EP 0 426 184 A2

APPENDIX 1

Extended Industry Standard Architecture
(EISA) Specification 3.1

29

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARL* ARCH!TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

TABLE OF CONTENTS

Foreword
Notational Conventions
Units of Measure
1. EISA Overview

1.1 Compatibility with ISA

1.2 Memory Capacity

1.3 Synchronous Data Transfer Protocol

1.4 _Enhanced DMA Functions
1.4.1 32-bit Address Support for DMA Transfers
142 8-, 16- or 32-bit Data Transfers from DMA Devices
15 Bus Master Capabilities
1.6 Data Size Translation
1.7 Bus Arbitration
1.8
1.9
1

Edge/Level Triggered Interrupts
.9 Automatic System Configuration
1.10 EISA Feature/Benefit Summary
2. EISA Bus Specification
2.1 Signal Descriptions
2.1.1 Address and Data Bus Signal Group
212 Data Transfer Control Signal Group
2.1.3 Bus Arbitration Signal Group
2.14 Utility Signal Group
2.1.5 Summary of Signals
2.1.6 Signal Usage by System, Masters and Slaves
22 ISA Cycles
22.1 CPUCYCLES

BB»—A;—M—I»—A»—A < .
OO O+ 000000 NN B B BB LI R I v s X, 3¢ &

222 MEMORY SLAVES 25
223 1/OSLAVES 25
224 BUS MASTERS 25
23 ISA CPU and Bus Master Cycles 27
23.1 8-bit Memory Cycles 27
232 8-bit1/O Cycles 31
233 16-bit Memory Cycles 35
234 16-bit1/O Cycles 39
2.4 EISA CPU and Bus Master Cycles 42
24.1 Standard Memory and I/O Cycles 42
242 COMPRESSED Cycles 48
2.4.3 Burst Cycles 50
25 DMA Cycles 55
25.1 ISA Compatible DMA Cycles: ISA Compatible 55
252 Type"A" %MA Cycles 63
253 Type "B"DMA Cycles 63
254 Burst DMA (Type "C") Cycles 73

30

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.6 Data Bus Translations

32-bit EISA Bus Master to 16-bit EISA Slave Transactions
16-bit EISA Bus Master to 32-bit EISA Slave Transactions
32-bit EISA Bus Master to 16-bit ISA Slave Transactions
32-/16-bit EISA Bus Master to 8-bit ISA Slave Transactions
16-bit ISA Bus Master to EISA Slaves Transactions

32-bit DMA Device to 16-bit EISA Memory Transactions
16-bit DMA Device to 32-bit EISA Memory Transactions

N PO NI N R
SO
Nollo U Neo W, RN AL ES I (6 e

16- or 32-bit DMA Device to 8- or 16-bit ISA Memory
Transactions
cked Cycles
ISA Devices
Memory Slaves
I1/0O Slaves
Bus Masters
Burst Bus Masters
Downshift Burst Bus Masters
DMA Devices
2.8.6.1 Non-Burst EISA DMA Devices
2.8.6.2 Burst EISA DMA Devices
2.8.6.3 Misaligned DMA Transfers
2.8.7 System Board
2.8.7.1 Main Memory Access
2.8.72 Back-to-Back I/O Delay
2.8.73 Slot-specific1/O
2.8.74 I/O Address Decoding
2.9 Bus Arbitration
29.1 System Arbitration Priorities
292 Subsystem Priorities and Latencies
293 EISA Bus Master Arbitration Cycle Descriptions
0 Memory Refresh
Electrical Specifications
11.1 Power Consumption
112 DC Characteristics
1
1

N

00 2
og

DPDROINON
00 00 00 00 00 00
SNV QRS S

2.1
2.1

1.3 Signal Routing and Capacitive Loading Requirements
1.4 AC Characteristics
- 2.11.4.1 ISA-compatible Timing Parameters
2.11.4.2 EISA, DMA, and Refresh Timing Parameters
2.12 Mechanical Specifications .
2.13 EISA Connector and Expansion Board Description
2.13.1 Physical Charactenstics
2.13.2 Connector Specifications
2.13.3 Pin Description
System Board I/O Control Functions
3.1 DMA Description
3.1.1 DMA &ntroller Overview
3.1.2 DMA Controller Description
3.1.2.1 DMA Master Condition Operation
3.1.22 DMA Slave Condition Operation

1
2.
2.
2.
2.

31

8-bit DMA Device to 16- or 32-bit EISA Memory Transactions

79
79
83
83
85
86
92
93
93

94
95
97
97

103

110
113
115
119
122
131
131
131
132
132
134
135
139
142
147
149
151
151
151
154
155
156
181
213
213
214
215
226
228
235
235
236
236
237

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.3 ~ DMA Transfer Modes 237
3.1.3.1 Single Transfer Mode 237

3.1.32 Block Transfer Mode 237

3.133 Demand Transfer Mode 238

3.1.34 Cascade Mode 239

3.14 Transfer Types 239
3.1.5 Auto Initialize : 239
3.1.6 Buffer Chaining 240
3.1.7 Ring Buffers 241
3.1.8 Software Commands 243
3.1.9 DMA Controller Register Descriptions 243
3.19.1 DMA Extended Mode Register 243

3.1.9.2 Chaining Mode Register 245

3.1.93 Chaining Mode Status Register 247

3.1.94 Channel Interrupt Status Register 247

3.1.9.5 Address and Word Count Registers 248

3.1.9.5.1 Base Word Count Register 248

3.1.952 Current Word Count Register 249

3.1.95.3 Base Address Register 250

3.1.9.54 Current Address Register 251

3.1.9.55 Address and Word Count Programming 252

3.1.9.6 DMA Command Register 256

3.1.9.7 Mode Register 257

3.1.9.8 Request Register 258

3.1.99 Mask Registers 258

3.1.9.10 DMA Status Register 260

3.1.10 Supported DMA Transfer Combinations 261
3.2 Interrupt Controller 265
3.2.1 Interrupt Controller I/O Address Map 265
322 Interrupt Sequence 265
3.23 Interrupt Controller Initialization 266
3.24 Initialization and Control Registers 268
324.1 Initialization Command Word 1 (ICW1 268

3.24.2 Initialization Command Word 2 (ICW2 269

3.243 Initialization Command Word 3 (ICW3 270

3.24.4 Initialization Command Word 4 (ICW4 271

3245 Interrupt Mask Register (OCW1) 271

324.6 Operation Control Word 2 (OCW2 272

3247 Operation Control Word 3 (OCW3 274

3.24.8 Edge/Level Control Register (ELCR) 275

3249 Interrupt Request Register (IRR) 276

3.24.10 In-Service Register (ISR) 276

325 End-of-Interrupt 277
325.1 Ignd of Interrupt (EOI) Command 277

, 3252 Automatic End of Interrupt (AEOI) 277
3.2.6 Interrupt Controller Modes 277
3.2.6.1 Fully Nested Mode 277

3.2.6.2 Special Fully Nested Mode 278

3.2.6.3 Fixed Priority Mode 278

3.2.6.4 Rotating Priority Mode 278

3.2.6.5 Polled Mode 279

3.2.6.6 Special Mask Mode . 280

32

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.3 Non-Maskable Interrupts (NMI) 281
3.4 Interval Timers 287
3.4.1 Programming the Interval Timers 289
3.4.1.1 Interval Timer Control Word Format 289
3.4.1.2 Counter Operating Modes 290
3.4.1.3 Counter Initial Count Value 291
3.4.2 Monitoring Timer Status 291
3.42.1 Counter Read Operation 291
3.4.2.2 Counter Latch Command 292
3423 Counter Read-Back Command 292
4. EISA System Configuration 294
4.1 Devices Supported by Automatic Configuration 295
4.1.1 Expansion Boards : 295
- 4.1.1.1 EISA Expansion Boards 295
4.1.1.2 ISA Expansion Boards 295
4.1.2 System Board 295
4.1.2.1 System Board Peripherals That Use
Slot-Specific I/O Space 296
4.12.2 System Board Peripherals That Use System
oard I/O Space 296
4.1.3 Software Drivers That Require System Resources 296
4.2 Configuration Utility 297
4.3 Configuration Files 298
4.3.1 Configuration File Extensions 298
432 E:gansion Board Identifier (Product ID) 299
4.3.3 1/O Port Initialization Information 299
434 System Resource Requests 299
4.4 Configuration File Filenames 300
45 The Confguration Procedure 301
4.5.1 Conhguration File Syntax 301
45.2 Symbol Conventions 302
453 umerical Value Conventions 303
454 Keyword and Field Specification Conventions 303
4.6 Configuration File Format 305
4.6.1 ard Identification Block 305
4.6.2 Initialization Information Block 311
4.6.2.1 1/0O Port Initialization Statement Block - 311
4.6.2.2 Switch Configuration Statement Block 313
4623 Jumper ConéLl ration Statement Block 317
4624 SO ARE(Initialization) Statement Block
(Optional) - 321
4.6.3 FUNCTION Statement Block 322
4.6.3.1 CHOICE Statement Block 325
4.6.3.2 SUBCHOICE Statement Block 327
4.63.3 GROUP Statement Block 331
4.6.4 Resource Description Block 334
4.6.4.1 DMA Channel Description Block 335
4.6.4.2 Interrupt Description Block 338
4.6.43 1/0O Port Description Block 339
4644 Memory Description Block 341
4.6.4.5 INIT Statements . 345

33

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURE
CONFIDENTIAL INFORMATION OF BECPR SERViCES, TinC.

46.5 Resource Grou
46.5.1 LINK Groups
- 46.52 COMBINE Groups
4653 Free Groups
4.6.6 PORTVAR() Variable
4.7 System Board Configuration File
47.1 Board Identification Block
472 System Description Block
473 SLOT Statement Block (Optional)
4.8 EISA System ROM Operations
48.1 EISA System ROM BIOS Routine Calls
48.1.1 Identify System Board Ty{)e
4.8.1.2 Read Slot Configuration Information, INT 15h,
AH=D8h, AL =00h (or 80h)
4.8.13 Read Function Configuration Information,
INT 15h, AH=0D8h, AL =01h (or 81h)
48.14 Clear Nonvolatile Memory, INT 15h, AH=D8h,
AL =02h (or 82h)
4.8.1.5 Write Nonvolatile Memory INT 15h, AH=D8h,
AL =03h (or 83h)
2 Initializing Nonvolatile Memory
3 Power-up Initialization of EISA Systems
4 Slot Ininalization Sequence
.8.5 Error Handling During Slot Initialization
g Noncacheable Memory Map Initialization

DR RN
o Do 0o 00 06 0o

. Writable Memory Map Initialization
49 EISA System I/O Address Map
9.1 ansion Board Address Decoding
9.2 Embedded Slot Address Decoding
93 System Board Address Decoding
EISA Product Identifier (ID)
.10.1 EISA System Board ID
.10.2 EISA Expansion Board Product ID
.10.3 EISA Embedded Devices
Expansion Board Control Bits
System Software Use of Configuration Information
2.1 Slot Search by Product Independent Device Driver
2.2 Slot Search by a Product Dependent Device Driver
2.3 Device Driver Initialization for EISA Expansion Boards
4.13 Creating TYPEs and SUBTYPE:s for Devices
.13.1 TYPE Strings
.13.2 SUBTYPE Strings
.13.3 Standard TYPE Table
Configuration Example
.14.1 Configuration File

»

4.1

ApROPA

Do
[gree'y
N ra

-

1
1
d

Wb bpn

4.1

14.1

.14.2 Read Slot Configuration Information BIOS Routine

14.3 Read Function Configuration Information BIOS Routine Call
14.4 Write Nonvolatile Memory BIOS Routine CALL

34

348
348
349
351
352
353
353
353
355
356
356
357

358
359
368

368
379
379
380
382
383
383
384
385
387
387
389
390
392
394
395
397
397
398
399
400
400
401
402
404
404
408
408
416
420

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AR:HITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

LIST OF FIGURES

Figure Page
1 CHRDY "Sample Window" 24
2 Memory Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 28
3 Memory Access to 8-bit ISA Slave §7 BCLK 29
4 Memory Access to 8-bit ISA Slave (3 BCLK 30
5 1/O Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 32
6 1/O Access to 8-bit ISA Slave g? BCLK 33
7 I/O Access to 8-bit ISA Slave (3 BCLK; 34
8 Memory Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 36
9 Memory Access to 16-bit ISA Slave (6 BCLK 37
10 Memory Access to 16-bit ISA Slave £2 BCLK 38
11 1/O Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 40
12 I/O Access to 16-bit ISA Slave (6 BCLK) 41
13 32-bit Master to 32-bit Slave Memory Read Accesses 45
14 32-bit Master to 32-bit Slave Memory Write Accesses 46
15 Access to EISA Slave - 3 BCLK and Standard (2 BCLK) Cycles 47
16 Access to EISA Slave - COMPRESSED Cycle (1.5 BCLK) 49
17 32-bit Master to 32-bit Slave Burst Read Transfers 52
18 32-bit Master to 32-bit Slave Burst Write Transfers 53
19 Access to EISA Slave - Burst Cycles (With and Without Wait States) 54
20 32-bit DMA Read Transfer from 32-bit Memory - Type "A,""B,"
and Burst Cycles (No Wait States) 57
21 32-bit DMA Read Transfer from 32-bit Memory - Compatible Cycle
(No Wait States) 58
22 32-bit DMA Write Transfer to 32-bit Memory - Type "A," "B,”
and Burst Cycles (No Wait States) 59
23 32-bit DMA Write Transfer to 32-bit Memory - Compatible Cycle
(No Wait States) 60
24 DMA Transfer from Memory Without Conversion - Compatible Cycle:
Demand Read 61
25 DMA Transfer to Memory Without Conversion - Compatible Cycle:
Demand Write 62
26 DMA Transfer from Memory Without Conversion - Type "A" Cycle:
Demand Read 64
27 32-bit DMA Transfer from 16-bit EISA Memory with Conversion
: - Type "A" Cycle: Read 65
28 DMA Transfer to Memory Without Conversion - Type "A" Cycle
Demand: Write 66
29 32-bit DMA Transfer to 16-bit EISA Memory with Conversion
- Type "A" Cycle: Write 67
30 DMA Transfer from Memory Without Conversion - Type "B" Cycle
Demand Read 69
31 32-bit DMA Transfer from 16-bit EISA Memory with Conversion
- Type "B" Cycle: Read 70
32 DMA Transfer to Memory Without Conversion - Type "B" Cycle:
Demand Write 71
33 32-bit DMA Transfer to 16-bit EISA Memory with Conversion
72

- Type "B" Cycle Write

35

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHIT=CTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

LIST OF FIGURES (continued)

Figure . Page
34 DMA Transfer from Memory Without Conversion - Burst DMA

Cycle: Demand Read 75
35 32-bit DMA Transfer from 16-bit EISA Memory with Conversion -

Burst DMA Cycle: Read 76
36 DMA Transfer to Memory Without Conversion - Burst DMA Cycle:

Demand Write 77
37 32-bit DMA Transfer to 16-bit EISA Memory with Conversion -

Burst DMA Cycle: Write 78
38 32-bit EISA Master to 16-bit EISA Slave Dword Access 2
39 16-bit ISA Master Read from EISA Slave 88
40 16-bit ISA Master Write to EISA Slave 89
41 16-bit ISA Master I/O Read from 16- or 32-bit EISA 1/0 Slave 90
42 16-bit ISA Master I/O Write to 16- or 32-bit EISAI/O Slave 91
43 LOCK Timing Example 96
44 Memory Slave with Wait States 99
45 BURST EISA Memory Slave with Wait States 100
46 EISA Memory Slave gBumt Cycle) Page Boundary Condition 101
47 EISA Memory Slave (Standard Cycle) NOWS* Asserted 102
48 EISA Bus Master Write Cycle with Data Translation 106
49 EISA Bus Master Preempt During Normal Cycle 107
50 Bus Transfer from Master Control to Float - EISA Cycle

(with Wait States) 108
51 Bus Transfer from EISA Control to Float - Translated ISA Cycle 109
52 EISA Bus Master Preempt During Burst Cycle 111
53 Bus Transfer from Master Control to Float - EISA Burst Cycle 112
54 "Downshift" Bus Master Operations 114
55 EISA DMA Device Compatible Write Transfer 116
56 Type "B" EISA DMA Device (Block Memory Write) Transfer

Interrupted by DAK® <x> 117
57 BURST EISA DMA Device: Demand Memory Write Negation

of DAK* <x> and DRQ<x> in Same Cycle 118
58 Type "B" EISA DMA Device (Demand Memory Read) 120
59 Type "B" EISA DMA Device (Block Memory Write) T-C Asserted

by DMA Device 121
60 Burst EISA DMA Device (Demand Memory Write) Wait States

on Last Cycle 123
61 Burst EISA DMA Device (Block Memory Read) Page Boundary

Condition 124
62 Burst EISA DMA Device §Demand Memory Write) 126
63 Burst EISA DMA Device (Memory Read) Transfer Terminated

by Assertion of T-C 127
64 Burst EISA DMA Device T-C Asserted by DMA Device 128
65 Burst EISA DMA Device (Demand Memory Write) DRQ<x>

Negated at Wait State 129
66 Burst EISA DMA Device (Block Memory Read) Preemption

by Negation of DAK*® <x> 130
67 Bus Master; Starting a Normal Cycle Without a Bus Timeout 136
63 Bus Masterf: Continuing a Burst Cycle Without a Bus Timeout 136

36

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH!TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

LIST OF FIGURES (continued)

Figure Page
69 Bus Master Continuing a Downshift Burst Cycle Without a Bus

Timeout 137
70 Centralized Arbitration 138
71 Fixed DMA Priority Arbitration Sequence 140
72 Rotating DMA Priority Arbitration Sequence 141
73 Bus Arbitration Between Two Bus Masters 148
74 Refresh Cycles (Standard and One Wait State) 150
75 ISA Bus Timing, System Timing 158-159
76 ISA Bus Timing, Bus Master Cycles 168
77 ISA Bus Timing, CPU Cycles (Device Perspective) 171-172
78 16- or 32-bit EISA Master and System Timing 183
79 16- or 32-bit EISA Master Assembly/Disassembly Timing 184
80 System Timing (Assembly Cycles) . 190
81 16- or 32-bit EISA Slave 2i‘iming 191
82 System Timing (COMPRESSED Cycles) 194
83 16- or 32-bit EISA COMPRESSED Cycle - Slave Timing 196
84 Refresh Cycle - Slave Timing 198
85 16- or 32-bit EISA Master Timing, Burst 200
86 16- or 32-bit EISA Slave Timing, Burst 202
87 System DMA Timing 204
88 DMA Device Timing Compatible, Type "A”", and Type "B"

Memory Read Cycles 205
89 DMA Device Timing Compatible, Type "A”", and Type "B"

Memory Write Cycles 206
90 DMA Device Timing Burst Memory Read Cycle 210
91 DMA Device Timing Burst Memory Write Cycle 211
92 EISA Connector and Card-edges 216
93 EISA Expansion Board Dimensions 217
94 EISA Expansion Board Card-edge Detail 218
95 16-bit ISA Expansion Board Dimensions 219
96 16-bit ISA Expansion Board Card-edge Detail 220
97 8-bit ISA Expansion Board Dimensions 221
98 8-bit ISA Expansion Board Card-edge Detail 222
99 EISA Expansion Board Mounting Bracket 223
100 EISA Connector Dimensions 224
101 EISA Connector System Board Drill Pattern ' 225
102 EISA Pinout 227
103 Power-Up Slot Initialization 380-381

37

EP 0 426 184 A2

\

EXTENDED INDUSTRY STANDARD ARCHITE-"TURE
CONFIDENTIAL INFORMATION OF BCPR SERVICEE, INC.

Foreword

Since its inception seven years ago, the growth of the personal computer market .
has been driven by the emergence of a de-facto industry standard. e industry
standard started with the original IBM PC system architecture and has evolved to the
80386 architecture in use today.

The industry-standard architecture (ISA) provides enormous benefits to the PC
user community. It is a stable platform for software and hardware development that
gives customers the largest selection of products in the history of computing. ISA
comﬁiatibih'ty across a wide range of products enables users to adopt new technologies
quickly and efficiently, while protecting their investment in expansion boards and
software. Availability of a variety of ISA compatible products has freed PC users from
a single-vendor, proprietary architecture and given them real freedom of choice to
select the best computers, software and peripherals to meet their needs. Over the last
seven years, ISA has evolved to a customer-controlled standard rather than a vendor-
controlled standard.

Between 10 and 15 million personal computers based on the industry standard
architecture are in use today. There are tens of thousands of software products and
thousands of expansion boards and peripherals available for ISA compatible PCs.
Hundreds of personal computer models are available from dozens of manufacturers
that take advantage of the huge base of hardware and software. U.S. business has
invested nearly $100 billion in ISA personal computers, software, expansion boards,
peripherals and user training.

A steady progression of advances has resulted in performance and function
enhancements to the industry standard, while maintaining full compatibility with PC
hardware and software products. Microprocessors progressed from the 8088 and 8086
to the 80286 and then to the 80386. DOS has evolved to support over a gigabyte of
fixed disk storage space and expanded memory manager software has been dev:}g})ed
to allow DOS applications access to expanded memory. MS-Windows, OS/2, UNIX,
and XENIX and now provide multi-tasking capabilities on the 80286. Expansion bus
1/0 and memory addressing were incrcasexf with the addition of a 16-bit data bus and a
24-bit (16 megabyte) address bus. Each advance was carefully engineered for full
compatibility with industry standard hardware and software.

Upon this firmly established foundation, the industry standard will continue to
strengthen and evolve. The future will bring even faster 80386 microprocessors and
eventually a compatible 80486 microprocessor. It will bring new, compatible versions of
operating systems, including advanced versions of DOS and an 80386 version of OS/2.

The combination of the 386 architecture and advanced operating systems will
stimulate the development of a new generation of PC applications traditionally
associated with departmental computer systems: like advanced networking,
communications - gateways, database access by multiple users and transaction
processing. These multi-user applications require the transfer of large volumes of data
and will create the need to extend the ISA data and address bus to 32-bits.

38

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

This EISA specification is a joint effort by computer industry leaders to develop
the 32-bit extension for industry standard computers. It defines a high-performance,
open-architecture bus available to PC manufacturers, expansion board vendors,
software developers and semiconductor suppliers without financial or technical
constraints.

Notational Conventions

The following notational conventions are used throughout this specification.

Register Notation and Usage

The standard Intel naming conventions are used for the 80386 registers. AX.
BX, CX, and DX are the names of the general registers when used as word-length (16-
bit). AH, AL, BH, BL, CH, CL, DH, and DL are the names for the general registers
when they are used as byte-length registers (8-bit). When addresses are handled, BX
usually contains the offset. However, SI (source index) or BP (base pointer) may also
be used with the ES (extra segment) register.
Bit Notation

Bit fields within a byte or word are shown as a range of decimal numbers
separated by two dots and enclosed in angle brackets, as name <xiy>.
Signal Names

A bus is shown as the bus signal name followed by a range of decimal numbers
separated by two dots and enclosed in angle brachets, for example, SA<19:0>.

A slot-specific signal is shown as the signal name followed by a lower case x, for
example, AEXXx.

Negative true logic is indicated by an asterisk (*) following the signal name, for
example, START®.

Radix Notation
Hexadecimal numbers are indicated by a lower case "h" following the digits, for

example, 100h.

Bytes, Words, Double Words
A byte is 8 bits. A word is 16 bits. A dword is 32 bits.

39

EP 0 426 184 A2

EXTE!.. D INDUSTRY STANDARD ARChH. <CTURE
CONFIDENTIAL INFORMATION OF 3CPR SERVICES, IINC.

Units of Measure

The following units of measure are used throughout this specification.

A amp

cm centimeter 10-2 meters
GB ﬁji%abyie 230 bytes

K ilo-ohm 103 ohms
KB kilobyte 210 bytes
KHz kilohertz 103 hertz
MB megabyte 22 bytes
MHz megahertz 10¢ hertz
m meter

S microsecond 10 sec
mA milliampere 10-3 amps
mm millimeter 10-3 meters
ms millisecond 103 sec

ns nanosecond 109 sec

pF picofarad 10-12 farads
S second

LA microamps 10 amps
Vv volt

W watt

40

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCFR SERVICES, INC.

1. EISA Overview

The Extended Industry Standard Architecture (EISA) is a superset of the ISA §-
and 16-bit architecture. It extends the capabilities of that standard while maintaining
compatibility with ISA expansion boards.
EISA introduces the following major advances:

. 32-bit memory addressing for CPU, Direct Memory Access (DMA) devices and
bus masters

. 16- or 32-bit data transfers for CPU, DMA and bus master devices

. An efficient synchronous data transfer protocol that allows for normal single
transfers as well as high-speed Burst transfers

« Automatic translation of bus cycles between EISA and ISA masters and slaves
+ . Support of intelligent bus master peripheral controllers

« Enhanced DMA arbitration and transfer rates

« 33 MB/s data transfer rate for bus masters and DMA devices

o Shareable interrupts, programmable for edge or level triggering

« Automatic configuration of system and expansion boards

1.1 Compatibility with ISA

EISA systems maintain full compatibility with the existing industry standard. EISA
connectors are a superset of the 16-bit connectors on ISA system boards. ISA 8- and 16-bit
expansion boards can be installed in EISA slots. All EISA performance and function
enhancements are, similarly, superset features that maintain full compatibility with ISA
expansion boards and software.

1.2 Memory Capacity

EISA systems support a 32-bit address path. The main CPU, bus masters and DMA
devices can access the entire 80386 memory space. ISA memory cards can be used in the
lower 16 megabytes without modification. EISA memory cards can add as much memory
as needed for the application. The total memory supported is limited only by the
packaging constraints of the individual product, rather than the system architecture.

41

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.3 Synchronous Data Transfer Protocol

The EISA bus achieves its speed and flexibility through the use of a synchronous
transfer protocol. Bus masters and multiple processors can synchronize their bus cycles to
a common clock to achieve maximum performance. The synchronous transfer protocol
also provides the cycle control necessary to execute Burst cycles with up to 33 MB/s data
transfer rate.

On the EISA synchronous bus, control signals, address lines and data bus use a bus
clock generated by the system board as the reference for a transfer. Unlike many systems,
however, the bus clock 1s not a fixed frequency. Since the system board is the source of
most bus cycles, the system board adjusts the bus clock frequency and phase to achieve the
maximum performance of the CPU and memory.

EISA provides a variety of cycle types to cover the range of speed and the
complexity requirements for different applications. The standard transfer cycle requires 2
clock cycles, but CPUs are permitted to generate a 1.5 clock COMPRESSED cycle for
slaves that request it. At the high end of the performance spectrum are Burst cycles which
require 1 clock per transfer.

1.4 Enhanced DMA Functions

EISA systems provide a number of DMA enhancements, including: 32-bit
addressability, 8-, 16-, and 32-bit data transfers and higher performance arbitration and
data transfer cycles. EISA DMA provides ISA compatible modes, with ISA timing and
function as the default.

DMA offers a lower cost alternative to an intelligent bus master. The EISA DMA
functions are intended for I/O peripherals that do not require local intelligence on the
peripheral interface.

1.4.1 32-bit Address Support for DMA Transfers
EISA 32-bit address support enables ISA, as well as EISA DMA devices to transfer
data to any 32-bit memory address. The default DMA supports ISA compatible 24-bit

address with no software or hardware modifications. DMA software can be modified to
support the 32-bit memory space, without modifications to the DMA hardware.

42

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTVRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.4.2 8-, 16- or 32-bit Data Transfers from DMA Devices

Any DMA channel can be programmed for 8-, 16- or 32-bit data transfers. An 8-bit
DMA device uses the low 8 bits of the data bus, a 16-bit device uses the low 16 bits, and a
32-bit device uses the full 32-bit data bus.

A 32-bit DMA device can perform up to 33 MB/s data transfers using Burst cycles.

Performance Gains for DMA Devices

EISA DMA devices can be programmed for high-performance data transfers using
one of four DMA cycle types. The default cycle type, Compatible cycles, delivers a higher
data transfer rate than ISA compatible computers. The improvement is the result of
EISA's faster bus arbitration and requires no hardware or so e modifications to ISA
compatible DMA devices. Type "A" and Type "B" cycles are EISA modes that, with special
programming, allow some ISA compatible DMA devices to achieve even higher
performance. The Burst DMA (Type "C") cycle type is the highest performance DMA
cycle and is only available to DMA devices designed specifically for Burst.

The following table indicates peak data transfer rates for each DMA cycle type and
the DMA devices that are compatible with the cycle type.

DMA Cvcle Types

DMA Transfer Rate Compatibility
Cycle Type (MB/s)
Compatible
8-bit 1.0 AllISA
16-bit 2.0 All ISA
Type "A"
8-bit 13 Most ISA
16-bit 2.6 Most ISA
32-bit 5.3 EISA Only
Type "B"
8-bit 20 Some ISA
16-bit 4.0 Some ISA
32-bit 8.0 EISA Only -
Burst DMA (Type "C")
8-bit 8.2 EISA Only
16-bit 16.5 EISA Only
32-bit 33.0 EISA Only

43

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.5 Bus Master Capabilities

EISA based computers support a bus master architecture for intelligent peripherals.
The bus master architecture provides a high-speed data channel with data rates up to 33
MB/s using EISA Burst cycles. The bus master provides local intelligence by including a
dedicated I/O processor and local memory. It can relieve the burden on the main CPU by
performing sophisticated memory access functions, such as non-ordered scatter-gather data
transfers. Examples of applications that might benefit from a bus master implementation
include communication gateways, disk controllers, LAN interfaces, data acquisition
systems, and certain classes of graphics controllers.

1.6 Data Size Translation

The EISA bus system Yrovidcs a mechanism for EISA expansion boards to
communicate with ISA compatible devices. The EISA bus master or slave generates EISA
data and control signals, letting the system board copy the data to the appropriate byte
lanes and translate the control signals as necessary. :

The system board provides the automatic translation for 16-bit ISA bus masters, §-
or 16-bit memory and I/O slaves, and DMA devices. The system board also provides
autornatic translation for transactions between 16- and 32-bit EISA devices.

1.7 Bus Arbitration

EISA systems also Yrovide a centralized arbitration scheme that allows efficient bus
sharing among multiple EISA bus masters and DMA devices. The centralized arbitration
supports preemption of an active bus master or DMA device and can reset a device that
does not release the bus after preemption.

The EISA arbitration method grants the bus to DMA devices, DRAM refresh, bus
masters and CPU functions on a fair, rotational basis. The rotational scheme provides a
short latency for DMA devices to assure compatibility with ISA DMA devices. Bus masters
fmd the CPU, which typically have buffering available, have longer, but deterministic
atencies.

1.8 Edge/Level Triggered Interrupts

EISA systems provide level-triggered, shareable interrupts. Any EISA interrupt can
be individually configured for level- or edge-triggered operation. Edge-triggered operation
provides full compatibility with existing, interrupt-driven, ISA devices. Level-triggered
operation facilitates the sharing of a single system interrupt by a number of devices. Level-
triggered interrupts might be used, for example, to share a single interrupt between a
number of serial ports.

44

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.9 Automatic System Contiguration

EISA provides the capabilities for automatic configuration of system and expansion
boards. EISA expansion board manufacturers include configuration files with expansion
board products. The configuration files can be included with either new, fully
programmable EISA boards or switch-configured ISA products. The configuration files are
used at system configuration time to assign system resources (such as DMA channels,
interrupt levels) and thus prevent conflicts between the installed expansion boards. For
switch-configurable boards, the configuration files can be used to outline the proper
assignment of resources and instruct the user about the proper selection of switch settings.

To accomplish the automatic system and expansion board configuration, EISA
grovidcs a method for accessing I/O port ranges that are slot specific. This means that a
oard using these ranges can be plugged into any slot in the system without the risk of I/O
range conflicts. These I/O ranges can be used for expansion board initialization or for
normal I/O port assignments that are guaranteed not to conflict with any other expansion

board installed in the system.

EISA also includes a product identification mechanism for systems and expansion
board products. The aﬁ;gduct identifier allows products to be identified dunn% the
configuration and initialization sequences for the system and expansion boards. EISA
includes guidelines for selection of a product identifier. The identifier of each product is
selected by the product manufacturer and does not need the approval of any other party in
the industry.

45

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

1.10 EISA Feature/Benefit Summary

The following is a summary of the key features and benefits of the extended industry
standard architecture.

Feature Benefit
Full sup(fort of industry Preserves customer and industry
standard expansion boards investment. Provides maximum flexibility

in product selection.

ISA expansion board size 63 square inches of board space for
complex peripherals and ease of
implementation.

Maximum +5 V power per slot Ample power available for complex,
of approximately 4.5 A intelligent peripherals.

Full-function 32-bit address and 33 MB/s bus master and DMA data
data buses transfer rates for high-performance
peripherals.

Support for greater than 16 MB of
memory.

Programmable level- or
edge-triggered interrupts

Facilitates interrupt sharing by multiple
devices.

46

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARY ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Feature

Benefit

Enhanced DMA functions

Efficient arbitration
cycles

Support of demand and
block DMA transfers

Fast DMA cycle
times

Support of 32-bit address
and data size

Bus master support

Support for multiple bus
master peripherals

Efficient arbitration
cycles

Automatic 32-, 16- or
8-bit data path
translation

Support of 32-bit
transfers

Support of fast Burst
cycles

Automatic expansion board
configuration

Improved performance and memory
addressing for ISA and EISA DMA
devices.

Improved efficiency of DMA data block
transfers up to rates of 33 MB/s for 32-bit
DMA transfers.

Provides high performance and local
intelligence for sophisticated peripherals.
Data transfer rate up to 33 MB/s for 32-bit
bus master peripheral.

Enhanced ease of configuration for new
EISA boards and existing ISA expansion
boards.

47

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2. E1SA Bus Specification

2.1 Signal Descriptions

This section describes signals from each connector of the EISA bus.

211 Address and Data Bus Signal Group

This section describes the bus signals used for memory and I/O addressing and bus
signals used for the transfer of data.

BE*<3:0> - (EISA Connector)

BE*<3:0> are the byte enable signals that identify the specific bytes addressed in a
dword. BE*<3:0> are pipelined from ope cycle to the next and must be latched by the
addressed slave if required for the whole cycle. The timing of these signals varies
depending on the cycle type. During normal cycles, they go valid before BALé goes active
and remain valid as long as the LA<31:2> lines remain valid. During DMA or 16-bit ISA
bus master cycles, they go valid at least 1/2 BCLK before the CMD* or ISA command
signals go active.

It is permissible for a 32-bit bus master to drive both of the high bytes of the data

bus on write cycles even if it only places valid data (as indicated by BE* <3:0> lines) on
one of the high bytes.

48

EP 0 426 184 A2

EXTENDLLD INDUSTRY STANDARD ARCH11 £CTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows the allowable combinations.

Byte Bytes driven during write| Bytes driven by
enables slave on read

at 32-bit 16-bit}downshift

bus master master!| master 32-bit 16~bit|8-bit
BE* lane lane lane lane lane |lane
3210 3210 1 0 3210 3210 10 0
0 000 3210 === 3 216¢0 3210 10 0
0001 321 === 321 321 1 1
001O0 == = - = - - - - -
0011 32 3 2 3232 3 2 3 2 2
0100 - - - - - - -
0101 = === - - - - - - -
0110 == - - - - - - -
0111 37 3 3?2 3 3?2 3 3
1000 2210 === ?2 210 2210 10 0
1 001 721 === 221 221 1 1
1010 | == e -
1011 ? 2 2 ? 2 2 2 2 2
1100 10 10 10 10 0 0
1101 1 1 1 1 1 1
1110 0 0 [¢] 0 0 0
1111 === o= - - - - - - -—

The character =" means that the BE*<3:1> code should never be generated. The character *?" means that
the data bus byte may be driven, but will be ignored.

D <31:24> - (EISA Connector)
D<31:24> are the highest-order 8 bits of the 32-bit EISA data bus. A 32-bit device

uses D<31:24> to transfer the fourth (highest) byte of a dword when the address line
BE* <3> is asserted. :

D<23:16> - (EISA Connector)

D<23:16> are the second highest-order 8 bits of the 32-bit EISA data bus. A 32-bit
device uses D<23:16> to transfer the third (second highest) byte of a dword when the
address line BE* <2> is asserted.

D<15:8> - (I1SA Connector)

D<15:8> are the high 8 bits of the 16-bit data bus. Sixteen-bit devices use these

lines to transfer the high half of a data word when SBHE*®, BE*<3> or BE*<1> 13

asserted. thirty-two-bit devices use D <15:8> to transfer the second (third highest) byte of
a dword when the address line BE* < T> is asserted.

49

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

D < 7:0> - (1SA Connector)

D<7:0> are the low 8 bits of the data bus. Eight-bit devices use these lines to
transfer data. A sixteen-bit device uses these lines to transfer the low half of a data word
when the address line SA<0> is low or when BE*<2> or BE*<0> is asserted. Thirty-
two-bit devices use D<7:0> to transfer the first (lowest) byte of a dword when the address
line BE* <0> is asserted.

LA <16:2> - (EISA Connector)

The <16:2> are a part of the latchable address bus. The latchable address lines
(LA<31:2>) are pipelined from one cycle to the next and must be latched by the
addressed slave if required for the whole cycle. LA<31:2> are presented early enough in
the cycle decode to suQFort 1.5 or 2 BCLK memory accesses. During standard cycles, they
go valid before START® is asserted and remain valid at least 1/2 BCLK after CMD* or
the ISA command signals are asserted. During DMA or 16-bit ISA bus master cycles,
LA<31:2> are valid at least one BCLK before the CMD* or ISA command signals are
asserted. LA<31:2> can be driven by an expansion board acting as a bus master. An
EISA slave may latch the entire address (LA<31:2> and BE*<3:0>) and status signals
(M-IO and W-R) on the trailing edge of START* or leading edge of CMD*.

LA <23:17> - (ISA Connector)

LA<23:17> are a bart of the 32-bit latchable address bus. They have the same
characteristics as LA<16:2>, except that they are wired to the 16-bit portion of the ISA
connector. An ISA slave can latch 1LA <23:17> with the trailing edge of BALE.

LA* <31:24> - (EISA Connector)

LA*®<31:24> are the highest byte of the 32-bit latchable address bus. They have
the same characteristics as LA<16:2>, except that they use inverted logic. A high on a
LA*<31:24> address bit must be interpreted as an address bit of "0". A low must be
interpreted as an address bit of "1". (When the notation LA®*<31:2> is used, only
LA <31:24> are active low, the next are active high.

SA<19:0> - (ISA Connector)

The SA<19:0> lines address memory or I/O devices within the system. They form
the low-order 20 bits of the 32-bit address. On normal cycles SA<19:0> are driven onto
the bus while BALE is high and are latched by the system board on the trailing edge of
BALE. SA<19:0> are valid throughout the bus command cycle. On DMA or 16-bit ISA
bus master cycles SA<19:0> are valid nominally one BCLK before the command signals
and remain valid nominally one BCLK after the command signals go away. :

50

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

SBHE®* - (ISA Connector)

SBHE* (System Bus High Enable) indicates (when low) that expansion boards that
support 16-bit data transfers should drive data on the high half of the D<15:0> data bus.
On normal cycles, SBHE*® becomes valid on the bus when BALE is asserted and remains
valid until afier the command (MRDC®*, MWTC*, IORC*, IOWC* or CMD?*) is negated.
On DMA or 16-bit ISA bus master cycles, SBHE* is valid nominally one BCLK before the
command signals and remains valid nominally one BCLK after the command signals go
away.

AENX - (ISA Counnector)

This slot-specific (the X" refers to the slot number) signal, when negated (low),
indicates that an 1/O slave may respond to addresses and IfCl)] commands on the bus.
AENXx is asserted hi%h) during DMA cycles to prevent 1/O slaves from mis-interpreting
DMA cycles as valid 1/O cycles. The system board must negate AENx when START™ is
asserted for an 1/O access, and AENx must remain negated until after CMD* is asserted.
AENGx is also used to disable 1/O accesses to all other option slots during accesses to a
particular slot's slot-specific /O address range.

212 Data Transfer Control Signal Group

This section describes the signals used to control data transfer cycles on the 8-, 16-
and 32-bit bus.

BCLK - (ISA Connector)

BCLK is provided to synchronize events with the main system clock. BCLK
operates at a frequency between 8333 MHz and 6 MHz, with a normal duty cycle of 50
percent. BCLK is dnven only by the system board. The BCLK period 1s sometimes
extended for synchronization to the main CPU or other system oard devices. For
example, the COMPRESSED cycle type extends each BCLK period by holding BCLK low
for half a cycle beyond the normal transition to high. The BCLK extension facilitates
synchronization during the 1.5 BCLK COMPRESSED cycle. During bus master accesses,
the system board extends BCLK only when required to synchronize with main memory.
Events must be synchronized to BCLK edges without regard to frequency or duty cycle.
BCLK is always synchronous with the trailing edge of START* and the leading edge of
CMD*. BCLK may not be synchronous with the leading edge of START™* or the trailing
edge of CMD*. .

MSBURST* - (EISA Connector)
An EISA CPU or bus master asserts MSBURST?* to indicate to the slave (typically,
main memory) that the CPU or bus master can provide Burst cycles. MSBURST® 1s

asserted with the LA<31:2> address lines for the second and all subsequent cycles of the
Burst and is sampled on the rising edge of BCLK by the slave.

51

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHFTECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

SLBURST* - (EISA Connector)

A slave (typically, main memory) indicates its support of Burst cycles by asserting
SLBURST*. The slave develops SLBURST* from the LA<31:10> address lines and
M-1O and produces SLBURST*® regardless of the state of MSBURST*. SLBURST" is
sampled on the rising edge of BCLK by the main CPU, DMA controller or bus master.

M-10 - (EISA Connector)

The main CPU or an EISA bus master asserts M-IO to indicate the type cycle in
progress as a memory cycle (high) or 1/0 cycle (low). M-IO is pipelined from one cycle to
the next and is latched by the addressed slave if needed for the whole cycle. M-10 should
ll:dc iéncludlcg 1161 all decodes by EISA slaves. M-IO must not be used in decoding the signals

16* or I016*.

LOCK* - (EISA Connector)

The main CPU or a bus master may assert LOCK* to guarantee exclusive memory
access during the time LOCK® is asserted. A bus master may also assert LOCK* 1o
guarantee exclusive 1/O access during the time LOCK* is asserted. Assertion of LOCK*
allows bit test-and-set operations (as used for semaphores) to be executed as a unit, with
the bus lock preventing multiple devices from simultaneously modifying the semaphore bit.

EX32# - (EISA Connector)

A memory or I/O slave asserts EX32* to indicate that it supports 32-bit (dword)
transfers. A two BCLK cycle is executed when a slave asserts EX32° during a memory
access. The slave asserts EX32* after decoding a valid address on the LA<31:2> address
lines and M-I0. EX32* should not be latched by the slave. Both 16- and 32-bit EISA bus
masters must monitor EX32* at the trailing edge of START* to determine if the slave
supports 32- (and 16-2 bit EISA transfers (asserted), or if the system board is performing
data size translation (negated). If data size translation is being done and the master is a
32-bi; master, then the system board asserts EX32* to indicate completion of the
transiation.

EX16* - (EISA Connector)

An EISA memory or I/O slave asserts EX16* to indicate that it supports 16-bit
(word) transfers. A 16-bit EISA bus master samples EX16* asserted to confirm 2 16-bit
EISA slave. An EISA cycle (two BCLK) is executed when a slave asserts EX16* during a
memory access by the system board or a 16-bit EISA bus master. The slave asserts EX16*
after decoding a valid address on the LA<31:2> address lines and M-I0. EX16* should
not be latched by the slave. 16-bit EISA bus masters must monitor EX16* to determine if
the slave supports 16-bit EISA transfers (asserted), or if the systemn board is performing
data size translation (negated). If data size translation is being done (ISA cycles) and the
master is a 16-bit master (indicated by the master asserting MASTERI16*), then the system
board asserts EX16* to indicate completion of the translation.

52

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BC?R SERVICES, INC.

EXRDY - (EISA Connector)

EISA 1/0 and memory slaves negate. EXRDY to request wait state timing (each
wait state is one BCLK). The system board samples EXRDY on each falling edge of
BCLK after it asserts CMD*. The system board bolds CMD* asserted during the entire
Ecriod EXRDY is negated, and at least one half BCLK after sampling EXRDY asserted.

XRDY must be driven with an open-collector tygo: buffer (a system board pull up resistor
rovides the asserting drive current). ~ The EISA slave should negate EXRDY during
ART™ or on the nising edge of BCLK at the end of START® if wait states are to be
added. The slave must allow EXRDY to float high (asserted) synchronously with BCLK
falling edge and must not hold EXRDY asserted longer than 25 us EXRDY should never
be dniven high.

START®* - (EISA Connector)

The START?® signal provides timing control at the start of a cycle. The CPU or bus
master asserts START® after LA <31:2> and M-IO become valid and negates START™ on
a rising edge of BCLK after one BCLK cycle time. BE*<3:0> and W-R may not be valid
at the leading edge of START™. '

CMD* - (EISA Connector)

CMD* provides timing control within the cycle. The system board asserts CMD* on
the rising edge of BCLK, simultaneously with negation of START*. The system board
holds CMD* asserted until the end og the cycle. The end of the cycle normally is
synchronized with the rising edge of BCLK, but in certain cases is asynchronous. A bus
master does not drive CMD?*. i

W-R - (EISA Connector)

The status signal, W-R, identifies the cycle as a write (high) or read (low). W-R
becomes valid after assertion of START* and before assertion of CMD*. W-R remains
valid as long as address lines LA<31:2> are valid. W-R is driven from the same edge of
BCLK that activates the START® signal.

BALE - (ISA Connector)

BALE (when high) indicates that a valid address is present.on the LA<31:2>
address lines. The LA<31:2> address lines or any decodes developed from them by ISA
devices are latched (with transparent latches) on the trailing edge of BALE if the address is
needed for the whole cycle. BALE is always high during a DMA or 16-bit ISA bus master
operation. EISA devices should not use BALE to latch addresses; the trailing edge of
START?™ or leading edge of CMD* should be used.

53

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

MRDC* - (ISA Connector)

The system board or ISA bus master asserts MRDC* to indicate that the addressed
ISA memory slave should drive its data onto the memory bus. MRDC* is asserted for read
accesses to memory, except when inhibited by assertion of EX32* or EX16* (an EISA
device responded).” During ISA Compatible DMA cycles, MRDC* is asserted for read
accesses to memory addresses between 00000000h to 00FFFFFFh, regardless of the type of
memory responding. A DMA device should not use MRDC?* to decode its I/O address.
MRDC?® is also asserted for refresh cycles. MRDC?® can be driven by an expansion board
acting as an ISA 16-bit bus master.

MWTC* . (ISA Connector)

The system board or ISA bus master asserts MWTC?* to indicate that the addressed
ISA memory slave may latch data from the memory bus. MWTC?* is asserted for write
accesses to memory, except when inhibited by assertion of EX32* or EX16* (an EISA
device responded). During Compatible DMA cycles, MWTC® is asserted for write
accesses to memory addresses between 00000000h to O0FFFFFFh, regardless of the type of
memory responding. A DMA device should not us¢ MWTC® to decode its I/O address.
MWTC* can be driven by an expansion board acting as an ISA 16-bit bus master.

SMWTC* - (ISA Connector)

The system board asserts SMWTC* to indicate that the addressed memory slave
may latch data from the memory bus. SMWTC* is only asserted for ISA write accesses 1o
memory addresses between 00000000h to 000FFFFFh. SMWTC* is derived from MWTC*
and has similar timing.

SMRDC* - (ISA Connector)

The system board asserts SMRDC* to indicate that the addressed memory slave
should drive its data onto the memory bus. SMRDC® is only asserted for ISA read
accesses to memory addresses between 00000000h to OOOFFFFFh or refresh cycles.
SMRDC* is derived from MRDC* and has similar timing.

IOWC* . (I1SA Connector)

A DMA device can latch data from the data bus when JOWC?® is asserted. An ISA
1/0 slave latches data from the data bus when IOWC® asserted and AENX is negated. The
main CPU or bus master must drive valid data on the bus before asserting IOWC*.

IORC* - (ISA Connector)
A DMA device can drive data on the data bus after sampling IORC* asserted. An

ISA 1/0 slave drives data onto the bus while IORC* is asserted and AENx is negated
(low). The device must hold the data valid until sampling IORC* negated-

54

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CHRDY - (1SA Connector)

An ISA memory or 1/O slave can negate CHRDY to lengthen 2 bus cycle from the
default time. The slave negates CHRDY a%tcr decoding a valid address and sampling the
command signal (MRDC*, MWTC*, SMRDC*, SMWTC*, IORC* or IOWC*) asserted.
When the slave's access has completed, CHRDY should be allowed to float high (asserted).
Bus cycles are lengthened by an integral number of BCLK cycles. The ISA command
signals remain active at least one BCLK after the slave asserts CHRDY. CHRDY should
be driven with an open collector type of driver, and should never be driven high. CHRDY
may not be held low for more than 2.1 us. EISA slaves should never negate CHRDY.

NOWS?* - (ISA Connector)

An ISA memory slave asserts NOWS* (No Wait State) after its address and a
command have been decoded to indicate that the remaining clock cycles are not required.
NOWS® must be asserted before the falling edge of BCLK to be recognized during I1SA

cles. During EISA cycles, an addressed E%SA slave may assert NOWS* before the main
PU negates START* to generate COMPRESSED cycles (1.5 BCLKs/cycle). A slave
should not assert NOWS* and negate EXRDY or CHRDY during the same cycle.

M16* - (1SA Connector)

M16* signals the system that the addressed ISA memory is capable of transferring
16 bits of data at once. When M16* is asserted, during a memory read or write and is not
superceded by EX32* or EX16*, the ISA compatible three BCLK memory cycle is run.
M16* is decoded from LLA<23:17>. M-IO is not included in the decode and M16* should
not be latched by the ISA slave. Ouly ISA memory slaves need to generate M16*; the
system board generates M16* from EX32* or EX16* for EISA memory slaves. M16*
should only be driven with an open-collector type of driver.

1016* - (ISA Connector)

A 16-bit ISA 1/0 slave asserts I016* (after decoding a valid address on SA<15:1>)
to indicate its 16-bit data size. The system board defaults to a three BCLK 1/0 cycle when
it samples 1016* asserted by an ISA I/O slave (EX32* and EX16* negated). 1016* should
only be driven with an open-collector type of driver.

The system board does not automatically assert I016* when a 16-bit ISA bus master
accesses an EISA I/O slave. EISA slaves that support 16-bit ISA bus masters must assert
1016* as well as EX32* (or EX16*) when addressed. The EISA I/O slave asserts I016*
on decoding a valid address on LA<15:2>. EISA I/O slaves that do not support 16-bit
ISA bus masters need not assert I016*,

55

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

213 Bus Arbltration Signal Group

This section describes signals used to arbitrate for bus control. These signals are a
combination of new EISA signals and existing ISA signals.

MREQx* - (EISA Connector)

MREQx* is a slot-specific signal used by EISA bus masters to request bus access.
The "x" refers to the slot number. Bus masters requiring use of the bus must assert
MREQx* until the system board grants bus access by asserting MAKx*. The requesting
device must hold MREQx* asserted until the system board asserts the appro dateM‘
signal. The system board samples MREQx* on the rising edge of B f MREQx* is
sampled asserted, the arbitration controller performs the arbitration and the system board
asserts MAKx* when the bus becomes available. The bus master can bmnving the bus
with address and other signals on the falling edge of BCLK when * is sampled
asserted.

When a bus master completes a transfer, it can release the bus by negating
MREQx* on the falling edge of BCLK. If no bus cycle is in progress when MREQx* is
negated, the bus master must float LA<31:2>, BE*<3:0>, MSBURST*, LOCK?*,
D<31:0>, START®, M-IO, and W-R on or before the rising edge of BCLK after MREQx*
is negated. If a cycle is in progress when MREQx* is negated, then the LA<31:2>,
BE*<3:0>, MSBURST?®, LOCK®*, START*, M-IO, and W-R signals must be floated by
the rising edge of BCLK at the end of the cycle. The data signals D<31:0> must be
floated on (l%)CRDY termination) or before (EX32* or EX16* termination) the falling
edge of BCLK after the end of the %cle. Cycle completion is indicated by the memory or
I/O slave asserting EXRDY or the system board asserting EX16* or EX32* after
completing bus conversions. A bus master must wait at least two BCLKSs after releasing the
bus before re-asserting its MREQx*. The trailing edge of MREQx* must meet the setup
and hold time to the sampling point for proper system operation.

MAKXx* - (EISA Connector)

MAKXx*® is a slot-specific signal that is asserted by the system board to grant bus
access to an EISA bus master. The "x" refers to the slot number. MAKx* is asserted from
the rising edge of BCLK and the bus master can begin driving LA<31:2>, BE*<3:0>,
MSBURST®, START*, M-IO, and W-R on the next falling edge of BCLK. The system
board negates MAKx® on the rising edge of BCLK after sampling MREQx* negated. The
system board can also negate MAKx* to indicate to an active bus master that another
device has requested the bus. The bus master must negate MREQx* to release the bus
within 64 BCLKSs (8 115) of sampling MAKx* negated.

56

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCFR SERVICLS, INC.

DRQ<7:5>, DRQ<3:0> - (ISA Connector)

The DRQ <x> lines are used to request a DMA service from the DMA subsystem
or for a 16-bit ISA bus master to request access to the system bus. The request is made
when DRQ<x> is asserted. The system board allows DRQ<x> to be asserted
asynchronously. The requesting device must hold DRQ<x> asserted until the system
board asserts the appropriate DAK*® <x> siﬁnal. For demand mode DMA memory-read
1/0-write cycles, DRQ<x> is sampled on the rising edge of BCLK, one BCLK from the
end of the cycle (the rising edge of IOWC®). For demand mode DMA memory-write I/O-
read cycles, DRQ<x> is sampled on the rising edge of BCLK, 1.5 BCLKs from the end of
the cycle (the rising edge of IORC*). For demand mode Burst DMA, DRQ<x> is
sampled each cycle on the rising edge of BCLK. For 16-bit ISA bus masters, DRQ<x> is
sa;‘nﬁlcd on the rising edge of BCLK, two BCLKs before the system board negates
DAK*<x>. The trailing edge of DRQ<x> must meet the setup and hold time to the
sampling point for proper system operation.

DAK*<7:5>, DAK*<3:0> - (ISA Connector)

The system board asserts a DMA channel's DAK* <x> to indicate that the channel
has been granted the bus. A DMA device is selected if it decodes DAK®* <x> with IORC*
or IOWC* asserted. DAK® <x> can also be used to acknowledge grant of bus access to a
16-bit ISA bus master. The bus master must assert MASTER16* after sampling
DAK® <x> asserted. Address and cycle control signals must be floated and MASTER16*
must be negated before the system board negates *<x>. For EISA block or demand
mode DMA transfers, DAK* <x> remains asserted until the transfer completes or until the
centralized arbitration controller preempts the DMA process. The preemption occurs after
another device requests the bus and 4 is elapse.

T-C - (ISA Connector)

This signal is bidirectional, acting in one of two modes, depending on the
programming of the channel. In the output mode, the system board asserts T-C to indicate
that a DMA channel's word count has reached terminal count. Terminal count is indicated
when the decrementing word count "rolls over” from zero to FFFFFFh. The system board
asserts T-C only while asserting the channel's DAK*<x>. A DMA device decodes T-C
with the appropriate DAK* <x> asserted to determine when the transfer has completed.

In the input mode, T-C can be used by a DMA slave to stop a DMA transfer.

During ISA Compatible, Type "A", or Type "B", transfers, T-C is sampled by the system

-while IORC* or IOWC?* is asserted. During Burst cycles, T-C is sampled at the same time

as the DRQ <x> input, on the rising edge of BCLK. If it is sampled asserted the transfer is
terminated, and if auto-initialize is programmed, the transfer restarts at the beginning.

MASTERI16* - (ISA Connector)

A bus master asserts MASTER16* to indicate 16-bit data size. A bus master can
assert MASTER16* after the system board asserts DAK* <x> or MAKx*. The 16-bit
EISA bus master negates MASTER16* after completing the last transfer. An ISA master
negates MASTER16*, immediately when the system board negates DAK* <x>. A 32-bit
bus master can assert MASTER16* during START* to disable automatic 32-to-16-bit data
size translation for 16-bit EISA memory Burst slaves. It canthen perform 16-bit Burst
cycles to a 16-bit EISA slave.

57

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH!TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

REFRESH* - (ISA Connector)

REFRESH"* is used to indicate (when low) a refresh cycle in pro%rcss. REFRESH*
causes SA<15:0> (or LA<15:2>) to drive the row address inputs of all DRAM banks so
that when MRDC* (or CMD?*) is asserted, the entire system memory is refreshed at one
time.

21.4 Utility Signat Group

This section describes a variety of general utility signals. These signals are all on the
ISA conmnector.

OSC - (ISA Connector)

OSC is a clock for use in timing applications. Its frequency is 1431818 MHz with a
50 percent duty cycle.

RESDRY - (ISA Connector)

Assertion of RESDRYV causes a hardware reset of ISA and EISA expansion boards.
RESDRY is asserted by the reset controller during power up or after a bus timeout.
Software can cause assertion of RESDRV by setting I/O port 0461h bit 0 to a "1".
RESDRY is negated when the software resets this bit to a zero. RESDRYV has a minimum
pulse width equivalent to 9 BCLK periods (the minimum time between two ISA I/O write
cycles). All devices that can prevent operation of the CPU, memory or system board I/O
must use RESDRYV for hardware reset. Slaves that insert wait states based on internal
state machines, devices that require software initialization, and DMA devices are examples
of hardware that reset after sampling RESDRYV asserted.

IRQ<15:14>, IRQ<12:9>, IRQ<7:3> - (ISA Connector)

The IRQx lines are used to interrupt the CPU to request some service. In
compatible mode, the interrupt is recognized when IRQx goes from a low to a high and
remains there until the appropriate interrupt service routine is executed. If programmed to
level-sensitive mode, the interrupt is recognized when the IRQx signal is asserted (low).
Another interrupt is generated at the end of the interrupt service routine if the IRQx signal
is still held low, allowing a single line to be shared by more than one device. IRQ<15:3>
are pulled up by the system board. A floated interrupt line is guaranteed to stabilize at a
TTL "high" after 500 ns. Interrupt service routines must reset the interrupt latch (which
floats the interrupt line), then wait at least 500 ns before issuing the end-of-interrupt
command and enabling interrupts.

IOCHK* - (ISA Connector)
An EISA or ISA expansion board can assert IOCHK?* to signal the main CPU that a
serious error has occurred. Assertion of IOCHK?* causes an NMI if Port 061h bit 3 is set to

"1" and NMIs are enabled. Parity errors and uncorrectable system errors exemplify
problems that might cause an expansion board to assert IOCHK®*.

58

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.15 Summary of Signals
The following tabulation shows the EISA bus connector signals added for EISA
support:
Bus Signal
Pins Name Description
16 D<31:16> data lines
8 LA®<31:24> address lines
15 LA<16:2> address lines
4 BE*<3:0> byte enables
1 LOCK*® bus lock
1 EX32* 32-bit EISA slave indicator
1 EX16* 16-bit EISA slave indicator
1 START® EISA start of cycle control
1 CMD* EISA end of cycle control
1 M-IO EISA memory or I/O indicator
1 W-R EISA write or read indicator
1 EXRDY EISA ready indicator
1 MREQx* slot specific bus request
1 MAKx* slot specific bus grant
1 SLBURST® Burst cycle indicator from slave
1 MSBURST* Burst cycle control from master
S5 Total new pins on EISA connector
21.6 Signal Usage by System, Masters and Slaves

The following three tables indicate typical signal usage by an EISA system board, ISA
bus masters, ISA slaves, EISA bus masters and EISA slaves.

Table Legend:
I/0 = Input and Output
I = Input
O = Output

Signal Not Needed

LI]

Subscript "

N indicates that one or more of the signals in the group may be
implemented.

An 1/0 shown in parentheses () indicates that the signal is optional for this
device.
The following notes are referenced in one signal usage tables:
1. SLBURST and MSBURST are implemented together or both are omitted.
2. Only DMA devices that implement Burst cycles use EXR_DY.
3. EISA DMA devices can be 8-, 16-, or 32-bits wide.

59

EP 0 426 184 A2

EXTENDED INDUSTRY STANDAR) ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4. ISA DMA device can be either 8- or 16-bits wide.

5. DMA devices need not monitor BE* <3:0> unless they support partial-width
data transfers.

6. Only EISA slaves that support COMPRESSED cyéles assert NOWS*,

7. EISA 1/O slaves that need to be accessed by 16-bit ISA bus master must asser:
1016* when addressed.

8. An 8-bit memory slave is assumed to onlfl decode the SA<19:0> address lines
(1 megabyte maximum address). If a full decode is done, LA <23:17>,
MRDC*, IORC*, and BALE are also used.

9. BCLK is only required if the slave device supports Burst cycles or uses EXRDY.

10. A 16-bit EISA bus master thatdoes not drive the full 32-bit address will be
limited to 16 megabyte addressing.

11. A 32-bit EISA bus Burst master thatcan "downshift" to a 16-bit EISA Burst -
memory slave asserts MASTER16* during START™.

EISA/ISA Signal Usage - System Board +

Signal System | Signal - | System
Name Board | Name Board
AENx 0 M-IO 1/0
BALE O Mi16* 1/0
BCIK 0] MAKXx* o)

BE*<3:0> | 1/0 | MASTER16" I

CHRDY I/0 | MRDC* 1/0

CMD* O | MREQx* |1

D<31:0> I/0 | MSBURST* | 1/0
0

DAK*<7:0>| MWTC* I/0
DRQ<7:0> 1 NOWS* I
EX16* I/0O OSsC @)
EX32¢ I/0 REFRESH® | I/0
EXRDY 1/0 RESDRV O
1016* I SA<19:0> I/0
IOCHK* I . | SBHE* 1/0
IORC* 1/0 SLBURST®* | 1
IOWC* 1/0 SMRDC* O
IRQ<15:3> I SMWTC* O

LA*<31:24> 1/O | START® 1/0
LA<232> | 1/0 | T-C 1/0
LOCK* o | WR 1/0

* The signals listed are required to support EISA functions. Additional signals are
required if the system board also contains EISA or ISA slaves.

60

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHIT=CTURE
CONFIDENTIAL INFORMATION OF BCFR SERVICES, INC.

ISA Signal Usage - ISA Expansion Boards

IsAa IsA Isa Isa Isa IsAa
16-bit { 16~-bit|8~bit 8-bit
Signal Bus Mem I/0 Mem 1/0 DMA
Name Master|Slave Slave |Slave Slave |Device Notes

AENX - - I - I -
BALE - I - (1) - - 8
BCLK (1) (1) (1) (1) (1) (1)
CHRDY I (0) (0) (0) (0) -
D<7:0> I/0 .I/0 I/0 I/0 I/0 1/0
D<15:8> 1/0 I/0 I/0 - - (1/0) 4
DAK*<7:0> Im - - - - I
DRQ<7:0> 0 - - - - 0
I016=* fn - o] - - -
IOCHK* (0) (0) (0) (0) (0) (0)
IORC* I I I
IOWC*
IRQ<15:3>
LA<23:17>
Mlé6*
MASTER16%*
MRDC*
MWTC*
NOWS*
oscC
REFRESH*
RESDRV
SA<16:0>
SA<19:17>
SBHE*
SMRDC*
SMWTC*
T-C

>

[oN e
!

I - I I
(Op) (ﬂ) (Op) m) |

)
2
2

—~
!
—
[I
~
|
~—
—~
1
~
e}

Hoto1 ot

~——

|0|0H§ﬂ|000Ho

[
1 HH T HO I

~~
11 P HHHHHHOHKH | OH,
~ —
—_

1
(I)

F L PR EPHHETH

I HH
L S |
Lan Y

EISA connector signals are not used by ISA expansion boards and are not included
in the preceding table.

61

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

EISA/ISA Signal Usage - EISA Expansion Boards

32-bit] 32-bify 32-bit] 16-bitg 16-biyg 16-bit

EISA EISA EISA EISA EISA EISA EISA
Signal Bus Mem I/0 Bus Mem I/0 DMA
Nanme Master] Slave| Slave| Master] Slave| Slave| Device Notes
AENX - - I - - I -
BCLK I (1) (1) I (1) (1) (1) 9
BE*<3:0> o I I 0 I I (1) 5
CMD=* - I I - I I -
D<7:0> 1/0 1/0 1/0 I/0 1/0 1/0 1/0
D<15:8> I/0 I1/0 1/0 1/0 1/0 I/0 (1/0) 3
D<31:16> 1/0 1/0 1/0 - - - (1/0) 3
DAK*<7:0> - - - - - - I,
DRQ<7:0> - - - - - - Op
EX16* - - - I 0 (o] -
EX32%* I 0 0 I - - -
EXRDY I (0) (0) I (0) (0) I 2
I016%* - - (0) - - (0) - 7
IOCHK* (0) (0) (0) (0) (0) (0) (0)
IORC* - - - - - - I
IOWC* - - - - - - I
IRQ<15:3> | (0,.) (0.) (0,) (0,.) (0.) (0,.) (0,.)
LA<15:2> gl Im fn gx fn Im I
LA<23:16> o} I - (o] I - -
TA*<31:24> (e} I - (0) I - - 10
LOCK~* (©) (1) (1) (0) (1) (I) -
M-I0O e] 1 I (o] I I -
MAKx* I - - I - - -
MASTER16%* (0) - - 0 - - - 11
MREQX* (o] - - 0 - - -
MSBURST* (0) (1) - (0) (I) - - 1
NOWS* - (0) (0) - {0) (0) - 6
0sC (1) (I) (1) (I) (1) (I) (1)
REFRESH* - I - - I - -
RESDRV I I I I I I I
SLBURST* (I) (0) - (I) (0) - - 1
START* (o] I I (o] I I -
T-C - - - - - - | (1/0)
W-R o I I 0 I I -

Many ISA signals are not used by EISA expansion boards and are not included in
the preceding table.

62

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARRCRITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, iNC.

2.2 ISA Cycles

2.2.1 CPU CYCLES

ISA systems provide different timing for cycles to and from 8- and 16-bit memory
and I/O slaves. ISA systems generate a default 6 BCLK memory or 1/O cycle for 8-bit
slaves and a default 3 %CLK memory or I/O cycle for 16-bit slaves. All cycles can be
extended by the slave by negating CHRDY. Additionally, memory or I/O slaves can
shorten most cycles (except 16-bit I/O cycles) by asserting NOWS=.” If both CHRDY is
negated and NOWS* is asserted, then wait states will be added.

ISA cycles begin with the system presenting a valid address on LA<23:17>, and one
BCLK period later, asserting BALE and presenting a valid SA <19:0> address.

For 16-bit memory accesses, the system asserts MRDC*, MWTC*®, SMRDC*, or
SMWTC* on the first rising BCLK edge after SA<19:0> become valid. For 8-bit memory
accesses, and for all I/O accesses, the system delays an extra one-half BCLK period before
asserting the ISA command signal to allow extra time for address decode.

During write cycles, the system presents valid data on the first rising BCLK edge
after SA<19:0> become valid. The slave can latch the data after the specified data valid
delay or on the trailing edge of the ISA command signal. During read cycles, a slave
presenting valid data, drives the data bus after receiving the ISA command signal. The
systemdlatches the read data on the edge of BCLK on which the ISA command signal is
negated.

NOWS* is sampled on each falling edge of BCLK during the time that the ISA
command signal is asserted. This allows 8-bit slaves to shorten a standard 6 BCLK cycle to
a 3,4 or S BCLK cycle. A 16-bit memory slave can shorten a standard 3 BCLK cycle to 2 2
BCLK cycle. A 16-bit 1/O slave cannot shorten cycles, since the ISA command signal is
delayed one-half BCLK period; therefore, NOWS* cannot be generated early enough to
shorten the cycle.

Systems built according to the EISA specification implement a sampling window for

Y, instead of a distinct sample point. To guarantee the insertion of one wait state,
CHRDY must be held negated For a minimum time period while BCLK is high. If
CHRDY is negated before the rising edge of BCLK, it must be held for the specified hold
time past the rising edge. If CH.REY 1s negated after the rising edge of BCLK, then it
must be held negated for a specified gulse width. In either case, CHRDY may then be re-
asserted with setup to the next rising BCLK edge. Negation and assertion of CHRDY must
meet the pulse width, setup and hold time requirements specified in the ISA signal timing
parameter table.

63

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 1 - CHRDY "Sample Window"

SPRRN S S e F & s s N s T
s . /
CHRDY '
1ws X '
- I A
L gl e R
o YL
o dede b
e N
oy T g T

1. T1 = CHRDY negsied hold Ume.
2. T2 = CHROY asseried setup to BCLX mang edge

J See ISA Bus Tumung Parumelen for specific timung vaiues

The CPU or master can extend the length of the cycle beyond the minimum
requirements indicated by the slave by keeping the ISA command signals asserted. Both
memory and I/O slaves are required to extend the end of the cycle until the ISA command
signals are negated.

64

EP 0 426 184 A2

EXTENUED INDUSTRY STANDARD AF.CR11ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, IN..

The system indicates the size of a memory or 1/O transfer being attempted by using
SBHE"® and SA<0>. The following table shows the size of transfer for each combination
and which byte lane contains the data. Byte lanes not included in this table must not be
driven by the slaves during read cycles, and must be left unmodified during write cycles.

SBHE® SAO SIZE BYTE LANES
0 0 2 D<15:8>,D<7:.0>
0 1 1 D<15:8>
1 0 1 D<7:0>
1 1 0
222 MEMORY SLAVES

Memory slaves can be either 8- or 16-bits wide. An 8-bit memory slave can use
either 20 address bits (SA<19:0>) or 24 address bits (LA<23:17>, SA<19:0>). When
using 20 address bits, the 8-bit slave must use SMRDC* and SMWTC* to guarantee that
only cycles to the first 1 MB of memory will be performed. A 16-bit memory slave must use
24 address bits and normally uses MRDC* and MWTC*.

A 16-bit memory slave asserts M16* after decoding LA<23:17>. The decode for
M16* must not include SA <19:0>, SBHE?®, or any other control signals, since the timing
requirements for M16* cannot be assured if control signals are included.

Memory slaves can shorten default cycles by asserting NOWS?*, or extend them by
negating CHRDY. However, the slave cannot control the maximum length of any cycle,
and is required to extend the length of write cycles and to hold read data valid on the bus
until the ISA command signals are negated.

2.2.3 I/O SLAVES

I/0O slaves can be either 8- or 16-bit wide. I/O slaves decode addresses SA <9:0>
and AENx. A 16-bit I/O slave asserts I016* when it decodes a valid address with AENx
low. The decode for I016* should not include any control signals.

1/0 slaves can shorten default 8-bit cycles by asserting NOWS*®, or extend 8- or 16-
bit cycles by negating CHRDY. However, the slave cannot control the maximum length of
any cycle, and is required to extend the length of write cycles and to hold read data valid on
the bus until the ISA command signals are negated.

224 BUS MASTERS

The ISA bus master device driver programs a DMA channel for cascade mode. The
ISA bus master asserts DRQ<x> for that channel to request control of the bus. The
system board performs the bus arbitration and asserts DAK* <x>, granting control of the
bus to the 16-bit ISA bus master and disabling the system board address, data, and control
lines. The system board does not assert AENx during DAK* <x> to disable 1/O accesses.
Consequently, an ISA bus master can perform normal I/O and slot-specific I/O accesses.
BALE is asserted with DAK* <x> to indicate valid address on the LA <31:2> bus. '

65

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

An ISA bus master asserts MASTER16*, but this line is ignored in EISA systems.
The ISA bus master then waits at least one BCLK before driving address, data, and control
lines to allow the system board to float its drivers. An ISA bus master presents
LA<23:17> and SA<19:0>, driving the same address on LA<19:17> and SA<19:17>.
ISA bus masters cannot pipeline addresses since the system board holds BALE asserted
while the ISA bus master drives the bus. '

EISA does not assume that ISA masters are synchronized to BCLK. The EISA
system board assumes that they are asynchromous. However, ISA masters should
chronize control signals to BCLK if they are required to be compatible with ISA slaves
esigned prior to the EISA specification which generate wait states synchronous with
BCLK.

EISA requires that all ISA masters monitor CHRDY and add wait states when
CHRDY is negated. An ISA master may optionally use NOWS* to shorten default cycles.
If both NOWS?* is asserted and CHRDY is negated, then the ISA master must insert wait
states.

If an ISA master must run refresh cycles without releasing the bus, then it floats the
address buses and command lines and asserts REFRESH* with an open collector type
driver. The master must then wait for 1 BCLK period after MRDC* has been asserted and
negated before floating REFRESH* and driving the address and command buses. EISA
systems require ISA masters to wait for the end of MRDC®* before regaining the bus during
refresh cycles, if proper operation is to be assured. :

An ISA bus master releases the bus by floating its address, data, and control signals,
negating DRQ<x> and floating MASTER16*. The system board samples DRQ<x>
negated on the rising edge of BCLK. The system board negates DAK* <x> on the third
rising edge of B after sampling DRQ<x> negated. e ISA bus master negates
(floats) MASTER16* (if still asserted) when it samples DAK® <x> negated. On the next
B%‘LK the system board asserts the bus grant signal for the device that wins the bus
arbitration.

ISA bus masters use the same combinations of SBHE* and SA<0> as indicated for
CPU cycles to indicate the size of the transfer and the location of the data. It is the bus
master's responsibility to convert 16-bit transfers into two 8-bit transfers if a 16-bit slave
does not respond. However, the system board will provide data copying from D<7:0> to
D<15:8> for odd-address reads g‘om a byte slave, and from D<15:8> to D<7:0> for
odd-address writes to a byte slave.

66

EP 0 426 184 A2

EXTENDED INDUSTRY STANDAKD ARCHITECTURE
CONFIDENTIAL INFORMATION CF BCPR SERVICES, IMNC.

2.3 ISA CPU and Bus Master Cycles

The following comments apply to all ISA cycle description diagrams:

Note 1: Heavy black lines indicate the transfer of control from one bus master to another.
Note 2: Shaded areas indicate a "don't care” signal state.

Note 3: Black dots indicate signal sampling points.

2.3.1 8-bit Memory Cycles
Figures 2, 3, and 4 show the relevant signals for standard cycle (6 BCLK), one wait

s}ate ISA Cycle (7 BCLK), and no wait state cycle (3 BCLK) memory accesses to 8-bit ISA
slaves. :

67

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 2 - Memory Access to 8-bit ISA Slave -
Standard Cycle (6 BCLK)

BCLK L
, :
BALE M

La<z3:17> B fl

SA<19:0> &X&\\\Q\&\\\;\@[: - i
o1 1 1 11 1 1 ! T
SMRDC*.SNWTC* 1 A P :! :
NRDC* N¥TC* L ——— |
| S S S N N oo i | : oo
; I . i i i i i i i i i ; ' ; i
H . 1 i) H) 1 H ' . 1] H '
P i P I
L L R : : :
S R R A i ! i
A ! ! !
Read Data j 5 Lol A ! :
¢ i H (¥ i H : ; : i : 3 Jl . Jl -
: : : : ' 1 i : 1 :] :
- pero> — e
| S R S A I S
bbb
I
Write Data { i ; i ! ! R ; .
T ! !] ! ! T

N

1
1

pero, BT X

. |) | | | |
T T I T T |ttt o hidhtant e
1 i I | t 1 i »
i 1 1 1 I I] 1
1 ' ! 1 I 1 ! 1
1 I i - 1 { 1] '
! ' 1 . ! t i] t
[} 3 !

I3] . .
T -4 T(‘)O TOf TC2 T3 TC4 TO5 TOE TOT7 TO8 TOS TCA TOB T;O Ty T2

68

EP 0 426 184 A2
Figure 3 - Memory Access to 8-bit 1SA Slave (7 BCLK)

EXTENDED INDUSTRY STANDARD ARCHITECTUKE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

N

I

\

ToA TOB

106 ™07 T08 T09

N
N

|
T
i

2 703

LR

|||||| p- — 4

M
f
:
10.0

T0.- 1

=

-

LA<23:17>
SA<19:0>
Read Data
D<7:0>
Write Dala
D<7:0>

» o
n a
= a4
o ey
= (8]

BCLK
BALE
M16*

69

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 4 - Memory Access to 8-bit ISA Slave (3 BCLK)

BCLK
BALE

LA<23:17>

SA<19:0>

SMRDC*, SNYWTC"

MRDC* MWTC* f ‘

M16* \\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\

| T
[W -
T : ;
i : j ; ,
! f : : i
t ' LOE . : .
NOWS* g L . IRLIE P !
I I |
CHRDY Ly o i
- T i
| A |
1 | H ! i 1 . t 1
AR
i i : i : i E
Read Data | A R T T :
‘ ! N !
i 1 : ' i |
. 1 I : t : i |
1 A [
| | A : :
! | : : ! !
Write Data i [i | | 5
" R | [Rk
..... - . e T Tan— B Ii.,.‘__,_. S
707-1 TO:O TO 1 To:" T0.3 Tci,-a TO0 S T1;O T1 1 : :

70

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCKEITECTUFE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

23.2 8-bit 1/0 Cycles

Figures 5, 6, and 7 show the relevant signals for standard cycle (6 BCLK), one wait
state ISA cycle (7 BCLK), and no wait state cycle (3 BCLK) I/O, byte accesses to 8-bit ISA
slaves,

7

EP 0 426 184 A2

Standard Cycle (6 BCLK)

EXTENDED INDUSTRY STANDARD ARCHITECTURE
Figure 5-1/0 Access to 8-bit ISA Slave -

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

T0.7

w— 3

llllllllllll - e e e e e e e e g e e m e e i — R
jl ®

|||||||||||| - R R i [Tyt (S RIUUPI S e e e SR,
prr— - . v .
m B))
| SRR U I il B e S S el Rar s - | ISP S - | [N SIS SR SR S S
L o ® .

|

N
D

i R Rt el Dl LT NSty SUIND USRI SIS |

]

2
- 7
- NN IRy i e e 77
7
¢ - - - % .
ook-—~4-~——--
et 4
) . « 75 7

3 3 !
A o I, :
A N
x® » - ~
] q Z T UL b 2 o g v 3 %
3 < i <= % = o & o] A > Q
& M < az 22 2 z 5 AN / = |

To8 T0.9 TOA TOB TIC Tt T2

T06
72

o4 T05

T2 T03

T0-1 TOO O3

EP 0 426 184 A2

EXTENUED INDUSTRY STANDARD ARCHIVECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 6 - 1/O Access to 8-bit ISA Slave (7 BCLK)

e LT

S
,.]

BALE

1
]
1
1
1
'
i
1
v

3 .

! | | i

t i | 1

R : ' i 0

N i ([

AENX S t 1 i 1
v

! ! 1 i i

1 t 1 i '

SA<15:0>

CHRDY

S P | i
I0RC®, T b l__—
10WC oo . : ? |
N N : : : '
¥ N \\:“ f H S i | ‘-‘:i‘
IO] 6 \\\;\ RN \ N -}» II Py : : : R
: ; i ! : ! I
. | : ! i . : i 1
T : ' .0 N
: :) i . : i 1

B o T gty WU ISP SN S

Read Data gi ,; ; ; ; :
Dero : : \\\\\\\\\\\\\\\\\\\\l\\\}\\\\\\\\\\g\\i\\\\\\\ﬁ\\&\\\\\@{‘ — |
Write Data- :; 1! ; ;E g :E g E

D<T0> tﬁ\\x\\\X\\\\\\;\\\\\\\é\ ' : : : Ji |

T™-1 190 Tor TOZ 101 04 To5 TO6 T87 TO8 T09 T4 TOR T0C Top TiC 11 Tie

73

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 7 - 1/0 Access to 8-bit ISA Slave (3 BCLK)

BCLK l

I O O

BALE i L

P S
SE—
- mm e ge—

;
Lk
—— 1)
. i

SAL15:0>

1OWC*,
IORC*

1016*

NOWS*

CHRDY

migemtimmeet————

Read Data

D<7:0>

U SOOI PR (I SUINIpENPIIONOPSSPRSIY §77 23 P
PP PN pE Spunpp EpSEPR SHE e

Write Dala E §

TO —1f0.0' T0 1 TO.2 TO.3 TO.4 TO.5 T1.0 T1.1

74

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECYURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

233 * 16-bit Memory Cycles

Figures 8, 9, and 10 show the relevant signals for standard cycle (3 BCLK), three
wait state ISA cycle (6 BCLK) , and no wait state cycle (2 BCLK) memory, word accesses
to 16-bit slaves.

75

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 8 - Memory Access to 16-bit ISA Slave -
Standard Cycle (3 BCLK)

BCLK | L |]
BALE i 1 5

z 5 5 b ﬁ o
SBHE* \X\\\§\§\\\§Q .3\?“1’3 :

ORI

SMRDC*.SN¥TC® : El E E[E : .

MRDC* MWTC® ; ' ! - ; ; ; i i

M16* NG 31
! ! ! ! ; i i ; i i : ?

NOWS* SR T e T ! f

CHRDY - 7 B 3

Read Data E E E ! E

/ T I | :

' D<15:05 E gt —

Write Data | L L ?

T0-1 100 701 0z T3 TO4 T05 TL0 Ty

76

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 9 - Memory Access to 16-bit ISA Slave (6 BCLK)

BCLK
BALE

e

|

M

LA<23:17>

S

N

7%

N
DN
N

SA<19:0>

-

\
.

