revision

 title L L prefix/class-number.
Preliminary Description of
CC Compiler System Editor CSED/W- 12
che Be authors approval date lrevision date
55 0 Yoo, 6/20/69
checke L. Peter Deutsch [cTassification
vuk&j Working Paper
approved distribution . pages
222,/ Company Private 11
7 7
ABSTRACT and CONTENTS
A preliminary description of the command language for the
editor in the Model 1 SPL/Fortran Compiler System. Syntax

is given for everything except line collection.

' - p/c=n.r page
CC CSED,/W-12 1

I. General Comments

This document constitutes a preliminary description of the
editing language for the Model 1 Compiler System. While this
editor might prove a reasonable starting point for a text
editor, it does contain features specifically intended for
editing SPL and Fortran programs and has limited capability

for working on arbitrary strings of characters.

The editor accepts input of two distinct kinds. Commands
arrive through the M1CS command processor, which prints a
herald at the beginning of each line: * for normal editor
command mode, : for brief editor command mode (see below for
the distinction). As for the othef command modes, the user
composes commands using the standard line collector, which
includes a QED-like line editing facility if the terminal is
a teletype and a more modest line editing facility if it is

a typewriter; the command is not acted on until the line is
completed with carriage return (or the equivalents of
control-D or control-F). Null or deleted lines result in no
action beyond a new herald. A QUIT (rubout) is equivalent to
a line-delete and is echoed in the same way, i.e., a

special printing character followed by a new line and herald,
as in all command modes. Also, if the first character of

a command line is a command mode herald, that becomes the
command mode immediately, starting with the remainder of the
command line. The distinction between the two editor command
modes is that in normal mode, any prefix of a command name

is allowed, but it must be terminated by a blank or by the end

p/c=n.r page
CC CSED/W-12 2

of the command line; in brief mode, only the first character
of the command name must be typed, and no termination is
expected. Every editor command begins with a different letter
so no confusion will arise. Finally, the "old line" for the
line collector in command mode is always the previous command
line, so that for example the user may obtain an exact
repetition of the previous command by typing just the
equivalent of control-F or control-D. For further discussion
of the command processor, see the document on the MICS

Command Language.

The other kind of input to the editor from the términal is
text input. 1In this mode, there is no herald; the text
being typed in constitutes an argument for the preceding
command. Text input also works through the line collector:
the "0ld line' may be a line of stored text (for the EDIT
command) or an empty line (for the other commands requiring
text input). A QUIT in this mode normally acts as a line
delete but has no other effect; a second QUIT with no
intervening typing will abort the command with a message.
A QUIT at any other time, i.e., between the completion of
a command line and the next time the editor expects input
from the terminal, is ignored, except as noted under

individual commands where an interruptive action has meaning.

The M1CS editor works on an encoded representation of the
user's source program, called preprocessed text or PPT,
rather than on the actual character strings. In the PPT form,

each operator, symbol, or constant is represented by a

bCC Pécs-;;;/W-lz Page

single item called a token. Thus ény relation between the
symbol AND and the letters (symbols) A, N, D is obscured.
A further discussion of this question, and the exact algorithm
used for dividing a statement into tokens, may be found in
the SPI. Reference Manual. As a result of this representation,
operations implying the existence of the string form, such

as string search or substitute, are slow since they require
reconstruction of the string from the PPT. However, when one
works in a compiler language, the existence of the string
form is normally unimportant, and the standard search and
substitute operations which work on tokens rather than

characters are expected to prove satisfactory.

The two remaining sections of this document describe
respectively the exact formats of parameters for the editor

commands and the command repertoire.

p/c=n.r page
C C CSED/W -12 4

IT. Parameters

The fundamental concept of the editing language is the

interval, which in turn is made up of 1 or 2 line addresses.

A line address designates a particular line of text in the
program being edited; an interval designates a group of lines
(possibly only one line). At any moment, a specific line is
current; this convention allows for more compact designation
of operations on lines nearby. Each command makes a well-
defined line current, as described under the individual
commands. At any moment, a single block (function or

COMMON block) is also considered current, namely the block
containing the current line, and operations such as searches
or addressing in general are normally limited to this block.
By suitable addressing, however, the user can make another
block current or perfom edits on the program as a whole, by
arranging for a line in another function to become current

at the end of the edit.

A line address is composed of a head and a tail. The head
specifies an initial address; the tail specifies a sequence
of searches and increments to be'performed starting at the
address specified by the head. The head may be:

1) The current line, specified by a "."

2) The last line of the current function,
specified by a "s";

3) A specified line of the current function, the
first line being line 1, specified by "#" and the line

number:

bce A

4y A line in the current function with a specified
label, specified by the label (an identifier for SPL or a
decimal integer for Fortran):

5) Any of 2, 3, or 4 for some other function,
specified by prefixing the specification with a function
name enclosed in "¢ " and ‘“>";

6) Any of 2, 3, or 4 considering the entire program

at once, specified by prefixing the specification with "<>".

The tail, optionally absent, is composed of an arbitrary
sequence of elements of the following sort:
1) Increments, specified by a decimal integer

possibly preceded by a + or a - sign.

2) Searches. These operate over the current functio

or over the entire program in case 6 above; prefixing with a
"_" indicates a backward Search rather than forward. The
search begins at the line specified by that part of the
address which precedes the search itself. TILabel searches
appearing in the head start at the current line in case 4,
the first line of the function in case 5, and the first line
of the program in case 6. A search consists of a label
enclosed in ":%s, specifying a label search; a string of
tokens enclosed in'/'"s, specifying a search for that token
string appearing anywhere in a line; or a string of
arbitrary characters (not, of course, including the line
editing characters or the enclosing character) enclosed in
[T W

s or s, specifying a search for that string of

characters appearing anywhere in a line. The last type of

bcc [

search is slow and should be avoided. If the string of
tokens or characters in a search is empty, the same string
as was used in the last token or character search

respectively is used again.

