 title prefix/class-number.revision

—
bcc SYSTEM I FILE-NAMING SYSTEM FNS/W-4
checked ’4‘,\ authors approval date [revision date
/gdﬁvtb Re '
d%i;— M Larry L. Barnes classification
(L %60_)7/,4_04_, Working Paper
distribution pages

approyed /
jzizejﬂ Company Privatg 11

ABSTRACT and CONTENTS

This document specifies the operation of the file-naming com-

ponent of the utility system.

. p/c=n.r page
CC FNS/W-4 i
TABLE OF CONTENTS
Page
Structure of File Names . 1
Structure of File Types 3
File Commands« . + « o o« o o o« o . . . 3
9

Abbreviation Scan . .« . .+ ¢ o e o o

bce S

I The Structure of File Names

File names, like all other names, will be restricted in length
and character set. A maximum length of 16 characters for the
main name and 4 characters of type seem adequate. The char-
?cter set will be restricted to letters, digits, and a small
subset of non-alphanumeric ASCII graphics. Lower case letters

will be converted to upper case.

The structure of a file name is given by the folloWing pro-

ductions.
file:name = [access:key:name ¥:# Jname:spec
name:spec = [user:spec] main:name [“:" type]
access:key:name = [user:spec] ™ main:name
user: spec =“#”user:number‘¥”,/“y user:name “:'

. YA N/
main:name = name / name

type = name
user:name = hame
user:number = 1$ digit

name = ichars [word] $ ('-‘word)
word = achar $ achar

ichars = letter / V§” / S%% s /% j Nou

achar = ichar / digit
The system will adopt the following‘policies with respect to
the use of file types, both in the name string and in the
name look-up call. If the type is given in the name:spec,
then the file corresponding to the name:spec will be opened

or created for output calls. Otherwise, the type in the call

will be used to complete the name:spec, if that type is sup-

bCC P/c-n.;‘NS /W-4 p;ge

plied. And if no type is specified in either the string or
call, there must be only one file with the designated main:
name in the file director%(MIB). The file type for the se-

lected file will be returned when the name is collected.

When a file:name is collected, only the main:names may be
abbreviated. User:names, account:names, and types must be
given in full. The abbreviation look-up is described in
section 4. The main:name may be surrounded with double quotes
if a new name is desired. 1In any case a quoted name suppressesg

the abbreviation mechanism.

bcc | N

—— "t T o e o S Tt o i " o

IT Structure of File Types

The following proposal for a system type-structure will be
implemented. We assume the existence of a set of pre-known
file types including: symbolic (S), language symbolic (LS),
symbolic data (DS), binary data (DB), binary program (LB),etc.
We also assume the existence of an arbitrary set of user-de-
fined and processor-defined file types, for example, FORTRAN
symbolic (FTS) and FORTRAN (binary) program (FTB). We would
then have the type-structures:
) . FTB P
S~ T N \1/
LS DS LB DB

N,

FTS

Let us contrast the operations of a text editor, a FORTRAN

Compiler, and a user program, with respect to the type-struc-
ture. The editor would supply the type S when requesting filg
name look-up and would accept any file with type FTS, LS, DS,
or S. The compiler would supply type FTS and thus exclude

type FTB. The user program would ask for files of type DS or
some sub-type excluding types LS, and S. Commands to create

and modify the type structure are discussed in later sections.

The initial system will have no type structure.

F_———-— C=n.r age
bCC ¥ FNS/W-4 " 1

IITI File Commands

The commands for maintaining a user’s file directory (MIB) are
invoked in one of two ways. First as commands to the FILE-
MAINTENANCE subsystem. This subsystem contains all commands
for manipulating the file directory. Secondly, those com-
mands which are frequently used also exist as ordinary " Top-
Level" ones. We first describe the commands in the FILE-

MAINTENANCE . subsystem.
Commands preceeded with + will not be initially implemented.

General

+ DUSER user:spec
This command causes the maintenance program to work on
the specified directory.

>FINISHED

returns from the maintenance program

+ DCREATE TYPE namej name,
The first type-name is made a sub-category of the second
name.

+ >DELETE TYPE name

This command deletes the specified file type.

Files

For all commands in this category, wherever “file-name” ap-
pears, the following convention applies: If either the main-
name or type is ‘*i, then the command is repeated for all
files which match the rest of the name. The four possibili-

ties are:

bcc s

name-spec meaning

* ¢ % Or ¥ ail files

* ¢ S all type s files
SOME: * or SOME all files SOME
SOME: S the file SOME:S

SDELETE FILE file-name
If the user executing the command has owner access to the
file, it is deleted. 1If the name refers to a link or
access-key, it is deleted also. Processes may not be
deleted. If the file-name uses the asterisk convention,
the system will ask for confirmation before proceeding.

DRENAME file:namej file:namej
The name of the object designated by file:namej is changed
to file:namej.

SCREATE LINK file:namej file:namej
Establishes the first name as a link to (synonym for) the
second one.

SDELETE LINK file:name
Deletes the 1link, not the file for which it stands.

>LIST ALL
Prints the entire MIB contents.

SLIST CO-USERS
Prints the names of all 'friends' and the degree of ac-
cess to the MIB.

>LIST-LINKS

>LIST-PROCESSES

[et ———

bcc e FNS/W-4 Pa?

