
eeompiler vIA
't!ser's eiuide

of~t ri buted~by::
life~oat Associa,tes
16$JThirdAvenl1e, '

New:YQrk,N. Y. 10028
Tel.~ :(2f2)860~03()O
TWX :710-581-2524
" T;tilt~x:64D69:r

Western Abacus Co., Ud.312/498"?660

eopvright'~'19a~ \ly .LeorXol~flI1
Printed in fhe'Uqit~fl$t.t.1Jes olltriiericfl

Introduction

BO Software C Compiler v1.4
User's Guide

Leor Zolman
BD Software

33 Lothrop st.
Brighton, Mass. 02135

I'm not even going to bother comparing C to BASIC or FORTRAN.
So. left with a few paragraphs to fill with an introduction, allow me to explain why

this software package is so inex pensive:
Before a selling price is set for a program in the microcomputer systems environ·

ment, the seller must decide whether or not large-scale ripoffs are be expected. For a
$300 BASIC interpreter, yes. one might expect ripofts. so the price is deemed
"justifiable" by the vendors to insure an acceptable profit margin or "discourage"
ripons (?).

Hmmphh.
As far as 8DS C is concerned. the price was set assuming there will not be any

ripping off, since I feel (as I have been advised numerous times) that the compiler is
really worth more than its selling price. The last few years, though, have SCf~"" :J proli·
feration of prohibitively expensive Quality software, and that fact (along with the realiza·
tion that if I were shopping for a compiler li~.e C, I would possibly copy it from a friend .
if it were priced any higher) has held thf~ price down to a reasonahle level.

There are no Iicen5es or royalty agreements connected with this package, aside
from the standard agreement that the package be used on one system orlly (which
each user implicitly agrees to in. the act of unsealing the diskette enVeIOpf).) Thus,
users are free to develop software in 80S C and market the resulting ohject code,
along with any functions that may have been taken from the BOS C library. without the
burden of having to pay 80 Software any royalties. The whole idea behind this policy
is to encourage potential software vendors to use C for their development work. and
then perhaps to include source listings of their code with their packages and thereby
promote the lise of C.

Lifeboat Associates are the exclusive distributors of the 8DS C package for CP/M
systems. The disk you've received is legitimate onl}1 if it ha~ a Lifeboat labol (with the
shopping bag) affixed to it, and on that lab~1 is a dosci iption of the pack3ae (made by
a hand slamp) with the serial number filled in. No matter where you bought your disk
hom. it should have originated at Lifeboat; if YOIl have any suspicions that the disk
you've paid for might be a booting, please contact either myself or Lifeboat about it im·
mediately so we can put an end to such treachery,

Remember: If you rip C off or give it away. YOll will not be robbing some big cor·
poration; you'll be screwing nn individutll programmf~r who'!; trying to market '?orne use·
ful software at a reasonable price and 5till remain solvent.

·1·

80S C User's Guide May 1981

Objectives and Limitations

The 80S C Compiler is the implementation of a healthy subset of the C Program­
ming Language developed at Bell Laboratories.1 The compiler itself runs on 8080/Z80
microcomputer systems equipped with the CP /M2 operating system, and generates
code to be run either under CP/M or at any arbitrary location in ROM or RAM
(although there must be a read/write memory area available at run time somewhere i!"
the target machine.)

The main objective of this project was to translate, from the minicomputer to the
microcomputer environment, a bit of the powerful, stnlctured programming philosophy
on which the Unix3 operating system is based. 80S C provides a friendly environment
in which to develop CP/M utility applications. with an emphasis on elegant human in­
terfacingfor both compiler use and operation of the end· applications.

Unfortunately, the lexical oddities of C's linguistic structure do not conform as
readily to the 8080's hardware characteristics as they do to the PDP-11's.4 Operations
natural to the 11 (such as indexed-indirect nddressing-·a crucial necessity when deal­
ing with automatic local storage allocation) expand into rather inefficient code se­
quences on the 8080. Thus, 80S C is not likely to become quite as universal a systems
programming language to the 8080 as UNIX C is to the 11; but then, as better mi­
croprocessors soon replace the 8 bit machines, you can bet there will be C compilers
available that generate code efficient enough to resign assembly language programming
to the history books. Consider this package a warm·up to that era ...

80S C's big tradeoff (when compared to assembly language programming) is a
loss of object code efficiency (both spatial and temporal), at run-time, in favor of a
high degree of structure and comprehensibility at the development stage. In educ?tion,
as well as in other non time-critical applications (such as non-gargantunn systems pro­
gramminp). I believe the sacrifices are rather minimal in contrast to the benefits.

New Features of V1.4: A Summary for Users of Earlier Versions

There has been a hefty amount of revision, expansion and clean-up applied te the
package since the last release (v1.3x). A good portion of the changes were made in
response to user feedback, while others (mainly internal code generation optimizations)
resulteu from the author's dissatisfacUon with some of his earlier kludgery and short-cut
algorithms. 80S C version 1 has iust about SLlturatedits framework; version 2 is now
being developed in close conjunction with the MARC Disk Operating System (the work
of Edwin P. Ziemha) to provide a unified software development system for release
sometime in 1981. MARC is a "Unix-like" operating system that happens to fit quite
comfortably in non-gargantuan aDaO/ZaO-based machines. MARC and £lOS C should
get along nicely, and the price for the combined pack.age ought to prove tempting ... but

1. See The C Programming Language by Brian W. Kernighan Clnd Dennis Ritchie
(PrentiCeHLii~lniB)for a IlrOpe-rdescription of the languaue. This guide deals only
with. details sJ.l~cific to the DDS C implementation; it does not attempt to teach the
C language.

2. CP/M is a trademark of Digital Research, Inc.
3. Unix is a trademark of Bell Laboratories.
4. PDP is a trademark of Digital Equipment Corporation.

-2·,

(

BOS C User's Guide General Description

this section is supposed describe new features of this software package, so here goes:
The assembly language sources for the 80S C run-time package (CCC_ASM -->

C.CCC) and all non-C-coded library functIOns (OEFF2.ASM ._> DEFF2.CRL) are now in­
cluded with the package, so that they may be customized by the user for non·CP/M
environments The new compiler and linker each accept an expanded command line
option repertoire that allows both the code origin and r /w memory data area to be
specified explicitly, so generated code can be placed into ROM. The run·time package
may be configured for non-CP/M environments by customizing a simple series of EQU
statements, and new special-purpose assembly language library functions may be easily
generated with the help of MAC (Digital Research's macro assembler) and the nifty new
macro package (CMAC.LlB) included with 80S C as standard equipment (sorry, MAC
isn't.)

On a high ~r level, the buffered I/O library can now be trivially customized to use
any number ot sectors for internal disk buffering (older versions were limited to one
sector of buffering unless a special function package called BIGFIO.C was used;
BIGFIOC is no longer necessary.) A new general purpose header file, BOSCIO.H, con­
trols the buffering mechanism and also provides a standard nomenclature for some of
the constant values most commonly used in C programs. I recommend that all users
carefully exam!l1e BDSCIO.H. become intimate with its contents, and use the symbols
defined there in place of the ugly constants previously abundant in the sample pro­
grams_ For example. the symbol 'ERROR'is a bit more illuminating than '-".

For Unix enthusiasts, an auxiliary function package (written in C) named "DIO.C"
has been included to permit I/O redirection and pipes a la Unix. If you do not need
this capability, then it isn't there to hog up space; if you DO need it, then you simply
add a few special statements to your program and specify OIO.CRL at link~ge time,
then use the standard redirection syntax on the CP/M command line.

Documentation on all the miscellaneous new library functions has finally found its
way into the User's Guide, and the Function Summary section now goes into a little
more detail on some of the confusing aspects of the file 110 mechanism.

On the technical side. version 1.4 employs a single run-time stack configuration in­
stead of the two-stack horror used in previous releases. All function parameters are
now passed on the staCk, and all local storage allocation also takes place on the
stack. This leaves all of memory between the end of the externals (which still sit right
on top of the program code) and the stack (in high memory) free for generalized
storage allocation; several new· library functions (alloc, tree, rsvstk, and sbrk) have been
provided for that purpose.

Last but not least, the code generator has been taught some optimization tricks.
The length of generated code has shrunk by 25% (on averaae) and execution timo has
been cut by about 20% over version 1.32_ Part of tl1is cut in code bulk is due to the
new compiler option -e X)()(x. This option to CC1 allows an absolute address for the
external data area to be specified at compile time, thus enabling the compiler to gen­
erate absolute loads and stores (usmg the Ihld and shld 8080 ops) for external vari­
ables.

IncompatilJilities With Ea rlie r Versions

Since the run-time package has been totally reoruanized since the last release,
CRL files produr.cd by ellrli(;r versions of the compilN wi" not run when lin'~ed in with
module~ produced by the new package. Therefore [III programs should be recompiled
with 1.41 and old CRL files should be thrl)Wn away- There are also '-! few source incom-

-3·

BDS C User's Grlide May 1981

patibilites that require a bit of massaging to be done to old source files. These are:

O. The statement

include "bdscio.h"

must be inserted into all programs that use buffered file I/O, and should be
inserted into all other programs so that the symbolic constants def[,.ed in
bdscio.h can be used.

1. All buffers for file I/O that were formerly declared as 134-byte character ar­
rays should now be declared as BUFSIZ-byte character arrays. For example,
a declaration such as:

char ibuf[134];

becomes:

char ibuf[BUFSIZ];

2. Comments now nest; i.e., for each and every "begin comment" construct
(It /. ") there must be a matching "close comment" (". / ") before the com­
ment will be considered terminated by the compiler. This means that you can
no longer comment out a line of code that already contains a comment by
inserting ~ "/." at the start of the line; in~tead, a good practice would be
to insert a "/." above the line to be commented out. and insert a ". /.. fol­
lowing the line. Although this is something that UNIX C expressly disallows, I
feel it is important to have the ability to comment out large sections of code
by simply inserting comment delimiters above and below the section; former­
ly, any comments within such a block of code had to be removed first.

In version 1.4,' the run-time package comes assembled to support up to eight open
files at anyone time, but previous versions had accepted un to sixteen. To allow more
than eight files, the Nr-CBS EQU 8 statement in the run-time package source
(CCC.ASM) must be appropriately chaf')ged and the file re-assembled. See the "CRL
Format" section for details 9n customizing the run-time package.

System Requirements

The practical minimum system configuration required by 80S C is a 32K CP/M en­
vironment. Most sample programs included in the package will compile (without seg­
mentation) and run on a 481< system.

ODS C loads the entire source file into memory at once and performs the compila­
tion in-core, as oPPo5p.d to PCJssing the source text throlluh a window. This allows a
compilation to be performed Quicl~ly; the main bottleneck tor most modestly-sized com­
pilations is now the disk I/O involved in reading in the source! text and writing out the
CRL file, even though these operations take place as fast as CP 1M can handle them.
The drawback to this scheme is that a source file must fit entirely into memory for the
compilation. This may sound bad at first, but it i!'ln't really. Consider: a profJram in C is
actually a collection of many smaller functions, tied together by a main function. Each

-4-

80S C User's Guide General Description

function is treated as an independent entity by the compiler, and may be compiled
separately from the other functions in a program. Thus a single program may be spread
out over many source files, each containing a number of functions; breaking files up
this way serves to minimize re·compilation time following minor changes as well as
keep the individual source files small enough to fit in memory.

Using the Compiler

The main 8DS C package consists Of four executable commands:

CC1.COM
CC2.COM
CLlNK.COM
CLlB.COM

C Compiler -- phase 1
C Compiler -- phase 2
Clinker
C Librarian

and three data files that are usually required by the linker:

C.CCC
DEFF.CRl
DEFF2.CRl

Run-time initializer and subroutine module
Standard ("Default") function library
More library functions

CC1.COM and CC2.COM together form the actual compiler. CC1 reads in a given
spurce file from disk. crunches on it. leaves an intermediate file in memory, and au·
tomatically loads in CC2 to finish the compilation and produce a CRL file as output.1

The CRL (mnemonic for C Relocatable) file contains the generated 8080 machine
code in a special relocatable format.

The linker, CLINK, accepts a CRL file containing a main function and proceeds to
conduct a search through all given CRL files (and DEFF.CRL and DEFF2.CRL automati­
cally) for needed subordinate functions. When all such functions have been linked, a
COM file is produced.

For convenience, the CLIB program is provided for the manipulation of CRL file
contents.

IMPORTANT: The command lines for all COM files in the package should be typed in to
CPIM without leading blanks. This also applies to COM files generated by the compiler
(where leading blanks on the command line will cause argc and argv to be miscalculat­
ed.)

For example, here is the sequence required for compiling and linking a source file
named foo.c:

The compiler is invoked with the command:

A)cc1 foo.c <cr>

After printing its sign-on message. CC1 will read in the file (OO.C from disk and

1. If desired, the intermediclte file produced hy CCl may be written to disk and pro­
cessed by CC2 separately; then, the intermediate file is given the extension .eel.

-5-

80S C User's Guide May 1981

crunch for a while. If there are no errors, CCl will then give a memory usage
diagnostic and load in CC2. CC2 will do some more crunching and, if no errors
occur, will write the file FOO.CRL to disk. The next step brings in the linker:

A>clink foo [other files & options, if any] <cr>

Unless there are unresolved function references, the file FOO.COM will b: pro­
duced, ready for execution via

A>foo [arguments] <cr>

Following are the detailed command syntax descriptions:

CC1 .- The Parser

Command format: CC 1 name. ext [options] <cr>

Any name and extension are acceptable, provided the file having the exact given
name exists. 8y convention, the extension should be II .c". If the extension is omitted,
CCl will not automatically tack on a default extension for you. The extension (if re­
quired) must be stated explicitly.

If a disk designation is given for the filename (e.g. "b:foo.c ") then the source file
is assumed to reside on the specified disk, and the output also goes to that same disk.

Typing a control-C during compilation will abort the compilation and return to
CP/M.

Following the source file name may appear a list of option characters, each pre­
ceded by a dash. Currently supported options are:

-p

·a x

·d x

·m xxxx

Causes the source text to be displayed on the user's con­
sole, with fine numbers automatically generated, after all
define and # include substitutions have been complet­
ed.

Auto-loads CC2.COM from disk x foHowing successful
completion of CC1's processing. 8y default, CC2 is as­
sumed to reside on the currently logged-in disk. If the
letter i'Z" is given for the disk specifier, then an intermedi­
ate .eel file is written to disk for later processing by an
explicit invokation of CC2.

Causes the CRL output of the compiler to be written to
disk x if no errors occur during CCl or CC2. If the -a z
option is also specified, then this option specifies which
disk tile .eel file is to be written to. The default destina­
tion disk is the same disk from which the source file was
obtained.

Specifies the starting location (in hex) of the run·time
package (C.CCC) when using the compiler to generate

·6-

(

80S C User's Guide

-e xxxx

-0

General Description

code for non· standard environments. The run-time pack­
age is expected to reside at the start of the CP/M TPA by
default; if an alternative address is given by use of this
option, be sure to reassemble the run-time package and
machine language library for the given location before
linking, and give the -I, -e and -t options with apnropri:::'i€
address values when using CLINK.
C.CCC, which always resides at the start of a generated
COM file, cannot be separated from main and other (if
any) root segment functions.
CC2 must be successfully auto-loaded by eCl for
this option to have any effect.

Allows the specification of the exact starting address (in
hex) for the external data area at· run time. Normally, the
externals begin immediately following the last byte of pro­
gram code, and all external data are accessed via indirec­
tion off a special pointer installed by CLINK into the run­
time package. If this option is given, then the compiler
can generate code to access external data directly (using
Ihld, shld, etc. type instructions) instead of using the
external data pointer. This will shorten and enhance the
performance of programs having much external datd.
Suggestion: don't use this option while debugging a pro­
gram; once the program works reasonably, then compile it
once with -e. putting the externals at the same place that
they were before (since the code will get shorter the next
time around.) Observe the "Last code address" value
from CLINK's statistics printout to find out by how much
the code size shrunk, and then compile it all again using
the appropriate lower address with the -e option. Don't

- cut it too close, though, since you'll probably make mods
to the program and cause the size to fluctuate, possibly
eating - into the explicitly specified external data area. CC2
must be successfully auto-loaded by eCl in order
for this option to have any effect. See also the CLINK
option -e for more confusing details.

Causes the generated code to be optimized for speed.
Normally, the code generator replaces some awkward
code sequences with calls to special subroutines in the
run·time pacl<agc; while this reduces the size of the code,
it also slows it down because of the extra subroutine link­
age overhead. If the -0 option is specified, then many of
the subroutine calls are di~;posed of in favor of in-line
code. This results in faster but longer object programs.
For the fastest possible code, the -e option should also
be used. It you want the code to be as short as possible,
use the -c option but cion't use -0.

CC2 must be successfully auto-loaded by CC1 in
order for this option to have any effect.

-7-

80S C User's Guide

-r x

-c

May 1981

Reserve xK bytes for the symbol table. If an "Out of sym­
bol table space" error occurs, this option may be used to
increase the amount of space allocated for the symbol
table. Alternatively, if you draw an "Out of memory" error
then . r may be used to decrease the symbol table size
and provide more room for source text. A better recoursp.
after running out of memory would be to break the ~ource
file up into smaller chunks, though. The default symbol
table size is 8K for OOOOh-based CP 1M systems and 7K
for 4200h-based systems.

Disables the "comment nesting" feature, causing com­
ments to be treated in the same way as by UNIX C and
previous version of 8DS C; i.e., when -c is given, then a
line such as

/* printf("hello ");/ * this prints hello • /

is considered a complete comment. If . c is not used, then
the compiler would expect another • I' sequence before
the comment would be considered terminated.

A single C source file may not contain more than 63 function definitio'l~;
remember, though, that a C program may be made up of any number of source files,
each containing up to 63 functions.

If any errors are detected by eCl. the compilation process will abort immediately
instead of loading in the second phase (or writing the .cel file to disk, depending on
which options were given.)

Execution speed: about 20 lines text/second. After the source file is loaded into
memory, no disk accesses will take place until after the processing is finished. D~n't
assume a crash . has occurred until at least (n/20) seconds, where n is the number of
lines in the source file, have elapsed. THEN worry.

Examples:

A)ccl foobar.c -r10 -ab <cr>

invokes eC1 on the file foobar.c, setting symbol table size to 10K bytes. CC2.eOM is
auto-loaded from disk B.

A)cCl c:belle.c -p -0 <cr>

invokes CCl on the file /w/le.c, from disk C. The text is printed on the console (with
line numbers) following # define aild # include processing, ee2.COM is auto-loaded
from the currently logged disk (unless eel finds errors) and the resulting code is op­
timized for speed.

See the 80S C handbook (either printed or contained in the disk file C.DOC) for
more examples.

-8·

(

80S C User's Guide General Description

CC2 .. The Code Generator

Command format: CC2 name <cr>

Normally eC2.eOM is loaded up automatically by CCl and this command need not
be given. If given explicitly, then the file name.eel will be loaded into memory and
crunched upon.

If no errors occur, an output file named name.CRL will be generated and
name.CCI (if present) will be deleted.

CC2 does not take any options.
As with CC1, a disk designation on the filename causes the specified disk to be

used for input and output.
When CC1 auto-loads CC2, several bytes within CC2 are set according to the op­

tions given on the CCl command line. If CC2 is invoked explicitly (i.e., not auto-loaded
by CC1) then the user must see to it that these values are set to the desired values
before CC2 begins execution. Typically this will not be necessary, but if you're very low
on disk storage and need to invoke CC2 separately, here is the configuration of data
values that need to be set (addresses are for a-based CP 1M; add 4200h for the
modified versions):

Addr default

0103 00
0104 01
0105-6 0100h
0107-8 none
0109 00

option

-a
·0
-m
·e
-e

function

Non-zero if CC2 has been auto-loaded, else zero
Zero if -a option (optimiz.& for speed) desired, G:se 01
Origin address of C.CCC at object run-time
Explicit external starting address (if -e given to eCl)
Non-zero if an explicit external data address is specified

The 16-bit values must be in reverse-byte order (low order byte first, high last).

CC2 execution speed: about 70 lines/second(based on original source text.)

At any time during execution, if a control-C typed on the console input then compila­
tion will abort and control will return to CP 1M.

Example:

A>cc2 foobar <cr) .

CLINK •. The Linker

Command format: CLINK name [other names and options] (cr)

The file name.CRL must contain a main function; name.CRL along with any other
CRL files given will be searched (from left to rinht, in order of appearance) in an at·
tempt to resolve all function references. After all given files have been searched,
DEFF.CRL and DEfF2.CRL (the standard library files) will be sp.rlrched automatically.

By default, CLINK assumes all CRL files reside on the currently logged in disk. If a
disk designation is specified for the main filename, then that disk becomes the default

-9·

8DS C User's Guide May 1981

for all CRL files given on the command line. Each additional CRL file may contain a
disk designation to override the default.

Should any unresolved references remain after all given CRL files have been
searched, CLINK will enter an interactive mode, and you will be given the opportunity
to specify other CRL files, re-scan the old ones, and see what functions are still miss­
ing.

Note that if there is much cross-referencing between files (not a good practice)
then it may be necessary to re-scan some files several times before all references are
resolved.

Control-C may be typed during execution to abort the linkage and return to CP 1M.
Intermixed with the list of file names to search may be certain linkage options, pre­

ceded by dashes. The currently implemented options are:

·s

·t xxxx

-e xxxx

Print out a statistics summary and load map to the con­
sole.

(New for v1.44) Force the linking of each and every func­
tion in the file file_name.CRL into the program, regardless
of whether or not the functions have yet been referenced
from a higher level. This option is useful for specifying
.CRL files containing alternate versions of some of the
standard 80S C library functions, such as "putchar" and
"getchar".

If a function in file_name.CRL has already been loaded
from a previolls CRL file, then a message will be printed
to that effect and the new version of the function will be
not be used.

Set start of reserved memory to xxx x (hex). The value
xxxx becomes the operand of an Ixi sp instruction at the

-start of the generated COM file. 1 Under CP 1M, the value
should be large enough to allow all program code, local,
and external variable storage needed to fit below it in
memory at run-time. If you are generating code to run in
ROM, then the highest address of the readlwrite memory
area plus one should be given here.

Forces beginning of external data area to be set to the
value xxxx (hex). Normally (under CP 1M) the external data
area follows immediately after the end of the generated
code, but this option may be given to override that de­
fault. This is necessary when chnining is performed (via
exec or exec/) to make slire that the new command's no­
tion of where the external data begins is the same as the

1. Normally, when ·t is not used, the generated COM file begins with the sequence:

Ihld base + 6 ;where "base" is either 0000 or 4200h
sphl

-10-

(

80S C User's Guide General Description

old one's. To find out what value to use, first CLINK all
the CRL files involved with the -s option, but without the
-e option, noting the "Data starts at:" address printed out
by CLINK for each file. Then use the maximum of all
those addresses as the operand of the -e option for all
files when you CLINK them again. You'll have to CLINK all
the files twice, except for the file that had the largest
Data starting address during the first pass.

When generating code for ROM, this option should be
used to place externals at an appropriate location in r /w
memory.

If the main CRL file (name.CRL) was compiled with the -e
option specified to CC1, then CLINK will automatically
know about the address then specified on the CCl com­
mand li?te; but if any of the other CRL files specified in
the linkage contain functions compiled by eCl without
use of the -e option, or with the value given to -e being
different from the value used to compile the main func­
tion, the resulting COM file will not work correctly. You
may include CRL files that were compiled by CC1 without
use of the -e option only if you specify -e to CLINK with
an argument equal to that used to compile the main CRL
file.

-0 new_name Causes the COM file output to be named new _name.COM.
If a disk designator precedes the name, then the output is
written to the specified disk. By default, the output goes
to the currently logged-in disk. If a single-letter disk
specifier followed by a colon is given instead of a name,
then the COM file is written to the specified disk without
affecting the name of the file.

-w Writes a symbol table file with name name.SYM to disk,
where name is the same as that of the resulti ng COM file.
This symbol file contains the names and absolute ad­
dresses of all functions defined in the linkage. It may be
used with SID for debugging purposes, or by the -y op­
tion when creating overlay segments (see below.)

-y sname Reads in ("yanks") the symbol file named sname.SYM
from disk and uses the addresses of all function names
defined therein for the current linkage. The -wand -y op­
tions are designed to work together for creating overlays,
as follows: when linking the root segment (the part of the
program that loads in at the TPA, first receives control,
and contains the run-time utility package), the -w option
should be given to write out a symhol tablt~ file containing
the addres!".es of all functions present in the root. Then,
when linking the swappable segments, the • y option

-11-

8DS C User's Guide

-I xxxx

-v

-c x

May 1981

should be used to read in the symbol table of the
"parent" root segment and thereby prevent multiple
copies of common library functions from being present at
run-time. This procedure may extend as many levels
down as required: while linking a swappable segment, the
-w option can be given along with the -y option, causing
an augmented symbol file to be written containin~ every­
thing defined in the read-in symbol file along with new lo­
cally defined functions. Then the "swapped·in" segment
can do some "swapping·in" of its own, etc. etc. Note that
the position of the -y option on the CLINK command line
is significant; i.e, the symbol file named in the option will
be searched only after any CRL files specified to the left
of the -y option have been searched. Thus, for best
results specify the -y option immediately after the main
CRL file name. If, upon reading in the symbols from a
SYM file, a symbol is found having the same name as an
already defined symbol. the new symbol will be ignored
and a message will be displayed on the console to that
effect.

If any of the symbols in the symbol file have already been
defined, then a message to that effect is printed on the
console and the old value of the symbol is retained.

For more information on using -y for generating overlay
segments. see the User's Guide appendix on the subject
of overlays.

Specifies the load address of the generated code to be
xxxx (hex). This option is only necessary when generating
an overlay segment (in conjunction with -v) or code to
run in a non-standard environment; in the latter case,
CCC.ASM must have been reconfigured for the appropri­
ate location and assembled (and loaded) to create a new
version of C.CCC having origin xxxx. The -e and -t op­
tions should also be used to specify the appropriate r/w
memory areas.

Specifies that an overlay segment is being created. The
run-time package is not included in the generated code,
since it is assumed that an overlay will be loaded into
memory while a copy of the run-time pacl~age is already
resident· either at the base of the TPA by default, or at
the address specified in the -m option to CC1.

Instructs CLINK to obtain DEFF.CRL. DEFF2.CRL and
C.CCC from disk x. By default, the currently logged disk is
assumed to contain these files.

To aid debugging, this option causes the COM file pro-

-12-

('

80S C User's Guide

-r xxxx

Examples:

General Description

duced by the linkage to be immediately executed (instead
of being written to disk.) If a list of arguments is specified
(enclosed in Quotes). then the effect is as if the COM file
were invoked from the CCP with the given command line
options. This option must not be used for segments hav­
ing load ~ddresses other than at the base of the TPA
(i.e., -d should only be used for root segments.)

Reserves xxxx (hex) bytes for the forward-reference table
(defaults to about 600h). This option may be used to allo­
cate more table space when a "ref table overflow" error
occurs.

A)clink foobar -s ·t6000 -0 lucinda <cr>

expects the file FOOBAA.CAL to contain a main function. which is then linked with
any other needed functions from FOOBAR.CRL and DEFF· _CRL. A statistics summary is
printed out when finished. memory at Ox6000 and above is to be untouched by the
COM file when running. and the COM file itself is to be named LUCINDA.COM. All disk
1/0 during linkage is performed on the currently logged-in disk.

A)clink b:ronni lori c:adrienne -s <cr>

takes the "main" function from RONNI.CRL (on disk B). links in any needed functions
from RONNI.CRL and LORI.CRL (on disk B). ADRIENNE.CAL (un C) and DEFF.CRL and
DEFF2.CAL (on the currently logged in disk), and prints out a statistics summary when
done. Since no -t option is given, CLINK assumes all the TPA (Transient Program Area)
is available for code and data. The COM file generated is named RONNI.COM by de­
fault (since no -0 option was given) and the file is written to the currently logged in
disk.

When several files that share ~xternal variables are linked together, then the file
containing the main function must contain all declarations of external variables used
in all other files. This is so because the linker uses the number of bytes declared for
externals in the main source file as the allotment of external space for the resultant
COM file. Also, because external variables in BDS C are actually more like FORTRAN
COMMON than UNIX C externals. the ordering of external declarations within each indi­
vidual source file of a prouram is very important. See the section entitled to Notes to Ap­
pendix A..... for more details.

cua _. The C Librarian

Command format: CLiB <cr>

The CLIR program is provided to facilitate the manipulation of CRL file contents.
CUS allows you to transfer functions between CAL files; rename, delete, and inspect

-13-

80S C User's Guide May 1981

individual functions; create CAL files; and check out CRL file statistics.
Before delving into CLiS operation, it would be helpful to understand the structure

of CRL (C AeLocatable) files:

A CAL file consists of a set of independently compiled C functions. each a binary
8080 mar.hine code image having its origin set at 0000. AlonQ with each function
comes a list of "relocation parameters" for use bv CLINK at linkaqe time. Also storet::!
with each function are the names of all functions called by the givp.n function. Collec­
tively, the code. relocation list, and needed functions list make UP a function module.

The first fOllr sectors of a CRL file make up the directory for that file. In the
directory is a list of all function modules appearing in the file. and their lor.ation~ within
the file. The total size of a CRL file cannot exceed 64K hytes (because function
modules are located via two byte addresses), but optimum efficiency is achieved by lim­
iting a CRL file's size to the size of a single CP 1M extent (16K).

For more detailed information about CRL files, see the section entitled "Adapting
8080 Machine Code Subroutines to the CRL File Format."

When CUS is invoked, it will respond with an initial message and a "function
buffer size" announcement. The buffer size tells you how much memory is available
for intermediate storage of functions during transfers. Attempts to transfer or extract
functions of greater length will fail.

Following initialization, CUS will prompt with an asterisk (*) and await a command.
To "open" a CRL file for diddling, say

·open file # (d:]filename <cr>

where file # is a single digit identifier (0-9) specifying the "file number" to be associat­
ed with the file filename as long as that file remains open. Up to ten files, therefore,
may be open simultaneously.

Note that a disk designator may now be specified for the filename, making the old
s command obsolete (previous versions allowed only one disk to be used at a time,
with thes command selecting the disk to be worked with.)

To close a file, say

·close file # <cr)·

The given file number then becomes free to be assigned to a new file via open. A
backup version of the altered file is created having the name name.BRl.

It is not necessary to close a· file unless either changes have been made to it or
you need the extra file number. A file opened just to be copied from, for example,
need not be closed.

When a CRL file is opened, a copy of the file's directory (first 4 sectors) is loaded
into RAM. Any alterations made to the file (via the use of the append, transfer, rename,
and delete commands) cause the in-core directory to be modified accordingly. but the
file must be closed before the updated directory gets written back onto the disk. Thus,
if you do something you latcr wish you hadn't, and you haven't closed the file yet, you
can abort all the changes made to the file simply by making sure not to close it. Undo­
ing appends and transfers requires a little bit of extra work; this will be explained later.

To see a list of all open files, along with some relevant statistics on each, say

·files <cr>

-14-

(

(

80S C User's Guide General Description

To list the contents of a specific CRL file and see the length of each function
therein, say

-list file # <cr>

There are several ways to move functions around between CRL files. When all files
concerned have been opened, the most straightforward way to copy a function (or set
of functions) is

*t ransfe r source_file # destination _file # function _name <cr>

This copies the specified function[s] from the source file to the destination file, not
deleting the original from the source file. The function name may include the special
characters • and ? if an ambiguous name is desired. All functions matching the ambi·
guous name will be transfelired. (except for .the "main" function, which can never be
transferred.)

An alternative approach to shuffling files around is to use the "extract-append"
method. The extract command has the form

-ext ract file # function _name <cr>

It is used to pull a single function out of the given file and place it in the function
buffer (in RAM). CUS is then made aware that the function buffer is occupied. To write
the function out to a file, say

• append file # [name] <cr)

where name is optional and should be given only to change the name under which the
function is to be saved.

• append file # <cr>

is sufficient to write the function out to a file without changing its name.
Only one file # may be specifiecj at a time with append; to write the function out

to several CRL files, a separate append must be done for each file.
To rename a function within a particular CRL file, say

·rename file# old_name new_name <cr>

Note that this constitutes a change to the file, and a close must be done on the file to
make the change permanent. .

To create a new (empty) CAL file, say

·make filename <cr>

This creates a file on disk called filename.CRL and initializes the directory to empty. To
write functions onto it, first use open, and then use transfer or "extract-append" as
described above. CUB will not allow you to create a CRL file if another CRL file a/­
ready exists by the same name_

To delete a function (or set of functions) from a file, use

·15·

BDS C User's Guide May 1981

* delete file # function _name <cr>

Again, the function name may be specified ambiguously using the • and ? characters.
The file must be subsequently closed to finalize the deletion. Note that deleting a func­
tion does not free up the associated directory space in the associated CAL file until
that file is closed. Thus if a CRL file directory is full and you wish to replace some of
the functions in it, you must first delete the unneeded functions, then close ~nd r~­
open the file to transfer new functions into it.

A command syntax summary may be seen by typing the command

*help <cr>

All commands may be abbreviated to a single letter.

Should you decide you really didn't want to make certain changes to a file, but it
is already after the fact, then the quit command may be used to get out of editing the
file and abort any changes made. As long as you haven't appended or transferred into
the file, typing

*quit file# <cr>

is sufficient to abort, and frees up the file # as if a close had been done.
If you have appended or transferred into a file and you wish to abort, then the

quit command should still be used, but in addition you should re-open the file directly
after quitting and then close it immediately. The ratio"ale behind this procedure is as
follows: when you do an append or a transfer, the function being appended gets writ­
ten onto the end of the CRL file. Then, when you abort the edit, the old directory is
left intact, but the appended function is still there, hanging on, even though it doesn't
appear in the directory. By opening and immediately closing the file, only those func­
tions appearing in the directory remain with the file, effectively getting rid of those
"phantom II functions.

To exit back to CP 1M, give the quit command with no arguments, or type control-
C.

Here is a sample session of CLlB, in which the user wants to create a new CRL
file named NEW.CRL on disk B: containing all the functions in OEFF.CRL beginning
with the letter "p":

A)clib
SO Software C Librarian v1.3
Function buffer size = xxxxx bytes

*open 0 deff

·make b:new

·open 1 b:new

• transfer 0 1 p.

-16-

(

(

80S e User's Guide General Description

·close 1

A>

CP/M "Submit" Files

To simplify the process of compiling and linking a C program (after the initial bugs
are out and YOll feel reasonably confident that CCl and CC2 will not find any errors in
the source file). CP/M "submit" files can be easily created to perform a.n entire compi­
lation. The simplest form of submi t file, to simply compile, link and execute a C source
program that is self contained (doE!sn't require other special CRL files for fUllction link­
ages) would look like:

eCl $l.c
CLINK $1 -s
$1

Thus, if you want to compile a source file named, say, LlFE.C, you need only type

A)submit c life <cr>

(assuming the submit file is named C.SUB.)

Strangenesses

1) When using PIP to move CFtL files and C.CCC around between disks, make sure
to specify the [0] option so that PIP doesn't abort the operation upon en­
countering the first Oxla byte in the file. This may not be necessary on newer
versions of PIP, but if part of" your file disappears after a PIP transfer, at least
you'll know what to do.

2) When invoking any COM fil e in the 80S C package or any COM file generated
by the compiler, your command line (as typed in to CP/M) must never contain
any leading blanks or tabs. It seems that the CCP (console command processor)
does not parse the command line in the proper manner if leading white space
is introduced.

-17·

The .CRL Function Format and Other Low-Level Mechanisms

Introduction

This section is addressed toward assembly/machine language programmers need·
ing the ability to link in machine code subroutines together with normally compiled C
functions. It describes the CRL format and how to transform a machine language sub·
routine into the format appropriate for .CRL files, so that the subroutine can be treated
just like any other function by the C Linker. Also described are the calling conventions
for function linkage and some utility routines available to assembly programmers in the
run-time package.

Included with version 1.4 of BDS C is a macro library called CMAC.LlB, for use
with Digital Research's MAC macro assembler. This library greatly simplifies the
conversion of assembly language subroutines into CAL functions.

With CMAC.LlB, creating a CRL file fr{)m any given assembly source routine is as
simple as adding 'a few pseudo-ops, assembling, loading, and changing the COM ex­
tension to CRL.

Although it is not absolutely necessary to know how a CRL file is organized in
order to effectively use the macro package and MAC to produce CAL files, a detailed
description of the CRL . format is in order for general information and for the benefit of
users lacking MAC. So here goes ...

CRL Directories

The first four sectors of a CAL file 1 make up the directory. Each function module
in the file has a corresponding entry in the directory, consisting of the module's name
(up to eight characters [upper-case only to work correctly with CUB in versions before
1.2] with the high-order bit set only. on the I~t character) and a two-byte value indicat­
ing the module's byte address within the file.

Following the last entry must be a null byte (Ox80) followed by a word indicating
the next available address in the file. Padding may be inserted after the end of any
function module to make the next module's address line up on an even (say, 16 byte)

1. Locations Ox 1 00 . Ox2ff (using C's notation for hexadecimal values) in memory if
you are ddt-ing the file.

2. The function module addresses within a CAL file are all relative to OxOOOO, and the
directory resides from OxOOOO to OxOlff. The lowest possible function module ad­
dress is Ox205 (locations Ox200 - Ox2Q4 are reserved.) When using ddt to examine
a CRL file, remember that all addresses must be offset by OxOl00 (or Ox4300 for
"modified" CP/M.) For exaillple, if the directory lists a particular fllnction module as
beginning at address Ox15d, then you'd look at memory location Oxl6cf (or Ox58cf)
to see it.

-19·

80S C User's Guide

boundary, but there must never be any padding in the directory itself.

Example: if a CRL file contains the following modules,

Name:
foo
yipee
blod

Length:
Ox137
Ox2c5
Ox94a

then the directory for that file might appear as follows: 1

46 4f cf 05 02
F 0 0' nn nn

42 4c
8 L

4f c4 20
o D' nn

59 49 50 45 c5 50
YIP E E' nn

06 80 70 Of
nn null-entry

03
nn

May 1981

In some early version of the compiler, the word main was recognized as a key­
word, and converted into a one-byte code having the value Ox9D. Thus, instead of see­
ing the sequence "MAINII (with the N's high order bit set) in old .CRL files, you'd just
see the Ox9d byte and an address. The new linker and librarian can both still handle
that strange case, but the new compiler doesn't put out Ox9D's for "MAIN" anymore.

External Data Area Origin and Size Specifications

The first five bytes of the fifth sector of a CRL file (locations Ox20Q·Ox204 relative
to the start of the file) contain information that CLINK uses to determine the origin (if
specified explicitly to CCl via the ·e option) and size of the external data area for the
executing program at run-time. This information is valid ONLY if the CRL file containing
it is treated as the IImain" CRL file on the CLINK command line; otherwise, the infor­
mation is not used.

The first byte of the fifth sector has the value OxBD if the -e option was used dur­
ing compilation to explicitly set the external data area; else, the value should be zero.
The second and third bytes contain the address given as the operand to the ·e option,
if used.

The fourth and fifth bytes of the the fifth sector contain the size of the external
data area declared within that file (low byte first, high byte second.) CLINK always ob­
tains the size of the external data area from these special locations within the main
CRL file. In CRL files which do not contain a main function, these bytes are unused.

Function Modules

Each function n)odule within a CRL file is an independent entity, containing (in ad­
dition to the binary machine-code image of the function itself) a set of relocation

1. Note that the last character of each name has bit 7 set high.

-20-

(

(

aDs C User's Guide CRL Format, etc.

parameters for the function and a list of names of any other functions that it may call.
A function module is address-independent, meaning that it can be physically

moved around to any location within a CRL file (as it often must be when CLiS is used
to shuffle modules around.)

The format of a function module is:

list of needed functions
length of body
body
relocation parameters

List of Needed Functions

If the function you are building calls other CRL functions, then a list of those
function's names must be the first item in the module. The format is simply a contigu­
ous list of upper-ease-only names, with bit 7 high on the last character of each name.
A zero byte terminates the list. A null list is just a single zero byte.

For example, suppose a function (oobar uses the functions putchar, getchar, and
setmem. Foobar's list of needed functions would appear as:

47 45 54 43 48 41 d2 50 55 54 43 48 41 d2 53 45 54 4d 45 cd 00
get c h a r' put c h a r' set m em' (end)

Length of Body

Next comes a 2-byte value specifying the exact length (in bytes) of the body (to
be defined next.)

Body

The body portion of a function module contains the actual 8080 code for the func­
tion, with origin always at 0000.

lt the list of needed functions was nUll, then the code starts on the first byte of
the body. If the list of needed functions specified n names, then a dummy jump vector
table (consisting of n jmp instructions) must be provided at the start of the body, pre­
ceded by a jump around the vector table.

For example, the beginning of the body for the hypothetical function 'oobar
described above would be:

jmp OOOch
jmp 0000
jmp 0000
jmp 0000
<rest of code)

c3 Dc 00 c3 00 00 c3 00 00 c3 00 00 <rest of function code).

-21-

BDS C User's Guide May 1981

Relocation Parameters

Directly following the body come the relocation parameters, a collection of ad­
dresses (relative to the start of the body) pointing to the operand fields of all instruc­
tions within the body which reference a local address. CLINK takes every word being
pOinted to by an entry in this list, and adds a constant to it which equals the value of
the address where the first byte of the function ends up residing in the resultant COM
file.

The first word in the relocation list is a count of how many relocation parameters
are given in the list. Thus, if there are n relocation parameters, then the length of the
relocation list (including the length byte) would be 2n + 2 bytes.

For example, a function which contains four local jump instructions (which begin,
respectively, at locations Ox22, Ox34, Ox4f and Ox6l) would have a relocation list look­
ing like

04 00 23 00 35 00 50 00 62 00.1

Calling Conventions and Register Allocation

All argument passing on function invokation, as well as all local (automatic)
storage allocation, now take place on a single stack at run time. The stack pointer is
kept in the SP register, and is initialized to the very top of the CP 1M TPA in the stan­
dard configuration (or to the value specified as argument to -t at linkage time.) Exter­
nal storage usually sits directly on top of the program code, leaving all of memory
between the end of the external data and the high-memory stack free for storage allo­
cation .

. When a C-generated function receives control, it will usually: push BC, allocate
space for local data on the stack (decrement SP by the amount of local storage need­
ed), and cop~ the new SP value into the BC register for use as a constant base-of­
frame pointer. Note that the old value of BC must always be preserved for the ca!!:ng
routine.

Let's assume the called function requires nloel bytes of local stack frame space.
After pushing the old BC, decrementing SP by nloel and copying SP to Be (in that .ord­
er), the address of any automatic variable having local offset loffset may be easily com­
puted by the formula

(BC) + /offset

If the function takes formal parameters, then the address of the nth formal parameter
may be obtained by

(BC) + nloel + 2 + 2n

1. Note that the addresses of the instructions must be incremented by one to point to
the actual address operands neoding relocation.

2. The reason for copying the SP into Be instead of just addressing everything relative
to SP is that the SP fluctuates madly as things are pushed and popped, making ad­
dress calculation hopelessly confuSing for poor lazy compiler hackers like me.

-22-

(

BDS C User's Guide CRL Format, etc.

where n is 1 for the first value specified in the calling parameter list, 2 for the second,
etc. This last formula is obtained by noting that parameters are always pushed on the
stack in reverse order by the calling routine, and that pushing the arguments is the last
thing done by the caller before the actual call. After the called function pushes the Be
register, there will be four bytes of stuff on the stack between the current SP and the
first formal parameter (two 16-bit values: the saved BC. and the return address to the
calling routine.) Note that this scheme presupposes that each formal parameter take~
exactly 2 bytes of storage. When 4-byte variables come into play. the general tormula
falls apart and the location of each parameter will depend on the types of the other
parameters. But let's leave something for version 2 ...

Upon completing its chore (but before returning). the called function de-allocates
its local storage by incrementing the SP by nloel, restores the BC register pair by pop­
ping the saved BC off the stack, and returns to the caller.

The caller will then have the responsibility of restoring the SP to the state it was in
before the formal parameter values were pushed; the called function can't do this be­
cause there is no way for it to determine how many parameters the caller had pushed.

Formally, the responsibilities of a calling function are:

1. Push formal parameters in reverse order (last arg first, first arg last)

2. Call the subordinate function, making sure not to have any important values
in either the HL or DE registers (since the subordinate function is allowed to
bash DE and may return a value in HL.) The BC register can be considered
"safe" from alteration by the subordinate function; by convention, the func­
tion that is called must always preserve the BC register value that was
passed to it. All functions produced by the compiler do this.

3. Upon return from the function: restore SP to the value it had before the for­
mal parameters were pushed, taking care to preserve HL register pair (con­
taining the returned value from the subordinate function.) The simpiest way
to restore the stack pointer is just to do a "pop d" for each argument that
was pushed.

The protocol required of the called, subordinate function is:

1. Push the Be register if there is any chance it may be altered before return­
ing to the caller.

2. If there are any local storage requirements, allocate the appropriate space on
the stack by decrementing SP by the number of bytes needed.

3. If desired, copy the new value of SP into the Be register pair to use as a
base-of-frame pointer. Don't do this if Be wasn't saved in step 11

4. Perform the required computing.

5. De-allocate local storage by incrementing SP by the local frame size.

-23-

BOS C User's Guide May 1981

6. Pop old BC from the stack (if saved in step 1.)

7. Return to caller with the returned value in the HL register.

How Much Space Does the Stack Take Up?

The new single stack scheme has all local (automatic) data storage, formal param­
eters. return addresses and intermediate expression values living on the one stack up
in high memory. Usually the stack pointer is initialized to the very ton of memory (the
BOOS area) and grows down from there (the ·t option to CLINK may be used to over·
ride that default.) The maximum amount of space the stack can ever consume is
roughly equal to the amount of local data storage active during the worst case of func·
tion nesting, plus a few hundred bytes or so. If we call the amount of local storage in
the worst case n, thel1 the amount of free memory available to the user may be figured
by the formula

topofmemO - endextO . (n + fudge)

where a fudge value of around 500 should be pretty safe. Topofmem() and endext()
are new library functions which return, respectively. a pointer to the highest memory 10·
cation used by the running program (the top of the stack) and a pointer to the byte
following the end of the external data area. Endext() is thus the first byte of memory
available to the user.

Helpful Run·Time Subroutines Available in C.CCC (See CCC.ASM)

There are se.veral useful subroutines in the run·time package available for use by
assembly language functions. The routines fall into three general categories: the local­
and-external-fetches. the formal-parameter fetches. and the arithmetic and logical reu­
tines.

The first group of six subroutines may be used for fetching either an 8- or 16-bit
object, stored at some £Jiven offset· from either the Be register or the beginning of the
external data area, where the offset is specified as either an 8- or 16-bit value. For ex·
ample: the intuitive procedure for fetching the 16-bit value of the external variable
stored at an offset of eoffset bytes from the base of the external data area (the pointer
to which is stored at location extrns) would be

Ihld extrns
Ixi d,eoffset
dad d
mova,m
inx h
mov hIm
mov 1,8

;get base of external area into HL
;get offset into HL
;add to base-of -externals pointer
;perform inrlirection to get
;value into HL

Using the special call for retrieving an external variable. the same result may be ac­
complished with

call sdei

·24-

(

80S C User's Guide CRL Format, etc.

db eoffset ;if eoffset < 256

The second sequence takes up much less memory; 4 bytes versus 11, to be exact. If
the value of eoffset were greater than 255, then theldei routine would be used instead,
with eoffset taking a dw instead of a db to represent. See the CCC.ASM file for com­
plete listings and documentation on the entire repertoire of these value·fetching sub­
routines.

The second class of subroutines are used 'primarily for fetching the value of a
function argument off the stack into HL and A. For example: say your assembly func­
tion has just been called; a call to the subroutine rna 1 toll would fetch the first argu­
ment into HL and A. ma 1toh (mnemonic for "Move Argument 1 TO H") always fetches
the 16-bit valuE# present at location SP + 2 (as your function sees the SP.) A call to the
ma2toh ("Move Argument 2 to H") routine would retrieve the second 16·bit argument
off the stack in HL and A. If you push the BC register first, then you'd have to call
ma2toh in order to fetch the first argument, ma3toh to fetch the second, and so on for
ma4toh and the rest.

Another way to deal with function arguments is to call the routine called arghak as
the very first thing you do in your function (even before pushing BC.) Arghak copies
the first seven function arguments off the stack to a contiguous 14-byte area in the
r /w memory area (normally within C.CCC itself), making those values accessible via
simple Ihld operations for the duration of the function's operation ... assuming your func­
tion doesn't c'.lll others which copy their arguments down there. After arghak has been
called, the first argumen.t will be stored at absolute. location arg 1, the second at arg2,
etc. '

The final category of subroutines is the arithmetic and logical group, all of which
take arguments passed in HL and DE and return a result in HL.

Again, CCC.ASM is the source for the run·time package, in which all the above,
mentioned routines are documented. The header file 80S.LlB contains definitions of all
entry points to the routines within C.CCC (the assembled CCC.ASM) as provided in the
distribution version of the package. All your assembly language source files should
contain the MAC directive

maclib bds

so that the necessary subroutines may be referred to directly by name in your pro­
grams. If you have need to modify CCC.ASM in order to customize the run-time pack­
age, be sure to also modify 80S.LlB to reflect the new addresses.

Generating Code to Run At Arbitrary locations and/or In ROM

Normally, 80S C produces a CP 1M transient command file ready to run in
read/write memory located at the base of the TPA (1 DOh or 4300h), in response to a
direct command to the Console Command Processor. Under such normal cir­
cumstances, the run-time package (C.CCC) and its private read/write memory area oc­
cupy the first 1500-or'50 bytes of the command file, and the compiled code (commenc-

-25-

80S C User's Guide May 1981

ing with the "main" function) follow immediately thereafter.
If all you ever want to do is generate CP 1M transient commands, then you're all

set. But in order to generate code that can run at a different location or be placed into
ROM, it is necessary to: a) customize the run-time package, b) reassemble the
machine·coded portions of the function library, and c) recompile the C-coded portions
of the library. Here is the general procedure for customizing the package toward such
ends:

1. Alter and re-assemble the run-time package (CCC.ASM) to reflect the desired
configuration. If the target code will not be operating under CP 1M, setting
the appropriate EQU to zero will eliminate much CP IM- related support code
and reduce the size of both the run-time package and the required r/w
memory area; non-CP 1M operation will also cause the CP 1M-dependent en­
try points within the run-time package to remain undefined, so you won't ac­
cidentally generate code to use them while developing assembly functions.
Also be sure to set the appropriate EQUs to define the code origin of the
package and the rlw memory location for the package's private data area.

After the binary image of CCC.ASM is produced (be it named CCC.COM or
whatever), rename it to be: C.CCC.

Note: After assembling CCC.ASM, you cannot simply "load" the CCC.HEX file
to produce a binary image unless the origin is exactly at the base of the
TPA. If your origin is elsewhere, use DDT or SIp to read the file into memor:
and move it down to the base of the TPA, then re-boot CP/M and use the
"save" command to write the new C.CCC back to disk in binary form.

2. Edit the file BDS.L1B so that all addresses match the values obtained from
assembly of your new CCC.ASM. A good way to check this step is to rename
8DS.L1B to be 8DS.ASM, assemble it, and compare the values at the left
margin from 8DS.PRN to those in CCC.PRN.

3. Using MAC, assemble the machine language library routine file (DEFF2.ASM),
load it, and rename it DEFF2:CRL. If any functions in DEFF2A.ASM are need~
ed, then assemble that file also, rename it DEFF2A.CRL, and use CLIB to
transfer everything in there over to DEFF2.CRL. If you are configuring the
system for a non-CP/M environment, you'll have to purge all the CP/M­
related functions from DEFF2.ASM and DEFF2A.ASM before assembly. See
the 'comments in CMAC_L1B for instructions on the use of the special
pseudo- opsfor creating CRL files with MAC.

4. When using CCl to compile code for a non standard (base-of-TPA) load ad­
dress, specify the -m option to inform the compiler of the new run-time pack­
age origin address. Make sure to re-compile STDLlB1.C and STDLlB2.C us­
ing -m, and use CLIB to create a new DEFF.CRL composed of everything
from STDLlB1.CRL and STDLlB2.CRL.

5. Use the -I, -t and -e options to tell CLINK the load address, top of r/w
memory and base of external data area, respectively, of the target program.

6. Burn the PROMsl

-26-

(

80S C User's Guide CRL Format, etc.

Debugging Hint

Use of the -0 option to CC1 will make interactive debugging of the generated
code (using, say, SID) easier, since this will avoid the in-line data bytes that usually fol­
low value fetching calls to the run time package.

-27-

The 80S C Standard library on CP/M
A Function Summary

Included in the 80S C package are the files DEFF .CRL and DEFF2.CAL, making
up the standard library.1 These files contain a collection of useful C functions, in CRL
(C ReLocatable) format, available for use by all C programs. CLINK automatically
searches the library after all other CRL files given on the command line have been
searched once; thus, any functions you explicitly define in a source file that happen
to have the same name as library functions will take precedence over the library ver­
sions, as long as CLINK finds your version of the function before getting around to
scanning the library.

CLINK begins its task by loading in the main function from the CRL file specified
as the first argument on the command line. If main calls any other functions (it usually
does), then each such function is searched for in the first CRL file, loaded if found,
and recursively examined for any functions it may need. If there are still more func­
tions needed after loading everything that was needed from the first CRL file, then the
other CAL files on the command line (and finally DEFF.CRL and DEFF2.CRL) are
scanned. Because CLINK never yanks up a function. unless some previously load~d
function has made a reference to it (or the ·f option is lIsed), you may have to go
back and re·scan some files after the first pass has been completed. This only hap­
pens when a function defined in one of the first CRL files isn't used at all until a func­
tion in a later file calls it. By avoiding this type of backward-reference, the need for re­
scanning may be eliminated.

In the following summary of all the major functions in DEFF.CRL and DEr-F2.CRL,
each function is described both in words and in a C·type notation intended to illustrate
how a deiinition of that function would appear in a C program. Such notation pro­
vides, at a glance, information .Such as whether or not the function returns a vaiue
(and if so, of what type) and the types of any parameters that the function may take.
Here are some rules of thumb: if a function is listed without a type, then it doesn't re­
turn a value (for example, exit and poke return no values.) Any formal parameters lack­
ing an expli~it declaration are implicitly of type int, although in many cases only the
low-order 8 bits of the value are really used and a value of type char would work just
as well.

The only time it is necessary to actually declare a library function before it is used
in a C program is when the function returns a value having a type other than int, and
that value is used immediately in an expression where the type has some significance.
A bit of experience will help to clarify when it is proper or unnecessary to declare cer-

1. For version 1.4, DEFF2.CRL contains all the assembly language functions from
DEFF2.ASM and DEFF2A.ASM (assembled using MAC, CMAC.Lln and 80S.L1n),
while OEFF.CHL contains all the C·codcd functions from STDI.IB1.C and STDLlB2.C.

-2!)·

BOS C User's Guide May 1981

tain functions; many of these decisions are a matter of style and/or portability.
Here is a summary of all major functions available in DEFF .CRL and DEFF2.CRL:

I. GENERAL PURPOSE FUNCTIONS

1. char csw()

2. ex itO

- .. ~
3. int bdos(c,de)

J J

4. char bios(n,c)

Returns the byte value (0-255) of the console
switch register (port OxFF on some mainframes).

Closes any open files and exits from an executing
program, re-booting CP/M. Does not automatically
call mush on files opened for buffered output.

Calls location RAtv1 + 5 (where RAM = OxOOOO for
most systems), first setting CPU register C to the
value c, and register pair DE to the value de.
Return value is the 16-bit value returned by the
BOOS in A and 8 (low-order 8 bits in A, high-order
8 bits in B.) For CP/M 2.x, this is the same as the
value retu rned in HL.

Calls the nth entry in the BIOS jump vector table,
where n is 0 for the first entry (boot), 1 for the
second (wboot), 2 for the third(const), etc. Note
that the cold-boot function (where n is 0) should
never actually be used, since the CCP will be
bashed and probably crash the system upon entry.
Return value is the value returned in A by the
BIOS call.
There are some BIOS calls that require a parame­
ter to be passed in DE, ancl that return their result
in HL. Note that a special version of bios that sup­
ports this format, call it biosh, may easily be writ­
ten in terms of the call function by noting that
memory locations 1 and 2 (or 4201 h ana 42q2h)
contain the address of the second entry in the
BIOS jump vector table.

-30-

(

(

/

8DS C User's Guide

5. char peek(n)

6. poke(n,b)

7. inp(n)

8. outp(n,b)

9. pauseO

10. sleep(n)

The Standard Library

Returns contents of memory location n. Note that
in applications where many consecutive locations
need to be examined. it is more efficient tn use in­
direction on a character pointer than it is to use
peek. This function is provided for the occasional
instance when it would be cumbersome to declare
a pointer, assign an address to it. and use indirec­
tion just to access, say, a single memory location.

Deposits the low-order eight bits of b into memory
location n. This can also be more efficiently ac­
complished using pointers, as in

*n = b;
(where n is a pointer to characters.)

Returns the eight-bit value present at input port n.

Outputs the eight-bit value b to output port n.

Sits in a loop until CP 1M console input interroga·
tion indicates that a character has been typed on
the system console. The character itself is not in·
put; before pause can be used again, a getchar()
call must be done to clear the status.
There is no return value.

Sleeps (idles) for nf 1 0 seconds (on an 8080). The
only way to abort out of this before it wakes up is
to type control-C, which reboots CP/M.
No return value.

·31·

8DS C User's Guide

-t L
.J

11. int call(addr,a,h,b,d)
, ~

)pL~fl

12. char calla(addr,a,h,b,d)

13. int abs(n)

14. int max(nl,n2)

15. int min(n1,n2)

16. srand(n)

17. srand1(string)
char ·string;

May 1981

Calls a machine code subroutine at location add"
setting CPU registers as follows:
HL (-- h; A (-- a; Be (-- b; DE (-- d.
Return value is whatever the subroutine returns in
HL.
The subroutine must, of course, maintain stack dis­
cipline.

Just like call, except the return value is the value
returned by the subroutine in A (instead of· HL.)

Returns absolute value of n.

Returns the greater of two integer values.

Returns the lesser of two integer values.

Initializes pseudo-random number generator.
If· n is zero, then srand asks the user to type a
carriage return and starts to count, internally.
When a key is finally hit by the user, the current
value of the count is used to initialize the random
seed.
If n is non-zero, then n itself is used as the seed.

Like srand(O), except that the given string is print­
ed as a prompt instead of the canned "Hit return
after a few seconds: If message. Unlike srand,
though, the character typed is not gobbled up;
you must do a getclwr to clear it.

(

(

80S C User's Guide

18. int randO

19. nrand(-1 ,51 ,s2,s3)
nrand(O, prompLstring)
int nrand(1)

20. setmem(addr,collnt,byte)

The Standard Library

Returns next value (ranging: 0 < randO < 32768) in
a pseudo-random number sequence initialized by
srand or srandl.
To get a value between 0 and n-1 inclusive, say:

randO % n

A new, "better quality" random number generator,
written by Prof. Paul Gans to emulate the CDC
6600 random number generator in use at the
Courant Institute of Mathematical Sciences. The in­
itialization mechanism was later added for semi­
compatibility with the srand and srandl conven­
tions.
The first form sets the internal 48-bit seed equal
to the 48 bits of data specified by s1, s2 and 53
(ints or unsigneds.)
The second form acts just like the srandl function:
the string pointed to by prompLstring is printed
on the console, and then the machine waits for
the user to type a character while constantly incre­
menting an internal 16-bit counter. As soon as a
character is· typed, the value of the counter is
plastered throughout the 48-bit seed. Note that the
console input is not cleared; a subsequent
getchar() call is required to actually sample the
character typed.
The final form simply returns the next value in the
random sequence, with the range being

o < nrand(1) < 32768.
Note that the internal seed maintained by nrand is
separate from the seed used by srand, srandl and
rand (the last three routines use the first 32 bits of
the area labeled rseed within the run-time package
data area, while nrand maintains its own distinct
internal seed.)

Sets count contiguous bytes of memory beginning
at addr to the value byte. This is efficient for quick
initialization of arrays and buffer areas.

-33-

80S C User's Guide

21. movmem(source,dest,count)
char ·source, *dest;

22. qsort(base,nel,width,compar)
char -base;
int (-compar)();

23. int exec(prog)
char ·prog;

May 1981

Moves a block of memory count bytes in length
from source to dest. This new version will handle
any configuration of source and destination areas
correctly, knowing automatically whether to per­
form the block move head-to-head or tail-to-tail. If
run on a Z80 processor, the Z80 block move in­
structions are used. If run on an 8080 or 8085, the
normal 8080 ops are used.

Does a "shell sort" on the data starting at base,
consisting of nel elements each width bytes in
length. compar must be a pointer to a function of
two pointer arguments (e.g. x,y) which returns

1 if·x) *y
-1 if ·x < .y
o if·x = = .y.

Elements are sorted in ascending order. See the
OTHELLO. C program for a good example of using
qsort.

Chains to (loads and executes) the program
- prog.COM.

Prog must be a null-terminated string pointer
speCifying the file to be chained. A string constant
(such as "foo") is perfectly reasonable, since it
evaluates to a pointer. -
If the command to be executed was generated by
the C compiler, then it should have been linked
with the CLINK option -e specified if external vari­
ables need to be shared between the execing and
execed files. Sec the CLINK documentation for
details on the proper usage of this option.
There may be no transfer of open file ownership
through an exec call. The only possible shared
resource under this scheme is external data ... to al­
low this, the external data starting address must
be made the same for all files involved, using the
CLINK option -e.

