BD §oftware
n/ \ g ¥

u\zj

c Compller vl.4
User's Guide

Dtstnbuted by
Lifeboat Assomates :
1651 Third Avenue
New York;N.Y. 10028
Tel. (212)860 20300
TWX 710-581 -2524

Te!ex 64D693

Ukslcrn Rbocus (o l.td 12/498 6660

Copvmght 1980 by Leor Zolman o
Printed in the United States of America

BD Software C Compiler v1.4
‘User’s Guide

Leor Zolman

BD Software

33 Lothrop st.
Brighton, Mass. 02135

Introduction

I'm not even going to bother comparing C to BASIC or FORTRAN.

So, left with a few paragraphs to fill with an introduction, allow me to explain why
this software package is so inexpensive:

Before a selling price is set for a program in the microcomputer systems environ-
ment, the seller must decide whether or not large-scale ripoffs are be expected. For a
$300 BASIC interpreter, yes, one might expect ripofts, so the price is deemed
"justifiable” by the vendors to insure an acceptable profit margin or "discourage"
ripoffs (?).

Hmmphh.

As far as BDS C is concerned, the price was set assuming there will not be any
ripping off, since | feel (as | have been advised numerous times) that the compiler is
really worth more than its selling price. The last few years, though, have seen a proli-
teration of prohibitively expensive quality software, and that fact (along with the realiza-
tion that if / were shopping for a compiler like C, / would possibly copy il from a fiiend .
if it were priced any higher) has held the price down to a reasonable level.

There are no licenses or royalty agreements connected with this package, aside
from the standard agreement that the package be used on one system only (which
each user implicitly agrees to in.the act of unsealing the diskette envelope.) Thus,
users are free to develop soltware in BDS C and market the resulting object code,
along with any functions that may have been taken from the BDS C library, without the
burden of having to pay BD Software any royalties. The whole ideca behind this policy
is to encourage potential software vendors to use C for their development work, and
then perhaps to include source listings of their code with their packages and thereby
promote the use of C.

Lifeboat Associates are the exclusive distributors of the BDS C package for CP/M
systems. The disk you've received is legitimate only il it has a Lifeboat label (with the
- shopping bag) affixed to it, and on that label is a desciiption of the package {made by
a hand stamp) with the serial number filled in. No matter where you bought your disk
from, it should have originated at Lileboat; if you have any suspicions that the disk
you've paid for might be a bootleg, please contact either myself or Lifeboat about it im-
mediately s0 we can put an cnd to such treachery.

Remember: If you rip C off or give it away, you will not be robbing some big cor-
poration; you'll be screwing an individual programmer who's trying to market =ome use-
ful software at a reasonable price and still remain: solvent.

BDS C User's Guide | | May 1981

Objectives and Limitations

The BDS C Compiler is the implementation of a healthy subset of the C Program-
ming Language developed at Bell Laboratories.” The compiler itself runs on 8080/Z80
microcomputer systems equipped with the CP/M® operating system, and generates
code to be run either under CP/M or at any arbitrary location in ROM or RAM
(although there must be a read/write memory area available at run time somewhere in
the target machine.)

The main objective of this project was to translate, from the minicomputer to the
microcomputer environment, a bit of the powerful, structured programming philosophy
on which the Unix“ operating system is based. BDS C provides a friendly environment
in which to develop CP/M utility applications; with an emphasis on elegant human in-
terfacing for both compiler use and operation of the end-applications.

Unfortunately, the lexical oddities of C's linguistic structure do not conform as
readily to the 8080's hardware characteristics as they do to the PDP-11's.” Operations
natural to the 11 (such as indexed-indirect addressing--a crucial necessity when deal-
ing with automatic local storage allocation) expand into rather inefficient code se-
quences on the 8080. Thus, BDS C is not likely to become quite as universal a systems
programming language to the 8080 as UNIX C is to the 11; but then, as better mi-
croprocessors soon replace the 8 bit machines, you can bet there will be C compilers
available that generate code efficient enough to resign assembly language programming
to the history books. Consider this package a warm-up to that era...

BDS C's big tradeoff (when compared to assembly language programming) is a
loss ol object code efliciency (both spatial and temporal), at run-time, in favor of a
high degree of structure and comprehensibility at the deveclopment stage. In education,
as well as in other non time-critical applications (such as non-gargantuan systems pro-
gramming), | believe the sacrifices are rather minimal in contrast to the benelits.

New Features of V1.4: A Summary for Users of Earlier Versions

There has been a hefty amount of revision, expansion and clean-up applied {c the
package since the last release (v1.3x). A good portion ol the changes were made in
response to user feedback, while others (mainly internal code generation optimizations)
resulted from the author’s dissatisfaction with some ol his earlicr kludgery and short-cut
algorithms. BDS C version 1 has just about saturated its Iramework; version 2 is now
being developed in close conjunction with the MARC Disk Operating System (the work
of Edwin P. Ziemba) to provide a unified software development system for release
sometime in 1981. MARC is a "Unix-like" operating system that happens to fit quite
comfortably in non-gargantuan 8080/Z80-based machines. MARC and BDS C shouid
get along nicely, and the price for the combined package ought to prove tempting...but

1. See The C Programming Lanquage by Brian W. Kernighan and Dennis Ritchie
(Prentice Hall, 1978) for a proper description of the language. This guide deals only
with details specilic to the BDS C impiementation; it does not attempt-to teach the
C language.

2. CP/M is a trademark of Digital Research, Inc.

3. Unix is a trademark of Bell Laboratories.

4. PDP is a trademark of Digital Equipment Corporation.

BDS C User's Guide General Description

this section is supposed describe new features of this software package, so here goes:

The assembly language sources for the BDS C run-time package (CCC.ASM .-
C.CCC) and all non-C-coded library functions (DEFF2.ASM --> DEFF2.CRL) are now in-
~ cluded with the package. so that they may be customized by the user for non-CP/M
environments. The new compiler and linker each accept an expanded command line
option repertoire that allows both the code origin and r/w memory data area to be
specitied explicitly, so generated code can be placed into ROM. The run-time package
may be configured for non-CP/M environments by customizing a simple series of EQU
statements, and new special-purpose assembly language library functions may be easily
generated with the help of MAC (Digital Research's macro assembler) and the nifty new
macro package (CMAC.LIB) included with BDS C as standard equipment (sorry, MAC
isn't.)

On a highar level, the buffered 1/0 library can now be trivially customized to use
any number ol sectors for internal disk buffering (older versions were limited to one
sector ‘of buffering unless a special function package called BIGFIO.C was used;
BIGFIO.C is no longer necessary.) A new general purpose header file, BDSCIO.H, con-
trols the buffering mechanism and also provides a standard nomenclature for some of
the constant values most commonly used in C programs. | recommend that all users
carefully examine BDSCIO.H, become intimate with its contents, and use the symbols
defined there in place of the ugly constants previously abundant in the sample pro-
grams. For example, the symbol 'ERROR'is a bit more illuminating than *-1'.

For Unix enthusiasts, an auxiliary function package (written in C) named "DIO.C"
has been included to permit 1/0 redirection and pipes a la Unix. If you do not need
this capability, then it isn't there to hog up space; if you DO need it, then you simply
add a few special statements to your program and specify DIO.CRL at linkage time,
then use the standard redirection syntax on the CP/M command line.

Documentation on all the miscellaneous new library functions has finally found its
way into the User's Guide, and the Function Sumimary section now goes into a little
more detail on some of the confusing aspects of the file 170 mechanism.

On the technical side, version 1.4 employs a single run-time stack configuration in-
stead of the two-stack horror used in previous releases. Al function parameters are
now passed on the stack, and all local storage allocation also takes place on the
stack. This leaves all of memory between the end of the externals (which still sit right
on top of the program code) and the stack (in high memory) free for generalized
storage allocation; several new library functions (alloc, free, rsvstk, and sbrk) have been
provided for that purpose.

Last but not least, the code generator has been taught some optimization tricks.
The length of generated code has shrunk by 25% (on average) and execution time has
been cut by about 20% over version 1.32. Part of this cut in code bulk is due to the
new compiler option -e xxxx. This option to CC1 allows an absolute address for the
external data area to be specified at compile time, thus enabling the compiler to gen-
erate absolute loads and stores (using the thid and shld 8080 ops) for external vari-
ables.

Incompalibilities With Earlier Versions

Since the run-time package has been totally reorganized since the last release,
CRL files produced by earlier versions of the compiler will not run when linked in with
modules produced by the ncew package. Therefore all programs should be recompiled
with 1.4, and old CRL files should be thrown away. There are also 1 few source incom-

BDS C User's Guide May 1981

patibilites that require a bit of massaging to be done to old source files. These are:

0. The statement
#include "bdscio.h"

must be inserted into all programs that use buffered file 170, and should be
inserted into all other programs so that the symbolic constants defi.ed in
bdscio.h can be used.

1. All buffers for file 1/0 that were formerly declared as 134-byte character ar-
rays should now be declared as BUFSIZ-byte character arrays. For example,
a declaration such as:

char ibuf[134];
becomes:
char ibuf[BUFSIZ];

2. Comments now nest; i.e, for each and every "begin comment" construct
("/*") there must be a matching "close comment” ("*/") before the com-
ment will be considered terminated by the compiler. This means that you can
no longer comment out a line of code that already contains a comment by
inserting a "/*" at the start of the line; instead, a good practice would be
to insert a "/*" above the line to be commented out, and insert a "*/" fol-
lowing the line. Although this is something that UNIX C expressly disallows, |
feel it is important to have the ability to comment out large sections of code
by simply inserting comment delimiters above and below the section; former-
ly, any comments within such a block of code had to be removed first.

In version 1.4, the run-time package comes assembled to support up to eight open
files at any one time, but previous versions had accepted up to sixteen. To allow more
than cight files, the NIFCBS EQU 8 statement in the run-time package source
(CCC.ASM) must be appropriately changed and the file re-assembled. See the "CRL
Format" section for details on customizing the run-time package.

System Requirements

The practical minimum system configuration required by BDS C is a 32K CP/M en-
vironment. Most sample programs included in the package will compile (without seg-
mentation) and run on a 48K system.

BDS C loads the entire source file into memory at once and performs the compila-
tion in-core, as opposed to passing the source text through a window. This allows a
compilation to be performed quickly; the main hottleneck tor most modestly-sized com-
pilations is now the disk 1/0 involved in reading in the source text and writing out the
CRL file, even though these operations take place as fast as CP/M can handle them.
The drawback to this scheme is that a source file must fit entirely into memory for the
compilation. This may sound bad at first, but it isn't really. Consider: a program in C is
actually a collection of many smaller functions, tied together by a main function. Each

BDS C User's Guide General Description

function is treated as an independent entity by the compiler, and may be compiled
separately from the other functions in a program. Thus a single program may be spread
out over many source files, each containing a number of functions; breaking files up
this way serves to minimize re-compilation time following minor changes as well as
keep the individua! source files small enough to fit in memory.

Using the Compiler
The main BDS C package consists of four executable commands:

CC1.COM C Compiler -- phase 1
CC2.COM C Compiler -- phase 2
CLINK.COM C Linker

CLIB.COM C Librarian

and three data files that are usually required by the linker:

C.CCC Run-time initializer and subroutine module
DEFF.CRL Standard ("Default”) function library
DEFF2.CRL More library functions

CC1.COM and CC2.COM together form the actual compiler. CC1 reads in a given
source file from disk, crunches on it, leaves an intermediate file in memory, and au-
tomatically loads in CC2 to finish the compilation and produce a CRL file as output.
The CRL (mnemonic for C Relocatable) file contains the generated 8080 machine
code in a special relocatable format.

The linker, CLINK, accepts a CRL file containing a main function and proceeds to
conduct a search through all given CRL files (and DEFF.CRL and DEFF2.CRL automati-
cally) for needed subordinate functions. When all such functions have been linked, a
COM tile is produced.

For convenience, the CLIB program is provided for the manipulation of CRL file
contents.

IMPORTANT: The command lines for ali COM files in the package should be typed in to
CP/M without leading blanks. This also applies to COM files generated by the compiler
(where leading blanks on the command line will cause argc and argv to be miscalculat-
ed.)

For example, here is the sequence required for compiling and linking a source file
named foo.c:

The compiler is invoked with the command:
A>ccl foo.c <cr

After printing its sign-on message, CC1 will read in the file foo.c from disk and

1. If desired, the intermediate file produced by CC1 may be written to disk and pro-
cessed hy CC2 separalely; then, the intermediate hle is given the extension .CCl.

BDS C User's Guide May 1981

crunch for a while. If there are no errors, CC1 will then give a memory usage
diagnostic and load in CC2. CC2 will do some more crunching and, if no errors
occur, will write the file FOO.CRL to disk. The next step brings in the linker:

Adclink foo [other files & options, if any] <cr>

Unless there are unresolved function references, the file FOO.COM will b= pro-
duced, ready for execution via

A>foo [arguments] <cr>
Following are the detailed command syntax descriptions:

CC1 -- The Parser
Command format: CC1 name.ext [options] <cr>

Any name and extension are acceptable, provided the file having the exact given
name exists. By convention, the extension should be ".c". If the extension is omitted,
CC1 will not automatically tack on a default extension for you. The extension (if re-
quired) must be stated explicitly.

If a disk designation is given for the filename (e.g. "b:foo.c") then the source file
is assumed to reside on the specified disk, and the output also goes to that same disk.

Typing a control-C during compilation will abort the compilation and return to
CP/M.

Following the source file name may appear a list of option characters, each pre-
ceded by a dash. Currently supported options are:

P Causes the source text to be displayed on the user's con-

D sole, with line numbers automatically generated, after all
#define and #include substitutions have been complet.
ed.

-a X Auto-loads CC2.COM from disk x following successful
completion of CC1's processing. By default, CC2 is as-
sumed to reside on the currently logged-in disk. If the
letter “z" is given for the disk specifier, then an intermedi-
ate .CCI file is written to disk for later processing by an
explicit invokation of CC2.

-d x Causes the CRL output of the compiler to be written to
disk x if no errors occur during CC1 or CC2. If the -a z
option is also specified, then this option specifies which
disk the .CClI file is to be wrilten to. The default destina-
tion disk is the same disk from which the source file was
obtained.

M XXXX Specifies the starting location (in hex) of the run-time
package (C.CCC) when using the comwpiler to generate

P

BDS C User's Guide

€ XXXX

General Description

code for non-standard environments. The run-time pack-
age is expected to reside at the start of the CP/M TPA by
default; if -an alternative address is given by use of this
option, be sure to reassemble the run-time package and
machine language library for the given location before
linking, and give the -1, -e and -t options with approprizaie
address values when using CLINK.

C.CCC, which always resides at the start of a generated
COM file, cannot be separated from main and other (if
any) root segment functions.

CC2 must be successfully auto-loaded by CC1 for
this option to have any effect.

Allows the specification of the exact starting address (in
hex) for the external data area at.run time. Normally, the
externals begin immediately following the last byte of pro-
gram code, and all external data are accessed via indirec-
tion off a special pointer installed by CLINK into the run-
time package. If this option is given, then the compiler
can generate code to access external data directly (using
Ihid, shld, etc. type instructions) instead of using the
external data pointer. This will shorten and enhance the
performance of programs having much external data.
Suggestion: don't use this option while debugging a pro-
gram; once the program works reasonably, then compile it
once with -e, putting the externals at the same place that
they were before (since the code will get shorter the next
time around.) Observe the "Last code address" value
from CLINK's statistics printout to find out by how much .
the code size shrunk, and then compile it all again using
the appropriate lower address with the -e option. Don't

“cut it too close, though, since you'll probably make mods

to the program and cause the size to fluctuate, possibly
eating into the explicitly specified external data area. CC2
must be successfully auto-loaded by CC1 in order
for this option to have any efiect. See also the CLINK
option -e for more confusing details.

Causcs the generated code to be optimized for speed.
Normally, the code generator replaces some awkward
code sequences with calls to special subroutines in the
run-time package; while this reduces the size of the code,
it also slows it down because of the extra subroutine link-
age overhead. If the -o option is specified, then many of
the subroutine calls are disposed of in favor of in-line
code. This results in faster but longer object programs.
For the fastest possible code, the -e option should also
be used. It you want the code to be as short as possible,
use the -e option but don’t use -o.

CC2 must be successfully auto-loaded by CC1 in
order for this option to have any effect.

BDS C User's Guide May 1981

-rx Reserve xK bytes for the symbol table. If an "Out of sym-
bol table space" error occurs, this option may be used to
increase the amount of space allocated for the symbol
table. Alternatively, if you draw an "Out of memory" error
then -r may be used to decrease the symbol table size
and provide more room for source text. A better recourse
after running out of memory would be to break the source
fle up into smaller chunks, though. The default symbol
table size is 8K for 0000h-based CP/M systems and 7K
for 4200h-based systems.

-C Disables the "comment nesting” feature, causing com-
ments to be treated in the same way as by UNIX C and
previous version of BDS C; i.e., when -c is given, then a
line such as

/*printf("hello");/* this prints hello */

is considered a complete comment. If -¢ is not used, then
the compiler would expect another */° sequence betore
the comment would be considered terminated.

A single C source file may not contain more than 63 function definitions;
remember, though, that a C program may be made up of any number of source files,
each containing up to 63 functions.

It any errors are detected by CC1. the compilation process will abort immediately
instead of loading in the second phase (or writing the .CClI file to disk, depending on
which options were given.)

Execution speed: about 20 lines text/second. After the source file is loaded into
memory, no disk accesses will take place until after the processing is finished. Don't
assume a-crash-has occurred until at least (n/20) seconds, where n is the number of
lines in the source file, have elapsed. THEN worry.

Examples:
A>ccl foobar.c -ri0 -ab <cr>

invokes CC1 on the file foobar.c, setting symbol table size to 10K bytes. CC2.COM is
auto-loaded from disk B. :

Ad>cct cbellec -p -0 <cr>

invokes CC1 on the file belle.c, from disk C. The text is printed on the console (with
line numbers) following # define and #include processing, CC2.COM is auto-loaded
from the currently logged disk (unless CC1 finds errors) and the resulting code is op-
timized for speed.

See the BDS C handbook {(either printed or contained in the disk file C.DOC) for
more examples. -

BDS C User's Guide General Description

CC2 -- The Code Generator
. Command format: CC2 name <cr)

Normally CC2.COM is loaded up automatically by CC1 and this command need not
be given. If given explicitly, then the file name.CCl will be loaded into memory and
crunched upon.

If no errors occur, an output file named name.CRL will be generated and
name.CCl (if present) will be deleted.

CC2 does not take any options.

As with CC1, a disk designation on the filename causes the specified disk to be
used for input and output.

When CC1 auto-loads CC2, several bytes within CC2 are set according to the op-
tions given on the CC1 command line. If CC2 is invoked explicitly (i.e., not auto-loaded
by CC1) then the user must see to it that these values are set to the desired values
before CC2 begins execution. Typically this will not be necessary, but if you're very low
on disk storage and need to invoke CC2 separately, here is the configuration of data
values that need to be set (addresses are for 0-based CP/M; add 4200h for the
modified versions):

Addr default option function

0103 00 -a Non-zero if CC2 has been auto-loaded, else zero

0104 01 -0 Zero if -0 option (optimize for speed) desired, cise 01
0105-6 0100h -m Origin address of C.CCC at object run-time

0107-8 none -e Explicit external starting address (if -e given to CCt1)
0109 00 -e Non-zero if an explicit external data address is specified

The 16-bit values must be in reverse-byte order (low order byte first, high last).

CC2 execution speed: about 70 lines/second (based on original source text.)

At any time during execution, if a control-C typed on the console input then compila-
tion will abort and control will return to CP/M.
Example:

A>cc2 foobar <cr> -

CLINK -- The Linker
Command format: CLINK name [other names and options] <cr>

The file name.CRL must contain a main function; name.CRL along with any other
CRL files given will be searched (from left to right, in order of appearance) in an at-
tempt to resolve all function references. After all given files have been searched,
DEFF.CRL and DEFF2.CRL (the standard library files) will be searched automatically.

By default, CLINK assumes all CRL files reside on the currently logged in disk. If a
disk designation is specified for the main filename, then that disk becomes the default

BDS C User's Guide May 1981

for all CRL files given on the command line. Each additional CRL file may contain a
disk designation to override the default.

Should any unresolved references remain after all given CRL files have been
searched, CLINK will enter an interactive mode, and you will be given the opportunity
to specify other CRL files, re-scan the old ones, and see what functions are still miss-
ing.

Note that if there is much cross-referencing between files (not a good practice)
then it may be necessary to re-scan some files several times before all references are
resolved.

Control-C may be typed during execution to abort the linkage and return to CP/M.

Intermixed with the list of file names to search may be certain linkage options, pre-
ceded by dashes. The currently implemented options are:

-S Print out a statistics summary and load map to the con-
sole.

-f file_name (New for v1.44) Force the linking of each and every func-
tion in the file file_name.CRL into the program, regardless
of whether or not the functions have yet been referenced
from a higher level. This option is useful for specifying
.CRL files containing alternate versions of some of the
standard BDS C library functions, such as "putchar” and
"getchar”.

If a function in file_name.CRL has already been loaded
from a previous CRL file, then a message will be printed
to that effect and the new version of the function will be
not be used.

-t xxxx Set start of reserved memory to xxxx (hex). The value
xxxx becomes the operand of an Ixi sp instruction at the
-start of the generated COM file."- Under CP/M, the value
should be large enough to allow all program code, local,
and extérnal variable storage needed to fit below it in
memory at run-time. | you are generating code to run in
ROM, then the highest address of the read/write memory
area plus one should be given here.

- XXXX Forces beginning of external data area fo be set to the
value xxxx (hex). Normally (under CP/M) the external data
area follows immediately after the end of the generated
code, but this option may be given to override that de-
fault. This is necessary when chaining is performed (via
exec or execl/) to make sure that the new command’s no-
tion of where the external data begins is the same as the

1. Normally, when -t is not used, the genecrated COM file begins with the sequence:

Ihid base +6 :where "base" is either 0000 or 4200h
sphi

-10-

o~

o~

BDS C User's Guide

-0 new_name

-y sname

General Description

old one's. To find out what value to use, first CLINK all
the CRL files involved with the -s option, but without the
-e option, noting the "Data starts at:" address printed out
by CLINK for each file. Then use the maximum of all
those addresses as the operand of the -e option for all
files when you CLINK them again. You’'ll have to CLINK all
the files twice, except for the file that had the largest
Data starting address during the first pass.

When generating code for ROM, this option should be
used to place externals at an appropriate location in r/w
memory.

It the main CRL file (name.CRL) was compiled with the -e
option specified to CC1, then CLINK will automatically
know about the address then specified on the CC1 com-
mand life; but if any of the other CRL files specified in
the linkage contain functions compiled by CC1 without
use of the -e option, or with the value given to -e being
different from the value used to compile the main func-
tion, the resulting COM file will not work correctly. You
may include CRL files that were compiled by CC1 without
use of the -e option only if you specify -e to CLINK with
an argument equal to that used to compile the main CRL
file. '

Causes the COM file output to be named new_name.COM.
If a disk designator precedes the name, then the output is
written to the specified disk. By default, the output goes
to the currently logged-in disk. If a single-letter disk -
specifier followed by a colon is given instead of a name,
then the COM file is written to the specified disk without
affecting the name of the file.

~ Writes a symbol table file with name name.SYM to disk,

where name is the same as that of the resulting COM file.
This symbol file contains the names and absolute ad-
dresses of all functions defined in the linkage. it may be
used with SID for debugging purposes, or by the -y op-
tion when creating overlay segments (see below.)

Reads in ("yanks") the symbol file named sname.SYM
from disk and uses the addresses of all function names
delined therein for the current linkage. The -w and -y op-
tions are designed to work together for creating overlays,
as follows: when linking the root scgment (the part of the
program that lpads in at the TIPA, first receives control,
and contains the run-time utility package), the -w option
should be given to write out a symbol table file containing
the addresses of all functions present in the root. Then,
when linking the swappable segments, the -y option

-11-

BDS C User's Guide

-b xxxx

’d [uargsu]

May 1981

should be used to read in the symbol table of the
"parent” root segment and thereby prevent multiple
copies of common library functions from being present at
run-time. This procedure may extend as many levels
down as required: while linking a swappable segment, the
-w option can be given along with the -y option, causing
an augmented symbol file to be written containinc every-
thing defined in the read-in symbol file along with new lo-
cally defined functions. Then the "swapped-in" segment
can do some "swapping-in" of its own, etc. etc. Note that
the position of the -y option on the CLINK command line
is significant; i.e, the symbol file named in the option will
be searched only after any CRL files specified to the left
of the -y option have been searched. Thus, for best
results specify the -y option immediately after the main
CRL file name. If, upon reading in the symbols from a
SYM file, a symbol is found having the same name as an
already defined symbol, the new symbol will be ignored
and a message will be displayed on the console to that
effect.

If any of the symbals in the symbol file have already been
defined, then a message to that effect is printed on the
console and the old value of the symbol is retained.

For more information on using -y for generating overlay
segments, see the User's Guide appendix on the subject
of overlays.

Specifies the load address of the generated code to be
xxxx (hex). This option is only necessary when generating
an overlay segment (in_conjunction with -v) or code to
run in a non-standard environment; in the latter case,
CCC.ASM must have been reconfigured for the appropri-
ate location and assembled (and loaded) to create a new
version of C.CCC having origin xxxx. The -e and -t op-
tions should also be used to specily the appropriate r/w
memory areas.

Specifies that an overlay segment is being created. The
run-time package is not included in the generated code,
since it is assumed that an overlay will be loaded into
memory while a copy of the run-time package is already
resident' either at.-the base of the TPA by default, or at
the address specilied in the -m option to CC1.

Instructs CLINK to obtain DEFF.CRL, DEFF2.CRL and
C.CCC ftrom disk x. By default, the currently logged disk is
assumed to contain these files.

To aid debugging, this option causes the COM file pro-

-12-

BDS C User's Guide General Description

duced by the linkage to be immediately executed (instead
of being written to disk.) If a list of arguments is specified
(enclosed in quotes), then the effect is as if the COM file
were invoked from the CCP with the given command line
options.. . This option must not be used for segments hav-
ing load addresses other than at the base of the TPA
(i.e., -d should only be used for root segments.)

-r XXXX Reserves xxxx (hex) bytes for the forward-reference table
(defaults to about 600h). This opticn may be used to allo-
cate more table space when a "“ref table overflow" error
occurs.

Examples:
Adclink foobar -s 16000 -o lucinda <cr>

expects the file FOOBAR.CRL to contain a main function, which is then linked with
any other needed functions from FOOBAR.CRL and DEFF*.CRL. A statistics summary is
printed out when finished, memory at 0x6000 and above is to be untouched by the
COM file when running, and the COM file itself is to be named LUCINDA.COM. All disk
170 during linkage is performed on the currently logged-in disk.

Adclink bironni lori c:adrienne -s <cr>

takes the "main” function from RONNI.CRL (on disk B), links in any needed functions
from RONNIL.CRL and LORI.CRL (on disk B), ADRIENNE.CRL (uon C) and DEFF.CRL and
DEFF2.CRL (on the currently logged in disk), and prints out a statistics summary when
done. Since no -t option is given, CLINK assumes all the TPA (Transient Program Area)
is available for code and data. The COM file generated is named RONNI.COM by de-
fault (since no -o option was given) and the file is written to the currently logged in
disk.

When several files that share external variables are linked together, then the file
containing the main function must contain all declarations of external variables used
in all other files. This is so because the linker uses the number of bytes declared for
externals in the main source file as the allotment of external space for the resultant
COM file. Also, because external variables in BDS C are actually more like FORTRAN
COMMON than UNIX C externals, the ordering of external declarations within each indi-
vidual source file of a program is very important. See the section entitled "Notes to Ap-
pendix A..." for more details. ‘

CLIB -- The C Librarian
Command format: CLIB <cr>

The CLIB program is provided to facilitate the manipulation of CRL file contents.
CLIB allows you to transfer functions between CRL files; rename, delete, and inspect

-13-

BDS C User's Guide May 1981

individual functions; create CRL files; and check out CRL file statistics.
Before delving into CLIB operation, it would be helpful to understand the structure
of CRL (C RelLocatable) files:

A CRL file consists of a set of independently compiled C functions, each a binary
8080 machine code image having its origin set at 0000. Along with each function
comes a list of "relocation parameters” for use by CLINK at linkage time. Also stored
with each function are the names of all functions called by the given function. Collec-
tively, the code, relocation list, and needed functions list make up a function module.

The first four sectors of a CRL file make up the directory for that file. In the
directory is a list of all function modules appearing in the file, and their locations within
the file. The total size of a CRL file cannot exceed 64K bytes (because function
modules are located via two byte addresses), but optimum efficiency is achieved by lim-
iting a CRL file's size to the size of a single CP/M extent (16K).

For mare detailed information about CRL files, see the section entitled "Adapting
8080 Machine Code Subroutines to the CRL File Format.”

When CLIB is invoked, it will respond with an initial message and a "function
buffer size” announcement. The bufter size tells you how much memory is available
for intermediate storage of functions during transfers. Attempts to transfer or extract
functions of greater length will fail.

Following initialization, CLIB will prompt with an asterisk (*) and await a command.

To "open" a CRL file for diddling, say

*open file# [d:}filename <cr>

where file # is a single digit identifier (0-9) specifying the "file number” to be associat-
ed with the file filename as long as that file remains open. Up to ten files, therefore,
may be open simultaneously.

Note that a disk designator may now be specified for the filename, making the old
s command obsolete (previous versions allowed only one disk to be used at a time,
with the s command selecting the disk to be worked with.)

To close a file, say

*close file# <cr>

The given file number then becomes free to be assigned to a new file via open. A
backup version of the altered file is created having the name name.BRL.

It is not necessary to close a file unless either changes have been made to it or
you need the extra file number. A file opened just to be copied from, for example,
need not be closed. ‘

When a CRL file is opened, a copy of the file's directory (first 4 sectors) is loaded
into RAM. Any alterations made to the file (via the use of the append, transfer, rename,
and delete commands) cause the in-core directory to be maodified accordingly, but the
file must be closed before the updated directory gets written back onto the disk. Thus,
if you do something you later wish you hadn't, and you haven't closed the file yet, you
can abort all the changes made to the flile simply by making sure not to close it. Undo-
ing appends and transters requires a little bit of extra work; this will be explained later.

To see a list of all open liles, along with some relevant statistics on each, say

*tiles <cD>

-14-

BDS C User’'s Guide General Description

To list the contents of a specific CRL file and see the length of each function
therein, say

*list file# <cr

There are several ways to move functions around between CRL files. When all files
concerned have been opened, the most straightforward way to copy a function (or set
of functions) is

*transfer source_file # destination_file# function_name <cr>

This copies the specified function[s] from the source file to the destination file, not
deleting the original from the source file. The function name may include the special
characters * and ? if an ambiguous name is desired. All functions matching the ambi-
guous name will be transfesred (except for &he "main" function, which can never be
transferred.)

An alternative approach to shuffling files around is to use the "extract-append”
method. The extract command has the form

*extract file# function_name <{cr>

It is used to pull a single function out of the given file and place it in the function
bufter (in RAM). CLIB is then made aware that the function buffer is occupied. To write
the function out to a file, say

*append file# [name] <cr>

where name is optional and should be given only to change the name under which the
function is to be saved.

*append file# <cr

is sufficient to write the function out to a file without changing its name.

Only one file# may be specified at a time with append; to write the function out
to several CRL files, a separate append must be done for each file.

To rename a function within a particular CRL file, say

*rename file# old_name new_name <cr>

Note that this constitutes a change to the file, and a c/ose must be done on the file to
make the change permanent.
To create a new (empty) CRL file, say

*make filename <cr>

This creates a file on disk called filename.CRL and initializes the directory to empty. To
write functions onto it, first use open, and then use transfer or "extract-append” as
described above. CLIB will not allow you to create a CRL file if another CRL file al-
ready exists by the same name.

To delete a function (or set of functions) from a file, use

BDS C User’'s Guide May 1981

*delete file # function_name <cr>

Again, the function name may be specified ambiguously using the * and ? characters.
The file must be subsequently closed to finalize the deletion. Note that deleting a func-
tion does not free up the associated directory space in the associated CRL file until
that file is closed. Thus if a CRL file directory is full and you wish to replace some of
the functions in it, you must first delete the unneeded functions, then close and re-
open the file to transfer new functions into it.

A command syntax summary may be seen by typing the command

*help <cr>
All commands may be abbreviated to a single letter.

Should you decide you really didn't want to make certain changes to a file, but it
is already after the fact, then the quit command may be used to get out of editing the
file and abort any changes made. As long as you haven't appended or transferred into
the file, typing

*quit file# <cr

is sufficient to abort, and frees up the file # as if a close had been done.

If you have appended or transferred into a file and you wish to abort, then the
guit command should still be used, but in addition you should re-open the file directly
after quitting and then close it immediately. The rationale behind this procedure is as
follows: when you do an append or a transfer, the function being appended gets writ-
ten onto the end of the CRL file. Then, when you abort the edit, the old directory is
left intact, but the appended function is still there, hanging on, even though it doesn’t
appear in the directory. By opening and immediately closing the file, only those func-
tions appearing in the directory remain with the file, effectively getting rid of those
"phantom" functions.

To exit back to CP/M, give the quit command with no arguments, or type control-
C.

Here is a sample session of CLIB, in which the user wants to create a new CRL
file named NEW.CRL on disk B: containing all the functions in DEFF.CRL beginning
with the letter "p™:

A>clib

BD Software C Librarian v1.3
Function buffer size = xxxxx bytes
*open O deff

*make b:new

*open 1 b:new

transfer 0 1 p

16-

N

BDS C User's Guide General Description

*close 1
*quit
A

CP/M "Submit” Files

To simplify the process of compiling and linking a C program (after the initial bugs
are out and you feel reasonably confident that CCt and CC2 will not find any errors in
the source file), CP/M "submit" files can be easily created to perform an entire compi-
lation. The simplest form of submit file, to simply compile, link and execute a C source
program that is self contained (doesn’t require other special CRL files for function link-
ages) would look like:

CC1 $1.c
CLINK $1 -s
$1

Thus, if you want to compile a source file named, say, LIFE.C, you need only type
Ad>submit ¢ life <cr>

(assuming the submit file is named C.SUB.)

Strangenesses

1) When using PIP to move CRL files and C.CCC around between disks, make sure
to specify the [0] option so that PIP doesn’t abort the operation upon en-
countering the first Ox1a byte in the file. This may not be necessary on newer
versions of PIP, but if part ol your file disappears after a PIP transfer, at least
you'll know what to do.

2) When invoking any COM file in the BDS C package or any COM file generated
by the compiler, your command line (as typed in to CP/M) must never contain
any leading blanks or tabs. It seems that the CCP (console command processor)
does not parse the command line in the proper manner if leading white space
is introduced.

-17-

The .CRL Function Format and Other Low-Level Mechanisms

Introduction

This section is addressed toward assembly/machine language programmers need-
ing the ability to link in machine code subroutines together with normally compiled C
functions. It describes the CRL format and how to transform a machine language sub-
routine into the format appropriate for .CRL files, so that the subroutine can be treated
just like any other function by the C Linker. Also described are the calling conventions
for function linkage and some utility routines available to assembly programmers in the
run-time package.

Included with version 1.4 of BDS C is a macro library called CMAC.LIB, for use
with Digital Research’'s MAC macro assembler. This library greatly simplifies the
conversion of assembly language subroutines into CRL functions.

With CMAC.LIB, creating a CRL file from any given assembly source routine is as
simple as adding a few pseudo-ops, assembling, loading, and changing the COM ex-
tension to CRL.

Although it is not absolutely necessary to know how a CRL file is organized in
order to effectively use the macro package and MAC to produce CRL files, a detailed
description of the CRL format is in order for general information and for the benefit of
users lacking MAC. So here goes...

CRL Directories

The first four sectors of a CRL file! make up the directory. Each function module
in the file has a corresponding entry in the directory, consisting of the module’s name
(up to eight characters [upper-case only to work correctly with CLIB in versions before
1.2] with the high-order bit set only.on the I?t character) and a two-byte value indicat-
ing the module’s byte address within the file.

' Following the last entry must be a null byte (0x80) followed by a word indicating
the next available address in the file. Padding may be inserted after the end of any
function module to make the next module's address line up on an even (say, 16 byte)

1. Locations 0x100 - Ox2ff (using C's notation for hexadecimal values) in memory if
you are ddt-ing the file.

2. The tunction module addresses within a CRL file are all relative to OxOOOO and the
directory resides from 0x0000 to OxO1ff. The lowest possible function module ad-
dress is 0x205 (locations 0x200 - 0x204 are reserved.) When using ddt to examine
a CRL file, remember that all addresses must be offset by 0x0100 (or 0x4300 for
"modified” CP/M.) For example, if the directory lists a particular function module as
beginning at address Ox15cf, then you'd look at memory location Ox16¢i (or 0x58cf)
fo see it

-19-

BDS C User's Guide May 1981

boundary, but there must never be any padding in the directory itself.

Example: if a CRL file contains the following modules,

Name: Length:
foo 0x137
yipee 0x2¢5
blod Ox94a

then the directory for that file might appear as follows:1

46 4 cf 05 02 59 49 50 45 ¢c5 50 03
F O OO mm nmm Y | P E E nn nmn

42 4c 4 c4 20 06 80 70 of
B L O D nn nn null-entry

In some early version of the compiler, the word main was recognized as a key-
word, and converted into a one-byte code having the value 0x9D. Thus, instead of see-
ing the sequence "MAIN" (with the N's high order bit set) in old .CRL files, you'd just
see the 0x9d byte and an address. The new linker and librarian can both still handle
that strange case, but the new compiler doesn’t put out 0x9D's for "MAIN" anymore.

External Data Area Origin and Size Specifications

The first five bytes of the fifth sector of a CRL file (locations 0x200-0x204 relative
to the start of the file) contain information that CLINK uses to determine the origin (if
specified explicitly to CC1 via the -e option) and size of the external data area for the
executing program at run-time. This information is valid ONLY if the CRL file containing
it is treated as the "main" CRL file on the CLINK command line; otherwise, the infor-
mation is not used. '

The first byte of the fifth sector has the value OxBD if the -e option was used dur-
ing compilation to explicitly sct the external data area; else, the value should be zero.
The second and third bytes contain the address given as the operand to the -e option,
it used.

The fourth and fifth bytes of the the fifth sector contain the size of the external
data area declared within that file (low byte first, high byte second.) CLINK always ob-
tains the size of the external data area from these special locations within the main
CRL file. In CRL files which do not contain a main function, these bytes are unused.

Function Modules

Each function module within a CRL file is an independent entity, containing (in ad-
dition to the binary machine-code image of the function itself) a set of relocation

1. Note that the /ast character of each name has bit 7 set high.

-20-

BDS C User's Guide CRL Fermat, etc.

parameters for the function and a list of names of any other functions that it may call.
A function module is address-independent, meaning that it can be physically
moved around to any location within a CRL file (as it often must be when CLIB is used
to shuffle modules around.)
The format of a function module is:

list of needed functions
length of body

body

relocation parameters

List of Needed Functions

If the function you are building calls other CRL functions, then a list of those
function's names must be the first item in the module. The format is simply a contigu-
ous list of upper-case-only names, with bit 7 high on the last character of each name.
A zero byte terminates the list. A null list is just a single zero byte.

For example, suppose a function foobar uses the functions putchar, getchar, and
setmem. Foobar’s list of needed functions would appear as:

47 45 54 43 48 41 d2 50 55 54 43 48 41 d2 53 45 54 4d 45 cd 00
getcharput charset mem(end

Length of Body

Next comes a 2-byte value specitying the exact length (in bytes) of the body (to
be defined next.)

Body

The body portion of a function module contains the actual 8080 code for the func-
tion, with origin always at 0000.

It the list of needed functions was null, then the code starts on the first byte of
the body. I the list of needed functions specified n names, then a dummy jump vector
table (consisting of n jmp instructions) must be provided at the start of the body, pre-
ceded by a jump around the vector table.

For example, the beginning of the body for the hypothetical function foobar
described above would be:

jmp 000ch
jmp 0000

jmp 0000

jmp 0000
<rest of code>

¢c3 Oc 00 c3 00 00 c3 00 00 c3 00 00 <rest of function code>.

.21.

BDS C User's Guide May 1981

Relocation Parameters

Directly following the body come the relocation parameters, a collection of ad-
dresses (relative to the start of the body) pointing to the operand fields of all instruc-
tions within the body which reference a local address. CLINK takes every word being
pointed to by an entry in this list, and adds a constant to it which equals the value of
the address where the first byte of the function ends up residing in the resultant COM
file.

The first word in the relocation list is a count of how many relocation parameters
are given in the list. Thus, if there are n relocation parameters, then the length of the
relocation list (including the length byte) would be 2n + 2 bytes.

For example, a function which contains four local jump instructions (which begin,
respectively, at lccations 0x22, 0x34, Ox4f and 0x61) would have a relocation list look-
ing like

04 00 23 00 35 00 50 00 62 00.!

Calling Conventions and Register Allocation

All argument passing on function invokation, as well as all local (automatic)
storage allocation, now take place on a single stack at run time. The stack pointer is
kept in the SP register, and is initialized to the very top of the CP/M TPA in the stan-
dard configuration (or to the value specified as argument to -t at linkage time.) Exter-
nal storage usually sits directly on top of the program code, leaving all of memory
between the end of the external data and the high-memory stack free for storage allo-
cation. .

~When a C-generated function receives control, it will usually: push BC, allocate
space for local data on the stack (decrement SP by the amount of local storage need-
ed), and copg the new SP value into the BC register for use as a constant base-of-
frame pointer.“ Note that the old value of BC must always be preserved for the calling
routine.

Let's assume the called function requires nloc! bytes of local stack frame space.
After pushing the old BC, decrementing SP by nloc/ and copying SP to BC (in that ord-
er), the address of any automatic variable having local offset loffset may be easily com-
puted by the formula

(BC) + loffset

If the function takes formal parameters, then the address of the nth formal parameter
may be obtained by ‘

(BC) +nloc! + 2 + 2n

1. Note that the addresses of the instructions must be incremented by one to point to
the actual address operands needing relocation.

2. The reason for copying the SP into BC instead of just addressing everything relative
to SP is that the SP fluctuates madly as things are pushed and popped, making ad-
dress calculation hopelessly confusing for poor lazy compiler hackers like me.

BDS C User's Guide CRL Format, etc.

where n is 1 for the first value specified in the calling parameter list, 2 for the second,
etc. This last formula is obtained by noting that parameters are always pushed on the
stack in reverse order by the calling routine, and that pushing the arguments is the last
thing done by the caller before the actual call. Atter the called function pushes the BC
register, there will be four bytes of stuff on the stack between the current SP and the
first formal parameter (two 16-bit values: the saved BC, and the return address to the
calling routine) Note that this scheme presupposes that each formal parameter takee
exactly 2 bytes of storage. When 4-byte variables come into play, the general tormula
falls apart and the location of each parameter will depend on the types of the other
parameters. But let's leave something for version 2...

Upon compileting its chore (but before returning), the called function de-allocates
its local storage by incrementing the SP by nloc/, restores the BC register pair by pop-
ping the saved BC off the stack, and returns to the caller.

The caller will then have the responsibility of restoring the SP to the state it was in
before the formal parameter values were pushed; the called function can’t do this be-
cause there is no way for it to determine how many parameters the caller had pushed.

Formally, the responsibilities of a calling function are:
1. Push formal parameters in reverse order (last arg first, first arg last)

2. Call the subordinate function, making sure not to have any important values
in either the HL or DE registers (since the subordinate function is allowed to
bash DE and may return a value in HL.) The BC register can be considered
"safe" from alteration by the subordinate function; by convention, the func-
tion that is called must always preserve the BC register value that was
passed to it. All functions produced by the compiler do this.

3. Upon return from the function: restore SP to the value it had before the for-
mal parameters were pushed, taking care to preserve HL register pair (con-
taining the returned value from the subordinate function.) The simplest way
to restore the stack pointer is just to do a "pop d" for each argument that
was pushed. :

The protocol required of the called, subordinate function is:

1. Push the BC register if there is any chance it may be altered before return-
ing to the caller.

2. If there are any local storage requirements, allocate the appropriate space on
the stack by decrementing SP by the number of bytles needed.

3 If desired, copy the new value of SP into the BC register pair to use as a
base-of-frame pointer. Don't do this if BC wasn't saved in step 1!

4, Perform the required computing.

5. De-allocate local storage by incrementing SP by the local frame size.

.23-

BDS C User's Guide May 1981

6. Pop old BC from the stack (if saved in step 1.)

7. Return to caller with the returned value in the HL register.

How Much Space Does the Stack Take Up?

The new single stack scheme has all local (automatic) data storage, formal param-
eters, return addresses and intermediate expression values living on the one stack up
in high memory. Usually the stack pointer is initialized to the very top of memory (the
BDOS area) and grows down from there (the -t option to CLINK may be used to over-
ride that default) The maximum amount of space the stack can ever consume is
roughly equal to the amount of local data storage active during the worst case of func-
tion nesting, plus a few hundred bytes or so. If we call the amount of local storage in
the worst case n, then the amount of free memory available to the user may be figured
by the formula ‘

topofmem() - endext() - (n + fudge)

where a fudge value of around 500 should be pretty safe. Topofmem() and endext()
are new library functions which return, respectively, a pointer to the highest memory lo-
cation used by the running program (the top of the stack) and a pointer to the byte
following the end of the external data area. Endext() is thus the first byte of memory
available to the user. -

Helpful Run-Time Subroutines Available in C.CCC (See CCC.ASM)

There are several useful subroutines in the run-time package available for use by
assembly language functions. The routines fall into three general categories: the local-
and-external-fetches, the formal-parameter fetches, and -the arithmetic and logical rcu-
tines.

The first group of six subroutines may be used for fetching either an 8- or 16-bit
object, stored at some given offset-from either the BC register or the beginning of the
external data area, where the offset is specified as either an 8- or 16-bit value. For ex-
ample: the intuitive procedure for fetching the 16-bit value of the external variable
stored at an offset of eoffset bytes from the base of the external data area (the pointer
to which is stored at location extrns) would be

Ihid extrns ;get base of external area into HL

Ixi d,eoffset ;get offset into HL -
dad d :add to base-of-externals pointer

mov a,m ;perform indirection to get

inx h ;value into HL

mov h,m

mov |,a

Using the special call for retrieving an external variable. the same result may be ac-
complished with

call sdei

BDS C User's Guide CRL Format, etc.

db eoffset if eoffset < 256

The second sequence takes up much less memory; 4 bytes versus 11, to be exact. |If
the value of eoffset were greater than 255, then the-ldei routine would be used instead,
with eoffset taking a dw instead of a db to represent. See the CCC.ASM file for com-
plete listings and documentation on the entire repertoire of these value-fetching sub-
routines.

The second class of subroutines are used primarily for fetching the value of a
function argument off the stack into HL and A. For example: say your assembly func-
tion has just been called; a call to the subroutine maitoh would fetch the first argu-
ment into HL and A. maitoh (mnemonic for "Move Argument 1 TO H") always fetches
the 16-bit value present at location SP + 2 (as your function sees the SP.) A call to the
ma2toh ("Move Argument 2 to H") routine would retrieve the second 16-bit argument
oft the stack in HL and A. If you push the BC register first, then you'd have to call
ma2toh in order to fetch the first argument, madtoh to fetch the second, and so on for
mad4toh and the rest.

Another way to deal with function arguments is to call the routine called arghak as
the very first thing you do in your function (even before pushing BC.) Arghak copies
the first seven function arguments off the stack to a contiguous 14-byte area in the
r/w memory area (normally within C.CCC itself), making those values accessible via
simple Ihid operations for the duration of the function’s operation...assuming your func-
tion doesn’t call others which copy their arguments down there. After arghak has been
called, the first argument will be stored at absolute location arg1, the second at arg2,
etc.

The final category of subroutines is the arithmetic and logical group, all of which
take arguments passed in HL and DE and return a result in HL.

Again, CCC.ASM is the source for the run-time package, in which all the above .
mentioned routines are documented. The header file BDS.LIB contains definitions of all
entry points to the routines within C.CCC (the assembled CCC.ASM) as provided in the
distribution version of the package All your assembly language source files should
contain the MAC directive '

maclib bds

so that the necessary subroutines may be referred to directly by name in your pro-
grams. If you have need to modify CCC.ASM in order to customize the run-time pack-
age, be sure to also modify BDS.LIB to reflect the new addresses.

Generating Code to Run At Arbitrary Locations and/or in ROM

Normally, BDS C produces a CP/M transient command file ready to run in
read/write memory located at the base of the TPA (100h or 4300h), in response to a
direct command to the Console Command Processor. Under such normal. cir-
cumstances, the run-time package (C.CCC) and its private read/write memory area oc-
cupy the first 1500-or-so bytes of the command file, and the compiled code (commenc-

.25.

BDS C User's Guide May 1981

ing with the "main” function) follow immediately thereafter.

It all you ever want to do is generate CP/M transient commands, then you're all
set. But in order to generate code that can run at a different location or be placed into
ROM, it is necessary to: a) customize the run-time package, b) reassemble the
machine-coded portions of the function library, and c) recompile the C-coded portions
of the library. Here is the general procedure for customizing the package toward such
ends:

1. Alter and re-assemble the run-time package (CCC.ASM) to refiect the desired
configuration. If the target code will not be operating under CP/M, setting
the appropriate EQU to zero will eliminate much CP/M-related support code
and reduce the size of both the run-time package and the required r/w
memory area; non-CP/M operation will also cause the CP/M-dependent en-
try points within the run-time package to remain undetfined, so you won't ac-
cidentally generate code to use them while developing assembly functions.
Also be sure to set the appropriate EQUs to define the code origin of the
package and the r/w memory location for the package's private data area.

After the binary image of CCC.ASM is produced (be it named CCC.COM or
whatever), rename it to be: C.CCC.

Note: After assembling CCC.ASM, you cannot simply "load" the CCC.HEX file
to produce a binary image unless the origin is exactly at the base of the
TPA. If your origin is elsewhere, use DDT or SID to read the file into memory
and move it down to the base of the TPA, then re-boot CP/M and use the
"save" command to write the new C.CCC back to disk in binary form.

2. Edit the file BDS.LIB so that all addresses match the values obtained from
assembly of your new CCC.ASM. A good way to check this step is to rename
BDS.LIB to be BDS.ASM, assemble it, and compare the values at the left
margin from BDS.PRN to those in CCC.PRN.

3. Using MAC, assemble the machine language library routine file (DEFF2.ASM),
load it, and rename it DEFF2:CRL. If any functions in DEFF2A.ASM are need-
ed, then assemble that file also, rename it DEFF2A.CRL, and use CLIB to
transfer everything in there over to DEFF2.CRL. If you are configuring the
system for a non-CP/M environment, you'll have to purge ali the CP/M-
related functions from DEFF2.ASM and DEFF2A.ASM before assembly. See
the comments in CMAC.LIB for instructions on the use of the special
pseudo-ops for creating CRL files with MAC.

4, When using CC1 to compile code for a non standard (base-of-TPA) load ad-
dress, specify the -m option to inform the compiler of the new run-time pack-
age origin address. Make sure to re-compile STDLIB1.C and STDLIB2.C us-
ing -m, and use CLIB to create a new DEFF.CRL composed of everything
from STDLIB1.CRL and STDLIB2.CRL.

5. Use the -1, -t and -e options to tell CLINK the load address, top of r/w
memory and base of external data area, respectively, of the target program.

-

6. Burn the PROMs!

-26-

BDS C User's Guide CRL Format, etc.

Debugging Hint
Use of the -o option to CC1 will make interactive debugging of the generated

code (using, say, SID) easier, since this will avoid the in-line data bytes that usually fol-
low value fetching calls to the run time package.

27-

The BDS C Standard Library on CP/M
A Function Summary

Included in the BDS C package are the files DEFF.CRL and DEFF2.CRL, making
up the standard Iibrary.1 These files contain a collection of useful C functions, in CRL
{(C Relocatable) format, available for use by all C programs. CLINK automatically
searches the library after all other CRL files given on the command line have been
searched once; thus, any functions you explicitly define in a source file that happen
to have the same name as library functions will take precedence over the library ver-
sions, as long as CLINK finds your version of the function before getting around to
scanning the library.

CLINK begins its task by loading in the main function from the CRL file specified
as the first argument on the command line. If main calls any other functions (it usually
does), then each such function is searched for in the first CRL file, loaded if found,
and recursively examined for any functions it may need. If there are still more func-
tions needed after loading everything that was needed from the first CRRL file, then the
other CRL files on the command line (and finally DEFF.CRL and DEFF2.CRL) are
scanned. Because CLINK never yanks up a function unless some previously loadad
function has made a reference to it (or the -f option is used), you may have to go
back and re-scan some files after the first pass has been completed. This only hap-
pens when a function defined in one of the first CRL files isn't used at all until a func-
tion in a /ater file calls it. By avoiding this type of backward-reference, the need for re-
scanning may be eliminated.

In the following summary of all the major functions in DEFF.CRL and DEFF2.CRL,
each function is described both in words and in a C-type notation intended to illustrate
how a deiinition of that function would appear in a C program. Such notation pro-
vides, at a glance, information such as whether or not the function returns a value
(and if so, of what type) and the types of any parameters that the function may take.
Here are some rules of thumb: if a function is listed without a type, then it doesn't re-
turn a value (for example, exit and poke return no values.) Any formal parameters lack-
ing an explicit declaration are implicitly of type int, although in many cases only the
low-order 8 bits of the value are really used and a value of type char would work just
as well.

The only time it is necessary to actually declare a library function before it is used
in a C program is when the function returns a value having a type other than int, and
that value is used immediately in an expression where the type has some significance.
A bit of experience will help to clarify when it is proper or unnecessary to declare cer-

1. For version 1.4, DEFF2.CRL contains all the assembly language functions from
DEFF2.ASM and DEFF2A.ASM (assembled using MAC, CMAC.LI} and BDS.LIB),
while DEFF.CRL contains all the C-coded functions from STDLIB1.C and STDLIB2.C.

.29.

BDS C User’'s Guide

May 1981

tain functions; many of these decisions are a matter of style and/or portability.
Here is a summary of all major functions available in DEFF.CRL and DEFF2.CRL:

I. GENERAL PURPOSE FUNCTIONS

1. char csw()

2. exit()

20

3. int bdos(?,de)
J

4. char bios(n,c)

Returns the byte value (0-255) of the console
switch register (port OxFF on some mainframes).

Closes any open files and exits from an executing
program, re-booting CP/M. Does not automatically
call fllush on files opened for buffered output.

Calls location RAM+5 (where RAM = 0x0000 for
most systems), first setting CPU register C to the
value c, and register pair DE to the value de.
Return value ‘is the 16-bit value returned by the
BDOS in A and B (low-order 8 bits in A, high-order
8 bits in B.) For CP/M 2.x, this is the same as the
value returned in HL.

Calls the nth entry in the BIOS jump vector table,
where n is 0 for the first entry (boot), 1 for the
second (wboot), 2 for the third(const), etc. Note
that the cold-boot function (where n is 0) should
never actually be used, since the CCP will be
bashed and probably crash the system upon entry.
Return value is the value returned in A by the
BIOS call.

There are some BIOS calls that require a parame-
ter to be passed in DE, and that return their result
in HL. Notc that a special version of bios that sup-
ports this format, call it biosh, may easily be writ-
ten in terms of the call tunction by noting that
memory locations 1 and 2 (or 420th and 4202h)
contain the address of the second entry in the

‘BIOS jump vector table.

BDS C User's Guide

5. char peek(n)

6. poke(n,b)

7. inp(n)

8. outp(n,b)

9. pause()

10. sleep(n)

The Standard Library

Returns contents of memory location n. Note that
in applications where many consecutive locations
need to be examined, it is more efficient to use in-
direction on a character pointer than it is to use
peek. This function is provided for the occasional
instance when it would be cumbersome to declare
a pointer, assign an address to it, and use indirec-
tion just to access, say, a single memory location.

Deposits the low-order eight bits of b into memory
location n. This can also be more efficiently ac-
complished using pointers, as in

*n = b;
(where n is a pointer to characters.)

Returns the eight-bit value present at input port n.
Outputs the eight-bit value b to output port n.

Sits in a loop until CP/M console input interroga-
tion indicates that a character has been typed on
the system console. The character itself is not in-
put; before pause can be used again, a getchar()
call must be done to clear the status.

There is no return value.

Sleeps (idles) for n/10 seconds (on an 8080). The
only way to abort out of this before it wakes up is
to type control-C, which reboots CP/M.

No return value.

.31-

BDS C User's Guide

L
11, int caII(addr,g,h,%a)

N

12. char calla(addr,a,h,b,d)

13. int abs(n)
14. int max(n1,n2)
15. int min(n1,n2)

16. srand(n)

17. srand1(stfing)
char *string;

May 1981

Calls a machine code subroutine at location addr,
setting CPU registers as follows:

HL <-- h; A <-- a; BC <-- b; DE <-- d.

Return value is whatever the subroutine returns in
HL.

The subroutine must, of course, maintain stack dis-
cipline.

Just like call, except the return value is the value
returned by the subroutine in A (instead of HL.)

Returns absolute value of n.

Returns the greater of two integer values.

Returns the lesser of two integer values.

Initializes pseudo-random number generator.

If n is zero, then srand asks the user to type a
carriage return and starts to count, internally.
When a key is finally hit by the user, the current
value of the count is used to initialize the random
seed.

