

A SNOBOL4 Primer
RALPH E. GRISWOLD

MADGE T. GRISWOLD

The University of Arizona

PRENTICE-HALL, INC.

Englewood Cliffs, New Jersey

Library of Congress Cataloging in Publication Data

Griswold, Ralph E.
A SNOBOL4 primer.

Includes bibliographical references.
1. SNOBOL (Computer program language)

1. Griswold, Madge T., joint author.
II. Title.
QA76.73.S6G748 001.6'424 73-3307
ISBN 0-13-815381-7

© 1973 by Prentice-Hall, Inc.
Englewood Cliffs, N. J.

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

Contents

. Preface

Chapter 1 INTRODUCTION

1.1 Computers and Programming, 1
1.2 Programs and Programming Languages, 4
1.3 Scope of the Book, 7

Chapter 2 THE BASICS OF SNOBOL4

2.1 Integers and Strings, 9
2.2 Assignment, 11
2.3 Expressions, 13
2.4 Built-in Functions, 15
2.5 Statements and the Sequence of Execution, 16
2.6 Conditional Operations, 18
2.7 Pattern Matching, 20
2.8 Value Assignment in Pattern Matching, 22
2.9 Replacement, 23

2.10 Input and Output, 24
2.11 Some Simple Programs, 26
2.12 Program Format, 31

iii

1

9

Contents

Chapter 3 NUMBERS AND STRINGS

3.1 Arithmetic Operations, 33
3.2 Integer Arithmetic, 36
3.3 Real Numbers, 37
3.4 Mixed Mode Arithmetic, 38
3.5 String-Valued Functions, 38
3.6 Indirect Referencing, 41
3.7 Comparing Strings, 43
3.8 Numbers and Strings, 43

Chapter4 PATTERNMATCHING

4.1 The Pattern-Matching Process, 47
4.2 Construction of Patterns, 51
4.3 Unevaluated Expressions, 60
4.4 Assignment During Pattern Matching, 61
4.5 Immediate Assignment and Un evaluated Expressions, 62
4.6 Precedence of Pattern-Constructing Operators, 63

Chapter 5 PROGRAMMER-DEFINED FUNCTIONS

5.1 Defining Functions, 66
5.2 Functional Composition, 70
5.3 Recursive Functions, 70
5.4 Procedures in Programs, 74

Chapter 6 ARRAYS, TABLES, AND DEFINED DATA OBJECTS

6.1 Arrays, 77
6.2 Tables, 82
6.3 Programmer-Defined Data Objects, 85

Chapter 7 INPUT AND OUTPUT

7.1 Input and Output Associations, 94
7.2 File Numbers, 95

iv

33

47

65

77

94

Contents

7.3 Record Lengths, Carriage Control, and Formats, 96
7.4 Detaching Names and Repositioning Files, 99
7.5 Output of Various Types of Data, 100

Chapter 8 PROGRAMMING TECHNIQUES

8.1 Program Organization and Structure, 102
8.2 Representation of Data, 111
8.3 Efficiency, 116

Chapter 9 PROGRAM DEBUGGING

Appendices

9.1 Printed Output from a Program Run, 122
9.2 Tracing, 125
9.3 Other Diagnostic Information, 128
9.4 Errors, 129

A Rules of Syntax, 138
B Summary of Functions and Operators, 141
C Preparing and Running a SNOBOL4 Program, 144
D Solutions to Exercises, 146

Glossary

References

Index

v

102

121

138

171

178

180

Preface

Most computer programming languages are mainly concerned with numerical computa­
tion. SNOBOL4 is unusual in that it is best suited for applications that are not numerical
in nature: the manipulation of symbolic expressions, the analysis of text, and the proces­
sing of structures. SNOBOL4 is therefore applicable in many areas where the problems are
not necessarily of a mathematical nature. Examples are the computer generation and for­
matting of documents, stylistic analysis, linguistics, and music theory.

Since most programming is done in technical areas, books on computer programming
often assume a technical background. This assumption is often implicit; while no specific
mathematical background may be required, the terminology and vernacular of mathematics
pervade such books. Thus, a person interested in computer programming may be faced
with an introductory text that simply assumes that the reader is familiar with terms such
as "variable" and "expression". Even the most elementary text can be impenetrable if its
vocabulary is alien. Because SNOBOL4 is applicable to many nontechnical problems, there
has been a demand for an introduction to SNOBOL4 that does not presume a technical
background. That demand motivated this book.

So far as possible, the material is presented here in a way that does not require a famil­
iarity with mathematical or engineering terminology. Of course there are a number of
terms that have special meaning in computer programming and in SNOBOL4 in particular.
These terms are introduced, and defined in a way that is, we hope, intuitive. Parts of the
book touch on technical subjects; that is inescapable. An attempt has been made, however,
to keep such material self-contained so that the reader may pick up the information he
needs from the book, even if the subject is unfamiliar.

This book is a primer. As such it introduces SNOBOL4 at a relatively simple level.
SNOBOL4, taken as a whole, is a complex and sophisticated language. Readers who want
to go on to more advanced aspects of SNOBOL4 should read Reference 1, which is a com­
plete description of SNOBOL4 and is also a reference manual.

vii

Preface

The material in this book has been developed over a period of time and is a result of
teaching SNOBOL4 to individuals with widely varying backgrounds. The authors gratefully
acknowledge the encouragement and suggestions of the many persons who have been in­
terested in an elementary book on SNOBOL4. Special appreciation goes to Louis Milic for
his insight and for a number of stimulating discussions on the problems of presenting this
type of material to students in nontechnical areas. Most of all, our appreciation goes to
the many students who have served as guinea pigs for various approaches to teaching
programming in SNOBOL4.

We would like to thank Barbara Hyde for her assistance in preparing preliminary drafts.
Special thanks go to LeeAnn Underwood for her excellent work in typing the final drafts
of the manuscript.

Tucson, Arizona

v1ii

Ralph E. Griswold

Madge T. Griswold

CHAPTER 1

Introduction

This book is an introduction to computer programming using SNOBOL4. This
chapter provides a background by explaining some very basic concepts about computers
and computer programming. Readers who are familiar with the use of computers, and
who already have some experience in programming, may skip this chapter.

1.1 COMPUTERS AND PROGRAMMING

Most people do not have the opportunity to work directly with computers. As a
result, there are a number of common misunderstandings about computers. One fairly
common misconception is that they are "giant brains"; computers are often viewed as
having fantastic intellectual capabilities. In reality, the operations performed by a
computer are extremely simple. It is only because these operations are performed very
quickly and because computers have a large amount of space for storing information that
computers can do anything useful at all. Programming is the process of assembling the
simple operations that computers can perform into long, complicated sequences that
give the overall effect of sophistication. Essentially, it is the computer programs that are
complicated, not the computers themselves.

There is a very wide range of machines that can be called computers. Some are very
large, very fast, and control a large amount of other equipment. Others are small, self­
contained, and comparatively slow in operation. The structure of most computers can
be characterized in the same general terms, although inevitably a general description does
not fit any particular computer precisely.

At the heart of a computer is the central processing unit, usually referred to as the
CPU. The CPU performs the actual computations by executing simple operations called

1

2 Introduction Ch.1

instructions. Different kinds of computers have different operation repertoires, called
instruction sets. Although instruction sets differ in detail, size, variety, and complexity,
all basic computer instructions are quite simple. Almost all computers have instructions
that add, subtract, multiply, and divide numbers; test and compare results; and select
alternate instructions as a result. Whatever differences there are in instruction sets for
different kinds of computers, the types of operations are similar and the resulting com­
putation is essentially the same. The user of a computer can think of the CPU as a
"black box" that performs simple computations in some manner. He does not have to
be concerned with the details of how this is accomplished.

A CPU in itself is virtually useless. A computer must have a place to store the data
to be processed and a place to put results. For this purpose computers have memories,
which are simply storage places for data. The CPU can fetch information from memory
and store information back into memory. There are usually a variety of CPU instructions
for moving data to and from memory. Figure 1.1 illustrates this situation schematically.
The word "data", incidentally, is commonly used in computer-related areas for both
singular and plural forms.

___ C_P_U __ ~1~4~ ________ ·~I _____ m __ em __ ory ____ __

Figure 1.1 The Central Part of a Computer

In addition to memory, computers need access to other information. Additional
storage is provided for information that need riot be readily available or is too massive
to fit into memory all at once. This secondary storage usually consists of magnetic tapes,
magnetic disks, and magnetic drums. Enormous amounts of information can be stored
on such devices, and in some cases they can be removed from the computer for storage or
transmission elsewhere.

Even with secondary storage, a computer would be essentially isolated from the rest
of the world if there were no means of communicating with individuals who use and run
it. There are various forms of communication. One is the computer console which usually
has buttons, switches, and a typewriter-like keyboard. Through this console, the com­
puter may be controlled by operators.

Individual users also need to communicate with the computer. This communication
may be performed in a variety of ways. The most common method requires information
to be punched on cards, which are then read into the computer through a card reader.
Similarly, the results produced by a computer are usually printed and returned to the user
on paper, called printout. This means of using a computer isolates the user from the com­
puter to the extent that he may never see it. He only places decks of cards on a counter

Sec. 1.1 Computers and Programming 3

and receives printed paper in return. There are also communication devices that permit
the user to enter data directly into the computer and, in return, to receive the computer
response directly. The most common communication device, or terminal, is the Tele­
type ®. There are many kinds of terminals, including those that provide video displays on
screens similar to television consoles. With a terminal, access to a computer can be ob­
tained through telephone lines. Hence the user may be physically remote from the
computer he uses. The general relationship among the components described above is
shown schematically in Figure 1.2. This figure is intended to illustrate typical relation­
ships; specific configurations vary considerably.

tapes

card
reader ~--------------------~~I~~~I~------------------------------~·~~I ____ m __ em __ ory ____ ~

'----_

card
punch

Figure 1.2 A Typical Computer Configuration

4 Introduction Ch.l

As computers have grown in sophistication, the number of different components
and interconnections between them have become more complex. It is quite common
for a large computer to have several CPU s operating simultaneously, either independently
or cooperatively. On an even larger scale, computer networks have been developed in
which many computers, physically far apart, are connected through communication
lines. In spite of this complexity, the basic operation of a computer remains the same:
a user can provide information and direction, the computer performs the operations
that it is instructed to perform, and the results are returned to the user.

1.2 PROGRAMS AND PROGRAMMING LANGUAGES

CPU instructions are, individually, quite simple. No single instruction does very
much. Many instructions, executed in a given order, can perform very elaborate tasks.
An assemblage of instructions is called a program. A program specifies the individual
instructions and the order in which they are to be executed. The CPU executes the
program and, in conjunction with its related components, produces the results.

To solve a problem on a computer, the user must write a program which, when
executed, will produce the desired answer. This requires a precise description of the
individual instructions to be carried out in solving the problem. Such a description is
called an algorithm. Computers do not know how to solve problems; they can only
execute a limited number of different, and very simple, instructions. Therefore an
algorithm must be so complete and detailed that it can be carried out without any
understanding of what the problem is or what result is desired. To use a computer
to solve a problem, the programmer must formulate the solution as an algorithm; a
precise, unambiguous, and completely detailed method.

To illustrate the meaning of the word algorithm, consider the following example.
Suppose examination papers have been scored on a numerical scale and are to be sorted
into piles according to the letter-grade equivalent of the score. This process is so simple
that a brief verbal description would be sufficient to tell a person how to sort the papers.
Such a description might be: "if the score is 90 or greater, it's an A, between 80 and 90,
a B, between 70 and 80, a C, between 60 8:lld 70 a D, less than that is an F." An
algorithm, on the other hand, must be more specific and must provide details that are
unnecessary when instructing a person. An algorithm might have the form:

1. Select the next examination paper. If there is none, stop. Otherwise proceed to
step 2.

2. If the score on the selected paper is 90 or greater, place the paper in the A pile and
go to step 1. Otherwise proceed to step 3.

3. If the score on the selected paper is 80 or greater, place the paper in the B pile and go
to step 1. Otherwise proceed to step 4.

Sec. 1.2 Programs and Programming Languages 5

4. If the score on the selected paper is 70 or greater, place the paper in the C pile and go
to step 1. Otherwise proceed to step 5.

5. If the score on the selected paper is 60 or greater, place the paper in the D pile and go
to step 1. Otherwise proceed to step 6.

6. Place the paper in the F pile and go to step 1.

This algorithm is tediously protracted, but it illustrates what is involved in a precise de­
scription of a process. Notice, for example, that step 1 contains an explicit instruction
about what to do when all the papers have been processed. Such an instruction would
ordinarily be unnecessary if a person were sorting papers, but a computer must be given
precise instructions for every situation. The algorithm given above does not, in fact, allow
for every possible situation. Suppose a paper has no score, or that the score is not a num­
ber, but perhaps a letter grade already. Such cases often have to be considered in practice.
The fact that computers carry out instructions quite literally can be an annoyance. In the
example above, a paper that has a score of A, rather than a numerical score, would likely
wind up in the F pile. On the other hand, a score of A might cause an error in a program
that is expecting numbers. Such results are not computer malfunctions, but the result of
an error, an omission in the algorithm.

The way an algorithm is stated depends on the operations that can be performed.
The algorithm above contains operations like "select" and "place" and assumes the ability
to read scores and compare them in a numerical scale. An algorithm is not precise and
unambiguous unless the terms in it correspond to operations that can be executed on a
computer. This algorithm is written in English, not the instructions of a computer. The
algorithm written directly for a computer would be much more detailed and virtually in­
comprehensible to a person who is not intimately familiar with the computer's instructions.

To specify a computer solution in this way, using individual, very simple, instructions,
would be tedious and difficult. A large number of computer instructions have to be writ­
ten for even a simple program. Many millions of instructions may have to be executed to
solve a problem on a computer. The instructions themselves are quite detailed and are
closely related to the specific internal structure of the computer. Moreover, computer
instructions are often far removed, in their form, from the problem to be solved. Hence,
it is usually inappropriate to use them directly. For these reasons, most computer pro­
grams are not written using the instructions of the computer. Instead, systems have been
developed to permit the users of computers to write operations more suitable for express­
ing their algorithms. These operations are automatically translated into the instruction
set of the computer and are executed by the computer. Consequently, most users of com­
puters do not need to know the actual computer instructions. The algorithm can be stated
using operations which are appropriate to the problem. These operations constitute a
language which is called a programming language.

Programming languages characteristically include operations that are quite sophisti­
cated, and many times more powerful and comprehensive than the individual machine

6 Introduction Ch.l

instructions. Thus, an algorithm usually can be stated in a programming language much
more easily than it could be stated in the instruction set of the computer. A further
advantage of programming languages results from the fact that different computers have
different instruction sets. If a program is written using the instruction set of one com­
puter, that program is virtually useless on another computer. Programming languages,
however, usually do not depend directly on a particular computer. Translators have been
written so that programming languages can be used on different types of computers.
A program written in a programming language can be largely independent of the type of
computer on which it is developed. Such a program often can be run with only a few
modifications on an entirely different type of computer.

On first sight, one might ask why a special type of language is necessary for writing
programs; why not just use English or some other natural language? This possibility has
been given considerable attention, but, in spite of its apparent advantages, it has not turned
out to be practical in most circumstances. Unfortunately, natural languages are ambiguous
and imprecise. The same word may have different meanings in different contexts. A com­
puter has no way of determining the precise meaning of a word necessary to perform the
desired operation. Human beings, despite years of experience and the ability to perform
complex processes, are often unable to determine the precise meaning of even simple sen­
tences. Furthermore, natural languages are highly redundant. This is useful for human
communication, but becomes burdensome in performing even simple processes on a com­
puter. Refer to the algorithm given above if this is not clear. Finally, many computations
that are best performed on a computer involve technical subjects that natural languages
are poorly equipped to describe. For these reasons, programming languages have been de­
veloped to allow concise and unambiguou~ formulation of algorithms for solving a variety
of technical and nontechnical problems.

There are many programming languages-hundreds, in fact. Only a few dozen are in
common use, however. Most programming is done in about ten languages which are the
most popular. These languages differ considerably in their design and purpose. Some are
intended primarily for numerical computation. FORTRAN (Formula Translator) is the
most widely used language in this area. COBOL (Common Business Oriented Language)
is designed for business applications. Algol (Algorithmic Language) is designed for scien­
tific applications. More recently, PL/I (Programming Language One) has entered the field
as a competitor for both scientific and business applications. APL (A Programming Lan­
guage) is particularly oriented toward direct, conversational interaction with the computer
through a communications terminal. The reader who is interested in more information
about programming languages should see Reference 2.

The languages listed above are essentially general-purpose languages in the sense that
they are applicable to a wide variety of problems, even though they vary in the emphasis
that they place on certain types of operations and applications. Other languages are de­
signed for special purposes, such as the simulation of processes or events. Languages differ
in the power and sophistication of the operations they provide. Some are high-level

Sec. 1.2 Programs and Programming LOrnguages 7

languages, providing operations that are powerful and complex. Others are low-level,
providing operations closer to the nature of the instruction set of the computer.

This book is an introduction to SNOBOL4 (String Oriented Symbolic Language).
SNOBOL4 is a high-level, general-purpose language, but it has a strong emphasis on
operations that involve symbols and structures, as opp~sed to numbers. Thus SNOBOL4
is especially applicable to problems that involve analyzing text, manipulating mathematical
formulas, creating documents, and so forth.

The operations of the SNOBOL4language are a long way indeed from the instruction
set of the computer. It is not necessary to understand anything about computer instruc­
tions themselves to use SNOBOL4. SNOBOL4 translators have been written for most of
the major large-scale computers in current use. Consequently SNOBOL4 programs can
be run on a variety of computers.

1.3 SCOPE OF THE BOOK

This book is a primer, an introduction to SNOBOL4. No previous programming experi­
ence is required (such experience, of course, will help). In any programming language, as
with the computer itself, a problem solution must be formulated as an algorithm and this
algorithm must then be expressed in the operations of the programming language. The
purpose of this book is to describe the operations of SNOBOL4. Once these operations
have been learned, the reader may apply them to his own problems. This book is more
concerned with the operations of SNOBOL4 and how to use them than it is with the
development of algorithms. There are many examples in the book, however, which sug­
gest approaches to formulating algorithms.

The book does not describe the entire SNOBOL4 language, but only the basic parts
that are needed for writing most programs. In addition to the operations described here,
there are a number of more advanced operations that some programmers may find inter­
esting. The entire SNOBOL4 language is described in detail in Reference 1. Reference 1
is also a complete reference manual, and serious SNOBOL4 programmers may find it
useful for this reason. For more information on methods of problem solution and prob­
lems to which SNOBOL4 is particularly applicable, Reference 3 may be of interest. Those
curious about how SNOBOL4 translators are written should see Reference 4.

The remainder of this book is devoted to SNOBOL4. Chapter 2 describes the basic
features of SNOBOL4, introducing various operations and the format of the language.
Chapters 3 through 7 provide more detail and describe other features. Chapter 8 dis­
cusses programming techniques and Chapter 9 describes methods of correcting errors in
programs. Appendices include reference material and solutions to the exercises that
appear at the ends of chapters.

This book is designed to be tutorial, and as such it tries to make the material under­
standable. As a consequence, some precision, detail, and technical accuracy have been
sacrificed. The reader should refer to Reference 1 if he is in doubt about a specific case.

8 Introduction Ch.l

A final word concerns the use of the book. A computer is a device for solving prob­
lems and producing results. A programming language is a way of formulating a solution
for computer processing, not an abstract mathematical entity. If at all possible, write
programs and actually run them on a computer. There is no better way to gain an intuitive
feeling and a complete understaD:ding for a programming language or for the process of
programming itself.

CHAPTER 2

The Basics of SNOBOL4

To learn how to use a programming language, it is necessary to learn the way that the
programming language refers to data to be processed and the kind of operations that can
be performed. This chapter covers the basic aspects of SNOBOL4 and introduces the
most important concepts in an elementary way. By the end of this chapter, simple but
complete programs can be written. Subsequent chapters go into more detail and introduce
more advanced operations.

2.1 INTEGERS AND STRINGS

Integers

Integers are used for counting and computing numerical results, and may be positive,
negative, or zero. Integers in SNOBOL4 are written in much the same way as they are in
conventional long-hand notation, except that commas are not used for separating groups
of three digits as they usually are in writing or printing. Examples are 1,36,37520,-42,
0, and -2000.

Strings

Any single symbol is called a character. The letters A, B, and so forth are examples.
So are the symbols $, /, and :~. A string is a sequence of characters, strung together, one
after another. For example, AS is a string of two characters: A followed by S. The in­
dividual characters are important, as well as the order in which they occur. For example,
SA is a different string than AS.

9

10 The Basics of SNOBOL4 Ch.2

A string may be very long, or it may consist of only one character. For example,
A is a one-character string. A string may even consist of no characters, although there
is no way to illustrate such a string. The string consisting of no charact~rs is called the
null string. This rather curious string is surprisingly useful, and it appears a number of
times later in this book. The number of characters in a string is called the length of the
string. The length of ABC is three; the length of the null string is zero.

Since strings consist of characters, they are useful for representing words, sentences,
mathematical expressions, and, in general, any kind of written or printed material. For
this reason, programs that process such material must manipUlate strings. Most program­
ming languages place more emphasis on numbers than on strings, and some languages
even have no direct way of handling strings. SNOBOL4, on the other hand, has powerful
facilities for processing strings and it is sometimes referred to as a string-manipulation
language. Actually SNOBOL4 can handle many types of data, not just strings and
numbers. However, it is very effective in dealing with strings. Hence, SNOBOL4 is a
good language to use for problems that involve data that can naturally be represented
as strings.

In SNOBOL4 programs, data strings are enclosed in quotation marks. For example,
the string AB is written 'AB'. The quotation marks serve as delimiters, marking the
beginning and end of the string. A quoted string is called a literal since the string is
written out literally. The quotation marks themselves are not part of the string. The
importance of the quotation marks is illustrated by the literal' AS ' which begins and
ends with a blank. Without the quotation marks, the blanks would be "invisible" and
it would be difficult, if not impossible, to determine where the string begins and ends.
Actually there are other, equally important, reasons for using quotation marks. Data
strings are written in programs that contain other symbols standing for program operations
and so forth. Thus, the delimiting quotation marks set data strings off from the rest of
the program.

Any kind of character may occur in a data string. The letters and numerals are used
most frequently, but other symbols may be used also. The blank, which has no visible
representation, is an example; mathematical operators and punctuation marks are others.
In data strings, all characters are equally important, or unimportant, depending on your
viewpoint. The blank is just as much a character as the letter A, although the two may
stand for different things when used in data.

Double quotation marks may also be used to delimit data strings. Both "OWL-EYED"
and 'OWL-EYED' specify the same data string. The closing quotation mark must be the
same as the opening one. As mentioned, the delimiting quotation marks are not part of
the data string. If one kind of quotation mark is needed in a data string, the other kind
of quotation mark can be used to delimit the literal. An example is:

'HE APPEARS TO BE "OWL-EYED".'

Sec. 2.1 Integers and Strings 11

In this example, the double quotation marks are part of the data string, but the delimiting
single quotation marks are not. Similarly, a single quotation mark is often used to repre­
sent an apostrophe. An example is:

"THAT'S OUR MAN"

The characters that may be used in data strings depend on the kind of computer you
are using. Each machine has its own character set which consists of all the characters
available on that computer. Almost all computers provide upper-case letters, numerals,
the blank, the common arithmetic symbols, parentheses, and a few punctuation marks.
In this book the following characters are used in SNOBOL4 programs:

ABCDEFGH I JKLMNOPQRSTUVWXYZO 12 3456789+-/::() ~ • $=' "& < > I ! ;

and the blank.

2.2 ASSIGNMENT

During execution of a typical program, many values may be computed. Most of the
values that are computed are intermediate results which lead up to final results of the
program. Often many values must be kept available for use in later computations. The
program, however, can generate only one value at a time. A value may be assigned to
a name, and then subsequently may be referred to by using the identifying name. Thus a
name provides a way of keeping track of a value.

A value is associated with a name by performing an assignment. An assignment has
the form:

name value

At least one blank is required on each side of the equal sign to separate it from the name
and the value. More blanks may be used if desired. Blanks are used in a number of situa­
tions to separate components. In this book, the number of blanks used to separate
components is chosen to produce a uniform format. An example of an assignment is

FIRST = 25

which assigns the value 25 to the name FIRST. Subsequently, FIRST may be used to
reference this value. For example

SECOND = FIRST

assigns the value 25 to the name SECOND also.
String values also may be assigned to names. An exam pIe is

WORD = 'REVERE'

which assigns the string REVERE to the name WORD.

12 The Basics of SNOBOL4 Ch.2

Names begin with a letter and may be followed by any number of other letters,
numerals, or periods. Examples are, SERENDIPITY, X, X.3, Q3, and K2Z7. Appropri­
ately chosen names are a great help in developing a program and in making it intelligible
to others. While names in SNOBOL4 have no meaning in themselves, the names used
in examples in this book are chosen to suggest the types of values they have. Names like
WORD and TEXT are used when dealing with language examples, for instance. Following
the convention of mathematics, names such as I, J, K, M, and N are often used for
integers, and so forth.

The null string may be assigned to a name by omitting the value altogether. An
example is

TEXT =
which assigns the null string to TEXT. When program execution is started, names have
null strings as their initial values. Only later are they assigned other values as execution
proceeds. Therefore, assigning the null string to a name restores that name to its original
condition. This assignment is often used when a new series of computations is started
after one series is complete.

The value assigned to a name may be changed by subsequent assignments. For
example

TEXT = WORD

changes the value of TEXT to REVERE.
The use of the equal sign for assignment deserves an explanation. In mathematical

contexts, the equal sign is used to indicate that two expressions have the same value. In
SNOBOL4, the equal sign causes an action that associates a name with a value. The reason
for using the equal sign to denote this association is simple: on most computers there is
no better character. An arrow pointing to the left would be more descriptive and would
avoid the confusion with the mathematical use of the equal sign. Unfortunately D;lost
character sets do not have a left arrow, or if they do, it is not available on devices used to
prepare programs.

Variables

The name to which a value is assigned is sometimes called a variable. This term is
derived from mathematics in which an equation contains variables (typically X, Y, and Z)
whose values are sought in solution of the equation. In a programming language, it may
be helpful to think of a variable as something whose value may vary during program
execution.

Some variables are more complicated than the names used above; keywords are an
example. A keyword is identified by an ampersand (&) followed by a name that has a
special meaning. For example, &ALPHABET is a keyword whose value is a string consisting

Sec. 2.2 Assignment 13

of the computer's character set. Another keyword is &DUMP. If a positive integer is
assigned to &DLMP by an assignment such as

& DUMP = 1

a listing of all names and their values is printed at the end of the program run. Keywords
are variables and have values just like names chosen by the programmer. The names of
keywords, however, are fixed, and each has a special, predetermined meaning. There are a
variety of keywords described in appropriate sections throughout this book. There are
also other kinds of variables which are described later.

2.3 EXPRESSIONS

Operators are used for performing arithmetic and other operations. One of the most
common operations is addition, indicated by the operator +. Two integers to be added
are written on either side of the operator. Thus 7 + 3 indicates the addition of the in­
tegers 7 and 3. Notation such as this indicates that an operation is to be performed and
is called an expression. The result of performing the operation is called the value of the
expression. Not surprisingly, the value of the expression above is the integer 10 .

Expressions can be used to compute values assigned to names. If the value of FIRST
is 25, then

SECOND = FIRST + 7

assigns the value 32 to SECOND .•
In fact, the name to which the value is assigned may be used in the expression which

computes the value. An example is:

SECOND = SECOND + 1

First the expression on the right side of the equal sign is evaluated. Since the value of
SECOND is presently 32, the result is 33. Now the assignment is made, changing the value
of SECOND to 33. In effect the assignment adds 1 to the value of SECOND.

Most arithmetic operations are written in SNOBOL4 in a way similar to that used in
ordinary notation. The operator symbols are +, -, ~~, and / for addition, subtraction,
multiplication, and division respectively. These operators are called binary operators
because they have two operands. Thus 7 + 3 is a binary operation on the operands
7 and 3. In SNOBOL4, binary operators must be surrounded by blanks as shown. That is,
there must be at least one blank between the 7 and the + and at least one blank between
the + and the 3. More than one blank is permitted, but at least one is required. An ex­
pression may contain more than one operator. An example is 7 ~~ 3 ~: 2 which has the
value 42.

Parentheses may be used to group the components of an expression. Such grouping
is particularly helpful in clarifying the structure of complicated expressions and in

14 The Basics of SNOBOL4 Ch.2

assuring that the correct operations are performed. An example of an expression
containing parenthesized groupings is:

(7 ~ 3) - (5 + (6 / 2))

As indicated by this example, parenthesized expressions may be nested. Thus, (6 / 2)
is nested within a larger grouping.

Operations may be performed on strings as well as integers. A string is a sequence of
characters. One string appended to another is also a sequence of characters and, hence, is
also a string. The operation of appending one string to another is called concatenation.
If the string DEF is concatenated on the end of the string ABC the result is the string
ABCDEF .. Most operations are indicated by a symbol such as +. However, concatenation
is performed so frequently in SNOBOL4 that no symbol is used to indicate it. Strings to
be concatenated are simply written down, one after another, with one or more blanks
separating them. Thus

HEADING = 'THE RESULT IS ' WORD

concatenates a literal string and the value of WORD. If the value of WORD is the string
COMPLETE" the value assigned to HEADING is:

THE RESULT IS COMPLETE

Observe that the blanks in this string are as important as the other characters. If the
literal string had not ended with a blank, the value of HEAD I NG would have been:

THE RESULT ISCOMPLETE

As illustrated by this example, blanks may appear in data strings and may also be used to
separate strings that are to be concatenated. Do not confuse the two uses of blanks.

Another example of concatenation is

GRADES = GRADES 'WI

which has the effect of appending a W to the value of GRADES. This is accomplished by
concatenating a W onto the previous value of GRADES and then assigning the newly formed
string as the new value of GRADES. If the previous value of GRADES was ABCDF, the new
value is ABCDFW. Note that the new value of GRADES is longer than its former value. In
SNOBOL4, changes of length are taken care of automatically.

Several strings may be concatenated in the same expression. An example is

TEXT = WORDI I I WORD2 I I WORD3 I , WORD4

which concatenates seven strings together. The result is the value of the four named
strings separated by blank~. Note the difference between the blanks in data strings and
the blanks indicating concatenation. With a little practice, it becomes easy to tell what is
inside quotation marks and what is outside them.

Sec. 2.4 Built-in Functions 15

2.4 BUILT-IN FUNCTIONS

There are many kinds of operations that can be performed on numbers and strings.
For example, it is often useful to be able to find out how long a string is. SNOBOL4
provides a number of functions for such purposes. A function computes a value which
depends on (i.e. is a function of) its arguments. The length of a string, for example, is a
function of that string.

In SNOBOL4, a function has an identifying name followed by parentheses enclosing
its arguments. The function that computes the length of a string has the name SIZE.
The following statement computes the length of WORD and assigns it to L.

L = SIZE(WORD)

If the value of WORD is the string INDIVIDUAL, the value assigned to L is 10. The left
parenthesis must immediately follow the name of the function; otherwise the separating
blanks would indicate concatenation.

Some functions have values that depend on more than one argument. The remainder
which results from the division of two numbers is an illustration. If a function has more
than one argument, the arguments are separated by commas. REMDR is the name of the
function that computes remainders. Therefore

R = REMDR(37,11)

assigns to R the remainder of the division of 37 by 11, namely 4.
When a function is encountered during program execution, it is evaluated. This evalu­

ation is referred to as a function call. The result of a function call is a value which can be
used in other computations just like any other value. This value is called the value
returned by the function call. For example, the statement

C = 12 + REMDR(SO,12)

calls the function REMDR. The value returned is 2, which is then added to 12. As a result,
14 is assigned to C. A function call is itself an expression. In the example above, the
function call is an operand of the addition operation.

Consider the following assignments.

L = SIZE(TEXT)

SWITCH = REMDR(L,2)

If the length of TEXT is even, 0 is assigned to SWITCH, but if the length of TEXT is odd, 1 is
assigned to SWITCH. The value of one function call can be used as the argument of an­
other. Thus the two assignments above can be combined into a single statement:

SWITCH = REMDR(SIZE(TEXT),2)

16 The Basics of SNOBOL4 Ch.2

Here the first argument of REMDR is a function call, SIZE(TEXT). Thus one function call
is "nested" within another. Any argument of any function may be an expression, no'
matter how complicated that expression is.

SNOBOL4 has many such functions that do a variety of things. These functions are
described in later sections as new subjects are introduced. All functions have the form
described here.

Functions that are part of SNOBOL4 are called built-in functions. SNOBOL4 also
has provisions for defining new functions that are not part of the SNOBOL4 system.
These programmer-defined functions are described in Chapter 5.

2.5 STATEMENTS AND THE SEQUENCE OF EXECUTION

A SNOBOL4 program consists of a sequence of statements:

statement 1

statement 2

statement 3

These statements may do a variety of things: assign values to names, read in data, perform
computations, compare values, print out results, and so on. The preceding sections illus­
trate statements that perform computations and assign values. Other types of statements
are illustrated in later sections. Statements are executed in sequence, one after another,
in the order in which they are written.

Sometimes it is useful to stop the sequential execution of statements at one place in a
program and begin executing statements elsewhere. Altering the sequential execution of
statements is called transfer of control and is accomplished by performing a goto to a
specified statement. The term go to refers to the program operation that transfers control.
(Admittedly goto is an inelegant term, but is part of the established jargon.)

A goto is written at the end of a statement and is separated from the rest of the state­
ment by a colon. Following the colon are parentheses that enclose a label identifying the
statement to which control is to be transferred. Any statement may have an identifying
label so that control can be transferred to it. A label is placed at the beginning of a
statement. If the program is punched on cards, the label must start in column one.

Labels are ordinarily composed of the same characters as names. Examples are Q,
LOOP~ PRINT3, and START.1. A blank indicates the end of the label and separates it

Sec. 2.5 Statements and the Sequence of Execution 17

from the rest of the statement. A statement without a label begins with a blank.
Characters other than letters, numerals, and periods also may appear in labels. See
Appendix A. Labels may be chosen by the programmer to suit his fancy. The characters
have no significance to SNOBOL4, but appropriate choices, indicating what the labeled
statements are supposed to do, are very helpful in reading the program. The choice of
appropriate mnemonics for labels as well as for names is a principle of good programming.
Each label must be different.

Consider the following sketch of a program in which the statements are numbered on
the right for reference.

BOTT<J.1 = 0 1

TOP = BOTT<J.1 + 100 2

RESULT = a 3

CALC TOP = TOP + 1 4

• •

RESULT = RESULT + 1 : (CALC) 32

• •

In this hypothetical program, statements 4 through 31 presumably perform some desired
calculation. Statement 32 increments the value of RESULT and has a goto which transfers
control back to statement 4, which is labeled CALC. Such a goto is called an unconditional
goto. After statement 32 is executed, control is always transferred to statement 4. Control
can be transferred to any statement in the program, not just to an earlier statement.

A statement with a label may be flowed into from above as well as reached by a
transfer. In the example above, after statement 3 is executed, control flows into
statement 4.

The last statement in a program is identified by the special label END. Execution of a
program is terminated by a transfer to END, or by flowing into END.

18 The Basics of SNOBOL4 Ch.2

2.6 CONDITIONAL OPERATIONS

If there were only unconditional gotos, programs would not be very interesting.
SNOBOL4, however, has a number of operations that test conditions, compare values,
and so forth. Such operations are called conditional operations and may succeed or fail
depending on conditions that exist in the program. When a conditional operation suc­
ceeds, program execution continues in the normal way. When a conditional operation
fails, however, the execution of the current statement stops when the operation fails,
even if the statement contains other computations to be performed. The statement is
said to fail in this case.

