 title prefix/class-number.revision
(:. RUNNING A PROCESS PRUN/W-8
checked < authors approval date |revision date
Y %«Zh 6/20/69

checked Butler W. Lampson classification
) (D Working Paper
approv’e% {Q\/ distribution pages
ZA/ Company Private| 13
—F)

ABSTRACT and CONTENTS

Describes, first in outline, then in detail, the mechanisms in-

volved in running a process. All the interfaces between the

various modules are specified.

b C C v PRUN/W-8 Paig)

TABLE OF CONTENTS

Page
Introduction....... e e e et e e e et e e e 1
ProCeESS State s . @ v ittt ittt i ettt ettt e et et e et et e e ..o 1
oo o = B w1) = 3

Calls Between MoOAULES . it i v ittt ittt vttt teeeeeeeeeeneeneees 8

bce | e s

Introduction

This document describes the logical Structure of all the mech-
anisms in the system which are concerned with the running of a
process. It also specifies all the interfaces involved. The
system modules which take part are:
the scheduler, a routine in the monitor which runs when-
ever a process blocks or the interval timer runs out
the swapper, a microprogram in the AMC which is respon-
sible for transferring processes between core and
secondary ﬁemory
the microscheduler,‘a microprogram which handles wakeups
and decides which processes should be given proces-
sors at each instant
the block and time-out routines in the CPU
the CPU microprogram which is responsible for saving the
state of the current process and loading the state of

the new process

Process States

The position of a process from the point of view of the sche-
duling and swapping operations is recorded in a collection of

bits in the PRT. Certain functions of these bits determine

states which are of concern to us. These are
active the process has a PRT entry
ready the process is not awaiting a wakeup. This
is
NOT BLK

blocked a process which is not ready is blocked.

bec

p/c=n.r page
PRUN/W-8 2

loaded

swapping-in

nready

running

scheduled

.the process is pready or it is swapping in

Figure 1 shows how the various states are related.

more brvless, the working set of fhe pro-
cess 1s in core. This is not a precise de-
finition, since the process may have modi-
fied the working set. The meaning of this
state should be clarified by the description
of how states are changed. Loaded is

LDD
the swapper is bringing the process in and
will pass it on to the microscheduler when
it has come in

SWQ OR PQ OR PDK OR CBC
the process is loaded and ready and on a
micro—écheduler queue. It will run if a
processor becomes available

MSQ
the process has a processor

RUN
the number of the processor is given by CPU

ready and not on a scheduler gqueue. Either

MSQ OR PQ OR PDK OR CBC OR SWQ
An alternative description is

(NOT BLK) AND (NOT (SCQ OR WAQ))

bCC P/c;;:m/w-s P;ge

Transitions

The Operatidn of the entire é&stem for running processes is
determined by the states which processes can be in from the
viewpoint of that system (descFibed above) and the allowed
transitions between states (described below). For each
‘transition we give the event which causes it, the modules
and calls between modules which implement it, and any other

action which is taken or conditions which are relevant.

It seems desireable to start with an overview of the lifevhis—
tory of a process, which is diagrammed in Figure 2. For a nor-
mal non-resident process receiving a series of quanta the se-
quence is

on scheduler queue

swapping in

on pscheduler queue

running for one quantum

swapping out

repeated for each quantum. The figure shows the variations on
this theme in some detail. The following list of allowed tran-
sitions describes all the possibilities.

Blocked - Ready Happens because of a WAKEUP di-
rected to the pscheduler from
some other module (CPU, CHIO, disk
driver, etc). Clear BLK. Then
there are two cases:

1) If the process is loaded, it

is put on a pscheduler queue

bcc I

and becomes'pready.. Set MSQ.
2) Otherwise, it is put on the
wakeup queue. Set WAQ. The
next time the scheduler runs,
it will be removed from the
wakeup queue and put onto a
schedulervqueue. At this

time clear WAQ and set SCQ.

