

second edition

SNOBOL4

R. E. Griswold
J. F. Poage

I. P. Polonsky
Bell Telephone Laboratories, Incorporated

Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Copyright (C) Bell Telephone Laboratories, Incorporated, 1971, 1968

All rights reserved. No part of this book may be
reproduced in any form or by any means without
permission in writing from the publisher.

Current printing (last digit): 10 9 8

13-81 5373-6

Library of Congress Catalog Card Number: 70-131996

Printed in the United States of America

Foreword

SNOBOL4 IS a computer programming language contaInIng many features not
commonly found in other programming languages. It evolved from SNOBOL [1,2,3]*, a
language for string manipulation, developed at Bell Telephone Laboratories, Incorporated,
in 1962. Extensions to SNOBOL through various versions have made it a useful tool in
such areas as compilation techniques, machine simulation, symbolic mathematics, text
preparation, natural language translation, linguistics, and music analysis.

The basic data element of SNOBOL4 is a string of characters, such as this line of
printing. The language has operations for joining and separating strings, for testing their
contents, and for making replacements in them. If a string is a sentence, it can be broken
into phrases or words. If it is a formula, it can be taken apart into components and
reassembled in another format. A string can appear either as a literal or as the value of a
variable. The literal form is indicated by enclosing the string in quotation marks:

'THIS IS A STRING'

The string value may be assigned to a variable:

LINE 'THIS IS A STRING'

A common operation on a string is examination of its contents for a desired structure of
characters. This structure, known as a pattern, can be as simple as a string or a given
number of characters. A pattern also can be an extremely complicated expression
consisting, for example, of a number of alternatives followed by another set of alternatives,
all of which must begin a given number of characters from the end of the string. The
pattern, as a data type, may also appear either in literal or variable form. The data type
of a variable - string, pattern, or any other in the language - depends on the last value
assigned to it. There are no type declaration statements for variables as in other
programming languages.

SNOBOL4 provides numerical capabilities with both integers and real numbers. Because
the language is essentially character oriented, and since most numerical operations involve
character counting, integers are more commonly used. Conversion among integers, real
numbers, and strings representing integers or real numbers is performed automatically as
required. The programmer may, in addition, define other data types, such as complex
numbers, and provide operations for them.

Often it is desirable to associate a group of items with one variable name through
numerical indexing or some other identifying property. The SNOBOL4 array and table
provide these capabilities with more flexibility than most programming languages. An

* Numbers in brackets refer to references listed at the end of this manual.

iii

iv Foreword

array is a data element consisting of a set of pointers to other data elements, so that each
array element may be any data type, even an array. An element of an array is referenced
by using an integer index. A table is similar to an array, except that the reference value
need not be an integer, but can be any of several other types. Conversion can be made
between tables and arrays.

Execution of SNOBOL4 programs is interpretive. Instead of compiling a program into
actual computer instructions, the compiler translates the program into a notation the
interpreter can easily execute. This makes it fairly simple to provide capabilities such as
tracing of new values for variables, an operation that is quite difficult in noninterpretive
systems. Another important product of interpretation is flexibility. Functions can be
defined and redefined during program execution. Function calls can be made recursively
with no special program notation. The language is extendable to new data types needed
for a program through data type definition operations. Linked-list nodes and complex
numbers are possible programmer-defined data types. Operations on these new data types
can be defined as functions.

This book is an instructional and reference guide, and provides many examples of usage
of the language. The description of the language is complete and does not require
familiari ty with earlier versions of the language. Some familiarity with elementary concepts
of programming is presumed, however.

Lafayette, Indiana
May, 1970

M. D. Shapiro

Preface

The SNOBOL4 programming language has been developed over a period of years and
new language features have been added from time to time during the course of this
development. Consequently there are several somewhat different versions of the language in
use. The first edition of this book, published in May, 1969, described Version 2. The
description in this second edition corresponds to Version 3, released in December, 1969.
Version 3 contains a number of features not available in Version 2.

SNOBOL4 has been implemented on several different computers, including the IBM
System/360, UNIVAC 1108, GE 635, CDC 3600, CDC 6000 series, PDP-10, Sigma 5/6/7,
Atlas 2, and RCA Spectra 70 series. Implementations for other machines are in various
stages of completion. These machines have different operating environments and character
sets. As a result, implementations of SNOBOL4 vary from machine to machine in details
of syntax, operating system interface, and so forth. This book corresponds to the
implementation of SNOBOL4 developed at Bell Telephone Laboratories, Incorporated on
the IBM System/360 operating under OS. Sections of the manual containing language
features particularly dependent upon this implementation make specific reference to this
dependency. Program examples in this book were run on an IBM 360 Model 65.

v

Acknowledgement

The authors' most pleasant responsibility is the acknowledgement of the assistance
provided in the course of the design, implementation, and documentation of the
SNOBOL4 language.

The ideas of many individuals have helped shape the form of SNOBOL4. Particularly
valuable contributions have been made by Messrs. R. B. K. Dewar, B. N. Dickman, D. j.
Farber, P. D. jensen, M. D. McIlroy, R. F. Rosin, M. A. Seelye, and M. D. Shapiro.

The authors have been fortunate in having the assistance of a number of people during
various stages of the implementation of SNOBOL4. Mr. R. A. Yates designed and
implemented the storage allocation and regeneration techniques used in SNOBOL4. Mr.
Yates also contributed many useful ideas to the overall design of the system. Messrs. B. N.
Dickman and P. D. Jensen designed and implemented the tracing facilities and provided
many helpful suggestions for improving the system. Mr. H. j. Strauss designed and
implemented the external function interface. Mr. L. C. Varian's assistance In preparing
the initial implementation for the IBM System/360 was particularly valuable.

Mr. j. F. Gimpel has made an important contribution to the organization and
presentation of descriptive material in this book. Several of the programs used in the
examples are his.

The authors' special thanks go to Mrs. M. T. Hammer and Mrs. L. W. Noll for their
help in editing and proofreading the second edition of this book. The authors also would
like to express their appreciation to Mrs. R. E. Griswold who has given freely of her time
to prepare much of the machine-readable material used in the development of the
SNOBOL4 language and its documentation.

This revised edition was phototypeset by Alphanumeric Incorporated using their
TEXTRAN*-2 system. The book was designed by Mrs. M. T. Hammer and Mrs. L. W.
Noll. Software developed by Mrs. Noll was instrumental in preparing the book in its
present form.

* Servicemark of Alphanumeric Incorporated

vi

Contents

Chapter 1 - Introduction to the SNOBOL4 Programming Language

1.1 Assignment Statements ... 1
1.2 Arithmetic ... 2

1.2.1 Integers " ... 2
1.2.2 Real Numbers ... 3

1.3 Strings .. 3
1.3.1 The Null String ... 4
1.3.2 Strings in Arithmetic Expressions .. .4
1.3.3 String-Valued Expressions4
1.3,4 Input and Output of Strings .. 5

1.4 Pattern Matching Statements .. 6
1.5 Replacement Statements ... 7
1.6 Patterns .. 8
1.7 Conditional Value Assignment ... 9
1.8 Flow of Control ... 1 0
1.9 Indirect Reference " " .. '" 11
1.10 Functions ... 12

1.10.1 Primitive Functions .. 12
1.10.2 Predicates ... 13
1.10.3 Defined Functions .. 14

1.11 Keywords ... 1 7
1.12 Arrays .. " '" 18
1.13 Tables .. 19
1.14 Programmer-Defined Data Types ... 19
1.15 Program Format .. 20
1.16 Program Example .. 20
1.17 Conclusion ... 21
Exercises ... 22

Chapter 2 - Pattern Matching

2.1 Introduction .. 24
2.2 Alternation and Concatenation ... 25
2.3 Scanning .. 26
2.4 Modes of Scanning ... 29

2.4.1 Unanchored Mode ... 30
2.4.2 Anchored Mode .. 31

2.5 Value Assignment through Pattern Matching .. 32

vii

viii Contents

2.5.1 Conditional Value Assignment .. 32
2.5.2 Immediate Value Assignment .. 33
2.5.3 Precedence .. 34
2.5.4 Association with the Variable OUTPUT .. 34
2.5.5 Value Assignment in Replacement Statements .. 35
2.5.6 Association of Several Variables with One Pattern 35

2.6 The Null String in Pattern Matching ... 35
2.7 Cursor Position .. 36
2.8 LEN ... 37
2.9 SPAN and BREAK .. 38
2.10 ANY and NOTANY .. 40
2.11 TAB, RTAB, and REM ... 41
2.12 POS and RPOS ... : .. 44
2.13 FAIL .. 47
2.14 FENCE .. 49
2.15 ABORT .. 49
2.16 Unevaluated Expressions .. 50

2.16.1 Example 1 .. 52
2.16.2 Example 2 .. 52
2.16.3 Example 3 .. 53
2.16.4 Example 4 .. 54
2.16.5 Example 5 .. 55

2.17 ARB ... 56
2.18 ARBNO .. 58
2.19 BAL ... 60
2.20 SUCCEED ... 61
2.21 Quickscan Mode .. 62
2.22 Fullscan Mode ... 72

2.22.1 Example .. 73
Exercises 74

Chapter 3 - Primitive Functions, Predicates, and Operations

3.1 Introduction .. 76
3.2 Numerical Predicates .. 77

3.2.1 LT, LE, EO, NE, GE, and GT .. 77
3.2.2 INTEGER .. 78

3.3 Object Comparison Predicates .. 79
3.3.1 IDENT and DIFFER ... 79
3.3.2 LGT ... 80

3.4 Additional Primitive Functions .. 81
3.4.1 SIZE ... 81
3.4.2 REPLACE .. 81
3.4.3 TRIM '" .. 82
3.4.4 DUPL ... 82

Contents ix

3.4.5 REMDR ... 82
3.4.6 DATE and TIME ... 83
3.4.7 EVAL ... 83
3.4.8 APPLy ... 84

3.5 Negation (...,) and Interrogation (?) .. 84
3.6 External Functions .. 85

3.6.1 Loading and Calling External Functions ... 85
3.6.2 Unloading Functions ... 87

3.7 OPSYN and Operator Definition .. 87
3.7.1 Function Synonyms .. 87
3.7.2 Operator Synonyms ... 87
3.7.3 Summary of Operators ... 88

Exercises ... 90

Chapter 4 - Programmer-Defined Functions

4.1 Introduction .. 92
4.2 The Primitive Function DEFINE ... 92
4.3 Procedures for Programmer-Defined Functions ... 93

4.3.1 RETURN .. 94
4.3.2 FRETURN .. 94
4.3.3 NRETURN ... 95

4.4 Execution of Programmer-Defined Functions .. 95
4.4.1 Example - Union, Intersection, and Negation ... 96

4.5 Redefinition of Programmer-Defined Functions .. 97
4.6 Recursive Functions .. 98

4.6.1 Example - Decimal to Binary Conversion ... 99
4.6.2 Example - Polish to Infix Translation .. 102
4.6.3 Example - Infix to Polish Translation .. 104
4.6.4 Example - Tower of Hanoi ... 109

Exercises " " .. 112

Chapter 5 - Arrays, Tables, and Defined Data Types

5 .1 Arrays .. 113
5.1.1 Array References .. 115

5.2 Tables .. 118
5.3 Functions for Use with Arrays and Tables .. 119

5.3.1 COpy ... 119
5.3.2 PROTOTYPE ... 120
5.3.3 ITEM ... 121
5.3.4 Conversion between Arrays and Tables .. 122

5.4 Programmer-Defined Data Types ... 123
5.4.1 VALUE ... 126

Exercises ... 127

x Contents

Chapter 6 - Keywords, Names, and Code

6.1 Keywords ... 128
6.1.1 Protected Keywords ... 128
6.1.2 Unprotected Keywords .. 129

6.2 Names .. 130
6.2.1 Passing Names .. 132
6.2.2 The Unary Name Operator .. 132
6.2.3 Returning a Variable .. 134

6.3 Gotos, Labels, and Co·de ... 134
6.3.1 Creation and Execution of Code .. 135

Exercises .. 138

Chapter 7 - Types of Data

7.1 Data Type Representations ... 139
7.2 Explicit Conversion of Data Types ... 140

7.2.1 CONVERT .. 140
7.3 Data Types of Functions and Operations ... 142

7.3.1 Primitive Functions .. 143
7.3.2 Unary Operators .. 144
7.3.3 Binary Operators .. 145
7.3.4 Statement Components .. 146

7.4 Implicit Conversion of Data Types .. 147
7.4.1 Conversion to STRING ... 147
7.4.2 Conversion to PATTERN ... 148
7.4.3 Conversion to INTEGER ... 148
7.4.4 Conversion. to REAL .. 148

Chapter 8 - Tracing

8.1 Standard Trace Procedures ... 149
8.1.1 Value Tracing ... 150
8.1.2 Function Tracing ... 153
8.1.3 Label Tracing ... 157
8.1.4 Keyword Tracing .. 158
8.1.5 Discontinuation of Tracing .. 159

8.2 Programmer-Defined Trace Functions .. 160
8.2.1 Invoking Programmer-Defined Trace Procedures .. 160
8.2.2 Tools for Writing Programmer-Defined Trace Procedures 160

8.3 Other Tracing Techniques ... 162
8.4 Dumping Natural Variables ... 163
Exercises , ... 163

Contents xi

Chapter 9 - Input and Output

9.1 Printed Output .. 164
9.2 Punched Output .. 165
9.3 Input .. 165
9.4 The 1/0 System .. 166
9.5 Output Associations .. 167
9.6 Input Associations ... 169
9.7 Other 1/0 Functions .. 169

9.7.1 BACKSPACE ... 170
9.7.2 DETACH .. 170
9.7.3 ENDFILE .. 170
9.7.4 REWIND .. 170

9.8 Turning Off Input and Output ... 171

Chapter 10 - Running a SNOBOL4 Program

10.1 Compilation .. 172
1 0.1.1 Source-Program Input ... l 72
10.1.2 Source Listing ... 173
10.1.3 Listing Control ... 173
10.1.4 Operator Precedence and Associativity ... 174
10.1.5 Errors Detected during Compilation ... 175
10.1.6 Compilation Error Messages .. 175

10.2 Execution ... 176
10.2.1 The Sequence of Evaluation ... 177
10.2.2 Error Conditions .. 179
10.2.3 Program Error Messages .. 180

10.3 Termination .. 183
10.3.1 Normal Termination .. 183
10.3.2 Error Termination ... 187
10.3.3 Cancellation Termination ... 190

Chapter 11 - Programming Details and Storage Management

11.1 Implementation Overview .. 191
11.2 Strings .. 192
11.3 Other Variables ... 193
11.4 Patterns and Pattern Matching .. 193
11.5 Input and Output ... 195
11.6 Storage Management .. 195

11.6.1 Forcing Storage Regeneration ... 195
11.6.2 Clearing Variable Values ... 196

xii Contents

Appendix A - Syntax of SNOBOL4 ... 197

A.1 Syntax of Statements ... 198
A.2 Syntax of Programs ... 199
A.3 Syntax of Prototypes .. 200
AA Syntax of Data Type Conversions ... 201
A.5 Character Codes for Various Machines .. 20 1
A.6 Extended Syntax for the IBM 360 Implementation ... 202

Appendix B - Versions 2 and 3 of SNOBOL4 .. 204

B.1 Running Version 2 Programs under Version 3 ... 204
B.2 Running Version 3 Programs under Version 2 : 205

Appendix C - Sample Programs .. 206

Appendix D - Solutions to Exercises .. 235

References ... , 248

Index ... 249

CHAPTER 1

Introduction to the SNOBOL4 Programming Language

This chapter is an introductory overVIew of the SNOBOL4 programming language. It
describes the format of statements, some of the operations, and some of the types of data
handled by the language. Later chapters describe in more detail much of the material in
this introductory chapter.

A SNOBOL4 program consists of a sequence of statements. There are four basic types
of sta temen ts :

(1) the assignment statement,
(2) the pattern matching statement,
(3) the replacement statement, and
(4) the end statement.

The end statement terminates the program.

1.1 Assignment Statements

The simplest type of statement is the assignment statement. It has the form

variable value

The assignment statement may be said to have the following meanIng: 'Let variable have
the given value.' For example, let V have the value 5, or

V 5

The value may be given by an expression, consisting, for example, of arithmetic operations
as in the statement

w 14 + (16 - 10)

which assigns the value 20 to the variable w. Blanks are required around arithmetic
operators such as + and -. The value need not be an integer, which is just one type of
data handled by SNOBOL4. For example, the value may be a string of characters,
indicated by enclosing quotes. An example is the assignment statement

V 'DOG'

1

2 Introduction to the SNOBOL4 Programming Language 1.2.1

which assigns the string DOG to the variable V. Various types of data and operations that
may be performed on them are described later.

Typically a variable is a name such as V, X, or ANS. Variables appearing explicitly in a
program must begin with a letter which may be followed by any number of letters, digits,
periods, and underscores.

The value of a variable may be used in an assignment statement. Thus

RESULT ANS.1

assigns to the variable RESULT the value of ANS • 1. (Quotation marks distinguish literal
strings from variables.)

Blanks are required to separate the parts of a statement. In an assignment statement, the
equal sign must be separated from the variable on the left and the value on the right by
at least one blank.

1.2 Arithmetic

1. 2.1 Integers

The arithmetic operations of addition, subtraction, multiplication, division, and
exponentiation of integers may be used in expressions. The statements

M
N
p

4
5
N * M / (N - 1)

assign the value 5 to P. While blanks are required between the binary operators and their
operands, unary operators such as the minus sign must be adjacent to their operands. An
exam pIe is the sta temen t

Q2 -P / -N

which assigns the value 1 to Q2.

Arithmetic expressions can be arbitrarily complex. When evaluating arithmetic
expressions, the natural order of operator precedence applies. The unary operations are
performed first, then exponentiation (* * or !), then multiplication, followed by division,
and finally addition and subtraction. All arithmetic operations associate to the left except
exponentiation. Hence,

X 2 ** 3 ** 2

is equivalent to

X 2 ** (3 ** 2)

1.3.1 The Null String 3

Parentheses may be used to emphasize or alter the order of evaluation of an expression.

In the above examples all the operands are integers and the results are integers. The
quotient of two integers is also an integer. The remainder is discarded. Thus

Q1
Q2

5/2
5 / -2

give Q 1 and Q2 the values 2 and -2, respectively.

1.2.2 Real Numbers

Real operands are also permitted in arithmetic expressions. The statements

3.14159 PI
CIRCUM 2. * PI * 5.

assign real values to PI and CIRCUM.

If real numbers are mixed with integers In arithmetic expressIons, the result is a real
number. For example, the value of

SUM 16.4 + 2

is 18. 4 .

1.3 Strings

Expressions involving operands that are character strings are also permitted In
assignment statements. For example, the assignment statement

SCREAM 'HELP'

assigns the string HELP as the value of SCREAM.

The string is specified by enclosing it within a pair of quotation marks. Any character
may appear in a string. A pair of double quotation marks can be used instead of single
quotation marks. This permits the use of quotation marks within a string as in the
statements

PLEA
QUOTE
APOSTROPHE

'HE SHOUTED, "HELP.'"
, " ,

"'"

Single quotation marks are used in the examples gIven In this book where one type of
quotation mark is sufficient.

4 Introduction to the SNOBOL4 Programming Language 1.3.3

1.3.1 The Null String

The null string, which is a string of length zero, is frequently used in SNOBOL4. With
a few exceptions, explained later, all variables have the null string as their initial value. A
variable can also be assigned the null string by a statement like

NULL
, ,

or, more briefly,

NULL

The variable NULL is used in many examples that follow to represent the null string. The
null string is different from the following strings, each of which has length one:

'0 '

1.3.2 Strings in Arithmetic Expressions

Numeral strings can be used in arithmetic expressions with integers and real numbers.
For example, as a result of the statements

z
X

, 10'
5 * -z + '10.6'

X has the value -39.4. Numeral strings representing integers can contain only digits and
an optional preceding sign. Numeral strings representing real numbers must have at least
one digit before the decimal point. Thus, the following strings cannot be used in
arithmetic expressions:

'1,253,465'
'.364 E-03'

The null string is equivalent to the integer zero in arithmetic expressions.

1. 3. 3 String-Valued Expressions

Concatenation is the basic operation for combining two strings to form a third. The
following statements illustrate the format of an expression involving concatenation.

TYPE
OBJECT

'SEMI'
TYPE 'GROUP'

The resulting value of OBJECT is the string SEMI GROUP. Notice there is no explicit
operator for concatenation. Concatenation is indicated by specifying two string-valued
operands separated by at least one blank.

1.3.4

FIRST
SECOND
TWO. SEASONS

are equivalent to

TWO. SEASONS

'WINTER'
'SPRING'

FIRST ' , SECOND

'WINTER, SPRING'

Input and Output of Strings

Strings can also be concatenated with reals and integers as in

ROW
NO.
SEAT

'K'
22

ROW NO.

which gives SEAT the value K22.

5

In an expression involving concatenation and arithmetic operations, concatenation has
the lowest precedence. Thus

SEAT ROW NO. + 4 / 2

is equivalent to

SEAT ROW (NO. + (4 / 2»

or

SEAT 'K24'

1. 3.4 Input and Output of Strings

Three variables provide means for reading and writing data. The variables OUTPUT and
PUNCH are for printing and punching. Whenever either of them is assigned a string,
integer or real value, a copy of the value is put out.

OUTPUT 'THE RESULTS ARE:'

assigns THE RESULTS ARE: to OUTPUT and also prints it.

PUNCH OUTPUT

causes the same line to be punched on a card. The statements

OUTPUT
PUNCH

cause a blank line to be printed and a blank card to be punched.

The variable INPUT is used for reading in strings. Each time the value of INPUT IS

required in a statement, another card is read in and the aO-character string on it IS

assigned as the value of INPUT. Thus

PUNCH INPUT

6 Introduction to the SNOBOL4 Programming Language 1.4

punches a copy of the input card.

Data cards to be read in occur immediately after the end statement that terminates the
program.

1.4 Pattern Matching Statements

The operation of examining strings for the occurrence of specified substrings (i.e. pattern
matching) is fundamental to the SNOBOL4 language. Pattern matching can be specified
in two types of sta temen ts:

(1) the pattern matching statment, and
(2) the replacement statement.

