title prefix/class-number.revision
C [~/| CHIO IMPLEMENTATION PHASE 1 IHTWD/W- 38

authors approval date |revision date
12/16/69

classification

Paul Heck [Working Paper
/ distribution pages

{j! 0-—~/ Company Private 22

[

|- A)
" | approved J

ABSTRACT and CONTENTS

This documents the implementation of the Phase 1
CHIO in enough detail so that someone should be able to
follow the microcode. The reader of this document is
expected to be familiar with the CHIO/CPU INTERFACE (FOO/
S=2.1) document., In particular the appendix of that document
contains the format of all of the tables used in the CHIO.
If more detailed understanding is needed, this should be
read along with the comments at the beginning of each sub-
routine.

This document is not expected to answer all imple-
mentation questions, but it should guide the reader in

finding answers.

E CC . p/e=n.r e 36 palge

OVERVIEW

The CHIO (Character Input/Output) Multiplexor does all of
the teletype Input/Output for the system as well as character

Input/Output to other devices (currently just the 360).

As far as the CPU is concerned there are some lines which
characters may be written into or read from. These lines
come in pairs, the first (even) line of the pair is the
input line and the second (odd) line of the pair is the
output line. A CPU program may read from or write into
either of these lines, although it normally reads from the

input line and writes into the output line.

These lines are connected to actual devices: either tele-
types or 2400 baud lines (in Phase II the devices will

include teletypes on the remote concentrators).

Any CPU request to these lines may be ignorant of the device
type although the CPU actually sets-up the device type at
initialization time. The CHIO sends and receives characters
to/from devices at the appropriate speed, buffers characters
for both input and output, and awakens the appropriate
process if the character count or the buffer count for the
line underflows or overflows. The appropriate process is

also awakened when a wakeup character is input.

The CHIO also echoes characters to devices in such a way

as to ensure that the listing that appears on the paper is

p/e=n.r page
CC » IHTWD/W- 38 2

in the logical order in which the conversation occurred
rather than the actual order. I.E., if a user types ahead,

a character is not actually echoed until the CPU reads it.

The CHIO also handles linking and will wakeup CCP type

programs.

The primary function of the CHIO is to buffer the characters
when they are input to the system until they are read by
the CPU, and to buffer them from when they are output by

the CPU until they are output to the teletypes.

The CHIO is divided into three parts; several low level
subroutines that perform basic functions, subroutines
that handle CPU requests and the logic for interfacing

with the actual devices.

Examples of the first type are subroutines that read and
write characters, determine the character type, or wakeup

a process. Subroutines that perform CPU requests are in

the second category and they call on functions in the first
category. The subroutines that do bit scanning or decide
whether to wakeup a process for input or output are in the
last category. These also call on functions in the first
category. There is no direct communication between functions

in the second and third category.

E C p/e=n.r page
(:' IHTWD/W%S 3

CHARACTER POINTERS AND CHARACTER BUFFERS

All character buffers (including the bne in the CPUIT)
begin on locations divisible by 8 and are 8 words long. The
first word of the buffer points to the next buffer (F means
no next buffer). The next 7 words of the buffer contain

characters.

The character buffers (with the exception of the one in the
CPUIT) fall in a block of storage no larger than 64K pointed
to by the scratchpad register BUFg. The first 8 words
following the location pointed to by BUF@ must contain d.
These words may not be used as a buffer. All buffer pointers
and character pointers that are stored in core are taken
relative to BUFg. Thus the CHIO must add in the contents of
BUFF to determine the actual buffer location. These
relocated values are stored in the holding registers: RCP
(read character pointer), RCPEND (pointer to last character

to read) WCP (write character pointer.)

Character pointers are actually word pointers. All words
pointed to by character pointers must be padded by leading
or trailing nulls (zeros). (Thus there is a very basic
reason that the null character cannot be easily changed.)
When a character pointer is changed, its sign bit is set.
A copy of the word pointed to by WCP (RCP) is kept in the

scratchpad register WWORD (RWORD).

[bec

p/e=n.r page
IHTWD/W- 38 4

1)

2)

3)

4)

5)

6)

1)

Given these facts the following observations can be made:

When a character‘pointer is loaded into RCP or WCP
then RWORD or WWORb must be loaded,.

When a character is read it must be deleted from
RWORD (replaced with NU;L).

