
BD

WC·18

BD Software

c
C Compiler vl.S

User's Guide -

Copyright @ 1982 by Leor Zolman
BD Software
P.o. Box 9

Brighton, Mass. 02135
(617) 782-0836

Version 1.50, October 1982
Prin ted in U.S.A.

All rights reserved

Disclaimer

The seller of and the author of the computer software described in this manual
hereby disclaim any and all guarantees and warranties on the soft~are or its
documentation, both express and implied. No liability of any form 'shall be
assumed by the seller or author, nor shall direct, consequential, or other damages
be assumed by the seller or' author. Any user of this software uses it at his or her
own risk.

This product is sold on an "as is" basis; no fitness or any purpose whatsoever nor
warranty of merchantability are claimed or implied.

BD Software reserves the right to make changes, additions, and improvements to
the software or documentation at any time without notice to any person or
organization; no guarantee is made that future versions of either will be compatible
with any other versions.

Copyright Notice

Copyright c 1982 by Leor Zolman D.B.A. BD Software. All rights reserved. No
part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any human or computer language, in any form
or by any means whatsoever, without the' express written permission of BD
Software, PO Box 9, Brighton, Ma. 02135, U.S.A.

Table of Contents

Chapter 1 Introduction

1.1 Hello There
1.2 Pricing Philosophy
1.3 Availability

Table of Contents

, 1.4 Forget End-User Royalty Arrangements •••
1.5 Objectives and Limitations
1.6 System Requirements
1.7 New Features of v1.5

1.7.1 Functional. Changes to Major Commands

1.7.1.1 New Command Line Options
1.7.1.2 New Library File Searching Capabilities
1.7.1.3 Other New CC Features
1.7.1.4 Other New CLINK Features

1. 7.2 New Low-Level File I/O Features
1. 7.3 Miscellaneous New Features
1. 7.4 Incompatibilities With Earlier Versions

1.8 Other New Features: A Summary for Pre-v1.4 Users

1.8.1 Library Sources Included
1.8.2 Better Buffered I/O
1.8.3 Directed I/O and Pipes
1.8.4 One Stack is Better Than Two
1.8.5 Better Code Quality
1.8.6 Incompatibilitie~ With Pre-v1.4 Versions

1.9 How to Use The Compiler

1.9.1 The Commands and Primary Data Files .
1.9.2 Configuration

1~9.2.1 CC and CLINK configuration
1.9.2.2 Run-Time Package Options
1.9.2.3 BDSCIO.H and HARDWARE.H Configuration

BDS C User's Guide

1

1
2
2
3
3
4
5

5

5
6
6
6

7
8
9

9

10
10
10
10
11
11

12

13
16
16

BD Software

BDS C User's Guide

1.9.3 A Typical Compilation
1.9.4 CC - The Parser
1.9.5 CC2 - The Code Generator
1.9.6 CLINK - The CLinker
1.9.7 CLIB - The C Librarian

1.10 CP/M "Submit" Files
1.11 Strangenesses
1.12 Last Words

Table of Contents

16
17
21
22
27

31
32 .
32

Chapter 2 The CRL Function Format and Other Low-Level Mechanisms 34

2.1 Introduction 34 .
2.2 The CRL Format in Detail 34 .

2.2.1 CRL Directories 35
2.2.2 External Data Area Origin and Size Specifications 36
2.2.3 Function Modules 36

2.2.3.1 List of Needed Functions 37
2.2.3.2 Length of Body 37
2.2.3.3 Body 37
2.2.3.4 Relocation Parameters 38

2.3 BDS C Register Allocation and Function Calling Conventions 38

2.3.1 The Stack 38

2.3.1.1 The Stack Pointer 38
2.3.1.2 How Much Space Does the Stack Take Up? 39

2.3.2 External Data 39
2.3.3 Function Entry and Exit Protocols 39

2.4 Helpful Run-Time Subroutines Available in C.CCC (See
CCC.ASM) 41

2.4.1 Local and External Fetch Routines .41
2.4.2 Formal Parameter Fetches . 42 .
2.4.3 Arithmetic and Logical Subroutines 43
2.4.4 Source Files 43

2.5 Generating Code to Run At Arbitrary Locations and/or In ROM 43

BD Software

Table of Contents BDS C User's Guide

Chapter 3 The BDS C Standard Library on CP/M: A Function Summary 45

3.1 General Purpose FWlctions 46
3.2 Character Input/Output 56

3.2.1 The CIO Function Package for Direct Console I/O 56

3.3 String and Character . Processing 60
3.4 File I/O 65

3.4.1 Introduction to· BDS C File I/O Functions ··65
3.4.2 Filenames ·65

3.4.2.1 The Disk Designator Prefix 65
3.4.2.2 The User Area Prefix 65

. 3.4.3 Error Handling 66

3.4.3.1 The Errno/Errmsg Functions 66
3.4.3.2 Random-Record Overflow . 66

3.4.4 The Raw File I/O Functions 66
3.4.5 The Buffered File I/O FWlctions 71

3.5 Plotting Functions for DMA Video Boards 76

Chapter 4 Notes to APPENDIX A of "The C Programming Language ft 78

4.1 Introduction' 78
4.2 Notes to Appendix A ·79

Appendix A Miscellaneous Notes 95

Appendix B Error Messages Explained 100

B.1 CC Error Messages 100
B.2 CC2 Error Messages 107
B.3 CLINK Error Messages 111

Appendix C Some Mistakes Commonly Made By Beginning C
Programmers 113

C.l = versus == : 113
C.2 Array Subscripting 114
C.3How NOT To Use a Pointer 114

BD Software

BDS C User's Guide Table of Contents

C.4 Functions Shouldn't Return Pointers to Their Automatic Data 115
C.5 Understanding Formal Parameters 116
C.6 Function Calls MUST Have Parentheses 117

Appendix D Dynamic Overlays in C Programs 118

Appendix E The CASM Assembly-language-to-CRL-Format Preprocessor
For BDS C v1.50 125

E.1 Creating CASM.COM 125
E.2 Command Line Options '126

Appendix F BDS C File 'I/O Tutorial 130

F.1 Introduction 130
F.2 The' Raw File I/O Functions 131

, F.3 The Buffered File I/O Functions 136

Appendix G BDS C Console I/O:
Some Tricks, Clarifications and Examples 143

G.1 Introduction 143
G.2 Elementary Console Interfacing 144
G.3 The BDOS and How it Complicates Things 145
G.4 The CIO Function Library 149

Appendix H The Floating Point Function Package 150

H.1 Introduction 150
H.2 Detailed Function Summary 151
H.3 General observations 153

Appendix I A Long Integer Package for BDS-C 155

1.1 Introduction 155
1.2 Implementation Details 158

"

Appendix J The TELEDIT Telecommunications Program
and Mini Screen-Editor v1.1 159

Appendix K CDB: A Debugger for BDS C 164

K.1 Introduction - An Explanation of the Components 164
K.2 Constructing the Debugger 165
K.3 How to Invoke the Debugger 169

BD Software

Table of Contents

K.4 Debugging Commands: How to Use the Debugger
K.5 Alphabetical' Listing of Debugger Com mands

BDS C User's Guide

173
179

BD Software

BDS C User's Guide

1.1 Hello There

Chapter 1

Introduction

. Leor Zolman
BD Software'
P.O. Box 9

Brighton, Massachusetts 02135
(617) 782-0836

Introduction

Thank you for purchasing BDS C. This software package is one programmer's
personal implementation of the minicomputer language C, geared down specifically
for microcomputers running the CP 1M operating system. The primary design goal
of BDS C was to allow C programmers to move forward at a steady, efficient pace
as structured programs are developed. To this end, the compiler and linker were
made fast enough to compile, link and execute programs repeatedly without wearing
out the programmer's patience.

There is nothing quite so annoying as waiting for a slow language processor to
crunch through its task, only to be told (after many minutes) of some trivial errors
which then require the entire process to be repeated. With BDS C, such errors
usually show up within seconds after starting up the compiler ••• and programmers
can their spend time programming instead of muttering obscenities . at slow
computers.

BD Software Page 1

November 1982 BDS C User's Guide

1.2 Pricing Philosophy

The pricing of software packages for personal microcomputer systems can hardly
be termed an "exact science". It is rather difficult to apply simple economics to
the problem because software for this market is so easy _ to duplicate illicitly.
Attempting to take all ramifications of such duplication into consideration when
establishing pricing policies can only lead to a nervous breakdown. ".,Yet,many

- vendors have adopted the view that software must be priced outlandishly high both'
to imply superior quality and to provide .an adeql1ate:return- ona per-copy basis .:
assuming that many illegal copies become made. - -

Looking at the situation from the opposite viewpoint, I made the decision early
on to sell BDS C at a very low price, in order to maximize the number of copies
actually sold and discourage ripoffs by -the only means that seems to have any
effect in this market: producing a product that is deemed a good value for the
money by most of its users. After three years I still think the price is correct and
expect to keep on selling the package cheaply in the future.

1. 3 Availability

For the first three years of its lifespan, BDS C was available exclusively from
one central distributor. The original reason for the exclusivity was to give the
author freedom from distribution problems as the package evolved technically.
Unfortunately, true widespread distribution of the package was made' difficult in
those three years because vendors and distributors could not deal directly with BO
Software.

BOS C is no longer being sold on an exclusive basis. The package is available
on 8" disk directly from BD Software, or in a wider variety of formats from a
growing number of new direct distributors. For example, the BOS C -User's Group

-is now selling thecompller to first-time buyers in addition to performing_its
original services or providing compiler upda tes, library volumes and newsletters to
registered users. Other dealers will be popping up soon; inquiries from potential
dealers and distributors are welcome.

Page 2 BD Software

BDS C User's Guide Iritroduction

1.4 Forget End-User Royalty Arrangements ...

-¥ide from the standard agreement that the package be used on one system
only, there are no licenses or royalty contracts connected with this . package ..
Users are free to develop software in BDS C and market the resulting object code,
along with any functions that may have been taken from ,the BDS C library,
without paying any royalties to BD Software. 1'he whole idea behind this policy is
to e'ncourage potential software vendors to use C for their development work.

"
If software authors using BDS C for their product. development would.please

mention that fact ,. in the documentation for their products,' it would be highly
appreciated by' this .author. ' In the past, rve been' both' flattered and perturbed to
find literal piece~ of BDS C library source code in the libraries of other C
compiler packages. This probably wouldn't bother me if I were at least given
some eredit for my code.

1.5 Objectives and Limitations

The BDS C Compiler is the implementation of a healthy subset of the C
Program 'Ring Language origi~ally developed at Bell Laboratories in conjunction with
the Unix operating system. The compiler itself runs on 8080/Z80 microcomputer

1. Each user implicitly accepts the standard license in the act of unsealing the
diskette envelope, though the license agreement must be signed and returned for
proper registration.

2. You know who you are!

3. Unix is a trademark of Bell Laboratories.

4. See The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie
(Prentice Hall, 1978) for a complete description of the language. This guide deals
only with details specific to theBDS C implementation; it does not attempt to
teach the C language.

BD Software Page 3

November 1982 BDS C User's Guide

systems equipped with the CP/M5 operating system, and generates code to be run
either under CP /M or at any arbitrary location in ROM or RAM (although there
must be a read/write memory area available at run time somewhere in the target
machine.)

The main objective of this project was to translate a bit of the powerful,
structured programming philosophy on which the Unix operating system is based
from the minicomputer to the microcomputer environment. BDS C provides a
friendly environment in which to develop CP/M utility applications, with an
emphasis on an elegant, efficient human interface for both compiler and
end-application usage.

Unfortunately, the implementational mechanics of the C -language do not
conform '6 as . well to tpe 8080's hardware characteristics' as they, do, to the
PDP-11's. 'Operations natural to the 11 (such as indexed-indirect addressing, a
crucial necessity when dealing with automatic storage allocation) expand into rather
inefficient code sequences on the 8080. Thus BDS C is not likely to become quite
as universal a systems programming language to the 8080 as UNIX C is to the
PDP-11; but then, as better microprocessors replace present 8 bit machines, you
can bet there will be C compilers available that generate code efficient enough to
resign application-oriented assembly language programming to the history books.
Consider this package a warm-up to that era.

In summary, BDS C's big tradeoff when compared to assembly language
programming is a loss of run-time object code efficiency, both spatial and
temporal, in favor of greater structure and comprehensibility throughout the
development stage. For just about all educational and most systems programming
applications, I believe the sacrifices are rather minimal in contrast to the
benefits.

1.6 System Requirements

The practical mlnlmum hardware configuration required by BDS C is a 40K
CP/M 2.x system. Most sample programs included in the package will compile
(without segmentation) and run on a 48K system.

5. CP/M is a trademark of Digital Research, Inc.

6. PDP is a trademark of Digital Equipment Corporation.

Page 4 BD Software

BDS C User's Guide Introduction

BDS C loads, the entire source file into memory at once and performs the
compilation in-core, as opposed to passing the source text through a window. This
allows a compilation to proceed quite rapidly in contrast to conventional
algorithms. The main bottleneck for most modestly-sized compilations is now the
disk I/O involved in reading in the source text and writing out the CRL file, even
though these operations take place as fast as a standard CP/M system can handle
them. A minor restriction under this scheme is that a source file must fit entirely
into memory for the compilation; this may sound bad to you at first, but consider:
a program in C is actually a collection of many smaller functions, stemming from
a single main function at the top level. Each function is treated' as an.
independent entity by the compiler, and may be compiled separately from .the'other .
functions that make up a complete program. Thus a single program may 'be . spread
out over many source files, each containing a variable number'. of functions.
Partitioning a program into several files serves to minimize recompilation' time
following minor changes as well as keep the . individual source : files ,from
overflowing available memory restrictions.

1. 7 New Features of v1.5

WARNING! Version 1.5 of the BDS C Compiler will not work
under pre-2.x versions of the CP/M operating system. In order to
take full advantage of CP/M 2.x I/O mechanisms without introducing
really painful configuration complications, compatibility with CP/M 1.4
(or earlier versions) has been sacrificed. Users who cannot upgrade
their CP/M's to version 2.x must go on using v1.46 of the compiler.

1.7.1 Functional Changes to Major Commands

1.7.1.1 New Command Line Options

. CC (formerly named CC1) now takes the option -Ie, to activate the Kirkland
debugger mechanism. This makes CC write out a special symbol table file for
later use by David Kirkland's C debugger package, and causes the compiler to
generate special code sequences to allow the debugger to monitor program
execution and handle breakpoints at arbitrary points in the code. The. debugger
package is not included on the standard distribution disk, but is available for
nominal cost-of-media from the BDS C User's Group •

If CC is given a filename without an extension, and the file as named. does not
exist, CC now will try adding ".C" to the filename and opening it that way.

BD Software Page 5

November 1982 BDS C User's Guide

CLINK now takes a new option -0, which causes the resulting COM file to not
perform a warm-boot after it is finished' executing. This option has the same
effect as v1.46's NOBOOT.C program (which is no longer needed when using CLINK,
but is provided for use with the optional L2 linker available from the BDS C User's
Group). Note that when -0 is used, there is approximately 2K less user memory
available during object code execution because the CCP is not overwritten.

Another new CLINK option, -z, inhibits the clearing of all external data to zero
during run-time initialization. If -z is not used, then all external data in programs
linked under v1.50 is automatically zeroed before control is passed to the "main"
function at run-time.

, 1.7.1.2 New Library File Searching Capabilities

Both the compiler and linker (CC and CLINK) now ha\7e the ability to search
for library files in a default CP/M drive and user area, sometimes in addition to
the currently-logged drive and user area. If the user configures CC and CLINK as
described in the configuration section below, then CC will know to search a default
directory for included files named in angle brackets, and CLINK will know to
search a default directory for the run-time package module and library object
files. Also, if a CRL file is named on the CLINK command line and CLINK cannot
find that file in the current drive and user area, then the default area (as
configured) will be searched for that file.

1. 7 .1.3 Other New CC Features

The filename given as argument to the .include preprocessor directive may
contain an optional user-area prefix in addition to the optional logical disk-drive
specifier. The format for the filename is the same as the format of C library
function filename parameters, as described below in the "Low-Level File I/O"
subsection.

1.7.1.4 Other New CLINK Features

CLINK now accepts user area prefixes on CRL filenames given on the command
line (except for the main CRL file, which must be in the current user area.) ,If an
explicit disk drive and/or user area specification is given on the CRLfilename to
CLINK, then the default drive and user area (as 'configured 'by the user) will not be'
searched automatically. Application: if an explicit user-area is given for a new
test version of a CRL file, and a similarly named CRL' file exists in the default
library area, then the .version in the default area will not be used if the explicitly
named one cannot be found.

Page 6 BD Software

BDS C User's Guide Iritroduction

CLINK now automatically loads all functions, by default, from each CRL file
named on the command line in a linkage. The -f option is now reversed in sense
from previous versions; i.e., when -f appears on a CLINK command line, then all
subsequently named CRL files are scanned for previously referenced functions only,
while all CRL files named before the -f flag are loaded in their entirety. This
makes the general format of a CLINK command line be:

A>clink <main file> [<other files in pr9g>] [-f <lib files>] <cr>

Other options may be interspersed in the command line, of course.·

CLINK will now automatically print out warning messages when the· code and
o U .

external data areas overlap and when the external data area ends above the base
of the BDOS on the development system. These conditions usually indJcatean
error of some kind; nevertheless, the linkage will be completed and the user may
decide . whether, or. not to· reconfigure the external data. area for future

.. compilations/linkages.·

1.7.2 New Low-Level File I/O Features

All the low-level file I/O now uses the CP/M 2.2x random-record read and
write calls. Therefore, files may be up to 8 megabytes in length instead of
only up to 256K bytes as with pre-1.50 releases. The explicit random-record
file I/O functions supplied in previous versions (rread, rwrite, rseek, rteU,
rsrec and rcfsiz) are no longer included, since their functionality has been
incorporated into the new versions of the standard library functions read,
write, seek and tell.

The "seek" function may be given an orIgIn code of 2, meaning to seek
relative to the end of the file. Note that the offset must be negative to
make sense in this case, since the origin is at the end of the file and the
offset value is added to the origin value. For example, the following call

. seeks to the next-to-last sector in the file:

seek(fd, -2, 2); /* seek to 2nd sector from end of file */

User number prefixes are now accepted wherever a filename argument is
called for. Such a prefix consists of a decimal number between 0 and 31,
followed immediately by a slash (n character and then the filename (with or
without an optional disk designator). . This causes the file I/O mechanism to
switch into the user area associated with each file for the duration of any
I/O operation involving that file, then switch back to the current user area ,
when done. Any filename may now take either an explicit disk designator, an
explicit user area, or both. If both are given, then the user area
specification must precede the disk design~tor. Here is an example:

BD Software Page 7

November 1982 BDS C User's Guide

if (open("0/A:DATABASE.DAT",2) == ERROR)
exit(puts(ffCan't open the database, turkey."»;

Note that this allows programs in separate user areas to access a common
data file kept on one particular drive and user area, instead of having a
separate copy of the data file for each user area that requires it. If you are
running the "ZCPR" public-domain CCP replacement program for CP 1M, or
any shell (such as "MicroShelltt

) that searches special drives and user areas for
command files, then that feature combined with the user-area enhancements
to the file I/O library allow a very efficient utilization of the CP 1M
filesystem ..

There are some new functions that provide better diagnosis of errors caused
by low-level file I/O calls. Whenever a call such as open, read or write
returns a value of -1 (ERROR), the errno function may be called to return a
more· detailed error description code explaining exactly what went wrong.
The errmsg function may be used to return a pointer to a string
corresponding to the error value returned by ~. A typical usage of th.ese
functions is as follows:

i = read(fd, buffer, 20);
if (i -- ERROR)

printf("Read error: %s ",

1.7.3 Miscellaneous New Features

1* try to read 20 sectors *1
1* if an error occurred .•. *1
errmsg(errnoO»;

The entire external data area is now cleared to zero by the run-time initializer
before control is transferred to the main function for program execution. This
means that programs which use the storage allocator need no longer explicitly clear
the _ALLOCP variable before using the allocator.

The external data declarations for the storage allocation functions alloc and free
have been permanently enabled, so that it is no longer necessary to go into the
BDSCIO.H header file and mess with commenting/uncommenting the variable
declaratio~ in order to get alioc and free to work.

In the documentation department, the User's Guide has been greatly overhauled
with use of the FinalWord text processor (from Mark of the Unicorn, rah!)driving
a Diablo 630 printer with the "96-Bold-PS" metal dai.sywheel. There is now a table
of contents, an index, and contiguous page numbering throughout the entire body of
the manual, including the appendices (which were scattered sheets tacked on to the

. end of the Guide in earlier releases).

Page 8 BD Software

BDS C User's Guide Introduction

1. 7.4 Incompatibilities With Earlier Versions

1. When the 'include preprocessor directive is given a filename enclosed in
angle brackets (.include <filename», then the default drive and user area (as
described in the configuration section above) is presumed to contain the
named file. A filename enclosed in double quotes (.include "filename") is
presumed to reside on the currently-logged drive and user area,'as in
previous versions, unless the filename contains an explicit user area and/or
disk designator.

2. BDS C v1.5 may only be used with version 2.0 or later of' the- CP/M
operating system; CP/M 1.4 is no longer supported. '"

3. The run-time package has been modified, causing incompatibility with CRL
files generated by previous versions of the compiler. In order to be used
with version 1.5 components, a CRL file must have been generated by
version 1.5 of the compiler. Old CRL files should be discarded. -

4. CLINK now loads all functions from all named CRL files by default,
regardless of whether or not they have been referenced by previously loaded
functions in a linkage. The CLINK option -f now operates identically to the
L2 linker's -l option (see section 4).

5. The hardware related defined constants from previous versions of the
BDSCIO.H header file have been removed from that file and placed into a
new header file named HARDW ARE.H, so that system-dependent parameters
are kept separate from general ones. The console and modem port definition
sections have been changed into a more general· form to allow for both
status-driven and memory-mapped I/O ports.

6. The getline function no longer includes a trailing newline character as part
of the collected line of input text. Like gets, lines input through getline
are terminated by only a single NULL character.

1.8 Other New Features: A Summary for Pre-v1.4 Users

There has been a hefty amount of reVlSlon, expansion and clean-up applied to
the package since the last generation (v1.3). A good portion of the changes were
made _ in response to user feedback, while others (mainly internal code generation
optimizations) resulted from the author's dissatisfaction with some of his earlier

BD Software Page 9

November 1982 BDS C User's Guide

kludgery and short-cut algorithms.

1.8.1 Library Sources Included

The assembly language sources for the BDS C run-time package (CCC.ASM -)
C.CCC) and all non-C-coded library functions (DEFF2? .CSM -) DEFF2.CRL) are
now included with the package, so that they may be customized by the user for
non-CP/M environments. The new compiler and linker each, accept ,an expanded
command line option repertoire allowing both the code origin and r/w memory data
area to be specified explicitly, so that generated code ~an be 'placed -into' ROM.
The run-time package may be configured for, non-CP/M " 'environments by
customizing' a simple series of EQU statements, and new special-purpose' assembly
language library functions may be easily generated with the help -of the~·:CASM "c','

assembly-language. preprocessor program included -'with BDS C standard
equipment. '

1.8.2 Better Buffered I/O

On a higher level, the buffered I/O library can riow be trivially customized to
use any number of sectors for internal disk buffering. A general purpose standard
header file, BDSCIO.H, controls the buffering mechanism and also provides a
standard nomenclature for some of the constant values most commonly used in C
programs. I recommend that all users carefully examine 'BDSCIO.H, become
intimate with its contents, and use the symbols defined there in place of the' ugly
constants previously abundant in the sample programs. For example, the symbol
ERROR is a bit more illuminating than -1.

1.8.3 Directed I/O and Pipes

For Unix enthusiasts, an auxiliary function package (written' in C) named
nDIo.cn has been included to permit I/O redirection and pipes a la Unix. If you
do not need this capability, then it isn't there to take up space; if you do need it,
then you simply add a few special statements to your program and specify DIO to
CLINK at linkage time, then use a subset of the standard Unix redirection syntax
on the CP/M command line.

1.8.4 One Stack is Better Than Two

A single run-time stack configuration has replaced the two-stack horror used in
the earliest releases. Function parameters are now passed on the stack, and local
storage allocation also takes. place on the stack. This leaves all of memory

Page 10 BD Software

BDS C User's Guide Introduction

between the end of the externals (which still sit right on top of the program code)
and the stack (in high memory) free for generalized storage allocation; several new
library functions (alloc, free, rsvstk, and sbrk) have been provided for that
purpose.

1.S.5 Better Code Quality

Last but not least, the code generator has been taught some optimization
tricks. The length of generated code has shrunk . by 25% (on average). and
execution time has been cut by about 20% over version 1.32. Part of this cut in
code bulk is due. to the new CC option -e, which allows an absolute address) for
the external data area to be specified at compile time. This enables . the compiler
to generate absolute load and store instructions (using the lhld and shld SOSO/ZSO
ops) for external variables.

1.S.6 Incompatibilities With Pre-v1.4 Versions

Because the run-time package has been totally reorganized for release v1.4,
CRL files produced by earlier versions of the compiler will not run when linked in
with modules produced by the new package. Therefore all programs should be
recompiled with the current version, and old CRL files should be thrown away.
There are also a few source incompatibilities that require a bit of massaging to be
done to old source files. These are:

1. The statement

'include <bdscio.h>

must be inserted into all programs that use buffered file I/O, and should be
inserted into all other programs so that the symbolic constants defined in
BDSCIO.H can be used.

2. All buffers for file I/O that were formerly declared as 134-byte character
arrays should now be declared as BUFSIZ-byte character arrays. For
example, a declaration such as:

char· ibuf[134];

becomes:

char ibuf[BUFSIZ];

BD Software Page 11

November 1982 BDS C User's Guide

3. Comments now nest; i.e., for each and every "begin comment" sequence U*)
there must appear a matching "close comment" sequence (*') before the
comment will be considered terminated by the compiler. This means that
you can no longer comment out a line of code that already contains a
comment by inserting '* at the start of the line; instead, a good practice
would be to insert '* above the line to be commented out, and to insert *'
following the line. Although complete comment nesting is something that
UNIX C doesn't ·support, I feel it is important to have the ability to
comment out large sections of code by simply inserting comment delimiters
above and below the section. Otherwise, 'any comments within such a block
of code have to be. removed first.

eO

For v1.4, the run-time package comes configured to support up to eight open
files at anyone time, but previous versions had accepted up to sixteen~ To allow
more than eight files, the "NFCBS EQU 8" statement in the run-time package
source (CCC.ASM) must be appropriately changed and the file re-assembled. " See
Chapter 2 for details on customizing the run-time package.

1.9 How to Use The Compiler

1.9.1 The Commands and Primary Data Files

The main BDS C package consists of four executable commands:

CC.COM
CC2.COM
CLINK.COM
CLIB.COM

C Compiler - phase 1
C Com piler - phase 2
CLinker
C Librarian

and three data files that are usually required by the linker:

C.CCC
DEFF.CRL
DEFF2.CRL

Run-time initializer and subroutine module
Standard (tTDefault") function library
More library functions

CC.COM andCC2.COM together form the actual compiler. CC reads in a
given source file from disk, crunches on it, leaves an intermediate file in memory,
and automatically loads in CC2 to finish the compilation and produce a CRL file

Page 12 BD Software

BDS C User's Guide Iritroduction

as output.7 The CRL (mnemonic for C ReLocatable) file contains the generated
8080 machine code in a special relocatable format.

The linker, CLINK, accepts a CRL file containing a "main" function and
proceeds to conduct a search through all given CRL files (then DEFF .CRL,
DEFF2.CRL and DEFF3.CRL automatically) for needed subordinate functions. When
all such functions have been'linked, a COM file is produced.

For convenience, the CLIB program is provided for the manipulation of CRL file
contents.

1.9.2 Confi~ration

·.BDS C commands should simply come up running under any CP/M system,
without any special configuration procedure necessary. There ~ several optional
features of the compiler and .linker that may be configured by the user to increase
the nexibility of the package. This subsection explains each of those options and
how to select them.

If you are running BDS C under MP/M II, you must re-assemble the run-time
package with the "MPM2" symbol equated to 1 (it comes configured to 0). Simply
edit the CCC.ASM file, assemble it using ASM, use LOAD to create CCC.COM,
then rename that to C.CCC.

1.9.2.1 CC and CLINK configuration

Make sure to have your master distribution disk safely tucked away
somewhere before attempting these modifications!

There are several user-configurable features in CC.COM and CLlNK.COM
controlled by a specific bytes of memory very close to the beginning of each
command file. In order to change these features, use DDT or SID to read
CC.COM or CLINK.COM into memory, make the changes using the s command, hit
control-C, and use the CP/M SAVE command to write the modified command back
to disk.

7. If desired, the intermediate file produced by CC may be written to disk and
processed by CC2 separately; in that case, the intermediate file is given the
extension .CCI

BD Software Page 13

November 1982 BDS C User's Guide

To convert the hex "NEXT" address printed by DDT or SID into the decimal
number you must give to the SAVE command in order to save the modifed version
to disk, use the following algorithm: first, take the leftmost two hex digits and
compute their decimal equivalent (e.g., 3C80 yields 3C, which is 60 decimal).
Then, subtract 1 from that only if the rightmost two digits are 00 (for example,
the 60 above would remain 60 because the rightmost two digits of 3CSO are SO,
not 00). The final value is the number to give SAVE.

Both CC.COM and CLINK.COM contain an identically structured five-byte
configuration block. The base address of the block forCC.COM is 0155h, and for.
CLINK it is 0103h. The structure of the block is as follows:

Addr. Function . Default value

base+O Default library disk FF (current)

base+1 Default library user area FF (current)

base+2 Disk where SUBMIT files are processed 00 (disk A.)

base+3 Poll console for interrupts (0 or 1) 01 (enabled)

base+4 Perform warm-boot when finished 00 (don't)

Note that each item in the block is exactly one byte in length.

The first two configuration bytes specify a default disk and user area to be
treated as a "library directory", or "default area" by CC and CLINK. For CC, the
library directory specifies where to find the Sfiles named in .include directives
when the filename is enclosed in angle brackets , and also where to find CC2.COM
for the second phase of compilation. For CLINK, this says where to find the files
DEFF .CRL, DEFF2.CRL, DEFF3.CRL (if present) and C.CCC, as well as where to
obtain other CRL files named on the CLINK command line that cannot be found, in
the -directory from which the "main" CRL file was taken.

For the default library disk, a value of 0 specifies drive A, 1 specifies drive B,
etc., and a value of FFh (255 decimal) specifies that the currently-logged disk is to"
be used as the default library disk. F or the default library user area,- the . values .
0-31 denote the corresponding user area, and a value of FFh (255 decimal) specifies .
that the current user area is to be the default library user area.Both.~the lit>.~ary .. '
disk and user area come configured to FFh; thus, the 'distribution version. of the

8. Filenames enclosed in double quotes always cause the .include directive to
search the current directory for the named file, regardless of configuration.

Page 14 BD Software

BDS C User's Guide Introduction

v1.50 compiler and linker behave the same as earlier versions, in which the
currently-logged drive and user area were always assumed to contain the library
files by default.

The third configuration byte designates which CP/M drive contains the $$$.SUB
file that exists during "Submit File" processing. The possible values are the same
as for the default library disk as described above.

CLINK always tries to erase pending submit files when an error occurs, while
CC only tries to do so when the -x option is given. Since most systems, always
place the $$$.SUB file on drive A, that is . the way CC and. CLINK come configured
by def~ult. But, if the user has customized his system to put the$$$.SUB file on,
say, the current drive instead of always on' drive A, then this byte would be
changed from 01h to OFFh.

, The fourth configuration byte is a flag telling CC or CLINK whether or not the
system console should be polled for the interrupt ,character (control":'C) during
execution of the command. If enabled (non-zero), then any input typed 'on the
console by the user during execution of the command will be ignored unless
control-C is typed, in which case the command will be immediately aborted and
control will return to command level. If disabled (zero), then the console will
never be polled. This is useful under certain interrupt driven systems that can
recognize type-ahead and handle interruption on their own without requiring
transient commands to poll the console.

The fifth (and final) byte controls whether CC and CLINK perform a warm-boot
when done processing or return directly to the CCP without any disk activity. The
comands come configured to return directly to the CCP, but on certain "fake"
CP/M systems (I've been told the CROMIX CP/M emulator is one example), directly
returning to the CCP does not work correctly. This is probably because the
operating system doesn't pass a valid stack pointer to transient commands, and
when CC or CLINK tries to return, it crashes the system. If you run the compiler
and it bombs after writing a correct output file, try setting the warm-boot 1;>yte '.to
a non-zero value.

In summary: this configuration scheme allows users with large-capacity disks to
pick some particular drive and user area in which to keep all standard header and
library files. The library disk and user area bytes should be considered . together as
a unit; if you change one, you'll probably also want to change the other.'