The pattern matching sta temen t has the form

subject pattern

where the two fields are separated by at least one blank. The subject specifies a string that
is to be examined, and the pattern can be thought of as specifying a set of strings. The
statement causes the subject string to be scanned from the left for the occurrence of a
string specified by the pattern.

If

TRADE 'PROGRAMMER'

the sta temen t

TRADE 'GRAM'

examines the value of TRADE for an occurrence of GRAM. If

PART 'GRAM'

then an equivalent statement is

TRADE PART

The following example illustrates a pattern matching statement in which the pattern is a
string-valued expression.

ROW
NO.
'K24'

'K'
20

ROW NO. + 4

The subject is a literal and the value of the expression is the string K24.

Notice that there is no explicit pattern matching operator between the subject and the
pattern. The two fields are separated by blanks.

1.5 Replacement Statements 7

If it is necessary to have concatenation In the subject, the expression must be enclosed
within parentheses to avoid ambiguity. An example is

TENS 2
UNITS 5
(TENS UNITS) 30

On the other hand, a pattern formed by concatenation does not need parentheses. The
following statements are equivalent:

TENS UNITS 30

TENS (UNITS 30)

1. 5 Replacement Statements

A replacement sta temen t has the form

subject pattern object

where the fields are separated by at least one blank. Pattern matching is performed as in
the pattern matching statement. If the pattern matching operation succeeds, the subject
string is modified by replacing the matched substring by the object. For example, if

WORD 'GIRD'

then the replacement sta temen t

WORD 'I' 'au'

causes the subject string GIRD to be scanned for the string I and then, since the pattern
matches, I IS replaced by au. Hence WORD has as value the string GOURD. If the
statement is

WORD 'AB' 'au'

the value of WORD does not change because the pattern fails to match.

Another example of the use of replacement statements is given in the following sequence
of sta temen ts

HAND
RANK

'AC4DAHKDKS'
4

SUIT 'D'
HAND RANK SUIT 'AS'

which replaces the substring 4D with the string AS.

A matched substring is deleted from the subject string if the object In the replacement
sta temen t is the null string. Thus

HAND RANK SUIT

8 Introduction to the SNOBOL4 Programming Language 1.6

deletes 4D from HAND leaving it with the string ACAHKDKS as value.

1.6 Patterns

The patterns in the preceding examples specify single strings. It is also possible to
specify more complex patterns. There are two operations available for constructing such
patterns:

(1) alternation, and
(2) concatenation.

Alternation is indicated by an expression of the form

P1 P2

where the two patterns P 1 and P2 are separated from the I by blanks. The value of the
expression is a pattern structure that matches any string specified by either P 1 or P 2. For
example, the statement

KEYWORD 'COMPUTER' 'PROGRAM'

assigns to KEYWORD a pattern structure that matches either of these two strings.
Subsequently, KEYWORD may be used wherever patterns are permitted. For example,

KEYWORD KEYWORD 'ALGORITHM'

gIves KEYWORD a new pattern value equivalent to the value assigned by executing the
statement

KEYWORD 'COMPUTER' 'PROGRAM' 'ALGORITHM'

Using KEYWORD in the pattern field, the statement

TEXT KEYWORD

examines the value of TEXT from the left and deletes the first occurrence of one of the
alternative strings. If

TEXT 'PROGRAMMING ALGORITHMS FOR COMPUTERS'

the result of the replacement statement is as if the following statement were executed:

TEXT 'MING ALGORITHMS FOR COMPUTERS'

Concatenation of two patterns, P 1 and P 2, is specified in the same way as the
concatenation of two strings:

P1 P2

That is, the two patterns are separated by blanks. The value of the expression is a pattern
that matches a string consisting of two substrings, the first matched by P 1, the second
matched by P2. For example, if

1.7

and

BASE
SCALE
ATTRIBUTE

DCL

'BINARY' 'DECIMAL'
'FIXED' 'FLOAT'

SCALE BASE

'AREAFIXEDDECIMAL'

then the pattern match succeeds in the statement

DCL ATTRIBUTE

Conditional Value Assignment

'HEX'

Concatenation has higher precedence than alternation. Thus

ATTRIBUTE 'FIXED' 'FLOAT' 'DECIMAL'

9

matches FIXED or FLOATDECIMAL. The order of evaluation may be altered by uSIng
paren theses.

ATTRIBUTE ('FIXED' 'FLOAT') 'DECIMAL'

matches either FIXEDDECIMAL or FLOATDECIMAL .

1. 7 Conditional Value Assignment

It is possible to associate a variable with a component of a pattern such that if the
pattern matches, the variable is assigned the substring matched by the component. The
operator. is the conditional value-assignment operator and it is used in an expression of
the form

pattern. variable

where the operator is separated from its operands by blanks. For example

BASE ('HEX' 'DEC') . B 1

assigns to BASE a pattern that matches either HEX or DEC. If BASE is used successfully in
a pattern match, the value of B 1 is set to the substring matched by BASE.

The operator. associates to the left, and has higher precedence than concatenation and
alternation.

A.OR.B A B OUTPUT

is equivalent to

A.OR.B A (B . OUTPUT)

which assigns to A. OR . B a pattern that matches the value of A or B. If B matches, the
substring matched is printed.

10 Introduction to the SNOBOL4 Programming Language 1.8

There is also an operator $ for immediate value assignment which assigns value to a
variable if the associated component of the pattern matches regardless of whether the
entire pattern matches. Immediate value assignment is discussed in more detail later.

1. 8 Flow of Control

A SNOBOL4 program is a sequence of statements terminated by an end statement.
Statements are executed sequentially unless otherwise specified in the program. Labels and
gotos are provided to control the flow of the program.

A statement may begin with an identifying label, permitting transfer to the statement.
For example, the assignment statement

START TEXT INPUT

has the label START. A label consists of a letter or a digit followed by any number of
other characters up to a blank. Blanks separate the label from the subject. A statement
with no label must begin with at least one blank. The end statement is distinguished by
the label END, indicating the end of the program.

Transfer to a labelled statement is specified in the goto field which may appear at the
end of a statement and is separated from the rest of the statement by a colon. Two types
of transfers can be specified in the goto field: conditional and unconditional.

A conditional transfer consists of a label enclosed within parentheses preceded by an F

or S corresponding to failure or success. An example is the statement

TEXT INPUT :FCDONE)

This statement causes a record to be read in and assigned as the value of TEXT. If,
however, there is no data in the input file, i.e. an end of file is encountered, no new value
is assigned to TEXT. Then, because of the failure to read, transfer is made to the
statement labelled DONE.

A use of the success goto IS illustrated in the following program which punches a copy
of the input file.

LOOP
END

PUNCH INPUT :SCLOOP)

The first statement is repeatedly executed until the end of file is encountered. Then the
program flows into the end statement causing the program to terminate.

The success or failure of a pattern match can also be used to control the flow of a
program by conditional gatos. For example

COLOR 'RED'
BRIGHT TEXT COLOR
BLAND

'GREEN' I 'BLUE'
:SCBRIGHT)FCBLAND)

1.9 Indirect Reference 11

All occurrences of the strings RED, GREEN, and BLUE are deleted from the value of
TEXT before the pattern fails to match. Control then passes to the statement labelled
BLAND. Both success and failure gotos can be specified in one goto field, and may appear
in either order.

An unconditional transfer is indicated by the absence of an F or S before the enclosing
parentheses. For an example of an unconditional transfer, consider the following program
that punches and lists a deck of cards.

LOOP

END

PUNCH
OUTPUT

INPUT
PUNCH

:F(END)
: (LOOP)

The goto field in the second statement specifies an unconditional transfer.

1. 9 Indirect Reference

Indirect referencing is indicated by the unary operator $. For example, if

MONTH 'APRIL'

then $MONTH is equivalent to APRIL. That is, the statement

$MONTH 'CRUEL'

is equivalent to

APRIL 'CRUEL'

The indirect reference operator can also be applied to a parenthesized expressIon as In
the sta temen ts

WORD 'RUN'
$(WORD ':') $(WORD ':') + 1

which increment the value of RUN: .

In general, the unary operator $ generates a variable that IS the value of its operand.
The expression

$('A' 'B')

is erroneous because the value of the operand of $ IS a pattern, not a string. Indirect
reference in a goto is demonstrated by

N N + 1 : { $ (, PHASE' N»

If, for example, the assignment statement sets N equal to S', then the transfer IS to the
statement labelled PHASES.

12 Introduction to the SNOBOL4 Programming Language 1.10.1

1.10 Functions

Many SNOBOL4 procedures are invoked by functions built into the system, called
primitive functions. Operations that occur frequently are implemented as primitive
functions for efficiency. Other primitive functions are used to invoke more complex
operations that are fundamental to the lan.guage, affect parameters and tables internal to
the system, and perform operations that could not be programmed in source language by
other means. In addition, facilities are available for a programmer to define his own
source-language functions.

1.10.1 Primitive Functions

The primItIve function S I Z E has a single string argument and returns as value an
integer that is the length (number of characters) of the string. The statements

APE
OUTPUT

print the number 6.

'SIMIAN'
SIZE(APE)

Arguments to all functions are passed by value, and an arbitrarily complex expressIon
may be used in the argument. Thus the statements

N 100
OUTPUT SIZE('PART' N + 4)

print the number 7 , because the value of the argument is the string PART 104.

The argument of S I Z E is supposed to be a string. Therefore, a call of the form

SIZE ('APE' 'MONKEY')

is erroneous because the value of the argument is a pattern.

DUPL is another function that performs an operation that is frequently required.
DUPL (str ing, integer) returns as value a string that consists of a number of
duplications of the string argument. The value of

DUPL (, 1*' , 5)

is 1*1*1*1*1*. DUPL returns the null string if the second argument IS zero, and fails
if it is negative. The statement

OUTPUT DUPL (' " 40 - SIZE (S)) S

prints the string S right justified to column 40 if its length IS not greater than 40.
Otherwise the statement fails, and S is not printed.

REPLACE is a function called with three string-valued arguments.

REPLACE(TEXT,CH1,CH2)

1.10.2 Predicates 13

returns as value a string which is the same as TEXT, except that each occurrence of a
character appearing in CH 1 is replaced by the corresponding character in CH2. For
example, the statements

STATEMENT
OUTPUT

'A(I,J) A(I,J) + 3'
REPLACE(STATEMENT, '()', '<>')

prin t the line

A<I,J> A<I,J> + 3

If the last two arguments of the function call do not have the same length, the function
fails. Function failure, like input failure, can be used in a conditional transfer.

There are also several functions that return patterns as their values. LEN is such a
function. LEN (integer) returns a pattern that matches any string of the length specified
by the integer.

The following example punches a card with the first 40 characters from a card that IS
read in.

INPUT LEN(40) . PUNCH

1.10.2 Predicates

A predicate is a function or operation that returns the null string as value if a gIven
condition is satisfied. Otherwise it fails.

LE is an example of a predicate used for comparing numbers.

LE(N1,N2)

returns the null string as value if N 1 is a number less than or equal to N2. N 1 and N2
may be either integer or real. Thus

PUNCH LE(SIZE(TEXT),80) TEXT

punches the string TEXT if its length is not greater than 80. The null string value of the
predicate does not affect the string that is punched. If the predicate fails, no assignment is
made to PUNCH, and no card is punched.

The success or failure of a predicate can be used with a conditional goto to control the
flow of a program. For example,

ADD

DONE

SUM 0
N 0
N LT(N,SO) N + 1
SUM SUM + N
OUTPUT SUM

:F(DONE)
: (ADD)

sums the first 50 integers. Iteration continues as long as N IS less than SO. When the

14 Introduction to the SNOBOL4 Programming Language 1.10.3

predicate fails, the conditional transfer to DONE is performed and the string 1275 is
printed.

There are several predicates for comparing data objects. For example,

DIFFER(ST1,ST2)

returns the null string as value if the values of two arguments are not identical. Thus

OUTPUT DIFFER(FIRST,SECOND) FIRST SECOND

concatenates the values of FIRST and SECOND if they are not the same, and then prints
them. The predicate IDENT is the converse of DIFFER. IDENT fails if the values of its
arguments are not identical.

For all functions, an omitted argument is assumed to be the null string. Thus

PUNCH DIFFER(TEXT) TEXT

punches the value of TEXT if it is not the null string.

LGT is a predicate that lexically compares two strings.

LGT(ST1,ST2)

succeeds if ST 1 follows (is lexically greater than) ST2 In alphabetical order. The
statements

SKIP
JUMP

OUTPUT
OUTPUT
OUTPUT
OUTPUT

LGT(TEXT1,TEXT2) TEXT2
TEXT1
TEXT2
TEXT1

print the values of TEXT 1 and TEXT2 in alphabetical order.

1.10.3 Defined Functions

:S(SKIP)

: (JUMP)

The SNOBOL4 language provides the programmer with the capability to define
functions in the source language. This feature facilitates the organization of a program
and may improve its efficiency.

A programmer may define a function by executing the pnmitIve function DEFINE to
specify the function name, formal arguments, local variables, and the entry point of the
function. The entry point is the label of the first of a set of SNOBOL4 statements
constituting the procedure for the function.

The first argument of DEFINE is a prototype describing the form of the function call.
The second argument is the entry point. For example, execution of the statement

DEFINEC 'DELETECSTRING,CHAR) , , 'D1')

1.10.3 Defined Functions 15

defines a function DELETE having two formal arguments, STRING and CHAR, and entry
point D 1 . The statements

D1 STRING CHAR :S(D1)
DELETE STRING : (RETURN)

form a procedure that deletes all occurrences of CHAR from the value of STRING. The
statement assigning the resulting value to the variable DELETE illustrates the SNOBOL4
convention for returning a function value. The function name may be used as a variable
in the function procedure. Its value on return from the procedure is the value of the
function call. Return from a procedure is accomplished by transfer to the system label
RETURN.

If the second argument is omitted from the call of DEFINE, the entry point to the
procedure is taken to be the same as the function name. For example

DEFINE('DELETE(STRING,CHAR)')

could have the procedure

DELETE STRING CHAR :SCDELETE)
: (RETURN) DELETE STRING

A call of the function is illustrated In the following statements

MAGIC
OUTPUT

which print BRCDBR.

'ABRACADABRA'
DELETE(MAGIC, 'A')

Arguments are passed by value and may be arbitrarily complex expressions. Thus the
statement

TEXT DELETE (DELETE C INPUT, , . ') " ')

deletes all periods and blanks from the input string.

Functions can also fail under specified conditions. As an example, consider the following
version of DELETE, which fails if STRING does not contain an occurrence of CHAR.

DELETE STRING
D2 STRING

DELETE

CHAR
CHAR

STRING

:F(FRETURN)
:S(D2)
: (RETURN)

The transfer to the system label FRETURN indicates failure of the function call.
Consequently,

PUNCH DELETE(INPUT, '*')

punches a card only if the input string contains an * .
Arguments to a function and the value returned can be any type of data object.

Consider, for example, the function MAXNO where MAXNO (p, N) returns a pattern that
matches up to N adjacent strings matched by the pattern P. That is, if

16 Introduction to the SNOBOL4 Programming Language

PAT MAXNO('A' 'B' 'C' ,2)

then in the sta temen t

'EBCDIC' PAT 'D'

the pattern match succeeds with PAT matching the string BC.

MAXNO has the defining sta temen t

DEFINE('MAXNO(P,N)')

and the procedure

MAXNO N GT(N,O) N - 1
MAXNO NULL I P MAXNO

:F(RETURN)
: (MAXNO)

Consider the function REVERSE that reverses a string. It has the defining statement

DEFINE('REVERSE(STRING), , 'R1')

and the procedure

R1
R2

ONECH LEN (1) • CH
STRING ONECH
REVERSE CH REVERSE

:F(RETURN)
: (R2)

1.10.3

There are two variables,ONECH and CH, used in the function definition in addition to the
function name and formal argument. It is prudent to protect these variables so their use
outside the function is not affected when the function is called. This is accomplished by
declaring them to be local variables in the defining statement:

DEFINE('REVERSE(STRING)ONECH,CH', 'R1')

When the function is called, the current values of the function name, the formal
arguments, and the local variables are saved before the procedure is entered. These values
are restored upon return from the procedure. This permits the programmer considerable
freedom in defining functions. For example, a function can be recursive, i.e. include a call
of the function itself. Consider the binomial coefficient c (n, m) which can be defined by
equations

c(n,O)
c(n,m) n*c(n-1 ,m-1)/m for m > 0

Computational efficiency can be improved by employing the relation

c(n,m)

for m > n/2.

c(n,n-m)

The corresponding programmer-defined function consists of the defining statement

DEFINE('C(N,M)')

1.11

and the procedure

C M

C

C

LT(N - M,M) N - M
EQ (M, 0) 1
N * C(N - 1,M - 1) / M

:S(RETURN)
: (RETURN)

Keywords 17

COMB is an example of another recursively defined function. COMB (STR, N) lists all
combinations of N characters from the string STR. The defining statement and procedure
are

and

COMB
C2

Then

prints

ABC
ABD
ACD
BCD

DEFINE('COMB(STR,N,HEAD)CH')

OUTPUT EQ(N,O) HEAD
STR LE(N,SIZE(STR» LEN(1) . CH
COMB(STR,N - 1,HEAD CH) :(C2)

COMB (, ABCD' , 3)

:S(RETURN)
:F(RETURN)

Notice that COMB is defined with three formal arguments but only two values are
supplied in the initial call. The missing value is taken to be null.

1.11 Keywords

Several parameters and switches internal to the SNOBOL4 system can be accessed by
means of keywords. Keywords are specified by prefixing an ampersand to certain
identifiers. For example, if the value of the keyword &DUMP is a nonzero integer when a
program terminates, a dump of natural variables is printed. Thus the execution of the
statement

&DUMP 1

indicates that a dump is to be produced.

Strings read in by INPUT are 80 characters long. Such strings often contain many
unwanted trailing blanks. &TRIM is a keyword that controls the handling of trailing
blanks on input of data. If the value of &TRIM is nonzero, trailing blanks are deleted.
Thus

&TRIM

18 Introduction to the SNOBOL4 Programming Language 1.13

causes trimming of trailing blanks. If &TRIM is zero, trailing blanks are not trimmed.

Other keywords are described elsewhere in this book.

1.12 Arrays

Arrays of variables can be created by using the primItIve function ARRAY. The
arguments of ARRAY describe the number of dimensions, the bounds of each dimension,
and the initial value of each variable in the array. Thus

V ARRAY(10,1.0)

creates and assigns to V a one-dimensional array of ten variables, each initialized to the
real value 1 .0. The created variables can be referenced by expressions of the form V<I>

where I = 1, ••• , 10. The statement

N ARRAY('3,5')

creates a 2-dimensional array of variables

N< 1 , 1> N< 1 ,2> N< 1 ,3> N<1 ,4> N< 1 ,5>

N<2,1>

N<3, 1 > N<3,5>

The omission of the second argument causes each of the variables to have the null string
as initial value. The arguments in the call of ARRAY can be expressions. Thus

&TRIM
A

1
ARRAY(INPUT)

create an array with dimensionality that is data dependent. An array reference, A<I>, that
is outside the bounds of the array causes failure that can be used to control program flow.
The sta temen ts

MORE

GO

&TRIM
I 1
ST
ST<I>
I

ARRAY(INPUT)

INPUT

I + 1
:F(GO)
: (MORE)

generate an array ST, and assign values to each of the variables. When all the variables
in the array are assigned values, or an end of file is encountered, the transfer to GO is
executed.

1.14 Programmer-Defined Data Types 19

1.13 Tables

Sets of pairs of associated data objects can be created by the use of tables. A table is
similar to a one-dimensional array. However, instead of referencing an element with an
integer, any data object can be used.

A table is created by the primitive function TABLE. For example

T TABLE ()

creates a table and assigns it as value of T .

Elements in the table can be assigned values In 'a manner similar to array elements.
Examples are

T<'A'> 5

and

T<WORD> T<WORD> + 1

Tables have varying lengths and are dynamically extended if necessary. Some efficiency
can be achieved by specifying an estimate of the size of a table at the time it is created.
TABLE (N) creates a table that initially has room for N entries.

1.14 Programmer-Defined Data Types

Integers, reals, strings, patterns, arrays, and tables are types of data objects that are
built into the SNOBOL4 language. Facilities are provided in the language to permit a
programmer to define additional types of data. This facilitates representation of structural
relationships inherent in data.

For example, a simple linear linked list is made up of nodes, each containing a value
field and a link field.

The pnmItIve function DATA can be used to define the data type NODE and the two
field functions, VALUE and LINK.

DATA('NODE(VALUE,LINK)')

The statement

P NODE (, S ' ,)

creates a node with value field S and the null string in the link field. The value of P IS a

20 Introduction to the SNOBOL4 Programming Language 1.16

data object with two fields that can be referenced by means of the function calls
VALUE (p) and LINK (p) . The insertion of a node with value T at the head of the list is
accomplished by the statement

P NODE('T' ,p)

The following statement deletes a node from the head of the list

P LINK(P)

1.15 Program Format

A statement that is longer than one line can be continued onto successive lines by
starting the continuation lines with a period or plus sign. An example is

+
OUTPUT

SUM<N)
'THE TOTAL NUMBER OF OCCURENCES IS

Plus signs are used for continuation in examples in this book.

When continuing a statement over a line boundary, the statement may be broken
wherever a blank is required.

Several statements may be placed on one line by using semicolons which indicate the
ends of statements. An example is

x 2; Y 3 ; Z 10

A line beginning with an asterisk is treated as a comment and does not affect the
opera tion of the program.

1.16 Program Example

This is an example of a complete SNOBOL4 program illustrating the use of comment
lines, continuation lines, and the end statement. The program reads in data cards that
follow the end statement.

**
* *
*
*
*

THIS PROGRAM COUNTS THE NUMBER OF TIMES EACH
LETTER IS USED IN INPUT TEXT.

*
*
*

.****************

READ

STRIM
CHAR
LETTERS
COUNT
OUTPUT

1
LEN(1) . CH

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
TABLE(30)
INPUT :F(DISPLAY)

1.17

NEXT

DISPLAY
LOOP

+
END

TEXT
TEXT
COUNT<CH>
OUTPUT
LETTERS
OUTPUT

OUTPUT
CHAR

COUNT<CH>

CHAR
= NE(COUNT<CH»

+

CH

:F(READ)
: (NEXT)

:F(END)

Conclusion 21

, OCCURS' COUNT<CH> ' TIMES'
: (LOOP)

The program output follows, indicating the text read in and the resulting letter count.