·34-

(

(

I
I

8DS C User's Guide

24. int execl(prog,arg1,arg2, ... ,O)
char *prog, *arg1, *arg2, ...

25. execv(filename,argvector)
char *filename;
char *argvector[];

The Standard Library

Returns ·1 on error ... but then, if it returns at all
there must have been an error.

Allows chaining from one C COM file to another
with parameter passing through the argc & argv
mechanism. Prog must be a null-terminated string
painting to the name of the COM file to be
chained (the .COM need not be present in the
name), and each· argument must also be a null·
terminated string. The last argument must be zero.
Execl works by creating a command line out of the
given parameters, and proceeding just as if the
user had typed that command line in to the CCP
of CP 1M. For example, the call

execl("foo", "bar", "zot" ,a);
would have the same effect as if the command

A)foo bar zot <cr>
were given to CP 1M from the console. Unfor·
tunately, the built-in CPIM commands (such as
"dir", "era", etc.) -cannot be invoked with exec/.
The total length of the command line constructed
from the given argument strings must not exceed
80 characters.
·1 returned on error (again, though, if it returns at
all then there must have been an error.)

Similar to exec', except that the argument texts
must be placed into an array instead of specified
explicitly in the calling sequence. The argvector
parameter must be a pointer to an array of string
pointers, where each string pointer points to the
next argument and the last one is NULL. This
mechanism allows chaining with a variable number
of arguments to be performed.
If the program filename.COM is not found, then
the message "[3roken Pipe" will be printed on the
console and control will return to CP/M.

80S CUser's Guide

26. int swapin(filename,addr)
char ·filename;

27. char ·codend()

28. char • externsO

29. char • endextO

30. char ·topofmem()

May 1981

Loads in the file whose name is the null-terminated
string pointed to by filename into location addr in
memory. No check is made to see if the file is too
long for memory; be careful where you load ill
This function would normally be used to load in an
overlay segment for later execution via an indirec­
tion on a pointer-to-function variable; it may be
used to load in any type of file, though.
Returns -1 if there is an error in reading in the file.
Control is not transferred to the loaded file.

Returns a pointer to the first byte following the
end of root segment program code. This will nor­
mally be the beginning of the external data area
(see externs() below.)

Returns a pointer' to the start of the external data
area. Unless the ·e option was used with CCl
and/or with CLINK, this value will be the same as
codend().

Returns a pointer to the first byte following the
end of the external data area.

. Returns a pointer to the last byte of the TPA (this
is normally the top of the stack.) The value re­
turned by topofmem() is not affected by use of the
·t option at linkage time.

·36·

(

(

(

80S C User's Guide

31. char ·alloc(n)

32. free(allocptr)
char • allocptr;

33. char ·sbrk(n)

The Standard Library

Returns a pointer to a free block of memory n
bytes in length, or 0 if n bytes of memory are not
available. This is roughly the storage allocation
function from chapter 8 of Kernighan & Ritchie,
slightly simplified for the case where type­
allignment restrictions are nonexistent. Set:: the
book for details.
Note that the

define ALLOC_ON 1
statement in the header file BDSCIO.H must be
un-commented (enabled) and STOLlB1.C re­
compiled to allow· use of al/oe and free. See the
comments in BDSCIO.H for more details on this
process.
BDSCIO.H must be # included in all files of a pro­
gram that uses the alloc-free pair, since there is
some crucial external data declared therein. Your
best bet would be to put an

include Itbdscio.h"
statement at the start of the global (.H) header file
that contains all your external declarations.

Frees up a block of storage allocated by the alloe
function, where al/oeptr is a value obtained by a
previous call to al/oc. Free need not be called in
the reverse order of previous al/oc calls, since the
al/cc-free pair maintain a linked list of data struc­
tures and can tolerate any order of allocation/de­
allocation.
Calling free with an argument not previously ob­
tained by a call to al/oc can do miserable things to
your system.
See al/oc () above.

This is the low-level storage allocation function,
used by alloc to obtain ra"" memory storage. It re­
turns a pointer to n bytes of memory, or -1 if n
bytes aren't available. The first call to sbrl< returns
a pointer to the location in memory immediately
following the end of the extprnal data area; each
subsequent cnll returns a block contiguous with
the last. until sbrl< detects that the locations being
allocated are getting dangerously clo!:>e to the

-37·

80S C User's Guide

34. rsvstk(n)

II. CHARACTER INPUT/OUTPUT

35. int getcharO

May 1981

current stack pointer value. By default,
"dangerously close" is defined as 1000 bytes. To
alter this default, see the next function. If you
plan to use al/oeO and freeO in a program, but
would also like some memory immune from alloca­
tion to be available for scratch space, use sbrk()
to request the desired memory instead of al/oeO.
Sbrk() calls may be made at any time (independent
of any al/oeO and free() calls that may have been
made.)

This should be used before any calls to sbrk or a/­
lac, so that the storage allocation functions reject
any allocation calls which would leave less than n
bytes between the end of the allocated area and
the current value of the stack pointer (remember
that the stack grows down from high memory.)
If rsvstk() is never used, then storage allocation is
automatically prevented from approaching closer
than 1000 bytes to the stack (just as if an
rsvstk(1000) call had been made.)

. Returns next character' from standard input stream
(CP 1M console input.)
Re·boots CP 1M on control-C.
Carriage return echos CR·LF to the console output
and returns the newline ('\n') character.
A value of ·1 is returned for control·Z; note that
the return value from getchar must be treated as
an integer (as opposed to a character) if -1 is to
be recognized. If you declare gl?tchar to be a
character or assign its return value to a character
variable, then the value 255 should be checked for
instead (to detect the EOF character, control-Z.)

-38·

(

(

(
\.

80S C User's Guide

36. char ungetch(c)

37. int kbhitO

38. putchar(c)

39. putch(c)

The Standard Library

Causes the character c to be returned by the next
call to getchar. Only one character may be
"ungotten" between consecutive getchar calls;
normally, zero is returned. If there was already a
character pushed back since the last getchar()
call, then the value of that character is returne~.

Returns true (non-zero) if input is present at the
standard input (keyboard character hit); else reo
turns false (zero.) In no case is the input actually
sampled; to do so requires a subsequent getchar()
call.
Note that kbhit will also return true if the ungetch
function was used to push back a character to the
console since the last getchar() call.

Writes the character. c to the standard output
(CP 1M console output.)
The newline ('\n') character is transformed into a
CR-LF combination.
If a control-C is detected on console input during
a putchar call, program execution will halt and
CPIM will be re-booted. If any other character is
typed during a putchar call, then that character
will be completely ignored.
If you don't want the console input interrogated

. during console output, use the putch function,
described next:

Like putchar, except that the console input is NOT
interrogated for control-C (or anything else) during
output; any characters detected at the console in­
put will be thrown away.

·39·

80S C User's Guide

40. puts(str)
char ·str;

41. char • gets(str)
char ·str;

42. printf(format,arg 1 ,arg2, ...)
char *format;

May 1981

Writes out the null-terminated string sIr to the
standard output. No automatic newline is append­
ed.

Collects a line of input from the standard input
into the buffer sIr.
Returns a pointer "to the beginning of sIr (the
value gets was called with.)
The BOOS call to buffer up a line of input is used;
hence, the length of the provided buffer must be
at least 3 bytes longer than the longest string you
ever expect entered. Caution dictates making the
buffer large, since an overflow here would most
probably destroy neighboring data.

Formatted print function. Output goes to the stan­
dard output. Conversion characters supported in
the standard version:

d decimal integer format
u unsigned integer format
c single character
s string (null-terminated)
o octal format

- x hex format

Each conversion is of the form:

% [-] [[0] w] [.n] <conv. char.>

where w specifies the width of the field, and n (if
present) specifics the maximum number of charac­
ters to be printed out of a string conversion. De­
fault value for w is 1.
The field will be right-justified unless the dash is
specifed following the percent sign, forcing left­
justification. If the value for w is preceded by a
zero, then zeros are used as padding on the left
of the field instead of spaces. This feature has
been iml)lemented for v1.43 of the package, and is
very useful for printing hexadecimal values; the

-40-

(

(

(

80S C User's Guide

43. int scanf{format,arg1,arg2, ...)
char ·format;

The Standard Library

feature had been neglected in previous versions.
An enhanced version of printf, incorporating the e
and f format conversions for floating point values
used in Bob Mathias's floating point package, is
available for compilation in the file FLOAT.C.

Formatted input. This is analogous to printf, but
operates in the opposite direction.
The %u conversion is not recognized; use %d for
both signed and unsigned numerical input.
The field width specification is not supported, but
the assignment suppression character (.) works
OK.
The arguments to scant must be pointers!!!!!.
Note that input strings (denoted by a %s conver­
sion specification in the format string) are terminat­
ed only when the character following the %s in
the format string is scanned.
Returns the number of items successfully assigned.

For a more detailed description of scant ~nd
printf, see Kernighan '& Ritchie, pages 145-150.

III. STRING AND CHARACTER PROCESSING

44. int isalpha(c)
char c;

45. int isupper(c)
char c;

Returns true (non.zero) if the character c is alpha­
betic; false (zero) otherwise.

Returns true if the character c is an upper case
letter; false otherwise.

-41-

8DS C User's Guide

46. int islower(c)
char c;

47. int isdigit(c)
char c;

48. int toupper(c)
char c;

49. int tolower(c)
char c;

50. int isspace(c)
char c;

51. sprintf(string,format,argl,arg2, ...)
char ·string, ·format;

May 1981

Returns true if the character c is a lower case
letter; false otherwise.

Returns true if the character c is a decimal digit;
false otherwise.

If c is a lower case letter, then c's upper case
equivalent is returned; else c is returned.

If c is an upper case. letter, then c's lower case
equivalent is returned; else c is returned.

Returns true if the character c is a "white space"
character (blank, tab or newline); false otherwise.

Like print', except that the output is written to the
memory location pointed to by string instead of to
the console.

52. int sscanf(string,format,argl,arg2, ...)
char ·string, ·format;

Like scan', except the text is scanned from the
string pointed to by string instead of the console
keyboard.
Rcturn5 the number of itoms ~uccessfully aS5igned.
Remember that the nrgumcnts must be pointers to
the objects requiring assignment.

-42-

(

(

(

80S C User's Guide

53. strcat(sl,s2)
char ·sl, ·s2;

54. int strcmp(s l,s2)
char ·sl, ·s2;

55. strcpy(sl,s2)
char ·51, ·s2;

The Standard Library

Concatenates s2 onto the tail end of the null ter·
minated string s 1. There must, of course, be
enough room at s 1 to hold the combination.

Returns:
a positive value if 51) s2
zero if sl = == s2
a negative value if sl < s2

(ASCII collating sequence used for comparisons)

Copies the string s2 to locntion s 1.
For example, to initialize a character array named
faa to the string "barzot", you'd say:

strcpy(foo, "barzot");
Note that the statement

foo == "barzot";
would be incorrect since an array name should
not be llsed as an Ivalue without proper subsc:"ipt·
ing. Also, the expression "barzot" has as its value
a pointer to the string "barzot", not the string it·
self. Thus, if the latter construction is preferred,
then foo must be declared ns a pointer to charac·
ters. This approach is dangerous, though, since
the natural method to append something onto the
end of faa would be

strcat(foo, "mumble");
overwriting the six bytes following "barzot" (wher·
ever "barzot" happens to be stored), probably with
dire results.
There are two viable solutions. You can figure out
the largest number of characters that can possibly
be assigned at faD and pad the initial assignment
with the appropriate number of blanks, such as in

foo == "barzot "; foo[6] == '\0';
or, you can declare a character array of sufficient
size with

char work[200], ·foo;
then have foe point to the array by saying

-43-

80S C User's Guide

56. int strlen(string)
char ·string;

57. int atoi(string)
char ·string;

58. initw(array,string)
int • array;
char ·string;

59. initb(array,string)
char "array, ·string;

May 1981

foo = work;
and assign to foo using

strcpy(foo, "whatever _the_beep");

Returns the length of string (the number of char·
acters encountered before a zero-byte is detected.)

Converts the ASCII string to its corresponding in·
teger (or unsigned) value. Acceptable format: Any
amount of white space (spaces, tabs and new·
lines), followed by an optional minus sign, followed
by a consecutive string of decimal digits. First
non-digit terminates the scan.
Zero returned if no legal value found.

This is a kludge to allow initialization of integer ar·
rays. Array should point to the array to be initial·
ized, and string should point to an ASCII string of
integer values separated by commas. For example,
the UNIX construct of

int values[5] = {-23,O, 1,34,99}
can be simulated by declaring values normally with

int values[5];
and then inserting the statement

initw(values," -23,0, 1,34,99");
somewhere appropriate.

The character equivalent of the above. String is of
the same format as for initw, but the low order 8
bits of each value are used to assign to the con­
secutive bytes of array.
NOTE: UNIX C programs will sometimes assign
negative values to character variables, since UNIX
C character variables are signed 8 bit quantities.

·44-

(
\

(

(

BOS C User's Guide

60. intgetval(strptr)
char • ·strptr;

IV. FILE 1/0

The Standard Library

With 80S C, negative values can only be meaning­
fully assigned to normal int variables.

A spin-off from initw and initb:
Given a pointer to a pointer to a string of ascii
values separated by commas, getval returns the
current value being pointed to in the string and
updates the pointer to point to the next value.
(Why can't strptr be a simple pointer to charac­
ters?1)
When the terminating null byte is encountered, a
value of -32760 is returned. Initw will thus not ac­
cept a value of ·32760. If you need to use that
value, you're welcome to go into STDLlB.C and
change the terminating value to be whatever your
heart desires (you'll have to change getval and in­
itw.)

There are two general categories of file 1/0 functions in the 8DS C library. The
low-level (raw) functions are used to read and write data to and from disk in even
sector·sized chunks. The buffered 1/0 functions allow the user to deal with data in
more manageable increments, such as one byte at a time or one text-line at a time.
The raw functions will be described first, and the -buffered functions (beginning with
fopen) later.

Whenever a function takes a filename as an argument, that filename must be ei­
ther a literal string or a pointer· to-characters that points to a legal filename (actually, a
literal string is a pointer to characters.) Legal filenames may be upper or lower case,
but there must be no white space within the string. The filename may contain a leading
disk designator (single character) followed by a colon to specify a particular CPIM
drive; the default is the usual currently-logged disk. If certain bizarre characters (such
as control-characters) are detected within a filename, the filename will be rejected and
an error value will be returned by the offended function. This somewhat alleviates the
problem caused by trying to open a file whose name contains unprintable characters,
but the mechanism still isn't entirely foolproof. Be careful when processing filenames.

1. Because the pointer· to-characters pointing to the text strin~} must be altered by the
gelval routine; any object which is to be altered by a fUllction must be manipulated
through a pointer to such an object. Thus, a pointer·to-characters must be manipu­
lated through a pointer-to-pointer-to-characters.

-45-

8DS C User's Guide

61. int creat(filename)
char *filename;

62. int unlink(filename)
char *filename;

63. int rename(old,new)
char *old, ·new;

64. int open(filename,mode)
char *filename;

65 .. int close(fd)

May 1981

Creates a (null) file with the given name, first
deleting any existing file having that name. The
new file is automatically opened for writing, and a
file descriptor is retu'rned for use with read, write,
seek, tell, fabort, and close calls.
A return value of -1 indicates an error.

Deletes the specified file from the filesystem.
Use with caution!!!

Renames the file in the obvious manner.
The file specified must not be open while being
renamed.
This function always ·returns -1 for CP/M 1.4 and
earlier versions of CP/M; For 2.0 and MP/M, it
should return 0 for success and -1 only on error.

Opens the specified file for input if mode is zero;
output if mode is equal to 1; both input and out-

o put -if mode is equal to 2.
Returns a file descriptor, or -1 on error. The file
descriptor is for use with read, write, seek, tell, fa­
bort and close calls.

Closes the file specified by the file descriptor fd,
and frees up fd for use with another file. With ver­
sion 1.4. disk accesses will only take place when a
file that was opened for writing is closed; if the
tile being closed was only open for reading, then
the fd is freed up but no actual CP/M call is per­
formed to close the file.
Close does not do an automatic mush for buffered
I/O files.
Returns -1 on error.

(0

/

80S C User's Guide

•

66. int fabort(fd)

67. int read(fd,buf,nbl)
char *buf;

68. int write(fd,buf,nbl)
char *buf;

The Standard Library

Note that all open files are automatically closed
upon return to the run·time package from the
main function, or when the exit function is in·
voked. To prevent an open file from being closed
(perhaps because there is a chance that garbage
was written into it), use the fabort functiOr;l.

Frees up the file descriptor (d without bothering to
close the associated file. If the file was only open
for reading, this will have no effect on the file. If
the file was opened for writing, though, then any
changes made to the currently open extent since it
was last opened will be ignored, but changes
made in other extents will probably remain in
effect. Don't (abort a file open for write, unless
you're willing to lose the data written into it.

Reads nbl blocks (each 128 bytes in length) into
memory at but from the file having descriptor 'd.
The r/w pointer associated with that file is posi­
tioned following the just·read data; each call to
read causes data to be read sequentially from
where the last call to read or write left off. The
seek function may be used to modify the r /w
pointer.
Returns the number of blocks actually read, 0 for
EOF, or -1 on error. Note that if you ask for n
blocks of data when there are only m blocks actu­
ally left in the file (where 0 < m < n), then m
would be returned on that call, 0 on the next call
(provided seek isn't lIsed) , and then -1 on subse­
quent calls.

Writes nbl blocks from memory at but to file 'd.
Each call to write causes data to be written to disk
sequentially from the point at which the last call to
rend or write left off, unless seek is used to modify
the r /w pointer. .
Returns ·1 on error, or the number of records suc­
cessfully written. If the retun value is non-negative

80S C User's Guide

·69. int seek(fd,offset,code)

70. int tell(fd)

71. int fopen(filenarne,iobuf)
char ·filename;
struct _buf ·iobuf;

May 1981

but different from nbl, it probably means you ran
out of disk space; this should be regarded as an
error.

Modifies the next read/write record (sector) pointer
associated with file fd.
If code is zero, then sets the r/w pointer to offset
records.
If code is equal to. 1, then sets the r /w pointer to
its current value plus offset (offset may be nega­
tive.)
A return' value of -1 indicates that the resulting
offset was out of range for the given file (cannot
seek past EOF). If this occurs, the internal data for
the file usually get screwed up royally; the file
should be closed (or fabort-ed) and re-opened be­
fore any further operations on it take place. Under
CP /M, it is possible to seek without error to any
point within the currently active extent (16K byte
portion) of a file, but subsequent read or write
operations under such circumstances may cause
unpredictable results. -
Seeks should not be performed on files open for
buffered I/O.

Returns the value of the r /w pointer associated
with file fd. This number indicates the next sector
to be written to or read from the file, starting from
O.

Opens the specified file for buffered (one datum at
a time) input, and initializes the buffer pointed to
by iobu/. lobul should be a BUFSIZ-byte area
reserved for use by the buffered I/O routines. The
value of BUFSIZ is determined by the 80S C stan­
dard I/O header file (E3DSCIO.H), which should be
include-cd in any program using buffered I/O.
Former versions of the package lIsed a fixed­
length buffer (134 bytes, to be exact) which limited
the I/O buffering to one sector at a time; the 1.4

-48-

(

(

(

BDS C User's Guide

72. int getc(iobuf)
struct _buf ·iobuf;

The Standard Library

package allows the user to customize the size of
the lID buffers by changing a # define statement
in the BDSCIO.H file. See the comments in
BDSCIO.H for more details.
The technical structure of the buffer is

struct _buf {

};

int _fd;
int _nleft;
char • _ nextp;
char _buff[NSECTS * SECSIZ];

but all that really matters to the user is that it is a
BUFSIZ-byte area, declarable by

char samplebuf[BUFSIZ);
Return value is the file descriptor for the opened
file; it need not be saved after the initial test for
an error, since all needed information is automati­
cally maintained in the I/O buffer. Note that the
new fclose function, for closing buffered 110 files,
eliminates the need for saving the file descriptor
returned by fopen since the close function need
no longer be used.
-1 retu rned on error.

Returns the next byte from the buffered input file
opened via fopen having buffer at iobuf. No spe­
cial codes are recognized; control-Z comes
through as control-Z (not -1), CR and LF are ordi­
nary characters, etc.
getc(O) is equivalent to getchar().
gctc(3) reads a character from the CP/M "reader"
device.
The values 0 and 3 may be used in place of the
iobuf argument with any buffered input function, to
direct the input from the console or the reader. -1
is returned on error or on physical end-of-file.
When reading in text files with getc, both the
value Ox 1 a (CPMEOF) and the normal error value
(-1, or ERROR) should be checked for when test­
ing for end-ot-file, since some CP/M text editors
neglect /to place a Oxla byte (control-Z, CPMEOF)
at the end of a text file under certain cir­
cumstances.

-49-

8DS C User's Guide

73. ungetc(c,iobuf)
char c;
struct _buf ·iobuf;

74. int getw(iobuf)
struct _buf ·iobuf;

75. int fcreat(filename,iobuf)
char ·filename;
struct _buf ·iobuf;

76. int putc(c,iobuf)
char c;
struct _buf ·iobuf;

May 1981

Pushes the character c back onto the input buffer
at iobuf. The next call to getc 'on the same file will
then return c. No more than on'e character should
be pushed back at a time. . ; ,F

Returns next 16 bit word from buffered input file
having buffer at iobuf, via two consecutive calls to
getc.
-1 returned on error.

Creates a file named filename (first deleting any
existing file by the same name) and opens the .file
for buffered outp~t. lobuf should point to a
BUFSIZ-byte buffer. '
Returns the fd for the file, or ·1 on error.

Writes the byte c to the buffered output file having
buffer at iobuf. !obuf should have been initialized
by a call to fcreat.
No translations are performed; text lines can be
separated by either CR-lF combinations (for com­
patibility with standard CP/M software) or by new­
line (IF) characters a la UNIX (for increased
efficiency and straightforwardness.)
putc(c,1) is equivalent to putchar(c).
putc(c,2) writes the character to the CP 1M "list"
device.
putc(c,3) writes the character to the CP/M
"punch" device.
When writing out text to a file, be sure to ter­
minate the text with a control-Z (Ox1 a, CPMEOF)
byte.
The values 1, 2, and 3 may be used in place of
iobuf with any buffered output routines to direct

-50-

(

(

80S C User's Guide

77. int putw(w,iobuf)
struct _buf -iobuf;

78. int fflush(iobuf)
struct _buf • iobuf;

79. int fclose(iobuf)
struct _buf ·iobuf;

The Standard Library

the output character to the console. list device, or
punch device instead of to a file.
A call to fflush should always be made before
closing the file (fclose is used to. close a buffered
output file.)
Returns -1 on error.

Writes the 16 bit word w to buffered output file
having buffer at iobut, via two consecutive calls to
putc.
Returns -1 on error.

Flushes output buffer iobut. I.e .• it makes sure that
any characters that may currently be in the output
buffer make it into the file on disk. Ftlush does not
close the file.
Note that an automatic flush takes place wheneve ..
the output buffer fills up; fflush need normally be
called only once right before the file is closed (via
fclose.)
Fflush is to be used only with buffered output files.
Doing an fflush on an input file is both meaning­
less and dangerous to the integ rity of the file.

Closes the buffered lID file specified (it may have
been opened for either reading [via fopen] or writ­
ing [via fc rea I}). If the file was opened for writing,
then an fflush call should have been performed im­
mediately before the (close call.

80. int fprintf(iobuf,format,argl,arg2, ...)
struct _but • iobuf;
char -format;

Like printf, except that the formatted output is writ­
ten to the buffered output file having buffer at
iobuf instead of to the console.
Returns -1 on error.

-51-

80S C User's Guide May 1981

81. int fscanf(iobuf,format,arg1,arg2, ...)
struct -buf • iobuf;
char • format;

82. char ·fgets(str,iobuf)
char ·str;
struct _buf ·iobuf;

Like scant, except that the text input is scanned
from the buffered 'Input at iobuf instead of from
the console. The present version of (scant requires
that each line of data be scanned completely; any
items left on a line read from a file after all format
specifications have been satisfied will be discard­
ed.
Returns the number of items successfully assigned,
or -1 if an error occured in reading the file.

Reads a line in from the specified buffered input
file and places it in memory at the location pointed
to by sIr.
This one is a little t~icky due to the CP 1M conven­
tion of having both a CR and a LF at the end of
lines. In order to make text easier to deal with
from C programs, fgets automatically strips off the
CR from any CR-LF combinations that come in
from the file. Any CR characters nof immediately
followed by LF are left intact. The LF is included
as part of the string, and is followed by a null byte
(Note that LF is the same as '\n'.) There is no
check on the length of the line being read in; care
most be taken to make slire there is enough room
at sfr to hold the longest line imaginable (a line
must be terminated by a newline (alias LF alias
'\n') character before it is considered complete.
Zero is returned on EOF, whether it be a physical
EOF (attempting to read past the last sector of a
file) or a control-Z (CPMEOF) character in the file.
Otherwise, a pointer to the string is returned (the
same as the passed value of sfr.)

-52-

(

(

80S C User's Guide

83. int fputs(str ,iobuf)
char ·str;
struct _buf ·iobuf;

84. int setfcb(fcbaddr,filename)
char ·filename;

85. char ·fcbaddr(fd)

The Standard Library

Writes the null·terminated string from memory at str
into the specified buffered output file. Newline
characters are converted into CR·LF combinations
to keep CP/M happy. If a null (zero byte) is found
in the string before a newline, then there will be
no line terminator at all appended to the line on
output (allowing partial lines to be written.)

Initializes a CP/M file control block located at ad­
dress fcbaddr with the null· terminated name point­
ed to by filename_
The next·record and extent· number fields of the
fcb are zeroed.
If any screwy characters (the kinds not usually
desirable in the name or extension fields of a file
control block) are encountered within the filename
string, then the offending character and remain~er
of the filename string will be ignored.

Returns the address of the internal, usually invisi­
ble file control block associated with the open file
having descriptor Id.
-1 is returned if fd is not the file descriptor of an
open. file.

V. PLOTTING FUNCTIONS (FOR MEMORY-MAPPED VIDEO BOARDS)

86. setplot(base,xsize,ysize)
Defines the physical characteristics (starting ad­
dress, dimensions) of a memory· mapped "DMA"
video board such as the Processor Technology
(R.I.P) VDM-1. Base is the startin~J address of the
video m~mory;)(size is the number of lines in the
display; ysize is the number of characters per line.
Setplot need only be called once at the start of

-53-

80S C User's Guide

87. clrplotO

88. plot(x,y,chr)
char chr;

89. txtplot(string,x,y,ropt)
char ·string;

90. line(c,xl,Y,l,x2,y2)

May 1981

program execution; from then on, the functions
clrplot, plot, txtplot and line will know about the
given parameters. If you are using a Processor
Tech VDM-1. setplot need not be called at all; the
parameters are automatically set up for the VDM-1
as part of the start-up sequence for every C­
generated COM file.

Clears the memory-mapped video screen (fills with
ASCII spaces.)

Places the character chr at coordinates (x ,y) on
the video screen.
(x,y) is read as: x down, y across, where

o < = x < xsize,
o < = y < ysize.

Places an ASCII strin'g on the screen at position
(x,y); If ropt is non-zero, then each byte of the
string is logical OR-ed with the value Ox80 before
being displayed. This forces the high-order bit to a
1, causing the character to appear in reverse-video
on some boards (slich as the VDM-l) or do other
funny random things with other boards.

Line only works with a 64 by 16 board.
This function draws a "crook.ed line" (because
there is no way to make a line look straight with
64 by 16 resolution!!) between the points (xl ,yl)
and (x2,y2) inclusive. The line is made up of the
character c.

-54-

(

(

Notes to APPENDIX A of
The C Programming Language

(For the 80S C Compiler)

80S C is designed to be a subset of UNIX C. Therefore, most parts of the C
Reference Manual apply to 80S C directly; the purpose of these notes is to docu­
ment the other parts.

After presenting a general summary of differences between the two implementa­
tions, I'll go into detail by referring to appropriate section numbers from the book and
describing how 80S C differs from what is stated there. Any sections that are appropri­
ate as they stand (with regard to 80S C) will be ignored.

c:
Here is a summary of the most significant ways in which 80S C differs from UNIX

1) The variable types short int, long int, float and dou ble are not suppor·teci

2) There are no explicitly declarable storage classes. Static and register vari­
ables do not exist; all variables are either external or automatic, depending
on the context in which they are declared.

3) The complexity of declarations is restricted by certain rules.

4) No initializers are allowed.

5) String space storage allocatjon must be handled explicitly (there is no au­
tomatic allocation/garbage collection mechanism).

6) Compilation is accomplished directly into 8080 machine code, with no inter­
mediate assembly language file produced.

7) Only a bit of intelligent code optimization is performed.

8) The entire source file i3 loaded into main memory at once, as opposed to
being passed through a window. This limits the maximum length of a single
source function to the size of available memory.

9) 80S C is written in 8080 assembler language, not in C itself. If BOS C were
written in itself, the compiler would be five times as long and run incredibly
slower. Remember that we're dealing with 8080 code here, not PDp·l1 code
as in the original UNIX implementation.

·55-

80S C User's Guide March 1981

The following is a section-by-section annotation to the C Refe rence Manual.1 For
the sake of brevity. some of the items mentioned above will not be pointed out again;
any references to floats, longs, statics, initializations, etc., found in the book should
be ignored.

1. Introduction

80S C is resident on Intel 8080 based microcomputer systems equipped with the
CP 1M operating system, and generates B080 binary machine code (in a special relocat·
able format) directly from given C source programs. As might be expected, 80S C will
also run on any machine that is upward compatible from the 8080, such as the Zilog
Z-80 or Intel 8085.

2.1 Comments

Comments nest by default; to make 8DS C process comments the way Unix C
does, the -c option must be given to CCl during compilation.

2.2 Identifiers (names)

Upper and lower case letters are distinc~ (different) for variable, structure, ur:tion
and array names, but not for function names. Thus, function names 5hould always be
written in a single case (either upper or lower, but not mixed) to avoid confusion. For
example, the statement

char foo,Foo,FoO;

declares three character variables with different names, but the two expressions

printf("This is a test\n");

and

prlNTf(ltThis is a test\n");

are equivalent.

2.3 Keywords

80S C keywords:

int
char

else
for

1. Apnendix A of The C Proarnmming Language.
2. Function names are stored internally as-upper.case-only.

·56-

(

(

8DS C User's Guide Notes to APPENDIX A

struct do
union while
unsigned switch
goto case
retu rn default
break sizeof
continue begin
if end
register

Identifiers with the same name as a keyword are not allowed (although keywords
may be imbedded within identifiers, e.g. charf/ag.) .

On terminals not supporting the left and right curly-brace characters { and }, the
keywords begin and end may be used instead. Note that you cannot have any
identifiers in your programs named either "begin" or "end".

4. What's in a name?

There are only two storage classes, external and automatic, but they are not ex­
plicitly declarable. The context in which an identifier is declared always provides
sufficient information to determine whether the identifier is external or automatic: de­
clarations that appear outside the definition of any function are implicitly external,. and
all declarations of ,variables within a function definition are automatic.

Automatic variables have a lexical scope that extends from their point of declara­
tion until the end of the current function definition. A single identifier may not normal­
ly appear in a declaration list more than once in any given function, which means: a
local structure member or tag may not be given the same name as a local variable, and
vice versa. See subsection 11.1 for a special case.

In 80S C, there is no concept of blocks within a function. Although a local vari­
able may be declared at· the start of a compound statement, it may not have the ~3me
name as a previously declared local automatic variable. In addition, its lexical scope
extends past the end of the compound statement and all the way to the end of the
function. .

I strongly suggest that all automatic variable declarations be confined to the begin·
ning of function definitions, and that the practice of declaring variables at the head of
compound statements be avoided. Sooner or later, future releases of 8DS C will have
a declaration. mechanism identical to· UNIX C.

If several files share a common set of external variables, then all external variable
declarations must be identically ordered within each of the files involved. 1 The external
variable mechanism in 80S Cis handled much Jil<e the unnamed COMMON facility of
FORTRAN. So. if your main source file declares the external variables a,b,c,d and 0,

in that order, while another file uses only a, band c, then the second file need not
declare d and e. On the other hand, if the second. file used d and e but not a, b or

1. The recommended procedure for a case such as this is to prepare a single file (us­
ing your text editor) containing all common external variable declarations. The file
should have extt~nsion .H (for "header"), and be specifip.ri at the start of each
source file via use of the II # include" preprocessor directive.

·57-

80S C User's Guide March 1981

c, then all of the variables must be declared so that d and e (from the second file) do
not clash with a and b (from the first) and cause big trouble. As an added inconveni­
ence, al/ external variables used in a program (set of dependent sOllrce files) must be
declared within the source file containing the main function, regardless of whether or
not that source file uses them all.

As long as all common external declarations are kept in a single ".H" file, and
include is used within each source file of a program to read in the ".H" file, there
shouldn't be any trouble. Well, relatively little anyway.

6.1 Characters and integers

Sign extension is never performed by 80S C.
Characters are interpreted as 8-bit uTlsigned quantities in the range 0-255.
A CHAB VARIABLE CAN NEVER HAVE A NEGATIVE VALUE IN BOS C. Be

careful when, for example, you test the return value of functions such as getc, which
return -1 on error but "characters" normally. Actually, the return value is an int al·
ways, with the high byte guaranteed to be zero when there's no error. If you assign the
return value of, say, getc to a character variable, then a -1 will turn into 255 as stored
in the a-bit character cell, and testing a character for equality with -1 will never return
true. Watch it.

Most arithmetic on characters is accomplished by converting the character to a
16-bit quantity and zeroing the high-order byte. In soml:! non·arithmetic operations,
such assignment expressions, 80S C will optimize by ignoring the high order byte
when dealing with character values. To take advantage of this', declare any variables
you trust to remain within the 0-255 range as char variables.

7. Exp ressions

Division· by-zero and mod·by·zero both result in a value of zero.

7.2 Unary Operators

The operators

(type-name) expression
sizeof (type-name)

are not implemented. The sizeof operator may be used in the form

sizeof expression

provided that expression is not an a rray. To take the sizeof an array, the array must
be placed all by itself into a structure, allowing the sizeof the structure to then be
taken.

-58·

(

(

(

80S C User's Guide Notes to APPENDIX A

7.5 Shift ope rators

The operation » is always logical (O·fill).

7.11, 7.12 Lc)gical AND and OR operators

These two operators have equal precedence in 80S C, making parenthesization
necessary in certain cases where it wouldn't be necessary otherwise. The only excuse
I can offer to compiler hackers is this: 80S C does not create a syntax tree in parsing
arithmetic expressions ..

8. Declaralio·ns

Declarations have the form:

declaration:
type-specifier declaration-list

There are no "storage class" specifiers.

8.1 Storage c;lass specifiers

Not implemented.

8.2 Type spE~(:ifiers

The t}'pE~-specifiers are

type-specifier:
char
int
unsigned
register
struct-or-union-specifier

The tyP(~ register will be assumed synonymous with int, unless it is used as a
modifier (e.g. register unsigned foo;), in which case it will be ignored completely.

T here are' no other "adjnctives" allowed:

unsigned Int foo;

must be written as

unsigned foo;

-59-

80S C User's Guide

8.3 Declarators

Initializers are not allowed. Thus,

declarator-list:
declarator
declarator , declarator-list

8.4 Meaning of declarators

March 1981

UNIX C allows arbitrarily complex typing combinations, making possible declara­
tions such as

struct foo *(*(*bar[3][3][3]) ()) 0;

which declares bar to be a 3x3x3 array of pointers to functions returning pOinters to
functions returning pointers to structures of type foo.

Alas, 80S C wouldn't allow that particular declaration.
Here is what 8DS C will allow:

First, let a simple-type be defined by

and a scalar-type by

simple-type:
char
int
unsigned
slruct
union

scalar-type:
simple-type
poinler-to-scalar-type
pointer -to -function

A special 'kind of scalar type is apointer-to-function .. This is a variable which
may have the address of a function assigned to it, and then be used (with the proper
syntax) to call the function. Because of the way 80S C handles these critters internally,
pointers to pointer-to-function variables will not work correctly, although pointers to
functions returning any scalar type (except struct, union, and pointer-la-function) are
OK.

So far, scalar· types cover declarations such as

int x,Yi
char ·Xj

-60·

BOS C User's Guide

unsigned ·fraz;
char • *argv;
st ruct foobar ·zot, bar;
int • (- ihtfp)();

Notes to APPENDIX A

(The last of the above examples declares ihtfp
to be a pointer to a function which returns
a pointer to integer.)

Building on the scalar-type idea, we define an array to be a one or two dimen·
sional collection of scalar-typed objects (including pointer-to· function variables). Now
we can have constructs such as

char ·x[51[10]i
int * *foo[10];
struct zot bar [20][8] ;
union mumble -bebop[747];
int (• foobar[l 0]) 0;

(The last of the above examples declares foobar
to be an array made up of ten pointers to
functions returning integers.)

Next, we allow functions to return any scalar type except pointer-to-function,
st ruet or union (but not excluding pointers to structures and unions.)

Some more examples:

char -barO;

declares bar to be a function returning a pointer to character;

char *(*bar)();

declares bar to be a pointer to a function returning a pointer to characters;

char *(-bar[3][2]) 0;

declares bar to be a 3 by 2 array of individual pointers to functions returning painters
to characters;

shuet foo zot();

attempts to declare zot to be a function returning a structure of type faa. Since func­
tions cannot return structures, this would cause unpredictable results.

shuct foo -zod);

is OK. Now zot is declared as returning a pointer to a structure of type foo.

·61-

80S C User's Guide March 1981

lastly, it must be mentioned that explicit pointers-to-arrays are not allowed. In oth·
er words, a declaration such as

char (·foo) [5];

would not succeed in declaring faa to be a pointer to an array. Due to the relative
simple·mindedness of the 8DS C compiler (and its programmer). the preceding declara·
tion is the same in meaning as

char *foO[5];

On the brighter side. any formal parameter declared to be an array is internally
handled as a "pointer-la-array." causing an automatic indirection to be performed
whenever the appropriate identifier is used in an expression. This makes passing ar·
rays to functions as easy as pi. For an extensive example of this mechanism, check out
the Othello program included with some versions the 80S C package.

8.5 Structure and union declarations

"Bit fields" are not implemented. Thus we have

struct-or-union-specifier:
struct-or-union {struct-decl-Iist }
struct-or-union idontifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

st ruct -dec/-list:
struct-declaration
struct-declaration struct-decl-list

struct -declaration:'
type-specifier declarator-list;

declarator-list:
declarator
declarator, declarator-list

Names' of members and tags in structure definitions cannot be the same as any
regular local variable names. The only time more than one structure or union per func­
tion can use a given identifier as a member is when a/l instances have the identical
type and offset; see subsection 11.1.

-62-

("

(

(

80S C User's Guide Notes to APPENDIX A

8.6 Initializers

Sorry; no initializers allowed.
External variables are not automatically initialized to zero.

8.7, B.8 Type names

Not applicable to 8DS C.

9.2 Blocks

There are no "blocks" in 80S C. Variables cannot be declared as local to a block;
declarations appearing anywhere in a function remain in effect until the end of the
function.

9.6 For statement

Here the book is slightly confusing.
The for statement is not completely equivalent to the while statement as iIIustrat·

ed, for this reason: should a continue statement be encountered while performing· the
statement portion of the for loop, control would pass to expression-3. In the while ver·
sian, though, a continue would cause control to pass to the test portion of the loop
directly, never executing expression-3 during that particular iteration. The representa·
tion given in section 9.9 is correct since the increment is implied (to occur at cantin:)
rather than written explicitly.

This is merely a documentation bug in the book; both the UNIX C compiler (as far
as I can tell) and the 8DS C compiler handle the fo r case correctly.

9.7 Switch statement

There may be no more than 200 'case statements per switch construct.
Note that multiple cases each count as one, so the statement

case 'a': case 'b': case 'c': printf("a or b or c\ntt);

counts for three cases.

9.12 Labeled statement

A label directly following a case or default is not allowed. The label should be
written first, and then the case or default. For example,

case 'x': foobar: Sat-Nite_Live = Funny;

is incorrect, and should be changed to

foobar: case 'x': Sat-Nite_Live = Funny;

·63·

80S C User's Guide March 1981

10. External definitions

Type specifiers must be given explicitly in all cases except function definitions
(where the default is int.)

11.1 Lexical scope

Members and tags within structures and unions should not be given names that
are identical to other types of declared identifiers. 80S C does not allow any single
identifier to be used for more than one thing at a time, except when a local identifier
causes a similarly named external identifier to disappear temporarily. This means that
you cannot write declarations such as:

struct foe {
int a;
char b;

} foo[10];

/- define struct of type "foo" • /

/- define array named "foo" made up
of structures of type "faa" - /

which are basically confusing and shouldn't be used anyway, even if UNIX C does al­
low them.

The one exception to this rule involves structure elements. The compiler will
tolerate the same identifier being used as a member within the definition of different
structures, as long as 1) the type and 2) the storage offset from the base of the struc­
ture are identical for both of the instances. The following. sequence, for example, uses
the identifier "cptr" in a legal manner:

struct foo {
int a;

. };

char b;
char -cptr;

struct bar {
unsigned aa;
char xyz;
char -cptr;

};

11.2 Scope of externals

/- type: char ., offset: 3 .,

/- type: char·, offset: 3 .,

There is no extern keyword; all external variables must be declared in exactly the
same order within each file that uses any subset of them. Also, all external variables
used in a program must be declared within the source file that contains the main func­
tion.

Here is how externals are normally handled: location 0015h of the run-time pack­
age (usually 0115h or 4315h at run-time) contains n pointer to the base of the external
variable area: all external variables are accessed by indexing off that two byte value.1

1. The -e xxxx option to eCl may be used to locate the external variablt~ area at ab-

-64-

(

(

BOS C User's .Guide Notes to APPENDIX A

The amount of space allocated for external variables is equal to the space needed by
all external variables defined in the main source file. Because no information is record­
ed within CRL files about· external storage or external names (other than the total
number of bytes involved and, optionally, the explicit starting address of the externals),
it is up to the user to make sure that each source file contains an identical list of
external declarations; the names don't necessarily have to be identical for each
corresponding external variable in separate files (although naming them differently is
just asking 1 for trouble), but the types and storage requirements should certainly
correspond.

It would not be far off the mark to consider 80S C external variables as just one
big FORTRAN-like COMMON block.

12.1 Token replacement

Only the simple text-substitution command

define identifier token-string

is implemented. Parameterized # defines are not supported.

12.2 File Inclusion

Either quotes or angle brackets may be used to delimit the filename; both have
exactly the same effect.

Although file inclusion may be nested to any reasonable depth, error reporting
does not recognize more than one level of nesting. Try experimenting with the ".p" op­
tion of Cel, varying the level of inclusion nesting, to see exactly what happens.

12.4 line Cont rol

Not supported.

solute location }(XXX, thereby considerably speeding up and shortening the code
produced by the compiler. Even so, all the declaration constraints mllst still be ob­
served.

1. Reminder: if you use the library functions al/oc and free, you must include the
header file "bdscio.h" with All_DC_ON defined, and make sure that STDLlB1.C was
also compiled with ALLOC_ON enabled; there are several external data objects re­
quired by al/oc
and free declared within bdscio.h, and omission of these declarations within any

source file having external variables would cause an undesirable data overlap.

-65-

80S C User's Guide March 1981

15. Constant expressions

80S C will simplify constant expressions at compile-time only when the constant
expressions occur in one of the following places: following left square brackets, fol­
lowing the case keyword, following assignment operators, following left parentheses,
and following the retu rn keyword. Any constant expression not falling - into one of
those categories is guaranteed to not be simplified at compile-time.

The standard procedure for insuring the compile-time evaluation of constant ex­
pressions when such expressions fall inside larger expressions involving variables is to
enclose the constant expressions in parentheses. Thus, statements such as

x = x + y + 15 ·10;

will not be simplified, and in general will generate more (and slower) code than the
better form:

x = x + y + (15*10);

18.1 Expressions

The unary operators are:

* Be • ! - + + •• sizeof

The binary operators && and II have equal precedence.
sizeof cannot correctly evaluate the size of an array.

18.2 Declarations

The complete syntax for declarations is

declaration:
type-spec1fier declarator-list

type-specifier:
char
int
unsigned
struct~or-union-specifier

declarator-list:
declarator
declarator , declarator-list

declarator:
identifier
(declarator)
• declarator

·66-

(

(

80S e User's Guide

declarator 0
declarator [constant expression]

struct-of-union-specifier:
st ruet { declarator-list }
st ruel identifier { declarator-list }
st ruet identifier
union { declarator-list }
union identifier { declarator-list }
union identifier

18.4 External definitions

data-definition:
type-specifier declarator-list

18.5 Preprocessor

The preprocessor directives

define identifier token-string
include "filename"
ifdef identifier
/I ifndef identifier
#else
#endif
undef identifier

are all now supported, but with some restrictions:

Notes to APPENDIX A

The I # 'character must be in the first column of the line, and there may be no space
between the '#' and the rest of t.he preprocessor directive name.

There is no nesting of conditional compilation directives allowed. I.e., after either an
ifdef or # ifndef is encountered, there must occur either an # endif or an # else
before another # ifdef or # ifndef. Breaking this rule may not bomb the compiler, but
it isn't loo likely to yield the desired result, either.

Defines may appear anywhere in the source file, their scope extending until the
end of the file or until the identifier is re- # defined. Parameterized # defines are not
supported.

File inclusion may nest to any depth (although mutually inclusive files may just
manage to bomb eel), but both the us It_p" option with eel and error reporting for

-67·

80S C User's Guide March 1981

CC1 and CC2 become easier to deal with if you limit yourself to non-nested inclusion.

The Mistakes Most Commonly Made By Beginning C Programmers

There are several aspects of the C language that tend to cause a great deal of
brow-beating when tackled for the first time. In this section I will try to summarize
those sensitive "features" of C that are constantly being brought to my attention by
confused users in their phone calls and letters.

1) How NOT to use a pointer: When a painter variable is declared in a program,
either externally or within a function, it is NOT given a value automatically.
A pointer is simply a 16-bit variable that is typically used hold the address of
some other piece of data (to pOint to it), and must be initialized before being
used, just like any variable. The particular mistake I see most often involves
assigning a value indirectly through an uninitialized pointer; i.e, the declara­
tion

2)

char *foo;

would be later followed by a statement such as

*foo = 'a';

before foo is ever initialized, and unpredictable things would begin to hap­
pen. What the assignment statement above says is "place the character 'a'
into memory at the location pointed to by the variable foo. If faa has never
been initialized to anything, then the 'a' byte would be placed at some totally
random location in memory. The correct procedure here would have been to
declare a buffer area, assign the address of that area to foo, and then use
foo in the manner above. Such a sequence would appear as:

chat buffer[50], ·'00;
faa = &buffer;

*foo = 'a';

where the character 'a' is placed into the first byte at buffer.

Functions must not return pointers to their own local data! As soon as a
function returns to its caller, storage that was local to tl1at function is deallo­
cated and made available to the next called function. A common mistake is
to have some function (call it foo) create a piece of text in a local buffer
and return a pointer to that text... Immediately upon return from foo, the
string appears intact, but later on in the course of the program (as the space
in which the string resides is allocated for other functions' local data
frames), the string turns into garbage. There are two viable solutions to this
kind of problem:- either have foo take a parameter telling it where to put the
string result (in which case the caller must provide Cl working buffer for fool
or make the destination string area external. £::ach method has advantages
over the other; passing a destination area on each call allows many such re-

-68-

(

(

(

BDS C User's Guide Notes to APPENDIX A

turned strings to be saved separately in different areas of memory, while an
external destination area shortens the calling sequence by requiring one less
parameter to be passed. But whatever you do, do NOT expect any data that
was local to a called function to remain valid after that function has re­
turned!!

3) What is a "formal parameter", anyway? A formal parameter is one of the ar­
guments (if any) that a function expects to have passed to it whenever
called. All formal parameters are specified at the beginning of a function's
definition as a parenthesized list immediately following the function name.
The declarations of a function's formal parameters must be made immediately
after the parenthesized list, before the first open-squiggly brace that marks
the befJinning of the function body. Formal· parameters which are not de­
clared are assumed to be simple int values; should a formal parameter ac­
cidentally be declared within the actual function body, the compiler would
correctly give a "redeclaration" error. since once the formal declarations are
passed and the compiler begins processing the function body without having
seen a declaration for a formal parameter, then that formal parameter will
have been automatically declared an into

Whenever a function call is made. copies of the values of any formal
parameters are passed to the function. All such values are 16 bits in length
(at least with 80S C v1.4). This means that structures, arrays. unions, and
any data type not inherently 16 bits in size cannot be copied and passed to
a function; pointers to such data types, though, can. There is a special
magic mechanism for passing pointers to arrays that can be confusing, be­
cause it is not intuitively obvious from the declaration syntax that a pointer is
actually being passed;' for example, a function beginning with the sequence

int arraysum(array)
int array[100];
{

}

may appear to take an array of 100 elements as a formal parameter. Actually,
only a pointer to that array is passed, but the usage is the same as if it were
an actual array. The big difference, though, is that if you change any ele­
ment in the array here, you'll be changing that element for the calling pro­
gram also, while changing a simple non-array formal parameter would not
alter the original value from which the parameter was copied (back in the
calling program.) Another tricky point about formal array parameters is that
you can actually treat the array name as a simple pointer variable within the
called function (i.e., assign to it the address of another array and wholla! it
then becomes the base of tnat other array ...) while such things would not
work (and indeed, cause unpredictable results) when the array is an actual
(non-formal-parameter) array. The Kernighan & Ritchie book contains an en­
tire chapter on the duality of pointers and arrays; in this mechanism lie the

8DS e User's Gu;de March 1981

high points and the more confusing points of C.

Miscellaneous Notes

1) The" =" operator is used for assignment only. The relational operator 'is
equal to' is represented by "= ="~ Be careful not to confuse them.

2) The keywords begin and end. may be substituted for left and right curly­
braces ({ and }). This feature is provided so that users not having the {
and } characters on their terminals can still use the compiler. Aesthetically,
in my opinion anyway, the braces make for much more readable code than
begin and end do, and should be used whenever possible.

3) Error recovery is not especially intelligent in some cases. If either eCl or
CC2 spews out a set of error messages clustered around the same line or
set of lines, then only the first error message in the cluster should be be­
lieved. Chances are that after that error is fixed. the rest will go away.

Also, the line number given by Ce2 in error reports is not always
guaranteed to be accurate. eel does some rearranging of code once in a
while; for instance, the increment portion of a fo r statement is physically
moved down past the statement portion. Thus, if there is an error in the in­
crement portion that eel is not equipped to detect, then ee2 will detect
it. .. and report the line number erroneously. Try not to mess up the increment
portion of fo r statements.

Certain types of errors will cause the compiler to cease execution and
immediately return to CP 1M without scanning the rest of the source. This oc­
curs when, for example, mismatched parentheses or a missing semicolon
manage to confuse the compiler to the point where it cannot recover. So, in­
stead of guessing about where the proper punctuation should be, it aborts to
let you fix the error quickly and try again.

3) The "argc and argv" mechanism for passing command line arguments to a C
main program is implemented identically to its UNIX model, except for one
thing: CP 1M. since it never preserves the name of the .COM file executed,
makes it tough to get argvlO]- pointing to the command name itself. Thus,
argv[O] will contain garbage. Don't use it for anything.

Note that argc is. by convention, always positive, and equal to the
number of arguments specified plus one. Arguments on the command line
are'treated as strings in all cases, not as values. If you need to specify string
arguments containing imbedded spaces, then double quotes (e.g. "string
containing spaces") may be used to delimit such arguments.

All alphabetic characters on the command line are converted to upper
case by CP 1M. Thus, when scanning command options, be sure to check for
upper case (or use the tolower function.)

4) Although inilializations are not supported, a couple of convenience functions
have been provided to allow initialization of irlteger anci character arrays.

To set any contiguoLls set of words to integer value~, use the function
initw. For characters (single-byte integers in the range 0-255), use initb.

-70·

(

(

(

80S C User's Guide Notes to APPENDIX A

80th of these are documented in the previous section.
For example, to simulate the UNIX C construct of

int foobar[10] = {3,O,·2,·5,3,6,9,·23,·14,O};

you can first declare foobar normally by saying

int foobar[10];

and then, in the main function, insert the statement

initw(foobar," 3,0,·2,·5,3,6,9,·23,·14,0");

5) When using the function getchar under CP 1M, the input character is au·
tomatically echoed to the console output as it is typed. About the only port·
able way to suppress this echo is to use the bios library function to read the
console; note that this causes carriage returns to actually be returned as
carriage returns instead of being converted to newlines a la getchar.

Also, the getchar, putchar and ungetch functions may only be used for
console input and output. On UNIX, these routines are generalized since the
operating system allows a user to specify that the main input to a program
come from, say, a file instead of the console. This is known on UNIX as
directed //0. A common technique used in the book's sample programs is to
scan through an input file by using getchar; this only works as long as' the
input to the program can be directed from a file: Since CP 1M does not sup·
port this mechanism, all such sample programs should be rewritten using the
80S C buffered 110 functions (fop en, getc, etc.) instead of getchar and
putchar.

The important point here is that UNIX achieves a high level of generality
by assigning the standard input and standard output streams independently
of their physical characteristics. A simple file copy program named foo writ·
ten with·· getchar and putchar would simply echo the console input to the
console output if invoked by typing

foo

but the same program would copy the file bar into the file zot if invoked
wifh

foo <bar)zot.

To approach that level of generality with 80S C under CP 1M, it should
be noted that the buffered 110 functions can used for both file 1/0, console
1/0, afld (for version 1.4) list device and reader device 1/0. It still might
take a little bit of extra coding effort to decide whethor a user wants file I/O
or console I/O, but the meaty parts of the 110 transfers can usually be cod·
ed in a general manner. Many users have asked why I haven't bothered to
implement directed 1/0 in the run·time package, like Whitesmiths does. The
reason is simple: CP 1M is not UNIX, Under UNIX, the redirection is a function
of the operatinq system. not the C compiler. I'd rather get C running on new
operating syste'ms that do support redirection (such as Ed Ziemba's MARC

80S C User's Guide March 1981

DOS) than try to make up for CP 1M's lack of versatility with warts·on-warts. 1

One more note on this subject: getchar, upon receiving a carriage return
from the console, automatically echoes a linefeed (in addition to the au­
tomatic echo of the CR) and returns a newline character. Getc, on the other
hand, when used for· inputting characters from a text file, does not change
CR-LF combinations into newlines. If you'd like this to' happen, write your­
self a little routine (say, getc2) that calls getc and filters out CR·LFs by issu­
ing a dummy call to getc following each CR encountered and returning a
newline in such cases. Once this is done, the process of writing programs
that are generalized to both console and file JIO should be as painless as
possible under CP 1M.

5a) When scanning through an input text file (using, say, getc), the logical-EOF
character is a control-Z (Ox1 a). A return value of -1 from the fileread func­
tions (read, getc, etc.) indicates a physical EOF (always on a block boun­
dary) and will probably not coincide with the logical EOF (where the control­
Z is.) Thus the correct algorithm for detecting the end of a text filc must
check for both of these possible values, and interpret the first one encoun­
tered as the EOF. Note that if you are assigning the return value of a func­
tion such as gatc to a character variable, the the -1 physical-EOF condition
value magically turns into 255 after assignment.

6)

When writing output text files, be sure to terminate them with a control­
Z in an attempt to maintain some kind of consistency; though that seems to
be more than certain operating system developers have seen fit to do.

Unbuffered file 1/0 (using open, read and write) is done in terms of blOCKS,
not bytes. If you wish to deal with single bytes at a time, it is necessary to
use the buffered file liD functions which, unfortunately, are slower (but not
that much slower with the new user-configurable buffer size.)

On another speed note, I've found that the CP 1M User's Group pro­
grams FAST.COM and SPEED.COM, written by Bob Van Valzah for 1.4
CP 1M systems, do absolute wonders for the compilation time of all programs
and the execution speed of file-IIO·bound programs. On my system, the
average speed of everything has increased around three-fold under SPEED.
If you've got a system that can. handle these programs, but aren't taking ad­
vantage of them, you're really missing something.

7) In a high school environment, a couple of microcomputer systems running
80$ C combined with copies of the book The C Pronramming Language for
every student would provide an excellent setting for an introductory course
in computer science. Teachers, take note!

8) The following tidbits should be kept in mind when striving for optimum
efficiency in compiled programs:

1. By the way, just for the record, I DO like CP 1M... after all, I've been hacking on it
long enough to get this compiler to a respectable state. But the time has definitely
arrived for a new generation of operating systems, with UNIX as the trendsetter for
the time being. Onward to MARC ...

-72-

(

(

80S C User's Guide Notes to APPENDIX A

1. Comments are stripped off a source file dynamically as the file is be­
ing read in from disk; thus, there is no excuse (except maybe lazi­
ness) for not documenting a program adequately.

2. The switch statement is most efficient when the switch variable (e.g.
xx in "switch(xx) ... ") is declared as a char. Of course, if values
outside the character range (0-255) are expected then this informa­
tion is not very useful.

3. The cases in a switch statement are tested in the order of their ap­
pearance; thus, the most common cases (or the ones requiring fastest
response time) should appear first.

4. For the fastest execution speed possible, eCl should be given the -0

and -e xxxx options for compilation. For the shortest possible code
length, only the -e xxx x option should be used with CC1.

5. Logical expressions in C evaluate to a numerical value of 0 (if false)
or 1 (if true) whenever their value is actually needed, but may not
evaluate to any value at all when used in flow-of-control tests. This
means that you can take advantage of the numerical results of logical
expressions in many situations. Consider the following code fragment,
whose purpose is to set the variable x to 1 if a(b, or to 0 if a) = b:

if (a < b) x = 1;
else x = 0;

The same operation can be written as

x = (a < b);

This takes advantage of how the subexpression "(8 < b)" evaluates to
the desired value automatically, and thus avoids the use of two
separate assignment expressions, their associated control structure,
and the consider~ble "Overhead that all entails.

A related opportunity for brevity comes up whenever any variable
needs to be tested for equality or inequality with zero; since any ex­
pression may be considered logically "true" if it evaluates to a non­
zero value, the "! =.0" portion of an expression such as "a 1= 0" is
practically redundant. Statements such as

. if (a ! = 0) printf ("A is non·zero\n");
or if (a = = 0) printf (It A is zero\n");

may just as well be written as

if (a) printf (" A is non-zero\n");
and if (!a) printf ("A is zero\n");

·73-

80S C User's Guide March 1981

Of courSl3, such an abbreviation may not always be appropriate to a
given situation. If the variable in question is used as a counter of
some sort, and is expected to take on many different values, then
saying "a ! = 0" might be clearer in the logic of the program. But in
cases where the variable is used as a Boolean flag, or where a value
of zero is considered special in some sense, then the shorter forms
are clearer and may in fact lead to shorter object code in certain
cases.

9) Please report any bugs to:

LHor Zolman
3a Lothrop st.
Brighton, Massachussetts, 02135
(617) 782-0836 (evenings before 1 :00 AM EST)

Please don't hassle Lifeboat with technical bug reports; they're the pub­
lishers, not the authors. By reporting any bugs you may encounter directly to
me, you'll vastly improve the chances of having a fix for the problem in a
short amount of time.

If you have any questions about the package, feel free to bug me about
it (so to speak.) This gives me some idea of exactly what in the package is
confusing and in need of more detailed documentation. At the time of this
writing, there are approximately 1200 (legitimate) copies of 80S C out in the
field, and I havl3n't yet been overplagued with phone calls. In fact, a 'vast
majority of user feedback has proven very constructive. There is always the
possibility, however, that sales will skyrocket and cause my phone call
volume to rise t<,- unmanageable proportions ... thus I ask that questions about
the compiler be mailed to the above address, if possible, instead of phoned
in. If you thin~, you've spotted a bug, though, please call, as I like to find out
about bugs as soon as possible.

10. I gratefully thanl<. the following individuals for their invaluable feedback and
support during the debugging phase of this compiler's development:

Lauren Weinstein
Leo Kenen
Rick Clemenzi
Tom Bell
Jon Sieber
Scott Layson
Tony Gold
Ed Ziemba
Scott Guthery
Earl T. CohE!O
Sam Lipson
Dan Maclean

. Sid MaxweU1

Bob Mathias
Bob Radcliffe
The Real Cat
AI Mok
Phillip Apley
Charles F. Douds
Rob~rt Ward
les Hancock
Ted Nelson
Ward Christensen
Jerry Pournelle

1. Extra thanx to Sid for, among other things, running off all my hard copy when I
COUldn't afford a working printer.

·74·

(

(

(

BDS C User's Guide

Mike Bentley
Carlos Christensen
Perry Hutchinson
Paul Gans
John Nail
Mark Miller

Will Colley
Richard Greenlaw
Tim Pugh
Steve Ward
Tom··Gibson
Roger Gregory
Don Lucas

Notes to APPENDIX A

Jason Linhart
Calvin Teague
Bob Shapiro

Rev. Stephen L. de Plater
Nigel Harrison

Cal Thixton

Special thanks to Dennis M. Ritchie, Ken Thompson and the entire staff of
the Computing Science Research Center at Bell Laboratories for developing
UNIX and the original C. Good work.

