 title

An Efficient Multiplexing

Algorithm

prefix/class-number.revisi
ATINFIC/W- 37

authors

approvod_) //Lg, "/

Faulf;i/

approval date [revision date

12.//t (69

classification
Working Paper

distribution pages
Company Privatd 8

ABSTRACT and CONTENTS

Consider the problem of multiplexing output data for several
devices, each of which receive string bursts of moderate

length. (average of 10 or more characters).

The Multiplexing algorithm usesvSUbSidiary algorithms for
scanning the line. 1Its value is that it will work for
any scanning algorithm. The efficiency of the algorithm
depends on the length of the string, but is about (100-
300/n)% where n is the length of the average string burst.
This gives an efficiency of 90% if the average string burst

is 30 characters long, and 70% if the average string

burst is 10 characters in length.

This algorithm is used in the Phase 2 Communicati ons System;
but is considered to be of sufficient interest to be

published separately.




I p/e=n.r .
CC ATINFIC/W-37

page

Introduction

Teletype output and inpﬁt have two basic dissimilarities.
First there is more output because computers are more
verbose than people. Second it is more regular because
people are more spastic thankcomputers. By more regular
it is meant that once a devicé starts it will continue

to deliver characters at regular predictable intervals.
This is true in the case of the computer because it out-
puts bursts of strings which are buffered. At regular
intervals characters are taken from the strings. When the
character count drops below a certain amount, the process
that outputs the characters is reawakened to provide more,
which it will probably.do before the buffered string

is exhausted. A person inputting characters to a teletype,
on the other hand, types in short irregular bursts. A

teletype reading a paper tape would be regular, however.

The basic idea behind the algorithm'is that there exists
a (slowly changing) set of teletypes that are ON. If
both the computer and the Remote Concentrator know what

the set of "ON" teletypes is, then both computers can use

the same algorithm for stépping to the next device, and the

only information that has to be passed from the CHIO to

the Remote Concentrator is information to tell the Remote




p/e=n.r page
CC : ATINFIC/W-37 | o

Concentrator when a device is turned ON or OFF. Since

it requires 2 characters inserted in the string to turn

a device ON and one to turn a device OFF, the length of
1

the average character string must be large compared to 3.

In actual fact this is likely to.be the case, especially
when the jine tends to be overloaded, as would be likely if
several teletypes were typing listings, which contribute
heavily ﬁo the load (and the average string length). 1In
particular, a printer contributes a very heavy load to
the communication line's bandwidth (one string of several
thousand characters). It should be obvious that the
reason that input to the system cannot use the algorithm
is that most input strings are only one character long,
as few typists can keep up with a teletype (the slowest
device). But then again this is not of concern because
the total volume of input data is much less than the

volume of output data.




! . | p/e~n.r
CC ATINFIC/W-37

page

A Description of the Meta-Algorithm

Let there exist a table called the state table that
describes the teletypes that are ON, their speed, and
any other pertinent information..‘Let there also exist
algorithms: GNL(Get Next Line), DOL (Delete 0l1ld Line),
and INL (Insert New Line) which are defined on the

state table. Only these algorithms may modify the table.

GNI, when called should step to the next line to which a
character should be sent. It has constraints imposed by
the devices, and possibly other things; but not by the
Meta Algorithm. In particular it should not select an N
character per second device any more often than once each
1/Nth of a second. IfIGNL ig ill-behaved then only pre-
dictable things will happen. For example if GNL persists
in skipping one teletype, then that output device will
never have any output sent to it; but all of the other
devices will have the expected outpﬁt. In fact no matter
how badly coded any of these algorithms are all devices
will only receive characters intended for them, and only

in the correct order.

INT, is responsible for adding new lines to the set of ON
teletypes. It does this by modifying the state table to

indicate the new line added.




p/e=n.r page
CC ) ATINFIC/W-37] 4

similarly DOL when called should modify the table in such

a way as to delete the current device.