"THE WORLD OF THE FUTURE WILL BE AN EVER MORE DEMANDING STRUGGLE AGAINST
THE LIMITATIONS OF OUR INTELLIGENCE, " ,
N. WEINER

A OCCURS 5 TIMES
B OCCURS TIMES
C OCCURS TIMES
D OCCURS 3 TIMES
E OCCURS 15 TIMES
F OCCURS 3 TIMES
G OCCURS 5 TIMES
H OCCURS 3 TIMES
I OCCURS 9 TIMES
L OCCURS 7 TIMES
M OCCURS 3 TIMES
N OCCURS 9 TIMES
0 OCCURS 6 TIMES
R OCCURS 7 TIMES
S OCCURS 3 TIMES
T OCCURS 9 TIMES
U OCCURS 4 TIMES
V OCCURS 1 TIMES
W OCCURS 3 TIMES

1.1 7 Conclusion

This chapter has presented only an introduction to the main features of SNOBOL4.
Detailed descriptions of many features are postponed to subsequent chapters, which
provide a guide for the programmer.

Chapter 2, the longest and most involved, describes pattern matching. Primitive
functions, predicates, and operators are considered in Chapter 3. Programmer-defined
functions are covered in Chapter 4. Arrays, tables, and programmer-defined data types are
described in Chapter 5. Chapter 6 discusses keywords and introduces names and code.
Chapter 7 contains information on types of data and data type conversion. Tracing
facilities are described in Chapter 8, and Chapter 9 covers input and output. The

22 Introduction to the SNOBOL4 Programming Language

execution of a SNOBOL4 program, including error messages and error control are the
subject of Chapter 10. Finally, Chapter 11 discusses matters of efficient programming and
related topics.

In addition to numerous examples included In the text, exercises are provided at the
ends of chapters.

Appendices at the end of this book provide additional detailed material. Appendix A
contains a complete description of the syntax of SNOBOL4. Appendix B describes the
differences between Versions 2 and 3 of SNOBOL4. Appendix C illustrates the use of
SNOBOL4 in more complicated programs. Appendix D contains solutions to the exercises
given at the ends of the chapters.

Exercises

Problem 1.1: Write a program that reads in data cards, prints all cards read In, and
punches out a copy of all cards that do not contain an ampersand.

Problem 1.2: Write a program that deletes the first eight characters from each 80-
character input card and prints the remainder of the card.

Problem 1.3: Compute and print out the first ten powers of e and their sum.

Problem 1.4: Write a program that encodes messages by some simple character
replacement (for example, replace A by Z , B by Y, etc.). Include punctuation in the
encoding.

Problem 1.5: Write a program that reads a deck of cards into an array. Let the first card
indicate the number of cards that follow. Print out the cards in reverse order.

Problem 1.6: Hexadecimal digits 0,1, ... ,9,A,B,C,D,E,F have the decimal equivalents of
0,1, ... ,15. Using a table to associate hexadecimal digits with corresponding decimal
equivalents, define a function that converts a string of hexadecimal characters to its
decimal equivalent.

Problem 1.7: Let a binary tree be a data structure composed of nodes that contain three
fields: value, left son, right son. A tree has a distinguished node, the root, that is not the
left son or right son of any node.

a. Define a data type BNODE with fields appropriate for a binary tree.

b. Generate a binary tree with three nodes such that the value of the root node is +,
the value of the left son is X, and the value of the right son is Y .

c. Define a function LLIST that prints the values of the nodes of a binary tree In
the following order.

Exercises 23

1. value of the root
2. value of the nodes in the left subtree
3. value of the nodes in the right subtree

CHAPTER 2

Pattern Matching

2.1 Introduction

Strings of characters can be synthesized from smaller strings by concatenation. The
converse of synthesis, decomposition of strings into substrings, is performed using pattern
matching. Fundamentally, pattern matching is the process of examining a subject string for
a substring which is one of a set specified by a pattern. The substring and parts thereof,
formed by pattern matching, can be assigned as the values of variables.

There are two types of statements in which pattern matching can occur: the pattern
matching statement and the replacement statement. These statements have the respective
forms

label subject
label subject

pattern
pattern

go to
object goto

The pattern and object may be expressions, as illustrated by

LAB 1
LAB4

TEXT
STR

A B
C D X '3'

:S(LAB2)F(LAB3)
:SCLABS)FCLAB6)

Before matching actually occurs, the expression in the pattern field is evaluated. Its
value can be a string. It also can be a pattern structure, which may be thought of as a
set of strings. The string or pattern structure is used to drive a pattern matching
procedure (the scanner) which performs the actual matching. Should any string specified
by the pattern field appear as a substring of the subject, pattern matching succeeds.

The primary purpose of this chapter is to consider in detail those SNOBOL4 language
features that programmers may use to write expressions that, when evaluated, yield pattern
structures. These features include the pattern-building operations of concatenation and
alternation, primitive pattern structures built into the system, primitive functions whose
values are pattern structures, value assignment operations, and the unary operator * ,
which produces an unevaluated expression.

24

Pattern structures representing sets of fixed strings such as those built by

BASE 'BINARY'
SCALE 'FIXED'
ATTRIBUTE SCALE

'DECIMAL'
'FLOAT'

BASE

'HEX'

2.2 Alternation and Concatenation 25

are basic to pattern matching. Additional language features provide natural ways to talk
about more complicated sets of strings, such as:

all strings of a specified length,
all characters up to the first comma,
the longest string of blanks,
any number of repetitions of a string,
any string balanced with respect to parentheses, and
any string at all.

For many users of SNOBOL4, a knowledge of how patterns are actually matched is of
little importance. The success or failure of matching is all that matters. However, by
understanding the scanning procedure, a programmer can write more efficient patterns and
make use of features such as immediate value assignment and unevaluated expressions that
can actually change a pattern during matching. Thus, the secondary purpose of this
chapter is to describe. how the scanner works.

2.2 Alternation and Concatenation

A brief introduction to the pattern building operations of alternation and concatenation
appears in Chapter 1. There, alternation and concatenation are used to build pattern
structures that match sets of strings.

Alternation, indicated by the binary operator I , builds a single pattern structure from
its two arguments .. If P 1 and P2 are strings or pattern structures, the statement

P3 P1 P2

builds a new structure and assigns it as the value of p 3. P 3 matches any string matched
by P 1 or P2.

No explicit operator is used to indicate concatenation. Concatenation is implied when
two elements of an expression are separated by one or more blanks. If P4 and PS are
strings, the statement

P6 P4 PS

assigns to P6 a string which is the value of P4 followed by the value of PS. If either P4

or PS is a pattern structure, the statement above builds a pattern structure and assigns it
as the value of P6. P6 matches any string that can be formed from a string matched by
P4, followed by a string matched by PS.

Alternation and concatenation can be used to build pattern structures that match large
numbers of strings. Consider the following statements.

26 Pattern Matching 2.3

P 'BE' 'BEA' 'BEAR'
Q 'RO' 'ROO' 'ROOS'
R 'OS' '0'
S 'TS' 'T'
PAT P R Q S

Concatenation has higher precedence than alternation, so the structure for PAT is built as
if

PAT (p R) (Q S)

had been written. PAT matches any of the twelve strings:

BEDS ROTS
BED ROT
BEADS ROOTS
BEAD ROOT
BEARDS ROOSTS
BEARD ROOST

2.3 Scanning

Matching a pattern structure against a subject string is done by a procedure called the
scanner. The pattern structure behaves like a program that indicates to the scanner how
to examine the subject string.

At any instant during scanning, the scanner uses two pieces of information:

(1) where in the subject string it should be looking, and
(2) what component of the pattern structure it should match.

The scanner has a pointer called the cursor which is positioned to the left of the character
that the scanner must match. A second pointer called the needle points at the component
to be matched.

Consider the following example, in which the string of characters READS IS matched by
a pattern structure that is the value of BR.

BR ('B'
'READS' BR

'R') ('E' 'EA') ('0' 'OS')

For illustrative purposes, It IS convenient to think of components of a pattern structure
as a set of beads that the scanner is trying to thread using the needle. A bead diagram
representing BR is shown below.

2.3 Scanning 27

NEEDLE~

'B' 0 G
G B E)

In bead diagrams, left-to-right order of concatenation is preserved. Alternation is
represented top to bottom. The needle points at the bead that the scanner is currently
trying to match. If a bead matches, the needle passes through and moves upward as far as
it can go without crossing a horizontal line. If a bead does not match, the needle moves
down to an alternative bead, provided one exists. Downward movement may not cross a
horizontal line. If no alternative exists, the needle is pulled back through the last
successfully matched bead, and an alternative is sought there.

The following figure illustrates the steps in matching BR against READS. The arrow
pointing at READS represents the cursor, while the arrow pointing at the beads represents
the needle. Failure in the fifth step causes the needle to be pulled back. The cursor is
moved back at the same time.

E ADS

28 Pattern Matching 2.3

REA D S

t

Bead diagrams graphically illustrate one important control that the programmer has
over the scanner. In a pattern-valued expression such as

BR ('B' I 'R') ('E' 'EA') ('D' 'DS')

2.4 Modes of Scanning 29

alternatives are matched by the scanner in left-to-right order (top to bottom in the bead
diagram). Thus, the scanner attempts to match B before R, E before EA, and D before DS .

By positioning alternatives correctly a programmer can control the order in which the
scanner looks at them.

The bead diagram for the pattern structure PAT developed In the prevIous section
follows.

8
8

8
G

(BEAR)

8
8

G

A successful match in the statement

'ROOSTS' PAT

req uires eleven steps.

2.4 Modes of Scanning

Two keywords, &ANCHOR and &FULLSCAN, give the programmer additional control
over the scanner. The scanner operates in an unanchored or anchored mode, depending
on the value of &ANCHOR. When unanchored, a pattern can match anywhere in the
subject string. When anchored, a pattern can match only beginning at the first character.

30 Pattern Matching 2.4.1

F or efficiency, tests are made during scanning to prevent the scanner from looking at
alternatives that cannot possibly succeed. &FULLSCAN can be used to turn these tests off,
leading to complete, but possibly inefficient, pattern matching. Discussion of &FULLSCAN

is deferred until the end of this chapter, since it is useful only with more sophisticated
patterns.

2.4.1 Unanchored Mode

The keyword &ANCHOR initially has the value zero, signifying the unanchored mode of
scanning. The scanner may look anywhere in the subject string for an appropriate
substring. Consider the following example.

'A BIG BOY' 'BIG' 'LITTLE'

Pattern matching succeeds. The steps involved are shown below using a bead diagram.

BIG BOY

BIG BOY

BIG BOY

2.4.2 Anchored Mode 31

BIG BOY

--{LITTL9

A (I G BOY

A BOY

The cursor is initially at the left of the subject string. When all possible alternatives fail,
the cursor is moved one character to the right. All possible alternatives are tried with the
cursor beginning in the new position. Again, all alternatives fail. The cursor is moved
again and this time the first alternative succeeds.

In the unanchored mode, the origin of pattern matching is moved by changing the
initial position of the cursor. Thus, the scanner matches, if possible, a substring anywhere
in the subject string. If more than one valid substring exists, the scanner finds the leftmost
one.

2.4.2 Anchored Mode

Frequently it is necessary to know if a pattern matches when its ongln is at the first
character of the subject string. As an example, suppose a program is desired that reads
any SNOBOL4 program and prints only those lines that are not comments (i.e. do not
have * in column 1). At first glance, the following statements might seem to suffice.

BEGIN LINE INPUT
LINE '*'
OUTPUT LINE

END

:FCEND)
:SCBEGIN)
:CBEGIN)

32 Pattern Matching 2.5.1

This program does not work as intended because a card with * appearing anywhere at all
in it is rejected.

If &ANCHOR has a nonzero value obtained by executing a statement such as

&ANCHOR 1

the pattern match is anchored at the left of the subject string. When the scanner is in the
anchored mode, the initial position of the cursor is not moved. Thus the scanner, when
anchored, only matches * against the first character of LINE.

The anchored mode of scanning is generally more efficient than the unanchored mode,
since the scanner examines fewer possibilities. Anchored scanning should be used where
possible. It is, of course, possible to switch modes during execution of a program simply
by changing the value of &ANCHOR.

2.5 Value Assignment through Pattern Matching

Pattern matching may be viewed as a means of decomposing a string into substrings.
To be useful, a substring found by the scanner often must be assigned as the value of a
variable. Consider the pattern BR used in an earlier section.

BR ('B' 'R') ('E' 'EA') ('D' 'DS')

Used in a pattern matching statement such as

STR BR :S(L1)F(L2)

where the subject string may be anything, success of matching indicates only that one of
the valid strings appears somewhere in STR. It does not indicate which string matches or
where it matches. On failure, no indication is given of how nearly successful the scanner
was. There are two ways of assigning a substring found by the scanner to a variable:
conditional value assignment and immediate value assignment.

2.5.1 Conditional Value Assignment

The binary operator. is used to indicate conditional value assignment. The value of
the expression

p V

is a pattern in which V is associated with the pattern P. This pattern is the same as P,

except that upon successful completion of pattern matching, the substring matched by P is
assigned as the value of the variable V. Thus, by associating several variables with
portions of a pattern, it is possible to ascertain what the overall pattern matches, and also
which components of the pattern are used in the match. For example, rewriting BR as

BR (('B' 'R') (' E' 'EA') (' D' 'DS')) BRVAL

2.5.2 Immediate Value Assignment 33

associates the variable BRVAL with the entire pattern. On successful completion of
matching, the entire substring matched is assigned as value of BRVAL. Rewriting still
further, variables can be associated with pieces of the pattern.

BR
+

(('B'
('D'

, R ') . FIRST (' E ' I ' EA ') • SECOND
'DS') . THIRD) . BRVAL

A successful match causes the entire substring to be assigned as the value of BRVAL. B or
R becomes the value of FIRST, E or EA becomes the value of SECOND, and D or DS
becomes the value of THIRD. Failure to match leaves the values of all variables
unchanged.

2.5.2 Immediate Value Assignment

The binary operator $ signifies immediate value assignment. The expression

P $ V

associates a variable V with a pattern P so that whenever P matches a substring, the
substring immediately becomes the new value of V. It is possible, by using $, to associate
variables with parts of a large pattern, to see how far scanning progressed in the event of
failure. Value assignment is done for those parts of the pattern that match, even if the
overall match fails. Suppose BR is rewritten using $ instead of. where shown.

BR (('B'
('D'

'R') $ FIRST ('E' 'EA') $ SECOND
+ 'DS') $ THIRD) . BRVAL

In the following statement, pattern matching fails.

'BEATS' BR :S(L1)F(L2)

However, since immediate assignment is performed whenever the associated part of the
pattern matches, the following assignments are made.

FIRST
SECOND
SECOND

'B'
'E'
'EA'

Values of THIRD and BRVAL are unchanged. If conditional assignment is used, values of
all four variables are unchanged. In the following example, the pattern matches.

'BREADS' BR :S(L1)F(L2)

Values assigned both during and after scanning are:

FIRST 'B'
FIRST 'R'
SECOND 'E'
SECOND 'EA'
THIRD 'D'
BRVAL 'READ'

34 Pattern Matching 2.5.5

The outcome is the same as if conditional value assignment had been used. Immediate
value assignment is less efficient in this case because two redundant assignments are made.
As a general rule, conditional value assignment should be used whenever possible.
Immediate value assignment should be used only in those cases where intermediate results
are important.

2.5.3 Precedence

The operators. and $ have the same precedence and associate to the left. They have
higher precedence than alternation and concatenation. Thus, in the statement

BR

+
(('B '

('D'
'R') $ FIRST (' E' 'EA') $ SECOND

'DS') $ THIRD) • BRVAL

the outer parentheses are required to associate BRVAL with the entire pattern, while
additional parentheses are not required to associate FIRST, SECOND, and THIRD.

2.5.4 Association with the Variable OUTPUT

Since OUTPUT is a variable, it may be associated with any portion of a pattern. A
successful match involving the pattern

('BED' 'BUG' 'BOMB') OUTPUT

causes the successful alternative to be printed. Using $ to associate OUTPUT with several
parts of a pattern achieves the effect of tracing the progress of the scanner. By
constructing BR as

BR (, B ' I ' R ') $ OUTPUT (' E '

+ (, D ' I ' DS ') $ OUTPUT

the output resulting from execution of the statement

IS

R
E
EA

D

'READS' BR

, EA ') $ OUTPUT

:S(L1)F(L2)

2.6 The Null String in Pattern Matching 35

2.5.5 Value Assignment in Replacement Statements

Value assignment is a necessity in some kinds of replacement statements. In the
following replacement statement E or EA is replaced with I only if the overall pattern BR
matches. In effect, the replacement statement changes BED and BEAD into BID, BEDS and
BEADS into BIDS, etc.

BR
STR

('B'
BR

'R')
FIRST

• FIRST ('E'
'I' LAST

'EA') ('D' 'DS') . LAST

The replacement statement works properly because conditional assignment is done after
pattern matching, but before the object expression is evaluated.

2.5.6 Association of Several Variables with One Pattern

Earlier examples illustrated how variable association may be nested. It is also possible to
associate more than one variable with a single pattern structure. The statement

PAT P1 $ V1 . V2

builds a pattern structure where variables V 1 and V2 are both associated with the pattern
P 1, V 1 as immediate assignment and V2 as conditional assignment. Changing the order
of association to

PAT P1. V2 $ V1

has no effect on the value assignment. If PAT is involved in a successful pattern match,
V 1 and V2 are assigned the same value. If the pattern match fails, the value of V 1 might
be changed but the value of V2 is not.

2.6 The Null String in Pattern Matching

The null string is the string of zero length. Attempts by the scanner to match the null
string always succeed. The variable NULL has the null string as its initial value and, by
convention, is used in this chapter to represent the null pattern that matches a string of
zero length. Pattern matching in the statement

STR NULL :S(ON)F(ERROR)

always succeeds, even if STR itself has the null string as value.

The variable NULL is frequently used in more complex patterns. For example, a pattern
that matches the eight strings

C

D
AC

AD

BC

BD
ABC

ABD

36 Pattern Matching

can be written as

(NULL I 'A') (NULL

Matching a pattern of the form

NULL $ X $ Y PAT

'B') ('C' 'D')

sets the values of X and Y to the null string before matching of PAT begins.

2.7

A number of patterns described in this chapter match the null string. Where bead
diagram representations of the patterns are given, NULL is used to indicate the null string.

2. 7 Cursor Position

The unary operator Q) is called the cursor posItIon operator. Its operand is a variable.
The value of Q)X is a pattern structure that matches the null string and assigns the current
cursor position as an integer value of the variable X. Assignment of the cursor post ion to
the operand of the Q) operator takes place as immediate value assignment. Value is
assigned when the cursor position operator is encountered during pattern matching, not
following successful completion.

Execution of the following statements assigns the integers 0, 1 , 2, 3, 4, and finally 5 to
the variable HEAD.

&ANCHOR 0
'TEST AT OPERATOR' Q)HEAD 'AT'

Pattern matching succeeds when the cursor is initially positioned to the left of the AT.
The cursor position at this point is 5, the final value assigned to HEAD.

The following program reads a collection of input strings one at a time, prints them,
matches for a pattern, and underlines the substrings matched. The cursor position operator
is used to locate the beginning and end of the matched substring. From the cursor
positions a second line is constructed, consisting of dashes in the position of the matched
substring.

&TRIM 1
P ('B' I 'R') ('E' 'EA') ('D' 'DS')
PATTERN Q)X P Q)Y

LOOP OUTPUT INPUT :F(END)
OUTPUT PATTERN :F(NOPAT)
OUTPUT DUPL(, , , X) DUPL ('-' , Y - X)

BLLINE OUTPUT : (LOOP)
NO PAT OUTPUT 'p FAILED TO MATCH.

,
: (BLLINE)

END

2.8

For the input data

THE BEADS ARE RED.
BRED AND BORED.
BEAUTY AND THE BEAST.

the program ou tpu t is

THE BEADS ARE RED.

BRED AND BORED.

BEAUTY AND THE BEAST.
P FAILED TO MATCH.

2.8 LEN

LEN 37

LEN (integer) is a primitive function whose value is a pattern structure that matches
any string of the specified length. The argument of LEN must have a nonnegative integer
value when pattern matching is performed. In the following example, pattern matching
succeeds only if the subject STR has in it somewhere an open parenthesis separated from a
closed parenthesis by exactly five characters.

STR ' (' LEN (5) ,) , :S(L1)F(L2)

LEN can be used to break out fixed-length fields from strings. In the following example
dates from data cards such as

1290 SEP. 27 CHINA, CHIHLI
1293 MAY 20 JAPAN, KAMARKURA
1531 JAN. 26 PORTUGAL, LISBON

are reformatted as

SEP. 27, 1290 CHINA, CHIHLI
MAY 20, 1293 JAPAN, KAMARKURA
JAN. 26, 1531 PORTUGAL, LISBON

100,000
30,000
30,000

100,000
30,000
30,000

A program that performs this transformation is

&ANCHOR 1
DATE LEN(4) YR

, , LEN(4) . MO
, .

LOOP CARD INPUT
CARD DATE MO

, ,
DAY YR

OUTPUT CARD
NOGOOD OUTPUT CARD IMPROPERLY FORMATTED.
END

, LEN(2) DAY .
:F(END)
:F(NOGOOD)
: (LOOP) , : (LOOP)

38 Pattern Matching 2.9

L EN is used to rna tch the various pieces of the data, assigning the strings found to the
variables YR, MO, and DAY. YR, MO, and DAY are assigned values after pattern matching
but before the entire substring matched by DATE is replaced. Only the date portion of
CARD is reformatted.

2.9 SPAN and BREAK

SPAN and BREAK are primitive functions whose values are pattern structures that match
runs of characters. Patterns described by

a run of blanks,
a string of digits, and
a word (run of letters)

can be formed using SPAN as

SPAN(' ')

SPAN('0123456789')

SPAN('ABCDEFGHIJKLMNOPQRSTUVWXYZ')

Patterns described by

everything up to the next blank,
everything up to the next punctuation mark, and
everything up to the next number,

can be formed using BREAK as

BREAK(' ')
BREAK (, , • ; : ! ? ')
BREAK('+-0123456789')

Arguments of BREAK and SPAN must be nonnull strings when pattern matching is
performed.