If n is non-zero, then n itself is used as the seed.

Like srand(D), except that the given string is print-
ed as a prompt instead of the canned "Hit return
after a few seconds:" message. Unlike srand,
though, the character typed is not gobbled up;
you must do a getchar to clear it.

.32.

TN

BDS C User's Guide

18. int rand()

19. nrand(-1,s1,52,s3)
nrand(0, prompt_string)
int nrand(1)

20. setmem(addr,count,byte)

The Standard Library

Returns next value (ranging: 0 < rand() < 32768) in

a pseudo-random number sequence initialized by

srand or srand1.

To get a value between 0 and n-1 inclusive, say:
rand() % n

A new, "better quality” random number generator,
written by Prof. Paul Gans to emulate the CDC
6600 random number generator in use at the
Courant Institute of Mathematical Sciences. The in-
itialization mechanism was later added for semi-
compatibility with the srand and srand? conven-
tions.
The first form sets the internal 48-bit seed equal
to the 48 bits of data specified by s1, s2 and s3
(ints or unsigneds.)
The second form acts just like the srand? function:
the string pointed to by prompt_string is printed
on the console, and then the machine waits for
the user to type a character while constantly incre-
menting an internal 16-bit counter. As soon as a
character is typed, the value of the counter is
plastered throughout the 48-bit seed. Note that the
console input is not cleared; a subsequent
getchar() call is required to actually sample the
character typed.
The final form simply returns the next value in the
random sequence, with the range being ’

0 < nrand(1) < 32768.
Note that the internal seed maintained by nrand is
separate from the seed used by srand, srand! and
rand (the last three routines use the first 32 bits of

the area labeled rseed within the run-time package

data area, while nrand maintains its own distinct
internal seed.)

Sets count contiguous bytes of memory beginning
at addr to the value byte. This is efficient for quick
initialization of arrays and buffer areas.

BDS C User's Guide

21. movmem(source,dest,count)
char *source, *dest;

22. gsort(base,nel,width,compar)
char *base;
int (*compar)();

23. int exec(prog)
char *prog;

May 1981

Moves a block of memory count bytes in length
from source to dest. This new version will handle
any configuration of source and destination areas
correctly, knowing automatically whether to per-
form the block move head-to-head or tail-to-tail. If
run on a Z80 processor, the Z80 block move in-
structions are used. If run on an 8080 or 8085, the
normal 8080 ops are used.

Does a "shell sort" on the data starting at base,
consisting of nel elements each width bytes in
length. compar must be a pointer to a function of
two pointer arguments (e.g. x,y) which returns

1 if*x > %y
1if *x < 'y
0 if *x == "‘y.

Elements are sorted in ascending order. See the
OTHELLO.C program for a good example of using
gsort.)

Chains to (loads and executes) the program

- prog.COM.

Prog must be a null-terminated string pointer
specilying the file to be chained. A string constant
(such as "foo") is perfectly reasonable, since it
evaluates to a pointer.

It the command to be executed was generated by
the C compiler, then it should have been linked
with the CLINK option -e specified it external vari-
ables need to be shared between the execing and
execed files. See the CLINK documentation for
details on the proper usage of this option.

There may be no transfer of open file ownership
through an exec call. The only possible shared
resource under this scheme is external data...to al-
low this, the external data starling address must
be made the same for all files involved, using the
CLINK option -e.

BDS C User's Guide

24. int execl(prog,argl,arg2,...,0)
char *prog, *arg1, *arg2, ...

25. execv(filename,argvector)
char *filename;
char *argvector|];

The Standard Library

Returns -1 on error..but then, if it returns at all
there must have been an error.

Allows chaining from one C COM file to another
with parameter passing through the argc & argv
mechanism. Prog must be a null-terminated string
pointing to the name of the COM file to be
chained (the .COM need not be present in the
name), and each argument must also be a null-
terminated string. The last argument must be zero.
Exec! works by creating a command line out of the
given parameters, and proceeding just as if the
user had typed that command line in to the CCP
of CP/M. For example, the call
execl("foo","bar","zot",0),
would have the same effect as if the command
Ad>foo bar zot <cr
were given to CP/M from the console. Unfor-
tunately, the built-in CP/M commands (such as
"dir”, "era", etc.) .cannot be invoked with execl.
The total length of the command line constructed
from the given argument strings must not exceed
80 characters.
-1 returned on error (again, though, if it returns at
all then there must have been an error.)

Similar to exec/, except that the argument texts
must be placed into an array instead of specified
explicitly in the calling sequence. The argvector
parameter must be a pointer to an array of string
pointers, where each string pointer points to the
next argument and the last one is NULL. This
mechanism allows chaining with a variable number
of arguments to be performed.

It the program filename.COM is not found, then
the message "Broken Pipe" will be printed on the
console and control will return to CP/M.

BDS C User’'s Guide

26. int swapin(filename,addr)
char *filename;

27. char

28. char

29. char

30. char

*codend()

*externs() .

*endext()

*topofmem()

May 1981

Loads in the file whose name is the null-terminated
string pointed to by filename into location addr in
memory. No check is made to see if the file is too
long for memory; be careful where you load it!
This function would normally be used to load in an
overlay segment for later execution via an indirec-
tion on a pointer-to-function variable; it may be
used to load in any type of file, though.

Returns -1 if there is an error in reading in the file.
Control is not transferred to the loaded file.

Returns a pointer to the first byte following the
end of root segment program code. This will nor-
mally be the beginning of the external data area
(see externs() below.)

Returns a pointer -to the start of the external data
area. Unless the -e option was used with CC1
and/or with CLINK, this value will be the same as
codend().

Returns a pointer to the first byte following the
end of the external data area.

Returns a pointer to the last byte of the TPA (this
is normally the top of the stack.) The value re-
turned by topofmem()} is not affected by use of the
-1 option at linkage time.

BDS C User's Guide

31. char *alloc(n)

32. tree(allocptr)
char *allocptr;

33. char *sbrk(n)

The Standard Library

Returns a pointer to a free block of memory n
bytes in length, or O if n bytes of memory are not
available. This is roughly the storage allocation
function from chapter 8 of Kernighan & Ritchie,
slightly simplified for the case where type-
allignment restrictions are nonexistent. Sec the
book for details.
Note that the

define ALLOC_ON 1
statement in the header file BDSCIO.H must be
un-commented (enabled) and STDLIB1.C re-
compiled to allow use of alloc and free. See the
comments in BDSCIO.H for more details on this
process.
BDSCIO.H must be #included in all files of a pro-
gram that uses the alloc-free pair, since there is
some crucial external data declared therein. Your
best bet would be to put an

include "bdscio.h”
statement at the start of the global (.H) header file
that contains all your external declarations.

Frees up a block of storage allocated by the alloc
function, where allocptr is a value obtained by a
previous call to alloc. Free need not be called in
the reverse order of previous alloc calls, since the
alloc-free pair maintain a linked list of data struc-
tures and can tolerate any order of allocation/de-
allocation.

Calling free with an argument not previously ob-
tained by a call to alloc can do miserable things to
your system.

See alloc() above.

This is the low-level storage allocation function,
used by alloc to obtain raw memory storage. It re-
turns a pointer to n bytes of memory, or -1 if n
bytes aren’t available. The first call to sbrk returns
a pointer to the location in memory immediately
following the end of the external data area; each
subsequent call returns a block contiguous with
the last, until sbrk detects that the locations being
allocated are gectting dangerously close to the

.37-

BDS C User's Guide

34. rsvstk(n)

Il. CHARACTER INPUT/QUTPUT

35. int getchar()

May 1981

current stack pointer value. By default,
"dangerously close” is defined as 1000 bytes. To
alter this default, see the next function. f you
plan to use alloc() and free() in a program, but
would also like some memory immune from alloca-
tion to be available for scratch space, use sbrk()
to request the desired memory instead of alloc().
Sbrk() calls may be made at any time (independent
of any alloc() and free() calls that may have been
made.)

This should be used before any calls to sbrk or al-
loc, so that the storage allocation functions reject
any allocation calls which would leave less than n
bytes between the end of the allocated area and
the current value of the stack pointer (remember
that the stack grows down from high memory.)

It rsvstk() is never used, then storage allocation is
automatically prevented from approaching closer
than 1000 bytes to the stack (just as if an
rsvstk(1000) call had been made.))

- Returns next character ‘from standard input stream

(CP/M console input.)

Re-boots CP/M on control-C.

Carriage return echos CR-LF to the console output
and returns the newline ('\n’) character.

A value of -1 is returned for control-Z; note that
the return value from getchar must be treated as
an integer (as opposed to a character) if -1 is to
be recognized. W you declare getchar to be a
character or assign its return vaiue to a character
variable, then the value 255 should be checked for
instead (to detect the EOF character, control-Z.)

BDS C User's Guide

36. char ungetch(c)

37. int kbhit()

38. putchar(c)

39. putch(c)

The Standard Library

Causes the character ¢ to be returned by the next
call to getchar. Only one character may be
"ungotten” between consecutive getchar calls;
normally, zero is returned. If there was already a
character pushed back since the last getchar()
call, then the value of that character is returned.

Returns true (non-zero) if input is present at the
standard input (keyboard character hit); else re-
turns false (zero.) In no case is the input actually
sampled; to do so requires a subsequent getchar()
call.

Note that kbhit will also return true if the ungetch
function was used to push back a character to the
console since the last getchar() call.

Writes the character ¢ to the standard output
(CP/M console output)

The newline ('\n’) character is transformed into a
CR-LF combination.

If a control-C is detected on console input during
a putchar call, program execution will halt and
CP/M will be re-booted. it any other character is
typed during a putchar call, then that character
will be completely ignored.

If you don't want the console input interrogated

~during console output, use the putch function,

descrjbed next:

Like putchar, except that the console input is NOT
interrogated for control-C (or anything else) during
output; any characters detected at the console in-
put will be thrown away.

.39.

BDS C User's Guide

40. puts(str)
char *str;

41. char *gets(str)
char *str;

42. printf(format,argt,arg2,...)
char *format;

May 1981

Writes out the null-terminated string str to the
standard output. No automatic newline is append-
ed.

Collects a line of input from the standard input
into the buffer str.

Returns a pointer to the beginning of str (the
value gets was called with.)

The BDOS call to bufter up a line of input is used;
hence, the length of the provided buffer must be
at least 3 bytes longer than the longest string you
ever expect entered. Caution dictates making the
bufter large, since an overflow here would most
probably destroy neighboring data.

Formatted print function. Output goes to the stan-
dard output. Conversion characters supported in
the standard version:

decimal integer format
unsigned integer format
single character

string. (null-terminated)
octal format

hex format

x 0OunoeaQa

Each conversion is of the form:
% [-] [[0] w] [.n] <conv. char.>

where w specifies the width of the field, and n (if
present) specifies the maximum number of charac-
ters to be printed out of a string conversion. De-
fault value for w is 1.

The field will be right-justified unless the dash is
specifed following the percent sign, forcing left-
justification. If the value for w is preceded by a
zero, then zeros are used as padding on the left
of the field instead of spaces. This feature has
been implemented for v1.43 of the package, and is
very useful for printing hexadecimal valucs; the

-40-

BDS C User's Guide

43. int scanf(format,argi,arg2,...)
char *format;

The Standard Library

feature had been neglected in previous versions.
An enhanced version of printf, incorporating the e
and f format conversions for floating point values
used in Bob Mathias's floating point package, is
available for compilation in the file FLOAT.C.

Formatted input. This is analogous to printf, but
operates in the opposite direction.

The %u conversion is not recognized; use %d for
both signed and unsigned numerical input.

The field width specification is not supported, but
the assignment suppression character (*) works
OK.

Note that input strings (denoted by a %s conver-

sion specification in the format string) are terminat-

ed only when the character following the %s in

the format string is scanned.

Returns the number of items successftully assigned.
For a more detailed description of scanf and

printf, see Kernighan ‘& Ritchie, pages 145-150.

lll. STRING AND CHARACTER PROCESSING

44. int isalpha(c)
char c;

45. int isupper(c)
char c;

Returns true (non-zero) if the character ¢ is alpha-
betic, false (zero) otherwise.

Returns true if the character ¢ is an upper case
letter; false otherwise.

-41-

BDS C User's Guide

47.

49.

50.

51.

52.

. int islower(c)

char c;

int isdigit{(c)
char c;

. int toupper(c)

char c;

int tolower(c)
char c;

int isspace(c)
char c;

sprintf(string,format,arg1 .ar92,...)
char *string, *format;

May 1981

Returns true if the character ¢ is a lower case
letter; false otherwise.

Returns true if the character ¢ is a decimal digit;
false otherwise.

If ¢ is a lower case letter, then c's upper case
equivalent is returned; else c¢ is returned.

if ¢ is an upper case letter, then c's lower case
equivalent is returned; else c is returned.

Returns true if the character ¢ is a "white space”
character (blank, tab or newline); false otherwise.

Like printf, except that the output is written to the
memory location pointed to by string instead of to
the console.

int sscanf(string,format,arg1,arg2,...)

char *string, *format,

Like scanf, cxcept the text is scanned from the
string pointed to by string instead of the console
keyboard.

Returns the number of items successfully assigned.
Remember that the arguments must be pointers to
the objects requiring assignment.

BDS C User's Guide

53. strcat(s1,s2)
char *st, *s2; .

54. int strcmp(s1,s2)
char *s1, *s2;

55. strcpy(s1,s2)
char *s1, *s2;

The Standard Library

Concatenates s2 onto the tail end of the null ter-
minated string s7. There must, of course, be
enough room at s7 to hold the combination.

Returns:
a positive value it st > s2
zero it st==s2
a negative value if s1 € s2
(ASCl collating sequence used for comparisons)

Copies the string s2 to location s1.
For example, to initialize a character array named
foo to the string "barzot", you'd say:

strcpy(foo, "barzot");
Note that the statement

foo = "barzot";
would be incorrect since an array name should
not be used as an lvalue without proper subscript-
ing. Also, the expression "barzot" has as its value
a pointer to the string "barzot”, not the string it-

- self. Thus, if the latter construction is preferred,

then foo must be declared as a pointer to charac-
ters. This approach is dangerous, though, since
the natural method to append something onto the
end of foo would be

strcat(foo, "mumble”);
overwriling the six bytes following "barzot" (wher-
ever "barzot" happens to be stored), probably with
dire results.
There are two viable solutions. You can figure out
the largest number of characters that can possibly
be assigned at foo and pad the initial assignment
with the appropriate number of blanks, such as in

foo = "barzot ", foo[6] = '\O';
or, you can declare a -character array of sulfficient
size with

char work{[200], *foo;
then have foo point to the array by saying

BDS C User's Guide

56. int strlen(string)
char *string;

57. int atoi(string)
char *string;

58. initw(array,string)
int *array;
char *string;

59. initb(array,string)
char *array, *string;

May 1981

foo = work;
and assign to foo using
strcpy(foo,"whatever _the_beep");

Returns the length of string (the number of char-
acters encountered before a zero-byte is detected.)

Converts the ASCII string to its corresponding in-
teger (or unsigned) value. Acceptable format: Any
amount of white space (spaces, tabs and new-
lines), followed by an optional minus sign, followed
by a consecutive string of decimal digits. First
non-digit terminates the scan.

Zero returned it no legal value found.

This is a kludge to allow initialization of integer ar-
rays. Array should point to the array to be initial-
ized, and string should point to an ASCH string of
integer values separated by commas. For example,
the UNIX construct of
int values[5] = {-23,0,1,34,99}
can be simulated by declaring values normally with
int values[5];
and then inserting the statement
~initw(values,"-23,0,1,34,99");
somewhere appropriate.

The character equivalent of the above. String is of
the same format as for initw, but the low order 8
bits of each value are used to assign to the con-
secutive bytes of array.

NOTE: UNIX C programs will sometimes assign
negative values to character variables, since UNIX
C character variables are signed 8 bit quantities.

—
‘ .

.

BDS C User's Guide ' . The Standard Library

With BDS C, negative values can only be meaning-
fully assigned to normal int variables.

60. int getval(strptr)
char **strptr; :
A spin-off from initw and initb: :
Given a pointer to a pointer to a string of ascii
values separated by commas, getval returns the
current value being pointed to in the string and
updates the pointer to point to the next value.
(Why, can't strptr be a simple pointer to charac-
ters?’)
When the terminating null byte is encountered, a
value of -32760 is returned. /nitw will thus not ac-
cept a value of -32760. f you need to use -that
value, you're welcome to go into STDLIB.C and
' change the terminating value to be whatever your
heart desires (you'll have to change getval and in-
itw.)

IV. FILE 1/0

There are two general categories of file 1/0 functions in the BDS C library. The
low-level (raw) funclions are used to read and write data to and from disk in even
sector-sized chunks. The buffered /0O functions allow the user to deal with data in
more manageable increments, such as one byte at a time or one text-line at a time.
The raw functions will be described first, and the buffered functions (beginning with
fopen) later.

Whenever a function takes a filéename as an argument, that filename must be ei-
ther a literal string or a pointer-to-characters that points to a legal filename (actually, a
literal string is a pointer to characters.) Legal filenames may be upper or lower case,
but there must be no white space within the string. The filename mmay contain a leading
disk designator (single character) followed by a colon to specify a particular CP/M
drive; the default is the usual currently-logged disk. If certain bizarre characters (such
as control-characters) are detected within a filename, the filename will be rejected and
an error value will be returned by the offended function. This somewhat alleviates the
problem caused by trying to open a file whose name ccntains unprintable characters,
but the mechanism still isn’t entirely foolproof. Be careful when processing filenames.

1. Because the pointer-to-characters pointing to the text string must be altered by the
getval routine; any object which is to be altered by a function must be manipulated
through a pointer to such an object. Thus, a pointer-to-characters must be manipu-
lated through a pointer-to-pointer-to-characters.

.45.

BDS C User's Guide

61. int creat(filename)
char *filename;

62. int unlink(filename)
char *filename;

63. int rename(old,new)
char *old, *new;

64. int open(filename,mode)
char *filename;

65. int close(fd)

May 1981

Creates a (null) file with the given name, lirst
deleting any existing file having that name. The
new file is automatically opened for writing, and a

" file descriptor is returned for use with read, write,

seek, tell, fabort, and close calls.
A return value of -1 indicates an error. -

Deletes the specified file from the filesystem.
Use with caution!!!

Renames the file in the obvious manner.

The file specified must not be open while being
renamed. .
This function always returns -1 for CP/M 1.4 and
earlier versions of CP/M; For 2.0 and MP/M, it
should return 0 for success and -1 only on error.

Opens the specified file for input if mode is zero;
output if mode is equal to 1, both input and out-

_put-if mode is equal to 2.

Returns a file descriptor, or -1 on error. The file
descriptor is for use with read, write, seek, tell, fa-
bort and close calls.

Closes the file specified by the file descriptor fd,
and frees up fd for use with another file. With ver-
sion 1.4, disk accesses will only take place when a
file that was opened for writing is closed; if the
tile being closed was only open for reading, then
the fd is freed up but no actual CP/M call is per-
formed to close the file.

Close does not do an automatic fflush for buffered
170 files.

Returns -1 on error.

BDS C User's Guide

66. int fabort(fd)

67. int read(fd,buf,nbl)
char *buf; =

68. int write(fd,buf,nbl)
char *buf;

The Standard Library

Note that all open files are automatically closed
upon return to the run-time package from the
main function, or when the exit function is in-
voked. To prevent an open file from being closed
(perhaps because there is a chance that garbage

.- was written into it), use the fabort tunction.

Frees up the file descriptor fd without bothering to
close the associated file. If the file was only open
for reading, this will have no effect on the file. If
the file was opened for writing, though, then any
changes made to the currently open extent since it
was last opened will be ignored, but changes
made in other extents will probably remain in
effect. Don't fabort a file open for write, unless
you're willing to lose the data written into it.

Reads nbl/ blocks (each 128 bytes in length) into
memory at buf from the file having descriptor fd.
The r/w pointer associated with that file is posi-
tioned following the just-read data; each call to
read causes data to be read sequentially from
where the last call to read or write left off. The
seek function may be used to modify the r/w
pointer.

Returns the number of blocks actually read, O for

" EOF, or -1 on error. Note that if you ask for n

blocks of data when there are only m blocks actu-
ally left in the file {(where 0 < m < n), then m
would be returned on that call, 0 on the next call
(provided seek isn't used), and then -1 on subse-
quent calls.

Writes nbl blocks from memory at buf to file fd.
Each call to write causes data to be written to disk
sequentially from the point at which the last call to
read or write left off, unless seek is used to modify
the r/w pointer. :

Returns -1 on error, or the number of records suc-
cessfully written. If the retun value is non-negative

.47

BDS C User's Guide

°69. int seek(fd,offset,code)

70. int teli(fd)

71. int fopen(filename,iobuf)
char *filename;
struct _buf *iobuf;

‘May 1981

but different from nbl/, it probably means you ran
out of disk space; this should be regarded as an
error.

Modifies the next read/write record (sector) pointer
associated with file fd.

If code is zero, then sets the r/w pointer to offset
records.

It code is equal to 1, then sets the r/w pointer to
its current value plus offset (offset may be nega-
tive.)

A return value of -1 indicates that the resulting
offset was out of range for the given file (cannot
seek past EOF). If this occurs, the internal data for
the file usually gel screwed up royally; the file
should be closed (or fabort-ed) and re-opened be-
fore any further operations on it take place. Under
CP/M, it is possible to seek without error to any
point within the currently active extent (16K byte
portion) of a file, but subsequent read or write
operations under such circumstances may cause
unpredictable results.

Seeks should not be performed on files open for
buffered 170. :

Returns the value of the r/w pointer associated
with file fd. This nurnber indicates the next sector

to be written to or read from the file, starting from

0.

Opens the specified file for buffered (one datum at
a time) input, and initializes the buffer pointed to
by iobuf. lobuf should be a BUFSIZ-byte area
reserved for use by the buflered 1/0 routines. The
value of BUFSIZ is determined by the BDS C stan-
dard 1/0 header file (BDSCIO.H), which should be
#include-ed in any program using butfered 170.
Former versions of the package uscd a fixed-
length bulfer (134 bytes, to be exact) which limited
the 170 bulfering to one sector at a time; the 1.4

-48-

BDS C User's Guide

72. int getc(iobuf)
struct _buf *iobuf;

The Standard Library

package allows the user to customize the size of
the 170 bufters by changing a # define statement
in the BDSCIO.H file. See the comments in
BDSCIO.H for more details.
The technical structure of the buffer is
struct _buf {
int _fd;
int _nleft;
char *_nextp;
char _buff[NSECTS * SECSIZ];
%
but all that really matters to the user is that it is a
BUFSIZ-byte area, declarable by
char samplebuf[BUFSIZ];
Return value is the file descriptor for the opened
file; it need not be saved after the initial test for
an error, since all needed information is automati-
cally maintained in the /0 buffer. Note that the
new fclose function, for closing buffered 1/0 files,
eliminates the need for saving the file descriptor
returned by fopen since the close function need
no longer be used.
-1 returned on error.

Returns the next byte from the buffered input file
opened via fopen having buffer at iobuf. No spe-
cial codes are recognized; control-Z comes
through as control-Z (not -1), CR and LF are ordi-
nary characters, etc.

geic(0) is equivalent to getcharl().

getc(3) reads a character from the CP/M "reader"
device.

The values 0 and 3 may be used in place of the
iobuf argument with any buffered input function, to
direct the input from the console or the reader. -1
is returned on error or on physical end-of-file.
When reading in text files with getc, both the
value Ox1a (CPMEOF) and the normal error value
(-1, or ERROR) should be checked for when test-
ing for end-of-file, since some CP/M text editors
neglect to place a Oxla byte (control-Z, CPMEOF)
at the end of a text file under certain cir-
cumstances.

-49.

BDS C User's Guide

73. ungetc(c,iobuf)
char c;
struct _buf *iobuf;

74. int getw(iobuf)
struct _buf *iobuf;

75. int fcreat(filename,iobuf)
char *filename;
struct _buf *iobuf;

76. int putc(c,iobuf)
char c;
struct _buf *iobuf:

May 1981

Pushes the character ¢ back onto the input buffer
at jobuf. The next call to getc on the same file will
then return ¢. No more than one character should
be pushed back at a time. - ...

Returns next 16 bit word from bulfered input file
having buffer at iobuf, via two consecutive calls to
getc.

-1 returned on error.

Creates a file named filename (first deleting any
existing file by the same name) and opens the file
for buffered output. Jlobuf should point to a
BUFSIZ-byte buffer.

Returns the fd for the file, or -1 on error.

Writes the byte ¢ to the buffered output file having
buffer at iobuf. lobuf should have been initialized
by a call to fcreat.

No translations are performed; text lines can be
separated by either CR-LF combinations (for com-
patibility with standard CP/M software) or by new-
line (LF) characters a la UNIX (for increased
efficiency and straightforwardness.)

putc(c,1) is equivalent to putchar(c).

putc(c,2) writes the character to the CP/M "list"
device.

putc(c,3) writes the character to the CP/M
"punch" device.

When writing out text to a file, be sure to ter-
minate the text with a control-Z (Oxta, CPMEOF)
byte.

The values 1, 2, and 3 may be used in place of
iobuf with any buffered output routines to direct

BDS C User's Guide

77. int putw(w,iobuf)
struct _buf *iobuf;

78. int fflush(iobuf)

struct _buf *iobuf;

79. int fclose(iobuf)
struct _buf *iobuf;

80. int fprintl(iobuf format,arg1,arg?,...

struct _buf *iobuf;
char *format;

The Standard Library

the output character to the console, list device, or
punch device instead of to a file.

A call to fflush should always be made before
closing the file (fclose is used to close a buffered
output file.)

Returns -1 on error.

Writes the 16 bit word w to buffered output file
having buffer at iobuf, via two consecutive calls to
putc. :

Returns -1 on error.

Flushes output buffer jobuf. l.e., it makes sure that
any characters that may currently be in the output
buffer make it into the file on disk. Fflush does not
close the file.)
Note that an automatic flush takes place whenever
the output buffer fills up; fflush need normally be
called only once right before the file is closed (via
fclose.)

Fflush is to be used only with buffered output files.
Doing an fflush on an input file is both meaning-
less and dangerous to the integrity of the file.

Closes the buffered (/0 file specified (it may have
been opened for either reading [via fopen] or writ-
ing [via fcreat]). If the file was opened for writing,
theri an fflush call should have been performed im-
mediately before the fclose call.

Like printf, except that the formatted output is writ-
ten to the buffered output file having buffer at
iobuf instead of to the console. :
Returns -1 on error.

-51-

BDS C User's Guide

May 1981

81. int fscanf(iobuf,format,arg1,arg2,...)

struct _buf *iobuf;
char *format;

82. char *fgets(str,iobuf)
char *str;
struct _buf *iobuf;

Like scanf, except that the text input is scanned
from the buffered "input at jobuf instead of from
the console. The present version of fscanf requires
that each line of data be scanned completely; any
items left on a line read from a file after all format
specifications have been satisfied will be discard-
ed. :

Returns the number of items successfully assigned,
or -1 if an error occured in reading the file.

Reads a line in from the specified buffered input
file and places it in memory at the location pointed
to by str. .

This one is a little tricky due to the CP/M conven-
tion of having both a CR and a LF at the end of
lines. In order to make text easier to deal with
from C programs, fgets automatically strips off the
CR from any CR-LF combinations that come in
from the file. Any CR characters not immediately
followed by LF are left intact. The LF is included
as part of the string, and is followed by a null byte
(Note that LF is the same as '\n'.) There is no
check on the length of the line being read in; care

. must be taken to make sure there is enough room

at str to hold the longest line imaginable (a line
must be terminated by a newline (alias LF alias
'\n’) character before it is considered complete.
Zero is returned on EOF, whether it be a physical
EOF (attempting to read past the last sector of a
file) or a control-Z (CPMEOF) character in the file.
Otherwise, a pointer to the string is returned (the
same as the passed value of str.)

-52.

BDS C User's Guide

83. int fputs(str,iobuf)
char *str;
struct _buf *iobuf;

84. int setfcb({fcbaddr,filename)
char *filename;

85. char *fcbaddr(fd)

The Standard Library

Writes the null-terminated string from memory at str
into the specified bulfered output file. Newline
characters are converted into CR-LF combinations
to keep CP/M happy. If a null (zero byte) is found
in the string before a newline, then there will be
no line terminator at all appended to the line on
output (allowing partial lines to be written.)

Initializes a CP/M file control block located at ad-
dress fcbaddr with the null-terminated name point-
ed to by filename.

The next-record and extent-number fields of the
fcb are zeroed.

If any screwy characters (the kinds not usually
desirable in the name or extension fields of a file
control block) are encountered within the filename
string, then the offending character and remainder
of the filename string will be ignored.

Returns the address of the internal, usually invisi-
ble file control block associated with the open file
having descriptor fd.

-1 is returned if fd is not the file descriptor of an
open‘ﬁle.

V. PLOTTING FUNCTIONS (FOR MEMORY-MAPPED VIDEO BOARDS)

86. setplot(base,xsize,ysize)

Defines the physical characteristics (starting - ad-
dress, dimensions) of a memory-mapped "DMA"
video board such as the Processor Technology
(R.1.P) VDM-1. Base is the starting address of the
video memory; xsize is the number of lines in the
display; ysize is the number of characters per line.
Setplot need only be called once at the start of

.53-

BDS C User's Guide

87. clrplot()

88. plot(x,y,chr)
char chr;

89. txtplot(string,x,y,ropt)
char *string;

90. line(c,x1,y1,x2,y2)

May 1981

program execution; from then on, the functions
clrplot, plot, txtplot and line will know about the
given parameters. If you are using a Processor
Tech VDM-1, setplot need not be called at all; the
parameters are automatically set up for the VDM-1
as part of the start-up sequence for every C-
generated COM file.

Clears the memory-mapped video screen (fills with
ASCII spaces.)

Places the character chr at coordinates (x,y) on
the video screen.
(x,y) is read as: x down, y across, where

0 (= x < xsize,

0 <= y (ysize.

Places an ASCI string on the screen at position
(x.y); Mf ropt is non-zero, then each byte of the
string is logical OR-ed with the value Ox80 before
being displayed. This torces the high-order bit to a
1, causing the character to appear in reverse-video
on some boards (such as the VDM-1) or do other
funny random things with other boards.

Line only works with a 64 by 16 board.

This function draws a "crooked line" (because
there is no way to make a line look straight with
64 by 16 resclution!) between the points (x1,y1)
and (x2,y2) inclusive. The line is made up of the
character c.

Notes to APPENDIX A of
The C Programming Language

(For the BDS C Compiler)

BDS C is designed to be a subset of UNIX C. Therefore, most parts of the C
Reference Manual apply to BDS C directly; the purpose of these notes is to docu-
ment the other parts.

After presenting a general summary of differences between the two implementa.
tions, I'll go into detail by referring to appropriate section numbers from the book and
describing how BDS C differs from what is stated there. Any sections that are appropri-
ate as they stand (with regard to BDS C) will be ignored.

Here is a summary of the most significant ways in which BDS C differs from UNIX

C:
1)
2)

3)
4)

5)

6)

7)

8)

9)

The variable types short int, long int, float and double are not supported
There are no explicitly declarable storage classes. Static and register vari-
ables do not exist; all variables are either external or automatic, depending
on the context in which they are declared.

The complexity of declarations is restricted by certain rules.

No initializers are allowed.

String space storage allocation must be handied explicitly (there is no au-
tomatic allocation/garbage collection mechanism).

Compilation is accomplished directly into 8080 machine code, with no inter-
mediate assembly language file produced.

Only a hit of intelligent code optimization is performed.

The entire source file is loaded into main memory at once, as opposed to
being passed through a window. This limits the maximum length of a single
source function to the size of available memory.

BDS C is written in 8080 assembler language, not in C itself. If BDS C were
written in itsclf, the compiler would be five times as long and run incredibly
slower. Remember that we're dealing with 8080 code here, not PDP-11 code
as in the original UNIX implementation.

.55.

BDS C User's Guide March 1981

The following is a section-by-section annotation to the C Reference Manuat.’ For
the sake of brevity. some of the items mentioned above will not be pointed out again;
any references to floats, longs, statics, initializations, etc., found in the book should
be ignored.

1. introduction

BDS C is resident on Intel 8080 based microcomputer systems equipped with the
CP/M operating system, and generates £080 binary machine code (in a special relocat-
able format) directly from given C source programs. As might be expected, BDS C will
also run on any machine that is upward compatible from the 8080, such as the Zilog
Z-80 or intel 8085.

2.1 Comments
Comments nest by default; to make BDS C process comments the way Unix C
does, the -c option must be given to CC1 during compilation.
2.2 Identifiers (names)
Upper and lower case letters are distinc& (different) for variable, structure, union
and array names, but not for function names.“ Thus, function names should always be
written in a single case (either upper or lower, but not mixed) to avoid confusion. For
example, the statement
char foo,Foo,FoO;

declares three character variables with different names, but the two expressions
printf("This is a test\n");

and

prINTH("This is a test\n");

are equivalent.

2.3 Keywords
BDS C keywords:

int else
char for

1. Appendix A of The C Programming Language.
2. Function names are stored internally as upper-case-only.

-56-

BDS C User’'s Guide Notes to APPENDIX A

struct do
union while
unsigned switch
goto case
return default
break sizeof
continue begin
if end
register

Identifiers with the same name as a keyword are not allowed (although keywords
may be imbedded within identifiers, e.g. charflag.)

On terminals not supporting the left and right curly-brace characters { and }, the
keywords begin and end may be used instead. Note that you cannot have any
identifiers in your programs named either "begin" or “"end".

4. What’s in a name?

There are only two storage classes, external and automatic, but they are not ex-
plicitly declarable. The context in which an identifier is declared always provides
sufficient information to determine whether the identifier is external or automatic: de-
clarations that appear outside the definition of any function are implicitly external, and
all declarations of variables within a function definition are automatic.

Automatic variables have a lexical scope that extends from their point of declara-
tion until the end of the current funclion definition. A single identifier may not normal-
ly appear in a declaration list more than once in any given function, which means: a
local structure member or tag may not be given the same name as a local variable, and
vice versa. See subsection 11.1 for a special case.

In BDS C, there is no concept of blocks within a function. Although a local vari-
. able may be declared at the start of a compound statement, it may not have the csame
name as a previously declared local automatic variable. In addition, its lexical scope
extends past the end of the compound statement and all the way to the end of the
function. . '

I strongly suggest that all automatic variable declarations be confined to the begin-
ning of function definitions, and that the practice of declaring variables at the head of
compound statements be avoided. Sooner or later, future releases of BDS C will have
a declaration mechanism identical to- UNIX C.

If several files share a common set of external variables, then all external variable
declarations must be identically ordered within each of the files involved.” The external
variable mechanism in BDS C is handled much like the unnamed COMMON facility of
FORTRAN. So, if your main source file declares the external variables a,b,c,d and e,
in that order, while another file uses only a, b and c, then the second file need not
declare d and e. On the other hand, if the second.file used d and e but not a, b or

1. The recommenced procedure for a case such as this is to prepare a single file (us-
ing your text editor) containing all common external variable declarations. The file
should have extension .H (for "header”), and be specified at the start of each
source file via use of the " #include" preprocessor directive.

-57-

BDS C User's Guide March 1981

¢, then all of the variables must be declared so that d and e (from the second file) do
not clash with a and b (from the first) and cause big trouble. As an added inconveni-
ence, all external variables used in a program (set of dependent source files) must be
declared within the source file containing the main function, regardless of whether or
not that source file uses them all.

As long as all common external declarations are kept in a single "H" file, and
#include is used within each source file of a program to read in the ".H" file, there
shouldn’t be any trouble. Well, relatively little anyway.

6.1 Characters and integers

Sign extension is never performed by BDS C.

Characters are interpreted as 8-bit unsigned quantities in the range 0-2585.

A CHAR VARIABLE CAN NEVER HAVE A NEGATIVE VALUE IN BDS C. Be
careful when, for example, you test the return value of functions such as getc, which
return -1 on error but "characters” normally. Actually, the return value is an int al-
ways, with the high byte guaranteed to be zero when there's no error. If you assign the
return value of, say, getc to a character variable, then a -1 will turn into 255 as stored
in the 8-bit character cell, and testing a character for equality with -1 will never return
true. Watch it.

Most arithmetic on characters is accomplished by converting the character to a
16-bit quantity and zeroing the high-order byte. In some non-arithmetic operations,
such assignment expressions, BDS C will optimize by ignoring the high order byte
when dealing with character values. To take advantage of this, declare any variables
you trust to remain within the 0-255 range as char variables.

7. Expressions

Division-by-zero and mod-by-zero both result in a value of zero.

7.2 Unary Operators
The operators

(type-name) expression
sizeof (type-name)

are not implemented. The sizeof operator may be used in the form
sizeof expression
provided that expression is not an array. To take the sizeof an array, the array must

be placed all by itself into a structure, allowing the sizeof the structure to then be
taken.

-58.

BDS C User's Guide ' Notes to APPENDIX A

7.5 Shift operators

The operation >> is always logical (0-fill).

7.11, 7.12 Logical AND and OR operators

These two operators have equal precedence in BDS C, making parenthesization
necessary in certain cases where it wouldn't be necessary otherwise. The only excuse
I can offer to compiler hackers is this: BDS C does not create a syntax tree in parsing
arithmetic expressions.
8. Declarations

Declarations have the form:

declaration:
type-specifier declaration-list ;

There are no "storage class" specifiers.

8.1 Storage class specifiers

Not implemented.

8.2 Type specifiers
The type-specifiers are

type-specifier:
char
int
unsigned
regisler
struct-or-union-specifier

The type register will be assumed synonymous with int, unless it is used as a
modifier (e.g. register unsigned foo;), in which case it will be ignored completely.
There are no other "adjectives" allowed:
unsigned int foo;

must be written as

unsigned foo;

BDS C User's Guide | | March 1981

8.3 Declarators
Initializers are not allowed. Thus,

declarator-list:
declarator
declarator , declarator-list

8.4 Meaning of declarators

UNIX C allows arbitrarily complex typing combinations, making possible declara-
tions such as '

struct foo *(*(‘bar[S][S]B]) 0)0;

which declares bar to be a 3x3x3 array of pointers to functions returning pointers to
functions returning pointers to structures of type foo.

Alas, BDS C wouldn't allow that particular declaration.

Here is what BDS C will allow:

First, let a simple-type be defined by

simple-type:
char
int
unsigned
struct
union

-and a scalar-type by

scalar-type:
simple-type
pointer-to-scalar-type
pointer-to-function

A special ‘kind of scalar type is a pointer-to-function. This is a variable which
may have the address of a function assigned to it, and then be used (with the proper
syntax) to call the function. Because of the way BDS C handles these critters internally,
pointers to pointer-to-function variables will not work correctly, although pointers to
functions returning any scalar type (except struct, union, and pointer-to-function) are
OK.

So far, scalar-types cover declarations such as

int x,y;
char *x;

-60-

BDS C User's Guide ' Notes to APPENDIX A

unsigned *fraz;

char **argv;

struct foobar *zot, bar;
int *(*ihtfp));

(The last of the above examples declares ihtfp
to be a pointer to a function which returns
a pointer to integer.)

Building on the scalar-type idea, we define an array to be a one or two dimen-
sional collection of scalar-typed objects (including pointer-to-function variables). Now
we can have constructs such as

char *x[5]{10];

int **foo[10];

struct zot bar[20][8];

union mumble *bebop[747];

int (*foobar[10]) ();

(The last of the above examples declares foobar
to be an array made up of ten pointers to
functions returning integers.)

Next, we allow functions to return any scalar type except pointer-to-function,
struct or union (but not excluding pointers to structures and unions.)

Some more examples:
char *bar();
declares bar to be a function returning a pointer to character;
| char *(*bar)();
declares bar to be a pointer to a function returning a pointer to characters;
char *(*bar[3][2]) O);

declares bar to be a 3 by 2 array of individual pointers to functions returning pointers
to characters;

struct foo zdt();

attempts to declare zot to be a function returning a structure of type foo. Since func-
tions cannot return structures, this would cause unpredictable results.

struct foo *zot();

is OK. Now zot is declared as returning a pointer to a structure of type foo.

-61-

BDS C User's Guide ' March 1981

Lastly, it must be mentioned that explicit pointers-to-arrays are not allowed. In oth-
er words, a declaration such as

char (*foo) [5];

would not succeed in declaring foo to be a pointer to an array. Due to the relative
simple-mindedness of the BDS C compiler (and its programmer), the preceding declara-
tion is the same in meaning as

char *foo[5];

On the brighter side, any formal parameter declared to be an array is internally
handled as a "pointer-to-array,” causing an automatic indirection to be performed
whenever the appropriate identifier is used in an expression. This makes passing ar-
rays to tunctions as easy as pi. For an extensive example of this mechanism, check out
the Othello program included with some versions the BDS C package.

8.5 Structure and union declarations

"Bit fields" are not implemented. Thus we have

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier)

struct-or-union:
struct
union

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier declarator-list;

declarator-list:
declarator
declarator, declarator-list

Names of members and tags in structure definitions cannot be the same as any
regular local variable names. The only time more than one structure or union per func-
tion can use a given identifier as a member is when all instances have the identical
type and offset; sce subsection 11.1.

BDS C User's Guide Notes to APPENDIX A

8.6 Initializers

Sorry; no initializers allowed.
External variables are not automatically initialized to zero.

8.7, 8.8 Type names

Not applicable to BDS C.

9.2 Biocks

There are no "blocks" in BDS C. Variables cannot be declared as local to a block;
declarations appearing anywhere in a function remain in effect until the end of the
function.

9.6 For statement

Here the book is slightly confusing.

The for statement is not completely equivalent to the while statement as illustrat-
ed, for this reason: should a continue statement be encountered while performing: the
statement portion of the for loop, control would pass to expression-3. In the while ver-
sion, though, a continue would cause control to pass to the test portion of the loop
directly, never executing expression-3 during that particular iteration. The representa-
tion given in section 9.9 is correct since the increment is implied (to occur at contin:)
rather than written explicitly.

This is merely a documentation bug in the book; both the UNIX C compiler (as far
as | can tell) and the BDS C compiler handle the for case correctly.

9.7 Switch statement

There may be no more than 200 case statements per switch construct.
Note that multiple cases each count as one, so the statement

case 'a’: case 'b’: case 'c": printl("a or b cr c\n");

counts for three cases.

9.12 Labeled statement

A label directly following a case or default is not allowed. The label should be
written first, and then the case or default. For example,

case 'X': foobar: Sat_Nite_Live = Funny;
is incorrect, and should be changed to
foobar: case 'x’: Sat_Nite_Live = Funny;

-63-

BDS C User's Guide March 1981

10. External definitions

Type specifiers must be given explicitly in all cases except function definitions
- (where the default is int.)

11.1 Lexical scope

Members and tags within structures and unions should not be given names that
are identical to other types of declared identifiers. BDS C does not allow any single
identifier to be used for more than one thing at a time, except when a local identifier
causes a similarly named external identifier to disappear temporarily. This means that
you cannot write declarations such as:

struct foo { /* define struct of type "foo" */

int a;
char b;
} foo[10]; /* define array named "foo" made up

of structures of type "foo" */

which are basically confusing and shouldn't be used anyway, even if UNIX C does al-
low them.

The one exception to this rule involves structure elements. The compiler will
tolerate the same identifier being used as a member within the definition of different
structures, as long as 1) the type and 2) the storage offset from the base of the struc-
ture are identical for both of the instances. The following. sequence, for example, uses
the identifier "cptr” in a legal manner:

struct foo {

int a;

char b;

char *cptr; /* type: char *, offset: 3 */
'}

struct bar {

unsigned aa;

char xyz;

char *cptr,; /* type: char *, offset: 3 */
Y

11.2 Scope of externals

There is no extern keyword; all external variables must be declared in exactly the
same order within each file that uses any subset of them. Also, all external variables
used in a program must be declared within the source file that contains the main func-
tion.

Here is how externals are normally handled: location 0015h of the run-time pack-
age (usually 0115h or 4315h at run-time) contains a pointer to the base of the external
variable area: all external variables are accessed by indexing oft that two byte value.

1. The -e xxxx option to CC1 may be used to locate the external variable area at ab-

-64-

B8DS C User's Guide Notes to APPENDIX A

The amount of space allocated for external variables is equal to the space needed by
all external variables defined in the main source file. Because no information is record-
ed within CRL files about external storage or external names (other than the total
number of bytes invoived and, optionally, the explicit starting address of the externals),
it is up to the user to make sure that each source file contains an identical list of
external declarations; the names don't necessarily have to be identical for each
corresponding external variable in separate files (although naming them differently is
just asking_for trouble), but the types and storage requirements should certainly
correspond.

It would not be far off the mark to consider BDS C external variables as just one
big FORTRAN-like COMMON block.

12.1 Token replacement
Only the simple text-substitution command

define identifier token-string

is implemented. Parameterized # defines are not supported.

12.2 File Inclusion

Either quotes or angle brackets may be used to delimit the filename; both have
exactly the same effect.

Although file inclusion may be nested to any reasonable depth, error reporting
does not recognize more than one level of nesting. Try experimenting with the "-p" op-
tion of CC1, varying the level of inclusion nesting, to see exactly what happens.

12.4 Line Control

Not supported.

solute location xxxx, theréby considerably speeding up and shortening the code
produced by the compiler. Even so, all the declaration constraints must still be ob-
served.

1. Reminder: if you use the library functions alloc and free, you must include the
header flile "bdscio.h" with ALILOC_ON defined, and make sure that STDLIB1.C was
also compiled with ALLOC_ON enabled; there are several external data objects re-
quired by alloc
and free declared within bdscio.h, and omission of these declarations within any
source file having external variables would cause an undesirable data overlap.

-65-

BDS C User's Guide March 1981

15. Constant expressions

BDS C will simplify constant expressions at compile-time only when the constant
expressions occur in one of the following places: following left square brackets, fol-
lowing the case keyword, following assignment operators, following left parentheses,
and following the return keyword. Any constant expression not falling into one of
those categories is guaranteed to not be simplified at compile-time.

The standard procedure for insuring the compile-time evaluation of constant ex-
pressions when such expressions fall inside larger expressions involving variables is to
enclose the constant expressions in parentheses. Thus, statements such as

X =X+ Yy + 15*10;

will not be simplified, and in general will generate more (and slower) code than the
better form:

X =X + Yy + (15*10);

18.1 Expressions
The unary operators are:

* & - ! ~ +4+ -- sizeof

The binary operators && and || have equal precedence.
sizeof cannot correctly evaluate the size of an array.

18.2 Declarations
The completé syntax for declarations is

declaration: .
type-specifier declarator-list ;

type-specifier:
char
int
unsigned
struct-or-union-specifier

declarator-list:
declarator
declarator , declarator-list

declarator:
identifier
(declarator)
* declarator

BDS C User's Guide Notes to APPENDIX A

declarator ()
declarator [constant expression]

struct-or-union-specifier:
struct { declarator-list }
struct identifier { declarator-list }
struct identifier
union { declarator-list }
union identifier { declarator-list }
union identifier

18.4 External definitions

data-definition:
type-specifier declarator-list ;

- 18.5 Preprocessor
The preprocessor directives

define identifier token-string
include "filename”

ifdef identifier

#ifndet identifier

#else

endif

undef identifier

are all now supported, but with some restrictions:

The '#' character must be in the first column of the line, and there may be no space
between the ‘#'and the rest of the preprocessor directive name.

There is no nesting of condilional compilation directives allowed. l.e., after either an
#ifdef or #ifndef is encountered, there must occur either an # endif or an #else
before another #ifdef or #ifndef. Breaking this rule may not bomb the compiler, but
it isn't too likely to yield the desired result, either.

Defines may appear anywhere in the source file, their scope extending until the
end of the file or until the identifier is re- # defined. Parameterized # defines are not
supported.

File inclusion may nest to any depth (although mutually inclusive files may just
manage to bomb CC1), but both the us "-p" option with CC1 and error reporting for

BDS C User's Guide March 1981

CC1 and CC2 become easier to deal with if you limit yourself to non-nested inclusion.

The Mistakes Most Commonly Made By Beginning C Programmers

There are several aspects of the C language that tend to cause a great deal of
brow-beating when tackled for the first time. In this section | will try to summarize
those sensitive "features" of C that are constantly being brought to my attention by
confused users in their phone calls and letters.

1)

2)

How NOT to use a pointer: When a pointer variable is declared in a program,
either externally or within a function, it is NOT given a value automatically.
A pointer is simply a 16-bit variable that is typically used hold the address of
some other piece of data (to point to it), and must be initialized before being
used, just like any variable. The particular mistake | see most often involves
assigning a value indirectly through an uninitialized pointer; i.e, the declara-
tion

char *foo;
would be later followed by a statement such as
*foo = 'a’;

before foo is ever initialized, and unpredictable things would begin to hap-
pen. What the assignment statement above says is "place the character 'a’
into memory at the location pointed to by the variable foo. |If foo has never
been initialized to anything, then the ’a’ byte would be placed at some totally
random location in memory. The correct procedure here would have been to
declare a buffer area, assign the address of that area to foo, and then use
foo in the manner above. Such a sequence would appear as:

char buffer[50], *foo;
foo = &bufter;

*foo = 'a’;
where the character 'a’ is placed into the first byte at buffer.

Functions must not return pointers to their own local data! As soon as a
function returns to its caller, storage that was local to that function is deallo-
cated and made available to the next called function. A common mistake is
to have some function (cali it foo) create a piece of text in a local buffer
and return a pointer to that text.. Immediately upon return from foo, the
string appears intact, but later on in the course of the program (as the space
in which the string resides is allocated for other functions’ local data
frames), the string turns into garbage. There are two viable solutions to this
kind of problem: either have foo take a parameter telling it where to put the
string result (in which case the caller must provide a working buffer for foo)
or make the deslination string area external. Each method has advantages
over the other; passing a destination area on each call allows many such re-

BDS C User's Guide Notes to APPENDIX A

.3)

turned strings to be saved separately in different areas of memory, while an
externa!l destination area shortens the calling sequence by requiring one less
parameter to be passed. But whatever you do, do NOT expect any data that
was local to a called function to remain valid after that function has re-
turned!!

What is a "formal parameter”, anyway? A formal parameter is one of the ar-
guments (if any) that a function expects to have passed to it whenever
called. All formal parameters are specified at the beginning of a function’s
definition as a parenthesized list immediately following the function name.
The declarations of a function’s formal parameters must be made immediately
after the parenthesized list, before the first open-squiggly brace that marks
the beginning of the function body. Formal parameters which are not de-
clared are assumed to be simple int values; should a formal parameter ac-
cidentally be declared within the actual function body, the compiler would
correctly give a "redeclaration” error, since once the formal declarations are
passed and the compiler begins processing the function body without having
seen a declaration for a formal parameter, then that formal parameter will
have heen automatically declared an int.

Whenever a function call is made, copies of the values of any formal
parameters are passed to the function. All such values are 16 bits in length
(at least with BDS C v1.4). This means that structures, arrays, unions, and
any data type not inherently 16 bits in size cannot be copied and passed to
a function; pointers to such data types, though, can. There is a special
magic mechanism for passing pointers to arrays that can be confusing, be-
cause it is not intuitively obvious from the declaration syntax that a pointer is
actually being passed; for example, a function beginning with the sequence

int arraysum(array)
int array[100];

}

may appear to take an array of 100 elements as a formal parameter. Actually,
only a pointer to that array is passed, but the usage is the same as if it were
an actual array. The big difference, though, is that if you change any ele-
ment in the array here, you'll be changing that element for the calling pro-
gram also, while changing a simple non-array formal parameter would not
alter the original value from which the parameter was copied (back in the
calling program.) Another tricky point about formal array parameters is that
you can actually treat the array name as a simple pointer variable within the
called function (i.e., assign to it the address of another array and wholla! it
then becomes the base of that other array...) while such things would not
work (and indeed, cause unpredictable results) when the array is an actual
(non-formal-paramecter) array. The Kernighan & Ritchie book contains an en-
tire chapter on the duality of pointers and arrays; in this mechanism lie the

BDS C User's Guide March 1981

high points and the more confusing points of C.

Miscellaneous Notes

1)

2)

3)

3)

4)

The "=" operator is used for assignment only. The relational operator - ‘is

equal to’ is represented by "= =". Be careful not to confuse them.

The keywords begin and end may be substituted for left and right curly-
braces ({ and }). This feature is provided so that users not having the {
and } characters on their terminals. can still use the compiler. Aesthetically,
in my opinion anyway, the braces make for much more readable code than
begin and end do, and should be used whenever possible.

Error recovery is not especially intelligent in some cases. If either CC1 or
CC2 spews out a set of error messages clustered around the same line or
set of lines, then only the first error message in the cluster should be be-
lieved. Chances are that after that error is fixed, the rest will go away.

Also, the line number given by CC2 in error reports is not always
guaranteed to be accurate. CC1 does some rearranging of code once in a
while; for instance, the increment portion of a for statement is physically
moved down past the statement portion. Thus, if there is an error in the in-
crement portion that CC1 is not equipped to detect, then CC2 will detect
it...and report the line number erroneously. Try not to mess up the increment
portion of for statements.

Certain types of errors will cause the compiler to cease execution and
immediately return to CP/M without scanning the rest of the source. This oc-
curs when, for example, mismatched parentheses or a missing semicolon
manage to confuse the compiler to the point where it cannot recover. So, in-
stead of guessing about where the proper punctuation should be, it aborts to
let you fix the error quickly and try again.

The “"argc and argv" mechanism for passing command line arguments to a C
main program is implemented identically to its UNIX model, except for one
thing: CP/M, since it never preserves the name of the .COM file executed,
makes it tough to get argv|0} pointing to the command name itself. Thus,
argv[0] will contain garbage. Don't use it for anything.

Note that argc is, by convention, always positive, and equal to the
number of arguments specified plus one. Arguments on the command line
are'treated as strings in all cases, not as values. If you need to specily string
arguments containing imbedded spaces, then double quotes (e.g. "string
containing spaces") may be used to delimit such arguments.

All alphabetic characters on the command line are converted to upper
case by CP/M. Thus, when scanning command options, be sure to check for
upper case (or use the tolower function.)

Although initializations are not supported, a couple of convenience functions
have been provided to allow initialization of integer and character arrays.

To set any contiguous set of words to integer values, use the function
initw. For characters (single-byte integers in the range 0-255), use initb.

-70-

BDS C User's Guide ‘ - Notes to APPENDIX A

5)

Both of these are documented in the previous section.
For example, to simulate the UNIX C construct of

int foobar[10] = {3,0,-2,-5,3,6,9,-23,-14,0};
you can first declare foobar normally by saying
int foobar{10]};
and then, in the main function, insert the statement
initw(foobar,"3,0,-2,-5,3,6,9,-23,-14,0");

When using the function getchar under CP/M, the input character is au-
tomatically echoed to the console output as it is typed. About the only port-
able way to suppress this echo is to use the bios library function to read the
console; note that this causes carriage returns to actually be returned as
carriage returns instead of being converted to newlines a la getchar.

Also, the getchar, putchar and ungetch functions may only be used for
console input and output. On UNIX, these routines are generalized since the
operating system allows a user to specify that the main input to a program
come from, say, a file instead of the console. This is known on UNIX as
directed I/0. A common technique used in the book’s sample programs is to
scan through an input file by using getchar; this only works as long as the
input to the program can be directed from a file. Since CP/M does not sup-
port this mechanism, all such sample programs should be rewritten using the
BDS C buftered 170 functions (fopen, getc, etc.) instead of getchar and
putchar.

The important point here is that UNIX achieves a high level of generality
by assigning the standard input and standard output streams independently
of their physical characteristics. A simple file copy program named foo writ-
ten with getchar and putchar would simply echo the console input to the
console output if invoked by typing o

foo

but the same program would copy the file bar into the file zot if invoked
with

foo <bar >zot.

To approach that level of generality with BDS C under CP/M, it should
be noted that the buffered 170 functions can used for both file 1/0, console
170, and (for version 1.4) list device and reader device 1/0. It still might
take a little bit of extra coding effort to decide whether a user wants file 170
or console 170, but the meaty parts of the 1/0 transfers can usually be cod-
ed in a general manner. Many users have asked why | haven't bothered to
implement directed 1/0 in the run-time package, like Whitesmiths does. The
reason is simple: CP/M is not UNIX. Under UNIX, the redirection is a function
of the operating system, not the C coinpiler. I'd rather get C running on new
operaling systems that do support redirection (such as Ed Ziemba's MARC

71-

BDS C User's Guide S March 1981

5a)

6)

7

8)

DOS) than try to make up for CP/M's lack of versatility with warts-on-warts.1

One more note on this subject: getchar, upon receiving a carriage return
from the console, automatically echoes a linefeed (in addition to the au-
tomatic echo of the CR) and returns a newline character. Getc, on the other
hand, when used for-inputting characters from a text file, does not change
CR-LF combinations into newlines. If you'd like this to- happen, write your-
self a little routine (say, getc2) that calls getc and filters out CR-LFs by issu-
ing a dummy call to getc following each CR encountered and returning a
newline in such cases. Once this is done, the process of writing programs
that are generalized to both console and file 170 should be as painless as
possible under CP/M.

When scanning through an input text file (using, say, getc), the logical-EOF
character is a control-Z (Ox1a). A return value of -1 from the fileread func-
tions (read, getc, etc.) indicates a physical EOF (always on a block boun-
dary) and will probably not coincide with the logical EOF (where the control-
Z is) Thus the correct algorithm for detecting the end of a text file must
check for both of these possible values, and interpret the first one encoun-
tered as the EOF. Note that if you are assigning the return value of a func-
tion such as getc to a character variable, the the -1 physical-EOF condition
value magically turns into 255 after assignment.