Note that CC2.COM does not need to be configured; CC.COM passes it all the
relevant information upon transfer of control.

BD Software Page 15

November 1982 BDS C U serfs Guide

1.9.2.2 Run-Time Package Options

CCC.ASM contains some equated symbols that may be customized by the user.
See Chapter 2 for details of how to reassemble the run-time package 'and suitably
modify the library.

The beginning user should be warned that the run-time package
reconfiguration process is rather involved, and the savings to be
gleaned under any standard CP/M environment is usually not worth the
trouble.

The NFCBS symbol in CCC.ASM specifies the maximum number of files that
may be opEm at anyone time. This is set to 8 for the distribution version; if you
need ,more files open at once, simply change this to the desired value (each
additional file makes the run-time package about 38 bytes 'longer.)

1.9.2.3 BDSCIO.H and HARDW ARE.H Configuration

The standard I/O header file BDSCIO.H contains the defined constant NSECTS,
which controls the size of file buffers for the buffered I/O library. NSECTS comes
configured to 8, so that a full 1024 bytes of data are buffered during buffered I/O
operations before disk activity occurs. If you are running a system that has 1K
sector blocking/deblocking in the BIOS (Basic Input/Output System) portion of CP/M,
then you might want to change NSECTS from 8 to 1 in order to eliminate the
redundant buffering and gain 7/8 K bytes of free memory per open file.

System-dependent hardware characteristics, such as ~ I/O port numbers, masks,
etc., are kept in the HARDW ARE.H header file. Before any programs which
include it are compiled, HARDWARE.H should be modified to reflect the hardware
characteristics of the target computer syst~m.

1.9.3 A Typical Compilation

As an example, here is the sequence for compiling and linking a simple source
file named FOO.C:

The compiler' is invoked with the command:

A>cc foo.c <cr>

After printing its sign-on message, CC will read in the file FOO.C from disk and
crunch for a while. If there are no errors, CC will then give a memory usage

Page 16 BD Software

BDS C User's Guide Iritroduction

diagnostic and load in CC2.COM. CC2 will do some more crunching and, if no
errors occur, will write the file FOOoCRL to diskc

The next step brings in the linker:

A>clink foo [other files & options, if any] <cr>

Unless there are unresolved function references, the file FOO.COM will be
produced, ready for execution via

A>foo [arguments] <cr>

IMPORTANT: The command lines for all COM files in the package
should be typed in to CP 1M without leading blanks. This also applies
to CO M files genera ted by the com piler, where' leading blanks on the
command line will cause argc and ~ to be miscalculated.

Following are the detailed command syntax descriptions.

1.9.4 CC - The Parser

Command format: CC name.ext [options] <cr>

Any name and extension are acceptable, although the conventional extension for
C programs is ".eft

• CC will first try opening the file exactly as named; if no
extension at all is given, and the file cannot be opened exactly as specified, then
CC will append a ".C" extension onto the filename and try once more to open it
with the· newly constructed name.

If an expliCit disk designator is given for the filename (e.g. "b:foo.c") then the
source file is assumed to reside on the specified disk, and the compiler output also
goes to that disk. Filenames given in double quotes to the 'include directive, with
no explicit user-area/drive specification used, are obtained from the same disk as
the master filename given on the com mand line.

Typing a control-C at any time after invoking CC will abort the compilation
and return to command level tmless CC has been configured to ignore the console,
as. described in the configuration section above.

Following the source file name may appear a list of compilation options, each
preceded by a dash. The currently supported options are:

-p

BD Software

Causes the source text to be displayed on the user's console,
with line numbers automatically generated, after all 'define
and .include substitutions have been completed. This option is

Page 17

November 1982

-dx

-m xxxx

-e xxxx'

Page 18

BDS C User's Guide

useful for detecting mismatched comment delimiters: an
unclosed com ment will make all subsequent text disappear
during -p, and the last visible text tells you where the
badly-delimited comment begins. Note that this output may
be directed to the CP/M "list" device by typing control-P
before invoking CC.

Auto-loads CC2.COM from disk ~, user area !!, following
successful completion of CC's processing. By default, CC2 is
assumed to reside either on the currently logged-in disk or on
the default drive/user area as defined in the configuration
procedure. If the letter "z" is given for' the disk specifier,
then an intermediate ".ccr' file is written to disk for later
processing by an explicit invokation of CC2, and no attempt is .
made to auto-load CC 2.

Causes the CRL output of the compiler to be written to disk'
!'if no errors occur during CC or CC2. If the -a z option is
also specified, then -d specifies onto which disk the .CCI file
is written. The default destination disk is the same disk from
which the source file was obtained.

Specifies the starting location, in hex, of the run-time package
(C.CCC) when using the compiler to generate code for
non-standard environm ents.
The run-time package is expected to reside at the start of the
CP/M TPA by default. If an alternative address is given by
use of this option, be sure to reassemble the run-time package
and machine language library for the given location before
linking, and give the -1, -e and -t options with appropriate
address values when using CLINK. See Chapter 2 for more
details on customizing BDS C object code for non-standard
environm ents.
C.CCC, whieh always resides at the start of a generated COM
file, cannot be separat~d from main and other (if any) root
segment functions.
CC2 must be successfully auto-loaded by CC in order for -m
to have any effect.

Allows the specifica tion of the exact -starting address, (in hex)
for the external data area at run . time. Normally, the
externals begin immediately following the last byte of program
code, and all external data are accessed via indirection off a
special pointer installed by CLINK into the run-time package.
When -e is used, the compiler can generate code to access
external data directly (using lhld and shld instructions) instead

BD Software

BDS C User's Guide

-0

-x

-rx

BD Software

Iritroduction

of using the external da ta pointer. This will shorten and
enhance the performance of programs having much external
data. Suggestion: don't use this option while debugging a
program; once the program works reasonably, then compile it
once with -e, putting the externals at the same place that
they were before (since the code will get shorter the next
time around.) Observe the "Last code address" value from
CLINK's statistics printout to find out by how much the code
size shrunk, and then compile it all again using the
appropriate lower address with the -e option. Don't cut it too
close, though, since you'll probably make rnods to the program
and cause the size to fluctuate, perhaps overlapping the
explicitly specified external data area· (a condition that CLINK
will now detect and report).· .
CC2 must be successfully auto-loaded by CC in order for -e
to have any effect.
See also the CLINK option -e for related details. Note that
C LIN K will now print a warning message if the external da ta
address specified by this option overlaps part of the program
or the operation system in the final command file.

Causes the generated code to be optimized for speed.
Normally, the code generator replaces certain awkward code
sequences with calls to equivalent subroutines in the run-time
package; while this reduces the length of the code, it also
slows execution down because of subroutine linkage overhead.
If -0 is used, then many of those subroutine calls are replaced
by in-line code. This results in faster (but longer) object
programs.
For the fastest possible code, the -e option should be used in
conjunction with -0. For the shortest possible code, use -e but
don't use -0.

CC2 must be successfully auto-loaded by CC in order for -0

to have· any effect.

Causes the deletion of pending CP 1M "SUBMIT" batch activity
following a compilation in which any errors have occurred.
Whenever CC is used from a SUBMIT file,-x should appear on
the the CC command line to erase the "$$$.SUB" temporary
file before returning to command level following an erroneous
compilation. When CC is used· stand-alone, -x would just
cause needless disk activity and shou~d not be used.

Reserves !,K bytes for the symbol table. If an "Out of symbol
table space" error occurs, this option may be used to increase
the amount of space allocated for the symbol table.

Page 19

November 1982

-c

BDS C User's Guide

Alternatively, if you draw an "Out of memory" error then -r
may be used to decrease the symbol table size and provide
more room for source text. A better recourse after running
out of memory, though, would be to break the source file up
into smaller chunks. The default symbol table size is 10K.

Disables the "comment nesting" feature, causing comments to
be processed in the same way as by UNIX C. I.e., when -c is
gi ven, then lines such as

'* printf(ffhello"); '* this prints hello *'
. p 0°

are considered complete comments. If -c is not used, then
the compiler would expect another. *' sequence before such a
comment would be considered terminated.

A single C source file may not contain more than 63 . function definitions;
remember, though, that a C program may' be made up of any number of source
files, each containing up to 63 functions.

If any errors are detected by CC, the compilation process will abort
immediately instead of proceeding to the second phase of compilation or writing
the .CCI file to disk (depending on which options were given).

Execution speed: about 20 lines text/second. After the source file is loaded into
memory, no disk accesses will take place until after the processing is finished.
Don't assume a crash has occurred until at least (n/20) seconds, where n is the
number of lines in the source file, have elapsed since the. last disk activity was
noticed... Then worry.

Examples:

A>cc foobar.c -r12 -ab <cr>

invokes CC on the file foobar.c, setting symbol table size to 12K bytes. CC2.COM
is auto-loaded from disk B.

A>cc c:belle.c -p -0 <cr>

invokes CC on the file belle.c, from disk C. The text is printed on the console
(with line numbers) following 'define and .include processing. Unless CC finds
errors, CC2.COM is auto-loaded from either the' currently logged- disk or the
default drive/user area (configured as per section 1.9.2). The resulting code is
optimized for speed.

Page 20 BD Software

BDS C User's Guide Introduction

1.9.5 CC2 - The Code Generator

Command format: CC2 name <cr>

Normally CC2.COM is loaded automatically by CC and this command need not
be used. If given explicitly, then the file name.eCI will be loaded into memory
and processed.

If no errors occur, an output file named name.CRL will be generated and
name.CCI (if present) will be deleted •

.:.)

CC 2 does not take any options.

As . with CC, an explicit disk designator on the filename causes the specified
. disk to be used for input and output.

When CC auto-loads CC2, several bytes within CC2 are set according to the
options given on the CC command line. If CC2 is invoked explicitly (i.e., not
auto-loaded by CC) then the user must see to it that these values are set to the
desired values' before CC2 begins execution. Typically this will not be necessary,
but if you're very low on disk storage and need to invoke CC2 separately, here are
the data values that need to be set:

Addr default option function

0103 00
0104 01
0105-6 0100h
0107-8 none
0109 00

-a
-0

-m
-e
-e

True if CC2 has been auto-loaded, else zero.
Zero if -0 given (optimize for speed), else 1.
Origin address of C.CCC at object run-time.
Explicit external address (if -e given to CC).
True if explicit external addr given, else o.

. The . 16-bit values must be in reverse-byte order (low order byte first, high last).

CC2 execution speed: about 70 lines/second (based on original source text.)

If a control-C is typed on the console input at any time during execution, then
compilation will abort and control will return to command level •.

Example:

A>cc2 foobar <cr>

BD Software Page 21

November 1982 BDS C User's Guide

1.9.6 CLINK - The CLinker

Command format: CLINK ~ [other names and options] <cr>

The file name.CRL must contain a main function; name.CRL and all other CRL
files named (up to the appearance of a -f option) will have all their functions
loaded into the linkage. If the -f option appears on the command line,' then all
CRL files' named following it are scanned for needed functions; i.e" only those '
functions known to be needed by previously loaded functions (either from previous

,)CRL' files or from the one currently being scanned) are loaded into the linkage. ,
When all explicitly named CRL files have been searched, the standard library files
DEFF*.CRL will be scanned automatically for needed library functions.', The order
in which the library files are searched is always the same: first DEFF .CRL, then
DEFF2.CRL, and finally, if supplied by the us'er, DEFF3.CRL. If the 'user 'writes
functions having the same name as those in any automatic library file, then such
functions should always 'be placed in one of the CRL files named explicitly on the'
command line. If placed in DEFF3.CRL, they would not get used unless the
similarly named functions in DEFF .CRL and DEFF2.CRL were deleted from those
files.

By default, CLINK assumes all explicitly named CRL files reside on the
currently logged disk, and all library files (C.CCC and DEFF*.CRL) reside on the
default drive and user area as defined in the configuration block (see section 1.9.2).
If an explicit drive designator prefixes the main filename on the command line,
then the given drive becomes the default for all CRL files named on the command
line. Each additional CRL file may contain a disk designator of the form "d:",
and/or a user area prefix of the form "nn/", to specify an explicit place to find
the file. If both prefixes are used, the user area prefix must come first.

If a named CRL file cannot be found according to the search rules above, then
the directory specified by the default drive and user area (see section 1.9.2) is also
searched. This allows the user to place commonly used library files in one default
drive/user area and have them be accessible during linkages performed in different
dri ves and user areas.

If any unresolved references remain after all. given CRL files have' been
searched, CLINK will enter an "interactive mode". Here the user, will be shown · .
the names of all missing functions and be given the' the opportunity, to specify
other CRL files to search.

Control-C may be typed during execution to abort the linkage and return to
command level.

Page 22 BD Software

BDS C User's Guide Introduction

Intermixed with the list of file names to search may be certain linkage options,
preceded by dashes. Note that multiple single-letter options may be combined
following a single dash. The currently implemented options are:

-s

-f (filename .••)

. -e xxxx

BD Software

Print out a load map and statistics summary on the console.

Cause all following named CRL files to be scanned instead of
loaded. CLINK automatically loads all functions in each CRL
file named on the command line, until this option is
enc04ntered, at which point all following CRL files are
scanned. This means that only functions which have been
previously referenced by other functions,'in someeariler file
or in the current file, are linked into the program. Note:
This new -f option works differently from the -f of pre-l.50
versions of BDS C. -f now works identically to the L2 linker's
"-L" option.

Forces the base of the external data area to be set to the
value ~ (hex). Normally the external data area follows
immediately after the end of the generated code, but this
option may be given. to override· that default. This is
necessary when chaining is performed (via exec, execl or
execv) to make sure that the new command's notion of where
the external data begins is the same as the old command's.
To find out what value to use, first CLINK all the CRL files
involved with the -s option, but without the -e option, noting
the "Data starts at:" address printed out by CLINK for each
. file. Then link the m again, using the maximum of all those
addresses as the operand of the -e option for all files except
the one that had the largest "Data starting address" during the
first pass.
When generating code for ROM, this option should be used to
place externals at :an appropriate location in r/w . memory.
If the main CRL file (name.CRL) was compiled with the -e
CC option specified, then CLINK will automatically know
about the address then specified on the CC command line; but
if any . of the other CRL files speCified in the linkage contain
functions compiled by CC without use of the -e option, or
with the value given to -e being different from the value used
to compile the main function, the resulting COM file will not
work correctly. CRL files compiled without use of the CC -e
option may be included in a linkage . only if -e is specified to
CLINK with an argument exactly equal to the CC -e argument
used to compile the main CRL file.

Page 23

November 1982

-z

-t xxxx

-0 newname

-n

BDS C User's Guide

Inhibits clearing of the external data area to zero during
run-time initialization. If -z is used, then all externals come
up with random values. Otherwise, externals come up all
zeroes.

Set start of reserved memory to ~ (given in hexadecimal).
The instruction lxi9 sp,XXXX is placed at the start of the
generated COM file. Under CP/M, the value should be large
enough to allow all program code and local/external da ta to
fit below it in memory at run-time. . If you are generating
code to run in ROM, then the value given here should be the
highest' address plus one. of the read/write memory to be used ,~)
. for the stack.

Causes the COM file output to be· named newname.COM. If 8.
. disk designator precedes the name,·,then the output is written

to the specified disk. By default, the output goes to the
currently logged-in disk. If a single-letter disk specifier.
followed by a colon is given without a filename, then the
COM file is written to the specified disk without affecting the
name of the file.

Makes the resulting COM file preserve the CP/M CCP
(Console Command Processor) at run-time, instead of
overlaying the CCP with the runtime stack. This reduces the
available run-time memory by 2K bytes, but allows the
program to return instantly to command level after execution
without having to perform a warm4>oot f~m disk. Therefore,
-n is useful for programs that are used often and do not
require every last bit of memory in the system. Note that
this option has exactly the same effect as running the
NOBOOT command on the resulting COM file; NOBOOT is
provided so that programs linked with other linkers, such as
L2, may also 'be made to return to the CCP without
performing a warm-boot.
-n is ignored if the -t option is also used, because the
mechanisms conflict and -t is given priority.

9. Normally, when -t is not used, the generated ·COM file begins ,with the
sequence:

Page 24

lhld base+6
sphl

;get BOOS pointer from base page
;initialize stack pointer to BOOS base

BO Software

BOS C U serfs Guide Introduction

-w Writes a symbol table file with name name.SYM to disk,
where name is the same as that of the resulting COM file.
This symbol file contains the names and absolute addresses of
all functions involved in the linkage. It may be used with SID
for debugging purposes, or by the -y option when creating
overlay segments (see below.)

-y sname Reads in ("yanks") the symbol file named sname.SYM from disk
and uses the addresses of all function names defined there for
the current linkage. The -w and ~ options are designed to
work together for creating overlays, as follows: when linking
the "root" segment (the part,of the program that loads in. at
the TPA, first receives control; and contains the run-time
utility package), the -w option should be given to write out a
symbol table file containing" the addresses of all functions
present in the root. Then, when linking the overlay segments,
the -y option is used to read in the symbol table of the
"parent" root segment and thereby prevent multiple copies of
common library functions from being present at run-time.
This procedure may extend down more than one level: while
linking an overlay segment, the -w option can be given along
with the -y option, causing an augmented symbol file to be
written containing everything defined in the read-in symbol
file along with new locally defined functions. Then the
overlay segment can do some overlays of its own, "and so on
down as many levels as is desired (or practical.) Note that
the position of the -y option on the CLINK command line is
significant; i.e, the symbol file named in the option will be
searched only after any CRL files specified to the left of the
-y option have been searched. ThUS, for best results specify
the -y option immediately after the main CRL file name. If,
upon reading in the symbols from a SYM file, a symbol is
found having the same name as an already defined symbol,
then a message to that effect is printed on the console and
the old value of the symbol is retained.
For more information on using -y for generating overlay
segments," see the appendix on overlays.

-1 xxxx Causes the load address of the generated code to be xxxx
(hex). This option is only necessary when generating 8.I1 . overlay
segment {in conjunction with -v) or creating code to run in a
non-standard environment. In the latter case, CCC.ASM m'ust
have been reconfigured for the appropriate location and
assembled (and loaded) to create a new version of C.CCC
having origin .!!!!. In this case the -e and -t options should
also be used to specify the appropriate r/w memory areas.

BD Software Page 25

November 1982

-y

-d [ttargstt]

-r xxxx

Examples:

BDS C User's Guide

Specifies that an overlay segment is being created. The
run-time package is not included in the generated code, since
it is assumed that an overlay will be loaded into memory
while a copy of the run-time package is already resident
either at the base of the TPA by default, or at the address
specified in the -m option to CC.

Instructs CLINK to obtain library files (DEFF .CRL,
DEFF2.CRL, C.CCC and possibly DEFF3.CRL) and any CRL
files named on the command line. but not found in the current
drive/user area (or on the drive specified as prefix to the
"main" CRL filename) from disk ~ and user area !!. This
option is used to override the default· drive/user area
specification hard-wired into the CLINK configuration block'
(see section 1.9.2).

For quick testing, -d causes the COM file produced by the
linkage to be executed immediately instead of getting written
to disk as a CO M file. If a list of arguments is specified
enclosed in quotes, then the effect is just as if the program
was invoked from the CCP with the given command line
parameters.
-d should not be used for segments having load addresses other
than at the base of the TPA (i.e., -d should only be used for
root segments).
Due to internal conflicts, -d will be ignored if the -n option is
also given.

Reserves xxxx (hex) bytes for the forward-reference table
(defaults to about 600h). This option may be used to allocate
more table space when a "ref table overflow" error occurs.

A>clink ted -s -t 6000 -0 joyce <cr>

Here, CLINK expects the file TED.CRL to contain a main function, which is then
linked with all functions ~rom TED.CRL ~i any needed functions from DEFF .CRL,
DEFF2.CRL and, if it exists, DEFF3.CRL .• A statistics summary is printed out
when finished, the run-time stack is set to start at6000h and grow down (leaving

10. DEFF3.CRL is automatically scanned as a user-supplied library file if it exists
and there are still unresolved references after DEFF .CRL and DEFF2.CRL have
been scanned. If DEFF3.CRL is not found, no complaint is lodged by the linker.

Page 26 BD Software

BDS C User's Guide Introduction

memory at 6000h and above untouched by the COM file when running), and the
COM file itself is to be named JOYCE.COM.

A>clink b:lois 6/ c:vicky -f janet -s <cr>

In this example, CLINK loads all functions from LOIS.CRL (on drive B:) and
VICKY.CRL (in user area 6 on drive C:), links in any needed functions from
JANET .CRL (from disk B, since the disk where LOIS.CRL was obtained is the
default for this linkage), and DEFF .CRL, DEFF2.CRL and perhaps DEFF3.CRL
(from the default disk/user area configured as per section 1.9.2), and prints out a
statistics summary when done. Since no -t option is given, CLINK assumes all the
TPA (Transient Program Area) is available for code and data. The' COM file
generated is named LOIS.COM by default (since no -0 option was given) and the
file is written to the currently logged in disk.

NOTE: When several files that share external variables are linked together, then
the file containing the main function must contain all declarations of external
variables used in all other files. This is because the linker obtains the size of the
external area from the main source file, and this value is used to set up the
appropriate parameter in the resulting COM file so that the library function
endextO returns the correct value. Also, because external variables in BDS Care
actually more like FORTRAN COMMON than UNIX C externals, the ordering of
external declarations should be identical within each individual source file of a
program. Typically, a single header file containing all external declarations is
included by each file of a program, to insure compatibility.

1.9.7 CLIB - The C Librarian

Command format: CLIB <cr>

The CLIB program is provided to let you a) transfer functions between CRL
files, b) rename, delete, and inspect individual functions, c) create new . CRL fUes,
and .d) inspect CRL file contents.

Before delving intoCLIB operation, it is helpful to understand the structure of
CRL (C ReLocatable) files:

A CRL file consists of a set of independently compiled C functions, each a
binary 8080 machine code image having its origin set at 0000. Stored along, with
each function is a list of "relocation parameters" for use by CLINK ;:to resolve
relocatable addresses. Also stored with each function are the names ,of, all
subordinate functions called by the' given function. Collectively, the, code,
relocation list, and needed functions list are termed a ,function module.

BD Software Page 27

November 1982 BDS C User's Guide

The first four sectors of a CRL file make up the directory for that file,
containing a list of all function modules appearing in the file and their positions
within the file. The total size of a CRL file cannot exceed 64K bytes (because
function modules are located via two byte addresses), but optimum efficiency is
achieved by limiting a CRL file's size to that of a single CP/M file extent (16K
bytes).

For more detailed information about CRL files, see chapter 3.

When CLIB is invoked, it will respond with an initial message and a "function
buffer size" announcement. The buffer size tells you how much memory is
available for intermediate storage of functions during transfers. . Attempts to
transfer or extract functions of greater length will fail.

Following initialization, CLIB will prompt with an asterisk (*) and await a
command.

To open a CRL file for manipulation, use

*open file # [d:]filename<cr>

where file# is a single digit identifier (0-9) specifying the "file number" to be
associated with the file filename as long as that file remains open. Up to ten
files, therefore, may be open simultaneously.

Note that a disk designator may be specified for the filename, allowing CLIB to
operate with CRL files on any physical disk.

To close a file (making permanent any changes that were made to it), say

*close file# <cr>

The given file number then becomes free to be assigned to a new file via open. A
. backup version of the altered file is created having the name name.BRL. Note that·
the close operation may take some time to perform, and will cause your disk drive
to thrash annoyingly when large files are involved.

It is not necessary to close a file unless either changes have been made to it or
you need the extra file number. For example, a file opened just ,to be copied
from need not be closed. . .

When a CRL file is opened, a copy of the file's directory (first 4 sectors) is .
loaded into memory. Any alterations made to the file (via the use of the append,
transfer, rename, and/or delete .commands) cause the in-core directory to be
modified accordingly, but the file must be closed before the updated directory gets
written back onto the disk. Thus, if you do something you later wish you hadn't,

Page 28 BD Software

BDS C User's Guide Introduction

and you haven't closed the file yet, you can abort all the changes made to the file
simply by making sure not to close it. Undoing appends and transfers requires a
little bit of extra work; this will be explained later.

To see a list of all open files, along with some relevant statistics on each, say

*files <cr>

To list the contents of a specific CRL file and see the length of each function
therein, say

*list file# <cr>

There are several ways to move functions "around between CRL files.' When all
files concerned have been opened, the most straightforward way to copy a function
(or set of functions) is

*transfer source-file# destination-file# function-name <cr>

This copies the specified function[s] from the source file to the destination file,
not deleting the original from the source file. function-name may include the
special characters * and'! if an ambiguous name is desired. All functions matching
the ambiguous name will be transferred.

An alternative approach to shuffling files around is to use the "extract-append"
method. The extract command has the form

*extract file# function-name <cr>

It is used to pull a single function out of the given file and place it in the
function buffer (in memory). To write the function out to a file, say

*append file# [~] <cr>

where name is optional and should be given only to change the name' under which
the function is to be saved;

*append file # <cr>

is sufficient to write the function out to a file without changing its name •.

Only one file# may be specified at a time with append; to write the function
out to several CRL files, a separate append must be done for each file.

To rename a function within a particular CRL file, say

BD Software Page 29

November 1982 BDS C User's Guide

*rename file# old-name new-name <cr>

Note that this constitutes a change to the file, and a close must be done on the
file to make the change permanent.

To create a new (empty) CRL file, say

*make filename <cr>

This creates a file on disk called filename.CRL and initializes the directory to
empty. To write functions onto it, first use open, and then use either transfer or
the extract/append method described above. CLIB will not allow the creation a
new CRL file having the same name as an existing CRL file in the same
directory.

To delete a function (or set of functions) from a file, use

*delete file# function-name <cr>

Again, the function name may be specified ambiguously using the * and ?
characters. The file must be subsequently closed to finalize the deletion. Note
that deleting a function does not free up any directory space in the associated
CRL file until that file is actually closed. Thus if a CRL file directory is full and
you wish to replace some of the functions in it, you must first delete the unneeded
functions, then close and re-open the file to transfer new functions into it.

A command syntax summary may be seen by typing the command

*help <cr>

To exit CLIB and return to command level, give the command

*quit <cr>

and respond positively to the confirmation message that CLIB then prints out.

Note: All CLIB commands may be abbreviated to a single letter.

Should· you decide you really didn't want to make certain· changes to a file, but
it is already after the fact, then the quit command may be used to get out of.
editing the file and abort any changes made. As long as you haven't appended or
transferred into the file, typing

*quit filet <cr>

is sufficient to abort all operations on that file, and frees up the filet as if a

Page 30 BD Software

BDS C User's Guide Introduction

close had been done.

If you have appended or transferred into a file and you wish to abort, then the
quit command should still be used, but in addition you should re-open the file
directly after quitting and then close it immediately. The rationale behind this
procedure is as follows: when you do an append or a transfer, the function being
appended gets written onto the end of the CRL file. Then, when you abort the
edit, the old directory is left intact, but the appended function is still there,
hanging on in the data area, even though it doesn't appear in the directory. By
opening .and immediately closing the file, only those functions appearing in the
directory remain with the file, effectively getting rid of those -"phantom"
functions.

Here is a sample session of CLIB, in which the user wants to create a new
CRL file named NEW.CRL on disk B: containing all the functions in DEFF .CRL
beginning with the letter "p":

A>clib
BD Software C Librarian vl.50
Function buffer size = xxxxx bytes

*open 0 deff
*make b:new
*open 1 b:new
transfer 0 1 p
*close 1
*quit
(Quit) Are you sure? y

A>

1.10 CP/M "Submit" Files

r

To simplify the process of compiling and linking a C program (after the initial
bugs are out and you feel reasonably confident that CC and CC2 will not find any
errors in the source file), CP/M "submit" files can be easily created to perform an
entire compilation. The simplest form of submit file, to simply compile, link and
execute a C source program that is self contained (doesn't require other special
CRL files for function linkages) would appear as follows:

BD Software Page 31

November 1982

cc $1.c
clink $1 -s
$1

BDS C USer's Guide

Thus, if you want to compile a source file named, say, LIFE.C, you need only
type

A>submit c life <cr>

(assuming the submit file is named C.SUB.)

1.11 Strangenesses

1. When invoking any CO M file in the BDS C package or any CO M file
generated by the compiler, your command line (as typed in to CP 1M) must
never contain any leading blanks or tabs. It seems that the CCP (console
command processor) does not parse the command line in the proper manner
if leading white space is introduced.

2. If you're running MP/M IT, you must re-assemble the run-time package
(CCC.ASM -> C.CCC) with the "MPM2" equate set to true. This makes
sure that the run-time package actually closes all files opened during the
course of execution of a C program, so that the system doesn't run out of
file slots. Normally, under non-MPM2 systems, the BDS C run-time package
does not bother to close files that were open only for reading.

1.12 Last Words

Please report bugs to:

Leor Zolman
BD Software
P.O. Box 9
Brighton, Massachusetts, 02135
(617) 782-0836 (evenings best, before 1:00 AM EST)

Please don't hassle distributors with technical bug reports; by reporting any bug you

Page 32 BD Software

BDS C User's Guide Introduction

may encounter directly to BD Software, you'll vastly improve the chances of my
ever hearing about the problem and supplying a fix within a ·short amount of time.

I gratefully thank the following individuals for their invaluable feedback and
support during the debugging phase of this compiler's development:

Lauren Weinstein Sid Maxwell
Leo Kenen Bob Mathias
Rick Clemenzi Bob Radcliffe
Tom Bell The Real Cat
Jon Sieber AI Mok
Scott Layson Phillip Apley
Tony Gold Charles F. Douds
Ed Ziemba Robert Ward
Scott Guthery Les Hancock
Earl T. Cohen Ted Nelson
Sam Lipson Ward Christensen
Dan MacLean Jerry Pournelle
Mike Bentley Will Colley
Carlos Christensen Richard Greenlaw
Perry Hutchinson Tim Pugh
Paul Gans Steve Ward
John Nall Tom Gibson
Mark Miller Roger Gregory
Jason Linhart Don Lucas
Calvin Teague Rev. Stephen L. de Plater
Bob Shapiro Nigel Harrison
Cal Thixton Gary Kildall
Jeff Prothero

Special thanks to Dennis M. Ritchie, Ken Thompson and the entire staff of the
Computing Science Research Center at Bell Laboratories for developing UNIX and
the original C. Good work.

The BDS C User's Group has been organized; For information on how to get
inexpensive updates of the compiler, receive the User's Group newsletter, and/or
get access to contributed programs, contact:

BDS C User's Group
P.O. Box 287
Yates Center, Kansas 66783
(316) 625-3554

Note that the BDS C package is now available from the User's Group for sale to
first-time buyers.

BD Software Page 33

November 1982 BDS C User's Guide

Chapter 2

The CRL FWlCtion Format and Other Low-Level Mechanisms

2.1 Introduction

This Chapter is directed toward assembly/machine language programmers who
need to link in machine code subroutines together with normally compiled C
functions. It describes the CRL format in detail, and how to produce assembly.
language functions in CRL format so that they can be treated just like any other
functions by the C Linker. The parameter-passing and calling conventions used for
C functions are described, along with some useful subroutines existing in the
run-tim e package •.

2.2 The CRL Format in Detail

Included on the standard BDS C distribution disk is a program called CASM.C,
for use with Digital Research's ASM assembler under CP/M. This program allows
assembly language functions to be written in a special "CSM" format (with far less
deviation from standard assembly language than the obsolete nCMAC.LIB" macro
package of pre-1.46 releases) then automatically converts the .CSM source file into
an .ASM source file for assembly with ASM.COM. A CP/M "Submitl1 file named
CASM.SUB is provided to automate most of this procedure.

Although it is not absolutely necessary to know how a CRL file is organized in
order to effectively use CASM and ASM to produce CRL files, a detailed
description of the CRL format is in order for completeness. So here goes •••

Page 34 BD Software

BDS C User's Guide Low-Level !Vi echanisms

2.2.1 CRL Directories

The first four sectors of a CRL file11 make up the CRL directory. Each
function module in the file has a corresponding entry in the directory, consisting of
the module's name (up to eight characters, with the high-order bit set only on the
last1~haracter) and a two-byte value indicating the module's byte address within the
file • .

Following the last entry must be a null byte (Ox80) followed by a word
indicating the next available address in the file. Padding may be inserted after
the end of any physical function module to make the next module's address line up
on an even (say, 16 byte) boundary, but there must never be any padding in the
directory itself.

- Exam pIe: if a CRL file contains the following modules,

Name Length
foo Ox137
yipee Ox2C5
blod Ox94A

then the directory for that file might appear as fOllows13:

46 -4F CF 05 02 59 49 50 45 C5 50 03
F 0 0' nn nn Y I P E E' nn nn

42 4C 4F C4 20 06 80 70 OF
B L 0 D' nn nn null-entry

11. If you are using DDT or SID to examine the file, these sectors appear in
memory locations 0100h - 02FFh.

12. The function module addresses within a CRL file are all relative to OxOOOO,
with the directory residing from OxOOOO to Ox01FF. Locations Ox200 - Ox204 are
reserved, so the lowest possible function module address is Ox205.