+ >LIST-KEYS
Print the corresponding entrles.
+ >LIST TYPE-STRUCTURE
Prints the complete type structure.
SLIST FILE file-name option
’This command lists each designated file-name plus the in-
formation specified by the option. If no option is given,
only the name is printed.
The options are:
BRIEF which prints the name,
ACCESS which gives the access fields,
LENGTH which prints the current length,
TIME which lists the‘time the file was last opened and
the time it was last modified, or
ENTRY which combines all of the above.
>SET PUBLIC-ACCESS file:name access:code
>SET CO-USER-ACCESS file:name access:code
>SET OWNER-ACCESS file:name access:code

+ >SET KEY-ACCESS file:name access:code Xkey:spec

These commands set the specified access field of the appro-
priate file(s) to the access-code. The access code may be
NO (none), RO (read-only), RW (read-write(, PX (proprietary
execution), or OW (owner read/write) or a numeric wvalue.
The key-spec may be ## access-key-value, an access-key-
name, or a user-spec. Setting KEY-ACCESS to NO causes the

key to be removed from the access list.

bCC | e FNS/W-4 Pa?;

Co-Users
SCREATE CO-USER user:spec access:code
Causes the user:spec to be‘added to the friend list if
necessary and the access code to be set.
>DELETE CO-USER user:spec

Removes a friend list entry.

Access Keys

+ DGET-KEY file:name; file:name,
The second file-name, which must be the name of an access-
key, is copied to the current MIB as name,.

+ P>CREATE KEY file:name
The name is used to create a new access-key.

+ >DELETE KEY file:name

Removes the access key from the MIB.

Top-Level Commands

The following commands will be equivalent to typing:
@FILE-MAINTENANCE
>some command
>FINISHED

The table gives the top-level name and the corresponding sub-

command.
Top-Level Sub-Command
LIST-FILE LIST FILE
DELETE-FILE DELETE FILE

RENAME-FILE RENAME

bCC | e FNS/W-4

page

Following the top-level name the user should type the same

parameters required for the corresponding sub-command. For

example
@LIST-FILE PROGRAM:* ENTRY
is equivalent to:
@FILE-MAINTENANCE
>LIST FILE PROGRAM:* ENTRY

>FINISHED

bCC e FNS/W-4 nge

IV The Abbreviation Scan

The main:name can be abbreviated to an arbitrary degree as
long as the input string is unambiguous. The precise defini-
tion of ambiguity is somewhat complex. However typing the ex-
act name always works, whether or not the name is guoted. We
wish to emphasize the point that the abbreviation scan is ap-
plied only to main:names, not to user:names, account:names,

or types.

A name consists of a number of words separated by hyphens. We
first consider the case of single-word names. If a directory

contains the names:

LONG

LIST

LISTING,
then “Lof "LIST: and "LISTI” respectively are the shortest
abbreviations. 1In particular"Lf "LI; and 118" matches a

name if the input is identical to the initial characters of
the name. Thus 'L, "10) "LON, and LONG" all match 'LONG ;
no other strings do. We also distinguish between partial and

exact matches.

The abbreviation-scan algorithm for single-word names is this:
1) Scan the directory until a name is found which the
input string matches. If no name is matched, return
an error.
2) 1If the input exactly matches the name, return this

entry. Otherwise remember this entry.

bc C e FNS/W-4 P;Ze

3) Continue scanning until another match occurs. If no
other match occurs, return the entry saved in step 2.
4) TIf in the previous step we find an exact match, return
it. Otherwise the name is ambiguous.
Applying this algorithm to the example above yields the mini-

mal abbreviations listed there.

We now generalize this algorithm to include multi-word names.
An input string matches a name if each (partial) word of the
input matches the initial words of the name. Note that the
name may contain more words than appear in the input string.
Thus in the directory:

LIST-FILE

LAB-PROGRAM,
‘117" and "1A" match only one entry. Also note that 'L-F and
*L-P" also match a unique entry. The algorithm stated above
will work with the generalized definition of match, however it
is slightly restrictive. For example to match:

LIST-FILE

LIST-FILES,

would require that the input string be exact, whereas ”L—FILE"

W !
and L-FILES should be adequate abbreviations.

The following algorithm eliminates the restriction stated
above. It uses the general definition of match.
1) Scan the directory until a name is found which is
matched by the input. If no name is found, return an

error. Otherwise save the entry and mark it unam-

biguous.

bcc

p/c=n.r page
FNS/W-4 11

2)

3)

This algorithm has the following desirable properties:

1)

2)

3)

Continue scanning until another match occuré. Return
either the saved entry if it is unambiguous or an
error.

If two entries (the current and saved ones) are found
which are matched by the input, determine which is a
more complete match. This decision is made by com-
paring each word of both entries with the (partial)
words of the input. If we find an input word which
exactly matches one, but not both, of the corres-
ponding words of the current and saved entries, we
choose the entry which has the exact match and return
to step 2 (the new choice is unambiguous). Otherwise we

mark the saved entry ambiguous and return to step 2.

If the input is identical with some entry in a direc-
tory, that entry will be returned.

Unambiguous abbreviation is allowed.

The algorithm can be implemented by examining each
entry only once, as opposed to a multiple scan tech-
nique. This allows several directories to be“chained

together.

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11

