 title prefix/class-number.revisi
C 5 Processes PROC /W~ 36

checked %_\ authors approval date [revision date
; A A . | 12)4/49
ch classification
363/(@ ()émc, Rainer Schulz Working Paper

approved s vy //L%_ distribution pages

ﬁmpany Private 27

ABSTRACT and CONTENTS

This document describes the manipulation of processes in

the basic system.




E C C p/e-n.r page
CONTENTS PAGE NO.
Introduction 1
Process Creation 2
Process Initialization 5
Process Activation 7
Making Processes Dormant 8
Commﬁnication with Processes 9
Processes and Terminals 10
Linking 12
Destroying Processes 13
Non-interactive Processes 14
Monitor Calls:

Open Process 16
Destroy Process 17
Make Process Dormant 18
Transfer a Terminal 19
Activate Process 20
Link to Process 21
Break Links 22
Copy PMT 23
Make Page 25
Initialize Page 27




p/e~n.r page
C C PROC/W-36 1

Introduction

This document deals with the monitor calls for creating and
destroying processes and for making them active or dormant.

It also describes the implementation of those operations.

A process is defined by its context block, which is a page
containing all the information required to run the process:
its state, map, open files and other objects maintained by
the monitor, call stack etc. Every process also has an
entry in some MIB which points to the context block.

Like any MIB entry, this one includes a name; it is there-
fore possible to refer to any process symbolically. It also
includes all the protection mechanisms included in any MIB
entry; access to the brocess can therefore be controlled

in the same way as access to a file.

When a process is not being used for a long period of time,
the MIB and context block are all that is required to keep
it in existence. The context block normally resides on
the disk in this case, and the process is said to be dormant.
The only operations which can be done on a dormant process
are

l) destroy it

2) make it active

3) initialize it

These operations are only legal for a dormant process.




p/c=n.r page
CC ‘ PROC/W-36 2

Creating a Process

To create a new process, the monitor call "create new
entry with name n as type t" is used. This call is
described in SCBFS/W-9 and MIFS/W-1¢. Any restrictions

on these calls also apply to the creation of processes.

A dormant process is created. It has no resources. Space
for its context block is charged to the MIB in which it is
created. The context block ig put in the active page set
of the creating process so that someone will be paying for
keeping the context block on the drum while the monitor

initiaglizes it.

The open file table, sub-process table, call stack and PMT
of the process are cleared. The context block is set up
so that the process will start execution at an initializa-
tion point in the monitor. The context block is initialized
with all the necessary PMT entries, the map, etc. necessary
to run the monitor. After this call the process has been
created as far as the basic system is concerned. If some-
one activates the process at this time, the process will
automatically become dormant again, since no sub-processes
have been created in the process yet, and the monitor
doesn't interface to the user., The process.is now in the

following state:

a) dormant - not open for modification

b) not initialized




ECC P/;;:c/w—%

page

When a process is made active, it acquires an additional
piece of machinery called a PRT (process resident table)
entry. This 1l2-word object contains the information requi
td allow the rest of the system to communicate with the
process: schedule it, swap it in, send it wakeups, report
disk errors, send it alarm-clock signals and keep track

of its status while all these things are going on. As is
suggested by its name, this table is resident in core.
Tables maintained by the CHIO and AMC can contain pointers

to the PRT entry of a process.

The context block for an active process normally resides

on the drum.

A process can be in several states:

1) dormant

2) dormant - open for modification

3) being made dormant

4) active

5) Dbeing activated

6) Dbeing destroyed
All of these states are discussed in subseguent chapters.
States 3, 5 and 6 are transitory states. The following
sequences of states are possible (assuming one starts with
dormant process).

a) 1 -»2->1

b) 1 >5=>4>3>1

red




BCC o /H-36

page

"initialized", which is also described later on.

In addition to these states there is an attribute called




p/e=n.r page
CC PROC/W-36 5

Initializing Processes

After a process has been created, it has to be initialized

so it can really run and execute user code.

The proéess has to be "opened fof modification" before

any initialization can take place. If this call is
successful an OFT entry for the process is made in the
calling process. The following conditions have to be satis-

fied for the call to succeed

1) the process has to be dormant
2) it cannot be "open for modification" by any other
process

3) the caller has write access to the process
4) process cannot have been initialized previously

The process stays "open" in this way for not more than

15 minutes.