13. Note that the last character of each name has bit 7 set high.

BD Software Page 35

November 1982 BDS C User's Guide

2.2.2 External Data Area Origin and Size Specifications

The first five bytes of the fifth sector of a CRL file (locations Ox200-0x204
relative to the start of the file) contain information that CLINK uses to determine
the origin (if specified explicitly to CC via the -e option) and size of the external
data area for the executing program at run-time. This information is valid only if
the CRL file containing it is treated as the "main" CRL file on the CLINK
command line; otherwise, the information is not used.

The first byte of the fifth sector has the value OxBD if the -e option was used
during compilation to explicitly set the external data area; else, the value should
be zero. The second and third bytes contain the address given as the operand to
the -e option, if used.

The fourth and fifth bytes of the the fifth sector contain the size of the
external data area declared within that file (low byte first, high byte second.)
CLINK always obtains the size of the external data area from these special
locations within the "main" CRL file (i.e., the CRL file containing the "main"
function for the program). In CRL files which do not contain a "main" function,
these bytes are unused.

2.2.3 Function Modules

Each function module within a CRL file is an independent entity, containing the
binary machine-code image of the function itself plus a set of relocation
parameters for the function and a list of names of any other functions that it may
call.

A function module is address-independent, meaning that it can be physically
moved around to any location within a CRL file (as it often must be when CLIB is
used to shuffle modules around.)

The format of a function module is:

Page 36

list of needed functions
length of body
body
relocation parameters

BD Software

BDS C Userts Guide Low-Level Mechanisms

2.2.3.1 List of Needed Functions

If the function you are building calls other CRL functions, then a list of those
function names must be the first item in the module. The format is simply a
contiguous list of upper-case-only names, with the high-order bit (bit 7) high on the
last character of each name. A zero byte terminates the list. A null list (as
when the function does not call any other functions) is just a single zero byte~·

For example, suppose a function foobar calls functions named putchar, getchar,
and setmem. Foobarts list of needed functions would appear as follows:

47 45 54 43 48 41 D2 50 55 54 43 48 41 d2
g e t c h a rt p u t c h a r'

53 45 54 4D 45 CD 00
s e t m e mt (end)

2.2.3.2 Length of Body

N ext comes a 2-byte word value specifying the exact length (in bytes) of the
body, to be defined next. The length word is stored low-byte first, high-byte last.

2.2.3.3 Body

The body portion of a function module contains the actual 8080 code for the
function, with the origin of the code always at 0000.

If the list of needed functions was null, then' the code starts on the first byte
of the body. If the list of needed functions specified n names, then a dummy
jump vector table (consisting of n jmp instructions) must be provided at the start
of the body, preceded by a jump instruction around the vector table.

For example, the beginning of the body for the hypothetical function foobar
described above would be:

jmp OOOCh
jmp 0000
jmp 0000
jmp 0000
<rest of code>

C3 OC 00 C3 00 00 C3 00 00 C3 00 00 <rest of function code>.

BD Software Page 37

November 1982 BDS C User's Guide

2.2.3.4 Relocation Parameters

Directly following the body come the relocation parameters, a collection of
addresses (relative to the start of the body) pointing to the operand fields of each
instruction within the body that references a local address. CLINK takes every
word being pointed to by an entry in this list, and adds to it the run-time base
address of the function~

The first word in the relocation list is a count of how many relocation
parameters are given in the list.' Thus, if there are n relocation parameters, then
the length of the relocation list (including the length byte) would be 2!!+2 bytes.

For example, a function which contains four local jump' instructions whose
. opcodes are located at, respectively, locations Ox22, Ox34, Ox4F and Ox61) would

have the following relocation list:

04 00 23 0035 00 50 00 62 0014

2.3 BDS C Register Allocation and Function Calling Conventions

2.3.1 . The Stack

All argument pa&sing on function invokation, as well as all local (automatic)
storage allocation, take place on a single stack at run time.

2.3.1.1 The Stack Pointer

The stack pointer is kept in the SP register, and is initialized to the top of
user-accessible memory area at run-time. Where exactly the compiler thinks the
end of available memory is depends on which options are given during linkage; by
default, the stack pointer is initialized to the base of the CP/M BDOS, and grows
down wiping out the CCP and requiring a warm-boot following program execution
to bring the CCP back into memory. If the ~t option is used, the value given as
argument to -t is used to initialize the SPa If the -n option is used then the SP is

14. Note that the addresses of the instructions must be incremented by one to
point to the actual address operands needing relocation.

Page 38 BD Software

BDS C User's Guide Low-Level Mechanisms

initialized to the base of the CCP, yielding 2K less stack space than the default
but allowing a return to command level after execution without having to perform
a warm-boot.

2.3.1.2 How Much Space Does the Stack Take Up?

The single stack scheme has all local (automatic) data storage, formal
parameters, return addresses and intermediate expression values living on the one
stack that begins in high memory and grows downward.

The maximum amount of space the stack can ever:.;consu'me is roughly equal to
the amount of local data storage active during the worst case of ,function nesting,
plus a few hundred bytes or so (in the worst case) for miscellaneous intermediate
expression values.

If we call the amount of local storage in the worst case !!, then the amount of
free memory available to the user may be figured by the formula

topofmemO - endext() - (!! + fudge)

where a fudge value of around 500 should be pretty safe. Topofmem and endext
are library functions which return, respectively, a pointer to the highest memory
location used by the running program (the top of the stack) and a pointer to the
byte following the end of the external data area. The value of endextO is thus a
pointer to the first byte of memory available for storage allocation and/or general
purpose use.

2.3.2 External Data

External storage usually sits directly on top of the program code, leaving all of
memory between the end of the external data and the high-memory stack free for
storage allocation.

2.3.3 Function Entry and Exit Protocols

When a C-generated function receives control, it will usually perform the
following tasks in the given order: push BC, allocate space for local data on the
stack {decrement SP by the amount of local storage needed}, and copy the new SP
value into the BC register for use as a constant base-of-frame pointer. The reason
for copying the SP into BC instead of just addressing everything relative to SP is
that the SP nuctuates madly as things are pushed and popped, making variable
address calculation rather confusing.

BD Software Page 39

November 1982 BDS C User's Guide

Note that the old value of BC must always be preserved for the calling
routine.

Let's say the called function requires nIocl bytes of local stack frame space.
After pushing the old BC, decrementing SP by nlocl and copying SP to BC (in that
order), the address of any automatic variable having local offset loffset may be
easily com pu ted by the form ula

(BC) + loffset

If the function takes formal parameters, then the address of the nth formal
param eter may be. obtained by .

. ,j

(BC) + nlocl +2 + 2n

. where n is 1 for the first value specified in the calling parameter list,· 2 for the
second, etc. This last formula is obtained by noting that parameters are always
pushed on the stack in reverse order by the calling· routine, and that pushing the
arguments is the last thing done by the caller before the actual call •. After the
called function pushes the ,BC register, there will be four bytes of stuff on the
stack, composed ot two 16-bit values, between the current SP and the first formal
parameter: a) the saved BC register and b) the return address to the calling
routine. Note that this scheme requires that each formal parameter takes exactly
2 bytes of storage. ThUS, single byte parameters (char variables) are always
converted into 16-bit values (by zero-ing the high order byte, not sign-extending)
before being passed as parameters.

Upon completing its chore (but before returning), the called function de-allocates
its local storage by incrementing the SP by nloel, restores the Be register pair by
popping the saved Be off the stack, and returns to ~he caller.

The caller will then have the responsibility of restoring the SP value to that
whi~h it was before the formal parameter values were pushed; the called function
can't do this because there is no way for it to determine how many parameters the
caller had pushed (for example, consider the printf function, which takes a variable
number of parameters).

Formally, the responsibilities of the calling function are:

1. Push formal parameters in reverse order (last arg first, first arg last)

2. Call the subordinate function, making sure not to have any important values
in either the HL or DE registers (since the subordinate function is allowed to
bash DE and may return a value in HL). The Be register may be considered
"safe" from alteration by ~he subordinate function since, by convention, the
function that is called should always preserve the Be register value that was

Page 40 BD Software

BDS C User's, Guide Low-Level Mechanisms

passed to it. All functions produced by the compiler do this, as do all
assembly-language-coded functions supplied in the BDS C package.

3. Upon return from the function: restore SP to the value it had before the
formal parameters were pushed, taking care to preserve HL register pair
(containing the returned value from the subordinate function). The simplest
way to restore the stack pointer is just to do a pop d for each argument
that was pushed.

The protocol required of the called, subordinate function is:'

1. Push the BC register if there is any chance it may be altered before'
returning to the caller.

2. If there are any local storage requirements, allocate the appropriate space on
the stack by decrem enting SP by the num ber of bytes needed.

3. If desired, copy the new value of SP into the BC register pair to use as a'
base-of-frame pointer. Don't do this if BC wasn't saved in step 1!

4. Perform the required computing.

5. When finished, de-allocate local storage by incrementing SP by the local
frame size.

6.' Pop old Be from the stack (if saved in step 1).

7. Return to caller with the returned value (if any) in the HL register.

2.4 Helpful Run-Time Subroutines Available in C.CCC (See CCC.ASM)

There are several useful subroutines in the run-time package available for use
by assembly language functions. The routines fall into three general categories:
the local-and-external-fetches, the formal-parameter fetches, and the arithmetic and
logical routines.

2.4.1 Local and External Fetch Routines

The first group of six subroutines may be used for fetching either an 8- or
16-bit object, stored at some given offset from either the BC register or the
beginning of the external data area, where the offset is specified as either an 8-

BD Software Page 41

November 1982 BDS C User's Guide

or 16-bit value. For example: the intuitive procedure for fetching the 16-bit value
of the external variable stored at an offset of eoffset bytes from the base of the
external data area (the pointer to which is stored at location extrns) would be

lhld extrns ;get base of external area into HL
lxi d,eoffset ;get offset into HL
dad d ;add to base-of-externals pointer
mov a,m ;perform 4-step
inx h indirection to
mov h,m fetch value at
mov l,a ; (HL) into HL.

Using the special call for retrieving an external· variable, the same result may .
be. accomplished with

call
db

sdei
eoffset .

;single-byte-offset, double-byte· value external c

indirection, with eoffset < 256

The second sequence takes up much less memory; 4 bytes versus 11, to be
exact. If the value of eoffset were greater than 255, then the ldei routine would
be used instead, with eoffset taking a. dw instead of a db to represent. See the
CCC.ASM file for complete listings and documentation on the entire repertoire of
these value-fetching subroutines.

2.4.2 Formal Parameter Fetches

The second class of subroutines are used primarily for fetching the value of a
function argument off the stack into the HL and A registers (the low order byte is
placed in both the A and L registers, while the high byte is placed only in the H
register). For example: say your assembly function has just been called; a call to
the subroutine mal toh would fetch the first argument into HL and A. mal toh
(mnemonic for "Move Argument 1 TO Hff) always fetches the 16-bit value present
at location SP+2 (as your function sees the SP.) A call to the ma2toh ("Move
Argument 2 to H") routine would retrieve the second 16-bit argument off the stack
in HL and A. If you push the BC register before fetching a parameter off the
stack, then all items on the stack will be offset by another 2 bytes from the SP
value and you'd have to call ma2toh in order to fetch the first argument, ma3toh
to fetch the second, and so on. Thus, it is important to keep track of stack depth
when ~ing these subroutines.

A less confusing way to deal with function arguments is to call the routine
called arghak as the very first thing you do in your function, especially before
pushing BC or anything else on the stack. Arghak copies the first seven function
arguments off the stack to' a 14-byte buffer in the r/w memory area (normally
within C.CCC itself), making those values accessible via simple lhld operations for

Page 42 BD Software

BOS C User's Guide Low-Level Mechanisms

the duration of the function's operation ••• that is, assuming your function doesn't call
another function which also uses arghak to copy its arguments down there,
overwriting those of the calling function. After arghak has been called, the first
argument will be stored at absolute location !.!Xl, the second at ~,etc. These
sym boIs are defined in BOS.LIB, as described below.

2.4.3 Arithmetic and ~ogical Subroutines

The final category of subroutines is the arithmetic and· logical group, all of
which take arguments passed in HL and OE and return. a result in HL. I won't take
up space with details on these functions here; examine the run-time package source
file (CCC.ASM) to see the subroutines that are available.

2.4.4 Source Files

CCC.ASM is the source for the run-time package, in which all the above
mentioned. routines are documented. The header file BDS.LIB contains definitions
of all entry points to the routines within C.CCC (the assembled CCC.ASM) as
provided in the distribution version of the package. All your CSM-format source
files should contain the directive

#include <bds.lib>

so that the necessary subroutines may be referred to directly by name in your
programs. If you have need to modify CCC.ASM in order to customize the
run-time package, be sure to also modify BDS.LIB to reflect the new addresses.

2.5 Generating Code to Run At Arbitrary Locations and/or In ROM

Normally, BDS C produces a CP/M transient command file ready to run in
read/write memory located at the base of the user area (100h), in response to a
direct command to the Console Command Processor (CCP). Under such normal
circumstances, the run-time package (C.CCC) and its private read/write memory
area occupy the first 1500-or-so bytes of the command file, and the compiled code
(commencing with the "main" function) follow immediately thereafter •.

If all you ever want to do is generate CP /M transient commands, then you're all
set. But in order to generate code that can run at a different location .or be
placed into ROM, it is necessary to: a) customize the run-time package, b)
re-assemble the machine-coded portions of the function library, and c) recompile

BD Software Page 43

November 1982 BDS C User's Guide

the C-coded portions of the library. Here is the general procedure for customizing
the package in this manner:

1. Alter and re-assemble the run-time package (CCC.ASM) to reflect the desired
configuration. If the target code will not be operating under CP/M, setting
the appropriate EQU to zero will eliminate some CP/M-specific support code
and reduce the size of both the run-time package and r/w memory area
contained within the run-time package. Non-CP/M assembly will also cause
the CP/M-dependent entry points within' the run-time package to remain
undefined, so you won't accidentally generate code which calls them in an
environment where they are not defined. Also be sure to set the appropriate'
EQUs to define th~ .code origin of the package and. the r/w memory location
for the package's private data area.

2. . After asserI;lbling CCC.ASM, you cannot simply LOAD the CCC.HEX file to
produce a binary image unless the origin is exactly at the base of the TPA.
If your origin is elsewhere, use DDT or' SID to read the file into memory

. and move it down to the base of the TPA, the re-boot CP/M and use the
SAVE command to write the new C.CCC image back to disk in binary form.
After the binary image of CCC.ASM is produced (be it named CCC.COM or
whatever), rename it to be: C.CCC.

3. Edit the file BDS.LIB so that all addresses match the values obtained from
assembly of your new CCC.ASM. A good way to check this step is to
rename BDS.LIB to be BDS.ASM, assemble it, and compare the values at the
left margin from BDS.PRN to those in CCC.PRN.

4. Using CASM, process the machine language library files (DEFF2A.CSM,
DEFF2B.CSM and DEFF2C.CSM) yielding CRL files. If you are configuring
the package for a non-CP/M environment, you'll probably want to first purge
all the CP/M-related functions from the library files before assembly. Note
that most file I/O and system-dependent functions have been placed in
DEFF2C.CSM for convenience.

5. When using CC.COM to compile code for a non-standard load address, use
the -m option to inform the compiler of the new run-time package origin
address (if different from Ox100). Make sure to re-compile STDLIB1.C and
STDLIB2.C using -m, and use CLIB to create a new DEFF.CRL composed of
all functions from STDLIB1.CRL and STDLIB2.CRL.

6. Use the -i, -t and -e options to tell CLINK the load address, top of r/w
memory and base of external data area, respectively, of the target
program.

7. Burn the PRO Ms!

Page 44 BD Software

BDS C User's Guide The Standa"rd Library

Chapter 3

The BDS C Standard Library on CP/M: A Function Summary

In the BDS C package, t~~ files DEFF .CRL and DEFF2.CRL contain the object
code of the standard library. This is a collection of useful C functions, in CRL
(C ReLocatable) format, avgilable for use by all C programs. CLINK automatically
searches the library files! after all other CRL files explicitly nam'ed: on the"
command line have been searched. Thus, any functions you explicitly define" in a
source file that happen to have the same name as library functions" will take
precedence over the library versions, as long as CLINK finds your version of the
function before getting around to scanning the library.

In the following summary of all the major functions in DEFF .CRL and
DEFF2.CRL, each function is described both in words and in a loose C-like
notation intended to illustrate how a definition of that function might appear in a
C program. Such notation provides, at a glance, information such as whether or
not the function returns a value (and if so, of what type) and the types of any
parameters that the function may take. Here are some rules of thumb: if a
function is listed without a type, then it doesn't return a value (for example, exit
and poke return no values.) Any formal parameters lacking an explicit declaration
are implicitly of type int, although in many cases only the low-order 8 bits of the"
parameter are used and a value of type char may be passed to the function. Note
that it isn't always easy to describe the type of a formal parameter ••• is a memory
pointer of type unsigned, or is it a character pointer? As long as you don't try to
pass' a char variable in the position of a 16-bit memory address parameter, things
will probably work right no matter what the declared type of the parameter is in
the calling program.

15. DEFF .CRL contains all the C-coded functions from STDLIB1.C and STDLIB2.C,
while DEFF2.CRL contains all the assembly language functions from DEFF2A.CSM,
DEFF2B.CSM and DEFF2C.CSM (assembled using the CASM facility).

16. If. desired, the user may configure CLINK to search for the library files in an
arbitrary CP/M disk drive and user area, allowing linkages to be performed in any
drive and user area without needing to have all the library files there also.

BD Software Page 45

November 1982 BDS C User's Guide

There are only a few cases where it is actually necessary to declare a library
function before it is used in a C program. One case is when the function returns
a value having a type other than int, and the function call is placed inside an
expression where the type of the return value needs to be other than int in order
for the expression to work (as in pointer arithmetic, for example.) A bit of
experience will help to clarify when it is proper or unnecessary to declare certain
functions; many of these decisions are a matter of style and/or portability.

Here is a summary of all major functions available in DEFF .CRL and
DEFF2.CRL: I

,3.1 General Purpose FlDlctions

'char cswO

exitO

Returns the byte value (0-255) of the console switch register (port
OxFF on some mainframes).

Closes any open files and exits from an executing program, re-booting
CP/M. Does not automatically call fflush on files opened for buffered
output.

int bdos(c,de)

Calls the standard BDOS system entry point (location 0005h on most
systems), first setting CPU register C to the value ,£, and register pair
DE to the value de.
Return value is the 16-bit value returned by the BDOS in HL. For
CP /M systems, the low-order byte is the value returned by the BDOS
in A, and the high-order byte is the value returned by the BDOS in B
(or zero for 8-bit return, values.) See the "Miscellaneous Notes"
appendix for some details on incompatibilities with non-CP/M systems
(e.g., SDOS).

Page 46 BD Software

BDS C User's Guide The Standard Library

char bios(n,c)

Calls the nth entry in the BIOS jump vector table, where n is 0 for
the first entry (BOOT), 1 for the second (WBOOT), 2 for the third
(CaNST), etc., first setting CPU registers BC to the value £.
Result is the value returned in register A by the BIOS call. .
Note that the cold-boot function (where n is 0) should never actually
be used, since the CCP will be bashed and probably crash the system
upon entry.
There are some BIOS calls that require a parameter to be passed in
DE, and .. that return their result in HL. Use the biosh function.
(described next) for those calls.

unsigned biosh(n,bc,de)

Calls the !!,th entry in the BIOS jump vector table, as above, first
setting . CPU registers BC to the value bc and setting CPU registers
DE to the value de. Result is the value returned in registers HL by
the BIOS call.

char peek(n)

Returns contents of memory location !!. Note that in applications
where many consecutive locations need to be examined, it is more
efficient to use indirection on a character pointer than it is to use
peek. This function is provided for the occasional instance when it
would be cumbersome to declare a pointer, assign an address to it,
and use indirection just to access, say, a single memory location.

poke(n,b)

Deposits the low-order eight bits of ~ into memory location n. This
can also be more efficiently accomplished using pointers, as in

*n = b;

(where n is a pointer to characters.)

BD Software Page 47

November 1982 BDS C User's Guide

inp(n)

Returns the eight-bit value present at input port !!.
For memory-mapped input, use the peek function.

outp(n,b)

pause()

Outputs the eight-bit value!? to output port !!.
For memory-mapped output, use the poke function.

Sits in a loop until CP/M console input interrogation indicates that a
character has been typed on the system console. The character itself
is not sampled; before pause can be used again, a getchar call must
be made to clear the status.
There is no return value.

sleep(n)

Sleeps (idles) for n/20 seconds at 4 MHz, or n/10 seconds at 2 MHz.
The only way to abort out of this before completion is to type
control-C, which aborts the program and returns to command level.
There is no return value.

int call(addr ,a,h,b,d)

Calls a machine code subroutine at location addr, setting CPU
registers as follows:

HL (- h· -' A (- a· -' BC (- b· -' DE (- d

Return value is wha tever the subroutine returns in registers HL.
The subroutine must, of course, maintain stack discipline.

Page 48 BD Software

BDS C User's Guide The Standa"rd Library

char calla(addr ,a,h,b,d)

Just like the call function, except the result is the value returned by
the subroutine in register A (instead of HL.)

int abs(n)

Returns absolute value of n.

int max(nl,n2)

Returns the greater of two integer values.

int min(nl,n2)

Returns the lesser of two integer values.

srand(n)

If !!. is non-zero, this function initializes the pseudo-random number
generator by setting the internal seed to the value !l-
If !!. is zero, then srand prints a message asking the user to type a
carriage return, the begins to count very fast internally. When a key
is finally hit by the user, the current value of the count is used to
initialize the random seed. The character typed by the user is
gobbled up (lost), and status is cleared.

srandl(string)
char' *string;

Like srand(O), except that instead of the canned "Hit return after a
few seconds:" message, the provided string is used as a prompt.
Unlike srand, though, the character typed by the user in response to
the prompt is not gobbled up; you must do a getchar call to sample
the character and/ or clear the console status.

BD Software Page 49

November 1982 BDS C User's Guide

int randO

Returns next value (ranging: 0 < randO < 32768) in a pseudo-random
number sequence initialized by srand or srand!.
To get a value between 0 and n-1 inclusive, use the subexpression:

randO % n

nrand(-1,s1,s2,s3)
nrand(O, prompt-string)
int nrand(1)

A new, "better quality" random number generator, written· by Prof.
Paul Gans to emulate the CDC 6600 random number generator in use
at the Courant Institute of Mathematical Sciences. The initialization
mechanism was later added for semi-compatibility with the srand and
srand1 conventions.
The first form sets the internal 48-bit seed equal to the 48 bits of
data specified by s1, s2 and s3 Hnts or unsigneds.)
The second form acts just like the srandl function: the string pointed
to by prompt-string is printed on the console, and then the machine
waits for the user to type a character while constantly incrementing
an internal I6-bit counter. As soon as a character is typed, the value
of the counter is plastered throughout the 48-bit seed. Note that the
console input is not cleared; a subsequent getchar call is required to·
actually sample the character typed and clear the console status.
The final form simply returns the next value in the random sequence,
with the range being

o < nrand(l) < 32768.

Note that the internal seed maintained by nrand is separate from the
seed used by srand, srandl and rand, which use the first 32 bits of the
area labeled rseed within the run-time package data area. Nrand
maintains its own distinct internal seed.

setmem(addr ,count,byte)
char byte, *addr;

Sets count contiguous bytes of memory beginning at addr to the value
byte. This is efficient for quick initialization of arrays and buffer
areas.

Page 50 BD Software

BDS C User's Guide

movmem(source,dest,count)
char *source, *dest;

The Standard Library

Moves a block of memory count bytes in length from source to dest.
This function will handle any configuration of source and destination
areas correctly, knowing -automatically whether to perform the block
move head-to-head or tail-to-tail. If run on a Z80 processor, the Z80
"block move" instructions are used. If run on an 8080 or 8085, the
normal 8080 ops are used. This all happens automatically.

qsort(base,nel, width,com par)
char *base;
int (*compar)O;

Does a "shell sort" on the data starting at base, consisting of nel
elements each width bytes in length. compar must be a pointer to a
function of two pointer arguments (e.g. x,y) which returns

1 if *x > *y
-1 if *x < *y
o if *x == *y.

Elements are sorted in ascending order.

int exec(prog)
char *prog;

Chains to (loads and executes) the program E!.2K.COM.
!2:2g must be a nUll-terminated string pointer specifying the file to be
chained (the It.COM" need not be present in the name). A string
constant (such as "foon) is perfectly reasonable, since it evaluates to a
pointer.
If the program to be ~ed was generated by the C compiler and it
needs to share external variables with the ~ing program, then it
should have been linked with the CLINK option -e to locate common
external data at the same address.
See the CLINK documentation for details on the proper usage of the
-e option.
There 'may be no transf er . of open file ownership through an ~
call. The only possible shared resource under this scheme is external
data as described above.

BD Software Page 51

November 1982 BDS C User's Guide

Returns -1 on error •.• but then, if it returns at all there must have
been an error.

int execl(prog,argl,arg2, ••• ,O)
char *prog, *arg1, *arg2, •••

Allows chaining from one C COM file to another with parameter
passing ~hrough the argc &. argv mechanism. ~ must be a
nUll-terminated string pointing to the name of the COM file to be
chained (the ".COM" need not be present in the name), and each
argument must also be a nUll-terminated string. The last argument
must be zero.
Execl works by creating a command line out of the given parameters,
and proceeding just as if the user had typed that com mand line in to

. the command processor of CP/M. For example,

execl(nfoo", "bar", "zotn, 0);

would have the same effect as if the CP/M command line

A>foo bar zot <cr>

were directly typed. Unfortunately, the built-in CP/M commands (such
as "dir", "era", etc.) cannot be invoked with execl.
The total length of the command line constructed from the given
argument strings must not exceed approximately 80 characters. If the
constructed command line exceeds this length, a message to that
eff ect will be printed on the console and the program will abort.
-1 returned on error (again, though, if it returns at all then there
m ust have been an error.)

execv(filename, argvector)
char *filename;
char *argvector[];

This function allows chaining with a variable number of arguments to
be performed, similarly to execl, except that the parameter text is
specified in an array instead of in the calling sequence explicitly.
The argyector parameter must be a pointer to an array of string
pointers, where each string pointer points to the next argument and
the last pointer pointer bas a value of zero (as opposed to being a
pointer to a null string.)
Returns -1 on error, though any return at all 'implies an error.

Page 52 SD Software

BDS C User's Guide

int swapin(filename,addr)
char *filename;

The Standard Library

Loads in the file whose name is the nUll-terminated string pointed to
by filename into location addr in memory. No check ~s made to see
if the file is too long for memory; be careful where you load it! This
function may be used, for example, to load in an overlay segment for
later execution via an indirection on a pointer-to-function variable.
Returns -1 if there is an error in reading in the file. Control is not
transferred to the loaded file.

char . *codendO

. Returns a pointer to the first byte following the end of root segment
program code. This will normally be the beginning of the external
data area unless the CLINK option -e is used to explicitly locate the
external data (see the ex terns function below.)

char *externsO

Returns a pointer to the start of the external data area. Unless the
-e option was used with CC and/or with CLINK, this value will be the
same as that returned by the codend function.

char *endextO

Returns a pointer to the first byte following the end of the external
data area. This is start of the area from which the sbrk function
obtains free memory.

char *topofmemO

Returns a pointer to the last byte of the user memory. This is
normally the top of the stack, which is either immediately below the
BDOS (if the -n option is not given to CLINK at linkage time) or
immediately below the CCP (if -n is used at linkage time).
The value returned by topofmem is not affected by use of the -t
option at linkage time.

BD Software Page 53

November 1982 BDS C User's Guide

char • alloc(n)

Returns a pointer to a free block of memory n bytes in length, or 0
if n bytes of memory are not available. This - is roughly the storage
allocation function from chapter 8 of Kernighan &. Ritchie, simplified
due to the lack of type-allignment restrictions. See the book for
details.
The standard header file BDSCIO.H must be 'included in all files of a
program that uses alloc and free pair, since there is some crucial
external data declared therein.

free(allocptr)
char *allocptr;

Frees up a block of storage allocated by thealloc function,where
allocptr is a value obtained by a previous call to alloc. Free need not
be called in the reverse order of previous alloc calls, since the
linked-list data structure can tolerate any order of
allocation/de-allocation.
Never call free with an argument not previously obtained by a call to
alloc.

char ·sbrk(n)

This is the low-level storage allocation function, used by alloc to
obtain raw memory storage. It returns a pointer to !! bytes of
memory, or -1 if !! bytes aren't available. The first call to sbrk
returns a pointer to the location in memory immediately following the
end of the external data area; each subsequent call returns a block
contiguous with the last, until sbrk detects that the locations being
allocated are getting dangerously close to the current stack pointer

. value. By default, "dangerously close" is defined as 1000 bytes. To
alter this default, see the next function. If you plan to use the alloc
and free functions in a program, but would also like some memory
immune from allocation to be available for scratch space, use sbrkO
to request the desired memory instead of alloc. Sbrk calls may be
made at any time (independent of any alloc and free calls that may

.' have been made).

Page 54 BD Software

BDS C User's Guide The Standard Library

rsvstk(n)

This function causes the storage allocation functions to reject any
allocation calls which would leave less than !! bytes between the end
of the allocated area and the current value of the stack pointer
(remember that the stack grows down from high memory.) Rsvstk, if
needed, should be called before any calls are made to either sbrk or
alloc.
If rsvstk' is never used, then storage allocation is automatically
prevented from approaching closer than 1000 bytes to the stack (just
as if an' "rsvstk(lOOO)" call had been made).

int setjmp(buffer)
char buffer[JBUFSIZE];

longjmp(buffer, val)
char buffer[JBUFSIZE];

When setjmp is called, the current processor state is saved in the
provided buffer (the symbolic constant JBUFSIZE is defined in
BDSCIO.H) and a value of 0 is returned. When a subsequent longjmp
call is performed from anywhere in either the current or any lower
level function, then the CPU state is restored to that which it had at
the time the original setjmp call was performed with the given buffer
as parameter. The program resumes execution by "returning" to the
original setjmp call, and the value val (as passed to longjmp) is
returned.
To allow programs to distinguish between setjmp initialization calls and
transfers of control, the value of val passed to longjmp should be
non-zero.
A typical use of setjmp/longjmp is to exit up through several levels of
function nesting without having to return through each level in
sequence; e.g., to insure that a particular exit routine (say, dioflush
from the DIO.C package) is always performed.

BD Software Page 55

November 1982 BDS C User's Guide

3.2 Character Input/Output

3.2.1 The CIO Function Package for Direct Console I/O

The getchar and putchar functions supplied in the standard library (and described
below) do not allow absolute control over the console. Instead, they are designed
to be the most useful for·) conventional applications without requiring any
initialization or special thought. If you have an. application in which it is
important to have complete control over all characters sent to and received from
the system console device, then assemble and use the CIO function package
supplied in source form only (CIO.CSM) with the BDS C v1.50 distribution
package. CIO provides. alternate versions of the getchar, putcharand kbhit
functions as well as a new function ttymode which supports changing console
interface operating characteristics dynamically.

int getcharO

Returns next character from standard input stream (CP/M console
input.)
Re-boots CP/M when control-C is typed.
Carriage return echos CR-LF to the console output and returns a
newline (I\nl) character.
A value of -1 is returned for control-Z; note that the return value
from get char must be treated as an integer (as opposed to a
character) if the -1 return value is to be recognized as such. If
instead you declare getchar as returning a character value, or assign
its return value to a character variable, then the value 255 should be
checked for instead to detect control-Z, but note that in this case an
actual data value of 255 would be indiscernable from an EOF marker.

char ungetch(c)

. Causes the character £ to be returned by the next call to get char •
Only one character may be "ungotten" between consecutive getchar
calls. Normally, zero is returned. If there was already a character
ungotten since the last getchar' call, then the value of that character
is returned.

Page 56 BD Software

BDS C User's Guide The Standard Library

int kbhit()

Returns true (non-zero) if input is present at the standard input
(keyboard character hit); else returns false (zero). In no case is the
input actually sampled; to do so requires a subsequent getchar call.
Note that kbhit will also return true if the ungetch function was used
to push back a character to the console since the last getchar call.

putchar(c)
charc;

Writes the character c to the standard output (CP/M console output).
The newline ('\n') character is expanded into a CR-LF combination on
output.
If a control-C is detected on console input during a putchar call,
program execution will halt and control will return to command level,
allowing the user to abort any program doing console output (via
putchar calls) by typing control-C. Since the provided putchar
function uses BDOS calls to both output characters to the console and
check for input at the console, the special CP/M flow-control
character (control-S) is recognized and may be used to freeze
printouts done via putchar.

putch(c)
char c;

Like putchar, except that the console input is NOT interrogated for
cont~ol-C during output, allowing type-ahead during console output on
interrupt-driven systems. If you like this feature and want all putchar
calls mapped. into putch calls, simply place the preprocessor directive

ldefDle putchar putch

somewhere in the BDSCIO.H header file, and be sure to include the
header file in all programs.

puts(str)
char *str;

Writes out the nUll-terminated string str to the standard output. No
automatic newline is appended.

