'b title prefix/class-number.revision|

CC CPU TEST PROGRAMS TSTX/W- 45

chec&o avthors approval date [revision date

< c::ked \ C et il""‘""" ’{\ < ssifqié/aZi?n

approved- Charles Simonyl dvyf'fllil;‘l’,li%nPaner pages
)17) Company Private 8

ABSTRACT and CONTENTS

A comprehensive set of CPU Test Programs is described. Instructions

to run the programs on the Model 1 are given.

1. Purpose.

The purpose of the CPU Test Programs is to verify that the CPU
executes all instructions according to specifications (MICPU/M-4.4).
This implies that the correcf response of all functional hardware is
verified. However, if an error occurs, it will be identified as an
incorrectly working CPU instruction rather than a faulty hardware
component. To find the latter, conventional debugging techniques will
have to be used.

2. Method.

A microprocessor (other than the CPU being tested) is used to

run a CIP program called SYSDDT which contains a CPU simulator. The

test programs run on both the simulator and the CPU in compare mode;

that is, the results of the simulation and CPU are compared for every
instruction. This is realized as follows: both the simulator and
the CPU reference the central memory, but they have two different
sets of central registers. The simulator may change its own set of
central registers, but it never stores into the central memory, Rather,
it assembles a list of changes which should be made. When the simu-
lation of an instruction is complete, the CPU is requested to execute
the same instruction using the CPU's single step feature. The CPU,
of course, may change central memory as well as the central registers.
After the instruction has been executed, the CPU stores the central
registers in the memory and returns the control to SYSDDT. The two
sets of central registers are then compared, and the list of chahges
is verified against the actual contents of memory. Any disagreement

will cause an error message to be given. A shortcoming of this method

‘ pP/e-n.r page
CC TSTX/W-45 2

is that if a malfunctioning CPU changed a core location in addition to
all changes it was supposed to make, the problem would go undetected.
SYSDDT also implements a powerful control language which enables the
operator to print out and change core locations and central registers
in different formats and to set breakpoints. These features are de-
scribed elsewhere.

3. The Set of Test Programs.

Because of the complexity of the CPU, the test programs are

arranged in 4 packages:
TST1 Test of Addressing Modes
* TST2 Test of Instructions and Ring Dependent Traps
TST3 Test of BLL
TST4 Test of Fixed Traps

All 4 test packages are loaded the same way as described on
page 6. TST4,as an exception, does not use compare mode because
it partly depends on the timer.

3.1 TSTI1.

The program is organized as a sequence of macro calls. A macro
call Z(P,...P,) expands into a piece of code which first sets up the
necessary environment and then executes an EAX or LDA instruction which
will use adressing mode Z with the relevant parameters P,...Pn. Each
macro is called several times so that each parameter can assume some
special (all ones, all zeros) and random values.

For example MI(1) is used to test the I type addressing mode in
instruction, with the W field equal to 1. The macro expands into a

few instructions which first store into G'[1] a reasonable IAW (to

—EEE m-MTSTX/W—45 ”3'.

avoid traps), then execute an EAX I:1. The S1(1, 2, 73958) is a parti-
cular call of the macro to test string-type IAW-s. The macro expands
into code to store a pattern into location 73958 and then execute

LDA $R'[2] addressing an IAW, TYPE = 2, CSIZ = 1, CPOS = 1, WA = 73958.
Note that both tests contain some implicit parameters ('reasonable IAW',
'a pattern'). These parameters are held constant, since varying them
would only duplicate tests made elsewhere.

3.2 TS8T2

This test program is divided into 7 phases:

3.2.1 Test of ETR, IOR, EOR, ADD, SUB, ADC, SUC, MUL, ICP, CPZ, CMZ,
LDA, LDB, LDX, LNX, ADX, EAX, LAX, TSB, STA, STB, STX, ADM, XMA.

A nested loop executes each of the above instructions with about
70 different pairs of values for the A register and the operand. These
operands are taken from a table which includes worst case (0, 4B7,

-1 etc) and random numbers.

Some of the instructions do not use both the A register and the
operand, but are included into this phase for brevity.

3.2.2 Test of ASHA, ASHD, LSHA, LSHD, CYA, CYD, CAB, XAB, CBA, CBX,
XXB, CXB, CAX, XXA, CXA, CNX, ZOA, ZAB, ZOB, LLT, COB.

Each of the listed instructions is executed with about 70 different
pairs of values in the A and B registers, taken from the operand table.
Actually the list of instructions includes 10 different left and right
shifts of each kind.

3.2.3 Test of SID, LDD, ISD, DSD, CLS, ASP.
These instructions will operate on 12 pairs of string descriptors.

The pairs are selected to cause the different responses of ISD and DSD,

BCC P/‘-,MTSTX/‘W—45 T

and have varying CSIZE fields to check the special multiply and divide
actions in CLS and ASP.
3.2.4 Test of DIV.