R
B

Mi1l6*

NOwWS*

CHRDY

Read Data

| D<15:0>

VWrite Data

- D<15:0>

n1

0.t T0.2 T3 T04 T05 7106 T07 T08 T09 TOA TOB

T00

77

EP 0 426 184 A2 -

EXTENDED INDUSTRY STANDARD AKCRITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC,

Figure 10 - Memory Access to 16-bit ISA Slave (2 BCLK)

BCLK

i | i i
I
BALE . | | ,
| ;.—: |
i i i i

LA<23:17> , ‘ ,]
! i i ! ; {

SA<19:0> ¥§§§§§§§§§§§ A — N

e 1 g
NOWS* o ! :
CHRDY | R | | T
Read Data ‘; '; é g ; ;
v ———— @
Write Dala 5 E E g §) B

D<15:0>

I
1
T
i
1
i
[}
{
|

78

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

234 16-bit I/O Cycles

Figures 11 and 12 show the relevant signals for standard cycle (3 BCLK) and three
wait state ISA cycle (6 BCLK) 1/O word accesses to 16-bit ISA slaves.

79

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 11 - I/O Access to 16-bit ISA Slave -
Standard Cycle (3 BCLK)

s I T s I e O
BALE ' ' 1
SBHE" HEE
SA<15:05 [— : , . N\i\\\\\\i\\&\\\\\\\
N AagiENyeee
1016* : - ' "
NOWS? N : , .

CHRDY ! l .

Read Data E

. D<15:0>

P Y C e QUIEIDIE PRI NSV -
PR (R ——— g Y JURpUY: SRS SR VR S,

I
t
|
i
§
i
1
1
!
1
i
1
!
1
]
T
t
1
1
t
[}
|
i
{
1
1

Write Data g B

i : ’ : '
0.-1 700 To0 102 103 104 0.5 O T

80

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 12 - 1/O Access to 16-bit ISA Slave (6 BCLK)

aci I T T Yy Y o B
SBHE* \\\\\\\\\\\ L ' ‘ , l l Hi\\\\\i
. \\\\\\\\\\5\\\\ L L : : H\\i\\\\w

: ; : : ! : H
| | T Ty) P J| - 1
| { !) ' t i 1
| I ! Il | 1 ' t
1 1 ! t ! 1 t '
t l ' 1 1 1 1 t
1 i ! 1 1 1] '
i i ! i i | i i
' B 1 . t :] . i ' : 1] +

TO-1 100 TY0O! T02 TO3 T04 TO5 TO6 TO?7 T08 TO9 T0A TB TI0 T

81

\
AN

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.4 EiSA CPU and Bus Master Cycles

EISA systems provide standard, COMPRESSED and Burst cycle types for data
transfers between the main CPU and memory or 1/O slaves. EISA bus masters may use
standard and Burst cycles, but may not use COMPRESSED cycles.

The following notes apply to the EISA cycle description diagrams:
Note 1: Heavy black lines indicate the transfer of control from one bus master to another.
Note 2: Shaded areas indicate a "don't care” signal state.

Note 3: Black dots indicate signal sampling points.

2.41 Standard Memory and 1/0 Cycles

The standard EISA cycle type completes one transfer each two BCLK periods (zero-
wait-state). It can be used to transfer data to or from an EISA memory or I/O slave. Each
wait state adds one BCLK period. The total transfer time can be calculated with the
following formula:

Total Transfer = N*(2+T,,)*(1 BCLK period)

Where:
T, = number wait states in each bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted standard transfer of 256 bytes (64 dwords) completes
in 15.4 us for a 32-bit transfer and an 8.33 MHz BCLK. A 16-bit transfer completes
in 30.8 us. This example assumes that no preempts occur during the transfer.

Standard EISA cycles begin with the CPU or bus master 8resentin a valid address
on LA <31:2> and asserting M-IO to indicate a memory or I/O cycle. e address can
become valid before the end of the previous cycle to allow address pipelining. The
memory or 1/0 slave decodes the address and asserts the appropriate signals to indicate
the type of slave and whether or not it can perform any special timings. The memory or
1/0 slave asserts EX32* or EX16* to indicate support of EISA cycles. An I/O slave must
also decode AENXx negated (low) to determine a valid address.

The CPU or bus master asserts START* to indicate the end of the previous cycle
and to indicate that the new cycle is now on the bus. The master also asserts W-R to
indicate a read or write cycle and BE*<3:0> to indicate the bytes being transferred and
their location on the EISA bus. 16-bit transfers use BE®<3:2> (address A1=1) as well as
BE*<1:0> (address Al1=0) to indicate the bytes to be transferred even though only the
low 16-bits of the data bus are used. LLA<31:2> and BE* <3:0> remain valid until after
n?%z}lgﬁ of START?™. A slave that needs to latch the address does so on the trailing edge
0 T=. -

82

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The system board asserts CMD*® simultaneously with negation of START*® to
control the data transfer to or from the slave. If a read cycle is being performed, the slave
presents the requested data when CMD* is asserted and holds it valid until CMD* is
negated by the system board. For a write cycle, the CPU or bus master presents the data
q_rbior to assertion of CMD* and the slave latches it on or before the trailing edge of CMD*.

e duration of START* and CMD* may vary, depending on the type and speed of the
devices performing the transfer.

Wait states can be added to the cycle by slow EISA memory or I/O devices. The
slave negates EXRDY after it decodes a valid address and samples START* asserted. The
stave may hold EXRDY negated for a maximum of 2.5 us to complete the transfer, but
must release EXRDY synchronous to the falling edge of BCLK to allow the cycle to
complete.

The slave must allow EXRDY to float high (asserted) synchronously with the BCLK
falling edge and must not hold EXRDY negated longer than 2.5 us.

An EISA 1/0 slave must assert I016* as well as EX32* (or EX16*) when addressed
if 16-bit ISA bus master compatibility is pecessary. 1016* is asserted after decoding a valid
address on the LA <31:2> address bus and is latched while CMD?* is asserted. M-10 is not
included in the address decode for I016*. EISA I/O slaves that do not need 16-bit ISA
bus master compatibility may assert EX32* (or EX16*) only. :

The system board develops M16* from EX32* (or EX16*) to assure compatibility
with ISA bus masters. An EISA memory slave should not drive M16*.

EISA standard memory and I/O cycles are illustrated in flow diagrams. The flow
diagram is a hybrid diagram combining aspects of flow charts and timing diagrams. The
flow diagram is intended to demonstrate the basic concepts for various cycles performed on
the EISA bus. At least one sample of every possible "action” (such as wait states and Burst
tzrnﬁnation) is provided, although, of course, every possible combination of bus cycle is not
shown.

The flow diagrams consist of flow-chart-like blocks and arrows, with board-specific
actions enclosed in the blocks. Line types (solid, dotted, bold) are used to differentiate
between the parts of the system involved (such as system board, slave, and bus controller).
The flow diagram is divided into horizontal sections, each section representing the BCLK
edge or level during which the enclosed action occurs.” Note that at the beginning of many
i:_ycle types BCLK may not be active. In this case the BCLK states are drawn with dotted
1nes. .

Flow diagrams do not follow the conventions of normal flow charts in that there is
no "decision” block. In essence, the flow diagrams answer a question such as "To design a
32-bit one-wait-state EISA memory board, what signals apply during an access to the
board." The designer would then follow the flow diagrams for accesses to 32-bit memory,
and when a branch labeled "Wait states needed,” appeared that branch would be followed
to add the desired number wait states.

Flow diagrams should be used to gain an initial understanding of the EISA bus
cycles. They also <grovide a means of following the sequence of signals when reading the
timing diagrams. Once the designer understands the basic cycle types, specific information
on timing and special cases should be obtained from the timing diagrams themselves. In
the event of a conflict of information, the timing diagrams should be assumed to be correct.

83

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figures 13 and 14 illustrate the flow of a data transfer from a 32-bit master (0 32-bit
slave memory (read and write cycles). The figures include standard and COMPRESSED
cycles. Data transfers from a 16-bit master to a 16-bit slave are the same except for the use
of EX16* instead of EX32°.

Figure 15 shows the relevant signals for 2 and 3 BCLK EISA slave accesses.

84

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTLRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 13 - 32-bit Master to 32-bit Slave Memory

Read Accesses

8oLK
Lo Moster:
fo-1" T Present Hemory: ——————
e LASY M-10 System: -——-—
- O 1 -
—~ Y
b LOW Decode
- ADDRESS
e e ¢ e e ——— e = et e | [e e -
Y
P .. Asyer!
-7 START« W-R
R Present BE+<>
@; HIGH Normgl or Exlro Wart Slole Compressed T T
———
R XYoo
—~ | Sormple ' ; Somple '
2-2 — | STAR. | STARTe
- I Aszert BAE | [Amedt BAE |
1 1
Y Y.
Assent Asserl
@ Low £X32. E£X32.,
NOWSe
1
_____ Yoo ———
i Sampke £X32¢ | | Sompke |
| Negote BALE : €X32-, 1
Assert CMD~ 1 NOWS :
““““““ 1 Negole BALE
@ 7 Sample | Assert CUD~ |
EX32. | Negate START. |
Regate 1 Presemt !
START ' | Mext Address |
R]
Woil Sloies Needed Pr.)
DATACY>
te
Negol .
@ HIGH. Woil Stales EXROY £X32: NOWS
Not 1 More No
y Y Cycles
Somple EXROY Sompie fom= =Ly |
Present neri EXROY . Lolch DATAC> PRSPPI, ASvipen
@ o ADORESS - ! Negate CUD- ! Loteh DATASS |
Waoit t Assert 1 | Negate CUD+ ¢
Troot States | STARTs W~-R : _________
St ! Present BE+<>
£XROY Needed -ESS"__.E:.-.'
Present woit
DATACY Stotes
@ Lo Negale No tonger
£X32¢
.“°" No_MWore Cycles
Sycles ————‘L—{
_____ Yoo
1 i
1 Negole Cudv
@ | e |

Assert
STARTe W-R
Present BEs<>

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 14 - 32-bit Master to 32-bit Slave Memory

Write Accesses

BCLK
- Woster, ——————
0-1) ~_ Present Memory
-~ LAC> M-10 Syslem- - ==
- © e e e @ OOV
1",\7 LOw Decode
- ADORESS
...... —_] RO [
Y
- _ Assert
-2 A STARTe W=R
- Present 8L+<>
/?\: G Hormol os Extro Woil Stole Campressed
o/
pom——
r-)"...__.‘l-..l r-}_--\[___l
TN i Sompie 1 1 Sompie I
2-30 e | STARTe | | STARTe |
- | Assert BALE | | Asert BAE)
- I 1==--
Y. X
Assert
£X32+ EX3IZ« NOWS.
®
Present Present
DATAC> DATACY>
! 1
PR 20, PR 2
i i
! Somple H | Sample |
; EX32¢ | . boEX32,
Negate BALE | NOWSe 1
-------- : Negate BALE :
@ = Sompic | Assert CMDs |
£X32+ ! Negote START
Assert CMDe : Present 1
Negole STARTe | Next Address :
i !
Woit_Stales Needed te
EX32-,
ote
@ HGH woil States ROy sore | | Mo
Nol Needed T Cycles More Cycles
k ¥ A —
Sampie EXRDY Somple X,
Present Nexl E£XROY totch Lotch
. ADDRESS - DATACS DATACS
wort
I Stotes ! Negole CuD~) : Negote |
Floot Stit ! Assert) | CKO. '
EXRDY | | Needed | STARTeM-R | Soooqe--os
{ Present BL<O. !
T Wait S—— {
Slotes
Negole No Longer
@ Low £X32¢ Needed
c::;: \) No More Cycles
! Negole CMDe [pom e §
! Negote CMDe |
totch
DATACY> Lolch
= - DATAC>
Asser|
STARTs W-R
Presenl BEe<>
e T ! e i v+ e e e
. |

86

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, iinC.

Figure 15 - Access to EISA Slave - 3 BCLK and
Standard (2 BCLK) Cycles

: i , , o
: ! ! ! L
LA<31:2> oy g
N-10 H HW
? i = Lo B
| 1 | | { |
R o 1 N
BE*<3:0> \“}", “H , \\\\\\\\ i
, { i Py i i ' ?
t ! JI 5 ! I l
¥-R @ &_\\\ W\ N &\\\\\\S}]
i
Z : {
' \
START* . : 1
3 i i
: i i
; ! \
CuD* : 1]
t ot I
1 1]
L
EX32* |
EX16*
EXRDY ; 7
| |] ,g i
' : .
NOWS® D ' ' . &\\\\\§
ERRR e s
< { ! :
Lok ¢ | , L___i
R ; i | i
1 1 i I [} t
i ¢ t i \ | |
1 : 1 1 r I
READ DATA I P . ; ; ;
i i | !] [1 : I 1
1 : ' | I t ' : 1 1
1 - i t] I | . I [}
: 1 1 { 1 1 1 N
WRITE DATA — .{ .{ _—
i i S P
! [: I I
: : Pt :
é i | /0 Cycles: (
i i i ‘ !
1] }] H
! i) I i
AENX | : ! ! :
1 [} t I] 1
i : | ' 1 1 i
I A R { :
\J016° \\\\\\\\Q\\\\x } AN \\‘ My ' NER
Y T i E— T —T T T
100 101 102 101 '(04 10.5 T!G I\l 112 11‘ 120 121 17" 173 1"4 '{25

87

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

24.2 COMPRESSED Cycles

The COMPRESSED cycle type completes one transfer each 1.5 BCLK period. It
can be used by the main CPU to transfer data to or from fast EISA memory or 1/O slaves.
The total transfer time can be calculated with the following formula:

Total Transfer = N*(1.5 BCLK period) s
Where: N = number of bus cycles for transfer

For example, an uninterrupted 32-bit COMPRESSED transfer of 256 bytes (64
dwords) completes in 11.5 gs with an 833 MHz BCLK. A 16-bit transfer completes
in 23 ps. This example assumes that no preempts occur during the transfer.

COMPRESSED cycles are a special case of Standard cycles in which the main CPU
presents a new address each 1.5 BCLK period and the system board reduces the duration
of CMD* to 0.5 BCLK The timing re%uiremcnts for the generation of COMPRESSED
cycles are more strict than for normal EISA cycles, and, as such, special design methods are
required for both the systems and slaves that support these cycles. A slave indicates
support of COMPRESSED cycles by asserting Ng S* in time for the system board to
sample on the rising edge. of BCLK at the leading edge of CMD*. The slave must not
negate EXRDY after asserting NOWS®. The CMD* pulse width is 1/2 BCLK for
COMPRESSED cycles, but the slave. must be prepared to accept a CMD* pulse of 1 BCLK
or longer. The longer CMD* occurs when a gus master or other device initiates the cycle
instead of the main CPU.

Figure 16 shows the relevant signals for COMPRESSED read and write cycles
between a 32-bit master and a 32-bit slave. Observe the half-cycle extension of BCLK for
synchronization. Data transfers from a 16-bit CPU to a 16-bit slave are the same except for
the use of EX16* instead of EX32*.

88

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

BCLK

LA<31:2>
M-10

BE*<3:0>

START®

CND*

EX32*
EX16°

NOWS*

READ D<31:0>

I

100 101 10? TlO ’Hl 2 120 1'2\ 122 12] T21

Figure 16 - Access to EISA Slave - COMPRESSED Cycle
(1.5 BCLK)

1

— I._-_._

\\\ \\\\\:\\\\\\\\‘\\ N N ‘:\ﬁ\r

I i
ffff-I':f;:_.

b~ —

i 1 1
i

|- _"_'.f

//44
.

Ny
\\\ AN

‘ \\R\&"\\\\\\

N

fiddaed

s

e l e §257
. Z

%
..]

e e e

[RPEOUNSUEDEPIY PPN SPEp -

L

i

[(N PUL U
[PPSR DU

|

1 H
N

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCFR SERVICES, INC.

243 Burst Cycles

The Burst cycle type provides a continuous sequence of 1 BCLK read or write
cycles. Burst cycles are zero-wait-state transfers to or from EISA memory. Burst cycles
cannot be used with 1/O devices or ISA memory devices (slaves or masters). The total
time for a Burst transfer can be calculated with the following formula:

Total transfer = (1+T;+N)*(1 BCLK period) us

Where:
T, = number wait states in initial bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted 32-bit Burst of 256 bytes (64 dwords) completes in
7.8 us with an 8.33 MHz BCLK. A 16-bit transfer completes in 15.6 us. This
example assumes that no preempts occur during the transfer.

The first cycle in a Burst transfer begins like a standard cycle. The CPU or bus
master presents a valid address, and the memory slave, after decoding the address and
M-I0, indicates that it can perform Burst cycles by asserting SLBURST*. The CPU or bus
master samples SLBURST* on the rising edge of BCLK at the trailing edge of START®.
The CPU or bus master indicates its ability to do Burst cycles by asserting MSBURST* on
the falling edge of BCLK and presenting the second address to the slave. If the CPU or
bus master found SLBURST™* asserted, it performs the transfer using Burst cycles, and the
system board, instead of negating CMD* keeps it asserted while the CPU or bus master

rforms the Burst. The CPU or bus master reverts to a standard cycle and leaves
SBURST™* negated if the memory slave does not assert SLBURST* or if the slave type
does not support the Burst.

If the Burst cycle is a read, the Burst addresses are presented on the falling edge of
every BCLK, and the slave presents the data for that address for sampling 1.5 BCLK
periods later. If the Burst cycle is a write the CPU or bus master presents the data on the
rising edge of BCLK 1/2 cycle after presenting the address. This differs from standard
cycles in which the data is presented on the falling edge of BCLK. The CPU or bus master
iﬁmllinates thfe Burst cycle by negating MSBURST® at the address change and completing

e last transfer.

A Burst transfer must be all reads or all writes. Mixed cycles are not allowed. The
byte enables may change within the block. Although a Burst transfer normally performs
zero-wait-state cycles, a slave can add wait states during a Burst sequence by megating
EXRDY before the falling edge of BCLK (with CMD* asserted). e master samples
EXRDY on the falling edge of BCLK and extends the cycle until EXRDY is asserted. The
master can still change to the next address even though EXRDY is negated. Note that it is
not possible to decode a valid address in time to negate EXRDY. The slave must know in
advance that wait states are needed. An intelligent slave can use the wait states to
interrupt the Burst sequence while it accesses local shared memory. A memory slave
cannot terminate a Burst.

-Addresses asserted during a Burst sequence to DRAM memory must be within a
1024 byte DRAM memory page (address lines LA<31:10> cannot change during the
Burst).” To cross a DRAM page boundary, the Burst sequence must be terminated by the
CPU or bus master by negating the MSBURST®* signal on the last cycle in the page. The
Burst sequence can be restarted on a new page.

90

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 17 shows a Burst read cycle from a 32-bit master to a 32-bit slave. Figure 18
shows the relevant signals for reads and writes between a 32-bit master and a 32-bit slave.
Data transfers from a 16-bit master to a 16-bit slave are the same except for the use of
EX16" instead of EX32*.

N

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 17 - 32-bit Master to 32-bit Slave Burst

Read Transfers .
4
a0 Mosier
— Siove, | ——
Q‘) s Present LACY Systern - —— -
Agsert W-0
e — —] I o
T Y
o LOow Decode
ADORESS
1 R [,
Y.
—~ Asvart STARTs
A Regole ¥-R
i Present BL1¢>
@; HOH Siowe Supporls Burst Tronsfers Siove Does Mol &ppo’!- o Bu';ls_— T -
._L_L---‘ ._.l_l[___‘
N - ! Sompe 1 | Sompe
@' <_ P SR | HE 7 D
U hevest BALL ; | Assent AL !
A sy - [N ——
T I
X Y
hsvert Rersert
@ Low £X32+, 02
’f--—‘"—-—-l . prmeYemee,
1 Sornpie i t Sampie
I (2874 1 t £x32« i
@ A [Neqole BUE | | Megate BRE !
1 Aazerl QMO i Agyert QMO
Sormple Sample
£X32, SLRRST» £X32+, SLALRSTs
Heqole STARTe Meqole STARTe
]
%ol Sicles Lol Sboles Heeded e | | Wod_Stote Weroed
ol Meeded Hol Needed }
O Negote Negate
3 -14 EXROY
] I
o More More Y. X
Bursts Bursts
@ O \r——"j r Sampie EXROY Somgie £XROY Somple £XRTY
Present Nert Present Nert Present Ned
Somple DXRDY Somple [XROY LACS, BEe<> LAO, B O, B
Presend Nert Present Nexl
LA<>, BEec> A, BB O 1 T
Negate devert Float Poot
] - i -
| X X wat| |won wor| | wou
Present Present Sictes Stales Present Stoies Slates
LOw DATACS DATA No Longer St DATACY Ho Longer s
Decode Decode Needed Needed Oecode Needed Needed
ADORLSS ADORESS ADDRESS
- - -— W i e et mee - b g J e et s st et et e a5
wore Cycles No More ore Ng More Trgnsiers Needed
¥ Crcies X Teansfers
[l t [t oty Yoo
' ok S .
_Meole S _“.‘T‘f-.cm;‘ DL:,T:', (Negote CuOe } 1 Megote Culr 1,
i Lolch DAIACY Lotch DATACY
Assert START WSBURSTe Samgie
Present BLe<> oo MSBURST
w-R c "
{note) SLBURST |.___
" v;"gs""_ Wad States Nol Keeded
MSBURST. Woil Sloles Needed
Nesl
@ o e

Nole i nexl cycie 75 o wide, osyert W-R
ond go to corsesponding stoic » ente dogram

92

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 18 - 32-bit Master to 32-bit Slave Burst

Write Transfers
acx dosier
— o
Q"‘) ~ Prepen LACS St em— -
- Ayt 8- 1O

Loteh ORTACS
D) S
. 3 . Loteh DATAC>
@ . WSBURST -
| Meqote CO. | sl) WSBURS1
e samy | 1N Neqate C0- 4
Present Ble<> ’ oles Mol Needed
Aavert ¥R Hewate |
(mole) 2 Stoicy Mepded

SN
© = 5

Nole' N metl cyrie 1 0 tcod. neqole W-R
ond go ¢ conempondng stole n reod dmgrom

93

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 19 - Access to EISA Slave - Burst Cycles

(With and Without Wait States)

BCLK

lllll

4

TR

1

BE*<3:0>

&
b
<
B

CMD*
EX32*
EX16"
EXRDY

lllllllllll ————

MSBURST*

- ——

Wlll

SLBURST*®

‘ READ DATA

| WRITE DATA

i 1 1 i ' 1

i

100 76.1 10.2 16.) 104 Td.ﬁ 10.6 10.7 108 709 T0A 10.8 TO.C 0.0 V10 Ty 112 123

4,5} EISA Burst Access

6)

EISA Standard Access (Starl of Burst)

EISA Burst Access

1)

2)

EISA Standard Access

EISA Burst Access with One Wail Stale

3)

94

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SEEVICES, :NC.

2.5 DMA Cycles

DMA devices can use one of four cycle control sequences to transfer data between
the DMA device and memory: ISA compatible cycles, Type "A" cycles, Type "B" cycles, or
Burst DMA cycles. Each cycle type can gc run as a single cycle transfer ()'Spingle mode), or
as a continuous sl;?uence of cycles (Block or Demand mode). See the DMA controller
section for more information on Single, Block and Demand DMA controller modes. The
DMA controller supports 8-, 16- and 32-bit data transfer sizes. The DMA device reads or
writes the appropriate bytes on the bus for its data size.

DMA devices use IORC* and IOWC* for 1/O reads and writes. The system board
asserts the appropriate 1/O command signal (IORC* or IOWC*) with DAK* <x> and
negates the command signal when the data lines are valid (for a write) or when the system
board latches the data (for a read). The I/O command signal remains asserted during
memory wait states or data size translation. The DMA device cannot add wait states.

2.5.1 ISA Compatible DMA Cycles: 1SA Compatible

The ISA compatible DMA cycle type executes one transfer cycle in 8 BCLK periods.
Each wait state adds two BCLK periods. ISA DMA devices can use this cycle type to
transfer data between the DMA device and 32-, 16- or 8-bit memory. The total transfer
time can be calculated with the following formula:

Total Transfer = (1+N*(8+2*Tw))*(1 BCLK period)

Where:
Tw = number wait states in each bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted zero-wait-state 16-bit transfer of 256 bytes (128 words)
completes in 123.2 us (2.07 MB/s) with an 8.33 MHz BCLK.

The first cycle of a DMA transfer begins with the system board presenting
LA<31:2>, BE*<3:0>, M-10, and W-R on the falling edge of BCLK. For memory reads,
the system board asserts START* on the next rising edge of BCLK. The system board
asserts CMD* and IOWC® on the next rising edge of BCLK. The system board holds
IOWC* asserted while the memory slavvresents the data, then negates IOWC*. The
DMA device samples DAK* <x> and IOWC* asserted, then latches the data on the rising
edge of IOWC*. The system board holds IOWC* active for 3 BCLK periods and holds
CMD* asserted until 1/2 BCLK after negating IOWC*.

If the DMA cfycle is an I/O read (memory write), the system board asserts IORC*
on the rising edge of BCLK after presenting the address. The system board then asserts
START?* on the rising edge of BCLK, two BCLKs later. On the next rising edge of BCLK
the system board asserts CMD*. The DMA device must present the data when it samples
DAK*<x> and IORC* asserted, and must hold the data valid until the system board
negates IORC*. The system board holds CMD* asserted for 3 BCLK periods and holds
IORC* asserted until 1/2 BCLK after negating CMD*. A DMA device cannot add wait
states to a DMA cycle. It must conform to the system board cycle control.

95

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The ISA-compatible DMA.cycle is the same for all types of memory. The MRDC*
or MWTC* signals are activated to allow ISA memory to be accessed unless the address is
greater than 16 megabytes and an EISA memory device responds. The MRDC?® signal is
asserted at the same time as JOWC® is asserted and is negated at the same time that
CMD* is negated for 1/O write (memory read) cycles. MWTC® has the same timing as
CMD* during 1/0 read (memory write) cycles.

"Verify" transfers have the same address, DAK*<x>, and T-C timing as other
compatible transfers but do not assert any command signals. This means that DMA
devices do not see an IORC* or IOWC* asserted and memory does not respond to memory
accesses.

Figure 20 show Type "A," Type "B," and Type "C" (Burst) DMA reads. Figure 21
shows an 1SA-compatible DMA read.

Fi%urc 22 shows Type "A" Type "B," and Type "C" (Burst) DMA writes. Figure 23
shows an ISA-compatible DMA write.]

Figures 24 and 25 show the signals used in ISA-compatible DMA cycles.

96

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 20 - 32-bit DMA Read Transfer from 32-bit Memory -
Type "A," "B," and Burst Cycles (No Wait States)

No More Tronslerx ~ R

97

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 21 - 32-bit DMA Read Transfer from 32-bit Memory -
Compatible Cycle (No Wait States)

1 Assert '
H DROw i

.

Perform
Arpltrotion,
Grant Bus

DMA Controller:
OMA Device:
Memory:

Asaert
DAKxw»
Compatibie
Present LAC>,
SAC>, BEe<>
Assert W—R, M—10
@ T
D -~ @ T
Axzert
@ - START=.MRDCe
@ S
Assert CMDe 1IOWCe
@ — Negotle STARTe
@ — Sompile EXROY
Fioat EXRDY
eerimraiemin ety e - S SRR L TR I
Present
@@ 7 @ -
[[, ————— JEOT JRU oo Heeemimen mimtmmieieicem mmcteia memieee e e een
Somple
o~ ® T wmer |
&~ @
—
@ ™

More Tronsfers

No More
Tronsfers

.&. [.....,,.....-..‘E.. -

Present Remove
Nexti Address Address ond
Sompie Controt

DROx Negate E£X32«

98

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 22 - 32-bit DMA Write Transfer to 32-bit Memory -
Type "A,” "B," and Burst Cycles (No Wait States)

Type "4 i
..................... e DU ISP cea- O
.
Prepent Prevent
<>, 3>, LA, SACS, Presect LA<3. SAc>
@ -~ oec> ec> o>
Arsany Awpert
"R O W&, 1O e T

SO~ 1orC. Margote CLO-

Negote £X32
Negote
DA eo
G-
Latcn
DATAC>

) ore hgm«-} ro Uore Tromyiers

@ .
§~7) _A
Pewpen Remowe
@ . Neﬂ.M&levyl
Controd
- Megete £X32-
e e e e - e e e e e)

99

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 23 - 32-bit DMA Write Transfer to 32-bit Memory -
Compatible Cycle (No Wait States)

Azsmery H
© DROx ’

N

Perform
Arbitrotion,
Gront Bus

Present

OMA Controller:
DMA Deovice: -
Memory:

Compotible

LAL>, SAS>
@ N BE-<>
Assert W—R, M—IQ
Assert
G2 Azzect
@ T Ansert
EX32=
G
O T
Assery
— SEE
MWTCe
I Assert
@ T i DATA< >
Assert
CMD=
Negote
—
START=- .
[Somale EXRDY
@ TN] Floot EXRDY
e eemane e SR [A - - - -
—— & T~
— O T
Negate
CMD =
Sampte
G- DROx
Loteh
OATA < >
................................. e
o T Negate
tORC
A
had More Ne More
Tronsfersi l Tronsfers
.................................. e P et R I I
@ T Present Remove
Newxt Address Address ona
Somote Control
DRIO" Negote Cx32- |
......... ,.......v.._.......................-..._..,.......-.......\b.v...,...,.....‘.....-r--v—---
Negote
@ —7 DAK =~ I

100

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURY

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Demand Read

.
24

- DMA Transfer from Memory Without Conversion -

Figure 24

Compatible Cycle

BCLK

s

TN

Z
..... | Y N N
b T N
Z
[UNIEE | TS NSRRI NP
||||A llllllllllllll
.................) -
N DR A -
ol R -

SA<19:0>

CHRDY
1OWC*
MRDC~

1ox 102

oV

10L tON WP CR 0T

0.3 105 07 109 108 10D 1OF 10 10J

t¢1

101

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ite

Demand Wr

Figure 25 -DMA Transfer to Memory Without Conversion -
Compatible Cycle

BCLK

- - P
|||||| Pemm} mmme e e
- - DR P

A

Z
- \\ - .- R
llllll m ———— —— e o

F2 N PO [P

Z
sssss [} R RN I

A

2 - RN [
..... ' S N

%

4 - e
IIIII \\\ ——— e e ——
R & 1 -

Z
RN | 1 S S _

-z
——— § g [—————

2
xxxxx N-n;: I PR
'l‘lAv llllllllllllll —— —

T T S
]
|

DN

SA<19:0>

CHRDY

10X w0z

1oV

103 105 t07 0.9 (0B 10D tOF (OH WJ_.t0L tON tCP tOR 07

0.1

102

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHIYECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

252 Type "A" DMA Cycles

The Type "A" DMA cycle supports 8-, 16- or 32-bit DMA devices. Transfers that do
not require data size translation execute one cycle every 6 BCLK periods. The system
board automatically performs data size translation for transfers to mismatched memory.
The total transfer time can be calculated with the following formula:

Total Transfer = (7+(N-1)*(6+T,,))*(1 BCLK period)

Where:
T,, = number wait states in each bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted zero-wait-state 32-bit transfer of 256 bytes (64
DWORD:s) completes in 46.2 us (554 MB/s) with an 8.33 MHz BCLK. A 16-bit
transfer (128 words) completes in 92.3 us (2.78 MB/s). This example assumes that no
preempts occur during the transfer.

Most ISA compatible DMA devices can transfer data 13 times faster by
rogramming the EISA controller to Type "A" transfers instead of ISA compatible timing
(the default). Type "A" transfers provide the performance improvement by reducing the
time required for the memory read or write operation and by reducing the duration of the
I/0O command strobe (IORC* or IOWC®*). No bardware modification is normally
rc%ujred. This cycle type works as described only with fast, EISA memory. With non-
EISA memory or if data size translation is required, the cycle reverts to memory timing
similar to that used with bus masters. The I/O portion of the cycle (data setup time for
writes, and I/O read access time for reads) is the same as ISA compatible cycles. The
MRDC* and MWTC* signals are not asserted unless the system must do a data size
translation for ISA memory.

Figures 26 through 29 show relevant signals for Type "A" DMA read and write
cycles between a DMA device and 32- or 16-bit memory.

103

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHAITECTUKE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

- DMA Transfer from Memory Without Conversion -

Figure 26

Type "A" Cycle: Demand Read

BCLK

SA<18:0>

llllllllllll .

|]

—

p— -

||||||||||||| .

! Yo

-1

SUUIUNE WD DN PO S
SPUSUUNE WO IR DEVEVE G

B

START*
CMD*
EX32*
EX16°
EXRDY

100 102 704 106 T0.8 104 10.C T0£ 106 104 10K 104 100 100 105 100 10w 10Y 1019 10.13

T0.1 703 105 Y07 109 108 0.0 TOF 104 104 0L TON 10P TOR 107 TOV 10X 0.2 1032

The first memory cycle 1s shown with an extra wail stale added by the memory slave.

Note:

104

EP 0 426 184 A2

- 32-bit DMA Transfer from 16-bit EISA Memory with
Conversion - Type "A " Cycle: Read

EXTENDED INDUSTRY STANDARD ARCHITECTURE
Figure 27

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

BCLK

o
b=
o
..... SR NN SRR (RIS IOIY! . | DEUHN RIS SUPHVIGH | RN | | S S QIR RUSHIPI S B
z
- E
3
..... [N oty DRNUI AR QUDES: | | UV NGNS DEVUR NN | | B NRNIION NI IO S AR
va -
iy 1J Fpws Y. . g
-
..... JUUOS) DUURVITNY NEVUN I VO B ISUVRUNG (UUNG UEIURN DICHUENVIN SRR N NSUOIUGE DUGUON SENRPI SR SPRIE-
]
o
- - - : 2
- =
(SRS SV SUSSRUPIEN J DN B WG Y SUNU DUS i [AU SR.on NN SSRGS S I 3
X
@
e e e et bl +---}——}----}-——mg-——-1~- [U P S —]eee— e
Z -
N 1 TR DU S JRUR N SN RS RV NSNS SUSNS PV PROUGTppI P R SRS FER 3
7 o
%
. ey
- mx-x SEUNURNUO VO [SO B NSNS NN VUL NI ORI WD NSRROS PO R S S, 3
7 — O PO S P
21 R - e
2 SO0 I JOUDUNS SN UV NN NI NN SEUR o e 3
- - --——-1-- 4 F ~-t b4
7 -
-1% JRPRPUN T - — | D NI [- - —— G
“\ -
-1 -1t -1 ---}--F--F~--- §--—— - -1 s
- et e I ot s B g
7 U DO I 2
- “ _——— II.IIIJIIIA -] e MR SENEPIE UGN PP JEENREPTORE L bt =]
7
2 | — —_— o 1
: 2
e --- I O IS AU WV JN I SO P ISUNUN B JUSU AU 5
&
.z)
Z poterd
- Mxrl ————m =] ke -}t l.ul.lll. [YUVDIP I R R aiatalel it J |l|vm
7 -
7
”\“\‘ |||||||||||||||||| |||n°
---1Z---f -----|--- IS B SO IO o (Y PRV R 3
Y DR SRR DR S W . e e A e e .
L e m :

SA<19:0>

DRQ<x>
AEN x
DAK* <x>
¥-R
START
CMD*
EX16*
M16*
EXRDY
jowcr
NRDC*
DATA
-C

y the 16-bit EISA memory slave

105

Note: The memory cycles are shown with wait stales edded b

on -

EP 0 426 184 A2

DMA Transfer to Memory Without Convers
e "A" Cycle: Demand Write

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 28

AEN x
SA<19:0>

ave

]

S

106

10.0 70.2 04 106 108 10A TOC T0L 06 Y01 T0K TOM 100 100 TOS QU 10w 10Y
T01 10.3 105 T0.7 0.9 10.8 10.0 10F 10K T0J TOL TOK TOP TQR TG ICv 10

The firsl memory cycle is shown with a wail stale sdded by the memory

Note:

EXRDY

CMD?*

EP 0 426 184 A2

Conversion - Type "A" Cycle: Write

EXTENDED INDUSTRY STANDARD ARCHITECTURE
Figure 29 - 32-bit DMA Transfer to 16-bit EISA Memory with

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

BCLX

........ - SR S, R \
—— e - —— - e o = —_——— - —- weam e b VA~ ~ \ ——f - ——— —_——tmrmna] - -
“ 7
‘M .
..... - S Y e R 1 e
|
U FU VU R e A e P ¢ | N PR DN SUNSERIRIN S _.-8
T \ <o
7 i
. S T I | £
7 \ -
Z
- :
SN IS SO S— e f e ——peaaa N B V| o= e B B ————
“ . g
A \ =
,,,,,,, e Ry - . o \ - S - ..w
A \ -
S SRRPUPUN N SR PSPPI N . N S — —— D RSN I ———-g
A
. - m. i \\ ,,,,,,, N . e -3
ey AL L U o 3
1 \\w i & A :
S o DU oo, TN oo PRI OO e Mo SRR . z
S R — - b - S N S {1 i (— S - N — 3
- -
R N S . S . , p
L, =
i el e B B e B B Bl S r RS PR o B P [S R SEPURUR, 3
o
-——— - . - ; e I B - " vm.
L] T N sl o PO B e ETRY SPU SN FUR ~——f———- e Rttt 3
o cein o 4 e T IR IRV WU S - T... . @
- \ S (TIPS Dot B ST [SO BSOS S EEEPUION FES NI PPN —_—te - 3
S % RS PUVNURUIN JUNINY B SN B DO BN (N P . 2
% -
intadll 7S bladal sleshabaniadeds Batades - - P e e e e ——— b Bntadeadends Sesbengh Sendenfdhadn F———p—-— e <
S i QN RSN N B U B DA SO . DUy SHiwe O (WORN S S, v 5
2 PO RS Y I P PR HUENEE yeylNNUNUNP GNENIUNY SN cuudPURNUR JUPN SUUS N b
£ - Jr | St 3
- §%) SUNSUNDRI S - L [N SRR TR JRVIUR R
% e
7% VRN UUUR J PO S SN DR DS WIS RIS QU PPN PR ——— JUIUIUE. SO -
- m\w - 1 ﬁ o b - 2
,,,,, 7 JUUUU S R e § - —am U SO
7 =
N | I L L L :
=z -t r-1r——yr—r—--1-—-"g~—{----=q--f--—4-——-—" TTTTe
i RN S B R PO -
-~} -----1--- A I SR TR KRN RNUY PG I PONGI st SN B — ---3

S TR NOUNpUY U ap I g . S (VRO DU ¢ . JON ¢ | DUNON DRV DRV DRI SRS
- m
NP SR U won N NECIVIUEN SUUNY ¢ QU N SR NN | | (Y DUOUURUIY IV SO I
- 21-—4{--~~-}—-}F-----|---- ————
PUPRD QUSUNNS [ERUNENUGINY [P “ RN, (U Y ST, St 1 EEEE RS B [T U
7

L o e e e e e e

SA<19:0>

W-R
START*
CND*
EX16°
M16*
EXRDY
IORC*
N¥TC
DATA
T-C

DRQ<x>
AEN x
DAK*<x>

Note' The first memory cycle is shown with a wail stale added by the memory slave.
107

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

253 Type "B" DMA Cycles

The Type "B" DMA cycle supports 8-, 16- or 32-bit DMA devices. Transfers that do
not require data size translation execute one cycle every 4 BCLK periods. The systern
board automatically performs data size translation for transfers to mismatched memory.
The total transfer time can be calculated with the following formula:

Total Transfer = (2+N*(4+T,,))*(1 BCLK period)

Where:
T, = number wait states in each bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted zero-wait-state 32-bit transfer of 256 bytes (64
DWORDsg completes in 31 us (8.26 MB/s) with an 833 MHz BCLK. A 16-bit
transfer (128 words) completes in 61.7 us (4.15 MB/s). This example assumes that no
preempts occur during the transfer. :

Some ISA compatible DMA devices can transfer data two times faster by
programming the EISA controller to Type "B" transfers instead of ISA compatible timing
(the defaunlt). Type "B" transfers provide the performance improvement by reducing the
time required for the memory read or write operation and by reducing the data setup time
for I/O writes, and read access time for I/O reads. ISA compatible DMA devices using
relatively fast technology can use Type "B" cycles without hardware modification. This
cycle type works as described only with fast, EISA memory. With non-EISA memory or if
data size translation is required, the cycle reverts to memory timing similar to that used
with bus masters. The C* and MWTC?* signals are not asserted unless the system
must do a data size translation for ISA memory.

Figures 30 through 33 show the relevant signals for a Type "B DMA write cycle
between a DMA device and 32-bit or 16-bit memory.

108

EP 0 426 184 A2
"B" Cycle: Demand Read

Type

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.
Figure 30 - DMA Transfer from Memory Without Conversion -

BCLK

JUNRNUE RIS IR P RSN S ——

RN
N

M
i
S

PO O ;.Il.\ QU PRI e e e — .

1

'

t

t

1

l

[

|

1

1

1

|

|

i

1
DI

i

1

..... S | . U ISV IO U BRI §

AN

'

’

1

'

'

t

t

|

t

E

i

t

i

1

t

; :

i i
A T
: R : .

Doy

100 167 10.4 10.6 108 T0A 10.C 0£ 106 100 10K Tom 100 10.0 105 T0.U 10w 10Y 1011 10,13

R SR | SR [NUUUIDE FOUGEDEVEY JOUOR

. . _
||||| l[‘r\ PORRE T S p— ST, R

- R o it o B RN R S
—
EREEl St EEC TR - FYSYRS [IpUE—, ——ee j S P —————— JEpS B T o e

[
L |
|
=%
[|
1l
[
o
[
[
ot
toe
[
[
[
7

[B
t)
Ill
to, !
bt
IR
H i
vt
R B
Lot
c il
N
D
8 B

bl
[
[
Pl
[
[
el
[
[B
[
too
[
I
[
[
| N
|
[
[
[
it
el
]
[
(I
[
1 g
L

i
1
1
1
1
i
!
i
!
t
1
T
|
1
]
1
[
|
.
1
1
1
{
1
[
1
i
1
t
1
1
1
1
|
A
|
{
1
|
'
$
1
H
|
H
1
1
|
1
.
1
1
|
1
1

1
1
-
\
{
[}
1
1
1
1}
1
t
!
[}
t
t
"
i

[
"
1
1
{
i
1
[}
]
1
)
[
1
|
1
’
1
]
1
|
:
|
1
[}
|
|
)
§
i
|
1
1
1
|
1
1
i
1
|
1
"

LI |
-
P
[|
I
|]
[
o
I
[
1t
P |
T
H
P
[
H
[|
L
AN
T 1
REE
] Nt p
i
'ii';
P
I
[N
Lot
[
S
[I
i
Vi
I
[
[|
i
!
ot
[
T
[
bt
dy
I
[
P
[

[P0 S A I O B Y O A R | R O SRR B B

SA<19:0>

DRQ<x>
AENx
DAK
LA<31:2>
¥-R
START"
CMD*
EX32°
EX16°
EXRDY
J0WC*
MRDC*
DATA
T-C

hown with a wait slale added by the memory siavz
109

101 103 Y05 0.7 T09 108 10D 0F I0H T0J TOL TON TOP IGF 10T T0v T0¥ 107 1012

The first memory cycle is s

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 31 - 32-bit DMA Transfer from 16-bit EISA Memory with
Conversion - Type "B" Cycle: Read

c——
Z

DAK*<x>

LA<31:2>

EE Y T | R

...
- TSI, R
-4 b=t

SA<19:0>
R

LLMMNDNN

MMM

_t

I

DTN

LR 3\

ETryryE T E

EX16*

EXRDY

lowc:

MRDC*

81 167 1K Tor T0u toN T30 10P

.
;
0.2 10.3 10,

100 101 1

Note: The memory cycles are shown wilh wail states added by the memory slave.

110

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SEKVICES, inNC.

rite

T

Figure 32 - DMA Transfer to Memory Without Conversion -
Type "B" Cycle: Demand

BCLK

R BN I :
. B i o
-

e N
5 & o

N 5 2

56 2 X X

< B 3 %

¥w-R

START*

CMD*

EX32*
EX16*

EXRDY

IORC*

MWTC*

DATA

T-C

-
{

o ; ’ 1 1
10w 10Y 7011 7013

T
I

Y00 100 T3S Tou

Y
181 10K oM
10.3 105 107 10.9 0.8 10.0 10F Tos 10J I0L TON 10P 10F 101 7OV 10X 107 10142

T
|

i

v
f

100 102 104 106 108 10A 10 10f 106

101

The first memory cycle is shown with a waitl state added by the memory slave

Note

111

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 33 - 32-bit DMA Transfer to 16-bit EISA Memory with
Conversion - Type "B" Cycle: Write

;) 7
it - 1B
% 7
S O O S
- Zy -1 - . \
P o
SN FUI IO A SOOI DU | | D P ¥
7 7
..... R O el e | e
el [l I ol e | SR EERE REE
R 7 SN P |
\ .
S I I SR DU | | B B _—
.
- - - \ R I - - A} -
w
................ —p - - ==
- W - \ — - ——— - . "
........ — . 2
....... i bl ekt 7 Bt Sl R |
JONUNID SN EDDUREDIN VIV [PEGUGH I NN BRSNS SIS IS FPU -,
- - TSP - - |,..A .
e e R R ilH -4 - ——-g—
R Sbd R $--1 F-- B e I e el ittt b —
- - - - prepe— PR - —— s xl‘
- \\ |||||||| {--4 -~ |-||llu|||.|ul..|..‘..lll...l
- \ NI, (VR Jup - _— [PUPUIPIIOIIN PN
- \ -1. - .- - \ O -, S
U 5 VRO CURNUNUNE IUUI N UNOUY N AN UUURVUUR RPN R -] --
4] i L
- S PR - A e = P})
S DS D= S I 7 -
|||||||||| w r(.x«::.llt.w . .
- H._.:u PUSDS EUSPIRIIID: IR U “ lllllllllll 71— le

AENX

DAKT<x>
LA<31:2>

CMD*

EX16"

M16*

EXRDY
I0RC*

|
1
'

Wy 10N 100 1GF

‘
t
104 10 1ot

1
1
] 1

1
[}
b
$
i
i
3
t
!
£
]
[}
]

€ 100 T0L T0F 10C oM 10!

- — — = L —— -

2 103 104 105 106 10.7 103 165 104 10.8 10

T
i
t
t
v
|
1
.
|
!
t
I
1

0.

1
- - g
g
oy <
=4
L

MWTC*
DATA
~-C

The first memory ecycle 1s shown wilh a wait stale added by the memory slave.

Note.

112

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURZ
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

254 Burst DMA (Type "C") Cycles

Burst DMA (Type "C") cycles have characteristics similar to Burst cycles. Burst
DMA cycles can perform a sequence of 8-, 16- or 32-bit transfers between EISA Burst
memory and the DMA device in 1 BCLK each.

The total time for a zero-wait-state transfer can be calculated with the following
formula:

Total transfer = (3+T,;+N)*(1 BCLK period) us

Where:
Ty = nurmber wait states in initial bus cycle
N = number of bus cycles for transfer

For example, an uninterrupted transfer of 256 bytes (64 dwords) completes in 8.1us
(31.6 MB/s) with an 8.33 MHz BCLK.

The DMA Device requests the bus by asserting its DRQ<x>. The system board
Eerforms the arbitration, and asserts the appropriate DAK* <x> on the rising edge of
CLK. On a later falling edge of BC the system board presents LA<31:2>,
BE*<3:0>, W-R and M-IO, with M-IO indicating memory (high). The system board
asserts MSBURST* to indicate its ability to support Burst cycles. The memory slave
decodes a valid address on LA <31:2> and asserts SLBURST*. When this is detected, the
system board asserts MSBURST™* to indicated its ability to support Burst cycles. On the
next rising edge of BCLK, the system board asserts START® and samples SLBURST*
asserted. If the system board samples SLBURST* negated the cycle reverts to memory
timing similar to the standard memory cycle generated by EISA bus masters.

If the system board samples SLBURST* asserted, the system board continues the
transfer using Burst cycles. On the next risiglghcdge of BCLK, the system board negates
START* and asserts CMD* and JOWC"*. e DMA device decodes IOWC* with its
DAK*<x> asserted and samples the data bus on the rising edge of BCLK.

While the Burst cycles continue, the system board presents the pipelined address
(on LA<31:2>, BE*<3:0>) and MSBURST? on each falling edge of BCLK. The system
board presents the address 1/2 BCLK before the beginning of the next Burst cycle
(pipelined). Burst cycles continue until the system board negates MSBURST*. The
memory slave samples MSBURST* on each rising edge of BCLK.

On each rising edge of BCLK, the DMA device samples the data. The memory
slave drives new data on rising edges of BCLK coincident with the DMA device sampling
the data. The system board samples DRQ<x> on rising edges of BCLK at the beginning
of each cycle (on the same BCLK edge that the DMA device is supposed to drive the data).
If the DMA device negates DRQ<x>, then, on the next falling edge of BCLK, the system
board tristates the address and negates MSBURST?*. On the next rising edge of BCLK the
system board negates CMD* and IOWC*. The DMA device stops sampling the data when
IOWC* is negated. The memory slave floats the D<31:0> after the trailing edge of
CMD* The system board negates DAK*<x> on or after the same BCLK rising edge
where CMD* is negated. :)

113

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A slave can add wait states during a Burst sequence by negating EXRDY before the
falling edge of BCLK (with CMD* asserted). The system board samples EXRDY on the
falling edge of BCLK and extends the cycle untit EXRDY is floated (asserted). The DMA
device is also sampling EXRDY and waiting to sample the data. The system board can still
change to the next address even though E Y is negated. Note that it is not possible to
decode a valid address in time to negate EXRDY. The slave must know in advance that
wait states are needed. An intelligent slave can use the wait states to interrupt the Burst
sequence while it accesses local shared memory.

Addresses asserted during Burst DMA cycles to DRAM memory must be within a
1024 byte DRAM memory page (address line LA<31:10> cannot change during the
transfer). To cross a D page boundary, the system board terminates the Burst DMA
sequence by negating the MSBURST™ signal on the last cycle in the page. The system
board then restarts the sequence on the new page.

The system board generates the memory addresses and assures the sequence is
within a D age. The system board supplies the transfer control and signal
translation. The D device must monitor its DAK* <x>, BCLK, EXRDY, and IORC*
or IdO)WC‘ signals to determine when to drive the data (on writes) or latch the data (on
reads).

The system board automatically reverts to normal cycles if the addressed memory
does not support Burst DMA cycles. It ISA memory devices are addressed, the system does
the appropriate signal and data size translations. .

Figure 34 shows the relevant signals for a Burst (Type "C") DMA read cycle
between a 32-bit DMA device and 32-bit memory. Figure 35 shows the relevant signals for
a 'Ic“(vge "C" read cycle between a 32-bit DMA device and 16-bit EISA memory. Figures 36
and 37 show the write cycle.

114

A=

0
a

EP 0 426 184 A2
Figure 34 - DMA Transfer from Memory Without Conversion -
Burst DMA Cycle: Demand Read

EXTENDED INDUSTRY STANDARD ARCHITECTUR

CONFIDENTIAL INFORMATION OF BCPR SERVICES, IN

BCLK

S R . S I S I et Y S

N RN N N O I O Y Y W S SO

N S U i

I'n

[UUUP NOUPROVEY PRSP —_—

T

DN

N

S D S |-
e =

D
™

N

N

N

i
i
I

23

s »

A A Q 8 5 m

$: £ ¢t o« & % OB & B ¢ &8 oz o &8 3
x . b3 : & & 2

€ & 2 s 4 BB & & 2 5 &8 = . g 3

4) 4th cycle wilh one wait stale
(DRO<x>)

" 5) 5lh cycle
6) Last cycle

Vertical marks indicate possible times to negate DRQ<x>.
115

160 101 162 163 104 105 106 107 168 109 164 108 1GC 100 164 10F 16C ToM

1) 32-bil DMA to 32-bil Memory, Ist Burst Cycle

2) 2nd cycle
3) 3rd cycle

Note:

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
Conversion - Burst DMA Cycle: Read

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.
Figure 35 - 32-bit DMA Transfer from 16-bit EISA Memory with

BCLK

AN

AR
IR

N

.
N

7

o

I

o

o

o

- - - -
d -

. . e
- [[R PR FUNTIREE [T NP SRR (N ST SECUR [P [P W e 2

"

e

1 t--—--b~eFremmfem e e “lll |||||||||| ——eed e - —— -=.2

=3

. Y sam o

. . P U R PRI VRTINS RRRR TP IR “a oo @] el 2

v

e

©

R s e
— [PV I (VI IR Y PR R PRI EEUUERE RSP RNy SN SR SR

<«

o

N
llllllllllllllllllll P e e .||,.lllllu\111 S NS ST RGN Syt S s SR U R —— ll..u,
hnhaindeit Rabuball Sellndeiaciaied 2 it indedh B bt ﬁllgul lllllll 1t-—-——- B AR R i ottt L N B e indhababaind Ilnm
N RSN DOPUY S SO 2

hanbatdy Indaiad Adlladadedubabaly RS hatas f—— "~~~ f "=~ -— J llllllllllll JI(IM llllllllllllllllll o et ll-m
il SR BRI R i bl e = e ————— A lllllll A llllllllllllllllllllllll o = Il.Qm
. b A .8

‘e B

IV DN SR S IS A N Y - SO WU SR N SN N A 1“ - W .2

|
A

r
A 5 & 8 , Ok
v Y 5 g 5 ¢ O 5 £
s &
¢ 25 ¢ % o= & &5 & 2 o £ B £ 9 B 7
Dﬂnumwmcmuummuo_.us

116

Note' The first memory cycle 1s shown with & weil state sdded by the memory slave

EP 0 426 184 A2

RVICES, INC,

o
<

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR S

Figure 36 - DMA Transfer to Memory Without Conversion -
Burst DMA Cycle: Demand Write

BCLK

DRQ<x>

AENx

DAK*<x>

LA<31:2>

LAY

3§H4

SA<19:0>

START*
CMD”

I0RC*

MWTC*

DATA

T-C

NSBURST*

abahabatady Rd

100 10.1 102 103 104 105 0.6 107 10.8 709 104 108 10C 100 1oL 105 106 10H
—bil Memory, Ist Type "C” Cycle 4) 4th cycle wilh one wail stale

\

NN

SLBURST*

6) Lasl cycle (DRX<x> Dropped)

5) 5th cycle -
Vertical marks indicale possible limes to negale DRQ<x>.

o

(o]

(o]

—

=

-~ Q)
O

o PN

5 2o

U]

znnm

(o eV i ap]

—~——

- N,

Note.

117

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Flgure 37 - 32-bit DMA Transfer to 16-bit EISA Memory with Conversion -
Burst DMA Cycle: Write

BCLK
1 ! i | I ' t !
(i i i ' ‘ : i
DRQ<x > ! ! ' ! f i t i
i 1] 1] t : 1
; : : i o ! :
AENX i : E i i I : : .
i i ' i i : H '
A I S
DAK*<x> | 1 t ' t] ! ¢ '
1l i H i t - ! 1 1
i] [}] ' i T 1 i
I 1 1 1
LA<31:2> e — - |
1 1 N] T - i : i i ‘
1 1 3 1 1 - 1 . 1]]
1 I - 1 1]]] 1
1 t 1
SA<19.0> K I o , .
] 3 : 1 i] B 1 H t ']
1 3 - 1 1 - | |] |
W-R A
1 : i H f H] H 1 ! i]
[R A | I B i 1
—
START* ‘v : ; I ; ; ; : 1 Il : :
‘ :
cup: LI | I | B R B
1 T 1 1 .] : t . 1 i 1 R] .
R L B N B
Ex32: oo b T T T) EETETTE T
20 T L
Eie: AR R S S N D U SO N A \\\ \\\\\\\
- { i i P i :
o 1 i t [i
M R RN A
1 W [i 1 T N i : 1 . k4 1]
]] N] N] 1 : 1 - i I] 1 | '
| | T [I i 1 1 i
EXRDY 1 1 iI 4 1] vAREEEEE i i 1 i i
! P i S | Y SignoiiRelebsed | : ' i i i
; L P! ! H ! ! : !
1 [} I N 3 [l] [[l t t] M
1ore : : ; : ! ! | | ! ! !
1 1] i t] I 1 1 1 1
! i) : {) ! | ' 1 I
MwTC* i i i oo) { ! i |
] t | i H 1 . 1 |] 1 ¥
i | ! 1 :] s - | { { !
' 1 i S
DATA H ' H v ' {
1 I | 1 . 1 i 1) 1 !
! ! 1 1 : 1 ! 1 t 1 t
1 i ! | : ! Tt t i 1 ‘
T-C ! H ! | ! | [1 ! : '
) | 1 I] i 1 !
! AN SN S S N B S
MSBURST* i N i i : j
: oo i i ; i
1 3 1 { 1] 1 |
SLBURST* Voo : : ! AR e
u ' 1 l 1

‘00 101 19.2 103 104 105 10.6 707 10.8 109 YOA 08 70C 0.0 10.£ TOFf 10.6 YOH

Note: The first memory cycle is shown with a wait state added by Lhe memory slave

118

EP 0 426 184 A2

EXTENUED INDUSTRY STANDARD ARCH: T1ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.6 Data Bus Translations

EISA systems dprovide a mechanism for EISA expansion boards to communicate

with ISA compatible devices. The EISA expansion board always communicates using EISA
cles, since the system board automatically translates EISA cycles for ISA compatible
slaves.

The EISA bus provides a set of EISA data transfer cycle types that are optimized for
speed. EISA cycle control signals facilitate the fast cycles. ISA devices use ISA control
signals and need oot recognize the EISA signals. Consequently, EISA cycles offer optimum
performance, while maintaining full compatibility with ISA devices.

The EISA cycles use many of the same signals as ISA data transfers. Portions of the
address and data bus, and some cycle control signals are common for all data sizes. The
new signals extend the address and data size to 32 bits and provide the fast cycle timing.

An EISA bus master can communicate with an ISA slave simply by generating the
EISA data and control signal, and letting the system board copy the data and translate the
control signals as necessary. Similarly, a 16-bit ISA bus master can communicate with an
EISA slave by generating the ISA data and control signals and letting the system board
copy the data and translate the control signals as necessary.

The following transactions are automatically translated:

» Transactions between 32-bit EISA bus masters and 16-bit EISA slaves

» Transactions between 16-bit EISA bus masters and 32-bit EISA slaves

. Transactions between 16- or 32-bit EISA bus masters and 8- or 16-bit ISA slaves
o Transactions between 16-bit ISA bus masters and 16- or 32-bit EISA slaves

o Transactions between 32-bit DMA devices and 16-bit EISA slaves

e Transactions between 16-bit DMA devices and 32-bit EISA slaves

. Transactions between 16- or 32-bit DMA devices and 8- or 16-bit ISA memory

] Transactions between 8- or 16-bit DMA devices and 16- or 32-bit EISA memory

2.6.1 32-bit EISA Bus Master to 16-bit EISA Slave Transactions

The system board automatically provides data size translations for data transfers
between 32-bit bus masters and 16-bit E%SA slaves. A 32-bit bus master executing Burst
cycles to a 16-bit EISA slave may achieve higher performance by performing its own data
size translation.

119

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The 16-bit EISA slave must develop SA<1> and the low and high byte enable
signals from BE® <3:0> if it cannot wait for the system to generate SA<1> and SBHE".
However, if the slave samples BE*<3> or BE®*<2> asserted at the same time as
BE*<1> and BE®*<0>, it uses BE*<1> and BE*<0>. This special case can occur
during accesses by a 32-bit bus master. The following table illustrates the correspondence
between BE* <3:0>, SA<1> and SBHE®*.

BE*<3>| BE*<2>]| BE*<1> | BE*<0>{ SA<1> SA<0> | SBHE*
1 1 1 0 0 0 1
1 1 0 1 0 1 0
1 0 1 1 1 0 1
0 1 1 1 1 1 t]
1 1 0 0 0 0 0
1 0 0 1 0 1 0
0 0 1 1 1 0 0
1 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 0

32-bit EISA Bus Master to 16-bit EISA Slave Read Cycles .

A 32-bit bus master is granted bus control, then presents LA<31:2>. The 16-bit
EISA slave decodes a valid address from LA<31:2> and asserts EX16*. The bus master
asserts START®, W-R, M-IO and BE*<3:0>. The system board samples EX32* and
EX16* on the rising edge of BCLK following the assertion of START?*, and asserts CMD™.
At the same time, the bus master negates START* and samples EX32* . When EX32* is
sampled negated, the bus master holds L.A<31:2> valid while it floats START* and
BE* <3:0> so the system board can perform the data size translation.

The system board negates CMD* after one BCLK period unless the slave negates
EXRDY to add wait states. The system latches D <15:0> on the trailing edge of CMD*.
It then asserts START?®, and presents BE* <3:0> (with the high word enabled). The
system board negates START™ and asserts CMD*. The slave latches the address on the
trailing edge of START™, and presents D<15:0>. The system board negates CMD* after
_ one BCLK period unless the slave negates EXRDY to add wait states. The system board

latches D<15:0> on the trailing edge of CMD*, copies D<15:0> to D<31:16> and
gs’;zz’RgsTEXIBZ‘. The system board then presents D<31:0> and floats BE*<3:0> and

The bus master regains bus control after sampling EX32* asserted on the rising
edge of BCLK, then presents a new address on LA<31:2> and BE* <3:0> on the falling
edge of BCLK. On the next rising edge of BCLK the bus master latches D<31:0> and
asserts START" for the next cycle.

120

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH:TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

32-bit EISA Bus Master to 16-bit EISA Slave Write Cycles

A 32-bit bus master is granted bus control, then presents LA<31:2>. The 16-bit
EISA slave decodes a valid address from LA<31:2> and asserts EX16*. The bus master
asserts START®*, W-R, M-IO, BE*<3:0>, and D<31:0>. The system board samples
EX32*, EX16* and D<31:0> on the rising edge of BCLK following the assertion of
START*® and asserts CMD*. At the same time the bus master negates START* and
samples EX32*. When EX32* is sampled negated, the bus master holds LA<31:2> valid
while it floats START*, BE*<3:0>, and D<31:0> so the system board can perform the
data size translation.

The system board drives D<31:0> and asserts CMD* after sampling EX32*
negated. The slave may sample D<15:0> while CMD* is asserted. The system board
negates CMD* after one B period unless the slave negates EXRDY to add wait states.
The system board presents BE* <3:0> (with the high word enabled) and asserts START®.
The system board copli_gs the latched data from D<31:16> to D<15:0>, negates START®*
and asserts CMD*. The system board negates CMD* after one BCLK period unless the
slave negates EXRDY to add wait states. The slave latches the address on the trailing
edge of START™ and samples D<15:0> on the trailing edge of CMD?*.

The system board returns control to the 32-bit bus master by floating BE* <3:0>,
START* and D<31:0>, then asserting EX32*. The bus master samples EX32* asserted
on the rising edge of BCLK and, on the next falling edge of BCLK, presents a new address.
The bus master may assert START* for the next cycle on the next rising edge of BCLK.

Figure 40 shows the timing for a 32-bit EISA bus master access to a 16-bit EISA
slave.

121

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTHRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 38 - 32-bit EISA Master to 16-bit EISA Slave Dword Access

! ! i ' i '
: [. 1 :
, 1
BE'<3:0> NN | ord P—Hthh Wors
t i] H
| : i x
! : i 1 . 1

i i

}?%H}——

w-R
| H i t :] i | ‘
| | : H t . I 1 : H
i Lo I Pt S A
BALE ; P C | El g E
T N 1 n 1 - 3 T 4 A
| | i i | { | : !
1 i) ‘ H i ! : ! : | : !
T i I : : - "I T
START* o El L E[i I
: F B 1 H 1
Pl A
LI SR P ! !
H i i ' K . [
CMD* P E] il - !
{ i ! ! : ! E ¢ : 1
I S S G A U]
i i : v T
EX32° P ! 5 { !
N i ! !
) T . E : } i
EX16* \\\\\\\ R i
A ‘
1 |] - 1]
! H HE] T
EXRDY ; | P :
1 1
i ; ; i i
i Q)
READ DATA ,
j
1
1
§

? ' 1 : ! ; 7 E
- —
WRITE DATA - W |

Note Thick lines indicate where control transfers from Masler o System
or from System lo Masler.

122

EP 0 426 184 A2

EXTENuL£D INDUSTRY STANDARD ARCH11 ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICLS, INC.

2.6.2 16-bit EISA Bus Master to 32-bit EISA Slave Transactions

The system board automatically prox./ides data size translations for data transfers
between 16-bit EISA bus masters and 32-bit EISA slaves. This section provides an
overview of the translation cycle. The following paragraph describes both read and write
cycles.

A 16-bit bus master is granted control of the bus and presents LA<31:2>. The
32-bit EISA slave decodes a valid address from LA <31:2> and asserts EX32*. The bus
master asserts START*, W-R, M-IO, and BE*<3:0>. The system board samples EX32*
on the rising edge of BCLX following the assertion of START?, and asserts CMD*. At the
same time, the bus master ncgatcs START* and samples EX16* and EX32*. The bus
master performs a normal 16-bit cycle whenever it samples either EX32* or EX16*
asserted. The system board copies the data from the low word D <15:0> to the high word
D <31:16> during writes to odd word addresses, and copies from high to low during reads
from odd word addresses. No additional BCLKSs are required for this data size translation.
The timing calculations for masters and slaves include the time to copy D<31:16> to
D<15:0>.

2.6.3 32-bit EISA Bus Master to 16-bit ISA Slave Transactions
This section provides an overview of the translation cycle.
The system board automatically performs the following signal translations so 32-bit
blus masters can use the 32-bit interface and timing when accessing ISA memory or /O
slaves:
. EISA command signals (START*, CMD*, M-IO, and W-R) are converted to
ISA command %ﬁ;ﬂs (SMRDC*, SMWTC*, MRDC*, MWTC*, IORC*,
IOWC*, and B).
. ISA signals NOWS* and CHRDY are converted to EISA signal EX32*.
. The timing is ISA compatible (3 BCLK standard for 16-bit).

+ Data copying between D<31:16> and D<15:0> (D<7:0> for 8-bit transfers)
is performed.

123

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHEITCCTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows the system board transiation of the bus master’s
BE* <3:0> lines to the 16-bit slaves SA<1:0> and SBHE" lines. p

BE*<3>| BE*<2>| BE*<1> | BE*<0> |SA<1> | SA<0> | SBHE*
1 1 1 0 0 0 1
1 1 0 1 0 1 0
1 0 1 1 1 0 1
0 1 1 1 1 1 0
1 1 0 0 0 0 0
1 0 0 1 0 1 0
0 0 1 1 1 0 0
1 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 0

32-bit EISA Bus Master to 16-bit ISA Slave Read Cycles

A 32-bit bus master is granted bus control, then presents LA <31:2>. The ISA slave
decodes a valid address from LA<23:17> and asserts"M16*. The bus master asserts
START* and presents W-R, M-IO and BE* <3:0>. The system board converts BE*<3:0>
into SA<0>, and SBHE® and generates BALE. The system board samples EX32* and
EX16* negated and M16* asserted on the rising edge ostyBCLK following the assertion of
START®, and asserts CMD* and MRDC*. At the same time, the bus master negates
START* and samples EX32*. When EX32* is negated, the bus master holds LA<31:2>
validlwh_ile it floats START* and BE* <3:0> so the system board can perform the data size
translation.

The system board negates MRDC* and CMD* and latches D< 15:0> on the trailing
edge of MRDC® and CMD*. It asserts START® and presents BE*<3:0>, SA<1>,
SA<0>, and SBHE* (with the high word enabled). The conversion from EISA to ISA
signals is performed again as the system board negates ST. ART* and asserts MRDC* and
CMD*. The system board latches D<15:0> on the trailing edge of MRDC* and CMD*,
copies D<15:0> to D<31:16>, and asserts EX32*. The system board presents D<31:0>
and floats BE* <3:0> and START™.

~ The bus master regains bus control after sampling EX32* asserted on the trailing
edge of MRDC* and CMD?*, then presents a new address on LA<31:2> and BE*<3:0>.
On the next rising edge of BCLK the bus master latches D <31:0> and asserts START®* for
th= next cycle.

124

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

32-bit EISA Bus Master to 16-bit ISA Stave Write Cycles

A 32-bit bus master is granted control of the bus and presents LA<31:2>. The
16-bit ISA slave decodes a valid address from LA <23:17> and asserts M16*. The bus
master asserts START®, W-R, M-10, BE*<3:0>, and D<31:0>. The system board
converts BE* <3:0> into SA<1>, SA<0>, and SBHE® and generates BALE. The system
board samples EX32* negated and M16* asserted on the rising edge of BCLK following
the assertion of START® and asserts CMD* and MWTC*. At the same time, the bus
master negates START* and samples EX32°. Since EX32* is negated, the bus master
bolds LA<31:2> valid while it floats START*®, BE*<3:0>, and D<31:0> so the system
board can perform the data size translation.

The system board latches D<31:0> on the trailing edge of START?, then
immediately drives D<31:0> and asserts CMD* and MWTC®. The system holds MWTC*®
and CMD* asserted for 2 BCLKs (unless modified by NOWS* or DY). The slave
latches D<15:0> while MWTC® is asserted. The System board asserts START®, and
presents BE* <3:0>, SA<1>, SA<0>, and SBHE* ?sith the high word enabled). The
system board copies the latched data from D<31:16> to D<15:0>, negates START® and
asserts CMD*® and MWTC*. The slave latches D<15:0> while MWTC* is asserted. The
scystem %c))lds MWTC* and CMD* asserted for 2 BCLKs (unless modified by NOWS* or

The system board returns control to the 32-bit bus master by floating BE* <3:0>,
START* and D<31:0>, then asserting EX32*. The bus master samples EX32* asserted
and, on the next falling edge of BCLK, presents a new address. The bus master may assert
START?* for the next cycle on the next rising edge of BCLK.

2.6.4 32-/16-bit EISA Bus Master to 8-bit ISA Slave Transactions

Transactions between 32- or 16-bit EISA bus masters and 8-bit ISA slaves use cycle
control similar to transactions between 32-bit bus masters and 16-bit ISA slaves (as
discussed above). The main difference is that M16* (or I016*) is not generated by the
8-bit slave and transfers are broken into 8-bit cycles instead of 16-bit cycles. The system
board provides ISA compatible 8-bit cycle timing for the slave (6 BCLK for 8-bit cycles).

125

2.6.5

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

16-bit 1SA Bus Master to EISA Siaves Transactions

The system board performs the following signal translations so EISA slaves can use
the EISA interface and timing when accessed by 16-bit ISA bus masters:

Address lines SA<1:0> are converted to BE*<3:0> lines

The ISA command signals (MRDC?, MWTC?*, IORC*, IOWC?*) are converted
to EISA command signals (START*, CMD?*, M-10, and W-R)

The EISA signal EXRDY is converted to the ISA signal CHRDY

Data copying between D<31:16> and D<15:0> is performed

M16* is asserted for EISA memory cycles
1016* is NOT asserted for EISA I/O accesses

Address lines LA®<31:24> are pulled-up by resistors to logical zero.
LA <16:2> are driven from SA<16:2>

A 16-bit ISA master is granted bus control, then presents LA<23:17> and
SA<19:0>. Since the ISA master does not drive LA <31:24>* this part of the address bus
is pulled up by resistors to logical zero. The system board'copies SA<16:2> to LA<16:2>
and converts SA <1:0> and SBHE*® to BE* <3:0> as illustrated in the following table.

SA<1> SA<0>} SBHE*{| BE*<3> BE*<2> BE*<1> BE*<0>
0 t] 0 1 1 0 0
0 0 1 1 1 1 0
0 1 0 1 1 0 1
0 1 1 reserved reserved reserved |reserved
1 0 0 0 0 1 1
1 0 1 1 0 1 1
1 1 0 0 1 1 1
1 1 1 reserved reserved reserved |reserved

The system board asserts M-IO and negates W-R to indicate a memory read cycle

until the ISA master indicates that a different cycle is required.

The system board does not participate further in transactions between ISA masters
and ISA memory slaves. However, all ISA master 1/O cycles are translated to EISA cycles
to provide proper operation with 8-bit EISA 1/O slaves.

The EISA slave decodes a valid address from LA<31:2> and asserts EX32* or -
EX16*, unless it is an 8-bit EISA 1/O slave. The system board asserts M16* if either
EX32% or EX16* is asserted. EISA I/O slaves that must respond to 16-bit cycles from ISA
bus masters must assert I016* directly.

126

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, iNC.

If the ISA master asserts IORC* or IOWC*, or if EX32* or EX16" is asserted when
the ISA master asserts MRDC® or MWTC?*, the system board will negate CHRDY and
perform the translation to an EISA cycle. M-1O and W-R are changed if necessary to
indicate the appropriate cycle. START* is asserted on the next risin%)cd§e of BCLK and
data are copied between D<15:0> and D<31:16> (or D<15:8> and D <7:0> for 8-bit 1O
slaves) if required by BE* <3:0>. CMD?* is then asserted on the next rising edge of BCLK.
The EISA slave latches write data and drives read data just as it would for any other EISA

cycle.

For all EISA slaves, except 8-bit EISA 1/O slaves, EXRDY is then sampled ox the
next falling edge of BCLK. For 8-bit EISA 1/O slaves; EXRDY is not sampled until the
fifth falling BCLK after CMD?® is asserted. When EXRDY is sampled asserted, the system
board asserts CHRDY immediately. The ISA master samples CHDRY asserted, laiches
read data after the appropriate delay, and negates the ISA command (MRDC*, MWTC®,
IORC* or IOWC*). The system board then negates CMD* on the next rising edge of
BCLK for write cycles, and when the ISA command (MRDC* or IORC*) is negated for
read cycles.

Figures 39 and 40 show 16-bit ISA bus master accesses to an EISA memory slave.
Figures 41 and 42 show 16-bit ISA bus master access to a 16- or 32-bit EISA 1/C slave.

127

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 39 - 16-bit ISA Master Read from EISA Slave

BCLK

DRQ<x>

AENX

DAK <x>

MASTER16*

LA<Z23:17>

SA<19:0> SBHE*

BALE

MRDC*

CHRDY

LA<16:2>

BE*<3:0>

START®

CMD-

EXRDY

D<31:0>

.

|

|

. . |
i : 1 . | 1 1 i ' { 1 . 1 ! '
{ . | ’ 1 1] P 1 ' 1 . 1 1 1
t - —- - & - 1 1 '
1] -]) ! !] l i | 1
1 .] t 3 i 1 B Y : :
i : t t ' 1 i A 1 T
| H 1 i t (.] 1 . \ . | | 1
() i H t 1 ') 1 ' ! ' 1 t
1 . i . 1 1 . t ! ' { ! ' 1
' - H : ! 1 :) t H l ' | 1
. H 4 J . .
i - ! i] I B 1 t : ¢ | 1 1
1 . i . ! 1 - 1 i . I] 1 1
- . 1] . ' i . ! 1 i t
1 .]) (i .] { ' 1 1 § i
H N] ! 1 ' | : t 1 ' 1
i B \ T T T T A T T T v :
' - § : ! 1 i t 1 t i | f b :
| - i . | | ;] | i | | i I
- "_—_‘F““’"Ig N 1 | i 4 1 i 1 t ¢ ! f—
!] 13] t H 1 | !] I 4 i i
1 : L I I n L —t i hd . " N
1 t i '] i i 1 § ' ' .
! f ' [{ 1 ! i t !
t ! Jd ' .

W

\m\\\\\\

SEECUNISI G SN IS S

i
]
1
1
1
|
Mo
K
!
H
[}
H
4
1

}
i
I
|
|
i
l
|
|
t
t
!
]
|

TRALN SLATED El

R et SEEEY TR B

-

S-S IR TSI S |

A is1

NAfLs

pEpRphyfuU PR P SIS R

\\\\\

M\\

\\\\'

[}
{ ! i
4 ! H ,
] | 1 1
t {] [} l !
) i i 1 I i
1 I } 1 ' t
i 1 1 1] i
1 H] 1] H
1 1 [} i] t
| i) 1 ! ¢
[} [] 1] $
I 1 I] I
l t §
{ i
i !
L !
I i
1 1
t]
I 1
(] 1}
.
t
{
4

———f— ——— ———-—»—-—-J)m--—i e Y e e B]

JEEDUPUNE S NI R [, P (ST P

l + i .

f I { ' | | !
: 1 : 1 :

§ i t ¢ : I I 1 |
| 1 !] < ! ' | 1
t 1 i] : H 1 1 1
]] I 1 H t : i 1 1 1
I | i \ ' t : : | 1 1
1 1 1] 1 i ;])]
] 1] .] 1 N : I 1 1
' 1] o 1 1 " 7) 1 !
i ! | : 1 1 : | 1 I
1 L ! : L -5 1 1 :
1 T T 1 ? " i

] 1 l I | t 1])
1] 1) t '

1) 1 | | ! t ! !
1 1 1

' \\'\"\\'W\\\\ \\\\\H

128

HITECTURE

-

-~

EXTENDED INDUSTRY STANDARD AR<

EP 0 426 184 A2
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 40 - 16-bit ISA Master Write to EISA Slave

BCLX

A N
g s . o m:
....................... [—

.
AN D (N S “
....................... N

D<31:0>

fa
x
. .0
~ © %k A A
% 7 85 38 . e @
v N = st < . =
g £z % B ¥ g 2 oy 9 e B2 o E z B
@ ﬁ MA m &) ! | > -~ X
3 & 3 35 & I &8 = = B8 3 h & B

129

DO

o

DN

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI:TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 41 - 16-bit ISA Master 1/0 Read from 16- or 32-bit EISA 1/0 Slave

R e T e e

BCLK |
) : 1 | ! 1 \ 1) 1 | 1 i) :
! ! F U S 4 d 'I: ' b
DRQ<x> o i i i i I Y i :
P : i : i P : L
1 : ' | i ' 1 | H | 1 ' :
AEN <x> : | i l ; | P : .
t : 1 1 1 [} 1 1 . 1) i
LA AT A A
DAK® <x> T : l i i i i ' l
: i . ; 1 : . ; - 1l : i (| .
R | | Poaob o 2 b
MASTER16* Cor ;l ! ! R ! t r
[T R R |] i — :
LI N : R R R ! !
LA<23:17> Vi
SA<19:0>,SBHE* = - - . —
.] I I] oo T
BALE . ! | ; : | Lo 1
' I 1 1 i i i P | ’ .
e T = '
JoRC® ! E ! | - ‘ L] !
[} | 1 [} N] 1 N 1 v] i
13 1 1 ! - ~: : ; { '] 1
; : :] I |
CH‘RDY T [} 11 i T T t : [}
i i ' s ! ' t H 1 ' 1 . i H
A N R S A L R T O O :
|| | TRANSLATED EISA'SIGNALS! | | |
s i H H 1 t t H | H H
) i [! ! { H] i { i t i § H)

1A<16:2>

P L
o ! .

. e

130

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 42 - 16-bit ISA Master 1/O Write to 16- or 32-bit EISA 1/0 Slave

BCLK

DRQ<x>
AENX

DAK*<x>
MASTER16"

———f e

llllllllllllllllllllllllll

SA<19:0>.SBHE*

LA<23:17>
JjowCr

BALE

CHRDY

LA<16:2>

3

i

s 1Y
A

BE*<3:0>
M-10

N

N

DU

N
(=]
)
v
a

¥-R
EX16°
EX32
1016°
START*
CMD*
EXRDY

131

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

%

2.6.6 32-bit DMA Device to 16-bit EISA Memory Transactions

The system board automatically performs data size translation between the 32-bit
DMA device and 16-bit EISA memory.

Memory Read (I/O Write)

The following parag'a hs describe a single DMA read transfer between a 32-bit
EISA DMA device and 16-bit EISA memory.

The EISA DMA device requests a DMA transfer by asserting DRQ<x>. The
system board samples DRQ<x> asserted on the rising edge of BCLK and requests control
of the bus. The arbitration controller arbiirates the request and grants control of the bus to
the DMA controller. The system board then asserts DAK® <x>.

The system board presents LA<31:2> when DAK*<x> is asserted. The 16-bit
EISA memory decodes the address and asserts EX16*. The system board asserts START™,
W-R, M-IO, and BE*<3:0>. The system board samples EX32* and EX16° on the rising
edge of BCLK following the assertion of START®, and asserts CMD*. IOWC* is also
asserted and held until the word assembly completes.

If the DMA was programmed as a Burst, the MSBURST®* signal remains negated.

On the next rising edge of BCLX the system board latches D <15:0> and the system
board negates CMD?*, asserts START® and presents BE*<3:0> (with the high word
enabled). The %tcm board then, on the next BCLK rising edge, negates START* and
asserts CMD*. The 16-bit EISA memory decodes the address and presents D<15:0>. On
the next rising edge of BCLK the system board latches D<15:0>, negates CMD* and
copies the data from D<15:0> to D<31:16>. The system board presents the assembled
32-bit data on D<31:0> and negates IOWC*®. The 32-bit EISA DMA device latches the
data on the trailing edge of IOWC*.

The 16-bit EISA memory may request wait states by asserting EXRDY, as in
Standard cycles.

In the case of a single transfer DMA cycle, the system board negates DAK* <x>
and releases the bus. If Block or Demand mode DMA is programmed, the DMA transfer
repeats the above block until preempted or completion.

Memory Write (I/0 Read)

The following paragraphs describe a single DMA write transfer between a 32-bit
EISA DMA device and 16-bit EISA memory.

The EISA DMA device requests a DMA transfer by asserting DRQ<x>. The
system board samples DRQ<x> asserted on the rising edge of BCLK and requests control
of the bus. The system board arbitrates the request and grants control of the bus to the
DMA controller. The system board then asserts DAK* <x>,

132

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH1:ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The system board presents LA<31:2> when DAK® <x> is asserted. The 16-bit
EISA memory decodes the address and asserts EX16°. The system board also asserts
IORC*, and the EISA DMA device, sampling both IORC* and DAK*<x> asserted,
resents its data on D<31:0> The system board asserts START®, W-R, M-10, and
E*<3:0>. The system board samples EX32*, EX16*, and M16* on the rising edge of
BCLK following the assertion of START®, and asserts CMD*. When EX32* is sampled
negated and EX16* asserted the system board latches the 32-bit data and negates IORC*.
The EISA DMA device ceases driving the data bus when IORC® is negated, allowing the
system board to continue driving D<15:0>.