The pattern structure for SPAN matches the longest string beginning at the cursor that
consists solely of characters appearing in the argument. SPAN may be thought of as
streaming from the cursor until a character not included in the argument is found. SPAN

must match at least one character, or it fails.

BREAK generates a pattern structure that matches the longest string beginning at the
cursor that does not contain a character of the argument. Thus, regarding its argument as
a list of 'break' characters, BREAK streams from the cursor up to, but not including, the
first break character. BREAK must find a break character, or it fails. If the cursor IS

positioned immediately to the left of a break character, BREAK matches the null string.

A bead diagram for the sta temen t

'IT RUNS. ' BREAK (' ') SPAN (' ') BREAK (, • ')

2.9 S PAN and BREAK 39

illustrates how the cursor is moved by SPAN and BREAK.

tIT RUNS. ~REAK(' 'V (SPAN(, , » GREAK('.' V 0
ITt RUNS. ~REAK(' 'HSPAN(' , »

GREAK(' • 'V 0
IT tUNS. ----GREAK (, 'hSPAN(' '>nREAK ('. 'V 0
IT RUNS

f
----GREAK (, 'hSPAN(' '>nREAK('.'~

IT RUNS.

t ~REAK(' 'hSPAN (' '>nREAK ('. 'V &
The next program illustrates the use of both BREAK and SPAN. It compresses tabulated

data, leaving fields separated by single colons rather than an arbitrary number of blanks.
For example, if the input is

ACTINIUM AC 89 227* 1899
ALUMINUM AL 13 26.9815 1825
AMERICIUM AM 95 243* 1944
ANTIMONY SB 51 121.75 1450

the ou tpu t is

ACTINIUM:AC:89:227*:1899:DEBIERNE
ALUMINUM:AL:13:26.9815:1825:0ERSTED
AMERICIUM:AM:95:243*:1944:SEABORG
ANTIMONY:SB:51:121.75:1450:VALENTINE

A program that performs this transformation is

1

DEBIERNE
OERSTED
SEABORG
VALENTINE

&ANCHOR
FIELD
CARD

1; &TRIM
BREAK(' ') . CHARS

INPUT
SPAN(' ')

LOOP
INLOOP CARD FIELD CHARS ':'

PUNCH CARD
END

:F(END)
:S(INLOOP)
: (LOOP)

40 Pattern Matching 2.10

Each input card is repeatedly examined for a run of blanks, and the blanks are replaced
by a colon. When blanks no longer exist, the compression is complete and a new card is
punched.

Some care must be exercised in using BREAK, since it does not match the break
character that stops the streaming. Suppose a program is wanted which restores, to some
degree, the compressed data generated above. Each field of the compressed data can be
broken out using a statement such as

CARD BREAK(':') • FLD ':'

Since BREAK (, : ') does not 'consume' the colon, the literal is included to remove the
break character.

SPAN never matches a string shorter than the maximum span. For example,

'9824761.' SPAN('01234S6789') '6'

cannot succeed since SPAN always matches up to the decimal point.

In the event that components of the pattern beyond BREAK fail, BREAK does not skip
over the break character to continue streaming. In the anchored mode the following
statement never succeeds.

'123,427,642.00' BREAK('.,') LEN(1) '0'

BREAK (, • , ') matches 123 and that is all. Similarly, SPAN does not skip over a matched
span of characters if components of the pattern beyond SPAN fail.

2.10 ANY and NOTANY

ANY (str ing) and NOTANY (str ing) are primitive functions whose values are pattern
structures that match single characters. ANY matches any character appearing in its
argument. NOTANY matches any character not appearing in its argument. Thus, the
pattern structure for ANY (, AEIOU') matches any vowel. The pattern for
NOTANY ('AEIOU') matches any character that is not a vowel. Arguments of ANY and
NOTANY must be nonnull strings when pattern matching is performed.

ANY and NOTANY are fast ways of looking for one of a set of single characters. For
example,

ANY ('AEIOU')

is preferable to

'A' 'E' 'I' '0' 'U'

The call

NOTANy('STRUCTURE')

2.11 TAB, RTAB, and REM 41

is valid even though the characters T, R, and U appear twice. The order of characters IS

irrelevant. NOTANY ('CERSTU') is equivalent to NOTANY (, STRUCTURE') .

A complete syntactic recognizer for SNOBOL4 statements is included in Appendix C.
ANY is used in patterns to recognize several of the syntactic elements.

Identifiers begin with a letter which may be followed by any number of letters, digits,
periods, and underscores. A binary operator is one or more blanks (for concatenation) or a
binary symbol surrounded by blanks. A label begins with a letter or digit which may be
followed by anything up to a blank or semicolon.

If the following assignments are made

OPSYMS '+-./.$&~I?~#%I'
LETTERS 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
DIGITS '01234567S9'
ALPHANUMERICS LETTERS DIGITS

patterns to recognize identifiers, binary symbols, binary operators, and labels are

IDENTIFIER ANY(LETTERS) (NULL I SPAN (ALPHANUMERICS , '»
BINARYSYM ANY(OPSYMS) I ' •• '
BINARYOP SPAN(' ') (NULL I BINARYSYM SPAN(' '»
LABEL ANY(ALPHANUMERICS) BREAK('; ')

2.11 TAB, RTAB, and REM

TAB (integer) and RTAB (integer) are pnmitive functions whose values are pattern
structures that match all characters from the current cursor position up to a specific point
in the subject string. TAB (N) matches up through the Nth character of the subject string.
RTAB (N) matches up to but not including the Nth character from the right end of the
subject string. Stated another way, TAB (N) insures that N characters are matched by
positioning the cursor to the right of the Nth character. RTAB (N) insures that all but N
characters are matched by positioning the cursor to the left of the Nth character from the
end. For example, in the statement

'SNOBOL4' LEN(2) TAB(6)

the pattern matches the substring SNOBOL with TAB (6) matching OBOL. In a similar
statement,

'SNOBOL4' LEN(2) RTAB(1)

the substring SNOBOL is once again matched with RTAB (1) matching OBOL .

RTAB (0) is particularly useful for matching everything to the end of the subject string.
For convenience, the variable REM has as its initial value the pattern structure for
RTAB (0) . Thus, the pattern

LASTS RTAB(S) REM. LS

42 Pattern Matching 2.11

matches the entire subject and assigns the last eight characters as the value of La .

TAB and RTAB require integer arguments when pattern matching is performed. If the
argument of TAB or RTAB is negative, a program error occurs. An argument that would
require moving the cursor left causes failure. The statement

STR LEN(5) TAB(4)

fails because the cursor cannot be moved back by TAB (4) .

TAB and RTAB are particularly valuable in breaking fields out of structured data. The
following data is part of the 1964 list of congressmen from New Jersey.

Column 4

t
1 WILLIAM T. CAHILL
2 THOMAS C. MCGRATH,
3 JAMES J. HOWARD

14 DOMINICK V. DANIELS
15 EDWARD J. PATTEN

Column 30

JR.

t
REP
DEM
DEM

DEM
DEM

Column 36

t
COLLINGSWOOD
MARGATE CITY
WALL

JERSEY CITY
PERTH AMBOY

Suppose a new deck of cards is desired, listing only the names left justified at column 1,
and the post office address right justified at column 44. The following program reads the
cards, breaks out the NAME and PO fields, formats and punches a new deck.

&ANCHOR 1; &TRIM
NAMEANDPO TAB(3)

LOOP CARD INPUT
CARD NAMEANDPO
NAME TRIM(NAME)

1
(TAB (29) • NAME) TAB (35) (REM

:F(END)
:F(ERROR)

PO)

OUTPUT
PUNCH

NAME DUPL(' ',44 - (SIZE(NAME) + SIZE(PO») PO
OUTPUT : (LOOP)

END

Fields are broken out of the input cards using the pattern NAMEANDPO. The NAME field
has trailing blanks that are trimmed before the output line is formatted. The post office
address is obtained using REM and does not have trailing blanks since the input card was
initially trimmed. DUPL is used to insert the proper number of padding blanks between
NAME and PO on output. Output from the program is

WILLIAM T. CAHILL
THOMAS C. MCGRATH, JR.
JAMES J. HOWARD

DOMINICK V. DANIELS
EDWARD J. PATTEN

COLLINGSWOOD
MARGATE CITY

WALL

JERSEY CITY
PERTH AMBOY

2.12 POS and RPOS 43

A bead diagram illustrating the match of NAMEANDPO and the first data card is shown
below.

1 4 30 36
t t t t

t 1 WILLIAM T. CAHILL REP COLLINGSWOOD

~AB(3~ ~TAB(29 1 • NAME) 0AB(3S:~ ~REM • po)

1 tWILLIAM T. CAHILL REP COLLINGSWOOD

--0AB(3HTAB(29l • NAME~ 0AB(3SV ~REM. po)

1 WILLIAM T. CAHILL COLLINGSWOOD

1 WILLIAM T. CAHILL REP tCOLLINGSWOOD

(TAB(29) . NAME) (REM . PO)

1 WILLIAM T. CAHILL REP COLLINGSWOOD
t

(TAB (29) . NAME) (REM . PO)

44 Pattern Matching 2.12

2.12 POS and RPOS

POS (integer) and RPOS (integer) are prImItIve functions whose values are pattern
structures. These pattern structures match the null string if the cursor is at a point in the
subject string specified by the integer argument. POS (N) succeeds, matching the null
string, only if the cursor is positioned just at the right of the Nth character. RPOS (N)
succeeds, matching the null string, only if the cursor is positioned just at the left of the
Nth character from the end of the subject string. POS and RPOS never cause the cursor to
be moved; they test its position. For example, in the statements

&ANCHOR 1
STR SPAN (' ') POS (7)

pattern matching succeeds only if the first seven characters are blanks and the eighth is
not a blank. In the following example,

&ANCHOR 1
STR SPAN(' ') RPOS(7)

pattern matching succeeds only if the seventh character from the end of STR IS nonblank
and everything preceeding it is blank.

POS (0) is a pattern that succeeds only if the cursor is at the left of the subject string.
RPOS (0) succeeds only if the cursor is at the right of the subject string. POS (0) and
RPOS (0) can serve as left and right anchors for any pattern P, as in

ENTIRE POS(O) P RPOS(O)

In the sta temen t

STR ENTIRE

pattern matching succeeds only if P matches all of STR. If, at the time ENTIRE is built, P
has the value

'CAR' 'CART'

Ma tching in the sta temen t

'CARTE' ENTIRE

is illustrated by the bead diagram:

'CARTE'

8
8
(CARTE)

~POS(OV

2.12

~OS(OV~----~>~

8
(CARTE)

POS and RPOS 45

~POS(o)

~OS(OV~----~~~------~>~~POS(O~

8
(CARTE)

~POS(O~

(CARTE)

(CARTE)

46 Pattern Matching 2.12

{A R T E ~POS(o)

.8
(CART)

Arguments for POS and RPOS must have nonnegative integer values when pattern
matching is performed. Negative or noninteger arguments cause a program error.

The following program uses POS, RPOS, SPAN, and BREAK to list cards that do not
conform to a specified format. Cards, to be valid, must have four columns of data right
justified at columns 10, 20, 30, and 40. Data in any field must contain no more than nine
nonblank characters.

SPAN and BREAK are used to locate fields on a card while POS and RPOS verify the
location of the fields. A number indicating the position of an invalid card in the input
deck is concatenated onto the front of an invalid card before printing.

+

&ANCHOR 1
FIELD
FORMAT

OUTPUT

SPAN(' ') BREAK (, ')
POS(O) FIELD POS(10) FIELD POS(20) FIELD
POS(30) FIELD POS(40) SPAN(' ') RPOS(O)
'CARDS WITH IMPROPER FORMAT ARE:'

2.13 FAIL 47

OUTPUT
LOOP N N + 1

CARD INPUT :F(END)
CARD FORMAT :S(LOOP)
OUTPUT '# ' N DUPL(' , , 3 - SIZE (N)) CARD : (LOOP)

END

Input supplied to the program for test purposes is

XXXXXXXXX XXXXXXX XXXXX X
XXXXXXX XXXXX X

XXXXXXXXX XXXXXXX XXX XX X
XXXXXXXXX XXXXX X
XXXXXXXXX XXXXXXX XXX XX X
XXXXXXXXX XXXXXXX XXXXX
XXXXXXXXX XXXXXXX XXXXX X
XXX XXX XXX XXXXXXX XXXXX XX
XXXXXXXXX XXXXXXX XXXXX X

XXXXXXXXXX XXXXXXX XXXXX X
XXXXXXXXX XXXXXXX XXXXX X
XXXXXXXXX XXXXXXX XXXXX X X

Ou tpu t from the program is

#2 XXXXXXX XXXXX X
#4 XXXXXXXXX XXXXX X
#6 XXXXXXXXX XXXXXXX XXXXX
#8 XXXXXXXXX XXXXXXX XXXXX XX
#10 XXXXXXXXXX XXXXXXX XXXXX X
#12 XXXXXXXXX XXXXXXX XXXXX X X

2.13 FAIL

FAIL is a variable whose initial value is a primitive pattern that always fails to match.
FAIL causes the scanner to seek alternatives.

Consider the following statements.

&ANCHOR 0
'MISSISSIPPI' ('IS' 'SI' I 'IP' 'PI') $ OUTPUT FAIL

Normally, the pattern would match the first IS, print it, and terminate successfully.
However, FAIL causes the scanner to back up after printing the IS to look for another
alternative. S I is found and printed, and again FAI L causes the scanner to back up.
Thus, FAIL causes the scanner to find and print all six substrings of MISSISSIPPI that
the pattern

('IS' I 'SI' I 'IP'

matches before terminating in failure.

'PI')

48 Pattern Matching 2.13

In general, the behavior of the scanner during any pattern match may be observed
using a sta temen t of the form

STR PAT $ OUTPUT FAIL

FAIL is generally used when a programmer wishes to force the scanner to try a number
of alternatives even though some may succeed. In the following example, strings are read
from cards and printed only if

(1) the string contains at least one A,

(2) the string contains at least one B, and
(3) the string does not contain a C.

The behavior is similar to the logical AND.

&ANCHOR 1 ; &TRIM
OUTPUT 'ACCEPTABLE WORDS
OUTPUT

1
ARE: '

PAT (BREAK (, A ') $ A I BREAK ('B')
+
LOOP

BREAK ('C')
STRING
A
B
C

STRING PAT

, ,
INPUT

$ C) FAIL

(DIFFER(A) DIFFER(B) IDENT(C»
OUTPUT STRING

END

For the input strings

ALPHA
BETA
ABRACADABRA
ABSOLUTELY
AWFUL
ALBEIT

the output is

ACCEPTABLE WORDS ARE:

BETA
ABSOLUTELY
ALBEIT

$ B I

:F(END)

:F(LOOP)
: (LOOP)

PAT uses BREAK to look for the characters A, B, and C. If one is found, the
corresponding variable is assigned a nonnull value. FAIL forces the scanner to check all
three alternatives of PAT, whether they succeed or not. Thus, if the string contains an A
and B but not C, the values of the variables A and B will be nonnull and the value of C

will be null. DIFFER and IDENT are used to check the values of A, B, and C.

2.15 ABORT 49

2.14 FENCE

The variable FENCE has a primItIve pattern structure as its initial value. FENCE

matches the null string when encountered by the scanner moving left to right through a
pattern. If a subsequent failure causes the scanner to back up to FENCE, seeking an
alternative, the pattern match is terminated. Considering FENCE as a bead, the needle
passes freely from left to right. Attempting to pull the needle back through FENCE causes
failure of pattern matching.

Consider the following statements:

&ANCHOR
'BERATES' ('BE' 'GE' 'FRE') ('TS' 'T')

BE matches, and both TS and T fail. At this point the scanner backs up and tries GE and
FRE, both of which fail. Looking at the pattern, it is obvious that GE and FRE should not
be tried because the first two characters are known to be BE.

Inserting FENCE between the groups of alternatives eliminates the problem.

'BERATES' ('BE' 'GE' 'FRE') FENCE ('TS' 'T')

Now, if BE matches, FENCE keeps the scanner from needlessly backing up to look at GE

and FRE.

FENCE can be used to temporarily anchor the scanner in a program that otherwise
operates in the unanchored mode. Inserting FENCE before PAT in the statement

STR (FENCE PAT)

causes pattern matching to fail if PAT does not match beginning with the first character
of STR.

2.15 ABORT

ABORT is a variable whose initial value is a primItIve pattern structure that causes
immediate failure of the entire pattern match. No alternatives are tried, and the statement
fails.

ABORT is useful in constructing conditional pattern matching statements. For instance, in
processing SNOBOL4 source decks as data, the following pattern ignores comment cards,
but matches all others against the pattern CARD.

CARDFORM

Similarly, the pattern

SHORTPAT

'*' ABORT

LEN(12) ABORT

CARD

PAT

permits an attempt to match PAT only if the subject string is less than 12 characters long.

50 Pattern Matching 2.16

In general, a pattern described by a statement of the form, 'has characteristics of P but
not Q,' can be implemented by

PNOTQ Q ABORT P

2.16 U nevaluated Expressions

The unary operator * postpones the evaluation of its operand. If E is an expression,
then *E is an unevaluated expression. The unevaluated expression is evaluated when

(1) the scanner encounters * E as part of a pattern structure, or
(2) *E is used as the argument of the primitive function EVAL.

In this chapter, unevaluated expressions, often simply called expressions, are considered
only in the context of pattern matching. Chapter 3 describes EVAL in more detail.

If an unevaluated expression appears as part of a pattern, the expression is evaluated
when encountered during pattern matching. If evaluation of the expression is successful,
the value becomes part of the pattern structure and pattern matching continues. If
evaluation of the expression fails, the scanner backs up, seeking alternatives. Failure during
evaluation of an expression does not necessarily cause failure of the entire pattern match.

A typical use for unevaluated expressions is motivated by the following example. Two
strings are read as input data and a list is made of the words appearing in both strings.
The list is generated by obtaining words one at a time from the first string using the
pattern WORD and using the pattern

W ANY (' .,')

to determine if each word appears in the second string.

LOOP

&ANCHOR
WORD
STRING1
STRING2
STRING1
STRING2
LIST

OUTPUT OUTPUT
END

For the input strings

WORD
W ANY (' .,')

LIST W
LIST

THESE TWO STRINGS ARE ALMOST ALIKE.
THE TWO STRINGS AREN'T ALIKE.

the printed output is

TWO, STRINGS, ALIKE,

:F(ERROR)
:F(ERROR)
:F(OUTPUT)
:F(LOOP)
: (LOOP)

2.16 U nevaluated Expressions 51

As programmed above, a pattern structure for
,. , W ANY (' .,')

must be built during each pass through the loop because of the structure for ANY.
Constructing the pattern outside of the loop is not appropriate either, since the value of W

changes for each iteration of the loop. Using an unevaluated expression in place of the
variable W does permit the pattern structure to be constructed outside of the loop. As
illustrated below, the pattern structure for FINDW contains *w in place of W. The
expression *w is not evaluated until needed in pattern matching. The value of W used
during pattern matching is the current value, in this case the value just assigned by
matching WORD.

LOOP

OUTPUT
END

&ANCHOR
WORD
FINDW
STRING1
STRING2
STRING1
STRING2
LIST
OUTPUT

0;
BREAK (,

*W
INPUT

WORD
FINDW
LIST W

LIST

&TRIM . , ,) .
ANY (,

INPUT

W SPAN(,
. , ,)

. , ,)
:F(ERROR)
:F(ERROR)
:F(OUTPUT)
:F(LOOP)
: (LOOP)

Unevaluated expressions are valid arguments for pnmItIve pattern-valued functions. A
pattern structure for the function is built, but the argument remains unevaluated until
pattern matching is performed.

The following program is similar to the one above, except that characters common to
two strings are sought rather than words. Each character of the first string is obtained
using the pattern CHAR. The pattern FINDCH uses the unevaluated expression *CH as the
argument of BREAK. When FINDCH is used in pattern matching, the current value of CH,
that just obtained by matching CHAR, becomes the break character.

&ANCHOR 1 ; &TRIM
CHAR LEN (1) . CH
FINDCH BREAK(*CH)
STRING1 INPUT
STRING2 INPUT

LOOP STRING1 CHAR
STRING2 FINDCH
LIST LIST CH

OUTPUT OUTPUT LIST
END

For the input strings

TWO STRINGS FOR TESTING
ABCDEFGHIJKLMNOPQRSTUVWXYZ

1

:F(ERROR)
:F(ERROR)
:F(OUTPUT)
:F(LOOP)
: (LOOP)

52 Pattern Matching

the ou tpu t string is

TWOSTRINGSFORTESTING

2.16.2

In pattern matching, unevaluated expressions can be used In a variety of ways as
illustrated by the following examples.

2.16.1 Example 1

PAIR is a pattern that matches any two consecutive identical characters. PAIR uses
LEN (1) to match any character, and immediate value assignment to assign the character
as value of X. The expression *x is then evaluated and must match the same character as
LEN (1) .

END

PAIR (LEN(1) $ X *x) . OUTPUT
'COOK' PAIR
'COMMON' PAIR
'AARON' PAIR
'CHICKADEE' PAIR

Ou tpu t from the program is:

00
MM
AA
EE

2.16.2 Example 2

Given any subject string STR and any pattern P, BIGP finds the longest substring of
STR that P matches.

BIGP (*p $ TRY *GT(SIZE(TRY),SIZE(BIG») $ BIG FAIL

BIGP uses two variables, BIG and TRY. During pattern matching, the value of BIG is
the longest substring found. Before pattern matching, BIG must be initialized to the null
string. TRY is assigned every substring that the pattern P matches. If TRY is longer than
BIG, the value of BIG is updated.

BIGP utilizes unevaluated expressions in two ways. *p allows BIGP to be constructed
without specifying the value of P. The value of P is determined during pattern matching.
The predicate *GT(SIZE(TRY) ,SIZE(BIG» is evaluated during pattern matching
whenever *p matches a substring. It compares the size of TRY with the size of BIG. If the
new substring is shorter, the predicate fails. Failure of a predicate or function during
pattern matching causes the scanner to back up seeking alternatives. If the new substring

2.16.3 Example 3 53

is longer, the predicate succeeds, returning the null string as value. This null string is
immediately matched. The variable BIG is then assigned the new substring as value.
FAIL causes the scanner to back up and look for another substring matched by P.