When writing output text files, be sure to terminate them with a control-
Z in an attempt to maintain some kind of consistency; though that seems to
be more than certain operating system developers have seen fit to do.

Unbuffered file 1/0 (using open, read and write) is done in terms of blocks,
not bytes. If you wish to deal with single bytes at a time, it is necessary to
use the buffered file 170 functions which, unfortunately, are slower (but not
that much slower with the new user-configurable buffer size.)

On another speed note, I've found that the CP/M User's Group pro-
grams FAST.COM and SPEED.COM, written by Bob Van Valzah for 1.4
CP/M systems, do absolute wonders for the compilation time of all programs
and the execution speed of file-I/O-bound programs. On my system, the
average speed of everything has increased around three-ftold under SPEED.
if you've got a system that can. handle these programs, but aren't taking ad-
vantage of them, you're really missing something.

In a high school environment, a couple of microcomputer systems running
BDS C combined with copies of the book The C Programming Language for
every student would provide an excellent setting for an introductory course
in computer science. Teachers, take note!

The following tidbits should be kept in mind when striving for optimum
efficiency in compiled programs:

1.

By the way, just for the record, | DO like CP/M... after all, I've been hacking on it
long enough to get this compiler to a respectable state. But the time has definitely
arrived for a new generation of operating sysiems, with UNIX as the trendsetter for
the time being. Onward to MARC...

-72-

BDS C User's Guide Notes to APPENDIX A

1. Comments are stripped off a source file dynamically as the file is be-
ing read in from disk; thus, there is no excuse (except maybe lazi-
ness) for not documenting a program adequately.

2. The switch statement is most efficient when the switch variable (e.g.

© xx in "switch(xx)...") is declared as a char. Of course, if values
outside the character range (0-255) are expected then this informa-
tion is not very useful.

3. The cases in a switch statement are tested in the order of their ap-
pearance; thus, the most common cases (or the ones requiring fastest
response time) should appear first.

4. For the fastest execution speed poséible. CC1 should be given the -o
and -e xxxx options for compilation. For the shortest possible code
length, only the -e xxxx option should be used with CC1.

5. Logical expressions in C evaluate to a numerical value of O (if false)
or 1 (if true) whenever their value is actually needed, but may not
evaluate to any value at all when used in flow-of-control tests. This
means that you can take advantage of the numerical results of logical
expressions in many situations. Consider the following code fragment,
whose purpose is to set the variable x to 1 if a<b, orto 0 if a >= b:

f(a<b)x = 1;
else x = 0;

The same operation can be written as
= (a <b)

- This -takes advantage of how the subexpression "(a < b)". evaluates to
the desired value automatically, and thus avoids the use of two
separate assignment expressions, their associated control structure,
and the considerable overhead that all entails.

A related opportunity for brevity comes up whenever any variable
needs to be tested for equality or inequality with zero; since any ex-
pression may be considered logically "true" if it evaluates to a non-
zero value, the "!'= 0" portion of an expression such as "al= 0" is
practically redundant. Statements such as

‘if (al= 0) printf ("A is non-zero\n");
or if (a == 0) printf ("A is zero\n");

may just as well be written as

if (a) printf ("A is non-zero\n");
and if (!a) printf ("A is zero\n");

BDS C User's Guide ' March 1981

9)

10.

Of course, such an abbreviation may not always be appropriate to a
given situation. 1f the variable in question is used as a counter of
some sort, and is expected to take on many different values, then
saying "a !'= 0" might be clearer in the logic of the program. But in
cases where the variable is used as a Boolean flag, or where a value
of zero is considered special in some sense, then the shorter forms
are clearer and may in fact lead to shorter object code in certain
cases.

Please report any bugs to:

Leor Zolman

33 Lothrop st. ,

Brighton, Massachussetts, 02135

(617) 782-0836 (evenings before 1:00 AM EST)

Please don’'t hassle Lifeboat with technical bug reports; they're the pub-
lishers, not the authors. By reporting any bugs you may encounter directly to
me, you'll vastly improve the chances of having a fix for the problem in a
short amount of time.

If you have any questions about the package, feel free to bug me about
it (so to spzak.}) This gives me some idea of exactly what in the package is
confusing and in need of more detailed documentation. At the time of this
writing, there are approximately 1200 (legitimate) copies of BDS C out in the
field, and | haven't yet been overplagued with phone calls. In fact, a vast
majority of user feedback has proven very constructive. There is always the
possibility, however, that sales will skyrocket and cause my phone call
volume to rise to' unmanageable proportions...thus | ask that questions about
the compiler be mailed to the above address, if possible, instead of phoned
in. If you think you've spotted a bug, though, please call, as | like to find out
about bugs as soon as possible.

| gratefully thank the following individuals for their invaluable feedback and
support during the debugging phase of this compiler’s development:

Lauren Weinstein : Sid Maxwell1
Leo Kenen Bob Mathias
Rick Clemenzi Bob Radcliffe

- Tom Bell The Real Cat
Jon Sieber Al Mok
Scott Layson Phillip Apley
Tony Gold _ Charles F. Douds
Ed Ziemba Robert Ward
Scott Guthery L.es Hancock
Earl T. Cohen Ted Nelson
Sam Lipson Ward Christensen
Dan MacLean Jerry Pournelle

1.

Extra thanx to Sid for, among other things, running off all my hard copy when |
couldn't afford a working printer.

BDS C User's Guide Notes to APPENDIX A

11)

Mike Bentley Will Colley

Carlos Christensen Richard Greenlaw

Perry Hutchinson Tim Pugh

Paul Gans , Steve Ward

John Nall Tom Gibson

Mark Miller Roger Gregory

Jason Linhart Don Lucas

Calvin Teague Rev. Stephen L. de Plater
Bob Shapiro Nigel Harrison

Cal Thixton

Special thanks to Dennis M. Ritchie, Ken Thompson and the entire staff of
the Computing Science Research Center at Bell Laboratories for developing
UNIX and the original C. Good work.

The BDS C User’'s Group has been organized; For information on how to get
inexpensive updates of the compiler, receive a User's Group newsletter, or
get access to contributed programs, contact:

BDS C User's Group

Robert Ward, Coordinator
Dedicated Micro Systems, Inc.
409 E. Kansas

Yates Center, Kansas 66783
(316) 625-3554

Due to the large volume of assembly sources included with the 1.4 package,
many of the sample C programs included with prior versions have been '’
squeezed out of the distribution package. The BDS C User's Group will have
all these programs, as should the CP/M User's Group eventually. | recom-
mend that one of these groups be contacted and the sample programs ob-
tained, especially if you are a novice C programmer; the language tends to
be painful to pick up without lots of examples.

.75-

The CASM.C Assembly-language-to—-CRL-Format Preprocessor
For BDS C vl1.46
March 3, 1982

Leor Zolman
BD Software
33 Lothrop st.
Brighton, Massachussetts 02135

he files making up the CASM package are as follows:

ASM.C Source file for CASM program
'‘ASM. SUB Submit file for performing entire conversion of CSM file to CRL
ASM.DOC This file

.1so needed:

.SM.OM (or MAC.QOM)
DT.COM (or SID.COM)

iescription:

The only means previously provided to BDS C users for creating relocatable object
odules (CRL files) from assembly language programs was a painfully complex macro
rackage (CMAC.LIB) that only operated in conjunction with Digital Research’s macro
.ssembler (MAC.COM). This was especially bad because MAC, if not already owned, cost
lmost as much as BDS C to purchase. This document describes the program '"CASM",
upplied to eliminate the need for "MAC". CASM is a preprocessor that takes, as input,
n assembly language source file of type ".CSM" (mnemonic for C aSseMbly language) in
. format much closer to "vanilla" assembly language than the bizarre craziness of
MAC.LIB, and writes out an ".ASM" file which may then be assembled by the standard,
biquitous CP/M assembler (ASM.COM). CASM automatically recognizes which assembly
anguage instructions require relocation parameters and inserts the appropriate
iseudo—operations and extra opcodes into the resulting ".ASM" file so that the file
croperly assembles directly into CRL format. In addition, some rudimentary logic
hecks are performed: doubly-defined and/or undefined labels are detected and
‘eported, and similarly-named labels in different functions are ALLOWED and converted
nto unique names so ASM won’t complain.

The pseudo—operations that CASM recognizes as special control commands within a
CSM file are as follows:

'UNCTION <name> Each function must begin with "function" pseudo-op, where
<name> is the name that will be used for the function in the
.CRL file directory. No other information should appear on
this line. Note that there is no need to specify a directory
of included functions at the start of a .CSM file, as was the
case with the old CMAC.LIB method of CRL file generation.

DS CASM Utility, 3/82

EXTERNAL <list>

ENDFUNC
(or) ENDFUNCTION

[NCLUDE <filename>

(or) INCLUDE "filename"

If a function calls other C or assembly-coded functions, an
"external" pseudo-op naming these other functions must follow
immediately after the "function" op. One or more names may
appear in the list, and the list may be spread over as many
"external" lines as necessary. Note that for the current
version of BDS C, only function names may appear in
"external" 1lines; data names (e.g. for external variables
defined in C programs) cannot be placed in '"external
statements.

This op (both forms are equivalent) must appear after the end
of the code for a particular function. The name of the
function need not be given as an operand. The three
pseudo-ops just listed are the ONLY pseudo-ops that need to
appear among the assembly language instructions of a ".CSM"
file, and at no time do the assembly instruction themselves
need to be altered for relocation, as was the case with
CMAC.LIB.

This op causes the named file to be inserted at the current
line of the output file. If the filename is eunclosed in angle
brackets (i.e., <filename>) then a default CP/M logical drive
is presumed to contain the named file (the specific default
for your system may be custimzed by changing the appropriate
define in CASM.C). If the name is enclosed in quotes, than
the current drive is searched. Note that you’ll usually want
to include the file BDS.LIB at the start of your .CSM file,
so that names of routines in the run-time package are
recognized by CASM and not interpreted as undefined local
forward references, which would cause CASM to generate
relocation parameters for those instructions having run—-time
package routine names as operands. Note that the pseudo-op
MACLIB is equivalent to INCLUDE and may be used instead.

’he format for a ".CSM" file is as foilows:

INCLUDE

FUNCTION
[EXTERNAL

bds.1lib

functionl
needed funcl [,needed func2] [,...]]‘

code for functionl

ENDFUNC

FUNCTION
[EXTERNAL

function2
needed funcl [,needed func2] [,...]]

code for function2

ENDFUNC

DS CASM Utility,

3/82

Additional notes and bugs:

0.

If a label appears on an instruction, it MUST begin in column one of the line. If a
label does not begin in column one, CASM will not recognize it as a 1label and
relocation will not be handled correctly.

Forward references to EQUated symbols in executable instructions are not allowed,
although forward references to relocatable symbols are OK. The reason for this is
that CASM is a one-pass preprocessor, and any time a previously unknown symbol is
encountered in an instruction, CASM assumes that symbol is relocatable and
generates a relocation parameter for the instruction.

INCLUDE and MACLIB only work for one level of inclusion.

When a relocatable value needs to be specified in a '"DW" op, then it must be the
ONLY value given in that particular DW statement, or else relocation will not be
properly handled.

Characters used in symbol names should be restricted to alphanumeric characters;
the dollar sign ($) is also allowed, but might lead to a conflict with labels
generated by CASM,

The .HEX file produced by ASM after assembling the output of CASM cannot be
converted into a binary file by wusing the 10AD.0OM command; instead, DDT or SID
must be used to read the file into memory, and then the CP/M "SAVE" command must be
issued to save the file as a .CRL file. CASM inserts a line into the ASM file
ending in the character sequence "!." specifically so that the line will be
flagged as an error. The user may then look at the value printed out at the left
margin to see exactly how many 256-byte blocks need to be saved; this is the value
to be used with the "SAVE" command.

The reason that "LOAD" cannot be used is that CASM puts out the code to generate
the CRL File directory at the END of the ASM file, using ORG to set the location
counter back to the base of the TPA, and the "LOAD" command aborts with the cryptic

message "INVERTED LOAD ADDRESS" when out-of-sequence data like that is encountered.

Rather than require CASM to write out the directory into a new file and append the
entire previous output onto the end of the directory, I require the user to have to
enter a SAVE command. What the heck; you’d have to rename the file anyway if it
were I0ADed, right?)

The CASM.SUB submit file may be used to perform the entire procedure of converting
a .CSM file.to a .CRL file. For a file named '"FOO.CSM", just say:

submit casm foo

and enter the "SAVE" command just the way says when all is done.

BDS CASM Utility, 3/82

BDS C Standard Library Summary
v1.46 Edition -~ March, 1982
Leor Zolman
BD Software
33 Lothrop st.
Brighton, Massachussetts 02135

This document contains an alphabetic summary of ALL general-purpose utiliy
functions included in the BDS C package spread among several different source files.
Note that there are quite a few more functions listed here than than apppear in the
BDS C User’s Guide; some functions were intentionally omitted from the User’s Guide
for portability reasons, and many others have come into existence since the last
revision of the User’s Guide.

The summary is organized by columns.

The first column shows the type of the result returned by the function. The second
column shows the calling syntax and parameter types (if not int).

The next column shows a code naming the source file in which the function may be
found; the codes are as follows:

Cl for STDLIBI1.C
C2 for STDLIB2.C
D2 for DEFF2.CSM
D2A for DEFF2A.CSM
FLT for FLOAT.C
DIO for DIO.C

The next column tells the page number in the BDS C User’s Guide where the function
is documented, if the function appears in the User’s Guide at all. For any function
that isn’t documented in the User’s Guide, there is probably documentation available
in the source 1listing for that function (the source location is given in the
preceding column.) '

The final column contains references to a set of footnotes following the function

list. If a function has an entry in the NOTE column, the corresponding footnote (or
notes) should be examined for additional information about the function.

TYPE FUNCTION FILE PAGE NOTES

int abs(a,b) int a,b; cl 32

char * alloc(nbytes) unsigned nbytes; Cl 37 14

char * atof(opl,s) char opl[5], *s; FLT 1

int atoi(str) char *str; Cl 44

int bdos(c,de) D2 30 2

char bios(n,c) ’ D2 30

int call(addr,a,h,b,d) unsigned addr; D2 32

char calla(addr,a,h,b,d) unsigned addr; D2 32

int close(fd) D2 46
clrplot() D2A 54

char * codend() D2 36

int creat(filename) char *filename; D2 46

char csw() D2 30

BDS C Library Summary, vl1.46 1

char *
int
int
int

char *

char *
int
int
int
int .
int
char *
int
char *
char *
int
char *
int

int
char *
int
int
int
char *
int
int
int

char
int
int
int
int
int
char *
char *
int

int
int
int
int
int
char
char

int

dioflush()

dioinit(&argc,argv) int *argec; char **argv;

endext()

exec(filename) char *filename;

execl(filename,argl, arg2, ..., NULL) char *filename;

execv(filename,argvector) char *filename, **argvector;

exit(n)

externs()

fabort(£fd)

fcbaddr(£fd)

fclose(iobuf) FILE *iobuf;

fcreat(filename, iobuf) char *filename; FILE *iobuf;
fflush(iobuf) FILE *iobuf;

fgets(str,iobuf) char *str; FILE *iobuf;
fopen(filename,iobuf) char *filename; FILE *iobuf;
fpadd(res,opl,op2) char res[5], opl[5], op2[5];
fpcomp(opl, op2) char opl[5], op2[5];
fpdiv(res,opl,op2) char res[5],o0pl[5],0p2[5];
fpmult(res,opl,op2) char res[5],0pl[5),0p2([5];
fprintf(format, argl, arg2, ...) char *format;
fpsub(res,opl,op2) char res[5],0pl{5],0p2(5];
fputs(str,iobuf) char *str; FILE *iobuf;
free(allocptr) unsigned allocptr;

fscanf(iob, fmt,&argl,&arg2,...) FILE *iob; char *fmt;
ftoa(sl,opl) char *sl; char opl[5];
getc(iobuf) FILE *iobuf;

getchar()

getline(str,maxlen) char *str;

gets(str) char *str;

getval(strptr) char **strptr;

getw(iobuf) FILE *iobuf;

index(str,substr) char *str, *substr;
initb(array,string) char array[], *string;
initw(array,string) int array[]; char *string;
inp(port)

isalpha(c) char c;

isdigit(c) char c;

islower(c) char c;

isspace(c¢) char c;

isupper(c) char c;

itoa(str, n) char *str;-

itof(opl, n) char opl[5];

kbhit()

line(c,x1,y1,x2,y2) char c;

long jmp(jbuf) char jbuf[JBUFSIZE];

max(nl,n2)

min(nl,n2)

movmem(source,dest,count) char *source, *dest;
nrand(n [,prompt] or [;nl,n2,n3]) char * prompt;
open(filename,mode) char *filename; int mode;
outp(port,val) char port, val;

pause()

peek(port) char port;

plot(x,y,c) char c;

poke(addr, val) unsigned addr; char val;
printf(format, argl, arg2, ...) char *format;
putc(c,iobuf) char c; FILE *iobuf;

putch(c) char c;

putchar(c) char c;

puts(str) char *str;

putw(w,iobuf) int w; FILE *iobuf;

BDS C Library Summary, vl.46 2

DIO
DIO
D2
D2
D2
D2
D2
D2
D2
D2
Cl
Cl

c2
Cl
FLT
FLT
FLT
FLT
Cc2
FLT
C2
Cl
Cc2
FLT
Cl
D2
D2A
D2
Cl
Cl
D2A
Cl
Cl
D2
Cl
Cl
Cl
Cl
Cl
FLT
FLT
D2
D2A
D2A
Cl
Cl
D2
D2
D2
D2
D2
D2
D2A
D2
C2
Ci
D2
D2
c2
Cl

36
34
35
35
30
36
47
53
51
50
51
52
48

51
53
37
52

49
38

40

45

50

44
44
31
41
42
42
42
41

39
54

32

32

34
33
46
31
31
31
54
31
40
50
39
39
40
51

w w W

18

4,9

20

gsort(base,nel,width,cmp) char *base; int (*cmp)(); C1 34

rand() D2 33
igned rcfsiz(fd) D2A
read(fd, buffer, nsecs) char *buffer; D2 47
rename(oldname, newname) char *oldname, *newname; D2 46
rread(fd, buffer, nsecs) char *buffer; D2A 15
rseek(fd, offset, origin) . D2A 15
rsrec(fd) D2A 15
rsvstk(n) D2 38
: rtell(fd) D2A 15
: rwrite(fd, buffer, nsecs) char *buffer‘ D2A 15
ir * sbrk(nbytes) D2 37
: scanf(format, &argl, &arg2, ...) char *format; C2 42 4,10
: seek(fd, offset, origin) D2
setfcb(fcbaddr, filename) char *filename; D2 53
t set jmp(jbuf) char jbuf[JBUFSIZE]; D2A
setmem(addr, count, byte) char *addr; char byte; D2 33
setplot(base,xsize,ysize) D2A 53
sleep(ntenths) D2 31
sprintf(str,format,argl,arg2,...) char *str, *format; c2 42 4,9
srand(n) D2 32
srandl(str) char *str; D2 32
t sscanf(str,format,&argl,&arg2,...) char *str, *format; c2 42 10
strcat(sl, s2) char *sl, *s2; Ccl 43
t strcmp(sl, s2) char *sl, *s2; Cl 43
strcpy(sl, s2) char *sl, *s2; Ccl 43
t strlen(str) char *str; : Cl 44
swapin(filename,addr) char *filename; unsigned addr; c2 36
it tell(fd) D2 48
\ar tolower(c) char c; C1 42.
\ar * topofmem() D2 36 19
ar toupper(c) char c; _ : Cl 42
txtplot(string,x,y,ropt) char *string; _ D2A 54
ungetc(c,iobuf) char c; FILE *iobuf;: Cl 50
ungetch(c) char c; D2 39
unlink(filename) char *filename; D2 46
at write(fd, buffer, nsects) char *buffer; D2 47
)JTES:

”.

This floating point function returns a pointer to a 5-byte floating point
object, represented in a character array of length 5.

The "bdos" function returns HL equal to the value left there by the BDOS
itself. Under standard CP/M, 8-bit values are returned in L with H cleared, and
16-bit values are returned in HL. Other "CP/M-like" systems do not always
follow this convention, though, and the "bdos" function may take rewriting in
order to work with certain system calls under systems such as '"SDOS".

Unless an error occurs, this function should never return at all.

Note that all the upper-level formatted 1/0 functions ("printf", “fprintf",
"scanf", and "fscanf") now use " spr" and " scn" for doing conversions. While
this leads to very modularized source code, it also means that calls to "scanf"
and "fscanf" must process ALL the information on a line of text if the

_information is not to be lost; if the format string rums out and there is still

text left in the line being processed, the text will be lost (i.e., the NEXT
scanf or fscanf call will NOT find it.)

BDS C Library Summary, vl1.46 3

An alternate version of " spr" (the low-level output formatting function) is
given in the file FIOAT.C for wuse with floating point numbers; see FLOAT.C for
details. Since " spr" is used by "printf'", this really amounts to an alternate
version of "printf."

Also note that temporary work space 1is declared within each of the high-level
functions as a one-dimensional character array. The length limit on this array
is presently set to 132 by the define MAXLINE statement in BDSCIO.H; 1if you
intend to create longer lines through printf, fprintf, scanf, or fscanf calls,
be SURE to raise this limit by changing the define statement.

Note that the '"gets" function (which simply buffers up a line of console input
at a given buffer location) terminates the line with a null byte (“\0") WITHOUT
any CR or LF.

The conventional CP/M text format calls for each line in a file to be
terminated by a carriage-return/linefeed combination. In the world of C
programming, though, we 1like to just use a single linefeed (known as a
"newline") to cerminate lines. AND SO, the functions which deal with reading
and writing text lines from disk files to memory and vice-versa ('fgets",
"fputs") take special pains to convert CR-LF combinations into single ‘\n’
characters when reading from disk ("fgets"), and convert ‘\n’ characters to
CR-LF combinations when writing TO disk ("fputs"). This allows the C programmer
to do things in style, dealing only with a single 1line terminator while the
text is in memory, while maintaining compat— ibility with the CP/M text format
for disk files (so that, for example, a text file can be "type'"d under the
CCP.)

Remember to put out a CPMEOF (control-Z or Oxla) byte at the end of TEXT files
being written out to disk. .

Watch out when reading in text files using "getc". While a text file is USUALLY
terminated with a control-Z, it MAY NOT BE if the file ends on an even sector
boundary (although respectable editors will now usually make sure the control-Z
is always there.) This means that there are two possible return values from
“"gete" which can signal an End-of file: CPMEOF (0xla) or ERROR (-1, or 255 if
you assign it to a char variable) should the CPMEOF be missing. '
Since the " spr" function is used to form the output string, and then "puts" is
used to actually print it out, care must be taken to avoid generating null
(zero) bytes in the output, since. such a byte will terminate printing of the
string by puts. Thus, a statment such as:

printf("%c foo",’ \0");
would not actually print anything at all.

'« The "%s" termination character has been changed from '"any white space" to the
character following the "7%s" specification in the format string. That is, the
call

sscanf(string, "Zs:", &str);

would ignore leading white space (as is the case with all format conversions),
and then read in ALL subsequent text (including newlines) into the buffer "str"
until a COION or null byte is encountered.

. fgets is a little tricky due to the CP/M convention of having a carriage-return
‘AND a linefeed character at the end of every text line. In order to make text
easier to deal with from C programs, this function (fgets) automatically strips
off the CR from any CR-LF combinations that come in from the file. Any CR

)S C Library Summary, v1.46 4

14.

DS

characters not immediately followed by a LF are left intact. The LF is included
as part of the string, and is followed by a null byte. There is no 1limit to
how long a 1line can be here; care should be taken to make sure the string
pointer passed to fgets points to an area large enough to accept the largest
expected line length (a line must be terminated by a newline (LF) character
before it is considered terminated).

The value NULL, NOT EOF, is returned on end-of-file, whether it be a physical
end-of-file (attempting to read past last sector of the file) OR a logical
end-of-file (encountered a control-Z.)

The "fputs" function writes a string out to a buffered output file. The “\n’
character 1is expanded 1into a CR-LF combination, in keeping with the CP/M
convention. If a null (°\0°) byte is encountered before a newline is
encountered, then there will be N0 automatic termination character appended to
the line, thus allowing partial lines to be written.

When managing overlays, the "swapin" function may be used by the root segment
to swap in overlay code segments from disk. The provided version does NOT
check to make sure that the code yanked in doesn’t overlap some data areas that
may lie above the swapping area in memory.

The storage allocation routines were taken from chapter 8 of K&R, but
simplified to ignore the storage allignment problem and not bother with the
"morecore'" hack (a call to "sbrk" under CP/M is a relatively CHEAP operation,
and can be done on every call to "alloc" without degrading efficiency.) Note
that compilation of "alloc" and '"free" is disabled until the " define ALLOC ON
1" statement is un—-commented in the header file ("BDSCIO.H"). This is done so
that the external storage required by alloc and free isn’t declared unless the
user actually needs the alloc and free functions.

The random-record file I/0 functions are a direct interface to the
random-record BDOS functions provided by CP/M versions 2.0 and above, but not
available for pre-2.0 CP/M systems. Because of the non-portability of these
functions, they have not been heavily advertised in the BDS C User’s Guide
(i.e., they are not mentioned at all). The "rread", "rwrite", '"rseek" and
"rtell" functions work just like the functions "read", "write", "seek" "and
"tell", respectively, except that they do things via the random-record fields
of the file’s FCB. The "rsrec" and "rcfsiz" function simply take a file
descriptor of an open file and perform their namesake BDOS operation on the
given file, but in addition they-also return the value computed. Thus, "rcfsiz"
may be used to quickly compute the size of a file under CP/M 2.x.

The "execv" function no longer prints out "Broken Pipe" upon error; instead,
it has the more conventional behavior of returning =1 (ERROR) and letting the
user perform diagnostics.

"fabort" should not be used under systems like MPM-II in which all files MUST
be closed, whether they are open for input or output, in order not to run out
of file descriptors and hang the system.

New for v1.46 (see the vl.46 documentation addenda sheet for details.)
Modified for v1.46 to detect when "NOBOOT" has been invoked on the currently
executing program, and return an adjusted value for the end of available

user-memory.

When the DIO package is linked in to a program, alternate versions of "getchar"
and "putchar", whose sources are in DIO.C, get used.

C Library Summary, vl.46 5

BDS C User’s Guide Addenda
vl.46 Edition -- March, 1982

Leor Zolman

BD Software

33 Lothrop st.
Brighton, Massachussetts 02135

There have been several new sets of features added to BDS C vl.46. The new
:atures fall into three catagories: preprocessor enhancement, CP/M-specific compiler
:rformance enhancement by selective overwriting of the CCP (Console Command
rocessor), and new utility programs (including CASM.C, which provides for the
reation of CRL-format object files out of assembly language source files WITHOUT the
ezed for MAC.COM and the old CMAC.LIB macro package).

he preprocessor enhancements are as follows:

. Parameterized #defines are now supported. This allows a macro in the form of a
function call to be expanded (before compilation) into an arbitrary string, with
the original parameters substituted into the string. For example, the sequence

#define foo(x,y) x * 3 + y

z = foo(bar,zot());
results in the final line actually reading:
z = bar * 3 + zot();
).5 One feature of "#define" substitution has been slightly changed: when a
symbolic constant appears in the definition of ANOTHER symbolic constant, then
the substitution of the first constant does not take place until the

substitution of the second does. This means that in a sequence such as

#define FOO 1
#define BAR FOO+1

the string that gets substituted for "BAR" depends upon the current definition
of "FOO"; if "PFOO" got re-#defined at some point, "BAR" would change
accordingly. Given the above example, in past versions of BDS C "BAR" became
"1+1" at its definition point and would not have changed even if "FOO" were
re-f#fdefined, unless "BAR" was also re-#defined after "F0OO".
1. The
#if <exprd>

conditional compilation directive is now supported, but only with a special

BDS C v1.46 Doc. Update, 3/82

limited syntax for the expression argument, defined as follows:

<expr> := <expr2> or
{expr2> && <expr> or
<expr2> || <expr>

<expr2> := <{constant> or
!<expr2> or
(Lexpr>)

The <constant> may be a symbolic constant, but is treated as a logical wvalue
always...i.e, 0 is false and any non—~zero value is true (l1). This allows users
to write system—dependent conditional expressions without having to resort to
#ifdef/#ifndef and commenting/un-commenting #define statements to yield the
desired conditions. : -

. Nesting of conditional compilation directives is mnow allowed, and incorrect
nesting attempts will now draw an appropriate error instead of doing random
things to the source text. Note that each and every felse directive MUST be
followed by a matching #endif (unlike C’s control structure syntax, in which an
if...else chain may be extended as long as desired.)

ikkkkkkkkkkkkhkhkhkkkhkhkkdhikk

'he following enhancements to the vl.46 compiler and linker affect the USAGE of the
:ompiler, not the C language syntax it accepts:

[n the past, the compiler and linker have performed a CP/M warm-boot after every
rompilation had either been completed or aborted due to an error. For vl.46, a
sarm—~boot will only take place when the memory occupied by the Console Command
>rocessor (CCP) is actually needed for the task. Since there is usually plenty of
nemory left over after a compilation or linkage, I decided to eliminate the pain of
naving to wait for the system to re-boot after each and every usage of the compiler
>r linker.

IJn certain "fake" CP/M systems (I believe the CROMIX CP/M emulator is one such case),
the non-warm—booting return to the CCP does not work correctly, probably because the
system does not pass a valid stack pointer to transient commands. The symptom 1is
crazy behavior after CCl, CC2 or CLINK complete execution; the output files will have
been written OK, but attempting to return to the system via the passed SP bombs the
system. To correct this problem, it is necessary to make a patch to each of the three
command files forcing them to re—-boot when finished. The patches are as follows:

file address old data new data
CCl.COM 03AD 2A C6 03 C3 00 00
CC2.C0M 0239 2A 0A 01 C3 00 00
CLINK.COM 0F 39 2A 73 13 C3 00 00

One feature of BDS C in the past has been that it automatically aborted any pending
"SUBMIT" file after compilation when an error had been detected during the
compilation. This had required the compiler to seek to the directory track on disk
and erase "$$$.SUB" before re-booting, but the extra time thus spent was negligable

BDS C v1.46 Doc. Update, 3/82

C

since a seek to the low tracks was coming up soon anyway in order to do the
warm-boot. Now, since a warm-boot isn’t standard anymore, and the compiler is often
used without being in a "submit" file, the compiler no longer AUTOMATICALLY aborts
“submit" files following an error. The feature IS availalable, though, through the
new "-x" option to CCl. If "-x" is given on the CCl command line, then "submit" files
will be aborted following an error. Any time CCl is used in a "submit" file, "-x"
should appear on the command line in the "submit" file. If CCl is used stand-alone,
then "-x" should not be used (it would just cause some needless disk activity upon
error.) MAKE A NOTE OF THE "-X" OPTION UNDER THE CCl OPTIONS SECTIONS OF THE BDS C
USER’S GUIDE. Since CLINK is not aborted very often, it has not been given a "-x"
option and (as in previous versions) will always abort pending "submit" files when

prematurely terminated.

Note that both the compiler and linker now send a bell character (control-G) to the
user console after completing a task in which one or more errors have occurred. This
is to alert the wuser in the case of a premature completion and return to command
level (as when a fatal error is detected by the compiler), since audible warm-boots
no longer serve to notify the user of compiler termination.

On some interrupt—driven systems, type—ahead during operation of CCl, CC2 or CLINK
does not work because each of these commands look at the console input to see if a
control-C has been typed, in order to determine if the user wants to abort the
comand. If any character other than a control-C is detected, that character is thrown
away because there is not way to push it back wunder CP/M. If you wish to disable the
control-C-polling feature of the BDS C commands, so that the console input is never
sampled and type—ahead works correctly, make the following patches to the commands:

file address old data . new data
CCl.COM 0995 ES5 ' Cc9
CC2.COM 04A6 E5 Cc9
CLINK.COM 061C F5 Cc9

Note that after these patches are made, typing control-C will only abort a CCl, CC2
or CLINK invokation if provision is made in your interrupt—-driven BIOS for
general-purpose program interruption by control-C.

kkkkhkhkkhkhkkhhkkhkkhrhkkkhkkkkhkkk

The major - new utility program included with vl.46 is CASM.C, an
assembly-language-to—-CRL conversion preprocessor. CASM takes a specially-formatted
assembly lanaguage source file having extension ".CSM" as input, and puts out an
" ASM" file which may then be assembled using the standard CP/M assembler (ASM.COM),
to eventually produce a CRL-format object file. Note that sources to the
assembly-language portion of the BDS C 1library are now provided as ".CSM" files
instead of ".ASM" files, and a "submit" file named "CASM.SUB" has been provided to
automate the entire process of "CSM'-to-"CRL" conversion. A separate document
detailing the operation of CASM is included with the BDS C vl.46 package.

A new wild-card expansion utility, named WILDEXP.C, allows ambiguous file names to be
specified on the command 1line to C-generated programs; then by a simple function
call, the ambiguous references are expanded to include all filenames on the current
disk that match the specification. Exceptions may also be specified.

BDS C v1.46 Doc. Update, 3/82

A new utility named NOBOOT.C is also included: when NOBOOT.COM is invoked upon a COM
file produced by the C compiler, it will make some magic changes so that the COM file
no longer performs a warm-boot after completing execution. The changes involve
forcing the run-time stack to begin BELOW the CCP, and having the program save the
system stack pointer passed to it by CP/M so that the SP may be restored after
execution and control can pass directly back to the CCP. NOBOOT should be used ONLY
with programs 1linked wusing the standard, supplied form of the run-time package
(C.CCC). Note that the "topofmem'" library function has been modified to recognize
when NOBOOT is in effect at run—-time, and should return the correct value for the end
of available user memory in all cases.

khkkhkkhkhhhkhkhhkrhhkhhkhhhhhkhhhkhhk

The following bugs have been detected and corrected for BDS C vl.46:

1. CCl had crashed when an "#include" file was not terminated with a
carriage-return/linefeed sequence.

2, CLINK no longer complains about not being able to find "DEFF3.CRL" when there
are undefined function references in a linkage; if DEFF3.CRL does exist, it will
be searched, but if it does not exist, that fact will no 1longer draw an error.

3. Literal strings having continuation 1lines might have confused the CCl
preprocessor in some versions, to the effect that a "#defined" symbol name that
happened to match a character sequence within the continuation line of the
string was incorrectly substituted for by the preprocessor, and such a symbol
appearing AFTER the end of the string was NOT ‘substituted for.

4, In the DIO package, the variable "c¢" in the "getchar" function was incorrectly
declared as a '"char" instead of an "int"; this caused a physical EOF to be
returned as the value 255 instead of ~1. Note that this problem only appeared
when the text file was not terminated by a CPMEOF (control-Z) character.

5. Another DIO-related bug: when text containing both carriage-returns and
linefeeds was fed to the DIO "putchar" function, an extra linefeed character was
appended to each 1line and resulted in an extra blank line between each actual
line of the output file. This has been fixed by building some state information
into the DIO version of "putchar" so that the redundant 1linefeeds are not
generated.

6. CLINK now warns the user when the address of the end of the external data area
falls above the effective "top of memory" address (and thus not leaving any room
for the run-time stack) to prevent hair-pulling confusion if such a condition is
not noticed by the wuser. If you are generating special-purpose code in which
you purposely tell the linker that the top of memory is below the external area,
then just ignore the error message.

7. The "execl" function had two bugs which have been corrected: it had bombed if an
attempt was made to pass more than six parameters, and it had not detected when
the total size of supplied parameters .exceeded the. amount of space available for
that text during the chaining operation (about 83 characters). Now any number of
parameters are handled correctly, and a text overflow will cause "execl" to
print a special message to that effect and also return a value of ERROR (-1) to

BDS C vl.46 Doc. Update, 3/82

BDS C vl1.46 Doc. Update, 3/82

the calling routine.

The "gets" library function has been modified to use the stack during its BDOS
call to get a line of text, and then copy the result into the supplied buffer
area. This means that the buffer area passed to "gets" need no longer be 2 bytes
longer than the 1longest expected string; but, "gets" still does not know how
long the buffer you give it really is and you must make sure to supply a large
enough buffer (when "gets" calls BDOS function 10, it supplies the BDOS with a
135-byte buffer on the stack, and as much of this as is filled up 1is copied to
the user—supplied buffer upon return from the BDOS call). :

A new alternative to '"gets" has been supplied, called "getline'", which works
just like the '"getline'" function shown in Kernighan & Ritchie. The format is:

int getline(strbuf,maxlen)
char *strbuf;
int maxlen;

"Getline" collects a line of text from the user, where the maximum allowed
length of the line is "maxlen" characters (where "maxlen" 1is supplied as a
parameter). The return value is the length of the entered line. Since "getline"
also uses BDOS function 10 to collect the line, a call such as
"getline(str,135);" would work the same as "gets(str);". Use "getline" either to
limit the line length to some small number, or to allow longer 1lines (up to 255
characters) than the maximum of 135 that "gets" allows.

Note that both '"gets" and "getline" will return immediatly if the number of
characters typed reaches the maximum allowed (135 for "gets" or ‘maxlen’ for
"getline"), even if no newline (carriage-return in this case) is typed by the
user. This is due to the behavior of the BDOS, and there aint’ nuthin to be done
about it short of writing an entire "gets" from scratch in terms of low-level
character 1/0, and that just isn’t worth the trouble.

BDS C User’s Guide Addenda
v1.45 Edition —— December, 1981

Leor Zolman

BD Software

33 Lothrop st.
Brighton, ﬂassachussetts 02135

are the bug fixes and extensions for BDS C version 1.45.

1t If you are running under MP/M II, be sure to see item 10 below!

Expressions of the form

t(expr || expr)
or t(expr && expr)

may not have worked correctly when a VALUE was required for the expression; i.e., when
used in some way other than in a flow control test. For example,

x = 1(a |l b);
might have failed, but
if (1{(a || b)) return 7;

would have worked, since the expression was used for flow control.

Declarations of pointer-to-function wvariables for functions returning a CHARACTER
value caused only one byte of storage to be reserved for the pointer, instead of two
bytes (all pointers—to-functions require two bytes of storage, by virtue of being
pointers). For example, in the sequence:

char cl, (*ptrfn)(), c2;

ptrfn = &getc;

the assignment to ‘ptrfn’ would have incorrectly overwritten the ‘c2’ character
variable, since only one byte would have been reserved on the stack for the ‘ptrfn’
variable while the assignment operation would have assumed there were two bytes
reserved.

A bug in the ternary operator evaluator (?: expressions) caused the high-order byte of
a 16-bit result to be incorrectly zeroed in the following situation: given a ternary
expression of the form

el 2 e2 : e3

S C vl.45 Doc. Update, 12/81

1lere ‘e2’ evaluated to a 16-bit value (int, unsigned or pointer) and ‘e3’ evaluated
> a character value (type char only), the entire expression was treated as having
ype char...so if ‘el’ was true and ‘e2’ was bigger than 255, then the value of the
kpression ended up as only the low-order byte of the value of ‘e2’. For version 1.45,
renever ‘e2’ and ‘e3’ do not BOTH evaluate to character values the type of the
verall expression is guaranteed not to be char.

sequence of two ‘!° (logical ‘not’) operators in a row did not always produce the
orrect result in an expression. For example,

x = !!n; /* convert n to a logical (0 or 1) value */

ight have produced the wrong result (O instead of 1, or vice-versa).

stack-handling bug in CC2 caused problems at run time when a sufficiently complex
ub-expression appeared in any but the final position of an expression involving the

omma operator (","). For example, the following statement would not have worked
orrectly:

for (i = 0; i < 10; x += vy, i++) ...

Cl has not been recognizing 1illegal octal character constants as such; digits such
s '8’ and ‘9’ within an octal constant will now draw an error in cases where they
ould have been ignored before. Also, certain other forms of illegal constants (aside
rom character constants) are now better diagnosed than before.

found one more case where an internal table overflow during code generation was not

etected, causing the final command file to bomb as soon as it was executed (either by
rashing the machine or immediately re-booting.) This occurred when a single large
unction containing many string constants was compiled. All fixed now.

n extension to the linker: CLINK now recognizes "DEFF3.CRL" as an automatic library
ile, similar to DEFF.CRL and DEFF2.CRL. Note that there is NO DEFF3.CRL file included
ith the BDS C package; this feature has been added to allow you to fit more custom
unctions into your library than just what fits in DEFF.CRL and DEFF2.CRL (which are
etting rather full.)

lso, CLINK will now search ALL default library files (DEFF.CRL, DEFF2.CRL and
EFF3.CRL [if it exists]) when a carriage-return is typed in interactive mode.
reviously, only the file DEFF.CRL was searched in response to carriage-return.

t has been brought to my attention that the “Q-CR sequence required by CLINK in
nteractive mode (to abort the linkage in progress) cannot be typed in under MP/M
ystems, since "Q is used to detach a process. If you are running MP/M, then just type
ontrol-C instead of "“Q-CR; this will also work for CP/M systems...the only difference
s that when “Q-CR is used, then any currently active "submit file" processing is
utomatically aborted by CLINK before returning to command level, as a convenience (I
ssume that if you abort the linkage, you don’t want to continue with your submit

v1.45 Doc. Update, 12/81

(

file...). Under MP/M, you’ll have to type characters quickly at the keyboard (after
“C-ing CLINK) to abort any pending submit file activity.

A slight bug in CLIB.COM (The C Library manager program) made it hard to exit CLIB
from within a submit file (assuming XSUB 1is in wuse). The problem was that CLIB
requires a confirmation character, ‘y’, to be typed after the ‘quit’ command is given.
CLIB was getting the confirmation character by doing a single direct BDOS console
input call, which required the user to manually type in the letter before any pending
submit file processing could continue. This has been fixed by having CLIB get an
entire line of input (using BDOS call 10) when seeking a confirmation; now the ‘y’
may be 1inserted into submit files. Note that the ‘quit’ command and the ‘y’
confirmation must be placed on separate consecutive lines in the submit file. If not
using a submit file, the only difference is that now a carrlage-return is required .
after typing the ‘y’.

Another minor problem with CLIB: function names 1longer than 8 characters were not
being truncated when entered for operations such as renaming, resulting in too-long
CRL file directory entries. All names are now properly limited to 8 characters.

J. A problem with file I/0 under MP/M Version II has come up: The run—time package
routine "vclose'", called by the library function '"close" whenever a file needs to be
closed, has been optimizing for files open only for reading by NOT actually performing
a "close" operation through the BDOS. This worked fine under CP/M, because CP/M didn’t
care whether or not a file that has had no changes made to it was ever closed; MP/M
IT, on the other hand, DOES seem to want such files to be explicitly closed...so by
running many programs that didn’t close their Read-only files, BDS C programs
eventually caused MP/M to not allow any more files to be opened. '

This problem has been fixed by adding a conditional assembly symbol, called "MPM2", to
the CCC.ASM source file. If you are running under MP/M II, you should set the "MPM2"
equate to true (1) and reassemble CCC.ASM, yielding a new C.CCC after loading and
renaming (you should only need ASM.COM for this, although MAC.COM works also). The
change does NOT affect the size of C.CCC, so the libraries do mnot have to be
reassembled as is usually the case when the run-time package is customized. The change
simply causes a single conditional jump to be turned into three nop’s, so that ALL
files are always closed, instéad of only the ones open for writing. My apologies to
MP/M users who may have had confusing troubles because of this bug.

N

l. A bug was found in the ' scn’ library function (affecting ‘scanf’): when a 1lone
carriage-return (newline) was typed 1in response to a "%s" format conversion, the
format conversion was totally ignored. This caused the target string to remain
unchanged from its previous contents, instead of correctly having a null string
(consisting of a single zero byte) assigned to it.

2. A bug was found 1in the ' spr’ library function (affecting ‘printf’, ‘sprintf’, and
‘fprintf’): The default field width value was 1, causing a null string to be printed
as a single space when the standard "%s" format conversion was used. For example, the
statement:

printf ("Here is a null string: \"Zs\'"\n","");

DS C v1.45 Doc. Update, 12/81

would have produced the output:
Here is a null string: " "

instead of:

Here is a null string: ""

The default field width value has been changed to O, so nuli strings will now print

correctly. An explicit field width may always be given 1in any format conversion, of
course.

When the library function "sprintf" (formatted output directly into a memory buffer)
is used, a null byte is appended onto the end of the output text. I’'m not absolutely
sure whether or not this is a '"desired" characteristic; at least one user has
complained about it, but it turns out that "sprintf" on the large-scale Unix system I
have access to does the same thing and I can think of applications where the trailing
null is useful. So, the null stays in.

In several library functions, as well as at one point in the run-time package, calls
were made to BDOS function number 11 (interrogate console status) followed by an "ani
1" instruction to test bit O of the value returned by BDOS. I’'ve been told that on
some systems, testing bit O is not sufficient since sometimes values other than O and
1 (or O and 255) are returned. SO, all such sequences have been changed to do an "ora
a" instead of an "ani 1", so that a return value of exactly O0Oh is interpreted as '"no
character ready" and any other value is interpreted as '"yes, there is a character
ready". The 1library functions that were modified this way are: ‘kbhit’, ‘putchar’,
‘srandl’, ‘nrand’, ‘sleep’ and ‘pause’. The sequence to clear console status in the
run—time package (CCC.ASM), near the label "init:", has likewise been changed (but a
"nop" instruction was added to keep all addresses consistent with earlier versions of
the run—-time package.)

When customizing the run—time package (CCC.ASM) with the "cpm" symbol equated to zero,
several symbols (named "SETNM" and "SETNM3", at the routine labeled "PATCHNM") were
undefined; this has been fixed by adding some conditional assembly directives to
insure that the labels in question are not referenced under non-"cpm'" implementations,
while the total code size remains constant so that the addresses of later run—time
package utility subroutines stay exactly the same for all implementations.

A problem with the "bdos'" library function has come up that is rather tricky, since it
is system-dependent: A program that runs correctly under a normal Digital Research
CP/M system might NOT run under MP/M or SDOS (or who knows how many other systems) if
the "bdos" function is used. A typical symptom of this problem is that upon character
output, a character on the keyboard needs to be hit once in order to make each
character of output appear.

To understand the problem, we must first understand exactly how the CPU registers are
~supposed to be set after an operating system BDOS call. Normal CP/M behavior (which
the C library function "bdos" had always assumed) is for registers A and L to contain
the low-order byte of the return value, and for registers B and H to contain the high
order byte of a return value (which is zero if the return value is only one byte). The

C v1.45 Doc. Update, 12/81

CP/M interface guide explicitly states that "A == L and B == H upon return in all
cases", and I figured that just in case CP/M l.4 or some other system didn’t put the
values 1in H and L from B and A, I’d have the "bdos" function copy register A 1into
register L and copy register B into register H, to make SURE the value is in HL (where
the return value must always be placed by a C library function.)

Not all systems actually FOLLOW this convention. Under MP/M, H and L always contain
the correct value but B does not! So when B is copied into H, the wrong value results.
So, the way to make "bdos" work under both CP/M 2.2 and MP/M was to discontinue
copying B and A into H and L, and just assume the value will always be correctly left
in HL by the system. This was done for vl.45, so at least CP/M and MP/M are taken care
of , but...

Under SDOS (and perhaps other systems), register A is sometimes the ONLY register to
contain a meaningful return value. For example, upon return from a function 11 call
(interrogate console status), the B, H and L registers were all found to contain
garbage. So if no copying is done in this case, the return value never gets from A to
L and the result 1s wrong; but if B is copied into H along with A getting copied into
L, the result is still wrong because B contains garbage. Evidently the only way to
get function 11 to work right under SDOS is to have the "bdos" function copy register
A into L and ZERO OUT the H register before returning...but then many other system
calls which return values in H wouldn’t work anymore. And that is the problem: You can
please SOME systems ALL the time, but not ALL systems all the time with only one
standard "bdos" function!

The way I left "bdos" for version 1.45 was so that it works with CP/M and MP/M (i.e.,
no register copying is done at all...HL is assumed to contain the correct value). You
might want to make a note in the User’s Guide library section (page 30) to the effect
that A and B are now ignored. This, of course, won’t work in all cases under SDOS and
perhaps other systems...in those cases, you need to either use the "call" and "calla"
functions to perform the BDOS call, or create your own assembly—coded version(s) of
the "bdos" function (with MAC.COM, CMAC.LIB and BDS.LIB) to perform the correct
register manipulation sequences for your system. Note that it may take more than one
such function to cover all possible return value register configurations.

The ‘'creat" library function had been creating new files and opening them for writing
ONLY; this caused some confusion, so ‘creat’ has been modified to open files for both
‘reading AND writing following creation. PLEASE MAKE A NOTE OF THIS UNDER THE ‘CREAT’
ENTRY IN THE STANDARD LIBRARY SECTION OF THE BDS C USER’S GUIDE.

The "execv" function has been changed to return ERROR (-1) on error, instead of
forcing an error message ("Broken pipe") to be printed to the standard error device.
The reason I originally had it printing "Broken Pipe" was because 1 was too lazy to
figure out how to fix the stack after passing all the arguments; following some
justified bitching from Scott Layson I went in there and fixed it so it does something
reasonable. PLEASE MAKE A NOTE OF THIS UNDER THE ‘EXECV’ ENTRY IN THE STANDARD
LIBRARY SECTION OF THE BDS C USER’S GUIDE.

The DIO (directed I/0 and pipes) package contained an obscure bug: if a pipe operation
was aborted before completion, leaving a "TEMPIN.$$$" file in the directory, then the
next pipe operation performed had gotten its own output mixed up with the output of
the aborted pipe....the o0ld output was used as input to the new next command, and the

C v1.45 Doc. Update, 12/81

new output was lost. The new DIO.C has been fixed. (Note: DIO.C has also been slightly(j
changed to properly interact with the new version of the "execv" library function.)

Another change has been made to the DIO package: the "getchar" function, when used
without input redirection to read characters directly from the console, had not
allowed for line editing in previous versions. I.e., each character was obtained by a
direct BDOS call and none of the special line editing characters (delete, "R, °U,
etc.) were recognized. For version 1.45, an optional 1line buffer mechanism has been
added to the DIO package so lines of console input can be fetched at one time by using
the '"read console buffer" BDOS call and all editing characters now function as
expected. Operation of the package using buffered console input is still the same as
before, except for one thing: to enter an end-of-file character (control-Z), it is now
necessary to also type a carriage-return after the control-Z.

To enable console input buffering when using the DIO 1library, it 1s necessary to
un—-comment a line in the DIO.H file and re-compile DIO.C. See the comments in DIO.C
for more iunformation.

The speclal case handler for the code generator has been improved to more efficiently
handle relational binary operations where exactly one of the operands is a constant.
The operators affected are: "<, '">", "<=", '">=" "==" 3nd "!=", for both signed and
unsigned data types. The improvement is mainly in the speed of execution of such
comparisons; statements such as: :

if (1 € 1234) ... _ (

execute much faster. This results in speedier execution of programs such as the Seive
of Eratosthenes benchmark in the September ‘81 issue of BYTE: the current version of

BDS C, using the -e and -o compiler options with variables made external, does it in
15.2 seconds (see SIEVE.C on the distribution disk.)

Also, multiplication by a constant that is a low power of 2 (2,4,8,16) is now done by
DAD H sequences instead of calls to the run-time package multiply routine [so that
expressions such as (i * 8) and (i << 3) each compile to the same codel].

Two new functions have been added to the standard library:

int setjmp(buffer)
char buffer [JBUFSIZE];

long jmp(buffer,val)
char buffer [JBUFSIZE];

When "setjump" 1is called, the current processor state is saved in the JBUFSIZE-byte
buffer area whose address is passed as the argument ("JBUFSIZE" is defined in
BDSCIO.H), and a value of zero is returned. Whenever a subsequent "longjump" call is
performed (from ANYWHERE in the current function or any lower-level function) with the
same buffer argument, the CPU state 1is restored to that which it was during the
"set jmp" «call, and the program behaves as if control were just returning from the
“"setjmp" function, except that the return value this time is "val" as passed to{
"long jmp". A typical use of setjmp/longjmp is to exit up through several levels of
function nesting without having to return through EACH level in sequence, to make sure

C vl1.45 Doc. Update, 12/81

that a particular exit routine (e.g., the directed I/0 "dioflush" function) is always
performed. It is a nifty facility that should have been available long ago. THESE
FUNCTIONS ARE NOT DOCUMENTED IN THE BDS C USER’S GUIDE; PLEASE MAKE A NOTE OF THEM IN
THE STANDARD LIBRARY SECTION OF THE GUIDE.

A new linker for BDS C called '"L2" (a substitute for CLINK.COM) is now available from
the BDS C User’s Group. L2, written by Scott Layson (of Mark of the Unicorn) in BDS C,
has several interesting features:

1. L2 can link programs that are wup to about 8K larger than CLINK: 1if there
isn’t enough room in memory to hold the entire program while building an
image in memory, L2 performs a disk-buffering second pass. This means that
the resulting COM files can be as large as the entire available TPA on the
target machine.

2. The number of functions per program is no longer limited to 255.

3. While CLINK uses jump tables at the beginning of functions to resolve
- references to other functions, L2 totally eliminates the jump tables and
instead generates direct external calls. This shortens programs by anywhere

from 3% to 10%, and also speeds them up a little.

4, Since L2 is written in C, you can customize it yourself.

The L2 package comes with source code, a special overlay generator program and’
documentation. It 1is available to BDSCUG members for the nominal cost of media and
shipping (currently $8). See the next note for information on joining the BDSCUG.

The BDS C User’s Group membership forms should now be 1included with the BDS C
package...this makes 1life easier for everyone, since it is no longer necessary to
write to the Group first just to ask for forms before being able to order library
disks. BDS C User’s Group members receive the Group newsletter approximately 6 times
per year, and are .entitled to compiler updates and library disks for low prices
(typically $8 per disk).

C vl.45 Doc. Update, 12/81

BDS C User's Guide Addenda
v1.44 Edition -- April, 1981

Leor Zolman

BD Software

33 Lothop St.
Brighton, Massachussetts 02135

(617) 782-0836

Please note my NEW new address and phone number...same earlier versions of the new
cumentation have said that my new city and zip code were Allston, 02134, which is where
THOUGHT I was. Actually, I'm in Brighton, 02135, and any mail sent me addressed to
lston may have been returned to the sender stamped with samething like "No such address
own." Sorry about thzt.

re are the bug fixes/extensions for version 1.44:

(Applies to vl.43a only): the character sequence \\ appearing at the END of a quoted
string caused the preprocessor in CCl to screw up and stop stripping camnents for the
rest of the source file. For example, the statement:

printf("This backslash would cause big trouble: \\");

would have done it.

The "gsort" library function didn't work when the total size of the data array being
sorted exceeded 32K bytes. This has been fixed by changed the declarations of certain
variables in gsort from "int" to "unsigned".

CCl, CC2, and CLINK may now be aborted in the middle of execution by typing a
control-C. :

A new CLINK option has been added (as if there weren't enough of them already...) The
"-f" option, when specified immediately before the name of an extra CRL file to be
searched, FORCES all functions in that CRL to be loaded into the current
linkage—even if they haven't been previously referenced. This provides a simple
solution to the backwards-reference problem; a typical case when this would be used
canes up when you want to use a special version of a low-level function such as
"putchar." If you have a camplete program such as:

main()

{

]

and would like your OWN version of putchar to be loaded fram a library called, say,
SPECIAL.CRL (which you have previously campiled), then simply saying:

printf("this is a test\n");

S C v1.44 Doc. Update, May 1981

clink test special <cr> (z

would NOT work, because the "putchar" function doesn't becane "needed" until AFTER
the library file DEFF.CRL, which contains "printf", is searched...which doesn't
happen until AFTER special is searched! So the "putchar" finally loaded would came
fram DEFF2.CRL, which is the 1library file autamatically searched after DEFF.CRL. To
make this do what you want, all you'd have to do now is:

clink test —f special <cr>

which would force everything in SPECIAL.CRL to be loaded right away, before the DEFF
files are scanned. Then, when "printf" gets loaded fram DEFF.CRL, the correct -
"putchar” function will already have been loaded and the one in DEFF2.CRL will be
ignored.

The "rename" library function had a rather serious problem: whenever executed, it
would zero out the three bytes of code immediately after the end of the function
(i.e., the first Jjump instruction of the next function in memory would get
clobbered.) This problem was fixed by increasing the amount of storage declared in
the "ds" at the end of "rename" from 49 bytes to 53 bytes.

The "setfcb" function requires that the buffer allocated to hold the resulting fcb is
AT LEAST 36 BYTES LONG! "Setfcb" zeroes out the randamrecord field bytes of the fcb
just in case the CP/M 2.x randam-record file I/O mechanism is later used. But whether
you use the randam stuff or not, the fcb you allocate still has to be 36 bytes long.(

This bug applies to v1.43 only: A character constant consisting of the double—quote
character enclosed in single quotes ('"'), when encountered by ccl, caused ccl to
stop stripping camments while reading in the rest of the source file fram disk. This
was a bug in the vl1.43 code added to allow cament delimiters within quoted strings.