BD Software Page 57

November 1982

int getline(strbuf, maxlen)
char *strbuf;

BDS C User's Guide

Collects a line of text from the console input, up to a maximum line
length of maxlen characters. The return value is the length of the
entered line. On return, the input line is terminated by a null byte
only, so an empty line has length 0 (when the user types only a
carriage-return character). There is no newline character returned in
the buffer; this is a devia t~on from the getline function described in
Kernighan & Ritchie.
If the number of characters entered reaches the given maximum minus
one (to allow room for the terminating null), then the line will be
. considered complete and control will immediately return to the caller
without waiting for a carriage-return to be typed.' This happens
because BnOS function 10 is used to read the console.

char *gets(str)
char *str;

Collects a line of input from the console and places it, null
terminated, into memory at location str. The newline typed by the
user to termina te the input line is not copied' into the buffer; the
character before the newline is immediately followed by the termiating
null.
The return value is a pointer to the beginning of str.
The size of the provided buffer must be at least 1 byte longer than
the longest string you ever expect entered, because of the terminating
nUll. Caution dictates making the buffer large, since an overflow here
would most probably destroy neighboring' data. If the number of
characters entered reaches 135, the line will be considered terminated.

printf(format,arg1,arg2, •••)
char *format;

Formatted print function. Output goes to the standard output •.
Conversion characters supported iri the standard version:

Page 58 BD Software

BDS C User's Guide

d
u
c
s
o
x

decimal integer format
unsigned integer format
single character
string (null-terminated)
octal format
hex format

Each conversion is of the form:

% [-] [[0] w] [.n] <conv. char.>

The Standard Library

where w specifies the width of the field, and n (if present) specifies
the maxim urn number of characters to be printed out of a string
conversion. Default value for w is 1.
The field will be right justified, unless the dash is specifed following.
the percent sign to force left justification. ..'
If the value forw is preceded by a zero, then zeros are used as
padding on the left of the field instead of spaces. This feature is
useful for printing, say, hexadecimal addresses. '
An enhanced version of printf, incorporating the !:: and f format
conversions for floating point values used in Bob Mathias's floating
point. package, is available for compilation in the file FLOAT.C.

int scanf(format,argl,arg2, .••)
char *format;

Formatted input. This is analogous to printf, but operates in the
opposite direction.
The %u conversion is not recognized; use %d for both signed and
unsigned numerical input.
The assignment suppression character (*) works, but field width

. specification is not supported.
The arguments to scanf must be pointers!!!!!.
Note that input strings (denoted by a %s conversion specification in
the format string) are terminated only when the charaeter following
the %s in the format string is scanned. '
Returns the number of items successfully assigned.
For a more .. detailed description of scanf ~nd printf, see Kernighan &.
Ritchie, pages 145-150.

BD Software Page 59

November 1982

3.3 String and Character Processing

in t isalpha (c)
char c;

BDS C User's Guide

Returns true (non-zero) if the character c is alphabetic, false (zero)
otherwise.

int isupper(c)
char c;

Returns true if the character c is an upper case letter, false
otherwise.

int islower(c)
char c;

Returns true if the character c is a lower case letter, false otherwise.

int isdigit(c)
char c;

Returns true if the character £ is a decimal digit, false otherwise.

int toupper(c)
char c;

If c is a lower case letter, then £'s upper case equivalent is returned.
Otherwise c is returned.

Page 60 BD Software

BDS C User's Guide

int tolower(c)
char c;

If c is
returned.

int isspace(c)
char c;

an upper case letter, then
Otherwise c is returned.

The Standard Library

c's lower case equivalent is

Returns true if the character c is a "white space" character (blank,
tab or newline). Otherwise returns false.

sprintf(string,format,arg1,arg2, ..•)
char *string, *format;

Like printf, except that the output is written to the memory location
pointed to by string instead of to the console.

int sscanf(string,format,arg1,arg2, ..•)
char *string, *format;

Like scanf, except the text is scanned from the string pointed to by
string instead of the console keyboard.
Returns the number of items successfully assigned. Remember that
the arguments must be pointers to the objects requiring assignment.

strcat(s1,s2)
char *s1, *s2;

Concatenates s2 onto the tail end of the null terminated string s1.
There must, of course, be enough room at s1 to hold the combination.

int strcmp(s1,s2)
char *s1, *s2;

Returns a positive value if (s1 > s2), zero if (s1==s2), or a negative
value if (s1 < s2). The standard ASCII collating sequence is used for
comparisons; a string is "greater" if it comes later in alphabetical
order.

BD Software Page 61

November 1982

strcpy(sl,s2)
char *s1, *s2;

Copies the string s2 to location s1-

BDS C User's Guide

For example, to initialize a character array named foo to the string
"barzot", say

strcpy(f 00, ffbarzot tt);

Note that the statement

foo = "barzottt;

would be incorrect since an array name should not be used as an.
Ivalue without proper subscripting. Also, the expression "barzot" has
as its value a pointer to the string "barzot", not the string itself. So,
for the latter construction to work, foo must be declared as a pointer
to characters instead of as an array. This approach is dangerous,
though, since the natural method to append something onto the end of
foo would be

strcat(foo,"mumble">;

overwriting the six bytes following "barzot" (wherever ttbarzot" happens
to be stored within the code of the function), probably with dire
results.
There are two viable solutions. You can figure out the largest number
of characters that can possibly be assigned at foo and pad the initial
assignment with the appropriate number of blanks, such as in

foo = "barzot
foo[6] = NULL;

". ,

or, you can declare a character array of sufficient size with

char work[200], *foo;

then have foo point to the array by saying

. foo = work;

and assign to f 00 using

Page 62 BD Software

BDS C User's Guide

strcpy(f 00, "m urn ble-fraz");

int strlen(string)
char *string;

The Standard Library

Returns the length of string (the number of characters encountered
before a terminating null is detected).

int atoi(string)
char *string;

Converts the ASCn string to its corresponding integer (or unsigned)
value. Acceptable format: Any amount of white space (spaces, tabs
and newlines), followed by an optional minus sign, followed by a
consecutive string of decimal digits. First non-digit terminates the
scan.
A value of zero is returned if no legal value is found.

ini tw(array ,string)
int *array;
char *string;

This is a kludge to allow initialization of integer arrays.· Array should
point to the array to be initialized, and string should point to an
ASCII string of integer values separated by commas. For example, the
UNIX C construct of

int values[5] = {-23,0,1,34,99};

can be simulated by declaring values normally with

int values[5];

and then inserting the statement

initw(values, "-23,0,1,34,99");

somewhere appropriate.

BD Software Page 63

November 1982

initb(array,string)
char * array, *string;

BDS C User's Guide

The equivalent of the above initw function for values represented in a
character array. String is of the same format as for initw, but the
low order 8 bits of each value are used to assign to the consecutive
bytes of array. Note that this function may not be used to initialize
arrays of character point~rs; it's not really meant for "characters", but
for decimal integers all having values within the range of "character"
variables and thus stored as characters.
NOTE: UNIX C programs will sometimes assign negative values to
character variables, since UNIX C character variables are signed 8 nit
quantities. In BDS C, character variables always have unsigned values
and negative values can only be meaningfully assigned to 16-bit int
variables.

int getval(strptr)
char **strptr;

A spin-off from initw and initb:'
Given a pointer to a pointer to a string of ascii values separated by
commas, getval returns the current value being pointed to in the
string and updates the pointer to point ~ the next value.. (Why can't
strptr be a simple pointer to characters? . :
When the terminating null byte is encountered, a value of -32760. is
returned. Initw will thus not accept a value of -32760. If you need to.
use that value, go into STDLIB.C and change the terminating value to
some other value (you'll have to change getval and initw.)

17. Because the pointer-to-characters pointing to the text string must be changed
by the getval routine; any value which is to be altered. by a function must be
manipulated through a pointer to that value. Thus, a "pointer to characters" must
be manipulated through a "pointer to pointer to characters".

Page 64 BD Software

BDS C User's Guide The Standa'rd Library

3.4 File I/O

3.4.1 Introduction to BDS C File I/O Functions

There are two general categories of file I/O functions in the BDS C library.
The raw (low-level) functions are used to read and write data to and from disk in
even sector-sized chunks. The buffered I/O functions allow the user to deal with
data in more manageable increments, such as one byte at a time or one line of
text ata time. The raw functions will be described first, and the buffered

,functions next.

3.4.2 Filenames

Whenever a function takes a filename as an argument, that filename must be
either a literal string or any expression whose value points to a filename. Legal
filenames may be upper or lower case, but there must be no white space within
the string.

3.4.2.1 The Disk Designator Prefix

The filename may contain an optional leading disk designator of the form "d:"
to specify a particular CP/M drive; the default is the currently-logged disk. The
character d may be any single-letter drive descriptor from A to Z (corresponding to
some existing logical device on your system).

3.4.2.2 The User Area Prefix

An optional user area specifier of the form "II" may also appear as prefix to
the filename, where I is a decimal number ranging from 0 to 31. If omitted, the
current user area is assumed ,by default. If both a drive designator and a
user-area specifier are given, then the user-area prefix must be first. For
example, to open the file named "foobar.zot" in user area 7 on drive C, you'd say:

open("7/c:foobar.zot", mode);

If certain bizarre, characters (such as control-characters) are detected within a
filename, the filename will be rejected and an error value will be returned by the

BD Software Page 65

November 1982 BDS C User's Guide

offended function. This somewhat alleviates the problem caused by trying to open
a file whose name contains non-printing characters, but the mechanism still isn't
entirely foolproof. Be careful when constructing filenames.

3.4.3 Error Handling

3.4.3.1 The Errno/Errmsg Functions

A new file 1/0 error diagnostic facility has been incorporated intoBDS C
v1.50. Whenever an error occurs, the usual -1 (ERROR) value is returned by the·
troubled function.- Anytime this happens, the ~ function may be called to
return a special error code number giving more detailed information about the
error. If you pass the value returned by ~ to the errmsg funct~on, then errmsg
will return a pointer to a string which describes in words exactly what kind of
error occurred. Here is an example of the us~ of this mechanism, in this case to
diagnose errors which occur during a write statement:

if (write(fd, buffer, nsects) != nsects) {
printf(nWrite error: %5 n",errmsg(errnoO));

/* try to recover somehow */
}

Note that the write function is the exception to the rule that -1 (ERROR) is the
only error indicator; write returns the number of sectors written, which should be
considered an error if not equal to the number of sectors it was told to write.

3.4.3.2 Random-Record Overflow

T,he oflow function is provided to detect when an overflow has occurred in
reading/writing a large file. This only happens if you try to read/write past the

. 65535th sector of a file.

3.4.4 The Raw File I/O Ftmetions

Page 66 BD Software

BDS C User's Guide The Standard Library

int open(filename, mode)
char *filename;

Opens the specified file for input if mode is zero, output if mode is
equal to 1, or both input and output if mode is equal to 2.
Returns a file descriptor, or -1 on error. The file descriptor is for
use with read, write, seek, tell, fabort and close calls.

int creat(filename)
char *fiiename;

Creates an empty file having the given name, first· deleting any
existing file with that name. The new file is automatically opened for
both reading and writing, and a file descriptor js returned for use with
read, write, seek, tell, fabort, and close calls.
A return value of -1 indicates an error.

int close(fd)

Closes the file specified by the file descriptor fd, and frees up fd for
use with another file. Unless running under MP 1M II, disk accesses
will only take place when a file that was opened for writing is closed;
if the file was only open for reading, then the fd is freed up but no
actual CP 1M call is performed to close the file.
Close should not be used for buffered I/O files. Instead, use fclose.
Returns -1 on error.
Note that all open files are automatically closed upon return to the
run-time package from the main function, or when the exit function is
invoked. To prevent an open file from being closed, use the fabort
function.

int read(fd, buf, nbI)
char *buf;

Reads nbl blocks (each 128 bytes in length) into memory at buf from
the file having descriptor fd. The rlw pointer associated with that file
is positioned following the just-read data; each call to read causes
data to be read sequentially from where the last call to read or write -- ---left off. The seek function may be used to modify the rlw pointer.
Returns the number of blocks actually read, 0 for EOP, or -1 on
error. Note that if you ask for n blocks of data when there are only
x blocks actually left in the file -(where 0 < ! < !!.), then ! . would be

BD Software Page 67

November 1982 BDS C User's Guide

returned on that call, 0 on the next call (provided seek isn't used),
and then -Ion subsequent calls.

int write(fd, buf, nbl)
char *buf;

Writes nbl blocks from memory at buf to file fd. Each call to write
causes data to be written to disk sequentially from the point at which
the last call to read or write left off, unless seek is used to modify
the r/w pointer.
Returns -1 on hard error, or the number of records successfully
written. If the return value is non-negative but different from nbl, it
probably means you ran out of disk space; this should be regarded as
an error.

int seek(fd, offset, code)

Modifies the next read/write record (sector) pointer associated with
file fd.
If code is zero, then seek sets the r/w pointer to offset records.
If code is equal to 1, then seek sets the r/w pointer to its current
value plus offset (offset may be negative.)
If code is equal to 2, then seek sets the r/w pointer to the end-of-file
record number plus offset. Note that offset must be negative in order
for this type of seek to end up pointing to an existing record in the
file. If code is 2 and offset is zero, the r/w pointer is made ready
for appending to the file.
A return value of -1 indicates that some kind of BDOS error was
returned during a seek relative to EOF (code equal to 2). The errno
function will give more details about the kind of error that occurred.

. Seeks should not be performed on files open for buffered I/0,.

int teU(fd)

Returns the value of the r/w pointer associated with file fd. This
number indicates the next sector to be written to or read from the
file, starting from o.

Page 68 BD Software

BDS C User's Guide The Standa"rd Library

int unlink(filename)
char *filename;

Deletes the specified file from the filesystem.
Use with caution!

int rename(old, new)
char *old, *new;

Renames the file in the obvious manner.
The specified file mmt not be open while rename is being used on it.
Returns -1 on error.

int fabort(fd)

Frees up the "file descriptor fd without bothering to close the
associated file. If the file was only open for reading, this will have
no effect on the file. If the file was opened for writing, though, then
any changes made to the currently open extent since it was last
opened will be ignored, but changes made in other extents will
probably remain in effect. Don't fabort a file open for write, unless
you're willing to lose some of the data written to it.

unsigned cfsize(f d)

Computes the exaet file size (in sectors) of the given open file,
without affecting the r/w pointer associated with the file. Note that
the size returned here will even reflect data written to new extents
before they are closed, unlike the raw BDOS function (number 35)
used to compute file size.

int oflow(fd)

Returns true (non-zero) if an overflow has occurred into the high order
(third) byte of the random-record field of the FCB associated with the
given open file.

BD Software Page 69

November 1982 BDS C User's Guide

int errnoO

Returns the code number for the last error condition detected after a
file 1/0 operation. See below for a list of the error messages
associated with the codes.

char *errmsg(errnum)

Given an error code returned by errno, this function returns a pointer
to an ASCII string describing the given error condition in English.
Here is a summary of all possible error numbers "and their associated
messages:

Error-code Text

o No error has occurred yet
1 Reading unwritten data
2 Disk out of data space
3 Can't close current extent
4 Seek to unwritten extent"
5 Can't create new extent
6 Seek past end of disk
7 Bad file descriptor given
8 File not open for read
9 File not open for write
10 No file descriptor slots left
11 File not found
12 Bad m9de given to open
13 Can't create file
14 Seek past 65535th record

int setfcb(fcbaddr, filename)
char fcbaddr[36];
char *filename;

Initializes a 36-byte CP/M file control" block" located at address
fcbaddr with the null-terminated name pointed to by filename.
Lower-case characters in the filename string are converted to upper
case, and the appropriate number of ASCn blanks are generated to pad
both the filename and extension fields of the feb.
The next-record and extent-number fields of the fcb are zeroed.

Page 70 BD Software

BDS C User's Guide The Standa'rd Library

If any strange character (of the kind not usually desirable in the name
or extension fields of a file control block) are encountered within the
filename string, then the offending character and remainder of the
filename string will be ignored.

char *f cbaddr(f d)

Returns the address of the internal (usually invisible) file control block
associated with the open file having descriptor fda
-1 is returned if fd is not the file descriptor of an open file.

3.4.5 The Buffered File I/O Functions

int fopen(filename, iobuf)
char *filename;
struct _buf *iobuf;

Opens the specified file for buffered (one datum at a time) input, and
initializes the buff er pointed to by iobuf. lobuf should, be a
BUFSIZ-byte area reserved for use by the buffered I/O routines. The
value of BUFSIZ is determined by the BDS C standard I/O header file
(BDSCIO.H), which should be 'include-ed in any program using buffered
I/O.
The technical structure of the buffer is

struct _ buf {

};

int _fd;
int _nleft;
char * _nextp;
char flags;
char = ~uff[NSECTS * SECSIZ];

but all that really matters to the user is that it is a BUFSIZ-byte
area, declarable by

char samplebuf[BUFSIZ];

Return value is the file descriptor for the opened file; it need not be
saved after the initial test for an error, since the file descriptor value

BD Software Page 71

November 1982 BDS C User's Guide

is automatically maintained in the I/O buffer for use by all other
buff ered I/O functions.
-1 returned on error.

int getc(iobur)
struct _buf *iobuf;

Returns the next byte from the buffered input file opened via fopen
having buffer at iobuf. No special codes are recognized; control~Z

comes through as control-Z (not -1), CR and LF. are ordinary
characters, etc. J 0

The values 0 and 3 may be used in place of the iobuf argument with
. any buffered input function, to direct the input from the console or
the reader:
"getc(O)" is equivalent to "getcharO".
"getc(3)" reads a character from the CP/M "reader" device.
-1 is returned on error or on physical end-of-file.
When reading in text files with getc, both the value Oxla (CPMEOF)
and the normal physical end-of-file value (-1, or ERROR) should be
regarded as end-of-file markers, since some CP/M text editors neglect
to place a Oxia (control-Z, CPMEOF) byte at the end of text files
under some circumstances.

ungetc(c, iobur)
char c;
struct _ buf *iobuf;

Pushes the character c back onto the input buffer at iobuf. The next
call to getc on the same file will then return c. No more than one
character should be pushed back at a time.

int getw(iobuf)
struct _ buf *iobuf;

Returns next' 16 bit word from buffered input file having buffer at
iobuf, via two consecutive calls to getc.
-1 returned on error.

Page 72 BD Software

BDS C User's Guide The Standard Library

int fcreat(filename, iobuf)
char .filename;
struct _ buf .iobuf;

Creates a file named filename (first deleting any existing file by the
same name) and opens the file for buffered output. lobuf should point
to a BUFSIZ-byte buffer.
Returns the fd for the file, or -1 on error.

int putc(c, iobuf)
char c; j

struct _buf .iobuf;

Writes the byte £ to the buffered output file having buffer at iobuf.
lobuf should have been initialized by a call to fcreat.
No translations are performed; text lines can be separated by either·
CR-LF combinations (for compatibility with standard CP/M software)
or by newline characters a la UNIX (for increased efficiency and
straightf orw ardness.)
The values 1 through 4 may be used in place of iobuf with any
buffered output routines to direct the output character to the standard
output, list device, punch device or standard error (console) device
instead of to a file:
"putc(c,1)" is equivalent to "putchB:r(c)".
"putc(c,2)" writes the character to the CP/M "list" device.
"putc(c,3)" writes the character to the CP/M "punch" device.
"putc(c,4)" writes the character to the standard error stream, which is
always the console output under CP/M. This may be used to guarantee
that output goes to the console in applications where the directed I/O
package (DID) is being used and the standard output may be directed
into a file.
When writing out text to a file, be sure to terminate the text with a
control-Z (Ox1a, CPMEOF) byte.
Returns -1 on error.

int pu tw(w, iobuf)
struct _ buf ·iobuf;

Writes the 16 bit -word w to buffered output file having buffer at
iobuf, via two consecutive calls to putc.
Returns -1 on error.

BD Software Page 73

November 1982

int fflush{iobuf)
struct _ buf *iobuf;

BDS C User's Guide

Flushes output buffer iobuf, i.e., makes sure that any characters
written to the output buffer since it last filled up are written to the
file on disk (provided the program isn't aborted before the exit routine
closes all files). --
Fflush is for use with buffered output files; attempting to use it on an
input file will have no affect. I

Note that an automatic fflush occurs whenever an output buffer fills
up, as well as when an output file is closed (via the fclose function).

int fclose{iobuf)
struct _buf *iobuf;

Closes the specified buffered I/O file {it may have been opened for
either reading (via fop en) or writing (via fcreat). If the file was
opened for writing, then an automatic fflush is performed to flush the
output buffer before closing the file.
NOTE: Before closing a buffered output file that has had text written
to it, be sure to put out a CP/M "End of text-file" marker (CPMEOF)
to the file.

int fprintf(iobuf, format, arg1, arg2, ...)
struct _ buf *iobuf;
char *format;

Like printf, except that the formatted output is written to the
buffered output file having buffer iobuf instead of to the console.
Returns -1 on error.

int fscanf(iobuf, format, arg1, arg2, •••)
struct _buf *iobuf;
char *format;

Like scanf, except tha t the text input is scanned from the input
buffer iobuf instead of from the console. The present version of
fscanfrequires that each line of data be scanned completely; any
items left on a line read from a file after all format specifications
have been satisfied will be discarded.
Returns the number of items successfully assigned, - or -1 if an error
occurred in reading the file.

Page 74 BD Software

BDS C User's Guide

char *fgets(str, iobuf)
char *str;
struct _buf *iobuf;

The Standard Library

Reads a line in from the specified buffered input file and places it in
memory at the location pointed to by str.
This one is a little tricky due to the CP/M convention of having both
a CR (carriage-return) and LF (newline) at the end of text lines. In
order to make text easier to deal with from C programs, fgets
automatically strips off the CR from any CR-LF combinations that.
come in from the file. Any CR characters not immediately followed
by LF are left intact. The LF is included as part of the str.ing, and
is followed by a null byte. , .
There is no check on the length of the line being read in; care must
be taken to make sure there is enough room at str to hold the longest
line imaginable (a line must be. terminated by a newline character
before it is considered complete).
Zero is returned on EOF, whether it be a physical EOF (attempting to
read past the last sector of a file) or a control-Z (CPMEOF) character
in the file. Otherwise, a pointer to the string (the same as the
parameter str) is returned.

int fputs(str, iobuf)
char *str;
struct _buf *iobuf;

Writes the nUll-terminated string from memory at str into the
specified buffered output file. Newline characters are converted into
CR-LF combinations to keep CP/M. happy. If a null (zero byte) is
found in the string before a newline, then there will be no line
terminator at all appended to the line on output (allowing partial lines
to be written.)

BD Software Page 75

November 1982 BDS C U serfs Guide

3.5 Plotting Functions for DMA Video Boards

setplot(base,xsize, ysize)

Defines the physical characteristics (starting address, dimensions) of a
memory-mapped "DMA", video board such as the Processor Technology
(R.I.P) VDM-1. Base is the starting address of the "video memory,
xsize is the number of lines in the display, and ysize is the number of
characters per line. Setplot need only ,be called once at the start of
program execution; from then on, the functions clrplot, plot, txtplot
and line will know about the given parameters.

clrplotO

Clears the memory-mapped video screen (fills with ASCII spaces.)

plot(x, y, chr)
char chr;

Places the character chr at coordinates (x,y) on the video screen.
(x,y) is read as: x down, y across, where

o <= x < xsize,
o <= y < ysize.

txtplot(string, x, y, ropt)
char *string;

Places an AScn string on the screen at position (!,I); If ropt is
non-zero, then each byte of the string is 10gicalOR-ed with the value
Ox80 before being displayed. This forces the high-order bit to a 1,
causing the character to appear in reverse-video on some boards (such
as the VDM-1) or do other funny random things with other boards.

Page 76 BD Software

BDS C User's Guide The Standard Library

line(c, xl, yl, x2, y2)

This function draws a crooked line (because there is no way to make
a line look straight with 64 by 16 resolution!) between the points
(xl,y1) and (x2,y2) inclusive. The line is ma.de up of the character c.
Line, as distributed, only works with a 64 by 16 board.

BD Software Page 77

November 1982 BDS C User's Guide

Chapter 4

Notes to APPENDIX A of "The C Programming Languagen~

4.1 Introduction

BDS C is designed to be a subset of UNIX C. Therefore, most parts of the C
Referenee Manual apply to BDS C directly; the purpose of this appendix is to
annotate the sections that BDS C does not follow to the letter.

After presenting a general summary of differences between the two
implementations, rll go into detail by referring to appropriate section numbers from
the book and describing how BDS C differs from what is stated there. Any
sections that are appropriate as they stand (with regard to BDS C) will not be
listed.

Here is a short summary of BDS C's most significant deviations from UNIX C:

1. The entire source file is loaded into main memory at once, instead of being
passed through a window. This limits the maximum length of a single source
function to the size of available memory.

2. Compilation is accomplished directly into 8080 machine code, with no
intermediate assembly language file produced.

3. BDS C is written in 8080 assembler language, not in C itself. If BDS C
were written in itself, the compiler would be several times as large and run
nowhere as fast as the present speed. Remember that we're dealing with
8080 code here, not PDP-II code as in the original UNIX implementation.

l

4. The variable types short int, long int, float and double are not supported.

5. There are no explicitly declarable storage classes. Static and register
variables do not exist; all variables are either external or automatic,
depending on the context in which they are declared.

Page 78 BD Software

BDS C User's Guide Notes to Appendix A

6. The complexity of declarations is restricted by certain rules.

7. Initializers are not supported.

S. String space storage allocation must be handled explicitly (there is no
automatic allocation/garbage collection mechanism).

4.2 Notes to Appendix A

The following is a section-by-section annotation to the C Reference, Manual1S•
For the sake of brevity, some of the items mentioned above will not be pointed
out again; any references to floats, longs, statics, initializations, etc., found in th,e
book should be ignored.

1. Introduction

BDS C is designed for S080-based microcomputer systems equipped with the
CP /M operating system, and generates S080 binary machine code (in a special
relocatable format) directly from given C source programs. Naturally, BDS C will
also run on any processor that is upward compatible with the S080, such as the
Z-80 or 8085.

2.1 Comments

Comments nest by default; to make BDS C process comments the way UnixC
does, the -c option must be given to CC during compilation.

2.2 Identifiers (names)

Upper and lower case letters are distinct (d~~erent) for variable, structure,
union and array names, but not for fWlCtion names • Thus, function names should
always be written in a single case (either upper or lower, but not mixed) to avoid
confusion. For example, the statement

18. Appendix A of The C Programming Language, the Kernighan & Ritchie textbook

19. Function names are stored internally as upper-case-only.

BD Software Page 79

November 1982 BDS C User's Guide

eha.r foo,Foo,FoO;

declares three character variables with different names, but the two expressions

printf("This is a test");

and

prINTf("This is a test");

are 'equivalent.

2.3 Keywords

BDS C keywords:

int else
char for
struct do
tmion while
tmsigned switch
goto ease
return default
break sizeof
continue begin
if end
register void

Case is ignored for keywords, e.g., WIDLE is equivalent to while.

Identifiers with the same name as a' keyword are not allowed, although keywords
may be imbedded within identifiers (e.g. charfiag).

On terminals which do not support the left and right curly-brace characters [
and J, the keywords begin and end may be substituted instead. Note that you
cannot have any identifiers in your programs named either "begin" or "end", since
these are recognized as keywords by the compiler.

4. What's in a name?

There are only two storage classes, external and automatic, but they are not
explicitly declarable. The context in which an identifier is declared - always
provides sufficient information to determine whether the identifier is external or

Page 80 BO Software

BDS C User's Guide Notes to Appendix A

automatic: declarations that appear outside the definition of any function are
implicitly external, and all declarations of variables within a function definition are
automatic.

Automatic variables have a lexical scope that extends from their point of
declaration until the end of the current function definition. A single identifier may
not normally appear in a declaration list more than once in any given function,
which means that a local structure member or structure tag may not be given the
same name as a local variable, and vice versa. See subsection 11.1 for a special
case.

In BDS C, there is no concept of blocks within a function. Although a local
variable may be ~eclared at the start of a compound statement, it may not have
the same name as a previously declared local automatic variable. In addition, its
lexical scope extends past the end of the compound statement and all the way to
the end of the function.

I strongly suggest that all automatic variable declarations be confined to the
beginning of function definitions, and that the practice of declaring variables at the
head of other compound statements be avoided.

If several files share a common set of external variables, then all external
variable 20declarations must be identically ordered within each of the files
involved • The external variable mechanism in BDS C is handled much like the
unnamed COMMON "facility of FORTRAN. For example: if your main source file
declares the external variables a,b,c,d and e, in that order, while another file uses
only 8, b and c, then the second file need not declare d and e. On the other hand,
if the second file used d and e but not 8, b or c, then all of the variables must
be declared so that d and e (from the second file) do not overlap with 8 and b
(from the first file) and cause big trouble. As an added inconvenience, all external
variables used in a program (set of dependent source files) must be declared within
the source file containing the "main" function, regardless of whether or not that
source file uses them all.

As long as all common external declarations are kept in a single ".B" file, and
'include is used within each source file of a program to read in the ".H" file,
there shouldn't be any trouble. Well, relatively little anyway.

20. The recommended procedure for a case such as this is to prepare a single file
(using your text editor) containing all common external variable declarations. The
file should have extension .H (for "header"), and be specified at the start of each
source file via use of the ,include preprocessor directive.

BD Software Page 81

November 1982 BDS C User's Guide

6.1 Characters and integers

Sign extension is never performed by BDS C. Characters are interpreted as 8-bit
unsigned quantities in the range 0-255.

A CHAR VARIABLE CAN NEVER HAVE A NEGATIVE VALUE IN BDS C.

Be careful when, for example, you test the return value of functions such as
getc, which return -Ion error but "characters" normally. Actually, the return
value is an int always, with the high byte guaranteed to be zero when there's no
error. If you assign the return value of getc to a character variable, then a vaiue
of -1 will turn int~ 255 as stored in the 8-bit character cell, and testing a
character for equality with -1 will never return true. Be careful in these kinds of
situations.

Most arithmetic on characters is accomplished by converting the character to a
16-bit quantity having a zero high-order byte. In some non-arithmetic operations,
such assignment expressions, BDS C will optimize code generation by dealing with
char values on a byte-only basis. To take advantage of this, declare any variables
you trust to remain within the 0-255 range as char variables.

7. ~ressions

Division-by-zero and mod-by-zero both result in a value of zero. No error of
any kind is genera ted in these cases.

7.1 Primary Expressions

The order of evaluation of the parameters in a function call is reversed. I.e.,
the last parameter is evaluated first and pushed on the stack, then the next-to-Iast
is evaluated and pushed on the stack, etc .•. this is done so that the parameters
appear in ascending order to the function being called, for the benefit of functions
taking a variable number of parameters.

7.2 Unary Operators

The opera tors

(type-name) expression
sizeof (type-name)

are not implemented. The sizeof oe.~rator may be used in the form

Page 82 BD Software

BDS C User's Guide Notes to Appendix A

sizeof expression

provided that expression is not an array. To take the sizeof an array, the array
must be placed all by itself into a structure, allowing the sizeof the structure to
then be taken. Another possibility is to take the sizeof a single element in the
array, then multiply that by the number of elements in the array to yield the size
of the overall array.

'1.5 Shift operators

The operation » is always logical (O-fill).

'1.11, '1.12 Logical AND and OR operators

The two operators &:&: and II have equal precedence in BDS C, making
parenthesization necessary in certain cases where it wouldn't be under Unix C. Any
expressions involving complex combinations of &:& and II are basically confusing
anyway, and should be parenthesized just on general principles.

8. Declarations

Declarations have the form:

declaration:
type-specifier declaration-list ;

There are no "storage class" specifiers.

8.1 Storage class specifiers

Not implemented.

8.2 Type specifiers

The type-specifiers are

type-specifier:

BD Software

char
int
tmsigned
register
struct-or-union-specifier

Page 83

November 1982 BDS C User's Guide

The type register will be assumed synonymous with int, unless it is used as a
modifier (e.g. register WlSigned foo;), in which case it will be ignored completely.