The following is a test program for BIGP.

BIGP (*p $ TRY *GT(SIZE(TRY),SIZE(BIG») $ BIG FAIL
STR 'IN 1964 NFL ATTENDANCE JUMPED TO 4,801,8841 '

+ 'AN INCREASE OF 401,810.'
P SPAN('0123456189, ')
BIG
STR BIGP
OUTPUT 'LARGEST ,NUMBER IS BIG
P SPAN('ABCDEFGHIJKLMNOPQRSTUVWXYZ')
BIG
STR BIGP
OUTPUT 'LARGEST WORD IS

END

The output is

LARGEST NUMBER IS 4,807,884
LARGEST WORD IS ATTENDANCE

2.16.3 Example 3

BIG

Recursive definitions of patterns are possible using unevaluated expressions. The pattern
structure for

P P 'z' 'y'

is constructed using the previous value of P. If P was null, the new value of P matches
the strings Y and Z .

If the value of P is left unevaluated as in

P *p 'z' 'y'

the value of P at pattern matching time (which is *p 'z' I 'y') replaces *P, giving rise
to a recursive definition. The pattern P matches either Y or anything matched by P

followed by Z. Therefore, since P matches Y, it also matches YZ. Since P matches YZ, it
also matches Y Z Z, etc. Thus, P rna tches strings of the form

Y

YZ
YZZ
YZZZ

54 Pattern Matching

A test program for the recursive definition of P follows.

P *p 'z'
PO P OUTPUT
'y' PO
'YZZZ' PO
'XYZ' PO
'YZZX' PO
'AYZZZZB' PO

END

Ou tpu t from the program is

Y

YZZZ
YZ
YZZ
YZZZZ

2.16.4 Example 4

'y'

2.16.5

Recursive definitions can be quite complicated, as In the following example, which
recognizes a simple class of arithmetic expressions.

&ANCHOR
VARIABLE ANY ('XYZ')
ADDOP ANY ('+-')
MULOP ANY ('*/')
FACTOR VARIABLE I ' (, *EXP ,) ,
TERM FACTOR I *TERM MULOP FACTOR
EXP ADDOP TERM I

LOOP STRING TRIM{INPUT)

NOGOOD
END

STRING
OUTPUT
OUTPUT

EXP RPOS{O)
STRING
STRING

Output for typical data is

X+y*{Z+X) IS AN EXPRESSION.
X+Y+Z IS AN EXPRESSION.
XY IS NOT AN EXPRESSION.

TERM *EXP ADDOP

IS AN EXPRESSION.
,

IS NOT AN EXPRESSION.
,

TERM
:F(END)
:F{NOGOOD)
: (LOOP)
: (LOOP)

2.16.5 Example 5 55

2.16.5 Example 5

A useful form of recursive pattern definition is one that seeks repetItIons of a basic
pattern. In the following example, input cards are read and leadering (consisting of
alternating blanks and periods) is inserted for runs of three or more blanks.

The pattern P matches an odd number of blanks by seeking repetitions of two blanks
followed at the end by a single blank. PAT uses P to match an odd number of blanks that
is at least three in length. The actual replacement of blanks by leadering takes place In
the statement labelled LOOP 1 that is executed once for each span of blanks in a card.

'TRIM
P *p

, ,

PAT QlY P QlX
LOOP CARD INPUT

OUTPUT CARD
LOOP1 CARD PAT DUPL (, , ,(X - y) .

OUTPUT CARD
END

For the input data

INSERT
TRY TWO BLANKS
TRY THREE BLANKS
TRY FOUR BLANKS
TRY FIVE BLANKS
TRY SEVERAL
FINALLY, TRY

the output is

INSERT
INSERT .
TRY TWO
TRY TWO
TRY THREE
TRY THREE
TRY FOUR
TRY FOUR
TRY FIVE
TRY FIVE
TRY
TRY . . .
FINALLY,

BLANKS
BLANKS

BLANKS
. BLANKS

BLANKS
. BLANKS

BLANKS
. . BLANKS

SEVERAL
. SEVERAL

TRY
FINALLY, TRY

. . .

LEADERING

BREAKS

LEADERING
LEADERING

BREAKS
BREAKS

/ 2) , ,

:F(END)

:S(LOOP1)
: (LOOP)

A RIGHT JUSTIFIED ONE.

A RIGHT JUSTIFIED ONE.
A RIGHT JUSTIFIED ONE.

56 Pattern Matching 2.17

2.17 ARB

ARB is a variable whose initial value is a primItive pattern structure that matches zero
or more characters. When first encountered by the scanner moving from left to right, ARB
matches the null string. When 'backed into' on subsequent occasions, ARB increases the
size of the substring it matches by one. ARB fails only when it can no longer increase the
length of the substring it matches.

ARB can be used in the construction of patterns typified by the statement, 'any string
containing both CAT and DOG.' Nothing is said about the order in which they appear or
their separation. A suitable pattern is

CATANDDOG 'CAT' ARB 'DOG'

Matching CATANDDOG against the strings

CATALOG FOR SEADOGS
DOGS HATE POLECATS
CATDOG

ARB matches the substrings

ALOG FOR SEA
S HATE POLE

and the null string, respectively.

'DOG' ARB 'CAT'

The pattern structure for ARB has implicit alternatives. When 'backed into' because of
failure, ARB attempts to find another suitable substring rather than fail. Only when all
implicit alternatives have failed is the needle passed to an explicit alternative or back to a
previously successful component.

The following definition of ARB is equivalent to the initial definition given to ARB.

ARB NULL LEN (1) *ARB

A bead diagram for ARB is

~uL0

8 C*ARa)

If the bead for *ARB is replaced with the bead diagram for ARB, an expanded bead
diagram for ARB becomes

2.18 ARBNO

8
8 (NUL0

8 (NULL)

8 (NUL0

I t can be seen from the bead diagram that

(1) the null string is matched on the first attempt,
(2) subsequent attempts increase the substring matched by one character, and
(3) failure occurs when the size of the substring cannot be increased.

57

ARB, although natural, cannot be used with impunity. For example, it should not be
used as the first component of a pattern unless associated with a variable for value
assignment. The statement

STR ARB PAT

should be replaced by

STR PAT

which, when executed In the unanchored mode, behaves In exactly the same way, but IS
much faster.

ARB should not be used to break fields out of a string if they are separated by known
delimiters. For example, the statement

STR BREAK(', ') . FIELD

is faster than the statement

STR ARB . FIELD

although they accomplish the same thing.

58 Pattern Matching 2.18

2.18 ARBNO

ARBNO is a mnemonIC for 'arbitrary number of.' ARBNO (pattern) is a primItIve
function whose value is a pattern structure that matches zero or more consecutive
occurrences of strings matched by its argument. When encountered by the scanner in the
forward direction, ARBNO (pa t tern) matches the null string. When 'backed into,' it tries
to increase the length of the substring matched by its argument. In the statements

&ANCHOR 1
SUBSTR ARBNO(LEN(3») RPOS(O)

the pattern match succeeds only if the length of SUBSTR is zero or a multiple of three.

The value of ARBNO (p) is a pattern structure with implicit alternatives. It is equivalent
to the pattern structure defined in the statement

ARBNOP NULL P *ARBNOP

A bead diagram having a form similar to that for ARB illustrates the implicit alternatives
ofARBNOP orARBNO(P).

In the following example the argument of ARBNO has several alternatives.

&ANCHOR
P '1234' I ' 123 '
ARBNOTEST ARBNO(P)
'123412341' ARBNOTEST

END

I
$

'234'
OUTPUT

I ' 341 ' '412'
RPOS(O)

2.18 ARBNO 59

The following bead diagram for ARBNOTEST illustrates how alternatives are handled. The
output from the program above is a blank line (resulting from the null string), and then

1234
12341234
1234123
123
123412
123412341

(
NUL0
8 (

NUL0
8 (NULL)

B 8

B 8 B
8

BREAK and SPAN can frequently be used in place of ARBNO. For example,

ARBNO(' ')

can usually be replaced by

SPAN(' ')

or, if necessary,

NULL SPAN (' ')

ARBNO is relatively slow and should be avoided if some other pattern will suffice.

60 Pattern Matching 2.19

2.19 BAL

The initial value of the variable BAL is a prImItIve pattern structure that matches any
nonnull string of characters which is balanced with respect to parentheses. BAL matches

X
XYZ
(A+B)
A(B*C) (E/F)G+H

BAL does not match

)A+B(
((A+B)

A pair of patterns that are equivalent to BAL are

BALEXP
BAL

NOTANY(' ()') I '(' ARBNO(*BALEXP) ')'
BALEXP ARBNO(BALEXP)

The value of BALEXP matches a single balanced expression that consists of a single
character that is neither an open nor closed parenthesis, or it matches an arbitrary
number of balanced expressions (possibly none) enclosed in parentheses. BAL itself matches
the concatenation of one or more single balanced expressions.

Insight into the behavior of BAL can be gained from use of the following pattern:

ALLBAL BAL $ OUTPUT FAIL

When used in the unanchored mode, a statement such as

'((A+(B*C»+D)' ALLBAL

prints out every balanced expression. The output for this case is

((A+ (B*C)) +D)
(A+(B*C))
(A+(B*C»+
(A+(B*C»+D
A

A+
A+(B*C)
+
+(B*C)
(B*C)
B

B*
B*C

*

2.20

*C
C

+
+D
D

SUCCEED 61

BAL facilitates the manipulation of algebraic and functional expressions. Programs using
BAL to translate algebraic expressions from Polish to infix notation, and vice versa, appear
in Chapter 4.

2.20 SUCCEED

The variable SUCCEED has a pattern structure as its initial value. SUCCEED matches
the null string when first encountered by the scanner moving left to right through a
pattern. If a subsequent failure causes the scanner to back up to SUCCEED, seeking an
alternative, SUCCEED again matches the null string. Thus, SUCCEED always matches the
null string, both in the forward direction and when alternatives are sought. SUCCEED has
a bead representation where all implicit alternatives are the null string.

Since the number of implied alternatives is infinite, the scanner can never back through
SUCCEED.

Practical uses for SUCCEED seem limited. However, the light-hearted programmer can
use SUCCEED and FAIL to produce pattern matches that never terminate:

SAWTOOTH SUCCEED (LEN(1) ARB) $ OUTPUT FAIL

62 Pattern Matching 2.21

Since !t'AIL repeatedly causes the scanner to back up and retry ARB, the subpattern

LEN(1) ARB

matches first one character, then two, and so on up to the length of the subject string.
Each substring matched by this subpattern is printed. Eventually ARB cannot match a
longer string and fails, causing the scanner to back into SUCCEED. SUCCEED matches the
null string and the entire process repeats itself.

If the pattern SAWTOOTH is used in the statement

'xxxxxx' SAWTOOTH

pattern matching does not terminate, and the following output is produced.

x
xx
xxx
xxxx
xxx XX
xxxxxx
x
xx
xxx
xxxx
xxxxx
xxx XXX
x
xx

SAWTOOTH can never succeed because of FAIL, and can never fail because of SUCCEED.

2. 21 Quick~can Mode

In the quickscan mode, the scanner uses a number of heuristics to avoid looking at
alternatives that cannot possibly lead to a successful match. Hence, the scanner operates
on the assumption that the programmer is not interested in how matching is done, but
only in the outcome. Typically, patterns concerned with how matching is done employ
immediate value assignment or unevaluated expressions. Patterns that do not use these
features can and should be used in the quickscan mode. Patterns using immediate value
assignment and unevaluated expressions may produce unexpected results in the quickscan
mode. This section describes the heuristics used by the scanner to speed up pattern
matching. It points out where unexpected results may arise and what can be done about
them. The keyword &FULLSCAN initially has a zero value, signifying the normal or
quickscan mode of pattern matching.

2.21 Quickscan Mode 63

This chapter, so far, has been concerned with the basic components of patterns. No
consideration has been given to the context in which a component occurs. The basic
notion of the quickscan mode is quite simple: Before a component or bead is matched, its
context is examined to see if matching should be attempted, terminated, or an alternative
sought. The easiest question to answer is whether the number of characters remaining in
the subject string is sufficient to successfully complete a match. Consider the following
example.

BD ('BE' 'B') ('AR' 'A') ('DS' 'D')
'BEAD' BD

Four of the possible strings matched by BD are too long: BEARDS, BEARD, BEADS, and
BARDS. The scanner should avoid them if possible. In the bead diagram which follows, a
number is associated with each bead. The number represents the minimum number of
characters necessary to match that bead and anything that follows. If the number is
greater than the number of characters remaining in the subject string, the scanner does
not attempt to match the bead against the subject string.

3 2 1

2

1

64 Pattern Matching 2.21

The components AR in step 2 and DS in step 3 are not tried. AR cannot match since two
characters remain in the subject string and at least three are necessary. Similarly, DS is
not tried because one character remains and at least two were required.

In the unanchored quickscan mode, the scanner does not move the initial posItIon of
the cursor if insufficient characters remain in the subject string. Consider the following
example.

&ANCHOR 0
'BATS' BD

Matching fails with the cursor initially positioned to the left of the subject string. It is
then moved to the left of the A. Since three characters remain in the subject string, only B

is tried. Failing to match B, the scanner recognizes that further repositioning of the cursor
is useless.

3

3 2 1

2.21 Quickscan Mode 65

B A T S 8 q 8 2 t 3

3 8 2 G 1

BAT S

t
~ V 3 '-v 2

2

1

66 Pattern Matching 2.21

B(T S 8 q 8 3 8 2

~ 3 8 2 G 1

In the quickscan mode, the scanner distinguishes between two kinds of failure: (1)
failure to match, as when X is compared to T; and (2) failure because too few characters
remain in the subject string. In the latter case, the scanner does not allow ARB to match a
longer substring, nor does it move the initial position of the cursor in unanchored mode.
Consider the following pattern matching statement executed in the unanchored mode:

'CAT' ARB 'X'

Clearly the match cannot succeed. When the scanner reaches the state shown in the
diagram below, ARB can no longer extend the substring it matches. ARB indicates failure
because of too few characters. The scanner does not reposition the cursor, and matching
fails.

CAT

t (NULr) 1
1

~EN (1 ~ GULL)
2 1

1

A similar situation arises in the anchored mode for such patterns as

'CAT' ARB ARB 'X'

The first ARB matches the null string. The second ARB matches the null string, then C,

and finally CA before it fails for lack of room. The scanner does not seek an implicit
alternative for the first ARB, and terminates pattern matching in failure.

2.21 Quickscan Mode 67

In the quickscan mode, the scanner recognizes a special case for ARBNO. When backed
into, ARBNO (p) tries to extend the substring matched by finding another instance of P. If
P is null or has null alternatives, behavior like SUCCEED may result. The scanner tries to
prevent this. When backed into, ARBNO (p) examines the substring matched by the last
instance of P. If this substring is null, ARBNO does not try to find an additional instance
of P, but backs up to the last instance of P and seeks an alternative to the null string.

For example, in the quickscan mode, ARBNO (NULL) looks like NULL I NULL. The first
NULL appears because NULL is always attempted independently of the argument to
ARBNO. The second NULL comes from the argument.

Behavior of ARBNO (NULL I ' X') can be deduced from the output generated by the
following statement.

'.xxx'
The ou tpu t is

*
* *x
*x
*xx
*xx
*xxx
*xxx

('.' ARBNO(NULL I 'X'» $ OUTPUT FAIL

Left recursion in a pattern structure, as illustrated by

P .p 'z' 'y'

could be a problem because it might put the scanner in a loop. In the quickscan mode,
recursive loops are broken whenever possible. Most looping problems are avoided by a
look-ahead feature that compares the number of characters remaining with the number of
characters required together with the assumption that any unevaluated expression matches
a t least one character.

As an example, consider the following statement:

'YZZ' P

It is convenient to think that whenever the bead for.P is encountered, it expands into a
bead diagram for the current definition of P. The process is illustrated by the following
diagram.

68 Pattern Matching

y z Z

t

y

t
z Z

~2

0 1

~3

O 2

0 1

8 4

-0 3

O 2

0 1

2.21

8 1

O 2 8 1

8 3 8 2 0 1

2.21 Quickscan Mode 69

2

3

1

3

The final state is

70 Pattern Matching 2.21

3

When the mInImum number of characters required by *p reaches four, the recursive loop
is broken and the alternative Y is tried, leading to a successful match.

The assumption that *p matches at least one character does not affect the outcome of
the previous example. Had zero characters been assumed, one more iteration of the loop
would have been required, and the final diagram would have been as follows.

3

However, the one-character assumption keeps the following equivalent statements from
looping.

2.21

P
Q

*p *Q
'Z'

Quickscan Mode 71

'V'

If both *p and *Q can match the null string, the bead diagram grows without limit. With
the one-character assumption, the two equivalent examples above behave similarly.

Assuming a one-character minimum for unevaluated expressions can lead to difficulties:

PAT *W *X *y *Z

The shortest string PAT matches is of length four. The following match, straightforward as
it seems, fails.

w 'C'
X 'A'
Y 'T'
Z
'CAT' PAT

As seen in the next section, the match succeeds if the fullscan mode is used.

Patterns such as BIGP, described in the section on unevaluated expressions, can produce
unexpected results in the quickscan mode.

BIGP (*p $ TRY *GT(SIZE(TRY),SIZE(BIG») $ BIG FAIL

The expression *GT(SIZE(TRY) ,SIZE(BIG» is assumed to require one character when,
in fact, it matches the null string. Therefore, the quickscan mode prevents *p from
matching any substring which includes the last character of the subject string. Hence, in
the statements

P SPAN('0123456789, ')
'1234.56 789,312' BIGP

the final value of BIG is 1234 rather than the expected 789,312. Again, as seen In the
next section, the fullscan mode prevents such difficulties.

In summary, the following heuristics are used in the quickscan mode to improve the
efficiency of pattern matching:

(1) continual comparison of the number of characters remaining in the subject string
against the number of characters required,

(2) repositioning of the cursor in the unanchored mode only if sufficient characters
remain,

(3) refusal to extend the substring matched by ARB or to reposition the cursor if
failure is caused by too few characters,

(4) refusal to extend substring matched by ARBNO (p) if the last match of P was the
null string, and

72 Pattern Matching 2.22

(5) assumption that unevaluated expressions must match at least one character.

2.22 Fullscan Mode

In the fullscan mode, all heuristics to improve pattern matching efficiency are turned
off. Each component ofa pattern is matched independently of its context. Furthermore,
when unanchored, the initial position of the cursor is moved through the entire subject
string. The fullscan mode of pattern matching is entered by assigning a nonzero value to
the keyword FULLSCAN .

The following example, which prints all possible nonnull substrings of a subject, suggests
applications of the fullscan mode.

&ANCHOR 0
&FULLSCAN 1
'12345' (LEN(1) ARB) $ OUTPUT FAIL

END

Ou tpu t from the program is:

1
12
123
1234
12345
2
23
234
2345
3
34
345
4
45
5

If & FULLSCAN had been zero, the initial POSItIon of the cursor would not have been
moved, and only the first five lines would have been printed.

An example, which can only be done in the fullscan mode, is back referencing. This
pattern succeeds only if a subject string has two identical nonoverlapping substrings of
length 3:

BACKR LEN(3) $ X ARB *X

The sta temen t

'ABCDEFGBCDA' BACKR

succeeds and X has the value BCD. The statement above does not work In the quickscan

2.22.1 Example 73

mode. When LEN (3) matches ABC, ARB eventually matches DEFGBCD and then fails
because X is assumed to match one character. The condition is recognized in the
quickscan mode, preventing the initial position of the cursor from being moved. Hence,
matching fails without BCD ever being matched by LEN (3) .

In the fullscan mode, the tests of ARBNO for null arguments are turned off.
ARBNO (NULL) and ARBNO (NULL I 'X') behave like SUCCEED. The statement

'*XXX' ('*' ARBNO(NULL 'X'» $ OUTPUT FAIL

causes the scanner to loop, generating output lines consisting of a single * .
Recursive patterns such as

P *p 'Z' 'y'

do not work because the recursive loop is not broken.

Patterns such as

PAT *w *x *y *z

work for subject strings having fewer than four characters because the one-character
assumption no longer holds.

The following example compares the results of a program run In the quickscan and
fullscan modes.

2.22.1 Example

This program prints combinations of characters taken three at a time from a subject
string.

+

F
END

DEFINE('F(X,Y,Z)')
COMB3 LEN(1) $ A

, 123456'
OUTPUT

*F(A,B,C)
COMB3

X Y Z

ARB
FAIL

LEN(1) $ B ARB LEN (1) $ C

: (END)
: (RETURN)

74 Pattern Matching

Exercises

Output from Quickscan

123
124
125

Output from Fullscan

123
124
125
126
134
135
136
145
146
156
234
235
236
245
246
256
345
346
356
456

Exercise 2.1: Count the total number of punctuation marks in text, given on a senes of
input cards. Define a punctuation mark to be a period, comma, colon, semicolon, question
mark, exclamation mark, left parenthesis, right parenthesis, apostrophe, or quotation mark.

Exercise 2.2: Write a pattern that matches words beginning with C or CR, followed by 0

or 00 or EE, followed by P or PS. Construct the pattern so that each successful step in
the pattern matching is explicated by a printed output.

Exercise 2.3: Write a program that identifies and prints all words of a given length.
Assume that the length is given on the first input card and that text occurs on following
cards. Make appropriate assumptions about the format of the first card, the characters
that are assumed to delimit words, and how the text appears on successive cards.

Exercise 2.4: Let the label for an assembly language statement begin in column 1 and
consist of at most eight characters, of which the first is a letter and the remainder are
letters or digits. The label is followed by at least one blank. A statement without a label
begins with a blank. Write a program that reads in assembly language statements and
prints those statements with invalid labels.

Exercise 2.5: Construct a pattern that matches a SNOBOL4 string literal.

Exercise 2.6: Write a recognizer for strings of the form

Exercises 75

ABC,AABBCC,AAABBBCCC,

Exercise 2.7: Write a pattern that matches strings that are repetItIons of a nonnull
substring (e.g. 1111111 , 123123123, abcdefabcdefabcdef) .

Exercise 2.8: Construct a pattern that matches strings that are FORTRAN format
Hollerith field specifications (i.e. a positive integer n, followed by the letter H, and
followed by n characters).