There is a special class of functions in SNOBOL4 called predicates. A predicate has
arguments like a regular function, but instead of computing a value, it succeeds or fails
depending on the relationship between the values of its arguments. Different predicates
test different relationships. Examples are I DENT and DIFFER. I DENT succeeds if its
arguments have identical values and fails if they do not. DIFFER is the opposite of I DENT,
and succeeds if its arguments do not have identical values. For example

IDENT(FIRST,SECOND)

succeeds only if the value of FI RST is identical to the value of SECOND.. In the example
above, if the value of FIRST is ABC and the value of SECOND is ABeD, I DENT fails. Transfer
can be made conditional on successful completion or on failure of a statement. Such
gotos are called conditional gotos and are identified by an S (for success) or an F (for
failure) before the parentheses enclosing the label. When a predicate fails, it stops execu­
tion of the statement in which it occurs and a failure goto is selected if one is present.
For example

IDENT(FIRST,SECOND) :S(YES)

transfers to YES if FIRST and SECOND are identical. If FIRST and SECOND are not iden­
tical, execution continues with the next statement. Trailing arguments that are omitted
ill a function call are assumed to be null strings. Therefore

IDENT(FIRST) :S(YES)

transfers to YES if the value of FIRST is null.
A statement may have both a success and a failure goto. For example

IDENT(FIRST,SECOND) :F(NO)S(YES)

transfers to YES if FI RST and SECOND are identical, but transfers to NO otherwise. If a
statement has both a success and a failure goto, the two gotos may be written in
either order.

Sec. 2.6 Conditional Operations 19

In general, functions compute values that depend on their arguments. If a predicate
fails, no value is returned, and statement execution terminates. On the other hand, if a
predicate succeeds, it returns a null string as value. This convention is useful in program­
ming, since null strings usually vanish from computations without having any effect. The
typical example is concatenation of the null string onto another string. The result is the
same as if the null string had not been there. For this reason, a predicate can be inserted
into an expression to make evaluation of the expression conditional on the success of
the predicate. An example is the statement:

APPEND = DIFFER(FIRST,SECOND) FIRST SECOND

If FIRST and SECOND are different, the value of APPEND becomes the result of con­
catenating FIRST and SECOND. If FIRST and SECOND are identical, the concatenation is
not performed and the value of APPEND is not changed.

There are a number of predicates that compare the sizes of numbers. For example,
EQ succeeds if the values of its two arguments are numerically equal. Similarly L T
succeeds if its first argument is less than its second. Such predicates are useful in per­
forming a calculation that is to be repeated a number of times. Suppose, for example,
that several copies of a string are to be concatenated together. If the number of copies
desired in the value of M and the string to be concatenated is the value of S, the following
statements compute the desired result.

COPIES =
N = 1

AGAIN COPIES = COPIES S

N = LT(N,M) N + 1 :S(AGAIN)

•

•

•

First the value of COPIES is made null in case it had a previous value. N is used to count
the number of copies and is initially set to 1. The first time the statement labeled AGAIN
is executed, the original null value of COPI ES is concatenated with the value of S, which
results in the value of S. On subsequent executions of AGAI N, copies of S are appended to
COPIES. Following execution of AGAIN, the value of N is incremented. Provided N is
less than M, the predicate succeeds and returns a null value. In this case the statement is
equivalent to:

N = N + 1 : (AGAIN)

20 The Basics of SNOBOL4 Ch.2

When N finally becomes as large as M, the predicate fails and execution continues with
the next statement in the program. At that time, COP I ES contains the desired result.

The segment of program given above is typical of the way that operations are per­
formed iteratively in SNOBOL4. A loop of statements is set up with a conditional test to
determine when the computation is complete. Of course, care must be taken that the
values used in the conditional test are set up properly. Consider what happens in the
example above if the value of M is O.

2.7 PATTERN MATCHING

Strings of characters can be used to represent many different kinds of data. To
manipulate such strings, it is often necessary to examine them to determine the various
properties they have. For example, one might want to determine whether a string con­
tains specific characters, whether it begins or ends with a certain character,and so on. The
examination of the structure of a string is called pattern matching. SNOBOL4 is best
known for its pattern-matching facilities, which are very elaborate and powerful. In fact
most of the SNOBOL4 language is composed of pattern-matching operations.

In SNOBOL4, pattern matching is accomplished by writing the string to be examined,
called the subject, in the position where a name appears in an assignment statement. The
pattern is written next, using blanks to separate the two. Thus a pattern-matching
statement has the form:

subject pattern

The simplest type of pattern matching consists of examining one string to see if it
contains another string. An example is:

TEXT 'A'

This pattern-matching statement examines the value of TEXT to see if it contains the letter
A. If the letter A occurs anywhere in the value of TEXT, the pattern match succeeds.
Otherwise it fails. For example, if the value of TEXT is HALLOWEEN;, the pattern match
succeeds, but if the value of TEXT is MYSTERY, the pattern match fails. This success or
failure may be used to select a conditional branch. A slightly more complicated example
is illustrated by the statement:

TEXT 'AL' :S(FOUND)

In this statement, the pattern match succeeds only if AL is a substring in TEXT, that is if
the two characters AL occur consecutively in the value of TEXT. AL is a substring in
HALLOWEEN but not in ATOLL. If the pattern match succeeds, control is transferred to
FOUND~ Otherwise the next statement in line is executed.

Sometimes it is useful to know if a string is matched by one pattern or by another,
alternate, pattern. Such a test could be done in two statements, but that is unnecessary

Sec. 2.7 Pattern Matching 21

because SNOBOL4 allows alternatives to be included in a pattern. The binary operator
I indicates alternatives. For example, the statement

TEXT ' AL ' , LA '

succeeds if TEXT contains either the substring AL or the substring LA. Many alternatives
can be given in a single pattern. For example

TEXT 'A' 'E' , I ' '0' 'U'
might be used to determine if TEXT contains a vowel, assuming a vowel is defined to be
an A, E, I, '0, or U.

It is not necessary for a pattern to be written out in every statement in which it is
used. It can be assigned to a variable like any other value. For example, the statement

VOWEL = 'A' 'E' , I ' '0 ' 'U'
assigns a pattern VOWEL. Subsequently this pattern may be referred to by the name
VOWEL as in the statement

TEXT VOWEL

which performs the same operation as that in the previous pattern-matching statement.
Assigning patterns to names saves a lot of writing when the same pattern is used in a
number of places in the program. Well-chosen names for patterns can also be helpful
in making a program understandable, since patterns may become so complicated that it
is difficult to tell what they do simply by looking at them.

Patterns may be concatenated in the same way that strings are concatenated. For
example, the statement

TEXT VOWEL 'T'

succeeds if a vowel is immediately followed by a T in TEXT, i.e. if TEXT contains one of
the substrings AT, ET, IT, OT, or UT. Another example is the statement

TEXT VOWEL VOWEL

which succeeds only if TEXT contains a substring consisting of two vowels in a row.
Here there are 25 possibilities starting with AA and ending with W. This example
illustrates how easily a relatively complicated set of alternatives can be constructed
from a simple pattern.

All the patterns discussed above are constructed from strings of characters. There
are also patterns that do not depend on specific strings. One of these is the value of a
built-in function, LEN. LEN produces a pattern that matches a string of characters
whose length is determined by the value of its argument. For example, LEN(1) produces
a pattern that matches any string of length 1; LEN(2), any string of length 2; and so on.

Consider the statement:

TEXT 'T' LEN(2) 'N'

22 The Basics of SNOBOL4 Ch.2

If T matches, the pattern produced by LEN(2) simply matches the next two characters. If
the next character is N, the pattern match succeeds. Therefore if the value of TEXT is

THEN THE CURTAIN FELL

the pattern match succeeds, matching the substring THEN. The pattern produced by
LEN(2) matches any two characters. Thus the pattern above would also match strings
such as THIN, TEEN, TORN, and even T~~~~N. Patterns produced by LEN fail if there are not
enough characters to match. For example, a pattern produced by LEN(3 0) would fail to
match the value of TEXT given above.

This is only the barest introduction to pattern matching. There are many other types
of patterns that can be used to determine the structure of a string and to locate substruc­
tures within it. These matters are the subject of Chapter 4.

2.8 VALUE ASSIGNMENT IN PATTERN MATCHING

Pattern matching provides a way of examiping strings to determine their structures.
However, many patterns can match more than one string. Even the simple pattern VOWEL
described in Section 2.7 can match five different strings. Pattern matching itself provides
no way of determining which string is matched. In order to find out which string is
matched, a name may be attached to a component of a pattern. If the component
matches, the matched substring is assigned as value to the name. This feature is called
value assignment in pattern matching. A name is attached to a pattern component by
using the binary value-assignment operator indicated by a period. For example

NVOWEL = VOWEL • V

assigns to NVOWEL a pattern that matches a vowel (as given by VOWEL). The name V is
attached to this pattern. Attaching a name to a pattern does not in any way affect what
the pattern matches. However, if the pattern matches, the substring it matches is assigned
to V \0 For example, if the value of WORD is BUSY, the statement

WORD NVOWEL

succeeds, and the string U is assigned to the name V. On the other hand, if the value of
WORD is GYPSY, the statement fails. In this case, since no string is matched, no assignment
is made to V. The value of V is unchanged, and remains whatever it was before the
execution of the statement.

Names may be attached to components of patterns in as many places as desired. In
this· way the substrings matched by different components of the pattern can be deter­
mined. A simple example is

DVOWEL = VOWEL • VI VOWEL. V2

Sec. 2.8 Value Assignment in Pattern Matching 23

in which VI is attached to the first vowel and V2 to the second. If DVOWEL matches,
the individual vowels are assigned to VI and V2.

Values are assigned to attached names only if the entire pattern matches. Thus if
WORD is BUSY, the statement

WORD DVOWEL

fails. No assignment is made to VI, in spite of the fact that the first VOWEL matches,
since the entire pattern does not match.

2.9 REPLACEMENT

Pattern matching makes it possible to examine the structure of a subject string and to
transfer control depending on whether or not a pattern successfully matches. A combina­
tion of pattern matching and assignment, called replacement, makes it poss~ble to modify,
as well as to examine, the subject string. Replacement is indicated by following the
pattern match with an equal sign and the value which is to replace the substring found
by the pattern match:

subject pattern value

As in assignment and pattern-matching statements, all components of the replacement
statement are separated by blanks.

An example of a replacement statement is

WORD 'A' = 'E'
If the letter A is found in the value of WORD, it is replaced by the letter E, changing the
value of WORD accordingly. If WORD does not contain an A, the pattern match fails, and
the value of WORD is not changed. Thus if the value of WORD is BAT, the statement above
changes the value of WORD to BET. If the value of WORD is BUT, however, the pattern match
fails and no replacement is made. Pattern matching proceeds from left to right. When
replacement is made, only the substring matched is replaced. Therefore if WORD contains
more than one A, only the first (leftmost) A is replaced by an E. To replace all As by Es,
the statement must be executed repeatedly as long as the pattern match succeeds. This
can be accomplished by the use of a success goto to transfer control back to the
statement itself:

LOOP WORD 'A' = 'E' :S(LOOP)

If WORD originally contains six A s, the statement labeled LOOP is successfully executed six
times as the As are found and replaced. When LOOP is executed the seventh time, the
pattern match fails and execution continues with the next statement after LOOP.

24 The Basics of SNOBOL4 Ch.2

If the pattern in a replacement statement contains several alternatives, only the sub­
string actually matched is replaced. For example, if

TEXT VOWEL 'T' =
succeeds, one of the strings AT, ET , IT, OT, or JUT is replaced by a star. Which substring
is replaced depends on which one occurs first in TEXT. If the value of TEXT before
replacement is

PUT IT ON YOUR LEFT FOOT

the value after replacement is:

px IT ON YOUR LEFT FOOT

Sometimes it is useful to eliminate a substring that occurs in another string. A sub­
string can be deleted by replacing it by the null string. For example, to remove all vowels
from TEXT, the following statement could be used:

REMV TEXT VOWEL = : 5 (REMV)

As in assignment statements, an omitted value in the replacement statement signifies the
null string.

Replacement and value assignment may be used in combination. For example,
the statement

TEXT LEN(l) • C =
deletes a character from TEXT and assigns that character to C. This statement fails if the
value of TEXT is the null string.

2.10 INPUT AND OUTPUT

The input and output of data performed by computer programs is often shrouded in
mystery and regarded with some anxiety by beginning programmers. In SNOBOL4, input
and output are quite simple, and need not be a cause for concern.

In the first place, it is necessary to understand why input and output are important
and what they do. Data in one form or another is an important component of almost all
programs. Some data may be contained in the program in the form of numbers and
strings. Usually data is not part of a program itself, but is read in by the program for
processing. Most programs, in fact, are designed so that they can be used on different sets
of data as desired. An example is a program that computes the frequency with which
letters occur in text. Such a program might be applied to many different examples of
text. The text therefore cannot be part of the program itself.

Data may be organized in a variety of ways. Most typically, a line of information is
called a record and a collection of records arranged in some order is called a file. These

Sec. 2.10 Input and Output 25

terms have their origin in business file systems which were in existence before the develop­
ment of computers. The organization of data into records and files for processing by a
program is more of a physical matter than a logical one. Each time the program requests
data, it gets a record. In SNOBOL4, input records are fixed in length and usually corres­
pond to 80-character punched cards. A file composed of records may consist of a deck of
cards, or it may be stored on one of the many devices used to store such machine-readable
data. Magnetic tapes and disks are most commonly used.

Input is requested in SNOBOL4 by using the name INPUT. INPUT is a variable like
FI RST and SECOND, but it has the special property of fetching the next data record every
time it is used. The record fetched becomes the value of INPUT. For example, in
the statement

CARD = INPUT

the use of INPUT causes a record to be read and assigned to CARD. In the SNOBOL4 pro­
gram, this record becomes an 80-character string. Each time INPUT is used, a record is
read and becomes the new value of INPUT. It is typical to assign the value of I NPUT to
another variable (such as CARD in the example above) to prevent the value from being lost
on the next reference to INPUT.

Successive uses of INPUT result in the reading of successive records of the input file in
the order in which they occur on that file. If reading continues, data in the file is eventu­
ally exhausted. When the end of the file is reached (often referred to as an end-of-file
condition, or simply "end of file"), this fact is signaled to the program to prevent further
attempts to read from the file. In SNOBOL4, an end of file causes failure of the state­
ment in which INPUT was used. Therefore a statement that reads data should have a
failure goto:

CARD = INPUT :F(NODATA)

In this case, when the input file is exhausted, control is transferred to a statement with
the label f'DDATA. Providing a failure exit on statements that do input is quite important
since an attempt to read past the end of a file may have unpleasant effects. Exactly what
may happen depends on the particular system on which SNOBOL4 is running, but in any
event, such an "accident" should be avoided.

In order for a program to display the results of its calculations, it must perform output
as well as input. The mechanism for output is similar to that for input. The name
OUTPUT, like INPUT, also has a special meaning. Whenever OUTPUT is assigned a value, that
value is printed. For example

OUTPUT = SECOND

prints the value of SECOND as well as assigning it to OUTPUT. The value of OUTPUT is not
transitory like that of INPUT, and OUTPUT can be used like any other variable except that
whenever OUTPUT is assigned a value, that value is printed.

26 The Basics of SNOBOL4 Ch.2

The ease of doing input and output is illustrated by the statement

OUTPUT = INPUT :F(NODATA)

which reads a record, prints it, and leaves the value in OUTPUT for subsequent use.
Values assigned to OUTPUT are printed and may be read and kept for future reference.

Such printed output is not in machine-readable form; i.e., it cannot be read back into
the computer. Very often it is desirable to save computed data in a form that is
machine-readable. This may be accomplished by punching the data on cards rather than
by printing it. The name PUNCH is used for this purpose. The statement

PUNCH = RESULT

assigns the value of RESULT to PUNCH and also causes a copy of the value to be punched
on a card. Each assignment to PUNCH produces a new card. In fact, since the standard
punched card is 80 characters long, if the value assigned to PUNCH is longer than 80
characters, additional cards are punched as necessary.

A null string assigned to OUTPUT causes a blank line to be printed. Similarly, a null
string assigned to PUNCH causes a blank card to be punched.

A value assigned to OUTPUT or PUNCH as a result of value assignment in pattern
matching also produces output. The following statement illustrates such a usage:

LINE LEN(20). PUNCH =
This statement removes the first 20 characters from LINE and punches them on a card.
Of course, if the value of LINE is less than 20 characters long, the statement fails and no
card is punched.

There are ways of directing output to other media, such as tape or disk. Use of these
media generally varies from installation to installation and is not discussed here.

2.11 SOME SIMPLE PROGRAMS

The preceding sections describe the rudiments of the SNOBOL4 language. Before
going on, it is worth seeing how the material already described can be put together to
create some simple but complete programs. Consider the following problems:

1. Write a program which reads in a data file and counts the number of times the char­
acter S occurs in this file. Print out the file and the result of the calculation.

2. Modify Program 1 to count occurrences of any of the characters M, R, T , and W in
addition to S.

3. Write a program to determine whether a data file contains an even or an odd number
of commas.

4. Write a program to reverse strings of characters, end for end.

Sec. 2.11 Some Simple Programs 27

One of the greatest difficulties in learning any programming language is knowing
where to begin. One can read about all kinds of features and yet not know how to do
anything. An example is usually the easiest way to get started, and for that reason these
four simple programs are worked out here in some detail.

Program 1

This program must read in data and print it out. Assume, therefore, that the data is
on the input file (perhaps actually punched on cards). The simple statement

READ OUTPUT = INPUT :S(READ)F(EOF)

will suffice to read and print the data. flowever each record must be processed. There­
fore, before reading another record, the current record must be analyzed. A start is given
by the two statements

READ OUTPUT = INPUT :F(EOF)

TEXT = OUTPUT

so that an input record is assigned to TEXT and may now be processed. The desired sub­
string can be located by a pattern-matching statement such as:

TEXT ·S· :S(YES)F(NO)

To count occurrences of S, a value, perhaps identified by the name COUNT, can be
incremented. Thus the following two statements evolve:

AGAIN TEXT ·S· :F(NO)

COUNT = COUNT + 1 : (AGAIN)

These lines contain a rather common mistake, and produce a bane of the programmer's
existence: an endless loop. If TEXT does contain S, COUNT is incremented, but the same
S is found the next time, and so on. An easy way to avoid such a loop is to removeS
each time it is found. The statements become:

AGAIN TEXT ·S· = :F(NO)

COUNT = COUNT + 1 : (AGAIN)

N ow there is no danger of looping, because every time S is found, it is removed. Eventu­
ally, TEXT will contain no more occurrences of S.

The next question is where to go if S is not found in TEXT. The label NO has been
provided, but the next step in this case is to read another card, so the transfer should be

28 The Basics of SNOBOL4 Ch.2

to READ to get the next line for processing. A few things remain to complete the pro­
gram. The initial value of COUNT should be set to zero before any data is read. Finally,
when READ fails, the count must be printed out. The complete program is:

COUNT =
READ OUTPUT

TEXT =
AGAIN TEXT 's'

COUNT =
EOF OUTPUT =

OUTPUT =
END

0

= INPUT

OUTPUT

=
COUNT + 1

'THE TOTAL COUNT IS ' COUNT

:F(EOF)

:F(READ)

: (AGAIN)

A blank line is printed at EOF to separate the line containing the total count from the text
which has already been printed. This is just a small extra touch to make the results easier
to read. Program execution terminates when control flows into the END statement.
Printed output resulting from running this program on a file consisting of two data
records follows:

DATA STRINGS THAT APPEAR EXPLICITLY IN A PROGRAM ARE

DISTINGUISHED FROM NAMES BY ENCLOSING QUOTATION MARKS.

THE TOTAL COUNT IS 7

Program 2

Once Program 1 has been worked out, Program 2 follows naturally; only one line need
be changed. Instead of one character, anyone of five must be counted. This amounts to
adding four alternatives to the pattern used in AGAIN:

AGAIN TEXT'S' I'M' I 'R' I 'T' I 'w' = :F(READ)
A host of related programs can be provided in a similar manner. A more elegant way

of providing for such generality is to assign the pattern to a variable at the beginning of
the program and to use that variable in the pattern-matching statement. For Program 2
this might be done as follows:

Sec. 2.11 Some Simple Programs 29

PAT = '5' 'M' I ' R' I 'T' I 'w,

COUNT = 0

READ •

•

•

f:.&AIN TEXT PAT = :F(READ)

•

•

Now it is an easy matter to change PAT to count other-things using the same program.

Program 3

Determining whether text contains an even or odd number of commas can be accom­
plished by counting the commas first. Counting commas may be done in the same fashion
as counting the strings in Programs 1 and 2. Simply changing PAT to

PAT = , , ,
takes care of the counting problem. It remains to determine whether the result is odd or
even. This can be done by determining if the number of commas is evenly divisible by
two. The built-in function REMDR can be used to perform this computation. That is, if
REMDR(COUNT ,2) is zero, the count is even. Otherwise it is odd. This may be tested by
applying the predicate EQ :

EOF

000

END

EQ(REMOR(COUNT,2),O)

OUTPUT = 'COUNT IS EVEN'

OUTPUT = 'COUNT IS 000'

:F(OOD)

: (END)

Note the transfer to END to terminate program execution in the case that the number
is even.

30 The Basics of SNOBOL4 Ch.2

Program 4

Reversing a string is somewhat different from the preceding problems. First, the
program must be able to reverse strings regardless of what characters they contain. Thus
pattern matching for specific characters is not the way to approach the problem. A
pattern constructed by LEN is therefore suggested. A string can be reversed by removing
one character (LEN(l) at a time and building up a new string one character at a time,
but in the opposite order. If the string to be reversed is the value of TEXT, statements
like the following could be used:

REM TEXT LEN(l) c =
REVERSE = C REVERSE : (REM)

The first statement removes a character from the beginning of TEXT. The second state­
ment places that character on the front of REVERSE. To see how the reversal proceeds,
suppose the value of TEXT is XYZ. Successive executions of the statements above produce:

TEXT REVERSE

XYZ

YZ X

Z YX

ZYX

Two things remain to assure that the program works properly. When the value of
TEXT becomes null, the statement labeled REM will fail. To avoid an endless loop, a
failure goto must be provided. Finally, if the statements are to be used on more than
one string, REVERSE must be set to null before beginning. Otherwise, characters would
be concatenated onto the last reversed string. The complete section of program is:

REM

DONE

REVERSE =
TEXT LEN(l). C =

REVERSE = C REVERSE

•

•

•

:F(OONE)

: (RSVt)

Sec. 2.11 Some Simple Programs 31

Incorporating these statements into a program that processes data on file and prints
the results is left to the reader.

2.12 PROGRAM FORMAT

Most programs are punched on 80-column cards, using a keypunch machine. In any
event, programs are prepared line by line. Usually one statement is written on each card.
If a statement has a label, that label must begin at the beginning of the card, in column
one. If a statement has no label, column one must be blank. The rest of the statement is
punched as described in the preceding sections, with the components separated by blanks
as required. The first 72 characters of a card can be used for the statement. The last
eight characters are usually left blank but can be used for identification, such as sequence
numbers, if desired. These eight characters are not part of the statement.

Sometimes a statement is too long to fit in the 72 columns available on a card. This
may happen, for example, when a number of long data strings appear in the same state­
ment. If a statement is too long to fit on one card, it may be continued on successive
cards. To continue a statement, special rules must be followed. First, a statement can
be divided between cards only where blanks are used for concatenation, to surround
binary operators, or to separate components. Cards which continue a statement must
have a + in column one. The following statement illustrates continuation.

OUTPUT = 'THE RESULTS OF THE SURVEY SHOW THAT '

+ FINAL ' CUSTOMERS WERE SATISFIED'

A statement may be continued on as many lines as necessary. One precaution must be
observed: a statement cannot be divided at a blank that occurs in a data string. If a data
string is too long to fit on a line, it must be divided into two data strings that are then
concatenated.

More than one statement can be placed on a single line if desired. In this case, a semi­
colon ends a statement and a new statement can be begun immediately following a semi­
colon. If the next statement begins with a label, that label must begin at the first character
after the semicolon. An example of three statements written on one line is:

I = 1; N = IO;RETRY COUNT = o
The third statement has a label, RETRY.

Lines that begin with a:~ are considered to be comments and are ignored when the
program is run. Such lines may be used to insert descriptive information in the program.
See Section 8.2.

The last statement of a program is an end statement containing the label END, which
indicates the end of the program. If the program reads data, the data records immediately
follow the end card. The program and data together make up a deck of cards which can
then be run on a computer. See Appendices A and C for more information.

32 The Basics of SNOBOL4 Ch.2

EXERCISES

2.1. Identify all the integers, data strings, names, and labels in the solution given to
Problem 1 in Section 2.11.

2.2. Determine the values assigned to names by the following statements:

I = 100

J = 1 :c I

K = (I / 10) + 3

L = (K ~ I) + (K - 5)

WORD1 = 'COG ITO'

WORD2 = 'ERGO'

WORD3 = 'SUM'

CLAUSE = WORD 1 WORD 2 WORD3

SENTENCE = CLAUSE

ENDVOWEL = ('A'

CLAUSE ENDVOWEL

2.3. Write patterns that match
(a) any single even digit.
(b) any punctuation mark.

, ,
•

'E' , 1 ' '0' 'U') • V ' •

(c) any vowel that is immediately followed by a punctuation mark.
(d) pairs of vowels separated by three characters.

2.4. A string that reads the same forward and backward is called a palindrome. An
example is:

ABLE WAS I ERE 1 SAW ELBA

Write statements that determine if a string is a palindrome.

2.5. Write statements to rotate a string left N characters, where N is a positive integer.
For example, the result of rotating the string mentioned in Exercise 2.4 by 3
positions is:

E WAS I ERE I SAW ELBAABL

2.6. Write a program that simply prints and punches a data file.

CHAPTER 3

Numbers and Strings

SNOBOL4 is frequently used for problems involving strings of characters because
of its facilities for handling string data. Almost every program also deals with numbers
in some way. It may be necessary to count the number of times a statement is executed
in a loop, to compare lengths of strings, or to compute averages, for example.

3.1 ARITHMETIC OPERATIONS

Binary Operators

The most common arithmetic operations are addition, subtraction, multiplication, and
division. Exponentiation, the raising of a number to a power (e.g. 23), is less frequently
used but is still familiar. The symbols for these binary operations in SNOBOL4 are

+ ~: /
respectively. The pair of symbols ~:~: also may be used to indicate exponentiation.

These operators require two operands and, like all binary operators in SNOBOL4,
they must be surrounded by blanks. The operands may be numbers, names that have
numerical values, or, in fact, any expressions that have numerical values. For example,
the statements

N = 10

M = N + 3

assign the values 10 and 13 to Nand M respectively. Consider the expression:

M :: 3 + 2

33

34 Numbers and Strings Ch.3

At first glance, this may not appear to be a valid expression, since every binary operator
requires two operands and in the expression above there are two operators but only
three operands. Actually, the result of one binary operation provides an operand for the
other. The expression above is equivalent to

(M :: 3) + 2

where parentheses indicate grouping of the parts of the expression. Thus the expression
M :: 3 is the left operand of the +. The next question is: Why are the parentheses placed
where they are shown above? The other choice would be:

M :e (3 + 2)

Note that this grouping would give a different value. The first grouping is correct and
was not chosen arbitrarily or because the :: comes first. The reason is that multiplication
has higher precedence than addition. Precedence determines how tightly an operator
binds to its operands. In the expression above, the middle operand, 3, is contended for
by the two operators :: and +. Since:: has higher precedence than +, :: gets the operand.
While precedence of operators is largely a matter of mathematical convention, not all
programming languages have the same rules of precedence. In SNOBOL4 the precedence
of the binary arithmetic operators in order from highest to lowest is:

". or"

/

+ -
Addition and subtraction have the same precedence, as indicated. Using the relative
precedences given above, the expression

N ! 2 :e 3 + M

is grouped as:

((N ! 2) x 3) + M

Parentheses can be used as desired to make the groupings more evident or to group terms
in a different way than would be implied by precedence. An example is

(N + 2) :: (M + 3)

which would have a different meaning if the parentheses were removed.
Precedence does not solve all the problems of grouping operands and operators.

Consider the following expression.

A - B - C

Sec. 3.1 Arithmetic Operations 35

There are two possible groupings

(A - B) - C

and

A - (B - C)

In the first, the operators associate to the left, while in the second they associate to
the right. Association, like precedence, is partly a matter of convention, but it depends on
the properties of the operators. The first choice above is correct since subtraction asso­
ciates to the left. In fact, all binary operators associate to the left except exponentiation.
In mathematical notation,

(b
c

) means
a

In SNOBOL4, the equivalent expression

A ! B ! C

is grouped as:

A ! (B ! C)

There are other binary operators than the arithmetic ones; concatenation and alter­
nation are examples. Appendix B contains a table of all binary operators with their
precedence and associativity.

Unary Operators

There are two unary arithmetic operators that have only a single operand. These
are + and The unary - changes the sign of a number. For example, if the value of
M is 13,

p = -M

assigns the value -13 to P. Note that there is no blank between the unary operator and
its operand. This distinguishes unary operators from binary operators. The unary +
operator does not change the numerical value of its operand. That is, the values 5 and +5
are the same. The + is included for completeness to complement the unary - operator.

Unary operators have the highest possible precedence and are always grouped with
the operand to their right. Thus the expression

-A ~~ B

is equivalent to:

(-A) ~~ B

36 Numbers and Strings Ch.3

Numerical Predicates

There are six numerical predicates for comparing the value of numbers. They are

EQ equal to

GE greater than or equal to

GT greater than

LE less than or equal to

LT less than

NE not equal to

For example

GT(3"S)
fails, but

NE(3"S)
succeeds. As is the case with all functions, the arguments of these predicates may be
expressions. Thus

EQ(M + N"SIZE(S))
succeeds if the sum of M and N is equal to the number of characters in the value of S.

3.2 INTEGER ARITHMETIC

Integers are whole numbers which may be positive, negative, or zero. The result of
arithmetic operations on integers is generally what would be expected, as is illustrated
by examples throughout this book. There are a few cases, however, in which arithmetic
performed by a programming language may produce different results from those which
might be expected.

In the first place, there is a limit to how large an integer value may be. This limit
depends somewhat on the particular computer that is used. On a typical computer,
the limit is about 2,000,000,000. This may seem like such a large number that the
limit can be ignored, but some types of computation produce very large numbers quite
quickly, and the existence of a limit should be remembered.

Division of integers is a real problem Consider the statement:

Q = 1/2

If the value of I is 4-, the value assigned to Q is 2. Suppose the value of I is 3. In long-hand
computation, the result of such an operation is usually written as 3/2 or 11/2. Since 2

Sec. 3.2 Integer Arithmetic 37

does not divide 3 evenly, a fraction results. SNOBOL4, however, does not produce
fractions. The result of an operation on integers is an integer. The fractional part is
simply discarded. Thus, the value assigned to Q in the statement above is 1. Discarding
the fractional part is called truncation. Integer division in SNOBOL4 always truncates
the result. This may produce quite unexpected results in some cases.

For example, the value of

2 :: (1 / 2)

is O. Recall, however, that the built-in function REMDR computes the remainder resulting
from integer division: that is, the part discarded by truncation. Thus if the value of I is 3,

R = REMDR(I,2)

assigns 1 to R.

3.3 REAL NUMBERS

Integers are adequate for most numerical computations. There are some problems,
however, that cannot be handled conveniently with integers. Consider the problem of
computing an average. Suppose that grades on an examination are 75, 91, 83, 65, 84,
and 93. The average of these six grades is:

75+91+83+65+84+93
6

The sum of the grades could be obtained by:

SUM = 75 + 91 + 83 + 65 + 84 + 93

which assigns 491 to SUM, If SUM is divided by 6, the result is 81 with a remainder of 5.
This is illustrated by the statements:

Q

R

=
=

SUM / 6

REMDR(SUM,6)

which assign 81 and 5 to Q and R respectively. Thus the average is 81 + 5/6. In long
hand, such computations are usually performed in decimal form, however, and the
average represented as 81.8333 ... or, discarding the less significant digits, simply 81.83.

SNOBOL4 provides real numbers for performing such computations. Real numbers
are represented with decimal points. Consider the statement:

Q = I / 2.0

The divisor 2.0 is a real number as indicated by the decimal point. If the value of 1 is 3.0,
the value assigned to Q is 1.5.

38 Numbers and Strings Ch.3

Real numbers have several advantages over integers. In the first place, there is no
truncation as a result of division, so that the result of executing

Q = (75.0 + 91.0 + 83.0 + 65.0 + 84.0 + 93.0) / 6.0

is 81.8333. Another advantage is that very large values can be represented using real
numbers. On a typical computer, the largest real number is approximately 1,000,000,
000,
000,000,000 -which is large enough for most of us! Very tiny fractions can be
represented also.

The numerical predicates described in Section 3.1 can be used for comparing real
numbers as well as integers.

3.4 MIXED MODE ARITHMETIC

The previous sections have illustrated computations with two types of numbers:
integers and real numbers. What happens if both types occur in the same arithmetic ex­
pression? The answer is quite simple: If an arithmetic expression contains a real number,
the result of the entire expression is a real number. This is illustrated by:

Q = (75 + 91 + 83 + 65 + 84 + 93) / 6.0

the result is 81.8333 as before. To be more specific, the sum in parentheses is computed
first. Since all numbers in the sum are integers, the result is 491, an integer. Next the
division is performed. The operation is equivalent to:

Q = 491 / 6.0

Since this expression contains a real number, the result is a real number (81.8333).
Numerical predicates can also be used for comparing real numbers to integers.

3.5 STRING-VALUED FUNCTIONS

Trimming Strings

Strings sometimes have unneeded or unwanted blanks at the end. Typically this
happens when data is read in, since the value assigned to I NPUT corresponds to an 80-
character card. If only a few characters are punched on a card, the remaining (trailing)
characters are blanks. The function TRIM removes trailing blanks.

T = TRIM(S)

assigns to . T a string which is the same as the 'value of S, except that trailing blanks are
omitted. If S does not end with a blank. T and S are the same. TRIM(S) does not change

Sec. 3.5 String-Valued Functions 39

the value of 5 in any way; it simply returns a value that is a function of the value of S. To
actually trim blanks from the value of 5, the following statement may be used.

5 = TRIM(S)

Since the trailing blanks that result from reading data are often unnecessary, TRIM may
be applied to all references to INPUT. A typical statement is:

READ LINE = TRIM(INPUT) :F(EOF)

Trimming of all input records can be done in a simpler way by using the keyword
&TRIM. Ordinarily the value of &TRIM. is zero, in which case records are read in with
trailing blanks. If the value of &TRIM is set to a positive integer, however, all trailing
blanks are automatically removed on input. A program in which trailing blanks on input
are not wanted might therefore start with the statement:

&TRIM = 1

Then the statement

READ LINE = INPUT :F(EOF)

could be used.

Duplicating Strings

Sometimes it is useful to concatenate several copies of the same string. For example,
a string of 80 dashes might be used to draw a line on the output listing to separate two
sets of results. A string of 80 dashes can be obtained by repeated concatenation, but
that is awkward and time consuming. The function DUPL performs this type of operation
directly. The value of DUPL(S,N) is the string 5 duplicated N times. The line described
above would be printed by the single statement:

OUTPUT = DUPL('-',80)

The first argument of DUPL need not be a one-character string; it may be any string. The
value of DUPL(' _::1 ,6) is:

,.II ,_ ,.II ,.. ,.. ,.II _" .. __ .. _""_,, .. _.,_11 ..