11) The 8DS C User's Group has been organized; For intormation on how to get
inexpensive updates of the compiler, n~ceive a User's Group newsIE~tter, or
get access to contributed programs, contact:

8DS C User's Group
Robert Ward, Coordinator
Dedicated Micro Systems, Inc.
409 E. Kansas
Yates Cente!r, Kansas 66783
(316) 625·3!554

Due to the large volume of assembly sources included with the 1.4 package,
many of the sample C pro~)rams included \vith prior versions have- been'
squeezed out of the distribution packag'3. The 8DS CUser's Group will have
a.1I these programs, as should the CP/M User's Group eventually. I recom·
mend that one of these groups be contacted and the sample prograrns ob­
tained, especially if you are .a novice C programmer; the language tends to
be painful to pick up without lots of examples.

·75-

The CASM.C Assembly-Ianguage-to-CRL-Format Preprocessor
For BDS C vl.46

March 3, 1982

Leor Zolman
BD Software

33 Lothrop st.
Brighton, Massachussetts 02135

he files making up the CASM package are as follows:

ASM.C
:ASM. SUB
ASM.OOC

.1 so needed:

Source file for CASM program
Submit file for performing entire conversion of CSM file to CRL
This file

.SM. 00 M (or MAC. OJM)
IDT. OJM (or SID. OJM)

lescription:

The only means previously provided to BDS C users for creating rclocatable object
lodules (CRL files) from assembly language programs was a painfully complex macro
.ackage (CMAC.LIB) that only operated in conjunction with Digital Research's macro
,ssembler (MAC.OJM). rhis was especially bad because MAC, if not already owned, cost
lmost as much as BDS C to purchase. This docuinent describes the program "CASM",
:upplied to eliminate the need for "MAC". CASM is a preprocessor that takes, as input,
,n assembly language source file of type ".CSMtI (mnemonic for C aSseMbly language) in

format much closer to "vanilla" assembly language than the bizarre craziness of
:MAC.LIB, and writes out an ".ASM" file which may then be assembled by the standard,
,biquitous CP/M assembler (ASM.GOM). CASM automatically recognizes which assembly
anguage instructions require relocation parameters and inserts the appropriate
.seudo-operations and extra opcodes into the resulting" • ASM" file so that the file
.roperly assembles directly in to_ CRL format. In addition, some rudimentary logic
hecks are performed: doubly-defined and/or undefined labels are detected and
'eported, and similarly-named labels in different functions are ALLOWED and converted
nto unique names so ASM won't complain.

The pseudo-qperations that CASM recognizes as special control commands within a
CSM file are as follows:

'UNCTIO N <name>

ms CASM Utility, 3/82

Each function must begin with "function" pseudo-op, where
<name> is the name that will be used for the function in the
.CRL file directory. No other information should appear on
this line. Note that there is no need to specify a directory
of included functions at the start of a .CSM file, as was the
case with the old CMAC.LIB method of CRL file generation.

1

EXTERNAL <list>

ENDFUNC
(or) ENDFUNCTION

[NCLUDE <filename>
(or) INCLUDE "filename"

~he format for a ".CSM"

INCLUDE

FUNCTION
EXTERNAL

If a function calls other C or assembly-coded functions, an
"external" pseudo-op naming these other functions must follow
immediately after the "function" Ope One or more names may (,
appear in the list, and the list may be spread over as many
"external" lines as necessary. Note that for the current
version of BDS C, only function names may appear in
"external" lines; data names (e.g. for external variables
defined in C programs) cannot be placed in "external"
statements.

This op (both forms are equivalent) must appear after the end
of the code for a particular function. The name of the
function need not be given as an operand. The three
pseudo-ops just listed are the ONLY pseudo-ops that need to
appear among the assembly language instructions of a ".CSM"
file, and at no time do the assembly instruction themselves
need to be al tered for reloca tion, as was the case wi th
CMAC.LIB.

This op causes the named file to be inserted at the current
line of the output file. If the filename is eaclosed in angle
brackets (i.e., <filename» then a default CP/M logical drive
is presumed to contain the named file (the specific default
for your system may be custimzed by changing the appropriate
define in CASM.C). If the- name is enclosed in quotes, than

the current drive is searched. Note that you'll usually want
to include the file BDS.LIB at the start of your .CSM file,
so that names of routines in the run-time package are
recognized by CASM and not interpreted as undefined local
forward references, which would cause CASM to generate
relocation parameters for those instructions having run-time
package routine names as operands. Note that the pseudo-op
MACLIB is equivalent to INCLUDE and may be used instead.

file is as' follows:

bds.lib

functionl
needed funcl [,needed_ func2] [, ...]

(

code for functionl
ENDFUNC

FUNCTION function2
EXTERNAL needed funcl [, needed_func2] [, ...]
code for function2
ENDFUNC

(
2

,os CASM Utility, 3/82

~dditional notes and bugs:

D. If a label app(~ars on an instruction, it MUST begin in column one of the line. If a
label does not begin in column one, CASM will not recognize it as a label and
relocation will not be handled correctly.

1. Forward references to EQUated symbols in executable instructions are not allowed,
although forward references to relocatable symbols are OK. The reason for this is
that CASM is a one-pass preprocessor, and any time a previously unknown symbol is
encountered in an instruction, CASM assumes that symbol is relocatable and
generates a relocation parameter for the instruction.

2. INCLUDE and MACLIB only work for one level of inclusion.

3. When a relocatable value needs to be specified in a "DW" op, then it must be the
ONLY value given in that particular DW statement, or else relocation will not be
properly handled.

4. Characters used in symbol names should be restricted to alphanumeric characters;
the dollar sign ($) is also allowed, but might lead to a conflict with labels
generated by CASM.

5. The .HEX file produced by ASM after assembling the output of CASM cannot be
converted into a binary file by using the LOAD.OOM command; instead, DDT or SID
must be used to read the file into memory, and then the CP/M "SAVE" command must be
issued to save the file as a .CRL file. CASM inserts a line into the ASM file
ending in the character sequence "!.", specifically so that the line will be
flagged as an error. The user may then look at the value printed out at the left
margin to see exactly how many 256-byte blocks need to be saved; this is the value
to be used with the "SAVE" command.

The reason that "LOAD" cannot be used is that CASM puts out the code to generate
the CRL File directory at the END of the ASM file, using ORG to set the location
counter back to the base of the TPA, and the "LOAD" command aborts with the' cryptic
message "INVERTED LOAD ADDRESS" when out-of-sequence data like that is encountered.
Rather than require CASM to write out the directory into a new file and append the
entire previous output onto the end of the directory, I require the user to have to
enter a SAVE command. What the heck; you'd have to rename the file anyway if it
were LOADed, right?

6. The CASM.SUB submit file may be used to perform the entire procedure of converting
a • CSM file. to a .CRL file. For a file named "FOO. CSM", just say:

submi t casm foo

and enter the "SAVE" command just the way says when all is done.

3

BDS CASM Utility, 3/82

BDS C Standard Library Summary
vl.46 Edition Narch, 1982

Leor Zolman
BD Software

33 Lothrop st.
Brighton, Massachussetts 0213S

This document contains an alphabetic summary of ALL general-purpose utiliy
functions included in the BDS C package spread among several different source files.
Note that there are quite a few more functions listed here than than apppear in the
BDS C User's Guide; some functions were intentionally omitted from the User's Guide
for portability reasons, and many others have come into existence since the last
revision of the User's Guide.

The summary is organized by columns.

The first column shows the type of the result returned by the function. The second
column shows the calling syntax and parameter types (if not int).

The next column shows a code naming the source file in which the function may be
found; the codes are as follows:

Cl for STDLIBI.C
C2 for STDLIB2.C
D2 for DEFF2.CSM
D2A for DEFF2A.CSM
FLT for FLOAT .C
DIO for DIO.C

The next column tells the page number in the BDS C User's Guide where the function
is documented, if the function appears in the User's Guide at all. For any funGtion
that isn't documented in the User's Guide., there is probably doctlmentation available
in the source listing for that function (the source location is given in the
preceding column.)

The final column contains refer·ences to a set of footnotes following the func tion
list. If a function has an entry in the NOTE column, the corresponding footnote (or
notes) should be examined for additional information about the function.

TYPE FUNCTION FILE PAGE NOTES

int abs(a,b) int a,b; CI 32
char * alloc(nbytes) unSigned nbytes; CI 37 14
char * atof(opI,s) char opI[S], *s; FLT I
int atoi(str) char *str; Cl 44
int bdos(c,de) D2 30 2
char bios(n,c) D2 30
int call(addr,a,h,b,d) unsigned addr; D2 32
char calla(addr,a,h,b,d) unsigned addr; D2 32
int close(fd) D2 46

clrplot() D2A 54
char * codend() D2 36
int creat(filename) char * filename; D2 46
char csw() D2 30

BDS C Library Summary, vl.46 1

char *
int
int
in t

char *

char *
int
int
int
int
int
char *
int
char *
char *
int
char *
int

int
char *
int
int
int
char *
int
int
int

char
int
int
int
int
int
char *
char *
int

int
int
int

int
int

char

char

int

dioflush()
dioinit(~3rgc,argv) int *argc; char **argv;
endext()
exec(filename) char *filename;
execl(filename,argl, arg2, ••• , NULL) char *filename;
execv(filename,argvector) char *filename, **argvectorj
exit(n)
externs()
fabort(fd)
fcbaddr(fd)
fclose(iobuf) FILE *iobuf;
fcreat(filename, iobuf) char *filename; FILE *iobuf;
fflush(iobuf) FILE *iobuf;
fgets(str,iobuf) char *str; FILE *iobuf;
fopen(filename,iobuf) char *filename; FILE *iobuf;
fpadd(res,opl,op2) char res[5], opl[5], op2[5);
fpcomp(opl, op2) char opl[5], op2[5);
fpdiv(res,opl,op2) char res[5],opl[5],op2[5];
fpmult(res,opl,op2) char res[5],opl[5],op2[5];
fprintf(format, argl, arg2, •••) char *format;
fpsub(res,opl,op2) char res[5],op1[5],op2[S];
fputs(str,iobuf) char *str; FILE *iobuf;
free(allocptr) unsigned allocptr;
fscanf(iob,fmt,&arg1,&arg2, •••) FILE *iob; char *fmt;
ftoa(sl,op1) char *sl; char op1[5];
getc(iobuf) FILE *iobuf;
getchar()
getline(str,maxlen) char *str;
gets(str) char *str;
getval(strptr) char **strptr;
g~tw(iobuf) FILE *iobuf;
index(str,substr) char *str, *substr;
initb(array,string) char array[], *string;
initw(array,string) int array[]; char *string;
inp(port)
isalpha(c) char c;
isdigit(c) char C;
islower(c) char c;
isspace(c) char C;
isupper(c) char c;
ito a (s t r, n) c ha r * s t r ; .
itof(op1, nJ char opl[5];
kbhit()
line(c,xl,y1,x2,y2) char c;
longjmp(jbuf) char jbuf[JBUFSIZE];
max(nl, n2)
min(nl,n2)
movmem(source,dest,count) char *source, *dest;
nrand(n [,prompt] or [,n1,n2,n3]) char * prompt;
open(filename,mode) char *filename; int mode;
outp(port,val) char port, val;
pause()
peek(port) char port;
plot(x,y,c) char c;
poke(addr, val) unsigned addr; char val;
printf(format, arg1, arg2, •••) char *format;
putc(c,iobuf) char c; FILE *iobuf;
putch(c) char c;
putchar(c) char c;
puts(str) char *str;
putw(w,iobuf) int w; FILE *iobuf;

BDS C Library Summary, vl.46 2

DID
DID
D2 36
D2 34
D2 35
D2 35
D2 30
D2 36
D2 47
D2 53
Cl 51
Cl 50
Cl 51
C2 52
Cl 48
FLT
FLT
FLT
FLT
C2 51
FLT
C2 53
Cl 37
C2 52
FLT
Cl 49
D2 38
D2A
D2 40
Cl 45
Cl 50
D2A
C1 44
C1 44
D2 31
Cl 41
Cl 42
Cl 42
C1 42
C1 41
FLT
FLT
D2 39
D2A 54
D2A
C1 32
Cl ·32
D2 34
D2 33
D2 46
D2 31
D2 31
D2 31
D2A 541

D2 31'
C2 40
CI 50
D2 39
D2 39
C2 40
CI 51

3
3
3, 16

17

7
6, 11

4,9
1
6, 12
14
4,10

8
20
18
5

18

1

20

(

(.

(

qsort(base,nel,width,cmp) char *base; int (*cmp)();
rand()

igned rcfsiz(fd)
read(fd, buffer, nsecs) char *buffer;
rename(oldname, newname) char *oldname, *newname;
rread(fd, buffer, nsecs) 'char *buffer;
rseek(fd, offset, origin)
rsrec(fd)
rsvstk(n)
rtell(fd)
rwrite(fd, buffer, nsecs) char *buffer;

lr * sbrk(nbytes)
scanf(format, &argl, &arg2, •••) char *format;
seek(fd, offset, origin)
setfcb(fcbaddr, filename) char *filename;

t setjmp(jbuf) char jbuf[JBUFSIZE];
setmem(addr, count, byte) char *addr; char byte;
setplot(base,xsize,ysize)
sleep(ntenths)
sprintf(str,format,argl,arg2, •••) char *str, *format;
srand(n)
srandl(str) char *str;

t sscanf(str,format,&argl,&arg2, •••) char *str, *format;
strcat(sl, s2) char *sl, *s2;

t strcmp(sl, s2) char *sl, *s2;
strcpy(sl, s2) char *sl, *s2;

~t strlen(str) char *str;
swapin(filename,addr) char *filename; unsigned addr;

It tell(fd)
tar tolower(c) char c;
tar * to po fmem()
lar toupper(c) char c;

txtplot(string,x,y,ropt) char *string;
ungetc(c,iobuf) char c; FILE *iobuf;
ungetch(c) char c;
unlink(filename) char *filename;

It write(fd, buffer, nsects} char *buffer;

)TES:

C1 34
D2 33
D2A
D2 47
D2 46
D2A
D2A
D2A
D2 38
D2A
D2A
D2 37
C2 42
02
D2 53
02A
02 33
D2A 53
02 31
C2 42
02 32
02 32
C2 42
Cl 43
Cl 43
Cl 43
Cl 44
C2 36
02 48
Cl 42.
02 36
Cl 42
02A 54
Cl 50
D2 39
D2 46
02 47

15
15
15

15
15

4,10

4,9

10

19

This floating point function returns a pointer to a 5-byte floating point
object, represented in a character array of length 5.

The "bdos" function returns HL equal to the value left there by the BOOS
itself. Under standard CP/M, 8-bit values are returned in L with H cleared, and
16-bit values are returned in HL. Other "CP/M-like" systems do not always
follow this convention, though, and the "bdos" function may take rewriting in
order to work wi th certain system calls under systems such as "soo S".

I. Unless an error occurs, this function should never return at all.

•• Note that all the upper-level formatted I/O functions ("printf", "fprintf",
"scanf", and "fscanf") now use I, spr" and" scn" for doing conversions. While
this leads to very modularized so~rce code, it also means that calls to "scanf"
and "fscanf" must process ALL the information on a line of text if the
information is not to be lost; if the format string runs out and there is still
text left in the line being processed, the text will be lost (i.e., the NEXT
scanf or fscanf call will NOT find it.)

BDS C Library Summary, vl.46 3

An alternate version of "spr" (the low-level output formatting function) is
given in the file FLDAT.C for use "with floating point numbers; see FLDAT.C·for
details. Since" spr" is used by "printf", this really amounts to an alternate
version of "printf."

Also note that temporary work space is declared within each of the high-level
functions as a one-dimensional character array. The length limit on this array
is presently set to 132 by the define MAXLINE statement in BDSCIO.H; if you
intend to create longer lines through printf, fprintf, scanf, or fscanf calls,
be SURE to raise this limit by changing the define statement.

Note that the "gets" function (which simply buffers up a line of console input
at a given buffer location) terminates the linE! with a null byte ('\0') WITHOUT
any CR or LF.

The conventional CP/M text format calls for each line in a file to be
terminated by a carriage-return/linefeed combination. In the world of C
programming, though, we like to just use a single linefeed (known as a
"newline") to .:erminate lines. AND SO, the functions which deal with reading
and writing text lines from disk files to memory and vice-versa (lIfgets",
"fputs") take special pains to convert CR-LF combinations into single ' \n'
characters when reading from disk ("fgets"), and convert '\n' characters to
CR-LF combinations when writing TO disk ("fputs"). This allows the C programmer
to do things in style, dealing only with a single line terminator while the
text is in memory, while maintaining compat- ibility with the CP/M text format
for disk files (so that, for example, a text file can be "type"d under the
CCP.)

Remember to put out a CPMEOF (control-Z or Oxla) byte at the end of TEXT files
being written out to disk.

Watch out when reading in text files using "getc". While a text file is USUALLY
terminated with a control-Z, it MAY NOT BE"if the file ends on an even sector
boundary (although respectable editors will now usually make sure the control-Z
is always there.) This means that there are two possible return values from
"getc" which can signal an End-of file: CPMEOF (Oxla) or ERROR (-1, or 255 if
you assign it to a char variable) should the CPMEOF be missing.

Since the "_spr" function is used to form the output string, and then "puts" is
used to actually print it out, care must be taken to avoid generating null
(zero) bytes in the output, since. such a byte will terminate printing of the
string by puts. Thus, a statment such as:

printf("%c foo",' \0');

would not actually print anything at all.

I. The "%s" termination character has been changed from "any wh:tte space" to the
character following the "%s" specification in the format string. That is, the
call

sscanf(string, "%s:", &str);

would ignore leading white space (as is the case with all format conversions),
and then read in ALL subsequent text (including newlines) into the buffer "str"
until a COLON or null byte is encountered.

fgets is a little tricky due to the CP/M convention of having a carriage-return
"AND a line feed character at the end of every text line. In order to make text
easier to deal with from C programs, this function (fgets) automatically strips
off the CR from any CR-LF combinations that come in from the file. Any CR

IS C Library Summary, vl.46 4

(

(

(

characters not immediately followed by a LF are left intact. The LF is included
as part of the string, and is foll'owed by a null byte. There is no limit to
how long a line can be here; care should be taken to make sure the string
pointer passed to fgets points to an area large enough to accept the largest
expected line length (a line must be terminated by a newline (LF) character
before it is considered terminated).

The value NULL, NOT EOF, is returned on end-of-file, whether it be a physical
end-of-file (attempting to read past last sector of the file) OR a logical
end-of-file (encountered a control-Z.)

l2. The "fputs" function writes a string out to a buffered output file. The' \n'
character is expanded into a CR-LF combination, in keeping with the CP/M
convention. If a null ('\O') byte is encountered before a newline is
encountered, then there will be NO automatic termination character appended to
the line, thus allowing partial lines to be written.

l3. When managing overlays, the "swapin" function may be used by the root segment
to swap in overlay code segments from disk. The provided version does NOT
check to make sure that the code yanked in doesn't overlap some data areas that
may lie above the swapping area in memory.

l4. The storage allocation routines were taken from chapter 8 of K&R, but
simplified to ignore the storage allignment problem and not bother with the
"morecore" hack (a call to "sbrk" under CP/M is a rela tively CHEAP opera tiol),
and can be done on every call to "alloc" without degrading efficiency.) Note
that compilation of "alloc" and "free" is disabled until the II define ALLOC ON
1" statement is un-commented in the header file ("BDSCIO .H"). This is done so
that the external storage required by alloc and free isn't declared unless the
user actually needs the alloc and free functions.

l5. The random-record file I/O functions are a direct interface to the
random-record BDOS functions provided by CP/M versions 2.0 and above, but not
available for pre-Z.O CP/M systems. BecQuse of the non-portability of these
functions, they have not been heavily advertised in the BDS C User's Guide
(i.e., they are not mentioned at all). The "rread", "rwrite", "rseek" and
"rtell" func tions work just like the func tions "read" , "wri ten, "seek'" and
"tell", respectively, except that they do things via the random-record fields
of the file's FCB. The "rsrec" and "rcfsiz" function simply take a file
descriptor of an open file and perform their namesake BDOS operation on the
given file, but in addition t,hey·also return the value computed. Thus, "rcfsiz"
may be used to quickly compute the size of a file under CP/M 2.x.

,6. The "execv" function no longer prints out "Broken Pipe" upon error; instead,
it has the more conventional behavior of returning -1 (ERROR) and letting the
user perf·')rm diagnostics.

,7. "fabort" should not be used under systems like MPM-II in which all files MUST
be closed, whether they are open for input or output, in order not to run out
of file descriptors and hang the system.

,8. New for vl.46 (see the vl.46 documentation addenda sheet for details.)

9. Modified for vl.46 to detect when "NOlDOT" has been invoked on the currently
executing program, and return an adjusted value for the end of available
user-memory.

:0. When the DIO package is linked in to a program, alternate versions of "getchar"
and "putchar", whose sources are in DIO .C, get used.

IDS C Library Summary, vl.46 5

BDS C User's Guide Addenda
vl.46 Edition March, 1982

Leor Zolman
BD Software

33 Lothrop st.
Brighton, Massachussetts 02135

There have been several new sets of fea tures added to BDS C vl.46. The new
!atures fall into three catagories: preprocessor enhancement, CP/M-specific compiler
!rformance enhancement by selective overwriting of the CCP (Console Command
rocessor), and new utility programs (including CASM.C, which provides for the
reation of CRL-format object files out of assembly language source files WITHOUT the
~ed for MAC.roM anj the old CMAC.LIB macro package).

he preprocessor enhancements are as follows:

Parameterized #defines are now supported. This allows a macro in the form of a
function call to be expanded (before compilation) into an arbitrary string, with
the original parameters substituted into the string. For example, the sequence

#define foo(x,y) x * 3 + y

z = foo(bar,zot();

results in the final line actually reading:

z = bar * 3 + zot();

).5 One feature of "lfdefine" substitution has been slightly changed: when a
symbolic constant appears in the definition of ANOTHER symbolic constant, then
the substitution of the first constant does not take place until the
substitution of the second does. This means that in a sequence such as

#define FOO 1
#define BAR FOO+l

the string that gets substituted for "BAR" depends upon the current definition
of "FOO"; if "FOO" got re-#defined at some point, "BAR" would change
accordingly. Given the above example, in past versions of BDS C "BAR" became
"1+1" at it~ definition point and would not have changed even if "FOO" were
re-Ifdefined, unless "BAR" was also re-Ildefined after "FOO".

1. The

/lif <expr>

conditional compilation directive is now supported, but only with a special

1
BDS C vl.46 Doc. Update, 3/82

limi ted syn tax for the expression argument, defined as follows:

<expr> .- <expr2> or
<expr2> && <expr> or
<expr2> II <expr>

<expr2> := <constant> or
!<expr2> or
«expr»

The <constant> ,may be a symbolic constant, but is treated as a logical value
always ••• i.e, 0 is false and any non-zero value is true (1). This allows users
to write system-dependent conditional expressions without having to resort to
#ifdef/#ifndef and commenting/un-commenting #define statements to yield the
desired conditions.

Nesting of conditional compilation directives is now allowed, and incorrect
nesting attempts will now draw an appropriate error instead of doing random
things to the source text. Note that each and every #else directive MUST be
followed by a matching #endif (unlike C's control structure syntax, in which an
if ••• else chain may be extended as long as desired.)

:***************************

~he following enhancements to the vi.46 compiler and linker affec t the USAGE of the
:ompiler, not the C language syntax it accepts:

[n the past, the compiler and linker have performed a CP/M warm-boot after every
~ompilation had either be~n completed or aborted due to an error. For vl.46, a
~arm-boot will only take place when the memory occupied by the Console Command
?rocessor (CCP) is ~ctually needed for the task. Since there is usually plenty of
nemory left over after a compilation or linkage, I decided to eliminate the pain of
~aving to wait for the system to re-boot after each and every usage of the compiler
)r linker.

)n certain "fake" CP/M systems (I believe the CROMIX CP/M emulator is one such case),
the non-warm-booting return to the C~P does not work correctly, probably because the
system does not pass a valid stack pointer to transient commands. The symptom is
crazy behavior after CC1, CC2 or CLINK complete execution; the output files will have
been written OK, but attempting to return to the system via the passed SP bombs the
system. To corre~t this problem, it is necessary to make a patch to each of the three
command files forcing them to re-boot when finished. The patches are as follows:

file

CC1.COM
CC2. COM
CLINK. COM

address

03AD
0239
OF39

old data

2A C6 03
2A OA 01
2A 73 13

new data

C3 00 00
C3 00 00
C3 00 00

(

One feature of BDS C in the past has been that it automatically aborted any pending
"SUBMIT" file after compilation when an error had been detected during the
compilation. This had required the compiler to seek to the direc tory track on disk (' __
and erase n$$$. SUB" before re-booting, but the extra time thus spent was negligable_

2
BDS C vl.46 Doc. Update, 3/82

since a seek to the low tracks was coming up soon anyway in order to do the
warm-boot. Now, since a warm-boot isn't standard anymore, and the compiler is often
used without being in a "submit" file, the compiler no longer AU1UMATICALLY aborts
"submit" files following an error. The feature IS availalable, though, through the
new "-x" option to CCl. If "-x" is given on the CCl command line, then "submit" files
will be aborted following an error. Any time CCI is used in a "submit" file, "-x"
should appear on the command line in the "submit" file. If CCI is used stand-alone,
then "-x" should not be used (it would just cause some needless disk activity upon
error.) MAKE A IDTE OF THE "-X" OPTION UNDER THE CCI OPTIONS SECTIONS OF THE BDS C
USER'S GUIDE. Since CLINK is not aborted very often, it has not been given a "-x"
option and (as in previous versions) will al ways abort pending "submi ttl files when
prematurely terminated.

Note that both the compiler and linker now send a bell character (control-G) to the
user console after completing a task in which one or more errors have occurred. This
is to alert the user in the case of a premature completion and return to comr.land
level (as when a fatal error is detected by the compiler), since audible warm-boots
no longer serve to notify the user of compiler termination.

On some interrupt-driven systems, type-ahead during operation of CCl, CC2 or CLINK
does not work because each of these commands look at the console input to see if a
control-C has been typed, in order to determine if the user wants to abort the
comand. If any character other than a control-C is detected, that ~haracter is thrown
away because there is not way to push it back under CP/M. If you wish to disable the
control-C-polling feature of the BDS C commands, so that the console input is never
sampled and type-ahead works correctly, make the following patches to the commands:

file address old data new data
------- -------- --------

CC I.COM 0995 E5 C9
eC2.00M 04A6 E5 C9
CLINK.OOM 061C F5 C9

Note that after these patches are made, typing control-C will only abort a
or CLINK invokation if prov1s10n is made in your interrupt-driven
general-purpose program interruptio~ by control-C.

CCl, CC2
BIO S for

The major . new utility program included with vl.46 is CASM.C, an
assembly-language-to-CRL conversion preprocessor. CASM takes a specially-formatted
assembly lanaguage source file having extension ".CSM" as input, and puts out an
".ASM" file which may then b"e assembled using the standard CP/M assembler (ASM.OOM),
to eventually produce a CRL-format object file. Note that sources to the
assembly-language portion of the BDS C library are now provided as ".CSM" files
instead of ".ASM" files, and a "submit" file named "CASM.SUB" has been provided to
automate the entire process of "CSM"-to-"CRL" conversion. A separate document
detailing the operation of CASM is included with the BDS C vl.46 package.

A new wild-card expansion utility, named WILDEXP.C, .allows ambiguous file names to be
specified on the command line to C-generated programs; then by a simple function
call, the ambiguous references are expanded to include all filenames on the current
disk that match the specification. Exceptions may also be specified.

3
BDS C vl.46 Doc. Update, 3/82

A new utility named NOIDOT.C is also included: when OOIDOT.Q)M is invoked upon a Q)M
file produced by the C compiler, it will make some magic changes so that the COM file
no longer performs a warm-boot after completing execution. The changes involve
forcing the run-time stack to begin BElOW the CCP, and having the program save the
system stack pointer passed to it by CP/M so that the SP may be restored after
execution and control can pass directly back to the CCP. NOIDOT should be used ONLY
wi th programs linked using the standard, supplied form of the run-time package
(C.CCC). Note that the "topofmem" library function has been modified to recognize
when NOBOOT is in effect at run-time, and should return the correct value for the end
of available user memory in all cases.

The following bugs have been detected and corrected for BDS C vl.46:

1. CCI had crashed when an "I/include" file was not terminated with a
carriage-return/linefeed sequence.

2. CLINK no longer complains about not being able to find "DEFF3.CRL" when there
are undefined function references in a linkage; if DEFF3.CRL does exist, it will
be searched, but if it does not exist, that fact will no longer draw an error.

(

3. Literal strings having continuation lines might have confused the CCI
preprocessor in some versions, to the effect that a "I/defined" symbol name that
happened to match a character sequence within the continuation line of the
string was incorrectly substituted for by the preprocessor, and such' a symbol (
appearing AFTER the end of the string was NOT 'substituted for.

4. In the DIO package, the variable "c" in the "getchar" function was incorrectly
declared as a "char" instead of an "int"; this caused a physical EOF to be
returned as the value 255 instead of -1. Note that this problem only appeared
when the text file was not terminated by a CPMEOF (control-Z) character.

5. Another DIO-related -bug: when text containing both carriage-returns and
linefeeds was fed to the DIO "putchar" function, an extra 1inefeed character was
appended to each line and resulted in an extra blank line between each actual
line of the output file. This has been fixed by building some state information
into the DIO version of "putchar" so that the redundant linefeeds are not
generated.

6. CLINK now warns the user when the address of the end of the external data area
falls above the effective "top of memory" address (and thus not leaving any room
for the run-time stack) to prevent hair-pulling confusion if such a condition is
not noticed by the user. If you are generating special-purpose code in which
you purposely tell the linker that the top of memory is below the external area,
then just ignore the error message.

7. The "exec1" function had two bugs which have been corrected: it had bombed if an
attempt was made to pass more than six parameters, and it had not detected when
the total size of supplied parameters exceeded the amount of s_pace available for
that text during the chaining operation (about 83 characters). Now any number of
parameters are handled correctly, and a text overflow will cause "execl" to
print a special message to that effect and also return a value of ERROR (-1) to

4
BDS C vl.46 Doc. Update, 3/82

(

the calling routine.

8. The "gets" library function has been modified to use the stack during its BOOS
call to get a line of text, and then copy the result into the supplied buffer
area. This means that the buffer area passed to "gets" need no longer be 2 bytes
longer than the longest expected string; but, "gets" still does not know how
long the buffer you give it really is and you must make sure to supply a large
enough buffer (when "gets" calls BOOS function 10, it supplies the BOOS with a
135-byte buffer on the stack, and as much of this as is filled up is copied to
the user-supplied buffer upon return from the BOOS call).

A new alternative to "gets" has been supplied, called "getline", which works
just like the "getline" function shown in Kernighan & Ritchie. The format is:

int getline(strbuf,maxlen)
char * st rb\1f;
int maxlen;

"Getline" collects a line of text from the user, where the maximum allowed
length of the line is "maxlen" characters (where "maxlen" is supplied as a
parameter). The return value is the length of the entered line. Since "getline"
also uses BDOS function 10 to collect the line, a call such as
"getline(str,135);" would work the same as "gets(str);". Use "getline" either to
limit the line length to some small number, or to allow longer lines (up to 255
characters) than the maximum of 135 that "gets" allows.

Note that both "gets" and "getline" will return immediatly if the number of
charac ters typed r~aches the maximum allowed (135 for "gets" or 'maxlen' for
"getline"), even if no newline (carriage-retur-n in this case) is typed by the
user. This is due to the behavior of the BOOS·, and there aint' nuthin to be done
about it short of writing an entire "gets" from scratch in terms of low-level
character I/O, and that just isn't worth the trouble.

5
BDS C vl.46 Doc. Update, 3/82

RDS C User's Guide Addenda
v1.45 Edition -- December, 1981

Leor Zolman
BD Software

33 Lothrop st.
Br ighton, l1assac.hus s et ts 02135

are the bug fixes and extensions for BDS eversion 1.45.

~: If you are running under HP/M II, be sure to see item 10 below!

Expressions of the form

! (exp r I I exp r)
or !(expr && expr)

may not have worked correctly when a VALUE was required for the expression; i.e., when
used in some way other than in a flow control test. For example,

x= !(a 11 b);

might have failed, but

if (!(a I I b» return 7;

would have worked, since the expression was llsed for flow control.

Declarations of pointer-to-function variables for functions returning a CHARACTER
value caused only one byte of storage to be reserved for the pointer, instead of two
bytes (all pointers-to-functions require two bytes of storage, by virtue of being
pointers). For example, in the seqyence:

char cI, (*ptrfn)(), c2;

ptrfn = &getc;

the assignment to 'ptrfn' would have incorrectly overwritten the 'c2' character
variable, since only one by.te would have been reserved on the stack for the 'ptrfn'
variable while the assignment operation would have assumed there were two bytes
reserved.

A bug in the ternary operator evaluator (1: expressions) caused the high-order byte of
a 16-bit result to be incorrectly zeroed in the following situation: given a ternary
expression of the form

el ? e2 : e3

1
~S C vl.4S Doc. Update, 12/81

lere 'e2' evaluated to a 16-bit value (int, unsigned or pointer) and 'e3' eva1uated('
) a character value (type char only), the entire expression was treated as having
fpe char ••• so if 'el' was true and 'e2' was bigger than 255, then the value of the
~pression ended up as only the low-order byte of the ~alue of 'e2'. For version 1.45,
lenever 'e2' and 'e3' do not BOTH evaluate to character values the type of the
~era11 expression is guaranteed not to be char.

sequence of two 'I' (logical 'not') operators in a row did not always produce the
~rrect result in an expression. For example,

x = ! !n; /* convert n to a logical (0 or 1) value */

ight have produced the wrong result (0 instead of 1, or vice-versa).

stack-handling bug in CC2 caused problems at run time when a sufficiently complex
~b-expression appeared in any but the final position of an expression involving the
~mma operator (", "). For example, the following statement would not have worked
arrectly:

for (i 0; i < 10; x += y, i++) •••

Cl has not been recogn1z1ng illegal octal character constants as such; digits such
s '8' and '9' within an octal constant will now draw an error in cases where they (
auld have been ignored before. Also, certain other forms of illegal constants (aside
rom character constants) are now better diagnosed than before.

found one more case where an internal table overflow during code generation was not
etected, causing the final command file to bomb as soon as it was executed (either by
rashing the machine or immediately re-booting.) This occurred when a single large
unction containing many string constants was compiled. All fixed now.

n extension to the linker: CLINK now recognizes "DEFF3.CRL" as an automatic library
ile, similar to DEFF.CRL and DEFF2.CRL. Note that there is NO DEFF3.CRL file included
ith the BDS C package; this feature has been added to allow you to fit more custom
unctions into your library than just what fits in DEFF.CRL and DEFF2.CRL (which are
etting rather full.)

Iso, CLINK will now search ALL default library files (DEFF.CRL, DEFF2.CRL and
EFF3.CRL [if it exists]) when a carriage-return is typed in interactive mode.
re~iously, only the file DEFF.CRL was searched in response to carriage-return.

t has been brought to my attention that the "'Q-CR sequence required by CLINK in
nteractive mode (to abort the linkage in progress) cannot be typed in under MP/M
ys terns, since "'Q is used to detach a process. If you are running MP /M, then jus t type
ontrol-C instead of "'Q-CR; this will also work for CP/M systems ••• the only difference
s that whllen b"'Q-CR

d
biSCLusINKed'bthfen any cur:ently actived"slubmi1t file" procesising i(sI (.

utomatica y a orte y e ore return1ng to cornman eve, as a conven ence
ssume that if you abort the linkage, you don't want to continue with your submit

2
vl.45 Doc. Update, 12/81

file •••). Under MP/~, you'll have to type characters quickly at the keyboard (after
AC-ing CLINK) to abort any pending submit file activity.

A slight bug in CLIB.COM (The C Library manager program) made it hard to exit CLIB
from within a c;ubmit file (assuming XSUB is in use). The problem was that CLlB
requires a confirmation character, 'y', to be typed after the 'quit' command is gi.ven.
CLIB was getting the confirmation character by doing a single direct BDOS console
input c~ll, which required the user to manually type in the letter before any pending
submit file processing could continue. This has been fixed by having CLIB get an
entire line of input (using BDOS call 10) when seeking a confirmation; now the 'y'
may be inserted into submit files. Note that the 'quit' command and the 'y'
~onfirmation must be placed on separate consecutive lines in the submit file. If not
using a submit file, the only difference is that now a carriage-return is required·
after typing the 'y'.

Another minor problem with CLIB: function names longer than 8 characters were not
being truncated when entered for operations such as renaming, resulting in too-long
CRL file directory entries. All names are now properly limited to 8 characters.

J. A problem with file I/O under MP/M Version II has come up: The run-time package
routine "vclose", called by the library function "close" whenever a file needs to be
closed, has been optimizing for files open only for reading by NOT actually performing
a "close" operation through the BDOS. This worked fine under CP/M, because CP/M didn't
care whether or not a file that has had no changes made to it was ever" closed; MP/M
II, on the other hand, DOES seem to want such files to be explicitly closed ••• so by
running many programs that didn't close their Read-only files, BDS C programs
eventually caused MP/M to not allow any more files to be opened.

This problem has been fixed by adding a conditional assembly symbol, called "MPM2", to
the CCC.ASM source file. If you are running under f1P/M II, you should set the "HPM2"
equate to true (1) and reassemble CCC.ASM, yielding a new C.CCC after 10qding and
renaming (you should only need ASH.COM for this, although MAC.COM works also). The
change does NOT affect the size of C.CCC, so the libraries do not have to be
reassembled as is usually the case when the run.-time package is customized. The change
simply causes a single conditional jump to be turned into three nop's, so that ALL
files are always closed, instead of only the ones open for writing. My apologies to
MP /M users who may have had confus ing troubles because of this bug.

1. A bug was found in the '_scn' library function (affecting 'scanf'): when a lone
carr iage-re turn (newl ine) was typed in res pons e to a "%s II f onna t conve rs ion, the
format conversion was totally ignored. This caused the target string to remain
unchanged from its previous contents, instead of correctly having a null string
(consisting of a single zero byte) assigned to it.

2. A bug was found in the' spr' library function (affecting 'printf', 'sprintf', and
'fprintf'): The default field width value was 1, causing a null string to be printed
as a single space when the standard "%s" format conversion was used. For example, the
statement:

p["intf("Here is a null string: \"%s\"\n","");

3
~DS C vI.45 Doc. Update, 12/81

would have produced the output:

Here is a null string: " It

ins tead of:

Here is a null string: .'"

The default field width value has been changed to 0, so null strings will now print
correctly. An explicit field width may always be given in any format conversion, of
course.

When the library function "sprintf" (formatted output directly into a memory buffer)
is used, a null bytE! is appended onto the end of the output text. I'm not absolutely
sure whether or not this is a "desired" characteristic; at least one user has
complained about it, but it turns out that "sprintf" on the large-scale Unix system I
have access to does the same thing and I can think of applications where the trailing
null is l~eful. So, the null stays in.

In several library functions, as well as at one point in the run-time package, calls
were made to BDOS function number 11 (interrogate console status) followed by an "ani
I" instruction to test bit 0 of the value returned by BDOS. I've been told that on
some systems, testing bit 0 is not sufficient since sometimes ~alues other than 0 and
1 (or 0 and 255) are returned. SO, all such sequences have been changed to "do an "ora
a" instead of an "ani I", so that a return value of exactly OOh is interpreted as "no (
character ready" and any other value is interpretec,i as "yes, there is a character
ready". The library functions that were modif ied this way are: 'kbhi t', 'putchar',
'srandl', 'nrand', 'sleep' and 'pause'. The sequence to clear console statu~ in the
run-time package (CCC.ASM), near the label "init:", has likewise been changed (but a
"nop" instruction was added to k~ep all addresses consistent with earlier versions of
the run-time package.)

When customizing the run-time package (CCC.ASM) with the "cpm" symbol equated to zero,
several symbols (named "SETNM" and "SETNM3", at the routine labeled "PATCHNM") were
undefined; this has been fixed by adding some conditional assembly directives to
insure that the labels in question are not referenced under non-"cpm" implementations,
~hile the total code size remains constant so that the addresses of later run-time
package utility subroutines stay exactly the same for all implementations.

A problem with the "bdos" library function has come up that is rather tricky, since it
is system-dependent: A program that runs correctly under a normal Digital Research
CP/M system might NOT run under MP/M or SDOS (or who knows how many other systems) if
the "bdos" function is used. A typical symptom of this problem is that upon character
output, a character on the keyboard needs to be hit once in order to make each
character of output appear.

To understand
supposed to
the C library
the low-order
order byte of

the problem, we must first understand exactly how the CPU registers are
be set after an operating system BDOS call. Normal CP/M behavior (which
function "bdos" had always assumed) is for registers A and L to contain
byte of the return value, and for registers Band H to contain the high (
a return value (which is zero if the return value is only one byte). The

4
C v1.45 Doc. Update, 12/81

CP/M interface guide explicitly states that "A -- Land B == H upon return in all
cases", and I figured that just in case CP/M 1.4 or some other system didn't put the
values in Hand L from B and A, I'd have the "bdos" function copy register A into
register L and copy register B into register H, to make SURE the value is in HL (where
the return value must always be placed by a C library function.)

Not all systems actually FOLLOW this convention. Under f1P /M, Hand L always contain
the correct value but B does not! So when B is copied into H, the wrong value results.
So, the way to make "bdos" work under both CP/M 2.2 and HP/M was to discontinue
copying B and A into Hand L, and just assume the value will always be correctly left
in HL by the system. This was done for vl.45, so at least CP/M and MP/M are taken care
of, but •••

Under SDOS (and perhaps other systems), register A is sometimes the ONLY register to
contain a meaningful return value. For example, upon return from a function 11 call
(interrogate console stat~s), the B, Hand L registers were all found to contain
garbage. So if no copying is done in this case, the return value never gets from A to
L and the result is wrong; but if B is copied into H along with A getting copied into
L, the result is still wrong because B contains garbage. Evidently the only way to
get function 11 to work right under SDOS is to have the "bdos" function copy register
A into L and ZERO OUT the H register before returning ••• but then many other system
calls which return values in H wouldn't work anymore. And that is the problem: You can
please SOME systems ALL the time, but not ALL systems all the time with only one
standard "bdos" function!

The way I left "bdos" for version 1.45 was so that it work.s with CP/M and MP/M (i.e.,
no register copying is done at all ••• HL is assumed to contain the correct value). You
might want to make a note in the User's Guide library section (page 30) to the effect
that A and B are now ignored. This, of course, won't work in all cases under SDOS and
perhaps other sys terns ••• in those cases, you need to either use the "call" and "calla"
functions to perform the BDOS call, or create your own assembly-coded version(s) of
the "bdos" function (with MAC. COM, CMAC.LIB and BDS.LIB) to perform the correct
register manipulation sequences for your system. Note that it may take more than one
such function to cover all possible return value register configurations.

The "creat" library function had been creating new files and opening them for writing
ONLY; this caused some confusion, so 'creat' has been modified to open files for both
reading AND writing following creation. PLEASE MAKE A NOTE OF THIS UNDER THE 'CREAT'
ENTRY IN THE STANDARD LIBRARY SECTION OF THE BDS C USER'S GUIDE.

The "execv" function has been changed to return ERROR (-1) on error, instead of
forcing an error message ("Broken pipe") to be printed to the standard error device.
The reason I originally had it printing "Broken Pipe" was because I was too lazy to
figure out how to fix the stack after passing all the arguments; following some
justified bitching from Scott Layson I went in there and fixed it so it does something
reasonable. PLEASE MAKE A NOTE OF THIS UNDER THE 'EXECV' ENTRY IN THE STANDARD
LIBRARY SECTION OF THE BDS C USER'S GUIDE.

The DIO (directed I/O and pipes) package contained an obscure bug: if a pipe operation
was aborted before completion, leaving a "TEMPIN.$$$" file in the directory, then the
next pipe operation performed had gotten its own output mixed up with the output of
the aborted pipe •••• the old output was used as input to the new next command, and the

5
C vl.45 Doc. Update, 12/81

new output was lost. The new DIO.C has been fixed. (Note: DIO.C has also been slightlY(~.
changed to properly interact with the new version of the "execv" library function.)

Another change has been made to the DIO package: the "getchar" function, when used
without input redirection to read characters directly from the console, had not
allowed for line editing in previous versions. I.e., each character was obtained by a
direct BDOS call and none of the special line editing characters (delete, AR, AU,
etc.) were recognized. For version 1.45, an optional line buffer me~hanism has been
added to the DIO package so lines of console input can be fetched at one time by using
the "read console buffer" BDOS call and all editing characters now function as
e~pected. Operation of the package using buffered console input is still the same as
before, except for one thing: to enter an end-of-file character (control-Z), it is now
necessary to also t~)e a carriage-return after the control-Z.

To enable console input buffering when using the DIO library, it is necessary to
un-comment a line in the DIO.R file and re-compi1e DIO.C. See the comments in DIO.C
for more information.

The special case handler for the code generator has been improved to more efficiently
handle relational binary operations where exactly one of the operands is a constant.
The operators affected are: "<", 11)11, "<=", tI)=","==" and "!=", for both signed and
unsigned data types. The improvement is mainly in the speed of execution of such
comparisons; statements such as:

if (1 < 1234) •••

execute much faster. This results in speedier execution of programs such as the Seive
of Eratosthenes benchmark in the September '81 issue of BYTE: the current version of
BDS C, using the -e and -0 compiler options with variables made external, does it in
15.2 seconds (see SIEVE.C on the distribution disk.)

Also, multiplication by a constant that is a low power of 2 (2,4,8,16) is now done by
DAD H sequences instead of calls to the run-time package multiply routine [so that
expressions such as (i * 8) and (i « 3) each compile to the same code].

Two new functions have been added to the standard library:

int setjmp(buffer)
char buffer[JBUFSIZE];

longjmp(buffer,val)
char buffer[JBUFSIZE];

When "set jump" is called, the current processor state is saved in the JBUFSIZE-byte
buffer area whose address is passed as the argument ("JBUFSIZE" is defined in
BDSCIO.H), and a value of zero is returned. Whenever a subsequent "longjump" call is
performed (from ANYWHERE in the current function or any lower-level function) with the
same buffer argument, the CPU state is restored to that which it was during the
"setjmp" call, and the program behaves as if control were just returning from the_
"setjmp" function, except that the return value this time is "val" as passed to (
"longjmp". A typical use of setjmp/longjmp is to exit up through several levels of'
function nesting without having to return through EACH level in sequence, to make sure

6
C v1.45 Doc. Update, 12/81

that a particular exit routine (e.g., the directed I/O "dioflush" function) is always
performed. It is a nifty facility that should have been available long ago. THESE
FUNCTIONS ARE NOT DOCUMENTED IN THE BDS C USER'S GUIDE; PLEASE t~ A NOTE OF THEM IN
THE STANDARD LIBRARY SECTION OF THE GUIDE.

A new linker for BDS C called "L2" (a substitute for CLINK. COM) is now available from
the BDS C User's Group. L2, written by Scott Layson (of Mark of the Unicorn) in BDS C,
has several interesting features:

1. L2 can link programs that are up to about 8K larger than CLINK: if there
isn't enough room in memory to hold the entire program while buildi.ng an
image in memory, L2 performs a djsk-buffering second pass. This means that
the resulting COM files can be as large as the entire avaLlable TPA on the
target machine.

2. The number of functions per program is no longer limited to 255.

3. While CLINK uses jump tables at the beginning of functions to resolve
references to other functions, L2 totally eliminates the jump tables and
instead generates direct external calls. This shortens programs by anywhere
from 3% to 10%, and also speeds them up a little.

4. Since L2 is written in C, you can customize it yourself.

The L2 package comes with source code, a special overlay generator program and'
documentation. It is available to BDSCUG members for the nominal cost of media and
shipping (currently $8). See the next note for infprmation on joining the BDSCUG.

The BDS C User's Group membership forms should now be included with the BDS C
package ••• this makes life easier for everyone, since it is no longer necessary to
write to the Group first just to ask for forms before being able to order library
disks. BDS C User's Group members receive the Group newsletter approximately 6 times
per year, and are entitled to compiler updates and library disks for low prices
(typically $8 per disk).

7
C vl.45 Doc. Update, 12/81

BDS C User's Guide Addenda
v1.44 Edition -- April, 1981

Leor Zolman
BD Software

33 lDthop St.
Brighton, M3.ssachussetts 02135

(617) 782-0836

Please rnte ll!{ NE.W new address and Phone number ... sane earlier versions of the new
cumentation have said that my new' city and zip code were Allston, 02134, Which is Where
'lHOt.JGHl' I was. Actually, I'm in Brighton, 02135, and any mail sent me addressed to
lston may have been returned to the serrler st~ with sane thing like ''No such address
CMn. II Sorry about thc.t.

·re are the bug fixes/extensions for version 1.44:

(Applies to vl.43a only): the character sequence \ \ appearing at the END of a quoted
string caused the preprocessor in CCl to screw' up and stop stripping CCl'TI'OOnts for the
rest of the source file. For example, the statement:

printf ("This backslash \YOuld cause big trouble: \ \ ..) ;

\YOuld have done it.

'!he "qsort II library function didn't \YOrk When the total size of the data array being
sorted exceeded 321< bytes. This has been fixed by changed the declarations of certain
variables in qsort fran .. int II to II unsigned ...

0::1, OC2, and CLINK may nOlI .be aborted in the middle of execution by typing a
contro1-<: •

A new CLINK option has been added (as if there weren't enalgh of them already •••) The
"_f" cption, \\hen specified inmediately before the name of an extra CRL file to be
searched, FORCES all functions in that CRL to be loaded into the current
1inkage--even if they haven't been previously referenced. '!his provides a simple
solution to the backwards-reference problem; a typical case When this would be used
comes ~ When you want be use a special version of a low-level function such as
"putchar. 1I If you have a carp1ete program such as:

nain()
{

}
printf ("this is a test \n II) ;

and 'VOuld like your CMN version of putchar to be loaded fran a library called, say,
SPECIAL. CRL (Which you have previously canpiled), then simply saying:

1
S C v1.44 D:>c. Update, May 1981

clink test. special <cr>

YJOuld Nar YJOrk, because the "putchar" function doesn't becone "needed II until AFTER
the library file DEFF.CRL, which contains "printf", is searched ... which doesn't
happen tmtil AFTER special is searched! So the "putchar" finally loaded would cane
fran DEFF2.CRL, which is the library file autanatically searched after DEFF.CRL. fu
make this do what you want, all you I d have to do nON is:

clink test -f special <cr>

which YJOuld force everything in SPECIAL.CRL to be loaded right CMay, before the DEFF
files are scannE~. Then, when "printf" gets loaded fran DEFF. CRL, the correct
"putchar" function will already have been loaded and the one in DEFF2.CRL will be
ignored.

The "rename" library function had a rather serious problan:
YJOuld zero out the three bytes of code immediately after
(i.e., the first jump instruction of the next function
clobbered.) This problem was fixed by increasing the amount
the lids" at the end of "rename" fran 49 bytes to 53 bytes.

Whenever executed, it
the end of the function
in memory would get
of storage declared in

The "setfcb" function requires that the buffer allocated to hold the resqlting fcb is
AT lEAST 36 BYTES WNG! "Setfcb" zeroes out the randan-record field bytes of the fcb
just in case the CP/M 2.x randan-record file I/O mechanism is later used. But whether (
you use the randan stuff or not, the fcb you allocate still has to be 36 bytes long.

This bug applies to vl.43 only: A character constant consisting of the double-quote
character enclosed in sing Ie quotes (' II ,), when encountered by ccl, caused ccl to
stop stripping cannents while reading in the rest of the source file fran disk. This
was a bug in the vl.43 code added to aiiON ~nt delimiters within qu::>ted strings.

Whenever the type information for a function definition was placed on a line separate
fran the actual name of the function, then the canpiler VJOuld "lose" a line of code
and all errors found past that FOint in the source file \YOuld be refX)rted with an
incorrect line number. Bar example, the follONing kind of function definition
YJOuld 've caused this problan:

char *
foo()
{

}

A new library function, "execv", has been added to the p3ckage (source is in
DEFF2.ASM). '!his function allONS chaining to another <XM file with a variable number
of ccmnand line p:rrameters (note that "execl" requires all of the arguments to be
explicitly passed as string IX>inter parameters to the function, so that one (
particular call can only have the number of arguments that it was written with.) The\..
fonnat of 'the lIexecv" function is:

2
S C vl.44 1X>c. Update, May 1981

execl (prog, argyp)
char *prog, **argvp;

Where 'prog' p::>ints to the name of the a:M file to be chained to, and 'argvp' is an
, argv' -like fOinter to an array of fOinters to text ,IBrameters. The final fOinter in
the list mu.st be follONed by a null fOinter. As an example, n::>te that the "execl"
call

exec 1 ("stat", ft'badsp:>ts" , "$r/o" ,0);

can be written in tenns of "execv" as follONs:

char *args[3];

args[0] = "'badsp:>ts";
args[l] :: "$r/o";
args[2] = NULL;
execv ("stat" , args) ;

Directed I/O and pipes, of rorts, are rrM available to BDS C programrcers. '!he files
DIO.C and DIO.H make up a cute little directed I/O paCkage, allowing for directed
input, directed output and pipes (a la Unix) en the cc:mra.nd lines to programs
cnnpiled with this special I/O ,IBckage. See the cO'tl'rents in DIO.C for canplete
details. Note that the presence of this package does NOT contradict certain canrrents
made in the User' s Guide al:x:>ut kludging advanced Unix features tmder CP /M; those
ccmnents 'Were directed tcJ..lard systems in Which the I/O redirect ion/ generalization is
forced UfX>n the user, along with all the entailing overhead, when the redirection
isn • t needed or wanted for many applications. '!he 010 package, being written in C and
separately ccrnpiled, lets YOU the USER decide When you want it and when you do not.
If you don't want it, it takes up zero space; if you do, it takes up a bit of roc:m
and yanks in all the buffered I/O, but it OOES give you redirection and pipes!,

A "standard error" buffered I/O stream number has been added to the list of special
devices recognized by the "putc" ruffered output function. An ioruf value of 4 causes
the character given to be written to the CP/M console output, always, while an iohlf
value of 1 causes the character "to be written to the standard output (Which might be
a file if the 010 package is being used.) Note that 4 was used instead of the Unix
Standard-error value of 2 because 2 had already been taken (by the CP/M 1ST: device.)

String constants may rrJ.II contain zero bytes within than. Previous versions have
flagged lines such as

foo = "Jan\OFeb\CMar\OApr\OMay\OJun\OJul\OAug\OSep\OOct\CNov\ODec\O";

wi th the error message:

Zero bytes are n::>t allONed wi thin strings; to print nulls, use \200

Note that allONing the above kind of string constant rrakes it easier to ini tialize a
table of hcmJgenously-sized strings; the exanple with the nonths ca.lld be ,IBrt of a
function that returns a fOinter to the name of sane nonth n, where n is a passed

3
C vl.44 D::>c. Up:1ate, May 19B1

ilue ranging from 0 to 11 (or from 1 to 12, or Whatever •••)

(

4
: v1.44 1bc. 'Ufxlate, May 1981

BOS C User's Guide Addenda
vl.43 Edition -- March, 1981

, Leer Zolman
BD Software (Ne",r Addressl)

33 Loth:t"op st.
Brighton, Ma. 02135

(617) 782-0836

Before getting an ~th the business at hand (Where I shamelessly display all the
)rrible bugs that have plagued previous versions of the compiler), I'd like Do take a
:rnent to answer one of the rrOre C011TOn questions that have been asked of Ire by users and
)tential users of BDS C. Ibpefully, this will save sane of you the expense of a rnone
:ill (Which can run ,pretty high When I get Do rambling ...)

Q. What is the royalty arrangement for software developed using BOS C?
A. '!here is NO royalty arrangrrent AT ALL. Both the 80S C runtime package and function

i.braries, in either source or object fonn (or both), may be freely distributed with
:mnercial (or ron-camnercial) application programs. The reason for this J;Olicy is to
rarote the use of C for anything and everything, ~ thout wrapping up J;Otential
?plications in miles of red tape and ineffective securi ty measures. Software authors:
:..FASE include the source listings to your software with your packages! I understand that
1ere are sane markets Where such generosity is considered suicidal, and I' sympathize in
my cases, but I also want to see BOS C selling rrore copies, and providing the source to
?plications programs will encourage users to obtain. the ccrnpiler. Hopefully, sane of them
:iy even BUY it.

OK, rc1W it's time for the bug refOrts .. FbllONing, in decreasing order of severity, are
1e bugs fotmd and fixed for vl.43, and sane additional notes:

Another logical-expression-related bug caused incorrect code to be generated When a
slibexpression of a binary operation used the && or I I operators. Fbr example,

if {x > (i=5 && j<7» printf{"Foobar\n"):

might have caused a crash When' executed •

. 5 A bi~ise or arithmetic binary operation in WhiCh the left argument was a logical
expression of any kind and the right argument was a binary expression of higher
precedence failed to evaluate correctly. Fbr example,

if (lkbhit() & a<5) printf("foo\n"):

didn't \\Urk.

A missing o:mna, such as in the statement:

sprintf(dest "x = %d\n", x):

1

went undiagnosed and caused wierd code to be generated.
release had only corrected the case of a rrrrssing
specification, not BEFORE it ..•)

{The rug fixed in the last (
coma AFTER a fonnat string

If a ccrro:nent was- beglID. on a line Which contained an "#include" preprocessor directive,
and rot tenninated lID.til a later line, then eel became confused. 2a. Several users
have conplained about not being able to put the character sequence '/*' into a qLOted
string. '!his is a justifiable gripe, but I'm afraid you'll have to say things like
"/*" to get the same effect. The reason CClTITEnt delimiters are not tolerated within
quotes

Mismatched curly-braces in a source file roN draw a rrore rreaningful diagnostic than
the previous ''Unexpected EOF encountered" IlEssage: a tninter is ncJN provided to the
line at Which the badly-balanced function begins.

When an illegal constant was encountered by CCl at any place Where a constant is
required, an incorrect ''Unmatched left p3renthesis" diagnostic was displayed with an
i.rnp:)ssibly large line number. (Actually, the correct line number was obtainable by
subtracting the exact size of the text file fran the given line number. Guess What I
forgot to initialize between passes ...)

When using the "-w" option with CLINK, a tenninating control-Z was Nor put out to the (0'
sYM file When the length of the SYM file v.orke<l out to be an exact nul tiple of 128'
bytes. This gave CLINK a headache When "-y" was used to read the SYM file back in.

'!here was another bug in the "getc" library function that caused scme trouble When the
"fgets" function was used to read in lines fran a text file that wasn't terminated
with control-Z (CfMEOF). This was fixed by changing the line:

return ERroR;

to:

return iobuf-> nleft++ i

Mismatched square brackets in an expression had drawn an ''Unexpected EOF encoutered"
error instead of something rrore meaningful.

The \\lOrd "main" is NO lONGER A KEYVl)RD. In previous versions, the fact that "rrain" was
treated as a keyword made its use in any situation other than as the first line of a
"main" function i.rnp:)ssible. I.e, attempts to call "rrain" recursively were not accepted
by the canpiler. There is noN ro longer anything special about the v..ord "main". In
addition, previous versions had substituted an undocumented one byte code (9D hex) for
the name "rrain" in CRL file directories, thereby probably causing a lot of confusion.
This bizarre schetre is ro longer used, although the linker will still recognize the (
special 9D code as rreaning ''main'' \\hen encountered in a CRL file (of course, "MAIN"
will ro.N also be recognized ...)

2
C vl.43 Doc. update, 3/81

A bug in the "_y" option handler in CLINK caused CLINK to crash When there wasn't
enough roam in the reference table bo hold all the ~ls being read in from a SYM
file. Sorry about that, chief. t-bte, by the way, that the POSITION of "_y" on the
CCl11llClI1d line IS VERY SIGNIFICANT. If the "_y" option appears to the right of names of
CRL files to search, then the SYM file specified will rnt be used lIDtil AFTER the
previous CRL files have already been scanned and loaded fran. I.e., the "_y" option
should appear BEFORE the names of any CRL files that contain functions that might rnt
need to be loaded (due bo their definition in the SYM file). A new feature of CLINK is
that ~enever a previously defined ~l is encountered in the process of loading the
symbols fran a SYM file, a rressage bo that effect will be printed, allONing the user
an opportunity to rearrange the command line so that the SYM file is read in earlier
and sane redundancy p::>ssibly eliminated.

An obscure feature of the "printf", "sprintfll and II fpr intf II library functions, as
described in the Kernighan & Ritchie book, is that a field~idth specification value
preceded by a '0' caused O-fill instead of space-fill. I'd never NarlCED that before,
until a user brought it to my attention (and conveniently provided a fix.) Note that
this rolves a problem often encountered ~en printing hex values. NoN, the follONing
"printf" call:

printf("%4x~ %04x\n" ,8,8) ~

will produce the output:

8~ 0008

'lhelxxly of a function definition rt::M MJST be enGlosed in curly-braces. Fbrmerly, the
follONing rort of thing was tolerated as a function definition, but no rrore:

p..1tchar (c) Wos (4, c) ~

A bug in the O1AC.LIB macro package had Nor al10Ned lines such as:

exrel <lxi h,>,putchar

While the fo110Ning kind of lines were properly handled:

exrel call,putchar

A nevi lON-level character I/O function package, named CIO.C, has been added for
greater flexibility in oorirole interaction, especially for game-type applications.
Note, hoNever, that code generated using this facility is NON-PORTABLE fran one system
to another unless the "other" system is also equipped with a C canpiler. If you HAVE
bo, go ahead and use it, but please resist the temptation to give out a copy of the
compiler bo your friends along with your source code.