The keyword void is treated as synonymous with int, and may be used to
document the fact that a function does not return a value. There are no other
"adjectives" allowed;

tmsigned int foo;

must be written as

WlSigned f 00;

8.3 Declarators

Initializers are not allowed. Thus, the syntax for declarator lists is:

declara tor-list:
declarator
declarator , declarator-list

8.4 Meaning of declarators

UNIX C allows arbitrarily complex typing combinations, making possible
declarations such as

struct foo *(*(*bar[3][3][3]) 0) 0;

which declares bar to be a 3x3x3 array of pointer to functions returning pointers
to functions returning pointers to structures of type foo.

Alas, BDS C wouldn't allow that particular declaration.

Here is an informal summary of the declaration syntax BDS C will accept:

First, let a simple-type be defined by

Page 84

sim pIe-type:
ehar
int
tmsigned
struct
union

BD Software

BDS C User's Guide Notes to Appendix A

and a scaIar-type by

scalar-type:
sim pIe-type
pointer-to-scalar-type
pointer-to-function

The final kind of scalar type, the pointer-to-function, is a variable which may
have the address of a function assigned to it and then be used (with the proper
syntax) to call the function. Because of the way BDS C handles these guys
internally, pointers to pointer-to-function variables will not work correctly, although
pointers to functions returning any other scalar type (except struct, union, and
pointer-to-function) are OK.

So far, scalar-types cover declarations such as

int x,y;
char *x;
unsigned *fraz;
char **argv;
struct foobar *zot, bar;
int *(*ihtfp)();

(The last of the above examples declares ihtfp
to be a pointer to a function which returns
a pointer to integer.)

Building on the scalar-type idea, we define an array to be a one or two
dimensional collection of scalar-typed objects (including pointer-to-function
variables). N ow we can have constructs such as

char *x[S][lO];
int ·*foo[IO];
struct steph bar[20][8];
tmion joyce *ohboy[747];
int * (foobar[lO]) 0;

(The last of the above examples declares foobar
to be an array made up of ten pointers to
functions returning integers.)

N ext, we allow functions to return any scalar type except pointer-to-function,
struet or union (but not excluding pointers to structures and unions.)

BD Software Page 85

November 1982 BDS C User's Guide

Some more examples:

char *barO;

declares bar to be a function returning a pointer to character;

char *(*bar)0;

declares bar to be a pointer to a function returning a pointer to characters;

char *(*bar[3][2]) 0;

declares bar to be a 3 by 2 array of individual pointers to functions returning
pointers to characters;

struct foo zotO;

attempts to 'declare zot to be a function returning a structure of type foo.
Since functions cannot return structures, this would cause unpredictable results.

struct foo *zotO;

is OK. Now zot is declared as returning a pointer to a structure of type foo.

One significant "misfeature" of BDS C is that explicit pointers-to-arrays cannot
be declared. In other words, a declaration such as

char (*foo) [5];

would not succeed in declaring foo to be a pointer to an array. Due to the
relative simple-mindedness of the BDS C compiler (and its programmer), the
preceding declaration ends up having the same meaning as

char *foo[5];

On the brighter side, any "formal function parameter declared as an array is
handled internally as a "pointer-to-array", causing an automatic indirection to be
performed whenever the appropriate array identifier is used in an expression. This
makes passing arrays to functions as easy as pi. For an extensive example of this
mechanism, check out the Othello program included with some versions the BDS C
package (but always available from the C User's Group). "

8.5 Structure and union declarations

Page 86 BD Software

BDS C User's Guide Notes to Appendix A

"Bit fields" are not implemented. Thus we have

struct-or-union-specifier:
struct-or-union l struct-decl-list J
struct-or-union identifier {struct-decl-list J
struct-or-union identifier

struct-or-union:
struct
Wlion

struct-decl-list:
struct-declara tion
struct-declaration struct-decl-list '

struct-declaration:
type-specifier declarator-list ;

declara tor-list:
declarator
declara tor, declarator-list

Names of members and tags in structure definitions must not be identical to
any other local identifier names. The only time more than one structure or union
per function can use a given identifier as a member is when all instances have the
identical type and offset; see subsection 11.1.

8.6 Initializers

Sorry; no initializers allowed.

All external variables are now automatically initialized to zero (note that this
was not true for pre-1.50 versions of the compiler).

8.7, 8.8 Type names

Not applicable to BDS C. typedef is not implemented.

9.2 Blocks

There are no "blocks" in BDS C. Variables cannot be declared as local to a
block; declarations appearing anywhere in a function remain in effect until the end
of the function.

BD Software Page 87

November 1982 BDS C User's Guide

9.6 For statement

Here the book is slightly confusing (and if the book didn't confuse you, the
following clarification surely will .••)

The for statement is not completely equivalent to the while statement as
illustrated, for this reason: should a continue statement be encountered while
performing the statement portion of the for loop, control WOUld. pass to
expression-3. In the while version, though, a continue would cause control to pass
to the test portion of the loop directly, never executing expression-3 during that
particular iteration. The representation given in section 9.9, on the other hand, is
correct since the increment is implied (to occur at contin:) rather than written
explicitly.

This is merely an inconsistency in documenta'tion; both the UNIX C compiler (as
far as I can tell) ,and the BDS C compiler handle the for case correctly.

9.7 Switch statement

There may be no more than 200 case statements per switch construct.

Note that multiple cases each count as one, so the statement

case 'a': case 'bY: case ICY: printf(na or b or cn);

counts for three cases.

9.12 Labeled statement

A label directly following a ease or default is not allowed. The label should be
written first, and then be followed by the ease or default keyword. For example,

case 'x': mumble: zap = frotz;

is incorrect, and should be changed to

mumble: case 'x': zap = frotz;

10. External definitions

Type specifiers must be given explicitly in all cases except function definitions
(where the default is int.)

11.1 Lexical scope

Page 88 BD Software

BDS C User's Guide Notes to Appendix A

Members and tags within structures and unions should not be given names that
are identical to other types of declared identifiers. BDS C does not allow any
single identifier to be used for more than one thing at a time (except when a local
identifier temporarily shadows a similarly named external identifier). This means
that you cannot write declarations such as:

struct foo (
int a;
char b;

) foo[10];

/* define struct of type "foo" */

/* define array named "foo" made up
of structures of type flf 00" * /

-:.J ;

which are basi calli confusing and shouldn't be used anyway, 'even if UNIX C
does allow them.

The one' exception to this rule involves structure members. The compiler will
tolerate the same identifier being used as a member within the definition of
diff erent structures, as long as 1) the ~ and 2) the storage offset (from the base
of the structure) are identical for both instances. The following sequence, for
example, uses the identifier "cptr" in this allowable manner:

struct foo {
int a;

] ;

char b;
char *cptr;

struct bar f
WlSigned aa;
char xyz;
char *cptr;

];

11.2 Scope of extemals

/* type: char *, offset: 3 * /

/* type: char ., offset: 3 */

There is no extem keyword; all external variables must be declared in exactly the
same order within each file that uses any subset of them. Also, all external
variables used in a program must be declared within the source file that contains
the "main" function.

Here is how externals are normally handled: location 0015h of the run-time
package {usually memory location 0115h at run-time} contains a pointer to the base
of the external variable area. All external variables are accessed by indexing off

BD Software Page 89

November 1982 BDS C User's Guide

this pointer.21 The external data area for the entire program is assumed by
CLINK to be equal to the space needed by all external data defined in the "main"
source file. Because no information is recorded within CRL files about external
storage or external names (other than the total number of bytes involved and,
optionally, the explicit starting address of the externals), it is up to the user to
make sure' that each source file contains an identical list of external declarations.
Although the names need not necessarily be identical for each corresponding
external variable in separate files, the types and storage requirements should
certainly correspond to avoid overlap and mix-up.

It would not be far off the mark to consider BDS C external variables as just
one big FORTRAN-like COMMON block.

Reminder: if you use the library functions alloc and free, you must
include the header file BDSCIO.H in your program, since there are
several external data objects required by alloc and free declared in
BDSCIO.H, and omission of these declarations within any source file
having external variables would cause an undesirable data overlap.

12.1 Token replacement

All forms of the 'define preprocessor directive are supported, including
parameterized defines. Note that recursive (mutually referential) parameterized
• define operations are not detected, and if attempted will cause a string
overflow.

12.2 File Inclusion

. If double-quotes are used to delimit the filename (e.g. 'include "filename"), and no
explicit drive or user-area designators appear preceding the filename, then the file
is presumed to reside in the current directory only and ~ compilation will abort if

. the file isn't there. If angle brackets (.include <filename» are used, then only the
default disk drive/user area (as described in chapter 1) is searched.

Note that 'include directives are processed on-the-fly as the source file is being
read in from disk, whereas conditional compilation directives are only processed on
a later pass after included files have already been loaded. Therefore, the compiler
will attempt to process an .include directive placed within a conditional

21. The -e ~ option to CC may be used to locate the external variable area at
absolute location xxxx, thereby considerably speeding up and shortening the code
produced by the compiler. Even so, all the declaration constraints must still be
observed.

Page 90 BD Software

BDS C User's Guide Notes to Appendix A

compilation block even when the condition evaluates as false. As long as the files
named in all 'include directives are found, things will still work correctly because
the appropriate code will simply be ignored later when the conditionals are
processed .•• but, if the file named by any 'include directive cannot be found, CC
will print an error and abort the compilation.

Although file inclusion may be nested to any reasonable depth, error reporting
recognizes only one level of nesting. Try experimenting with the "-p" option of
CC, varying the level of inclusion nesting, to see exactly what happens.

12.3 Conditional Compilation

All standard conditional compilation directives are now supported, but the
expression taken by the .if <expr> directive is limited to the following syntax:

<expr> := <expr2> or
<expr2> && <expr> or
<expr2> II <expr>

<expr2> := <decimal-constant> or
!<expr2> or
«expr»

The <decimal-constant> may be symbolic (yielding a plain decimal constant after
'define sUbstitution is complete), but is always treated as a logical value by the .if processor. I.e., a value of 0 is false, and any other value is true.

Nesting of conditional compilation directives is now fully supported.

12.4 Line Control

Not implemented.

15. Constant expressions

BDS C will simplify constant expressions at compile-time only when the constant
expressions appear immediately after one of the following keywords: left square
brackets, the case keyword, assignment operators, commas, left parentheses, and
the return keyword. Any constant expression that doesn't follow one of the
aforementioned keywords is guaranteed to not be simplified at compile-time.

The standard procedure for insuring the compile-time evaluation of constant
expressions, especially when eontained within larger expressions involving elements
other than constants, is to place the constant expressions within parentheses. Thus,
statements such as

BD Software Page 91

November 1982 BDS C User's Guide

x = x + y + 15*10;

will not be simplified (i.e., will cause the compiler to generate code to multiply 15
and 10) and, in general, will produce longer and slower code than the better form
of:

x = x + y + (15*10);

All multiplicative operations on constants and constant expressions are performed
as unsigned operations.

18.1 Expressions

The unary operators are:

* 6.: - ! 1'\1 ++ - sizoof

The binary operators && and II have egual precedence.

The sizeof operator cannot correctly evaluate the size of an array.

18.2 Declarations

The complete syntax for declarations is

Page 92

declaration:
type-specifier declarator-list ;

type-specifier:
char
int
register (same as int)
WlSigned
struct-or-union-specifier

declara tor-list:
declarator
dec lara tor , declarator-list

BD Software

BDS C User's Guide Notes to Appendix A

declara tor:
identifier
(declarator)
• declarator
declara tor 0
declarator [constant expression]

struct-or-union-specifier:
struct { declarator-list J .
struct identifier {declarator-list}
struct identifier "
union l declarator-list}
union identifier {declarator-list J
union identifier

18.4· External definitions

data-definition:
type-specifier declarator-list

18.5 Preprocessor

The following preprocessor directives are now supported:

'define identifier token-string
lincltlde "filename"
linclude <filename>
lif expression
lifdef identifier
lifndef identifier
I else
lendif
Itmdef identifier

'Defines may appear anywhere in the source file, their scope extending until
the end of the file, or until the identifier is re-'defined or Itmdef ed.

The

.if (expr>

directive is supported, but legal expression elements are limited to constants
(including symbolic constants) and a small set of operators. The lif directive

BD Software Page 93

November 1982 BDS C User's Guide

allows user to write system-dependent conditional expressions without having to
resort to using .ifdef/lifndef and/or play games with commenting and
uncommenting 'define directives. See section 12.3 above for the complete syntax.

The .include directive should not appear inside any conditional compilation
directives. This is because the 'include directives are' all processed on-the-fly by
the compiler as an input file is read in from disk, and conditional compila~ion

processing doesn't take place until after the entire file has been read in. Thus, an
'include directive will always cause the compiler to try and read the named file,

, even if the directive is placed within a false conditional compilation block. This
may be considered a design flaw, but there is no way to process all conditional
directives' on-the-fly and still read the source file in at a reasonable speed from
standard 8" single-density CP/M disks.

When using conditional compilation, note that each and every 'else directive
must be followed (eventually) by a matching 'endif directive.

File inclusion may nest to any depth22, but both the -p CC option and error
reporting for both CC and CC2 become easier to deal with if file inclusion is
limited to a single level.

22. Mutually inclusive files, though, will certainly cause an overflow.

Page 94 BD Software

BDS C User's Guide Miscellaneous Notes

Appendix A

Miscellaneous Notes

The = operator is used for assignment only. The relational operator is equal
to is represented by the = operator. Be careful not to .confuse them; using
the wrong one will never cause the compiler to generate any. diagnostic
messages, because the resulting expressions will be syntactically correct even
if they don't have the desired effect.

The keywords begin and end may be substituted for left and right
curly-braces ({ and J). This feature is provided so that users not having the
curly-brace characters on their terminals can still use the compiler.
Aesthetically, at least in this hacker's opinion, the curly-braces produce
listings far more readable than begin and end, and should be used whenever
possible.

Error recovery during compiler operation is not especially intelligent in some
cases. If either CC or CC2 spews out a set of error messages clustered
around the same line or set of lines, then only the first error message in the
cluster should be believed. Chances are' that after that error is fixed, the
rest will go away_

The line number given by CC2 in error reports is not always guaranteed to be
. accurate. CC does some rearranging of code once in a while; for instance,

the increment portion of a for statement is physically moved down past the
statement portion. Thus, if there is an error in the increment portion that
CC is not equipped to detect, then CC2 will detect it ••• and report the line
number erroneously. Try not to mess up the increment portion of for
statements.

Certain types of errors will cause the compiler to cease execution and,
immediately return to the operating system without scanning the rest of the.
source. This occurs when, for example, mismatched parentheses or a missing
semicolon manage to confuse the compiler to the point where it cannot
recover. Instead of guessing about where the proper punctuation should be, it

. aborts to let you fix the error quickly and try again.

BD Software Page 95

November 1982 BDS C User's Guide

Note that the argc value passed to a C main function is, by convention,
always positive, and equal to the number of arguments specified plus one.
Arguments on the command line are eharacter strings in all cases, not
values. To convert a numeric command line parameter into a value
appropriate for assigning to a variable, something like the atoi function must
be used.

- A problem with the ttbdos" library function has come up that is rather tricky,
since it is system-dependent: A program that runs correctly under a normal
Digital Research CP/M system might not run under MP /M or SDaS (or who
knows how many other systems) if the bdos function is used. A typical
symptom of this problem is that upon character output, a character on the
keyboard needs to be hit once in order to make each character of output
appear.

To understand the problem, we must first understand exactly how the CPU
registers are supposed to be set after an operating system BDaS call.
Normal CP/M behavior (which the library fUnction bdos had always assumed)
is for registers A and L to contain the low-order byte of the return value,
and for registers B and H to contain the high order byte of a return value
(which is zero if the return value is only one byte). The CP/M interface
guide explicitly states that "A == L and B == H upon return in all cases", and
I figured that just in case CP/M 1.4 or some other system didn't put the
values in H and L from B and A, I'd have the bdos function copy register A
into register L and copy register B into register H, to make sure the value is
in HL (where the return value must always be placed by a C library
function.)

Not all systems actually follow this convention, though. Under MP/M, H
and L always contain the correct value but B does not! So when B is copied
into H, the wrong value results. Therefore, the way to make bdos work
under both CP/M 2.2 and MP/M was to discontinue copying B and A into H

. and L, and just assume the value will always be correctly left in HL by the
system. This was done for v1.45, so at least CP/M and MP/M are taken care
of, but •••

Under snas (and perhaps other systems), register Ais sometimes the only
register to contain a meaningful return value. For example, upon return from
a function 11 call (interrogate console status),. the B,H" and L registers were
all found to contain garbage. So if no" copying : is done in this case;-; the "
return value never gets from A to L and the result is wrong; but if B is
copied into H along with A getting copied into L, the result is still wrong
because B contains garbage." Evidently the only way to get function 11 to"
work right under snos is to have the bdos function copy register A into "L
and zero out the H register before returning ••• but then many other system

Page 96 BD Software

BDS C User's Guide Miscellaneous Notes

calls which return values in H wouldn't work anymore. And that is the
problem: You can please some systems all the time, but not all systems all
the time with only one standard bdos function.

The way I left bdos for v1.5 is so that it works with CP/M and MP/M
(i.e., no register copying is done at all ..• HL is assumed to contain the correct
value). This, of course, won't work in all cases under SDOS and perhaps
other systems ••• in those cases, you need to either use the call and calla
functions to perform. the BDOS call, or create your own assembly-coded
version(s) of the bdos function. (using CASM) to perform the correct register
manipulation sequences for your system. Note that it may take more than.
one such function to cover all possible return value register configurations. _

A well-designed C program should always diagnose a command line error by
displaying' the command line syntax to the user and aborting. This is
generally known as a "Usage" message; it reminds the user of what is
expected on the command line and often saves everyone who uses the
program a lot of time. If there are command line options, they should be
shown in square brackets. A good practice is include detailed explanations of
all the options along with the sample command line.

Although external initializations are not supported by the compiler, some
convenience functions have been provided to allow initialization of simple
integer and character arrays. To set any contiguous set of words to integer
values, use the function initw. For characters (single-byte integers in the
range 0-255), but not strings, use initb.

For example, to simulate the UNIX C construct of

int foobar[10] = f 3,0,-2,-5,3,6,9,-23,-14,0 J ;
you can first declare foobarnormally by saying

int foobar[10];

and then, in the main function, insert the statement

initw(f oobar, "3,0,-2,-5,3,6,9,-23,-14,Otf);

The following tidbits should be kept in mind when striving for optimum
efficiency:

1. Comments are stripped off a source file dynamically as the file is
being read in from disk; thus, there is no excuse (except maybe
laziness) for not documenting a program adequately.

BD Software Page 97

November 1982 BDS C User's Guide

Page 98

2. The switch statement is most efficient when the switch variable (e.g.
xx in "switch (xx) ••• ") is declared as a char. Integer variables are often
used to hold character values in text processing applications involving
file I/O; assigning such a value to a character variable before large
switch constructs could save memory and speed up execution.

3. The eases in a switch statement are tested in the order of their
appearance; thus, the most common cases (or the ones requiring fastest
response time) should appear first.

4. For the fastest execution speed possible, CC should be given the -0 and
-e xxxx options for compilation. For the shortest possible code length,
only the -e ~ option should be used with CC.

5. Logical expressions in C evaluate to a numerical value of 0 (if false) or
1 (if true) whenever their value is actually needed, but may not
evaluate to any value at all when used in flow-of-control tests. This
means that you can take advantage of the numerical results of logical
expressions in many situations. Consider the following code fragment,
whose purpose is to set the variable x to 1 if a<:b, or to 0 if a)= b:

if (a < b) x = 1;
else x = 0;

The same operation can be written as

x = (a < "b);

This takes advantage of how the subexpression "(a < b)" evaluates to
the desired value automatically, and thus avoids the use of two
separate assignment expressions, their associated control structure, and
the considerable overhead that all entails.

6. A related opportunity for brevity comes up whenever any variable needs
to be tested for equality or inequality with zero; since any expression
may be considered logically "true" if it evaluates to a non-zero value,
the "!= 0" portion of an expression such as·"a·!= 0" is practically
redundant. Statements such as

if (a != 0) printf (itA is non-zero");
or if (a == 0) printf ("A is zero");

may just as well be written as

BD Software

BDS C User's Guide Miscellaneous Notes

if (a) printf ("A is non-zero");
and if (!a) printf ("A is zero");

Of course, such an abbreviation may not always be appropriate to a
given situation. If the variable in question is used as a counter of
some sort, and is expected to take on many different values, then
saying "a != 0" might be clearer to the logic of the program. But in
cases where the variable is used as a Boolean flag, or where a value of
zero is considered special in some sense, then the shorter forms are
clearer and may in fact lead to shorter object code in some cases.

BD Software Page 99

November 1982 BDS C User's Guide

Appendix B

Error Messages Explained

Bel CC Error Messages

For the ~uration of this document, the term directory will be used to
denote some arbitrary CP 1M logical drive and user area combination.

File I/O Errors

Close error Disk drive door open? If not, you've got some strange kind of
, hardware problem.

Error on file output ... disk full?
If not, check the hardware.

Can't find CC2.COM; writing CCI file to disk

Disk read error

There are two directories where CC searches to try and find
CC2.COM. One of them is always the current directory, and
the other depends on whether or not the -e. option is used
with CC. If so, then the directory specified in the option is
searched; otherwise, the default directory (as defined in the
configuration section of Chapter 1) is searched. This message
is printed if CC2.COM cannot be found in the two directories
searched.

Time to format some new floppies?

Cannot open: <filename>
The specified file cannot be found. If the user has configured

Page 100 BD Software

BDS C User's Guide

Overflow Conditions

Error Messages

cc to search a specific directory for 'include files enclosed
in angle brackets, then a user number, slash, and disk
designator will be printed preceding the filename in this error
message. If CC has not been configured, then only a disk
designator will appear. Since a user number prefix is not
allowed on the CC command line, the top level source, file
must always be in the current user area when CC is invoked,
although it may be on a different logical drive.

Sorry; out of memory
The source file is too big to fit into memory. Either get
more memory, in case· that is possible, or break the source
file into smaller pieces.

Out of symbol table space; specify more ...
Use the -r option to reserve symbol table space for CC. Or, ,
break the source file into smaller pieces.

Too many functions (63 max)
A single BDS C source file may only contain up to 63 function
definitions. Programs having more than this many functions
must be split into separate source files.

String too long (or missing guote)
Usually, this error is caused by missing double-quotes around
character strings. If a string looks properly ~elimited, check
to make sure you haven't tried to include a double quote
character within the string without esc~ping the double quote
(preceding it with a backslash).

Too many cases (200 max per switch)
Self -explana tory.

#include files nested too deep
This can happen if you try to have recursive includes.

String overflow; call BDS

BD Software

This is a preprocessor string table overflow caused by having
too many very long identifier names in .define directives. It

Page 101

November 1982

Preprocessor Errors

BDS C User's Guide

should only happen for VERY big programs. A special version
of the compiler with larger string space allocations may be
obtained by sending a SASD (self-addressed stamped disk) to
BD Software along with some kind of proof-of-purchase of the
BDS C package.

Warning: Ignoring unknown preprocessor directive
If an unsupported preprocessor directive is encountered, this
warning is printed. Currently, this is the only non-fatal
diagnostic message.

EOF found when expecting #endif
Conditional compilation improperly delimited.

Not in a conditional block
This appears when something like lendif is encountered, when
there was no previous 'if, Iudef or lifndef.

Conditional expr bad or beyond implemented subset
CC only allows a subset of opera tors to be used in the lif
preprocessor directive. . See chapter 4 for a summary of the
lif expression syntax.

Bad parameter list element
Bad identifier present in the formal parameter list of a
function .definition.

Missing parameter list
The identifier from a parameterized 'define appears without
its parameters.

Parameter mismatch The identifier from a parameterized 'define is used with a
different number of parameters than in its definition.

Missing legal identifier
An identifier is expected in an expression but none appears.

Page 102 BD Software

BDS C User's Guide Error Messages

Syntax Errors

Note:. an unterminated comment can draw all sorts of strange error
messages from the compiler. If you get one of the following messages
and have no clue to the cause, try giving the -p option to CC and
check if the code just seems to -"cut offt' at some point in' the
printout. If so, that's probably the location of an unclosed comment,
since all the following text would be considered part of the comment
and stripped from the source file before the printout.

Encountered EOF unexpectedly (check curly-brace balance)
Check for unclosed comments, and unclosed curly-braces. The
User's Group program LCHECK.C may be used to check
curly-brace nesting levels.

Unmatched right brace
Either a left brace is missing, or there is an extraneous right
brace.

Illegal external statement
This is usually caused by too many right braces in a function,
causing the compiler to detect the end of a function definition
prematurely.

Function definition not external

Missing semicolon

Expecting (

This happens when something that looks like a function
definition is encountered within another active function
definition. Probably it is just a missing semicolon after a
function call, or some similar typo.

This error usually means just what it says, but keep in mind
that there are some cases where a missing semicolon will
draw a less meaningful error message.

Typically encountered after the while, if or switch keywords.

Unmatched left parenthesis .

BD Software

This is another type of error that is usually detected, but
might generate other less useful messages in certain cases.

Page 103

November 1982 BDS C User's Guide

rm totally confused. Check your control structure!
This might be caused by extraneous characters or very
erroneous curly-brace nesting.

Illegal { encountered externally
Possibly caused by mismatched curly braces.

Mismatched control structure
Another variation on the unequal curly brace nesting theme.

Expecting while Is a do ••• while statement missing its while?

Illegal break or continue ..

Bad for syntax

break statements are only allowed inside loops and switch
constructs. continue statements are only allowed inside
loops.

Self-explanatory; check· for the correct number (2) of
semicolons and their placement.

Expecting [in switch statement

Bad ease constant

megal statement

Syntax error

Bad constant

Bad octal digit

Bad decimal digit

Page 104

The expression portion of a switch statement must be followed
by compound statement in curly-braces.

Each ease constant must be either an absolute constant or a
simple constant expression (symbolic constants are acceptable,
of course).

This error is drawn when, for example, a case or default
'statement is found outside of a switch construct.

It takes something totally unintelligible to draw this error,
such as a missing left double quote before a character string.
An extraneous character in the file may also do it.

Some expressions must be constant expressions, such as switch
expressions and the values used for case constants.

If a numeric octal constant beginning with a zero· contains the
digits 8 or 9, this error is drawn.

This happens when a decimal constant contains bad characters,
or else the user forgot to precede a hex constant with the
sequence Ox.

BD Software

BDS C User's Guide Error Messages

Curly-braces mismatched somewhere in this function

Declaration Errors

This is a rather useful f ea ture of the com piler: if the source
text has too many left curly-braces, this error will point to
the beginning of the function in which the first detected
mismatch occurred.

Undeclared identifier: <name>
This might be a real identifier that just wasn't declared, or a
misspelling of an identifier.

Bad declaration syntax
Usually the compiler thinks it's processing a data declaration
as soon as it sees a type specifier (such as char or int). This
error is drawn if the rest of the statement containing that
keyword does not resemble a declaration.

Need explicit dimension size
An omitted dimension size in array declarations is only
permitted when the array is a formal parameter to a
function. If such an array is two dimensional, then only the
first dimension may be omitted.

Too many dimensions BDS C allows only up to two dimensions per array variable.

Bad dimension value Dimensions in array declarations must be given as constants or
constant expressions.

Redeclaration of: <name>

BD Software

Aside from actually writing multiple conflicting declarations
for a single variable, another way to draw this error is to
declare a formal parameter of a function inside the body of
the f1Dlction instead of immediately before the body. . Note
that formal parameters are automatically given type int if not
declared before the body of the function; therefore, a
subsequent declaration of the formal parameter identifier as a
local variable in the body of the function constitutes a
redeclara tion.

Page 105

November 1982 BDS C User's Guide

Expecting { in struct or union def
Self -explana tory.

Illegal structure or union id
This error is drawn when the identifier appearing in the
strucure tag position of a structure declaration was previously
declared as something other than a structure tag.

Attribute mismatch from previous declaration
The elements in a structure declaration may be reused within
other structures providing their ,major attributes (type and
off~et) are identical within each 'structure type. This error
appears when a structure element name is re-used with
different attributes.

Declaration too complex
This error is caused by too many levels of indirection, or too
many parentheses for the compiler to handle.

Missing from formal parameter list: <name>
This happens when a declaration of a formal parameter
appears before a function body, but no such parameter is
present in the parameter list following the function name.

Bad parameter list syntax

. Miscellaneous errors

Something other than a comma-delimited list of identifiers in
the parameter list of a function definition draws this error •

<text>: option error If CC detects some badly formed command line option, it will
print the text it couldn't understand along with this message.
Check the command line option descriptions in Chapter 1 to
make sure you're giving the correct f<>rms.

Compilation aborted by control-C

Page 106

If the user types control-C on the console during a
compilation, then this message gets printed and control is
returned to command level. Note that console polling may be
disabled by special configuration of CC.COM as' described in
the configuration section of Chapter 1. This may be required

BD Software

BDS C User's Guide Error Messages

for certain interrupt-driven systems to allow type-ahel;ld during
compiler execution.

Can't have more than one default:

illegal colon

This is printed if more than one default: clause is encountered
f or a particular switch construct.

Colons (other than in literal strings) are only allowed as part
of the ternary operator, or following a label, ease or default.

Undefined label used Label references (allowed only in goto statements) must refer
to a label local to the current function definition.

Duplicate label A particular identifier may only be used for one label per
function.

B.2 CC2 Error Messages

Note: some of the file I/O errors printed by CC2 are the same or
very similar to the messages listed above for CC, so they will not be
repeated in this section.

File I/O, Syntax, Overflow and Other Miseellaneous Errors

Can't create CRL file
No more directory slots on the output drive?

CRL Dir overflow: break up source file
There are only 512 bytes of directory space allocated for each
CRL file. It is possible to overflow the directory space for a
single source file by having too many functions defined that
contain 8 or more characters in their na,mes (only the first 8
characters of each name are actually stored in the directory.)
Either shorten your function names, or reduce the number of
functions per source file.

BD Software Page 107

November 1982 BDS C User's Guide

Internal error: garbage in file or bug in C

Illegal statement

If this happens during CC2, it is probably a compiler bug.
Please contact BD Software for assistance.

Something totally wierd was encountered.

Missing { in function def.

Missing semicolon

Usually, whatever draws this error is not really the start of a
function definition, but for some reason the compiler thinks
tha t the previous (or current) function has been terminated
and another is beginning. Check for too many right
~urly-braces in the program.

Missing semicolons after expression statements will usually be
detected and diagnosed correctly.

Sorry, out of memory. Break it up!
The file is too large.
it will also make
exceptions.

Usually, if a file gets through CC then
it through CC2, although there are

The function <foo> is too complex; break it up a bit
There are certain internal tables that cannot handle too big a
function. Ra ther than require the user to set a bunch of
confusing parameters telling the compiler how much space to
reserve for various tables and lists, I decided to set most
table sizes constant and allow for fairly hefty functions ••• but
only up to a point. Properly structured C programs shouldn't
draw this message.

Sub-expression too deeply nested
The most common cause of this error is a multiple assignment
statement that goes on forever. The solution is simply to
break the line up into smaller chunks.

Compilation aborted by control-C
Unless the appropriate CC configuration byte is customized to
zero by the user (see the Configuration section in Chapter 1),
typing control-C on the system console device will terminate a
compilation, print this . message and immediately return to
command level.

Page 108 BD Software

BDS C User's Guide

Errors in Expressions

Lvalue reguired

Error Messages

An object is required that can have its address taken, or that
must be legal on the left of an assignment operator.

L value needed with ++ or - - opera tor
Only sim pIe variables can be auto-increm ented or
auto-decremented.

Bad left operand in assignment expression
If the expression on the left of an assignment operator cannot
have a value assigned to it, this error is drawn. For example,
a character array is not an lvalue, although it may be
subscripted to produce a legal lvalue.

Mismatched parenthesis
An expression following a left parenthesis is terminated by a
matching right parenthesis.

Mismatched sguare brackets
A subscript following a left square bracket is not im media tely
followed by a matching right square bracket.

Bad expression This is the general "I give _ up" message printed when an
expression (or what is supposed to bean expression) does not
make any sense to the compiler. That does not necessarily
mean that the error is obvious, but usually it is.

Bad function name This is printed when the:- compiler sees an identifier followed
immediately by a left parenthesis, and the identifier has been
previously declared as something other than a function name.

Bad arg to unary operator
The operand of a unary operator is not of appropriate type for
that operator.

Expecting:

BD Software

Did you intend to write a 1: expression and forget to include
the colon?

Page 109

November 1982

Bad subscript

Bad array base

BDS C User's Guide

Is an array subscript of the proper type f or a pointer
arithmetic operation? For example, a subscript in an array
expression cannot be a pointer.

You are attempting to subscript something that cannot be
subscripted. A prevalent cause: are you attempting to
subscript the argv formal parameter in you main function
without having declared it correctly?