If the DMA was programmed as a Burst, the MSBURST® signal remains negated.

The 16-bit EISA memory can latch the data while CMD?* is asserted. On the next
BCLX rising edge, the system board negates CMD?, asserts START?®, and copies the upper
16 bits of the data to D<15:0>. On the next BCLK rising edge, the system board negates
START® and the system board asserts CMD®. The ISA memory latches the data while
CMD* is active. One BCLK later, the system board negates CMD*, ending the transfer.

The DMA controller continues executing cycles until preemg)tion or reaching
terminal count (for Block or Demand DMA modes). The DMA controller suspends DMA
processes executed in single transfer mode after each cycle by negating DAK* <x> and
releasing the bus.

2.6.7 16-bit DMA Device to 32-bit EISA Memory Transactions

The system board automatically performs data copying between D<31:16> and
D<15:0> so a 16-bit DMA device can communicate with a 32-bit EISA memory slave.
The following paragraphs describes both DMA read and write transfers from 16-bit DMA
devices to 32-bit EISA memory:

A 16-bit DMA device requests a transfer by asserting DRQ<x>. The system board
samples DRQ<x> asserted on the rising edge of BCLK and requests control of the bus.
The system board arbitrates the request and grants control of the bus to the DMA
controller. The system board then asserts DAK*® <x>.

The DMA controller performs a 16-bit DMA read or write according to the
programmed timing. Accesses t0 the 32-bit EISA memory do not affect the DMA transfer
timing since only data copying is required. The data is copied from the D<31:16> 10
D<150> on reads and D<15:0> to D<31:16> on writes. Therefore, a normal 16-bit
DMA transfer is performed, and a normal 16-bit memory access t0 the EISA memory
occurs, without any special cycles or timing needed. No additional BCLKs are required;
the timing calculations for the DMA device include copy time.

2.6.8 8-bit DMA Device to 16- or 32-bit EISA Memory Transactions

The system board automatically performs data copying so an 8-bit DMA device can
communicate with a 16- or 32-bit EISA memory slave.

The system board performs the translation in a manner similar to the translation

between 16-bit DMA devices and 32-bit EISA memory discussed previously, except that the
system board copies data to the appropriate byte lane for the 16- or'32-bit memory.

133

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.6.9 16- or 32-bit DMA Device to 8- or 16-bit ISA Memory Transactions

The system board automatically performs data size translation so a 16- or 32-bit
DMA device can communicate with an 8- or 16-bit ISA memory slave.

The system board performs the translation in a manner similar to the 32-bit DMA
translation to 16-bit EISA memory discussed previously, with the following differences:

. A 16-bit ISA memory asserts M16* instead of EX16 (8-bit memary does not
assert anything).

. The ISA memory uses CHRDY and NOWS® to control cycle timing instead of
EXRDY.

] The signals MRDC* or MWTC* (as appropriate) are asserted.

. Thels ti)ming is ISA compatible (3 BCLK standard for 16-bit, 6 BCLK for 8-bit
cycles).

134

EP 0 426 184 A2

EXTENL <D INDUSTRY STANDARD ARCH., £CTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

27 Locked Cycles

The main CPU or a bus master can assert LOCK® to guarantee exclusive memory
access during the time LOCK® is asserted. A bus master can also assert LOCK* to
guarantee exclusive I/O access during the time LOCK?® is asserted. Assertion of LOCK*®
allows bit test-and-set operations (as used for semaphores) 10 be executed as a unit, with
the bus lock preventing multiple devices from simultaneously modifying the semaphore bit.

The main CPU asserts LOCK* during the execution of certain instructions that
follow a LOCK instruction prefix and while executing an XCHG instruction.

A bus master can perform locked bus cycles by asserting LOCK* in the first cycle of
a locked access before the end of CMD*. LOCK* is negated on or after the BCLK edge at
the trailing edge of CMD* on the last cycle of the locked access. The bus master must
negate LOCK® before releasing the bus. The LOCK?* signal should be floated with the
other control signals (START*, MSBURST®, etc.) at the end of the bus access.

The bus master must not initiate a sequence of locked cycles after the system board
negates MAKx* for a bus preemption. A locked sequence started with MAKx"® asserted
has at least 64 BCLK periods to complete. A locked sequence started after the system
board negates MAKXx* causes a bus timeout if it starts too Jate to complete before the 64
BCLK timeout. .

The bus master must not initiate a sequence of locked cycles that cannot complete
before the 64 BCLK bus preemption timeout. For example, the bus master should avoid
executing any locked sequence to a dword located in slow 8-bit memory. An 8-bit memory
with 2.5 jis Cycle time (maximum wait states) requires 10 4s to do a 32-bit read operation.
A locked read-modify-write that starts just before the system board negates MAKXx* causes
a bus timeout to occur on the BCLK after the read portion of the locked sequence.

A bus master can access shared memory and I/O on successive controllers, leaving
them all locked until the bus master negates LOCK*.

An intelli§ent controller with shared local memory or I/O must monitor LOCK? at
the rising edge of BCLX. If a valid address within its local memory or I/O address range is
decoded with LOCK?* and CMD* asserted, the controller must inhibit shared memory or
1/O access until it samples LOCK® negated. LOCK® is asserted (if at all) during the first
BCLK of CMD*. LOCK®* remains asserted at least until the end of CMD* of the last cycle
to be locked. The slave, once addressed with LOCK* asserted, must wait untit LOCK* is
sampled negated before allowing shared access by the local device, even if intervening
cycles to other addresses or idle cycles are noted.

If a slave supr orts Burst, then it must lock together those cycles that have LOCK*
asserted at the end of each subcycle (sampling at rising edge of BCLK).

135

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARL- ARCH:TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 43 - LOCK Timing Example

i
1

e LT LI LI LT LT LT

START*
CMD?
v : . . o oP .
LOCK™ (Note 1) ! : . :
; —W 7
LOCK® (Note 1] L ep 4+ | e o | o .

Cycle 1 and 2 are locked together, cycle 3 is not expected to be locked by the
master.

Note 1: LOCK* timing may be either way (or a combination of the two), the slave

must lock cycle 1 and 2 together, ?cle 3 is not expected to be locked with the others by the
master, but may be at the option of the slave.

136

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHITECTURLE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.8 EISA Devices

2.8.1 Memory Slaves

A memory slave monitors LA<31:2>, and, after decoding a valid memory address,
asserts EX32* (32-bit slaves) or EX16* (16-bit slaves) to indicate its data size. The slave
can begin processing the cycle when START” is asserted. The slave can lengthen the cycle
by negating EXRDY during START*. The slave can hold EXRDY negated for a
maximum c,gcclc time of 2.5 us, and must float EXRDY synchronously with the falling edge
of BCLK. Setup and hold time to BCLK specifications must be met on EXRDY assertion
for groper tem operation. On memory reads, a slave drives only the data bytes indicated
by BE*<3:0>. Onp memory writes, the slave samples only the data bytes indicated by
BE®*<3:0>. (See table of allowable BE*<3:0> combinations under E*<3:0> signal
description.)

A memory slave that requires refresh must monitor REFRESH*. If the slave
samples RE H* asserted on the leading edge of START®, then it should use
LA<15:2> to generate the refresh address <31:16> should be ignored). The bits
driven on LA<15:2> contain a scrambled refresh address. LA<15:10> contain the high
order refresh bits, LA<7:0> contain the low order refresh bits, LA<9> is refresh<1>,
and LA<8> is refresh<0>. The refresh cycle is two BCLKs long (from leading edge of
START®* to the trailing edge of CMD*) unless the slave extends the cycle by negating
EXRDY. For best system performance, a slave should not extend the refresh cycles.

Memory slaves that support Burst cycles must also support standard memory cycles
as described ve. Burst memory slaves must also be able to transfer 32 bits of data (or
16 bits for a 16-bit memory slave) each BCLK after the initial cycle. The actual amount of
data transferred in a given cycle depends on the state of the BE* <3:0> lines. During the
Burst sequence, the address changes on each falling edge of BCLK and the data should be
driven or latched on each rising edge of BCLK.

During a Burst read, the memory slave must not begin to enable the data onto the
bus until the specified time after the rising edge of BCLK. Only those bytes of data
specified by the BE*<3:0> lines should be driven and the data buffers that are not
enabled for the next cycle must be floated within the specified float time. These
requirements allow the system to copy the data for 16-bit masters without bus conflict.

The Burst sequence provided to a Burst slave never crosses a 1024 byte address
boundary (LA <31:10> does not change during a Burst). A master or system terminates a
Burst sequence and restarts it with a new initial cycle 1f the Burst transfer does cross the
1024 byte boundary. Note that the address provided by the master is not required to be
sequential, only within the 1024 byte address boundary. Also, fewer than 32 bits of data
may be transferred, with the BE* <3:0> lines indicating the proper amount. The Burst
sequence is defined such that it must be all reads or all writes. e W-R line does not
change during a Burst. (See Figure 46.)

The Burst slave generates SLBURST* to indicate that it can accept a Burst, and
samples MSBURST®* to determine if Burst cycles will be used by the master or system.
SLBURST® is decoded from the address and M-IO signals (the same deccde logic as
EX32* can be used but the signal must be driven by a separate open collector type driver).
MSBURST* is sampled on the rising edge of BCLK at the end of each subcycle 10
determine if another subcycle is to be run.

137

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A memory slave can negate EXRDY to lengthen Burst subcycles (add wait states) in
one BCLK increments. The memory slave controls the number of wait states by asserting
(and floating) EXRDY from falling edges of BCLK (to meet the setup and hold
requirements). When wait states are added to the last subcycle of a Burst, the bus master
holds MSBURST?* asserted until it samples EXRDY asserted. Figure 44 and 45 show the
relevant signals for an EISA memory slave with wait states added.

Memory slaves can use COMPRESSED Cycles to improve data transfer rates. The
slave asserts NOWS® after sampling START* asserted. The system board samples
NOWS?* on the trailing edge of START*® and compresses the length of CMD* to 1/2
BCLK. Bus masters cannot execute COMPRESSED cycles. The slave must be able to
accept normal CMD* timing, even if it asserts NOWS*. (See Figure 47 for an illustration
of the signals relevant to thils operation.) A slave must not assert EXRDY and NOWS*
during the same cycle. The bus timing parameter tables provide minimum timing
specifications for address setup, START* and CMD*. The maximum time limits depend
on the device generating the cycle. A memory slave must be able to accept whatever
timing is generated.

A memory slave must latch the address (including M-I0 and W-R) if it requires a
valid address after assertion of CMD*. The address may be latched with the trailing edge
of START® or the leading edge of CMD*. A slave that supports compressed cycles can use
the rising edge of BCLK after assertion of START™.

EISA is a 32-bit standard, with a bus and connector that provide a 32-bit data and
address bus. Sixteen-bit EISA expansion boards must support the 32-bit address bus and
connectors. Sixteen-bit EISA memory slaves must decode the entire 32-bit address to
maintain compatibility with all EISA systems. An EISA bus master can perform transfers
to any 32-bit memory address, even in systems with a 16-bit main CPU.

EISA memory slaves can have multiple noncontiguous memory segments at
addresses above 16 MB. Memory mapped at ad%resses between 0 KB and % must be
contiguous starting at zero. Memory mapped at addresses between 1 MB and 16 MB must
be contiguous starting at 1 MB.

Memory mapped 1/O slaves that decode the full 32-bit address should be mapped at
an address above 2 GB.

138

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 44 - Memory Slave with Wait States

BCIX

t I i
| I - t i
1 N] B] 1
LA<31:25, M=10 | R ~ |
: : ! . ! . 4 R ! . H : ! !
i : i : t : i : i : i K i i i l

BE*<3:0>

e I D A L
1 : ' H : i 1 1 : : 1 1 ! 1 ‘
START™ R I i I B
[- | [! I [
) H 1 i 1 H I i H 1 ! 1 1 1 . 1 -
H H I } I 1 . | I] B L .
e N A |] A L ¥ D
IEEEER NN

y !) 1L
R

oy EERECAREEEE2REEEEE
A I ! b
READ DATA D
YRITE DATA ’ . I S5

Note: ltalicized signals indicale output of slave.

1) CMD* extended by mester or system

139

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTUR®
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 45 - BURST EISA Memory Slave with Wait States

BCLK -
] R t H] . i . t : 1 t | ' '
I A A T

a1 2> T H 2 H S H - H T haaeewe

N R R A A A
: : 1 H 1 ' ' f i t ! | - 1 : '
— : by : e e e .
BE*<3:0> ! Z 3 H 4 J"{ > I\\\\\\\Ki\t\\\\\\\&\\\\\@‘}\\i\\\m
f € : 1 . ' : 1 s 1] : ' 1
| !

. 1 H i
t H H i
Y-R S\ S

T A e e e

R S O S T S L A I S B S

AU T R S SN TS S AN AN AU SN N N A

N

: M

START* o= S A A | A T
S T S T T

I A e L L e e |
lflilz:::.::::zl-

] Pt b2 130 e ST

cuD* SN T S 1 0 U I B S R S | I
o NSNS (5T T GO T T O O
R T s >SN e s B 2 B B Y SR

£y St N A AR YA
T R R T R R T I R

N SR N S S R PP S S

toy 1 | S e T ¥ I S S |

MSBURST* Lol
to 1 [|

[| [|

i

soursr

]]
i i
] 1
” V T
: 1 i
; i i I
« READ DATA I
, BEET
: WRITE DATA R ;
\] : 1 : L
! : | . i i 1 . ‘ B ' . i : ' :
1) EISA Standard Access {Start of Bursl)‘ 4) EISA Standard Access
2) EISA Bursl Access 5) EISA Burst Access with One ¥Wait Siate

3) EISA Burst Access

Note: Itaheized signals indicate outpul of slave.

140

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCKITECTUKE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 46 - EISA Memory Slave (Burst Cycle)
Page Boundary Condition

e S N N [U I B O O

1 1 3 13 1 1 1] i [}
[} .] . 1 H . 1 1 1 i t it
1 1 R i 1 1 1 1 b i 1
LA<31.2> 1 —” 2 3 P 3 ; 3
M_]O | R [l .) H 1 H] *]Hl H H .j
I I I R I A
’\\\\\\\Q.‘(\'\ ¥ |
BE*<3.0> e ' H2H S H3Hs H 71|
e R T T A S T S R R
[N S A O T A L I I P T i .
N
. _]
' A b
I : | - 1 . 1 .] H] i t - 1 :] | :
p——h : + e BN e ey s s :
sTarr- = I | |
S - A - i
1 H] H 1 : '2: H 3: H 1 ;4{ 5: 6:
N B R i i i H i ' .
o e BRI BRI
1 B 1 N : J .o oy i L ; 1 1
JE S T U A I L N 0 T R
oz s RE i
R R
R IR AR R DU S O TS U O T i P
AN O T 9 : I S N G .
B0y
A A T T A T T T
! :] t : 1 | : 1 i 1 i] : 1 -
T A T M
MSBURST* 5 A A 1 U A
{ : o HE H 1 H : : ! HEEEREE HE
SN T A U S
3 A i v i
SLEURST* N\ : P!
B
1 : 1 : 1 1]] 1 : 1]]
< H i R H H HE ;)
; t i ‘ 1 : 1] ;
* READ DATA ! oL N r :
\ N 1 = i | : . - | : .
1 R 1 i il - 1 1 i H 1 B A R .
- 1 - 1 £ o
. WRITE DATA "—;__E_{I ! Z‘H S ¢ M S5 H EIJ—;I
. : R R T TR M S S L
T e I e e
1) EISA Standard Access (Starl of Burst) 4) EISA Slandard Access (start of new page}
2) EISA Bursl Access 5.6.7) EISA Burst Access

3) EISA Burst Access {last burst of page)

Note ltalicized signals indicate outpul of slave device.

141

EXTENDED INDUSTRY STANDARD AF.CHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

BCLK

LA<31.2>, M~10

BE*<3:0>

START?

CMD*

L£X32
£X16°

NOKS”

READ DATA

WRITE DATA

EP 0 426 184 A2

Figure 47 - EISA Memory Slave (Standard Cycle)
NOWS* Asserted

 —

&_\\\;\\\\\\“ —

Ji H J—§§\\\\\\\\i

Standsrd cycies mey follow assertion of NOWS*

Nole: Itslicized signals indicate oulpul of slave device

142

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES. INC.

282 1/0 Slaves

An 1/O slave asserts EX32* (or EX16* for a 16-bit 1/O slave) when and as long as a
\éalid 1/O address is decoded on LA<15:2> with M-JO and AENx low. EX32" should not
e latched.

The svstem board does not automatically assert 1016* when a 16-bit ISA bus master
accesses an EISA 1/O slave. EISA slaves that support 16-bit ISA bus masters must assert
1016* as well as EX32* (or EX16*) when addressed. 1016* is asserted on decoding a valid
address on the LA<15:2> address bus. 1/O slaves that do not support 16-bit ISA bus
masters need not assert 1016*.

The slave can begin processing the cycle when START* is asserted. The slave may
lengthen the %clc by negating EXRDY during the tme that START® is asserted.
Assertion of E Y must meet the setup and hold time specification to BCLX for proper
ls-ystem operation. Therefore, the falling edge of BCLK should be used to float E Y.

or read cycles the slave drives only the data bytes indicated bg BE*® <3:0> when IORC* is
asserted. For write cycles, only the data bytes indicated by BE* <3:0> are written when
IOWC* is asserted. (See table of allowable BE*<3:0> combinations under BE*<3:0>
signal description.)

1/O slaves can use COMPRESSED Cycles to improve data transfer rates. The slave
asserts NOWS® after sampling START* asserted. The system board samples NOWS* on
the trailing edge of START* and compresses the lcnggxs of CMD* to 1/2 BCLK. Bus
masters cannot execute COMPRESSED cycles. The slave must be able to accept normal
CMD* timing, even if it asserts NOWS®. A slave must not assert EXRDY and NOWS*
during the same cycle. The bus timing parameter tables provide minimum timing
specifications for address setup, START* and CMD*. The maximum time limits depend
on the dedvice generating the cycle. An I/O slave must be able to accept whatever timing is
generated.

A slave canextend cycle timing by negating then asserting EXRDY on BCLK edges.
The system board and EISA bus masters maintain the relationship of BCLK to the trailing
edge of START* and the leading edge of CMD*. BCLK toggles during all cycles, but its
period may be extended on some cycles. The BCLXK high or low time always meets the
minimum specified in the bus timing parameter table.

An 1/O slave must latch the address (including M-1I0, W-R, and AENx) if it
requires a valid address after assertion of CMD*. The address can be latched with the
trailing edge of START® or the leading edge of CMD*. A slave that supports
COMPRESSED cycles must use the rising edge of BCLK after assertion of START™.

An EISA device (such as a bus master) can be designed to respond as an 8-bit I/0
slave as well as a 16- or 32-bit I/O slave. In this case, the slave need not drive EX32%,
EX16*, or 1016*. The slave uses LA<15:2>, AENx, M-IO, and BE*<3:0> for
addressing. It uses START®, CMD*, NOWS*, and EXRDY for timing control. It uses
D<7-0> to transfer the data. The default timing for these cycles is 1 BCLK for START?,
and 5 BCLKs for CMD*. Wait states can be added by negating EXRDY, and the default
timing can be shortened by asserting NOWS* (in the same fashion as for ISA 8-bit slaves).

143

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The 8-bit slave should not assert NOWS* during START® or the first clock of
CMD*. NOWS* can be asserted during the 2nd, 3rd, or 4th BCLK when CMD* is asserted
10 shorten the standard 6 BCLK cycle to 3, or S BCLKs. If EXRDY is negated by the 8-bit
slave, it has no effect until the fifth BCLK of CMD*. If EXRDY is sampled negated on the
falling edge of BCLX in the 5th BCLK of CMD* asserted, then the system board lengthens
CMD® in BCLK increments until EXRDY is floated and sampled asserted. EXRDY
should not be negated if NOWS* is asserted.

2.8.3 Bus Masters

EISA bus masters are full chronous with BCLK. An EISA master drives
LLA<31:2>, BE*<3:0>, M-IO, W-%(,sg<31:0>, START*, MREQx*, and MSBURST* (if
necessary) from BCLK edges. The 32-bit master monitors EX32* (a 16-bit bus master
monitors both EX16* and 2* and treats them as equivalent), EXRDY, and MAKx*.
These signals are also synchronous to BCLK.

A bus master requests control of the bus by assertin, MREQx* and receives control
when it samples MAKx* asserted on the rising edge of BCLK. The bus master drives
LA<31:2> and M-IO valid on the next falling edge of BCLK. On the next rising edge of
BCLK, W-R and BE*<3:0> are presented and START® is asserted. On write cycles, the
bus master presents valid data on the next falling edge of BCLK

On the next rising edge of BCLK, the master negates START®, and the system
board asserts CMD*. The bus master samples EX32* (32-bit bus masters) and EX16®
(16-bit bus masters) on the same rising edge of BCLK to determine if the slave being
accessed is an EISA slave with equal or greater data size. If the appropriate signal (EX32*
or EX16*) is sampled asserted, the bus master can present the next address on the falling
edge of BCLK to begin the next cycle. The bus master must wait for EXRDY to be
asserted before completing the cycle and asserting the next START®. On read cycles, the
data is sampled on the rising edge of BCLK after the slave asserts EXRDY. On write
cycles the bus master must hold the data valid until the falling edge of BCLK after the slave

asserts EXRDY.

If the bus master sampled EX32* negated (or both EX16* and EX32* negated for
16-bit bus masters), then the system board performs data size translation. The bus master
floats D<31:0> (on write cycles), BE* <3:0>, START?* (for all cycles), and MSBURST*
(for Burst cycles) on the falling edge of BCLK (after negation of START®) and the system
board performs the data size translation. The bus master regains control of the cycle after
sampling EX32* (or EX16* for 16-bit bus masters) asserted on the rising edge of BCLK.
When the appropriate signal (EX32* or EX16*) is sam led asserted the bus master can
gge)sent the next address on the falling edge of BCLK to begin the next cycle. (See Figure

When the bus master no longer requires control of the bus it negates MREQx* on
the falling edge of BCLK. The bus master, on the falling edge of BCLK before the cycle is
finished, floats LA<31:2>, BE*<3:0>, M-IO, and W-R. On the next rising edge,
START* and MSBURST* (for Burst cycles) must be floated. On the next falling edge of
BCLK, the bus master floats D<31:0> (on writes). The system board negates MAKx*
when it samples MREQx* negated.

144

EP 0 426 184 A2

EXTENUED INDUSTRY STANDARD ARCH1:1 £ CTURE
CONFIDENTIAL INFORMATION OF BCPxX SERVICES, INC.

A bus master may be preempted by the system board or another bus master. The
system board negates MAKx®, indicating to the bus master that it must finish the current
bus cycle and relinguish control of the bus (by negating MREQx*) within 64 BCLK periods
(8 us). It is suggested that masters complete operations within a shorter time (such as 32
BCLK periods) to reduce bus latency for other masters or the CPU. Figure 49 illustrates
the relevant signals of an EISA bus master preempted during a normal cycle.

Any 16-bit bus masters must drive MASTER16* asserted from MAKx*® and keep it
asserted until the bus is released. On bus "release”, the MASTER16* line is floated. For
standard EISA cycles, "release” is the same time as START® is floated. For cycles where
bus ass&:mbly occurs the release is on the rising edge of BCLK after EX16* is sampled
asserted. '

145

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARL: ARCHIT=CTURE
CONFIDENTIAL INFORMATION OF BCPK SERVICES, INC.

Figure 48 - EISA Bus Master
Write Cycle with Data Translation

BCLX

s

]

A

MAKx*
LA<31.2>

M-/0
BEI <G00
~-g

Heavy lines indicale float by master device.

Noles:

Italicized signals indicale output of master device.

1) EX32* may also be sampled on the falling edges of BCLK.

146

ES, INC.

—~
x
-

1 Cycle

EP 0 426 184 A2
- EISA Bus Master

Preempt During Norma

EXTENDLED INDUSTRY STANDARD ARCH1: ECTURE
Figure 49

CONFIDENTIAL INFORMATION OF BCPR SERVI

i}

READ
D<31:0>

MAKx*
A4<31.2>
M-10
BE <00
—-R
START*
EX32”
EXRDY
FRITE
D310

ltahcized signals indicete output of master device.
147

Heavy lines indicate float by master device.

Notes

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 50 - Bus Transfer from Master Control to Float -
EISA Cycle (with Wait States)

L r L1

L

i !
Ve R
; i i

"

Latest possible lime for relesse of START®, data. and sddress is shown

Note 1- Tha LA<> includes LA<31:2>, BE*<3:0>, N-10. ®-R. LOCK". and NSBURST".
Nole 2. The heavy lines indicale float.

Note 3: NREQx® must remain high for two BCLKs mimimum as shown

Note 4: Earliest possible control by nexi device.

148

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCBITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 51 - Bus Transfer from EISA Control to Float -
Translated ISA Cycle

SRS e N s I s I s S Yy N

} ! . : : J."(4)
BE*'<3:0> g : I ' : . 1

LA<>

(Kote 1}

D<31:0>
WRITES

MREQx*

START*

CMD

Exgzr A :

D<31:0> —] *]
READ

Latest possible time for release of START®, data, and address is shown.

Note 1: The LA <> includes LA <31:2>, BE*<3:0>, M-IO,
W-R, LOCK*, and MSBURST™.

Note 2: The heavy lines indicate float.
Note 3: MREQx* must remain high for two BCLKs minimum as showT.

Note 4: Earliest possible control by next device.

149

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AFCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.8.4 Burst Bus Masters

Burst bus masters must do everything defined for standard bus masters. In addition,
they support the use of the MSBURST* and SLBURST" lines and Burst cycles.

A bus master begins a set of Burst cycles by executing a Standard cycle and sampling
SLBURST™* asserted on the rising edge of BCLK when éTART‘ is negated. The bus
master asserts MSBURST?* with the next pipelined address (on the falling edge of BCLK).
MSBURST®* must not be asserted if SLBURST®* is sampled negated or if the bus master
samples EX32* negated (32-bit bus masters). In this case, the bus master completes the
cycle as a non-Burst master.

For read Burst cycles, the bus master presents a new address on each falling edge of
BCLK and samples the data for that address on the BCLK rising edge 1-1/2 BCLKs later.
On the last }cle of the Burst transfer, the bus master negates MSBURST™ (on the falling
edge of B). The bus master completes the cycle on the next rising edge of BCLK.

For write Burst cycles, the bus master presents a new address on each falling edge of
BCLK and presents valid data 1/2 BCLK later.

Burst cycles must be all read accesses or write accesses. Mixed read and write cycles
can not use Burst. The bus master completes the Burst transfer by negating MSBURST*
during the last cycle of the tranmsfer. All Bursts must occur within the 1024-byte page
boundary, and only address bits LA<9:2> or BE* <3:0> will change. The Burst transfer
l;-i)us‘dbc split up ‘into two or more separate transfers if the transfer crosses a page

undary.

If 2 bus master samples EXRDY on the falling edge of BCLK, it extends the cycle
until sampling EXRDY asserted. The master may still change to the next address even
though E Y is negated. (The master must then hold the address until EXRDY is
sampled active.) If a bus master samples EXRDY on the fallin%_cdge of BCLK on the last
cycle og a Burst transfer, it extends the assertion of MSBURST™* until sampling EXRDY
asserted.

A Burst bus master may be preempted by the system board or another bus master.
The system board negates MAKx*, indicating to the bus master that it must finish the
current bus cycle and relinquish control of the bus (by negating MREQx* and
MSBURST®*) within 64 BC eriods (8 us). It is suggested that masters complete
operations within a shorter time (Is)uch as 32 BCLK periods) to reduce bus latency for other
masters or the CPU. Figure 52 illustrates the relevant signals of an EISA bus master
preempted during a Burst cycle.

150

EP 0 426 184 A2

F BCPR SERVICES, INC.

EXTENDED INDUSTRY STANDARD ARCRITECTURE

CONFIDENTIAL INFORMATION O

|
g3
ady
=%
17,3

=
=1
<
)
=
ol
wn

@
B
[&H)

Preempt During

BE<T:0>
#-r
EXRDY
WRITE
0<37:0>
READ
D<31:0>

Heavy lines indicate float by master device.

Noles

italicized signals indicate output of master device.

151

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 53 - Bus Transfer from Master Control to Float -
EISA Burst Cycle

e LML LT LT LT
LA<> : lj p—

{Wote)
2% s o i

D<31:0> B

WRITES ; . : _ : 7 :

MREQx* s . ¢ i ¢ o ° * poe | e
5 é % z : : ! : ; s E

START® l : I .) : (4}

CMD* S A @
i H H : ! :

% NN / :
wssoRsT P ¢ . .

Latest possible time for release of START®, data, and address is shown.

Note1: The LA <> includes LA <31:2>, BE*<3:0>, M-I0, W-R, LOCK*,
and MSBURST®.

Note 2: The heavy lines indicate float.
Note3: MREQ® must remain high for two BCLKs minimurm as shown.

Note 4: Earliest possible control by next device.

152

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.8.5 Downshift Burst Bus Masters

A "Downshift” master is a 32-bit Burst bus master that can convert to a 16-bit Burst
bus master "on the fly."

A downshift bus master that intends to perform a Burst transfer must drive
MASTER16* on each START* that it generates. This allows the system to tell the
difference between the downshift master and a 32- or 16-bit master. The timing should be
the same as for START™.

This type of master must monitor both EX32* and SLBURST" at the rising edge of
BCLK at the end of START® to determine the correct action for the remainder of the
cycle. The following table shows the system and master response t0 the slave for downshift
masters.

EX32* | SLBURST*

0 X 32-bit cycles: the system will not participate in the cycle. The
master completes the cycle with EX32* as a normal 32-bit
master.

1 0 16-bit Burst cycles: After START®, the system does not

participate in the cycle. In this case, the master is required to do
its own assembly or disassembly, including the data copying. I
at START* and the first CMD* cycle the master has all
BE*®<3:0> lines asserted, then at the next CMD* the master
should only have BE*<2> and BE*<3> asserted. For the
second cycle, the master needs to copy the data to the low word
of the bus for writes (or deal with it on the low word for reads).
For write cycles the master may drive the high word of the data
bus as long as BE*<3:2> require it even though the slave is
only 16-bit. If at START* BE*<1> and BE*<0> are both
negated, then, at the end of START®, the master also enables its
low word data buffers with the same write data as on the high
word. One-half clock later, the system stops driving all of its
buffers and remains inactive until ge end of the Burst.

1 1 16-bit non-Burst or ISA cycles: the system assumes the master is
a 32-bit master and performs the assembly as expected. In this
case, the master holds its write data buffers active until the
falling edge of BCLK after START®, then floats them and walilts
for EX32* to be returned.

153

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITCCTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows the combinations of byte enables that require the
additional copying operation:

Copy Bytes
BE3* BE2* BEl* BEO* 3:2 > 1:0
1 1 1 0
1 1 0 1
1 0 1 1 *
0 1 1 1 *
1 1 o 0
1 (¢] 0 1
0 0 1 1 *
0 0 0 1
1 0 0 0
0 0 0 0

Figure 54 illustrates an example of the "downshift" master in operation.

Figure 54 - "Downshift" Bus Master Operations
TO Ti T2 T3 T4 TS T6 T7

8
oo T L LI L LT
BE'<3:O>% 01T | 0000 | o011 1000] To11 :

M M H

i i i
i . H H H
i i 1 H H i i

MSBURST® 5 Y
SLBURST* Z 0

o |
MASTER]G'——L_:__i

-
D<31:05 ————{ (;) CICHEE @) [(%) | G @ F

Note: The heavy lines indicate that both the system and the master are driving
_ together.

154

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURC
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

In the above diagram, the master transfers nine bytes of data beginning on an odd
word boundary. At T1 the master asserts BE® <3:2> and puts the data (a) on the two high
byte lanes of the data bus. The system copies the data down to the two low byte lanes as
for all 32-bit masters. At time T2, the master senses that a 16-bit Burst memory slave is
present and begins to copy the h‘i-%h bytes of data to the low bytes (b), (duplicating the
effect of the system). At time T3, the system stops copying the data leaving only the master
on the data bus (c). At (d) the data is changed to that required for the next set of byte
enables. The whole bus can be driven if desired. At () the data on the low word is
changed again to a copy of the high word of data present at (d). This process is continued
until the transfer is complete.

Note that the master should only assert MASTER16* if it intends to do Burst cycles.
If MASTER16" is asserted for a non-Burst transfer and a 16-bit EISA Burst slave responds,
the master is responsible for copying data through to the end of the cycle since the system
will stop copying at the end of ’I%

2.8.6 DMA Devices

A DMA device requests service by asserting DRQ<x>. DRQ<x> can be driven
asserted asyncronously. e system board samples DRQ<x> asserted and eventually
ts bus control to the DMA channel by asserting DAK* <x>. A DMA device decodes

/0 accesses with IORC* (or IOWC*) and DAK*® <x> asserted.

The DMA device cannot add wait states to a cycle and must accept the cycle type
executed by the DMA controller. (Wait states are added by the system or the memory
slave.) Figure 55 illustrates the relevant signals for and EISA DMA device during a
compatible write transfer.

In certain cases, the system may preempt an EISA DMA device indicating to the

DMA device that it must finish the current bus cycle and relinquish control of the bus by
negating DRQ <x>. Figures 56 and 57 illustrate preempted DMA cycles.

155

EP 0 426 184 A2

Figure 55 - EISA DMA Device
Compatible Write Transfer

EXTENDED INDUSTRY STANDARD ARCHiTECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

|
! M- .xu 1.2- m --EH---:
SRR DR N Y O
..... B QUM DU [SN EVM

JIORC*
¥/}
T~

156

talicized signals indicate output of DMA device.

Heavy lines indicate float by DMA device.
1) Length of cycle is extended due to the negation of CHRDY by the slave.

Note.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH1 ICCTURE

CONFIDENTIAL INFORMATION OF BCFR SERVICES, INC.

*B" EISA DMA Device (Block Memory Write)
DAK*<x>

Transfer Interrupted by

56 - Type

Figure

BCLX

-}

VAN

DRg<x>]

.................... .
IR R R
— e I-I.J“..Iln.l.|t.n 1111 b e e e - ———
\\\ - PR ———— ————
O | AN DUDUUINY D ¢ IS A,
........ A
2 - e - T — - -
4 o
) B R i el [it et e
1 1 DA — O T BN P
| IS I N 7 I
A, Y U SRR
A] .
S B —N

Type A cycles add ooe clock of 10RC* to the beginmung of esch cycle and one clock of hold lime to the end of each cycle

ltalicized signals indicale output of DNA device.

Note:

1) Transfer interrupted by negation of DAK*<x>.

2) Cycle is longer due to a wait slate requested by the slave.

157

BCLK

DRg<x>

DAK*<x>

I0RC*

EXRDY

LDATH

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCEITECT URKE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 57 - BURST EISA DMA Device: Demand Memory Write
Negation of DAK*<x> and DRQ<x> in Same Cycle

Ly

|

R

P S e atatnintal Eatehekalokel et

L '_f A

JEPUPU I,

Note: Halicized signals indicate output of the DMA device..
All others are inputs.

1} When DRG<x> is negated in demand mode. the DMA device expects
another full transfer. If DAK*<x> is negaled in the same cycle due
{0 a preemplion. DRQ<x> must be reasserted for a single transfer.

2) Wail stale added by the system.

158

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.8.6.1 Non-Burst EISA DMA Devices

The system board asserts a DMA channel's DAK®* <x> and asserts IOWC* 10
indicate a memory read (I/O write) DMA cycle. The system board holds IOWC* asserted
until it presents valid data. If the memory slave requires wait states, or data size translation
is required, the system board holds IOWC* asserted until finished. The DMA device is not
allowed to add wait states on its own; it must conform to the timing programmed into the
DMA controller. (See Figure 58 for an illustration of the relevant signals.) An exception
to this is ISA Compatible mcmor[\: read (I/O write) cycles. For these cycles, DMA devices
can add wait states by negating C Y.

The DMA device doing memory write (I/O read) cycles will see its DAK* <x> go
active and the IORC* signal go active. The IORC* signal remains active until the data is
latched by the EISA memory or the system board (if the memory needs 8 or 16-bit
disassembly). The slave is not allowed to add wait states on its own; it must conform to the
timing programmed into the DMA controller.

Normal demand and block modes of the DMA device are similar to single-cycle
mode except that DMA does not release the bus between cycles. For demand mode, the
DRQ<x> line is monitored to determine when to release the bus and stop cycling; for
block mode, the entire programmed block is transferred from one DRQ<x>.

The DRQ<x> signal is sampled for negation by the system on rising edges of
BCLK, one BCLK before the end of the IORC* or IOWC* asserted time. If wait states are
added by the memory slave, then this may be later than usual. For Type "A" and "ISA
compatible” timing modes, the system provides synchronization of DRQ<x>. For Type
"B" timing, DRQ<x> must meet the setup and hold time specifications for proper
operation.

In single cycle mode, DAK*<x> can be negated for a minimum of one BCLK
period between cycles in timing modes "A" or "B".

In "compatible” mode, the minimum time between DRQ<x> asserted and the
system responding with DAK*® <x> is 1.0 us (8 BCLKS).

The T-C signal (Terminal Count), when being driven by the system, should be
decoded with DAK* <x> and IORC* or IOWC*.

If T-C is being driven by the DMA device, to terminate or restart a DMA transfer
(see DMA programming), then the DMA device must go from floating the T-C line to
driving it low (negated) when DAK*<x> is asserted. When the transfer is to be
terminated, T-C should be asserted with the IORC* or IOWC* of the last cycle. T-C
should be negated when IORC*® or IOWC?* is negated. When DAK*® <x> is negated, T-C
must be floated. (See Figure 59 for an illustration of the relevant signals.)

159

EP 0 426 184 A2

CES, INC.

D ARCHITECTURE

EXTENDED INDUSTRY STANDAR
CONFIDENTIAL INFORMATION OF BCPR SERVI

Figure 58 - Type "B" EISA DMA Device (Demand Memory Read)

Type A cycles add one clock of 10¥CY Lo the beginning of each cycle and one clock of hold time to the end of each cycle

BCLK
lowc~

Italicized signals indicate output of DMA device.

Note.

1) Cycle is longer due to a weil state requested by the slave.

160

EP 0 426 184 A2

EXTEnwED INDUSTRY STANDARD ARCh. sECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 59 - Type "B" EISA DMA Device (Block Memory Write)
T-C Asserted by DMA Device

BCLX

s Dl SR e
lllllllllllllllllllllllll

e
| SR
[
[|
O
IR
[A
1§ ¢
[Sramm s
[O }
[

..... o
|||||||||| — \\\ IR .

RN R - .- i -
....... Fro || I
..... et b [el i
..... =

DRYg<x>

DAK <x>
10RC*

3 G
N

Type A cycles add one clock of H0RC™ to the begianing of each cycle and one clock of hold time to the end of each cycle

Heavy lines indicate float by DNA device.

Notes:

Halicized signals indicate outpul of DMA device.

1) Cycle is longer due Lo & wail state requested by the slave.

161

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

28.6.2 Burst EISA DMA Devices

Burst mode of EISA DMA transfer is only useful (and allowable) for demand or
block mode. The Burst DMA device must monitor the signals BCLK, EXRDY,
DAK* <x>, and IORC* or IOWC* (depending on whether reading or writing). After the
first transfer cycle (used to "prime” the memory and determine if the memory supports
Burst) transfers occur once per B

A Burst DMA device doing 1/O write (memory read) cycles monitors BCLK,
EXRDY, DAK*<x>, and IOWC*. The DMA controller asserts AK®<x>, and, later,
asserts IOWC* on the rising edge of BCLK. DAK*<x> is held asserted for the duration
of the Burst transfer and IOWC* is held asserted until a cycle translation occurs or, for
Burst compatible memory, until the Burst transfer com letes. The Burst DMA device must
sample the data by the rising edge of BCLK. The D device samples EXRDY on each
falling edge of BCLK while IOWC* is asserted. If the DMA device samples EXRDY
negated, indicating addition of wait states by the memo tem, then data must be latched
after EXRDY is asserted, by the next rising edge of B When wait states are added to
the last subcycle of a Burst, the system board holds JOWC* asserted until it samples
EXRDY asserted. The DMA device is not allowed to add wait states on its own; it must

conform to the timing provided by the system.

The system board automatically performs cycle translation for a Burst DMA
transfer from memory that does not support Burst. The DMA device monitors IOWC* and
samples it negated while the system board performs the translation, then samples IOWC*
asserted when the the DMA controller restarts the Burst transfer after the translation
completes.

A Burst DMA device doing 1/O read (memory write) cycles monitors BCLK,
EXRDY, DAK® <x>, and IORC*. The DMA controller asserts DAK*<x> and, later,
IORC* on the falling cdéc of BCLK. The DMA device must drive new data on the bus on
the next rising edge of BCLK and hold it until the followin, rising edge of BCLK. The
DMA device samples EXRDY on each falling edge of B while IORC* is asserted. If
the DMA device samples EXRDY negated, indicating addition of wait states by the
memory system or the initial cycle of the Burst, then data must be held stable until the next
rising edge of BCLK after EXRDY is asserted. When wait states are added to the last
subcycle of a Burst, the system board holds IORC* asserted until it samples EXRDY
asserted. The DMA device is not allowed to add wait states on its own; it must conform to
the timing provided by the system. (See Figure 60.)

Addresses asserted during Burst DMA cycles to DRAM memory must be within a
1024 byte DRAM memory page (address line LA<31:10> cannot change during the
transfer). To cross a D age boundary, the system board terminates the Burst DMA
sequence by negating the MSBURST” signal on the last cycle in the page. The system
board then restarts the sequence on the new page. Figure 61 illustrates a page boundary
condition from a Burst DMA device perspective.

The system board automatically performs cycle translation for a2 Burst DMA
transfer to memory that does not support Burst. When the system board determines that
cycle translation is needed, it latches the data for the current cycle in a temporary register
and negates IORC* to indicate that the data is latched and the DMA device must float its
drivers. The DMA device floats its drivers while the system board performs the translation
and monitors IORC® to detect the DMA controller restarting the Burst transfer after the
translation completes. .

162

EP 0 426 184 A2

~C.

[
.

EXTENDED INDUSTRY STANDARD ARCHFIECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES,

- Burst EISA DMA Device (Demand Memory Write)
Wait States on Last Cycle

Figure 60

BCLX

||||||||||||||||||||||| .A RN [,

e

N\ A
g J 5
» (&
I (&)
§ Z S m 3 o

Jtalicized signals indicale output of the DMA device.
All others are inputs.

- Nole:

1} ¥ait slale added by system

2) Wait state added by memory slave

163

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 61 - Burst EISA DMA Device (Block Memory Read)
Page Boundary Condition

BCLK

™) 1
Ly
Pos
2
%%
p
—

lllllllllllllll

DR@<x>
DAK*<x>
jowc

EXRDY

DATA

Italicized signals indicale output of the DMA device.

All others are inputs.

Note.

164

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The DMA device monitors IORC”® and samples IORC*® asserted when the DMA
controller restarts the Burst transfer after the translation completes.

For both Burst modes the system samples DRQ<x> on rising edges of BCLK. For
Block mode, DRQ<x> is ignored until the transfer has been completed. For Demand
mode the DMA device can negate DRQ<x> at the falling edge of BCLK during asserted
IORC* or IOWC*. If EXRDY is negated in a previous cycle, the DMA device must wait
one BCLK after EXRDY is sampled asserted (the current cycle) to negate DRQ<x>.
Note that one full transfer cycle follows the negation of DRQ<x>. (See Figure 62.) The
DMA device can also negate DRQ<x> on the first falling edge of BCLK after DAK* <x>
is asserted if only one cycle is desired.

In the normal case, T-C is an output and is asserted at the end of a transfer on the
falling edge of BCLK. This corresponds with the assertion of IORC* for the last cycle or
leads the assertion of IOWC* by 1/2 BCLK. If the memory adds wait states, then T-C
occurs earlier. T-C is negated on the rising edge of BCLK at (for IOWC*), or after (for
IORC?®), the end of the cycle. The PMA device should sample T-C at the first falling edge
of BCLK during asserted IORC* or IOWC* for the cycle. If EXRDY is negated for a
cycle, T-C should not be sampled again until the BCLK after EXRDY is sampled asserted.
(See Figure 63.) _

If T-C is being driven by the DMA device to terminate or restart a DMA transfer
(see DMA programming), then the DMA device must go from floating the T-C line to
driving it low (negated) when DAK*®*<x> is asserted. When the transfer is to be
terminated, T-C should be asserted on the falling edge of BCLK with the IORC* or
IOWC* of the next 10 last cycle and held asserted for one BCLK. (See Figure 64.) If
EXRDY is negated in a previous cycle, the DMA device must wait one BCLK after
EXRDY is sampled asserted (the current cycle) to assert T-C. Note that one full transfer
cycle follows the assertion of T-C. When DAK*® <x> is negated, T-C must be floated. The
system waits one BCLK after DAK* <x> is negated before driving T-C negated (low).

Figure 65 illustrates the special case where DRQ<x> is negated at a wait state.
Figure 66 illustrates the preemption of a Burst DMA Device.

165

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 62 - Burst EISA DMA Device (Demand Memory Write)

BCLX

DRg<x>
DAK* <x>
IORC*

EXRDY
DATA
-C

Italicized signals indicate outpul of the DMA device.

All others are inputs.

Note:

1) Wait state added by system

2) ¥ail state added by memory slave

166

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Assertion of T-C

Burst EISA DMA Device (Memory Read)

Transfer Terminated by

Figure 63

BCLX

DRg<x>

//

L,

DRG<x>

BLOCK

DAK*<x>

Jo¥C*

EXRDY

DATA

lalicized signals indicate output of the DMA device.
All others are inputs.

Note:

167

EP 0 426 184 A2

ES, INC.

1"TECTURE

EXTENDED INDUSTRY STANDARD ARCEH
CONFIDENTIAL INFORMATION OF BCPR SERVIC

re 64 - Burst EISA DMA Device
C Asserted by DMA Device

Figu
T-

BCLK

DRG<x>

DEMAND

DR@G<xr>

BLOCK

DAK"<x>

10wC

EXRDY

DATA

Jtahicized signals indicate output of the DMA dewice.
All others are inputs.

Note.

Heavy lines indicate floal by device

168

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

S . Burst EISA DMA Device (Demand Memory Write)
DRQ<x> Negated at Wait State

Figure 6

BCLK

DRP<x>

DAK® <x>

JORC*

EXRDY
DAT4

T-C

ltalicized signals indicale outpul of the DMA device.

All others are inputls.

Note:

1) Weit state sdded by system

2) ¥ail slate sdded by memory slave

169

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 66 - Burst EISA DMA Device (Block Memory Read)

Preemption by Negation of DAK*

BCLK

DRg<x>
DAK* <x>

10¥%C*
EXRDY

DATA

Ilalicized signals indicate output of the DMA device

All others are inputs.

Note

1) Wail slale added by memory slave

170

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCEITECY URE
CONFIDENTIAL INFORMATION OF BCPR S=RVICES; INC.

2.8.6.3 Misaligned DMA Transfers

A DMA device may handle misaligned DMA transfers by performing data
alignment during the transfer. The DMA controller requests a misaligned transfer by
indicating a partial word or dword with BE*<3:0> during the first and last cycle. The
DMA device determines the number of bytes to transfer and appropriate byte lanes to use
for the first transfer by decoding BE*<3:0>. The DMA device pertorms the byte
alienment for the first transfer and continues the same byte alignment until BE* <3:0>
in 'catgs) another partial transfer (or until sampling the terminal count signal (T-C)
asserted).

For Type "A" and Type "B" transfers, the BE*<3:0> signals may be sampled with
the leading edge of IOWC* or with the rising edge of BCLK following the assertion of
IORC®. In either case the signals are set up to the edge by 100 ns and held from the edge
by at least 30 ms.

For Type "C" transfers, the BE*<3:0> signals may be sampled with the falling edge
of BCLK during the first BCLK of each subcycle (there is only one BCLK per subcycle
unless wait states are added). To this edge there is 60 ns of setup and 2 ns of hold time.
Alternatively, the BE*<3:0> signals may be sam led with the rising edge of BCLK that
starts each subcycle (or IOWC* falling edge for tEe first subcycle). To this edge there is
5 ns of setup and at least 55 ns of hold time.

Misaligned DMA Memory Writes (I/O Reads)

On the first transfer, the DMA device copies the addressed bytes from its DMA
source register to the appropriate data bus byte lanes (indicated by BE* <3:0>) and stores
the unused source register bytes in a holding register. On subsequent transfers, the DMA
device copies the addressed bytes from the D source register and the contents of the
holding register to the appropriate data bus byte lanes (as indicated on the first cycle by
BE*<3:0>). For each transfer, the DMA device stores the unused DMA source register
bytes, then supplies them on the following cycle. '

Misatigned DMA Memory Reads (1/0 Writes)

On the first transfer, the DMA device stores the bytes indicated by BE*<3:0> in a
holding register. On subsequent transfers, the DMA device copies the contents of the
holding register and the appropriate bytes from the data bus (as indicated on the first cycle

by BE*<3:0>) to the DMA destination register. For each transfer, the DMA device
replaces the contents of the holding register with the unused bytes from the data bus.

2.8.7 System Board

2.8.7.1 Main Memory Access
The EISA architecture does not require all memory (or I JO) access cycles to reflect

on the EISA bus. The main CPU (and other devices) can access the main memory system
without presenting address or timing control on the EISA bus.

171

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITE:“TURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.8.7.2 Back-to-Back I/O Delay

The EISA system board automatically forces a minimum 2- 1/2 BCLK (300 ns)
delay between back-to-back ISA I/0 accesses caused by separate CPU cycles. The delay is
measured from the trailing edge of an 1/O command (IORC* or IOWC*®) to the leading
edge of the next I/O command (IORC*® or IOWC®). The delay provides recovery time for
ISA compatible I/O slaves.

The system board prevents the CPU from asserting START* for the next | /O cycle
until at least 1 BCLK after the traih’né edge of IORC* or%OWC'. START" for a memory
cycle is asserted without the one BCLK delay. No delay is added to the data size
translation é)art of the I/O cycle (the delay is added to the beginning of the next cycle). No
delay is added for 16-bit ISA bus master 1/O cycles, which execute at a speed determined
by the 1/O slave's use of CHRDY. No delay is added for 32- and 16-bit EISA I/O cycles,
which execute at a speed determined by the f}O slave's use of EXRDY.

2.8.7.3 Slot-specific1/0

EISA systems teserve 1/O spaces at 0z000h-0zOFFh, 0z400h-0z4FFh, 0z800b-
0z8FFh, and 0zO00h-0zCFFh (where 'z' is the slot number from 1-F) for slot-specific I/O
slaves on ISA and EISA expansion boards. These address ranges alias ISA system board
I/O address space. EISA system boards must fully decode 1/O accesses 10 assure they
don't alias wi slot-as.ﬁeciﬁc /O slaves. The system board uses the slot-specific 1/O range
where 'Z' is zero for all system board I/O devices.

The system board disables the slot-specific I/O ranges by asserting the bus signal
AENX (high) if the address 'z’ does not match the slot number and the least significant 12
address bits address a slot-specific range (0z000h-0z0FFh, 0z400-0z4FFh, 0z800-0z8FFh, or
0zC00-0zCFFh). Expansion boards that take advantage of the slot-specific I/O ranges
must, at a minimum, decode LA<8> and LA<9> (SA<8> and SA<9> for ISA I/O
slaves) address bits (decode to "0") with AENx negated (low) to assure they don't alias with
ISA expansion board I/O.

172

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following truth table shows an example of a system board AENx decode; the
AENXx signals listed are low for the given combinations. Note that the signal AEN is
included which is high for DMA activity.

System Board AENx Decode

AEN| MIO LA<9> |LA<8>LA<15> |[LA<14>|LA<13>| LA<I2>
AEN15| 0 0 0 0 1 1 1 1
AEN14! 0 0 0 0 1 - 1 1 0
AEN13| 0 0 0 0 1 1 0 1
AEN12| O 0 0 0 1 1 0 0
AEN11| O 0 0 0 1 0 1 1
AEN10| © 0 0 0 1 0 1 0
AENS | 0O 0 0 0 1 0 0 1
AEN8 | 0O 0 0 0 1 0 0 0
AEN7 | O 0 0 0 0 1 1 1
AEN6 | O 0 0 0 0 1 1 0
AENS | © 0 0 0 0 1 0 1
AEN4 | © 0 0 0 0 1 0 0
AEN3 | 0 0 0 0 0 0 1 1
AEN2 | O 0 0 0 0 0 1 0
AEN1 | O 0 0 0 0 0 0 1

173

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AR.CRITSCTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table specifies the expansion board AENx decode:

Expansion Board AENx Decode
Signal Decode
AENX 0
MIO 0
LA<9> 0
LA<8> 0
LA<1l> X
LA<10> X
LA<T> X
LA<6> x
LA<S> b
LA<4> X
LA<3> X
LA<2> X
LA<1> X
LA<O> X

Note: x depends on the address being decoded.

The system board negates (low) AENx for slot-specific I/O cycles a short time after
asserting START*. For ISA I/O cycles, the system board holds AENx negated until at
least 1/2 BCLK after the trailing edge of IORT* or IOWC* to assure compatibility with
ISA I/O slaves. For EISA I/O cycles, the system board holds AENx negated while it bolds
LA <15:2> valid.

A bus master need not add a delay between back-to-back 1/O cycles to ISA 1/O
slaves. The BCLK added to the end of a cycle during the system board's data size
translation satisfies the AENx hold requirement.

2.8.7.4 1/0 Address Decoding

I/O addresses between 0400h and 04FFh are reserved for current and future EISA
system board peripherals defined by this specification. System board manufacturers can
gsc system board addresses 0800-08FFh and 0CO00-0CFFh for manufacturer specific [/O

evices.

174

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.9 Bus Arbitration

EISA provides centralized arbitration control to allow bus sharing among the CPU,
DMA controller, refresh controller and bus masters. A device asserts a bus request signal
to arbitrate for bus access. The centralized arbitration controller arbitrates the request and
the system board asserts a bus grant signal when the bus is available. The arbitration
period does not affect execution of bus cycles by the active device. If other arbiters
Breempt the active device by asserting a bus request (MREQx* or DRQ<x>) while the
us is busy, the system board negates the bus grant signal (DAK®<x> or MAKx*) to
indicate to the active device that it must release the bus, and the central arbitration
controller performs the arbitration.1 After the active device releases the bus (indicated by
negation of the bus request signal), the system board asserts the appropriate bus grant
signal for the winning device.

An EISA bus master or DMA device may be greempted by another device that
requests use of the bus. A bus master must release the bus within 64 BCLK periods (8 us)
after sampling its MAKx* negated to prevent a bus timeout NMI. The DMA controller
stops the DMA transfer and releases the bus within 32 BCLK periods (4 ps) of a

reemption. The arbitration controller measures the bus timeout from the rising edge of

CLK after negation of MAKx*. The arbitration controller counts 64 BCLK periods for a
bus master, then samples MREQx*. If MREQx* is still asserted, an NMI is generated and
the reset controller asserts RESDRYV to reset the offending bus master.

Following the negation of MREQx*®, the system allows the completion of the last
bus cycle before actually transferring control of the bus. This allows a bus cycle to be
started (START?*) before the timeout, and actual bus transfer to occur on the BCLK
following the end of the cycle. This is true for cycles terminated by EXRDY or by EX32*
(or EX16*). For Burst transfers, MSBURST* must be negated with the negation of
MREQx*. For downshift Burst transfers, MSBURST* must be negated one transfer cycle
after the negation of MREQx*.

1. Only DMA devices that take advantage of EISA enhancements can be preempied

175

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 67 - Bus Master: Starting a Normal Cycle
Without & Bus Timeout

(The figure shows the latest possible time to start without a bus timeout)

63 64

m___rl_&g [Py N s P e O ey IO
. e (- '((: : igig’ [

e “—.L——ss-—lé %A'('i

START" 5 i ; :
'4“ . N « .
B a7 - P2 2 - - R
CHD* A
Figure 68 - Bus Master: Continuing a Burst Cycle
Without a Bus Timeout
(The figure shows the latest possible time to start without a bus timeout)
63 64
MREQx" l‘ g LI R A s B
At S NS R I
? g L : :
CMD* .] e} . : Ay
R WS O
MSBURST*] 7 il

176

NREQx*

CMD*

MSBURST*

EXRDY

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 69 - Bus Master: Continuing a Downshift Burst Cycle Without a Bus Timeout

(The figure shows the latest possible time to start without a bus timeout)

63 64 64

o I Ll L LML ML L]

[*

I\

3 s
L\
P2

(- S

75 N - f . :
. : : : i : . .
‘ : i | i

)

' e 1. e [T
! : : n R R

(. : i o\ o j o i .

u: - ; :]

i

A

i

Note: A wait state is shown to illustrate an allowable extension.

The main CPU is given bus access when no other device is requesting use of the bus.
In addition, the CPU system should request bus access when it has a cycle to execute. In
cache-based systems, the request typically results from a cache miss. In noncached systems,
the CPU is always requesting the bus.)

In some systemns, depending on the characteristics of the CPU and associated
systems, it may be desirable for the arbitration system to allow the CPU to continue to hold
the bus for a period of time after preemption by another device (or as long as the CPU
continues to require the bus). This allows more time for the CPU to execute under heavily
loaded conditions. To limit system latency, bus hold time from preemption to CPU hold
request, should be kept to a maximum of 32 BCLKs. If this is done, then the maximum
time the CPU could keep the bus becomes the maximum CPU hold request time, plus 32
BCLKs. The CPU hold request maximum typically occurs during 2 sequence of LOCKED
cycles. Therefore, to keep arbitration time to a minimum, LOCKED cycles should only be
performed to high-speed memory.

Figure 70 illustrates the control signals that each arbiter uses for bus arbitration.

The preemptable arbiters include the main CPU, the DMA controller and any EISA bus
master.

177

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT URE .
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC,

Figure 70 - Centralized Arbitration

CPU
A
CPy cPy CPU
BUS HOLD ACKNOWLEDGE
REQUEST REQUEST | REQUEST
(note) {nole) (note)
Exponsion Bus Exponsion Bus
Moslers __ DM# Devices
T) DRO<O> 1 i
“ 4 3] CHANNEL | !
! ImasTER O) ! - DAK<O>« | o ,
| ; i D > |
: | § = :
H) 2 M . 1 i
' i MRO1s [A ~_DRO<1> ! — !
-) DAK< 15+ | ;
! =-03 in 1 :
: i C e :
i] omarca } O i |
, . CENTRALIZED fe ¥ . | |
]
i 1 ! t
; i ARBITRATION T | ;
{ DMAACK R o | 1
Poe CONTROL 0 i ;
]
5 L 5 |
E [L [E E
| E i !
| MRO14e R DRO<7> | |
MASTER 14] | uaK14e DAK<7>« 1 | CHANNELE
I H 1 !

REFREQ REFRESH

Y

REFRESH
CONTROLLER -

Note: "CPU Bus Request”. “"CRU Hold Request” and “CPU Acknowledge Request” are implementation~specific signais

178

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH:TECTURE
CONFIDENTIAL INFORMATION OF BCPF. SERVICES, INC.

2.9.1 System Arbitration Priorities

The EISA system board uses a multilével rotating priority arbitration method. On a
fully loaded bus, the order in which devices are granted bus access is independent of the
order in which they assert a bus request, since devices are serviced based on their position
in the rotation. The arbitration scheme assures that DMA channels access the bus with
minima!l latency. The DMA controller is given a high level of priority to assure
compatibility with traditional ISA expansion boards that require short bus latency. The
EISA bus masters have a low priority and their design must provide for longer latency.

DMA priorities can be modified by programming the DMA controller command
registers to rotating priority.

Figure 71 illustrates arbitration priorities with both DMA controllers programmed

for fixed priority, and Figure 72 illustrates arbitration priorities with both DMA controllers
programmed for rotating priority.

179

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE ‘
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 71 - Fixed DMA Priority Arbitration Sequence

g

REFRESH
CONTROLLER

HIGHEST

PRIORITY
DMA

CHANNEL

CPU
or
BUS MASTER

CHANNEL O
CHANNEL 1
CHANNEL 2
CHANNEL 3
CHANNEL 5
CHANNEL 6
CHANNEL 7

L
A e

BUS MASTERS

i aff . -

+

[T [

180

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 72 - Rotating DMA Priority Arbitration Sequence

REFRESH
CONTROLLER

PRIORITY
DMA

CHANNEL

. ,.;}_‘; = S

v

" o ‘..-'-.-v---w A
CHANNEL 6 l

e

BUS MASTERS

. e ae

*

IéI;ANNEL 1

[‘fu@ca 3]"—{ wsTeR 3 |

181

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The top priority level uses a 3-way rotation to grant bus access sequentially to a
DMA channel, the refresh controller, and a device from the 2-way rotation CPU or a bus
master). A DMA channel, the refresh controller, and a device from the 2-way rotation
each gain access to the bus at least one of every three arbitration cycles (depending on
what devices are requesting service). A device that does not request the bus is skipped in
the rotation.

NMI interrupts are given special priority. If an NMI interrupt occurs, the
arbitration mechanism is modified so that the bus masters and the DMA controller are
bypassed each time they come up for rotation. This gives the CPU complete control of the
bus to perform the NMI service.

292 Subsystem Priorities and Latencies

This section illustrates the bus grant latency for a variety of system configurations.
The estimates are intended to illustrate latencies 1n practical system configurations. The
bus grant latency tabulations are based on the following assumptions:

¢ An 8 MHz EISA bus.

. The CPU releases the bus within 9 us (32 BCLK periods plus 5 ps completion
time for a locked cycle) after a preemption occurs.

. Bus masters release the bus within 10.6 us (64 BCLK periods plus completion
time for the final cycle) after a preemption occurs.

e The DMA controller (programmed for block or demand mode) releases the bus
within 5.8 us (32 B periods plus completion time for the final cycle).

. Single cycle DMA completes in 1.1 us.
e The DMA controller is programmed for fixed priority.
. A refresh cycle takes 1.3 us.

. ’}he CPU, DMA channels, and bus masters re-assert their bus request signal
immediately after relinquishing the bus after a preempt.

182

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The latency assumptions noted above are not valid for all configurations, so the

actual latency may be different for any specific case. Some of the configuration specifics
that affect latency include: :

DMA devices programmed for ISA compatible BLOCK mode or ISA
compatible demand mode.

Another special case occurs when the main CPU operates directly from EISA
expansion bus memory, continuously requesting the bus. A device with a new
bus grant gets an immediate preempt because of the CPU request. The device
must release the bus within the 8 us time limit.

Slow memory affects latency, particularly when used by the CPU or bus masters
to do LOCKED cycles or 32-bit operations. An 8-bit ISA memory accessed -
with 32-bit accesses can cause much longer latencies than usual, particularly if
accessed with read-modify-write type instructions with a LOCK prefix.

The following bus grant latency tables include a separate table for each device type

that arbitrates for the bus (the main CPU, the DMA controller, the refresh controller and
bus masters). The device grant latency total (at the end of each table) indicates the
device's worst case latency for the configuration. Each table includes four cases to

illustrate the bus grant latency for a variety of configurations.

The following table illustrates the latency calculation for a variety of DMA

configurations:

DMA Latency Examples Case 1 Case 2 Case 3 Case 4
Bus Load Assumptions: Qty Qty Qty Qty
DMA Channels EBIk) 0 1 1 2
DMA Channels (Sgi Cyc) 2 1 2 1
Bus Masters 2 2 2 2
Bus Grant Sequence: (us) (us) (us) (us)
DMA Channel 0 1.1 5.0 5.0 5.0
Refresh 13 1.3 13 13
CPU 9.0 9.0 9.0 9.0
DMA Channel 1 Grant Grant 1.1 5.0
Bus Master na na 10.6 - 10.6
DMA Channel 2 na na Grant Grant
DMA Grant Latency 114 153 27.0 30.9

183

EXTENDED INDUSTRY STANDARD ARCHITECTURE

EP 0 426 184 A2

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the latency calculation for the refresh controller. The
calculations show that distributed refresh occurs:

Refresh Latency Examples Case 1 Case 2 Case 3 Case 4
Bus Load Assumptions: Qty Qty Qty Qty
DMA Channels éBlk) 0 1 2 1
DMA Channels (Sgi Cyc) 2 1 1 1
Bus Masters 0 1 6 1
Bus Grant Sequence: (us) (us) s) (ms)
Refresh na na na 1.3
Bus Master na na na 10.6
DMA Channel na na na 1.1
Refresh na na na Skip
CrU na na na 9.0
DMA Channel na na na 5.0
Refresh na na na Grant
Bus Master 10.6 10.6 10.6 na
DMA Channel 1.1 50 5.0 na
Refresh Grant Grant Grant na
Refresh Grant Latency 11.7 15.6 15.6 27.0
The following table illustrates the latency calculation for the main CPU. Case 3
sl(xi%wz that the CPU latency does not increase when large numbers of bus masters are
added.
CPU Latency Examples Case 1 Case 2 Case3 |Cased
Bus Load Assumptions: Qty Qty Qty Qty
DMA Channels (Blk) 0 1 1 2
DMA Chanaels (Sgl Cyc) 2 1 1 1
Bus Masters 1 1 2 6
Bus Grant Sequence: (us) (us) (us) (us)
DMA Channel 1 1.1 5.0 5.0 5.0
Refresh 13 13 13 1.3
Bus Master 10.6 10.6 10.6 10.6
DMA Channel 2 1.1 1.1 1.1 S.0
CPU Grant Grant Grant Grant
CPU Grant Latency 14.1 -18.0 18.0 - 219

184

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the latency calculation for 2 CPU bus grant to service
an NMI. Case 1 shows the grant sequence without an NML Case 2 shows the grant
sequence if a block mode DMA channel has the bus when the NMI is asserted, and a bus
master is next in the rotation. Case 3 shows the grant sequence if a DMA channel has the
bus when the NMI is asserted and the CPU is next in the rotation. Case 4 shows the grant
sequence if a bus master has the bus when the NMI is asserted.

NMI Latency Examples Case 1 Case 2 Case 3 Case 4
Bus Load Assumptions: Qty Qty Qty . Qty
DMA Channels EBIR) 2 2 2 2
DMA Channels (Sg! Cyc) 0 0 0 0
Bus Masters 3 3 3 3
NMI asserted no yes yes yes
Bus Grant Sequence: (us) (us) (us) (us)
DMA Channel 0 5.0 5.0 na na
Refresh 13 13 na na
Bus Master 10.6 Skip na 10.6
DMA Channel 1 5.0 Skip 5.0 Skip
Refresh 1.3 . Skip 1.3 13
CpU Grant - Grant Grant Grant
NMI Service Latency na 7.9 7.9 119

185

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

EP 0 426 184 A2

The following table illustrates the latency calculation for an EISA bus master:

Bus Master Latency Case 1 - Case 2 Case 3 Case 4
Bus Load Assumptions: Quy Qty Qty Qty
DMA Channels éBlk) 0 1 1 1
DMA Channels (Sgl Cyc) 2 1 1 1
Bus Masters 1 1 2 6
Bus Grant Sequence: (us) (s) 1s) (1s)
DMA Channel 1 1.1 5.0 5.0 5.0
Refresh 13 1.3 1.3 1.3
CPU 9.0 9.0 9.0 9.0
DMA Channel 2 1.1 1.1 1.1 1.1
Bus Master 1 Grant Grant 10.6 10.6
DMA Channel 1 na na 5.0 5.0
Refresh na na 1.3 1.3
CPU na -na 9.0 9.0
DMA Channel 2 na na 1.1 1.1
Refresh na pa 1.3 13
Bus Master 2 na na Grant 10.6
DMA Channel 1 na ".na na 5.0
Refresh na na na 1.3
CPU na na na 9.0
DMA Channel 2 na na na 5.0
Refresh na na na 13
Bus Master 3 na na na 10.6
DMA Channel 1 na na na 5.0
Refresh na na na 1.3
CpPU na na na 9.0
DMA Channel 2 na na na 5.0
Refresh na na na 13
Bus Master 4 na na na 10.6
DMA Channel 1 na na na 5.0
Refresh na na na 1.3
CPU na na na 9.0
DMA Channel 2 na na na 5.0
Refresh na na na 13
Bus Master 5.0 na na na - 10.6
DMA Channel 1 na na na 5.0
Refresh na na na 1.3
CPU na na na 9.0
DMA Channel 2 na na na 5.0
Refresh na na na 1.3
Bus Master 6 na na na Grant
Bus Master Grant Latency 12.5 164 46.3 173.5

186

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.9.3

EISA Bus Master Arbitration Cycle Descriptions

EISA bus masters use the slot-specific signals, MREQx* and MAKx*® for bus
arbitration. The EISA bus master asserts MREQx* to request bus access. If the systein
board samples MREQx* asserted, the centralized arbitration controller performs the
arbitration and the system board asserts MAKx* to acknowledge that the bus master may
access the bus. The centralized system board can negate MAKx* while the bus master is
accessing the bus. The bus master must release the bus within 64 BCLKs (8 us) after
negation of MAKx*. The centralized arbitration controller causes an NMI if a bus master
fails to release the bus within the 8 s time limit.

Figure 73 illustrates an arbitration sequence in which the slot 2 bus master preempts
the slot 1 bus master. The following procedure describes the arbitration sequence:

A
B.

>

H.
L
J.

Master 1 requests control of the bus by asserting MREQ1*.

The system board samples MREQ1* asserted and arbitrates among all other
requests, eventually granting control of the bus to Master 1 by asserting
MAX1* on the rising edge of BCLK.

Master 2 requests control of the bus by asserting MREQ2".

The system board preempts Master 1 by negating MAK1* on the rising edge
of BCLK. Master 1 now has 64 BCLKs (8 us) to relinquish control of the
bus.

Master 1 stops driving the address bus, data bus and the control signals, and
negates MREQ1*.

Master 1 still requires the bus, however, so it waits two BCLKs and asserts
MREQ1* again.

Master 2 is granted control of the bus by the system board, and begins driving
the bus signals and executing cycles.

Master 2 voluntarily relinquishes control of the bus by negating MREQ2*.

‘The system board samples MREQ2* negated and begins bus arbitration.

The system board gives Master 1 control of the bus again.

Note: There is typically a one BCLK delay between the time MREQx* is sampled by the
system and the time the system responds.

187

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 73 - Bus Arbitration Between Two Bus Masters

BCLK

MREQ*<2>

N
N4
»

>
-
am]
=

MDAK*<2>

EISA BUS [

188

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECfURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.10 Memory Refresh

The EISA system board performs memory refresh. EISA bus masters need not
supply refresh cycles since the refresh controller can preempt the bus master and perform
the necessary refresh cycles. sixteen-bit ISA bus masters that hold the bus longer than 15
us must supply memory refresh cycles.

A memory slave must monitor REFRESH"® to detect a refresh address. If
REFRESH"* is asserted before assertion of START™, the address on the bus is a refresh
address. The refresh cycle lasts from the leading edge of START® through the trailing
edge of CMD* (2 BCLK periods) unless wait states are added by the memory slave
negating EXRDY (EISA slaves) or CHRDY (ISA slaves). Memory slaves must not drive
data on the bus during refresh. To achieve maximum performance, memory slaves should
not add wait states to refresh cycles.

The refresh controller drives the refresh address onto the LA <15:2> address lines
(14 bits of refresh counter) and also enables the BE® <3:0> lines so that they can be
translated to SA<1:0> lines. The state of LA<31:16> is indeterminate. The refresh
address bit order on the LA <15:2> and SA<15:0> bus is as follows:

13}12]111310| 9| 8| 1} O 7} 6 5 4.3 2! 1] O|{Refresh

15{14|13|12}11{10f 9} 8| 7| 6{ S5{ 4| 3| 2| 1| O|LA<>, SA<>

Refresh requests are generated by two sources: system timer 1 counter 1, and 16-bit
bus masters that assert REFRESH® when they are in control of the bus. The system timer
is programmed to request a refresh about every 15 microseconds.

The refresh controller performs distributed refresh and increments a counter each
time a refresh request is not serviced within the normal 15 us interval. The counter counts
up to four incomplete refresh requests. The refresh controller executes one refresh cycle

_when it gains control of the bus, and decrements the pending refresh count. If more
refreshes are queued up, the refresh controller immediately requests the bus again, without
waiting the normal 15 us interval. In this case, if no other device requires use of the bus,
then the REFRESH® negated time can be as short as 1 BCLK.

The incomplete refresh counter allows refresh to be held off for a maximum of 75
us without refresh loss. The counter helps prevent 16-bit ISA bus masters and ISA
compatible block or demand mode DMA devices from causing refresh loss when they do
not release the bus.

Figure 74 shows a standard and a one-wait state EISA refresh cycle.

189

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 74 - Refresh Cycles (Standard and One Wait State)

AHOWINW VSI AUl QdSAVD

ALVLS LIVA 4NO HLIM HSEHARA

AYONYNW LIg—2¢ Ad Q3sSAVO

JLVLS LIVRA 3NO HLlA HSIYJ4IY

d10AD HSHU4AY TYNUON

YR Y P N TR YIS T TR S T TR 1o ¥ A N TR N TR NTRE NTOR XTI NIV ST S PRSI N U B) 004 B0) YU 603 S 201 9P EOL Dl CO1 ZQLLOLOOL
1 1 } 1 1 1 | I I i | 1 \ i | [i N
R D o o | N I 0 SN O O _ N O O O A Kyt
1 1 Bl hf | 1 1 | | i 1 [} | 1 1 IR t
) 1 1 1 1 | | i |]) 1 1 |] 1 '
| 1 ' 1 1 1 ' 1] 1 I 1 | i []
1 |) | 1 I | K | | 1 Voo 1
S T N L LI O /T P SO ML - AdUxd
T T 1 T 1 T 1 ¥ T T 1 ¥
|) 1 1 | \ 1 | 1 1
1 1 1 I | | 1 , | 1
| N R | i - | : ' b i
! o 11] n | !] [T L R i JAND
T T |] T 4 i T T 1 T T T T T
| i 1) | Ll] | | i 1 [t
l | I t |] | 1 \ | i
EERENE “ | | “ “ EERE
i t 1 | i 1 | t | i 1 | | | 11 | | 1 +LUV.LS
} 1 1 1 i] i i i i i 1 M 1
t Il ! i |) i 1 | 1 1 |
A I O O | ! AL L N L T as
MR } - } i dH
1] Y 1 1 ! 1 1 i <0'8I>VS
| I | i | |) 1 1
) ' 1 1) I I | |
1 | i 1 | 1 | { |
I T [L . | L e +OAIN
1 \) i [| \ } 1 1
i | 1 1 1 1 |) 1 1 1 '
]] [} 1] { 1 1) L] i 1 t
AENE L Ll e
| | P U . L —H e U
1) 1 1 | | 1 | 1 1 1 [
] | 1 | ' | | f | 1} [B B |
| | " o il i ey i | gt L S B S i
T T T T T T T T] — T T ——— <& eVl
| Il i 1 | | | 1 i 1 I | I 1 | 1 | I R T
0 ! I 1 | 1 | | | [| | | 1 1 1 [[
L] i]]]] ' I i 1 s 1] t] 1 1 N t H]
LT T T r T L T T MY
T T ' i i]] L i i i - i i R S— +HSHU L
| | l 1 | t) ' 1 |] | 1 i 1 1 [I TP
Voo | | i) 1 1 { | 1 1 1 t) i |]
[' | 1 1 | 1 | ' I 1 | | |] t S R |
[1 ' | ! ! \] | | i 1 | i 1 \ | I T
[S T | i i i 1) i i 1) i LI i [i

100 s T O O e A e I T U I O S O e T T e I Y O Yy s O Wiog

180

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTUKE
CONFIDENTIAL INFORMATION OF BC?R SERVICES, INC.

2.11 Electrical SpeclHiications

The electrical drive characteristics listed elsewhere in this specification assume a
maximum of 8 bus slots. Slot-specific elements of the EISA architecture logically support
up to 15 slots. Although an EISA system can logically support up to 15 slots, a practical
system configuration would be unlikely to have more than 8 slots.

2.11.1 Power Consumption

The following table describes the power specification for each slot. Total supply
current and thermal dissipation are product specific and beyond the scope of this
specification.

Supply Supply Guaranteed

Volitage Current Current

+5 Volts + 5% 4.5 amps 2.0 amps

-5 Volts + 10% 2 amps -

+12 Volts + 5% . 1.5 amps -

-12 Volts * 10% 3 amps -

NOTE: Current on any pin cannot exceed 0.5 amps for EISA pios and 1.5 amps
for ISA pins. _
2.11.2 DC Characteristics

Six drive types are used in the EISA bus. They are as follows:

3SL 3-state light drive
TPL Totem Pole light drive
OCL Open Collector light drive
3SH 3-state heavy drive
3TPH Totem Pole heavy drive

OCH Open Collector heavy drive

191

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHiTECTURLE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows the DC output characteristics for each of the output
types.

Output DC Characteristics by Driver Type
3SL TPL OCL 3SH TPH OCH

min|{ maxjmin |max {min | maxjmin jmax | min| max| min |max
Vou (V)| 24 24 24 24
Vo (V) 05 0.5 0.5 0.5 0.5 0.5
Ion (mA) -4 -4 3 -3
IoL (mA) 5.0 5.0 5.0 24 24 24

The following table defines the DC characteristics of an input.

Input DC Characteristics

min| max units
Vi 20 A%
v 0.8 A"

192

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows drive types required for each signal on the bus, signals
that may have expansion-slot loads, and system-board pull up or down resistors required.

Drive, Load, and Pull-up/Pull-down Requirements by Bus Signal

Signal Drive Input Load Pull- Pull- Notes
Name - Type Per Slot (WA) up down

I In (ohms) | (ohms)
AENx TPL 800 -80
BALE TPH 800 -80
BCLK TPH 800 -80
BE®*<3:0> 3SH 800 -80
CHRD OCH 800 -80 1.0K 1
CMD* TPH 800 -80
D<31:0> 3SH 800 -80 82K 1
DAK*<7:0>f TPL 800 | . -80 2
DRQ<7:0>{ 3SL 20 -20 5.6K 13
EX16* OCH 800 -80 300 1
EX32* OCH 800 -80 300 1
EXRDY OCH 800 -80 300 1
1016* OCH 800 -80 300 1
1I0CHK* OCH 800 -80 4.7K 1
IORC* 3SH 800 -80 82K 1
Iowc* 3SH 800 -80 82K 1
JRQ<15:3>| OCL 20 -20 82K 1,4
LA*<31:24> 3SH 800 -80 1.0K 1
LA<23:2> 3SH 800 -80
LOCK* 3SH 800 -80 1.0K 1
M-10 3SH 800 -80
M16* OCH 800 -80 300 1
MAKx* TPL 800 -80
MASTER16% OCH 800 -80 300 1
MRDC* - 3SH 800 -80 |~ 82K 1
MREQx* TPL 82K 1
MSBURST*| 3SH 800 -80 8.2K 1
MWTC* 3SH 800 -80 82K 1
NOWS* OCH 800 -80 300 1
OSC TPH 800 -80
REFRESH* | OCH 800 -80 300 1
RESDRYV TPH 800 -80
SA<19:0> 3SH 800 -80
SBHE* 3SH 800 -80
SLBURST* | OCH 800 -80 300 1
SMRDC* TPH 800 -80
SMWTC* TPH 800 -80
START* 3SH 800 -80 8.2K 1
T-C 3SH 800 -80
W-R 3SH 800 -80 -

193

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

NOTES:
1. These pull-up and pull-down resistors are required on system boards only.

2. A maximum of 6 slots at a time may be filled with adapters connected to any
one of the individual DAK* <7:0> signals.

3. Low-level input leakage current on the DRQ<7:0> inputs is such that the pull
down resistors %;Jarantee a logic low when no device is driving the signals. To
protect drivers from damage due to incorrect system configuration (totem-pole
and open-collector outputs sharing the same line) all DRQ outputs must include
a up to a 47 ohm series resistor between the driver output and the bus. This is
unnecessary if the driver can stand to be continuously driven to any voltage
between Vec and ground without damage.

4. ISA compatible devices may drive the IRQ < 15:3> signals with a totem pole
output and as such cannot share interrupts. To protect drivers from damage
due to incorrect system configuration (totem-pole and open-collector outputs
sharing the same line), [RQ<x> outputs must include up to a 47 ohm series
resistor between the driver output and the bus. This is unnecessary if the driver
can stand to be continuously driven to any voltage between Vcc and ground
without damage. ,

2.11.3 Signal Routing and Capacitive Loading Requirements

Signal run lengths between the bus connector and the drivers and receivers on
expansion boards should be limited to 2.5 inches.

The following table shows the maximum allowable loading capacitance for
expansion boards, mcluding wiring capacitance, and the total load ca acitance an
expansion board must drive. Total foad capacitance for signals driven only by the system
board is product specific and beyond the scope of this specification.

194

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Load Capacitance

Signal -Ioput Load Capacitance
Name . er Slot Total

(H (pf)
AENx 20 -
BALE 20 -
BCLK 20 -
BE*<3:0> 20 240
CHRDY 20 240
CMD* 20 -
D<31:0> 20 240
DAK*<7:0> 20 -
DRQ<7:0> - 120
EX16®* 20 240
EX32* 20 240
EXRDY 20 . 240
1016* 20 240
10CHK* 20 240
IORC* , 20 240
IOWC* 20 240
IRQ<15:3> 20 120
LA®*<31:24> 20 240
LA<23:2> 20 240
LOCK* 20 240
M-IO 20 240
Mie6* 20 240
MAKx* 20 -
MASTER16* 20 - 240
MRDC* 20 240
MREQx* - 120
MSBURST® 20 240
MWTC* 20 240
NOWS*) 20 240
osC 20 -
REFRESH* 20 240
RESDRV 20 -
SA<19:0> 20 240
SBHE* 20 240
SLBURST* 20 240
SMRDC* 20 -
SMWTC* 20 -
START* 20 240
T-C 20 240
W-R 20 240

2.11.4 AC Characteristics

The following bus timing specifications identify the minimum or maximum timing
parameters for EISA signals. To meet the bus timing specifications, an output signal’s
timing must provide margin for the signal to propagate from the driver output to any
receiver input, and for transients caused by transmission line reflections to setile at a stable
TTL logic level.

