 title prefix/class-number.revision

bcc THE CORE WORKING SET CWS/W-5

checked i authors approval date [revision date

""" /J,,MIZ,/ W i

| classification)
specification

distribution pages

Company Private| 11

d
C%W.(ﬁwvmzo ™

z

ABSTRACT and CONTENTS

This document describes the Core Working Set (CWS) and speci-

fies the basic system routines which will be provided for

handling it.

b C C PécV-V’gr/W—5 Puie

TABLE OF CONTENTS

The Core Working Set+ . + ¢ ¢« ¢« &« ¢ ¢ o ¢ o« « +« « - 1
Representation of the Core Working Set 1
Operations on CWS . , +. &« ¢ ¢ ¢ « o o o o« o o o o o o« « « 3

System Maintenance of Core Working Sets 8

bcc -

The Core Working Set of a process is the set of pages which
must be brought into core before the process will be allowed
to run. Ideally, the Core Working Set will consist of pre-
cisely those pages which the process references during its
time on the CPU. References to pages not in CWS and there-
fore not in core are Page Faults and generally cause the pro-
cess to be dismissed prematurely, with the implication that
some of the resources expended in swapping it in were wasted.
on the other hand, resources spent in bringing in pages which

don’t get referenced are just as clearly wasted.

I REPRESENTATION OF THE CORE WORKING SET

A process’ Core Working Set, exclusive of the resident system
tables and code, is kept track of in a table, also called the
Core Working Set (CWS), in its Context Block. This table can
contain up to 48 entries but the number of entries which are
actually available to a process Will depend on the user to
whom the process belongs. One of the parameters in each
user’s User Profile is the Maximum Length of the Core Working

Set (MLCWS).

An entry in CWS is a single word with the format

22f1z 43 R14a fis |44 13
USE HISTORY KL PMT INDEX
(UH) ElOYIC|l (pMTI)
E|C C
P|K B

becl 0 e W

The first 3 fields are for the use of the system’s Core Working

Set Maintenance routines and will be described later. The
PMT INDEX field points to an entry in the Process Memory Table
and is used by the Swapper to find fhe pages to be read in
when- it is bringing the process into core and to identify the
pages to be released when the process is written out. The
CCE (Class Code Error) bit is set by the Swapper if it finds
that the Unique Name in PMT is not the same as the Class Code

on the page addressed by the Disk Address in PMT.

bcel e =

OPERATIONS ON CWS

The following operations on CWS may be performed through calls
on the basic system. They are described as if the caller were
sub-process S. Most of them are legal only if S has Modify
CWS (MCWS) status.
(1) Put PMT index N into CWS

This call requires that

(a) S has MCWS status

(b) PMT(N) is not free (CL(N) # #)

(¢) N is in the intervai [M,NPMTE], where M is 1 if

S has Master Sub-Process (MSP) status, and

NMPMTE+1 otherwise.

The system makes a new entry in CWS, putting N in the PMT
INDEX field and initializing the USE HISTQRY, KEEP, LOCK and
CCE fields. (All bits in USE HISTORY are turned on and KEEP,

IOCK, and CCE are cleared.)

If N already appears in CWS a duplicate entry is not made.
The USE HISTORY, KEEP, LOCK and CCE fields of the existing

entry are initialized.

Ttvmay Eappen that CWS is full (i.e., LCWS = 6MLCWS, where
LCWS 1s the number of entries currently in CWS and MLCWS is
the'méximum number allowed). - The action taken in this case
depends on whether S is using the system’s CWS maintenance
strategy or is handling its own maintenance. In the former
case some PMT index currently in CWS is thrown out and re-

placed with N. In the latter, a Core Working Set Overflow

bec Ee R

(CWsO) trap is sent to S.

(2) Delete PMT index N from CWS
This call fails unless
(a) S has MCWS status
(b) N is in the interval [M, NPMTE]) where M is

defined as for operation (1).

CWS is searched for an entry with N in its PMT
INDEX field. If one is found it is removed from CWS
and the function returns with N as its value. If N is
not in CWS, the function still succeeds but returns -1

instead of N.

(3) Delete an entry from CWS
This function takes no arguments and requires only that
(a) S has MCWS status

(b) there is at least one CWS entry with LOCK = f.

