
BDS C Console I/O: Some Tricks and Clarifications

Leor Zolman
BD 'Software

Cambrid~e, Massachussetts

In this document I will attempt to remove some of the mystery behind the,. CP/M console I/O
mechanisms available to BDS C users. When the major documentation for BDS C (i~e. the User's,
Guide) was being prepared, I had mistakenly assumed that users would automatically realize how
the ''bdos'' and "bios" library functions could be used to perform all CP/M and BIOS functions,
especially direct console I/O (by which the system 'console device may be op~rated without the
frustrating unsolicited interception of certain special characters by the operating:'syst~~,) In·
fact, the use of the "bios" function for such purposes might only be obvious 'to experienced
CP /M users, and then only to those having assembly language programming exp~riencew11;h". the
nitty-gritty characteristics of the CP/M console interface. Let's take 'a look at what really
happens during console I/O... .'

The lowest (simplest) level of console-controlling software is in th~ BIOS (Basic
Input/Output System) section of CP/M. There are three subroutines in the BIOS that deal with
reading and writing raw characters to the console; they are named 'CONST' (check console
statusl,',:· ~CONIN' (wait for and read a character FROM the console), and 'CONOUT' (send a
charac,~er,:TO the console). The way to get at these subroutines when you're writing on. the
assemb),;y·\'language . level is rather convolute~" but the BDS C library provides the 'bios'
tunct:i;;Q~ . .,~o make it easy to access the BIOS subroutines from C programs. To check the console
~atuf8'I:::1ij;:rectly, you use the subexpression 'bios (2)', which returns a non-zero value when a
tonsol.t\-1J:.baracter is available, or zero otherwise. To actually get the character after
'bios(2)' indicates one is ready, or to wait until a character is ready and then get it, use
'bios(3)'. To directly write a character 'c' to the console, you'd say 'bios(4,c)', bu.t" nOte
that the BIOS doesn't know anything about C's convention of using a single '\n' (newline)
character to represent a logical carriage-return/linefeed combination. The call 'bios(4,'\n')'"
will cause ONLY a single linefeed (ASCII OxOA) character to be printed on the console.

Making sure that all console I/O is eventually performed by way of these three BIOS
subroutines is the ONLY way to both keep CP/M from intercepting some of your typing~a?~ insure
the portability of programs between different CP/M systems. (1)

The BDOS (Basic Disk Operating System.) operations are the next higher level (above the
BIOS) on which console 1/0 may be performed. Whenever the standard C library functions
'getchar.' and 'putchar' are called, they perform their tasks in terms of BDOS calls ••• which in
turn perform THEIR operations through BIOS calls, and this is where most of the confusion
arises. Just as there are the three basic BIOS subroutines for interfacing with the console,
there are three similar but "higher level" BDOS operations for performing essential,ly the same
tasks. Tnese BDOS functions, each of which has its own code number distinct from its BIOS
counterpart, are: "Console Input" to get a single character from the console (BDOS function
1), "Console Output" to write a single character to the console (BDOS function 2), and---"Get

"I. Even so there's no 'way to know what kind of terminal is being used--so "truly-portable"
,software either makes some assumptions about the kind of display terminal being used (whether

~
not i,t is, cursor addressable, HOW, ,to address the cursor, etc.) or includes provisions for

·If-modification to fit whatever type of terminal the end-user happens to have connected to
e system. . .

1
BDS C Console I/O 12/80

;onsole Status" to determine if there is a character available from the console input (BDOS.
function 11). The BDOS operations do all kinds of things for you that you may not even be fully
~ware of. For instance, if the BDOS detects a control-S character present on the console input
during a console output call, then it will sit there and wait for another character to be typed
~n the console, and gobble it up, before returning from the original console output call. This
may be fine if you want to be able to stop and start a long printout without having to code
that feature into your C program, but it causes big trouble if you need to see EVERY character
typed on the console, including control-So A little bit of thought as to how the BDOS does what
it does reveals some interesting facts: since it must be able to detect control-S on the
console input, the BDOS must read the console whenever it sees that a character has been typed.
If the character ends up not· being a control-S (or some other special ~character that might
require instant processing), then that character must be saved somewhere internally to the BDOS
so that the next call to 'Console Input' returns it as if nothing happened. Also, the BDOS must
make sure that any subsequent calls made . by the user to 'Get Con~ole Status' (before any are
made to 'Console Input') indicate that a character is available. This leads to a condition in
which a BDOS call might say that 8 character is available, but the corresponding BIOS call
would NOT, since, physically, the character has already been gobbled up by the BDOS during a
prior interaction with the BIOS.

