authors approval date [revision date

4 /24]70
classification v !
R. R. Van Tuyl Working Paper

distribution pages
RR /5 »

Company Privatg 8

2

. prcﬁ;/class-number.revisiaT
CC TEST PROCESSOR DDT TPDDT /W—-3.1
Adé »

ABSTRACT and CONTENTS

DDT as known on the 940 has been modified to produce a
debugging aid to run on the test processor (ITP).
Included in this document is a description of the changes

to DDT. The description of DDT itself may be obtained
from Programming.




J p/c=n.r page
BCC TPDDT/W-3.1 1

Variations of Stand-Alone DDT from System DDT

The version of DDT described in Document Number R-11 has
been modified by the author to provide a hardware debugging
facility. All the basic comments of R-11 apply.

The minimum use of the machine is used. For instance,
programmed operators, multiply, and divide instructions
are not used by DDT.

The address space of the private memory is divided into two
areas: one between @ and 8000 in which DDT resides, and one
consisting of the remainder of the core. The symbol '..'

is preset to 8000. The entire core from @ to 37777B may be
manipulated using DDT. Of course, changing cells within DDT

is risky.

For the convenience of the user, three cells are set with
various entry points into DDT. These are:
4 - Continue entry point, state of DDT not
digturbed
5 - Continue entry point, state of DDT modified by
current Rel, Bound, I/0, Mode registers
6 — Initialize DDT entry point, state of DDT is
initialized.

Several new opcodes are defined for the convenience of the

user. They are as follows:

Opcode Argument Result

DDT none Returns control to DDT.

CIN none Character right adjusted in A.
coutT in A Character output on teletype.

IIN none An integer returned in A, termina-

tor returned in B, sign bit of B
set if no integer was input.




bec

P/e=n.r page
TPDDT/W-3.1 2

Opcode
I0UT

NOUT
TAB
CRLF
DIR
EIR
RDX
RATL
SNAT
RTU
UEX

inside DDT.

MUL

DIV

TSTG

GCI
GCH

GCD

the instruction.

Argument

in A
in A
none
none

none

none-

in A
none
none

none

location in
microprocessor

The opcode has as its value the correct BRM.

ptr
fact

ptr
divi

ptr
stri

ptr
stg

ptr
stg

ptr
stg

The following opcodes in reality are BRM to a subroutine

In some cases they also require an argument. Since the
instruction generates a full word, the argument must follow
By placing a nop plus a ptr to the
argument following the word containing the instruction

skips around the instruction will work properly.

to
or

to
sor

to
ng

to
desc.

to
desc.

to
desc.

Result

Integer is output
Absolute number is output
3 spaces output

Carriage return line feed output
Disable master interrupt

Enable master interrupt

Set DDT's radix to value in A
Reset attention latch in TP2
Skip on attention not set in TP2
Reset TU in TP2

Execute microcode (TP2)

A is multiplied by factor
pointed to by ptr following mul
instruction. The multiply is
identical to the 940 multiply.

AB is divided by divisor pointed
to by ptr following div instruc-
tion. The division is identical
to the 940 division.

String beginning at the word
pointed to is typed until a '/’
is encountered in the string.

QSPL GCI

QSPL GCH

QSPL GCD




C p/e~n.r page
BC TPDDT/W-3.1 3

wCl ptr to QSPL WCI
stg desc. -
WCD ptr to QSPIL WCD
stg desc.
Example:
ILDA = 2;
MUL
NOP = 3
LSH 23;

Let us now systematically describe all variances from system
DDT cross referenced to R-11.

1.6 Expressions

The operator . has been modified to provide slightly easier
access to central memory. If the expression
A L B

is encountered, the sign bit of A determines the mask which
is applied in the sum

A + (B AND MASK)
which determines the operation A . B.
If A >=@¢ the mask is 37777B else the mask is 40777777B.

Note that . is not commutative.

1.8 The comments about memory allocation do not apply.

2.1 Cell opening commands

<E>;' No longer prints a string. It does nothing.

2.2 Type value commands

7! No longer prints a string. It does nothing.

<E>, <E>;' ©No longer prints a string. It does nothing.

2.5 Breakpoint commands
The breakpoint instruction is BRM RDDT. RDDT is a pre-

defined location and may be used in programs loaded by the
loader. The symbolic opcode DDT also exists and takes no
address. It is equal to BRM RDDT, and may be typed in at

any time.




bec

p/e=n.r page
TPDDT/W-3.1 4

<E>; .
<E>.

<E>%.

%

o !
7 ®

<N>:0

Input-output

Will place a breakpoint at the address given
by the expression. '

Will remove the breakpoint set by <E>..

Will remove any breakpoints set by ;. at the
address given by the expression. If no such
breakpoint has been set, a ? is typed.
Removes all breakpoints (set by both ;! and :).
Lists all breakpoints.
Does not do anything.

<A>;T
<A>:;Y
%S

s WSED>
1 C<F>

Search commands

Not implemented at present.
Not implemented at present.

Not implemented at present.
Does not output global symbols.
Does not output symbols.

[<E><]<W>;W In addition to comments in R-11, a count of

[CEDC]<W>9AW Same as ;W but printout of successful

Miscellaneous commands

number of successful matches will follow print

out of cells containing successful matches.

matches in suppressed. Only count is given.