Character Replacement

Pattern matching provides facilities for locating and replacing strings of characters.
Sometimes only single characters need to be replaced. While this may be done by execu­
ting replacement statements repeatedly, the process is awkward and time consuming.
For replacement of individual characters by other characters, the built-in function
REPLACE is more useful. REPLACE has three arguments. The first is the string on which

40 Numbers and Strings Ch.3

the replacement is to be performed. The second and third arguments are strings that
describe the characters to be replaced and what these characters are to be replaced by,
respectively. A simple example is provided by the statement

RTEXT = REPLACE (TEXT , 'A' , '~:')

which replaces every A by a :: in the value of TEXT and assigns the result to RTEXT. If the
value of TEXT is

ADVANCED METHODS APPLY

the resulting value of RTEXT is

::DV::NCED METHODS ::PPL Y

Only As are replaced; the other characters are unchanged.
More than one character can be replaced at a time. To replace all vowels by:: s, the

following statement could be used:

RTEXT = REPLACE (TEXT, 'AE IOU' , n:::::::::')

For the data given above, the value of RTEXT is:

In the second and third arguments, character replacement is specified by the position of
corresponding characters. Thus the statement

RTEXT = REPLACE (TEXT , 'AEIOU' , '::$-&/')

gives RTEXT the value:

::OV::NC$D M$TH&DS ::PPL Y

Since neither I nor U occur in TEXT, the corresponding characters - and / do not appear
in the result. The one-to-one correspondence between characters in the second and third
arguments of REPLACE is illustrated diagramatically in Figure 3.1.

A E I
-1- -1--1-
,~ $...

o U
-1- -1-

& /

Figure 3.1 Correspondence of Character Sets in REPLACE

One useful feature of REPLACE is that characters can be simultaneously interchanged.
An example is illustrated by the statement:

ITEXT = REPLACE (RTEXT , r::$' , '$:: t)

If RTEX1 has the value given in the previous example, the value assigned ITEXT is:

OVNC::D M':rH&DS $PPL Y

Sec. 3.5 String-Valued Functions 41

The lengths of the second and third arguments of REPLACE must be the same. If they are
not, REPLACE fails without returning a value. While it is meaningful for the same character
to appear in the third argument more than once, a character that appears in the second
argument more than once specifies two, possibly different, replacements. In this case the
last (right-most) specification is used.

3.6 INDIRECT REFERENCING

Data strings that appear explicitly in a program are distinguished from names by en­
closing quotation marks. For example in the statement

FRENCH = 'ROMANCE'

R<J.1ANCE is a data string. FRENCH is also a string, but it is used as a name, not as data.
Yet in the statement

LANGUAGE = 'FRENCH'

FRENCH is used as a data string.
In SNOBOL4, these two uses of a string are related. Figure 3.2 illustrates this relation­

ship using arrows to point from names to their values.

LANGUAGE -+ FRENCH -+ Ra.1ANCE

Figure 3.2 Strings as Names and Data

A name is often used to reference its value. A simple example is

OUTPUT = LANGUAGE

which prints FRENCH. SNOBOL4 has an indirect-referencing operation which references
the value of a value. This operation is indicated by the unary operator $ written in front
of the name to be indirectly referenced. An example is

OUTPUT = $ LANGUAGE

which prints ROMANCE: that is, the value of the value of LAf\GUAGE.
Indirect referencing may be perplexing at first, and the source of some confusion.

One way to think ofi indirect referencing is as an application of an arrow, like that shown
in Figure 3.2, that moves from a name to its value.

Indirect referencing makes it natural to use a name to represent data (for example
FRENCH to represent the French language). In a similar way, a value may be assigned to a
name to represent an attribute which that name has (French is a Romance language).
A name may have various values at different times, depending on the data under con­
sideration. Thus the value of LANGUAGE might be FRENCH at one time and GERJV1AN

42 Numbers and Strings Ch.3

at another. In either case, the value of $LANGUAGE would be the type of language
currently under consideration.

Values may also be assigned using indirect referencing. Thus if the value of LANGUAGE
is SPANI SH, the statement

$ LANGUAGE = 'RO'1ANCE'

assigns the value RCJ.1ANCE to SPAN ISH. This feature is particularly useful when one
wants to use a name that contains characters that are not allowed in name. For example,
suppose that the compound word SERBO-CROATIAN is to be given a value. The statement

SERBO-CROATIAN = 'SLAVIC'

is erroneous since a dash cannot be used in name. However, the following statement is
legal and accomplishes the desired result:

$'SERBO-CROATION' = 'SLAVIC'

Here indirect referencing is applied directly to a data string so that a value may be assigned
to it. Any nonnull string can be assigned a value in this way.

More than one level of indirect referencing may be used. Suppose the following
statements are executed:

TOPIC = 'LANGU.A.GE'

LANGUAGE = 'SPANISH'

Then the statement

$$TOPIC = 'RG1ANCE'

assigns the value R<J.1ANCE to the name SPAN ISH.
There is no limit to the number of levels of indirect referencing that may be used, but

potential confusion is a limiting factor in practice.
In the examples above, indirect referencing is used to associate data using name-value

relationships. Indirect referencing may also be used in gotos. For example, if the value
of PROCESS is PARSE, the goto : ($PROCESS) transfers control to PARSE. For other values
of PROCESS, control is transferred to other labeled statements. Such a "computed goto"
serves as a switch to select an appropriate statement. The statement selected by an in­
direct goto can even be specified by data read into the program. For example, the
statement

LABEL = TRIM(INPUT) :S($LABEL)F(EOF)

transfers to a label given on a data card.

Sec. 3.7 Comparing Strings 43

3.7 COl\,fP ARING STRINGS

Although the predicate IDENT may be used to determine whether or not any two
objects are identical, IDENT is most commonly used to compare two strings. Two strings
are identical if they are the same, character by character. The way the strings are created
is irrelevant. Thus

IDENT(DUPL('A',3),'AAA')

succeeds even though one argument is the value of a function and the other is given literally.
Strings may be compared lexically, that is alphabetically, by using the predicate LGT

("lexically greater than"). For example

OUTPUT = LGT(ITEM,LAST) ITEM

prints the value of ITEM, provided the value of I TEM is lexically greater than the value of
LAST. A string is lexically greater than another if it would follow that string in an alpha­
betical list. Thus TO is greater than SOUTH, and TOP is greater than TO. The null string is
lexically less than any other string.

The order of letters in determining lexical order is the standard one, but strings com­
pared by LGT may contain characters other than letters. The position of other characters
varies from one type of computer to another. For example, on some computers the digits
come before the letters, while on others the digits come after the letters. The order of
special characters is even more variable. As is mentioned in Chapter 2, not all computers
provide the same characters or even the same number of characters. The set of all charac­
ters and their position for the purpose of determining lexical order is the value of
&ALPHABET. For example, to determine the available characters, the following statement
might be used.

OUTPUT = &ALPHABET

&ALPHABET is a protected keyword. Its value cannot be changed by an assignment and
therefore the character set is always available for examination and use.

3.8 NUMBERS AND STRINGS

Consider the following statement

N = 'A' ~~ 3

This is surely a curious. construction, since one of the operands of :: is the string A.
Arithmetic operations simply have no meaning unless their operands are numbers, and
hence the statement above is erroneous. But now consider the statement:

N = , 5' ~~ 3

44 Numbers and Strings Ch.3

Again one of the operands is a string, but this time that string looks like a number.
SNOBOL4 permits strings to be used in arithmetic expressions, provided those strings
represent numbers. Strings that represent numbers are called numeral strings. Numeral
strings may represent integers or real numbers and may have a sign. Thus the statement

P = 36 / '-1.2'

assigns the real number -30.0 to P.
The fact that numeral strings are permitted in arithmetic operations is very useful

since so many SNOBOL4 operations generate strings. Suppose, for example, that a data
card has the number 385 punched on it. Then

LIMIT = TRIM(INPUT)

reads this card, discards trailing blanks, and assigns the string 385 to the name LIMIT.
Even though the value of LIMIT is a string, it can be used in arithmetic expressions as
an integer.

In numerical contexts, the null string is equivalent to the integer O. This fact is useful
since strings initially have null values which are numerically equivalent to zero. Similarly

GT(M)

succeeds if M is greater than zero, since the omitted second argument is null and hence
equivalent to zero.

Just as numeral strings can be used in contexts that require numbers, so can numbers
be used in contexts that require strings. For example, the statements

WORD = 'FENESTRATION'

INDEX = 'x' SIZE(WORD)

assign the string X12 to INDEX. SIZE(WORD) returns the integer 12 which is automatically
converted to a string and concatenated with X.

Similarly, numbers can be printed and punched just as if they were strings. The
statement

PUNCH = SIZE(WORD) / 2.0

punches 6.0 on a card.
Both concatenation and arithmetic may occur in the same expression. Concatenation,

as a binary operator, has lower precedence than any of the arithmetic operators, and asso­
ciates to the left. Thus the statement

OFFSET = 'X' SIZE(WORD) + 3 'Y' SIZE(WORD) - 3

assigns X 15Y9 to OFFSET.
Generally speaking, numbers and numeral strings can be used interchangeably without

concern. There are a few situations in which the distinction between numbers and

Sec. 3.8 Numbers and Strings 45

numeral strings is important. The predicate I DENT, for example, succeeds only if its two
arguments are identical. Thus

IDENT('3',3)

fails. Therefore numerical predicates should be used for comparing numbers. For instance

EQ('3',3)

succeeds.

EXERCISES

3.1. Insert parentheses in the following expressions to illustrate the grouping of terms ac­
cording to the precedence and associativity of operators. Compute the value of each.

3 I 2 + 5 ~: 6

3 I 2 ~: 6

3 ~: 2 I 6

2.0 + 0 / 3 - 6.7

t 7 t :: , 3 • 5 t / REMDR (5, 7)

SIZE(DUPL(,:m, ,3)) :: 2.0 + REMDR(31,100)

3 5 + 21

REMDR(37,15) REMDR(15,37) :: 2

3.2. Write a program that reads grades punched on cards and computes the average grade.
Assume that a single grade is punched left justified (starting in column one) on
each card.

3.3. Write a program that prints an n by m matrix of dots. For example, if n is 3 and m
is 5, the output should be

· .. · ..
· ..
• ••
• ••

Assume nand m are given on two consecutive data cards.

46 Numbers and Strings Ch.3

3.4. Write a program to print a table of the squares of the integers from 1 to 25. Print one
integer and its square on each line. Arrange the table so that the right-most digit
of each integer is printed in character position 10 of the line and the right-most digit
of its square is printed in position 20.

3.5. Write a program to "encode" strings by replacing each A by Z, each B by Y, and C by
X and so forth. Read text to be encoded from data cards and print out the result.

3.6. If the value of f\JOUN is NOUN , what is the value of $NOUN? Of $$NQUN?

3.7. Write statements that read in words punched on cards. Use indirect referencing to
assign to each word its length. Assume that each card contains a single word, left
justified. If words read in are HAT, CLAPTRAP, and PERSIt+10N" what values are as­
signed to these words?

CHAPTER 4

Pattern Matching

Pattern matching is a large and important part of the SNOBOL4 language. Pattern
matching has two distinct components: the construction of patterns, and the matching
process itself, in which a string is examined to see if it is matched by a pattern. Although
patterns must be constructed before they can be used in pattern matching, it is necessary
to understand the matching process in order to know how to construct patterns. The
first part of this chapter describes the matching process. The second part describes ways
of constructing patterns.

4.1 THE PATTERN-MATCHING PROCESS

Pattern matching is basically a left-to-right examination of the subject string in which
an attempt is made to match a construction specified by the pattern. For example, in
the statement

TEXT fAt =
the value of text is examined starting at the first (left-most) character for the substring A.
If A is found, it is replaced by a ::. If A is not found, examination continues with the
second character and so on. Thus if the value of TEXT initially is

ALWAYS STRIVE

the new value is:

::LWA YS STR I VE

47

48 Pattern Matching Ch.4

If the pattern is E instead of A, the result is:

ALWAYS STRIV)C

In this case, attempts to match the pattern E at the first twelve character positions fail,
but finally succeed at the thirteenth. Since pattern matching works from left to right,
examining successive characters of the subject string, it is convenient to assign numbers to
the characters starting at the left. Thus W is the 3rd character in the string above. The
position where pattern matching is focused at any time is called the cursor position. The
cursor is an imaginary marker positioned after the last character examined. Initially, the
cursor position is zero, which is before the first character of the string. In diagrams, the
cursor position is indicated by an arrow, as illustrated below.

ALWAYS STRIVE
t
Consider again the statement:

TEXT 'E' =
Successive cursor positions are:

ALWAYS STRIVE
t

ALWAYS STRIVE
t

ALWAYS STRIVE
t

•

•

ALWAYS STRIVE
t

ALWAYS STRIVE
t

Finally, when the cursor position is 12, the pattern E matches. The final situation is:

ALWAYS STRIV.s.
t

Sec. 4.1 The Pattern-Matching Process 49

The underline shows the substring matched by the pattern. It is this substring that is
replaced by the ~~.

The process is exactly the same if the pattern is a longer string. For example, the
statement

TEXT 'WAYS' =
results in the match

ALWAYS STRIVE

and the replacement produces AL STRIVE.
N ate that although the examples here contain words, pattern matching has nothing

to do with words as such. Strings may contain words, but pattern matching only deals
with strings, and strings may contain any characters. All characters are equivalent in
pattern matching; none has special significance.

N ow suppose that instead of looking for a single string, one of several alternatives is
sought. If VOWEL is a pattern constructed by the statement

VOWEL = , A' 'E' , I ' '0' 'U'
then the statement

LOOP TEXT VOWEL = :S(LooP)

might be used to mark the location of each VOWEL in TEXT.
In this case, at each cursor position a match is attempted for each of the alternatives

in order from left to right as they appear in the pattern. If the value of TEXT is

STRIKE AT NOON

none of the alternatives matches at cursor positions 0, 1, or 2. However, at cursor posi­
tion 3, the third alternative, I, matches:

STRIKE AT NOON

Since the pattern match succeeds, the value of text becomes:

Executing the statement again, the vowel E is found when the cursor is at position 5. The
replacement produces:

Three more executions of the statement produce:

This example has been drawn out somewhat to illustrate another point. Each time
the statement is executed, pattern matching begins with the cursor at position zero.

50 Pattern Matching Ch.4

Consequently there is much repetitive and time-consuming examination of the initial
part of the string. Ways of avoiding such unnecessary examination are described in
later sections.

Next consider a slightly more complicated situation. In the statement

DVOWEL = VOWEL VOWEL

DVOWEL consists of two components and is designed to match any two vowels in a row.
In the spirit of the preceding example,

LOOP TEXT DVOWEL = I:::: , :S(LOOP)

might be used to mark occurrences of double vowels. Suppose the value of TEXT is:

TEACHERS LEAVE AT NOON

At cursor position zero, T is not matched by a vowel. However, at cursor position 1 the
first component of DVOWEL matches E and the second component matches A. Thus the
pattern match succeeds and replacement changes the value of TEXT to

T::::CHERS LEAVE AT NOON

On the next execution, the first vowel is found and matched when the cursor position is
5. Thus the cursor is advanced to position 6:

T::::CH£RS LEAVE AT NOON
t

R is not matched by the second component, however. Although the first component
matches, the entire pattern does not. In this case, the pattern-matching process backs up
and tries an alternative match for the previous component. Since no other alternative in
this component matches at this position, the match for the first vowel is abandoned, and
the cursor position is advanced, searching for a match farther along the string. At cursor
position 10, another E is found and matched by the first component.

T::::CHERS LEAVE AT NOON
t

Now the second component matches the A and the pattern match succeeds.
The value of TEXT becomes:

T::::CHERS Lm:VE AT NOON

A third execution of the statement results in:

The fourth execution fails. Note that in a pattern with several concatenated components,
those components must match consecutive substrings. Although the string above still
contains three substrings that are vowels, these substrings are not consecutive, and hence
DVOWEL does not match.

Sec. 4.1 The Pattern-Matching Process 51

Anchored Matching

Ordinarily a pattern may match anywhere in the subject string, as illustrated by the
examples in the preceding paragraphs. This mode of matching is called unanchored since
the cursor is free to move down the subject string if that is necessary for the pattern to
match. Pattern matching may be anchored, however, in which case the pattern must
match a substring at the beginning of the subject string. In the anchored mode, a pattern
match fails if the first component does not match with the cursor starting at position O.
Thus the statement

TEXT VOWEL

fails for the value of TEXT given above. Although TEXT contains vowels, it does not start
with one.

The anchored mode is established by assigning a positive integer to the keyword
&ANCHOR. Thus

&ANCHOR = 1

puts the anchored mode of pattern matching into effect. The initial value of &ANCHOR
is 0, in which case pattern matching is unanchored. Any positive value establishes the
anchored mode; the particular value is irrelevant.

The anchored mode may be turned on and off by changing the value of &ANCHOR.
Usually one mode or the other will suffice for the entire program and the value of
&ANCHOR may be assigned at the beginning of the program and left unchanged. The
anchored mode of pattern matching should be used in situations where it is applicable
since unnecessary attempts to match may be avoided.

4.2 CONSTRUCTION OF PATTERNS

The simplest patterns are strings. Alternation and concatenation permit the construc­
tion of more complicated patterns out of simpler ones. There are also a number of
functions that return patterns as their values and a few built-in patterns that simply can
be referred to by name.

Positional Patterns

The patterns described so far match if the specified characters are found in the subject
strings. There are also patterns that move the cursor, regardless of what characters occur
in the subject string. Such patterns are constructed by functions. An example is the
function LEN, described in Section 2.7. The argument of LEN specifies how far the cursor
is to be moved.

Actually LEN is a function that returns a pattern as value. Thus the statement

ONE = LEN(l)

52 Pattern Matching Ch.4

assigns to ONE a pattern that matches any single character. Note that LEN does not per­
form pattern matching; it merely creates a pattern that can be used in pattern matching.

The argument of LEN may be any nonnegative integer. (The value of LEN(O) is a
pattern that matches a null string.) Since patterns that are created by LEN merely move
the cursor a specified number of positions to the right, they always match if the subject
string is long enough.

TAB is another built-in function that creates a pattern which moves the cursor to the
right. The pattern created by TAB moves the cursor to a specific position rather than a
fixed distance. An example is given by the statement:

TEXT 'C' TAB(13) • T

If C is matched, the pattern created by TAB(13) moves the cursor to position 13, and the
string between the C and position 13 is assigned to T. If the value of TEXT is

THEN THE CURTAIN FELL

the result is:

T
,--A-.

THEN THE CURTAIN FELL

h-13---t
The substring matched is CURT and the value assigned to T is URT.

The argument of TAB may be any nonnegative integer. During pattern matching, the
resulting pattern simply moves the cursor right to the specified position. If that is not
possible, the pattern fails to match. This may happen because the cursor is already beyond
the specified position or because the subject string is not long enough. For example

TEXT 'C' TAB(2)

fails for the value of TEXT given above since the cursor is already at position 10 when the
C is matched. Similarly

TEXT 'c' TAB(30)

fails because the subject string only contains 21 characters.
The built-in function RTAB is similar to TAB except that the position to which the

cursor is moved is measured from the right end of the subject string. An example is
given by:

TEXT , F' RTAB(O) • RST

Sec. 4.2 Construction of Patterns 53

After F is matched, the cursor is moved to the right end of the string (i.e. zero characters
from the end) as shown below.

RST
~

THEN THE CURTAIN FELL
t

The value assigned to RST is ELL.
Two built.;in functions, POS and RPOS, create patterns that test the curso~ position

but do not move it. These patterns match if the cursor is in the specified position and
fail otherwise. As in the case of TAB and RTAB, the cursor position is measured from the
left and right respectively. An example is:

TEXT 'N' POS(4)

Since the cursor is at position 4 after N is matched, this pattern succeeds as illustrated.

THEN THE CURTAIN FELL

Notice that the pattern created by POS(4) does not move the cursor. Hence such pat­
terns always match the null string.

A more interesting case is illustrated by:

TEXT 'H' POSe?)

The string H is matched as illustrated, but the pattern created by POSe?) fails since the
cursor is in position 2, not position 7.

THEN THE CURTAIN FELL

Therefore the pattern-matching process bac~s up and attempts to find another match for
the preceding component, H. Since this component is simply a string and has no alter­
natives, the matching process tries to find another H farther to the right. The successful
result is illustrated below.

THEN THE CURTAIN FELL

The pattern above describes a situation requiring the string H to be found immediately
before position 7 . An equivalent pattern is given in the following statement.

TEXT POS(6) 'H'

RPOS is similar to POS except that the cursor position is measured from the right end of
the subject string. In the statement

TEXT RPOS(l) LEN(l). LAST

the last character in the string is assigned to LAST.

54 Pattern Matching Ch.4

Character-Set Patterns

As is illustrated in the previous sections, specific strings can be given in patterns, and
the cursor can be moved by positional patterns. There are also patterns that match any
of a number of characters. These patterns are called character-set patterns.

One type of character-set pattern is constructed by the built-in function M-JY. The
argument of /JNY may be any nonnull string of characters. The value of /JNY is a pattern
that matches anyone of these characters. An example is:

VWL = ANY(' AElOU')
VWL matches anyone of the characters given in the argument: an A, E, I, 0, or U. Thus
VWL matches the same strings as the pattern VOWEL used in earlier examples. If there are
many characters, ANY involves less writing than specifying each character as a separate
alternative. It should be noted that while the argument of /JNY is a string, i.e. a sequence
of characters, these characters are all treated equally and their order is not important.
Thus

VWL = ANY('UOlEA')

is equivalent to the statement above.
The built-in function NOT M-JY constructs patterns that are the opposites of patterns

matched by ANY. As a result

NONVWL = NOTANY('AEIOU')

assigns to NONVWL a pattern that matches any single character that is not a vowel. NONVWL,
for example, matches characters such as M, X, and $. Note that the effect of NOTM-JY can
be achieved by using ~Y and specifying all the characters that are to be matched. Since
there are a large number of possible characters, it is sometimes simpler (as in the case
above) to specify what is not to be matched than to specify what is to be matched.

~y and NOTfJl-JY construct patterns that match single characters. There are two types
of character-set patterns that can match longer strings. A pattern constructed by the
built-in function SPAN matches the longest possible string consisting of consecutive char­
acters given in its argument. An ex;ample is:

VWLRUN = SPAN(' AEIOU')

Unlike VWL, which matches a single vowel, VWLRUN matches a string of consecutive vowels.
For example, if the value of TEXT is

HE YELLED "WHOOPIEEEEu

the statement

TEXT VWLRUN

would match E, the first string of vowels encountered matching from left to right:

Sec. 4.2 Construction of Patterns 55

HE YELLED "WHOOPIEEEE"

On the other hand, the statement

TEXT VWLRUN RPOS(l)

would match the string of vowels at the end:

HE YELLED "WHOOPIEEEE"

The built-in function BREAK constructs patterns that are, loosely speaking, opposites
of patterns constructed by SPAN. An example is

FINDVWL = BREAK('AEIOU')

which assigns to F I t-DVWL a pattern that matches any string of characters up to (but not
including) a vowel. If the value of TEXT is that given in the preceding example, the
statement

TEXT FI NDVWL
simply matches the first H, moving the cursor up to the character E:

.tiE YELLED "WHOOPIEEEE"
t

Note that the character E is not included in the substring that is matched. In order to
match successfully, a pattern constructed by BREAK must find a character given in its
argument. For example

TEXT BREAK('Z')

fails for the value of TEXT given above. On the other hand such a pattern may match the
null string. An example is

TEXT BREAK('H')

which succeeds since H is the first character in the subject string, even though the cursor
remains at position zero:

HE YELLED "WHOOPIEEEE"
t

A pattern constructed by BREAK moves the cursor directly up to a character given in
the argument. Therefore such a pattern may be used to avoid much of the repetitious
matching that is required if the characters are specified using alternation. Consider the
following statement:

FIND TEXT BREAK('AEIOU') LEN(l). V = :F(DONE)
This statement locates vowels, assigns them to V, and deletes both the vowel and the
string of characters in front of it. Therefore subsequent examination of TEXT for vowels

/"

56 Pattern Matching Ch.4

does not require useless re-examination of an initial string which contains no vowels. If
the value of TEXT is

THEY ALL CONTRIBUTE

successive executions of the statement labeled F I NO assign the vowels E, A, 0, J, U, and
E to V and change the value of TEXT as follows:

Y ALL CONTRIBUTE

LL CONTRIBUTE

NTRIBUTE

BUTE

TE

Finally the value of TEXT becomes null.
A use of BREAK and SPAN in conjunction is illustrated by the problem of matching

words that appear in text. Words in text are separated by blanks, periods, and other
punctuation marks. Although a general description of a word is quite complicated, for
most purposes it is adequate to think of a word as a string of consecutive letters. Thus a
pattern to match words might be:

LETTER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

WPAT = SPAN(LETTER)

To remove successive words from a string of text and assign them to a name, a slightly
more complicated pattern is needed.

WPAT = BREAK (LETTER) SPAN(LETTER) • WORD

This pattern might be used in a statement such as:

GETW TEXT WPAT = :F(NONE)

Each time this statement is executed, the first span of letters in TEXT is assigned to WORD.
Any other characters before the first word are removed also. For example, if the value of
TEXT is

WE KNOW HIM, OF COURSE.

then successive executions of GETW produce the words WE, KNOW, HIM, OF, and COURSE.
TEXT is changed as follows:

Sec. 4.2

WE KNOW HIM, OF COURSE.

KNOW HIM, OF COURSE.

HIM, OF COURSE.

, OF COURSE.

COURSE •

•

Construction of Patterns

Finally the value of TEXT becomes a single period and the pattern match fails.

Built-in Patterns

57

The patterns described in the preceding sections were constructed by built-in func­
tions, and depend on arguments supplied to these functions. There are a few patterns
that are, themselves, built-in. These patterns are the initial values of certain names.

One such name is ARB whose initial value is a pattern that matches any string of
arbitrary length or contents. Such a pattern may sound too general to be interesting.
Patterns in the preceding sections provide for the matching of substrings of specified
length containing unknown characters. In addition they provide for the matching of
strings of known characters, but of unknown length. Sometimes, however, it is necessary
to find the substring separating two specific substrings such as Sand ING. The following
pattern uses ARB to specify this situation.

GAP = , S ' ARB. G ' lNG'

Consider the statement:

TEXT GAP

If the value of TEXT is

WE ARE STARTING SOON

the pattern match succeeds and the substring TART is assigned to G:

G
~

WE ARE STARTIf\Ki SOON

If the value of TEXT is

SING ALONG

the pattern also matches, and the null string is assigned to G:

SING ALONG

58 Pattern Matching Ch.4

Thus, ARB matches the string between 5 and I NG in both cases. In the first case, this
string is four characters long. In the second, it is zero characters long.

Another useful built-in pattern is REM which simply moves the cursor to the right end
of the string and hence matches the remainder of the string. An exam pIe is given by:

TEXT 'L' REM • RST

For the value of TEXT shown above, this pattern matches and assigns ONGto RST:

RST
A

SING ALONG

REM is identical to RTAB(O), and is included as a built-in pattern for convenience.
The built-in pattern SAL is somewhat more specialized than the two preceding pat­

terns. BAL is designed for dealing with mathematical expressions. Such expressions often
contain parentheses for grouping terms in the same way that SNOBOL4 does. A typical
mathematical expression is:

A more complicated expression is:

((A+B)~((A-B)/ (2+5 IN(X)))

The second example illustrates nested components. Left and right parentheses are paired,
and separating such an expression into its proper components involves locating the
matching parentheses. In the expression above, some of the components are:

(A+B)

(A-B)

(2+SIN(X))

The built-in pattern BAL matches strings that are balanced with respect to parentheses.
The strings above are all balanced. A string which contains no parentheses at all is also
balanced, but the null string is not considered to be balanced. It is an easy matter to
determine if a string is balanced. Start at the left with a count of zero, add one for each
left parenthesis, and subtract one for each right parenthesis. When the count reaches zero,
the parentheses are balanced. This is illustrated by counting parentheses in the expression
given below.

((A+S)::(A-B) / (2+5 IN(X)))

12 1 2 1 2 3 210

If the count ever becomes negative, the expression is not balanced. Thus

) (A+S):C(A-B) / (2+5 IN(X)) (

Sec. 4.2 Construction of Patterns 59

is not balanced, although it contains an equal number of left and right parentheses.
BAL uses these rules to match balanced strings. For example, the statement

MULOP = BAL. L ,~:, BAL • R

might be used to find two balanced expressions separated by a :: .
If the value of FORMULA is

((A+B):'(A-B)! (2+5 IN(X)))

the statement

FORMULA MULOP

succeeds and assigns (A+B) to Land (A-B) to R:

L R
~~

((A+B)::(A-B)! (2+5 IN(X)))

Note that the matched substring begins with the second character of the subject string,
since there are not two balanced strings separated by a :: beginning with the first
character.

BAL will match strings that do not contain any parentheses at all. Consider the
pattern

ADOOP = BAL • L '+' BAL • R
which is similar to MULOp, but with a different separating operator. If the value of
FORMULA is as given above, the statement

FORMULA ADDOP

succeeds. A is assigned to L and B is assigned to R.

L R
/\1\

((A+B)::(A-B)! (2+5 IN(X)))

If a string contains no parentheses, BAL matches the shortest nonnull string that will
satisfy the rest of the pattern. Thus if the value of FORMULA is

((VI ::V2)-V3)+V4

The statement

FORMULA ADDOP

succeeds with Land R matching as shown.

L R
~ II
CCVl:~V2)-V3)+V4

60 Pattern Matching Ch.4

However if ADDOP is changed to

ADDOP = BAL • L '+' BAL • R RPOS(O)

the result is

L R
~A

((Vl:'V2)-V3)+V4

since RPOS(0) requires the second BAL to match the remainder of the string.

4.3 UNEVALUATED EXPRESSIONS

The beginning of this chapter stressed the point that pattern construction and pattern
matching are two distinct operations. This is true even if the pattern is written out
explicitly in the statement in which it is used for matching. In a statement such as

TEXT BREAK('H')

the built-in function BREAK is called and constructs a pattern. This pattern is then used
in pattern matching. The two statements

FINDH = BREAK('H')

TEXT FINDH

do the same thing, although the two steps make the two operations more obvious.
Quite often, patterns are constructed early in program execution, assigned to names,

and then referred to by these names when needed in pattern matching. One advantage
of this technique is that the patterns need only be constructed once, whereas if a pattern
is written out explicitly in the statement in which it is used, it is reconstructed by
SNOBOL4 each time that statement is executed. This is very wasteful if the matching
statement is executed many times.

When patterns are constructed, names are often used to provide required values. Con­
sider the simple problem of deleting the first N characters of a string. A statement to
do this is:

REMOVE STRI NG LEN(N) =
The name N is used to provide the desired value of the argument of LEN. The pattern is
constructed each time the statement is executed, and the number of characters removed
depends on the value of N when the statement is executed. To avoid repetitious construc­
tion of the pattern, it is tempting to create a pattern at the beginning of the program,
perhaps

REMN = LEN(N)

Sec. 4.3 Unevaluated Expressions

and change the statement labeled REMOVE to be:

REMOVE STRING REMN =
Even if the value of N changes, the string matched by REMN does not. Th, c of N
when REMN was created is part of that pattern and REMN does not change, regardless of
subsequent changes in N.

To overcome problems such as this, evaluation of components in a pattern may be
deferred until pattern matching takes place. This is done by using the unevaluated
expression operator, the unary::. This operator prevents evaluation of its operand until
that value is required during pattern matching. In the example above, the problem was
the value of the name N. Therefore, if this value is not evaluated until needed during
pattern matching, the pattern works as intended. The new pattern is:

REMN =
When this pattern is used in REMOVE, N is evaluated each time pattern matching is per­
formed. Since the value of N is changing, the specified cursor position changes accordingly.

The unevaluated expression operator may be applied to the argument of any pattern­
valued function: ~Y, BREAK, LEN., NOTANY, POS, RPOS, RTAB, SPAN, orTAB. The uneval­
uated expression operator may not be applied to arguments of other built-in functions,
but it may be applied to the operands of alternation and concatenation or an entire
pattern. An example of a more complicated use of unevaluated expressions is:

BLBK =
This pattern matches N blanks and assigns the next N characters to the name K. N is
evaluated when BLBK is used in pattern matching. The use of DUPL(' " ::N) would be
incorrect since the unevaluated expression operator can be applied only to arguments of
pattern-valued functions. On the other hand, either of the two following statements
would be correct and would match the same strings.

BLBK

BLBK

=

=

::(DUPL(t ',N) LEN(N) • K)

::OUPL(' ',N) :'LEN(N) • K

4.4 ASSIGNMENT DURING PATTERN MATCHING

Names attached to components of patterns result in assignment of matched substrings
to the attached names if the entire pattern match succeeds. These assignments are not
performed until pattern matching is complete. Another type of attachment provides for
immediate assignment when a component matches and does not depend on the success of
the entire pattern match. A name is attached for immediate assignment by using the
binary operator $.

Pattern Matching Ch.4

An example is illustrated by the statements:

TVOWEL = VOWEL $ V 'T'

TEXT TVOWEL

Suppose the value of TEXT is HELP. VOWEL matches the E, and at this point E is assigned
to V. The T does not match, however, and since there are no more vowels in the string,
the pattern match fails. Nevertheless, E has been assigned to V. Suppose the value of
TEXT is:

HELPlf\G HANDS

VOWEL first matches E, which is assigned to V. Since the next character is not aT,
another match is attempted for VOWEL.. Eventually I is found and assigned to V. Once
again the next character is not aT, so a search for another vowel is made. Finally A is
assigned to V, but the pattern match fails. Thus, in the course of the pattern match, three
assignments are made to V: first E, then I, and finally A. The value of V at the end of
the attempt to match is A, the last value assigned.

4.5 IMMEDIATE ASSIGNMENT AND
UNEVALUATED EXPRESSIONS

Unevaluated expressions allow evaluation to be deferred until pattern matching takes
place, and immediate value assignment permits the changing of values during pattern
matching. Used in conjunction, these two features make possible very powerful types of
pattern matching. Suppose, for example, it is necessary to find the string of characters
separating any two identical vowels. This rather complicated requirement can be expressed
in a simple way by using immediate assignment and unevaluated expressions, as illustrated
by the following pattern.

IVWL = VOWEL $ V BREAKQ~V) • GAP

Suppose the value of TEXT is:

MOUNTAINOUS TERRAIN

The statement

TEXT IVWL

succeeds and assigns UNTAI N to GAP. The process used to arrive at this result is straight­
forward. VOWEL matches the first 0 in TEXT. This value is assigned to V. BREAKQ:V) is
now equivalent to BREAK('O'). This pattern component matches and the cursor is

Sec. 4.5 Immediate Assignment and Une va lua ted Expressions 63

advanced to the second 0 in TEXT. The pattern match succeeds and the string between
the two Os is assigned to GAP.
V GAP
A~

MOUNT AI NOUS TERRAl N

4.6 PRECEDENCE OF PATTERN-CONSTRUCTING
OPERATORS

There are four binary operators used in constructing patterns. They all associate to
the left, and have the following relative precedences:

$ value assignment

(blank) concatenation

alternation

Therefore

TVOWEL = VOWEL VOWEL • T

is equivalent to

TVOWEL = VOWEL (VOWEL • T)

and

LINE = ':: , I BREAK(' ') • L

is equivalent to:
• , :0 I (BREAK(' ') • L) LINE =

Of course, parentheses may be used to group the operands differently.
Ordinarily, arithmetic operators are not used in the same expression with pattern­

constructing operators, so the relative precedences of the two types of operators is
usually not of concern. However, a table of precedences for all operators is included in
Appendix B.

