
The BO Software C Compiler v1.4

Lifeboat Associates 1651 Third Avenue New York, N-.Y. 10028
Tel : (212) 860-0300 TWX: 710-581-2524 (LBSOFT NYK) Telex: 640693 (LBSOFT NYK)

Hl) ~oltwtlre
~
~

e C!ompiler vI.4
Hser's ~uide

Distributed by:
Lifeboat Associates
1651 Third Avenue

New York,N.Y. 10028
Tel. :(212)860-0300
TWX:71 0-581-2524

Telex:640693

(!oPVright © 1980 bV Leor Kolmun
Printed in the United ~tDtes ot ltmericD

Introduction

BO Software C Compiler v1.4
User's Guide

Leor Zolman
BD Software

33 Lothrop sf.
Brighton, Mass. 02135

I'm not even going to bother comparing C to BASIC or FORTRAN.
So, left with a few paragraphs to fill with an introduction, allow me to explain why

this software package is so inexpensive:
Before a selling price is set for a program in the microcomputer systems environ·

ment, the seller must decide whether or not large-scale ripoffs are be expected. For a
$300 BASIC interpreter, yes, one might expect ripoffs, so the price is deemed
"justifiable" by the vendors to insure an acceptable profit margin or "discourage"
ripons (?).

Hmmphh.
As far as BDS C is concerned, the price was set assuming there will not be any

ripping off, since I feel (as I have been advised numerous times) that the compiler is
really worth more than its selling price. The last few years, though, have seen a proli·
feration of prohibitively expensive quality software, and that fact (along with tho realiza·
tion that if I were shopping for a compiler li~.e C, I would possibly copy it from a friend
if it were priced any higher) has held thE} price down to a reasonable level.

There are no licenses or royalty agreements connected with this package, aside
from the standard agreement that the· package be used on one system only (which
each user implicitly agrees to in the act of unsealing the diskette envelope.) Thus,
users are free to develop software in BOS C and market the resulting object code,
along with any functions that may have been taken from the 8DS C library, without the
burden of having to pay SO Software any royalties. The whole idea behind this policy
is to encourage potential software vendors to use C for their development work, and
then perhaps to include source listings of their code with their packages and thereby
promote the use of C.

Lifeboat Associates are the exclusive distributors of the 8DS C package for CP 1M
systems. The disl~ you've received i3 legitimate only if it ha~ a Lifeboat label (with the
shopping bag) affixed to it. and on that label is a description of the pacl<age (made by
a hand stamp) with the serial number filled in. No matter where you bought your disk
from, it should have originated at Lifeboat; if YOII have any suspicions that the disk
you've paid for might be a bootleg, please contact either myself or Lifeboat about it im
mediately so we can put an cnd to such treachery.

Remember: If you rip C off or give it away, you will not be robbing some big cor·
poration; you'll be screwing an individU(.'l1 programnH:~r who's trying to marl~ct some use·
ful software at a reasonable price and still remain solvent.

·1·

80S C User's Guide May 1981

Objectives and limitations

The 80S C Compiler is the implementation of a healthy subset of the C Program
ming Language developed at BHII Laboratories. 1 The compiler itself runs on 8080/Z80
microcomputer systems equipped with the CP/M2 operating system, and generates
code to be run either under CP/M or at any arbitrary location in ROM or RAM
(although there must be a read/write memory area available at run time somewhere in
the target machine.)

The main objective of this project was to translate, from the minicomputer to the
microcomputer environment, a bit of the powerful, structured programming philosophy
on which the Unix3 operating system is based. 80S C provides a friendly environment
in which to develop CP/M utility applications, with an emphasis on elegant human in
terfacing for both compiler use and operation of the end· applications.

Unfortunately, the lexical oddities of C's linguistic structure do not conform as
readily to the 8080's hardware characteristics as they do to the POP-11 '5.

4 Operations
natural to the 11 (such as indexed-indirect addressing--a crucial necessity when deal
ing with automatic local storage allocation) expand into rather inefficient code se
quences on the 8080. Thus, 80S C is not likely to become quite as universal a systems
programming language to the 8080 as UNIX C is to the 11; but then, as better mi
croprocessors soon replace the 8 bit machines, you can bet there will be C compilers
available that generate code efficient enough to resign assembly language programming
to the history bool(s. Consider this package a warm-up to that era ...

80S C's big tradeoff (when compared to assembly language programming) is a
loss of object code efficiency (both spatial and temporal), at run-time, in favor of a
high degree of structure and comprehensibility at the development stage. In educCltion,
as well as in other non time-critical applications (such as non-gargantuan systems pro
gramminp), I believe the sacrifices are rather minimal in contrast to the benefits.

New Features of V1.4: A Summary for Users of Earlier Versions

There has been a hefty amount of revision, expansion and clean-up applied to the
package since the last release (v1.3x). A good portion of the changes were made in
response to user feedback, while others (mainly internal code generation optimizations)
resulted from the author's dissatisfaction with some of his earlier kludgery and short-cut
algorithms. 80S C version 1 has just about saturated its framework; version 2 is now
being developed in close conjunction with the MARC Disk Operating System (the work
of Edwin P. Zicmha)to provide a unified software development system for release
sometime in 1981. MARC is a "Unix-like" . operating system that happens to fit quite
comfortably in non-gargantuan a080/ZBO-based machines. MARC and ODS C should
get along nicely, and the price for the combined pack.age ought to prove tempting ... but

1. See The C Programming Language by Brian W. Kernighan and Dennis Ritchie
(PrenticelTc.li~1D-i8)for a J"lroperdescription of the language. This guide deals only
with details specific to the ODS C implementation; it docs not attempt to teach the
C language.

2. CP/M is a trademark of Digital Research, Inc.
3. Unix is a trademark of 8ell Laboratories.
4. PDP is a trademark of Digital Equipment Corporation.

-2-

80S C User's Guide General Description

this section is supposed describe new features of this software package, so here goes:
The assembly language sources for the BDS C run-time package (CCC.ASM --)

C.CCC) and all non-C-coded library functions (DEFF2.ASM -.) OEFF2.CRL) are now in
cluded with the package, so that they may be customized by the user for non·CP/M
environments. The new compiler and linker each accept an expanded command line
option repertoire that allows both the code origin and r /w memory data area to be
specified explicitly, so generated code can be placed into ROM. The run-time package
may be configured for non·CP /M environments by customizing a simple series of EQU
statements, and new special-purpose assembly language library functions may be easily
generated with the help of MAC (Digital Research's macro assembler) and the nifty new
macro package (CMAC.LlB) included with BOS C as standard equipment (sorry, MAC
isn't.)

On a higher level, the buffered I/O library can now be trivially customized to use
any number of sectors for internal disk buffering (older versions were limited to one
sector of buffering unless a special function package called BIGFIO.C was used;
BIGFIO.C is no longer necessary.) A new general purpose header file, BDSCIO.H, con
trols the buffering mechanism and also provides a standard nomenclature for some of
the constant values most commonly used in C programs. I recommend that all users
carefully examine BOSCIO.H, become intimate with its contents, and use the symbols
defined there in place of the ugly constants previously abundant in the sample pro·
grams. For example, the symbol 'ERROR'is a bit more illuminating than '·1'.

For Unix enthusiasts, an auxiliary function package (written in C) named "DIO.C"
has been included to permit I/O redirection and pipes a la Unix. If you do not need
this capability, then it isn't there to hog up space; if you DO need it, then you simply
add a few special statements to your program and specify DIO.CRL at linkage time,
then use the standard redirection syntax on the CP/M command line.

Documentation on all the miscellaneous new library functions has finally found its
way into the User's Guide, and the Function Summary section now goes into a little
more detail on some of the confusing aspects of the file I/O mechanism.

On the technical side, version 1.4 employs a single run-time stack configuration in
stead of the two-stack horror used in previous releases. All function parameters are
now passed on the stack, and all local storage allocation also takes place on the
stack. This leaves all of memory between the end of the externals (which still sit right
on top of the program code) and the stack (in high memory) free for generalized
storage allocation; several new library functions (al/ac, free, rsvstk, and sbrk) have been
provided for that purpose.

Last but not least, the code generator has been taught some optimization tricks.
The length of generated code has shrunk by 25% (on average) and execution time has
been cut by about 20% over version 1.32. Part of this cut in code bulk is due to the
new compiler option -e xxxx. This option to CC1 allows an absolute address for the
external data area to be specified at compile time, thus enabling the compiler to gen
erate absolute loads and stores (using the Ihld and shld 8080 ops) for external vari
ables.

Incompatibilities With En rlie r Va rsions

Since the run·time package has been totally reorganized since the last release,
CRL files r>rocluced by earlier versions of the compilor will not run when linked in with
modules produced by the new package. Therefore [lll programs should be recompiled
with 1.4, and old CRL files should be thrown away. There are also a few source incom-

-3·

8DS C User's Guide May 1981

patibilites that require a bit of massaging to be done to old source files. These are:

O. The statement

include "bdscio.h"

must be inserted into all programs that use buffered file I/O, and should be
inserted into all other programs so that the symbolic constants defined in
bdscio.h can be used.

1. All buffers for file I/O that were formerly declared as 134·byte character ar
rays should now be declared as 8UFSIZ·byte character arrays. For example,
a declaration such as:

char ibuf[134];

becomes:

char ibuf[8UFSIZ];

2. Comments now nest; i.e., for each and every "begin comment" construct
("I·") there must be a matching "close comment" (".1") before the com
ment will be considered terminated by the compiler. This means that you can
no longer comment out a line of code that already contains a comment by
inserting a II I·" at the start of the line; instead, a good practice would be
to insert a "I·" above the line to be commented out. and insert a ". I" fol
lowing the line. Although this is something that UNIX C expressly disallows, I
feel it is important to have the ability to comment out large sections of code
by simply inserting comment delimiters above and below the section; former
ly, any comments within such a block of code had to be removed first.

In version 1.4, the run-time package comes assembled to support up to eight open
files at anyone time, but previous versions had accepted up to sixteen. To allow more
than eight files, the Nf-CBS EQU 8 statement in the run·time package source
(CCC.ASM) must be appropriately changed and the file re·assembled. See the "CRL
Format" section for details on customizing the run·time package.

System Requirements

The practical minimum system configuration required by 80S C is a 32K CP/M en
vironment. Most sample programs included in the package will compile (without seg
mentation) and run on a 481< system.

ODS C loads the entire source file into memory at once and performs the compila-.
tion in-core, as opposed to paSSing the source text through a window. This allows a
compilation to be performed quickly; the main bottleneck tor most modestly· sized com
pilations is now the disk I/O involved in reading in the sourC(~ text and writing out the
CRL file, even though these operations take place as fast as CP/M can handle them.
The drawback to this scheme is that a source file must fit entirely into memory for the
compilation. This may sound bad at first, but it isn't really. Consider: a program in C is
actually a collection of many smaller functions, tied together by a main function. Each

-4-

BDS C User's Guide General Description

function is treated as an independent entity by the compiler,and may be compiled
separately from the other functions in a program. Thus a single program may be spread
out over many source files, each containing a number of functions; breaking files up
this way serves to minimize re-compilation time following minor changes as well as
keep the individual source files small enough to fit in memory.

Using the Compiler

The main BDS C package consists of four executable commands:

CC1.COM
CC2.COM
CLlNK.COM
CLlB.COM

C Compiler -- phase 1
C Compiler -- phase 2
Clinker
C Librarian

and three data files that are usually required by the linker:

C.CCC
DEFF.CRL
DEFF2.CRL

Aun-time initializer and subroutine module
Standard ("Default") function library
More library functions

CC1.COM and CC2.COM together form the actual compiler. CC1 reads in a given
source file from disk, crunches on it, leaves an intermediate file in memory, and au
tomatically loads in CC2 to finish the compilation and produce a CRL file as output. 1

The CRL (mnemonic for C ReLocatable) file contains the generated 8080 machine
code in a special relocatable format.

The linker, CLINK, accepts a CAL file containing a main function and proceeds to
conduct a search through all given CRL files (and DEFF.CRL and DEFF2.CRL automati
cally) for needed subordinate functions. When all such functions have been linked, a
COM file is produced.

For convenience, the CUS program is provided for the manipulation of CRL file
contents.

IMPORTANT: The command lines for all COM files in the package should be typed in to
CPIM without leading blanks. This also applies to COM files generated by the compiler
(where leading blanks on the command line will cause argc and argv to be miscalculat
ed.)

For example, here is the sequence required for compiling and linking a source file
named foo.c:

The compiler is invoked with the command:

A)cc1 foo.c (cr)

After printing its sign-on message, Ce1 will read in the file foo.c from disk and

1. If desired, the intermedinte file produced by ee1 may be written to disk and pro
cessed by CC2 separately; then, the intermediate file is given the extension .eci.

-5-

80S C User's Guide May 1981

crunch for a while. If there are no errors, CC1 will then give a memory usage
diagnostic and load in CC2. CC2 will do some more crunching and, if no errors
occur, will write the file Faa. CRL to disk. The next step brings in the linker:

A>clink faa [other files & options, if any] <cr>

Unless there are unresolved function references, the file FOO.COM will be pro·
duced, ready for execution via

A>foo [arguments] <cr>

Following are the detailed command syntax descriptions:

CC 1 .. The Pa rser

Command format: ce 1 name.ext [options] <cr>

Any name and extension are acceptable, provided the file having the exact given
name exists. By convention, the extension should be ".C". If the extension is omitted,
CC1 will not automatically tack on a default extension for you. The extension (if reo
quired) must be stated explicitly.

If a disk designation is given for the filename (e.g. "b:foo.c") then the source file
is assumed to reside on the specified disk, and the output also goes to that same disk.

Typing a control-C during compilation will abort the compilation and return to
CP/M.

Fo"owing the source file name may appear a list of option characters, each pre
ceded by a dash. Currently supported options are:

.p

·a x

·d x

·m xxxx

Causes the source text to be displayed on the user's con
sole, with line numbers automatically generated, after all
define and # include substitutions have been complet
ed.

Auto-loads CC2.COM from disk x fonowing successful
completion of CC1 's processing. By default, CC2 is as
sumed to reside on the currently logged-in disl<. If the
letter "z" is given for the disk specifier, then an intermedi
ate .eel file is written to disk for luter processing by an
explicit invokation of CC2.

Causes the CRL output of the compiler to be written to
disk x if no errors occur during CC1 or CC2. If the ·a z
option is also specified, then this option specifies which
disk the .eci file is to be written to. The default destina
tion disk is the same disk from which the source file was
obtained.

Specifies the starting location (in hex) of the run-time
package (C.CCC) when using the compiler to generate

-6-

80S C User's Guide

·e xxxx

General Description

code for non-standard environments. The run-time pack
age is expected to reside at the start of the CP 1M TPA by
default; if an alternative address is given by use of this
option, be sure to reassemble the run-time package and
machine language library for the given location before
linking, and give the -I, -e and -t options with appropriate
address values when using CLINK.
C.CCC, which always resides at the start of a generated
COM file, cannot be separated from main and other (if
any) root segment functions.
CC2 must be successfully auto-loaded by CC 1 for
this option to have any effect.

Allows the specification of the exact starting address (in
hex) for the external data area at run time. Normally, the
externals begin immediately following the last byte of pro
gram code, and all external data are accessed via indirec
tion off a special pointer installed by CLINK into the run
time package. If this option is given, then the compiler
can generate code to access external data directly (using
Ihld, shld, etc. type instructions) instead of using the
external data pointer. This will shorten and enhance the
performance of programs having much external data.
Suggestion: don't use this option while debugging a pro
gram; once the program works reasonably, then compile it
once with -e, putting the externals at the same place that
they werfl before (since the code will get shorter the next
time around.) Observe the "Last code address" value
from CLINK's statistics printout to find out by how much
the code size shrunk, and then compile it all again using
the appropriate lower address with the -e option. Don't
cut it too close, though, since you'll probably make mods
to the program and cause the size to fluctuate, possibly
eating into the explicitly specified external data area. CC2
must be successfully auto-loaded by eel in order
for this option to have any effect. See also the CLINK
option -e for more confusing details.

Causes the generated code to be optimized for speed.
Normally, the code generator replaces some awkward
code sequences with calls to special subroutines in the
run-time pacl<a{)c; while this reduces the size of the code,
it also slows it down because of the extra subroutine link
age overhead. If the -a option is specified, then many of
the subroutine calls are diGposed of in favor of in-line
code. This results in faster but longer object programs.
For the fastest possible code, the -e option should also
be used. If you want the code to be as short as possible,
use the -e option but non't use -0.

CC2 must be successfully auto-loaded by CC1 in
order for this option to have any effect.

-7-

80S C User's Guide

-r x

-c

May 1981

Reserve xK bytes for the symbol table. If an "Out of sym
bol table space" error occurs, this option may be used to
increase the amount of space allocated for the symbol
table. Alternatively, if you draw an "Out of memory" error
then . r may be used to decrease the symbol table size
and provide more room for source text. A better recourse
after running out of memory would be to break the source
file up into smaller chunks, though. The default symbol
table size is SK for OOOOh-based CP/M systems and 7K
for 4200h-based systems.

Disables the "comment nesting" feature, causing com
ments to be treated in the same way as by UNIX C and
previous version of 80S C; i.e., when -c is given, then a
line such as

/*printf("hello");/* this prints hello • /

is considered a complete comment. If ·c is not used, then
the compiler would expect another "I' sequence before
the comment would be considered terminated.

A single C source file may not contain more than 63 function definitions;
remember, though, that a C program may be made up of any number of source files,
each containing up to 63 functions.

If any errors are detected by CC1, the compilation process will abort immediately
instead of loading in the second phase (or writing the .eel file to disk, depending on
which options were given.)

Execution speed: about 20 lines text/second. After the source file is loaded into
memory, no disk accesses will take place until after the processing is finished. Don't
assume a crash has occurred until at least (n/20) seconds, where n is the number of
lines in the source file, have elapsed. THEN worry.

Examples:

A)cc1 foobar.c -r10 -ab <cr>

invokes CC1 on the file foobar.c, setting symbol table size to 10K bytes. CC2.COM is
auto-loaded from disk B.

A)cc1 c:belle.c -p -0 <cr>

invokes CC1 on the file hel/e.c, from disk C. The text is printed on the console (with
line numbers) following .# define aild # include processing, CC2.COM is auto-loaded
from the currently log~led disk (unles;5 CC1 finds errors) and the resulting code is op
timized for speed.

See the 80S C handbook (either printed or contained in the disk file C.DOC) for
more examples.

-S-

80S C User's Guide General Description

CC2 •• The Code Generator

Command format: CC2 name <cr>

Normally CC2.COM is loaded up automatically by CC1 and this command need not
be given. If given explicitly, then the file name.eel will be loaded into memory and
crunched upon.

If no errors occur, an output file named name.CRL will be generated and
name.Cel (if present) will be deleted.

CC2 does not take any options.
As with CC1, a disk designation on the filename causes the specified disk to be

used for input and output.
When CC1 auto-loads CC2, several bytes within CC2 are set according to the op

tions given on the CC1 command line. If CC2 is invoked explicitly (Le., not auto-loaded
by CC1) then the user must see to it that these values are set to the desired values
before CC2 begins execution. Typically this will not be necessary, but if you're very low
on disk storage and need to invoke CC2 separately, here is the configuration of data
values that need to be set (addresses are for O-based CP/M; add 4200h for the
modified versions):

Addr default

0103 00
0104 01
0105-6 0100h
0107-8 none
0109 00

option

-a
-0

-m
-e
-e

function

Non-zero if CC2 has been auto-loaded, else zero
Zero if -0 option (optimiZE:; for speed) desired, else 01
Origin address of C.CCC at object run-time
Explicit external starting address (if -e given to CC1)
Non-zero if an explicit external data address is specified

The'16-bit values must be in reverse-byte order (low order byte first, high last).

CC2 execution speed: about 70 lines/second (based on original source text.)

At any time during execution, if a control-C typed on the console input then compila
tion will abort and control will return to CP/M.

Example:

A)cc2 foobar <cr)

CLINK •• The Linker

Command format: CLINK name [other names and options] (cr)

The file narne.CRL must contain a main function; name.CRL along with any other
CRL files given will be searched (from left to right, in order of appearance) in an at
tempt to resolve all function references. After all given files have been searched,
DEFF.CRL and OEFF2.CRL (the standard library files) will be searched automatically.

By default, CLINK assumes all CRL files reside on the currently logged in disk. If a
disk designation is specified for the main filename, then tl7at disk becomes the default

-9-

8DS C User's Guide May 1981

for all CAL files given on the command line. Each additional CRL file may contain a
disk designation to override the default.

Should any unresolved references remain after all given CAL files have been
searched, CLINK will enter an interactive mode, and you will be given the opportunity
to specify other CAL files, re-scan the old ones, and see what functions are still miss
ing.

Note that if there is much cross-referencing between files (not a good practice)
then it may be necessary to re-scan some files several Umes before all reforences are
resolved.

Control-C may be typed during execution to abort the linkage and return to CP 1M.
Intermixed with the list of file names to search may be certain linkage options, pre

ceded by dashes. The currently implemented options are:

·s

·t xxxx

·e xxxx

Print out a statistics summary and load map to the con
sole.

(New for v1.44) Force the linking of each and every func
tion in the file fi/e_name.CRL into the program, regardless
of whether or not the functions have yet been referenced
from a higher level. This option is useful for speCifying
.CRL files containing alternate versions of some of the
standard 80S C library functions, such as "putchar" and
"getchar".

If a function in file_name.CRL has already been loaded
from a previous CRL file, then a message will be printed
to that effect and the new version of the function will be
not be used.

Set start of reserved memory to xxxx (hex). The value
xxxx becomes the operand of an Ix i sp instruction at the
start of the generated COM file. 1 Under CP 1M, the value
should be large enough to allow all program code, local,
and external variable storage needed to fit below it in
memory at run-time. If you are generating code to run in
ROM, then the highest address of the read/write memory
area plus one should be given here.

Forces beginning of external data area to be set to the
value xxxx (hex). Normally (under CP 1M) the external data
area follows immediately after the end of the generated
code, but this option may be given to override that de
fault. This is necessary when chaining is performed (via
exec or exec/) to make slIre that the new command's no
tion of where the external data begins is the same as the

1. Normally, when -t is not used, the generated COM file begins with the sequence:

Ihld base + 6 ;where "base" is either 0000 or 4200h
sphl

-10-

80S C User's Guide General Description

old one's. To find out what value to use, first CLINK all
the CRL files involved with the -s option, but without the
-e option, noting the "Data starts at:" address printed out
by CLINK for each file. Then use the maximum of all
those addresses as the operand of the ·e option for all
files when you CLINK them again. You'll have to CLINK all
the files twice, except for the file that had the largest
Data starting address during the first pass.

When generating code for ROM, this option should be
used to place externals at an appropriate location in r/w
memory.

If the main CRL file (name.CRL) was compiled with the -e
option specified to CC1, then CLINK will automatically
know about the address then specified on the CC1 com
mand line; but if any of the other CRL files specified in
the linkage contain functions compiled by CC1 without
use of the -e option, or with the value given to -e being
different from the value used to compile the main func
tion, the resulting COM file will not work correctly. You
may include CRL files that were compiled by CC1 without
use of the -e option only if you specify -e to CLINK with
an argument equal to that used to compile the main CRL
file.

-0 new_name Causes the COM file output to be named new_name.COM.
If a disk designator precedes the name, then the output is
written to the specified disk. By default, the output goes
to the currently logged-in disk. If a single· letter disk
specifier followed by a colon is given instead of a name,
then the COM file is written to the specified disk without
affecting the name of the file.

-w Writes a symbol table file with name name.SYM to disk,
where name is the same as that of the resulting COM file.
This symbol file contains the names and absolute ad
dresses of all functions defined in the linkage. It may be
used with SID for debugging purposes, or by the -yap
tion when creating overlay segments (see below.)

-y sname Reads in ("yanks") the symbol file named sname.SYM
from disl~ and uses the addresses of all function names
defined therein for the current linkage. ThG -wand -yap
tions are designed to work together for creating overlays,
as follows: when linking the root segment (the part of the
program that loads in at the TPA, first receives control,
and contains the run·time utility package), the -w option
should be given to write out a symbol table file containing
the addresf;es of all functions present in the root. Then,
when linking the swappable segments, the -y option

-11-

80S C User's Guide

-I xxxx

-v

-c x

-d ["args"]

. May 1981

should be used to read in the symbol table of the
"parent" root segment and thereby prevent multiple
copies of common library functions from being present at
run-time. This procedure may extend as many levels
down as required: while linking a swappable segment, the
-w option can be given along with the -y option, causing
an augmented symbol file to be written containing every
thing defined in the read-in symbol file along with new lo
cally defined functions. Then the "swapped-in" segment
can do some "swapping-in" of its own, etc. etc. Note that
the position of the -y option on the CLINK command line
is significant; i.e, the symbol file named in the option will
be searched only after any CRL files specified to the left
of the -y option have been searched. Thus, for best
results specify the -y option immediately after the main
CRL file name. If, upon reading in the symbols from a
SYM file, a symbol is found having the same name as an
already defined symbol, the new symbol will be ignored
and a message will be displayed on the console to that
effect.

If any of the symbols in the symbol file have already been
defined, then a message to that effect is printed on the
console and the old value of the symbol is retained.

For more information on using -y for generating overlay
segments, see the User's Guide appendix on the subject
of overlays.

Specifies the load address of the generated code to be
xxxx (hex). This option is only necessary when generating
an overlay segment (in conjunction with -v) or code to
run in a non-standard environment; in the latter case,
CCC.ASM mllst have been reconfigured for the appropri
ate location and assembled (and loaded) to create a new
version of C.CCC having origin xxxx. The -e and -t op
tions should also be used to specify the appropriate r /w
memory areas.

Specifies that an overlay segment is being created. The
run-time package is not included in the generated code,
since it is assumed that an overlay will be loaded into
memory while a copy of the run-time package is already
resident either at the base of the TPA by default, or at
the address specified in the -m option to Cel.

Instructs CLINK to obtain DE:FF.CRL, DEFF2.CRL and
C.CCC from disk x. By default, the currently logged disk is
assumed to contain these files.

To aid debugging, this option causes the COM file pro-

-12·

80S C User's Guide

-r xxx x

Examples:

General Description

duced by the linkage to be immediately executed (instead
of being written to disk.) If a list of arguments is specified
(enclosed in quotes), then the effect is as if the COM file
were invoked from the CCP with the given command line
options. This option must not be used for segments hav
ing load addresses other than at the base of the TPA
(i.e., -d should only be used for root segments.)

Reserves xxxx (hex) bytes for the forward-reference table
(defaults to about 600h). This option may be used to allo
cate more table space when a "ref table overflow" error
occurs.

A)clink foobar -s -t6000 -0 lucinda <cr>

expects the file FOOBAR.CRL to contain a main function, which is then linked with
any other needed functions from FOOBAR.CRL and DEFF* .CRL. A statistics summary is
printed out when finished, memory at Ox6000 and above is to be untouched by the
COM file when running, and the COM file itself is to be named LUCINDA.COM. All disk
I/O during linkage is performed on the currently logged-in disk.

A)clink b:ronni lori c:adrienne -s <cr>

takes the "main" function from RONNI.CRL (on disk B), links in any needed functions
from RONNI.CRL and LORI.CRL (on disk B), ADRIENNE.CRL (on C) and DEFF.CRL and
DEFF2.CRL (on the currently logged in disk), and prints out a statistics summary when
done. Since no -t option is given, CLINK assumes all the TPA (Transient Program Area)
is available for code and data. The COM file generated is named RONNI.COM by de
fault (since no -0 option was given) and the file is written to the currently logged in
disk.

When several files that share external variables are linked together, then the file
containing the main function must contain all declarations of external variables used
in all other files. This is so because the linker uses the number of bytes declared for
externals in the main source file as the allotment of external space for the resultant
COM file. Also, because external variables in BDS C are actually more like FORTRAN
COMMON than UNIX C externals. the ordering of external declarations within each indi
vidual source file of a program is very important. See the section entitled "Notes to Ap
pendix A ... " for more details.

CLiB .. The C Librarian

Command format: eLi B <cr>

The CLiA program is provided to facilitate the manipulation of CRL file contents.
CLIB allows you to transfer functions between CRL files; rename, delete, and inspect

-13-

80S C User's Guide May 1981

individual functions; create CRL files; and check out CRL file statistics.
Before delving into CLiB operation, it would be helpful to understand the structure

of CRL (C ReLocatable) files:

A CRL file consists of a set of independently compiled C functions, each a binary
8080 machine code image having its origin set at 0000. Along with each function
comes a list of "relocation parameters" for use by CLINK at linkage time. Also stored
with each function are the names of all functions called by the given function. Collec·
tively, the code, relocation list, and needed functions list make up a function module.

The first four sectors of a CRL file make up the directory for that file. In the
directory is a list of all function modules appearing in the file, and their locations within
the file. The total size of a CRL file cannot exceed 64K bytes (because function
modules are located via two byte addresses), but optimum efficiency is achieved by lim·
iting a CRL file's size to the size of a single CP 1M extent (16K).

For more detailed information about CRL files, see the section entitled "Adapting
8080 Machine Code Subroutines to the CRL File Format."

When CLiB is invoked, it will respond with an initial message and a "function
buffer size" announcement. The buffer size tells you how much memory is available
for intermediate storage of functions during transfers. Attempts to transfer or extract
functions of greater length will fail.

Following initialization, CLiB will prompt with an asterisk (*) and await a command.
To "open" a CRL file for diddling, say

*open file # [d:]filename <cr>

where file # is a single digit identifier (a-g) specifying the "file number" to be associat·
ed with the file filename as long as that file remains open. Up to ten files, therefore,
may be open simultaneously.

Note that a disk designator may now be specified for the filename, making the old
s command obsolete (previous versions allowed only one disk to be used at a time,
with the s command selecting the disk to be worked with.)

To close a file, say

*close file# <cr>

The given file number then becomes free to be assigned to a new file via open. A
backup version of the altered file is created having the name name.BRL.

It is not necessary to close a file unless either changes have been made to it or
you need the extra file number. A file opened just to be copied from, for example,
need not be closed.

