 title

prefix/class-number.revision
CC ALLOCATION AND PROGRAM FORMAT IN SPL SPLAPF/W- 25

check% M] authors approval date [revision date
. ’%Lui&&i 8/15/69
checked Butler W. Lampson classification
. é;ﬂ&/ h) Ybrkinq,Paper
approve ' - istribution pages
ij»?Q// Company Private
7 -

ABSTRACT and CONTENTS
The format of SPL programs is specified. SPL facilities are

defined which permit the location of code, arrays, scalars, com-

mon blocks and local environments in core to be specified. The

default allocation strategies are described.

This document obsoletes SPLAL/W-16. It will be absorbed into

a revision of the SPL manual soon.

e e ——p——

p/c=n.r page

bCC ' SPLAPF/W-25 1

Program Format

An SPL program is organized into blocks. Each block starts with

a block:statement and ends with an end:statement.

block: statement = ("COMMON"/"PROGRAM") identifier

end: statement = "END" '

The end:statement can be omitted, in which case it will be sup-

plied automatically.

The o0ld distinction between FUNCTION and ENTRY is removed. Ei-
ther may appear anywhere in a program block and simply serves to
specify a function entry point without carrying any implications
about scopes. Everything between a PROGRAM and the matching END

has the same defined variables and the same local environment.

Within a“block all include:statements must precede everything
else. An origin:statement or fixed:statement, if present, must
precede all other statements aside from include:statements.
Declarations.of variables must precede their use. There are

no other restrictions on the order of statements.

A common block must lexically precede any block which includes
it. Otherwise there are no restrictions on the ordering of

blocks, except for ORIGINED common blocks (see below)

p/c=n.r page
CC SPLAPF /W~25)

Layout of Core

The arrangement of memory relative to G is designed to group
read-only things together and on separate pages from writeable
things, so that the former can be protected by the hardware
from modification. Later improvements will permit small

programs to be packed together better.
Space is allocated in four main regions
G': WGS -pp - RSGS:G'+40000B:CS ~p @ OWGS :377777B

WGS: Writeable global storage, starting at G. This area is al-
located by a general storage allocator in the compiler in a
piecemeal fashion; no attempt is made to keep related things
together. Here are put all the writeable variables which ap-
pear in common blocks, together with fixed local environments.
Some of the first 128 words may also be used for field and ar-
ray descriptors, at the discretion of the compiler, except in
the monitor ring, where this will never be done (unless forced
by equivalences). The first few words, of course, are used for
objects whose location is‘fixed by the hardware, like the stack

descriptor.

The allocation strategy for this area may be modified by ORIGIN

statements; see below.

Collision of this area with RSGS is a fatal error in the initial

implementation. ILater versions will cause it to overflow into

p/c=n.r page

bCC SPLAPF/W- 25 3

OWGS: Overflow writeable global storage, which is handled in

the same way.
The stack is allocated space at the end of this area.

RSGS: Read-only scalar global storage. Here are put the con-
stant scalars (e.g. array descriptors and initialized scalars)
from common blocks, as well as function descriptors. This area
is allocated by another incarnation of the general storage al-

location used for WGS and on the same piecemeal basis.

CS: Code storage. gpace here is allocated by block. All the
code and constants generated by one program block, or all the
non-scalar constants (strings, arrays and dope) generated by
one common block, are collected together and allocated contigu-
ously in that region. Transfer vectors also appear here. If
block A precedes block B lexically (in the source), then the

CS for A will precede the CS for B.

Origins
The origin:statement permits (most of the) storage of a block
to be allocated at a fixed place.

origin:statement = "ORIGIN"[expr]

The expression, whose value is called the origin of the block,
must evaluate to an integer at compile-time. The statement

must appear in the block after any include:statement and before

anything else.

p/c=n.r page
CC SPLAPF/W-25 4

If the block is a program block or a common block with no writed

able variables declared, the origin tells where to start its

space in CS. If the preceding block's space in CS extends past
the specified origin, an error is recorded and the statement is
ignored. This implies that origined blocks must appear in ordeny
of increasing origins. Note that the scalar storage of a common

block is allocated in RSGS and is not affected by origin:statemgnts.

If the block is a common block with writeable storage, then the
origin tells when to start this storage. Two restrictions
apply
1) The block must have no requirements for CS.
2) All blocks with origined WGS must appear before any non-
origined blocks which require WGS, so that the space
taken by origined blocks can be properly removed from

the control of the storage allocator

All the WGS for an origined block is allocated together. A
subsequent block may omit the expr from its origin:statement,
in which case its WGS is allocated immediately following that

of the preceding block.

Fixed Environments

A fixed local environment is specifed by a fixed:statement.
"FIXED" ["," "ORIGIN" expr]

The origin clause tells where to put the environment. The pro-

grammer is responsible for the security of the area he chooses,

p/c-n.r page
CC . SPLAPF/W-25 | 5

which is not checked by the compiler. In the absence of the
origin, the compiler will allocate the storage in WGS at its

discretion.

The word FIXED may not appear in a function declaration.

Egqguivalence

. An equivalence (SPL/M-1.1, p. 6) can be used to fix the loca-

tion of a scalar or an array descriptor by writing an integer-
valued expression for the object of the equivalence. Thus

DECLARE A = 40B, ARRAY B[30] = 41B;

atlocates A at 40 and the descriptor for the array B at 41 and
42 . The array itself is allocated according to the default
rules. Restriction: the value of the equivalence must be in
the range [G', G' +37777B]. An equivalence overrides all other
methods of storage allocation. If a variable V has been equi-
valenced to a COnstant, or is declared in a common block, then

@V is a constant whose value is the address assigned to V.

Fixed Fields

Descriptors for part-word fields are normally allocated in the
first 128 words of the global environment by the compiler if
there is room. This allocation can be suppressed and the
field allocated in the function or common block like any other
constant by prefixing FIXED to [SIGNED] FIELD in the

declaration.

e e ——

p/c=n.r page
CC SPLAPF/W-25 6

Arrays

The syntax of <dimension> (SPL/M-1.1, p.3) is extended as fol-
lows:

dimension = '[' expr $(','expr) [':'[expr][', 'expr]] ']’
The last optional expression tells where to put the first word
of the array. Also, the expressions in the list of subscripts
bounds may be null in a formal parameter; in this case the list

serves simply to establish the dimensionality of the array.

	001
	01
	02
	03
	04
	05
	06