Exercise 2.9: Write a program that determines whether a string is palindromic, i.e.,
whether it reads the same forward and backward (e.g. MADAM).

CHAPTER 3

Primitive Functions, Predicates, and Operations

3.1 Introduction

A function is an operation upon a number of arguments. The value of a function is
computed by a procedure. There are two types of functions: primitive and programmer­
defined. Primitive functions are implemented by procedures built into the SNOBOL4
system. Procedures for programmer-defined functions, described in the next chapter, are
included in the source program.

Syntactically, a function call is recognized as an identifier used for a function name,
followed by a list of arguments separated by commas and enclosed in parentheses. An
example is

IDENTCA, 'TREE')

An argument of a function call may be any expression. Execution of a function call causes
the expressions for the arguments to be evaluated and the values passed to the procedure.
Thus, the procedure gets only the values of the arguments and not the expressions.
Consider the following statements:

A 'APPLE'
B 'SEED'
APPLE 'FRUIT'
SEED 'TREE'
APPLESEED 'FRUITTREE'
IDENTC$A $B,$CA B»

FRUITTREE is the value of each argument to IDENT. The two strings FRUITTREE are all
that the procedure for IDENT knows of its arguments.

A variable such as C is an expression, albeit a trivial one. Thus, if

C 'CLAW'
D 'TIGER'

the call

IDENTCC,D)

passes the strings CLAW and TIGER, the values of C and D, as arguments to the procedure

76

3.2.1 LT,LE,EQ,NE,GE, andGT 77

for IDENT. Furthermore, since the procedure for IDENT knows nothing about C and D, it
cannot possibly change their values.

Any omitted argument is assigned the null string as value. Thus, IDENT (E) compares
the value of E and the null string. The use of too many arguments in the call of a
primitive function is an error.

A function call is an expression and has a value. The value of a function call may be
of any data type. A programmer must always be aware that a function call has a value,
even if it is the null string. Otherwise, as later examples illustrate, unexpected results may
arise.

A function call may succeed or fail, depending upon the outcome of the associated
procedure. If the procedure for a function is successful, the value computed by the
procedure becomes the value of the function call. If the procedure fails, the function call
fails.

This chapter only describes a few primItive functions. Others dealing with pattern
matching, input and output, arrays, and programmer-defined data types, and so forth, are
described in other chapters. A list of functions appears in Chapter 7 and page references
are included in the index.

3.2 Numerical Predicates

Several primitive functions are concerned with testing relations between arguments.
These functions, which succeed or fail depending on whether the relation is true or false,
are called predicates. If a predicate is successful, the value of the call is the null string.

3.2.1 LT, LE, EQ, NE, GE, and GT

A predicate, such as GE (X, Y), succeeds if X stands in the given relation to Y. The
arguments to numerical predicates may be integers or reals. Thus, if

X 17.0
Y '3'

then GE (X, y) succeeds and LT (x, y) fails. If an argument is omitted, it is assigned the
null string, which is treated as zero. If M is 2, then EQ (M) fails, but EQ (M - 2) succeeds
and returns the null string. If a real number IS compared with an integer, the integer IS
converted to real before the comparison.

Numerical predicates frequently are used for loop control. For example, if N has as its
value the number of times a loop has been executed and M is the limit on N, the following
statement checks N against M, and increments N if it is less than M.

N LT(N,M) N + 1 :S(LOOP)F(OUT)

78 Primitive Functions, Predicates, and Operations 3.3

Evaluation of the object expression takes place before assignment is made. Thus, the
evaluation of LT (N, M) takes place before N is incremented. If LT (N, M) succeeds, the
value is the null string. Concatenation of the null string with N + 1 does not affect N + 1,
so N is properly incremented. Furthermore, since the statement succeeds, control passes to
LOOP. If LT (N, M) fails, N is not incremented and control passes to the statement labelled
OUT.

Placement of predicates in a statement is important. Consider the following statement,
which looks as if it might be suitable for loop control.

N LT(N,M) N + 1 :S(LOOP)F(OUT)

The statement does not properly increment N. If N is 2 and M is 4, the value of N after
execution of the statement is 32. The predicate LT (N , M), situated where it is, is treated
as a pattern. Since LT (N , M) is null, the pattern matches the null string. The null string
matched in the value of N is replaced by N + 1, leading to the unexpected result 32 .

3.2.2 INTEGER

It is frequently desirable to test whether the value of a variable is an integer. The
predicate test INTEGER (X) succeeds if the value of X is an integer and fails otherwise.
Thus,

INTEGER(X)

succeeds for

X 3
X '3'

bu t fails for

X 'INT'
X '3.0'

INTEGER is typically used to check data coming from the input stream. The following
statements reject cards which do not contain a single integer left justified on the card.

&TRIM 1
LOOP CARD INPUT

INTEGER(CARD)
:F(END)
:S(PROCESS)F(REJECT)

Since the null string is equivalent to the integer 0, a blank card passes the integer test.

3.3.1 IDENT and DIFFER 79

3.3 Object Comparison Predicates

l.-'here are several types of data predefined in the SNOBOL4 language. Programmer­
defined data types can be added, as described in Chapter 5. Some data values, such as
numbers, can be represented in different ways as different types of data. SNOBOL4
includes predicates to test whether two objects are identical or different.

3.3.1 IDENT and DIFFER

IDENT and DIFFER are functions of two arguments which may be of any data type. For
the function call IDENT (X .. y) to succeed or for DIFFER (X, y) to fail, the values of the
arguments, X and y, must be truly identical. The value of a function argument is a
pointer to a data object or, in the case of integers and real numbers, the value is the data
object itself.

Each distinct string of characters appears in storage once and only once. Execution of

X 'BCD'
y 'B' 'CD'

results in X and Y having the same value. The string BCD appears once, and both X and
Y point to it. IDENT (X, y) therefore succeeds.

Pattern structures behave differently. Execution of the statements

X
Y

A

A
B
B

constructs two equivalent but physically distinct pattern structures. Thus, X and y have
different values, since they point to different copies of the pattern structure A lB.
I DENT (X , y) therefore fails.

However, if

X A B
Y X

then IDENT (X, y) succeeds since X and Y point to the same data object.

Integers and real numbers are data objects rather than pointers to data. Execution of

X 3
Y 2 + 1

assigns 3 to both X and Y. Comparison of X and Y by IDENT (X, y) succeeds because the
data objects are identical. Similarly, if

X 3.0
Y 3.0

then I DENT (X , y) succeeds.

80 Primitive Functions, Predicates, and Operations 3.3.2

IDENT and DIFFER must be used with care when their arguments have different data
types. If

X 3
Y '3'

EQ C X, Y) succeeds as illustrated earlier because numeral strings are acceptable in
arithmetic contexts. IDENT C X, y) fails because the value of X is an integer, but the value
of y is a string.

Similarly, for

X 3.0
y 3

IDENT C X, y) fails because the values are not identical.

3.3.2 LGT

Lexical ordering of strings can be tested using the predicate LGT C X, y) • LGT C X, y)

succeeds, returning the null string, if the value of X is lexically greater than y. Stated
another way, LGT C X, y) succeeds if X follows Y alphabetically. The order of the
characters is implementation dependent. For example, on the IBM 360 the EBCDIC
encoding is used with the blank preceding letters and letters preceding digits. The value of
&ALPHABET is a string of all characters in lexical order.

Consider, as an example, the problem of alphabetizing the characters in a string. That
is, the string LABORATORIES is to be transformed into the string AABEILOORST. The
following program performs the transformation using an interchange sorting technique.

&ANCHOR 1; &FULLSCAN 1
FLIP LENC*I). HEAD LEN(1) $ X LEN(1) $ Y *LGTCX,Y)
STR 'LABORATORIES'
OUTPUT STR
LIMIT SIZE(STR) 2

LOOP STR FLIP HEAD Y X
I LTCI,LIMIT) I +
I 0
LIMIT GTCLIMIT,O) LIMIT
OUTPUT STR

END

Output is

LABORATORIES
AABEILOORRST

:SCLOOP)

1 :SCLOOP)

Sorting is performed in the statement labelled LOOP. The pattern FLIP matches two
adjacent characters, assigning them as values of the variables X and Y. *LGT (X, y) is
then evaluated to test the order of the characters. If the order is correct, LGT C X, y) fails

3.4.2 REPLACE 81

and the characters are not interchanged. If LGT (x, y) succeeds, pattern matching succeeds
and the two characters are interchanged as the replacement is performed.

The variable I is used to determine which two characters are compared by LGT (X, y)

and the variable LIMIT controls the number of passes made over the string STR.

3.4 Additional Primitive Functions

3.4.1 SIZE

SIZE is a function that determines the length of a string. Its value is the number of
characters in its argument.

3.4.2 REPLACE

One-for-one character replacement in a string may be accomplished using the function
REPLACE. The value of REPLACE (X, Y , Z) is the string resulting from replacement in X

of each character appearing in Y by the corresponding character in Z. As a result of
executing the following statements,

BINARY
ONESCOMP

'111001'
REPLACE(BINARY,'01', '10')

ONESCOMP has the value 000110 , obtained from BINARY by replacing all zeroes with
ones, and ones with zeroes. The value of the variable BINARY remains unchanged.

REPLACE normally succeeds, but it fails if

(1) the second and third arguments have different lengths, or
(2) the second or third argument is null.

Multiple occurrences of characters in the third argument are valid. Thus,

REPLACE(S,'.,;:?l',' ')

replaces all punctuation marks with blanks.

In the case of the multiple occurrence of a character in the second argument, the
rightmost correspondence holds. Thus, foHowing execution of the statement

TEXT REPLACE('FEET' ,'EE', 'AO')

the variable TEXT has value FOOT.

An example of the usefulness of REPLACE is the following program that converts a deck
of cards prepared on an 026 keypunch (BCD) to a deck using 029 keypunch code
(EBCDIC).

82 Primitive Functions, Predicates, and Operations

LOOP
END

PUNCH REPLACE (INPUT, , # Q) %<& ' , "=' () +")

029 graphics are used in the example above.

3.4.3 TRIM

3.4.5

:S(LOOP)

TRIM is a primitive function whose argument must be a string or an integer. The value
of T:RIM is a string which is the argument value with all trailing blanks removed. Thus,
the sta temen ts

TEXT 'A PRIMITIVE FUNCTION
SHORTTEXT TRIM(TEXT)

gives SHORTTEXT the value A PRIMITIVE FUNCTION. The value of TEXT is not
changed.

It is not necessary to use the function TRIM to delete trailing blanks from input since
this operation is performed automatically under the control of &TRIM.

3.4.4 DUPL

DUPL is a pnmItIve function of two arguments, the first of which is a string and the
second an integer. The value of DUPL is a string consisting of the first argument repeated
the number of times specified by the second argument.

DUPL is used in many of the examples in Chapters 1 and 2 to generate strings of blanks
for formatting output lines. A typical example is the following one where a string is right
justified to column 50.

OUTPUT DUPL(' ',50 - SIZE(STR» STR

Another use of DUPL is to generate, with one line of program, several lines of output.
For example, if the page width for printing is 132 characters, five lines containing periods
in columns 10 and 50 can be generated by

OUTPUT DUPL (DUPL (' ',9) , DUPL (' " 39) , DUPL (' " 82) , 5)

3.4.5 REMDR

REMDR is a primItIve function of two integer arguments. The value of REMDR IS an
integer that is the remainder of dividing the first argument by the second. Thus,

OUTPUT REMDR(15,4)

3.4.7 EVAL 83

prints the integer 3. The sign of REMDR is the sIgn of the dividend or first argument.
Thus,

REMDR(-15,4)
REMDR(15,-4)
REMDR(-15,-4)

have the values -3, 3, and -3 respectively.

3.4.6 DATE and TIME

DATE and TIME are primitive functions requIring no arguments. The value of DATE ()
is an 8-character string of the form month/day/year. For July 11, 1970 the value of
DATE () is 07/11/70 .

The value of TIME () is an integer that is the elapsed time in milliseconds from the
beginning of program execution. Compilation time is not included. On IBM 360
equipment, the standard interval clock is updated only sixty times a second, so timing is
approximate at best.

3.4.7 EVAL

EVAL is a primitive function whose argument must be an unevaluated expression, string,
integer, or real. If the argument is an unevaluated expression, the expression is evaluated
to obtain the value of EVAL. If the argument is a string, the value of EVAL is the value
of the expression represented by the string. Integer and real arguments are simply returned
as values without modification.

In the following example, the value of S is a string, and the value of U is an
unevaluated expression. Both output statements print the integer 1 5 .

S

U
X
OUTPUT
OUTPUT

'X + SIZE(X) * 10'
*(X + SIZE(X) * 10)
5

EVAL(S)
EVAL(U)

Any string or unevaluated expression that is a syntactically correct expression In
SNOBOL4 may be evaluated by EVAL. A syntactic error in the argument of EVAL causes
failure of EVAL. Thus, evaluation of E in the statements

E '5+6'
SUM EVAL(E)

fails since blanks are required around the +.

84 Primitive Functions, Predicates, and Operations 3.5

3.4.8 APPLY

APPL Y is a primItive function that creates and executes a function call.
APPLY (F , a 1 , ••• , an) calls the function F with the arguments a 1 , ••• , an. The value
of APPLY is the value returned by the function it calls. The function F may be any
function, primitive or programmer-defined. Use of APPLY on a primitive function must
specify the correct number of arguments. Omission of trailing arguments is not permitted.

An important use of APPLY is to call various functions, depending on the current value
of data. Execution of the statements

x
Y

'REMDR'
6; Z 5

OUTPUT APPLY(X,Y,Z)

calls REMDR (6 , 5) and prints 1 . Subsequent execution of

X 'DUPL'
OUTPUT APPLY(X,Y,Z)

calls DUPL (6 , 5) and prints 66666 .

3.5 Negation (...,) and Interrogation (?)

Two predicates, specified by the unary operators..., and?, test the success or failure
resulting from evaluation of expressions. The negation operator..., fails if its operand
succeeds, and succeeds if its operand fails. A null string is returned as value on success.
The interrogation operator? is the converse of...,. It succeeds, returning the null value, if
its operand succeeds. It fails if its operand fails.

Negation may be used to complement a predicate. For example, the following program
reads an input deck and prints those cards that contain integers.

LOOP

END

&TRIM
CARD
OUTPUT

1
INPUT

INTEGER(CARD) CARD
:F(END)
: (LOOP)

Suppose the converse program, one that prints all cards that are not integers, is desired.
No predicate is available which succeeds when its argument is not an integer. However,
the negation operator together with the predicate INTEGER suffices. Thus, the following
program lists all nonin teger cards.

&TRIM
LOOP CARD

OUTPUT
END

INPUT
...,INTEGER(CARD) CARD

:F(END)
: (LOOP)

3.6.1 Loading and Calling External Functions 85

Complicated Boolean functions on the states of variables can be constructed using
predicates and negation. For example, suppose the integer N is to be incremented,
provided at least one of the variables X, Y, or Z is null. The following statement tests the
variables and, if the condition is satisfied, increments N.

N ~(DIFFER(X) DIFFER(Y) DIFFER(Z» N + 1

If X, Y, and Z are nonnull, the expression succeeds but the negation operation fails, and N

is not incremented. If any variable is null, the corresponding DIFFER fails, causing the
expression to fail. Negation succeeds and N is incremented.

Interrogation is used primarily to convert a function that returns a nonnull value into a
predicate that succeeds or fails, but returns a null value. Thus, in the following statement,
N is incremented if F (X) succeeds, but the value of F (X) is not concatenated with N + 1.

N ?F (X) N + 1 :S(ON)F(OUT)

3.6 External Functions

The primitive functions described in this chapter and elsewhere in this book are built
into the SNOBOL4 language. There is a facility whereby a library of functions, called
external functions, can be accessed during program execution [4]. External functions are
written in FORTRAN or assembly language and provide a means for extending the
SNOBOL4 language. External functions are typically used for:

(1) Complicated numerical computations.

(2) Specialized input and output operations.

(3) Creating and operating on data types not provided by the SNOBOL4 language
itself.

Since external functions are not part of the SNOBOL4 system, the availability and
access to various external functions varies from installation to installation. This chapter
does not describe how to create external functions, but only how to use those that may be
available. The external functions described in the following sections are hypothetical, and
are not necessarily available at any installation.

3.6.1 Loading and Calling External Functions

To use an external function, it must be added to the SNOBOL4 system by loading it
during program execution. This is accomplished by executing the primitive function

LOAD(prototype,library)

86 Primitive Functions, Predicates, and Operations 3.6.2

The prototype describes the external function which is then loaded from the given
library. The prototype of the function consists of the function name, the data type for
each argument, and the data type of the value returned. In the prototype, the name comes
first, followed by the argument data types within parentheses, and finally the data type of
the returned value. For example

LOAD('SIN(REAL)REAL', 'SNOLIB')

loads an external function S IN which expects one real argument and returns a real value.
The function is loaded from the library SNOLIB. The second argument may be omitted,
implying a standard (public) library.

After execution of the LOAD function, the function SIN is available for use like any
primitive function. For example,

z SIN(O.79)

assigns 0 . 7 1 04 to Z, assuming SIN expects its argument in radians.

The data types in the load prototype must correspond to those expected by the external
function.

Another example of an external function is

LOAD('LOG(REAL,INTEGER)REAL')

where LOG is an external function in which the second (integer) argument specifies the
base of the logorithm.

In the call of an external function, omitted trailing arguments are taken to be null
strings. Extra arguments are ignored.

External functions may introduce new data types into the SNOBOL4 system. The load
prototype may specify these new data type names. A typical example is an external
function that creates bit strings having data type BIT.

LOAD('BITSTRING(STRING)BIT')

An example of use is

x BITSTRING('1110011')

which converts a string of characters into a corresponding string of bits.

In load prototypes, data type specifications unknown to SNOBOL4 system are ignored
and left to be handled by the external functions. Such data types can be omitted from the
prototype altogether:

LOAD('BITSTRING(STRING)')

is equivalent to the example above.

3.7.2 Operator Synonyms 87

3.6.2 Unloading Functions

External functions may be unloaded when they are no longer needed. This is
accomplished by the primitive function UNLOAD, which unloads the named function. For
example

UNLOAD (, SIN')

would unload S IN described in the previous section. When an external function is
unloaded, it becomes 'undefined' and the space it occupies is freed.

UNLOAD is not restricted to external functions: Any function can be unloaded and
consequently undefined. The space occupied is reclaimed only for external functions,
however.

3.7 OPSYN and Operator Definition

It is sometimes convenient to provide synonyms for existing functions or operators. The
primitive function OPSYN can be used for this purpose. The general format of OPSYN is

OPSYN(new,old,n)

3.7.1 Function Synonyms

If n is omitted (or zero), new and old are treated as function names and the new
function name becomes a synonym for the old function. For example,

OPSYN('SAME' ,'ID~NT')

makes SAME a synonym for the function IDENT.

A call using a synonym for a primitive function must have the correct number of
arguments. Trailing arguments may not be omitted. For example,

SAME (X)

is erroneous.

3. 7.2 Operator Synonyms

If the third argument of OPSYN IS 1, the two arguments are interpreted as unary
operators if possible. For example,

OPSYN (, $, , , * ' , 1)

88 Primitive Functions, Predicates, and Operations 3.7.3

makes the unary operator $ a synonym for *. After execution of this function call, $X

beha ves like * X .

If either argument IS not one of the unary operators, it is interpreted as a function
name. Therefore

OP S YN (, $, , 'F' , 1)

makes $ a synonym for the function F. Subsequently $X results in a call of F (X) .

Conversely,

OPSYN ('F' , , * ' , 1)

makes the function F a synonym for the unary operator *. Subsequently F (X) behaves
like *x.

If neither argument is a unary operator, the effect of OPSYN is the same as if the third
argumen t were zero.

If the third argument is 2, the arguments are interpreted as binary operators if possible.
The result is similar to the case for unary operators. Thus

OP S YN (, +' , 'F' , 2)

ca uses N + M to call F (N , M) .

Any type of function can appear as an argument to OPSYN. However, an invocation of
a primitive function by a synonym must have the correct number of arguments.

Operators given in the first two arguments of OPSYN must be given precisely. In

OP S YN (, I I ' , 'F' , 1)

the first argument is not interpreted as a unary operator even though it starts with one. If
the binary operator of concatenation is to be OPSYN ed, it must be given as a single blank.

Any string that cannot be interpreted as an operator is taken to be a function name
without checking that the string meets the syntactic requirements for a function name.
The first argument, II , in the call of OPSYN above is an example. Such functions cannot
be called explicitly, but may be invoked implicitly by APPLY since APPLY does not check
the syntax of its first argument either.

3. 7. 3 Summary of Operators

In addition to the operators with defined meanings, a number of undefined operators
are provided. The operators can be defined through the use of OPSYN. Tables
summarizing operators follow.

3.7.3 Summary of Operators 89

Unary Operators

Graphic Definition

..., negation
? in terroga tion
$ indirect reference
. name
! none

" none

* unevalua ted expression
/ none ,. none

+ positive
- negative
Q) cursor position

I none
& keyword

Binary Operators

Graphic Definition Associativity Precedence

..., none right 12
? none left 12
$ immediate value assignment left 11
. conditional value assignment left 11

! ,** exponen tia tion right 10

" none left 9

* multiplication left 8
/ division left 7 ,. none left 6
+ addition left 5
- subtraction left 5
Q) none left 4

blank conca tena tion left 3
I alterna tion left 2
& none left 1

Note that the sets of unary and binary opera tors are the same except for conca tena tion
and the alternative graphic for exponentiation.

90 Primitive Functions, Predicates, and Operations

Any operator that does not have a primitive definition can be defined using OPSYN.

Similarly the primitive definition of any operator can be changed. The precedence and
associativity of binary operators is not changed by their redefinition.

Exercises

Exercise 3.1: Assume source cards to an assembler have fields beginning in columns 1, 8,
16, and 36. Write a program to reformat these cards so that the fields begin in columns 1,
10, 20, and 40. Pad with blanks to achieve this, and keep only the first 80 characters of
the result.