%S

[<E>1 %K

%L

RESTORYL Restores the literal table

Initializes the transfer vectors in the region
4 - 30B without any other changes to the state
of DDT.

Kills the specified literal from the symbol
table. If no expression kills the entire
literal table.

Checks the literal table against data in core




p/e-n.r page
CC TPDDT/W—3 .1 5

2.10 Special symbols
The following four symbols have been added to the "state"
of a process which DDT restores before executing a program.

They are initialized to the same value as DDT's values, but

are separate from DDT's values.

%M Mode register of ITP

%I I/0 register of ITP

%R Relative register of ITP
%B Bound register of ITP

2.11 Panics
DDT recognizes 3 kinds of panics (provided 0-30B are not

changed) :
1. Rubout
2. Illegal instruction causing a trap
3. Clear button on Test Processor.
DDT will print some cryptic diagnostics giving some indi-
cation of errors encountered. They must be treated with
some care, however, for sometimes the diagnostic indicates
one of many errors:
1. I>> <A> <E> indicates that one of several things
has happened:
a. a trap has occurred at A and E is the
instruction which caused the trap.
b. an interrupt has occurred which does not
have a transfer vector.
c. interpreting an instruction by :N, :S,
:P (the first one executed after the break-
point), etc., may be illegal.
2. E>> an effective address has longer than a 64-word
indirect chain.
3. Full is printed when the symbol table is full.
DDTE <A> <E> indicates an illegal instruction was
executed by DDT.




bec

p/e=n.r page
TPDDT/W-3.1 6

2.12 Multiple program debugging

%D
<E>%R
%E

No longer exists.
No longer exists.
Resets DDT without deleting core. In additon

+o0 comments in R-11.

2.13 APU debugging

parts of DDT.
Z+157B.
N

%E

%D
<E>%G

%P

As DDT provides sufficient capabilities to debug APU code
only those operations necessary to ease the debugging were
added. These operations involve little change in other

The base address of the APU must be in cell

A special symbol, which is the APU mode flag.
APU mode is @, ordinary mode is -1. This flag
must be set to @ if any of the features
described below will work.

A special symbol, is the address of the patch
space which is used for the APU code. ~1%F
will initialize this address to the end of

the APU code.

<E>[,<E1>]%4S Set breakpoints at all locations between

E and E1 (or just E). If E>=g the address is
a relative address in the APU code, else the

address is an absolute address.

<E>[,<El1>]%C Clear breakpoints. Comments above apply.

Display breakpoints.

Start APU. The APU must waiting to restore
the state which is in core at 2500B. At this
time breakpoints are set, and the state is
loaded by the AMC microprocessor and control
sent to E in the microcode.

Proceed. As the result of a breakpoint or
punt, the AMC is waiting to continue. %P is
equivalent to 662B%G.




I c P/fe=n.r page
C TPDDT/W-3.1 7

For either %G or %P DDT waits until the AMC again breaks or
punts. When either condition occurs DDT will print several
useful bits of information. However, one may not want DDT
to wait in which case a rubout after the carriage return
will return DDT to your control. In the event one desires
to reinitiate the waiting procedure do:

%H Hang on AMC break.

However, you may be satisfied to observe call Z+25B your-
self. In this case the breakpoint logic has been left in a
bad state. 1In order to correct the breakpoint logic at any
time it is required to do:

%C With no arguments this executes a routine which
attempts to cleanup the breakpoints. If things
have gotten too confused the code in core will
not be altered.

Opening cells in APU mode

In DDT it is often convenient to look at the contents of a
cell which is referred to by an instruction. Since the base
address of the APU code is not @ merely typing slash will
not print the value desired, i.e.,
40160370/ 1IDA 10 / (The slash would print location
10 in the ITP local memory)
Therefore the following simple algorithm is used in APU mode

for printing the contents of cells for the last word typed.

If the Last Register Opened is >= Base address of the APU
code add the base address of the APU to the address.

It is also desirable to use the above algorithm when using
the "follow" command, (. In this way branches can be
followed with little difficulty.

40160001/ BRU 3 (

40160003/ 1IDA 6 [/ 40031.f.




bec

P/e-n.r page
TPDDT/W-3. 1 8

Patches in APU

40160004/ 1DbA 7 1.f.
40160005/ BRU 25 1.f.
40160006/ 4003 c.r.

code

warned.,

[<E>T%(

9

[<E>]%)

A facility has been provided to do patching in the APU code.
It will not handle literals or undefined symbols, be fore-

Begin patch. E is the address of the desired
instruction where the patch is to begin.

If Ed>=ff, E is a relative address else E is an
absolute address.

If no argument given, a cell must have been
opened. The cell opened is the beginning of
the patch. 1In all cases the instruction where
the patch begins becomes the value of the
special symbol %Q.

Patch instruction. This symbol is equivalent
to typing the instruction which occupied the
cell where the patch began. If and where the
patch instruction is placed in the patch is
entirely at the discretion of the programmer.
End of patch. The expression is the last

instruction of the patch.

