
4.

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

EISA System Configuration

EISA provides a mechanism for automatic configuration of expansion boards and
the system board. The EISA configuration mechanism consists of the following
components:

• A software utility to configure the system board and expansion boards

• A software interface to the configuration utility that Configuration File
Extensions can use to control and customize the configuration process

• Configuration files that accompany the software utility

• Configuration files that accompany the system board and expansion boards

• Nonvolatile memory for storing configuration information

• A mechanism to save and restore a backup copy of the system configuration
information

• BIOS routines to read and write contents of nonvolatile memory

• Automatic detection and initialization of expansion boards by the system ROM
power-up routine

• 1024-byte 1/0 address space for each EISA expansion board (slot-specific)

Expansion board manufacturers include a configuration file (also referred to as a
CFG file) with each EISA expansion board, and optionally, with switch-programmable ISA
products. The configuration utility, which is provided by the system manufacturer, uses the
Information contained in the configuration files to determine a conflict-free configuration
of the system resources. The configuration utility stores the configuration and initialization
information into nonvolatile memory and saves a backup copy on diskette. The system
ROM power-up routines use the initialization information to initialize the system during
power-up, and device drivers use the configuration information to configure the expansion
boards during operation.

294 Revision 3.10

4.1

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Devices Supported by Automatic Configuration

EISA systems provide automatic configuration for expansion boards plu~ed into
the expansion bus, peripheral devices built into the system board, and software dnvers that
use system resources, such as an expanded memory (LIM EMS) emulator. The following
information provides an overview of the mechanism used for automatic configuration of
the devices.

4.1.1 Expansion Boards

Expansion boards install into EISA and ISA bus connectors. Each bus connector is
referred to as a slot. The bus connectors are numbered sequentially from 1 to "n" (with 15
as a maximum "n"). For example, an EISA system with 7 bus connectors has slots
numbered from slot 1 to slot 7.

4.1.1.1 EISA Expansion Boards

Each EISA slot has I/O address decoding hardware that provides the installed
expansion board with a unique, 1024 byte, slot-specific I/O address space. EISA expansion
boards use the slot-specific I/O address space for I/O registers (l.e., configuratIOn and
operational registers). The EISA system ROM uses configuration information from
nonvolatile memory to initialize the configuration registers during power-up.

Refer to the section entitled Expansion Board Address Decodin~ and the one
entitled System Board Slot-Specific I/O, of this specification for detailed mformation on
the slot-specific I/O ranges.

An EISA expansion board must contain a readable product ID and must support the
expansion board control bits ENABLE and IOCHKERR. Refer to the section entitled
Expansion Board Control Bits and the one entitled EISA Product Identifier of this
specification for detailed information.

4.1.1.2 ISA Expansion Boards

The EISA configuration utility also aids in configuration of ISA expansion boards
that provide a configuration file. The utility uses the information from the configuration
file to determine the correct switch and jumper settings and I/O port initializations for ISA
expansion boards. The configuration utility displays the proper switch and jumper settings
to the user.

ISA initialization and operational registers must occupy the ISA compatible
expansion board I/O space (100h-3FFh). ISA systems do not support the EISA slot­
specific I/O ranges. The EISA system ROM power-up routines automatically initialize the
ISA registers that are specified in the configuration file.

4.1.2 System Board

Peripherals integrated onto the system board require automatic configuration
support similar to expansion board peripherals. System board peripherals can be designed
to use EISA slot-specific I/O ranges and the ISA system board I/O range.

Revision 3.10 295

4.1.2.1

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

System Board Peripherals That Use Slot-Specific I/O Space

A system board peripheral that uses slot-specific I/O is functionally similar to an
expansion bus peripheral, but it is integrated onto the system board rather than installed in
a bus connector. EISA automatic configuration treats the system board peripheral as an
expansion board peripheral, except that it is referenced as an "embedded device."

4.1.2.2 System Board Peripherals That Use System Board I/O Space

System board peripherals that use ISA expansion board I/O space (lOOh-3FFh) can
be treated as "virtual devices." The configuration utility stores the configuration and
initialization information for "virtual devices" in nonvolatile memory during configuration.
The system ROM automatically initializes the virtual device during power-up.

4.1.3 Software Drivers That Require System Resources

Software drivers that require system resources (Le., memory allocation) are also
treated as "virtual devices." Twoexamples include, a software driver that emulates
expanded memory (LIM EMS) requires memory allocation for the page frame, or a
software driver that requires a buffer which memory allocation to store data during a data
transfer.

296 Revision 3.10

4.2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Configuration Utility

The EISA system manufacturer is responsible for supplying a configuration utility.
The configuration utility uses configuration files to resolve conflicts in assignment of system
resources such as interrupt levels and DMA channels. The configuration utility also
extracts initialization information that is used for system board and expansion board
initialization. The information is stored in nonvolatile memory and a backup is saved on
diskette.

The type of nonvolatile memory and method of writing the data is not included in
the EISA standard and is determined by the system manufacturer. The system
manufacturer also provides BIOS routines to initialize the expansion boards with the
information stored in nonvolatile memory. The BIOS routines also read configuration
information from nonvolatile memory for device drivers and other system software.

All references to the configuration utility included in this specification refer to the
configuration utility available from Micro Computer Systems, Inc. of Irving, Texas.

The configuration utility is used to configure an EISA computer. The configuration
process provides the following functions:

• Read and parse configuration files

• Automatically allocate resources to create a conflict-free system

• Saves, configuration to diskette, which allows a common configuration to be
ported to other similarly-configured machines

• Write configuration information into nonvolatile memory

System board and expansion board products can include CFG File Extensions that
extend the capabilities of the configuration utility and customize the configuration process.
For example, a CFG File Extension can be used to detect options installed on an expansion
board, to accept and process user input (other than menu selections), or to write
configuration information to non-EISA nonvolatile memory.

Revision 3.10 297

4.3

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Configuration Files

The confi~ration files contain the expansion board ID, system resource
requirements and Initialization information for system board or expansion board devices.

The initialization information provides data for power-up initialization. The
configuration utility stores the appropriate I/O port initialization information in
nonvolatile memory. The system ROM reads the information from nonvolatile memory
during power-up and initializes the I/O ports.

System resource requirements include memory, I/O ports, interrupts, and DMA
channels. The confi~ration utility verifies that system resource selections do not conflict
with resource allocations already selected for other devices. The configuration utility then
stores the appropriate system resource information in nonvolatile memory. The system
ROM reads the Information from nonvolatile memory during power-up and initializes the
devices and expansion boards.

A device driver can use a BIOS routine Call to determine the proper expansion
board initialization and to determine the system resource configuration.

A software driver can use the BIOS routines to identify the functions of expansion
devices and the resources allocated to the devices. The driver can determine the contents
of each slot, its functions, the initialization information, and the system resources allocated
for each function.

4.3.1 Configuration File Extensions

System board and expansion board products can include CFG File Extensions (also
called overlay files,) that customize the configuration process. 2 .

CFG File Extensions can be used to determine the installed hardware by reading
from the hardware registers or other means. For example, the overlay may detect the
presence of floatin~ point coprocessors, disk drives (and determine drive type), or total
amount of memory Installed on a memory expansion board.

The overlay can control the configuration of a system board or expansion board. It
can access the hardware, provide the user interface and process the user-specified
configuration selections. Or the overlay can provide a limited set of configuration services
and rely on the configuration utility to perform its normal functions.

Interaction between the configuration utility and the CFG File Extension is specific
to the utility. Therefore, the CFG file extension must be written such that it uses the
calling conventions and interface handling routines recognized by the utility.

2 A specification for CFG File Extensions is available from Micro Computer Systems. Inc. of Irving. TX. It describes

overlays specific to the utility thaI allow system manufacturers 10 customize the configuration process.

298 Revision 3.10

.---

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.3.2 Expansion Board Identifier (Product 10)

The expansion board identifier (product ID) is a unique product identification code
that can be read by the system ROM or other software to identify or locate an expansion
board. Information that can be combined in an expansion board 10 includes the
manufacturer's ID, product number and revision level. The exact method for selecting an
expansion board 10 is described in the section entitled, Product Identifier (10).

EISA expansion boards must contain a readable product ID. The power-up routines
use the 10 to determine the slot in which the expansion board is installed. The expansion
board is then programmed by the system ROM with the configuration parameters that are
stored in nonvolatile memory.

ISA expansion boards should have a product 10 J?rovided in the configuration file.
The product 10 mayor may not be readable. An expansIOn board 10 is recommended for
ISA expansion boards since it can be stored in nonvolatile memory with other
manufacturer-specified information, such as the initialization information and resource
requirements. The data stored in nonvolatile memory can then be accessed by software
drivers to determine the expansion board configuration.

4.3.3 I/O Port Initialization Information

The configuration file contains I/O port initialization information necessary to
configure an expansion board. The I/O port initialization information specifies the I/O
port addresses and values for each alternative configuration.

4.3.4 System Resource Requests

Devices that require system resources include the resource request in the
configuration file. The CFG file can contain requests for the following system resources:

•

•

•

•

Memory-~the amount of memory supported, starting address, whether it is
writable or cacheable, and initialization parameters required

I/O ports-port addresses and initialization parameters required

Interrupts--interrupts supported, whether the interrupt can be shared, whether
it is edge- or level-sensitive, and any initialization parameters required

DMA channels--the choice of DMA channels, whether the channel can be
shared, the channel's data size, the channel's cycle timing, and any initialization
parameters required

Revision 3.10 299

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.4 Configuration File Filenames

The filename of an EISA or ISA configuration file consists of an exclamation point
followed by the product ID and a filename extension, CFG. The exclamation point must
be included as the initial character of all CFG filenames. Valid filenames have the
following format:

!ACEl234.CFG !XYZ5678.CFG !ABCOOOO.CFG

The filename convention is the same for a system board, expansion board,
embedded device or virtual device. For example, an expansion board with a product ID of
ACEOlOl has a configuration file named !ACEOlO1.CFG.

The expansion board manufacturer should ensure that the configuration file
filename is updated to reflect revisions to the expansion device. For example, a product
with an ID of ACElOl may have a configuration file named !ACEOlO1.CFG. A
subsequent revision of the product would have an ID of ACE102. Therefore, the
configuration file should be named !ACEOl02.CFG. This ensures that the appropriate
CFG file is loaded for the device.

The configuration utility includes a mechanism to manage duplicate IDs. For
example, the configuration files for two expansion boards with ID ACE1234 installed in the
same system could be renamed when copied to the configuration diskette: the first
configuration file detected is copied to !ACE1234.CFG the second configuration file
detected is copied and renamed from !ACE1234.CFG to lACE1234.CFG. The next one is
renamed to 2ACE1234.CFG.

300 Revision 3.10

.--

4.5

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The Configuration Procedure

EISA system configuration requires the following hardware and software:

• An EISA computer system
• The EISA system board configuration file
• The configuration utility
• Optionally, EISA expansion boards and configuration files
• Optionally, ISA expansion boards and configuration files
• EISA or ISA ConfIguration File Extensions (where needed)

The following procedure describes an example configuration process for an EISA
system with EISA and ISA expansion boards. This example configuration requires a
bootable EISA computer with a display, keyboard and floppy diskette attached.

Start the procedure with the computer power switch "OFF."

Install EISA boards in the computer to allow "automatic detection" of the devices.

Insert the configuration utility diskette.

Turn the computer power switch "ON," booting from the configuration utility diskette.

Use the configuration utility commands to copy each configuration file and CFG File
Extension to the configuration utility diskette. The configuration utility automatically
renames the CFG files from expansIon boards with duplicate IDs.

Let the configuration utility automatically select a conflict-free configuration. The
user may override the automatic selections.

Set the switches on ISA expansion boards to the positions indicated by the
configuration utility.

Turn the computer power switch "OFF" and install the ISA expansion boards in the
expansion slots as indicated by the configuration utility.

Remove the configuration utility diskette.

Turn the computer power switch "ON" to the configured system, booting from the
normal boot device (for example, the fixed disk).

Incorporate the software options into the operating system startup files as indicated
by the configuration utility. The startup files can execute programs that require
command line parameters (for example, /s, /g). The configuration utility indicates
the proper parameters. For example, the configuration utility lists entries for the
CONFIG.SYS and AUTOEXEC.BAT files of an MS-DOS operating system.

Reboot the system.

4.5.1 Configuration File Syntax

The following sections specify the syntax conventions used in this document and for
configuration files.

Revision 3.10 301

EXTENDED INDUSTRY STA.~DARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.5.2 Symbol Conventions

{}

\

\t

\n

\"

\\

space

302

The configuration file syntax uses the following special symbols.

Empty braces indicate a null value.

The backslash within a text field identifies an embedded character. Embedded
characters include the \ t for up to an 8-space tab (or to the next tab stop), \n
for a line feed, \" for quotation marks, and \ \ for a backslash.

Embeds a tab within text.
Tab stops are: 1, 9, 17, 25, 33, ...

Replaces \n with a carriage return, line feed. The configuration utility
automatically wraps text at the right margin to the next line (word wrap) for
free-form text fields.

Embeds a quotation mark character within text that has quotation marks
delimiting the entire field.

Embeds a \ (backslash) character within text.

Information enclosed in quotation marks is free-form ASCII text. The text can
contain embedded characters, including tabs and line feeds. Quotation marks
can be used within a text field by entering a \".

The dash (hyphen) separates the minimum and maximum values in a range.

The vertical bar is equivalent to an OR statement. Items separated by a vertical
bar (I) indicate that only one of the items is allowed.

A blank space is e9uivalent to an AND statement. Information separated by a
space indicates all Items are included. The space serves to group items of an
inclusive list. For example, the statement (x and y) or (y and z) is denoted:
x y I y z.

The semicolon precedes comments in the configuration file. The configuration
utility ignores text that follows the semicolon (up to the end of the line).

Revision 3.10

.-..

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.5.3 Numerical Value Conventions

Numerical values within a configuration file must adhere to the following
conventions:

•

•

•

•

•

•

•

•

4.5.4

All numerical values are assumed to be decimal unless otherwise indicated.
Decimal values can include a trailing d or D.

Binary port values must be written with the MSBit on the left and may include
a trailing b or B. A "I" or "0" in a bit position indicates the bit value.

Decimal fractions are not allowed.

Address values may be expressed as megabyte (indicated by an M suffix),
kilobyte (indicated by a K suffix), or byte (no suffix). Values for megabytes or
kilobytes must be given in decimal units but cannot include a trailing d or D.
For example, two kilobytes can be represented either by 2K or 2048d, but not by
2Kd.

Hexadecimal values must include a trailing h or H. In the case of hexadecimal
values that begin with an alpha character, such as C68h, the value must also
have a leading 0 (zero). And when noting slot-specific EISA port addresses, the
value must be preceded by a OZ (zero Z). For example, slot-specific port C80h
would be represented as OZC80h.

An x in a binary value indicates the bit is not used or a don't care.

An r in a binary value indicates the hardware register must be read and the
actual bit value masked into the "r" bit position.

An n in a binary value for a tripole jumper indicates the jumper is not installed.

Keyword and Field Specification Conventions

Within this document the following conventions are followed when describing the
configuration file.

Value

{}

List

Rangelist

Valuellit

Revision 3.10

indicates that an ASCII string or number is required in this field; any
numerical unit format can be entered for a value.

may be selected to indicate that none of the resource selections are
used.

indicates that a set of resource selections can be included in the field,
each delimited vertical bar (I, logical OR).

indicates that a set of resource address range selections or lists can be
included in the field, each delimited by a vertical bar (I, logical OR).

indicates that a set of values can be included in the field, each
delimited by a vertical bar (I, logical OR).

303

textlist

Switch list

Jumperlist

Bitlist

parameter/ist

[]

CAPS

italic

ASCII text

(Optional)

304

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORl\1ATION OF BCPR SERVICES, INC.

indicates that a set of ASCII values can be included in the field; the
textlist must be contained within double quotes, with each string
delimited by a space.

indicates that a set of switches can be included in the field, each
delimited by a space. A switchlist can also comprise a range of
switches.

indicates that a set of jumpers can be included in the field, each
delimited by a space. A jumperlist can also comprise a range of
jumpers.

indicates that a set of bit positions can be included in the field. A
bitlist can also comprise a range of bits.

indicates that a set of ASCII values can be included in the description
field of a software statement; the parameterlist must be contained
within double quotes, with each string delimited by a vertical bar
(I, logical OR).

Items within square brackets are optional.

Keywords are indicated by all capital letters. For example, BOARD,
ID, NAME, and COMMENTS are keywords and are indicated by all
capitals.

Italic text used in the syntax provides descriptive information about
the indicated field. For example, names, values, lists and ranges are
indicated by italic text.

ASCII characters 20-255h are valid for fields that require ASCII text.
Null strings are allowed.

When used within a statement title, indicates that the statement
provides additional information, but is not required in the
configuration file.

Revision 3.10

.-

4.6

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Configuration File Format

A configuration file consists of a board identification block, one or more
initialization information blocks, and one or more function statement blocks. The
configuration file begins with a board identification block, which provides the name and ID
of the board as well as slot information. The initialization information blocks include the
values to initialize I/O ports and for ISA boards, information about jumper and switch
settings. The function statement blocks specify the resource requirements of the functions
of the board. Additionally, CFG files for system boards may include a system description
block (following the board identification block), which icludes information specific to the
system board.

Every configuration file must include the board identification block. The
initialization information blocks and function statement blocks are optional, but must be
included to utilize automatic configuration.

The configuration file has the following structure:

Board Identification Block
Board Identification and Slot Infonnation

[System Description Block]
[Initialization Infonnation Block

I/O port requests
Switch and jumper settings
Software initialization infonnation]

[Function Statement Block
Configuration Selections
[Resource requirements]]

[Function Statement Block
Configuration Selections
[Resource requirements]]

4.6.1 Board Identification Block

Each configuration file must begin with a board identification block. Four required
fields must be included in the board identification block to provide the baslc ID
requirements of the board; optional fields can be included to provide additional board
identification information.

System boards require special configuration files and are covered in the section
entitled, System Board Configuration File.

Revision 3.10 305

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The board identification block has the following format.

BOARD
ID = '7-character ID" ;Product ID
NAME = "descriptive name"
MFR = "manufacturer name"
CATEGORY = "3-character category"
[SLOT = ISA81 ISA161 ISA80R161 OTHER I EISA I VIR I EMB[(n)] [,"text"] ...]
[LENGTH = value] ;In millimeters
[AMPERAGE = value] ;5V current used, in rnA
[SKIRT = YES I NO]
[READID = YES I NO] ;Readable product ID
[BUS MASTER = value) ;Maximum acceptable latency (in J.,Ls)
[IOCHECK = VALID I INVALID]
[DISABLE = SUPPORTED I UNSUPPORTED]
[COMMENTS = "general injomlQtion"]
[HELP = "help infomlQtion"]

BOARD Statement (Required)

Svntax:
BOARD

The BOARD statement identifies the beginning of the Board Identification Block.

ID Statement (Required)

Syntax:
ID = '7-character ID"

The ID statement contains the seven-character expansion board ID. The ID is the
uncompressed, ASCII representation of the product ID (see the section entitled,
EISA Product Identifier, for information on compressed IDs). The seven-character
ID consists of a three-character manufacturer code, a three-character hexadecimal
product identifier, and a one character hexadecimal revision number. For example,
the second revision of an expansion board manufactured by the ACME board
company might have an uncompressed ID such as ACE0102.

NAJ\fE Statement (Required)

Syntax:
NAME = "descriptive name"

The NAME statement contains text that identifies the product. Part numbers and
other information may also be included. The NAME text field can contain up to 90 ASCII
characters.

306 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

MFR Statement (Required)

Syntax:
MFR = "manufacturer name"

The MFR statement contains a text field that identifies the board manufacturer.
The MFR text field can contain up to 30 ASCII characters.

CATEGORY Statement (Required)

Syntax:
CA TEGOR Y = "3-clzaracter category"

The CATEGORY statement contains a 3-character text field (use uppercase for
consistency) that identifies the board's functional category. The configuration utility
displays the CATEGORY text field (in upper case) during system configuration.

The CA TEGOR Y statement must use one of the following categories:

COM = communications device
KEY = keyboard
MEM = memory board
MFC = multifunction board
MSD = mass storage device
NET = network board

SLOT Statement (Optional)

Syntax:
SLOT = value [,"text"] ...

NPX = numeric coprocessor
OSE = operating system/environment
OTH = other
PAR = parallel port
PTR = pointing device
SYS = svstem board
VID = video board

The SLOT statement identifies the type of slot in which the expansion board can be
installed. Options that can be entered in the value field include: ISA8, ISA16, ISA80R16,
EISA, VIR, EMB(n), OTHER, and at a text string If the SLOT statement is omitted, the
default is ISA16. For expansion devices that occupy physical slots (ISA8, ISA16,
ISA80R16, EISA, and OTHER), the value entered in the SLOT field is the actual size of
the board's card edge. For example, an expansion board with an 8-bit card edge is set to
SLOT = ISA8, an expansion board with a 16-bit card edge is set to SLOT = ISA16, and so
on. ISA80R16 is provided for 16-bit expansion boards that can also operate in an 8-bit
slot.

A text string can be included with the slot statement following the value field. ~lore
than one text string can be included. Each text string must be enclosed in double quotes.
The text is typically used to describe the slot. For example: SLOT=EISA"MEMORY"
could be used to describe an EISA slot reserved for a memory expansion board.

ISA8
This entry specifies an 8-bit ISA expansion board (fits in any slot of correct length).

Revision 3.10 307

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ISA16
This entry specifies a 16-bit ISA expansion board (fits in an EISA or 16-bit slot of
correct length).

ISA80R16

EISA

This entry specifies an ISA expansion board configurable as 8- or 16-bit (fits in any
EISA or ISA slot of correct length).

This entry indicates an EISA expansion board that requires a correct length EISA slot
(fits in EISA slot only).

EMB[(n)]

VIR

This entry indicates a system board peripheral that uses slot-specific I/O space
(embedded device). The slot-specific I/O range used determines the "n." The
configuration utility searches for the device by checking the embedded device IDs if
the "n" is omitted. The embedded devices are numbered sequentially from "y + 1" (y
equals the number of expansion bus connectors) to 15.

The system board configuration registers use the slot-specific I/O space, slot number
0, and are addressed as embedded device 0, Ei\1B(0).

This entry indicates a virtual device. Virtual devices do not have slot-specific I/O or
a readable ID. This entry is included for virtual devices so the configuration utility
can perform conflict resolution and drivers can obtain configuration information
regardin~ the devices. Any peripheral, device or software that needs a configuration
file and IS not covered by the other device types can be specified as a virtual device.
Virtual devices are assigned numbers from 16 to a maximum of 64.

OTHER
This entry identifies a vendor-specific expansion slot.

LENGTH Statement (Optional)

Svntax:
[LENGTH = value]

The LENGTH statement specifies the length of the board in millimeters (a decimal
integer). The LENGTH statement does not apply to embedded devices or virtual devices.

Expansion boards should include a LENGTH statement. The configuration utility
cannot optimize the slot allocation if expansion boards do not specify length. If the
LENGTH statement is omitted the configuration utility defaults to 330.

308 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDEl\TTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

The AMPERAGE statement, when included in the board identification block,
specifies the maximum amount of continuous 5V current (in milliamps) required by the
base configuration of the expansion board. Installable options can specify additional 5V
current requirements with an AMPERAGE statement in the CHOICE Statement Block
(described later in this specification). The AMPERAGE statement does not apply to
embedded devices or virtual devices.

Devices that require + 5 volt power should include an AMPERAGE statement.
The configuration utility cannot perform an accurate power usage verification if expansion
boards do not specify their power requirement. If the AMPERAGE statement is omitted,
the configuration utility defaults to AMPERAGE = O.

SKIRT Statement (Optional)

Svntax:
[SKIRT = YES I NO]

The SKIRT statement indicates the presence of a drop-down skirt. (A drop-down
skirt is an extended lower portion of an 8-bit expansion board that prevents installation into
a 16-bit slot.) The default is NO.

READID Statement (Optional)

Svntax:
[READID = YES I NO]

READID specifies whether or not the expansion board has an ID that can be read
from the EISA ID registers. The default value is NO.

BUSMASTER Statement (Optional)

Syntax:
[BUSMASTER = value]

The board identification block may include a BUSMASTER statement to identify
the expansion board as a bus master and to specify the maximum acceptable latency. The
latency value is a specification of the worst case acceptable time (in microseconds) from
the bus master bus request to the bus grant. The configuration utility assumes an
expansion board is not a bus master if the BUSMASTER statement is omitted.

Revision 3.10 309

EXTENDED INDUSTRY STA,~DARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

IOCHECK Statement (Optional)

Syntax:
[IOCHECK = VALID I INVALID]

IOCHECK is an optional statement that indicates support of the EISA expansion
board control register IOCHKERR bit. VALID indicates that the expansion board
responds to reads of its IOCHKERR bit. INVALID indicates that the expansion board
does not respond to reads of the IOCHKERR bit. The default is VALID.