EXERCISES

4.1. Suppose the value of TEXT is:

LET SLEEPING DOGS LIE

64 Pattern Matching Ch.4

Follow through the details of pattern matching and the changes in the value of TEXT
for successive executions of the following statement:

DEL TEXT 'E' 'I' = :S(OEl)

4.2. Describe briefly what kinds of strings are matched by the following patterns. Assume
VOWEL is a pattern as described in Section 4.1.

PI = VOWEL ARB VOWEL

P2 = VOWEL LEN(I) ARB VOWEL

P3 = VOWEL TAB(S) VOWEL

P4 = TAB(6) VOWEL VOWEL

PS = RTAB(3) ARB VOWEL

P6 = ANY('OI234S6789')

P7 = POS(O) P6

P8 = POS(O) NOTANY('::')

P9 = SPAN('1234S67890') , ,
•

PIO = '(' BAl ')'

PII = POS(O) t(' BAL ')' RPOS(O)

PI2 = VOWEL $ V BREAKC~~V)

. PI3 = TAB(9) ~:DUPL(' ',N)

4.3. Write patterns that match the following kinds of strings:
(a) Strings that do not end with the character ::.
(b) Strings that contain at least two vowels.
(c) Strings longer than 10 characters.
(d) Strings consisting entirely of vowels.
(e) Strings that contain at least three instances of some character.

4.4. Write a program to count the number of words on a data file.

4.5. Discuss the deficiencies of WPAT as described in Section 4.2.

CHAPTER 5

Programmer-Defined Functions

Built-in functions provide the means for performing many program operations -trim­
ming and duplicating strings, creating patterns, testing conditions, and so on. There are,
of course, many operations for which there are no built-in functions. Each program has
different operations to perform, and no matter how many built-in functions are provided,
there are always operations that these functions cannot do. Such operations must there­
fore be programmed using SNOBOL4 statements.

An example is the process of reversing a string end-for-end so that the last character
becomes first, and so on. This may be done easily with a few statements. Suppose the
string to be reversed is the value of TEXT. A section of program to reverse the value
of TEXT is:

REVERSE =
STRING = TEXT

REVERSE STR I NG LEN(l) • C = :F(DONE)

REVERSE = C REVERSE : (REVERSE)

DONE •

•

•
First the null string is assigned to REVERSE and next a copy of TEXT is assigned to
STRING. Characters are taken from STRING one by one and built up in reverse order in

65

66 Programmer-Defined Functions Ch.5

REVERSE. When no characters remain, the process is complete and REVERSE contains the
desired reversed copy of TEXT. Note that the value of STR I NG is destroyed in the process,
which is why TEXT itself is not used. Such an operation is easy to program and presents
no particular problems. If, however, it is necessary to reverse a string at several different
places in the program, then similar statements must be provided in each place, or a way
must be found to use a common set of statements. If REVERSE were a built-in function,
there would be no problem. Each time it is necessary to reverse a string, a statement
such as

RTEXT = REVERSE(TEXT)

could be used. In fact, SNOBOL4 provides a way of making functions out of sections of
SNOBOL4 program so that these sections can be used in exactly this way.

5.1 DEFINING FUNCTIONS

A function consisting of a section of a SNOBOL4 program is called a programmer­
defined function. Several rules must be followed to create such a programmer-defined
function. First the built-in function DEFINE must be executed. DEFINE establishes the
existence of a programmer-defined function and describes its properties. The argument of
DEF I NE is a string that looks like a call of the function being defined. For REVERSE, the
defining statement might be:

DEFINE('REVERSE(STRING)')

REVERSE(STRING) establishes the name of the function, REVERSE, and a name for its
argument, STRI NG. The section of program used to carry out a programmer-defined func­
tion is called a procedure. There are certain conventions for writing such procedures.

In the first place, the procedure begins with a statement whose label is the same as the
name of the function. In the example, this label is REVERSE. When a programmer-defined
function is called, execution is suspended at that point and control is transferred to the
first statement in the procedure for the function.

Next there must be a way of communicating to the procedure what the values of its
arguments are. This is done by using the arguments which are given in the defining state­
ment. In the example above, STRING is the name of the argument. Therefore when
REVERSE(TEXT) is called, the value of TEXT is assigned to STRING. This provides a way
of passing the argument to the procedure, regardless of how REVERSE is called or what
string is to be reversed. It is as if the following statement had been executed:

STRING = TEXT : (REVERSE)

Conventions also exist for indicating that the computation in a procedure is complete
and that the value computed by the procedure is to be returned to the place of the call.
RETURN has a special meaning. A transfer to RETURN does not transfer control to a label

Sec. 5.1 Defining Functions 67

RETURN, but instead signals the completion of the procedure. Whatever value the name
of the procedure has at this time is the value returned, and becomes the result of a func­
tion call. The statements for reversing a string given earlier can now be modified slightly
to follow the rules for a procedure. In fact, they are simpler:

REVERSE STRING

REVERSE

LEN(l) • C =

= C REVERSE

:F(RETURN)

: (REVERSE)

Note that the initial statements given in the earlier program are no longer used. This is
possible because certain operations are performed automatically when a programmer­
defined function is called. When a statement such as

RTEXT = REVERSE(TEXT)

is executed, the function call performs the equivalent of the following statements:

SAVEl = REVERSE

REVERSE =
SAVE2 = STRING

STRING = TEXT : (REVERSE)

These are not real statements, but are only "pseudo-statements" showing what operations
are performed. SAVEl and SAVE2 are not real variables, but only indicate that the
values of REVERSE and STRING are saved before transfer to the procedure. Note that the
value of REVERSE (the name of the function) is initialized to the null string so that it may
be used by the procedure without concern about what its value may have been before
the function call.

When the procedure transfers to RETURN, the value of REVERSE supplies the value of
the function call. Then the following operations are performed.

STRING = SAVE 2

REVERSE = SAVEl

Execution of the statement

RTEXT = REVERSE(TEXT)

continues, assigning the reversed string to RTEXT. Note that the values of REVERSE and
STR I NG are saved when the function is called and restored when the function returns.
Therefore the function call leaves their values unchanged. Thus the function REVERSE
can be used anywhere in the program without fear that it will change the values· of
REVERSE or STRING. Note, however, that REVERSE uses the name C in the process of its
computation. Since the value of C is not saved and restored, the function REVERSE

68 Programmer-Defined Functions Ch.5

changes C in a global sense. The value of C will, in general, be changed by a call of
REVERSE. This may be avoided by making C local to the procedure in which it is used.
This is indicated by appending C to the string which describes the REVERSE function in
the defining statement, as follows:

DEFINE('REVER5E(STRING)C')

When C is included in this way, its value is saved before transfer to the REVERSE proce­
dure, assigned a null value, and then restored on return from the procedure.

Observe that a programmer-defined function is used in exactly the same way that a
built-in function is used. In fact there is no way to tell whether a function is built-in or
defined except by looking at the program to see if there is a defining statement and a
procedure for it.

Defined functions may have more than one argument; in fact there may be as many
arguments as are needed. There may also be many local names. In both cases, the addi­
tional names are written in a list, separated by commas. An example is the function
MERGE(51,52) whose value is a string consisting of alternate characters of 51 and 52.
The defining statement is:

DEFINE('MERGE(51,52)Cl,C2')

51 and 52 are arguments and Cl and C2 are local names.

MERGE 51 LEN(I) • Cl =

52 LEN(I) • C2 =

MERGE = MERGE Cl C2

MERNDI MERGE = MERGE 52

MERND2 MERGE = MERGE Cl 51
The following calls of MERGE have the values indicated:

MERGE('ABC','OI2')

MERGE('ABC','O')

MERGE('A','OI2')

AOBIC3

AOBC

A012

The procedure is:

:F(MERND1)

:F(MERND2)

: (MERGE)

: (RETURN)

: (RETURN)

A defined function may fail in the same way that a built-in predicate fails. Failure is
indicated by transferring to FRETURN instead of RETURN. Suppose, in the example above,
that MERGE is to return a value only if the lengths of the two arguments are the same, and
is to fail otherwise. The procedure could be rewritten as follows:

Sec. 5.1 Defining Functions

MERGE EQ(5IZE(51),5IZE(52))

MERG 51 LEN(I) • Cl =

S2 LEN(l) • C2 =

MERGE = MERGE Cl C2

:F(FRETURN)

:F(RETURN)

: (MERG)

69

Now, the value of MERGEC'ABC', '012') is AOBIC2, but both MERGEC'ABC' ,0) and
MERGE C ' A ' , '012') fail.

Sometimes a function does not need any arguments. Suppose, for example, that a
data file contains some records with information to be processed, and other records which
are only comments. In this file, comment records begin with a :: to distinguish them from
information records. A function I NFO can be written to read the data file, bypass
comment records, and return the next information record. The defining statement and
procedure for INFO might be:

DEFINEC'INFOC)')

INFO INFO = INPUT

INFO POSCO) nn

A typical use of I NFO is:

READ LINE = INFO()

:F(FRETURN)

:5(INFO)F(RETURN)

:F(OONE)

Notice that no arguments are specified when I NFO is. defined or when it is called.
The examples given above deal only with strings, but the arguments of a call to a de­

fined function may be any type of object, and any kind of value may be returned. This
is illustrated by the function EITHERCPl,P2) where PI and P2 are patterns. The function
EITHERCPl, P2) returns a pattern that matches either PI followed by P2 or P2 followed
by PI. The defining statement is

DEFINE('EITHER(Pl,P2)t)

and the procedure is:

EITHER EITHER = (PI P2) (P2 PI) : (RETURN)

/

70 Programmer-Defined Functions Ch.5

5.2 FUNCTIONAL COMPOSITION

One of the reasons for using a function is so that the procedure associated with that
function may be called from anywhere in the program. A function call may even occur
in another procedure. To see why this may be useful, consider RMERGE(51, 52) whose
value is the same as that of MERGE, except that the result is reversed. It is not a difficult
matter to write a procedure to do this, but functions already have been written for
merging and reversing strings. Using these functions simplifies the writing of RMERGE.
The defining statement is:

DEFINE('MERGE(Sl,S2)')

The procedure is simply:

RMERGE RMERGE = REVERSE(MERGE(Sl,S2)) : (RETURN)

Thus RMERGE calls MERGE to merge S 1 and S2 and then calls REVERSE to reverse the result.
Note that RMERGE does not need to specify local variables-this is done by MERGE and
REVERSE.

This technique of "functional composition" provides a very powerful programming
tool, permitting previously defined functions to be used in developing new ones and
avoiding repetitious programming.

5.3 RECURSIVE FUNCTIONS

If one function can be called while executing another, what prevents a function from
calling itself while it is being executed? In fact a function can call itself. (This is true in
SNOBOL4, but not in all programming languages.) Such a-call is a recursive call. One
could well ask what possible use a recursive call might have. Recursion in functions is, in
fact, one of the most powerful of all programming techniques. Recursive definitions are
frequently used in mathematics for defining things in terms of themselves. Such defini­
tions are concise and elegant, if apparently circular at first sight. The most familiar
recursive definition is that of the factorial of a number, written as n! n! is simply the
product of all integers from 1 to n. That is

n! 1*2* ... *n

This is not a recursive definition, but uses ellipses (...) to indicate an indefinite repetition.
A recursive definition is:

O! 1

n! n * (n -1)! for n> 0

Sec. 5.3 Recursive Func tions 71

The first line is a special case. The second line defines n! in terms of itself. This definition
eventually terminates because the special case O! is reached. For example:

4! 4 * 3! 4 * 3 * 2! = 4 * 3 * 2 * 1!

4 * 3 * 2 * 1 * O! = 4 * 3 * 2 * 1 * 1 = 24

It is actually possible to compute n! by using a function which is based on this recur­
sive definition. The defining statement and procedure are:

DEFINE('F(N)')

•

•

•

F F = EQ(N.,O) 1

F = N~: F(N - 1)

:S(RETURN)

: (RETURN)

Following through a case will illustrate how this works. Consider F(4). When F(4) is
called, N is assigned the \Talue 4. Since 4 is not equal to zero, the second statement is
executed, and is equivalent to:

F = 4 :: F(3) : (RETURN)

The call F(3) saves the current value of N and then assigns the value 3 to N. Again 3 is
not equal to zero and a statement equivalent to

F = 3 .~: F(2) : (RETURN)

is executed. Note that the previous statement has not yet completed, and will not com­
plete until F(3) returns its value. This process continues until F(D) is called. At this
point the following statements have been started, but not completed:

F =

F =

F =
F =

4 :: F(3)

3 :: F(2)

2 :: F(l)

1 :: F(D)

: (RETURN)

: (RETURN)

: (RETURN)

: (RETURN)
The call of F(D) stops this "recursive plunge", since the first statement succeeds, and
returns the value 1 for F(D). The previous statement then succeeds and returns the value
1 for F(l), and so on. Finally F(3) returns the value 6 and the original call, F(4),
returns the desired result, 24.

72 Programmer-Defined Functions Ch.5

While this process works as described, and could actually be used to compute n!

(should one want to), it should be evident that this method is unnecessarily elaborate. A
more straightforward procedure is:

F F =

F =

Fl N =

F =

EQ(N,O) 1

N

GT(N,I) N - 1

F)C N

:S(RETURN)

:F(RETURN)

:(FI)

This type of computation is called iterative rather than recursive, since the same operation
is performed repeatedly. While this procedure is a trifle longer, it is easier to understand.
The iterative technique is also simpler and faster, since the additional function calls in the
recursive procedure require the saving and restoring of values.

If iteration has these advantages over recursion, why use recursion at all, then? In
simple cases there is usually no reason to use recursion. In complicated problems, how­
ever, it may be possible to formulate a recursive solution easily, while an iterative
solution may be extremely difficult to formulate. Thus recursion may be a very useful
problem-solving tool.

Consider the following example. Arithmetic expressions are usually written in infix
form with operators between their operands. A simple example is:

((VI)cY2)-V3)+V4

SNOBOL4 uses a similar notation except that blanks are required around the operators.
An alternative form places operators in prefix position with operators before their
operands. The prefix expression equivalent to the example above is:

(N otice that this is essentially a functional notation in which the operators appear where
function names ordinarily occur.) Now consider the problem of converting expressions,
containing only binary operators, from infix form to prefix form. One operator is simple.
For example, VP~V2 becomes)C(VI,V2). Suppose the operators are +, -, :C, and/. A
pattern for matching an operator and its operands is:

INP = SAL • L ANY (t +-/:c ') • OP SAL • R

The pattern INP would not work properly on the example above since the last SAL
does not match V4:

L R
~A
((VI)cY2)-V3)+V4

Sec. 5.3 Recursive Functions 73

To be sure the entire string is matched, the pattern may be modified as follows:

I NP = POS CO) SAL • L ANY C ' +-p~ ') • OP SAL • R

+ RPOS(O)

A statement to convert an operator might be:

EXP INP = OP 'C' L ',I R I)'

The expression above becomes:

+CCCVP:V2)-V3)# V4)

The conversion is only partial. The parts of the expression involving ~~ and - have not
been converted. The pattern INP cannot be successfully applied again, since the expres­
sions that remain to be transformed are inside parentheses and INP can only match an
entire string. What is needed is the conversion of the expressions Land R. Suppose there
is a function PRE(EXP) that puts any expression EXP in prefix form. Then the statement
above would be:

EXP INP = OP 'C' PRE(L) '#' PRECR) I)'

But such a function PRE is exactly what we are writing! The statement above is part of
PRE. This is often how recursive procedures are developed; in writing a procedure, the
use of the procedure itself is suggested. There is a little more to PRE than is shown above.
PRE must be able to handle any expression including one without any operator, and
surrounding parentheses in the infix form sometimes get in the way and must be dis­
carded. A defining statement, patterns, and a complete procedure for PRE follow:

DEFINEC'PRE(EXP)L#R#OP')

INP = POSCO) SAL • L ANY('+-/~~') • OP SAL • R

+ RPOSCO)

RPAREN = POS(O) 'C' SAL. R ')' RPOSCO)

•

•

•

PRE EXP RPAREN = R

EXP INP = OP 'C' PRE(L) , ,
PRECR) ')' #

PRE = EXP :CRETURN)

74 Programmer-Defined Functions Ch.5

This function does not attempt to determine the precedence and associativity of
operators. Hence parentheses must be included in expressions to be transformed. If an
expression is surrounded by parentheses, these are removed by the first statement of the
function. If the expression contains no operators, it is returned without modification.

5.4 PROCEDURES IN PROGRAMS

Procedures for programmer-defined functions are written in SNOBOL4 and are essen­
tially indistinguishable from the rest of the program. The entry labels of functions are
identified with the name of the function but are just like any other labels in the program
and may be transferred to in the same way as any other labels. In fact all labels in a
procedure are "global" in this sense, and are not different from other program labels.
Similarly the end of a procedure is not, in general, identifiable. A transfer to RETURN or
FRETURN terminates the call of a function, but the end of a procedure is not set off in the
program by any special notation. Thus the procedure for a function may be flowed into
or transferred to from anywhere in the program. Entering a procedure in this way is
usually an accident and results in an error, since the transfer to RETURN or FRETURN
cannot be made unless the procedure has been entered by a function call. In fact, an
error frequently made by the beginning SNOBOL4 programmer is to place the procedure
for a function immediately after the defining statement for the function. A typical
example is:

DEFINE('REVERSE(STRING)C')

REVERSE STRING LEN(l) • C = :F(RETURN)

REVERSE = C REVERSE : (REVERSE)

In this case, after executing the DEFINE function, execution continues with the state­
ment labeled REVERSE. If the value of STRING is null, as is likely to be the case, an
attempt to transfer to RETURN is made, which is an error since the procedure for REVERSE
has been flowed into, not entered by a' call. Thus, the procedures for functions should not
be in the main line of flow of the program. Where to put the procedures is a matter of
taste. Some programmers prefer to put all procedures near the end of the program where
they will not be executed accidentally. Other programmers prefer to keep the procedures
with their defining statements. Since the defining statements must be executed (usually
early in program execution) and the procedures themselves should not be executed until
they are called, gotos may be provided to branch around the procedures. A typical
example is:

Sec. 5.4 Procedures in Programs

DEFINE('REVERSE(STRING)C')

REVERSE STRING LEN(l) • C =

REVERSE = C REVERSE

REV END

•

: (REVEND)

:F(RETURN)

: (REVERSE)

75

After DEFINE is executed, control is transferred to REVEND, bypassing the procedure
itself.

It is also worth remembering that all program labels must be different. Labels in
procedures are not different from labels elsewhere in a program. Consequently two proce­
dures may share a common section of program and both may branch to the same location.
Since all labels are global, there is no way to provide a local label for a procedure in the
same sense that a variable may be made local.

EXERCISES

5.1. Write a function MATRIX(C,N,M) that prints an N by M matrix of the character
which is the value of C. See Exercise 3.3.

5.2. Write a function DELETE(S, C) whose value is the result of deleting all occurrences
of the character which is the value of C from the string which is the value of S.

5.3. Write a function SUBSTR(S ,N,M) whose value is the substring of S which begins at
the Nth character of S and is M characters long.

5.4. Write a predicate PALIN(S) that succeeds if S is a palindrome and fails otherwise.
See Exercise 2.4.

5.5. Sometimes blanks are ignored in determining if a string is a palindrome. Thus

WAS IT A RAT I SAW

could be considered a palindrome. Modify the solution of Exercise 5.4 to test for
this type of palindrome.

5.6. The Fibonacci Numbers are defined as follows:

f(O) = 0

f(l) = 1

f(n+l) = f(n)+f(n-l) n.2: 1

76 Programmer-Defined Functions Ch.5

Write a function F(N) whose value is the Nth Fibonacci Number. Compute F(6).

5.7. Postfix form is similar to prefix form, except that operators are written after their
operands instead of before them. For example, the infix expression

((VI ::V2)-V3)+V4

has the postfix equivalent:

«((VII V2)::1 V3)-1 V4)+

Write a function POST(EXP) that converts expressions inprefix form to postfix form.

CHAPTER 6

Arrays, Tables, and
Defined Data Objects

So far, the only variables used in this book have been names and, for special purposes,
keywords. A variable provides a way of keeping track of a value and of referring to that
value when it is needed. In most cases, names serve this purpose well. In some instances,
however, several values are logically related to each other and it is useful to have a single
object associated with all of them. SNOBOL4 provides three ways for referring to such
collections of values: arrays, tables, and programmer-defined data objects.

6.1 ARRAYS

An array is a collection of values identified by a single name. Individual values are
referenced by means of a subscript applied to that name. The values in an array can be
thought of as being arranged in order by the integers 1, 2, 3, and so on. If RANK is the name
of an array, the individual values in RANK are indicated by RANK<l>, RANK<2>, RANK<3>,
and so on. The "angular brackets" enclose integer subscripts which identify the particular
values. The term subscript is used because of the relation to the mathematical subscript
notation in which values would be designated as RANK 1, RANK2 "RANK 3 , and so on. Since
there is no convenient way of representing a subscript directly on a computer, the angular
brackets are used instead. The meaning is the same.

An array is associated with a name by executing a statement such as:

RANK = ARRAY('lO')

ARRAY is a built-in function that creates an array. The value of the argument of ARRAY
is a string that determines how many values the array has. The statement above creates
an array of 10 values. The assignment associates this array with the name RANK.

77

78 Arrays, Tables, and Defined Data Objects Ch.6

Subsequently, the values of RANK are referred to as RANK <1>, RANK<2>, •.. ,RANK <10>.
Such constructions are called array references. When an array is created, all values are
null. Values may be changed by assignment statements. An example is

RANK < 3> = , SERGEANT'

which makes SERGEANT the third value in RANK. This statement illustrates that each value
in RANK has an associated variable. RANK <3>, for example, is one of these.

Since there are only ten variables in RANK, what happens if an array reference such as
RANK<12!> is attempted? Such an array reference fails. In general, if the subscript is too
large or too small (zero, for example) the array reference fails. Such a subscript is said to
be out of bounds for that array. Failure of an array reference, like other failures, can be
used to select a conditional goto. This failure is particularly useful in referencing an array
iteratively. Suppose SQUARE is an array of 20 values which is to contain the squares of the
first 20 integers. The following statements could be used to assign these values.

I =
PUTSQ SQUARE<I>

I = I
DONE

1

=
1+1

I :: I :F(DONE)

: (PUTSQ)

The statement PUTSQ assigns the square of the subscript I to each array value, and I is
incremented in a loop. When I reaches 21, however, the attempt to reference the twenty­
first value fails and the loop is broken. Notice that it is not necessary to know how large
SQUARE is. The loop above works for an array of any size, which can be very useful.

Although ordinarily when an array is created all values are null, another initial value
may be provided. This initial value is specified in the second argument of the ARRAY
function. For example

SUMS = ARRAY('100',O)

creates an array of one hundred values, all of which are zero. Note that the null value, in
case the second argument is omitted, follows naturally from the convention that an
omitted trailing argument is assumed to be null.

Counting the words of each length that appear in text is another example of the use
of arrays. The pattern WPAT given in Section 4.2 can be applied to data read from the
input file. A simple program is:

Sec. 6.1 Arrays

LETTER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

WPAT = BREAK(LETTER) SPAN(LETTER) • WORD

LENGTH = ARRAY('lO',O)

READ TEXT = INPUT

OUTPUT = TEXT

NEXTW TEXT WPAT =
N = SIZE(WORD)

LENGTH<N> = LENGTH<N> + 1

PRINT I = 1

OUTPUT =
OUTPUT = 'LENGTH COUNT'

PRINTW OUTPUT = , I ,

I = I + 1

END

A typical output from this program follows:

THERE WAS AN OLD MAN OF NANTUCKET

WHO KEPT ALL HIS CASH IN A BUCKET;

BUT HIS DAUGHTER, NAMED NAN,

RAN AWAY WITH A MAN --

AND AS FOR THE BUCKET, NANTUCKET.

, LEf\JGTH<l>

:F(PRINT)

:F(READ)

: (NEXTW)

:F(END)

: (PRINTW)

79

80 Arrays, Tables, and Defined Data Objects Ch.6

LEr-.x;TH COUNT

1 2

2 5

3 14

4 4

5 2

6 1

7 1

8 1

9 2

10 0

Note that the failure of an array reference which is out of bounds is used to terminate
the printing loop.

The subscript of an array reference need not be given explicitly as illustrated in the
program above, but may be the value of an expression computed in the reference itself.
Thus the two statements

N = 5 IZE(WORD)

LEr-.x;TH<N> = LENGTH<N> + 1
could be combined in one statement:

LENGTH<SIZE(N» = LENGTH<SIZE(N» + 1

Note, however, that if this is done, SIZE(N) must be computed twice.
The arrays described above are referred to as linear arrays, since the subscripts can be

laid out on a line, in a one-dimensional fashion, as illustrated in Figure 6.1.

• • • •
1 2 3 4

Figure 6.1 Subscripts of a Linear Array

Sec. 6.1 Arrays

This geometrical concept obviously can be generalized to two dimensions, as illustrated
in Figure 6.2, in which pairs of integers correspond to positions in space.

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3, 1 3,2 3,3 3,4
I r

Figure 6.2 Subscripts of a Two-Dimensional Array

SNOBOL4 provides for two-dimensional arrays in which two subscripts are used,
one for each dimension. Such an array is assigned to a name by a statement such as
the following:

RECTANGLE = ARRAy(t3,4t)

The value of the argument of the function ARRAY" in this case, is a string conJisting of
two numbers, separated by commas. These numbers determine the size of the array in
each of its two dimensions. RECTANGLE becomes the name of a 3-by-4 array. Array refer­
ences that are in bounds are RECTANGLE<l,l>, ... , RECTANGLE<3,4>. Thus the "last"
value in this array corresponds to the integers which are given in the argument of the
ARRAY function. Two-dimensional arrays are useful for representing values that are natu­
rally thought of as laid out in two dimensions. A typical case is a checkerboard, which
can be thought of as an 8-by-8 array of squares.

Note that the two dimensions are specified in the first argument. The comma is in
a data string, and hence there is only one argument in the call of ARRAY above. On the
other hand

x = ARRAy(t3 t ,4)

creates a linear array of three elements, each of which has the initial value 4.
The extension of arrays from one to two dimensions can be generalized to any

number of dimensions: three, four, and so on. The argument of ARRAY simply lists the
extent of each dimension, with separating commas. References to such arrays require
correspondingly more subscripts.

Arrays, Tables, and Defined Data Objects Ch.6

6.2 TABLES

The values in an array may be considered as being arranged in a neat geometrical
order. Integer subscripts are associated with the positions of these values accordingly.
In some cases, however, there are collections of data that have no natural geometric
interpretation and in which integer subscripts are not appropriate. Consider the problem
of analyzing text and counting the number of times each word occurs. For example,
SQ\1E might occur twice, PEOPLE three times, and so on. The desired results are counts,
which form a natural collection of values. Ideally these values might be related to a single
name, COUNT, with appropriate subscripts. The subscripts, however, should be the words
SOME, PEOPLE, and so on, not integers. For this purpose, a table may be used. A table is
similar to a linear array, except that the subscripts need not be integers. A table is assigned
to a name by a statement such as:

C0UNT = TABLE()

TABLE is a built-in function that creates a table . TABLE requires no argument, since a
table has no fixed size; it grows as necessary. Values in a table are referenced in the same
way that values in a linear array are referenced, except that the subscripts need not be
integers. For example the statement

COUNT <1 SOME '> = COUNT<'SOME'> + 1

increments the "SOMEth" value in COUNT.
As mentioned above, tables have no fixed size. A value for a subscript is created

simply by using that subscript. Such a value is initially null, but it may be changed by an
assignment statement as illustrated above. The capability of a table to expand as neces­
sary is very useful when dealing with a problem such as word counting, where the words
that may appear cannot be determined in advance. Different texts have different words.
There are so many words that might occur that it is useless to try to list all of them
explicitly in a program.

A program for counting the number of times each word occurs in text is easily
obtained by minor modification to the word-length program given in the last section.
Using a table, COUNT, instead of an array, LENGTH, the statement to increment the count
for a word becomes:

COUNT<WORD> = COUNT<WORD> + 1

The statement increments the count for the word, whatever the value of WORD is. When a
word is used for the first time, its initial value automatically becomes the null string.
Since the null string is numerically equal to zero, the count for the word becomes one.
,Thus, using WPAT given in Section 6.1, counting words can be done by the following
statements:

Sec. 6.2 Tables 83

COUNT = TABLE()

READ TEXT = INPUT :F(PRINT)

OUTPUT = TEXT

NEXTW TEXT WPAT = :F(READ)

COUNT<WORD> = COUNT<WORD> + 1 : (NEXTW)

PRINT •

The fact that simply using a subscript in a table reference creates a value for that
subscript produces an interesting problem. When word counting is complete, certain
words have been used as subscripts for the table. How can the words that have been
used ~s subscripts be determined? Consider some hypothetical subscripts and their
corresponding values as shown in Figure 6.3.

YOU 2

CAN 1

FOOL 2

SCJ-1E 2

OF 5

THE 6

PEOPLE 3

ALL 4

TIME 3

AND 1

BUT 1

CANNOT 1

Figure 6.3 Subscripts and Values in a Table

84 Arrays, Tables, and Defined Data Objects Ch.6

This arrangement can be thought of as two columns of eight rows each, suggesting a
geometrical interpretation as a two-dimensional, 12-by-2, array.

SNOBOL4 provides a way of creating just such an array from a table. The built-in
function CONVERT is used as is illustrated by the following statement:

RESULT = CONVERT(COUNT,'ARRAY')

The first argument of CONVERT is the table to be converted. The second argument is a
string that indicates that the result is to be an array. The value returned by CONVERT is an
n-by-2 array if there are n sUbscripts with values in the table. Subscripts which have null
values are omitted in the conversion process. If there are no subscripts with nonnull values,
CONVERT fails. If the values in COUNT are those given in Figure 6.3, the value assigned to
RESULT in the statement above is a 12-by-2 array. The value of RESULT<l, 1> is YOU,
the value of RESULT<1,2> is 2, the value of RESULT<2,1> is CAN, and so on. In general,
the first subscript of the array corresponds to subscripts in the table, and the second sub­
script of the array corresponds to values in the table. A complete program for counting
words and printing the results follows.

LETTER = 'ABCDEFGHIJKLMNOPQRSTWWXYZ'

WPAT = BREAK(LETTER) SPAN(LETTER) • WORD

COUNT = TABLE()

READ TEXT = INPUT

OUTPUT = TEXT

NEXTW TEXT WPAT =

COUNT WORD = COUNT <WORD> + 1

CONVERT (COUNT , 'ARRAY') PRINT RESULT

OUTPUT

OUTPUT

OUTPUT

I =
PRINTC OUTPUT

I =
NONE OUTPUT

END

=
=
= 'WORD COUNT'

=
1

= RESULT<I,l> '-' RESULT<I,2>

1+1

= 'THERE ARE NO WORDS'

:F(PRINT)

:F(READ)

: (NEXTW)

:F(NONE)

:F(END)

:(PRINTC)

Sec. 6.2 Tables 85

Typical printed output is:

YOU CAN FOOL SOME OF THE PEOPLE ALL OF THE TIME,

AND ALL OF THE PEOPLE SOME OF THE TIME; BUT

YOU CANNOT FOOL ALL OF THE PEOPLE ALL THE TIME.

WORD COUNT

YOU-2

CAN-l

FooL-2

Sav1E-2

OF-5

THE-6

PEOPLE-3

ALL-4

TIME-3

ANO-l

BUT-l

CANNOT-l

6.3 PROGRAMMER-DEFINED DATA OBJECTS

Frequently members of a group of data objects have a number of attributes in common.
For example, language analysis might involve study of the sentences in a text, where each
sentence might have certain attributes of interest. Such properties might be the type of
sentence (declarative, imperative, and so forth), the length (number of words), the subject,
predicate, and object.

86 Arrays, Tables, and Defined Data Objects

Consider a specific sentence:

QUOTES ENCLOSE THE VALUE
The attributes could be assigned to names chosen for their mnemonic values:

TYPE = 'DECL'

LEf\GTH = 4

SUBJ = 'QUOTES'

PRED = 'ENCLOSE'

OBJ = 'THE VALUE'
DECL is an abbreviation for "declarative".

Ch.6

DIfferent sentences would have different values for these attributes. Analysis of a text
might involve determining the attributes for each sentence and then comparing the results.
For example, the number of sentences of each type might be of interest, as well as the
average sentence length, and so forth. The problem is that each sentence has attributes
TYPE, LENGTH, and so forth, while the names TYPE, LEf\GTH, and so forth can only have
one value at a time.

SNOBOL4 provides programmer-defined data types for situations in which several
objects all have the same attributes. A programmer-defined data type is essentially a col­
lection of attributes, called fields, which allow a variety of values to be associated with one
object in the manner suggested above. A programmer-defined type is created by executing
the built-in function DATA which defines the data type in much the same way that DEFINE
defines a function. Each defined data type has a name and fields. For the example above,
a natural choice for the name of the data type would be SENTENCE. Using obvious abbre­
viations, the fields might be TYPE, LENGTH, SUBJ, PRED, OBJ. The DATA function has an
argument which is a string consisting of the name followed by the fields enclosed in paren­
theses. For the example above, the data-defining statement might be:

DATA('SENTENCE(TYPE,LENGTH,SUBJ,PRED,OBJ)')

The fields can be arranged in any order, but the order must be remembered. It is often
convenient to put frequently used fields first.

The DATA function performs several tasks so that the new data type can be used. First,
DATA defines an object-creation function whose name is the same as the name of the data
type. This object-creation function is used to create objects of the new type. The argu­
ments of the object-creation function assign values to the fields corresponding to the
argument of DATA. Thus

S = SENTENCE('DECL',4,'QUOTES','ENCLOSE','THE VALUE')

creates a SENTENCE. and assigns it to S. The value of the first field, TYPE, is DECL, and so on.

Sec. 6.3 Programmer-Defined Data Objects 87

DATA also defines field functions that can be used to refer to the fields of an object.
For example

OUTPUT = SUBJ(S)

prints QUOTES.
Assignments can be made to the fields of a defined object also. For example

PRED(S) = 'DELIMIT'

changes the PRED field of S so that S corresponds to the sentence:

QUOTES DELIMIT THE VALUE

Since values can be assigned to fields in this way, fields are variables in the same sense that
names, keywords, array references, and table references are variables.

If a field is omitted when an object-creation function is called, that field is assigned a
null value automatically. As an extreme case,

T = SENTENCE()

creates ,a SENTENCE in which all fields are null. Values for these fields can subsequently be
assigned as, for example, by the statements:

TYPE(T) = 'IMP'

LENGTH(T) = 2

PRED(T) = 'ECCE'

OBJ(T) = 'HOMO'

The corresponding sentence is ECCE H0'-10, which is imperative and has no explicit subject.
Since no value is assigned to the SUBJ, that field is null. The same SENTENCE could be
created by the statement:

T = SENTENCE('IMP',2,,'ECCE-,'HavtO')

Notice that the third field) SUBJ, is left null.

Structures

The values of the fields in the preceding example were strings and integers. Fields may
also refer to other defined objects. This leads to the idea of one object "pointing to"
another and permits the representation of complex structures using defined objects. The
following example illustrates this use of defined objects.