Whenever the type information for a function definition was placed on a line separate
fram the actual name of the function, then the campiler would "lose" a line of code
and all errors found past that point in the source file would be reported with an
incorrect 1line number. For example, the following kind of function definition
would've caused this problem:

char *
fOO()

A new library function, "execv", has been added to the package (source is in
DEFF2.ASM). This function allows chaining to another M file with a variable number
of cammand line parameters (note that "execl" requires all of the arguments to be
explicitly passed as string pointer parameters to the function, so that one
particular call can only have the number of arguments that it was written with.) The(
format of the "execv" function is:

S C vl.44 Doc. Update, May 1981

execl (prog,argvp)
char *prog, **argvp:

where “prog' points to the name of the OM file to be chained to, and “argvp' is an
argv'-like pointer to an array of pointers to text parameters. The final pointer in
the list must be followed by a null pointer. As an example, note that the "execl"
call

execl("stat", "badspots", "$r/0",0);
can be written in terms of "execv" as follows:
char *args[3];
éx.'z;)s[0] = "badspots";
args[1] = "Sr/o";

args[2] = NULL;
execv("stat",args);

Directed I/O and pipes, of sorts, are now available to BDS C programmers. The files
DIO.C and DIO.H make up a cute little directed 1/0 package, allowing for directed
input, directed output and pipes (a la Unix) on the command 1lines to programs
campiled with this special I/0 package. See the camments in DIO.C for camplete
details. Note that the presence of this package does NOT contradict certain camments
made in the User's Guide about kludging advanced Unix features under CP/M; those
camments were directed toward systems in which the I/O redirection/generalization is
forced upon the wuser, along with all the entailing overhead, when the redirection
isn't needed or wanted for many applications. The DIO package, being written in C and
separately campiled, lets YOU the USER decide when you want it and when you do not.
If you don't want it, it takes up zero space; if you do, it takes up a bit of roam
and yanks in all the buffered I/O, but it DOES give you redirection and pipes!

A "standard error" buffered I/0 stream number has been added to the list of special
devices recognized by the "putc" buffered output function. An iocbuf value of 4 causes
the character given to be written to the CP/M console output, always, while an iobuf
value of 1 causes the character to be written to the standard ocutput (which might be
a file if the DIO package is being used.) Note that 4 was used instead of the Unix
Standard-error value of 2 because 2 had already been taken (by the CP/M LST: device.)

String constants may now oontain zero bytes w1thm them. Previous versions have
flagged lines such as
foo = "Jan\OFeb\OMar\OApr\OMay\0Jun\0Jul\0Aug\0Sep\00ct \ONov\0Dec\0" ;
with the error message:
Zero bytes are not allowed within strings; to print nulls, use \200
Note that allowing the above kind of string constant makes it easier to initialize a

table of hamogenously-sized strings; the example with the months could be part of a
function that returns a pointer to the name of same month n, where n is a passed

» C v1.44 Doc. Update, May 1981

1lue ranging fram O to 11 (or fram 1 to 12, or whatever...)

> vl.44 Doc. Update, May 1981

~~

BDS C User's Guide Addenda
vl1.43 Edition -~ March, 1981

. Leor Zolman
BD Software (New Address!)
33 ILothrop st.
Brighton, Ma. 02135
(617) 782-0836

Before getting on with the business at hand (where I shamelessly display all the
>rrible bugs that have plagued previous versions of the carmpiler), I'd 1like to take a
ament to answer one of the more cammon questions that have been asked of me by users and
>tential wusers of BDS C. Hopefully, this will save same of you the expense of a phone
all (which can run pretty high when I get to rambling...)

Q. What is the royalty arrangement for software developed using BDS C?

A. There is NO royalty arrangment AT ALL. Both the BDS C runtime package and function
ibraries, in either source or odbject form (or both), may be freely distributed with
ymercial (or non-cammercial) application programs. The reason for this policy is to
ramote the use of C for anything and everything, without wrapping up potential
plications in miles of red tape and ineffective security measures. Software authors:
JEASE include the source listings to your software with your packages! I understand that
1ere are some markets where such generosity is considered suicidal, and I "~sympathize in
any cases, but I also want to see BDS C selling more copies, and providing the source to
splications programs will encourage users to optain. the compiler. Hopefully, same of them
ay even BUY it.

OK, now it's time for the bug reports. Following, in decreasing order of severity, are
1e bugs found and fixed for v1.43, and same additional notes:

. Another logical-expression-related bug caused incorrect code to be generated when a
subexpression of a binary operation used the &k or || operators. For example,

if (x > (i=5 && j<7)) printf("Foobar\n");
might have caused a crash when executed.
.5 A bitwise or arithmetic binary operation in which the 1left argument was a logical
expression of any kind and the right argument was a binary expression of higher
precedence failed to evaluate correctly. For example,

if (lxbhit() & a<5) printf("foo\n");

didn't work.

» A missing comma, such as in the statement:

sprintf(dest "x = %d\n", x):

went undiagnosed and caused wierd code to be generated. (The bug fixed in the 1ast<
release had only corrected the case of a missing camma AFTER a format string
specification, not BEFORE it...)

If a cament was begun on a line which contained an "#include" preprocessor directive,

. and not terminated until a later line, then CCl became confused. 2a. Several users
have camplained about not being able to put the character sequence ‘/*' into a quoted
string. This is a justifiable gripe, but I'm afraid you'll have to say things like
"/*" to get the same effect. The reason camment delimiters are not tolerated within
quotes

Mismatched curly-braces in a source file now draw a more meaningful diagnostic than
the previous "Unexpected EOF encountered" message: a pointer is now provided to the
line at which the badly-balanced function begins.

When an 1illegal oonstant was encountered by CCl at any place where a constant 1is
required, an incorrect "Unmatched left parenthesis" diagnostic was displayed with an
impossibly large line number. (Actually, the oorrect 1line number was obtainable by
subtracting the exact size of the text file fram the given line number. Guess what I
forgot to initialize between passes...)

When using the "-w" option with CLINK, a terminating control-Z was NOT put out to the (
SYM file when the length of the SYM file worked out to be an exact multiple of 128 °
bytes. This gave CLINK a headache when "-y" was used to read the SYM file back in.

There was another bug in the "getc" library function that caused same trouble when the
"fgets" function was used to read in lines from a text file that wasn't terminated
with control-Z (CPMEOF). This was fixed by changing the line:

return ERROR;

return iobuf- > nleft++;

Mismatched square brackets in an expression had drawn an "Unexpected EOF encoutered"
error instead of samething more meaningful.

The word "main" is NO LONGER A KEYWORD. In previous versions, the fact that "main" was
treated as a keyword made its use in any situation other than as the first line of a
"main" function impossible. I.e, attempts to call "main" recursively were not accepted
by the campiler. There is now no longer anything special about the word "main". In
addition, previous versions had substituted an undocumented one byte code (9D hex) for
the name "main" in CRL file directories, thereby probably causing a lot of confusion. -
This bizarre scheme is no longer used, although the linker will still recognize the (
special 9D code as meaning ‘'main" when encountered in a CRL file (of course, "MAIN"
will now also be recognized...)

C v1.43 Doc. Update, 3/81

A bug in the "-y" option handler in CLINK caused CLINK to crash when there wasn't
enough roam in the reference table to hold all the symbols being read in from a SYM
file. Sorry about that, chief. Note, by the way, that the POSITION of "-y" on the
camand line IS VERY SIGNIFICANT. If the "-y" option appears to the right of names of
CRL files to search, then the SYM file specified will mnot be used until AFTER the
previous CRL files have already been scanned and loaded fram. I.e., the "-y" option
- should appear BEFORE the names of any CRL files that contain functions that might not
need to be loaded (due to their definition in the SYM file). A new feature of CLINK is
that whenever a previously defined symbol is encountered in the process of loading the
symbols fram a SYM file, a message to that effect will be printed, allowing the user
an opportunity to rearrange the cammand line so that the SYM file is read in earlier

and same redundancy possibly eliminated.

An obscure feature of the "printf", "sprintf" and "fprintf" library functions, as
described in the Kernighan & Ritchie book, is that a field-width specification value

preceded by a '0O' caused 0-fill instead of space-fill. I'd never NOTICED that before,
until a user brought it to my attention (and conveniently provided a fix.) Note that
this solves a problem often encountered when prlntlng hex values. Now, the following
"printf" call:
printf("%4x; %04x\n",8,8);
will produce the output:
8; 0008
The body of a function definition now MUST be enclosed in curly-braces. Formerly, the

following sort of thing was tolerated as a function definition, but no more:

putchar(c) bdos(4,c);

A bug in the OMAC.LIB macro package had NOT allowed lines such as:

exrel <1xi h,>,putchar
while the following kind of lines were properly handled:

exrel call,putchar
A new low-level character I/0 function package, named CIO.C, has been added for
greater flexibility in oonsole interaction, especially for game-type applications.
Note, however, that code generated using this facility is NON-PORTARLE from one system
to another unless the "other" system is also equipped with a C campiler. If you HAVE

to, go ahead and use it, but please resist the temptation to give out a copy of the
canpiler to your friends along with your source code.

Quoted strings containing an open—camment delimiter sequence ('/*') had caused CCl to
think an actual comment was intended. I.e, the statement

printf("this is an open-camment sequence: /* \n");

C v1.43 Doc. Update, 3/81

would have drawn a "string too long..." error. Not any more. (

The handling of string constants by the code generator has been improved. Now, instead
of putting the text right where it is used and generating a jump around it, the
campiler accumilates up to 50 text strings in a function and places them all at the
end of the function. If more than 50 strings appear, then after the 50th it goes back
to doing it the old way for the remainder of the functlon (there's only so much table-
space worth allocating to hacks like this.)

Speaking of hacks, here's one that'll get you either excited or sick: You say you
need same "static" variables? Consider the following method of simulating a ‘"static
array of characters":

char *static;

statlc = "0123456789";

The result is that the variable "static" may be used just like a static array of ten
characters. If declared as an "int" instead of a "char", it could be used as an array
of five integer variables (or ten, if you make the quoted string twice as long...).

Steve Ward makes use of this technique in his CIO.C library. Kludgey, yes, -but it gets
the job done and it's even portable...

C

The default OCl symbol table size for modified versions of the compiler (v1.43T) has
been upped fram 6K to 7K. The "-r" option stlll lets you explicitly set the table
allocation, if you want to.

AN

C v1.43 Doc. Update, 3/81

hkkkdkkdkkhhkhkhkkhkkhkkkhkhkhkkhkhkhkhkhkhhhhkhkhkhkkhkhkkhkhkhkhkkhkkhkkhkkkkhkkkkkkkkkkk

* *
* The New Dynamic Overlay Scheme........for BDS C vl.4 *
* August, 1980 . *
* *

dedkddkhhdhkdhkdhkhhkkkkhkkkhkkhkhhkhhhkhkhkhhkhkdkdkhhkhkhkhkhkhkdkkhkhkhkhkkhkhkhhkhkkkkdkd

order to allow C programs to be longer than physical memory, without resorting to "exec" or
cl" (which may indeed get the job done, but resemble "chain" operations more than true
entation tools), a new set of capabilities has been built into the CLINK program.
ally, the run-time environment of an executing C program locks like this: '

low memory: base+lOCh: C.CCC run—time utility package (csiz bytes)

ramtcsiz: start of program code
... (program code) ...
xxxx-1: end of program code

xxxx: external variable area (y bytes long)
... {external data) ...

Xxxx+y: free memory,
available for

storage
allocation
????: as low as the machine stack ever gets
local data, function parameters,
machine stack: intermediate expression results,
etc. etc.
high memory: bdos: machine stack top (grows down)

: that "xxxx" is the first Ilocation following the program code and "y" is the amount of
ry needed for external variables..

mplement overlays, the first thing necessary is to decide just where the swapped-in code is
reside. Earlier versions of BDS C had local data frames growing up fram 1low memory,
ting fram where the externals ended, making it difficult to determine the lowest memory
tion safe to swap into. The scheme suggested then for handling overlays was to leave
icient roam between the end of the root segment code (the root segment contains the "main"
tion and run-time package; it loads at the start of the TPA, always remains in memory, and
rols the top level of overlay swapping) and start of the external data area to accammodate
largest possible swapped-in segment combination. This is still a viable scheme for version
here is the modified memory map, accammodating this first method of handling overlays:

C Overlays, August 1980

base+100h:
ramtcsiz:

low memory:

2222-1:

2222

XXXx-1:

XXXX 3

XXXXHY:

?2?227:
machine stack:

high memory: bdos:

C.OCC run-time utility package (csiz bytes)
start of root segment code

... (root segment code) ...

end of root segment code

start of overlay area
... (overlay area) ...
end of overlay area

external variable area (y bytes long)
... (external data) ...-

free memory,
available for
storage
allocation

as low as the machine stack ever gets
local data, function parameters,
intermediate expression results,
etc. etc.

machine stack top (grows down)

that "zzzz" is where segments get swapped in, guaranteed that the longest segment doesn't

1 "xxxx".

version 1.4, it is just as feasible to put the overlay area AFTER the externals. T("“
-y map for this alternative configuration would be: - -

base+100h:
ramt+csiz:

1ow memory:

Xxxx-1:

XXXX:
XXxx+y-1:
XXXX+Y:
XXXx+y+ssss-1:
XXXx+y+ssss:
?22272:

machine stack:

high memory: bdos:

C.CC run-time utility package (csiz bytes)
start of root segment code

«+. (root segment code) ...

end of root segment code

external variable area (y bytes long)
... (external data)
end of external data area

start of overlay area (ssss bytes long)
... (overlay area) ...

~end of overlay area

<unused memory>

as low as the machine stack ever gets
local data, function parameters,
intermediate expression results,
etc. etc.

machine stack top (grows down)

you plan to use the storage allocation functions (alloc, free, sbrk, rsvstk)

2 Overlays, August 1980

i

, then this second scheme would require you to call the "sbrk" function with argument
(the size of the overlay area) since, by default, storage allocation always begins with
a immediately following the end of the externals. For the remainder of this document, I
sume the FIRST of the above two schemes is being used. '

h the generalities out of the way, let me say something about just how to create "root"
s and "swappable" segments with BDS C. First of all, we would like all functions defined
the root segment to be accessible by the swapped segment(s)...this 1is accamplished by
" CLINK to write out a symbol table file (containing all function addresses) to disk when
t segment is linked. The -w option to CLINK will do the trick; this symbol table will be
ter when linking the swappable segments.

inking the root segment, use the —e option to set the external data area location; Xkeep
| that there must be enough roam below the externals to hold the largest swapped-in
. at run time (I'm using the term "below" in the sense that low memory is "below" high
graphically, in the preceding memory maps, "below" means toward the top of the page.)
-e option is amitted, CLINK will assume the external data starts immediately after the
the root segment code; this is OK only if you're using the SECOND scheme.

the code of the root segment, then, a swappable segment is loaded into memory fram disk
ng:

swapin(name,addr); /* read in a segment..don't run it */

"addr" 1is the location following the last byte of root segment code (for the first
.) You can find this value by linking the root once without giving the -e option and
j the -s statistics written to the console after the linkage. To actually execute the
:» you have to call it indirectly using a pointer-to-function variable.

5 an example. We'll declare a pointer-to-function variable called "ptrfn", swap in a
: named "foo" at location 3000h, and call the segment. The sequence would look like this:

int (*ptrfn)(); /* can be whatever type you like */

ptrfn = 0x3000;

if (swapin("foo",0x3000) != -1) /* check for load error */
(*ptrfn) (args...); /* if none, call the segment */

e o0

vapin" routine returns -1 when a load error occurs. Note that the swapped-in code might
urn any value, but the pointer-to-function mist be declared with SOME kind of type. Use
if nothing else cames to mind. When a segment is invocked, as above, control passes to the
:'s "main" function. There is no reason at all to require args to be of the "argc" and
form; there is nothing special about a "main" function other than the property it has of
3 called first. The "main" function within the swapped-in segment is the ONLY allowed

xoint for the segment.

le "swapin" function is given in STDLIB2.C. It can be made shorter by skipping all the
testing, or can be expanded to detect an attempted load over the external data area by
ing the last address loaded with the contents of location ramtll5h...if you've never done
v-level hackery, you get the value of the 16-bit address at location ramtll5h by using
ction on a pointer-to-integer (or -unsigned.) Note that location RAM+115h ALWAYS contains

Jress of the base of the external data area.

know how to do everything except actually create a swappable segment.

Overlays, August 1980

swappable segment is basically just a normal C program, having a "main" function just
e root segment, except that the C.CCC run-time utility package is NOT tacked on to the
f a swappable segment (the C.CCC in the root segment will be shared by everyone.) 'I(
ifference between a swappable segment and the root segment is the load address; whi

t segment always loads at ram+l00h (where "ram" is O for standard CP/M, or 4200h for the
ed" CP/M), a swappable segment may be made to load anywhere. Once you've ccmplled the
le segment, you give a special form of the CLINK cammand to link it:

A>clink segmentname -v -1 xxxx -y symbolfile [-s ...] <cr>
segmentname" is the name of the CRL file containing the segment, "-v" indicates to CLINK

swappable segment is to be created (so that C.CCC is not attached), and "-1 xxxx"
ell followed by a hex address) indicates the load address for . the segment.

ou'll probably want to yank in the symbol file created by the 1linkage of the root

., use the -y option to do so. If you don't, then CLINK will yank in fresh copies of
ns like "PRINTF" end "FOPEN", etc., even if they have already been linked into the root
.. It would be a waste to have miltiple copies of those memory hogs in there at the same
y reading in the symbol table fraom the root segment, it is insured that any routines
' linked in the root will be made available to the swapped-in segment. The root segment,

cannot know about functions belonging to the swapped-in segment through the use of a

table. That would require same kind of mutually referential linking system beyond the
f this package.

.. When linking the segment, you may specify -s to generate a stat map on the console,
to write out an augmented symbol table containing not only the symbols read in fram the
gment's symbol file, but also the swappable segment's own symbols. This new symbol file

n be used on another level of swapping, should that be desired. -~

2= (The addresses given in this example are for a RAM at 0000h CP/M; if you have t.
d 4200h CP/M, fudge accordingly.)

ay you've got a program ROOT.C, which will swap in and execute SEGl1.C and then overlay
with SBEG2.C. ROOT.COM loads at 100h and ends, say, before 3000h. We'll load in the
s at 3000h, and set the base of the external data area to 5000h (this assumés neither

. is longer than 2000h.)
kage of ROOT would be:

A>clink root -e 5000 -w -s <cr>
111s CLINK that ROOT.COM is to be a root segment (no "-v" option used), the externals
it 5000h, a symbol file called ROOT.SYM is to be written, and a statistics summary is to
ited to the console. .
ikage of each segment would appear as:

A>clink segl -v -1 3000 -~y root -s -o segl. <cr>
mand line tells CLINK that SEG1.COM is to be a swappable segment (the "-v" option) to
it location 3000h, the symbol file named ROOT.SYM should be scanned for pre-defined

m addresses, a statistics summary should be printed after the linkage, and the object
5 to be written out as SBGl (as opposed to SEGl1.OM, to avoid accidentally invoking it as

camand.) .
(_

~

werlays, August 1980

BDS C File I/O Tutorial

Leor Zolman
BD Software

The file 1I/0 1library functions provided with BDS C fall into two catagories: 'raw'
and "buffered." The raw file functions, typically coded in assembly language for best
performance, are essentially a CP/M-oriented low-level interface where data transfers
always occur in multiples of full CP/M 1logical sector (128 byte) quantities. The
buifered functions (written in C) provide a byte-oriented, sequential file I/0 system
geared especially for '"filter"-type applications; buffering allows you to read and
write data in whatever sized quantities are most convenient while invisible mechanisms
worry about things like sector buffering and actual disk I/0; thus the buffered I/0
functions are usually more convenient to deal with than the raw functions, but they
generate a lot of overhead by being slow and hogging up quite a bit of memory for code
and buffer space.

Since buffered I/0 is composed of raw I/0 functions plus some extra code, I°11 first
present the raw I/0 in detail, and then go onto the buffered functions.

The raw functions are characterized by their concern with "file descriptors". A file
descriptor (fd) is a small integer value that becomes associated with a currently
active file. This fd is always obtained by calling either the "open" or '"creat"
functions; their usage is:

fd = open(filename,wmode); /* “filename’ can be either a literal */
/* string or any expression that */
fd = creat(filename); /* evaluates to a character pointer */

The former is wused to open an already existing file (usually, a file that has some
data in it) for reading or writing or both, and the latter is used to create a brand
new file and open it for writing. In both cases, the fd is the value returned by the
call. If some kind of error occurs and the specified file cannot be opened or created,
a value of ERROR (-1) is returned instead. For example, if "open'" cannot find the file
on disk whose name is pointed to by the first argument, ERROR will be returned.

All other raw functions require an fd to specify the file to be operated on (except
"unlink" and '"rename", which take filename pointers). The '"read" and "write"
functions are used to transfer data to and from disk. Their typical usage is:

i = read(fd, buffer, nsects); /* “£fd° must have been obtained by */
j = write(fd2, buffer2, nsects2); /* a previous call to "open" */

The first call would try to read, into memory at ‘buffer’, ‘nsects’ sectors from the
file whose ‘fd° is specified. The second call would try to write ‘nsects2’ sectors
from memory at ‘buffer2’ to the disk file whose fd is ‘*£fd2°. Unless an error occurs
(such as when an illegal fd is given or an attempt is made to read past the end of a
file), the above functions cause an immediate disk transfer to happen. This is one of
the main differences between raw and buffered I/0: raw functions always cause
immediate disk activity, as long as what they are asked to do 1is possible, while
buffered functions only go to disk when a buffer fills up (when writing) or becomes
exhausted (when reading.)

BDS C File I/0 Primer

For each file opened wunder raw I/0, there exists an invisible "r/w pointer" to keep
track of the next sector to be written or read. Immediately after a file is opened,
:he r/w pointer always starts at sector 0 (the first sector) of the file; it is bumped
after "read" and "write" calls by the number of successfully transfered sectors, so
that (by default) the next transfer happens sequentially. One nice extension of the
3DS C raw I/0 functions over their REALLY-raw CP/M equivalents is the elimination of
:he concept of "extents'"; Instead of "extent numbers" and “sector numbers within the
:urrent extent" to be reckoned with for every file, there is only a single 16-bit r/w
>ointer to be considered. The value of a file’s r/w pointer may be obtained by
:alling the "tell" function, and modified by calling '"seek".

fo 1illustrate the use of raw I1/0 in a program, let’s build a simple utility to make a
:opy of a file. The command format for this utility (which we’1ll call "copy") shall
e:

A>copy filename newname <cr>

'his will take the file named by ‘filename” and create a copy of it named by
‘newname’. Since this 1is to be a classy utility, we want full error diagnostics in
:ase something goes wrong (such as running out of disk space, not being able to find
:he master file, etc.) This includes checking to make sure that the correct number of
irguments were typed on the command line. It 1is sometimes convenient to summarize a
yrogram in a half-C/half-English pseudo code form to avoid going in blind; Here is
such a summary of the copy program: :

copy(filel,file2) {
if (exactly 2 args weren’t given) { complain and abort }
if (can’t open filel) { complain and abort }
if (can’t create file2) { complain and abort }
while (not end of filel) {
Read a hunk from filel and write it out to file2;
if (any error has ocurred) { complain and abort }
}

close all files;

>

nd here is the actual C program that implements the above procedure:

DS C File 1/0 Primer

f#include "bdscio.h" /* The standard header file %/

f#define BUFSECTS 64 /* Buffer up to 64 sectors in memory */
int fdl, f£d2; /* File descriptors for the two files */
char buffer [BUFSECTS * SECSIZ]; /* The transfer buffer */
main(argc,argv)
int argc; /* Arg count */
char **argv; ' /* Arg vector */
{

int oksects; /* A temporary variable */

/* make sure exactly 2 args were given */
if (argec != 3)
perror("Usage: A>copy filel file2 <cr>\n");

/* try to open lst file; abort on error */
if ((fdl = open(argv([l],0)) == ERROR)
perror("Can’t open: %x\n",argv[1]);

/* create 2nd file, abort on error: */
if ((fd2 = creat(argv[2])) == ERROR)
perror("Can’t create: %s\n",argv{2]);

/* Now we’re ready to move the data: * /
while (oksects = read(fdl, buffer, BUFSECTS)) {
if (oksects == ERROR) .
perror("Error reading: %s\n",argv[1]);
if (write(£fd2, buffer, oksects) != oksects)
perror ("Error; probably out of disk space\n");

/* Copy is complete. Now close the files: */
close(fdl);
if (close(fd2) == ERROR)
perror("Error closing %s\n",argv{2]);
printf("Copy completé\n");

}
perror(format,arg) /* print error message and abort */
{ : .
printf(format, arg); /* print message */
fabort(£fd2); /* abort file operations */
exit(); ' /* return to CP/M */
} .

Now let’s take a look at the program. First come the declarations: we need a file
descriptor for each file involved in the copying process, and a large array to buffer
up the data as we shuffle chunks of disk files through memory. The size of the buffer
is computed as the sector size (defined in. BDSCIO.H) times the number of sectors of
buffering desired (defined at the top of this program as BUFSECTS).

In the "main'" function, the first thing to do is make sure the correct number of

BDS C File I/0 Primer

arguments were given on the command line. Since the “argc’ parameter is provided free
>y the run-time package to every main program, and is always equal to the number of
arguments given PLUS ONE, we test to make sure it is equal to three (i.e, that two
arguments were given). If argc is not equal to three, we call "perror" to print out a
complaint and abort the program. 'Perror" interprets its arguments as 1if they were
the first two arguments to a "printf" call, performs the required "printf" call,
aborts operations on the output file (this wouldn’t have any effect if called before
the file is opened; this would be the case if the "arge != 3" test succeeds), and
axits to CP/M.

[f we make it past the argc test, it is time to try opening files. The next statement
>pens the master file for reading, assigns the file descriptor returned by "open" to
the variable ‘fdl1°, and causes the program to be aborted if "open" returned an error.
This can all done at one time thanks to the power of the C expression evaluator; if
you aren’t used to seeing this much happen in one statement, take a moment to follow
:he parenthesization carefully. First the call to '"open" 1is performed, then the
issignment to “fdl’ of the return value from "open'", and then the test to see if that
7alue was ERROR. If the value was NOT equal to ERROR, control will pass onto the next
‘if’ statement; otherwise, the appropriate call to "perror" diagnoses the problem and
terminates the program. Creating the output file follows exactly the same pattern.

laving made it through all the preliminaries, it is time to start copying some data
(finally!). Each time through the ‘while’ loop, we read as much as we can get (up to
BUFSECTS sectors) into memory from the master file. The "read" function returns the
wmber of sectors successfully read; this may range from O (indicating an end-of-file
[EOF] condition) up to the number of sectors requested (in this case, BUFSECTS), with
1 value of ERROR being returned on disaster (when the disk drive door pops open or
something). Whatever this value may be, it is assigned to ‘“oksects’ for later
:xamination. In the special case when it is equal to zero, indicating EOF, the "while"
loop will be exited. Otherwise, we enter the loop and attempt to write back out the
lata that we just read in. First, though, we want to make sure no gross error
sccurred, so a check is performed to see if ERROR was returned by the "read" call. If
50, it’s Abortsville. Having safely circumnavigated Abortsville, we call "write" to
lump the data into the output file. If we don’t succeed in writing the number of
sectors we want to write, it”s back to Abortsville with an appropriate error message
‘most write errors are caused by running out of disk space.) If the "write" succeeds,
7e go back to the top of the loop and try to read some more data.

‘he last thing to do, once the "while" loop has been left, is to mop up by closing the
‘iles; just to be complete, we check to make sure the ‘output file has closed
:orrectly. And that’s it.

he raw file I/0 functions are most useful when large amounts of data, preferably in
'ven sector-sized chunks, need to be manipulated. The preceding file-copy program is a
:ypical application., Raw file I1/0 requires you to always think in terms of
'sectors'--while this poses no particular problem in, say, the file-copy example, it
loes add quite a bit of complexity to shuffling bits and pieces of randomly-sized
lata. Consider, for example, the wunit known as the "text-line": A line’s worth of
\SCI1 data may vary in size anywhere from 1 byte (in the case of a null string,
‘epresented by the terminating null only) up to somewhere around 133 bytes, or maybe
wen more 1if you’re dealing with some really fancy printing device. Anyway, some
.onvenient method to read and write these text-lines to and from disk files would be a
‘ery useful thing for text processing applications, Ideally we’d 1like to be able to
.:all a single function, passing to it some kind of file descriptor and a pointer to a

DS C File I/0 Primer

text-line, and let the function write the text-line into the file so that it
immediately follows the 1last line written to that file. Also, to prevent a
time-consuming disk access every time a line is written, it would be nice to have our
function collect up a bunch of lines and toss them all to disk at once when the
"buffer" fills up. Analogously there would have to be a function to read a text-line
from some disk file into a given place in memory; here, also, it would greatly improve
performance if an invisible buffer was managed by the text-line-grabbing function so
that disk activity is minimized. The functions described here are, in fact, "fputs"
and "fgets" from the library: two of the "buffered I/0" functions.

The spotlight in the world of buffered I/O is a structure called, amazingly, an '"I1/0
buffer". Within this structure is a large, even-sector sized character array within
which the data being transferred 1is stored, and several assorted pointers and
descriptors to keep track of '"what’s happening”" in the data array portion of the
buffer. There’s a file descriptor to identify the file in raw I1/0 operations, there’s
a pointer 1into the data array to tell where the next byte shall be -read from or
written to, and there’s a counter to tell how many bytes of either data or space
(depending on whether you’re reading or writing) are left before it becomes necessary
to reload or dump the buffer. (1)

Buffered I/0 functions use pointers to I/0 buffers just as the raw functions use file
descriptors. There are six functions that perform all actual buffered I/0O for single
bytes of data; the other buffered I/0 functions (such as "fputs" and "fgets'") do their
stuff in terms of the six "backbone" functions.

For reading files we have '"fopen'", 'getc", and '"fclose". "Fopen'" is called to
associate an existing input file with a user-provided I/0 buffer area by initializing
all the variables in that buffer. "Getc'" grabs a byte from the buffer, first refilling
the data array from disk whenever the array is found to be empty, and returns a
.special value (EOF) when the end of the file is reached. "Fclose'" closes the file
associated with an I/0 buffer.

For writing files there are "fcreat", "putc", "fflush", and "fclose'" again ("fclose"
leads a double existence.) "Fcreat" creates a new file and prepares an associated I/0
buffer structure for recieving- data. The -data is written-to the buffer via calls to
"putc", one byte at a time. When all the data has been "putc'~ed, "fflush" is called
to dump out the contents of the not-yet-full I/0 buffer to the disk file. Finally,
"fclose" wraps things up by closing the associated file.

The only functions that actually read and write data are '"getc" and "putc'"; functions
such as '"fgets", "fputs", "fprintf", etc. do their reading and writing in terms of
"getc" and "putc". .

Let”’s look at a simple first example. The following program prints a given text file
out on the console, with line rumbers generated on the left margin:

l. The devious user may wonder why there is space taken for a byte counter, when the
lata pointer could just as well be compared to the last array address to detect a
‘ull/empty buffer. Actually, it ends up being more efficient with the counter,
recause the code required to compare two addresses is usually bulkier than the code
required to decrement a counter and test for zero.

DS C File I/0 Primer

/*
PNUM.C: Program to print out a text file with
automatic generation of line numbers.

* /
#include "bdscio.h"

main(argc,argv)
char **argv;

{
char ibuf [BUFSIZ]); /* declare 1/0 buffer */
char linbuf [MAXLINE]; /* temporary line buffer * [
int lineno; /* line number variabele */
if (arge != 2) { /* make sure file was given */
printf("Usage: A>pnum filename <cr> \n");
exit();
}
if (fopen(argv[l],ibuf) == ERROR) {
printf("Can’t open %s\n",argv([1]);
exit();
}
lineno = 13 /* initialize line number */
while (fgets(linbuf,ibuf)) .
printf("%3d: %s",lineno++,linbuf);
fclose(ibuf);
}

'he declaration of ‘ibuf® provides the I/0.buffer area for use with "fopen", "getc"
ind "fclose". The symbolic constant "BUFSIZ", defined within the BDSCIO.H header file,
:ells how many bytes an I/0 buffer must contain; this value will vary with the number
»f sectors desired for data buffering. See BDSCIO.H for instructions on how to
:ustomize the buffered I1/0 mechanism for a different buffer size (the default is eight
sectors) . ' '

fter checking the argument count and opening the specified file for buffered input,
111 the REAL work takes place in one simple "while" statement. First the 'fgets"
‘unction reads a line of text from the file and places it into the ‘linbuf’ array. As
.ong as the end of file isn”t encountered, "fgets" will return a non-zero (true) value
ind the body of the "while" statement will be executed. The body consists of a single
:all to "printf", in which the current line number is printed out followed by a colon,
ipace, and the current text 1line. After the value of ‘lineno’ is wused, it is
ncremented (by the ++ operator) in preperation for the next iteration. The cycle of
‘eading and printing lines continues until "fgets" returns zero; at that point the
'while" loop is abandoned and "fclose'" wraps things up.

'or our final example we have the kind of program known as a "filter". Generally, a

‘ilter reads an input file, performs some kind of transformation on it, and writes the
‘esult out into a new output file. The transformation might be quite complex (like a C

DS C File I/0 Primer

compilation) or it might be as trivial as the conversion of an input text file to
upper case. Since printing costs are pretty high these days, let’s skip the C
compiler for the time being and take a look at a To-Upper-Case filter program:

#include "bdscio.h"

main(argc,argv)

char **argv;

{
char ibuf [BUFSIZ], obuf[BUFSIZ};
int c;

if (argce != 3) {
printf("Usage: A>ucase file newfile <cr> \n");
exit();
} .
if (fopen(argv([l],ibuf) == ERROR) {
printf("Can’t open %s\n",argv([l]);

exit();
}
if (fcreat(argv(2),obuf) == ERROR) {
printf("Can’t create %s\n",argv[2]);
exit();
}

while ((c = getc(ibuf)) != EOF && c |= CPMEOF)
if (putc(toupper(c),obuf) == ERROR) {
printf("Write error; disk probably full\n");
exit(); :

b

putc (CPMEOF,obuf);
fflush(obuf);
fclose(obuf);
fclose(ibuf);

This time there are two buffered I/0 streams to be dealt with: the input file and the
output file. The first thing to do is check for the correct number of arguments (in
this case, two: the name of an existing input file, and the name of the output file to
be created). Then "fopen" and '"fcreat" are called, to open and create the two files
for buffered 1/0. If that much succeeds, the main loop is entered and the fun begins.
On each iteration of the loop, a single byte is grabbed from the input file and
compared with the two possible end-of-text-file values: EOF and CPMEOF. Normally, the
last thing in a text file SHOULD be a CPMEOF (control-Z) character. But, some text
editors (none that I use) neglect to place the CPMEOF character at the end of a file
if the file happens to end exactly on a sector boundary; in this case, CPMEOF will
never be seen and the physical end-of-file value (EOF) must be detected. The
complication this causes is rather tricky...the EOF value returned by '"getc" is -1,
which must be represented as a 16-bit value because "char" variables in BDS C cannot
take on negative values. This is why the variable ‘¢’ is declared as an "int" instead
of a "char" in the above program; if it were declared as a 'char", then the
sub-expression

BDS C File I/0 Primer

c = getc(ibuf)

1d result in a value having the type "char" and could never possibly equal EOF as
ted for in the program. Should "getc" ever return EOF in such a case, ‘¢’ would end
being equal to 255 (the "char" interpretation of the low order 8 bits of the value
). Thus, ‘¢ 1is declared as an "int" so that the EOF comparison can make sense.
s is awkward because ‘¢’ is used here for holding characters, and it would be nice
have it declared as a character variable. There’s actually a way to do it, at the
ce of complete generality: if the EOF in the comparison were changed to 255, then
would have to be be declared as a '"char", and the program would work...EXCEPT for
n an actual hex FF (decimal 255) byte is encountered in the input file! Now, while
is a pretty safe bet to assume there aren’t any hex FF bytes in your average text
e, there may be exceptions. Also, there’s no law that says filters can only be
tten for text files. Consider a program to take a binary file and "unload" it,
ating an Intel-format HEX file. Would we want it to halt when the first hex FF is

ountered? No, the original method is clearly the most general.

e having determined that the end-of-file has not been encountered, the body of the
ile" statement is executed. Here we use "toupper" to convert the character obtained
m '"getc" to upper case, and then we use "putc" to write the resulting byte out to
: output file. To be neat, errors are checked for: the program terminates if "putc"
:urns ERROR.

soon as an end-of-file condition 1is detected, we write out a final CPMEOF
mtrol-Z) character to terminate the output file. The way this particular program is

up, the CPMEOF will be appended to the output file whether or not the input file
led with a CPMEOF. Next, "fflush" is called to flush the output buffer. This must
7ays be done before closing a buffered output file, to make sure that all characters
it to "putc" since that last time the buffer filled up get written to disk. Finally,
:lose" is used to close the input and output files.

: more examples of the wusage of buffered I/O see CONVERT.C, CCOT.C, TABIFY.C and
.NET.C. Also, take some time to inspect the files BDSCIO.H, STDLIBI C and STDLIB2 c,
.ch contain the sources of all the buffered I/0 functions.

Y - » 8
5 C File 1/0 Primer

(

[

BDS C Console I/0: Some Tricks and Clarifications

Leor Zolman
BD Software
Cambridge, Massachussetts

In this document I will attempt to remove some of the mystery behind the CP/M console 1/0
anisms available to BDS C users. When the major documentation for BDS C (i.e. the User’s
e) was being prepared, I had mistakenly assumed that users would automatically realize how
"bdos" and "bios" library functions could be used to perform all CP/M and BIOS functions,
cially direct console I/0 (by which the system console device may be operated without the
trating unsolicited interception of certain special characters by the operating system.) In
» the use of the "bios" function for such purposes might only be obvious to experienced

users, and then only to those having assembly language programming experience with the
y-gritty characteristics of the CP/M console interface. Let’s take a look at what really
ens during console 1/0...

The lowest (simplest) 1level of console-controlling software is in the BIOS (Basic
t/Output System) section of CP/M. There are three subroutines in the BIOS that deal with
ing and writing raw characters to the console; they are named “CONST’ (check console
us), “CONIN° (wait for and read a character FROM the console), and ‘CONOUT’ (send a
acter TO the console). The way to get at these subroutines when you’re writing on the
nbly language level is rather convoluted, but the BDS C library provides the ‘bios”
tion to make it easy to access the BIOS subroutines from C programs. To check the console
us directly, you use the subexpression ‘bios(2)°, which returns a non-zero value when a
>le character is available, or =zero otherwise. To actually get the character after
5(2)° indicates one is ready, or to wait until a character is ready and then get it, use
5(3)’. To directly write a character ‘c’ to the console, you’d say ‘bios(4,c)’, but note

the BIOS doesn’t know anything about C’s convention of wusing a single “\n’ (newline)
acter to represent a logical carriage-return/linefeed combination. The call ‘bios(4,’\n")”’
cause ONLY a single linefeed (ASCII 0x0A) character to be printed on the console.

Making sure - that all console I/0 is eventually performed by way of these three BIOS
>utines is the ONLY way to both keep CP/M from intercepting some of your typing and insure
sortability of programs between different CP/M systems. (1)

The BDOS (Basic Disk Operating System) operations are the next higher level (above the
) on which console I/0 may be performed. Whenever the standard C library functions
:har” and ‘putchar’ are called, they perform their tasks in terms of BDOS calls...which in
perform THEIR operations through BIOS calls, and this is where most of the confusion
:s. Just as there are the three basic BIOS subroutines for interfacing with the console,
» are three similar but "higher level" BDOS operations for performing essentially the same
3« These BDOS functions, each of which has its own code number distinct from its BIOS
:erpart, are: '"Console Input" to get a single character from the console (BDOS function
'Console Output" to write a single character to the console (BDOS function 2), and "Get

iven so there’s no way to know what kind of terminal is being used--so "truly portable"
jare either makes some assumptions about the kind of display terminal being used (whether
)yt it is cursor addressable, HOW to address the cursor, etc.) or includes provisions for
-modification to fit whatever type of terminal the end-user happens to have connected to
jystem.

. Console 1/0 -- 12/80

le Status" to determine if there is a character available from the console input (BDQ"
ion 11). The BDOS operations do all kinds of things for you that you may not even be fu’
of . For instance, if the BDOS detects a control-S character present on the console input
g a console output call, then it will sit there and wait for another character to be typed
e console, and gobble it up, before returning from the original console output call. This
e fine if you want to be able to stop and start a long printout without having to code
feature ‘into your C-program, but it causes big trouble if you need to see EVERY character
-on the console, including control-S. A little bit of thought as to how the BDOS does what
oes reveals some interesting facts: since it must be able to detect control-S on the
le input, the BDOS must read the console whenever it sees that a character has been typed.
e character ends up not being a control-S (or some other special character that might
re instant processing), then that character must be saved somewhere internally to the BDOS
at the next call to ‘Console Input’ returns it as if nothing happened. Also, the BDOS must
sure that any subsequent calls made by the user to ‘Get Console Status’ (before any are
to “Console Input’) indicate that a character is available., This leads to a condition in
a BDOS call might say that a character is available, but the corresponding BIOS call
NOT, since, physically, the character has already been gobbled up by the BDOS during a
interaction with the BIOS.

If this all sounds confusing, bear in mind that it took me several long months of playing
CP/M and early versions of the compiler before even I understood what the hell was going
there. My versions of ‘getchar’ and ‘putchar’ are designed for use in an environment
the user does NOT need total direct control over the console; given that the BDOS would
ome nice things for us like control-S processing, I figured that I might as well throw in
more useful features such as automatic conversion of the “\n’ character to a CR-LF
nation on output, automatic abortion of the program whenever control-C is detected on
or output (so that programs having long or infinite unwanted printouts may be stopp-
it resetting the machine, even when no console input operations are performed), automat "
rsion of the carraige-return character to a ‘\n‘ on input, etc. One early user remarked
re would like ‘putchar’ to be immune from control-C; for him I added the ‘putch’ library
ton, which works just like ‘putchar’ except that control-C’s would no longer stop the
am. Much later it became evident that neither ‘putchar’ nor ‘putch’ suffice when CP/M must
revented from ever even sampling the physical console input. At this point I added the

function, so that users could do their I/0 directly through the BIOS and totally bypass
rustrating character-eating BDOS.

[promised some examples earlier, so- let’s get to 1it. First of all, here is a very
:ntary set of functions to perform the three basic console operations in terms of the

function, with no special conversions or interceptions AT ALL (i.e., nothing like the
-=> CR-LF translations):

Console 1/0 -- 12/80

/*

Ultra-raw console I/0 functions:

*/
getchar () /* get a character from the console */
{ .
return bios(3);
}
kbhit () /* return true (non-zero) if a character is ready */
{
return bios(2);
}
putchar(c) /* write the character c to the console */
char cj;
{
bios(4,c);
>

These ultra-raw functions do nothing more than provide direct access to the BIOS console
utines. If you include these in your C source program, then the linker will use them
ad of the standard library versions of the similarly named functions--provided that some
t reference to them is made before the default library file (DEFF2.CRL) is scanned.
ly, in programs where such functions are necessary, there will be many explicit calls to
nar’ and ‘putchar’ to insure that the library versions aren’t accidentally linked. A good
le of a case where trouble might occur is when the entire program consists of, say, a
e ‘printf’ call followed by a custom version of ‘putchar’. Since the linker won’t know
“putchar’ is needed until after “printf’ is loaded from the library, the custom version of
har’ will be ignored and the old (wrong) version will be picked up from the DEFF2.CRL
ry file. The way to avoid such a problem is to insert, somewhere in the source file,
cit calls to any functions that are a) NOT explicitly called otherwise, and b) named the
as some library function. This disn’t an expecially neat solution, but it gets the job

OK, with that out of the way, let’s consider some more sophisticated games that can be
d with customized versions of the console 1/0 functions. For starters, how about a set
performs conversions just 1like the library versions, detects control-C, and throws away
haracters typed during output (except control-C, which causes a reboot)? No problem.
s needed is automatic conversion of ‘\n’ to CR-LF on output; conversion CR to ‘\n’ and Z
1 on input with automatic echoing; and re-booting on control-C during both input and
t.

. Console I/0 -- 12/80

/*

Vanilla console I/0 functions without going through BDOS: (j
) (“kbhit” would be the same as the above ultra-raw version)
*
ffidefine CTRL_C 0x03 /* control-C */
#define CPMEOF Oxla /* End of File signal (control-zZ) */
getchar () ' /* get a character, hairy version */
{
char c;
if ((c = bios(3)) == CTRL_C) bios(0); /* on °C, reboot */
if (¢ == CPMEOF) return -1; /* turn ~Z into -1 */
if (c == "\r") { /* if CR typed, then */
patchar(’\r"); /* echo a CR first, and set */
c = ’\n"; /* up to echo a LF also */
} /* and return a “\n’ */
putchar(c); /* echo the char */
return c; /* and return it */
}
putchar(c) /* output a character, hairy version */
char c; ‘
{
bios(4,c); /* first output the given char */
if (¢ == ‘\n’) /* if it is a newline, */
bios(4,\r"); /* then output a CR also */ -
if (kbhit() && bios(3) == CTRL_C) /* if ~C typed, */ (
bios(0); /* then reboot */

} /* else ignore the input completely */

ow, if you wanted to have control-S processing and a push-back feature (the two are
ly quite related, since you must be able to push back anything except control-S that
be detected during output), you could add some external '"state" to the latest set of
ons and keep track of what you see at the console input. Once this is done, though,
: probably better off going back to the original 1library versions of ‘getchar’ and
iar”, which let the BDOS handle all that grungy stuff.

‘ncidentally, CP/M version 2.x has a new BDOS function which supposedly makes it easier to
‘m some of the direct console 1/0.operations that required the BIOS calls for CP/M l.4.

this might be ‘useful for people having CP/M 2.x, it would render any software developed
the new BDOS feature autistic when run on CP/M l.4 systems. Please keep that in mind if
rer write any software on your 2.x system for use on other (perhaps non-2.x) systems.

jo far, everything I°ve talked about has been in terms of the BIOS, and applies equally to
>/M systems. Unfortunately, there is one console operation often needed when writing
time interactive operations that is not supported by the BIOS, and thus there is no
>le way to implement it under CP/M. What’s missing is a way to ask the BIOS if the console
1al is ready to ACCEPT a character for output. An example of the trouble this omission
5 is evident in the sample program RALLY.C; the case there is that the program must be
to read dinput from the keyboard at any instant, and cannot afford to become tied

ng for the terminal when the amount of data being sent to it has caused the X-ON/X-0,"
col to lock up the program until a character can be sent. Given that the only "kosher" wa,

Console 1/0 -~ 12/80

iend a character to the console is through the CONOUT BIOS call, and that such a call might
iny time tie up the program for longer than is tolerable, the only recourse is to bypass
T completely and construct a customized output routine in C that can be more
iisticated. This is done in RALLY,.C, at the expense of non-portability for the object code;
| 'user must individually configure his BDSCIO.H header file to define the unique port
)ers, -bit positions and polarities of the 1/0 hardware controlling his console. It would
: been SO ' much - easier if the BIOS contained just one more itty bitty subroutine to test

ole output status...but No000000000000000000, they had to leave that one OUT so we have to
‘GE ‘itooo

Sorry. I get carried away sometimes. Oh well...I hope this has helped to demystify some of
obscure behavior sometimes evident during console I/0 operations. For the low-down on how
library versions of ‘getchar’, ‘putchar’, etc. really work, see their source listings in
2.ASM. And if there’s something you want to do with the console and can’t figure out how

ite this document, I°m always available for consultation (at least whenever I'm near the
e.)

Good luck.

Cananloe T/0 17/9n

How To Avoid Warm-Boots After
C Programs Finish Executing

Leor Zolman, 12/81

As most users of BDS C have probably noticed, C—generated OOM files always perform a
arm-boot when finished with their tasks. This is because the stack is usually placed in
igh memory just below the BDOS, wiping out part of the CCP (console caommand processor)
uring execution and requiring a warm-boot to bring back the CCP from the system tracks on
isk. The following patches to the C.CCC run-time package file provide a way to generate
OM files that do NOT perform a warm boot after execution, but instead return directly to a
on-clobbered CCP. The price of avoiding a warm-boot is that there is less memory space
vailable during execution (3000 bytes less by default); the advantage is that there is no
aiting for the disk to seek and load the CCP every time the program is finished, improving
verall performance and preserving the nerves of impatient hackers.

he procedure for generating non-booting programs is as follows:

+ Make a copy of your normal version of C.CCC (the run-time package binary image) under
some other name.

. Use DDT or SID to change your C.CCC file according to the patches listed below, and
keep this new version of C.CCC for CLINK to use when 1linking your non-booting
programs.

+ Campile and 1link your programs normally, but do NOT use the "-t" CLINK option; it
won't work correctly for non-booting programs.

a. After linkage is camplete, use DDT' or SID to change the first four bytes of the
resulting OCOM file as follows:

100: 21 (was 2A)
101: 00 (was 06)
102: 00 (was 00 or 42)
103: 39 (was F9)

This MUST be done even if you've already changed some of these bytes in step 2,
because CLINK itself sets the first 4 bytes of the OOM file it generates to
instructions that don't work in the non-booting variation. So, this step changes them
back to what they need to be for all this to work.

> (optional): If you REALLY need to put the run-time stack someplace special, patch in
the following sequence at location 107h (or 4307h for modified systems) after making
the mainline patches described above:

107: 31 (was CD)
108: <stack addr, low byte> (was 34)
109: <stack addr, hi byte> (was 01 or 43)
10A: 00 (was F9)

Once this patch is made to C.OCC, it will remain in effect throughout later linkages,
but the modification in step 4A must be made after each linkage.

The OOM file should now be ready to execute. Try a simple one-line "printf" program
the first time to test out the C.OCC patches; if working correctly, the output line
should be followed immediately by a return to the system ("A>" should be printed)

1
0iding warm-boots after C programs

without ANY disk activity having occurred. If anything else happens, re—check y;)ur
patches. Remember that step 4 must be done after EVERY linkage.

Remenber to restore the original C.CCC file when generating programs that need th (
extra stack space and/or need a warm-boot performed after execution.

are the C.CCC patches for non-booting OOM files:

**** Changes to C.CCC for a non-warm-booting version *¥¥kkkkkkiikx
me of the values in the "NORMAL (OLD)" coluum may be different *

m those shown if you've reassembled C.CCC on your own earlier) *
hkkkhkkhhkkhhkkhkhkkkhkkhkhkhkhkkhkhkhkhkhkhkkkkkkhkkkhkhkhkhkhkhkhkkkkhkkkhkhkkhkkkkhkkkkk

NOBOOT mmemonic comments NORMAL (OLD)
21 1xi h,0 ;get system SP into HL 31
39 dad sp 00
22 shld spsave ;save until exit 00
79 00
05 or 47 ;(47h for modified CP/M) 00
CD call sppatch ;compute new SP value 00
34 00
0l or 43 ; (43h for modified CP/M) 00
o sphl ;Place into SP reg 00

.

retpatch:
2A 1hld spsave ;this is a patch from c3
79 ;the "vexit" routine, FB
05 or 47 :to restore system SP... oc
F9 sphl CD
C9 ret :...and return to CCP 9%
sppatch: 3

2A 1hld ram+6 ;get bdos pointer oD
06 ‘ FE
00 or 42 ; (42h for modified CP/M) 38
11 1xi 4,-3000 ;offset to bypass CA
48 ;the 0CPp 7B
F4 oc
19 dad 4 ;leave new SP value in HL E6
Cco ret ;in HL and return 08
00 ca
00 82
00 11
C3 jmp retpatch ;ready to exit...now reset C3
2F ; SP and return to CCP 00 (
01 or 43 ; (43h for modifed CP/M) 00

ing warm-boots after C programs

BD Software Telnet v2.0 Feburary 1980

Documentation for use with BDS Telnet v2.1

Leo Kenen
172 Churchills Lane
Milton, Mass. 02186
2/1/80

Setting up the machine:

To use the TELNET program effectively it is necessary for the hardware of your
system to be properly configured. The current version will work with any modem which
is connected to the microcomputer via a status driven port. This includes S-100
modeins such as the PMMI or the D.C. Hayes, even though many of the neat features
of these modems can not be used with this release.

On most systems the modem will be connected to the computer via a standard
serial port and will run al 30cps (300 baud). A suitable cable must be made to connect
the modem to the computer. This is usually a simple cable having one DB-25 (25 pin)
connector at each end. The connectors may be either male or female depending on
the requirements of your hardware. The standard wiring procedure is lo connact pin 2
of one connector to pin 3 of the other (this goes both ways) and to put jumpers on
each of the DB-25's. These jumpers should be between pins 4 and 5, and another
jurmper connecting pins 6,8 and 20. '

Once the hardware is set up, it is then necessary to aller the # define slatements
in the TELNET.C source file to fit your configuration. When all the necessary changes
have been made to the program, you are ready to compile it and test it out.

Initial test:

Turn on the modem and set it to HALF duplex (or better, TEST mode). Run the
TELNET program (after its been compiled and linked) by typing TELNET. The' program
will then ask you if you expect an echo from the other computer or from the modem.
Your reply should be 'y’ since in this test we are hoping for an echo. Now type some
keys on the console and see if they are displayed on the screen. If they are, then you
have a working copy ol TELNET. If nothing happens, there must be a problem with ei-
ther the hardware or the software. If your modem has a test mode you should hear
"blips" from the modem when keys are typed. If you do not, try reversing the wires on
pins 2 and 3 of one of the DB-25 connectors. If the hardware looks good, check (and
double check) the #defines in the program to be sure that they are correct for your
system. ’

Communication Mode:

As soon as the program comes up you are in communication mode. In this morle
anything that you type will be sent to the modem (except lor the SPECIAL characlter,
~which causes TELNET 1o prompt for a special funclion code). Cverything that anives
from the modem is also displayed on your screen. In this mode your computer is a sim-

BD Software Teinet v2.0 Feburary 1980

ple dumb terminal. For most applications this is the most common mode of operation.

SPECIAL mode:

To enter SPECIAL mode from communication mode it is necessary to type single
SPECIAL character (defined for your particular implementation within the # define sec-
tion of the TELNET.C source.) This character should be one which you are not likely to
need to type while in communication mode with another system. On most systems this
character ends up being the NULL (0x00), tA (0x01) or tt (Ox1f).

Typing an unknown command letter after hitting the SPECIAL character will display a
iist of legal commands on the screen. To send the special character to the other sys-
tem (just in case it ever becomes necessary), just type it twice. The following com-
mands (issued after typing the SPECIAL character) can be used to receive and lransmit
files and to perform many other useful functions.

Command Summary:

0] Open an Output file for a data transfer. This function can be used to
begin receiving programs or data from another computer or just keep a
record of the things that you did while -on line. When this command is
given TELNET will ask several questions concerning the protocol that
should be used during this transfer. The first thing that TELNET needs
to know is the name of the file that should be used to store the data
which is received. The filename you specify should be in the standard
CP/M format: '

Filename: foo.bar opens FOO.BAR on the current drive
Filename: b:foo.bar opens FOO.BAR on B:

When the file is opened, any old file with the same name will be lost. If
this file can be opened, you will be asked if the transfer will involve
TEXT (ascii data which is suitable for printing) or binary data. If your
response is ‘n' (to indicate binary) then the data received from the
modem will not be displayed on the console until the transfer is complet-
ed. If you just want a record of the session’s aclivily you must tell TEL-
NET that text is going to be transfered (or you will not be able to cee
what you are doing).

If the transfer is going to be in checksum mode, then there must
not be any ccho coming from the other system or your modem. TELNET
will believe it if you say there is no ccho, but if there really is an ccho
then the chances of making a good transfer are nil.

it you do not choose checksum maode, then all incoming datie vall
be buffered up in memory (except when pausing). Since the program
cannot monitor incoming data while data is being dumped to disk, the
normal procedure is to wait until you know there will not be any data
coming in for a while (for instance, when you are talking to a hoot
machine and it has just piinted its prompt character) and then give the

BD Software Telnet v2.0 Feburary 1980

dump .command (D) to flush the buffer contents to disk. See also the D
and C command descriptions.

- Dump (append) current contents of the collection buffer to the disk file
" (opened with the O command), leave the file open for more data, and
clear the collection buffer. " This function is useful if the file which is be-
ing transfered is larger than the bulfer space. This is only needed if the
transfer is rot in checksum mode, since TELNET manages the buffer au-
tomatically when in checksum mode. After the bufler is dumped, collec-
tion will continue although any data that is sent while the disk is active
will be lost torever.

Close Output file. This function first forces an automatic dump of the
memory buffer to the open file, after which the the file is clesad. This
command will also clear the memory buffer, permitting another file to be
opencd. Close is only needed if the transfer is not in checksum mode.
An error in writing the file (such as running out of disk space) will resuit
in the loss of the data.

This command is the complement of the Open command, used for
transmitting a file from your system out to the modem and beyond. It
prompts for the name of the file to be transferred and for information re-
garding transfer protocol. These questions are analogous to those asked
by the Open command described above. If the file can be opened. then
it will be sent to the other computer using the protocol selected. If the
transfer involves binary data, then a status message will appear on the
console after each 128-byte sector is sent.
To abort or pause, use the A or P commands.

Pause from file transfer. If a file has been opened (using the O com-
mand) in non-checksum mode, then this suspends the collection of in-
coming text in the memory buffer until the R command is issued to
resume collection. if a file is being transmitted (in either checksum or
non-checksum mode) then the transfer is suspended, to be continued.
when R is given. It is not good practice to pause during a checksummed
transfer, but it is possible to recover provided: the transmitter pauses
first, he waits for the receiver to pause before typing anything, the re-
ceiver resumes first, and then the transmitter resumes. Messy but at least
feasible.