DISABLE Statement (Optional)

Syntax:
[DISABLE = SUPPORTED I UNSUPPORTED]

DISABLE is an optional statement that indicates support of the EISA expansion
board control register ENABLE bit. SUPPORTED indicates that the expansion board can
be disabled by clearing the ENABLE bit. UNSUPPORTED indicates that the expansion
board cannot be disabled by clearing the expansion board control register ENABLE bit.
The default is SUPPORTED.

COMMENTS Statement (Optional)

Svntax:
[COMMENTS = "general inJomwtion"]

The COMMENTS statement provides information about the expansion board. The
configuration utility displays the contents of the COMMENTS text field in a window at
least 40 characters wide. This COMMENTS text field can contain up to 600 ASCII
characters.

HELP Statement (Optional)

Svntax:
[HELP = "help inJomwtion"]

The HELP statement provides information about the expansion board if the user
requests help during the configuration. The configuration utility displays the HELP
information In a window at least 40 characters wide. The HELP text field can contain up
to 600 ASCII characters.

310 Revision 3.10

--

--

-'.

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Example Board Identification Block

The following example illustrates a board identification block for a multifunction
board.

BOARD
ID = "ACE0102"
NAME = "EISA Multifunction Board"
MFR = "ACME Inc."
CATEGORY = "MFC"
SLOT = EISA
LENGTH = 330
AMPERAGE = 3000
SKIRT = NO
READID = YES

;Revision 02

;Multifunction board
:Requires EISA slot
;Full length board
;3000 rnA max current draw

COMMENTS = "The EISA Multifunction Board provides
an asynchronous communication port,
a parallel port, a game port and
4 megabytes of memory. "

HELP = "The EISA Multifunction Board supports
full automatic configuration.
You may want to select the expanded
memory configuration instead of taking
the default, which is extended memory. "

The SKIRT and length statements could be omitted from this board identification
block, since the specified values equal the default value.

4.6.2 Initialization Information Block

The initialization information block consists of one or more of the following
statement blocks:

I/O port initialization statement block

Switch configuration statement block

Jumper configuration statement block

Software initialization statement block

All expansion boards that require configuration must provide an initialization
information block (lIB) in the configuration file. (A shorthand method described in the
I/O Port INIT statement discussion in the section entitled INIT Statements, can be
substituted for certain IIBs.)

4.6.2.1 I/O Port Initialization Statement Block

The I/O Port Initialization statement block begins with the 10PORT(i) statement.
The syntax of the 1/0 port initialization statement block is:

10PORT(i) = address
[SIZE = BYTE I WORD I DWORD]
[INITV AL = [LOC(bitlis!}] valuelist]

Revision 3.10

;1/0 port address
;Number of bits in I/O port
;Initialization value

311

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

IOPORT(i) Statement (Required)

Syntax:
IOPORT(i) = address

The IOPORT(i) statement specifies the address of an I/O port. Each I/O port
must have a separate IOPORT(i) statement with a different identifier, "i". The "i" can be
any positive integer value from 1 to 32767. Resource and initialization statements use the
IOPORT(i) to specify I/O port addresses.

See the "PORTV ARm Variable" section for an alternative method of specifying the
I/O port address.

SIZE Statement (Optional)

Syntax:
[SIZE = BYTE I WORD I DWORD]

The SIZE statement specifies the number of bits in the I/O port. The default is
BYTE.

INITV AL Statement (Optional)

Syntax:
[iNITV AL = [LOC(bitlist)] valuelist]

The INITV AL statement specifies the source of the values written to an
initialization port.

The valuelist portion specifies the source of each bit of a binary value. An "r" in a bit
position indicates the bit value must be read from the port. An "x" in a bit position
indicates the configuration utility determines the bit value based on the selected
configuration. A "1" or "0" in a bit position indicates the bit is reserved and must be
initialized to the specified value. The valuelist must be in MSBit to LSBit order.

The INITV AL statement may include the LOC(bitlist) string to reference individual
bits. The bitlist contains a list or ran~e of bit positions. The elements of the bitlist must be
in MSBit to LSBit order. The followmg example illustrates valid INITV AL syntax.

312

INITVAL = 0000111100001111b

INITVAL = 0000ll11b

INITV AL = LOC(7-0) 001100rr

INITV AL = LOC(7-2) 001100

INITV AL = LOC(76 1 0) 0011

:WORD port

;BYTE port

;Byte pan with "r" bits

;Byte port (range)

;4 bits specified

Revision 3.10

--.

-.

EXTENDED INDUSTRY STA.~DARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Example I/O Port Initialization Statement Block

The following example illustrates an I/O port initialization statement block. The
two most significant bits are read from the I/O port, the next two bits are "1" and "0"
respectively, and the four least significant bits are determined by the configuration utility.

IOPORT(I) = 3F8h
INITV AL = rrIOxxxxb

;1/0 port address
;Bit pattern

4.6.2.2 Switch Configuration Statement Block

The switch configuration statement block begins with the SWITCH(i) statement.
The syntax of the switch configuration statement block is:

SWITCH(i) = value
NAME = "switch name or description"
STYPE = DIP I ROTARY I SLIDE
[VERTICAL = YES I NO]
[REVERSE = YES I NO]
[lABEL = LOC(switchlist) textlist]
[INITV AL = LOC(switchlist) valuelist]
[FACTORY = LOC(switchlist) valuelist]
[COMMENTS = "configuration comments"]
[HELP = "configuration help infonnation"]

SWlTCH(i) Statement (Required)

Svntax:
SWITCH(i) = value

;Number switches in set

;Type of switch
;Switch orientation
;Switch numbering scheme
;Switch labels
;Switch settings
;Factory setting

The SWITCH(i) statement specifies the number of switch positions in a set. Each
set of switches must have a separate SWITCH(i) statement with a different identifier, "i",
The "i" can be any positive integer value from 1 to 32767. The maximum number of
switches is "16" for all switch types. Value indicates the number of switches in the switch
block.

NAME Statement (Required)

Syntax:
NAME = "switch name or description"

The NAME statement contains the switch name as it is designated in the user
documentation. The name can be up to 20 characters long.

Revision 3.10 313

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

S1YPE Statement (Required)

Syntax:
STYPE = DIP I ROTARY I SLIDE

The STYPE statement designates the type of switch as DIP, ROTARY, or SLIDE.
A DIP switch is a set of switches, each having an "ON" and "OFF" position. A ROTARY
switch is a set of switches with a rotating selector that can be set to one switch position. A
SLIDE switch is a set of switches arranged linearly with a slide mechanism that can be set
to one switch position. All switches within the set are numbered beginning with 1.

VERTICAL Statement (Optional)

Syntax:
[VERTICAL = YES I NO]

The VERTICAL statement indicates the orientation of the switch on the expansion
board. Refer to the figure below for an illustration of switch orientation. The VERTICAL
statement defaults to "NO."

REVERSE Statement (Optional)

Svntax:
[REVERSE = YES I NO]

The REVERSE statement specifies the order that a DIP switch is numbered.
REVERSE = YES indicates 1234 ... , REVERSE = NO indicates .. .4321 order. Refer to
the figure below for an illustration of switch numbering. The REVERSE statement
defaults to "NO."

65432 1

REVERSE=NO
VERTICAL=NO

LOC(switchlist) valuelist

1 2 3 4 5 6

REVERSE=YES
VERTICAL=NO

6
5
4
3
2
1

1
2
3
4
5
6

REVERSE=NO REVERSE=YES
VERTICAL=YES VERTICAL=YES

The switch configuration statements LABEL, INITVAL and FACTORY include
the LOC(switchlist) valuelist (or textlist) string to reference individual switches. The
switch list contains a list or range of switch numbers. The elements of the switch list must be
in ascending order if REVERSE = YES or descending order if REVERSE = NO. A space
must be included between elements as a delimiter.

314 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The text/ist specifies the ASCII switch name and the valuelist specifies the switch
setting for each switch position. The valuelist must use the same order as the switchlist. A
DIP switch can be set for "1" to indicate "ON," "0" to indicate "OFF," or "x" to indicate "don't
care." The dip switch settings are not delimited with a space. The value/ist for a rotary or
slide switch includes a "1" in the position number of the selected position. Zeros fill the
other positions.

The following examples illustrate valid LOC(switchlist) valuelist strings:

REVERSE = YES
INITV AL = LOC(l 234) 0011 ;List of DIP switches

REVERSE=NO
INITV AL = LOC(4 3 2 1) 1100 ;List of DIP switches

REVERSE = YES
INITV AL = LOC(1-4) 0011 ;Range of DIP switches

REVERSE=NO
INITV AL = LOC(4-1) 11 00 ;Range of DIP switches

REVERSE = YES
INITV AL = LOC(1 234) 00x1 ;DIP switches with a don't care

REVERSE = YES
INITV AL = LOC(1-8) 00010000 ;8-position rotary or slide switch

LABEL Statement (Optional)

Syntax:
[LABEL = LOC(switchlist) textlist]

The LABEL statement specifies labels for individual switches. Each label can
compose up to 10 characters. If the LABEL statement is omitted, the default label is the
switch number (.. .4321 for normal switches and 1234 ... for reverse switches). The following
example illustrates use of the LABEL statement:

LABEL = LOC(4-1) "SWl-4" "SWl-3" "SWl-2" "SWl-1"

INITV AL Statement (Optional)

SYntax:
[INITV AL = LOC(switchlist) valuelist]

The INITV AL statement specifies the settings for factory-set switches that must not
be changed. If the IN lTV AL statement is omitted, switch settings are determined bv the
configuration program or are "don't care." This statement is particularly important for
switches that control undocumented options. The following example illustrates use of the
INITV AL statement:

INITV AL = LOC(4 3 2 1) xxxO ;DIP switch 1 may not be changed

Revision 3.10 315

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FACTORY Statement (Optional)

Syntax:
[FACTORY = LOC(switchlist) valuelist]

The FACTORY statement indicates the factory settings for the switches.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "configuration comments"]

The COMMENTS statement contains information to assist the user in configuring a
switch. The COMMENTS text field can contain a maximum of 600 characters. The
configuration utility displays the text in a window at least 40 characters wide.

HELP Statement (Optional)

Syntax:
[HELP = "configuration help injonnation"]

The HELP statement contains information that is displayed to the user if requested.
The HELP text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

Example S~itch Configuration Statement Block

The following example illustrates a switch configuration statement block.

;INITIALIZA TION INFORMATION BLOCK
SWITCH(1)= 8 ;1st switch--8 positions

NAME = "SWITCH BLOCK 1"
STYPE = DIP :DIP switch type
VERTICAL = YES ;Verticalorientation
FACTORY = LOC(8-1) 11110000 ;Factorv setting = 11110000
INITV AL = LOC(8-1) xxxxxxxO ;One reserved swi tch

SWITCH(2) = 2 ;2nd Switch--2 positions
NAME = "SWITCH BLOCK 2"
STYPE = SLIDE ;SLIDE switch tYJ?e
LABEL = LOC(2 1) "IRQ9" "IRQ8" ;Position labels lRQ9, IRQ8
FACTORY = LOC(2 1) 10 ;IRQ9 Setting

316 Revision 3.10

-.

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.2.3 Jumper Configuration Statement Block

The jumper configuration statement block begins with the JUMPER(i) statement.
The syntax of the jumper configuration statement block is:

JUMPER(i) = value
NAME = ''jumper name or description"
JTYPE = INLINE I PAIRED I TRIPOLE
[VERTICAL = YES I NO]
[REVERSE = YES I NO]
[LABEL = LOC(jumperlist) textlist]
[INITV AL = LOC(jumperlist) valuelist]
[FACTORY = LOC(jumperlist) valuelist]
[COMMENTS = "configuration comments"]
[HELP = "configuration help information"]

JUMPER(i) Statement (Required)

Syntax:
JUMPER(i) = value

;Number of jumpers in set

;Type of jumper
;Jumper orientation
;Jumper numbering scheme
;ASCII Jumper labels
;Jumper settings
;Factory setting

The JUMPER(i) statement specifies the number of jumper positions in a set. Each
set of jumpers must haye a separate JUMPER(i) statement with a different identifier, i.
The "i" can be any positive integer value from 1 to 32767. The value field has two meanings
here depending on the type of jumper defined. For inline jumpers, value refers to the
numher of connections. For tripole and paired jumpers, value refers to the number of
tripoie or paired sets.

NAME Statement (Required)

Syntax:
NAME = "jumper name or descn'ption"

The NAME statement contains the jumper name as it is designated in the user
documentation. The description can contain a maximum of 20 characters.

JTYPE Statement (Required)

Syntax:
JITPE = INLINE I PAIRED I TRIPOLE

The JTYPE statement designates the type of jumper as INLINE, PAIRED, or
TRIPOLE. INLINE jumpers are arranged in a straight line, such that each post can be
connected to an adjacent post. PAIRED jumpers are arranged as a series of double posts,
such that any sin~le pair can be connected across the two posts. TRIPOLE jumpers are
arranged as a senes of triple posts, such that the middle post can be connected to either of
the two adjacent posts.

Revision 3.10 317

EXTENDED INDUSTRY STA.~DARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following figure illustrates each of the three JTYPEs.

o 0 o 0 0 Paired 0 0 0 0 0 Inline
0 0 0 0 0 REVERSE=NO 1 2 3 4 5 REVERSE=YES
5 4 3 2 1 VERTICAL=NO VERTICAL=NO

0 000 0 Tripole 000 1 Tripole
0 o 0 0 0 000 2
0 0 0 0 0 REVERSE=YES 000 3 REVERSE=YES
1 2 3 4 5 VERTICAL=NO 000 4 VERTICAL=YES

VERTICAL Statement (Optional)

Svntax:
[VERTICAL == YES I NO]

The VERTICAL statement indicates the orientation of the jumper on the expansion
board. The VERTICAL statement defaults to "NO."

REVERSE Statement (Optional)

Svntax:
[REVERSE == YES I NO]

The REVERSE statement specifies the order that a jumper is numbered.
REVERSE == YES indicates 1234 ... , REVERSE == NO indicates .. .4321 order. The
REVERSE statement defaults to "NO."

LOC(jumperlist) valuelist

The jumper configuration statements LABEL, INITV AL and FACTORY include
the LOC(jumperlist) valuelist string to reference individual jumper positions. The jumperlist
contains a list of jumpers. The valuelist specifies the setting for each jumper. The valuelist
must not be delimited with a space and must use the same order as the jumperlist.

A paired or tripole jumperUst can use a range to indicate the jumpers. The elements
of the jumperlist must be in ascending order if REVERSE == YES, or descending order if
REVERSE==NO. A space must be included between elements as :2 delimiter.

The jumperlist specifies inline jumpers by indicating the connection between two
posts with a caret. For example, LOC(6'S 4'3 2'1) specifies the jumpers between posts 6
and 5, between posts 4 and 3, and between posts 2 and 1. The elements of the jumperlist
must be in ascending order if REVERSE == YES, or descending order if REVERSE == NO.
A space must be included between elements as a delimiter.

The paired and inline jumper valuelist settings can be indicated as "1" for "ON"
Uumper installed), "0" for "OFF" Uumper not installed), or "x" for "don't care."

318 Revision 3.10

,---

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A tripole jumper valuelist settings can be indicated as "1" for "ON" (jumper installed
in upper or right position), "0" for "OFF" (jumper installed in lower or left position unless
otherwise marked), "n" for "NONE" (jumper not installed) or "x" for "don't care."

The following examples illustrate valid LOC(jumperlist) valuelist strings:

JTYPE = TRIPOLE
REVERSE = YES
INITVAL = LOC(12 3 4) 0011

JTYPE = PAIRED
REVERSE=NO
INITV AL = LOC(4 3 2 1) 1100

JTYPE = PAIRED
REVERSE = YES
INITV AL = LOC(1-4) 0011

JTYPE = TRIPOLE
REVERSE = NO
INITV AL = LOC(4-1) 1100

JTYPE = PAIRED
REVERSE = YES
INITVAL = LOC(1-4) xOll

JTYPE = TRIPOLE
REVERSE = YES
INITV AL = LOC(1-4) x011

JTYPE = TRIPOLE
REVERSE = YES
INITVAL = LOC(1-4) nOll

JTYPE = INLINE
REVERSE=NO
INITV AL = LOC(6' 5 4' 3 2' 1) 101

LABEL Statement (Optional)

Syntax:
[LABEL = LOC(jumperlist) textlist]

;List of tripole jumpers

;List of paired jumpers

;Range of paired jumpers

;Range of tripole jumpers

;Range of paired jumpers with "x"

;Range of tripole jumpers with "x"

;Range of tripole jumpers with "n"

;List of inline jumpers

The LABEL statement specifies labels for individual jumpers. Each label can be
composed of up slO characters. If the LABEL statement is omitted, the default label is the
switch number (... 4321 for normal jumpers and 1234 ... for reverse jumpers). The following
example illustrates use of the LABEL statement:

LABEL = LOC(4'3 2'1) "IRQ2" "IRQ3" ;"IRQ2" (4'3), "IRQ3" (2'1)

Revision 3.10 319

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

INITV AL Statement (Optional)

Syntax:
[INITV AL = LOC(jumperlist) valuelist]

The INITV AL statement specifies the settings for factory-set jumpers that must not
be changed. If the INITV AL statement is omitted, jumper settings are determined by the
configuration program are "don't care." This statement is particularly important for
jumpers that control undocumented options andrequire specifIc settings. The following
example illustrates use of the INITV AL statement:

INITV AL = LOC(4 3 2 1) 0011

FACTORY Statement (Optional)

Syntax:
[FACTORY = LOC(jumperlist) valuelist]

;Paired (or tripole) jumper settings

The FACTORY statement indicates the factory settings for the jumpers.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "configuration comments"]

The COMMENTS statement contains information to assist the user in configuring a
jumper. The COMMENTS text field can contain a maximum of 600 characters. The
configuration utility displays the text in a window at least 40 characters wide.

HELP Statement (Optional)

Syntax:
[HELP = "configuration help injonnation"]

The HELP statement contains information that is displayed to the user if requested.
The HELP text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

320 Revision 3.10

· EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Example Jumper Configuration Statement Block

The following example illustrates a jumper configuration statement block.

;INITIALIZA TION INFORMATION BLOCK
JUMPER(l) = 5 ;lst set-5 positions(6 posts)

NAME = "J101"
JTYPE = IN LINE
VERTICAL = YES
LABEL = LOC(6~5 4~3 2~1) "Test" "IRQ8" "IRQ9"
INITVAL = WC(6 A5 4A3 2A1) Oxx
FACTORY = LOC(6 A5 4~3 2~1) 001

;Inline jumper type
; Vertical orientation
;Labels Test, IRQ8, IRQ9
;Reserved jumper
;Factory Setting = IRQ9

The configuration utility displays a diagram to illustrate the jumper settings. For
example:

o 6
Test

o 5

o 4
IRQ8

o 3

• 2
IRQ9

• 1

J101

4.6.2.4 SOFTWARE(lnitialization) Statement Block (Optional)

Syntax:
SOFTW ARE(i) = "description"

The software statement block begins \ ith the SOITW ARE (i) statement. The
syntax of the software configuration statement block is:

-Note: there are no other statements in the block.

The software initialization statement block provides user information and
instructions about software drivers for display during system configuration. The
instructions may, for example. indicate the software options to inco:porate into the
operating system startup files or a program that must be executed to initialIze an expansion
board. The software initialization statement block can include entries for the
CONFIG.SYS and AUTOEXEC.BAT files of an MS-DOS operating system.

The startup files may execute programs that require command line parameters (for
example, Is, Ig).

Each software statement must have a separate SOFTW ARE(i) statement with a
different identifier, "L" The "i" can be any pOSItive integer value from 1 to 32767. The
description can be a maximum of 600 characters.

Revision 3.10 321

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The configuration utility displays the software description with switch settings and
other configuration information, during system configuration.

See the section on IN IT Statements for more details about the software(i)
statement.

4.6.3 FUNCTION Statement Block

A FUNCTION statement block consists of the following statements:

• FUNCTION Statement--identifies the name of the expansion board function
(for example, "Asynchronous communications port").

• TYPE Statement--identifies the function type (for example: a communications
port is type "COM").

• CHOICE Statements with resource description blocks--identify the
configuration alternatives (i.e., initializations, I/O ports, interrupts, DMA
channels and memory).

The FUNCTION statement block has the following format:

FUNCTION = ''function name"
[TYPE = ''function type"]
[COMMENTS = "infonnation"]
[CONNECTION = "connector orientation and description '1
[HELP = "infonnation"]
CHOICE = "configuration name"

[Resource Description Block]
[CHOICE = "configuration name"

Resource Description Block]

[CHOICE = "configuration name"
Resource Description Block]

[SUBFUNCTION STATEMENT BLOCK]

A separate function statement block must be supplied for each function of a
multifunction expansion board. The following example illustrates the two function
statement blocks for an expansion board with a communications port and a parallel port.

322

FUNCTION = "Asynchronous communications port"
CHOICE = "configuration name"

Resource Description Block
FUNCTION = "Parallel port"

CHOICE = "configuration name"
Resource DescnjJtion Block

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The configuration utility displays the software description with switch settings and
other configuration information, during system configuration.

See the section on INIT Statements for more details about the software (i)
statement.

4.6.3 FUNCTION Statement Block

A FUNCTION statement block consists of the following statements:

• FUNCTION Statement--identifies the name of the expansion board function
(for example, "Asynchronous communications port").

• TYPE Statement--identifies the function type (for example: a communications
port is type "COM").

• CHOICE Statements with resource description blocks--identifv the
configuration alternatives (i.e., initializations, I/O ports, interrupts, - DMA
channels and memory).

The FUNCTION statement block has the following format:

FUNCTION = ''junction name"
[TYPE = ''junction type"]
[COMMENTS = "infonnation"]
[CONNECTION = "connector on'entation and description '1
[HELP = "infonnation"]
CHOICE = "configuration name"

[Resource DescnjJtion Block]
[CHOICE = "configuration name"

Resource Description Block]

[CHOICE = "confibruration name"
Resource Description Block]

[SUBFUNCTION STATEMENT BLOCK]

A separate function statement block must be supplied for each function of a
multifunction expansion board. The following example illustrates the two function
statement blocks for an expansion board with a communications pon and a parallel port.

322

FUNCTION = "Asynchronous communications port"
CHOICE = "configuration name"

Resource Description Block
FUNCTION = "Parallel port"

CHOICE = "configuration name"
Resource Descn'ption Block

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FUNCI'ION Statement (Required)

Syntax:
FUNCTION = "function name"

Each function statement block begins with a function statement that specifies the
function name. The function name consists of free-form ASCII text with a maximum of 100
characters. All function names within a single configuration file must be unique, but
different configuration files can have common function names.

The configuration utility displays the function name during configuration, but does
not store it in nonvolatile memory.

TYPE Statement (Optional)

Svntax:
[TYPE = "function type"]

A functions statement block is supplemented with a TYPE statement that identifies
the function type with a three-character ASCII string. The following table identifies
commonly used function types.

Commonly Used Function Types

KEY --keyboard
MEM--memory board
MSD--mass storage device
NET--network adapter
NPX--numeric coprocessor
OTH--other

P AR--parallel port
PTR--pointing device
COMo-communications port
VID--video display adapter
SYS--system board
OSE--operating system/environment

The TYPE statement should use one of the listed types when applicable. A TYPE
statement can con:ain a type not included in the "Commonly Used Function Types" table
above, but all types must be three-character ASCII strings. The type is stored in
nonvolatile memory as upper-case. It should be entered in the configuration file in upper­
case for consistency.

The function tyPe can be supplemented by appending multiple, comma-delimited,
ASCII strings to the imtial three-character type. The supplemental type ASCII strings are
not limited to ~hree characters. For example, an asynchronous communications port can
have the followmg TYPE statement:

TYPE = "COM,ASY"

The configuration utility stores the TYPE statement's ASCII string in nonvolatile
memory during configuration. EISA systems provide a total of 80 bytes of nonvolatile
memory to store the TYPE statement's ASCII string and SUBTYPE statement's ASCII
string. The 80 bytes include the comma and semicolon delimiters between the type and
SUBTYPE string fragments.

A device driver can use the type string to determine the general class of
functionality of a device. The device driver can use the subtype string to determine the
configuration of a device.

Revision 3.10 323

EXTENDED INDUSTRY ST~~DARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The resource description block section SUBTYPES are dicussed later in this
specification.

COMMENTS Statement (Optional)

Syntax:
[COMMENTS = "infonnation"]

A function statement block can include a COMMENTS statement that provides
relevant information about the function. The comment could identify an expansion board
manufacturer and part number, configuration instructions or any other useful information.
The comment consists of free-form ASCII text with a maximum of 600 characters. The
configuration utility displays the text in a window at least 40 characters wide.

The configuration utility displays the comment during configuration when the
function is selected. It does not store the comment in nonvolatile memory.

