transfered. Other bits have meanings described abowme.

FCL - determines whether page put on end or beginning of
Free Core List.

Four opcode fields - these are set by AMC as required by
request.

Microcode Branch Address - this field is set by the call-
ing routing to cause a specific cleanup action at the
end of the transfer, which usually results in the en-
try being put in another queue.

Ptr to next entry on Queue - this field is used to chain
the Queue together or to point to the next node in

the request.

FE—E p/c-n.r page |

MM1/W-1

APPENDIX

List Structures

List Type 1

This is a standard offset list (ptr to next element off-
set from first word of bead) except that the end pointer

points to a pseudo-bead around the head of the list.

off—Eet'

HEADER

*‘

off-set PTR

off-set PTR

bcc

p/c=n.r
MM1/W-1

page

List Type 2

stack or queue.

ficiently.

HEADER

PTR

PTR

Header poinss to end of list.

o)

This is a circular list structure which can be used as a

Elements cannot be removed from end ef-

<« beginning

(top)

end
(bottom)

p/c=n.r page

bece -1

List Type 3

This is a list which begins at a "header," (i.e., the
header points to the first element on the list) and ends

with the element which has a. zero in its ptr field.

Header

Ptr

Ptr

	001
	01
	02
	02a
	02b
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	25a
	25b
	25c

