. title

e
bc C MICRO-SCHEDULER IMPLEMENTATION

UsSi/wW-14

prefix/class-number.revision

24 -

hecked 7
W A
7

Tchecked

approv'edW

authors

Butler w. Zampson

approval date |revision

6/20/69

date

{classification

Working Paper

distribution
Company Private

pages

ABSTRACT and CONTENTS

The implementation of all the functions performed by the

uscheduler is described.

switching CPUs from one process to another,

the real-time queue.

These include the handling of wakeup,

and managing of

. Ye=n.
bCC " “USI/W—14 ""i”

TABLE OF CONTENTS

Page
Introduction....... oo iveeeroenons et e et e e 1
OrganizZation. .o ee oot eesoeeeeonnensassosoassssoonoes 1
Microscheduler CallsS.....eeeeeeeeooetoensennonaasoeseesnns 3
CPU SChedULing .« v vt oneeeseeeeennsnonnsossosesoneennens 5
Relations with the Scheduler...... ...ttt enennns 6

The Real—-Time QUEUE . « v vt v v v o oo esesuossosssssssssssssnessas 7

bcc P/H;s I/W-14 pdf)

Introduction

Most of the functions performed by the uscheduler (US) are
described in PRUN/W-8 with little reference to how they are
implemented; in that document only the interfaces between the
pscheduler and the outside world are specified in detail.
Here, on the other hand, all this information is assumed and

the microcosmology of the pscheduler is expounded.

Organization

The US runs on its own microprocessor. It communicates with
the outside world only through core memory and the attention
(ATTN) and protect (PRO) signals between microprocessors.
It is programmed to handle the microscheduling of two CPUs.
It uses the following objects in core memory for communication
with the world.
USIB the pscheduler input buffer, stack starting
at USIBASE and ending at USIBEND = @ mod 2**n.
It has a top pointer USIBTOP used by everyone.
CPUiL Cells which contain the addresses of PRT en-

tries for processes to be run by the CPU.

PRT The process table, described in

RTQ The real-time queue, chained through PRRTP in
PRT.

RTC The real-time clock

SWAPRQ The swapper request queue, and its associated

freelist, described in MMI/W-1.
WAKEUPQ The wakeup queue for the scheduler. This is

actually a stack.

It also maintains the following objects for its own use in

core and in its scratchpad.
UsQj 8 queues, representing different priority
levels, of processes which are in core and

ready to run

ALi Activity levels for the CPUs

PRIi Current priorities for the CPUs

PROC1 Current running processes for the CPU
SCHFLG Schedule flag - set when the allocation of

processors should be reconsidered
WNPFLG Normally —-1. When set, contains a CPU number
i if the US is waiting for ALi to drop below

P.

The US is normally in an idle state, from which it is roused
by the occurrence of an ATTN. .It then proceeds as follows:
clears ATTN
checks RTQ and wakes up aﬁy processes whose specified
real time has elapsed
checks USIB and deals with all the calls it finds there
if any changes have been made to USQj or to the processes
running, recomputes the processes which should run
and does appropriate switches if necessary
returns to wait for another ATTN, which may, of course,

have come in during the processing just described.

We now proceed to describe these operations in detail. Man-

agement of USIB is described in PRUN/W-S8.

bCC P/C-MUS I/W-14 Pa3g)

Microscheduler Calls

WAKEUP

Check the process id (PRT addréss) in the call for validity;
ignore it if invalid. Merge the data word in the call into
PIW for the process; this is done under a protect. Clear BLK.
Now check 1.DD. If on, check MSQ OR RUN. If true, done.
Otherwise, set MSQ, fetch UPRI and put the process on the end
of the indicated queue, USQ[UPRI]. Each queue is defined by
a word pointing to the last process on the queue. Each pro-
cess points to its successor with SCHPTR; the last process
points to the first. The pointer is @ if the queue is empty.
If the queue was empty, set SCHFLG. This flag is tested at
the end of the uscheduler;s cycle to determine whether the

choice of processes to run should be reconsidered.

If I1DD is off, check WAQ OR SCQ OR SWAPIN. If true, done.
Otherwise put the process on the wakeup queue. The head of
this queue is kept in memory in the form of a pointer to the
top entry, or ¢ if it is empty. It is actually a stack, since
a process is added to the front of the gqueue and removed the

same way.

Before putting a process on WAKEUPQ)whether in WAKEUP or for
another reason, the US makes a check to ensure that the sche-
duler will run to take it off. It tests for the truth of the

following conditions

bCC p/c-n[.;SI/W—lél P":’

both CPUs idle
all USQs empty
the cell RIPQ, which is the head of the swapper's queue

of processes being read in, is {.

If all hold, it gives the process to the swapper with a SWAPIN
call instead of putting it on WAKEUPQ. In this case it sets

RSI and SWQ rather than WAQ.

IWAKEUP

This is identical to WAKEUP except that the PRID field of the
call is interpreted as a PRT index, i.e. it is converted to
the address of a PRT entry by PRID*n+b, where n is the size
of a PRT entry and b is the origin of PRT. This option is
provided for the convenience of processors which prefer to
deal with a process id which contains fewer bits than an 18-

bit absolute address. A PRT index is limited to 12 bits.

RETURN
Interpret the data word as a CPU number i. Decrement ALi and
set SCHFLG if it is I. Clear RUN. Put the process on the

proper UsSQi as for WAKEUP, and set MSQ.