HELP Statement (Optional)

Syntax:
[HELP = "help infonnation"]

The HELP statement contains information that is displayed to the user if requested.
The help text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

CONNECTION Statement (Optional)

Syntax:
CONNECTION = "connector orientation and descn'ption"

A configuration file can specify the orientation and description of connectors by
including the CONNECTION statement in the FUNCTION statement block.

The connection string consists of an ASCII string with a maximum length of 40
characters. Typical connectIon strings include "top," "bottom," "upper," "lower," "middle,"
etc. The configuration utility includes a command that displays the connection string.

324 Revision 3.10

4.6.3.1

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CHOICE Statement Block

Each function statement block is accompanied by at least one choice statement
block that specifies the initializations and system resource requirements of a possible
confi~ration. The configuration utility uses the first choice statement block as the default.
MultIple choice statement blocks are sequentially arranged in the order of preference. The
choice statement block begins with a choice statement that specifies the "name" of the
configuration. A choice statement block has the following syntax:

CHOICE = "configuration name"
[SUBTYPE = "device description"]
[DISABLE = YES I NO"]
[AMPERAGE = value]
[TOTALMEM = range/ist [STEP = value]]
Resource Description Block

A communications port, for example, can have the following function statement
block and associated choice statement blocks:

FUNCTION = "Asvnchronous Communications Port"
CHOICE = "COMl"

Resource Description Block
CHOICE = "COM2"

Resource Description Block

The system resource requirements (described in the "Resource Description Block"
section) for the named configuration follow the CHOICE statement.

CHOICE Statement (Optional)

Syntax:
CHOICE = "configuration name"

The choice statement block begins with a CHOICE statement that specifies the
"name" of the configuration. The "name" is an ASCII string with a maximum of 90
characters.

During configuration, the configuration utility displays all CHOICE statement
configuration names for the selected function. The configuration utility does not store the
name in nonvolatile memory.

DISABLE Statement (Optional)

Syntax:
[DISABLE = YES I NO]

A CHOICE statement can be used to disable the expansion board function. Each
function to be disabled requires a separate DISABLE = YES statement. The default is
DISABLE = NO. The following example illustrates use of the DISABLE = YES
statement.

Revision 3.10 325

EXTENDED INDUSTRY ST~1\'DARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FUNCTION = "Communications Port"
CHOICE = "COM1"

Resource Description Block
CHOICE = "COM2"

Resource Description Block
CHOICE = "Disable Communications Port"

DISABLE = YES

SUBTYPE Statement (Optional)

Syntax:
[SUBTYPE = "device description"]

Each choice statement block can contain a SUbtype statement that names the
configuration (with a short mnemonic) associated with the choice. The subtype can be
supplemented by appending multiple, semicolon-delimited, ASCII strings to the initial
subtype.

A device driver can use the SUBTYPE string to determine the configuration of a
device. The device driver may use the type string to determine the general class of
functionality of a device.

A communications port may have SUBTYPE statements as follows:

FUNCTION = "Internal Modem"
TYPE = "COM,ASY,MDM"
CHOICE = "Modem assigned to COM1"

SUBTYPE = "COM1"
Resource Description Block

CHOICE = "Modem assigned to COM2"
SUBTYPE = "COM2"
Resource Description Block

The SUBTYPE should be a short ASCII string. The SUBTYPE string supplements
the type string by identifying the selected configuration (the type string identifies the type
of device). The configuration utility stores the concatenated type and SUBTYPE ASCII
strings, with a semicolon delimiter, in nonvolatile memory during configuration. EISA
systems provide a total of 80 bytes of nonvolatile memory to store the type statement's
ASCII string and SUBTYPE statement's ASCII string. The 80 bytes include the comma
and semicolon delimiters between type and SUBTYPE string fragments.

326 Revision 3.10

.--.

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

The AMPERAGE statement, when included in the choice statement block, specifies
the maximum amount of continuous SV current (in milliamps) required by the option
specified by the choice statement block. The total SV current includes the amount
specified in the board identification block plus the amount specified for the selected
options. The AMPERAGE statement does not apply to virtual devices.

TOTALMEM Statement (Optional)

Syntax:
TOT ALMEM = range list [STEP = value]

A choice statement block can contain a TOT ALMEM statement that indicates the
total amount of memory specified by the choice. The TOT ALMEM statement is required
for a memory block that can have its allocation split between system memory (SYS) and
expanded memory (EXP).

See the TOT ALMEM statement and example in the section entitled, Memory
Description Block, for more detailed information.

4.6.3.2 SUBCHOICE Statement Block

The purpose of the subchoice statement block is to handle resource statement
alternatives that are too complex for individual CHOICE statements (for example, memory
configurations of some memory boards).

A choice statement block can include statements that specify alternative
configurations. A subchoice statement block can use any statement that is valid for a
choice statement block. The subchoice alternatives must be automatically selectable by the
configuration utility with information available from the configuration files. The
configuration utility does not present subchoice alternatives for selection by a user,
although the user can scroll through the resources specified in subchoice statement blocks.

The syntax for the SUBCHOICE statement is shown below:

SUBCHOICE
Resource Description Block

A choice statement block can have as manv subchoice statement blocks as needed.
The configuration utility sequentially checks each subchoice resource description block and
selects the first one that does not conflict v.'ith other devices in the configuration.

The combination of the choice resource description block and one subchoice
resource description block contains the resource and initialization requirements for the
configuration. The configuration utility includes the choice and the selected SUBCHOICE
resource requirements in the data written to nonvolatile memory for use by the power-up
routines.

Revision 3.1 0 327

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates a configuration file fragment that specifies a
memory allocation that back fills 128K of memory into the base address range between
512K and 640K if only 512K is installed. The remainder of memory on the expansion
board is allocated to extended memory. The user selects the total amount of memory on
the expansion board and views the subchoice alternatives. The subchoice selection
(between back fill and extended memory) does not require input from the user, since the
amount of base memory installed is available from the configuration file. The subchoice
statement blocks are included in a single choice statement block that is presented to the
user:

328

CHOICE = "Add Base and Extended Memory"
TOT ALMEM = 128K-2048K STEP 128K

128K base memory back fill into range 512K-640K
(512K base memory already installed)

SUBCHOICE
FREE ; 128K back fill

MEMORY = 128K
ADDRESS = 512K
MEMTYPE = SYS

COMBINE ;Extended Memorv for the rest
MEMORY = OK-1920K STEP 128K •
ADDRESS = 1M
MEMTYPE = SYS

No base memory back fill
(640K base memory already installed)

SUBCHOICE
COMBINE ;AIl Extended Memory

MEMORY = 128K-2048K STEP 128K
ADDRESS = 1M-16M STEP 128K
MEMTYPE = SYS

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selection of the startin~ address could be presented to the user as a sequence of
CHOICE statements for selection by the user:

128K base memory back fill into range 512K-640K
(512K base memory already installed)

CHOICE = "Add Base and Extended Memory"
TOT ALMEM = 128K-2048K STEP 128K
FREE ;128K back fill

MEMORY = 128K
ADDRESS = 512K
MEMTYPE = SYS

COMBINE ;Extended Memory for the rest
MEMORY = OK-1920K STEP 128K
ADDRESS = 1M
MEMTYPE = SYS

No base memory back fill
(640K base memory already installed)

CHOICE = "Add Extended Memorv"
TOTALMEM = 128K-2048K STEP 128K

COMBINE ;A1l Extended Memory
MEMORY = 128K-2048K STEP 128K
ADDRESS = 1M-16M STEP 128K
MEMTYPE = SYS

The configuration utility presents each named choice to the user for selection. The
user can make the selection or let the configuration utility automatically make the
selection.

SUBCHOICE statements are not appropriate if the user might need to make the
selection. For example, the user may need to select a serial port as COM1 or COM2. The
configuration utility presents the choices to the user, and the user either makes the
selection manually or lets the configuration utility select automatically.

SUBCHOICE Statement (Optional)

Syntax:
[SUBCHOICE]

The subchoice statement block begins with a SUBCHOICE statement. The
SUBCHOICE statement does not have a name field for display, since subchoice statement
blocks are selected automatically by the configuration utility.

SUBFUNCTION Statement Block (Optional)

A function statement block may contain one or more subfunction statement blocks
that specify the confisuration information for a set of related components with separate
resource or initializatIon requirements. A subfunction statement block provides separate
configuration of the function's components.

Revision 3.10 329

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A subfunction statement block can use any statement that is valid for a function
statement block. The syntax of a subfunction statement block is:

SUBFUNCTION = "function name"
[TYPE = "function type"]
[COMMENTS = "information"]
[CONNECTION = "connector orientation and description"
[HELP = "information"]
CHOICE = "configuration name"

Resource Description Block
[CHOICE = "configuration name"

Resource Description Block]

[CHOICE = "configuration name"
Resource Description Block]

The configuration utility stores the resource and initialization information from
subfunction statement blocks with the function information. Subfunction statement blocks
are not stored as separate functions in nonvolatile memory.

Syntax:
SUBFUNCTION = "name"

The subfunction statement block begins with a subfunction statement that specifies
the name of the configuration. The name is an ASCII string with a maximum of 90
characters.

During configuration, the configuration utility displays all CHOICE configuration
names for the selected subfunction.

The following example illustrates use of subfunction statement blocks to configure
the parity and baud rate for an asynchronous communications port. The example includes
the statement blocks with type and subtype strings. The resource and initialization
statements are omitted for simplicity.

FUNCTION = "1200/2400 Baud Modem"
TYPE = "COM,ASY,MDM"
SUBFUNCTION = "Port Address"

CHOICE = "COM1 Serial Port"
SUBTYPE = "COM1"

CHOICE = "COM2 Serial Port"
SUBTYPE = "COM2"

SUBFUNCTION = "Parity Selection" ;No SUBTYPE under SF
CHOICE = "ODD"

SUBTYPE = "PARITY=ODD" ;SUBTYPE under CHOICE
CHOICE = "EVEN"

SUBTYPE = "PARITY = EVEN"
SUBFUNCTION = "Baud Rate Selection"

CHOICE = "1200 Baud"
SUBTYPE = "BAUD = 1200" ;SUBTYPE under CHOICE

CHOICE = "2400 Baud"
SUBTYPE = "BAUD=2400"

330 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDEl'.TTIAL INFORMATION OF BCPR SERVICES, INC.

The type/subtype string for the "1200/2400 Baud Modem" function (with COM1,
odd parity and 2400 baud selections) in nonvolatile memory is:

"COM,ASY,MDM;COM1;PARITY=ODD;BAUD=2400"

The example above used SUBTYPE statements under the CHOICE statements but
not under the SUBFUNCTION statements. The following example illustrates an
alternative method with the SUBTYPE statements under the SUBFUNCTION and the
CHOICE statements:

FUNCTION = "1200/2400 Baud Modem"
TYPE = "COM,ASY,MDM"
SUBFUNCTION = "Port Address"

CHOICE = "COM1 Serial Port"
SUBTYPE = "COM1"

CHOICE = "COM2 Serial Port"
SUBTYPE = "COM2"

SUBFUNCTION = "Parity Selection"
TYPE = PARITY ;TYPE under SUBFUNCTIOi\'
CHOICE = "ODD"

SUBTYPE = "ODD" ;SUBTYPE under CHOICE
CHOICE = "EVEN"

SUBTYPE = "EVEN"
SUBFUNCTION = "Baud Rate Selection"

TYPE = BAUD ;TYPE under SUBFUNCTION
CHOICE = "1200 Baud"

SUBTYPE = "1200" ;SUBTYPE under CHOICE
CHOICE = "2400 Baud"

SUBTYPE = "2400"

The type/subtype string for the "1200/2400 Baud Modem" function (with COMl.
odd parity and 2400 baud selections) in nonvolatile memory is:

"COM,ASY,MDM :COM 1.P ARITY ;ODD,BAUD;2400"

4.6.3.3 GROUP Statement Block

A group statement block may be used to enclose a set of functionstatement blocks
that specify the configuration information for a set of related components with separate
resource or initialization requirements.

Revision 3.10 331

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A set of grouped function statement blocks allows separate configuration of a
function's components. A grouped function statement block can use any statement that is
valid for independent function statement blocks. The syntax of a grouped set of function
statement blocks is:

GROUP = "name"
[TYPE = "type"]

FUNCI10N = "name"
[TYPE = ''function type"]
[COMMENTS = "infonnation"]
[HELP = "information"]
CHOICE = "name"

resource description block

[CHOICE = "name"
resource description Block]

FUNCI10N = "name"
[TYPE = ''function type"]
[COMMENTS = "infomwtion"]
[HELP = "information"]
CHOICE = "name"

resource description block

[CHOICE = "name"
resource description block]

FUNCTION = ''name''
[TYPE = ''function type"}
[COMMENTS = "infonnation "]
[HELP = "injonnation "]
CHOICE = ''name''

resource description block

[CHOICE = ''name''
resource description block]

FUNCTION = "name"

ENDGROUP

The configuration utility saves the resource and initialization information for each
function specified in the grouped set as a separate function entry in nonvolatile memory.
The group statement block may include a TYPE statement. The group type string
prepends to each TYPE string in the set of grouped function statement blocks. The
confi~ration utility stores the group type string in nonvolatile memory for a grouped
functIon statement block that omits the type statement.

Presentation of options during configuration and TYPE string prepending in
nonvolatile memory are the only differences between a set of grouped FUNCTION
statement blocks and a set of independent FUNCfION statement blocks.

332 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

GROUP and ENDGROUP Statements (Optional)

Syntax:
[GROUP = "name"]

[ENDGROUP]

A grouped set of function statement blocks begins with the GROUP statement and
ends with an ENDGROUP statement. The group name can be a maximum of 60
characters. Each GROUP statement must have a corresponding ENDGROUP statement.

Example Use of Grouped FUNCTION Statement Blocks

The following confi~uration file fragment illustrates the use of grouped function
statement blocks that specity the configuratIOn options for a fixed disk controller and disk
drive. For simplicity, the configuration file fragment includes the TYPE and SUBTYPE
statements, but does not include resource or initialization statements. The GROUP
statement block and some function statement blocks have a TYPE statement.

GROUP = Fixed Disk Drives ;Fixed disk controller group
TYPE = "MSD" ;Prepends to each FUKCTION TYPE

FUNCTION = "Fixed Disk Controller Selection"
TYPE = "DSKCTL"
CHOICE = "Primary Controller"

SUBTYPE = "PRI"
CHOICE = "Secondary Disk Controller"

SUBTYPE = "SEC"
FUNCTION = "Device for Unit 1"

TYPE = "UNIT 1 "
CHOICE = "Not Installed"

SUBTYPE = "DSKDRV,TYP=OO"
CHOICE = "300mb - TYPE 38"

SUBTYPE = "DSKDRV,TYP=38"
CHOICE = "130mb - TYPE 43"

SUBTYPE = "DSKDRV,TYP=43"
FUNCTION = "Device for UNIT 2"

TYPE = "UNIT2"
CHOICE = "Not Installed"

SUBTYPE = "DSKDRV,TYP=OO"
CHOICE = "300mb - TYPE 38"

SUBTYPE = "DSKDRV,TYP=38"
CHOICE = "130mb - TYPE 43"

SUBTYPE = "DSKDRV,TYP = 43"
ENDGROUP

Revision 3.10 333

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The grouped function statement blocks are stored separately in nonvolatile memory.
The type string for each of the function statement blocks includes the group type string
(prepended to the function type string). Nonvolatile memory contains the following type
strings (assuming the choice selections are: primary controller with a 300 MB drive -for
UNIT1 and UNIT2 is not installed).

FUNCIlON = "Fixed disk Controller Selection"
TYPE string: MSD,DSKCfL;PRI

FUNCTION = "Device for Unit I"
TYPE STRING: MSD,UNIT1,DSKDRV,TYP=38

FUNCTION = "Device for Unit 2"
TYPE string: MSD,UNIT2,DSKDRV,TYP=OO

4.6.4 Resource Description Block

A resource description block may accompany each CHOICE statement to identify
the initialization and system resource requirements of the named configuration. The
resource description block can contain any of the following information:

334

• DMA Channel Description Block--specifies the choice of DMA channels
supported, whether the channel can be shared, the channel's data size, the
channel's cycle timing, and any initialization necessary

• Interrupt Description Block--specifies the choice of interrupts supported,
whether the interrupt can be shared, whether the interrupt is edge or level
sensitive, and any initialization necessary

• I/O Port Description Block--specifies the port address, and any initialization
necessary

• Memory Description Block--specifies the amount of memory supported, the
starting address, and whether the memory is cacheable it also identifies the
memory as RAM or ROM, defines the memory usage (system, expanded,
virtual or other), and specifies any initialization necessary to configure the
memory

• Switch and Jumper Description Blocks--specify the switch and jumper settings
for the configuration

• Programmable Port Initialization Block--specifies the initialization for
programmable ports for the configuration

• Software Initialization Block--specifies any software initialization necessary

The syntax of a DMA resource description block is as follows:

[DMA = list
[SHARE = YES I NO I "text'l
[SIZE = BYTE I WORD I DWORD]
[TIMING = DEFAULT I TYPEA I TYPEB I TYPEC]]

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL AND PROPRIET~Y INFORMATION OF BCPR SERVICES, INC.

The syntax of an I/O port resource description block is as follows:

[PORT = list/rangelist rSTEP = value [COUNT = VALUE]
[SHARE = YES I NO I "text"]
[SIZE = BYTE I WORD I DWORD]]

The syntax of an interrupt resource description block is as follows:

[IRQ = list
(SHARE = YES I NO I "text"]
TRIGGER = LEVEL I EDGE]]

4.6.4.1

The syntax of a memory resource description block is as follows:

[MEMORY = rangelist [STEP = value]
[ADDRESS = rangelist [STEP = value]]
[WRITABLE = YES I NO]
[MEMTYPE = SYS I EXP I VIR 10TH]
[CACHE = YES J NO]
[SHARE = YES r NO I '~ert'1
[SIZE = BYTE 1 WORD I DWORD]
[DECODE = 20 I 24 1 32]

DMA Channel Description Block

A DMA channel description block consists of a group of statements that
specifies the DMA channels reCl.uired by an expansion board function. The
confisuration file can contain a maxImum of four DMA description blocks for anyone
functlOn. The syntax of a DMA channel description block is:

DMA = DMA channel number
[SHARE = YES I NO I "tert"l
[SIZE = BYTE 1 WORD I DWORD]
[TIMING = DEFAULT I TYPEA I TYPEB 1 TYPEC]

An OR operator can be used to separate multiple DMA channel lists (as
illustrated in the following syntax) if each list supports identical SHARE, SIZE and
TIMING characteristics:

DMA = value [I value] ...
(SHARE = YES 1 NO I "tert"l
SIZE = BYrE I WORD I DWORDl

[TIMING = DEFAULT 1 TYPEA ITYPEB 1 TYPEC]

Revision 3.11 335

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

Multiple DMA channel descrip.tion blocks must be used for a function with
multiple DMA channels that have dIfferent share, size or timing characteristics, as
illustrated in the following syntax:

DMA = DMA channel number ;lst DMA channel
[SHARE = YES I NO I "text"]
[SIZE = BYTE I WORD I DWORD]
[TIMING = DEFAULT I TYPEA I TYPEB I TYPEC]

DMA = DMA channel number ;2nd DMA channel
[SHARE = YES I NO I "text"]
[SIZE = BYTE I WORD I DWORD]
[TIMING = DEFAULT I TYPEA I TYPEB I TYPEC]

An expansion board function can request up to four DMA channels. Each
channel selected during system configuration is stored in nonvolatile memory with the
appropriate share, size and timing characteristics.

If the DMA channel is defined as "shared," then it is the responsibility of the
device driver to initialize the DMA Extended Mode and DMA Command Registers
before starting each DMA transfer. The System ROM, in this case, does not initialize
these registers.

The device driver can get the DMA information (shared/not shared) from
nonvolatile memory to decide if it needs to initialize the DMA Extended Mode
Register and DMA Command Register.

If the DMA channel is defined as "not shared," then the configuration file should
provide initialization values for the DMA Command Registers, and the system ROM
will automatically program the DMA Extended Mode Registers as follows:

DMA Extended Mode Register
DMA channel cycle timing (from DMA data provided in the structure)
DMA data size and addressing mode (from DMA data in the structure)
T-C = 0; set to be output for this channel (lSA default)
Stop Register = disabled (ISA default)

The configuration file should not, in either case, provide initialization values for
the DMA Extended Mode Registers.

DMA Statement (Optional)

Syntax:
DMA = value [I value] ...

The DMA statement marks the beginning of a DMA description block and
specifies the DMA channel number (or list of channels or multiple lists of channels)
supported by the configuration.

336 Revision 3.11

-,

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

SHARE Statement (Optional)

Syntax:
[SHARE = YES I NO I "text"]

The SHARE statement specifies whether the function can share the DMA channel.
The default for SHARE is NO. A text identifier can be specified to indicate that the
function can only share the DMA channel with a device that has a matching identifier. The
identifier can be up to 10 characters.

DMA channels can be shared by two devices that never require the channel
simultaneously. For example, a floppy drive and tape drive attached to the same controller
could share a DMA channel since the floppy drive and tape drive never use the channel at
the same time.

Two devices that may need to transfer data at the same time cannot share a DMA
channel. Two network adapters, for example, would have conflicting requirements for a
single DMA channel.

SIZE Statement (Optional)

SYntax:
[SIZE = BYTE I WORD I DWORD]

The SIZE statement indicates the DMA device data transfer width as BYTE,
WORD or DWORD. The default size is BYTE for DMA channels 0-3 and WORD for
channels 4-7.

TIMING Statement (Optional)

Syntax:
[TIMING = DEFAULT I TYPEA I TYPEB I TYPEC]

The TIMING statement indicates the bus cycle type executed by the DMA
controller during the transfer. The default transfer cycle type is default, which is
compatible with ISA DMA devices. Higher performance ISA devices can use type A or
type B for faster transfers. DMA devices that support EISA bus cycles can use type C
(burst) DMA transfers, which provide the highest data transfer rate.

The DMA cycle types and timing are described in section 2 of this specification.

Example DMA Channel Request Block

The ACME tape controller can use DMA channel 3 or 5 and cannot share the
channel. The ACME tape controller uses 16-bit DMA transfers and can support type B
timing. The following diagram illustrates the DMA request block for the ACME tape
controller:

DMA = 3 15
SHARE = NO
SIZE = WORD
TIMING = TYPEB

Revision 3.10 337

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.4.2 Interrupt Description Block

An interrupt description block consists of a group of statements that specifies the
interrupt requirements of an expansion board. The configuration file can contain a
maximum of seven interrupt description blocks for anyone function. The interrupt
description block has the following format:

IRQ = value [I value] ...
[SHARE = YES I NO I "text"]
[TRIGGER = LEVEL I EDGE]

Multiple interru1?t request blocks must be used for a function with multiple
interrupts that have dIfferent share and trigger characteristics, as illustrated in the
following syntax:

IRQ = value
[SHARE = YES I NO I "text"j
[TRIGGER = LEVEL I EDGE]

IRQ = value
[SHARE = YES I NO I "text"]
[TRIGGER = LEVEL I EDGE]

An OR operator can be used to separate multiple interrupts (as illustrated in the
following syntax) if each interrupt supports Identical share and trigger characteristics:

IRQ = value [I value] ...
[SHARE = YES I NO I "text"]
[TRIGGER = LEVEL I EDGE]

IRQ Statement (Optional)

SYntax:
IRQ = Interrupt number

The IRQ statement marks the beginning of an interrupt request block and specifies
the interrupt number (or multiple interrupts) supported by the configuration.

Each interrupt selected during system configuration is stored in nonvolatile memory
with the appropriate share and trigger characteristics. The interrupt device driver can
retrieve the interrupt controller initialization information from nonvolatile memory to
determine the method of handling interrupts.

The system ROM automatically determines the I/O port address and initialization
values and pro~rams the interrupt controller edge/level register. The configuration file
should not proVIde initialization values for programming the interrupt controller edge/level
register.

338 Revision 3.10

-."

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

SHARE Statement (Optional)

Syntax:
[SHARE = YES I NO I "text"]

The SHARE statement indicates whether the function can share this interrupt. The
default value for this field is NO. For EISA boards capable of sharing interrupts, this field
should be SHARE = YES. A text identifier can be specified to indicate that the function
can only share the interrupt with a device that has a matching identifier. The identifier can
be up to 10 characters.

TRIGGER Statement (Optional)

Syntax:
[TRIGGER = LEVEL I EDGE]

The TRIGGER statement specifies whether the ROM initializes the interrupt
controller to edge or level triggered. The default is TRIGGER = EDGE. In most cases, if
the SHARE statement is YES, the TRIGGER statement should be set to LEVEL;
however, there are some designs that require shared, edge-triggered interrupts, so a
TRIGGER = LEVEL statement does not necessarily have to follow a SHARE = YES
statement.