Oloted strings containing an open-CO'mEnt delimiter sequence (' /*') had caused eC1 to
think an actual ccmnent was intended. I.e, the statement

printf("this is an open-COl'I'rent sequence: /* \n") ~

3
C vl.43 Doc. Update, 3/81

lNOuld have drawn a "string too long ... " error. Not any !TOre. (

'!he handling of string constants by the code generator has been improved. New, instead
of p.1tting the text right ¥here it is used and generating a jump around it, the
compiler accumulates up to 50 text strings in a function and places them all at the
end of the function. If rrore than 50 strings appear, then after the 50th it goes back
to doing it the old way for the remainder of the function (there's only so rruch table­
space worth allocating to hacks like this.)

Speaking of hacks, here's one that'll get you either excited or sick.: You say you
need sane "static" variables? Consider the follONing rrethcxl of simulating a "static
array of characters":

char *statici

static = "0123456789"i

The result is that the variable "static" nay be used just like a static array of ten
characters. If declared as an "int" instead of a "char", it could be used as an array
of five integer variables (or ten, if you make the quoted string twice as long ...).
Steve Ward makes use of this technique in his CIO.C library. Kludgey, yes,. but it gets
the job done and it's even portable ...

The default 0:::1 sym1::x:>l table size for nodified versions of the canpiler (vl.43T) has
been upped fran 6K to 7K. '!he "-r" option still lets you explicitly set the table
allocation, if you want to.

4
C vI. 43 Ibc. Update, 3/81

(

(

* *
*
*
*

The Nevi Dynamic Overlay Schene for BDS C vl.4
August, 1980

*
*
*

order to allON C pr09rams to be longer than physical rranory, without resorting to "exec" or
cl" (-wnich nay indeed get the job done, but resemble "chain" operations rrore than true
:entation tools), a nevi set of capabilities has been bJilt into the CLINK program.
ally, the run-t~e environment of an executing C program looks like this:

lew mennry: base+lOOh: C.~ run-time utility package (csiz bytes)

ram+csiz: start of program cooe
(program code) ...

xxxx-l : end of program code

xxxx: external variable area (y bytes long)
... (external data) ...

xxxx+y: free rrenory,
available for

????:

storage
allocation

machine stack:

as lON as the rrachine stack ever gets
local data, function parameters,
intermediate expression results,
etc. etc.

high merrory: 1:rlos: machine stack top (grONs dONn)

! that IIXXXXII is the first location .follONing the program code and "y" is the amount of
Iry needed for external variables ..

mplement overlays, the first thing necessary is to decide just -wnere the swapped-in code is
reside. Earlier versions of BOO C had local data frames gro.ving up fran ION rrerrory,
·ting fran where the externals ended, lffiking it difficult to detenmne the lONest rremory
.tion safe to swap into. The scheme suggested then for handling overlays was to leave
icient roan between the end of the root segment code (the root segment contains the lima in II
tion and run-time package~ it 'loads at the start of the TPA, always renains in memory, and
.rols the top level of overlay swapping) and start of the external data area to acCClT11"Odate
largest possible swapped-in segment combination. This is still a viable schene for version

here is the rrodified rrerrory map, acccmrodating this first rrethod of handling overlays:

1
C Overlays, August 1980

low merrory: ba.se+lOOh: C.OCC nm-time utility package (csiz bytes)
ram+csiz: start of root segment code

(root segment code) ..•
zzzz-l: end of root segment code

zzzz: start of overlay area
(overlay area) ...

xxxx-l: end of overlay area

xxxx: external variable area (y bytes long)
... (external data) •••.

xxxx+y: free llal'Ory,
available for

????:

storage
allocation

machine stack:

as low as the machine stack ever gets
local data, function parameters,
intermediate expression results,
etc. etc.

high rnenory: 1:xlos: machine stack top (grONs dONn)

(

that "zzzz" is Where segments get swapped in, guaranteed that the longest segrrent doesn' t
1 "XXXX".

version 1.4, it is just as feasible to put the overlay
y map for this alternative configuration \\Ould be: -

area AFTER the externals.

you plan

ION merrory: ba.se+lOOh: C.Q....""'C nm-time utility package (csiz bytes)
ram+csiz: start of root segment code

(root segment code) ..•
xxxx-l: end of root segment code

xxxx:

xxxx+y-l:

xxxx+y:

xxxx+y+ssss-l:

xxxx+y+ssss:

????:

machine stack:

external variable area (y bytes long)
(external data) ...

end of external data area

start of overlay area (ssss bytes long)
{overlay area) ...

end of overlay area

<unused narory>

as low as the machine stack ever gets
local data, function parameters,
intermediate expression results,
etc. etc.

high IYEIrory: l:xlos: machine stack top (grONs dONn)

to use the storage allocation functions {alloc, free, sbrk, rsvstk)

2
~ Overlays, August 1980

in

, then this second schene VvOuld require you to call the .. sbrk" function with argument
(the size of the overlay area) since, by default, storage allocation always begins with
a :imnediately follcwing the end of the externals. For the remainder of this doet.nnent, I
sume the FIRST of the above two schemes is being used.

h the generaliti,~s out of the way, let Ire say sarething aba.lt just hew to create "root"
s and "swappable" segrrents with BDS C. First of all, we \tJOuld like all functions defined
the root segment to be accessible by the swapped segrrent(s) ... this is accanplished by
, CLINK to write out a s:ymool table file (containing all function addresses) to disk When
It segment is linked. The -w option to CLINK will do the trick: this symOOl table will be
,ter When linking theswappable segments .

. inking the root segment, use the -e option to set the external data area location: keep
l that there nustbe enough roan belON the externals to rold the largest swapped-in
. at run time (1 1m using the tenn "beION" in the sense that ION rnerory is "beION" high

graphically, in the preceding rrerrory maps, "be ION" treans toNard the top of the page.)
-e option is omitted, CLINK will assume the external data starts :imnediately after the
the root segment code: this is OK only if you I re using the SEXDND scheme.

the code of the root segment, then, a swappable segIrent is loaded into rnem:>ry from disk
.ng:

swapin(name,addr): /* read in a segment .. don I t run it * /

"addr" is the lcx:2tion follONing the last byte of root segment code (for the first
,) You can find this value by linking the root once without glvlng the -e option and

the -s statistics written to the console after the linkage. To actua.lly execute the
~, you have to call it indirectly using a pointer-to-function variable.

an example. We 111 declare a pointer-to-function variable called "ptrfn", swap in a
named "foo" at location 300011, and call the segrrent.. The sequence \\QuId look like this:

int (*ptrfn) ():
ptrfn = Ox3000;

/* can be Whatever type you like */

if (swapin("foo",Ox3000) 1= -1) /* check for load error */
(*ptrfn)(args ...): /* if none, call the segment */

~pin" routine returns -1 when a load error occurs. N:::>te that the swapped-in code might
:.urn any value, but the p::>inter-to-function rrust be declared with s::ME kind of type. Use
if nothing else canes to mind. When a segrrent is invoked, as above, control passes to the
:.1 s "main" function. There is no reason at all to require args to be of the "argc" and
form; there is nothing special a.bcut a "rrain" function other than the property it has of

j called first. '!he "main" function within the swapped-in segrrent is the ONLY allONed
~int for the segment.

Le "swapin" function is given in STDLffi2.C. It can be rrade shorter by skipping all the
testing, or can be expanded to detect an attempted load over the external data area by
ing the last address loaded with the contents of location ram+ll5h •.. if you've never done
.v-level hackery, you get the value of the l6-bit address at lcx:2tion ram+llSh by using
::tion on a p::>inter-to-integer (or -unsigned.) Note that location RAM+llSh AIJtlAYS contains
:kess of the base of the external data area.

knowhow to do everything except actually create a swappable segment.

3
:Nerlays, August 1980

swappable segrrent is basically just a normal C program, having a "main" ftmction just
e root segment, except that the C.CJ:C nm-time utility package is NO!' tacked on to the
f a swappable segrrent (the C.CCC in the root segrrent will be shared by everyone.) Tr­
ifference between a swappable segment and the r(X)t segrrent is the load address; whj\
t segment always loads at ram+lOO11 (vihere "ram" is 0 for standard CP/M, or 420011 for the
ed II CP 1M), a swappable segment may be nade to load anywhere. <:nce you I ve carpiled the
Ie segment, you give a special form of the CLINK command to link it:

A>clink segmentname -v -1 xxxx -y ~lfile [-s ... J <cr>

segmentnnme" is the name of the CRL file containing the segrrent, "-v" indicates to CLINK
swappable segment is to be created (so that C.CCC is not attached), and "-I xxxx"

ell followed by a hex address) indicates the load address for.the segment.

Qu'll l~obably want to yank in the ~l file created by the linkage of the root
., use the -y c:ption to do so. If you don It, then CLINK wi 11 yank in fresh copies of
ns like "PRINrF" 2nd "FDPEN", etc., even if they have already been linked into the root '
.. It w:Juld be a waste to have rrul tiple copies of those rranory oogs in there at the same .
¥ reading in the symbol table fran the root segment, it is insured that any routines
, linked in the root will be made available to the swapped-in segment. '!he root segment,

cannot know about functions belonging to the swapped-in segment through the use of a
table. That w:Juld require sane kind of mutually referential linking system beyond the

If this package.

.. l~en linking the segment, you may specify -s to generate a stat map on the console,
to write out an augmented ~l table containing not only the symbols read in fram the
gment's symbol file, but also the swappable segment's own ~ls. This new symbol file
n be used on another level of swapping, should that be desired. (--
~: (The addresses given in this exarrple are for
d 4200h CP/M, fudge accordingly.)

a RAM at OOOOh CP/M; if you have t..

iay you've got a program RCXJr.C, which will swap in and execute SEGl.C and then overlay
with SEG2.C. RXJl'.<XM loads at 100h and ends, say, before 300011. Weill load in the

.s at 3000h, and set the ba.se of the external data area to 5000h (this assumes neither

. is longer than 200Oh.)

lkage of RCXJr w:Julc1 be:

A>clink root -e 5000 ~ -s <cr>

dIs CLINK that ROCJI'.ca1 is to be a root segrrent (no "-v" option used), the externals
It 500Oh, a symbol file called RCXJr.SYM is to be written, and a statistics summary is to
lted to the console.

~age of each segment w:Juld appear as:

A>clink segl -v -1 3000 -y root -s -0 segl. <cr>

mand line tells CLINK that SFJ31. CCM is to be a swappable segrrent (the "-v" option) to
it location 3000h, the symool file named RCXJr.SYM should be scanned for pre-defined
)n addresses, a statistics summary should be printed after the linkage, and the object
; to be written out as SFJ31 (as· OPIX>sed to SFJ31.CCM, to avoid accidentally invoking it as
crnmand.)

(~

4
Ner lays, August 1980

BDS C File I/O Tutorial

Leor Zolman
BD Software

The file I/O library functions provided with BDS C fall into two catagories: "raw"
and "buffered." The raw file functions, typically coded.in assembly language for best
performance, are essentially a CP/M-oriented low-level interface where data transfers
always occur in multiples of full CP/M logical sector (128 byte) quantities. The
buffered functions (written in C) provide a byte-oriented, sequential file I/O system
geared especially for "filter"-type applications; buffering allows you to read and
write data in whatever sized quantities are most convenient while invisible mechanisms
worry about things like sector buffering and actual disk I/O; thus the buffered I/O
functions are usually more convenient to deal with than the raw functions, but they
generate a lot of overhead by being slow and hogging up quite a bit of memory for code
and buffer space.

Since buffered I/O is composed of raw I/O functions plus some extra code, I'll first
present the raw I/O in detail, and then go onto the buffered functions.

The raw functions are characterized by their concern with "file descriptors". A file
descriptor (fd) is a small integer value that becomes associate~. wi th a currently
active file. This fd is always obtained by calling either the "open" or "creat"
functions; their usage is:

fd

fd

open(filename,mode);

creat(filename);

/* 'filename' c-an be either a literal */
/* string or .any expression that */
/* evaluates to a character pointer */

The former is used to open an already existing file (usually, a file that has some
data in it) for reading or writing or both, and the latter is used to create a brand
new file and open it for writing. In both cases, the fd is the value returned by the
call. If some kind of error occurs and the specified file cannot be opened or created,
a value of ERROR (-1) is returned instead. For example, if "open" cannot find the file
on disk whose name is pointed to by the first argument, ERROR will be returned.

All other raw functions require an fd to ~pecify the file to be operated on (except
"unlink" and "rename", which take filename pointers). The "read" and "write"
functions are used to transfer data to and from disk. Their typical usage is:

i read(fd, buffer, nsects); /* 'fd' must have been obtained by */
j write(fd2, buffer2, nsects2); /* a previous call to "open" */

The first call would try to read, into memory at 'buffer', 'nsects' sectors from the
file whose 'fd' is specified. The second call would try to write 'nsects2' sectors
from memory at 'buffer2' to the disk file whose fd is 'fd2'. Unless an error occurs
(such as when an illegal fd is given or an attempt is made to read past the end of a
file), the above functions cause an immediate disk transfer to happen. This is one of
the main differences between raw and buffered I/O: raw functions always cause
immediate disk activity, as long as what they are asked to do is possible, while
buffered functions only go to disk when a buffer fills up (when writing) or becomes
exhausted (when reading.)

1
BDS C File I/O Primer

["or each file opened under raw I/O, there exists an invisible "r/w pointer" to keep
track of the next sector to be written or read. Immediately after a file is opened, ("
:he r/w pointer always starts at sector 0 (the first sector) of the file; it is bumped
lfter "read" and "write" calls by the number of successfully transfered "sectors, so
that (by default) the next transfer happens sequentially. One nice extension of the
3DS C raw I/O functions over their REALLY-raw CP/M equivalents is the elimination of
:he concept of "extents"; Instead of "extent numbers" and "sector numbers within the
:urrent extent"to be reckoned with for every file, there is only a single l6-bit r/w
)ointer to be considered. The value of a file's r/w pointer may be obtained by
~alling the "tell" function, and modified by calling "seek".

LO illustrate the use of raw I/O in a program, let's build a simple utility to make a
~opy of a file. The command format for this utility (which we'll call "copy") shall
)e:

A>copy filename newname <cr>

~his will take the file named by 'filename' and create a copy of it named by
'newname'. Since this is to be a classy utility, we want full error diagnostics in
~ase something goes wrong (such as running out of disk space, not being able to find
:he master file, etc.) This includes checking to make sure that the correct number of
Lrguments were typed on the command line. It is sometimes convenient to summarize a
)rogram in a half-C/half-English pseudo code form to avoid going in blind; Here is
;uch a summary of the copy program:

copy(filel,file2) {

}

if (exactly 2 args weren't given) { complain and abort}
if (can't open filel) { complain and abort }
if (can't create file2) { complain and abort}
while (not end of filel) {

}

Read a hunk from filel and write it out to file2;
if (any error has ocurred) { complain and abort }

close all files;

~d here is the actual C program that implements the above procedure:

2
DS C File I/O Primer

(

(

Ilinclude "bdsc io .h"
#define BUFSECTS 64

/* The standard header file
/* Buffer up to 64 sectors in memory

*/
*/

int fdl, fd2; /* File descriptors for the two files */
char buffer [BUFSECTS * SECSIZ]; /* The transfer buffer */

maine argc ',argv)
/* */ int argc; Arg count

char **argv; /* Arg vector */
{

}

int oksects; /* A temporary variable */

/* make sure exactly 2 args were given */
if (argc 1= 3)

perror("Usage: A>copy filel file2 <cr>\n");

/* try to open 1st file; abort on error */
if «fdl = open(argv[l],O» == ERROR)

perror ("Can' t open: %x\ nil ,argv [1]) ;

/* create 2nd file, abort on error: */
if «fd2 = creat(argv[2]» == ERROR)

perror("Can't create: %s\n",argv[2]);

/* Now we're ready to move the data: *i
while (oksects = read(fdl, buffer, BUFSECTS» {

}

if (oksects == ERROR) .
perror("Error reading: %s\n",argv[1]);

if (write(fd2, buffer, oksects) 1= oksects)
perror("Error; probably out of disk space\n");

/* Copy is complete. Now close the files: */
close(fdl);
if (close(fd2) == ERROR)

perror(IIError closing %s\n",argv[2]);
printf ("Copy complete \ n") ;

perror(format,arg) /* print error message and abort */
{

}

printf(format, arg);
fabort(fd2);
exit() ;

/* print message */
/* abort file operations */
/* return to CP/M */

Now let's take a look at the program. First come the declarations: we need a file
descriptor for each file involved in the copying process, and a large array to buffer
up the.data as we shuffle chunks of disk files through memory. The size of the buffer
is computed as the sector size (defined in BDSCIO.H) times the number of sectors of
buffering desired (defined at the top of this program as BUFSECTS).

In the "main" function, the first thing to do is make sure the correct number of

3
BDS C File I/O Primer

~rguments were given on the command line. Since the 'argc' parameter is provided free
)y the run-time package to every main program, and is always equal to the number of (
~rguments given PLUS ONE, we test to make sure it is equal to three (i.e, that two ,
~rguments were given). If argc is not equal to three, we call "perror" to print out a
~omplaint and abort the program. "Perror" interprets its arguments as if they were
the first two arguments to a "printf" call, performs the required "printf" call,
~borts operations on the output file (this wouldn't have any effect if called before
the file is opened; this would be the case if the "argc != 3" test succeeds), and
~xi ts to CP/M.

If we make it past the argc test, it is time to try opening files. The next statement
)pens the master file for reading, assigns the file descriptor returned by "open" to
the variable 'fdl', and causes the program to be aborted if "open" returned an error.
[his can all done at one time thanks to the power of the C expression evaluator; if
fOU aren't used to seeing this much happen in one statement, take a moment to follow
:he parenthesization carefully. First the call to "open" is performed, then the
~ssignment to 'fd1' of the return value from "open", and then the test to see if that
lalue was ERROR. If the value was NOT equal to ERROR, control will pass onto the next
'if' statement; otherwise, the appropriate call to "perror" diagnoses the problem and
terminates the program. Creating the output file follows exactly the same pattern.

laving made it through all the preliminaries, it is time to start copying some data
(finally!). Each time through the 'while' loop, we read as much as we can get (up to
~UFSECTS sectors) into memory from the master file. The "read" function returns the
lumber of sectors successfully read; this may range from 0 (indicating an end-of-file
[EOF] condition) up to the number of sectors requested (in this case, BUFSECTS), with
l value of ERROR being returned on disaster (when the disk drive door pops open or
mmething). Whatever this value may be, it is assigned to 'oksects' for later (­
~xamination. In the special case when it is equal to' zero, indicating EOF, the "while"­
Loop will be exited. Otherwise, we enter the loop and attempt to write back out the
lata that we just read in. First, though, we want to make sure no gross error
)ccurred, so a check is performed to see if ERROR was returned by the "read" call. If
;0, it's Abortsville. Having safely circumnavigated Abortsville, we call "write" to
lump the data into the output file. If we don't succeed in writing the number of
lectors we want to write, it's back to Abortsville with an appropriate error message
:most write errors are caused by running out of disk space.) If the "write" succeeds,
1e go back to the top of the loop and try to read some more data.

be last thing to do, once the "wh"ile" loop has been left, is to mop up by closing the
:iles; just to be complete, we check to make sure the output file has closed
:orrectly. And that's it.

be raw file I/O functions are most useful when large amounts of data, preferably in
!ven sector-sized chunks, need to be manipulated. The preceding file-copy program is a
:ypical application. Raw file I/O requires you to always think in terms of
'sectors"--while this poses no particular problem in, say, the file-copy example, it
loes add quite a bit of complexity to shuffling bits and pieces of randomly-sized
lata. Consider, for example, the unit known as the "text-line": A line's worth of
~SCII data may vary in size anywhere from 1 byte (in the case of a null string,
'epresented by the terminating null only) up to somewhere around 133 bytes, or maybe
~ven more if you're dealing wi th some really fancy printing device. Anyway, some
:onvenient method to read and write these text-lines to and from disk files would be a
'ery useful thing for text processing applications. Ideally we'd like to be able to (__ .
. all a single function, passing to it some kind of file descriptor and a pointer to a

4
,DS C File I/O Primer

text-line, and let the function write the text-line into the file so that it
immediately follows the last line written to that file. Also, to prevent a
time-consuming disk access every time a line is written, it would be nice to have our
function collect up a bunch of lines and toss them all to disk at once when the
"buffer" fills up. Analogously there would have to be a function to read a text-line
from some disk file into a given place in memory; here, also, it would greatly improve
performance if an invisible buffer was managed by the text-line-grabbing function so
that disk activity is minimized. The functions described here are, in fact, "fputs"
and "fgets" from the library: two of the "buffered I/O" functions.

The spotlight in the world of buffered I/O is a structure called, amazingly, an "I/O
buffer". Within this structure is a large, even-sector sized character array within
which the data being transferred is stored, and several assorted pointers and
descriptors to keep track of "what's happening" in the data array portion of the
buffer. There's a file descriptor to identify the file in raw I/O operations, there's
a pointer into the data array to tell where the next byte shall be read from or
written to, and there's a counter to tell how many bytes of either data or space
(depending on whether you're reading or writing) are left before it becomes necessary
to reload or dump the buffer. (1)

Buffered I/O functions use pointers to I/O buffers just as the raw functions use file
descriptors. There are six functions that perform all actual buffered I/O for single
bytes of data; the other buffered I/O functions (such as "fputs" and "fgets") do their
stuff in terms of the six "backbone" functions.

For reading files we have "fopen", "getc", and "fclose". "Fopen" is called to
associate an existing input file with a user-provided I/O buffer area by initializing
all the variables in that buffer. "Getc" grabs a byte from the buffer, first refilling
the data array from disk whenever the array is found to be empty, and returns a
special value (EOF) when the end of the file is reached. "Fclose" closes the file
associated with an I/O buffer.

For writing files there are "fcreat", "putc", "fflush", and "fclose" again (flfclose"
leads a double existence.) "Fcreat" creates a new file and prepares an associated I/O
buffer structure forrecieving data. The data is written~to the buffer via calls to
"putc", one byte at a time. When all the data has been "putc"-ed, "fflush" is called
to dump out the contents of the not-yet-full I/O buffer to the disk file. Finally,
"fclose" wraps things up by closing the associated file.

The only functions that actually read and write data are "getc" and "putc";
such as "fgets", "fputs", "fprintf", etc. do their reading and writing in
"getc" and "putc".

functions
terms of

Let's look at a simple first example. The following program prints a given text file
Dut on the console, with line numbers generated on the left margin:

L. The devious user may wonder why there is space taken for a byte counter, when the
lata pointer could just as well be compared to the last array address to detect a
:ull/empty buffer. Actually, it ends up being more efficient with the counter,
)ecause the code required to compare two addresses is usually bulkier than the code
~equired to decrement a counter and test for zero.

5
IDS C File I/O Primer

/*
PNUM.C: Program to print out a text file with

automatic generation of line numbers.
*/

lIinclude "bdscio.h"

main (~rrgc ,argv)
char **argv;
{

char ibuf[BUFSIZ];
char linbuf[MAXLINE];
int lineno;

/* declare I/O buffer
/* temporary line buffer
/* line number variabele

*/
*/
*/

if (argc != 2) { /* make sure file was given */

}

}

printf("Usage: A>pnum filename <cr> \n");
exit();

if (fopen(argv[l],ibuf) == ERROR) {
printf("Can't open %s\n",argv[l]);
exit();

}

lineno = 1; /* initialize line number

while (fgets(linbuf,ibuf»
printf("%3d: %s" ,lineno++,linbuf);

fclose(ibuf) ;

*/

Lhe declaration of 'ibuf' provides the T/O.buffer area for use wi th "fopen", "getc"
lnd "fclose". The symbolic constant "BUFSIZ", defined within the BDSCIO.H header file,
:ells how many bytes an I/O buffer must contain; this value will vary with the number
)f sectors desired for data buffering. See BDSCIO.H for instructions on how to
:ustomize the buffered I/O mechanism for a different buffer size (the default is eight
lectors) •

~ter checking the argument count and opening the specified file for buffered input,
LII the REAL work takes place in one simple "while" statement. First the "fgets"
~unction reads a line of text from the file and places it into the 'linbuf' array. As
.ong as the end of file isn't encountered, "fgets" will return a non-zero (true) value
md the body of the "while" statement will be executed. The body consists of a single
~all to "printf", in which the current line number is printed out followed by a colon,
:pace, and the current text line. After the value of 'lineno' is used, it is
.ncremented (by the ++ operator) in preperation for the next iteration. The cycle of
'eading and printing lines continues until "fgets" returns zero; at that point the
'while" loop is abandoned and "fclose" wraps things up.

(

'or our final example we have the ki~d of program known as a "filter". Generally, a
'ilter reads an input file, performs some kind of transformation on it, and writes the C.
'esul t out into a new output file. The transformation might be quite complex (like a C

6
DS C File I/O Primer

compilation) or it might be as trivial as the conversion of an input text file to
upper case. Since printing costs are pretty high these days, let's skip the C
compiler for the time being and take a look at a To-Upper-Case filter program:

lIinclude "bdscio.h"

main(argc,argv)
char **argv;
{

}

char ibuf[BUFSIZ], obuf[BUFSIZ];
int c;

if (argc != 3) {

}

printf("Usage: A>ucase file newfile <cr> \n");
exit();

if (fopen(argv[l],ibuf) ERROR) {

}

printf("Can't open %s\n",argv[l]);
exit();

if (fcreat(argv[2],obuf) == ERROR) {
printf("Can't create %s\n",argv[2]};
exit();

}

while « c = getc (ibuf» != EOF && c ,! = CPMEOF)
if (putc(toupper(c),obuf) == ERROR} {

}

printf("Write error; disk probably full\n"};
exit();

putc(CPMEOF,obuf);
fflush(obuf);
fclose(obuf};
fclose(ibuf) ;

This time there are two buffered I/O streams to be dealt with: the input file and the
output file. The first thing to do is check for the correct number of arguments (in'
this case, two: the name of an existing input file, and the name of the output file to
be created). Then "fopen" and "fcreat" are called, to open and create the two files
for buffered I/O. If that much succeeds, the main loop is entered and the fun begins.
On each iteration of the loop, a single byte is grabbed from the input file and
compared with the two possible end-of-text-file values: EOF and CPMEOF. Normally, the
last thing in a text file SHOULD be a CPMEOF (control-Z) character. But, some text
editors (none that I use) neglect to place the CPMEOF character at the end of a file
if the file happens to end exactly on a sector boundary; in this case, CPMEOF will
never be seen and the physical end-of-file value (EOF) must be detected. The
complication this causes is rather tricky ••• the EOF value returned by "getc" is -1,
which must be represented as a 16-bit value because "char" variables in BDS C cannot
take on negative values. This is why the variable 'c' is declared as an "int" instead
of a "char" in the above program; if it were declared as a "char", then the
sub-expression

7
BDS C File I/O Primer

c = getc(ibuf)

ld result in a value having the type "char" and could never possibly equal EOF as
ted for in the program. Should "getc" ever return EOF in such a case, 'c' would end
being equal to 255 (the "char" interpretation of the low order 8 bits of the value

). Thus, c is declared as'an "int" so that the EOF comparison can make sense.
s is awkward because 'c' is used here for holding characters, and it would be nice
have it declared as a character variable.' There's actually a way to do it, at the
ce of complete generality: if the EOF in the comparison were changed to 255, then

would have to be be declared as a "char", and the program would work ••• EXCEPT for
n an actual hex FF (decimal 255) byte is encountered in the input file! Now, while
is a pretty safe bet to assume there aren't any hex FF bytes in your average text
e, there may be exceptions. Also, there's no law that says filters can only be
tten for text files. Consider a program to take a binary file and "unload" it,
ating an Intel-format HEX file. Would we want it to halt when the first hex FF is
ountered? No, the original method is clearly the most general.

e having determined that the end-of-file has not been encountered, the body of the
ile" statement is executed. Here we use "toupper" to convert the character obtained
'm "getc" to upper case, and then we use "putc" to write the resul ting byte out to

output file. To be neat, errors are checked for: the program terminates if "putc"
,urns ERROR.

soon as an end-of-file condition is detected, we write out a final CPMEOF
,ntrol-Z) character to terminate the output file. The way this particular program is

(

up, the CPMEOF will be appended to the output file whether or not the'input file
led with a CPMEOF. Next, "fflush" is called to flush the output buffer. This must
laYs be done before closing a buffered output file, to make sure that all charac ters C-' "
tt to "putc" since that last time the buffer filled up get written to disk. Finally,
:lose" is used to close the input and output files.

~ more examples of the usage of buffered I/O, see CONVERT.C, CCOT.C, TABIFY.C and
~NET.C. Also, take some time to inspect the files BDSCIO.H, STDLIBl.C and STDLIB2.C,
.ch contain the sources of all the buffered I/O functions.

8
5 C File I/O Primer

BDS C Console I/O: Some Tricks and Clarifications

Leor Zolman
BD Software

Cambridge, Massachussetts

In this document I will attempt to remove some of the mystery behind the CP/M console I/O
anisms available to BDS C users. When the major documentation for BDS C (i.e. the User's
e) was being prepared, I had mistakenly assumed that users would automatically realize how
"bdos" and "bios" library functions could be used to perform all CP/M and BIOS functions,
cially direct console I/O (by which the system console device may be operated without the
trating unsolicited interception of certain special characters by the operating system.) In
, the use of the "bios" function for such purposes might only be obvious to experienced

users, and then only to those having assembly language programming experience with the
y-gritty characteristics of the CP/M console interface. Let's take a look at what really
ens during console I/O •••

The lowest (simplest) level of console-controlling software is in the BIOS (Basic
t/Output System) section of CP/M. There are three subroutines in the BIOS that deal with
ing and writing raw characters to the console; they are named 'CONST' (check console
us), 'CONIN' (wait for and read a character FROM the console), and 'CONOUT' (send a
acter TO the console). The way to get at these subroutines when you're writing on the
nbly language level is rather convoluted, but the BDS C library provides the 'bios'
tion to make it easy to access the BIOS subroutines from C programs. To check the console
us directly, you use the subexpression 'bios(2)', which returns a non-zero value when a
:lIe character is available, or zero otherwise.' To actually get the character after
s(2)' indicates one is ready, or to wait until a character is ready and then get it, use
s(3)'. To directly write a character 'c' to the console, you'd say 'bios(4,c)', but note
the BIOS doesn't know anything about C's convention of using a single '\n' (newline)

icter to represent a logical carriage-return/linefeed combination. The call 'bios(4,'\n')'
cause ONLY a single linefeed (ASCII OxOA) character to be printed on the console~

Making sure that all console I/O is eventually performed by way of these three BIOS
)utines is the ONLY way to both keep CP/M from intercepting some of your typing and insure
)ortability of programs between different CP/M systems. (1)

The BDOS (Basic Disk Operating System) operations are the next higher level (above the
I on which console I/O may be performed. Whenever the standard C library functions
~har' and 'putchar' are called, they perform their tasks in terms of BDOS calls ••• which in
perform THEIR operations through' BIOS calls, and this is where most of the confusion
~s. Just as there are the three basic BIOS subroutines for interfacing with the console,
~ are three similar but "higher. level" BDOS operations for performing essentially the same
». These BDOS functions, each of which has its own code number distinct from its BIOS
:erpart, are: "Console Input" to get a single character from the console (BDOS function
'Console Output" to write a single character to the console (BDOS function 2), and "Get

~ven so there's no way to know what kind of terminal is being used--so "truly portable"
lare either makes some assumptions about the kind of display terminal being used (whether
)t it is cursor addressable, HOW to address the cursor, etc.) or includes provisions for
-modification to fit whatever type of terminal the end-user happens to have connected to
jystem.

1
Console I/O 12/80

Ie Status" to determine if there is a character available from the console input (BO(}'"'
ion 11). The BOOS operations do all kinds of things for you that you may not even be fu~ "-
of. For instance, if the 'BOOS detects a control-S character present on the console input

g a console output call, then it will sit there and wait for another character to be typed
e console, and gobble it up, before returning from the original console output call. This
e fine if you want to be able to stop and start a long printout without having to code
feature into your Cprogram, but it causes big trouble if you n~ed to see EVERY character

on the console, including control-S. A little bit of thought as to how the BOOS does what
oes reveals some interesting facts: since· it must be able to detect control-S on the
Ie input, the BOOS must read the console whenever it sees that a character has been typed.
e character ends up not being a control-S (or some other special character that might
re instant processing), then that character must be saved somewhere internally to the BOOS
at the next call to 'Console Input' returns it as if nothing happened. Also, the BOOS must
sure that any subsequent calls made by the user to 'Get Console Status' (before any are
to 'Console Input') indicate that a character is available. This leads to a condition in -

a BOOS call might say that a character is available, but the corresponding BIOS call
NOT, since, physically, the character has already been gobbled up by the BDOS during a
interaction with the BIOS.

If this all sounds confusing, bear in mind that it took me several long months of playing
:P/M and early versions of the compiler before even I understood what the hell was going
there. My versions of 'getchar' and 'putchar' are designed for use in an environment
the user does NOT need total direct control over the console; given that the BOOS would

)me nice things for us like control-S processing, I figured that I might as well throw in
more useful features such as automatic conversion of the '\n' char&cter to a CR-LF
~ation on output, automatic abortion of the program whenever control-C is detected on
or output (so that programs having long or infi?ite unwanted printouts may be stopp·(

~t resetting the machine, even when no console input operations are performed), automat.."
rsion of the carraige-return character to a '\n~ on input, etc. One early user remarked
le would like 'putchar' to be immune from control-C; for him I added the 'putch' library
Lon, which works just like 'putchar' except that control-C's would no longer stop the
im. Much later it became evident that neither 'putchar' nor 'putch' suffice when CP/M must
~evented from ever even sampling the physical console input. At this point I'added the
, function, so that users could do their I/O directly through the BIOS and totally bypass
~ustrating character-eating BDOS.

[promised some examples earlier, so· let's get to it. First of all, here is a very
!ntary set of functions to perfo~m the three basic console operations in terms of the
· function, with no special conversions or interceptions AT ALL (i.e., nothing like the
--> CR-LF translations):

(.

2
Console rIo 12/RO

/*
Ultra-raw console I/O functions:

*/

getchar()
{

/* get a character from the console */

return bios(3);
}

kbhit()
{

/* return true (non-zero) if a character is ready */

return bios(2);
}

putchar(c)
char c;

/* write the character c to the console */

{
bios(4,c);

}

fhese ultra-raw functions do nothing more than provide direct access to the BIOS console
utines. If you include these in your C source program, then the linker will use them
ad of the standard library versions of the similarly named functions--provided that some
t reference to them is made before the default library file (DEFF2.CRL) is scanned.
Iy, in programs where such functions are necessary, there will be many explicit calls to
har' and 'putchar' to insure that the library versions aren't accidentally linked. A good
Ie of a case where trouble might occur is when the entire program consists of, say, a
e 'printf' call followed by a custom version of 'putchar'. Since the linker won't know
'putchar' is needed ~til after 'printf' is loaded from the library, the custom version of
har' will be ignored and the old (wrong) version will be picked up from .the DEFF2.CRL
ry file. The way to avoid such a problem is to insert, somewhere in the source file,
cit calls to any functions that are a) NOT explicitly called otherwise, and b) named' the
as some library function. This isn't an expecially neat solution, but it gets the job

OK, with that out of the way, let's consider some more sophisticated games that can be
d with customized versions of the console I/O functions. For starters, how about a set
performs conversions just like the library versions, detects control-C, and throws away
haracters typed during output (except control-C, which causes a reboot)? No problem.
s needed is automatic conversion of '\n' to CR-LF on output; conversion CR to '\n' and ~Z
I on input with automatic echoing; and re-booting on control-C during both input and
t.

3
Console I/O 12/80

/*

*/

Vanilla console I/O functions without going through BOOS:
('kbhit' would be the same as the above ultra-raw version)

Udefine CTRL C Ox03
Udefine CPMEOF Oxla

/* control-C */
/* End of File signal (control-Z) */

getchar()
{

/* get a character, hairy version */

}

char c;
if «c = hios(3) == CTRL_C)
if (c CPMEOF) return -1;
if (c == ~\r') {

p·jtchar (' \r') ;
c = '\n';

}

putchar(c);
return c;

bios(O); /* on ~C, reboot */
/* turn ~Z into -1 */

/* if CR typed, then */
/* echo a CR first, and set */
/* up to echo a LF also */
/* and return a '\n' */

/* echo the char */
/* and return it */

putchar(c)
char c;

/* output a character, hairy version */

{

}

bios(4,c);
if (c == '\n')

bios(4,'\r');
if (kbhit() && bios(3)

bios(O) ;

/* first output the given char */
/* if it is a newline, */
/* then output a CR also */

== CTRL_C) /* if ~C typed, */
./* then reboot */

/* else ignore the input completely */

c

ow, if you wanted to have control-S processing and a push-back feature (tqe two are
ly quite related, since you must be able to push back anything except control-S that
be detected during output), you could add some external "state" to the latest set of
.ons and keep track of what you see at the console input. Once this is done, though,
! probably better off going back to the original library versions of 'getchar' and
Lar', which let the BOOS handle all that grungy stuff.

~ncidentally, CP/M version 2.x has a new BOOS function which supposedly makes it easier to
~m some of the direct console I/O.operations that required the BIOS calls for CP/M 1.4.

this might be ·useful for people having CP/M 2.x, it would render any software developed
the new BOOS feature autistic when run on CP/M 1~4 systems. Please keep that in mind if

rer write any software on your 2.x system for use on other (perhaps non-2.x) systems.

>0 far, everything I've talked about has been in terms of the BIOS, and applies equally to
?/M systems. Unfortunately, there is one console operation often needed when writing
time interactive operations that is not supported by the BIOS, and thus there is no
)le way to implement it under CP/M. What's miSSing is a way to ask the BIOS if the console
1al is ready to ACCEPT a character for output. An example of the trouble this omission
~ is evident in the sample program RALLY.C; the case there is that the program must be
to read input from the keyboard at any instant, and cannot afford to become tied

ag for the terminal when the amount of data being sent to it has caused the X-ON/X-v{'
col to lock up the program until a character can be sent. Given that the only "kosher" wei')

4
Console I/O 12/80

lend a character to the consoie is through the CON OUT BIOS call~ and that such a call might
lny time tie up the program for longer than is tolerable~ the only recourse is to bypass
IUT completely and construct a customized output routine in C that can be more
listicated. This is done in RALLY.C, at the expense of non-portability for the object code;
l -user must individually configure his BDSCIO.H header file to define the unique port
lers, bit positions and polarities of the I/O hardware controlling his console. It would
~been SO - much easier if the BIOS contained just one more itty bitty subroutine to test
ole output status ••• but NoooooOOOOOOOOoooooo, they had to leave that one OUT so we have to
'GE -it •••

Sorry. I get carried away sometimes. Oh well ••• I hope this has helped to demystify some of
obscure behavior sometimes evident during console I/O operations. For the low-down on how
library versiQns of 'getchar', 'putchar', etc. really work, see their source listings in
2.ASM. And if there's something you want to do with the console and can't figure out how
ite this document, I'm always available for consultation (at least whenever I'm near the
e.)

Good luck.

5
f'.nnc:nlc TIn 1') Ion

How To Avoid Wann-Boots After
C PrOJrams Finish Executing

Leer Zo~, 12/81

As rrost users of BOO C have probably noticed, C-generated ro1 files always perfonn a
ann-boot When finished with their tasks. '!his is because the stack is usually placed in
igh merrory just below the BIDS, wiping out part of the CCP (console carmand processor)
uring execution and reqUiring a warm-boot to bring back the CCP fran the system tracks on
isk. The following patches to the C.CCC run-time package file provide a way to generate
OM files that do NOT perform a warm boot after execution, but instead return directly to a
on-clobbered CCP. The price of avoiding a warm-boot is that there is less merrory space
vailable during execution (3000 bytes less by default); the advantage is that there is no
ai ting for the disk to seek and load the ~p every time the program is finished, irrproving
verall performance and preserving the nerves of impatient hackers.

he procedure for generating non-booting programs is as follows:

Make a copy of your nonnal version of c. ccc (the run-tine package binary i:i"tage) under
same other name.

Use nor or SIn to change your C.CCC file according to the patches listed below, and
keep this new version of C.CCC for CLINK to use When linking your non-booting
programs.

Ccrnpile and link. your programs nonnally, but do NOT use the "-t" CLINK option; it
won I t work correctly for non-booting programs.

:i. After linkage is ccmplete, use D1JI' or SIn to change the first four bytes of the
resulting COM file as follows:

100: 21
101: 00
102: 00
103: 39

(was 2A)
(was 06)
(was 00 or 42)
(was F9)

This MUsr be done even if you I ve already changed sane of these bytes in step 2,
because CLINK itself sets the first 4 bytes of the COM file it generates to
instructions that don 't work in the non-booting variation. So, this step changes them
reck to What they need to be for all this to work.

). (optional): If you RFALLY need to put the run-time stack saneplace special, patch in
the following sequence at location lO7h (or 4307h for rrodified systems) after making
the mainline patches described above:

107: 31
108: <stack addr, low byte>
109: <stack addr, hi byte>
IDA: 00

(was CD)
(was 34)
(was 01 or 43)
(was F9)

Once this patch is made to C.CCC, it will remain in effect throughout later linkages,
but the m::x1ification in step 4A must be made after each linkage.

The CDM file should row be ready to execute. Try a sinple one-line "printf" program
the first time to test out the C.CCC patches: if working correctly, the output line
should be followed imnediately by a return to the system ("A> II should be printed)

1
'Oiding wann-boots after C programs

without ANY disk activity having occurred. If anything else happens, re-check your
patches. Remerriber that step 4 Imlst be done after EVERY linkage.

Remember to restore the original C.CCC file When generating programs that need th (­
extra stack space and/or need a ~boot performed after execution.

are the C.OCC patches for non-booting COM files:

'**** Changes to C.CCC for a non~~ting version ************
me of the values in the "NJRMAL (OLD)" coll.IllIm may be different *
m those shown if you 've reassembled C.CCC on your own earlier) *
.***

NJBOOT mnemonic

21 lxi h,O

39
22
79

dad sp
shld spsave

05 or 47

conments IDRMAL (OLD)

iget system SP into HL 31

isave until exit

i(47h for modified CP/M)
CD
34

call sppatch icampute new SP value

00
00
00
00
00
00
00
00

01 or 43
F9 sphl

retpatch:
2A Ihld spsave
79
05 or 47
F9 sphl
C9 ret

sppatch:
2A Ihld ram+6
06
00 or 42
11 lxi d,-3000
48
F4
19 dad d
C9 ret
00
00
00

i (43h for modified CP/M)
iplace into SP reg

i this is a patch fran
ithe "vexit" routine,
ito restore system SP •••

i ••• and return to OCP

C3
FB
OC
CD
96

iget Wos pointer OD
FE

i (42h for modified CP/M) 38
ioffset to bypass CA
ithe cr!P 7B

OC
i leave· new SP value in HL E6
i in HL and return 08

C4
82
11

C3
2F

jmp retpatch iready to exit ••• now reset C3
i SP and return to CCP 00

01 or 43 i (4311 for modifed CP/M) 00

2
ing wann-boots after C programs

(

SD Software Telnet v2.0

Documentation for use with 80S Telnet v2.1

Setting up thE: machine:

Leo Kenen
172 Churchills Lane
Milton, Mass. 02186

2/1180

Feburary 1980

T a lise the TELNET program effectively it is necessary for the hardware of YOllr
system to be properly configured. The current version will work with any modem which
is connected to the microcomputer via a status driven port. This illcludes S-100
modems such as the PMMI or the D.C. H~yes, even though many of the neat features
of these modems can not be lIsed with this release.

On most systems the rnodnrn will be connected to the cornputGr via a standard
serial port and will run at 30cps (300 baud). A suitable caule mllst be made to connect
the modem to the computer. This is usually a simple cable having one OB-25 (25 pin)
connector at each end. The connectors Illay be either male or female depending on
ihe requirements of your hardware. The standard wiring procedure is to connect pin 2
of one connector to pin 3 of the other (this goes both ways) and to put jumpers on
each of the DB-25's. These jumpers should be between pins 4 and 5, and another
jurnper connecting pins 6,8 and 20. .

Once the hardware is set up. it is then necessary to aller the II define statements
in the TELNET.C source file to fit your configuration. When all the necessary changes
have been made to the program, you are ready to compile it and test it out.

Inilial lest:

Turn on the modem and set it to HALF duplex (or hetter, TEST mode). Run the
TELNET proornm (ufter its been compiled and linl<ecf) by typing TEtNET. The' prouram .
will then asl< you if you expect an echo from the other computer or from the modem.
Your reply should be 'y'. since ,n this test we are hoping for an echo. Now type some
keys on the console and see if they are displayed on the screen. If they are, then you
have a worl<ing copy of TElNET. If nothing happens. there must be a problem with ei­
ther the hardware or the sor~ware. If your modem has a test mode YOli should hear
"blips" from the modem when keys are typed. If you do not, try reversing the wires on
pins 2 and 3 of one of the DB-25 connectors.. If the hardware looks good, check (and
double checl<) the # defines in the program to be sure that they arc correct for your
system.

Communication Mode:

As soon as the program comes up YOLI arc in communication moelL? In this mOI!t::
anything that you type will be !jont to the modem (except lor the SPECIAL charactor,
v/hich CtlUS(!S TFLt-JF T to prompt for a special funclion corl(~). [vcrythinu that an i\Jt~~)
from the modem is also displayed on your screen. In this mode your computer is a sim-

-1-

SO Software Telnet v2.0 Feburary 19S0

pie dumb terminal. For most applications this is the most common mode of operation.

SPECIAL mode:

To enter SPECIAL mode from communicaiion mode it is necessary to lype single
SPECIAL character (defined for your particular implementation within the # define sec·
tion of the TELNET.C source.) This character should be one which you are not likely to
need to type while in communication mode with another system. On most systems this
character enlls up bf-Jing the NULL (OxOO), tA (OxOl) or 1t (Oxlf).

Typing an unknown command letter after hitting the SPECIAL character will display a
iist of legal commands on the screen. To send the special character to the other sys·
tern (just in case it ever becomes necessary), just type it twice. The folloVJjng com·
mands (isslied after typiny tile SPECIAL character) can be used to receive and transmit
files and to perform Illany other useful functions.

Command Summary:

o Open an Output file for a data transfer. This function can be used to
begin receiving programs or data from another computer or just keep a
record of the things that you did while -on line. When this command is
given TELNET will ask several questions concerning the protocol that
should be lIsed during this transfer. The first thing that TELNET needs
to know is the name of the file that should be used to store the data
which is received. The filename you specify should be in the standard
CP 1M format:

Filename: foo.bar
Filename: b:foo.bar

opens FDD.DAR on the current drive
opens FDD.BAR on B:

When the file is opened, any old file with the same name will be lost. If
this file can be opened, you will be asked if the transfer will involve
TEXT (ascii data which is suitable for printinu) or binary data. If your
response is 'n' (to indicate binary) then the data received from the
modem will not be displayed on the console until the transfer is complet·
cd. If you jllst want a record of the session's activity you must tell TEL·
NET that text is going to be transfered (or you will not be able to see
what you are doing).

If the transf(~r is going to be in chccl<~lIm mode. then there must
not be any echo corniny from the other system or your modem. TELNET
\vill bf:lie'C it if you ~:ly Ihere is no eclJo, but if there really h; an cc 110
then the chances of rnal<inu a nood 1r~nsfer are nil.

If you do " (It clloo~tJ chech:")ufll Ill()d(~. then all incolllill~J data '::ill
be buffered up in memory (except when pau!;I/1V). ~)lnce the program
cannot monitor incolllin~1 data while clitIa is being dumped to di~.I<, the
norrn31 procedure is to wait until you I(now there will not be any data
cOlllill~ in for a \'Jltill~ (for instanc(~. wht:n you ltrl~ tall<inu to a tJG~.t

1lI,t("hine WHJ it lias just plinlcd its prumpt character) anu then give the

-2-

(

(

BD Software Telnet v2.0 Feburary 1980

o

c

T

p

R

A

dump command (D) to flush the buffer contents to disk. See also the 0
and C command descriptions.

Dump (append) current contents of the collection buffer to the disk file
(opened with the 0 command), leave the file open for more data, and
clear the collection buffer .. This function is useful if the file which is be·
ing transfered is larger than the burter space. This is only needed if the
transfer is I'ot in checksum mode, since TEU~ET manages the buffer au·
tomatically when in checksum mode. After the buffer is dumped, collec·
tion will continue although any data that is sent while the disk is active
will be lost torever.

Close Output file. This function first forces an automatic dump of the
rnelllory buffer to the open file, after which the the file is clGsed. This
command will also clear the memory buffer, permitting another file to be
opened. Close is only needed if the transfer is not in checksum mode.
An error in writing the file (such as running out of disk space) will result
in the loss of the data.

This command is the complement of the Open commdnd, used for
transmitting a file from your system out to the modem and beyond. It
prompts for the name of the file to be transferred and for information re­
garding transfer protocol. These questions are analogous to those asked
by the Open command described above·. If the file can be opened. then
if will be sent to the other computer using the protocol selected. If the
transfer involves binary data, then a status message will appear on the
console after each 128·byte sector is sent.

To abort or pause, use the A or P commands.

Pause from file transfer. If a file has been opened (using the 0 com­
mand) in non-checksum mode, then this sllspends the collection of in­
coming text in the memory buffer until the R command is issued to
resume collection. If a file is being transmitted (in either checksum or
non-checksum mode)' then the transfer is sllspended, to be continued.
when R is given. It is not good practice to pause during a checksummed
tran5fer, but it is possible to recover provided: the transmitter pauses
first, he waits for the receiver to pause before typing anything, the re­
ceiver resumes first, and then the transmitter resumes. Messy but at least
feasible.

The main use of pause, though, should be during non­
checksummed text file output.

Resume from a pause.

Abort current transfer. Use of this' command will terminate any transfer
which is currently in progress. If there is no transfer progress, a short
messane to that effect will be printed. If you are receiving data (via the
o carll/nand) this comllland will also send out an ETX (tC) to the
transmitter to terminate that process also. While transmitting this com·
m~nd will send 0111 enounh E rx's to inform the receiver that thl.~ transfer
has been terminated. If, however, the receiver is out of sync (probably

-3·

(
\

c

(

80 Software Telnet v2.0 rehurary 1980

v

K

Q

H

7

N

F

L

SPECIAL

because of a slow terminal) when the transmitter aborts, then the reo
ceiver may have to· terminate manually after seeing nothirtg happen for a
long enough period.

View the collection buffer. All contents of the collection buffer will be
displayed on the· console. Following the display of the data, the amount
of free space left in the buffer will be announced. This is lIseful for veri·
fying that a text file has been transferred properly.

Kill (erase, delete, throwaway, ZAP) contents of the text buffer.

Odit Telnet and return to CP 1M. This function will dump any buffers that
are being used for buffered I/O and then close the associated files.
After all the hOLJsel(ecping has been done the system will warm boot.

Set Half/Full Duplex. Use this command to tell TELNET whether or not
you are getting an echo from either the modem or from the other sys·
tem. When this is set to half duplex, all data sent to the modem from
your system will be simultaneously sellt to your console output (f)XCept
during binary data transfers). When ill full duplex, it is assumed that the
other system will ecllo what you type, so lELNET does not do it. There
is no default for t1lis command so TELNET will roquest the information
from you at the start of a session.

Select protocol concerning the Parity bit. This function permits the pari·
ty bit to be preserved or to be masked out. In text files it is normal to
mask out the MSB (ani 7fh). During. a transfer this mode is set automati·
cally.

Select protocol regarding Nulls. This function is used to tell TELNET to
either disregard nulls (for text) or to notice nulls (needed in binary and
some other applications). When the system is noticing nulls, then they
will be placed in the text buffer and saved- when the buffer is dumped to
disk. Ignoring nulls reduces the amount of storage necessary since nulls
will not be placed into the buffer. .

Select linefeed protocol. Asks whether or not the lincfeeds which fol!ow
carriage-returns in CP/M text files should be transmitted. Many remote
systems would not appreciate those linefeeds.

Enable/disable CP 1M list device. If enabled, anything going to tile con·
sale (except TELNET control messages) is also sent to the list device
(usually a printer.) The printer's baud rate should be higher than the
modem's.

Transmit the SPECIAL character to the modem.

-4·

READ.ME PAGE 1

--
BDS C v1.46 - (c) 1982 by Leor Zolman
======================================

rhis-file describes all fiies supplied on -th-e BDS C v1.46 distribution disk,
~nd also lists all documentation that should be included in the package as
)urchased from Lifeboat.

~ILES :

:c 1.C~OM CC2.CO!!:
;LINK.
:LI8. COM
~ D~~.~~_~~
~-

~DSCIO. H
ITDLIB1.C, STDLIB2.C cJ,L,

:CC .ASM

)IO.C, DIO.H
-.--~ ~-

fILDEXP .C (new)

(new)

80S C Compiler (parts I and II)
80S C Linker
80S C Libraria-n
80S C Standard Library object files
80S C Run-time package ojbect code

Standard C header file
Sources to the C-coded parts of the standard
library (object in DEFF .CRL) .
Sources to the assembly-coded parts of the
standard library (object in DEFF2.CRL)
He-ader -file used for assembly:"language function
generation
Source t~ the run-time package

Directed I/O library, allowing for directed
input, directed output andl'-ipes (a la Unix*)
(*Unix -is a trademark of Bell Laboratories)-

Command line wild~card expansion utility

CSM-to-CRL assembly language preprocessor and
com~a.!'lion s~bmi t-f~l e __

'LOAT • DOC , FLOAT.C, FLOATSUM. C Bob Mathias's floating point utility package

:ONVERT.C, CCOT.C Utilities for using BDS C on upper-case only
terminals (such as the TRS-80 Mod I)

ELNET .t
ITHELLO.C
IEVE.C

PR.C
0800T.C

LPH.C

OCUMENTATION:

(new)

(new)

The BDS C User's Guide
The Kernighan & Ritchie book

A telecommunications program
A game program
A benchmark, taken from the BYTE magazine high­
level language benchmark article. Directions

-are included on how to make it compile and run
a lot faster than it did in the article ••.
A line-printer driver utility.
A utility to make C-generated COM files return
quickly to the CCP after execution, instead of
performing ---a warm-boot. -
A line-oriented file alphabetizing utility.

75 pages
228 pages

(

READ.ME PAGE 2

he following documentation items may either be bound in with the User's Guide
r included separately:

vl.46 User's Guide addenda
vl.45-" " "
vl.44 It " "
vl.43 It " "
CASM Document
Standard Library Summary

- DYnamic Overlay Guide
File I/O Tutorial
Console I/O Tutorial
Telnet Guide
BDS C User's Group application forms

4 pag~_s
7 pages
4 pages
4 page~_

3 pages
5 page~ ________ _
4 pages
8 pages
5 pages
4 pages
2 pages

(new_~

(new)
(new)

If

*1

/1:

*/

-The 80s C Standard 1/0 header filt -- vl.46 3/4/e2

This file contains global definitions, for use in all C programs
in PLACE of (richhh) CONSTANTS. Charachristies of your- syshm such
is video seT-een siUt interface port numbers and masks, buffered I/O
allocations, etc., should all be configured Just once ~ithin this
file. Any Frosram which needs them should contain the preprocessor
directivt:

#inc1ude Ifbdscio. nil

near the beginning.
GCI throu9h and set all this stuff as soon as YOU 9it the packue,
and most terminal-dependent Simph programs should rur, much better.

Some console (vidul) tuminaJ char-atterishc=-:
(configured for- ECS 45(0)

#defirt~ TUIDTH SO 1* # of columr,sf/
Idefine TLENGTH 24 1* # of Jines *1
#define CLEARS "\014" 1* Str-ing to clear scr-een on consCtle *1
'define INTOREV U\033I tf 1* Strin9 to switch console into rever-se video II
Idefirl~ OUTAREV U\033t~1I l* String to switch console OUT of r-eVir!-e vidi'o II
#define CURSOR(fF tf\033Z H 1* String to turn cursor off *1
#define (.1jR(..;ORON "\03:1411 1* Shins to turon cur·sclr on *1
Id~fine ESC '\033' 1* Standard AStII 'escape' character *1

If
Console s,er-la} F'ort char-ader-isticst

i!

#define CSTAT OA~9
Idefine CDATA OxOS
#define ClMASK Ox02
Idefine COMASK 0A~1
#define CAHll
'define CRESET 0
#define C~SETVAL 0

!f

If status port *1
If data port *1
1* input data readY mask *1
/f output data ready mask iI,
1* Tr-ue if status active high *1
1* True if status port needs to be reset after input f/
1* If CRESET is true, this is the value to send */

Modem characteristics:
*1

#define MSTAT ~~
Idefine MDATA 0x08
#defint MlMASK OX02
Idefine MOMASK ~~1
#define MAHI 1
'define MRES£T 0
#define MREstrJAL 0

1*

*1

/f statu~ Fort *1
1* data PCtrt 1/
If input data ready mask *1
If ready to send a char-acter .ask 1/
1* True if status toStic active hish *1
/1 True if status p(lrt needs to be r'eset *1
1* If t1R£SET tl'ue, this is the byh to send *1

#deHoe 8ASEO
Idefi ne NllL (I

#define EOF -1
#define ERROR -1
#define OK 0
Idefine JBUFSIZE 6
#define CPHEOF Oxla
#define SECSIZ 128
#define MAXLINE 135
'define TRUE 1
#define FALSE 0

If Base of CP/M systfm RAn (Q or tJ-.I,4200) *.1

If Physical EOF returned by JOlil level I/O functior.s *'
1* General uon error U return value II
1* General purpose Uno errorH r-eturn value *i
jf Lensth of setjuIP/lon9Jump buffer */
If CPIM Er.d-of-hxt-fi Ie 6thr- (so'letimu!) Ii
II Sector site for CP/H read/write calls */
If Longest line of input expected fr-om the consolt 1.1
/f seneral 'purpose true truth value II
1* seneral purpose false truth value 1/

If

*1

The NSECTS symbol controls the cOlliPilation of the buffered
I/O routines within STDLIB2.C, allowin9 each user- to set the
buffer s.ize most convenient for- his syshm, whi Ie keeping
the numbers totally invisible to the C source programs using
buffered I/O (via the BUFSIZ defined symbol.) For Jar-ger
tJSECTS, the disk 1/0 is faster ••• but more ral is taken UP.
To chaoge the buffer size allocation, follow these steps:

1) Alter NSECTS to the desired value here in bdscio.h
2) Re-c~mpil~ STDLIBl.C and STDLIB2.C
3) Use ellS to combin~ STDLIBl.CRl and STDLIB2.CRL to make

a nell r€FF. CRL

Make sur'! YOU use declare at 1 your 1/0 buffers with the a
statemtnt such as:

#define NSECTS S If Number- of sector-s to buffer UP in r'am *1

'define BUFSIZ (NSECTS * SECSIZ + b) 1* Don~t touch this */

strlJct _buf {
int _fd;
irrt _nleft;
char *_nexb;
char- _bufHNSECTS * SECS1Z1;

#define FILE struct _buf

If: Or this ... *1

If YOU plin to use the high-level storage allocation functions
from the library ("alloc h and "free H

) then:

1> Unto.ent (enable) the "ALLOC_ONH definition, and co_ent (lut the
·ALLo(~OFFu definition from this file.

2) Re-colPiJe STDLIB1.C, and use eLIB to tra~sfer aaftoeD

ind "freeD into the DEFF.CRL library file.

3) THIS IS IMPORTANT!!! Include th~ state.tnt:

1* initialize allocation pointet II

somewhe~e in your "miao" functi~n PRIOR to the first US!

of the Halloc" function. DCtJ;T FORGET THIS INITIAlIZATION!!

Rem£:mber' to include bdsdo.h in ALL fi lis elf your C 'I"09ral.

1* disables storage allocation if uncommented 1/

/1 only ONE of these two lines should be uncommented *1

.II
Idefine ALLOC_ON 1 1* enables storga!e allocation if uncomaented II
*1

#ifdef ALLOC ... Ot4 /1 if storage allocation enabled, 1/

struct _header {
struct _beader *.ptr;
unsigned _size;

\ .
i'

shuct _header- _base;
struct ... header *_al1ocp;

lendif
-r

1* declare this ext!!'"naJ data to *1
II be used by alloeO and i:reeO II

iinclude "a:bdscio .. hll
Idefine float char
ide fine short char
Idefine string char
#d~fine byte char /* purge, more trouble than worth f/
'define boolean char
#define YES 1
'define NO 0
#define NONE (I

Ide fi ne EMPTY (J

#define DEL Ox1F
'define RUB_OUT Ox7F
#define AND &,
Idefine OR ::
#defir.e NOT !
Idefine INPUT 0
Idefine OUTPUT 1
#define RANDC~ 2
Idefir,e BASE' (I

'define FROMLBASE 0
#define FROM_HERE 1
idefine IS_BEFORE (0
#define IS-AFTER)~
#define .IS_SAME ==0
#define IS_DIFFERENT !=O
Idefine BEFORE -1
#define AFTER 1
Ide fi oe SAtIE 0

#define FLAG char
Idefine FILE struct _file
s·truct _fi Ie {

ir,t _rfd;
int _secs;
unsigned _frsts!c;
unsigned _cursec;
byte _curbyt;
byte *_Rxtbyt;
byh *_bufbase;
byte *_PiStbuH
cbar _mode;
int _upda.te;
unsigned _curbJk;
iot _blksiz;

struct .filf_ptr {
unsigned _sect~r;
byte _byt;

'.e J'

/f code for 'open()' II

/1 code for 'seek(}' II
If r/w = offset 1/
1* r/w = current value + offset *1
1* code for Ist~C.p()$ *1

Ii fiJe descr-ipttr If
/1 , of sectors in buffer *1
1* first sector in buffer 1/
1* cp/m current random sec II
If current random byte *1
1* next byte to be processed II
1* location of base *1
/f first byte btyond end of buffer If
1* read, write, append, or direct */
1* buffer modified flag *1
1* currentlY addr'essed block 1/
1* size of a logical block II

'* Exhr-naJ data uud by DIO.C for dir-ected 110 simulatic,n:
(BDSCIO.H must also be 'included in the main file.)