If there is no character.in RWORD (RWORD = @) then
RCP must be increménted, its sign bit must be set
and the new word pointed to must be put into RWORD.
When a pointe? is stored, RWORD or WWORD must be
stored but the pointer does not have to be stored
unless its sign bit is set.

When a character is written it is placed in the
right side of WWORD, or if it won't fit WWORD is
stored, WCP is incremented and WWORD is set to the
new character. Note that if the first character in
WWORD is a NULL then WWORD (the left two characters
being NULL) may be cycled left 8 to make room

for a new character.

Characters should be stored in words right just-
ified. If this is not done some inefficiency in

the use of time or space will be the only effect.

The following facts are also true:

A pointer to zero is interpreted as meaning there
are no more buffers to point to. Thus if this
appears in the character pointer table then the

line is empty.

bec

p/e=n.r page
IHTWD/W-38 5

2)

3)

4)

5)

6)

The end of a character string is reached if RCP =
RCPEND.

The count in RCNT (WCNT) is incremented for each
character read (written), (nulls' are not counted).
This fact is used by routines like WST and RCND

to determine when the cofrect number of characters

has been read.

IRCH and IWCH are used to initialize read and

write pointers prior to reading characters.
Similarly CWCH and CRCH are called after the
characters have been read.

RCH and WCH will read or write one character. They
assume the initialization has been done and the
cleanup will be done.

RCH1 and WCH1 will read or write one character
from-a line., These routines will call the initia-

lization and the cleanup subroutines.

p/e=n.r page
CC IHTWD/W-38 6

CHARACTER BUFFER CONVENT IONS

At initialization time the buffers must be linked together
with the last buffer poihting to ¥ and the pointer to the
first free buffer put in the scratchpad register FREEL.

NFB in the CPUIT must be initialized to the correct number

of free buffers. The CHIO will keep it updated.

The CHIO always keeps a free buffer in AVB and a -1 in PRB.
If at any time a buffer is needed it is taken from AVB and
BFLAG is set to -1. 1If at any time a buffer is freed it is
placed in PRB and BFLAG is set to -1. No request (with the
exception of ECHO which calls BLAKE explicitly) can use or
free more than one buffer. Whenever a request is finished
the function BLAKE is called if BFLAG is negative to fixup

the buffer situation.

RCH and WCH kﬁow to link to the next buffer if the character
pointer, when incremented, is divisible by 8. They do this
through subroutines stored in RBUF and WBUF. The subroutines
in these registers are LNKB which links to the next buffer,
freeing the o0ld one; GETB which gets the next buffer; and
ABORT (when the buffer is the CPUIT buffer and the buffer

boundary should not be crossed).

BLAKE expects the number of free buffers to stay between
MINFB and MAXFB (scratchpad registers) if it does not, then
a CPU process called BRECHT is called to take whatever action

it feels necessary.

p/e~n.r page
CC | IHTWD/W- 38 7

The number of buffers that a line is allowed to obtain for
output is:

XBCNT * MP / 64
where XBCNT is é quantity stored in the line and MP is a
multiplier from 1 to 64. If buffer space is tight then MP

should be reduced by the process BRECHT.

It is important to note that the number of buffers a process
is allowed to collect is infinite, since all requests will
be fulfilled. The CPU is, however, expected to stop

WSTing characters to a line if NSR is set to 1 (or NIQ

or NOQ is on). This means that characters will never

be dropped by the CHIO.

Whenever an input (output) line acquires a buffer in excess
of the number allowed, then XIB (XOB) is incremented by 1.
It will be decremented by one when the buffer is returned.
Because it is possible for an input line to fill up
without its process servicing it, BRECHT should check to

make sure that XIB and XOB have reasonable values.

The first 8 bits of the first word in the character buffer
contains the line number mod 256 so that from time to time

the CHIO can check the compare instruction.

When characters are to be written into a line, GWP is
called, and similarly when they are to be read from a line

then GRP is called. These subroutines set up WCP (or RCP

p/e~n.r page
CC IHTWD/W- 38 8

and RCPEND) and leave an interesting variable in WTCE2

(or RTCE2) for PWP (PRP). When the reads or writes to

that line are finished, PWP or PRP must be called. These
subroutines will update the write (read) pointers, the
character counts, and check to determine whether the character
count or buffer count is out of rénge. These subroutines

may also detect abnormal conditions which cause an abort.