Example Interrupt Description Block

The ACME tape controller needs two interrupts. It can use interrupts 12 or 15, but
it cannot share the assigned interrupts. The ACME tape controller needs the chosen
interrupts to be edge triggered. Note that share and trigger fields could be omitted,
because the defaults are used.

IRQ = 12 115

4.6.4.3

SHARE = NO
TRIGGER = EDGE

I/O Port Description Block

An I/O port description block consists of a group of statements that specifies the
I/O ports used by a device. The configuration file can contain a maximum of 20 I/O pan
description blocks for anyone function. The I/O Port Request Block has the following
format:

PORT = range/list [STEP = value [COUNT = value]]
[SHARE = YES I NO I "text"]
[SIZE = BYTE I WORD I DWORD]

Revision 3.10 339

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

PORT Statement (Optional)

Syntax:
PORT = list/range [STEP = value [COUNT = value]]
or
PORT = list

The I/O Port Request Block begins with a PORT statement. The PORT statement
can specify a single address, a list of addresses, or a range list that specifies the selections
for the port address.

The STEP parameter that follows the rangelist identifies the address increment of
the port selections. The COUNT parameter specifies the number of ports allocated from
the selected STEP address block. If the COUNT parameter is omitted, the configuration
utility uses a default COUNT value equal to the STEP value. If the STEP parameter is
omitted, the configuration utility allocates the entire range (a COUNT without STEP is
invalid). The following examples illustrate a PORT statement with a rangelist:

;allocates 16 ports: 300h-30Fh
PORT = 300h·30Fh

;allocates 4 ports: 300h-303h or 304h-307h or 308h-30Bh or 30Ch·30Fh
PORT = 300h·30Fh STEP = 4

;allocates 2 ports: 300h-301h or 304h-305h or 308h-309h or 30Ch-30Dh
PORT = 300h-30Fh STEP = 4 COUNT = 2

SHARE Statement (Optional)

Syntax:
[SHARE = YES I NO I "text"]

The SHARE statement specifies whether the function can share the requested
ports. The configuration utility uses a default of NO (the port cannot be shared) if the
SHARE statement is omitted. A text identifier can be specified to indicate that the
function can only share the port address with a device that has a matching identifier. The
identifier may be up to 10 characters.

SIZE Statement (Optional)

Syntax:
[SIZE = BYTE I WORD I DWORD]

The SIZE statement specifies the size of the I/O port as BYTE (8-bit), WORD (16·
bit) or DWORD (32-bit). The default size is BYTE.

340 Revision 3.10

4.6.4.4

EXTENDED INDUSTRY STA.J\fDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Memory Description Block

The memory description block specifies the amount of memory on an expansion
board and its starting address, whether the memory is cacheable, whether it is RAM or
ROM, the type of memory (system, expanded, virtual or other), and initialization
requirements of the memory. The configuration file can contain a maximum of nine
memory description blocks for anyone function. The memory request block has the
following format:

MEMORY = list/range [STEP = value]
[ADDRESS = rangelist [STEP = value]]
[WRITABLE = YES I NO]
[MEMTYPE = SYS I EXP I VIR 10TH]
[SIZE = BYTE I WORD I DWORD]
[DECODE = 20 I 24 I 32]
[CACHE = YES I NO]
[SHARE = YES I NO I "text"]

MEMORY Statement (Optional)

Syntax:
MEMORY = range [STEP = value]

The MEMORY statement signifies the beginning of the me,nory description block.
The range following the MEMORY statement specifies the minimum and maximum
amount of memory that can be put on the board. Each possible memory configuration can
be listed separately (such as, 1M, 2M, 3M for one to three megabytes) or a minimum-to­
maximum range can be specified (1M-3M). A minimum value of 1K is required and the
minimum-to-maximum range must be at least lK. The maximum range value is 64
megabytes.

If a range is specified, the STEP field must also be included to define the smallest
increment by which additional memory can be added to the board.

ADDRESS Statement (Optional)

Syntax:
ADDRESS = range [STEP = value]
or
ADDRESS = list

Revision 3.10 341

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDE~"IAL INFORMATION OF BCPR SERVICES, INC.

The ADDRESS statement specifies the starting address of the memory. The
ADDRESS statement is optional for memory if expanded or other is chosen for the
memory type. The ADDRESS statement is required for system and virtual memory. The
STEP parameter that follows the range identifies the addresses within the range that can be
used as the starting address. The following example illustrates the valid starting address
selections:

MEMORY = 1M
ADDRESS = 1M-4M STEP = 1M

Starting Ending
Address Address

100000h IFFFFFh
200000h 2FFFFFh
300000h 3FFFFFh
400000h 4FFFFFh

WRITABLE Statement (Optional)

Syntax:
[WRITABLE = YES I NO]

The WRITABLE field indicates whether the memory is RAM or ROM; for ROM
this field is NO. The default is YES.

MEMTYPE Statement (Optional)

Syntax:
[MEMTYPE = SYS I EXP I VIR 10TH]

The MEMTYPE field specifies whether the memory is SYStem (base and extended
memory), EXPanded (LIM EMS memory available for use by an expanded memory
manager), or OTHer (address space used for memory mapped I/O or bank-switched
memory). The default is SYS. VIRtual indicates that the address space is used, but no
physical memory occupies the address (address of a LIM page frame). Accesses to VIR
memory do not generate addresses on the EISA bus. OTH is intended primarily for
memory mapped I/O devices such as network adapters. OTH should include an
ADDRESS statement only if it resides in the physical address space.

SIZE Statement (Optional)

Syntax:
[SIZE = BYTE I WORD I DWORDj

The SIZE statement identifies the memory as BYTE (8-bit), WORD (16-bit) or
DWORD (32-bit) memory. The SIZE defaults to DWORD if the SIZE statement is
omitted.

342 Revision 3.10

EXTENDED INDUSTRY STA.~DARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DECODE Statement (Optional)

Syntax:
[DECODE = 20 I 24 I 32]

DECODE is an optional statement that specifies the number of address lines
decoded by a memory expansion board. The default is 32 for all memory boards.

CACHE Statement (Optional)

Syntax:
[CACHE = YES I NO]

The CACHE statement indicates whether the memory contents can be stored in
cache memory. The memory on a graphics board, for example, generally should not be
stored in a cache memory. The default is NO.

SHARE Statement (Optional)

Syntax:
[SHARE = YES I NO I "text"]

The SHARE statement indicates whether the memory in this space can be shared by
another device. The default is NO. A text identifier can be specified to indicate that the
function can only share the memory address range with a device that has a matching
identifier. The identifier can be up to 10 characters.

TOTALMEM Statement (Optional)

Syntax:
TOT ALMEM = list/range [STEP = value]

A choice statement block can contain a TOT ALMEM statement that indicates the
total amount of memory specified by the CHOICE. The TOT ALMEM statement is
required for a memory block that can have its allocation split between system memory
(SYS), other memory (OTH) and expanded memory (EXP).

The TOT ALMEM statement can include each possible memory size or provide a
minimum-to-maximum range of possible configurations. A range must include the STEP
keyword to indicate the smallest memory increment that can be added to the memory
board.

Revision 3.10 343

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DECODE Statement (Optional)

Syntax:
[DECODE = 20 I 24 I 32]

DECODE is an optional statement that specifies the number of address lines
decoded by a memory expansion board. The default is 32 for all memory boards.

CACHE Statement (Optional)

Syntax:
[CACHE = YES I NO]

The CACHE statement indicates whether the memory contents can be stored in
cache memory. The memory on a graphics board, for example, generally should not be
stored in a cache memory. The default is NO.

SHARE Statement (Optional)

Syntax:
[SHARE = YES I NO I "text"]

The SHARE statement indicates whether the memory in this space can be shared by
another device. The default is NO. A text identifier can be specified to indicate that the
function can only share the memory address range with a device that has a matching
identifier. The identifier can be up to 10 characters.

TOTALMEM Statement (Optional)

Syntax:
TOT ALMEM :: list/range [STEP:: value]

A choice statement block can contain a TOT ALMEM statement that indicates the
total amount of memory specified by the CHOICE. The TOT ALMEM statement is
required for a memory block that can have its allocation split between system memory
(SYS), other memory (OTH) and expanded memory (EXP).

The TOT ALMEM statement can include each possible memory size or provide a
minimum-to-maximum range of possible configurations. A range must include the STEP
keyword to indicate the smallest memory increment that can be added to the memory
board.

Revision 3.10 343

. ~-..

4.6.4.5

EXTENDED INDUSTRY STA..~DARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC •

INIT Statements

INIT statements specify the initializations for alternative configurations. An IN IT
statement can be used to Initialize any of the following:

DMA
IRQ
PORT
MEMORY

The confi~ration utility determines the initializations for the selected configuration
and stores them In nonvolatile memory. The system ROM power-up routine performs the
initializations.

I/O Port INIT Statement

Syntax:
INIT = IOPORT(i) [LOC(bitlist)] valuelist
or
INIT = PORTADR(address) [[BYTE I WORD I DWORD] list

The I/O port INIT statement specifies an I/O port and the binary value to write to
the port for the configuration.

The IN IT statement can specify the I/O port address, port size, and value directly in
the PORTADR(address) form of the statement. The default port size is BYTE. This
statement syntax provides a shorthand form of specifying I/O port values where no
initialization information block is required. When this shorthand format is used, all bits
must be specified with a 1, 0, or r (i.e., x's are not allowed to specify bits in this format).

The IN IT statement can also indicate the address with an IOPORT(i) statement
combined with the IOPORT(i) form of the INIT statement. The port size is specified with
the 10PORT(i) statement, not in the INIT statement.

The list portion specifies the binary values to initialize the port. The values must be
binary.

The INIT statement can include the LOC(bitlist) string to reference individual bits.
The bitlist contains a list or range of bit positions. The elements of the bitlist must be in
MSBit to LSBit order. A space must be included between elements as a delimiter.

INIT = PORTADR(Oz800h) WORD 0000111100001111b ;WORD port

INIT = PORTADR(Oz800h) 00001111b ;Byte port

INIT = PORTADR(Oz800h) 001100rr ;Byte port with "r" bits

INIT = IOPORT(1)(Oz800h) LOC(7-2) 001100 ;Byte port (range)

INIT = IOPORT(2)(Oz800h) LOC(7 6 1 0) 0011 ;4 bits specified

INIT = IOPORT(3)(Oz800h) 00001111

Revision 3.10 345

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Switch INIT Statement

Syntax:
INIT = SWITCH(i) LOC(switchlist) valuelist

The switch INIT statement specifies the switch positions and the appropriate setting
for the configuration. SWITCH(i) indicates the switch being initialized. LOC(switchlist)
valuelist identifies the switch positions and specifies the setting.

The LOC(switchlist) contains a list or range of switch positions. The elements of the
switch list must be in ascending order if REVERSE = YES, or descending order if
REVERSE = NO. A space must be induded between elements as a delimiter.

The valuelist specifies the switch setting for each switch position. The valuelist must
use the same order as the switchlist. A DIP switch can be set for "1" to indicate "ON," or "0"
to indicate "OFF." The dip switch settings are not delimited with a space. The valuelist for
a rotaI)' or slide switch indicates the selected position number by a "1" in the appropriate
bit pOSItion.

Jumper INIT Statement

Syntax:
INIT = JUMPER(i) LOC(jumperlist) valuelis!

The jumper INIT statement specifies the jumper pOSItIOns and the appropriate
setting for the configuration. JUMPER(i) indicates the jumper being mitialized.
LOOjumperlist) specifies the jumper positions being specified.

The LOC(jumperlist) contains a list of jumper positions. The valuelist specifies the
setting for each jumper position. The valuelist must not be delimited with a space and must
use the same order as the jumperlist.

The jumperlist specifies paired and tripole jumpers by their jumper positions. A
paired or tripole jumperlist can use a range to indicate the jumpers. The elements of the
jumperlist must be in ascending order if REVERSE = YES, or descending order if
REVERSE = NO. A space must be included between elements as a delimiter.

The jumperlist specifies inline jumpers by indicating the connection between two
posts with a caret. For example, LOC(1"2 3"4 5'6) specifies the jumper between posts 1
and 2, between posts 3 and 4, and between posts 5 and 6. The elements of the jumperlist
must be in ascending order if REVERSE = YES, or descending order if REVERSE = NO.
A space must be included between elements as a delimiter.

Paired and inline jumper valuelist settings can be indicated as "1" for "ON" Uumper
installed), "0" for "OFF" Uumper not installed). The paired jumper settings are not
delimited with a space.

A tripole jumper valuelist settings can be indicated as "1" for "ON" Uumper installed
in upper or right position), "0" for "OFF" Uumper installed in lower or left pOSItion) "n" for
jumper not installed. The tripole jumper settings are not delimited with a space.

346 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Software INIT Statement (Optional)

Syntax:
INIT = SOFIW ARE(i) "parameter" [I parameter] ...

The software IN IT statement specifies the command line parameter that invokes a
software command for the selected configuration. The (i) indicates the SOFIW ARE(i)
statement that contains text to display with the parameters. The parameters specify an
ASCII string that appends to a software command, which specified in the SOFIW ARE(i)
text. For example, the following configuration file fragment illustrates use of the software
INIT statement and SOFIW ARE(i) statement that specify an entry into an MS-DOS
AUTOEXEC.BAT file:

SOFIWARE(l) =
"This example software initialization
statement indicates that the NET.EXE
file with command line parameters must
be placed in the AUTOEXEC.BAT file: \n\n
NET.EXE /1 = n /D = n where:"

FUNCTION = "Expanded Memory Allocation"
CHOICE = "4 MB Expanded Memory"

INIT = SOFIWARE(l) "/1=4 /0=3"

Revision 3.10 347

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.5 Resource Group

A resource description block must have one or more group of resource and
initialization statements. The elements of the resource description block are grouped
together based on their interdependence. All resource and initialization statements must
be in a group. The three types of group are:

• LINK groups, in which selection of anyone resource in the group determines
the selection of all other resources and initializations in the group.

• COMBINE groups, in which each resource selection is independent, but the
initialization is determined by the combination of resource selections.

• FREE groups, in which each resource selection is independent, and the
initializations are independent of the resource selections.

The groups begin with a keyword (LINK, COMBINE or FREE) and end at the next
group keyword or at the end of the resource description block.

4.6.5.1 LINK Groups

The elements of linked ~roup have a direct relationship with each other. The
selection of one resource determmes the other resources in the group and the initialization.
Each statement in a linked group must have the same number of options. If the first option
is chosen for one resource, the configuration utility automatically selects the first option for
the other resource statements and the initialization statements. The syntax of a linked
group is:

LINK
resource statement

resource statement
INIT statement

INIT statement

The following example illustrates the use of a linked group that provides selection of
the interrupt or DMA channel. The user (or configuration utility) can select the interrupt
or the DMA channel, but after making the one selection, the other resource and the
initialization must correspond to the same option. An IRQ = 3 selection forces the
configuration utility to select DMA = 2 and IOPOR T(1) initialization 00001111 b. A
DMA = 5 selection forces the configuration utility to select IRQ = 4 and IOPORT(l)
initialization 11110000b.

348

LINK
IRQ = 3 14
DMA = 215
INIT = IOPORT(l) 00001111b 1 11110000b

Revision 3.10

4.6.5.2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

COMBINE Groups

The elements of combined groups have an indirect relationship with each other.
Each resource selection is independent, but the initialization is directly determined by the
combination of resource selections. The syntax of a linked group is:

COMBINE
resource statement

resource statement
INIT statement

INIT statement

The following example illustrates the use of a combined ~roup that provides
selection of a memory size and starting address. The user (or confIguration utility) can
select any memory size and starting address, and the configuration utility automatically
selects the initialization that corresponds to the selected memory size and starting address.
The table after the example lists the initialization value for each possible combination.

COMBINE
MEMORY = 4M IBM ;Memory size
ADDRESS = 1M 4M ;Starting address
INIT = IOPORT(2) 00001111b I OlO01111b 11000111 1b I 11001111b

Memory Starting Port
Size Address Initialization

4M 1M 0OOOl111b
4M 4M OlOOl111b
8M 1M 10001111b
8M 4M 11001111b

Revision 3.10 349

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates the use of a combined group in which the starting
address selection and the initialization use a range with a step. The user (or configuration
utility) can select any memory size and starting address, and the configuration utility
automatically selects the initialization that corresponds to the selected memory size and
starting address. The table after the example lists the initialization value for each possible
combination.

COMBINE
MEMORY = 4M I 8M 112M
ADDRESS = 4M-256M STEP = 4M
INIT = IOPORT(l) 00000000b-10111111b

Memory Starting IN IT
Size Address Value

4M 4M OOOOOOOOb
4M 8M 0000000lb
4M 12M 00000010b
4M 16M 0OOOOO11b

4M 244M 00111100b
4M 248M 00111101 b
4M 252M 00111110b
4M 256M 00111111b

12M 244M 10111100b
12M 248M 10111101b
12M 252M 10111110b
12M 256M 10111111b

The following COMBINE fragment and INIT table illustrates the initialization
value assignment sequence:

350

COMBINE
RESOURCE] 1 2 3
RESOURCE2 1 2 3
RESOURCE3 1 2 3
INIT = 0000lb-llOl1b

Revision 3.10

--.

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

INIT RESOURCE 1 Part RESOURCE2 Part RESOURCE3 Part
Value of Combination of Combination of Combination

OOOOlb RESOURCE 1 option 1 RESOURCE2 option 1 RESOURCE3 option 1
OOOlOb RESOURCE 1 option 1 RESOURCE2 option 1 RESOURCE3 option 2
OOOllb RESOURCE 1 option 1 RESOURCE2 option 1 RESOURCE3 option 3

00100b RESOURCE 1 option 1 RESOURCE2 option 2 RESOURCE3 option 1
OOlOlb RESOURCE 1 option 1 RESOURCE2 option 2 RESOURCE3 option 2
OOl1Ob RESOURCE 1 option 1 RESOURCE2 option 2 RESOURCE3 option 3

OOlllb RESOURCE1 option 1 RESOURCE2 option 3 RESOURCE3 option 1
01000b RESOURCE 1 option 1 RESOURCE2 option 3 RESOURCE3 option 2
01001b RESOURCE 1 option 1 RESOURCE2 option 3 RESOURCE3 option 3

OlO1Ob RESOURCE 1 option 2 RESOURCE2 option 1 RESOURCE3 option 1
010llb RESOURCE 1 option 2 RESOURCE2 option 1 RESOURCE3 option 2
01100b RESOURCE 1 option 2 RESOURCE2 option 1 RESOURCE3 option 3

0110lb RESOURCE 1 option 2 RESOURCE2 option 2 RESOURCE3 option 1
011 lOb RESOURCE 1 option 2 RESOURCE2 option 2 RESOURCE3 option 2
01111b RESOURCE 1 option 2 RESOURCE2 option 2 RESOURCE3 option 3

I

10000b RESOURCE 1 option 2 RESOURCE2 option 3 RESOURCE3 option 1
1000lb RESOURCE 1 option 2 RESOURCE2 option 3 RESOURCE3 option 2
10010b RESOURCE 1 option 2 RESOURCE2 option 3 RESOURCE3 option 3

100llb RESOURCE 1 option 3 RESOURCE2 option 1 RESOURCE3 option 1
10100b RESOURCE 1 option 3 RESOURCE2 option 1 RESOURCE3 option 2
10101b RESOURCE1 option 3 RESOURCE2 option 1 RESOURCE3 option 3

101 JOb RESOURCE 1 option 3 RESOURCE2 option 2 RESOURCE3 option 1
1011lb RESOURCE 1 option 3 RESOURCE2 option 2 RESOURCE3 option 2
11000b RESOURCE 1 option 3 RESOURCE2 option 2 RESOURCE3 option 3

1100lb RESOURCE 1 option 3 RESOURCE2 option 3 RESOURCE3 option 1
11010b RESOURCE 1 option 3 RESOURCE~ option 3 RESOURCE3 option 2
11011b RESOURCE 1 option 3 RESOURCE2 option 3 RESOURCE3 option 3

4.6.5.3 Free Groups

The elements of free-form groups have no relationship with each other. Each
resource selection is independent and the initializations are independent of the resource
selections. The syntax of a free-form group is as follows:

FREE
resource statements
INIT statements

Revision 3.10 351

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates the use of a free-form group in which IRQ 2, 3, 4,
or 5 can be selected. The IRQ selection is independent of all other resource declarations.
The example does not include any IRQ initialization.

FREE
IRQ = 2 I 3 I 4 I 5

4.6.6 PORTVARO) Variable

Syntax:
IOPORT(i) = PORTY AR(j)
combined with:
Portvar(j) = address

The variable, PORTY AR(j), can be used to modify an IOPORT(i) address based on
a configuration selection. Each variable must have a separate PORTY AR(j) statement
with a different identifier, "i". The "i" can be any positive integer value from 1 to 32767.
The PORTY AR(j) variable replaces the address portion of the IOPORT(i) statement. The
configuration utility assigns an address to the IOPORT(i) based on a PORTV AR(j)
assignment statement within a choice or subchoice statement block.

The following configuration file segment illustrates the use of PORTY AR(j) to
initialize a serial port interrupt. The example indicates an initialization value 00000001 b is
\\Titten to port address 3F9h for a COM1 selection or written to port address 2F9h for a
COM2 selection. The configuration utility replaces the PORTY AR(3) variable with the
port address (3F9h or 2F9h) based on the CHOICE selected.

352

IOPORT(l) = PORTYAR(3)
FUNCTION = "Serial Port"

CHOICE = "COM1"
PORTY AR(3) = 3F9h
INIT = IOPORT(l) OOOOOOOlb

CHOICE = "COM2"
PORTY AR(3) = 2F9h
INIT = IOPORT(l) 00000001b

Revision 3.10

.-

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.7 System Board Configuration File

System board configuration files must supply additional information not required by
expansion boards to the configuration utility. This information includes the amount of
nonvolatile memory available, the number of expansion slots on the system board, the
power available at each slot, and the size and type of each expansion slot. The system
description block supplies the additional information.

4.7.1 Board Identification Block

The board identification block for system boards uses the same syntax as an
expansion board identification block. The CATEGORY statement must equal "sys" and
the SLOT statement must equal EMB(O). The syntax of the board identification block is:

BOARD
ID = "7 character ID"
NAME = "system board product name"
MFR = "system board manufacturer name"
CATEGORY = "SYS"
SLOT = EMB(O)
AMPERAGE = value ;System board +5V current usage in rnA

4.7.2 System Description Block

The system description block includes a SYSTEM statement, the amount of
nonvolatile memory. and a description of the available slots. The system description block
follows the board Identification block in the configuration file. The syntax of the system
description block is:

SYSTEM
[NONVOLATILE = value] ;Bytes of nonvolatile memory
[AMPERAGE = value] ;Total +5V current (rnA) from power supply
[SLOT(1) = ISA8 I ISA16 I EISA 10TH [,"text"] [,"text"] ...]

[LEN G TH = value]
[SKIRT = YES I NO]
[BUSMASTER = YES I NO]

SLOT(n) = ISA8 I ISA16 I EISA 10TH
[LENGTH = value]
[SKIRT = YES I NO]

SYSTEM Statement (Required)

Syntax:
SYSTEM

The SYSTEM statement identifies the beginning of the system description block.
The SYSTEM statement follows the board identification block in the configuration file.

Revision 3.10 353

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

NONVOLATILE Statement (Optional)

Syntax:
NONVOLATILE = value

The NONVOLATILE statement specifies the total bytes of EISA nonvolatile
memory in the system. The NONVOLATILE statement does not include the 64 bytes of
ISA compatible nonvolatile memory.

The configuration data for one expansion slot, one virtual device or one embedded
device (including the system board--EMB(O», can use no more than 340 bytes of
nonvolatile memory. A slot with a multifunction expansion board installed can use 340
bytes total for all expansion board functions. EISA systems must support at least 340 bytes
of nonvolatile memory for each expansion slot, plus nonvolatile memory for the system
board functions.

The system board designer can use the following equation to determine the
minimum amount of EISA nonvolatile memory required:

Nonvolatile Memory =
(Expansion Slots + System Board + Embedded Devices + Virtual Devices) * 340

Where:

Expansion Slots = number of expansion connectors
A whole number between 1 and 15

System Board
EMB(O)--system board

Embedded devices = number of embedded devices on system board
A whole number between

1 and (15 - Physical Slots)

Virtual devices = number of system board virtual devices
Virtual devices ~ 1

The following example illustrates the nonvolatile memory calculation for a system
board with 1 embedded device, 8 expansion connectors and 2 virtual devices:

Assumptions:

System Board 1
Physical Slots = 8
Embedded devices = 1
Virtual devices = 2

Total = 12

Minimum Nonvolatile Memory = 12 * 340 = 4080 bytes

354 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

An AMPERAGE statement specifies the total amount of + 5 volt power (in
milliamps) available to expansion devices installed on the expansion bus.

value = power supply current

4.7.3 SLOT Statement Block (Optional)

Syntax:
SLOT(i) = ISA8 I ISA16 I EISA 10TH (,"text"] [,"text"] ...