If this all sounds confUSing, bear in mind that it took me several long months of playing
with CP/M and early versions of the compiler before even 1 understood what the hell was going
on in there. My versions of 'getchar' and 'putchar' are designed for use in an environment
where the user does NOT need total direct control over the console; given that the BDOS .would
d(l..some nice things for us like control-S proceSSing, I figured that I might as well throw 'in
s~e: mO'r.e useful fe'atures such as automatic conversion of the ' \n' character to a CR LF
combination on output,. automatic abortion of the program whenever control.,.C is detected on
i~p~~ or output. (so. that programs having long or infinite unwanted' printouts may be stoppe4'
,"i~hout resetting .the machine, even when no console input operations are performed), automatic
c.onvers.ioncftb~ carr.aige-return character to a ' \n' on input, etc. One early user remarked
that he ~ould like 'putchar' to be immune from control-C; for him I added the 'putch' library
f~ction, which works just l:f.ke 'putchar' except that control-C's would no longer stop the
progr~: .-Much later it became evident that neither 'putcharl' not "putch' suffice when CP/M must
be<'::prevented from ever even sampling the physical console input. At this point I added the
"'bios' function, so that users could do their I/O directly through the BIOS and totally bYJ>ass
tbe;'frustrating character-eating BDOS"

I promised some examples earlier, so let's get to it. First of all, here is a ver~
rudimentary set of functions to perform the three basic console operations in terms of the
'bios' function, with no special conversions or interceptions AT ALL (i.e., nothing like the
'\DS ...,.> CR-LF translations):

2
·DS C Console I/O 12/80

1*
Ultra-raw console IiO functiQns:

'leI

getchar()
{

1* get a character from the console *1

}

kbhit()
{

}

return bios(3);

1* return true (non~zero) if a character is ready */

return bios(2);

putchar(c)
char c;

/* write the cha.iacter c to the console */

{

bios(4,c);
}

The~.~···ultra-raw functions do nothing more than provide direct access to the~BIOS' console;:'
subroutj.,nes. If you include these in your C source program J then the linker will use' thebl'
insteadT.~·of the standard library versions of the similarly named fl.lnctions--prov.ided that· some'
"'direct ~.ference .to them is'" made before the default library file (DEFF2.CRL) is scanned! .. ;:'
~uallY.9$d.~programs where such functions are necessary, there will be many explicit ealls':t;o:'
~~etcha%Tt:jand .'putchar fO to insure' that the library versions aren't accidentally :~linked. A gooef···
example "".0f a case where trouble might occur is when the entire program consists of J say:,:' tiJ

single 'printf' call followed by a custom vet:'sion of 'putchar'. Since the linker won't kiio·W.'
that 'putchar' is needed until after 'printf' is loaded from the library, the· customversio*~b('
'putchar' will be ignored and the old (wrong) version' will be picked up from the DEFF2~~~:'
~ibrary file. The way to avoid such a problem is to insert, somewhere in the source file.~ .:;
explicit calls to any functions that are a) NOT explicitly called otherwise, and b) named ih'e"
same as some library function. This isn't an expecially neat solution, but it gets the;job

.. done. Iv:;'

OK, with that ·outo! the way, let's consider some more sophisticated ga.m.es;; tha,tean· ber'
played with customized versions of the console I/O functions. For starters, how about a set
that performs conversions just like the library versions, detects control-C,and throws away
,any characters typed during output (except control-C, which causes a reboot)? No problem.
What's needed is automatic conversion of '\n' to CR-LF on output; conversion CR to '\n' and-Z
to -1, on input with automatic echoing; and re-booting on control-C during both input and
output.