When a CRL file is opened, a copy of the file's directory (first 4 sectors) is loaded
into RAM. Any alterations made to the file (via the use of the append. transfer, rename,
and delete commands) cause the in-core directory to be modified accordingly, but the
file must be closed before the updated directory gets written back onto the disk. Thus,
if you do something you later wish you hadn't, and you haven't closed the file yet, you
can abort all the changes made to the file simply by making sure not to close it. Undo·
ing appends and transfers requires a little bit of extra work; this will be explained later.

To see a list of all open files, along with some relevant statistics on each, say

*files <cr>

·14·

80S C User's Guide General Description

To list the contents of a specific CRL file and see the length of each function
therein, say

*list file# <cr>

There are several ways to move functions around between CRL files. When all files
concerned have been opened, the most straightforward way to copy a function (or set
of functions) is

*transfer source_file # destination_file# function_name <cr>

This copies the specified function[s] from the source file to the destination file, not
deleting the original from the source file. The function name may include the special
characters * and ? if an ambiguous name is desired. All functions matching the ambi
guous name will be transfelired (except for .the "main" function, which can never be
transferred.)

An alternative approach to shuffling files around is to use the "extract-append"
method. The extract command has the form

*ext ract file # function _name <cr>

It is used to pull a single function out of the given file and place it in the function
buffer (in RAM). CLIS is then made aware that the function buffer is occupied. To write
the function out to a file, say

*append file # [name] <cr)

where name is optional and should be given only to change the name under which the
function is to be saved.

* append file # <cr)

is sufficient to write the function out to a file without changing its name.
Only one file # may be specified at a time with append; to write the function out

to several CRL files, a separate append must be done for each file.
To rename a function within a particular CRL file, say

*rename file# old_name new_name <cr>

Note that this constitutes a change to the file, and a close must be done on the file to
make the change permanent.

To create a new (empty) CRL file, say

*make filename <cr)

This creates a file on disk called filename.CRL and initializes the directory to empty. To
write functions onto it, first use open, and then LIse transfer or "extract-append" as
described above. cLia will not allow you to create a CRL file if another CRL file a/
ready exists by the same name.

To delete a fUl1ction (or set of functions) from a file, use

-15-

8DS C User's Guide May 1981

"'delete file # function _name <cr>

Again, the function name may be specified ambiguously using the * and ? characters.
The file must be subsequently closed to finalize the deletion. Note that deleting a func
tion does not free up the associated directory space in the associated CRL file until
that me is closed. Thus if a CRL file directory is full and you wish to replace some of
the functions in it, you must first delete the unneeded functions, then close and re
open the file to transfer new functions into it.

A command syntax summary may be seen by typing the command

"'help <cr>

All commands may be abbreviated to a single letter.

Should you decide you really didn't want to make certain changes to a file, but it
is already after the fact, then the quit command may be used to get out of editing the
file and abort any changes made. As long as you haven't appended or transferred into
the file, typing

"'quit file# <cr>

is sufficient to abort, and frees up the file # as if a close had been done.
If you have appended or transferred into a file and you wish to abort, then the

quit command should still be used, but in addition you should re-open the file directly
after quitting and then close it immediately. The rationale behind this procedure is as
follows: when you do an append or a transfer, the function being appended gets writ
ten onto the end of the CRL file. Then, when you abort the edit, the old directory is
left intact, but the appended function is still there, hanging on, even though it doesn't
appear in the directory. By opening and immediately clOSing the file, only those func
tions appearing in the directory remain with the file, effectively getting rid of those
"phantom" functions.

To exit back to CPIM, give the quit command with no arguments, or type control-
C.

Here is a sample session of CLlB, in which the user wants to create a new CAL
file named NEW.CRL on disk B: containing all the functions in DEFF.CRL beginning
with the letter "p":

A>clib
SD Software C Librarian v1.3
Function buffer size :: xxxxx bytes

"'open 0 deff

"'make b:new

"'open 1 b:new

"'transfer 0 1 p*

-16-

80S C User's Guide General Description

·close 1

·quit

A)

CP/M "Submit" Files

To simplify the process of compiling and linking a C program (after the initial bugs
are out and you feel reasonably confident that CC1 and CC2 will not find any errors in
the source file), CP 1M "submit" files can be easily created to perform a.n entire compi
lation. The simplest form of submit fiiIE~, to simply compile, link and executl~ a C source
program that is self contained (do€!sn't require other special CRL files for function link
ages) would look like:

cel $l.c
CLINK $1 -s
$1

Thus, if you want to compile a SOUlrCE~ file named, say, L1FE.C, you need only type

A>submit c life <cr>

(assuming the submit file is named C. SUB.)

5t rangenesses

1) When using PIP to move CF~L files and C.CCC around between disks, make sure
to specify the [0] option so that PIP doesn't abort the operation upon en
countering the first Oxla byte in the file. This may not be necessary on newer
versions of PIP, but if part of your file disappears after a PIP transfer, at least
you'll know what to do.

2) When invoking any COM file in the 80S C package or any COM file generated
by tl113 compiler, your command line (as typed in to CP 1M) must: neve r contain
any IHading blanks or tabs. It seems that the CCP (console command processor)
does no·t parse the command line in the proper manner if leading white space
is introduced.

-17·

The .CRL Function Format and Other Low-Level Mechanisms

Introduction

This section is addressed toward assembly Imachine language programmers need
ing the ability to link in machine code subroutines together with normally compiled C
functions. It describes the CRL format and how to transform a machine language sub
routine into the format appropriate for .CRl files, so that the subroutine can be treated
just like any other function by the C Linker. Also described are the calling conventions
for function linkage and some utility routines available to assembly programmers in the
run-time package.

Included with version 1.4 of 80S C is a macro library called CMAC.LlS, for use
with Digital Research's MAC macro assembler. This library greatly simplifies the
conversion of assembly language subroutines into CRL functions.

With CMAC.LlB, creating a CRL file from any given assembly source routine is as
simple as adding "a few pseudo-ops, assembling, loading, and changing the COM ex
tension to CRL.

Although it is not absolutely necessary to know how a CRL file is organized in
order to effectively use the macro package and MAC to produce CRL files, a detailed
description of the CRL format is in order for general information and for the benefit of
users lacking MAC. So here goes ...

CRL Directories

The first four sectors of a CRL file 1 make up the directory. Each function module
in the file has a corresponding entry in the directory, consisting of the module's name
(up to eight characters [upper-case only to work correctly with CUS in versions before
1.2] with the high-order bit set only on the I~st character) and a two-byte value indicat
ing the module's byte address within the file.

Following the last entry must be a null byte (Ox8D) followed by a word indicating
the next available address in the file. Padding may be inserted after the end of any
function moelule to mal~e the next module's address line up on an even (say, 16 byte)

1. Locations Dx100 - Ox2ff (using C's notation for hexadecimal values) in memory if
you are ddt-ing the file.

2. The function module addresses within a CRL file are all relative to OxOOOO, and the
directory resides from OxOOOO to Ox01 ff. The lowest possible function module ad
dress is Ox205 (locations Ox200 - Ox204 are reserved.) When using ddt to examine
a CRL file, remember that all addresses must be offset by OxOl00 (or Ox4~300 for
"modified" CP 1M.) For example, if the directory lists a particular ftlnction module as
beginning at address Ox1ticf, then you'd look at memory location Ox16cf (or Ox58ct)
to see it.

-19-

8DS C User's Guide

boundary, but there must never be any padding in the directory itself.

Example: if a CRL file contains the following modules,

Name:
faa
yipee
blod

Length:
Ox137
Ox2c5
Ox94a

then the directory for that file might appear as follows: 1

46 4f cf 05
F a 0' nn

02 59 49 50 45 c5 50
nn YIP E E' nn

42 4c 4f c4 20 06 80 70 Of
8 LaO' nn nn null-entry

03
nn

May 1981

In some early version of the compiler, the word main was recognized as a key
word, and converted into a one-byte code having the value Ox9D. Thus, instead of see
ing the sequence "MAIN" (with the N's high order bit set) in old .CRL files, you'd just
see the Ox9d byte and an address. The new linker and librarian can both still handle
that strange case, but the new compiler doesn't put out Ox9D's for "MAIN" anymore.

E)t'ternal Data Area Origin and Size Specifications

The first five bytes of the fifth sector of a CRL file (locations Ox200-0x204 relative
to the start of the file) contain information that CLINK uses to determine the origin (if
specified explicitly to CC1 via the -e option) and size of the external data area for the
executing program at run-time. This information is valid ONLY if the CRL file containing
it is treated as the "main" CRL file on the CLINK command line; otherwise, the infor
mation is not used.

The first byte of the fifth sector has the value OxBD if the -e option was used dur
ing compilation to explicitly set the external data area; else, the value should be zero.
The second and third bytes contain the address given as the operand to the -e option,
if used.

The fourth and fifth bytes of the the fifth sector contain the size of the external
data area declared within that file (low byte first, high byte second.) CLINK always ob
tains the size of the external data area from these special locations within the main
CRL file. In CRL files which do not contain a main function, these bytes are unused.

Function Modules

Each function niodule within a CRL file is an independent entity, containing (in ad
dition to the binary machine-code image of the function itself) a set of relocation

1. Note that the last character of each name has bit 7 set high.

·20-

80S C User's Guide CRL Format, etc.

parameters for the function and a list of names of any other functions that it may call.
A function module is address-independent, meaning that it can be physically

moved around to any location within a CRL file (as it often must be when CUS is used
to shuffle modules around.)

The format of a function module is:

list of needed functions
length of body
body
relocation parameters

List of Needed Functions

If the function you are building calls other CRL functions, then a list of those
function's names must be the first item in the module. The format is simply a contigu
ous list of upper-case-only names, with bit 7 high on the last character of each name.
A zero byte terminates the list. A null list is just a single zero byte.

For example, suppose a function foobar uses the functions putchar, getchar, and
setmem. Foobar's list of needed functions would appear as:

47 45 54 43 48 41 d2 50 55 54 43 48 41 d2 53 45 54 4d 45 cd 00
get c h a r' put c h a r' set m e m' (end)

Length of Body

Next comes a 2-byte value specifying the exact length (in bytes) of the body (to
be defined next.)

Body

The body portion of a function module contains the actual 8080 code for the func
tion, with origin always at 0000.

If the list of needed functions was null, then the code starts on the first byte of
the body. If the list of needed functions specified n names, then a dummy jump vector
table (consisting of n jmp instructions) must be provided at the start of the body, pre·
ceded by a jump around the vector table.

For example, the beginning of the body for the hypothetical function foobar
described above would be:

jmp OOOch
jmp 0000
jmp 0000
jmp 0000
<rest of code>

c3 Dc 00 c3 00 00 c3 00 00 c3 00 00 <rest of function code>.

-21-

8DS C User's Guide May 1981

Relocation Parameters

Directly following the body come the relocation parameters, a collection of ad
dresses (relative to the start of the body) pointing to the operand fields of all instruc
tions within the body which reference a local address. CLINK takes every word being

. pointed to by an entry in this list, and adds a constant to it which equals the value of
the address where the first byte of the function ends up residing in the resultant COM
file.

The first word in the relocation list is a count of how many relocation parameters
are given in the list. Thus, if there are n relocation parameters, then the length of the
relocation list (including the length byte) would be 2n + 2 bytes.

For example, a function which contains four local jump instructions (which begin,
respectively, at locations Ox22, Ox34, Ox4f and Ox61) would have a relocation list look
ing like

04 00 23 00 35 00 50 00 62 00.1

Calling Conventions and Register Allocation

A" argument passing on function invokation, as well as all local (automatic)
storage allocation, now take place on a single stack at run time. The stack pointer is
kept in the SP register, and is initialized to the very top of the CP 1M TPA in the stan
dard configuration (or to the value specified as argument to ·t at linkage time.) Exter
nal storage usually sits directly on top of the program code, leaving all of memory
between the end of the external data and the high-memory stack free for storage allo
cation.

When a C-generated function receives control, it will usually: push BC, allocate
space for local data on the stack (decrement SP by the amount of local storage need
ed), and cOP2 the new SP value into the BC register for use as a constant base-of·
frame pointer. Note that the old value of BC must always be preserved for the calling
routine.

Let's assume the called function requires nlocl bytes of local stack frame space.
After pushing the old BC, decrementing SP by nloel and copying SP to BC (in that ord
er), the address of any automatic variable having local offset !offset may be easily com·
puted by the formula

(BC) + !offset

If the function takes formal parameters, then the address of the nth formal parameter
may be obtained by

(BC) + nloc! + 2 + 2n

1. Note that the addresses of the instructions must be .incremented by one to point to
the actual address operands neoding relocation.

2. The reason for copying the SP into Be instead of just addressing everything relative
to SP is thnt the SP fillctuates madly as things are pushed and popped, making ad·
dress calculation hopelessly confusing for poor lazy compiler hackers like me.

-22·

80S C User's Guide CRL Format, etc.

where n is 1 for the first value specified in the calling parameter list, 2 for the second,
etc. This last formula is obtained by noting that parameters are always pushed on the
stack in reverse order by the calling routine, and that pushing the arguments is the last
thing done by the caller before the actual call. After the called function pushes the BC
register, there will be four bytes of stuff on the stack between the current SP and the
first formal parameter (two 16-bit values: the saved BC, and the return address to the
calling routine.) Note that this scheme presupposes that each formal parameter takes
exactly 2 bytes of storage. When 4-byte variables come into play, the general formula
falls apart and the location of each parameter will depend on the types of the other
parameters. But let's leave something for version 2 ...

Upon completing its chore (but before returning), the called function de-allocates
its local storage by incrementing the SP by nloe/, restores the BC register pair by pop
ping the saved BC off the stack, and returns to the caller.

The caller will then have the responsibility of restoring the SP to the state it was in
before the formal parameter values were pushed; the called function can't do this be
cause there is no way for it to determine how many parameters the caller had pushed.

Formally, the responsibilities of a calling function are:

1. Push formal parameters in reverse order (last arg first, first arg last)

2. Call the subordinate function, making sure not to have any important values
in either the HL or DE registers (since the subordinate function is allowed to
bash DE and may return a value in HL.) The Be register can be considered
"safe" from alteration by the subordinate function; by convention, the func
tion that is called must always preserve the BC register value that was
passed to it. All functions produced by the compiler do this.

3. Upon return from the function: restore SP to the value it had before the for
mal parameters were pushed, taking care to preserve HL register pair (con
taining the returned value from the subordinate function.) The simplest way
to restore the stack pointer is just to do a "pop d II for each argument that
was pushed.

The protocol required of the called, subordinate function is:

1. Push the BC register if there is any chance it may be altered before return
ing to the caller.

2. If there are any local storage requirements, allocate the appropriate space on
the stack by decrementing SP by the number of bytes needed.

3. If desired, copy the new value of SP into the Be register pair to use as a
base-of-frame pointer. Don't do this if BC wasn't saved in step 1!

4. Perform the required computing.

5. De-allocate local storage by incrementing SP by the local frame size.

-23-

BDS C User's Guide May 1981

6. Pop old BC from the stack (if saved in step 1.)

7. Return to caller with the returned value in the HL register.

How Much Space Does the Stack Take Up?

The new single stack scheme has all local (automatic) data storage, formal paramo
eters, return addresses and intermediate expression values living on the one stack up
in high memory. Usually the stack pointer is initialized to the very top of memory (the
BOOS area) and grows down from there (the ·t option to CLINK may be used to over·
ride that default.) The maximum amount of space the stack can ever consume is
roughly equal to the amount of local data storage active during the worst case of func.
tion nesting, plus a few hundred bytes or so. If we call the amount of local storage in
the worst case n, then the amount of free memory available to the user may be figured
by the formula

topofmemO - endextO - (n + fudge)

where a fudge value of around 500 should be pretty safe. Topofmem() and endext()
are new library functions which return, respectively, a pointer to the highest memory lo
cation used by the running program (the top of the stack) and a pointer to the byte
following the end of the external data area. EndextO is thus the first byte of memory
available to the user.

Helpful Run·Time Subroutines Available in C.CCC (See CCC.ASM)

There are several useful subroutines in the run·time package available for Lise by
assembly language functions. The routines fall into three general categories: the local·
and-external-fetches, the formal-parameter fetches, and the arithmetic and logical rou
tines.

The first group of six subroutines may be used for fetching either an 8- or 16-bit
object, stored at some ~Jiven offset from either the Be register or the beginning of the
external data area, where the offset is specified as either an 8- or 16-bit value. For ex
ample: the intuitive procedure for fetching the 16·bit value of the external variable
stored at an offset of eoffset bytes from the base of the external data area (the painter
to which is stored at location extrns) would be

Ihld extrns
Ixi d,eoffset
dad d
mova,m
inx h
mov h,m
mov I,a

;get base of external area into HL
;get offset into HL
;add to base-of -externals pointer
;perform indirection to get
;value into HL

,Using the special call for retrieving an external variable. the same result may be ac
complished with

call sdei

-24-

80S C User's Guide CRL Format,. etc.

db eoffset ;if eoffset < 256

The second sequence takes up much less memory; 4 bytes versus 11, to be exact. If
the value of eoffset were greater than 255, then the Idei routine would be used instead,
with eoffset taking a dw instead of a db to represent. See the CCC.ASM file for com
plete listings and documentation on the entire repertoire of these value-fetching sub
routines.

The second class of subroutines are used primarily for fetching the value of a
function argument off the stack into HL andA. For example: say your assembly func
tion has just been called; a call to the subroutine ma1toh would fetch the first argu
ment into HL and A. ma 1toh (mnemonic for "Move Argument 1 TO H") always fetches
the 16-bit value present at location SP + 2 (as your function sees the SP.) A call to the
ma2toh ("Move Argument 2 to H") routine would retrieve the second 16-bit argument
off the stack in HL and A. If you push the BC register first, then you'd have to call
ma2toh in order to fetch the first argument, ma3toh to fetch the second, and so on for
ma4toh and the rest.

Another way to deal with function arguments is to call the routine called arghak as
the very first thing you do in your function (even before pushing BC.) Arghak copies
the first seven function arguments off the stack to a contiguous 14-byte area in the
r/w memory area (normally within C.CCC itself), making those values accessible via
simple Ihld operations for the duration of the function's operation ... assuming your func
tion doesn't call others which copy their arguments down there. After arghak has been
called, the first argument will be stored at absolute location arg 1, the second at arg2,
etc.

The final category of subroutines is the arithmetic and logical group, all of which
take arguments passed in HL and DE and return a result in HL.

Again, CCC.ASM is the source for the run-time package, in which all the above
mentioned routines are documented. The header file 8DS.L1B contains definitions of all
entry points to the routines within C.CCC (the assembled CCC.ASM) as provided in the
distribution version of the package. All your assembly language source files should
contain the MAC directive

maclib bds

so that the necessary subroutines may be referred to directly by name in your pro
grams. If you have need to modify CCC.ASM in order to customize the run-time pack
age, be sure to also modify 80S. LIB to reflect the new addresses.

Generating Code to Run At A rbitrary Locations and/or In ROM

Normally, BDS C produces a CP/M transient command file ready to run in
read/write memory located at the base of the TPA (100h or 4300h) , in response to a
direct command to the Console Command Processor. Under such normal cir
cumstances, the run-time packagH (C.CCC) and its private read/write memory area oc
cupy the first 1500-or-so bytes of the command file, and the compiled code (commenc-

-25-

80S C User's Guide May 1981

ing with the "main" function) follow immediately thereafter.
If all you ever want to do is generate CP 1M transient commands, then you're all

set. But in order to generate code that can run· at a different location or be placed into
ROM, it is necessary to: a) customize the run-time package, b) reassemble the
machine-coded portions of the function library, and c) recompile the C-coded portions
of the library. Here is the general procedure for customizing the package toward such
ends:

1. Alter and re-assemble the run-time package (CCC.ASM) to reflect the desired
configuration. If the target code will not be operating under CP IM~ setting
the appropriate EQU to zero will eliminate much CP 1M-related support code
and reduce the size of both the run-time package and the required rlw
memory area; non-CP 1M operation will also cause the CP 1M-dependent en
try points within the run-time package to remain undefined, so you won't ac
cidentally generate code to use them while developing assembly functions.
Also be sure to set the appropriate EQUs to define the code origin of the
package and the rlw memory location for the package's private data area.

After the binary image of CCC.ASM is produced (be it named CCC.COM or
whatever), rename it to be: C.CCC.

Note: After assembling CCC.ASM, you cannot simply "load" the CCC.HEX file
to produce a binary image unless the origin is exactly at the base of the
TPA. If your origin is elsewhere, use DDT or SID to read the file into memory
and move it down to the base of the TPA, then re- boot CP 1M and use the
"save" command to write the new C.CCC back to disk in binary form.

2. Edit the file BOS.L1B so that all addresses match the values obtained from
assembly of your new CCC.ASM. A good way to check this step is to rename
80S.L1B to be BOS.ASM, assemble it, and compare the values at the left
margin from BOS.PRN to those in CCC.PRN.

3. Using MAC, assemble the machine language library routine file (OEFF2.ASM),
load it, and rename it DEFF2.CRl. If any functions in DEFF2A.ASM are need
ed, then assemble that file also, rename it DEFF2A.CRL, and use CLIS to
transfer everything in there over to DEFF2.CRl. If you are configuring the
system for a non-CP/M environment, you'll have to purge all the CP/M
related functions from DEFF2.ASM and DEFF2A.ASM before assembly. See
the comments in CMAC.L1B for instructions on the use of the special
pseudo-ops for creating CRL files with MAC.

4. When using CC1 to compile code for a non standard (base-of-TPA) load ad
dress, specify the -m option to inform the compiler of the new run-time pack
age origin address. Make sure to re-compile STDLlB1.C and STDLlB2.C us
ing -m, and use CLIB to create a new DEFF.CRL composed of everything
from STDLlB1.CRL and STDLlB2.CRL.

5. Use the -I, ·t and -e options to tell CLINK the load address, top of r/w
memory and base of external data area, respectively, of the target program.

6. Burn the PROMsl

-26-

8DS C User's Guide CRL Format, etc.

Debugging I-lint

Use of the -0 option to CC1 will make interactive debugging of the generated
code (usin~~, say, SID) easier, since this will avoid the in-line data bytes that usually fol
low value fetching calls to the run time package.

-27-

The BOS C Standard Library on CP/M
A Function Summary

Included in the 80S C package are the files DEFF .CRL and DEFF2.CRL, making
up the standard library.1 These files contain a collection of useful C functions, in CRL
(C ReLocatable) format, available for use by all C programs. CLINK automatically
searches the library after all other CRL files given on the command line have been
searched once; thus, any functions you explicitly define in a source file that happen
to have the same name as library functions will take precedence over the library ver
sions, as long as CLINK finds your version of the function before getting around to
scanning the library.

CLINK begins its task by loading in the main function from the CRL file specified
as the first argument on the command line. If main calls any other functions (it usually
does), then each such function is searched for in the first CRL file, loaded if found,
and recursively examined for any functions it may need. If there are still more func
tions needed after loading everything that was needed from the first CRL file, then the
other CRL files on the command line (and finally DEFF.CRL and DEFF2.CRL) are
scanned. Because CLINK never yanks up a function unless some previously loaded
function has made a reference to it (or the ·f option is used), you may have to go
back and re-scan some files after the first pass has been completed. This only hap
pens when a function defined in one of the first CRL files isn't used at all until a func
tion in a later file calls it. By avoiding this type of backward-reference, the need for re
scanning may be eliminated.

In the following summary of all the major functions in DEFF.CRL and DEFF2.CRL,
each function is described both in words and in a C-type notation intended to illustrate
how a deiinition of that function would appear in a C program. Such notation pro
vides, at a glance, information such as whether or not the function returns a value
(and if so, of what type) and the types of any parameters that the function may take.
Here are some rules of thumb: if a function is listed without a type, then it doesn't re
turn a value (for example, exit and poke return no values.) Any formal parameters lack
ing an explicit declaration are implicitly of type int, although in many cases only the
low-order 8 bits of the value are really used and a value of type cha r would work just
as well.

The only time it is necessary to actually dec/are a library function before it is used
in a C program is when the function returns a value having a type other than int, and
that value is used immediately in an expression where the type has some significance.
A bit of experience will help to clarify when it is proper or unnecessary to declare cer-

1. For version 1.4, DEFF2.CRL contains all the assembly language functions from
DEFF2.ASM and DEFF2A.ASM (assembled using MAC, CMAC.LlB and BDS.L1(3),
while DEFF.CHL contains all the C-cocJcd functions from STDLlB1.C and STDLlB2.C.

-20-

8DS C User's Guide May 1981

tain functions; many of these decisions are a matter of style and/or portability.
Here is a summary of all major functions available in DEFF.CRL and DEFF2.CRL:

I. GENERAL PURPOSE FUNCTIONS

1. char cswO

2. exitO

3. int bdos(c,de)

4. char bios(n,c)

Returns the byte value (0-255) of the console
switch register (port OxFF on some mainframes).

Closes any open files and exits from an executing
program, re-booting CP/M. Does not automatically
call fflush on files opened for buffered output.

Calls location RAM + 5 (where RAM = OxOOOO for
most systems), first setting CPU register C to the
value c, and register pair DE to the value de.
Return value is the 16-bit value returned by the
BOOS in A and B (low-order 8 bits in A, high-order
8 bits in 8.) For CP 1M 2.x, this is the same as the
value returned in HL.

Calls the nth entry in the 810S jump vector table,
where n is 0 for the first entry (boot), 1 for the
second (wboot), 2 for the third(const), etc. Note
that the cold-boot function (where n is 0) should
never actually be used, since the CCP will be
bashed and probably crash the system upon entry.
Return value is the value returned in A by the
810S call.
There are some 810S calls that require a parame
ter to be passed in DE, and that return their result
in HL. Noto that a special version of bios that sup
ports this format, call it biosh, may easily be writ
ten in terms of the call function by noting that
memory locations 1 and 2 (or 4201 hand 4202h)
contain the address of the second entry in the
BIOS jump vector table.

-30-

80S C User's Guide

5. char peek(n)

6. poke(n,b)

7. inp(n)

8. outp(n,b)

9. pauseO

10. sleep(n)

The Standard Library

Returns contents of memory location n. Note that
in applications where many consecutive locations
need to be examined, it is more efficient to use in
direction on a character pointer than it is to use
peek. This function is provided for the occasional
instance when it would be cumbersome to declare
a pointer, assign an address to it, and use indirec
tion just to access, say, a single memory location.

Deposits the low-order eight bits of b into memory
location n. This can also be more effiCiently ac
complished using pointers, as in

*n = b;
(where n is a pointer to characters.)

Returns the eight-bit value present at input port n.

Outputs the eight-bit value b to output port n.

Sits in a loop until CP 1M console input interroga
tion indicates that a character has been typed on
the system console. The character itself is not in
put; before pause can be used again, a getchar()
call must be done to clear the status;
There is no return value.

Sleeps (idles) for nIl 0 seconds (on an 8080). The
only way to abort out of this before it wakes up is
to type control-C, which reboots CP 1M.
No return value.

-31-

8DS C User's Guide

11. int call(addr,a,h,b,d)

12. char calla(addr,a,h,b,d)

13. int abs(n)

14. int max(n1,n2)

15. int min(n1,n2)

16. srand(n)

17. srand1 (string)
char *string;

May 198.1

Calls a machine code subroutine at location addr,
setting CPU registers as follows:
HL (-- h; A (-- a; BC (.. b; DE (.. d.
Return value is whatever the subroutine returns in
HL.
The subroutine must, of course, maintain stack dis·
cipline.

Just like call, except the return value is the value
returned by the subroutine in A (instead of HL.)

Returns absolute value of n.

Returns the greater of two integer values.

Returns the lesser of two integer values.

Initializes pseudo-random number generator.
If n is zero, then srand asks the user to type a
carriage return and starts to count, internally.
When a key is finally hit by the user, the current
value of the count is used to initialize the random
seed.
If n is non-zero, then n itself is used as the seed.

Like srand(O), except that the given string is print·
ed as a prompt instead of the canned "Hit return
after a few. seconds:" message. Unlike srand,
though, the character typed is not gobbled up;
you must do a getchar to clear it.

·32·

80S C User's Guide

18. int randO

19. nrand(·l,sl,s2,s3)
nrand(O, prompLstring)
int nrand(l)

20. setmem(addr,count,byte)

The Standard Library

Returns next value (ranging: 0 < randO < 32768) in
a pseudo-random number sequence initialized by
srand or srand1.
To get a value between 0 and n-l inclusive, say:

randO % n

A new, "better quality" random number generator,
written by Prof. Paul Gans to emulate the CDC
6600 random number generator in use at the
Courant Institute of Mathematical Sciences. The in
itialization mechanism was later added for semi
compatibility with the srand and srand1 conven·
tions.
The first form sets the internal 48-bit seed equal
to the 48 bits of data specified by s1, s2 and s3
(ints or unsigneds.)
The second form acts just like the srand1 function:
the string pointed to by prompt-string is printed
on the console, and then the machine waits for
the user to type a character while constantly incre
menting an internal 16-bit counter. As soon as a
character is typed, the value of the counter is
plastered throughout the 48·bit seed. Note that the
console input is not cleared; a subsequent
getchar() call is required to actually sample the
character typed.
The final form simply returns the next value in the
random sequence, with the range being

o < nrand(1) < 32768.
Note that the internal seed maintained by nrand is
separate from the seed used by srand, srand1 and
rand (the last three routines use the first 32 bits of
the area labeled rseed within the run-time package
data area, while nrand maintains its own distinct
internal seed.)

Sets count contiguous bytes of memory beginning
at addr to the value byte. This is efficient for quick
initialization of arrays and buffer areas.

-33·

8DS C User's Guide

21. movmem(source,dest,count)
char *source, *dest;

22. qsort(base,nel,width,compar)
char *base;
int (*compar)();

23. int exec(prog)
char *prog;

May 1981

Moves a plock of memory count bytes in length
from source to dest. This new version will handle
any configuration of source and destination areas
correctly, knowing automatically whether to per
form the block move head-to-head or tail·to-tail. If
run on a Z80 processor, the Z80 block move in·
structions are used. If run on an 8080 or 8085, the
normal 8080 ops are used.