195

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURF.
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following definitions apply to all of the AC characteristics:

SETUP - applicable to inputs, the time preceding a sampling event during which the state
(high or low) of the incoming signal must not change.

HOLD - applicable to inputs, the time following a sampling event during which the state
(high or low) of the incoming signal must not change.

DELAY (min) - applicable to outputs, the minimum time following a timing event before
which the state (high or low) of the outgoing signal can change.

DELAY (max) - applicable to outputs, the time following a timing event after which the
state (high or low) of the outgoing signal must not change.

2.11.4.1 ISA-compatible Timing Parameters

This section specifies the timing requirements for all ISA compatible devices. The
ISA bus timing is divided into two main groups, CPU cycles and bus master cycles. ISA bus
masters which do not synchronize their signals to B%L,K must use the bus master cycle
specifications. ISA bus masters which synchronize their signals to BCLK have the C{Edon of
using CPU cycle specifications where the parameters are equivalent, and must use the CPU
cycle specifications for NOWS*.

The following assumptions are included in the calculations which were used to
create these specifications:

1) A device which generates a signal can meet the timing specs into the
specified AC and DC load.

2) CPU cycle timing numbers are measured at the system board drivers and
receivers. Master timing numbers are measured at the master's drivers and
receivers.

3) Bus propagation delay has not been included in the ISA timing calculations.
It is the responsibility of the slave. designer to guarantee that there is
sufficient margin in the design to allow for bus propagation delay. -

4) Each driver for a signal must drive the signal such that it can settle to within
the TTL input DC spec (less than 0.8 volts or greater than 2.0 volts) at the
specified location on the bus within the specified delay time.

S) For drivers with open-collector type of outputs, the "valid" delay must include
the rise time of the pullup resistor and the bus capacitance, to guarantee that
the input is above a valid logic-high level (2.0 volts) if the input is negating
during the time in question.

The ISA timing specifications are based on the timing for an IBM(R) PC-AT Model

339. Three classes of timing parameters are shown, delays from one system or bus master
output to another, slave input-to-output delays, and system input setup.

196

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

chronous slaves which do not use BCLK are required only to meet the input-to-
output delays specified. When a slave's outputs are a function of more than one input from
the system, the slave's design must guarantee that all of the delay specifications indicated
here are satisfied. However, for any one bus cycle the actual switching time of the output
will be determined by the latest specification to be satisfied.

NOWS?* is a synchronous signal and masters and slaves which use it are required to
meet setup and delay times from BCLK.

Figure 75 shows the timing parameters for the ISA-compatibie portion of the EISA
bus. Please note that Figure 75 is two pages long.

Figure 76 shows timing paramters for the ISA-compatible portion of the EISA bus
for bus master cycles.

Figure 77 is similar to figure 75, with the exception that the signals are illustrated
from the perspective of the device.

197

EP 0 426 184 A2

-

3]

TEZ

3

EXTENDED INDUSTRY STANDARD ARCH
CONFIDENTIAL INFORMATION OF BCPF. SERVICEES, INC.

Figure 75 - 1SA Bus Timing, System Timing

al T g v

T

LA

N\

-
e

i

$S340QY GIWVA

ANIV QA

910l

+JM01 "4 D0l
+OLMH 'sOUUN
«JILMAS TWDAUNS

«JHES

'<OBI>VS

<Lrge>vi

XNZV

avd

198

EP 0 426 184 A2
Figure 75 - ISA Bus Timing, System Timing

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

i e ik R N
viva anvA //////////////////////M/%%//W////V/_ VIVO ALidm

D >

VLVQ Qvay
” |
S : i
A W AQUHD
@lom.llv 4———@- ¥ @lv_
[P : {
@—w e
(_ — o ¥IDd
i _
&—» | m “
&> = | M
_ SMON

@ |« L

| _ P
| |
HI 19 4 KL (K 08 v

199

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75

Ret { - o !S_AN@ M MAM.ESIGNAL : - Timing (ns) {Note
R IS numc"“pmns DESCRIPTION Min | Max
i LA<23:117> vahd beforeBALEaserted 56
2 |LA<23:17> valid before BALE negated 116
3 LA<23:17> valid before MBDC* MWTC* asserted

3a Memory Access to 16-bit ISA Slave 112
3b Memory Access to 8-bit ISA Slave 176
9 1SA<19:0> & SBHE* valid before BALE negated 28
10 |SA<19:0> & SBHE* valid before MRDC* MWTC™ asserted

10a Memory Access to 16-bit ISA Slave 24
10b Memory Access 10 8-bit ISA Stave 88
10 |SA<19:0> & SBHE* valid before SMRDC* SMWTC* asserted

10¢ Memory Access to 16-bit ISA Slave ' 28
10d Memory Access to 8-blt ISA Slave 88
10e [SA<19:0> & SBHE* valid before IORC*,|IOWC* asserted 88
11 |SA<19:0> & SBHE?* valid before MRDC* MWTC* nggated

11a Memory Access to 16-bit ISA Slave - 2 BCLK 150
11b MemoryAcoesstow-buISASlave-StandarﬁCyde(aBCLK) 270
11c | Memory Access to 16-bit ISA Slave - 4 BCLK 30
11d Memory Access to 8-bit ISA Slave - 3 BCLK . 270
11e Memory Access to 8-bit ISA Stave - Standard Cycle (6 BCLK) 630
11f Memory Access to 8-bit ISA Slave - 7 BCLK 750
12 IBALE asserted before BALE negated 30
13 |BALE asserted before MRDC*,MWTC* asserted

13a Memory Access to 16-bit 1ISA Slave 30
13b | Memory Access to 8-bit ISA Slave 90
13 |BALE asserted before SMRDC* , SMWTC* asserted

13¢ Memory Access to 16-bit ISA Slave 30
13d { Memory Access to 8-bit ISA Slave 90
13e |BALE asserted before IORC* JOWC* asserted 90
14 {BALE asserted before LA<23:17> invalid

200

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

BN “JSA COMEA ms&smﬁm »Timing {ns) {Note

; QPR A«&»&J.\e-u\mﬁ]mm P W DﬁSCBlPT!OR Min-Max
15 |BALE asserted before MRDC*,MWTC*, SMRDC*, SMWTC* negated

15a Memory Access 1o 16-bit ISA Slave - 2 BCLK 154
15b Memory Access to 16-bit ISA Slave - Standard Cycle (3 BCLX) 274
15¢ Memory Access 10 16-bit ISA Slave - 4 BOLK 334
15d Memory Access to 8-bit ISA Save - 3 BCLK 274
15e Memory Access to 8-bit ISA Slave - Standard Cyde (6 BCLK) 634
15§ Memory Access 1o 8-bit ISA Slave - 7 BCLK 754
18 |BALE negated before LA<23:17> invalid 22
22 |MRDC*,MWTC* asserted before LA<23:17> invalid
224 Memory Access 1o 16-bit ISA Slave 25
22b Memory Access to 8-bit ISA Slave -30
23 |MRDC* MWTC* asseried before MRDC* MWTC* negated
23a Memory Access o 15-bit ISA Slave - 2 BCLK : 104
23b Memory Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 230
23c Memory Access to 16-bit ISA Stave - 4 BCLK 350
230 Memory Access to 8-bit ISA Stave - 3 BGLK 166
23e MemoryAcmstoB—bMSASlave~StarwdardCyde(sscu<) 530
23t Memory Access to 8-bit ISA Slave - 7 BOLK 650
23 |SMRDC*,SMWTC* asserted before SMRDC*,SMWTC* negated
23g | Memory Access to 16-bit ISA Siave - 2 BOLK 98
23h Memory Access to 16-bit ISA Slave - Standard Cycle 3 BCLK) 222
23 Memory Access to 16-bit ISA Slave - 4 BCLK 350
23k Memory Access to 8-bit 1SA Stave -3 BOLK 160
23! Memory Access 1o 8-bit ISA Slave - Standard Cycle (6 BCLK) 530
23m| Memory Access 10 8-bit ISA Slave - 7 BOLK 650
23 |IORC*.JIOWC* asserted before IORC*,|IOWC* negated
230 | 1/0 Access to 16-bit ISA Slave - Standard Cycle 3 BCLK) 166
23p 1/0 Access to 16-bit ISA Slave - 4 BCLK 290
23q 1/0 Access to 8-blt ISA Slave - 3 BCLK 168
23r 1/0 Access to 8-bit ISA Stave - Standard Cycle {6 BCLK) 530
23s 1/0 Access to 8-bit ISA Slave - 7 BCLK 650
24 |MRDC*.MWTC* asserted before SA<19:0> invalid
24a Memory Access 10 16-bit ISA Slave - 2 BCLK 152
24b Memory Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 272
24¢ Memory Access lo 16-bit ISA Slave - 4 BCLK - 392
24d Memory Access o 8-bit iSA Slave - 3 BCLK 212

201

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

A COMPATISLE SIGNAL “Timing (ns).{Note
B ' RINTINING PARAMETERS DESCRIFTION MR P Max {7
24e Memory Access to 8-bit ISA Slave - Standard Cydle (6 BCLK) 572
24t Memory Access to 8-bit 1SA Slave - 7 BGLK 692
24 |SMRDC*,SMWTC* asserted before SA<19:0> invalid
24g Memory Access to 16-bit ISA Slave - 2 BCLK 152
24h Memory Access to 16-bit ISA Slave - Standard Cydle (3 BCLK) 272
24 Memory Access to 16-blt ISA Slave - 4 BCLK 382
24k Memory Access to 8-bit ISA Stave - 3 BCLK 212
24l Memory Access to 8-blt ISA Slave - Standard Cycle (6 BCLK) 572
24m| Memory Access to 8-bit ISA Slave - 7 BCLK 692
24 {IORCH,JOWC* asserted before SA<19:0> invalid
240 1/0 Access to 16-bit ISA Slave - Standard Cycie (3 BCLK) 212
24D 1/0 Access 1o 16-bit ISA Slave - 4 BOLK 332
24q 1/0 Access to 8-bit ISA Slave - 3 BCLK 212
24r 1/0 Access to 8-blt ISA Slave - Standard Cydie (6 BCLK) 572
24s 1/0 Access 1o 8-bit ISA Slave - 7 BCLK 692
25 IMRDC*,MWTC* asserted before next BALE asserted
253 Memory Access 1o 16-bit ISA Slave - 2 BCLK 160
25b Memory Access 1o 16-bit ISA Slave - Standard Cydle (3 BCLK) 280
25¢ Memory Access to 8-bit ISA Slave - 3 BCLK 220
25d Memory Access to 8-blt ISA Slave - Standard Cycle (6 BCLK) 580
25 |SMRDC*,SMWTC* asserted before next BALE asserted
25e Memory Access to 16-bi ISA Slave - 2 BCLK 160
25f Memory Access to 16-bit ISA Slave - Standard Cydle (3 BCLK) 280
25g Memory Access 10 8-bit ISA Siave - 3 BCLK 220
25h Memory Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 580
25 |IORC* JOWC* asserted before next BALE asserted a
25i 1/0 Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 220 a
25§ 1/0O Access to 8-blt ISA Slave - 3 BCLK 220 a
25k {/O Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 580 a
26 |MRDC*,MWTC* asserted before next MRDC* MWTC* asserted
26a Memory Access to 16-bit ISA Slave - 2 BCLK 228
26b Memory Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 350
26¢C Memory Access to 8-bit 1SA Slave - 3 BCLK 290
26d Memory Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 650
26 [SMRDC*,SMWTC* asserted before next SMRDC*,SMWTC* asserted
26e | Memory Access to 16-bit ISA Slave - 2 BCLK 98
26f Memory Access to 16-bit ISA Stave - Standard Cycle (3 BCLK) 222
26 Memory Access to 8-bit ISA Slave - 3 BCLK 160

202

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH:TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

SA

N e BRI TR DRI

2=} - Timing {ns) {Note

MING PARAMETERS DESCRIP R Lt Min] Max]

Memory Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 530
26 HORC*,|0WC* asserted before next IDRC* IOWC* asserted a
26i 1/0 Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 350 a
26j 1/0 Access to 8-bit ISA Stave - 3 BCLK 290 a
26k 1/0 Access to 8-bit ISA Stave - Standard Cycle (6 BCLK) 710 a
27a |MRDC*,MWTC* negated before SA<18:0> lavalid 32
27b |SMRDC* , SMWTC* negated before SA <19:0> Invalid 32
27¢ |IORC*,|OWC* negated before SA<19:0> nvalid 32

23a [MRDC*,MWTC* negated before next BALE asserted 36
29b {SMRDC*,SMWTC* negated before naxt BALE asserted . 36
29c {|IORC* IOWC* negated before next BALE asserted 36

31 |LA<23:17> valid to M16* valid : 96

32 {LA<23:17> valid to NOWS* asserted

32a Memory Access to 16-bit ISA Slave - 2 BCLK 156

32b Memory Access to 8-bit ISA Slave - 3 BCLK 280

33 |LA<23:17> valid to CHRDY negated
33a | MemoryAccess to 16-bit ISA Slave - 4 BCLKs 284
33b Memory Access to 8-blt ISA Slave - 7 BCLKs 654

34 |LA<23:17> valid to read data valid

3a Memory Access to 16-bit ISA Slave - 2 BCLK 204
34b Memory Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 330
34c | Memory Access o 16-bit 1SA Slave - 4 BCLK 456
34d | Memory Access to 8-bit ISA Slave - 3 BCLK 320
34e Memory Access to 8-bit {SA Stave - Standard Cycle (6 BCLK) 694
34¢ Memory Access 1o 8-bit ISA Slave - 7 BCLK 820

36 | BALE asserted to NOWS* asserted

36a Memory Access to 16-bit [SA Slave 70

36b Memory Access to 8-bit ISA Slave 196

203

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

Q.SMAW&GNAL

Ret

N _mmmpmmmscmmm

37 IBALE assartad to CHRDY negated

37a Memory Access to 16-bit ISA Slave - 4 BCLKs 200
37b Memory Access to 8-bit ISA Stave - 7 BCLKs 560
37c 1/0 Access to 16-bit ISA Slave - 4 BCIKs 200
37d 1/0 Access to 8-bit ISA Slave - 7 BCLKs) 560
38 |BALE asserted to read data valid .

38a Memory Access to 16-bit ISA Slave - 2 BCLK 120
38b Memory Access to 16-bit 1ISA Slave - Standard Cycle (3 BCLK) 246
38¢ Memory Access to 16-bit ISA Slave - 4 BOLK 370
38d Memory Access to 8-bit ISA Slave - 3 BCLK 236
38¢ Memory Access to 8-bit ISA Slave - Standard Cydle (6 BCLK) : : 610
38f Memory Access to 8-bit ISA Slave - 7 BCOLK 730
38h 1/0 Access to 16-blt ISA Slave - Standard Cydle (3 BCLK) - 246
38 1/0 Access to 16-bit ISA Slave - 4 BCLK 370
38k i/0 Access to 8-bit ISA Slave - 3 BCLK - 236
38! 1/0 Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 610
38m| /O Access to 8-bit ISA Slave - 7 BCLK 730
40 {SA<19:0>, SBHE valid to NOWS* asserted

40a Memory Access to 16-bit ISA Slave - 2 BCLK 68
40b | Memory Access to B-bit ISA Slave - 3 BCLK 182
40d | 1/0 Access to 8-bit ISA Slave - 3 BCLK 182
41 |SA<19:0>, SBHE valid to CHRDY negated

41a Memory Access to 16-bit ISA Slave ‘ 196
41b Memory Access 1o 8-bit ISA Slave 560
41c i/0 Access to 16-bit ISA Slave 196
41d 1/O Access to 8-bit ISA Siave 560

42 |SA<19:0>, SBHE valid to read data valid

42a | Memory Access 10 16-bit ISA Slave - 2 BCLK 116
42b Memory Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 242
42¢ Memory Access to 16-bit ISA Slave - 4 BCLK 366
42d Memory Access to 8-bit ISA Slave - 3 BCLK 232
42e¢ Memory Access to 8-bit ISA Slave - Standard Cycle (6 BCLK) 606
421 Memory Access to 8-bit ISA Slave - 7 BCLK) 726
42h 1/0 Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 242
42j 1/O Access to 16-bit ISA Slave - 4 BCLK 366
42k | 1/0 Access to 8-bit 1SA Stave - 3 BCLK . 232

204

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTUP.E
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

{Note

42m| /0 Access to 8-bit ISA Slave - 7 BOLK
46 |MRDC*, MWTC*, SMRDC*, SMWTC*, IORC*, IOWC*

asserted to NOWS* Asserted
462 Memory Access to 16-bit ISA Slave - 2 BCLK 15
46b | Memory Access to 8-blt ISA Slave - 3 BGLK 80
46d | 1/0 Access to 8-bit ISA Slave - 3 BOLK 80
47 |MRDC*, MWTC*, SMRDC*, SMWTC*, IORC*, IOWC*

asserted to CHRDY negated]
47a | Memory Access to 16-bit ISA Slave - 4 BCLKs 86
47b | Memory Access to 8-bit ISA Slave - 7 BCLKs . 398
47c | 1/0 Access to 16-bit ISA Slave - 4 BCLKs ' 80} b
47d 1/0 Access to 8-bit 1SA Slave - 7 BCLKs 398
48 [MRDC*, SMRDC*, IORC* assarted to read data valid
48a Memory Access to 16-bit ISA Slave - 2 BCLK) 70
48b | Memory Access to 16-bit ISA Slave - Standard Cycie (3 BCLK) 154
48¢ Memory Access to 16-bit ISA Slave - 4 BCLK 314
48d | Memory Access to 8-bit ISA Slave - 3 BCLK 122
48¢ Memory Access 1o 8-bit ISA Slave - Standard Cydle (6 BCLK) 490
48f Memory Access to 8-bit 1SA Stave - 7 BCLK 610
48h 1/0 Access to 16-bit ISA Slave - Standard Cydle (3 BCLK) 130
48j 1/0 Access to 16-bit ISA Stave - 4 BCLK 250
48k 1/0 Access to 8-bit 1SA Slave - 3 BCLK 122
48! 1/O Access to 8-bit ISA Slave - Standard Cydle (6 BCLK) 490
48m| 1/Q Access to 8-bit ISA Slave - 7 BOLK 610
49 _|NOWS* setup to BCLK falling edge 10
S0 INOWS* hold from BCLK falling edge 20

205

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (continued)

— 1SA COAKPAT!BLES!GNAL Timing (ns) |Note
: ' . TIMING PAHAMETERS DESCRIPTION -~ Min.] Max|
54 CHRDY assefted to read data valid
54a Memory Access to 16-bit ISA Slave - 4 BCLKs 80
54b Memory Access to 8-blt ISA Slave - 7 BCLKs 70
54c /O Access to 16-bit 1ISA Slave - 6 BCLKs 80
54d 1/0O Access to 8-bit ISA Slave - 7 BCLKs 70
55 |CHRDY asserted to MRDC*, MWTC*, SMRDC*, SMWTC*, 116
IORC*, IOWC* negated
56 JCHRDY asserted to hext BALE asserted 164
57 |CHRDY asserted to SA<19:0>, SBHE nvalid 164
58 |MRDC*, IORC*, SMRDC* negated to read data invalid - 0}
59 |MRDC*, IORC*, SMRDC* negated to data bus float . 30
61 |Write Data valid before MWTC* asserted
61a Memory Access to 16-bit ISA Siave -40
61b | Memory Access to 8-blt 1ISA Slave (byte copy at end of START) 22
61 |Write Data valid before SMWTC* asserted
61c Memory Access to 16-bit ISA Slave -38
61d Memory Access to 8-bit ISA Slave (byte copy at end of START) 24
61 |Write Data valld before IOWC™* asserted
61e 1/0 Access to 16-bit ISA Slave 22
61f {/O Access to 8-bit ISA Slave (byte copy at end of START*) 22
64 |MWTC*, SMWTC*, IOWC*, negated to WRITE DATA invalid
64a MWTC* negated to WRITE DATA Invalid — 16-bit 25
64b MWTC* neéated to WRITE DATA invalid —- 8-bit g
64c SMWTC* negated to WRITE DATA invalid - 16-bit 25
64d | SMWTC* negated to WRITE DATA invalid — 8-bit 9
64e IOWC* negated to WRITE DATA invalid 25
65 - {Write data valid to MWTC*, SMWTC*, IOWC* negated
65a Memory Access to 16-bit 1SA Sfave - 2 BCLK 86
65b Memory Access to 16-bit ISA Slave - Standard Cycle (3 BCLK) 212
65c | Memory Access to 16-bit ISA Save - 4 BCLX 586
65d Memory Access to 8-bit ISA Siave - 3 BCLK - 208
65e Memory Access 1o 8-bit 1SA Slave - Standard Cycle (6 BCLK) 564

206

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTUKE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 75 (conclusion)

4. Timing (ns) {Note
: : ’ "c“ﬂ.‘::; “"Max
65f Memory Access to 8-bit 1SA Slave - 7 BCLK 684
CHRDY negated hold time 40] | c
CHRDY asserted setup time to BCLK rising 34
70 |SA<19:0> & SBHE* valid before 1016* valid 160
71 |BALE asserted before 1016* valid : 160
72 |AEN valid before BALE asserted) . 45
73 |AEN valid before BALE negated. 100
74 {AEN valid before IORC* asserted .
74a AEN valid before IORC* asserted : 100
74b AEN valid before IOWC* asserted 100
75 {IORC*, IOWC* negated before AEN invalid 30
76 IMRDC*, IORC*, SMRDC* asserted to read data enable 0
77 |LA invalid to M16* ficat delay 0
78 |SA invalid to 1016* float delay 0

Note (a) Assumes no back-to-back |/0 delay. Back-to-back 1/0
delay adds integral number of BCLK periods to
this parameter.

Note (b) Systems designed prior to the EISA specification,
which sample CHRDY on the rising edge of BCLK
require parameter 47¢ max = 24 ns.

Note {c) CHRDY negated (iow) hold time Is measured from the
rising edge of BCLX or the negating (falling) edge of
CHRDY, whichever is later. Devices designed prior
to the EISA specification may require hold time to be
measured exclusively from the rising edge of BCLK.

207

EP 0 426 184 A2
EXTENDED INDUSTRY STANDARD AR:CHITECTURFE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.
Figure 76 - ISA Bus Timing, Bus Master Cycles

Yiv0 QIiva

Z,
3

— vIvD Oiv _/ ,

VLVA RIS

VLVG Qvad

i% | AGHID

+910l
— W91
' : +JROI " YOI
! , BOLY, Erseei
D M e (D]
-

+JHES 553400Y QITVA % +3HBS "SSIHQ0Y GITVA % . +3HES
i <0:61>¥S

«@» <LIERVT

|

_" +9 [HALSVH

208

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH11 ECUFE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 76

16- or 32-bit EISA master timing:
1 MREQ?* delay from BCLK falling 20 33.0
2 MAK?* setup to BCLK falling 10.0
3 MAK~ held from BCLK falling 25.0
4 LA addr, M-Q delay from BCLX falling 20 50.0
5 BE* < > ,W-R delay from BCLK falling 2.0 85.0
BE* <> W-R delay from BCLK rising ** see Note (a) ** 25.0
6 LA addr, M4O, BE*, W-R, MSBURST fioat delay 2.0 50.0
7 LA addr,M-O setup to START* asserted) 10.0
8 START* detay from BCLK rising 20 25.0
9 EX32* (or EX16*) setup to BCLK rising (at CMD) 25.0
10 EX32* (or EX16*) held from BCLK rising (at CMD) 85.0
11 EX32* (or EX16*) setup to BCLK rising (assembly finish) 15.0
12 EX32* (or EX16*) held from BCLK rising (@ssembly finish) 50.0
13 EX32* (or EX16*) setup to BCLK falling (assembly finish) 80.0
14 EX32* (or EX16*) held from BCLK falling (assembly finish) 5.0
15 EXRDY setup to BCLK falling 15.0

209

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTUR™
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 76 (conclusion)

16- or 32-bit EISA master tlrnmg
Description L . “min max
16 EXRDY held trom BCU(falhng 5.0
17 LOCK* delay from BCLK rising 2.0 60.0
18 Data delay from BCLK falling (write) 2.0 40.0
19 Data fit. del.from BCLX falling (write) ** see Note (b) ** 20 50.0
20 Data held after BCLK rising (read) 4.0
(for compressed cycle, from BCLK falling)
21 Data setup to BCLK rising {read) 15.0
{for compressed cyde, to BCLK falling)
22 MASTER16* asserted delay from BCLK falling (16-bit master) 2.0 30.0
23 MASTER16* asserted delay from MAK* <x> asserted (16-bit master) 40.0
24 MASTER16* float delay from BCLK falling (16-bit master) 20 50.0

Note (a): BE < >* bits are allowed to change as early a$ the falling
BCLK when the LA< > bits change.

Note (b): Parameter applies after any write cycle not followed by

another write cycle, or foliowed by write cycle with some
BE < >* bits negated.

210

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECT{IRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 77 - ISA Bus Timing, CPU Cycles (Device Perspective)

=

«9i0l

+JROL “DHOL
LR W IAYN

~ «JLMKS "OYNS

+HAS
<0'61>vS

%////M////f////é/ <L1Ee>v

i (N}

i

_

| [

] N
e | ¥ WN

—@-
- @
&
{
*JHBS "SSHAAY CilvA
—GD
@
53400y QIvA
U<l A
(DM

NIV QITVA

e

XNIV

Tvd

211

EP 0 426 184 A2
EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, IINC.
Figure 77 - ISA Bus Timing, CPU Cycles (Device Perspective)

YIv Qv SOONOONNNNNY - vave acpia

& . ®—» |&
m‘ @
> [4—@®
,. ,,, viva avay
@@L vl @@% >
@
?% o nann AQHHD
< ~-@——— M < O
@ o
(_ o 108
| > @llltv__lI,
m @&-» -
g SHON
_ m @» n.||® wAlxl.AA o %) ©>
: * ” l——————@)
_ ! @-»
T
F. mu _.m

212

EP 0 426 184 A2

NOTICE

In an earlier printing of Version 3.10 of the Specificaticn,
a producticn error had resulted and an additional flgure was
inadvertently included as Figure 75, thus causing the two
following figures to be mislakeled.

We have corrected this prcblem in this printing of Version
3.1, We have replaced pages 157 throuch 180 of Version 23.10.
Beczuse of this correction, there are no replacerents for pages
173 through 180.

213

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.11.42 EISA, DMA, and Refresh Timing Parameters

This section specifies the timing requirements for all EISA devices. The
specification is divided into three main groups corresponding to the main types of EISA
evices: masters, slaves and DMA devices. Figures 78 through 91, and the associated
parameter tables, at the end of this section show the relevant signals and parameters for
the various cycle types.

The timing specifications for EISA are calculated to assist the system or option
board designer to verify his system. The following assumptions are included in the
calculations that were used to create these specifications.

1) A device that generates a signal can meet the timing specs into the specified AC
and DC load.

2) All timing parameters are measured at the receiver and driver of the device
being specitied.

3) Each signal is allowed 5 ns tgxgropagate to the farthest load and to reflect back
to the source (one time). e propagation time is approximately 2 1/2 ms,

based on 16 inches of trace. A worst case propagation path is: 21 /2 inches
from driver to connector, 6 inches from connector across backplane, and up to
71/2 inches from connector to receiver on the system board. This delay
(transmission line delay) is built into the calculations for the system.

4) Each driver for a signal must drive the signal so that it can settle to within the
TTL input DC s;ec (less than 0.8 volts or greater than 2.0 volts) within the
specified output delay plus the 5 ns.

5) For drivers with open collector type of outputs, the delay caused by the rise time

of the pullup resistor and the bus capacitance is included in the calculations for
signals going from low to high. This is used instead of the 5 ns transmission line
delay. The equation used is as follows:

-In(1-(2.0v-0.25v)/(4.75v-0.25v)) * RruLLue* CSIGNAL CAPACTTANCE

This corresponds to a minimum Ve level of 4.75v, a steady state logic low level of
0.25v, and the high level input voltage spec of 2.0v. If a driver's steady state logic
low value is lower than this, then additional time must be allowed for the RC nse
delay by reducing the specified signal output delay. -

Note that the delay in generating the falling edge of the open collector outputs is
allowed to be slower than the EISA spec indicates. The extra delay allowed is equal
to the RC delay for the signal (as calculated above) minus 5 ns. Only the float delay
must actually meet the published spec.

For many logic families, notes 1 to 4 allow a designer to verify a design directly at

- the output of the driver or input of the receiving logic. The 5 ns transmission and settling

time eliminates the need to check the system under various types of loading and with the
adapter in various slots. '

214

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

If a logic driver is used that has a very short rise and/or fall time (less than 4 or 5
ns), then the designer may have to plan for additional settling time or use series damping
resistors. The designer should check these types of drivers in both large, fully loaded
systems and small lightly loaded systems.

As an alternative to using the specified delay values and AC loads for drivers, the
designer may instead guarantee timing at the destination receivers rather than at the source
driver. In this case the designer must insure, through testing, that all possible receivers are
within the TTL input specs within the EISA spec time plus S ns. is testing should be
done in both large fully loaded systems and smagl lightly loaded systems.

A large fully loaded system consists of maximum AC and DC loads on all eight
cards and the system board with the maximum wire lengths allowed between all points.
Small lightly loaded systems consist of a single card with the minimum AC and DC load
and a system board with minimum reasonable wire lengths between all points.

215

EXTENDED INDUSTRY STAN
CONFIDENTIAL INFORMATION

EP 0 426 184 A2

DARD ARCHITECTURE
OF BCPR SERVICES, INC.

Figure 78 - 16- or 32-bit EISA Master and System Timing

e e B ¥ D
o TUHHHH UL H
MREQx" 1 z \ B
€, - —
O G+ =
MAKX® — —
MASTERIS® _
{16-Bit Masters)
@—": “—
LA<31:2> F‘M « O -
N-10 - ‘_@ IR — H é——-
E*<3:0 2 . C:>—’i -
o = —
8 P 8
START* | | { |
@b [+ [i
CMD*
O —
Bier T TN N <
@-ﬂ - i i3
EXRDY N\ N\ N N
‘ -—
NOWS® RHLITIT NI IR R
7 — 77 — ‘
LOCK® _aOrOr,:;]G s
READ DATA ————l l—-‘
t— QD> 4
WRITE DATA I§\\\:\ I;.l H Jj

216

"EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 79 - 16- or 32-bit EISA Master
Assembly/Disassembly Timing

= N 1 T I O

LA<31.2>, M-10

i i

Loy |
i ¥ N
W H Low Word H’ High Word
. i H 5 2 1
] ‘ i

BE*<3:0>

i

EX32*

or
EX16*

READ DATA

WRITE DATA

Nole: Thick hines indicale where control lransfers from Master to System
or from System lo Master.

217

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 78 - 79

16~ or 32-bit EISA master timing:
MREQ* delay from BCLX falling 2.0 33.0
2 MAK* setup to BCLK falling 10.0
3 MAK* held from BCLK falling 25.0
4 LA addr, MHO delay from BCLK falling 2.0 50.0
5 BE* < >, W-R delay from BCLK falling 2.0 8s.0
BE* < > W-R delay from BCLK rising ** gsee Note (a) ** 25.0
6 LA addr, M-0O, BE*, W-R, MSBURST fioat delay 2.0 50.0
7 LA addr,M-O setup to START* asserted 10.0
8 START* delay from BCLK rising 20 25.0
9 EX32* (or EX16*) setup to BCLK rising (at CMD) 25.0
10 |EX32* (or EX16*) held from BCLK rising {(at CMD) 55.0
11 EX32* (or EX16*) setup to BCLK dsing (assembly finish) 15.0
12 EX32* (or EX16*) held from BCLK rising (assembly finish) 50.0
13 EX32* (or EX16*) setup to BCLK falling (assembly finish) 80.0
14 |EX32* (or EX16) held from BCLK falling (assembly finish} 5.0
15 EXRDY setup to BCLK falling 15.0

218

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITCCTURLE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 78 - 79

| 16- or 32-bit ES EISA master nmmg
16 |EXRDY held trom BCLK falhng
17 |LOCK* delay from BCLK rising 20 60.0
18 {Data delay from BCLK fafling (write) 2.0 40.0
19 Data fit. del.from BCLK falling (write) ** see Note (b) ** 2.0 50.0
20 |Data held after BCLK rising (read) 40
(for compressed cyde, from BCLX falling)
21 Data setup to BCLK rising (read) 15.0
(for compressed cycle, to BCLK falling)
MASTER16* asserted delay from BCLK falling (16-bit master) 20 30.0
23 |MASTER16* asserted delay from MAK* <x> asserted (16-bit master) 40.0
24 IMASTER16* float delay from BCLK falling (16-bit master) 2.0 50.0

Note {(a): BE< >* bits are allowed to change as early as the falling

BCLK when the LA< > bits change.

Note (b): Pararneter applies after any write cycle not followed by
another write cycle, or followed by write cycle with some

BE < >* bits negated.

219

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AVCRITZCTURE

CONFIDENTIAL INFORMATION OF ECP2 SERVICES, INC.

Parameter Table for Figures 78 - 79

System timing (misc)

.........

taiDascription sl k&

Sraiets BAURRR

Note: The following tnmlng specifications supplement or

supercede the master and master burst timing specifications.

24 |BCLK high time 55.0

25 BCLK low time 55.0

26 |BCLK period (when free running) 120.0 250.0

Max value can be longer when belng stretched

27 |CMD* delay from BCLK rising 2.0 25.0

ISA commands delay from BCLK 2.0 30.0
MRDC, MWTC, IORC, and IOWC

BALE delay from BCLK edge 2.0 25.0
SA< >, BHE* delay from BCLK edge 2.0 30.0

28 |MAK* delay from BCLK rising 2.0 40.0
AENXx high from BCLK falling delay (DMA, etc starts) 20 60.0
AENX low from BCLK falling (DMA, etc ends) 5.0 60.0
AENx valid delay from LA< > addr (1/0 cycle) 0.0 15.0
Data copy buffer ficat from BCLK 2.0 35.0
Data copy buffer delay {for bus to bus copies) 0.0 15.0
Data copy butfer enable from BCLK 2.0 35.0
MREQ* setup to BCLK rising 15.0
MREQ* setup to BCLK falling 80.0
MREQ?* held from BCLK falling 20
BE* W-R setup to BCLK falling {for SA1,0,BHE xat) 250
BE* W-R hold from BCLK falling (for SA1,0,BHE >d.at) 55.0
START* setup to BCLK faling (Master drives START™®) 25.0

220

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 78 - 79

L System timing (misc):)

S - iDesoription.. . vl o ol cne UEORNGERROEREARG. o {- min max
START* hold from BCLK falling (Master drives START*) 45.0
MASTER16* setup to BCLK rising 20.0
MASTER 16" held from BCLK rising 5.0
M16* setup to BCLK rising 18.0
M16* hold from BCLK rising 25.0
NOWS* setup to BCLK rising (ISA cycles) 10.0
NOWS* hold (ISA cycles) 20.0
CHRDY negated setup to BCLK falling 15.0
CHRDY negated hold from BCLK rising (preset PW) 20.0
CHRDY assarted setup to BCLK rising 10.0
CHRDY asserted hold from BCLK rising 20.0
1016* setup to BCLK falling 20.0
1016* hold from BCLK falling 20.0
Note: The following system board setup and delay timing
specifications inciude time for copy buffer input or output
and routing to the correct byte lanes.
1SA read data setup to BCLK risiné (latch setup) 15.0
I1SA read data hold from BCLK rising (latch hold) 2.0
ISA Write data delay from BCLK falling (assembly cycles) 20 55.0
1SA write data delay from BCLK rising (8-bit) 2.0 35.0
EISA Data delay from BCLK falling (write) 2.0 55.0
E{SA Data setup to BCLK rising (read) 30.0

221

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 78 - 79

System timing (misc):

e [DescripBoniivg R e e L s o i TR,
REFRESH* asserted delay from BCLK falling 2.0 60.0
REFRESH* negated delay from BCLX falling 2.0 40.0
BE* delay from BCLK rising {assembly cycles) 0.0 35.0
SA addr to LA addr delay (ISA master translate) 0.0 15.0

222

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTLRE

CONFIDENTIAL INFORMATION OF 3CPR SERVICES, IisC.

Figure 80 - System Timing (Assembly Cycles)

BCLK

@O
O —

|
(r"
WRITE [

DATA [
’@» <

READ

1

DATA

EX32°
EX16°

Parameter Table for Figure 80

2 _ |Data held from BCLK rising (grab data, write assemble) 30

3 |Data delay from BCLK falling (redrive data,read assem) 5 30
4 |Data float after BCLK rising (redrive data,read assem) 50
5 IEX32* (or EX16*) delay from BCLK falling (assembly finish) 2 35

223

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 81 - 16- or 32-bit EISA Slave Timing

BCLK
LA<31:2>
N-10
BE'<3:0>
¥-R
START*
CMD*
Ex32*
EX16*
EXRDY
NOWS*
LOCK®
, —b IT;@ <D
READ DATA l E jl § E
P
—p *YED) > D
WRITE DATA H ’__
4)
Signals for EISA 1/0 Cycles
4—2D—» ,
L1016 AT A IS DI]

224

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURE
CONFIDENTIAL INFORMATION OF BCFR SERVICES, INC.

Parameter Table for Figure 81

8, 16 or 32-blt EISA slave timing:

P rm i Descriptioniie s : <55 -+ max

1 LA addr,M40 setup to START*® assarted 10.0

2 LA addr,MHO setup to CMD* asserted or START* negated 120.0

3 LA addr,M-O setup to BCLK rising {(at CMD) 120.0

4 BE* <> ,W-R satup to CMD* asserted or START* negated 80.0

5 BE* < > ,W-R setup to BCLK rising (at CMD) 80.0

6 LA addr MHO,W-R,BE* held from CMD* asserted and START* negated 15.0

7 LA addr M4O,W-R,BE* held from BCLK rising(nomal) 20.0

8 START* pulse width 115.0

9 7 CMD* puise width (standard) : 115.0 5000

10 EX32* (or EX16*) float delay from LA addr, M-1O - 2.0 54.0

11 |EX32* (or EX16*) float delay from AEN (/0 cydies) 2.0 34.0

12 }1016* delay from LA addr (1/0 cycles) 2.0 54.0

13 [EXRDY negated delay from BCLK rising (at CMD) 35.0

14 |EXRDY negated delay from LA< > M-10,AEN 145.0

15__|EXRDY negated delay from START* asserted 20] 1250

16 EXRDY negated delay from CMD* asserted or START* negated 5.0

17 |EXRDY fioat delay from BCLK falling 2.0 40.0

18 |LOCK* setup to BCLK rising 55.0

19 |LOCK* held from BCLK rising 2.0

20 |Data delay from CMD* assert.(read, 16 or 32-bit, 2 BCLK) 50.0
8-bit slave (6 BCLK) 530.0

225

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 81

8, 16 or 32-bit EISA slave timing:

X X {g& 5 A L, A =X min max -
21 Data delay from START* assert.(read, 16 or 32-bit, 2 BCLK) 170.0
8-bit slave (6 BCLK) 650.0
22 Data delay from BCLK rising (read, 16 or 32-bit) 0.0 80.0
8-bit glave (6 BCLK] 560.0
23 Data fioat delay from CMD* negated (read) 30.0
24 Data delay (hoid) from CMD* negated (read) 2.0
25 Data setup to CMD* asserted (write, 16 or 32-bit) -10.0
8-bit slave (6 BCLK) -35.0
26 Data setup to CMD* negated (write, 16 or 32-bit) 110.0
g-bit stave (6 BCLK)} 564.0
27 |Data held after CMD* negated (write) 25.0
28 |AEN setup to CMD* asserted or START* negated (1/O cycies) 95.0
29 |AEN held from CMD* asserted or START* negated (I/O cycles) 25.0
33 START* asserted to CMD* asserted setup 90.0
34 START* asserted to BCLK rising (at cmd) 90.0
35 START* asserted to CMD* negated (overlap) 30.0
36 |CMD* asserted to START” negated {(overap) 25.0
37 START* negated 1o CMD* asserted (gap) 250

226

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICLS, INC.

Figure 82 - System Timing (COMPRESSED Cycles)

BCLK

LA<31 2>
M-10

BE*<3:0>
¥-R

START*

EX32*
EX16*

NOWS®

READ D<31:0>

WRITE D<31:0>

Lo

2 —
—» O
D e
IAX.

O

|

—» | e

L

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 82

Note

=%

1 START* negated or CMD* asserted delay from BCLK rising

2 LA Address, MJO W-R, BE* <> delay from START* negated or 15
or CMD* asserted
3 |LA addr, M-O delay from BCLK rising (at CMD* asserted), burst not supported 20 50
burst supported 20 45
4 BE*< > ,W-R defay from BCLK rising (at CMD* asserted) 20 85

5 |CMD* asserted pulse width

6 |NOWS* setup to BCLK rising (compressed cycles) 15
7 |NOWS* held from BCLK rising (compressed cycles) B 5
8 |Data held after BCLK falling (read) 4
9 |Data setup to BCLK falling (read) 15
10 [Data delay from BCLK falling (write)(BCLK at START* asserted) | 57
11 |Data valid before BCLK rising at CMD* asserted (write) 15
12 |Data valid before START* negated or CMD* asserted (write) 20

Note: The Master or Normal System timing numbers apply except where the
above numbers add to or supercede them.

228

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITEC'UR<
CONFIDENTIAL INFORMATIO:N OF BCFR SERVICES, :NC.

Figure 83 - 16- or 32-bit EISA COMPRESSED Cycle - Slave Timing

BCLX

LA<31:2>

M-10. AENX

BE*<3:0>

¥-R

START®

Cup*

EX32*
EX16*

NO¥S*

READ D<31:0>

WRITE D<31:0> ANAINNNWH

TR

'

—

229

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECYURE

CONFIDENTIAL INFORMATION OF BCFR SERVICES, INC.

Parameter Table for Figure 83

16- or 32-bit EISA compressed cycle slave timing:

v wiDescription s A 5 R PR ~min] o max

1 LA <31:2> M4Q,W-R,BE* held from BCLK rising(compr) 20.0

2 CMD* puise width (compressed) 50.0

3 NOWS* asserted delay from START* asserted (compressad) 0.0 70.0
4 NOWS?* assarted delay from LA < > MJO,AEN (compressad) 80.0
5 NOWS* asserted delay from BE*, W-R (compr&ssed) 65.0
6 NOWS* flcat delay from START™ negated (compressed) 0.0 30.0
7 Data delay from START* assert.(read compressed) 150.0
8 Data delay from CMD* assert.(read compressed) 5.0
g Data delay from BCLK rising (read compressed) 0.0 30
10 |Data setup to CMD* asserted and START* negated (write compressed) 20.0

11 Data setup to BCLK rising (write compressad) 15.0

12 Data setup to CMD* negated {write compressed) 85.0

13 Data held after CMD* negated (write compressed) 25.0

230

EP 0 426 184 A2

EXTENDED INDUSTRY STANDAF-D ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPK SERVICES, INC.

Figure 84 - Refresh Cycle - Slave Timing

AYOWIN VSE A UdsiVD

ALYLS LiVR INO Hlis HSHU4dY

AUOWANW Lid-c€ Ad ddSnvd
dLVLS LiVA 3NO HLitW HSIHJGY

JI0AD HSIUdAY IVANYON

o L
w } v
S R | J 1
B o
ol e
—— T/ J]
HI@\ COM
| A I | I 1
o | { }
@ln_ +— M D ..@J
S | I | | I
[——CEO—— M — O O

AUGUHD
AQyXd
RO

+LUVIS

«3H48
<0'61>VS

+IUUN

<giie>v

J1S3USY

w108

231

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, inC.

Parameter Table for Figure 84

Refresh cydle slave timing:

; ki TR L e, - e 1. min " § max
REFRESH* valid setup to SA< > address 0.0
REFRESH* valid setup to MRDC* asserted 120.0
REFRESH* valid hold from MRDC* negated 20.0
SA< > address setup to MRDC* asserted (refresh) 70.0
SA <> address hold from MRDC* negated (refresh) 25.0
MRDC* pulse width (refresh) 235.0
REFRESH* asserted setup to START* asserted : 55.0
REFRESH* negated setup to START* asserted 10.0
REFRESH* held from CMD* negated 20.0

232

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 85 - 16- or 32-bit EISA Master Timing, Burst

BCLK

e | C
:g:srz.me') s [
wnehifl Masters 4 . ! : ! z ; : '

D L

1)2A_<131;2> 4 ’ H |5 H 3 |

BE®<3:0> - ; -{.5 O

¥-R —— ; l i ﬁ‘ : j

e L e I B I e W

- EEEEEEEEE

EX16° — A

EXRDY N\ E " ir]-o/) :) ji 4
|k | i |~ D

MSBURST* i fLi . . +

SLBURST® A

' READ DATA : 2 IS

| g
Bd
_WRITE DATA — T H 2 H 3 H 4 H 5 b——

1) EISA Standard Access (Start of Burst) 4.5) EISA Burs! Access
2} EISA Burst Access 6) EISA Slandard Access
3) EISA Burst Access with One Wait State

233

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURLE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 85

16- or 32-bit EISA master ¢ timing, Burst:

1 LA <31:2>, BE* <3:0> delay from BCLK talling 2.0 45.0
2 MSBURST* delay from BCLK falling 2.0 35.0
3 SLBURST* setup to BCLK rising 15.0
4 SLBURS%‘ held from BCLK rising 25.0
5 Data delay from BCLK rising (write) 5.0 40,0
6 Data hold from BCLK rising (write) 5.0
7 Data held after BCLK rising (read) - 5.0
8 Data setup to BCLK rising (read) 15.0
9 MASTER16* asserted delay from BCLK rising (downshift) 2.0 50.8
10 [MASTER16* fioat delay from BCLK rising (downshift) 2.0 40.0

234

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF B8CPR SERVICES, INC.

Figure 86 - 16- or 32-bit EISA Slave Timing, Burst

. WRITE DATA

BCLK
LA<31:2>
M-10
BE*<3:0>
W-R .
' NERE R
START* L1 R —
b Lo
cMD* 2 RN
P oo
HE R RN
Bxiae S\
S SR N R N
EXRDY BLLUANIINY 'L/ ! P
! i i 1 i :
¥ e S|~
MSBURST® i 4 + 4 ’
S R
SLBURST" DG { P |
; ‘ LD e
| oo ol
READ DATA I) \\NE iR e tBl
GO [M eCD G T
1 2

1) EISA Standard Access (Start of Burst}
2) EISA Burst Access
3) EISA Burst Access wilh One Wait State

235

4.5) EISA Burst Access
6) EISA Slancard Access

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTUKRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figure 86

16- or 32-bit EISA slave timing, Burst

LA addr,BE < >* setup to BCLK rising 5.0
2 LA addr,BE < >* held from BCLK falling 2.0
3 MSBURST* setup to BCLK rising 15.0
4 MSBURST* heid from BCLK rising 45.0
5 LA address to SLBURST* delay - 2.0 55.0
6 Data delay from BCLK rising (read) 35.0 80.0
7 Data float delay from BCLK rising (read) 2.0 50.0
8 Data enable delay from BCLK falling (read) ** see Note (a) ** 0.0 15.0
9 Data enabie delay from BCLK rising (read) ** see Note (a) ** 35.0 80
10 [Data setup to BCLK rising (write) 55.0
11 |Data delay from BCLK rising (write) 5.0 65.0
12 |Data held from BCLK rising (write) 5.0

Note (a): USE EITHER PARAMETER8OR 8

236

EP 0 426 184 A2

EXTENDED INDUSTRY STANDAED ARCHITECTIRE
CONFIDENTIAL INFORMATION OF BCPk SERVICES, INC.

Figure 87 - System DMA Timing

O
BCLK
' l il "‘"} —C
DRQ<x> __1 SN l
@—»} e —> —C
DAK'<x> 1 —
@—»i —
l‘.'A_<R31:2> : r —H —
BE*<3:0> @__,l —
N-10 1 | ——
GO — e—— GO —»
T-C Im |
— & —»

Note: DAK* may be asserled from either the falling or rising edge of BCLX

Parameter Table for Figurg 87

2 |DRQx negated setup to BCLK falling 80
3 |DRQx negated held from BCLK falling 2
4 |DACKx delay from BCLK 10 50
5 |LA<>,BE<> W-R, delay from BCLK falling 2 50
6 |M-lO, delay from BCLK falling 2 50
7 |T-C delay from BCLK (DMA system output mode) 5 35
8 [T-C setup to BCLK rising (DMA system input mode) 15
g |T-C held from BCLK rising (DMA system input mode) 25

Note: The System timing numbers apply except where the above numbers

add to or supercede them.

237

DRQ<x>

AENx

DAK'<x>

LA<31:2>
N-10

SA<18:0>

¥-R

START®

CND~

EX32*
EX16*

EXRDY

10¥C*

MRDC*

DATA

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 88 - DMA Device Timing
Compatible, Type "A", and Type "B" Memory Read Cycles

Cw FeCDO»
—
| _—
{ —H J—i————
B - I
1 A
| -
1]
1 . 1]
O Pe——E—»it—— P
1 S f
f—GO—> QO
T
Q9D | 20 >
> QO

238

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 89 - DMA Device Timing
Compatible, Type *A", and Type "B" Memory Write Cycles

1

DRQ<x> s TS

AENX] |

DAK*<x>

LA<31:2>

N-10 I j

—_—
SA<19:0> —————ri _H —
-

oty

¥-R I |

START” — L

CND* - | Lt

EX32* or—— ' b ——
EX16° 1 S

EXRDY

IORC"

239

EP 0 426 184 A2

EXTENDED INDUSTRY STANDAF.D ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 88-89 (Compatible Cycles)

DMA deviée timing (Compatible)
1 DRQx valld delay from IORC* asserted 2.0 540.0
2 DRQx valid detay from IOWC* asserted 2.0 300.0
3 DAKx* asserted to IORC* asserted 70.0
4 DAKx* asserted to IOWC* asgerted 310.0
5 1ORC* asserted puise width 755.0
6 JORC* negated pulss width (continuous) 165.0
7 IORC* negated to DAKx* negated 100.0
8 {OWC* asserted pulse width 455.0
9 IOWC* negated pulse width (continuous) 455.0
10 JIOWC* negated to DAKx* negated 155.0
11 Data delay from IORC* asserted 0.0 280.0
12 |Data float from IORC* negated 2.0 50.0
13 |Data held from IOWC™* negated 20.0
14 |Data setup to IOWC* negated 240.0
15 [T-C asserted delay from IORC* (system input mode) 560.0
16 |T-C asserted delay from IOWC* (system input mode) 320.0
16a T-C negated delay from IORC* {input mode) 90.0
16b T-C negated delay from IOWC* (input mode) 90.0
17 |T-C enable/disable delay from DAKx* (input mode) 40.0
18 |T-C setup to IORC* negated (system output mode) 500.0
19 |T-C setup to IOWC* negated (system output mode) 500.0
20 [T-C held from IORC* /IOWC* negated (output mode) 60.0
21 T-C pulse width (output mode) 700.0

240

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHJTECTURE

CONFIDENTIAL INFORMATION OF BCPR SEKVICES, Ive.

Parameter Table for Figures 88-89 (Type "A" Cycles)

241

2 DRQx valid delay from IOWC* asserted 2.0 180.0

3 DAKx* asserted to IORC* asserted 70.0

4 DAKx* asserted to IOWC* asserted 190.0

5 IORC* asserted puise width 395.0

6 [IORC* negated pulse width (continuous) 165.0

7 JHORC* negated to DAKX* negated 100.0

8 IOWC* asserted pulse width 335.0

] IOWC* negated pulse width (continuous) 335.0

10 |IOWC* negated to DAKX* negated 155.0

11 |Data delay from IORC* asserted 0.0 280.0

12 |Data float from IORC* negated 2.0 50.0

13 Data held from IOWC* negated 20.0.

14 {Data setup to IOWC* negated 7 240.0

15 |T-C asserted delay trom IORC* (system input mode) 320.0

16 [T-C asserted delay from IOWC* (system input mode) 200.0
T-C negated delay from JORC* (input mode) 90.0
T-C negated delay from IOWC* (input mode) 90.0

17 |T-C enable/disable delay from DAKx* (input mode) 40.0

18 |T-C setup to IORC* negated (system output mode) 300.0

19 |T-C setup to IOWC* negated (system output mode) 240.0

20 |T-C held from IORC* /IOWC* negated (output mode) 60.0

21 {T-C pulse width (output mode) 480.0

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 88-89 (Type "B" Cycles)

. DMA c{gvroe timing (Type "B")

RREL {Dascrpfion Fiivail min - | Cmax” ™

1 DRQx valid delay from {ORC* asserted 2.0 180.0

2 DRQx valid delay from IOWC* assetted 2.0 60.0

3 DAKx* asserted to IORC* asserted 70.0

4 DAKx* asserted to IOWC* asserted 190.0

5 IORC* asserted pulse width 275.0

6 IORC™ negated pulse width (continuous) 50.0

7 IORC* negated to DAKx* negated 35.0}

8 IOWC* asserted pulse width 215.0

9 |IOWC* negated puise width (continuous) - 215.0

10 |IOWC* negated to DAKX* negated 100.0

11 {Data delay from IORC* asserted 0.0 160.0

12 |Data float from IORC* negated 2.0 50.0

13 |Data held from IOWC* negated 20.0

14 Data setup to IOWC* negated 130.0

15 |T-C asserted delay from IORC* (input mode) 190.0

16 |T-C asserted delay from IOWC* (input mode) 70.0
T-C negated delay from IORC* (input mode) 30.0
T-C negated delay from {IOWC* (input mode) 90.0

17 {T-C enabie/disable delay from DAKx* (input mode) 40.0

18 |T-C setup to IORC* negated (output mode) 200.0

19 |T-C setup to IOWC* negated (output mode) 180.0

26 |T-C held from IORC* /IOWC* negated (output mode) -30.0

21 T-C pulse width (output mode) 240.0

- 242

EP 0 426 184 A2

Burst Memory Read Cycle

EXTENDED INDUSTRY STANDARD ARCHITECTUKE
Figure 90 - DMA Device Timing

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

| == O == I e A L @ T
- - 3 5

LTI

__{
sBURST MMIIIMIMIMIIMININININGhNY

LA<31:2>
SA<19:0>
START*
CMD?
EXRDY
10WC
MRDC*
DATA

[
SLBURST®

.
= &
x A

BCLK
DRQ<x>
AENx
DAK*<x>

243

Verlical marks indicale pdassible limes Lo negate DRQ<>.

Nole:

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITFCTURE

”

INC.

24

CES

CONFIDENTIAL INFORMATION OF BCPR SERVI

Figure 91 - DMA Device Timing
Burst Memory Write Cycle

3
a

[PPSR SHUIUIINPPU |

J

DRQ<x>

AENX
DAK*<x>

LA<31:2>

z
7

Z,

NS
vl

w-R
EX32°

SA<19:0>

START®
CND*

EXRDY
1I0RC*
MwTC*

DATA

JpRR——

N\

R NN

N

N

MSBURST®
SLBURST"

Nole. Verlical marks indicale possible times to negate DRQ<x>.

244

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Parameter Table for Figures 90-91

DMA device timing (burst)
1 DRQx negated delay 35.0
2 DAKx* as;ened 10 |IORC* asserted 70.0
3 DAKx* asserted 1o IOWC* asserted 190.0
4 EXRDY setup to BCLK falling 15.0
5 IORC* delay from BCLK falling 2.0 30.0
6 IOWC™ delay from BCLK rising 2.0 30.0
7 IORC* negated to DAKx* negated 100.0
8 IOWC* negated to DAKX* negated - 35.0
9 data delay from BCLK rising (device read) 0.0 40.0
10 |data hold from BCLK rising {device read) 5.0
11 data sstup to BCLK rising (device write) 15.0
12 data held from BCLK rising (device write) 5.0
13 {EXRDY heid from BCLK falling 2.0
14 |T-C delay from BCLK falling (system input mode) 2.0 35.0
16 {T-C enable/disable delay from DAKx* (input mode) 40.0
17 {T-C setup to BCLK rising (system output mode) 15.0
18 |T-C held from BCLK rising (system output mode) 55.0

245

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

212 Mechanical Specifications

This section provides the mechanical specifications of EISA expansion boards and
the %ISdA connector. Mechanical specifications for ISA expansion boards are also
provided.

Electrical characteristics, including minimum power requirements of EISA
expansion boards, are specified in the Electrical Specifications section of this document.

2.13 EISA Connector and Expansion Board Description

The EISA connector is the same height and length as a 16-bit ISA expansion board
connector. The connector can accommodate current ISA expansion boards as well as EISA
expansion boards. The EISA connector does not take up any more space on the system
board than a standard ISA connector, and because of the stacked two-level arrangement of
the connector contacts, does not increase insertion force required.

The following table shows EISA connector compatibility.

EISA Connector Compatibility
Expansion Board Type
8-bit 16-bit 32-bit
8-bit YES * NO
(PC/XT)
Connector
Type 16-bit YES YES NO
(AT)
32-bit YES YES YES
(EISA)

There 15 no mechanical restriction, but most_16-bit)
expansion boards will not function properly in an 8-bit slot.

.246

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.13.1 Physical Characteristics

The EISA connector is a single unit, and in appearance, resembles the existing ISA
connector. The difference between the EISA connector and the ISA connector is a second
level of contacts in the EISA connector.

As illustrated in the following figure, ISA expansion boards can only be inserted into
the EISA connector far enough to make contact with the upper row of contacts (ISA
contacts). Stops, or "access keys,” are molded into the EISA connector to prevent an ISA
card edge from making contact with the EISA contacts. An EISA expansion board’s card
edge connection goes deeper into the connector and makes contact with the second row of
contacts (EISA contacts). EISA expansion boards are notched to allow the card edge to be
pushed further into the connector and use the additional contacts.

The conpector housing is made of a high-quality, glass-filled thermoplastic to
provide the durability required of surface mount manufacturing technologies.

As with a typical 16-bit ISA connector, the EISA connector is rated for 100 insertion
gcles; the connector contacts maintain a minimum of 75 grams of contact force throughout
e connector's rated life.

Insertion force is maintained at a level comsistent with current ISA connector
implementations. A typical ISA expansion board installed in an EISA connctor requires an
insertion force of approximately 28 pounds. Because the EISA connector uses a two-level
contact design, the insertion force for a typical EISA expansion board requires only a
maximum of 35 pounds.

Expansion board layout has not been compromised. The contact pin solder tails
maintain a standard 0.1 inch spacing. This, in addition to a large number of ground pins,
assures that EMI characteristics are consistent with current ISA implementations. In
addition to providing ample ground pins in the EISA extension, contact length is optimized
to assure capacitance between contacts is less than two picofarads to minimize "crosstalk.”

Two "locator pins" on the EISA connector simplify mounting the connector on the
system board. The locator pins allow the manufacturing process to be automated and
assure Jzerfect alignment. Alignment of an EISA expansion board within the connector is
assured by referencing all dimensions to the datum located near the middle of the
connector. The connector manufacturer sizes this datum to insure that no additional
friction increases insertion force.

All EISA connector tolerances are specified within current manufacturing standards
and technologies; no special tooling or equipment is required to meet EISA hardware
specifications. In addition, the EISA specification includes an optional retention device
(mounting bracket) to ensure that EISA expansion boards maintain proper positioning.

Compatibililty with current manufacturing technologies, including surface mount

technologies, is maintained by designing the connector with an open bottom area to allow
washing of processing agents.

247

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

2.13.2 Connector Specifications

Characteristics of the EISA Connector

Insertion Force:

Durabilig':
Contact Force:
Contact Resistance:

Current Carrying
Capacity:

28 Ibs. typical for upper contacts (ISA)

35 Ibs. maximum for both levels combined
(Measured with a .062 steel gauge)

100 cycles (minimum)

167 Ibs. (7515231115) (minimum)

Initial: 30 milliohms (maximum)
End-of-life: 40 milliochms (maximum)

1 amp per contact on lower (EISA) contacts
3 amps per contact on upper (ISA) contacts
This assures electrical compatibility with
existing ISA expansion boards: a high level
of current-carrying capacity on GND and + 5V
contacts may be required.

Environmental Performance of the EISA Connector

Thermal:

Steady-state
Humidity:
Industrial Mixed
Flowing Gas:
Vibration:
Physical Shock:

Connector Materials
Housing:

Contact:
Contact Plating:

Contacts and housing will withstand vapor
phase and surface mount process

90-95% RH at 40 degrees C

10 days, Class H
10 Gs, 10-500 Hz, 3 hours
100 Gs, 6 ms sawtooth, 18 shocks

Glass-filled thermoplastic UL 94 V-O
Copper alloy

Gold flash over 40 microinches precious
metal minimum over 50 microinches nickel
minimum in the contact area; tin lead on
the tails.

248

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 92 - EISA Connector and Card-edges

300 1SA CONTACT SPACWS

ISA

CARD EDGE
CONNECTION
(EISA-Compatible Siot)

050 E1SA-1SA CONTACT SPAONG
.100 15A CONTACT SPACING

.100 {15 CONTACT SPAONG

EISA oo
CARD EDGE S
CONNECTION

(EISA-Compalible Slot)

249

062: 002
{1.571 20)

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECIURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

.020
{s1)
2 PLCS -

f

COMPONENT AND LEAD MEIGHT

i

Figure 93 - EISA Expansion Board Dimensions

WINDOW FOR 1/0 CONNECTOR

-
365
(8.27)] #
WNDOW FOR 1/0
CONNECTOR OPENING

IN MATING CLASS

AN NN A RRRARRANA RN

TZ7772L T YT TTTITITIZEE T T T T LT XTI T L LT LAk 8T T T T I T T

150 uy |
3.81) MAX -

(,‘fgg) REF —edpm

525 Liax et
(1334
COMPONENT HEICHT

121 015
303, / OPENING IN MATING. CHASSIS e
P 7,
o
[e7s
(1206)

.040
(3.02) MV

3 500
(2€ 50)

5.000
(127.00)

4.150
(105.41)

520
(13.21)—], =
:. +

SEL FIGURE 8
FOR OPTMON BOARD
PANTL DIMENIONS

DROP DOWN
ALLOWED IN

SKIRT)
IS ARCA

4

A wih W W W % i -

\ W v .

-

P~

SEE FIGURE 3
CONN_TAB AND
PAD OIMENSIONS
=
‘ “'" 4.2212.010
1 {107.214.25)
e 1
!
HEC 1K
L
I { 0758002 -c-
! e (1.9054.051)
H
R
:
[
|
C Rifmer
(340.74)

——

L

NOTE. DROP OOWN (SKIRT)

083, rer
$¥Tm BOARD

$.194
{233. 3z, 15)

NOT ALLOWED

AR

N

7 ALY

DATUMS B AND €
RETENTION thc&

80+ SIDLS
NO COMPONENTS N
THIS ARE

- 335 8

250

J0'%s0°

CORNER SHALL BE IN RELATION TO
FOR SYSTEM

|
-160
(4. oe N

t
B0OTH

CARD GUlDE AREA

EP 0 426 184 A2

CHITECTURE
SERVICES, INC.

CONFIDENTIAL INFORMATION OF BCPR

EXTENDED INDUSTRY STANDARD AR

Figure 94 EISA Expansion Board Card-edge Detail

S35vid S
HJLON SS320V vS3

(01 9) 6~
are

(150 3545 1)

—? 700 ¥90°

ChU) Sud HMEW foga ey B .
12701 HOMYIOY Uvd Ot W (1)

VOLON LRI WY vl
LU T L
1015 11500 WAL NEILLYY QVd a3 U8 Tuoet) — _Ax

)

_ (60 €1}

(IvNOL 00) ¥

SV L
(zs 1)

Sr XU gy /

(80)

ﬁoon
|

e T
| S

R
—.—..mL

2
L

3015 dd0 SF
533v7d 06

ot ! 4
(ze 58
ﬁn,nv —
(89'S9
_. R —— I.l.*
9z Or)

(WNOI1 D) d

bzfnn_ naty) —
— I
_ ' _ 42 g) _\ 7 L_l 2 050 _

$Iovid €

3015 dd0 v
S3uvid 86

|
S |
| e [5es] -]

02 9¢ Qe /i)
kw“eway E - 50 /920
s © 53Jvds 09 - 3¢, @ 535vus 1t A\
(€1 ¥90 19 ! (€1 F21¢5) _
S00'3CZL <00 ¥2$0Z Tl o9
- orZ
INIOd
(s0'28) 1IYINOD HOLDINNOD {90 21)
(90'v/Cy €) 1HI0g 313
091'/6¢’ L1DVAINDD 801D 41NOD b
(£0 01/92 8)
55€ /50¢
HA-
IR
O _._u_cv 2 _ a4 _ M
(6 /8¢) ez /vi)
020/610°

050 /5%0

251

EXTENDED INDUSTRY STANDARD ARCHITECTURE - .

EP 0 426 184 A2

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

020

0622 008
(1.57£.20)

i

{.5Y)
s
2

35,7
SRS)
N
E 2
\Z
E %
¥
E 2
COMPONENT AND LEX%.%S%:G‘:: —_I i
83y rer —ll—

COMPONENT HEIGHT

Figure 95 - 16-bit ISA Expansion Board Dimensions

1122 015
(2.841 38)

~A=

0,

WANDOW FOR 1/0 CONNECTOR
OPENING 1N MATING CHASSIS

125
-— TH S
S 88 coi%usms N
THIS AREA

252

SEE FIGURT 8
—5- l PAN[OP;S'E BOARD
] 4200 XT 8D 4.800 AT 80 |— t NSions
(106.68) (121.92)AT BD
3.950
(100.33)
310
o | [T OROP DOWN (SXRT)
/ 1S AREA
.
" -
Ik r
b / SEE nwas H
! = / CONN_TAS AND
s PAD DIMENSIONS
M e @ -t
f i _} £.1802.010
j i (106.17%. 25)
.)
.
f |
H I |
s
H | |
¢
1 o -Ce
A
4 H
!
, !
I :
‘ \
13.415
f (340.70)REF
U N
v
[l_ .062
g (1.58) REF
" SYSTEM BOARD
- 9.2352
f (232.372.13)
f
”
%
f .
f
q NOTE. DROP DOWN (SKIRT)
f NOT ALLOWED FOR
f NEW DESIGNS
f
g
!
oY 1
N 3\ . SASS, AR L
A 160
. («.08) U™
N\ e 353 295
DT a=z:
CORNCR SHALL BE IN RELATION 10 .
ATUMS 8 AND C FOR SYSTL
RETENTION DEWCE

EP 0 426 184 A2

STRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

EXTENDED INDU

Figure 96 - 16-bit ISA Expansion Board Card-edge Detail

(12 v8)

S32Yd 86

(16 %646 |
So,«So,v e

{3015 3IS0dd0 67)

LINIOd 1J¥YLHOD 0LI3NNDD %! \N

' 00!
e ¢ |
L/

(S8 ¢5)

NIN oo ¢

(£1 ¥€019)

NN oz

(St F1Z €5)

$00 ¥061°C

E - [0s2)
000°¢ 01’

© S30vdS OF

(€1°¥9r°g)
SO0 ¥SIT"

—]

$00 ¥560¢

Biee)| | 1(rs2)
0041 00t

© S13vds LI

253

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHI?ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 97 - 8-bit 1SA Expansion Board Dimensions

020 PO waDOw FOR 1/0 CONNECTOR
(5) (2“64‘1033‘) - OPEMING IN MATING CHASSIS 125
2 PLCS] [B38)

L oI Wiz 7. |
TR/ ﬁ/? —‘J (%

400 3.500
| (1016) (88 90)

e For ‘oF o Boan
-e- SOARC
e PANLL DIMINS. S

L:oe i 5e)%T By [(m 92)*7 B2 1]

(m’o.ss)
o 31« JU R
i (7.87) DROP DOWN (SKIRT)
< ALLOWED W THIS AREA
‘\a { ,
('ségg) 040 r ‘}
0.02) sz: ncmz 7
§ _ V A5 AND
PAD D(uENSIONS
WINDOW FOR Oé U
e ™ C ; } 4.1802.010
. ‘ I i (106.172.25)
. o .
4! : i l
|
—C-

-

l—- 58 Rer

SYSTEM BOARD 13.415
(J 74)R[F

9.2352 005,
(234.57=13)

RIS ANRANAANNNN

P T T LT LI ITTILTH LT AL LT LI T ITT T, 22 /27TF.

N\

N
N
7
N NOTE: DROP DOWN (SXiRT)
t / NOT ALLOWED FOR
NEW DESIGNS
N]
N 1 I
N N
N
\ %]
\
N
\A -
S 4t < % 2 J‘ _t
-l 4] \/ L 160
M y MIN
(:2%?) MAX ' 30+10° g‘({.?:) s
COMPONENT AND LEAD HEIGHT - CARD GUIOE 4REA

CORNER SHALL BE IN RELA'IION T0
DATUMS B &ND C FOR SYSTEM *

(| 53) REF j RCTCNTION DEMCE

(5 ‘5) ao FOMAGRENTS i
COMPONEM nzucm ND CoMPO

}7

254

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 98 - 8-bit ISA Expansion Board Card-edge Detail

-2}

(1£ v8)
NIR e ¢

(€1 F4018)

(49 €)

GO0 F061°¢C

(oz'9z)| . |0sD)
000°¢ 00y’

© S30DvdS 0

fae NIN [T

(¢0)
T«a o1 ava %

(1S ¥S¢S't)
200 ¥290°

(3018 311S0ddD {£)
$30vid 239

INIOd IDVINOD HOLO3NNOD

(s6v/89¢)
g6 /Sry

|
\

AR

255

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCBITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, iNC.

Figure 99 - ElSArExpansion Board Mounting Bracket

725
{18 42)
.289
200 —
(s08)) , _ (7 24)
I I
174 ! N
(l 42) f B 50
i l {1+ 43)
|
/ ' [100
E i T (25¢
075 & 430
ok -
| .550
(1397)
855
(2159

@53 7

b 725 _ 1
(18 42)

— A%
(2:54) 030

(78) l .

4725
(120.02)

4 439
(1275}

;

i
T |

C 155
(3.9%)

[1EZ
(s 1)

256

EP 0 426 184 A2

£S, INC.

ARCHITECTURE

EXTENDED INDUSTRY STANDARI]
CONFIDENTIAL INFORMATION OF BCPK SERVIC

vid NOILVY3I01

Jynv3ig NOttvd0D

(420 ¥9C 2) XVH €80 X
vi0 100 ¥C60 100 ¥¢60°
it A.ch__;v (58 58) \\ (19 ¥%)
NI Ov0 pomefmme -—— XVN 0BE € | XYW 0612
(s r) ;
a8’ |~
(6v 1) nom_o: DO0CDODOOTFODOOD
0i9
.m r NIN G2y’ _;au.;eaaccaauaanoaaagegao__aca »aeonooaoaacoaaana
S $ /
w
I (620 ¥68') . (gto'¥8e)
] —~—{f— 100" ¥5CO’ o« 100 020
E 19 - 1a
LY
a
_m (02 2) (920 F2r £1) (9¢0 ¥09 1)
w XY 060 —eq po— €00 ¥999 €00 Fr19 .
= (920 ¥82'0¥)
e fe——— (00 985’} ———
@ (9£0 ¥9959) (9L0 ¥9v 8¢)
< €00 ¥94S Z SO0 FHIGT —eef
[75]
@ (340~ ozzze) (30 - bevzg)
€3] 701 + o1 +
! e .. _ €00 - £00 - .
w Y00 + ue roo'+ 5902
-t -
W.m.b
ﬁm: _ # 13 1T 1T 1T A 0 11 1
1y _
(25 6) -l
xwn GL§ —

i

(o €/6¢ ¢)
ogi/on’

(coo1/9¢ 8)
S6C/Sre’

(90 v/Cr €)

091 /6C1° .

83d
(0z'F¢5't)
800 FZ90’
S1d330V

=

AN
AN

_!ah T
00§

257

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITEC*URE

CONFIDENTIAL INFORMATION OF BCPR S2RVICES, INC.

Figure 101 - EISA Connector System Board Drill Pattern

[T Y4
520 -
(pcg+ Y7 Q)

o ~
V10 200 + 960

iy

04v08 WILSAS 40 IS YOLDINNUD

. foesn]fuso
060 ¢ oco” | © SIIVds 09 4

S310H 881
(9L0°%L0 V)

Yi0 €00°F0v0’ .
L
Ouooecoooouoooooooo ©00D0D000CO0DOO

-009200+000000000+000a0000+00000

|

- 1:]
¥4

POOO000O00O00G00000000VO00006GGOGG
l\\\uooo+neaoocoec+oooooeeo+cocol\

;1_::,3 sy
00¢ ouo | | SIves v

(zr L1) (09°61)
334 989 =1 33y vi9
(9z ov)
439 9851 ——]
(99 $9) (9r 8¢)
33 9857 434 9igt ———ef

0D O0DO0O+000DODO O+ OO0

oooo°o°e°o°o°ooo\

[
i

619
[

5006000600000 0000

/Mooe.*ooeeuuoo.*oec

(9¢0 ¥za ¢8B)

€00'¥00C'C

10
61H

258

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE.
CONFIDENTIAL INFORMATION OF BC’R SERVICES, IMC.

2.13.3 Pin Description

This section provides a pin-out of the EISA connector. All 8- and 16-bit signais are

included. Figure 102 on the following page illustrates a top view of the connector to show
the pinout.

Note:

1. Reserved %ins are for future use and will be assigned in the following order:
E12, E13, E14, F12, F14.

2. XOXOXKXXX pins are strictly for system manufacturer-specific use. Generally,
these signals should not be connected and should be used to isolate signals
on the bus from adjacent power pins.

EISA expansion boards should NOT connect to XXXXXX pins.

259

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECSURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 102 - EISA Pinout

s Ei
ROW F RO¥ B ST ROY E ROV A
1 cND o .
1 GND i © D 1 cuoe ! locHK
£ RESDRV @ 2 D<r>
z sV o ov ®® 2 START
-
3 esv D 3 EXRDY 3 Peox
< IRQ<®> P
4 30000 . o ®<D @ 4 Ex32* ¢ Pes»
- 8 Dca>
[peeced [e»] 8 GND
6 DRQ<2> [0 @ 8 D3>
ACCESS KTV = = ACCESS KEY
, v —12v P . > pxre- T Dp<2>
o 6 NOows- ® [« 2] CDCD s URST- & D<1>
v wizv
o —gav G’JCD cDCD ° MSBURST~ ° D<O>
10 GND ® @ 10 CHRDY
10 M-I0 . f® @ i 10 W-R
. . 1t sWVTC ®®® . 11 GND 11 AENK
\2 12 SMRDC <P @ ®® 2 12 SA<IO>
13 owp 19 yower © ® ®® 33 RESZRVED 13 Bacie>
1e 14 JORc ®® @@ 16 14 SAQI?T>
1o mre<as 15 DAX"<3> g o ®® 18 exp 15 Bacie>
ACCESS XEY 1e DRQ<3> i @ P ACCESS KEY 16 Bacin>
17 DAK*<i> . ® @ 17 BAc<ia>
17 WEv<E> 18 DRO<I> @ @ @") 17 BE<i>
18 BE<O> 10 REFRESH- i ®® ®® | 18 Lavent> l: :A<iz>
; i 1 A<I2>
18 aND ;) 19 GND
ro wmcix P> Pt) 20 ma<ii>
20 <&V 21 ma<r ®® ['O LAT<DO>
21 Lae<ceos 1 Q<T> i 3 ®® e1 Lac<28> 21 macio>
22 IRQ<E> -3 @ Tl .
2 coND i T g £2 x1a<27> 2 SA<o>
23 IRQ<6> @ @ T 23 Sac8>
23 LAS<e> e -l 23 La*<25>
24 TRQ<4> - ® ® T4 SACT>
24 LA<Z4> Bl ® 24 GND
o 25 me<I> T o ® ACCESS KEY e sace>
nc”::mwl 28 DaK=<2> @ ®o. s ta<iss 26 BacS>
27 T-C @
> LA<I4> e BALE @® : 27 Lacid> BT BAC4>
ea -8V » K 28 LACEZ> s BAC3>
29 BV ® _ G :
2o +6V 20 osc ® 29 La<11> O Rac<2>
so ono e oo @O ®O s0 GND 30 SA<1>
s1 Lacios P 31 LA<o> 31 5A<o>
ROY H - RO¥ C
i Ih<e> RO¥ D < ROY C
£ Lace> 1 Rie* CR-1) 1 IsuHr-
s La<E> z 1ore- 3 Lace> 2 La<23>
< -8V 3 IRQ<1O0> P LA<a> 3 LA<22>
13 LACZ> 4 IAQ<I1> (3 GND - LA<C21>
ACCISS XEY L3 mQei2> - .. ACCESS KEY 13 LA<20>
T Db<ie> 6 IRQ<i6> el (< (D® -1 ¥ p<1T> e Laci9>
[DeIB> T RQ<14> b ®® ®G> a8’ D<ie> L3 LA<SI®>
° CND s DAK®<O> ® @ ®CD ° D<20> L} LactY>
10 D<zi> ® DRQ<O> @D 10 Dp<2z2> © MRDC*
o I oc
11 b<2d> 10 DAK b4 d D} 11 GND 16 MwWTC*
12 B<3d> 11 DRQ :g gdb g@ - 1z D<28> 11 D<o>
13 GMD 12 DAK <8> 2 ®®®® 13 De20> 12 Deo>
te Dez7> 13 pra<ex e @ P 14 meze> 13 Dpe<io>
ACCESS KLY ’ =
14 DAX~<7> Ao @ D@ ACCESS KEY 14 D<il>
16 De2a> 315 DRQ<7Y> @ ®® 18 CND 18 D<i12>
17 esv 16 esv @ ®® @) 17 p<do»
1o oy e ® g 16 D<13>
- . 18 D<dI>
] MASTER1G av <30} 17T D<14>
10 MAKx* @D 19 WREQx*
18 GND ® @ 18 D<ci6>
B ¢¢C
Rows A, C. F and H are upper (1SA) contacls
Rows B. D. E and G are lower (EISA) contacls .

260

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3. System Board 1/O Control Functions

The EISA system board includes 1/O control circuitry for DMA data transfers,
imcrrulpt handlin'i, system timers and other miscellaneous functions. The registers and
control ports for these functions are decoded using a 16-bit address.

The following table Frovides an overview of the EISA system 1/O address map and
indicates the system board 1/O ranges.

Note: 1/0O addresses between 1000h and FFFFh that are not identified as "Alias of
100b-3FFh" are reserved for slot-specific addressing of expansion boards.
The most significant digit in the address represents the slot number
(indicated in the table by "Slot 'z, where 'z’ can be any value from 1 to 15).
The system board I1/O range resides at I/O addresses between 0000b and
OFFIEK (z = 0).

1/O addresses between 0400h and 04FFh are reserved for current and future

ISA system board peripherals defined by this specification. System board
manufacturers may use system board addresses 0800-08Fh and 0C00-0CFh
for manufacturer specific I/O devices.

261

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCEITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, iNC.

System 1/O Address Map

I/0O address }{O Range

Range (hex): eserved for:
0000-00FF ISA System board peripherals
0100-03FF ISA expansion boards
0400-04FF Reserved - System board controllers
0500-07FF Alias of 100h-3FFh
0800-08FF System board
0900-0BFF Alias of 100h-3FFh
0C00-0CFF System board
O0DOO-OFFF Alias of 100h-3FFh
1000-10FF Slot 1
1100-13FF Alias of 100b-3FFh
1400-14FF Slot 1
1500-17FF Alias of 100h-3FFh
1800-18FF Slot 1
1900-1BFF Alias of 100h-3FFh
1C00-1CFF Slot 1
1D00-1FFF Alias of 100h-3FFh

0z000-0z0FF | Slot'z'

0z100-0z3FF | Alias of 100h-3FFh

0z400-0z4FF Slot '2'

0z500-0z7FF | Alias of 100h-3FFh

0z800-0z8FF Slot '2'

0z900-0zBFF | Alias of 100h-3FFh

0zC00-0zCFF | Slot'?’

0zD00-0zFFF | Alias of 100h-3FFh

262

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The fol]owini table lists a partial set of system board I/O ports. A system board
must decode the 16-bit address, except the "don't care” bits. “Don't care” bits are indicated
by an X" in the binary 1/O port address. Those 1/O ports, which are “ro” (read only) or
"wo" (write only), and do not have the corresponding read/write port listed, as well as any
Rgrts marked as "reserved,” are reserved for future EISA expansion. The value read from

o" ports or reserved bits in "ro” or "rw* ports are undefined and may change in various

implementations. Write operations to reserved ports may cause system failure.

