% % 9 % 5k s v g v g e e o e e vk I e e s gk ok ok de de ok g e ok dede vk de de ke ek ek ke de ke de de e ek de ek e dede ke dedede e dede ke

* *
* The New Dynamic Overlay Scheme........for BDS C v1.4 *
* Angust, 1980 *
* *

dkdkkdkdkkdkhkkhkkhhhkkkddkhhdkdhkhhkdihdkhhkkkkhkdkhdhkdhkhkhkdkhkhkihkkidkdkdkiikk

In order to allow C programs to be longer than physical memory, without resorting to "exec" or |
"execl" (which may indeed get the job done, but resemble "chain" operations more than true
segmentation tools), a new set of capabilities has been built into the CLINK program.
Normally, the run-time enviromment of an executing C program locks like this:

low memory: base+lOCh: C.CCC rum—-time utility package (csiz bytes)

ram+csiz: - start of program code
«.. (program code) ...
xxxx-1l: end of program code

XxXxx: external variable area (y bytes long)
... (external data) ...

xxxx+y: free memory,
available for
: storage ,
allocation

???22: as low as the machine stack ever gets
local data, function parameters,

machine stack: intermediate expression results,
etc. etc.
high memory: bdos: machine stack top (grows down)

Note that "xxxx" is the first location following the program coode and "y" is the amount of
memory needed for external variables.

To implement overlays, the first thing necessary is to decide just where the swapped-in code is
to reside. Earlier versions of BDS C had local data frames growing up fram low memory,
starting from where the externals ended, making it difficult to determine the lowest memory
location safe to swap into. The scheme suggested then for handling overlays was to leave
sufficient roam between the end of the root segment code (the root segment contains the "main"
function and run~time package; it loads at the start of the TPA, always remains in memory, and
controls the top level of overlay swapping) and start of the external data area to accamnodate
the largest possible swapped-in segment cambination. This is still a viable scheme for version
1.4; here is the modified memory map, accammodating this first method of handling overlays:

BDS C Overlays, August 1980

base+10Ch:
ramt+csiz:

low memory:

C.CCC run~time utility package (csiz bytes)
start of root segment code
... (root segment code) ...

zzzz-l: end of root segment code
zzzz: start of overlay area
... (overlay area) ...
xxxx-l: end of overlay area
xxxx: external variable area (y bytes long)
e (external data) ...
ox+y: free memory,
available for
storage
.allocation
????: as low as the machine stack ever gets

machine stack:

high memory: bdos:

local data, function parameters,
intermediate expression results,
etc. etc.

machine stack top (grows down)

Note that "zzzz" is where segments get swapped in, guaranteed that the longest segment doesn't
reach "xxxx".

With version 1.4, it is Jjust as feasible to put the overlay area AFTER the externals.
memory map for this alternative configuration would be:

low memory: base+lOCh: C.CCOC run-time utility package (csiz bytes)

ram+csiz: start of root segment code
«.. (root segment code) ...
xxxx-1: end of root segment code
XXxXx: external variable area (y bytes long)
... (external data) ...
xxxx+y-l: end of external data area
XxXxx+y: start of overlay area (ssss bytes long)
... (overlay area) ...
xxxx+y+ssss~1l: end of overlay area
xxx+y+ssss: <unused memory?
?2??: as low as the machine stack ever gets

machine stack:

high memory: bdos:

local data, function parameters,
intermediate expression results,
etc. etc.

machine stack top (grows down)

If you plan to use the storage allocation functions (alloc, free, sbrk, rsvstk)

BDS C Overlays, August 1980

2

program, then this second scheme. would require you to call the "sbrk" function with argument
"ssss" (the size of the overlay area) since, by default, storage allocation always begins with
the area immediately following the end of the externmals. For the remainder of this document, I
«will assume the FIRST of the above two schemes is being used.

‘ \K, with the generalities out of the way, let me say samething about just how to create "“root"
segments and "swappable" segments with BDS C. First of all, we would like all functions defined
within the root segment to be accessible by the swapped segment(s)...this is accamplished by
causing CLINK to write out a symbol table file (containing all function addresses) to disk when
the root segment is linked. The -w option to CLINK will do the trick; this symbol table will be
used later when linking the swappable segments.

When linking the root segment, use the —e option to set the external data area location; keep
in mind that there must be enocugh roan below the externals to hold the largest swapped-in
segment at run time (I'm using the term "below" in the sense that low memory is "below" high
meEmory; gra;_iucally, in the preceding memory maps, “below"” means toward the top of the page. .)
If the -e option is cmitted, CLINK will assume the external data starts immediately after the
end of the root segment code; this is OK only if you're using the SECOND scheme.