, p/e=n.r page
CC IHTWD/W-38 9

CPU CALLS

Someone familiar with the character aﬁd buffer manipulation
functions should not have any great difficulty with the

CPU calls. However, the folloWing facts are important.
CPURQ is called when there is a CPU request. It calls GLE
to set up the line number and then dispatches on the type.
GLE must be called to "open" a line; it will set up several

interesting global variables.

When a CPU request is completed it may either return (to
CPUFIN) or branch to CPUFIN. At that time M will contain
the value (VALU) and NSRFLAG (which CPURQ initialized to

@) will contain NSR.

The only functions not discussed so far that any of these

functions might call are WKCQ, WAKEUP and ECHO.

WKCQ is used to determine the character type. It may be a
wakeup character, a QUIT, an ESCAPE, a non-echoable character,
or an ordinary everyday character for which nothing special
should be done. The character type is indicated by the

value (in 2Z). (If WAKEUP is immediately called it will

have the wakeup type setup correctly in the Z register).

WKCQ does two things of some subtlety. First, it sets

CHISC negative if the last character was an echoable
character so that ECHO will not echo it, and it uses LCSW1

as a flag in case WKCQ is called with a SHIFT1 so that the

p/e=n.r page
CC IHTWD/W-38 10

next time it is called it will only consider characters

in the range of @ to 37.

Note that this second condition regquires that if WKCQ is
called with a SHIFT1 that it must be called again before

the current request is finished.

WAKEUP can be called with a variety of arguments. WAKEUP
will try and get out of waking up the process if it

can (WIC/WOC might not be set). If it is unable to avoid
the work then it will awaken the process for the line

(except for the more general entry that specifies the process

to be awakened) and reset WIC or WOC to indicate this.

An understanding of ECHO requires an understanding of

more of the CHIO than any other subroutine. It is respon-
sible for echoing the current character and oﬁtputing it

to any linked line. ECHO should be called if the character
should be echoed assuming the echo strategy is on. Thus
the calling subroutine must determine whether the character
should be echoed now, has been echoed or should be echoed in
the future. ECHO first saves WCNT, WCP, WWORD, LINE and
BFLAG. BFLAG is saved so that the buffer count in the line
will be correct; the other words are saved so that writing
of characters may proceed as if ECHO was not called. The
read character variables do not have to be saved because

ECHO does not call any character reading functions.

| p/e~n.r page
CC IHTWD/W-38 11

If the echo strategy to the line is on, and the line is an
output line, then ECHO calls GLE with the output line

number (one plus the current line number) and calls WCHL

td write the character in the line. If the LCWS1 (last
character was a SHIFT1) flag is on, the character is echoed
as SHIFT1 followed by the character plus 40B. If the charac-—
ter is a control character (which could only be a SHIFT1)

then the character is not echoed.

ECHO then looks to see if the link bit is on, and if it is

it will then write the characﬁer into the linked line. The
saved variables are now restored and GLE is called to |
reinitialize those variables associated with the line. Inter-
mixed in this code are calls to BLAKE any place a buffer

might be freed or used.

p/e=n.r page
CC IHTWD/W- 38 12

HIGH SPEED LINES

If there is a request from a high speéd line then B2400 is
called. This subroutine will gét an input character and
call INLOGIC to put it in the appropriate line, or call
OUTLOGIC to get an output character from a CPU line to out-

put to the 2400 Baud line.

GMTL is a subroutine that determines local line number and

CPU line number and sets up the necessary global variables.

INLOGIC‘is a subroutine that writes an input character on
an input line. It is on the same logical level as say

WST or RSTB in that it makes all of the decisions but does
none of the work. It will echo characters and wakeup the
process for the line if necessary. Similarly OUTLOGIC gets
an output cha:acter from the current line. Neither of

these subroutines calls any subroutine not yet described.

OUTL2 and INL2 are similar to OUTLOGIC and INLOGIC except
they are used when a non-control character (possibly in
the range 0 to 37B) is desired. OUTLOGIC might return a
SHIFT1 but OUTL2 will call OUTLOGIC again to determine the
absolute value of the shifted character. A is set if the
character that OUTL2 returns is a control character (which
will not be SHIFT1l). INL2, if it has a character from ¢
to 37 as an argument, will call INLOGIC twice, the first
time with a SHIFT1 and the second time with a 40B plus the

character as the argument.

