. title

——
bCC FACILITIES FOR ALLOCATION IN SPL

prefix/class-number.revision

SPLAL/W-16

¢ ecked /P d': /@ authors

checked Butler Ww. mpson

l

WW i

approval date [revision

date

classification
Working Paper

distribution

Company Privats

pages

ABSTRACT and CONTENTS

Additions to SPL are defined which permit the location of code
arrays, scalars, common blocks and local environments in core

to be specified. The default allocation strategies are des-

cribed.




e

p/c=n.r page
CC SPLAL/W-16 1

SPL provides facilities for fixing the core location of the
various objects it constructs. This is done with a variety
of constructs mostly involving the use of '=' (for equiva-

lencing) in declaration statements.

Code and Common Blocks

The normal allocation strategy is as follows. Core is allo-
cated upward from G in the following main regions:

1) writeable global storage, starting at G. Here are put
variables, both scalar and array, which appear in
common blocks, and fixed local environments. Some of
the first 128 words may also be used for field des-
criptors and common array descriptors. The first few
words, of course, are used for objects whose location
is fixed by the hardware, like the pop transfer vector
descriptor.

2) read-only storage. Here are put the fixed contents
of common blocks (i.e. initialized objects), function
descriptors, and code for function blocks.

3) the stack and allocatable storage. Common arrays and
fixed local environments may also be put at the be-
ginning of this area if area 1 would otherwise be-
come so large that the function descriptors could not
be kept within 16K of G. Alternatively, the area may
be appended to area 1 if the total size of the two is

somewhat less than 16K.




bec

p/c=n.r
SPLAL/W-16

page

Space for code is allocated

they appear in the source.

[

common: statement

equiv

The expression must evaluate

The

cated; otherwise there is an

tion is ignored. Allocation

the end of this one.

The first <equiv> is allowed
tells where to put the local
common: statement tells where
block;

whether read-only or not.

'"COMMON''

start the code for the function.

to functions in the order in which

Space for scalar objects in com-

mon blocks is allocated in the order in which they appear;
arrays and dope are allocated at the compiler's discretion

unless something is specified explicitly.

The syntax of function and common statements is augmented as

follows (cf SPL/M-1.1 p. 13,17).
function:statement = ['FIXED'] ftype ('FUNCTION' [equiV]
/ 'ENTRY')
identifier '(' [declare:clause:list

l)l

function:location]

[equiv]

identifier [equiv]
' expr

to an integer

second <equiv> in the function:statement tells where to

This location must be be-

yond the location where the function would normally be allo-

error comment and the declara-

of later functions continues from

only for a FIXED function and
environment. The <equiv> in a

to put the stuff in the common

it causes everything in the block to be allocated there

p




| p/c=n.r page
CC SPLAL/W-16 3

Magic symbols are provided to enable the programmer to posi-

tion things in relation to other things:

ILAST'CODE has as value the next location after the space
in read-only storage occupied by the immediately pre-
ceding block.

LAST'GLOBAL does the same for writeable global storage

Thus the programmer can allocate a sequence of common blocks

at 4000B with

COMMON A = 4000B;
COMMON B = LAST'GLOBAL; ...
Scalars

An equivalence (SPL/M-1.1 p.6) can be used to fix the location

of a scalar or an array descriptor by writing an integer-

valued expression for the object of the equivalence. Thus
DECLARE A = 40B, B[30] = 41B; |

allocates A at 40 and the descriptor for the array B at 41 and

42, The array itself is allocated according to the default

rules.

Field descriptors are normally allocated in the first 128
words of the global environment by the compiler if there is
room. This allocation can be suppressed and the field allo-
cated in the function like any other constant by prefixing

FIXED to [SIGNED] FIELD in the declaration.




‘ p/c=n.r page
CC SPLAL/W-16 4

Arrays
The syntax of <dimension> (SPL/M—l;l p. 3) is extended as
follows:

dimension = '[' expr $(', 'expr) [':'[expr][', 'expr]l] ']’
The last optional expression tells where to put the first word
of the array. Also, the expressions in the list of subscripts
bounds may be null in a formal parameter; in this case the
list serves simply to establish the dimensionality of the

array.




	001
	01
	02
	03
	04