88 Arrays, Tables, and Defined Data Objects Ch.6

Consider a structure called a binary tree. Such a structure consists of nodes connected
together according to certain rules. A node may have two sons, a left son and a right son.
Figure 6.4 illustrates a node A, its left son B, and its right son C. A is the father of B
and C. The relationships among the nodes are indicated by the position of the nodes and
the connecting lines.

B

Figure 6.4 A Node and its Sons

Since Band C are nodes, they may have sons also, and so on. A typical binary tree is
illustrated in Figure 6.5.

D

Figure 6.5 A Binary Tree

Sec. 6.3 Programmer-Defined Data Objects \
Notice that a node need not have both types of sons. N odes that have no sons are

called leaves. A node that has no father is called a root. (This terminology, while fairly
standard in the field, is a polyglot taken from the notation for botanical and genealogical
trees. Binary trees are customarily drawn as shown with their roots at the top.) In
Figure 6.5, A is a root and 0, E, and G are leaves.

For computational purposes, a tree is a structure that can be used to represent the
relationship between data items. To incorporate the data items, each node may be thought
of as having a value which is depicted within the circle representing the node. One use
of such a tree is to represent arithmetic expressions containing binary operators.
The expression

can be represented by a binary tree as shown in Figure 6.6.

Figure 6.6 A Tree of Values

Such a structure can easily be represented by using programmer-defined data objects.
The basic data object in a tree is the node. These nodes have certain attributes. In

general a node may have a left son, a right son, a father, and a value. Therefore the
following statement could be used for describing nodes:

DATA('NODE(VALUE,LSON,RSON,FATHER)')

I
I

/
90 Arrays, Tables, and Defined Data Objects Ch.6

The fields LSON, RSON, and FATHER given here are quite different, at least conceptually,
from the fields for the data type SENTENCE. There the values of fields were all familiar
objects: strings or integers. Here, as illustrated in Figure 6.7, the left son of a node is
a node, illustrated by an arrow pointing from one node to another. Such relationships
are easily established among NODEs, although it requires a little faith at first.

N2

Figure 6.7 Pointers in a Binary Tree

To construct the binary tree given in Figure 6.7-, the relationships implied in that dia­
gram must be established. First we create three nodes with the values indicated.

Nl = NODE('+')

N2 = NODE('Y')

N3 = NODE('Z')

Now to connect these together, the fields must be set up.

LSON(Nl) = N2

RSON(Nl) = N3

FATHER(N2) = Nl

FATHER(N3) = Nl

These fields reference, or point to, other nodes. For example the FATHER of N3 points to
node Nl.

The tree could be obtained somewhat more simply by supplying some of the field
values when the NODEs are created. One way to do this is:

Nl = NODE('+')

N2 = NODE('Y'",Nl)

N3 = NODE('Z'",Nl)

LSON(Nl) = N2

RSON(Nl) = N3

Sec. 6.3 Programmer-Defined Data Objects 91

Once Nl has been created, it can be supplied as the FATHER field when creating N2 and N3.
Alternatively, the nodes could be created in a different order:

N2 = t-.nDE('Y')

N3 = NODE('Z')

Nl = NODE ('+' ,N2,N3)

FATHER(N2) = Nl

FATHER(N3) = Nl

In any event, a node cannot be given in a field until it has been created, so some of the
fields have to be filled in after the nodes are created.

If no value is assigned to a field, it has a null value as was mentioned earlier. Since not
every node has a left son, right son, and father, it is convenient to indicate a missing rela­
tionship by a null value of the field. There is no reason why a missing relationship has to
be represented by a null value, but it is a common convention.

There are no built-in functions for performing operations on specific programmer­
defined data objects. Such objects may have many meanings and uses which constitute
extensions to SNOBOL4. It is therefore natural to provide programmer-defined functions
to perform operations that may be needed for specific objects. In the case of binary trees,
for example, it might be necessary to determine if a node is a leaf. The following predicate
could be used for this purpose.

DEFINE('LEAF(NODE)')

•

•

LEAF (IDENT(LSON(NODE)) IDENT(RSON(NODE)))

+ :S(RETURN)F(FRETURN)

92 Arrays, Tables, and Defined Data Objects Ch.6

Similarly, a function to add a pair of nodes as sons to a leaf node might be:

DEFINE('ADSONS(Nl,N2,N3)')

•

•

•

ADSONS LSON(Nl) = N2

RSON(Nl) = N3

FATHER(N2) = Nl

FATHER(N3) = Nl : (RETURN)

The functions to be written depend, of course, on the nature of the data objects and the
operations to be performed.

The examples of the data objects SENTENCE and NODE illustrate only two possible uses
of programmer-defined objects. There is an endless variety of similar uses, depending on
the data'to be represented and manipulated.

EXERCISES

6.1. In the program that uses an array to keep a count of word lengths, what happens
if a word more than ten characters long is encountered? What might be done in
such a case?

6.2. Set up an array whose values are the first five powers of the integers from 1 to 10.

6.3. Write a program to count characters on a data file. Print the counts.

6.4. Write a program to count the number of occurrences of each four-letter word on
a data file.

6.5. A complex number consists of two parts: a real number and an imaginary number.
Complex numbers are usually written in the form a + bi where a is the real part and b
is the imaginary part. Create a representation for complex numbers so that they can
be manipulated in a program.

6.6. Write functions ADD, SUB, MPY, and D IV for adding, subtracting, multiplying, and
dividing complex numbers. If necessary, refer to an elementary mathematics text
for definitions of these operations.

Ch.6 Exercises 93

6.7. Write a predicate ID5UBJ(51,52) that succeeds if the subjects of SENTENCEs
51 and 52 are identical, and fails otherwise.

6.B. Write a function XSON5(NODE) that exchanges the left and right sons of a node in a
binary tree.

CHAPTER 7

Input and Output

Input and output may be performed easily by appropriate use of the three names
INPUT, OUTPUT, and PUNCH. Files are read, written, and punched, record-by-record, each
time one of these names is used. For most programs these three names are adequate.
There is really nothing sacred about these names, however: input, output, and punch
files are common to almost all computer installations and the names INPUT, OUTPUT, and
PUN~HI were chosen for their mnemonic value.

7.1 INPUT AND OUTPUT ASSOCIATIONS ...

The association of a name with a file makes input or output possible, and the names
INPUT, OUTPUT, and PUNCH are associated automatically with their corresponding files.
Other names can be associated with files, however. This is done by executing a built-in
function that creates the type of association desired. Basically there are just two types of
associations: input and output. (OUTPUT and PUNCH are just two varieties of output.)
Correspondingly there are two association functions, INPUT and OUTPUT (not to be con­
fused with the I/O-associated names INPUT and OUTPUT). Any name can be given an in­
put association by executing the built-in function INPUT. An example is:

INPUT('CARD')

After executing this statement, CARD is input-associated and every reference to CARD reads
an input record in the same way as reference to the name INPUT. Thus

LINE = CARD :F(DONE)

reads a record and assigns it to LINE. The input association for CARD does not interfere

94

Sec. 7.1 Input and Output Associations 95

with the input association for INPUT. Either or both can be used for reading input, and
both can be read from the same file. Many names can, in fact, be associated with the
same file. For example, the statements

INPUT('CARDl')

INPUT('CARD2')

INPUT('CARD3')

associate the three names CARDl, CARD2, and CARD3 with the input file.
Just as several names can be associated with the input file, so can several names be

associated with the output file. Use of the built-in function OUTPUT is illustrated by:

OUTPUT('LINE')

Subsequently, the statement

LINE = CARD :F(DONE)

reads a line and prints it.

7.2 FILE NUMBERS

For most programs it is sufficient to know that there are input, output, and punch
files. Some installations require control cards that specify these files, but such require­
ments vary from location to location and are not part of the SNOBOL41anguage.

Some programs, however, need to use other files. Data to be processed may be on a
magnetic tape, for example. Similarly, the results of running a program may have to be
saved on a tape or disk. For such cases, more must be known about files and how the
running SNOBOL4 program communicates with its environment. Ways of talking about
files vary from language to language and from installation to installation. SNOBOL4 uses
an old-fashioned, but simple, scheme which is the same as the one used by the FORTRAN
programming language. Files are identified by integers. The integer to be used for identi­
fying a particular file varies from installation to installation and can usually be changed
by control cards. Most commonly, the identifying integers are:

File

input

printed output

punched output

Integer

5

6

7

96 Input and Output Ch.7

The identifying integers are used in the second argument of the INPUT and OUTPUT
functions. Thus

OUTPUT('RECORD',7)

associates the name RECORD with the punch output file. If no second argument is pro­
vided, it is assumed to be 5 for I NPUT and 6 for OUTPUT. This convention, which sim­
plifies associations for the commonest cases, was used in the preceding section.

The major advantage of file numbers is that they provide the capability of referring
to files other than the standard ones. For example if a tape is to be read, it might be
identified by the integer 10. Then the association

INPUT('DATA',lO)

associates the name DATA with the tape so that every time the name DATA is used, a record
is read from the tape. Similarly

OUTPUT('RESULT',20)

might be used to associate the name RESULT with a tape to be created, identified by the
number 20.

These associations connect SNOBOL4 names with files identified by the given numbers.
It is another problem to connect these numbers with the actual files (such as tapes). The
way in which this connection is done depends on the particular computer installation and
varies considerably.

7.3 RECORD LENGTHS, CARRIAGE
CONTROL, AND FORMATS

Record Lengths

For the standard files, input and punch records are usually 80 characters long, corre­
sponding to the standard punched card. The length of printed records is usually longer and
varies from I installation to installation. A typical length is 133. The standard lengths are
provided automatically. When a record is read in, it is 80 characters long. When a string
is punched out, blanks are added as necessary to make up 80 characters. If the string is
longer than 80 characters, it is put out in 80-character sections. Thus, punching a very
long string may produce several records. Similarly, if a string to be printed is longer than
the record length specified for printing, the string is divided into sections of the specified
length and printed on successive lines. Printed output is somewhat more complicated
because of the properties of printers, the physical devices which do the printing.

Sec. 7.3 Record Lengths, Carriage Control, and Formats 97

Carriage Control

Most printers print a line at a time rather than a character at a time like a typewriter.
Printers also have the capability of skipping a line or more, or even skipping to the top of a
new page (called "page ejection"). These capabilities are quite important in creating
printed output in the desired format. In order to determine whether to single space,
double space, or eject to the top of a new page, the printer must be given control infor­
mation. By a standard convention, used at almost every installation, the first character of
every print line is used for this purpose. This first character is the carriage control char­
acter and instead of being printed, it is used to control the printer. Certain characters
have standard meanings. The common ones are:

blank

o
I

single space

double space

eject to new page

While carriage control makes it possible to print lines on a page in the desired way,
it is often a great bother. Since the first character of every print line is consumed for
carriage control, a special character has to be put in front of each line before it can be
printed. For values assigned to OUTPUT, a blank is appended automatically by SNOBOL4,
giving single spacing. The programmer who is satisfied with single-spaced output may be
spared the next topic: formats.

Formats

A format is a specification describing how a string is to be output. The formats used
by SNOBOL4 are based on those used by FORTRAN. Since SNOBOL4 output is simple,
a programmer need not be an expert on formats. In fact, only a small class of FORTRAN
formats can be used in SNOBOL4. The description that follows is intentionally superficial.
The programmer interested in formats should study appropriate FORTRAN manuals.

One of the main purposes of formats in SNOBOL4 is to specify the length of output
records. The simplest form of a format is (nAI) where n is an integer specifying how long
an output record is to be. For example (72AI) specifies a record of 72 characters. The
enclosing parentheses are required. The ,AI merely specifies that the string is to be con­
sidered as single "alphanumeric" characters (as opposed to just numbers, for example).
While FORTRAN permits other specifications, (nAl) should be used in all formats used in
SNOBOL4 except where other formats are expressly permitted by a particular installation.

Ordinarily, formats are not required. Where departures from standard output are
necessary, a format is given as the third argument of OUTPUT when an output association
is made. For example, the statement

OUTPUT('PUNCH',7,'(72Al)')

changes the length of punched output records from 80 to 72.

98 Input and Output Ch.7

Similarly

OUTPUTC'TAPE',30,'CIOOAl)')

associates TAPE. with an output file identified by the number 3D and specifies that output
records are to be 100 characters long.

Carriage control can be explicitly specified in a format. An example is the format
CIHO" 132Al). The second part of the format specifies a length as before. The first part,
IHO, is a way of specifying the carriage control character O. The IH means that one char­
acter following the H is taken to be a ("Hollerith") literal, namely a zero. This rather
curious notation belongs to FORTRAN and is equivalent to the SNOBOL4 notation '0 '.
The entire format specifies that an output line is to begin with a zero and have 132 char­
acters of the output string appended to it. The 0. for (double-spaced) carriage control is
then provided automatically when output is performed. For example

OUTPUTC'OOUBLE',6,'CIHO,132Al)')

associates DOUBLE with the standard print output file. Executing the statement

DOUBLE = 'RESULTS'

outputs the string ORESUL TS. The first character provides control to the printer, and causes
a line to be skipped before printing RESULTS.

A useful output association is

OUTPUTC'TITLE',6,'CIHl,132Al)')

which provides the carriage control character 1 each time TITLE is assigned a value. The
1 causes the value of TITLE to be printed at the top of a new page.

The string appended at the beginning of a format need not be a single character, but
may be any data string. The integer before the H indicates the number of characters
following that are to be taken literally. An example is:

OUTPUTC'ANSWER',6,'C7H TOTAL=,126Al)')

This association provides for appending seven characters on output to every value assigned
to ANSWER. The first character is carriage control for single spacing and the next six char­
acters provide identifying information. The statement

ANSWER = 7

prints:

TOTPJ..=7

Formats may appear to be mysterious, and, since they were borrowed from FOR­
TRAN, are alien to the SNOBOL4 language. Most formatting problems can be handled
by blindly following the rules given above without understanding the underlying reasons.
FORTRAN manuals should be consulted for a more thorough understanding of formats.

Sec. 7.3 Record Lengths, Carriage Control and Formats 99

Nonstandard input record lengths may be specified also, but formats are not necessary
-an integer for the third argument of I NPUT is used instead. For example

INPUT('INPUT',5,72)

specifies that only 72 characters are to be read on input. If the input file has longer re­
cords, the remaining characters are discarded.

7.4 DETACHING NAMES AND REPOSITIONING FILES

Sometimes it is useful to be able to remove an input or output association. This is
done by the built-in function DETACH. For example

DETACH('OUTPUT')

removes the output association for OUTPUT . After executing this statement, values as­
signed to OUTPUT do not produce printed output. Any associated name, whether the
association is for input or output, may be detached. Associations may be reestablished
by subsequently executing an appropriate association function.

As records on a file are read, the position in the file advances. Eventually the end of
the data may be reached, indicated by failure when input is attempted. If a file is being
written, records are appended to the file. Sometimes it is useful to go back to the begin­
ning of a file and read it again, or read a file that has been written. The process of re­
positioning the file at the beginning is called rewinding and is performed by the built-in
function REWIND. The argument of REWIND is the number of the file to be rewound.
For example

REWIND(lO)

rewinds the file numbered 10.
It is a good practice to detach any names that have been used to write a file before re­

winding that file for reading. Thus, if RESULT is output associated with file number 20,
and it is desired to rewind and read file 20, the following statements might be used.

DETACH('RESULT')

REWIND(20)

INPUT('REREAD',20,80)

Subsequently, REREAD may be used to read records written on file 20 by RESULT.

100 Input and Output Ch.7

7.5 OUTPUT OF VARIOUS TYPES OF DATA

Anything that is output must be in the form of a string; that is the nature of the out­
put process. Thus output of strings is natural and is governed by formats described in the
preceding section. If any other type of value is assigned to an output-associated name,
that data type is converted to a string which is then output. For example

OUTPUT = 1000

prints:

1000

In general, integers and real numbers are converted to strings for output in the same way
that they are converted to strings if they are used in an operation such as concatenation.

In the case of other types of data, there is no natural representation of values as
strings. For example, a pattern or a programmer-defined data type has no really meaning­
ful string representation. In case such a value is assigned to an output-associated name,
the string put out is the data type of the object. For example,

OUTPUT = LEN(3)

prints:

PATTERN

In the case of an array, the array prototype is printed also. For example, if A is a
linear array of 100 values,

OUTPUT =A

prints:

AARAY('lOO')

In particular, note that the array values are not printed automatically. To print the values
in an array, each value must be assigned to OUTPUT separately.

EXERCISES

7.1. Write a program to copy a data file of 200-character records from file number 10 to
file number 201.

7.2. Write a program to read a data file and print it one character per line.

Ch.7 Exercises 101

7.3. Write a statement that associates ATTENTION with the print file and provides for five
stars in front of every value assigned to ATTENTION.

7.4. Write a function ARYPRT(A) that prints the values of the array A. Assume A is linear.

CHAPTER 8

Programming Techniques

Computer programming is both a challenging and rewarding occupation. Many
programming problems, such as those given in this book, are small. Other problems are
much more complicated and require large programs for their solution. Programming
techniques become of paramount importance in really large programs. Small problems
often can be solved in almost any fashion, but large problems often cannot be solved satis­
factorily unless good techniques are used. Proficiency in programming is largely a matter
of experience, but there are some principles that are important.

Techniques that can be used in programming to achieve the best results are somewhat
dependent on the nature of the problem to be solved and on the programming language
that is used. This chapter is mainly concerned with programming techniques in SNOBOL4,
but much of the material has applicability to programming in general.

8.1 PROGRAM ORGANIZATION AND STRUCTURE

A SNOBOL4 program is simply a sequence of statements. From a logical point of
view, however, programs can be divided into sections according to the nature of the opera­
tions performed or when these operations occur. Most programs have three distinct phases:

(a) initialization
(b) main processing
(c) termination

Typically, the initialization phase establishes. the values of constants, creates patterns
for later use, defines functions, assigns values to keywords, and so on. Following the main
processing performed by a program, there is often, but not always, a termination phase

102

Sec. 8.1 Program Organization and Structure 103

in which final results are printed out. In planning a program, one of the first considerations
should be what these phases will include. Special attention should be given to initialization,
making sure that all variables have correct initial values and that program modes, such as
anchored pattern matching, are properly established.

Program Components

The division of a program into phases reflects a chronological point of view. More
significant, however, is the division of a program into its logical parts. The key to writing
a large program successfully is to organize the large program into a number of small sub­
programs. The more independent, self-contained, and logically distinct these small sub­
programs are, the more likely it is that the overall result will be good. A large program
can, of course, be approached simply as a large number of statements to be written. The
resulting organizational complexity and confusion may become insurmountable, however.

The main aid to subdivision of a program is the use of functions. By their nature,
functions tend to be logically independent and self-contained. Therefore if the solution to
a problem can be formulated in functional terms, the resulting program is likely to have
good organization.

Formulating a solution in functional terms is a way of thinking and a matter of prac­
tice. For example, the word-counting problem may be thought of in terms of several
functions:

GETW

COUNT

PRINT

get a word

count the word

print results

With this basic sketch of the solution, the beginning of a program can be laid out:

NEXTW WORD = GETW()

COUNT (WCOUNT , WORD)

DONE PRINT(WCOUNT)

END

:F(DONE)

: (NEXTW)

This much of the program can be formulated without writing the procedures for the
functions or even knowing exactly how they work. All that is necessary is to determine
what basic operation each function performs. In the example above, GETW returns a word
every time it is called. If a data file is being read, then GETW reads that file, and prints it
if that is desired. Furthermore, GETW fails when there are no more words. COUNT counts
the words, using a table. PRINT performs a well-defined operation and the details can
be left until later.

104 Programming Techniques Ch.8

Continuing with the development of this program, the initialization phase may be writ­
ten next. It pr-ovides defining statements for the functions and creates needed structures.
The need for a pattern to match words can be recognized at this point. A table to be used
for word' counting must be created also. Initialization statements therefore might be:

LETTER = 'ABCDEFGHIJKUMNOPQRSTUVWXYZ'

WPAT = BREAK(LETTER) SPAN(LETTER) • GETW

WCOUNT = TABLE()

DEFINE('GETW()')

DEFINE('COUNT(TABLE~STRING)')

DEFINE('PRINT(TABLE)')

All that remains is to write the procedures themselves. These can be approached
separately. For example, GETW finds the next word in a line of text, deletes it, and returns
the word as value. If there are no more words in the line, however, GETWreads another
line, prints it, and then returns the first word from the new line. When the data file is
exhausted, there are no more words and therefore GETW fails.

Word counting is trivial, and printing the results is a matter of formatting. A complete
program follows. Notice that the local variables ARRAY and I have been added for PRINT.

LETTER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

WPAT = BREAK(LETTER) SPAN(LETTER) • GETW

WCOUNT = ,TABLE()

DEFINE('GETW()')

DEFINE('COUNT(TABLE~STRING)')

DEFINE('PRINT(TABLE)ARRAY~I')

NEXTW WORD = GETW()

COUNT(WCOUNT~WORD)

DONE PRINT(WCOUNT)

GETW LINE WPAT =

:F(DONE)

: (NEXTW)

: (END)

:S(RETURN)

Sec. 8.1 Program Organization and Structure

LINE = INPUT

OUTPUT = LINE

COUNT TABLE<STRING> = TABLE<STRING> + 1

PRINT OUTPUT =
ARRAY = CONVERT(TABLE,'ARRAY')

I = 1

RESULT OUTPUT = ARRAY<I,l> , - , ARRAY<I,2>

I = 1+1

NONE OUTPUT = 'THERE ARE NONE'

END

:F(FRETURN)

: (GETW)

: (RETURN)

:F(NONE)

:F(RETURN)

: (RESULT)

: (RETURN)

105

The example above is included to illustrate a technique. The problem itself is so
simple that an elaborate solution of this kind is unnecessary. A solution without functions
is given in Section 6.2. However, as a general method, such an approach divides the prob­
lem into its logical components and in doing so divides the solution into parts of manage­
able size. When such an approach is used, some functions, such as COUNT, may be so
simple that they can be discarded in favor of a statement or two at the appropriate place
in the program. The approach is the same, however.

Separating a program into functional components often has the additional advantage
of producing functions that can be used in other programs. Thus, repetitious programming
can be avoided. In the program above, for example, GETW is logically independent of the
word-counting problem itself. Thus GETW might be useful in a variety of programs that
deal with words taken from a data file. PRI NT might be used as a general method of dis­
playing the contents of a table. For this reason, the table is given as an argument of PRINT,
even though that is unnecessary in the program above.

Patterns also can be used to divide the effort of programming into logical parts. Thus,
in GETW a pattern WPAT is used, but WPAT is not given explicitly; instead it is created in the
initialization phase. It is often useful when writing a pattern-matching statement to use a
name for the pattern and write the pattern itself later. The advantage of doing this is that
the process of writing statements does not have to be interrupted to develop a pattern.
Patterns can be quite complicated and difficult to write. Simply providing a name avoids
the distraction of having to write the pattern at that time. In this sense, a named pattern
is like a function, and writing the pattern itself is like writing the procedure for a function.
In order to treat patterns in this way, it is necessary to have a feeling for what can be done
in a single pattern-matching statement. This understanding comes with experience.

106 Programming Techniques Ch.8

Program Evolution

Most programs of substantial size evolve over a period of time and are never really
complete or stable. Rarely is a problem so well defined that every detail falls into place,
every situation is considered, and no changes are subsequently made. More frequently
the problem changes before the program solution is complete. In fact the problem is
likely to change after the solution is thought to be complete. The major reason for such
changes is the effect of the program itself. The process of reducing a problem to a program
solution points out things that should be changed. Quite frequently results obtained from
running a program suggest improvements, show errors in formulation, and almost always
point out need for additions.

Since this is the case, a program is best thought of as an evolving entity. Change should
be anticipated~ As a program changes and modifications are made, the organization of the
program may become more confused. An accumulation of minor changes may add unex­
pected complexity to otherwise simple operations. Corrections and modifications may
make the program logic increasingly obscure. For this reason, good organizational design
in the early stages of program development is essential. So long as the components can
be kept independent, one part of the program can be rewritten without destroying the
rest. The procedure for a function often can be completely reWritten without affecting
the rest of the program, provided the operation the function is to perform is clearly defined
and does not depend on other parts of the program.

Even with the best of intentions on the part of the programmer, a program may tum
out to be inflexible and maddeningly difficult to modify or extend. Since a great amount
of effort may go into a program over a period of time, there is an understandable resistance
to discarding what has been done and starting over. Actually, however, much of the effort
that is put into developing a large program is really a part of the problem-solving process.
A program is the physical evidence of a much larger intellectual effort, and this effort is
not wasted simply because a program is discarded to start anew on a better solution.
Actually, there is often less effort involved in rebuilding a program than there is in trying
to make modifications and extensions to a program that has outlived its usefulness.
Therefore expect that the first attempts of a large programming problem will have to be
discarded.

Documentation

Commentary, program description, and instructions for program use are an important
part of preparing a complete program. Program documentation is necessary because pro­
grams themselves usually are far from self-explanatory. Furthermore, program documen­
tation may be required for users of the program. Documentation may heIr> someone else
to understand an algorithm or a technique which may then be useful in writing another
program. Finally, documentation may be an important aid to the program's author.

Sec. 8.1 Program Organization and Structure 107

A few weeks or months after a program is written, much may be forgotten. When correc­
tions or modifications are needed, adequate documentation may save hours of painstaking
work that would otherwise be spent trying to reconstruct the method from lines of
program that suddenly seem meaningless.

The kind of documentation that is needed depends on the situation. The programs
given in this book, for example, are described in the text and hence do not have documen­
tation within them. Very short programs may be largely self-explanatory and may require
little or no documentation. Large programs should always have documentation. The
nature of the documentation depends on the use to which the program is to be put. Large
programs used by many individuals, for example, may require user manuals. The concern
in this section, however, is with self-contained documentation, documentation that is
part of the program itself. Self-contained documentation, independent of any other docu­
mentation, is important since it is always available for reference in the program itself and
cannot accidentally be lost or confused with documentation for another, similar program.

Documentation in a program may serve many purposes. The usual ones are:

(a) description of the purpose of the program.

(b) explanation of algorithms used.

(c) description of data required by the program; files used, data format, and so forth.

(d) description of the output produced, including any diagnostic messages.

(e) listing of any limitations the program is known to have.

(f) explanation of programming techniques used, especially anything unusual
or obscure.

(g) suggestions for methods of extending the program to handle additional cases.

The most obvious form of self-contained documentation in a SNOBOL4 program is
the comment line. A line beginning with an asterisk is ignored during execution of the
program and, therefore, is the usual place to put documentation. The format and content
of documentation is somewhat a matter of taste. No two programmers can be expected
to produce the same documentation just as no two authors could be expected to write
the same poem. Generally speaking, however, it is desirable to prepare the documentation
in a format that is most likely to be useful and easily understood. A section of comment
lines at the beginning of a program, summarizing the overall function and structure of the
program, is usually a good choice. As an example, the word-counting program given
earlier in this section might be preceded by the following comment lines:

lOS Programming Techniques

:~ THI S PROGRAM COUNTS THE NLMBER OF TIMES EACH WORD

:C OCCURS IN TEXT WHICH IS READ IN FROM A DATA FILE •

.... • n,

:C THE DATA FILE MUST BE PREPARED SO THAT NO WORD IS SPLIT

:C BETWEEN TWO RECORDS. WORDS ARE ASSLMED TO CONSIST OF

:C STRlt'-l7S OF LETTERS. A MORE SOPHISTICATED DEFINITION

:C OF WORDS COULD BE PROVIDED TO IMPROVE THE PROGR.AM.

.... ...

" -
.... .-

THE PROGRftM USES THREE FUNCT IONS: GETW, COUNT, AND

PRINT TO GET THE WORDS, COUNT THEM, AND PRINT THE

RESULTS, RESPECTIVELY. A TABLE IS USED TO REFERENCE

THE WORDS AND CONTAIN THE COUNTS

Ch.S

Obscure operations or nonobvious situations, especially if they are isolated instances,
should have accompanying comment lines. An example is given by the GETWprocedure:

:C LINE IS A GLOBAL VARIABLE CONTAINING THE REMAINDER OF

:C AN INPUT RECORD THAT HAS NOT BEEN PROCESSED. WHEN GETW

x IS FIRST CALLED, THE VALUE OF LINE IS NULL. THEREFORE

.... .-
.... .. -

THE FIRST PATTERN MATCH FAILS. AS A RESULT, A RECORD

IS READ. HENCE GETW IS SELF-INITIALIZING •

GETW LINE WPAT = :S(RETURN)

:F(FRETURN)

: (GETW)

LINE = INPUT

OUTPUT = LINE

Sec. 8.1 Program Organization and Structure 109

Avoid unnecessary or trivial comments. Consider the following lines:

:: I NCREMENT THE VALUE OF I

= I + 1

The comment is pointless and distracting since the statement itself is obvious.
The example above leads to another aspect of documentation that is often overlooked.

Ideally, programs should be self-documenting in the sense that the operations themselves
should be as clear as a narrative description. Unfortunately no programming language is
really self-documenting in this sense, although some are better than others. In SNOBOL4,
some operations, such as the one shown in the example above, are obvious, while others
(particularly pattern matching) are often obscure. Nevertheless, the program itself can
often be written in a way that will enhance its self-documenting properties.

One principle that may be applied toward this goal is avoiding obscure and tricky tech­
niques if a straightforward method is available. Programmers often get intellectual excite­
ment and amusement from using obscure techniques. The reason given for this type of
programming often is that the resulting program is more efficient. Actually such programs
are usually inferior when viewed from a more general standpoint. An obscure and tricky
program is difficult to understand, modify, and correct.

A technique that can be used to improve the self-documenting properties of a program
is the choice of good mnemonics for names and labels. The particular characters chosen
have no meaning to SNOBOL4, but if they are chosen to be suggestive of the operation
involved, they can be a considerable help in making the program understandable to pro­
grammers and users. The following program is an example of the effect of lack of
mnemonic value.

Nl = 'ABCDEFGHIJKUMNOPQRSTUVWXYZ'

N2 = BREAK(Nl) SPAN(Nl) • Fl

N4 = TABLE()

DEFINE('Fl()')

DEFINE('F2(AI"A2)')

DEFINE('F3(AI)Ll"L2')

LI N5 = FI() :F(L2)

F2(N4"N5) :(Ll)

L2 F3(N4) : (END)

110 Programming Techniques Ch.8

Fl N6 N2 = :S(RETURN)

N6 = INPUT :F(FRETURN)

OUTPUT = N6 :(Fl)

F2 Al<A2> = Al<A2> + 1 : (RETURN)

F3 OUTPUT =

Ll = CONVERT(Al,'ARRAY') :F(L4)

L2 = 1

L3 OUTPUT = Ll<L2,l> , - , Ll<L2,2> :F(RETURN)

L2 = L2 + 1 :(L3)

L4 OUTPUT = 'THERE ARE NONE' : (RETURN)

END

This program is simply a translation of the word-counting program given earlier, using
arbitrary names and labels.

The layout of a program is another important matter. Good layout involves: (a) a good
correspondence between the logical organization and physical organization of the program,
and (b) a choice of a readable format for the statements themselves. The logical organiza­
tion of a program is usually clearer if the initialization section is first, the main processing
section second, and the termination section last. Similarly, function procedures are
usually best grouped together in one place. In general, similar and related operations
should be physically adjacent where possible.

SNOBOL4 provides a great deal of flexibility in the way that statements are actually
written. For example, the number of blanks used between components is left to the dis­
cretion of the programmer. Several statements may be given on a single line, and state­
ments may be continued on several lines. A program is usually easier to read, however, if
the parts of a statement are put in fixed positions. In the programs given in this book, for
example, most subjects of statements start in the same column, and, so far as possible,
gotos are arranged in a column. Similarly, equal signs are surrounded by more blanks
than are used to surround operators. This makes the grouping of components easier to
determine. Different programmers have different preferences for formatting statements.
Formatting is largely a matter of taste; consistency is important.

Sec. 8.1 Program Organization and Structure 111

To illustrate how difficult it is to understand a program that is not laid out in a read­
able way, consider the following example.

LETTER = 'ABCDEfGHIJKUMNOPQRSTUVWXYZ'i WPAT = BREAK(LETTER)

+ SPAN(LETTER) • GETWi WCOUNT = TABLE()i DEfINE('GETW()')

DEfINE('COUNT(TABLE,STRING)')i DEfINE('PRINT(TABLE)ARRAY,I')

NEXTW WORD = GETW() :F(DONE)i COUNT(WCOUNT,WORD) :(NEXTW)

DONE PRINT(WCOUNT) :(END)iGETW LINE WPAT = :S(RETURN)i LINE

+ = INPUT :f(FRETURN)i OUTPUT = LINE :(GETW)iCOUNT

+ TABLE<STRING> = TABLE<STRING> + 1 :(RETURN)iPRINT OUTPUT =
ARRAY = CONVERT(TABLE,'ARRAY') :F(NONE)i I = liRESULT

+ OUTPUT = ARRAY<I,l> , - , ARRAY<I,2> :F(RETURN)i I = I + 1

+ :(RESULT)iNONE OUTPUT = 'THERE ARE NONE' :(RETURN)iEND

This is, again, the word-counting program given earlier, reformatted to fit on as few lines
as possible. The result requires considerably fewer lines, which is useful for some purposes,
but it is hardly a form that can be easily understood or modified.

8.2 REPRESENTATION OF DATA

Representation of data for computing processing is one of the most important and at
the same time one of the most vexing aspects of programming. There are usually many
alternative forms of representation. The factors that influence the selection of a specific
form are often complex and frequently misunderstood, since there are many aspects of
data representation and relatively few rigorous standards to apply. Intuition and good
aesthetic judgement are most helpful. Some considerations in representing data for com­
puter processing have general applicability. These are considered first, followed by con­
siderations that apply specifically to SNOBOL4.

Data usually exists in three phases during computer processing:

(1) input data
(2) internal data
(3) output data

Usually the representation of data in different phases is different, although that need not
be the case. Sometimes data has several different representations in one phase.

112 Programming Techniques Ch.8

Input data is necessarily represented as strings in some way, because strings are the
only form of data that can be read into a program. The range of internal representations
is far richer, however. SNOBOL4 provides strings, numbers, arrays, tables, and pro­
grammer-defined data objects. The ways that these representations of data can be used
are endless in their variety. Ultimately the results must be output, and again the con­
straint to strings applies. Figure 8.1 illustrates this situation schematically.

input strings

conversion of string
to internal

forms

conversion of
internal forms to

strings

output strings

Figure 8.1 Conversion of Data Forms

Because of the greater constraints on external representations of data, the problem of data
representation is divided into two parts: string representations and internal representations.

Considerations in String Representations

Any data that can be processed by a SNOBOL4 program can be represented by strings.
However, certain considerations must be made when data is prepared for a specific com­
puter, and some general constraints apply to choosing formats for data that is to be
processed by a program. Printed and written data, whether it be mathematical equations,
musical scores, or text, is usually represented by symbols arranged in two dimensions
on a page.

Sec. 8.2 Representation of Data 113

In simple cases, the number of different symbols required is small and the structure of
the data is sufficiently simple that vertical excursions are unnecessary. Hence the data can
simply be represented as a sequence. of lines. A page of text in a nontechnical book is an
example. If the relationships between parts of the data are more complex, vertical offsets
are usually used. An example is the following equation.

x 2 + y2 - 6x - lOy + 18 = 0

This equation uses symbols in two sizes and also uses superscripting (Le., an offset in the
vertical direction). Computer input is, in almost all cases, constrained to be in a linear
format and is made up from a relatively small character set. Thus, data to be manipulated
by a program often must be prepared in an awkward and sometimes unreadable format
with various techniques employed to represent unavailable characters.