Bad structure or union specification
The expression to the left of the • (period) operator is not a
legal structure or union base.)

Bad type in binary operation
Certain types of variables cannot appear together in a binary
operation; for example, you cannot add two pointers (although
you may subtract them, yielding a· result scaled by the size of
the objects begin pointed to), or perform most bit-wise and
obscure operations on non-sim pIe-variable objects.

Bad structure or union member
The expression to the right of a • (period) or -> operator is
not a valid structure or union element.

Bad use of member name
The identifiers declared as members of a structure or union
cannot be used outside of a structure or union operation.

megal indirection At attempt is being made to operate on some object as if it
were a pointer, when the object is not a pointer.

Encountered EOF unexpectedly
This is either a bad syntax error or a sign of file damage.
Badly matched curly-braces might also be responsible, although
the present version of the compiler will usually be more
specific about those kinds of errors.

Bad argument list Something illegal was found in the parameter list for a
function call, such as a semicolon or other keyword not legal
in an expression.

Missing or misplaced (

Page 110

An expression in parentheses was expected, such as following
the while keyword, and no left parenthesis was found.

BD Software

BDS C User's Guide Error Messages

Missing or misplaced)
An expression which began with a left parenthesis was not
followed by a closing right parenthesis. This might be due to
an extraneous character in the middle of the expression.

B.3 CLINK Error Messages

Note: many of the possible file I/O errors printed by CLINK are
self-explanatory; only the ones requiring some comment are shown
here.

No user area prefix allowed on main filename

Dir full

User area prefixes are allowed on all filenames - except the
first on the CLINK command line.

No more directory space in which to create a new output
file.

Error writing: <filename>
Probably out of data space on the disk.

Can't close: <filename>
Hardware error?

No main function in <filename>
The first CRL file named on the CLINK command line must
contain the main function for the program you are linking.
Note that the L2 linker (available from the User's Group) does
not have this restriction.

Missing function(s): <list-of-names)
The named functions were not found in the files listed on the
command line or in the standard library files. If you used the
-f option to cause files to be scanned instead of loaded, it's
possible some of -the named functions. were pr,esent but not
loaded because no previous functions had referenced them. In
this case, simply re-scan the files containing the missing
functions.

Warning! Externals extend into the BDOS!
This is printed when the ending address of the external data

BD Software Page 111

November 1982 BDS C User's Guide

area is greater than the base of the BDOS on the system
being used for compilation. If the code is to be run in
another environment where there won't be any conflict, this
message may be ignored. But don't try to run the program on
the system where linkage drew this message •••

Warning! Externals overlap code!
This is printed when the starting address of the external data
area is less or equal to the last code address of the program.
Usually it means the externals were placed too low with the
-e option. If you are creating. code for a customized
environment where the code resides above the externals, just
ignore the message.

Out of memory Not enough memory to perform the linkage. Try using the L2
linker, which can link programs up to about 8K larger than
CLINK can.

Bad symbols A symbol file being read in via use of the -y option contains
badly formatted entries.

Ref table overflow The forward-reference table ran out of space. Use the -r
option to reserve more space. Usage is "-r xxxx", where xxxx
is given in hexadecimal. 600 is the default; try 800 or AOO,
etc., until the error goes away.

SYM file symbol already defined: <symbol>
A symbol being read in via use of the -y option is identical to
a function already loaded and defined. The original value is
kept, since tha t function has already been loaded and/ or
defined, and the new one is thrown away.

Ignoring duplicate function: <name>
A function in a CRL file being loaded has a name identical to
a function already loaded from a previous file. The· original is·
kept, and the new version is ignored.

Sorry; 255 funcs maximum

Page 112

CLINK can only handle up to 255 functions in a single
linkage. If you need to link a larger number of functions,
obtain the L2 linker from the BDS C User's Group.

BD Software

BDS C User's Guide Common Mistakes

Appendix C

Some Mistakes Commonly Made By Beginning C Programmers

There are several aspects of the C language that tend to cause a great deal
of brow-beating when tackled for the first time. In this section I will try to
summarize those sensitive "features" of C that are constantly heing brought to my
attention by confused users in their phone calls and letters.

C.l = versus =

The = operator is used for assignment only, while the = operator is used for
testing a relational condition of equality. The two operators have nothing in
common except the character used to represent them, and can cause very
frustrating debugging sessions when confused.

A common construct in C is to have an assignment operation imbedded within
a larger expression, perhaps involving conditionals. This can lead to statements
such as:

if «c = getchar(» == '\n')
printf(ttyou typed a newline!\n");

Here, the beginning C hacker might interpret the = operation as a conditional test
instead of the assignment expression it is in actuality.

Now consider the following code fragment:

if (I(c = getnextO» {
printf(ttAll done \n");
break;

}

BD Software Page 113

November 1982 BDS C User's Guide

The if expression in this statement assigns the return value from the getnext
function to the variable £" then asks whether or not that return value is zero ... if it
is zero, it prints "All done!" and breaks out of whatever control structure encloses
the fragment. Of course, if a tired programmer looks at this very quickly, it
might seem as if £. were being compared to the return value of getnext ... you get
the idea.

C.2 Array Subscripting

Arrays of length !!. in C have elements numbered from 0 to n-1. If you
declare an array of length!!. and attempt to reference an element with a subscript
of value !!.' you'll actually be referencing data past the end of that array. This
happens most often when a user is thinking in terms of the BASIC language, where
arrays of length ! may have both an element number 0 and and element number x.
Note that in C, the most common for-loop construct neatly iterates through n
items numbered 0 through n-1 as follows:

for (i = 0; i < n; i++)

and such loops are ideal for iterating through an array. If you really need to have
an array numbered 1 through !! for !! items, then you must declare the array to
have one more item than required, leaving the O-th element unused.

C.3 How NOT To Use a Po.inter

When a pointer variable is declared in a program, either externally or within
a function, it is not given a value automatically. A pointer is simply a 16-bit
variable that is typically used to hold the address of some other piece of data (to
point to it), and must be initialized before being used, just like any variable. The

. particular mistake I see most often involves assigning a value indirectly through an
uninitialized pointer; i.e, the declaration

char *foo;

would be later followed by a statement such as

Page 114 BD Software

BDS C User's Guide Common Mistakes

*foo = 'a';

before foo is ever initialized, and unpredictable things would begin to happen.
What the assignment statement above says is "place the character 'a' into memory
at the location whose address is specified by the value of variable foo." If foo has
never been initialized to anything, then the 'a' character gets stored in some
totally random location in memory. The correct procedure here would have been
to declare a buffer area, assign foo the address of that area, and then begin
assigning data indirectly through foo. For example, the following sequence places
the character 'a' at location buffer[O]:

char buffer[50], *foo;
f 00 = &buff er;

*foo = 'a';

C.4 Functions Shouldn't Return Pointers to Their Automatic Data

As soon as a function returns to its caller, storage that was local to that
function (i.e., where all declared local variables were stored) is deallocated and
made ready for use by the next called function. A common mistake is to have
some function (call it foo) create a piece of text in a local buffer and return a
pointer to that text... Immediately upon return from foo the text appears' intact,
but later on in the course of the program (as the space in which the string resides
is allocated for other functions' local data frames), the string turns into garbage.
There are two viable solutions to this kind of problem: a) Have foo take a
parameter telling it where to put the string result (in which case the caller must
provide a working buffer for foo), or b) Make the destination string area external.
Each method has its own advantages; passing a destination area on each call allows
many such returned strings to be saved separately in different areas of memory,
while an external destination area shortens the. calling sequence by requiring one
less parameter to be passed. But whatever you do, do not expect any data that
was locally allocated by a called function to remain valid after that function has
returned!!

BD Software Page 115

November 1982 BDS C User's Guide

C.5 Understanding Formal Parameters

What is a "formal parameter", anyway? A formal parameter. is one of the
arguments (if any) that a function expects to have passed to it whenever called.
All formal parameters are specified at the beginning of a function's definition in a
parenthesized list immediately following the function name. The declarations of a
function's formal parameters must be made immediately after the parenthesized
list, before the first open-curly brace that marks the beginning of the function
body. Any formal parameters not explicitly declared are assumed to be simple int
values. If a formal parameter is accidentally declared within the actual function
body (inside the curly-braces), the compiler will correctly diagnose .a "redeclaration"
error... since after the formal declarations are passed and the compiler begins
processing the function body without having seen a declaration for a formal
parameter, then that formal parameter will have been automatically declared as an
int.

Whenever a function call takes place, copies of the values of any formal
parameters are passed to the function. All such values are 16 bits in length with
BDS C version 1. This means that structures, arrays, or any data type not
inherently 16 bits in size cannot be directly passed to a function; pointers to such
data types, though, can. Now ••• what happens when an array name is passed to a
function? There is a special magic mechanism for passing pointers to arrays that
can be confusing, because it is not intuitively obvious from the declaration syntax
that a pointer is actually being passed. For example, consider the following
function:

int
int
{

}

arraysum(array)
array[3];

return array[O] + array[l] + array[2];

While arraysum may appear to take an array of 3 elements as a formal
parameter, in reality only a pointer to that array is passed. The declaration looks
as if an entire array were being passed, but if you change any element in the
array here you'll be changing that element for the calling program also. There is
only one copy of the array in existence.

Another tricky point about formal array parameters is that you can actually
treat the array name as a simple pointer variable within the called function (i.e.,

Page 116 BD Software

November 1982 BDS C User's Guide

Appendix D

Dynamic Overlays in C Programs

In order to allow C programs to be longer than physical ·memory without
resorting to ~ or execl (which may indeed get the job done, but resemble
"chain" operations more than true segmentation tools), a set of capabilities has
been built into the CLINK program to make program segmentation possible. The
general idea is to have one copy of a root segment always remain in memory (at
the base of the TPA) containing the C run-time package, the "main" C function,
and any other functions that more tl:lan one overlay segment might need. The root
segment controls the loading of overlay segments in higher memory, and each
overlay segment, when loaded into memory somewhere above the root segment, can
take advantage of run-time package entry points within the root segment as well
as function entry points in any lower-level overlay segments (as well as the root
segment).

Normally (i.e., when overlays are not being used), the run-time environment of
an executing C program looks something like this:

Page 118 BD Software

BDS C U serfs Guide

low memory: base+100h: C.CCC run-time utility package (csiz bytes)

ram+csiz: start of program code
••• (program code) •••

xxxx-1: end of program code

XXXX: external variable area (y bytes long)
••• (external da ta)

XXXX+y: free memory,

????:

machine stack:

high memory: bdos:

available for
storage

allocation

as low as the machine stack ever gets
local data, function parameters,

intermediate expression results,
etc. etc.

machine stack top (grows down)

Memory Map 1.

Overlays

Note that xxxx is the first location following the program code and y.. is the
amount of memory needed for external variables.

To incorporate overlays, we must first decide just where the swapped-in code
is to reside. Earlier versions of BDS C had local data frames growing up from low
memory, starting where the externals ended. This made it difficult to determine
the lowest memory location safe to swap overlays into. The scheme suggested
then for handling overlays was to leave sufficient room between the end of the
root. segment code and start of the external data area to accommodate the largest
possible swapped-in segment combination.

BDS C presently allocates all storage for local data on the high-memory
stack. The original overlay scheme is still recommended, though; here is the
modified memory map, accommodating this method of handling overlays:

BD Software Page 119

November 1982 BDS C User's Guide

low memory: base+100h: C.CCC run-time utility package (csiz bytes)
ram+csiz: start of root segment code

••. (root segment code) •.•
zzzz-1: end of root segment code

zzzz: start of overlay area
••• (overlay area) •.•

xxxx-1: end of overlay area

XXXX: external variable area (y bytes long)
••• (external data)

xxxx+y: free memory,

????:

machine stack:

high memory: bdos:

available for
storage

allocation

as low as the machine stack ever gets
local data, function parameters,

intermediate expression results,
etc. etc.

machine stack top (grows down)

Memory Map 2.

Note that zzzz is where overlay segments get swapped in, guaranteed that the
longest segment doesn't reach ~.

In version 1.5, it is also possible (but not as secure) to put the overlay area
after the external data area. The memory map for this alternative configuration is
as f~llows:

Page 120 BD Software

BDS C User's Guide

low memory: base+100h: C.CCC run-time utility package (csiz bytes)
ram+csiz: start of root segment code

••. (root segment code) ..•
xxxx-1: end of root segment code

xxxx:

xxxx+y-1:

xxxx+y:

xxxx+y+ssss-1:

xxxx+y+ssss:

????:

machine stack:

high memory: bdos:

external variable area (y bytes long)
••• (external data) •••

end of external data area

start of overlay area (ssss bytes long)
••• (overlay, area) •••

end of overlay area

<unused memory>

as low as the machine stack ever gets
local data, function parameters,

intermediate expression results,
etc. etc.

machine stack top (grows down)

Memory Map 3.

Overlays

Note that the storage allocation functions (alioc and sbrk) always start
obtaining memory from the area immediately following the end of the externals.
If you plan to use the storage allocation functions (alloc, free, sbrk, rsvstk) in your
program under this scheme, remember to initially call the the sbrk function with
argument ssss, the size of the overlay area. Otherwise the storage allocator will
begin to allocate memory within the overlay area.

In an attempt to limit diversion for the remainder of this document, I will
assume that the original overlay scheme is being implemented as shown in Memory
Map 2.

OK, with the generalities out of the way, let me say something about just
how to create "root" segments and "overlay" segments with BDS C. First of all, we
would like all functions defined within the root segment to be accessible by the
overlay segment(s) •• ~thisis accomplished by causing CLINK to write out a symbol
table file containing all function addresses to disk when the root segment is
linked. The -w option to CLINK will do the trick; this symbol table will be used
later when linking the swapp able segments.

BD Software Page 121

November 1982 BDS C User's Guide

When linking the root segment, use the -e option to set the exter~~l data
area location. Keep in mind that there must be enough room below the
externals to hold the largest overlay segment at run time. If the -e option is
omitted, CLINK will assume the external data starts immediately after the end of
the root segment code and conflict with the overlay area (thus, -e may only be
omitted when using the second overlay scheme as shown in Memory Map 3).

Within the code of the root segment, then, a swappable segment is loaded
into memory from disk by saying:

swapin(name,addr); /* read in a segment .• don't run it */

where addr is the location following the last byte of root segment code. You can
find this value· by linking the root once without giving the -e option and reading
the -s statistics written to the console after the linkage. To actually execute the
segment, you have to call it indirectly using a pointer-to-function variable.

Here is an example. We'll declare a pointer-to-function variable called ptrfn,
swap in a segment named ovll at location 3000h, and call the segment. The
sequence would look like this:

int (*ptrfn)O;
ptrfn = Ox3000;

/* can be whatever type you like */

if (swapin("ovll",Ox3000) f- ERROR) /* check for load error */
(*ptrfn)(args •••); /* if none, call the segment */

Note that the overlay code might not return any value after being called, but
the pointer-to-function must be declared with SOME kind of type. Use int if
nothing else comes to mind. When a segment is invoked, as above, control passes
to the segment's "main" function. There is no reason at all to require parameters
to be of the "argc" and "argv" form; there is nothing special about a "main"
func·tion other than the property it has of getting called first. The "main" function
within the swapped-in segment is the only entry point allowed for the segment.

A simple swapin function is given in STDLIB2.C. It can be expanded to
detect an attempted load over the external data area by comparing the last
address loaded with the contents of location ram+115h ••• if you've never done any

23. I'm using the term "below" in the sense that low memory is "below" high
memory; graphically, at least in the preceding memory maps, "below" means toward
the top of the page.

Page 122 BD Software

BDS C User's Guide Overlays

low-level hackery, you get the value of the 1S-bit address at location BASE+115h
by using indirection on a pointer-to-integer (or -unsigned.) Note that location
BASE+115h always contains a pointer to the start of the external data area.

Now we know how to do everything except actually create an overlay
segment. OK, an overlay segment is basically just a normal C program, having a
"main" function just like the root segment, except that the C.CCC run-time utility
package is NOT tacked on to the front of an overlay segment (the C.CCC run-time
package in the root segment will be shared by everyone.) The other difference
between an overlay segment and the root segment is the load address; while the
root segment always loads at the base of the TPA, an overlay segment may be
made to load anywhere. Once you've compiled the overlay segment, you give a
special form of the CLINK command to link it:

A>clink segment-name -v -1 xxxx -y symbol-file [-s •..] <cr>

where segment-name is the name of the CRL file containing the segment, -Y

indicates to CLINK that an overlay segment is to be created (so that C.CCC is not
attached), and -l ~ (letter ell followed by a hex address) indicates the load
address for the segment. The -y option yanks in the symbol file created by the
root segment. If this is omitted, then CLINK yanks in fresh copies of functions
like "PRINTF" and "FOPEN", etc., even if they have already been linked into the
root segment. By reading in the symbol table from the root segment, it is insured
tha t any routines already linked in the root will be made available to the overlay
segment. The root segment, though, cannot know about functions belonging to
overlay segments through the use of a symbol table. That would require some kind
of mutually referential linking system beyond the scope of this package. Oh well.

When linking an overlay segment, you might also specify -s to generate a
statistics map on the console, and -w to write out an augmented symbol table
containing not only the symbols read in from the root segment's symbol file, but
also the swappable segment's own symbols. This new symbol file may then be used
on ~other level of swapping, should that be desired.

Time for an example: Let's say you've got a program ROOT .C, which will
swap in and execute SEG1.C and then overlay SEG1.C with SEG2.C. ROOT.COM
loads at 100h and ends, say, before 3000h. We'll load in the segments at 3000h, and
set the base of the external data area to 5000h (this assumes neither segment is
longer than' 2000h.)

The linkage of ROOT would be:

A>clink root -e 5000 -w -s <cr>

This tells CLINK that ROOT.COM is to be a root segment (since no ..JV option was

BD Software Page 123

November 1982 BDS C User's Guide

given), the externals start at 5000h, a symbol file . called ROOT .SYM is to be
written, and a statistics summary is to be printed to the console.

The linkage of each overlay segment would appear as follows:

A>clink segl -v -1 3000 -y root -s -0 segl. <cr>

This tells CLINK that SEG l.COM is to be an overlay segment (because of -v) to
load at location 3000h, the symbol file named ROOT.SYM should be scanned for
pre-defined function addresses, a statistics summary should be printed after the
linkage, and the object file is to be written out as SEG 1 (as opposed to
SEGl.COM, to avoid accidentally invoking it as a CP/M command.)

Page 124 BD Software

BDS C User's Guide

Appendix E

The CASM Assembly-Ianguage-to-CRL-Format Preprocessor
For BDS C vI.50

CASM

The only means previously provided to BDS C users for creating relocatable
object modules (CRL files) from assembly language programs was a painfully
complex macro package (CMAC.LIB) that only operated in conjunction with Digital
Research's macro assembler (MAC.COM). This was especially bad because MAC, if
not already owned, cost about as much as the entire BDS C package to purchase.
This document describes the program "CASM", supplied to eliminate the need for
"MAC". CASM is a preprocessor that takes, as input, an assembly language source
file of type ".CSM" (mnemonic for C aSseMbly language) in a format much closer
to "vanilla" assembly language than the bizarre craziness of CMAC.LIB, and writes
out an ".ASM" file which may then be assembled by the standard, ubiquitous CP/M
assembler (ASM.COM). CASM automatically recognizes which assembly language
instructions require relocation parameters, and inserts the appropriate
pseudo-operations and extra opcodes into the resulting ".ASM" file so it properly
assembles directly into CRL format. In addition, some rudimentary logic checks
are performed: doubly-defined and/or undefined labels are detected and reported,
and similarly-named labels in different functions are ALLOWED and converted into
unique names so ASM won't complain.

E.1 Creating CASM.COM

CASM is supplied in source form only on the BDS C distribution disk. Before
compiling CASM.C to make an executable version, customize the beginning of the
file by setting the default library drive and/or user area definitions to conform to
your system configuration. Instructions for compilation and linkage of CASM are
given in the comments at the head of the file.

BD Software Page 125

November 1982 BDS C User's Guide

E.2 Command Line Options

-c

-f

-0 name

Enables comment retention on both input and output. By
default, CASM strips off all comments from the input file
when reading it in, and does not put any comments into the
assembly code added to form the final ASM file. If -c is
specified, the original comments are preserved and CASM adds
its own comments to new sections of code.

Flags old CMAC.LIB macro library operators, to help users
convert old assembly language source files to the CSM
format.

Calls the output file name.ASM. Normally, the output file is
named by tacking an .ASM extension onto the filename of the
CSM input file.

The files making up the CASM package are as follows:

CASM.C Source file for CASM program

CASM.SUB Submit file for performing the entire
conversion of a CSM file into CRL format

ASM.COM (or MAC.COM)
Standard CP/M utility, for assembling the
output of CASM.

DDT .COM (or SID.COM)
Standard CP/M utility, for converting the HEX
output of the assembler into binary CRL
format.

The pseudo-operations that CASM recognizes as' special control commands
within a .CSM file are as follows:

FUNCTION <name> Each function must begin with a FUNCTION pseudo-op, where
<name> is the name that will be used for the function in the
.CRL file directory. No .other information should appear on
this line. Note that there is no need to specify a complete

Page 126 BD Software

\-

BDS C User's Guide

EXTERNAL (list>

ENDFUNC

·ENDFUNCTION

CASM

list of contained functions at the start of a .CSM file, as was
the case with the old CMAC"LIB method of CRL file
genera tion.

If a function calls other C or assembly-coded functions, an
EXTERNAL pseudo-op naming these other functions must
follow immediately after the FUNCTION OPe One or more
names may appear in the list, and the list may be spread over
as many EXTERNAL lines as necessary. Only function names
may appear in EXTERNAL lines; data names (such as
"external" variables defined in C programs) cannot be placed
in "external" statements.

. This op (both forms are equivalent) must appear after the end
of the code for a particular function. The name of the
function need not be given as an ·operand. The three
pseudo-ops just listed are the ONL Y pseudo-ops that need to
appear among the assembly language instructions of a ".CSM"
file, and at no time do the assembly instruction themselves
need to be altered for relocation, as was the case with
CMAC.LIB.

INCLUDE (filename>

INCLUDE "filename" This op causes the named file to be inserted at the current
line of the output file. If the filename is enclosed in angle
brackets (i.e., (filename» then a default CP 1M logical drive is
presumed to contain the named file (the specific default for
your system may be customized by changing the appropriate
#define in CASM.C). If the name is enclosed in quotes, than
the current drive is searched. Note that you'll usually want
to include the file BDS.LIB at the start of your .CSM file, so
that names of routines in the run-time package are recognized
by CASM and not interpreted as undefined local forward
references ••• since CASM is a one-pass preprocessor, that would
cause it to generate undesired relocation parameters for
instructions having run-time package . routine· names as
operands. Note that the pseudo-op MACLIB is equivalent to
INCLUDE and may be used instead.

The format for a ".CSM" file is as follows:

BD Software Page 127

November 1982 BDS C User's Guide

INCLUDE bds.lib

FUNCTION functionl
EXTERNAL needed funcl [,needed _func2] [, •••]]
code for functionl
ENDFUNC

FUNCTION function2
[EXTERNAL needed funcl [,needed _func2] [, ...]]

code for function2
ENDFUNC

Addi tional notes and bugs:

1. If a label appears on an instruction, it must begin in column 1 of. the line.
If a label does not begin in column 1, CASM will not recognize it as a label
and relocation will not be handled correctly.

2. Forward references to EQUated symbols in executable instructions are not
allowed, although forward references to relocatable symbols are OK. The
reason for this is that CASM is a one-pass preprocessor, and any time a
previously unknown symbol is encountered in an instruction, CASM assumes
that symbol is relocatable and generates a relocation parameter for the
instruction.

3. INCLUDE (and MACLIB) only work for one level of inclusion.

4. When a relocatable value needs to be specified in a dw op, then it must be
the only value given in that particular DW statement, or else relocation will
not be properly handled. In other words, only one 16-bit relocatable item is
allowed per dw statement.

5. Characters used in symbol names should be restricted to alphanumeric
characters; the dollar sign ($) is also allowed, but might lead to a conflict
with labels generated by CASM.

6. The .HEX file produced by ASM after assembling the output of CASM cannot
be converted into a binary file by using the CP 1M ·LOAD command; instead,
DDT or SID must be used to read the file into memory~ and then the CP 1M
SAVE command must be issued to save the file as a .CRL file. CASM
inserts a line into the ASM file ending in the character sequence "!.",

Page 128 BD Software

BDS C User's Guide CASM

specifically so that the line will be flagged as an error... the user may then
look at the value printed out at the left margin to see. exactly how many
256-byte blocks need to be SAVEd after using DDT or SID to get the file
into memory. The reason that LOAD cannot be used is that CASM puts out
the code to generate the CRL File directory at the end of the ASM file,
using the "ORG" pseudo-op to set the location counter back to the base of
the TPA. The LOAD command aborts with the cryptic message "INVERTED
LOAD ADDRESS" when out-of-sequence data of this nature is encountered.
Rather than having CASM write out the directory information into a new file
and then append the entire previous output onto the end of this new
directory file, I decided to require the user to enter a SAVE command.

7. The CASM.SUB submit file may be used to perform the entire procedure of
converting a .CSM file to a .CRL file, except for entering the final SAVE
command. For a file named "FOO.CSM", just say:

submit casm foo

and enter the "SAVE" command just the way it instructs you to when
processing is complete.

BD Software Page 129

November 1982 BDS C User's Guide

Appendix F

BDS C File I/O Tutorial

F.1 Introduction

The library functions provided with BDS C for performing file input/output
fall into two major catagories: the raw or low';'level I/O functions, and the buffered
I/O functions.

The raw functions, typically coded in assembly language for best performance,
are an extended interface to the low-level CP/M BDOS calls that actually perform
all file I/O. The quantity of data transferred during raw I/O calls is always a
multiple of one full CP/M logical sector (128 bytes). --

The buffered functions, written in C, provide a byte-oriented, sequential file
I/O system geared especially for filter-type applications. They allow the user to
read and write data in whatever sized quantities are most convenient, as invisible
mechanisms handle all sector buffering and actual disk transfers. Thus the
buffered I/O functions are usually more convenient to deal with than the raw
functions, but they generate considerable overhead in terms of speed of execution
and consumption of memory space for code and buffer areas.

Since the raw I/O functions form the building blocks from which the buffered
functions are constructed, 1111 present the raw I/O in detail first and then go on to
the buffered functions.

Page 130 BD Software

BDS C User's Guide File I/O Tutorial

F.2 The Raw File I/O Functions

All raw I/O functions are characterized by their use of file descriptors to
identify the files which are being operated on. A file descriptor, or fd, is a small
integer value that is assigned to a file when that file is opened or created, and
remains associated with the file until it is closed. An fd is obtained by calling
either the open or the creat function. The usage of these functions is: .

fd = open(filename,mode); /* "filename" can be either a literal */
/* string or any expression that */

fd = creat(filename); /* evaluates to a character pointer */

Open is used to open an already existing file (usually, a file that has some data in
it) for reading, writing or both. creat is used to create a new file and open it for
reading and writing. In both cases, the fd is returned by the call when
successful. If some kind of error occurs and the specified file cannot be opened or
created, a value of ERROR (-1) is returned instead and the errno function may be
called to find out exactly why the file could not be opened.

All other raw functions require an fd to specify the file to be operated on
(except unlink and rename, which take filename pointers). Two very important raw
I/O functions, read and write, transfer data to and from disk in multiples of
128-byte logical sectors. Their typical usage is:

i = read(f d, buffer, nsects);
j = write(fd2, buffer2, nsects2);

The first call tries to read nsects sectors of data, from the file whose f d is
specified, into memory at location buffer. The second call tries to write nsects2
sectors of data, from memory at location buffer2, to the disk file whose fd is fd2.
Unless an error occurs (as when an illegal fd is given or an attempt is made to
read past the end of a file), read and write should cause· an immediate disk
operation to take place. This is one of the main differences betrlen raw and
buffered I/O: raw functions always cause immediate file I/Oactivity., as long as

24. On most CP/M systems, raw file I/O calls cause the disk drive hardware to go
immediately into action. Some systems perform BIOS sector buffering, though, and
may not need to go to the physical disk for each and every raw I/O call.

BD Software Page 131

November 1982 BDS C User's Guide

what they are asked to do is possible, while buffered functions only go to disk
when a buffer fills up (during writes) or becomes exhausted (during reads).

there is an invisible "r/w pointer" associated with each file opened for raw
I/O. This pointer keeps track of the next sequential sector to be read from or
written to the file. Immediately after a. file is opened, the r/w pointer is
initialized to 0 (the first sector of the file). It is automatically incremented,
foUowingread and write calis, by the number of successfully transferred sectors.
So, by default, each data transfer picks up from where the previous one left off.
The value of a file's r /w pointer is returned by the tell function, and may be
modified by using the seek function.

To illustrate the use of raw I/O in a program, let's build a simple utility to
make a copy of a file. The command format for this utility (which we'll call
"copytt) shall be:

A>copy filename newname <cr>

ttcopytt will take the file named by ttfilenamett and create a copy of it named
"newname". Since this is to be a classy utility, we want full error diagnostics in
case something goes wrong (such as running out of disk space, not being able to
find the master file, etc.) This includes checking to make sure that the correct
number of parameters were typed on the command line. It is sometimes
convenient to summarize a program in a half-C/half-English pseudo code form,
something like a flowchart but not as boxy. Here is such a summary of the copy
program:

Page 132

copy(file1,file2)

l

1

if (exactly 2 args weren't given)
complain and abort

if (can't open file1)
complain and abort

if (can't create file2)
complain and abort

while (not end of file1) {

}

Read a hunk from filel and
if (any error has ocurred)

complain and abort

""\ close all files;

write it out to file2;

BD Software

BDS C User's Guide File I/O Tutorial

And here is the actual C program to perform the copy operation:

BD Software Page 133

November 1982 BDS C User's Guide

include <bdscio.h>
#define BUFSECTS 64

/* The standard header file
/* Buffer up to 64 sectors in memory

*/
*/

int fd1, fd2; /* File descriptors for the two files */
char buffer[BUFSECTS * SECSIZ]; 1* The transfer buffer */

main(argc,argv)
int argc; /* Arg count */
char **argv; /* Arg vector */
{

1

int oksects; /* A temporary variable */

/* make sure exa(!tly 2 args were given * /
if (argc != 3)

perror(nUsage: A>copy filel file2 <cr>\nn);

/* try to open 1st file; abort on .error * /
if «fdl = open(argv[l],O» == ERROR)

perror("Can't open: %x\n",argv[l]);

/* create 2nd file, abort on error: * /
if «fd2 = creat(argv[2]) == ERROR)

perror(TtCan't create: %s\n",argv[2]);

/* Now we're ready to move the data: */
while (oksects = read(fdl, buffer, BUFSECTS» l

J

if (oksects == ERROR)
perror(nError reading: %s \n" ,argv [1]);

if (write(fd2, buffer, oksects) != oksects)
perror(ftError; probably out of disk space \nn);

/* Copy is complete. Now close the files: */
close(fd1);
if (close(fd2) == ERROR)

perror(nError closing 96s \n",argv[2]);
printf(nCopy complete \n");

perror(f orma t,arg) /* print error message and abort */
{

}

Page 134

printf(format, arg); /* print message */
fabort(fd2);
exitO;

/* abort file operations */
/* return to CP/M */

BD Software

BDS C User's Guide File 1/0 Tutorial

Now let's take a look at the program. First come the declarations: we need
a file descriptor for each file invol ved in the copying process, and a large array to
buffer up the data as chunks of disk files are shuffled through memory. The size
of the buffer is computed as· the sector size (SECSIZ, defined in BDSCIO.H)
multiplied by the number of sectors of buffering desired (BUFSECTS, defined at the
top of the program).

In the main function, we first make sure that the correct number of
parameters were typed on the command line. Since the "argc" parameter is
provided free by the run-time package to every main program, and is always equal
to the number of parameters given PLUS ONE, we test to make sure it is equal to
three (i.e, that two parameters were given). If argc is -not equal to three, we call
perror to lodge a complaint and abort the program. Perror -interprets its arguments
as if they were the first two parameters to a Pi~ntf call, performs the required
printf call, aborts operations on the output file , and exits back to command
level.

If we make it past the argc test, it is time to try opening files. The next
statement opens the master file for reading, assigns the file descriptor returned by
open to the variable "fdln, and causes the program to be aborted if open returned
an error. This can all be done at one time thanks to the power of the C
expression evaluator; if you aren't used to seeing this much happen in one
statement, take a moment to follow the parenthesization carefully. First the call
to open is performed, then the return value from open is assigned to the variable
"fdl", and then a test is done to see if that value was ERROR. If the value was
not equal to ERROR, then the file had opened correctly and control will pass on
to the next if statement; otherwise, the appropriate call to perror diagnoses the
problem and terminates the program. Creation of the output file follows a similar
pattern, again with perror getting called if the attempted file creation returns an
ERRO R value.

