. title

bCC THE COMMAND PROCESSOR

prefix/class-number.revision

CMP/W-6

checked m Q / auvthors

approved /

d@jgﬁ Larry L. Barnes
. ;éﬁ%:ﬁ/y Working Paper
ﬁaﬂ/ﬂﬁz& distribution pages

approval date [revision date

classification

Company Private

ABSTRACT and CONTENTS

the operation of the command processor.

the STATUS command.

This document describes the structure of command lines and

It also describes

bec

TABLE OF CONTENTS

Page
The Structure of Command Lines « « . « . 1
Internal Operation of the Command Processor 3
External Operation of the Command Processor 4

The STATUS Command . . . &« « o o o o o o o o o o o o o 8

1. STRUCTURE OF COMMAND LINES

The criteria for a satisfactory command structure are that it
be adaptable to the needs of novice to expert users, efficient
in operation, and reasonably simple to implement. The first
criterion is the most important, and potentially the most
difficult to satisfy. The novice prefers a system which is
“forgiving,” ‘“helpful, and consistent, and which contains
few unexpected system comments. Further, he tends to be ex-
plicit in his requests. The expert has compactness as his
primary criterion; the less typing, the better. As a final
point, the command structure must adapt as a user becomes
more sophisticated; he should not have to wunlearn habits

in order to progress.

One proposal which appears to satisfy these requirements is
the following: A command line consists of a command name
followed by an optional list of parameters, separated by ter-
minators and ending with carriage return. A terminator is
normally a space or comma. If the parameters are not sup-
plied in the command line, it is left to the command to col-
lect any necessary parameters. One example of these two
processing modes is:

@CoPY Fl, F2 ¢
or

@COPY ¢

FROM FILE: Fl ¢

TO FILE: F2 ¢

(¢ stands for carriage return)

bcc e s

The messages typed in the second case are dependent‘upon the
actual command that is invoked, but the message should indi-
cate the type of parameter expected. Implementing this sec-
ond form in a command is one way to make the system more

helpful.

To summarize, the syntax of command lines is given below.

line = file:name $ (terminator string) "¢
terminator = ($" v w,v/ny g vl

string = string:char $ string:char
string:char = -("," /" ") character

We call attention to the fact that parameter strings normally
have syntactic restrictions not given here. See the File-

Naming System specifications for the syntax of file:names.

Implicit in the line-oriented processing is the criterion of
forgiveness. We assume that the command line will be col-
lected with the system line-edit facility, however it is im-
plemented. Thus, the user can correct typing errors at any
point before the carriage return is typed. If the command
name or parameters contained errors, the system will allow
the user to correct the erroneous line if he wishes by editing
the previous command line. This facility has proven valuable
in many interactive languages and should be made universal in
System I. In order to adapt to the needs of the expert, the
user should be able to abbreviate names as he wishes. The

abbreviation scan is covered in “The File-Naming System.”

bcc A =

2. INTERNAL OPERATION OF THE GENERAL COMMAND PROCESSOR

In the previous section we discussed the collection of a com-
mand string. We now assume that the string is collected and
has been passed to the dispatcher which will create a sub-

process to perform the desired action.

The dispatcher collects characters up to the occurrence of a
terminator or carriage return, whichever occurs first. This
command name is then used to find the name of a file with
the same main-name and type SAVE. If the name has a user-
spec, then only the designated directory is searched (see
File-Naming). Otherwise, the user’s file directory is
searched, and if that fails, a system directory is searched.

If the search procedure fails, an error is returned.

If the search procedure succeeds, the file is ATTACHED to the
sub-process structure. Then the sub-process is called at the
initial entry point with no arguments. Command files of type
'mgAvV’! are destroyed when they return. Type 'PSAV' commands

are not destroyed until the next ‘permanent' command is typed

(see the next section for more information).

Multiple entry points are implemented by making one command
name the file name and the other command names links to the
principal name. The command program must then look up the
actual command name specified in the input line using a pri-

vate table to determine the proper entry point.

bcc | e CMP/W-6 Paze

3. EXTERNAL OPERATION OF THE COMMAND PROCESSOR

The command processor is capable of operating recursively
through the use of escape. For the present we will discuss
operation at a single level. There are two types of commands:
permanent and temporary. A permanent command resides in a
sub-process until a new permanent command is executed. 1In
addition to the current permanent command, the user may exe-
cute temporary commands, that is, ones which exist only during

their execution.

There is a system-wide convention that all commands which
take sub-commands shall use "FINISHEDZ ' as the sub-command
which returns to the calling sub-process (normally the com-

mand processor).

Thus the following scenario is typical of the operation of
the command processor where SPL is an example of a permanent
command and STATUS, of a temporary one.

@STATUS SUB-PROCESS * -
1 BCC-UTILITY @: 1%

@SPL -
>sub-commands to SPL -

.

>FINISHED -
@STATUS S * --
1 BCC-UTILITY @: 1%,62%

2 SPIL, 1: 2%

@CONTINUE -
SPL

>more sub-commands -

bcc e

We first listed the sub-processes (input lines are ﬁarked
with «—=). Then we executed SPL and returned, listed the

sub-processes and continued executing SPL. This sequence
is typical. We turn now to a description of the commands

for manipulating the sub-process structure.