Exercise 3.2: Assume source cards to an assembler consist of four fields in free format
separated by blanks. The first field always begins in column 1. Typical cards might be

x
Y ST

L 1,0(1)
1,0(3)

LOAD
SAVE

Write a program to reformat these cards with the four fields starting in columns 1, 10,
20, and 40. Assume the fields are short enough to fit in this format. This program should
allow the first and the last fields to be omitted, but assume that the second and third
fields are always present.

Exercise 3.3: Refine the program in Exercise 3.2 above to allow for the possibility of a
quoted literal (as in SNOBOL4) in the third field, and assume such literals may contain
imbedded blanks. Assume that quotation marks do not occur in other fields. For simplicity
assume only one kind of quotation mark. Furthermore, comment cards, identified by an
asterisk in column 1, should be passed through unchanged.

Exercise 3.4: Let a sequence of integers be given left justified on data cards. Write a
program that reads in the cards and prints the largest number.

Exercise 3.5: Write a program that reads in an integer N from a data card, and prints the
value of N factorial. Have the program test the data and print an appropriate comment if
the input is not a positive integer.

Exercise 3.6: A permutation can be thought of as a rearrangement of objects. Thus a
permutation can be represented by a pair of strings such as (abc, cab) indicating that a

is replaced by c ,b is replaced by a, and c is replaced by b .

If the permutation is applied to the first string in the pair, the index of the permutation
is the number of such iterated applications required to obtain the original string. For
example, the index of (abc, cab) is three.

Write a program that reads in a permutation and determines its index.

Exercise 3.7: Any string of a specified length can be reversed with a single call of the
function REPLACE. Write a call of REPLACE that reverses any string of length 7. (The
authors are indebted to Mr. Morris M. Siegel for calling this technique to their attention.)

Exercises 91

Exercise 3.8: Define a unary operator that is synonymous with the primitive function
SIZE.

Exercise 3.9: Define a new operator for addition which has higher precedence than
subtraction.

CHAPTER 4

Programmer-Defined Functions

4.1 Introduction

A programmer may define his own functions. A program with programmer-defined
functions must include:

(1) a call to the primitive function DEFINE for each programmer-defined function,
and

(2) a procedure, written in SNOBOL4, for each function.

4.2 The Primitive Function DEFINE

Procedures are written using formal arguments, and must adhere to special conventions
for returning. Execution of the primitive function DEFINE communicates to the
SNOBOL4 system:

(1) the name of the function,
(2) a list of formal arguments used in the programmer-defined procedure,
(3) a list of variables local to the programmer-defined procedure, and
(4) the entry point of the procedure.

Programmer-defined functions are defined by executing the primitive function DEFINE.

The first argument of DEF INE is a prototype for the call of the function being defined.
The second argument is a label specifiying the entry point to the programmer-defined
function. For example, execution of

DEFINE('F(X,Y)L1,L2' ,'FENTRY')

defines a function F with two formal arguments, X and Y. Two local variables L 1 and L2

are used in the procedure whose entry point is the statement labelled FENTRY. Extra
commas in the lists of formal arguments and local variables are ignored.

92

4.3 Procedures for Programmer-Defined Functions 93

Often local variables are not needed, so it is permissible to omit the list of local
variables. An example is

DEFINE('G(Z}' ,'GENT'}

It is also permissible to omit the second argument, In which case the entry point IS
assumed to be the same as the function name. Thus,

DEFINE('COUNT(N)'}

defines the function COUNT with entry point COUNT. Functions can be defined without
any formal arguments. For example,

DEFINE('MARK(}')

defines the function MARK with no formal arguments.

The DEFINE function returns the null string as value.

4.3 Procedures for Programmer-Defined Functions

A procedure for a programmer-defined function is a set of SNOBOL4 statements. The
label, given explicitly or implicitly in the arguments of the associated DEFINE function,
specifies the statement to which control is passed when a call is made to the function.
Thus, during execution of the statement labelled ZSET in the example below, the call to
UNION causes control to be passed to UN. Execution of ZSET is temporarily suspended
while the value of UNION is being computed. Once the value of UNION has been
computed, control returns to statement Z SET where computation is resumed, using the
value returned.

ZSET

UN
ULOOP

DEFINE('UNION(X,Y}CH', 'UN')

Z SET1 UNION(SET2,SET3} SET4

UNION X
Y LEN(1} CH
UNION BREAK(CH}
UNION UNION CH

:F(RETURN}
:S(ULOOP}
: (ULOOP)

The defining statement must be executed before the call is made. The procedure is
called and should not be flowed into. The procedure may be transferred around or placed
out of the way of program flow.

The statements constituting the procedure are written using the formal arguments, whose

94 Programmer-Defined Functions 4.3.2

values are supplied by arguments of a call.

Variables used in procedures should be declared local if their values outside the
procedure should not be changed by the function call. In UNION , the value of the
variable CH changes continually during evaluation. The global value of CH might be
altered as a result of the call if CH were not declared as a local variable. Upon entry to a
procedure, all local variables are given null string values.

All statement labels, including labels in procedures, are global. Transfer can be made
from a statement in one procedure to a statement in another.

The name of a function may be used as a variable in the procedure. The value of the
function call is the current value of the function name when the procedure returns. Thus,
in the example above, the value of the call UNION (SET2 , SET3) is the value of the
variable UNION when the statement ULOOP fails, causing return to the statement ZSET.

Return of control from a procedure to the calling statement is accomplished by
transferring to one of the three system labels: RETURN, FRETURN, or NRETURN .

4.3.1 RETURN

Transfer to RETURN indicates that the function call is successful. The value of the
function call is set to the value of the function name. Execution continues in the calling
statement using the returned value.

4.3.2 FRETURN

Transfer to FRETURN indicates failure of the function call.

An example using both RETURN and FRETURN is the function PAL, which checks its
argument to see if it is a palindromic string. PAL compares the argument string and its
reverse. If they are identical, PAL transfers to RETURN, indicating success. Otherwise PAL

transfers to FRETURN, indicating failure.

&TRIM 1
DEFINE('PAL(STR)CH,S1,S2')

TEST PHRASE INPUT
PAL (PHRASE)

:F(END)
:S(GOOD)P(NOGOOD)

4.4 Execution of Programmer-Defined Functions 95

PAL S1 STR
PALL S1 LEN(1) • CH

S2 CH S2
PTEST IDENT(STR,S2)

END

4.3.3 NRETURN

:F(PTEST)
: (PALL)
:S(RETURN)F(FRETURN)

By transferring to the label NRETURN, a programmer-defined function may return a
computed name rather than a value. A call to a function that returns a computed name
may be used as the subject of an assignment statement. For example,

F(X,Y) x Y

is a valid statement provided the function F returns by name using NRETURN. A further
description of names is included in Chapter 6.

4.4 Execution of Programmer-Defined Functions

When a call to a programmer-defined function is made, the arguments of the call are
evaluated first. Before execution of the procedure begins, the values of the following
variables are saved in the following order:

(1) the name of the function,
(2) all formal arguments, and
(3) all local variables.

New values are assigned to these variables as follows:

(1) the name of the function is assigned the null string,
(2) the formal arguments are assigned their values, and
(3) 'all local variables are assigned the null string.

Consider the function UNION specified in the defining statement

DEFINE('UNION(X,Y)CH', 'UN')

and called by UNION (SET2, SET3) . Values of the variables UNION, X, Y, and CH at the
time of a call are saved. New values for these variables are assigned as if the following
statements had been executed.

96 Programmer-Defined Functions 4.4.1

UNION
X SET2
Y SET3
CH

Then control passes to the statement labeled UN.

When return from a procedure is made using RETURN,

(1) the value of the function call is set to the value of the function name, and

(2) the values of all variables saved at the time of the call are restored in reverse
order.

When return is made using FRETURN ,

(1) the values of all variables saved at the time of the call are restored, In reverse
order, and

(2) the call fails.

When return is made using NRETURN ,

(1) the function call becomes a variable whose name IS taken from the value of the
function name, and

(2) the values of all variables saved at the time of the call are restored, In reverse
order.

A programmer-defined function may be called with more or fewer arguments than
specified in the corresponding defining statement. If too few arguments are specified, the
trailing omitted arguments are assigned null strings. If too many arguments are specified,
the extra arguments are evaluated, but their values are ignored.

4.4.1 Example - Union, Intersection, and Negation

This example includes three functions that perform the union, intersection, and negation
of sets of characters, and a short test program. Notice that the procedures follow the
defining statements in the listing. However, by transferring around the procedures, the
defining statements are executed one after another. The test program then makes calls to
the procedures.

START
UNION DEFINE('UNION(X,Y)CH', 'UN')
UN UNION X
ULOOP Y CHAR

UNION CHTEST

: (INTER)

:F(RETURN)
:S(ULOOP)

4.5 Redefinition of Programmer-Defined Functions

INTER
IN

NEG
NG

UNION UNION CH
DEFINE('INTER(X,Y)CH', 'IN')
X CHAR
Y CHTEST
INTER INTER CH
DEFINE('NEG(X)CH,HEAD', 'NG')
NEG UNIVERSE

NLOOP X CHAR
NEG CHLOC HEAD

PATDEF CHAR LEN(1). CH

TEST

+

+

CHTEST BREAK(*CH)
CHLOC BREAK(*CH). HEAD LEN(1)
UNIVERSE
VOWELS
OUTPUT
CONS
OUTPUT
WORD
OUTPUT

OUTPUT

'AaCDEFGHIJKLMNOPQRSTUVWXYZ'
'AEIOU'
'VOWELS

NEG(VOWELS)
'CONS

'COMPILER'

" ,

" ,

VOWELS , " ,

CONS , " ,

'VOWELS IN '" WORD '" ARE: '"
INTER(WORD,VOWELS) ''''
'CONSONANTS IN '" WORD '" ARE:
INTER(WORD,CONS) ''''

: (ULOOP)
: (NEG)
:F(RETURN)
:F(IN)
: (IN)
: (PATDEF)

:F(RETURN)
: (NLOOP)

" ,

+
END

OUTPUT 'UNION OF "NIGHT" AND "HOWL" IS '"
UNION('NIGHT','HOWL') ''''

Output from the program is:

VOWELS "AEIOU"
CONS "BCDFGHJKLMNPQRSTVWXYZ"
VOWELS IN "COMPILER" ARE: "OlE"
CONSONANTS IN "COMPILER" ARE: "CMPLR"
UNION OF "NIGHT" AND "HOWL" IS "NIGHTOWL"

4.5 Redefinition of Programmer-Defined Functions

97

Programmer-defined functions can be defined at any time during execution of a
program. It is also possible, having defined a function at one point, to redefine it at a
subsequent time. For example, a function can be initialized when it is first called, and its
entry point redefined for subsequent calls.

In the previous example, the pattern CHLOC is used only in the function procedure for
NEG. The following procedure for NEG includes the assignment statement that constructs
CHLOC.

NG CHLOC BREAK(*CH) . HEAD LEN(1)
DEFINE('NEG(X)CH,HEAD', 'NG2')

NG2 NEG UNIVERSE

98 Programmer-Defined Functions

NLOOP X CHAR
NEG CHLOC HEAD

:F(RETURN)
: (NLOOP)

4.6

The original DEFINE for NEG specifies the starting label NG. On the first call of NEG,

the pattern structure for CHLOC is constructed and NEG is redefined with the starting label
NG2. Subsequent calls of NEG do not execute the statement that constructs CHLOC .

4.6 Recursive Functions

Many functions are conveniently defined recursively. For example, factorials may be
defined as

fact(O)
fact(n)

1
n*fact(n-1) for n > 0

Using Pascal's triangle, a recursive definition for the binomial coefficients IS easily
deduced.

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

binc(n,O)
binc(n,n)
binc(n,k)

1
1
binc(n-1,k-1)+binc(n-1,k) o < k < n

A recursive procedure has the property that the function itself is called in the
procedure. While convenient, recursive procedures may lead to computational inefficiencies.
Nevertheless, recursion is frequently the most natural way of expressing a function, and
may considerably simplify programming.

Programmer-defined functions in SNOBOL4 may be recursive. Since values of the
function name, arguments, and local variables are all saved when a function is called, a
procedure can include recursive coding.

4.6.1 Example - Decimal to Binary Conversion 99

4.6.1 Example - Decimal to Binary Conversion

The next program converts decimal integers to their binary representation by successive
divisions. For example, to compute the binary representation of 57, it is repeatedly
divided by 2 and the remainders are concatenated.

2) 57

2) 28

2) 14

2 L-l

2
) 3~

2 _) _1~

1 1 0 0 remainders

The binary representation of 57 is the binary representation of 28 (111 00 2) followed by
the remainder of 57/2. A recursive definition of the process is

binary(57) binary(28) remainder(57/2)

where concatenation is implied.

In SNOBOL4, the results of integer division are truncated. Thus, 57 1 2 is 28. Thus,
the recursive definition can be written in the more general form

binary(n) binary(n/2) remdr(n,2) for n > 1

(where remdr (n, 2) is the remainder of n/2) with the terminal cases

binary(1) 1
binary (0) 0

A defining statement and procedure for BINARY are

DEFINE('BINARY(N)')
BINARY BINARY GT(N,1) BINARY(N 1 2)
+

BINARY N
BINEND

: (BINEND)
REMDR(N,2)

:S(RETURN)
: (RETURN)

On entry to BINARY, the value of N is tested by the predicate GT (N, 1) , which fails for
the two terminal cases N = 0 and N = 1. Thus, the first statement fails for terminal cases

100 Programmer-Defined Functions 4.6.1

and N is returned as the value of BINARY. If N is greater than 1 , a recursive call is made
to BINARY with N / 2 as the argument. The value of BINARY(N / 2) then has the
remainder of N / 2 concatenated with it, to get the fina1 value of BINARY (N) .

The following diagram illustrates the recursive calls made during evaluation of
BINARY (57). The recursion plunges six levels before reaching the terminal case of
N = 1. On returning, the value of BINARY evolves.

BINARY(57)

/ ~
N = 57 BINARY 111001

BINARY.(N / 2) REMDR(N,2)--

/ ~
N = 28 BINARY 11100

BINARY(N

/
/ ~R(N'2J

N = 14 BINARY 1110

BINARY(N

/
/ ~(N'2J

N 7 BINARY 111

~NARY(N / ~R(N'2J

4.6.1 Example - Decimal to Binary Conversion 101

/ ~
N 3 BINARY = 11

BINARY(N / 2) REMDR(N,2)--------

/ ~
N 1 BINARY = 1

l _________)

It is important to notice the necessity of preserving values before a function call and
restoring them upon completion. At the first level down, BINARY (28) is called with N
having value 57. During the course of evaluating BINARY (28) ,N takes on values 28,
14, 7 , 3, and 1 . Following evaluation of BINARY (28) ,N must once again have the value
57 in order to compute the remainder of 57 / 2.

An improvement is possible in the definition of BINARY. SNOBOL4 permits use of a
function name as one of the formal arguments in a function definition. Thus,

DEFINE('BINARY(BINARY)')

IS a valid statement. The procedure of BINARY can be rewritten substituting BINARY for
N.

BINARY BINARY
+

GT(BINARY,1) BINARY(BINARY / 2)
REMDR(BINARY,2) : (RETURN)

The second statement would become

BINARY BINARY

which is redundant. For the terminal cases recognized by the failure of GT (BINARY, 1) ,
BINARY has the proper value, 0 or 1 , and an unconditional RETURN is made.

OEFINE('BINARY(BINARY),)
OUTPUT 0 = BINARY(O)
OUTPUT 13 BINARY(13)
OUTPUT 57 BINARY(57)
OUTPUT 472 BINARY(472)
OUTPUT

,
8192 BINARY(8192)

OUTPUT ' 13279 BINARY(13279)
OUTPUT '99999 BINARY(99999) : (END)

BINARY BINARY GT(BINARY,1) BINARY(BINARY / 2)

+ REMDR(BINARY,2) : (RETURN)
END

102

o
13
57

472
8192

13279
99999

4.6.2

Programmer-Defined Functions

o
110 1
111001
111011000
10000000000000
1 1001 1 1 101 1 1 1 1
11000011010011111

Example - Polish to Infix Translation

Arithmetic expressions such as

x + Y
A I B I C

V - W - X + Y * Z

4.6.2

are written using an infix notation. They can also be written in Polish prefix notation
[5,6], resembling conventional functional notation. Here the binary operators appear to the
left of their arguments. Prefix notation for the expressions is

+(x,y)
I{/{A,B) ,C)

+(-{-{V,w) ,X) ,*(y,z»

Conversion from Polish prefix form to infix form, and vice versa, can be performed
using recursive programmer-defined functions. The first of the two following programs
converts strings from Polish to infix form. The recursive rules for specifying the function
INF are:

(1) If the argument to INF is a simple variable, then

INF (VAR) VAR

(2) If the argument to INF is a Polish expression of the form OP (EX 1 , EX2) , then

INF {OP (EX 1 , EX2)) { INF (EX 1) OP INF (EX2))

The conversion consists of finding the operator and its two arguments, which may be
expressions. The operator is inserted between its two arguments and parentheses are placed
around the resulting expression. Of course, the arguments are still in Polish form, so each
must be converted to infix by a recursive call of INF.

The following diagram depicts the conversion of I {I (A, B) , C) to ((AlB) IC) .

4.6.2 Example - Polish to Infix Translation 103

~'j(j(A'B)'C)')

I I(A,B) c ((AlB) Ie)

,(/(,j(A,B\
'I' INF ('e')

/\
I A B) (AlB) e e

()

, (, INF (, A ') , I ' INF (, B ') ,) ,

/\ /\
A A B B

(-------) (-------)

In the following program, the procedure for INF consists of one line. The pattern
INPAT is used to break a Polish expression into an operator and two arguments.

A

, , ,

B

)~/)

~ ')' RPOS(O)

If INPAT matches INF, it matches the entire string, which is then rearranged into infix

104 Programmer-Defined Functions 4.6.3

notation. If INPAT fails to match, INF must be a variable and is returned unchanged as
value.

&ANCHOR 1; &TRIM
INPAT =' LEN(1) .oP '(' BAL. X BAL. Y ')'

+ RPOS(O)
DEFINE('INF(INF)X,Y,OP')
OUTPUT PREFIX FORM' DUPL(' ',25) 'INFIX FORM'
OUTPUT

LOOP STRING INPUT
OUTPUT STRING DUPL(' ',36

:F(END)
SIZE(STRING» INF(STRING)

: (LOOP) +
INF INF INPAT '(' INF(X) OP INF(Y) ,) ,
+
END

Output from the program follows.

PREFIX FORM

-(*(A,+(B,C»,/(D,E»
-(-(-(-(-(A,B) ,C) ,D) ,E) ,*(F,G»
-(+(A,*(S,G»,/(D,P»

4.6.3 Example - Infix to Polish Translation

: (RETURN)

INFIX FORM

«A*(B+C»-(D/E»
««(A-B)-C)-D)-E)-(F*G»
«A+(B*G»-(D/P»

Conversion of arithmetic expressions from infix to Polish form is harder than the
converse. A function POL, which performs the conversion, is of the form:

POL(EX1 OP EX2) OP '(' POL (EX 1) ',' POL (EX2) ')'

Ambiguities can arise when attempting to separate an unparenthesized expression into two
expressions and an operator. For example, the expression

A - B * C - D

can be separated many ways, including

(A - B) * (C - D)

(A - (B * C» - D

Normal conventions for the precedence and association of operators require that
multiplication and division have precedence over addition and subtraction, and that
operators associate to the left. Thus, of the choices above, the first is incorrect because
subtraction is given higher precedence than multiplication, and the second is correct.

In defining the function POL, the precedence of multiplicative over additive operators
can be assured by dealing with the additive operators first. For example:

4.6.3 Example - Infix to Polish Translation 105

POL ('w*X+y*z ')

~
w*X + y*z

, (, POL ('w*X') POL ('y*z')

/~) 0\
w * x *(w,X)

'*' '('

w w x X

l ________) (------)

Left association of operators is assured by selecting the rightmost operator in a string of
operators having equal precedence. For example

106 . Programmer-Defined Functions

A

, (,

POL (, A-B*C-O')

/~
A-B*C o -(-(A,*(B,C» ,0)

, (, POL (, A-B*C ') , , , POL ('0')

/~ /\
B*C -(A,*(B,C)) o 0

(----------)

POL ('A')
, ,

POL ('B*C') ,

/\ /~
A A B * C *(B,C)

()

, *' '('

B B C C

(---------) (---------)

4.6.3

4.6.3 Example - Infix to Polish Translation 107

Thus, the rules prescribing the behavior of POL are:

(1) Remove any enclosing parentheses from the infix string.

(2) If possible, separate the argument into two expressions balanced with respect to
parentheses and separated by the rightmost additive operator. The value of POL then
becomes

OP '(' POL (EX 1) ',' POL (EX2) ')'

If this is not possible, perform Step 3.

(3) If possible, separate the argument into expressions balanced with respect to
parentheses and separated by the rightmost multiplicative operator. The value of
POL then becomes

OP '(' POL (EX 1) ',' POL (EX2) ')'

If this is not possible, perform Step 4.

(4) The infix string must be a simple variable, which becomes the value of POL.

A complete program for infix-to-Polish conversion and test results follow.

&ANCHOR 1; &TRIM 1
PMPAT (ARBNO(BAL ANY('+-'» $ X FAIL I *DIFFER(X)

+ TAB(*(SIZE(X) - 1») • X LEN(1) • OP REM. Y
MDPAT (ARBNO(BAL ANY('*/'» $ X FAIL I *DIFFER(X)

+ TAB(*(SIZE(X) - 1») . X LEN(1) • OP REM. Y
STRIP '(' BAL. POL ')' RPOS(O)
DEFINE('POL(POL)X,Y,OP')
OUTPUT INFIX FORM' DUPL(' ',26) 'PREFIX FORM'
OUTPUT

LOOP STRING
OUTPUT

+
POL POL STRIP

POL PMPAT
+

POL MDPAT
+
END

INFIX FORM

«A*(B+C»-(D/E»
A-B-C-D-E-F*G
«A+(B*G»-(D/P»

INPUT
STRING

OP

OP

:F(END)
DUPL (, ,

,36 - SIZE(STRING» POL(STRING)
: (LOOP)
:S(POL)

, (, POL'(X) , , POLey) ,) , ,
:S(RETURN)

, (, POL (X) , , POLey) ,) , ,
: (RETURN)

PREFIX FORM

-(*(A,+(B,C»,/(D,E»
-(-(-(-(-(A,B) ,C) ,D) ,E) ,*(F,G»
-(+(A,*(B,G»,/(D,P»

The pattern STRIP removes the outer parentheses from the infix expression. The patterns

108 Programmer-Defined Functions 4.6.4

PMPAT and MDPAT separate the infix expression into two expressions and an operator
according to the convention for left association. The patterns are identical except that
PMPAT looks for addition or subtraction and MDPAT looks for multiplication or division.