Ready -» Scheduled and Happens because the scheduler de-
swapping-in cides (using algorithms described
elsewhere) that the process should

run. The scheduler makes a SWAPIN

call on the swapper to bring the

process's working set into core.

Clear SCQ and set SWQ. When the

swapper starts to load the process,

clear SWQ and set CBC. When the

context block comes in success-

fully, clear CBC and set PQ.

Swapping-in -m pReady Happens because the swapper com-
pletes the reading of the CWS for
the process. It clears PQ and
sets LDD. Then it sends a WAKE-
UP to the pscheduler. This time

case (1) will hold.

bcc

p/c=n.r page
PRUN/W-8 5

pReady - Running

Running - pReady

Running - Blocked

Happens because the uscheduler
decides (using algorithms des-
cribed elsewhere) that the pro-
cess should run on CPU i. It re-
moves the process from its queue,
puts the absolute address of the
PRT entry for the process into a
cell called CPUi and sends a
SWITCH call to CPU i. It also
clears MSQ and sets RUN and CPU
in the PRT. The CPU does the
switch as soon as it finds itself

out of monitor mode.

This always happens as a counter-
part to the previous transition.
The pscheduler tells a CPU to
switch away from the process.

The CPU sends the pscheduler a
RETURN for the process when it
completes the switch. When the
uscheduler processes a RETURN it

clears RUN.

This results from the monitor's

decision to block. To do so, the
CPU stores its state and sends a
BLOCK call to the pscheduler. It

then waits for a SWITCH call,

bcc

p/c=n.r page
PRUN/W-8 6

Running - Blocked and

Unloaded

Running - Ready and

Unloaded

upon which it loads a new state
from the context block found in
CPUi. The puscheduler clears RUN

and sets BLK.

This is the same as the previous
transition, except that the moni-
tor has also decided that the
process should be thrown out. It
does a BLOCKOUT call on the usche-
duler, which proceeds as before.
However, the pscheduler also sends
a SWAPOUT call to the swapper,
puts the process on the request
list and clears LDD. When the
swapper processes the request it
puts the pages of the process on

the write list.

This is the same as the previous
transition except that the pro-
cess is not blocked. It normally
happens because of a timer trap.
The monitor does an UNLOAD call
on the pscheduler, which proceeds
as before except that it does not
set BLK and it also puts the pro-
cess on the wakeup queue for the

ascheduler and sets WAQ.

p/c=n.r

PRUN/W-8

page

this document.

Bit
SCQ

SWQ

MSQ

WAQ

BLK
RUN, CPU

CBC, PQ,
PDK

LDD

tect.

‘Running - Swapping-in

Needless to say,

This happens when a page-fault

occurs and the monitor decides

that the process should not be

thrown out.

It does a PAGEWAIT

call on the pscheduler, which

clears LDD and sets PQ.

behaves as on a BLOCK.

Set
CPU (scheduler)

CPU (scheduler),
pnscheduler

uscheduler
pscheduler
nscheduler
uscheduler

swapper

swapper

Clear

CPU (scheduler)

swapper

uscheduler
scheduler

pscheduler
pscheduler

swapper

pscheduler

The CPU

The following is a list of the modules which can set or clear

and which need to test each bit in PRT mentioned so far in

Test

swapper
(to sup-
press un-
needed
reads)

usche-
duler

setting of PRT bits must be done under a pro-

bec A T

Callsfbetween modules

In this section all the calls required for the various modules
which implement the IWS are described. With each one is a de-
tailed description or a reference to another document where

such a description can be found.

SWAPIN: CPU (scheduler) or HSCheduler to swapper
This call requests the swapper to bring in a process. To make
it, the CPU obtains a swapper request node and puts the request
into the node. It then chains the node onto the swapper re-
quest queue and sets SWQ. The swapper interrogates the queue

periodically. Details are to be found in MMI/W-1.

SWAPOUT: uscheduler to swapper
This call requests the swapper to write out a process. It is
made very much like a SWAPIN. Again, details are to be found

in MMI/W-1. SWQ is not set.