The system selects some CWS entry (with PMT INDEX
pointing to the sub-process part of PMT) by the same
algorithm it uses to handle CWS overflow, and deletes

it. The PMT INDEX is returned as the value of the call.

bcc e s

(4) Set CWS Maintenance Strategy to M
This is legal iff
(a) S has MCWS status

(b) S controls itself (NAME(S) A KEY(S) # #)

M (which must be # or 1) is copied into the
Default Maintenance of Core Working Set (DMWS) bit
in the Status Bit field of S's entry in the Sub-
process Table. The effectoof this is to disable
or enable operation of the system's CWS maintenance

routines, which are described in the next section.

(5) Set CWS KEEP field for PMT index N to K
This requires that
(a) S has MCWS status
(b) N is in the interval [M,NPMTE], where M is defined
as for operaﬁion (1) .

(¢) N is in CWS.

K (f or 1) is set into the KEEP field of the
CWS entry which has N in its PMT INDEX field. The
purpose of the KEEP field is to allow a process to
protect specific CWS entries from being deleted by
the system's CWS maintenance routines. Entries with

KEEP set will be deleted only as a last resort.

bec

p/c=n.r page
CWS/W-5 6

(6)

(7)

(8)

Set CWS LOCK field for PMT index N to L
The LOCK field is like the KEEP field, but “stronger%-
the system’s maintenance routines will not delete a

IL.OCKed entry from CWS.

Writing ILOCK is allowed iff

(a) S has MCWS status

(b) N is in the interval [M,NPMTE], where M is de-
fined as for operation (1).

(¢) N is in CWS

(d) either CWS is not full (LCWS{MLCWS) or there is
at least one CWS entry with‘PMTI # N, which has
LOCK = @#. This condition helps insure that a
full CWs will not be completely I.OCKed. LOCK

is set to L. (F or 1).

Read CWS entry M
This is a completely un-privileged operation and
only requires that
(a) KK 47.
It‘returns the contents of the Mth CWS entry.

Read LCWS
This function returns LCWS, the number of entries
currently in CWS. There are no restrictions on

calling it.

bec

p/c=n.r page
CWS/W-5 7

(9)

(10)

Read MLCWS

This is another unrestricted call, which returns the
maximum number of entries which CWS is allowed to
contain. The value of MICWS is read from the
Context Block, not from the User Profile. The
Ccontext Block value of MLCWS may be different

from the User Profilé one, as a result of a call

on the function next to be described.

Set MLCWS to N

Setting MICWS is a highly privileged operation. It
requires

(a) S has MCWS status

(b) S has Executive (EX) status

() LewsKNS 47

(d) either LcWS < N or there is at least one CWS

entry with LOCK = .

The Context Block copy of MICWS is set to N. It is
assumed that the caller of this function has deter-
mined that N is no greater than the User Profile

value for MLCWS.

bcc

III SYSTEM MAINTENANCE OF CORE WORKING SETS

A process that knows what it's doing can use the above
operations to insure that its Core Working Set ocentains the
pages it is currently referencing and no others. Not all
processes will be clever enough or industrious enough to do
this, however, so the basic system will incorpor&te proce-
dures for automatically maintaining Core Working Sets in a
reasonable state. The application of these procedures to a
process' CWS can be turned on and off by means of the "Set

CWS Maintenance Strategy" operation described above.

If CWS maintenance is left entirely to the basicasystem

it will be handled as follows:

(1) Pages will be added to CWS when a CPU reference
generates a Page Not in Core (PNIC) trap, i.e.,
when page faults occur.

(2) A use history will be kept for each page which ap-
pears in CWS.

(3) When the use history of a page in CWS indicates
that the page is no longer being used by the process,
the page will be removed from CWS.

(4) TIf CwWS is full when a page fault occurs, the use
histories will be used to select a current entry
in CWS for deletion.

A Use Histories

Use histories for the members of CWS are kept in the
12-bit UH fields of CWS entries. These fiélds tell us about

references to pages during the last 12 times the process ran

7 | | pe=n.r page]
CC CWS/W-5 9

on the CPU. The left most bit (bit @) records references
during the most recent time, bit 1 records those during the
next most recent, and so on. Figure I gives a sample CWS

entry with an interpretation of its USE HISTORY field.