Character sets vary considerably from machine to machine. Older machines typically
allow only 64 different characters and lack lower-case letters. Most newer machines have
128 or 256 characters and include lower-case letters and a number of useful special char­
acters. Obviously it is more pleasant, when manipulating strings, to work on a machine
with a large character set. In such cases, textual data can often be represented almost
exactly as it appears in print. If lower-case letters are not available, however, only an ap­
proximation of textual data can be represented.

Even if a computer has a large character set, the device that is used to prepare the data
may not. For example, the standard keypunch machine does not have lower-case letters.
Similarly most computer printers are incapable of printing the entire character set of a
machine. On the other hand, many installations now offer computer terminals with key­
boards similar to those of typewriters, and the character set of these terminals is large
enough to comfortably accommodate most situations.

When representing data as strings, it is desirable, where possible, to have the individual
datum represented as a single character. This is often quite natural to do. For example,
the arithmetic operators usually are represented by the symbols + ,-, ::, and /. Such a
representation is desirable since there are a number of functions that operate on individual
characters. REPLACE is one. The pattern-valued functions PNY, BREAK, NOTPNY, and SPAN
are others. Similarly, if a character is known to exist in a given position, it can be matched
by LEN(1). Operations that locate one of a number of single characters are therefore
easy to program, and run efficiently. The example of arithmetic operators given above
illustrates where a choice may be made. In SNOBOL4, the exponentiation operator can
be written in two ways: :::: and!. If the exponentiation operator is to be included in
data, it is more desirable to have it represented by the single character!, making all oper­
ators coordinate in their representation and permitting them to be treated in the same way
during processing. If:::: is used, on the other hand, an exception for exponentiation must
be made whenever operator symbols are processed.

The equation' given earlier can be represented as a string of characters so that it can
be used as input data to a program. To do that, some modifications have to be made.

114 Programming Techniques Ch.8

Upper-case letters can be used instead of lower-case letters with little loss of meaning. The
superscripts indicate exponentiation, which can be written explicitly. The operation of
multiplication is implied in the terms 6x and lOy. For program processing, it is usually
better to represent such implied operations explicitly to avoid ambiguity. Thus this equa­
tion might be represented by the string:

X! 2+Y! 2-6~:X-I0~:Y+18=O

Generally speaking, almost all preparation of data involves some encoding of symbols.
In the case of text, the encoding may consist simply of substituting upper-case letters for
lower-case letters. For more complicated and structured types of data, more elaborate
coding is required. Since data varies so widely, no general rules can be given. Some
considerations are:

(a) ease and cost of preparing data in the encoded form
(b) ease of correction of encoded data
(c) readability of encoded data
(d) efficiency of processing encoded data
(e) ease of programming manipulation of encoded data

The relative importance that should be attached to these factors depends on circum­
stances. It is worthwhile to perform some tests using a chosen encoding method before
making a commitment to that particular method. If a large amount of data must be en­
coded, the cost and the likelihood that errors may be introduced in the encoding process
should be given major consideration. Fortunately SNOBOL4 is well-suited to converting
data from one form of encoding to another. If a poor method is chosen initially, a
SNOBOL4 program can often be written with little effort to convert the data to a
better format.

Output of data also requires choosing a suitable string representation. Output is usually
done for one of two purposes: to obtain a printed output for displaying results, or to
obtain a punched output for input to another program. If the output is to provide input
to another program, then the same considerations apply in a choice of a string representa­
tion for output as apply for input.

Most output, however, is designed to display results. In the initial stages of program
developm-ent, the form of output may be crude. Eventually, however, some care needs to
be taken to present the results in an easily read and attractive format. This consideration
is especially applicable when the results are to be read by someone other than the pro­
grammer. The preparation of well-formatted printed output is a difficult and tedious job.
Simply choosing the format requires perspective - an understanding of how it will look
to someone who may not understand the program at all. Getting the printout in the
desired format may become a substantial job. One facility available is carriage control in
output formats. Thus an output association may be established to cause page ejection and
titling. Arranging data in columns requires construction of suitable strings. The built-in
function DUPL can be helpful in providing dividing lines or the appropriate number of
blanks to separate data in columns.

Sec. 8.2 Representation of Data 115

Internal Representations

While data must be read in and put out as strings, there are a variety of internal repre­
sentations that may be used. If the data is naturally represented as a string, there may be
no necessity for working with a different internal representation. Mathematical expressions
and short sections of text are often most easily and naturally handled as strings in the
same format as they are read in and put out.

If the amount of data is large, or if there are obvious or implied structural relationships
among parts of the data, a string representation is probably not appropriate. In such cases,
the relationships among parts of the data and the type of operations to be performed
should govern the choice of a representation. Usually different representations have good
and bad aspects, and any choice is a compromise.

A list of words provides an example. One way to represent a list is simply as a string
in which the words are followed by commas. Such a representation is illustrated by:

WLIST = 'YOU,CAN,FOOL,SOME,OF,THE,PEOPLE,'

For some purposes, such a string representation might be convenient. For other purposes,
it would be awkward. For example, a word can easily be added to the end of WL I ST, but
it is difficult to obtain a particular word from a list represented in this form. If processing
requires that words be accessed according to their position in the list, then an array of
words may be more desirable. In such a representation, WLIST might be an array in which
the subscripts would reference words. An example is

WLIST<l> = 'YOU'

WLIST<2> = 'CAN'

WLIST<3> = 'FOOL'

•

•

•
On the other hand, arrays are fixed in length and if the number of words is unknown or
varying, that may present difficulties.

Different problems arise if there is a value associated with each word on a list. In the
string representation, two corresponding lists, containing words and values respectively,
co"uld be used. In the array representation, a second dimension might. be used so that the
words and their corresponding values could be kept in the same structure.

If it is necessary to find the value associated with a particular word, neither the string
nor the array representation is convenient. In this case a table may provide the best repre­
sentation. Refer to Sections 6.1, 6.2, and the exercises at the end of this chapter.

116 Programming Techniques Ch.8

In cases where there is a collection of similar objects, all having the same attributes or
properties, a defined data object is appropriate. More elaborate structures also can be built
up using defined data types. These structures in turn may be used to represent more com­
plex relationships among data.

8.3 EFFICIENCY

Efficiency is the subject of much concern in programming. The reason is simple: the
efficiency with which a program runs is directly related to cost. Since computers are ex­
pensive, the amount of computer time required to run a program is a valid consideration
in measuring the quality and value of that program. Speed is not the only problem. The
amount of memory that a program uses is often a factor in the cost of running it.

Ideally a program should run as fast as possible and should use as little memory as
possible. Unfortunately these two goals are often in conflict. Quite frequently one tech­
nique will make a program run faster but use more memory, while another technique will
have the opposite effect.

There are other considerations that relate to cost. One consideration is the cost of
programming. Another is the importance of a well-organized and flexible program. Very
often a program can be made to run more efficiently through the use of obscure tech­
niques, clever shortcuts, and tricks. The result may be incomprehensible, difficult to
correct, and virutally impossible to modify when changes or additions are desired. Good
programming requires an intelligent balance a~ong contending factors.

The greatest sources of inefficiency are poor algorithms, poor program organization,
and poor data representation. Even if an efficient algorithm has been developed, a good
data representation has been chosen, and the program has been laid out well, there remain
questions of how best to perform individual operations. In SNOBOL4, the fastest tech­
nique, or the one that uses the least space, cannot be determined simply by a knowledge
of what operations are performed by different language features. Determining the time
required to perform an operation or the space required to represent a data object requires
an understanding of the internal structure of SNOBOL4 and how it relates to what actually
goes on in a computer. This understanding requires considerable background and study,
and is beyond the experience of most programmers. The reader who is interested in such
matters may consult Reference 4. In fact such knowledge should not be required in order
to program, and too great a preoccupation with such matters interferes with the process
of programming.

The following paragraphs state some good and bad practices in SNOBOL4. Some are
common sense. There are others which are, for the most part, related to the internal
structure of SNOBOL4. The latter may be taken on faith without having to have the de­
tailed knowledge which would explain the reasons. The internal workings vary somewhat
depending on the particular computer and SNOBOL4 translator used. The suggestions that
follow apply to the most generally available versions of SNOBOL4. See References 1 and
4 for details.

Sec. 8.3 Efficiency 117

1. Generally speaking, use as few statements as possible to perform an operation. There is
some overhead associated with executing a statement. If operations can be logically
combined in a statement, for example an assignment that is conditional upon a predi­
cate, the result will be faster than separate statements. The overhead is relatively small,
however, and statements should not be made so complicated that their meaning is
obscured.

2. Avoid the use of very long strings. While SNOBOL4 permits string to be so long that
length is usually not a physical limitation, operations on long strings can be very time­
consuming. Therefore as a general rule, strings of over a few hundred characters should
be avoided. In particular, never try to represent a long passage of text as a single string.
If a large amount of data must be processed, organize the program to do it line by line
so that input records can be processed and then discarded.

3. Perform input in the trimming mode if possible. The resulting strings read in are
shorter and hence occupy less space. For this purpose, use &TRIM rather than the built­
in function TRIM.

4. Use predicates where possible, rather than pattern matching. Predicates provide a fast
and natural way for comparing data objects. Pattern matching can often be used to
obtain the same result, but it is slower. For example, the following two statements do
the same thing:

IDENT(SWITCH,'YES') :S(OKAY)F(RETRY)

SWITCH POS(D) 'YES' RPOS(D) :S(OKAY)F(RETRY)

The first statement is better.

5. Perform pattern matching in the anchored mode if possible. Often a program can be
easily written to run in the anchored mode. This is desirable because pattern matching
can be time-consuming. When a pattern fails to match, much time can be spent in trying
alternatives needlessly. Often, this wasted time can be avoided by using anchored
matching so that failure occurs at once if the pattern cannot match starting at the first
character of the subject string. If most of the program can be written to run in the
anchored mode, but a few statements cannot, it may be worthwhile to turn the an­
chored mode on and off for different parts of the program. Alternatively, ARB can be
placed at the beginning of patterns that will not work properly in the anchored mode.

6. Use the character-set patterns created by ANY, BREAK, NOTANY, and SPAN in preference
to other patterns. The character-set patterns are generally faster than other patterns.
In particular, the use of ANY is much more desirable than the alternation of single char­
acters if many characters are involved. The pattern resulting from ANY is faster and
smaller.

118 Programming Techniques Ch.8

7. Avoid constructing a complicated pattern in the statement in which it is used for pattern
matching. Patterns are data objects, require time for construction, and occupy space.
If a pattern is given explicitly in a statement, that pattern is constructed every time that
statement is executed. Therefore it is desirable to construct patterns at the beginning
of program execution, assign them to names, and then refer to them by their names
when needed in pattern matching. Thus the statement

NEXTAD LINE BAL. L ANY('+-') BAL • R

might better be replaced by:

ADDOP = BAL. L ANY('+-') BAL. R

•

•

•

NEXTAD LINE ADOOP

8. Use arrays rather than tables where appropriate. Arrays require less space than tables,
and array references are faster than table references. Although tables can have numeri­
cal subscripts, use arrays instead of tables if numerical subscripts are used to access
a collection of data objects. On the other hand, if data objects must be accessed by
their values, tables are preferable to other programming techniques that achieve the
same effect.

9. Indirect referencing is a fast operation; do not hesitate to use it when it is appropriate.

Programs that Require a Large Amount of Space

Sometimes space becomes more of a problem than just cost; there may not be enough
memory space available to run a program. When this circumstance occurs, special pro­
gramming techniques may have to be employed. Some suggestions follow:

1. Make the program as small as possible. The program itself occupies space. If the pro­
gram is very long, that space may be quite significant. Avoid repetitious sections of
program. A defined function can often be used to consolidate similar operations in one
place. Similarly, patterns that are identical should appear only once and should be
assigned to a name which is then used in several places.

2. Avoid programs that require keeping a large amount of data in memory at the same
time. No matter how much memory space is available, there is always some upper limit.
For example, there is no hope of running a program that requires the entire text of a

Sec. 8.3 Efficiency 119

book to be in memory at the same time. Generally speaking, it is best to arrange a
program to process data in small sections. This type of program organization is some­
times more difficult, but it is necessary in many cases. In other cases, such problems
can be overcome by writing intermediate data on a file for subsequent processing later
in the program. If nothing else solves the problem, divide the program into several
programs that run consecutively. If this is done, intermediate programs may punch
data or write it on files for use of subsequent programs.

3. Avoid a large number of different strings. There is some extra space required for each
different string. This applies to strings that appear in the program as well as those cre­
ated when the program runs. The same string can be used as a data string, a name, and
a label. As such, it occurs only once in memory. Therefore using the same string for a
label and a name (as is done in defined functions) can result in a saving of space.

4. Keep numerical values as numbers, not numeral strings. Integers and real numbers
occupy less space than numeral strings having the same value. If many numerical values
have to be kept, this consideration may be quite important. Numeral strings typically
result from data that is read in, since numerical operations produce numbers, not nu­
meral strings. A simple device may be used to convert a numeral string to a number:
the unary plus operator. This operator does not change the numerical value of its oper­
and, but does produce a number. Therefore to obtain a number from a data file, the
following statement might be used:

N = +TRIM(INPUT) :F(EOF)

EXERCISES

8.1. A concordance is a citation of the places where words occur in text. Concordances
have various forms, some of which are quite elaborate. A simple form of concordance
is the index concordance which simply lists' the lines in which each word in 'a text
occurs. Using the method described in Section 8.1, develop an indexing program.

8.2. Write two functions LPAD(S,N) and RPAD(S,N) that pad 5 with blanks on the left
and right respectively to produce strings N characters long. Using the results, redo
Exercise 3.4.

8.3. Suppose that a list of words is represented by a string as described in Section 8.2.
Write a function GETW(WLIST ,N) whose value is the Nth word in WLIST. Compare
this function with the method for accessing a list of words in an array.

8.4. Suppose that a list of words and corresponding counts is represented by a two-dimen­
sional array WCOUNT. Write a function GETC(WCOUNT, WORD) whose value is the
count for WORD. Compare this function to the method for accessing the count of
words in a table.

120 Programming Techniques Ch.8

8.5. Suppose that a list of words is to be read from a data file and placed in an array
for processing.
(a) Design a format for the data so that placing words in the array is easy to program.
(b) Design a format for the data to minimize the number of data records required.
Write programs to read the data and construct the array for both cases. Assume that
there will be no more than 100 words. Discuss the advantages and disadvantages of
each data format.

8.6. Write programs to convert data between the formats developed in the solution of
Exercise 8.5.

8.7. In a list of words, commas are convenient separators. What can be used as a separator
in a list of strings? Discuss the problems involved. Is there any·general way to repre­
sent a list of strings as a string?

8.8. What general type of data representation is best for the following types of data?
(a) A checkerboard.
(b) An address list.
(c) A collection of archaeological objects.
(d) A table of contents for a book.
(e) A musical score.

CHAPTER 9

Program Debugging

Almost all programs contain errors when they are first written. An exception is some­
times the first program that a person writes, since this crucial attempt is given unusual
thought and care. After the first attempt, however, things change. This is not surprising
or necessarily indicative of carelessness. Programs become large and complex. Very
large programs, as a matter of fact, are almost never totally free of error.

Program errors are called bugs and the process of removing errors is called debugging.
Bugs come in all sizes and shapes. Some are obvious after the first run, while others are
subtle and elude detection. Some of the most elusive bugs occur in the handling of
special cases. For example, a program that works properly in most cases may come apart
altogether if the data on which it is supposed to operate is accidentally omitted. The
most pervasive type of bug is the one that is dependent on the form of data. It is quite
common for a program that has been working well for months or years to suddenly
develop all sorts of bugs when it is given to another user. Usually the reason is that the
new user has different data, data that the program was not properly designed to handle.

Program debugging is important because it occupies so much of a programmer's time
and energy and consumes significant amounts of computer time. Good programming
practices can go a long way toward preventing program bugs in the first place. No matter
how excellent a programmer may be, however, his programs will have bugs. Furthermore
there are some kinds of bugs that are most easily and economically found by running the
program. The computer excels at clerical tasks, while human beings are notoriously poor
clerks; therefore appropriate use of the computer to aid in debugging can be very valuable.
It may seem expensive and wasteful to use a computer to find program errors, but human
resources are expensive also-more so than is often realized. There is no economy in ex­
pending days of a highly skilled programmer's time trying to find an obscure program bug
that could be pinpointed by a computer run of a few seconds. The programmer has

121

122 Program Debugging Ch.9

intelligence while the computer has speed and clerical ability. The key in debugging is to
utilize both programmer talent and the computer in appropriate ways so that debugging
is swift and inexpensive.

9.1 PRINTED OUTPUT FROM A PROGRAM RUN

The main source of debugging information is the printed output from a computer run.
When a SNOBOL4 program is run on a computer, it passes through three distinct phases.
During the first of these phases, the programis processed by the SNOBOL4 system and
put in a form suitable for execution by the computer. This phase is called compilation.
When compilation is complete, the program is executed by the computer, carrying out the
computations specified in the program. This phase is called execution. Finally there is a
termination phase which follows execution. Typically each of these phases produces
printed output.

Compilation

The program is printed as it is compiled. Each statement is given an identifying num­
ber. If an error is detected in a statement during compilation, an error message is printed
beneath the statement. This message describes the nature of the error. A marker indi­
cates the approximate location of the error. Compilation is continued despite errors
unless more than 50 errors are detected, in which case compilation is abandoned. At
the end of compilation, a message is printed indicating whether or not any errors have
been detected. A complete compilation listing follows, showing the form of the listing.

SNOBOL4 (VERSION 3.9, MAY 19, 1972)

BELL TELEPHONE LABORATORIES, INCORPORATED

READ CARD = INPUT :F(TERM) 1

CARD ,~:t :F(READ) 2

COUNT = COUNT + 1 : (READ) 3

TERM OUTPUT = COUNT ' CONTAIN A STAR' 4

END 5

NO ERRORS DETECTED I N SOURCE PROGRAM

Sec. 9.1 Printed Output from a Program Run

A compilation listing from a program containing two errors follows:

SNOBOL4 (VERSION 3.9, MAY 19, 1972)

BELL TELEPHONE LABORATORIES, INCORPORATED

READ CARD = INPUT

CARD TAB(lO) , ,

COUNT = COUNT+l

:::m I LLEGAL CHARACTER I N ELEMENT

$ERM OUTPUT = COUNT ' ARE CORRECT'

:::::: ERRONEOUS LABEL

:F(TERM)

:F(READ)

: (READ)

1

2

3

4

END 5

ERRORS DETECTED IN SOURCE PROGRAM

123

Errors that are detected during compilation are mainly syntactic ones. Semantic
errors, i.e., errors of meaning, cannot be detected until the program is actually executed,
if then. The errors in the second program above are typical and self-explanatory. The
most common syntactic errors are listed in Section 9.4.

Since the SNOBOL4 system has no way of knowing what the programmer intends to
do, the error detected may not be the error the programmer made but may have resulted
only from an error earlier in the statement. Usually a little study will disclose the error
and a few simple corrections will produce a program that compiles without further error.
Only the first error in any statement is detected. Therefore an erroneous statement
should be examined carefully to be sure it does not contain other errors.

Execution

During execution of a program, printed output is produced by the program itself as a
result of assignments to OUTPUT. Ordinarily the SNOBOL4 system does not print mes­
sages during execution, since such messages would be intermixed with the program output
and might ruin the appearance of an otherwise satisfactory printout.

124 Program Debugging Ch.9

There are, however, tracing modes which may be used. When executing a program in
a tracing mode, various messages about the progress of execution are provided automati­
cally by the SNOBOL4 system. Tracing is described in Section 9.2.

Termination

Program execution may be terminated by transferring to the label END or by flowing
into the label END . When this occurs, a termination message is printed indicating that
execution has ended normally. A typical message follows.

NORtJAL TERM I NAT I ON AT LEVEL 0

LAST STATEMENT EXECUTED WAS 7

The level given is the level of call of programmer-defined functions. Usually the level is
zero, but it may be greater than zero since it is possible to transfer to END while executing
the procedure for a function.

If an error occurs during program execution, execution is terminated at that point
and an appropriate message is printed. An example is:

ERROR 24 IN STATEMENT 6 AT LEVEL 0

UNDEFINED OR ERRONEOUS GOTO

Transfer to a label that does not occur in the program will produce error termination of
the type indicated above. Each error has a number which can be looked up in the refer­
ence manual in case a lengthier explanation is needed.

Whatever the cause of termination, summary statistics are given at the end of the
printed output. These statistics provide timing information and counts of certain opera­
tions that occurred during program execution. A typical set of summary statistics follows.

SNOBOL4 STATISTICS SUMMARY:

81 MS. COMPLILATION TIME

4 MS. EXECUTION TIME

6 STATEMENTS EXECUTED, 2 FAILED

2 ARITHMETIC OPERATIONS PERFORMED

3 PATTERN MATCHES PERFORMED

o READS PERFORMED

1 WRITES PERFORMED

.66 MS. AVERAGE PER STATEMENT EXECUTED

Sec. 9.1 Printed Output from a Program Run 125

The abbreviation" MS " stands for milliseconds, i.e., thousandths of a second.
Sometimes the information provided in the statistics may be helpful in locating an

error. For example, the program that produced the statistics above did not read any data
records. This might indicate an error.

9.2 TRACING

Since most errors occur during program execution, diagnostic information about the
course of program execution is an essential aid to debugging. The judicious placement of
output statements can be helpful in this regard. In addition, the SNOBOL4 system itself
can be placed in modes in which diagnostic information is provided automatically.

The TRACE Mode

The TRACE mode is established by assigning a positive integer to the keyword &TRACE.
An example is the statement:

&TRACE = 1000

The value assigned to &TRACE determines the extent of tracing output as is described later.
Turning on the trace mode does not cause tracing itself. Tracing to be done is deter­

mined by trace associations made with specific names. Such associations are made by the
built-in function TRACE. An example is:

TRACE('TEXT'}

This statement specifies that the name TEXT is to be traced. If the trace mode is on (i.e.,
if the value of &TRACE is greater than zero), a trace message is printed every time a value
is assigned to TEXT. Trace messages occur for assignments which are made as a result of
replacement and as a result of names attached to patterns, as well as for simple assignment
statements. Messages show what value is assigned to TEXT, in what statement the assign­
ment was made, and when the assignment was made.

Consider the following program.

& TRACE = 1000 1

TRACE('TEXT') 2

VOWELS = SPAN('AEIOU') 3

TEXT = 'AFTERNOON SIESTAS' 4

REMOVE TEXT VOWELS = '- , :S(REMOVE) 5

END 6

126 Program Debugging Ch.9

Trace messages resulting from executing this program are:

STATEMENT 4: TEXT = 'AFTERNOON SIESTAS'IT1ME = 4

STATEMENT 5: TEXT = '-FTERt--DON SIESTAS'IT1ME = 9

STATEMENT 5: TEXT = '-FT-RNOON SIESTAS'IT1ME = 14

STATEMENT 5: TEXT = '-FT-RN-N SIESTAS'ITIME = 21

STATEMENT 5: TEXT = '-FT-RN-N S-STAS'ITIME = 30

STATEMENT 5: TEXT = '-FT-RN-N S-ST-S'ITIME = 40

The time printed is given in milliseconds measured from the beginning of program
execution.

Each time a trace message is printed, the value of &TRACE is automatically decreased
by one. When the value of &TRACE reaches zero, tracing turns off automatically. Thus

STRACE = 100
provides for 100 trace messages before tracing is turned off. Of course the value of
STRACE can be reset by an assignment statement at any time.

Several trace associations can be in effect at the same time. Each trace association is
made by executing TRACE. For example, the statements

TRACE('VARIABLE')

TRACE('FORMULA')

TRACE('EXPRESSION')
establish trace associations for the three names VARIABLE, FORMULA, and EXPRESS ION.
Whenever a value is assigned to any of these variables, a trace message is printed. Each
trace message identifies the name to which the assignment was made, and each trace
message decrements the value of STRACE.

Other program actions in addition to assignment may also be traced. Consult Refer­
ence 1 for a complete description of tracing.

The FTRACE Mode

Another keyword, &FTRACE, permits tracing of programmer-defined functions. Func­
tion tracing is turned on by assigning a positive value to &FTRACE, as in the statement:

&FTRACE = 1000

Sec. 9.2 Tracing 127

When function tracing is on, every call and return of a programmer-defined function pro­
duces a trace message. The information printed is similar to that printed when value
as~ignments are traced.

Consider the following program.

&FTRACE = 100

&ANCHOR = 1

&TRIM = 1

DEFINE(IPRE(EXP)L,R,OPI)

INP = BAL • L ANY(' +_/::t) • OP BAL • R RPOS(O)

RPAREN = POS(O) 1(' BAL. R f)f RPOS(O)

READ OUTPUT = INPUT :F(END)

OUTPUT = PRE(OUTPUT)

OUTPUT = : (READ)

PRE EXP RPAREN = R

EXP INP = OP f(' PRE(L) , , PRE(R) ') I ,
PRE = EXP : (RETURN)

END

The printed output from execution of this program follows.

A+(B::C)

STATEMENT 8: LEVEL 0 CALL OF PRE(IA+(B::C)'), TIME = 18

STATEMENT 11: LEVEL 1 CALL OF PRE(IA'),TIME = 29

STATEMENT 12: LEVEL 1 RETURN OF PRE = 'AI,TIME = 35

STATEMENT 11: LEVEL 1 CALL OF PRE(' (B::C)'), TIME = 40

STATEMENT 11: LEVEL 2 CALL OF PRE('B'),TIME = 53

STATEMENT 12: LEVEL 2 RETURN OF PRE = 'BI,TIME = 58

1

2

3

4

5

6

7

8

9

10

11

12

13

128 Program Debugging Ch.9

STATEMENT 11: LEVEL 2 CALL OF PRE('C'),TIME = 63

STATEMENT 12: LEVEL 2 RETURN OF PRE = 'C',TIME = 68

STATEMENT 12: LEVEL 1 RETURN OF PRE = I::(B, C), ,TIME = 73

STATEMENT 12: LEVEL 0 RETURN OF PRE = '+(A,':(B,C)), J TIME = 78

+(A,'C(B, C))

9.3 OTHER DIAGNOSTIC INFORMATION

Keywords

Additional information about the progress of program execution is available as the
value of keywords. The value of the keyword &STCOUNT is a count of the number of
statements that have been executed. The value of &STCOUNT is automatically incremented
whenever execution of a statement is begun. Similarly SSTFCOUNT contains a count of
the number of statements that have failed. Printing out the values of these keywords at
appropriate points during program execution may provide helpful information for de­
bugging.

Termination Dump

A listing of the values of names may be included in the information printed at pro­
gram termination by assigning a positive integer to the keyword &DUMP. In the early stages
of program debugging, it is advisable to include a statement such as:

& DUMP = 1

To obtain a dump, the particular integer assigned to &DUMP is irrelevant, so long as the
value is positive. The dump that is provided lists all names that have nonnull values. A
typical dump follows.

DLMP OF VARIABLES AT TERMINATION

ABORT = PATTERN

ARB = PATTERN

BAL = PATTERN

COUNT = 45

Sec. 9.3 Other Diagnostic Information 129

FAIL = PATTERN

FENCE = PATTERN

N = 8

OUTPUT = 'THERE ARE 45 SPECIAL CASES'

REM = PATTERN

SUCCEED = PATTERN

TEXT = 'SOME FORMS OF THE VERB ARE FOUND ONLY'

In such a dump, values that are not strings or numbers are indicated by their data types
in the same way that such values are handled in printed output during execution. The
dump above, for example, illustrates that ARB, BAL, and so forth have pattern values. It
is important to remember that only names which have nonnull values are printed.

9.4 ERRORS

An endless variety of errors may be made in writing programs. Those that have to do
with an incorrect method of solving a problem are beyond the scope of this book. Errors
directly related to the use, or misuse, of SNOBOL4 are discussed in the following sections.

Syntactic Errors

Errors in the formation of SNOBOL4 statements are called syntactic errors. Such
errors are detected during the compilation phase of a SNOBOIA run, and error mes­
sages are printed in the compilation listing. Some common mistakes are:

1. Failure to surround binary operators by blanks. This error is most frequently com­
mitted by programmers who are familiar with the syntax of another programming lan­
guage (such as FORTRAN) which does not require blanks in the same places that
SNOBOL4 does.

2. Failure to provide the closing quotation mark on a data string. A similar error occurs
if an attempt is made to enclose a quotation mark in a data string which is delimited by
that type of quotation mark. So far as the SNOBOL4 compiler is concerned, a data
string begins when a quotation mark is encountered and ends when a corresponding
quotation mark is found. Thus it is possible to "get out of synchronization" if a quo­
tation mark is omitted in a statement containing several data strings.

130 Program Debugging Ch.9

3. Failure to match parentheses properly in nested expressions. Unlike quotation marks,
parentheses can be nested. However, in complicated expressions, closing parentheses
may be accidentally omitted, or too many closing parentheses may be provided. With
a little practice, parentheses can be quickly counted using the method described in
Section 4.2 for locating balanced strings.

Finally, it is important to understand that the SNOBOL4 compiler has no way of
determining what a programmer meant to do. There are many syntactically correct pro­
grams that do not execute correctly. Consider the following example.

OUTPUT = SIZE (S T)

This statement specifies a concatenation of the value of the name SIZE with the values of
the names S and T. It is not a call of the function SIZE, which would be written:

OUTPUT = SIZE(S T)
Both statements are syntactically correct, but they mean different things.

Programmers are sometimes surprised that a statement such as

SIZE(X) = 3

is syntactically correct, even though it is impossible to assign a value to a call of a built-in
function. Observe, however, that if this statement is preceded by

DATA('OBJECT(SIZE,LOCATION)')

then SIZE becomes a field function to which a value may be assigned. After executing
DATA, SIZE is no longer a built-in function. Since SIZE can be redefined during execu­
tion, its appearance as the subject of an assignment is not a syntactic error.

Error Messages During Execution

Since most errors cannot be detected during compilation, many errors become appar­
ent during execution. Some errors simply cause the program to produce the wrong result
and must be hunted by logical processes or the use of diagnostic information described in
preceding sections. Other errors result in illegal operations which cause program termina­
tion with an error message. These error messages are generally self-explanatory. Examina­
tion of the statement in which the error occurred and the values of variables listed in the
string dump usually pinpoints the mistake.

The commonest error messages and their most frequent causes are:

ILLEGAL DATA TYPE. This message is caused by an attempt to perform an operation on a
type of object for which that operation is not defined. This is the commonest of all errors
and its cause is usually an attempt to perform arithmetic on a nonnumerical object. A less

Sec. 9.4 Errors 131

obvious source of this error is an attempt to perform pattern matching on an object that
is not a string. An example is:

OPS = ANY(' +-/~=)

•

•

•

OPS '+' :S(PLUS)

The last statement is erroneous since the subject of the pattern match is a pattern, not a
string. In this case, an examination of the string dump will show the data type of OPS
is PATTERN.

ERROR IN ARITt-METIC OPERATION. The usual cause of this error is an attempt to divide
by zero or to compute a result that is numerically larger than allowed.

NULL STRIt-l7 IN ILLEGAL CONTEXT. While usually caused by an attempt to perform
an indirect reference on the null string, this message also occurs if the argument of a field
function is null. For example, if LSON is a field function as described in Section 6.3,

LSON(X) = Y

produces the message above if the value of X is null. If the value of X is null, X will not
be printed in the string dump. Hence its absence is a clue. An even more subtle source of
this error message occurs when a null argument is given to one of the pattern-valued func­
tionsAAY, NOTANY, BREAK, or SPAA. An example is:

DIGIT = '0123456789'

INTEGER = SPAA(DIGITS)

The misspelling of DIGITS for DIGIT results in a null argument to SPAN.

UNDEF I NED FUNCT ION OR OPERAT ION. This message usually results from misspelling a
function name or attempting to call a programmer-defined function before it has been
defined.

VARIABLE NOT PRESENT WHERE REQUIRED. An attempt to assign a value to something
that is not a variable causes this error. For example

SIZE(X) = 3

produces this error unless SIZE is appropriately redefined as, for example, a field function.

132 Program Debugging Ch.9

UNDEFINED OR ERRONEOUS GOTO. Usually this error is caused by an attempt to transfer
to a label that is not in the program. Misspelling is the commonest source of such an
error. Another cause of this error is specifying a value, rather than a name, in the go to
field. This usually occurs in the case of a computed goto. To transfer to one of the labels
Ll , L2, L3, ... the following goto is sometimes written:

:('L' N)

where N takes on different integer values. While this may look correct, it is an error. For
example, to transfer to LJ., one would write :(L3), not :('L3'). Thus, indirect refer­
encing must be used to get the required name if the label is computed. The correct form
for such a goto is:

:($('L' N»

This construction may not seem very natural and may be hard to understand, but it is
required and becomes automatic with practice.

STACK OVERFLOW. This message indicates that an internal storage area, called the stack,
has become full. This stack is used for saving information when programmer-defined func­
tions are called. Stack overflow usually indicates runaway recursion in which a function
is 'Calling itself endlessly. Sometimes, however, a perfectly well-designed function can
simply require more space on the stack than is available. In this case, the program may
have to be redesigned.

I NSUFF I C I ENT STORPGE TO CONT I NJE. There is a main storage area that is used for
holding the program and data objects created during execution. SNOBOL4 maintains this
storage area, discarding unneeded objects when it is necessary to make sp.ace for new ones.
The message above indicates that there is not enough space to continue running the pro­
gram. This may be caused by a program that accidentally creates an endless number of
objects that cannot be discarded. More often, this message indicates a program that really
requires more space than is available. See . Section 8.3 for a discussion of this problem.

Some N on obvious Errors

As was mentioned earlier, not all errors produce error messages; some errors simply
cause the program to malfunction. Some nonobvious causes of program malfunction
follow.

1. Ambiguous failure. Failure may occur for several reasons. If a statement may fail
for more than one reason, the failure branch may produce misleading results. . An
example is:

IPAIR = BREAK(',') • 11

READ INPUT IPAIR

, , , REM • 12

:F(DONE)

Sec. 9.4 Errors 133

Here the failure exit is intended to indicate that all data has been read. If the data is
not in the form expected, however, the statement may fail because the pattern fails to
match. In such cases, two statements should be provided:

READ LINE = INPUT :F(OONE)

LINE IPAIR :F(ERROR)

2. Unexpected failure. Failure that is not expected is akin to the ambiguous failure de­
scribed above. Here, however, the result is that the failure goes undetected. The
following statement illustrates such a case. Suppose the value of T is a table.

A = CONVERT(T, 'ARRAY')

Ordinarily such a statement succeeds and assigns an array to A. If, however, T contains
only subscripts with null values, CONVERT fails. The result is that no array is assigned
to A. This fact may go undetected until A is referenced as an array. Such a reference
produces an error message, but the reference may not occur until long after CONVERT
has failed, obscuring the real source of trouble. Similarly, REPLACE fails if its second
and third arguments are of different lengths. Generally speaking, failure gotos should
be provided as safety measures on all statements containing CONVERT and REPLACE.

3. Troubles with arrays. Sometimes the form of the first and second arguments of ARAAY
causes confusion. For example

Al = ARRAY('3,4')

creates a two-dimensional array in which all subscripts have initial null values. On the
other hand,

A2 = ARRAY('3', '4')

creates a one-dimensional array in which all subscripts have the string 4 as initial value.
More subtle is the error in the following statement.