The exact syntax for line addresses follows:
interval = address ["," address]
address. = heads tails / headn tailn
heads = "." / [function] "g"
function = "<" [name]")"

name = letter $(letter / digit)
k = 1$ digit
headn = [function] ("#" k / label)

label = k / name

tails

[k] tailn

tailn = $(("+' / "=y ¥ / [*="] search [k])

search = ":" [label] ":" / %" [tokens] " /
Wet retring] ‘" /' " ‘Istring] ' "'

tokens = {a string of tokens excluding >

string = { a string of characters as described
above)

The argument which specifies the strings for the SUBSTITUTE
command resembles a search, namely:
subspec = [Y-*]1 '/' [tokens] Y '[tokens] "/" /

(L] [string] o [string] w1l /l i [string]

[o 10/

[string]

The second string, the one being substituted for, enjoys the

same status as a search; if empty, the last token or

p/c=n.r page
CC CSED/W-12 7

character string searched or substituted for is used. An

empty string in the first place, the one being substituted

in, has no special significance

When

text

line

with

a command expects text as input, the user may supply the
in one of three ways:

1) A single line of typed input, supplied on the
following the command line, if the command is terminated
a semicolon just before the end-of-line;

2) An interval from anywhere in the program,

supplied within [] following the other arguments of the

command on the command line; if the [is preceded by a =,

the interval will be deleted as well;

3) An arbitrary number of lines of typed input,

supplied following the command line and terminated by the
equivalent of a control-D at the beginning of a line, if
neither of the above formats is used; the number of lines
expected is fixed for EDIT as the number of lines being

edited, but is arbitrary for the other commands.

The exact syntax for text input follows:

text = textfrom / textin

il

textfrom ["="1 “[" interval "]" "¢

I

textin = ;" "¢"textline / "¢” ¢ textline controld
textline = <{a line of text>

controld = <{a control-D or the equivalent>

bec . “wwms s

III. List of Commands

"APPEND" [interval] text

Appends the text after the interval. If no interval
ig specified, appends after the current line. The last line
appended becomes current; if no lines are supplied, the last

line of the interval becomes current.

“CHANGE" [interval] text

Replaces the interval by the text. If no interwval
is specified, replaces the current line. The last line of
the replacement becomes current; if no replacement lines are
supplied, the line just before the first line of the interval

becomes current.

“DELETE " [interval] "e&'
Deletes the interval. If no interval is specified,
deletes the current line. The line before the interval

becomes current.

"EDIT" [interval] textin

Line-edits the interval. Works like CHANGE except
that the text must be supplied from the terminal, and the
"0ld line" for line input is the corresponding existing line
of text rather than an empty line. If no interval is
specified, edits the current line., The last line of the
interval becomes current. A QUIT during editing makes the
last line edited current but does not undo the effect of the

editing.

p/c=n.r page
C C CSED/W-12 9

"INSERTY [interval] text

Inserts the text before the interval. If no
interval is specified, inserts before the current line. The
last line inserted becomes current; if no lines are supplied,
the line before the first line of the interval becomes

current.

"LIST! [interval] "¢

Prints the interval. If no interval supplied,
prints the current line. The last line actually printed
becomes current; this is true also if the command is

interrupted with a QUIT.

"MODES" $ modespec '*¢V
Sets the default modes according to the modespecs.

Does not affect which line is current.

"NEXT" [n] "¢

Prints, as in LIST, the n lines following the
current line., If no n is given, prints 1 line. The last
line printed becomes current as in LIST. If n is negative,

equivalent to PREVIOUS -n.

HPREVIOUSY [n] '¢'Y

Prints, as in LIST, the n lines preceding the
current line. If no n is given, prints 1 line. The last
line printed becomes current as in LIST. If n is

negative, equivalent to NEXT -n.

p/c=n.r page
CC CSED/W -12 10

"SUBSTITUTE" subspec [interval] "¢

Substitutes in the intervél according to subspec.
If no interval is specified, substitutes only in the current
line. The last line printed becomes current; if no lines
were printed, the current line is not affected. The command
may be interrupted with QUIT only when it is printing: the
QUIT takes effect (if at all) when the line being printed is

completed.

npaABSY (k $(', M k) / text)

Sets simulated tabs at positions k, counting the
left margin as position 1. If no positions were specified,
tabs are set in all positions given by non-blank characters
in the last line of the text; this can be used to
advantage by putting a comment line into a program with
characters at desired tab positions and using the [] method
of specifying text. If the text consists of no lines, or
the last line is empty, tabs are assumed to be at standard

positions, namely 845k for k=0,1,...

""UNDO" “¢"

Undoes the previous command which affect the text.
The exact set of commands which can be undone is not
entirely specified as yet; it will probably include all
DELETEs and all other commands which involve changing less

than some particular number of lines (like 10).

"XCHANGE" interval ["[" interval "]']

Exchanges the two intervals. If the second

‘ p/c=n.r page
CC CSED/W-12 11

interval is not specified, exchanges with the current line.
The line which replaces the last line of the first interval

becomes current.

There will be additional commands in the editor for commun-
icating with the file system. The 940 implementation will

include the two given below.

"READ" file [interval] ¢!

Reads the file and appends it at the end of the
interval. The last line read in becomes current. If no
interval is specified, appends at the end of the program.
In the 940 implementation, the file name must be either
surrounded by single-quotes or terminated by a blank or end

of line.

UWRITE'' file [interval] “c¢Y

Writes the interval on the file. 1If no interval
is specified, writes the entire program. The current line
is not affected. Specification of the file is the same as

for READ.

	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11