Having made it through all the preliminaries, it is time to start copying some
data (finally!). Each time through the while loop, we read as much data as we can
get (up to BUFSECTS sectors) into memory from the master file. The read
function returns the number of sectors successfully read; this may range from 0
(indicating an end-of-file condition) up to the number of sectors requested (in this
case, BUFSECTS), with a value of ERROR being returned on disaster (when the

25. This has no effect if called before the file was opened, as in the case where
the wrong number of parameters have been given and the "argc != 3" test
succeeds.

BD Software Page 135

November 1982 BDS C User's Guide

disk drive door pops open or something). Whatever this value may be, it is
assigned to "oksects" for later examination. In the special case when it is equal to
zero, indicating EOF, the while loop will be exited. Otherwise, we enter the loop
and attempt to write out the data that was just read in. First, though, we want
to make sure no gross error has occurred; so, a check is performed to see if
ERROR was returned by the read call. If so, it's Abortsville. Having safely
circumnavigated Abortsville, we call write to dump the data into the output file.
If we don't succeed in writing exactly the number of sectors we wanted to write,
it's back to Abortsville with an appropriate error message (most write errors are
caused by running out of disk space.) If the write succeeds, we go back to the
top of the loop and try to read some more data. This process continues until all
of the data pas been read and written, at which point the' read function returns
zero and control falls out of the while loop.

The. last thing to do, once the while loop has been left, is to mop up by
closing the files; just to be complete, we check to make sure the output file has
closed correctly. And that's it.

F.3 The Buffered File I/O Functions

The raw file I/O functions presented in the last section are most useful when
large amounts of data, preferably in even sector-sized chunks, need to be
manipulated. The preceding file-copy program is a typical application. Raw file
I/O requires you to always think in terms of sectors-while this poses no particular
problem in, say, the file-copy example, it does add quite a bit of complexity to
shuffling bits and pieces of randomly-sized data. Consider, for example, the unit
known as the text line: a line's worth of ASCII data may vary in size anywhere
from 1 byte (in the case of a null string, represented by the terminating null only)
up t9 somewhere around 130 bytes or maybe' even more. Some convenient method
of reading and writing these text lines to and from disk files would be a very
useful thing for text processing applications. Ideally we'd like to call a single
function, passing it some kind of file descriptor along with a text line pointer, and
have the function write the line of text to the file sequentially following the last
line written. Also, to prevent a time-consuming disk access every time a line is
written, it would be nice to have our function buffer up a number of lines and
write them all to disk at once when the buffer fills up. Analogously there would
have to be a function to read a text-line from a file into memory; here, also, it
would greatly improve performance if an invisible buffer. were managed by the
text-line grabbing function so that disk activity is kept to a minimum. The
functions just described are, in fact, fputs and fgets from the standard library.
These are two examples of buffered I/O functions.

Page 136 BD Software

BDS C User's Guide File I/O Tutorial

The spotlight in the world of buffered I/O is a structure named, logically, an
I/O buffer. Within this structure is a large character array to· store the data being
transferred, and several assorted pointers and descriptors to keep track of "what's
happening" in the data array portion of the buffer. These include a file descriptor
to identify the file for raw I/O operations, a pointer into the data array to tell
where the next byte shall be read from or written to, a counter to tell how many
bytes of either data or space (depending on whether you're reading or writing) are
left before it becomes necessary to reload or dump the buffer, and finally a set of
bits that remember things like whether the buffer is being used for input or output
so that the right things happen when the file is closed. Buffered I/O functions use
pointers to these I/O buffers as identification for the file being operated on, just
as the the raw file I/O functions use file descriptors.

There are six functions that perform all actual buffered I/O for single bytes
of data, or characters. The other buffered I/O functions (such as fputs and fgets)
do their jobs in terms of these six "backbone" functions.

For reading files, there are the functions fopen, getc, and fclose. Fopen is
called to open an existing disk file, associate it with a user-provided I/O buffer,
and initialize that buffer for receiving data from the file. Getc grabs a single
byte (character) from the buffer, making sure to refill the data --array from the disk
file whenever the array is found to be empty, and returns a special EOF value (-1)
when the physical end-of-file is reached. Fclose closes the file associated with an
I/O buffer and frees the buffer for use with another file.

For writing files there are the functions fcreat, putc, fflush, and fclose again
(fclose leads a double existence). Fcreat creates a new file and prepares an
associated I/O buffer structure for recieving output. The data is written to the
buffer via calls to putc, one byte at a time; whenever a putc call causes a buffer
to fill up, then the buffer is dumped to disk and reset to accept another batch of
data. When all the data has been written to a file, fclose wraps things up by
closing the associated file. For output files, fclose automatically calls fflush first
to dump out (nflush") the contents of the not-yet-full I/O buffer to the disk file
before the file is closed.

The only functions that actually read and write data are getc and putc;
functions such as fgets, fputs, fprintf, etc. do their reading and writing in terms
of getc and putc.

Careful examination of the BDSCIO.H header file will reveal that the number
of sectors used for buffering is 8, by default, and that this value may be changed
by the user for optimal performance on different systems. If, for example, you're
using BDS C on a CP/M system having a 1024-byte physical sector disk format,
then the 1024 bytes of buffering performed by the buffered I/O functions is
probably unnecessary, and changing the buffering from 8 sectors to 1 sector would

BD Software Page 137

November 1982 BDS C User's Guide

save quite a bit of memory without causing any significant loss in execution
speed. On CP/M systems running 8" standard 128-byte physical sectors, though, the
default 1K buffering scheme really speeds things up.

Let's look at a simple first example. The following program prints a given
text file out on the console, generating line numbers along the left margin:

1*

*1

PNUM.C: Program to print out a text file with
automatic generation of line numbers.

#include <bdscio.h>

main(argc,argv)
char **argv;
{

char ibuf[BUFSIZ);
char linbuf[MAXLINE];
int lineno;

1* declare 1/0 buffer
1* temporary line buffer
/* line number variabele

if (argc != 2) t 1* make sure file was given * /
printf(nUsage: A>pnum filename <cr> \n");

}
exitO;

if (fopen(argv[l],ibuf) == ERROR) [
printf(nCan't open %s\n",argv[1]);
exitO;

1

*1
*1
*/

lineno = 1; 1* initialize line number * I

while (fgets(linbuf ,ibuf»
printf(t1% 3 d: %s" ,lineno++ ,linbuf};

J
f close(ibuf);

The declaration of ibuf provides the I/O buffer area for use with fopen, getc
and fclose. The symbolic constant BUFSIZ, defined in BDSCIO.H, tells how many
bytes an I/O buffer must contain. This value will vary with the number of sectors
desired for data buffering, as described above.

Page 138 BD Software

BDS C User's Guide File I/O Tutorial

After checking the argument count and opening the specified file for buffered
input, all the real work takes place in one simple while statement. First the fgets
function reads a line of text from the file and places it into the linbuf character
array. As long as the end of file isn't encountered, fgets will return a non-zero
(true) value and the body of the while statement will be executed. The body
consists of a single call to printf, in which the current line number is printed out
followed by a colon, space, and the current text line. After the value of lineno is
used, it is incremented (by the ++ operator) in preperation for the next iteration.
The reading and printing cycle continues until fgets returns zero; at that point the
while loop is abandoned and fclose wraps things up.

For our final example we have the kind of program known as a filter.
Generally, a filter reads an input file, performs some kind of transformation on it,
and writes the result out into a new output file. The transformation might be
quite complex (like a C compilation) or it might be as trivial as the conversion of
an input text file to upper case. Since printing costs are pretty high these days,
let's skip the C compiler for the time being and take a look at a To-Upper-Case
filter program:

BD Software Page 139

November 1982 BDS C User's Guide

1*

*1

UCASE.C: Program to convert an arbitrary input text
file to upper-case-only.

#include <bdscio.h>

main(argc,argv)
char **argv-{ ,

char ibuf[BUFSIZ], obuf[BUFSIZ];
int c;

if (argc != 3) £
printf("Usage: A>ucase file new file <cr> \n");

1
exit();

if (fopen(argv[1],ibuf) == ERROR) {
printf(ttCan't open %s p",argv[1]);

} exit();

if (fcreat(argv[2],obuf) == ERROR) {
printf(flCan't create %s \n" ,argv[2 D;

J
while

exit();

«c = getc(ibuf» != EOF && c != CPMEOF) {
if (putc(toupper(c),obuf) == ERROR)

1

printf(nWrite error; disk probably full \n");
exit();

}

putc(CPMEOF ,obu!);
f close(obuf);
f close (ibuf);

This time there are two buffered 1/0 streams to be dealt with: the input file
and . the output file. The first task is to check if the correct number of
parameters were. given on the command line. In this case, we expect two
parameters: the name of an existing input file, and the name of the output file to
be created. Then fopen and fcreat are called, to open and create the two files
for buffered I/O. If that much succeeds, the main loop is entered and the fun

Page 140 BD Software

BDS C User's Guide File 1/0 Tutorial

begins.

On each iteration of the loop, a single byte is grabbed from the input file
and compared with the two possible end-of-text-file values: EOF and CPMEOF.
Normally, the last thing in a text file should be a CPMEOF (control-Z) character.
But, some text editors neglect to place the CPMEOF character at the end of a
file if the file happens to end exactly on a sector boundary; in this case, CPMEOF
will never be seen and the physical end-of-file value (EOF) must be detected. The
complication this causes is rather tricky ... the EOF value returned by getc is -1,
which must be represented as a 1S-bit value because char variables in BDS C
cannot take on negative values. This is why the variable "c" is declared as an int
instead of a ehar in the above program; if it were declared as a char, then the
sub-expression

c = getc(ibuf)

would result in a value having the type char and could never possibly equal EOF as
tested for in the program. If getc ever returned EOF in such a case, "ctt would
end up being equal to 255 (the char interpretation of the low order 8 bits of the
value EOF). Thus, "cn is declared as an int so the EOF comparison can make
sense. This is awkward because ftc" is used here for holding characters, and it
would be nice to have it declared as a character variable. There's actually a way
to do it, at the price of complete generality: if the EOF in the comparison were
changed to 255, then "c" would have to be be declared as a char and the program
would work ••• except when an actual hex FF (decimal 255) byte is encountered in
the input file! Now, while it is a pretty safe bet to assume there aren't any hex
FF bytes in your average text file, there may be exceptions. Also, there's no law
saying filters can only be written for text files. Consider a program to take a
binary file and "unload" it, creating an Intel-format HEX file. Would we want it
to halt when the first hex FF is encountered? No, the original method is clearly
the most general.

After determining that the end-of-file has not been encountered, the body of
the while statement is executed. Here we use toupper to convert the character
obtained from getc to upper case, and then we use putc to write the resulting byte
out to the output file. To be neat, errors are checked for: the program terminates
if putc returns ERROR.

As soon as an end-of-file condition is detected, we write out a final CPMEOF
(control-Z) character to terminate the output file. The way this particular program
is set up, the CPMEOF will be appended to the output file whether or not the
input file ended with a CPMEOF. Finally, fclose is used to close the input and
output files.

BD Software Page 141

November 1982 BDS C User's Guide

For a large-scale example of buffered I/O usage, see CASM.C. Also, take
some time to inspect the files BDSCIO.H, STDLIB1.C and STDLIB2.C, which contain
the sources of all the buffered I/O functions. STDLIB1.C contains the general
byte-oriented portion of the buffered I/O library, and STDLIB2.C contains the
line-oriented and format-conversion functions.

Page 142 BD Software

BDS C User's Guide Console I/O Tutorial

Appendix G

BDS C Console I/O:
Some Tricks, Clarifications and Examples

G.l Introduction

In this document I will attempt to remove some of the mystery behind the
CP /M console input/output mechanism, and show how to take best advantage of
that mechanism from BDS C programs.

The accent here will be on how to use the bios and bdos library functions for
performing console input and output directly Via CP/M's BIOS and BDOS,
respectively. One reason for going directly to CP/M's BIOS for console I/O, instead
of using the getchar /putchar functions supplied in the standard library, is to avoid
the frustrating unsolicited interception of certain ASCII characters by both the
CP/M BDOS and the getchar/putchar functions (which use BDOS calls to perform
their tasks). Some suitable applications are telecommunication programs, games, or
any programs requiring more direct control over the console than the standard
getchar and put char functions provide.

When the major documentation for BDS C (i.e. the User's Guide) was
originally prepared several years ago, I made the stuffy assumtion that all users
would realize how the bdos and bios library functions could be used to perform
direct console I/O through the BDOS and BIOS. In reality, the use of the bios and
bdos functions for such purposes might only be self-evident to CP/MSystem
programmers, and even then only to those programmers having experience driving
the CP/M console from assembly or machine language programs.

BD Software Page 143

November 1982 BDS C User's Guide

G.2 Elementary Console Interfacing

Let's take a look at what really happens during console I/O, and how to
control it •.•

The lowest (simplest) level of console-controlling software is in the BIOS
(Basic Input/Output System) section of CP/M. There are three subroutines in the
BIOS that deal with reading and writing raw characters to the console: CONST
(check CONsole STatus), CONIN (wait for a character to be typed on the CONsole,
then read it IN), and CONOUT (send the CONsole an OUTput character to be
typed). The way to locate these subroutines from the assembly language level is
rather complicated, so the BDS C library contains the bios function to make it
easy to access the BIOS subroutines from C programs.

BIOS vectors 2, 3 and 4 are used to communicate directly with the console
device. The expression bios(2) specifies a call to the CONST. subroutine in the
bios, which returns a non-zero ("true") value when a character is available at the
console, or zero otherwise. To actually read the character after bios(2) indicates
one is ready, or to wait until a character is ready and then read it, use bios(3) to
call the CONrn subroutine and return a character from the console. To directly
write a character c to the console, say bios(4,e) to call CON OUT. Note, though,
that the BIOS subroutines are not a ware that C programs represent a
carriage-return/line feed combination by a single "newline" character ('\n') .•• the call
bios(4,'\n') will ca.use only a single line feed character (ASCn decimal value 10) to
be printed on the console without a leading carriage-return. When using direct
console I/O you must send both a carriage-return ('\r') and a newline ('\n') to the
CONOUT subroutine in order to go to the beginning of a new line on the console
output.

Such a sequence would appear as follows:

bi os(4, '\r');
bios(4, '\n ,);

/* send carriage-return to CONOUT */
/* send linefeed to CONOUT */

Making sure that all console 1/0 is eventually performed by way of the three
BIOS subroutines is the only way to approach portability of programs between

Page 144 BD Software

BDS C User's Guide Console I/O Tutorial

different CP/M systems when total control is required over the console device26.

G.3 The BOOS and How it Complicates Things

The next higher interface level (above the BIOS) on which console I/O may be
performed is the BOOS (Basic Disk Operating System). Just as there are the three
basic BIOS subroutines for interfacing with the console, there are three similar but
"higher level" BDOS operations for performing similar tasks. These BOOS functions,
each of which has its own code number distinct from its BIOS counterpart, are:
Console Input to get a single character from the console (BOOS function 1),
Console Output to write a single character to the console (BOOS function 2), and
Get Console Status to determine if there is a character available from the console
input (BDOS function 11).

Whenever the standard C library functions getchar and putchar are called,
they perform their tasks in terms of BOOS calls ..• which in turn perform their
operations through BIOS calis, leading to some nasty confusion. The BOOS
operations do all kinds of things for you that you may not even be fully aware of.
For instance, if the BOOS detects that a control-S character is present on the
console input during a console output call, then everything will stop dead until
another character is typed on the console input, before control is returned from
the original output call. This may be fine if you want the ability to stop and
start a long printout without having to code that feature into your C programs, but
it causes big trouble if you need to see every character typed on the console,
including control-S. A little bit of thought as to how the BDOS does its stuff
reveals some interesting facts: since the BDOS must be able to detect control-S on
the console input, it must read the console whenever it sees that a character has
been typed. If the character is not among those requiring special processing, such
as control-S, then it must be saved somewhere internal to the BOOS so that the
next "Console Input" call returns the character as if nothing happened. Also, the
BDOS must make sure that any subsequent calls made by the user to "Get Console
Status" (before any are made to "Console Input") indicate that a character is
available. This leads to a condition in which a BOOS call might say that a

26. Even so there's no way to know what kind of terminal is being used by another
system- so "truly portable" software either makes some assumptions about the kind
of display terminal being used (whether or not it is cursor addressable, how to
address the cursor, etc.) or includes provisions for self-modification to fit
whatever type of terminal the end-user happens to have connected to the system.

BD Software Page 145

November 1982 BDS C User's Guide

character is available, but the corresponding BIOS call would NOT, since,
physically, the character has already been gobbled up by the BDOS during a prior
interaction with the BIOS.

If this all sounds confusing, bear in mind that it took me several long months
of playing with CP/M and early versions of the compiler before I was able to
comprehend what goes on in there. The library versions of getchar and putchar
were designed for an environment where the user does not need absolute direct
control over the console. Since the BDOS already does some nice things (like
control-S processing), I threw in some additional features: automatic conversion of
the '\n' character to a CR-LF combination on output, automatic program

termination when control-C is detected on input or output (so that programs having
long or infinite unwanted printouts may be stopped without resetting the machine,
even when no console input operations are performed), automatic conversion of the
carraige-return character to a '\n' on input, etc. One early user remarked that he
would like putchar to be immune from control-C; for him I added the putch library
function, which works just like putchar except that control-C doesn't stop the
program when typed at the console. A bit later it became evident that neither
putchar nor putch are adequate when CP/M must be prevented from ever even
sampling the physical console input. At that point I added the bios function, so
that users could do their I/O directly through the BIOS and totally bypass the
frustrating character-eating BDOS.

I promised some examples earlier, so let's get to them. First of all, here is
a very rudimentary set of functions to perform the three basic console operations
in terms of the bios function, with no special conversions or interceptions at
all .•• i.e., nothing like the '\n' -) CR-LF translations:

Page 146 BD Software

BDS C User's Guide Console 1/0 Tutorial

/*

*/

getcharO
{

J

kbhit()
1

1

Ultra-raw console I/O functions:

/* get a character from the console * /

return bios(3);

/* return true (non-zero) if a character is ready */

return bios(2);

putchar(c)
char c;

/* write the character c to the console */

1
bios(4,c);

These ultra-raw functions do nothing more than provide direct access to the
BIOS console subroutines. To use them instead of the standard versions provided in
DEFF2.CRL (which, incidentally, are written in assembly language and available in
source form within DEFF2A.CSM), simply create a C source file containing them
(or any variation you please), compile the file, and link your programs with the
resulting CRL file.

Now Let's consider some more sophisticated games that can be played with
customized versions of the console 1/0 functions. For starters, let's design a set of
direct console I/O functions that perform newline conversions just like the library
versions described earlier, abort execution on control-C, but ignore
control-S/control-Q protocol and throwaway any characters typed during output
except control-C, which should cause a return to command level. What we need
here are the skeletal functions given above, plus some extra code to handle the
following conditions: a) conversion of single '\n' characters into two characters, CR
and LF, on output; b) conversion of CR to newline ('\n') and control-Z to -1 on
input; c) automatic echoing of input to the console output; and d) re-booting on
control-C during both input and output. Here are the beasts:

BD Software Page 147

November 1982 BDS C User's Guide

1*

*1

Vanilla console 1/0 functions without going through BDOS:
Note that 'kbhit' would be the same as the preceding
ultra-raw version)

#define CTRL C Ox03
define CPMEOF Ox1a

1* control-C *1
1* End of File signal (control-Z) *1

getcharO
f

}

1* get a character, hairy version *1

char c;
if «c = bios(3» == CTRL C) bios(.);
if (c = CPMEOF) retum--1;
if (c == '\r') {

1* on Ctl-C, reboot * 1
1* turn Ctl-Z to -1

putchar(' \r');

J c = '\n';

putchar(c);
return c;

1* if CR typed, then *1
1* echo a CR first, and set *1

1* up to echo a LF also *1
1* and return a '\n' * 1

1* echo the char *1
1* and return it *1

putchar(c)
char c;

1* output a character, hairy version *1

f
bios(4,c); 1* first output the given char *1
if (c == '\n') 1* if it is a newline, *1

bios(4,'\r'); 1* then output a CR also *1
if (kbhitO && bios(3) = CTRL C) 1* if Ctl-C typed, *1

bios(t); - 1* then reboot *1
1* else ignore the input completely *1 1

*1

Now, if you want to add control-S processing and a push-back feature (the
two are actually quite related, since you must be able to push back anything
except control-S that might be detected during output), you could add some
external "staten to the latest set of functions and keep track of what you see at
the console input. Once this is done, though, what you'd have is much the same
functionality as the original standard library versions of getchar and putchar (which
use the BDOS), and you might as well just use those.

So far, everything I've talked about has been in terms of the BIOS, and
applies equally to all CP/M systems. Unfortunately, there is one console operation
often needed when writing real-time interactive operations that is not supported by

Page 148 BD Software

BDS C User's Guide Console I/O Tutorial

the BIOS, and thus there is no portable way to implement it under CP/M. What's
missing is a way to ask the BIOS if the console terminal is ready to accept a
character for output. An example of the trouble this omission causes is visible in
the sample program RALLY.C (available from the BDS C User's Group). There, the
program must be able to read input from the keyboard at any instant, and cannot
afford to become tied up waiting for the terminal when the amount of data being
sent to it has caused it to refuse more characters and thereby to lock up the
program until a character can be sent. Given that the only "kosher" way to send
a character to the console is through the CONOUT BIOS call, and that such a call
might at any time tie up the program for longer than is tolerable, the only
recourse is to bypass CON OUT completely and construct a customized output
routine in C that can be more sophisticated. This is done in RALLY.C, at the
expense of non-portability for the object code; each user must individually
configure his header files to define the unique port numbers, bit positions and
polarities of the 1/0 hardware controlling his console. It would have been much
easier if the BIOS contained just one more itty bitty subroutine to test console
output status, but life is tough sometimes.

Oh well. •• I hope this has helped to demystify some of the obscure behavior of'
the CP/M console I/O interface. For the low-down on how the library versions of
getchar, putchar, etc. really work, see their source listings in DEFF2A.CSM. And
if there's something you want to do with the console and can't figure out how
despite this document, I'm always available for consultation (at least whenever I'm
near the phone.)

G.4 The CIO Function Library

A new utility package named CIO (supplied in source form as CIO.CSM) has
been included with BDS C v1.50 for use in applications requiring total direct
console I/O control.

BD Software Page 149

November 1982 BDS C User's Guide

Appendix H

The Floating Point Ftmction Package

Bob Mathias

H.1 Introduction

The components of the floating point package are:

1) FLOAT.C:
2) FP:
3) FLOATSUM.C

File of support functions, written in C
The workhorse function (in DEFF 2.CRL)
A Sam pIe use of all this stuff

Here's how it works: for every floating point number you wish to work with,
you must declare a five (5) element character array. Then, pass a pointer to the
array whenever you need to specify it in a function call. Each of Bob's functions
expects its arguments to be pointers to such character arrays.

The four basic arithmetic functions are: fpadd, fpsub, fpmul and fpdiv. They
each take three arguments: a pointer to a five character array where the result
will go, and the two operands (each a pointer to a five character array
representing a floating point operand.)

Note that the result may be placed into either of the arguments with no ill
effects. I.e., the operation:

fpmult(foo,foo,foo);

will successfully square foo and place the result in foo.

To initialize the floating point character arrays to the values you desire and
print out the values in a human-readable form, the following functions are included:

Pa~e 150 BD Software

BDS C User's Guide Floa ting Point Package

- ftca Converts a floating point number to an ASCII string. (which you can then
print out with "puts tt

). NOTE: Explicit use of this function is not necessary
when using the specially customized printf facility in FLOAT.C.

- atof Converts an ASCII string (null terminated) to a floating point number.

itof Converts integer to floating point.

H.2 Detailed Function Summary

The following functions allow BDS C compiler users to access and manipulate
real numbers. Each real number must be allocated a five (5) byte character array
(char fpno[5]). The first four bytes contain the mantissa with the first byte being
the least significant byte. The fifth byte is the exponent.

fpcomp(opl, op2)
char opl[5],op2[5];

Returns:

1 if opl> op2
-1 if opl< op2
o if opl= op2

As with most floating point packages, it is not a good practice to
compare for equality when dealing with floating point numbers.

char *fpadd(result, op1,op2)
char result[5], opl[5], op2[5];

Stores the value ofopl + op2 in result. op1 and op2 must be floating
point numbers. Returns a pointer to the beginning of result.

BD Software Page 151

November 1982

char *fpsub(result, op1, op2)
char result[5],op1[5],op2[5];

BDS C User's Guide

Stores the value of op1 - op2 in result. op1 and op2 must be floating
point numbers. Returns a pointer to the beginning of result.

char *fpmult(result, op1, op2)
char result[5],op1[5],op2[5];

Stores the value of op1 * op2 in result. op1 and op2 must be floating
point numbers. Returns a pointer to the beginning of result.

char *fpdiv(result, op1, op2)
char result[5],op1[5],op2[5];

Stores the value of op1 / op2 in result. op1 and op2 must be floating
point numbers. A divide by zero will return zero as result. Returns a
pointer to the beginning of result.

char *atof(op1, sl)
char op1[5],*sl;

Converts the ASCn string s1 into a floating point number and stores
the result in op1 The function will ignore leading white space but NO
white space is allowed to· be embedded withing the number. The
following are legal examples:
"2", "22022222222383.333", "2. 71828e-9", "334.3333E32".
"3443.33 E10" would be ILLEGAL because it contains an embedded
space. The value of the exponent must be within the range: ~38 <=
exponent <= 38. A pointer to the result is returned.

char *ftoa(sl, opl)
char *s1,op1[5];

Converts the floating point number op1 to an ASCn string at s1. It
will be formatted in scientific notation with seven (7) digits of

Page 152 BD Software

BDS C User's Guide

preclslon. The string will be terminated by a null.
Returns a pointer to the beginning of s1.

char *itof(op1, n)
char op1[5];
int n;

Floa ting Point Package

Sets the floating point number op1 to the value of integer n. n is
assumed to be a SIGNED integer.

H.3 General observations

Floating point operations must be thought of in terms of function calls rather
than simple in-line expressions; special care must be taken not to confuse the
abilities of the compiler with the abilities of the floating point package. To give
a floating point number an initial value, for instance, you cannot say

char fpno[5];
fpno = "2.236";

Instead, to achieve the desired result you'd have to say:

char fpno[5 J;
atof(fpno, "2.236 ft);

Moreover, let's say you want to set a floating point number to the value of an
integer variable called "ivaI". Saying

char fpno[5];
int ivaI;

fpno = ivaI;

will not work; you have to change that last line to

itof(fpno, ival);

BD Software Page 153

November 1982 BDS C User's Guide

Some more examples:

The following will add 100.2 and -7.99, storing the result at the five character
array location a:

fpadd(a, atof(b, "100.2"), atof(c, "-7.99 ft»;
(note that band c must also be five character arrays)

The following would not add 1 to !! as both op1 and op2 must be floating point
numbers (actually pointers to characters •••)

fpadd(a,a,l); /* bad use of "fpadd" */

All of the above functions are written in C, but most of them call a single
workhorse function called !E. to do all the' really hairy work. This function has
been placed into the DEFF 2.CRL; it is the only machine-coded part of the
package. The source code for the .!E. function is available from the BDS C User's
Group, or send a SASD (Self-Addressed, Stamped an Disk) to BD Software for a
copy.

Page 154 BD Software

BDS C User's Guide

1.1 Introduction

Appendix I

A Long Integer Package for BDS-C

Rob Shostak
August, 1982

Long Integer Package

This package adds long (32-bit) signed integer capability to BDS C much in the
same spirit as Bob Mathias's floating point package. Addition, subtraction,
multiplication, division, and modulus routines are provided as well as comparison,
assignm ent, and various kinds of conversion.

Each long integer is stored as an array of four characters. A long integer x is
thus declared by:

char x[4];

The internal representation is two's complement form, with the sign (most
significant) byte as the first byte of the array. For most purposes, however, you
needn't be concerned with the internal representation.

Most of the routines that operate on longs take three arguments, the first of
which points to where the result is to be stored, and the other two of which give
the operands. For example, given longs x, y, and z (all declared as char[4]),

ladd(z,x,y)

computes the sum of x and y and stores it into z, which is returned as the value
of the call. Note that the result argument may legitimately be the same as one
(or both) of the operand arguments (for instance, ladd(x,x,x) does "the right
thing").

BD Software Page 155

November 1982 BDS C User's Guide

The package is written partly in C and partly (for speed .and compactness) in
8080 assembly language. To use it, simply link LONG.CRL into your program. A
description is given below for each routine.

itol(l,i}
char 1[4];
int i;

Stores the long representation of the 16-bit integer i into .1 and
returns 1.

atol(l,s)
char 1[4];
char *s;

Stores the long representation of the Ascii string! into 1 and returns
1... The general form of ~ is a string of decimal digits, possibly
preceded by a minus sign, and terminated by any non-digit.

Itoa(s,l)
char *s;
char 1[4];

Stores the Ascii representation of long 1.. into string !, and returns ~ ..
The representation consists of a null-terminated string of Ascii digits
preceded by a minus sign if 1 is negative. s must be large enough to
receive the conversion.

ladd(r,op1,op2)
char r[4];

Stores the sum of longs op1 and op2 into £., and returns !.. op1 or op2
may be used for r.

Pae:e 156 BD Software

BDS C User's Guide

lsub(r,op1,op2)
char r[4];
char op1[4],op2[4];

Similar to ladd, but computes op1 - op2.

1m ul(r ,op 1 ,op 2)
char r[4];
char op1[4],op2[4];

Similar to ladd, but computes op1 * op2.

ldiv(r, op1, op2)
char r[4];
char op1[4], op2[4];

Long Integer Package

Similar to ladd but computes the integer quot~ent op1 / op2. If op2 is
zero, zero is computed as the result.

Imod(r, op1, op2)
char r[4];
char op1[4], op2[4];

Similar to ladd but computes op1 mod op2. If op2 is zero, zero is
com pu ted as the result.

1comp(op1,op2)
char op1[4], op2[4];

Compares longs op1 and op2, and returns one of (the ordinary integers)
1, 0, -1, depending on whether (op1 > op2), (op1 = op2), or (op1 <
op2), respectively.

-ED Software Page 157

November 1982 BDS C User's Guide

1assign(dest,source)
char source[4],dest[4];

Assigns long source to long dest, and returns pointer to dest.

1tou(I)
char 1[4];

Converts long .! to unsigned (by truncation).

utol(l,u)
char 1[4];
unsigned u;

Stores the long representation of unsigned u into 1 and returns 1.

1.2 Implementation Details

Most of· the work in the routines above is done by a single 8080
assembly-language function called long, the source for which is found in the file
LONG.CSM (availalbe from the C User's Group). The remainder of the package
resides in LONG~C. Note that most of the primitives described above simply call
long, passing it a function code (that tells it what operation is to be performed)
together with the arguments to be manipulated.

The file LONG.CRL contains the compiled functions given in LONG.C, and
DEFF 2.CRL contains the workhorse function long.

Page 158 BD Software

BDS C User's Guide The TELE DIT Program

Appendix J

The TELEDIT Telecommunications Program
and Mini Screen-Editor vl.l

This Documentation by Nigel Harrison

Editor's note: "Teledit" is a cross between the original BDS
Telnet program, Ward Christensen's MODEM program, its MODEM7
derivative, a C version called XMODEM, and Nigel's tiny screen
editor. In fact, this program was used for a while as the primary
editor on a CDC 110 micro system, until they got Mince up. It may
not be the LAST modem program you'll ever need, but it's gotta have
more roots than any other! TELEDIT is available from the BDS C
User's Group if not included on the BDS C distribution disk.

-leor

Teledit is a communications program for transmitting files and connecting to
other systems or networks as an ASCn terminal. It has a simple editor with which
one can manipulate lines of text collected during a session with a remote system.
Th~ file transmission modes allow sending/receiving either binary or text files. The
modes selected from the menu are:

T: Terminal mode - no text collection
Teledit behaves like an ASCII terminal. Eight-bit characters
are sent and received; no parity bits are checked, inserted or
removed. To return to the selection menu the SPECIAL
character is typed. The The SPECIAL character of <ctrl>shift
uparrow was chosen because it is uillikely to be struck
accidentally. To change the SPECIAL character, recompile
Teledit with the desired #define SPECIAL •••

X: terminal mode with teXt collection
Same as terminal mode above, except that any text characters

BD Software Page 159

November 1982 BDS C User's Guide

received on the communication link are saved in a text
buffer. The tab, newline and formfeed characters are also
placed into the buffer; any other characters are discarded.
While in terminal mode, the editor is entered by holding down
the control key while typing the letter "E" (control-E). X
mode prompts the user for a filename to be used for the
gathered text. After 500 lines of text have been collected
and saved in the text buffer, each additional line collected
causes the console bell (alarm) to sound. When this happens
the user should find a convenient time to suspend
communication with the remote station so that the
accumulated text can be saved (flushed) onto disk as described
below.