Does a "shell sort" on the data starting at base,
consisting of nel elements each width bytes in
length. compar must be a pointer to a function of
two pointer arguments (e.g. x,y) which returns

1 if *x) *y
·1 if *x < *y
o if *x = = .y.

Elements are sorted in ascending order. See the
OTHELLO.C program for a good example of using
qsort.

Chains to (loads and executes) the program
prog.COM.
Prog must be a null-terminated string pointer
specifying the file to be chained. A string constant
(such as "faa") is perfectly reasonable, since it
evaluates to a pointer.
If the command to be executed was generated by
the C compiler, then it should have been linked
with the CLINK option -e specified if external vari·
abies need to be shared between the execing and
execod files. See the CLINK documentation for
details on the proper usage of this option.
There may be no transfer of open file ownership
through an exec call. The only possible shared
resource under ·this scheme is external data ... to al·
low this, the external data starting address must
be made the same for all files involved, using the
CLINK option -e.

·34·

8DS C User's Guide

24. int execl(prog,arg1,arg2, ... ,O)
char ·prog, *arg1, *arg2, ...

25. execv(filename,argveclor)
char *filename;
char * argvector[];

The Standard Library

Returns ·1 on error ... but then, if it returns at all
there must have been an error.

Allows chaining from one C COM file to another
with parameter passing through the argc & argv
mechanism. Prog must be a null· terminated string
painting to the name of the COM file to be
chained (the .COM need not be present in the
name), and each argument must also be a null·
terminated string. The last argument must be zero.
Execl works by creating a command line out of the
given parameters, and proceeding just as if the
user had typed that command line in to the CCP
of CP 1M. For example, the call

execl("foo", "bar", "zot" ,0);
would have the same effect as if the command

A)foo bar zot (cr)
were given to CP 1M from the console. Unfor·
tunately, the built·in CPIM commands (such as
"dir", "era", etc.) cannot be invoked with exec/.
The total length of the command line constructed
from the given argument strings must not exceed
80 characters.
·1 returned on error (again, though, if it returns at
all then there must have been an error.)

Similar to exec I, except that the argument texts
must be placed into an array instead of specified
explicitly in the calling sequence. The argvector
parameter must be a pointer to an array of string
pointers, where each string pointer paints to the
next argument and the last one is NULL. This
mechanism allows chaining with a variable number
of arguments to be performed.
If the program filename.COM is not found, then
the message "Oroken Pipe" will be printed on the
console and control will return to CP 1M.

·35·

8DS C User's Guide

26. int swapin(filename,addr)
char *filename;

27. char *codendO

28. char *externs()

29. char *endextO

30. char *topofmemO

May 1981

Loads in the file whose name is the null-terminated
string pointed to by filename into location addr in
memory. No check is made to see if the file is too
long for memory; be careful where you' load it!
This function would normally be used to load in an
overlay segment for later execution via an indirec
tion on a pointer-to-function variable; it may be
used to load in any type of file, though.
Returns -1 if there is an error in reading in the file.
Control is not transferred to the loaded file.

Returns a pointer to the first byte following the
end of root segment program code. This will nor
mally be the beginning of the external data area
(see externsO below.)

Returns a pointer to the start of the external data
area. Unless the -e option was used with CCl
and/or with CLINK, this value will be the same as
codend().

Returns a pointer to the first byte following the
end of the external data area.

Returns a pointer to the last byte of the TPA (this
. is normally the top of the stack.) The value re

turned by topofmem() is not affected by use of the
-t option at linkage time.

-36-

80S C User's Guide

31. char *alloc(n)

32. free(allocptr)
char *allocptr;

33. char *sbrk(n)

The Standard Library

Returns a pointer to a free block of memory n
bytes in length, or 0 if n bytes of memory are not
available. This is roughly the storage allocation
function from chapter 8 of Kernighan & Ritchie,
slightly simplified for the case where type
allignment restrictions are nonexistent. See the
book for details.
Note that the

define ALLOC_ON 1
statement in the header file BDSCIO. H must be
un-commented (enabled) and STDLlB1.C re
compiled to allow use of al/oe and free. See the
comments in BDSCIO.H for more details on this
process.
BDSCIO.H must be # included in al/ files of a pro
gram that uses the alloc-free pair, since there is
some crucial external data declared therein. Your
best bet would be to put an

include "bdscio.h"
statement at the start of the global (.H) header file
that contains all your external declarations.

FI ees up a block of storage allocated by the al/oe
function, where al/oeptr is a value obtained by a
previous call to alloe. Free need not be called in
the reverse order of previous al/oc calls, since the
al/ae-free pair maintain a linked list of data struc
tures and can tolerate any order of allocation/de
allocation.
Calling free with an argument not previously ob
tained by a call to al/oc can do miserable things to
your system.
See al/ocO above.

This is the low-level storage allocation function,
used by al/oc to obtain raw memory storage. It re
turns a pointer to n bytes of memory I or -1 if n
bytes aren't available. The first call to sbrk returns
a pointer to the location in memory immediately
following the end of the external data area; each
subsequent call returns a block contiguous with
the last. until sbrk detects that the locations being
allocated are getting dangerously close to the

-37-

80S C User's Guide

34. rsvstk(n)

II. CHARACTER INPUT IQUTPUT

35. int getcharO

May 1981

current stack pointer value. By default,
"dangerously close" is defined as 1000 bytes. To
alter this default, see the next function. If you
plan to use al/ocO and freeO in a program, but
would also like some memory immune from alloca·
tion to be. available for scratch space, use sbrk()
to request the desired memory instead of al/acO.
Sbrk() calls may be made at any time (independent
of any al/acO and (reeO calls that may have been
made.)

This should be used before any calls to sbrk or a/·
lac, so that the storage allocation functions reject
any allocation calls which would leave less than n
bytes between the end of the allocated area and
the current value of the stack pointer (remember
that the stack grows down from high memory.)
If rsvstk() is never used, then storage allocation is
automatically prevented from approaching closer
than 1000 bytes to the stack (just as if an
rsvstk(1000J call had been made.)

Returns next character' from standard input stream
(CP 1M console input.)
Re·boots CP 1M on control·C.
Carriage return echos CR-LF to the console output
and returns the newline ('\n') character.
A value of ·1 is returned for control·Z; note that
the return value from getchar must be treated as
an integer (as opposed to a character) if -1 is to
be recognized. If you declare getchar to be a
character or assign its return value to a character
variable, then the value 255 should be checked for
instead (to detect the EOF character, control·Z.)

·38-

8DS C User's Guide

36. char ungetch(c)

37. int kbhit()

38. putchar(c)

39. putch(c)

The Standard Library

Causes the character c to be returned by the next
call to getchar. Only one character may be
"ungotten" between consecutive getchar calls;
normally, zero is returned. If there was already a
character pushed back since the last getchar()
call, then the value of that character is returned.

Returns true (non-zero) if input is present at the
standard input (keyboard character hit); else re
turns false (zero.) In no case is the input actually
sampled; to do so requires a subsequent getchar()
call.
Note that I<bhit will also return true if the ungetch
function was used to push back a character to the
console since the last getchar() call.

Writes the character c to the standard output
(CP 1M console output.)
The newline ('\n') character is transformed into a
CR-LF combination.
If a control-C is detected on console input during
a putchar call, program execution will halt and
CPIM will be re-booted. If any other character is
typed during a putchar call, then that character
will be completely ignored.
If you don't want the console input interrogated
during console output, use the putch function,
described next:

Like putchar, except that the console input is NOT
interrogated for control-C (or anything else) during
output; any characters detected at the console in
put will be thrown away.

-39-

80S C User's Guide

40. puts(str)
char *str;

41. char *gets(str)
char *str;

42. printf(format,arg 1 ,arg2,,,.)
char *format;

May 1981

Writes out the null-terminated string sfr to the
standard output. No automatic newline is append
ed.

Collects a line of input from the standard input
into the buffer sfr.
Returns a pointer to the beginning of sfr (the
value gets was called with.)
The SDOS call to buffer up a line of input is used;
hence, the length of the provided buffer must be
at least 3 bytes longer than the .Iongest string you
ever expect entered. Caution dictates making the
buffer large, since an overflow here would most
probably destroy neighboring data.

Formatted print function. Output goes to the stan
dard output. Conversion characters supported in
the standard version:

d decimal integer format
u unsigned integer format
c single character
s string (null-terminated)
o octal format
x hex format

Each conversion is of the form:

% [.J [[0] w] [.n] <conv. char.>

where w specifies the width of the field, and n (if
present) specifies the maximum number of charac
ters to be printed out of a string conversion. De
fault value for w is 1.
The field will be right-justified unless the dash is
specif(~d following the percent sign, forcing left
justification. If the value for w is preceded by a
zero, then zeros are used as padding on the left
of the field instead of spaces. This feature has
been implemented for v1.43 of the package, and is
very useful for printing hexadecimal valuos; the

-40-

8DS C User's Guide

43. int scanf(format,arg1,arg2, ...)
char *format;

The Standard Library

feature had been neglected in previous versions.
An enhanced version of printf, incorporating the e
and f format conversions for floating point values
used in Bob Mathias's floating point package, is
available for compilation in the file FLOAT .C.

Formatted input. This is analogous to printf, but
operates in the opposite direction.
The %u conversion is not recognized; use %d for
both signed and unsigned numerical input.
The field width specification is not supported, but
the assignment suppression character (*) works
OK.
The arguments to scanf must be pointers!!!!!.
Note that input strings (denoted by a % s conver
sion speCification in the format string) are terminat
ed only when the character following the % s in
the format string is scanned.
Returns the number of items successfully assigned.

For a more detailed description of scant and
printf, see Kernighan & Ritchie, pages 145-150.

III. STRING AND CHARACTER PROCESSING

44. int isalpha(c)
char c;

45. int isupper(c)
char c;

Returns true (non-zero) if the character c is alpha
betic; false (zero) otherwise.

Returns true if the character c is an upper case
letter; false otherwise.

-4t-

80S C User's Guide

46. int islower(c)
char c;

47. int isdigit(c)
char c;

48. int toupper(c)
char c;

49. int tolower(c)
char c;

50. int isspace(c)
char c;

51. sprintf(string,format,arg1,arg2, ...)
char *string, *format;

May 1981

Returns true if the character c is a lower case
letter; false otherwise.

Returns true if the character c is a decimal digit;
false otherwise.

If c is a lower case letter, then c's upper case
equivalent is returned; else c is returned.

If c is an upper case letter, then c's lower case
equivalent is returned; else c is returned.

Returns true if the character c is a "white space"
character (blank, tab or newline); false otherwise.

Like printf, except that the output is written to the
memory, location pointed to by string instead of to
the console.

52. int sscanf(string,format,arg1,arg2, ...)
char *string, *for'mat;

Like scanf, except the text is scanned from the
string pointed to by string instead of the console
keyboard.
Return~ the number of items f,uccessfully aSRigned.
Remember that the arguments must be pOinters to
the objects requiring aSSignment.

-42~

8DS C User's Guide

53. strcat(s1,s2)
char ·s1, ·52;

54. int strcmp(s1,s2)
char ·s1, ·s2;

55. strcpy(s1,s2)
char ·s1, ·s2;

The Standard Library

Concatenates s2 onto the tail end of the null ter·
minated string s1. There must, of course, be
enough room at s1 to hold the combination.

Returns:
a positive value if 51) s2
zero if 51 = = s2
a negative value if s1 < s2

(ASCII collating sequence used for comparisons)

Copies the string s2 to location s 1.
For example, to initialize a character array named
foo to the string "barzot", you'd say:

strcpy(foo, "barzot");
Note that the statement

faa = "barzot";
would be incorrect since an array name should
not be lIsed as an Ivalue without proper subscript
ing. Also, the expression "barzot" has as its value
a pointer to the string "barzot", not the string it
self. Thus, if the latter construction is preferred,
then foo must be declared as a painter to charac
ters. This approach is dangerous, though, since
the natural method to append something onto the
end of too would be

strcat(foo, "mumble");
overwriting the six bytes following "barzot" (wher
ever "barzot" happens to be stored), probably with
dire results.
There are two viable solutions. You can figure out
the largest number of characters that can possibly
be assigned at too and pad the initial assignment
with the appropriate number of blanks, such as in

foo = "barzot "; foo[6] ::: '\0';
or, you can declare a character array of sufficient
size with

char work[200], *foo;
then have too point to the array by saying

-43-

80S C User's Guide

56. int strlen(string)
char *string;

57. int atoi(string)
char *string;

58. initw(array,string)
int ·array;
char *string;

59. initb(array,string)
char *array, ·string;

May 1981

faa = work;
and assign to faa using

strcpy(foo, "whatever _the_beep");

Returns the length of string (the number of char
acters encountered before a zero-byte is detected.)

Converts the ASCII string to its corresponding in
teger (or unsigned) value. Acceptable format: Any
amount of white space (spaces, tabs and new
lines), followed by an optional minus sign, followed
by a consecutive string of decimal digits. First
non-digit terminates the scan.
Zero returned if no legal value found.

This is a kludge to allow initialization of integer ar
rays. Array should point to the array to be initial
ized, and string should point to an ASCII string of
integer values separated by commas. For example,
the UNIX construct of

int values[5] = {.23,0, 1 ,34,99}
can be simulated by declaring values normally with

int values[5];
anel then inserting the statement

initw(values, "-23,0,1,34,99");
somewhere appropriate.

The character equivalent of the above. String is of
the same format as for initw, but the low order 8
bits of each value are used to assign to the con
secutive bytes of array.
NOTE: UNIX C programs will sometimes assign
negative values to character variables, since UNIX
C character variables are signed 8 bit quantities.

-44-

BOS C User's Guide

60. int getval(strptr)
char • ·strptr;

IV. FILE 1/0

The Standard library

With 80S C, negative values can only be meaning
fully assigned to normal int variables.

A spin·off from initw and initb:
Given a pointer to a pointer to a string of ascii
values separated by commas, getval returns the
current value being pointed to in the string and
updates the pointer to point to the next value.
(Why can't strptr be a simple pointer to charac
ters? 1)
When the terminating null byte is encountered, a
value of -32760 is returned. Initw will thus not ac
cept a value of -32760. If you need to use that
value, you're welcome to go into STDLlB.C and
change the terminating value to be whatever your
heart desires (you'll have to change getval and in
itw.)

There are two general categories of file 1/0 functions in the 80S C library. The
low-level (raw) functions are used to read and write data to and from disk in even
sector-sized chunks. The buffered 1/0 functions allow the user to deal with data in
more manageable increments, such as one byte at a time or one text-line at a time.
The raw functions will be described first, and the buffered functions (beginning with
fopen) later.

Whenever a function takes a filename as an argument, that filename must be ei
ther a literal string or a pOinter-to-characters that paints to a legal filename (actually, a
literal string is a pointer to characters.) Legal filenames may be upper or lower case,
but there must be no white space within the string. The filename may contain a leading
disk designator (single character) followed by a colon to specify a particular CPIM
drive; the default is the usual "currently-logged disk. If certain bizarre characters (such
as control-characters) are detected within a filename, the filename will be rejected and
an error value will be returned by the offended function. This somewhat alleviates .the
problem caused by trying to open a file whose name contains unprintable characters,
but the mechanism still isn't entirely foolproof. Be careful when processing filenames.

1. Because the pointer-to-characters pointing to the text string must be altered by the
gelval routine; any object which is to be altered by a function must be manipulated
through a pointer to such an object. Thus, a pointer-to-characters must be manipu
lated through a pointer-to-pointer-to-characters.

-45-

80S C User's Guide

61. int creat(filename)
char *filename;

62. int unlink(filename)
char *filename;

63. int rename(old,new)
char *old, *new;

64. int open(filename,mode)
char *filename;

65. int close(fd)

May 1981

Creates a (null) file with the, given name, first
deleting any existing file having that name. The
new file is automatically opened for writing, and a
file descriptor is returned for use with read, write,
seek, tell, fabort, and close calls.
A return value of ·1 indicates an error.

Deletes the specified file from the filesystem.
Use with caution!!!

Renames the file in the obvious manner.
The file specified must not be open while being
renamed.
This function always returns -1 for CP 1M 1.4 and
earlier versions of CP/M; For 2.0 and MP/M, it
should return 0 for success and ·1 only on error.

Opens the specified file for input if mode i,s zero;
output if mode is equal to 1; both input and out
put if mode is equal to 2.
Returns a file descriptor, or -1 on error. The file
descriptor is for use with read, write, seek, tell, fa
bort and close calls.

Closes the file specified by the file descriptor fd,
and frees up fd for lise with another file. With ver
sion 1.4, disk accesses will only take place when a
file that was opened for writing is closed; if the
file being closed was only open for reading, then
the fd is treed up but no actual CP 1M call is per·
formed to close the file.
Close does not do an automatic fflush for buffered
1/0 files.
Returns ·1 on error.

·46~

80S C User's Guide

66. int fabort{fd)

67. int read(fd,buf,nbl)
char *buf;

68. int write(fd,buf,nbl)
char *buf;

The Standard Library

Note that all open files are automatically closed
upon return to the run-time package from the
main function, or when the exit function is in
voked. To prevent an open file from being closed
(perhaps because there is a chance that garbage
was written into it), use the fabort function.

Frees up the file descriptor fd without bothering to
close the associated file. If the file was only open
for reading, this will have no effect on the file. If
the file was opened for writing, though, then any
changes made to the currently open extent since it
was last opened will be ignored, but changes
made in other extents will probably remain in
effect. Don't fabort a file open for write, unless
you're willing to lose the data written into it.

Reads nbl blocks (each 128 bytes in length) into
memory at buf from the file having descriptor fd.
The r/w pointer associated with that file is posi
tioned following the just-read data; each call to
read causes data to be read sequentially from
where the last call to read or write left off. The
seek function may be used to modify the r /w
pointer.
Returns the number of blocks actually read, 0 for
EOF, or -1 on error. Note that if you ask for n
blocks of data when there are only m blocks actu
ally left in the file (where 0 < m < n), then m
would be returned on that call, 0 on the next call
(provided seek isn't used), and then -1 on subse
quent calls.

Writes nbl blocks from memory at buf to file fd.
Each call to write causes data to be written to disk
sequentially from the point at which the last call to
read or write left off, unless seek, is used to modify
the r/w pointer.
Returns -1 on error, or the number of records suc
cessfully written. If the retun value is non-negative

-47·

80S C User's Guide

69. int seek(fd,offset,code)

70. int tell(fd)

71. int fopen(filename,iobuf)
char *filename;
struct _buf "'iobuf;

.May 1981

but different from nbl,it probably means you ran
out of disk space; this should be regarded as an
error.

Modifies the next read/write record (sector) painter
associated with file (d.
If code is zero, then sets the r/w pointer to· offset
records.
If code is equal to 1, then sets the r /w pointer to
its current value plus offset (offset may be nega
tive.)
A return value of -1 indicates that the resulting
offset was out of range for the given file (cannot
seek past EOF). If this occurs, the internal data for
the file usually get screwed up royally; the file
should be closed (or fabort-ed) and re-opened be
fore any further operations on it take place. Under
CP/M, it is possible to seek without error to any
point within the currently active extent (16K byte
portion) of a file, but subsequent read or . write
operations under such circumstances may cause
unpredictable results.
SeeKs should not be performed on files open for
buffered I/O.

Returns the value of the r /w pointer associated
with file fd. This nurnber indicates the next sector
to be written to or read from the file, starting from
O.

Opens the specified file for buffered (one datum at
a time) input, and initializes the buffer painted to
by iobuf. Jabuf should be a BUFSIZ-byte area
reserved for use by the buffered I/O routines. The
value of BUFSIZ is determined by the 80S C stan
dard 1/0 header file (BOSCIO.H), which should be
include-cd in any program using buffered I/O.
Former versions of the package used a fixed
length buffer (1 ~34 bytes, to be exact) which limited
the 1/0 buffering to one sector at a time; the 1.4

-48·

BOS C User's Guide

72. int getc(iobuf)
struct _buf. *iobuf;

The Standard Library

package allows the user to customize the size of
the I/O buffers by changing a # define statement
in the BOSCIO.H file. See the comments in
BOSCIO.H for more details.
The technical structure of the buffer is

struct _buf {

};

int _fd;
int _nleft;
char • _nextp;
char _buff[NSECTS * SECSIZ];

but all that really matters to the user is that it is a
BUFSIZ-byte area, declarable by

char samplebuf[BUFSIZ];
Return value is the file descriptor for the opened
file; it need not be saved after the initial test for
an error, since all needed information is automati
cally maintained in the 1/0 buffer. Note that the
new fclose function, for closing buffered 1/0 files,
eliminates the need for saving the file descriptor
returned by 'open since the close function need
no longer be used.
-1 returned on error.

Returns the next byte from the buffered input file
opened via (open having buffer at iobuf. No spe
cial codes are recognized; control-Z comes
through as control-Z (not -1), CR and LF are ordi
nary characters, etc.
getc(O) is equivalent to getchar().
getc(3) reads a character from the CP/M "reader"
device.
The values 0 and 3 may be used in place of the
iobuf argument with any buffered input function, to
direct the input from the console or the reacler. -1
is returned on error or on physical end-of-file.
When reading in text files with getc, both the
value Ox1 a (CPMEOF) and the normal error value
(-1, or ERROR) should be checked for when test
ing for end-of-file, since some CPIM text editors
neglect to place a Ox1 a byte (control-Z, CPMEOF)
at the end of a text file under certain cir
cumstances.

-49-

80S C User's Guide

73. ungetc(c,iobuf)
char e;
struet _buf *iobuf;

74. int getw(iobuf)
struet _but *iobuf;

75. int fcreat(filename,iobuf)
char *filename;
struct _buf *iobuf;

76. int putc(c,iobuf)
char c;
struct _buf *iobuf;

May 1981

Pushes the character c back onto the input buffer
at iobuf. The next call to getc on the same file will
then return c. No more than one character should
be pushed back at a time.

Returns next 16 bit word from buffered input file
having buffer at iobuf, via two consecutive calls to
getc.
-1 returned on error.

Creates a file named filename (first deleting any
existing file by the same name) and opens the file
for buffered output. lobuf should point to a
BUFSIZ-byte buffer.
Returns the fd for the file, or ·1 on error.

Writes the byte c to the buffered output file having
buffer at iobuf. lobuf should have been initialized
by a call to fcreat.
No translations are performed; text lines can be
separated by either CR-LF combinations (for com
patibility with standard CP 1M software) or by new
line (LF) characters a la UNIX (for increased
efficiency and straightforwardness.)
putc(c,1) is equivalent to putchar(c).
putc(c,2) writes the character to the CPIM "list"
device.
putc(c,3) writes the character to the CPIM
"punch II device.
When writing out text to a file, be sure to ter
minate the text with a control-Z (Oxl a, CPMEOF)
byte. ,
The values 1, 2, and 3 may be used in place of
iobuf with any buffered output routines to direct

-50-

80S C User's Guide

77. int putw(w,iobuf)
struct _buf * iobuF;

78. int fflush(iobuf)
struct _buf *iobuf;

79. int fclose(iobuf)
struct _buf *iobuf;

The Standard Library

the output character to the console, list device, or
punch device instead of to a file.
A call to fflush should always be made before
closing the file (fclase is used to close a buffered
output file.)
Returns -1 on error.

Writes the 16 bit word w to buffered output file
having buffer at iabuf, via two consecutive calls to
putc.
Returns -1 on error.

Flushes output buffer iabuf. I.e., it makes sure that
any characters that may currently be in the output
buffer make it into the file on disk. Fflush does not
close the file.
Note that an automatic flush takes place whenever
the output buffer fills up; fflush need normally be
called only once right before the file is closed (via
fclose.)
Fflush is to be used only with buffered output files.
Doing an fflush on an input file is both meaning
less and dangerous to the integrity of the file.

Closes the buffered I/O file specified (it may have
been opened for either reading [via fapen] or writ
ing [via fcreat). If the file was opened for writing,
then an fflush call should have been performed im
mediately before the (close call.

80. int fprintf(iobuf,format,arg1,arg2, ...)
struct _buf *iobuf;
char *format;

Like printf, except that the formatted output is writ
ten to the buffered output file having buffer at
iobuf instead of to the console.
Returns 0·1 on error.

-51-

80S C User's Guide May 1981

81. int fscanf(iobuf,format,arg1,arg2, ...)
struct _buf *iobuf;
char *format;

82. char *fgets(str,iobuf)
char *str;
struct _buf *iobuf;

Like scant, except that the text input is scanned
from the buffered -Input at iobuf instead of from
the console. The present version of tscant requires
that each line of data be scanned completely; any
items left on a line read from a file after all format
specifications have been satisfied will be discard
ed.
Returns the number of items successfully assigned,
or -1 if an error occured in reading the file.

Reads a line in from the specified buffered input
file and places it in memory at the location pointed
to by sfr.
This one is a little tricky due to the CP 1M conven
tion of having both a CR and a LF at the end of
lines. In order to make text easier to deal with
from C programs, fgets automatically strips off the
CR from any CR-LF combinations that come in
from the file. Any CR characters not immediately
followed by LF are left intact. The LF is included
as part of the string, and is followed by a null byte
(Note that LF is the same as '\n'.) There is no
check on the length of the line being n~ad in; care
must be tal~en to make slIre there is enough room
at sfr to hold the longest line imaginable (a line
must be terminated by a newline (alias LF alias
'\n') character before it is considered complete.
Zero is returned on EOF, whether it be a physical
EOF (attempting to read past the last sector of a
file) or a control-Z (CPMEOF) character in the file.
Otherwise, a pointer to the string is returned (the
same as the passed value of str.)

-52-

8DS C User's Guide

83. int fputs(str,iobuf)
char *str;
struct _buf *iobuf;

84. int setfcb(fcbaddr,filename)
. char *filename;

85. char *fcbaddr(fd)

The Standard Library

Writes the null-terminated string from memory at str
into the specified buffere·d output file. Newline
characters are converted into CR-LF combinations
to keep CP 1M happy. If a null (zero byte) is found
in the string before a newline, then there will be
no line terminator at all appended to the line on
output (allowing partial lines to be written.)

Initializes a CP 1M file control block located at ad
dress fcbaddr with the null-terminated name point
ed to by filename.
The next-record and extent-number fields of the
feb are zeroed.
If any screwy characters (the kinds not usually
desirable in the name or extension fields of a file
control block) are encountered within the filename
string, then the offending character and remainder
of the filename string will be ignored.

Returns the address of thE~ internal, usually invisi
ble file control block associated with the open file
having descriptor fd.
-1 is returned if fd is not the file descriptor of an
open file.

V. PLOTTING FUNCTIONS (FOR MEMORY-MAPPED VIDEO BOARDS)

86. setplot(base,xsize,ysize)
Defines the physical characteristics (starting ad
dress, dimensions) of a memory-mapped "OMA"
video board such as the Proce~;sor Technology
(R.I.P) VDM-1. Base is the startin9 address of the
video memory; xsize is the number of lines in the
display; ysize is the number of characters per line.
Setplot need only be called once at the start of

-53-

80S C User's Guide

87. cI rpl otO

88. plot(x,y,chr)
char chr;

89. txtplot(string ,x,y,ropt)
char *strin9;

90. line(c,xl ,yl ,x2,y2)

May 1981

program execution; from then on, the functions
clrplot, plot, txtplot and line will know about the
given parame,ters. If you are using a Processor
Tech VDM-l, setplot need not be called at all; the
parameters are automatically se!t up for the VDM-1
as part of the start-up sequence for every C
generatl3d COM file.

Clears the memory- maPP€ld video screen (fills with
ASCII spaces.)

Places the character chI' at coordinates (x,y) on
the video screen.
(x,y) is read as: x down, y across, where

o (:::: X < xsize,
o <:::: y < ysize.

Places an ASCII string on the screen at position
(x,y); If rapt is non-zero, then each byte of the
string is logical OR-ed with the value Ox8D before
being displayed. This forces the high-order bit to a
1, causing the character to appear in reverse-video
on some boards (such as the VDM-l) or do other
funny random things with other boards.

Line only works with a 64 by 16 board.
This function draws a "crook.ed line" (because
there is no way to make a line look straight with
64 by '1(3 resolution!!) bEltween the pOints (xl ,yl)
and (x2,y2) inclusive. The- line is made up of the
character c.

-54-

Notes to APPENDIX A of
The C Programming Language

(For the 80S C Compiler)

80S C is designed to be a subset of UNIX C. Therefore, most parts of the C
Reference Manual apply to 80S C directly; the purpose of these notes is to docu
ment the other parts.

After presenting a general summary of differences between the two implementa
tions, I'll go into detail by referring to appropriate section numbers from the book and
describing how 80S C differs from what is stated there. Any sections that are appropri
ate as they stand (with regard to 80S C) will be ignored.

c:
Here is a summary of the most significant ways in which BOS C differs from UNIX

1) The variable types short int, long int, float and double are not supported.

2) There are no explicitly declarable storage classes. Static and register vari
ables do not exist; all variables are either external or automatic, depending
on the context in which they are declared.

3) The complexity of declarations is restricted by certain rules.

4) No initializers are allowed.

5) String space storage allocation must be handled explicitly (there is no au
tomatic allocation/garbage collection mechanism).

6) Compilation is accomplished directly into 8080 machine code, with no inter
mediate assembly language file produced.

7) Only a bit of intelligent code optimization is performed.

8) The entire source file is loaded into main memory at once, as opposed to
being passed through a window. This limits the maximum length of a single
source function to the size of available memory.

9) 80S C is written in 8080 assembler language, not in C itself. If BOS C were
written in itself, the compiler would be five times as long and run incredibly
slower. Remember that we're dealing with 8080 code here, not PDP-11 code
as in the original UNIX implementation.

-55·

80S C User's Guide March 1981

The following is a section-by-section annotation to the C Reference Manual.1 For
the sake of brevity, some of the items mentioned above will not be pointed out again;
any references to floats, longs, statics, initializations, etc., found in the book should
be ignored.

1. Introduction

8DS C is resident on Intel 8080 based microcomputer systems equipped with the
CP 1M operating system, and generates 8080 binary machine code (in a special relocat
able format) directly from given C source programs. As might be expected, 8DS C will
also run on any machine that is upward compatible from the 8080, such as the Zilog
Z-80 or Intel 8085.