While a patch is being made other commands can be executed
without affecting the patch. However, it is important to
close the patch. If it is unreasonable to close the patch

a -1%F will reinitialize the patch logic.




bec

P/e=n.r page
TPDDT/W-3.1 9

APPENDIX

BEGNSY
BEGSYM
NEXTSY
PUNCH
RBGSYM
RDDT
SYMTAB
Z

1. sSome symbols of interest to some people:

Temporary symbol

End of predeclared symbols
Temporary symbol

Character output routine +1
First cell of symbol table
Breakpoint entry point into DDT
Negative of number of symbols
Zero in main memory (4B7)

First cell of user area in the local
memory (8000D)




bec

p/e=n.r
TPDDT/W-3.1

page
10

The following opcodes have been added to the predeclared

symbols for the ITP DDT.
CLEAR
CNX
Css
CLS
CcssI
CSsD
LDF
STF
ADF
MGF
GOTO
PUNT
CALL
ZRF
SKNE
SNEL
MDC
SKLE
SCALL

SKEL
SKL
SKGE
SKP
SKNA
SKNB
BSR
BSL
BSX
BVR
SKUM
SKI
BRPX
MUL
BRQ
LLO
ILDI
RET




bee

pP/e=n.r page
TPDDT/W-3.1 11

AELEQP
CCHTE
CHTHSH
CHTSCH
CHTSY
DCHT
DDHT
DHTSCH
ECHT
EDHT
FRET
FSTR

3. The following microcode locations have been added to the
predefined symbols for the ITP DDT. If the routine
given by the symbol requires a fail address the appro-
priate number is merged into the value of the symbol.

GETPOS
GFC
PPFCL
REFFL
RELEQP
RSTUP
RTEQP
R2PNT
SELEQP
SETFL
STSUI
WAKEUP




Variations of Stand-Alone DDT From System DDT

The version of DDT described in Document Number R-11 has
been modified by the author to provide a hardware debugging

facility. All the basic comments of R-11 apply.

The minimum use of the machine is used. For instance, pro-
grammed operators, multiply, and divide instructions are

not used by DDT.

The address space of the private mémory is divided into two
areas: One between @ and 8000 in which DDT resides, and one
consisting of the remainder of the core. The symbol Vo) s
preset to 8000. The entire core from @ to 3777B may be manip-

ulated using DDT. Of course, changing cells within DDT is

risky.



several new opcodes are defined for the convenience of the

user. They are as follows:

Opcode Argument Result

CIN none Character right adjusted in A.
couT in A Character output on teletype.

IIN none An integer returned in A, termina-

tor returned in B, sign bit of B
set if no integer was input.

- I0UT in A integer is output
TAB none 3 spaces output
CRLF none carriage return line feed output
DIR none disable Master interrupt
EIR none enable Master interrupt
RDX in A set DDT’s radix to value in A

The following require an argument to follow the opcode. This
argument is a nop plus a ptr to the argument.

MUL ptr to A is multiplied by factor pointed
factor to by ptr following mul instruc-
tion the multiply is identical
to the 940 multiply

DIV ptr to AB is divided by divisor pointed
diviser to by ptr following div instruc-
tion. The division is identical

to the 940 division.

TSTG ptr to string beginning at the word pointed
string to is typed until a /' is encoun-
tered in the string.

Example:
IDA = 2:
MUL
NOP = 33
I.SH 23;

*Result in A is six



Let us now systematically describe all variances from system

DDT cross referenced to R-11.

1.8 The comments about memory allocation do not apply.

2.1 cCell opening commands

{E) A

No longer prints a string. It does nothing.

2.2 Type value commands

;' No longer prints a string. It does nothing.

(B>, <E>;' No longer prints a string. It does nothing.

2.5 Breakpoint commands

The breakpoint opcode is BRM RDDT. RDDT is a pre-defined

location and may be used in programs loaded by the loader.

The symbolic opcode DDT also exists and takes no address.

It is equal to BRM RDDT, and may be typed in at any time.

<ED

!

Will place a breakpoint at the address given by
the expression.

Will remove the breakpoint set by <{E>}.

<E>%! Will remove any breakpoints set by ;) at the address

%t

; |

given by the expression. If no such breakpoint has
been set, a ? is typed.

Removes all breakpoints (set by both ;| and !).

Lists all breakpoints.

{X>;0 Does not do anything.

2.6 Input-Output

{A>;T Not implemented at present.

{A>;:;Y Not implemented at present.

%S

Not implemented at present.

:W{F> Does not output global symbols.

:c{F> Does not output symbols.



2.7 Search commands

Search commands do not search DDT.

[<E><j<W>;W In addition to comments in R-11, a count
of number of successful matches will follow
print out of cells containing successful matches.

[<E><j<W>%W Same as ;W but printout of successful
matches is suppressed. Only count is given.

2.9 Miscellaneous commands

%$ Initializes the transfer vectors in the region
4 - 30B without any other changes to the state
of DDT.

2,11 Panics

DDT recognizes 3 kinds of panics (provided 0-237B are not

changed) :
1. Rubout
2. Illegal instruction causing a trap.

3. Clear button on Test Processor.
DDT will print some cryptic diagnostics giving some indication
of errors encountered. They must be treated with some care,
however, for sometimes the diagnostic indicates one of many
errors:
1. D> <aA> <& indicates that one of several things has
happened:
a. A trap has occurred and A and E is the instruction
which caused the trap.
b. An interrupt has occurred which does not have a
transfer vector.

c. Interpreting an instruction by ;N, :S, ;P (the



first one executed after the breakpoint), etc.,
may be illegal.
2. E>> An effective address has longer than a 64-word
indirect chain.,
3. Full is printed when either the symbol table is full
or ;F (the next available cell) runs into DDT at 14000B.
4. DDTE <A> <{E» indicates an illegal instruction was
executed by DDT,.