@permanent name...Z
This type of command RELEASEs the current permanent com-
mand, creates a new sub-process for the new name and at-
taches then calls it. Upon return the sub-process, its
memory and files are retained until the next permanent-

hame is input.

@temporary name...Z
This type of command attaches the named file for the dura-
tion of its execution after which it is RELEASEd. Execu-
tion of temporary commands does not affect the current

permanent command.

The following commands are calls on the utility and are

treated specially.

@CONTINUEZ
causes the current permanent command to resume execution.
@SAVE -CURRENTZ
causes the current permanent command to be placed in save
status so that the processing of subsequent permanent
commands does not cause this command to be RELEASEd. This

\

\
command responds ''command-name IS sub-process number,” eg

‘spr, TS 2.

bCC e CMP/W-6 Pag6e

@RELEASE sub-process¢
This command destroys the sub-process structure which
is designated either by sub-process number or by sub-
process (command) name if the name is unambiguous.
@RESET¢Z
destroys all sub-processes including saved ones.
@CONTINUE sub-process¢
resumes execution in the designated sub-process without

disturbing the current permanent command.,

These commands describe the use made by the command proces-
sor of the sub-process structure. To summarize a user may
have a number of SAVEd permanent commands plus a current per-
manent command. He may also execute temporary commands, and

saved permanent commands without disturbing the permanent onesg

The command processor recurses when escape is typed. The re-
cursion level is indicated by the number of spaces printed
before the herald "®@! Each level of command processing is
nominally independent. There are two utility call com-

mands to implement returns.

@FINISHEDZ
performs a RESET and returns to the sub-process inter-
rupted by escape. This command is not legal at the top-
level.

@QUITZ
performs a RESET (at the current level) and jump returns

to the next previous incarnation of the command processor.

CMP/W-6

page

This will usually leave the interrupted sub-process in a

bad state such that CONTINUE may not work.

is also illegal at the top-level.

This command

bce T

4, THE STATUS COMMAND

Given that the sub-process structure can be rather complex,
the commands for printing the state of a process need careful
planning. The STATUS command operates in one of two modes:
if no parameters are given, then it operates with sub-com-
mands; i1f parameters are given, they must constitute a sub-
command. In the latter case, the STATUS command performs a
single sub-command and returns. We will now discuss in de-

tail the first mode of operation.

>FINISHED

returns to the command processor.

>MEMORY ALL, and
>MEMORY *
list all private pages, followed by the file pages

grouped by file.

>MEMORY PRIVATE [sub:process]
lists all private pages, or those directly controlled by
the designated sub:process if the optional parameter is
given. Sub:process is either a sub-process number or a

command name (which might be ambiguous).

>MEMORY SUB-PROCESS sub:process
lists all pages directiy controlled by the sub:process
as in “MEMORY ALL."

DMEMORY FILE file [sub:process]

lists those pages which beiong to the file designated by

name or OFT number. As in 'MEMORY PRIVATE' the listing— |

p/c-n.r page

bCC ' CMP/W-6 9 N

can be restricted to those pages controlled by a particu-

lar sub-process.

All these commands list PMT entries grouped by file and then
by PMT index. The format of the listing is:

PRIVATE or file:name or unigue:name
followed by the byte listing:

Rnnn:pppp* sp*, ...
‘R’ is printed if'the page is read-only in PMT; otherwise
blank is printed. nnn’ is the PMT index. ‘pppp’is the page
number of the page in a file; it is not printed for private
pages. The ty! following‘pppp' is printed if the page is in
DWS. Following this is a list of the sub-processes which can
access this entry. The sub-process number can be followed by

/
‘7 4fF it also controls the entry.

DOPEN-FILE *
DOPEN-FILE OFT:index
>OPEN-FILE file:name
list all or one OFT entry in the format:
nn: file:name sp*,...
\

where ‘nn’ is the OFT index, and ‘sp*/ has the same

meaning given above.

> SUB-PROCESS sub:process [option]
lists information about SPT. The sub:process is either
b for all or a sub-process number or name. The option
is one of MAP, ‘sTaTE! or 'COMPLETE' which combines

the previous two. 1In any case the line:

ss:rr file:name £ff: as¥*,...

bec | _ ows [

. . . 1 !
is printed, where ‘ss’ is the sub-process number and rr

is the recursion level at which it was created. The file:
name is the name of the ATTACHed command. 'ff' is the

\ / . . .
as* list is a list

father of the sub-process, and the
of sub-processes which may be called by this one, marked
with '*' if it is controlled. If the 'STATE’ was re-
quested, the line:

ep:eg tm pakl pak2 tak sb,...
is printed. ‘ep’ is the entry point; ‘eg, the G-regis-
ter; ‘tm,’ the trap mask. ‘pakl, ‘'pak2, and ‘'tak’ are
the access keys. The status bits 'sb! follow alphabetic
abbreviations. If the ‘MAP’' was requested, it is listed.
If the sub-process is a utility at most four lines are
printed; otherwise at most eight lines are printed. Each
line starts with the map page number (00, 10, ...) fol-

)

lowed by four bytes, a \/ and four more bytes. Each

byte is printed either as "aw—u’ if empty, \Jnnn’ if

‘nnn' is the PMT in-

read-write, or 'Rnnn if read-only.
dex. If any line is completely unused (empty) it is not

printed.
There will be a sub-command to print SPCS.

No commands are planned to modify the process state expli-
citly since the utility system would have difficulties de-

termining their legality.

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