2.1 Comments

Comments nest by default; to make 8DS C process comments the way Unix C
does, the -c option must be given to CC1 during compilation.

2.2 Identifie rs (names)

Upper and lower case letters are distinc~ (different) for variable, structure, union
and array names, but not for function names. Thus, function names should always be
written in a single case (either upper or lower, but not mixed) to avoid confusion. For
example, the statement

cha r foo,Foo,FoO;

declares three character variables with different names, but the two expressions

printf("This is a test\n ");

and

prlNTf("This is a test\n ");

are equivalent.

2.3 Keywords

80S C keywords:

int
char

else
for

1. Appendix A of The C Proaramming Language.
2. Function names are stored internally as·-upper-case-only.

-56-

80S C User's Guide Notes to APPENDIX 'A

struct do
union while
unsigned switch
goto case
retu rn default
break sizeof
continue begin
if end
register

Identifiers with the same name as a keyword are not allowed (although keywords
may be imbedded within identifiers, e.g. charf/ag.)

On terminals not supporting the left and right curly-brace characters { and }, the
keywords begin and end may be used instead. Note that you cannot have any
identifiers in your programs named either "begin" or "end".

4. What's in a name?

There are only two storage classes, external and automatic, but they are not ex
plicitly declarable. The context in which an identifier is declared always provides
sufficient information to determine whether the identifier is external or automatic: de
clarations that appear outside the definition of any function are implicitly external, and
all declarations of variables within a function definition are automatic.

Automatic variables have a lexical scope that extends from their point of declara
tion until the end of the current function definition. A single identifier may not normal
ly appear in a declaration list more than once in any given function, which means: a
local structure member or tag may not be given the same name as a local variable, and
vice versa. See subsection 11.1 for a special case.

In 8DS C, there is no concept of blocks within a function. Although a local vari
able may be declared at the start of a compound statement, it may not have the same
name as a previously declared local automatic variable. In addition, its lexical scope
extends past the end of the compound statement and all the way to the end of the
function.

I strongly suggest that all automatic variable declarations be confined to the begin
ning of function definitions, and that the practice of declaring variables' at the head of
compound statements be avoided. Sooner or latE~r, tuture releases of 80S C will have
a declaration mechanism identical to UNIX C.

If several files share a common set of extern al variables, then all external variable
declarations must be identically ordered within each of the files involved. 1 The external
variable mechanism in 8DS C is handled much liI<e the unnamed COMMON facility of
FORTRAN. So, if your main source file declares the external variables a,b,c,d and 0,

in that order, while another file uses only a, band c, then the second file need not
declare d and e. On the other hand, if the second file used d and e but not a, b or

1. The recommended procedure for a case such as this is to prepare a single file (us
ing your text editor) containing all common external variable declarations. The file
should have extt~nsion .H (for "header"), and be specified at the start of each
source file via use of the" # include" preprocessor directive.

-57-

80S C User's Guide March 1981

c, then all of the variables must be declared so that d and e (from the second file) do
not clash with a and b (from the first) and cause big trouble. As an added inconveni
ence, all external variables used in a program (set of depEmdent source files) must be
declared within the source file containing the main function, regardless of whether or
not that source file uses th'em all.

As long as all common external declarations are kept in a single ".H" file, and
include is used within each source file of a program to read in the ".H" file, there
shouldn't be any trouble. V\fell, relatively little anyway.

6.1 Characters and integers

Sign extension is nev~~r performed by 80S C.
Characters are interpreted as B·bit unsigned quantities in the range 0-255.
A CHAB VARIABLE CAN NEVER HAVE A NEGATIVE VALUE IN BDS C. Be

careful when, for example, you test the return value of functions sllch as getc, which
return -1 on error but "characters" normally. Actually, the return value is an int al
ways, with the high byte guaranteed to be zero when there's no error. If you assi~Jn the
return value of, say, getc to a character variable, then a -1 will turn into 255 as stored
in the B·bit character cell, and testing a character for equality with -1 will never return
true. Watch it.

Most arithmetic on characters is accomplished by converting the character to a
16-bit quantity and ZerOiil!~ the high-order byte. In somt:~ non-arithmetic operations,
such assi~Jnrnent expressions, 80S C will optimize by ignoring the high order byte
when dealin~) with character values. To take advantage oJ this', declare any variables
you trust to remain within the 0-255 range as cha r variables.

7. ExpreSSions

Oivision-by-zero and rnod-by-zero both result in a value of zero.

7.2 Unary Operators

The operators

(type-name) expression
sizeof (type-name)

are not impIE!mented. The s.izeo'f operator may be used in the form

size of expression

provided that expression is not an array. To take the siz4:~of an array, the array must
be placed aU by itself into a structure, allowing the sizeof the structure to then be
taken.

-58-

80S C USHr's Guide Notes to APPENDIX A

7.5 Shift loperators

The operation » is always logical (O-fill).

7.11, 7. -1:2 LClgic,,' ANI) and OR operators

These two operators have equal precedence in 80S C, making parenthesization
necessary in Cf~rta;n cases wherE~ it wouldn't be neCf~ssary otherwise. The only excuse
I can offE~r to compiler hackE~rs is this: BOIS C does not create a syntax tn3e in parsing
arithmetic expressions.

Declaratiions have the form:

declaration:
type-specifier declaration-list

Then~ are! no "storage class" spc3cifiers.

8.1 Stonl!:J1e class specifiers

Not implemE~nted.

8.2 TYPE~ sp'E~(;ifiers

The typE~·specifiers are

typo-specifier:
char
int
unsigned
register
st ruc t -0 r-union-specifier

The type register will be as:sumed synonymous with int, unless it is used as a
modifier (e.~~. register unsigned foo;), in which caSE! it will be ignored completely.

T here are' no other "adjectives" allowled:

unsigned int foo;

must be written as

unsigned foo;

··59-

80S C User's Guide

8.3 Declarators

Initializers are not allowed. Thus,

declarator-list:
declarator
declarator , declarator-list

8.4 Meaning of declarators

March 1981

UNIX C allows arbitrarily complex typing combinations, making possible declara
tions such as

st ru ct faa '" ('" ('" bar[3] [3] [3]) ()) 0;

which declares bar to be a 3x3x3 array of pointers to functions returning pointers to
functions returning pointers to structures of type foo.

Alas, 80S C wouldn't allow that particular declaration.
Here is what 80S C will allow:

First, let a simple-type be defined by

and a scalar-type by

simple-type:
char
int
unsigned
struct
union

scalar-type:
simple-type
pointer-to-scalar-type
pointer-to-function

A special kind of scalar type is a pointer-Io-function. This is a variable which
may have the address of a function assigned to it, and then be used (with the proper
syntax) to call the function. Because of the way 8DS C handles these critters internally,
pointers to pointer-to-function variables will not work correctly, although pointers to
functions returning any scalar type (except struct, union, and pointer-to-function) are
OK.

So far, scalar-types cover declarations such as

int x,y;
char *x;

~60·

80S C User's Guide

unsigned ·fraz;
char * *argv;
struct foobar ·zot, bar;
int -{ *ihtfp)O;

Notes to APPENDIX A

(The last of the above examples declares ihtfp
to be a pointer to a function which returns
a pointer to integer.)

Building on the scalar-type idea, we define an array to be a one or two dimen·
sional collection of scalar-typed objects (including pointer-to-function variables). Now
we can have constructs such as

char *x[5](10);
int - *foo[10];
struct zot bar[20][8];
union mumble -bebop[747];
int (,.. foobar[10]) 0;

(The last of the above examples declares foobar
to be an array made up of ten pointers to
functions returning integers.)

Next, we allow functions to return any scalar type except pointer-to-function,
st ruct or union (but not excluding pointers to structures and unions.)

Some more examples:

char *bar{);

declares bar to be a function returning a pointer to character;

char *(*bar)O;

declares bar to be a pointer to a function returning a pointer to characters;

char *(*bar[3][2]) 0;

declares bar to be a 3 by 2 array of individual pointers to functions returning pointers
to characters;

st rucl faa zot();

attempts to declare zot to be a function returning a structure of type faa. Since func·
tions cannot return structures, this would cause unpredictable results.

struct faa *zot{);

is OK. Now zot is declared as returning a pointer to a structure of type faa.

-61-

80S C User's Guide March 1981

Lastly, it must be mentioned that explicit pointers-to-arrays are not allowed. In oth
er words, a declaration such as

char (*foo) [5];

would not succeed in declaring faa to be a pointer to an array. Due to the relative
simple-mindedness of the 8DS C compiler (and its programmer), the preceding declara
tion is the same in meaning as

char *foo[5];

On the brighter side, any formal parameter declared to be an array is internally
handled as a "pointer-to-array," causing an automatic indirection to be performed
whenever the appropriate identifier is used in an expression. This makes passing ar
rays to functions as easy as pi. For an extensive example of this mechanism, check out
the Othello program included with some versions the 80S C package.

8.5 Structu re and union decla rations

"8it fields" are not implemented. Thus we have

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union idontifier { struct-decl-/ist }
struct-or-union identifier

struct-or-union:
struct
union

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier declarator-list;

declarator-list:
declarator
declarator, declarator-list

Names of members and tags in structure definitions cannot be the same as any
regular local variable names. The only time more than one structure or union per func
tion can use a given identifier as a member is when al/ instances have the identical
type and offset; soe subsection 11.1.

-62-

80S C User's Guide Notes to APPENDIX A

8.6 Initializers

Sorry; no initializers allowed.
External variables are not automatically initialized to zero.

8.7, B.8 Type names

Not applicable to 8DS C.

9.2 Blocks

There are no "blocks" in 80S C. Variables cannot be declared as local to a block;
declarations appearing anywhere in a function remain in effect until the end of the
function.

9.6 Fo r statement

Here the book is slightly confusing.
The for statement is not completely equivalent to the while statement as illustrat

ed, for this reason: should a continue statement be encountered while performing the
statement portion of the for loop, control would pass to expression-3. In the while ver
sion, though, a continue would cause control to pass to the test portion of the loop
directly, never executing expression-3 during that particular iteration. The representa
tion given in section 9.9 is correct since the increment is implied (to occur at contin:)
rather than written explicitly.

This is merely a documentation bug in the book; both the UNIX C compiler (as far
as I can tell) and the 80S C compiler handle the fo r case correctly.

9.7 Switch statement

There may be no more than 200 case- statements per switch construct.
Note that multiple cases each count as one, so the statement

case 'a': case 'b': case lC': prinU("a or b or c\n");

counts for three cases.

9.12 labeled statement

A label directly following a case or default is not allowed. The label should be
written first, and then the case or default. For example,

case 'x': foobar: Sat-Nite_Live = Funny;

is incorrect, and should be changed to

foobar: case 'x': Sat-Nite_Live = Funny;

-63-

80S C User's Guide March 1981

10. External definitions

Type specifiers must be given explicitly in all cases except function definitions
(where the default is int.)

11.1 Lexical scope

Members and tags within structures and unions should not be given names that
are identical to other types of declared identifiers. 8DS C does not allow any single
identifier to be used for more than one thing at a time, except when a local identifier
causes a similarly named external identifier to disappear temporarily. This means that
you cannot write declarations such as:

struct faa {
int a;
char b;

} foo[10];

/* define struct of type "foo" • /

/* define array named "faa" made up
of structures of type "faa" * /

which are basically confusing and shouldn't be used anyway, even if UNIX C does al
low them.

The one exception to this rule involves structure elements. The compiler will
tolerate the same identifier being used as a member within the definition of different
structures, as long as 1) the type and 2) the storage offset from the base of the struc
ture are identical for both of the instances. The following sequence, for example, uses
the identifier "cptr" in a legal manner:

struct faa {
int a;

};

char b;
char ·cptr;

struct bar {
unsigned aa;
char xyz;
char ·cptr;

};

11.2 Scope of externals

/* type: cha r *, offset:, 3 • /

/* type: cha r *, offset: 3 • /

There is no extorn keyword; all external variables must be declared in exactly the
same order within each file that uses any subset of them. Also, all external variables
used in a program must be declared within the source file that contains the main func
tion.

Here is how ext8rnals are normally handled: location 0015h of the run-time pack
age (usually 0115h or 4315h at run-time) contains a pointer to the base of the extern~1
variable area: all external variables are accessed by indexing off that two byte value. 1

1. The -e xxxx option to CC'l may be used to locate the external variab/(~ area at ab-

-64-

BDS C User's Guide Notes to APPENDIX A

The amount of space allocated for external variables is equal to the space needed by
all external variables defined in the main source file. Because no information is record
ed within CRL files about external storage or external names (other than the total
number of bytes involved and, optionally, the explicit starting address of the externals),
it is up to the user to make sure that each source file contains an identical list of .
external declarations; the names don't necessarily have to be identical for each
corresponding external variable in separate files (although naming them differently is
just asking for trouble), but the types and storage requirements should certainly
correspond .1

It would not be far off the mark to consider 8DS C external variables as just one
big FORTRAN-like COMMON block.

12.1 Token replacement

Only the simple text-substitution command

define identifier token-string

is implemented. Parameterized # defines are not supported.

12.2 File Inclusion

Either quotes or angle brackets may be used to delimit the filename; both have
exactly the same effect.

Although file inclusion may be nested to any reasonable depth, error reporting
does not recognize more than one level of nesting. Try experimenting with the "_p" op
tion of CC1, varying the level of inclusion nesting, to see exactly what happens.

12.4 Line Control

Not supported.

solute location xxxx, thereby considerably speeding up and shortening the code
produced by the compiler. Even so, all the declaration constraints must still be ob
served.

1. Reminder: if you use the library functions al/oc and free, you must include the
header file "bdscio.h" with ALI_OC_ON defined, and make sure that STDLlB1.C was
also compiled with ALLOC_ON enabled; there are several external data objects re
quired by a/loc
and free declared within bdscio.h, and omission of these declarations within any

source file having external variables would cause an undesirable data overlap.

-65-

BOS C User's Guide March 1981

15. Constant expressions

80S C will simplify constant expressions at compi/e-time only when the constant
expressions occur in one of the following places: following left square brackets, fol
lowing the case keyword, following assignment operators, following left parentheses,
and following the retu rn keyword. Any constant expression not falling into one of
those categories is guaranteed to not be simplified at compile-time.

The standard procedure for insuring the compile-time evaluation of constant ex
pressions when such expressions fall inside larger expressions involving variables is to
enclose the constant expressions in parentheses. Thus, statements such as

x = x + y + 15 * 1 0;

will not be simplified, and in general will generate more (and slower) code than the
better form:

x = x + y + (15*10);

18.1 Exp ressions

The unary operators are:

* Be • ! - + + •• sizeof

The binary operators && and II have equal precedence.
sizeof cannot correctly evaluate the size of an array.

18.2 Declarations

The complete syntax for declarations is

declaration:
type-specifier declarator-list

type-specifier:
char
int
unsigned
struct-or-union-specifier

declarator-Jist:
declarator
declarator , declarator-list

declarator:
identifier
(declarator)
* declarator

-66-

80S C User's Guide

declarator ()
declarator [constant expression]

struct-or-union-specifier:
st ruct { declarator-list }
st ruct identifier { declarator-list }
struct identifier
union { declarator-list}
union identifier { declarator-list }
union identifier

18.4 External definitions

data-definition:
type-specifier declarator-list

18.5 Preprocessor

The preprocessor directives

define identifier token-string
include "filename"
ifdef identifier
1/ ifndef identifier
#else
endif
undef identifier

are all now supported, but with some restrictions:

Notes to APPENDIX A

The 1#' character must be in the first column of the line, and there may be no space
between the '#' and the rest of the preprocessor directive name.

There is no nesting of conditional compilation directives allowed. I.e., after either an
ifdef or # ifndef is encountered, there mllst occur either an # endif or an # else
before another # ifdef or # ifndef. Breaking this rule may not bomb the compiler, but
it isn't 100 likely to yield the desired result, either.

Defines may appear anywhere in the source file, their scope extending until the
end of the file or until the identifier is re- # defined. Parameterized # defines are not
supported.

File inclusion may nest to any depth (although mutually inclusive files may just
manage to bomb CC1), but both the us "-p" option with CC1 and error reporting for

-67·

80S C User's Guide March 1981

CC1 and CC2 become easier to deal with if you limit yourself to non-nested inclusion.

The Mistakes Most Commonly Made By Beginning C Programmers

There are several aspects of the C language that tend to cause a great deal of
brow· beating when tackled for the first time. In this section I will try to summarize
those sensitive "features" of C that are constantly being brought to my attention by
confused users in their phone calls and letters.

1) How NOT to use a pointer: When a painter variable is declared in a program,
either externally or within a function, it is NOT given a value automatically.
A pointer is simply a 16-bit variable that is typically used hold the address of
some other piece of data (to point to it), and must be initialized before being
used, just like any variable. The particular mistake I see most often involves
assigning a value indirectly through an uninitialized pointer; i.e, the declara
tion

char *foo;

would be later followed by a statement such as

*foo = 'a';

before faa is ever initialized, and unpredictable things would begin to hap
pen. What the assignment statement above says is "place the character 'a'
into memory at the location pointed to by the variable faa. If faa has never
been initialized to anything, then the 'a' byte would be placed at some totally
random location in memory. The correct procedure here would have been to
declare a buffer area, assign the address of that area to faa, and then use
faa in the manner above. Such a sequence would appear as:

char buffer[50], *foo;
foo = &buffer;

*foo = 'a';

where the character 'a' is placed into the first byte at buffer.

2) Functions must not return pointers to their own local data! As soon as a
function returns to its caller, storage that was local to that function is deallo
cated and made available to the next called function. A common mistake is
to have some function (call it faa) create a piece of text in a local buffer
and return a pointer to that text... Immediately upon return from faa, the
string appears intact, but later on in the course of the program (as the space
in which the string resides is allocated for other functions' local data
frames), the string turns into garbage. There are two viable solutions to this
kind of problem: either have foo take a parameter telling it where to put the
string result (in which case the caller must provide a working buffer for foo)
or make the destination string area external. Each method has advantages
over the other; passing a destination area on each call allows many such re-

·68-

80S C User's Guide Notes to APPENDIX A

turned strings to be saved separately in different areas of memory, while an
external destination area shortens the calling sequence by requiring one less
parameter to be passed. But whatever you do, do NOT expect any data that
was local to a called function to remain valid after that function has re
turned!!

3) What is a "formal parameter", anyway? A formal parameter is one of the ar
guments (if any) that a function expects to have passed to it whenever
called. All formal parameters are specified at the beginning of a function's
definition as a parenthesized list immediately following the function name.
The declarations of a function's formal parameters must be made immediately
after the parenthesized list, before the first open-squiggly brace that marks
the beginning of the function body. Formal parameters which are not de
clared are assumed to be simple int values; should a formal parameter ac
Cidentally be declared within the actual function body, the compiler would
correctly give a "redeclaration" error, since once the formal declarations are
passed and the compiler begins processing the function body without having
seen a declaration for a formal parameter, then that formal parameter will
have been automatically declared an into

Whenever a function call is made, copies of the values of any formal
parameters are passed to the function. All such values are 16 bits in length
(at least with 80S C v1.4). This means that structures, arrays, unions, and
any data type not inherently 16 bits in size cannot be copied and passed to
a function; pointers to such data types, though, can. There is a special
magic mechanism for passing pointers to arrays that can be confusing, be
cause it is not intuitively obvious from the declaration syntax that a pointer is
actually being passed; 'for example, a function beginning with the sequence

int arraysum(array)
int array[100];
{

}

may appear to take an array of 100 elements as a formal parameter. Actually,
only a pointer to that array is passed, but the usage is the same as if it were
an actual array. The big difference, though, is that if you change any ele
ment in the array here, you'll be changing that element for the calling pro
gram also, while changing a simple non-array formal parameter would not
alter the original value from which the parameter was copied (back in the
calling program.) Another tricky paint about formal array parameters is that
you can actually treat the array name as a simple pointer variable within the
called function (i.e., assign to it the address of another array and wholla! it
then becomes the base of that other array ...) while such things would not
work (and indeed, cause unpredictable results) when the array is an actual
(non-Formal-parameter) array. The Kernighan & Ritchie book contains an en
tire chapter on the duality of pointers and arrays; in this mechanism lie the

-69-

8DS C User's Guide March 1981

high points and the more confusing points of C.

Miscellaneous Notes

1) The" =" operator is used for assignment only. The relational operator 'is
equal to' is represented by "= = ". Be careful not to confuse them.

2) The keywords begin and end_ may be substituted for left and right curly
braces ({ and }). This feature is provided so that users not having the {
and } characters on their terminals can still use the compiler. Aesthetically,
in my opinion anyway, the braces make for much more readable code than
begin and end do, and should be used whenever possible.

3) Error recovery is not especially intelligent in some cases. If either Cel or
CC2 spews out a set of error messages clustered around the same line or
set of lines, then only the first error message in the cluster should be be
lieved. Chances are that after that error is fixed, the rest will go away.

Also, the line number given by CC2 in error reports is not always
guaranteed to be accurate. CC1 does some rearranging of code once in a
while; for instance, the increment portion of a for statement is physically
moved down past the statement portion. Thus, if there is an error in the in
crement portion that CC1 is not equipped to detect, then CC2 will detect
it...and report the line number erroneously. Try not to mess up the increment
portion of fa r statements.

Certain types of errors will cause the compiler to cease execution and
immediately return to CP 1M without scanning the rest of the source. This oc
curs when, for example, mismatched parentheses· or a missing semicolon
manage to confuse the compiler to the point where it cannot recover. So, in
stead of guessing about where the proper punctuation should be, it aborts to
let you fix the error quickly and try again.

3) The "arge and argv" mechanism for passing command line arguments to a C
main program is implemented identically to its UNIX model, except for one
thing: CP/M, since it never preserves the name of the .COM file executed,
makes it tough to get argv[O] pointing to the command name itself. Thus,
argv[O] will contain garbage. Don't use it for anything.

Note that argc is, by convention, always positive, and equal to the
number of arguments specified plus one. Arguments on the command line
are treated as strings in all cases, not as values. If you need to specify string
arguments containing imbedded spaces, then double quotes (e.g. "string
containing spaces ") may be used to delimit such arguments.

All alphabetic characters on the command line are converted to upper
case by CP 1M. Thus, when scanning command options, be sure to check for
upper case (or use the t%wer function.)

4) Although initializations are not supported, a couple of convenience functions
have been provided to allow initialization of integer and character arrays.

To set any contiguolls set of words to integer values, use the function
initw. For characters (single-byte integers in the range 0-255), use initb.

·70-

80S C User's Guide Notes to APPENDIX A

Both of these are documented in the previous section.
For example, to simulate the UNIX C construct of

int foobar[10] = {3,O,·2,·5,3,6,9,-23,-14,0};

you can first declare foobar normally by saying

int foobar[10];

and then, in the main function, insert the statement

initw(foobar, "3,0,-2,·5,3,6,9,-23,-14,0");

5) When using the function getchar under CP/M, the input character is au
tomatically echoed to the console output as it is typed. About the only port
able way to suppress this echo is to use the bios library function to read the
console; note that this causes carriage returns to actually be returned as
carriage returns instead of being converted to newlines a la getehar.

Also, the getehar, putchar and ungetch functions may only be used for
console input and output. On UNIX, these routines are generalized since the
operating system allows a user to specify that the main input to a program
come from, say, a file instead of the console. This is known on UNIX as
directed I/O. A common technique used in the book's sample programs is to
scan through an input file by using getchar; this only works as long as the
input to the program can be directed from a file. Since CP/M does not sup
port this mechanism, all such sample programs should be rewritten using the
8DS C buffered I/O functions (/open, gete, etc.) instead of getchar and
putchar.

The important point here is that UNIX achieves a high level of generality
by assigning the standard input and standard output streams independently
of their physical characteristics. A simple file copy program named 100 writ
ten with getehar and putchar would simply echo the console input to the
console output if invoked by typing

foo

but the same program would copy the file bar into the file zot if invoked
with

foo <bar)zot.

To approach that level of generality with 80S C under CPIM, it should
be noted that the buffered I/O functions can used for both file 110, console
I/O, and (for version 1.4) li~t device and reader device I/O. It still might
take a little bit of extra coding effort to decide whether a user wants file I/O
or console I/O, but the meaty parts of the I/O transfers can usually be cod
ed in a general manner. Many users have asked why I haven't bothered to
implement directed I/O in the run-time package, like Whitesmiths does. The
reason is simple: CP/M is not UNIX. Under UNIX, the redirection is a function
of the opernting system, not the C compiler. I'd rather get C running on new
operating syste'ms that do support redirection (such as Ed Ziemba's MARC

·71-

80S C User's Guide March 1981

DOS) than try to make up for CP 1M's lack of versatility with warts-on-warts.1

One more note on this subject: getehar, upon receiving a carriage return
from the console, automatically echoes a linefeed (in addition to the au
tomatic echo of the CR) and returns a newline character. Gete, on the other
hand, when used for inputting characters from a text file, does not change
CR-LF combinations into newlines. If you'd like this to happen, write your·
self a little routine (say, gete2) that calls gete and filters out CR-LFs by issu·
ing a dummy call to getc following each CR encountered and returning a
newline in such cases. Once this is done, the process of writing programs
that are generalized to both console and file 1/0 should be as painless as
possible under CP 1M.

5a) When scanning through an input text file (using, say, gete), the logical-EOF
character is a control-Z (Ox1 a). A return value of -1 from the fileread func·
tions (read, gEftc, etc.) indicates a physical EOF (always on a block boun·
daryl and will probably not coincide with the logical EOF (where the control·
Z is.) Thus the correct algorithm for detecting the end of a text file must
check for both of these possible values, and interpret the first one encoun·
tered as the EOF. Note that if you are assigning the return value of a func·
tion such as getc to a character variable, the the -1 physical-EOF condition
value magically turns into 255 after assignment.

When writing output text files, be sure to terminate them with a control·
Z in an attempt to maintain some kind of consistency; though that seems to
be more than certain operating system developers have seen fit to do.

6) Unbuffered file I/O (using open, read and write) is done in terms of blocks,
not bytes. If you wish to deal with single bytes at a time, it is necessary to
use the buffered file I/O functions which, unfortunately, are slower (but not
that much slower with the new user·configurable buffer size.)

On another speed note, I've found that the CP 1M User's Group pro
grams FAST.COM and SPEED.COM, written by Bob Van Valzah for 1.4
CP /M systems, cia absolute wonders for the compilation time of all programs
and the execution speed of file-I/O-bound programs. On my system, the
average speed of everything has increased around three-fold under SPEED.
If you've got a system that can handle these programs, but aren't taking ad·
vantage of them, you're really missing something.

7) In a high school environment, a couple of microcomputer systems running
80S C combined with copies of the book The C Programming Language for
every student would provide an excellent setting for an introductory course
in computer science. Teachers, take notel

8) The following tidbits should be kept in mind when striving for optimum
efficiency in compiled programs:

1. By the way, just for the record, I DO like CP 1M... after all, I've been hacking on it
long enough to get this compiler to a respectable state. But the time has definitely
arrived for a new generation of operating systems, with UNIX as the trendsetter for
the time being. Onward to MARC ...

-72·

BOS C User's Guide Notes to APPENDIX A

1. Comments are stripped off a source file dynamically as the file is be
ing read in from disk; thus, there is no excuse (except maybe lazi
ness) for not documenting a program adequately.

2. The switch statement is most efficient when the switch variable (e.g.
xx in "switch(xx) ... ") is declared as a char. Of course, if values
outside the character range (0-255) are expected then this informa
tion is not very useful.

3. The cases in a switch statement are tested in the order of their ap
pearance; thus, the most common cases (or the ones requiring fastest
response time) should appear first.

4. For the fastest execution speed possible, CCl should be given the -0

and -e xxxx options for compilation. For the shortest possible code
length, only the -e xxxx option should be used with CC1.

5. Logical expressions in C evaluate to a numerical value of a (if false)
or 1 (if true) whenever their value is actually needed, but may not
evaluate to any value at all when used in flow-of-control tests. This
means that you can take advantage of the numerical results of logical
expressions in many situations. Consider the following code fragment,
whose purpose is to set the variable x to 1 if a<b, or to a if a > = b:

if (a < b) x = 1;
else x = 0;

The same operation can be written as

x = (a < b);

This takes advantage of how the subexpression "(a < b)" evaluates to
the desired value automatically, and thus avoids the . use of two
separate assignment expressions, their associated control structure,
and the considerable overhead that all entails.

A related opportunity for brevity comes up whenever any variable
needs to be tested for equality or inequality with zero; since any ex
pression may be considered logically "true" if it evaluates to a non
zero value, the "! = 0" portion of an expression such as "a ! = 0" is
practically redundant. Statements such as

if (a ! = 0) printf ("A is non-zero\n");
or if (a= = 0) printf ("A is zero\n");

may just as well be written as

if (a) printf (" A is non-zero\n");
and if (!a) printf (" A is zero\n");

-73-

80S C User's· Guide March 1981

Of course, such an abbreviation may not always be appropriate to a
given situation. tf the variable in question is used as a counter of
some sort, and is expected to take on many different values, then
saying "a ! = 0" might be clearer in the logic of the program. But in
cases where the variable is used as a Boolean flag, or where a value
of zero is considered special in some sense, then the shorter forms
are clearer and may in fact lead to shorter object code in certain
cases.

9) Please report an y bugs to: . f Q f>6 r.. q

Lear Zolman /
~~

Brighton, Massachussetts, 02135
(617) 7B~!·0836 (evenings before 1 :00 AM EST)

Please don't hassle Lifeboat with technical bug reports; they're the pub
lishers, not thl~ authors. By reporting any bugs you may encounter directly to
me, you'll vastly improve the chances of having a fix for the problem in a
short amount of time.