The process gets closed (the OFT entry is removed) if:

1) the process is "closed" by the user
2) the process has been "open for modification"”

for more than 15 minutes

At the time the process is closed its state goes from
"not-initialized" to initialized. After opening the process
several calls can be made on the monitor to initialize

PMT, SPT and the utility area of the context block. 1In

order to initialize the SPT and PMT entries, the "attach"




BCC - P/CP-I:E;C/W— 36

page

in the new process.

utility ring or in the user ring.

is that any "attach" file created by SPL can be started

up as the father of all fathers (controlling sub-process)

This is true whether the first sub-process runs in the

function in the utility should handle the case of initializ-

ing new processes. The implication of these monitor calls




p/c=n.r page
Cc ' ’ PROC/W-36 7

Activating a Process

In order to activate a process, it has to be

a) dormant - not open for modification

A process is activated by transférring resources to it.

This operation is simply a resource transferring operation
where one of the targets is a dormant process. The

resourceé being transferred must include at least one process
and at least n cycles/second of CPU; they must be valid

for at least m minutes into the future. The resources

may also include a terminal.

When a process is activated, a PRT entry is set up for it,
its context block is brought from disk to drum and it is
woken up. It will have been blocked in the monitor, either
at the initialization entry point mentioned above, or in
the 'go dormant' (GD) routine. In the latter case, it puts
the context block in its APS and returns control to what-

ever routine called GD.

In the former case, the initialization code in the monitor
calls the first sub-process at a special entry point.

As soon as the process is activated, its state goes from
"dJormant" to "active". If there is no first sub-process,

the process becomes dormant again.




p/e~n.r page
BCC : PROC/W-36 8

Making a Process Dormant

An active procesé can be made dormant in two ways. The
process can cail on the monitor to make itself dormant, or
another process can send an interrupt to the process,
requesting that it make itself dormant. The result is the
same in either case. When the monitor receives the "go

dormant" request it:

1) removes all pages’ffom the active page set.

2) Dbreaks links

3) returns the controlled terminal (if there is one)
to the system and disconnects the line

4) returns whatéver resources may be left to the MIB
that_the process belongs to (an FRA with the same
name as the process)

5) releases the PRT entry

As soon as all this is done, the process is said to be

dormant.

A process may also automatically become dormant if its
resources have expired and no new resources have been put

in the appropriate FRA of the process's MIB.




- ' p/c=-n.r page
CC PROC/W-36 9

Communicating with Processes

It is possible to send wakeups to active proéesses (see
IWS/W-11). To do this it is necessary to open the process.
This is done exactly like bpeninq a file (using an OFT entry).
There is then an operation to send a wakeup. It takes the
process number and a wakeup bit word as parameters. The
bit word gets merged into PIW and the process gets woken
up. Of course it fails if the PRT entry has disappeared.
This "opening" of a process is not to be confused with
"opening for modification." 1In this case the state of

the process is in no way affected.




p/e-n.r page
CC : : PROC/W-36 10

Processes and Terminals

The M1l system lacks any comprehensive facilities for
controlling access to terminals. The following minimal

scheme will be used.

Each line has in the CHIOs tables a process identification
in the form of a PRT index; we will call this process the

presumptive owner of the line (terminal). Processes are of

two kinds with respect to lines, normal and special. A
special process may access any line; specialness is acquired

through the use of the Complete Teletype Access capability.

A normal process has an attribute called the controlled

terminal, which is either null or is a line number. The
process may access its controlled terminal provided that it
is the presumptive owner; if this is the case, we call it
the owner. Thus a normal process may access zero Or one
terminals, and a terminal may be accessed by zero or one

normal processes.

A process A which owns a terminal may transfer ownership

to another process B (which A must have opened with

suitable access), provided that the calling subprocess has
the capability to do so. The terminal becomes the controlled

terminal of B, and B becomes its presumptive owner. A process




ECC | Pgl-agrc/w— 36

page
11

that the necessary resources are available.

which owns a terminal may also give it up to the system.

If this happens, the process becomes non-interactive.

The (special) listener process will transfer each terminal

which dials in to a newly created utility process, provided




I ;CC ‘ P/;;gc/w—%

page
12

Linking

to has to be opened with proper access. Then any kind of

linking can take place, provided the opened process owns

linking and is not already linked. If process A links to
process B, then process A is said to have attached line

B. Regardless of the kind of linking being done, process

documented in the CHIO specification F0O0/S-2. If process

A transfers its controlled line to process C, the link

In order to link to another process, the process to be linked

a terminal and the target line has its status set to accept

B also has line A attached. The access to an attached line

depends on the type of link established. These types are

and the attached terminal are also transferred to process C.




BCC P/;-rggc/w—%

page
13

Destroying a Process

goes away one operation is provided:

'l) A monitor operation to scan the context
block of another process and release the

private memory.