In short INL acﬁivates devices, DOL deactivates devices,
and GNL selects the next active device. These sub-
routines, and only these subrdutines, may modify the state
table. There is one helpful addition to this. Whenever

a character is sent to the Remote Concentrator (or
received by it, as we will shortly see) it may increment

a counter in the state. This may be used as a timer by

algorithm GNL.

To initialize this communication system we start with
identical state tables and algorithms in both the CHIO

and the Remote Concentfator. We then start the communi-
cations system by sending a s@ecial initialization character
to the Remote Concentrator. After the initialization
character has been sent the CHIO will then begin executing
algorithm MAT (Met Algorithm for Transmit described in the
appendix) . When. the Remote Concentrator receives the
initialization character it begins to execute the algorithm
MAR. (Meta Algorithm For Receive also described in the

appendix) .

Tn order to see what is happening consider an observer
at the Remote Concentrator looking at its tables. He also
looks at the tables in the CHIO while still at the

Remote Concentrator, seeing them delayed by the same




~

BCC p/c-n.tATINFIC/W-B

page

amount of time that it takes a message to go from the

CHIO to the Remote Concentrator. The.observer will note
that both tables look the_same. This is because MAT and
MAR are synchronized, both calling the same sub-algorithms

at the same time.

This is because both sets of algorithms are essentially
identical. They select a device, then input to (or output
from) it. The only time that this basic pattern is

broken is if a control character is received (or sent).
This will trigger a call of the appropriate subroutine.
(DOL or INL). Since the only data that can affect the
state of the tables (namely the two special control
characters) are available to both ends of the communicatio

line, both MAT and MAR can react identically to them.

ns




p/e=n.r page
CC ATINFIC/W-37 | ¢

Inserting and Deleting Lines

An outside subroutine, because it is not allowed to

modify the staté table, cannot directly turn on or off

a device. The outside subroutine is allowed to set
another bit, one that is not (logically) in the table.
When MAT finds this bit set in the table it sends a
control character (DL) to the Remote Corc entrator in-
dicating the current line turned off (DL) or a new line
should be turned on (NL followed by the line number) .

MAT then calls DOL or INL in respénse to the control char-
acter(s) sent, rather than because it found a bit set. The
bit's being sét caused it to send the control characters.
Since MAR will respond similarly to the control character

it receives, both tables will be modified identically.




' p/e~n.r page
CC ATINFIC/W-37 | 7

Conclusion

The algorithm described does not say anything about device
speeds, or deviée selection. This is an important prob-
lem, one that will be discussed in another document.

The algorithm is useful for applications that require

multiplexing long strings of data.

The beauty of the algorithm is that it in no way depends

upon the device selection mechanism.




bec

ple-n.r page
ATINFIC/W-37 | 8

APPENDIX

*MAT Meta-Algorithm for transmission

TLOOP:

CALL GNL;

IF DELBIT(CLINE) = ON DO;
TRANSMIT(DL) ;
CLEARDB (CLINE) ;
CALL DOL;

GOTO TLOOP;
ENDIF;
TRANSMIT(GET(CLINE)):

LOOP2:

IF AVNL() DO:
NIN < NEWL() ;
CLEARIB (NLN) ;
TRANSMIT(NL) ;
TRANSMIT (NLN) ;
CALL INL(NIN);
GOTO LOOP2;

ENDIF;

GOTO TLOOP;

*Sets up CLINE the current line
*Tf delete bit is set for current
*device ' :

*Clear Delete Bit

~ *Character from current line;

*Tf available line to insert
*set NLN to the new line;
*Clear insert bit

*MAR Meta-Algorithm for reception

RLOOP:
CALL GNL;
CCHAR < RECEIVE();

IF CCHAR = DL DO;
CALL DOL;

GOTO RLOOP;

ELSEIF CCHAR = NL DO;
CALL INL(RECEIVE()):
GOTO RLOOP;

ENDIF;

PUT(CCHAR,CLINE) ;

GOTO RLOOP;

*Sets up CLINE, the current line
*get the next input character
*from CHIO

*Insert device specified by

*next character

*put the character just received
*in the current line




	001
	01
	02
	03
	04
	05
	06
	07
	08