If you havE~ any questions about the package, feel free to bug me about
it (so to speal{.) This gives me some idea of exactly what in the package is
confusing and in need of more detailed documentation. At the time of this
writing, there are approximately 1200 (legitimate) copies of BDS C out in the
fi431d, and I haven't yet been overplagued with phone calls. In fact, a vast
majority of user feedback has proven very constructive. There is always the
possibility, however, that sales will skyrocket and cause my phone call
volume to rise to unmanageable proportions ... thus· I ask that questions about
the compiler be mailed to the above address, if possible., instead of phoned
in. If you thin~, you've spotted a bug, though, please call, as I like to find out
about bugs as soon as possible.

10. I gratefully thanl< the following individuals for their invaluable feedback and
support during the debugging phase of this compiler's development:

Lauren Weinstein
Leo Kenen
Rick Clemenzi
Tom Bell
Jon Sieber
Scott Layson
Tony Gold
Ed Ziemba
Scott Guthery
Earl T. CohE~n
Sam Lipson
Dan Maclean

Sid Maxwell1

Bob Mathias
Bob Radcliffe
The Real Cat
AI Mok
Phillip Apley
Charles F. Douds
Robert Ward
Les Hancock
Ted Nelson
Ward Christensen
Jerry Pour'nelle

1. Extra thanx to Sid for, among other things, running off all my hard copy when I
COUldn't afford a working printer.

·74·

BDS C User's Guide

Mi ke BE~n tley
Carlos Christensen
Perry Hutchinson
Paul Gans
John Nail
Mark Miller

Will Colley
Richard Greenlaw
Tim Pugh
Steve 'Ward
TOtTI Gibson
Roger Gregory
Don Lucas

Notes to APPENDIX A

Jason Linhart
Calvin Teague
Bob Shapiro

Rev. Stephen L. de Plater
Nigel Harrison

Cal Thixton

Special thanks to Dennis M. Ritchie, Ken Thompson and the entire staff of
the Computing Science Research Center at Bell Laboratories for developing
UNIX and the original C. Good work.

11) The 80S C User's Group has been organized; For information on how to get
inexpensive updates of the compiler, n~ceive a User's Group newsletter, or
glet access to contributed programs, contact:

BDS C User's Group
nobert Ward, Coordinator
Dedicated Micro Systems, Inc.
409 E. Kansas
Yates CentElr, Kansas 66783
(316) 625-3t554

Due to the large volume of assembly sources includ(~d with the 1.4 package,
many of the sample C pro~)rams included \Nith prior versions have- been
squeez,ed out of the distribution packagl~. The 80S C User'8 Group will have
a.1I thE~se programs, as should the CPIM User's Group eventually. I recom
mend that one of these ~Jroulps be contacted and the sample programs ob
tained, especially if you are a novice C programmer; the language tends to
be painful to pick up without lots of examples.

-75-

The CASM.C Assembly-Ianguage-to-CRL-Format Preprocessor
For BDS C v1.46

March 3, 1982

Leor Zolman
BD Software

33 Lothrop st.
Brighton, Massachussetts 02135

The files making up the CASM package are as follows:

CASM.C
CASM.SUB
CASM.OOC

Also needed:

Source file for CASM program
Submit file for performing entire conversion of CSM file to CRL
This file

ASM.OOM (or MAC. OOM)
DDT.OOM (or SID.OJM)

Description:

The only means previously provided to BDS C users for creating relocatable object
modules (CRL files) from assembly language programs was a painfully complex macro
package (CMAC.LIB) that only operated in conjunction with Digital Research's macro
assembler (MAC.OOM). This was especially bad because MAC, if not already owned, cost
almost as much as BDS C to purchase. This document describes the program "CASM",
supplied to eliminate the need for "MAC". CASM is a preprocessor that takes, as input,
an assembly language source file of type ".CSM" (mnemonic for C aSseMbly language) in
a format much closer to "vanilla" assembly language than the bizarre craziness of
CMAC.LIB, and writes out ari. ".ASM" file which may then be assembled by the standard,
ubiquitous CP/M assembler (ASM.COM). CASM automatically recognizes which assembly
language instructions require relocation parameters and inserts the appropriate
pseudo-operations and extra opcodes into the resulting ".ASM" file so that the file
properly assembles directly into CRL format. In ,addition, some rudimentary logic
checks are performed: doubly-defined and/or undefined labels are detected and
reported, and similarly-named labels in different functions are ALLOWED and converted
into unique names so ASM won't complain.

The pseudo-operations that CASM recognizes as special control commands within a
.CSM file are as follows:

FUNCTIO N <name>

BDS CASM Utility, 3/82

Each function must begin with "function" pseudo-op, where
<name> is the name that will be used for the function in the
.CRL file directory. No other information should appear on
this line. Note that there is no need to specify a directory
of included functions at the start of a .CSM file, as was the
case with the old CMAC.LIB method of CRL file generation.

1

EXTERNAL <list)

ENDFUNC
(or) ENDFUNCTION

INCLUDE <filename)
(or) INCLUDE "filename"

The format for a ".CSM"

INCLUDE

FUNCTION
EXTERNAL

If a function calls other C or assembly-coded functions, an
"external" pseudo-op naming these other functions must follow
immediately after the "function" Ope One or more names may
appear in the list, and the list may be spread over as many
"external" lines as necessary. Note that for the current
version of BDS C, only function names may appear in
"external" lines; data names (e.g. for external variables
defined in C programs) cannot be placed in "external"
statements.

This op (both forms are equivalent) must appear after the end
of the code for a particular function. The name of the
function need not be given as an operand. The three
pseudo-ops just listed are the ONLY pseudo-ops that need to
appear among the assembly language instructions of a ".CSM"
file, and at no time do the assembly instruction themselves
need to be altered for relocation, as was the case with
CMAC.LIB.

This op causes the named file to be inserted at the current
line of the output file. If the filename is enclosed in angle
brackets (i.e., <filename») then a default CP/M logical drive
is presumed to contain the named file (the specific default
for your system may be custimzed by changing the appropriate
define in CASM.C). If the name is enclosed in quotes, than

the current drive is searched. Note that you'll usually want
to include the file BDS.LIB at the start of your .CSM file,
so that names of routines in the run-time package are
recognized by CASM and not interpreted as undefined local
forward references, which would cause CASM to generate
relocation parameters for those instructions having run-time
package routine names as operands. Note that the pseudo-op
MACLIB is equivalent to INCLUDE and may be used instead.

file is as follows:

bds.lib

function!
needed func! [,needed_ func2] [, ...]

code for functionl
ENDFUNC

FUNCTION function2
EXTERNAL needed func! [,needed _func2] [, ...]
code for function2
ENDFUNC

2

BDS CASM Utility, 3/82

Additional notes and bugs:

o. If a label appears on an instruction, it MUST begin in column one of the line. If a
label does not begin in column one, CASM will not recognize it as a label and
relocation will not be handled correctly.

1. Forward references to EQUated symbols in executable instructions are not allowed,
although forward references to relocatable symbols are OK. The reason for this is
that CASM is a one-pass preprocessor, and any time a previously unknown symbol is
encountered in an instruction, CASM assumes that symbol is relocatable and
generates a relocation parameter for the instruction.

2. INCLUDE and MACLIB only work for one level of inclusion.

3. When a relocatable value needs to be specified in a "DW" op, then it must be the
ONLY value given in that particular DW statement, or else relocation will not be
properly handled.

4. Characters used in symbol names should be restricted to alphanumeric characters;
the dollar sign ($) is also allowed, but might lead to a conflict with labels
generated by CASM.

5. The .HEX file produced by ASM after assembling the output of CASM cannot be
converted into a binary file by using the LOAD.COM command; instead, DDT or SID
must be used to read the file into memory, and then the CP/M "SAVE" command must be
issued to save the file as a .CRL file. CASM inserts a line into the ASM file
ending in the character sequence "! .", specifically so that the line will be
flagged as an error. The user may then look at the value printed out at the left
margin to see exactly how many 256-byte blocks need to be saved; this is the value
to be used with the "SAVE" command.

The reason that "WAD" cannot be used is that CASM puts out the code to generate
the CRL File directory at the END of the ASM file, using ORG to set the location
counter back to the base of the TPA, and the "LOAD" command aborts with the cryptic
message "INVERTED WAD ADDRESS" when out-of-sequence data like that is encountered.
Rather than require CASM to write out the directory into a new file and append the
entire previous output onto the end of the directory, I require the user to have to
enter a SAVE command. What the heck; you'd have to rename the file anyway if it
were LOADed, right?

6. The CASM.SUB submit file may be used to perform the entire procedure of converting
a .CSM file to a .CRL file. For a file named "Faa .CSM", just say:

submi t ca sm foo

and enter the "SAVE" command just the way says when all is done.

3

BDS CASM Utility, 3/82

BDS C Standard Library Summary
v1.46 Edition March, 1982

Leor Zolman
BD Software

33 Lothrop st.
Brighton, Massachussetts 02135

This document contains an alphabetic summary of ALL general-purpose utiliy
functions included in the BDS C package spread among several different source files.
Note that there are quite a few more functions listed here than than apppear in the
BDS C User's Guide; some functions were intentionally omitted from the User's Guide
for portability reasons, and many others have come into existence since the last
revision of the User's Guide.

The summary is organized by columns.

The first column shows the type of the result returned by the function. The second
column shows the calling syntax and parameter types (if not int).

The next column shows a code naming the source file in which the function may be
found; the codes are as follows:

C1 for STDLIB1.C
C2 for STDLIB2.C
D2 for DEFF2.CSM
D2A for DEFF2A.CSM
FLT for FlDAT .C
DIO for DIO .C

The next column tells the page number in the BDS C User's Guide where the function
is documented, if the function appears in the User's Guide at all. For any function
that isn't documented in the User's Guide, there is probably documentation available
in the source listing for that function (the source location is given in the
preceding column.)

The final column contains references to a set of footnotes following the function
list. If a function has an entry in the NOTE column, the corresponding footnote (or
notes) should be examined for additional information about the function.

TYPE FUNCTION FILE PAGE NOTES

int abs(a,b) int a,b; C1 32
char * alloc(nbytes) unsigned nbytes; C1 37 14
char * atof(opl,s) char opl[5], *s; FLT 1
int atoi(str) char *str; C1 44
int bdos(c, de) D2 30 2
char bios(n,c) D2 30
int call(addr,a,h,b,d) unsigned addr; D2 32
char calla(addr,a,h,b,d) unsigned addr; D2 32
int close(fd) D2 46

clrplot() D2A 54
char * codend() D2 36
int creat(filename) char *filename; D2 46
char csw() D2 30

BDS C Library Summary, v1.46 1

char *
int
int
int

char *

char *
int
int
int
int
int
char *
int
char *
char *
int
char *
int

int
char *
int
int
int
char *
int
int
int

char
int
int
int
int
int
char *
char *
int

int
int
int

int
int

char

char

int

dioflush()
dioinit(&argc,argv) int *argc; char **argv;
endext()
exec(filename) char *filename;
execl(filename,arg1, arg2, ••• , NULL) char *filename;
execv(filename,argvector) char *filename, **argvector;
exit(n)
externs()
fabort(fd)
fcbaddr(fd)
fclose(iobuf) FILE *iobuf;
fcreat(filename, iobuf) char *filename; FILE *iobuf;
fflush(iobuf) FILE *iobuf;
fgets(str,iobuf) char *str; FILE *iobuf;
fopen(filename,iobuf) char *filename; FILE *iobuf;
fpadd(res,opl,op2) char res[5], op1[5], op2[5];
fpcomp(op1, op2) char op1[5], op2[5];
fpdiv(res,opl,op2) char res[5],op1[5],op2[5];
fpmult(res,op1,op2) char res[5],op1[5],op2[5];
fprintf(format, arg1, arg2, •••) char *format;
fpsub(res,opl,op2) char res[5],op1[5],op2[5];
fputs(str,iobuf) char *str; FILE *iobuf;
free(allocptr) unsigned allocptr;
fscanf(iob,fmt,&arg1,&arg2, •••) FILE *iob; char *fmt;
ftoa(sl,op1) char *sl; char op1[5];
getc(iobuf) FILE *iobuf;
getchar()
getline(str,maxlen) char *str;
gets(str) char *str;
getval(strptr) char **strptr;
getw(iobuf) FILE *iobuf;
index(str,substr) char *str, *substr;
initb(array,string) char array[], *string;
initw(array,string) int array[]; char *string;
inp(port)
isalpha(c) char c;
isdigit(c) char c;
islower(c) char c;
isspace(c) char c;
isupper(c) char c;
itoa(str, n) char *str;
itof(op1, n) char op1[5];
kbhi t()
line(c,x1,y1,x2,y2) char c;
longjmp(jbuf) char jbuf[JBUFSIZE];
max(n1,n2)
min(n1,n2)
movmem(source,dest,count) char *source, *dest;
nrand(n [,prompt] or [,n1,n2,n3]) char * prompt;
open(filename,mode) char *filename; int mode;
outp(port,val) char port, val;
pause()
peek(port) char port;
plot(x,y,c) char c;
poke(addr, val) unsigned addr; char val;
printf(format, arg1, arg2, •••) char *format;
putc(c,iobuf) char c; FILE *iobuf;
putch(c) char c;
putchar(c) char c;
puts(str) char *str;
putw(w,iobuf) int w; FILE *iobuf;

BDS C Library Summary, v1.46 2

DID
DID
D2 36
D2 34
D2 35
D2 35
D2 30
D2 36
D2 47
D2 53
C1 51
C1 50
C1 51
C2 52
C1 48
FLT
FLT
FLT
FLT
C2 51
FLT
C2 53
C1 37
C2 52
FLT
C1 49
D2 38
D2A
D2 40
C1 45
C1 50
D2A
C1 44
C1 44
D2 31
C1 41
C1 42
C1 42
C1 42
C1 41
FLT
FLT
D2 39
D2A 54
D2A
C1 32
C1 32
D2 34
D2 33
D2 46
D2 31
D2 31
D2 31
D2A 54
D2 31
C2 40
C1 50
D2 39
D2 39
C2 40
C1 51

3
3
3,16

17

7
6,11

1

1
1
4,9
1
6,12
14
4,10

8
20
18
5

18

1

4,9

20

int
unsigned
int
int
int
int
int

int
int
char *
int
int

int

int

int

int

int
char
char *
char

int

NOTES:

qsort(base,nel,width,cmp) char *base; int (*cmp)();
rand()
rcfsiz(fd)
read(fd, buffer, nsecs) char *buffer;
rename(oldname, newname) char *oldname, *newname;
rread(fd, buffer, nsecs) char *buffer;
rseek(fd, offset, origin)
rsrec(fd)
rsvstk(n)
rtell(fd)
rwrite(fd, buffer, nsecs) char *buffer;
sbrk(nbytes)
scanf(format, &arg1, &arg2, •••) char *format;
seek(fd, offset, origin)
setfcb(fcbaddr, filename) char *filename;
setjmp(jbuf) char jbuf[JBUFSIZE];
setmem(addr, count, byte) char *addr; char byte;
setplot(base,xsize,ysize)
sleep(ntenths)
sprintf(str,format,arg1,arg2, •••) char *str, *format;
srand(n)
srand1(str) char *str;
sscanf(str,format,&argl,&arg2, •••) char *str, *format;
strcat(sl, s2) char *sl, *s2;
strcmp(sl, s2) char *sl, *s2;
strcpy(sl, s2) char *sl, *s2;
strlen(str) char *str;
swapin(filename,addr) char *filename; unsigned addr;
tell(fd)
tolower(c) char c;
to po fmem ()
toupper(c) char c;
txtplot(string,x,y,ropt) char *string;
ungetc(c,iobuf) char c; FILE *iobuf;
ungetch(c) char c;
unlink(filename) char *filename;
write(fd, buffer, nsects) char *buffer;

Cl
D2
D2A
D2
D2
D2A
D2A
D2A
D2
D2A
D2A
D2
C2
D2
D2
D2A
D2
D2A
D2
C2
D2
D2
C2
Cl
Cl
Cl
Cl
C2
D2
Cl
D2
Cl
D2A
Cl
D2
D2
D2

34
33

47
46

38

37
42

53

33
53
31
42
32
32
42
43
43
43
44
36
48
42
36
42
54
50
39
46
47

15
15
15

15
15

4,10

4,9

10

19

1. This floating point function returns a pointer to a 5-byte floating point
object, represented in a character array of length 5.

2. The "bdos" function returns HL equal to the value left there by the BOOS
itself. Under standard CP/M, 8-bit values are returned in L with H cleared, and
16-bit values are returned in HL. Other "CP/M-like" systems do not always
follow this convention, though, and the "bdos" function may take rewriting in
order to work with certain system calls under systems such as "SOOS".

3. Unless an error occurs, this function should never return at all.

4. Note that all the upper-level formatted I/O functions ("printf", "fprintf",
"scanf", and "fscanf") now use" spr" and" scn" for doing conversions. While
this leads to very modularized source code, it also means that calls to "scanf"
and "fscanf" must process ALL the information on a line of text if the
information is not to be lost; if the format string runs out and there is still
text left in the line being processed, the text will be lost (i.e., the NEXT
scanf or fscanf call will NOT find it.)

BDS C Library Summary, vl.46 3

An alternate version of "spr" (the low-level output formatting function) is
given in the file FLOAT.C for use with floating point numbers; see FLDAT.C for
details. Since" spr" is used by "printf", this really amounts to an alternate
version of "printf."

Also note that temporary work space is declared within each of the high-level
functions as a one-dimensional character array. The length limit on this array
is presently set to 132 by the define MAXLINE statement in BDSCIO.H; if you
intend to create longer lines through printf, fprintf, scanf, or fscanf calls,
be SURE to raise this limit by changing the define statement.

5. Note that the "gets" function (which simply buffers up a line of console input
at a given buffer location) terminates the line with a null byte (' \0') WITHOUT
any CR or LF.

6. The conventional CP/M text format calls for each line in a file to be
terminated by a carriage-return/linefeed combination. In the world of C
programming, though, we like to just use a single linefeed (known as a
"newline") to terminate lines. AND SO, the functions which deal with reading
and writing text lines from disk files to memory and vice-versa ("fgets",
"fputs") take special pains to convert CR-LF combinations into single '\n'
characters when reading from disk ("fgets"), and convert '\n' characters to
CR-LF combinations when writing 10 disk ("fputs"). This allows the C programmer
to do things in style, dealing only with a single line terminator while the
text is in memory, while maintaining compat- ibility with the CP/M text format
for disk files (so that, for example, a text file can be "type"d under the
CCP.)

7. Remember to put out a CPMEOF (control-Z or Oxla) byte at the end of TEXT files
being written out to disk.

8. Watch out when reading in text files using "getc". While a text file is USUALLY
terminated with a control-Z, it MAY NOT BE if the file ends on an even sector
boundary (although respectable editors will now usually make sure the control-Z
is always there.) This means that there are two possible return values from
"getc" which can signal an End-of file: CPMEOF (Oxla) or ERROR (-1, or 255 if
you assign it to a char variable) should the CPMEOF be missing.

9. Since the "_spr" function is used to form the output string, and then "puts" is
used to actually print it out, care must be taken to avoid generating null
(zero) bytes in the output, since such a byte will terminate printing of the
string by puts. Thus, a statment such as:

printf("%c foo",' \0');

would not actually print anything at all.

10. The "%s" termination character has been changed from "any white space" to the
character following the "%8" specification in the format string. That is, the
call

sscanf(string, "%s:", &str);

would ignore leading white space (as is the case with all format conversions),
and then read in ALL subsequent text (including newlines) into the buffer "str"
until a COlDN or null byte is encountered.

11. fgets is a little tricky due to the CP/M convention of having a carriage-return
AND a linefeed character at the end of every text line. In order to make text
easier to deal with from C programs, this function (fgets) automatically strips
off the CR from any CR-LF combinations that come in from the file. Any CR

BDS C Library Summary, vl.46 4

characters not immediately followed by a LF are left intact. The LF is included
as part of the string, and is followed by a null byte. There is no limit to
how long a line can be here; care should be taken to make sure the string
pointer passed to fgets points to an area large enough to accept the largest
expected line length (a line must be terminated by a newline (LF) character
before it is considered terminated).

The value NULL, NDT EOF, is returned on end-of-file, whether it be a physical
end-of-file (attempting to read past last sector of the file) OR a logical
end-of-file (encountered a control-Z.)

12. The "fputs" function writes a string out to a buffered output file. The '\n'
character is expanded into a CR-LF combination, in keeping with the CP/M
convention. If a null ('\0') byte is encountered before a newline is
enc0untered, then there will be NO automatic termination character appended to
the line, thus allowing partial lines to be written.

13. When managing overlays, the "swapin" function may be used by the root segment
to swap in overlay code segments from disk. The provided version does NOT
check to make sure that the code yanked in doesn't overlap some data areas that
may lie above the swapping area in memory.

14. The storage allocation routines were taken from chapter 8 of K&R, but
simplified to ignore the storage allignment problem and not bother with the
"morecore" hack (a call to "sbrk" under CP/M is a relatively CHEAP operation,
and can be done on every call to "alloc" without degrading efficiency.) Note
that compilation of "alloc" and "free" is disabled until the" define ALlOC ON
1" statement is un-commented in the header file ("BDSCIO .H"). This is done so
that the external storage required by alloc and free isn't declared unless the
user actually needs the alloc and free functions.

15. The random-record file I/O functions are a direct interface to the
random-record BDOS functions provided by CP/M versions 2.0 and above, but not
available for pre-2.0 CP/M systems. Because of the non-portability of these
functions, they have not been heavily advertised in the BDS C User's Guide
(i.e., they are not mentioned at all). The "rread", "rwrite", "rseek" and
"rtell" functions work just like the functions "read", "write", "seek" and
"tell", respectively, except that they do things via the random-record fields
of the file's FCB. The "rsrec" and "rcfsiz" function simply take a file
descriptor of an open file and perform their namesake BDOS operation on the
given file, but in addition they also return the value computed. Thus, "rcfsiz"
may be used to quickly compute the size of a file under CP/M 2.x.

16. The "execv" function no longer prints out "Broken Pipe" upon error; instead,
it has the more conventional behavior of returning -1 (ERROR) and letting the
user perform diagnostics.

17. "fabort" should not be used under systems like MPM-II in which all files MUST
be closed, whether they are open for input or output, in order not to run out
of file descriptors and hang the system.

18; New for vl.46 (see the vl.46 documentation addenda sheet for details.)

19. Modified for vl.'46 to detect when "NOIDOT" has been invoked on the currently
executing program, and return an adjusted value for the end of available
user-memory.

20. When the DID package is linked in to a program, alternate versions of "getchar"
and "putc har", who se sources are in DID. C, get used.

BDS C Library Summary, vl.46 5

BDS C User's Guide Addenda
v1.46 Edition March, 1982

Leor Zolman
BD Software

33 Lothrop st.
Brighton, Massachussetts 02135

There have been several new sets of features added to BDS C v1.46. The new
features fall into three catagories: preprocessor enhancement, CP/M-specific compiler
performance enhancement by selective overwriting of the CCP (Console Command
Processor), and new utility programs (including CASM.C, which provides for the
creation of CRL-format object files out of assembly language source files WITHOUT the
need for MAC.OOM and the old CMAC.LIB macro package).

The preprocessor enhancements are as follows:

o. Parameterized #defines are now supported. This allows a macro in the form of a
function call to be expanded (before compilation) into an arbitrary string, with
the original parameters substituted into the string. For example, the sequence

#define foo(x,y) x * 3 + y

z = foo(bar,zot());

results in the final line actually reading:

z = bar * 3 + zot();

0.5 One feature of "lIdefine" substitution has been slightly changed: when a
symbolic constant appears in the definition of ANOTHER symbolic constant, then
the substitution of the first constant does not take place until the
substitution of the second does. This means that in a sequence such as

ffdefine Faa 1
ffdefine BAR FOO+l

the string that gets substituted for "BAR" depends upon the current definition
of "Faa"; if "Faa" got re-#defined at some point, "BAR" would change
accordingly. Given the above example, in past versions of BDS C "BAR" became
"1+1" at its definition point and would not have changed even if "Faa" were
re-#defined, unless "BAR" was also re-#defined after "Faa".

1. The

f/if <expr>

conditional compilation directive is now supported, but only with a special

1
BDS C vl.46 Doc. Update, 3/82

limited syntax for the expression argument, defined as follows:

<expr> := <expr2> or
<expr2> && <expr> or
<expr2> II <expr>

<expr2> := <constant> or
!<expr2> or
«expr>)

The <constant> may be a symbolic constant, but is treated as a logical value
always ••• i.e, 0 is false and any non-zero value is true (1). This allows users
to write system-dependent conditional expressions without having to resort to
lIifdef/tfifndef and commenting/un-commenting IIdefine statements to yield the
desired conditions.

2. Nesting of conditional compilation directives is now allowed, and incorrect
nesting attempts will now draw an appropriate error instead of doing random
things to the source text. Note that each and every lIelse directive MUST be
followed by a matching lIendif (unlike C's control structure syntax, in which an
if ••• else chain may be extended as long as desired.)

The following enhancements to the vl.46 compiler and linker affect the USAGE of the
compiler, not the C language syntax it accepts:

In the past, the compiler and linker have performed a CP/M warm-boot after every
compilation had either been completed or aborted due to an error. For vl.46, a
warm-boot will only take place when the memory occupied by the Console Command
Processor (CCP) is actually needed for the task. Since there is usually plenty of
memory left over after a compilation or linkage, I decided to eliminate the pain of
having to wait for the system to re-boot after each and every usage of the compiler
or linker.

On certain "fake" CP/M systems (I believe the CROMIX CP/M emulator is one such case),
the non-warm-booting return to the CCP does not work correctly, probably because the
system does not pass a valid stack pointer to transient commands. The symptom is
crazy behavior after CC1, CC2 or CLINK complete execution; the output files will have
been written OK, but attempting to return to the system via the passed SP bombs the
system. To correct this problem, it is necessary to make a patch to each of the three
command files forcing them to re-boot when finished. The patches are as follows:

file

CC1.COM
CC2.COM
CLINK. COM

address

03AD
0239
OF39

old data

2A C6 03
2A OA 01
2A 73 13

new data

C3 00 00
C3 00 00
C3 00 00

One feature of BDS C in the past has been that it automatically aborted any pending
"SUBMIT" file after compilation when an error had been detected during the
compilation. This had required the compiler to seek to the directory track on disk
and erase "$$$.SUB" before re-booting, but the extra time thus spent was negligable

2
BDS C vl.46 Doc. Update, 3/82

since a seek to the low tracks was coming up soon anyway in order to do the
warm-boot. Now, since a warm-boot isn't standard anymore, and the compiler is often
used without being in a "submit" file, the compiler no longer AUTOMATICALLY aborts
"submit" files following an error. The feature IS availalable, though, through the
new "-x" option to CCI. If "-x" is given on the CCI command line, then "submit" files
will be aborted following an error. Any time CCl is used in a "submit" file, "-x"
should appear on the command line in the "submit" file. If CCI is used stand-alone,
then "-x" should not be used (it would just cause some needless disk activity upon
error.) MAKE A mTE OF THE "-X" OPTION UNDER THE CCI OPTIONS SECTIONS OF THE BDS C
USER'S GUIDE. Since CLINK is not aborted very often, it has not been given a "-x"
option and· (as in previous versions) will always abort pending "submit" files when
prematurely terminated.

Note that both the compiler and linker now send a bell character (control-G) to the
user console after completing a task in which one or more errors have occurred. This
is to alert the user in the case of a premature completion and return to command
level (as when a fatal error is detected by the compiler), since audible warm-boots
no longer serve to notify the user of compiler termination.

On some interrupt-driven systems, type-ahead during operation of CCI, CC2 or CLINK
does not work because each of these commands look at the console input to see if a
control-C has been typed, in order to determine if the user wants to abort the
comand. If any character other than a control-C is detected, that character is thrown
away because there is not way to push it back under CP/M. If you wish to disable the
control-C-polling feature of the BDS C commands, so that the console input is never
sampled and type-ahead works correctly, make the following patches to the commands:

file address old data new data
------- _0 ______ - --------

CC I.COM 0995 E5 C9
CC2.COM 04A6 E5 C9
CLINK. COM 06lC F5 C9

Note that after these patches are made, typing control-C will only abort a
or CLINK invokation if provlslon is made in your interrupt-driven
general-purpose program interruption by control-C.

CCI, CC2
BIOS for

The major new utility program included with vl.46 is CASM.C, an
assembly-Ianguage-to-CRL conversion preprocessor. CASM takes a specially-formatted
assembly lanaguage source file having extension ".CSM" as input, and puts out an
".ASM" file which may then be assembled using the standard CP/M assembler (ASM.COM),
to eventually produce a CRL-format object file. Note that sources to the
assembly-language portion of the BDS C library are now provided as ".CSM" files
instead of ".ASM" files, and a "submit" file named "CASM.SUB" has been provided to
automate the entire process of "CSM"-to-"CRL" conversion. A separate document
detailing the operation of CASM is included with the BDS C vl.46 package.

A new wild-card expansion utility, named WILDEXP.C, allows ambiguous file names to be
specified on the command line to C-generated programs; then by a simple function
call, the ambiguous references are expanded to include all filenames on the current
disk that match the specification. Exceptions may also be specified.

3
BDS C vl.46 Doc. Update, 3/82

A new utility named NOIDOT.C is also included: when NOIDOT.COM is invoked upon a COM
file produced by the C compiler, it will make some magic changes so that the COM file
no longer performs a warm-boot after completing execution. The changes involve
forcing the run-time stack to begin BELOW the CCP, and having the program save the
system stack pointer passed to it by CP/M so that the SP may be restored after
execution and control can pass directly back to the CCP. NOIDOT should be used ONLY
with programs linked using the standard, supplied form of the run-time package
(C.CCC). Note that the "topofmem" library function has been modified to recognize
when NOIDOT is in effect at run-time, and should return the correct value for the end
of available user memory in all cases.

The following bugs have been detected and corrected for BDS C v1.46:

1. CC1 had crashed when an "flinclude" file was not terminated with a
carriage-return/linefeed sequence.

2. CLINK no longer complains about not being able to find "DEFF3.CRL" when there
are undefined function references in a linkage; if DEFF3.CRL does exist, it will
be searched, but if it does not exist, that fact will no longer draw an error.