2.12 Multiple program debugging

%D No longer exists.
{E>%R No longer exists.
%E Resets DDT without deleting core. In addition to

comments in R-11.

Those programmers who were foresighted enough to become well
acquainted with the R-11 early in the game will not now have
need of going back through the entire manual. The list of
corrections should be sufficient to inform you of what is

going on,



1.0 General

DDT is the debugging system for the SDS 930 Time-Sharing
System. Tt has facilities for symbolic reference to and typeout
of memory cells and central registers. Furthermore, it permits
the use of literals in the same manner as in the assembler. It
can also insert breakpoints into programs, perform a trace, and
search programs for specified words and specified effective
addresses. There is a command to facilitate program patching.
Finally, DDT can load both absolute and relocatable files in the
format produced by the assembler.

The system has a language for communication between DDT
and its users. The basic components of this language are

symbols, constants, and commands.

1.1 Symbols
A symbol is any string of letters, digits, and dots (.)

containing at least one letter. (However, a digit string followed
by B or D and possibly another digit is interpreted as an octal
or decimal number respectively). In symbols of more than six
characters, only the first six are significant: thus, ALPHABET
is equivalent to ALPHAB. All opcodes recognized by the assembler
are built-in symbols, except for some I/O instructions. Dot (.)
is a built-in symbol with a special meaning explained in & later
section. There are also some constructs like 3A (the A-register),
sF (the first cell beyond the end of the program), and ;M (the
mask -for memory searches) which behave like symbols under some
circumstances. Their use will be detailed later.

Every symbol may have & value. This value is a 2h-bit
integer; for most symbols it will be either an address in memory
or the octal encoding of an operation code. Examples: '

ABC
AB124
12XYZ

The following are not symbols:

1358
AB*CD



Symbols may be introduced to DDT in two basically different
ways:

(A) They may be written out by the assembler and read in from
the binary program file by DDT.
(B) They may be typed in and assigned values during jebugging.

Tt is possible for a symbol to be undefined. This may occur
if a program is loaded which references an external symbol not
defined in a previously loaded program. It may also occur if an
undefined symbol is typed in an expression. In general, undefined
symbols are legal input to I'DT except when their values would
be required immediately for the execution of & command. Thus,
for example, the ;G (GO T0) command could not have an undefined
symbol as its argument.

Undefined symbols may become defined in several ways. They
may be defined as external in the assembler (i.e., with %XT,
ENTRY, or $) and read by DDT as part of a binary program.
Alternatively, they may be defined by one of the symbol definition
commands available in DDT. When the definition occurs, the
value of the symbol will be substituted in all the expressions
in which the symbol has appeared.

If DDT types [U] after typing out the contents of & cell,
it means that the cell contains an undefined symbol. The cell
is closed at once so that its contents cammot be erroneously
changed.

The only restriction on this facility is that, as for
ARPAS, the undefined symbol must be the only thing in the address
field of the word in which it appears. Incorrect uses of
undefined symbols will be detected by DDT and will result in
the error comment (U).

DDT keeps track of references to undefined symbols by
building a pointer chain through the address fields of the
words referring to the symbol. Thus, suppose that the symbol
A is undefined and appears as follows

sl LDA A

52 STA A

S3 MRG A



and nowhere else in the program. After loading, the entry for
A in DDT's symbol table will contain a flag indicating that it
is undefined and a pointer to 3. The abové locations will
contain:

sS1 LDA Sl

52 STA sl
S3 MRG 52

When the symbol is defined, DDT goes through the pointer chain
and fills in the value. Tt recognizes the end of the pointer
chain by an address which points to the cell in which it appears.
From this description it should be obvious what will happen
if the pointer chain is destroyed. A probable consequence is
that & search down the pointer chain will not terminate. DDT
does such searches whenever it prints an address. If the chain
it is searching has more than 256 links, it will print the
symbol followed by (U) and continue. Fixing up an undefined
symbol pointer chain which has been clobbered is an exercise

which we leave to the reader.

1.2 Block Structure

A limited facility called the block structure facility is

provided to simplify the referencing of local symbols which
are defined in more than one program. Note that DDT's block
structure has only a tenuous connection with the block structure
of ALGOL. The block structure of a program is organized in
the following manner: every IDENT read by DDT is part of a
binary program file begins a new block. Any local symbol known
to DDT has & block number associated with it; global symbols
do not have a block number. Undefined symbols are always treated
as global.

The name of a block is the symbol in the label field of the
IDENT. If two IDENTs with the same symbol are read, the message
(AIREADY LOADED) is printed, and the local symbol table from the

former occurrence of the block will be deleted.



Global symbols must be unique within an entire program and
are recognized at all times. If a multiple definition is encoun-
tered, the latest one takes precedence. Local symbols &are
recognized according to the following rules:

(1) At any given time one block is called the primary
block. All local symbols associated with the primary
block will be recognized.

(2) If a symbol is used vhich is neither global nor in the -
primary block, the entire symbol table is scanned for
it. TIf it occurs in only one block, the symbol is
recognized properly. If it occurs in more than one
block, the error message (A) is printed.