The main use of pause, though, should be during non-
checksummed text file output.

Resume from a pause.

Abort current transfer. Use of this’ command will terminate any transfer
which is currently in progress. If there is no transfer progress, a short
messaqge to that elfect will be printed. If you are receiving data (via the
O command) this command will also send out an ETX (tC) to the
transmitter to terminate that process also. While transmitting this com-
mand will send ot enough ETX's to inform the receiver that the transfer
has been terminated. If, however, the receiver is out of sync (probably

~~

BD Software Telnet v2.0 Feburary 1930

SPECIAL

because of a slow terminal) when the transmitter aborts, then the re-
ceiver may have to terminate manually alter seeing nothirfg happen for a
long enough period.

View the collection buffer. All contents of the collection buffer will be
displayed on the console. Following the display of the data, the amount
of free space left in the buffer will be announced. This is useful for veri-
fying that a text file has been translerred preperly.

Kill (erase, delete, throw away, ZAP) contents of the text buffer.

Quit Telnet and return to CP/M. This function will dump any bulfers that
are being used for buffered 170 and then close the associated files.
Alter all the housekeeping has been done the system will warm boot.

Set Half/Full Duplex. Use this command to tell TELNET whether or not
you are getting an echo from either the modem or from the other sys-
tem. When this is set to half duplex, all data sent to the modem from
your system will be simultaneously sent to your console ouiput (except
during binary data transfers). When in full duplex, it is assumed that the
other system will echo what you type, so TELNET does not do it. There
is no default for this command so TELNET will request the information
from you at the start of a session.

Select protocol concerning the Parily bit. .This function permits the pari-
ty bit to be preserved or 1o be masked out. In text files it is normal to
mask out the MSB (ani 7fh). During. a transfer this mode is set automati-
cally.

Select protocol regarding Nulls. This function is used to tell TELNET to
either disregard nulls (for text) or to notice nulls (needed in binary and
some other applications). When the system is noticing nulls, then they
will be placed in the text buffer and saved when the buffer is dumped to
disk. Ignoring nulls reduces the amount of storage necessary since nulls
will not be placed into the buffer.

Select linefeed protocol. Asks whether or not the linefeeds which follow

- carriage-returns in CP/M text files should be transmitted. Many remote

systems would not appreciate those linefeeds.

Enable/disable CP/M list device. If enabled, anything going to the con-
sole (except TELNET control messages) is also sent to the list device
(usually a printer.) The printer's baud rate should be higher than the
modem’s.

Transmit the SPECIAL character to thé modem.

READ.ME

o - . -

e e - -
eSS SZSZES=S

PAGE 1

fhis file describes all files supplied on the BDS C v1.46 distribution disk,
aind also lists all documentation that should be included in the package as

)urehased from Lifeboat.

C1.COM, CC2.COM:
-LINK. CUM

LIB.COM~

jEE;EEE» DEFF 2. CRL(v
>.CCC -

3DSCIO0.H
SIDLIB1.C, STDLIB2.C il

EFF2.CSM, DEFF2A.CSM (new)

IDS.LIB T
'CC.ASM

)10.C, DIO.H
10.C, DIO.!I

'ILDEXP.C (new)
'ASM.C, CASM.SUB (new)
N

LOAT.DOC, FLOAT.C, FLOATSUM.C

‘ONVERT.C, CCOT.C

ELNET.C
THELLO.C
IEVE.C

PR.C
OBOOT.C

LPH.C

OCUMENTATION:

- . o s o s s

The BDS C User's Guide

The Kernighan & Ritchie book

“cqmgegion sgbmit-filefmm

BDS C Compiler (parts I and II) ’
BDS C Linker

BDS C Librarian

BDS C Standard Library object files

BDS C Run-time package ojbect code

Standard C header file

Sources to the C-coded parts of the standard
library (object in DEFF.CRL)

Sources to the assembly-coded parts of the
standard library (object in DEFF2.CRL)

Header file used for assembly-language function
generation

Source to the run-time package

Directed I/0 library, allow1ng for directed it

' (*Unlx is a trademark of Bell Laboratories)

Command line wild-card expansion utility

CSM-to-CRL assembly language preprocessor and

Bob Mathias's floating point utility package

Utilities for using BDS C on upper-case only
terminals (such as the TRS-80 Mod I) {

A telecommunications program

A game program

A benchmark, taken from the BYIE magazine high-
level language benchmark article. Directions

-are included on how to make it compile and run (

a lot faster than it did in the article...
A line- prlnter driver utility. v
A utility to make C-generated COM files return !
quickly to the CCP after execution, instead of

performing a warm-boot. ‘

A line-oriented file alphabetizing utility. {

75 pages
228 pages

READ.ME ' , PAGE 2

ne following documentation items may either be bound in with the User's Guide
r included separately:

By

v1.46 User's Guide addenda ‘ 4 pages (new) B
vi.u5 » " " 7 pages

vi. 4y n " " y pages

vi.43 » " N 4 pages

CASM Document 3 pages (new) {
Standard Library Summary 5 pages __(new)
" Dynamic Overlay Guide 4 pages
File I/0 Tutorial 8 pages !
Console 1/0 Tutorial 5 pages
Telnet Guide 4 pages
2

BDS C User's Group application forms 2 pages

P
‘The B0S € Standard 170 header file — vi.88 3/4/32

This file contains slebal definitionss for use in all C prosrams

in PLACE of {vechhh) CONSTANTS. Characteristics of vour svstem such
as video screen size, interface port numbers and masks. buffered 1/0
allocationss #tc., should all be confisured Just once within this
file. Anv erooram which needs them should contain the preerocessor
directivet

$include “bdscic.h”

near the besinnins.
Ge throush and set all this stuff az soon as vou set the rackase
and most terminal-derendent samrle prosrams should run much better,

¥/

""’ ‘ -
Seme console (video) terminal characteristicst
{confisured for ECS 4500)

¥/

#define THIDTH 80 /% % of columns &/

fdefine TLENGTH 2 /% % of lines #/

#define CLEARS "\014% /& Strins to clear screen on console ¥/

#define INTOREV "\032]" /% Strins to switch consele into reverse video #/
#define OUTAREV “\OI3N" /# Strins to switch console OUT of reverse video #/

#define CURBOROFF =\0327* /# String to turn cursor off %/
#define CURSORON "\033N* F% Strins to turn curser on ¥
#define ESC AGR3Y /% Standard ASCY! “escare’ character %/
' 3

Console zerial rort characteristicst
£/

#define COTAT Ox0% /¢ status port #/
$define CDATA Ox0B /% data port %/
#deFine CIMASK 0x02 /% input data ready mask #/
Bdefine COMASK Ox01 7% cuteut data ready mask #/

#define CAHI 1 /% True 1f status active hish %/
#define CRESET ¢ /% True if status rport needs to be reset after input &/
fdefine CRESETVAL © 7% 1f CRESET iz true, this iz the value to send #/
i3
Modem charactaristics!
#/

H$define MSTAT Ox0% /% statuz rort #/
$define MOATA Ox08 /¢ data port %/

#defing MIMASK 0x02 /% ineut data ready mask %/

#define MOMASK (01 /¢ ready to send a character mask #/
#define MAHI 1 /% True if status lomic active hish %/
$define MRESET © /% True if status port needs to be reset %/

#define MRESETVAL 0 7% 1f MRESET true, this is the bvte to send #/

i* :
General purpose Svmbolic constants!
¥/

define BASE 0 7% Base of CP/M svstem RAM (0 or 0xA200) #/
#define NILL ©

#define EOF -1 /% Physical EOF returned by low level 1/0 functions #/
#define ERROR -1 /% General "on error® return valve #/
#define 6K O /% General purpose "no error” return value #/

#define JBUFSIZE & /% Lensth of setiump/lonsjumr buffer &/

#define CPMEOF Oxla /% CP/M End-of-text-file marker (sometimes!) #/
$define SECSIZ 128 /% Sector size for CP/M read/urite calls #/

#$define MAXLINE {35 /% Lonmest line of input exrected from the conscle #/

#define TRUE /% seneral purpese true truth value #/
#define FALSE C /% seneral purpose false truth value */
/%

The NSECTS svmbol controls the compilation of the buffered
1/0 routines within STDLIBZ.C. allowins each user to set the
buffer size most convenient for his svstem. while keerins
the numbers totally invisible to the C source prosrams using
buffered 1/0 {via the BUFSIZ defined svmbol.) For larser
HEECTS, the disk 1/0 is faster...but more ram is taken up.
To chanse the buffer size allocation. follow these stepst

1) Alter NSECTS to the desired value here in bdscio.h

2) Re-comrile STOLIBLLC and STDLIBZ.C

3) Use CLIB to combina STOLIBL.CRL and STDLIB2.CRL to make
a rew DEFF.CRL,

Make zure vou use declare all vour /0 buffers with the a
statement such as!

char buf_namelBUFS1Z1;
*/

#define NSECTS & /% Number of sectors to buffer up in ram #/
#define BUFSI2 (NSECTS # SECSIZ + &} /% Don”t touch this #/
struct buf { f% Or this... 1 74

int _fds

int .nlefts

char #.nexts!
char _buffINSECTS ¥ SECSIZs

T
s

#define FILE struct _buf /% Poor mans "tyredef" %/

1%
If vou plan to use the hish-level storase allecation functions
from the Vibrary {*alloc® and "free®} then!

1) Uncomment (enable) the "ALLOC_ON® definition. and comment out the
*BLLOC.OFFY definition from this file.

2} Re~compile STOLIBL.C, and use CLIB to transfer “a2itfoc®
and "free” into the DEFF.CRL library file.

3} THIS IS IMPORTANT!!Y Include the statement:
-allece = NULL: /% initialize allocation pointer #/

someuhere in vour "main® function PRIOR to the First use

of the *allac® function. DON‘T FORGET THIS INITIALIZATION!!

Remember to include bdscio.h in ALL files of vour C prosram.
#}

#define ALLOCOFF 1 /¥ disables storase allocation if uﬁcomenteﬁ #/

/% only ONE of these two lines should be uncommented */

7%

$#define ALLOC.ON 1 /% enables storsase allocation if uncommented #/
® ‘

#ifdef ALLOC.ON /% if storane allocation enabled, &/

struct _header {
struct _header #_ptrs
unsisned _sizes

4
it

struct _header _bazes /% declare this external data to #/
struct header #.alloces /% be used br alloc{) and free() #/

_Bendif

#include “atbdscioh’
Bdefine float char
#define short char
#define string char
fdefine byte char
#define boolean char
fidefine YES |
#define NO O

#define NONE ©
$define EMPTY O
#define DEL Ox7F
#define RUB.OUT Ox7F
#idefine AND &
#define OR 1)
#define NOT !
#define INPUT O
#define QUTRUT 1
#define RANDOM 2
$#define BASE ¢
#define FROM.BASE ¢
#define FROM.HERE 1
#define IS_BEFORE €0
#define IS_AFTER 20
Rdefine IS.CAME ==
#define IS.DIFFERENT !=0
#define BEFORE -1
#define AFTER 1

$define SAME O

#define FLAG char
#define FILE struct _file
struct file {
int .rfds
int _secss
unsisned .frstsecs
unsigned .cursect
tvte curbris
brte #_nxtbvts
byte #.bufbase’
byte *_rastbufi
char -modes
int .update’
ensisned curblky
int .blksiz:
M

struct ~file_ptr {
unsisned _sector!
byte byts

()
e

/% purse, more trouble than worth #/

/% code For “open{)’ ¥/

/¥ code for ‘sesk{)’ ¥/

/% r/w = offset #/

/% rfue = cyrrent value + offset #/
/% code for ‘strome()’ #/

/% File descrirter #/

/% # of sectors in buffer #/
/% first sector in buffer ¥/
/% crfm current random sec #/
/% current random brte #/

/% next byte to be processed ¥/
/% ocation of base #/

/% first brte bevond end of buffer ¥/
/% read, writs. arrends or direct #/

/¥ buffer modified flas #/
/% currently addrecssed block #/
/¥ size of a lesical block #/

/%

External data used by DIOLC for directed 170 simulationt
{BDSCIOWH must alse be #included in the main file.)

#/

J#
#define BUF_CONS 1

#/

char _diflas. _doflass

char _piref, ¥_riredests

char ##_savei. ##_nullross

char .dibaf{BUFSIZ], _dobuf{BUFSIZYS
#ifdef BUF.CONS

char _conbuf[MAXLINE + 213

char #_conbufrs

$endif

/¥ yncomment if console bufferins is
desired (see DIO.CY ¥/

/% flas if directed 1/0 beins used #/
/% true if a pire is beinz filled #/
/% ysed to remember position in
command line when Piring */
/% 1/0 buffers used for direction #/

/% console buffering data %/

/% conscle input buffer used for
non~directed standard input %/

/% pointer to next character to
read from console buffer ¥/

/% PORTIOH - 170 butfer data tvee and related definitions for use
with the I1/0 routines in PORTIOC. #/

struct iebuf {

int fd:

int isect’ /% currently buffered sector #/

int nextcs /% index of next char in buffer #/

char writtens /% anvthing written in current zector? #/

char buff [1283;

e
F3

#define ABSOLUTE 0 /% seek codes #/
$define RELATIVE i

/%

Directed [/0 packase for BDS C v1,45 LI -~ 12/81
The followins Funcfioné make up the directed 1/0 librarv:

1. dieinit{¥arsc,arsv) Make thiz the first thing vou do in
vour "main" function. to Process
redirection commands on the CP/M
copmand line,

2. setchar() Gets a character from the kevhoard,
or from a directed input file if one
was specified on the command line.

3. putchar(c) Puts a character out to the console,
or to a directed output file if one
was specified on the command line.

4. dioflush() Flushes directed outeyt file. if oren,
and cleses all directed 1/0 files {if
anv,} This must be called before vour

prosram exits or returns to CP/M.

To activate redirection® Four special arsuments mav be siven
on the command Vine to the senerated COM file...

>fos causes “putchar® to place characters into the file
named "foo” instead of to the conzole.

+fa¢ like Dfoo sxcert that the characters are ALSO zent
to the console.

fao cauzes "setchar® to return characters from the file
named "foo" instead of from the kevboard.

copmard {Pros causes the standard cutrut of the command seecified in
“copmand” to be fed into the standard input of another
~prosram: “prog”, (BOTH "command” and "rros” must be
compiled with DIOY

{Note that there must never be anv spaces between .4:< or | and the
corresronding filename.)

When no " or "i" orerator is used. standard inPut comes from the
console and all standard line editing characters are recosnized (3
new feature of v1.45), To indicate end-of-file: vou must tvre

~1 {R>
{control-I followed bv 2 carrizse-return.)

When no "3 or "} operator is used, standard outeut sces to the
console.

£ rroaram allowing tedirectian myst have the followins formé

#include *bdscio.h® 7% standard header file #/
#include "dio.h” /% directed 1/0 header %/
ces /% other externals, if any %/

main{arsc,arav)

¥/

char #aravi

{
pes /% declarations 173
dicinit{%arsc.arav)s /% initialize rediraction ¥/

L]

. /% bodv of prosram ¥/

dioflush{}s 1% clean up redirection ¥/

pe

NOTES:

c}l

L.

The conscle input may be rau {unbuffered. one char. at a time) or
buffered {entire line must be tveed before chars are returned.
allowing standard editing featuress and characters come back one
at a time AFIER the entire line is tveed). The default is raw? te
tave buffered console input, uncomment the “$define BUF.CONS" line
in DI0.H and recompile this file and all files in vour prosram.

Redirection and rires work onlv for TEXT. Thiz mechanism should
not be used for binary data.

Use “~F dic® to link the Frooram? this ensures that the rroper
versions of “setchar® and "putchar® are used. Do not define
vour own "setchar® or "putchar®: or thinss will sst confuszed.

Multirle pires may be chained on one command line. For examele.

the followine command feeds the outrut of prosram "foo® inte the
inrut of prosram "bar®. the cutput of "bar® into the inmut of
Frogran "zot"; and the outrut of "zot” inte a File called *output®:

Axfoo arsl ibar !zet ars? ars? deutrut {crd

*arel" iz an actual arsument to "Foo”. and *ars2” and "ars3” are
actual arsuments te "zot¥. This iliustrates how actual arsuments
may be interspersed with redirection comsands, The Frosrams ses

the actual arsuments, but command line prerrocessing handled by the
"dioinit” function cause the prosrams to never need to know about
the redirection commands. Nets that all three prosrams ("fou*, “bar
and "zot") must have been compiled and linked to use the *DIO®
Packase,

#include "hdscio.h®
#include "dic.h?

#define CON_INPUT i /% BBOS call to read console */
#define CON_CUTPUT 2) 7% BOOS call to write to consele #/
#define CONSTATUS i1 /% BDOS call to interromate status &/
$define CONTROL.C 3 /% Quit character 8/
#define STDERR 4 /% Standard Error descrirtor (sorry,

Unix fans: 2 was alreadv used.) #/
$define INPIPE 2 /# bit settins to indicate directed

inPyt from 3 temr, pire File #/
#define VERBOSE 2 /% bit setting to indicate outeut is to

7%

a0 to console AND directed output #/

The "dioinit" function must be called at the besinnins of the

#

“gain” functiont

#define arsc #arsce

dicinit{aracr.arayv}

int #arsces
char *arav;

{

int i.d, arscounts

_diflas = _doflas = _ripef = FALSES /% No directed 170 by default %/
-nullros = Yarsvliarscls

#ifdef BUF.CONS
~conbuf(0} = O3 v /% no characters in buffer vet #/
~conbufe = _conbufi /% point to null buffer L2

$endif

arscount = 13

for {1 = 1% i { aracs i++) /% Scan the command line for 2 and { #/

{

if {_riref) breaks
switch(#araviil) {

case ‘¢4 /¥ Check for directed inrutt #/
if Clarsvlill11) soto barfs
if {Forenilarevlil{1l, _dibuf) == ERROR)
{
Frrint FOSTOERR, *Can’t oren %sin“ Yarsvlillid}s
exit{)s

3

-diflas = TRUE:

if {stromp{arovii), "TEMPIN.$8¢") == Q)
giflas i= INPIPE;

aote movarsv;

case “i’% /% Check for pipel #/
~PiPeftt]
~Piredest = laravlil{1}; /% save proz rame for execl #/
if fargvlillid)

{ . .
aravlil = 9, TEMPOUT. $$%%: /% femr. outrut %/
-savel = Zarsvli}}
H
seto food
case “+2

~duflas i= VERBOCE:
foot case ‘3% ¥ Check for directed outrut */

if (taravlil{i])

{
tarf: FerintF(STDERR, “Bad redirection/pire specifier®)s
exitils
H

unlinki{tarsv[i 13}
if {fcreat{farsv[id1), _dotuf} == ERROR)

© Ferintf{STDERR. "Can‘t create Zs\n®>&aravlil{{1)s
exit()s
}
-doflagtes

movarsy: if {!_piref) {

for (J = i3 J € arget j++) arevlil = argvlitlls
{argc)--3
i-f
~nullpos—-3

} else {
arsc = arscount!
argvlarac) = 04

}

breaks

defaults /% handle normal arsuments: %/
argcount+?

s

[

$undef arsc

I
The "dioflush® function must be called betore exitine the prosramt
#/
dicfiush{)
{

if (_diflas)
{
folose{ dibuf)s
if {_diflas & INPIPE) unlink("temrin,t")s

1
&

if {_ doflas}

14
3

putc{CPMEOF, .dobuf)s

Fflush{. dobuf)s

fclose{ dobuf)s

unlink{"temrin.$48")5 /¥ in case previous piFe was aborted #/
rename! "tempout, $48°, "tompin. $$37)3

if {_riref)

{
¥ savel = *(TEMPIN. $$$°:
fonullros = NLLY
if {evecy{_riredest._savei} == ERROR}
{
Ferint F{STOERR, “\78Broken pirein*)s
exit{)s
3
}

O

Thiz version of “setchar® rerlaces the resular version when using
directed 1/0. Note that the "BUF_CONS® defined svmbol {in DIO.H)

controls whether the console input is to be raw or buffered (see

item 0. in NOTES above) : :

*/
zetchar()
{
int ¢
if {.diflas) {
if {{c = setc{. dibuf)} == “\r’} ¢ = setc{ dibuf)¢
1
&
else
#ifdef BUF_CONS /% For buffered conscle input, get a line of text ¥/
{ /% from the BOOS (usins "sets*), % insert newline! #/
if {'x_conbufe) {
setz{. conbufr = _conbuf}?
~conbuflstrien{_conbuf) + 11 = “\{s
~conbuf(strien{_conbuf}l = "\n"$
%
€ = ¥_conbufpids
}
$elze /% for raw console inputs simulate normal “setchar®: #/
if {{c = bdos{COM_INPUT)) == CONTROL.C) exit{)s
#endif
if (¢ == CPMEDF)} return EOF: /¥ Control-l is EOF kev #/

if (¢ == “\r‘)
{
} ¢ = ‘\n't
$ifndef BUF_CONS
if (! diflas) bdos{2:'\n")s /% echo LF after CR to consele #/

$endif

H

return ¢f

L)

1%
This verzion of “putchar® rerlaces the resular version when using
directed 1/01

%/

rutcharic}
char o}
{
char #statics
static = "3 /% remembers last character senty start oyt null #/

if {.doflas)
{
if {c == “\p’ & #static != “\r°) putc{’\r’s_ dobuf)s
#static = ¢
if{rutc{c, dobuf) == ERROR)
{
ferintF{STDERR: “File output error? disk full?wn*)s
exit{)s

S48

H ,
if {¥{_doflas & VERBOSE)) returnt

H

if (bdos{CON_STATUS) && bdos(CONLINPUT) == CONTROL.C) exit()s
if {c == "\p° & *static '= “\r’) bdos (CONQUTPUT, “\r)3
bdos (CONQUTPUT.)3

#static = ¢

- /% Portable 1/0 Packase functions ¥/
/% Written by EBM.on 13 DEC 1981 ¥/

/% 1/0 buffer data tvre #/
#include “portin.h*

#define TRUE {-1)
Rdefine FALSE ©

int coren {buf. name)
struct iobuf *bufs
char %names

{ buf-2izect = -1} /% set values to Force initial read #/
buf-Jnextc = 1283
buf-Jwritten = FALSES
return (buf-2fd = oren {name. 2))3

}

int cereat (buf, name)
struct iobuf *bufs
char ¥name)

——

buF->izect = 01 /# don’t force initial write! ®/

buf->nextc = 03

buf-dwritten = FALSE:

if ({buF-2Fd = creat (name)) € 0 {1 close (buf-2Fd) €) return {-1)3
return {(buf-2fd = oren (name, 2))3

3

int cclose (buf)
struct iobuf ¥bufs

{ if {cforce (buf) { 0) return (-1}
return {close {buf->fd))!

H

int crezad (buf. loc, len)
struct iobuf #bufs
char %locs
unsisned lens

{ char *oldlocs
unsisned amt?

oldloc = loct
while {len) {
if {{amt = min (Ten. 128 - buf-3nextc}) =00 {
if {cforce (buf) {0 I}
seek (buf-3fd. ++buf-2isect. ABSOLYTE) { O 1}
read (buf->fd, buf-2buff, 1} = 1) breaks
buf->nextc =
continuel
¥
movmem {Lbuf-2bufflbuf-Inextcl, loc, awt)s
buf-2nextc += amts
tac += amt$
len -= amt}
3

return {loc - oldlecht

}

int cwrite {bufs loc, len)
struct iobuf #bufs
char #locs
int lend

{ char #eldloct
unsisned amt?

oldloc = tocs
while {len) {
if_{{amt = min {len, 128 - buf-Inextc)) {= 0} {
if {cforce (buf) € 0} breaks
++buf-risects
bué-rnextc = (8
continuet
H
mevmem {loc: &buf-dbufflbuf-dnextcd, amt)s
buf-nextc 4= amts
loc 4= amt}
Ten -= amt}
buf-Juritten = TRUES

return {loc - oldloc)s
int cforce (buf)
struct icbuf #bufs

{ if (buf-dnextc » 0 &% buf-Juritten &%
(seek {buf->fds buf-izect, ABSOLUTE) { O |}
write {buf-3fd: buf-2buff. 1) <= 0)) return (=1}t
buf->yritten = FALSE:
return {13

H

int cflush (buf}
struct iobuf #bufs

{ if {buf-2pextc & 076} {
setmem (dbuf-dbufflbuf-dnextcls 122 - buf-dnexte, {7717 - &1)
buf->written = TRUES

return {cforce (buf})s

3

int cseek (buf, anpt, mede)-
struct jobuf #huf)
int amts modes

{ int neusect. newpos’

if (mode == RELATIVE)
{if (amt { Q) { /% backwards #/
ant = -amty
newsect = buf->isect - famt 23 7)s
newros = buf-Dnextc - (amt & Ox7F)8
while {newros € O} {
- newrps += 1283

~-newsects
R i
J

if {nsuwsect ¢ é) return (-1}

E

else {
newsect = buF->isect + (amt 23 7)1
newpos = huf~dpextc + {amt & Ox7f)}
while {newros 3= 128) (
newros -= 1283
+enewsects

H

H

else if {mode == ABSOLUTE) {

if {ant £ 0) return (-1)3

newsect = {amt) 7)3

newros = {(amt & Ou7¢)3

3
else return (14§
if {newsect '= buf-lisect &%

{cForce (buf) (¢ 1

seek (buf-2fd, newsect. ABSOLUTE) (O

read {buf->fd, buf->buffs 1) = 1)} return {~i}}
buf->isect = newsects
buf-2rextc = newros)
buf-swr-itten = FALSE!
return {1)3

H

Directed 170 rackase for use with BDS € vi.4x.

The Faliowins functions make up the directed 1/0 library:

1. dicinit{¥arec.arav)

2. setchar()

2. putchar(c)

4, dioflush{}

Make this the First thine vou do in
vour "main" function. to Process
redirection commands on the CP/M
command line.

Gets a character from the kevboard,
or from 8 directed input file if one
was specified on the command line,

Puts a character out to the consoles
or to a directed output file if one
was specified on the command line.

Flushes directed output files if opens
and closes all directed 1/0 files (if
anv.} This must be called before vour
prosram exitz or returns to CP/NM,

To activate redirection! Four special arsuments mavy be siven
on the command line to the senerated COM file...

foo causes "putchar” to place characters into the file
named "Foo' instead of to the console.

+foo Yike Xfoo except that the characters are ALSO sent

to the conzoela,

{fo0 causes "setchar® to return characters from the file
named “foo" instead of from the kevboard.

compand irroa causes the standard ocutrut of the command sepecified in
"comaand® to be fed ints the standard input of another
prosram, "prog®, (BOTH “command” and “pros® must be
comriled with DIOY

{Note that there must never be any spaces betwsen 2.4:{ or | and the

corresponding filename,}

Thus: & C erosram usins redirection has the followins Formd

#include “bdscio.h®
#include "dio.h®

mainfarec,arav)

char ##aravi

’
i

/% standard header file #/
/% directed 1/0 header #/

/% other externals, if anv %/

ean /% declarations ¥/
dioinit{%arac.arav} /# initialize redirsction #/
ves /% bodvy of prosram #/

dieflush{);

bt

NOTES:

0, Redirection and rires work only for TEXT. This mechanism should
not be used for binary data, -

1. The "setchar® and "putchar” functions should each be used EXPLICITLY
at least once in vour main source file, su that the correct versions

are ricked off from DIC.CRL instead of the incorrect ones from
DEFF2.CRL {because of the wav the linker works.)

2. The *putc® library function should be modified so that an iobuf
value of 4 sends a character to the CP/M conscle via a "bdos"
call (as oprosed to using “rutchar”). and that & “\n’ character
thus sent should be expanded into a CR-LF combination. This
iz easily accomplished by adding the Following clause to the *putc”
function, recompiling STDLIBL.C. and updating DEFF.CRL bv
transferring in the new “putc” with CLIB.COM:

if {_iobuf == 4) {
if {¢ == “\n“} bdos{Z:"\r‘}¢
bdos{Z,c)3

}

{This mav already have been done in the version vou have.)

3. The "execv® function. used by this packase, is available in the
file EXECV.ASM: it should be assembled> renamed EXECV.CRL, and
then transferred into DEFFZ.CRL using CLIE.COM,

{This may alreadv have been done in the version vou have.)

#/

#include "bdscio.h®
#include "dic.h"

#define CONLINPUT 1 7% BDOS call to read conzole ¥/
#define CONDUTPUT 2 : /% BDOS cal) to write to console %/
#define CONSTATUS U1 7% BOUS call to interrosate status %/
#define CONTROL.C 3 /% Guit character #/
#define STDERR 4 /% Standard Error descrirtor {(sorrvs
Unix fans, 2 was already used,) %/
#define INPIFE 2 /% bit setting to indicate directed
inFut from a temr. rire f1l %/
#define VERBOSE 2 /% bit settins te indicate outrut is to
- so to consele AND directed output #/
%
The "dicinit” function must be called at the besinninz of the
"main® functiont
#/

#define arac #arscr

dicinit{aracr.arav}
irt *arscel

char ##aravi

{

int 1.4 arscounts

diflas = .deflas = _piref = FALSEY /# No directed I/0 by default #/
~nullpos = barsviarscls

arscount = 13

for (1 = 137 1 { argcs itd) /¥ Scan the command line for X and { #/
(

if (-?ipef) breaks

switch{#araviil) {

case ("t /% Check For directed inputt #/
if {taravlil{1]) scto barfs
if {forenldaravlil{1]. _dibuf} == ERROR}
{
ferint F{STDERR. “Can’t open Zs\n"»&arevlillil);
exit():
}
-diflas = TRUE; -
if {strcarilargvlil, "(TEMPIN. $$%*) == Q)
-diflas |= INPIFE:
goto movarsvs

case ‘17t /% Check for pirel ¥/

~Pipef+t}

-piredest = Saravlil[13; /7% save Frog name for execl #/

if {arsvlil{1D)

!
arsv[il = *, TEMPOUT, $$$"5 /% temr. outrut &/
-savel = larsvliDs

}

sote foo!

casg “+t
~doflas i= VERBOSE;

foo! case ‘3% /% Check for directed outrut */

if {lareviil{i])
{
barf: ferintf(STDERR."Bad redirection/pire srecifier}s
exiti)s

}

unlink{%aravlil{11}s

If {fereat{barsvlill], _debuf} == ERROR)

{ _ .
frrintf(STDERR. "Can”t create ¥s\n“dareviil{il)s
exiti)s

}

doflass)

movarav: if {!_piref) {

for 1 = 1% § < arscy i+t) arovlil = greviitl]ld
faraci~—i
i-—3
nulires—3

Y else {
argc = aracounts
argvlarscl = 03

}.

breaks

defaults /¢ handle normal arsumentst ®/
~arscount+ds

b
b
Saad

$undef arac

/% ~
The "dioflush” Function must be called before exiting the prosramt
*/
dioflush()
{
if {_diflas)
{
fclosef.dibuf)s
H
/¥ Cieanup uncenditionally so rename below can’t screw ur #/
unlink{"tempin.$$%");
3
/¥
This version of "setchar® rerlaces the resular version when using
directed /00
74
setchar{)
{
char ¢}
if (_diflag) {
if ({c = sete{_dibuf)} == ‘\r7} ¢ = setei dibuf)t
7 else
if {{c = bdos{CON_INPUT)}) == CONTROL.C) exiti}s
if {c == CPHMECF) return EOF: /% Control-2 is EOF key #/
if (¢ = “\r"}
{
= \n’y
if {{.diflas) bdos{2s"\n")7 /% echo LF after CR to console #/
}
return ¢}
H
7%
This version of "putchar® rerlaces the resular version when using
directed 1708
174
Fatchar{c)
char ¢}
{

if {.deflas)

{
if {c == "\n’) pute{\r’, dobuf)s
if{putcic, dobuf) == ERROR}

.
. s

Frrintf{STDERR, *File cutput errord disk full?\n*)s

exiti}s
k3

if {'{_doflas & VERBOSE)) returns

3

if {bdos{CON_STATUS) &% bdoz (CON.INPUT) == CONTROL.C) exit!)s
if (¢ == “\p“} bdos{CON.OUTRPUT, ‘\r‘)s
bdos (CIN_OUTPUT. £)3

B SR M S Me AR G MR ME e M M8 ue MR

e e ue

gch2t

ach3:

VII%,

Comvi

setchar kbhit

B Software C Standard Library Machine Lansuase Functions
Written by Leor Zeolman
3rezrez

This file is in “CSM* formats to convert to CRL forgats
use CASH.SUR in condunction with CASM.COM. ASM.COM and DDT.COM.

Functions arrearing in this file!

unsetch putchar putch sets rand srand
csu setmem movmem call calla inr

roke sleer rPause setfch read write
creat unlink seek tell rename fabort
bdos bios codend externs endext torofmen
execv shrk rsvstk

agtchar

sany character pushed back?

sves, return it and clear the rushback
sbvte in C.CCC,

seontrol-C 2

$if s, reboot.
scontrol-1 7

$if so. return -1,

jcarriase return?

$if so0 3)so echo linefeed

sand return newline {Vinefesd}..

kbhit
tany character unzotten?

~ srandl nrand
outp Peek
oPen close
fchaddr exit
exec execl
maclib bds
FUNCTION
1da ungetl
ora a
mev 1.
iz gch?
Nra a
sta unset!
mvi h,()
ret
push b
mvi C:Conin
call bdos
POF b
cri cntrlc
iz base
cri 1ah
Ixi i The
rz
Bov 1.2
cFi cr
inz sch3
Fush b
mvi ¢ conout
mvi e lf
call bdos
FoPR b
mvi Tonewlin
mvi bl
ret
ENDFUNC
FUNCTION
1da unget]
i hs0
mov 1:a
ara 3
rnz

$if zo, return true
»

push b
mvi cscstat jelse interrosate console status

call bdos
FOP b
ora Y 30 returned by BDOS if no character ready
Ixi ke 0 .
rz treturn O in ML if no character ready
inr ! sotherwise return 1 in HL
ret
ENDFUNC kbhit
FUNCTION unsetch
1da unaet]
1Y 1ha
rush k
call maztoh
sta unget}
FOP h
mvi b0
ret
ENDFUMC unsetch
FUNCTION putchar
catl meiteh 396t character in A
rush b
mvi c:conout
cri newlin fnewline?

IR s putl if nots Just so put out the character
mvi & cr telse...rut out CR-LF
call bdos
mvi crconoyt
mvi as1f

rutls mov €13
call bdos

eyt mvi ¢cetat tnows is ineut present at the console?
call bdos
wra 2

TRuo e Futd
POP b $no...all done.
ret

PUt3t mvi csconin jves. sample it (this will alwavs echo the
call hdos character to the screen, alas)
cri entrlc $is it contro}-C?
iz base 3if 50, abort and reboot
Fop b jelzz isnore it.
ret
ENDFUNC
FUNCTION rutch
call mattoh
rush b
mvi csconout
miv 13
cPi newlin
inz rutchl 11F not neuline, Jjust put it out

mvi

&cr selse put out CR-LF

call bdos

mvi ¢y conout
myi @l
putchls call hdos
poP b
ret
ENDFUNC
FUNCTION gets
call maltoh sset destination address
push b $save BC
Push b
rush h
Ixi h:=-150 juse srace below stack for reading line
dad 5P
Fush h $save buffer address

mvi w88 3A)low 3 max of about 135 characters
myi c.getlin

xchs seut tbuffer addr in IE
call bdos 3set the input line
mvi €: conoyt
mvi g: 1§ sput out a LF
call bdos
FOP h soet back buffer address
inx h jroint to returned char count
noy bom tset B equal to char count
inx h $HL points to first char of line
FOP 4 $0E points to start destination area
corvl! mow— &b jcory line to start of buffer
ora s a4 /4
+2 —gets2
SRLmMa mey (A
stag— 4
inx h LIDI/(
ing___ 4
der b
JRisR ~——ToFYl
agtsdt xra 2 sstore terminating null
stax d
POR] sreturn buffer address in HL
PGF b
ret
ENDFUNC
FUNCTION rand
Ihid rseed
schs
avi a:48h
ana e
3R 47 randd
ire randl
. ste
Cranddt Hhld roeed4?
 RYe——iale
IRy
t AU Y- T
Ao .l

ralg L

o1z
shid reeed+?

moy——grd-
ralg 0
BroY———frrd w——Hﬁb-
ROY———BTE
i E
e M s R
5pED sitd rseed
nov ah
ani 7¢h
mov fi.a
ret
ENDFUNC
FUNCTION srand
call maltoh
mov a:h
ora }
TRy srand2
shid rseed
shid rseed#?
ret
srand2! Ixi dsstal
push b
Rl Y
rall bdos

_ !%zi _ heOhdbdh
srand3: pusk b

v ¢l

. call bdes
POF h
inx h
inmx h
inx h

o and 1

Rz srand3
shid rseed
shld rseedd2
i crconout
mvi €1Cr
call bdes
mvi C:conout
i e 1f
call hdos
mvi csconin jclear the character
call bdos
POF bk
ret ,

stalr db “Wait a few seconds: and tvee a (R! §7

ENDFUNC
FUNCTION srandi
EXTERNAL ruts
call maltoh
Rush—

,caH_‘ Futs sprint rroart strine
2o

Push b

Ixi b 5678h
srlal push h

mvi ¢scstat

call bdos
FOP h
inx h
inx h
inx h
ora a
IRz 42 srla
shld rseed
shid rseed+?
- PGP b
ret
ENDFUNC
FUNCTION nrand
EXTERNAL puts

call arghak

Thld arsl sset n {ist ars)

mov arh

ana }

431 s swas it -1 (set sead) 7

MWz e nrand}
Thid ars2? scopy seed

shid seed

hld arsd

shld zeedt?

1hld arsd

shid seedHd

ret $all done

nrandi? push b
moy a:h slook at first ars ssain

ora | I

MRVzémr nrandd $is it O {randomize)?
1hld ars2
rush h $ves, print out strine
call ruts scall rputs
Fop d

i h:5a97h 3ves, start w/something odd
nrand2 push b

mvi c.cstat finterrosate console status
call bdos
Fop h
inx h tand keer it odd
inx h sand arowing
ara 2
SRz ¥ nrand2 juntil user tvpes somethins.

shid seed jthen rlaster the value all ever the
shld seedt? $seed.

shid seedtd

POF b

ret

nrand3t lda seed inow compute next randem number. from this
ori H 3 point on, the code is that of Prof. Paul Gans
sta seed §1sb of SEED must be |

sclear & PROD bytes to €

Bvi b:b
Ixi haProd
randmis mvi B
iny h
dop——sbe
D inz randml
Ixi b é $set bvte counter
randm2® Ixi h.plier-1
dad b tmake addr of 1sb of PLIER
mov s $PLIER brte
rush b $save brte counter
avi b.8 tset bit counter
randu3t mov d:a 1save PLIER bvte
Ixi hopred $shift whole PROD Teft ope bit
myi c:b
sra 3
randmdt mgy 2.5 soet brte
ralR (. ishift left
g T srut brte
inx h
der C
SRV LR randmd
mov 2.4 srecover PLIER brie
ral slook at current hish bit
RN randab 30 means no add cvele
push Psu sadd SEED to PROD
“ra a
mvi b
i haProd
Ixi drseed
randads ldax d
adc n
mey ma
inx h
inx 4
der £
SQNurz randmd
POR PSw

randné! depem——fe

Vinz
POP
der

IRNZHE

avi

Ixi
Ixi

®ra

CRe

randn7: ldax
cra
aci
mov
inx
inx

randm3
k
z
randa?

bed
hyseed
d.prod
3

d

ﬁ-b"?tﬁ

stest bit counter

190 cvcle more bits
trecover fovte counter
$fest it

$a¢ pProcess more bvtes

scomplement PROD, add ! to it
tand transfer it to SEED,

dep—be
)inz rands?

dex h srut the twe hish order bvtes
Rov £) tinto HL for return to s not
ani 7fh $neglecting to zero the hish

mov tea sorder bit so a positive int
1da seed+d 3is returned

mov T:a

FOP b

ret

rliert db 0cSh,&7h, 1
db Oeh%ah, 0elh

sead! db 1:0:0.0,0,¢

erodd db $:0,0,0,0,0

ENDFUNC
FUNCTION cse
in 255
moy 1a
avi h 0
ret
ENDFUNC
FUNCTION setmen
call arghak
Push b
Thid arg2
xcha
Thid ars!
1da arsd
mov ci3
inx% d

setm2t dex d
BV ad
ora e

SR\ AR setmd

POP b
ret

setmdt mov W:C
inx h
SR RR setm2
ENDFUNC

FUNCTION BmOVRER
call arshak
thlid ars? tset block lensth

mov arh

ara 1

rz sde nothing iF zero Jensth
rysh &

mov bsh

Rov ¢l sset BC to lensth

Ihid arg? et dest addr

xche teut in DE

Ihld arsi $get source addr in HL

call corhd 3iF source { dest, do tail-first

TR tailf selse do head-first

feadfs md——a,2 ttest for 1-80

ifP— 3

ipe—— 3080k $7807

db Oedh, ObOh sves. do block move.
POP b

ret sand done,

RS080h-mov———2v~

tzilfs

dcx b stail first, Compute new source

- dad b, iand destination addresses

uehe

dad b

xchs

ing b

B2 ftest for 180

mr—a

TPE T meoa—s 1307

dh Qedh, 0b&h, $ves, do block move.
PoF b

ret

mE0s0 pev————aym

cmehds

mov a.h
eap d
rn: .
oy as !}
(< 1] £
ret
ENDFUNC

FUNCTION catl
call arshak

pesh b

1hld arsh
wche

b4 arsd

mov b:b

. oy ¢\
1da g8
Cbxi L hecali2
CPush b
Thid ars!
push h
Ihld arsd
ret
call2: pop b
ret
ENDFUNC
FUNCTION calla
call arshak
Fush b
1hid arsS iset de value
%che ‘
1hld arsd jzet be value
mov bsh
mov]
da ars? iset a value
Ixi hrcalla? iset return address
rpush h spush it
1hid arsl sset address of routine
Fush h
1hid ars3 sset bl value
ret scall routine

callaﬁg mov

-

1:a srut A value in HL

mvi s € $clear hish byte
POP 1
ret
ENDFUNC
FUNCTION inp
call maltoh
sta ichack+l sstore as arz to ram area input subroutins
call iohack scall the subroutine to get value
wmov hha sand put into HL
mvi h.{
ret
ENDFUNC
FUNCTION outr
call maltoh sset rort number
sta ichack+4 _3stere as ars to ram area cutput subroutine
call maZtoh 1get data brte
call iohack+3 soutrut it
ret
ENDFUNC
FUNCTION peek
peek: call maitoh
moy 1.m
@wvi hsQ
ret
ENDFUNC reck

FUNCTION roke
call grehak

thid _ arsl
_lda ars
_moOV fra
ret .
ENDFUNC
FUNCTION sleep
call maltoh
push b
inx h
s}z dcx h
nov arh
ora 1
SRV e sla
Fep b
ret

slat Ixi d,10000

s12: dex d
moy a.d
ora e
TRN 2 #2 s]2
rush b
mvi c.cstat
call bdos
ora a
FOP h
JQ-L,H sl
rush h
mvi CrCORin
call bdos
cri cotric
iz base
PGP h
inR 3}
R exorune
FUNCTION Pause
rush b _
rausl? mvi c.cstat
,calt hdes
ora a
IR Paus!
FOP b
ret
ENDFUNC
FUNCTION setfch
call arshak
_rush b

thid are2 izet pointer to name text
igsp! mov Al

it h

cri M
IRz igsp

cri tab

jh_h issp

dox h ,

xche tset DE rointing to 1st non-space char
Ihid arsl 3get —> fcb area

call setfch 5 do it

=i h:0 :ﬁli oK.

ROP b
ret
ENDFUNC
FUNCTION read
- call arshak -
1da aral
_call fafd
it errer serror iF illesal fd
BOV Gl
ani 2 soren For read?
iz error jerror if not
push b
1da ara}
call fafcth

shid tar2 star2 will hold dma addr
Ixi W0, icount of ¥ of successful sectors read
shid tmpZa 1 will be kert at tme2a

read2: Ihld arsd jdone?

mov ah
ora 1
JR22 readd

readZat 1hld ars?2 $else read another sector
xcha ~ 3DE is dma addr
mvi Crsdma
call bdos sset DMA
thid tme2

*xcha sDE is fcb addr

wvi . Chreads

push d jzave de =0 we can Fudse nr field if
call bdos jwe stop readins on extent boundarv,..
ror d $ CP/M zucks!

cPi 2

FOP b

iz error $if error, abort

fFush b .

cei 1 ’

FRA-9RE Teadd EOF?

read?r Ixi he32 tves. are we on extent boundary?

dad d $if sos adiust for CP/M's sturidite here
mov a.m by turnin® an 80h sector count inte (Ch.
<Pl S0h

JRY 2wz readd
mvi m(3ves, reset nr to O...CP/M leaves it at 80h!
readd: 1hld tmela
readst pop b
ret

readdt 1hld arsl

dex h
shid - areld
Thld ars?

1= d:128

dad

d
chid ars2
Ihid tmrZa
inx ~ h
shld tmpla
JRe read?
ENDFUNC
FUNCTION write
call arshak
1da arsl
call . fafd
Je error
nov 20
ani 4
iz error
Fush b
1da arsi
call fafch
shid tmp2
Ixi hs0
shld tmr2a
Ixi d:thuff $20 for normal CP/M. else 4280
pvi Crsdma
call kdes

writi: 1hld

argd jdone vet?

mov ash
ora 1
hid tmrZa $if =0, return count
IR 4T writd
Thid ars2 else copy next 128 bytes down to thuff
Ixi d>thuff 380 for normal CP/Ms else 4280
Lyx mvi b, 128
writ2i moie——aal
star—— d
iwe— b LD\R
Ang—— 4
dep——h
shld ars2 %save -3 to next 129 bries
Ihid twe2 iget addr of fcb
_vchs _
wi csurits 190 write
call bdos
ora 2 error?
Ihid tmr2a $if s0. return 8§ of successfully written
ARNZ A2 writ? ! sectors,
inx b s else bump successzful zector count.
shid terZa
Ihid are3 % debump countdoun.
dex h
. zhld arel
IR dmr writ! 3 and 30 trv next sector
writdt por b _
ret -
;‘ENBFLWC

FUNCTION open

call arshak

Aura a
call fafch sanv feb's free?
it error 3if noty error

st tue

~ xchs
1hld aral
xche
Push. b

_Eall setfch
mvi €y 0PeNC

call bdos
cpri errory $successful oren?
FOFP b
4z error 3if not, error
1da tmr
call fafd s9et HL pointing to fd table entry
1da arg?
ora a soren for read?
mvi d. 2
4 opend
:1‘17; 'gir a
mvi 4.5
TR 42 orenl surite?

dcr a
iz error ielse must be both or bad mode.
mvi d7

apenil mov m:d
1da tmrp
oy ha
mvi hy O
ret
ENDFUNC
FUNCTION close
inp close sjump to the clese routine in C,CCC
ENDFUNC
FUNCTION creat
EXTERMAL unlink:oPen
call arshak
Ihid ars!
Fush)
rush h
call unlink feraze any old versions of file
FOP d
mvi chcreate
Ixi d:fch
call bdos
cPi EPTOPY
FOP b
iz error
Txi h:z
push h
Thld ars}
push h
call open

POF d

Fop d
ret
ENDFUNC creat
FUNCTION unlink
call . maltoh
push b
wcha
Tui h, fcb
call setfch
mvi c:delc
call bdos
Ixi h'Q
POP b
ret
ENDFUNC
FUNCTION seek
EXTERNAL tell
call arshak $copy arsuments to arss area
1da argl
call fafch
ic grror ferror if File not open
Push b
Push h $zave fcb address
thid arsl
push b
call tell $aet r/w prointer position for the file
POF d
wths seut prezent pos in [E
1da arsd
Ihld . ars2 izet offset in HL
o ora & jabselute offset?
TR = seek? 3if =9, offset is new position
dad d telze add offset to current position
seek2t moy 3:1 sconvert to extent and sector values
ric
moy ash
ral
ani TFh
sta tor
¥thl
Yxi d: 12
push b
dad d
chp B fiumping over extent boundary?
Mz i seekd
uthl fves,
xcha
mvi crclosec sclose old extent
pash d
call bdes
FOR d
POF h
cPi &rrory
SRNEm2 seekd

seck3t Fop d
FOP b
imp &rror
ceckds lda tar
MoV [311
Fush d
mvi € OPERC
call bdos
seekSt pop d
cri Errory
IR~ seekd
Ixi ha 32
dad d
FOF d
mov dr g
ani Tfh
moy ma
schs
POF b
ret
ENDFUNC
FUNCTION
call malteh
call fafch
ic Error
Fush b
hed d:12
dad d
iy bm
Ixi 4,20
dad d
nov Col
%ra a
mov a.h
rar
mov t:a
mvi a:ﬁv
rar
Y toa
- add c
moy 1.a
mov C¥
ana b
ir tellZ
ing h
tel12r por b
ret
ENDFUNC
FUNCTION
call arshak
rFush b
reramt Jhld arsd
xche
xi hsufch
catl satfch
thld ars2

xche

sand oPen new one.

sand set nr field

sreturn new sector # in HL

tell
seet £d value in A

srut extent # in B

srut sector # in C
irotate extent risht ane bit: 614 b0 —> Carry

srotated valus becomss hish bvte of tel] rositien
trotate b0 of extent into A

ssave rotated extent number in B

sadd rotated extent number to sector number

sand result becomes low byte of tell position

$1f both rotated extent # and sector & has bit 7 hi.
sthen the sum had an overflow: so...

shume position number by 254
sand all dene.

Fename

L

b

1xi howfchels
call setfch

Txi d-ufch
mvi CaPene
call bdos
RGP b

cri Errory
iz error
Ixi hs
ret

ds 53

ENDFUNC
FUNCTION

call maltok
call fafd
it error
mvi m: 9
Twi hs{
ret

ENDFUNC
FUNCTION

call maltoh
call fafd
it error
call naltoh
call fefch
ret

ENDFUNC
FUNCTION

imp exit
ENDFUNC
FUNCTION

call arshak
rush & ,
1da aral
nov ©a
thid ars2
xcha

call bdos
FOF b

ret

ENEBFUNC
FUNCTION

call arshak
Fuzsh b

Thid baset!
dex h

dot h

dext h

da ars}
mov ba
add a

add b

mov &3
mvi d,0

fabort

sclear entry in £d table

febaddr

$iz it an open file?

$oet fcb addr in ML

exit

kdos

szet € value
_:set.DE value

sput in DE

smake the bdes call

sand return to caller

bios

‘;set addr of jump table + 3

sset to addr of first jume

sset Function number (1-85)
smultirly by 3

teut in DE

retadd:

dad d -

13dd to base of Jump table

push b sand save for later
thid ars? 3set valug to be put in EC
mov babs sand put it there
mov o1 '
Iai haretadd swhere call to bios will return to
*thl sget address of vector in HL
rchi sand 20 to it...
nov 1a tall done. now put return value in HL
mvi h,0
POP b
ret sand return to caller
ENEDFUNC
FUNCTION codand
thid codend
ret
ENDFUNC
FUNCTION gxnterns
1hld extrns
ret
ENDFUNC
FUNCTION endext
1hld freram
ret
ENDFUNC
FUNCTION torofmen
1hld basets
Ha tra scheck for "NOBOOT® hackery
cri 21h § "lxi k" at start of C.CCT (as inserted by NOBOOT)?
dex h $if CCC doesn’t bemin with "lui K. " then top of
rnz smemory is Just below the base of the bdes
Txi +=2100 selse subdract COP size {rlus little more For good
dad d imeasure) and return that as tor of meawry.
ret
ENDFUNC
FUNCTION exec
EXTERNAL axecl
o call maltoh sset filename
1xi d:0 f1oad null rarameter in IE
rush d spush null Parametser
Fush h irush filename
call execl $de an exec!
PoF d sclean ur stack
For d
ret
ENDFUNC
FUNCTION axecl
cal} arshak
rush &
Ihld arsd
wchs
53 he=860 $compute &nfch for use here
dad 5P
rysh b $ save for much later {wall por inte EC}

push
rush

‘ call

IRvz.
errd

nogrrrs

POP
i
dad
mvi
inx
myi
inx
mvi
FOP
mvi
call
CFl
#hz
POP
FOP
imp

HAL
mov
ars

IR 2

Ixi
rush
1xi
call
POF

AR, BF

excifs

wchs

Ixi
call
hid
mov
org

IRV

excifal

exclis

Txd

xchg
Ixi
call
Tsd
Xra
stax
Ixi
dad
mvi
push
fov

imt

nov
mev
ord

JRe

exclde

mvi
dex
call

-2

h

h
setfch
hoo
b9
b

m LY
h

m 0
h

m N
4

Smake a'feu cories for Jocal use below

set ur COM File For evecl-ins

H
$zet new fcb addr
5

et extension to COM

$9et new Fcb addr amain

c.orenc soren the file for reading

bdos

errory
HDI g
h
b
error

ars2
arh
U
&xcld

drars2

d
h: Fcb
setfch
t
excita

ha fch
setfch
ars3
arh

1
excifs
h.ars3

Chofebtld

satfch

sany first parameter?

$nc...null out first default feb slet

;and =¢ null ocut Ind fcb slot

$ves.. place into first default fecb siet

tany second parameter siven?

$vest stick it into second default Feb slot

drtbuff+l $now construct command linet

£

d
he 8
sP
b0
h
a:h
b
hym
1ia
h

ercld

L

h
BPUC

§ zero thbuff+l Just in case there

i are no arg strinss

tset rointer to ist ars strins in HL

t by offsetting 4 obiects from the current 5F
ichar count for com. line buf.

jand construct command line

tget addr of next ars strips rointer

30000 indicates end of list,
send of list?

tno, install next strins

sconvert to upper case for comzand line buffer

inx 4
inp b
inx b
nov am
ora a
:ﬁthj“: exclz
FopP h
inx h
inx [
IR, HF excli
excl® pop h
;mov a:b
cri 53k
gRO e excl3
Txi drerrmse
mvi %
call bdos
JEP &

errmset dh

excl30e Yxi

excllal Ixi

stax d

ROV n:b

hy thuff

ds coded

send of string?

;‘fes:
tbumr param pointer

sand 90 do next strins

sclean up stack
scheck for command buffer overflow

$if no overflow: s load file

selze comlain and abort...

7oEXECLY Too much text s cr 1F: 7§

tset lensth of command line
sat Tocation thuff

ycory loader down to end of thuff

Ixi b tra-42

LT med t:42 $lensth of loader

excldr Qdax 4
| < 111
e d
ifr— b
der b
ipz—_encld
FOP b $set fcb pointer in BC

Sreset the SP:
1hid basett tset BDOS pointer in HL
1da tre tlook at first op byte of run-time Pka
cri 3k sbemin with "1zl =p."?
IR g+ gal $1f =0, use the same valug now...
hld tratl jelse oet special 5P value
aR iBp a0l
sa(cri 21k shesin with “lxi h* (the NOBOOT sesuence?!
JRyzwe ol 1if not, Just use the BDOS addr as top of memory

1xi d:~2050 $For NOROUT. subtract 2100 from BDOS addr
dad d tand make that the new OF

gpli srhl
Ixi ks hase
Fush h $set base of ram 33 retyrn addr

_imp tra-42 {30 to “codelt)

mPuct CPi Alh sconvert character in & to upper case
rc
CFi Thh
e
3TH 2

ret

This loader code iz nowt 42 bvtes lons,

“e um we

code0s i d:tra sdestination address of new Frogran
codels pPush 4 {push dma addr

pash b srush Fcb pointer

nvi cosdma fset IMA address for new sector

call bdes

FOP d $set pointer to working fcb in DE

push d tand re-push it

mvi c.reads jread a sector

call bdos

POP b srestore fcb pointer into BC

POP d jand dma address into IE

ora a send of file?

iz tra-2 3if not. met next sector (moto ‘codeZs”

mvi cisdma Sreset DMA pointer

1xi d, thuff

call bdos

JBF tra sand 90 inveke the rrosram

-,

codest Ixi ha80h jbumF dma address

dad d

xcha

inp tra-37 jand s0 loor izt codel)
EMDFUNC

FUNCTION execy

EXTERNAL exec)

call arshak
Ihtd ars2 imet -> arg list
mvi b, sclear ars count

execvit inr b sbume ars count
nev 3]
inx 1]
mov d:m
inx b
mov ad -
ora € ilast ars?

inz execvl 1if not. keer looking for last one

moy @b tsave ars count in case of error
sta savent

dex h SHL <> next to last are
gxecv2i mov dm snow Push aras on stack

dex h

mov &1

do h

der b

Fush ¢

inz exnecy?

gxecydt 1hid arst 3set prosram name
ruskh h teave as first ars to execl
call gxecl 390 do it shouldn't come back.
ida savent jwoorss we're back. Mustive bLeen an error...

savents

brierr:

cmrdht

add a

mav 1.2 sput zize of Passed rarameter list
mvi ha O sinto HL. and adiust stack

dad 5P

sehl

{41 ha=4 sreturn error value

ret

ds 1 $save ars count here

ENDFUNC

FUNCTION shrk

call maltoh iget # of bytes needed in HL

xche seut into DE

Ihtd allece $set current allocation pointer
push h tsave it

dad d tset tentative last address of new sesment
ic brierr $hetter not allow it to 30 over the top!
dox h

wcha 3 now last addr is in DE

1hid alocmy Iset safety facter

mov a:h Snesatse

oma

FOY tiag

mov as]

cRa

mov 1.3

inx h .

dad 5F szet HL = (3P - alocm)

call cmedh 3is DE less than HL?
ne brierr 11if not, can’t provide the needed memory,
#che selze (K,

inx H] .
shld slloce $save start of next area to be allecatad
FOF h saet pointer to thiz area

ret jand returp with it.