A dormant process with no private memory can be destroyed.
This is done by simply releasing the MIB entry and the space

for the context block. To make sure that the private memory




BCC | P/;Iz%rc/w—%

page
14

Non-interactive-Processes

for activating a process at some long-distant time.

the utility to implement a satisfactory scheme for non-

interactive execution. The trickiest part is a mechanism

The facilities described here should be sufficient to permit




| ;CC Pg;g::/w—%

page
15

APPENDIX A

Brief list of Monitor Calls concerning the creation of

processes and terminal control.

1) create process
2) open process
3) open process for modificati on
4) set PMT in opened process |
5) set SPT in opened process
6) initialize new process CB (or created page)
7) close process (setting control lock to zero ({))
8) activate process
9) make process dormant
10) destroy process
11) 1link to process
12) break links
13) transfer terminal (either to system or to
another process). Terminal has to be controlled
or the caller has to be the presumptive owner.

14) create private memory page in new process




bee

p/e=-n.r page
PROC/W-36 16

FRETURN: a)

b)

c)
d)
e)

£)

g)

RO: 1if RO =

linking..

Open Process (Same as Open File)

Function OPPRM(N,RO,K), FRETURN, MONITOR < 19;

SRETURN: OFT index

no process with name N

no write access to process, and/or no WFI
capability (if RO = 1)

OFT full

process has been initialized (if RO = 1)
process not dormant (if RO = 1)

one process already open for modification

(if RO = 1)

' no access to process (if RO = @)
1, then the process is opened for modification,

otherwise it is only opened for sending interrupts or

K: OFT index for getting access.




ECC - P/;:gc/w—%

page
17

Destroy Process (Same as "Delete entry N' as described in
file system)

Function DESTPR(N,K), FRETURN, MONITOR < 5 ;
SRETURN: no parameter returned
FRETURN: 1) no owner access to process

2) process does not exist

3) process not dormant




p/e=n.r page
CC PROC/W-36 18

Make Process Dormant

Function GO'DORM(N), FRETURN, MONITOR < 13 4;

N = process namé (same as file name in file system) If
N[2] = @, then the running process that made the call is
made dormant, otherwise an interrupt is sent to the

addressed process, which will cause it to become dormant.

SRETURN: after process is activated again (if own process
is made dormant), or after interrupt is sent to
named process. No parameters are returned.

FRETURN: 1) prodess does not exist

2) . no owner access to process




bec

p/e=n.r page
PROC/W-36 19

Transfer a Terminal

X

N

FRETURN: 1)
2)
3)
4)

5)

6)

7)

Function TRTERM(X,N,RES), FRETURN, MONITOR <133;

X = -1 controlled teletype

n, where -1 { n { Max line number

process name (same as file name in file system) .

If N[2] = @, then terminal gets transferred to system.
This also causes the terminal to be disconnected from the
system. If RES = g, no resources get transferred for the
terminal; if RES = 1, resources do get transferred to the

target process.

SRETURN: none

process does not exist
process dormant

process interactive

no owner access to process

calling sub-process does not have terminal
transfer capability

terminal is not controlled or caller is not
presumptive owner of terminal

expiration of resources of target process

exceeds those of originating process




p/e=n.r page
CC PROC/W-36 20

Activate Process

Function ACTPR(N,X,RE$,K), FRETURN, MONITOR < 132;

N is the name of the process, X is the terminal to be
transferred. X and RES have the same meaning as in "transfer
terminal." The same restrictions on the transfer of terminals
also apply in this call, except that if X = -2, no terminal

is to be transferred. The resources to be allocated to the
process are taken from a fixed resource allocation block

(FRA) in the MIB of the process. The name of the FRA is
expected to be identical to the name of the process, except

the type is "NRES."

SRETURN: PRT number
FRETURN: 1) process aoes not exist
2) ‘no resources available
3) no owner access to resources Or process
4) process not dormant
5) o0ld version of procesé (cannot be run under
current system)
6) calling sub-process does not have terminal
transfer capability
7) terminal is not controlled or caller is not

presumptive owner of terminal




bec

p/c=n.r page
PROC/W-36 21

Link to Process

Function
T = type
T = 1)
2)
3)
SRETURN:
FRETURN:

LINKPR(N,T), FRETURN, MONITOR < :
of linking to be done

normal link

CCP mode

advise mode

line number linked to

1) no read access to process (if normal linking)
or no write access if CCP mode, or advise mode

2) process is not active

3) . process refuses linking

4) process already linked




bece o s

page
22

Break Links

Function BRKILNK(), MONITOR < :

I

SRETURN: no parameters returned

FRETURN: function never fails




p/ec=n.r page
CC PROC/W-36 23

COPY'PMT - Copy a PMT Entry from One Process to Another

Declaration:
.FUNCTION COPY‘PMT(OFTX,PMTX), FRETURN, MONITOR <~ 130;
Success Return:

RETURN PMTX':; where PMTX' is the index of the PMT entry
in process OFT[OFTX] into which PMTEPMTX]
was copied.