When a page is first put in CWS its UH field is initialized
to all ones. The effect of this is to assure new entries
preferential treatment by the algorithm which chooses an
entry to delete when a CWS overflow occurs. The UH fields
are updated every time the process gets dismissed, as follows:

(1) Each UH field is shifted 1 bit right, the contents
of the right most bit (i.e., the most ancient his-
torical information) being discarded.

(2) The RF (Reference Flag) bits in the PMT entries
pointed to by the CWS entries are copied into the
new vacant left most bit positions of the UH fields.
The RF bits in PMT are reset after they are re-

corded in UH.

Steps (1) and (2) are not performed on CWS entries which point
to PMT entries with SF = @. The pages pointed to by such en-
tries are not even in core (as far as the process is con-
cerned) and it would be misleading to note that they had not
been referenced. A process which adds pages to its Core
Working Set in anticipation of its need for them will not in-
frequently have such entries in CWS when it is dismissed,
since pages are brought in not when they are added to CWS

but the next time the Swapper reads the process in.

bcc oo

The record-keeping operations just outlined are perférmed by
the system regardless of the state 6f the CWS maintenance stra-
tegy flag, DMWS. Setting or resetting DMWS enables or disables
the system machinery for automatically removing “unused" pages
from CWS and for automatically correcting the CWS overflow
condition,

B. Automatic Deletion of Pages from CWS

This gets invoked immediately after all CWS USE HISTORY
fields have been brought up to date preparatory to dismissing
the process. It scans CWS, looking for entries with the first
(i.e., left-most) N bits clear, where N is an as yet unspecifie
integer between 1 and 12. An entry which meets this condition
is deleted from CWS iff its KEEP and LOCK fields are both
clear. This qualification, KEEP = LOCK = @, allows a process
to use the system's maintenance strategy in general but except

special pages from it.

C. Correction of CWS Overflow

overflow of the Core Working Set occurs when a process
attempts to add a new page to CWS and CWS already contains the
maximum number of entries it is allowed to hold. If DMWS is
set when this happens, the system will choose some current

member of CWS and delete it to make room for the new page.

The systmm will consider for deletion the elements of
CWS which have been referenced least recently. It uses the

USE HISTORY fields to identify these elements, first extending

the fields by pre-fixing to them the RF flags from the PMT

bcc ' U

entries with which they correspond. It écans these extended
use histories for a maximally long string of leading zeroes.
If two or more entries have this same maximum number, say M,
of leading zeroes it attempts to differentiate them by looking
for maximally long sequences of zeroes starting at bit position
M+2. It will continue this until either a single entry is
isolated or UH is exhausted. 1In the latter case the first
entry encountered in the final scan will be deleted. This
sounds complicated, but it is fortunately exactly equivalent
to selecting the first entry in CWS whose extended UH field,

considered as a number, is minimal.

CWS entries with ILOCK = 1 will not be deleted. An entry
with KEEP = 1 will be deleted only if there are no entries

with KEEP

i

IOCK = . It should never happen that the entire

CWsS is LOCKed.

The procedure just described will always be used to correct a
CWS overflow which occurs in Monitor Mode, regardless of the
setting of DMWS. This is necessary since it would not be pos-
sible in general to continue a Monitor function after giving
control to the user to handle the overflow. For the same
reason PNIC traps which occur in Monitor Mode will not be sent

to the user.

page

CWS/W-5

p/c=n.r

pUTIND peOOUSISIDI Sem 8ggT Ar3us IWd Aq psureu

‘g ang TRAIS3UT

¢/ 3ng TeAISlUT
‘g 3ng TeAI93UT
‘p 3ng TeAIS}UT

‘1 3nq TeAIS3UT

3set

3ser
3set
3set

3set

U3
pue
ou3
sU3
ou3
Spe!

abed syl

e

<4t

91

g

ST

g

71

3

€1

g
4

g g

€

g 1T 1T 1 86 1T 6 ¢ 1 8

1T 41 6 8 L 9 S ¥

z 1 8

bcc

!

N

A Sample CWS Entry with
USE HISTORY Field Interpreted.

Figure 1

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	11a