POP h fclean up stack

JaF error jand return with -1 to indicate can’t allocate.

mov a4

CBF 1]

P

Tz

mov E¥]

LmP 1

ret

ENDFUNC

FIRCTION reystk

call maltoh iset the value to reserve
shld alocmx $and set new safety facter
ret

ENDFUNC

am MR MR am M

e NE UM U e G UE MR N WB GN e el R W uw

Yy

A MR e wr UR uw e

PR R IT Y

GE SR UB UGN s A e R R a8 AR e

BD Software C Standard Library Machine Lansuase Functions
Written by Leer Zolman
vi. 44, 3/22/82

This file is in “CSM* format? te convert to CRL Format,
use CASM.SUB in condunction with CASM.COM. ASM.COM and DDT.COM.

Functions arpearinz in this filet

rread rwrite rtell rseek rsrec refsiz
setimp lonsimp .

setrlot clrrlot line rlot txtelot

index setline

The random-record file 170 function contained here are NOT documented

in the User‘s Guide: because thev arez non-portable to pre-2.0 CF/H
Svstems,

maclib bds

Here are the new random-access file /0 routines
for use with CP/M version 2.3 ONLY...these functions
will NOT work under pre-2.x CP/W s,

The new functions are! rreads rwrite, rtells rseek.
rsrecy rofsiz

Rreads

Read a number of sectors randomly.
Uzaze:

i = rread{fd, buf, nis

The return #alue iz gither the number of secters successfully
read, O for EOF. or 1000 + {BDOS ERROR CODE)

The Random Record Field is incremented following each successful
sector is reads Just as if the normal {sesuentail} read function
were beinm used, Rseek must be used to so back to 3 previous
sector.

FUNCTION rread

call arghak

1da arsl
call fafd
Je &PFOT
B 2
ani 2

Jz &rrer

Push b

1da arsl
call fefch
shid tar
Txi heQ
shld tmFZa
ra 1hld arsd
BOV a-h
ora 1
1hid tars
Jnz rla
POP b
ret

rZas 1h1d ara2

xchs

myi C:5dma

call bdos

Intd tme2

mvi crreadr jcode for BDUS randum read

Push 4 $save de so we can fudse nr field if
call bdos swe stor reading on extent boundarv..,
FGF d 3 CP/M sucks!

ora 2

iz r4 $9¢ to r4 if no problem

cPi i

iz r2b $EOF?
noy csa sput return errar code in BC

mvi b @ .

Txi he 1000 jadd to 1000

dad b

FOP b

ret
r2be xi h:32 tves. are we on extent boundary?

dad d

mov &:m

cri i)

nz r3

wvi B $ves, resel ar to 0...CP/H leaves it at &
ras 1hid tarZa j{noter the above “bus* in UF/M was suppozedly fiued

POP b $ for 2.4, but one can never be sure...}

ret

rdt hld ars3

dcx h
shld arad
Ihld araZ
Jxi 4,128
dad 4
shid arsl
Thld tmrla
ing H]

shid twrZa
Yhid tmp2 saet address of Feb

tui b33 set addr of random record field
dad 11

nov ol s bunp

inx h H value

WY wE AR W8 ue N uw uN

nwrd!

| X7
ay

nwr

nwr3s

moy
inx

mey

dex
miy
imp

ENDFUNC

Rurites

b H of

b e random

b H field

h 5 by one
ML

rz

The random “write® routing, which always cories the sector
to he written down to thuff before writing. Returns

the # of sectors successfully written, or -1 on hard error.
{the *1000 + error code” business is not used for rurite)

FUNCTION rurite

call
lda

call

Jt

. mov

ani
iz
rush
Tda
call
shld
1xi
shid
Txi
mvi
call

Thid
oy
ora
Thid
inz
FOF
ret

Ihid

1xi
mvi
nov
stax
inx
ing
der
Jnz
shid
1kld
#chs
mvi
call
ara

1hid

arshak

aral

fafd

error

8%]

3

error

b

arsl

fafch

tme2

b0

tmrda

d-thuff 380 for normal CP/N, else 4280
Cr5dma :
bdus

arad tdone vet?
ah
i

tapZa 3if zo» return count

nurda
-

ars2 selse copv next 129 byrtes down to thuff
ds thuff 380 for normal CP/M, else 4280
b, 128

a0

d

h

d

b

mer3

arg2 fsave - to pext 122 bries
tme2 izt addr of fcb

cawritr 330 write randomly

bdos

3 serror?

twe2a 3if se. return # of succeszfully written

POP b § secters,

ruz
push b
inx h 3 glze bume successful zector count.
shid tmr2a -
Thid ars3 5 debump countdown:
dex h
shid arad . ,
Ihld tep2 1 set address of fck
Ixi k233 1 set address of random field
dad b
ROV Com $ bumr 16-bit value at random
inx] $ record
moy bam H field
inx b $ of
moy mb H fch
dcx h H by one
oV fsC
inp marZz % and 30 trv next sector
ENDFUNC
3 rseskd
y rseek{fd, offset, orisin)
H seeks to offset records if orisin == &,
H to present Pesition + offset if orisin == §;
: or to end of file + offset if orisin == L
5 {note that in the last case. the offset must be non-rositivel

—~

FUNCTION rseek

call arshak

1da aral

call fafch

ic grror

push h.

call _ rtellz

1hld arsz

tda arsd §is orisip == (7

ora a

4z rseek? 7if zo. HL holds new pozition
der & ine. is orisin == {7

dnz reeek! _ ,

dad d fves, add offset to current position

Jnp rseek? tand result iz in HL

reepkl! por 4 telse orimin must be Z...
Fush d
Fush b) ,
mvi c:cfsizc Scompute end of file position
call bdos
FOP k
POF b taet back fcb
rush h

call rtell? $set DE = positicn
Ihld ara? jadd offset
dad d sand HL holds new rosition

-

regak2! xthl soet fcb: push- new Pasitien

51 4,33

dad 4 sHL reints to random field of fcb
pop d . $oet new pesition in LE

mov mé tand rut into feb

inx h

mov R d

xchs sand return the rosition value
ret

rtell2: Iud 4. 32

dad d

mav €l

inx - b

mov d>m

ret

ENDFUNC
Rtells

Return random record position of File?

B L)

- -

FUNCTION rta
call arghak

lda _ arsl
call fafch
dt erpor
Ixd d:32 350 to random record field
dad d
mev € tset value into DE
inx Y
By do
xchs seut intoe ML
ret -
ENDFUNC
fisrecs

Set random field from serial access modst

ST VT ST PP

FUNCTION rsrec
call arshak

1da arsi
call fafch
de ETTOT
push h
#xche

rush b

mvi CrEPTRLC
call bdoz
FOF b

ad b

1xi 4,32
dad g4
mov aam

inx]

“n Me a8 uR un

hiam

nmev

moy ba,

ret

ENDFUNC
Refsiz:

set random record field to end-of-file!

FUNCTION
call arshak
fda aral
call fafch
Je grrar
Push h
scha
push b
avi crefsize
catl bdos
POF b
ROR h
Txi 4,32
dad d
ROV asm
inx oo
mev hem
oy T:a
et
ENBFUNC
FUNCTION
call maltok
mov W
in b
mov m b
inx h
wcha
Txi b2
dad sF
scha
mev 7]
i h
nov md
it h
POF d
FPush d
moy .
inx H
mov s d
Ixi ha €
ret
ENDFUNC
FUNCTION
call maltoh
mev Colls
in® h
BibY bom

refsiz

setiop

tsave EC

$save SF

ssave return address

tand return O

Yengine
soet buffer address
irestore BC

inx h
moy & fh srestore SP...First put it in DE

inx b
mov d:m
inx h

shld temp $save rointer to return address
call maltoh Szet return value

uchs seut return val in DE. ofd SP in HL
srhl frestore SP with old value
FOF h tror retur address off stack .
1kld temr iset back ptr te return address
mey am
in h
mov h:m
WOV }-a $HL holdz return address
xcha sput ret addr in DE. set return value in HL
Push d spush return address on stack
ret jand return...
temrs ds 2
ENDFUNC
FUNCTION setrlot
call arshak
Push b
thid arsl saet base address
shld pbaze 3. initialize
ihld ared gmet v size
shid vsize ¥ initialize
wcha $leave it in IE
Ihid ars? iset x size
shld xsize 3 initialize

call usmul $fisure out screen size
1

shld psize initialize

POP b

ret

ENDFUNC

FUNCTION cirplot

Ihtd psize $pPut_gscreen size

ache 1 inE
_Ihld _ rbase imet screen base in HU

clr2s mvi m’ 7 iand

inx h 3 clear

dex d H each

Bov a:d H lscation

ara € 5 {3]1 LE of “em)
inz clrz -

ret

ENDFUNC

FUNCTION tine

call arshak 3set arss

Fush _ b L

fda ars? seut one zet of endroint dats in [E in
mOV 03 iformat? D= x = ara2; E=v = arsd
1da arg3

ROV boa

mov d:b

mov g:¢

tiners

]

{ine

midre

mid2al

mid3=

call
1da
moy
1da
moy
call
eV
mov
call
POR
ret

mov
sub
call
cpi
inc

nov
syb
call
cri
JNC
ret

call
call
push
may
ROV
call
xthl
call
xche
POF
ret

push
rush

mov
sub
ani
iz

mov
ChP

it
., . inr
. dme

der
WOV
suh

ani
iz

ey
ChF

put 1 rut uP one endroint at BC

arsd jput other endroint data in HL-

L8

araS

b2

rut s{but first put ur the roint from BO)
heb

l:c .

Viner $now connect them...

sall dene,

a4
ki
abs

lineZ2 iare points far encush arart
sin both dimensions to warrant

e $drawins 3 line?

1

abe

2

Tinel
11f not> return,

midr ifind mideoint

put irut it up

d tset uF recursive calls
d:b

e:C

Tiner

Viner

tand we are done!

-

ic midda

inr €

inF mids
midda: der 1

midd: mov arh

add d
ora a
rec

ney toa
mov a:!
add £
ora a
rrc

nov 3T}
POF d
FOF]
ret

putt pysh]

push i

mey &b

Thid vEize

xchs

thid rbase

inr]
putis der S

iz Fut

dad d }

IR rutl
Fut2t mov &:c

mvi 4.0

dad d

ids ars!

mov M3

FOP d

FOP h

ret

abs: ora &

e

3

ink 2

ret

ENDFUC

FUNCTION rlot

call arghak

da ars!

1hld vsize

xehe

thld rbase

Cipr 2

rlotit der a

iz rlofe

dad 4

dme rlat!

rletc: lda ars?

mov 13
mvi d.

dad d

1da argl

Bov [
ret

ENDFUNC

FUNCTION tutelot
call arshak '
Fush b

1hid ars2

wehs

h1d vyzize
call usmul

 xchs
hid arel
dad d
wche
Ihld rhase
dad d
xcha
1htd arsl
“WI koG
ida arsd
ora 2
iz txt2

mvi b &0h
tet2t mov Asilh

ora a
inz tut3
FOP b
ret
tut2r ora b
stax d
inx h
iny d
JBP tut2
EHOFUNC
3 Indext{str.subsir)
§ char #str. #subsir
3 Beturns index of substr im str. or -1 if net found.
FUNCTION index
call arshak
hld arsd
wehe smain str Fir in LE
Thid ars2 $substr Fir in HL
" dex d
indexlt inx d
ldax 4 send of ztr?
ora 2
inz index?

Ixd frs~1 sves, not found,

indexit cme m $quick check for dissimilarity

inz index! iloor if not same risht here
push d selse do lons comrare
rush b ;
index2t inx fi
inx b]
mov 2l send of substr?
ora a
inz indexd 31if nots 5o on testing
POP d telse matches
POP d $set starting addresz of substr in DE
Ihid ar3l 3subtract besinning of str .
call cmb
dad d sand return the resylt
ret
indexdt ldax d Scurrent char natch?
CIF R ;
iz index® $if zo. kesr testing
PGP h jelse 20 on to next char in sir
POFP d
JmP indexi
ENDFUNC
§ Getline{str.lim}
§ char #str}
H
3 Gets & ling of text from the consele: ur to “1im" characters,
T

FUNCTION setling
rush b
call maltoh 3zt max no. of chars
BOY €3 fzave in , .
call maztah iset destipation address
push k ~] ,)
el he=150 suse seace bzlow stack For rezdins line
dad sF)
rush b ssave buffer address
mov FisC 15et max # of characters
B¥i cieetlin
%chs sput buffer addr in [E
_call bdes 3oet the ineut lins
mvi csconiut
mvi e 1f seut oyt 3 LF
call bdos
roe K tzet back buffer address
inx b tpoint to returned char count
moy bom 158t B eaual to char count
inx b $HL poings to first char of line
POP d $UE roints to_start destination ares
v C:b $save char count in © _
corvlt mov a:b scory line to start of butfer
ora 2
dz gets2
mov ash
stax 4

I 1= S

setst

inx
der
imp

xra
stay
ROV

mvi

FUP

ret
ENDFURLC

]

coryl

I.c
Bt

$store terminating null

sreturn char count in HL

/% LCHECK by Richard Comm

LCHECK displave to the user the nestins level number of each
BEGIN/END ¢{/}) srour, therebvy helrins him to identifv problem areas
in his C rrosrams. It recosnizes duoted material and comaents and
ignores { and } within these. . .

1 74
#define vers 12 /% VYersion Number #/

#include "athdscic.h®
#define SSCROLL TRUE /% Set TRUE for Smooth Scrolline on TVI 950 #/

#define suote (%27 /# Single Ouote #/

#define daucte 0x22 /% Double Cuote #/

#define ES %08 /% Hack Srace Char %/
#define TAR 0x09 /% Tab Char #/

#define LF (x| /% Line Feed Char #/
$define (R 0u0d /% Carriase Return Char %/
#define YES N

$#define NO i

#define ovfl YES /% Line Overflow ¥/
#define noovfl HO /% No Line Overflow %/

char iebuf[BUFSIZY:
int tevel: chvals ros. nroutiness

main{arsc,aray)
int arac}
char *#aray)
{
int dones

if largc == §} {
FrintF{"LOHECK, Yereion 1d.udNn":vers/{0.versiiils
printf{"Foraat of Command Linz is --\n")}
printf{® LCHECK filename.tvr®)s
exit{FALSE)S
k3
if {foren{arsviil;icbuf) == ERROR) {
rrintf{*Cannet Find File Zs\n™araviill
gxit{FALSE)s

if (SSCROLL) prindf{"4cic ES0.73738 /% Smogth Screll #/
printf{*LCHECK, Version %d.%d — Filet Zs\n".vers/iih
versiltharaviilly
level = 0% nroutines = 0 /% Init nestins level: routine count &/
prievel{}t /& Print level number #/
do
getitids /& Get next char ¥/
if {chval == auote) do { /% IF sucte. flush to end Fuote &
getit{)s
¥ while {chval != auotels ; , ‘
if {chval == dauote) do { /% If dgucte. flush fo dauote #/
getitils
, } while {chval = dauste)?
if {chval == 7/°y { /% Possible comment #/
zetiti)s

if {chval == “#°3 { /% Yes, it iz & comment #/

getit{}s
done = FALSES
do {
if {chval == “#°) { /% End comment? &/
getit{}
if {chval == /7)Y /% Yez &/
done = TRUES

else getit()s
3 while {'done)}
1

1

if {chval == 7{”) levels+d /% BEGIN #/
if {chval == “2“) { /% END %/
Jevel--4
if {level == 0} {
nroutinest4s

priatf{"\n%s Foutine %d #%"; nroutinesz}s
K

k]

Ywhile ({chval '= CPMEOF} &% (chva] '= ERBQR)):

printf{"\nProsras Level Check is *)3
if {level == Q) printf{"0K"):
else printf("NOT (K")1
printf{("\nNumber of Foutines Encountered: %d®:—-nroutinesz)s
if {(SSCROLL) erintf("%chc",ESC, 79711 7% Hard Screll ®/

setit{} /% Get and Eche Character %/

{ ,
chval = petc{iobufis
if {{pos 2= THIDTH} & {(chval = CRY) prlevel{ovfi}s
if {chval = CPMEOF) echolchvalls

3

echolchvall /% Echo Char with tshulation &/
char chval?

{

switch {chval} {
case TAE @ rutchar(” 74 Postss
while ipos%® = 0} {
putchar{’ *1
Fostts:
3.
breaks
ratchar (B3}
FO5--}
breaks
case LF ¢ prlevellnoovil}s
breaks
case CR ¢ putchar{(R}:
Fos = 4
break:
if ichval = 7} {
putchar{chval s

S a g]
}

case BS

defaylt

breaks

fo

}

rrilevel{ovfi_flas) /% Print Level Number and Set Lol Count #/
char ovfl.flas!
{

rutchar{(LF)3

if {level {10} printf{* %4".1avel)s

else printf{*id": levells
if {ovfl_flas == YE3) putchar{'~")s
. else putchar{’’};
putchar{” M
pos = 5

" e

iThe zesment is now 'meved to hish memory. but not
terorerly relocated. The bit table which specifies
swhich addresses need to be adjusted is located
sdust after the last bvte of the source sesment.
$s0 (HL) is now peintins at it.

POP D shesinning of newly moved code.
L3 B.SEGLEM: 1ensth of sesment
FUSH H ssave pointer to reluc info

mov H.D 1offset pase address
3
FIXLOOP:
sGcan throush the newly moved code. and adiust any
tpage addresses bv addine (H) to thea. The word on
stop of the stack points to the next bvte of the
trelecation bit table. Each bit in the table
scorresponds to one byte in the destination code.
3A value of § indicates the bvte is to be adiustzd.
1A value of O indicates the bvte is te be unchansed.

Thus one byte of relocation information serves to
tmark 8 brtes of obiect code. The bits which have
snot been used vet are saved in L until all &
jare used.

a
£

' we

Hov A.B
OrA ¢ stest if finished
J1 FIXDONE ;
bex B scount down
Hov Ak
AN O7H $on 8-byte boundry?
N2 NEXTERIT
NEXTEYT:
sGet another brte of relocation bits
ATHL
MoV A:M
INX H
XTHL
MV L.A $save in resister L
NEXTRIT MOV Al sremaining bits from L
RAL snext bit to CARRY
MoV L-& ssave the rest
JNC NEXTADR
SCARRY was = 1. Fix this brte.
LbAY D
LD H $(HY is the Pase offset
STAX D
NEYTADR INY B
JP FIxLoop
FIXDONES

$Finished. Jump to the first address in the new
isesment in hish memory, ~
$First adiust the stack, One sarbase word was
sleft by fixloor.

NG &P

INX

wn wn

MoV
PCHL
SETUP: -

g

{HL) still has the rame address

L:A imove zero to]
$Stack iz valid

$Anv one-shot initialization code moes here.

s
3

LX1
SHLD

e

CPH
CPI
%

e

CALL

e

LXI
LDAX
P1

LXI
LBAY
Pl

BLKMOV

“e

LXI
LDAX
Pl

BLiMov

Ega.u.
2
F

CPH
INR
Nz
LX1

NI
IR

DIRCK:

FINDMER:
crH

JNZ
LIl

Gz
Ml
M1
VALIDLOOP:
INX

NI

H, NOLOAD
CCPIN¢L

VER
204
BAIVER

REFARS

B, MEMBER+?
b

£ 7

;COMLIT, 3,2

D.LERFIL+Y
b

S8

LBRLIT. 3,2

0. LERFIL+1
b

&7

s DFLTNAM, 8,2

OPN, LERFIL
A

DIRDK
H:LERFIL
AN

A

NODIR

N

DIROPN

DA, TBUFF

FRD,LBRFIL
]

FIsHY

H: TBUFF

A M

f

FIsHY

E. 843

B !

$Prevent reentry

$Test version of CP/M in use
12.0 or better?
$Noo bitch and suit.

i &-parse cemnand Yine
sCheck member filetvpe

s1F blank.
3 default to COM.

sCheck library filetvre

11f blank,
$ default to LER

sCheck name

$If blank.
3 use default name.

s0pen for directorr read.
tWas it found?

§ves, ok

$Ho, test drive spec

3 to ses if its

7 explicit

s1t 15 explicit, Out of luck
11t was defaulted. Lock on AS
3 before siving up,

$Read the directory

sEmrty file, Give ue,

sDirectory not active??
;Check for blanks

K

-

JNZ

~u

LHLD
pex

FINDMBRL:
MoV

J2
Dex

JNZ

F INDMBRN:
L1
wi

FINDMER1:
CALL
J2
IR
J2

-

LXI
DAD
P

GETLOC:
FoP
XCHG
v
INK
MOV
XCHG
SHLD
XCHG
INX
mov
INX
Hov
XCHG
SHLD
CALL
CPM
RET

MW e an

:

MoV

VALIDLODP

TEUFF+14842
AH

L

FISHY

TBUFF 1484242
H

H

FINDMBRN

H

AH

L

NOMEMB

H

H

FRD. LBRFIL
A

FISHY

H, TRUFF
C.128/32

COMPARE
GETLOC
C
FINDHERL

b,32
i
FINDNBRT

5 Index must be OOC0

$Get directory zize
$He already read one.
sSave on stack

fJuar inte loor

$Read sector count from T0R

10 ?

$Member not found in library
$Count down

sand put it back.

sGet next directory zector

sPoint to buffer.
$Humber of directory entries

sCheck if Found vat.
sFound member in DIR

iNe match: point to next one.

$The name was Found now @2t index and lensth
B sClear stack sarbasme

$Puinter to sector address.
E.H $Get First

H
b.H
INDEY $Save it
H sGet Size to IE
E.M
H
0.4
} Size to ML
LENX
PACKUP sRepack command line arzuments
CON.CR 3do <or2 only {look Vike CTP)

End of setup,

Htility subroutines

iDE = -IE

[%;

.

“y “e wa e
§

LR R L)

:

-

CMA

v 0.A
Mov AE
CHA

MV E:A
INX b
RETY

REPARSE re-parses the Fcbs from the command line.
to allow the *~¥ character to prefix the library name

LXI D, MEMBER tfirst reinitialize both fcbs
CALL HKITF
L1 D.LBRFIL
CALL NITF
LXI H, TRUFF setore a null at the end of
MoV E.:M 3 the command line (this is
Wi B¢ 5 done by CP/M usually, excert
XCHG $ in the case of 3 full com~
DAD B 3 mand line
INX H
M1 M0
XCHG sthutf pointer back in hi
INX H shump to next char position
LY A4 $fetch next char
ORA A treached a null? {no arouments)
JZ HELP sinterpret as a call for help
Cr1 . snot null, skip blanks
J2 SCANBY
PL ot slibrary name srecifier?

- JNZ NOTLER sskir if not
INX H 3it is: skir over flas character
LXI D, LERFIL sparse library name ints FCR
CALL CGETFN
LX1 D, MEMBER tnow Farse the command name
CALL GETFN
LXI D, HOLD+1 tent to temp storase for rest of cmd lins
Ml B.-1 sinit a counter
INR B shume ur counter
MoV A.n sfetch 1 char
STX B imove it to hold ares
INX H shume Pointers
INX Hij
(RA A stest whether char was 3 terminater
JN2 CLSAVE scentinue moving line if not
Moy AsB 1it was, set count

- STA HOLD $save it in hold area
RET

PACKUP retrieves the command line stored at
HOLD and moves it back to thuff, then rerarses
the default file control blocks so the command
will naver know it was run from a library

LX1 H.HOLD teoint to lensth brte of HOLD

MoV C:H iget lensth in BC

Mi B:0

INX B tbumr ur to because length bvte doesn’t
)4 E 3 include itsel¥ or null terminator

BLKMOY TBUFF ; smovins evervbody to Thuff

Lx
LXI
CALL
LX1
CALL
RET

- Ve wE uk
2

CPr
EXIT: LHD
SPHL
REY

F«““
g

FPREEEEREEBER

T T

INX
INX
IR
JNI
COMPEXIT:
Pop
RET

L R B L L)

isnored.
entrvy hi
_ de
exit hl

M UR B um M

-

H, TBUFF+ teoint to the command tail
0, TFCBY sfirst Parse out tfchl
GETEN

D: TFCB2 sthen tfch2

GETFM

Here when HELP is requested (indicated
by LRUN with no arsuments)

W56, HLPHSG srrint the HELP messase
SPSAVE sfind CCP re-entry adrs
$fFix & return

the HELP meszase

CR,LF:‘Correct svntax ist”

CR.LF

LF-TAB, "LRUN [-{1brnamz>] <command linel”

CR.LF

LF;“Where {Ibrnamer is the orticnal librarv name’
CR.LF,“{Note the precedins *-%, } If omitted,”
CR.LF, "the default command library is used.”

LF

(R:LFs/Ccommand Yined is the name and parametars’
CR.LFy‘of the command beins run from the librarv,”
CR.LF.7just as if a serarate .COM file were beins run.”
CR.LF, "%/

3Test status: name and tvre of
H $a directory entrv.
B, 14842
twith the one we'rs
H, MEMBER slooking for,

sReturn with DE pointing to
H $last match + Y, and ML stil}

srointine to besimnins.

File nawe parsing subroutines

sptfn sets 3 file name from text pointed to by res Kl inte
an fcb pointed to by rea de. leadine delimeters are

first character to be scanned
first bvte of #cb
character fellowins file name

GETFN: CALL NITF sinit 1st half of fob
CALL GSTART sscan to first character of name
RZ send of line was found - leave fcb blank
CALL GETDRV 3get drive seec. if present
CALL GETPS sset primary and secondary name

RET
§ nitf fillz the fcb with dfIt info - O in drive field
$ all-blank in name fields and ¢ in exs51y52 and rc fids
3 ,
NITF: PUSH D $save feb loc
XCHG smove it to bl
I M0 szaF dr field
INX H sbumr to name field

M1 Bs11 szap all of name Fd
NITLPI: V] M

INY H
IR B
JNZ NITLPY

MV1 B.4 $zero others
NITLPZ: W1 M0

INK H

DCR B

NI NITLPZ

XCHG trestore hi

FOP i trestore fcb pointer

RET
$ sstart advances the text pointer {(res hl) to the first
§ non delimiter character {i.e. isnores blamks). returns a
3 flas if end of line (O0h or “37) is Found while scanins.
3 exit hi pointing to first non delimiter
H a clobbered
H zere set if end of line was found

GSTART: CALL CGETCH 3see if pointine to dolig?

RN snore ~ return

CPI A send of ling?

RI $vup - return w/flas
ORA [

RT $vup - return w/flas
INX H inope ~ move over it

Jop GSTART sand trv next char

setdry checks for the rresence of 2 drive spec at the text
pointers and if present formats it into the fcb and
advances the text rointer over it.

ME MR ME B R BE Ne uR e

entry hl text rointer ,
de pointer to first bvte of fcb
exit M rossibly updated text rointer
de rointer to second {Primary namz) bvie of fcb
GETORV: INX b spoint to name if spec not found
M H t1ook ahead to see if Y present
MoV M
i H sput back in case not present

Pl /¢ $is a drive srec present?

RNZ
MOV
1
Bex
STAX
N
INX
INx
RET

entry hi
exit hi

e U w8 ue s

GETPS: M1
CALL
v
Cpl
RNZ
INY
FTIPOINT: MOV
ORA
Ji
INX
DCR
JF
M1
CALL
RET

"
3

entry hi
de
14

exit bl
de
<

WE NE MR ME MR R uN ME ME NE ME ae ue

GETNAM: CALL
Rz

INK

CPl
J

STAX

NS

ICr

NI

B 4
AMBIG: MVI

GFILL: STAX
INY

DCR

JNI

GETDEL: CALL
R2

$nope - return
A.M svur ~ set the ascii drive name
‘A1 sconvert to fcb drive srec
spoint back to drive spec bite
tstore spec into fcb
$peint back to name
$skir over drive name
sand over "3

T XT oo

setps sets the primary and secondary names inte the fcb.

text pointer
character followins secondary name (if rresent)

C.8 smax lensth of erisary name
GETNAM 3rack primary name inte fcb
AN $see if terminated br 3 period
FA
tnore - secondary name not siven
sreturn default {(blanks)
H svup - move text pointer over period
AL $vur - urdate fcb rointar to secondary
A
GETFT
i
r
FTPOINT
3 smax lensth of zecondary name
GETNAM srack secondarv name intoe fch

setnam cories a name from the text pointer into the fcb for
3 oiven saximue lensth or until a delimiter is found. which
ever occurs first., if mere than the savimum number of
characters is present, characters are isnored until a

3 delimiter iz found.

first character of name to be scaned
rointer inte fcb name field

gaximum lenath

pointing to terminating delimitar

next empty bvte in fch name field

max lensth - number of characters transfered

GETCH sare we pointing to a delimiter vetl?
§if s0. name is transfered

H $if nots move over character

‘%! tambisicus file reference?

AMBIG if soy £i11 the rest of figld with 2

p $if not, Jjust corv inte name field
Jij sincrement name Fizld pointer
C sif name field full?

GETNAM 3inope - kear fillins

GETDEL svur - isnore unti] delimiter

A7 5fill character for wild card match
b 36111 until field is full

GFILL 31fall thru to insore rest of name
GETEH ipointing to 3 delimiter?
svup - all done

INX H $nore - isnore antoher one
P GETDEL

getch gets the character pointed to by the text rointer
and sets the zero flas if it is a delimiter.

$ entry ki text pointer
3 exit hi preserved
3 a character at text rointer
H 2z set if a delimiter
GETCH:
MOV A-M iset the ctaracter
(P} W
R?
CPI ’s".
R2
CPl .
RZ
EPI T
R?
CPI .':.‘
Rl
Pl S
Rl
r1 &£’
]I
(Pl >
R?
RA A $Set zero flas oh end of text
RET

Error routinest

A I L]

BADVER:
CALL ABEND
DR ‘Can‘“t run under CP/M 1.47
NGDIR:
CALL ABEND
bp ‘Library not found”
bB i
FISHY:
CALL ABEND
j1:1] ‘Name after *-" isn’'t 3 library”
1] i
NOMEME:
CALL ABEND
0B ‘Command not in directory’
oB i
NOLOAD:
CAlL ABEND
B ‘No prosram in memory’
s f
NOFITE
CALL - ABEND
bB “Prosram too larse to lead”
DB 4

CoMLiTs DB co

-u

DFLTNAMDB ‘COMMANDY © 5 {~--change this if vou like-—-
LBRLIT: DB ‘LBRY

?

ABEND:

P56, NEWLIN

b

MG

DEL, SUBFILE

MSG, ARTHSG

EXIT

ABTMSG: DB ‘. + +ABCRTED, ¢*

NEWLIN: DB CR.LF,“$¢

SPSAVE: IS 2 sstack rointer save
H

 FEEEF

PAGE
3Adiust location counter to next 256-byte boundry
€BASE ORG (% + OFFH) AND OFFOOH
eRLBL SET 0

The seament to be relocated soes here.

Anv position dependent (2-bvte) instructions
are handled bv the “R" macre.

FEEHE R R R R R R R

f WD LENX> 3Get lensth of .COM member to load,

wE NR ME e s

L) A TPA/L2E

AlD L sCalculate hishest address
MOV LA $To ses if it will fit in
ADC H savailable memory

Sup L

MOV H.A

REPT 7

DaAD H

ENDM

XCHG

CAlL NEGDE 31775 STILL IN LOW MeHORY
R {LXI H.PROTECTY
b
NOFIT sHaven't overwritten it vet.

2B

LEROPN:
3 The library file is still oren. The oren FCB has been
3 moved uP here into hish memory with the leader code.

R {LHLD INDEX> $Set up for random reads
R CSHLD RANDOM>
XRA A

R {ETA . RAMDOM+2>
LXi H. TPA
R <SHLD LOADDR>

$ Thiz hish memory address and sboves includine COP: must be
3 protected from beins overlaid by loaded prosram
PROTECT:

LOADLOOP: : sLoad that sucker,
R {LHD LERX> 1%ee if done vet.
Mo AL
ORA H

R e LOADED>
BCxY H

-n

R {HLD LOADDR> $Increment for next time
MV {’9 “ :
MoV £l
LX1 E.80H
DAD B
R (SHLD LOADDR>
P DHA sbut use old value (DE)
f <Ll D.LBRFIL>
P RRO $Read the sector
ORA A 10k? »
R (NI ERRD ‘ $No» bail out.
R CLHLD RANDOMD $Increment random record field
INX H
f {SHLD RANDOM
R (P LOADLOOP $Until done,
ERR:
M1 fal ¥) $Prevent execution of bad code
STA TrA
LX1 H, BOOT
SHLD TPA+L
R 4% D.LDMSGS
P]
R {XI D.SUBFILE> sAbort SUBMIT if in prosress
CPM DEL
LOADED?
CPH [Ma, TRUFF sRestore DMA adrs for uszer rom
P CON.LF $Turn up a new line on console
JP TPA
LBMSGe
ij1] CR.LF, “BAD LOADS”
INDEX W 0
LENX i} ¢
SUBFILE:

BB 1; ’$$$ 51)8",0,070’0
$1f used. this FCB will clobber the followins one.
sbut it's only used on 3 fatal errors znvear.

LERFIL:
bs 32 sName placed here at zetwr
DB 0 tNormal FCB rlus...
OVERLAY SET $ ${Nothing past here but [59s)
RANDOM IS 2 $...Randon access brtes
HAXMEM DS 2
LOADDR DS 2

$ OB RS EE R B SRR R I T R R R
sEnd of seament to be relocated.

IF OVERLAY EQ ©
QVERLAY SET $

ENDIF

b1

PAGES EQU {$-BBASE+OFFH) /25648
SEGLEN EQU OVERLAY-BBASE

(RG - ©BASE+SEGLEN

PAGE |
H Build the relocation information into 3
¢t bit table immediatelv followins.

& SET 0

SRITCNT SET 0

éRLy SET 7Rt

GNXTRLD SET 2
RGRND ZeRLBL#! sdefine one more label
REPT SEGLEN3
IF BITONT ERLD
NXTRLD Z@MXTRLD snext value
ENDIF
IF EBITUNT=8RLD

X SET X OR smark a bit
ENDIF

SBITCHT SET @BITONT + 1
IF GBITCNT MOD 8 = 0

B £X

& SET 0 sclear hold variable for more
ELSE

8y SET ey SHL | snot € vet. move over.
ENBIF
ENDM
OB 0

HOLD: 0,0 $0 lensth: null terminator

128-2 trest of HOLD ares
MEMBER:

DB
DS
i 16
END

COPIN

/%
Line printer formatter

Written by Leor Zolman
May 28v !980

First prints all files named on the command line, and then
asks for names of more files to print unti) a null line is typed.
Control-@ aborts current printins and soes to next file.

Parer should be rositioned ready to print on the first rase’ each
file iz alwavs printed in an even nunber of rPases so that new files
always start on the same phase of fan-fold rarer.

Tabs are expanded into spaces.
*#/

#include “bdscio.h®

$define FF Oxlc /% formfeed character, or zero if nof supported #/
#define PGLEN 66 /% Vines per lineprinter Page #/

int colne, linesiefts

min{arsc.argy)

char *argvi

{
int i, pano. fd!
char date[30]. linebuf[135)s /% date and line buffers &/
char fobufl301, *fnames /% filename buffer & rir #/
char ibuf[BUFSIZIS /% buffered input buffer #/
char #getsi)s

r3n0 = colne = 08
Tinezsleft = PGLEM;
printf{*dhat is todav's date? ")

aets{date)’
while {1}
{
if {arsc-1)}
{
frame = ®++aravi
argc--4
else
{

rrintf{"\nEnter file to srint, or OR if donst *2

if {1#8{fname = getz{fnbuf})) break:
%
3

if {{fd = foren{fname.ibuf}) == ERROR}
{
printf(*Can’t oren Is\n":framels
continues
: ,
else printf{"\nPrinting %-13s":fname)s

~ for (PBN0 = 13 § PInodd)
{

putchar{ %)}

sprintf{]inebuf, "\n\ak28s%-135%5s1-3d%20s \n\n\n",
*file: ".fname."rPage ".Panc,date)s

Vinerr{linebuf)}

loort if (!'faets{linebuf,ibuf)) breaks
if {kbhit() &% setchar{) == Ox11) break:
if (linerr{linebuf}) continues
if {linesieft > 2} soto loor!

formfeed!);
H
formfeed()$
if (rano 1 2) formfeed();
fabort{fd)s
}
}
/%
Print a line of text out on the list device. and
return true if a fornfeed was encountered in the
text.
&/
linerr{strins}
char #strinss
{
char ¢, FFflass
Ffflas = 03
ghile {c = #strings+)
switch {c) {
case FF:
féflag = 13
breaks
case “\n‘l
putlpr{‘\r')s
putleri’\n'Ys
colno = (4
tinesleft—-t
breaks
case ‘\t°?
do {
rutler”)i
colnet+s
} while (colne % 8)3
breaks
defaults
rutier(cls
colnotts
}
if (ffflas) forafesd(}s
return $Fflas!
H
putlrric)
char ¢t
{

bies{S.c)
23

formteed{)

{
if (FF) putler(FF)y
else while (linesleft--) putler{“\n‘)s
linesleft = PGLENS

Y

)

BOS.LIB

If vou alter C.CCC by

MR ME MR YE e MR YR wR e ue e

rase 76

CPM: EQU 1

Svetem addresses:

Y RIEY ST

if not cPrm
(CCORG: EQU WHATEVER
RAM: EGU WHATEVERZ
BASE: EQU WHATEVERZ -

endif

if crm
baset eau O0(0h
fche #9u basetich
thuff: esu baset80h
bdes? esy baze4S
trat eau base+100h
nfchs: eay B
errorvi eqy 295
ccoorss esu tra

ram: equ cccorsHd?ih

endif

ol eqy Odh

162 &9y Oah
newlint eay 1§
tabs eqy %

bst esu 08h

eatrlct eu 3

L

errord esy cccorgtldh

for BDS C v1.45 October 14, 1930

Addresses within C.CCC and the ram area to be used bv machine
lansuage CRL functions.

reassembline CCC.ASM, be sure to so throush

this file and make sure all the addresses are esuated to the
arpropriate values resultins from the reassembly. Then the tibrary
functions will be ready to reassemble.

strue if runnine under CP/M5 else O

$IF NOT RUNNING UNDER CP/M. SET THIS TO LOAD ADDR.
$SET THIS TO RAM AREA,

$AND THIS TO THE BASE OF SYSTEM MEMORY {“PASE‘ IS
$THE RE-BCOT LOCATION UMLER CP/M: FOR MOH-CF/M OPER-

SATION. IT SHOULD BE SET TO A SAFE PLACE TO JUW TO (M

SERROR OR USER-ABORT.

seither O or 4200k for CP/M svetems

tdefault file contrel hlock

ssector buffer

thdos entrv roint

stransient Frosram ares

smax numbar of oren files allowed at one time
serror value returned by BOOS calls

jwhers run-time package resides #TESTINGY

S ERERBREE R LR R R LR R R R R R R R R LB R RN R LR R RSN

$THIS WILL PROBABLY CHAMGE IF YOU CUSTOMIZE CCC.ASH
§ERERERR R O S B SRR R RS S R R

SASCII codest carriase return
H Tinefeed

H newline

H tab

H backsprace

H control-C

Subroutines in C.CCC (the addresse:z should be that of the
arpropriate Jumr vector entry points)s

sretury -1 in HL

exit:

close!
setfcht
fafg:
fafchs

equwel?

swod?
usmod?
sauls
usmuls
ysdive
sdive

carhd:
caht
cmd?

maltoht
maztohs
madtohd
madtoh!
maStoht
mabtohs
ma7toht

arshak!
setdmat

"N ME uR MR eR ay ue

rooms

rbaset
‘r5izet
Xsized
peized
rseeds
aross

iohack:

allocpt

equ errort3

if crm

€U errortb

€3y errort?

ey errortl2
€94 error+is
endif

&80 cccors+0eSh

equ cceorgtilfh
e cccors+iZvh
@9y cccors+ldfh
equ cccorgtldbh
equ cccorg+idoh
€9y cccorgtichh

equ ccoora+iddh
&3y cccorstifah
ey ceoars+202h

290 cccorgtlah
eau cccora+Zidh
€9y maZtohtd
€3y maZtohtiz
£9y madtoh+id
#qu ma2toh+28
€9y maZtoh+30

esy maltoh+3b
€9y cccorg+4blh

ors ram

ds 30

ds 2
ds 2
ds 2
ds 2
ds &
ds 14
ds 4

ds 2

tclose al) oren files and reboot

sset up fcb at WL from text at [E
sset € according to whether file £4 is oren
sfisure address of internal fcb for file £4d

soet 1st stack element inte Hl and A
2nd

3rd

4th

Sth

&th
“7th

e M ue A au we

$copy First A& or 5o stack elements to arsc area
sset CF/M internal OMA pointer to BASE+O0h {tbuff)

The followins addresses will derend on the valus of RAH if vou
customize CCCLASM....be sure they corresrond to the assembly
results of CCC.ASH in such cases. If vou remove some of the dala
areas from CCC.ASH {in casze thev aren’t needed). be sure to remove
from here also.

imisc. scratch area {(for use bv BDS...vou can have
sthe last ten bytes or s¢. thoush, if vou really
sneed them)

$IMA video rlotting base

tscreen width (¥ of columns!}

sscreen lensth (# of lines)

sscreen size {vsize # waize)

$random number seed scratch area

juhere arshak puts ars valuez off the stack

troom for input and outrul ors for "ine“ and “outs®

sztorase allocation rointer

dlocaxt ds 2 :hishgst addr useable bv storase allocatoer

This is the end of the user~custemizable area. The remsinins
equated values are not to be altered.

A e um 9w

Srecial locations in C.CCC containine interestine rointers!

“e on um

extrnst eqy cccorstiSh fbase of external dats area {set by CLINK)

ccesizi equ cecorgtl7h 3size of C.CCC for use by CLINK only

codend: eau cccors+i%h jaddress of byte followine last brte of presram code
$ (set by CLINK)

freramt eqy cccors+lbh $First free address after external ares
3 {set by CLINK)

arsit €3y args sthese are Just convenient names for
arg2: eqy arastl sthe words in the "arss® area

ars3: equ argsty

arsdl equ arastd

argSi esu arostd

arsbét equ args+id

ara?: sy args+l?

tmpt €90 1o0m scome scratch data areas uzed bv library
“terit eau roomt! $functions,

tar2t e9u roomt?

terZat equ roomtd

ungetl! esy roomts

laste: equ roomt?

BIOS call codes:

"o uw uw

if cem
conint ey i $get a character from console
conout! ey 2 fwrite a character to conscle
Istout: equ § jwrite a character to Tist devics
dconiot ey & tdirect console 1/0 {only for CP/M 2,01
pstrngt esu ¢ ferint strinz {terminated bv “$7}
setiind equ 10 sget buffered line from console
cstat? esu 1} iset console status
select! equ 14 $select disk
gpenct sy 15 v soren 3 File
closect eau 14 tclose a file
defct emu 19 sdelete a file
reads: eau 20 srgad a sector {(sesuentiall
writs? emu 21 surite a sector {sequential}
created esy 22 tmake 3 file
renct esy 23 Srenatie file
sdmat esu 26 sset dma
readr? esu 32 sread random sector
writrs equ 33 swrite random sector
cfsizcs equ 35 scomrute File size

srpecct enu 2% ‘st random record

endif

8

&/

NOROGT.C written bv Leor Zolman
7174

Given the name of a C-generated COM File {linked with the standard
distribution version of the C.CCC run-time packase). this prosran
changes that COM file so that it does not rerform 2 warm-boot after
its execution is complete. but instead preserves the CCP {Conzole
Copmand Processor) that is in memory when execution bemins and
returns to the CCP directly followinm execution.

NOTE: If a command iz the ohiect of a rire oreration ucsins [I0,
then a wars-boot will alwavs cccur after its execution. whether
or not NOBOOT has been arplied to it

#include "bdscio b

rain{arsc.arsv)
char *%arsvs

{

int fi

int i3

char ¢}

char nambuf[301s
char workbuf {5001

if farsc '= 2} {
puts{"lsaze! noboot {C-senerated COM file named\n")s
exitil)s

H

for {i=0% (c = araviiIid} &k ¢ i= 7,78 {44}
nambuflil = ¢}

nambuflil = “\0"}

strcat {nambuf, ".CON")3

if {({fd = openinambuf.2}} == ERROR} {
puts{®Can”t opent *)3
ruts{nambuf)s

exit{}s
}

i = read! fd:workbuf+0x100,8)s
if {1 = @) puts{*Couldn’t read in at least 2 zactors...\n")s

workbuf[0x100] = (213
workbuff0x1011 = Ox003
workbuf[0x1021 = 0x00;
workbuf[0x103] = (x293
workbuf[0x104] = (223
workbuf[0x105] = (x7%3
workbuf[0x1061 = (x05s
workbuflOxi071 = Oxcds
workbuf[{x108] = Ox343
workbuf{0x1071 = (u(i3
workbuf[(=10al = Oxfos

workbuf[0x12F1 = Ox2a:
workbufLOx130] = 0793

workbufLOXI31] = Ox0S
" workbufL0x132] = OxFOs
workbuf{02133) = (we¥s

workbuf[0x134] = OxZas
workbuf{On135] = (n063
workbufl0x1363 = 0x00s
workbuf{(x1371 = Ox113
workbuf[0x138] = Oxcct
workbuf[0x1391 = Oxf73
workbufl0x13al = Ox193
workbuf{0x13b] = Oxc%s
workbuf[0x13c] = Ox((s
workbufl0x13d] = (n00s
workbuf[0x13e) = 003

workbuf{0x4431 = Owcds
workbufl0x444] = (x2f;
workbuf{(nc#45] = (0013

seek{fd.0.0)3
if {writel{fd.workbuf+0x100.8} = 8) {
~puts{"Hrite error.\n®}s
exit{}s

%
4

if {close{fd) == ERROR) {
ruts{*Clese errorin®)s
3

P
NOBOOT.C written bv Leor Zelman
382

Given a list of {-senerated COM files (linked with the standard
distribution version of the C.CCC run-time rackase), this prosram
chanses those (M files so that thev do not rerform 3 wark-boot after
their execution is complete, but instead Preserve the CLP (Consols
Command Processor) that is in memorv when execution besins and
return to the CCP directly followins execution,

NOTE: If a command is the obiect of a pire operation usins BIO:
then a warm-boot will alwavys occur after its execution. uhether
or not NOBOOT has been arplied to it,

Yink by:
Abclink noboot wildexr
{or} A212 nobeoot wildexp

*/
/¥
Cleaned up screen cutrut by use of "CLEARS® string from
BRSCINLH - if vou have not confisured BOSCIOLH vou can
comment out the line “puts{CLEARS):® OR confisure BOSCIQLH.
- Larry Clive
- &11782
%!

#include "bdscic. h®

main{arsc.argy)

char ##arsvs

{
int 4%
int i3
char ¢}
char nambuf{301:
char workbuf[0x5001s
int loors

if farsc == 1) {

puts("llsase! noboot {list of C-menerated COM File namesi\n”)3
exit{)s

for (loor = 13 loor ¢ aract looptt)

{
puts(CLEARS)S /% sge second comment above - LC &/
Puts{*\n\aNOBOOT version 3.0\n\n-=> MOBOOT-ins *)¢
puts{araviloor])s
putchar{ \n");

For (i=05 (c = arsvlleorHil} &k ¢ !z 7,77 (44}
, nambuflil = ¢

nambufiil = “\0’3

streatinambuf, *.CON")3

PR

if ({fd = openinanbuf.2}} == ERROR} {
puts{"Can’t orent *)3
ruts{nambuf}}
exit(})s

i = read{fd,workbuf+0x100,3)3
if {i '=8) puts("Couldn’t read in at least @ sectors...\n}t

vorkbuf[0x1(0] = Ox213
workbuf{0x101] = 0x003
workbuf[0x1021 = (003
workbuf(0x1031 = (x393
workbufOx104] = 0x22%
workbuf[0x105] = Ox791
workbuflix1041 = Ox(53
workbuf{xi07] = Oxcds
workbuf[0x108) = (343
workbufl0x109] = 0x018
workbuf{0x10a) = Oxf9:

werkbuf[0x12fF1 = (x2as
workbuf[0x1303 = (793
workbuffOx1311 = 0053
workbuflix132] = (nf9s
workbuf[0x133] = (xc®s

workbuf[0x134] = Ox2a3
workbuf{0x133] = 02063
workbuf[0x136] = (net03
workbufl0xi27] = Oxils
workbufl0x1381 = Oyecs
workbufl0x139] = Ouf7s
workbuflOx13al = (19
workbufl0x13b] = Que?s
workbufl0x13c] = Ox00s
workbuf[0x13d1 = Ox003
workbuf[0x13e] = 02008

workbuf[0:443] = (e
workbuf{0x444] = G2
workbufl0x4451 = Onls

seek{£d, 0,003
if {write{fdworkbuf+0x100.8) 1= 8) {
puts{*¥rite error.\n®}t

exit{)s
H

if {close{fd) == ERROR)

puts{“Close error\n®}}
*
4

Floatinz Paint Packase for BOS C
B M S SR SRR RS
Written by? Bob Mathias
this doc byt Leor Zolman

Components of the floating point Fackage!

1} FLOAT.DOC: This documentation file

2) FLOAT.C: File of support functions, written in C
3) Fpe The workhorse function {in LEFF2.(RL}
4) FLOATSIN.C A Samrle use of all this stuff

Hers‘s how it works! for everv fleating roint number
vou wish to work with, vou must declare a five (5) element
character arrav. Then. Pass a pointer to the arrav whenever
vou need to specifr it in a function call. Each of Bob's
functions expects its arsuments to be rointers to such
character arravs.

The four basic arithmetic functions are! fradd,
frsub. femul and frdiv. Thev each take three arsuments? 2
rointer to a five character array where the result will =0,
and the two orerands {each a polnter to a five character array
rerresentine 3 floatine roint operand.)

NOTE THAT THE RESULT MAY BE PLACED INTQ EITHER (F THE ARGUEMENTS
WITH NO ILL EFFECTS. l.e,: the operationt

femuiti{foo. foo. fouls
will successfelly sauare “foo’ and place the result in “fou’,

To initialize the floatina point character arravs to the
values vou desire and print out the values in 3 hugan-readabls forme
the followins functions are included:

ftoa: converts a floatins roint number to an ASCII
string {which vou can then rrint cut with “puts™)
NOTE: explicit use of this function has been mads
obsoiete by the new “serintf."” See FLOAT.C.

atoft converts an ASCII strins (null terminatzd) ts
a fleatins point number

itof: converts inteser to floating roint.

Here are Bob’s descriptions of the functisns?

The followinz functions allow BDS C coariler users to access
and manirulate real numbers. Each real number must be allocated
a five {5} brte character arrav {char fenol5)). The first four
bytes contain the mantissa with the first bvte beinz the least
sisnificant bvte. The Fifth byte iz the exponent.

froomp{orl op2}

char oril5),er2{3)s
Returnsd
an inteser 1 if orl 3 oF2
an inteser -1 if op! { orF2
a zero iF orl = op2

fis with most floatins reint rackases: it is not
a sood practice to compare for eauality when
dealins with floating point numbers.

char #fpadd{result.orl,ord)

char result{S1, or1[51: or2[51s
Stores the result of orl + oF2 in result, orl
and oP2 must be floatine roint numbers.
Returns a rointer to the beginnine of result.

char #fesub(result.orl,opl)

char result[S], epil5].0r2{5]5
Stores the result of opl - or2 in result. of!
and or2 must be floating roint numbers.
Returns a pointer to the besinnina of result,

char *fpmult(resuit.orlsor2)

char result{5), or1(53, 0r2(51s
Stores the result of orl # oF2 in result., orl
and oF2 must be floatina roint numbers, Returns
& reinter to the besinnins of result,

char #frdiviresult,orl,or2)

char result{S1,ort[S1,0p2{5)s
Stores the resylt of opl / of2 in result, oFi
and opZ must be floatins roint numbers,
A divide by zero will return zero as result,
Returns a pointer to the besinmnine of result.

char #atofiopl.sl)

char or1fS1, %53
Converts the ASCI! string s! inte a fleating
roint number and stores the result in oFl.
The function will isnore leading white srace
but NO white space is allowed to be embedded
withins the number. The followins arz lesal

examples?)
12", MZ02222T227303. 3337, 271320~
334, 33338324,

“3443, 22 E10" would be ILLEGAL because

it contains an embedded srace. ,

The value of the exponent must be within the
ranged -38 {= exponent (= 38,

A peinter to the result is returned.

char #ftoalsl,orl)

char #sl,opi{SH
Converts the floatins roint number or) to an
&5C11 strine, It will be formatted in
scientific notation with seven {7} disits of
precision. The strins will be terminated by
a null,
Returns a pointer to the beminninz of si.

char sitofiorl, nl
char «ri{5)s
int n} o

' Sets the floatinz pt. number crl to the value
of inteser n. n is assumed to be a3 SIGHED

inteser,

General observations:

Because fleating point orerations must be thouaht of
in terms of FUNCTION CALLS rather than simrle in-line
exPressions, srecial care must be taken not to confuse the
abilities of the compiler with the abilities of the fleatine
roint Packase. To sive a fleatins roint number an initail
value, for instance, vou cannot says

char fenolS1:
feno = "2,236";

To achieve the desired results vou’d have to savi

char fenolSH
atof{fena, *2.236%)3

Horeover. Jet“s say vou want to set a floatine roint number
to the value of an inteser variable called ®ival®. Savipa?

char fenolSls
int ivalf

feno = ivall

will not works vou have to chanse that last line to!

itof{frno.ivalls
Some more examrles!

The following will add 100.2 & -7.99 and store the
result at the five character array locatiop 73"

fradd{a,atof{b: "100,2"), atof{c,"-7.99%})3
{note that "b" and "c* must alze be five character
arravs)

The following would NOT add I te ‘37 as beth orl and
or2 must be floating point numbers {actually pointers
to characters...)t

fradd{a.a:1}3 /% bad use of "fradd® #/

Thus, it can set a bit hairv when all floatine
roint numbers are really character arravs) but still. it’s
better than nothina.

Al of the above functions are written in O, tut
most of them call g sinsle workhorse function called *fp°
to do all the really hairv work. This function has been rlaced
inte the DEFF2.CRL: it iz the only machine—coded rart of the
rackage.

’

i%
Floatins point rackase surport routines

Note the *f¢* librarv function. available in DEFFZ.CRL,
is used extensively by all the floating roint number
crunching functions.

Usase! After compilins vour prosram. Jink with this library
by tvring!

Aclink {rour program files> -f fleat <crl

NEW FEATURE: a srecial "printf" function has been included
in this source file for use with floating roint
eperands, in addition to the normal tvees. The
erintf presented hers will take precedence over
the DEFF,CRL verzion when "float” is srecified
on the CLINK command line at linkase time.

Mote that the “Fp* function. needsd by most of
the functions in this file. resides in DEFF2.IRL
and will be automaticallv collected bv (LINK.