The SLOT(i) statement is used to specify an expansion slot as 8-bit ISA (ISA8), 16-
bit ISA (ISA16), or 32-bit EISA (EISA). The i represents the slot number.

The SLOT(i) statement does not apply to the system board, embedded devices or
virtual devices, when included as part of the system description block.

LENGTH Statement (Optional)

Svntax:
[LENGTH = value]

A LENGTH statement can accompany a SLOT(i) statement to specify the
maximum length board (a decimal integer in millimeters) that can be installed in the slot.

System boards should include a LENGTH statement. The configuration utility
cannot optimize expansion board slot allocation if system boards do not specify the slot
lengths. If the LENGTH statement is omitted, the configuration utility assumes the
maximum length of 341 millimeters and assigns slot numbers without regard to slot length.

SKIRT Statement (Optional)

Syntax:
[SKIRT = YES I NO]

Each SLOT(i) statement can also be accompanied by a SKIRT statement that
specifies whether the slot supports a skirted expansion board. The default is YES if the
SLOT(i) statement does not have an accompanying SKIRT statement.

BUSMASTER Statement (Optional)

Syntax:
[BUS MASTER = YES I NO]

The BUSMASTER statement specifies whether an EISA slot accepts a bus master
expansion board. The slot defaults to BUSMASTER = YES if the BUSMASTER
statement is omitted from the slot statement block and the slot is an EISA slot.

Revision 3.10 355

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8 EISA System ROM Operations

EISA system ROM provides the following services to support automatic hardware
configuration:

•

•

4.8.1

The EISA system ROM power-up routines use the configuration information
stored in nonvolatile memory to initialize the system board and expansion
boards.

The EISA system ROM provides BIOS routines that simplify reading and
writing configuration data in nonvolatile memory.

EISA System ROM BIOS Routine Calls

Two BIOS routines are called by the configuration utility to initialize nonvolatile
memory. One BIOS routine clears configuration information from nonvolatile memory
and the other stores configuration information in nonvolatile memory. The BIOS routines
are part of the INTI5 handler and have the following call interface:

Clear Nonvolatile Memory
INT I5h, AH=D8h, AL=02h (or 82h)

Write Nonvolatile Memory
INT I5h, AH=D8h, AL=03h (or 83h)

Device drivers and the power-up BIOS routines use two other BIOS routine to
retrieve configuration information from nonvolatile memory. One BIOS routine returns a
subset of the configuration information stored in nonvolatile memory for one expansion
board. The other routine returns all the configuration information about one expansion
board function. The BIOS routines are called through the INT I5h handler with the
following call interface:

356

Read slot configuration information
INT I5h, AH=D8h, AL=OOh (or 80h)

Read function configuration information
INT I5h, AH=D8h, AL=Olh (or 81h)

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The BIOS routines are bimodal (real or protected mode) and can be called for
execution as 32- or 16-bit code. Protected mode execution is accomplished by simulating
an INT 15h instruction (push flags, call far) to the address pointed to by the INT 15h vector
(OOOO:0054h). If INT 15h no longer points to the system ROM, then the industry standard
entry point for INT 15h, FOOO:F859h, can be called directly. The INT 15h BIOS routines
require 1536 bytes allocated from the stack for temporary RAM variables.

Protected mode operating systems that can create a code segment descriptor can
call the INT I5h BIOS routines by creating a descriptor that has a base address of FOOOOh
and executing a far call to the offset address of the industry standard entry point. The code
se~ment descriptor must have a limit of FFFFh, and must have I/O privilege (current
prIvilege level of code segment being executed must be equal to or less than IOPL). The
code segment descriptor can have a D-bit of Oh (16-bit addressing and operands) or Ih (32-
bit addressing and operands). The address segment D-bit can be set to Oh or Ih (indicating
16- or 32-bit data size) independent of the code segment D-bit setting.

A code segment other than FOOOOh may be used as long as it includes the 64 Kbytes
starting at FOOOOh and has I/O privilege (current privilege level of code segment being
executed must be equal to or less than 10PL).

•

•

•
•

•

4.8.1.1

The INT 15h system ROM BIOS routines adhere to the following conventions:

Do not perform any segment register-dependent operations (all branch
instructions are relative to the instruction pointer)

Do not change the segment registers (including the code segment)

Return to the calling routine with the interrupt flag unmodified

Do not use privileged instructions (LMSW, LSL, etc.)

Do not write data using a code segment (CS) override

Identify System Board Type

A device driver can identify an EISA system board by detecting the upper case
ASCII string "EISA" at memory address FOOO:FFD9h through FOOO:FFDCh.

Revision 3.10 357

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.S.1.2 Read Slot Configuration Information, INT 15h, AH = DSh,
AL=OOh (or SOh)

This BIOS routine reads a subset of the configuration information for one expansion
board or the system board from nonvolatile memory. The BIOS routine returns a summary
that includes all functions of the expansion board.

INT ISh, AH = DSh, AL= OOh (or SOh)

INPUT:

AH =
AL=
AL=
CL =

OD8h
OOh (If CS specifies 16-bit addressing)
80h (If CS specifies 32-bit addressing)
Slot Number (including embedded and virtual devices)
o System board
1 Slot 1
2 Slot 2
n Slot n

OUTPUT:

358

AH = OOh
80h
82h
83h
86h
87h

Successful completion (carry flag = 0)
Invalid slot number (carry flag = 1)
Nonvolatile memory corrupt (carry flag = 1)
Empty slot (carry flag = 1)
Invalid BIOS routine call (carry flag = 1)
Invalid system configuration (carry flag = 1)

Revision 3.10

AL=

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDEl'.'TIAL INFORMATION OF BCPR SERVICES, INC.

BH =
BL =
CH =
CL =
DH =
DL =

DI and SI =

Duplicate ID number
0000 If no duplicate ID
0001 If 1st duplicate ID

1111 If 15th duplicate ID
Slot type
00 = EXpansion slot
01 = Embedded device
10 = Virtual device
11 = Reserved
Product ID
O=readable
1 = not readable
Duplicate ID
O=No duplicate ID.
1 = Duplicate IDs.

}

ThiS nibble indicates which CFG
file is loaded when duplicate file
names are present. (I.e., the first

is called !AAAnnnn.CFG; the
next is lAAAnnnn.CFG, the next
is 2AAAnnnn.CFG and so on.

Major revision level of configuration utility
\1inor revision level of confi~ration utility
Checksum (MSByte) of confIguration file
Checksum (LSByte) of configuration file
Number of device functions
Combined function information byte

Bit 7: Reserved (0)
Bit 6: Reserved (0)
Bit 5: Slot has one or more port initialization entries
Bit 4: Slot has one or more port range entries
Bit 3: Slot has one or more DMA entries
Bit 2: Slot has one or more interrupt (IRQ) entries
Bit 1: Slot has one or more memorv entries
Bit 0: Slot has one or more function type definitions

Four byte compressed ID
DI (Isb) = Byte 0
DI (msb) = Byte 1
SI (Isb) = Byte 2
SI (msb) = Byte 3

4.8.1.3 Read Function Configuration Information, INT 15h,
AH=OD8h, AL=01h (or 81h)

This BIOS routine reads all the configuration information for one expansion board
function. The BIOS routine transfers the data block that contains the configuration
information for the expansion board function to a table in memory. The BIOS routine
stores the data block at the starting address pointed to by DS:SI. The table's data structure
is defined later in this section.

Revision 3.10 359

EXTENDED INDUSTRY STA.~DARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The caller can execute the "Read Slot Configuration Information" BIOS routine to
determine the number of expansion board functions, and execute the "Read Function
Configuration Information" BIOS routine to retrieve the data block for each function. The
BIOS routine retrieves the function data block indicated by the function number in register
CH. The caller can inspect the TYPE and SUBTYPE fields in each data block to identify
the function.

INT ISh, AH=OD8h, AL=OIh (or 8Ih)

INPUT:

AH =
AL=
AL=
CH =
CL =

DS =
SI =
ESI =

OUTPUT:

AH =

OD8h
01h (If CS specifies 16-bit addressing)
81h (If CS specifies 32-bit addressing)
Function number to read (0 ... n-1)
Slot Number (including embedded and virtual slots)
o = System Board
1 = Slot 1
2 = Slot 2
n = Slot n
Segment for :~!Urn data buffer
Offset to return data buffer (16-bit call)
Offset to return data buffer (32-bit call)

OOh Successful completion (carry flag = 0)
80h Invalid slot number (carry flag = 1)
81h Invalid function number (carry flag = 1)
82h Nonvolatile memory corrupt; (carry flag = 1)
83h Empty Slot (carry flag == 1)
86h Invalid BIOS routine call (carry flag = 1)
87h Invalid system configuration (carry flag = 1)

Standard Configuration Data Block Structure

The 320-byte data block pointed to by DS:SI contains the configuration information
for one expansion board function. The field sizes of the data block are fixed sizes. A
configuration file must not specify resources or initializations that cannot fit within this
data structure. The 320-byte data block has the following structure:

360 Revision 3.10

.--..

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Four-Byte Compressed ID Total Bytes = 4
Offset = OOh

Byte 0
Bit 7
Bit 6:2
Bit 1:0

Byte 1
Bit 7:5
Bit 4:0

Byte 2
Bit 7:4
Bit 3:0

Byte 3
Bit 7:4
Bit 3:0

Reserved (0)
Character 1
Character 2

Character 2
Character 3

1st hex di~it of product number
2nd hex digit of product number

3rd hex digit of product number
I-digit product revision number

ID and Slot Information Total Bvtes = 2
Offset';;' 04h

Byte 0
Bit 7 -

Bit 6 -

Bit 5:4 -

Bit 3:0 -

Byte 1
Bit 7 -

Bit 6:2 -
Bit 1 -

0= no duplicate ID is present
1 = duplicate is present
0= ID is readable
1 = ID is not readable
Slot type

00 = expansion slot
01 = embedded slot
10 = virtual slot
11 = reserved

Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file lACE0105)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG fjle F ACE0105)

0= configuration is complete
1 = configuratjon is not complete
Reserved (0)
0= EISA IOCHKERR not supported
1 = EISA IOCHKERR supported

Bit 0 - 0= EISA ENABLE not supported (expansion board cannot be disabled)
1 = EISA ENABLE not supported (board can be disabled)

Revision 3.10 361

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CFG File Extension Revision Level Total Bytes = 2
Offset = 06h

Byte 0 = Minor revision level ~O if no CFG File Extension~
Byte 1 = Major revision level 0 if no CFG File Extension

Selections Total Bytes = 26
Offset = 08h

Bvte 0 = 1st Selection
BYte 1 = 2nd Selection

Byte 25 = 26th Selection

Function Information Total Bytes = 1
Offset = 022h

Byte 0
Bit 7 - 0= function is enabled

1 = function is disabled
Bit 6 - CFG extension Free-form data
Bit 5 - Port initialization entR(s) follows
Bit 4 - Port range ent7c~s) fol ows
Bit 3 - DMA enta~b a lows
Bit 2 - Interrupt) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String Total Bytes = 80
Offset = 023h

Byte 0 = 1st character of ASCII string
Byte 1 = 2nd character of ASCII string

Byte 79 = 80th character of ASCII string

For examgle, TYPE = COM,ASY;COM1~roduces:
Byte = C Start of TYPE tring
Bvte 1 = 0
Byte 2 = M

Delimiter for TYPE string fragments Byte 3 = ,
Byte 4 = A
Byte 5 = S

End of TYPE strint Byte 6 = Y
Byte 7 = ; Delimiter for SUB YPE string
Byte 8 = C Start of SUBTYPE string
Byte 9 = 0
Byte 10= M

End of SUBTYPE string Byte 11 = 1
Byte 12= 0 Zero fill to end of field
Byte 13= 0

Byte 79= 0

362 Revision 3.10

.---

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Memory Configuration

Byte 0 = Memory configuration byte
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6 - Reserved (0)
Bit 5 - 0 = Not shared memory

1 = Shared memory
Bit 4:3 - Memory Type

00 = SYS (base or extended)
01 = EXP (expanded)
10 = VIRtual
11 = OTHer

Bit 2 - Reserved (0)
Bit 1 - 0 = Not Cached

1 = Cached
Bit 0 - 0 = Read Only (ROM)

1 = Read/Write (RAM)

Byte 1 = Memory Data Size
Bit 7:4 - Reserved (0)
Bit 3:2 - Decode Size

00 = 20

Bit 1:0

01 = 24
10 = 32
11 = Reserved (0)
Data Size (Access size)
00 = BYTE
01 = WORD
10 = DWORD
11 = Reserved (0)

Byte 2 = LSByte Memory start address (divided by lOOh)
Byte 3 = Midale Byte Memory start address
Byte 4 = MSByte Memory start address
Byte 5 = LSByte Memory size (bytes divided by 400h)
Byte 6 = MSByte Memory size (0 in this word means 64M)

Interrupt Configuration

Byte 0
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6 - 0 = Not Shared

1 = Shared
Bit 5 - 0 = Edge Triggered

1 = Level Triggered
Bit 4 - Reserved (must be 0)
Bit 3:0 - Interrupt (O-F)

Byte 1 = Reserved (0)

Revision 3.10

Total Bytes = 63
Offset = 073h

Total Bytes = 14
Offset = OBlh

363

EXTENDED INDUSTRY STA.~DARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Channel Description

Byte 0
Bit 7 -

Bit 6 -

Bit 5:3 -
Bit 2:0 -

Byte 1
Bit 7:6 -
Bit 5:4 -

Bit 3:2 -

Bit 1:0-

o = Last entry
1 = More entries follow
o = Not Shared
1 = Shared
Reserved (0)
DMA Channel Number (0-7)

Reserved (0)
DMA Timing

00 - Default (ISA compatible) timing
01 - Type "A" timing
10 - Type "B" timing
11 - BURST (Type tiC") timing

Transfer size
00 = 8-bit (byte) transfer
01 = 16-bit (word) transfer
10= 32-bit (dword) transfer
11 = Reserved

Reserved (0)

Port I/O Information

Bvte 0
• Bit 7 -

Bit 6 -

Bit 5 -
Bit 4:0-

o = Last entry
1 = More entries follow
o = Not Shared
1 = Shared
Reserved (0)
Number of Ports (minus 1)

00000 = 1 port
00001 = 2 sequential ports

11111 = 32 sequential ports

Byte 1 = LSByte I/O Port Address
Byte 2 = MSByte I/O Port address

364

Total Bytes = 8
Offset = OCOh

Total Bytes = 60
Offset = OC8h

Revision 3.10

--

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Initialization Data

Byte 0 = Initialization Type
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6:3 - Reserved (0)
Bit 2 - Port value or Mask value

o -Write value to port
1 - Use mask and value

Bit 1:0 - Type of access
00 - Byte address (8-bit)
01 - Word address (16-bit)
10 - Dword address (32-bit)
11 - Reserved (0)

Byte 1 = LSByte of port I/O address
Byte 2 = MSByte of port I/O address

IF Byte 0, Bit 2 = 0 (no mask), THEN
Bit 1:0 = Port width to write

00 = Bvte 3 = Port value
01 = Byte 3 = LSByte of port value

10=
Byte 4 = MSByte of port value
Byte 3 = LSByte of port value
Byte 4 = 2nd byte of port value
Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value

11 = Reserved
IF Byte 0, Bit 2 = 1 (use mask), THEN

Bits 1:0 = Number of bytes/port value/mask
00= Byte 3 = Port value

01=
Byte 4 = Port mask (byte)
Byte 3 = LSByte of port value
Byte 4 = MSByte of port value
Byte 5 = LSByte of Port mask (word)

Total Bytes = 60
Offset = 0104h

10=
Byte 6 = MSByte of Port mask (word)
Bvte 3 = LSByte of port value
Byte 4 = 2nd byte of port value

11=

Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value
Byte 7 = LSByte of port mask (dword)
Byte 8 = 2nd byte of port mask (dword)
Byte 9 = 3rd byte ofr0rt mask (dword)
Byte 10 = MSByte a port mask (dword)
Reserved (0)

Free-form Configuration Data Block Structure

When the Free-form data bit is set in the Function Information byte (bit 6), the 320-
byte data structure has the following specific format.

Revision 3.10 365

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Four-Byte Compressed ID Total Bytes = 4
Offset = OOh

Byte 0
Bit 7
Bit 6:2
Bit 1:0

Bytel
Bit 7:5
Bit 4:0

Byte 2
Bit 7:4
Bit 3:0

Byte 3
Bit 7:4
Bit 3:0

Reserved (0)
Character 1
Character 2

Character 2
Character 3

1st hex di~it of product number
2nd hex dIgit of product number

3rd hex digit of product number
I-digit product revision number

ID and Slot Information Total Bytes = 2
Offset = 04h

Byte 0
Bit 7 -

Bit 6 -

Bit 5:4 -

Bit 3:0-

Byte 1

366

Bit 7 •

Bit 6:2-
Bit 1 -

Bit 0-

0= no duplicate ID is present
1 = duplicate is present
0= ID is readable
1 = ID is not readable
Slot type

00 = expansion slot
01 = embedded slot
10 = virtual slot
11 = reserved (0)

Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file lACE0105)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file F ACE0105)

0= configuration is complete
1 = configuration is not complete
Reserved (0)
0= EISA IOCHKERR not supported
1 = EISA IOCHKERR supported
0= EISA ENABLE not supported (expansion board cannot be disabled)
1 = EISA ENABLE not supported (board can be disabled)

Revision 3.10

--

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CFG File Extension Revision Level Total Bytes = 2
Offset = 06h

Byte 0 = Minor revision level [0 if no CFG File Extension~
Byte 1 = Major revision level 0 if no CFG File Extension

Selections Total Bytes = 26
Offset = 08h

Bvte 0 = 1st Selection
Byte 1 = 2nd Selection

Byte 25 = 26th Selection

Function Information Total Bytes = 1
Offset = 022h

Byte 0
Bit 7 - 0= function is enabled

1 = function is disabled
Bit 6 - CFG extension Free-form data (= 1)
Bit 5 - Port initialization entrv(s) follows
Bit 4 - Port range entrv~s) fonows
Bit 3 - DMA entR'~bfo lows
Bit 2 - Interrupt () entl)'(s) follows
Bit 1 - Memory entrv(s) follows
Bit 0- Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String Total Bytes = 80
Offset = 023h

Byte 0 = 1st character of ASCII string
Byte 1 = 2nd character of ASCII string

Byte 79 = 80th character of ASCII string

Freeform Data Total Bytes = 2 to 205
Offset = 73h

Byte 0 = Length of following data block
Byte 1 = 1st byte of freeform data

Byte 204 = 204th byte of freeform data

Revision 3.10 367

4.8.1.4

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Clear Nonvolatile Memory, INT 15h, AH=D8h, AL=02h (or 82h)

This BIOS routine clears all EISA nonvolatile memory locations. The configuration
utility uses the "Clear Nonvolatile Memory" BIOS routine Call prior to writing
configuration information to nonvolatile memory.

The Clear Nonvolatile Memory BIOS routine does not clear the 64-byte ISA
nonvolatile memory.

INT 15h,AH=D8h,AL=02h (or 82h)

INPUT:

AH=
AL=
AL=
BH =
BL =

OUTPUT:

AH =

D8h
02h (If CS specifies 16-bit addressing)
82h (If CS specifies 32-bit addressing)
Configuration utility major revision level
Configuration utility minor revision level

OOh
84h
86h
88h

Successful completion (carry flag = 0)
Error clearing nonvolatile memory (carry flag = 1)
Invalid BIOS routine call (carry flag = 1)
Configuration utility not supported (carry flag = 1)

If 88h is returned in AH, indicating an unsupported revision of the configuration
utility, then the major revision number of the configuration utility that is supported is
returned in AL.

4.8.1.5 Write Nonvolatile Memory INT 15h, AH=D8h, AL=03h (or 83h)

This BIOS routine writes configuration information for one slot into EISA
nonvolatile memory. The "Write Nonvolatile Memory" BIOS routine also computes a CRC
code (or checksum) after each call. The CRC code (or checksum) is a cumulative
calculation that includes all data written to nonvolatile memory since the last "Clear
Nonvolatile Memory" BIOS routine Call.

368 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The Write Nonvolatile Memory BIOS routine does not write to the 64-byte ISA
configuration memory.

INT ISh, AH=D8h, AL=03h (or 83h)

INPUT:

AH=
AL=
AL=
CX =

DS =
SI =
ESI =

OUTPUT:

D8h
03h (If CS specifies 16-bit addressing)
83h (If CS specifies 32-bit addressing)
Length of data structure (CX = 0 indIcates empty slot)
Length includes two bytes for configuration file checksum
Segment of data buffer
Offset of data buffer (16-bit call)
Offset of data buffer (32-bit call)

AH = OOh Successful completion (carry flag = 0)
84h Error writing nonvolatile memory (carry flag = 1)
85h Nonvolatile Memory is full, (carry flag = 1)
86h Invalid BIOS routine call (carry flag = 1)

Standard Configuration Data Block Structure

The structure referenced by DS:SI in the Write Nonvolatile Memory BIOS routine
CALL for a slot with a single function has the following format:

Four-Byte Compressed ID

Byte 0
Bit 7
Bit 6:2
Bit 1:0

Byte 1
Bit 7:5
Bit 4:0

Byte 2
Bit 7:4
Bit 3:0

Byte 3
Bit 7:4
Bit 3:0

Revision 3.10

Reserved (0)
Compressed character 1
Compressed character 2

Compressed character 2
Compressed character 3

1st hex di~it of product number
2nd hex dIgit of product number

3rd hex digit of product number
I-digit product revision number

Total Bytes = 4

369

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICESt INC.