1/0 1/O Port Address Register Description
Port (binary)
Address| MSB 1SB
0000h | 0000 0000 000x 0000 | rw DMA Ch-0 Base & Current Address register
0001h | 0000 0000 000x 0001 | rw DMA Ch-0 Base & Current Count register
0002h | 0000 0000 000x 0010 | rw DMA Ch-1 Base & Current Address register
0003k { 0000 0000 000x 0011 | rw DMA Ch-1 Base & Current Count register
0004h | 0000 0000 000x 0100 | rw DMA Ch-2 Base & Current Address register
0005h | 0000 0000 000x 0101 | rw DMA Ch-2 Base & Current Count register
0006h | 0000 0000 000x 0110 | rw DMA Ch-3 Base & Current Address register
0007h | 0000 0000 000x 0111 | rw DMA Ch-3 Base & Current Count register
0008k | 0000 0000 000x 1000 | ro DMA(0-3) Status register
0008h | 0000 0000 000x 1000 | wo DMA(0-3) Command register
000%9h | 0000 0000 000x 1001 | wo DMA(0-3) Request register
000AL | 0000 0000 000x 1010 | wo DMA(0-3) Write single mask bit
000Bh | 0000 0000 000x 1011 | wo DMA(0-3) Mode register
000Ch | 0000 0000 000x 1100 | wo DMA(0-3) Clear byte pointer
000Dh | 0000 0000 000x 1101 | wo DMA(0-3) Master Clear
O000Eh | 0000 0000 000x 1110 | wo DMA(0-3) Clear Mask register
000Fh | 0000 0000 000x 1111 | wo DMA(0-3) Write all mask bits
000Fh | 0000 0000 000x 1111 | ro DMA(0-3) Mask Status register
0020b { 0000 0000 001x x00 | rw INT-1 base address
0021h | 0000 0000 001x xx01 | rw INT-1 mask register
0040h | 0000 0000 010x 0000 | rw Programmable Interval Timer 1,
System Clock (Counter 0)
0041b | 0000 0000 010x 0001 | rw Refresh Request (Counter 1)
0042h | 0000 0000 010x 0010 | rw Speaker Tone (Counter 2)
0043h | 0000 0000 010x 0011 | rw Control Word register
0048h | 0000 0000 010x 1000 | ™w Programmable Interval Timer 2,
Fail-safe Timer (Counter 0)
0049h | 0000 0000 010x 1001 Not implemented (Counter 1)
004Ah | 0000 0000 010x 1010 | rw Reserved for System (Counter 2)
004Bh | 0000 0000 010x 1011 | rw Control Word register

263

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTUR®
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

I/O 1/O Port Address Register Description

Port (binary) :

Address| MSB 1LSB

0061h | 0000 0000 0110 0001 | rw NMI Status register

0070h | 0000 0000 0111 Oxx0 | wo NMI Enable register

0080k | 0000 0000 1000 0000 Reserved

0081h | 0000 0000 1000 0001 | rw DMA Ch 2 Low Page register

0082k | 000G 0000 1000 0010 | rw DMA Ch 3 Low Page register

0083k | 0000 0000 1000 0011 | rw DMA Ch 1 Low Page register

0084h | 0000 0000 1000 0100 Reserved

0085h | 0000 0000 1000 0101 Reserved

0086h | 0000 0000 1000 0110 Reserved

0087k | 0000 0000 1000 0111 | rw DMA Ch 0 Low Page register

0088h { 0000 0000 1000 1000 Reserved

0089h | 0000 0000 1000 1001 | rw DMA Ch 6 Low Page register

008Ah | 0000 0000 1000 1010 | rw DMA Ch 7 Low Page register

008Bh | 0000 0000 1000 1011 | rw DMA Ch 5 Low Page register

008Ch | 0000 0000 1000 1100 Reserved

008Dh | 0000 0000 1000 1101 Reserved

O08EhL - | 0000 0000 1000 1110 Reserved

008Fh | 0000 0000 1000 1111 | rw Refresh Low Page register

00AOh | 0000 0000 101x xx00 | rw INT-2 base address register

00A1h | 0000 0000 101x xx01 | rw INT-2 mask register

00COh | 0000 0000 1100 000x | rw DMA Ch-4 Base & Current Address register
00C2h | 0000 0000 1100 001x | TW DMA Ch-4 Base & Current Count register
00C4h | 0000 0000 1100 010x | rw DMA Ch-5 Base & Current Address register
00C6h | 0000 0000 1100 011x | rw DMA Ch-5 Base & Current Count register
00C8h | 0000 0000 1100 100x | rw DMA Ch-6 Base & Current Address register
00CAh | 0000 0000 1100 101x | rw DMA Ch-6 Base & Current Count register
00CCh | 0000 0000 1100 110x | rw DMA Ch-7 Base & Current Address register
00CEh | 0000 0000 1100 111x | rw DMA Ch-7 Base & Current Count register
00DOh | 0000 0000 1101 000x | ro DMA(4-7) Status register

00DOh | 0000 0000 1101 000x | wo DMA(4-7) Command register

00D2b | 0000 0000 1101 001x | wo DMA(4-7) Request register

00D4h | 0000 0000 1101 010x | wo DMA(4-7) Write single mask bit register
00D6h | 0000 0000 1101 011x | wo DMA(4-7) Mode register

00D8h | 0000 0000 1101 100x | wo DMA(4-7) Clear byte pointer

00DAh | 0000 0000 1101 101x | wo DMA(4-7) Master Clear

00DCh | 0000 0000 1101 110x | wo DMA(4-7) Clear Mask register

OODEhR | 0000 0000 1101 111x | wo DMA(4-7) Write all mask bits register
O00DEh | 00000000 1101 111x | ro DMA(4-7) Mask Status register

264

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AECHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, IMC.

I/0 1/O Port Address Register Description

Port (binary) .
Address| MSB LSB

0400L | 0000 0100 0000 0000 Reserved

0401h | 0000 0100 0000 0001 | rw DMA Ch-0 High Base & Current Count
0402hL | 0000 0100 0000 0010 Reserved '

0403h | 0000 0100 0000 0011 | rw DMA Ch-1 High Base & Current Count
0404h | 0000 0100 0000 0100 Reserved

0405h | 0000 0100 0000 0101 | rw DMA Ch-2 High Base & Current Count
0406h | 0000 0100 0000 0110 Reserved

0407h | 000001000000 0111 | rw DMA Ch-3 High Base & Current Count
0408h | 0000 0100 0000 1000 Reserved

040%h | 0000 0100 0000 1001 Reserved

040Ah | 0000 0100 0000 1010 | ro DMA Interrupt pending register

040Ah | 0000 0100 0000 1010 | wo DMA§0-3 Chaining Mode register
040Bh | 00000100 0000 1011 | wo DMA(0-3) Extended Mode register
040Ch | 0000 0100 0000 1100 | ro Host CPU/EISA Master

040Dh | 0000 0100 0000 1101 Reserved

040Eh | 000001000000 1110 Reserved

040Fh | 0000 01000000 1111 Reserved

0461h | 00000100 0110 0001 | rw Extended NMI and reset control register
0462h | 0000 010001100010 | wo Software NMI register

0464h | 0000 010001100100 | ro Last EISA Bus Master granted gL)
0465h | 0000 010001100101 | ro Last EISA Bus Master granted (H)
0480h | 0000 0100 1000 0000 Reserved

0481h | 0000 0100 1000 0001 | rw DMA Ch 2 High Page register

0482h | 0000 0100 1000 0010 | rw DMA Ch 3 High Page register

0483h | 0000 0100 1000 0011 | rw DMA Ch 1 High Page register

0484h | 0000 0100 1000 0100 Reserved

0485k | 0000 0100 1000 0101 Reserved

0486h | 0000 0100 1000 0110 Reserved

0487h | 0000 0100 10000111 | rw DMA Ch 0 High Page register

0488h | 0000 0100 1000 1000 Reserved

0489h | 0000 0100 1000 1001 | rw DMA Ch 6 High Page register

048Ah | 0000 0100 1000 1010 | rw DMA Ch 7 High Page register

048Bh | 0000 0100 1000 1011 | rw DMA Ch 5 High Page register

048Ch | 0000 0100 1000 1100 Reserved

048Dh | 0000 0100 1000 1101 Reserved

048Eh | 0000 0100 1000 1110 Reserved

3Fh | 0000 0100 1000 1111 Reserved

04C2h | 0000 0100 1100 0010 Reserved

04C6h | 0000 0100 1100 0110 | rw DMA Ch-5 High Base & Current Count
04CAh | 00000100 1100 1100 | rw DMA Ch-6 High Base & Current Count
04CEh | 00000100 1100 1110 | rw

DMA Ch-7 High Base & Current Count

265

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARO ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SEKVICES, INC.

1/0 1/0 Port Address Register Description
Port (binary) :
Address| MSB LSB

04DO0h | 0000 0100 1101 0000 | rw INT:1 edge/level control register
04D1h | 0000 0100 1101 0001 | rw INT-2 edge/level control register
04D2h | 0000 0100 1101 0010 Reserved

04D3h | 0000 0100 1101 0011 Reserved

04D4h | 0000 0100 1101 0100 | wo DMA(4-7) Chaining Mode register
04D4h | 0000 0100 1101 0100 | ro DMA Chaining Mode Status register
04D5h | 0000 0100 1101 0101 Reserved

04D6h | 0000 0100 1101 0110 | wo DMA(4-7) Extended Mode register
04D7h | 00000100 11010111 Reserved

04D8h | 0000 0100 1101 1000 Reserved

04D9h | 0000 0100 1101 1001 Reserved

04DAL| 0000 0100 1101 1010 Reserved

04DBh | 0000 0100 1101 1011 Reserved

04DCh | 00000100 1101 1100 Reserved

04DDh|{ 00000100 1101 1101 Reserved

04DEh | 0000 0100 1101 1110 Reserved

04DFh | 00000100 1101 1111 Reserved

O04EO0h | 0000 0100 1110 0000 | rw DMA CHO Stop register bits <7:2>
04E1h | 0000 0100 1110 0001 | rw DMA CHO Stop register bits <15:8>
04E2h | 00000100 11100010 | rw DMA CHO Stop register bits <23:16>
O4E3h | 00000100 11100011 Reserved

04E4h | 00000100 11100100 | rw DMA CH1 Stop register bits <7:2>
O04ESh | 00000100 11100101 | rw DMA CH1 Stop register bits <15:8>
04E6h { 00000100 11100110 | rw DMA CH1 Stop register bits <23:16>
O04E7h | 00000100 11100111 Reserved

04E8h | 00000100 1110 1000 | rw DMA CH2 Stop register bits <7:2>
04ES9h | 000001001110 1001 | rw DMA CH2 Stop register bits <15:8>
04EAh | 0000 0100 11101010 | rw DMA CH2 Stop register bits <23:16>
04EBhL | 00000100 1110 1011 Reserved - '
04ECh { 00000100 1110 1100 | rw DMA CH3 Stop register bits <7:2>
04EDh | 00000100 11101101 | rw DMA CH3 Stop register bits <15:8>
04EEhL | 00000100 11101110 | rw DMA CH3 Stop register bits <23:16>
O04EFh | 0000 0100 1110 1111 Reserved

04F0h | 00000100 1111 0000 Reserved

04F1h | 0000 0100 1111 0001 Reserved

04F2h | 00000100 11110010 Reserved

04F3h | 00000100 1111 0011 Reserved

266

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF 3CPR SERVICES, INC.

1/0 I/O Port Address Register Description
ort (binary) .
Addresy MSB LSB

04F4h | 00000100 1111 0100 DMA CHS5 Stop register bits <7:2>
04F5h | 0000 0100 1111 0101 DMA CHS Stop register bits <15:8>
04F6h | 0000 0100 1111 0110 DMA CHS Stop register bits <23:16>

04F7h | 0000 0100 1111 0111 Reserved

422

04F8h | 0000 0100 1111 1000 DMA CHE6 Stop register bits <7:2>
04F9h | 0000 0100 1111 1001 DMA CH6 Stop register bits <15:8>
04FAh | 0000 0100 1111 1010 DMA CH6 Stop register bits <23:16>
04FBh | 0000 0100 1111 1011 Reserved

224

O04FCh | 00000100 1111 1100 | rw DMA CHT Stop register bits <7:2>
04FDh | 0000 0100 1111 1101 | rw DMA CH7 Stop register bits <15:8>
O4FEh | 0000 0100 1111 1110 | rw DMA CHT7 Stop register bits <23:16>
O4FFh | 00000100 1111 1111 Reserved

0C80h | 0000 1100 1000 0000 | ro System Board ID Byte 1

0C81h | 0000 1100 1000 0001 } ro System Board ID Byte 2

0C82h | 0000 1100 1000 0010 | ro System Board ID Byte 3

0C83h | 0000 1100 1000 0011 | ro System Board ID Byte 4

0C84h | 0000 1100 1000 0100 | ro System Boar8 Enable

267

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHIiTECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1 DMA Description

EISA systems provide seven ISA compatible DMA channels. Any channel can be
B"o ammed to provide EISA performance and addressing benefits to existing 8- and 16-bit

devices while maintaining full ISA compatibility. The EISA DMA controller also
supports DEMAND and B K mode DMA transfers that enable DMA channels to
perform multiple continuous transfers and higb-spcod bus cycles that achieve data transfer
rates up to 33 MB/s. In BLOCK mode the DMA channel performs a continuous transfer
of the data block. DEMAND mode also performs an uninterrupted transfer of the data
block, but the DMA device can temporarily suspend the transfer and release the bus before
the end of the block. BLOCK or DEMAND mode transfers can be preempted by other
devices requesting the bus.

All DMA channels support an extended addressing mode. In this mode, the EISA
address register counts sequentially like a 32-bit up down counter, so devices can
sccg-.lrcntia.lly address a 32-bit address range without programmatically incrementing the
address extension registers cach time the DMA address crosses a 64K segment boundary
(as in traditional ISA%],S

Any DMA channel can be programmed for 8-, 16- or 32-bit DMA device size and
ISA Compatible, Type "A", Type "B", or Burst DMA (T gpe "C") timing modes. The siv)stem
board performs data size translations necessary for MA transfers between all DMA
device sizes and any 8-, 16- or 32-bit memory.

The following table lists the variations of da'.t'a transfer timing for each DMA device
size supported.

DMA Transfer rate Compatibility
Cycle Type (MB/s)
Compatible
8-bit 1.0 AllISA
16-bit 20 AllISA
- Tygpe "AT
-bit 13 Most ISA
16-bit 2.6 Most ISA
32-bit 53 EISA Only
Type "B"
8-bit 2.0 Some ISA
16-bit 4.0 Some ISA
32-bit 8.0 EISA Only
Burst DMA (Type "C")
8-bit 82 EISA Only
16-bit 16.5 EISA Only
32-bit 33.0 EISA Only
3.1.1 DMA Controller Overview

The DMA circuitry incorporates the functionality of two 8237 DMA controllers,

lus the EISA enhancements. The address and data busses support a full 32-bit system.

e DMA controller provides timing control for the enhanced EISA DMA cycle types and
maintains compatibility with ISA DMA devices.

268

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The memory addrcssing circuitry supports the full 32-bit address for DMA devices.
Each channel inciudes a 16-bit ISA compatible current address register, an 8-bit ISA
compatible page register for address lines LA<23:16> (low page registers) and an 8-bit
EISA page register for address lines LA*<31:24> (high page rc:gmttam%.1 _

The DMA controller does not have to include the counter functions and DMA state
machine for DMA channel 4 (which is used in 8237-based ISA products for cascading the
second DMA controller). The channel 4 read/write registers are included to guarantee
compatibility with existing software. The channel 4 counter functions and state machine
are not needed for compatibility.

The system board uses DRQ<x> and DAK* <x> with IORC* and IOWC?* for read
and write operations to the DMA device. The DMA device transfers data directly to the
memory slave unless data size translations are required. DMA read and write operations
to memory use the normal memory interface.

In ISA compatible timing mode, the 16-bit command signals, MRDC* and MWTC*®,
are generated during DMA access to EISA memory slaves for addresses less than 16
Mbytes. MRDC* and MWTC* are generated for addresses §eater than 16 Mbytes if an
EISA memory slave does not respond by asserting EX32* or E 16*.

312 DMA Controller Description
The DMA controller operates in either of two ope‘rating conditions.

The DMA controller operates in Master Condition while controlling DMA data
transfers and supporting a 16-bit ISA bus master's use of 2 channel's DRQ<x>,
DAK?*® <x> arbitration signals.

The DMA controller operates in Slave Condition while monitoring the bus and
decoding read or write I/O cycles that the main CPU and bus masters use to program Or
examine the DMA registers. The DMA controller only accepts read or write accesses to its
registers while in Slave Condition.

3.1.21 DMA Master Condition Operation

The DMA controller generates the clv)cle control for DMA data transfers while
operating in the Master Condition. The DMA controller supplies the address and
read/write indication, then controls the cycle execution.

The DMA controller also operates in the Master Condition when a 16-bit ISA bus
master uses a DMA channel for bus requests. No DMA transfers occur, but the active
state of the DMA controller's Master Condition precludes use of the channel for normal
transfers or the programming of the DMA controller.

The DMA controller is in the Master Condition when any channel's DAK® <x> is
asserted.

269

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.2.2 DMA Slave Condition Operation

The main CPU can perform read or write accesses to the DMA controller’s 8-bit
1/0 ports when in the Slave Condition. The DMA controller accepts read and write
accesses while no DMA data transfers are in progress, until the S{Jstcm board asserts any
chanpel's DAK*<x>. If a transfer is in progress, the main CPU or a bus master can
request the bus, and, after winning the ar itration, can access the DMA registers. The
DMA controller operates in the Slave Condition while a non-device has a bus grant.

3.1.3 DMA Transfer Modes

A DMA channel operates in one of the following four transfer modes: Single
transfer, Block transfer, Demand transfer, or Cascade mode.

3.1.31 Singte Transfer Mode

A DMA channel programmed for Single Transfer Mode performs one transfer for
each arbitration cycle. The DMA software programs the channel's Base Word Count
register for the appropriatc number of transfers to perform. The DMA controller
decrements the channel's Current Word Count register and increments its Current Address
register after each transfer. The transfer con]lﬁlctcs when the Current Word Count register
reaches terminal count (the word count “rolls over” from zero to FFFFFFh) or when an
external end of process is received. Terminal Count or EOP causes the current registers to
be reloaded from the base registers if the channel is pro ed for autoinitialize. If the
channel is programmed and ready for chaining, the next chain buffer is enabled.

A DMA device requests a Single Transfer Mode DMA transfer by asserting
DRQ<x> and holding it until sampling DAK* <x> asserted. The DMA device may hold
DRQ<x> asserted throughout the single transfer. The system board ncg\ates DAK®*<x>
and the DMA channel releases the bus after the single transfer. If DRQ<x> remains
asserted, the DMA controller immediately requests the bus again. The arbitration
controller performs the arbitration, and asserts the winning channel’s DAK*<x> to signal
the bus t The DMA channel then performs another single transfer. The current
registers hold the intermediate address andp word count values between arbitration cycles.

3.1.3.2 Block Transfer Mode

A DMA channel programmed for Block Transfer Mode performs a block of
transfers for each arbitration cycle. The DMA software programs the channel’s Base Word
Count register for the appropriate number of transfers to perform. The DMA controller
decrements the channel's Current Word Count register and increments its Current Address
register after each transfer. The transfer completes when the Current Word Count register
reaches terminal count (the word count "rolls over" from zero to FFFFFFh) or when an
external EOP is received. Terminal Count or EOP causes the current registers to be
reloaded from the base registers if the channel is programmed for autoinitialize. If the

channel is programmed and ready for chaining, the next chain buffer is enabled.

270

EP 0 426 184 A2

EXTENDED INDUSTRY STANI'AR? ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A DMA device requests a Block Mode DMA transfer by asserting DRQ<x> and
holding it until sampling DAK* <x> asserted. The DMA device may hold DRQ<x>
asserted throughout the block transfer or may release DRQ<x> after sampling
DAK®* <x> asserted. The transfer can be interrupted (exce% when programmed in ISA
compatible tmﬁ mode) if another device requests the bus. In this case, the system board
pegates the D channel's DAK®*<x> and the DMA channel immediately requests the
bus again. The arbitration controller performs the arbitration, and asserts the winnin
channel's DAK® <x> to signal the bus grant. The DMA channel then continues the blocﬁ
transfer. The DMA device does not have to re-assert DRQ<x> if the transfer is
interrupted by another device. The current registers hold the intermediate address and
word count values between arbitration cycles.

A DMA device that uses ISA compatible timing should not be tgrogrammad for
block mode. It is possible to lock out other devices (including refresh) if the transfer count
is Erogrammod to a large number. Block mode can effectively be used with Type "A", Type
“B* or Burst DMA timing since the channel can be interrupted while other devices use the
bus.

3.1.3.3 Demand Transfer Mode

A DMA channel programmed for Demand Transfer Mode performs a group of
transfers for each arbitration cycle. The DMA software programs the channel's Base Word
Count register for the appropriate number of transfers to perform. The DMA controller
decrements the channel's Current Word Count register and increments its Current Address
register after each transfer. The transfer continues until the device negates DRQ<x>, the
Current Word Count register reaches terminal count (the word count “rolls over” from zero
to FFFFFFh) or an external EOP is received. Terminal Count or EOP causes the current
registers to be reloaded from the base registers if the channel is pro ed for
autoinitialize. The negation of DRQ<x> interrupts the transfer until the DMA device is
ready for more data, but does not terminate the transfer.

A DMA device requests a Demand Mode DMA transfer by asserting DRQ<x> and
holding it until sampling DAK* <x> asserted. The DMA device holds DRQ<x> asserted
until it runs out of data or until the transfer terminates. The transfer can be interrupted
(except when programmed for ISA compatible timing) if another device requests the bus.
The system board then negates the DMA channel's DAK®*<x>. The DMA channel
requests the bus again by asserting or continuing to assert DRQ<x>. The arbitration
controller performs the arbitration, and asserts the winning channel's DAK*® <x> to signal
the bus grant. The DMA channel may then continues the block of transfers. The current

registers hold the intermediate address and word count values between arbitration cycles.

A DMA device that uses ISA compatible timing should not be proimmmed for
demand mode unless the device releases the bus periodically to allow other devices to use
the bus. It is possible to lock out other devices (including refresh) if the transfer count is
g_rogrammcd to a large number. Demand mode can effectively be used with Type "A",

ypeh"B", or Burst DMA timing since the channel can be interrupted while other devices
use the bus.

271

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD AKCHITEC{URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.3.4 Cascade Mode

A DMA channel programmed for Cascade Mode enables a 16-bit bus master to use
the DMA arbitration signals. DMA channel 4 uses cascade mode, to expand the number
of DMA channels available.

DMA channel 4 is the DMA expansion channel used to cascade the DMA channel
0-3 controller block to the DMA Channel 4-7 controller block. DMA Channel 4 is always
programmed for cascade mode. DMA requests and grants for channels (-3 propagate
through the priority network at channel 4. For fixed pniority arbitration, channels (-3 are
higher prionty than channels 5-7. For rotating priority, channels (-3 can only win the
arbitration when channel 4 wins in the rotation of channels 4-7. Channel 4 is used only for
cascading the additional channels. It cannot service DMA transfer requests.

A 16-bit ISA bus master must use 8 DMA channel pro ed to Cascade Mode
for bus arbitration. The 16-bit ISA bus master asserts the DMA channel's DRQ<x> to
request the bus, and monitors DAK* <x> for acknowledgement of bus grant to the bus
master. Setting a DMA channel to cascade mode floats the address and command signals
(MRDC?, C*, IORC*, IOWC?*), leaving the 16-bit ISA bus master free to drive the
%ldrcss and control signals. The system board pull-up resistors hold LA* <31:24) at a logic

3.1.4 Transfer Types .

Each of the three DMA transfer modes (Single, Block and Demand) can perform
Read, Write and Verify types of transfers. Write transfers move data from an I/O device
to memory by activating memory write and IORC* (enabled by DAK* <x> asserted and
AENxX high).” Read transfers move data from memory to an I/O device by activating
memory read and JOWC® (enabled by DAK*<x> asserted and AENX hi%h). Verify
transfers cause the DMA controller to perform pseudo read and write cycles. It generates
addresses, and produces DAK* <x> and terminal count, but the memory and I/O control
lines remain inactive. Verify transfers are only allowed in ISA compatible timing mode
and have the address, DAK* <x>, and T-C timing associated with that mode.

3.1.5 Auto Initialize

An Autoinitialize channel automatically loads the Current Page, Current Address
and Current Word Count registers from the Base Page, Base Address, and Base Word
Count registers each time the DMA controller reaches terminal count or an external EOP
is received. By programming a bit in the Mode register, a channel can be set up for Auto-
initialization. 'ic mask bit is not set at the end of a transfer when the channel is in
autoinitialize mode. Following autoinitialize, the channel is ready to perform another
bDMA service without CPU intervention as soon as the DMA device requests and wins the

us again.

272

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.6 Buffer Chaining

The buffer chaining mode of a channel is useful for transferring data from a
gripbcral to several different areas of memory within one transfer operation (from the
MA device's viewpoint). This is accomplished by causing the DMA controller to
interrupt the CPU for more pro ing information while the previousl plrnc-»tgrammed
transfer is still in prczgrcss. e DMA controller then loads the new transfer information
automatically when the previous transfer completes. In this way, the entire transfer can
complete without interrupting the operation of the DMA device. This mode is most useful
for single cycle or demand modes of the controller where the transfer process allows time
for the CPU to execute the interrupt routine.

A channel can be initialized for buffer chaining by programming the DMA base
registers with the appropriate initial values, then programming the Chaining Mode register
to "enable chaining mode." The DMA controlrcr automatically loads the base register
values into the current registers. The base registers must then be programmed with the
appropriate values for the next group of DMA cycles.

The DMA transfer starts after the DRQ<x>, DAK®*<x> bus arbitraion. When
the Current Word Count register reaches terminal count, the DMA controller loads the
Current registers from the Base registers, sets the agﬁropriatc bit in the "Channel Interrupt
Status register,” then asserts IRQ13. The pending IRQ13 indicates that the Base registers
are empty and chaining mode is enabled. A T-Cis not generated for the DMA device.

The Base registers must be updated and the Chaining Mode register must be set to
"base rc?s' ter update complete” before the Current Word Count register reaches zero
terminal count), or the DMA controller abnormally terminates the data transfer by settin

e channel's bit in the "Channel Interrupt Status register,” and setting the channel’s "mas
bit" in the "Mask register." Abnormal termination of the DMA transfer causes the DMA
channel to become unstable and is likely to cause an overrun. Software can deiermine that
chaining mode has abnormally terminated by inspecting the Mask Status register (after
having set the Chaining Mode register to "base register update complete”). If the Mask
Status register indicates the channel is disabled, then the DMA channel is in an unstable
ztatg. The recovery procedure should reinitialize the DMA channel and restart the DMA

evice.

The IRQ13 interrupt handler reads the Channel Interrupt Status register to
determine that the DMA controller asserted IRQ13 and to identify the channel requesting
service. The interrupt handler updates the channel's base registers, then programs the
Chaining Mode register for "base register update complete.”

The 1/O write that signals "base register update complete™ also resets the DMA
channel's assertion of IRQ13 and the channel's bit in the Channe! Interrupt Status register.
The interrupt handler must then restore normal IRQ13 processing to assure service to
other devices (like the 387 coprocessor) that might also have a pending IRQ13.

The DMA controller asserts IRQ13 only after reaching terminal count or external
EOP (with chaining mode enabled). It does mot assert TRQ13 during the initial
programming sequence that loads the DMA base registers twice. -

When chaining mode is enabled, only the Base registers are loaded by the CPU.

The Current registers load automatically after the Current Word Count register reaches
terminal count. The processor can read the Current registers, but not load them.

273

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.7 Ring Buffers

The EISA DMA controller includes a set of Stop registers that may be used to
implement a ring buffer. The ring buffer data structure reserves a fixed portion of memory,
on doubleword boundaries, to be used for a DMA channel. Consecutive reception frames
or other data structures are stored in adjacent portions of the ring buffer memory.

The beginning and end of the ring buffer area are defined in the Base Address
register and the Base Address register plus the Base Word Count. The incoming frames
(data) are deposited in sequential locations of the ring buffer. When the DMA reaches the
end of the ring buffer (the word count has expired), 1t autoinitializes, taking it back to the
start of the ring buffer. The DMA then begins depositing the incoming bytes in the ring
buffers sequential locations-‘providix:ilghthat the host CPU has read the data that was
previously placed in those locations. The DMA determines that the CPU has read certain
data by the value that the CPU writes into the Stop register.

Once the data of a frame is read by the CPU, the memory location it occupies
becomes available for other incoming frames. The Stop register prevents the DMA from
over-writing data that bas not yet been read by the CPLF er the CPU has read a frame
from memory it must update the Stop register to point to the location that was last read.
The DMA does not deposit data into any location beyond that pointed to by the Stop
register. :

Once the DMA detects that it has reached the address pointed to by the Stop
register, the DMA channel is masked off and an overrun is likely to occur.

274

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The CPU can only program the Stop registers with doubleword addresses; the two
least significant bits of address are not stored. Also, the stop registers store values to
compare against A <23:2> only, so the size of the ring buffer is limited to 16 megabytes.

Diagram of a Ring Buffer Data Structure

Base Address
<= Register

Frames Read by CPU

Nemory 8Bpace Is
Available for New
Prames

8top
Register|—>

FPrames Not Read
by CPU

Memory Space Is Not
Available for New .
Frames :

current
Reception
Frame

current
Address |—>
Register

Unused Area

Available for
Incoming Data

Base Address Register
< +
Base Byte Count

275

EP 0 426 184 A2

. EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.8 Software Commands

The following three software commands can be executed while the DMA controller
is in Slave Condition. The commands are executed by performing an I/O write to the
command's I/O port address. The value written is ignored. The software commands are:

Clear Byte Pointer-Write Only
Channels 0-3 - Port 000Ch
Channels 4-7 - Port 00D8Sh

The Clear Byte Pointer command clears the internal latch used to address the upper
or lower byte of the 16-bit address and Word Count registers. The latch is also cleared at
power-on and by a DMA controller Master Clear command. The CPU may read or write a .
16-bit DMA controller register by performing two consecutive accesses. The Clear Byte
Pointer command precedes the first access. ’I%]c first I/O write to a register port loads the
least significant byte, and the second access automatically accesses the most significant

byte. :

Master Clear-Write Only
Channels 0-3 - Port 000Dh
Channels 4-7 - Port 00DAQh

The Master Clear instruction clears the (':‘ommand, Status, and Request registers,
sets the Mask register to disable DMA requests, and executes a Clear Byte Pointer
command. Any operation in progress in the aftected channels is aborted.

Clear Mask Register-Write Only
Channels 0-3 - Port 000Eh
Channels 4-7 - Port 00DCh

The Clear Mask register command enables all four DMA channels by clearing the
mask bits.

3.1.9 DMA Controller Register Descriptions

3.1.9.1 DMA Extended Mode Register

_ The Extended Mode register is used to program the DMA device data size and
timing mode. The register assumes default value after power-on reset. The DMA master
clear command does not reset this register.

The DMA controller can be programmed for 8-, 16- or 32-BIT DMA device data
size. Channels 0-3 default to the ISA compatible mode, "8-bit I/O, count by bytes" and
cllll'afnnde)ls 5-7 default to the ISA compatible mode, "16-bit I/O, count by words (address
shifted).”

The following table lists each of the DMA device transfer sizes. The column
labeled "Word Count register" indicates that the register contents represents either the
number of bytes to transter (bytes) or the number of 16-bit words to transfer (words). The
column labeled "Current Address Register Increment” indicates the number added to the
Current Address register after each DMA transfer cycle.

276

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

In "16-bit 1/O, Count by Words (address shifted)" mode, the address bus, which
contains a byte address, increments by two for each DMA transfer. The Current Address
register contains a word address, consequently it increments by one. :

DMA Device Data Size Word Count Current Address

Count by Byte/Word Register Register Increment

8-bit I/O, count by bytes bytes 1

16-bit 1/0, oount[va words words 1
(address shifted

16-bit I/O, count by bytes bytes 2

32-bit I/O, count by bytes bytes 4

The DMA controller can be programmed for one of four cycle timing modes to
transfer data between the DMA device and memory: ISA compatible cycles, Type "A"
cycles, Type "B" cycles, or Burst DMA cycles.

The DMA timing mode defaults to ISA Compatible timing. The device driver for
an expansion board that supports Type "A,” Type "B," or Burst DMA timing should
initialize the DMA controller for the fastest timing mode supported by the DMA device,
without regard to the memory slave being accessed. The system board automatically
determines the transfer rate supported by the memory slave and adjusts the cycle control
appropriately. P

A DMA device that uses ISA compatible ummg should not be programmed for

BLOCK mode and should not be programmed for DEMAND mode unléss the device

releases the bus periodically to allow other devices to use the bus. It is possible to lock out

other devices (including refresh) if the transfer count is pro edtoa Iasgc number.

BLOCK and DEMAN% mode can effectively be used with Type "A," Type "B" or Burst

tly)MA (Type "C") timing since the channel can be interrupted while other devices use the
us.

The T-C line is programmable for two purposes. In the (default) output mode, T-C
si terminal count from the DMA channel.rp(l)n the input mode, -Ct?s used by the
D device to terminate a transfer (EOP or End of Process%

277

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURKE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The last functioprgrogranunablc through the DMA Extended Mode register is the
"Stoglrcgister enable.” This bit is used to control the Stop register function and defaults to
disabled. '

DMA Extended Mode Register - Write Only
Chananels 0-3 - Port 040Bh
Channels 4-7 - Port 04D6h

7({6151413}2(110

L DMA Channel Select
00 Channel 0 (4) select
01 Channel 1 (5) select
10 Channel 2 (6) select
11 Channel 3 (7) select

Addressing Mode
00 8-bit I/O, count by bytes
01 16-bit I/O, count by words
_ (address shiftcdgl
10 32-bit I/O, count by bytes
11 16-bit I/O, count by.bytes

DMA Cycle Timing Mode
00 ISA Compatible timing
01 Type "A" timing mode
10 Type "B" timing mode
11 Burst DMA (Type "C") timing mode

0 T-Cis an output for this channel
1 T-Cis an input for this channel

0 Stop register enabled
1 Stop register disabled

3.1.9.2 ‘Chaining Mode Register

The Chaining Mode register pair can be used to enable or disable DMA buffer
chaining and indicate when the DMA Base registers are being programmed.

Software initializes the DMA controller for buffer chaining by writing the first
buffer address to the Base registers, then setting the chaining mode to "enable.” (The
DMA channel must not be in Auto initialize mode.) The DMA controller then loads the
Current registers. Software then loads the second buffer address into the Base registers
and sets the chaining mode to "programming complete, begin chaining” to start the actual
DMA transfer.

Software can set the Chaining mode to "Disable” to terminate chaining mode and
return to the "mormal” mode. The DMA controller may alsq disable Chaining after
abnormally terminating a chaining operation. The default values for channels 0-7 are
Disable Chaining mode. Chaining mode must be explicitly disabled by software, it is not
cleared except by a reset or master clear.

278

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

See the "Buffer Chaining" section for more information about the use of this

register.

Chaining Mode Register - Read/Write

Channels 0-3 - Port 040Ah
Channels 4-7 - Port 04D4h

5{41312]140

LL. DMA Channel Select
00 Channel 0 (4) select
01 Channel 1 (5) select
10 Channel 2 (6) select
11 Channel 3 (7) select

Enable /Disable Buffer Chaining Mode
00 Disable chaining mode
01 Enable chaining mode for programming

10 Illegal
11 Programming complete, begin chaining
0 TRQ 13 Y

1 Generate T-C

Reserved (set to 0)

The following sequence illustrates use bf the Chaining Mode register:

1.

The Base Address and Base Word Count register are loaded with the address and
ocount for the first buffer to be transferred.

The enable chaining mode bits for the appropriate channel are set to "01," causing
the Base Address and Base Count registers to load into the Current Address and
Current Word Count registers.

The second buffer's address and word count are loaded invto the Base Address and
Base Count registers.

The enable chaining mode bits for the appropriate channel (bits 2, 3) are set to "11"
to begin the chaining sequence.

When a chaining mode interrupt occurs, indicating completion of a buffer transfer,
the Base Address and Base Word Count registers are loaded with the address and
count for the next buffer to be transferred.

The "enable chaining mode” bits for the appropriate channel are set to "11" to
prepare for the next transfer and to clear the interrupt.

279

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.9.3 Chaining Mode Status Register

Software can determine if chaining mode is enabled or disabled by reading the
Chaining Mode Status register. The bit is set if the channel is enabled for chaining mode.
The bit 1s clear if the channel is not enabled for chaining mode. The register is cleared by a
power-on reset.

Chaining Mode Status Register - Read Only
Port 04D4h

71615|4(|31211}]0

l—- Channel 0 enabled (if bit is set
~—— Channel 1 enabled (if bit is set
Channel 2 enabled (if bit is set
Channel 3 enabled (if bit is set
Reserved
Channel S enabled gxf bit is set%

Channel 6 enabled (if bit is set
Channel 7 enabled (if bit_ is set

3.19.4 Channel Interrupt Status Register

The "Channel Interrupt Status” register indicates a pending IRQ13 caused by the
DMA controller. The DMA controller asserts IRQ13 after reaching terminal count, with
chaining mode enabled. It does not assert IRQ13 during the initial programming sequence
that loads the base registers twice. The default value for all channels is no interrupt

pending.

The appropriate bit in the interrupt latch is automatically cleared when the
"chaining mode enabled" bits are set to "11" or when cleared to "00."

Channel Interrupt Status Register - Read Only
Port 040Ah

7{6i{51413(2]1j0

|- Interrupt on Channel 0 (if bit is set
Interrupt on Channel 1 (if bit is set
Interrupt on Channel 2 (if bit is set
Interrupt on Channel 3 (if bit is set
Reserved

Interrupt on Channel § éif bit is sctg

Interrupt on Channel 6 (if bit is set
Interrupt on Channel 7 (if bit is set

280

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITSC{URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.9.5 Address and Word Count Registers

3.1.9.5.1 Base Word Count Register

Each DMA channel has a write-only, 24-bit Base Word Count register that stores
the programmed word count value. The DMA controller performs one transfer in addition
to the programmed number of transfers.

The Base Word Count register consists of twqrgarts, the 16-bit 8237 compatible
.Zigmc t, and the 8-bit hégh word count segment. e two segments are mapped at
ifferent 1/0O addresses and must be programmed separately. The main CPU programs the
8237 compatible segment by executing the Clear Byte Pointer command, then performing
two consecutive 8-bit 1/O writes to the appropriate address. The main CPU programs the
high word count segment by performing an 8-bit I/O write to the appropriate address.

The Base High Word Count Segment must be programmed after the Base Word
Count 8237 Compatible Segment (VI/O write to the Base Word Count 8237
Compatible Segment sets the Base High Word Count Segment (and Current High Word
Count Segment) to zero.

281

EP 0 426 184 A2

Ay

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Base Word Count Register Segments (Write Only)

DMA 1/O address I/0 address
Channel 8237 Compatible igh Word
Segment Count Segment
16-bits 8-bits
0 0001h 0401h
1 0003h 0403h
2 0005h 0405h
3 0007h 0407h
h] 00C6h 04C6h
6 00CAh 04CAR
7 00CEh 04CEh

3.1.9.52 Current Word Count Register

Each DMA channel has a read-only, 24-bit Current Word Count register. The
DMA controller decrements the word count after each transfer. The intermediate value of
the word count is stored in the Current Word Count register during the transfer. The
DMA controller generates terminal count and stogg’ decrementing when the Current Word
Count register "rolls over” (decrements from). The Current Word Count register
then contains FFFFFFh until reloaded.

The Current Word Count register consists of two parts, the 16-bit 8237 compatible
icxgmcnt, and the 8-bit high word count segment. The two segments are ma:gped at
ifferent I/O addresses and must be read separately. The main CPU reads the 8237
compatible segment by executing the Clear Byte Pointer command, then performing two
consecutive 8-bit I/O reads from the appropriate address. The main CPU reads the high
word count segment by performing an £Eit /O read from the appropriate address.

Each Current Word Count register segment is automatically loaded simultaneously
with the respective Base Word Count register when not in Chaining mode.

282

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Autoinitialize causes both Current Word Count register segments to load from the
respective Base Word Count register segments.

Current Word Count Register Segments (Read Only)

DMA I/O Address 1/0 Address
Channel 8237 Compatible igh Word
Segment Count Segment
16-bits 8-bits
0 0001h 0401h
1 0003h 0403h
2 0005h 0405b
3 0007h 0407h
5 00C6h 04C6h
6 00CAh 04CAh
7 00CEh 04CEh

3.1.9.5.3 Base Address Register

Each DMA channel has a 32-bit write-only Base Address register that is
programmed with the base address for DMA transfers. The Base Address register does not
increment or decrement. The 32-bit Base Address register consists of a 16-bit register (low
address word), an 8-bit low page rc%"satcr (second highest address byte) and an 8-bit hi
page register (high address yt?. ch register segment is mapped at a different I/O

address and must be programmed separately.

Base Address (8237 Compatible Segment)

The Base Address register includes a 16-bit 8237 compatible segment. The 8237

compatible segment combines with the low page segment and high page segment to

rovide the low address word of the 24-bit ISA compatible DMA address or the 32-bit
ISA DMA address.

The main CPU programs the 8237 compatible segment by executing the Clear Byte
Pointer command, then performing two consecutive 8-bit 1/O writes to the appropriate
address.

Base Address (Low Page Segment)

The 8-bit low page segment of the Base Address register combines with the 8237
compatible segment to provide the high byte of the 24-bit ISA compatible DMA address
space. The low page segment combines with the high page segment to provide the second-
most-significant-byte of the 32-bit EISA DMA address.

The main CPU programs the low page segment by performing an 8-bit I/O write to
the appropriate address. B

283

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Base Address (High Page Segment)

The 8-bit high page segment of the Base Address register combines with the ISA
compatible segments to provide the high byte of the 32-bit EISA DMA address.

The main CPU pro’%z:.ms the high page segment by performing an 8-bit I/O write to
the appropriate address. The high page segment must be rgro ammed after the low page
segment and 8237 compatible segment. Any write to the low page segment or 8%7
compatible segment clears the high page segment.

Base Address Register Segments (Write Only)

DMA I/O address I/O address I/0O address
Channel 8237 Compatible w Page igh Page
Segment Segment Segment
16 bits 8 bits 8 bits
0 0000h 0087h 0487h
1 0004h 0083h 0483h
2 0008h 0081h 0481h
3 000Ch 0082h 0482h
5 00C4h 008Bh 048Bh
6 00C8h 008%h 048%h
7 00CCh 008AH . 048Ah

3.1.954 Current Address Register

Each DMA channel has a 32-bit read-only Current Address register. The DMA
controller automatically increments or decrements the address after each transfer; the
intermediate values of the address are stored in the Current Address register during the
transfer. The 32-bit Current Address register consists of a 16-bit register (low address
word), an 8-bit low page register (second highest address byte) and an 8-bit high page
register (high address byte). Each register segment is mapped at a different I/O address
and must be read separately.

Each Current Address register segment is automatically loaded simultaneously with
the respective Base Address register segment (unless chaining mode is enabled).

Auto initialize causes all current address register segments to load from the
respective base address register segments.

Current Address (8237 Compatible Segment)

The Current Address register includes a 16-bit 8237 compatible segment. The 8237
compatible segment combines with the low page segment and high page segment to0

rovide the low address word of the 24-bit ISA compatible DMA address or the 32-bit
ISA DMA address.

The main CPU reads the 8237 compatible segment by executing the Clear Byte

Pointer command, then performing two consecutive 8-bit I/O reads from the appropriate
address.

284

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH:TECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Current Address (Low Page Segment)

The 8-bit low page segment of the Current Address register combines with the 8237
compatible segment to provide the high byte of the 24-bit ISA compatible DMA address
space. The low page segment combines with the high page segment to provide the second-
most-significant-byte of the 32-bit EISA DMA address.

The main CPU reads the low page segment by performing an 8-bit I/O read from
the appropriate address.

Current Address (High Page Segment)

The 8-bit high page segment of the Current Address register combines with the ISA
compatible segments to provide the high byte of the 32-bit EISA DMA address.

The main CPU reads the high page segment by performing an 8-bit I/O read from
the appropriate address.

Current Address Register Segments (Read Only)

DMA 1/O address 1/O address I/O address
Channel 8237 Compatible Low Page 5 igh Page
Segment Segment . Segment
16 bits 8 bits 8 bits
0 0000h 0087h 0487h
1 0004h 0083h 0483h
2, 0008h 0081h 0481h
3 000Ch 0082h 0482h
5 00C4hb 008Bh 048Bh
6 00C8h 0089h 048%h
7 00CCh 008Ah 048Ah

3.1.9.55 Address and Word Count Programming

ISA Compatible Addressing and Word Count

Any 1/O write to the Base Address low page segment or 8237 Compatible Segment
sets the Base Address high page segment to address zero and causes that DMA channel to
use ISA compatible addressing.

Any 1/O write to the Base Word Count 8237 compatible segment sets the Base
Word Count high segment (and Current Word Count high segment) to zero for ISA
compatibility.

285

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECIURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

32-bit Addressing and Word Count

An I/0O write to the Base Address high page segment puts the DMA channel into
enhanced addressing mode and causes the Current Address register to function as a 32-bit
up/down counter. The high and low Tﬁage registers 1ncrement (or decrement)
automatiqcl?, without software assistance. The Base Address high page segment must be
programmed last to cause 32-bit addressing. Any I/O write to the Base Address low page
scﬁrjx\cnt or 8237 compatible segment causes the DMA channel to use ISA compatible
DMA addressing.

The Base Word Count high se%ment must be programmed after the Base Word
Count 8237 Com%atible segment. Any I/O write to the Base Word Count 8237 compatible
segment sets the Base Word Count high segment (and Current Word Count high segment)
1o zero.

*8-bit 1/0, Count By Byte" Mode
(ISA Compatible)

The Base Address register can be ro%rammed to any byte address if the Extended
Mode register is set for "8-bit 1/O, Count yte” mode. The low and high page segments
act like direct extensions of the address counter. The high page segment should be
programmed with address bits corresponding to LA<31:24> (not inverted). The low page
segment should be programmed with address bits corresponding to LA <23:16>. The 8237
oom%atﬂale segment should be programmed with address bits corresgouding to SA<15:0>.
The Base Word Count register should be programmed with the number of bytes to transfer
minus one. For example:

Physical memory address for transfer: 12345678h
BHKRS to transfer: 80b
igh Page segment contents = 12h
Low Page segment contents = 34h
Base Address register = 5678h
(perform two sequential writes: 78h, then 56h)
Base Word Count register = 7Fh

286

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

*16-bit 1/0, Count By Word (Address Shifted)” Mode
(ISA Compatible)

The Base Address rcgistcr must be programmed to an even address if the Extended
Mode register is set for "16-bit I/O, Count by Word (address shifted)” mode. The 17 low-
order address bits must be shifted right by one bit (the LSB is ignored) before loading into
the Base Address 8237 compatible segment. The high page segment should be
programmed with address bits corresponding to LA<31:24> (not inverted). The most
significant seven bits of the low page segment should be programmed with address bits
corresponding to LA<23:17> and the LSB of the low page segment should be
grogrammed with a "0". The 8237 compatible segment should be programmed with address

its corresponding to SA<16:1>. SA<0> is not used since the address bus increments by
two and the transfer is always to or from an even address. The Base Word Count register
should} be programmed with the number of 16-bit words to transfer minus one. For
example:

Physical memory address for transfer: 87654320h
Bytes to transfer: 8Ch
16-bit words to transfer: 40h
High Page segment contents = 87h
Low Page segment contents = 64h
Base Address register = A190h
(perform two sequential writes: 90h, then Alh)
Base Word Count register = 3Fh .

*16-bit 1/0, Count By Byte" Mode

The Base Address reﬁister can be programmed to any byte address if the Extended

Mode register is set for "16-bit I/O, Count by Byte" mode. The high page segment should

be programmed with address bits corrcigonding to LA<31:24> {%mt inverted). The low

gagc segment should be programmed with address bits corresponding to LA<23:16>. The

237 compatible segment should be programmed with address bits corresponding to

SA<15:0>. The Base Word Count register should be programmed with the number of
16-bit bytes to transfer minus one.

Note that most DMA devices require the address to be aligned on a dword
boundary. If programmed to a misaligned address, the DMA controller transfers a partial
dword only on the first and last transfer. For example:

Physical memory address for transfer: 12345678h
Ilzn:s to transfer: 80h
igh Page segment contents = 12h
Low Page segment contents = 34h
Base Address register = 5678h
(perform two sequential writes: 78h, then 56h)
Base Word Count register = 7Fh

287

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

*32-bit /0, Count By Byte" Mode

The Base Address register can be programmed to any byte address if the Extended
Mode register is set for "32-bit 1/O, Count by Byte” mode. (Note that most DMA devices
require the address to be aligned on a dword boundary.) The high page segment should be
programmed with address bits corresponding to LA <31:24> (not inverted). The low page
segment should be programmed with address bits corresponding to LA<23:16>. The 8237
compatible segment should be programmed with address bits corres%ond'm to SA<15:0>.
The Word Count register should be programmed with the number of bytes to transfer
minus one.

Note that most DMA devices require the address to be aligned on a dword
boundary. If programmed to a misaligned address, the DMA controller transfers a partial
dword only on the first and last transfers. For example:

Physical memory address for transfer: 12345678h
IB_ﬂttas to transfer: 80h
igh Page segment Contents = 12h
Low Paﬁc segment Contents = 34h
Base Address register = 5678h
(perform two sequential writes: 78h, then 56h)
Base Word Count register = 7Fh

288

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.9.6 DMA Command Register

The DMA Command register can be programmed by software to initialize the
DRQ<x> and DAK*<x> logic levels to active Eigh or low, and initialize the channel
group arbitration priority scheme for fixed or rotating. Software can also enable or disable
the DMA channel group by setting or clearing bit 2 of the Command register. Disabling
channels 4.7 also &ab es channels 0-3, since channels 0-3 are cascaded into channel 4.
The Command Registers can be cleared by power-on reset and by the Master Clear
instruction.

DMA Command Register - Write Only
Channels 0-3 - Port 0008h
Channels 4-7 - Port 00D0h

7165141312110

L Reserved (0
—— Reserved (0

DMA Channel Select
0 Channels 0-3 ?4-7 enable
1 Channels (-3 (4-7) disable .

Reserved (0)

Arbitration Priority
0 Fixed priority
1 Rotating priority

Reserved (0)

DRQ Sense Assert Level
0 DRQ<3:0> (<7:5>) sense asserted high
1 DRQ<3:0> (<7:5>) sense asserted low

DAK?* Assert Level
0 DAK*<3:0> (<7:5>) assert low
1 DAK*<3:0> (<7:5>) assert high

289

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.9.7 Mode Register

Each DMA channel has a 6-bit Mode register. The Mode registers are programmed
by setting bits 0 and 1 for the appropriate channel, then writing to the Mode register port
adgrlc)ss. The channel's Mode register latches the six mode bits ?bascd on the value of bits 0
and 1).

Mode Register - Write Only
Channels 0-3 - Port 600Bh
Channels 4-7 - Port 00D6h

7]16i514i3]2}|1}0

L DMA Channel Select
00 Channel 0 select
01 Channel 1 select
10 Channel 2 select
11 Channel 3 select

Data Transfer Type
00 Verify transfer
01 Write transfer .
10 Read transfer ‘
11 Iliegal

0 Disable Auto initialization
1 Enable Auto initialization

0 Address increment select
1 Address decrement select

DMA Channel Mode Select
00 Demand mode select
01 Single mode select
10 Block mode select
11 Cascade mode select

Note: Channel 4 must be programmed for cascade mode. All other modes are
disallowed.

Note: The address decrement mode only applies to "8-bit I{O, Count by Byte"

mode and "16-bit 1/O, Count by Word (address shifted)” mode. Results in
other modes are undefined.

290

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.9.8 Request Register

Software can initiate a DMA service request by setting any DMA channel's Request
register bit. The DMA controller responds to the software request as though DRQ<x> is
asserted. The request bits are not maskable. Any channel’s request bit can be set or
cleared under software control. The DMA controller automatically clears a channel's
request bit after the channel's Current Word Count register reaches terminal count or an
external EOP is received. A DMA channel must be in Block Mode before a service

request can be initiated by software. The Request register is cleared by power-on reset.

Request Register - Write Only
Channels 0-3 - Port 0005h
Channels 4-7 - Port 00D2h

71615(41312]1)0

L DMA Channel Select
00 Select channel 0

01 Select channel 1 §5§

6

10 Select channel 2
11 Select channel 3 (7

——— 0 Clear request bit
1 Set request bit

Reserved (0)

3.1.9.9 Mask Registers

Each channel has a mask bit that, when set, disables a DMA service request caused
by an asserted DRQ<x>. A channel's mask bit is automatically set when the Current
Word Count register reaches terminal count (unless the channel 1s programmed for auto
initialization or chaining mode). Any channel's mask bit can be set or cleared under
software control. Power-on reset disables all DMA channels by setting the Mask register
bits. A Clear Mask register command enables the four DMA channels.

Note: If channel 4 mask bit is set, then channels 0-3 are masked off. This is
because channels 0-3 are cascaded into channel 4. :

291

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITELZTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Write Single Mask Bit

This register can be used to set or clear any mask register bit.

Write Single Mask Bit - Write Only
Channels 0-3 - Port 000Ah
Channels 4-7 - Port 00D4h

7161514(1312(1(0

LL DMA Channel Select
00 Select channel 0 (4) mask bit
01 Select channel 1 (5) mask bit
10 Select channel 2 (6) mask bit
11 Select channel 3 (7) mask bit

—_— 0 Clear mask bit
1 Set mask bit

Reserved (0)

Write All Mask Bits/Mask Status Register

This register can be used to write or read all four bits of the Mask register with a
single command.

Write All Mask Bits/Mask Status Register - Read/Write
Channels 0-3 - Port 000Fh
Channels 4-7 - Port 60DEh

71615]4(312]1}0

_

Clear channel 0 (4) mask bit
Set channel 0 (4) mask bit

-

Clear channel 1 (5) mask bit
Set channel 1 (5) mask bit -

|

Clear channel 2 (6) mask bit
Set channel 2 (6) mask bit

0 Clear channel 3 (7) mask bit
1 Set channel 3 (7) mask bit

Reserved (0) -

!

292

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.9.10 DMA Status Register

The DMA Status register contains status information about the DMA channels that
can be read by the CPU. This information identifies channels that reached a terminal
count and channels that have pending DMA requests. Bits 0-3 are set every time terminal
count is reached by the corresponding channel. qrhese bits are cleared upon power-on and
on each Status Read. Bits 4-7 are set whenever their corresponding channel is requesting

service.

DMA Status Register - Read Only
Channels 0-3 - Port 0008h
Channels 4-7 - Port (0DOh

716{5|413|211}0

(— Channel 0 (4) at terminal count
—— Channel 1 (5) at terminal count
L——— Channel 2 (6) at terminal count
Channel 3 (7) at terminal count
Channel 0 (4) request
Channel 1 (5) request
Channel 2 (6) request
Channel 3 (7) request

The following table shows the results of reaching DMA terminal count or an
external EOP (End of Process). If the Stop register limit is reached, the mask is set and
other conditions are unchanged.

Program Status DMA Software Current
Mode Terminal Mask Request Registers
Count bit bit
Normal set set clear no change
Autoinit set clear clear reload
Chainin
(normal clear clear clear reload
Chaining
(over-run) 2777? set clear 77?77

293

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.1.10 Supported DMA Transfer Combinations

The following tables indicate the legal DMA transfer modes. The notes apply to all
the tables. ' '

Note 1: The ?Stem board does not perform data size translation for any DMA
transfers that use ISA compatible DMA timing, including when
performing 16-bit transfers to -bit memory.

Note 2: The system board performs data size translation for Type "A" and
Type “B" DMA cycles. The system board can use direct transfer or
byte lane cogying for DMA operations between the DMA device and
memory with a word width equal to or larger than the DMA device.
Transfers between a DMA device and memory with a smaller width
than the DMA device require data size translation by the system
board. For memory writes (I/O reads), the system board causes the
DMA device to float.its data lines by negating IORC*. For memory
reads (/O writes), the System board holds IOWC® asserted until the
translation completes, then negates IOWC* so the DMA device ‘can

sample the data on the trailing edge.

Note 3: The system board performs data size translation for Burst DMA
cycles. The system board can use direct transfer or byte lane copying
for DMA operations between the DMA device and burst memory
with a word width equal to or larger than the DMA device. Transfers
between a DMA device and memory with a smaller width than the
DMA device require data size translation by the system board. For
memory writes a O reads), the system board causes the DMA device
to float its data lines by nciaﬁng JIORC*. For memory reads (1/O
writes), the system board holds IOWC* only at the end of the
translation. Transfers between a DMA device and memory that does
not support Burst DMA cycles reverts to Standard EISA memory

cycles.

294

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

General
Note: 16sh indicates an ISA compatible addressing type with a 16-bit data
size and shifted address. The DMA address register is shifted left one
bit and executed as a word address (ISA compatible), consequently,
misaligned transfers cannot be performed. EISA 16-bit data size does
not require the address shift, and can support misaligned transfers if
the DMA device performs the byte alignment.
DMA Transfer Combinations
Transfer DMA Timing Data |Mem
Type Mode Type Size |Bus |[Notes
na Cascade na na |ISA
Verify |Single |Compatible 8 ISA |Note 1
Verify |Single |Compatible 16sh |ISA |Note 1
Verify {Single [Type ‘A’ ° -8 EISA|Note 2
Verify |Single {Type ‘A’ 16sh |EISA|Note 2
Verify |{Single |Type ‘B’ 8 EISA|{Note 2
Verify |Single |[Type ‘B’ 16sh [EISA|Note 2
Verify |Demand |Compatible 8 ISA |Note 1
Verify |Demand |Compatible 16sh }{ISA |Note 1
Verify |Demand |Type ‘A’ 8 ' |EISA|Note 2
Verify |Demand |Type ‘A’ 16sh |EISA|Note 2
Verify |Demand |Type ‘B’ 8 EISA|{Note 2
Verify |Demand |[Type ‘B 16sh |EISA|Note 2
Verify (Block |{Compatible 8 ISA |Note 1
Verify {Block Compatible 16sh |ISA |[Note 1
Verify |Block |Type ‘A’ 8 EISA|Note 2
Verify |Block |Type ‘A’ 16sh |EISA|Note 2
Verify {Block |Type ‘B’ 8 EISA|Note 2
Verify |Block |[Type 'B’ 16sh |EISA|Note 2

295

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Transfer Combinations (Read)

Transfer DMA Timing ~ Data |[Mem
Type Mode Typé Size |Bus |Notes

Read Single |Compatible 8 ISA |Note 1
Read Single |Compatible 16sh |ISA {Note 1
Read Single |Type ‘A’ 8 EISA|Note 2
Read Single |Type ‘A’ 16sh |EISA|Note 2
Read Single |[Type ‘A’ 32 EISA|Note 2
Read Single |Type ’A’ 16 |EISA|Note 2
Read Single |Type ‘B’ 8 EISA|Note 2
Read Single |Type ‘B’ 16sh |EISA|Note 2
Read Single |Type ‘B’ 32 EISA|Note 2
Read Single |Type ‘B’ 16 EISA|Note 2
Read Demand |{Compatible 8 ISA {Note 1
Read Demand |Compatible | 16sh |ISA |Note 1
Read Demand |Type ‘A’ 8 EISA{Note 2
Read Demand |Type ‘A’ 16sh |EISA|Note 2
Read Demand |Type ’A‘ 32 EISA|Note 2
Read Demand |Type ‘A’ 16 EISA|Note 2
Read Demand |{Type ‘B’ 8 EISA|Note 2
Read Demand |[Type ‘B’ l6sh |EISA|Note 2
Read Demand |Type ‘B’ 32 EISA|Note 2
Read Demand |Type ‘B’ 16 EISA|Note 2
Read Demand |Burst DMA 8 EISA|Note 3
Read Demand |Burst DMA 16 EISA{Note 3
Read Demand |Burst DMA 32 EISA|Note 3
Read Block |[Compatible 8 ISA |Note 1
Read Block |Compatible 16sh |ISA |[Note 1
Read Block |Type ‘A’ 8 EISA|Note 2
Read Block |[Type ‘A’ 16sh |EISA{Note 2
Read Block |[Type ‘A’ 32 EISA|Note 2
Read Block |Type ‘A’ 16 EISA|Note 2
Read Block |Type ‘B’ 8 EISA|Note 2
Read Block |[Type ‘B’ 16sh |EISA{Note 2
Read Block Type ’'B’ 32 EISA|Note 2
Read Block [Type ’B 16 EISA|Note 2
Read Block |Burst DMA 8 EISA|Note 3
Read Block Burst DMA 16 EISA|Note 3
Read Block |Burst DMA 32 EISA|{Note 3

296

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Transfer Combinations (Write)

Transfer DMa Timing Data [Mem
Type Mode Type 1 Ssize |Bus |Notes

write |Single |Compatible 8 ISA |Note 1
Write Single |[Compatible 16sh |ISA |Note 1
Write Single (Type ‘A’ 8 EISA|Note 2
Write Single |Type ‘A’ l6sh |EISA|Note 2
Write Single |[Type ‘&’ 32 EISA|Note 2
Write Single |Type ‘A’ 16 EISA|Note 2
Write Single |[Type ‘B’ 8 EISA|Note 2
Write Single |Type ‘B’ '16sh |EISA|Note 2
Write Single |Type 'B’ 32 EISA|Note 2
Write |Single [Type ’B’ 16 EISA|Note 2
Write Demand |Compatible. 8 ISA |Note 1
Write Demand |{Compatible lésh |ISA |Note 1
Write Demand |Type ’'A’ - 8 EISA|Note 2
Write Demand |Type ‘A’ 16sh |EISA|Note 2
Write Demand |{Type ‘A’ 32 EISA|Note 2
Write |Demand |[Type ‘A’ 16 EISA|Note 2
Write Demand |Type ‘B’ 8 EISA|Note 2
Write Demand |Type ’'B’ 16sh |EISA|Note 2
Write Demand {Type ‘B’ 32 |EISA|Note 2
Write Demand |Type ‘B’ 16 EISA|Note 2
Write Demand |Burst DMA 8 EISA|Note 3
Write Demand {Burst DMA 16sh |EISA|Note 3
Write Demand |Burst DMA 32 EISA{Note 3
Write |{Block {Compatible 8 ISA |Note 1
Write Block |Compatible 16sh |[ISA |[Note 1
Write Block |Type ‘A’ 8 EISA|Note 1
Write Block |Type ‘Af 16sh |EISA|[Note 1
Write Block |Type ‘Af 32 EISA|Note 2
Write Block |Type ‘A/ 16 EISA{Note 2
Write |{Block |Type ‘B’ 8 EISA|Note 1
Write Block |[Type ‘B’ | 16sh |EISA|{Note 1
Write Block |[Type ’B’ 32 EISAINote 2
Write Block |Type ‘B’ 16 EISA|Note 2
Write Block Burst DMA 8 EISA|Note 3
Write Block |Burst DMA l16sh |EISA|Note 3
Write IBlock |Burst DMA 32 EISA|Note 3

297

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.2 Interrupt Controller

EISA systems provide an ISA compatible interrupt controller with the EISA
enhancement. Interrupts can be set as edge sensitive or level sensitive. The EISA
interrupt controller incorporates the functionality of two 8259 interrupt controllers. A total
of 15 interrupts are available, not including IRQ2 (on the master interrupt controller),
which is used to cascade interrupts from the slave interrupt controller.

The EISA master interrupt controller (INT-1) provides IRQ<7:0> and the slave
interrupt controller (INT-2) provides IRQ<15:8>. The INT-2 interrupt output is
connected to IRQ2 of INT-1. The interrupts have the following priority arrangement
gighest Iﬁrion'ty to lowest): IRQO, IRQ1, IRQS8, IRQY, IRQ10, IRQ11, IRQ12, [RQ13,

Q14, IRQ15, IRQ3, IRQ4, IRQS, IRQ6, IRQ7.
3.2.1 Interrupt Controller /O Address Map
The following table shows the I/O port address map for interrupt registers:
Interrupt I/0 # of Interrupt Controller
Block Address Bits Register
IRQ<7:0> 0020h 8 INT-1 Base Address
IRQ<7:0> 0021h 8 INT-1 Mask register
IRQ<7:0> 04D0h 8 INT-1 Edge/Level register
TRQ<15:8> 00AOh 8 INT-2 Base Address
IRQ<15:8> 00A1h 8 INT-2 Mask register
TRQ<15:8> 04D1h 8 INT-2 Edge/Level register
3.22 Interrupt Sequence

The following shows the interrupt sequence for an 80x86-type system. (An EISA
interrupt controller must never be programmed to the 8259's 8080 mode.) .

1. One or more IRQ<15:0> lines are asserted, setting the corresponding
Interrupt Request register bit.

2. The interrupt controller evaluates the requests and interrupts the CPU.

3. The CPU acknowledges the interrupt and responds with an interrupt

acknowledge cycle (see the CPU data sheet for a description of the CPU's
interrupt acknowledge cycle).

4, During the interrupt acknowledge cycle, the interrupt controller sets the
highest priority In-Service register bit and clears the corresponding Interrupt
Request register bit. INT-1 presents the ID of the interrupt controller
requesting service (the highest priority In-Service interrupt code) to INT-2 at
the end of the interrupt acknowledge cycle. Neither interrupt controller
drives the data bus during this cycle.

208

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3. The CPU initiates a second interrupt acknowledge cycle to read the interrupt
vector. Dun'ngr;lhis cycle, INT-1 or INT-2 presents the 8-bit interrupt vector
on D<7:0>. ¢ interrupt vector cansists of the interrupt code, presented
on D<2:0> and the interrupt controller vector address e‘g -1 vector
address is 00001b, INT-2 vector address is 01110b), presented on D<7:3>,
An interrupt from the cascaded interrupt controller causes INT-2 to present
the vector. Any other interrupt causes -1 to present the vector.

6. This completes the interrupt cycle. In the AEOI mode, the In-Service
register bit is cleared at the end of the second interrupt acknowledge.
Otherwise, the In-Service register bit remains set until an appropriate EOI
command is issued at the end of the interrupt service routine.

The IRQx inputs must remain asserted until after the leading edge of the first
interrupt acknowledge. If an IRQx input is negated before the interrupt acknowledge, the
interrupt controller drives the vector for IRQ7 (IRQ1S on the cascaded interrupt
controller) during the second interrupt acknowledge cycle.

323 Interrupt Controiler Initialization

There are two types of command words that the CPU can use to program the EISA
interrupt controller:

. Initialization Command Words
INT-1 and INT-2 must be initialized before normal operation. Initialization is
performed by programming ICW1, ICW2 and ICW3 to INT-1 and INT-2. Some
configurations also require ICW4 be programmed.

. eration Command Words)
e interrupt controller can be commanded to operate in various modes. The
modes are as follows:

- Fully Nested Mode

- Special Fully Nested Mode
- Fixed Priority Mode

- Rotating Priority Mode

- Special Mask Mode

- Polled Mode

INT-1 and INT-2 are initialized separately, and can be programmed to operate in
different modes. The typical power-up default settings (INT-1 INT-2) are as follows:
80x86 mode, Edge-sensitive (IRQ<15:0>), normal End-of-Interrupt, Non buffered mode,
Special Fully Nested"Mode disabled, fixed priority, cascade mode. INT-1 is connected as
the master interrupt controller, its ICW3 = 4h, its vector address = 8h. INT-2 is connected
as the slave interrupt controller, its ICW3 = 2h, its vector address = 70h.

299

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

) The following table shows the typical BIOS initialization sequence for an EISA
interrupt controller:

Port Value Description of Operation

020h 11h INT-1, ICW1

021b 08h INT-1, ICW2 vector address for 000020h
021h 04h INT-1, ICW3 indicates slave connection
021h 01h INT-1, ICW4 8086 mode

021h B8h INT-1, Interrupt mask (may vary with option)
04D0h 00h INT-1, Edge/Level Control register

0ACh 11h INT-2, ICW1

CAlh 70h INT-2, ICW2 vector address for 0001C0Oh
0Alh 02hb INT-2, ICW3 indicates slave ID

0A1lh 01h INT-2, ICW4 8086 mode

O0Alh BDh INT-2, Interrupt mask (may vary with option)
04D1h 00h INT-2, Edge/Level Control register

An I/O write to the INT-1 or INT-2 base address with D<4> = "1", is interpreted
as Initialization Command Word 1 (ICW1). For EISA systems, two I/O writes to
“base address + 1" must follow the ICW1. The first write to "base address + 1" performs
ICW2, the second write performs ICW3. A third write to "base address + 1" (if the IC4 bit
is set on the ICW1) performs ICW4.

An I/O write that does not follow an ICW1 to the INT-1 or INT-2
"base address + 1" Joads the Interrupt Mask register.

No Operation Command words can be written before the initialization sequence is
complete.

300

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following flow chart illustrates the sequence software must follow to load the
interrupt controller Initialization Command Words. The sequence must be executed for
INT-1 and INT-2. '

ICWl-Port 020h (OAOh)

I

ICW2-Port 021h (OAlh)

L

ICW3-Port 021h (0Alh)

No (IC4=0)]
Is ICW4 Needed?

Yes (IC4=1)

ICW4~Port 021h (0Alh)

Y

READY TO ACCEPT .
INTERRUPT REQUESTS 1.

3.24 Initialization and Control Registers

3.2.4.1 Initialization Command Word 1 (ICW1)

An I/O write to the INT-1 or INT-2 base address with D<4> = "1", is interpreted
as Initialization Command Word 1 (ICW1).

LTIM: This bit is disabled in EISA systems. Its function is replaced by the
Edge/Level Control register, described elsewhere.

ADIL Ignored.for EISA.

SNGL: This bit is set to "0" for EISA. It indicates that there is more than one
interrupt controller in the system.

1C4: If thisobit is set - ICW4 has to be read. IF ICW4 is not needed, set
IC4=0.

301

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Note that the bit description in the ICW1 diagram below applies only to ICW1. If
D<4> indicates OCW2 or OCW3, the bit definitions are documented under the

appropriate section.

Initialization Command Word 1
(ICW1, OCW2 and OCWS3 are accessed through a common port)
INT-1 - Port 020h (program to 011h)
INT-2 - Port 0AOh (program to 011h)

D7 D6 D5 D4 D3 D2 D1 DO

A7 |A6)|AS5|1 |LTIM|ADI|SNGL|IC4

I——,— 1 = ICW4 Needed
0 = No ICW4 Needed

1 = Reserved for EISA
0 = Cascade mode

Ignored for EISA
Ignored for EISA

0-= Indicates OCW2 or OCW3
1 = Indicates ICW1

Ignored for EISA

3.2.4.2 Initialization Command Word 2 (ICW2)

The first in a sequence of I/O writes (after an ICW1) to the INT-1 or INT-2
"base address + 1"is interpreted as Initialization Command Word 2 (ICW2).

ICW?2 initializes the interrupt controller with the 5 most-significant bits of the
interrupt vector address. INT-1 or -2 presents the 8-bit interrupt vector on D<7:0>
during the second interrupt acknowledge cycle. The interrupt vector consists of the
interrupt code, presented on D<2:0> and the interrupt vector address (INT-1 vector
address is 08h, 2 vector address is 070h), presented on D<7:3>. An interrupt on
IRQ-2 causes INT-2 to present the vector. Any other interrupt causes INT-1 to present the

vector.

302

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The CPU calculates_the pointer address to the interrupt service routine by
multiplying the vector by 4. The CPU then branches to and executes the interrupt service
routine. :

Initialization Command Word 2
INT-1 - Port 021h (program to 08h)
INT-2 - Port 6Alh (program to 070h)

D7 D6 D5 D4 D3 D2 D1 DO

T7|T6{T5{T4;T3| 0} 0] O

Reserved for EISA (Set to 0)

Interrupt vector address

3.2.4.3 Initialization Command Word 3 (ICW3)

The second in a sequence of I/O writes (after an ICW1) to the INT-1 or INT-2
*base address + 1" is interpreted as Initialization Command Word 3 (ICW3). ICW3 must
be programmed for INT-1 and INT-2 in EISA systems.

Initialization Command Word 3
Master Device - Port 021h (program to 04h)

For INT-1, the master interrupt controller, ICW3 is programmed to 04h. The bit
corresponding to INT-2 must be set for EISA systems. An interrupt request on IRQ2
causes INT-1 to enable INT-2 to present the interrupt vector address during the second
interrupt acknowledge cycle.

D7 D6 D5 D4 D3 D2 D1 DO

0| oy of oy 0} 1} O O

1=Interrupt Requ-est Input has a slave
O=Interrupt Request Input does not have a slave

Initialization Command Word 3
Slave Device - Port 0A1h (program to 02h)

For INT-2, the slave interrupt controller, ICW3 must be programmed to 02h. An
interrupt request on IRQ2 causes INT-1 to enable INT-2 to present the interrupt vector
address during the second interrupt acknowledge cycle.

D7 D6 DS D4 D3 D2 D1 DO

0} o}l 0o} 0| O]ID2{ID1|IDO

Slave ID (program to 02h)

303

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

32.4.4 Initlalization Command Word 4 (ICW4)

The third in a sequence of 1/O writes (after an ICW1) to the INT-1 or INT-2
"base address + 1" is interpreted as Initialization Command Word 4 (ICW4).

SFNM: If SFNM = 1 the special fully nested mode is programmed.
BUF: Programmed to "0" for EISA.

M/S: Ignored for EISA.

AEOL If AEOI=1 the automatic end-of-interrupt mode is programmed.
uPM: Microprocessor mode: Programmed to "1" for EISA.

Initialization Command Word 4
INT-1-Port 6211 = 01h
INT-2 - Port 0A1h = 01h

D7 D6 D5 D4 D3 D2 DI DO

0! O| O]SFNM|BUF|M/S|AEOI|uPM

-

—— 1 = 80x8 MODE
0 = Reserved
1 = Auto EOI
0 = Normal EOI

X = Ignored for EISA

0 = Non-Buffered Mode
1 = Reserved

1= ifecial Fully Nested Mode
0 = Not Special Fully Nested Mode

3.2.4.5 Interrupt Mask Register (OCW1)

An 1/0 write (that does not follow an ICW1) to the INT-1 port 021h or INT-2 port
0A1h loads the Interrupt Mask register. The register can be read at the same address.

Any interrupt can be masked by setting the appropriate Interrupt Mask register bit.
All mask bits are loaded by writing a byte with the appropriate bit pattern to the Interrupt
Mask register I/O port address. The register defaults to interrupts enabled (all bits
cleared) after power-on reset. The Interrupt Mask register can be read at any time after

the initialization sequence.

304

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The register illustrated below indicates the eight mask bits. The interrupt is masked
by setting the bit to "1". The interrupt is enabled by clearing the bit to "0".

Interrupt Mask Register (OCW1) - Read/Write
IRQ<7:0> - Port 021h
IRQ<15:8> - Port 0Alh

7161514131210

L Mask bit for IRQ1 (IRQ9
L Mask bit for RQ2 (IRQ10
L Mask bit for IRQ3 (IRQ11
Mask bit for IRQ4 (IRQ12
Mask bit for IRQS5 (IRQ13
Mask bit for IRQ6 (IRQ14
Mask bit for IRQ7 (IRQ15

|— Mask bit for IRQO IRQ8§

3.2.4.6 Operation Control Word 2 (OCW2) ‘

End-of-Interrupt (EOI) commands and interrupt priority rotation commands can be
executed by writing a byte with the appropriate bit ‘Eattern to the interrupt controller base
address. D<4:3> = "00" to cause execution of OCW2 commands.

Bits 0-2 (1L0-L2) determine the interrupt acted upon, and bits 5-7 (EOL SL, R)
select the command.

305

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Note that the bit description in the OCW2 dia, t_grarn below applies only to OCW2. If
D<4:3> indicates ICW1 or OCW3, the bit definitions are documented under the
appropriate section.

ocw2
(ICW1, OCW2 and OCW3 are accessed through a common port)
IRQ<7:6> - Port 020h
IRQ<15:8> - Port 0AOh

D7 Dé D5 D4 D3 D2 D1 DO

R ISLJEOI| 0| O0)L2iL1}LO

Interru acted upon
%RQO 083
001 = JRQ1 (IRQ9
010 = IRQ2 (IRQ10
011 = IRQ3 Q11
100 = IRQ4 (IRQ12
101 = IRQS (IRQ13
110 = IRQ6 (IRQ14
111 = IRQ7 (IRQ15

ICW1/OCW2/OCW3 Select
00 = Execute OCW2 Command
01 = OCW3 (See OCW3 command)
10 = ICW1 éSee ICW1 commandg
11 = ICW1 (See ICW1 command

OCW?2 Commands:
End of Interrupt

001 = Non-Specific EOI
011 = Specific EOI

Automatic Rotation
101 = Rotate on Non-Specific EOI
100 = Set rotate in AEOI Mode
000 = Clea: rotate in AEOI Mode

Specific Rotation (uses L.0-1.2)
111 = Rotate on Specific EOI
110 = Set priority Command

No Operation
010 = No Operation

306

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.2.4.7 Operation Control Word 3 (OCW3)

Special Mask Mode can be enabled or disabled, and 2 "Read Interrupt Request
register” command or "read In-Service register” command can be executed tg writing a byte
with the appropriate bit pattern to the interrupt controller base address. D<4:3> = "01"
to execute of OCW3 commands. '

Special Mask Mode can be enabled by executing an OCW3 command with
D<6:5> = "11". An OCW3 command with D<6:5> = "10" disables Special Mask Mode.
An OCW3 command with D<6:5> = "00" or "01" also disables Special Mask Mode.

Note that the bit description in the OCW3 diaﬁg’rgm below applies only to OCW3. If

D<4:3> indicates ICW1 or OCW2, the bit definitions are documented under the
appropriate section.

OCW3 - Read/Write
(ICW1, OCW2 and OCW3 are accessed through a common port)
IRQ<7:0> - Port 020h
IRQ < 15:8> - Port 0AOh

D7 D6 D5 D4 D3 D2 D1 DO

olesmM|smM| 0| 1| P|RR|RIS

Read Register Command
00 = No Action
01 = No Action
10 = Interrupt Request register
11 = In-Service register

Poll Command
1 = Execute Poll Command
‘0 = No Poll Command

OCW2/OCWS3 Select
00 = OCW2 (See OCW2 commands)
01 = Execute OCW3 Command
10 = ICW1 %See ICW1 cornmandg
11 = ICW1 (See ICW1 command

Interrupt Mask Mode
00 = No action
01 = No action
10 = Normal mask mode
11 = Special mask mode

307

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

32438 Edge/Level Control Register (ELCR)

) The Edge/Level Control register provides a bit for each interrupt to 1program the
interrupt to edge sensitive or level sensitive. Edge sensitive mode is the default and is fully
compatible with ISA expansion boards. Expansion boards that use level sensitive
interrupts can be used in shared interrupt configurations.

Interrupts programmed for edlﬁe sensitive (Bit = "0") are recognized by a low-to-
high transition on the corresponding IRQx input. The TRQx tnput can remain high without
generating another interrupt.

Interrupts programmed for level sensitive (Bit = "1") are recognized by a Tow' level
on the corresponding IRQx input. There is no need for an edge detection. The interrupt
request must be removed (by negating the IRQx input) before the interrupt service routine
issues the EOI command or enables CPU interrupts (by executing instruction on
80386). Another interrupt occurs if the IRQx remains asserted after executing an EOI

command.

In both the edge and level triggered modes the IRQx in?uts must remain asserted
until after the leading edge of the first interrupt acknowledge. It an IRQx input is negated
before the interrupt acknowledge, the interrupt controller drives the vector for IRQ7
(IRQ15 for INT-2) during the interrupt acknowledge cycle.

A noise glitch on IRQ<7:0> can cause a spurious interrupt on IRQ7. A noise glitch
on IRQ<15:8> can cause a spurious interrupt on IRQ1S. An IRQ7 or IRQ1S interrupt
service routine should read the In-Service register to determine the source of an IRQ7 (or

IRQIS) interrupt. A valid interrupt's In-Service register bit is set during the interrupt
acknowledge. A spurious interrupt does not set the In-Service register bit.

The IRQ7 and IRQI1S interrupt service routines should also detect a re-entrant
execution, to recognize 2 spurious interrupt that occurs during 2 valid interrupt service (the
In-Service register bit remains set from the valid interrupt). A re-entrant execution
indicates the second execution resulted from a spurious interrupt.

IRQO, IRQ1, IRQ2, IRQS or IRQ13 are always set for edge sensitive.

IRQ13 appears externally to be edge sensitive, even though it is shared internally
with the chaining interrupt.

Edge/Level Triggered Control Register - Read/Write
IRQ<7:0> - Port 4D0h :
IRQ<15:8> - Port 4D1h

716(5{4{3]2{110 4DO0h 4D1h
R L Reserved-0 (Reserved - 0)
L—— Reserved-0 IRQ9)
Reserved - 0 TRQ10
IRQ3 IRQ11
IRQ4 [RQ12
IRQS Reserved - 0)
IRQ6 IRQI4§
IRQ7 (IRQ1S

308

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.2.4.9 Interrupt Request Register (IRR)

The Interrupt Request register is an 8-bit register that contains the status of - each
interrupt. Bits that are set indicate pending inferrupts. Bits that are clear indicate
interrupts that have not requested service. The interrupt controller clears the Interrupt
Request register's highest priority interrupt bit during an interrupt acknowledge cycle, and
sets the corresponding bit in the In-Service register. The Interrupt Request register is not
affected by the Mask register.

The Interrupt Request register can be read by issuing an OCW3 with RR="1" and
RIS="0", followed by an I1/O read of the interrupt controller base address. The Interrupt
Request register can only be read after the Initialization Control register programming
sequence completes.

It is not necessary to issue an OCW3 cach time the Interrupt Request register is
read. AnI/O read of the interrupt controller base address defaults to reading the Interrupt
Request register after the initialization Seﬁ;xence and after issuing an OCW3 with RR="1"
and RIS="0". Until OCW3 is issued with a different value for RR and RIS, or a Poll
command is executed, subsequent reads of the interrupt controller base address continue to
return the contents of the Interrupt Request register.

p The Poll command overrides an Interrupt Request register read when OCW3 bit
=l'1".