BLOCK
Interpret the data word as a CPU number i. Examine PIW. If
it is non-zero, proceed as for return. Otherwise decrement

ALi, clear RUN, set BLK. If ALi = I, set SCHFLG.

BLOCKOUT

Proceed as for BLOCK. If BLK gets set, make a SWAPOUT call

R—

bce T

as follows: clear 1IDD, create a swapper request node, put
into it a request to swap out the process and put it on

SWAPRQ.

UNLOAD
Interpret the data word as a CPU number, i. Decrement ALi
and set SCHFLG if it is I, clear RUN. Make a SWAPOUT call.

Put the process on WAKEUPQ and set WAQ.

GIVEUP

Look for a process on USQi, i > 4, starting with USQ7. 1If

one is found which does not have RES set, remove it from USQi,
clear MSQ, make a SWAPOUT call, put the process on WAKEUPQ and

set WAQ.

CHANGERT

Described under real-time below.

CPU Scheduling

After emptying USIB, the US checks WNPFLG. If it is > @, we

are waiting for AL[WNPFLG] to drop below P. If it has done

so, set WNPFLG <« -1 and proceed. Otherwise loop to wait for

ATTN. If WNPFLG < @, or AL[WNPFLG] # P, check SCHFLG. 1If it

is set, there is a chance that the processors should be re-

allocated, and the US proceeds to consider this possibility

as follows:

(a) find the highest non-empty USQi (7 is considered highest).
Compare its priority i with that of the process running

on the CPUs, taking an idle CPU to have priority -1. If

S
bcc

i> PRI and PRIy < PRIy for all k#j, then the first pro-
cess on USQi will be given CPUj; go to (b) to do this.
Otherwise clear SCHFLG. If both CPUs are idle, all USQ's
empty, RPIQ = @ and there is a process on WAQ, take it
off, clear WAQ, set RSI and SWQ and give it to the swap-
per with SWAPIN. Then loop waiting for ATTN.

(b) examine ALj. If it is P, we must wait for the CPU to
start running the pending process. To do this, set
WNPFLG < j and loop to wait for ATTN.

(c) remove the first process from USQi. Put its PRT index
P into CPUj. Send ATTN to CPU j. Increment ALj. Set

PRIJj < i. Clear MSQ, set RUN in the PRT for P.

(dy now return to (a).

Relations with the Scheduler

Because we expect to chahge our minds a number of times about
the algorithms for scheduling processes, they are not being
implemented in hardware initialiy. Instead a software sche-
duler will run whenever a process blocks or suffers a time-
out trap. It will be responsible for collecting awakened
processes from WAKEUPQ, where they are left by the US, and
putting them into its own data structure. It is also respon-
sible for deciding which non-resident processes to run and
for giving them to the swapper via SWAPIN calls. It has two
words in PRT and the MTC field, in which the CPU records the
process' compute timer (8 bits accurate to 1 ms) whenever the

process stops running to help it do its job. 1Its methods

L will be described elsewhere. —_

bcc S o

To avoid a situation in which processes are left on WAKEUPQ
because the scheduler never runs, the US makes a special check
for complete idleness of the hardware mechanisms for running
processes. This check is described above under WAKEUP. It
ensures that a process will not sit on WAKEUPQ just because

there is no other process to run the scheduler.

In order to permit the scheduler to delay the execution of
ready processes soO as to prevent excessively good service, it
will be necessary to have a service process called TICTOC
which is woken up by the real timer periodically. This pro-
cess can give processes to the swapper if they have waited
long enough. It can also perform various diagnostic and

cleanup functions if that seems appropriate.

The real-time gueue

The US is responsible for maintenance of the real-time queue.
This is a forward-linked list chained through the PRRTP field
of PRT which holds all the processes which are awaiting a sig-
nal on the occurrence of a specified real time. The time for
which each process is waiting is held in the 23-bit RTT field,
accurate to 10 ms. 1In 23 bits a time of about 1 day can be
recorded; it is not expected that RTQ will normally be used
for such long delays. The queue is ordered by increasing
values Of PRRT; the current value of the real-time clock is
implicitly considered to be the first éntry, and a new entry
with timer t is put into the gueue between entries with times

tl and t2 provided that

bcc v USI/W-14 ,:":’89e

tl ct<Ct2 or t > tl > t2 or t1 > t2 >t
It is put on the end if there is no point where this holds.
If the queue starts with only the implicit current-time entry
and grows according to this rule, a unique position will al-

ways be selected for any entry. The head of the queue is

kept in the cell RTQ. Y

The real-time clock RTC is kept in core and updated once a
millisecond by the CHIO, which sends an ATTN to the US when-
ever it stores a new clock value. The US compares the clock
t2%ﬁjﬂ1the-PRRT field t for the first process on RTQ and the
old clock value tl. When it finds that t satisfies one of

the relations above, it removes the process from RTQ and sends

it a wakeup with RT turned on.

There is also a call on‘the US to add processes to RTQ, de-
lete them and move them around. It is called CHANGERT and
takes the new value of RTT in the data word; a -1 indicates
that the process is to be removéd. To process the call, the
US scans RTQ to remove any old occurrence of the process and
then installs the new occurrence at the proper point. 1If the
desired wakeup time is within 20 ms of the current time it

generates the wakeup immediately.

bec

p/c=n.r
UsIi/w-14

page

WAKEUP

IWAKEUP

RETURN

BLOCK

BLOCKOUT

UNLOAD

GIVEUP

CHANGERT

Appendix TI:

Micro-Scheduler Opcodes

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09