C ‘ , p/e~-n.r page
BC IHTWD/W- 38 13

CONTROL CHARACTERS
HOW TO FIT 32 CHIO CONTROL CHARACTERS AND 256 CHARACTERS IN

8 BITS.

The first 32 characters are reserved for CHIO control
characters. That means that the CPU is not allowed to

send a character in the range of g to 37B to the CHIO
without adding 40B to it and preceding it by a SHIFT1

(unless it means it as a control character). This un-
fortunately makes the CHIO's life harder than it might other-

wise be, and some subtle effects occur.

First it should be noted that RSTB and RCND must assume that
if they ask for N characters and the Nth character is a
SHIFTL that N + 1 characters will be delivered. This is
necessary because otherwise the CHIO would not know whether
to echo the SHIFT1 until the next character was read. It

is also rather unesthetic to deliver half a character to

the CPU.

The CHIO has a few routines that try to make life simpler
for other routines by hiding the control character problem
as much as possible. OUTL2 and INL2 are two examples.
Unfortunately there are some subroutines that have to worry
about the problem. The most important of these are WKCQ,
ECHO, INLOGIC, OUTLOGIC, INL2, OUTL2, RSTB and RCND. The
most basic subroutines like RCH and WCH are not aware of

anything but 8 bit characters.

p/e-n.r page
CC THTWD/W- 38 14

BIT SCANNING

Each 1/7 of a character time the subroutine BSCN is called.
BSCN really has three incarnations and should be considered
a completely separate subroutine for each device type:

Model 35, Model 37 and IBM 2741, Considering Model 35s,

for example, when BSCN is called it has three separate tasks
to consider: it must look for an incoming first bit on

idle Model 35 teletypes, it must input the next bit on a
subgset of input teletypés, and it must output the next
‘bit on a subset of output teletypes for Model 355; The
local device bit table is divided into three sections, one
for each device type. The section for Model 35s is selected.
An entry, BSNO, which contains the bit slice number MOD 7

is incremented MOD 7 each time BSCN is called for Model 35s
(every 1/7 of a Model 35 bit time, about 1/7*11@) of a
second). BSNO can therefore be used to detefmine which

1/7 of a bit slice is being processed.

In the LOCAL DEVICE BIT TABLE there is an entry, NCIP,

which has a bit on for each teletype that is a Model 35,

and that has no input in process. This word is masked
(obtained by a PIN) with tﬁe word of bits for the teletypes
with bits on. If any previously idle, (for input) teletype
has had a bit turned on then the resulting word is non-zero.
In this case FLB is called. It will find out what the tele-
type number involved is and set up some interesting variables.

IFB is then called to modify the Local Device Bit Table so

p/e=n.r page
CC IHTWD,/W-38 15

that 3/7 of a bit time later DID will find the bit for that
teletype on. It does this by adding (mod 7) 3 to BSNO
and setting the bit for the selected teletype in the

BSNOth input word.

LDVTE has 7 word pairs for each device. The first word

in each pair is for the input teletype lines, and the second
is for the output teletype lines. The pair-word is selected
by the value of BSNO. The Nth bit in pair-word for input
means the teletype input bit should be sampled. Similarly
the Nth bit for output means the next bit for the Nth '
teletype should be output. DID is called for the input

case, and DOD for the output case. DID keeps collecting
bits in the Local Device Table until it has a whole
character. Then it calls INL2 to put it in the input line.
DOD behaves analogously outputing bits until there are no
more to be output and then calling OUTL2 to get the next

character.

' p/c=n.r page
CC , IHTWD/W-38 16

An important observation is that any request that involves

a character in the range of ¢ to 37B must eventually call
RCH twice, once for the SHIFT1 and once with the character
+ 40B to ensure that WKCQ will not be left hanging. This is
meant as a warning; the two placés where bugs of the 'you
touch something here and something else pops up over there"

variety are likely to occur with SHIFT1 and with ECHO.

p/e=n.r page
CC » IHTWD/W- 38 17

CLOCK DRIVEN FUNCTIONS

The top level routine (GNR; Get Next Request) recognizes
three types of requests; CPU requests, 2400 baud line

requests, and clock driven requests.

There is a list of scratchpad registers from NCI to LCI.