3.2.4.10 In-Service Register (ISR)

The In-Service register is an 8-bit register that indicates which interrupts are being
serviced. Bits that are set indicate interrupts that have been acknmowledged and their
interrupt service routine started. Bits that are cleared indicate interrupts that have not
been acknowledged (or interrupts that are not pending). Oanly the highest priority interrupt
service routine executes at time, since the lower priority interrupt services are
suspended while higher priority interrupts are serviced. The In-Service register is updated
when an End of Interrupt Command is issued. The mask register disables a pending
interrupt's In-Service bit from being set. .

The In-Service redgistcr can be read by issuing an OCW3 with RR="1" and RIS="1",
followed by an I/O read of the interrupt controller base address. The In-Service register
can only be read after the Initialization Control register programming sequence completes.

It is not necessary to issue an OCW3 each time the In-Service register is read. An
I/0 read of the interrupt controller base address defauits to reading the In-Service register
after issuing an OCW3 with RR="1" and RIS="1". Until OCWS3 is issued with a different
value for RR and RIS, or a Poll command is executed, subsequent reads of the interrupt
controller base address continue to return the contents of the In-Service register.

The Poll command overrides an In-Service register read when OCW3 bit P="1".

309

EP 0 426 184 A2

EXTE~DED INDUSTRY STANDARD ARChu [ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.25 End-of-Interrupt

3251 End of Interrupt (EO!) Command

An interrupt service routine executes an EOI command to clear an interrupt's In-
Service bit. The EOI command to a cascaded interrupt controller must be followed by an
EOI to the primary interrupt controller.

EOI commands can be either Specific or Non-Specific, A Specific EOI command
includes, as part of the command, the In-Service bit to clear. A Non-Specific EOI
command clears the highest priority In-Service bit that is set.

The Non-Specific EOI command is executed for an interrupt controller
proiammed for Fully Nested Mode. The interrupt controller resets the In-Service bit of
the highest K;ioritg{interrugt (the last interrupt serviced). If the Interrupt Controller is in
the Special Mask Mode, a Non-Specific EOI does not clear a masked interrupt's In-Service
bit. A Non-Specific EOI is executed with OCW2 (EOI=1, SL=0, R=0).

The Specific EQOI command is executed for an interrupt controller progra.mmed for
a mode that does not preserve the fully nested priority structure. A Non:Specific EOI
cannot be used since the highest prioritly interrupt is not necessarily the last interrupt
serviced. The Specific EOI command includes, as part of the command, the In-Service bit
to reset. A specific EOI is executed with OCW2(EOI=1, SL=1, R=0, and 10-12 = Io-
Service bit to reset).

3.2.5.2 Automatic End of Interrupt (AEOI)

An interrupt controller programmed for AEOI mode automatically performs a Non-
Specific EOI after the trailing edge of an interrupt acknowledge. AEOI mode is selected
by executing an ICW4 with AEOI = "1",

AEOI mode should be used only when 2 nested multilevel interrupt structure is not
required within a single Interrupt Controller. The AEOI mode can only be used in a
primary Interrupt Controller and not a cascaded controller.

3.2.6 interrupt Controller Modes

3.2.6.1 Fuily Nested Mode

The interrupt controller enters Fully Nested Mode after initialization unless
programmed to another mode. The interrupt requests are ordered in priority from IRQO
(highest) through TRQ7 (lowest). Priorities can be changed by setting the interrupts to
rotating priority mode.

When an interrupt is acknowledged, the highest priority request is determined and
its vector placed on the bus. The interrupt's In-Service register bit is set during the
acknowledge cycle. This bit remains set until the interrupt service routine issues an EOI
command or AEOI clears the In-Service bit (on the trailing edge of the interrupt
acknowledge cycle). The interrupt controller disables interrupts of the same or lower
priority while the In-Service register bit is set. The interrupt controlier acknowledges
higher priority interrupts if the CPU has enabled interrupts (using an STI instruction on the

80386).

310

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.2.6.2 Special Fully Nested Mode

A slave interrupt controller can be programmed for Special Fully Nested Mode in
systems that require the interrupt priorities to ge conserved within each cascaded interrupt
controller. The master interrupt controller must be programmed for Fully Nested Mode.
Special Fully Nested Mode is similar to Fully Nested Mode, with the following exceptions:

INT-1 rcooix(xizcs multiple interrupt requests from a slave interrupt controller. In
the Fully Nested Mode an interrupt from a slave interrupt controller locks out further
interrupts from the same controller until the first interrupt service completes.

An interrupt service routine must determine if the interrupt serviced was the only
one from the slave interrupt controller. The routine executes a non-specific EOI command
to the slave interrupt controller and then reads its In-Service register. If all bits of the In-
Service register are "0", no interrupts are pending and a non-specific EQI can be executed
for INT-1." If another interrupt is pending, no EOI should be sent.

3.2.6.3 Fixed Priority Mode

The interrupt controller defaults to fixed priority mode, with IRQO the highest
priority and IRQ7 the lowest priority. The priorities can be changed by programming an
interrupt as the lowest priority. Other interrupts assume fixed priorities in sequence above
the lowest. For example, if IRQS is programmed as the lowest Eriority device, the priority
order becomes (lowest to highest): I£Q6, IRQ7, IRQO, IRQ1, IRQ2, IRQ3, IRQ4, IRQS.

i The Set Priority command is issued in OCW2 where: R=1, SL=1; L0-[2 is the
binary priority level code of the lowest priority interrupt.

In Specific Rotation mode, internal status is updated by software control during
OCW2. However, it is independent of the EOI command. Interrupt priorities can be
changed during an EOI command by using the Rotate on Specific EOI command in oCcw2
(R=1,SL=1, EOI=1 and L0-12 = interrupt assigned lowest priority).

3.2.6.4 Rotating Priority Mode

The interrupt controller can be programmed to service Eending interrupts
sequentially based on an 8-way rotation. Each interrupt rotates to the highest priorty,
receives service, then becomes the lowest priority. In the case where all interrupts are
constantly asserted, each interrupt receives one service out of eight interrupt acknowledge
cycles. The following figure illustrates the rotation:

311

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Before Rotation: IRQ4 the highest priority interrupt requesting service. Priority order
(highest to lowest): IRQQ, IRQI, IRQ2, IRgB, IRQ4, IRQS, IRQ6, IRQ7.

In-Service Register
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQO

0 1 0 1 0 0 0 0

I Highest Priority
Lowest Priority

After Rotation: IRQ4 serviced and changed to lowest éarioriry. IRQS5 changed to highest
&?ority. Priority order (highest to lowest): IRQS, IRQ6, IRQ7, IRQQ, IRQ1, IRQ2, IRQ3,
Q4.

In-Service Register

IRQ7 IRQ6 IRQS IRQ4 IRQ3 IRQ2 IRQ1 IRQO

0 1 0 0 0 0 o 0

‘ Lowest Priority
- Highest Priority

There are two ways to cause priority rotation using OCW2: the Rotation on Noo-
Specific EOI Command (R=1, SL=0, EOI=1) and the Rotate in Automatic EOI Mode
which is set by (R=1, SL=0, EOI=0) and cleared by (R=0, SL=0, EOI=0).

3.2.6.5 Polled Mode

. The Polled Mode can be used to conserve space in the interrupt vector table.
Multiple interrupts that can be serviced by one interrupt service routine do not need
separate vectors if the service routine uses the poll command.

i The Polled Mode can also be used to expand the number of interrupts. The polling
interrupt service routine can call the appropriate service routine, instead of providing the
interrupt vectors in the vector table.

An interrupt service routine executes @ "Clear Interrupts" instruction (CLI for
80386) before issuing a poll command. A poll command is issued by setting P="1" in
OCW3. A poll command overrides an Interrupt Request or In-Service register read when
OCWS3 bits P="1"and RR="1" '

An I/0 read of the interrupt controller base address that follows a poll command is
treated like an interrupt acknowledge. If an interrupt is pending, the interrupt controller
sets the appropriate In-Service bit and, in response to the next f/O read of the interrupt
controller base address, drives a byte with the interrupt code onto the bus. If no interrupt
is penging, the interrupt controller sets the most significant bit to "0" and drives the byte
onto the pus.

312

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The interrupt controller freezes the contents of the In-Service register after the poll
command, until the I/O read of the interrupt code.

The interrupt controller responds to an /O read of the I/O controller base address
(after a poll command) by driving D <7:0> with a byte that has the following format:

D7 D6 D5 D4 D3 D2 D1 DO

I|-=|-=|--]--|w2|w1i|wo

WO0-W2: Binary code of the highest priority interrupt requesting service.

I= "1" if an interrupt is pending
"0" if no interrupt is pending.
3.2.6.6 Special Mask Mode

The Special Mask Mode enables all interrupts not masked by a bit set in the Mask
register. Interrupt service routines that require dynamic alteration of interrupt priorities
can take advantage of the Special Mask Mode. For example, a service routine can inhibit
lower priority requests during a part of the interrupt service, then enable some of them
during another part. e

Without Special Mask Mode, if an_interrupt service routine acknowledges an
interrupt without issuing an EOI to clear the In-Service bit, the interrupt controller inhibits
all lower priority requests. The Special Mask Mode provides an easy way for the interrupt
service routine to selectively enable ouly the interrupts needed by loading the Mask
register.

MM The Special Mask Mode is set by OCW3 where: SMM="1", and cleared with
S ="0"

313

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.3 Non-Maskable interrupts (NMI)

EISA systems indicate an error condition by generating a non-maskable interrupt.
A software mechanism is also provided to generate an NML

The following address map indicates the port addresses of registers used for NMI
handling. :

I/0 Read/# of
NMI register Address Write Bits
NMI Status register 0061h ™ 8
NMI Enable register 00708 w 8
Extended NMI register 0461h ™ 8
Software NMI register 0462h w 8

Port 061h, bits <6> and <7> and port 0461h bits <5>, <6> and <7> indicate
the source of an NMI interrupt. The following paragraphs describe the ports 061h and
0461h bits.

Parity Error from System Memory

Port 061h bit 7 is set (PARITY ERROR) if system memory detects a parity error.
This interrupt is enabled by setting Port 061h bit 2 to "0". To reset the ?arity erTor set port
061h bit 2 to *1" (Disable Parity Interrupt) and then clear it to "0" (Enable Parity Interrupt).

Assertion of IOCHK*

Port 061h bit 6 is enabled (IOCHK* NMI) if an expansion board asserts IOCHK*
on the ISA/EISA bus. This interrupt is set by setting port 061h bit 3 to "0". To reset the
%erru t, set port 061h bit 3 to "1" (Disable IOCHK* NMI) and then clear it to "0" (Enable

]).

Fail-Safe Timer Timeout
Port 0461h bit 7 is set (FAILSAFE NMI) if the fail-safe timer count has expired
before being reset by a software routine. This interrupt is enabled by setting port 0461h bit

2 t0 "1". To reset the interrupt, set Port 0461h bit 2 to "0" (Disable Failsafe Interrupt) and
then set it to "1" (Enable Failsafe Interrupt).

314

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Bus Timeout

Port 0461h bit 6 is set (BUS TIMEOUT) if more than 64 BCLKs (8 s) -have
elapsed from the rising edge of BCLK after MAKx* was negated until the master negates
Qx*. A bus timeout also occurs if a memory slave extends a cycle long enough that
CMD* remains asserted more than 256 BCLKS ?32 zs). The DMA controller does not
cause a bus timeout. The bus timeout interrupt is enabled bg setting port 0461h bit 3 to "1"
or disabled by scttin%)port 0461h bit 3 to "0". To clear the bus timeout interrupt, set Port
0461h bit 3 fo "0" (Disable Bus Timeout Interrupt) and then set it to "1" (Enable Bus
Timeout Interrupt). The system board asserts DRV when a bus timeout occurs.
Clearing the bus timeout status bit causes the system board to negate RESDRV.

Software Generated NMI

Port 0461h bit 5 is set (NMI I/O PORT) if an I/O write access occurred to Port
0462h (the data value written to the port does not matter). This interrupt is enabled by
sem.nf rt 0461h bit 1 to "1". To reset the interrupt, set port 0461h bit 1 to "0" (Disable
NMI /%O port Interrupt) and then set it to "1" (Enable NMI'T/O Port Interrupt).

Bus Reset

Port 0461h also supports bus reset. Bit 0 can be used to perform a system bus reset
without resetting other devices in the system. To reset the “system bus set Port 0461h bit 0
to "1" which asserts the RESDRYV signal on the ISA/EISA bus. Bit 0 should be set long
enough for the system bus devices to be properly reset, and then port 0461h bit 0 should be
cleared to continue normal operation en performing a system bus reset, standard
system board devices such as timers, keyboard, etc. are not reset.

Speaker Control and Memory Refresh

Port 061h also supports speaker control and memory refresh status.

315

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

NMI Status and Control Ports

Port 061h provides NMI status and control, speaker control and memory refresh
status. Port 0461h provides additional NMI status and control.

NMI Status and Control Port -
Port 061h

716(5]4131211{0

L Gate signal for speaker timer (R/W)
0 = timer 1, counter 2 gspeaker; disabled
1 = timer 1, counter 2 (speaker) enabled

t—— 0 = Speaker timer off (R/W)
1 = Speaker timer on

l—— 0 = System board parity error enabled
1 = Parity error disabled and cleared (R/W)

1 = IOCHK*® NMI disabled and cleared
0 = IOCHK* NMI egabled R/W)

Toggles after each refresh request

State of speaker timer (Read Only)

(Must be "0" for writes)
0 = Speaker off
= Speaker on

1 = IOCHK?* asserted (IOCHK* NMI)
0 = IOCHK* negated (No IOCHK* NMI)
(Read only, must be "0" for writes)

0 = No parity error NMI from system board
1 = Panty error NMI requested
(Read only, must be "0" for writes)

316

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Extended NMI Status and Control Port

Port 0461h
71615{4|3{2(1}0
L 0 = Normal Bus reset operation \sR/W)
1 = Bus reset asserted (RSTDRYV)
—— 0 = NMII/O port disabled
1 = NMII/O port enabled (R/W)

e 0 = Fail-safe NMI disabled and cleared
1 = Fail-safe NMI enabled (R/W)

32-bit Bus Timeout
0 = with NMI disabled and cleared
1 = with NMI enabled

Reserved (Read Only)
(Must be "(" for writes)

NMI 1/0 Port status (Read Only)
(Must be "0" for writes)
0 = No NMI pending P
1 = NMI pending ‘

NMI from Bus Timeout (Read Only)

(Must be "0" for writes)
0 = No NMI pending
1 = NMI pending

Note:

Note:

NMI from fail-safe timer (Read Only)
(Must be "0" for writes)
0 = No NMI pending
= Fail-safe timer active and NMI pending

If the NMI enable/disable bit (port 70h bit 7) is disabled, port 0461h bits 7,6,and 5
read "0" even if an NMI from that source is pending.

The interrupt service routine should examine NMI status bits and correct the NMI
source one at a time. After an NMI source has been cleared and the corresponding
bit reset, the NMI status bits should be checked again in case more than one source
of NMI has occurred at one time. If another status bit is active then it should also
be handled. It is possible that by doing this the routine may see an NMI interrupt
immediately following another, with the second interrupt showing no active status
bits. The second interrupt should then be ignored. This logic is required to insure
that no NMI interrupts are lost, as the 8086 class CPUs do not allow NMI routines
10 be interrupted by another NMI, but store a second NMI edge for execution after
the IRET. -

317

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Software NMI Generation Port

Port 0462h provides a software mechanism to cause an NML A write to any Port
0462h bit causes an NMI if interrupts are enabled.

Software NMI Generation Port - Write Only
Port 0462h

7{6]5(|4({3(2]|1]|0
|

LI 1 1] || Any write causes NMI

Port 70h provides a mask register for the NMI interrupt, as shown below. The most-
significant bit (bit 7) enables or disables the NMI interrupt. NMIs are disabled from all
sources if bit 7 Is programmed to "1". Writing an 80h to port 70h masks the NML.

NMI Enable/Disable and Real-time Clock Address Port

The NMI enable/disable bit shares port 70h with the real-time clock device. The
real-time clock device uses port 70 bits 0 to 6 to address CMOS memory locations. Writing
to port 70h sets both the NMI enable/disable bit and the CMOS memory address pointer.
Accesses to CMOS must correctly initialize the CMOS address pointer, and must maintain
the correct state of the NMI enable/disable bit.

NMI Enable/Disable and Real-time Clock Address Port - Write Only
Port 070h

7|6|5/4|3]{2|1(0
L1411

L1 Real-time clock address

0 = NMI enabled
1 = NMI disabled

Last EISA Bus Master Granted

A CPU-readable latch identifies the EISA bus master that most recently had control
of the bus. The latch is located at port address 0464h and is read only. A single bit is
cleared to "0" after each arbitration cycle to indicate the slot that was most recently granted
the bus. Port 0465h is reserved for an additional status latch for seven more bus masters.

An NMI service routine can read this latch to determine which bus master
controlled the bus when a bus preempt timeout occurred. The NMI service routine can
then display the bus master that caused the fault (although a slave may have caused the
fault by Eanging up the bus master), and reinitialize the system. -

318

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

32-bit Bus Master Status Latch - Read Only
Slots 1-8 - Port 0464h
Slots 9-15 - Port 0465h

7i6/5(4131211,0

I— Slot 1

L—— Slot2 (Slot10
Slot3 (Slot 11
Slot 4 (Slot 12
Slot5 (Slot 13
Slot 6 (Slot 14
Slot7 (Slot 15
Slot 8

319

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.4 Intervat Timers

EISA systems contain five counter/timers that are equivalent to those found in the
Intel 8254 Programmable Interval Timer. The counter/timers are programmed by 1/O
accesses and are addressed as though they are packaged in two separate 8254 Interval
Timers. Timer 1 contains three counters, timer 2 contains two counters (EISA systems do
not implement the middle counter of timer 2). The counter clocks are developed from an
external 14.31818 MHz crystal oscillator.

The timer 1 counter 0, OUT pin connects to IRQO, and provides a system timer
interrupt (IRQO) for time-of-day, diskette time-out, and other system timing functions. The
timer 1 counter 1 OUT signal generates DRAM refresh requests. The timer 1 counter 2,
OUT signal generates the speaker tone. :

Timer 2 counter 0, implements a fail-safe timer. The OUT pin is connected to the
NMI interrupt to the CPU, allowing the timer to generate NMI interrupts at 2 regular
interval, thus preventing the system from locking up. Timer 2 counter 1 is not
implemented. Timer 2 counter 2 is designated as available for use by system board
manufacturers and can implement any additional timing function needed.

320

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following tables lists the interval timer functions.

Interval Timer 1 Interval Timer 2
Counter 0 Counter 0
Function System Timer Fail-safe Timer
Gate Always on Always on
Clock In 1.193 MHz 2983 KHz
Clock Out IRQO NMI Interrupt
Interval Timer 1 Interval Timer 2
Counter 1 Counter 1
Function Refresh Request Not implemented
Gate Always on Not implemented
Clock In 1.193 MHz Not implemented
Clock Out Request refresh Not implemented
Interval Timer 1 Interval Timer 2
Counter 2 Counter 2
Function Speaker Tone CPU speed control
Gate Programmable (Port 61h) Refresh Request
Clock In 1.193 MHz BCLK
Clock Out Speaker input CPU speed control

321

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table shows the I/O address map of the interval timer counters:

I/0 I/0 Port Address i
Port (binary) Register Description
Address MSB LSB
0040h { 0000 0000 010X 0000 Programmable Interwval Timer 1,
System Clock (Counter 0)
0041h | 0000 0000 010X 0001 Refresh Request (Counter 1)
0042h | 0600 0000 010X 00QlO Speaker Tone (Counter 2)
0043h | 0000 0000 010X 0011 Control Word register
0048h | 0000 0000 010X 1000 Programmable Interval Timer 2,
Fail-safe Timer (Counter 0)
0049h { 0000 0000 010X 1001 Reserved
004Ah | 0000 0000 010X 1010 | Counter 2
004Bh | 0000 ‘0000 010X 1011 _ Control Word register
3.4.1 Programming the Interval Timers

The counters are programmed by the following procedure:
1. Write the Control Word to the control address

2. Write the initial count value for the counter

3.4.1.1 interval Timer Control Word Format

The Control Word specifies the counter, the operating mode, the order and size of
the count value, and whether it counts down in a 16-bit or binary-coded decimal (BCD)
format. The control word is always written first, before count values can be loaded into a
counter.

322

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

If a counter is programmed to read or write two-byte counts, the following
precaution applies: A program must not transfer control between writing the first and
second byte to another routine which also writes into that same counter. Otherwise, the
counter will be loaded with an incorrect count. The count must always be completely
loaded with both bytes.

Interval Timer Control Word Format
Timer 1: Port 0043h
Timer 2: Port 004Bh

71615741312111{0
L 0 = Binary Countdown
1 = BCD Countdown
000 = Mode0
001 = Mode 1
010 = Mode?2
011 = Mode3
100 = Mode 4
101 = Mode S
00 = Counter Latch command
01 = R/W least-significant byte
10 = R/W most-significant byte
11 = R/W least-, then most-significant byte
00 = Select counter 0
01 = Select counter 1
10 = Select counter 2
11 = Read Back command
3412 . Counter Operating Modes
The following table lists the six operating modes for the interval counters.
Mode Function
0 Asserts OUT signal at end-of-count
1 Hardware retriggerable one-shot
2 Rate generator (divide-by-n counter)
3 Square~wave output
4 Software~triggered strobe
5 Hardware~triggered strobe

323

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.4.1.3 Counter Initial Count Value

Each counter is a 16-bit word. However, since the interface to the timer is 8 bits,
the count value must be programmed in two I/O operations. The control word determines
the protocol for programming the counter. It is possible to program the least significant
byte only, the most significant byte only, or botl, one after another (LSB then MSB). Note
that the first two options require two I/O writes (the control word and then the value)
while the third option requires three writes (the control word, LSB, then MSB).

3.4.2 Monitoring Timer Status

It is possible to determine the current status of each of the five counters, including
the current count value, without disturbing the count in progress. There are three methods
for reading the counters:

1. Simple 1/0 read from counter address
2. Counter Latch command

3. Read-back Command

3.4.2.1 Counter Read Operation -

: An I/O read access to the address of the desired counter returns the current value
of the counter. However, the CLK input to the counter must be disabled when the read

occurs to prevent the count changing during the read operation and returning an invalid

value. Since the GATE controls for Timer 1 counter 0, Timer 1 counter 1, and Timer 2

counter 0 are always enabled, it is not possible to guarantee the results of an I/O read to

gese counters. One of the other two methods must be used to determine count value for
ese counters.

324

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

3.4.2.2 Counter Latch Command

The Counter Latch command is a control word that causes the current value of the
selected counter to be latched at the time the Counter Latch command is written to the
Control Word register. Once the latch command has been given, the value can be read by
an I/O access to the appropriate address. The Counter Latch command format is given

below:

Counter Latch Command Format

716;5}4{312]1}0

LL 1 1. Reserved ©)
00 = Designates this byte as a Counter Latch command

Counter Select (or Read-Back Command)
00 = Latch Counter 0
01 = Latch Counter 1
10 = Latch Counter 2
11 = Select Counter Read-Back Command
(See Read Back command)

P

3.4.2.3 Counter Read-Back Command

The Read-back command is used to determine the count value, programmed mode,
and current states of the OUT pin and Null Count flag of the selected counter or counters.
The Read-back command is written to the Control Word register, which causes the current
status of the above mentioned variables to be latched. The value of the counter and its
status can then be read by I/O accesses to the counter address. The following tables show
the format for the Read-back command and the Status Byte.

Counter Read-Back Command Format:

7161541312110

L Reserved (0)
— 1 = Select counter 0
e 1 = Select counter 1
1 = Select counter 2
0 = Latch status of selected counters
0 = Latch count of selected counters
11 = Specifies counter read-back command

325

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The status byte can be read from the counter base address after the counter Read-
Back command. The status byte has the following format:

Counter Status Byte Format:
Timer 1: Port 040h
Timer 2: Port 048h

716(51413/2|1|0

L Binary/BCD Countdown Mode

0 = BINARY Countdown
1 = BCD Countdown

Counter Mode

000 = Mode 0

001 = Mode 1

010 = Mode 2

011 =Mode3

100 = Mode 4

101 = Mode S

Counter Latch Status

00 = Counter latch command

01 = R/W least-significant byte

10 = R/W most-significant byte

11 = R/W least, then most-significant byte

Returned Status:
0 = Control register contents not moved into CE
1 = Control register contents are moved into CE

OUT Pin Status
0 = OUT Pinis 0 (low)
1 = OUT Pinis 1 (high)

326

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4. EISA System Contiguration

EISA provides a mechanism for automatic conﬁguration of expansion boards and
the system board. The EISA configuration mechanism consists of the following
components:

. A software utility to configure the system board and expansion boards

. A software interface to the configuration utility that Configuration File
Extensions can use to control and customize the configuration process

’ Configuration files that accompany the software utility
. Configuration files that accompany the system board and expansion boards
. Nonvolatile memory for storing configuration information

. A mechanism to save and restore a backup copy of the system configuration
information

. BIOS routines to read and write contents of nonvolatile memory

« Automatic detection and initialization of expansion boards by the system ROM
~ power-up routine -

. 1024-byte I/O address space for each EISA expansion board (slot-specific)

ansion board manufacturers include a configuration file (also referred to as a
CFG file) with each EISA expansion board, and optionally, with switch-programmable ISA
products. The configuration utility, which is rovided by the system manufacturer, uses the
information contained in the configuration files to determine a conflict-free configuration
of the system resources. The configuration utility stores the configuration and initialization
information into nonvolatile memory and saves a backup copy on diskette. The system
ROM power-up routines use the initialization information to initialize the system during
Eower-u , and device drivers use the configuration information to configure the expansion -

oards during operation.

327

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.1 Devices Supported by Automatic Configuration

EISA s%stems provide automatic configuration for expansion boards plugged into

the expansion bus, peripheral devices built into the system board, and software drivers that

use system resources, such as an expanded memory (LIM EMS) emulator. The following

itgfomaﬁon provides an overview of the mechanism used for automatic configuration of
e devices.

4.1.1 Expansion Boards

Expansion boards install into EISA and ISA bus connectors. Each bus connector is
referred to as a slot. The bus connectors are numbered sequentially from 1 to "n" (with 15
as a maximum "n"). For example, an EISA system with 7 bus connectors has slots
numbered from slot 1 to slot 7.

4111 EISA Expansion Boards

Each EISA slot has 1/O address decoding hardware that provides the installed
expansion board with a unique, 1024 byte, slot-specific I/O address space. EISA expansion
boards use the slot-specific 1/O address space for I/O registers (fe., configuration and
operational registers). The EISA system ROM uses configuration information from
nonvolatile memory to initialize the configuration registers during power-up.

Refer to the section entitled Expansion Board Address Decoding and the one
entitled System Board Slot-Specific I/0, of this specification for detailed information on
the slot-specific I/O ranges.

, An EISA expansion board must contain a readable product ID and must support the
expansion board control bits ENABLE and IOCHKERR. Refer to the section entitled
Expansion Board Control Bits and the one entitled EISA Product Identifier of this
specification for detailed information.

4.11.2 ISA Expansion Boards

The EISA configuration utility also aids in configuration of ISA expansion boards
that provide a configuration file. The utility uses the information from the configuration
file to determine the correct switch and jumper settings and 1/O port initializations for ISA
expﬁnsion boards. The configuration utility displays the proper switch and jumper settings
to the user.

ISA initialization and operational registers must occupy the ISA compatible
expansion board I/O space (100h-3FFh). ISA systems do not support the EISA slot-
specific I/O ranges. The EISA system ROM power-up routines automatically initialize the
ISA registers that are specified in the configuration file.

4.1.2 System Board

Peripherals integrated onto the system board require automatic configuration
sipport similar to expansion board peripherals. System board peripherals can be designed
to use EISA slot-specific I/O ranges and the ISA system board 1/O range.

328

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.12.1 System Board Peripherals That Use Slot-Specific 1/O Space

A sgstcm board peripheral that uses slot-specific I/O is functionally similar to an
expansion bus peripheral, but it is integrated onto the system board rather than installed in
a bus connector. EISA automatic configuration treats the system board peripheral as an
expansion board peripheral, except that it is referenced as an "embedded device.” :

4122 System Board Peripherals That Use System Board 1/O Space

System board peripherals that use ISA expansion board I/O space (100b-3FFh) can
be treated as “virtual devices.” The conﬁguration utility stores the configuration and
initialization information for "virtual devices” in nonvolatile memory during configuration.
The system ROM automatically initializes the virtual device during power-up.

4.1.3 Software Drivers That Require System Resources

Software drivers that require system resources (i.e., memory allocation) are also
treated as "virtual devices." woexamples include, a software driver that emulates
anded memory (LIM EMS) requires memory allocation for the page frame, or a
50 : e driver that requires a buffer which memory allocation to store data during a data
transfer. '

-

329

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.2 Contiguration Utility

The EISA system manufacturer is responsible for supplying a configuration utility.

The configuration utility uses configuration files to resolve conflicts in assignment of system

resources such as interrupt levels and DMA channels. The configuration utility also

extracts initialization information that is used for system board and expansion board

?tﬁaﬁzation. The information is stored in nonvolatile memory and a backup is saved on
iskette.

The type of nonvolatile memory and method of writing the data is not included in
the EISA standard and is determined by the system manufacturer. The system
manufacturer also provides BIOS routines to initialize the expansion boards with the
information stored in nonvolatile memory. The BIOS routines also read configuration
information from nonvolatile memory for lgle:v'ice: drivers and other system software.

All references to the configuration utility included in this specification refer to the
configuration utility available from Micro Computer Systems, Inc. of Irving, Texas.

The configuration utility is used to cénﬁgure an EISA computer. The conﬁgurétion
process provides the following functions:

. Read and parse configuration files
e Antomatically allocate resources to creste a conflict-free system

« Saves, configuration to diskette, which allows a common configuration to be
ported to other similarly-configured machines

J Write configuration information into nonvolatile memory

System board and expansion board products can include CFG File Extensions that
extend the capabilities of the configuration utility and customize the configuration process.
For example, a CFG File Extension can be used to detect options installed on an expansion
board, to accept and process user input (other than menu selections), or to write
configuration information to non-EISA nonvolatile memory.

330

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.3 Configuration Files

_ The configuration files contain the expansion board ID, system resource
requirements and initialization information for system board or expansion board devices.

The initialization information provides data for power-up initialization.- The
configuration utility stores the approprate I/O port initialization information in
nonvolatile memory. The system ROM reads the information from nonvolatile memory
during power-up and initializes the I/O ports.

System resource requirements include memory, I/O ports, interrupts, and DMA
channels. The confi tion utility verifies that system resource selections do not conflict
with resource allocations already selected for other devices. The configuration utility then
stores the @£ropdate system resource information in nonvolatile memory. The system
ROM reads the information from nonvolatile memory during power-up and initializes the
devices and expansion boards.

A device driver can use a BIOS routine Call to determine the proper expansion
board initialization and to determine the system resource configuration.

A software driver can use the BIOS routines to identify the functions of expansion
devices and the resources allocated to the devices. The driver can determine the contents
of each slot, its functions, the initialization information, and the system resources allocated
for each function. .

4.3.1 Configuration File Extensions

System board and expansion board products can include CFG File Extensions (also
called overlay files,) that customize the configuration process. 2

CFG File Extensions can be used to determine the installed hardware by reading
from the hardware registers or other means. For example, the overlay may detect the
presence of floating point coprocessors, disk drives (and determine drive type), or total
amount of memory installed on a memory expansion board.

The overlay can control the configuration of a system board or expansion board. It
can access the hardware, provide the user interface and process);Ee user-specified
configuration selections. Or the overlay can provide a limited set of configuration services
and rely on the configuration utility to perform its normal functions. :

Interaction between the configuration utility and the CFG File Extension is specific
to the utility. Therefore, the CFG file extension must be written such that it uses the
calling conventions and interface handling routines recognized by the utility.

2 A specification for CFG File Extensions is available from Micro Computer Systems. Inc. of Irving. TX. It describes

overlays specilic to the utility that allow system manufacturers 1o customize the configuration process.

331

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.3.2 Expansion Board Identifier (Product ID)

The expansion board identifier (product ID) is a unique product identification code
that can be read by the system ROM or other software to identify or locate an expansion
board. Information that can be combined in an expansion board ID includes the
manufacturer's ID, product number and revision level. The exact method for selecting an
expansion board ID is described in the section entitled, Product Identifier (ID).

EISA expansion boards must contain a readable product ID. The power-up routines
use the ID to determine the slot in which the expansion board is installed. The expansion
board is then programmed by the system ROM with the configuration parameters that are
stored in nonvolatile memory.

ISA expansion boards should have a product ID provided in the configuration file.
The product ID may or may not be readable. An expansion board ID is recommended for
ISA expansion boards since it can be stored in nonvolatile memory with other
manufacturer-specified information, such as the initialization information and resource
requirements. e data stored in nonvolatilé memory can then be accessed by software
drivers to determine the expansion board configuration. '

4.3.3 1/0 Port Initialization Information

The configuration file contains I/O port.initialization information necessary to
configure an expansion board. The I/O port initialization information specifies the I/O
port addresses and values for each alternative configuration.
434 System Resource Requests

Devices that rechire system resources include the resource request in the
configuration file. The CFG file can contain requests for the following system resources:

e Memory—the amount of memory supported, starting address, whether it is
writable or cacheable, and initialization parameters required

* I/O ports-port addresses and initialization parameters required

. Interrupts—interrupts supported, whether the.interrupt can be shared, whether
it is edge- or level-sensitive, and any initialization parameters required -

. DMA channels—the choice of DMA channels, whether the channel can be

shared, the channel's data size, the channel's cycle timing, and any initialization
parameters required

332

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAU INFORMATION OF BCPR SERVICES, INC.

44 Contiguration File Filenames

The filename of an EISA or ISA configuration file consists of an exclamation point
followed by the product ID and a filename extension, CFG. The exclamation point must
be included as the initial character of all CFG filenames. Valid filenames have the
following format:

IACE1234.CFG IXYZ5678.CFG !ABCO000.CFG

The filename convention is the same for a system board, expansion board,
embedded device or virtual device. For example, an expansion board with a product ID of
ACEO0101 has a configuration file named {ACE0101.CFG.

The expansion board manufacturer should ensure that the oonﬁ%uration file
filename is updated to reflect revisions to the expansion device. For example, a product
with an ID of ACE101 may have a configuration file named !ACEQ101.CFG. A
subsequent revision of the product would have an ID of ACE102. Therefore, the
configuration file should be named !ACE0102.CFG. This ensures that the appropriate
CFG file is loaded for the device.

The congguration utility includes a mechanism to manage duplicate IDs. For
example, the configuration files for two expansion boards,with ID ACE1234 installed in the
same- system could be renamed when copied to the configuration diskette: the first
configuration file detected is copied to !ACE1234.CFG the second configuration file
detected is copied and renamed from !ACE1234.CFG to 1ACE1234.CFG. The next one is
renamed to 2ACE1234.CFG.

333

4.5

system with EISA and ISA expansion boards.

EP 0 426 184 A2

EXTENUED INDUSTRY STANDARD ARCH11ECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The Configuration Procedure
EISA system configuration requires the fdllowing hardware and software:

An EISA computer system .

The EISA system board configuration file

The configuration utility

Optionally, EISA expansion boards and configuration files

gf)tionall . ISA expansion boards and configuration files
SA or ISA Configuration File Extensions (where needed)

e & & & 0 o

The following procedure describes an exam_lpég: conﬁgufaﬁo%groces_s for an EISA
is example configuration requires a

bootable EISA computer with a display, keyboard and floppy diskette attached.

Start the procedure with the computer power switch "OFF."

Install EISA boards in the computer to allow "automatic detection” of the devices.
Insert the configuration utility diskette.

Turn the computer power switch "ON," booting from the configuration utility diskette.

Use the oonﬁgmtion utility commands to copy each configuration file and CFG File
Extension to the configuration utility diskette, The configuration utility automatically
renames the CFG files from expansion boardswith duplicate IDs.

Let the configuration utility automatically select a conflict-free configuration. The
user may override the automatic selections. :

Set the switches on ISA expansion boards to the positions indicated by the
configuration utility.

Turn the computer power switch "OFF" and install the ISA expansion boards in the
expansion slots as indicated by the configuration utility.

Remove the configuration utility diskette.

Turn the computer power switch "ON" to the configured system, booting from the
normal boot device (for example, the fixed disk). :

Incorporate the software options into the operating system startup files as indicated
by the configuration utility. The startup files can execute programs that require

- command line parameters (for example, /s, /g)- The configuration utility indicates

4.5.1

the gng}:)er arameters. For example, the configuration utility lists entries for the
CONFIG.SYS and AUTOEXEC.BAT files of an MS-DOS operating system.

Reboot the system.

Configuration File Syntax

The following sections specify the syntax conventions used in this document and for

configuration files.

334

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.5.2 Symbol Conventions
The configuration file syntax uses the following sf;ecia.l symbols.
{3 Empty braces indicate a null value.
\ The backslash within a text field identifies an embedded character. Embedded

characters include the \t for up to an 8-space tab (or to the next tab stop), \n
for a line feed, \" for quotation marks, and \\ for a backslash.

\t Embeds a tab within text.

Tab stops are: 1,9,17,25,33, ...

\n Replaces \n with & carriage return, line feed. The configuration utility
automatically wraps text at the right margin to the next line (word wrap) for
free-form text fields.

\" Embeds a gotation mark character within text that has qﬁotation marks
delimiting the entire field.

\\ Embeds 2 \ (backslash) character within text.

" Information enclosed in quotation marks is free-form ASCII text. The text can

contain embedded characters, including tabs and line feeds. Quotation marks
can be used within a text field by entering a \".

- The dash (hyphen) separates the minimum and maximum values in a range.

i The vertical bar is equivalent to an OR statement. Items separated by a vertical
bar (|) indicate that only one of the items is allowed.

space A blank space is equivaient to an AND statement. Information separated by a
space indicates all 1tems are included. The space serves to group items of an
inclusive list. For example, the statement (x and y) or (y and z) is denoted:

xylyz :

The semicolon precedes comments in the configuration file. The configuration
utility ignores text that follows the semicolon (up to the end of the line).

335

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.5.3 Numerical Value Conventions

Numerical values within a configuration file must adhere to the following
conventions:

. All numerical values are assumed to be decimal unless otherwise indicated.
Decimal values can include a trailing d or D. ' .

» Binary port values must be written with the MSBit on the left and may include
a lt?;;gng b or B. A"1"or"0"in a bit position indicates the bit value.

. Decimal fractions are not allowed.

e Address values may be. expressed as megabyte (indicated by an M suffix),
kilobyte (indicated by a K suffix), or byte (no suffix). Values for me or
kilobytes must be given in decimal units but cannot include a trailing d or D.
For example, two Kilobytes can be represented either by 2K or 20484, but not by

e Hexadecimal values must include a trailing b or H. In the case of hexadecimal
values that begin with an alpha character, such as C68h, the value must also
have a leading 0 (zero). when noting slot-specific EISA port addresses, the
value must be preceded bé&!}Z (zero Z). For example, slot-specific port C80h
would be represented as 0ZC80h.

e Anxina binary value indicates the bit is not used or a don't care. '

e Anrin a binary value indicates the hardware register must be read and the
actual bit value masked into the "r" bit position.

e Annin a binary value for a tripole jumper indicates the jumper is not installed.

4.5.4 Keyword and Fieid Specification Conventions

Within this document the following conventions are followed when describing the
configuration file. :

Value indicates that an ASCII string or number is required in this field; any
numerical unit format can be entered for a value.

{} may be selected to indicate that none of the resource selections are
used.

List indicates that a set of resource selections can be included in the field,

each delimited vertical bar (|, logical OR).

Rangelist indicates that a set of resource address range selections or lists can be
included in the field, each delimited by a vertical bar (|, logical OR).

Valuelist indicates that a set of values can be included in the field, each
delimited by a vertical bar (}, logical OR). -

336

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

textlist indicates that a set of ASCII values can be included in the field; the
textlist must be contained within double quotes, with each string
delimited by a space.)

Switchlist indicates that a st of switches can be included in the field, each
delimited by a space. A switchlist can also comprise a range of
switches.

Jumperlist indicates that a set of jumpers can be included in the field, each
delimited by a space. A jumperlist can also comprise a range of
Jumpers.

Bitlist indicates that a set of bit positions can be included in the field. A
bitlist can also comprise a range of bits.

parameterlist indicates that a set of ASCII values can be included in the description
field of a software statement; the parameterlist must be contained
within double quotes, with each string delimited by a vertical bar
(|, logical OR).

f Items within square brackets are optional.

CAPS Keywords are indicated by all capital letters. For example, BOARD,
ID, NAME, and CO are keywords and are indicated by all
capitals.

italic Italic text used in the syntax provides descriptive information about
the indicated field. For example, names, values, lists and ranges are
indicated by italic text.

ASCHI text ASCTI characters 20-255h are valid for fields that require ASCII text.
Null strings are allowed.

(Optional) When used within a statement title, indicates that the statement
provides additional information, but is not required in th
configuration file. ;

337

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6 Configuration File Format

A configuration file consists of a board identification block, one or more
initialization information blocks, and one or more function statement blocks. The
configuration file begins with a board identification block, which provides the name and ID
of the board as well as slot information. The initialization information blocks include the
values to initialize 1/O ports and for ISA boards, information about jumper and switch
settings. The function statement blocks specify the resource requirements of the functions
of the board. Additionally, CFG files for system boards may include a system description
block (tl’)cglazg‘ing the board identification block), which icludes information specific to the
system

Every configuration file must include the board identification block. The
initialization information blocks and function statement blocks are optional, but must be
included to utilize automatic configuration. :

The configuration file has the following structure:

Board Identification Block
Board Identification and Slot Information
[System Description Block)

Initiglization Information Block

Soich oy

4.6.1 Board Identification Block

Each configuration file must begin with a board identification block. Four required
fields must be included in the board identification block to provide the basic ID
requirements of the board; optional fields can be included to provide additional board
identification information.

System boards require special configuration files and are covered in the section
entitled, System Board Configuration File.

338

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The board identification block has the following format.

BOARD N
ID = “7-character ID" ;Product ID
NAME = "descriptive name"
MFR = “manufacturer name"
TEGORY = "3-character category”
[SLOT = ISAB|ISA16|ISASOR16| OTHER | EISA | VIR | EMB((n)] [,"text"]...]
'LENGTH = value] ;In millimeters

'?Kﬁ%RAGE = x&age] SV current used, in mA

READID » ¥ l IJO] :Readable product ID
'BUSMASTER = value ;Maximum acceptable latency (in i s)
TOCHECK = VALID

H*JVALIDg

'DISABLE = SUPPOR | UNSUPPORTED)
COMMENTS = “general information”]

[HELP = *help information

BOARD Statement (Required)

Syntax:
BOARD

The BOARD statement identifies the beginning of the Board Identification Block.
ID Statement (Required)

%nt:x: ~character ID"

The ID statement contains the seven-character expansion board ID. The ID is the
uncomgcssed. ASCII representation of the product ID (see the section entitled,
EISA Product Identifier, for information on compressed IDs). The seven-character
ID consists of a three-character manufacturer code, a three-character hexadecimal
product identifier, and a one character hexadecimal revision number. For example,
the second revision of an expamsion board manufactured by the ACME board
company might have an uncompressed ID such as ACE(0102.

NAME Statement (Required)
ISJ'ntax:
AME = “descriptive name"
The NAME statement contains text that identifies the product. Part numbers and

other information may also be included. The NAME text field can contain up to 90 ASCI
characters.)

339

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

MFR Statement (Required)

Syntax:
MFR = “manufacturer name"

The MFR statement contains a text field that identifies the board manufacturer,
The MFR text field can contain up to 30 ASCTI characters.
CATEGORY Statement (Required)

Syntax:
CATEGORY = "3-character category”

The CATEGORY statement contains a 3-character text field (use uppercase for
consistency) that identifies the board's functional category. The configuration utility
displays the CATEGORY text field (in upper case) during system configuration.

The CATEGORY statement must use one of the following categories:

%{k’{ = commugimtions device gls’é = numeric coproc&;sor _

= kcyboar = opera m/environment
MEM = memory board OTH = gtche;mg yste

MFC = multifunction board “PAR = parallel port

MSD = mass storage device PTR = pointing device

NET = network board SYS = system board
. VID = video board

SLOT Statement (Optional)

S -
S{I]OtaT'L= value [,"text"]...

The SLOT statement identifies the type of slot in which the expansion board can be
installed. Options that can be entered in the value field include; I ISA16, ISABOR1S,
EISA, VIR, EMB(n), OTHER, and at a text string If the SLOT statement is omitted, the
defaunlt is ISA16. For ansion devices that occupy E%ysiml slots (ISAS8, ISA1S6,
ISA80RI16, EISA, and O), the value entered in the SLOT field is the actual size of
the board's card edge. For example, an expansion board with an 8-bit card edge is set to
SLOT = ISAS8, an expansion board with a 16-bit card edge is set to SLOT = ISA16, and 50
oln. ISAB0OR16 is provided for 16-bit expansion boards that can also operate in an 8-bit
slot, _

A text string can be included with the slot statement following the value field. More
than one text string can be included. Each text string must be cnﬁosed in double quotes.
The text is typically used to describe the slot. For example: SLOT=EISA,"MEMORY"
could be used to describe an EISA slot reserved for a memory expansion board.

ISAS
This entry specifies an 8-bit ISA expansion board (fits in any slot of correct length).

340

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ISA16
This entry specifies a 16-bit ISA expansion board (fits in an EISA or 16-bit slot of

correct length).

ISABOR16
This entry specifies an ISA expansion board configurable as 8- or 16-bit (fits in any
EISA or ISA slot of correct length).

EISA
This entry indicates an EISA expansion board that requires a correct length EISA slot

(fits in EISA slot only).

EMB[(n)]
This entry indicates a system board peripheral that uses slot-specific I/O space
(embedded device). The slot-specific I/B range used determines the "o The
configuration utility searches for the device by checking the embedded device IDs if
the "n" is omitted. The embedded devices are numbered sequentially from “y+1" (y
equals the number of expansion bus connectors) to 15.

The ?stcm board configuration registers use the slot-specific I/O space, slot number
0, and are addressed as embedded device 0, EMB(0).

This entry indicates a virtual device. Virtual devices do not have slot-specific I/O or
a readable ID. This entry.is included for virtual devices so the configuration utility
can perform conflict resolution and drivers can obtain configuration information
regarding the devices. Any peripheral, device or software that needs a vﬁ?tggfu:aﬁon
file and 1s not covered by the other device types can be specified as a vi device.
Virtual devices are assigned numbers from 16 to 2 maximum of 64.

OTHER
This entry identifies a vendor-specific expansion slot.

LENGTH Statement (Optional)

?&%m = value]

) The LENGTH statement specifies the length of the board in millimeters (a decimal
integer). The LENGTH statement does not apply to embedded devices or virtual devices.

Expansion boards should include a LENGTH statement. The configuration utility
cannot T«;gtimizc the slot allocation if expansion boards do not specify length. If the
LENGTH statement is omitted the configuration utility defaults to 330.

341

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

- The AMPERAGE statement, when included in the board identification block,
specifies the maximum amount of continuous SV current (in milliamps) required by the
base configuration of the expansion board. Installable options can ify additional SV
current requirements with an AMPERAGE statement in the CHOICE Statement Block
(described later in this specification). The AMPERAGE statement does not apply to
embedded devices or virtual devices.

Devices that require +5 volt power should include an AMPERAGE statement.
The configuration utility cannot perform an accurate power usage verification if expansion

boards do not i eir power requirement. If the AMPERAGE statement is omitted,
the configuration utility defaults to ERAGE = 0.

SKIRT Statement (Optional)

Sgntax: '
[SKIRT = YES | NOJ
The SKIRT statement indicates the presence of & drop-down skirt. (A drop-down

skirt is an extended lower portion of an 8-bit expansion board that prevents installation into
a 16-bit slot.) The default is NO.

READID Statement (Optional)

mm=mmol

READID specifies whether or not the expansion board has an ID that can be read
from the EISA ID registers. The default value is NO.

BUSMASTER Statement (Optional)

Syntax:
[g?JSMASTER = value}

The board identification block may include a BUSMASTER statement to identify
the expansion board as a bus master and to specify the maximum acceptable latency. The
latency value is a specification of the worst case acceptable time (in microseconds) from
the bus master bus request to the bus grant., The configuration utility assumes an
expansion board is not a bus master if the BUSMASTER statement is omitted.

342

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

IOCHECK Statement (Optional)

Syntax:
[{'(!)ICHECK = VALID | INVALID]

IOCHECK is an optional statement that indicates support of the EISA expansion
board control register I(gCHKERR bit. VALID indicates that the expansion board
responds to reads of its JOCHKERR bit. INVALID indicates that the expansion board
does not respond to reads of the IOCHKERR bit. The default is VALID.

DISABLE Statement (Optional)

Syntax:
['EDISABLE = SUPPORTED | UNSUPPORTED]

DISABLE is an optional statement that indicates support of the EISA expansion
board control register ENABLE bit. SUPPORTED indicates that the expansion board can
be disabled by clearing the ENABLE bit. UNSUPPORTED indicates that the expansion
board cannot be disabled %y clearing the expansion board control register ENABLE bit.
The default is SUPPORTED.

COMMENTS Statement (Optional) kS

S&tax:
[COMMENTS = "general information"]
The COMMENTS statement provides information about the e:épansion board. The
configuration utility dx?lays the contents of the COMMENTS text field in a window at
wide.

least 40 characters This COMMENTS text field can contain up to 600 ASCH
characters.

HELP Statement (Optional)

Syntax:
[fv{nELP = “help information™]

The HELP statement provides information about the expansion board if the user
requests help during the configuration. The conﬁ%]ration utility displays the HELP
information 1 a window at least 40 characters wide. The HELP text field can contain up
to 600 ASCH characters.

343

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Example Board Identification Block

The following example illustrates a board iden:fication block for a multifunction

BOARD
1D = "ACE0102" ‘Revision 02
NAME = "EISA Multfunction Board"
MFR = "ACME Inc."

CATEGORY = "MFC ;Multifunction board
SLOT = EISA :Requires EISA slot
LENGTH = 330 ;Full length board
AMPERAGE = 3000 ;3000 mA max current draw
SKIRT = NO

READID = YES

COMMENTS = "The EISA Multifunction Board provides
an asynchronous communication port,
a parallel port, a game port and
4m of mem%rgl;
HELP = *The EISA Multitunction Board supports
full automatic configuration.
You may want to select the expanded
memory conﬁﬁ;xration instead of taking
the default, which is extended memory. "

The SKIRT and le statements could be omitted from this board identification
block, since the specified values equal the default value. .
4.6.2 Initialization Information Block

The initialization information block consists of one or more of the following
statement blocks:

1/0O port initialization statement block

Switch configuration statement block

Jumper configuration statement block

Software initialization statement block

All :xﬁaansion boards that require configuration must provide an initialization

information block (IIB) in the configuration file. (A shorthand method described in the
1/O Port INIT statement discussion in the section entitled INIT Statements, can be
substituted for certain IIBs.)
4.6.2.1 - 1/0 Port Initialization Statement Block

The 1/O Port Initialization statement block begins with the IOPORT(i) statement.
The syntax of the I/O port initialization statement block is:

IOPORT(i) = address ;I/O port address

SIZE = BYTE | WORD | DWORD)] ;Number of bits in I/O port
NITVAL = [LOC(bitlist)] valuelist) ;Initialization value

344

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

IOPORT(i) Statement (Required)

%P%%T(i) = address

The IOPORT(J) statement specifies the address of an I/O port. Each 1/O port
must have a separate IOPORTY(i) statement with a different identifier, I". The " can be
itive integer value from 1 to 32767. Resource and initialization statements use the

any posi
TIOPORTYi) to specify I/O port addresses.

Sec the "PORTVAR()) Variable" section for an alternative method of specifying the
1/0O port address.

SIZE Statement (Optional)

tax:
[?nrze = BYTE | WORD | DWORD]

B ~The SIZE statement specifies the number of bits in the I/O port. The default is

INITVAL Statement (Optional) .

Syntax:
[&TVAL= {LOC(bitlist)] valuelist]

__The INITVAL statement specifies the source of the values written to an
initialization port.

_ The valuelist portion specifies the source of each bit of a binary value. An "r"in a bit
position indicates the bit value must be read from the port. An *x" in a bit position
indicates the configuration utilité determines the bit value based on the selected
confl jon. A "I" or *0" in a bit position indicates the bit is reserved and must be
initialized to the specified value. The valuelist must be in MSBit to LSBit order.

The INITVAL statement may include the LOC(bitlist) string to reference individual
bits. The bitlist contains a list or range of bit positions. The clements of the bitlist must be
- in MSBit to LSBit order. The following example illustrates valid INITVAL syntax.

INITVAL = 0000111100001111b -WORD port
INITVAL = 00001111b :BYTE port
INITVAL = LOC(7-0) 001100rr ;Byte port with “r" bits
INITVAL = LOC(7-2) 001100 ;Byte port (range)
INITVAL = LOC(7 6 10) 0011 " ;4 bits specified

345

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Example I/O Port Initialization Statement Block

The following example illustrates an I/O port initialization statement- block. The
two most significant bits are read from the I/O port, the next two bits are "1" and 0"
respectively, and the four least significant bits are determined by the configuration utility.

IOPORT(1) = 3F8h +1/O port address
INITVAL = rr1(ooxb ;Bit pattern
4.622 Switch Configuration Statement Block

The switch configuration statement block bcfms with the SWITCH(i) statement.
The syntax of the switch configuration statement block is:

SWITCH(i) = value :Number switches in set
N. = “switch name or description” ,
STYPE = DIP | ROTARY | SLIDE ;Type of switch
[VERTICAL = YES | NO] ;Switch orientation
REVERSE = YES | NO ;Switch numbering scheme
'LABEL = LOC(swifchlist) textlist] :Switch labels
INITVAL = LOQ(swirchlist) valuelist] ;Switch settings
'FACTORY = LOC(switchlist) valuelist] ;Factory setting
COMMENTS = "configuration comments"]
'HELP = "configuration help information"]

SWITCH(i) Statement (quniréd)

g%(i) = value

The SWITCH(i) statement specifies the number of switch positions in a set. Each
set of switches must have a separate SWITCH()) statement with a different identifier, "
The " can be any positive integer value from 1 to 32767. The maximum number of
switches is "16" for al’ switch types. Value indicates the number of switches in the switch

block.

NAME Statement (Required)

Syntax:
AME = "switch name or description”

The NAME statement contains the switch name as it is designated in the user
documentation. The name can be up to 20 characters long. |

346

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

STYPE Statement (Required)

Syntax:
S'YIE{PE = DIP | ROTARY | SLIDE

The STYPE statement designates the type of switch as DIP, ROTARY, or SLIDE.
A DIP switch is a set of switches, each baving an "ON" and "OFF" position. A ROTARY
switch is a set of switches with a rotating selector that can be set to one switch position. A
SLIDE switch is a set of switches arranged linearly with a slide mechanism that can be set
to one switch position. All switches within the set are numbered beginning with 1.

VERTICAL Statement (Optional)

Syntax:
[&R’I‘ICAL=YES]NO]

The VERTICAL statement indicates the orientation of the switch on the expansion
board. Refer to the figure below for an illustration of switch orientation. The VERTICAL
statement defaults to "NO." :

REVERSE Statement (Optional)

Syntax:
[{EVERSE=YESINO]

The REVERSE statement specifies the order that a DIP switch is numbered.
REVERSE = YES indicates 1234.., REVERSE = NO indicates ...4321 order. Refer to
tébcfa figure %e(l;)w for an illustration of switch numbrering. The REVERSE statement

efaults to = ‘

6 1
5 2
4 3
654321 1234586 3 4
. 2 5
REVERSE=NO REVERSE=YES 1 6
VERTICAL=NO VERTICAL~=NO
REVERSE=NO REVERSE=YES
VERTICAL=YES VERTICAL=YES
HEREEREEEN N .
LOC (switchlist) valuelist

The switch configuration statements LABEL, INITVAL and FACTORY include
the LOC(switchlist) valuelist (or textlist) string to reference individual switches. The
switchlist contains a list or range of switch numbers. The elements of the switchlist must be
in ascending order if REVERSE=YES or descending order if REVERSE=NO. A space
must be included between elements as a delimiter. .

347

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The textlist specifies the ASCII switch name and the valuelist specifies the switch
setting for each switch position. The valuelist must use the same order as the swirchlist. A
DIP switch can be set for *1" to indicate "ON," "0" to indicate "OFF," or *x” to indicate "don't
care.” The dip switch settings are not delimited with a space. The valuelist for a rotary or
slide switch includes a "1" in the position number of the selected position. . Zeros fill the
other positions. ,

The following examples illustrate valid LOC(switchlist) valuelist strings:

REVERSE=YES

INITVAL = LOC(1234) 0011 :List of DIP switches
REVERSE=NO

INITVAL = LOC(4321) 1100 ;List of DIP switches
REVERSE=YES

INITVAL = LOC(1-4) 0011 ;Range of DIP switches
REVERSE=NO

INITVAL = LOC(4-1) 1100 :Range of DIP switches
REVERSE=YES

INITVAL = LOC(1234) 00x1 _ :DIP switches with a don't care
REVERSE=YES ‘

INITVAL = LOC(1-8) 00010000 ;8-position rotary or slide switch
LABEL Statement (Optional)

S :
[&%’I(EL = LOC(switchlist) textlist]

The LABEL statement specifies labels for individual switches. Each label can
compose up to 10 characters. If the LABEL statement is omitted, the default label is the
switch number (...4321 for normal switches and 1234... for reverse switches). The following
example illustrates use of the LABEL statement:

LABEL = LOC(4-1) "SW14" "SW1-3" "SW1-2" "SW1-1"

INITVAL Statement (Optional)

Syntax:
[frsmﬁTVAL = LOC(switchlist) valuelist]

The INTTVAL statement specifies the settings for factory-set switches that must not
be changed. If the INITVAL statement is omitted, switch settings are determined by the
configuration program or are "don't care.” This statement is particularly important for
switches that control undocumented options. The following example illustrates use of the
INTTVAL statement:

INITVAL = LOC(4 3 2 1) xx0 ;DIP switch 1 may not be changed

348

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FACTORY Statement (Optional)

Syntax:
[lg&CPORY = LOC(switchlist) valuelist]
The FACTORY statement indicates the factory settings for the switches.

COMMENTS Statement (Optional)

tax:
[COMMENTS = 'conﬁgum:ion comments”]

The COMMENTS statement contains information to assist the user in oonﬁglm.:_ﬁ]
switch. The COMMENTS text field can contain a maximum of 600 characters
configuration utility displays the text in a window at least 40 characters wide.

HELP Statement (Optional)

S :
f&tﬁ’ = "configuration help information”]

The HELP statement contains information that is'displayed to the user if requested.
The HELP text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

Example Switch Configoration Statement Block
The following example illustrates a switch configuration statement block.
,IN]TIALIZATION INFORMATION BLOCK

SWITCH(1)= ;1st switch—8 tions
)= SWITCHBLOCK 1" posi
STYPE = DIP :DIP switch type
VERTICAL = ‘Vertical orientation
FACTORY LOC(S-I) 11110000 :Factory setting = 11110000

8-1) 00000 ‘One reserved switch

SWITCH ,2nd Switch-2 positions

"SWITCH BLOCK 2"
E ;SLIDE switch type
I_ABEL LO 21)"TRQ9""TRQ8" ;Position labels IRQY, IRQ8
FACTORY = 21) 10 ;IRQ9 Setting

349

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.2.3 Jumper Configuration Statement Block

The jumper configuration statement block begins with the JUMPER(i) statement.
The syntax of the jumper configuration statement block is: .

JUMPER%i) = value ;Number of jumpers in set
N = % name or description” .

JTYPE = PAIRED | TRIPOLE ;Type of jumper
['VERTICAL = | NOJ JJumper orientation .
'REVERSE = YES | NOJ , Jumper numbering scheme
'LABEL = LOC(jumpertist) textlist] , TASCHT Jumper labels
INITVAL = jumperlist) valuelist] ;Jumper settings
[FACTORY = umperlist) valuelist) ;Factory setting
COMMENTS = “confiquration comments")

[HELP = “configuration help information"]

JUMPER(i) Statement (Required)

S -
I%ERG) = value

The JUMPER(i) statement specifies the number of jumper positions in a set. Each
set of j rs must have a separate JUMPER() statement with a different identifier, i.
The %" can be any positive inte%er value from 1 to 32767, The value field has two meanings
here depending on the of jumper defined. For inline j 1s, value refers to the
number of connections. For tripole and paired jumpers, value refers to the number of
tripole or paired sets. :

NAME Statement (Required)

Syntax:
AME = “jumper name or description”

The NAME statement contains the jumper name as it is designated in the user
documentation. The description can contain a maximum of 20 characters.

JTYPE Statement (Required)

Syntax:
E = INLINE | PAIRED | TRIPOLE

The JTYPE statement designates the type of jumper as INLINE, PAIRED, or
TRIPOLE. INLINE jumpers are arranged in a straight line, such that each post can be
connected to an adjacent post. PAIRED jumpers are arranged as a series of double posts,
such that any single pair can be connected across the two posts. TRIPOLE jumpers are
arranged as a series of triple posts, such that the middle post can be connected to either of
the two adjacent posts.

350

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following figure illustrates each of the three JTYPEs.

© 000 o Paired oo oo o Inline

0 0 0 0 0 REVERSE=NO 1 2 3 4 5 REVERSE=YES

5 4 3 21 VERTICAL=NO VERTICAI~NO

©o oo oo Tripole o 0 o1l Tripole

0 0 00O 0 oo 2

0O 0 0 0 0 REVERSE=YES c 0o 0 3 REVERSE=YES

1 2 3 4 5 VERTICAL=NO 0 0 0 4 VERTICAI=YES

REEEREENEEE N

VERTICAL Statement (Optional)

mm-:msmq

The VERTICAL statement indicates the orientatien of the jumper on the expansion
board. The VERTICAL statement defaults to *NO."

REVERSE Statement (Optional)

Syntax:
D{IJJEVERSE=YES | NOJ

The REVERSE statement specifies the order that a jumper is numbered.
REVERSE = YES indicates 1234.., REVERSE = NO indicates ..4321 order. The

REVERSE statement defaults to "NO."

L(_)C(;"umperlist) valuelist

The jumper configuration statements LABEL, INTTVAL and FACTORY include
the LOC(jumperlist) valuelist %fcrencc individual jumper positions. The jumperiist
contains a list of j rs. The valuelist specifies the setting for each jumper. The valuelist
must not be delimited with a space and must use the same order as the jumperiist.

A paired or tripole jumperlist can use a range to indicate the jumpers. The elements
of the ﬂ”sn st must be in ascending order if REVERSE=YES, or descending order if
REVE =NO. A space must be included between elements as a delimiter.

The jumperlist specifies inline jumpers by indicating the connection between two
posts with a caret. For example, LOC(6*5 4°3 27 1) specifies the jumpers between posts 6
and 5, between posts 4 and 3, and between posts 2 and 1. The elements of the jumperlist
must be in ascending order if REVERSE=YES, or descending order if REVERSE=NO.
A space must be included between elements as a delimiter.

The paired and inline jumper valuelist settings can be indicated as "1" for "ON"
(jumnper installed), "0" for "OFF" (jumper not installed%, or "x" for "don't care.”

351

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

. A tripole jumper valuelist settings can be indicated as "1" for "ON" (jumper installed
in upper or t position), "0" for "OFF" (jumper installed in lower or left position unless
otherwise mar (:dg,c’Sl * for NONE" (jumper not installed) or "x" for "don't care.”

The following examples illustrate valid LOC(jumperdist) valuelist strings:

JTYPE=TRIPOLE
REVERSE=YES
INITVAL = LOC(123 4) 0011 ;List of tripole jumpers

JTYPE=PAIRED
REVERSE=NO
INITVAL = LOC(4321) 1100 ;List of paired jumpers

JTYPE=PAIRED
REVERSE=YES
INITVAL = LOC(14) 0011 ;Range of paired jumpers

JTYPE=TRIPOLE
REVERSE=NO
INITVAL = LOC(4-1) 1100 ;Range of tripole jumpers

JTYPE=PAIRED
REVERSE=YES .
INITVAL = LOC(1-4) x011 ;Range of paired jumpers with "x"

JTYPE=TRIPOLE
REVERSE=YES
INITVAL = LOC(1-4) x011 ;Range of tripole jumpers with "x"

JTYPE=TRIPOLE

REVERSE=YES

INITVAL = LOC(14) n011 ;Range of tripole jumpers with "n"
JTYPE =INLINE

REVERSE=NO
INITVAL = LOC(6°54°32°1) 101 ;List of inline jumpers

LABEL Statement (Optional)

S :
[&%XEL = LOC(jumperiist) textlist]

The LABEL statement specifies labels for individual jumpers. Each label can be
composed of up 510 characters. s{’fethe LABEL statement is omitted, the default label is the
switch number (...4321 for normal jumpers and 1234... for reverse jumpers). The following
example illustrates use of the LABEL statement:

LABEL = LOC(4°3 2°1) "IRQ2" "IRQ3" ;'TRQ2" (4°3), "TRQ3" (2°1)

352

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

INITVAL Statement (Optional)

Syntax:
[EHVAL = LOC(jumperlist) valuelist)

The INITVAL statement specifies the settings for factory-set jumpers that must not
be changed. If the INITVAL statement is omitted, jumper settings are determined by the
configuration program are "dont care." This statement is particularly important for
j rs that control undocumented options andrequire spwéz: settings. The following
example illustrates use of the INTTVAL statement:

"INITVAL = LOC(4321)0011 ;Paired (or tripole) jumper settings

FACTORY Statement (Optional)
Syntax:
ﬂgRCI’ORY = LOC(jumperlist) valuelist]

The FACTORY statement indicates the factory settings for the jumpers.
COMMENTS Statement (Optional)
Sénotax:
[COMMENTS = “configuration cormments"]

The COMMENTS statement contains information to assist the user in configuring a

. The COMMENTS text field can contain 2 maximum of 600 characters. e
configuration utility displays the text in 2 window at least 40 characters wide.

HELP Statement (Optional)

Syntax;)
[{!IJIF.I_P = “configuration help information™]

The HELP statement contains information that is displayed to the user if requested.
The HELP text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

353

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Example Jumper Configuration Statement Block
The following example illustrates a jumper configuration statement block.
JINTTIALIZATION INFORMATION BLOCK ‘

JUI‘vg’ER 1) =JS1 0 ;1st set-5 positions(6 posts)
=" 1" : .
JTYPE = INLINE ;Inline jumper
VERTICAL = YES sVertical on’cngggn
LABEL = LOC(6°5 43 2"1) "Test" "IRQ8" "IRQ9" ;Labels Test, IRQS, IRQY
INITVAL = LOC(6°54°32°1) Oxx ;Reserved jumper

FACTORY = LOC(6"5 4"3 2°1) 001 ‘Factory Setting = IRQ9

]'Ihc configuration utility displays a diagram to illustrate the jumper settings. For
example:

o 6
Test

o 5

o 4
IRQS8

o 3

o 2 .
IRQ9 |

o 1

J101

4.62.4 SOFTWARE(Initialization) Statement Block (Optional)

Syntax:
SOFTWARE() = “description”

The software statement block begins with the SOFTWARE (i) statement. The
syntax of the software configuration statement block is:

*Note: there atre no other statements in the block.

The software initialization statement block provides user information and
instructions about software drivers for display during system configuration. The
instructions may, for example, indicate the software options to incorporate into the
operating %tcm startup files or a program that must be executed to initialize an expansion
board. ¢ software initialization statement block can include entries for the
CONFIG.SYS and AUTOEXEC.BAT files of an MS-DOS operating system.

The startup files may execute programs that require command line parameters (for
example, /s, /g).

Each software statement must have a separate SOFTWARE() statement with 2
different identifier, "i." The "i" can be any positive integer value from 1 to 32767.- The

description can be 2 maximum of 600 characters.

354

" EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The configuration utility displays the software description with switch settings and
other configuration information, during system configuratiorn.

See the section on INIT Statements for more details about the software(i)
statement. ‘

4.6.3 FUNCTION Statement Block
A FUNCTION statement block consists of the following statements:

° FUNCTION Statement—identifies the name of the expansion board function
(for example, "Asynchronous communications port").

¢ TYPE Statement~identifies the function type (for example: a communications
port is type "COM™). ,

e CHOICE Statements with resource description blocks—~identify the
configuration alternatives (i.c, initializations, I/O ports, interrupts, DMA
channels and memory).

The FUNCTION statement block has the following format:
FUNCTION = “function name" '

E = “function type") ' '
COMMENTS = '&'n[’ormariorz"]
CONNECTION = *connector orientation and description”]

= “information
OICE = conﬁgurm;}on name"
[Resource Description Block]
[CHOICE = “configuration name"
Resource Description Block)

[CPfOICE = “configuration name"
Resource Description Block]
[SUBFUNCTION §I’ATEMENT BLOCK]

.. A separate function statement block must be supplied for each function of a
multifunction expansion board. The following example illustrates the two function
statement blocks for an expansion board with a communications port and a parallel port.

FUNCTION = "Asynchronous communications port”
CHOICE = "configuration name"
Resource Description Block
FUNCTION = "Paralle] port”
- CHOICE = “configuration name" _
Resource Description Block

355

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FUNCTION Statement (Required)

e
CTION = “function name”

Each function statement block begins with a function statement that specifies the
function name, The function name counsists of free-form ASCII text with 8 maximum of 100
characters. All function names within a single configuration file must be unique, but
different configuration files can have common function names. ' ~

The configuration utility displays the function name during configuration, but does
not store it in nonvolatile memory.

TYPE Statement (Optional)
Syntax:

['R’PE = “function type"]
A functions statement block is supplemented with & TYPE statement that identifies

the function type with a three-character ASCII string. The following table identifies
commonly used function types.

Commonly Used Function Types
KEY-keyboard PAR-parallel port
MEM-memory board PTR-pointing %oevice
'MSD-—mass storage device COM~—~communications port
NET-network adapter VID-video display adapter
NPX-—~numeric coprocessor SYS—system board
OTH-other OSE-operating system/environment

The TYPE statement should use one of the listed types when applicable. A TYPE
statement can contain a type not included in the "“Commonly Used Function Types™ table
above, but all types must be three-character ASCII strings. The type is stored in
nonvolatilé memory as upper-case. It should be entered in the configuration file in upper-
case for consistency.

: The function type can be supplemented b%happcnding multiple, comma-delimited,

ASCII strings to the imitial three~character type. The supplemental type ASCII strings are
not limited to three characters. For example, an asynchronous communications port can
have the following TYPE statement:

TYPE = "COM,ASY"

The configuration utility stores the TYPE statement's ASCH string in nonvolatile
memory during configuration.” EISA systems provide a total of 80 bytes of nonvolatile
memory to store the E statement's ASCII string and SUBTYPE statement's ASCIL
string. ‘The 80 bytes include the¢ comma and semicolon delimiters between the type and
SUB E string fragments.

A device driver can use the type string to determine the general class of
functionality of a device. The device driver can use the subtype string to determine the
configuration of a device. -

356

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The resource description block section SUBTYPES are dicussed later in this
specification.)

COMMENTS Statement (Optional)

S(v:tétax:
[COMMENTS = “information”]

A function statement block can include a COMMENTS statement that provides
relevant information about the function. The comment could identify an expansion board
manufacturer and part number, configuration instructions or any other useful information.

The comment consists of free-form ASCII text with 2 maximum of 600 characters. The
configuration utility displays the text in a window at least 40 characters wide.

The configuration utility displays the comment during configuration when the
function is selected. It does not store the comment in nonvolatile memory.

HELP Statement (Optional)

FZI?EWH; = “help information”]

The HELP statement contains information that is displayed to the user if requested.
The help text field can contain a maximum of 600 characters. The configuration utility
displays the text in a window at least 40 characters wide.

CONNECTION Statement (Optional)

Syntax:
CONNECTION = “connector orientation and description”

) A configuration file can specify the orientation and description of connectors by
including the CONNECTION statement in the FUNCTION statement block.

The connection string consists of an ASCII string with a maximum length of 40

characters. ’?piml ‘connection strings include-"top,” "bottom,” "upper,” “lower,” "middle,”
etc. The configuration utility includes a command that displays the connection string.

357

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.3.1 CHOICE Statement Block

Each function statement block is accompanied by at least one choice statement
block that specifies the initializations and system resource requirements of a possible
configuration. The configuration utility uses the first choice statement block as the default. -
Multiple choice statement blocks are sequentially arranged in the order of preference. The
choice statement block begins with a choice statement that specifies the "name” of the
configuration. A choice statement block has the following syntax:

CHOICE = “configuration name”
- [SUBTYPE = "device description")
ISABLE = YES | NO"
AMPERAGE = value)
TALMEM = elist [STEP = value]]
urce Description Block

A communications port, for. example, can have the following function statement
block and associated choice statement blocks: - .

FUNCTION = "Asynchronous Communications Port”
CHOICE = "COM1"
Resource Description Block
CHOICE = "COM2")
Resource Description Block .

The system resource requirements (described in the "Resource Description Block™
section) for the named configuration follow the CHOICE statement.

CHOICE Statement (Optional)

Syntax:
CHOICE = “configuration name"

The choice statement block bcgins.with a CHOICE staterent that specifies the
'cgame" of the configuration. The "name" is-an ASCII string with 2 maximum of 90
aracters.

During_configuration, the configuration utility displays all CHOICE statement
configuration names for the selected function. The configuration utility does not store the
name in nonvolatile memory. :

DISABLE Statement (Optional)

. Syntax:
[EI)SABLE = YES | NOJ

A CHOICE statement can be used to disable the expansion beard function. Each
function to be disabled requires a separate DISABLE = YES statement. The default is
DISABLE = NO. The following example illustrates use of the DISABLE = YES
statement.

358

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FUNCTION = "Communications Port"
CHOICE = "COM1"
Resource Description Block
CHOICE = "COM2"
Resource Description Block
CHOICE = "Disable Communications Port”
DISABLE = YES

SUBTYPE Statement (Optional)

Sgntax:
[SUBTYPE = "device description”}

Each choice statement block can contain a subtype statement that names the
confi ion (with a short mnemonic) associated with the choice. The subtype can be
emented by appending multiple, semicolon-delimited, ASCII strings to the initial

subtype.

A device driver can use the SUBTYPE string to determine the configuration of a
device. The device driver may use the type string to determine the general class of
functionality of a device.

A communications port may have SUBTYPE statements as follows:

FUNCTION = "Internal Modem"
TYPE = "COM,ASY MDM"
CHOICE = "Modem assigned to COM1"
.SUBTYPE = "COM1"
Resource Description Block
CHOICE = "Modem assigned to COM2"
SUBTYPE = "COM2"
Resource Description Block

The SUBTYPE should be a short ASCII string. The SUBTYPE string supplements
the type stri.g,%by identifying the selected configuration (the type string identifies the type
of device). The configuration utility stores the concatenated type and SUBTYPE AS
strings, with a semicolon delimiter, in nonvolatile memory during configuration. EISA
systems provide a total of 80 bytes of nonvolatile memory to store the type statement's
ASCI string and SUBTYPE statement's ASCU strin%. The 80 bytes include the comma
and semicolon delimiters between type and SUBTYPE string fragments.

359

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value)

The AMPERAGE statement, when included in the choice statement block, specifies

the maximum amount of continuous 5V current (in milliamps) required by the option

ified by the choice statement block. The total 5V current includes the amount

specified in the board identification block plus the amount specified for the selected
options. The AMPERAGE statement does not apply to virtual devices.

TOTALMEM Statement (Optional)

S
TOTALMEM = rangelist [STEP = value]

A choice statement block can contain a TOTALMEM statement that indicates the
total amount of memory specified by the choice. The TOTALMEM statement is required
for a memory block that can have its allocation split between system memory (SYS) and

expanded memory (EXP).

See the TOTALMEM statement and cxample in the section entitled, Memory
Description Block, for more detziled information. =,

4.6.3.2 SUBCHOICE Sta_tement Block

The purpose of the subchoice statement block is to handle resource statement
alternatives that are too complex for individual CHOICE statements (for example, memory
configurations of some memory boards). .

A choice statement block can include statements that specify alternative
configurations. A subchoice statement block can use amy statement that 1s valid for a
choice statement block. The subchoice alternatives must be ‘automatically selectable by the
configuration utility with information available from the configuration files. The
configuration utility does not present subchoice altermatives for selection by a user,
although the user can scroll through the resources specified in subchoice statement blocks.

The syntax for the SUBCHOICE statement is shown below:

SUBCHOICE
Resource Description Block

A choice statement block can have as many subchoice statement blocks as needed.
The configuration utility sequentially checks each subchoice resource description block and
selects the first one that does not conflict with other devices in the configuration.

The combination of the choice resource description block and one subchoice
resource description block contains the resource and initialization requirements for the
configuration. The configuration utility includes the choice and the selected SUBCHOICE
resource requirements in the data written to nonvolatile memory for use by the power-up
routines.

360

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates a configuration file fragment that specifies a
memory allocation that back fills 128K of memory into the base address range between
512K and 640K if only 512K is installed. The remainder of memory on the expansion
board is allocated to extended memory. The user selects the total amount of memory on
the expansion board and views the subchoice alternatives. The subchoice selection
(between back fill and extended memory) does not require input from the user, since the
amount of base memory installed is available from the confi ion file. The subchoice
statement blocks are included in a single choice statement block that is presented to the

user:

CHOICE = "Add Base and Extended Memory”
TOTALMEM = 128K-2048X STEP 128

128K base memory back fill into range S12K-640K
(512K base memory already installed)

SUBCHOICE
FREE

MEMORY = 128K
ADDRESS = 512K
MEMTYPE = SYS
COMBINE :Extended Memory for the rest
MEMORY = 0K-1920K STEP 128K
ADDRESS = 1M ES
MEMTYPE = SYS

128K back fill

; No base memory back fill
H (640K base memory already installed)

SUBCHOICE
COMBINE :All Extended Memory
MEMORY = 128K-2048K STEP 128K
ADDRESS = 1IM-16M STEP 128K
MEMTYPE = SYS

361

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selection of the starting address could be presented to the user as a sequence of
CHOICE statements for selection by the user: .

;128K base memory back fill into range S12K-640K
; (512K base memory already installed)

CHOICE = "Add Base and Extended Memo
TOTALMEM = 128K-2048K STEP 128
FREE ;128K back fill

MEMORY = 128K
ADDRESS = 512K
MEMTYPE = SYS

COMBINE ;Extended Memory for the rest
MEMORY = 0K-1920K STEP 128K
ADDRESS = IM
MEMTYPE = SYS

; No base memory back fill :
; (640K base memory already installed)

CHOICE = "Add Extended Memo
TOTAILMEM = 128K-2048K 128K
COMBINE ;All Extended Memory
MEMORY = 128K-2048K STEP 128K
ADDRESS = 1M-16M STEP 128K
MEMTYPE = SYS

The configuration utility presents each named choice to the user for selection. The
uslcr can make the selection or let the configuration utility automatically make the
selection.

SUBCHOICE statements are not appropriate if the user might need to make the
selection. For example, the user may need to select a serial port as COM1 or COM2. The
configuration utility grcscm.s the choices to the user, and the user either makes the
selection manually or lets the configuration utility select automatically.

SUBCHOICE Statement (Optional)

S :
[gﬁtngHOICE]

The subchoice statement block begins with a SUBCHOICE statement. The
SUBCHOICE statement does not have a name field for display, since subchoice statement
blocks are selected automatically by the configuration utility.

SUBFUNCTION Statement Block (Optional)
A function statement block may contain one or more subfunction statement blocks
that specify the configuration information for a set of related components with separate

resource or initialization rcquirements. A subfunction statement block provides separate
configuration of the function's components.

362

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A subfunction statement block can use any statement that is valid for 2 function
statement block. The syntax of a subfunction statement block is:

SUBFUNCTION = “function name"
E = “function type"]
COMMENTS = "information"]
CONNECTION = "connector orientation and description”
= “information”)
CHOICE = “configuration name"
Resource Description Block
[CHOICE = "configuration name”
Resource Description Block]

[C‘HblCE = “configuration name”
Resource Description Block]

~ The configuration utility stores the resource and initialization information from
subfunction statement blocks with the function information. Subfunction statement blocks
are pot stored as separate functions in nonvolatile memory.

Syntax:
S{?BFUNCI'ION = “name” "

The subfunction statement block begins with a subfunction statement that specifies
the name of the configuration. The name is an ASCII string with a maxmum of 90
characters. :

During configuration, the configuration utility displays all CHOICE configuration
names for the selected subfunction.

The following example illustrates use of subfunction statement blocks to configure
the parity and baund rate for an asynchronous communications port. The example includes
the statement blocks with type and subtype strings. The resource and initialization
statements are omitted for simplicity. .