All functions here written by Bob Mathias. excert rrintf and
-spr {uritten by Leor Zolman.)
#7

#include “bdscio. b

#define NORM.COLE ¢
#define ADDLCODE i
#define SUR.CODE 2
#define MULT.CODE K]
#define DIV.CIDE 4
$define FTOALCODE g

frcopr{orl, orl)
. char ®orl.%oF2s
{
char work[513
fesub{work.orl.or2}s
if {work[31 > 127) return {-1):
if (workIfl+work{IMtwork{23+workl33} return {13

return {0}
3

frnormiori} char #orls
{ FrINORM.CODE. ort s orl) sreturniorl)i}

f;adétreéuit,oplac?Z}
char #results fopl. #ord _
{ fr{ADD_CODE. result.orl or2)ireturnivesult) il

frsub{result, orZ:orl) _
_ char #result.¥orl,®opds

{FP{SUB_CODE resultsorl, 0r2)sreturniresult)s}

fraultiresults orl, or2)
char #result#orl.®opls
{ fR{MULT_CODE, result,orl.op2)sreturniresult)s)

frdiviresult.orl oP2}
char #result.%orl,%op2s
{ fP{DIV_CODE result.orl.or2)ireturniresul)il

atof{frno,s)
char fenolS], #s4

{
char #fenorm().work[S1: ZERO{SI.FP_10{S]:
int sisn.boolean,Power?

imtb(FP..IO: 53,0, 9!301 L H
setmem{frnos5,0)3
sisn.boolean=rower=03

while {#s==' 7 }| #5==/\t’) 443
if (¥5=="-")}{zisn_boolean=13 445
for (3isdigit(#s)i+is){
frmul t(Frno. FRno.FP_10}S
work[0)=ts~"0/3
work[J=work[21=uerk[31=0twork[41=313
fradd{frnc: fPho: FRROrmiwork))}

k)
9

} o
if {#g==",“}{
58
for {$isdizit{¥s))--power,++3}{
frmultifeno, frno.FP_10}S
work{0l=¢s-04
workl{ J=york{23=work[33=03 work[41=213
fraddi frno. frno. fenormuork} }s
2

3

if (tourper{¥s) == “E“} (445} power += atoifs}s }
if {rower>() .
for {(3power!=0f--power) femultifenoc.frno.FP.10}4
else
if {power()
for {Sroweri=03++rower) Frdiviferno, frno.FP_10)3
if {sisn.hoolean}{
setmen{ ZERD, 5,0}
frsub(frno. ZERD: frrio)
H
, return{frne)}
3
ftoalresult,orl)
char #results¥orlt
{ fP{FTOR_CODE, result, orl}ireturniresultis}

itofiori:n}
char #op{!
int n$
{
char teap[2013
return atofforl, itcaltemp.ni}:

bosp

itoa(str.n)
char *str:
{
char #sptrs
sptr = str}
if (n{0) { #sptrdd = "=’y 5= -p} }
~uspri&setr, n, 10M
#zptr = “\03
return strs

[

23
This is the seecia) Formattine Function. which supports the
“e® and *f" conversions as well as the normal “d%. “s%, etc,
When using “e® or "f* format, the corresrondine arsument in
the argument 1ist should be a pointer to one of the five-bvts
strinas used as fleatine roint numbers by the Fleatins roint
functions. Hote that vou don’t need to ever use the "fioa®
functien when usine this srecial printf/sprintf combinations
to achieve the same result as ftoa, a simele "%e" format
conversion will do the trick, "%F* is used to zliminate the
scientific notation and set the rrecision. The enlv [hnownl
difference between the "&" and "f" conversions as used hers
and the ones described in the Kernishan & Ritchie book is that
ROUNIING does not take rlace in this version...e.5.. printine
a fleatins point number which harrens to equal exactly 2,999
using 3 "45.2F" format conversion will rroduce * 3.9%" inctead
of ¥ 4,00,

*/

~ser{}line, fat)

char #line, #¥fmts

{
char .uspr{}s ¢, haze, #spir, #formaty
char wbuf{MAXLINEY, #eptr. ef. liflags, zffiass
int widths precision, exp. %arss)

format = #fmt+ss /¢ fot fFirst eoints to the format strins &/
args = fots /% now fot roints to the first ary value ¥/
while (c = ¥format++)
if {c==1){
wetr = wbufs
precizion = &3
1iflag = pf = zfflas = (8

if (#forpat == "~} {
format+es

Viflagtss
H

if (#format == 07} zfflastts /% test for zero fill ®/
width = isdisit{#format) 7 _ov2{iformat) 5 O
if {{c = #forpates) == 7,7} {

. precision = _av2{lfoermat)s

pfts
¢ = ¥format+t

3
¥

switchitourper{c)} {
case ‘E°Y if {precisiond’) erecision = 7
ftoalwbuf,¥args++)’
strepviwbuferrecisiontd, wbuf+i0)s
width -= strien{wbuf}s
goto pad2s

case ‘F'r ftoalbwbuf[403,%aras+t);

spir = Swbufl&013

while { *sptre+ != ‘E7)}

exp = atoiisertr)s

sptr = bubufl&0]1s

if {#sptr == 7) spirsds

if (#sptr == "-“) {
frtr+t = 7=
sPir++}
width--%

wn

H

spir += 23

iflawr 2 1) 4
HPtr4++ = 7073
width——3

}

pf=T8

while {exp > 0 & pf) {
#uptrt+ = #sptrtt
Ff--3
exp--1
width--2

3

while {exp > 0) {
*wptrt+ = 1073
E#XP~—3
width--1

H

Roptret = 7.7
i dth=—3

while {exp { O & precision) {
sptr++ = /073
2XPHES
Frecision—-1
width—?

%
b

while {precision &% pf) {
fuptr+t = Fspirt]
pf--}
precision-—!
width=-3

3

while (precisiond) {

puptrt+ = ‘078
Precision——3
width--3

3
g

geto padi

case ‘It if {#arss { 0} {

Bgptrés = =73
%args = -¥args;
width--3

}

case ‘Wi base = 10% sote vals

u

case ‘At baze = 147 goto vals

13

caze ‘0?7 base = &
vali width -= _usprilwptr,*arsstt - base)s
sote Pad:

case "0 Huptrtt = Eargsess
width--3
sote rFadi

case ‘8t if ('pf) precision = 2001
spir = fgrastds
while {*spir &% Precision) !{
#ptréd = $sptreds
Frecision—3
width--§

1
ks

padt fwptr = “\07%
FadZt wetr = wbufs
if {'liflag)
while {width— > 0
#linet+ = zfflas 7 707 1 7 7%

while {(#line = #uwptr++)
finet+s

if (Lifla}
while {width-—— > 0)
*ingtt = 7 4
breaks

defaults #ling+t = o4

i

}

else #linet+ = ¢}

#ling = "\0°3

K 3
New fFunctions for BOS C vi.4xt "lerintf” and *lruts®

Written 1/18/8% bv Leor 2olman
*/

#include <hdscio.hd
#define LISTDEV 2

s
Formatted cutput to the list device., Usase!
Terintf(formats arsl: ars2s ...}
char #formats
Works just like ®printf*. eucert the ocutrut line iz written
to the lineprinter instead of to the console.
#/
Ierintf{format)

char #formats

e
[3

char t«tlin{MAXLINEY:
~seritatlin.Sformat)s

Truts{txtlinds

H

Fi3
Put a line out to the list device. Usaset
lruts{str)
char #z3try
Horks Just like "putzs®, excert the cutrut line soes to the
erinter instead of to the consolet

¥/

trutzistr)

char #strs

{

char <3

while {c = #sir++) {
if (¢ = "\ putcd \r L LISTOEVYS
putc{c.LISTIEV):

st

Lo

/%

CASM,C -~ written by Leor Zolman, 2/32

CP/M ASM preprocessort redders MAC.COM and CMAC.LIE unnecessary.

See the CASM document (included with BDS € v1.46) for more info,

Compile bv:

¢ cas@.c -0 -ed000

#/
#include “bdscio b
$define CAREFUL €

#define TPALOC {BASE+Ox100)
#define EQUMAY SO0
#define FUNCMAX 100
#define NFMAYX 100

#define LABMAX 150
fdefine TXTBUFSIZE 2000

#define DEFDISK °C:*®
#define CASMEXT *,CSM*
#define ASMEXT “.ASH"
#define DIRSIZE 512

/% Setting thiz to I makes CASM check for
and redect old "CMAC.LIB" pseudo-ups #/
/% base of TPA in vour svstem %/
/% maximum nupber of EQU ors #/
/% maxinum number of functions #*/
/% maxinum number of external
functions in one function ¥/
/¥ max number of local labkels in one func #/
/% max § of chars for labels and needed
function names for a sinsle function ¥/
/% default disk for include files $/
/% extension on input files #/
/% extension on outrut files #/
7% max # of bvtes in CRL directory %/

/4 Global data used throushout processing

char fhuf{BUFSIZ]s
char incbuf{BUFSIZ1s

of the intput Filet 7
/% 170 buffer for main input file */
/B 170 buffer for included file ¥/
/% 1/0 buffer for output file #/

char obuf[BUFSIZ]:
char kchufps

char #cfilnami
char rambufl303,

nambuf2l 303,
onambuf{303s

char #equtablECUMAX]:
int equcount’

char #fnames[FUNCMAYDS
int feounts

int 1inossaviines

char deinafuncs

char errfs

/% pointer to currently active input buf #/
/% pointer to name of current input file #/
/% filenames for current inteut */
/% and outrut files. #/

/% table of absclute svmbols &/
/% % of entries in enutab */

/% Hist of functions in the source file #/
/% 3 of entries in fnames +/

/% line number values used for error &/
/% rerortina, */

/% true iF currently processins a function #/

/% true if an error has been detected %/

/% Global data used during the processins of a
sinsle function in the source file! &/

char #nflistINFHAX]S
int nfeount?

/% list of needed functiens for 3 function #/
/# number of entries in nflist #/

struct {

char #labnans /% name of function label #/

char defined: /% whether it has been defined vet %/
1 lablist{LABMAXY:

int labecounts /% number of local labele in a Function ¥/

char txtbuf [TYTBUFSIZED, /% uhere text of needed function names %/

#txtbufel /% and function labels so */
char Vinbufl1301, 7% text line buffers #/

Yinsav{1503.

workbut[1503,

rbuf{1503, ¥rbufe}
char *cfunan$ /% pointer to namz of current Function #/
int relblcs /% relocation obiect count for a function #/
char rastnfss J% true if we've passed all needed function #/

/% declarations {“external® pseudn oFs) 74

int arscnti /% values set by the "parse_line® function ¥/
char #labels
#OPs
¥3rgsp,
#arss[403s
char topcpirs /% seneral-purrose text pointer ¥/
1%

% Oren main input files open outrut file, initialize needed slobals
and process the files
#

min{zarshc.aarshy)
char *Haarshvi

f
*

int 1,d.88
char o3

ruts{*BD Software CRL-format ASM Preprocessor vi.46\n")4

initesu()s /% initialize EQU table with reserved words #/
frount = 05 /% haven‘t seen any Functions vet %/

doinafunc = 0§ /% not currently processing & function ¥/
errf = 03 /% no errors vet ¥/

if (aarshc '= 2}
exit{puts{"Usasel \ncase {filenamedin”l}s

/% set up filenames with prorer extensisnst #/

for {1 = 0% {c = aarghvl11[i]) ¥& ¢ = 7,7} i+4)
nambuflil = ¢t

nambufiil = “\0“3

strcrv{onambuf, nagbuf)s

streat {nambuf, CASMEXT)S /% inrut filename #/
chufr = fbufs /% buffer pointer %/
cfilnam = nambufs : f¥ current filename pointer #/

if {(foren{cfilnam.cbufr) == ERROR)

exitirFrintf{®Can’t oren Xs\n*>cFilnam)ds

strcat{onambuf, ASMEXT)$ /% outrut filename ¥/
if {fcreat{onambuf,obuf) == ERROR)
exit{erintf{"Can’t oren %s\n",onambuf))s;

/% beain writins outrut file %/
ferintf{ohuf, “\nTPALOC\ £ \tEQUA t704xH\n" , TPALOC)S

lino = 13 /% initialize line count &/
while {get_linel)) { /% main loor ¥/
process.line()s /% process lines till EOF #/
linot4}
H
if {deinzfunc) /% if ends inzide a function. error ¥/

abort("File ends. but last function is unterminated\n")!

fruts{ “\nENDSCRU\EVEEQUAt4-TPALOCAR® obuf)s /% end of functions %/
fruts(“SECTORSS EQU ($-TPALOC)/256+1 sUSE FOR \"SAVEVY !.\n" chuf)$

rutdir{}s /% now skit out CRL directory #/
fruts{ "\t \EENDAR" s obuf)s /% end of file ¥/

putc(CPMEDF. obuf)s /% CP/W EOF character %/
fclose({chufp)s /% close input file %/
FFlushiobuf)s 7% Flush and close cutrut file #/
fclosel{obuf)s

if terrf)

printf{"Fix those errors and trv asain...\n')s
else

Frintf("\nls is readv to be assembled.\n*:onambuf)}
}

j#
Get a line of text from inrut stream, and rrocess
"include” ors on the flv:

#/
int set linel)
{
int i3
if {feets{linbuf.cbufer)) { /% on EOF: #/
if {chufp == incbuf) { /4 in an "include” file? #/
fabort{ctufr-3_fd}} /% close the File #/
chufr = fbufs /% 90 back to mainline file &/
cfilnam = nambufs
lino = saviino + |3
return et line()s
&Yse return NULLS
k3
parse_linel)s /% not EOF, Parse ling #/
if {strea{op "INCLUDE®)} 1} 7% check for fils inclusion #/
strea{op, “MACLIE")) (

if {cbufp == inchuf) 7% if already in an include, #/
abort{"Only one level of inclusion is suprorted”}’ /¥ error #/
if {'arssp)

abort{™No filename specified®)s

chufe = incbufs 7% set up for inclusion %/
saviine = lined
line = 13

For {1 = 03 'isspace{arssrlil)} it+) /% put nyll after ¥/
H 7% filename */
argsplil] = “\03

fnambuf2 = \0”3

if {*%argsp == () { /% look for manic delimiters %/
if {argspl2] != 737) /% if no exelicit disk given */
strcat(nambufZ, DEFDISK)Y 7% then use defaylt ¥/
strcat{nambufZ,arasptl};
if (nambuf2li = strlen{nambuf?) - 13 == /)
napbuf2{il = "\0$
} else if (¥argsp == "*) {
strepy(nanbuf2:argsptl}s
if (nambuf2li = strlen{nambuf2) - 11 == ***}
nambuf2{i} = “\03
1 else
strepyinambuf2.argsr)s

if {foren{nambuf2, chufe) == ERROR) {
if (nambuf2istrien(nambuf2) - 11 '= 7,9} {
strcat{nambuf2, *,L1B")}
if (foreninambufZ,ckufr) = ERROR)
soto ok$

H

printf{®Can’t open Zs\n".nambuf2}s

abort{"Missinz include file"}s
H

ok cfilnam = nagbuf2s
N return get_line()s
1
return 15
}
rarse.linel}
i
int i3
char ¢

1abel = op = arasp = NiLL}
argent = 03

stropy2{pbuf, Tinbuf)s
strery2{linsav. linbuf}d
rbufp = pbufs

if {tisspaceic = wpbufe)) {

Sond

if (¢ == 3"y
returns /¥ totally isnore comment lines #/
label = pbufpy /% set pointer to label #/

~ while {isidchr{®rbufr}) /% pass cver the label identifier ¥/

rbufrity

spbufptt = 71073 /% place null after the identifier #/

1
L

skir.uspldpbufri?
if ('epbufp |} #pbufp == 73}

return}
oF = rhufe} /% set pointer to oreration mnemonic */
while {isalrhai¥rbufr})

phufpéts /% skip over the orF 174
if (#pbufp) #rbufp+t = “\0’3 /% place null after the or #

/% now Frocess arsuments %/

skir.wsp{&rbufr)}
if (tepbufp i tpbufr == 37}

return
arssp = linsav + {(rbufp - rbuf)} /% set pointer te ars list #/

/% create vector of etrs to all arss
that are possibly relocatable #/
for {arscnt = 03 argent ¢ 403) [
while {lisidstrt{c = #pbufr})
if lic o= "3}
returns
¢lse
rhufps+s

if {isidchri{s{pbufr ~ 1)) {
rhufrets
continues

}

argslarscnt+4] = pbufpes
while {isidchr{#pbufr}) rhufp++;
if {#rbufp) #pbufpet = 10}

b4
h .

error{"Too manv orerands in this instruction for me to handleln™)s

process.iinef)}

¢

char *cptr, ¢}
int {.41

if {op) {
/# check for definitions of slobal data that will be
exenrt from relocation when encountered in ths
arsument field of assemblv instructionst %/

if {stres{or,"EQU"} |1 streq{or, "SETY) §
{'doinsfunc &
{strealor, "DS") |1 strea{or "DB®) !} stres{or, "DH®})))

fruts{linbuf,cbuf)s
crtr = sbrk2{strlen{labsl) + {3}
strervi{cpir, label s
equtableaucount+tl = crtrs
if {emucount 3= EQUMAK)
abort(

Too many EQU lines...increase "EQUMAX” and recompile CASM):

return}

if (strea{or. "EXTERNAL")) (

¥

if {‘doinsfunc) abort{
®External’s for a function must appear inside the function*)s
if {pastnfs} errort ' ‘
*Externals must all be tosether at start of function\n®)s
for {i =05 i { arscnt? i+ (
nflistinfcountts) = txtbufrs
strepvitxtbufriarssfil)s
bumptxtelares(il)s
b Y
if (nfcount = NFMAX) {
Printf{"Toc manv external functions in function \“Zs\"\n",
cfunzm)i
abort("Chanse the NFMAX constant and recomeile CASM®)S

%
¢

returns

if {strealop, *FUNCTION®)) {

3

if {'fcount) {
fruts{*\n5 dumav external data informationt'\n",obuf)}
fruts{ "\E\tORG\LTPALOC+200H\n Y, obuf)}
fruts{"VEVEIEVE0. 0, 0,0 0\n" s obuf)3

3

if {doinsfunc) {
printF{"Function’ or encountered in 3 function.\n")s
abort{"Did vou forset an ‘endfunc’ op?")s$

}

if {!aracnt)
abort{"A name is reauvired for the “function” op")s

cfunam = sbhrk2{strieniaras[0]} + 1}}
frames{fcount++] = cfunams
strepvicéunamsarss[01)8

rrintf{"Processing the %z function... \r*, cfunamis

doinafunc = {3

txtbufe = txtbufs

tabcount = 03

nfcount = 04

rastnfs = 03

ferintflobuf,"\n\ns The *Zs* functioni\n®.cfunam)s
frrintflobuf, *Ls$BECALEQU \t$-TPALOC\R® cfunan)}
returnd

if {strealer, "ENDFUNC®) {} strea{op, "ENDFUNCTION®)}

if {!doingtunc)
abort{*/Endfunc’ oF encountered while not in 3 function®)s

if {!pastnfs) flushnfsi)s /# flush needed function list #/
fFrrintflobuf, "L $ENDAEEOUN S \n® cFunam)?

doreloci)s /% flush relocation rarameters ¥/

for {i = 03 i { labcounts i#+) /% detect undefined labels %/
if {!lablistlil.defined) {
printf{"The label %= in function X5 is undefinedin™
1ablist[il, labnam. cfunam)}

errf = 1}

3
&

doinsfunc = 04
returni

4
b

#if CAREFIL
if {strealor,"RELOC") 1! streg{or.*DUREL®)} {! stres{or,"DIRECTY} i
streafor, "ENDDIR"} |} strealor,"EXRELY) 1} strealoe, *EXDWREL®) i}
strea(op, "PRELUDE®) 11 strealor, *POSTLUDE®) i stres{om, "DEFINE*}}
error{*01d macro leftover from \"CMAC.LIBA® davs...\n")}

#endif
/% No special pseudo ors. 50 noW Frocess

the line as a line of assembv code! #*/
if (strealor; "END")) returns /% don't a!lou "end* vet */

if (!doinsfﬁnc¢§: {1abel && 'op)} /% if nothinas interestinz on #/
return fruts{linbuf,obuf)s /¢ ling. isnore it */

if {'rastnfs) /% if haven’t flushed neaded #/
flushnfs()s /% fupction list vet, do it #/

7% check for rossible Jabel #/
if (Jabel) {
frrintf(obuf, *esLens \EALEQUALE-1s$STRT \n,
cfunam, label, cfunamls
for {i=07 linbuf[ils i++}
if (izspace{linbuf[id) 1! linbufli) == “1°)
break;
else
tinbyflil = © 74
if {linbufli) == 727} Vipbuflid = < 4}
For {i =03 1 < labcount? i#+) /% check if in label table #/
if (strea{label,lablistlil.labnan)) { /% if found, #/
if (lablistlil.defined) { /% check for redefinition ¥/
error{*Re-defined labeli“)s
printf("%s: in functien %s\n",
lablistl{il. labnam. cfunam}s
1
glse ,
tahlistlil.defined = 13
soto out?
} .

Iablist{il, 1abnam = txthufps /% add new entry to #/
lablistlil.defined = 13 /% label list 1 74
strepvitxtbufe: 1abel)s
bumptxtr{label)s
labcount+s

k)
outs
if {lor) return fruts{linbuf,obuf)s /% if label onlv. all done #/

/% if a non-relocatable or, ¥/
if {norelor{or)} return fruts{linbuf,obuf)? /% then we're done #/

if (arscnt % doinsfunc)
for (i =0% 1 { arscnt i++) {
if {norelfarss{il)) continue?

if {gpcetr = iseflarsslil))
srrint Fluorkbuf, "LsEFis~Le$STRT",

_ cfunam. arcrtr, cfunam)$

else {
sprintf{workbuf, *Xs6l6%s": cfunam-arsslil)s
for (3 = 03 J £ labcounts J++)

if (streafarss{il,lablist{il.labnam))
goto outs

lablistlil. labnam = txtbufes /% add new entry to ®/
lablistlil.defined = 03 /% label list #/
strepy(tutbufe.arssiil)s
bumptxtritxtbufr)s
labcount+4s

out2:
rerlstr{linbuf, workbuf, arss{il - pbuf, strleniarss{il})):

if {ztres{op,"DW*)) {
frrintf{obuf, "Ls$RI0IJVLEGUN LS - 6STRT \n",
cfunam: relblct+, cfunam)s
if {arscent 2 1)

error{"Only one relocatable value allowed rer DMAR™)S

1
4

else
ferintf{obuf, *%sERI0ZVLEGUN L S+1-Ls$5TRT \n",
cfunam: relblci+, cfunam)s
breaks:

3

fruts{linbuf, obuf s

gt

Test for ops in which there iz suanranteed to be no need
for seneration of relocation rarameters. Note that the list
of non-relocatable ops doesn’t necessarily have to be complete
because for any of that deesn’t match. an arsument must still
rass other tests before it is deemed relocatable. This only
sreeds things up by tellins the promram not to bother checkinm
the arsuments.

*/

risrelor(oF)
char #op}

f
i

if {streafor, "MV®}) return {4

if {strea{or:"INR")) return 1%

if (streafer. “DCR™}) return I3

if {strealor, "INX"}) return 1}

if {streafer. "0CX")) return I3

if {strealor, "DAD"}) return I3

if {streq(or, "MVI¥}) return {3

if {strealor,"DB")} return 13

if {streafor,"DS")) return 13

if {opl2] == I’} {
if {stres{er.*CPI"}) return {3
if {stresfor, "ORI*}) return 13
if {ztreq{op."ANI®)} return {3
if {strealor, "ADI™)) return {3

if {stresfor."SUI*)) return 13
if (strea{op,"SBI®)) return 1%
if {strealor,*ARI*)) returs 13
if {strealor:"ACI")) return 13

3

if {streaior,"ORG")) return 13
if (strealor "TITLE®)) return 13
if {strea{or,"PACGE"}) return 13
if {streslor,"IF*)) return 13

if {strea{or,"EJECT")) return 13
if (strealor."MACRC®)) return 3
return O3

-

flushnfsi)
{
int i,d, lensths

rastnfs = 1§
relblec = 03

fruts{"\n\n3 List of needed functionsi\n®,obuf}s
Cfor 1i=0% i { nfcount] i) {
strepy{workbuf, "\tAtDBAL *)3
lensth = strlen{nflist{il)s
lensth = lenath < 8 7 lenath ¢ 83
for {J =03 J { lensth - 13 j44)
werkbuf[&o4id = nflistlidlids
workbuf{6+id = \(}
Ferintflobuf, "is’, "L +20H\R" »workbuf, nflistillil)s

H

fruts{"\E\EDBAEOR", buf)4
fruts{"\nt Lensth of bodvi\n" cbuf)s
Frrintf{obuf, "\E\tDWAtLs$END-$-2\n", cfunam) s
fruts{®\nt Bodyi\n".obuf)s
frrintf{obuf. *1s$STRTVEEQUAtS\n" cFunam} s
if {nfcount) {
frrintfiobuf, "LedRY0IIVEEDIN t$41-2265TRT A",
cfunamsrelblce+, cfunamls
ferintfiobuf, "\EAVEIPALEs$STRTC-Ls$STRT 6" cFunam, cfunan) s
3
frrintf{obuf, "1=$EF6 s \tEQUA tLs$5TRT\n®: cFunam. cfunam, c Funam)s
for {i=03 i ¢ nfcounts i+4)
ferintf{obuf, "Ls$EFSZs\tMP\E0NR" s cFunam nFlist{i))s
frrintf (obuf, "\nXs$STRTCALEQUAL$\n", cfunam}s

fopd

doreloct)
{
int i3
_ fruts{"\n$ Relocation parametersiin®:obufis
ferintf{obuf, "\t\EDEAEId\n relblc)s
for{i = 05 i { relblcs i+4)
Ferintf{obuf, “\PVEDUAE Y 5SROI\ : cFunam: i }3
fruts{*\n", ohufls

L)

rutdir{}
{ T
int i.d. lensths
int bvtecount’

bvtécount = 0

fruts {*\n\t\tORGAtTPALOCAn\n$ Directoryi\n".cbuf}s
for (i =0} i ¢ foounts i+#) {
strepy (workbuf, “\tALDEAE#)3
Tensth = strien{fnames[il)}
tenath = lenath < 8 ? lensth 3 93
for {3 =0 i % lenath - 13 j#+)
workbuf[4+il = framesfil{ils
workbuf[b+il = "\’
frrintfFlobuf, *is’, 74’ #20H\n" sworkbuf, frames{i1(i))s
frrintf(obuf, "\t\ DI\ tis4BEGD", fnameslil):
trtecount += (lensth + 2)4
1

fruts (" \EVEDEA BOHARA EVEDWAEENDSCRL \n" s obuf)3

brtecount += 3}

if {(bvtecount > DIRSIZE) (
printF{"CRL Directory zize will excesd S12 brtesin"}s
printf{*Break the file ur into smaller chunks, rplesse!\n")s
exit{-1)}

L)

initesu{)

{
eautab{0] = "A"
equtabli] = "B"
equtab[2] = "™
equtabl3] = "p*t
gqutabl4] = "B
equtabi3] = "H*;
equtabléd = “L*
equtabl?] = "M%
equtabl8] = “5P
equtabl?] = "PSY™
equtab{101= "AND*3
equtabl1il= "OR":
gqutab[12]= “MOD"s
equtabl13}= "NOT";
equtabl14)= "XOR";
equtabl15]= ®SHL®;
equtabl163= "SHR":
gaucount = 14

o on oo o H

int isidchr{c} 7% return true if ¢ is lesa! character in identifier ¥/
char ¢}
{ .
return isalehafc) 1} ¢ == “$° || isdisitic) it ¢ == “,"%
}

int isidstrt{c) /% return trug i¥ c is lesal as First char of idenfitisr #/

char ¢}
{ _
return isaleha{c)s
3
int stren{sl, s2) /% return true if the two strines are esgual %/
char #si, %523
{
if (#s1 = #52) return 03 /% special case for sreed ¥/
while {#sl) if (#3144 = #5244) return 03
return {¥s2) 20 ! 13
3
skir wsp{stretr) /% skir white space at #stretr and modify the rir ¥/
char ¥strpirs
{

while {izspace(®#strptr)) {#stretpr)ess
}

strepv2{sl,s2) /% copy 52 to 51, converting to uprer case as we 5o #/
char #31, #3523

{
while {#52)
#5144 = tourper(ks24+})}
51 = \0'}
}
Iz
General-purrose strine-rerlacement Functiond
‘string’ is pointer to entire strins,
“insstr’ is pointer to string to be inserted.
‘pos”’ is the rosition in “string’ where “insstr
iz to be inserted
“lengid” is the lensth of the substrins in “strins’
that is beinz replaced.
+/

rerlstr(string. insstr. poss lenold)
char #stripa, *insstrs
{

int lensths 1. dy ks %8

lenath = strienistrins)s
» = strien{insstr)s
k=3~ lenolds
i = string + pos + lenold? ,
if (k) movmem{i, i#k, lensth - {roz + lencld) + i)
for i =0s § = rosy 1 {ub itd, j4+)

strinslil = insstrlils

errorimss)
char #mss!

printf("\n\7%s? %d¢ Xs % cfilnam, lino.mes)s
errf = 1}

abortimss)

char *mssj

f
Y

errorimsals

putchar{’\n’)s

if {cbufe == incbuf) fcloselinchuf)s
fclose{fbuf)s

exit{-1}3

L]

sbri2{n) /% allocate storase and check for out of srace condition %/
4
1
int i3
if ({i = sbrkin)) == ERROR)
abort{"Cut of storase allocation sracein®)s
return i3

b 3
s

bumptxteistr) /% bump txtbufe b zize of eiven string + 1 #/
char #str}

{

tutbufe 4= strlen{str) + 13
if {txtbufe 3= tutbuf + {TXTBUFSIIE - 8))
abort{*0ut of text srace. Increase TXTBUFSIZE and recompile CASM®)S

Ll

int norel{id} /% return true if identifier is exempt from relocatetion #/
char #idy

{

if {isesuiid)} return 13
return 3

int isesulstr) /% return true if given strins is in the EQU table #/
char #str}

{ .
int i3
For {1 =03 i ¢ equcounts i++)
if (stres{str.eautablil))
return 1%
return O
H

char #izef{str) /% return nflist entrvy if given ztring iz an external #/
Ehar #strs /% function name %/
1 .
int i3
For {i =03 1 ¢ nfcount) i)
if (strea(str.nfiistlil))
return nflist{ils

return 03

TITLE “LRUN Librarv Run—a utility for .LER files”
VERSION EQU 150 382-08-06 Initial source releass
PAGE &0

Requires MAC for assemblv., Due to the complexity of
the relocation macros. this rrosram may take a while
to assemble. Be prerared for periods of no disk activity
on both rasses before pressing ranic button. G.P.N,

“R MR us WE us we

NOTICE

am sty ue

{c) Copvrisht 1982 Gary P. Novesielski
A1l rishts rezerved.

The followina features courtesy of Ron Fowler:
1} command line rerarsing and reracking (this allouws
the former load-only pProsram to become a Joad & run
utility).
2) code necessary to actually execute the loaded file
3} the HELP facility (LRUN with no arsumentsi
4) modified error roytines to aveid warm~boot delav

{return to CCP directly instead)

Permiszion to distribute this eprosram in source or
shiect form without erior written aproval is sranted
only under the followwins conditions,

1. Mo charse is imeosed for the Frosram.

2, Charges for incidental costs includins
but not limited to media. roctase. tzle-
communications. and dats storase do not
exceed those costs actually incurred.

3. Thizs Notice and any coprisht notices in
the obiect code remain intact

{zisned) Garv P, Novosielski

LRUN is intended to be used in condunction with libraries
created with LU.COM, a Tibrary utility based upon the
sroundwork 1aid by Michae] Rubenstien. with some additional
inspiration from Leor Zolman’s CLIB librarian for .CRL files.

The user can rlace the less fresuently used command (.COM)
files in a library to save srace. and still be able to run
them when resuired, by tveinst

LRUN {normal command linel.
The name of the library can be srecified. byt the sreatest
utility will be achieved by rlacine &) commands in one
library called COMMAND.LER. or some locally defined name.
and always Tettins LRUN use that name as the default.

ME am VE e NE UR WS GG VR R al B Ul B M AR UR GN G ME OB ME B UE B Ul HR SR ul MR MR Gl VB M ME ME MR e uR da

Ly

Srntaxt
LRUM [-<Ibrname2] {compand’ [{raramzters]

where!
£ibrname’: iz the ortional library name. In the

)
H
s
3
X
*
]
k]
[
¥

{command>

B MR am ME UE ME UGB ME UG ME ME OB G WME MR SR AR B MR AR Uk eR

8sYs ST
&EY SET
€CON CET
8rDR SET
PN SET
BLST SET
&8I0 SET
8RI0 SET
€310 SET
eMss SET
EINF SET
eROY SET
@VER SET
eLo6 SET
epsKk SET
ePN SET
BLS SET
&DIR SET
eNXT SET
€DEL SET
8FRD SET
eFWR GET
BMAK SET
8REN SET
eur GET
emma SET
8CHG SET
BUSR GET
gRRD SET
eRMR SET
@1z SET
eREC SET
o6y SET
ERWRO GET
CPMEASE EQU
BOOT SET

BOOS SET

distrubution version. thiz defaults to
COMMANDLLBR., If the user wishes to use &
different name for the default. the 8-brte
titeral at DFLTNAM below mav be chansed to
suit local requiremants. The current drive

is searched for the LBR file. and if not
found there: the A! drive is searched.

*#Note that the leading minus zisn (not a part
of the name) is reauired to indicate an
override library name is being entered.

is the name of the .COM file in the library

is the (rossibly empty) set of raramaters
vhich are to be passed to <{command}, as in
normal CP/M svntax. MNotice that if the
Vibrary name is defaulted, the syntax is
simplve

LRUN {command line

which is just the nermal command line with
LRUN prefixed to it.

SO N W RO e D

s ot o
B b

12
14
15
146
17
8
¥

2t
22
z
o
i
30
32
3

K
3
¥

]
CPHBASE
BOOT+S

IFCE EQW BOOT+5CH
TFCRY EQU TFCB

TFCB2 EQU TFCB+1&

TBUFF EQU BOOT+30H

TPA EQY BOOT+100H
CTRL EQu eS| sCtrl char mask
R SET CTRL AND 7N/
LF SEY CTRL AND "4
TAB SET CTRL AND ‘17
FF SET CTRL AND ‘L
BS SET CTRL AND “H-
FALSE SET 0

TRE SET NOT FALSE

PN MACRO FUNC, OPERAND. CONDTN
LOCAL PAST '
IF NOT NUL CONDTN
bB (JECONDTN) XOR &

ji] PAST
ENDIF 336f not nul condtn
IF NOT NUL OPERAMD
Lxi D, CPERAND
ENDIF $50f not nul operand
IF NOT UL FUNC
I C, BEFUNC
ENDIF v
CALL BOOS
PAST:
ENDH
BLKMOV MACRO DEST,SRCE,LEN.COND
LOCAL PAST
P PAST
ERMVEER:
MoV f:B
ORA C
RZ
BexX]
W AN
INX H
STAY I
INS I
JiP eBMVSBR
BLKMOV MACRD DST,SRC.LN.CC
LOCAL FST
IF NOT ML CC
0] { JECC) XOR &
o PaY
ENDIF
If NOT MUl DST
Lxl D, D87
ENDIF
IF NOT NUL SRC
L1 H: SRC
ENDIF
IF NOT MUL LN
L1 BN
ENDIF
CALL EBMVSER

IF o ONTNLCC

psT:

ENDIF
ENDN
PAST: BLKMOV DECT.SRCE,LEN-COMD
ENDM
3
(WERLAY SET 0
§ Macro Definitions
RTAG MACRD LBL
TRUBL. EQU $42~8BASE
ENDM

RGRND MACRO LBL
PIRELBL EQU OFFFFH

ENDN

R MACRO INGT

8RLH. SET eRLBL+!
RIAG ZeRLBL
INST-8BASE
ENDM

NXTRLD MACRO MM

8RLD SET 77RMMN

NXTRLEY SET NATRLD + |
ENDH

R we U we

Y

BLKMOV - €BASE, SEGLEN

“s

Enter here from Console Command Processor {CCP)

$Jume arcund sisnon

3Sisnon messase

Gary P. Novosislski 7

saet the COP entry stackrointer
${used onlv if HELP pesuest

5 is encountered)

shisplar sisnon

tinitialize.

$find tor of memory

trage zddress

sForm destination...
}eeoaddress in

$IE rair.

LFIN ORG TPa
M INTRD
SIGNON:
] ‘LRUN Ver ¢
i) VERSION/ 10+/07
;] L
B VERSION MOD 104707
DB CR,LF
0B Y Coryrisht (c) 1982
DB ‘$/,CTRL AND 72/
k]
_ INTRO:
LI HsQ
DAD sp
SHLR SPSAVE
P MG, STGNDM:
CALL SETUP
LHLD BDOS+t
MV f.H
sur PAGES
wov D.A
M1 E:0
PUSH D

$save on stack

sMove the active sesmpent.

/#

#/

painf{)

twpd

This presran is a simele example of hiw to use
Bob Mathias’s floating point mackase.
After compiling this and the FLOAT.C library, link tv savins?

Axclink floatsum -f float <crd

Note: the Pprintf® functien resulting from this linkase
will surport the ¥e® and “f" fleatine roint conversion
characters: but the resular *printf" would not. The reazons
the srecial version of ".ser" in the FLOAT.C source file

is loaded before the library version of "_ser”: and

thus supports the extra features.

char s1{5], s2{S5];

char strinal301:

char sb(301s

int i3

atofisl, "0}

while (1) {
rrintf{"sum = 10, 6F\n" el 2
printf{"\nEnter a floatine number? *}}
fraddisl sl atof{s2:sate{strins}ils

[

#include *bdscio.h®

7%

STDLIBLLC — for BDS € v1.46 -~ Leor Zolman. 2/5/82

The files STDLIBI.C and STOLIB2.C contain the source for

all functions in the DEFF.CRL library file.

Functions aprearing in thic source file:

foren setc ynsetc setu

fcreat rutc ruty

fflush fclose

ated

strecat streap strepy strlen

isalrha isupPer istower isdizit

izsrace tourrer tolower

gsort &% -swW¥

initw inith setval

alloc # free #

abs nax min

~— Compilation of alloc and free must be exelicitly enabled by
swarring the commenting of the ALLOC_ON and ALLOU_OFF definitions
in BOSCIQ.H.

- Oszort has been rendersd more efficient by havins the “_sur”
function use the "movmen® library function to swar obiects.
allecating temrorary srace on the stack. The deFined zvmbol
"MAYX_DSORT_WIDTH® specifies the larsest allowable size for 2
sinale instance of the cbizcts beins sorted. If vou sver rlan
to sort ohiect of sreater width, chanse this define!

#/
#define MAX_GSORT._WIDTH 513 /% Larsgst obiect "azort”
can sort 8/
/%
Buffered 170 for £t
%/

$#define STOLIN O
#define STDLOUT
#define STILERR 4

#define DEV.LET 2
#define DEV._RDR 2
$define DEV_PUN 2

int foren{filename,iohuf)

FILE #icbuf:

char #filename’

{
if (lichuf - _fd = orenifilename.0)3{0} return EHRORS
iobuf -> nleft = 04
return iobuf -3 _fds

int setciiebuf)
FILE #iobuf}
{
int nssce;
if {ichuf == STO_IN) return sztchar()s
if {iobuf == DEV_RIR} return bdes{3)s
if (debuf->onieft--) /% if buffer empty. FI1D 3t ur first &/
{
if {(nsecs = read{iobuf -3 _fd, iobuf -3 _buff, NEECTSY) = 0}
return lobuf ~> _nleft+ts
iobuf -> .nleft = nzecs ¥ SECSIZ - 13
iobuf -> _nextp = icbuf -> _buffs
return #iobuf-d_nextpt+s
}

1%
Buffered “unset” a character routine. Onlv ONE

byte mav be "unsotten" between consecutive “sstc® calls.
#f

int unsetcic, iobuf)
FILE #iobuf}
char ¢t
{
if {iobuf == STOLIN) return unsetchic):
if {{iobuf { 7} i} iobuf -3 _nleft == (NCECTS # SECSIZ)} return ERROR:
#—iobuf -> .nexte = (¢
iobuf -» _nleft+ss
return OKS

int setw{isbuf}
FILE #iohufs

{

int a.bs

if {{{a=getcliobuf)) = 0) & ({b= setciicbuf}) =01}
return 254#b+as

return ERROR:

int fcreatiname.iobuf)
char #name}
FILE ®iobufs
{
if {{iohuf ~> _Ffd = creaténamel’ { O) return ERRORS
iobuf -3 _nextr = icbuf -3 _buffs
iobuf ~> _nleft = {NSECTS # SECSII)S
return fobuf - _fdi

L

int putc{c,ichuf}
char ¢
FILE #iobufs

.

if (iebuf {= 4} /% handle srecial device codest ¥/

{
switch {iobuf}
- £
case STOLOUT: return rutchar(c)s /% std outeut #/
case DEV_LST: return {(bdos(B:c))s /# list dev., #/
case DEV.PUN: return {bdos{4,c)}s /% to runch &/
case STOLERR: if {c == "\n”} /% to std err %/
bdoz {2, "\r’ 14
return bdos{Zic}i
1
s ,
if {tiohbuf -> _nleft--} % if buffer full, flush it ¥/
{
if ({write{iobuf ~> _fds iobuf -3 _buff, NSECTS)} ‘= NSECTS)
return ERRORS ,
iohuF ~> _nleft = (NSECTS # SECSIZ - 1Mt
iobuf -> _nexte = jobuf -2 _buff;
H

return ®iobut <> _nextrtt = o3

int Putwlw,icbuf)
unsisned wi
FILE *icbufs
{
if (iputclui2S6.iobuf) 2=0)} && {putciw / 28b.ichuf} 3= 0))
return wh
return ERROR:

(o

int fflush{iobuf)
FILE #iohuf;
{
int it
if {icbuf < 4} return OK:
if {iobuf - _nleft == (NSECTS # SECSIZY) return OKS

i = HSECTS - iobuf~d.nleft /7 SECSIZ:

if {writef{iobuf -> _Fd: iobuf - _buff, i} '= i}
return ERROR:

i= {i-1) % SECSIL:

if {iobuf - _nleft) {
movmem{iobut-2 buff + i, ichuf-2_buff, SECSIZYs
iobuf -> _nleft 4= it
iobuf - .pextr -= i

return seek{jobuf~2_fd, ~1. 1}t
1

ighuf > _nleft = {NSECTS # SEC3IIN
iobuf ~» _nextep = jobuf - _buffs
return OK3

3

int fclose(iabuf}
FILE #iobufs

”™

if {iobuf { 4) return O3
return closelichuf -> _fd)s

/%
Some strins functions
¥/

int atoiin)

char #n}

{
int val}
char ¢}
int sisns
val=0}
sisp={3

while {{c = #) == "\t 1| ¢== 7 7} +4p!

if {¢== *=‘} {zisn = ~1§ n+43}

while (isdisitic = #n++}} val = val # 10 + ¢ - "0}
return sisndvall

L

char #strcat{szl.s2}
char #s51s #3524

{

char #tempi temp=si}
whilef#sl) si+d}

do #5i++ = %523 yhile (#z24+)s
return teme’

L

int strempis,t)
char sf1, H1
{
int i3
i=0
vhile (s[i] == t{il)
if (s[ite] == W0}
return 3
return slil} - t[il2

-

char #streeyisl.s2}
char #si. #s52%

{
char #temp; temp=clt
while {#sl4+ = #5244}
return temes

3

int strien{s}
char #s3
{

int lent

len=03
while {#c++) Jentss
return len!

J#
Some character diddline functions
#/

int isalrha(c)
char ¢}
{
return isupper{c) i1 islower(c)s

[

int isupper{c)
char ¢} .
{
return cd=A° &4 c{='1"}

o

int islower{c)
char ¢
{

return c2=3¢ 4 (=24

int isdisitic)
char cf
{
return =707 &k ¢{="%"y

oot

int issracelc)
char 3

L

-

retura c== 7 1} o=\t 1 ="'}

L

char tourreric)
char ¢}

Y

return izlower{c) ? ¢-32 % ¢4

char toloweric)

char o3

f
%

return isupper{c) 7 c+32 ¢ ¢

asortibase. nel, width, compar)
char #base! int (#compar){}}
unsisned width.nels
{ int 1, §7
unsisned saF: neap. ti}
int ids t23

ti = nel # width:
for (noar = nel / 2§ noar } OF nzar /= 2}
sap = ngap * width!
t2 = sap + widths
jd = base + sap}
for (i =t25 i {= {15 1 += width}
for {i= i~-t2 Joa=01i-=gp) {
if ({xcompar)ibaseti, jdti) <=0) break:
—swp{uidth, baseti, id+i}!

o

H

~Sur{wa,h)
char %a,%b$

unsisned vl

£
L

char swarbuFIMAX_GSORT.KWIDTHY:

movmen{a,swarbuf,u)}
novmen{bs . w)s
movmen{ swarbuf. b.uls
}
/%
Initialization functions
#
initwivar:strins}
int #vars
char #strins}
{
int ns
while {{n = setvalllstrins)) != -32760) ¥var4+ = ni
} .
initb{var.strins}

char #var, #string
{

int n}

while {{n = setval{&strinal}) = -22740) #varté = n}
3

int setvalistretr)
char ##stretrs
i

int n3

if {('sestretr) return -327604

n = ateiixstretrls ,

while {##stretr &% s(Estretri+d = 7,70
teturn n¥ :

[

/%

Storase allocation functionst
*/

#ifdef ALLOC.ON /% Compilation of alloc and free is enabled only
when the ALLOC_ON svabol is #defined in BDECION #/

char #allocintrtes)
unsisned nbytess
{
struct _header ¥p, #3. ¥CPS
int nunitst
nunits = 1 + {nbvtes + {sizeof {_base) - 1)) / sizeof {.bassels
if {(a = _allocp) == NULL) ¢
base..ptr = _allecr = 3 = fobased
~base..size = 4
}
for (p=g -3 Pirs $a=p p=p -2 _ptr} {
if {p -> _size = nunits) {
if (P > _size == nunits!}
g - ptr = p -1 _ptr!
else {

4

~5ize -= nunits!
P -} .5ize}
~5iz¢ = nunitss

m |
o
"

U
~

}
alloce = 93
return P + {3
}
if {p == _allocp) {
if {{cr = sbri{nunits # zizeof (. base)}} == ERRUM
return MULL:
¢r <} .3ize = nunitss
free{cpti s /% renembert rointer arithmetic! #/
P = _ailocrt

[
o
e

freelar)
struct _header ¥ars

{

struct header %r. ¥a3
p=ar - I3 /% Mo need for the cast when “ap" is 3 struct rtr &/

for {a = _allocpt ‘P 2 q bk r { g~ _ptr); a=a -3 _pir)

iFigd=a-> ptrikip2ailpda-2_rtr})
breaks

if {(F+p -> _size == 7 -3 _pir) {
P -» .5iz¢ += 9 <3 _pbr - _size}
P ~> ptr = g <> _ptr -3 _ptr}

}
¢lse P -3 _Ptr =3 =} _pirs

if (g + 9 -2 _size ==) {
g -} _sizg = p -3 _zized

q -} _ptr = p - _ptr!
}
else 3~ _pir = p3

<allocr = a8
3}

#endif

i#
Now some really hairv Functions to wrae thinss upd
%/ ‘

int absin)
{

return (p0) 2 -n ¢ n}
kY
o+

int maxia,b)
{
return (2 b)Y Ta i b
%
4

int min{a.b}
{
return {a (= b) Ta b3

3
3

/%

STOLIB2,C -~ for BOS € vi.8b -~ Leor Zolman, 3/5/37

This file contains the source for the followins

library functions:

Printf frrintf
scanf fscanf
foets

puts fruts
swarin

¥/
#include "bdscio h”
char toupper{}, isdisit{}s

printf{format)

char #farmats

{
char line{MAXLINE]:
~spr{line &format)s
ruts{line)’

int scanf{format)

char #format;

{
char line[MAXLINEDS
gets{line}s
return .scnfline.&fornat):

[

int ferintf{icbuf,Format}
char #format?

struct _buf #ichuf;

{

char textIMAYLINED:
~spritext. kformat)s
return frutsitext,ichufls

taph

int fscanf{iobuf,forpat!
char #formats

struct _buf #ichuf;

f
3

char text{MAILINED:

sprintf 5P
sscanf -5Ch

/% use “_spr® to form the cutput #/
/# and print out the ling %/

/% zet 3 line of input from user #/
/% and scan it with "_sep® 8/

if {Vfaetsitext,icbuf}) return (8

return scnftext.dformaths
1
¥

sprintf{buffer:forpat}

char #buffer, #format:
{

~ser{buffers &format)s
k1
7

/% call _ser to do all the work &/

int sscanf{line,format}
char #line, #format:

{ .
retorn _sen{line.Yformat) 7% let _zcn do all the work ®/
}

spr{line. fat)

char #line, ##fmts

{ X
char _uspr{), ¢, baze, #setr, #format?
char wbufIMAXLINE). #wptr, ef, 1iflas, zfflass
int width. rrecision. ¥arss)

format = sfmt++; /¥ fut first Points to the format strins #/
args = fmts /% now fat roints te the first ars valus %/

while (¢ = ¥formats+)
if {c== %) {
wrtr = whbufs
precision = &3
1iflas = pf = zfflas = 01

if {#format == -7} {
format++s
1ifiagtss

if (#format == "0/} zfflasts! /¥ tagt for zero-fill #/
width = {isdisit(#forpat}) ? _svZ{¥format} @ 05

if {{¢ = &formats+) == 7.7) {
rrecision = av2{¥format)s
Pft#s

c = #ormate+}
1
k]

switch{tourper{c)) {
case “D°Y if {#aras { DY £
Bgptrat = -3

#args = -%arss;
width-—3

%
7

case ‘Ut base = 107 zote valt
case ‘¥t Ease = 161 aote vals
case ‘0t base = 3¢ /¥ pnote that arbitrary bases can be

added easily before this ling ¥/

valt width -= _user{lwptr.%aros++, bazelt
H sote Pads

case ‘0% wuptrét = #apgstt)
width~-

seto pads

case ‘51 if (1pf) precision = 2008
spir = Fargstds
while {(#spir Y precision) {
¥uptrét = ¥sptreds ’
precision—3
width--4

H

radt #wetr = “\('}
rad2: wetr = whufs
if {!1iflas)
while {width-- > O
¥lingt+ = zfflas ? ‘0“8 7 ‘3

while {#1ine = #yrtr++)
fine+ts

if {Viflas?
vhile {width-- > @)
#lipgs+ = 7 4
breaks

default: #lined+ =

}

1
¢

glse ¥linet+ = ¢4

#line = A0

}
j%
Internal routine used by “_ser® to rerform ascii-~
to-decimal conversion and update an associated epointer?
%/

int _ovZ{srtr}
char *#sptr}
{
int n3
n=08
while {isdimit{sksptr)) n = 10 # n + #{gcpiries ~ O

return n3
%
4

char _uspristrins: n, base)
char ##strins!
unsisned 03
{
char lensths
if {nlhase) {
#{Estrinaléd = {p £ 10 70+ /07 ¢ + 558
return 13
}
leneth = _uspr{string, nftass. basels
-uspr{string. nibase, basel)s
return lensth + 13

L

/%
Genera) forpatted ineut conversion routine. "line“ roints

to a strine containing ascii text to be converted. and “fmi"
points to an arsument list consisting of first a Format
strins and then a list of pointers to the destination ohdects,
*/ :

int _scnlline, fat) .

char #line, #*fniy '

{
char sf, ¢; base. nr ¥sptr. *forpats
int sian. val, #¥aras)

format = ¥fmt+ds /% fmt first roints to the format strins &/
args = fat} /% now it peints to the arz list #/
n=

while {c = #forpat+s)

f
3

if {isspace{c)) continues /% skip white space in Format strins #/
if {¢ =741 /% if not % must match text #/
{
if {c ‘= .isg{&line)) return n?
eise linetds

else /% process conversion ¥/
{

sisn = 13

base = 1{3

sf = (4

if {{c = #forpatst) == &)

{
3225 7% if ¥ given. supress assisament /7

¢ = #formatsss

3

switch {toupperic))
{
case ‘X't base = 143
goto dovals

case “0°! base = O
aoto dovals

case ‘D7t if {.iss{line} == "=} {
sian = -1}
Tinets

1
4

doval! case “U'% val = 04

if {.bcl ims(Yline).base} == ERROR)
return n} .

while ({c = _bc{#lins++.bazel} i= 255}
val = val % base + ¢!

}ine--3

kreaks

g

case ‘57

-iss{%line}s
spir = #aras}

vhile (¢ = #linet+)
if (¢ == #format) {
format++s
breaks
H
if ('sf) Zsptret = 5
H
if {ief) {
[(hadt
tsrir = "\
argstts
H
continue’

cage “C70 if {lsf) {
poke{#arast+, #lipe)s
fit:

}

Vinet+s
continue?

default: return n}
1

¢
if {!sf)
{
#arsst+ = val # siand
it
}
3
if {‘#line} return n} /% if end of input strins, return %/

1

return ns

tost

char .igs{zptr)
char ##spir}

{

char ¢
while {izcpace{c = %¥spir)) te#spips
return (c)s

int .bcic.b)
char ¢:bs
{
if (izalehafc = toupreric))) ¢ -= 55
else if {isdimit{c)) ¢ -= Ox303
elze return ERRUR:
if {c » b1} return ERRORS
else retury cf

rutsis)
char #s3
{
while {%#s) putchar{¥s++);

char #faetsis,iobuf)

Char *s;
struct _buf *iobufs

=

~n o

[

int count, c3
char #cptrs
count = MAXLINES
cptr = 58

if { {c = metclictuf)) == CPMEOF 11 ¢ == EOF) return NULLS

]

do {
if {{#cptred = ¢} == “\p’} £
if {cptras+l ¥ #(cpir-2) == "\r*}
¥--cetr - 1) = "\’
break:
}
} while {count— &% (c=sstcliobuf)) ‘= EOF && ¢ i= CPMEOF)s

if {c == CPMEOF) unsetclc.iobuf)s /% pugh back control-I #
¥crtr =\’
return st

fruts (s, iobuf)
char #s3
struct _buf #iohufs
{
char ¢}
while {c = #s44) {
if {c == “\n’} putc{’\r . icbuf)}
if (putcic.iobuf) == ERROR} return ERR(R:
3

return (K3
%
J

swarin{name,addr)
char #name}
{
int §£ds
if {{ fd = osren{name.0)) == ERROR) {
printf(*Swarint cannot oren Zs\n"»name}!
return ERRCR:
Y
if {{read(fd.addr.S12}} {0} {
erintf{*Swarin! read error on %s\n":namel?
close{fd)}
return ERROR:

3

close{fd};
return O3

ot

%
WILTEXP.C vi.l 32182
BDS € Command-]ine Wild-card ewpansion utility
Written by Leor Zolman

Lets ambizuous file rames arrear on the compand line to U prosrams.

automatically exrandins the parameter list to contain all filez that

Fit the afn’s.

An afn preceded by a "'* causes all names matchins the siven afn to

be EXCLUDED from the resultins expansion list. Thus: to vield 2

command line containine all files zxcert YCOM" Files, vou'd zart
AXrrogname '%,.com {ord

Ancther exanrlet to met a1l files on B excert O Files, zavt
Adprosnam bi¥. ¥ Thi¥,c {ord

Wher giving a ¥ afn. "¥* chars in the strins matches to the end of

gither the filename or extension, Just like CP/M. but "7 chars match
NE and ONLY ONE character in either the filename or extenszivn.

To use WILLEXP, besin vour "main” function as follows?

main{arsc,arav}

char #arayvi

{

ees /% local declarationz %/
wildexpilarsc.darav)s /% first statement in rrogram &/
dicinit{%arsc.arav): /% iF uzsins DI, put thiz here #/

4

and link WILDEXP.CRL in with vour rrosram. That’s all there iz fo
it note that “wildexr® uzes the “sbrk® function to obtain ztorase.
so don‘t a0 rlaving around with memory that iz sutside of the
external or stack arzas unless vou obtain the memory throush “sbrik®
or "alioc” calls,

#/
#include "hdscio h®
#detine MAXITENS 00 J¥ may no. of items after svesnsion ¥/
#define SEARCH.FIRST 17 7% BDOS calis #/
#define SEARCH.NEXT 18
wildexr{oarscr, oarave)
int #earscr! /% pointer te old arsc ¥/
char #EOIPIVFE /% pointer to old arsy #/
{

int rarsct /% new arsc ¥/

char *narsv? /% new arsv ¥/

char #Hoarsvs /% old arsy #/

int oaracs /4% old arsc #/

char febl3614 /% fcb uzed For search For first/mext calls #/

char dmares$ /% value returned bv search calls #/

char first times 1% used in search routine #/

char torfn(201, /% temp filename buffer #/
#tarfnrs

char notfns{20)3 /% list of !{afn} entries #/

int notcounts /% count of entries in notfas %/

char cur.drives /% currently lossed drive #/

int isdsks
cur_drive = hdes{25)3

oaray = #0arave}
0arsc = #0arscr}
narac = {3
notcount = 04

if {(parey = shel (MBXITEMS # 2 + 2} == ERROR)
return ERROR:

For {i = 13 1 € carmc) i+4}
if {oarsvlill(] == 17} {
if {i==1}{
saravioarscl = "¥, 89
paracHH:

h

notfnsinotcountst] = oargvlildllls

3

elze if {‘haswildicarsviill}
narsvinarsc+l = oaraviils
else {
setfcb{fch.oaroviills

tarfnr = twrfns

if ((tmrfnlld = oarswlid1]) == 747} {
twrfrl0] = ocaravlil{0]:
torfnr = tmefn + 23
bdos{i4: tarfnl0l - ‘A’ 3:

3

tirst_time = TRUES

while (1} { /% find all matching Files ®/
dmaroes = bdoz{first_time 7 SEARCH.FIRET ¢ SEARCH.MEXT.
foble

if {dmaros == 255} breaks
first_time = FALSE:
hacknane{tmpfnr, {BASE + (B0 + dmaros # 32))3
if {{naravinarac) = sbrkistrlen{tmefn} + 1)} == ERROR)
return ERROR:
strepviraravinarsct+], tarfn):
3
bdos{14.cur.drivels ¢ restere to current drive #/
} -
for (i = 0 1 € notcounts j+4)
for (i = 1% J { narsci J++)
while (matchinotfnslil.narsvwlil.cur_drivel)
{)
if{j = --parsc}
breaks
for {k = i3 k « narascy L+

narsvik] = narevik+l]s

e

#0aracP = narscl
¥08r8vP = RArsv:
return 03

}

hackname{dest, source)
char #dest. #source’
{

int 1.4%

i=0

for {i = 83 1 € 97 i+4)

{
if {zourcelil == 7 7} breals
destli++) = zourcelili

1
J

if {source{?] = < 7}
destlit++l = 7. %3

for (i =93 i €125 ivd)
{
if {sourcelil == ¢ 7} bresks
destli++] = sourcelild
H ,
destlil = “\9"s
return dests
1
&

int haswild{fname}
char #fnames

g

char ¢

while {c = ¥Fnamett)
if {g == "% |} ¢g=="7)
return TRUES
return FALSES
}

int matchivildnan, filnam, curodrivel
char #wildnam, #filnam. cur.drive}
{

char ¢

if {wildnamfi] = 734}

{
if (filnanlll = "1}
if {Filnam{Q] - ‘& == cur.drive}
filnam += 2%
else
return FALAES
3
glse
{

if {filpam{i] = v/}
if {wildnamfQ) - “A° == cur_drivsj
wildnam += 2%

else
return FALSE:

H

while {c = %wildnam+t)

if {g=="2}
if {{c = #filnam++) && ¢ i= 7,7}
continues
¢lse

return FALSES
else if (¢ == ‘%)

{
while {c = %wildnam)
{ wildnam++s
if {c == 7.7} breais
3
while {c = #filnan}
{ filnam++s
if {c==",7) treaks
}
}
else if {¢ == #filnamtt)

continues
else return FALSES

if ('#filnam}
return TRUE:
else
return FALSES

.
o

;
%/

#

/% This is g library of private routines for use with BOS © pros- #/
/% srams. The comment lines precedins each entry are intended 74
/% to zive a sufficient explanation of the routine that Follows, #/
7% To link any of these routines to a BDS C erosram. merely name ¥/
/% PRVLIB as a arsument followins the name of the main prosram in #/
/% the CLINK command line. ¥/
/¥ */
/%

Move & brtes from b1kl to b1KZ.