EIVEUP: swapper to uscheduler
This parameterless call is made by the swapper when it wants a
process to write out. TIf the microscheduler can find a suit-
able one on a low priority queue, it will return it to the
swapper with a SWAPOUT call, clear LDD, set WAQ and put the
process on the wakeup queue. This operation will not be im-

plemented initially.

All calls on the uscheduler are done through an input buffer
(USIBb which is a stack in core. All requests to it are put

into two-word entries in this buffer, and each is accompanied

by an| attention signal directed to the pyscheduler. The stra-—

‘) p/c=n.r page
C PRUN/W-8 9

tegy of the pscheduler is very simple: whenever the attention

signal is received, reset it and empty the buffer.

The NSIB is <2 words long, starts at USIBASE, and ends at a
word (USIEND) whose address is @ mod 2®. Associated with it

is a pointer (USIBTOP) to the top.

'Signalling to the pscheduler is done under a protect and pro-
ceeds as follows:

Protect

Fetch USIBTOP to TOD

TOP < TOP +2

If TOP = ¢ mod 2" the buffer is full. Unprotect and start

over

Store the message in the double word addressed by TOP

Store TOP in USIBTOP

Unprotect

Send ATTN to pscheduler

The pscheduler proceeds as follows to read the buffer:
Protect
Fetch USIBTOP to TOP
If TOP = USIBASE, the buffer is empty. Unprotect and wait
for the attention signal to reappear
Fetch the message from the double word addressed by TOP

Store TOP-2 in USIBTOP

ECC p/c-n;RUN/w-S pa:;

The buffer is initialized by setting USIBTOP to USIBASE.

The format of an entry in USIB is as follows:

Word Bits Ccontents
0-5 opP Identifies the call
0-23 PRID Absolute address of PRT
entry for process involved
1 0-23 DATA Data for call
WAKEUP, IWAKEUP all pprocessors to pscheduler

This call is made by any uprocessor which wants to wakeup.a
process. The data word specifies the bits of PIW to be set.
The pscheduler, when it processes the call, turns off BLK.

If ILDD is set it then puts the process on its queues at the
priority given by PRI and sets MSQ. Otherwise it puts the
process on the wakeup gueue and sets WAQ. IWAKEUP is identical

except that it interprets PRID as the index of a PRT entry.

SWITCH uscheduler to CPU
Each CPU has a core cell called CcpUi (i = @ or 1) which is set
to the PRT index of the process which the CPU is supposed to
run next. Each CPU also has an activity level (AL) maintained
by the uscheduler which can take on one of these values:

I Idle, if the CPU is not running anything, i.e.
the pscheduler has given it the same number
of processes via SWITCH as it has given back

~ via BLOCK or RETURN.

R Running, if the CPU has been given one more
process than it has given back. Presumably

it is running this process.

l

p/c—n.r page
CC PRUN/W-8 11

P primed, if the CPU has been given two more
processes than it ﬁas given back. It enters
this state when the pscheduler decides to pre-
empt it, and leaves it when it gives back the
preempted process (more or less). This state
is therefore considered to be transitory, and
the pscheduler is willing to wait for the CPU

to leave it.

Finally, each CPU has a priority (PRI) maintained by the usche-
dulér, which is the priority of the 'running' process. Running
in this context means the process on whose behalf the most re-

cent SWITCH call was made.

When the pscheduler is ready to send a SWITCH to CPU i it check
ArLi. If ALi is P, it gdes into a mode in which it processes
calls as usual but does not initiate any switches until ALi
drops below P. When ALi is not P, it increases AL by one level
stores the PRT index of the procéss in CPUi, sets PRIi to the

priority of the process and sends an ATTN to CPU i.

The CPU can be in one of three states from the point of view of
process switching
idle - it is running no process
locked - it is running a process which has the CPU
locked, i.e. is in monitor mode

unlocked - it is running a process but is not locked.