3. Literal strings having continuation lines might have confused the CC1
preprocessor in some versions, to the effect that a "fldefined" symbol name that
happened to match a character sequence within the continuation line of the
string was incorrectly substituted for by the preprocessor, and such a symbol
appearing AFTER the end of the string was NOT substituted for.

4. In the DIO package, the variable "c" in the "getchar" function was incorrectly
declared as a "char" instead of an "int"; this caused a physical EOF to be
returned as the. value 255 instead of -1. Note that this problem only appeared
when the text file was not terminated by a CPMEOF (control-Z) character.

5. Another DIO-related bug: when text containing both carriage-returns and
linefeeds was fed to the DIO "putchar" func tion, an extra linefeed charac ter was
appended to each line and resulted in an extra blank line between each actual
line of the output file. This has been fixed by building some state information
into the DIO version of "putchar" so that the redundant linefeeds are not
generated.

6. CLINK now warns the user when the address of the end of the external data area
falls above the effective "top of memory" address (and thus not leaving any room
for the run-time stack) to prevent hair-pulling confusion if such a condition is
not noticed by the user. If you are generating special-purpose code in which
you purposely tell the linker that the top of memory is below the external area,
then just ignore the error message.

7. The "execl" function had two bugs which have been corrected: it had bombed if an
attempt was made to pass more than six parameters, and it had not detected when
the total size of supplied parameters exceeded the amount of space available for
that text during the chaining operation (about 83 characters). Now any number of
parameters are handled correctly, and a text overflow will cause "execl" to
print a special message to that effect and also return a value of ERROR (-1) to

4
BDS C v1.46 Doc. Update, 3/82

the calling routine.

8. The "gets" library function has been modified to use the stack during its BOOS
call to get a line of text, and then copy the result into the supplied buffer
area. This means that the buffer area passed to "gets" need no longer be 2 bytes
longer than the longest expected string; but, "gets" still does not know how
long the buffer you give it really is and you must make sure to supply a large
enough buffer (when "gets" calls BOOS function 10, it supplies the BOOS with a
135-byte buffer on the stack, and as much of this as is filled up is copied to
the user-supplied buffer upon return from the BDOS call).

A new alternative to "gets" has been supplied, called "getline", which works
just like the "getline" function shown in Kernighan & Ritchie. The format is:

int getline(strbuf,maxlen)
char * st rbuf;
int maxlen;

"Getline" collects a line of text from the user, where the maximum allowed
length of the line is "maxlen" characters (where "maxlen" is supplied as a
parameter). The return value is the length of the entered line. Since "getline"
also uses BOOS function 10 to collect the line, a call such as
"getline(str,135);" would work the same as "gets(str);". Use "getline" either to
limit the line length to some small number, or to allow longer lines (up to 255
characters) than the maximum of 135 that "gets" allows.

Note that both "gets" and "getline" will return immediatly if the number of
characters typed reaches the maximum allowed (135 for "gets" or 'maxlen' for
"getline"), even if no newline (carriage-return in this case) is typed by the
user. This is due to the behavior of the BOOS, and there aint' nuthin to be done
about it short of writing an entire "gets" from scratch in terms of low-level
character I/O, and that just isn't worth the trouble.

5
BDS C vl.46 Doc. Update, 3/82

EDS C User's Guide Addenda
v1.4S Edition -- December, 1981

Leor Zolman
BD Software

33 Lothrop st.
Brighton, Massachussetts 02135

Here are the bug fixes and extensions for BDS eversion 1.45.

Note: If you are running under MP/M II, be sure to see item 10 below!

o. Expressions of the form

! (expr II expr)
or !(expr && expr)

may not have worked correctly when a VALUE was required for the expression; i.e., when
used in some way other than in a flow control test. For example,

x= !(a II b);

might have failed, but

if (!(a I I b)) return 7;

would have worked, since the expression was used for flow control.

1. Declarations of pointer-to-function variables for functions returning a CHARACTER
value caused only one byte of storage to be reserved for the pointer, instead of two
bytes (all pointers-to-functions require two bytes of storage, by virtue of being
pointers). For example, in the sequence:

char cl, (*ptrfn)(), c2;

ptrfn = &getc;

the assignment to 'ptrfn' would have incorrectly overwritten the 'c2' character
variable, since only one byte would have been reserved on the stack for the 'ptrfn'
variable while the assignment operation would have assumed there were two bytes
reserved.

2. A bug in the ternary operator evaluator (?: expressions) caused the high-order byte of
a 16-bit result to be incorrectly zeroed in the following situation: given a ternary
expression of the form

el ? e2 : e3

1
BDS C vl.45 Doc. Update, 12/81

where 'e2' evaluated to a l6-bit value (int, unsigned or pointer) and 'e3' evaluated
to a character value (type char only), the entire expression was treated as having
type char ••• so if 'el' was true and 'e2' was bigger than 255, then the value of the
express i.on ended up as only the low-order byte of the value of 'e2'. For vers ion 1.45,
whenever 'e2' and 'e3' do not BOTH evaluate to character values the type of the
overall expression is guaranteed not to be char.

3. A sequence of two 'I' (logical 'not') operators in a row did not always produce the
correct result in an expression. For example,

x = ! In; /* convert n to a logi~al (0 or 1) value */

might have produced the wrong result (0 instead oE I, or vice-versa).

4. A stack-handling bug in CC2 caused problems at run time when a sufficiently complex
sub-expression appeared in any but the final position of an expression involving the
comma operator (", "). For example, the following statement would not have worked
correctly:

for (i 0; i < 10; x += y, i++) •••

5. CC1 has not been recognlzlng illeg.ql octal character constants as such; digits such
as '8' and '9' within an octal constant will now draw an error in cases where they
would have been ignored before. Also, certain other forms of illegal constants (aside
from character constants) are now better diagnosed than before.

6. I found one more case where an internal table overflow during code generation was not
detected, causing the final command file to bomb as soon as it was executed (either by
crashing the machine or immediately re-booting.) This occurred when a single large
function containing many stri.ng constants was compiled. All fixed now.

7. An extension to the linker: CLINK now recognizes IDEFF3.CRL" as an automatic library
file, similar to DEFF.CRL and DEFF2.CRL. Note that there is NO DEFF3.CRL file included
with the BDS C package; this feature has been added to allow you to fit Tnore custom
functions into your library than just what fits in DEFF.CRL and DEFF2.CRL (which are
getting rather full.)

Also, CLINK will now search ALL default library files (DEFF.CRL, DEFF2.CRL and
DEFF3.CRL [if it exists]) when a carriage-return is typed in interactive mode.
Previously, only the file DEFF.CRL was searched in response to carriage-return.

8. It has been brought to my attention that the AQ-CR sequence required by CLINK in
interactive mode (to abort the linkage in progress) cannot be typed in under MP/M
systems, since AQ is used to detach a process. If you are running MP/M, then just type
control-C instead of AQ-CR; this will also work for CP/M systems ••• the only difference
is that when AQ-CR is used, then any currently acti\Te "submit file" processing is
automatically aborted by CLINK before returning to command level, as a convenience (I
assume that if you abort the linkage, you don't want to continue with your submit

2
BDS C vl.45 Doc. Update, 12/81

file •••). Under HP/M, you'll have to type characters quickly at the keyboard (after
AC-ing CLINK) to abort any pending submit file activity.

9. A slight bug in CLIB.COM (The C Library manager program) made it hard to exit CLIB
from within a submit file (assuming XSUB is in use). The problem was that CLIB
requires a confirmation character, 'y', to be typed after the 'quit' command is given.
CLIB was getting the confirmation character by doing a single direct BDOS console
.input call, which required the user to manually tY"i)e in the letter before any pending
submit file processing could continue. This has been fixed by having CLIB get an
entire line of input (using BDOS call 10) when seeking a confirmation; now the 'y'
may be inserted into submit files. Note that the 'quit' command and the 'y'
confirmation must be placed on separate consecutive lines in the submit file. If not
using a submit file, the only difference is that now a carriage-return is required
after typing the 'y'.

Another minor problem with CLIB: function names longer than 8 characters were not
being truncated when entered for operations such as renaming, reSUlting in too-long
CRL file directory entries. All names are now properly limited to 8 characters.

10. A problem with file I/O under MP/M Version II has come up: The run-time package
routine "vclose", called by the library function "close" whenever a file needs to be
closed, has been optimizing for files open only for reading by NOT actually performing
a "close" operation through the BDOS. This worked fine under CP/M, because CP/M didn't
care whether or not a file that has had no changes made to it was ever closed; MP/M
II, on the other hand, DOES seem to want such files to be explicitly closed ••• Ro by
running many programs that didn't close their Read-only files, BDS C programs
eventually caused MP/M to not allow any more files to be opened.

This problem has been fixed by adding a conditional assembly symbol, called "MPM2", to
the CCC.ASM source file. If you are running under l1P/M II, you should set the "MPM2"
equate to true (1) and reassemble CCC.ASM, yielding a new C.CCC after loading and
renaming (you should only need AS!-1.COM for this, although MAC.COM works also). The
change does NOT affect the size of C.CCC, so the libraries do not have to be
reassembled as is usually the case when the run-time package is customized. The change
simply causes a single conditionr.t.l jump to be turned into three nop's, so that ALL
files are always closed, instead of only the ones open for writing. My apologies to
MP/M users who may have had confusing troubles because of this bug.

11. A bug was found in the '~gcn' library function (affecting 'scanf'): when a lone
carriage-return (newline) was typed in response to a "%s" format conversion, the
format conversion was totally ignored. This caused the target string to remain
unchanged from its previous contents, instead of correctly having a null string
(consisting of a single zero byte) assigned to it.

12. A bug was found in the' spr' library function (affecting 'printf', 'sprintf', and
'fprintf'): The default field width value was 1, causing a null string to be printed
as a single space when the standard "%s" format conversion was used. For example, the
statement:

printf("Here is a null string: \"%s\"\n" ,"");

3
BDS C v1.45 Doc. Update, 12/81

would have. produced the output:

Here is a null string: " "

ins tead of:

Here is a null s tr ing: ""

The default field width value has been changed to 0, so null strings will now print
correctly. An explicit field width may always be given in any format conversion, of
course.

13. When the library function "sprintf" (formatted output directly into a memory buffer)
is used, a null byte is appended onto the end of the output text. I'm not absolutely
sure whether or not this is a "desired" characteristic; at least one user has
complained about it, but it turns out that "sprintf" on the large-scale Unix system I
have access to does the same thing and I can think of applications where the trailing
null is lL~eful. So, the null stays in.

14. In several library functions, as well as at one point in the run-time package, calls
were made to BDOS function number 11 (interrogate console status) followed by an "ani
1" instruction to test bit 0 of the value returned by BDOS. I've been told that on
some systems, testing bit 0 is not sufficient since sometimes \Talues other than 0 and
1 (or 0 and 255) are returned. SO, all such sequences have been changed to do an "ora
a" instead of an "ani 1", so that a return value of exactly OOh is interpreted as "no
character ready" and any other value is interpreted as "yes, there is a character
ready". The library functions that were modified this way are: 'kbhit', 'putchar',
'srand1', 'nrand', 'sleep' and 'pause'. The sequence to clear console status in the
run-time package (Cee.ASM), near the label "init:", has likewise been changed (but a
"nop" instruction was added to keep all addresses consistent with earlier v2rsions of
the run-time package.)

15. When customizing the run-time package (CeC.ASH) with the "cpm" symbol equated to zero,
several symbols (named "SETNM" and "SETNM3" , at the routine labeled "PATCHNHn) were
undefined; this has been fixed by adding some conditional assembly directives to
insure tha t the labels i.n ques t ion are not referenced under non-"cpm" implementat ions,
while the total code size rema ins eonstant so that the addresses of later run-tilne
package utility :3ubroutlnes stay exactly the same for all impl(~mentatlons.

16. A problem with the "bdos" library function has come up that is rather tricky, since it
is system-dependent: A program that runs correctly under a normal Digital Research
CP/M system might NOT run under MP/M or SDOS (or who knows how many other systems) if
the "bdos" function is u..sed. A typical symptom of this problem is that upon character
output, a character on the keyboard needs to be hit once in order to make each
character of output appear.

To understand
supposed to
the C library
the low-order
order byte of

the problem, we must first understand exactly how the CPU registers are
be set after an operating system BD6s call. Normal CP/H behavior (which
function "bdos" had always assumed) is for registers A and L to contain
byte of the return value, and for registers Band H to contain the high
a return value (which is zero if the return value is only one byte). The

4
BDS C vl.4s Doc. Update, 12/81

CP/M interface guide explicitly states that "A -- Land B == H upon return in all
cases", and I figured that just in case CP/M 1.4 or some other system didn't put the
values in Hand L from B and A, I'd have the "bdos" function copy register A into
register L and copy register B into register H, to make SURE the value is in HL (where
the return value must always be placed by a C library function.)

Not all systems actually FOLLOW this convention. Under t1P/M, Hand L always contain
the correct value but B does not! So when B is copied into H, the wrong value results.
So, the way to make "bdos" work under both CP/M 2.2 and MP/M was to discontinue
copying B and A into Hand L, and just assume the value will always be correctly left
in HL by the system. This was done for vl.45, so at least CP/M and MP/M are taken care
of, but •••

Under SDOS (and perhaps other systems), register A is sometimes the ONLY register to
contain a meaningful return value. For example, upon return from a function 11 call
(interrogate console stat~s), the B, Hand L registers were all found to contain
garbage. So if no copying is done in this case, the return value never gets from A to
L and the result is wrong; but if B is copied into H along with A getting copied into
L, the result is still wrong because B contains garbage. Evidently the only way to
get function 11 to work right under SDOS is to have the "bdos" function copy register
A into L and ZERO OUT the H register before returning ••• but then many other system
calls which return values in H wouldn't work anymore. And that is the problem: You can
please SOME systems ALL the time, but not ALL systems all the time with only one
standard "bdos" function!

The way I left "bdos" for version 1.45 was so that it works with CP/M and MP/M (i.e.,
no register copying is done at all ••• HL is assumed to contain the correct value). You
might want to make a note in the User's Guide library section (page 30) to the effect
that A and B are now ignored. This, of course, won't work in all cases under SDOS and
perhaps other systems ••• in those cases, you need to ei.ther use the "call" and "calla"
functions to perform the BDOS call, or create your own assembly-coded version(s) of
the "bdos" function (with MAC. COM, CMAC.LIB and BDS.LIB) to perform the correct
register manipulation sequences for your system. Note that it may take more than one
such function to cover all possible return value register configurations.

17. The "creat" library function had been creating new files and opening them for writing
ONLY; this caused some confusion, so 'creat' has been modified to open files for both
reading AND writing following creation. PLEASE MAKE A NOTE OF THIS UNDER THE 'CREAT'
ENTRY IN THE STANDARD LIBRARY SECTION OF THE BDS C USER'S GUIDE.

18. The "execv" function has been changed to return ERROR (-1) on error, instead of
forcing an error message ("Broken pipe") to be printed to the standard error device.
The reason I originally had it printing "Broken Pipe" was because I was too lazy to
figure out how to fix the stack after passing all the arguments; following some
justified bitching from Scott Layson I went in there and fixed it so i.t does something
reasonable. PLEASE ~1AKE A NOTE OF THIS UNDER THE 'EXECV' ENTRY IN THE STANDARD
LIBRARY SECTION OF THE BDS C USER'S GUIDE.

19. The DIO (directed I/O and pipes) package contained an obscure bug: if a pipe operation
was aborted before completion, leaving a "TEMPIN.$$$" file in the directory, then the
next pipe operation performed had gotten its own output mixed up with the output of
the aborted pipe •••• the old output was used as input to the new next command, and the

5
BDS C v1.45 Doc. Update, 12/81

new output was lost. The new DIO.C has been fixed. (Note: DIO.C has also been slightly
changed to properly interact with the new version of the "execv" library function.)

20. Another change has been made to theDIO package: the "getchar" function, when used
without input redirection to read characters directly from the console, had not
allowed for line editing in previous versions. I.e., each character was obtained by a
direct BDOS call and none 'of the special line editing characters (delete, AR, AU,
etc.) were recognized. For version 1.45, an optional line buffer me~hanism has been
added to the DIO package so lines of console input can be fetched at one time by using
the "read console buffer" BDOS call and all editing characters now function as
ex:pected. Operation of the package using buffered console input is still the same as
before, except for one thing: to enter an end-of-file character (control-Z), it is now
necessary to also type a carriage-return after the control-Z.

To enable console input buffering when using the DIO library, it is necessary to
un-comment a line in the DIO.H file and re-compile DIO.C. See the comments in DIO.C
for more information.

21. The special case handler for the code generator has been improved to more efficiently
handle relational binary operations where exactly one of the operands is a constant.
The operators affected are: "<", ">", "<=" , ">=","==" and "!=", for both signed and
unsigned data types. The improvement is mainly in the speed of execution of such
comparisons; statements such as:

if (i < 1234) •••

execute much faster. This results in speedier execution of programs such as the Seive
of Eratosthenes benchmark in the September '81 issue of BYTE: the current version of
BDS C, using the -e and -0 compiler options with variables made external, does it in
15.2 seconds (see SIEVE.C on the distribution disk.)

Also, multiplication by a constant that is a low power of 2 (2,4,8,16) is now done by
DAD H sequences instead of calls to the run-time package multiply routine [so that
expressions such as (i * 8) and (i « 3) each compile to the same code].

22. Two new functions have been added to the standard library:

int setjmp(buffer)
char buffer [JBUFSIZE];

longjmp(buffer,val)
char buffer[JBUFSIZE];

When "set jump" is called, the current processor state is saved in the JBUFSIZE-byte
buffer area whose address is passed as the argument ("JBUFSIZE" is defined in
BDSCIO.H), and a value of zero is returned. Whenever a subsequent "longjump" call is
performed (from ANYWHERE in the current function or any lower-level function) with the
same buffer argument, the CPU state is restored to that which it was during the
"setjmp" call, and the program behaves as if control were jUst returning from the
"setjmp" function, except that the return value this time is "val" as passed to
"longjmp". A typical use of setjmp/longjmp is to exit up through several levels of
function nesting without having to return through EACH level in sequence, to make sure

6
BDS C v1.45 Doc. Update, 12/81

that a particular exit routine (e.g., the directed I/O "dioflush" function) is always
performed. It is a nifty facility that should have been available long ago. THESE
FUNCTIONS ARE NOT DOCUMENTED IN THE BDS C USER'S GUIDE; PLEA.SE MAKE A NOTE OF THEM IN
THE STANDARD LIBRARY SECTION OF THE GUIDE.

23. A new linker for BDS C called "L2" (a substitute for CLINK. COM) is now available from
the BDS C User's Group. L2, ~~ritten by Scott Layson (of Mark of the Unicorn) in BDS C,
has several interesting features:

1. L2 can link programs that are up to about 8K larger than CLINK: if there
isn't enough room in memory to hold the entire program while building an
image in memory, L2 performs a disk-buffering second pass. This means that
the resulting COM files can be as large as the entire available TPA on the
target machine.

2. The number of functions per program is no longer limited to 255.

3. While CLINK uses jump tables at the beginning of functions to resolve
references to other functions, L2 totally eliminates the jump tables and
instead generates direct external call~. This shortens programs by anywhere
froln 3% to 10%, and also speeds them up .q little.

4. Since L2 is written in C, you can customize it yourself.

The L2 package comes with source code, a special overlay generator program and
documentation. It is available to BDSCUG members for the nominal cost of media and
shipping (currently $8). See the next note for information on joining the BDSCUG.

24. The BDS C User's Group membership forms should now be included with the BDS C
package ••• this makes life easier for everyone, since it is no longer necessary to
write to the Group first just to ask for forms before being able to order library
disk.s. BDS C User's Group members receive the Group news letter approxima tely 6 times
per year, and are entitl~d to compiler updates and library disks for low prices
(typically $8 per disk).

7
BDS C v1.45 Doc. Update, 12/81

BDS C Userls Guide Addenda
vl.44 Edition -- April, 1981

Leor Zolman
BD Software

33 Lothop St.
Brighton, Massachussetts 02135

(617) 782-0836

Please note my NEW new address and phone number ..• some earlier versions of the new
documentation have said that my new city and zip code were Allston, 02134, Which is Where
I THOUGHT I was. Actually, 11m in Brighton, 02135, and any mail sent me addressed to
Allston may have been returned to the sender stamped with sanething like "No such address
known. II Sorry about that.

Here are the bug fixes/extensions for version 1.44:

1. (Applies to vl.43a only): the character sequence \ \ appearing at the END of a quoted
string caused the preprocessor in CCI to screw up and stop stripping canments for the
rest of the source file. For example, the statement:

printf("This oockslash 'WOuld cause big trouble: \\");

'WOuld have done it.

2. The "qsort II library function didn It 'NOrk When the total size of the data array being
sorted exceeded 32K bytes. This has been fixed by changed the declarations of certain
variables in qsort fran II int II to II uns igned II •

3. CCl, <X! 2 , and CLINK may now be aborted in the middle of execution by typing a
control-C.

4. A new CLINK option has been added (as if there weren I t enough of them already ..•) The
"_f" option, When specified inmediately before the name of an extra CRL file to be
searched, FORCES all functions in that CRL to be loaded into the current
lirikage--even if they haven't been previously referenced. This provides a s~le
solution to the ba.ckwards-reference problem; a typical case when this 'NOuld be used
oanes up when you want to use a special version of a low-level function such as
"putchar." If you have a canplete program such as:

main ()
{

}
printf("this is a test\n");

and w:)uld like your am version of putchar to be loaded from a library called, say,
SPECIAL.CRL (Which you have previously compiled), then simply saying:

1
BDS C vl.44 !be. Update, May 1981

5.

clink test special <cr>

would Nor work, because the "putchar" function doesn't becane "needed" until AFTER
the library file DEFF .CRL, which contains "printf", is searched ••• which doesn't
happen lIDtil AFTER special is searched! So the "putchar" finally loaded would cane
fran DEFF2. CRL, which is the library file autanatically searched after DEFF. CRL. 'Ib
make this do What you want, all you'd have to do nON is:

clink test -f special <cr>

which would force everything in SPECIAL. CRL to be loaded right CMay, before the·. DEFF
files are scanned. Then, when "printf" gets loaded fran DEFF.CRL, the correct
"putchar" function will already have been loaded and the one in DEFF2.CRL will be
ignored.

The "rename" library function had a rather serious problan:
would zero out the three bytes of code immediately after
(i.e., the first jump instruction of the next function
clobbered.) This problem was fixed by increasing the amount
the "ds" at the end of "rename" fran 49 bytes to 53 bytes.

Whenever executed, it
the end of the function
in rrEIIDry 'M)uld get
of storage declared in

6. The "setfcb" function requires that the buffer allocated to hold the resulting fcb is
AT IEAST 36 BYTES IDNG! "Setfcb" zeroes out the randan-record field bytes of the fcb
just in case the CP/M 2.x randan-record file I/O mechanism is later used. But whether
you use the randan stuff or not, the fcb you allocate still has to be 36 bytes long.

7. This bug applies to vl.43 only: A character constant consisting of the double-quote
character enclosed in single quotes (''''), when encountered by ccl, caused ccl to
stop stripping carrnents while reading in the rest of the source file fran disk. This
was a bug in the vl.43 code added to allON carment delimiters within quoted strings.

8. Whenever the type information for a flIDction definition was placed on a line separate
fran the actual name of the ftmction, then the canpiler would "lose" a line of code
and all errors found pa.st that fOint in the source file 'WOuld be re:r:orted with an
incorrect line number. For example, the follONing kind of function definition
would've caused this problem:

char *
foo()
{

}

9. A new library function, "execv", has been added to the p:ickage (source is in
DEFF2.ASM). '!his function allONS chaining to another CCM file with a variable number
of carmand line p:irameters (note that "execl" requires all of the arguments to be
explicitly pa.ssed as string fOinter parameters to the function, so that one
pa.rticular call can only have the number of arguments that it was written with.) The
fonnat of the "execv" function is:

2
BDS C vI. 44 I:X:>c. Update, May 1981

execl(prog,argvp)
char *prog, **argvp;

Where 'progl pJints to the name of the aM file to be chained to, and 'argvpl is an
, argv I -like fX)inter to an array of pJinters to text parameters. The final pJinter in
the list must be follONed by a null fX)inter. As an exarrple, note that the "execl ll

call

execl("stat","badsp:::>ts", "$r/o" ,0);

can be written in tenus of "execv" as follONS:

char *args[3];

args[O] = llbadsp:::>ts";
args[l] = "$r/o";
args[2] = NULL;
execv(II stat II ,args);

10. Directed I/O and pipes, of sorts, are nON available to BDS C programmers. The files
DIO.C and DIO.H make up a cute little directed I/O package, allONing for directed
input, directed output and pipes (a la Unix) on the carmmd lines to programs
cc:rnpiled with this special I/O package. See the camrents in DIO.C for canplete
details. Note that the presence of this package does Nor contradict certain C01'Ilrents
tmde in the User I s Guide about kludging advanced Unix features under CP/M; those
comments were directed toward systems in Which the I/O redirection/generalization is
forced up::>n the user, along with all the entailing overhead, When the redirection
isn I t needed or wanted for many applications. The DIO package, being written in C and
separately canpiled, lets YOU the USER decide When you want it and when you do not.
If you don't want it, it takes up zero space; if you do, it takes up a bit of roan
and yanks in all the buffered I/O, but it DOES give you redirection and pipes!

11. A "standard error" buffered I/O stream number has been added to the list of special
devices recognized by the "putC" buffered output function. An iobuf value of 4 causes
the character given to be written to the CP/M console output, always, while an iobuf
value of 1 causes the character to be written to the standard output (which might be
a file if the DIO package is being used.) Note that 4 was used instead of the Unix
Standard-error value of 2 because 2 had already 'been taken (by the CP/M 1ST: device.)

12. String constants nay roN contain zero bytes within than. Previous versions have
flagged lines such as

f(X) = "Jan\OFeb\OMar\QApr\OMay\OJun\OJul\OAug\OSep\OOct\ONov\ODec\O";

with the error message:

Zero bytes are not allONed within strings; to print nulls, use \200

Note that allONing the above kind of string constant makes it easier to initialize a
table of hanogenousl y-sized strings; the example with the rronths could be part of a
function that returns a pJinter to the name of sane rronth n, where n is a passed

3
BDS C vl.44 Ibc. Update, May 1981

value ranging fram 0 to 11 {or fram 1 to 12, or Whatever ••• }

4
BDS C v1.44 IX:>c. Update, May 1981

BOS C User's Guide Addenda
vl.43 Edition -- March, 1981

Leor ZolImn
BD Software (New Address!)

33 IDthrop st.
Brighton, Ma. 02135

(617) 782-0836

Before getting on with the rosiness at hand (vJhere I shamelessly display all the
horrible bugs that have plagued previous versions of the ~iler), lId like to take a
m:::rnent to answer one of the rrore canrron questions that have been asked of Ire by users and
fX)tential users of BDS C. H::>:pefully, this will save sane of you the expense of a phone
call (Which can run pretty high vJhen I get to rambling ...)

Q. 1.mat is the royalty arrangement for software developed using BDS C?
A. There is NO royalty arrangment AT ALL. lbth the BDS C runtime package and function

1 ibraries, in either source or object fonn (or both), may be freely distributed with
ccrnmercial (or non-canmercial) application programs. The reason for this p::>licy is to
promote the use of C nor anything and everything, without wrapping up p::>tential
applications in miles of red tape and ineffective security measures. Software authors:
PLEASE include the source listings to your software with your packages! I understand that
there are same markets Where such generosity is considered suicidal, and I sympathize in
many cases, but I also want to see BOS C selling rrore copies, and providing the source to
applications programs will encourage users to obtain the carpiler. Hopefully, some of them
.may even BUY it.

OK, noN it I s time for the bug reIUrts. FoIIONing, in decreasing order of severity, are
the bugs found and fixed for vl.43, and sane additional notes:

o. Another logical-express ion-related bug caused incorrect code to be generated When a
sUbexpression of a binary operation used the && or I I operators. For example,

if (x > (i=5 && j<7» printf(IFoobar\n"):

might have caused a crash vJhen executed.

0.5 .A bitwise or arithmetic binary operation in Which the left argument was a logical
expression of any kind and the right argument was a binary expression of higher
precedence failed to evaluate correctly. For example,

if (lkbhit() & a<5) printf("foo\n"):

didn I t YJOrk.

1. A missing camma, such as in the statement:

sprintf(dest "x = %d\n", x):

1
BIS C vl.43 Ibc. Up:late, 3/81

went undiagnosed and caused wierd code to be generated.
release had only oorrected the case of a rrrrssing
specification, not BEFORE it ...)

(The bug fixed in the last
CClTlITB. AFTER a fonnat string

2. If a canment was begun on a line vJhich contained an II # include " preprocessor directive,
and not terminated until a later line, then CCI became confused. 2a. Several users
have ccmplained about not being able to put the character sequence '/*' into a qu:>ted
string. This is a justifiable gripe, but I' rn afraid you'll have to say things like
"/*" to get the same effect. The reason corro:rent delimiters are not tolerated within
quotes

3. Mismatched curly-braces in a source file now draw a more meaningful diagnostic than
the previous "Unexpected EOF encountered II message: a PJinter is now provided to the
line at Which the badly-balanced function begins.

4. When an illega 1 constant was encountered by CCI at any place where a constant is
required, an incorrect ''Unmatched left p3.renthesis" diagnostic was displayed with an
imPJssibly large line nt . .ID1ber. (Actually, the correct line number was obtainable by
sUbtracting ·the exact size of the text file fram the given line number. Guess vJhat I
forgot to initialize between passes •..)

5. When using the "~" option with CLINK, a tenninating oontrol-Z was Nor put out to the
SYM file vJhen the length of the SYM file WJrked out to be an exact rrultiple of 128
bytes. This gave CLINK a headache When "_y" was used to read the SYM file back in.

6. There was another bug in the "getc" library function that caused sane troUble vJhen the
"fgets" function was used to read in lines fram a text file that wasn't tenninated
with oontrol-Z (CH'1EOF). This was fixed by changing the line:

return ERROR;

to:

return iobuf->_nleft++i

7 • Mismatched square brackets in an expression had drawn an ''Unexpected EOF encoutered"
error instead of something more meaningful.