ID and Slot Information

Byte 0
Bit 7-

Bit 6-

Bit 5:4 -

0= no duplicate 10 is present
1 = duplicate is present
0= 10 is readable
1 = ID is not readable
Slot type

00 = expansion slot
01 = embedded slot
10 = virtual slot
11 = reserved (0)

Total Bytes = 2

Bit 3:0- Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file lACEOI05)
0010 = 2nd duplicate (CFG file 2ACE0105)

Byte 1
Bit 7-

Bit 6:2-
Bit 1-

.
1111 = 15th duplicate (CFG file FACE0105)

0= configuration is complete
1 = configuration is not complete
Reserved (0) ,
0= EISA IOCHKERR not supported
1 = EISA IOCHKERR supported

Bit 0- 0= EISA ENABLE not supported (expansion board cannot be disabled)
1 = EISA ENABLE not supported (board can be disabled)

CFG File Extension Revision Level

Byte 0 = Minor revision level (0 if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

Function Length

Total Bytes = 2

Total Bytes = 2

Length does not include these two bytes, or the checksum at the end of nonvolatile
memory
Byte 0 = LSB length of following function entry
Byte 1 = MSB length of following function entry

370 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selections

Byte 0 = Length of following selections field
Byte 1 = 1st Selection
Byte 2 = 2nd Selection

Byte 26 = 26th Selection

Function Information

Byte 0
Bit 7 - 0 = function is enabled

1 = function is disabled
Bit 6 -CFG extension free-form data
Bit S - Port initialization entry(s) follows
Bit 4 - Port range entry(s) follows
Bit 3 - DMA entry(s) follows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String

Byte 0 = Length of following ASCII string field
Byte 1 = 1st character of ASCII string
Byte 2 = 2nd character of ASCII string

Byte 80 = 80th character of ASCII string

For example, TYPE = COM,ASY;COMI produces:
Byte 0 = OCh Length of string field
Byte 1 = C Start of TYPE string
Byte 2 = 0
Byte 3 = M
Byte 4 =, Delimiter for TYPE string fragments

. ByteS = A
Byte 6 = S
Byte 7 = Y End of TYPE string
Byte 8 =; Delimiter for SUBTYPE string
Byte 9 = C Start of SUBTYPE string
Byte 10= 0
Byte 11= M
Byte 12 = 1 End of SUBTYPE string

Revision 3.10

Total Bytes = 2 to 27

Total Bytes = 1

Total Bytes = 2 to 81

371

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Memory Configuration Total Bytes = 7 to 63

Byte 0 = Memory configuration byte
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6 - Reserved (0)
Bit 5 - 0 = Not shared memory

1 = Shared memory
Bit 4:3 - Memory Type

00 = SYStem (base or extended)
01 = EXPanded
10 = VIRtual
11 = OTHer

Bit 2 - Reserved (0)
Bit 1 - 0 = Not Cached

1 = Cached
Bit 0 - 0 = Read Only (ROM)

1 = Read/Write (RAM)

Byte 1 = Memory Data Size
Bit 7:4 - Reserved (0)
Bit 3:2 - Decode Size

00 = 20
01 = 24
10 = 32
11 = Reserved (0)

Bit 1:0 - Data Size (access size)
00 = BYTE
01 = WORD
10 = DWORD
11 = Reserved (0)

Byte 2 = LSByte Memory start address (divided by 100h)
Byte 3 = Middle Byte Memory start address
Byte 4 = MSByte Memory start address
Byte 5 = LSByte Memory size (bytes divided by 400h)
Byte 6 = MSByte Memory size

Interrupt Configuration

Byte 0
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6 - 0 = Not Shared

1 = Shared
Bit 5 0 = Edge Triggered

1 = Level Triggered
Bit 4 - Reserved (0)
Bit 3:0 - Interrupt (O-F)

Byte 1 = Reserved (0)

372

Total Bytes = 2 to 14

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHlTECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Channel Description

Byte 0
Bit 7-

Bit 6-

Bit 5:3 -
Bit 2:0-

Bytel
Bit 7:6-
Bit 5:4 -

Bit 3:2-

Bit 1:0-

o = Last entry
1 = More entries follow
o = Not Shared
1 = Shared
Reserved (0)
DMA Channel Number (0-7)

Reserved (0)
DMA Timing

00 - Default (ISA compatible) timing
01 - Type "A" timing
10 - Type "B" timing
11 - BURST (Type "C") timing

Transfer size
00 = 8-bit (byte) transfer
01 = 16-bit (word) transfer
10= 32-bit (dword) transfer
11 = Reserved (0)

Reserved (0)

Total Bytes = 2 to 8

Port I/O Information Total Bytes = 3 to 60

Byte 0
Bit 7-

Bit 6-

Bit 5-
Bit 4:0-

o = Last entry
1 = More entries follow
o = Not Shared
1 = Shared
Reserved (0)
Number of Ports (minus 1)

00000 = 1 port
00001 = 2 sequential ports

11111 = 32 sequential ports

Byte 1 = LSByte I/O Port Address
Byte 2 = MSByte I/O Port address

Revision 3.10 373

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Initialization Data Total Bytes = 4 to 60

Byte 0 = Initialization Type
Bit 7 - 0 = Last entry

1 = More entries follow
Bit 6:3 - Reserved (0)
Bit 2 - Port value or Mask value

o -Write value to port
1 - Use mask and value

Bit 1:0 - Type of access
00 - Byte address (8-bit)
01 - Word address (16-bit)
10 - Dword address (32-bit)
11 - Reserved (0)

Byte 1 = LSByte of port I/O address
Byte 2 = MSByte of port I/O address

If Byte 0, Bit 2 = 0 (no mask), THEN
Bit 1:0 = Port width to write

00 = Byte 3 = Port value
01 = Byte 3 = LSByte of port value

Byte 4 = MSByte of port value
Byte 3 = LSByte of rort value
Byte 4 = 2nd byte 0 port value

10=

Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value

11 = Reserved (0)
If Byte 0, Bit 2 = 1 (use mask), THEN

374

Bits 1:0 = Number of bytes/port value/mask
00= Byte 3 = Port value

01=

10=

11=

Byte 4 = Port mask (byte)
Byte 3 = LSByte of port value
Byte 4 = MSByte of port value
Byte 5 = LSByte of Port mask (word)
Byte 6 = MSByte of Port mask (word)
Byte 3 = LSByte of port value
Byte 4 = 2nd byte of port value
Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value
Byte 7 = LSByte of rort mask (dword)
Byte 8 = 2nd byte a port mask (dword)
Byte 9 = 3rd byte of port mask (dword)
Byte 10= MSByte of port mask (dword)
Reserved (0)

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Configuration Data for 2nd function Function length

· ·
·

Configuration Data for 3rd function Function length

· · ·
· ·

Configuration Data for nth function Function length for nth function = 00

·
· ·

Connguration File Checksum Total Bytes = 2

Byte 1 = MSByte of configuration file checksum
Byte 0 = LSByte of configuration file checksum

Free-rormConnguration Data Block Structure

When the free-form data bit is set in the Function Information byte (bit 6), the data
block pointed to by DS:SI has the following specific format.

Four-Byte Compressed ID

Byte 0
Bit 7
Bit 6:2
Bit 1:0

Byte 1
Bit 7:5
Bit 4:0

Byte 2
Bit 7:4
Bit 3:0

Byte 3
Bit 7:4
Bit 3:0

Revision 3.10

Reserved (0)
Compressed character 1
Compressed character 2

Compressed character 2
Compressed character 3

1st hex di~it of product number
2nd hex dIgit of product number

3rd hex digit of product number
I-digit product revision number

Total Bytes = 4

375

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ID and Slot Information Total Bytes = 2

Byte 0
Bit 7-

Bit 6-

Bit 5:4-

Bit 3:0-

Byte 1
Bit 7-

Bit 6:2-
Bit 1 -

Bit 0-

0= no duplicate ID is present
1 = duplicate is present
0= ID is readable
1 = ID is not readable
Slot type

00 = expansion slot
01 = embedded slot
10= virtual slot
11 = reserved (0)

Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACE0105)
0010 = 2nd duplicate (CFG file 2ACE0105)

.
1111 = 15th duplicate (CFG file FACE0105)

0= configuration is complete
1 = configuration is not complete
Reserved (0)
0= EISA IOCHKERR not supported
1 = EISA IOCHKERR supported
0= EISA ENABLE not supported (expansion board cannot be disabled)
1 = EISA ENABLE not supported (board can be disabled)

CFG File Extension Revision Level Total Bytes = 2

Byte 0 = Minor revision level (0 if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

376 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECI'URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selections Total Bytes = 2 to 27

Byte 0 = Len§cth of following selections field
Byte 1 = 1st election
Byte 2 = 2nd Selection

.
Byte 26 = 26th Selection

Function Information Total Bytes = 1

Byte 0
Bit 7 - 0 = function is not disabled

1 = function is disabled
Bit 6 -CFG extension free-form data (= 1)
Bit 5 - Port initialization entry(s) follows
Bit 4 - Port range entt(s) follows
Bit 3 - DMA entry(s) ollows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String Total Bytes = 2 to 81

Byte 0 = Length of following ASCII string field
Byte 1 = 1st character of ASCII string
Byte 2 = 2nd character of ASCII string

Byte 80 = 80th character of ASCII string

Free-form Data Total Bytes = 2 to 205
Byte 0 = Length of following data block
Byte 1 = 1st byte of freeform data

Byte 204 = 204th byte of freeform data

The following paragraphs specify the data structure fields that are not obvious from
the configuration language specification.

Configuration File Checksum

The configuration file checksum is a 16-bit logical (modula 64k) sum of ASCII
values in the configuration file.

Configuration File Extension Revision Level

The Configuration File Extension revision level specifies the revision number for
the overlay file. The configuration file extension checks the revision number when
reconstructing the user displays from a backup copy of the configuration (a configuration
saved to a disk file) or from reading nonvolatile memory (backtracking).

Revision 3.10 377

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Function Length

Specifies the number of nonvolatile memory bytes that contain the function
information. The two bytes of function length are not included in the count. The
configuration file checksum bytes are not included.

Selections field

Nonvolatile memory contains numbers that indicate the function choices and
resource alternatives selected during configuration. The configuration utility uses the
selection numbers during a reconfiguration to display the default selections to a user
(backtrack).

The backtrack routine reads selection numbers from nonvolatile memory for display
as the defaults. Selections from all group types (COMBINE, LINK or FREE) have a
selection number, even if there is only one resource to select.

Note 1:

Note 2:

Each memory resource selection number requires one word of
storage. Other resource selection numbers require one byte each.

The selection numbers for a Function include the selections for its
Subfunctions.

1. Selection number of Choice in the Function or Subfunction.

2. Selection number of Subchoice (if it exists).

3. Selection number of alternate choice in each group for liNK and COMBINE
groups or the selection number for each resource in a FREE group.

4. When a Read Function Configuration Information BIOS routine call is issued, the
information in Subfunctions are included in the Function. Thus the selection
numbers in Subfunctions are grouped with the Function selection numbers.

These selection numbers are repeated as needed.

EXAMPLE #1:

378

CFGFILE
FUNcnON = ...

CHOICE(O) = ... 0
liNK

Resource 1 = 1 12
Resollrce2 = 3 4

FREE
Resource3 = S I 7
Resource4 = 6
ResourceS = 7 I 8 I 9

CHOICE(l) = '"

;CHOICE 0 was chosen

;2nd alternate was chosen (1)

;2nd alternate was chosen (1)
; 1st resource was chosen (0)
;3rd alternate was chosen (2)

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8.2 Initializing Nonvolatile Memory

The EISA configuration utility begins initializing nonvolatile memory by issuing the
"Clear Nonvolatile Memory" BIOS routine Call that clears the configuration information
from EISA nonvolatile memory. The configuration utility then issues repetitive "Write
Nonvolatile Memory" BIOS routine Calls to load all EISA system board, embedded device,
virtual device, and expansion board configuration data.

The configuration utility first builds a data structure that includes the configuration
information for slot 0 (the system board). then executes the "Write Nonvolatile Memory"
BIOS routine Call with a pointer to the data structure. The configuration utility repeats
the sequence for each slot and device.

4.8.3 Power-up Initialization of EISA Systems

EISA systems must assume a reset condition after power-up reset occurs.
Expansion boards can decode only the slot-specific I/O addresses used for initialization
and must assume a disabled state.

•

•

•

•

The BIOS power-up routine performs the following steps to initialize EISA systems:

It confirms the .vali~ity of co~figu.ration info~ation in nonvolatile ~emory. If
the configuration mformatIon IS not valId the power-up routme aborts
automatic configuration, issues an error message, then continues the power-up
sequence.

It compares the EISA product ID and slot information in nonvolatile memory
with the actual installed hardware to confirm that the configuration has not
changed. If the expansion board installed in a slot does not match the
information stored in nonvolatile memory the power-up routine aborts
initialization.

It uses the configuration data to initialize the system board, expansion boards,
embedded devices and virtual devices.

It enables the system board, expansion boards. embedded devices and virtual
devices for operation.

The system ROM automatically determines the I/O port address and initialization
values and programs the following registers:

Interrupt controller edge/level register
DMA controller (Extended Mode Register)

DMA channel cycle timing
DMA data size and addressing mode

DMA controller (DMA Command Register)
DRQ and DAK* assert level (high/low)
Fixed or rotating priority scheme

The power-up routine initializes the system board and all EISA expansion boards
before determining system memory size or searching for I/O devices (such as printer ports,
communications ports, VGA, etc.). Since memory boards that have optional configuration
as system or expanded memory are included in the memory size determination, neither an
optIOn ROM nor an operating system-dependent device driver is required.

Revision 3.10 379

4.8.4

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Slot Initialization Sequence

The EISA power-up routine initializes expansion slots, embedded devices, virtual
devices, and the system board configuration registers. The initialization takes place during
every cold or warm boot.

380

The flow chart in Figure 103 specifies the EISA slot initialization sequence:

Figure 103· Power-Up Slot Initialization

~orwarm0
t
o

Is
No

)--..!.'-'"--+I Report configuration error \------1

Read configuration slorage information for
slol Z. function I
(INT loh ah=D8h. a)= 1. ch=funclion. cI=Z)

Sel configuration error byte
in nonvolatile memory. then
abort initialization.

EISA slot
[nvalid)-y_e_s ____ (..,..IN_T_l_o_h_r_el_u_rn_s_)_Al_l ..,..co..,...n_fi..;.gu_r:-e..,..d ...:..p,-hY::..,.S:-ic.,.,.a_1 -,an_d ___ configura lion
slot? (CF=l. ah=80h) virtual slols initialized. complete. continue

Read
board
ID ports

No

Yes r::;-----c,-------,
-.,Report

configuration error

Virtua >_Y_e_s _________ ~.f7\
Slat. \.J

wilh default power
up sequences

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECI'URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 103· Power-Up Slot Initialization (Continued)

No

Read
board
ID porls

Does

Yes

slol funclio Yes
have I/O >-------------~

initializatio
?

No

Yes

Last Yes
)....:...=-=---~ function

?

• No

Read configuration storage
slot Z information.
Next function

2

Revision 3.10

Enable EISA
board via
port ZC84

No

End
of I/O
List?

Is board
ready in
100 msec

?

No

Read board
4 byte ID
from ports
ZCBOh. ZCBlh.
ZC82h. ZCB3h

No

Inilializatio Yre_s ________ -.
mask?

Determine if I/O port
is byte. word or dword
accessible and read

Determine if I/O port
is byte. word or
dword accessible and
wnte initialization
value

I/O port.

inilialization value

381

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The system ROM power-up routine can initialize critical devices in any order
necessary to bring the system up. The power-up routine must then initialize devices
sequentially by slot number and function number.

The power-up routine initializes critical devices first, then proceeds to initialize the
EISA system board, EMB(O). The power-up routine then begins expansion board
initialization beginning with expansion slot 1. The power-up routine issues a "Read
FU!1ction Configuration Information" BIOS routine Call for slot 1, function 1. The power­
up routine checks the product ID field of the data block returned for slot 1 function 1 to
determine if the slot was configured as empty or with an expansion board installed.

If nonvolatile memory indicates the slot has an expansion board installed, and the
readable ID bit indicates a readable ID, the power-up routine performs the I/O read to
confirm that the product ID matches nonvolatile memory. If the product ID read
operation indicates a not ready condition on the first try, the power-up routine waits 100
milliseconds, then retries the ID read. The power-lip routine issues an error message if the
ID read still indicates a not ready condition after the 100 millisecond delay, then aborts
initialization.

If the product ID matches nonvolatile memory, the power-up routine performs the
initialization by setting the I/O ports to the values mdicated in nonvolatile memory and
programming the system board controllers to properly allocate the system resources
required by the expansion board.

After initializing each of the expansion board functions and the required system
resources, the power-up routine enables the expansion board, then issues the "Read
Function Configuration Information" BIOS routine Call for slot 2 function 1. The power­
up routine continues the process until all functions in all expansion slots, embedded slots
and virtual slots are configured.

The power-up routine does not initialize installed EISA or ISA expansion boards
that do not have configuration information stored in nonvolatile memory.

4.8.5 Error Handling During Slot Initialization

Several error conditions can arise during slot initialization.

If an expansion board indicates a not ready condition when its product ID is read,
the power-up routine waits 100 ms then retries the product ID read. If the expansion board
still indicates a not ready condition an appropriate error is displayed and the power-up
routine continues EISA expansion board initialIzation with the next slot.

If the ID of the EISA expansion board does not match the contents of nonvolatile
memory then an appropriate error is displayed and the power-up routine continues EISA
expanSIon board initialization with the next slot.

If nonvolatile memory indicates the presence of an EISA board with an ID and no
matching board is found then an appropriate error is displayed and the power-up routine
continues EISA expansion board imtIalization with the next slot.

If the ID of a slot is tagged not readable in the nonvolatile memory information
then the power up routines attempt to read a valid ID from the slot being initialized. If a
valid ID is read from the slot then an appropriate error is displayed and the power-up
routine continues EISA expansion board initialization with the next slot.

382 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

If the nonvolatile memory mformation indicates that a slot is empty and a valid
10 is read from the slot, then an appropriate error is displayed and the power-up
routine continues EISA expansion board initialization with the next slot.

An error is displayed if nonvolatile memory slot information does not match
what is determined to be 10 the slots.

An "incomplete configuration" message is displayed if the nonvolatile memory
10 and Slot Information incomplete configuration bit is set.

4.8.6 Noncacheable Memory Map Initialization

EISA systems with cache memory can use the data in nonvolatile memory to
construct a noncacheable address map. The I?ower-up routine identifies noncacheable
memory address ranges from the configuration information in nonvolatile memory.
The power-up routine supplies the noncacheable addresses to hardware that disables
the memory cache during accesses to the noncacheable addresses.

4.8.7 Writable Memory Map Initialization

EISA systems can use the data in nonvolatile memory to construct a writable
address map. The power-up routine identifies RAM and ROM memory address ran~es
from the configuration information in nonvolatile memory. The power-up routme
supplies the RAM and ROM addresses to hardware that disables memory writes during
accesses to the ROM addresses.

4.8.8 Slot Mapping Information

The CFG language allows a translation between the EISA slot ID (i.e. the
address range used for slot specific I/O) and the physical slot number (i.e. the user
readable label for the slot). There is a need for drivers to be able to communicate with
the user about devices using these physical slot numbers. Therefore slot ID to physical
mapping information must be made available to drivers.

Additionally, due to design constraints, many EISA system vendors will provide
systems that provide some EISA slots that cannot accept EISA bus masters. The CFG
lango .. allows EISA slots to 'be specifted as either accepting EISA bus masters or not.
Other design constraints make it impractical for EISA system vendors to match the bit
encoding of Last EISA Bus Master Granted registers (I/O port addresses O464h and
0465h described in EISA specification section 3.3). In error recovery situations drivers
need to be able to convert from the bit encoding of the Last EISA Bus Master Granted
registers to EISA slot ID of that bus master. Therefore this mapping must also be made
available to drivers.

The CFG language FREEFORM statement provides the mechanism for system
vendors to provide this mapping information to drivers. This mechanism can also be
use to provide other information about any board in the system.

Revision 3.11 383

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

4.8.8.1 EISA System Information

The EISA System Information specification is a standard method for vendors of
EISA systems and adapters to provide to software information about their products that
is not otherwise provided in the EISA configuration information stored in nonvolatile
memory. This information is stored using the FREEFORM CFG language statement.

When FREEFORM data is used the CFG language TYPE and SUBTYPE
statements are the only method of identifying the data. Vendors should supply their
unique data with a TYPE string that begins with the three letters of their EISA
manufacturer code. The reserved manufacturer code of RISA R will be used to identify
EISA System InCormation.

Vendors provide EISA System Information with the following group of Cunctions
in the CFG file for their products:

GROUP = REISA System InformationR
TYPE = RISAR

[FUNCTION = "descriptive textR
SHOW = NO
CHOICE = Rdescriptive textR

SUBTYPE = RtypeR
FREEFORM len, Nt, N2, ••• , Nlen] ...

END GROUP

The type is an ASCII string specifying the type of information being provided, len
specifies the number of bytes of information being provided, and NI to Nlen are those
bytes of information, len may not be more than 203. Currently only one type is defined:

MAP This information type is valid only for the system board (EISA slot ID 0) and
contains the slot mapping information, len must be 30 bytes. If this
information type is not present for the system board then the physical slot
number is assumed to equal the EISA slot ID and ports 464h & 4()5h bits 0
to 7 & 0 to , are assumed to correspond to EISA slot ID I to 8 " 9 to IS.

384

The 30 bytes of information are defined as foUows:

NI to NI5 These specify the physical slot number and slot type corresponding to
EISA slot IO's I to 15. Bits 0 to 4 of eacb byte is tbe pbysical slot
number (embedded slots have a physical slot number of 0), Bits 5 to 7
encode the slot type as follows:

765 Slot Type
000 ISA 8-bit slot
001 ISA 16-bit slot
010 EISA, non-bus master slot
011 EISA, bus master slot
100 reserved
101 reserved
110 reserved
111 slot not present (Bits 0 to 4 are undefined).

Nl' to N23 These specify tbe EISA slot number corresponding to bits 0 to 7 of
port 0464h, if the bit does not represent a possible bus master then
the value is zero (0).

Revision 3.11

--.

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

N24 to N30 These specify the EISA slot number corresponding to bits 0 to 6 of
port 0465h, iC the bit does not represent a possible EISA bus
master then the value is zero (0).

4.8.8.2 Instructions for Accessing the EISA System Information

To access the System Information drivers would use the EISA Int 15h Read
Function Configuration Information (Cor a detailed description of this function see
EISA specification section 4.8.1.3). In the processor's real address mode the function
has this interface:

INPUT: AX = OD801h Read configuration inC ormation
Varies Crom 0 to last Cunction number
System board slot number

CH = Function number
CL = 0
DS:SI Pointer to 320 byte area Cor returned data

OUTPUT: FLAGS: Carry = 0
Carry = 1

Successful completion
Error
AH = Error Code (81h=invalid Cunction number)

DS:SI Area pointed to by DS:SI has been filled with the Collowing:
Offset 22h Bit 6:

1 = FREEFORM data present
o = No freeform data

Offset 23h ASCII Type string (zero filled to 80 characters), for
EISA System Information the first 4 characters will
be "ISA" followed by the inCormation type specifier.

Offset 73h Length of FREEFORM data.
Offset 74h FREEFORM data.

The procedure to extract this inC ormation would look like this:

For (each function oCthe desired slot, starting at 0)
{ while (function is valid)

}

Revision 3.11

{ if (function has FREEFORM data and Type string equals "ISA;type")

}

{ copy FREEFORM data to driver
break out of while loop

}

384-A

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

4.8.8.3 Example of EISA System Information

For example imagine a system board with the following slot configuration:

Physical Logical
1 7
2 1
3 2
4 3
5 4
6 5
7 6
embedded 8
embedded 9

Type
ISA16
EISA-master (464h bit 0)
EISA-master (464h bit 1)
EISA-master (464h bit 2)
EISA-master (464h bit 3)
EISA-master (464h bit 4)
EISA-non-master
EISA-master (464h bit 5)
EISA-non-master

If the System Information FUNCTION block for this system board only
provided type 00 information it would look like this:

call:

GROUP = "System Information"
TYPE = "ISA"
FUNCTION = "Slot Mapping Information"

SHOW = NO
CHOICE = "Slot Mapping Tables"

SUBTYPE = "MAP"

END GROUP

FREEFORM 30, 62h, 63h, 64h, 65h, 66h, 47h, 21h,
6Oh, 4Oh,OEOh, OEOh,OEOh, OEOh, OEOh, OEOh,
1, 2, 3, 4, 5, 8, 0, 0,
0, 0, 0, 0, 0, 0, 0

This data would be returned by Int 15 Read Function Configuration Information

Offset 22h 40h (bit 6 set)
Offset 23h "ISA;MAP" followed by bytes of zero
Offset 73h lEh (total number of FREEFORM data bytes)
Offset 74h 62h, 63h, 64h, 65h, 66h, 47h, 21h, 6Oh,

384-B

40h, OEOh, OEOh, OEOh, OEOh, OEOh, OEOh,OEOh,
1, 2, 3, 4, 5, 8, 0, 0,
0, 0, 0, 0, 0, 0, 0

Revision 3.11

--

EXTENDED INDUSTRY STANDARD ARCHITECI'URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

EISA S stem I/O Address Mao

I/O address
Range (hex):

OOOO-OOFF
0100-03FF
0400-04FF
controllers·
0500-07FF
OBOO-OBFF
0900-0BFF
OCOO-OCFF
ODOO-OFFF

1000-10FF
llOO-13FF
1400-14FF
1500-17FF
1800-18FF
1900-1BFF
lCOO-lCFF
IDOO-IFFF

OzOOO-OzOFF
Oz100-0z3FF
Oz400-0z4FF
0zS00-0z7FF
Oz800-OzSFF
Oz900-0zBFF
OzCOO-OzCFF
OzDOO-OzFFF

I/O Range
Reserved for

EISA/ISA System board
ISA expansion boards
Reserved, EISA System board

Alias of 100h-3FFh
EISA System board
Alias of 100h-3FFh
EISA System board
Alias of 100h-3FFh

Slot 1
Alias of 100h-3FFh
Slot 1
Alias of 100h-3FFh
Slot 1
Alias of 100h-3FFh
Slot 1
Alias of 100h-3FFh

Slot 'z'
Alias of 100h-3FFh
Slot 'z'
Alias of 100h-3FFh
Slot 'z'
Alias of 100h-3FFh
Slot 'z'
Alias of 100h-3FFh

4.9.1 Expansion Board Address Decoding

An expansion board that uses the slot-specific I/O ranges may, during I/O cycles,
decode address bits LA< 11:2>, and BE* <3:0> with AENx negated (low) to address any
byte in the slot-specific I/O range. An expansion board that does not need the full I/O
address ran~e can decode fewer address bits, depending on the number of ports required.
The expanSIOn board must, at a minimum, decode address bits LA < 9:8 > low and AENx
negated (low) to assure that the I/O address does not conflict with the ISA expansion
board I/O address range.

See section 2.8.7 in this specification for additional information about EISA I/O
decoding and the use of AENx to control slot-specific I/O addressing.

A device driver addresses the expansion board slot-specific addresses with a full 16-
bit I/O address. The device driver appends the expansion board address bits, < 11:0>, to
the high order four bits represented by the hexadecimal slot number to form the 16-bit
address, < 15:0> .

Revision 3.10 385

EXTENDED INDUSTRY STANDARD ARCHITECI'URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Slot-specific addresses OzCSOh through OzCS3h are reserved for the rroduct ID.
Slot-specific address OzC84h is reserved for expansion board control bits. AI other slot­
specific addresses can be used by the expansion board for configuration registers and
general purpose I/O.

An EISA expansion board can also use the ISA expansion board I/O ranges, but
must assure that the addresses do not conflict with other ISA expansion boards.