In locked state it ignores an ATTN signal, which is latched

and therefore waits. In idle state it clears ATTN, fetches

Y | p/c=n.r page
C C PRUN/W-8 12

CPUi, clears it, loads the state of the specified process and
starts executing it. In unlocked state it dumps the state of
the current process, sends a RETURN call for it to the usche-

duler, and goes to idle state.

When the pscheduler gets a BLOCK, BLOCKOUT, UNLOAD, PAGEWAIT or

RETURN call from a CPU it it reduces ALi by 1.

As part of
storing the state it puts the interval timer, shifted so that
the least significant bit counts milliseconds, into the MCT

field of the process' PRT entry.

BL.OCK, BLOCKOUT CPU to pscheduler
The data word contains the CPU number. This call informs the
uscheduler that the CPU is blocking the specified process. The
pscheduler clears RUN and turns on BLK for the process and re-
duces AI, for the CPU. 1In the case of BLOCKOUT it also makes a

SWAPOUT call on the swapper for the process and clears LDD.

UNLOAD CPU to uscheduler
The data word contains the CPU number. This call informs the
uscheduler that the CPU wants the specified process unloaded
and passed to the scheduler. The pscheduler clears RUN and
reduces AL for the CPU. It puts the process on the wakeup
gueue, sets WAQ; and makes a SWAPOUT call on the swapper and

clears LDD.

p/c=n.r page
CC . PRUN/W-8 13

RETURN CPU to uscheduler
The data word contains the CPU number. This call informs the
nscheduler that the CPU has stopped running the specified pro-
cess because it was preempted. The pscheduler clears RUN and
sets MSQ for the process, puts the process back on its gqueues
with priority given by its PRI, and reduces AL for the CPU.
This call can also be used by the CPU to change the priority

of a process.

PAGEWAIT CPU to uscheduler
The data word contains the CPU number. The action is not yet

defined.

p/c=n.r page
CC PRUN/W-8
ALL PROCESSES
ACTIVE INACTIVE
ACTIVE PROCESSES
BLOCKED
NOT LOADED
———————— |
|
|
| SWAPPING IN
—SECHEPULED :
CHEPUEED
i
uWREADY I LOADED
M|
b
LREADY PROCESSES
RUNNING |NOT RUNNING

Figure 1

| p/c=n.r page
PRUN/W-8

On scheduler gueue (READY)

?

Waiting for context

block to be read (SWAPPING-IN)
Handled by this Waiting for
special process working set (SWAPPING-IN)
‘ to come in
5

Waiting on uS

gqueue to be (LREADY)

run

(§>
Process is run-
(RUNNING)

nlng on CPU

;shbuld process stay Monitor de-
| in core cides whe- (RUNNING)

ther to throw
process out of core

R x_;

Process is
| LOADED but
BLOCKED

Waiting for
wakeup (BLOCKED, UNLOADED))

wakeup queue

\ Waiting for scheduler on
(READY, UNILOADED)

Figure 2
(Continued next page)

p/c=n.r page
PRUN/W-8

10 -

12 -

14 -

15 -

l6 -

Scheduler runs and puts it on scheduler queue

Is scheduled: scheduler.passes it to swapper to be
read in

CB read fails. Swapper passes it to special process
which handles this case

CB read succeeds. Swapper queues reads for working set
Reads are completed. Swapper gives it to pscheduler
Wakeup arrives

Process is pre-empted by higher priority process or
lowers its priority

Process becomes highest priority. upS gives it to a
CPU |

No, and timer ran out. Lowers priority

No, and page fault. Return to swapper

Process blocks

Timer runs out or process page-faults

Yes. It is given to us

No. Monitor gives process to us to be blocked and to
swapper to be thrown out. Process becomes blocked.
Yes. Monitor gives process to ps to be blocked and to
swapper to be thrown out. .S puts process on wakeup
queue for scheduler.

Wakeup arrives and us puts it on wakeup queue for

scheduler.

Figure 2 (end)

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	13a
	13b
	13c