*1

l*
#define BUF_CONS 1

f/

char _dif1as7 _doflis;
char _pipef, *_pipedest;
char **_savei, **_nul1pos;

char' ... dibIJHBUFSIZl, _dobuHBL!FSIZl;

#ifdef BUF_CONS

char _conbuf[MAXLltJE + 21;

char *_conbufp;

#endif

If uncomment if console buffering is
desired (see DIO.C) */

1* fla, if directed 110 beIng used II
/f true if a pipe is being Ii ned *1
1* used to r-emember' positiCtn ir.

cor.and line when piping fl
/f 110 buffers used for- direction */

1* console bufferin, data *1

If console input buffer used for
non-directed standard input II

1* pointer to next character to
read from ((Insole buffer *1

/f PORTIO.H - I/O buffer" dati h'Ft arid r"eJated definitions for- use
with the 1/0 routines in PORTIO.C. *1

str-uct iobuf {
int fd;
int beet;
int nextc;
char lIritteM
char buff £128];
};

Idefine ABSOLUTE
.define RELATIVE

o
1

/f cur'rently bufferfd sector *1
/f irldex of next char in buffer *1
1* arlythln9 wf"ittefl in current :·ector? *1

1* seek codes *1

1ft
Directed 1/0 package for 80s C vl.45 LZ -- 12/81

The following functions make UP the direchd I/O library:

2 .. getchar-()

3. putch,r(c)

4. dioflush()

Mike thi: tht fir-st thing YOU do irJ
your -.ainU function, to proce!s
r'edir-ecti(lo coftmands. on the CPIM
cOJrtlfind 1 ine.

Gets a character from the keyboard,
or from a dir'eded input fi 1e if one
was ~,peci Hed on th! cOJnfland 1 ine.

Puts a character out to the console,
or to a directed output file if one
was specified on the command line.

Flushes directed output fife, if open,
and closes all directed I/O files (if

. aff),",} This. /Dust be called befor-e your
prOgraM exi ts ~r' returns to CP/M.

To activate redirection: Four special ar9uments may be given
(ir. the cOffJITttlrid line h the gerlerated COt1 file •• "

)foo causes "putcharu to place characters into the file
n~d "foo" instead (If to the console.

+foo like)foo except that the characters are AlSO sent
to the consoh.

(foo causes PgetcharP to return characters froa the file
naaed RfoOM instead of from the keyboard.

command l'fo9 causes the ~tindird output of the command specified in
ucollandu to be fed into the standard input of another
pr-09tuh upr'c.,/!. (BOTH "command" ar,d U,rc,gll must bt
compiled with DIO)

{Note that there must never be any spaces betW!en),+,(or : and the
corresponding filename.}

When no 11(" or 11: II operator- is used, standaF'd input comes from the
console and all standard line editing characters are recognized (i
flew featur'e of vl.4S). To indicate end-oF-file,)'OIJ must type

AZ (CR)
<control-Z foll~d by i carriage-return.}

When fief 11)" or- II: If oper-ator is used, sh.rJdard output giJes to the
c(jnsole.

A pt09ram allowing r-edir-ection must have the following forru:

#include "bdscio.hd

lirfelude "dio.h lt

main(ar-sc,ar9V}

If standard header file II
1* directed 1/0 h~ader If

1* other externals, if iny */

*1

NOTES:

char **ar9V;
{

dioinitf&arsc,ar9v);

dioflush(H

1* dec1ar'ations .,
/4 initialize redirection f/

If clean UP redirection fl

O. The cCtnsole input may be raw (unbuffered, one char'. at a tile) or
buffered (entire 1 ine lust be tYPed before char's are returntd,
allowing standar'd editing ff:atur'es, and charachrs come bid~ one
at a tilH AF1ER thi entire line is typed). The defau1t is raw; tCI

have buffered console input, uncomment the a.define ~JF_~lS· line
in bIO.H and recompile this file and all fiJes in your pr09ram.

1. Redir'ection and Fipu l!Iork only for TEXT. This mechanism should
not be used for binary data.

Z. Use I/-f dio· to 1 ir.k the Fr09raa: this ensur'es that the FrOPfr
versions of "setchar» and UputcharM are used. Do not defin~
your' OWit lf~etchar,1t or· Hputchar", or thin9S wi 11 set confused.

3. Multiple piPeS may be chained on one command line. For example,
the follcfwins comrrrarid feeds the outFut of pr'09f'afff HfoO" into thi:
input of Pfosram "bar a

, the (Iutput of "bar" into the input of
prosram 1t 2ot H

, ind t~ output of "zotlJ into a file called I/outputu:

A)foo ar91 :bar rzot ar92 ar93)output (cr)

"arg1 11 is ats actual arSlum~nt to "holt, ind "ar-Sl2" ir,d lJatSl31J irt
actual ar'9ullents to "zotJl. This illustrates how actual ar"umtnh
iYlay be inhrspused with r'edirection cOldLind!. The ptoSirams see
the actual arguments, but command line preprocessin9 handled by the
"dioird til functir.m cause the pr09r'us to never need to knOb; about
the redirection cOlYIJiands. Note that all three prOstaas (l'foOIl, "bar"
and "zot"} must have beef! cOIJIPi 1 ed and linked h use the HDIO­
packa9fa

#include IIbdscio.h lt

#include "dio.h lt

#define CONLINPUT
Idefine CONL(~TPlq
#define COti.STATUS

'define CONTROL.C
#define STDERR

Idefine INPIPE

Idefine VERBOSE

1*

1
2
11

3
4

2

2

If BDOS call t~ read console *1
1* BOOS call to wr'jh to console *1
1* BOOS cal J to int~r'f'(t9ite status *1

If Quit character */
1ft Standard Er'f'(ar descr'iFtor (sony,

Unix fanst 2 was already used.) *1
1* bit settin9 to indicate direct~d

input fr·om a temp. pipe fi Ie il
If bit settin9 to indicate output is to

90 to console AND dir'eded output *1

The Ifdioinit" function must be called at the beginning of the

II

#dtfine ar!!c lareeF

dioinit(ar9cp,ar9V)
int *ar9CP;
cha.r Uar9V;
{

int i,j) ar9count;

_difla9 = _dof1a9 = _pipef = FALSE; /f No directed 1/0 by defau1t 1/
_nulJp_os = &ar9v[arsc);

Ii fdef BUF_CONS

lendif

_conbuf[Ol = OJ
_conbufp = _conbuf;

1* no chara.ct@rs irf buffer yet *f
1* point to null buffer Ii

ar!lcount = 1;

for (i = 1; i { ar9C; iff}
(

if (_pipef) break;
switch(lar9v[i]) {

case _1(-': 1* Check fe.,- direchd irtJ~ut: *1
if (!ar9v[i)[1]) gO to barf;
if (fopen(&at-sv[iHll, _dibuf} == ERROR}
(

}

fp'rir.tf(STDERR,lIean-'t open %s\rl" ,&arg'.,C UU]);
exi to;

_dHlag = TRUE;
if tstr'cr,p(ar·9v£i),II(TEf1PIN.$$f'" = 0)

_difla9 := INPlPE;
soh movar9V;

case l:-': 1* Cbeck for Fipe: *1
_pipef++;
_piFedest = Scar"9v[iJ£U; /f save Fros flame for' exec1 *1
if (ar'9v[i][1])
(

casE' /+":

ar9v[iJ = H.TEMPOUT.$$$"; 1* temp. output *1
_savei = &ar9v[il;

_doflas := '~RBOSE;

if (!ar9v[ilC1])
(

ba.rf: fpr'intf<STDERR, HBad r-edirection/piFe sPecifier-a);
exitO;

}

unl inkf.&anv[i][lJ};
if (fcr'tat(Siar9v(iUl1, _dobuf) = ERROR)

}-

}

1*

*1

dic.fl ush()
(

{

fpr'intHSTDERR, "Can't create ~s\r.I/,&i"'9V£iJ(lJ);
iXitO;

mOVir9Y= if (!_pipef)
for (J = i; j < irsc; j++) ar9y[JJ = ar9v[J+1J;
{.ar9c)-"';
i--;
_nullpos--;

} else {

}

break;

dt:fault:

ar9C = ar9COuT,t;
ar9v[ar9c) = 0;

ar9count++;

if Ldifla9)

}

1*

{

fe) ostLdibuf H
if (_difJa9 & INPlPE) unJink(BtemPin.tQ);

J

if Ldoflas)
{

}

putc(CPMEOF,_dobuf);
ffJusht ... dobuf};
fe J oSt Ldobuf j;
unJiok("teIPin.$$$-); 1* in Cist previous pipe was aborted ./
renamt(Utempout.j$$-,"tempin.$$$-};
if LplPef)
{

*_savei = "{TEMPIN.$$$U;
*_oul1pos = NULL;
if (execv{_pipedest,_savei) == ERROR;
(

fpr-intf(STDERR, "\7Brohn piFe\r.");
exitO;

*/

Tbis version of "!litchar-" r-eplacf!s the ri9ular vu-sic,n when usin9
directed 1/0. Note that the -BUF_CONSN defined symbol (in DIO.H)
conhols whether the console input is. to be raw or buffer-Ed (see
item O. in NOTES above)

9itcharO
{

int c;

if t.difla9} {
if «c = getc<_dibuf» == /\r~} c = getc(_dibuf);

}

Ii fde f BUf _CONS
{

1* For buffered console input, get a line of text *1
If from the BOOS (usio!! ·getsU

), & insert newline: */

}

if <!*_conbufp) {

}

gets(_conbufp = _conbuf};
_conbuf[strlen{_conbuf) + 11 = '\01

;

_conbufCstrlen<_conbuf)] = ;\0/;

C = *_cc,obufp++;

#eh,e If for- raw console inplJt, simulate norffii.l IIsHehar n: 1/

hndif
if «c = bdos(CCtJ_INPUT») == COtJTRDL-C) exit!);

if (c = (:F11EOF) r-eturn EOF;

if (c == /\r· /)
{

#ifndef BUr_CONS

hndif

}

1*

*1

if (!_diflas) bdos(2,I\n/}; If echo LF after OR to console *1

}

r-eturn c;

This version (If II putchar- 1f f'eFtaC!! tht r-esuJar- ver-sion when using
dir-~cted I/O:

putchar(c)
char' c#
(

char fstatic;
static = u;

if L.dofl a9)
{

If remembers last character- sent; start out null *1

if (c == ~\n~ && *static != I\r~) putc(/\r~,_dobuf);
fstatic = c;
if(putc(c,_dobuf) == ERROR}
{

fPrintHSTDERR,HFile outFut £orrelN disk full?\n-);
exitt);

}

}
if (!(_dofla9 & VERBOSE}) return;

}

if <bdos(CONLSTATUS) && bdos(CONLINftIT} == CONTROl_C) txit();
if (c == I\nl && fstatic != I\r/) bdos(CON_OUTPUT,'\r /);
bdos((~_OUTPUT,c);

Istatic = c;

; If, Portab 1 e I 10 Pa.d~age fund i (IrfS f I
l* Writhn by EBM·Of. 13 DEC 1981 *1

1* ilo buffer data type 1/
#include "portio.h-

#define TRUE (-1)
Id~fine FAlSE 0

int copen (buf, naif)
struct iobuf fbuf;
chii' *rtime;

{ buf-)hect = -1; If set values to for-ce initial r-ead f!
buf-)nextc = 128;
buf-)written = FALSE;
return (buf-)fd = open (name, 2»;
}

int c(reat (buf, name)
struct iobuf fbuf;
chal' fn~;

buf-)isect = 0; 1* don~t force initial write~ II
buf-)nextc = 0;
buf-)written = FALSE;
if ((buf-)fd = cr-eat (name» (() I: close (buf-)fd) (O} retur-n (-1);
return (buf-)fd = open (name, 2);
}

iot cclose (buf)
struct iobuf fbuf;

{ if ((force (buf) < 0) return (-l);
r-ehr-n (c lose (buf-)fd)) 4
}

iot cread (buf, 10e, len)
struct iobuf fhuf;
char floc;
unsigned len;

{ char foJdJoc;
unsigned amt;

oldloc = 10e;
while (Jeni {

if Hut = min (len, 128 - buf-)nextd) (= I) {
if (cfor-ce (buf) {O ::

seek (bur-)fd, ++buf-)isect, ABSOLUTE) (0 I:
read (buf-)fd, buf-)buff, 1) != 1) br€ak;

buf-)n£'xtc = 0;

}

ID(lvmem <&buf-)bufHbuf-)fltxtC],)cle, ut);
buf-)nextc += amt;
loe += amt;
len -= amt;
}

return {Joe - oldloc);

}

iot cwr·i te (buf, loe, len)
struet.iobuf *buf;
char floc;
int len;

char foldloc;
unsigned amt;

ell d 1 oe = loe;
while (len) {

i(((amt = min Uen, 123 - buf-)ntxtc)} (= OJ
if {cforce (buf) (0) break;
++buf-)isect;
buf-)nextc = Of
eontir,ue;
}

mov~tm (loc7 &buf-)buff[buf-)nextc), amt);
buf-)nextc += aet;
he += amt;
Jer, -= amt;
buf-)lI!ritten = TRUE;
' . . '

return (loc - oldJoc);
}

if,t dorce (buf)
struct iobuf *buf;

{ if (buf-)nextc) 0 && buf-)written &&
(~eek (buf"')fd, buf-)isect, ABSOLUTE) (0 ::
IiIf·i tt {buf-)fd, buf-)buff, 1i (= on return (-1 H

buf-)written = FALSE;
return (1);
}

int cflush (buf)
str'ud iobuf *buf;

{ if (buf-)oextc & Ox7f) {
setH'" (&buf-)bufHbuf-)ne:dd, 128 ... buf-;'nextc, ("Z" - I@")};

buf-)written = TRUE;
}-

return «force (bufl);
}

iot (seek (buf, amt, mode)
struct iobuf ... fbuB
i nt afft, . mode;

{ int nefJIsect, newpos;

if (mode = RELATIVE)
{if (alit (0) {

amt = -lIt;
1* backwar'd:· */

frtbJStct = tluf-)hect - (amt }) 7);
newpos = buf-)nextc - (amt ~ Ox7f);
while (newpos (0) {

newpos += 128;

--newsett;
}

if (nellJsf:ct (0) retur·n (-lH
}.

else {

;.

TIf:IIISect = buf-)isect + (amt » 7};

newP(ts = buf-)nextc + (ut & Ox1fH
whi1e (newpos)= 128) (

nelilPos -= l~e;

}

}

else if (mode == ABSOlUTE) (
if taat (0) return (-1);
newsect = (amt ») 1};
newpos = faIt & Ox7f};
}

else r·etur·r, (-1);
if (newsect != buf-)isect &&

{eforce (buf) < 0 ::
seek {buf-)fd, newsect, ABSOLUTE} < 0 :1
reid (buf-)fd, buf-)buff, 1) ~= 1}) r~turn (-1);

buf-)isect = newsect;
buf-)nextc = newpos;
buf-)Il)r'i thn = FALSE;
retIJrn (1);

}

l*
Directed I/O package fljf use with 8DS (: vl.4x,

The follollJin9 functions iJlike UP the dir-ected I/O libr-arY:

1. dioinitC&ar9c,ar9v) Make this the first thirl9 YOU do in
your hmainh function, to process
redir-ectior. commands on tht CP/tt
c(tmmand 1 i nf.

2. setchar(} Gets a charader- fr-om the keyboar-d,
or from a directed input file if one
was specified on the coamand line.

3. putchar(c) Puts a character out to the console~

or to a directed output file if one
was specified on the command line.

4. dioflushO Flushes directed output fiJe, if open,
and closes all dir!cted I/O files (if
am',) This must be called btfor'e your
prosram exits or returns to CP/M.

To activate redirection: Four special ar9uments laY be given
em the c(lmmand line _to the sentr'ated COM fi Ie ...

)ft,c! causes I1putchir" to place characters irltc, the file
named "foOIl instead of to the (Clr,s-ole.

+foo like)foo except that th~ characters art ALSO stnt
to the cort.~·o 1e.

(foo causes H9ftcharH to r-eturn charlcttr-s fr'om the fi Ie
named ~foo" instead of from the keyboard.

cOlI'IIIIi.r.d : prCt!l causes the s.tar.dard output of the cOMirid SP!ci fied in
"command" to be fed into the stir,dard input of another
Ftr.19r-am1 upf'OSIt, (BOTH "commar.dJ1 and ilPI'Ctg ll mus.t be
compiled ~ith DIO}

(Note that ther-e must n·aver' be any spaces bet\jf~!n), +, (or- and the
corresponding filename.)

NOTES:

lir.c1ude I.Ibdscio.hfl
#include ·dio.hP

main{ar9c,anv}
char **ar9V;
{

dioflushO;

1* standard header file 1/
1* directed 1/0 header *1

1* other externals, if any *1

1* dedar-atioTts *1
1* initialize redirtction II
If body (If pr09f-am *1

O. R<@direction and pipes !torok onlY for' TEXT. This mechanism should
not be used for binarv data. .

1. The "getchar it ir,d °putchar" furlctions shoul d each be used EXPLICITLY
at least once in your mairl sour-ce fi Ie, so that the correct versions
ar'! pick.oed off from DIO.CRL instead {If tht incor'rect ones from
DEFf2.CRL (because of the wav the linker works.)

2. The Uputc" library function should be modified so that an iobuf
value of 4 sends a character to the CPIH console via a Nbdos"
call (as opposed to using "Futchar"), and that a "'\n" character
thus sent should be expanded into a CR-LF combination. This
is easily accomplished by addirt9 the fa II ollli,." clause to the "putt"
function, r'ecoll'tPiJin9 STDLIB1.C, and updatin9 DEFF.CRL bv
transferdo!! in the neld "putc· with eLIB.COM:

if <_iobuf == 4} {
if (c == "'\n"') bdos(2,"'\r"";
bdos (2, c);

3. The "execyU function, used by this packa,e, is available in the
fil~ EXECV.ASM; it should be assembled, r~named EXE~J.CRL, a.nd
then transferred into DEFF2.CRL using CLIB.COM.
(This may alr~ady bav~ b~en done ir • .the vl'tT'sictfl "(elu have.)

#ioclude "bdscio.hQ

linclude "dio.h"

#d~fine (~_INPUT 1
Idefine cart-OUTPUT 2
#define CON-STATl~ 11

'define CONTROL-C 3
#define STDERR 4

'define INPlPE 2

Idefine VERBOSE 2

If

l* BOOS call to f'iad con~oh f!
If BOOS call to write to consol~ *1
/f BOOS cill to interrogate status 1/

If Quit charicbr' f!
If Standard Er'r-or descriptor {SON'Y,

Unix fans, 2 was already used.> *1
If bit setting to indicate dirfcted

inp!J1 from a temp. F-iF~ fi I *1
If bit setting to indicate output is to

90 h CORSO 1e At4D dir"echd output fl

Tht ddioinit" function must be called at the be9innin~ of the
IJRioN functi{lT!:

*1

dioinit(ar9CPtar9Y)
int fargtp;
char iHar!!v;

"' int i,j, ar9count;

_difla9 = _doflas = _pipef = FAL~; 1* No dir'echd lIO by default f:/
_nu11p05 = lar9v[argcJ;

ar!lcount = 1;

for (i = 1; i < ar9C; iff)
(

/f Scan the cOIIHnd 1 ir,i for-)- and (*1

if (_pipef) break;
s~itch(far9v[il) {

case ~(~f 1* Check for directed input: *1
if (!ar9v[i][11) 90to barf;
if (fopen(&ar·gvtiHl1, _dibuf> = ERROR}
{

}

fprintf(STDERR,HCan~t open Xs\nM,&ar9v[iJC11};
exitO;

_difla9 = TRUE;
if (strcmp(.r9v[i],"{TEMPIN.$$$") = O}

_diflag := INPlPE;
90to movarsv;

1* Check for pipe: *1
_pipef++;
_piFedest = &ar9v[iJ[ll; 1* save Fr'09 naH felT' exec1 If
if (ar9v[i][1])
{

ar9vril = ". TEIf'OUT.$$$"; 1* hmp. output *1
_savei = &arsv[il;

cau "+1:
_dofJa9 := VER~3E;

foc.: Cise -')If If Check for' dir'eded OlJtput *1

barf: fprintf(STDERR, "Bid redir'ectic«o/piF! sped fief''');
exitf};

}

unJink(~argvri](11);

if (fcreatftcar-9v(i][1], _dobuf) = ERROR}
{ ,

fprintf(STDERR,IICar,.'t creab Xs\nS,~a"'9v[iJ[1l);
exiH);.

movargy: if (!_pipef} {
for (j = H .j (at!'c; j++) .r-9Ven = ar'sv[j+11;
(.r9C)--;
i-;
_nul Jpos-;

} else {
ar-se = ar-9count~
ariv[arscJ = 0;

1* handle rlor-Iliil ar9ument:.: */
ar9count++;

}

}

}

If
The IIdioflush ll function must be cal1ed before ftxitin9 the pT-osr'am:

II

dioflushO
{

1,
J

If

1/

if Ldifla9)
(

fc10seLdibufH
}

If Cleanup uncor,ditionaJly so finale beJolI.! can"'t screw UP II
unlink(lItempin.$$$II);

This version of "getchar·1I replaces the r-~9uJar vusion when USiMI

directed I/O:

getchuO
{

}

1*

1/

char c;

if Ldifla9} {
if «c = getcLdibuf}) = /\r"} C = getcLdibufH

} else
if «c = bdos(CON_INPUT}} == (~C) exit(j;

if (c == CPMEOF) return EOF;
if (c == ",\1'/)
{

c = ,1\0";

If Cootrol-Z ii EOF key 1/

if (!_difJag) bdos{2,'\n/}; 1* echo LF aft!!' OR to console II
)-

returrl C;

This version of Ifputcbar" r·ftPlaces the r-!9ular veT-stem when usins
directed I/O:

putchar(c)
char c;
{

if (c == /\n/) Futc(l\r',_dobuf);
if(putC(Cf_dobuf) == ERROR}

}

{

}

}

fFrintf(STDERR,HFile output error; disk ful1?\on);
txit();

if (bdos(CON_STATUS) && bdo5{(~_INPUT) == CONTROL_C) exit();
if (c == ~\n/) bdos(CON_OUTPUT,'\r~);

bdos(CON_otITPUT,c);

; Be SoftllJar'e C Standir·d Libr'irY Machine Lar,9uue fUflCti OriS

.; Written by Leor Zolman
3/22/82

; 'This file is in 8CSM- format; to convert to CAl format,
; use CASM.SUB in conjunction with CASH.COM, AS".COM and DDT.COM.

; Functions appearins in this file:

getchir kbtrit ungetch putchar putch sets rind . srandl orand CSIIJ setmem movmem call calla , , .
Club peek poke sleep pause setfcb r'ead ,
open close creat unlink seek ttll renam2
fcbaddr exi t bdos bios cod~nd ftxhr-ns endext
exec execl execv sbr'k rsvstk

maclib bds

FUNCTION getchar
Ida ungetl ;aoY.character pushed back?
(IN1 a
mov l,a
iz. 9ch2
xra a ;yes. r'etur'n it and clear- the pushback
sta unset} ;byte in C.CCC.
",vi h,O
ret

9ch2: push b
mvi c,conin
call bdos
pOP b
cpi cntr·Jc ; contre, l-C ?
jz bise ;if so, reboclt.
cpi lih ; cor,trerl-Z ?
lxi h,-l ;if so, return -1.
r'z
mov 1,a
cpi cr- ; car'riage f'etur'n?
jnz 9ch3
push b
R'lvi C,CC'Mut ;if so, also echo linefetd
mvi e, If
call bdos
pOP b
mvi 1,newUn ;and return nt~line {lintfe~d} ••

9ch3: mvi h,O
. ret

ENDfllNC

FUNCTION
lda
mvi
fI(!"v 1,a
t)ra a

kbhit
;any character un9~tttn?

•

rnz fif so, return tru~
iJ

E.rif,d
inF
tlJrih
fabort
tCrFOfl'ltefrl

push b
mvi c, cs·tat ;flst inhrro9ih cor.sole !tatu!.
ca11 bdos
pOP b

"ra
1 xi

; 0 retuf'otd by BOOS if 1'10 charachr' ready

rz H-eturn 0 in HL if rto charachr' ready
i nr ; other'wise rtturn 1 i r, HL
('et
EHDFUHC kbhit

FUNCTION ungetch
J da uTIgetl
II't(lV 1,a
pus.h h
call ma2toh
s.ta unset)
pOP h
.vi h,{l
ret
ENDFUNC IJ0getcb

FUtlCTION putchar'
call
push

maltoh ;get characttr in A
b

mvi
cpi

c,eonout
neulin ;newline?

:jR~'"L-~
mvi

put1 ;if riot, just 90 put out the charader'
e,er ;else ••• put out CR-LF

put!:

put2:

cal1
mvi
mvi

lQefV

call

ifNi

cal1
('ta

:r ({IJ,.. J.w
PC'P

ret

put3: ifNi

c,all
cpi
jz

POP
ret
Eru.ut1C

bdos
"conout
a,lf

c,(stat ;00111, is inFut present at the console?
bdos
a
put3
b ;no ••• al1 dont.

'-

"conin ;Yts. Simp), it (this will alwiYs tcho tht
bdos character to the screen, alas;
cntf'lc Hs it control-C?
biSt ;if so, abort and reboot
b ftlse i9nOrt it.

FUNCTION Futch
call maltoh
Fush b
IDvi c, conout
IMV e,a
cpi f.twIirf
. .inz Futch1 ;if not ne~Jine, just Fut it out
IDvi e,er ;else putout C~-LF

call
mvi
IJIvi

bdos

puteht: call
pOP

c,conout
e,1f
Qdos
b

ret
ENDFUNC

F~TICW
call Jfliitoh Jget destination addr'!ss
push b ;save Be
push h
push h
lxi h,-IS0 ;use space below stack for readins line
dad sp
F'ush h ; save buffer' address
mvi la, SSt. f eJ 1011 a max of about 135 char-aehrs
myi c,setlin
XCh9 ;put buffer· addt in DE
call bdos ;set the input line

c,conout I1lvi
mvi
I:all

e,lf ;put out a LF

POP
iox

tcdos
h
h

mov b,1t
inx h
pOP d

;set back buffer' addr'ess
;point to returned char count
;set B equal to char count
;HL points to first char of line
;DE points t(, start destination area

COP'{}: ma:t--- a, b ;fOPY line to start of buffer
..DN-- a

J R. 'L-..P. - gets2
m~ -blff

staX---4-
inx~
inL----d
dcr b

:JR,.iaa. ---rOPy 1

get.s2: xr'a i.

stax d
pOP h
pOP b
ret
ENrfUNC

FUNCTION
lhld rseed
>{chs
llvi i,4Sh
ana e

-:S~1.. n r'and!
jPt r'and!
.s:tc

r-and1: lhld r-seed+2
lre1,' inb, -..
r'alR ~.~
."~I Iba
lo~r ad
r'il ~ L

;store terminating nul)

; retur·n buffer address in HL

rand

Rrov hit
shld rseed+2
.f'I09 atd--
ra1R 0

-1M'" h,. ~,(

oM ... atf

r-al tt f
110; La -f*'J~C:

51)€.0 !'htd rseed
mov a,h
arti 7fh
mov h,a
ret
ENDFUNC

Flt4CTION srand
call rrtaltoh
mov
ora

'3~7... j..'f.
shld
shld
r-et

sr'arld2: lxi
push
mvi
call
hi

srand3:
r '.

p .. u?b
"vi
cafl
pOP

inx
inx
iox
ani

~,-..j.;:
shld
shld
mvi
mvi
call
IJlvi
ff(;fi

call

a,h
1
sr'ar.d2
rseed
r'seed+2

d,shl
b
c,9
bdos
h,Obdbdh
h
e,11
bdos
h
h
h
h
1
srand3
r'seed
rseed+2
e,conout
e,er- _
bdos
c,conout
e,]f
bdos

mvi (,cooin ;clear the char-acttr
call bdos
pOP b
ret

sts1: db 'Wait a rew seconds, and type a OR: $/

ENDFUNC

FUNCTION nand1
EXTERtWo. puts
ca11 maitoll
~5h l\-
call puts ;print pro&pt string

.s.o.P- h

push b
lxi h,567Sh

srla= push Ii
IDVl "cstat
caJl bdos
pOP h
inx h
inx h
inx Ii
ora a

J~"2-n sr-la
shld rseed
shld r-seed+2
pOP b
r'et
ENrfUNC

FUNCTION nrand
EXTERNAl puts
call at9hak
Ihld ar91 net n (lst ar-9}
mov a,h
ana 1
(Pi 255 4was it -1 (set seed) ?

~'lJ7...iM nrand!
lhld ar's2 ;CCIPY seed
shld seed
lhld a1'93
shld seed+2
IbId ar94
shld seed+4
f'et ;alf done

nrand1: push b
.ov a,h ; look at first ar9 .sain
ora 1

~W"Z..m nr-and3 ;is it 0 (randomi2e)?
lhld ar92
push h ;yes. print Clut s,trin9
ca}} puts ; ca.ll puts
pOP d
lxi h,5a97h ;Yes. start w/somethin9 odd

nr'ar,d2: push h
.. vi (,cstat ;interro9ate console status
call bdos
pOP h
inx h and kfeF- it c*dd
inx h ;and srowing
ora. a

3R",n f,r'and2 ;until user types something.
shld seed ; then plaster- the va.lue all over the
shld seed+2 ; seed.
shld seed+4
POP b
ret

nrand3= 1 da seed ;now compute next ra.ndol number. from this
(Iri 1 ; point on, the code is that (if Prof. Paul Gans
::.ta seed ~lsb of SEED must be 1

mvi b,6 ;cJear b PROD bytes to 0
lxi n,prod

rar.dml: mvi 11,0
inx h
dQ b

/) jnz randml

lxi b,b ;set byte counter
randa2: lxi h,plier--l

dad b ;make addr of lsb of FlIER
IJOV itD ;PLIER byte
pus.h b ;Sive byte counter
mvi b,S ;set bit counhr

randIJ3: mov d,a ; save PLIER byte
lxi h,prod ;shift whQle PROD left one bit
mvi (,6
>~ra. a

randlJ14: tiy il:slr. ;get byte
ral~

""-
~shift left

II'IO:V: "hoi ;put byte
im{ h
dcr c

'S ~/.h_J.M:. rindm4

mov ibd ; recover- PlIER byte
ral ;look it current hi9h bit

:JRtJ~ n.ndlL6 ; 0 llitarlS no add eye I t

push PSIiJ ;add SEED to PROD
xra a
Iwi c,b
lxi 0, PHed

lxi d,seed
r'andm5= ldax d

ide m
mccv Ifhi
iflX h
im< d
dcr c

:S~~Z,LU. findmS
POP PSlII

randmb: dEP b ;test bit counter
~jnz rar,dm3 f90 cycle more bits

pOP b ; rtcover· byte counter.
der I; ;!~st i.t

~~tJ1iM r'indm2 ; 90 pr'ocess II'lor! t,yhs

mvi b,6 ;complement PRC~, add 1 to it,
lxi h,seed ;and tr'ansfer it to SEED.
}xi d,prod
Xf'a. a
emc

rind~7: 1 da.y. d
efla.

ad 0
1Il0V irhi
inx h
inx d

4ep ~
Djnz randa7

dcx h ;put the two high (lr·der' bytes
1iI0V a,1t ;into HI.. for return to C, Mt
ani 7fh ;ne9Jectin9 to zero the high
mov tr,a ;ordel' bit so a positive int
1 da seed+4 ; is l'etur·ned
1TI0V 1 ,a.
pOP b
ret

,Iier: db Oc5h,S7h,1
db Oeh,9ah,OeOh

seed: db 1,0,0,(},0,0

prod: db 0,0,0,0,0,0
ENDFUNC

FUNCTION csw
in 255
IMY J ,a.
mvi h,O ~

r'et
ENrfUNC

FUNCTION setmerl
call al'9nak
push b
Ihld I1r,2
xchs
Ihld u9l
Ida ars3
D'lOV e,a
inx d

setm2: dex d
mov a,d
ora e

-j~Ah .. ~ setm3
pOP b
ret

setm3: IOV trh C

inx h
~Q,. .;.. setm2

ENDFliNC

FUNCTION mOVII'Jell'l

call ar9hak
Ihld ars3 ;set block length
IOV a,h
or-a I
rz ;do nothin9 if zero Jen9th
push b
1fI0V b,h
!lOV e,1 ;set Be to length
IhJ~ ars2 ; set dest addr-
xchs ;put in rE
IhId al'91 fget source addr in HL

(1:1pM

tai If
;if source (dest, do tait-first
;else do head-first

headf: ifNi a,2 ;hst forZ-SO
i&r-- a
j.PE' ISllSOh; ZSO?
db Oedh, QbOh ;Yes. do block m(I'lI.

pop b
ret ;and done.

a8090h~ov I,.
t!tl>_ d-
i'ltx ft -
ire< d
.4C)(b

• iJtev -r,tr"

-ora T
~---tftI368Oh

~.
~.-

tai 1 f: dcx b
dad b '." . '"
XCh9
dad b
XCh9
inx b

i.2

;tail first. Comput~ ne~ source
;and destiftatiCifi addr'esses

;test for zeo

m iiSOSOt -; ZSO?
db Oedh,ObSh,. ;YU. do block move.
pOP b
r'et

mS08!l t· /lev a,1t

..

cIIPhd:

.s..tax-:---4
rdtx- h
~d
«x. b

(¢i---C

jnz,-mOOSOt
P&fI---b
~

!fIOV a,h
CIltP d
rnz
mov ad
cmp e
r'et
ENDFUNC

FlINCTION
call ar·ghak
push b
·lhld ar5.l5
xch,
Ihld ar·g4
10V b,h

call

mov e,l
Ida ., ... ",2
lxi __ ,.t.., (allZ
push h
It,ld al'91
push It
tt\ld ar93
ret

caJ12: pc·p b
ret
ENDFUNC

FUNCTJON
calL ar9hak
P'ust. b
lhJd ll'95
XCh9
1 hId ar-94
mov b,t;
11"10'1 cd
Ida ar92
lxi h, calla2
push h
Ih1d ar91
push h
lhld al'93
ret

cal1a2: IOV l,a,
Ivi h,(J
pOP b
ret
ENDFUNC

FUNCTIOt~

cal1 maltot.
sta iohack+l
call iohack
InoV l,a.
IDvi h, (I
r'et
ENDFUNC

FUNCTION
cal1 ma1telh
sta iohack+4
call maltoh
call iohack+3
ret
ENDFlfr~

FUNCTION
pee~~: _call miltoh

mov I,m
ulvi h,O
ret
ENDFUNC Feek

calla

;get d~ value

;get be value

;get a value
;9ft return address

;push it
;get address of routine

ad hI value
; call routine

;put A value in HL
~clear high byh

inp

outp

peek

; store as ar9 h r'am ar'ia input subr'outine
:ca11 the subroutine to get value
;and put into HL

; get port number-
;store as ar9 to ra. area ~utput subroutine
;get data byte
;output it

FUNCTICIt-J poke
call jMlbak
lhld ar91

Jda ar-92
IhOV m,a
r-!t
ENDFUNC

FUNCTION s1etp
call. fliltoh
push b
inx h

511: dex h
A'lOV att,
ora 1

'J fl."'1- J.rt: sHa
pOP b.
r-ft

--
slla: 1xi d,1000(l
512: dcx d

mov i!hd

ora e
--:JIl.N7.- J..rti 512

push ~
IfIvi c,(stat
call bdos
ora a
pOP h

~-z..,i.a 511
push h
mvi c,corlin
call bdos
cpi cntr-}c
jz base
P6P h

:It\ j.u 511
ENDFUNC

FUOCTION Piuse
push b

nus!: mvi c,estat ,.
-- ...

cal1 bdos ...

or~i i

lR'2-~ paust
pop b
r-et
ENDFUNC

FUNCTIor, setfcb
call arghak
push b
Ihld ar-92 ;get pointer to name text

i95P: mov a,m
inx h
cpi .$ /

~R'2.,j; i9SP
cpi tab

:!A'1.. ;.. inp

dcx h
xchs ;set DE pointing to 1st non-space char
Ihld ars1 tift --) feb irei
caJl setfcb ; do it
lxi 1'1,0 fall OK.
pOP b
ret
ENDFUNC

FUNCTION rtid
call anhak
Jda at91
call fgfq
jc tN'C,r ;trror if illegal fd
IOV a,1I
ani 2 ; OPUI for read?
jz error ;error if not
push b
lda. ar!!l
call f9fcb
shld tmp2 ;t1lP2 will hold dma addr
lxi h,O. ;count of # of successful sector's read
shld tmp2a ; wi 11 be kept at tmF2a

read2: lhld a1"93 ; done?
mov ~bh
ora 1

.j"~-:z..~ r'ead4

read2a= lhld ar-92 ;ets! read another sector
xch!' ;DE is dma addr
IIwi c,sdlrii
call bdos ;set DttA
1 hid tlP2
XCh9 ;0£ is feb addr
mvi "reads
push d ;Save de so Iitf! can fudSfi rtf' fie 1 d if
call bdos ;we stop rea.ding on ext~nt boundarY~ ••
pop d ; CP/M sucks!
cpi 2
pOP b
jz error r i fen-or, abclr-t
push b
(Pi 1

(

j'RN-z...~ read6 ;ECf?

read3: 1xi h,32 f yes. art IiJf on extent bour/dar-v?
~.ad d Hf so, 'id~ust fc,T' CPt,,'s stupidity here
mov a'.1ft ;bv turnin9 an aoh sector count into o(}h_
cpi SOh

:fRtl1-J.w read4
nwi m,O ;yes. resf:t rJr' to O ••• CP/M leaves it at SOh!

read4: lhld tmp2a
teadS: pop b

ret

r'eadb: lhld if'93
dex h
shld af'93
lhld ar92
lxi d,128

dad d
~.hJ d al'"12
Ihld t~P2i
inx h
shld tlltP2a'

~~ r~ad2
ENDFUNC

-.
FUNCTION fltr'i h
call ar9hak.
Ida ars1
call. f9fd
j c erNr
IDOV a,m
ani 4
jz error
push b
lda ar91
call f9fcb
shld tmp2
1 xi h,O
shld tllP2a
lxi d,tbuff
mvi
call

c,sdma
bdM

;00 for- nor-mal CP/,.." e 1 E·e 42BO

writ!: lhld
mov
ora.
IbId

Ir93 ;done vet?
a,h
I

:l~,-rt
lhld
lxi

Li.;J.. JDll4

tmp2a ;if so, return count
IIIrit3

writ2:

Ir92 ;else copv next 129 bytes down to tbuff
d, tbuff ; 80 for' norma 1 CP 11'1, e 1s~ 4280
b,128

DO" i.m
SM-- d
imE-- h
,i.nx- d
~b
JiI ..
shJd
)hld

tSlve -) to next 129 bytes
;get addr of feb

mvi (,writs ;90 write
call bdos

inx
shld
1 hld
dex
shld

a
tmp2a
IIIrit3

h
hi'ip2a
arI3 ..
h

terr'or'?
Hf S0, return t (If successfully wr·ithn
; sectors.

; else bump successful stctor count,

:rA. ..iItR
ar93
",rit!
b

; and 90 try next sector
IIJrit3: pOP

ttt
ENDFUNC ,
FUNCTION open

call ir9hak
xra a
call f9fcb
jc frror
sta tllP

.)(ch51
lhld ar91
Xd.9
push b
~~11-- setfcb
mvi c,openc
ca11 bdos
cpi erJ'Clrv
pOP b
Jz error
1da tmp
call fsfd
Ida ar92
CIT'a il

IDvi d,3

j~~ jz oper,1
der a.
IflYi d,S

:r~2.. ~ open!

open!:

del' a
Jrtz error
mvi d,7
IOV m,d
Ida tlllP

rrlOY 1,a
IJ'lvi h,O
r'et
ENDFUNC

FUNCTION
jmp clclse
aIDFUNC

FUNCTION
EXTERNAl
call ar9haJ~

lhld ar91
PlJsh b
push h
call unlink
pOP d
lI'Ivi c, cr'eatc
lxi d,fcb
call bdos
cpi errorv
pop b
jz error
1xl h,2
push h
lhld ar91
push h
call (,pen
pOP d

;ar,v feb.'s fr'e~'?

;i f not, error

;successful open'?

; if not, er-ror

; 9ft HL pointing to fd tab 1 f: erltT-,\,

;open for read'?

;write?

;else must be both (Ir- bad mod~.

dose
;julltP to the dOH: r-outir.e in C.CCC

treat
unlink,open

;er'ase any old vU'sioTls of file

FOP d
rtt
ENDFUNC cr'iat

FUNCTION unlink
cill maltoh
push b
xch9
hi h, feb
call setfcb
mvi c,dele
call bdos
lxi h,O
pOP b
ret
ENDFUt(:

FUNCTION nek
EXlERt4AL tell
call arshak ; COpy ar9uments to ar9S iF'ea
Ida ar91
call fsfcb
,j(enol' ; erretr' if fi le not open
push b
push h ;save feb address

lhld arilt
push h
call tell ;9!t r/w pointer' FCtsitic,rlfor' the fi 1~
pOP d

xth9 ;put pr'esent po!. in DE
Ida ar'g.3
Ihld ar92 ;get offset in HL
ora a ;absolute offset?

":S~'- * seek2 ;if so, offset is new position
dad d ;else add offset to current position

H:ek2: IftOV a,1 ; convert to e:dent ind sector val un
rlc
If,OV a,h
fa)

ini 7ft.
sta tiP

xthl
lxi d,12
push h
dad d
CII'IP It ;jumpin9 over extent boundary?

~~"2.. H seek5
xthl ;Yes.
XCh9
nwi c, cJosee ;close old extent
push d
call bdos
pOP d
pOP h
cpi er-rorv

~~1l)M seek4

seek3: POP d
POP b
jllP error-

seek4: Jda tiff I'
IiOV flt,a
push d
"vi e,opene ;and open new one.
call bdos

seekS: pOP d
cpi urorv

:j(t1--n. seek3
lxi h,32
dad d
pOP d
mov a,e
a.ni 7fh
II(tV ro,a
XCh9
pOP b
r-et
ENDFUHC

FUNCTION
call maHoh
call fsfcb
jc error
push b
hd d,12
dad d
mClv b,m
lxi d,20
dad d
mov c ,II
xra a
mov a,b
tar
!fI(lV h,a
mvi a,(}
N,t

mov b,a
add c
JflOV I, a.
mov a,c
ana b
jp tel12
ir.r- h

te112: pOP b
N:t
ENDFUNC

FUNCTION
call arshak
push b

reoam: lhld aI's!
xchs
txi h,wfcb
call setfcb
1 bld ar-s2
XCh9

;and set nr field

; return new :.idol' # in HL

tell
;set fd value in A

;put extent I in B

;put sector # in C
;rotah e~dent rhht one bit, old bel --) Car-roy

;rotahd value becoJrlH hish byte of ten position
;rotate bO of extent into A

; save Nltated exhnt number' in B
;add rotated extent number to sector number
;and r'esult become:. low byte ofhll p~sition
;if both rotated extent. and sector # has bit 7 hi,
;then the sum hi.d an overflow, so

;bump position number by ~.
;and a II done.

N!nUit

lxi b,wfcb+16
call setfcb
lxi d,wfcb
mvi c,renc
ci11 bdos
pOP b
(Pi ftrrorv
jz error
lxi h,()
ret

wfch: ds 53
ENDFltIC

FUNCTION fibod
call Italtoh
call fgfd
jc error
ITIvi m,Q ;clear entry in fd table
lxi h,Q
ret
ENDFlINC

RINCTION fcbaddr-
call maltoh
call f9fd ;is it an open fiJe?
..ic enol"
call !Dittoh
call f'fcb ; get feb addr- in HL
ret
ENDFUtlC

FUNCTION exit
..imp exit
ENDFllNC

FUNCTION bdos
call ar9hak
push b
Ida at91 ;get C value
mov c,a
Ihld ar-92 ;set DE value
XCh9 ;put in DE
~aJJ bdos ;make the bdos call
POF b
ret ;and return to caller
ENDFUNC

FUNCTION bios
call arshak
push b
lhld base+! ;get addr of jump tabJe + 3
de< h ;set to addr of first jumF
dcx h
dcx h
Ida ar-s1 ;get function number (1-SS)
mov b,a ;1lI~l,tiF}y by :3
add .,
add t,
JTf(lV e,a ;put in DE
D'lVi d,(I

dad d ;add to base of jump table
push h ;and save for later
Ih1d ar-$!2 ;9~t value to be put in Be
mov b,h ;and put it there
mw e,}
lxi h,retadd ;whete call to bioi will return to
:dhl ;;et address of Victor in HL
pchl and 90 to it ••.

retadd: 1I0V 1,a ;a11 done. now put return val ue in HL
IllVi h,O
pOP b
ret ;and return to caller
ENDFUNC

FUNCTION codand
lhld codend
f-et
ENDFUNC

FUNCTION exhr-rlS
IhId extrns
r-et
ENDFUNC

FUNCTION endext
lhld frer-am
f-et
ENWUNC

FUNCTION
1 h 1 d base+t,
1 da tJ:>a
(Pi 21h
dcx h
rnz

;check for IlNOBOOP hackerv
; ,Hlxi hI! at start of C.CCC (as inserted by NOBOCIT)?
; if Cl"t does.no't be9in with Jll:d h, It th~n top of
;IteIllOfV is just be 101.\1 thi bast (If the Mc's

1xi d,-2100 ;eJsf: subtr'ad CCP size f.F'lus little more tor- 90(rd

dad d ;measure) and return that as top of me~orYa
r'ft
ENDFUNC

FUNCTION
EXTERNAL

, call Illiltoh
lxi d,O
push d
push h
call exec1
pop d
F'OP d
ret
ENDFUNC

execl
;g!t fi 1erlame
;loid null parameter in DE
; push null par'amehr-
;push filename
; del an exec 1
;c1ean UP stack

Futl1ION execl
cal) af9hak
pus.h b
Jhld ar-91
~<Ch9

hi h, -60 ; compute ~nfcb for US! hero!
dad sp
Fluh h ; save for- lfiuch later (WIll POF irlto Be}

push
Fush
call

! pOP
ixi
dad
mvi
inx
ITIvi
inx
mvi
pop

II'Ivi
call
cFi

'JRN'Z-~
err-: pop

pop

jlJtP

nO~H'r-: Ih 1 d

.J~Jh.. JM
1xi
push
lxi
call
POF

~~ .JItp

excl(l: xcbs
lxi
call
lhld
mov
clr-a

~~'h j.wz
lxi

~>~clOa: xchs
hd
can
lxi
xra
stax
lxi
dad
mvi

extl1: Fush
IfIOV

inx ,
mov
Il'Jov
or-a

~~1F:

mvi
dex

~xcl2= call

h ;make a few copies for local ys~ below,
h
setfcb ;setup COM file for ey.ec1~ins

h ;get new feb addr
b,9 ;set extension to COM
b
lfh.fC.f

h
It'h .f0'"

h
IJh.fW

d
c,opent ;OFen th~ fil~ for reading
bdos
errorv
noer-rr-
h
b
error

a1'92 ;any first paf'amehr? .

exclO
d,ar92 ;no ••• null out first default fcb slot
~
h,fcb
setfcb
h
ext lOa ; and 90 nu 11 out 2nd feb E,l ot

h,fcb
setfcb

;ves •• plic~ into first default feb slot

ar93 ;aflv H:cond PiNUrt~ter £liven?
a,h
}

exc10a
h,an3

;YU; stick it into second default feb slot
. h, fcbt16
ntfcb
d,tbuff+1 ;now construct command line:

zero tbuff+l just in case there a
d
tue
SF
b,O
h

ar'e flO ar-9 str'in9S
;set p~inter to 1st ars strine in HL

by offsettin9 4 objects froa the current SP
;char count for com. lin~ buff
;and construct command li~e

a,m..... ;get ad.dr of next ar-s stri_!'l9 pointer
h
h~m

},a ;0000 indicatts end of list.
h ;end of list?
excJ3

a,"" ;no. install next strin9
h
IDP\lC ; convtr-t to uPper- cast for- colrtmafld line blJffer-

stax d
inx d
inr b
inx h
flOV

or-a
::rf(.~~

pOP

iox
inx

"J~ W

exc13: pOP
flOV

cpi
~~v~

lxi
mvi
call
jmp

·er-r-mss: db

excJ30: lxi
!JIOV

I,m
a ;end of strio9?
exc12
h ;yes·.
h ;bump Pir-Im pointer-
h
excJl ;and 90 do next itrin9

h
a,b
53h

; c1 ean UP s. tack
;check for· command buffer Dvuflol!!

e:x:c130 ;i f no over-floll1, 90 'oad fi Ie
d,errrrl59
c,9 ;else comlain and abort •••
bdos
en

h,tbuff ;set len9th of comu~nd line
;at location tbuff

excJ3i= hd d,codeO ;copy loader- down tel end of tbuff
Ixi h,tpa-42

~ t:,.1fI¥4. b, 42 n emJth (I f J oader-
ext 14: l.d.ax..- d

mw 'ha
~d

i~h

d.t£-- b
j.su--e){c 14

POF

lhld
Ida
cpi

~R,.vl. .j.w
lhld

'l R .i.mf

90{): (Fi

::r~J'2...j.w.
lxi
dad

901: sph}

lxi
push
jmp

mplJc: (Pi

rc
(Pi

rnc
:-ui

b ;set feb poirlhr- ir, P.(:
; r'est!, the . ..sp:

baset6· ; nt BOOS pc,inhr in HL
tp~ ;look at first OP byte of fun-time PKS
31h ;be9in with Hlxi sp,"?
900 ;if so, use the same value now •••
tpa+l ;else get special SP value
901

Zlh ;buirl with lI}xi hn (the NOBOOT s!quenc!?)
901 ; if r.ot, just use thf BOOS addr as hp of memory
d7 -2050 ; for- NOBOOT, subtr-act 2100 fr-clm BDOS addr-
d find maKf that the new SP

h,bas!
h ; set base (.f roam as r-itur-Ti add,.
tpi-42 ;(90 to 'codeO:/)

6th ; conver-t char-aeter- in A to UPF~r' cas.t

7bh

32

ret

This loader code h now= 42 bytes 1009.

codeO: Ixi dftpa ~ d@stir,ation addr~s.s of MW Ff'09ram
code1: push d. ;push dma addr

plJsh b ;plJsh feb Foinhr
mVl c,sdma :set DNA address for new sector
cill t,dos
pOP d ;get pointir to working feb in DE
push d ;and re-push it
rl'lvi e,reads ;read i sector
call bdos
pc.p to
pOP d
{Ira a
jz ba-S
nwi c,sdma
hi d,tbuff
call bdos
jmF tpi

code2= l:~i h,SOh
dad d
xch!!l
jmp tpa-39
ENDFUNC

FUNCTION
EXTERNAL
call ar-ghak
Ihld ar92
mvi b,O

eXHvl: inr- b
mov e,m
in:(h
mov d,m
inx h
mov thd
(Ira e
jnz eXl!cvl

lI'JOV ihb

sta Sivcnt

dcx h
~xecv2: mov d,m

dcx h
lDOV e,m
dex h
dcr- b
push d
jnz execv2

... .~. ,

execv3: lhld ar91
push h
I:all exec1
lda sa.vcrlt

; reshr-e feb Foinhr into Fe
;aod dma address into DE
arid of f'ile?
;if not, get next sector (soto \codt2:~)

; res·et DMA poinhr'

; and 90 invoke the F-r"09r'u

;bumF dma address

Jand 90 loop (at codel)

execv
exec}

aet -) ar-s list
; c1 ear- ars C (Iuot
; bUlJlP ars cour,t

; 1 as t ar'9"?
;if not! keep looking for list one

;save ar9 count in case of error

;Ht. -) next to lis.t ar-9
;now push ar9S on stack

;set program name
;save as first ar9 to exec}
;90 do it; shQuJdo/t c~me back.
;woops, we're back, Must~ve been an error •••

savcnt:

br'kerr-=

clfIPdh:

add a
mov 1,.
mvi h,(J
dad SF
sFhl
hi h,-l
ret

ds 1
ENDfllNC

FUNCTION
call mattoh
xchs
1 hId all (reF
push h
dad d
.ic brkerr
dcx h
:~ctI9
lhld alocmx
mc,v a:h
crna
melv h,a
mov ad
I:ma
me"" I,a
im< h
dad SF

call cmpdh
j"c br'ker-r-
xch;
iox h
shld allclcF
POF h
ret

pelp h
.imp enor'

ItOV a,d
emf h
rc
rnz
mov a,e
emp
ret
ENDFlIN(:

Fltt4CTION

; put ~.i:ze of passed par-im~ter- list
; into HL, and aMy'st s.tack

;return error va1ue

; save ar-s count her-e

sbrk
; get # of bytes rleeded in HI.
; put into L'E
;get current allocation FOlnt~r
;save it
;nt hnhtive last address of nelll HltIlLent
;better not allo~ it to 90 over the tOF!

; flOW Jast addr is in DE
;stt safety factor
;n!9ah

fget HL = (SP - aloc~x)

;is DE less than HL?
; if not, carl' t pr'(,vi di thE needed lI'1K10rY.

;~1se OK.

;save start of next area to be aJhcahd
;9!t pointer to this area
;and return with it.

;c1ean UP stick
;and return with -1 to indicate ca~/t allocate •

1'5vstk
can
shld
ret
ENDFUNC

maltoh ;9E<t th~ value to N~Sir-ve

alocmx ~ind set M~liI safety factor

; BD Softwart (: Stir,dard Libraf'Y Machine Lan9ua9f Functior,s
; Writt,en by ltclr Zolman
; vl.46, 3/22/82

; This fiJe is in "CSH» format; to convert to C~~ format,
; use CASM.SltB in cordunctior. with ..cA~;M.CCM,ASl1.COM and DDT.COM.

r'r~ad rwr·ih rhl1 ,..s.eek f·srec refsiz
s@tjmp longjmp
setplot clrFlot tine
index setline

Flot txtp)ot

The r·andom-r·ecor·d fi J e 1/0 function contained h~N! are NOT docullIinhd
in the User"s Guide, because they ari non-portable to prfo-2.0 CP/M

; Systems.

mac lib Ms

; H2re are the new r'andom-access fi 1£1 110 r'outines
; for· use lIIi t~ CP/" version l.x C1t4.Y ••• these function:;
~ will NOT ~ork under Pre-2.x CP/M/s.

The ne~ flJnctions are: rread, fllJf'i h, rte lJ, rSi@k,

rsreCf rchi!

; Read a f.lJmber of Sfctors randomly.
; Usage:

i = rr!ad(fd, buf, 0);

The. retur'n value is either the number of sechr·s successfuJly
; read, 0 for EOF, or 1000 + {BDOS ERROR CODE}

; The Ran dOli Record Field is incr-eJfienhd fClllowins each succissfll}
; sector' is r·ead, jlJ,St as if tbl? normal (seQUifitii 1) r'fad function
; were beins used. Rseek lI'lUst beU$edh SCI back h a Fr-evious

sector.

FUNCTION r'read

call ar9nak
J da ar's1
call f9fd
Jc error-
ITtOV a"m

arli ")
.i.

jz error'

push b
lda af;1
call f;fcb
shld tJiu=2
lxi h,O
shld trilF2a

r"'" ."". IhJd if,3
mov a,h
ora
lhld tiiJF2a
.jnz r2a
FOP b
ret

f2a= lhld ar92
xchs
mvi c,sdma
ca)) bd05

lhld tJr,P2
xchs

.'"

mvi c, readr ; code for BOOS randolf, r-iad
push d ;SiV~ de so ~ can fudge nr fi~ld if
call bdos ;we stop riadins on i;·:hnt boundary •••
FOP d ; CPIM sucks!
(Ira a
jz r4 ;~O to r4 if no Froblem
cpi 1
jz r·2b ;EOF?
mov c,a ; put r·e-tur·n enol' C odi' in Be
mvi b,O
lxi h, tOoo ;add to 1000
dad b
PQP b
ret

r2b: Ixi h,32 ;yes. ar-e !fie orf -extent boUrldafY{
dad d
iTlOV a,m
(Pi SOh
joz r3
lifvi 11110 ;YU. reset nr- to 0 ••• CP/M leavis- it at SO!

r3: 1M d tmp2a ; (noh= the abovE Hbugl* in CP/M IRS sUPPoE.edly fixed
FOP b . hr 2.x, but o~e can niver be sure •• ,) ,
ret

r-4~ Ihld arg3
dcx h
shld ar-g3
Ihld arg2
1xi d,l28
dad d
sbld ar-,2
lhld tftP2a
inx h
shld tmp2a
Ihld tmF2 ;get address of feb
lxi b,3"3 ;getaddr- of random record field
dad b
mov (,m ;bUrbF
irtx h value

moV'
iox
mov
dcx
llIe,v Ifhe

jmp r2
ENDFUNC

of
randolTl

field
by one

Th~ rando" IfwrihH r-outlfl-e, IUhich alwan, cOPie-s the Hctor
to he written down to tbuff before writing. Returns
the # of sectors succ-essful1v written, or -1 on hir~_error.
(the HI000 + error code" business is not us,d for rwrite)

FUNCTION rlUri h

call ar-9hak
1 da ar9!
call f9fd
.ic error
rr,ov atm
ani 4
jz err-or-
push b
lda arsl
caJ1 f9fcb
shld tmF2
hi thO
sbld tmF2a
hd d, tbuff ; 80 for nor-mi.l CP 1M, else 42S(J
mvi c,sdma
cal1 bdos

owr2= Ihld ar93 ;done yet?
ItOV a,h
or-a
lhld tmp2i' ;if so, retur-n CCIUflt

Jnz ,nwr2a
pOP b
f'et

rdslr2a: Ihld ar-92 ; e he COpy ne:d 128 bytes dOIlm tel tbuff
lxi d,tbuff ;90 for normal CP/M, else 42S0
mvi b,12B

r,wr3= li'IOV a,m
stax d
inx h
inx d
dcr- b
-jnz nwr-3
shld if-92 ;save -) to next 1Z3 bytes
lhld tmJ=2 ;,et id~r of feb
XCh9
mvi C,lLIf-itr· ;90 IIIt-ite f-andOBtly

can bdos
or-a i ;er-r-cfr-?
lhId tll'lF2i ;if so, r-eturn # of successfullY written

FOP b sectors.
rr,z
Fus.n b

inx h ; else bump succe$sful Hctor courlt,
sbld tmp2a
1 bId arg3 ; d~bumF countdow~,
dcx h
:.hld ars3
JhId htp2 get address (If feb
hi b,33 ; get address of random field
dad b
mov C,II'I ; bumF 16-bit value at random
inx h ; record
IMV b,m field
inx b of
lTI(tV IIhb feb
dcx h by one
mov m,c
,imp nwr2 ; and 90 try next Hthr
ENDFUNC

; rseek(fd, offset, orisin}
seeks to offset records if orisin == 0,

to present position + offset if origin == 1,
or to end. of fi Ie + ofhet if orisin == 2.