Each of these registers has a subroutine number in the

upper 5 bits and a time in the lower 19 bits. These registers
are kept sorted by the time (in the lower 19 bits) and

when the current time is equal to or greater thén the time

in NCI then the subroutine specified by the high order 5

bits of NCI is called. This subroutine has the responsibility
of resétting NCI (by incrementing it) to the next time that

it (the subroutine) should be called so that GNRFIN can

sort the registers on return.

Two subroutines are of particular interest: SUBNUL which
does nothing but make sure that it will not be called again
soon, (this can be used to turn off a device type quite
easily) and CKFXP which is called whenever all of the sub-
routines have the high order time bit set. This subroutine
turns off éll of these high order time bits so that the

strict ordering of the scratchpad registers will always hold.

The only other subroutines that are called are RTUPDATE which
updates the Reat Time (RTLOW, RTHIGH) in core each milli-
second and PRUPDATE which resets a PLINE for GPR each 1/2

seconds.

p/e=n.r page
CC _ IHTWD/W- 38 18

THE CHIO'S INTERFACE WITH THE REST OF THE WORLD

The CHIO receives a STROBEl from the CPU when it gives the
CHIO request, ahd a STROBEZ2 from the UTP when the UTP

wants the CHIO to prepare to crash. If the UTP (or someone
else) sends a Z.M. signal to the CHIO, it goes into system
restart mode (unless BREAKPOINT is on). The CHIO will
wait‘until it receives a STROBEl from the UTP to load

its scratchpad and go to the GNR. Note that the meaning
of a STROBEl is context dependent because the CHIO cannot

tell where it came from.

When the CHIO wakes up a process (as specified in VSI/W-14)
or when the CHIO updates the real time clock in core (once
per millisecond) it sends a STROBEl to the UTP. The core
locations read or written by the CHIO are 40B to 77B and the

Wakeup Table of the UTP.

p/c-n.r page
CC IHTWD/W- 38 19

THE MECHANICS OF MODIFYING AND COMPILING THE CHIO

The CHIO consists of two files; DEFS, and CSYS. DEFS, which
contains the CHIO's definitions, may be used by three

different programs.

First, if it is used to make a DUMP file of MICRO, it will
contain all of the definitions needed to compile CSYS.

This includes field definitions, constants, scratchpad
register assignments, and holding register assignments, and

branch and special condition definitions.

Second, if used as a QSPL include file (following QINIT as in
QPGM) it will define all the above as QSPL constants except
for the branch and special conditions. The scratchpad
registers are given their number as their value, thus MTAA

is 1, for example. The fields defined may be used in the
resulting QSPL program. Two macros of interest are defined:
SPLF and SPLFC. The first will, if given a field name as

an argument, have as value a SPL field descriptor that

points to the CPU line table and can be used in a call to
GETFIELD or PUTFIELD. The second produces a field descriptor

that points to the character pointer table.

Thirdly, DEFS may be used as an input file to the SNOBOL
program TABLE to produce the appendix to the CHIO/CPU

Interface document (FREE DOCUMENTATION.)

CCSYS is a CCP-type SNOBOL program that will compile the

p/e=n.r page
CC . IHTWD/W-38 20

communications system. If you want to know what is
happening just after
START patch inj
| NORMALSW = 'ON'
SWITCH = 'ON'
and you will be able to overhear the conversation that it

has with the CPU.

C p/e=n.r page
BC IHTWD/W-38 21

A BRIEF DESCRIPTION OF EACH OF THE TABLES IN THE SYSTEM

The CPU Line Table is a table consisting of a four word entry
for each input/output line pair. It contains all of the
information pertinent to both the input and the output

line.

The Character Pointer Table consists of a three word entry
for each line, the input line followed by the output line.
This table contains character and buffer counts and the

character pointers.

The Device Table contains the escape character for each
device and the character type for each of the 256 characters.
The character TYPE (see document AKOCS/M—-15) is a number
from @ to 3 that indicétes whether the character is an
alphanumeric, a punctuator, aﬁ echoable control character

like carriage return, or a non-echoable character.

The CPU Interface Table is the name given to the block of

core that the CPU and the CHIO use to communicate with,

The Local Device Buffer Table is used when servicing requests
from the devices rather than requests from the CPU. It
contains the CPU line number so that the line can be "opened”.
The teletype bit scanning subroutines also use it to keep

characters that are being bit scanned.

EC C : P/c-'I'.;ITWD /W-38

page
22

The Local Device Bit Table is explained in the section on

bit scanning.

	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