AI<I> = x

Since Al is a two-dimensional array, the omitted second subscript is assumed to be the
null string. The null string is numerically equivalent to zero. Thus this statement is
equivalent to:

AI<I,O> = x

This statement fails since the second argument is out of range.

134 Program Debugging Ch.9

4. Trailing blanks. Trailing blanks resulting from input are sometimes the cause of myste­
rious errors. Consider the following statements.

READ

GETI

TEST

LINE = INPUT

LINE BREAK(','). 11

GT(12,ll)

, , , REM • 12

:F(OONE)

:F(ERROR)

:S(ELIM)

Here data cards contain pairs of integers separated by commas. An error is likely to
occur in the statement labeled TEST. Unless the input is trimmed of trailing blanks, the
value assigned to 12 may contain many trailing blanks. Hence the first argument of the
arithmetic comparison is not an integer. Printed output is of little help since the blanks
are "invisible". This problem may be avoided by changing the pattern in the statement
labeled GET I :

GETI LINE BREAK(',') • 11 ',' BREAK(' ') • 12 :F(ERROR)

The converse problem may arise, as illustrated by the following statements.

&TRIM = 1

READ LINE = INPUT :F(DONE)

GETI LINE BREAK(','). II ',' BREAK(' ') • 12 :F(ERROR)

Here the statement labeled GETI fails since trailing blanks have been removed and there
is nothing for BREAK(' ,) to match.

5. Numbers and numeral strings. In most instances numbers and numeral strings may be
used interchangeably and without concern for the difference. In a few situations,
numbers and numeral strings cannot be used interchangeably, and these situations may
cause subtle errors. The predicates IDENT and DIFFER compare their arguments as
objects, regardless of their numerical values. Therefore a statement such as

IDENT(TRIM(INPUT),COUNT + 1) :F(NO)

always fails since the first argument is a string resulting from input and the second
argument is a number resulting from addition. Similarly, while an array subscript may
be an integer or a numeral string representing that integer, the two types of subscripts
are different if used to reference a table.

Controlling Execution

One of the most annoying problems is a program that loops. It is trivial to write a
series of statements that repeats indefinitely. There is no reason for doing this purposely,

Sec. 9.4 Errors 135

but it happens accidentally quite frequently. In the sample programs in Section 2.11, an
example of such an error was given. The particular statements were:

AGAIN TEXT '5' :F(NO)

COUNT = COUNT + 1 : (AGAIN)

This kind of bug has several unpleasant features. First, the results of executing the pro­
gram are almost always useless. Consequently the loop is wasteful of computer time.
Second, a loop is often hard to locate.

Loops are common errors and if there were no way to stop them, programs with
loops would run endlessly. Therefore computer installations usually place a limit on the
time a program is permitted to run. Generally the programmer can specify this limit him­
self for a particular run. If this time limit is exceeded, the run is terminated unceremo­
niously. When this occurs, there is usually no indication of what the SNOBOL4 program
was doing at the time. Consequently there may be no evidence of the location of the
loop, or even if there is one. Worst of all, printed output is often lost when a program is
terminated for exceeding the time limit. This happens because output is often kept in
buffers in the memory of the computer, and is only printed when the buffers become
full. When a SNOBOL4 program goes through its termination phase, these buffers are
emptied ("flushed"). Time limit termination simply stops the run, there is no termination
phase, and buffers may not be flushed.

SNOBOL4 provides a way to avoid many of these problems by limiting the number of
statements that may be executed in a single run. A count of statements is kept, and when
the limit given by the value of the keyword &STLIMIT is exceeded, error termination
occurs with an appropriate error message. The termination phase then provides the usual
summary information which may aid in debugging. The initial, default value of &STLIMIT
is 50000, but this limit may be changed. If a program is to perform a great amount of
computation, the limit may have to be raised. For debugging purposes, it is often desirable
to set the limit to a low value. A statement such as

&STLIMIT = 1000

is typical. The advantage of such a low limit lies in the probability that a loop may be pre­
sent. In the early stages of program development, the number of statements to be executed
should not be large in any event. Almost all runs, at this point, are for the purpose of
finding errors, not for producing useful calculations. If a loop is present, it is usually
easily. identifiable from the information provided by the termination phase. At first, it
may be difficult to decide what limit to set. With a little experience, the amount of com­
putation that can be performed with a thousand or two thousand statements becomes
clear. Furthermore, estimating the number of statements required for various computa­
tions is a good exercise in itself.

136 Program Debugging Ch.9

Steps in Locating Errors

In many cases, when a program does not work properly, the error is obvious and is
easily corrected. If the error is somewhat obscure, a programmer may jump to the con­
clusion that the SNOBOL4 translator is at fault-that the "system" made an error. While
an error in SNOBOL4 itself is not impossible, it is quite unlikely. SNOBOL4 has been in
use for many years and errors found in it have been corrected. As a starting point, assume
the program, not SNOBOL4, is in error.

There are some routine steps that should be undertaken in debugging. While they
seem obvious, they are so often overlooked that they are given here.

1. Check the listing for error messages. If parts of the program have not been run before,
check for compilation errors as well as execution errors. Look for something obviously
wrong in the listing of the program itself, such as a mispunched card that should have
been discarded, but was not.

2. If execution terminated with an error message, check the message and the indicated
location. First determine if the cause of the error is obvious or appears reasonable. If
the cause is not immediately clear, check the dump of names and their values. First
check for the values of names used in the erroneous statement and in statements leading
up to the error.

3. If there is still nothing obvious, or if the run terminated normally, check the values of
all variables in the dump, looking for something obviously out of place. Also check the
summary statistics to see if the number of operations performed is reasonable.

4. If examination of the output listing does not reveal the cause of the error, recheck the
logic of the program and work out some simple cases by hand. If the program has run
correctly before, but now malfunctions, pay special attention to any recent changes,
however minor they may be. Also consider the possibility that something different in
the data may have uncovered a latent bug.

5. If an examination of the type described above does not reveal the error, add debugging
statements to the program and rerun it to get more information. Debugging statements
should be aimed at producing useful printed output, either by output statements or
tracing. Do not hesitate to print a substantial amount of information. In some cases
&STLIMIT maybe useful in locating a loop or stopping execution in a desired section
of the program.

EXERCISES

9.1. The following statements all contain syntactic errors. Identify the errors and suggest
corrections.

EQ(SIZE(S),N)) :S(OKAY)

OUTPUT = 'THE RESULT IS 5 ' AT TERMINATION'

Ch.9 Exercises 137

lA = INPUT

N = LTCN,SIZECM) N + 1 : FCOONE)

9.2. In an initial debugging run, what keywords should be assigned values that are differ­
ent from their default values?

9.3. Write a program to count the number of different words on a data file. Trace the
words found and the count. Run this program on some typical data and observe the
results.

9.4. Run the solution of Exercise 5.6 in the FTRACE mode. What insight does the printed
output provide?

9.5. Consider the word-counting program given in Section 6.2. Estimate how many state­
ments will be required to process a data file consisting of 10 80-character records.
Assign a value to &STLIMIT to force termination if the number of statements exe­
cuted is more than twice the expected number.

9.6. The following program is designed to convert expressions from infix form to prefix
form.

+

READ

DEFINEC'PRECEXP)L,R,OP')

INP = POSCO) BAL. L ANYC,+-/::r) • OP BAL. R

RPOSCO)

RPAREN = POSCO) 'C' BAL. R ')' RPOSCO)

OUTPUT = INPUT :F(Ef\D)

OUTPUT = PRE (OUTPUT)

OUTPUT = :CREAD)

PRE EXP RPAREN = R

EXP INP = OP .(. PRE(L) ',' PRE(R) I)'

PRE = EXP :CRETURN)

END

The program does not work properly. Locate the cause of the error and show how
to correct it.

APPENDIX A

Rules of Syntax

Certain rules must be followed in writing SNOBOL4 programs. Rules concerning the
structure of statements in a program are called rules of syntax. Syntax is not concerned
with what things mean or with what happens when a program is executed, but only with
form. These rules are given throughout the book, often by example. The following para­
graphs summarize some of the more important aspects of the syntax of SNOBOL4 in an
informal way. Only the parts of SNOBOL4 described in this book are included; a com­
plete and more formal syntax is given in Reference 1.

Names

Names may be as long as desired, but must fit on one line. The first character of a
name must be a letter. The rest of the characters may be letters, digits, or periods.

Numbers

Integers are composed of digits. The maximum number of digits is limited by the
maximum value that an integer can have, which varies from machine to machine. Real
numbers must begin with a digit and have a decimal point (period). More digits may follow
the decimal point. The allowable size of real numbers also depends on the machine.

Labels and Gotos

La~els may be as long as desired, but must fit on one line. The first character of a
label must be a letter or a digit. Any characters except blanks or semicolons may follow
the first character. A blank terminates the label, and a semicolon terminates the label

138

App.A Rules of Syntax 139

and also the statement. Although most labels are names, labels may contain characters
that are not allowable in names. Thus B:: is an acceptable label.

Most gotos contain names that are given explicitly. Indirect referencing may be used
to compute a label, however. In this way control may be transferred to a statement whose
label is not a name. The following statements illustrate this situation:

OP =

:($('B' OP))

The goto constructs the string B:: which is then referenced indirectly to transfer control
to the statement with the label B::. There is sometimes confusion about indirect refer­
encing in gotos. The indirect reference is necessary in the statement above, since the
result of concatenation is a data string. To transfer to the label B, the goto : (B) is used,
not: C' B').

Use of Blanks

Blanks are used for a number of different purposes in SNOBOL4. One use is for sepa­
rating the major components of a statement. Thus, blanks separate a label from a subject,
a subject from a pattern, an equal sign from other components, and so on. Blanks are also
required around binary operators to separate the operators from their operands. Finally,
blanks indicate concatenation. In any of these uses, at least one blank is required, but as
many more may be used as desired.

Because binary operators are surrounded by blanks and because blanks are used in
concatenation, blanks must not be used between a function name and the parentheses
enclosing the arguments, or after unary operators.

The use of blanks to separate components and also to indicate concatenation fre­
quently causes confusion in determining the subject of a statement. Consider the
following state men t.

X y Z

This might be interpreted to be a pattern-matching statement in which the pattern is Z and
the subject is the concatenation of X and Y. In fact, the blanks between the ,X and Y
separate the subject from the pattern, which is Y concatenated with Z. Thus the statement
above is equivalent to:

X CY Z)

140 Rules of Syn tax App.A

This interpretation is somewhat arbitrary, but is part of the syntax of SNOBOL4.
Parentheses can always be used for grouping terms in a desired way. Thus in the statement

(X Y) Z

the subject is X concatenated with Y and the pattern is Z.

Statements and Lines

Programs are usually prepared on punched cards. In any event, programs are prepared
line by line. If a statement has a label, that label must be first. If a statement starts on a
new line, the label must therefore appear at the beginning of the line. On punched cards,
this is column one.

Only the first 72 characters of a line may be used. If a statement is too long to fit on
a line, it may be continued on successive lines, following certain rules about continuation.
These rules are:

(a) A statement may be divided between lines at any point where a blank is mandatory
or optional in the syntax of SNOBOL4. Examples are the blanks that separate state­
ment components, the blanks that surround binary operators, and the blanks that
indicate concatenation.

(b) A statement may not be divided in the middle of a data string, even if there are blanks
in the data string. A blank in a data string has no syntactic significance and cannot
be used as a dividing point.

(c) A line that is a continuation of a statement that started on a preceding line must
begin with the symbol +.

(d) There is no limit to the number of continuation lines a statement may have.

More than one statement may appear on a line. A semicolon may be used to terminate
a statement, and another statement may follow· a semicolon. If a statement following a
semicolon has a label, that label must begin immediately after the semicolon, without
intervening blanks. An example is

I = 1 iLOOP I = LT(I,N) I + 1

The second statement on the line has the label LOOP.
There are many other aspects of the syntax of SNOBOL4 that are too involved to

present here. A thorough comprehension of the syntax is not required for programming;
Most commonly used constructions can be found in the examples given in the body of
the book. These examples illustrate correct usage which can be imitated or referred to
if questions arise.

APPENDIX B

Summary of Functions
and Operators

Listed below are the functions, predicates, and operators described in this book and
the sections where they are described.

Functions

Name

ANY
ARRAY
BREAK
CONVERT
DATA
DEFINE
DETACH
DUPL
INPUT
LEN
NOTftNY
OUTPUT
POS
REMDR
REPLACE
REWIND
RPOS

141

Operation Performed

pattern construction
array creation
pattern construction
data type conversion
data type definition
function definition
association removal
string duplication
input association
pattern construction
pattern construction
output association
pattern construction
numerical computation
character replacement
file positioning
pattern construction

4.2
6.1
4.2
6.2
6.3
5.1
7.4
3.5

Section

7.1,7.2, 7.3
2.7,4.2
4.2
7.1, 7.2, 7.3
4.2
2.4,3.2
3.5
7.4
4.2

142 Summary of Functions and Operators App.B

Name Operation Performed Section

RTAB pattern construction 4.2
SIZE string length 2.4,3.8
SPAN pattern construction 4.2
TAB pattern construction 4.2
TABLE table creation 6.2
TRACE trace association 9.2
TRIM string trimming 3.5

Predicates

Name Type of Comparison Section

DIFFER object 2.6
EQ numerical 2.6, 3.1
GE numerical 3.1
GT numerical 3.1,3.8
I DENT object 2.6, 3.7, 3.8
LE numerical 3.1
LGT string 3.7
LT numerical 2.6, 3.1
NE numerical 3.1

Binary Operators

Operation Relative
Symbol Performed Associativity Precedence Section

$ immediate left 7 4.4,4.5
assignment

• conditional left 7 2.8,4.5
assignment , , .. ,.-

exponentiation right 6 3.1 . , -"tt#_

~: multiplication left 5 2.3, 3.1
/ division left 4 2.3, 3.1, 3.2
+ addition left 3 2.3, 3.1

subtraction left 3 2.3, 3.1
blank concatenation left 2 2.3, 2.7, 4.5

I alternation left 1 2.7,4.5

App.B Summary of Functions and Operators 143

Unary Operators

Symbol Operation Performed Section

$ indirect reference 3.6 .,
unevaluated expression 4.3 ,n

+ positive 3.1
negative 3.1

& keyword see next
section

Keywords

Name Initial Value Section

&ALPHABET character set 3.7
&ANCHOR 0 4.1
& DUMP 0 2.2,9.3
&FTRACE 0 9.2
&STCOUNT 0 9.3
&STFCOUNT 0 9.3
&STLIMIT 50000 9.4
&TRACE 0 9.2
&TRIM 0 3.5

This book describes only the basic aspects of SNOBOL4. There are a number of
more specialized functions, operations, and keywords as well as additional uses for those
described in this book. For a complete description of the SNOBOL4 language, see
Reference 1.

APPENDIX C

Preparing and Running
a SNOBOL4 Program

SNOBOL4 is available on many different types of computers in a variety of environ­
ments. The details of preparing and running a SNOBOL4 program may vary from one
location to another. The major factors that may differ are:

(a) The type of computer available.

(b) The nature of the operating system that supervises the running of programs.

(c) The type of input and output devices used for preparing the program and obtaining
the results.

(d) Local conventions and rules for referring to data files.

(e) The particular implementation of SNOBOL4 that is available.

The situation usually is not as bad as the factors above might imply. There are a few
major differences and some minor considerations, but, on the whole, SNOBOL4 programs
may be run in nearly the same way at most locations.

The original implementation of SNOBOL4 developed at Bell Laboratories (see Refer­
ences 1 and 4) is available for most large-scale scientific computers including the IBM
360/370, CDC 6000 series, UNIVAC 1108, Sigma 5/6/7, DEC System-10, RCA Spectra
70, and GE635. This implementation is largely independent of the type of computer on
which it is installed, except for differences in character sets. Some implementations handle
data files differently, and some implementations have a few extra features. SNOBOL4
described in this book corresponds to Version 3 of the Bell Laboratories implementation.

144

App.C Preparing and Running a SNOBOL4 Program 145

Earlier versions lack some features of Version 3. Refer to local documentation for the
particular version you are using.

There are a few other implementations of SNOBOL4 that are distinctly different. An
implementation called SPITBOL is most notable (see Reference 5). This implementation
contains a number of extra features and differs somewhat from other implementations.
Again, users should refer to documentation at their location. There are also SNOBOL
languages other than SNOBOL4. Some, such as SNOBOL3, are precursors of SNOBOL4.
Others are offshoots which may resemble SNOBOL4 to some extent, but differ markedly
in actual language features. If a SNOBOL translator is not specifically identified with
SNOBOL4, an investigation should be undertaken before attempting to use it.

The operating system depends on the type of computer available, and there are several
different operating systems for some computers. The most noticeable difference to the
programmer is whether the operating system supports time-shared, interactive use from a
computer terminal. SNOBOL4 was originally developed for "batch" use in which a pro­
gram is submitted as a deck of cards, and the results are returned as printed output. A
number of operating systems support SNOBOL4 in an interactive environment, where a
program may be entered from a Teletype ® or other computer terminal, or stored on a
data file for future correction and use. Interactive systems vary considerably, and pro­
grammers who plan to use SNOBOL4 in such an environment should first familiarize them­
selves with the general use of interactive computing.

Most commonly, SNOBOL4 programs are submitted in a batch mode as a deck of cards.
Such a deck usually has the following structure:

control cards
SNOBOL4 program
data to be read

Control cards typically serve to identify the user, to establish the names of data files, and
to indicate that a SNOBOL4 program is to be run. Control cards depend on the particular
operating system and on local conventions. Usually a few cards are sufficient for running
most SNOBOL4 programs. Once these cards have been determined, they usually need be
of little further concern. Data to be read by the SNOBOL4 program follows the END
card which terminates the program.

Many programmers learning SNOBOL4 will already know how to use their local com­
puter center and its equipment. Even for the complete novice, only a small investment in
instruction and practice will be sufficient to write simple programs. Additional knowledge
can be acquired as more complicated programs are attempted.

APPENDIX D

Solutions to Exercises

Solution 2.1

integers data strings

0 '5'

1 'THE TOTAL COUNT IS '

Solution 2.2

I = 100

J = 10000

K = 13

L = 1308

WORD 1 = 'COGITO'

WORD2 = 'ERGO'

WORD3 = 'SUM'

CLAUSE = 'COG ITO ERGO SUM'

146

names

COUNT

OUTPUT

INPUT

TEXT

labels

READ

AGAIN

EOF

END

I"!'
i'

App.D Solutions to Exercises 147

SENTENCE = 'COGITO ERGO SUM.'

ENDVOWEL = PATTERN

v = '0'

The pattern ENDVOWEL matches any vowel that is followed by a blank. The value assigned
to V'results from the pattern-matching statement using ENDVOWEL.

Solution 2.3

DIGIT = ' 0' I ' 2' I '4 ' I '6 ' I ' 8 '

PUNC = , , I , , I ' . , , ! ' , . , , • ,
VWLP = VOWEL PUNC

DVWL3 = VOWEL LEN(3) VOWEL

VOWELis the pattern given in Section 2.7.

Solution 2.4

One way to solve this problem is to reverse the string as described in Program 4 of
Section 2.11. Then the statement

IDENT(STRING,REVERSE) :S(YES)F(NO)

performs the desired test. To avoid destroying the value of STRING when forming
REVERSE, first execute

TEXT = STRING

and then proceed as described in Section 2.11.

Solution 2.5

STRING LEN(N). H = :F(CANT)

STRING = STRING H

The failure goto CANT assumes that a string of less than N characters is not to be rotated.

Solution 2.6

READ OUTPUT = INPUT

PUNCH = OUTPUT

END

:F(END)

: (READ)

148 Solutions to Exercises

Solution 3.1

parenthesized expression

(3 / 2) + (S x 6)

3 / (2 :~ 6)

(3 x 2) / 6

(2.0 + (0 / 3)) - 6.7

('7' :c '3.S') / REMDR(S,7)

(SIZE(DUPL(':~::' ,3)) :: 2.0) + REMDR(31,100)

3 (5 + 21)

REMDR(37, IS) (REMDR(15,37) :: 2)

value

31

o

1

-4.7

4.9

43.0

'326'

'730'

App.D

The quotation marks surrounding the last two values indicate data strings resulting from
concatenation.

Solution 3 .. 2

&TRIM

COUNT

SLM =
READ OUTPUT

SUMS =

COUNT

RESULT OUTPUT

END

Solution 3.3

&TRIM

N =
M =

=

=

=

=

=

1

0

0.0

INPUT

SUM + OUTPUT

COUNT + 1

'AVERAGE

= 1

INPUT

INPUT

IS ' SlJv1 / COUNT

1=0

:F(RESULT)

: (READ)

:F(ERROR)

:F(ERROR)

App.D

LOOP I =
OUTPUT

ERROR OUTPUT

END

Solution 3.4

I =
NEXTL J =

COLI =

COL2 =
OUTPUT

I =
END

Solutions to Exercises

LT(I,M) I + 1

= DUPL('.' ,N)

= n:::~: MISSI~ DATA m::n

1

I ". I ...

DUPL(' , ,10 SIZE(I)) I

DUPL(' , ,10 SIZE(J)) J

= COLI COL2

LT(I,25) I + I

:F(END)

: (LOOP)

:S(NEXTL)

149

The two columns could be constructed in the statement that performs the output. Three
separate statements are used for clarity.

Solution 3.5

ALPHA =
REVAL =

'ABCDEFGHIJKUMNOPQRSTUVWXYZ'

'ZYXWVUTSRQPONMLKJIHGFEDCBA'

ENCODE LINE = INPUT

OUTPUT = REPLACE(LINE,ALPHA,REVAL)

END

Solution 3.6

:F(END)

: (ENCODE)

The value of $NOUN and $$NOUN are both NOUN as may be seen from the following
diagram.

o

150

Solution 3. 7

&TRIM

READ WORD =
$WORD

=

=

Solutions to Exercises

I

INPUT

SIZE(WORD)

:F(DONE)

: (READ)

The value assigned to HAT is 3, to CLAPTRAP is 8, and to PERSIMtv10N is 9.

Solution 4.1

App.D

The first time DEL is executed, neither E nor I match the L at cursor position zero.
The cursor is advanced, and E matches at cursor position 1. This character is deleted by
replacement with the null string. The second time DEL is executed, the process is repeated.
Each alternative is matched at each successive cursor position until a match for E is found
at cursor position 5. Again the E is deleted. On the third execution, E is again found in
cursor position 5, and is deleted. On the fourth execution there is no match until the
cursor is advanced to position 6. Here the second alternative, I, is matched and deleted.
The pattern match succeeds twice more, then fails when there are no more Es or Is in the
value of TEXT" The successive values of TEXT are:

LET SLEEPING DOGS LIE

LT SLEEPING DOGS LIE

LT SLEPING DOGS LIE

LT SLPING DOGS LIE

LT SLPNG DOGS LIE

LT SLPNG DOGS LE

L T SLPNG DOGS L

Solution 4.2

PI: Any string containing two vowels.
P2: Any string containing two non-consecutive vowels.
P3: Any string containing a vowel in the first five characters and a vowel as the sixth

character.
P4: Any string containing vowels as the seventh and eighth characters.
P5: Any string containing a vowel among its last three characters.
P6: Any string containing a digit.
P7: Any string beginning with a digit.

App.D Solutions to Exercises 151

P8: Any string that does not begin with an asterisk.
P9: Any string containing a consecutive group of one or more digits, followed by a period.
PIO: Any string containing a balanced substring enclosed within parentheses.
PIl: Any string that is balanced and enclosed in parentheses.
P12: Any string containing two occurrences of the same vowel.
P13: Any string in which there are N consecutive blanks, starting at the tenth character.

Solution 4.3

PA = RTAB(I) NOTANY(n:,)

PB = BREAK('AEIOU') LEN(l) BREAK('AEIOU')

PC = LEN(II)

PO = POS(O) SPAN('AEIOU') RPOS(O)

PE = LEN(l) $ CH BREAKc:eCH) LEN(l) BREAKC::CH)

Solution 4.4

LETTER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

WPAT = BREAK(LETTER) SPAN(LETTER)

COUNT = 0

READ LINE = INPUT

NEXTW LINE WPAT =

COUNT = COUNT + I

RESULT OUTPUT = 'THERE ARE ' COUNT ' WORDS'

END

Solution 4.5

:F(RESULT)

:F(READ)

: (NEXTW)

The definition of a word is more complicated than it appears at first glance. There are
compound words, containing hyphens, for example. Forms that include apostrophes, such
as possessives and contractions, present another problem. Numerals are sometimes con­
sidered to be words. Technical material presents a variety of problems. The following
sentence, although contrived, illustrates some of the problems.

152 Solutions to Exercises

NEARLY 1/2 OF ALL MULTI-TRACK TAPES ARE USED IN AN I/O

ENVIRONMENT WHICH ISN'T INCLUDED IN THE D+N/L RELATION.

App.D

For this sentence, WPAT matches, among other things, the "nonwords"MULTI, I, 0, ISN,
T, D, N, and L.

Solution 5.1

DEFINE('MATRIX(C,N,M)I')

•

•

•

= 0 MATRIX I

MATPRT I = LT(I,M) 1 + 1

OUTPUT = DUPL(C,N)

Solution 5.2

DEFINE('DELETE(S,C)')

DELETE S SPAN(C)

DELETE =

•

•

=
S

Solution 5.3

DEFINE('SUBSTR(S,N,M)')

•

•
SUBSTR S TAB(N - 1) LEN(M) • SUBSTR

:F(RETURN)

: (MATPRT)

:S(DELETE)

: (RETURN)

:S(RETURN)F(FRETURN)

App.D

Solution 5.4

DEFINE('PALIN(S)')

•

•

PALIN IDENT(S,REVERSE(S))

Solutions to Exercises 153

:S(RETURN)F(FRETURN)
This, solution uses the function REVERSE developed in Section 5.1.

Solution 5.5

Change the procedure for PALIN to:

PALIN S = DELETE(S,' ')

IDENT(S,REVERSE(S))

Solution 5.6

DEFINE('F(N)')

F F = EQ(N,O) 0

F = EQ(N,1) 1

F = F(N - 1) + F(N - 2)

:S(RETURN)F(FRETURN)

:S(RETURN)

:S(RETURN)

: (RETURN)

The Fibonacci numbers provide a sequence of integers which are interesting because of
their relationship to population growth and proportions and symmetries found in nature.
For more information, see References 6 and 7. It is not necessary to know anything about
Fibonacci numbers to solve this exercise, however. All the necessary information is con­
tained in the recursive definition. It is necessary to realize that

f(n+l) = f(n)+f(n-l) n > 1

is equivalent to

f(n)=f(n-l)+f(n-2) n >2

The value of F(6) is 8.

154 Solutions to Exercises

Solution 5.7

DEFINE('POST(EXP)l,R,OP')

PREPAT

+

= POS(O) lENel) • OP 'e' BAL. l

BAL. R I)'

, t ,

•

•
POST POST = EXP

POST PREPAT =
+

Solution 6.1

'(' POSTel) , , , POSTeR) ')' OP

:eRETURN)

App.D

If a word longer than ten characters is encountered, the reference to the array lENGTH
fails. Since the goto is unconditional, such a word is simply ignored. The array could be
made larger, of course. At some point, however, the likelihood of a word that is too long
becomes very small. A warning message could be provided as follows:

lENGTH<N> = lENGTH<N> + 1

OUTPUT = ,~=~:~: lONG WORD ~=~:~:,

:seNEXTW)

:eNEXTW)

There are a variety of increasingly sophisticated ways of handling this problem.

Solution 6.2

POWERS = ARRAye'lO,5')

1 = 1

ASSIGN POWERS<I,l> = 1

POWERS<I,2> = 1 2

POWERS<I,3> = I 3

POWERS <1,4> = I 4

POWERS <I , 5> = 1 5

I = LTeI,lO) 1 + 1 :SeASSIGN)

App.D Solutions to Exercises

Solution 6.3

CHAR = LEN(l). C

CCOUNT = TABLE()

READ LINE = INPUT

OUTPUT = LINE

NEXTC LINE CHAR =
CCOUNT<C> = CCOUNT<C> + 1

RESULT ALPHA = &ALPHABET

OUTPUT =
OUTPUT = tTHE CHARACTER COUNTS ARE:t

NEXTA ALPHA CHAR =
OUTPUT = C t t CCOUNT<C>

END

:F(RESULT)

:F(READ)

: (NEXTC)

:F(END)

: (NEXTA)

155

This solution simply prints the result for every possible character. Since the characters
that may be referenced in the table are available in &ALPHABET, it is not necessary to con­
vert the table CCOUNT to an array.

Solution 6.4

The word-counting program given in Section 6.2 can be modified easily to count only
four-letter words. Simply insert the followin~ statement after NEXTW.

EQ(SIZE(WORD),4) : FCNEXTW)

Solution 6.5

DATA(tCOMPLEX(R,I)t)

R represents the real part of a complex number and I the imaginary part.

156 Solutions to Exercises

Solution 6.6

DEFINE('ADD(Cl,C2)')

DEFINE('SUB(Cl,C2)')

DEFINE(tMPY(Cl,C2)t)

DEFINE('DIV(Cl,C2)SQ')

•

•

ADD ADD = COMPLEX(R(Cl) + R(C2),I(Cl) + I(C2))

+ : (RETURN)

SUB SUB = COMPLEX(R(Cl) - R(C2),I(Cl) - I(C2))

+ : (RETURN)

MPY MPY = COMPLEX(R(Cl):: R(C2) - I(Cl) :: I(C2),

+ R(Cl) :: I (C2) + I (Cl) :: R(C2)) : (RETURN)

DIV SQ = R(C2):: R(C2) + I (C2) :: I (C2)

+

+

DIV = COMPLEX((R(Cl):: R(C2) + I(Cl) :: I(C2))

/ SQ,(I(Cl) :~ R(C2) - R(Cl) :: I(C2)) / SQ)

: (RETURN)

See Solution 6.5 for the definition of COMPLEX.

Solution 6. 7

DEFINE('IDSUBJ(Sl,S2)')

•

•

App.D

IDSUBJ IDENT(SUBJ(Sl),SUBJ(S2)) :S(RETURN)F(FRETURN)

App.D Solutions to Exercises

Solution 6.8

DEFINE('XSONS(NODE)T')

XSONS

Solution 7.1

•

T = LSON(NODE)

LSON(NODE) = RSON(NODE)

RSON(NODE) = T

I NPUT(, IN', 10, 200)

OUTPUT('OUT',20,'(200A1)')

COpy OUT = IN

END

Solution 7.2

OUTPUT('VERT',6,'(lHI,lA1)')

DISP VERT = INPUT

END

157

: (RETURN)

:S(COPY)

:S(DISP)

By specifying one-character output lines, each character is forced onto a separate line.

Solution 7.3

OUTPUT(' ATTENTION' ,6, '(6H ::~:::m:, 127A1)')

Solution 7.4

DEFINE('ARYPRT(A)I')

•

•

•

158

ARYPRT = 1

ARYNXT OUTPUT = A<I>

I = 1+1

Solution 8.1

Solutions to Exercises

:F(RETURN)

: (ARYNXT)

App.D

The generation of an index concordance is very similar to counting words. Using a
function CITE for noting that a word occurs on a line, the following basic program may
be used.

NEXTW WORD = GETW()

CITE(INDEX,WORD)

DONE PRINT(INDEX)

END

:F(OONE)

: (NEXTW)

The procedure for GETW developed in Section 8.1 needs minor modifications to keep track
of line numbers. PRINT can be used without modification. A complete program follows.

LINE.NO = 0

LETTER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

WPAT = BREAK(LETTER) SPAN(LETTER) • GETW

INDEX = TABLE()

DEFINE('GETW()')

DEFINE('CITE(TABLE,STRING)')

DEFINE('PRINT(TABLE)ARRAY,I')

NEXTW WORD = GETW()

CITE(INDEX,WORD)

DONE PRINT(INDEX)

GETW LINE WPAT =

LINE = INPUT

LINE.NO = LINE.NO + 1

OUTPUT = LINE' 'LINE.NO

:F(OONE)

: (NEXTW)

: (END)

:S(RETURN)

:F(FRETURN)

: (GETW)

i

!

App.D

CITE TABLE<STRING> =

Solutions to Exercises

TABLE<STRING> LINE.NO , ,
+ : (RETURN)

PRINT OUTPUT =
ARRAY = CONVERT(TABLE,'ARRAY')

''";'1 = 1

RESULT OUTPUT = ARRAY<I,l> , - , ARRAY<I,2>

1 = 1 + 1

NONE OUTPUT = 'THERE ARE NONE'

Solution 8.2

DEFINE('LPAD(S,N)')

DEFINE('RPAD(S,N)')

•

•

LPAD LPAD = DUPL(' ',N - SIZE(S)) 5

RPAD RPAD = 5 DUPL(' ',N - SIZE(S))

:F(NONE)

:F(RETURN)

: (RESULT)

: (RETURN)

: (RETURN)

: (RETURN)

159

Exercise 3.4 only requires the use of LPAD. The desired output is created by the follow­
ing statements:

1 = 1

NEXTR OUTPUT

1 =

= LPAD(I,10) LPAD(I :: 1,10)

LT(I,25) 1 + 1 :S(NEXTR)F(END)

160 Solutions to Exercises

Solution 8.3

DEFINE('GETW(WLIST,N)I')

WLPAT = BREAK(','). GETW LEN(l)

•

•

•

GETW I = 1

GETW WLIST WLPAT =
I = LT(I,N) I + 1

App.D

:F(FRETURN)

:S(GETWN)F(RETURN)

This function fails if WLI ST does not contain N words. If N is less than 1, the first word
is returned. GETW requires the execution of about .2N statements. The array representation
is accessed with only one statement, regardless of the value of N.

Solution 8.4

DEFINE('GETC(WCOUNT,WORD)T,I')

•

•

GETC I. = 1

GETCN T = WCOUNT<I,l>

GETC = IDENT(T,WORD) WCOUNT<I,2>

I = I + 1

:F(FRETURN)

:S(RETURN)

: (GETCN)

This function fails if WORD is not in WCOUNT. GETC requires the execution of about 3
statements for every word that must be examined in the array. The number of words
that have to be examined depends on their order in the array. On the average, the number
of wnrds that have to be examined might be expected to be N/2. The table representation
is accessed with only one statement, regardless of the value of WORD.

App.D Solutions to Exercises 161

Solution 8.5

(a) The most convenient data format, from a programming point of view, would place
one word, left-justified, in each data record. Statements to construct an array of
words follow.

&TRIM = 1

WLIST = ARRAYC'lOO')

I = 1

READW WORD = INPUT :F(DONE)

WLIST<I> = WORD :F(OYER)

I = I + 1 :CREADW)

(b) To minimize the number of data records required, the words could be written as
one long string, separated by commas. When the end of one record is reached, the
next record is started without interruption. Thus words may be divided between
records. Statements to construct an array of words based on this data format follow.

&TRIM = 1

NEXTW = BREAKC',') •

WLIST = ARRAYC'lOO')

I = 1

READ LINE = INPUT

GETW LINE NEXTW =
WLIST<I> = WORD

I = I + 1

WORD LEN(l)

:F(OONE)

:F(READ)

:F(OVER)

: (GETW)
Format (a) is easy to prepare, proofread, and correct, but requires many records that may
contain much unused space. Of course this format assumes there are no words longer
than the length of a record. Format (b) is concise, but is difficult to prepare, proofread,
and correct. Corrections are especially difficult if a change in length is necessary, since
that affects all subsequent records. Notice, however, that the program used for this format
will accept records with trailing blanks as if they are simply shorter. Thus, a compromise
data format might allow shorter records resulting from deletions or insertions.