(note that irl the last case, the oHut must be non-FosltlV-e)

ca.ll
lda
call
jc

push
caJl
lhl.d
1 da
ora
jz

rseekl: pOP
push
push
mvi
call
Ft\F

pOP

Fusn
cill
lhld
dad d

arshak
an~1

f9fcb
errQr •
h_.
rh1l2
ars2
ar-s3 ; is or'iein == 01
a
rseek2 ;if SOt Hl holds new position
a ;00. is origin == 11
rseekl
d
rseek2

;yes. add offset to currHit positiCtn
;and result is in HL

d ;else ~ri9in must be 2 •••
d
b
clcfsizc ;compute end of file position
bdos
b
h ;get back feb
h
rteJ12 ;get DE = position
ar92 ;add offset

;and HL holds n~w position

rs~-ek2: xthl ;9it feb, push new position
lxi d,33
dad d ;HL points to random fiild of feb
pOP d ;9~t new position in DE

.~

IiIOV Il"i ;and put into feb
iox h
ITI(lV Rh d
xchs ;and return the position value
ttt

rh112: lxi d,3;3
dad d
ITfCiV e,m
inx h
"IOV d,m
ret
ENDFUNC

; Rhl}:

; Return random record position of file:

FUNCTION rhl1
call arihaJ:
fda ar91
call fsfcb
,j c err'or'
lxi d,33 ;90 to random r'eccird field
did d
mov e,m ;9~t value into DE
iox h
mov d,fl
XCh9 ; r'ut into HL
ret
ENDFLINC

; Rsr·e.::
-

; Set r'andolft fii'ld from ser-iaJ access melde:

FUNCTION rsrec
call ar9hak
fda ar91
call hfcb
Jc er·rclr·
push h
xchs
push b
IJJvi c,streec
call bdClS
pOP b
pe'F h
1xi d,33
dad d
mov i,1l'1

inx h

•
"ov h,m
moy 1,a
Nt
ENDFlfNC

; Rcfsiz=

set random record. fi~ld to end-of-file:

FUNCTION
call arshak
fda ars1
eall hfcb
jc ~rrvr

pus.h h
XCh9
push b
mvi c, chize
calJ bdo~.
pOP b
pOP h
lxi d,33
dad d
mov ihID

inx h
IMV h,m

.}TsOV 1,a

. ret
ENDFUNC

FUNCTION
call ma1toh
mov
inx
IfICtV m,b
inx h
)~Ch9

J:d h,(I
dad SP
xchs
meN
ir.x
mov
inx
POP
push
m(lv IIhe

iox h
1Ti0Y nhd
lxi h,O
ret
ENDFUt(:

rcfsiz

;Sive Be

;save- SP

;save return address

; and retur'o 0

FUNCTION longJmp
call maltoh ;set buffer address
ITfOV

inx

inx h
fr:(lV

inx
mov d11rl

inx h
shld temp ;save pointer to return address
call ma2toh ;set return value
>~Ch9 ;put return val in DE, old SP irl Hl
sFhl ;restor-~ SP with old value
FOF
Ihld

h
temp

mov i,m
iox h
mov ''11m
mov ha
xcha;
push d
r-et

temp: ds 2
ENDFUNC

;POP retur address off stack
; get back ptr- to tetlJrn address

; HL ho 1 dE retur-n addr-ess
;put ret addr in DE, get return value in HL
;push return address on stack
;and return •••

FUNCTION setp10t
call ar9hak
push
Jhld
shld
thld
shld
xch:a
lhld
shld
call
shld
pOP

Nt
ENtfltiC

b
ars1
pbase
ar-93
ysize

ar92

usmul
psize
b

FUNCTION

; get base addr-ess
_j.oi ha lize

;get Y .size
initialize

;leave it in DE
;get x size

irJi ha 1 ize
;fi9ure out screen size

initialize-

dr-plot
lhld psize ;put~creen size
2~~h9 in. J~
Jhld pbase ;get screen base in HL

cJ r-2= mvi
inx
dcx
mov
(I(-a

jnz dr-2
ret
ENDFlfNC

FUNCTION
call arghak
push b
Ida ar-g2
mov C ',:a
Jda ar-93
raov b,a
IfIO'" d,b
lftOV lhC

;and
clear-

each
location

line
Jget ar9S

tal J DE of leJTI}

;put one set of endpoint data in DE in
; format: D = x = ar92, E ::: y =~ri3

call put ; Fut UP ()n~ endpoint at Be .
Ida ir-s4 ;put oth~r· ~ndpoint da.ta. in til·
IMV c,a
lda dr'sS
11I0V bta
call put ; (but first Fut UP the poitJt fro!:! ftC)
mov th b
II'I(lV 11 c
call liner ;now connect them •••
pOP b
r'et ;alJ done.

lintr= mCN a,d
sub h
call abs
cpi "') ..
jne Jine2 ;are p(drlb far- eMu9h aFar·t

;in both dim~n$jons to ~arrant
mov a,~ ;dra!llins a line?
sub J
call abs
cpi "') ..
jnc line2
r€t ;if MIt, return.

1 ioe2: call midF ; find midpoint
call put ;put it UP

push d ;set UF recursive calls
mov d,b
mov e,c
cal1 liner
xthl
cal1 1 irlfr'
xchg
flOF h
ret ;and we are done!

...
midp: push h

plJsh ,d

mov a,h
sub d
ani 1
jz mid3

mov a,.h
emp .. 1,
jc

.~
f/'fid2a

. ior d
imp mid~f

mid2a: dcr' h

mid3: mov a,]
sub e
arli 1
jz mid4

meN a,1
emF ~

jc mid3a
irlt e
j/TtP mid4

mid3a: dcr

lfIid4= mov a,h
add d
ora a
r-r-c
mov b,a
mov Q,11

add ~

ora. a
r-rc
metV (,if,

FOF d
FOF h
ret

put: Fush h
Fush d
me,v a,b
lhld YSiZi
xchs
Ihld Fbase
inr a

put!: dcr- a
jz Fut2
dad d
jmp put!

Fut2: rrlOY e,c
mvi d,Q
dad d
lda us!
mov m,;J.
POF d
FOF h
ret

abs= (Ita a
rp
C/Tt~

inr- a
ret
ENDFLINC

FUNCTION plot
ca)} inhak
lda ar-g!
lhld nize
XCb9
Ihld FDase
inr i

Flott: dcr- a
jz Flotc
dad d
J'IP plljt1

plotc: Ida ars2
mov e,a
mvi d,(l
dad d
Ida ar-s3
IOV lfhi

ret --

ENDFUNC

FUNCTION
call arshak
push b
Ihld ar5l2
xchSi
lhld ysize
call usmul
XCh9
Ihld ant :3
dad d
xchs
lhld Fbase
dad d
XCh9
Ihld af's1
mvi b,O
Jda aT'94
ora. a
jz txt2
mvi b,BOh

txt2: mov a,",
e,ra a
jrlz txt3
FO' b
r-et

txt3: ora b
stax d
inx h
iTiX d
jmp txt2
ENDFIJNC

Index{sths.ubstr)
char *str, *substr;

FUNCTION
can ar9hak
thld ars!
XCh9

lhld an·2
dcx d

index!: irl)(d
1 da)~ d
or-a a
Jnz iridex2
hd h,-l

t:dpi (It

irldex

;/I'lain str Ftr- in DE
;substr ptr in HL

;H,d of E,tr-?

;y~s. not fc,und.

ret
ind~x2: C~F ITI

jnz indexl
push d
push h

indey.3= inx h
inx d
mov a,m
or-a a
jnz index4
POP d
pOP d
Ihld argl
call cmh
dad d
ret

index4: Idax d
emp III

jz index3
FOP n
PCIF d
jlllP index1
ENDFIJNC

Get 1 int (sh, 1 ire}
char *str;

FIJNCTION
Fush
call
mov
call
push

b
ma3hh
c;,a
Iffi2toh
h

;quick check for dissimilaritv
tloop if not same ri;ht hfre
; iJs~ del J on9 CClmFar~

;end elf :.ubstr-?

; if not: 9(1 (In h:·tios
:else matches
~get startins address of substr
;subtract besinnin9 of str

fand return the result

; cur-r-ent char rr~atch'?

;i f 5CI, ke!p hstin51
;else 90 en to next char

;;et max M. of cha.r-s
; savi' ioJ:

"'
;9~t destIpation addre~s

irl str'

in DE

Jxi
dad
push

h,-150 tuSi SFace b~lcl!il 5hd~ f(.if" Nadirls 1 irle
SF

mav
mvi
Xch9
call
Ill'll

.. vi

c"n
pC,P

in>~

m(lY

inx
POP

mov
copyl: mov

ora
.Jz

h ;save bufhr' addNEs
lih c ;Set max # (If charadHs
c,9itJiri

;put buffer- addr in DE
bdos ;get the input lin~

c~ corll.)ut
e,lf ;put out i LF
bdos
h
h
b,JrI
h
d
c,b
~l1b
a
gets2

;;et back butfH address
;point to returned char count
; .set B equa J to char c (Iunt
;HL points to first .!;har-of 11M
;[1£ Foinb tCI_star·t dHtinatic,n af'~a
;Sive char cQunt in C_
; CCIPY I in-eh st~r·t of buffer-

mov a,ri
stax d
inx h

inx d
dcr- b
jmp COpy 1

9~ts2: xr-a a. ;stor-e t~r-minating null
sta>~ d
moy I, c ;r-~bJrfj char count in HL
mvi h,O
PCIP b
r~t
ENDFUr~::

l * LCHECK by Ri cbard c.I'

LCHECK dis,lays totflt vser the nestins Itvel number of tach
BEGIN/END ({I}) ,rOUPt tbtreby he)pi •• him to identify problea areas
in his C prO.'IIS. It recognizes quoted literial a.nd comments a.nd
ignores (and } witbin tnese.

*/

#define vers. 12 1* Version Number */

linclude

idefine SSC~lLl TRUE 1* Set TRUE for- SIrlooth Ser'cil linE' on TVI 950 *1

'define quoh
"define dquclh
Idefine liS
#define TAB
#define IF
#define CR
#define YES
#define NO
#define (lvfl
Idefine Movf}

O'X27
cr-..a2
Ox-OS
Ox09
(1}.'(Ja

OxOd
"V'
lW
YES
NO

1* Sin91e Quote *1
If DoubJe guot~ */
1* Back Space Char II
1* Tab Char *1

, If Line Feed Char *1
1* Carr'ia9f: Return Char *1

if Line Overflo~ *1
1* No Line ~ierflo~ il

char iobuf[BUFSIZ1;
iot hve}, chval, PCtS, T/r'outines;

main (ar-9C 1 ar';v)
iot usc;
char- ffUSV;

{

if(arsc == 1} {

FF'intf(IJLCHECK, Versic!ri Zd. i:d\rj" tVtrs/lO: v~r-s~1(I};
printH "ForD'lit of Command LiTt~ is --\n ll H
Pl'irttf(It LCHECK fi lHlame. typll);

exit (FALSE);

if (fOptn(aF'9v!1], ic,buf) == ERROR} {
Frintf(uCarlnot Find File 7.s\n ll ,u:tv[1]};
f:xi t<FALSEH
}

if (SSCROLU F-rintf{"tc;~cl',ESC,/S-'H If: Smooth Scroll *1
printf(IILCHECK, V~rsion i.d. i.d -- File: ls\nll, vtirs/W,

vel'st.l0, ar-sv[1]); .
levi} = 0; flNlutirles = 0; l* Init flH,tiTt9 levtl, routine CCilJrlt */
prleve}0; 1* Print levil (lumber' *1
do {

setHO; If Get ni:~"<t chai' *1
if <chval == quote) do { 1* If quote, flush to end ~u~te *1

setitO;
} while {chval !=quote};

if (chval == dquote) do { If If dctuoh, flush to dCH.ioh f:/
setitO;

} ~hile (chval != dqu~te);
if (coval == 1/1) { /f Possiblf: com~tnt */

getitO;

\ .'

if {chval = "."} { it Yes, it is a commerit *1
ietit(};

l,
J

dc,ne = FALSE~
do {

if (chila 1 == '" *'") { 1* End "lll'ilUerlt'? */
9~tit(};

iF (chvaJ == 'fl) 1* Yes *f
dc,n'2 = TRUE;

J
else getit()~

} whili Udone);
]-

if (chva) = I{"'} J.evel++; 1* BEGIN I!
if {chval = lJ.'} { 1* END if

lev~ 1--;
if (leVil = O) {

nr-c,utine.s++;
prirltf("\nff Routine %d **II~ or-outio-!:H

}

} ~hile (thva} ~= CPMEOF} && (chva) != ERROR}};

Frintf{U\nProsram Level Check is II);

if (level = 0) Frir,tf("Of(IIH
else printf(UNCIT (~H}1

pr-irttf(H\nNumbtr- of Routines Encc,urltu€'d: j!d il
, --nr-01Jtines H

if (SSCROlL) pl'intf(nXcik ll
, ESC, .'91

); l* Hard Scro 11 *1

setitO If Get and EchCt Character *1
{

]-

chva} = getc(iobuf}~
if ({pos }= TWIDTH} ~ {chval != eRn FrhveH,)vfl};
if (chval != CPMEOF) echo{chval);

echo<chval} /f Echo Cbar with tabulatIon 1/
char chval;
{

switch <chval} {
cas~ TAB: Futchar(' I}~ F~S++;

whil~ (Fo$~9 != 0) {
Futchar- ~~. ...};
Fos+H

br~ik;

case BS : FlJtchar-CBSH
F05--;

break;
case LF : Frlevel(noovfl};

br'eak;
case CR : putchar(CR);

FOS = (I;

default
break;
if (chvaJ)= .' /} {

Futchar (chva 1);
?os++;
}

br-eak;

}

}

PJ'"leve1 (ovfl_fla9) 1* Print Live1 Numb~r- and S-et Col CClunt *1
char ovfLflas:
{

}

putcbadLFH
if {Jive) (10) Frintf(1! 1.d",hvel};

~lse printf(N%d",level);
if <ovfl_fla9 == YES} putchar(/-'};

e he putchar-i·': I); -.
put char {I l};

pos = 5;

;The se9ment is now.oved to hish melIOr-v: but not
fPfoperlv relocahd. The bit table which sPtcifies:
;which addresses need to be adjusted is located
Jjust after the last byte of the sourct segment,
Iso (HL) is now pointing at it.

POP D ;be9innin9 of newly moved c~de_
LXI B, SEGWU 1 eAlth of Se9mtnt
PUSH H ;save pointer to rfloc info
MOV H,D ;offset page address

FIXLOOP:
;Scan through the newly moved code, and adjust any
;NgeaddOrtSSfS by addin9 (H) to thea. The klord on
;top of the stack points to the next byte of the
;relocation bit table. Each bit in the table
;corresponds to one bytt in the destination code.
tA va.lue of 1 indicate, the byte is to beadjushd.
;A value of 0 indicates the byte is to be unchanged.

;Thus ont byte of relocation information serves to
;lark 8 bytes of object code. Tht bits which hav~
;not been used vet are saved in L until all 8
;are used.

NEXTBYT:

I10V
~
JZ
rex
HOV
ANI
JNZ

A,S
C
FlXDONE
B
A,E
om
NEXTBlT

;test if finished

; count dOli:r,

;on 8-bvte boundrv?

;Get another byte of roelocation bih
Xlt-l
t10V A,M
INX H
XTHL
ffJV L,A ; save in roe9ishro L

L,A
HEXlADR

;CARRY was = 1. Fix this byte.
LDAX D

;remainin9 bits from L
;next bit to CARRY
;save the rest

ADD H ;(H) is the Pise offset
STAX D

tEXTADR INX
J1P

FIXOON£:

D
FIXLOOP

;Finished. JUIP to the first address in the new
;St9atnt in high memory.

~First adjust the stack. One 9arbagt word was
; lift byfixloop.

INX SP

INX SP

;(HL) still has the pase address
MOV l,A ;move Ziro to 1
PCHl. ; Stack is Vi 1i d

SETUP: .
;Anv one-shot initialization code 90es here.

LXI H,NOLOAD
SHLD CCPINt! ; Pr'ever,t r'untry

CAt VER ; Test ver'sic'f! of CP/M in 'JH-

CPI 20H ;2.0 or better?
JC BADVER ;No, bitch and quit.

CALL REPARS ;Re-parse command line

LXI D.,t1Et1B£R+9 ;Check Member filetyp~

LDAX D
CPI ' " ; If blank,
BLI<J'(I\I ,ctltt.IT, 3, Z ; default to C~.

LXI D,LBRFIl+9 ; Check 1i btar·y fi I et'ipt
lDAX D
CPI .' , Uf bJaf'Jk,
BLKtlOV ,LBRLIT, 3, Z J default to LBR

LXI D,LBRFIL+l ;Check narce
LDAX D
cpr I' I' ;If blank,
BLOOJ ,DFlTNAI1,S,Z ; use default name.

DIROPN: ('PM OPN,lBRFIL ;Open for directory read.
INR A ;Was it found?
JNZ DlROK rVES, ok
LXI H,lBRFIL ;No, test drive spec
t10V A,r1 ; to see if it-'s
ORA A ; t:-~pl iei t
""'Z NODIR ; It is explicit. OIJt (I f J IJck
Il\R tt ;It was defaulted. look on A:
M> DIROPN ; before 9ivins UF.

DIROI<=
CPf1 [It1A, TBlfF

FINDt1BR=
CPM FRD,LBRFIL ;Rfad the dir'ectorv
ORA A
I..tNZ FISHY ;EmFtv file, Give UP.
LXI H,TBUFF
f(IV A,M
mA A
'"'U FISHY ;Directorv not active??
twI B,S+3 ;Check for blanks
tfJI A,' $

VAL I DLOOP:
INX H
CHP M
101HZ FISHY
OCR B

..INZ

LHLD
MOV
(fRA

JtIZ

LHLD
DeX
PUSH
Jtf

FINDttBRL:
POP
MOV
ORA
JZ
J)CX

F1JSH
('PH
ORA
.J4Z

fINDHBRl:

(£fLOC::

CALL
JZ
OCR
JZ

LXI
DAD
Jf1P

POP
XCHG
MOV
INX
MOV
XCHG
StU
XCHG
INX
I10V
INX
t10V
XCHG
Stt.D
CAlL
CPM
RET

VAlIDL.OCf

TBUFF+1+8+3
A,H
L
FISHY

TBlfF+1+S+3+2
H
H
FINDJItBRN

H
A;H
L
NCtteIB
H
H
FP.D,LBRFIL
A
FISHY

H,TBUFF
C,l28/32

COt1PARE
G'ETLOC
C
FINDHBRL

D,32
D
FltOfBRl

; Inde)~ must be 0000

;Gtt dir'ectot'v Sii£'

HJe a 1 ready r-tad on~.
;Save Of, stack
fJUIIP into loop

;Read ~ectot cour,t fr-oJiI TOS

;0 ?
;Melber not found in library
;Count dOIlm

;and put it back.
,Oet next dir-ectclrY sector-

;Point to buffet.
;Number of directory entries

;Cbeck if found y~t.
~Found member in .DIR

;No match~ point to next one.

;The nam! was found now set index and len9th
B ;Clear stack garbi'.

;Pccinter to sedor- addr-ess.
E,M ;Get First
H
D,M

INDEX ; Save it

H ;~t Size to DE
E,M
H
D,M

; Size to HI..
LENX
PACKUP ;Repack co.and line ar9uments
CON,eR ;do (cr) only (look like CL~)

End of setup ..

Utility subroutines
NEGDE: ;DE = -DE

HOY A .. D

REPARSE re-parses the fcbs from the command line,
to allow the "-" charader to prefix the library naM

REPARS: LXI
CALL
LXI
CAlL
UI
r(tV

tfJI
XCHG
DAD
INX
MVI
XCHG

SCANBK: INX
MOV
ORA
• ..IZ
CPI
JZ
CPI
JNZ
INX
LXI
CAlL

NOllER: LXI
CAlL
LXI
I'1VI

a..SAVE: INR
JllV
STAX
INX
INX
CPA
JNZ
MOV
STA
RET

D,f'lEf1BER
NITF
D,LBRFIl
NITF
H,TBUf'F
E,H
D,O

D
H
H,O

H
A,H
A
HELP
' ,
SCANBK
l' ... '

tllTLBR
H
D,I..BRFIL
GETFN
D,f1Et1B£R
GETFN
D,HOLD+l
B,-1
B
j.\,M
D
H
D
A
CLSAVE
A,S
HOLD

;first reinitialize both feb;

;store a null at the end of
; the command line (this i$
; done by CPIM usuallY, except
; in the cast of i full 'o~-
; Hnd lint

;tbuff pointer back in I'll
;bulP to next char position
;fetch next char
;reached a null? (no ars~nts}
;interpret as a call for help
;not null, skip blanks

; library name specifiu?
;skip if Mt
;it iST skip over flas character
;PirSi library name into FeB

; now Pir'se the cOMand na~

;pnt to temp storase for rest of cmd line
Hnit a counter
; bUIIP UP count~r'

;fetch i char
;lfIove it to hold ar'ea
; bump pointer's

;test whether char ~s a terminator
; continue moving 1 irJe if not
;it was, 9tt count
;saVi it in hold area

PAOKUP retrieves tbe command line stored at
HOlD and moves it back to tbuff, then rePifses
the default file control blocks so the command
will never know it WiS run frOM i librarY

PACKUP: LXI
t10V
tWI
INX
INX

~point to length byte of HOLD
;get length in PC

; bump UP to because length b't'h doesoo··t
; includi< itself or· null terminator

BlKI10V
LXI
LXI
CAlL
LXI
CALL
RET

TBUFF
H,TBUFF+l
D,TFCBl
GETFN
D,TFCB2
GETFN

U~ovin9 everybody to Tbuff
;point to th~ command tail
;first parse out tfcbl

'then tfcb2

Here when HELP is requested (indicated
bY LRUN with no arguments)

tRP: CPJlt
EXIT: ULD

SPHL
RET

foLPt1SG:DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

COMPARE:
PUSH
I'tVI
xoo
LXI

COI1PAR1:
LDAX
CttP
I.INZ
INX
IHX
OCR
JNZ

COtfEXIT:
PCP
RET

;print th~ HELP ~ssage
;find CCP rt-entrv adrs
; fix It f'etutn

CR,LF,"Correct syntax is:"
CR,LF
LF, TAB, -'LRUN [-{1 brnUl~)l (cClJDIJIand line)"'
CR,LF
Lf, "'Where <1brnimf) is the ('Ptional Hbrar'Y nam~'"
CR,LF,-'(Note the preceding "_H.) If omitted,'"
CR,LF, 'the default CC'llJiU,d library is used
LF
CRrLF, -'{co_rid line;' is Ute naae arId Far'itihrs"
CR,LF,'of the cORand being run from the libr'an,"
CR,Lf,'" just as if a seFar'ate .COM fi 1e were beins run
CR,LF,"$'

;Test status, name and tvpe of
H ;a directorY entry.
Bf1+e+3

;with the oni' tIIi.rr'e

H,telBER n ookir.9 for.

D
M
COtfEXIT
D
H
{f

(;(WARt
;Rtturn with DE pointing t~

H :last match + It ind HL still
Jpointin9 to b~sinnin9.

File nile parsing subroutines

; setfrf sih a fi le nallt fr·olfl text pl)inhd t(t by N:9 ht into
; an feb pointed to by reg de. leading dflil'ltters are
; ignOf'ed.
: entry hi

de
; exit hl

first character to be scanned
first byte of feb
cbaract~r fCt 11 (Iwi fIe fi 1 e nUte

r£TFN: CAlL
CALL
RZ
CAlL
CALL
RET

NITF ;init 1st balf of feb
GSTART ;scan to fir-st cbar"acter- of flime

;end of tine was found - leave feb blank
GETDRV ;get drive spec. if present
GETPS ; get prilliiry and secondary rlame

; nitf fiJls tt~ feb with dflt info - 0 in drivi field
; all-blank in name fie1d, and 0 in ex,sl,s2 and rc flds

NITF: PUSH D ;save feb toe
XCHG ;aove it tel bl
t1VI ",(I ;zap dr field
INX H ;bump to name field
ttYI S,l1 ;zap all of nar~ fld

NITLPl: ttVI tI,' I

IHX H
OCR B
JNZ NITLP!
f1VI B,4 ; zero other-s

NITlP2: I'IVI ",0
INX H
OCR B
• ..IHZ NITLP2
XCHG ;reshre hi
POP D ;restore feb pointer
RET

; gstart advances the text pointer (reg bl) to the first
; non delimiter character (i.e. ignores blanks). returns i

; flag if end of line (COb or ';/) is found while seining,
; e~,<i t h 1 pointing to fir-st non del imi tEtr-

a clobbered
zero set if end of line ~as found

GSTMI: CALL eaCH ;see if pointing to deJim?
RNZ ;nope - return
CPI ~ . ./ ; end c.f J ine? ,
RZ ;YUP - return wlfli9
OOA A
RZ ; YUP - r-etur-n wI f 1.9
INX H ;nope - move over it
JttP GSTART ;and try next cbar

; getdr-v Checks for the presence (If a drive SPtc at the hxt
; pointer, and if present formats it into th~ feb ind
; advances the text pointer over it.
; entry hI text pointer

de pointer to first byte of feb
; exit hl possiblY updated text pointu

de pointer t~ second (pri~arY nam~) bvt! of feb

C£TDRV: IHX D ;point to name if spec not found
INX H ;}ook ahead to see if I:" present
mv A,h
rex H ;put back in case n~t present
CPl .Ie" ;is a drive SPeC present? .

RNZ
KOV
SUI
DeX
STAX
INX
INX
IHX
RET

A,f1
lA"-l
D
D
D
H
H

; ntcpe - r'eturn
;YUP - get the ascii drive name
;convert to' feb drive spec
;point bad to dr·ive spec byte
;store spec into feb
;point bad: to name
;skip over dr'ive nam~
;and ovtr .':.1

; getps 9tts the primarY and secondar'Y nues into the fcb.
; entry hi text pointer
; exit hi cbaracter followin9 secondary nam~ (if present}

GETPS: I'WI
CAlL
tt)Y
CPI
ANZ

INX
FTPOINTU1OV

ORA
JZ
INX
OCR
JI1P

C£TFT: t1VI
CALL
RET

C,S ;111.,(lengtb of prilir'Y nale
GETNArt ; pack primarv nUf into feb
A,f1 Uee if ter.inated by a period
l l .

;nope - secondary name not given
;return default fblanks)

H ;yup - move text pointer' over' Fcer-iod
A,e h'uP - update feb pointer to secondar'Y
A
GETFT
D
c:
FTPOINT
(,3 ;max l~n9th of secondarv name
GETNAM ;Pick secondary name intO' feb

; seton copies a naH from tht text poinhr' intO' the feb fvi
; a given aaxiaul len9th or until a delimiter is found, which
; ever occurs first. if lor'e than the maximum number (If

; characters is present, cbaracters are ignor~d until a
; i. delimiter' is found.
; entry bl first character of n~ to be scaned
, de pointer into feb name field

(

; exit hi
de
c

CETHAH= CALL
RZ
INX
CPI
JZ
STAX
INK
OCR
JHZ
Jt>

Af1BIG: MVI
\IFILL: STAX

INX
OCR
~Z

GErDEl: CALl
RZ

maxillUl'l I ensth
pointing to terminating delimitar
next elPty byte in feb namt field
max length - nUlber of characters traoiftred

.GETCH

H

AMBIG
D
D
C
GETNAtt
GETW.
At l ?"
D
D
C
QFILL
GETCH

;are we pointin9 to a delimiter vet?
lif so) name is traosfered
;if not, move over character
;ambi9iou5 file reference?
;if so, fill the rest of field with 1'11'
;if not, just COpy into name fieJd
;increment n~ field pointer
;if name field fuJl?
;nOPf - kltP fillin9
;YUP - ignore until deliQiter
Hi 11 character- for wi ld eir-d match
;fill until field is full

;fall tbru to in9or-e fest of name
fpointin9 to a delimiter?
;VUP - all d!lflf

INX H fnope - ignore antohtr ont
.JfP CETDEl

; sitcb gets the character pointed to by the text pointtr
; and sets the zero fla, if it is a delimiter.
; entry hI text poir,tet
; exit hI preserved

a char'acter at te;d poinhr'
z set if a deli.iter

f£TCH:
ttOV A, 11 ;get the character
CPl ' , .
RZ
CPI I .' ,
RZ
rPI .I • • ~ ,
RZ
CPI .' I

RZ
CPI .": ...

RZ
CPI ":"

RZ
('PI '('

RZ
(:PI .t-,l

0'

RZ
~A A ;Set zero flag ~n end of text
RET

; Error routines:

BADVER:
C.ALL ABEND
DB "Can t rUfi under CP/M L4~'

NODIR:
CAlL ABEND
DB 'Library not found'
DB "$'

FISHY:
CALL ABEND
DB "Name afhr tt_JI isn t a librar-y'-

D8 '"

CAlL ABEND
DB 'COIdttif,d not in director-Y'
D9 '$'

NOlOAD:
CAlL. ABEND
DB "No program in lleIJiOf-Y"
DB $

NCFIT:
CALL ABEND
DB "Pro,rUt too large to 1 oad.l
DB i$.1

[fl TNAttc DB
lBRlIT:D8
• ,
ABEND:

CPt1
POP
CPtt
CPIi
~
.JtP

ABTt1SG: DB
NBl.IN: DB
SPSAVE:DS

PAGE

I~ I ; (--.chan9~ this if YOU likt--­
"'L8R'"

jIfSG,NEWLIN
D
t1SG
DEL,SUBFILE
t1$G, ABTMSG
EXIT
...... ~TED.$'
CR,LF,"'S'
2 tstack Fointer save

;Adjust Jocation counter to next 256-byte boundry
@BASE (fiG (S + OFFH) AND OFFOOH
RBI.. SET 0

~ The ses.ent to be relocated 90es htr~.
; Any position dependent (3-bvte) instructions
; are handled by the fiR" macro.
1******'***********************************1******
R

R

LBROPN:

<Ut..D
""I
ADD
I10V
ADC
SUB
t(IV

REPT
DAD
£NDtt
XOO
CAU.
<LXI
DAD
M;

LENX) ;Get hl't9th (If .COM mertber' .. h had.
At TPA/l28
L ;Calculate highest address
l,A ;To see if it will fit in
H ; avai 1 ab 1 e memory
L
H,A
7
H

NEGDE ; IT'S STILL IN LOW Ma10RV
H,PROTECD
D
NOflT ;Haven't overwritten it vet.

; The hbr'arv fi Ie is sti Jl oper,. Tbi OFef. FCB has been
, loved UP hert into high memorv with the loader code.

R (LHLD INDEX) ; Set UF for' r'andoll r'eads
R (StU RANOCfD

XRA A
R (STA . RANOOtt+2>

LXI H,TPA
R <SHLD LOA[IDR)

; This hi9h atmorr address and above, incIudin9 CCP, mU5t b~
; protected from bein9 overlaid by loadad prosram
PROTECT:

lOADlOCP:
R <Ui.D

t(tV

ORA
R {.JI

Del

lENX}
A,l
H
LOADED)
H

;load that sucker.
;Set if done vet.

R

R

R

R

R

R

R

R

ERR:

R

R

LOADED:

lDt1SG:

(SHLD

<UlD
IllV
I1lV
LXI
DAD
(SHLD
CAt

<LXI
CPt1
ORA
<JNZ

<LHI..D
INX
(SHLD

(JttP

11\'1
STA
LXI
SHl.D

<LXI
CPt;
<LXI
CPM

C.ftt
CPr1
..J1P

DB
INDEX DW
lENX DW
SUBFILE:

LENX)

LOADDR)
D,H
Efl
B,SOH
B
lOADDR)
Dt1A

D,LBRfIL)
RRD
A
ERR.">

RANDOtt)
H
RANDOO

LOADLOCf)

Ad ,-tIP }
TF-A
H,BOOT
TPA+1

D,lDM'3G)
I1SG
D,SUBFlLE)
DEL

Dt1A, TBtfF
CON,LF
TPA

;but use old value (DE)

;Read the sector
10k?
;No, h.i 1 out •

..
~Increment random record field

Wnti J done.

;Prevent execution of bad code

; Abort SUBMIT if in FT'09r'ess

;Restc.re Dt1A adrs for- user F9D'1

;Turn UP i new line on c~nsole

DB 1,~$$$ SUB/,O,O,O,O
;If used, this FeB will clobber the following one.
4but itJ's only us.ed on a fatal error, anYWaY.

LBRFIL:
DS
DB

OVERLAY SET
RANDOM OS
I1Axt£t1 [IS

LOADDR OS

32
o
$

3
2
2

;Name placed here at setuF
;Normal FeB plus •••
; (Nothins past h~re but [~/sj
f ••• Random access bytes

;**f**
;End of se,ment to be relocated.

If OVERLAY EQ 0
OVERLAY SET •

ENDIF

PAGES EQIJ

SEGLEN EQU

eRG @BASE+SEGLEN
PAGE
Build the relocation infor'mation into i

: bit table illtdiate}v followins.

@X SET
@BlTCNT SET
@RlD SET
@NXTRlD SET

RGRND

REPT
IF
NXTRLD
EtIDIF
IF

IX SET
END IF

@BITOO SET
IF
DB

@X SET
ELSE

@X SET
ENDIF
ENDf1

rfB
HOlD: DB

OS
I£PfBER:

DS

(J

o
??Rl
2
i.@RlBl+l

SEIl.EN+S
tBITCND@RUr
XtNXTRlD ;oext value

@8ITCNT=lRLD
@X OR 1 ;aark a bit

tBITCNT + 1
@BITCNT MOD 8 : 0
IX
o ;c1ear' ho1d varia.ble for I'IIOre

@X SHL 1

o
0,0
128-2

16

;0 lensth, null terminator
;rest ~f HOLD area

END CCPIN ,-

If

II

Line "iater fetlltt.r

Written by leor ZolllR
f1ay 28, 1980

First prints all files n..,4 on the ctlilad lint, and thea
asks for nllts of lore files to print until I null lint is tYPfd.
C~ntrol-Q aborts current printin9 and SOtS to next filt.

Paper should be positioned ready to print on tha first pa'e; tach
fi 1t is ahAYS pr'inhd ir. if. even number· of PiHS so tbat new files
always start on the same phase of fan-fo1d PiPer.

Tabs are expanded into spaCfS.

#include Hbdscio.h"

'define FF OxOc
'define PGLEM 6b

/f for.feed char'actu, or zer'o if not sUPP(tr·hd *1
/f lines per lineprinter past */

int c01no, Jinesleft;

mairltarlc,ar,Y)
char **ar9V;
{

int i, P9no, fd;
char· date(3(l], 1 inebuHl35J;
char fnbufC301, *fname;
char ibufCBlfSIZ];
char *Sets ();

"no = colno = 0;
lines}eft = POLEN;

/f date arid line buffers */
/f fi1ename buffer & ptr f/
1* buffered input buffer 'I

printf{UWhat is todav's date? H);
Jtts(dahH

whi1t (l)
{

}

else
{

}

fname = *++arsv;
arsc"-;

printf{U\nEnter file to print, or CR if d~n~: U);
if (!fHoame = Jth Unbuf») break;

if «fd = fOPtn(fname,ibuf}} == ERROR}
{

printf(·Can~t OFen %s\n",fname};
continue;

}

for (Plno = 1; ; P900++)
{

}

If

f/

}

putchal'(I'f' };
sprintf(linebuf,»\n\n~~s%-13sX5sX-3dl.~s\n\n\n·,

»file: ·,fna.e,"pa9t ',pgno,date};
linepl'()inebuf);

loop: if {!fgets(linebuf,ibuf» break;

}

if (kbhit() && getchal'() == Oxl!) break;
if (linepr(linebuf)} continue;
if (linesleft) 2) 90tO loop;
formfeed () ;

forllfeedO;
if (P9no 1. 2) fOl'mfeed();
fabor·t (fd) ;

Print a line of text out on the list device, and
return true if a formfeed was encountered in th~
text.

linepr(string)
char fstring;
{

}

char c, fffli~;

fffli9 = 0;
while (c = *str-ios++}

switch (c) {

}

case FF:
ffflas = U
break;

case '~\n"':
putlpr('\r"};
putlpr('\0');
colno = 0;
linesleft-;
break;

case .I\ti:
do {

putlpr('" ...);
colnc,++;

} while (co1no I. S);
break;

default:
putlprC cH
coll'lO+H

if (fffJa9) formfetd(};
return fffli9:

putlpJ'{c)

char' cl
(

}

forft'ffeed(}
{

if (FF} put}pr(FF);
elst while (Jinesleft--) putlpr(/\n/);
linesleft :: PGtEm

; BDS.LIB fett BOSC vl.45 October 14, 1930

; Addresses within C.CCC and the rill _rea to be used b'(machine
; langUige CRl functions.

; If yOU alhr CICce by reassemblinil C(:C.ASt1, be suu tel '0 thr'ou9h
; this file ind like sure all the addresses are e~uated to th~
; a,PFroPT·iah va' ues r·tsu ltin' fr'om the reauel,b J y. Then the library
; functions will be ready to reassemble.

pi,e 76

EOO 1

; Svste. addresses:

if not CPl{l

C:(;C(lW: EG4J WHATEVER ;IF NOT ~ING UNDER CP/M, SET THIS TO LOAD ADl1R,
RAH: EQU WHATEVER2 ;SE1 THIS 10 ~~ AREA,
BASE: EQU WHATEVER3 ' ;AND THIS TO THE BASE OF SYST£f1 MEMORY {"~c.e:'" IS

endif

if cpm
base: equ OOOOb
feb: equ base+5ch
tbuff: equ base+SOh
bdos: equ base+5
tpa: equ base+l~Jh
nfcbs= equ 8
£or-rorv: eCJu 255
eccor,: equ tpa

;THE RE-BOOT LOCATION UN!JER CP/M; FOR NOtJ-CF'IH OPf.R­
H\TH .. "W, IT SHOULD BE SET TO A SAFE PLAC'E TO JlIMI> 10 ON
; ERROR OR lISER-ABORT.

; either' 0 or' 4:;''OOh for- CP/M ::.'stUIS
;defiult file control blOCk
; sector buffer'
fbdos entry pojnt
; transient program if'ia
;max number- of opefl files a.l1(HlIed a.t one tilH
; er'r-or va) ue f'eturned t;y BDOS ca 11 s
;where run-ti~ packaii resides *TESTING*

;*************fff*f§**********************ffff*****
rill: equ cccor,+471h ;THIS WILL PROBABLY CHAtft1E IF YOU CUSTOMIZE erCIASH

endif

eN equ Odh
If: equ Oall
flew J ir,: e~u 1 f
tab: equ 9
bs: equ 08h
cntrle: equ 3

;**********f**H*H********************************

;ASCII codes: carr-iag! return
1 inefted
newline
tab
backspace
contr-ol-C

; Subroutines in C.CCC (tht addresses should be that of the
; appropriate jump vector entry points):

error-: equ cccor-,+ldb 1rt,turn -1 in HU

exit: equ error+3

if ePit

C105fl equ error+6
setfcb: equ error+9
fsfd= equ error+12
f'fcb: elfu error+15

endif

eQwel: equ cccors+Oe5h

slod: fqU eccor'g+ lOfh
uSlflod: equ eccotg+l29h
sflUJ: eCiu cccors+13fh
uSllul: eqIJ cccots+16bh
usdiv: equ CCCCltg+l89h
sdiv: eqIJ cccor9+1cbh

cltphd: equ cCCOtt'+lddh
CIt.: ecru cccorg+1fah
cmd: equ cccor9+202h

fclose all open files and reboot

; set UP feb a.t HL frol. text at DE
;set C accordins to wbether file fd is op~n
;fi~urt address of internal feb for file fd

malton: ecru cccotg+20ah ;get 1st stack et~ment into HL and A
ma2toh: equ cccorg+213h ; 2nd
ma3toh: equ ma2toh+6 3rd
aa4toh: equ ma2toh+12 4th
ma5toh: equ .a2toh+lS 5th
ma6tob: equ ma2toh+24 6th
ma1toh: equ ma2toht30 7th

vshak: equ ma2tc.h+3b ; COpy first 6 (Ir so stack elem::nts to ar9C ar·ea
setdmal equ cccots+460h ;set CP/M internal DrA pointer to BASE+SOh (tbuff)

; The following addresses wi 11 depind on the valua of PM if YOU

; custollize CCC.ASM ••• • be sur'e they corrHPond to the assembly
; results of CCC.ASH in such cases. If YOU remOYi some of the data
; areas from CCC.ASM !in case they arer,-'t needed), be sure to remove

from ber-e at so.

room: ds 30

pbase: ds 2
ysize: ds 2
xsize: ds 2
psize: ds 2

rseed: ds 8

arss: ds 14

iohack: ds 6

allocp: ds 2

;.isc. scr'atch area {for- use by BOS .. " YOU Cin have
;the last ter. bytes (Ir so, though, if YOU r'E-allY
;need them}

;DKA video plotting bast
;screen wldth (t of columns)
;screen length (I of lines)
;screen size (ysize • xsize}

; randoa number seed SCf'iltch irea

;where a.rshak puts ars values off the stack

;storage allocation pointer

aloc;IIx: ds 2 ;hisbest addt u5eabl~ by steff-agl! allocator

; This is the end of the user-customizable area. The remaining
I equated values are not to be a1tered.

; Special loeations in C.CCC cor.tainin9 inhrestin!l Foinhr-s:

extrns: eCfU eccor's+lSh fbase of exhrnaJ data ar'ii (set by CLINK)
(((siz: equ CCCOt9+17h ;size of e.eCt for use by ClINK only
coder.d: eCfU cccor's+19h ;addr!S5 of byh fCtl1owin9 li~t byh' of PNe9rilli c<:td!

; (set by CLINK)
frer'am: equ cccor9+1bh ; first fre! addr'ess aftif' ~xterni 1 iN'i

; (set by CtlNtO

ar91:
a1'92:
irs3:
ar94:
ar!lS:
ar90:

e£tu ar9S
equ a1'95+2
eCfU ar'9s+4
fqU ar95+6
eCfU ans+a
eCfU ar95+10

tap: eCfU room
. tmpt: eCfU 1'0011+1
t1P2: eCfU 1'00 .. 2
tmp2a: eCfU room+4
unsetl: ellu I'oom+b
laste: equ room+7

; BOOS call codes:

if CPI
conin: equ 1
conout: eCfU 2
Jstout: tqU 5
dconio: tqU 6
pstrn9: equ 9
getl in: !'tu 10
cstat: eCfU 11
select: e'tu 14
opene: eq'J 15
dos.c: equ 16
dele: eCfU 19
r-eads: eCfU 20
wri ts: equ 21
create: tQU 22
r-enc= !QU 23
sdaa: e=lu 26
readr: equ 33
writr: eClu 34
chitc: equ 35
srreee: fCfU 36

; these are just eonvenierit rlimes fCfr
;the words in the Uar9s tl area

;SOlDfi scratch data areas used by library
;functions.

; get a char'i<:ter- from eorfSO I e
fwrite a character to console
;write a chuacter h 1 i.st devic-e
;direct console 1/0 {onlY for CP/M 2.0)
; print str'in9 (hrll'tinahd by "$")
1get buffered line from console
;get console status
'select disk
;open i file
; close a fi le
;delete a file
;r'ead i sector' (sequential}
;write a sector (sequential}
;make a file
; rertile fi J e
:set daa
;read random sector
;write random sector
;compute file size
.; set rar.dom record

endif

If:

1/

NOBOOT.C IiIri Hen by leor' Zo Jilin
3/82

Given tt,e name of a C-ser,er-abid COf1 fi It (linked WIth thf standar'd
distribution version of the C.CCC run-tile package), this pto9r-am
cbanses that COM file ~o that it does not perform a warm-boot after
its execution is complete, but instead priserves the CeP (Console
COI:.mand Proceuor) that is in ruemor'Y when eXf!cutiCtn begins ar,d
returns to the OCP directly following execution.

NlTE: If i couand is the object of a piP! operation u5.ins DID,
then a IINlrll-boot wi 11 allla'{s occur after i h e:t.Ecuti{tn, IIIhethitr
or not NOBODT has been applied t~ it.

uin(arsc,arsv)
ChiI' 'far-9v;
{

int fd;
int i;
char- c;
char nambu f[3() J;
char workbuHOxSOO];

if (ar-sc != 2) {

}

Puts(UlIsage: ffClboot «(-gener-ated COM fih fii.1lIe}\n"};
txitO;

for (i=O; (c = ar9v[11[iJ} ~& c != /.'; i++}
nambuf(il ': c;

nambuf[il = '\0';
str'cat (rtallbuf, lI. COM");

if (Cfd = open(nambuf,2)} == ERROR}
puts(l'Cao"'t (lp~n: H H
puts(nambuf);
exi to;

}

i = readffd,workbuf+OxlOO,S};
if (i ~= 8) Fub(IiCouldno't r-~ad in at least ;3 :..:ctor-s \r,i'};

~orkbuf[(~1001 = Ox21;
workbuf[~~1011 ': OxOO;
workbuf[Oxl021 = QA1)O;
t.IIorkbuf£Oxl031 = Ox39;
workbuf[Oxt04J ~ Ox22;
t.IIorkbuf[OxlOSl = Ox79;
workbufCOxl0bJ = Ox05;
t.IIorkbuf[Oxl07J = ~~cd;
workbuf[(rAl0SJ = Ox34;
workbuf[Oxl091 = OxOl;
workbuf[~~lOal = Oxf9;

t.IIorkbuf[Ox12fJ = Ox2a;
workbuf[Oxl30J = (~79;

}

workbufrfr~1311 = Ox05;
, . l1JorkbufEOx1321 = Oxf9;

lIJorkbuf(Ct.d33J = Oxc:9;

workbuftOx1341 = Ox2a;
wor'kbuf[Oxl35J = (Jx(tb;

workbuHO:d361' = OXO(l;
workbuf(0x137J = Oxtl;
workbuf[Oxl38J = Oxcc;
~rkbuf(Oxl39] = Oxf7;
workbuf[0x13al = Ox19;
workbuf(0x13b] = (lxc9;
workbuf[0x13cl = OxOO;
wor'kbuf[O:d3dJ = (lxOO;
tIJorkbuHOxl3eJ = 0)(00;

workbufrOx4431 = Oxc3;
workbuf[0x4441 = Ox2f;
workbuf{Cr~445] = OxOI;

setk(fd,O,O);
if (IlJrih(fd,lIIor'kbuf+OxlOO,S) != 8)

Put$("Write error.\nU
};

f!:dt(H
}

if (closetfd) == ERROR) {

}

if

*1

Jf

*1

NOBOCfT .. C written by Leor Zolman
3/82

Given a list of (-generated COM files (linked with the standard
distribution version of the C.CCC run-time Pickage), this pr09ram
changes those COM files so that they do not perform a warl-boot after
their execution is complete, but instead preserve the COP ~Consol~
Command Processor) that is in memory when execution be9ins and
return to the Ctp directly fol1owin9 ~xecution.

NlTf: If a command is t~e object (If a pipe operatictn usin9 DIll,
then a lIIara-boot will alfiYS occur after its execution, !Jhether
or not NOBOOT has been applied to it_

link by:
A>clink noboot wildexp

(or) A)12 noboot wildexp

Cleaned UP scr·fer. output by use of IJCLEARSu string fro,,,,
BDSCIO.H - if YOU have not confi9ur'ed BDSCIO.H YOU can
comment out the line ·puts(ClEARS);U OR confi9ure BDSCIO.H.

- Larry Cl i Vi

- .S/11132

iiocJude ubdscio.h"

lIair.(anc,ar9V)
cbar Har'!lV;
{

}

int fd;
int H
char c;
thar- nubuH301;
char workbuf(0xS001;
int loop;

if (ar9c == 1) {
pub(IIUsase: Mboot (Jist (If (:-9iAnated COM HI! nifl'i£s)\rln);

exitO;

for (loop = 1; loop (arsc; loopt+)

{

puts{ClEAR$); 1* Sf! second comm~nt above - LC if
puts(8\n\nNOBOOT version 3.0\n\n-=) N(IBOOT-io9 "};
PU ts. (iI'9V[1 OOP 1) ;
putchar(-'\0");

for- H=O; (c = ar-gv(loopUi)i && c
nubuH il = c;

naabuf£il = /\0';
strcatfnubuf, U.cOttIl H

1- " ~-. ,," . , iff)

)

}

}

I.

if (fd = opentnilbuf,2)} == ERROR}
puts(ftCan't open: U);
puh (rtatabu f >:
txitO;

i = rtad(fd,~orkbuf+OxlOO,8);
if (i != S) Puts("Couldn't read in at least S s!ctors ••• \n U

);

workbuf[Oxl(~l = Ox21;
workbuf(Oxl011 = 0A~1;
workbuf[Oxl021= Ox~;
~orkbuf(Oxl03] = Ox39;
workbuf[Oxl(~J = Ox22;
workbuf[Oxl05l = Ox79;
workbuf[Oxl061 = Q~(~;
workbuf(~A107J = Oxed;
workbuf[Oxl081 = Ox24;
ltfOr'kbuf[Oxl09J = 0)..1)1;
workbuf[OxlOal = Oxf9;

wor'kbuHOx12fl = 0:>~2a;
workbuf[0x1301 = (~79;
w9rkbuf(Ox1311 = OXOS;
workbuf[0x1321 = Oxf9;
wor-kbuHO>:1331 = Oxc9;

~orkbuf[Ox134] = Ox2a;
lIor'kbuHOxl35] = OxOt.;
workbuftOx136J = ~«~;
workbuf[0>~137] = i)xll;
workbuf[Oxl3$J = Ox,,;
workbuf[Oxl39J = ~xf7;
workbuf[0x13al = ~A19;
workbuf[Ox13bl = Oxc9~
workbuf[0x13cl = OxOO;
wor-kblJf[O:d3dJ = OxOO;
workbuf[O~d3tl = OxON

workbuf[Ct~4431 = (~c3~
workbuf[Ox444J = ~~2f;
tltor,kbuf(0x4451 = OxOl;

seekUd,O,O) ;
if (IiIrih(fd'''''''''kbuf+O)~10(I,S) != s} {

puts("Write error. \n ll
,;

exitO;
}

if (close(fd) == ERROR) {
Puts(UClose error\nU

};

}

Floating Peint Pad:as£' for 80S C
*11111 ••• *************111****11*
Written by: Bob Matbias
this doc by: lec-r' Zo l.n

COmPonents of thi floatins point Fickage:

1 } FLOAT • DOC: This documentation file
2) FLOAT.C=
3) FP:

File of ~uPPort functions, ~'itten in C
The workhorse function {in r:EFF2.Cf1J

4) FLOATSlIt1.C A SamFle us-£' of all this stuff

Here's how it works: for· every floatin9 point number­
YOU lIIish to work with, YOU must declar-e a five (S) elemtnt
character array. Then, pass i pointer to the array !.IIhenev~r

YOU need to specify it in a function call. Each of Bob"'s
functions expects its arguments to be pointers to such
character aN·ays.

The four basic arithmetic functions are: fpadd,
fp5Ub, fPflul and fpdiv. They each take three ar9umenh: i

pointer to a. fi Vi character· ar-ra'(II1her·e the result wi 11 90,

and the two operands teach a pointer to a five character array . .
r'epresentin9 i floating point oper-and.}

NOTE THAT THE RESULT MAY BE PLACED INTO EITHER OF THE ARGttEMENTS
WITH NO ILL EfFECTS. I.e., the opera.tion:

fpmult(foo,foo,foo);
wi11 s.uccessfully sqlJart "'foo" and place the f'Hutt ir, "'fo~·'.

To initialize the floating point character arrays to th~
vaJues YOU desire and print out tnt- values in a hlJm;m-readabl~ for-1ft,
the following functions are included:

ftoa: converts a floating point numb~r to an ASCII
string (whjch YOU can then print out with UputsU)
NOTE: explidt use ~f this. flJnctiofi has been madi

obsolete by the new Usprintf." See FLOAT.C.

atoH conver·ts. an ASCII strins (null hr'mirlated) to
a floating point nuaber

itof: converts integer to floating Foint.

Here ire Bob's descriptions of the functions:

The fol1o~in9 functions allow BDS C co~piler users to access
and manipulah real number's. Each real number' must be all ocated
a fiv~ (5) byte character array (char fpno[S]). The first four
bytes contain the mantis~a with the first byte beins the least
significant byte. The fifth byte is the txponent.

fpcoltP(opl,op2}
cbar opl[S],op2£S);

Retuf'ns=
an ifltiger 1 if opl) oF2
an inte$~r -1 if opt (OPL
a zero if op1 = op2

As fIIi th ftost floating Pt)int Facka9u, it is Mt
a. 900d Pf'adici to ("IlJPare f.')r· e=lUatih' whiin
dealing ~ith floatins point numbers.

char ifpadd(r'esult, op1, op2)
char- result£S], opl[S] , op2[5];

Stores the r'isult of opt + (fP2 iTt result. opt
and op2 must be floati[19 point numhr's.
Returns a pointer to the b~pinnin9 of result.

char *fpsub(result,opl,op2)
char- reslJl US], opUS], op2£S];

Stores, the NSUIt (If op1 - op2 in result. opi
and op2 Itust be floatin9 point rlumbers.
Returns a pointer- tCI the be9inrJins (If resu 1 t.

char *fpIlJult(result,opl,op2)
char resultCS],op1[5],op2£S];

Shr-es the f'esult of opl f (IF·2 iTI TH·uIt. oF1
and op2 must h floating point numbfl"s. Return:
a pointer to the besinning of result.

char ffFdiv(result,opl,op2)
char f'esult£S],Ctpt[S],op2fS];

Stores the result of (Ip·l I op2 in re.:.ult. ~pl

and op2 must be floating point numbers.
A di vi de by uroo wi 11 r-eturr, :zero as rU·IJ J t.
Returns a pointer to the b~9innin9 of result.

char fatof(oFl,sl)
char OF 1£5] , *s;

Conver-ts the ASCII striMf 51 int(, a floating
point number and stores the result in OF!.
The furiction wi 11 i9TJCtT'f! Jeadin£l IJJhih SPiCi

but tJO white_space is al1o~ed to be embedded
"Hhin9 the r,umber·. Th~ foUollJiMl ar-e legal
exaIPles=
"2" , H2202.~2222:.fS3. 333", "2.71 S28!-'1" ..
»334. 33'..:f3E32 It •
"3443.33 El0" would be ILLEGAL because
it contains an embedded space.
The value of the exponent must be within the
ran,e: -38 {= exponent (= 38.
A pointer to the result is returned.

char fftoa(sl,opl)
char *s1,(I,1[51;

Converts the floating point number opt to an
ASCII string. It will be formatted in
scientific notatiorl lIJith uven (7} di9ib of
precision. The str-inSl wi 11 be ter'minahd by
a r.u1l.
Returns a pointer to the beginning of s1.

char fitof(opl, n)
cbar op1[5];
int n!

Sets the floating pt. number- (lP1 to th~ vaJu~
of intfger n. n is assumed to hf a SIGt~

integer.

General observations:

Because floatim.l Foint operations must be thought elf
in ter.s of FUNCTI0t4 CALLS rather than simple in-line
expressions, sPfcial care must be takerl not tc. confuse th~

abilities of the compiler with the ab~1itiu of th~ floatin9
point package. To give a fl clatins point rtulFtbu an ird tai I
value, for instance, YOU cannot say:

char- fPDO£S];
fPM = 82.23611

;

To achieve the desired f'Hult, you"d have to say:

cbar fpno[51;
atof(fpflo,-2.23b"};

"oreover, let"s say YOU want to set a floatins point number
to the vatu! of an integer var'iable ca,lhd lIival". Saying:

char fpM[Sl;
int ivaI;

fpno = iva};

will not work; YOU have to change that last line to:

i tof (fpno, iva 1 H

The fc.llowin9 will add 100.2 & -7.99 and shr'e the
result at the five charachr- if-raY locatio~ "a":

fpaddCa,atoffb,ulOO.2B
}, atof(c,·-7.99·})~

(note that lib" and lieu must also be five character
arrays)

The fo 11 owi ns wou I d NOT add 1 to l a ,- as belth opland
op2 lust be floating point numbers_ (a.ctuallY poinhrs
to characte~s •••):

Thus, it can get i bit hairy when all floating
point number-s are reillY char-acter arr·un.; but sti 11, it ... s
better than nothing.

All of the ibove functions are ",r-i ttert in C, blJt
lost of them cil1 a sin91e workhorse function called ftfF"
to do all the really hairY work. This function has been placed
inh the DEFF2.(:RI.J it is the onlY machiM-coded Firt of the
package. ,

.~

If

*1

floating ,oint Pickage support r'outil'lf:s

Note the "fplI library function, avai lab 1e in DEfF2.CRL,
is used extens i ve J y by a 11 the f J oa ti 09 FO i nt numbu
crunching functions.

(see fLOAT.DOC for- dehils)

Unit: After COJAPi J ing your program, 1 ink wi th this 1 ibrary
by tYPing:

A>cJink (your program files) -f float (cr)

NEW FEATURE: i specia.l "pr-intf ll functiCtri has beerl incIudi?d
in this source file for use with floating point
(,perands, in addi hon to the Mf'lflaJ tYPiS. The
printf pr-uented here wi 11 take precideoci e,ver
the DEFf.CRL version w~n "float" is 5PiCifi~d
on the CLINK colrtmarld 1i Of: at li nkaSHI time.
Note that th! "fp" functiCtn, needed by most of
tbe functions in this filet resides in DEfF2.CRL
iDd lIIil1 be automaticallY colJected by CLINK.

All functions hert written by Bob Hathias, except Fr-intf and
_spr- (writhr, by Leor ZoJflin.)

'define NORM_t~DE 0
.define ADD_CODE 1
.define SUB_toDE 2
#d~fir~ MULT_CODE 3
'define DIV_CODE 4
#define FTOA..CODE 5

fpcomp(opl,op2}

{

}

. char *'.11'1, fCrF2;

char wor·H51;
fFsub(work,oPl~op2};

if hlorH3J) 12]} r-eturn (-lH
if (worH01+Workrtl+Work[2l+wc1rkC3)} return {t H
retur'rt (0);

fpRor'm(op1) char- fop1;
(fp(NORt1_CODE, op1, Op 1); r-etur'n(OF 1}; }

fpidd(result,opl,op2)
cha~, fresult,§opl,fop2; _

{ fp(ADfLCOnE, result,.Ctpl, op2); retur-ntr'esult H}

fpsub(result,QP2~opl)

char fresult,fopl,foF2;

fplult(resulttopl,op2)
char frf5uJt,fopl,fop2;

{ fp(ttUlLC'ODE, resul t, op1, op2); retur'n(resul t};}

fpdiv(ttsuft,opl,op2)
char *re5ult,fop1,fop2;

(fp(DIV_CODE,resu) t, op1, op2H rfltur'rl{r'uu ltH}

atof(fpno, s)

{

}

cha.r fPflO[S],ls;

cha.r ffpnorm(),work[Sl,ZERO£Sl,FP_lO£SJ;
int sisn_boolean,power;

initb(FP _10, UO,t),f),80,4");
setmemifpno,5,O);
si9n_boolean=power=O;

while (is==' I II fS=='\t') ++5;
if (*5=.1_,1) hign_boo l~an=l; ++$-;}
for (;isdi9it(fS);++s){

}

fPiult(fFno,fpno,FP_10};
lIIorkrO)=fs- l O';
work[1]=wor k[21=t3or·kr31=t);work(4J=31;
fpaddffpno,fpoo,fpRorm{work});

if (IS=="'. /)(

}

++5;
for Oisdisit(fS);--power-,++sH

fpmul t(fpoo'.fpno,FP _10);
wClrkCO]=*s-"Q';

}

work[1 J=wc,r·k[2J=work£31=O;wor·k[4J=31;
fPidd{fpno,fpoo,fFnorm(work}};

if <toupper(fs} = IE"} {++$.; potier += atoHsj; }
if (powtr)O)

for C;power!=O;--Fower) fPmult(fFno~fpno1FP_l0};

tlse
if (pobJer(O)

for (;poWtt!=O;++p~r) fpdiv(fpno,fFno,FP_l0};
if {sign_boolean}!

5ttmil(ZERO,5,Q);
fpsub(fpno,ZERO,fpno};

}

return (fPM) f

ftoa(r'esuJt, opt)
char fresult,fop!;

{ fp(FTOA-CODE,result,oFl}freturntresult);}

itof(opl,n)
char fOF1;

int n;
{

ct,ar' temp[2Cl;
return atof(oPlr itoa(temp,n)};

ih;(str-,n)
chir fstr;
{

}-

1*

*/

char- *sptN
sptr = str;
if (0(0) { fsptr++ = ;-;; n = -0; }
_uspr(&sptr, n, 10)J
15ptr = '\0';
return str;

This is the special fOl'mattins functioTl7 which supports the
aea ind Bfa conversions as lI1ell as the normal .td lt

, IISft, etc.
When usins Hell or "fJl for-flit, tM corf'esFondim~ ar-9Um!rtt in
the argument list should be a pointer to one of thi fiv~-byh
strings used as floating point numbers by the floatir,9 Foint
functions. Hote that YOU don't need to ever use the "Hoah

functic,n wheft us ins this special pr-intf/spr-intf combination;
to achieve the same result as ftoa, a simple uXe a f~rmat

conversion will do the trick. DY.f" is used to ~Jiminat~ the
scientific notation and set the precision. The only [known]
differenc£' betweerl the He" and Df" cCtnversictns as UH'd heN
and the ones described in the Kernhhan & Ritchi! book is that
ROUN[tING does not take place in this version ••• t. s.: ,PT-intift9

i floating point numb~r which hiPpens to equal ~xict1Y 3.999
using i IIZS.2fD for'mat cor,ver-sion will FN.duce U 3.99" iri:,tead
of u 4.00".