FUNCTION = "1200/2400 Baud Modem”
TYPE = "COM,ASY MDM"
SUBFUNCTION = "Port Address”.
CHOICE = "COM1 Serial Port"
SUBTYPE = "COMT"
CHOICE = "COM2 Serial Port"
SUBTYPE = "COM2"
SUBFUNCTION = "Parity Selection” :No SUBTYPE under SF
CHOICE = "0DD"
SUBTYPE = "PARITY=0DD" ;SUBTYPE under CHOICE
CHOICE = "EVEN"
" SUBTYPE = "PARITY=EVEN"
SUBFUNCTION = "Baud Rate Selection”
CHOICE = "1200 Baud"
SUBTYPE = "BAUD=1200" :SUBTYPE under CHOICE
CHOICE = "2400 Baud"
SUBTYPE = "BAUD=2400"

363

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The t)g)c/subtypc string for the "1200/2400 Baud Modem" function (with COM]1,
odd parity and 2400 baud selections) in nonvolatile memory is:

*COM,ASY,MDM;COML,PARITY =ODD;BAUD =2400"

The le above used SUBTYPE statements under the CHOICE statements but
not under the SUBFUNCTION statements. The followi ample illustrates an
alternative method with the SUBTYPE statements under the SUB CTION and the
CHOICE statements:

FUNCTION = "1200/2400 Baud Modem"
TYPE = "COM,ASY,MDM"
SUBFUNCTION = "Port Address”
CHOICE = "COM1 Serial Port"
SUBTYPE = "OOMT1"
CHOICE = "COM2 Serial Port"
SUBTYPE = "COM2"
SUBFUNCTION = "Parity Selection” : -
TYPE = PARITY ;TYPE under SUBFUNCTION

CHOICE = "ODD"
SUBTYPE = "ODD" ;SUBTYPE under CHOICE

CHOICE = "EVEN"
SUBTYPE = "EVEN"
SUBFUNCTION = "Baud Rate Selection”

TYPE = BAUD " ;TYPE under SUBFUNCTION
CHOICE = "1200 Baud~
SUBTYPE = "1200" ;SUBTYPE under CHOICE

CHOICE = "2400 Baud"
SUBTYPE = "2400"

The /subtype string for the "1200{2,400 Baud Modem" function (with COM1,
odd parity and 2400 baud-selections) in nonvolatile memory is:

"COM,ASY,MDM;COM1,PARITY;ODD,BAUD;2400"

4.6.3.3 GROUP Statement Block
A group statement block may be used to enclose a set of functionstatement blocks

that specify the configuration information for a set of related components with separate
resource or initialization requirements.

364

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

A set of grouped function statement blocks allows separate configuration of a
function's components. A grouped function statement block can use any statement that s
valid for independent function statement blocks. The syntax of a grouped set of function
statement blocks is: :

GROUP = "name”

oD
CTION = “name”

E=" ion type”]
COMME = "information"]

ILP ="in n"]
CHOICE=mw

resource description block

[CHOICE = "name" :
resource dmigtion Block]
FUNCI'I%N = "name]
= “function type"
COMMEI.;TS = 'ir'zfor_anaﬁon"]
= 1 ,
CHOICE = "
resource description block

[CHOICE = "name"
resource description block]
FUNCTION = ‘name”

[TYPE = %:'Sdm type’]
§ gEOfPME 7 = “injon}zation 7
= ‘information”,
CHOICE = "name”
resource description block

[CFiOICE = name"”
resource description block]
FUNCTION = "name"”

ENDGROUP

The configuration utility saves the resource and initialization information for each
function specified in the grouped set as a separate function entry in nonvolatile memory.
The group statement block may include a TYPE statement. The group type string
prepends to each TYPE string in the set of grouped function statement blocks. The
configuration utility stores the group type string in nonvolatile memory for a grouped
function statement block that omuts the type statement.

Presentation of optic;ns during configuration and TYPE string Irﬁ:}}gding in

nonvolatile memory are the only differences between a set of groupe CTION
statement blocks and a set of independent FUNCTION statement blocks.

365

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

GROUP and ENDGROUP Statements (Optional)

Syntax:
[&OU’P = "name”]

[ENDGROUP]
A grouped set of function statement blocks begins with the GROUP statement and

ends with an ENDGROUP statement. The group name can be 2 maximum of 60
characters. Each GROUP statement must have a corresponding ENDGROUP statement.

Example Use of Grouped FUNCTION Statement Blocks

The following confi ion file fragment illustrates the use of grouped function
statement blocks that ;geag‘gg configuration options for a fixed disk controller and disk
drive. For simplicity, the configuration file fragment includes the TYPE and SUBTYPE
statements, but does not include resource or initialization statements. The GROUP
statement block and some function statement blocks have a TYPE statement.

GROUP = Fixed Disk Drives ;Fixed disk controller grou
TYPE = "MSD" ;Prepends to each FUEC!II)ON TYPE
FUNCTION = "Fixed Disk Controller Selection”
TYPE = "DSKCTL”
CHOICE = "Primary Controller”
SUBTYPE = "PRI'
CHOICE = "Secondary Disk Controller”
SUBTYPE = "SE
FUNCTION = "Device for Unit 1"
TYPE = "UNIT1"
CHOICE = "Not Installed”
SUBTYPE = "DSKDRV,TYP=00"
CHOICE = "300mb - TYPE 38"
" SUBTYPE = "DSKDRV, TYP=38"
CHOICE = "130mb - TYPE 43"
SUBTYPE = "DSKDRV, TYP=43"
FUNCTION = "Device for UNIT 2"
TYPE = “UNIT2"
CHOICE = "Not Installed”
SUBTYPE = "DSKDRV, TYP=00"
CHOICE = "300mb - TYPE 38"
SUBTYPE = "DSKDRV, TYP =38"
CHOICE = "130mb - TYPE 43"
SUBTYPE = "DSKDRV, TYP=43"
ENDGROUP :

366

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The grouped function statement blocks are stored separately in nonvolatile memory.
The type string for each of the function statement blocks includes the LEl'oup type string
(prepended to the function type string). Nonvolatile mcmo?' contains the following type

5 (ing the choice selections are: primary controlfer with a 300 MB drive for
UNIT1 and UNFTZ 5 not installed). -

FUNCTION = "Fixed dizk Controller Selection”
TYPE string: MSD,DSKCTL;PRI

FUNCTION = "Device for Unit 1" .
TYPE STRING: MSD,UNIT1,DSKDRV,TYP=38

FUNCTION = "Device for Unit 2"
TYPE string: MSD,UNIT2,DSKDRV,TYP=00

4.6.4 Rasource Description Biock

A resource description block may accompany each CHOICE statement to identify
the initialization and system resource requirements of the named configuration. The
resource description block can contain any of the following information:

e DMA Channel Description Block—specifies the choice of DMA channels
supported, whether the channel can be shared, the channel’s data size, the
channel's ¢ycle timing, and any initialization necessary

o Interrupt Description Block—specifies the choice of interrupts supported,
whether the interrupt can be shared, whether the interrupt is edge or level

, sensitive, and any initialization necessary

e 1/O Port Description Block~specifies the port address, and any initialization
necessary ,

¢ Memory Description Block—specifies the amount of memoa?; supported, the
starting address, and whether the memory is cacheable it aiso identifies the
memory as RAM or ROM, defines the memory usage (system, expanded,
virtual "or other), and specifies any initialization necessary to configure the
memory

o Switch and Jumper Description Blocks—specify the switch and jumper settings
for the configuration

o Programmable Port Initialization Block-specifies the initialization for
programmable ports for the configuration

. Software Initialization Block-specifies any software initialization necessary
The syntax of a DMA resource description block is as follows:
[DMA = list
{SHARE = YES | NO | "fext"]

SIZE = BYTE | WORD | DWORD]
[TIMING = DEFAULT | TYPEA | TYPEB | TYPEC]]

367

EP 0426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The syntax of an I/O port resource description block is as follows:

[PORT = list/rangelist [STEP = value [COUNT = VALUE]
SHARE = YES [NO | sext]
SIZE = BYTE | WORD | DWORD]]

The syntax of an interrupt resource description block is as follows:

[RQ = Iist
SHARE = YES | NO | "text"]
f'rRJGGER = LEVEL | EDGE]]

The syntax of a memory resource description block is as follows:

[MEMORY = rangelist [STEP = valueg
ADDRESS =m¢§m STEP = 1
[WRITABLE = | NOJ
MEMTYPE = SYS | EXP | VIR | OTH]
CACHE = YES | NO]

SHARE = YES | NO | ‘et

SIZE = BYTE | WORD | DWORD]
'DECODE = 20 | 24 | 32)

4.6.4.1 DMA Channel Description Block

A DMA channel description block consists of a group of statements that specifies
the DMA channels required by an expansion board function. The configuration file can
contain a maximum of four DMA description blocks for any one function. The syntax ofa

DMA channel description block is:

DMA = DMA channel number
= YES | NO | “tex

SHARE |
SIZE = BYTE | WO [I_BPORD%YP
G = DEFAULT | TYPEA | TYPEB | TYPEC]

: An OR operator can be used to separate multiple DMA changel lists (as illustrated
in the following syntax) if each list supports identical SHARE, SIZE and TIMING

characteristics:

DMA = value [| value] ...
SHARE = YES | NO | "rext"]
SIZE = BYTE | WORD | DWORD)]
MING = DEFAULT | TYPEA | TYPEB | TYPEC]

368

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Multiple DMA channel description blocks must be used for a function with multiple
DMA channels that have different share, size or timing characteristics, as illustrated in the
following syntax: : :

DMA = DMA channel number ;1st DMA channel
[SHARE = YES | NO ! "te:d"]w

§IZE = BYTE | WORD | D ORD’}‘YP
'TIMING = DEFAULT | EA kf.A
DMA = DMA channel number ;20d D
SHARE = YES | NO | "rext"

SIZE = BYTE | WO ll'?? ORD)]

"TIMING = DEFAULT | TYPEA | TYPEB | TYPEC]

An expansion board function can request up to four DMA channels. Each channel
selected during system configuration is stored in nonvolatile memory with the aplgro riate
share, size and timing characteristics. The DMA device driver can retrieve the DMA
information from nonvolatile memory and use it to initialize the DMA device.

EB | TYPEC]
channel

The system ROM automatically determines the 1/O port address and initialization
values and programs the following DMA controller registers: -

DMA controller (Extended Mode Register)
DMA channel cycle timing
DMA data size and addressing mode -,
DMA controller (DMA Command Register) :
: DRQ and DAX®* assert level (high/low)
Fixed or rotating priority

The wuﬁ%;rtaﬁon file should not provide initialization values for dprogramxm‘ng the
DMA controller Extended Mode Register. The configuration file should also not provide
initialization values for the DMA Command Register priority scheme. If the DMA
channel is not shared, the configuration file can specify the DRQ and DAK® assert levels
by including the initialization value for the DMA Command Register bits that determine
the assert level (DRQ defaults to assert when high, DAK* defaults to assert when low).

DMA Statement (Optional)

Syntax: .
DMA = value [| value] ...

The DMA statement marks the beginning of a DMA description block and specifies
the DMA channel number (or list of channels or muitiple lists of channels) supported by
the configuration.

369

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

SHARE Statement (Optional)

Sgntax:
[SHARE = YES | NO | text']

The SHARE statement specifies whether the function can share the DMA channel.

The default for SHARE is NO. A text identifier can be specified to indicate that the

- function can only share the DMA channel with a devios that has a matching identifier. The
identifier can be up to 10 characters. ,

DMA channels can be shared by two devices that mever require the channel
simultaneously. For example, a floppy drive and tape drive attached to the same controller
tcﬁtﬂd share a DMA channel since the floppy drive and tape drive never use the channel at

¢ same time.

Two devices that may need to transfer data at the same time cannot share a DMA
channel. Two network adapters, for example, would have conflicting requirements for a
single DMA channel.

SIZE Statement (Optional)

Sgntax:
{SIZE = BYTE | WORD { DWORD] 2

The SIZE statement indicates the DMA device data transfer width as BYTE,
WORDlScZ _})WORD. The default size is BYTE for DMA channels 0-3 and WORD for
channe .

TIMING Statement (Optional)

Syntax:
[’§MING = DEFAULT | TYPEA | TYPEB | TYPEC]

The TIMING statement indicates the bus cycle type executed by the DMA
controller durmgl the transfer. The default er c¥c1c type is default, which is
compatible with ISA DMA devices. Higher performance ISA devices can use type A or
%pc B for faster transfers. DMA devices that support EISA bus cycles can use type C

urst) DMA transfers, which provide the highest data transfer rate.

The DMA cycle types and timing are described in section 2 of this specification.

Example DMA Channel Request Block

The ACME tape controller can use DMA channel 3 or 5 and cannot share the
channel. The ACME tape controller uses 16-bit DMA transfers and can support type B
timing. The following diagram illustrates the DMA request block for the ACME tape

controller:

DMA =35
SHARE = NO
SIZE = WORD
TIMING = TYPEB

370

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.4.2 Interrupt Description Block

An interrupt description block consists of a group of statements that specifies the
interrupt requirements of an expansion board. e configuration file can contain a
maximum of seven interrupt description blocks for any one function. The interrupt
description block has the following format:

IRQ = value | value]...
lSHARE = YES { NO | Yext
GGER = LEVEL | EDGE]

Multiple intermdpt request blocks must be used for a function with multiple
interrupts that have different share and trigger characteristics, as illustrated in the

following syntax:
IRQ = value
lSHARE = YEEA NO | “fext"]
GGER = LEVEL | EDGE]
IRQ = value '

SHARE = YES | NO | Yext
[’IRIGGER= VEL | EDGE]

An OR operator can be used to separate multiple interrupts (as illustrated in the
following syntax) if each interrupt supports identical share and trigger characteristics:

IRQ = value[] value] ...
SHARE = LE{ NO | “text"]
|IRIGGER = LEVEL | EDGE]

IRQ Statement (Optional)

Syntax:
[EHQ = Interrupt number

. The IRQ statement marks the beginning of an interrupt rﬁucst block and specifies
the interrupt number (or multiple interrupts) supported by the configuration.

) Each interrupt selected during system configuration is stored in nonvolatile memory
with the appropriate share and trigger characteristics. The interrupt device driver can
retrieve the interrupt controller imtialization information from nonvolatile memory to
determine the method of handling interrupts.

The system ROM automatically determines the I/O port address and initialization
values and pro the interrupt controller edge/level register. The configuration file
should not provide initialization values for programming the interrupt controller edge/level
register.

371

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

SHARE Statement (Optional)

Sgntax:
[SHARE = YES | NO | "text"]

The SHARE statement indicates whether the function can share this interrupt. The
default value for this field is NO. For EISA boards capable of sharing interrupts, this field
should be SHARE = YES. A text identifier can be specified to indicate that the function
can only share the interrupt with a device that has a matching identifier. The identifier can
be up to 10 characters.

TRIGGER Statement (Optional)

Syntax: :
['H;IGGER = 1BVEL | EDGE]

The TRIGGER statement s%?.fiﬁes whether the ROM initializes the interrupt
controller to edge or level triggered. The default is TRIGGER = EDGE. In most cases, if
the SHARE statement is , the TRIGGER statement should be set to LEVEL;
bowever, there are some designs that require shared, edge-triggered interrupts, so a
TRIGGER = LEVEL statement does not necessarily have to follow a S = YES
statement.

Example Interrupt Description Block

The ACME tape controller needs two interrupts. It can use interrupts 12 or 15, but
it cannot share the assigned interrupts. The ACME tape controller needs the chosen
interrupts to be edge triggered. Note that share and trigger fields could be omitted,
because the defaults are used.

IRQ =12 |15
S =NO
TRIGGER = EDGE

4.6.4.3 1/0 Port Description Block

An I/0 gort description block consists of a group of statements that specifies the
1/O ports used by a device. The configuration file can contain a maximum of 20 I/O port
fcscription blocks for any one function. The I/O Port Request Block has the following
ormat:

PORT = range/list [STEP = value [COUNT = value}}

[SHARE = YES | NO | "ext"]
SIZE = BYTE | WORD | DWORD]

372

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

PORT Statement (Optional)

Syntax: '
PORT = list/range [STEP = value [COUNT = value]]

or
PORT = list _
The I/O Port Request Block begins with a PORT statement. The PORT statement

can ify a single address, a list of addresses, or a rangelist that specifies the selections
for the port address.

The STEP parameter that follows the rangelist identifies the address increment of
the port selections. The COUNT parameter specifies the number of ports allocated from
the selected STEP address block. If the CO arameter is omitted, the configuration

utility uses a default COUNT value equal to the value. If the STEP parameter is
omitted, the configuration utility allocates the entire range (a COUNT without STEP is
invalid). The following examples illustrate 2 PORT statement with a rargelist:

:allocates 16 ports: 300h-30Fh
PORT = 30Fh

sallocates 4 ports: 300h-303b or 304h-307h or 308h-30Bh or 30Ch-30Fh
PORT = 300b-30Fh STEP = 4

-allocates 2 ports: 300b-301h or 3045-305h or 308h-369h or 30Ch-30Dh
PORT = 300b-30Fk STEP = 4 COUNT = 2
SHARE Statement (Optional)

Sgntax:
[SHARE = YES | NO | "text"]
The SHARE statement specifies whether the function can share the requested
gorts. The configuration utility uses a default of NO (the port cannot be shared) if the
HARE statement is omitted. A text identifier can be specified to indicate that the
function can only share the port address with a device that has a matching identifier. The
identifier may be up to 10 characters.

SIZE Statement (Optional)
Sgutax:
[SIZE = BYTE | WORD | DWORD]

) The SIZE statement specifies the size of the I/O port as BYTE (8-bit), WORD (16-
bit) or DWORD (32-bit). The default size is BYTE.

373

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.4.4 Memory Description Block

The memory description block specifies the amount of memory on an expansion
board and its starting address, whether the memory is cacheable, whether it is or
ROM, the type of memory (%tcm, expanded, virtual or other), and initialization
requirements of the memory. ¢ oonﬁgxration file can contain a maximum of nine
memory description blocks for any one function. The memory request block has the
following format:

MEMORY = list/range [STEP = value]
ADDRESS = mY’%SwPSSTEP = value]]

'WRITABLE = 0]

IMEMTYPE = SYS | EXP {)VIR | OTH]

SIZE = BYTE | WORD | DWORD]

'DECODE = 20 | 24 | 32]

CACHE = YES | NOJ

[SHARE = YES | NO | "text"]

MEMORY Statement (Optional)

Syntax:
MEMORY = range [STEP = value]

The MEMORY statement signifies the beginning of the memory description block
The range following the MEMORY statement Esged%cs the minimum and maximum
amount of memory that can be put on the board. Each possible memory configuration can
be listed separatefy (such as, 1M, 2M, 3M for one to three megabytes) or a minimum-to-
maximum range can be specified (1IM-3M). A minimum value of 1K is required and the
minimum-to-maximum range must be at least 1K. The maximum range value is 64

megabytes.

If a range is specified, the STEP field must also be included to define the smallest
increment by which additional memory can be added to the board.

ADDRESS Statement (Optional)

Syntax:
ADDRESS = range [STEP = value]

or
ADDRESS = lst

374

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The ADDRESS statement specifies the starting address of the memory. The
ADDRESS statement is optional for memory if expanded or other is chosen for the
memory type. The ADDRESS statement is rcquirc_dxFor system and virtual memory." The
STEP parameter that follows the range identifies the addresses within the range that can be
us?d as the starting address. The following example illustrates the valid starting address
selections:

MEMORY = 1M
ADDRESS = 1M<4M STEP = 1M

Starting Ending
Address Address
100000h 1FFFFFh
200000b 2FFFFFh
300000h 3FFFFFh
400000h 4FFFFFh
WRITABLE Statement (Optional)

Syntax:
[&?RFFABLE=YESINO]

The WRITABLE field indicates whether the memory is RAM or ROM; for ROM
this field is NO. The default is YES.

MEMTYPE Statement (Optional)

Syntax: :
[MEMTYPE = SYS | EXP | VIR | OTH]

The MEMTYPE field gcciﬁes whether the memory is SYStem (base and extended
memory), EXPanded MS memory available for use by an expanded memory
managér), or OTHer (address” space used for memory mapped 1/O or bank-switched
mcm_g{). The default is SYS. tual indicates that the address space is used, but no
physical memory occupies the address (address of a LIM Sa_ﬁfl framsg Accesses to VIR

.memory_do not generate addresses on the EISA bus. is intended d;;-rimarily for
memory mapped I/O devices such as network adapters. OTH should include an
ADDRESS statement only if it resides in the physical address space.

SIZE Statement (Optional)
Sg'max:
[SIZE = BYTE | WORD | DWORD]

The SIZE statement identifies the memory as BYTE ¢8-bit), WORD (16-bit) or
DWORD (32-bit) memory. The SIZE defaults to DWORD if the SIZE statement is

omitted.

375

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DECODE Statement (Optional)

Syntax:
['EDECODE =20] 24 | 32]

DECODE is an optional statement that specifies the number of address lines
decoded by 2 memory expansion board. The default is 32 for all memory boards.

CACHE Statement (Optional)

S :
[&%XHE=YES]NO]

The CACHE statement indicates whether the memory contents can be stored in
cache memory. The memory on a graphics board, for example, generally should not be
stored in a cache memory. The default 1s NO.

SHARE Statement (Optional)

Syntax:
[g?IARE=YES]NO]‘xw"]

The SHARE statement indicates whether the memory in this space can be shared by
another device. The default is NO. A text identifier can be specified to indicate that the
function can only share the memory address range with a device that has a matching
identifier. The identifier can be up to 10 characters.

TOTALMEM Statement (Optional)

o
TALMEM = list/range [STEP = value]

A choice statement block can contain a TOTALMEM statement that indicates the
total amount of memorg specified by the CHOICE. The TOTALMEM statement is
required for a memory block that can have its allocation split between system memory
(SYS), other memory (OTH) and expanded memory (EXP).

The TOTALMEM statement can include each possible memory size or provide a
minimum-to-maximum range of possible configurations. A range must include the STEP
keyword to indicate the smallest memory increment that can be added to the memory

board.

376

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTJURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates a fragment of the configuration file for initializing
a memory expansion board. The choice statement block includes a TOTALMEM
statement from which the user selects the amount of memory installed on the expansion
board. The two memory request blocks allow the user to select the memo ocation
between system (SYS) and expanded (EXP) memory. The configuration utility uses the
TOTAUEM statement to verify that the total SYS, OTH and EXP memory selected by
the user does not exceed the memory installed on the memory expansion board. The total
amount of memo ified by the TOTALMEM statement does not include memory
selected as ME = or

CHOICE = "Add Memo
TOTALMEM = 4M | 8M | 12M
MEMORY =0M | 4M | 8BM | 12M

MEMTYPE = SYS
ADDRESS = IM-256M STEP = 1M
MEMORY = 0M | 4M | 8M | 12M

MEMTYPE = EXP
The following statements are equivalent:
TOTALMEM = 4M | 8M | 12M ;List
TOTALMEM = 4M-12M P = 4M ;Range with STEP

The configuration utility also uses the TOTALMEM statement to determine the
proper configuration from subchoice statement blocks.

ROM and RAM Memory Configuration Example

ACME has a network board with 64 Kbytes of RAM and a 2 Kbyte ROM. The
board can accommodate up to 512 Kbytes of RAM, added in 64 Kbyte increments. The
RAM must begin in the 1-2 mcgaob&c range and is writable, but not cacheable. The 2-
Kbyte ROM can be accessed at h, O h, or 0E0000h. The ROM is not writable
but it is cacheable. None of the board's memory can be shared.

The following example shows the pbrtion of the configuration file that describes the
memory, beginning with the RAM, followed by the ROM. :

;NETWORK BOARD RAM
MEMORY = 64K-512K STEP = 64K
ADDRESS = IM-1FFFFFrh STEP = 64K
WRITABLE = YES
MEMTYPE = OTH
CACHE = NO

;NETWORK BOARD ROM
MEMORY = 2K
ADDRESS = 0C0000h | 0D0000h | 0E0000h
WRITABLE = NO
MEMTYPE = OTH
CACHE = YES

377

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.4.5 INIT Statements

INIT statements specify the initializations for alternative configurations. An INIT
statement can be used to initialize any of the following:

DMA

IRQ
PORT
MEMORY

The configuration utility determines the initializations for the selected configuration
and aslt_orcg. them in nonvolatile memory. The system ROM power-up routine performs the
initializations.

1/0 Port INIT Statement

Syntax:

INIT = IOPORT() [LOC(bitlist)] valuelist

or

INIT = PORTADR (address) [[BYTE|WORD | DWORD] list

The 1/0 port INIT statement specifies an 1/O port and the binary value to write to
the port for the configuration. .

The INIT statement can specify the 1/O port address, port size, and value directly in
the PORTADR(address) form of the statement. The default port size is BYTE. i
statement syntax provides a shorthand form of specifying 1/0 gort values where no
initialization information block is required. When this shorthand format is used, all bits
must be specified with a 1, 0, or r (i.e., x's are not allowed to specify bits in this format).

The INIT statement can also indicate the address with an IOPORTY(i) statement
combined with the IOPORTY(i) form of the INIT statement. The port size is specified with
the IOPORTY(i) statement, not in the INIT statement.

b The list portion spcciﬁés the binary values to initialize the port. The values must be
inary.

The INTT statement can include the LOC(bitlist) string to reference individual bits.
The bitlist contains a list or range of bit positions. The elements of the bitlist must be in
MSBit to LSBit order. A space must be included between elements as a delimiter.

INIT = PORTADR(0z800h) WORD 0000111100001111b ;WORD port

INIT = PORTADR(0z800h) 00001111b ;Byte port

INIT = PORTADR(0z800h) 001100rr :Byte port with 1" bits
INIT = IOPORT(1)(02800h) LOC(7-2) 001100 ;Byte port (range)
INIT = IOPORT{(2)(0z800h) LOC(7 6 1 0) 0011 ;4 bits specified

INIT = IOPORT(3)(0z800h) 00001111

378

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Switch INIT Statement

Syntax:
INIT = SWITCH(i) LOC(switchlist) valuelist

The switch INIT statement specifies the switch positions and the appropriate setting
for the configuration. SWITCH(i) indicates the switch being initalized. switchlist)
valuelist identifies the switch positions and specifies the setting.

The LOC(switchlist) contains a list or range of switch positions. The elements of the
switchlist must be in ascending order if VERSE= , or descending order if
REVERSE=NO. A space must be included between elements as a delimiter.

The valuelist specifies the switch setting for each switch position. The valuelist must

use the same order as the switchlist. A DIP switch can be set for "1" to indicate *ON,” or *0"

to indicate "OFF." The dip switch settings are not delimited with a space. The valuelist for

g'rotaxy_or slide switch indicates the selected position number by a "1 in the appropriate
it position.

Jumper INIT Statement

Syntax:
INIT = JUMPER(i) LOC(jumperlist) valuelist , .

I3

The jumper INIT statement specifies the jumper positions and the appropriate
setting for the configuration. JUMPER() indicates the jumper being ?nitialized.
lDCéwnpa'list) ifles the jumper positions being ified.

The LOC(jurnperiist) contains a list of jumper positions. The valuelist specifies the
setting for each jumper position. The valuelist must not be delimited with a space and must
use the same order as the jumperlist. :

The jumperiist specifies paired and tripole jumpers by their jumper positions. A
paired or tripole g:nperim can use a range to indicate the %uéxslpcrs. The elements of the
ist mst in ascending order if REVERSE= , or descending order if

ﬁg SE=NO. A space must be included between elements as a delimiter.

The jumperlist specifies inline jumpers by indicating the connection between two
posts with a caret. For example, LOC(1°2 374 5°6) specifies the jumper between posts 1
and 2, between posts 3 and 4, and between 3%%5 5'and 6. The elements of the jumperlist
must be in ascending order if REVERSE= , or descending order if REVERSE=NO.
A space must be included between elements as a delimiter.

Paired and inline jumper valuelist settings can be indicated as "1" for "ON" (jumper
installed), 0" for "OFF" (jumper not installed). The paired jumper settings are not
delimited with a space.

A tripole jumper valuelist settiil:%; can be indicated as "1" for "ON" (jumper installed

in upper or right position), "0" for "OFF" (jumper installed in lower or left position) "n" for
jumper not installed. The tripole jumper settings are not delimited with a space.

379

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Software INIT Statement (Optional)

Syntax:
Iﬁlll'r = SOFTWARE(i) "parameter” || parameter]...

The software INIT statement specifies the command line parameter that invokes a
software command for the selected configuration. The (i) indicates the SOFTWARE(i)
statement that contains text to display with the eters. The ers ify an
ASCI string that appends to a software command, which specified in the SO ARE(i)
text. For example, the following configuration file fragment illustrates use of the software
INIT statement and SOFTW i) statement that specify an entry into an MS-DOS
AUTOEXEC.BAT file:

SOFTWARE(1) =
*This exa:qplc software initialization
statement indicates that the NET.EXE
file with command line parameters must
be placed in the AUTO%XEC.BAT file: \n\n
EXE /1=n /D=n where:"

FUNCTION = anded Memory Allocation”

CHOICE =4 anded Memo -
INIT = SOFTWARE(1) "/1=4 j=3"

380

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.6.5 Resource Group

A resource description block must have one or more group of resource and
initialization statements. The elements of the resource description block are grouped
together based on their interdependence. All resource and initialization statements must
be in a group. The three types of group are.

. LINK groups, in which selection of any one resource in the group determines
the selection of all other resources and 1nitializations in the group.

. COMBINE groups, in which each resource selection is independent, but the
initialization 1s determined by the combination of resource selections.

. FREE groups, in which each resource selection is independent, and the
initializations are independent of the resource selections.

The groups beg’n with a keyword (LINK, COMBINE or FREE) and end at the next
group keyword or at the end of the resource description block. .

4.6.5.1 LINK Groups

The elements of linked group have a direct relationship with each other. The
selection of one resource determines the other resources ‘in the group and the initialization.
Each statement in a linked group must have the same number of options. If the first option
is chosen for one resource, the configuration utility automatically selects the first option for
the other resource statements and the initialization statements. The syntax of a linked

group is: :

LINK
resource statement

resource statement
INIT statement

}'N!T statement

Thre followi%:xample illustrates the use of a linked group that provides selection of
the interrupt or DMA channel. The user (or configuration utility) can select the interrupt
or the D channel, but after making the one selection, the other resource and the
initialization must correspond to the same option. An IRQ = 3 selection forces the
configuration utility to select DMA =2 and IOPORT(1) initialization 00001111b. A
DMA = 5 selection forces the configuration utility to select IRQ = 4 and JOPORT(1)
initialization 11110000b. -

LINK
IRQ =3 | 4
DMA =215
INIT = IOPORT(1) 00001111b | 11110000b

381

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4652 COMBINE Groups

The elements of combined groups have an indirect relationship with each other.
Each resource selection is independent, but the initialization is djrectly determined by the
combination of resource selections. The syntax of a linked group is: :

COMBINE
resource statement

resource statement
INIT statement

INIT statement

The following example illustrates the use of a combined lmgroup that provides
selection of a memory size and starting address. The user (or configuration utility) can
select any memory size and starting address, and the configuration utility automatically
selects the initialization that corresponds to the selected memory size and starting address.
The table after the example lists the initialization value for each possible combination.

COMBINE
MEMORY = 4M | 8M ;Memory size
ADDRESS = 1M | 4M ;Starting address
INIT = IOPORT(2) 00001111b | 01001111b | 10001111b | 11001111b

Memory Starting | Port
Size Address Initialization
4M M 00001111b
4M 4M 01001111b
8M iM 10001111b
8M 4M 11001111b

382

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates the use of a combined group in which the starting
address selection and the initialization use a range with a step. &P:hc user rlgior configuration
utility) can select any memory size and starting address, and the configuration utility
automatically selects the initialization that corresponds to the selected memory size and
startéx;g address. The table after the example lists the initialization value for each possible
combination.

COMBINE
MEMORY = 4M | 8M | 12M
ADDRESS = 4M-256M STEP = 4M
INIT = IOPORT(1) 00000000b-10111111b

Memory Starting INIT
Size Address Value
4M 4M 00000000b
4M &M 00000001b
4aM 12M 00000010b
4M 16M . 00000011b
4M 244M 00111100b
AM 248M 00111101b :
4M 252M 00111110b :
4iM 256M 00111111b
12M 244M 10111100b
12M 248M 10111101b
12M 252M 10111110b
12M 256M 10111111b '

The following COMBINE fragment and INIT table illustrates the initialization
value assignment sequence:

COMBINE
RESOURCEI 1 3
RESOURCE2 1 3
RESOURCE3 1 3
INIT = 00001b-11011b

2
2
2

383

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

INIT | RESOURCEI! Part RESOURCE?2 Part RESOURCES Part
Value | of Combination of Combination of Combination
00001b] RESOURCE1 option 1 | RESOURCE2 option 1 | RESOURCES3 option 1
00010b| RESOURCE1 option 1 | RESOURCE2 option 1 | RESOURCES option 2
00011b{ RESOURCET1 option 1 | RESOURCE2 option 1 | RESOURCES3 option 3
00100b}| RESOURCE]1 option 1 | RESOURCE2 option 2 | RESOURCES3 option 1
00101b| RESOURCEI1 option 1 { RESOURCE2 option 2 | RESOURCES3 option 2
00110b| RESOURCE]! option 1 | RESOURCE2 option2 | RESOURCES option 3
00111b| RESOURCEI! option 1 { RESOURCEZ option 3 | RESOURCES3 option 1
01000b| RESOURCE1 option 1 | RESOURCE2 option 3 | RESOURCES option 2
01001b| RESOURCE1 option 1 | RESOURCEZ2 option 3 | RESOURCES option 3
01010b| RESOURCE!1 option 2 | RESOURCE2 option 1 |. RESQURCES3 option 1
01011b| RESOURCE1 option2 | RESOURCE2 option 1 | RESQURCES3 option 2
01100b| RESOURCE1 option2 { RESOURCE2 option 1 | RESOURCES3 option 3
01101b| RESOURCE!1 option 2 | RESOURCE2 option 2 RESOURCES3 option 1
01110b| RESOURCEI1 option 2 | RESOURCE2 option 2 | RESOURCES option 2
01111b| RESOURCEI1 option 2 | RESOURCE2 option 2 | RESOURCES option 3
10000b| RESOURCEI1 option 2 | RESOURCE2 option 3 | RESOURCES3 option 1
10001b| RESOURCE1 option 2 | RESOURCE2 option 3 | RESOURCES option 2
10010b| RESOURCET1 option2 | RESOURCE2 option 3 | RESOURCES option 3
10011b} RESOURCEI1 option3 | RESOURCE2 option 1 { RESOURCES3 option 1
10100b| RESOURCE]! option3 | RESOURCE2 option 1 | RESOURCES option 2
10101b| RESOURCE]! option 3 | RESOURCE2 option 1 | RESOURCES option 3
10110b| RESOURCE!1 option 3 | RESOURCE2 option 2 | RESOURCES3 option 1
10111b| RESOURCE! option3 | RESOURCE2 option 2 | RESOURCES3 option 2
11000b| RESOURCE1 option3 | RESOURCE2 option2 | RESOURCES option 3
11001b| RESOURCE!1 option3 | RESOURCE2 option 3 | RESOURCES option 1
11010b| RESOURCE1 option 3 | RESOURCE2 option 3 | RESOURCES option 2
11011b| RESOURCE]1 option3 | RESOURCE2 option 3 | RESOURCES option 3
4.6.5.3 Free Groups

The elements of free-form groups have no relationship with each other. Each
resource selection is independent and the initializations are independent of the resource

selections. The syntax of a free-form group is as follows:

FREE

resource statements
INIT statements

384

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following example illustrates the use of a free-form group in which IRQ 2, 3, 4,
or 5 can be selected. The IRQ selection is independent of all other resource declarations.
The example does not include any IRQ initialization.

FREE
RQ=2]3]4]5

4.6.6 PORTVARY(j) Variable

Syntax:

IOPORT(i) = PORTVAR()
combined with:

Portvar(j) = address

The variable, PORTVAR()), can be used to modify an IOPORTY(i) address based on
a configuration selection. Each variable must have a separate PORTVAR(j) statement
with a different identifier, "". The "i" can be any positive integer value from 1 to 32767.
The PORTVAR()) variable replaces the address portion of the IOPORT(i) statement. The
configuration utility assigns an address to the IOPORT(i) based on a PORTVAR()
assignment statement within a choice or subchoice statement lock.

The following configuration file segment illustrates the use of PORTVAR() to
initialize a serial port interrupt. The example indicates an initialization value 00000001b is
written to port address 3F9h for a COM1 selection or written to port address 2F9h for a
COM2 selection. The configuration utilig replaces the PORTVAR(3) variable with the
port address (3F9h or 2F9h) based on the CHOICE selected.

IOPORT(1) = PORTVAR(3)
FUNCTION = "Serial Port”
CHOICE = "COM!"
PORTVAR(3) = 3Fh
INIT = IOPORT(1) 00000001b
CHOICE = "COMZ"
PORTVAR(3) = 2Fh
INIT = IOPORT(1) 00000001b

385

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.7 System Board Contiguration Flie

System board configuration files must sup;l)%/sadditional information not required by
expansion boards to the configuration utility. is information includes the amount of
nonvolatile memory available, the number of expansion siots on the system board, the
power available at each slot, and the size and type of each expansion slot. The system
description block supplies the additional information.

4.7.1 Board ldentification Block

The board identification block for system boards uses the same syntax as an
expansion board identification block. The CATEGORY statement must equal "sys" and
the SLOT statement must equal EMB(0). The syntax of the board identification block is:

BOARD
ID = "7 character ID"
NAME = "system board product name”
MFR = "system board manufacturer name"
CATEGORY = "SYS"

SLOT = EMB(0)
AMPERAGE = value ;System board +5V current usage in mA
4.7.2 System Description Biock

The system description block includes a SYSTEM statement, the amount of
nonvolatile memory, and a description of the available slots. The system description block
follows the board identification block in the configuration file. The syntax of the system
description block is: :

SYSTEM ,) .
NONVOLATILE = value] ;Bytes of nonvolatile memory
AMPERAGE = value] -Total +5V current (mA) from power supply
SLOT(1) = ISA8 | ISA16 | EISA | OTH [,"text™] [,"text"]...]

LENGTH = value] ,

SKIRT = YES | NOJ

[BUSMASTER = YES | NO]

SLOT(n) = ISA8 | ISA16 | EISA | OTH
{LENGTH = value]
[SKIRT = YES | NOJ
SYSTEM Statement (Required)

Syntax:
SYSTEM

The SYSTEM statement identifies the beginning of the system description block.
The SYSTEM statement follows the board identification block in the configuration file.

386

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

NONVOLATILE Statement (Optional)

i;mtax:
ONVOLATILE = value

The NONVOLATILE statement specifies the total bytes of EISA nonvolatile
memory in the system. The NONVOLATILE statement does not include the 64 bytes of
ISA compatible nonvolatile memory.

The configuration data for one expansion slot, one virtual device or one embedded
device (including the system board-EMB(0)), can use no more than 340 bytes of
nonvolatile memory. A slot with a multifunction expansion board installed can use 340
bytes total for all expansion board functions. EISA systems must support at least 340 bytes
of nonvolatile memory for each expansion slot, plus nonvolatile memory for the system
board functions. <

The system board designer can use the following equation to determine the |
minimum amount of EISA nonvolatile memory required:

Nonvolatile Memory =
(Expansion Slots+System Board + Embedded Devices + Virtual Devices) * 340

Where:

Expansion Slots = number of expansion connectors
A whole number between 1 and 15

System Board
EMB(0)-system board

Embedded devices = number of embedded devices on system board
A whole number between
1 and (15 - Physical Slots)

Virtual devicas = number of system board virtual devices
Virtual devices2 1

The following example illustrates the nonvolatile memory calculation for a system
board with 1 embedded device, 8 expansion connectors and 2 virtual devices:

Assumptions:
System Board 1
Physical Slots = 8
Embedded devices = 1
Virtual devices = 2
Total = 12

Minimum Nonvolatile Memory = 12 * 340 = 4080 bytes

387

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AMPERAGE Statement (Optional)

Syntax:
[AMPERAGE = value]

An AMPERAGE statement specifies the total amount of +3 volt power (in
milliamps) available to expansion devices installed on the expansion bus.

value = power supply current

4.7.3 SLOT Statement Block (Optional)

Sﬁ)tax:
SLOT(i) = ISA8 | 1SA16 | EISA | OTH [,"text"] [,"text")...

The SLOT(i) statement is used to _xs_gecit‘y an expansion slot as 8-bit ISA (iSAB), 16-
bit ISA (ISA16), or 32-bit EISA (EISA). The i represents the slot number.

The SLOT(i) statement does not apply to the system board, embedded devices or
virtual devices, when included as part of the system description block.

LENGTH Statement (Optional)

?&%XGTH = value)

A LENGTH statement can accompany a SLOT(i) statement .10 specify the
maximum length board (a decimal integer in millimeters) that can be installed in the slot.

System boards should include 2 .L’.E.NGTH statement, - The configuration utility

cannot optimize expansion board slot allocation if system boards do not specify the slot
lengths. If the NGTH statement is omisted, the configuration utility assumes the
maximum length of 341 millimeters and assigns slot numbers without regard to slot length.

SKIRT Statement (Optional)

Sg'ntax:
[SKIRT = YES | NOJ
Each SLOT() statement can also be accompanied by a SKIRT statement that

specifies whether the slot supports a skirted expansion board.” The default is YES if the
SLOT(}) statement does not have an accompanying SKIRT statement.

BUSMASTER Statement (Optional) -
Syntax:
[BUSMASTER = YES | NOJ
The BUSMASTER statement specifies whether an EISA slot accepts a bus master

expansion board. The slot defaults to BUSMASTER = YES if the BUSMASTER
statement is omitted from the slot statement block and the slot is an EISA slot.

388

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8 EISA System ROM Operations

EISA system ROM provides the following services to support automatic hardware
configuration:

« The EISA system ROM power-up routines use the configuration information
stored in nonvolatile memory to initialize the system board and expansion
boards.

. The EISA system ROM provides BIOS routines that simplify reading and
writing configuration data in nonvolatile memory.

4.8.1 EISA System ROM BIOS Routine Calls

Two BIOS routines are called by the configuration utility to initialize nonvolatile
memory. One BIOS routine clears configuration information from nonvolatile memory
and the other stores configuration information in nonvolatile memory. The BIOS routines
are part of the INT15 er and have the following call interface:

Clear Nonvolatile Memory
INT 15h, AH=D8h, AL =02h (or 82h)

Write Nonvolatile Memory
INT 15h, AH=D8h, AL=03h (or 83h)

Device drivers and the power-up BIOS routines use two other BIOS routine to
retrieve configuration information from nonvolatile memory. One BIOS routine returns 2
subset of the configuration information stored in nonvolatile memory for one expansion
board. The other routine returns all the configuration information about one expansion
board function. The BIOS routines are called through the INT 15h handler with the
following call interface:

Read slot configuration information
INT 15h, AH=D8h, AL=00h (or 80h) -

Read function configuration information
INT 15h, AH=D8h, AL=01h (or 81h)

389

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The BIOS routines are bimodal (real or protected mode) and can be called for
execution as 32- or 16-bit code. Protected mode execution is accomphshchbi% simulating
an INT 15h instruction (push flags, call far) to the address pointed to l'g the INT 15h vector
(0000:0054112. If INT 15h no longer points to the system ROM, then the industry standard
entry point for INT 15h, FOOO:F8gS9h, can be called directly. The INT 15b BIOS routines
require 1536 bytes allocated from the stack for temporary RAM variables.

Protected mode operating systems that can create a code segment descriptor can
call the INT 15h BIOS routines by creating a descriptor that has a base address of FOO00h
and executing a far call to the offset address of the industry standard entry point. The code
segment descriptor must have a limit of FFFFh, and must have I/O privi]eée (current
privilege level of code segment being executed must be equal to or less than IOPL). The
code segment descriptor can have a D-bit of 0h (16-bit addressing and ogcrands) or 1h (32-
bit addressing and operands). The address segment D-bit can be set to Oh or 1h (indicating
16~ or 32-bit data size) independent of the code segment D-bit setting.

A code scgmcm other than FOO0Oh may be used as long as it includes the 64 Kbytes
starting at h and has 1/O privilege (current privilege level of code segment being
executed must be equal to or less than IOPL). .

The INT 15h system ROM BIOS routines adhere to the following conventions:

. Do not perform any segment register-dependent operations (all branch
instructions are relative to the instruction pointer)

e Do not change the segment registers (including the code segment)
. Return to the calling routine with the interrupt flag unmodified
. Do not use privileged instructions (LMSW, LSL, etc.)

» Do not write data using a code segment (CS) override

4.8.1.1 Identify System Board Type

. A device driver can identify an EISA system board by detecting the upper case
ASCII string "EISA" at memory address FOO0:FFD%h through FOOO:FFDCh.

390

4.8.1.2

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Read Siot Configuration Information, INT 15h, AH=D8h,
AL=00h (or 80h)

This BIOS routine reads a subset of the configuration information for one expansion
board or the system board from nonvolatile memory. The BIOS routine returns a summary
that includes all functions of the expansion board.

INT 15h, AH=D8h, AL=00h (or 80h)

INPUT:

QR

OUTPUT:

0D8h

00b (If CS specifies 16-bit addrcssingg

80b (If CS specifies 32-bit addressing

Slot Number (including embedded and virtual devices)
0 System board

1 Slot1l
2 Slot2
n Slotn

00h Successful completion (carry flag =.0)

80h Invalid slot number (carry flag = 1) °

82h Nonvolatile memory corrupt (carry flag = 1)
&h Empty slot (carry flag = 1)

86h Invalid BIOS routine call (carry flag = 1)
87h Invalid system configuration (carry flag = 1)

391

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

AL =
716[(5({4{312{1}0

LLL L puyplicate ID qumber This nibble indicates which CFG

0000 If no duplicate ID file is loaded when duplicate file

0001 If 1st duplicate ID names are present. (1.e., the first
3 is called !AAANnnN.CFG; the
. next is IAAAnnnn.CFG, the next
1111 If 15th duplicate ID is 2AAAnnnn.CFG and so on.
Slot type
00 = Expansion slot
01=Embedded device
10=Virtual device

11=Reserved
Product ID
0=readable
1=not readable
Duplicate ID
0=No duplicate ID.
1=Duplicate IDs.
BH = Major revision level of configuration utility
BL- = Minor revision level of configuration utility
CH = Checksum (MSByte) of configuration file
CL = Checksum (LSByte) of configuration file
DH = Number of device functions
DL = Combined function information byte
Bit 7: Reserved (0
Bit 6: Reserved (0
Bit 5: Slot has one or more port initialization entries
Bit 4: Slot bas on¢ or more port range entries
Bit 3: Slot has one or more DMA entries
Bit 2: Slot has one or more interrupt (IRQ) entries.
Bit 1: Slot has one or more memory entries
Bit 0: Slot has one or more function type definitions
Dl and SI = Four byte compressed ID .
. DI élsb) = Byte 0 -
DI (msb) = Byte 1
SI %lsb) = Byte 2
SI (msb) = Byte 3
4.8.1.3 Read Function Configuration information, INT 15h,

AH=0D8h, AL=01h (or 81h)

This BIOS routine reads all the configuration information for one expansion board
function. The BIOS routine transfers the data block that contains the configuration
information for the expansion board function to a table in memory. The BIOS routine
stores the data block at the starting address pointed to by DS:SI. The table's data structure
is defined later in this section.

392

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

‘The caller can execute the "Read Slot Configuration Information™ BIOS routine 10
determine the number of cxlpansion board functions, and exccute the "Read Function
Configuration Information™ BIOS routine to retrieve the data block for each function. The
BIOS routine retrieves the function data block indicated by the function number in register
S}H}uThc' caller can inspect the TYPE and SUBTYPE fields in each data block to identify

e function.

INT 15h, AH=0D8h, AL=01h (or 81h)

INPUT:
AH = 0D8h
AL = 01h (If CS specifies 16-bit addressingg
AL = 81h (If CS specifies 32-bit addressing
CH = Function number to read (0...n-1)
CL = Slot Number (including embedded and virtual slots)
0 = System Board
1 = Slot 1
2 = Slot2
n = Slotn
DS = Segment for return data buffer
SI = t to return data buffer §16—bit w.llg
ESI = Offset to return data buffer (32-bit call)
OUTPUT:

= 00h Successful completion (mrg flag = 0)
80h Invalid slot number (carry flag = 1)
81h Invalid function number (carry flag = 1)
82h Noavolatile memory corrupt; (carry flag = 1)
83h Empty Slot (carry flag = 1
86h Invalid BIOS routine call (carry flag = 1)
87 Invalid system configuration (carry flag = 1)

Standard Configuration Data Block Structure
The 320-byte data block pointed to by DS:SI contains the configuration information
for one expansion board function. The field sizes of the data block are fixed sizes. A

configuration file must not specify resources or initializations that cannot fit within this
data structure. The 320-byte data block has the following structure:

393

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Four-Byte Compressed ID Total Bytes = 4
Offset = 00h

Byte 0 :

Bit7 Reserved (0)

Bit 6:2 Character 1

Bit 1:0 Character 2
Byte 1

Bit 7:5 Character 2

Bit 4:0 Character 3
Byte 2

Bit 7:4 1st hex digit of product number

Bit 3:0 2nd hex digit of product number
Byte 3

Bit 7:4 3rd hex digit of product number

Bit 3:0 1-digit product revision number

ID and Siot Information Total Bytes = 2

i . Offset = 04h

Byte 0)

Bit7- 0= no duplicate ID is present

1= duplicate is present
Bit6 - 0= ID is readable
, 1= 1D is not readable
Bit 5:4 - Slot type

00= expansion slot
01= embedded slot
10= virtual slot
, 11= reserved
Bit 3:0- Numeric identifier for duplicate CFG filenames (IDs)

0000 = No duplicate CFG filenames

0001 = 1st duplicate (CFG file IACEOIOSg

0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

Byte 1

Bit 7 - 0= configuration is complete
1= configuration is not complete

Bit 6:2 - Reserved (0)

Bit1- 0= EISA IOCHKERR not supported
1= EISA IOCHKERR supported

Bit0- 0= EISA ENABLE not supported gexpansion board cannot be disabled)
1= EISA ENABLE not supported (board can be disabled)

394

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CFG File Extension Revision Level Total Bytes = 2
Offset = 06h
Byte 0 = Minor revision level 50 if no CFG File Extcns'ion;
Byte 1 = Major revision ievel (0 if no CFG File Extension .
Selections Total Bytes = 26
Offset = 08h
Byte 0 = 1st Selection
Byte 1 = 2nd Selection
Byte 25 = 26th Selection
Function Information Total Bytes = 1
Offset = 022h

Byte 0 .
Bit7- 0= function is enabled
. 1= function is disabled
Bit6 - CFG extension Free-form data
g;t 2 - gort initialization ;erfx l (s) follows
it 4 - ort range entry(s) follows
Bit 3 - DMA entry(s rJ?Z'fﬂows
Bit2 - Interrupt) entry(s) follows
Bit1- Memory entry(s) follows
Bit0- Type/subtypé ASCII string entry follows

TYPE and SUBTYPE ASCII String

Byte 0 = 1st character of ASCII string
Byte 1 = 2nd character of ASCII string

Byte 79 = 80th character of ASCII string

For example, TYPE = COM,ASY;COMI1 produces:
Byte el Start of TYPE Sptring
Byte1 =0 ,

Bie2=M _ .
Byte3 =, Delimiter for TYPE string fragments
Byte4 = A

ByteS = 8§ .

Byte 6 =Y Engd of TYPE string)
Byte 7 =;. Delimiter for SUBTYPE string
Byte 8 = C Start of SUBTYPE string
Byte9=0O

Byte 10= M .

Byte 11=1 End of SUBTYPE string

Byte 12=0 Zero fill to end of field

Byte 13=0

Byte 79= 0

Total Bytes = 80
Offset = 023h

395

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Memory Configuration , Total Bytes = 63
Byte 0 = M i o Offset = 073h
ytc emory ¢o ration byte
it7- ry0 I.%fst entry N
. 1 = More entries follow
Bit 6 - Reserved (0)
Bit5- 0 = Not shared memory
) 1 = Shared memory
Bit 4.3 - Memory T Ooyp
SYS (base or extended)
01 = EXP (expan ed)
10 = VIRtual
. 11 = OTHer
Bit2- Reserved (O)
Bit1- 0 = Not Cached
1 = Cached
BitO- 0 Read Only (ROM)
= Read/Write (RAM
B c 1= Mcmo Data Size
o it 7:4 ryResex"ve d (0)
Bn 3:2- Decode Size
00 =20
01 =24
10 = 32
. 11 = Reserved (0)
Bit 1:0 Data Sx%_(EAccess size)
01 = WORD
10 = DWORD

11 = Reserved (0)

yte 2 = LSB e Mcmory start address d(dmded by 100h)
e 3 = Middl ¢ Memory start a ress

Byte 4= MSBytc emory start addr
yte S = LSBgtc Memory size (bytes dmdcd by 400h)

Bytc 6 = MSByte Mcmory size (0 in this word means 64M)
Interrupt Configuration . : Total Bytes = 14
Offset = 0B2h
Byte 0
Bit7- 0 = Lastentry
. 1 = More entries follow
Bit 6 - (11 = Isqhot Shared
Bit5- 0= Edge Triggered
. = Level Triggered
Bit 4 - Reserved (must be 0)
Bit3:0 - Interrupt

Byte 1 = Reserved (0)

396

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Channel Description Total Bytes = 8
Offset = 0COh
Byte 0
Bit7 - 0 = Last entry
1 = More entries follow
Bit 6 - 0 = Not Shared
1 = Shared
Bit 5:3 - Reserved (0)
Bit 2:0 - DMA Channel Number (0-7)
Byte 1
Bit 7:6 - Reserved (0)
Bit 5:4 -

DMA Timin
%)efault (ISA compatible) timing
01 Typc "A" timing

{?R‘B" timing
11 B ST (Type "C") timing
Bit3:2- Transfer size

00= 8-bit (byte) transfer

01= 16-bit gword) transfer

10= 32-bit (dword) transfer
11= Reserved
Bit 1:0 - Reserved (0)
Port I/0 Information Total Bytes = 60
Offset = 0C8h
Byte 0
Bit7- 0 = Last entry
1 = More entries follow
Bit6 - 0 = Not Shared
1 = Shared
Bit5- Reserved 20)
Bit 4:0 - Number of Ports (minus 1)
00000 = 1 port

00001 = 2 sequential ports

11111 = 32 sequential ports

Byte 1 = LSByte 1/O Port Address
Byte 2 = MSByte 1/O Port address

397

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Initialization Data Total Bytes = 60
Offset = 0104h
Byte O = Initialization Type
Bit7- 0 = Last entry
1 = More entries follow
Bit 6:3 - Reserved (0)
Bit2- Port value or Mask value

0 - Write value to port
1- Use mask and value

Bit 1.0 - Type of access
00 - Byte address (8-bit)
01 - Word address (16-bit
10 - Dword address (32-bit)
11 - Reserved (0)

Byte 1 = LSByte of port I/O address
Byte 2 = MSByte of port 1/O address

IF Byte 0, Bit 2 = 0 (no mask), THEN
it 1:0 = Port width to write

00= Byte 3 = Port value

0l= Byted= LSBgte of port value
Byte 4 = MSByte of port value

10= Byte 3 = LSByte of port value
Byte 4 = 2nd byte of port value
Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value

11= Reserved

IF Byte 0, Bit 2 = 1 (use mask), THEN
its 1:0 = Number of bytes/port value/mask

00= Byte 3 = Port value
Byte 4 = Port mask (byte)

01= Byte 3 = LSByte of port value
Byte 4 = MSByte of port value
Byte 5 = LSByte of Port mask (word)
Byte 6 = MSByte of Port mask (word)

10= Byte 3 = LSByte of port value
Byte 4 = 2nd byte of port value
Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value
Byte 7 = LSByte of Fort mask (dword)
Byte 8 = 2nd byte ot port mask (dword)
Byte 9 = 3rd byte of fport mask (dword)
Byte 10 = MSByte of port mask (dword)

11= Reserved (0)

Free-form Configuration Data Block Structure

-

When the Free-form data bit is set in the Function Information byte (bit 6), the 320-
byte data structure has the following specific format.

398

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Four-Byte Compressed ID Total Bytes = 4
Offset = 00h
Byte 0
Bit7 Reserved (0)
Bit6:2 Character 1
Bit 1:0 Character 2
Byte 1
Bit 7:5 Character 2
Bit 4:0 Character 3
Byte 2
Bit 7:4 1st hex digit of product number
Bit 3:0 2nd hex digit of product number
Byte 3
Bit 7:4 3rd hex digit of product number
Bit 3:0 1-digit product revision number
ID and Slot Information Total Bytes = 2
Offset = 04h

Byte 0
Bit7-

Bit6-
Bit 5:4 -

Bit 3:0 -

Byte 1
Bit7-

Bit 6:2 -
Bit1-

Bit0-

0= no duplicate ID is present
1= duplicate is present
0= ID is readable
1= ID is not readable
Slot type
00= expansion slot
01= embedded slot
10 = virtual slot
11= reserved (0)
Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACEQ105)
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

0= configuration is complete

1= configuration is not complete

Reserved (0)

0= EISA IOCHKERR not supported

1= EISA IOCHKERR supported

0= EISA ENABLE not supported (expansion board cannot be disabled)
1= EISA ENABLE not supported (board can be disabled)

399

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

CFG File Extension Revision Level Total Bytes = 2
) Offset =yt 06h
Byte 0 = Minor revision level (0 if no CFG File Extension
Byte 1 = Major revision level (0 if no CFG File Extension
Selections Total Bytes = 26
Offset = 08h
Byte 0 = 1st Selection
Byte 1 = 2nd Selection
Byte 25= 26th Selection
Function Information Total Bytes = 1
Offset = 022h
Byte 0 -
Bit7- 0= function is enabled
) 1= function is disabled
Bit 6 - CFG extension Free-form data (=1)
Bit5- Port initialization entry(s) follows
Bit4 - Port range ent ollows
Bit3 - DMA entry(s) follows
Bit2- Interrupt (s) follows
Bitl- Memory entry(s) follows
Bit0- Type/subtypé ASCII string entry follows
TYPE and SUBTYPE ASCII String Total Bytes = 80
Offset = 023h

Byte 0 = 1st character of ASCII string

Byte 1 = 2nd character of ASCII string

Byte 79 = 80th character of ASCII string

Freeform Data

Byte 0 = Length of following data block

Byte 1 = 1st byte of freeform data

ﬁyte 204 = 204th byte of freeform data

Total Bytes = 2 to 205
Offset = 73h

400

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

48.1.4 Clear Nonvolatile Memory, INT 15h, AH=D8h, AL=02h (or 82h)

This BIOS routine clears all EISA nonvolatile memory locations. The configuration
utility uses the "Clear Nonvolatile Memory" BIOS routine Call prior to writing
configuration information to nonvolatile memory.

The Clear Nonvolatile Memory BIOS routine does not clear the 64-byte ISA
nonvolatile memory.

INT 15h, AH=D8h, AL=02h (or 82h)

INPUT:

AH = D8h

AL = 02h (If-CS specifies 16-bit addrcssingg

AL = 82h (If CS specifies 32-bit addressing

BH = Configuration utility major revision level

BL = Configuration utility minor revision level
OUTPUT:

AH = 00h Successful completion (carry flag = 0)

84h Error clearing nonvolatile memory (flag = 1)
86h Invalid BIOS routine call (carry flag = 1;
88h Configuration utility not supported (carry flag = 1)

If 88h is returned in AH, indicating an unsupported revision of the configuration
utility, then the major revision number of the configuration utility that is supported 1is
returned in AL.

4.8.1.5 Write Nonvolatile Memory INT 15h, AH=D8h, AL=03h (or 83h)

This BIOS routine writes configuration information for ome slot into EISA
nonvolatile memory. The "Write Nonvolatile Memory" BIOS routine also computes a CRC
code (or checksum) after each call. The CRC code (or checksum) is a cumulative
calculation that includes all data written to nonvolatile memory since the last "Clear
Nonvolatile Memory" BIOS routine Call.

401

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The Write Nonvolatile Memory BIOS routine does not write to the 64-byte ISA
configuration memory.

INT 15h, AH=D8h, AL=03h (or 83h)

INPUT:
AH = Dgh
AL = 03h (If CS specifies 16-bit addressing
AL = 83h (If CS specifies 32-bit addressin
CX = Length of data structure (CX = 0 indicates empty slot)
Length includes two bytes for configuration file checksum
DS = Segment of data buffer
SI = t of data buffer (16-bit call
ESI = Offset of data buffer (32-bit call
OUTPUT:
AH = 00h Successful completion (carry flag =0)

84h Error writing nonvolatile memory (carry flag = 1)
85h Nonvolatile Memory is full, (ca.rg' ag = 1)
86h Invalid BIOS routine call (carry flag = 1)

Standard Configuration Data Block Structure

The structure referenced by DS:SI in the Write Nonvolatile Memory BIOS routine
CALL for a slot with a single function has the following format:

Four-Byte Compressed ID Total Bytes = 4
Byte 0
Bit7 Reserved (0)
Bit 6:2 Compressed character 1
B Blit 1.0 Compressed character 2
yie
Bit 7:5 Compressed character 2
Bit 4:0 Compressed character 3
Byte 2
Bit 7:4 1st hex digit of product number
Bit 3:0 " 2nd hex digit of product number
Byte 3
Bit 7:4 3rd hex digit of product number
Bit 3:0 1-digit product revision number

402

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selections Total Bytes = 2 10 27
Byte 0 = Length of following selections field

Byte 1 = 1st Selection
Byte 2 = 2nd Selection

Byte 26 = 26th Selection

Function Information Total Bytes = 1

Byte O
Bit 7 - 0= function is enabled
1= function is disabled
Bit 6 -CFG extension free-form data
Bit 5 - Port initialization entry(s) follows
Bit 4 - Port range cnt?'(s) follows
Bit 3 - DMA entry(s) tollows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows :
Bit 0 - Type/subtype ASCII string entry follows

TYPE and SUBTYPE ASCII String 7 Total Bytes = 2to0 81

Byte 0 = Length of following ASCII string field
Byte 1 = 1st character of ASCII string
Byte 2 = 2nd character of ASCII string

Byt.e 80= 80th character of ASCI string

For example, TYPE = COM,ASY;COM1 produces:
Byte 0 = 0Ch Length of string field
Byte 1 = C Start of TYPE string
Byte2 = O
Byte3 =M - .
Byte 4 =, Delimiter for TYPE string fragments
Byte5 = A
Byte6 =S
Byte7=Y Endof TYPE string
Byte 8 = ; Delimiter for SUBTYPE string
Byte 9 = C Start of SUBTYPE string
Byte 10= O
Byte 11=M
Byte 12= 1 End of SUBTYPE string

403

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ID and Slot Information Total Bytes = 2
Byte 0
Bit7- 0= no duplicate ID is present
1= duplicate is present
Bit 6 - 0= ID is readable -
1= ID is not readable
Bit 5:4 - Slot type

00= expansion slot
01= embedded slot
10 = virtual slot
11= reserved (0)
Bit 3:0 - Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACEQ105)
0010 = 2nd duplicate (CFG file 2ACEQ105)

1111 = 15th duplicate (CFG file FACE0105)

Byte 1

Bit7- 0= configuration is complete
1= configuration is not complete

Bit 6:2 - Reserved (0) -

Bit1- 0= EISA IOCHKERR not supported
1= EISA IOCHKERR supported °

Bit0- 0= EISA ENABLE not supported éexpansion board cannot be disabled)
1= EISA ENABLE not supported (board can be disabled)

CFG File Extension Revision Level Total Bytes = 2

Byte 0 = Minor revision level éO if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

Function Length Total Bytes = 2

Length does not include these two bytes, or the checksum at the end of nonvolatile
memory a
Byte 0 = LSB length of following function entry
Byte 1 = MSB length of following function entry

404

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Memory Configuration Total Bytes = 7 to 63

Byte 0 = Memory configuration byte

Bit7-0=gstcntxy 4

1 = More entries follow
Bit 6 - Reserved (0)
Bit 5 - 0 = Not shared memory

1 = Shared memory
Bit 4:3 - Memory Type

00 = SYStem (base or extended)

01 = EXPanded
10 = VIRtual
11 = OTHer
Bit 2 - Reserved (0)
Bit1- 0 = Not Cached
1 = Cached
Bit0- 0 = Read Only (ROM)

1 = Read/Wnte (RAM)

Byte 1 = Memory Data Size
Bit7:4 - Reserved (0)
Bit3:2 - Decode Size
00 =20
01 =24
10 =32
11 = Reserved (0)
Bit 1:0 - Data Size (access size)
00 = BYTE
01 = WORD
10 = DWORD
11 = Reserved (0)

Byte 2 = LSByte Memory start address (divided by 100h)
Byte 3 = Middle Byte Memory start address

Byte 4 = MSByte Memory start address

Byte S = LSByte Memory size (bytes divided by 400h)
Byte 6 = MSByte Memory size

Interrupt Configuration - . Total Bytes = 2to0 14

Byte 0
Bit 7- 0 = Last entry
1 = More entries follow
Bit 6 - 0 = Not Shared
1 = Shared
BitS 0 = Edge Triggered
1 = Level Triggered
Bit 4 - Reserved (0)
Bit 3:0 - Interrupt (0-F) -
Byte 1 = Reserved (0)

405

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DMA Channel Description Total Bytes = 2t0 8
Byte 0
Bit7- 0 = Last entry
1 = More entries follow
Bit 6 - 0 = Not Shared
1 = Shared
Bit 5:3 - Reserved (0)
Bit 2:0 - DMA Channel Number (0-7)
Byte 1
Bit 7:6 - Reserved (0)
Bit5:4 - i

DMA Timxn%]]
efault (ISA compatible) timing
01 Type "A” timing
{? ¢ "B" timing
11 B RST (Type "C‘) timing
Bit3:2 - Transfer size
00= 8-bit (byte) transfer
01= 16-bit gword) transfer

10= 32-bit (dword) transfer
11= Reserved (0)
Bit 1:0 - Reserved (0) :
Port 1/0 Information Total Bytes = 3 to 60
Byte 0
Bit 7 - 0 = Last entry
1 = More entries follow
Bit 6 - 0 = Not Shared
1 = Shared
Bit5 - Reserved gO)
Bit 4:0 - Number of Ports (minus 1)
00000 = 1 port

00001 = 2 sequential ports

11111 =32 sequential ports

Byte 1 = LSByte 1/O Port Address
Byte 2 = MSByte 1/0 Port address

406

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

_ Initialization Data Total Bytes =4 t0 60
Byte 0 = Initialization Type
Bit7- 0 = Last entry
1 = More entries follow
Bit 6:3 - Reserved (0)
Bit2- Port value or Mask value

0 - Write value to port
1 - Use mask and value

Bit 1:0 - Type of access
00 - Byte address (8-bit)
01 - Word address (16-bit
10 - Dword address (32-bit)
11 - Reserved (0)

Byte 1 = LSByte of port I/O address
Byte 2 = MSByte of port I/O address

If Byte 0, Bit 2 = 0 (no mask), THEN
Bit 1:0 = Port width to write
00= Byte 3 = Port value
01= Byte 3 = LSByte of port value
Byte 4 = MSByte ofp port value
10= Byte 3 = LSByte of Fort value-
Byte 4 = 2nd byte of port value
Byte 5 = 3rd byte of port value
Byte 6 = MSByte of port value
11= Reserved (0)
If Byte O, Bit 2 = 1 (use mask), THEN
Bits 1:0 = Number of bytes/port value/mask
00= Byte 3 = Port value
Byte 4 = Port mask (byte)
01= Byte3 = LSByte offpon value
Byte 4 = MSByte of port value
Byte 5 = LSByte of Port mask (word)
Byte 6 = MSByte of Port mask (word)
Byte 3 = LSByte offort value
Byte 4 = 2nd byte of port value
Byte § = 3rd byte of port value
Byte 6 = MSByte of port value
Byte 7 = LSBgtc of port mask (dword)
Byte 8 = 2nd byte of port mask (dword)
Byte 9 = 3rd byte of port mask (dword)
Byte 10= MSByte of port mask (dword)
11= Reserved (0)

10

407

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Conﬁguration‘Data for 2nd function Function le'ngth

Conﬁguration'Data for 3rd function Function le.ngth

Configuration.Data for nth function Function length for nth function = 00
Configuration File Checksum Total Bytes = 2

Byte 1 = MSBYyte of configuration file checksum
Byte 0 = LSByte of configuration file checksum

Free-formConfiguration Data Block Structure -

When the free-form data bit is set in the Function Information byte (bit 6), the data
block pointed to by DS:SI has the following specific format.

Four-Byte Compressed 1D Total Bytes = 4
Byte 0
Bit 7 Reserved (0)
Bit 6:2 Compressed character 1
Bit 1:0 Compressed character 2
Byte 1
Bit7:5 Compressed character 2
Bit 4:0 Compressed character 3
Byte 2
Bit 7:4 . 1st hex digit of product number
Bit 3:0 2nd hex digit of product number
Byte 3
Bit 7:4 3rd hex digit of product number
Bit 3:0 1-digit product revision number

408

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

ID and Slot Information Total Bytes = 2
Byte 0
Bit7- 0= no duplicate ID is present
1= duplicate is present
Bit6- 0= ID is readable
: 1= ID is not readable
Bit 5:4 - Slot type

00= expansion slot
01= embedded slot
10 = virtual slot
11= reserved (0)
Bit3:0- Numeric identifier for duplicate CFG filenames (IDs)
0000 = No duplicate CFG filenames
0001 = 1st duplicate (CFG file 1ACE0105
0010 = 2nd duplicate (CFG file 2ACE0105)

1111 = 15th duplicate (CFG file FACE0105)

Byte 1

Bit7- 0= configuration is complete
1= conﬁ§uration is not complete

Bit 6:2 - Reserved (0) :

Bit1- 0= EISA I0CHKERR not supported
1= EISA IOCHKERR supported

Bit0- 0= EISA ENABLE not supported gcxpansion board cannot be disabled)
1= EISA ENABLE not supported (board can be disabled)

CFG File Extension Revision Level Total Bytes = 2

Byte 0 = Minor revision level 50 if no CFG File Extension)
Byte 1 = Major revision level (0 if no CFG File Extension)

409

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Selections
Byte 0 = Length of following selections field

Byte 1 = 1st Selection
Byte 2 = 2nd Selection

Byte 26 = 26th Selection

Total Bytes = 2 to 27

Function Information

Byte O
Bit 7 - 0= function is not disabled
1= function is disabled
Bit 6 -CFG extension free-form data (=1)
Bit S - Port initialization entry(s) follows
Bit 4 - Port range cm.?'(s) follows
Bit 3 - DMA entry(s) follows
Bit 2 - Interrupt (IRQ) entry(s) follows
Bit 1 - Memory entry(s) follows
Bit 0 - Type/subtype ASCII string entry follows

Total Bytes = 1

TYPE and SUBTYPE ASCII String
Byte 0 = Length of following ASCII string field

Byte 1 = 1st character of ASCII string
Byte 2 = 2nd character of ASCII string

Byte 80= 80th character of ASCII string

Total Bytes = 2t0 81

Free-form Data
Byte 0 = Length of following data block
Byte 1 = 1st byte of freeform data

B.yte 204 = 204th byte of freeform data

Total Bytes = 2 to 205

The following paragraphs specify the data structure fields that are not obvious from

the configuration language specification.

Configuration File Checksum

The configuration file checksum is a 16-bit logical (modula 64k) sum of ASCII

values in the configuration file.

Configuration File Extension Revision Level

The Configuration File Extension revision level specifies the revision number for-

the overlay file. The configuration file extension checks the revision number when
reconstructing the user displays from a backup copy of the configuration (a configurauon
saved to a disk file) or from reading nonvolatile memory (backtracking).

410

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Function Length

Specifies the number of nonvolatile memory bytes that contain the function
information. The two bytes of function length are not included in the count. The
configuration file checksum bytes are not included.

Selections field

Nonvolatile memory contains numbers that indicate the function choices and
resource alternatives selected during configuration. The configuration utility uses the
selection numbers during a reconfiguration to display the default selections to a user
(backtrack).

The backtrack routine reads selection numbers from nonvolatile memory for display
as the defaults. Selections from all group types (COMBINE, LINK or FREE) have a
selection number, even if there is only one resource to select.

Note 1: Each memory resource selection number requires one word of
storage. Other resource selection numbers require one byte each.
Note 2: The selection numbers for a Function include the selections for its
Subfunctions.
1. Selection number of Choice in the Function or Subfunction.
2. Selection number of Subchoice (if it exists).

3. Selection number of alternate choice in each group for LINK and COMBINE
groups or the selection number for each resource in a FREE group.

4, When a Read Function Configuration Information BIOS routine call is issued, the
information in Subfunctions are included in the Function. Thus the selection
numbers in Subfunctions are grouped with the Function selection numbers.

These selection numbers are repeated as needed.

EXAMPLE #1:
CFG FILE
FUNCTION = ...
CHOICE(0) = ..0 ;CHOICE 0 was chosen
LINK
Resourcel =112 ;2nd alternate was chosen (1)
Resource2 =3 | 4
FREE
- - Resource3 =5 |7 ;2nd alternate was chosen (1)
Resourced = 6 ;1st resource was chosen (0)
ResourceS =789 :3rd alternate was chosen (2)

CHOICE(1) = ..

411

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8.2 Initializing Nonvolatile Memory

The EISA configuration utility begins initializing nonvolatile memory by issuing the
"Clear Nonvolatile Memory" BIOS routine Call that clears the configuration information
from EISA nonvolatile memory. The configuration utility then issues repetitive "Write
Nonvolatile Memory™ BIOS routine Calls to load all EISA system board, embedded device,
virtual device, and expansion board configuration data.

The configuration utility first builds a data structure that includes the configuration
information for siot O (the system board), then executes the "Write Nonvolatile Memory”
BIOS routine Call with a pointer to the data structure. The configuration utility repeats
the sequence for each slot and device.

4.83 Power-up Initialization of EISA Systems

EISA systems must assume a reset condition after power-up reset occurs.
Expansion boards can decode only the slot-specific 1/O addresses used for initialization
and must assume a disabled state.

The BIOS power-up routine performs the following steps to initialize EISA systems:

. It confirms the validity of configuration information in nonvolatile memory. If
the configuration information is not valid the power-up routine aborts
automatic configuration, issues an error message, then continues the power-up
sequence.

. It compares the EISA product ID and slot information in nonvolatile memory
with the actual installed hardware to confirm that the configuration has not
changed. If the expansion board installed in a slot does not match the
information stored in nonvolatile memory the power-up routine aborts
initialization.

. It uses the configuration data to initialize the system board, expansion boards,
embedded devices and virtual devices.

. It enables the system board, expansion boards, embedded devices and virtual
devices for operation.

The system ROM automatically determines the 1/O port address and initialization
values and programs the following registers:

Interrupt controller edge/level register
DMA controller (Extended Mode Register)
DMA channel cycle timing
DMA data size and addressing mode
DMA controtler (DMA Command Register)
DRQ and DAK* assert level (high/low)
Fixed or rotating priority scheme -

The power-up routine initializes the system board and all EISA expansion boards
before determining system memory size or searching for /O devices (such as printer ports,
communications ports, VGA, etc.). Since memory boards that have optional configuration
as system or expanded memory are included in the memory size determination, neither an
option ROM nor an operating system-dependent device driver is required.

412

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.8.4 Slot Initialization Sequence

The EISA power-up routine initializes expansion slots, embedded devices, virtual
devices, and the system board configuration registers. The initialization takes place during
every cold or warm boot.

The flow chart in Figure 103 specifies the EISA slot initialization sequence:

Figure 103 - Power-Up Slot Initialization

Cold or Warm bool

Start of EiSA slol initialization

Is
configuration
slorage
valid?

O

Report configuration erEJ——‘—"—
v

Sel configuraiion error byle
in nonvolalile memory, then

@ ﬁegm with sot Z = 0 1 abort initialization.

Increment 2
{o next slot

Y

Read configuration storage information for
slot Z, function !
(INT 15h ah=Dgh. al=1, ch=function. cl=Z)

. EISA slot
(vana\ Tes (INT 15h returns) Ali configured physical and __ configuration
siol? (CF=1, ah=80h) wvirluai siots initialized. complete, continue
with defaull pover
¥No up sequences.

Read compressed D
in configuration dala

T
ves Read
board
ID ports
IY No

Read duplicate 1D info
in conliguralion data

T

b4
Virtual Yes
Slol

| No

® |

413

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Figure 103 - Power-Up Slot Initialization (Continued)

Read board

4 byle ID
from poris
ZC80h. ZC81h,
2C82h, 7C83h

Report Conf. error

Report epord é
configuralion Board

readable
10?7

LIror error

50

o] Read 1/0 port from 1/0
| Initiatization information

'Délénnine if 1/0 port
is byte, word or dword
accessible and read
/0 porl.
Yes A
AND value read with
initialization mask
No Detlermine if 1/0 porl T
v 1s byle. word or h 4
Read configuralion slorage dword accessible and OR value with
slot Z information. wrile inilialization nitialization value
Next funclion value l
v .
Enable EISA Wrile value to 1/0
p board via port -
@4—— port 2C84 v] :

414

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The system ROM power-up routine can initialize critical devices in amy order
necessary to bring the system up. The power-up routine must then initialize devices
sequentially by slot number and function number.

The power-up routine initializes critical devices first, then groceeds to initialize the
EISA system board, EMB(0). The power-up routine then begins expansion board
initialization beginning with expansion slot 1. The power-up routine issues a "Read
Function Configuration Information" BIOS routine Call for slot 1, function 1. The power-
up routine checks the product ID field of the data block returned for slot 1 function 1 to
determine if the slot was configured as empty or with an expansion board installed.

If nonvolatile memory indicates the slot has an expansion board installed, and the
readable ID bit indicates a readable ID, the power-up routine performs the I/0O read to
confirm that the product ID matches nonvolatile memory. If the product ID read
operation indicates a not ready condition on the first try, the power-up routine waits 100
milliseconds, then retries the ID read. The power-up routine issues an efror message if the
ID read still indicates a not ready condition after the 100 millisecond delay, then aborts
initialization.

If the product ID matches nonvolatile memory, the power-up routine performs the
initialization by setting the I/O ports to the values {ndicated in nonvolatile memory and

programming the system board controllers to properly allocate the system resources
required by the expansion board.

After initializing each of the expansion board functions and the required system
resources, the power-u%_‘froutinc enables the expansion board, then issues the "Read
Function Configuration ormation” BIOS routine Call for slot 2 function 1. The power-
up routine continues the process until all functions in all expansion slots, embedded slots
and virtual slots are configured.

The power-up routine does not initialize installed EISA or ISA expansion boards
that do not have configuration information stored in nonvolatile memory.

4.8.5 Error Handling During Slot Initialization
Several error conditions can arise during slot initialization.

If an expansion board indicates a not ready condition when its product ID is read,
the power-up routine waits 100 ms then retries the product ID read. If the expansion board
still indicates a not ready condition an appropriate error is displayed and the power-up
routine continues EISA expansion board initialization with the next slot.

If the ID of the EISA expansion board does not match the contents of nonvolatile
memory then an appropriate error is displayed and the power-up routine continues EISA
expansion board initialization with the next slot.

" If nonvolatile memory indicates the presence of an EISA board with an ID and no
matching board is found then an appropriate etror is displayed and the power-up routine

continues EISA expansion board initialization with the next slot.

If the ID of a slot is tagged. not readable in the nonvolatile memory information
then the power up routines attempt to read a valid ID from the slot being initialized. If a
valid ID is read from the slot then an appropriate error is displayed and the power-up

routine continues EISA expansion board initialization with the next siot.

415

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHI FECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

If the nonvolatile memory information indicates that a slot is empty and a valid ID is
read from the slot, then an appropriate error is displayed and the power-up routine
continues EISA expansion board initialization with the next slot.

An error is displayed if nonvolatile memory slot information does not match what is
determined to be in the slots.

An "incomplete configuration” message is displayed if the nonvolatile memory ID
and Slot Information incomplete configuration bit is set.

4.8.6 Noncacheable Memory Map Initialization

EISA systems with cache memory can use the data in nonvolatile memory to
construct a noncacheable address map. The power-up routine identifies noncacheable
memory address ranges from the configuration information in nonvolatile memory. The
power-up routine supplies the noncacheable addresses to hardware that disables the
memory cache during accesses to the noncacheable addresses.

487 Writable Memory Map Initialization

EISA systems can use the data in nonvolatile memory to cobstruct a writable
address map. The power-up routine identifies RAM and ROM memory address ranges
from the configuration information in nonvolatile memory. The power-up routine supplies
the RAM and ROM addresses to hardware that disables memory writes during accesses to
the ROM addresses.

416

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.9 EISA System /O Address Map

The system I/O address map that follows illustrates the extended I/O address space
available for EISA system boards and expansion boards. An EISA system board has 768
bytes of I/O space in addition to the 256 bytes available for ISA system boards. Each EISA
expansion slot and embedded device has 1024 bytes of slot-specific I/O address space in
addition to the ISA I/O space allocated to expansion boards.

The system I/O address map indicates the I/O address space used for EISA system
board devices and EISA expansion board devices. The address map also indicates address
ranges that are aliases of the ISA expansion board 1/O space (100b-3FFh). The alias
addresses may only be used by exgansion boards that can assure no conflict occurs between
the alias address and normal ISA expansion board 1/O addresses (100b-3FFh). The
configuration utility does not identify conflicting use of ISA alias addresses.

The sgstem board decodes the EISA slot-specific I/O address ranges and all 1/0 for
system board devices from LA <15:2> with BE*<3:0>. The EISA slot-specific I/O ranges
are decoded from LA<15:2> with LA<9:8> zero. The system board decodes
LA<15:12> with LA<9:8> zero to generate the slot-specific signals, AENx. The EISA
slot-specific device decodes the individual bytes in the 1/0 range from LA<11:2> with
BE*<3:0> (LA<9:8> must be zero). The slot-s cific ranges are: 0z000b-0z0FFL,
0z400h-0z4FFh, 0z800h-0z8FFh, 0zC00h-0zCFFh (where "z" represents the slot number).
They do not conflict with any ISA expansion board. EISA expansion boards should not use
any address (or alias address) in the ISA I/O range 100h-3FFh) except for ISA
compatibility.

