 title

prefix/class-number.revision|
C C MICROPROCESSOR DEBUGGER FOR THE AMC DBAMC/W-43
authors

approval date [revision date
— 1/6/70

R. R. Van Tuyl classitication

R0 L) . Working Paper
approved W %@ distribution &, ;0 pages

Company Private 6

ABSTRACT and CONTENTS

A debugger has been prepared to debug the APU code of

the AMC. This debugger can be converted in a straight-

forward manner to debug the APU running on the hardware.

The user interface is described briefly.




A p/c~n.r page
CC DBAMC/W-43 1

Microprocessor Debugger for the AMC

A debugger has been written which converts the microprocessor
simulator into a debugger for the APU'code. The primary
changes in the microprocessor simulator involve using the NRH
for the simulated memory and patching in two instructions in
the microcode to effect communicétion between the simulator

and debugger.

The philqsophy of the design is that the debugger should
correspond to debugging with the automatic breakpoint hard-
ware. That is when a zero appears in the APU code the micro-
processor is forced to the instruction in @ by simulating an
automatic breakpoint at the half instruction. The state is
saved, then control is given to the debugger. Thus, only
memory contains pertinent information and the debugger need

only allow access to it.

The debugger allows the user many operations to aid in looking
at memory and retaining control over the program. The inter-
face is through one dispatcher which uses Larry Barnes'
"forgiving command recognizer". The syntax is SPL like, in

that the names and formats are similar. The command line is:

command = function [''] argument's CRLF
The functions have both a long and short symbol. The short
symbol is a nonalphanumeric character and does not require a
space following it. A long symbol is recognized when at
least enough characters are input to distinguish between

similar names. Arguments are generally input as integers:
integer = '+'/'=' digit {aigit} [(B|D) [digit]]

Integers without the letter suffix are input as octal integers.




p/e=-n.r page
CC DBAMC,/W-43 2

Debugger Functions

Examine /

Examine takes @, 1, 2 arguments., If no argument, then the
céll at the address given by the Last Value Typed (in the

local address space if the Last Register Opened is in the
local address space) is typed. The Last Register Opened

is unaffected.

If one argument, then the cell addressed is typed. This cell

becomes the Last Register Opened.

If two arguments, then the cells between the first and second
argument are typed. The Last Register Opened is the last cell

typed.

Next >
Next takes oné optional argument. If no argument, the cell
following the Last Register Opened is typed. It becomes the

Last Register Opened.

If one argument, then that number of cells following the Last
Register Opened is typed. The last cell typed becomes the

Last Register Opened.

Previous <

Previous takes one optional argument, It is similar to Next.




A p/e=n.r page
CC DBAMC /W-43 3

Follow 0

Follow takes one optional argument. If no argument, then
the cell at the address given by the Last Value Typed

(ih the local address space if the Last Register Opened is
in the local address space) is typed. This register becomes

the Last Register Opened.

If oﬁe argument, then the cell at the address given by the
Last Value Typed is typed. Then the next or previous N

cells are typed as given by the argument.

GOTO $
GOTO takes one argument, the address in the microprocessor
which control is given to after the state is loaded. The

main loop is at 1@@P@B.

Continue s

Continue takes no arguments. It takes one of two actions
depending on how the debugger was entered. If the debugger
was entered from a breakpoint, then the state is loaded and
a control sent to ICONT in the APU. If the debugger was
entered to get a flag set, then a return to the routine

calling the debugger is done.




C p/e=n.r page
BC DBAMC/W-43 4

Break
Takes @, 1, or 2 arguments. If no argument given, a break-

point is set on the Last Register Opened.
If one argument, a breakpoint is set on the cell addressed.

If two arguments, breakpoints are set on all cells between
the two addresses. If the number of breakpoints exceed the
number remaining, the function will fail. However, all the

breakpoints set before failure will remain set.

KILL [
Takes @, 1, or 2 arguments. Similar to Break, except break-
points are cleared from cells specified. Prints the number

of breakpoints cleared.

DISPLAY 1
Takes one argﬁment, some unique part of the word FLAGS, or
BREAKS.

BREAKS

If the argument is breaks, then all the breakpoints

are typed.

FLAGS
Takes ¢ or 1 argument, If no argument, then all the

flags are typed.




ECC p/c-n.;BAMC/W—éB

page

If one argument, then the flag requested is typed.
Currently flags are:

REQILT

REQ2LT

ATTNFG

SMASK

PATCH-SPACE

LAST-REG-OPENED

SET
Takes 2 arguments, the name of the flag, followed by the

value.

LOAD

points and flags.

DUMP

breakpoints, and flags are placed in the file.
Find )]
Takes 1, 2, 3 or 4 arguments.

If one argument present, it attempts to print all cells
which satisfy:
cell AND SMASK = arg AND SMASK

between the current limits.

simulated memory is loaded from the file as well as break-

Takes 1 argument, the name of a random structure file. The

Takes 1 argument, the name of a file. The simulated memory,




p/e=n.r page
CC DBAMC/W-43 6

If first argument is NOT (or subsequence) the search is
modified to satisfy:

cell AND SMASK # arg AND SMASK

If there are one or two additional arguments after the value,

these are used to determine the limits of the search.

DDT, ODDT

Takes no argument, merely fires up a fork with either DDT or
ODDT and transfers control to the fork. &F in DDT or ODDT
will return control to the dispatcher. This aids in locating

symbolic information.

CDDT
Takes no argument, does a continue like the 940 executive.

Control goes to DDT or ODDT whichever was entered last.




	001
	01
	02
	03
	04
	05
	06