(3) A symbol may be explicitly qualified by writing:

SYMA&SYMB
SYMA must be the name of & block. SYMB is then referenced
as though the block whose name is SYMA were primary.

(4) When a cell is opened (see Section 2.1), the block to
which the symbolic part of its location belongs vecomes
primary. Thus, NN&XYZ/ causes block NN to become
primary; if ABC is a unique local symbol in block R,

then ABC/ causes PQ to become primary.

1.3 Literals

Literals have the same formet and meaning in DDT as in the
assembler, i.e., the two characters' =' signal the beginning
of a literal, which is terminated by any of the characters
which ordinarily terminate an expression. In contrast to the
assembler, the expréssion in a DDT literal must be defined.

The literal is looked up in the literal table. If it is
found, the address which has been assigned to it is the value
of the symbol. If it does not appear in the literal table,
it is stored at the address which is the current value of 3F,
and this address is taken as the value of the literal; 3 F
is increased by 1. For example, if the literal -1l does not
already exist in the literal table and ;F is 1000B, then LDA =-1



causes -1 to be stored at 1000B, and is equivalent to LDA 1000B;
the new value of ;F is 1001E. Exception: In patch mode (see
Section 2.8), literals are saved and not stored until the patch
is completed since otherwise they would interfere with the
patch.

When DDT types out & symbol whose value is an address in
the literal table, it will type out in the same format in which
it would be input; that is, as = followed by the mmeric value
of the literal.

1.4 Constants

A constant is any string of digits, possibly followed by &
B or D, in turn possibly followed by another digit. The number
represented by the string is evaluated, truncated to 2k bits and
then used just like the value of & symbol. The radix for
numbers is normally 8 (octal), but may be changed arbitrarily
by the commands described in Section 2.4 below. If a nwiber is
terminated by B or D, it is interpreted as octal or decinal
respectively regardless of the current radix. A digit fbllowing
the B or D is interpreted as a power of 8 or 10 respectively by
which the number is to be multiplied. Thus 1750B=175B1=1000D=1D3.
Constants are always printed by DDT in the current radix.

It is possible to enter numeric op codes by typing the
number followed by an@sign. Thus 100€ =14400000B if the current
radix is decimal (100D=144B).

1.5 Commands

A command is an order typed to DDT which instructs it to
something. The commands are listed and their functions explained

in Section 2 below.

1.6 Expressions
An expression is a string of numbers or symbols connected

by any of a large number of operators. These operators have the



following significance:

addition

subtraction

(integer) multiplication

(integer) division

(AwD)

(1.8S)

(EQL; as in ARPAS

(GTR

(OR)

x;+y means x;¥3+y, or (R)x+y in ARPAS
x3-y means x;¥3-y, or (R)x-y in ARPAS
remainder on (integer) division

e s e we we we we
+=_V 1 A%

s e e

Expressions are evaluated strictly left to right: all operators
have the same precedence. TFarentheses are not allowed. The
first symbol or number may be preceded by a minus sign. Blank
acts like plus, except that the following operand is truncated
to 14 bits before being added to the accumulated value of the
expression. The value of an expression is a 24-bit inteper.

An expression may be a single symbol or constant.

Examples: TDA has the value 7600000
IDA 10 has the value. 7600010 if the
radix is octal
IDA 10D has the value 7600012
Tf SYM is & symbol with the value 1212, then
SYM has the value 1212
SYM 10 has the value 1222
IDA SYM has the value 07601212

Tf this last expression were put into a cell and later
executed by the program the effect would be to load the contents
of SYM, register 1212, into the A register.

When DDT types out expressions, two mode switches control
the format of the output. Commands for setting these modes
are described in Section 2.4 below. The word printout mode
determines whether quantities will be printed as constants or
as symbolic expressions. In the latter case, the opcode (if
any) and the address will be put into symbolic form. If the first
nine bits of the value are O or 1, no opcode will be printed;
in the latter case a negative integer will be printed. If the
opcode is not recognizable as a symbol, it will be typed as a.
number followed by an@ sign.



The address printout mode controls the format in which
addresses are typed. DDT types addresses when asked to open
the previous or the next cell, when it reports the results of
word and address searches, and on breakpoints. In relative
mode , addresses are typed in symbolic form, i.e., as the largest
defined symbol smaller than the address plus a constant if
necessary. If the constant is bigger than 200 octal, or if the
value of the symbol is less than some minimum value (settable
by the user, but normally the lowest location of the program)
the entire address is typed as a constant. In absolute mode,

addresses are always typed as constant.

1.7 The‘Qpen Cell

One other major ingredient of the DDT language is the open
cell. Certain commands cause a cell to be "opened." This means
that its contents are typed out (except in enter mode, for
which see the \ command), followed by a tab. If the user types
an expression followed by a carriage return,it will be inserted
into the cell in place of the current contents, and the cell

will then be closed. The current location is given by the symbol

"." (dot) which always has as its value the address of the last
cell opened, whether or not it is still open.

Note:

(1) Comma and star (for indirect addressing) may be used
in expressions as they are used in the assembler;

e.g. LDA¥* 0,2 has the value 276L000O.

(2) DDT will respond to any illegal input with the
character ? followed by a tab (if a cell is open) or
carriage return (otherwise), after which it will behave
as if nothing had been typed since the last tab or
carriage return. The command ? also erases everything

typed since the last tab or carriage return.