The following address ranges are not aliases of ISA expansion board I/O addresses
and should be used by an EISA expansion board for I/O registers:

I/O address
Range (hex):

~ORan!e
eserve for:

1000-10FF Slot 1
1400-14FF Slot 1
lS00-1SFF Slot 1
lCOO-1CFF Slot 1

2000-20FF Slot 2
2400-24FF Slot 2
2S00-2SFF Slot 2
2COO-2CFF Slot 2

· · · · · · · · · ·
OzOOO-OzOFF Slot 'z'
Oz400-0z4FF Slot 'z'
OzSOO-OzSFF Slot 'z'
OzCOO-OzCFF Slot 'z'

386 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following address ranges are aliases of ISA expansion board I/O addresses:

I/O address
Range (hex):

I/O Range
Reserve for:

llOO-13FF Alias of lOOh-3FFh
1500-17FF Alias of lOOh-3FFh
1900-1BFF Alias of lOOh-3FFh
IDOO-IFFF Alias of lOOh-3FFh

2100-13FF Alias of 100h-3FFh
2500-27FF Alias of lOOh-3FFh
2900-2BFF Alias of lOOh-3FFh
2DOO-2FFF Alias of 100h-3FFh

· · · · · · · · ·
OzlOO-0z3FF Alias of 100h-3FFh
OzSOO-Oz7FF Alias of 100h-3FFh
Oz900-OzBFF Alias of lOOh-3FFh
OzDOO-OzFFF Alias of 10Oh-3FFh

Slot-specific addresses OzCBOh through OzCB3h are reserved for the rroduct ID.
Slot-specific address OzCB4h is reserved for expansion board control bits. Al other slot­
specific addresses can be used by the expansion board for configuration registers and
general purpose I/O.

An EISA expansion board that uses the ISA expansion board I/O ranges must
assure that the addresses do not conflict with other ISA expansion boards.

4.9.2 Embedded Slot Address Decoding

, Embedded slot address decoding works exactly like expansion board address
decoding except that the embedded device is integrated onto the system board. The
embedded slots use slot numbers that start after the last expansion slot number. For
example, the first embedded s]ot is s]ot 8 if the EISA system has 7 expansion slots.

4.9.3 System Board Address Decoding

An EISA system board decodes 16 address bits during I/O cycles. The system board
configuration registers and controller registers are mapped into the address ranges between
OOOOh and OCFFh that are not aliases of ISA expansion board I/O addresses.

Revision 3.10 387

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMA TI ON OF BCPR SERVICES, INC.

The following address ranges are not aliases of ISA expansion board I/O addresses
and can be used by an EISA system board for I/O registers:

I/O address
Range (hex):

I/O Ranse
Reserve for:

OOOO-OOFF ISA System board peripherals
OlOO-03FF ISA expansion boards
0400-04FF Reserved - System board controllers
0800-08FF System board
OCOO-OCFF System board

The following address ranges are aliases of ISA expansion board I/O addresses and
cannot be used by an EISA system board:

I/O address
Range (hex):

I/O Ranse
Reserve for:

0500-07FF Alias of lOOh-3FFh
0900-0BFF Alias of lOOh-3FFh
ODOO-OFFF Alias of lOOh-3FFh

388 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

4.10 EISA Product Identifier (ID)

EISA e~ansion boards, embedded devices and system boards have a four byte
product identifIer (ID) that can be read from I/O port addresses OzC80h through
OzC83h (z=O for the system board). For example, the system board ID can be read
from I/O port addresses OC80h-OC83h and the slot 1 product ID can be read from I/O
port addresses 1C80h-1C83h.

The first two bytes (OzC80h and OzC81h) contain a compressed representation of
the manufacturer code. The manufacturer code is a three character code (uppercase,
ASCII characters in range "A"-"Z") chosen by the manufacturer and registered with the
firm that distributes this specification. System board and expansion board
manufacturers follow the same procedure to choose and register their manufacturer
code.

The manufacturer code "ISA" should be used to indicate a generic ISA adapter.

The three character manufacturer code is compressed into three 5-bit values so
that it can be incorporated into the two I/O bytes at OzC80h and OzC81h. The
compression procedure is:

Find hexadecimal ASCII value for each letter
ASCII for "A" - "Z": "A" = 41h, "Z" = 5Ah

Subtract 40h from each ASCII value
Compressed "A" = 41h-40h = 01h = 0000 0001
Compressed "Z" = 5Ah-40h = 1Ah = 0001 1010

Retain 5 least significant bits for each letter
Discard 3 most significant bits (they are always zero)
Compressed "A" = 00001, Compressed "Z" = 11010

Compr~ssed code = Concatenate "0" and the three 5-bit values
"AZA" = 0 0000111010 00001 (a 16-bit value)
OzC80h = 00000111, OzC81h = 01000001

The following figures show the format of the product ID (addresses OzC80h -
OzC83h):

Product ID, 1st byte: OzC80h

2nd character of compressed manufacturer code
(bit 1 of OzC80H is most significant bit)

1st character of compressed manufacturer code
(bit 6 of OzC80h is most significant bit)

'---------Reserved (0)

Revision 3.11 389

EXTENDED INDUSTRY STANDARD ARCHITECI'URE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

Product 10, 2nd byte: OzC81h

L......JL.........J--I----L--3rd character of compressed manufacturer code
(bit 4 of OzC81h is most significant bit)

l.-.L...-.L...-------2nd character of manufacturer's code
(continued from OzC80h)

Product 10, 3rd byte: OzC82h

17161514131211101

IL-....I.. 1---,--11.-1 ~I 1---,--11.-1 -Product number

Product 10, 4th byte: OzC83h

17161514131211101

1 I I I 1 I I I Revision number

Reporting Not Ready During Access to the Product ID Register

An EISA device that requires a long power-up sequence may report a not ready
condition when the power-up routine attempts to read the product ID. The expansion
board must complete its power-up sequence and report its product ID within 100 ms
after reporting the not r~ady condition. The expansion board supplies the following
data in port OzC80h to indicate the not ready condition:

Product ID, 1st byte: OzC80h

!...-L..o...,jL..o...,jI....---- xxxx = Oon't care
L.........JL.........J--------ll1 = Not ready

Reserved (0)

An EISA adapter may report not ready on an attempt to access its EISA Product
ID Register (OzC80h) for up to 100 milliseconds before it must return a valid Product
ID (see preceding section). This time is measured from the first attempt to read the
Product ID Register. The EISA adapter must be ready to accept the configuration
information stored in the system's nonvolatile memory as soon as it reports a valid
Product 10.

The length of time between power up and first access to the Product 10 Register
is not specified. Vendon of EISA. adaptors should make no assumptions as to a
minimum length of time between power up and the first access to the EISA Product 10
Register.
390 Revision 3.11

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The I/O addresses for the system board ID bytes are:

System Board ID, 1st byte: OC80h
System Board ID, 2nd byte: OC81h
System Board ID, 3rd byte: OC82h
System Board ID, 4th byte: OC83h

The following diagrams show the format of the system board ID.

System Board 10, 1st byte: OC80h

~--2nd character of compressed manufacturer code
(bit 1 of OC80h is most significant bit)

.................. ---'---'----lst character of compressed manufacturer code
(bit 6 of OC80h is most significant bit)

'---------Reserved (0)

System Board ID, 2nd byte: OC81h

3rd character of compressed manufacturer code
(bit 4 of OC81h is most significant bit)

~~-------2nd character of manufacturer's code
(continued from OC80h)

System Board 10, 3rd byte: OC82h

17161514131211101

L..IJIL--I.I---'-I--'-I I-L-I....JIL---Reserved for manufacturer's use

System Board 10, 4th byte: OC83h

L......IL--I.--EISA bus version (initial version = 001)

L......IL--I.--I.---L.-----Reserved for manufacturer's use

Revision 3.10 391

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Identifying an EISA Expansion Board

1. Write FFh to OC80h

The procedure precharges the system board ID register (at I/O address OC80h).

2. Read OC80h

If contents of OC80h equals FFh, discontinue the identification process, the
system board does not have a readable ID.

If contents of OC80h does not equal FFh and the most significant bit is a zero:
the system board supports a readable ID that can be reaa at OC80h-0C83h.

4.10.2 EISA Expansion Board Product 10

The first two bytes of the 4-byte product ID are a compressed representation of the
manufacturer code. The third byte represents the product number and the fourth byte
represents the product's revision level.

A revised expansion board that requires a modification to its configuration file must
have a new product number and revision level in its ID. A revised expansion board that
does not require a modification to the configuration file can use its original product
number, with a new revision level.

The system ROM power-up routine reads the first four bytes of the ID to compare
against the configuration information stored in nonvolatile memory. A match of the
hardware ID and the ID stored in nonvolatile memory confirms that the configuration has
not changed since system configuration. Bits 3:0 of the fourth byte are not used by the
power-up routine.

Device drivers can use the product ID to determine the type of expansion board
installed and the revision level.

The compressed expansion board manufacturer code has the same format as a
system board manufacturer code and is illustrated in the "EISA Product Identifier" section
of this specification.

The I/O addresses (where "z" is the slot number) for the product ID bytes are:

392

Product ID, 1st byte: OzC80h
Product ID, 2nd byte: OzC81h
Product ID, 3rd byte: OzC82h
Product ID, 4th byte: OzC83h

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following diagrams illustrate the third and fourth byte of the product ID.

Expansion Board Product ID, 3rd byte: OzC82h

L-...JI--...J----L--2nd hexadecimal digit of product number
(bit 3 is most significant bit)

L...-..JL...-..JL...--I'-------lst hexadecimal digit of 1?roduct number
(bit 7 is most sigruficant bit)

Expansion Board Product ID, 4th byte: OzC83h

L...-..JL...--I---L--Hexadecimal digit of revision level
(bit 3 is most significant bit)

L...-..JL...--IL...--I------3rd hexadecimal digit of product number
(bit 7 is most significant bit)

Revision 3.10 393

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Identifying an EISA Expansion Board

1. Write FFh to OzC80h

The procedure pre charges the expansion board ID register (at I/O address
OzC80h).

2. Read OzC80h

If contents of OzC80h equals FFh, discontinue the identification process, the
expansion board does not have a readable ID.

If contents of OzC80h does not equal FFh and the most significant bit is a zero:
the expansion board supports a readable ID that can be read at OzC80h-OzC83h.

4.10.3 EISA Embedded Devices

The ID of an EISA embedded device has the same format as an expansion board
product ID. The ID of an embedded device can be accessed through I/O addresses
OzC80h-OzC83h, where "z" is the embedded slot number.

394 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.11 Expansion Board Control Bits

Port OzC84h contains ENABLE, IOCHKERR, and IOCHKRST bits for software
control of programmable expansion boards. EISA expansion boards must indicate
"IOCHKERR=INVALID" in the CFG file if ENABLE and IOCHKERR bits are not
supported. The Expansion Board Control Bits are shown in the following figure.

Expansion Board Control Bits - OzC84h

17161514131211101
I

Bit 0 - Enable Bit (Read/Write)

ENABLE (read/write)
o = Expansion board disable
1 = Expansion board enable

IOCHKERR (read only)
o = No error pending
1 = A serious error detected by the

expansion board
IOCHKRST (write only)

o = Normal operation
1 = When pulsed to 1 for 500 ns, the

expansion board is reset
Reserved (set to 0)

The ENABLE bit can be set to enable an expansion board for operation, or cleared
to disable operation. The bit can be read to determine the enabled or disabled state. The
expansion board clears ENABLE after sampling RESDRV asserted and enters a disabled
state. The expansion board must only decode slot-specific I/O while in the disabled state.
The expansion board must disable all bus drivers while in the disabled state, except when
responding to slot-specific I/O. EISA expansion boards must fully support the ENABLE
bit functions.

Bit 1 - IOCHKERR Bit (Read Only)

The IOCHKERR bit can be read to determine if an expansion board has a pending
error. The expansion board indicates a pending error by settin~ 10CHKERR, clearing the
ENABLE bit and enterin~ the disabled state. The expanSIon board may, but is not
required to assert the bus sIgnal 10CHK* when it sets 10CHKERR. Pulsing IOCHKRST
resets 10CHKERR. EISA expansion boards must respond to a read access of the
IOCHKERR bit. EISA expansion boards that do not need to indicate errors may always
respond with the IOCHKERR bit cleared.

An expansion board sets 10CHKERR to indicate that a serious error has occurred.
Parity errors and uncorrectable system errors exemplify problems that might cause an
expansion board to set IOCHKERR. An expansion board always holds IOCHKERR set
while asserting the bus signal, 10CHK*. The main CPU or bus master can poll the
IOCHKERR bit for each expansion board to determine which board caused an error.

Revision 3.10 395

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Bit 2 - IOCHKRST Bit (Write Only)

Pulsing IOCHKRST to a "1" for at least 500 ns resets an expansion board's
hardware. The expansion board resets all logic, assumes a disabled state, clears
IOCHKERR and clears ENABLE when 10CHKRST is pulsed. EISA expansion boards
that never set the IOCHKERR bit may ignore write accesses to the 10CHKRST bit.

Example Sequence for an IOCHKERR

The system ROM power-up routine initializes the expansion board and sets the
ENABLE bit to begin operation.

The expansion board begins decoding memory and I/O addresses outside the slot­
specific I/O range and enables its bus drivers to drive the bus signals.

The device driver determines the slot-specific I/O address from the configuration
data in nonvolatile memory. The device driver can then control the device operation.

The expansion board detects a serious error, clears the ENABLE bit, sets its
10CHKERR bit and asserts 10CHK*. The expansion board stops decoding memory
addresses and I/O addresses outside its slot specific range and it floats all bus drivers
(except the one driving 10CHK*) unless responding to slot-specific I/O.

The expansion board detects a serious error, clears the ENABLE bit, sets its
10CHKERR bit and asserts 10CHK*. The expansion board disables all bus signal
drivers except the one driving IOCHK*. The expansion board stops decoding
memory addresses and I/O addresses outside its slot specific range.

The assertion of IOCHK* invokes the NMI service routine. The NMI service
routine sequentially polls the lOCH KERR bit for each EISA device until it finds a device
with IOCHKERR set. The NMI service routine then begins the recovery procedure
(restore the operation or disable the expansion board).

To restore the expansion board, correct the error, then pulse IOCHKRST to "1" for
at least 500 ns to clear the IOCHKERR bit and negate the IOCHK* bus signal. The NMI
service routine can then invoke the device driver to initialize the expansion board and set
the ENABLE bit for operation.

To disable the expansion board, the NMI service routine must pulse 10CHKRST to
"1" for at least 500 ns to clear the lOCH KERR bit and negate the IOCHK* bus signal. The
NMI service routine can also display a message to the user indicating the action taken.

The NMI service routine returns execution to the routine interrupted by NMI. If
multiple devices asserted IOCHK*, or if another device asserted 10CHK* during the NMI
service, the NMI routine is invoked again to repeat the 10CHKERR poll and recovery
procedure.

396 Revision 3.10

.. -

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.12 System Software Use of Configuration Information

Device drivers and system software can use the configuration information from
nonvolatile memory for the following purposes:

• Determine the slot number of an EISA device

• Determine the I/O address of the EISA device registers specified during
configuration

• Determine configuration information

• Determine the system resources used by an EISA or ISA device

• Initialize the device for operation

Use of the configuration memory by a product dependent device driver may differ
from use by a product independent deVIce driver. A device driver is product dependent if
the driver is provided for use with a particular product (Le., an ACE Ethernet network
board). A device driver is product independent if the driver is provided for use with
products from a variety of vendors (such as a parallel port). .

4.12.1 Slot Search by Product Independent Device Driver

A product independent device driver should check the TYPE string of each function
in each slot (including expansion slots, embedded devices and virtual devices) to determine
the slot in which the desired function is installed. The driver should begin searching at Slot
0, function 1 and ~equentially increment through each function of each slot until the last
slot has been checked.

The device driver can use the "Read Slot Configuration Information" to determine
the number of functions located in any slot, and use the "Read Function Configuration
Information" BIOS routine Call to read the configuration information (which includes the
TYPE string) for the function. The device driver terminates the search when it finds a
function with the desired TYPE string or when the "Read Slot Confisuration Information"
BIOS routine Call returns an "Invalid slot number" error. The error mdicates that all slots
have been checked.

Device Driver Search for TYPE String

The following example illustrates a device driver search for a parallel port with
TYPE = "PAR."

The device driver performs the search by executin~ a "Read Slot Configuration
Information" BIOS routine Call for each slot to determine If a device is installed and the
number of functions present in the slot. The device driver begins the search by executing a
"Read Slot Configuration Information" BIOS routine Call for slot 0 to determine the
number of functions addressed as slot O.

Revision 3.10 397

EXTENDED INDUSTRY STANDARD ARCHITECI'URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The device driver then executes a "Read Function Configuration Information" BIOS
routine Call for slot 0 function 1. The BIOS routine reads the function configuration
information from nonvolatile memory and writes it to a table in system memory. The
device driver inspects the TYPE field in the returned table to determine if the first three
characters of the TYPE string equal "PAR," which indicates a parallel port. The device
driver continues executing "Read Function Configuration Information" BIOS routine Calls
and inspecting the TYPE field for each slot 0 function.

The device driver then executes a "Read Slot Configuration Information" BIOS
routine Call for slot I to determine the number of functions addressed as slot 1. The
device driver requests the function information from nonvolatile memory and inspects the
TYPE field for each function in slot 1. The device driver continues the slot search until it
locates one or all functions with TYPE = "PAR", or until the "Read Function.
Configuration Information" BIOS routine Call indicates that all slots have been searched
(by returning "invalid slot").

If the device driver finds a function with TYPE = "PAR", it can determine the
initialization and resource requirements from the table returned by a "Read Function
Configuration Information" BIOS routine Call.

Device Driver Search for SUBTYPE String

A driver can search for a specific configuration of a function by scanning the
SUBTYPE strings. The following example illustrates a device driver search for a serial
port with SUBTYPE = "COM1."

The device driver first finds an asynchronous communications port by searching for
the TYPE string fragment, "COM,ASY." The driver then scans past the remainder of the
TYPE field (delimited by the semicolon) and compares the SUBTYPE strin~ fragments to
"COM1." If a SUBTYPE string fragment does not match "COMI", the dnver continues
searching for another TYPE "COM,ASY" and checking the SUBTYPE for "COM1."

4.12.2 Slot Search by a Product Dependent Device Driver

A product dependent device driver should check the product ID of the device in
each slot (including expansion slots, embedded devices and virtual devices) to determine
the slot in which its corresponding product is installed. The driver should begin searching
at Slot 0 and sequentially increment through each slot until the last slot has been checked.

The device driver can use the "Read Slot Configuration Information" BIOS routine
Call to read the product ID of the device in any slot. The device driver terminates the
search when it finds the correct product ID or when the BIOS routine Call returns an
"Invalid slot number" error. The error indicates that all slots have been checked.

398 Revision 3.10

4.12.3

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Device Driver Initialization for EISA Expansion Boards

The device driver can use information from nonvolatile memory to determine EISA
expansion board configuration and initializations necessary to restore expansion board
registers to their power-up condition.

The EISA system ROM initializes the following interrupt and DMA controller
configurations after performing all I/O initializations indicated in nonvolatile memory. A
device driver may not change the configurations:

Interrupt controller edge/level register
DMA controller (Extended Mode Register)

DMA channel cycle timing
DMA data size and addressing mode

DMA controller (DMA Command Register)
Fixed or rotating priority scheme

A DMA device that shares the DMA channel may not change the following DMA
controller configuration:

DMA controller (DMA Command Register)
DRQ and DAK* assert level (high/low)

The device driver can· use the "Read Function Configuration Information" BIOS
routine Call to get the configuration parameters from nonvolatile memory. The
configuration parameters returned from nonvolatile memory represent the expansion
board configuration initialized by the system ROM power-up routines. Subsequent
operation of the expansion board may leave the confi~ration in a different state. Device
drivers can read the expansion board configuration registers to determine the configuration
after power-up.

Revision 3.10 399

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.13 Creating TYPEs and SUBTYPEs for Devices

The TYPE and SUBTYPE identifiers are used by product independent device
drivers to identify, initialize and operate an installed device that is compatible with the
device driver. System board and expansion board manufacturers must specify consistent
and expandable TYPE and SUBTYPE identifiers for their products.

The following guidelines should be followed when creating TYPE and SUBTYPE
strings to assure consistency and expandability.

4.13.1 TYPE Strings

The first segment of the TYPE string should identify the most general device
characteristics (such as video, communications port) followed by TYPE string segments
that identify more detailed device characteristics (such as VGA video adapter,
asynchronous communications port). For example, the TYPE string for a VGA video
adapter is "VID,VGA", where "VID" identifies a video board and "VGA" indicates VGA
compatibility. The TYPE string for the asynchronous communications port is "COM,ASY",
where "COM" identifies a communications board and "ASY" indicates compatibility with
the PC-AT asynchronous port.

New TYPE segments should be appended to the TYPE string when a device is
enhanced with additional capabilities. A device driver compatible with the original product
determines its ability to control the device after checking the original TYPE segments. A --
device driver that supports enhanced capabilities checks the appended TYPE segments to
determine the level of capability supported by the device.

For example, the TYPE string for a VGA video adapter (ACE) with a 1024x768
high resolution mode might be: "VID,VGA,ACE1024X768". Device drivers that support
VGA identify the video adapter as VGA compatible and device drivers that support
1024x768 identify the video adapter as compatible with the 1024x768 mode.

Another vendor (XYZ) may offer a compatible video adapter with a new 128Ox1024
mode. The TYPE string for the 1280x1024 video adapter might be:
"VID,VGA,ACEI024X768,XYZ1280X1024". Device drivers that support VGA identify
the video adapter as VGA compatible, device drivers that support l024x768 identify the
video adapter as compatible with the l024x768 mode, and device drivers that support
1280XI024 identify the video adapter as compatible with the 1280X1024 mode.

400 Revision 3.10

4.13.2

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

SUBTYPE Strings

The SUBTYPE string identifies the device options selected during configuration. A
device driver can scan the TYPE string to determine that the device is compatible with the
driver, then scan the SUBTYPE string to determine the device configuration. For
example, the video adapter described above might use the SUBTYPE field to indicate the
power-up video display mode.

FUNCflON "VGA Video Adapter"
TYPE = "VID,VGA,ACE1024x768,XYZ128Oxl024"
CHOICE(l) = "VGA Default Mode"

SUBTYPE = "DMODE=VGA"
CHOICE(2) = "1024X768" Default Mode

SUBTYPE = "DMODE=ACEI024X768"
CHOICE(3) = "1280X1024" Default Mode

SUBTYPE = "DMODE=XYZ1280X1024"

The device driver can utilize the SUBTYPE string to determine the default mode
set during power-up. The TYPE/SUBTYPE string for a selection of VGA as the default
power-up video mode is:

"VID,VGA,ACEI024x768,XYZ1280xl024;DMODE = VGA"

A device driver should read the device configuration registers for configuration
information that changes durin~ device operation. A driver that needs detailed
configuration information not speCified in the SUBTYPE string should also read the device
configuration registers.

Revision 3.10 401

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BePR SERVICES, INC.

4.13.3 Standard TYPE Table

The following TYPEs should be used wherever possible for the applicable devices.
System and expansion board manufacturers can create additional TYPEs for devices that
do not apply to the standard TYPEs listed here. For example, a manufacturer of a fax
board can create a new TYPE = "FAX" or can use the "COM" preftx (Le., "COM,FAX").
The new TYPEs become a de facto standard if other vendors use the same TYPE.

The standard device TYPE!l for commonly used devices that are part of the industry
standard system architecture are listed below.

DEVICE TYPE DEVICE DESCRIPTION

"COM,ASY" ISA compatible 8250-based serial rort
"COM,ASY,FIFO" ISA compatible 16550-based seria port (with FIFO)
"COM,SYN" ISA compatible SDLC port
"KEY,nnn,KBD = xx" Standard keyboards XX = country,

nnn = number of keys.
083
084
101
103

xx = Keyboard Code
AE = Arabic - English
AF = Arabic - French
AU = Australia
BE = Belgium
BF = Belgium - Flemish
CE = Canadian - English
CF = Canadian - French
CH = China
DN = Denmark
DU = Dutch
EE = European - English
FN = Finland
FR = France
GR = Germany
HA = Hungary
IT = Italy
IS = Israel
KA = Kangi
LA = Latin America
ME = Middle East
NE = Netherlands
NO = Norway
PO = Portugal
SP = Spain
SW = Sweden
ST = Switzerland
SF = Swiss - French
SG = Swiss - German
TA = Taiwan
UK = United Kingdom
US = United States

402 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DEVICE TYPE DEVICE DESCRIPTION

"CPU,8086" 8086 compatible microprocessor
"CPU,80286" 80286 compatible microprocessor
"CPU,80386SX" 80386SX comeatible microprocessor
"CPU ,80386" 80386 compatIble microprocessor
"CPU ,80486" 80486 compatible microprocessor

"MSD,DSKCfL" ISA compatible fixed disk controller
"MSD,FPYCfL" ISA compatible floppy disk controller
"MSD,T APCfL" Primary tape controller

"NPX,287" Intel 287 numeric coprocessor
"NPX,387" Intel 387 numeric coprocessor
"NPX,387SX" Intel 387SX numeric coprocessor for 386SX
"NPX, W1167" Weitek 1167 numeric coprocessor .
"NPX,W3167" Weitek 3167 numeric coprocessor

"JOY" ISA compatible joystick adapter

"PAR" ISA compatible parallel port
"PAR,BID" Bidirectional parallel port

"PTR,8042" 8042 pointing device (mouse) interface

"VID,MDA" ISA compatible monochrome adapter
"VID,MDA,MGA" Hercules monochrome adapter
"VID,CGA" Requires no write sync dUrIng retrace
"VID,CGA,RTR" Requires write sync during retrace
"VID,CGA" ISA compatible CGA adapter
"VID,EGA" ISA compatible EGA adapter
"VID,VGA" ISA compatible VGA adapter

Revision 3.10 403

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.14 Configuration Example

This section contains the configuration data structures associated with an example
EISA Ethernet communication board. The example illustrates the configuration
information for initialization ports, a DMA channel, an interrupt, RAM memory and ROM
memory.