_spr(Jine, fIt)
char fline, fHmt;
{

char- _uspr-(j, c, bast, f5ptr, fformit;
char ubufCMAXLINE), *~ptr7 pf, Ijflis, zffli9;
int width, pri'cisionr exp, tar-;s;

format:: ffmt++;
arBS :: flit;

1* fmt first pc.inti to the format string *1
1* now fmt points to the first ar9 vilu~ II

ubi Ii (C :: ffof'laat++)
if (c == IX'" {

IIIptr' = hlbuf;
preciJion = b;
ljfla9 :: pf = zfflas = 0;

if (fformat == "_I) {
for-lI'Jit+H
ljfJag++;

}

precision = _9v2(&format)~
pf++;
C = ffor-matH-;

i* hst for- nr-I) fi J I *1

switch(toupper(c») (
case "E'~: if (precisior,)7) pr"ecisiorl = 7;

ftoa(wbuf,far9s++);
strcpv(wbuf+precision+3, wbuf+10};
width -= str'hn(llIbuf);
90to pad2;

case 'F': ftoa(hbuHe,(J),lar'ss++);
sptr = twbuf[bO];
while (fSFtr++ != 'E/)

exp = atoi(sptr);
sptr = ~wbuf[60];
if (15ptr == ' I) sptr++;
if (15ptr == "_' j {

}

fWptr++ = l -.,;

sptr++:
width--;

sptr += 2;

if (exp (1) {

fWptr'++ = '0 ;
widttJ--;

}

pf = 7;
"hi le (i)~P) 0 && Ff} {

lli/Ptr++ = *sptr'++;
pf--;
exp"-;
width--;

}

"hile (exp)- O} {
Iwptr'++ = '0"';
exp-;
width--:

}

*"ptr++ = ;
Ilfidth -;

whi 1e (exp { tllt& Frecisiord {
fIlIptr++ = '0';
exp++;
preci!ion--;
lIIidth--;

~ile (precision && pf) {
fwptr++ = *sptr++;
pf--;
pr'ecisiol'l--;
"idth ... -;

}

whi 1e (pr'ecision)i)} (

}

}

}

}

fllJPtr-H = "Cl";
pttcislon":-;
width--;

soh pad;

cast ~D/: if <farSi (O) {
fWptr++ = ~,- ... ;
farss = -farn;
IIidth--;

}

case· Ill': base = 10;9(,h val;

va}: width -: _uspr!&wptr·,fans++7bas.e);
90to pad;

case "C/ : *"ptr++:: foirsS++;
lIIidth--;
9oto F'ad;

case 'S/: if (!pf) precision:: 200;
sptr' = *'irn++;
~hile (fsFtr &~ precision)

*~ptr++ = *,sptr++~
Fr'eei s j or.--;
width--;

pad: fttJPtr = "\(V;

pad2: ttJPtr = wbuf;
if I.! lHlag)

while (width--) Q}
*line++ = zfflas ? "OF:

~hile (*line = ~ptr++)
1 ine++;

if Ojfli9}

while (~ldth--) OJ
*1ine++ :: I ";

else fline++ = ct

! /. .,

1*

*1

New functions for' 8DS C vl.4x: HIFrintfl1 and Iflput;.lI

Writt~n 1/18/81 by Leor Zolman

'include (bdscio.h)
Idefine LISTDEV 2

/f

*1

Formatted (Iutput to the 1 ist d£-yic-e. Usage:
.-

}printf(format, ar91! ars2, •••)
chaT' *fcr-mat;

Works Just li~~ HprintfH, eXctFt the output line is writt!o
to thi lineFrinter instead of to tht console.

}printH format>
char' fformaH
{

}

It

*1

char bet) in(MAXLINE];
_SPf (b~t 1 i Fh &f(trrrta t } ;
1 puts (bd 1 in);

Put a line out to the list device. Usage;

)putshtr)
char *str;

t4clrks .Just 1 ike JI put.:. " , eXc~Ft the ClutFut 1 in~ 9!leS to thi'
printer instead of to the console:

Jpuh·(sh}
char fstn
{

)-

char c;
while {c = *str++) {

}

if {c == "'\n"} FIJtC('\r'" ,LISTDEVH
putc {c, LISTrIEV};

If
CAStLe -. wr-itten b~f Leor' Zolman, 2/82

CP/M ASH preprocessor: renders MAC.COM and CHAt. LIB unnecessary.

See the CASK document (included with BDS C vl.46) for more info.

COlhPile by:
cc casl.e -0 ·e4000

*/

#includt "bdscio.h"

Idefine C~FUL 0

'define TPALOC (BASE+O:dOO)
#define EQUKAX 500
'define FUNOHAX 100
#define NFHAX 100

.define LABMAX 150
Idefine TXT9JFSIZE ~~

Idefine DEFDISK DC:"
#define ~SHEXT D.CSM"
'define A91EXT ". ASH"
#define DIRSIZE 512

1* Settim1 this to 1 makes ('ASM check for-
and reject old QCMAC.LIBJ' p5eudo-ops *1

1* bast of TPA in your system fl
If maximum number of EQU OPS *1
If maximum number of functions */
If maximum number of exterr~l

functions in one function *1
If lM)t number- of local labels ir, Of,! fune */
/f ~(• of chars for labels and needed

function names for a sinsle function If
If default disk for include files ff
1* extension on input files II
1* extension on output files *1
/f max # of bytes in CRl directorY *1

1* Global data used throughout processin,
of th~ intput fil~: il

char fbuf[BUFSIZ];
ch~r incbuf[BUFSIZJ;
char obuf[BUFSIZ];

cha.r fcbufp;
char fcfilnam;
char nambuf[30],

nambuf2£30],
c1nambuf(301;

char fequtab£EQUHAXJ;
int equcount;

char Ifnaaes[FUNCHAX1;
jnt fcount;

int lino,savlino;

char doinsfunc;

char err-g

/1 1/0 buffer for main input filt
1* 1/0 buffer for included file
If 1/0 buffer for output fiJe

*1
1/
f/

1* pc,inter' to cur-tenth active input buf 11
If pointer to nale of current input fila II
1* filenames for current intput II
1* and output files. fl

If table of absolute symbols *1
If • of entries in equtab f!

1* list of functions in the source file *1
If I of entries in fnaaes 1/

II line nUlber values used for etror' */
/f reporting. 1/

1* true if cur-rentlv pr-ocess.ins a furlction *1

1* true if an error has been detected II

If Global data used dur-ins the Ffoce:.siTl9 of a
sinsle function in the source file: II

char fnflist[NfMAX];
int nfcounU

1* li~t of needed functions for a function II
1* numb~r of entries in nflist if

struct (
char· I I abnam; 1* nam~ of function label II
char defined; 1* whether it hiS been defined vet *1

} lablist£lABMAX1;

int

char

char

char
int

char

int
char

chir

If

labeount;

txtbuf[TXTBUFSIZE],
ftxtbufp;

1i nbuf[150],
1 ir,savUS01,
wor-kbuHl50],
pbuf[150], IPbufp;

fcfunu;
relblcf

pastnh;

argent;
*labe 1,
fop,
lir'51iP,
far9s[401;

*9Fcptn

1* nu_ber of Jocal label! in a function *1

1* ~here text of needed function names 1/
If and function labels 90 II

/f text line bufffrs II

If pointer to nalu of cUN'ent function *1
If relocation object count for a function II

If ttue if "e'~ve PiSsed ill needed functior, *1
II declarations (Dexteroal Y pseudo ops) 1/

1* seneral-Furpose text pointer *1

f OPiA main input file, open outFUt file, initialize needed slobals
* ind process the file:
*/

main(aar9hCtiarshv}
char *faar'shv;
{

int i,j,k;
char c;

Fuh(NBD SoftWare CRl-for'mat ASM Prepr'octuor vl.4b\nlt};

initequ();
fCClunt = 0;
doiosfunc = 0;
er'rf = 0;

if (aargh, != 2)

1* initialize EQU table with reserved liIor·ds '*/
1* havfm1t Htn aftY functions· vet */
If not currently processing a function 1/
1* no errors yet II

exit(puts(HUsage:\ncasm <filename)\nM)};

1* set UP filenames with proper extensions: *1

for- (i = 0; (c = aarshv£1][i]) &tc c ! = I.'; i ++}
nambuf[il = c;

nambuf[il = '\0';
strcpv(onambuf,nambuf);
strcat(nambuf,CASMEXT); If inFut filename */
cbufp = fbuf; . /f buffer pointer *1
cfilnam = nambuf; 1* current filename pointer *1
if (fopen{cfilnam,cbufp) == ERROR)

}

strcat(onambuf,ASMEXT); 1* output filename f/
if (fcreat{onaabuf,obuf) == ERROR)

exit(printf{HCan't open Xs\nH,onambuf)};

1* be9in writing output file 1/
fprintf(obuf,N\nTPALOC\t\tEQU\tX04xH\n M,TPALOC);

liM = U

while (get_line(» {
process_J inet);
1 ioo++;

}

If initialize line count *1

/f main loop 1/
If process lines till EOF 1/

if (doingfunc) 1* if ends inside a function, e~ror f/

abort(HFile ends, but last function is unterminated\oN};

fputs(U\nENDtCRL\t\tEQU\tt-TPALOC\nB,obuf); Jf end of functions *1
fputs("SECTORS' EQU ($-TPALOC)/256+1 ;\JS£ FOR \"SAVE\" !.\n",obufH
F-utdir'(H /f now .$·pi t OIJt CRl direchrv 1/

fputs(U\t\tEND\n",obuf); 1* end of file 1/
putc(CPMEOF,obuf); /f CP/M EOF character *1
fclose(cbufp); If close input file *1
fflush(obuf); 1* flush and cJose output file */
fc1 ose{ obufH
if (er-rf)

p'r' intH ifF ix those er-rors and troy ani n ••• \nU H
else

1*
* Get a line of text fro. input streal, ind process
f "includeD OPS on the fly:

*1

ir,t geLJ ine{)
{

int H

if (~fgets(linbuf,cbufp» {

}

if fcbufp == incbuf} {
fabort(cbufp-)_fd};
dufp = fbuH
cfilnam = oambuf;
lino: savlino + 1;
N!turn geLline();

}

else return r4Ullt

Pifse_lint();
if htreq(op,BINCLUDEII) ::

streq(op,NMACLIB"})

/f on EOF: fl
If in in uinclude N file? */

/f clost tht file *1
1* 90 back to mainline file f/

/f not ECf. ParS! line */
1* check for fili inclusion *1

if (cbufp == incbuf) 1* if already in an include, *1
abort(UOnlv one level of inclusion is supported"}; 1* error II
if (~ur-9SF)

}

cbufp = incbuH
savlino = lino;
lino = H

1* set UP for inclusion *1

for (i = 0; ~issFice(ar9sP[il); iff) If put null after *1
/f filenal~ *1

if (*ansp == 1(") (If look for ..alic delimiter-s *1
if (ar9sp[2] != ':') /f if no explicit disk given *1

strcat(na.buf2,DEFDI~:); 1* then use default 1/
strcat(nambuf2,ar9sp+l);
if (oambuf2[i = strJen(nambuf2) - 11 == ')/)

oambuf2[il = '\0';
} else if (far9sP == IH/) {

} else

strcpv(nambuf2,ar9sp+l);
if (nalbuf2[i = strlen(nambuf2) - 1] == IH/)

nambuf2[il = ~\O';

if (fopen(nalbuf2,cbufp) == ERROR} {

}

if (nallbu f2C s t,..l er. (nall'lbuf2) - 1] ! = ") {
strcat(nambuf2,-.lIBU

};

}

if (fopen(nilbuf2,cbufp) != ERRllR)
90to ok;

FrintH"Can't oper. ts\nN ,nambuf2H
abort("Missin9 include file a };

ok: cfilnam = nambuf2;
return get_Jine(}~

}

return H

par·s.e.J ineO
{

int i;

char d

label = Of = artsp = NUlL;
argent = 0:

strcpv2(Pbuf, JinbufH
strcpy2(lin5av,linbuf)~

pbufp = pbuf;

if {!i5space(c = fpbufp) {
if (c == ";"')

retur.n; 1* totallY lllOOf'e colJdDtnt lines: *1

}

label = ~bufp; 1* set pointer to label */
while (isidchr(fpbufp}) If PiSS over the Jabel identifier *1

pbufp++;
1* place null after the identifier II

}

s~ip_wsp(&Pbufp);

if (!Ipbufp : t fPbufp = '; I)

r'eturn;
OP = pbufp; If set pointer to oFeration mnemonic II
while (isalpha(lpbufp»

pbufp++;
if (IFbufp) fpbufp++ = '\0';

If skip over the op
If place null after the OP

*1
II

1* now process ar9uments *1

if (!Ipbufp I: fpbufp = I;')
returM

if'SSP = linsiv + (pbufp ... pbufH /f set pointer to ar9 Jist *1

II create vector of ptrs to all irgs
that afe possibly relocatable II

for (argent = 0; argent < 40;) {

J

whi Ie (! isidstr·t(c = IPbufp»
if (!c :: c == ';')

fetur-r.;

Fbufp++;

if (isidchr(*{pbufp - I}») {
Fbufp++;
continue~

}

ar'9S [ar9cnt++] = pbufp;
while (isidcnr(fpbufp}) pbufp+f;
if (fpbufp) *pbufP++ = ~\O/;

err-or("TcIO marlY oper-ands in this instructiofl for- r~ to harld}e\n ll
};

process_line 0
{

char' *cptr, c;
int id;

II check for definitions of gJoba' data that will be
exempt fr~ relocation when encountered in the
argument field of assembly instructions: fr!

if (streq(op,"EQU") n streq{op,"SETU} ::
(! dcdn5lfuRc &&

}

(streq(op,DDSU) :: streq(op,HDsa} :: strtq(op,UOW8)}»

fputs(Jinbuf,obuf);
cptr = sbrk2(strlen(labil) + 1);
strcpy(cptr,)abel);
equtab£equcount++] = cptr;
if (equcount)= EQUHAX)

abort!
IIToo many EOO lirJts ••• increase "'EQUl1AX~' ind recompile CASHII H

return;

if (strtq(op,"EXTERNAL"}) (
if (!doinsfunc) abort(

}

a"'E)~hrnal's for a function must appear' inside thf fvndiort");
if (pastnfs) ~rror(
-Externals must all be together at start of function\n");

for (i = 0; i (argent; iff) {

nflistCnfeount++J = txtbufF;
strcpv(txtbufp1af'9s[i]);
bUIIPtxtp(af9s(iJ);

}-

if <nfcount)= NFMAX) (
Pf'irttf(-ToCi many exhrnaJ functions in functior. \IIXs\"\r'"J

efunaa);
abort("Change the NFHAX constant and recompile (~SMU);

l
returr,;

if (streq(op,aFUNCTION"») {

}

if (! fCOf.mt) {

}

fputs(lI\n; dummy external data information:\nll,obuf);
fputs(U\t\tORG\tTPALOC+2OOH\n",obuf);
fFuts(lI\t\tDB\tO,O,O,O,O\n",obuf);

if (doin9func) {
pr'ir,tf(ii/Function' op encounhred iTt a. functiern. \r,lI};
abortf"Did YOU forget an 'endfunc' OF?");

if (!ar'9cnt)
abort("A M.me is required for the ftJnctioli~· op">;

cfunam = sbrk2(strlen(ar9s[0]) + 1};
fnames[fcount++] = cfunam;
strcpv(cfunam,ar9s[OJ);

printf("Proctssin9 the hS function •••

doin9func = H
txtbufp = txtbuf;
labc{lunt = 0;
nfcount.= 0;
pastrlfs = 0;
fpr'intHobuf,"\n\n; The \'-%$\" function:\n",cfunamH
fprintf(obuft 8Xs$BEG\tEQU\t$-TPALOC\nU

, cfunam);
retur'f,;

if (streq(op,-ENDf\tI;") :t sttt~(op,·ENDFUNCTION·») (
if (!doin9fuhc)

abort(If;'Er,dfunc'" OF tT.counhred whi It not in a fur.ctiort lt H

if (!pastnfs) flusbnfs{); 1* flush needed function list *1
fprintf(obuf,"XstEND\tEQU\t$\n",cfunil);
doreloc{); If flush relocation parameters II

for <i = 0; i < labcount; itt) 1* detect undefined labels *1
if !!lablist[iJ.defined} {

printf(ItThe label XS in function %5 isundefintd\nU
,

lablisttil.labnam,cfunam);

J

}

doinsfunr.: = 0;
returfl;

#if CAREFl..t

out:

if htreq(op,IIRELOC"} II streq(op,itDUREV') :: streq{oF,"DlRECT") ::
streq(op,uENDDIR") :: streq(op,UEXREL") :: streq(op,HEXDWRElH} ::
str'&q(op,IIPRELUDEIf) :: streq(oF,"POSTLUDEII) :: streq(op,"DEFIN£"»

errof' (·01 d licro 1 eftover from \ "CrtAC.lIBV' days ••• \n" H

1* No special FHUdo OF5, so now procus
the line as i line of asstlDby code: *1

if (streq(OF, "END"» r·E'tuf'n; */

if {!doin9func :: (!label && !op»
return fputs(Jinbuf,obuf);

1* if nothing interestin9 on *1
/f line, ignore it */

if (! pastnfs)
flushnfs();

If if haven't flushed needed 1/
1* function list yet, do it *1

II check for possible label II
if (labe» {

}

fFf"intf(obuf, ·XsSLS1.s, \ t\tEQU\tS-%sSSTRT\n " ,
cfunam, label, cfunam);

for (i=O; linbuf£il; i++}
if (isspace(linbufCil) :: l1nbuf[iJ == ':~)

br-eat;
else

1 irlbuf£i] = I ";

if (linbuf[il == ':') linbuf[il = ' ';
for' (i = 0; i (labcourft; iff) 1* check if in label tabl~ *1

if (streq(labe},)ablist[il.labnam}) { 1* if foundt 1/

}

if (lablist[iJ.defined) (1* cbeek for redefinition *1
error(URe-defined lab~l:H);

}

F-rintf("Xs, in fUTlcticm Xs\nH
,

lablistCil.labnar"cfunamJ;

lablist£iJ.defined = 1;
soto out:

lablistCil.Jabnam = txtbufF;
lablist[il.defined = 1;

1* add new entry h *1
/1 label list *1

oS tr'cPY{ t:~tbufpJ 1 abe 1) ;
bumptxtp(label};
1 abcounH+;

if (!op) return fputs(linbuf,obuf}; 1* if label (m]y, all done *1

/1 if a non-reloeatable oP, *1
if (norelop(op)j return fputs()inbuf,(lbufH /1 then we"re done 1/

if (argent && doinsfunc}
for (i = 0; i (arsent; iff) {

if (norel(ar9s(il») continue;

If

*/

out2:

}

if (gpcptr = iSfffar9s[il})
sprintf(workbuf,ftXsEFXs-ts$STRTft,

cfunam,gpcptr,cfunam);
els~ {

}

sprintf(workbuf,8Y.slXs·,cfunaa,ar9sCi]);
for {j = 0; j (labcount; j++)

if (streq(u9s.£i], lab 1 ist[j 3.1 abnili))
90to out2;

lablist[jl.labnal = txtbufp;
lablist[jl.dtfintd = 0;
str-cpy(txtbufp,aI'9stiJ);
bumptxtp(txtbufp);

/f add ne~ entry to *1
/f label list II

replstr(linbuf, workbuf, arss[il - pbuf, strJen(aI'9s[iJ);

if (streq(op,·DWti » {
fprintf(obuf,"Xs'R7.03d\tEQU\t$-Xs$STRT\n ft

,

,funam, relblc++, cfunam);

}

break;

if (argcnt) 1>
er-l'or(UOnIY one relocatabJe value allowed per- [""\fl lt);

fprintf(obuf,·~s$R%03d\tEQU\t$+1-Xs$STRT\n·,

cfunam, r&lblc++, cfunam};

fputs(linbuf,obuf};

Test for- OPS in which there is 9uarlrar,teed to be no need
for generation of relocation paralfters. Note that the list
of non-relocatable OPS doesn/t necessarily have to be co~pJete,
because for any OP that do~sn/t match, an argument must still
pass other tests befclrt it is deemed relocatabJe. This (mlv
speeds things UP by telling the pro,ra. not to bother checkin9
the ir·sumenb ..

nore Jop(op)
chir fop;

if {streq(op,HMQVn}) return 1;
if (streq{op,"INR"}) return 1;
if (streq(clp, "DCRD}) return H
if (streq(op, IlINX"» return U
if (stnq(clp, ·OCX It» f-eturn H
if {streq(op,"DAD")} return 1;
if (streq{op, "MYI"» r'etur'n U
if (streq(op,"DB"» return 1;
if (s treq (op, "OS"» retur-f' 1;
if (op[2) == III) {

if (s. tr-eq (op, "CPI"» return H
if (streq(op,"ORI Il

)} return 1;
if htreq(cfp, /I ANI " » return H
if (streq(op.HADIU» return 1;

}

}

ifhtr-eq(op, "SUlif» r'etu ... r, U
if (stre~(op,NSBIU) return 1;
if (stNI:I(CfP, "XRI"» f-etur'" H
if (streq(op,NACIU) return 1;

if (stteq(op,BQRGif}) return 1;
if (streq(op,NTITlE8» return 1;
if (streq(op,ifpAGEIf}) return 1;
if (streq(op,UIFN» return 1;
if (streq(op,ifEJECTif» return 1;
if (streq(op,ifMAQR08» return 1;
r'etur'o 0;

f1 ushnh{)
{

}

{

}

int i,j, length;

putnh :: U
r'e Ib1 c = 0;

fputs(N\n\n; List of needed functions:\n·,obuf};
for (i=O; i < nfcount; iff) {

}

.s.tr·cPy(workbuf, -'t\tDB\t"N);
len9th = strlentnflist£il);
length = Jen9th < S ? length: 8;
for (j :: 0; j < length - 1: J++)

workbuf[6+Jl = nflist[i][Jl;
workbuf[6+jl = '\0';
fprir,tf((,buf, "%s.', "Xc"+8OH\n",workbuf,nfl istCil[j 1);

fputs("\t\tDB\tO\nif,obuf};
fputs("\n; Length of bodY:\n",obuf);
fprintf(obuf,U\t\tDW\ttsfEND-$-2\nU,cfur~m};

fputs(if\n; Bodv:\n",obuf);
fprintf(obuf,-7.s$STRT\tEQU\t$\n U,cfunall);
if Jnfcount} {

}

fprintf(obuf, -Xs$Rk03d\ tEl1lf\ t$+l-Xs$STRT\nif ,
cfunam,relblc++,cfunam>;

fprintf(obuf,-\t\tJMP\t7.s$STRTC-7.sSSTRT\n H,cfunam,cfunam};

fprintf(obuf, U%stEFSZs\tEQU\tXsSSTRT\nH
, cfunaa, cfunam, cfu nil);

for (i::O; i < nfcount; iff)
fprintf(obuf,·Xs$EFS7.s\tJMP\tO\n 8 ,cfunam,nflist£il};

fprintf(obuf,U\n7.sSSTRTC\tEQU\t$\n U,cfunam);

ir,t 1;

. fputs{A\n; Relocation paraaeters:\nU,obuf);
fprintf(obuf,U\t\tDU\t7.d\n",relblc);
for(i = 0; i < relbJc; iff)

fprintf(obuf, 8\t\tDW\t7.sSR%03d\n",cfunam, i);
fputs("\n-,obuf};

Futdid)
(

}

int i,J, length;
iot bvtecount;

fputs(-\n\t\tORG\tTPALOC\n\n; Ditectoty:\n",obuf);
fecr (i = 0; i (fcount'; i ++) { _

str-cpv(wotkbuf, "\t\tDB\t~'H);
length = strlen(f,namesri]H
length = length < 8 ? length : S;
for (J = 0; J (length - 1; J++)

lIIorkbuHb+j] = fna&tstiJ(jJ;
workbuf[6+J] = ~\O/;
fprintf(obuf,'%s~,'Xc~+8OH\nH,wotkbuf,fnilts[iJ[jJ);

fprintf(obuf,U\t\tDW\tXsSBEG\n",fnaaes[il);
bytecount += (length + 2);

fputS(H\t\tDB\tSOH\n\t\tDW\tENDSCRl\n",obuf);

bvhcount += 3;
if (bvtecount) DIRSIZE) {

}

printf("(:RL Ditedorv size will exceed 512 bvhsnn'l);
printf(HBreak the fiJe UP into smaller chunks, please!\nU);
exit(-lH

inihquO
{

}

equtab£Ol = JtA";
equtabr 1 J = nBn;
ecwtabC2J = I'Cn;

equtab£31 = "D'*;
eQutab£41 = liE";
equtab[SJ = "H";
eQutab[61 = -L";
equtlb£71 = "1'111;
equtab£SJ = "sp.;
equtab[91 = .pswn;

equtab£10J= "AND";
eQutab[11J= "ORa;
eQutab(121= uMODM;
eQutab[131= -NOT»;
eQutabCl41= UXOR";
equtabClS1= 'Slla;
eQutab[lbl= "SHR";
equcount = 14;

irlt isidchr<d 1* r-eturn true if c is legal character- in identififf' *1
char c;
{

}

int isidstrt(c) /f r'eturn true if c is l·ual as fir·st char· of idenfi tier */
char' c;
{

retur'n isalpna(cH
}

int streq{sl, 52)
cha.r 151., 152;

1* rtturn tr'ue if the two strinss are equa J II

{

if <lsi != *52) return 0; 1* special case for speed 1/
while (ls1) if (151++ != 152++) return 0;
return (*52) ? 0 = 1;

}

skip_fIIsp(strptr')
chir *Istrptr';

1* skip whih space at *str'ptr a.nd modify the ptt *1

(

strcFv2(sl,s2) 1* COpy 52 to sl, conver·tins to upper cast is ble 90 *1
char *sl, Is2;
{

}

1*

*1

while (152)

*51++ = toupper(fs2++);
§sl = \0';

tJeneral-purp(Ise str'in9-replaceHrJt functior,:
.... string' is pointer to entire string,
·~insstr.t

'pos'

') eno 1 d"

is pointer to strin9 to be ins!r'ted,
is the position in 'stringl wh9re linsstr'
is t(1 be inser·ted
is the lensth of the substring in 'string""
that is beins replaced.

rep)str(string, insstr, pos, Jenold)
char fstring, *insstr:
{

}

length = strlenfstring);
x = strlen(insstr};
k = x - hnoldf
i = strin9 + pos + lenold;
if (k) movmem(i, i+k, length - (FOS + lenofd) + l}J
for (i = 0, j = pos; i < xl iff, J++)

string[Jl = insstr[il;

error (JlIS9)

char 'msg;

{

}

printf("\n\7ts: ld: Xs ·,cfilnam,lino,msg};
errf = 1;

abort(msg)
char fastH

{

}

error (1159);

putchar ('\r,');
if (cbufF == incbuf) fclose(incbuf);
fel OS! (fbuf);
exi t(-1);

/f allocate storaie and cbeck for out of SPice condition f/

int i;
if «i = sbrkin}) == ERROR)

abort("Out of storaie allocation space\nD);
return i;

bUIPtxtp(str') 1* bump txtbufp by size of giver. str'ir.9 t 1 */
char Istr;
{

txtbufp t= stden(s.tr) t U
if ttxtbufp)= txtbuf + fTXTBUFSIZE - 8»
abor·t ("Out of text SPict. Increase TXTBlfSIZE and recompi h CA~.M");

}

ir.t noreHid) 1* f'eturn true if identifier- is exempt from relocabtiorl *1
char lid;
{

}

if (isequ(id» return 1;
return 0;

int isequ(str} /f retutn true if eiven string is in tht EQU table */
char fstr;
{

int H
for (i = 0; i < equcount; itt)

if (streq(str,equtab[iJ)}
retur'n 1;

return 0;
}

char" *iseHstr) 1* return nfUst entr·y if Sliver. strine is an e:~ter'rfaJ 1/
char *str; 1* function hilt */
{

int B
for (i = 0; i < nfcount; i++)

if (streq{str,nflist[il»
return nfJist[iJ;

return 0;
}

TITLE "lRUN Library Run-a uti Hty for "LBR flIes"
\~ION EQU 1to ;82"08-0& Initial sourct releasi

• .,
PAGE 60

; Requires ~c for assembly. Due to the complexity of
; the relocation macros, this prosram may take a while
; to useable. Be prepared for per'iods of 00 di.sJ: activity

on both passes before pr!SSin9 panic button. G.P.N.

;--------------------------NOTlCE------------------------------

(c) CoP¥r-ight 1982 Garv P. NovosieJski
All rights reserved.

The following featur'es cour-tesy of Ron FObJhr-:
1) command line reparsing and r~Fackin9 (this allows
the forJrter' load-on 1 Y pr09ru to tlfcO~ a J oad & r'un
uti 1i tv).
2) code necessar-y to actuallY e:~~ecuh the load'E:d fi Ie
3) the HELP facility (LRUN ~ith no ar9uments)
4} Modified error- routines to avoid war-a-boot d-atay

(return to CCP directly instead)

Permission to distribuh this program in !ource CIT

object fora without prior written iProva.l is 9ranhd
onlY under tbe following conditiclfls.

1. t40 charle is imposed for the Pf-09raJi,.
2. Charles for incidental costs including

but not limited tv media, Fo~tage: h le'"
communications, ind data storage do not
exceed those cos.h actuallY incur-r'ed.

3. This Notice and any COPri9ht notices in
the object code r'emairi intact

;--~------~-~~--------~------~-----~---------~-------~-------

; lRUN is intended to be used in conjunction with librar'ies
; created with LU.~, a library utility based uPon the

groundwork laid by Michael Rubenstieo, with SC4be additional
inspiration from Leor Zolman's (tIB librarian for .CAl files.

The user can place the less frequently used commarfd (.COM)
files in a library to save space, and still be able to run
thea when required, by typing:

LRUN {normal cOU'Jind 1 ine;'.
The name of the libr-arY can be specified, but the greatest

; utility will be achieved by placing ill commands in one
; librar'Y called COt1tWID.LBR, I)r s{lm~ local Jy defirled flame,

and always lfttin9 LRl~ use that ni~ as the default.

LRUN [-(Jbrname)l (command) [(piram~teri)l

;where:
; (lbrnue) is the optional library namf. In the

; (cotIMJ'td)

;<1ine)

distrubution v~rsion, this defaults to
COMHAND.LBR. If the user ~ishes to use a
different flame for th~ default, the B-b'rt€
literal at DFLT~ below may be changed to
suit local requirem!nts. The current drive
is searched for the .LBR file, and if not
found there, the A: drive is searched.
ffNote that the leading minus sign (not a part
of the nile) is required to indicat€ an
overr'ide library name is beir,9 erfhr-ed.

is the nili of the .COM file in the librar'y

is the (possibly em,tv) set of Piram~ttrs
which are to be passed to (coIrtJJtind), as in
nOfli1 CP/M syntax. Notice that if the
library name is defaulted, the syntax is
simply:

LRUN <colland lint}
which is just the normal command line ~ith
LRUN prefixed to it.

@SYS SET 0
@KEY SET 1
@CON SET 2
@ROO SET 3
@PUN SET 4
aST SET 5
@[tIC SET b
@RIO SET 7
1$10 SET B
IttSG SET 9
@INP SET 10
@RDY SET 11
@VER SET 12
@lOG SET 1.3
tOSK SET 14
@OPN SET 15
OClS SET 16
IDIR SET 17
@HXT SET 18
tDEl SET 19
@fRD SET 20
tFWR ~.£T 21
@t1AK SET 22
tR£N SET 23
@CUR SET 25
@DtfA SET 26
@CHG SET 30
~ SET 32
IRRD SET 2.3
@RWR SET 34
@SIZ SET 35
@REe SET 36
@LOGV SET 37 ;2.2 onlY
IRWRO SET 40 ;2.2 only

CPtfBASE EgtJ 0
BOOT SET CPf1BASE
BOOS SET BOOT +5

TFCB EQU BOOTt5CH
TFCBl EQU TFCB
TFCB2 EOO TFCB+1e.
TBlfF £00 BOOT+SOH
T~A EQU BOOT+l00H
eTRL Eat.' ' '-1 ;Ctr·l char mask
CR SET CTRL AND I'M'
LF SET CTRL AND .' J'
TAB SET CTRL AND '1'
FF SET CTRf.. AND "1"
BS SET CTRL AND 'w
FALSE SET 0
TRlE SET NOT FAlSE
;
CPt'f f1ACRO FUNC,OPERAND,CON[ITN

lOCAl.. PAST
IF NOT ttl C(tHDrN
DB (J&COtIDTN) XOR S
DW PAST
ENDIF ;;of not nul condtn
IF NOT NUL OPERAND
LXI D,OPERAt.JD
END IF ;;of not nul oP!rand
IF NOT NUL FutC
MYI (:,@tiUNC
EHDIF
CAll BOOS

PAST:
ENDt1

BlI<t1OV MACRO DEST,SRCE,LEN,(~

LOCAl PAST
JtF PAST

S1VSBR:
MOV A,S
ORA C
RZ
DCX B
t10V A,M
INX H
STAI D
INX [I

.J1P tBMVSBR
BlKt10V t1A('RO DST,SRC,LN,CC

LOCAL PST
IF NOT NUL CC
DB (JltCC) XOR 8
DW PST
ENDIF
IF NOT NUL DST
LXI DtDST
ENDIF
IF NOT NUl SRC
LXI H,SRC
ENDIF
IF NOT NUL LN
LXI B,tN
ENDIF
CALL !BHVSBR
IF NOT NUL CC

PST:
ENDIF
EtOt

PAST: BlKMOV DEST, SRCE, LEN, mm
ENDJII

;
OVERLAY SET (l

; Macro Definitions

RTAG MACRO LBL
??RtcLBL EOO $+ 2-tBASE

ENDI1

RGRHD I'IACRO LBl
??R&LEt EQU OFFFFH

ENDtt

R MACRO INST
IRLBl. SET @RI..BL + 1

RTAG XtRlBl
INST-tBASE
ENDf1

NXTRlD r1ACRO NH
@RI..D SET ??R&NN
@NXTRlD SET INXTRLD + 1

EN£f1

; Enter here frolJ Conso Ie COlllir,d Procissor' (Cep)

t;(tJIN OOG TPA
,JIP . INTRO ;JUIP around sisnon

SIGNON:
DB .'LRUN Ver .' ;Sisnon mUSi9i

DB VERSICt4/10+J O'
DB f I .
DB VERSION r10D 10+;CV
DB CR,LF
DB ' CoPYright (c) 1982 Gary P. Novosielski '
DB '$' ,CTRI. AND 0#1'

. INTRO:
LXI H,Q ;set the CC~ !ntrY .stackpoint~r
DAD Sf' ;(us~d only if HELP request
SHLD SPSAVE ; is tncount!red}
t"PM I'rSGt SIGtDI; ;Displa.y sisoon
CALL SETUP hraitialize.
LHl.D BDOS+! rfind top of memory
rt1V A,H ;page address

;Form destination •••
sur PAGES ; ••• addrus in
I10V D,A IDE pair.
MVI E,O
PUSH D ; saw: on sta.ck

BLKt10V , iBASE, SEGlEN ;Hove the active segment.

1*

*1

li.inO
{

}

This Flr"ram is a simple exalP)e of helll! to use
Bob Mathias's floating point Pickage.
After cOIPi' in9 this aRd the FLOAT.C 1 ibrar-Y, J ink by saYing:

A>cliRk floatsua -f float <cr>

Note: the ·pr-intfS fUnction resultins fro. this lirl~~ige

lIIil1 support the ae" lnd Q~I/ floating point conversion
characters, but the re9ular- Jlprintfll woul d not .. The reaS(ln:
the special version of a_Sprlf in tht FLOAT.C source file
is loaded befor-e the 'ibrar-Y version of II _spril, ind
thus suPPorts the extra features.

char sl[5], 52[5];
char string[301;
char sb[:3Q];

int i;
atoHsl, "O"};
while (1) {

}

printf{"sum = %10.6f\n"~sl);
lirintf(R\nEnter a. floa.ting number: II H
fPidd(51,51 ,atof(52, sets.{strins} } };

#include 'bdscio.h·

1*

1/

itdefine

1*

1/

STDLIBl.C -- for 80s C vl.46 -- Leor Zolman, 3/5182

The files STDLIB1.C and STDLIB2.C contain the source for
all functiclTIs in the DEFF.CRl. HbT-ar-Y fite.

Functions iPfearin9 in this source file:

fopen S!etc lJnsetc
fer-eat pute putw
fflus.h fclflse
atoi
str-cat strcmP str'cPY
isalpha isupper islo~r'
isspace bUPFer to I OIliU'

qsort II - $ v-> it
initw initb 9ttval
allot f free *
aDS JrIiX !fair,

str'}en
isdi9it

I - COIPi lation of allot and free must bi' ~xFHci th fnab led by
sWipping the cor~antin9 of the ALLOC_ON and ALLtJ(~OFF d~finitions
in BDSCIO.H.

if - Qsor-t has been rer,dH-td more efficient by havinS! the u_SIIIPIl

fUTlction use the "movmemu 1 ibrarv flJTlction to swap ob·jech,
allocating hll'll~orar'Y ~,pace on the stack. The d·~fined syr.,bol
"HAX_OSORT_WIDTHH specifies the largest allowable size for a
sinsle instance elf tha clbj.ech h-eins :orted. If YOU ~Vir plan
to sort object of 9reater width, chans~ this d~finE!

can s!jrt

Bufferfd 1/0 for C:

td~fine STD_IN 0
Idefine STD_OUT 1
#define SrDJERR 4

Idtfin~ DEV-LST 2
#defioeOEV-RDR 3
'define DEV_PUN 3

int fopen(filename,iobuf}
FILE *iobuU
ch~r ffilename;
{

if «iCtbuf -) _fd = openHi lenam~,O)}(tJ} ,'etur-o Et!ROR;
iobuf -) _oleft = 0;
r-ebJr-n i obuf -) _fd;

}

int 9!tc{iobuf}
FILE fiobuH
{

}

1*

*/

int osee:.;
if (i obuf == STD_IN) retur-rl 9!tchar- ();
if (iobuf == DEV_RDR) return bd~s(3);
if (!ic,buf-:::'_nlftft--)

{
If if buffer empty, fill it UF First if

]-

if Un:.eci = rtadUobuf -) _fd, iobuf -) _t.uff, NSEeTS}} (= O}
return iobuf .) _nleft++~

iobuf -) _nJeft = nsecs * SECSIZ - 1;
iobuf -) _nextp = iobuf -) _buff;

retur'n *i obuf-)_nextP++;

Suffered HU09!tU a character routine. Only ONE
bvtt may be IiUTl90ttenll bettl!erl consecutive Jlgetc" call s.

int u0getc(c, iobuf)
FILE fiobuH
char- c;
{

}

if (iclbuf == STD_IN) r'eturn ungetch{c};
if «iobuf (7} ~: iobuf -) _oleft == (t~ECTS * SECSIZ)} return ERROR;
*-icrbuf -) _oextp = c~
iobuf -) _oltft++;
retur·n OK;

int setw(iobuf}
FILE fiobuH
(

}

int i:M

if H (a=getdiobuF»)= O} && «b= sHdiCtbufD)=o}}
returT, 25~,*b+a;

return ERROR;

int fcreat{name,iobuf}
char *name;
FILE *iobuH
{

}

if H iobuf -) _fd = cr~at{nalTj(:}} < 0 } r"~tlJr!'l ERRl1Rf
iobuf -) _nextp = iobuf -) _buff;
iobuf -) _nleft = {NSECTS * ~fC~IZ};
rtturn iobuf -} _fd;

int putc(c,iobuf)
char c;
FILE fic,buf;

if (iclbuf (= 4}
(

1* handh sp~cial devic-a cod~s,: *1

}

switch (ic.buf)
- (

ca:E,e STD_ClUT: r-eturn FlJtCMr-(c); If std output *1
case DEV_LST: return (bdos(S,c}); If: list dev. */
case DEV_PUN: r'etur-rl (bdos(4,C»; 1* h Fundi *1
ca.se STD.E\'R: if (c = l\n') !* to :;td en f/

bdo$ {2, ~'\r"" H
return bdosf2,c};

if (!iobuf -) _nleft--;
(

If if buffer full, flush it f/

}

if «write(iobuf -) _fd, iobuf -} _buff, NSECTS}} != Ne£CTS}
retlJr'o ERROR;

iobuf -} _nleft = (NSECTS * SECSIZ - IH
iobuf -) _nextF = iobuf -) _buff;

return fiobuf -) _nextF++ = C;

iot putw(w,iobuf}
unsi9ned III;
FILE fi(lbuf;

]-

if «putc{&lr.2:~,iobuf))=0 } &~ (putdw I 256,ic,buf;)= O}}
returr, w;

return ERfi-oR;

iot fflush(iobuf)
FILE *iobuf;
{

}

irlt 1;

if (ic,buf (4) retur'n (tK~

if (iobuf -} _flleft = (NSECTS * SECSIZ)} retur'n OK;

i = tlSECTS - iobuf~)_nleft I SE(SI1;
if (wr'ih<iobuf -) _fd, ioblJf -) _buff, i} != i}

r·etur·o tJ\'ROR;
i = ii-1) * SECBIZ;

if (iobuf -) _oltft} {

'. J

movmem(iobuf-)_bIJff + i, iobuf-)_buH, SECSIZH
iobuf -) _n}eft += i;
iobuf -) ,..ntxtF -= H
return St~k(~obuf-)_fd, -1, 1);

i~buf -) _ottft = (NSECTS * SECSIZ};
iobuf -) _Otxtp = i&buf -) _buff~
r'eturn OK;

iot fclose(iobuf}
FILE *i obuf;

r ..

}

It

if (iobuf (4} r·~turft OK~

return clo5e(iobuf -) _fd};

Some string function~

int atoHn)
char fn;
{

int va);
char- c;
int si9n;
val=O;
sign=!;
whi1e «c = tn) == l\t' :: c== ~. '} ++0;
if (c== l_l) {sisn = -1; n++;}
while (isdi9it(C = tn++}} viI = val * 1(1 + c - "'0";
return si:mtvaH

char fstrcat(sl,s2}
char fsl, f52;
{

}

/
char' fhlP; h'm~=.sH
whi lel. f sl} sl++;
do *51++ = *52; l1Ihi le {.s2++);
return hmF;

lot strcrltP(Stt)
char s[J, t[];
{

}

ir.t i;

i = 0;
while (s[i] == t[il)

if (stitt) == '\0')
retur'o 0;

return sri] - tti);

char fstrcpv(sl,s2}
char *51, 152;
{

}

char *temp; temp=sl;
while (151++ = *;2++);
retlJNJ hlttP;

ir,t strlen(s}
char is;
{

iot len;

}

/f

*1

len=O;
whil~ <*5++) Jen++;
return len;

Some character diddling functions

int isalpha(c)
char c;
{

return isupper'(c) : f hlolHr(c);
}

int isupperfC)
ChiI' c; .
{

}

i nt is I (.wer (c)
char cf
{

}

int i.;.di~it(c)

char c;
{

}

int isspacf«c}
char c;
{

}

char toupper(c}
char c;
{

return isJower(c) ? c-32 : c~
}

char t I) lower(c)

char c;
{

return isupper(c) ? c+32 : c;
}

qs.ortiba.se, nel, width, COmFir-)·

char *base; iot <fcompar){);
unsigned width,nel;
{ int i, j;

}

unsigned SiP, n9ap, t1;
int jd, t2;

t1 = n~l * ~idth;
for- (ngiP = ne 1 I Z; ngiF) 0; fl9iP 1= 2) {

gap = n9ap f width;

}

t2 = gap + width;
j d = base + 9iP;
for (i = t2; i (= tl; i += width}

for (j = i - t2; J)= 0; J -= gap) {

}

if !(fcoflParHba..se+j, jd+j) (=0) br'€ak;
_swp(width, base+j, jdfJ)~

_SlifFh" ih b)
char *a,fb;
unsigned Ill;
{

}

i*

*1

char s~pbuf[MAX_QSORT_WIDTH1;
.ovmem(i,s~iPbuf,w);

lfIovmell{b, a.,,,,);
movmem(swiPbuf,b,w);

Initialization functions

initw(var,string}
int Ivar;
cbar- fstr·im.l;
{

int oJ
whi h «n = getval (f<strin9i} != -32760} *var-++ = n;

}

ini tb(var, str-1M'}
char fvar, fstring;
{

int n;
while «(n = getva,l(&itrios») != -32760) fvar++ = n;

}

int HtvaHstrptr-)
char **strptr;
{

}

int M
if {!**strptr) return -32760;
n = atoi(*strpt~};
Idbile <**s.trph && *H~str-ptT'}++ != .'," H
return fir

1*
Stofa9t allocation functions:

f/

#i fdtf ALLOC_ON 1* COII'IPi la.tioo of alloc and friff is ifnatded ortly
when tht ALlOC_ON symbol is Idefined in BDSCJO.H II

char *alhc(nbytf!s)
unsigned r,bYtes;
{

}

Free(ap)

struct _header- Ip, *Ih *CP;

int nunits;
nunits = 1 + (nbvtes + (siz~of (_base) - 1) I sizeof (_baSi);
if «q :: _alloep) == NUll; {

}

_base._ptr· = _ille!ep = q = St_base;
_base._sizt = 0;

for (p = q -)- _ptr'; ; q = p, p = F -) _Ftr- j {

if (p -) _iizt)= nunits) {

}

}

if (p -) _size == nunits)

else {

}

q -) _ptr- = p -) _ptr;

p -) _size -= nunits;
p += P -) _size;
F -) _siz~ = nunits;

_allocF = q;
return p + 1;

if {F == .allocp} {
if {(cp = sbrk{nunits f sizeof (_bast}}) == ERROR)

r'etuf'rl NULL;
Cp -) _size = nunits;
fr-ee(cP+l); If r'-emalf,ber': pointer arithmetic! *!
P :: _all oeF;

str·ud _header fap;

p=ap-1; If No need for the cast when "ipll is a str'ud Ftr- If
.-

for (Ill = _111 oep; ~ (p ::- q &t't P (q -) _ptr H q = q -) _Fltr}
if (q)= q -) _ptr &ft {p)q U F <: q -) _Ftl'}}

break;
if (p + p -) _size = q -) _ptr> (

}

p -) _size += q ...) _ptr -) _size;
P -) _Ftr- = q -) _ptr -> _ptr;

else p -) _ptr' = q -) _Ftr·;

if (q + q -) _size == F} {

q -) _size += F -) _$iu;

}

!lse q -) _ptr = P;

_il1oCF = q;
}

#endif

Now some really hairy functic,ns to wrap thin9S UF=
*1

int abs(n)
{

return (n(O) ? -0 : r.;
}

int lJax(a,b)
{

1.
J

return (a) b} ? a : b;

retur'n {a (= hi ? a : b;

If
STDlIB2.C - for- BDS C vl.46 -- lffor' Zolmarh 3/SIfSl

This file contains the source for the fol1o~in9
library functions:

*1

printf
scanf
flets
puts
slAPin

fprintf
fscanf

fputs

char- touPPir(), isdi9it();

printH ferrJrlit}
char' *for-mat;
(

sprintf
S$canf

char linff[MAXLINE1;
_spr(line,&format);
puts (] ine);

1* use If _SFf' II to fl)r-lL th.e (iutFut il
1* and print out the lint il

)

int scanf(format)
char- fformat;
{

}

char line[MAXLlNEJ;
nts (J i rie);
retur-n _scn(line,&for'aatH

int fpr'ir,tf(i(,buf, format}
char *for'mat;
str-uct _buf *iobuf;
{

}

char text[MAXLlNEJ~
... SPf (text,t-tfOrJilit);
return fFuts(text,iobuf);

int fscanffiobuf,format}
char *format;
str-uct _buf *iobufl

char ttxtCMAXLlNE1;

1* $lit a 1 irje of iOF1Jt frc'irl user il
If and SCin it with "_senft *1

if (!fgets(text,iobuf}) return 0;
return _scn(text,~formit};

}

sprintf(buffer,f~tmat}

char *buffert *format;
{

}

int sscanf (1 int, for'mat)
char *line, *format:
{

}

_spr(lint,fmt)
char fline, *ffmt;
(

1* l~t _sen do all th~ work *1

char _u~prO, c, base, fs.ptr, Hor'mat;
char tlbuHMAXLINE], flllPtr, pf, Ijflas, zfflas;
int width, Frtcision, fans;

format = fflAt++;
a.t9S = flit;

1* fmt fir-sf points h th~ fCtrmat .Etr ins
1* no~ fat points to th~ first ar9 vilu~

while (c = fformat++)
if (c == IX') {

lJJPtr = ttJbuf;
PI'ecis.ion = 6;
Ijfla9 = pf = zfflas = 0;

if (fformat == ,_') {
foraat++;
lHJa9++:

}

1/

*/

if <*format == '0') zffla9++; 1* hst for zeto-fi J 1 *1

width = (isdisit(fformat)} ? _9v2(&formatJ : 0;

if ({c : *f~rmat++) == '.'} {
Pf'ecision = _9v2{3fformatH
pf++;
c = *fclr'llJat++;

}

switch(toupper(c)} {

case 'D': if {fargs < OJ {
~ptr-++ = / _0'-;

*ar9:' = -*ar9$;
width--;

case '0"1 bast = S; If: noh that ar-bi har)' basts can tl!

added easi}y befHi' this 1iri\~ *1

val: width -: _usprUtWptr"far-9s++,ba;eH
goto pad;

case .Ie": *wptr++ = fariS++;
width--;

}

If:

f/

}

}

case'S': if (!pf) precision = ZOO;
sptt = fansf .. ;
while (15ptr && precision) {

fIlJPtr++ = fsptr'++;
precision--;
width--;

pad: fWptr = '\0/;
pad2r wptr = wbuf;

if (! I j flag)
whil~ (~idth--) 0)

*line++ = zffla~ ? '01
: ~ ';

while (flint = fWFtrf+)
hr.e++;

if (lHJasi
while (width--) O}

*line++ = ' ';
break;

default: *line++ = c;

else *line++ = c;

Inhr'na 1 routine used by II _SPf· 1f to Ferfor'm ascii­
to-decimal conversion and updah an associated pointir=

int _9v2(sptr}
char **Sftr·;
{

}

int n;
n = 0;
while <is.disit<Hsptr)) n :;: 10 .. n + ftfsptd++ - "'(J/~

returT. n;

char _uspr(strin9r 0, base)
char ffstrins;
UT,S i gned n;
(

}

char- length;
if (rs<basi) {

}

*<fstrios}++ :;: {n (to) ? n + 10' : n + 55;
return 1;

length = _usPf·{str·ins, rdba.s.~, t1asi)f
_uspr(string, nXbase, base);
return length + 1;

1*
GfneraJ forflitted input cClOver-sion routiM. 81 if/ell Foint:
to a string containing ascii text to be converted, ind dfmt"
points. to an arsul)!nt l1st cecflsistin9 of first a f1)r'mat
~tring ind thtn i Jist of pointi~s to th~ destination objects.

int _scn(linf1flrtt)
char fli~e, Iffmt;
(

char sf, c, base, 0, *sptr, *forlat;
int si9n, val, Ifirss;

ff/raat = *fmt++;
ar9S = flit;

If fmt first pc-ints h the forrriat string fJ
1* no~ it points to the ar9_1i~t II

n :; 0;
while (c :; *format++)
{

if (issPice(c)} continue;
if (c != J%')

/f skip 1IJhih SPiCi irl for-mat strinE! If

1* if not 1.', must flitch hxt *1
{

}

if (t != _i,s.(&1int)} retut-r. n;
else lint++;

else If pr'OCiiS cOAversion *1
{

sisn = 1;
bast = 10;
sf = 0;
if «(c = *for"Ht++) = 'e)

{

sf++; 1* if afll 9lveo, SIJFN~SS assisnmant f/
c = *for"mat++;

}

switch <toupper(c})

case ~x~: base = 16;
goh dovaH

case $0': base = S;
soh dovil;

case 'D;: if (_iss(&line} == $-'} {
sign = -1;
line++;

J

doval: case lUI: ViI = 0;
if {_bC{_15s(&Jine},base} == ERROR}

return n; "
while «c = _bc(fline++,base» != 255)

val = val * base + c;
I irle--~
break;

case'S': _i9sf&Jine};
sptr = fans;

whiJf (c = *line++) {
if (c == *for"~t)

for-matH;
brtak;

}

if (!sf) fsptr++ = c;
}

if (!s,f) {

}

rltt;

fSF-h = -'\0 / ;
ariS++;

conhnue;

caie 'C': if f!sf) {
poke(fargs++, flin~);

n++;

1 irle++;
continue;

defau 1t: return n;
}

if (!sf)
{

\
J

HarssH = val * sign;
r,++;

1* if end of input string, return *1
J
retur'n n;

}

char _iss (sptr·)
char *fsptr;
{

}

char c;
while (is~.pace{c = **sptr')} tHsptr;
return (c);

int _bc(c~b}
char (,M
{

}

puts(s}
char is;
{

}

if (isalpha(c = touPFer(c}}} c -: 55;
tIse if (isdi9it(c» c -= (~30f
else return ERRtlR;

if ic) b-l} return ERROR;
else retur'n c;

while (IS) putchar(ls++);

char *5;
struct _buf *iobuft r •

{-""

}

int count, c;
char' Icpt,.:
COullt = MAXLINE;
cptI' =_s~
if { (c ~ 9e:t d i clbu~)) == CPt1EOf : t c == EOF} r·ttur·FJ NlllL;

do {
if Hfcptr++ = c) == I\r/} {

if (cptr)s+l && f(c:ptr-Z) = '\r"')
f(--cptr - 1} = '\n/;

break;
}

} while (count-- ~& (c=9~tc(iGbuf)} != EOF &t c ~= CPMEOF};

if {c == CPMEOF) ungetc(c,iobuf);
fcptr = '\0';
retur-n s;

If push biCk control-Z *f

fputs.(s, iobuf)
char Is.;
struct _buf *iobuf;
{

char c;
whil~ {c = IS++} {

if (c == '\n') Futc{/\r',iobuf);
if (putc(c,iobuf) == ERROR} uturn ERROR;

}

return OK;
}

swapin (name, addr}
char fnamel
{

int fd;
if « fd = open(name,Q)} == ERROR) {

printf(US~apin: cannot open %s\nM,name);
r-eturn ERRllR;

if «read(fd,addr,512» (O)

}

printf(uStJaPln: read error or, l;\rt ll
, nime);

clost(fdH
return ERROR;

dose(fd);
returrl OK;

/f

*f

#include
td!fine
#define
#define

WILDEXP.C vI.l 3121/82
BDS C Command·Jine Wild-card expansion utility
Wr-itten by L!c,r' Zolman

Lets aabi9uous fi h names aFPear on the cOITZtand lin! to (: FN5IramS,
automaticallY e~<pandin9 the PiraliJehr 1 ist t'j contain all Ii Ie: that
fit the afn's.

An afn Fr·ecided by a "!" CiU$f:S all TIUteS lLatching the givtn afn to
be EXCLUDED from the resulting expansion list. Thus, t~ yield a
command line contairlin9 all fiJi'S exceFt uCCIM" fileE., yc,u··'d E.a.,-:

When 9ivimf a It! H ifn, I/fJl char's irf the string match:: to Ule Hid of
ei ther the fi lenaae or extension, Just like CP/M, but lI?fi chir~ matet,
ONE and ONLY CINE charachr in either- the fi lima! or e:deriE1Hf.

To use WIL[(XP, begin your Hmaiou function as follows:

main(a.r5lc~ar9Y)
ct.ar Hargy;
{

wi 1 dexp(&af9c,&ar9v};
dioinit(&arsc,ar9v};

1* local d~darati('rl.s */
/f first statement in pto;1ram */
II if using DIu, put this here I!

and link WILDtXP.CRL in lI1ith your FrOgram. That's ill there is to
it; not! that Jlwil dexpit UHS the Ifstrkil fur.ctic'fj to obtain Hor·allle,
so dor,lt 90 Flaying around with memory that is outsid~ of the
exhr·nal or stack areas ur.l~ss YCfU obtain the frtemor·y throu9h usbr~~1t

or Rall ot' calls.

"bdscio"h H

MAX ITEMS
SEARCH..FIRST
SEARCtLNEXT

200
17
13

1* mal: no. c.f i ti:!rJs afhr' e>~Finsi"n *J
1* BDOS calls il

wildexp(oar'9CP, oar9VP}
ir.t *C1ar·9Cf:';
char f*loar9YP;
{

int flar9C;
char **nar9Y;
char f*oar'tv;
int oar,,;
char' fcb£36J;

1* pointer te old ar9C f'
If pointer to old ar9V I!

Ii n~w ir5le */
J* new ir9V 1/
1* old arsy *1
I' * old ar·9C * I
1* feb used for starch for first/next calls I'

char dmapos; If value ritur-ned by search calls il
char first_time; 1* used in search routin~ *1
char tmpfnCZ01, If temp filfn~ buffer *1

*tlPfop;
char *nc.tfns[20H 1* I bt of ! (afn) ilntr-ie! *f
int notcounU 1* count of entries in notfns */
char cur_drive; 1* cun-ent)y 1 Q99i1d dr"ivf: *1
int i,j,J=;

oar9V = *oar9VP;
oar-sc = loarscp;
nar9C = 1;
notcoJJnt = 0;

if «oar-g..,. = sbrl:(MAXITEMS I 2 + 2)} == ERROR)
rfturn ERROR;

for (i = 1; i (oarst; iff)
if {oar5:w£i][(1] = "! ")

if (i == 1) {

}

oarSy[oafSC] = nf.fu;

oar9t++;

notfns[notcount++] = &oar-9v[i]!1];

else if (~haswild(oar9v(i]})
nar9v[nar9c++J = oar9v[iJ;

~lsf {
setfcb(fcb,oar9v[il);

}

tlllPfm~ = tmpfn;
if (tmFfn[l] = oar9v[iJClJj == /:/}

taFfn[O) = Qar9v(iJ[OJ;

}

tlPfnp = tmpfn + 2;
bdos{14,tmpfn[OJ - 'A"};

first_time = TRUE;
while (I) { 1* find all matchin~ filiE *1

}

dmapos = bdos(first_time ? SEARCH_FIRST: SEARCH_lItXT,
feb);

if {dmapos == 255i break;
first_tim! = FALSE;
hackname{tmPfnp,(BAS£ + (Q~ + dmaFOS * ~2}};
if {(narJv[nar9c] = sbrk(strl~n{tmpfn) + I}} == ERROR)

r'etlJrn ERROR;
str'cPY(ffar9v[naf'!lc++], tmpfn);

for (i = 0; i (notcount; i+t)
for {j = 1; j (narsc; jt+)

ldhi Ie (r;,atch(notfns(i],nar9v[j], cur_drive)}
{

if (j = --nar'!H:}
break:

for' (k = j; k <: nusc; k++}

}

loarsep = nine;
*oar9VP = natlv;
return 0;

oar9v[kl = nan~vrk+ll;

hacknaae(destfsource}
char *dest, *source;
{

}

int i,j;

j = 0;

for (i = 1; i (9; itt)
{

\.
J

if (sourceril =-= ' "} briik;
dest[J++l = sour-ciCI];

if (sour-ee[9] != ' ')
dest[j++l = ' . .1;

for (i = 9; i < 12; i+t}
{

}-

if (sour-ceCil == .' ") br-e:a.k;
dest[J++l = source[il;

dest[j 1 = '\0';
f-eturn dest;

Int haswildCfna$t)
char *fnue;
l
\.

}

whil~ (c = *fnam~++}
if (c == l *" :! c == '7'<)

return TRUE;
return FALSE;

int match(wildnam, filnam, cur_drivel
char *wildnam, *filnim, cur_drive;
{

if (wiJdnam£lJ != ':')
(

}

ehe
{

if tfilnam[11 == ':Ij
if {fi Jnam(O] - -'Ai == cur_drive}

filnam t= 2;

return FALSE~

if <fiJnam(11 != ':.It
if {wi] dna.m~Ol - 'A/ = cur_driv!]

tlJildnam += 2;

}

else

}

while (c = *wildnam++)
if {c == '1.1}

if « c = *fi lriam++) &3. c ! = ".')
corttinue;

else
retur'n FALSE;

elsi if (c == 'f'}
{

while (c = *wildnam)
{ ~ildnam++;

if {c == I. I} break;
}

whi1e tc = *filnam}
{ filnam++;

if (c == I.') br~ak;
}

}

e1se if (c == *filnam++)
continue;

else r'etur'fi FAlSE;

if (!*fi lnu)
return TRUE;

/f---f/
1* */
/f This is a 1 ibr'uy of private routines for U~~ with 80S C Fros- *'
1* srams. The comment 1 iniS preceding each entry ire inhnded */
If to give a sufficient explanation of the routine that follows. 1/
/f To link any of thesf routines to a BDS c: pr'09ri,ilh mtre 1Y nitrle 1/

/f PRVLIB as a ar9uaent fo 11 owing th~ name (If th-e maHi PI'C!sr'am in II
1* the CLINK command line. II
/1 *f
/1--*!

If

*1

Move k bytes fr'om b 1 kl to b 1 k2.
The two blocks may ov~rliF.
Since k lust be Fositive, this routine is limited to
moving blocks less than 32k in length.
Added by M. Goldber97 25-[I£C-7'1.

movblk(blkl, blk2, k)

jf

*1

thaI' fblkl, *blk2J
int k;
(

iot m,n,t,IJ;
if {(k (= (l) : l {~{t = blkl - t;H~2}}) ret!lnl~

if (t) O} {m = 0; n = k;}
else {m = 1 - k; n = 1;}
for (t = m; t < n; ++t}

{

u = (t < 0 ? -t : t};
f(blk2 + u) = I(blkl + u};
}

ASCII counter - inCNHnts i field ,)f ASCII disits by one_
Arguments are a pointer to the field {hish-urcier disit}
ind the lensth elf the field.
The f'outinf! stops if it encounhr.: a non-dlsit chaf-ader
in the fie 1 d.
Added by M. Lied dbu-s, 25-(1£(:-79 ..

as c_cntr-(ad dr, lin}

If

char *addn
int len;
{

addr += Jer.;

}

{

if (!isdisitC*(--iddr»} break;
if (++(*addr-) <= '91

) brea.~;

*addr = '0";
}

whi 1 e (--len};

Bifid; a CR-LF pair- h the CP/M LIST device.