2.0 DDT Commands

Tn the following description of DDT commands, <3> will be
used to denote an arbitrary symbol. <E> or <W> will be used to
denote an arbitrary expression which may be typed by the user:
<F> will be used when the velue of this expression is truncated
to 14 bits before it is usec by DDT, while <> will denote a full
ol-bit expression. <A> will be used to denote an qgtional 1h-bit
expression. If none is typed, the last expression printed out
will usually be used; deviations from this rule will be iescribed
under the individual commends. <F» will denote a file name
followed by a dot: DDT will type a tab whenever it expects a

file name.

2,1 Cell Opening Commands

<>/ This opens the cell addressed by the value of <A>. DDT
will give a tab, type an expression whose value 1s equal to the
contents of the register, give another tab and awalt Turther
commands. The precise form of the expression typed is dependent
on the setting of the word and address printout modes. If the
user types in an expression, DDT will insert its value into
the cell. Typing another command closes the cell, unless it is
a type value or symbol definition command. If another / is
given as the next command with no preceding expression, the
contents of the cell addressed by the expression typed by DDT
are typed out. A further / repeats this process. Note, however,
that the original cell opened remains the open cell; any changes
made will go into that cell.
carriage This command does not necessarily have any effect. If the
returgpecified conditions are present, however, any of the following
actions may occur:
(1) If there is an open cell, the cell is closed.
(2) If DDT is in enter mode, 1t leavesiit.
" (3) If DDT is in patch mode, the patch is terminated (for
a fuller description of this effect, see the patch

command in Section 2.8).



<> ] This command has the same effect as /, except that the
contents of the cell opened are always typed in symbolic form.

<8 This command has the same effeet as /, except that the
contents of the cell opened are typed in constant form.

<A> $ This command has the same effect as/, except that the
contents of the cell opened are typed as a signed integer.

<E> " This command acts like /, except that the cell consuants
are typed in ASCIT. Unprintable characters, as in QED, are

preceded by &, e.g. 141 (control-A) prints out as ZA.

line This command opens the cell whose address is the current

feed location plus one, i.e. the cell after the one Just 6pened.
The output of DDT on this command is carriage return, location
(format controlled by the address printout mode), /, tab. value
of contents, tab.

s ( =space) This is equivalent to line feed except that nothing is

printed. TIts main use is in entering programs or data, ¢.g.
1000 13 23 3 (carriage return)

is equivalent to

1000 1 (carriage return)
1001 2 (carriage return)
1002 3 (carriage return)
t This command opens the cell whose address is the current

location minus one, i.e. the previous cell. The output Is the

same as for the line feed command.

Example:
Anc/ LDA.  ALPHA (1ine feed)
ABC+1/ STA BETA STA GAMMA (line feed)

ABC+2/ LDBR  DELTA *
ABC+l/ STA GAMMA



s\

=

2-3

This command opens the cell whose address is the last 1
bits of the value of the last expression typed. The output
is the same as for line feed.

This command 1s the same a8 /, except that the contents of
the cell are not typed. DDT goes into enter mode, in which the
contents of cells opened by line feed, t, or ( are not typed.
Most other commands cause DDT to go out of enter mode. In
particular, carriage refturn has this effect. When a cell has
been opened with\ , DDT thinks that it has typed out the contents.
The type value commands will, therefore, work on the contents
of the cell.

The type register in special mode character [, 1, $ (type
as a negative integer), " (type in ASCIT) are also preserved
by line feed, up arrow and (.

This command suppresses typeout of cell addresses during

line feed, up arrow and ( chains. Carriage return cancels the

command. .

2.2 Type Value Commands

This command types the value of the last expression typed
(;Q) in constant form. It may appear in the form N> =, in
which case the value of the <W> is typed. Otherwise, the
expression referred to is the one most recently typed, either
by DDT or by the user.

This command types the value of ;Q as a signed integer.

This command types the value of ;Q in symbolic form.

This command types the value of ;Q typed as a word of text
(see " command on previous page). ‘

This eommand types the address part of 3;Q in symbolic form.
If, for instance, the program has executed BRM X, then x\@
will cause DDT to print the address of the BRM.



R-11
2.l
Exanmple :
LDA= 7600000
IDA 10= 7600010
LDA « LDA
7600000« IDA
-1= T
-1 -1
TTTTTTTTH# -1
10221043" ABC
s This command types ;Q a&s a character address, e.g. if the

value of the symbol X is 1000, then 3002;¢ yields X;+2.

2.3 Symbol Definition Commands

These commands all define the symbol as global.

<S> This command defines the value of the symbol <&> to be the
current location.

<S> @ This command defines the value of <8 to be the address
of the last expression typed by DDT or the user.

<B> <<$>> This defines <S> to have the value of <B>.

2.4 Mode Changing Commands

This command is followed by & string of arbitrary characters
terminated by D° (control D). If a cell is open, the string will
be inserted into successive locations packed 3 characters per .
word; otherwise, characters beyond the third will be thrown away.
For example, if no register is open, ”ABCDEDC= yields 1022104 3.

;D (DECIMAL) This command changes the current radix (see
Seetion 1.4).
;0 (OCTAL) This changes the current radix to octal.