The example includes the configuration file, the configuration data structure
returned by a "Read Function Configuration Information" BIOS routine Call, and the
configuration data structure passed to the "Write Nonvolatile Memory" BIOS routine.

4.14.1 Configuration File

An example of a configuration file for an ethernet controller board is presented on
the following pages. The CFG filename for this file is !ACE105.CFG

404

BOARD
ID = "ACEOI05"
NAME = "ACME Ethernet Interface board - Revision 5"
MFR = "ACME Board Manufact."
CATEGORY = "NET'
SLOT = EISA
LENGTH = 330
READID = yes

IOPORT(l) = Ozc94h
INITV AL = 0000xxxx

IOPORT(2) = Ozc98h
INITV AL = xxxxxxxxxxxxxxrr

IOPORT(3) = Ozc9ah
IN lTV AL = xxxxxxrr

IOPORT(4) = Ozc9bh
INITV AL = rrrrrxxx

IOPORT(5) = OZC85h
INITV AL = xxxxxxxx

IOPORT(6) = OZC86h
INITV AL = Orrxxxxx

IOPORT(7) = OZC86h
INITV AL = lrrxxxxx

SOFTWARE(l) = "ACELINK.EXE - \n ifusing MS DOS
Place the following command line in AUTOEXEC.BAT: \n
\t\tACEUNK /S = n / A = n\n
Use the following values with the
/S and / A parameters:"

Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

; Function description starts here

GROUP = "Ethernet network interface"
TYPE = "NET,ETH"

FUNCTION = "Network Interface Location"
CHOICE = "File Server lnit. - Node 0"

SUBTYPE = "LAND"
FREE

INIT = SOFTWARE(l) "/S=l /A=O"
INIT = IOPORT(S) LOC (S-2) 0000

CHOICE = "Network user init. - Node 1"
SUBTYPE = "LAN1"
FREE

INIT = SOFTWARE(l) "/S=O /A=l"
INIT = IOPORT(S) LOC (S-2) 0001

CHOICE = "Network user init. - Node 2"
SUBTYPE = "LAN2"
FREE

INIT = SOFTWARE(l) "/S=O /A=2"
INIT = IOPORT(S) LOC (S-2) 0010

; Additional detail may be added

CHOICE = "Network user init. - Node IS"
SUBTYPE = "LAN15"
FREE

INIT = SOFTWARE(l) "/S=O /A=lS"
INIT = IOPORT(5) LOC (5-2) 1111

FUNCTION = "System resources alloc./init."
CHOICE = "System Resources"

; DMA channel operates in Type C (burst) timing
LINK

DMA = SI7
SHARE = no
SIZE = dword
TIMING = TYPEC

INIT = IOPORT(S) LOC (0) 0 I 1
; Interrupt is level-sensitive

Revision 3.10

LINK
IRQ = 21S

SHARE = yes
TRIGGER = level

INIT = IOPORT(S) LOC (1) 0 11

405

406

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

; Network board local ROM
COMBINE

MEMORY =2K
ADDRESS = OCOOOOH I ODOOOOh I OEOOOOh
MEMTYPE = oth
WRITABLE = no
SHARE = no
SIZE = byte
CACHE = yes
DECODE = 32

INIT = IOPORT(6) LaC (3-0) 1100 11101 I 1110

; Network board local Ram
FUNCTION = "Local RAM Initialization"

CHOICE = "64K RAM"
SUBTYPE = "64K"
COMBINE

MEMORY = 64K
ADDRESS = 100000H-IFOOOOH STEP = 64K
WRITABLE = yes
MEMTYPE = oth
SIZE = dword
CACHE = no

INIT = IOPORT(7) LOC(4 3 2 10) 00000-01111
CHOICE = "128K RAM"

SUBTYPE = "128K"
COMBINE

MEMORY = 128K
ADDRESS = 100000H-IFOOOOH STEP = 64K
MEMTYPE = oth
WRITABLE = yes
SIZE = dword
CACHE = no

INIT = IOPORT(7) LOC(4 3 2 1 0) 10000-11111
ENDGROUP

Revision 3.10

-.

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

; Serial Port section
FUNcnON = "Serial Port"

TYPE = "COM,ASY"
CHOICE = "COMl"

SUBTYPE = "COMl"
FREE

IRQ = 4
SHARE = yes
TRIGGER = level

PORT = 3f8h-3ffh
SHARE = no
SIZE = byte

INIT = IOPORT(ll LOC 13-0) 0000
INIT = IOPORT(2 LOC 15-2) 00000011111100
INIT = IOPORT(3 LOC 7-2) 110000
INIT = IOPORT(4 LOC (2-0) 010

CHOICE = "COM2"
SUBTYPE = "COM2"
FREE

IRQ = 3
SHARE = yes
TRIGGER = level

PORT = 2F8h-2ffh
SHARE = no
SIZE = byte

IN IT = IOPORT(I) LOC (3-0) 0000
INIT = IOPORT(2) LOC (15-2) 00000011111100
INIT = IOPORT(3) LOC (7-2) 110000
INIT = IOPORT(4) LOC (2-0) 000

CHOICE = "Port disable"
SUBTYPE = "Port disable"
DISABLE = yes
FREE

INIT = IOPORT(4) LOC(O) 0

Revision 3.10 407

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.14.2 Read Slot Configuration Information BIOS Routine

The following example illustrates a "Read Slot Configuration Information" BIOS
routine Call. The data block returned by the BIOS routine indicates an ACME Ethernet
Board installed in slot 4.

Assume the following register assignments prior to executing the "Read Slot
Configuration Information" BIOS routine Call:

INT ISh, AH:.: D8h, AL = OOh

INPUT:

AH = OD8h
AL = 0
CL = 4

;Read Slot Configuration Information
;Slot number for ACME Ethernet Board

The following register values illustrate the parameters returned by the "Read Slot
Configuration Information" INTI5 Call:

OUTPUT:

AH =
AL =
BH =
BL =
CH =
CL =
DH =
DL =
DI and SI =

OOh--Successful Completion (carry flag = 0)
OOh--No duplicate IDs and board ID is readable
OIh--Major Revision Level of Configuration Utility
OIh--Minor Revision Level of Confi~ration Utility
ADh--Checksum of Configuration FIle (MSByte)
09h--Checksum of Configuration File (LSByte)
04h--Number of Functions on this board
OOIIIIIIb--Combined Function information byte
Four byte compressed ID
DI(lsb) = 04h (byte 0)
DI(msb) = 65h (byte 1)
SI(lsb) = OIh (byte 2)
SI(msb) = OSh (byte 3)

4.14.3 Read Function Configuration Information BIOS Routine Call

The following examples illustrate the "Read Function Configuration Information"
BIOS routine call. The data block returned by the BIOS routine indicates an ACME
Ethernet Board installed in slot 4.

408 Revision 3.10

---.

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Assume the following register assignments prior to executing the "Read Function
Configuration Information" INT15 call:

INT 15h,AH=D8h,AL=Olh

INPUT:

AH = ODSh
AL = Olh
CL = 04h
CH = DOh
DS:SI = 29B9:0600

;Read Function Configuration Information
;Slot number for ACME Ethernet Board
;Read the data block for function 0
;pointer to the data block returned

The followin~ register values illustrate the parameters returned by the "Read
Function ConfiguratIon Information" BIOS routine call:

OUTPUT:

AH = OOh Successful completion (carry flag = 0)

The table on the following page illustrates the data block returned by the "Read
Function Configuration Information" BIOS routine call for function O.

Revision 3.10 409

Off- Byte
set #

OOh 1
2
3
4

04h 5
6

06h 7
8

08h 9
10
11
.

22h 35
23h 36

37
38
39
40
41
42
43
44
45
46
47
48

104h
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

410

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Value Description

04h 1st BJte Expansion Board ID: ACEOI05 (0465h)
65h 2nd yte Expansion Board ID
01h first and second hex digit of product number
05h third digit of product number II-digit revision number
OOh ID and slot information
03h Miscellaneous ID Information
01h Major Configuration Utility Revision Level
01h Minor Configuration Utility Revision Level
OOh 1st Selection
OOh 2nd Selection

0 Not Used
0 "

21h Function information (OOOOl1l1b)
N TYPE string starts here
E
T
, Delimiter that separates TYPE string fragments
E
T
H End of TYPE string . Delimiter to append subtype string ,
L
A
N
0 End of SUBTYPE string
0 Not Used
0 "

261 80h Initialization B~te IOPORT(1)
94h LSB IOPORT ADDR SS
4Ch MSB IOPORT ADDRESS
OOh PORT VALUE
85h Initialization Byte IOPORT(2)
98h LSB IOPORT ADDRESS
4Ch MSB IOPORT ADDRESS
FOh LST PORT VALUE
03h MSBPORTVALUE
03h LSB PORT MASK
OOh MSB PORT MASK
84h Initialization Byte IOPORT(3)
9Ah LSB IOPORT ADDRESS
4Ch MSB IOPORT ADDRESS
COh PORT VALUE
03h PORT MASK

Revision 3.10

---.

.-

.-.

Off-
set

127h

13Fh

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Byte
Value Description

277 84h Initialization Byte IOPORT(4)
278 9Bh LSB IOPORT ADDRESS
279 4Ch MSB IOPORT ADDRESS
280 OOh PORT VALUE
281 F8h PORT MASK
282 80h Initialization Byte IOPORT(5)
283 85h LSB IOPORT ADDRESS
284 4Ch MSB IOPORT ADDRESS
285 OOh PORT VALUE
286 84h Initialization Byte IOPORT(6)
287 86h LSB IOPORT ADDRESS
288 4Ch MSB IOPORT ADDRESS
289 OCh PORT VALUE
290 60h PORT MASK
291 04h Initialization Byte IOPORT(7)
292 86h LSB IOPORT ADDRESS
293 4Ch MSB IOPORT ADDRESS
294 80h PORT VALUE
295 60h PORT MASK
296 OOh Not Used

OOh "
OOh "

Revision 3.10 411

EXTENDED INDUSTRY STANDARD ARCHITECI'URE
CONFIDENTIAL INFORMA nON OF BCPR SERVICES, INC.

The following table illustrates the data block returned by the "Read Function
Configuration Information" BIOS routine call for function 1. The register setup is the same
as for the last call except CH = 01h.

Off- Byte
set # Value Description

OOh 1 04h 1st B~te Expansion Bnard ID: ACE0105 (0465h)
2 65h 2nd yte Expansion Board ID
3 Olh first and second digit of product number
4 05h third digit of product number/I-digit revision number

04h 5 OOh ID and slot information
6 03h Miscellaneous ID Information

06h 7 01h Major Configuration Utility Revision Level
8 01h Minor Configuration Utility Revision Level

OSh 9 OOh 1st Selection
10 DOh 2nd Selection
11 OOh 3rd Selection
12 DOh 4th Selection
13 OOh 5th Selection
14 OOh Not Used

OOh " .
OOh "

412 Revision 3.10

-

Off-
set

22h
23h

73h

B2h

COh

C8h

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Byte
Value Description

35 OFh Function information (00001111b)
36 N TYPE string starts here
37 E
38 T
39 , Delimiter that separates TYPE string fragments
40 E
41 T
42 H End of TYPE string
43 OOh Not Used

OOh " .
OOh "

116 18h Memory Configuration: ROM - (00011000b)
117 08h ROM memory size (byte)
118 OOh LSByte ROM Start Address (ODOOOOh/lOOh = ODOOh)
119 OCh Middle Byte ROM Start Address
120 OOh MSByte of ROM Start Address
121 02h LSByte ROM size (2048/400h = 0002h)
122 OOh MSByte ROM size
123 (X)h Not Used

(X)h "
(X)h "

179 22h Interrupt configuration: IRQ2 (00100010b)
180 OOh Reserved
181 OOh Not Used

OOh "
OOh "

193 OSh DMA configuration: DMA channelS (00000101b)
194 38h 32-bit BURST transfers (00111000b)
195 OOh Not Used

OOh "
OOh "

201 OOh Not Used
OOh "
OOh "

Revision 3.10 413

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the data block returned by the "Read Function
Configuration Information" BIOS routine call for function 2. The register setup is the same
as for the last call except CH =02h.

Off- Byte
set # Value Description

OOh 1 04h 1st Byte Expansion Board ID: ACEOlOS (046Sh)
2 6Sh 2nd Byte Expansion Board ID
3 Olh first and second hex digit of product number
4 OSh third digit of product number/I-digit revision number

04h 5 OOh ID and slot information
6 03h Miscellaneous ID Information

06h 7 Olh Major Configuration Utility Revision Level
8 Olh Minor Configuration Utility Revision Level

08h 9 OOh 1st Selection
10 OOh 2nd Selection
11 OOh 3rd Selection
12 OOh Not Used

OOh " ·
OOh " · 22h 35 03h Function information (OOOOOl1lb)

23h 36 N TYPE string starts here
37 E
38 T
39 , Delimiter that separates TYPE string fragments
40 E
41 T
42 H
43 , Delimiter to append subtype string
44 6
45 4
46 K End of SUBTYPE string
47 OOh Not Used

OOh " .
OOh "

73h 116 19h Memory Configuration: RAM - (OOOllOOlb)
117 02h RAM Memory Data Size (Dword)
118 OOh LSByte ROM Start Address (ODOOOOh/lOOh = ODOOh)
119 10h Middle Byte ROM Start Address
120 OOh MSByte of ROM Start Address
121 40h LSByte ROM size (2048/400h = 0002h)
122 OOh MSByte ROM size
123 OOh Not Used

OOh " ·
OOh "

414 Revision 3.10

EXTENDED INDUSTRY STANDARD ARCHITECI'URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the data block returned by the "Read Function
Configuration Information" BIOS routine call for function 3. The register setup is the same
as for the last call except CH = 03h.

Off- Byte
set # Value Description

OOh 1 04h 1st Byte Expansion Board ID: ACE0102 (046Sh)
2 6Sh 2nd Byte Expansion Board ID
3 01h first and second digit of product number
4 OSh third digit of product number/I-digit revision number

04h 5 OOh ID and slot information
6 03h Miscellaneous ID Information

06h 7 01h Major Configuration Utility Revision Level
8 01h Minor Configuration Utility Revision Level

08h 9 01h 1st Selection
11 OOh 2nd Selection
12 OOh 3rd Selection
13 OOh Not Used
· OOh II · 22h 35 ISh Function information (OOOI100lb)

23h 36 C TYPE string starts here
37 0
38 M
39 , Delimiter that separates TYPE string fragments
40 A
41 S
42 Y End of SUBTYPE string
43 . Delimiter to append SUbtype string ,
44 C
45 0
46 M
47 2 End of SUBTYPE string
48 OOh Not Used
· OOh II

B2b 179 23h Interrupt configuration: IRQ3 (OOlOOOllb)
180 OOH Reserved
181 OOh Not Used

OOh " · C8b 201 07h Port 10 Range entry (OOOOOOllb)
202 F8h LSB Port Address
203 02h MSB Port Address
204 OOh Not Used
· OOh " ·

Revision 3.10 415

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.14.4 Write Nonvolatile Memory BIOS Routine CALL

The following example illustrates a Write Nonvolatile Memory BIOS routine calL

INT ISh, AH = D8h, AL = 03h

INPUT:

AH = OD8h
AL = 03h
CX = 0041h
DS:SI = 15AA:0244

OUTPUT:

AH = OOh Successful completion (carry flag = 0)

The data structure that is passed to the Write Nonvolatile Memory BIOS routine for
the ACME Ethernet board example:

Off- Byte
set # Value Description

OOh I 04h 1st Byte Expansion Board ID: ACE0105 (0465h)
2 65h 2nd Byte Expansion Board ID
3 01h first and second digit of product number
4 05h third digit of product number / 1-digit revision number

04h 5 OOh ID and slot information (OOOOOOOOb)
6 03h Reserved

06h 7 01h Major Configuration Utility Revision Level
8 01h Minor Configuration Utility Revision Level

OOh if no CFG File Extensions
OSh 9 34h LSB length of function 0 entry

10 OOh MSB lenfth of function 0 entry
OAb 11 02h Length 0 following selections field

12 OOh 1st selection
13 OOh 2nd selection

ODh 14 21h Function 0 information byte (00100001b)
OEh 15 OCh Le¥th of following ASCII TYPE string
OFh 16 4Eh N YPE string starts here

17 45h E
18 54h T
19 2Ch , Delimiter- separates TYPE string fragments
20 45h E
21 54h T
22 48H H End of TYPE string
23 3Bh ; Delimiter to append SUBTYPE string
24 4Ch L SUBTYPE string starts here
25 41h A
26 4Eh N
27 30h 0

416 Revision 3.10

--

Off-
set

1Bh

3Eh

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Byte
Value Description

28 80h Initialization Byte IOPORT(l)
29 94h LSB IOPORT ADDRESS
30 4Ch MSB IOPORT ADDRESS
31 OOh PORT VALUE
32 85h Initialization Byte IOPORT(2)
33 98h LSB IOPORT ADDRESS
34 4Ch MSB IOPORT ADDRESS
35 FOh LST PORT VALUE
36 03h MSB PORT VALUE
37 03h LSB PORT MASK
38 OOh MSB PORT MASK
39 84h Initialization Byte IOPORT(3)
40 9Ab LSB IOPORT ADDRESS
41 4Ch MSB IOPORT ADDRESS
42 COh PORT VALUE
43 03h PORT MASK
44 84h Initialization Byte IOPORT(4)
45 9Bh LSB IOPORT ADDRESS
46 4Ch MSB IOPORT ADDRESS
47 OOh PORT VALUE
48 F8h PORT MASK
49 80h Initialization Byte IOPORT(5)
50 85h LSB IOPORT ADDRESS
51 4Ch MSB IOPORT ADDRESS
52 OOh PORT VALUE
53 84h Initialization Byte IOPORT(6)
54 86h LSB IOPORT ADDRESS
55 4Ch MSB IOPORT ADDRESS
56 OCh PORT VALUE
57 60h PORT MASK
58 04h Initialization Byte IOPORT(7)
59 86h LSB IOPORT ADDRESS
60 4Ch MSB IOPORT ADDRESS
61 80h PORT VALUE
62 60h PORT MASK
63 lAb LSB length of function 1 entry
64 OOh MSB length of function 1 entry
65 05h Length of following selections field
66 OOh 1st Selection
67 OOh 2nd Selection
68 OOh 3rd Selection
69 OOh 4th Selection
70 OOh 5th Selection

Revision 3.10 417

Off- Byte
set #

46h 71
47h 72
48h 73

74
75
76
77
78
79

4Fh 80

81
82
83
84
85
86

56h 87

88
58h 89

90
5Ah 91

92
93
94
95
96

60h 97
61h 98
62h 99

100
101
102
103
104
105
106
107
108
109

418

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Value Description

OFh Function 1 Information Byte (OOOOl1l1h)
07h Length of following ASCII string field
4Eh N Type String Starts Here
45h E
54h T
2Ch , Delimiter that separates TYPE string
45h E
54h T
48h H
18h Memory Config Byte (00011010b OTH cacheable ROM)

Although this memory is cacheable, caching isn't
implemented in this configuration and is so represented.

08h Memory Data Size - Byte
OOh LSB Mem Start Address (divided by 100h)
OCh Middle Mem Start Address
DOh MSB Memory Start Address
02h LSB Memory Size (bytes divided by 400h)
DOh MSB Memory Size (0002*400 = 800h = 2k)
22h Interrupt Configutation Byte

Although this interupt may be shared, it doesn't need
to be in this configuration and is so represented.

OOh Reserved
OSh DMA Configutation: DMA ChannelS (00000101b)
38h 32-bit BURST Transfers (00111000b)
18h LSB length of function 2 entry
DOh MSB len~th of function 2 entry
03h Length 0 following Selections field
OOh 1st Selection
OOh 2nd Selection
OOh 3rd Selection
03h Function 2 Info. Byte
OBh Length of follow string field
4Eh N
45h E
54h T
2Ch , Delimiter that separates TYPE string
45h E
54h T
48h H
3Bh ; Delimiter to append SUBTYPE string
36h 6
34h 4
4Bh K

Revision 3.10

.-

EXTENDED INDUSTRY STANDARD ARCHITECI'URE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

Off- Byte
set :# Value Description

6Dh 110 19h Memory Confi~ration Byte (OOOl1oo1b)
111 02h Memory Data ize (Dword)
112 ooh LSB Memory Start Address (divided by 100h)
113 lOh Middle Mem Start Address
114 ooh MSB Memory Start Address
115 40h LSB Memory Size (bytes divided by 4ooh)
116 ooh MSB Memory Size (0040*400 = 10000h = 16k)

74h 117 17h LSB length of function 3 entry
118 ooh MSB len~h of function 3 entry

76h 119 03h Len~ 0 following selections field
120 01h 1st election
121 ooh 2nd Selection
122 OOh 3rd Selection

7Ah 123 ISh Function 3 Information Byte
7Bh 124 OCh Length of following ASCII string field
7Ch 125 43h C

126 4Fh 0
127 4Dh M
128 2Ch , Delimiter that separates TYPE string
129 41h A
130 53h S
131 59h y
132 3Bh ; Delimiter to append SUBTYPE string
133 43h C
134 4Fh 0
135 4Dh M
136 32h 2

88h 137 23h Interrupt Configuration Byte
Although this interupt may be shared, it doesn't need
to be in this configuration and is so represented.

138 ooh Reserved
8Ah 139 OTh Port 10 Ran&e entry (OOOOOO11b)

140 F8h LSB Port A dress
141 02h MSB Port Address

8Dh 142 ooh LSB Last Function Length = 0
143 ooh MSB Last Function Le~h = 0

8Fh 144 09h LSB Co%ation file hecksum
145 ADh MSB Co guration file Checksum

Revision 3.11 419

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC

4.14.5 Read Physical Slot BIOS Routine Call

This BIOS routine obtains the ID of the EISA board in the selected slot. The
routine writes OFFh to the selected slot and reads data back from the same slot. If the
returned data equals OFFh, no board ID can be obtained. If any value other than OFFh
is returned and the MSB equals zero, then a valid device ID has been obtained. Slot
addresses are OzC80h·OzC83h.

INT ISh, AH=OD8h, AL=04h

INPUT
AH = OD8h
AL =
AL =
CL =

04h if called from 16-bit segment
84h if called from a 32·bit segment
Slot number (including embedded and virtual slots)
o = system board
1 = slot 1
2 = slot 2
n = slot n

OUTPUT
AH = OOh Successful completion; Carry Oag = 0

80h Invalid slot number; Carry Oag = 1
83h Empty slot; Carry Oag = 1
86h Invalid BIOS routine call; Carry Oag = 1

DI and SI
Four.byte compressed ID
DI (Isb) = Byte 0
DI (msb) = Byte 1
SI (Isb) = Byte 2
SI (msb) = Byte 3

The following procedure describes the steps necessary for obtaining the EISA
device ID.

419-A

1. Determine the type of processor present on the system board. I/O Port
61h will be accessed to check the status of refresh cycles. I/O Port 61h is
not available for 8086/8088·based systems. The processor type can only
be determined in real mode.

2. Wait for the start and completion of the next refresh cycle. The
occurrence of a refresh cycle during slot access may produce erroneous
data. During refresh cycles, bit 4 of I/O Port 61h toggles from 1 to o.

3. Load the AL register with FFh. Then clear the processor prefetch by
executing a "jmp $ + 2". Write the contents to AL to the slot address
OzC80h.

4. Read the contents of slot address OzC80h into the AL register and
compare those results to OFFh. If the data equals FFh, no device ID is
available. If the contents are not equal to FFh and the MSB = 0, then an
EISA device ID may be read.

Revision 3.11

EXTENDED INDUSTRY STANDARD ARCHITEcruRE
CONFIDENTIAL AND PROPRIETARY INFORMATION OF BCPR SERVICES, INC.

THIS PAGE INTENTIONALLY LEFT BLANK

Revision 3.11 419-B