Added by M. Goldberg, ~~-DEC-79.
II
tdefine LF (r.~A

#define CR oxon
nellJ1ineO

1*

{

bdQs(S, CR); bdos(S,LF);
}

Sends a line of dashes to the CPIM LIST d~vici.
The argument is the number of dashes in th~ lin~.
Added by H. Go 1 dber·g, 16 ... F£P-:30.

II
dashes(rf}

char n;
{

If:

11

char- i;
for (i = 0; i (n; ++i} bdoi(S, /_~);

ne1lJ1ineO;
}

Causes a bl(lck of byhs h bi disFJaYf:d at the CP/M
c(,nsole device as a vector' of two-digit tiex numb~r-s.

Space&. tr'e used to SfPar'ate OM hex numb;?!", from iMther ..

It was written as a debug aid, that is, tc~ be uHd to take
a srfipshot (If i memor'Y durins Frc/gram e:~~Cljtiorj.

The ir9uIIlinb ar-e:
blkp = a pointer to the beginning of the memory block

and
n = the number of byhs in the blelek.

Added by M. Goldber9; 6-MAF:-S(I.

Futh,dblkP, n)
cbar *blkp;
int M

1*

{

chir c;
ttlhi Ie (rl--)- O}

(

}

prnd{({c = *blkp++) ~ &t.FO} » 4};
prhd(c & OxOF};
putchif' (... ...);

}

Outputs a messase to th! CP/M console devic~ and
stops the Pf'09r-ilTi. Thf ar-sul!'tent is i Foinhr t(j ttl!
meE-Sa5!~ strin5!.
Added bOt M. Oed dber'£!' 15-MAR-i«).

*1
stc,p(ass}

char mS9[);

puts (m59);

~xit(H
}

1*

Il

USERCO[lE.C: A Nic~ Idn. Ki J hd By A Stupid CP/M MisF'iatlJr~ •••••

Idea: Exhnd the fi lenaH ivnti.,\ fClf user with ALL fi h I/O to
aJ Iowa user area Fr'efix of the form lin/II on aJ J fi JenalitfiS.

Written by teor Zolman, 12/81

fI********************************f*****************************
if . FOR CP/M 2.x SYSTEMS ONLY!!! *if

***'f'f'

General ized r'eFh.cements for ",.penn
, "creatli and Hunl ink l

'

library functions, a}lo~in9 a user aria prefix to be attached
tel all fi leoiMs {except those used a.s ar';uments h the IIrenam€,1I

fundiclnJ. The new fi 1 ename syntax becc1mH=

[whitesPice][nn/lCd:)[filename.extJ

E.g, to reference file IIfoo.bar" on the curr~ntly los~ed di!k in
user area 7, you"d use:

To refirence foo.ba.r in user area. 9 on di~k b:, you'd say~

and SCi Of,. The user area. pr'efix muH alwa'fE COlfle first if both it and
i disk designator need to bi specified.

NOTE: THIS WHf'JlE THING [lOEfJJ"T REALLY WORK FOR WRITING FILES INTO
USER AREAS DIFFERENT FROM THE CURRENTLY ACTIVE USER AREA, BECAUSE
GOODAHN CP/M DCESWT LET YOU (tOC...£ A FILE THAT WAS OPENED IN A USER
AREA DIFFERENT FROM THE Cl~ENTLV ACTI~{ rellE. D~l!!!~~!!:!!!!:!!!!~!

T~ install this librar·y, follow thes~ st~ps:
1) compile this fi If! (llf'.£RCODE.C)
2} invoke eLlB and sive it th~ foll('lJIin9 coJftmands':

10 0 user-code
*0 1 deff2
Ie 1 op~n
*a 0 open_old
Ie 1 crt?at
*a () creat-c.l d
*e 1 unlink
*a 0 unlink_old
Ie 0
*Ci

3} Link the pf-ogr-aJJt:· YOU tCish to have NC(l9nize the USE<!' code
(In fi 1enart'lfs by inc1 uding II_f user-code'! or. the CLIr¥.
cOldJIand fine.

int clpen_o J d();
int neaLo 1 dt };
int unlink_old{);

}

cr'eat(filename) ,
1.

}

unlink(filename}

return us~rcodi(~unlink_old,filenim~);
}

jot user'cClde(fIJr,cph, fi lenaIJ1~' ixtri_arg)
iot t*funcptr)();
char *fi lemur.e;
int extra_ar,g;
(

iot if cur_UHr-, rlew_user-;
char *saVOim;

while {is5pace(*fihname}} fil1mame+H 1* skiF CI¥oH" \i:hitHFac~ *1
savou = fi lename; 1* save in CiS~ of f;J So: start if

cur_user = bdos(32, Oxff)~
new_usu = atoi (fileo~);
wbile (isdi9it(f++filena,~»

If save CIJfNnt UHr- ilull'lbH f/
1* set n!1II user number- t!

1* skip over user numb~r tixt II

if (*f i 1 ename ! = .' // : I new_user ,. 31)
returr. (*funcptr') {sa"oam, extra_ue};

bdos(32,new_u$er);
i = (*funcptr-)(f:i liname + 1, extra-ats};
bdos{32,cur_user);
return i;

CP/M MACRO ASSet 2.0 1001 BDS C Rurf-Time Module (e.ccc) v1.4S 11122181

0001 =

0000 =
.'

0000 =

0000 =
0005 =
0100 =
0000 =
(J(Yd(I =
0100 =
0000 =

. ,
; CCC.ASf1 (C.CCC) Vl.45 11/22/31

; NOTE: IF YOO ARE RfJfiING lJ4DER tf Itt II, BE Slft: TO SET THE MPtt2
; EQUATE TO 1..

; THIS IS THE BDS C RUN-TIME PACKAGE. NORt1AU.,(, IT RESlrES AT
THE START OF Tt£ TPA (AT ADDRESS BAS"E+l00H, WHERE BASE IS EITHER
OOOOH OR 4200H tEPENDlHO ON CP/M 1I1Pi..Ef£NTATION.) THE CODE
GEtBATED BY THE COttPlLER ALWAYS SITS IIt1EDIATa V AFTER THE EtlD OF
THIS RUt4-TIME PACKAGE: CODE.

; EtlJATE STATEI1ENTS IN CAPITAL LETTERS MAY BE CUSTOMIZED BV THE
USER IN ORDER TO 0iANGE A) 11£ ORIGIN OF THE Rltf-TIr£ PACKAGE:

. ,

AND 8) THE ORIGIN OF 11£ Rlt4-TII1E Fm AREA. IF YOU WIll BE
GENERATING CODE TO RtW IN A NON-CPtl1 ErJV I ROrI1ENT , SET THE CPM
EQUATE TO ZERO AND MAKE SlIRE TO SET THE ORIGIH, RAI1 AND
EXITAD EWATES TO FIT YOUR CUSTOH RUN-TIHE COtElGURATION •

; THE uU:I SP,()11 HlSTRUCTION AT TI£ START IS REPlACED BV THE SEQUENCE:

LHLD BASE+b
SPHL

BV CLINK AT LINK TUEt UtLESS THE -T OPTI0t4 IS USED WITH CLINI(,
IN WHICH CASt: Tt£ ulXI sp. REr1AINS THERE AND THE VALUE LlSED TO
INITIALIZE THE SP IS THE ARGlf1ENT GIVEN TO THE If_p OPTION.

TITLE /BDS C Run-Tim! Module {c.eec) vl.4S 11/22/81'

CPtt: EOO ;TRUE IF TO FE RUN UNDER CP/M OR HP/tt

; TRUE ClNl.. V IF RUNNIttJ UNDER tiP Itt I I

I.11AVIO: EQU 0 ; TRUE IF USnlt DM VIDEO LIBRARY ROUTlNfS AND
;NEED PARAMETERS INITIAlIZED

IF CPM
BASE: EOO
BOOS: £00
TPA: EQIJ
NFCBS: EQU
TBUFF: EOO
ORIGIN: EQfJ
EXITAD: EOO

ENDIF

o ;START OF RAM IN SYSTEM {EITHER 0 00 4200H FOR cP/ru
BA..C\E+5 ;REST OF THESE USED BY Cf/M-Bft"tD eONFIGURATlOtJS.
BASE+l00H
S ;MAXIMUM # OF FILES MN AT ONE TItlE
BASEf-OOH
TPA
BASE ;WARtt BOOT LOt:ATION

IF NOTCPM ;FIll IN THE APPRCfRIATE VALUES •••
;ADDRESS AT ~JHICH PROGRAMS ARE TO RUN ORIGIN: EQU NEWBASE

RAM: EQU WHATEVER ;R/W MEf10RY MEA FOR NOtH:P/" CONFIGf.RATIONS
; (DEFAULT= JUST AFTER C.CCC UNDER CP/M)

EXITAD= £QU wt£NDONE ;WHERE TO GO Wt£N DONE EXECUTING
ENDIF

CPIM MA(~ AS~iM 2.0 1002 BDS C Run-Time Module (e,ett) vl.4S 11/22/81

0100
0100 310000
0103 00

0104 OfJOO
0106 000000
0109 OOOOO(t

010(: CD4B03
OlOf' CDS607
0112 C31304

0115
0117 8bOb
0119
011B

(tUD (;'"604
0120 C31304

(t123 C-32E04
0126 ('37604
0129 C35A04
(it2C C30205

012F

013F 77
0140 23
0141 77
0142 23
0143 n
0144 D1

; THE LOCATION OF THE JlJ1P VECTIR) AND UTILI TV ROUTINES t1UST R£J1AIH
; CONSTANT RELATIVE TO THE BEGUJNIt.i1 Of THIS ~-TIr1E I1ODULE.

; 00 NOT CHANGE ANYTHING BETWEEN HER£ AND THE START OF n£
; "INIT" ROltTlNE!!!!!!!!

ORO ORIGIN
LXI $f,O ; THIS IS CHArm BY CLINK TO LHLD BASE+~'"
NOP ;THIS FIRST IS UCJJAU.Y TlMD INTO SPHL BY CLI~

NOP! NOP ;SIMPLE INITIALIZATION OR PATCHES MAY BE
; INSERTED HERE, BUT BETTER TO 00 AlL THAT
;IN THE MINIT" ROUTINE

HOP! NOP! t'(}p

HOP! NOP! NOP

CALL INlT ;00 ARGC & ARGV PROCESSING, PLl~ MISC. INITIALIZATIOtts
CAlL MIN ;00 CRUNCH!!!!
Jr1P VEXIT ;CLOSE OPEN FILES AND P£BOOT

EURNS: os
CCCSIZ= ow
CODEND= DS
FRERAtl: DS

. ,

2
t1An~-oRIGIN
2
2

;5£T BY ClINK TO EXTERNIt. DATA BASE ADDRESS
;SIZE OF THIS CODE (F01 USE BY CtIt.O
; SET BY CLINK TO (LAST ADDR OF CODE + 1)
;SET BY CLINK TO (LAST ADDR OF EXTERt"LS t U

; Jltf VECTORS TO SOME FILE 110 UTILITY ROUTINES:

IF
CLOSt:: JttP
SETFCB: JMP
FGFD: ""
FGFCB: JI1P

END IF

IF
ClOSE: Jt'IP
SETFCB: Jf1P
FGFD: JMP
FGFCB: ... t:1P

ENIHF

DS

IF
SETFCB3=

t10V
INX
MOV
INX
f10V
POP

VERROR ;LOADS -1 INTO Hl AND RETl~
VEXIT ;CLOSE AlL OPEN FILES AND REBOOT

CPtt
vetOSE ;CLOSE A FILE
VSETFCB ;SET UP FCB AT HI.. GIVEN FlLEHAtIE At DE
VFOFIt ;RETURN C SET IF FILE FD IN A NOT OPEN
VFt3FCB ;COIf'UTE ADDRESS (f INTERNAL fCS FOR FD IN A

NOT C"P" ; IF t~T UNDER CP 1M, FILE 1/0 ROUTINES
VERROR ; ARE NOT IP...ED.
\'ERROR
I~

\'ERROR

1b

CPf1

M,A
H
M,A
H
thA
D

; THIS IS A PATC:H FRCM Iff: "WiTFCB" ROOTINE,
;WHICH CAUSES 11£ RANOOtl RECORD BYTES OF THE
~FCB BEING INITIALIZED TO EE ZERlED .. (FORt£R
fVERSIOOS HAD A liDS 3011 ABOVE, SO THIS KEEPS
;ALL TI£ ADDRESSES CONSISTENT BETWEEN THIS
;AN[t EARLIER 1.4'S)

CP/M MACRO Ab:sEH 2.0 1003 DDS C Run-Timt Module (c.tec) vl.45 11/221S1

0145 C1 POP B
0146 C9 RET

PATOHt:
0147 CDAE04 CALl SETNtl ;ANOTHER PATCH FROt1 NVSETFCS"
014A C3C604 JMP SETNtt3

ENDIF

014D £1
014£ 5E
014F 23
0150 56
0151 23
0152 E5
01532A1501
0156 19
0157 7E
0158 23
CHSS' bb
OISA t.f
015B C9

015C E1
015D 5E
015£ 23
015F £5
0160 1600
0162 2A1501
0165 19
0160 7E

IF tIDT mt
DS 14 ;KEEP ADDRESSES THE SAtE FOR NCtt-CP/I1 It1PlEt£NTATlfJ4S
END IF

; THE FOLLOWING ROUTINES FETat A VARIAPlE VALUE FROM EITHER
; THE LOCAl STACK FRAME OR THE EXTERtW. AREA, GIVEN THE RELATIVE
; CfFSET OF THE rtATUM REQUIRED Irt1EDIAT£lY FOLLOWING THE CALL;
; FOR THE uLONG DIS"PLAC'EMENP ROUTINES, THE OFFSET tiliST BE 16 8 ITS ,
; FOR THE IISHORT DISPlACEMENTiI ROCITINE$, THE OFFSET ttUST BE S BITS.

; LONG-DISPLACEMENT, OOUBlE-BYTE EXTERNAl INDlRECTIOO:

FORMAT: CAlllDEI ; GET l6-BIT VALUE IN HI..
OW CfFSET..FROtLEXTRNS ;)= 256

LD£1= POP H ; GET ADDRESS OF OFFSET
t10V E,M ; PUT OFFSET IN ttE
INX H
ttOv D,tl
INX H
PUSH H ; SAVE RETURN ADDf<ESS
lHLD EXTRNS J ADD OFFSET TO EXTEPML AREA BASE
DAD D
t10V A,H ; AND Ctf rtf VAlLIE INTO HI..
INX H
tfOV H,tt
MOV L,A
RET

; SHORT-DISPLACEMENT, DOUBLE-BYTE EXTERNAL INDIRECTII)N:

FORMAT: CALL SOEI ; GET 16-BIT VAll(IN L

. ,

S[tEI: POP H
H(tV E,M
INX H
PUSH H
MVl D,O
ULD EXTRNS
DAD D
I10V A,M

DB OFFf~T_FROM_EXTRNS ; (256

CP Itt MACRO ASSEf1 2.0 #004 BOS C Run-TIlt Module (c.eec) vl.45 Uin/Sl

0167 23
0168 bb
0169 bF
016A C9

0168 £1
016(: 5E
016D 23
016£ 56
0161= 23
0170 E5
0171 2A1501
0174 19
0175 bE
0176 C9

0177 E1
0178 5E
0179 23
017A E5
017B 1600
017D 2A1501
0100 19
01S1 bE
0132 C9

0183 £1
Ot£'45E
0185 23
0186 56
0187 23
0188 £5
OlS9EB
OISA 09
018B 7E

INX H
f10V H,11
I'IOV L,A
RET

; lONG-DISPlAl"EMENT, SINGlE-BYTE EXTERHAL INDlRECTIt14=

LSEI:

FORMAT: CALl LSEI ; tET S-BIT VAlUE IN L
fM ffFSET JROtLEXTRNS ;)= 256

POP H
I'IOV E,M
INX H
t10V D,M
INX H
PUSH H
UlD EXTRNS
DAD D
MOV L,f'I
RET

; StCfiT -DISPl.ACEr£HT, SURE-BYTE EXTERNAL ltIDlRECTIt)4t

SSEI:

. ,

FORMAT: CALL SSE I ; GET S-BIT VALUE IN L
DB OFFSELFROtLEXTERNS ; (256

POP H
nov E,M
INX H
PUSH H
"VI D,Q
UIL.D EXTf\'NS
DAD D
MOV l,\'t
RET

; LCM1-DISPlACaENT, DOUBlE-BYTE LOCAl.. INDIRfCTIOt"·

FORHAn CAlL LDLI ; GET Ih-BIT VALUE IN Hi..
DH OFFSET ..FROfLBC J)= 256 .

'1

LDlI: POP H
"(IV E,M
INX H
nov D,M
INX H
PUSH H
XCHG
DAD B
MOV A,M

CP '" MACRO ASSB1 2.0 1005 BDS C Run-Time Hedule (c.eec) vl.45 11/22/81

Ol8C 23
018D 66
OlSE 6F
OfSf' C9

0190 E1
0191 5E
0192 23
0193 E5
0194 EB
0195 2600
0197 09
0198 7E
0199 23
019A 66
019B I:F
Ol9C C9

019D 210100
OIAO CS
OlAf 2B
01A2 C9

CtlA3 210000
(JIM CS
OtA723
OlAS C9

01A9 210100
OIAe DS
01AD 28
OIAE C9

OlAF 210000
0192 D8
018'3 23
0184 C9

(JIBS 210100
OIBS FO
01.89 2B
OIBA ("9

01B8 210100
OISE Fe

INX H
f10V H,H
rtOV L.A
RET

; SHORT-DISPLAl..-a£NT, DOUBLE-BYTE LOCAl INDIRECTION:

SOLI: POP
MOV
INX
PUSH
XCHG
ttVI
DAD
ttOV
Ita
t10V
t10V
RET

H
E,t!
H
H

H,O
B
{hft

H
H,11
l,A

CALL SOlI
DB OfFSET..FROM..BC

; GET 16-BIT VAlUE IN ttl
; { 256

; FLAG CllWERSION ROUTINES:

PZINH: LXI Hd ;R£TURH It. = TRUE IF Z SET
RZ
rex H
RET

PNZINH: LXI H,Q ;RETlIRN Hi. = FAlSE IF Z SET
R1
INX H
RET

PCINH: LXI H,l ;R£TtB4 HI.. = TRUE IF (: SET
RC
DCX H
RET

PNCINH: LXI H,O ;RETURN K. = FALSE IF C SET
RC
INX H
RET

PPINH: LXI Hd ;RETURN HI.. = TRUE I~ P (PLUS) FLAG SET
RP
[lCX H
RET

Pf11Mfl LXI H,l ;RETURN HL = TRUE IF H UUNUS} FLAG SET
Rt1

CP/M I1ACRO AS'SEtI 2.0 1006 DDS CRun-Tile Module (c.ccc) v1.45 11/22/81

OlBF 2B OCX H
OleO C9 RET

01Cl 110100 P2IND: LXI D,1 ; RETURN DE ::: TRlE IF Z SET
OlC4 C8 RZ
OlCS iB DCX D
01t6 C9 RET

OIC1110000 PNZIND: LXI D,O ; RETURN DE ::: FAlSE IF Z SET
otCA C8 RZ
01CB 13 INX D
01CC C9 RET

Oleo 110100 PCIND: LXI Dd ; RETURN DE ::: TRUE IF t; SET
0100 D8 RC
OlDt IB DCX D
01D2 C9 RET

o ID3 11 0000 PHCIND= LXI 0,0 ; R£TURN [E ::: FALSE IF C SET
0106 ItS RC
0107 13 INX D
01De C9 RET

01D9 110100 PfINO: LXI D,1 ;REMN DE ::: TRUE If P (PLUS) FlAG SET
(HOC FO RP
OlDD IB rex D
OIDE C9 RET

01DF 110100 PMIND; UI D,1 ;RETlIPi4 DE ::: TRUE IF Ii U11NUS) FLAG SET
OlE2 Fe Rtf
01£3 IS DeX D
01E4 C9 RET

. ,
; RElATItl4Al. tl'ERATOR ROUTINES: TAt.E ARtJ"S IN DE AND tI,.,

; AND RETURt4 A FlAG BIT EITJ£R SET OR RESET.

; =,), (:

01E5 7D EQWE1.: f10V A,L ; RETUPJt4 Z IF HL = DE, ELSE HZ
01E6 BB CtF E
01E7 CO RNZ ;IF l 0 E, TtEN Ii. ~") DE
01E8 7C t10V 14tH ;ELSE ttl = CE ONlY IF H = D
01E9 SA ct1P D
OlEA C9 RET

01EB ED BlAU: XCHG ; RETlR4 C IF It.. <: DE, UNSIGt£D
OlEC 7A ALBU: ttOV A,D fRETURN C IF DE <: tl., UNSIGNED
Olen Be OF H
OIEE CO RNZ ; IF D () H, C IS SET CORRECTl V
(ttEF 7B i'1OV A,E ;ELSE CCtfARE E WITH L
01fO DD alP L
01ft C'9 RET

CP/M "ACRO ASSEM 2.0 1007 PDS C Run-Tilt Module (c.eec) vl.45 11/22181

01F2 ED B(;AU: XCHG ;RETlIRN C IF HI..) DE, lfNSIGtJE[1
OlF3 7C AGOO: tt)V A,H ;RETlf.:H C IF DE > Hl, ur4SIGNED
01F4 BA Cf1P D
01F5 CO RNZ ; IF HOD, C IS stT CORRECTLY
(lIFb 7D I10V A,l ;ELSE ClNARE L WITH E
01F7 BB etf E
0IFS C9 RET

OlF9 ED BLAS: XOO ;RETURH C IF It. (DE, SICt£D
OIFA 7C AlBS: nov A,H ;REMN C IF DE (HL, Slat£D
01FB PtA XRA D
01FC F2ECOl JP ALBU ; IF SAME SIGN, DO UNSIGNED COtfARE
OlFF 7A JiWJV A,D
0:;''00 87 OOA A
0201 FO RP ;ELSE RETURN He If DE IS POSITIVE AND HI.. IS N£(;ATIVE
0202 37 STC ;ELSE SET CARRY, SINCE DE IS NEGATIVE ArJD HI. IS POS.
0203 C9 RET

0204 ED BGAS~ XCHG ;RETORN C IF HI..) DE, SIGNED
02057C AGBS: mv A,H ;RETURt4 C IF DE) Ht., SIGNED
0206 M XRA D
O';.1fJ7 F2F301 JP AGBU ; IF SAtE SIOt4, GO 00 UNSIGNED COHPARE
02M 7C I'IOV A,H
0200 B7 ORA A
020C FO RP ;ELSE R£TURN He IS tl IS POSITIVE AHD DE: IS NEGATIVE
020D 37 STC
020E (,"9 RET ;ELSE RETURN C, SINCE HL IS tEO ArID DE IS POS

; I'1llTIPLICATlVE OPERATORS: i, /, AND l~

(t2OF 7A Sf1OD= MOV A,D ; SIGNED MOD ROUTINE; P.ET~t~ (DE % HIJ IN HI..
0210 F5 PUSH PSW ;SAVE HIGH BIT OF DE AS SIGN OF kESllT
0211 CD5A02 CALL rSTN ; GET AIr.;lt.lITE VAllE (IF ARGS
0214 fB XCHG
0215 CD5A02 CAll TSm
021B EB XCHG
0219 CD2902 CALL ~JD ; 00 UNSIGtD I'k1D
021C Fl POP PSW ;WAS DE NEGATIVE?
021D B7 ORA A ;IF HOT,
021E FO RP ALL 00£
021F 7C t10V A,H ; ELSE t1AKE PESll T NEtJATIVE
0220 2F CMA
0221 67 I'iOV H,A
0222 7D MOV A,L
0223 2F em
0224 bF ttOV l,A
0225 23 INX H
0226 C9 RET

0227 00 NCf U1AINTAIN ADDRESS CotFATIBllITY WITH SOt1£
0228 00 NOP ; PRE-RELEASE V!.4"S.

0229 1C ustUt: MOV A,H ;UNSIGNED MOD: RETURN {DE ~ 1-1J IN Hi.

CP/M MACRO ASSEtl 2.0 IOOS BDS C Run-Time Module «(.eec) vl.45 11/22181

022A B5 OM L
0228 ce RZ
02.c."'C D5 PUSH D
022D E5 PUSH H
022E CD8902 CIU. USDlV
0231 D1 POP D
0232 CD6B02 ('.AlL USMll
0235 7C t10V A,H
02362F ettA
0237 67 t10V H,A
02"38 7D If)V A,L
OZ-ft 2F CM
023A t.f ttOV L,A
0238 23 INX H
023C Dl POP D
023D 19 DAD D
023£ C9 RET

02aF AF Sf1ll: XRA A ;SIGNED truLTIPLYt RETURN (DE * ItJ IN HI.
0240 325905 STA TttP
0243 C[15A02 CAlL TSTN
0246 ED XCHG
0247 Cnc...A02 CALl TSTH
024A CDbB02 CALL USttUL
024D 3AS905 SMUL2: LDA TnP
0250 IF RAR
0251 00 RNC
02527C I'tOV A,H
0253 2F OIA
0254 67 I10V H,A
Oz=-..o 7D f«)V A,L
025b 2F Ct1A
0257 bF t1lV L,A
0258 ~'3 INX H
(y~9 C9 RET

025A 7C TSTN: t10V A,H
025B 87 ORA A
O~...t FO RP
025D 2F CM
025£ 67 MOV H,A
025F 7D MOV A,L
02602F ettA
0261 6F MOV L,A
0262 23 INX H
02633AS905 LDA Ttf'
0266 x: INR A
0267 325905 STA Ttf'
026A C9 RET

026B C5 IJ-J1UI..: PUSH B ;tINSI(W MULTIPLY: RETmN (DE f tL) IN Hl
026C CD7102 CALL USt12
026f Cl POP B
0270 (:9 RET

0271 44 USM2. . . HOY B,H

CP 1M MACRO Asset 2" 0 .009 BDS C Run-Time Module (c.eec) v1.45 11/22/81

0272 4D I10V C,l
0273 210000 LXI H,e
0276 18 1.JSM3= HOV A,B
0277 81 ORA C
0278 C8 RZ
0219 78 f10V A,B
027A IF RAR
027B 47 t10V B,A
027C 79 ttOV AtC
027D IF RAR
021E 4F nov C,A
027F D28302 JNC UStJ4
0282 19 DAD D
0283 ED lfSf14: XOIl
0284 29 DAD H
0285 ED XOiG
0286 C37602 ..If' USI13

t)289 7C USDIV; I10V A,H WNSIC~D DIVIDE: RETURN (DE I HI.) IN HI..
028A B5 ORA L ;RETURN 0 IF tiL IS (1

0288 CS RZ
02SC (:5 PUSH B
028D CD9402 CAlL lISD1
029{t 60 I10V H,B
0291 69 MOV L,C
0292 C1 POP B
O~'93 C9 RET

02940601 USB1: I1VI 9,1
0296 7C ustt2: HOV A,H
0117 B7 MIl A
om FAAOO2 Jt1 USD3
om Z1 DAD H
t)29C 04 INR B
029B C39602 JI'tP USD2

O2AO ED USD3: XCHG

OlAf 78 USD4: MOV A,B
02A2010000 LXI B,O
02A5 F5 USD5: PlISH PSU
OlM COODCt2 usrtb: CAU. CttPHD
02A9 DAB702 JC USB7
02AC 03 INX Ii
02AD D5 PUSH [t

02AE 7A t10V A,D
OlAF 2F CI'fA
0200 57 t1(tlJ D,A
0281 1B tllV AlE
02B2 2F CM
0283· SF f10Y E,A
0214 13 INX D
0285 19 DAD D
0286 Dl POP [f

02B7 AF USD7: XRA A

CP/M MACRO ASSEM 2.0 1010 BDS C Run-Time Module (e.eec) v1.45 l1/Z2JSl

0288 7A MOV A,D
0289 iF RAR
02BA 57 nov D,A
0298 7B MOV A,E
02BC 1F RAR
O~~ SF tOJ E,A
02BE fl POP PSU
0.2BF 3D OCR A
02CO CS RZ
Olel F5 PUSH PSW
02C2 79 nov A,e
O~3 17 ~
02C4 4F ~ C,A
02C5 78 MOV A,S
02C6 17 PAL
02C7 47 t10V B,A
02CS C3A602 ~ USD6

02CB f!F

02CC 325905
02CF CD5A02
02D2 EB
02D3 CD5A02
02D6 EB
02D7 (:00902
02DA C'.:J4002

SDIV= XRA A ;SIGNED £I!VlDEt P£TURH ([E I HL.) IN Ht.

02DD 7C
02[(BA
02DF DS
01£0 CO
02£1 7D
02E2 BB
O~'E3 C9

01£4 EB
02E5 1C
02£6 ID
02£7 CS
02ES AF
02E9 7C
02EA IF
02EB 67
02EC 7D
02ED 1F
02EE 6F
02EF C3E602

02F2 EB
02F3 1(:
02F4 1D
02F5 CS

STA
CALL
XCHG
CIU
XCHG
CAlL
JttP

lt1P
TSTN

TSTN

tlPHD: t»i A, H
Cl1P D
RC
RtJZ
MOV A,l
ctf E
RET

; THIS RETURNS C IF tt. (tIE
; (lJ4S1GNED ccmPARE ONlY 1F..,fI'
; WITHIN (.OCt, NOT FROM C)

; SHIFT OPERAT~ «AND »~

SDERBt..: XCHG
S1t.RBE: I~
SHRB£2: OCR

RZ
XRA
l10V
PAR
l10V
MOV
RAR
t10V
Jtf'

SDElBl: XCHG
SHU.BE: INR
SHLBE2: nCR

RZ

;SHIFT ££ RIGHT BY l BITS
E ; SHIFT HI.. RIGHT BY E BITS
E

;SHIFT DE lEfT BY l BITS
E ; SHIFT HL L£FT BY E BITS
E

CP/M MACRO ASset 2.0 1011 DDS C Run-Time Module (c.eec) vl.45 11/22/81

02F629
(t2F7 C'3F402

02FA 7C
om 2F
02FC 67
02FD 7D
02FE 2F
O~F 6F
0300 23
0301 C9

03027A
OS'03 2F
0304 57
0305 7B
0306 ;f
0307 SF
0308 13
0309 C9

1)30A 2104(10
030D 39
O3OE 1E
03QF 23
0310 bb
0311 6F
0312 ('9

0313 210600
0316 C30003

0319 210s00
(J31C C30003

DAD H

• SK.BE2

. ,
; ROUTINES TO 2"S COtlPLEf1ENT HL AND DE:

CI1H: MOV A,H
alA
t10V H,A
f104J A,L
em
rtlV L,A
INX H
RET

00: MOV A,D
ettA
t10V D,A
MOV A,E
atA
MOV E,A
INX D
RET

; THE FOlLOWING ROOTlrt:S YAN< A FORMAL PAP.AI1ETER VALUE OFF THE STACK
; AND PLACE IT IN BOTH ti.. AND A (LOW BYTE), ASSUMING THE CALLER
;HASW'T DONE ANYTHING TO ITS STACK POINTER SINe! IT WAS CALLED.

; THE t1NEt'IONICS ARE ItttOVE ARG IN TO Htll ,

; WHERE ARG 11 IS THE THIPII THING ON THE STACK (WHERE THE FIRST
; AND SECOND THINBS ARE, RESPECTIVELY, THE ReTURN ADDRESS OF THE
; ROUTINE MAKlt;3 THE CALl TO HERE, AND THE PREVIOUS REIURN
; ADrtRESS TO THE ROUTINE WHICH ACTUAllY PUSl£D THE ARGS ON THE
; STACK.) THUS, A CALL TO ItMAlTOOIi WOllD h'ETURr~ WITH THE FIRST
; PASSED PARAMETER IN HL AND A; IIMA2TOKN WOllD RETURN THE SECOND, .
; ETC. N(fTE THAT IF THE CAlLER HAS PUSHED un ITEMS O;J 11£ STACK
; BEFORE CALLIt4G aptA [X] TOO", THEN THE [X-NlTH FORMAl PARMETER
; VALUE WILL BE RETOONE[}, NOT THE UlTH • .. ,

MA1TCH: LXI H,4 ;OET FIR'3T ARG
MAOTOH= DAD SP

MOV A,M
INX H
f10V H,"
ttOV L,A
RET

MA2TOH: LXI H,6 ;(£1 2ND MO
Jt1P HAOTOH

t1A3TOtt: LXI H,S ;O£T 3RD ARG
Jt1P rtAOTCH

CP/M HACRO ASSEM 2.0 1012 8DS C Run-Time Moduli (c.eec) vl.45 l1/ZlJSl

031F 210A00
0322 C30003

0325 21OCoo
0328 C3OOO3

032B 210£00
032£ C30D03

0331 211000
0334 C30D03

0337 118705
033A 210400
03",j[J 39
03'".£ C5
033F ObOE
0341 7E
0342 12
0343 23
0344 13
0345 05
0346 C24103
0349 (1
034A C9

ttA4TOH: LXI
JI1P

MASTOH: LXI
J1P

MAbTOH: LXI
Jtf

MA7TOH: LXI

• 7

JtF

HdO ;QET 4TH ARG
MAOTOH

H,12 ;(£T 5TH ARO
ftAOTOH

H,t4 ;GET 6TH ARG
HAOTctf

H,16 ;(£T 7TH ARG
MAOTOH

; THIS ROUTINE TAKES THE FIRST 7 MOS ON THE STACK
; AND PLACES THat CONTlGt.IOt..E:LY AT THE "ARGSli RAM AREA.
; THIS AlLOWS A LIBRARY ROllTINE TO MAKE ONE (:ALL TO ARGtAK
; AND HENCEFORTH HAVE AlL IT'S ARGS AVAILABLE DIRECTLY
~ THROIJU"H LHUI"S INSTEAD OF HAVING TO HAl."'K 11£ ST~Y. AS IT
; GROWS AND smINKS. NOTE THAT ARG'HAK SHOLlD BE CALlED AS Tt£
; VERY FIRST THING A fUNCTIOt~ OOES, BEFORE EVEN PUSHING Be.

ARGHAK~ LXI D,ARGS ; DEST1NAT1Ot~ FOR BLOCK MOVE IN DE
LXI H,4 ;PASS OVER TWO RETURN ADDRESS
DArI SP ; SOJRCE FCtR BlOC¥. HOVE IN HI..
PUSH B ;SAVE Be
"VI 8,14 ; COtJffDOWN IN 8

ARGHK2: f(rJ A,M ;CCfY LOOP
STAX D
INX H
INX D
OC'R B
JNZ ARGHK2
POP B ;RESTmE Be
r£T

, LP TO THIS POINT, ABSClUTEL V NO CHANGES SHOllD EVER BE HADE
; TO THIS SOURCE FILE (EXCEPT FOR CUSTOMIZING THE EW STATEMENTS
; AT THE BEGINNING OF Tl£ FILE).

; THIS ROUTINE IS CALLErf FIRST TO 00 ARGC Sf ARfl.JPROCES'SING (IF
; RUt~ING UNDER CP/M) AND SOME ODDS AND EtJDS INITIALI1ATIONS:

034B E1 INIT: POP H ;STORE RETtB4 ADDRES-S
034C 225005 SHLD TMP2 ; SMUHERE SAfE fOR THE TItlE BEING

IF (:pf1

O*' 21~o.o7 LXI H,AR(t.ST-2 ;SET THE UARGV'I THAT THE C MAIN PftOl1P.AM
ENDIF

CP/M MACRO ASSEH 2.0 1013 BDS C Run-Time Modult (c.ccc) vl.45 11/Z1/81

0352 E5

0353 2AlBOl
0356 229B05
0359 21E003
035C 22:~005

035F 21DC59
0362 227F05

0365 DB
0367 329505
03e:A 3ED3
036C ~:29S05
036F 3EC9
0371 329705
0374 329A05

0377 CEOa
0379 C[IO'"...,oO

037C 87
037D 00

037E C'.ABO03
0381 OEOI
0393 COO5OO

0386 21eooo
0389 l1C70t.
03SC 46
038D 23
03BE i8
038F B7
OS'90 (:29903

IF NOT CPH
LXI H,I,)
ENDIF

PUSH H ; WILL GET.

;INITIALIZE STQRAC{ ALLOCATION POINTERS:
LHLD FRERAM; GET ADDRESS AFTER E~JD OF EXTERNALS
SHlD ALLOCP ;STORE AT ALLOCATION POINTER (FOR IISFRK. II}
LXI H,looo ;DEFAliLT SAFf.TY SPACE BETWEEN STACK ~m
SlUl ALCOtX; HIGHEST ALLOCATABLE ADDRESS IN MtMORY

; (FOR USE BY IISBRI<".).

;INITIALIZE RANDl1M SEED:
LXI H,59DCH ;LE1'$ STICK SOMETHING ltHERD INTO THE
SHLD RSEED ;FIRST 16 PITS OF THE RANOOf1-NlIMBER SEED

MVI
STA
MVl
STA
MVI
STA
STA

A,ODBH
WHACK
A,OD3H
10HACK+3
A,OC9H
IOHACK+2
IOHACJ<+5

IF Dt1AVICt
LXI H,OCCOOH
SHLD PBASE
LXI H,16
SHLD XSIZE
LX! H,64
SHLD YSIZE
LX! H21024
SHlD PSIZE
ENDIF

IF
t1VI
CALL

JZ
"VI
CALl

!tHTZZ: LXI
LXI
f1t1tJ
INX
~J

ORA
JNZ

CPM
C,U
BOOS

A

INITZZ
C,l
BOOS

H, TBl..fF
D, (.'OIt.It4
8,M
H
A,8
A
INITL

;INITIALIZE 1/0 HACK LOCATIOtf3:
; II INII (lP, FCIR Il IN xX; REP SUBROUTINE

; ilourn OP FOR "OUT XX; RET" Slf8RDUTW£

; uREfU FOR ABOVE SClBROUTlNES
;THE PORT tl~ER IS FILLED IN BY THE
; II INPu AND uQUTpu LIBRARY ROLITINES.

;INITIALIZE DNA VIDEO PARAHfT~3;
; IF WE'RE USING DNA VIDEO ROUTIrJES,
;S£T UP DEFAllT VALUES (MAY FE CHANGED
;TO WHATEVER SUITS}. VIDEO BOARD ADDRESS,

;# Cf LINES,

; Atll TOTAL f OF CHARACTERS ON SCREEN

Wf\IDER CP/M: CLEAR o..1N'30LE, PROCESS ARGC & AROV:
; INTER"{fGATE CONSOLE STATlIS TO SEE IF THERE
; HAPPENS TIJ BE A STRAY CHARACTER THEP.E •••

; (USED TO BE 'ANI 14' ••• THEY TELL ME THIS WDP.t:S
; BETTER FOR CERTAiti BIZARRE CP/M_dLn~E" SYSTEMSJ

;IF INF11T PF.ESENT, CLEAR IT

;IF ARt:iUMENTS GIVEN, PROCESS THat.
;O£T F:EADY TO Copy CCMrJD LINE
; FIRST GET LENGTH OF IT FROM LOC. BASE+'30H

; IF NO ARCiUMENTS, DON"r PARSE FOR MGV

CP/M MACRO ~--sEH 2.0 1014 BDS C Run-Time M(IOule (c.ced v1.45 11/221$1

0393 110100 LXI D,1 ;SET ARGC TO 1 IN SUC~ A CASE.
0396 C3F703 JI1P IS

0399 7E INITL: MO'o} A,M . ; QY., THERE AP.E ARGUMEtUS. PARSE •••
039A 12 STAX D ;FIRST COPY COMMAND LINE TO CC'MLIN
039B 23 INX H
039(: 13 INX D
039D 05 OCR B
039£ C29903 ~Z ItUTL
03Al Pf XRA A ;PLA(:E ZERO FCUOWING LINE
03A2 12 STAX [.

03A3 21(:706 LXI H,COMLIN ;NOW COMPUTE POINTERS TO EACH ARG
03At. 110100 LXI rl,1 ;ARG COUNT
03A9 (l14A07 LXI B,AR6tST ;WH£RE POINTERS WILL ALL 00
03AC AF XRA A ;CLEAR IIIN A STRING" FLAG
03AD 325A05 STA Tf1P1
0300 7E I'''· ",. MOV A, 1'1 ; BETWEEN AROS •••
03Bl 23 INX H
0382 FE21.) CPI l I

03B4 CABt"103 JZ 12
03B7 B7 ORA A
03£18 CAF703 JZ IS ;IF NULL BYTE1 r~~ WITH LIST
03BB FE22 (:PI 111.1

03BD C2C603 JNZ I2A ;oooTE1
03CO 3~'5A05 STA TMP! ;YES. :iT UIN A STRINGU FLAG
03C3 C3C703 Jff> 12B

03Cb 2B 12A: DCX H
OX7 7D 128: l'IOV A,l ; 01(, Hl 1'3 A POINTER TO THE STAAT
on 02 STAX B ;OF AN ARG STRING. _STORE IT.
03C903 INX B
03CA 7C "(IV A,H
OXB 02 STAX B
03CC 03 INX B
03CD 13 INX D ;SUtf' ARB COUNT
OaCE 7E 13: MOV A,M
OXF 23 INX H ; PASS OVER TEXT OF THIS ARG
0300 B7 ORA A ; IF AT £tID, ALL 00ti:
03Dl CAF7Q3 JZ IS
03D4 C5 PUSH If ;IF TMP! SET, IN A STRING
03[15 47 t10V B,A ; (SO WE HAVE TO IGNORE SPACES)
03D6 3A5005 lDA Tl'tPl
03D9 B7 ORA A
03DA 78 t10V A,B
(l3DS (:1 POP B
03DC eftElU);: JZ I3A
03If FEll CPI ... a~· ;WE ARE IN A STRING •
03EIC2CE03 JNZ 13 ;C.HECJ(FOR TERI'IItJATING 9UOTE
03E4 AF XRA A ; IF FOlfr{t, REStJ Ii IN STRINt31J FLAG
03E5325OO5 STA TMP!
03ES 2B DeX H
03£9 77 ttOV M,A ;AND STICK A ZaID BYTE AFTER Tff: STRING
03EA 23 INX H ;AND 00 ON TO tJEXT ARG
03EB FE20 13A: CPI' ;NQU FIND THE SPACE BETWEEN ARf:iS
03ED C2(:£03 .14Z 13

CP/M MACRO ASSEM 2.0 #015 B&3 C Run-Time ModuJ~ {c.eec} vl.45 11/22/Bl

03FO 2B
03Fl 3bOO
03F323
03F4 C38003

03F7 OS

03FS Oboe
03FA 21BFOb
03FD 3000
03FF 23
0400 05
0401 C2fD(t3

0404 PI
0405 325FOS
0400 326005

040B 2A5B05
040E E9

DCX H ; FOLIND IT, STICK IN A ZERO BYTE
MVI M,O
INX H
Jtf 12 ; AND GO ON TO NEXT MG

15: PUSH D ; ALL DONE FINDING ARG"S. SET ARGC.

f1VI B,NFCBS ;NOW INITIALIZE ALL THE FILE INFO
LXI H,FDT ;(JJST ZERO THE FD TABLE)

Ib: HVI M,O
INX H
OCR B
",!HZ Ib
ENDIF

IF NOT CPH ; IF NOT UNDER CP /11, FORCE MOC VALUE
LXI H,l ; DF M.
PUSH H
ENDIF

XRA A
STA UNGETL ; CLEAR THE PUSH-PJ~O~ EYTE
STA LASTe ;AND LAST CHARACTER BYTE

LHLD TMP2
PCtl ;Al..L DONE INITIALIZWG.

; GENERAL PURPOSE ErmOR VALLIE RETURN ROUTINE:

040F 21FFFF VERROR: LXI H, -1 ; GENERAL ERROR HANrtER ••• JUST
;f\'ETlIRNS -1 m Hl 0412 C9 RET

0413 3EOF
0415 F5
0416 CD5A04
(1419 DA2404
041(: 6F
041D 2600
041F E5
0420 CD2E04
0423 E1
0424 Fl
0425 3rt
0426 FE07

. ,
; H£RE ARE FILE 1/0 HANDLING ROUTINES, ONlY NEEDED tINDER CPlM:

; CLOSE ff4Y OPEN FILES AND REBOOT:

VEXIT:
IF CPM ; IF UNDER CPIM, CLOSE AlL OPEN FILES
HVI A,7+NFCBS ;START WITH LARGEST POSSIBLE FD

EXITl: PUSH PSW ;AND SCAN ALl FD$S FOR OPEN FILES
CALL VFGFD ; IS FILE WHOSE FD IS IN A (lPEN7'
• ..Ie EXIT2 ; IF NOT, 00 ON TO NEXT FD
MDV L,A ;ELSE CLOSE THE ASSOCIATED FILE
MVI H,O
PUSH H
CAlL VCLOSE
POP H

EXIT2: pop PSW
DCR A ; AND GO ON TO NEXT Ot£
CPI 7

CPIM MACRO AS~" 2.0 1016 BDS C Run-Time Module {c.tee} vl.45 l1J22!Sl

0428 C21504

042B C30000

(J42E CD4805
0431 (:OOA03
0434 CDSA04
0437 DAOF04
043A 7E
0438 E604

043D CA5004

0440 E5
0441 CD1303
0444 C5
0445 C00205
0448 EB
0449 OEl(t
O44B CDOSOO
044E Cl
044F E1
0450 3600
0452 FEFf
0454 210000
0457 CO
0458 2B
0459 C9

045A CD4...~
045D 57
045£ D600
0460 De
0461 FEOO
0463 3F
0464 DS
0465 D5
0466 SF

JNZ EXIT1
ENraIF

\oW EXITAD ;DONE CLOSING; NOW P.££IO()T CPIt1 OR WHATEVER.

; CLOSE THE FILE WHOSE FD IS 1ST ARtt:

IF CPt1 ;HERE COMES A LOT C~ CPIM STLfF, ••
VCtOSE: CALL SETDMA ;LIBRARY FUNCTION JUST .,JUI'1PS HERE.

CALL MAlTOH ;GET FD IN A
CALL VFGFD ;SEE IF IT IS (~~
JC VERROR ; IF NOT, COMPLAIN
MOV A,ft
ANI 4

IF NOT MPM2 ;IF NOT f1Pff1! AND
JZ CL0SE2 ; THE FILE ISN"T OPEN FOR ~tRITE, OOt-VT BOTHER TO CLOSE
ENDIF

IF f1Pt12 ; ALWAYS CLOSE ~1L FILES UNDER MP 1M
flOP
WvP
NOP
EtIDIF

PUSH H ; SAVE FD TABLE ENTRY ADDR
CAlL tlA2TOH ; MOVE MGt TO A
PUSH B
CALL VFC,FCB ;O£T THE APPRCfRIATE FeB ADDRESS
XCHG ;PUT IT IN £IE
MVI C, 1~. ;O£T Bnos FUNCTION i FOR CLOSE
CALL BDOS ;AND DO IT!
POP B
POP H

CLOC-iE2: "VI ",(I ; CtOSE LOOICALL Y
CPl 255 ; If 255 COMES BACK, ~IE 130T PROBLEMS
LXI H,O
RNZ ; RETllR~j 0 IF OK
DCX H ; RETURN -1 ON ERROR
RET

; DETERMINE STATUS OF FILE WHOSE FD IS IN A ••• IF THE FILE
; IS NOT OPEN, F:ETlIRN C FLAG SET, El~'£ CLEAF: C FLAG:

\fOFD: CALL SETDMA
ttOV D,A
SUI B
RC ; IF fD < e., ERRCtR
CPI NFCBS
CMC ; DON.'T ALlOW TOO BIG AN FD EITHER
RC
PUS.tf [I

f10V £,A ;QK, WE HAVE A VALUE IN RANGE. NOW

CP/M t1ACRO ASSEH 2.0 1017 BDS C Run-Til~ Module (c.ccc) v1.45 11/22/81

(t467 1600
046921BfOb
046C 19
04bD 7E
046E EbOl
0470 37
0471 Dl
0472 7A
0473 C8
0474 3F
0475 C9

0416 CD4S05
0479 CS
(J47A CDf404
047D 0608
047F E5
0480 13
0481 1A
0482 IB
0483 FE3A
0485 3£00
0487 C29204
048A 1A
0400 CDEB04
04SE &40
0490 13
0491 13
0492 77
0493 23
0494 CD4701
0497 fA
0498 FE2E
049A C29EC4
049D 13
049£ 0603
04A0 CDAE04
04A3 Pi
04A4 77
04A5 111400
04#\8 19
ow 77
OW 23
04AB C33FOl

MVI D,O . SEE IF 1"H£ FILE IS OPEN OR NOT ,
LXI H,FDT
DAD D
MOY ~hM
ANI 1 ; BIT 0 IS HICiH IF FILE IS OPEN
STC
POP D
MOV A,D
RZ ; P.ETURt4 C SET IF NeIT OPEN
Ct1C
RET ;ELS£ RESET (: AND P.ETURN

; ~:ET UP A CPltt FILE CONTROL BLOCK AT tt.. WITH THE FILE WH(r£
; SIMPLE NULL -TERMINATED NAME IS POIHTED T(I BY DE:
; FORnAT FOO FILEUAME MUST BE: If [WHITE SPACE] £0: lFIWWE. EXTII

VSETFCB:
CAlL SETDMA ;SET UP Arl FeB AT HL FOR FILENAME AT DE
PUSH B
CAlL IGW'~ ; IGNORE BLANKS AND TABS
t1VI B,8
PUSH H
INX D
lDAX D
DeX [I

(:PI .I: " ; DEFAUl T DISK BYTE VAlUE IS 0
MVI A,{j ; (FOR CURRENTl V LOOC;£D DISK)
\.tNZ SETF!
LDAX [I ;OH OHI"WE HAVE Ii DISK DESIGNATOR
CAll ttAPUC HiAKE IT UPPER CASE
SUI ,,@,t ;AND FUDGE IT A BIT
INX [I

INX D
SETH: MOV M,A

INX H
CAlL PATCHNM ;NOW SET FILENAME AND PAD WITH BLAt4KS
lDAX D
CPI .' .- ; AND IF AN EXTENSIC¢'J IS OI'JEN, .
JNZ SETFCB2
INX D

SETFCB2 MVI B,3 ;S£T THE EXTENSION AND PAD WITH BLANKS
CALL SEniti
XRA A ;AND ZERO THE APPROPRIATE FIELDS OF TI£ FCB
t(IV ",Ii
LXI D,2()
rlAD D
MOV M,A
INX H
,.IMP SETFCB3 ;FINISH UP ELSEWHERE TO KEEP ADDRESSES CONSI'~TaIT

;WITH PRlt~ RELEASES

; THIS ROlITINE COPES UP TO B CHARACTERS FROM MEMORY AT DE TO
; MEMORY AT HI.. ANt. PADS WITH BLANKS ON THE RIGHT:

CP/" MACRO ASSEM 2.0 #013 BDS C Run-TimE M~dule (c.eee} vl.45 11/22181

04AE C5
04AF lA
04£<0 FE2A
(l4B2 3E3F
048:4 (:AD104

04B7 fA
0488 CDD904
0488 DACF04
04BE 77
04BF 23
Cl4CO 13
04Cl 05
04C2 C2AF04
04C5 Cl
O4C6 lA
04C7 CDD904
04CA D8
04CB 13
04CC C3C604

04Cf L~
O4Dl 77
0402 23
0403 05
0404 C2D104
04D1 Cl
04£e C9

0409 CDE004
040C FE2E
04DE 37
04DF (:8
04EO FE3A
04E2 37
04E3 (:3

04E4 FE1F
04£6 37
04Ei C8
04E8 FEll
04EA C9

04EB FE61
04ED DS
04~ FE7B
04FO 00

SETNt1: PUSH B
SElNl't! : LDAX D

CPI -'1.1 ;WILD CAP.D?
ttv.I A "?l , - ; IF SOt F'AD WITH ? CHARACTERS
\.II PAD2

SETNtI2: LDAX D
CAlL LEGFC ; NEXT CHAR LEGAl.. FlLEtWE CHAR?
JC PAD ;IF NOT, GO PAD FOR TOTAL (f B CH~:ACTERS
f10V M,A ; ELSE STCIP£
INX H
IHX D
DCR Ii
Jr4Z SETtml ; AND 00 FOR I't'JRE IF B NOT YET ZERO
POP B

SETNt13: LDAX D ; SKIP REST OF FIlENAME IF Ie CHARS ALREADY FOlIND
CALL LEGFC
RC
INX D
JP1P SETNM3

PAD: M'II A," l ;PAD WITH Ie BLANKS
PAJj2: t10V 117A ;PAD WITH B INSTANCES OF CHAR IN A

INX H
OCR B
JNZ PAD2
POP B
RET

; TEST IF CAAR IN A IS LEGAL CHARACTER TCt BE Itl A FILENAME:

lECtFC: CALL MAPUC:
CPI .' .I ; ,/.,/ IS ILLEGAL IN A FILENAME OR EXTENSION .
STC
RZ
CPI : ... ;$0 IS ... :,J
STC
RZ
CPI 7FH ; DELETE IS NO 0000
STC
RZ
CPI 11 ; IF LESS THAN EXCtJlJ1ATION PT, NOT LEGAL CHAR
PiT ; ELSE GOOD ENOUGH

; MAP CHARACTER IN A TO UPPER CA~ IF IT IS LOWER CASE~

HAPlIC: CPI "a/
RC
CPI "z'+1
RNC

CP/M MACR(I ASSEM 2.0 1019 Br~ C Run-Time Module (c.eec} v1.45 11/22/81

64Fl D620
04F3 C9

04F4 IB
04F5 13
04F6 lA
04F7 FE20
04F9 CAF504
04FC FE09
04FE CAF504
0501 C9

0502 C5
0503 CD4805
~%B7
0'507 4F
0508 C"22DOS
O5OB 0b0S
050D I1BFOb
0510 219FOS
(,'513 OEOO
0515 lA
0516 EWI
0518 79
0519 C21E05
051C C1
051D C9

051£ D5
051f 112400
0522 19
0523 D1
0524 13
0525 OC
(l52~. 05
0027 (:21505
052A 37
052B C1
(lS2C C9

SUI 32 ; IF LOWER CASE, MAP TO UPPER
RET

; IGNORE: BlANKS AND TABS AT TEXT POINTED TO BY DE:

IGWSP: DCX
IGWSP1: INX

. ,

LDAX
CPI
JZ
CPI
JZ
RET

D
D
D
' ,
IGYSPl
<)

IGWSPl

; THIS ROUTINE DOES ONE: OF TWO THINGS, DEPENIHNG
; ON 11£ VALUE PASSED IN A.

; IF A IS ZERO, THEN IT FINDS A FREE FILE SLOT
; {IF POSSIBLE}, ELSE RETURtJS C SET • . ,
; IF A IS NON-ZERO, THEN IT RETURNS THE ADrtRESS
J (f Tff: feB CORRESPONDING TO At4 OPEN FILE ~OSE
; FD HAPPENS TO BE THE VALUE IN A, OR C SET IF THEHE
; IS tlt FILE ASSOCIATED WITH FD.

\,FGFCB: PUSH B
CALL SETDttA
ORA A ;LOCIK FOR FREE S1.0T?
t10V C,A
JNZ FCfC2 ; IF NOT 1 GO AWAY
ttVI B,NFCBS ;YES. DO IT •••
LXI D,FDT
LXI H,FCBT
ttVI C,B

FGFCU LDAX D
ANI 1
nov A,C
JNZ F(;FCIA ;FOltm FREE SLOT?
POP B ;YES. ALL DONE.
RET

FGFCIA: PUSH D
LXI D,36 ;FCB LENGTH TO ACCOttlODATE P.ANDOM 110
DAD D
POP D
INX D
INR (:

OCR B
JNZ FGFCl

FGFC1B: STC
POP B
RET ; P£TlIRN C IF NO MORE FREE: SLOTS

CP 1M "ACRO ASSEtf 2.0 #020 BDS C Run-Tilfff l'todu 1 e (c. ecc) vl.45 11 122/81

052D CD5A04
0530 DA2A05

0533 DbOS
0535 6F
0536 2600
0538 29
0539 29
053A 54
OC...3B 5D
053C 'B
053D 29
053£ 29
053F 19
OC.AO EB
0541 219FOS
0544 19
0545 79
0546 tl
0547 C9

0548 D5
0549 C5
(t54AF5
0548 £5
054C OE!A
054E 118000
0551 (:00500
0554 El
0555 Fl
0556 Cl
0557 DJ
0558 C9

OSS9

0571
0579

FGFC2: CAll VFGFD ; COI'fltTE FeB ADDRESS FOR FD IN A:
JC FGFC1B ;RETURN C IF FILE ISN'T OPEN

SUI S
MOV l,A ;PUT (FD-S) IN Hl

""I H,O
DAD H ;OOllBLE IT
DAD H ;4*A
MOV D,H ;SAVE 4*14 IN DE
ItlV EtL
DAD H ;S*A
DAD H ;lb*A
DAD H ; 32*A
DAD D ; 36*A
XCHG ;PlIT 3b*A IN DE
LXI H,FCBT ;ADD TO BA~f OF TABLE
DAD D ;RESULT IN HL
I'tOV A,(;AND RETURN ORlt3INAL FD IN A
POP B
RET

SETDf1A: PUSH D ;,JUST A PREVENTATIVE t1tASUR£:
PUSH !r ;SItKI THE DEFAUlT 1/0 BLfFER
PUSH PSU HEN[tS TO MAG I CALL V CHANGE
PUSH H ;AROltID BY ITSELF ~IDILEFT
MVI (:,26 ; IN CPIWS HANDS !!
LXI D, TBlIFF
(.AU. BOOS
POP H
POP PSW
POP B
POP n
RET

ENDIF ;END OF CP/M-RELATED FILE 1/0 ROUTINES

IF NOT CPM
MIN: £00 $;WHEPE MAIN f'ROOPAM RESIDES WH£N NOT UNDER (Pit'!

; (UNDER CP/M~ THE [lATA AREA COMES FIRST>
ENDIF

IF f(fT (:ffl ; IF NOT UNDER CP 1M, ~.£ CUSTOM PM AREA AtIDRESS
ORG RAM
END If

PBASE: DS
YSIZE: DS

2
2

; ROCtt FOR RANDOtt STUFF

; SCREEN-DtiA ADDRESS
;SCREEN WIDTH

CP /J'I I'JACRO ASSEH 2.0 #021 BDS C Run-Time Moduli (c.ccc) 'vL45 11/22/31

0578
057D

057F

0587

0595'

0598
059D

0559=
OSSA =
055B =
055D =
055F =
0560=

059F

06BF

ObC7

074A

XSIZE: [IS 2 f SCREEN HEIGHT
PSlZE: DS 2 ; SCREEN LOOTH

RSEED: DS 8 ; T~ RANDOM GENERATOR SEED

ARGS: OS 14 ; IIARGHAK" PUTS ARGS PASSED ON STACK HERE.

IOHACK: DS 6 ; ROOM FOR IJO SUBROUTINES FOR Lr.-.E BY If Ufll

; AND JiOUTP" LIBRARY ROUTIr£S

AU..OCP:DS 2 ;POINTER TO FREE STOP.AGE FOR lISt: BV IISBRt~1I FlINC .
ALOCtfX: DS 2 UUG£ST LOCATION TO BE MADE AVAILABlE TO THE

; STORAGE ALlOCATOR

Tt1P: EQlf ROOM ; THIS IS MISC. CtARBAGE SPACE
111PH EQU ROOft+l
TPf2: EOO ROOt1+2
TrtP2A: EQU ROOK+4
UNCaL: EQU R01l1+6 ; WHERE C.HMACTERS ARE "UNC{fTTEN"
LASTer Eoo F:OOt1+7 ;LAST CHAR TYPEr'

;------~-------~-------------------------------------'-------~----------~--
; 1l£ FOlLOWING DATA AREAS ARE NEEDED OtJLY IF RUttlING urIDER CP/M:

IF O'tf

; TI£ FCB TABLE (FeBT): 36 BYTES PER FILE CONTROL BlOCt:

FCBT: DS

; THE FD TABLE: ONE BYTE PER FILE SPECIFYING R!W!OPEN AS FOLlOWS~
BIT 0 IS HIGH IF OPEN, LOW IF CLOSE]
BIT 1 IS HIGH IF OPEN FOR READ
BIT 2 IS HIGH IF OPEN FOO WRITE

; {BOTH B1 AND B2 HAY BE HIGH

FDT: DS f'f'CBS ;M: BVTE PER FCB TELLS IF IT IS ACTIVE: R/W, ETC.

; THE CtltfAND LINE IS COPIED HERE BY INlT:

Ctlt.IN= DS

• ,

131 ;(:OPV OF THE c:ottfAND LINE POINTED TO BY ENTRIES
;!N ARGLST

; THIS IS WHERE "INIT" PlACES THE ARRAY OF ARGUt1ENT POINTERS:

ARGLsr: DS 60 ; THE 1lAf(J.J1J PARAHATER POINTS HERE (WE1..L,
; ACTUAU. V TO 2 BYTES BEFORE ARGLST J. THUS,
;UP TO 30 PAP.AMETERS MAY BE PASSED TO "MAIN"

•

CP!M MAfRO ASSEH 2.0 ~L2 BDS C Run-Tim! Modul~ (c.ctc) vl.45 11/22/81

0766 =

O]S6

EtIDIF HENOUGH FOR YOU, ANDY?}

; END (f CP Itt-oNL Y DATA AREA

!---

IF CPt't
MAIN: EQU f

ENDIF