<E> 3R (RADIX) sets the current radix to the value of the expression,

which must be 2?.



R-11

2-5

;[ (CONSTANT) This command changes the word printout mode to
‘ constant, i.e. makes / equivalent to [.
;] (SYMBOLIC) This command changes the word printout mode to

symbolic, i.e. makes / equivalent to ].
3" (ASCII) This makes / equivalent to ".
% (SIGNED INTEGER) This mekes / equivalent to §.
;R (REIATIVE) This command changes the address prihtout mode

to relative (symbolic). This mode determines the format for the
output of addresses, both in symbolic expressions and when
generated by line feed and *t.

3V (ABSOLUTE) This command changes the address printout mode
to absolute.

33 (3 CHARS/WORD) This sets the " and ' commands to operate
on 8-bit characters packed 3 per-word.

b (4 CHARS/WORD) This sets the " and ' commands to operate

on 6-bit characters packed 4 per word.

2.5 Breakpoint Commands

SEE APPENDIX

3! (LIST BREAKPOINTS) The breakpoints are listed.
<A>;P (PROCEED) This command restarts the program after a break.
The program executes the instruction at the break and goes on from

there. No breakpoint is removed unless this is specifically done



&t

by ! or ;! so that, if the program arrives at this location again,

another break will occur. If <E>;P is given, another break will

not occur until some breakpoint has been reached that many times.
<A>3;N (NEXT) This command executes the instruction at ;L and

breaks. This program provides a trace facility in that repeated

executions of ;N will provide a running print out of the contents

of the significant internal registers, instruction by instruction.

The function is essentially the same as that of the step switch

on the console. <FE>;N will cause <E> instructions to be executed

before the next break occurs.

The ;N command follows the flow of control in the user's

program. In particular, it will normally trace the execution

of users' POPs (see ;0 below). The execution of SYSPOPs,

however, is not traced. In other words, a SYSPOP such as FAD

(floating add) is regarded as one instruction by ;N. Cells

sF, ;F+l, and ;F+2 are used by ;N and ;P.

<E>38 (STEP). This is equivalent to <F> repetitions of ;N.
Note that this is not the same as <E>;N.
<E>;V (ADVANCE). This is equivalent to <E> repetitions of ;P,

and is not the same as <E>;P.

;U (SUBROUTTNE TRACE MODE). If <>=1, BRMs or SBRMs together
with the subroutine called will be treated as single instructions
by 3N. The same algorithm is used as in ;0 to determine when to
break. If <N>=0, subroutines will be traced explicitly.

Attempts to proceed through certain instructions having to
do with forks will produce erroneous results, and breakpoints
encountered when the program is running in a fork will not do the
right thing. Attempts to proceed through unreasonable instructions



will cause the error comment

$>> .
Also, when control returns to DDT from e breakpoint or rubout,
the interrupt mask for the program is cleered.

2.6 Input/Output Commands o
<A>;Y<F> DDT expects to find a?binary program on the file <F>. If the_wLe'ad

program is absolute, it is read in. If it is relocatable, it is
read in and relocated at the location specified by <A>. 1If the
expression is omitted, relocatable loading commences at location
240B and continues by beginning each program in the first availsble
location after the preceding one, i.e. at the value of ;F at the time.
After réading is complete, the first location not used by the program
is typed out. Any local symbols on the binary file are ignored.
<A>;T<F> This commend is identdcal to ;Y except that it also reads local

symbols from the file and adds them to DDT's symbol table. Any symbols
on the file will be recognized by DDT thereafter.

The following two points should be noted in connection with ;Y
and ;T commands.

1) The use of an expression before ;T or ;Y when the file is

sbsolute (i.e. SAVE file or self-loading paper tape) is an error.
2) The block resd in becomes the primary block.

2.7 Search Commands

<W> ;W (WORD SEARCH) <W>;W searches memory between the limits ;1 and ;2
for cells whdse contents match <W> when both are masked by the value
of ;M. The locations and contents of all such cells are typed out.
<W'><<%Wé> W will perform this sesrch, and in addition performs the
following replacement: 1£®) is the address of a cell such that (Q)A,Mﬁw
then (Q) will be replaced by (Q)A,M&Wl. (Note that this is not quite
the same as masked substitution.) Both old and new contents of the
cell will be typed out.

<> # (NOT-WORD SEARCH). This is the same as ;W, except that all cells
which do not mstch <W> will be printed. This is useful, for example,
in finding and printing all non-zero cells in a given part of memory.



R-11
2-8

<F>3E (EFFECTIVE ADDRESS SEARCH). <E>;E searches memory between
the limits ;1 and ;2 for effective addresses equal to <E>. Indexing,
if specified, is done with the value of ;X. Indirect address
chains are followed to a depth of 64. The addresses and contents
of all words found are typed out. When ;W or ;E is complete,
. is left pointing to the last cell where the expression was

found.

2.8 The Patch Command

<A> ) <A> ) causes a patch to be inserted before the instruction
at ".". If an expression is given, the expression is used
jinstead of the current contents of ".". DDT inserts in this
location & branch to the current value of ;F. When the patch
is done, ;F is updated. Tt then gives a carriage return and a
) and waits for the user to type in the patch. TLegal input
consists of a series of expressions whose values are inserted
in successive locations in memory. Each of these expressions
should be terminated by line feed or ; A, exactly as though
the program were being typed in with the \ command instead of
as a patch. The t command may be given in place of the line
feed and has its usual meaning, except that the contents of the
previous location are not typed. Two other commands are legal
in patch mode. They are: '

(1) Colon, which may be used to define a symbol
with value equal to the current location.