The divide instruction is executed with about 100 triplets of mum-
bers as A, B and the operand. The triplets are taken from the operand
table.

3.2.5 Test of BRU, BEQ, BNE, BLT, BLE, BGE, BGT, BSX, BRX.

All six conditional branches are executed with the three different
CC settings. Token BRU, BSX, and BRX branches are also executed.

3.2.6 Test of MVB, MVC

A block of storage is moved towards one lower and higher addresses.
A token MVC is executed.

3.2.7 Test of ABE, IATRP, RO, and STKOV Traps.

After the necessary transfer vectors are set up, each of the above
traps is caused by the appropriate 'erroneous' code.

After executing phase 7, TST2 returns to the first phase.

3.3 TST3

The BLL test program executes about 20 BLLN, BLL, MCAL and POP
instructions, with different parameters, activating all features of
BLL. In particular:

BLLN is executed with STK and CPR 0 and 1

Labels are passed and jumped to in fixed or
stacked environments.

Actual arguments are copied from central registers
All structures are copied by address

ROD address is copied

page

l ;CC M-MTSTX/W—ALS

G or L relative formal parameters are used
All types are copied by value
Label, Array and String are copied by value
POPs 0 and 1 are executed
Fortran skip - noskip feature tested

* MCALLN 1 executed in user and monitor rings
MCALL2 passes a label from user ring
Monitor returns to label provided by user.
MCALL3 passes 4 different arrays and a string.

3.4 TST4

register:
1. Incorrect trap parameter
2. Wrong trap number
3. Unexpected trap, or a trap did not occur when
expected.

The following trap situations are tested:

Page read only errors, with read only bit set in
the map or PMI.

Page not in map trap.

U bits in CHT or missing CHT entry.

Timer overflow

The test program of fixed traps does not depend on an external

If the program detects an error, it stops with an error code in the A

Memory access errors in the user and utility rings.

Page not in core trap, caused by the SF bit in PMT,

simulator, but it assumes that addressing and simple instructions work.

| ;CC » m-MTSTX/‘W-—ALS

page

About 15 cases of Trapped Instructions
XMON and XUTIL traps ‘caused by a BLL
XMON trap caused by a LOADS
5 types of BLL traps
4, Loading and Running the Test Programs.
A test program can be loaded from magnetic tape, using IPL,
together with SYSDDT, the control program.

Note that the 4 test programs use the same area in central

processor's private memory.

After loading, the following sequence of commands can start

are in square brackets).

#GOTO _15000. [Transfer control IPL - SYSDDT]
DDT [RESET the CPU]

3R [Load SYSDDT's map]

0%X [Set compare mode. 1%X for TST4]
4100010;U0 [Send a STROBE to the CPU]

5P [Proceed]

the indicator lights. When the CPU is in step mode, the central

memory (0-27777B), so only the program loaded last will be able to

run, SYSDDT does not need to be reloaded since it resides in a micro-

The state of the running program may be observed using the switch

reads the contents of the switch register, interprets it as a virtual

address, and displays the contents of the memory cell addressed on

execution: (Characters typed by the operator are underlined. Comments

register and indicator lights on the control panel. SYSDDT continuously

registers are stored after every instruction at the following addresses:

BCC p/‘-n.'TSTX/W—45 P;’.

602764B P
602765B A
602766B B
602767B C
602770B D
602771B E
602772B X
602773B L
6027748 G
602775B SR
6027768 CIC
6027778 IT

A standard practice is to select 602764B and to observe the
advancing P counter.

The following messages indicate the failure of a system com-
ponent:

A: SIM32 CPUO

SIM#CPU AT 611073: ADX R:10 A=32 B=1046 is given for example
when the simulator and the CPU disagree about the content of the A
register after the execution of the instruction at 611072. Type
either:

3L-1/ [to find out what the last instruction was]
5P [to proceed]

CPU HUNG UP AT 611031: SLOK A=10

A serious failure prevented the CPU to execute the instruction at

611031. To start at location M, reset the CPU and type:

ECC o M-MTSTX/W—45 ng.

Z 6/ 0 100 ¢ -[set abs. location 6]

M;L¢ [set ;L-to M]

4100010;U [$end a STROBE. Observe that the

$ P counter changes, otherwise the CPU
hung up again]

3P [Proceed]

If TST4 stops (that is the P counter does not change), type the

following:
[Hit RUBOUT]
;L+1;L [Bypass the stop instruction]
A= 1 [error number]

602752/ 610742 [location where the erroneous trap
occured]
5P [proceed]
To load the next test program, type:
[Hit RUBOUT]
0100310;U [transfer control SYSDDT - IPL]
#INIT. [etc.]

	001
	01
	02
	03
	04
	05
	06
	07
	08