G: toGgle echo mode (currently set to echo)
Should not be toggled if the user is communicating in full
duplex mode and receiving an echo from the remote station,
or the user is in half duplex mode. Use this option to talk to
another person running Teledit, typically in between file
transf ers to inf orm the person of the next file to be
transmitted.

E: Edit text collected
Enters the editor from the menu display. This will not work
until X: terminal mode with teXt collection has been entered
and a text collection file opened. Editor commands are
described below.

F: Flush text collection buffer to text collection file
Flushes the text collection buffer accumulated in text
collection mode. Does not close the file.

U: select cp/m User area
For users who have user areas, others should ignore this
command.

V: select cp/m logical driVe
Select any of the disk drives available. The drive selected
becomes the currently logged disk.

D: print Directory for current drive and user area

Page 160

The current directory may be selected by using the U and V
commands.

BD Software

BDS C User's Guide The TELEDIT Program

S: Send a file, MODEM protocol
Prompts for the name of the . file to send, then waits for the
receiver to Ttsynch up".
The receiver must be using this program or one which uses
the same MODEM protocol.
Returns to menu after completion, successful or not.

R: Receive a file, MODEM protocol
Prompts for the name of the file to be received, then waits
f or the sender to begin transmission. The sender must be
using Teledit or a program that employs the same MODEM
protocol.

Q: Quit Quits and returns to command level. If a text file has been
accumulated in X mode, the user is asked whether or not he
wants it saved.

SPECIAL:

Screen Editor

Sends the SPECIAL character to the communication line,
should that ever be necessary. The SPECIAL character is
defined at compilation time by a Idefine statement at the top
of the TELED.C source file.

The editor prompts with u." when entered. The current line usually appears
directly below the prompt. The editor commands are:

A

B

F

I

BD Software

Append (Yank in) a file and insert it before the current line.

Go to the Beginning of the file and display a page. The
current line becomes the first line of the text file.

Find line that contains the pattern following the "Fit. If found,
it becomes the current line. Search starts forward and wraps
around.

Enters Insert mode. To leave insert mode, <ctrl>Z is struck,
followed by <cr>. The escape insert mode sequence should only
be entered at the beginning of a line; lines having an
embedded Z are lost.

Page 161

November 1982

K

nK

L<pattern>

o

P

-p

Q

Sn<cr>

z

n<cr>

<cr>

-n<cr>

Space Bar

Installation

BDS C User's Guide

Kill the current line.

Kill n lines, where n is a decimal number.

Find line that begins with the pattern following the nLn.

Overwrite lines of text until <ctrl>Z is struck. <ctrl>Z should
be struck only at the beginning of a new line.

Page forward in text.

Pages backward.

Quit editor.

Sets screen size to n lines. The default is 22 for 24-line
displays. S23 should be used for 25-line consoles, and S28 for
the Control Data 110.

Go to Zee end of the file. Convenient, for example, to go to
the end then -P to view last page.

Move forward in the file by n line(s).

Move forward in the file by one line.

Move backward in the file by n line(s).

Move backward in the file by one line.

print number of text lines in file.

Teledit must be compiled in BDS C with the following constants special to
the installer's particular environment:

#define HC "s*n

#define CLEARS "sn

Page 162

/* where s is the string necessary to home the
cursor on the user's console screen * /

/* where s is the string necessary to clear the screen

BD Software

BDS C User's Guide The TELEDIT Program

on the user's console */

Both the BDSCIO.H and HARDW ARE.H header files should be properly
configured for the target computer configuration before TELED is compiled.

Any of the editor commands not needed can be removed by removing the
corresponding case statement from the editor function in the source code, then
recompiling Teledit.

j

BD Software Page 163

November 1982

Appendix K

COB: A Debugger for BDS C

Version 1.2
4 November 1982

David Kirkland
5915 Yale Station

New Haven, Connecticut 06520
(203) 787-9764

Copyright (c) 1982 by David Kirkland

BDS C User's Guide

Note: This appendix is the major portion of the documentation
for the COB debugging package, which is either distributed with BDS
C or available from the BDS C Userfs Group for a nominal charge.
The information provided here should be sufficient to let you decided
whether or not to purchase the CDB package in case it is not
included in the standard BDS C distribution package due to space
limitation or other random logistic problems.

K.l Introduction - An Explanation of the Components

CDB is an interactive symbolic debugger for programs written for the BD
Software C Compiler. CDB enables a user to set breakpoints in a program, to
trace the now of program execution, and symbolically to display and set variables.
It thus provides the developer of an application program with what I hope is a
useful environment for program development and testing.

The debugging package consists of three executable files. The first of these
three, L2.COM, is a linker for object code files in the C relocatable (.CRL)

PaQ'e 164 BD Software

BDS C User's Guide The CDB Symbolic C Debugger

format, and is a replacement for the standard CLINK distributed with BDS C. The
L2 in the debugging package is a slightly modified version of the L2 linker written
by Scott Layson of Mark of the Unicorn. The new 12 incorporates all the features
of Layson's L2, along with the debugging features and minor bug fixes. L2
prepares a .COM file to be loaded and executed under the control of the other
parts of the debugging package and also prepares a symbol table for the package's
use.

The second element of the package, CDB.COM, is used by the program
developer (whom I will refer to as the "user" in this document) to invoke the
debugger. CDB interprets the command-line arguments entered by the user,
prepares various in-memory data tables, and invokes CDB2.0VL, the final element
of the package. CDB2, which resides in high memory immediately below the CP/M
BDOS, loads the program to be debugged (the "target program") at the base of the
TPA (the CP/M "transient program area," which starts at 0100 hex in normal CP/M
systems). CDB2 remains co-resident in memory with the target program throughout
the debugging session. Once CDB2 has loaded the target program, it passes control
to the main routine in the target, which begins execution. Whenever the target
program (0 enters a function, (ii) returns from a function, or (iii) encounters the
beginning of the compiled code for a C statement, the target passes control to
CDB2, which either returns control to the target or stops target execution and
prompts the user for a debugger command. (Note: the proceeding sentence is not
literally true; not every occurrence of one of the enumerated events causes CDB2
to be invoked. See the discussion below in part IV B of "system libraries" and the
-s and -ns options to L2.)

In this document, square brackets [] are used to signify optional elements,
that is, elements that can be omitted.

K.2 Constructing the Debugger

Because of various changes that might need to be made to the code of the
several components of the debugger, the package is distributed as source code.
This part of the documentation describes the steps that must be taken to transform
the source code into the three executable files L2.COM, CDB.COM, and
CDB2.0VL.

BD Software Page 165

November 1982 BDS C User's Guide

Constructing L2

Because L2 needs no customization, there is no need for each user to
prepare his own version. The version of L2 supplied obtains C.CCC and
DEFF*.CRL from the currently logged disk; to change this, modify the 'define for
the DEF _DRIVE macro as described in L2.C. If you make changes (or correct bugs)
in L2, the procedure for creating L2.COM is described in the L2 documentation
entitled "The Mark of the Unicorn Linker for BDS eft by Scott W. Layson, which is
distributed with the CDB package. However, two changes to the procedure must
be observed: (i) there is no source file SCOTT.C that needs be used and (ii) the -e
option to CC should be specified as tt-e4800" if you are going to use another
version of L2 to link the debugger version of L2, or ff-E4cOO" if you will use
CLINK to link L2. In brief, the procedure is:

cc 12.c -e4cOO
cc chario.c
clink 12 chario

Where to put CDB2

[or -e4800]

[or 12 12 chario]

Before constructing either CDB.COM or CDB2.0VL, it is first necessary to
decide where CDB2.0VL will reside in memory. CDB2 sits in high memory, above
the target program and its stack but below both CP/M's BDOS and CDB2's own
stack. The code that makes up CDB2 is a little less than Ox4600 bytes long (that's
18K decimal); the externals are about Ox0980 bytes. I have decided, a bit
arbitrarily but after some analysis, that the CDB2 stack (which starts immediately
below the BDOS) should be allocated about Ox0480 bytes. I hope this is cautious,
but because it is possible to create fairly complex expressions that must be parsed
(recursively) to dump symbolically variable contents, I think discretion is the better
part of valor. Adding the numbers up, we get a total of Ox5400 bytes for the
code, globals, and stack for CDB2; thus, CDB2 must start Ox5400 bytes below the
start of the BDOS. Because my BDOS starts at OxE406, my CDB2 sits at Ox9000
(and I will use this value in the examples that follow). (If you do not know the
address of your BDOS, the simplest way to discover it is to use DDT to examine
the address field of the jump instruction at location 0005. To do this, first type
ttddt"; once DDT prompts you with a "_tt, type "L5". Your BDOS starts at the

Page 166 BD Software

BDS C User's Guide The CDB Symbolic C Debugger

address listed in the first line of DDT's response, and should end in "06".)

The distribution disk contains a version of CDB.COM and CDB2.0VL set up
for a system with a BDOS at or above D300. Almost all systems with over 60K of
RAM should be able to use this version as is. However, this version leaves only
31K for the target program and symbol tables; if your system has its BDOS
substantially above D300, you may wish to customize the debugger to give you
more memory for the target program; and if your system has its BDOS below
D300, you must customize to get a working debugger.

Once you have decided where to put CDB2, you must edit CDB.H and
change the 'define for CDB2ADDR to the value you have determined. Below, I
will use "CDB2ADDR" to refer to this value. While editingCDB.H, you may
change the 'define for CDB2 _DRIVE; this specifies the drive from which CDB2.0VL
will be loaded if the user does not override the default with the -d option to
CDB. You may specify either a drive letter (without the colon), such as "A", or a
drive letter with a user number prefix, such as "01 AU. As distributed, the default is
no drive designator, which will cause CDB2 to be loaded from the currently logged
drive and user area.

Constructing CDB

After changing CDB2ADDR in CDB.H, you are ready to compile the two
source files for CDB:

cc cdb.c -e3200
cc build.c -e3200
12 cdb build

The submit file CDB.SUB is provided to perform the above sequence.

Constructing CDB2

To compile the source files for CDB2, we need to know the address of the
CDB2 externals. Since the externals are placed right after the CDB2 code, we
merely add Ox4600 (the size of the code, given above in section B) to
CBD2ADDR. In my case, the result is Oxd600; thus, to compile CDB2 for my

Page 167

November 1982 BDS C User's Guide

system, I must specify "-ed600" as an option.

CDB2 is composed of seven C source files; to compile them, you can either
type

cc cdb2.c -exxxx
cc atbreak.c -exxxx
cc break.c -exxxx
cc command.c -exxxx
cc print.c -exxxx
cc parse.c -exxxx
cc util.c -exxxx

where xxxx is to be replaced by the external address (e.g. d600) or use the submit
file CDB2.SUB. To use CDB2.SUB, simply type

submit cdb2 xxxx

Again, xxxx is the location of the externals. Or, say

submit cdb2 xxxx d:

where d is the drive letter on which the source files reside if not on the default
drive.

Once the C files are compiled, you need to assemble the one assembler
source file, DASM.CSM, which is written in the format described in "The CASM.C
Assembly-language-to-CRL-Format Preprocessor", by Leor Zolman (distributed with
BDS C). As described more fully in that document, enter the commands

casm dasm
asm dasm
ddt dasm.hex
gO
save 3 dasm.crl

To save you this inconvenience, especially if you don't have a compiled version of
CASM handy, the distribution disk contains a pre-assembled DASM.CRL.

The final file to be created is an empty file called NULL.SYM, which L2
will try to use to determine the location of all the functions used in the root
segment for which CDB2.0VL will be the overlay segment. Because there is no
such root segment, there are no functions, either; but L2 requires a root name if
the -ovl option is used, so we create an empty file to please the linker by issuing

Page 168 BD Software

BDS C User's Guide The CD B Symbolic C Debugger

save 0 null.sym

Now that all the .CRL files are ready, we are ready to link them. The proper
command is

12 cdb2 dasm atbreak command break print parse util
-ovl null yyyy -wa

where yyyy should be replaced with the value computed for CDB2ADDR, in hex.
The submit file LCDB2.SUB is provided to perform the above linkage.

The debugger is now ready to use!

Changing the restart number

As distributed, the debugger package uses the RST 6 (restart 6) instruction
to generate breakpoints. Whenever the RST 6 instruction is encountered, control is
transferred to location Ox0030. In some systems, this area of memory (or the RST
6 instruction itself) may be reserved for other use. If so, it is necessary to assign
some other restart number to the breakpoint function. Any restart number from
one to seven (inclusive) may be used; restart zero is not allowed. To change the
restart number, changes must be made to L2.C, CDB.H, and DASM.CSM.

In both L2.C and CDB.H, the 'define for RST _NUM should be changed to
the restart slot the user has assigned to the debugger. In DASM.CSM, the "EQun
for RstNum should be changed to the same value. Note that the value should be
specified as a number from 1 to 7.

Finally, when the target program is compiled (with the -Ie option) it is
necessary to specify the new restart number. Type -kn, where n is the new restart
number, instead of the usual -Ic.

K.3 How to Invoke the Debugger

In order to use the debugger, the user must first compile and link the
target program, and then invoke the debugger itself. This part describes that
process. As an aid to the understanding of parts m and IV of this document, part

BD Software Page 169

November 1982 BDS C User's Guide

VII below is an example of a debugging session.

Compilation: The -K Option of CC

As documented in the BDS C User's Guide, the -k option is used to cause
the compiler to (0 generate a symbol table with the extension .CDB and (ii)
generate restart instructions in the compiled code. The user issues the cc
command as with any other compile, and adds the -k option. For example:

cc target.c -k

Linkage: The -D, -S, and -NS Options of L2

To link the target program, the user must use the L2 provided with the
package instead of CLINK. As described in the L2 documentation, L2 has a
different command line syntax from CLINK; in addition, the debugger version of L2
has the following additional options:

-D

-s

-NS

PaQ'e 170

Create an output module that is compatible with CDB. This
option causes L2 to put a restart instruction at the beginning
of most functions. Unless overriden by the -s or -ns options,
a restart is placed at the beginning of every function except
those functions from DEFF*.CRL that are referenced only by
functions that are themselves from DEFF* .CRL.

CRL files after the -s will be trea ted as "system" library
files. A function in a system library file that is referenced
only by a function from a system library file will not have an
initial restart added by L2, and the debugger will not trace
execution into such a function. The -d option without the -s
or -ns option is thus similar to tt-s deff deff2 deff3".

Specifies that there are to be NO system library files; this
option is used to override the default that DEFF*.CRL are
system libraries. For example,

BD Software

BDS C User's Guide The CDB Symbolic C Debugger

12 target -d

Invoking CD B

To invoke the debugger, the user enters the CDB command. The command
line is of the form:

cdb target-name [-1 [local cdbs]] [-g [global cdbs]]
[-d [user/]drive] [% (target operands]] -

The -l (letter ell) and -g options allow the user to specify the .CDB files from
which CDB will read symbol tables containing information about the variables used
in the target program. target-name.CDB is used if -l or -g is not specified;
although this default is normally adequate, if the target source code is contained in
more than one file, the user must provide the names of the .CDB files produced
from each of the source files if he wishes to access symbols defined in these
files. Often, all the globals are defined in a header (.H) file which is included in
each source file; in such a case, there is no need to use the -g option, only the -1
option. With either of these options, if the user enters a zero instead of the file
name CDB will not load any symbol files for the specified type of symbol (either
local or globa!). If the user enters no argument at all for either option, CDB will
prompt the user to enter file names, one per line, for the symbol files. A null
line terminates the prompt.

The n%" operand allows the user to specify arguments to the target
program. If the n%" is followed by any operands, these additional operands will be
passed directly to the target program; if nothing follows the "%", the user will be
prompted for a command line. (Note to hackers: CDB does not pass the arguments
that follow the "%" by accessing the "argv" passed to CDB; rather, CDB changes
the arguments as they appear in memory at Ox0080, and lets the target program,
via C.CCC, parse this command line.)

The -d option specifies the drive (with an optional user number prefix) from
which CDB2.0VL will be loaded; the default as the package is supplied is the
CP 1M default drive, but the user can modify this default.

An standard invocation of CDB is:

cdb target

BD Software Page 171

November 1982 BDS C User's Guide

Summary

To sum this section up, the standard procedure for debugging a program
nam ed target.c is as follows:

cc target.c -k
12 target -d
cdb target

For a more complex example, assume that FOO.C contains the source for the
"MAIN" routine and other functions, and that BAR.C and LIB.C contain source for
other needed functions. Both FOO.C and BAR.C contain the same declarations for
global variables (both source files 'include the header file GLOBALS.H), while
LIB.C contains the user's library functions that do not access the global variables.
Finally, assume that the user has certain other (already debugged) functions in
STDLIB.CRL. To compile this mess, the user enters

cc foo.c -k
cc bar.c -k
cc lib.c -k

To link it all together to obtain FOO.COM, the user types

12 f 00 bar -1 lib -s stdlib

The -s operand tells L2 not to generate function traces into routines included in
FOO.COM that were called only by routines in STDLIB.CRL. To invoke the
debugger, the user enters

cdb foo -1 bar lib

The -1 operand tells CDB that the files BAR.CDB and LIB.CDB contain symbol
table information put out by CC, and that all local symbol information on these
files should be loaded. Both local and global symbol information from FOO.CDB is
loaded.

Page 172 BD Software

BDS C User's Guide The CDB Symbolic C Debugger

K.4 Debugging Commands: How to Use the Debugger

This part of the document will discuss various CDB commands, grouped by
function.

When the debugger is invoked, it displays the location of CDB2 (i.e.,
CDB2ADDR), the amount of space taken up by the local and global symbol tables,
and the top of the target stack (i.e., the highest byte not taken up by CDB2 or its
tables). The debugger then passes control to the target program, which, after
executing the initialization code. from C.CCC, invokes the "MAIN" function of the
target program. Because a breakpoint is set at the entry to MAIN, control is then
passed back to the user, who is prompted for a command.

Breakpoints

CDB normally allows the target program to execute one statement after
another without interruption. There are two ways the user can stop target
execution; the breakpoint and the keyboard interrupt. By setting breakpoints the
user tells CDB to stop immediately before the target executes a given C
statement; by generating a keyboard interrupt, the user tells CDB to stop target
execution before executing any more C statements. To generate a keyboard
interrupt, the user merely types any character; when CDB sees this character, it
will stop execution (note, however, that if the target program is waiting for input
the character types by the user will go to the target and NOT cause an
interrupt).

To set a breakpoint, the user enters the "break" command:

b[reak] [function_name] [statement_number [count]]

(recall that bracketed characters can be omitted; thus, the "break" command can
be entered by typing "b", "bru, "bre", etc., and both function name and
statement number can be omitted). If function name is omitted, the breakpoint is
set at the specified statement number of the current function (that is, the function
which is currently being debugged; this function name is shown by cdb when target
execution is stopped, and can be listed by the "list" command). statement number

BD Software Page 173

November 1982 BDS C User's Guide

tells cdb exactly where in the specified function to set the breakpoint. Statements
are numbered by line, with the first line of a function (that is, the function
definition definition line on which the open parenthesis is found) being numbered
line 1. If multiple statements appear on one line (as in

a = 5; putchar('x'); while (*s) s++;

for example), a decimal notation is used; the first statement in line n is numbered
n.O, the next n.1, etc. (So in our example, assuming the given line is the 7th line
in a function, "a = 5;" is numbered 5.0; "putchar(tx');" is 5.1; "while (*s)" is 5.2, and
"s++;" is 5.3). Whenever no decimal is given, n.o" is assumed. . Thus, a statement

.)

number can be defined as --

sn := line_number[.statement_number within line]

To complicate matters a bit, sometimes CC rearranges the source code or
generates its own statements. When this happens, it becomes difficult for the user
to set a breakpoint at the desired statement. The most important cases in which
CC generates these "hidden statements" are: (0 in the looping constructs ("while",
"for", "doft

), the compiler generates branch instructions from the bottom of the loop
back to the head of the loop; (ii) in the "for" statement,. CC moves the
"increment" portion of the statement (i.e., the last of the three statements
imbedded in the "for" statement) to the end of the loop; thus, this statement is not
numbered with the rest of the "forn statement, but with the statement number
following the last line of the loop.

Aside from the numbering listed above, there are two special statement
numbers, 0 and -1. Statement number 0 is the entrance to a function, and is
encountered before any of the code of the function is executed. Statement number
-1 is the return from a function, wherever the return happens to be, and is
encountered after the return is executed (and thus the return value of the function
is available for display). Breakpoints can be set at statement numbers 0 and -1
just as any other statements.

So far, no mention has been made to the count operand. The breakpoint
set by the "break" command does not actually cause cdb to stop executing the
target program until the breakpoint has be encountered count times. The default
is 1, which causes a stop the first time the statement is encountered. Note that
count cannot be entered unless a statement number is given. Up to forty
breakpoints can be set at one time.

The "reset" command is used to remove a breakpoint. The syntax is

Page 174 BD Software

BDS C User's Guide The CnB Symbolic C Debugger

r[eset] [function_name] [statement_number]

and the defaults are the same as for the "break" command. It is, of course, an
error to try to "reset" a non-breakpoint. The "clear" command can be used to
reset ALL breakpoints; the syntax is

clear

(no brackets are given; the "clear" command must be typed in full).

The "list breakpoints" command can be used to give a listing of all
breakpoints currently set. j

Executing code

There are several commands that are used actually to execute the compiled
C code. The first of these, the "go" command, simply starts. execution (from
wherever it was last stopped) and continues until a breakpoint is encountered or
the user types a keyboard interrupt. The command has no operands.

To see which statements are executed by the target program, the user can
use the "trace" command. The command

t[race] [number_of _statements]

causes the debugger to execute number_of_statements statements, each time
printing the function name and statement number of the statement before
execution. Execution ends after number_of_statements have been executed, when a
breakpoint is encountered, or at a keyboard interrupt. The default for
number of statements is 1.

The "untrace" (also know as "walk") is similar to the "trace" command,
except that the function names and statement numbers are not displayed as each
statement is executed. In other words,

u[ntrace] [number_of _statements]

causes the debugger to execute number_of_statement statements. As witJ:l trace,
execution ends after number_of _statements are executed, when a breakpoint is
encountered, or at a keyboard interrupt; the default for number_of_statements is 1.

BD Software Page 175

November 1982 BDS C User's Guide

The final causing target execution is the "run" statement, which cannot be
abbreviated. This statement causes cdb to pass control to the target, and
deactivates the debugger altogether; once "run" is entered, there is no way to get
back to the debugger.

Dumping variables

The "dump" command is used to dump the contents of memory. The syntax
of the command is

d[ump] expression [multiple] [format]

Synonyms for "dump" are "p[rint]" and "," (a comma).

The "dump" command dumps memory starting at the address specified by
expression. Although the full definition of an expression is given below, the two
most common forms of an expression are a single variable name (such as "i", "foo",
or "filename") and an integer in either hexadecimal or decimal notation (such as
Ox0100, 43000, or 12). If a variable. name or other symbolic expression is given for
expression, cdb will dump the variable in the format corresponding to the
declaration of that variable; if the variable is a structure, cdb will symbolically
dump each element of the structure. However, the user can specify another
format to use, and often does so specify when expression is not a symbolic
expression but an integer address. The allowable formats are

c character
p pointer
i or w integer /word
s string (null terminated array of char)

and "w" is the default if no format is specified for a non-symbolic expression.

The multiple option specifies how much memory is dumped. The "dump"
command dumps multiple occurrences of the specified format; thus

dump Ox0100 10 c

would dump ten characters, from Ox0100 to Ox010A, while

Page 176 BD Software

BDS C User's Guide The CDB Symbolic C Debugger

dump Ox0100 10

would dump ten words (twenty bytes), from Ox0100 to OxOl14, since "w" is the
default format.

The syntax for an expression is as follows:

expression := *expression
primary

primary := integer
identifier
(expression)
prim ary [expression]
primary.identifier
primary->iden tifier

This basically means that any C expression that does not contain a logical
or arithmetic operator is a cdb expression; the expressions can be fairly complex,
as in

table [tablet 1,i],j].name[10]

To stop an excessively long "dump" command, type any character.

Normally, C scope rules are used for symbolic references. This means that
when the debugger has stopped at a breakpoint in routine "foo" , a reference to a
variable "bar" refers to the variable local to routine "foo" named "bar" if such a
variable exists; if no such local variable exists, the reference is to the global
symbol "bar". This scope rule makes it impossible for a C function with a local
variable of the same name as a global variable to access the global variable. cdb
allows the user to override the standard scope rule and to specify the global
variable by prefixing the variable name with a backslash (" If). In the example
above, to access the global variable "bar" from within the functIon "foo", the user
could type:

dump foo

One final use for the "dump" command is finding the address, but not the
value, of a symbol. To do this, the expression is prefixed with n&n, an ampersand,
the C "address of" operator. For example, to determine the address of a variable
named table, enter

BD Software Page 177

November 1982 BDS C User's Guide

dump &table

Complex symbolic expressions can also be used, such as

dump &table[i,j]

Setting variables

The "set" command is used to store data into memory. The command

s[et] expression value [c]

will store value into the memory location referred to by expression. Normally, a
16-bit value is stored; however, if (i) expression is a symbolic expression that refers
to a char variable, or (ii) value is within single quotes, such as '#', or (iii) the "en
option is given, then only an 8-bit value is stored.

The list command - various items of information

The ''list'' command is used to access various items of information.

lUst]

lUst] a[rguments]

lUst] b[reakpoints]
l[ist] g[lobals]
I[ist] l[ocals]

lUst] m[ap]

lUst] t[raceback]

List the current function
and statement number
List arguments to current
function
List all breakpoints
List all global variables
List local variables for
current function
List linker map of target
program
List function trace from
MAIN to current function

To stop the "list globals" or "list locals" listing of variables, the USer can type any
character (except carriage return). To stop the listing of a large array and skip

Page 178 BD Software

BDS C User's Guide The CDB Symbolic C Debugger

forward to the next variable, type carriage return.

The guit command

To end the debug session and return to CP/M, the "quit" command is used.
This command cannot be abbreviated.

K.5 Alphabetical Listing of Debugger Commands

A statement number is defined as

sn := line number[.statement number_within_line]

An expression is defined as

expression := *expression
primary

primary := integer
identifier
(expression)
primary[expression]
primary.identifier
primary->iden tifier

b[reak] [function 'name] [statement_number [count]]
Set a breakpoint. Defaults:

clear

function name
statement number
count -

Remove all breakpoints.

d[ump] expression [multiple] [format]

current function
o
1

Dump "multiple" items in "format" format. Defaults:

BD Software Page 179

November 1982

g[o]

lUst]

l[ist] a[rguments]

BDS C User's Guide

1 multiple
format
Synonyms:

i or format associated with symbol
p[rint] and , (comma).

The allowable formats are
c character
p pointer
i or w integer/word
s string

Begin execution.

List the current function and statement

List arguments to current function

lUst] b[reakpoints] . List all breakpoints

l[ist] g[lobals] List all global variables

lUst] l[ocals] List local variables for current function

l[ist] m[ap] List linker map of target program

lUst] tlraceback] List function trace

quit Return to CP/M.

r[eset] [function_name] [statement_number]
Remove a breakpoint. Defaults:

function name
statement number

current function
o

run Begin execution, disengage debugger.

s[et] expression value [c]

Page 180

Store data into memory. Normally, a lS-bit value is stored;
however, if (if expression is a symbolic expression that refers
to a char variable, or (ii) value is within single quotes, such
as '#', or (iii) the "e" option is given, then only an 8-bit value
is stored.

BD Software

;

BDS C User's Guide The CDB Symbolic C Debugger

t[race] [number_of _statements]
Trace execution, listing statements executed. Default: one
statement.

u[ntrace] [number_of _statements]

BD Software

Execute number of statement statements.
statement. Synonym: w[alk]

Default: one

Page 181

#if 91
#include 9, 14, 90, 94
abs 49
alloc 8, 54, 90
arghak 42
atoi 63
BD Software's address 1, 32
bdos 46
BDS C User's Group 2, 5, 33
BDS.LIB 43
BDSCIO.H 8, 11, 16
bios 47
biosh 47
BUFSIZ 11
call 48
calla 49
CASM 34
CC 5, 17
CC2 21
CCC.ASM 13, 43
CCP 15
CDB 167
CDB2 167
cfsize 69
CLIB 27
CLIN.K 6, 22, 45
close 67
clrplot 76
codend 53
Comment nesting 20, 79
comments 11
configuration 13
Console polling 15
constant expressions 91
CP/M 3, 9
creat 67
CRL Files 27
CRL format 34
CSM files 45
csw 46

Index

debugger 5
declarations 83
declarators 84
default area 14, 22
DEFF .CRL and DEFF2.CRL 45
DIO.C 10
Directed I/O 10
endext 53
errmsg 8, 70
errno 8, 70
exec 51
execl 52
execv 52
exit 46
external data area 23, 36, 81, 89
externs 53
fabort 69
fcbaddr 71
fclose 74
fcreat 73
fflush 74
fgets 75
File I/O / 7
Filenames 65
fopen 71
fprintf 74
fputs 75
free 8, 54, 90
fscanf 74
getc 72
getchar 56
getline 58
gets 58
getval 64
getw 72
HARDW ARE.H 16
identifier name restrictions 79
initb 64
initw 63
inp 48
isalpha 60
isdigit 60
islower 60
isspace 61
isupper 60
kbhit 57
keywords 80

L2 166
labels 88
Library Directory 14
line 77
load address 25
longjrnp 55
ma1toh 42
max 49
min 49
movmem 51
MP/M 13, 32
nfcbs 16
NOBOOT 6
nrand 50
NSECTS 16
oflow 69
open 67
Optimization 19
outp 48
overlays 25
pause 48
peek 47
pipes 10
plot 76
poke 47
pricing 2
printf 58
putc 73
putch 57
putchar 57
puts 57
putw 73
qsort 51
rand 50
read 67
rename 69
ROM preparations 43
royalties 3
rsvstk 55
sbrk 54
scanf 59
seek 7, 68
setfcb 70
setjmp 55
setmem 50
setplot 76
sizeof 82

sleep 48
sprintf 61
srand 49
srand1 49
sscanf 61
stack 10, 24, 38
storage allocation
strcat 61
strcmp 61
strcpy 62
strlen 63
Submit Files 15,
swapin 53
symbol table file
tell 68
tolower 61
topofmem 53
toupper 60
txtplot 76
ungetc 72
ungetch 56
Unix 4
unlink 69
User Areas 7, 14

8

19, 31

24

warm boot inhibition 24
Warm boots 15
write 68
yank symbols 25
ZCPR 8
_allocp 8

Single CPU License Argreement BD Software

SINGLE CPU LICENSE AGREEMENT

BD Software, P.O. Box 9, Brighton, Massachusetts (referred to as "Seller") and
the party who executes this license (referred to as "Buyertt) agree to the grant and
acceptance of this License under the following terms and conditions:

1. The use of the words "supplied software" shall mean any and all programs or
parts of programs in either source or object code form as well as any and all
documentation, supplied in either hardcopy or machine-readable form, which are
sold by the Seller under the product name

BD Software C Compiler v1.5x

2. The Seller grants a nonexclusive license to the Buyer to use the supplied
software.

3. This license includes the right to make a reasonable number of copies of the
supplied software for backup purposes and ease of use. The Seller's copyright shall
be extended to cover these copies and placed on all of these copies.

4. This license does not include the right to resell any portion of the supplied
software, either alone or as part of another product, with the following exceptions:

4.1. The Buyer has the right to sell any products developed with the aid of
the supplied software in which the supplied software played only an ancillary
role.

4.2. The Buyer has the right to sell any products developed with the aid of
the supplied software in which portions of the supplied standard library
and/or run-time package object code have been incorporated, provided
written permission is obtained from the Seller and proper credit is given in
human-readable form within the product and/or product documentation
developed by Buyer. This credi t must include both Seller and Product
names.

5. The Seller's standard disclaimer shall apply to the supplied software.

'6. The Buyer agrees to use the supplied software only on a single computer
system. A description of this computer system shall be included as a part of this
agreement. This description shall be in enough detail that it refers to a unique
computer system. An example of such detail is the manufacturer's name, the
model number, and the serial number.

Single CPU License Argreement BD Software

7. Breaking the seal on the envelope containing the machine-readable portions of
the supplied software implies the acceptance of this agreement by the Buyer. Such
acceptance does not invalidate the need for the Buyer to complete and return a
copy of this agreement to the Seller.

8. The parts of this agreement are severable and fault found with anyone part
does not invalidate the others.

-- Buyer-
)

Signed

Name

Title

Company ____________________________________ _

Address --------------------------------------

BDS C Serial Number ------

Date

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187