Within the code of the root segment, then, a swappable segment is loaded into memory fram disk
by saying:

swapin(narne,éddr); /* read in a segment..don't run it */

where "addr" is the 1location following the 1last byte of root segment code (for the first
_scheme.) You can find this value by linking the root once without giving the =-e option and
reading the -s statistics written to the console after the linkage. To actually execute the
segment, you have to call it indirectly using a pointer-to-function variable.

Here is an example. We'll declare a pointer-to-function variable called "ptrfn", swap in a
aSegment named "foo" at location 3000h, and call the segment. The sequence would look like this:

int (*ptrfn)(); /* can be whatever type you like */

ptrfn = 0x3000;

::L%'(swapin("foo",Ox3000) I= =1) /* check for load error */
(*ptrfn) (args...): /* if none, call the segment */

The "swapin" routine returns -1 when a load error occurs. Note that the swapped-in code might
"not return any value, but the pointer-to-function miust be declared with SOME kind of type. Use

int" if nothing else cames to mind. When a segment is invoked, as above, control passes to the
segment's "main" function. There is no reason at all to require args to be of the "argc" and
“"argv" form; there is nothing special about a "main" function other than the property it has of
getting called first. The '"main" function within the swapped-in segment is the ONLY allowed

entry point for the segment.

A simple "swapin" function is given in STDLIB2.C. It can be made shorter by skipping all the
error testing, or can be expanded to detect an attempted 1load over the external data area by
camparing the last address loaded with the contents of location ramt+ll5h...if you've never done
any low-level hackery, you get the value of the 16-bit address at location ram+ll5h by using
indirection on a pointer-to-integer (or -unsigned.) Note that location RAM+115h AILWAYS contains
the address of the base of the external data area.

Now we know how to do everything except actually create a swappable segment.

BDS C Overlays, August 1980

X, a swappable segment is basically just a normal C program, having a “main" function Jjust
ike the root segment, except that the C.CCC run-time utility package is NOT tacked on to the
ront of a swappable segment (the C.COC in the root segment will be shared by everyone.) The
ther difference between a swappable segment and the root segment is the load address; while
1e root segment always loads at ram+lOCh (where "ram" is O for standard CP/M, or 4200h for the
modified" CP/M), a swappable segment may be made to load anywhere. Once you've campiled the
~appable ‘segment, you give a special form of the CLINK cammand to link it:

A>clink segmentname -v -1 xxxx -y symbolfile [-s ...] <cr>

1ere "segrentname"” is the name of the CRL file containing the segment "-v" indicates to CLINK
nat a swappable segment is to be created (so that C.OCC is not attached), and "-1 xoxxx"
letter ell followed by a hex address) indicates the load address for the segment.

-ince you '11 probably want to yank in the symbol file created by the llnkage of the root
siegment, use the -y option to do so. If you don't, then CLINK will yank in fresh copies of
unctions like "PRINTF" and "FOPEN", etc., even if they have already been linked into the root
segment. It would be a waste to have multiple copies of those memory hogs in there at the same
ime! By reading in the symbol table fram the root segment, it is insured that any routines
lready linked in the root will be made available to the swapped-in segment. The root segment,
hough, cannot know about functions belonging to the swapped-in -segment through the use of a
ymbol table. That would require same kind of mutually referential l:.nk:.ng system beyond the
-cope of this package.

Sh'well. When linking the segment, you may specify -s to generate a stat map on the console,
:nd -w to write ocut an augmented symbol table containing not only the symbols read in fram the
oot segment's symbol file, but also the swappable segment's own symbols. This new symbol file
ay then be used on another level of swapping, should that be desired.

xample: (The addresses given in this example are for a RAM at 0000h CP/M; if you have the
odified 4200n CP/M, fudge accord:mgly) .

st's say you've got a program ROOT.C, which will swap in and execute EGLC and then overlay
Gl.C with SEG2.C. ROOT.COM 1loads at 100Ch and ends, say, before 3000h. We'll load .in the .
egments at 3000h, and set the base of the external data area to 5000h (this assumes neither

segment is longer than 2000h.)
"he linkage of ROOT would be:

A>clink root —e 5000 -w -s <cr>
nis tells CLINK that ROOT.COM is to be a root segment (no "-v" option used), the externals
start at 5000h, a symbol file called ROOT.SYM is to be written, and a statistics summary 4s to
»e printed to the console.
"he linkage of each segment would appear as:

A>clink segl -v -1 3000 =y root =-s =0 segl. <cr>
“ne cammand line tells CLINK that SBG1.OM is to be a swappable segment (the "-v" option) to
0ad at location 3000h, the symbol £file named ROOT.SYM should be scanned for pre-defined
unction addresses, a statistics summary should be printed after the linkage, and the object

“ile is to be written out as SEGl (as opposed to SEGL.CM, to avoid accidentally invoking it as
CP/M cammand.)

% C Overlays, -August 1980