8. The word "ma.in" is NO IDNGER A .KEYV\ORD. In previous versions, the fact that "rra.in" was
treated as a keyword rra.de its use in any situation other than as the first line of a
"main" function imPJssible. I.e, attempts to call "ma.in" recursively were not accepted
by the ccmpiler. There is now no longer anything special about the v.ord "main" . In
addi tion, previous versions had sUbsti tuted an undocumented one byte code (9D hex) for
the name "main" in CRL file directories, thereby probably causing a lot of confusion.
This bizarre scheme is no longer used, although the linker will still recognize the
special 9D code as meaning lima in II When encountered in a CRL file (of course, II MAIN "
will now also be recognized .•.)

2
BOO C vl.43 IX:>c. Update, 3/81

9. A bug in the "_y" option handler in CLINK caused CLINK to crash When there wasn't
enough roam in the reference table to hold all the symbols being read in from a SYM
file. Sorry about that, chief. N:)te, by the way, that the POSITION of "_y" on the
canmand line IS VERY SIGNIFICANT. If the "_y" option appears to the right of names of
CRL files to search, then the SYM file specified will rot 00 used until AFTER the
previous rnL files have already been scanned and loaded fran. I.e., the "_y" option
should appear BEFORE the names of any CRL files that contain functions that ~ght not
need to be loaded (due to their definition in the SYM file). A new feature of CLINK is
that Whenever a previously defined symbol is encountered in the process of loading the
symbols fran a SYM file, a message to that effect will be printed, allowing the user
an opportunity to rearrange the command line so that the SYM file is read in earlier
and sane redundancy possibly elUninated.

10. An obscure feature of the "printf", "sprintf" and II fpr intf II library functions, as
described in the Kernighan & Ritchie book, is that a field~idth specification value
preceded b¥ a 'a' caused O-fill instead of space-fill. I'd never NOTICED that before,
until a user brought it to my attention (and conveniently provided a fix.) Note that
this sol ves a problem often encountered When printing hex values. NaN, the follONing
"printf" call:

printf("%4x; %04x\n",8,8);

will produce the output:

8; 0008

11. TIle lxXly of a function definition rl.ON MUST be enclosed in curly-braces. Formerly, the
foll~ng sort of thing was tolerated as a function definition, but no !TOre:

pltchar(c) bdos(4,c);

12. A bug in the CMAC. LIB macro pa.ckage had Nor allowed lines such as:

exrel <lxi h,>,putchar

while the folloring kind of lines were properly handled:

exrel call,putchar

13. A new ION-level charaeter I/O function package, named CIO.C, has been added for
greater flexibility in console interaction, especially for game-type applications.
Note, however, that code generated using this facility is NON-PORTABLE fran one system
to another unless the "other" system is also equipped with a C canpiler. If you HAVE
to, go ahead and use it, but please resist the Demptation to give out a copy of the
canpiler to your friends along with your source code.

14. Q.loted strings containing an open-cartrlEnt delimiter sequence (' / * ') had caused eCl to
think an actual carment was intended. I. e, the statement

printf("this is an open-carment sequence: /* \n");

3
"BOO C vl.43])x. Up:1ate, 3/81

would have drawn a II string too long ... II error. Not any rrore.

15. The handling of string constants by the code generator has been improved. NoN, instead
of pltting the text right Where it is used and generating a jump around it, the
compiler accumulates up to 50 text strings in a function and places them all at the
end of the function. If rrore than 50 strings appear, then after the 50th it goes back
to doing it the old way for the remainder of the function (there's only so rruch table
space worth allocating to hacks like this.)

16. Speaking of hacks, here's one that'll get you either excited or sick: You say you
need sane IIstatic ll variables? Consider the follONing lTEthcx1 of simulating a II static
array of characters II :

char *static~

static = II0123456789"~

The result is that the variable II static " nay be used just like a static array of ten
characters. If declared as an lIintll instead of a II char II , it could be used as an array
of five integer variables (or ten, if you make the quoted string twice as long ...).
Steve Ward nakes use of this technique in his CIO.C library. Kludgey, yes, but it gets
the job done and it's even PJrtable ...

17 . The default OCl symbol table size for m:x1ified versions of the compiler (vI. 43T) has
been upped fran 6K to 7K. The lI_rll option still lets you explicitly set the table
allocation, if you want to.

4
BDS C vl.43 ~. Update, 3/81

* *
*
*
*

The New Dynamic Overlay Scheme ..•..•.. for BDS C vl.4
August, 1980

*
*
*

In order to allew C programs to be longer than physical IlBllOry, without resorting to "exec" or
"execl" (Which may indeed get the job done, but resemble "chain" operations rrore than true
segmentation tools), a new set of capabilities has been built into the CLINK program.
Nonnall y , the run-time environment of an executing C program looks like this:

law merrory: base+10Oh: C.CCC nm-time utility package (csiz bytes)

ram+csiz: start of program ccrle
(program code) ...

xxxx-l : end of program code

xxxx: external variable area (y bytes long)
... (external data) ...

xxxx+y: free rranory,
available for

????:

storage
allocation

machine stack:

as 1011 as the rra.chine stack ever gets
local data, function parameters,
intennediate expression results,
etc. etc.

high merrory: Wos: machine stack top (grcws dcwn)

Note that "xxxx" is the first location follcwing the program ccrle and "y ll is the amount of
memory needed for external variables.

To implement overlays, the first thing necessary is to decide just Where the swapped-in ccrle is
to reside. Earlier versions of BDS C had local data frames grcwing up fran lew memory,
starting fran where the externals ended, llEking it difficult to detennine the lcwest memory
J..ocation safe to swap into. The scheme suggested then for handling overlays was to leave
sufficient roan between the end of the root segment code (the root segment contains the "rra.in"
function and run-time package; it loads at the start of the TPA., alWays remains in memory, and
controls the top level of overlay SVlapping) and start of the external data area to acccmnodate
the largest possible SVlapped-in segmentcaffibination. This is still a viable scheme for version
1.4; here is the rrodified rnerrory map, accarm::xlating this first roothod of handling overlays:

1
BDS COver lays, August 1980

IaN menory: base+ 1 OOh: e .cce run-time . utility package (csiz bytes)
ram+csiz: start of root segment code

(root segment code) •••
zzzz-l: end of root segment code

zzzz: start of overlay area
... {overlay area) •..

xxxx-l : end of overlay area

xxxx: external variable area (y bytes long)
••. (external data) •.• '

xxxx+y: free memory,

????:

available for
storage

allocation

machine stack:

as 1011 as the machine stack ever gets
local data, function parameters,
intennediate e~ression results,
etc. etc.

high rnerrory: Was: machine stack top (grOlls dONn)

Note that II zzzz II is Where segments get swapped in, guaranteed that the longest segment doesn't
reach "xxxx".

With version 1.4, it is just as feasible to put the overlay area AFTER the externals. 'Ihe
memory map for this alternative configlrration would be:

law menory: base+ I OOh: e. cx.."C run-time utili ty package (csiz bytes)
ram+csiz: start of root segment code

••• (root segment code) ..•
xxxx-l: end of root segment code

xxxx:

xxxx+y-l:

xxxx+y:

xxxx+y+ssss-l:

xxxx+y+ssss:

????:

machine stack:

high :rrerrory: Was:

external variable area (y bytes long)
. .. (external data) ...
end of external data area

start of overlay area (ssss bytes long)
. • • (over lay area) •••
end of overlay area

<unused memory>

as IaN as the machine stack ever gets
local data, function parameters,
intennediate e~ression results,
etc. etc.

machine stack top (grONs dONn)

If you plan to use the storage allocation functions (alloc, free, sbrk, rsvstk) in yo~

2
BDS e Overlays, August 1980

program, then this second schane \\QuId require you to call the "sbrk" function with argument
"SSSS" (the size of the overlay area) since, by default, storage allocation always begins with
the area immediately following the end of the externals. For the ranainder of this document, I
will assume the FIRST of the above two schemes is being used.

OK, with the generalities out of the way, let me say sanething about just how to create "root"
segments and "swappable" segments with BDS C. First of all, we \\QuId like all functions defined
within the root segment to be accessible b¥ the swapped segment(s) ... this is accomplished b¥
causing CLINK to write out a symool table file (containing all function addresses) to disk when
the root segment is linked. The -w option to CLINK will do the trick; this symbol table will be
used later when linking the swappable segments.

When linking the root segment, use the -e option to set the external data area location; keep
in ~nd that there must be enough roam below the externals to hold the largest swapped-in
segment at run time (I'm using the term "below" in the sense that low mennry is "below" high
mennry; graphically, in the preceding rnemJry maps, "below" rreans tcMard the top of the page.)
J:f the -e option is anitted, CLINK will assume the external data starts irmnediately after the
end of the root segment code; this is OK only if you're using the SECOND schane .

.wi thin the code of the root segment, then, a swappable segrrent is loaded into merrory fran disk
by saying:

swapin(name,addr): /* read in a segment .. don't run it */

where "addr" is the location following the last byte of root segment code (for the first
scheme.) You can find this value b¥ linking the root once wi thout gl vlng the -e option and
reading the -s statistics written to the console after the linkage. To actually execute the
segment, you have to call it i~directly using a pointer-to-function variable.

Jlff,fe is an example. "ve' 11 declare a pointer-to-function variable called "ptrfn", swap in a
~ent named "foo" at location 300Oh, and call the segrrent. The sequence \\QuId look like this:

int (*ptrfn) () i
ptrfn = Ox3000;

/* can be whatever type you like * /

if (SVlapin("foo",Ox3000) 1= -1) /* check for load error */
(*ptrfn)(args ...): /* if none, call the segrrent */

The "swapin" routine returns -1 when a load error occurs. N:>te that the swapped-in code might
not return any value, but the pointer-to-function Imlst be declared with SCME kind of type. Use
.l'int" if nothing else canes to ~nd. When a segment is invoked, as above, control passes to the
segment's "main" function. There is no reason at all to require args to be of the "argc" and
"argv" form; there is nothing special about a "main" function other than the property it has of

.getting called first. The ''nB.in'' function wi thin the swapped-in segrrent is the ONLY allowed
entry roint for the segment.

A simple "swapin" function is given in STDLIB2.C. It can be made shorter b¥ skipping all the
error testing, or can be expanded to detect an attempted load over the external data area by
canparing the last address loaded with the contents of location ram+ 11511 •.• if you've never done
any low-level hackery, you get the value of the 16-bit address at location ram+llSh b¥ using
indirection on a pointer-to-integer (or -unsigned.) Note that location RAM+llSh AfJiIAYS contains
the address of the base of the external data area.

~ we know haw' to do everything except actually create a swappable segment.

3
BDS C Overlays, August 1980

OK, a swappable segment is basically just a nonnal C program, having a lima in II function just
like the root segment, except that the C.OCC run-time utility package is NOT tacked on to the
front of a swappable segment (the C.CCC in the root segment will be shared by everyone.) The
other difference between a swappable segment and the root segment is the load address; whi~
the root segment always loads at ram+lOO11 (where II ram II is 0 for standard CP/M, or 420011 for ~
IIrrodified II CP /M), a swappable segment may be made to load anywhere. (bce you've canpiled the
swappable segment, you give a special fonn of the CLINK carm:md to link it:

A>clink segmentname -v -1 xxxx -y symbolfile [-s •..] <cr>

where IIsegmentname ll is the name of the CRL file containing the segment, II-VII indicates to CLINK
that a swappable segment is to be created (so that C.CCC is not attached), and 11-1 XXXXII
(letter ell £allowed by a hex address) indicates the load address for the segment.

Since you'll probably want to yank in the ~l file created by the linkage of the root
segment, use the -y option to do so. If you don't, then CLINK will yank in fresh copies of
functions like "PRINrFII and "FOPEN", etc., even if they have already been linked into the root V'

segment. It would be a waste to have multiple copies of those memory hogs in there at the same
time! By reading in the symbol table fran the root segment, it is insured that any routines
already linked in the root will be made available to the swapped-in segment. The root segrrent, ...
though, cannot know about functions belonging to the swapped-in segment through the use of a
symbol table. That would require sane kind of mutually referential linking system beyond the
scope of this package.

Oh well. l.vhen linking the segment, you may specify -s to generate a stat ITlClp on the console,
and ~ to write out an augmented ~l table containing not only the symbols read in fran the
root segment's symbol file, but also the swappable segment's own symbols. This new symbol file
may then be used on another level of swapping, should that be desired.

Example: (The addresses given in this example are for a RAM at 000011 CP/M; if you have fu
modified 4200h CP/M, fudge accordingly.)

Let's say you've got a program RCXJr.C, which will swap in and execute SEGl.C and then overlay
SEGI.C with SEG2.C. RXYr.CCM loads at lOOh and ends, say, before 300011. We'll load in the
segments at 3000h, and set the rese of the external data area to 500011 (this assumes neither
segment is longer than 200011.)

The linkage of ROar would be:

A>clink root -e 5000 ~ -s <cr>

This tells CLINK that ROO!'.ca.1 is to be a root segrrent (no "-v" option used), the externals
start at SOOOh, a symbol file called ROOT.SYM is to be written, and a statistics summary is to
be printed to the console.

The linkage of each segment would appear as:

A>clink segl -v -1 3000 -y root -s -0' segl. <cr>

The carmand line tells CLINK that SIDle COM is to be a swappable segment (the "-v" option) to
load at location 3000h, the syrnool file named RCXJr. SYM should be scanned for pre-defined
function addresses, a statistics summary should be printed after the linkage, and the Object
file is to be written out as SEGI (as opposed to SEG1.COM, to avoid accidentally invoking it as
n CP 1M ccmna...Yld ~)

4
BDS C OVerlays, August 1980

BDS C File I/O Tutorial

Leor Zolman
BD Software

The file I/O library functions provided with BDS C fall into two catagories: "raw"
and "buffered." The raw file functions, typically coded in assembly language for best
performance, are essentially a CP/M-oriented low-level interface where data transfers
always occur in multiples of full CP/M logical sector (128 byte) quantities. The
buffered functions (written in C) provide a byte-oriented, sequential file I/O system
geared especially for "filter"-type applications; buffering allows you to read and
write data in whatever sized quantities are most convenient while invisible mechanisms
worry about things like sector buffering and actual disk I/O; thus the buffered I/O
functions are usually more convenient to deal with than the raw functions, but they
generate a lot of overhead by being slow and hogging up quite a bit of memory for code
and buffer space.

Since buffered I/O is composed of raw I/O functions plus some extra code, I'll first
present the raw I/O in detail, and then go onto the buffered functions.

The raw functions are characterized by their concern with "file descriptors". A file
descriptor (fd) is a small integer value that becomes associated with a currently
active file. This fd is always obtained by calling either the "open" or "creat"
functions; their usage is:

fd = open(filename,mode);

fd creat(filename);

/* 'filename' can be either a literal */
/* string or any expression that */
/* evaluates to a character pointer */

The former is used to open an already existing file (usually, a file that has some
data in it) for reading or writing or both, and the latter is used to create a brand
new file and open it for writing. In both cases, the fd is the value returned by the
call. If some kind of error occurs and the specified file cannot be opened or created,
a value of ERROR (-1) is returned instead. For example, if "open" cannot find the file
on disk whose name is pointed to by the first argument, ERROR will be returned.

All other raw functions require an fd to specify the file to be operated on (except
"unlink" and "rename", which take filename pointers). The "read" and "write"
functions are used to transfer data to and from disk. Their typical usage is:

i read(fd, buffer, nsects); /* 'fd' must have been obtained by */
j wr ite (fd2, buffer2, nsec ts 2); /* a previous call to "open" * /

The first call would try to read, into memory at 'buffer', 'nsects' sectors from the
file whose 'fd' is specified. The second call would try to write 'nsects2' sectors
from memory at 'buffer2' to the disk file whose fd is 'fd2'. Unless an error occurs
(such as when an illegal fd is given or an attempt is made to read past the end of a
file), the above functions cause an immediate disk transfer to happen. This is one of
the main differences between raw and buffered I/O: raw functions always cause
immediate disk activity, as long as what they are asked to do is possible, while
buffered functions only go to disk when a buffer fills up (when writing) or becomes
exhausted (when reading.)

1
BDS C File I/O Primer

For each file opened under raw I/O, there exists an invisible "r/w pointer" to keep
track of the next sector to be written or read. Immediately after a file is opened,
the r/w pointer always starts at sector 0 (the first sector) of the file; it is bumped
after "read" and "write" calls by the number of successfully transfered sectors, so
that (by default) the next transfer happens sequentially. One nice extension of the
BDS C raw I/O functions over their REALLY-raw CP/M equivalents is the elimination of
the concept of "extents"; Instead of "extent numbers" and "sector numbers within the
current extent" to be reckoned with for every file, there is only a single !6-bit r/w
pointer to be considered. The value of a file's r/w pointer may be obtained by
calling the "tell" function, and modified by calling "seek".

To illustrate the use of raw I/O in a program, let's build a simple utility to make a
copy of a file. The command format for this utility (which we'll call "copy") shall
be:

A>copy filename newname <cr>

This will take the file named by 'filename' and create a copy of it named by
'newname'. Since this is to be a classy utility, we want full error diagnostics in
case something goes wrong (such as running out of disk space, not being able to find
the master file, etc.) This includes checking to make sure that the correct number of
arguments were typed on the command line. It is sometimes convenient to summarize a
program in a half-C/half-English pseudo code form to avoid going in blind; Here is
such a summary of the copy program:

copy(file! ,f ile2) {

}

if (exactly 2 args weren't given) { complain and abort}
if (can't open file!) { complain and abort}
if (can't create file2) { complain and abort}
while (not end of file!) {

}

Read a hunk from file! and write it out to file2;
if (any error has ocurred) { complain and abort }

close all files;

And here is the actual C program that implements the above procedure:

2
BDS C File I/O Primer

lIinclude "bdscio.h"
IIdefine BUFSECTS 64

/* The standard header file
/* Buffer up to 64 sectors in memory

*/
*/

int fd1, fd2; /* File descriptors for the two files */
char buffer[BUFSECTS * SECSIZ]; /* The transfer buffer */

main(argc,argv)
int argc; /* Arg count

/* Arg vector
*/
*/ char **argv;

{

}

int oksects; /* A temporary variable */

/* make sure exactly 2 args were given */
if (argc 1= 3)

perror("Usage: A>copy file1 file2 <cr>\n");

/* try to open 1st file; abort on error */
if «fd1 = open(argv[l] ,0» == ERROR)

perror("Can't open: %x\n",argv[l]);

/* create 2nd file, abort on error: */
if «fd2 = creat(argv[2]» == ERROR)

perror("Can't create: %s\n",argv[2]);

. /* Now we're ready to move the data: */
while (oksects = read(fd1, buffer, BUFSECTS» {

}

if (oksects == ERROR)
perror("Error reading: %s\n",argv[l]);

if (write(fd2, buffer, oksects) 1= oksects)
perror("Error; probably out of disk space\n");

/* Copy is complete. Now close the files: */
close(fd1);
if (close(fd2) == ERROR)

perror("Error closing %s\n",argv[2]);
printf("Copy complete\n");

perror(format,arg)
{

/* print error message and abort */

}

printf(format, arg);
fabort(fd2);
exit (); .

/* print message */
/* abort file operations */
/* return to CP/M */

Now let's take a look at the program. First come the declarations: we need a file
descriptor for each file involved in the copying process, and a large array to buffer
up the data as we shuffle chunks of disk files through memory. The size of the buffer
is computed as the sector size (defined in BDSCIO.H) times the number of sectors of
buffering desired (defined at the top of this program as BUFSECTS).

In the "main" function, the first thing to do is make sure the correct number of

3
BDS C File I/O Primer

arguments were given on the command line. Since the 'argc' parameter is provided free
by the run-time package to every main program, and is always equal to the number of
arguments given PLUS ONE, we test to make sure it is equal to three (i.e, that two
arguments were given). If argc is not equal to three, we call "perror" to print out a
complaint and abort the program. "Perror" interprets its arguments as if they were
the first two arguments to a "printf" call, performs the required "pr intf" call,
aborts operations on the output file (this wouldn't have any effect if called before
the file is opened; this would be the case if the "argc 1= 3" test succeeds), and
exits to CP/M.

If we make it past the argc test, it is time to try opening files. The next statement
opens the master file for reading, assigns the file descriptor returned by "open" to
the variable 'fdl', and causes the program to be aborted if "open" returned an error.
This can all done at one time thanks to the power of the C expression evaluator; if
you aren't used to seeing this much happen in one statement, take a moment to follow
the parenthesization carefully. First the call to "open" is performed, then the
assignment to 'fdl' of the return value from "open", and then the test to see if that
value was ERROR. If the value was NOT equal to ERROR, control will pass onto the next
'if' statement; otherwise, the appropriate call to "perror" diagnoses the problem and
terminates the program. Creating the output file follows exactly the same pattern.

Having made it through all the preliminaries, it is time to start copying some data
(finally!). Each time through the 'while' loop, we read as much as we can get (up to
BUFSECTS sectors) into memory from the master file. The "read" function returns the
number of sectors successfully read; this may range from 0 (indicating an end-of-file
[EOF] condition) up to the number of sectors requested (in this case, BUFSECTS), with
a value of ERROR being returned on disaster (when the disk drive door pops open or
something). Whatever this value may be, it is assigned to 'oksects' for later
examination. In the special case when it is equal to zero, indicating EOF, the "while"
loop will be exited. Otherwise, we enter the loop and attempt to write back out the
data that we just read in. First, though, we want to make sure no gross error
occurred, so a check is performed to see if ERROR was returned by the "read" call. If
so, it's Abortsville. Having safely circumnavigated Abortsville, we call "write" to
dump the data into the output file. If we don't succeed in writing the number of
sectors we want to write, it's back to Abortsville with an appropriate error message
(most write errors are caused by running out of disk space.) If the "write" succeeds,
we go back to the top of the loop and try to read some more data.

The last thing to do, once the "while" loop has been left, is to mop up by closing the
files; just to be complete, we check to make sure the output file has closed
correctly. And that's it.

The raw file I/O functions are most useful when large amounts of data, preferably in
even sector-sized chunks, need to be manipulated. The preceding file-copy program is a
typical application. Raw file I/O requires you to always think in terms of
"sectors"--while this poses no particular problem in, say, the file-copy example, it
does add quite a bit of complexity to shuffling bits and pieces of randomly-sized
data. Consider, for example, the unit known as the "text-line": A line's worth of
ASCII data may vary in size anywhere from 1 byte (in the case of a null string,
represented by the terminating null only) up to somewhere around 133 bytes, or maybe
even more if you're dealing with some really fancy printing device. Anyway, some
convenient method to read and write these text-lines to and from disk files would be a
very useful thing for text processing applications. Ideally we'd like to be able to
call a single function, passing to it some kind of file descriptor and a pointer to a

4
BDS C File I/O Primer

text-line, and let the function write the text-line into the file so that it
immediately follows the last line written to that file. Also, to prevent a
time-consuming disk access every time a line is written, it would be nice to have our
function collect up a bunch of lines and toss them all to disk at once when the
"buffer" fills up. Analogously there would have to be a function to read a text-line
from some disk file into a given place in memory; here, also, it would greatly improve
performance if an invisible buffer was managed by the text-line-grabbing function so
that disk activity is minimized. The functions described here are, in fact, "fputs"
and "fgets" from the library: two of the "buffered I/O" functions.

The spotlight in the world of buffered I/O is a structure called, amazingly, an "I/O
buffer". Within this structure is a large, even-sector sized character array within
which the data being transferred is stored, and several assorted pointers and
descriptors to keep track of "what's happening" in the data array portion of the
buffer. There's a file descriptor to identify the file in raw I/O operations, there's
a pointer into the data array to tell where the next byte shall be read from or
written to, and there's a counter to tell how many bytes of either data or space
(depending on whether you're reading or writing) are left before it becomes necessary
to reload or dump the buffer. (1)

Buffered I/O functions use pointers to I/O buffers just as the raw functions use file
descriptors. There are six functions that perform all actual buffered I/O for single
bytes of data; the other buffered I/O functions (such as "fputs" and "fgets") do their
stuff in terms of the six "backbone" functions.

For reading files we have "fopen", "getc", and "fclose". "Fopen" is called to
associate an existing input file with a user-provided I/O buffer area by initializing
all the variables in that buffer. "Getc" grabs a byte from the buffer, first refilling
the data array from disk whenever the array is found to be empty, and returns a
special value (EOF) when the end of the file is reached. "Fclose" closes the file
associated with an I/O buffer.

For writing files there are "fcreat", "putc", "fflush", and "fclose" again ("fclose"
leads a double existence.) "Fcreat" creates a new file and prepares an associated I/O
buffer structure for recieving data. The data is written to the buffer via calls to
"putc", one byte at a time. When all the data has been "putc"-ed, "fflush" is called
to dump out the contents of the not-yet-full I/O buffer to the disk file. Finally,
"fclose" wraps things up by closing the associated file.

The only functions that actually read and write data are "getc" and "putc";
such as "fgets", "fputs", "fprintf", etc. do their reading and writing in
"getc" and "putc".

functions
terms of

Let's look at a simple first example. The following program prints a given text file
out on the console, with line numbers generated on the left margin:

1. The devious user may wonder why there is space taken for a byte counter, when the
data pointer could just as well be compared to the last array address to detect a
full/empty buffer. Actually, it ends up being more efficient with the counter,
because the co"de required to compare two addresses is usually bulkier than the code
required to decrement a counter and test for zero.

5
BDS C File I/O Primer

/*
PNUM.C: Program to print out a text file with

automatic generation of line numbers.
*/

tlinclude "bdscio.h"

main(argc,argv)
char **argv;
{

char ibuf [BUFSIZ] ;
char linbuf[MAXLINE];
int lineno;

/* declare I/O buffer
/* temporary line buffer
/* line number variabele

*/
*/
*/

if (argc != 2) { /* make sure file was given */

}

}

printf("Usage: A>pnum filename <cr> \n");
exit();

if (fopen(argv[l],ibuf) == ERROR) {
printf("Can't open %s\n",argv[l]);
exit();

}

lineno = 1; /* initialize line number

while (fgets(linbuf,ibuf))
printf("%3d: %s",lineno++,linbuf);

fclose(ibuf) ;

*/

The declaration of 'ibuf' provides the I/O buffer area for use with "fopen", "getc"
and "fclose". The symbolic constant "BUFSIZ", defined within the BDSCIO.H header file,
tells how many bytes an I/O buffer must contain; this value will vary with the number
of sectors desired for data buffering. See BDSCIO.H for instructions on how to
customize the buffered I/O mechanism for a different buffer size (the default is eight
sectors).

After checking the argument count and opening the specified file for buffered input,
all the REAL work takes place in one simple "while" statement. First the "fgets"
function reads a line of text from the file and places it into the 'linbuf' array. As
long as the end of file isn't encountered, "fgets" will return a non-zero (true) value
and the body of the "while" statement will be executed. The body consists of a single
call to "printf", in which the current line number is printed out followed by a colon,
space, and the current text line. After the value of 'lineno' is used, it is
incremented (by the ++ operator) in preperation for the next iteration. The cycle of
reading and printing lines continues until "fgets" returns zero; at that point the
"while" loop is abandoned and "fclose" wraps things up.

For our final example we have the kind of program known as a "filter". Generally, a
filter reads an input file, performs some kind of transformation on it, and writes. the
result out into a new output file. The transformation might be quite complex (like a C

6
BDS C File I/O Primer

compilation) or it might be as trivial as the conversion of an input text file to
upper case. Since printing costs are pretty high these days, let's skip the C
compiler for the time being and take a look at a To-Upper-Case filter program:

lIinclude "bdscio.h"

main(argc,argv)
char **argv;
{

}

char ibuf[BUFSIZ], obuf[BUFSIZ];
int c;

if (argc != 3) {

}

printf("Usage: A>ucase file newfile. <cr> \n");
exit() ;

if (fopen(argv[I],ibuf) -- ERROR) {
printf("Can't open %s\n",argv[I]);
exit();

}
if (fcreat(argv[2],obuf) == ERROR) {

printf("Can't create %s\n",argv[2]);
exit () ;

}

while «c = getc(ibuf)) != EOF && c != CPMEOF)
if (putc(toupper(c),obuf) == ERROR) {

}

printf("Write error; disk probably full\n");
exit();

putc(CPMEOF,obuf);
fflush(obuf);
fclose(obuf);
fclose(ibuf) ;

This time there are two buffered I/O streams to be dealt with: the input file and the
output file. The first thing to do is check for the correct number of arguments (in
this case, two: the name of an existing input file, and the name of the output file to
be created). Then "fopen" and "fcreat" are called, to open and create the two files
for buffered I/O. If that much succeeds, the main loop is entered and the fun begins.
On each iteration of the loop, a single byte is grabbed from the input file and
compared with the two possible end-of-text-file values: EOF and CPMEOF. Normally, the
last thing in a text file SHOULD be a CPMEOF (control-Z) character. But, some text
editors (none that I use) neglect to place the CPMEOF character at the end of a file
if the file happens to end exactly on a sector boundary; in this case, CPMEOF will
never be seen and the physical end-of-file value (EOF) must be detected. The
complication this causes is rather tricky ••• the EOF value returned by "getc" is -1,
which must be represented as a 16-bit value because "char" variables in BDS C cannot
take on negative values. This is why the variable "c' is declared as an "int" instead
of a "char" in the above program; if it were declared as a "char", then the
sub-expression

7
BDS C File I/O Primer

c = getc(ibuf)

would result in a value having the type "char" and could never possibly equal EOF as
tested for in the program. Should "getc" ever return EOF in such a case, 'c' would end
up being equal to 255 (the "char" interpretation of the low order 8 bits of the value
EOF). Thus, c is declared as an "int" so that the EOF comparison can make sense.
This is awkward because 'c' is used here for holding characters, and it would be nice
to have it declared as a character variable. There's actually a way to do it, at the
price of complete generality: if the EOF in the comparison were changed to 255, then
'c' would have to be be declared as a "char", and the program would work ••• EXCEPT for
when an actual hex FF (decimal 255) byte is encountered in the input file! Now, while
it is a pretty safe bet to assume there aren't any hex FF bytes in your average text
file, there may be exceptions. Also, there's no law that says filters can only be
written for text files. Consider a program to take a binary file and "unload" it,
creating an Intel-format HEX file. Would we want it to halt when the first hex FF is
encountered? No, the original method is clearly the most general.