Failure Returns:
(1) FRETURN('OFI', 36) unless 1 { OFTX { OFTL.
(2) FRETURN('OFA', 13) unless the calling sub-process
has access to OFT[OFTX] .

(3) TFRETURN('ONP', 69) unless OFT[OFTX] is a process open

for modification.

(4) FRETURN('OFE', 12) if OFT[OFTX] is empty.

(5) FRETURN('PMI', 11%) unless 1 { PMTX < NPMTE.

(6) FRETURN('PMC', 121) unless PMT[PMTX] is controlled

by the calling sdb—process.

(7) FRETURN('PNF', 185) unless PMT[PMTX] is a file page.

(8) FRETURN('NSP', 183) if SPT[1l] in process OFT[OFTX]

is free,

(9) FRETURN('PMO', 184) if there are no free PMT entries

in process OFT[OFTX].

Action:
A free PMT entry in process OFT[OFTX] is acquired
for SPT[1l] of that process. The contents of PMT [PMTX]

in the current process are copied into this new PMT




BCC , | p/;::)'c/w— 36

page
24

sub-process of the current process.

entry in the process being modified. The PMT index,

PMTX', of the entry acquired is returned to the calling




| P/e=n.r page
CC PROC/W-36 25

MAKE'PAGE - Create a Private Memory Page in a Process Open

for Modification. (Same as create page for file)

Declaration:
FUNCTION MAKE'PAGE(OFTX,PMTX),_FRETURN, MONITOR < 24;
Success Return:
RETURN PMTX'; where PMTX' is the index of the PMT
| entry in process OFT[OFTX] in which the
‘page is created.
Failure Returns:
(1) FRETURN('OFI', 36) unless 1 < OFTX { OFTL.
(2) FRETURN('OFA', 13) unless the calling sub-process
has access to OFT[OFTX] .
(3) FRETURN('ONP', 69) unless OFT[OFTX] is a process open
for modification.
(4) FRETURN('OFE', 12) if OFT[OFTX] is empiy.
(5) FRETURN('PMI', 11¢) unless 1 <{ pPMTX < NPMTE.
(6) FRETURN('PMC', 121) unless PMT[PMTX] is controlled
| by the calling sub-process.
(7) FRETURN('PMF', 122) unless PMT[PMTX] is empty.
(8) FRETURN('PMO', 184) if there are no free PMT
entries in process OFT[OFTX].
(9) FRETURN('NSP', 183) if SPT[1l] in process OFT[OFTX]
is free.
(1L0) FRETURN('KSE', 186) if process OFT[OFTX] has no

disk space available for the new page.




’ BCC ' ' P/;-R'grc/w-%

page
26

Action:

that process belongs.

PMTX' is returned to the caller.

A free PMT entry in process OFT[OFTX] is acquired
for SPT[1l] of that process. A private memory page
is created in this PMT entry (call it PMT[PMTX']).
This page is acquired for proéess OFT[OFTX] in the
sense that its Unique Name is derived from that of
that process' Context Block and its disk space is

chargéd against the disk allowance of the user to whom

The contents of PMT[PMTX'] is copied into PMT[PMTX]

in the calling process. The FP flag in PMT[PMTX] is sef.




p/c=n.r page
CC PROC/W-36 27

INIT'PAGE - Initialize utility area of CB or private memory
page in new process. |
Declaration:
FUNCTION INIT'PAGE (OFTX,PMTX', ST, NW, INTEGER ARRAY
PG), FRETURN, MONITOR < 135;
Success Return:
RETURN;
Failure Returns:
(1) FRETURN ('OFI', 36) unless 1 < OPTX < OFTL
(2) FRETURN ('OFA', 13) unless the calling sub-process
has access to OFT[OFTX]
(3) FRETURN ('OFE', 12) if OFT[OFTX] is empty
(4) FRETURN ('ONP', 69) if OFT[OFTX] is not a process
open for modification
(5) FRETURN ('XXX', XXX) ﬁnless PMTX' is a private memory
page
(6) FRETURN ('EWC', 50) excessive word count given
Action: »
The private memory page PMTX' in process OFT[OFTX]
is initialized with the contents of array PG. ST
gives the starting location within page PMTX' and NW
provides the number of’words to be transferred. The data
to be transferred is always taken out of PG[@] and the
following locations. PMTX' determines whether the utility
area of the CB(PMTX'=l) or another private memory page

gets initialized.




	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27