The two blocks mav overlar,

Zince k must be rositive. this routine is limited to

movina blocks less than 32k in length.

Added by M, Goldbera, 25-DEC-77,
*/

mevblk(blki. bY1k2, k)

char #blkl, #bik2

int ki

{

int msn.t.ul

if (k=00 1) (4t = bkl - BETE2))Y) returnt

20 m=00n=k

else m=1-~k =182

for {t =m t { n} ++f}
{
gt <07t i)
#1b1kZ + u) = #{blkl + u¥s
3

et

i
ASCII counter -~ increments a field of ASCID disits by one.
frauments are a rointer to the field {hish-order disit}
and the lenath of the fisld,
The routine stors if it encounters a non—disit character
in the field. _
Added bv M, Geldbers, 25-DEC-79.

¥/

asc.cntriaddr, len)

char #addr:

int len!

{

addr = lan?

de
{
if (lisdimiti®!{--gddr}}} breaks
if {+4{#addr) {= ‘%) breaks
#addr = ‘074

1
)

while {--len)s

Sends 3 CR-LF pair to the CP/M LIST device,

Added by H. Goldbers, ZS-DEC-79,
#/
#define LF (0f
#define (R 0::0D
newline()

{ ,

bdos{S: CR}S bdos(SLF)3

1

J

%
Sends a ine of dashes to the CP/M LIST device.
The arsument is the number of dashes in the line.
Added by M. Goldbers, 16-FER-30,

*/

dashesin)
char ns
{
char i3
for (1 = 0% 1 £ n3 ++1) bdesi(S, =)
newline{)s

1
R

7%
Cauzes a block of brtes to be dizelaved at the CF/H
console device as a vector of two-disit hex numbsrs,
Spaces are used to serarate one hex number from another.
It was written as 2 debuz aid, that is, to be used to taks
i srarshot of a memory durinz prosran evscution.

The arsuments are!

blke = 2 rointer to the besimnina of the memory block
and

n = the number of brtes in the bleck.

Added by M. Goldbers: 4-MAR-B4,
#/
ruthxiblke, n)
char &blkes
int n$
{
char ¢}
while {n~ 3 0}
{
prhd{{{c = #blkpt+) & (PO} 33 434
rrhd{c & Ou0F)3
rutchar{” ‘)3
}

(o)

Outeuts a messase to the CP/M conzele device and
stops the srogram. The arsument iz a rointer to the
messaze strins,
fdded bty M, Goldbers, 1S-MAR-0,

#/

stor{mss}
char msslls

{
rutsimeo)s
exit{)s

}

i%
USERCODE.Ce A Nice Idea Killed By A Sturid CP/M MisFsature.....

Ideat Extend the filename svyntay for user with ﬂLkails 10 to
allow a user area prefix of the form “n/? on all filenames,

Written by Leor Zolman. 12/81

BEHHEHHHE R R R RS R R
¥ FOR CP/M 2.x SYSTEMS OWLY!!! ¥
BHEHEEE R R R R

Generalized rerlacements for "open® “creat” and “unlink”
librarv functions. allowine 3 user ares rrefix to be attached
to all filenames {excert these uzed as arsuments to the “rename”
function}, The new filename svntax becomes?

[whitespacellnn/I[ds JLfilename, extl

E.2. to reference file "foo.bar® on the currently lossed disk in
user area 7+ vou'd used

7/fog. bar
To reterence foo.bar in user area 7 on dizk bt vou'd savt
#/bifoc, bar

and s& on. The user area prefix must alwars come First if both it and
a disk desisnator need to be srecified.

NOTE: THIS WHOLE THING DOESN'T REALLY WORK FOR WRITING FILES INTO
USER AREAS DIFFERENT FROM THE CURRENTLY ACTIVE USER AREA. BECAUSE
GODDAMN CP/M DOESN/T LET YOU CLOSE A FILE THAT WAS CPENED IN A USER
AREA DIFFERENT FROM THE CURRENTLY ACTIVE ONE. Damriirtiriiiiniinnesd

To install this librarvys follow these stepst
1) compile this file {USERCODE.C)
2) invoke CLIB and sive it the following commands!
%0 0 usercode
%o 1 deff2
¥e 1 open
%3 0 oPen.old
#e | creat
¥3 0 creat_old
*: 1 unlink
#3 0 unlink.old
¥ 0
4
3) Link the prosrams vou wish to have recosaize the user code
on filenames bv includina "~f usercede™ on the CLINK
command 1ine.
'Y

int open.old(ls
int creat.old{};
int unlink_ old{}}

openifilename, model

G

return usercode{bopen.old. filenane.models

creat{filename)

f
1

)

return usercode{&creat.old, Filenanels

unlink(filenane)

{

(]

return usercode(lunlink_old: filenama}s

int usercode!{funcrtr, filename, extra.ars)
int {#funcetri{);

char #filename’

int extra_ars!

{

o

int 1. cur.user, new.user}
char #savnam!

while {isspace({®Filename}} Filenamet+: /¥ ckir over whitesrace #/
savnam = filenames /% save in case of false start #/

if {Yisdisit{*filename)} return {®funceir){filename.extra_ars}s

cur_user = hdos{3Z, Jxff)} /% seve current yser number 34
new.user = atoif{filename}; /% get new user number L3

while {isdisit{#++filename)} /% skip over user number text ¥/

a
?

if (#filename ‘= /7 {| new.user > 3{!
return {(#funcrir){cavnam.extra_arals

bdos{32 new.user};

i = {(#funcrtri{filename + L.extra.ars)s

bdos{32: cur.user}s

return i3

CP/M MACRO ASSEM 2.0 #0010 BDS € Run-Time Module {c.cec) vi.45 {1/22/88

CCC.ASM (C.CCC) VIL4S 11/22721

—e we we

3 NOTE: IF YOU ARE RUMNING UNDER MP/M 11, BE SURE TO SET THE MPM2
EGUATE TO 1.

THIS 15 THE BDS C RUN-TIME PACKAGE. NORMALLY. IT RESIDES AT
THE START OF THE TPA (AT ADDRESS BASE+10(H, WHERE BASE IS EITHER
O000H OR 4200H DEPENDING ON CP/M IMPLEMENTATION.) THE CODE
GENERATED BY THE COMPILER ALWAYS SITS IMMEDIATELY AFTER THE EMD OF
THIS RUN-TIME PACKAGE COLE.

EQUATE STATEMENTS IN CAPITAL LETTERS MAY BE CUSTOMIZED BY THE
USER IN CRDER TO CHANGE A} THE ORIGIN OF THE RUN-TIME PACKAGE.
AND B) THE ORIGIN OF THE RUN-TIME RAM AREA. IF YOU WILL BE
GENERATING CODE TO RUN IN A NON-CP/M EMVIRUNMENT. SET THE CPM
EQUATE TO ZERO AND MAKE SURE TO SET THE ORIGIN. RAM AND
EXITAD EQUATES TO FIT YOUR CUSTOM RUN-TIME CONFIGURATION.

THE “LXI SP,0" INSTRUCTION AT THE START IS REPLACED BY THE SEGUENCE:

LHD BASE#S
SPHL

BY CLINK AT LINK TIME. UNLESS THE -T OPTION IS USED WITH CLINK,
IN WHICH CASE THE "LXI SP* REMAINS THERE AND THE VALUE USED 7O
INITIALIZE THE SP IS THE ARGUMENT GIVEN T THE “-T* OPTION,

AN NE ME g MR MEB GE MR B U US ME MR UR UE GB M8 UN e e WE aw UR we

TITLE “BDS C Run-Time Module {c.cce) vio4% 117227817

4001 = oM B 1 $TRUE IF TO BE RUN UNDER CP/M R MP/M
Y 0 S$TRUE CNLY IF RUNNING UNDER MP/M 11

H
%
-

Drav1o: EQU 0 $TRUE IF USING DMA VIDEO LIBRARY ROUTINES AND
$NEED PARAMETERS INITIALIZED
IF P

0000 = PASE: EQU ¢ $START OF RAM IN SYSTEM {EITHER O OR 4200H FOR CP/M)
0005 = BDOS: EQU BASE+S $REST OF THESE USED BY (F/M-BASED CONFIGURATIONS.
0100 = TPA: EGU BASE+100H
0008 = NFCBS: EQU 8 IMAXIMUM & OF FILES OPEN AT OME TIME
(a0 = TBUFF: EQU BASE+20H
0100 = ORIGIN: EGU TPA
0 = EXITAD: EQU BASE 3WARM BOOT LOCATION
ERDIF
IF NOT CPH SFILL IN THE APPROPRIATE VALUES...
ORIGIN: EQU NEWBASE tADDRESS AT WHICH PROGRAMS ARE TO RUN
RAM: EqU WHATEVER $R/W MEMORY AREA FOR NON-CP/M CONFIGURATIONS

3 (DEFAULT: JUST AFTER C.CCC UNDER CP/M)
EXITAD: EQU WHENDONE SWHERE TO GO WHEN DONE EXECUTING

ENDIF

CP/M MACRD ASSEM 2.0

0100
0100 310000
0102 00

0104 0000
0106 000000
0109 00000¢

010C CD4BO3
010F CDB&07
0112 31304

0115
0117 8806
0119
0iig

011D C30F04
0120 €31304

0123 C32E04
0126 C37604
0129 C35A04
20 C3020%

M

OL9F 77
0140 23
04 77
0142 23
0143 77
G144 b1

ME MR as UE e us uw

$002

BDS C Rur~Time Module {c.cec) v1.45

11722481

THE LOCATION OF THE JUMP VECTORS AND UTILITY ROUTINES MUST REMAIN
CONSTANT RELATIVE TO THE BEGINNING OF THIS RUN-TIME MODULE.

DO NOT CHANGE ANYTHING BETWEEN HERE AND' THE START OF THE

ORG ORIGIN

LX1 SP.0 3THIS IS CHANGED BY CLINK TO LWLD BASE+H

NOP $THIS FIRST IS USUALLY TURNED INTO SPHL BY CLIMK

NOP! NOP SSINPLE INITIALIZATION OR PATCHES MAY BE

NOP! NOP! WOP §INSERTED HERE, BUT BETTER T0 DO ALL THAT

NOP! NOP! NOP SIN THE “INIT" ROUTINE

CALL INIT sDO ARGC & ARGY PROCESSING, PLUS MISC, INITIALIZATIONS

CALL MAIN 300 CRUNCH!!!!

P VEXIT sCLOSE OPEN FILES AND FEBOUT
EXTRNS: DS 2 $SET BY CLINK TO EXTERNAL DATA BASE ADDRESS
CCCE12: DW MAIN-ORIGIN $81ZE OF THIS CODE (FOR USE BY CLINK!
CODEND: IS 2 3SET BY CLINK TO (LAST ADDR OF CUDE + 1)
FRERAN: DS V4 $SET BY CLINK TO (LAST ADDR OF EXTERNALS + 1}

ue un s

ERROR:
EXIT:

JF
JHP

iF
CLOSE: JMP
SETFCR: JMP
FGFG: JWP
FGFCR: Jwp

ENDIF

{LOSE:
SETFCR: P
FGFD:

FOFCRe

SETFCB3:

[L ownd
- -3

28

JUMP VECTORS TO SOME FILE I/0 UTILITY ROUTINES:

sLOADS -1 INTO HL AND RETURNS
$CLOSE ALL OPEN FILES AND REBOCT

VERROR
VEXIT

ce

VOLOSE sCLOSE A FLLE

VSETFCB $SET UP FCB AT HL GIVEN FILENANE AT DE
VFGF SRETURN C SET IF FILE FD IN A NOT OPEN
VFGFCB sCOMPUTE ADDRESS OF INTERNAL FCB FOR FD IN A

NOT CPM $IF HOT UNDER CP/M, FILE 1/0 ROUTINES
' $ARE NOT UCED.

1& SRESERVED
P

M.A $THIS IS A PATCH FROM THE “VSETFCB* ROUTINE.
H sWHICH CAUSES THE RANDOM RECORD BYTES OF THE
M.A $FCB BEING INITIALIZED TO BE ZERUED. (FORMER
H $VERSIONS HAD A "DS 30* ABOVE, S0 THIS KEEPS
M.A $ALL THE ADDRESSES CONGISTENT BETWEEN THIS
b $AND EARLIER 1.4°S)

CP/M MACRD ASSEM 2.0

0145 Ct
0146 €9

0147 CDAEDS
0144 C3C604

014D EL
014E 5E
O14F 23
0150 56
0158 23
0152 E3
0153 2A1501
0156 19
0157 7E
0158 23
0159 &4
0134 &F
C15R €9

1% El
0130 5E
(ISE 23
O15F E5
0160 1600
0162 ZA1501
G165 19
0166 7E

PATCHNM:

ME SN eN UE NS s we

N MR uR un e NB

B

LT T RNEVY ST ST SERYY ST ¥

'ﬁ
Yy
an

#002

Pop
RET

CALL
JP

ENDIF

IF
B
ENDIF

FORMAT?

pop
Hov
INK
MoV
INK
PUSH
LHLD
BAD
MoV
INX
MOV
N}V
RET

FORMAT:

M
INX

L}

Bov

B80S C Run-Time Module (c.ccc) vilgS 11/722/81

B

SETNM SANOTHER PATCH FROM “VSETFCE®
SETNMZ

NOT CPM
14 $KEEP ADDRESSES THE SAME FOR NON-CP/M IMPLEMENTATIONS

THE FOLLOWING ROUTINES FETCH A VARIABLE VALUE FROM EITHER

THE LOCAL STACK FRAME OR THE EXTERNAL AREA, GIVEN THE RELATIVE
OFFSET OF THE DATUM REQUIRED IMMEDIATELY FOLLOWING THE CALLS

FOR THE "LONG DISPLACEMENT® ROUTINES. THE OFFSET MUST BE 16 BITS.
FOR THE “SHORT DISPLACEMENT® ROUTINES, THE OFFSET MUST BE 8 BITS.

LONG-DISPLACEMENT, DOUBLE-BYTE EXTERNAL INDIRECTION:

CALL LDET $ GET 14-BIT VALUE IN HL
DM OFFSET_FROM.EXTRNG § 3= 286

H $GET ADDRESS OF OFFSET
E.M $PUT OFFSET IN IE

H $SAVE RETURN ADDRESS
EXTRNG 3ADD OFFSET TO EXTERMAL AREA BASE

Al $AND GET THE VALUE INTO HL

SHORT-DISPLACEMENT, [OUBLE-BYTE EXTERNAL INDIRECTION:

CALL SDEI 3 GET 16-BIT VALUE IN L
DB OFFSET_FROM_EXTRNG ¢ { 254

H

E.M

H

H

0,0

EXTRNS

b

M

CP/M MACRD ASSEM 2.0 #0048 BDS € Run-Time Module {c.ccc) vi. 45 11722/88

0167 23 INX H
0168 66 MoV H.
0169 &F Mo LA
0164 €3 , RET

LONG-DISPLACEMENT, SINGLE-BYTE EXTERNAL INDIRECTION:

MR e um us e we

FORMAT: CALL LSEI $ GET 8-BIT VALUE IN L
DW OFFSET_FROM_EXTRNS § D= 256
0168 E1 LSEI: POP M
016¢ 5E WV EM
0180 23 N H
014€ 56 MV DM
O16F B N H
0170 E5 PUSH H
0171 2A1501 LHD EXTRNS
0174 19 WD
0175 ¢ MV L
0176 €9 RET
: SHORT-DISPLACEMENT, SINGLE-BYTE EXTERNAL INDIRECTION:
; FORMAT: CALL SSEI 3 GET 8-BIT VALUE IN L
: DB OFFSET_FROM_EXTERNS ¢ ¢ 256
0177 El SSEIr POP M
0178 5E MV EM
0179 23 N H
017h ES PUSH H
0178 1600 W1 D0
017D 2A1501 LHD EXTRNG
0180 19 DD D
0181 4 MV L
0182 9 RET
3 LONG-DISPLACEMENT, DOUBLE-BYTE LOCAL INDIRECTION:
: FORMAT: CALL LOLI 3 GET 16-BIT VALUE IN HL
: DH OFFSET_FROM_BC 3 = 25
0183 £1 LLl: PP H
0184 5E MY EH
0185 23 M H
018 56 L X
0187 23 M H
0188 E5 PUSH H
0187 EB XCHG
0184 09 BAD B

Qlep & MOV A

CP/M MACRO ASSEM 2.0 #005

018C 23
018D 66
O18E &F
018F C9

0190 £1
0191 5E
0192 23
0193 E5
0194 £8
0195 2400
0197 09
0198 7E
M9 23
0194 &b
(198 &F
o19C €9

0190 210400
01A0 C8
O1AL 28
01A2 C9

C1A3 216000
0186 €8
O1A7 23
01A8 €7

01A7 210100
014C DB
Q1AD 2B
O1AE C9

O1AF 210000
0182 8
1E3 23
0184 €9

O1BS 210100
018 FO
OiE9 2B
01BA €9

O1BR 210100
01BE F8

INX
MoV
H
RET

ME wN am as ae

un

SbLit POP
Hv
INX
PUSH
XCHG
w1
bAD
NV
INX
Moy
Moy
RET

[FTRSTTY

PIINH: LXI
R2
BCxX
RET

PNZINW: LXI
RI
INK
RET

PCINH: LYI
LN
1 84
RET

PNCINHE LXI
RC
N
RET

PPINH: LXI
RP
nex
RET

PHINH: LXI
R

FORMAT:

BDS € Run-Time Module {c.ccc) viL45

H.1

H

Hs0

H

H.1

H

H: 0

H

H1

H

Hst

11722781

SHORT-DISPLACEMENT, DOUBLE-BYTE LOCAL INDIRECTION:

CALL ShLI
DB OFFSET_FROM_EC

GET 14-BIT VALUE IN HL
2%

s
?
a
I

FLAG CONVERSION ROUTINES:

SRETURN HL = TRUE IF 1 SET

SRETURN HL = FALSE IF 7 <ET

SRETURN HL = TRUE IF C SET

SRETURN HL = FALSE IF C SET

SRETURN HL = TRUE IF P (PLUS) FLAG SET

SRETURM HL = TRUE IF M {MINUS) FLAG SET

CP/M MACRO ASSEM 2.0 8006

O1BF 2B
01C0 €9

01C1 110100
01C4 (8
O1C5 1B
01C6 C9

01C7 110000
0§Ch C8
0108 13
01CC C%

01E0 110100
0100 D8
01Dt 1B
0102 &%

0102 110000
01D D
007 13
0108 €%

0109 110100
010C FO
010D 1B
01DE C9

O10F 110100
01E2 F8
{ME3 1B
01E4 (9

O1ES 7D
01E4 BB
01E7 €0
01E8 7¢C
iE? BA
O1EA (9

OIED EB
01EC 78
(4ED BC
OLEE CO
O1EF 7B
01F0 BD
01F1 %

oCx
RET

PIIND: LXI
Rl
pCx
RET

PNZIND: LXI
R?
INX
RET

PCIND: LXI
RC
Bex
RET

PNCIND: LXI
RC
INX
RET

PPINDE LXI
RP
X
RET

PHIND: LXI
RM
ocx
RET

e an e

=me 3 (8

B~

EGHEL: MOV
¥ o
Rz
M
o
RET

XCHG
MoV
o
RNL
M
or
FET

. “s

8BS C Run-Tine Module (c.cccl vi.45

H

D:1
b

b0

]

b1

b

LAY
o

D

i

0.1

Al

A.H

A

A.E

11722731

SRETURN DE = TRUE IF 7 SET

$RETURN DE = FALSE IF I SET

$PETURN DE = TRUE IF C SET

SRETURN [E = FALSE IF C SET

$RETURN DE = TRUE IF P (PLUS) FLAG SET

SRETURN DE = TRUE IF M {MINUS) FLAG SET

RELATIONAL OPERATOR ROUTINES: TAKE ARGS IN BE AND HL,
AND RETURN A FLAG BIT EITHER SET OR RESET.

IRETURN I IF HL == DE, ELSE NI

SIFLOE: THNH O IE
SELSEHL == [EOMLY IFH==1D

$RETURN € IF HL ¢ DE, UNSIGHED
$RETURN C IF DE < HL, UNSIGNED

$IF B H: € I5 SET CORRECTLY
$ELSE COMPARE E WITH L

CP/M MACRO ASSEM 2.0

01FZ EB
F2 7C
01F4 BA
OIF% €O
O1F 7D
OiF7 BB
01F8 €9

0iF9 EB
OIFA 7C
(1FB AR
OIFC F2ECOL
0IFF 74
0200 B7
0201 FO
0202 37
0203 (9

0204 EB
0205 7C
0206 AA
0207 F2F304
0208 7C
(208 B7
020C FO
020D 37
020E €9

(20F 7A
0210 FS
0211 CI5A02
0214 EB
Q215 CDoA0Z
0218 EB
0219 Th2902
021C F1
021D B7
0Z1E FO
Q2F 70
0220 2F
0221 67
0222 70
0223 ¥
(224 &F
(225 23
0226 C9

0227 00
0228 00

0229 7C

BGAU:
AGBU:

BLAS

BGaAg:
AGBS:

a
?

#007

XCHG

oy
XRA

JP ALBU

v

S1C

XCHG
XRA

ORA

STC

BOS C Run-Time Module {c.ccc) v1.45 11722781

A.H
o

Al
E

A:H
b

[91

f.H

AGBU
fsH

SRETURN € IF HL > DE. UNSIGHED
SRETURN C IF DE > HL. UNSIGHED

$IF H O Dy C IS SET CORRECTLY
$ELSE COMPARE L WITH E

$RETURN C IF HL { DE, SIGNED
SRETURN C IF DE C HL, SIGNED

$1F SAME SIGN, DO UNSIONED COMPARE

$ELSE RETURN NC IF DE IS POSITIVE AND HL I3 NEGATIVE
SELSE SET CARRY, SINCE DE IS NEGATIVE AND HL IS POE.

SRETURN C IF WL > DE, SIGNED
SRETURN C IF DE > HL. SIGNED

$IF GAME SIGN, GO DO UNSIGNED COMPARE

$ELSE RETURMN NC 1S HL IS POSITIVE AND DE IS NEGATIVE
SELSE RETURN C. SINCE HL IS NEG AND [I5 POS

$ MULTIPLICATIVE OPERATORS: #, /, AND Xt

2
3

SHoDs

usHoD:

M

PUSH
AL
XCHG
CALL
XCHG
CALL

SEZZEERES

INX
RET

28

MoV

A:D
PSH
TSTN
TSIN
UsMop
Pl

A

A:H

HA
AL

L.A

$SIGNED MOD ROUTINE: RETURM (DE % HLY INHL
$SAVE HIGH BIT OF DE A SIGN OF RESWLY
$GET ABSOLUTE VALUE OF ARGS

$D0 UNSIGHED MOD

$WAS DE NEGATIVE?

$IF NOT.

H ALL DOKE

$ELSE MAKE FESULT NEGATIVE

$MAINTAIN ADDRESS COMPATIBILITY WITH SOME
$ PRE-RELEASE V1.47S.

SUNSIGNED MOD: RETURN DE X ML) INHL

BDS € Run-Time Module {c.ccc) vi.45 11/22/91

2

CP/M MACRO ASSEM 2.0

0227 BS ORA L
0228 (8 Rz

022C D5 PUsH D
0220 ES PUSH H
0228 CD8%02 (AL ushy
0221 B Fop I
0232 CD6BO2 CALL UsML
0235 7C M A:H
0236 2F e

0237 &7 nov H.A
0238 70 MoV AL
0239 F CHA

Q23R &F MOV L:A
023k 23 INX H
0230 M Pop o
023D 19 BAD D
023 Cy RET

023F AF S XRA A $SIGNED MULTIPLY: RETURN (DE » HL) IN HL
0240 325905 STA ™
(243 COGR02 CALL TSTN
0246 EB XCHG

0247 CDSAO2 CALL TSTN
0244 CDALBOZ CALL uoMiL
024D JASH05 SMULZ: LDA ™
0250 F RAR

0251 0 RNC

0252 7C MOV A.H
0F3 F A

0254 &7 LY H.A
0255 7D MV Ak
0256 F %)]

0257 &F 1Y LA
0258 23 INY H
029 (9 RET

0254 7C TSTN: MOV AH
0258 B7 ORA A
0250 FO RF

0250 2F A

0Z5E &7 mov H.A
025F 70 MOV Al
0240 2F oA

0261 4F MOV L.A
(2862 23 I H
(263 385905 LDA ™
0286 3 Ing A
0267 325905 STA i
028 C3 RET

0248 €5 SML: PUSH B SUNSIGNED MULTIPLY: RETURN (DE # HL) IN HL
0260 CD7102 CALL uoMz
O26F Cf POP B
9270 9 RET

271 44 usmzs MOV B.H

CP/M MACRO ASSEM 2.0

0272 4D
0273 210000
0276 78
0277 Bt
0278 €8
0279 78
0274 IF
0278 47
027C 79
027D IF
027 4F
027F 028302
0282 19
0283 EP
0284 29
0285 EB
0286 €37602

0289 7C
028A BS
(28B 8
023 €5
0280 CD9402
0290 &0
0291 &9
0292 €1
0292 9

0294 0801
0296 7C
(297 87

0298 FARODZ

0298 29
029C 04
0290 C39602

02A0 EB

0271 78
(282 010000
0285 FS
0264 CDI02
(249 DAB702
0z4C 03
0280 1S
026 74
O2F 2F
0280 57
0281 7B
0282 2F
(283 5F
0284 13
0285 19
0286 D1
0287 &F

UsM3:

{15Ha:

ysbive

(131

ustz:

ushz

UspS:
usha:

g

l’"g
>
Boat

22 FTESEZREIEEZBNEE

EEEFEE:

gxg32

2E

BDS C Run-Time Module {c.ccc} v1.45 31722788

Gl
H\ 0
AR
€

AR

B
8.0

Pl

CHPHD
ush7

A0

oo m

$UNSIGNED DIVIDE: RETURN (DE 7 HL)} IN HL
SRETURN O IF HL IS ©

CP/M MACRD ASSEM 2.0

0288 7A
(289 IF
02BA 57
(288 7B
02BC IF
OZBD SF
0ZBE Fi
0ZBF 3D
0200 8
0201 FS
02€2 79
0203 17
02C4 4
0205 78
02C6 17
027 47
0208 C2A402

Q2CB AF
02CC 325905
O2CF CDSRO2
0202 EB
0203 COSAO2
02D6 EB
0207 CDB02
020A C34D02

(20D 7€
0ZLE BA
020F I8
02EC CO
Q2E1 7D
02E2 BH
02E3 9

0264 EB
0265 IC
0286 1D
02£7 (8
0788 AF
02E% 7C
(2ER 1F
0ZER 67
02EC 70
02ED IF
CZEE &F
O2BF (38602

(2F2 EB
02F3 1L
02F4 1D
O2FS 8

SpIve

SDELBL

SHLBEZ

an an as

2
<

¥EE2ZFIZNEISESREER

B

BDS C Run-Time Module (c.cec) vi.45 it722/81
A0

b.A
AE

E:A

AsC

C.A
#.B

BA
usBs

A $SIGNED DIVIDE: RETURN (D€ / HL) IN WL
™
TSTN
TSTH
uspIy
A.H STHISRETURNS € IF ML { IE
b : (UNSIGNED COMPARE OMLY USED
$ WITHIN C.CCCs NOT FROM ©)

Aol

$SHIFT [E RIGHT BY L BITS
E SSHIFT HL RIGHT BY E BITS

A

AsH
H.A
AL

Lih
SHRBE2

SOHIFT DE LEFT BY L
E $EHIFT HL LEFT BY E

L2

B
Bl

pove R
o

CP/M MACRO ASSEM 2.0 #0181

02F6 29
{2F7 C3F402

02FR 7C
02FB 2F
02FC &7
02FD 7
Q2FE 2F
OFF &F
{1300 23
0301 €9

0302 78
0302 2F
0304 57
0305 7B
0306 2
0307 3F
0302 13
0309 LY

0308 210800
030D 39
030E 7€
030F 23
0310 66
0311 &F
0312 €9

0313 210600
0316 C30D03

(219 210800
0310 C30D0%

DAD
JP

BDS € Run-Time Module {c.ccc) vi.45 11722788

H
SHLBE2

; ROUTINES TO 2/S COMPLEMENT HL AND [E:

SEEEES

=
<

RE2Z22222 7§

AR NN M AR UR MR UN B MR WE e we MR W G AN

MALTOH: LXI
MAOTCH: DAD
Moy
INX
M
M
RET

MAZTOH: LX1
JP

MAITOH: LX1
JHP

THE FOLLOWING ROUTINES YANK A FORMAL PARAMETER VALUE OFF THE STACK
AND PLACE IT IN BOTH HL AND A {(LOW BYTE), ASSUMING THE CALLER
HASN/T DONE ANYTHING TO ITS STACK POINTER SINCE IT WAS CALLED.

THE MNEMONICS ARE "MOVE ARG #N TO HL®,

WHERE ARG #1 1S THE THIRD THING ON THE STACK (WHERE THE FIRST
AHD SECOND THINGS ARE. RESPECTIVELY. THE RETURN ADDRESS OF THE
ROUTINE MAKING THE CALL
ADIRESS TO THE ROUTINE WHICH ACTUALLY PUSHED THE ARGS ON THE
STACK.) THUS, A CALL TO "MAITOH* WOULD RETURN WITH THE FIRST
PASSED PARAMETER IN HL AND A5 “MA2TCH" WOULD RETURN THE SECOND,
ETC. NOTE THAT IF THE CALLER HAS PUSHED M) ITEMS OM THE STACK
BEFORE CALLING “MA X1 TOH", THEN THE [X-NITH FORMAL PARAMETER
VALUE WILL BE RETURMNED. WOT THE [XITH.

TO HERE. AND' THE PREVI(LS RETURM

H:4 $GET FIRST ARG
i

A

H

H.H

LA

H.& $GET 2ND ARG
MAOTOH

H.8 $GET 3RD ARG
HAOTOH

CP/M MACRO ASSEM 2.0

031F 210A00
0322 €20003

0325 210C00
0328 30003

{328 210800
022 C30D03

0331 211000
0334 C30D03

0337 118705
0334 210400
033D ¥
023 €5
QIF O&0E
0241 7E
0342 12
0332 23
0344 13
0245 05
Q345 C28103
(349 C1
0344 09

(348 E1
0340 2Z5R05

Q34F 218807

AND HENCEFORTH HAVE ALL IT‘S ARGS AVAILABLE DIRECTLY

#012 BDS C Run-Time Module {c.cce) vi.45 {1/22/%
MA4TOH: LXI H.10 $GET 4TH ARG
P MAOTGH
MASTOH: LXI H:12 J0ET STH ARG
JP MAOTOH
MAATOH: LXI H: 14 3GET &TH ARG
JWP MAOTOH
MAZTOH: LXI H.16 3GET 7TH ARG
S MAOTOH
$ THIS ROUTINE TAKES THE FIRST 7 ARGS ON THE STACK
$ AND PLACES THEM CONTIGUOUSLY AT THE MARGS RAM AREA.
3 THIS ALLOWS A LIBRARY ROUTINE TO MAKE ONE CALL TO ARGHAK

we uB we

ARGHAK: LXIT
LX1
pap
PUSH
MvI

ARGHKZ: MOV
STAX
INX
INX
DR
Nz
POP
RET

N AR e wn ue

ME Ua e we

INITS POP
SHLD

If
LXi
ENDIF

THROUGH LHLD'S INSTEAD OF HAVING TO HACK THE STACK AS IT
GROWS AND SHRINKS. NOTE THAT ARGHAK SHOULD BE CALLED AS THE
VERY FIRST THING A FUNCTION DOES. BEFORE EVEN PUSHING EC,

D,ARGS 3DESTINATION FOR BLOCK MOVE IN DE
H.4 $PASS OVER THO RETURN ADDRESS
s $SOURCE FOR BLOCK MOVE IN HL

B $SAVE BC

B.14 sCOUNTDOWN IN B
At 1 COPY LOOP

b

H

i

B

ARGHK2

B $RESTORE BC

UP TO THIS POINT, ABSOLUTELY NO CHANGES SHOLLD EVER BE MADE
TO THIS SOURCE FILE {EXCEPT FOR CUSTOMIZING THE EGU STATEMENTS
AT THE BEGINNING OF THE FILE).

THIS ROUTINE IS CALLED FIRST TO DO ARGC & ARGV PROCESSING (IF
RUNNING UNDER CP/M) AND SOME ODDS AND ENDS INITIALIZATIONS:

H $STORE FETURN ADDRESS
TMP2Z 3 SOMEWHERE SAFE FOR THE TIME BEEING

CPM

H-ARGLST-2 $SET THE “ARGV™ THAT THE C MAIN PROGRAM

(P/M MACRD ASSEM 2.0

0352 ES

0352 2A1BOY
(356 229805
0359 21E603
035C 229p05

035F 210059
{362 Z27F05

0365 2EDB
(367 329905
03%A 3ED2
0360 329805
034F 3ECY
0371 329705
0374 329M05

0377 GEOB
0377 CDOS00

037C B7
0370 00

Q37E CASK03
0381 OE01
(333 CDOS0O

0386 218000
0389 11C704
038C 44
038D 22
{38t 78
03¢F B7
0390 29903

INITIZ:

#012

If
L
ENDIF

LHLD

LX1
SHLD

LX1
SHLD

M1
5TA

STA
M1
£TA
£TA

LX1

BDS € Run-Time Medule {c.ccc) vilgS 11/22/81
NOT CPM

Hs0

H s WILL GET.

$INITIALIZE STORAGE ALLOCATION POINTERS:
$GET ADDRESS AFTER EMD OF EXTERNALS
ALLOCP $5TORE AT ALLOCATION POINTER (FOR “SERK.")
H. 1000 SDEFAULT SAFETY SPACE BETWEEM STACK AMD
ALOCMX 5 HIGHEST ALLOCATABLE ADDRESS IN MEMORY

s (FOR USE BY “SBRK".),

FRERAM

SINITIALIZE RANDOM SEED:
H,59DCH SLET/S STICK SOMETHING WIERD INTO THE

RSEED SFIRST 16 BITS OF THE RANDGM-NUMBER SEED
$INITIALIZE 170 HACK LOCATIONG:

A ODBH $UINY 0P, FOR “IN XX3 RETY SUBROUTINE

TUHACK

A. O03H $U0UT" OP FOR “OUT XX3 RET™ SUBROUTINE

I0HACK+2

RLE $URET" FOR ABCVE COBROUTINES

I0HACK+2 sTHE PORT HUMBER IS FILLED IN BY THE

I0HACK S $UINP AND “QUTPY LIBRARY ROUTIMES.

$IMITIALTZE DHA VIDEQ PARAMETER::

DHAVIO $IF WE/RE USING DIMA VIDEOD ROUTIMNES.

H: OCCO0H $SET UP DEFAULT YALUES (MAY BE CHANCED

PBASE 170 WHATEVER SUITS). VIDEQ BOARD ADDRESS.

Hi 14

XSIZE 34 OF LINES,

H.64

YSIZE 3 OF COLUMNG.

H: 1024 '

PSIZE $AND TOTAL # OF CHARACTERE ON GCREEM

P sUNDER CP/M: CLEAR COMSOLE. PROCESS ARGC & ARGY:

C.11 INTERROGATE CONSOLE STATUS TO SEE IF THERE

BDOS 3 HAPPENS TO BE A STRAY CHARACTER THERE...

A $(USED TO BE “ANI 1°...THEY TELL ME THIS WORKS
$ BETTER FOR CERTAIN BIZARRE CP/M-LIKE™ SYSTEMS!

INITIZ

C.1 $IF INFUT PRESENT, CLEAR IT

BRI

H. TEUFF $IF ARGUMENTS GIVEN. PROCESS THEM.

B, COMLIN SGET READY TO COPY COMMAND LINE

B.H sFIRST GET LENGTH OF IT FROM LOC. BASE+GOH

H

AR

A 3IF NO ARGUMENTS, DON‘T PARSE FOR ARGY
INITL

CP/M MACRO ASSEM 2.

0393 110100
039 C¥F702

0299 &
Q3% 12
0398 23
039C 13
0390 05
03%E 29903
03AL AF
03A2 12

0383 21C706
0386 110100
03A7 014407
03AC AF
03D 325405
0380 TE
0381 23
0382 FE20
0384 CABOO3
0387 87
03B8 CAF703
03BB FE22

O3BD C20603

0300 325A05
(303 C3C703

036 2B
037 78
03C8 02
{309 03
03CA 7C
02CR 02
03CC 03
030D 13

3(E 7E
03CF 23
0300 B7
03D1 CAF703
03D4 €5
0305 47
03D6 A5R05
0309 B7
03DR 78
03DE 1
03DC CAERO3
(3F FE22
03E1 C20E03
03E4 AF
035 325805
038 28
039 77
03EA 23
03EB FE20
03ED C2CE03

INITL:

128
I2Bs

I3

$#014

Lxl

i
STAY
Iny
INX

NI
XRA
STAY

LI
LXI
LI
XRA&
STA

INK
Pl

BDS C Run-Time Module {c.cze) vil 45 11722781

B.1 $SET ARGC TO 1 IN SUCH A CASE.
is

A.M 30¢. THERE ARE ARGUMENTS. PARSE...
b SFIRST COFY COMMAND LIME TO COMLIN
H

b

B

INITL

A $PLACE IERO FOLLOWING LINE

b

H, COMLIN INCW COMPUTE POINTERS TO EACH ARG
I {ARG COUNT

B, ARGLST $WHERE POINTERS WILL ALL GO
A SCLEAR "IN # STRING® FLAG
THPL

Al $EETREEN ARGE...

H

12

h

IS $IF MULL BYTE. DOME WITH LIST

485

124 $GUOTE?

THP1 $YES. SET "IN A STRING" FLAG
128 :

H

AL 30K, HL IS A POINTER TO THE START
B $0F AN ARG STRING. STORE IT.
]

f.H

B

B

b SEUNP ARG COUNT

A

H $PARS QVER TEXT OF THIT ARG
A $IF AT EMD ALL DONE

IS

] $IF THPL SET. IN A STRING
B § {50 WE HAVE TO IGHORE SPACES)
THPL

A

A

B

I3

o SHE ARE IN A STRING.
Iz $CHECK FOR TERMINATING SUDTE
A $IF FOUND, RESET "IN STRING® FLAG

- TPt

M. $AND STICK A ZERD BYTE AFTER THE STRING
H $AND GO ON TO HEXT ARG

’ $NOW FIMD THE SPACE BETWEEN ARGS
I3

CP/M MACRO ASSEM 2.0

03F0 2B
O3F1 3600
03F2 23
03F4 C3B0O3

03F7 05

03F3 0608
Q3FA 21BF04
Q3FD 2600
03FF 23
0400 05
0401 C2FDO3

0404 AF
0405 325FOS
0408 326005

O40B 2ASBOS
040F E9

040F 21FFFF
0412 C9

0413 ZEOF
0415 F5
0416 COGADS
0419 DA2404
041C &F
{410 2600
041F £S5

0420 CO2E04

0423 E1
0424 F1
0425 30
0426 FEO7

I3

I4:

“e un ue

#015

BeX
M
INX

PUSH

L
LX1
Wil
INX

JN2
ENDIF

IF
LXI

ENDIF
XRA
STA
5TA

LHLD
PCHL

YERROR: LX1

sam uw

e e an

VEXIT:

EXITi:

EXIT2:

RET

WI
PUSH
CALL

DR
(Pl

BDS C Run-Time Module {c.cccl viL4F 13722741

H
M:0
H
I2

D

B.NFCES
H. FDT
M0

14

NOT CPN
H:1

UNGETL
LASTC

™2

Hv -1

P

e
VFGFD
EXITZ
L.A
H:0

H
YCLOSE

‘-«JDE:‘:
L5}

JFOUND IT. STICK IN A ZERO BYTE

SAND GO ON TO NEXT ARG
SALL DOME FINDING ARGS, SET ARGC.

SNOW INITIALIZE ALL THE FILE INFO
$ (JUST ZERO THE FD TABLE)

IF NOT UNDER CP/M, FORCE ARGC VALUE
OF CNE.

e we

sCLEAR THE PUSH-BACK BYTE
$AND LAST CHARACTER BYTE

SALL DONE INITIALIZING,

GENERAL PURPUSE ERROR VALUE RETURN ROUTINE:

$GENERAL ERROR HANDLER...JUST
IRETURNS -1 INHL

HERE ARE FILE I/0 HANDLING ROUTINES. OMLY NEEDED UNDER CP/M:

CLOSE ANY OPEN FILES AND REBOOT:

IF UMDER CP/M, CLOSE ALL OPEN FILES

A THNFCRS $START WITH LARGEST POSSIBLE FI

JAND SCAN ALL FD'S FOR OPEN FILES
$1S FILE WHOSE FD IS IN A OPEN?
$IF MOT, GO ON TO NEXT FD

$ELSE CLOSE THE ASSOCIATED FLLE

$AND GO ON TO MEXT ONE

CP/M MACRO ASSEM 2.0

0428 €21504

0428 C30000

042E CDABOS
0431 CDOAO3
0434 CDSAO4
(437 DAOFO4
0438 7E
0438 E604

043D CASO04

0440 EG
0444 (D1303
0444 (5
0445 CDO202
0448 EB
0449 OE10
04ap CDOSO0
O44E 1
044F E£1
0450 3600
0452 FEFF
0454 210000
0457 €0
0433 2B
0459 €9

045A CDAR0S
0450 57
O45E D608
0450 D&
0461 FEOB
0453 3F
04h4 DB
0445 IS
0465 SF

#0146

JNZ
ENDIF

JP

wn ue uw

IF
VOLOSE: CALL
CALL
CALL
JC
MoV
ANI

If
J2
ENDIF

IF MPM2

HoP
HOP

HoP
ENDIF

CLOSE2: Myl
Rl
LXI
RNZ
oy
RET

BDS C Run-Time Module {c.cccl viL45 1172278

EXITL

EXITAD sDONE CLOSINGS NOW REROCT CP/M OR WHATEVER.

CLOSE THE FILE WHOSE FD IS 15T ARG:

cP $HERE COMEZ A LOT OF CP/M STUFF...
SETIMA sLIBRARY FUNCTION JUST JUMPS HERE.
MAITOH CGET FD IN A

VFGFD 3SEE IF IT IS CPEN

VERROR $IF NOT, COMPLAIN

A

4

NOT MPMZ $IF NOT MP/M. AMD
CLOSEZ $THE FILE ISN‘T OPEM FOR WRITE. DON‘T BOTHER TO {LOZE

SALWAYS CLOSE ALL FILES UNIER MP/M

H $5AVE FD TABLE ENTRY ADDR

MAZT(H sMOVE ARGL TO A

B

VFGFCB 36ET THE APPRUPRIATE FCR ADDRERS
SPUT IT INIE

C,1& $GET BDOS FUNCTION # FOR CLOSE

BROS ;AND DO IT!

B

H

", 0 $CLOSE LOGICALLY
235 $1F 255 COMES BACK. WE GOT PROBLEMS
H: ¢
$RETURN O TIF K
H $RETURM -1 (N ERROR

s DETERMINE STATUS OF FILE WHOSE FD IS IN A...IF THE FILE
3 IS HOT OPEN, FETURN C FLAG SET, ELSE CLEAR C FLAG

VFGFD: CALL
MOV
sUl
RC
Pl
oM
RC
PUSH
Hov

SETDMA
DA
]
$IF FD € &, ERROR
NFCES
;DON‘T ALLOW TOO BIG AN FD EITHER

E:A $0K, WE HAVE £ VALUE IN RANGE. NOW

CP/M MACRO ASSEM 2.0

0467 1600
0449 21BF06
044C 19
046D 7E
044 ESOL
0470 37
0471 M
0472 7
0473 (8
0474 3F
0475 (9

0476 CD480S
0479 €5
0478 COFA0A
0470 0608
O47F E5
0480 13
0481 1A
0482 1B
0483 FE3A
04835 3E00
0487 €29204
0484 1A
0488 CDEBO4
O48E DA40
0490 13
0491 13
049z 77
0493 23
0494 (D4701
0497 1A
0493 FE2E
0494 C29E04
0490 13
049E 0503
0440 CDAECA
04A2 AF
04A4 77
0445 111400
04A8 19
oan9 77
04AA 23
(4AB C3F01

#017

aR BB MR ua s

VGETFCB:
CALL

Wi
PUSH
INX
LDAX
bex
(Pl
W1
JNZ
LDAX

Sl
INX
INX
SETF1: MOV
INX
CALL
LbAX
Pl
JNZ
INX
SETFCBZ MVI
CALL

LI
Al

X
P

. aw me

BDE € Run-Time Module {c.cec) vi.45 11722/81
184] H
H.FDT

]

[, |

i $BIT ¢ IS HIGH IF FILE IS OPEN

SEE IF THE FILE IS OPEN OR NOT

SRETURN C SET IF NOT OPEN

$ELSE RESET C AMD RETURN

SET UP A CP/M FILE CONTROL BLOCK AT HL WITH THE FILE WHOSE
SIMPLE NULL-TERMINATED NAME IS POIMTED TC BY DE:
FORMAT FOR FILENAME MUST BE: "[WHITE SPACEI(D:IFILENAME.EXT"

SETDMA S3ET UP AN FCE AT HL FOF FILENAME AT [E

1GUSP

B.8

H

i}

D

i

i sDEFAULT DISK BYTE VALUE IS ¢

A0 s (FOR CURRENTLY LOGGED DISK)

SETF1

i $0H O, .. WE HAVE & DISK DESIGNATOR

MAPUC 3

g sAND FUDGE IT A BIT

[

B

M.4

H

PATCHNM sNOW SET FILENGME AND PAD WITH BLAMKS

i}

‘7 $AND IF AN EXTENSION IS GIVEN,

SETFCBZ

B

B.3 $SET THE EXTENSION AND PAD WITH BLAMKS

SETHM

A $AND ZERO THE APPROPRIATE FIELDS OF THE FCR

M.A

0,20

B

M. A

H

SETFCB3 sFINISH UP ELSEWHERE TO KEEP ADDRESSES CONSISTENT
$WITH PRIUR RELEASES

$IGNORE ELANKS AND' TABS

THIS ROUTINE COPES UP TG P CHARACTERS FROM MEMIRY AT IE TO
MEMORY AT HL AND PADS WITH BLANKS ON THE RIGHT:

CP/M MACRO ASSEM 2.0 #0123 BDS C Run-Time Medule {c.ccct viL45 §1/23/81

3
2

O4AE C5 SETMM: PUSH B
046F 1A SETMMI: LDAY D

040 FE28 P ‘¥ SHILD CARD?

0482 3EF W A7 3IF S0, PAD WITH 7 CHARACTERS

04B4 CAD104 g AR

0487 1A SETNM2: LOAY D

0488 COD904 CALL LEGFC INEXT CHAR LEGAL FILENAME CHAR?

0488 DACFO4 O PAD :IF NOT. GO PAD FOR TOTAL OF B CHARACTERS
(BE 77 MY M.A SELSE STORE

OABF 23 m H

(400 13 M 0

04C1 05 MR B

04C2 C2AFO4 NI SETNMI $AND GO FOR MORE IF B NOT YET IERM

04C5 €1 PP B

(4C4 18 SETMM3: LDAX D 1SKIP REST OF FILENAME IF B CHARS ALREADY FOUND
0ACT COUS04 CALL LEGFC

04CA D8 RC

04CE 13 m o

0400 C3C404 M SETNN

OACF 320 PAD: MV A ¢ PAD WITH B FLANKS

04Dt 77 PADZ: MOV M.A SPAD WITH B INSTANCES OF CHOR IN &

0402 73 M H

0403 05 R B

04D4 20104 NI PADZ

0407 €1 PP B

o41R C9 RET

TEST IF CHAR IN A IS LEGAL CHARACTER TO BE IN & FILENAME:

P TT ST 3

0409 CDEBO4 LEGFC: CALL MAPUC

040C FE2E 541 ‘7 3 7.7 I5 ILLEGAL IN A FILENAME OR EXTENSION
04DE 37 STC

OADF 2 RI

(4E0 FE3A Pl 4t 350 15 v

042 37 §TC

04E3 €8 RZ

04E4 FETF Crl 7FH sEELETE 15 NO GOOD

04ES 37 STC

O4E7 (8 R2

04E8 FE21 Pl e $IF LESS THAN EXCLAMATION PT. NOT LEGAL CHAR
O4EA C9 RET $ELSE GOCD ENOUGH

MAP CHARACTER IN A TO UPPER CASE IF IT IS LOMER CASE:

DRV VT }

(4EB FESI HAPUC: CPI ‘a’
04ED DG RC

(O4EE FE7B rl ‘2741
04FC 10 RNC

CP/M MACRO ASSEM 2,0 #01%

04F1 D620
04F3 C9

04F4 1B
04F5 13
04F5 1A
04F7 FE20
04F9 CAFSO4
04FC FECS
O4FE CAFS04
0501 C9

0502 C5
0503 CDas0s
0506 B7
0507 4F
(508 C22005
O50F 0608
050D 11BFO&
0510 219F05
0513 0E08
0515 14
0516 ES01
0518 79
0519 C21E0S
osIc
0510 €9

051E DS
O51F 112400
0522 19
0523 Bl
0524 12
0525 OC
0526 03
0527 {21505
0528 37
0528 C1
0520 09

suI
RET

“a we e

1GWsP: DCX

IGHSPL: INX
LBAX
CP1
Jz
tP1
JZ
RET

WE R AR ME uN UE WMe WE MR MR uR uR

VFGFCB: PUSH
CALL
ORA
H
Nz
MVl
LI
L1
Myl
LDAX
ANt
Hov
JNZ
PopP
RET

FGFC1:

FGFCI1A: PUSH
LXI
DAD
PoP
INX
INR
BCR
iz

FGFCIB: STC
PoP
RET

BOS C Run-Time Module {c.cec) vi.485 (1722731

2 $IF LOWER CASE. MAP TO UFPER

IGNORE BLANKS AND TAES AT TEXT POINTED TO BY [€:

!

i
b
D

IGHSPY
b
1GHSP1

THIS ROUTINE DOES ONE OF TWO THINGS, DEPENDING
ON THE VALUE PASSED IN A.

IF A IS ZERD, THEN IT FINDS A FREE FILE SLOT
{IF POSSIBLE), ELSE RETURNS C SET.

IF A I5 NON-ZERO, THEN IT RETURNS THE ADDRESS

OF THE FCB CORRESPONDING TO AN OPEN FILE WHOSE

FD HAPPENS TO BE THE VALUE IN A: OR C ZET IF THERE
IS N0 FILE ASSOCIATED WITH FD.

B

SETDMA

A $LOOK FOR FREE SLOT?
C.A

FGFC2 31IF NOT. GO AWAY
B.NFCBS $YES. DO IT...
D.FBT

H,FUBT

£.3

i

i

AL

FGFC1A 3FOUND FREE SLOT?
B $YES. ALL DONE.

sFCR LENGTH TO ACCOMMODATE RANDOM 1/0

ox}

GFC1

[=~]

$RETURN € IF NO MORE FREE SLOTS

CP/¥ MACRO ASSEM 2.0 #020 BUS C Run-Time Module {c.ccecl vl 45 11722781

052D CD5A04 FGFC2: CALL VFGFD sCOMPUTE FCB ADDRESS FOR FD I A3

0530 DA2A0S € FGFCIB 3RETURN € IF FILE ISN’T OPEN
0533 D&08 sul g
0535 &F MoV L:A $PUT (FD-21 IN HL
536 2600 Ml H:0
0538 29 DAD H sDOURLE 1T
053 9 DAD H 14%A
053A 54 MOV I 1SAVE 444 I DE
0538 D MoV EiL
053 29 DAl H 1]
53 29 DAD H 116%4
053E 29 [AD H $3284
O53F 19 DAD b $ 2548
0540 ER YCHG $PUT 36#A IN DE
0541 219F05 LX1 H.FCBT 3ABD 7O BASE OF TARLE
0544 1% DAD] SRESULT IN HL
0345 79 Y fl $AND RETURN ORIGINAL FD IN A
546 01 POP B
0547 £9 RET
0548 DS SETDMAt PUSH D $JUST A PREVENTATIVE MEASURE.
0549 5 PUCH B $SINCE THE DEFAULT 1/0 BUFFER
544 F5 PUSH PSW $TENDS TO MAGICALLY CHANGE
054B £5 PUSH H $ARGUMD BY ITSELF UHEM LEFT
054C OEIA M1 .26 3IN CP/M/S HANDS !
0S4E 118000 LXI b, TRUFF
0551 CDOS00 CALL BDOS
0554 E£1 PP H
0535 F1 PSU
0334 C1 Fop B
0557 M PP {
(558 €9 REY
ENDIF $END OF CP/W-RELATED FILE 140 ROUTIMES
IF NOT CPM
MAIN: B $ $KHERE MAIN FROGRAM RESIDES WHEN NOT UNDER CP/R
y{UNBER CP/M. THE DATA AREA COMES FIRET)
ENBIF
3 RAM AREA:
IF NOT CPM $IF NOT UNDER CP/M. USE CUSTOM RAM AREA ADDRESS
ORG RaM
ENDIF
0559 oM B8 30 $ROOM FOR RANDOM STUFF
0577 PRASE: IS 2 $3CREEN-DMA ADDRESS
0579 YSIZE: IS 2 $SOREEN WIDTH

CP/M MACRO ASSEM 2,0 #021 BDS C Pun-Time Module {c.cc) v1.45 11/22/81

0578 XSIZE: IS 2 $SCREEN HEIGHT
057D PSIZE: D3 2 $SCREEN LENGTH
057F RSEED: DS g $THE RANDCM GENERATOR SEED
0587 ARGS: DS 14 $"ARGHAK" PUTS ARGS PASSED OM STACK HERE.
0595 I0HACK: DS & $RO0M FOR /0 SUBROUTINES FOR USE BY "INP"
$AND “OUTP* LIBRARY ROUTINES
0598 ALLOCP: DS 2 $POINTER TO FREE STORAGE FOR USE BY “CERK™ F8IC
0590 ALOCMX: DS 2 SHIGHEST LOCATION 70 BE MADE AVAILABLE 70 THE

3 STORAGE ALLOCATOR

™ EQU ROOM STHIS IS MISC. GARBAGE SPACE
™PL: EQU ROOM+1

™2 EQU ROCH+2

P2a: EQU ROOM+4

UNGETL: EQU RODM#& SHHERE CHARACTERS ARE “UNGOTTEN"
LASTC: EQU ROOM7 $LAST CHAR TYPED

EEEEE

THE FOLLOWING DATA AREAS ARE NEEDED ONLY IF RUNNING UMDER CP/th:

uR un ue ww

IF cP

THE FCR TABLE (FCBT): 36 BYTES PER FILE CONTROL RLOTK

“n Se uw

059F FCBT: DS JLeNFCRS $RESERVE FOOM FOR FCB/S {EXTRA BYTE FOR INDOS)

THE FD TABLE: OMNE BYTE PER FILE SPECIFYING R/W/CPEN AS FOLLOWS:
BIT ¢ IS HIGH IF COPEN. LOW IF CLOSED
BIT 1 IS HIGH IF OPEN FOR READ
BIT 2 IS HIGH IF OPEN FOR WRITE

{BOTH B1 AND B2 MAY BE HIGH)

R UE ME NN wR s an

Q4BF FOT: DS NFCBS $ONE BYTE PER FCB TELLS IF IT IS ACTIVE. RAM. ETC,
THE COMMAND LINE IS COPIED HERE BY INIT:
06C7 COMLIN: D3 131 5COPY OF THE COMMAND LINE POINTED TO BY ENTRIES
1IN ARGLST
THIS 15 WHERE "INIT* PLACES THE ARRAY OF ARGUMENT POINTERS!
0784 AROLST: D5 &0 sTHE "ARGV™ PARAMATER POINTS HERE (WELL,

$ACTUALLY TO 2 BYTES BEFORE ARGLST). THUS.
$UP TO 30 PARAMETERS MAY BE PAGSED TO "MAIN®

CP/M MACRD AGSEM 2.0 #022 EDS € Run-Time Module {c.ccc) v1.45 11/22/81
ENBIF ${ENDUGH FOR YOU. ANDY?}

END OF CP/H-OMLY DATA AREA

an ues uw

- F o ~
0786 = MAIN: EQU $ SWHERE "MAIN" PROCRAN WILL BE LOADED UNDER CP/M
: ENDIF

0786 BN