162 Solutions to Exercises

Solution 8.6

The following program converts from format (a) to format (b):

&TRIM = 1

BUILD WLIST

PUNCH

END

= WLIST INPUT

= WLIST

t t ,

The following program converts from format (b) to format (a):

&TRIM = 1

GETW = BREAK(t,'). PUNCH LINE(l)

READ LINE = LINE INPUT

NEXTW LINE GETW =
END

Solution 8. 7

App.D

:S(BUILD)

:F(END)

: 5 (NEXTW)F(READ)

Since a string may contain any character, no character can be used as a separator. In
many practical cases, at least one character may be known not to occur in the particular
strings to be used, and hence this character can be used as a separator. In the most general
case, however, this way of representing a list of strings cannot be used. One way to repre­
sent a list of strings as a string is to use a technique similar to the Hollerith literals described
in Section 7.3. In such a representation, the character count permits the determination of
the substring without regard for the particular characters in it. Thus, Hollerith literals can
be written in succession to represent a string of strings. An example is

6H 4H""lHH
which represents a string of six blanks, a string of four commas, and a single H.

Solution 8.8

To determine the best way of representing data, more detailed specifications than
those given in Exercise B.B are necessary. However, general remarks can be made.
(a) A checkerboard is naturally represented as a two-dimensional, B..;by-B array where

each squareis designated by its numerical coordinates. See Figure D.l.

App.D Solutions to Exercises 163

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure D.1 A Checkerboard

If the board is created by the statement

BOARD = ARRAY('8,8')

then the upper left square is referenced by BOARD< 1,1>, and so on.

(b) An address list is a sequence of entries. Each entry may be more than one line. While
it is logical to think of an address list as an array of strings, most address lists are
too large to be kept in memory intact. A data file is a better solution. Printing an
address list only involves reading and printing the file. Updating an address list­
making corrections, insertions, and deletions-is more complicated. The simplest
process is to read the address list file, make corrections in sequence, and write anew,
updated file. A program which updates a file is called an editor.

(c) Objects in an archaeological collection typically have certain common attributes.
Examples are identification number, date, site, material, and so on. For many pur­
poses, such objects are best represented by a programmer-defined data type which
represents the attributes of interest as fields. For more information on this subject,
see References 8 and 9.

(d) A table of contents for a book is usually represented as a sequence of lines. There is
more structure in a table of contents than simply its sequence, however. Usually a
table of contents has subheadings, indicated by indentation. There may be several
levels of indentation. An example, taken from Reference 1, is:

164 Solutions to Exercises App.D

Chapter 2-Pattern Matching

2.1 Introduction

2.2 Alternation and Concatenation

2.3 Scanning

2.4 Modes of Scanning

2.4.1 Unanchored Mode

2.4.2 Anchored Mode

This structure is basically hierarchical and can be represented by a tree as illustrated
in Figure D.2.

2.1

Figure D.2 A Table of Contents Tree

The nodes in the tree might contain the actual text of the headings. This type of
tree is more general than the binary tree since a node may have more than two sons.
For a detailed discussion of trees and related structures, see Reference 12.

App.D Solutions to Exercises 165

(e) A musical score is an extremely complicated structure. In order to transform a score
into data that can be read into a program, it is necessary to represent a two-dimen­
sional structure in which a large variety of symbols with various meanings may occur.
In addition, there are general characteristics, such as tempo and key, which apply to
sections of the score, but may change from section to section. To locate specific
configurations or search for repeated themes, pattern matching might be used. In
this case, a string representation might be the best internal format. For representing
all the interrelationships of the parts of a musical score, a more complicated structure
might be more useful. Many attempts have been made to develop adequate repre­
sentations for musical scores. These attempts have only been partially successful so
far. For further reading, see References 10 and 11.

Solution 9.1

The first statement has too many parentheses and the last has too few. The second
statement contains an odd number of quotation marks. The subject of the third statement
is not a legal name. Corresponding corrected statements follow.

EQ(SIZE(S),N) : 5 (OKAY)

OUTPUT = 'THE RESULT IS ' 5 ' AT TE~INATIONt

Al = INPUT

N = LT(N,SIZE(M)) N + 1 :F(DONE)

Solution 9.2

To limit execution and obtain a string dump, the following statements might occur
at the beginning of the program:

&STLIMIT = 1000

& DUMP = 1

In addition, tracing might be obtained by the statements

&TRACE = 1000

&FTRACE = 1000

and appropriate trace associations.

Solution 9.3

A program to count the number· of different words on a data file is:

166

&TRACE = 1000

TRACE ('COUNT')

TRACE('WORD')

Solutions to Exercises

LETTER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

WPAT = BREAK(LETTER) SPAN(LETTER) • WORD

DIFF = TABLE()

COUNT = a

READ LINE = INPUT

NEXTW LINE WPAT =
DIFF<WORD> = IDENT(DIFF<WORD» 1

COUNT = COUNT + 1

:F(RESULT)

:F(READ)

:F(NEXTW)

: (NEXTW)

RESULT OUTPUT = 'THERE ARE ' COUNT ' DIFFERENT WORDS'

END

App.D

1

2

3

4

5

6

7

8

9

10

11

12

13

When a new word is encountered, it is "marked" by assigning it the value 1 in the table
DIFF. If the word is encountered later, it is found to have a nonnull value in DIFF, and is
not counted. A typical section of output produced by this program follows.

STATBMENT 7: COUNT = O,TIME = 7

STATBMENT 9: WORD = 'YOUt,TIME = 14

STATBMENT 11: COUNT = I,TIME = 19

STATEMENT 9: WORD = 'CAN',TIME = 24

STATEMENT 11: COUNT = 2,TIME = 30

STATEMENT 9: WORD = 'FOOL',TIME = 36

STATEMENT 11: COUNT = 3,TIME = 41

STATEMENT 9: WORD = 'SOME',TIME = 46

App.D Solutions to Exercises

STATEMENT 11: COUNT: 4,TIME : 51

STATEMENT 9: WORD: 'OF',TIME : 57

STATEMENT 11: COUNT: 5,TIME : 62

STATEMENT 9: WORD: 'THE',TIME : 68

STATEMENT 11: COUNT: 6,TIME : 74

STATEMENT 9: WORD: 'PEOPLE', TIME : 79

STATEMENT 11: COUNT: 7,TIME : 84

STATEMENT 9: WORD: 'ALL',TIME : 90

STATEMENT 11: COUNT: 8,TIME : 95

STATEMENT 9: WORD: 'OF',TIME : 101

STATEMENT 9: WORD: 'THE',TIME : 108

STATEMENT 9: WORD: 'TIME',TIME : 117

STATEMENT 11: COUNT: 9,TIME : 122

STATEMENT 9: WORD: 'AND',TIME : 130

STATEMENT 11: COUNT: 10,TIME : 136

•

•

•

Solution 9.4

A complete program for tracing the computation of F (5) follows.

&FTRACE : 1000

DEFINE('F(N)')

OUTPUT : 'F(5):' F(5) : (END)

167

1

2

3

168 Solutions to Exercises

F F = EQ(N,O) 0

F = EQ(N,I) 1

F = F(N - 1) + F(N - 2)

END

The output produced by this program is:

STATEMENT 3: LEVEL 0 CALL OF F(5),TIME = 5

STATEMENT 6: LEVEL 1 CALL OF F(4),TIME = 10

STATEMENT 6: LEVEL 2 CALL OF F(3),TIME = 15

STATEMENT 6: LEVEL 3 CALL OF F(2),TIME = 21

STATEMENT 6: LEVEL 4 CALL OF F(I),TIME = 26

STATEMENT 5: LEVEL 4 RETURN OF F = I,TIME = 30

STATEMENT 6: LEVEL 4 CALL OF F(O),TIME = 34

STATEMENT 4: LEVEL 4 RETURN OF F = O,TIME = 37

STATEMENT 6: LEVEL 3 RETURN OF F = I,TIME = 40

STATEMENT 6: LEVEL 3 CALL OF F(I),TIME = 44

STATEMENT 5: LEVEL 3 RETURN OF F = I,TIME = 48

STATEMENT 6: LEVEL 2 RETURN OF F = 2,TIME = 51

STAT~ENT 6: LEVEL 2 CALL OF F(2),TIME = 55

STATEMENT 6: LEVEL 3 CALL OF F(I),TIME = 61

STATEMENT 5: LEVEL 3 RETURN OF F = I,TIME = 65

STATEMENT 6: LEVEL 3 CALL OF F(O),TIME = 69

STATEMENT 4: LEVEL 3 RETURN OF F = O,TIME = 72

STATEMENT 6: LEVEL 2 RETURN OF F = I,TIME = 75

STATEMENT 6: LEVEL 1 RETURN OF F = 3,TIME = 78

App.D

:S(RETURN) 4

:S(RETURN) 5

: (RETURN) 6

7

App.D Solutions to Exercises 169

STATEMENT 6: LEVEL 1 CALL OF F(3),TIME = 82

STATEMENT 6: LEVEL 2 CALL OF F(2),TIME = 87

STATEMENT 6: LEVEL 3 CALL OF F(l),TIME = 93

STATEMENT 5: LEVEL 3'RETURN OF F = l,TIME = 96

STATEMENT 6: LEVEL 3 CALL OF F(O),TIME = 100

STATEMENT 4: LEVEL 3 RETURN OF F = O,TIME = 105

STATEMENT 6: LEVEL 2 RETURN OF F = l,TIME = 108

STATEMENT 6: LEVEL 2 CALL OF F(l),TIME = 112

STATEMENT 5: LEVEL 2 RETURN OF F = l,TIME = 116

STATEMENT 6: LEVEL 1 RETURN OF F = 2,TIME = 119

STATEMENT 6: LEVEL 0 RETURN OF F = 5,TIME = 121

F(5)=5

This printout shows that the same value is computed a number of times, as required by
intermediate computations. The example illustrates the wastefulness of recursive solu­
tions in certain cases.

Solution 9.5

Assume an average word length of five characters. Allowing two .characters per word
for punctuation and trailing blanks on records, perhaps eleven words might be expected
on each record. For each record, two statements are required for input and output and
two are required for each word. Therefore an estimated 24 statements would be required
to process each card, or 240 in all. For each different word, two statements are required
for printing the results. Estimation of the number of different words is more difficult.
The safest assumption is that every word is different. Some words, such as the articles A
and THE;, are likely to occur several times, however. To make a guess, perhaps 80 of the
110 expected words may be different. Thus 160 statements may be required to print the
results. There are eight statements in the program that are executed just once, regardless
of the number of words. This number is small compared to the total of 400 statements
estimated for processing, and can be ignored. If this estimate is doubled, a reasonable
value to assign to &STLIMIT would be 800. An actual run on data selected at random
required 442 statements.

170 Solution to Exercises App.D

Solution 9.6

The function PRE itself works properly. The error in the program is the failure to
trim blanks from input records. If an expression on a data record ends in a parenthesis,
I NP fails to match. Other malfunctions occur in other cases.

1'1

Glossary

The definitions that are given in this glossary apply to the meaning of terms in the
specialized contexts of computer programming, programming languages, and SNOBOL4
in particular.

Algorithm. A completely and precisely defined procedure for performing an operation.

Alternation. A binary operation that constructs a pattern in which the second operand
is an alternative of the first operand.

Alternative. One of a number of pattern components, any of which may be matched.
See alternation.

Anchored mode. The mode of pattern matching in which a substring that is matched
must begin with the first character of the subject string.. See unanchored mode.

Argument. A value supplied to a function and which is used by the function in its
computation.

Array. A collection of variables referenced by integer subscripts. See table.

Assignment. The process of associating a value with a variable.

Associativity. The property of a binary operator that determines whether it groups to
the left or to the right.

Attached name. A variable attached to a component of a pattern. See conditional assign­
ment and immediate assignment.

Balanced expression. A string in which parentheses are properly paired, as in an arith­
metic expression.

171

172 Glossary

Binary operator. An operator that has two operands.

Buffer. An area in memory where data being read in or written out is kept.

Bug. An error in a program.

Built-in function. A function that is part of the SNOBOL4 system.

Built-in pattern. A pattern that is part of the SNOBOL4 system and is the initial value
of a name.

Carriage control. The first character of a string to be printed, used to control the printing
mechanism.

Character. Any single symbol.

Character set. The collection of all the characters available on a particular computer.

Character-set pattern. A pattern in which matching is determined by a set of characters,
but not by the order in which they appear.

Compilation. The process of converting a program into an internal form which is suitable
for computer execution.

Computed goto. A go to in which the label to which control is to be transferred is deter­
mined by a computation.

Concatenation. A binary operation that appends one string to another or that constructs
a pattern in which the second operand is a subsequent of the first operand.

Conditional assignment. Assignment to an attached name which is conditional on the
successful match of the entire pattern. See immediate assignment.

Conditional goto. A goto which transfers control conditionally, depending on the success
or failure of the statement in which the goto appears. See unconditional goto.

Conditional operation. An operation whose successful completion depends on the exist-
ence of a specified situation. See success and failure.

Continuation. A method of preparing statements using more than one line.

CPU. The central processing unit of a computer in which instructions are executed.

Cursor. The character position in a string on which pattern matching is being performed.

Data representation. The way that data is formatted in terms of the structures available
in a programming language.

Data string. A string used as data in a program.

Data type. The classification of data which divides data into categories depending on its
properties.

Glossary

Debugging. The process of locating and correcting program errors.

Defined data object. An instance of defined data type.

173

Defined data type. A data type that is introduced during program execution by use of
the DATA function.

Defined function. A function that is introduced during program execution by use of the
DEFINE function. See procedure.

Diagnostics. Information that assists in locating troubles in a program.

End of file. A condition that occurs when the end of a data file is reached.

End statement. The last statement in a SNOBOL4 program, identified by the label END.

Error condition. The result of ,an erroneous operation in a program.

Execution. The process of performing the operations specified in a program.

Expression. A basic component of a program which has a value when executed. Func­
tions, operations, and references are typical expressions.

Failure. A condition that occurs when an operation cannot be performed or a specified
relationship does not exist. See success.

Field function. A variable that references a field of a defined data object.

File. A sequence of records.

File number. An integer used to identify a particular file.

Formal argument. A name in a defined function that is used to pass the value of an argu­
ment to the procedure for the function.

Format. A specification used to describe the way a string is to be output.

Function. An operation that is identified by a name and operates on values given as
arguments.

Function call. The execution of a function.

Functional composition. Use of previously developed functions in writing procedures for
new functions.

Global variable. A variable whose value is not saved when a defined function is called and,
hence, whose value can be changed by a function call.

Goto. A construction that specifies transfer of control to a labeled statement. See label.

Identifier. A string of characters, satisfying certain constraints, that is used to identify
an object.

174 Glossary

Immediate assignment. Assignment to an attached name which occurs when the compo­
nent is matched, regardless of the success or failure of the entire pattern match. See
conditional assignment.

Indirect reference. The use of a data string as a name.

Infix notation. A method of writing operations in which binary operators appear between
their operands.

Initial value. The value given to a variable when it is created or used for the first time.

Input. The process of reading data into a program.

Input association. A relationship between a variable and a data file which causes a record
to be read and assigned to the variable whenever the value of the variable is referenced.

Instruction set. The collection of all basic operations that a particular computer is capa-
ble of performing.

Integer. A whole number, which may be positive, negative, or zero.

Iteration. The processes of computation by repeated execution of a group of statements.

Keyword. A variable that has a value which relates to a mode of execution or the condi-
tion of the program, or depends on a particular machine.

Label.. An identification of a statement for the purpose of transferring control during
execution. See goto.

Lexical order. Alphabetical order.

Line printer. A mechanism that prints computer output one line at a time.

Literal. A data value that is presented explicitly in the program.

Local variable. A. name whose value is saved when a defined function is called and re­
stored when the function returns.

Loop. A section of program that transfers control back to its first statement.

Memory. Storage space. Any value that is directly referencable by the program through
variables is in memory.

Mixed mode. An operation in which the operands have different data types, e.g., integer
and real.

Name. A type of variable which consists simply of an identifier.

Null string. A string that contains no characters and whose length is zero.

Number. An integer or real number.

Numeral string. A string that represents a number.

Glossary

Object creation function. A function that creates a defined data object.

Operand. An argument of an operation.

175

Operating system. An executive program that schedules and monitors the running of
other programs on a computer.

Operation. A process that performs a computation.

Operator. A symbol which designates an operation. See binary operator and unary
operator.

Output. The process of putting out data from a program.

Output association. A relationship between a variable and a data file which causes a re­
cord to be written on the file whenever a value is assigned to the variable.

Page ejection. An action of a line printer that causes a line of output to be printed at the
top of the next page.

Pattern. A data object that specifies strings and relationships among strings.

Pattern construction. The process of creating a pattern.

Pattern matching. The process of comparing a pattern to a string to determine if the
string has the structure specified by the pattern.

Positional pattern. A pattern that is concerned only with cursor position, not with the
actual characters in a string.

Precedence. The property of a binary operator that determines how tightly it binds to its
operands, in relation to other binary operators.

Predicate. A function that tests a relationship and fails if the specified relationship does
not exist.

Prefix notation. A method of writing operations in which operators appear in front of
their operands.

Procedure. A section of program executed when a defined function is called.

Program. An algorithm written in a language that can be run on a computer.

Programmer-defined function. See defined function.

Programmer-defined data type. See defined data type.

Programming language. A language that specifies operations to be executed on a computer.

Real number. In SNOBOL4, a decimal number.

Record. A unit of data in a file.

Record length. The number of characters in a record.

176 Glossary

Recursion. A call of a defined function which results from execution of the function itself.

Recursive function. A function that uses recursion.

Reference. The way in which an element in an array or a table is accessed.

Replacement. Modification of a subject string, following successful pattern matching, in
which the matched substring is replaced by another string.

Sequential execution. Execution of statements one after another, in the order in which
they appear in a program.

Statement. A unit of a program which may perform assignment, pattern matching, or
replacement.

String. A sequence of characters.

String dump. A listing of all names and their values, given on program termination.

Subject. The focus of attention in a statement, for the purpose of assignment, pattern
matching, or replacement.

Subscript. A value used to reference an array or table.

Subsequent. A component of a pattern which follows another component. See concate­
nation.

Substring. A string which is part of another string.

Success. Satisfactory completion of an operation. See failure.

Syntax. The rules which determine the correct form for writing statements.

Table. A collection of variables referenced by value. See array.

Termination. The end of a program run.

Trace association. The designation of a name which is to be traced.

Tracing. A mode in which diagnostic information is automatically printed during
execution.

Trailing blanks. Blanks on the right end of a string.

Transfer of control. Altering the ordinary sequential execution of statements to begin
execution at another place in the program.

Translator. Loosely speaking, a system that converts a program in a programming lan­
guage into a form that can be executed on a computer.

Truncation. Discarding of the remainder that results from division of two integers.

Unanchored mode. The mode of pattern matching in which a substring that is matched
need not begin with the first character of the subject string. See anchored mode.

!I
I
I
il;

Glossary 177

Unary operator. An operator that has one operand.

Unconditional goto. A goto that specifies transfer of control regardless of successful com­
pletion or failure in the statement in which it occurs. See conditional goto.

Unevaluated expression. An expression that is not executed until its value is required
during pattern matching.

Variable. An object that has a value. Variables include names, array references, table
references, keywords, and field functions.

References

1. Griswold, R. E., J. P. Poage, and I. P. Polonsky, The SNOBOL4 Programming Language,
2nd ed. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971.

2. Sammet, Jean E., Programming Languages: History and Fundamentals. Prentice-Hall,
Inc., Englewood Cliffs, N. J., 1969.

3. Griswold, R. E., String and List Processing in SNOBOL4: Techniques and Applications.
Prentice-Hall, Inc. In preparation.

4. Griswold, R. E., The Macro Implementation of SNOBOL4: A Case Study of Machine­
Independent Software Development. W. H. Freeman and Company, San Francisco,
1972.

5. Dewar, Robert B. K., "SPITBOL Version 2.0," SNOBOL4 Project Document S4D23.
Illinois Institute of Technology, Chicago, February 12, 1971.

6. Newman, James R., The World of Mathematics. Simon and Schuster, New York, 1956.
Vol. 1, pp. 718-719.

7. Vorobyov, N. N., The Fibonacci Numbers. Translated and adapted from the first
Russian edition, 1951, by Norman D. Whaland, Jr. and Olga A. Titelbaum. D. C. Heath
& Company, Boston, 1963.

8. Cowgill, George L., "Computer Applications in Archaeology," Computers and the Hu­
manities, Vol. 2, No.1 (September, 1967), pp. 17-23.

9. Chenhall, Robert G., "The Archaeological Data Bank: A Progress Report," Computers
and the Humanities, Vol. 5, No.3 (January, 1971), pp. 159-169.

178

References 119

10. Erickson, Raymond F., "Music Analysis and the Computer: A Report on Some Cur­
rent Approaches and the Outlook for the Future," Computers and the Humanities,
Vol. 3, No.2 (November, 1968), pp. 87-104.

11. Lincoln, Harry B., "The Current State of Music Research and the Computer," Com­
puters and the Humanities, Vol. 5, No.1 (September, 1970), pp. 29-36.

12. Knuth, Donald E., The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley, Reading, Mass., 1968.

Index

Addition, 13, 33, 34
Algorithms, 4-5
&ALPHABET,43
Alternation, 21, 51, 55,61,

63,117
Alternatives, 21~ 24, 49
&ANCHOR,51
Anchored pattern matching,

51, 117 (see also
&ANCHOR)

ANY,54,61,113,1.17,131
ARB, 57
Arguments, 15-16, 18-19,68

in defined functions, 66-69
omitted trailing, 18, 44

Arithmetic, 13, 130, 131
integer, 36-37
mixed mode, 38
real, 37-38

Arithmetic operations, 13,
33-35, 43-44

addition, 13, 33, 34
division, 13, 33, 36 (see

also Truncation)
exponentiation, 33,35,113
multiplication, 13, 33, 34
subtraction, 13,33,34

Array conversion, 84
(see also CONVERT)

Array references, 78, 80
(see also Subscripts,
array)

out of bounds, 78, 80, 133
ARRAY, 77-78, 81
Arrays, 77-78,80-81,100,

115, 118, 133 (see also
Subscripts)

initial values (see Initial
values, array)

multi-dimensional, 81, 84
two-dimensional, 81, 84

Assignment, 11-13, 25-26
Associativity, 35, 44, 142
Attached names, 22-23, 61

(see also Value assign­
ment in pattern
matching)

BAL, 58-60
Balanced strings, 58-59, 130

(see also BAL)
Batch processing, 145
Binary operators (see

Operators, binary)

180

Binary trees, 88-92
Blanks:

in data strings, 10, 14,
38-39,134

in output, 96
syntactic significance, 11,

13,14,17,23,31,33,
72,110,129,138-140

BREAK, 55-56, 61,113,117,
131

Bugs, 121, 136
Built-in functions (see

Functions, built-in)
Built-in patterns (see

Patterns, built-in)

Carriage control, 97, 98, 114
Character replacement (see

REPLACE)
Character sets, 11, 13, 113
Character-set patterns (see

Patterns, character-set)
Characters, 9-11, 49, 54-55
Comments, 31, 107-109
Compilation, 122-123
Computed gotos (see Gotos,

computed)

!II

Index 181

Concatenation, 14, 21, 44, Efficiency, 116-118 Functions (cont.)
51,61,63,130,139, Ejection (see Page ejection) CONVERT, 84, 133
140 End of file, 25 DATA~ 86-87

Conditional gotos (see END, 17, 31, 145 DEFINE, 66,68
Gotos, conditional) Entry labels (see Labels, DETACH, 99

Conditional operations, entry) DUPL, 39, 114
18-20, 78 EQ,19,36 INPUT, 94-95, 96, 99

Continuation of statements, Error messages, 122-124, LEN, 21-22, 51-52, 61,
31,140 130,136 113

Control cards, 95, 145 Error termination, 135 NOTANY, 54,61, 113,
CONVERT, 84, 133 Errors, 74, 122-125, 129, 117,131
CPU, 1-4 135 OUTPUT, 95-99
Cursor, 48-55 Execution errors, 136 POS, 53, 61
Cursor position (see Cursor) Execution phase, 122-123 REMDR,15,37

Exponentiation, 33, 35, 113 REPLACE, 39-40,
Data, 10-11,24-25, 31,44, Expressions, 13-14, 15-16, 113,133

95, 114-116,118-119 19,33-35,44,80,130 REWIND, 99
Data representation, (see also Groupings) RPOS,53,61

111-116 function arguments, 15-16 RTAB,52,61
Data strings, 10-11, 14, 31, subscripts, 80 SIZE,15

41-42, 129, 140 SPAN, 54-56, 61, 113,
Data type conversion, 84, Failure, 18, 68, 131, 133 117,131

100 Failure gotos (see Gotos, TAB, 52,61
Data types, 86, 100, 130 failure) TABLE, 82
DATA, 86-87 Field functions, 87, 131 TRACE, 125
Debugging, 121-122, 128, Field references, 90 TRIM, 38-'39

136 Fields, 86-87 defined, 65-75,124,
DEfINE, 66,68 File numbers, 95-96 126-127, 131
Defined data objects, 85-92, Files, 24-25, 94-96, 98-99,

116 119 GE,36
Defined functions (see Formats, 97-98 Global variables, (see

Functions, defined) FORTRAN, 6, 95, 97-98 Variables, global)
Defining statements, 66, 68, fRETURN,68,74 Gotos, 16-18, 42, 131,

74 &fTRACE,126 138-139
DETACH, 99 Function calls, 15, 67, 74 computed, 131, 139
Detaching names, 99 Function tracing, 126-127 conditional, 18
Diagnostic information, Functional composition, 70 failure, 18

125-132 (see also Functions, 15-16, 18-19, fRETURN,68,74
Dumps and Summary 103 (see also Predicates) RETURN, 66-68, 74
statistics) built-in, 15-16, 21, 51-55, success, 18

DIffER, 18. 134 66,68,141 Groupings, 13-14, 34, 63,
Division, 13, 33, 36 (see ANY, 54,61,113,117, 140

also Truncation) 131 GT,36
&DUMP,13,128 ARRAY, 77-78, 81

Hollerith literals, 98, 162 Dumps, 128, 131, 136 BREAK, 55-56, 61, 113,
DUPL,39,114 117,131

II,~

182 Index
\'

IDENT,18,43,45,134 Labels, (cont.) Omitted trailing arguments
Immediate assignment, global nature of, 74, 75 (see Arguments, omit-

61-62 LE,36 ted trailing)
Indirect referencing, 41-42, LEN, 21-22, 51-52, 61, 113 Operands, 33, 34, 35

118,131,139 Lexical order, 43 (see also Operations, 14-15, 18
Infix notation, 72 (see also LGT) Operators:

Prefix notation) LGT,43 binary, 13-14,22-23, 33-
Initial values: Line printers, 96 35, 51, 61, 89, 129,

array, 78 Linear arrays, 80 139,140,142
names, 12 Literals, 10 addition, 13, 33, 34
table, 82 Local variables (see alternation, 51, 55, 61,

Initialization, 102 Variables, local) 63,117
Input, 24-26, 27, 94-95, 99, Loops,2~27,134,135,136 concatenation, 14, 21,

111,114 LT ,19,36 44,51,61,63,130,
Input and output associ- 139,140

ations, 94-95, 99 Memory, 2,116, 118, 119, conditional assignment,
INPUT: 131,135 22-23,61

input-associated name, 25, Mixed mode arithmetic (see division, 13, 33, 36
38, 94-95 Arithmetic, mixed exponentiation, 33, 35,

function, 94-95, 96, 99 mode) 113
Installation dependencies, Mnemonics, 12, 17, 109 immediate assignment,

95,96,97,145 Multiplication, 13, 33, 34 61-62
Instruction sets, 2, 5 multiplication, 13, 33,
Integer arithmetic, 36 Names, 11-12, 13, 22, 41-42, 34
Integers, 9, 36-37, 38, 44, 131, 138 (see also subtraction, 13, 33, 34

52,95,119,138 Variables, local) unary, 35,41, 119, 142
Interactive computing, 3,145 NE,36 indirect reference, 41-
Iteration, 20, 72 Nesting, 16 (see also 42,118,131,139

Groupings) keyword (see Keywords)
Keywords, 12-13, 39, 43, NOT ANY, 54,61, 113,117, negative, 35

51,126,128,135,143 131 positive, 35,119
&ALPHABET,43 Null string, 10, 12,18,19,24, unevaluated expression,
&ANCHOR,51 26,43,44,58,67,68, 60,62
&DUMP, 13, 128 82,84,87,91,131,133

Output, 24-26, 27, 94, 95-&FTRACE,126 Numbers, 43-44, 119, 134, 98,100,111,114 &STCOUNT,128 138 (see also Integers
OUTPUT: &STFCOUNT,128 and Real numbers)

output-associated name, &STLIMIT,135,136 Numeral strings, 44-45, 119,
&TRACE, 125-126 134 25-26, 94-97, 123

&TRIM, 39, 117 Numerical predicates (see function, 95-99

Predicates, numerical) Page ejection, 97-98
Labels, 16-17, 18, 31, 66, Parentheses, 13-15, 18,34,

74, 75, 131, 138-139, Object-com parison predi- 58-59, 130, 140
140 cates (see Predicates, ob- Pattern components, 22,

END, 17,31,145 ject comparison) 50,53,61
entry, 74 Object-creation functions, 86

1/ II
~ Index ~ 183

Pattern construction, 47, Predicates, 18, 19, 36, 38, Recursive calls, 70
51-57,60,63,118 43,45,117,134,142 Recursive definitions, 71

Pattern matching, 20-22, DIFFER, 18,134 Recursive functions, 70
23-24,47-63,117,131 EQ , 19, 36 REM, 58
(see also Value assign- GE,36 REMDR,15,37
ment in pattern match- GT,36 REPLACE, 39-40, 113, 132
ing and Anchored IDENT, 18,43, 45, 134 Replacement, 23-24
pattern matching) LE,36 Replacement statements,

Pattern-matching state- LGT,43 23-24
ments, 20-21, 27 LT, 19, 36 Repositioning files, 99

Pattern -valued functions NE,36 RETURN, 66-67, 68, 74
(see Patterns, pattern- numerical, 36, 38, 45 REWIND, 99
valued functions) object-comparison, 18, 43, RPOS,53,61

Patterns, 20-21, 47-63, 105, 45,134 RTAB,52,61
118, 139 (see also Prefix notation, 72-73 (see
Alternation and also Infix notation) Sequential execution, 16-17
Concatenation) Printout, 2, 114, 122-132, SIZE, 15

built-in, 57 , 58 135,136 SNOBOL4, versions of, 116,
ARB, 57 Procedures, 66-68, 70-71, 74 144
BAL, 58-60 Program documentation, 31, SPAN, 54-56, 61, 113, 117,
REM, 58 106-109 131

character-set, 54-57, 11 7 Program evolution, 106 SPITBOL, 145
pattern-valued functions, Program format, 31 Stack, 131

51-57, 61, ~13, 117, Program layout, 110 Statements, 16-17, 31, 117,
131 Program organization, 102· 140

ANY, 54, 61, 113, 117, 105 &STCOUNT,128
131 Programmer-defined data &STFCOUNT,128

BREAK, 55-56, 61, 113, objects (see Defined &STLIMIT, 135, 136
117,131 data objects) String representations,

LEN, 21-22, 51-52, 61, Programmer-defined func- 112-115
113 tions (see Functions, Strings, 9-11, 14-15, 20,44,

NOTANY, 54,61, 113, defined) 100, 112-115, 117,
117,131 Programming languages, 5-7 119 (see also Data

POS,53,61 PUNCH, 26, 94,97 strings, Null string,
RPOS,53,61 Punched cards, 25-26, 31, Substrings)
RTAB,52,61 96-97, 140 Structures, 87
SPAN, 54, 56,61,113, Subjects, 20, 51, 52, 59,

117,131 Quotation marks, 10-11, 131,139
TAB, 52,61 14,41,129 Subscripts, 77-78, 80, 82,

positional, 51-53 84,118,133,134
Pointers, 87, 90 Real numbers, 37-38, 44, array, 78, 80-81, 84, 118,
POS,53,61 119,138 133,134
Positional patterns (see Record length, 96, 99 tabie, 82-84, 118, 134

Patterns, positional) Records, 24-25, 39, 94 Substrings, 20, 22-24, 49,
Precedence, 34, 44, 63, 142 Recursion, 70, 72, 131 50,59

184

Subtraction, 13, 33, 34
Success, 18
Success gotos (see Gotos,

success)
Summary statistics, 124-125,

136
Syntactic errors, 123, 129
Syntax, 123, 138-140

TAB, 52,61
TABLE, 82
Table references, 82 (see

also Subscripts, table)
Tables, 82-85, 115, 118
Terminals, communications,

3,145

Index

Termination, 102, 122,124;
128

Time limit~ 135
Trace associations, 125-126
Trace messages, 125-127
&TRACE, 125-126
TRACE, 125
Tracing, 124-125
Trailing arguments (see

Arguments, omitted
trailing)

Transfer of control, 16-17,
42,66

Trees (see Binary trees)
&TRIM,39,117
TRIM, 38-39

Trimming, 38, 11 7
Truncation, 37

Unary operators (see Opera­
tors, unary)

Unconditional gotos, 1 7
Unevaluated expressions,

60-61, 62-63

Value assignment in pattern
matching, 22-23, 24,
26,61,63

Values, 11-13, 22-23
Variables, 12-13, 77, 87, 131

global, 68
local, 68

Also of interest .•.

THE SNOBOL4 PROGRAMMING LANGUAGE, Second Edition
by Ralph E. Griswold, James F. Poage, and Ivan P. Polonsky

A revised, expanded instructional and reference guide to the SNOBOL4 programming '·
language, THE SNOBOL4 PROGRAMMING LANGUAGE, second edition contains a
description of all language facilities available in Version 3 of SNOBOL4. Extensive
coverage is given programming techniques, and the use of many data types. The book
contains exercises and solutions. A knowledge of earlier versions of the language is not
necessary, but some familiarity with elementary concepts of programming is required.

Published 1971 256 pages

IMPLEMENTING SOFTWARE FOR NON-NUMERIC APPLICATIONS
by William M. Waite

"As the computer becomes a commonplace tool in many fields and as the complexity of our
systems increases, we find that more and more of the difficult problems are non-numeric,"
say tbe author. To meet the growing need for tools with which to confront non-numeric
problems, he has written this unique volume.

IMPLEMENTING SOFTWARE FOR NON-NUMERIC APPLICATIONS provides a
detailed treatment of techniques required for list processing, dynamic storage manage­
ment, and string manipulation. The emphasis on engineering of software to perform
non-numeric tasks includes time· and space requirements for various algorithms as well
as tradeoff options.

Published 1973

INTRODUCTION TO DATA STRUCTURES AND
NON-NUMERIC COMPUTATIONS
by Peter C. Brillinger and ron J. Cohen

510 pages

Here is a comprehensive discussion of data representations and data structures, followed
by a detailed study of operations and applications with character strings, linearly linked
lists, graphs, and trees. The book includes a consideration of algorithms for traversing
trees and implementing recursive routines with the use of pushdown stacks. This in-depth
study of techniques takes the mystery out of list processing by teaching the basic methods
usually used by high-level list processing languages. It concludes with an elementary
discussion of programming language translation, covering syntactic analysis, object
code generation, and macro processors.

Published 1972 629 pages

Prentice-Hall, Inc. Englewood Cliffs, New Jersey

O·13·PJ5381·7 .

~----~,------.~------~~------~----------------------~----------------~