3
BDS C Cons61e I/O 12/80

ie*/

,Vaii1~laconsole I/O functions wit;PQ\1t going tbro~gh BDOS:
'('k.l?hi~·;· ~~-dld be the same as the' a~ove: ~.ltra-raw version)

#.d-e.f,1ne, C':l:RL~C 'Ox03\
Ipefline,CPMEOE' OiKla:

/* control-C */
" /* End of File signal (eobtrol-Z) *1

getchar()
{.

/* get a character, hairy. version */

cQ~r c';<'
~.~f.A(c ,--"bios(3» -'CTRL_C)' bios{O)j 1* on AC, reboot *1

1* turn-Z into -1 */
/* if OR typed, then */

:iJ (c ._, CPMEOF), ,return -1;

}

if .(C.·- '\r')' {
. putchar (' \r~) ;

c -= '\n';
}
putchar(c);
return c;

1* echo a CR first, and set */
/* up to echo a LF also */
/* and return a '\n' */

/* echo the char */
/* and return it */

putchar(c)
char c;

/* output a character, hairy version */

{

}

bios(4,c);
if (c .- '\n')

bios(4,'\r');
if (kbhit() && bios(3)

bios(O);

1* first output' the given char *1
/* if it is a newline, */
/* then output a CR also *1

-- CTRL_C) /* if -C typed, */
1* then reboot */

1* else ignore the input .completely */

Now, if you wanted to have control-S processing and a push-back feature (the two are
actually quite related, since you must be able to push back anything except control-S that
might be detected duri.ng output), you could add some external "state" to the latest set of
functions and keep track of what you see at the console input. Once this is done, thouS~'
you're probably better off going back to the original ~ibrary versions of 'getchar' and-'
'putchar', which let the BDOS handle all that grungy stuff.

Incidentally, CP/M version 2.x has a new BDOS function whic~ supposedly makes it easier to
perform some 'of the direct console I/O operations that required the BIOS calls for CP/M 1.4.
~~ile this might be useful for people having CP/M 2.x, it would render any software developed
-Ising the new BDOS ;feature autistic when run on CP/M. 1.4 systems. Please keep that in mind if
'ou ever·write any so~tware on your 2.x system for use on other (perhaps DOD-2.x) systems.

So far, everything I've talked about has been in .terms of the BIOS, and applies equally to
ail CP/M systems. Unfortunately, there is one console operation often Deeded when writing
real-time interactive operations that is not supported by the BIOS, and thus there is 'DO
>ortable way ~o implement it under CP/M. 'What' smissing is a way to ask the BIOS if the cO:Q.sole
~erminal is ready to ACCEPT a character for output. AD example of the trouble this omission
~auses is evident in the sample program RALLY.C; the case there is that the program must be
ible to read input from the keyboard at any instant, and cannot afford to become tied up
~aiting for the terminal when the amount of data being sent to it has caused the X-oN/X-oFF
,rotocol to lock up the program until a character can be sent. Given that the only "kosher" way

4
IDS C Console I/O 12/80

to send a character to the console is through the CONOUT BIOS call. and that such a call might
at any time tie up the program for longer than is tolerable. the only recourse is,.to bypass
CONOUI completely and construct a customized output. routine. in C. ,~bat can be more
sophisticated. This is done in ,RA.IJ:,Y.C, at the'expense of non-portability'fo~., the object code;
each user must individually configure' his" lDSCIO.H header file 'to define the uni"lue port
numbers, bit positions and polarities of the I/O hardware controlling his console. It would
have been SO much easier if the BIOS contained just one mor~ itty' b1;tt:ysabrout1ne:tto test
~onsole output status ••• but NoooooOOOOQ9q9~oo~()o, they had to leave that: OIuL'.OUT:.·so' we'" have to
KLUDGE it •••

,'2: .• .,

Sorry. I get carried away sometimes. "Ohwell ••• I hope this has helped to demyStify'i some of
the obscure behavior sometimes evident during console I/O operations. Fo·r the ·low-down on how
the library versions of 'getchar'. 'pu,tch~r' •. ~~c,.· t:.a11y work. see their 'source listings in
DEFF2.ASM. And if there's something yp).l want to do with the consoleanCl'; can't :£igure out how
despite this document, I'm always avail~1:>le'for consultation (at least Whenever I'm near the
pho.ne.)

Good luck.

5
BDSC Console I/O 12/80