(2) Carriage return, which terminates the patch. When the
patch is terminated, DDT inserts in the next available
location the original contents of thé location at which
‘the patch was inserted. It then inserts in the following
two locations branch instructions to the first and
gecond locations following the patch. This meens that
if the patch command is & skip instruction, the program
will continue to operate correctly. Any other comnmand
given in patch mode may cause unpredictable errors.

<A>3;T Is identical to the ) command except that it puts the instruc-
tion being patched before the new code inserted by the programmer

instead of after.



2.9 Miscellaneous Commands

3?2 and ? This commands erase everything typed since the last tab or
carriage return. It is always legal.

<F>3;6 (GO TO) <E>;G restores the A, B and X registers which were
saved when DDT was entered (unless they have been modified) and
transfers to the location specified by the value of the expression.

3K (KILL) This command resets DDT's symbol table to its initial
state. DDT will type back--OK and wait for a confirming dot.
Any other character will abecrt the command..

<$>3K (KILL). Removes only the symbol <S> from the table.

<5>&;K (KILL). Removes all symbols local to the block named <S>
from the table, as well as the block name itself.

<B>,<E>;L Sets ;1 and 32 (the lower and upper bounds for searches)
to the values of the first and second expressions respectively.

;U (UNDEFINED). This command causes all undefined symbols
to be listed.
<>3U (EXECUTE). This causes the value of the expression to be

executed as an instruction. If it is a branch, control goes to
the location branched to. In all other cases control remains

with DDT. A single carriage return is typed before execution

of the instruction. If the instruction does not branch and does
not skip, or returns to the following location, a $ and another
carriage return are typed after its execution. If the instruction
does skip, two dollar signs ($$) are typed followed by a

carriage return. '

37 (ZERO) <E>,<E>;Z sets to zero all locations between the value
of the first expression and that of the second. <E><<%E>,<E>;Z
sets to the value of the first expression all locations between
the values of the second and third. ;Z alone releases all memory
accessible to the user's program. DDT will type back ~--OK and
wait for a confirming dot. Any other characters will abort the
commend. If this memory is returned, due to later access by
DDT or a program, it will be cleared to zero.

% (LIST BLOCKS). The names of all blocks are printed.

A (FINISHED). Control returns to the executive.



“s

s

SRV S

2.10 Special Symbols

The value of "." is the current location, i.e. the address
of the last register opened.

The following constructs refer to various special registers
of the machine. They act like symbols in that in most contexts
they are synonymous with their values. Their value is the contents
of these registers as saved by DDT: ;X= will print the saved
contents of the X register. To change the contents of a register,
a command of the form <E>;A is used. This command sets the A
register to the value of the expression. Whenever DDT executes
any command involving execution of instructions in the user's
program, it restores the values of all machine registers. It
any of these values have been changed by the user, it is the
changed value which will be restored.

The value of this symbol is the contents of the A register.

The value of this symbol is the contents of the B register.

The value of this symbol is the contents of the X register.

The value of this symbol is the contents of the projjram
counter. The only reason for changing ;L is to set the location
from which ;N will begin execution.

The values of the following special symbols are used by
DDT in certain commands or are available to the programmer for
his general enlightenment. These values may be changed in the
same way that the values of the 'symbols for the central registers
of the machine may be changed.

The value of this symbol is the mask for word searches.

The value of this symbol is the smallest address which DDT
will ever attempt to print in symbolic form.

The value of this symbol is the lower bound for word and
effective address searches. It may also be set by the ;L command.
The value of this symbol is the upper bound for word and

effective address searches. Tt may also be set by using ;L.

This symbol has a value equal to the value of the last
expression typed by DDT or the user. It is useful, for instance,
if the programmer wishes to add one to the contents of the open
register; he need only type 3Q + L.



R-11
2-11

3F The value of this symbol is the address of the lowest
location in core not used by the program. New literals and
patches are inserted starting at this address. Note: like
all other special symbols, ;F may be changed by the command
<E>3F. It is also updated as necessary by patches and literal

definitions.

2.11 Panics

DDT recognizes four kinds of panic conditions:

(4) Panics generated by the execution of BR@«O in the

user's program. BEr N RUTER

(3) The other—ewe-bypes—of-panicd cause DDT to type bell
and carriage return. ;L and . will both be equal to
the location at which the panic occurred.

If a memory allocation exceeded panic is caused by a transfer
to an illegal location, the contents of the location causing the
panic is not available and DDT, therefore, types a ?.

Two other panic conditions are possible in DDT.



%E

R-11
2-12

2.12 Multiple Program Debugging

Tt is occasionally desirable to hold several prograus with
different maps and symbol tables in DDT simultaneously. This
situation could be approximated using the DUMP and RECOVER commands
in the time-gharing executive, but several commands are provided
in DDT itself to facilitate the process.

(ERASE). DDT types --OK and waits for a confirming dot.
Any other character will abort the command. DDT then resets
itself to its initial state, i.e. the symbol table, program map,
breakpoints and modes are all reset. The program memory, however,

is not released.



	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24