Once having determined that the end-of-file has not been encountered, the body of the
"while" statement is executed. Here we use "toupper" to convert the character obtained
from "getc" to upper case, and then we use "putc" to write the resulting byte out to
the output file. To be neat, errors are checked for: the program terminates if "putc"
returns ERROR.

As soon as an end-of-file condition is detected, we write out a final CPMEOF
(control-Z) character to terminate the output file. The way this particular program is
set up, the CPMEOF will be appended to the output file whether or not the input file
ended with a CPMEOF. Next, "fflush" is called to flush the output buffer. This must
always be done before closing a buffered output file, to make sure that all characters
sent to "putc" since that last time the buffer filled up get written to disk. Finally,
"fclose" is used to close the input and output files.

For more examples of the usage of buffered I/O, see CONVERT.C, CCOT.C, TABIFY.C and
TELNET.C. Also, take some time to inspect the files BDSCIO.H, STDLIBl.C and STDLIB2.C,
which contain the sources of all the buffered I/O functions.

8
BDS C File I/O Primer

..

BDS C Console I/O: Some Tricks and Clarifications

Leor Zolman
BD Software

Cambridge, Massachussetts

In this document I will attempt to remove some of the mystery behind the CP/M console I/O
mechanisms available to BDS C users. When the major documentation for BDS C (i.e. the User's
Guide) was being prepared, I had mistakenly assumed that users would automatically realize how
the "bdos" and "bios" library functions could be used to perform all CP/M and BIOS functions,
especially direct console I/O (by which the system console device may be operated without the
frustrating unsolicited interception of certain special characters by the operating system.) In
fact, the use of the "bios" function for such purposes might only be obvious to experienced
CP/M users, and then only to those having assembly language programming experience with the
nitty-gritty characteristics of the CP/M console interface. Let's take a look at what really

~happens during console I/O •••

The lowest (simplest) level of console-controlling software is in the BIOS (Basic
Input/Output System) section of CP/M. There are three subroutines in the BIOS that deal with
reading and writing raw characters to the console; they are named 'CONST' (check console
status), 'CONIN' (wait for and read a character FROM the console), and 'CONOUT' (send a
characte~ TO the conpole). The way to get at these subroutines when you're writing on the
assembly language level is rather convoluted, but the BDS C library provides the 'bios'
function to make it easy to access the BIOS subroutines from C programs. To check the console
~tatus directly, you use the subexpression 'bios(2)', which returns a non-zero value when a
~nsole character is available, or zero otherwise. To actually get the character after
bios(2)' indicates one is ready, or to wait until a character is ready and then get it, use

'bios(3)'. To directly write a character 'c' to the console, you'd say 'bios(4,c)', but note
that the BIOS doesn't know anything about C's convention of using a single '\n' (newline)
character to represent a logical carriage-return/linefeed combination. The call 'bios(4,'\n')'
will cause ONLY a single linefeed (ASCII OxOA) character to be printed on the console.

Making sure that all console I/O is eventually performed by way of these three BIOS
subroutines is the ONLY way to both keep CP/M from intercepting some of your typing and insure
the portability of programs between different CP/M systems. (1)

.~ The BDOS (Basic Disk Operating System) operations are the next higher level (above the
BIOS) on which console I/O may be performed. Whenever the standard C library functions
'getchar' and 'putchar' are called, they perform their tasks in terms of BDOS calls ••• which in

.. turn perform THEIR operations through BIOS calls, and this is where most of the confusion
arises. Just as there are the three basic BIOS subroutines for interfacing with the console,
there are three similar but "higher level" BDOS operations for performing essentially the same
tasks. These BDOS functions, each of which has its own code number distinct from its BIOS
counterpart, are: "Console Input" to get a single character from the console (BDOS function
1), "Console Output" to write a single character to the console (BDOS function 2), and "Get

1. Even so there's no way to know what kind of terminal is being used--so "truly portable"
software either makes some assumptions about the kind of display terminal being used (whether
or not it is cursor addressable, HOW to address the cursor, etc.) or includes provisions for
~lf-modification to fit whatever type of terminal the end-user happens to have connected to
Irte system.

1
BDS C Console I/O 12/80

Console Status" to determine if there isa character available from the console input (BDOS
function 11). The BDOS operations do all kinds of things for you that you may not even be fu~
aware of. For instance, if the BDOS detects a control-S character present on the console inp~
during a console output call, then it will sit there and wait for another character to be typed
on the console, and gobble it up, before returning from the original console output call. This
may be fine if you want to be able to stop and start a long printout without having to code
that feature into your C program, but it causes big trouble if you need to see EVERY character
typed on the console, including control-S. A little bit of thought as to how the BDOS does what
it does reveals some interesting facts: since it must be able to detect control-S on the
console input, the BDOS must read the console whenever it sees that a character has been typed.
If the character ends up not being a control-S (or some other special character that might
require instant processing), then that character must be saved somewhere internally to the BDOS
so that the next call to 'Console Input' returns it as if nothing happened. Also, the BDOS must
make sure that any subsequent calls made by the user to 'Get Console Status' (before any are
made to 'Console Input') indicate that a character is available. This leads to a condition ill
which a BDOS call might say that a character is available, but the corresponding BIOS call
would NOT, since, physically, the character has already been gobbled up by the BDOS during a
prior interaction with the BIOS.

If this all sounds confusing, bear in mind that it took me several long months of playing
with CP/M and early versions of the compiler before even I understood what the hell was going
on in there. My versions of 'getchar' and 'putchar' are designed for use in an environment
where the user does NOT need total direct control over the console; given that the BDOS would
do some nice things for us like control-S processing, I figured that I might as well.throw in
some more useful features such as automatic conversion of the '\n' character to a CR-LF
combination on output, automatic abortion of, the.program whenever control-C is detected on
input or output (so that programs having long or infinite unwanted printouts may be stopped
without resetting the machine,even when no console input operations are performed), automat4n
conversion of the carraige-return character to a '\n' on input, etc. One early user remark~
that he would like 'putchar' to be immune from control-C; for him I added the 'putch' library
function, which works just like 'putchar' except that control-C's would no longer stop the
program. Much later it became evident that neither 'putchar' nor 'putch' suffice when CP/M must
be prevented from ever even sampling the physical console input. At this point I added the
'bios' function, so that users could do their I/O directly through the BIOS and totally bypass
the frustrating character-eating BDOS.

I promised some examples earlier, so let's get to it. First of all, here is a very
rudimentary set of functions to perform the three basic console operations in terms of the
'bios' function, with no special conversions or interceptions AT ALL (i.e., nothing like th~
'\n' --> CR-LF translations):

2
BDS C Console I/O 12/80

/*
Ultra-raw console I/O functions:

*/

getchar()
{

/* get a character from the console */

return bios(3);
}

kbhit ()
{

/* return true (non-zero) if a character is ready */

return bios(2);
}

putchar(c)
char c;

/* write the character c to the console */

{

bios(4,c);
}

These ultra-raw functions do nothing more than provide direct access to the BIOS console
subroutines. If you include these in your C source program, then the linker will use them
instead of the standard library versions of the similarly named functions--provided that some
direct reference to them is made before the default library file (DEFF2.CRL) is scanned.
Usually, in programs where such functions are necessary, there will be many explicit calls to

Qetchar' and 'putchar' to insure that the library versions aren't accidentally linked. A good
xample of a case where trouble might occur is when the entire program consists of, say, a

single 'printf' call followed by a custom version of 'putchar'. Since the linker won't know
that 'putchar' is needed until after 'printf' is loaded from the library, the custom version of
'putchar' will be ignored and the old (wrong) version will be picked up from the DEFF2.CRL
library file. The way to avoid such a problem is to insert, somewhere in the source file,
explicit calls to any functions that are a) NOT explicitly called otherwise, and b) named the
same as some library function. This isn't an expecially neat solution, but it gets the job
done.

OK, with that out of the way, let's consider some more sophisticated games that can be
~layed with customized versions of the console I/O functions. For starters, how about a set
that performs conversions just like the library versions, detects control-C, and throws away
any characters typed during output (except control-C, which causes a reboot)? No problem.
What's needed is automatic conversion of '\n' to CR-LF on output; conversion CR to '\n' and ~Z

-to -1 on input with automatic echoing; and re-booting on control-C during both input and
output.

3
BDS C Console I/O 12/80

1*

*1

Vanilla console 1/0 functions without going through BDOS:
('kbhit' would be the same as the above ultra-raw version)

#define CTRL C Ox03
#define CPMEOF Ox1a

1* control-C *1
1* End of File signal (control-Z) *1

getchar()
{

1* get a character, hairy version *1

}

char c;
if «c = bios(3» == CTRL_C)
if (c -- CPMEOF) return -1;
if (c -- '\r') {

putchar('\r');
c = '\n';

}

putchar(c);
return c;

bios(O); 1* on ~C, reboot *1
1* turn ~Z into -1 *1

1* if CR typed, then *1
1* echo a CR first, and set *1
1* up to echo a LF also *1
1* and return a '\n' *1

1* echo the char *1
1* and return it *1

putchar(c)
char c;

1* output a chara~ter, hairy version *1

{

}

bios(4,c);
if (c == '\n')

bios(4,'\r');
if (kbhit() && bios(3)

bios(O) ;

1* first output the given char *1
1* if it is a newline, *1
1* then output a CR also *1

== CTR~C) 1* if ~C typed, */
1* then reboot *1

1* else ignore the input completely *1

Now, if you wanted to have control-S processing and a push-back feature (the two are
actually quite related, since you must be able to push back anything except control-S that
might be detected during output), you could add some external "state" to the latest set of
functions and keep track of what you see at the console input. Once this is done, though,
you're probably better off going back to the original library versions of 'getchar' and
'putchar', which let the BDOS handle all that grungy stuff.

Incidentally, Cp/M version 2.x has a new BDOS function which supposedly makes it easier to
perform some of the direct console I/O operations that required the BIOS calls for Cp/M 1.4.
While this might be useful for people having Cp/M 2.x, it would render any software developed
using the new BDOS feature autistic when run on Cp/M 1.4 systems. Please keep that in mind if
you ever write any software on your 2.x system for use on other (perhaps non-2.x) systems.

So far, everything I've talked about has been in terms of the BIOS, and applies equally to
all Cp/M systems. Unfortunately, there is one console operation often needed when writing
real-time interactive operations that is not supported by the BIOS, and thus there is no
portable way to implement it under Cp/M. What's missing is a way to ask the BIOS if the console
terminal is ready to ACCEPT a character for output. An example of the trouble this omission
causes is evident in the sample program RALLY.C; the case there is that the program must be
able to read input from the keyboard at any instant, and cannot afford to become tied ~ I

waiting for the terminal when the amount of data being sent to it has caused the x-ON/X-O~ .
protocol to lock up the program until a character can be sent. Given that the only "kosher" way

, 4
BDS C Console 1/0 12/80

to send a character to the console is through the CONOUT BIOS call, and that such a call might
~ any time tie up the program for longer than is tolerable, the only recourse is to bypass
~OUT completely and construct a customized output routine in C that can be more
sophisticated. This is done in RALLY.C, at the expense of non-portability for the object code;
each user must individually configure his BDSCIO.H header file to define the unique port
numbers, bit positions and polarities of the I/O hardware controlling his console. It would
have been SO much easier if the BIOS contained just one more itty bitty subroutine to test
console output status ••• but NoooooOOOOOOOOoooooo, they had to leave that one OUT so we have to
KLUDGE it •••

Sorry. I get carried away sometimes. Oh well ••• l hope this has helped to demystify some of
the obscure behavior sometimes evident during console I/O operations. For the low-down on how
the library versions of 'getchar', 'putchar', etc. really work, see their source listings in
DEFF2.ASM. And if there's something you want to do with the console and can't figure out how
~espite this document, I'm always available for consultation (at least whenever I'm near the
phone.)

Good luck.

5
BDS C Console I/O 12/80

How To Avoid Warm-Boots After
C Programs Finish Executing

Leor Zo~, 12/81

As IlDst users of BOO C have probably noticed, C-generated CUM files always perform a
wann-boot When finished wi th their tasks. '!his is because the stack is usually placed in
high rnerrory just below the BroS, wiping out part of the CCP (console carmand processor)
during execution and requiring a 'warm-boot to bring back the CCP from the system tracks on
disk. The following patches'·to the C.CCC run-time package file provide a way to generate
COM files that do NOT perform a warm boot after execution, but instead return directly to a
non-c1obbered CCP. The price of avoiding a warm-boot is that there is less menory space
available during execution (3000 bytes less by default): the advantage is that there is no
waiting for the disk to seek and load the CCP every time the program is finished, irrproving
overall performance and preserving the nerves of impatient hackers.

The procedure for generating non-booting programs is as follows:

1. Make a copy of your nonna1 version of C. CCC (the run-time package binary iIrage) under
sane other name.

2. Use our or SID to change your C.CCC file according to the patches listed below, and
keep this new version of C.CCC for CLINK to use When linking your non-booting
programs.

3. Calpi1e and link your programs normally, but do NOr use the "-t" CLINK option: it
won't work correctly for non-booting programs.

4a. After linkage is canplete, use our or SID to change the first four bytes of the
resulting COM file as follows:

100: 21
101: 00
102: 00
103: 39

(was 2A)
(was 06)
(was 00 or 42)
(was F9)

This MUsr be done even if you've already changed some of these bytes in step 2,
because CLINK itself sets the first 4 bytes of the CUM file it generates to
instructions that don't work in the non-booting variation. So, this step changes them
back to What they need to be for all this to work.

4b. (optional): If you REALLY need to put the run-time stack someplace special, patch in
the following sequence at location 107h (or 4307h for rrodified systems) after making
the mainline patches described above:

107: 31
108: <stack addr, low b¥te>
109: <stack addr, hi byte>
lOA: 00

(was CD)
(was 34)
(was 01 or 43)
(was F9)

Once this patch is made to C.CCC, it will remain in effect throughout later linkages,
but the modification in step 4A must be made after each linkage.

5. The CDM file should now be ready to execute. Try a sirrple one-line "printf" program
the first time to test out the C.CCC patches: if working correctly, the output line
should be followed imnediately by a return to the system (nA> II should be printed)

1
Avoiding warm-boots after C programs

without ANY disk activity having occurred. If anything else happens, re-check your
patches. Remember that step 4 must be done after EVERY linkage.

6. Remember to restore the original c.coc file When generating programs that need th~
extra stack space and/or need a warm-boot performed after execution.

Here are the C.OCC patches for non-booting OOM files:

********* Changes to C.CCC for a non~-booting version ************
* (Sane of the values in the "NORMAL (OLD)" coluumn may be .different *
* fran those shown if you 've reassembled c.coc on your own earlier) *
**

ADDR

0100:

0103:
0104:
0105:
0106:
0107:
0108:
0109:
OlOA:

012F:
0130:
0131:
0132:
0133:

0134:
0135:
0136:
0137:
0138:
0139:
013A:
013B:
013C:
O13D:
013E:

04-13:
0444:
0445;

NOBOOT mnemonic

21 lxi h,O

39 dad sp
22 shld spsave
79
05 or 47
CD call sppatch
34
01 or 43
F9 sphl

retpatch:
2A lhld spsave
79
05 or 47
F9 sph1
C9 ret

sppatch:
2A Ihld ram+6
06
00 or 42
11 1xi d,-3000
48
F4
19 dad d
C9 ret
00
00
00

C3
2F
01 or 43

conments

~get system SP into HL

~save until exit

~ (4Th for rrodified CP/M)
~campute new SP value

~(43h for modified CP/M)
~place into SP reg

~ this is a patch from
~the "vexit" routine,
~to restore system SP •••

~ ••• and return to CCP

~get bdos pointer

~(42h for rrodified CP/M)
~offset to bypass
~the OCP

~leave new SP value in HL
~ in HL and return

~ SP and return to OCP
~(43h for modifed CP/M)

2
Avoiding warm-boots after C programs

NORMAL (OLD)

31

00
00
00
00
00
00
00
00

C3
FB
OC
CD
96

aD
FE
38
CA
7B
DC
E6
08
C4
82
11

00
00

SD Software Telnet v2.0

Docunlentation for use with 8DS Tclnet v2.1

Setting up the machine:

Leo Kenen
172 Churchil/s Lane
Milton, Mass. 02186

211180

r-eburary1980

To use the TELNET program effectively it is necessary for the hardware of your
system to be properly configured. The current version ·will work with any modem which
is connected to the microcomputer via a status driven port. This illcludes 8-100
modems sllch as tile PMMI or the D.C. Hayes, even though many of the neat features
of these modems can not be used with this release.

On most systems the modern will be connected to the computer via a standard
serial port and will run at 30cps (300 baud). A suitable cable must be made to connect
the modem to the computer. This is uSllally a simple cable having one DB·25 (25 pin)
connector at each end. The connectors Illay be either male or female depending on
the requirements of your hardware. The standard wiring procedure is to connect pin 2
of one connector to pin 3 of the other (this goes both ways) and to put jumpers on
each of the 08-25's. These jumpers should be between pins 4 and 5, and another
jurnper connecting pins 6,8 and 20.

Once the hardware is set up. it is then necessnry to aller the It define statements
in the TELNET.C source file to fit your configuration. When all the necessary changes
have been made to the program, you are ready to compile it and test it out.

Initial test:

Turn on the modern and set it to HALF duplex (or better, TEST mode). Run tile
TEU\JET proornrn (after its been compiled and linl~ecf) by typing TELNET. The J1ro!Jram.
will then asl< you if you expect an echo from the other computer or from the modem.
Your reply should be 'y', since in this test we are hoping for an echo. Now type some
keys on the console and see if they are displayed on the screen. If they are, then you
have a worldng copy of TELNET. If nothing happens, there must be a problem with ei·
ther the hardware or the software. If your modern has a test mode you should hear
"blips" from the modern when keys are typed. If you do not, try reversing the wires on
pins 2 and 3 of one of the 08-25 connectors. If the hardware looks good, check (and
(iouble checl~) the # defines in the program to be sure that they are correct for your
system.

Communication Mode:

As soon as the progrntn comes up you are in communication modi). In this modo
anything that you type will be sent to the modem (except for the SPECIAL character,
which causes TELNET to pro'llpt for a special function cod(~). [vcrytllinu that ani'Jes
from the modem is also displayed on your screen. In this modo your computer is a sim-

·1·

8D Software Telnet v2.0 Feburary 1980

pie dumb terminal. For most applications this is the most common mode of operation.

SPECI AL mode:

To enter SPECIAL mode from communication mode it is necessary to type single
SPECIAL character (defined for your particular implementation within the # define sec
tion of the TELNET.C source.) This character should be one which you are not likely to
need to type while in communication mode with another system. On most systems this
character ends up being the NULL (OxOO), t A (OxOl) or tt (Ox1 f).

Typing an unknown command letter after hitting the SPECIAL character will display a
iist of legal commands on the screen. To send the special character to the other sys
tem (just in case· it ever becomes necessary), just type it twice. The followjng com
mands (issued after typing tile SPECIAL character) can be used to receive and transmit
files and to perform many other useful functions.

Command Sum.nary:

o Open an Output file for a data transfer. This function can be used to
begin receiving programs or data from another computer or just keep a
record of the things that you did while on line. When this command is
given TELNET will ask several questions concerning the protocol that
should be used during this transfer. The first thing that TELNET needs
to know is the name of the file that should be used to store the data
which is received. The filename you specify should be in the standard
CP 1M format:

Filename: foo.bar
Filenalne: b:foo.bar

opens FOa.BAR on the current drive
opens FOa.BAR on B:

When the file is opened, any old file with the same name will be lost. If
this file· can be opened, you will be asked if the transfer will involve
TEXT (ascii data which is suitable for printin9) or binary data. If your
response is ;n' (to indicate binary) then the data received from the
modem will not be displayed on the console until the transfer is complet
ed. If you just want a record of the session's aclivity you must tcll TEL
NET that text is going to be transfered (or you will not be able to see
what you are doing).

If the transf(~r is going to be in checl<sLJnl mode, then there must
not be any echo coming from the other system or your modern. TELNET
will belie'./o it if YOll S:1Y there is no cclio, but if there really is an echo
then the chances of makinu a nood transfer are nil.

If you do not choose checksulll modo, then all incomino dala vii!1
be buffered up in memory (except when pausing). Since the program
cannot monitor incornino data wiliie data is bcing ciumpeci to disi<, the
normal procedure is to wait until you ~<now there will not be any data
coming in for a v,Ihile (for instancH, when you Zlrc talldnu to a ho:t
machine and it lias just PI illted its prumpt character) and then give the

-2-

SO Software Telnet v2.0 Feburary 1980

o

c

T

p

R

A

dump command (D) to flush the buffer contents to disk. See also the 0
and C command descriptions.

Dump (append) current contents of the collection buffer to the disk file
(opened with the 0 command), leave the file open for more data, and
clear the collection buffer. This function is useful if the file which is be
ing transfered is larger than the buffer space. This is only needed if the
transfer is not in checksum mode, since TELi~ET manages the buffer au
tomatically when in checksum mode. After the buffer is dumped, collec
tion will continue although any data that is sent while the disk is active
will be lost forever.

Close Output file. This function first forces an automatic dump of the
rnen10ry buffer to the open file, after which the the file is clGsed. This'
command will also clear the memory buffer, permitting another file to be
opened. Close is only needed if the transfer is not in checksum mode.
An error in writing the file (such as running out of disk space) will result
in the loss of the data.

This command is the complement of the Open command, used for
transmitting a file from your system out to the modem and beyond. It
prompts for the name of the file to be transferred and for information re
garding transfer protocol. These questions are analogous to those asked
by the Open command described above. If the file can be opened l then
it will be sent to the other computer using the protocol selected. If the
transfer involves binary data, then a status message will appear on the
console after each 128-byte sector is sent.

To abort or pause, use the A or P commands.

Pause from file transfer. If a file has been opened (using the a com
mand) in non-checksum mode, then this suspends the collection of in
coming text in the memory buffer until the R command is issued to
resume collection. If a file is being transmitted (in either checi<surn or
non-checksum mode) then the transfer is suspended, to be continued
when R is given. It is not good practice to pause during a checksummed
transfer, but it is possible to recover provided: the transmitter pauses
first, he waits for the receiver to pause before typing anything, the re
ceiver resumes first, and then the transmitter resumes. Messy but at least
feasible.

The main use of pause, though, should be during non
checksummed text file output.

Resume from a pause.

Abort current transfer. Use of this command will terminate any transfer
which is currently in progre~s. If there is no transfer progress, a short
messurJe to that effect will be printed. If you are receiving data (via the
o cOllllnand) thi~3 command will also send out an ETX (tC) to the
transmitter to terminate that process also. While transmitting this Com
mand will send out enou~Jh E rx's to inform the receiver that thc~ transfer
has been terminated. If, however, the receiver is out of sync (probably

-3-

BO Software Telnet v2.0 Feburary 1980

v

K

Q

H

N

F

L

SPECIAL

because of a slow terminal) when the transmitter aborts, then the re
ceiver may have to terminate manually after seeing 1l0thir1g happen for a
long enough period.

View the collection buffer. All contents of the collection buffer will be
di0played on the console. Following the display of the data, the amollnt
of free space left in the buffer will be annollnced. This is ~lseful for veri
fying that a text file has been transferred properly.

Kill (erase, delete, throwaway, ZAP) contents of the text buffer.

Quit Telnet and return to CP 1M. This function will dump any buffers that
are being Llsed for buffered I/O and then close the associated files.
After all the housel~ecping has been clone the system will warm boot.

Set Half/Full Duplex. Use this command to tell TELNET whether or not
you are getting an echo from either the modem or from the other sys
tem. When this is set to half duplex, all data sent to the modem from
your system will be simultaneously sent to your console output (oxcept
during binary data transfers). When in full duplex, it is assumed that the
other system will echo what you type, so TELNET does not do it. There
is no default for this command so TELNET will request the information
from you at the start of a session.

Select protocol concerning the Parity bit. This function permits the pari
ty bit to be preserved or to be masked out. In text files it is normal to
mask out the MSB (ani 7fh). During a transfer this mode is set automati
cally.

Select protocol regarding Nulls. This function is used to tell TELNET to
either disregard nulls (for text) or to notice nulls (needed in binary and
some otller applications). When the system is noticin~J nulls, then they
"viII be placed in the text buffer and saved when the buffer is dumped to
disk. Ignoring nulls reduces the amount of storage necessary since nulls
will not be placed into the buffer. .

Select linefeed protocol. Asks whether or not the linefeeds which foHo'.\!
carriage-returns in CP 1M text files should be transmitted. Many remote
systems would not appreciate those linefecds.

Enable/disable CPIM list device. If enabled, anything going to the con
sole (except TELNET control messages) is also sent to the list device
(usually a printer.) The printer's baud rate should be higher than the
modem's.

TranSlllit the SPECIAL character to the modem.

-4-

CUG GUIDELINES

DISTRIBUTION
Please send check or money order with request. Fees are:

Media domestic foreign

8-inch diskette $8.00 $12.00
5-1/4 inch diskette

I-disk release $8.00 $12.00
2-disk release $12.00 $16.00

User's Manual $15.00 $25.00

CONTRIBUTIONS
Please submit on hard-copy or 8-inch diskette. (If you
haven't translation facilities contact us BEFORE you
make the submission on some other media) .

Include these files:
CATALOG.DOC--a brief (two sentence) description of

all source or data files.
ENVIRON.DOC--a description of the environment in

which the programs were developed (what" version
BDS, what machine, if applicable, what version
of CPM). Particularly, document any changes you
may have made in the standard libraries.

READ.ME--(optional) anything else you'd like to tell
the group or the reviewers.

COMPILER UPDATES & other licensed software
Members who have submitted a copy of the appropriate
license with their membership form need only refer to
it in their request. Others should include an 8-1/2 x
11" photocopy of the original diskette (very hazardous)
or the envelope in which it was shipped. The product
name, version number and serial number are the portion
of the envelope we need to see.

Be certain to include your phone number and mailing address on
all correspondence. Address to:

Robert Ward
BDS ·C· Users' Group
c/o Dedicated Micro Systems, Inc.
409 E. Kansas
Yates Center, Ks 66783

Membership Form

Please include a check or money-order for $10.00 and a copy
of your license (see guideline sheet under compiler updates)

NAME ________________________________ __ OCCUPATION ________________ __

OFF ICE/APT ________________________ _ HOME PHONE __________________ _

STREET ______________________________ __ BUSINESS PHONE ____________ __

CITY STATE ZIP

Check each that applies, give
~ applicable.

specific information where

~ 1.4CPM BASIC (intrp.)
~==2.x CPM ==BASIC (compiled)

FORTH
-MACRO ASM
-OTHER ASM ~_HPM PASCAL

If..l BDS C, serial OTHER O:-S.

Other language

--- -------------------------
MAKE __________________________ __

~

~MODEL
~

§CPU RAM
~ ------
:I:

k

PRINTER ________________________ _

Serial ports Parallel ports

disk drives. MAKE

SIZE ,DENSITY
TRAC~ ---

Modem Other I/O

Rank the following l=very instersting to 4=worthless
~ Music Language Dev. Games

, SIDES

~==Graphics ==Systems Dev. ==Simulations
~ Process Control Record-Keeping Artificial Intelligence
~--Communications -Word Processing -Other
~==Education ==Design Aids --------------------

Rank from 1 to 6 as you feel the group should tend to each
(1 is highest priority, 6 the lowest)

Compiler/Development tool development Games
~--Application Program development --Education
~==Group Purchasing -Other
8 __ Consumer warnings

Indicate work you would be willing to perform for the group.
z __ write for newsletter Develop networks
o document and edit disks -write/adapt games
~-- for distribution --write/adapt ed. programs
~ __ copy disks -disk format translation
H handle correspondence -write/adapt applications programs
8-- relating to a speciality--
~ what? ________________________________ _

~ Other

COMMENTS:

LIFEBOAT ASSOCIATES SOFTWARE PROBLEM REPORT

Please use this form to report errors or problems in software supplied by
Lifeboat Associates. This form is designed to act as a transmittal sheet.

Software Product Name: Media Format:

Version No.: Serial No.: Invoice No.:

Purchased From:

Date of Purchase: Return Authorization #:
Has the software registration card been returned?

Computer Used: CPU (8080/8085/~-80):

Disk Capaci ty: Number of Drives: l'lemory Size:

Operating System/Version (If not listed above): / --------------- -------------
Software used with the above product, (e.g. list the BASIC used if you are
reporting a problem with a Payroll program that uses it).

Name of Software Version

Does the software come with sample or test programs?
If so, have you been able to use them successfully?

Please describe the problem you have encountered. Include references to the
manual if appropriate. Try to reduce the problem to a simple test case.
Enclose any appropriate programs (preferably on disk). If you feel that the
problem may be caused by the disk being defective, you may prefer to return the
original disk with this report to achieve the fastest resolution of the
problem. (If so, call for a Return Authorization No. A handling charge may be
incurred. No handling charge will be made if a product or portion thereof is
returned DUE TO DISKETTE MEDIA DEFECTS within 30 days from the date of sale).

Information on product changes, bugs, fixes and current version numbers are
published in Lifelines, our software newsletter.

PROBLEM DESCRIPTION: (Continue on additional pages if necessary)

Name:

Address:

City:

Return to: Lifeboat Associates
1651 Third Avenue
New York, N.Y., 10028

00 ?nrnh _ hn _ O(L R 1

State:

Area Phone Num. Ext.

(-)

(--)

Zip Code:

---(--)

---(--)

Technical assistance is available
Monday - Friday, from 11:00 a.m.
to 7:00 p.m., Eastern time.
1-(212) 860-0300
TWX: 710-581-2524 Telex: 640693

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	I-01
	I-02
	I-03
	I-04
	I-05
	J-01
	J-02
	K-01
	K-02
	K-03
	K-04
	L-01
	L-02
	L-03