417

EP 0426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

EISA System 1/O Address Map

1/0 address I/O Range

Range (hex): eserved for
0000-00FF EISA/ISA System board
0100-03FF ISA expansion boards
0400-04FF Reserved, EISA System board
controllers

0500-07FF Alias of 100b-3FFh
0800-08FF EISA System board
0900-0BFF Alias of 100h-3FFh
0CO0-0CFF EISA System board
O0DOO-OFFF Alias of 100h-3FFh
1000-10FF Slot 1

1100-13FF Alias of 100h-3FFh
1400-14FF Slot 1

1500-17FF Alias of 100h-3FFh
1800-18FF Slot 1

1900-1BFF Alias of 100h-3FFh
1C00-1CFF Slot 1

1D00-1FFF Alias of 100h-3FFh
0z000-0z0FF{ Slot 'z

0z100-0z3FF| Alias of 100h-3FFh
0z400-0z4FF Slot'z'

0z500-0z7FF Alias of 100h-3FFh
0z800-0z8FF| Slot'z'

0z900-0zBFF| Alias of 100h-3FFh
0zC00-0zCFH Slot 'z’
0zD00-0zFFH Alias of 100h-3FFh

4.9.1 Expansion Board Address Decoding

An expansion board that uses the slot-specific 1/O ranges may, during I/O cycles,
decode address bits LA<11:2>, and BE*<3:0> with AENx negated (low) to address any
byte in the slot-specific 1/O range. An expansion board that does not need the full I/O
address range can decode fewer address bits, depending on the number of ports required.
The expansion board must, at a minimum, decode address bits LA <9:8> low and AENx
negated (low) to assure that the I/O address does not conflict with the ISA expansion
board I/O address range.

. See section 2.8.7 in this specification for additional information about EISA 1/O
decoding and the use of AENx to control slot-specific I/O addressing.

A device driver addresses the expansion board slot-specific addresses with a full 16-
bit [/O address. The device driver appends the expansion board address bits, < 11:0>, to
the high order four bits represented by the hexadecimal slot number to form the 16-bit

address, <15:0>.

418

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Slot-specific addresses 0zC80h through 0zC83h are reserved for the product ID.
Slot-specific address 0zC84h is reserved for expansion board control bits. All other slot-
specific addresses can be used by the expansion board for configuration registers and
general purpose 1/0. '

An EISA expansion board can also use the ISA expansion board I/O ranges, but
must assure that the addresses do not conflict with other ISA expansion boards.

The following address ranges are not aliases of ISA expansion board I/O addresses
and should be used by an EISA expansion bo:.rd for 1/O registers:

1/O address | I/O Range
Range (hex):| Reserved for:

1000-10FF | Slot 1
1400-14FF | Slot 1
1800-18FF | Slot 1
1C00-1CFF | Slot 1

2000-20FF | Slot 2
2400-24FF { Slot2
2800-28FF | Slot2
2C00-2CFF | Slot2

0z000-0z0FF | Slot 2/
0z400-0z4FF | Slot 'z’
02800-0z8FF | Slot 'Z'
0zC00-0zCFH Slot 2!

419

EP 0 426 184 A2

EXTENL£D INDUSTRY STANDARD ARCHi1+ECTURE
CONFIDENTIAL INFORMATION QF BCPR SERVICES, INC.

The following address ranges are aliases of ISA expansion board I/O addresses:

I/O address | I/O Range

Range (hex):| Reserved for:
1100-13FF | Alias of 100h-3FFh
1500-17FF | Alias of 100h-3FFh
1900-1BFF | Alias of 100h-3FFh
1D00-1FFF | Alias of 100h-3FFh
2100-13FF | Alias of 100h-3FFh
2500-27FF | Alias of 100b-3FFh
2900-2BFF | Alias of 100h-3FFh
2D00-2FFF | Alias of 100h-3FFh
0z100-0z3FF | Alias of 100h-3FFh
0z500-0z7FF | Alias of 100h-3FFh
0z900-0zBFF| Alias of 100h-3FFh
0zD00-0zFFH Alias of 100h-3FFh

Slot-specific addresses 0zC80h through 0zC83h are reserved for the product ID.
Slot-specific address 02C84h is reserved for expansion board control bits. other slot-
specific addresses can be used by the expansion board for configuration registers and
general purpose I/O.

An EISA expansion board that uses the ISA expansion board I/O ranges must
assure that the addresses do not conflict with other ISA expansion boards.

4.9.2 Embedded Slot Address Decoding

Embedded slot address decoding works exactly like expansion board address
decoding except that the embedded device is integrated onto the system board. The
embeddad slofs-use slot numbers that start after the last expansion slot number. For
example, the first embedded slot is slot 8 if the EISA system has 7 expansion slots.

4.9.3 System Board Address Decoding

An EISA system board decodes 16 address bits during I/O cycles. The system board
configuration registers ar:d controller registers are mapped into the address ranges between
0000k and OCFFh that are not aliases of ISA expansion board 1/O addresses.

420

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following address ranges are not aliases of ISA expansion board I1/O addresses
and can be used by an EISA system board for 1/0 registers:

1/0 address | I/O Range
ange (hex):! Reserved for:

0000-00FF ISA System board peripherals
0100-03FF ISA expansion boards

0400-04FF Reserved - System board controllers
0800-08FF System board

0CO00-0OCFF | System board

The following address ranges are aliases of ISA expansion board I/O addresses and
cannot be used by an EISA system board:

1/O address | I/O Range
ange (hex):| Reserved for:

0500-07FF Alias of 100h-3FFh
0900-0BFF Alias of 100h-3FFh
ODOO-OFFF | Alias of 100h-3FFh

421

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.10 EISA Product ldentifier (ID)

EISA expansion boards, embedded devices and system boards have a four byte
product identifier (ID) that can be read from I/O port addresses 0z2C80h through 0zC83h
(z=0 for the system board). For example, the system board ID can be read from I/O port
a%%gc;]sse&%@Oh-OCSSh and the slot 1 product ID can be read from I/O port addresses
1 -1C83h.

The first two bytes (0zC80h and 0zC81h) contain a compressed representation of
the manufacturer code. The manufacturer code is a three character code (uppercase,
ASCII characters in range "A""Z") chosen by the manufacturer and registered with the
firm that distributes this specification. System board and expansion board manufacturers
follow the same procedure to choose and register their manufacturer code.

The manufacturer code "ISA" should be used to indicate a generic ISA adapter.

The three character manufacturer code is compressed into three 5-bit values so that
it can be incorporated into the two I/Q bytes at 0zC80h and 0zC81h. The compression

procedure is:

Find hexadecimal ASCII value for each letter
ASCII for "A"-"Z" "A" = 41h,"Z" = 5Ah

Subtract 40h from each ASCII value
Compressed "A" = 41h-40h = 01h = 0000 0001
Compressed "Z" = SAh-40h = 1Ah = 0001 1010

Retain 5 least significant bits for each letter
Discard 3 most significant bits (they are always zero)
Compressed "A" = 00001, Compressed "Z" = 11010-
Compressed code = Concatenate "0" and the three S-bit values
"AZA" = 000001 11010 00001 (a 16-bit value)
0zC80h = 00000111, 0zC81h = 01000001

o '{he following figures show the format of the product ID (addresses 0zC80h -
C83h): -

Product ID, 1st byte: 0zC80h

7{16(5]413|2|110

2nd character of compressed manufacturer code
(bit 1 of 0zC80H is most significant bit)

1st character of compressed manufacturer code
(bit 6 of 0zC80h is most significant bit)

Reserved (0)

422

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Product ID, 2nd byte: 0zC81h

716(5(41312(1}0

3rd character of compressed manufacturer code
(bit 4 of 0zC81h is most significant bit)

2nd character of manufacturer's code
(continued from 0zC80h)

Product ID, 3rd byte: 02C82h

7161541312110

Product number

Product ID, 4th byte: 0zC83h

716154 ({312|1j0

Revision number

Reporting Not Ready During Access to the Product ID Register

An EISA device that requires a long power-up sequence may report a not ready
condition when the power-up routine attempts to read the product ID. The expansion
board must complete its power-up sequence and report its product ID within 100 ms after
reporting the not ready condition. The expansion board supplies the following data in port
0zC80h to indicate the not ready condition:

Product ID, 1st byte: 0zC80h

7l6l5|4|{3({2]1]0

LI 1] xox = Don't care
111 = Not ready
Reserved (0)

4.10.1 EISA System Board ID

The first two bytes of the system board ID are a compressed representation of the
manufacturer code. The third byte and first five bits of the fourth byte can be used by the
system board manufacturer for any purpose desired. The least significant 3 bits of the
fourth byte indicate the EISA bus revision level.

The compressed system board manufacturer ‘code has the same format as an
expansion board manufacturer code and is illustrated in the "EISA Product Identifier
section of this specification.

423

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH1 VECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The I/O addresses for the system board ID bytes are:

System Board ID, 1st byte: 0C80h
System Board ID, 2nd byte: 0C81h
System Board ID, 3rd byte: 0C82h
System Board ID, 4th byte: 0C83h

The following diagrams show the format of the system board ID.

System Board ID, 1st byte: 0C80h

7

6

5

4

3

2

1

0

2nd character of compressed manufacturer code
(bit 1 of 0C80h is most significant bit)

1st character of compressed man}lfa_cturer cgde
(bit 6 of 0CE0h is most significant bit)

Reserved (0)

System Board ID, 2nd byte: 0C81h

7

6

5

4

3

2

1

0

3rd character of compressed manufacturer code

(bit 4 of 0C81h is most significant bit)

2nd character of manufacturer's code

(continued from 0C80h)

System Board ID, 3rd byte: 0C82h

7

6

5

4

3

2

1

0

Reserved for manufacturer's use

System Board ID, 4th byte: 0C83h

7

6

5

4

3

2

1

Q1

EISA bus version (initial version = 001)

Reserved for manufacturer's use

424

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Identifying an EISA Expansion Board
1. Write FFh to 0C80h
The procedure precharges the system board ID register (at /O address 0C80h).

2. Read 0C80h

If contents of 0C80h equals FFh, discontinue the identification process, the
system board does not have a readable ID.

If contents of 0C80h does not equal FFh and the most significant bit is a zero:
the system board supports a readable ID that can be read at 0C80h-0C83h.

4,10.2 EISA Expansion Board Product ID

The first two bytes of the 4-byte product ID are a compressed representation of the
manufacturer code. e third byte represents the product number and the fourth byte
represents the product's revision level. :

A revised expansion board that requires a modification to its configuration file must
have a new product number and revision level in its ID. A revised expansion board that
does not require a modification to the configuration file can use its original product
number, with a new revision level.

The system ROM power-up routine reads the first four bytes of the ID to compare
against the configuration information stored in nonvolatile memory. A match o the
hardware ID and the ID stored in nonvolatile memory confirms that the configuration has
not changed since system configuration. Bits 3:0 of the fourth byte are not used by the
power-up routine.

Device drivers can use the product ID to determine the type of expansion board
installed and the revision level.

The compressed expansion board manufacturer code has the same format as a
system board manufacturer code and is illustrated in the "EISA Product Identifier” section
of this specification.

The I] O addresses (where "z" is the slot number) for the product ID bytes are:

Product ID, 1st byte: 0zC80h

Product ID, 2nd byte: 0zC81h
Product 1D, 3rd byte: 0zC82h
Product ID, 4th byte: 0zC83h

425

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following diagrams illustrate the third and fourth byte of the product ID.

Expansion Board Product ID, 3rd byte: 0zC82h

7

6

5

4

3

2

1

0

2nd hexadecimal digit of product number
(bit 3 is most significant bit)

1st hexadecimal digit of product number
(bit 7 is most significant bit)

Expansion Board Product ID, 4th byte: 0zC83h

7

6

5

4

3

2

1

o

Hexadecimal digit of revision level
(bit 3 is most significant bit)

3rd hexadecimal digit ‘of product number
(bit 7 is most significant bit)

426

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Identifying an EISA Expansion Board
1. Write FFh to 0zC80h

The procedure precharges the expansion board ID register (at I/O address
0zC80h). :

2. Read 0zC80h

If contents of 0zC80h equals FFh, discontinue the identification process, the
expansion board does not have a readable ID.

If contents of 0zC80h does not equal FFh and the most significant bit is a zero:
the expansion board supports a readable ID that can be read at 0zC80h-0zC83h.

4.10.3 EISA Embedded Devices

The ID of an EISA embedded device has the same format as an expansion board
roduct ID. The ID of an embedded device-can be accessed through 1/O addresses
C80h-0zC83h, where "z" is the embedded slot number.

427

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.1 Expansion Board Control Bits

Port 0zC84h contains ENABLE, IOCHKERR, and IOCHKRST bits for software
control of ro%rﬁax\;lmablc expansion boards. EISA expansion boards must indicate
“TOCHKERR =INVALID" in the CFG file if ENABLE and IOCHKERR bits are not
supported. The Expansion Board Control Bits are shown in the following figure.

Expansion Board Control Bits - 0zC84h

7{6({5(4(3i2]|1{0

[ENABLE (read/write)
0 = Expansion board disable
1 = Expansion board enable
IOCHKERR (read only)
0 = No error pendi_nf
1 = A serious error detected by the
expansion board
IOCHKRST (write only)
0 = Normal operation
1 = When pulsed to 1 for 500 ns, the
expansion board is reset
Reserved (set to 0)

Bit 0 - Enable Bit (Read/Write)

The ENABLE bit can be set to enable an expansion board for operation, or cleared
to disable operation. The bit can be read to determine the enabled or disabled state. The
expansion board clears ENABLE after sampling RESDRYV asserted and enters 2 disabled
state. The expansion board must only decode slot-s ecific I/O while in the disabled state.
The expaasion board must disable all bus drivers while in the disabled state, except when
lr)qs%?ndipg to slot-specific 1I/O. EISA expansion boards must fully support the ENABLE

it functions.

Bit 1 - IOCHKERR Bit (Read Only)

The IOCHKERR bit can be read to determine if an expansion board has a pending
error. The expansion board indicates a pending error by setting IOCHKERR, clearing the
ENABLE bit and entering the disabled state. The "expansion board may, but is not
required to assert the bus signal IOCHK® when it sets IOCHKERR. Pulsing IOCHKRST
resets JOCHKERR. EISA expansion boards must respond to a read access of the
IOCHKERR bit. EISA expansion boards that do not need to indicate errors may always
resporrd with the IOCHKERR bit cleared. -

An expansion board sets IOCHKERR to indicate that a serious error has occurred.
Parity errors and uncorrectable system errors exemglify dproblems that might cause an
expansion board to set IOCHKERR. An expansion board always holds IOCHKERR set
while asserting the bus signal, IOCHK". The tmain CPU or bus master can poll the
IOCHKERR bit for each expansion board to determine which board caused an error.

428

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Bit 2 - [OCHKRST Bit (Write Only)

Pulsing IOCHKRST to a "1" for at least 500 ns resets an expansion board's
hardware. e expansion board resets all logic, assumes a_disabled state, clears
IOCHKERR and clears ENABLE when IOCHKRST is pulsed. EISA expansion boards
that never set the IOCHKERR bit may ignore write accesses to the [IOCHKRST bit.:

Example Sequence for an [IOCHKERR

'Iheigstem ROM power-up routine initializes the expansion board and sets the
ENABLE bit to begin operation.

The expansion board begins decoding memory and I/O addresses outside the slot-
specific I/O range and enables its bus drivers to drive the bus signals.

The device driver determines the slot-specific /O address from the configuration
data in nonvolatile memory. The dévice driver can then control the device operation.

The ansion board detects a serious error, clears the ENABLE bit, sets its

I RR bit and asserts IOCHK®*. The expansion board stops decoding memory
addresses and I/O addresses outside its slot specific range and it floats all bus drivers
(except the one driving IOCHK*) unless responding to slot-specific I/O.

The expansion board detects a serious error, clears the ENABLE bit, sets its

10 RR bit and asserts IOCHK*. The expansion board disables all bus signal
drivers except the one driving IOCHK*. The expansion board stops decoding
memory addresses and I/O addresses outside its slot specific range.

The assertion of IOCHK® invokes the NMI service routine. The NMI service
routine segucnﬁally polls the IOCHKERR bit for each EISA device until it finds a device
with 10 RR set. The NMI service routine then begins the recovery procedure
(restore the operation or disable the expansion board). _ :

To restore the expansion board, correct the error, then pulse IOCHKRST to "1" for
at least 500 ns to clear the IOCHKERR bit and negate the IOCHK* bus signal. The NMI -
service routine can then invoke the device driver to initialize the expansion board and set
the ENABLE bit for operation. '

To disable the expansion board, the NMI service routine must pulse IOCHKRST to
"1" for at least 500 ns to clear the IOCHKERR bit and negate the IOCHK® bus signal. The
NMI service routine can also display a message to the user indicating the action taken.

The NMI service routine returns execution to the routine interrupted by NMI. If
multiple devices asserted IOCHK?®, or if another device asserted IOCHK* during the NMI
service, the NMI routine is invoked again to repeat the IOCHKERR poll and recovery
procedure.

429

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.12 System Software Use of Configuration Information

Device drivers and system software can use the configuration information from
nonvolatile memory for the following purposes: ,

. Determine the slot number of an EISA device

. Determine the I/O address of the EISA device registers specified during
configuration

. Determine configuration information
. Determine the system resources used by an EISA or ISA device
« Initialize the device for operation

Use of the configuration memory by a product dependent device driver may differ
from use by a product independent device driver. A device driver is product dependent if
the driver is provided for use with a particular product (i.e., an ACE Ethernet network
board). A device driver is product independent if the driver is provided for use with
products from a variety of vendors (such as a parallel port).

4.12.1 Slot Search by Product Independent Device Driver

A product independent device driver should check the TYPE string of each function
in each slot (including expansion slots, embedded devices and virtual devices) to determine
the slot in which the desired function is installed. The driver should begin searching at Slot
0, function 1 and seguentially increment through each function of each slot until the last
slot has been checked. _ :

The device driver can use the "Read Slot Configuration Information” to determine
the number of functions located in any slot, and use the "Read Function Coanfiguration
Information" BIOS routine Call to read the configuration information (which includes the
TYPE strini) for the function. The device driver terminates the search when it finds a
function with the desired TYPE string or when the "Read Slot Configuration Information”
BIOS routine Call returns an “Invalid slot number” error. The error indicates that all slots

have been checked.

Device Driver Search for TYPE String

The following example illustrates a device driver search for a parallel port with
TYPE = "PAR."

The device driver performs the search by executing a "Read Slot Configuration
Information” BIOS routine Call for each slot to determine if a device is installed and the
number of functions present in the slot. The device driver begins the search by executing a
"Read Slot Configuration Information” BIOS routine Call for slot 0 to determine the

number of functions addressed as slot 0.

430

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The device driver then executes a "Read Function Configuration Information™ BIOS
routine Call for slot 0 function 1. The BIOS routine reads the function configuration
information from nonvolatile memory and writes it to a table in system memory. The
device driver inspects the TYPE field in the returned table to determine if the first three
characters of the TYPE string equal "PAR," which indicates a parallel ?ort. The device
driver continues executing "Read Function Configuration Information” BIOS routine Calls
and inspecting the TYPE field for each slot 0 function.

The device driver then executes a "Read Slot Configuration Information” BIOS
routine Call for slot 1 to determine the number of functions addressed as slot 1. The
device driver requests the function information from nonvolatile memory and inspects the
TYPE field for each function in slot 1. The device driver continues the slot search until it
locates one or all functions with TYPE = "PAR" or until the "Read Function
Configuration Information” BIOS routine Call indicates that all slots have been searched
(by returning "invalid slot").

If the device driver finds a function with TYPE = "PAR", it can determine the
initialization and resource requirements from the table returned by a "Read Function
Configuration Information” BIOS routine Call.

Device Driver Search for SUBTYPE String

A driver can search for a specific configuration of a function by scanning the
SUBTYPE strings. The following example illustrates a device driver search for a serial
port with SUBTYPE = "COML."

The device driver first finds an asynchronous communications port by searching for
the TYPE string fragment, "COM,ASY." The driver then scans past the remainder of the
TYPE field (delimited by the semicolon) and compares the SUB E string fragments to
"COM1." If a SUBTYPE string fragment does not match "COM1", the driver continues
searching for another TYPE "COM,ASY" and checking the SUBTYPE for "COM1."

412.2 Slot Search by a Product Dependent Device Driver

A product dependent device driver should check the product ID of the device in
each slot (including expansion slots, embedded devices and virtual devices) to determine
the slot in which its corresponding product is installed. The driver should begin searching
at Slot 0 and sequentially increment through each slot until the last slot has been checked.

The device driver can use the "Read Slot Configuration Information” BIOS routine
Call to read the product ID of the device in any slot. The device driver terminates the
search when it finds the correct product ID or when the BIOS routine Call returns an
"Invalid slot number" error. The error indicates that all slots have been checked.

431

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.12.3 Device Driver Initialization for EISA Expansion Boards

The device driver can use information from nonvolatile memory to determine EISA
expansion board configuration and initializations necessary to restore expansion board
registers to their power-up condition. .

The EISA system ROM initializes the following interrupt and DMA controller
configurations after pcrforminﬁ all I/O initializations indicated in nonvolatile memory. A
device driver may not change the configurations:

Interrupt controller edge/level register

DMA controller (Extended Mode Register)
DMA channel cycle timing
DMA data size and addressing mode

DMA controller (DMA Command Register)
Fixed or rotating priority scheme

, A DMA device that shares the DMA channel may not change the following DMA
controller configuration: .

DMA controller (DMA Command Register)
DRQ and DAK* assert level (high/low)

The device driver can use the "Read Function Configuration Information" BIOS
routine Call to get the configuration parameters from nonvolatile memory. The
configuration parameters returned from nonvolatile memory represent the expansion
board configuration initialized by the system ROM power-up routines. Subsequent
operation of the expansion board may leave the configuration in a different state. Device
drivers can read the expansion board configuration registers to determine the configuration
after power-up.

432

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.13 Creating TYPEs and SUBTYPEs for Devices

The TYPE and SUBTYPE identifiers are used by product independent device
drivers to identify, initialize and operate an installed device that is compatible with the
device driver. System board and expansion board manufacturers must specify consistent
and expandable E and SUBTYPE identifiers for their products.

The following guidelines should be followed when creating TYPE and SUBTYPE
strings to assure consistency and expandability.

4.13.1 TYPE Strings

The first szgment of the TYPE string should identify the most general device
characteristics (such as video, communications port) followe by TYPE string segments
that identify more detailed device characteristics (such as VGA video adapter,

chronous communications ;\)})Irt. For example, the TYPE string for 2 VGA video
adapter is "VID,VGA", where "VID" identifies a video board and "VGA" indicates VGA
compatibility. The TYPE string for the asynchronous communications port is "COM,ASY",
where "COM" identifies a communications board and "ASY" indicates compatibility with
the PC-AT asynchronous port.

New TYPE segments should be appended to the TYPE string when a device is
enhanced with additional capabilities. A device driver compatible with the original product
determines its ability to control the device after checking the original TYPE segments. A
device driver that supports enhanced capabilities checks the appended TYPE segments to
determine the level of capability supported by the device .

For example, the TYPE string for a VGA video adapter (ACE) with a 1024x768
high resolution mode might be: *VID,VGA,ACE1024X768". Device drivers that support
VGA identify the video adapter as VGA compatible and device drivers that support
1024x768 identify the video adapter as compatible with the 1024x768 mode.

Another vendor (XYZ) may offer a compatible video adapter with a new 1280x1024
mode. The TYPE string for the 1280x1024 video adapter might be:
"VID,VGA,ACE1024X768, XYZ1280X1024". Device drivers that support VGA identify
the video adapter as VGA compatible, device drivers that support 1024x768 identify the
video adapter as compatible with the 1024x768 mode, and device drivers that support
1280X1024 identify the video adapter as compatible with the 1280X1024 mode.

433

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH11ECTURL
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4132 SUBTYPE Strings

The SUBTYPE string identifies the device options selected during configuration. A
device driver can scan the TYPE string to determine that the device is wrilé)au le with the
driver, then scan the SUBTYPE string to determine the device 0 ration. For
example, the video adapter described above might use the SUBTYPE field to indicate the

power-up video display mode.

FUNCTION "VGA Video Adapter”
TYPE = "VID,VGA,ACE1024x768,XYZ1280x1024"
CHOICE(1) = "VGA Default Mode"
SUBTYPE = "DMODE=VGA"

CHOICE(2) = "1024X768" Default Mode
SUBTYPE = "DMODE =ACE1024X768"

CHOICE(3) = "1280X1024" Default Mode
SUBTYPE = "DMODE =XYZ1280X1024"

The device driver can utilize the SUBTYPE string to determine the default mode
set during power-up. The TYPE/SUBTYPE string for a selection of VGA as the default

power-up video mode is:
“VID,VGA,ACE1024x768,XY Z1280x1024;QMQDE=VGA“

A device driver should read the device configuration registers for configuration
information that changes during device operation. A driver that needs detailed
configuration information not specified in the UBTYPE string should also read the device

configuration registers.

434

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.13.3 Standard TYPE Table

The following TYPEs should be used wherever possible for the Ea..:suplimblc devices.
System and expansion board manufacturers can create additional TYPEs for devices that
do not apply to the standard TYPEs listed here. For example, a manufacturer of a fax
board can create a new TYPE = "FAX" or can use the "COM" prefix (i.e., "COM,FAX").
The new TYPEs become a de facto standard if other vendors use the same TYPE.

The standard device TYPEs for commonly used devices that are part of the industry
standard system architecture are listed below.

DEVICE TYPE DEVICE DESCRIPTION
“COM,ASY™ ISA compatible 8250-based scri:larort
"COM,ASY FIFO" ISA compatible 16550-based serial port (with FIFO)
"COM,SYN" ISA compatible SDLC port
"KEY,nnn, KBD =xx" Standard keyboards XX =country,
nnn = number of keys.

083

084

101

103

xx = Keyboard Code .
AE = Arabic - English
AF = Arabic - French
AU = Australia
BE = Belgium
BF = Belgium - Flemish
CE = Canadian - English
CF = Canadian - French
CH = China
DN = Denmark
DU = Dutch
EE = European - English
FN = Finland
FR = France
GR = Germany
HA = Hungary
IT = Laly
IS = Israel
KA = Kangi
LA = Latin America
ME = Middle East
NE = Netherlands
NO = Norway
PO = Portugal
SP = Spain
SW = Sweden
ST = Switzerland
SF = Swiss - French
SG = Swiss - German
TA = Taiwan
UK = United Kingdom
US = United States

435

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DEVICE TYPE DEVICE DESCRIPTION
"CPU,8086" 8086 compatible microprocessor
"CPU,80286" 80286 compatible microprocessor
"CPU,80386SX" 80386SX compatiblc microprocessor
*CPU,80386" 80386 compatible microprocessor
"CPU,80486" 80486 compatible microprocessor
"MSD,DSKCTL" ISA compatible fixed disk controller
"MSD,FPYCTL” ISA compatible ﬂopr disk controller
"MSD, TAPCTL" Primary tape controller

"NPX,287" Intel 287 numeric coprocessor

"NPX 387" Intel 387 numeric coprocessor
"NPX,3878X" Intel 387SX numeric coprocessor for 3865X
"‘NPX,W1167" Weitek 1167 numeric coprocessor
WPX,W3167" Weitek 3167 numeric coprocessor
"JOY™ ISA cbmpatible'joystick adapter
"PAR" ISA compatible parallel port
"PAR,BID" Bidirectional parallel port
"PTR,8042" 8042 pointing device (mouse) interface
"VID,MDA" ISA compatible monochrome adapter
"VID,MDA,MGA" Hercules monochrome adapter
"VID,CGA" Requires no write sync during retrace
"VID,CGALRTR" Requires write sync during retrace
"VID,CGA™ ISA compatible CGA adapter
"VID,EGA" ISA compatible EGA adapter
"VID,VGA" ISA compatible VGA adapter

436

EP 0 426 184 A2

EXTrLNDED INDUSTRY STANDARD ARUHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.14 Configuration Exampie

This section contains the configuration data structures associated with an example
EISA Ethernet communication board. The example illustrates the configuration
information for initialization ports, a DMA channel, an interrupt, RAM memory and ROM
memory.

The example includes the configuration file, the configuration data structure
returned by a "Read Function Configuration Information™ BIOS routine Call, and the
configuration data structure passed to the "Write Nonvolatile Memory" BIOS routine.

4.14.1 Configuration File

An example of a configuration file for an.ethernet controller board is presented on
the following pages. The CFG filename for thiis file is !ACE105.CFG

BOARD
ID = "ACE0105"
NAME = "ACME Ethernet Interface board - Revision 5
MFR = "ACME Board Manufact." P
CATEGORY = "NET" ‘
SLOT = EISA
LENGTH = 330
READID = yes

IOPORT(1) = 0zc9%4h
INITVAL = 00000

IOPORT(2) = 0zc98h
INITVAL = x00000000000XIT

IOPORT(3) = 0zc9ah
AL = xooooxrr

IOPORT(4) = 0zc9bh
INITVAL = rrrroox

IOPORT(S) = 0ZC85h
INITVAL = 3000000

IOPORTY(6) = 0ZC86h
INITVAL = Ormooex

IOPORT(7) = 0ZC86h
INITVAL = Irmoxxx - .

SOFTWARE(1) = "ACELINK.EXE - \n if using MS DOS
Place the following command line in AUTOEXEC.BAT: \n
\f\tACELINK /S'= n /A = n\n
Use the following values with the -
/S and /A parameters:"

437

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

: Function description starts here

GROUP = "Ethernet network interface"
TYPE = "NET,ETH"
FUNCTION = "Network Interface Location"
CHOICE = "File Server Init. - Node 0"
SUBTYPE = "LAN(O"
FREE
INIT = SOFTWARE(1)"/S=1 /A=0"
INIT = IOPORT(S) LOC (5-2) 0000
CHOICE = "Network user init. - Node 1"
SUBTYPE = "LAN1"
FREE
INIT = SOFTWARE(1) "/S=0 /A=1"
INIT = IOPORT(5) LOC (5-2) 0001
CHOICE = "Network user init. - Node 2"
SUBTYPE = "LAN2"
FREE
INIT = SOFTWARE(1) "/S=0 /A=2"
INIT = IOPORT(S5) LOC (5-2) 0010

; Additional detail may be added
CHOICE = "Network user init. - Node 15"
SUBTYPE = "LAN15"
FREE
INIT = SOFTWARE(1) */S=0 /A=15"
INIT = IOPORT(5) LOC (5-2) 1111

FUNCTION = "System resources alloc./init."
CHOICE = "System Resources®
: DMA channel operates in Type C (burst) timing

DMA =517
SHARE = no
SIZE = dword
TIMING = TYPEC
INIT = IOPORT(5) LOC(0)0 | 1
; Interm?flﬁllé:vel-sensitive
IRQ=2{5
S E = yes
TRIGGER = level
INIT = IOPORT(S) LOC(1)0 | 1

438

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

; Network board local ROM
COMBINE

MEMORY = 2K ,
ADDRESS = 0C0000H | 0D0000h | OE0000h
MEMTYPE = oth
WRITABLE = no
SHARE =no -
SIZE = byte
CACHE = yes
DECODE = 32

INIT = IOPORT(6) LOC (3-0) 1100 | 1101 | 1110

; Network board local Ram
FUNCTION = "Local RAM Initialization"
CHOICE = "64K RAM"
SUBTYPE = "64K"
COMBINE
MEMORY = 64K
ADDRESS = 100000H-1F0000H STEP = 64K
WRITABLE = yes
MEMTYPE = oth
SIZE = dword
CACHE = no
INIT = JOPORT(7) LOC(4 32 10) 00800-01111
CHOICE = "128K RAM" '
SUBTYPE = "128K"
COMBINE
MEMORY = 128K
ADDRESS = 100000H-1F0000H STEP = 64K
MEMTYPE = oth
WRITABLE = yes
SIZE = dword
CACHE = no
INIT = IOPORT(7) LOC(4 32 10) 10000-11111
ENDGROUP

439

EP 0 426 184 A2

- EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

; Serial Port section
FUNCTION = "Serial Port"
TYPE = "COM,ASY"
CHOICE = "COM1"
SUBTYPE = "COM1"
FREE
IRQ =4
SHARE = yes
TRIGGER = level
PORT = 3{8h-3ffh
SHARE =no
SIZE = byte
INIT = IOPORT(1) LOC (3-0) 0000
INIT = IOPORT(2) LOC (15-2) 00000011111100
INIT = IOPORT(3) LOC (7-2) 110000
INIT = IOPORT(4) LOC (2-0) 010
CHOICE = "COM2"
SUBTYPE = "COM2"
FREE -
IRQ =3
SHARE = yes
TRIGGER = level
PORT = 2F8h-2ffth o
SHARE = no '
SIZE = byte ,
INIT = IOPORT(1) LOC (3-0) 0000
INIT = IOPORT(2) LOC (15-2) 00000011111100
INIT = IOPORT(3) LOC (7-2) 110000
INIT = IOPORT(4) LOC (2-0) 000

CHOICE := "Port disable"
SUBTYPE = "Port disable”
DISABLE = yes
FREE
INIT = IOPORT(4) LOC(0) 0

440

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.14.2 Read Slot Configuration Information BIOS Routine

The following example illustrates a "Read Slot Configuration Information” BIOS
routine Call. The data block returned by the BIOS routine indicates an ACME Ethernet
Board installed in slot 4.

Assume the following register assignments prior to executing the "Read Slot
Configuration Information” BIOS routine Call:

INT 15h, AH=D8h, AL=00h

INPUT:
AH = 0Dg&h
AL= 0 ;Read Slot Configuration Information
CL= 4 ;Slot number for ACME Ethernet Board

The following register values illustrate the parameters returned by the "Read Slot
Configuration Information” INT15 Call:

OUTPUT: .

AH = 00h--Successful Completion (carry flag = 0)
AL = 00h-No duplicate IDs and board ID is readable
BH = 0lh~Major Revision Level of Configuration Utility
BL = 0lh-Minor Revision Level of Configuration Utility
CH = ADh-Checksum of Configuration File (MSByte)
CL = (Q9h--Checksum of Configuration File (LSByte)
DH = (04h—-Number of Functions on this board
DL = 00111111b—Combined Function information byte
Dland SI = Four byte compressed ID

Dlglsb = 04h (byte 0)

DI(msb) = 65h (byte 1)

SIElsb) = 01h (byte 2)

SI(msb) = 05h (byte 3)

4.14.3 Read Function Configuration Information BIOS Routine Call

The following examples illustrate the "Read Function Configuration Information”
BIOS routine call. The data block returned by the BIOS routine indicates an ACME
Ethernet Board installed in slot 4.

" a4

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCH1 £CTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Assume the following register assignments prior to executing the "Read Function

Configuration Information" INT15 call:

INT 15h, AH=D8h, AL=01h

INPUT:
AH = 0D8h
AL = 01h ‘Read Function Configuration Information
CL = 04h :Slot number for ACME Ethernet Board
CH = 00h ‘Read the data block for function 0
DS:SI = 29B9:0600 ;pointer to the data block returned

The following register values illustrate th;-]farameters returned by the "Read
Function Configuration Information” BIOS routine call:

OUTPUT:
AH = 00h Successful completion (carry flag = 0)

age illustrates the data block returned by the "Read

The table on the following p
BIOS routine call for function 0.

Function Configuration Information”

442

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off- | Byte
set # | Value Description -
00h 1 04h | Ist Byte Expansion Board ID: ACE0105 (0465h)
2 65h | 2nd Byte Expansion Board ID
3 01h | first and second hex digit of product number
4 05h | third digit of product number/1-digit revision number
04h 5 00h | ID and slot information
6 03h | Miscellaneous ID Information
06h 7 01h | Major Configuration Utility Revision Level
8 01h | Minor Configuration Utility Revision Level
08h 9 00h | 1st Selection
10 00h | 2nd Selection
11 8 S‘Iot Used
2h | 35 21h | Function information (00001111b)
23h | 36 N TYPE string starts here
37 E
38 T |
ig & Delimiter that separates TYPE string fragments
41 T
42 H End of TYPE string
43 3 Delimiter to append subtype stnng
44 L
45 A
46 N
47 0 End of SUBTYPE string
48 0 Not Used
: 0 “
104h| 261 | 80h Initialization Byte IOPORTY(1)
262 | 94h | LSBIOPORT ADDRI%E
263 | 4Ch | MSBIOPORT ADDRESS
264 | 00h | PORT VALUE
265 | 8Sh | Initialization Byte IOPORT(2)
266 | 98h | LSB IOPORT ADDRESS
267 | 4Ch | MSB IOPORT ADDRESS
268 | FOh | LST PORT VALUE
269 | 03h | MSB PORT VALUE
270 | 03h | LSB PORT MASK
271 | 00h | MSB PORT MASK
272 | 84h | Initialization Byte IOPORT(3)
273 | SAh | LSB IOPORT ADDRESS
274 | 4Ch | MSB IOPORT ADDRESS
275 | COh | PORT VALUE
276 03h | PORT MASK

443

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off- | Byte
set # | Value Description

277 | 84h | Initialization Byte IOPORT(4)
278 | 9Bh | LSBIOPORT ADDRESS
279 | 4Ch | MSB IOPORT ADDRESS
280 | 00h | PORT VALUE
281 | F8h | PORT MASK
282 | 80h | Initialization Byte IOPORT(S)
283 | 85h | LSBIOPORT ADDRESS
284 | 4Ch | MSB IOPORT ADDRESS
285 | 00h | PORT VALUE
286 | 84h | Initialization Byte IOPORT(6)
287 | 86h | LSBIOPORT ADDRESS
288 | 4Ch | MSB IOPORT ADDRESS
289 | 0Ch | PORT VALUE
290 | 60h | PORT MASK
291 | 04h | Initialization Byte IOPORT(7)
202 | 8h | LSBIOPORT ADDRESS
203 | 4Ch | MSB IOPORT ADDRESS
204 | 80h | PORT VALUE
295 | 60h | PORT MASK
127h| 296 | 00h | Not Used

.| oon |-
13Fh| . | 00h |°

444

The following table illustrate
Configuration Information” BIOS r
as for the last call except CH=01h.

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITEC1'URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off- | Byte
set # | Value Description
00h 1 04h | 1st Bgte Expansion Board ID: ACE0105 (0465h)
2 65h | 2nd Byte Expansion Board ID
3 01h | first and second digit of product number
4 05h | third digit of product number/1-digit revision number
04h 5 00h | ID and slot information
6 03h | Miscellaneous ID Information
06h 7 01h | Major Configuration Utility Revision Level
8 01h | Minor Configuration Utility Revision Level
08h 9 00h | Ist Selection
10 00h | 2nd Selection
11 00h | 3rd Selection
12 0Ch | 4th Selection
13 00h | Sth Selection
14 00h | Not Used
. 00h | "
oohr | " -

445

s the data block returned by the "Read Function
outine call for function 1. The register setup is the same

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off- | Byte .
set # | Value Description
22h | 35 OFh | Function information (00001111b)
23h | 36 N TYPE string starts here
37 E
38 T
23 & Delimiter that separates TYPE string fragments
41 T
42 H End of TYPE string
43 00h | Not Used
. 00h | "
. 00h |
73h | 116 18h | Memory Configuration: ROM - (00011000b)
117 | 08h | ROM memory size (byte)
118 | 00h | LSByte ROM Start Address (0D0000Oh/100h = 0DOOh)
119 | 0Ch | Middle Byte ROM Start Address
120 | O00h | MSByte of ROM Start Address
121 [02h | LSByte ROM size (2048/400h = 0002h)
122 | 00h | MSByte ROM size
123 | 0Ooh | Not Used
. goh | " .
. 0oh | "
B2h | 179 | 22h | Interrupt configuration: IRQ2 (00100010b)
180 | 00h | Reserved
181 | 00Ch | Not Used
. o0h | "
. 00h |
COh | 193 05h | DMA configuration: DMA channel 5 (00000101b)
194 | 38h | 32-bit BURST transfers (00111000b)
195 { 00h | Not Used
. 00h |-
. ooh | _
C8h | 201 { O0Oh | NotUsed
. 00h |
00h |*

446

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the data block returned by the "Read Function
Configuration Information” BIOS routine call for function 2. The register setup is the same
as for the last call except CH=02h. :

Off- | Byte
set # | Value Description
00h 1 04h | 1st Byte Expansion Board ID: ACE0105 (0465h)
2 65h | 2nd Byte Expansion Board ID
3 01h | first and second hex digit of product number
4 05h | third digit of product number/1-digit revision number
04h 5 00h | ID and slot information
6 03h | Miscellaneous ID Information
06h 7 01h | Major Configuration Utility Revision Level
8 01k | Minor Configuration Utility Revision Level
08h 9 00h | 1st Selection
10 00k | 2nd Selection
11 00k | 3rd Selection
12 00h | Not Used
. 00h | "
. 00h | '
2h | 35 03h | Function information (00000111b)
23h | 36 N TYPE string starts here
37 E .
38 T
2(9) 2 Delimiter that separates TYPE string fragments
41 T
42 H :
43 ; Delimiter to append subtype string
44 6
45 4
46 K End of SUBTYPE string
47 00h | Not Used
. 00h | "
00h |

73h | 116 19h | Memory Configuration: RAM - (00011001b)

117 | 02h | RAM Memory Data Size (Dword)

118 00h | LSByte ROM Start Address (0D0000h/100h = 0DGOh)
119 10h | Middle Byte ROM Start Address

120 | OOh { MSByte of ROM Start Address

121 40h | LSByte ROM size (2048/400h = 0002h)

122 00h | MSByte ROM size

123 0oh [Not Used

; 0oh |"

m h "

447

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

The following table illustrates the data block returned by the "Read Function
Configuration Information" BIOS routine call for function 3. The register setup is the same
as for the last call except CH=03h. _ :

Off- | Byte
set # | Value Description
00h 1 04h | 1st Byte Expansion Board ID: ACE0102 (0465h)
2 65h | 2nd Byte Expansion Board ID
3 0ih | first and second digit of product number
4 05h | third digit of product number/1-digit revision number
04h S 00h | ID and slot information
6 03h | Miscellaneous ID Information
06h 7 0ih | Major Configuration Utility Revision Level
8 01h { Minor Configuration Utility Revision Level
08h 9 01h | 1st Selection
11 00h | 2nd Selection
12 00h | 3rd Selection
13 00h | Not Used
: 00h |
22h | 35 15h | Function information (00011001b)
23h | 36 C TYPE string starts here
37 O
38 M ..
ig , Delimiter that separates TYPE string fragments
A
41 S
42 Y End of SUBTYPE string
43 ; Delimiter to append subtype string
44 C
45 O
46 M
47 2 End of SUBTYPE string
48 00h | Not Used .
: 00h |*
B2h | 179 | 23h | Interrupt configuration: IRQ3 (00100011b)
180 | O00H | Reserved
181 00h | Not Used
: 00h | "
C8h | 201 07h | Port IO Range entry (00000011b)
202 | F8h | LSB Port Address
203 02h | MSB Port Address
204 00h | Not Used
: 00h | "

448

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

4.14.4 Write Nonvolatile Memory BIOS Routine CALL

The following example illustrates a Write Nonvolatile Memory BIOS routine call.

INT 15h, AH=D8h, AL=03h

INPUT:
AH = 0Dgh
AL = Q3h
CX = 0041h
DS:SI = 15AA:0244
OUTPUT:

AH = 00h Successful completion (carry flag = 0)

The data structure th:at is passed to the Write Nonvolatile Memory BIOS routine for
the ACME Ethernet board example:

Off- | Byte
set # | Value Description
00h 1 04h | 1st Byte Expansion Board ID: ACE0105 (0465h)
2 65h | 2nd Byte Expansion Board ID
3 01h | first and second digit of product number
4 0Sh | third digit of product number/1-digit revision number
04h 5 00h | ID and slot information (00000000b)
6 03h | Reserved
06h 7 01h | Major Configuration Utility Revision Level
8 01h | Minor Configuration Ultility Revision Level

i 00h if no CFG File Extensions
08h 9 34h | LSB length of function 0 entry

10 00h | MSB len%th of function 0 entry
0Ah | 11 02h | Length of following selections field
12 00h | 1stselection
13 00h | 2nd selection
0Dh| 14 21h | Function 0 information byte (00100001b)
OEh | 15 0Ch Lcr_llg;h of following ASCII TYPE string
OFh | 16 4Eh | N TYPE string starts here

E

17 45h

18 { 54h | T

19 2Ch |, Delimiter- separates TYPE string fragments
20 45h | E

21 54h | T -

22 48H | H End of TYPE string

23 3Bh | ; Delimiter to append SUBTYPE string

24 4Ch | L SUBTYPE string starts here

25 41h | A

26 4Eh | N -
27 30h | O

449

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCRITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off- { Byte
set # | Value Description

1Bh | 28 80h | Initialization Byte IOPORT(1)
29 94h | LSB IOPORT ADDRESS

30 4Ch | MSB IOPORT ADDRESS

31 00h | PORT VALUE

32 85h | Initialization Byte IOPORT(2)
33 98h | LSB IOPORT ADDRESS

34 4Ch | MSBIOPORT ADDRESS

35 FOh | LSTPORT VALUE

36 03h | MSB PORT VALUE

37 03k | LSB PORT MASK

38 00h | MSB PORT MASK

39 84h | Initialization Byte IOPORT(3)
40 9Ah | LSBIOPORT ADDRESS

41 4Ch | MSB IOPORT ADDRESS

42 COh | PORT VALUE

43 03h | PORT MASK

44 84h | Initialization Byte IOPORT(4)
45 9Bh | LSBIOPORT ADDRESS

46 4Ch | MSB IOPORT ADDRESS

47 00h | PORT VALUE .

48 F8h | PORT MASK

49 80h | Initialization Byte IOPORT(S)
50 85k | LSB IOPORT ADDRESS

51 4Ch | MSB IOPORT ADDRESS

52 00h | PORT VALUE

53 84h | Initialization Byte IOPORT(6)
54 86h | LSBIOPORT ADDRESS

55 4Ch | MSB IOPORT ADDRESS

56 0Ch | PORT VALUE

57 60h | PORT MASK

58 04h | Initialization Byte IOPORT(7)
59 | 8h | LSBIOPORT ADDRESS

60 4Ch | MSB IOPORT ADDRESS

61 80h | PORT VALUE

62 60h | PORT MASK

3Eh|{ 63 1Ah | LSB length of function 1 entry -
64 00h { MSB length of function 1 entry
65 0Sh | Length of following selections field
66 00h | 1st Selection

67 00h | 2nd Selection

68 00h | 3rd Selection

69 00h | 4th Selection

70 00h | Sth Selection

450

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off- | Byte
set # Value -. .Description
46h 71 OFh | Function 1 Information B{te (00001111h)
47h 72 07h | Length of following ASCII string field
48h 73 4Eh | N Type String Starts Here
74 45h | E
75 S4h | T
76 2Ch {, Delimiter that separates TYPE string
77 45h | E
78 S4nh | T
79 48h | H
4Fh 80 18h | Memory Config Byte (00011010b OTH cacheable ROM)
Although this memory is cacheable, caching isn't
implemented in this configuration and is so represented.
81 08h | Memory Data Size - Byte
82 00h | LSB Mem Start Address (divided by 100h)
&3 0Ch | Middle Mem Start Address
84 00h | MSB Memory Start Address
85 02h | LSB Memory Size (bytes divided by 400h)
86 00k | MSB Memory Size (0002*400 = 83’0h = 2k)
56h 87 22h | Interrupt Configutation Byte .
Although this interupt may be shared, it doesn't need
to be in this configuration and is so represented.
88 00h | Reserved
58h 89 05h | DMA Configutation: DMA Channel 5 (00000101b)
90 38h | 32-bit BURST Transfers (00111000b)
SAh| 91 18h | LSB length of function 2 entry
92 00h | MSB len%th of function 2 entry
93 03h | Length of following Selections field
94 0Ch | 1st Selection
95 00h | 2nd Selection
96 00h | 3rd Selection
60h 97 03h | Function 2 Info. Byte
61h 98 0Bh | Length of follow string field
62h 99 4Eh | N
100 | 45h | E
101 54h | T .
102 | 2Ch |, Delimiter that separates TYPE string
103 4sh | E
104 54h | T
105 48h | H
106 3Bh | ; Delimiter to append SUBTYPE string
107 36h | 6
108 34h | 4
109 | 4Bh | K

451

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Off- | Byte
set # Value Description

6Dh| 110 19h | Memory Configuration Byte (00011001b)

111 02h | Memory Data Size (Dword)

112 00h | LSB Memory Start Address (divided by 100h)
113 10h | Middle Mem Start Address

114 00h | MSB Memory Start Address

115 40h | LSB Memory Size (bg(t):s divided by 400h)
116 00h | MSB Memory Size (0040*400 =10000h = 16k)
74h 117 17h | LSB length of function 3 entry

118 00h | MSB length of function 3 entry

76h 119 03h | Length of following selections field

120 01h | 1st Selection

121 00h | 2nd Selection

122 00h | 3rd Selection

7Ah | 123 1Sh | Function 3 Information BIyte

7Bh | 124 0Ch | Length of following ASCII string field

7Ch | 125 43h | C
126 4Fh | O
127 | 4Dh | M
128 2Ch | , Delimiter that separates TYPE string
129 41h | A ‘.
130 S3h | S
131 5%h | Y
132 | 3Bh | ; Delimiter to append SUBTYPE string
133 430 | C
134 | 4Fh | O
135 | 4Dh | M

136 32h | 2

88h 137 23h | Interrupt Configuration Byte

Although this interupt may be shared, it doesn't need
to be in this configuration and is so represented.
138 00h | Reserved

8Ah | 139 07h | Port 10 Range entry (00000011b)

140 F8h | LSB Port Address

141 02h | MSB Port Address

8Dh | 142 00h | LSB Last Function Length = 0

143 00h | MSB Last Function Length = 0

8Fh | 144 09h | LSB Configuration file Checksum

145 | ADh | MSB Configuration file Checksum

452

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

5. GLOSSARY

8-bit ISA Slave
This slave device interfaces only to the 8-bit data bus and uses only the ISA signals. This is
;héﬁ simplest and slowest of the slave devices and was first developed for use with the IBM

16-bit EISA Master
A device that uses the EISA control signals to perform bus operations independent of the
host CPU. Data accesses are restricted to the lower 16-bits of the data bus, but all EISA

control signals are used.

16-bit EISA Slave
A memory or I/O device that uses the EISA control signals to interface to the bus. Data

acogsses are restricted to the lower 16-bits of the data bus, but all EISA control signals are
used.

16-bit ISA Master

A device that uses the ISA bus control signals to perform bus operations independent of

the host CPU. Only the 16-bit ISA data bus and ISA control signals are used, limiting
and performance. Access is possible to host system memory and I/0, as well as to

any slave (ISA or EISA) on the bus.

32-bit Connector
The physical bus connector used in Extended Industry Standard Architecture (EISA)

computers to extend the address and data size to 32 bits, and provide the fast cycle timing.

32-bit EISA Master
A device that uses the EISA control signals to perform bus operations independent of the
host CPU. Data accesses utilize the full 32 bits of the data bus, and all EISA control

signals are used. -

32-bit EISA Slave
A memory or I/O device that uses the EISA control signals to interface to the bus. Data
accesses utilize the full 32-bits of the data bus, and all EISA control signals are used.

Assert
A signal is asserted by driving it to a logical true state. For positive-true signals this state is
high logic voltage, and for negative-true signals this state is the low logic voltage.

IBM PC is & registered trademark of Inlernational Busincss of Machines.

453

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTCRE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Bus Cycle
A bus cycle is the action that occurs on the bus in order to transfer data.

Bus Latency
The time that elapses from when a bus master requests control of the bus until the bus

master is given control of the bus.

Bus Transfer
A bus transfer is one or more bus cycles. For example, a DMA transfer consists of many

DMA read or write cycles.

Byte Lane ,
A byte lane is one of the four possible bytes that comprise the 32-bit data path on the EISA
bus. Each byte lane corresponds to one of the four byte enable signals BE* <3:0>.

DMA Controller .

This device provides control of the larger part of the system's DMA (Direct Memory
Access) facility. The DMA controller responds to requests from the DMA device and
provides address and control signals to the memory slaves and DMA device,

x

DMA Device

The DMA device is typically located on a peripheral board on the EISA or ISA bus The
DMA device initiates DMA transfers, which are controlled by signals generated bg the
system DMA controller. The DMA device either presents or receives data during a DMA
transfer and uses several signals to inform the DMA controller of the status of the transfer.

EISA Bus o

A bus which includes all of the features and facilities provided by the industry standard
architecture (ISA) bus and also includes extensions defined in this document. The
extensions use an additional connector for new signals which, together with the existing ISA
signals, provide the ability to perform additional cycles not available on the ISA bus.

EISA Master -

A device which uses EISA's extended control signals to perform bus operations
independent of the host CPU. The EISA bus master can request control of the bus, and
assume complete control of all signals when it is granted the bus. The master can perform
all memory and I/O cycles possible on the EISA bus, accessing both the system and any
other such device on the EISA or ISA buses.

EISA Slave
A memory or I/O device which uses EISA's extended control signals to interface to the bus.

An EISA slave does not initiate bus cycles. It simply responds to the control signals
presented by the host CPU or other bus master.

454

EP 0 426 184 A2

EX) _.{DED INDUSTRY STANDARD An_AITECTUKE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Float
When a signal is floated it is placed in the high impedance state, no longer driving the

signal to a logic 1 or 0.

Host CPU

The main system processor. The host CPU typically has its own local bus allowing the CPU
t0 access cache or local memory without using the EISA bus. The host CPU accesses the
EISA bus like any other bus master, with the exception of 2 few special features. The data
size of the host CPU does not determine the EISA bus size; the CPU can have a 8-, 16-, or
32-bit data bus and still access the 16- or 32-bit EISA bus.

ISA Bus

The bus used in the Industry Standard Architecture (ISA) computers L(}?riginally embodied
in the IBM personal computer AT or PCAT. The ISA bus provides the signals needed to
perform the basic memory, I/O, and DMA functions of the system.

ISA Connector
The physical bus connector used in-the Industry Standard Architecture (ISA) computers

(originally embodied in the IBM personal computer AT or PCAT).

ISA Slave K
A device that uses the ISA control signals to interface to the bus. An ISA slave does not

initiate bus cycles. It responds to the control signals presented by the host CPU or other
bus master.

Negate
Asi is negated by driving it to a logical false state. For positive-true signals this state is
the Jow logic voltage, and for negative-true signals this state is the high logic voltage.

Peripheral :
A peripheral is a hardware board that plugs into the ISA or-EISA bus connectors. The
peripheral contains all of the circuitry associated with the function of the board. The

peripheral can be either a bus master or a bus slave.

Slot Specific
The term slot specific is used in reference to certain signals of address ranges which are

unique to a particular bus connector.

455

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Index

AC Characteristics 155
Address Bus
Signal Group 8, 10
Address Decoding
Embedded Slot 387
Expansion Board 385
System Board 387
Address Map
System 1/O 229
ADDRESS Statement 341
Addressing Mode 245
AENx 11
AMPERAGE Statement 309, 327, 355
Arbitration
DMA 256, 258
Arbitration Prioritics
System 139
Auto Initialize 239
Automatic Counfiguration
Devices Supported 295
EISA Expansion Boards 295
Expansion Boards 295
ISA Expansion Boards 295
Procedure 301
Software Drivers That Require System
Resources 296
System Board 295
System Board Peripherals That Use Slot-
_ Spexific I/O Space 296
System Board Peripherals That Use System
Board 1/0O Space 296
Back-to-Back I/O Delay 132
_BALE 13 ~)
Base Address
8237-Compatible Segment 250
High Page Segment 251
Low Page Segment 250
Base Address Register 250, 251
16-bit I/O 254 :
32-bit [/O 255
8-bit I/O "Count By Byte” Mode
(ISA Compatible) 253
Base Word Count Register 248, 249
BCLK 11 ’
Bidlist 304
Block Transfer Mode 237
Board Identification Block 305, 353
AMPERAGE Statement 309
BOARD Statement 306
BUSMASTER Statement 309
CATEGORY Statcment 307
COMMENTS Statement 310

456

DISABLE Statement 310
HELP Statement 310
ID Statement 306
IOCHECK Statement 310
LENGTH Statement 308
MFR Statement 307
NAME Statement 306
READID Statement 309
SKIRT Statemeat 309
SLOT Statement 307

BOARD Statement 306

Buffer Chaining 240

Buffer Chaining Mode
Enable/Disable 246

Burst Bus Masters 110

Burst Cycles 42, 50

Burst DMA 73

Burst EISA DMA Devices 122

Bus Access
Granting 16

* . Requesting 16

Bus Arbitration 4, 135

Bus Arbitration Signals 16

Bus grant lateacy 142

Bus Master 104
Capabilities 4
Last Granted 285

Bus Master Arbitration Cycle 147

Bus Master Cycles 27, 42

Bus Master Latency 146

-Bus Master Status Latch

32-bit 286
Bus Reset 282
Bus Signals 19

AENx 11

BALE 13

BCLK 11

BE*<3:0> 8

CHRDY 15

CMD* 13

DAK®* 17

DRQ 17

EX16* 12

EX32 12

EXRDY 13

1016* 15

IOCHK* 18

IORC* 14

IOWC* 14

IRQ 18

LOCK* 12

M-10 12

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

M16* 15
MAKx* 16
MASTER16* 17
MRDC* 14
MREQx* 16
MSBURST 11
MWTC* 14
NOWS* 15
OSC 18
REFRESH"* 18
RESDRYV 18
SBHE* 11
SLBURST 12
SMRDC* 14
SMWTC* 14
START* 13
Summary 19
T-C 17
W-R 13
Bus Timeout 282
BUSMASTER Statement 309, 355
CACHE Statement 343
Capacitive Loading Requirements 154
Cascade Mode 239
CATEGORY Statement 307
CFG File Extension Revision Level 362, 367
Chaining Mode Register 245, 246
Chaining Mode Status Register 247
Channel Interrupt Status Register 247
CHOICE Statement 322, 325
CHOICE Statement Block 325
AMPERAGE Statement 327
CHOICE Statement 325
DISABLE Statement 325
SUBTYPE Statement 326
TOTALMEM Statement 327
CHRDY 15
Clear Byte Pointer 243
Clear Mask Register 243
Clock 18
CMD* 13
COMBINE Groups 349
COMMENTS Statement 310, 316, 320, 324
COMPRESSED Cycles 42, 48
Compressed ID 361, 366
Compressed Manufacturer Code 389
Coaliguration File 404
Board Identification Block 305
CHOICE Statement Block 325
Format 305
FUNCTION Statcment Block 322
Initialization Information Block 311

Index

457

" Resource Description Block 334
Resource Groupings 348
SUBCHOICE Statemeat Block 327
Syntax 301
System Board 353

Board Identification Block 353
BUSMASTER Statement 355
LENGTH Statemeat 355
NONVOLATILE Statement 354
SKIRT Statement 355
SLOT Statement Block 355
System Description Block 353
System Statemeat 353
Configuration File Filenames 300 -
Configuration Files 298
Couofiguration Information,

System Software Use of 397
Configuration Utility 297
CONNECTION Statement 324
Counter. Latch Command 292
Counter Read Operation 291
Counter Read-Back Command 292
Counter Status Byte 293
CPU Lateacy 144
Current Address,

8237 Compatible Segment 251

High Page Segment 252

Low Page Scgment 252
Current Address Register 251, 252
Current Word Count Register 249, 250
D<15:8> 9
D<23:16> 9
D<31:24> 9 N
D<7:0> 10
DAK*<3:0> 17
DAK*<7:5> 17
Data Bus

Signal Group 8
Data Bus Translations 79

16- or 32-bit DMA Device to 8- or 16-bit ISA

Memory 94

16-bit DMA Device to 32-bit EISA Memory

93

16-bit EISA Bus Master to 32-bit EISA Slave

83

16-bit ISA Bus Master to EISA Slaves 86

32-/16-bit EISA Bus Master to 8-bit ISA
Slave 85

32-bit DMA Device to 16-bit EISA Mcmory
92 ’

32-bit EISA Bus Master to 16-bit EISA Slave

79

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Read Cycles 80
Write Cycles 81

32-bit EISA Bus Master to 16-bit I1SA Slave

83
Read Cycles 84
Write Cycles 85

8-bit DMA Device to 16- or 32-bit EISA

Memory 93
Data Bus
D<158> §
D<23:16> 9
D<31:24> ¢
D<7:0> 10
Data Size Translation 4
Data Transfer Protocol
Synchronous 2
Data Transfer Type 257
DC Characteristics 151
DECODE Statement 343
Demand Transfer Mode 238
DISABLE Statement 310, 325
DMA
32-bit Address Support 2
Acknowledge 17
Addressing
32-bit 253
ISA Compatible 252
Arbitration Priority 256
Auto-initialize 239
Block Mode, 235
Block Transfer Mode 237
Buffer Chaining 240
Burst DMA Timing 244
Cascade Mode 236, 239
Cycle Types 3
DEMAND Mode 235
Demand Transfer Mode 238
Description 235
Enhanced Functions 2
ISA Compatible BLOCK Mode 143
ISA Compatible Demand Mode 143
ISA Compatible Timing Mode 236
Master Condition 236
Registers
High Page 236
Low Page 236
Request 17
Ring Buffers 241
Single Transfer Mode 237
Slave Condition 237 .
Soltware Commands 243
Clear Bytc Pointer 243

Clear Mask Registér 243

Master Clear 243
Terminal Count 260
Timing Mode 244, 245
Transfer Combinations 261, 262
Transfer Types 239
Type "A," Timing 244
Type “B," Timing 244
Word Count

32-bit 253

ISA Compatible 252

DMA Channel Description 364

DMA Channel Description Block 334, 335

DMA Channel Mode Sclect 257

DMA Channel Select 245, 246, 256, 257, 258

DMA Command Register 256
DMA Coatroller 235, 236
DMA Controller Registers 243
Base Address Register 250
Base Word Count Register 248
" . Chaining Mode Register 245
Chaining Mode Status Register 247
Channel Interrupt Status Register 247
Current Address Register 251
Current Word Count Register 249
DMA Command Register 256
DMA Status Register 260
Extended Mode Register 243
Mask Registers 258
Mask Status Register 259
Mode Register 257
Request Register 258
DMA Cycles 55
Burst 55
ISA Compatible 55
Type "A" 55,63
Type “B* 55, 68
Type*C 73 -
DMA device
Data Transfer Timing Size 235
DMA Devices 115
Data Transfers from 3
Pecformance 3
DMA Latency 143
DMA Statement 336
DMA Status Register 260
DMA Transfers
Misaligned 131
Downshilt Burst Bus Masters 113
DRAM
Refresh 18
DRQ<3:0> 17

458

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

DRQ<7:5> 17
Edge/Level Triggered Control Register 275
EISA
Features 6
Pin-out 226
EISA Bus 8
Signals 8
EISA Connector 213
Compatibility 213
Environmental Performance 215
Materials 215
Physical Characteristics 214
Specifications 215
EISA CPU Cycles 42
EISA Devices 97
Burst Bus Masters 122
Burst DMA Devices 122
Bus Masters 104
DMA Devices 115
Downshift Burst Bus Masters 113
1/0 Slaves 103
Memory Slaves 97
Noa-Burst EISA DMA Devices 119
System Board 131
EISA System Configuration 294
Electrical Specifications 151
Embedded Devices 394
End of Interrupt
Automatic 277
Comuand 277
Handling 277
EX16* 12
EX32* 12 - -
Expansion Board
Identifying 392, 394
Expansion Board Control Bits 395
Enable 395 -
IOCHKERR 395, 396
IOCHKRST 3%
Expansion Board Identifier 299
EXRDY 13 '
Extended Addressing Mode 235
Extended Mode Register 243
FACTORY Statement 316, 320
Fail-safe Timer 281
Fixed Priority Mode 278 -
Flow Diagrams 43
Frce Groups 351
Free-form Conliguration Data Block Structure
365
Free-form Data 375
Fully Nested Mode 277

Index

459

FUNCTION Statement 322, 323
FUNCTION Statement Block 322
CHOICE Statement Block 325
COMMENTS Statement 324
CONNECTION Statement 324
FUNCTION Statement 323
HELP Statemeat 324
SUBCHOICE Statemeat Block 327
SUBFUNCTION Statement Block 329
TYPE Statement 323
GROUP and ENDGROUP Statements 333
GROUP Statement Block 331
ENDGROUP Statement 333
GROUP Statement 333
HELP Statement 310, 316, 320, 324
I/O Address Decoding 134
1/0O Address Map
EISA System 384
1/O Addresses 228
1/0 Control Functions
Systém Board 228
I/O Cydes
16-bit 39
8-bit 31
Stapndard 42
1/0 Delay
Back-to-Back 132
1/0 Port Description Block 334, 339
1/0 Port Initialization 299
1/0 Port Initialization Statement Block 311
I/0 Ports .
System Board 230

-1/0 Slaves 103

ID and Slot Iaformation 361, 366
ID Statement 306
In-Serviee Register 276
INIT Statements 345
I/O Ports 345
Jumper 346
Software 347
Switch 346
Initialization and Control Registers 268
Initialization Data 365
Initialization for EISA Expansion Boards,
By Device Driver 399
Initialization Information Block 311
1/0 Port Initialization 311
INITVAL Statement 312
IOPORT(i) Statement 312
SIZE Statement 312
Jumper-Configuration Statement Block 317
COMMENTS Statement 320

EP 0 426 184 A2

EXTENDED INDUSTRY STANDARD ARCPiITECI'URE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

FACTORY Statcment 320
HELP Statemeat 320
INITVAL Statement 320
JTYPE Statement 317
LABEL Statement 319
NAME Statement 317
REVERSE Statement 318
VERTICAL Statement 318
SOFTWARE() Statement 321
Switch Coafiguration
COMMENTS Statement 316
FACTORY Statement 316
HELP Statement 316
INITVAL Statement 315
LABEL Statement 315
NAME Statemeat 313
REVERSE Statement 314
STYPE Statement 314
SWITCH() Statemeat 313
VERTICAL Statemeat 314

Switch Configuration Statement Block 313

Initialization of EISA Systems 379
Initializatioa Sequence
Slot 380
INITVAL Statement 312, 315, 320
Intefligent Peripberals
See Bus Master
Intecrupt 18
See also, End of Interrupt 277
Interrupt Controller 265
BIOS Initialization Sequeace 267
Edge/Lewve! Control Register 275
I/0 Address Map 265
In-Service Register 276
Initialization 266

Initialization and Control Registers 263

Initialization Command Word 1 263
Initialization Command Word 2 269
Initialization Command Word 3 270
Initialization Command Word 4 271
Initialization Command Words 268
Interrupt Mask Register 271
Interrupt Request Register 276
Master 265
Modes

Fixed Priorily 278

Fully Nested 277

Polled 279

Rotating Priority 278

Special Fully Nested 278

Special Mask 280
Operation Control Word 2 272

Operation Control Word 3 274
Slave 265
Interrupt Description Block 334,338
Interrupt Mask Register 271, 272
Interrupt Request Register 276
Interrupt requests
Multiple 278
Interrupt Sequence 265
Interrupts
Clear 279
Edge/Level Triggered 4
Noan-maskable 281
Peading 278
Interval imer
Control Word Format 289
Counter Initial Count Value 291
Counter Latch Command 292
Counter Operating Modes 290
Counter Read Operation 291
Counter Read-Back Command 292

<. Functions 288

* Monitoring Status 291
Programming 289
Interval Timers 287
1016* 15
IOCHECK Statement 310
I0OCHK* 18
IOPORT(i) Statement 312
IORC* 14
IOWC* 14
IRQ 18
IRQ Statement 338
ISA, -
Compatibility with 1
ISA CPU Cydles 27
ISA Cycles 23
JTYPE Statement 317

Jumper Coafiguration Statement Block 317

JUMPER(i) Statement 317
Jumperlist 304
LABEL Statemeat 315, 319
Lateacy
CPU 144
DMA 143
EISA Bus Master 146
NMI 145 -
Refresh 144
LENGTH Statement 355
LINK Groups 348
List 303
Load Capacitance 155
LOC(jumperlist) 318

{

EP 0 426 184 A2

EX.cNDED INDUSTRY STANDARD AxCHITECTURE

CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

LOC(switchlist) 314
LOCK* 12,95
Locked Cycles 95
Mié* 15
Main Memory Access 131
MAKx* 16
Mask Registers 258
Write All Mask Bits 259
Write Single Mask Bit 259
Master Clear 243
MASTERI16* 17
Mechanical Specifications 213
Memory Capacity 1
Mcmory Configuration 363
Memory Cycles
16-bit 35
8-bit 27
Standard 42
Memory Description Block 334, 341
Memory Map Initialization
Noncacheable 383
Writable 383
Memory Refresh 149, 282
Memory Slave 97
MEMORY Statement 341
MEMTYPE Statement 342
MFR Statement 307

Misaligned DMA Memory Reads (I/O Writes)

131

Misaligned DMA Memory Writes (I/Q Reads)

131
Misaligned DMA Traansfers 131
Mode Register 257 -
MRDC* 14
MREQx* 16
MSBURST* 11, 50, 73, 74, 122
MWTC* 14
M-10 12,83
NAME Statement 306, 313, 317
NMI 18, 281
Enable/Disable 285
Real-time Clock Address Port 285
Soltware NMI Generation Port 285
NMI Latency 145
NMI Status and Control Port
Extended 284
NMI Status and Control Ports 283
No Wait State
Seec NOWS* 15
Noa-burst DMA Devices 119
Non-maskable Interrupts
Assertion of IOCHK* 281

461

Index

Bus Reset 282
Bus Timeout 282
Fail-Safe Timer Timeout 281
Memory Refresh 282
Parity Error from System Memory 281
Sec also NMI 281
Software Geaerated NMI 282
Speaker Control 282
Nonvoiatile Memory
Initializing 379
NONVOLATILE Statement 334
NOWS* 15
0sC 18
Parameterlist 304
Parity Error
System Memory 281
Pin-out 226
Poll Command 276
Polled Mode 279
Port 1/0 Information 364
PORT Statement 340
PORTVAR() Variable 352
Power Consumption 151
Power-up Routine 379
Priority
Fxed 139
Rotating 139
Product ID 299
EISA Expansion Board 392
Product Identifier 389
Programmable Port Initialization Block 334
Rangelist 303
READID Statement 309 .
Refresh Controller 149
Refresh Latency 144
REFRESH* 18, 97, 149
Request Register 258
RESDRV 18
Reset
Hardware 18
Resource Description Block 334
DMA Chanpe! Description Block 335
DMA Statement 336
SHARE Statement 337
SIZE Statement 337
TIMING Statement 337
1/0 Port Description Block 339
PORT Statement 340
SHARE Statement 340
SIZE Statement 340
Interrupt Deseription Block -
IRQ Statement 338

EP 0 426 184 A2

EXTE: .0ED INDUSTRY STANDARD ARCHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Index

SHARE Statement 339
TRIGGER Statement 339
Memory Description Block 341
ADDRESS Statemeat 341
CACHE Statement 343
DECQDE Statemeat 343
MEMORY Statcment 341
MEMTYPE Statcment 342
SHARE Statement 343
SIZE Statemecat 342
TOTALMEM Statement 327, 343
WRITABLE Statement 342
Resource Group 348
Resource Groupings
Combine 348
Free 348
Link 348
REVERSE Statement 314, 318
Ring Buffer
Data Structure 242
Ring Buffers 241
ROM BIOS Routine Calls
Clear Nonvolatile Memory 363
EISA System 356
Ideatify System Board Type 357
Read Function Configuration Information
359, 408
Read Slot Configuration Information 338,
- 408
Write Noavolatile Memory 368, 416
ROM Operations
EISA System 356
Rotating Priority Mode 278
SBHE* 11
Scatter-gather 4
Semaphores 12
SHARE Statement 337, 339, 340, 343
Signal Routing 154
Signal Translations 236
Signal Usage
EISA Expansion Boards 22
ISA Expansion Boards 21
System Board 20
Single Traasfer Mode 237
SIZE Statement 312, 337, 340, 342
SKIRT Statement 309, 355
SLBURST"® 12,73
Slot Initialization
Error Handling 382
Slot Search
by a Product Dependent Device Driver 398
by Product Independent Device Driver 397

SLOT Statement 307
EISA 308
EMB((z)] 308
ISA16 308
ISA8 307
ISASBOR16 308
OTHER 308
VIR 308
SLOT Statement Block 355
Slot-specific I/O 132
SMRDC* 14
SMWTC* 14
Software Commands 243
Software Generated NMI 282
Software Initialization Block 334
SOFTWARE(Initialization) Statement Block
321
Speaker Coatrol 282
Special Fully Nested Mode 278
_Special Mask Mode 280
Standard Configuration Data Block Structure
: 360, 369
START® 13,15
STYPE Statement 314
SUBCHOICE Statcment 329
SUBCHOICE Statement Block 327
SUBCHOICE Statement 329
SUBFUNCTION Statemeat 330
SUBFUNCTION Statement Block 329
AMPERAGE Statement 327
SUBFUNCTION Statement 329, 330
SUBTYPE Statement 326
SUBTYPE
Creating 400
SUBTYPE ASCII String 362, 367
SUBTYPE Statement 326
" SUBTYPE String
Device Driver Search 398
SUBTYPE Strings 401
Switch and Jumper Description Blocks 334
Switch Configuration Statement Block 313
SWITCH(i) Statement 313
Switchlist 304
System Arbitration Priorities 139
System Board 131
1/0 Address Decoding 134
System Board ID 390
System Configuration
Automatic 5
System Description Block 353
System Resource Requests 299
DMA channels 299

462

EP 0 426 184 A2

oo \
EX .NDED INDUSTRY STANDARD A..cHITECTURE
CONFIDENTIAL INFORMATION OF BCPR SERVICES, INC.

Index

I/0 ports 299

Interrupts 299

Memory 299
SYSTEM Statement 353
T-C 17
Terminal Count 17
Test-and-set Operations 12
Textlist 304
Timing Parameters

EISA 181

ISA Compatible 156
TIMING Statement 337
TOTALMEM Statement 327, 343
Transfer Rate 244

DMA 235
Transfer Types 239
TRIGGER Statement 339
TYPE

Creating 400
Type "A" 63
Type 'B” 68
TYPE Statement 322,323
TYPE String

Device Driver Search 397
TYPE Strings 400

Standard 402
Utdlity Signals 18
Value 303
Valuelist 303
VERTICAL Statement 314, 318
Virtual devices 308
Word Count Programming 252
WRITABLE Statement 342
W-R 13

463

	486_book
	About This Book
	The MindShare Architecture Series
	Organization of This Book
	Who Should Read This Book
	Prerequisite Knowledge
	Documentation Conventions
	Hex Notation
	Binary Notation
	Decimal Notation
	Signal Name Representation
	Identification of Bit Fields

	We Want Your Feedback
	E-Mail/Phone/FAX
	Bulletin Board
	Mailing Address

	License Agreement
	Chapter 1: 486 Overview
	System Performance Prior to the 80486
	The Memory Bottleneck
	The Static Ram, or SRAM, Solution
	The External Cache Solution
	Advantage: Reduces Many Memory Accesses to Zero Wait States
	Disadvantage: Memory Accesses Still Bound By Bus Speed

	The 80486 Solution: Internal Code/Data Cache
	Faster Memory Accesses
	Frees Up the Bus

	The Floating-Point Bottleneck
	The 80386/80387 Solution
	The 80486 Solution: Integrate the FPU

	The 80486 Microarchitecture
	The Intel Family of 486 Processors

	Chapter 2: Functional Units
	The 80486 Functional Units
	Introduction
	The 80486 Bus Unit
	The 80486 Cache Unit
	The Instruction Pipeline/Decode Unit
	Instruction Prefetch
	Two-Stage Instruction Decode
	Execution
	Register Write-Back

	The Control Unit
	The Floating-Point Unit
	The Datapath Unit
	The Memory Management Unit (MMU)

	Chapter 3: Hardware Interface
	Hardware Interface
	General

	Clock
	Address
	Data Bus
	Data Bus Parity
	Bus Cycle Definition
	Bus Cycle Control
	Burst Control
	Interrupts
	Bus Arbitration
	Cache Invalidation
	Cache Control
	Numeric Error Reporting
	Bus Size Control
	Address Mask
	SL Technology
	Boundary Scan Interface
	Upgrade Processor Support

	Chapter 4: The 486 Cache and Line Fill Operations
	The 486 Caching Solution
	The 486 Internal Cache
	The Advantage of a Level 2 Cache

	The 486 with an L2 Look-Through Cache
	Handling of I/O Reads
	Handling of I/O Writes
	Handling of Memory Reads
	Handling of Memory Writes
	Handling of Memory Reads by Another Bus Master
	When a Write-Through Policy is Used
	When a Write-Back Policy is Used

	Handling of Memory Writes by Another Bus Master
	When a Write-Through Policy is Used
	When a Write-Back Policy is Used

	The Bus Snooping Process
	Summary of the L2 Look-Through Cache Designs
	The 486 with an L2 Look-Aside Cache
	Anatomy of a Memory Read
	The Internal Cache's View of Main Memory
	L1 Memory Read Request
	The Structure of the L1 Cache Controller
	Set the Cache Stage
	The Cache Look-Up
	The Bus Cycle Request
	Memory Subsystem Agrees to Perform a Line Fill
	Cache Line Fill Defined
	Conversion to a Cache Line Fill Operation
	L2 Cache's Interpretation of the Memory Address
	The L2 Cache Look-Up
	The Affect of the L2 Cache Read Miss on the Microprocessor
	Organization of the DRAM Main Memory
	The Cache Line Fill Transfer Sequence
	The First Doubleword Is Read from DRAM Memory
	First Doubleword Transferred to the L2 Cache and the 80486 Microprocessor
	Memory Subsystem's Treatment of the Next Three Doubleword Addresses
	Transfer of the Second Doubleword to the Microprocessor
	Memory Subsystem Latching of the Third and Fourth Doublewords
	Transfer of the Third Doubleword
	The Beginning of the End
	Transfer of the Fourth and Final Doubleword
	Internal Cache Update
	Summary of the Memory Read

	Burst Transfers from Four-Way Interleaved Memory
	Burst Transfers from L2 Cache
	The Interrupted Burst
	Cache Line Fill Without Bursting
	Internal Cache Handling of Memory Writes
	Invalidation Cycles (486 Cache Snooping)
	L1 and L2 Cache Control

	Chapter 5: Bus Transactions (Non-Cache)
	Overview of 486 Bus Cycles
	Bus Cycle Definition
	Interrupt Acknowledge Bus Cycle
	Special Cycles
	Shutdown Special Cycle
	Flush Special Cycle
	Halt Special Cycle
	Stop Grant Acknowledge
	Write-Back Special Cycle

	Non-Burst Bus Cycles
	Transfers with 8-,16-, and 32-bit Devices
	Address Translation
	Data Bus Steering

	Non-Cacheable Burst Reads
	Non-Cacheable Burst Writes
	Locked Transfers
	Pseudo-Locked Transfers
	Transactions and BOFF# (Bus Cycle Restart)
	The Bus Cycle State Machine
	I/O Recovery Time
	Write Buffers
	General
	The Write Buffers and I/O Cycles

	Chapter 6: SL Technology
	Introduction to SL Technology Used in the 486 Processors
	System Management Mode (SMM)
	System Management Memory (SMRAM)
	The SMRAM Address Map
	Initializing SMRAM
	Changing the SMRAM Base Address

	Entering SMM
	The System Asserts SMI
	Back-to-Back SMI Requests
	SMI and Cache Coherency

	Pending Writes are Flushed to System Memory
	SMIACT# is Asserted (SMRAM Accessed)
	Processor Saves Its State
	Auto-HALT Restart
	SMM Revision Identifier
	SMBASE
	I/O Instruction Restart

	The Processor Enters SMM
	Address Space
	Exceptions and Interrupts

	Executing the SMI Handler
	Exiting SMM
	Processor’s Response to RSM
	State Save Area Restored
	Maintaining Cache Coherency When SMRAM is Cacheable

	486 Clock Control
	The Stop Grant State
	Stop Clock State
	Auto-HALT Power Down
	Stop Clock Snoop State

	Chapter 7: Summary of Software Changes
	Changes to the Software Environment
	Instruction Set Enhancements
	The Register Set
	Base Architecture Registers
	The System-Level Registers
	Control Register 0 (CR0)
	Cache Disable (CD) and Not Write-Through (NW)
	Alignment Mask (AM)
	Write-Protect (WP)
	Numeric Exception (NE)

	Control Register 2 (CR2)
	Control Register 3 (CR3)
	Control Register 4 (CR4)
	Global Descriptor Table Register (GDTR)
	Interrupt Descriptor Table Register (IDTR)
	Task State Segment Register (TR)
	Local Descriptor Table Register (LDTR)

	Virtual Paging
	The Floating-Point Registers
	The Debug and Test Registers

	Chapter 8: The 486SX and 487SX processors
	Introduction to the 80486SX and 80487SX Processors
	The 486SX Signal Interface
	Register Differences

	Chapter 9: The 486DX2 and 486SX2 Processors
	The Clock Doubler Processors

	Chapter 10: Write Back Enhanced 486DX2 Processor
	Introduction to the Write Back Enhanced 486DX2
	Advantage of the Write-Back Policy
	The Write-Through Policy
	The Write-Back Policy

	Signal Interface
	New Signals
	Existing Signals with Modified Functionality

	The MESI Model
	Write Back Enhanced 486DX2 System without an L2 Cache
	Cache Line Fill
	Bus Master Read — Processor Snoop
	Bus Master Write — Processor Snoop

	Write Back Enhanced 486DX2 System with an L2 Cache
	The L2 Cache with a Write-Through Policy
	The L2 Cache with a Write-Back Policy
	Snoop Cycle During Cache Line Fill

	Special Cycles
	Clock Control

	Chapter 11: The 486DX4 Processor
	Primary Feature of the 486DX4 Processor
	Clock Multiplier
	16KB Internal Cache
	5vdc Tolerant Design

	Glossary
	Index
	Contact Mindshare

	EISA_Specification_3.1