PMPAT has three parts, corresponding to the first balanced expression, the operator, and
the second balanced expression. The pattern for the first expression is complicated by the
fact that the operator must be the rightmost in the string of operators. Consider the
pa ttern for the first expression:

+
(ARBNO(BAL ANY('+-'» $ X FAIL
TAB(*(SIZE(X) - 1») . X

It consists of two alternatives. The first,

ARBNO(BAL ANY('+-'» $ X FAIL

*DIFFER(X)

is used to locate the rightmost operator by matching a sequence of balanced strings
followed by additive operators. FAIL forces ARBNO to match the longest such string and
eventually causes failure of the alternative. Thus, for the expression A-B*C-D, the last
match of the first alternative is

D

FAIL

On entry to the second alternative

DIFFER(X) TAB((SIZE(X) - 1»

the value of X is checked to see if it is the null string. If so, no match is possible. If it is
not null, the first balanced expression must be all but the last character of X. The first
expression is matched by

TAB(*(SIZE(X) - 1»

The remainder of PMPAT consists of the expression

LEN(1) . OP REM. Y

LEN (1) is used to match the operator and REM matches the remainder of the string, which
is the second balanced expression.

4.6.4 Example - Tower of Hanoi 109

4.6.4 Example - Tower of Hanoi

The Tower of Hanoi is a game derived from the ancient Tower of Brahma, a ritual
allegedly practiced by Brahman priests to predict the end of the world. At the time of
creation, 64 golden discs of decreasing size appeared stacked on a diamond needle. Nearby
were two other diamond needles, both empty. The Brahman priests, created at the same
time, were set to the task of moving the discs from their original needle to a second
needle using, when necessary, the third needle as temporary storage. Before all 64 discs are
moved to the second needle and stacked in decreasing size, the end of the world will be
upon us.

Creation Intermediate
Storage

End of
the World

I
,---I-~

I I \
I I \
I I \
I I \
I I \
I I \
I I \
I I \
I I \
I I \
I \
I \
I ,
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \
I \

I I \

/:;///:;:;///:;#//////////////////:;////~:////;///;///;/7;////)///7)//77)/////77;
l' I I

110 Programmer-Defined Functions

Movement of the discs is governed by the rules:

(1) only one disc may be moved at a time,
(2) a disc may be moved from any needle to any other, and
(3) at no time maya larger disc rest upon a smaller disc.

4.6.4

A solution to the Tower of Hanoi is a recursive function that prints out the steps
necessary to move N discs from one needle to another (where N is hopefully a good deal
smaller than 64). A program that defines the function HANOI and tests it by moving 5
discs from needle A to needle C follows.

DEFINE('HANOI(N,NS,ND,NI)')
HANOI EQ(N,O)

HANOI(N - 1,NS,NI,ND)
OUTPUT 'MOVE DISC 'N'
HANOI(N - 1,NI,ND,NS)

HANOI.END
TEST
END

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

HANOI (5 , , A' , 'C' , 'B ')

DISC 1 FROM A TO C
DISC 2 FROM A TO B
DISC 1 FROM C TO B

DISC 3 FROM A TO C
DISC 1 FROM B TO A
DISC 2 FROM B TO C
DISC 1 FROM A TO C
DISC 4 FROM A TO B

DISC 1 FROM C TO B

DISC 2 FROM C TO A
DISC 1 FROM B TO A
DISC 3 FROM C TO B

DISC 1 FROM A TO C
DISC 2 FROM A TO B
DISC 1 FROM C TO B
DISC 5 FROM A TO C
DISC 1 FROM B TO A
DISC 2 FROM B TO C
DISC 1 FROM A TO C
DISC 3 FROM B TO A
DISC 1 FROM C TO B

DISC 2 FROM C TO A
DISC 1 FROM B TO A
DISC 4 FROM B TO C
DISC 1 FROM A TO C
DISC 2 FR'OM A TO B

: (HANO I . END)
:S(RETURN)

FROM 'NS' TO ' ND
: (RETURN)

Exercises 111

MOVE DISC 1 FROM C TO B
MOVE DISC 3 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C

The program logic can be seen by induction. Clearly, moving no discs requires no steps.
Moving one disc from needle A to needle C requires one step.

MOVE DISC FROM A TO C

Moving two discs from A to C requires three steps.

MOVE DISC 1 FROM A TO B
MOVE DISC 2 FROM A TO C
MOVE DISC 1 FROM B TO C

Moving three discs from A to C requires seven steps.

MOVE DISC FROM A TO C
MOVE DISC 2 FROM A TO B
MOVE DISC 1 FROM C TO B
MOVE DISC 3 FROM A TO C
MOVE DISC 1 FROM B TO A
MOVE DISC 2 FROM B TO C
MOVE DISC 1 FROM A TO C

The general solution is:

MOVE N-1 DISCS FROM A TO B
MOVE DISC N FROM A TO C
MOVE N-1 DISCS FROM B TO C

The implementation is simple. HANOI is defined with four arguments:

(1) N is the number of discs to be moved,
(2) NS is the starting needle,
(3) ND is the destination needle, and
(4) NI is the intermediate storage needle.

On entry to HANOI, the value of N is compared with zero. If N is zero, no discs are
moved and the function returns. If N is not zero, HANOI is called recursively to move N-1
discs from the starting needle to the intermediate storage needle. Having done that, the
command to move the Nth disc from the starting needle to the destination needle is
printed. Finally, HANOI is called a second time to move the N-1 discs from intermediate
storage to the destination needle.

112 Programmer-Defined Functions

Exercises

Exercise 4.1: Write a function that prints all substrings of length N from a string s.

Exercise 4.2: The Fibonacci numbers F C N) are defined by the equations

FCO)
F C 1)
F C N+ 1)

o
1

FCN) + FCN-1)

Define a function F such that the value of F C N) is the Nth Fibonacci number.

Exercise 4.3: Define a function that converts algebraic expressicns into Polish notation. Let
the definition of expression include the binary operator! for exponentiation in addition to
the operators +, -, *, and /. Assume that exponentiation associates to the right.

Exercise 4.4: Define a function NOT such that NOT C p) matches the null string if p fails to
match, and fails if P matches.

CHAPTER 5

Arrays, Tables, and Defined Data Types

5.1 Arrays

An array is an indexed aggregate of variables, called elements. Arrays are created by
the execution of the primitive function ARRAY. ARRAY (p, e) returns an array whose
bounds and dimensions are described by the prototype p. Every element is initialized to
the value of the expression e. For example,

VECTOR ARRAY(10)

assigns a one-dimensional array of length 10 to VECTOR. Since the second argument is
omitted, each element of the array has the null string value. Indexing ordinarily starts at
1 . Other lower bounds may be specified by using a colon to separate the upper and lower
limits.

LINE ARRAY (, - 5: 5 ')

creates an array with lower bound -5 and upper bound 5.

Additional dimensions in a prototype are separated by commas. Thus,

BOARD ARRAY (, 3 , 3 ' , 'X')

defines a three-by-three array with all elements having the value X.

BOARD

~

113

114 Arrays, Tables, and Defined Data Types 5.1

There is no intrinsic limit on the size or dimensionality of an array.

Warning: The first argument of ARRAY is the prototype, and the second IS a value,
which is given to each element of the resulting array. Thus,

A ARRAY (, 3 , 3 ')

creates a two-dimensional array with each element having the null string as value.

On the other hand,

A

A ---------:'~

ARRAY(3,3)

creates a one-dimensional array with each element having the value 3.

A 3

3

3

Each element of an array is given the same initial value. Consequently, execution of the
instructions

A1
A2

ARRAY(S>
ARRAY (5 , A 1)

creates only two arrays. Each element of A2 has the same array, A 1 , as value.

5.1.1 Array References 115

A2 A1

~

5.1.1 Array References

If the value of a variable is an array, as is the case with VECTOR, BOARD, A, A 1 , and
A2 above, an element in the array may be referenced through the variable. Angular
brackets following the array-valued variable are used to specify the element. Array
references such as VECTOR<S> or BOARD<2 , 3> are variables. For example,

VECTOR<S> EXP

assigns the value of EXP to the eighth element of VECTOR.

OUTPUT BOARD<2,3>

prints the value of the 2,3 element of BOARD.

FIELD BREAK(' ') . LINE<-3,4> '

defines a pattern that breaks out a field of data and assigns it to the - 3 , 4 element of
LINE.

Each element of an array may have any type of data object as value. For example, the
first element of an array may be an integer, the second a pattern, and so forth.

If an index referring to an element of an array falls outside the range of the array, the
array reference fails. Thus,

OUTPUT VECTOR<12>

fails. This failure may be used to control iteration through the elements of an array

116 Arrays, Tables, and Defined Data Types 5.1.1

without knowing its size. A function SUM, whose value is the sum of all the elements of an
array, could have the defining statement

DEFINE('SUM(ARRAY)N')

wi th the procedure

SUM N
SUM

N + 1
SUM + ARRAY<N> :S(SUM)F(RETURN)

The summation loop continues until N exceeds the range of ARRAY. This function does
not need to know the size of ARRAY, but only that it is a one-dimensional array with a
lower bound of one.

Omitted trailing indices are taken to be zero. Specification of too many indices is an
error.

Example - Bubble Sort

A simple application of one-dimensional arrays is illustrated in the following example
that puts strings in lexical order. A bubble sort is much like an exchange sort. When two
elements are found to be out of order, they are switched. However, the lexically smaller
item is bubbled up to its proper place.

*

*

*
READ

*
GO

*
PRINT

*
SORT

SWITCH

BUBBLE SORT PROGRAM
&TRIM 1
DEFINE('SORT(N)I')
DEFINE('SWITCH(I)TEMP')
DEFINE('BUBBLE(J)')

GET NUMBER OF ITEMS TO BE SORTED
N
A

I

A<I>

SORT(N)

M
OUTPUT
M

INPUT
ARRAY(N)

READ IN THE ITEMS
I + 1
INPUT

SORT THE LIST

PRINT SORTED LIST
1
A<M>
M + 1

FUNCTIONS
I LT(I,N - 1) I + 1
LGT(A<I>,A<I + 1»
SWITCH(I)
BUBBLE(I)
TEMP
A<I>

:F(ERROR)

:F(GO)S(READ)

:F(END)
: (PRINT)

:F(RETURN)
:F(SORT)

: (SORT)

5.1.1

BUBBLE

END

A<I + 1> TEMP
J GT (J , 1) J - 1
LGT(A<J>,A<J + 1»
SWITCH(J)

For the input

15
ADDSIB
BUKINT
ADJTTL
BUCKET
ADREAL
BKSPCE
APDSP
ARRAY
BKSIZE
ALTERN
BRANCH
ADJUST
BUFFER
ADDSON
ADDLG

the output is

ADDLG
ADDSIB
ADDSON
ADJTTL
ADJUST
ADREAL
ALTERN
APDSP
ARRAY
BKSIZE
BKSPCE
BRANCH
BUCKET
BUFFER
BUKINT

One iteration of SORT IS:

Array References

: (RETURN)
:F(RETURN)
:F(RETURN)
: (BUBBLE)

117

118 Arrays, Tables, and Defined Data Types

SWITCH

A A

C C

D D

I----:>~ F B

>< B F

E E

BUBBLE

A

B

C

D

F

E

INCREMENT
I

~

A

B

C

D

I ----:>~ F

E

5.2

Elements above I are properly ordered. If elements at I and I + 1 are out of order, they
are switched. The new element at I, which is B, is bubbled by means of interchanges to
its proper place above I. I is incremented and the process continues.

5.2 Tables

A table is an aggregate of variables, similar to a one-dimensional array. However, a
variable in a table can be referenced by any data object, unlike arrays that require integer
references. A table can be thought of as an associative array.

A table is created by the TABLE function. For example,

T TABLE ()

creates a table and assigns it as the value of T. Variables in the table T may be
subsequently referenced in much the same manner that array references are made. For
example,

T<'A'> 3

assigns the value 3 to the A th element of T.

The referencing argument can be any value of any data type. By simply using an
argument, the appropriate variable in the table is referenced. If no such variable exists,
one is created and given the null string as its initial value.

5.3.1 COpy 119

The TABLE function actually has two arguments, both of which can be omitted as in
the introductory example above. The general form of the function is

TABLECN,M)

where Nand M concern the size of the table. N determines the initial size of the table,
indicating how many variables it can contain. M is the number of additional variables
provided if more are required. For example,

TABLEC20,1S)

creates a tables of 20 variables. If more are required, the table size is increased to 35. If
this is not sufficient, the size is increased to SO, and so on.

The default values for Nand Mare 10. If either argument is omitted (or zero), the
corresponding default is used. Efficient use of tables is obtained by chosing values of N
and M appropriate to the expected use of the table.

Programmers are cautioned that each different argument references a different variable
in a table. T< 1> and T< I 1 I> reference different variables. Particular care must be taken
when the referencing argument is not given explicitly, but rather results from the
evaluation of an expression.

An example of the use of tables appears at the end of the next section.

5.3 Functions for Use with Arrays and Tables

5.3.1 COpy

The value of the ARRAY function is an object whose data type is ARRAY. This value
may be assigned to one or more variables.

A

B

ARRAY(3)
A

A and B have the same array as value.

A >

B~

120 Arrays, Tables, and Defined Data Types

Thus,

print SIX.

B<2>
OUTPUT

'SIX'
A<2>

A :>

B~ o--+-----~ SIX

The COpy function produces a copy of an array. Executing the statements

A
A<2>
B

B<2>

ARRAY(3)
'TWO'

COPY(A)
'SIX'

5.3.2

creates distinct arrays. Unlike the prevIous example, assIgnIng a value to B<2> does not
affect the value of A<2> .

A~ B~

o--+-------'~ TWO o--+---~ S I X

COpy may be used with other types of data, as described In Chapter 7. Tables cannot be
copied, however.

5.3.2 PROTQTYPE

The value of the dimension or range of an array is sometimes needed. The pnmItIve
function PROTOTYPE returns the prototype used to define the array. PROTOTYPE has an
array-valued argument and returns the prototype string. Thus, if

A ARRAY('-S:S' ,'X')

5.3.3 ITEM 121

then the value of PROTOTYPE (A) is the string - 5 : 5 .

An example utilizing PROTOTYPE is the following function named SQUARE. The
argument of SQUARE is any singly-dimensioned array. The value of SQUARE is a
2-dimensional square array whose dimensions equal that of the argument, and whose
elements are null strings.

SQUARE
SQEND

DEFINE('SQUARE(A)')
SQUARE ARRAY(PROTOTYPE(A)

: (SQEND)
'PROTOTYPE(A» : (RETURN)

The argument of ARRAY is a string formed from two occurences of PROTOTYPE (A)
separated by a comma. Thus, the index range is the same for both dimensions of the new
array.

5.3.3 ITEM

In order to reference an array or table element by means of angular brackets, the array
must be the value of a known identifier. Sometimes this is not the case. For example,

$X ARRAY(10)

is an acceptable assignment statement. But $X<2> and ($X) <2> do not reference the
second element of the array. In the first expression, the unary $ operates on the value of
X<2>; the second is syntactically erroneous.

There are two ways to refer to an element of such an array. The array can be assigned
to a known identifier:

TEMP
TEMP<2>

$X
'SIX'

Alternatively, the primitive function ITEM can be used. The value of
ITEM (A, i 1 , ••• , in) is the (i 1 , ••• , in) element of the array A.

ITEM($X,2) 'SIX'

assigns SIX to the second element of the array that is the value of $X.

Similarly, if

ARRAY(100)

is executed, the 50th item of this array may be referenced by ITEM (A< 1> , 50) .
ITEM also may be used to reference tables.

If an index referring to an element of an array falls outside the range of the array, the
call of ITEM fails. As with array and table references, extra arguments are erroneous.

122 Arrays, Tables, and Defined Data Types 5.3.4

5.3.4 Conversion between Arrays and Tables

Conversion between tables and arrays can be performed using the CONVERT function. If
T is a table

A CONVERT(T, 'ARRAY')

assigns to A an array corresponding to the table T. The prototype of A is n, 2 where n is
the number of variables in T that have nonnull values. A<I , 1> is a referencing argument
and A<I , 2> is the value of the corresponding variable. Only variables with nonnull
values are included. Conversion from TABLE to ARRAY fails if there is no variable with a
nonnull value.

Conversion of a table to ,an array creates a 'fixed' representation of the table that can
be accessed systematically by indexing through the resulting array. This ability is
particularly useful when the variables of the table are not known, as illustrated by the
example at the end of this section.

A rectangular array with a second dimension that has an extent of two can be
converted to a table. For example, if A is an array with prototype-3: 3 ,2,

T CONVERT (A, 'TABLE')

creates a table T with seven variables corresponding to A<I , 1> (-3 SIS 3) and with
values of these variables being A<I , 2> respectively. A<I, 1> is created even if the value
of A<I, 2> is the null string. If the second dimension does not have an extent of two, the
call of CONVERT fails.

The value used for additional variables (corresponding to the second argument of
TABLE) is the default, 10.

Example - Word Counting

A simple application of tables is illustrated in the following example that counts the
number of times that words occur in input text. A line of text is read in, printed, and
decomposed into words, using a simple definition for word separation., Each word
references a corresponding table variable used to keep the count. When the input text is
exhausted, the table is converted into an array and the results printed.

&ANCHOR 1
SEPARATOR

, .. ";) ,- , . , , ...
END BREAK(SEPARATOR)
GAP SPAN(SEPARATOR)
TOKEN END . WORD GAP
COUNT TABLE(20,10)

READ LINE INPUT :F{PRINT)
OUTPUT LINE
LINE GAP

5.4 Programmer-Defined Data Types

NEXTT LINE TOKEN
COUNT<WORD> COUNT<WORD> + 1

PRINT OUTPUT
OUTPUT
OUTPUT
COUNT
I

NEXTC OUTPUT
I

END

'WORD COUNTS ARE:'

CONVERT(COUNT,'ARRAY')

COUNT<I,1> ' = ' COUNT<I,2>
1+1

:F(READ)
: (NEXTT)

:F(END)

:F(END)
: (NEXTC)

123

For input consisting of a fragment from the poem 'The Bells' by Edgar Allan Poe, the
output is

ON THE FUTURE! - HOW IT TELLS
OF THE RAPTURE THAT IMPELLS

TO THE SWINGING AND THE RINGING
OF THE BELLS, BELLS, BELLS, -

OF THE BELLS, BELLS, BELLS, BELLS,
BELLS, BELLS, BELLS, -

TO THE RHYMING AND THE CHIMING OF THE BELLS!

WORD COUNTS ARE:

ON = 1
THE = 9
FUTURE = 1
HOW = 1
IT = 1
TELLS = 1
OF = 4
RAPTURE 1
THAT = 1
IMPELLS = 1
TO = 2
SWINGING = 1
AND = 2
RINGING = 1
BELLS = 11
RHYMING 1
CHIMING = 1

5.4 Programmer-Defined Data Types

SNOBOL4 allows the programmer to define his own types of data objects. A
programmer-defined data object is an ordered set of variables called fields. A call of
DATA (p) defines a new data type described by the prototype p. The prototype p is a

124 Arrays, Tables, and Defined Data Types 5.4

string denoting the name of the data type and the names of the fields. There is no
intrinsic limit to the number of fields.

As an example of a programmer-defined data type, consider complex numbers. A
complex number can be said to consist of two fields, the real and the imaginary. The call

DATA('COMPLEX(R,I)')

defines a data type COMPLEX, with two fields R and I .

To create an object with the data type COMPLEX, a call of the form

COMPLEX(e1,e2)

is made, where e 1 and e2 are expressions with numerical values. For example, to assign
the complex number '1 .5+2.0 i ' to the variable C, the statement

C COMPLEX(1.5,2.0)

is executed. Each call of the function COMPLEX creates two new variables corresponding
to the real and imaginary parts. These variables may be referenced by using the field
name as a function. After executing the statement above, the value of C is a complex
number; the real part is referenced by R (C) and the imaginary part by I (C) . Thus,

A R(C)

assigns the value 1 .5 to A. Since R (C) is a variable, it may be assigned a value. If

R(C) 3.2

is executed, the complex number '3.2+2.0 i' is assigned to C.

Operations on complex quantities can be defined using programmer-defined functions. A
function to compute the sum of two complex quantities is

DEFINE('SUM(C1,C2)') : (SUM.END)
SUM SUM COMPLEX(R(C1) + R(C2),I(C1) + I(C2» : (RETURN)
SUM. END

If C has the value '3.2+2.0 i " execution of the statement

C SUM(C,COMPLEX(1.0,1.0»

assigns '4. 2 + 3 • 0 i' to C.

Example - Text Processing

There is no intrinsic limit to the length of a string in SNOBOL4, but there is often a
practical limit. For example, scanning a string for a pattern can be time consuming if the
string is long. However, many string applications require reading in and retaining long
passages of text. For such cases, a new data type called TEXT can be defined.

DATA('TEXT(LINE,N,NEXT)')

5.4 Programmer-Defined Data Types 125

The first field is a line of text, the second field indicates the line number, and the third
field points to the next line of text.

A passage of text is read as follows:

I 1
HEAD TEXT(INPUT,I)
CURRENT HEAD

LOOP I I + 1
NEXT (CURRENT) TEXT(INPUT,I)
CURRENT NEXT(CURRENT)

DONE

The resulting data structure has the form:

.HEAD

LINE

N

NEXT

~

LINE

N

NEXT

~

LIN E

N

NEX T

/

/

/

:F(EMPTY)

:F(DONE)
: (LOOP)

line 1

1

line 2

2

line 3

3

126 Arrays, Tables, and Defined Data Types 5.4.1

~~----------~
LINE line n

N n

NEXT

The statement

LINE(HEAD) 'EVERY' :S(YES)F(NO)

examines the first line for the word EVERY.

The following section of program prints the lines and line numbers where EVERY
occurs.

CURRENT HEAD
TEST LINE(CURRENT) 'EVERY'

OUTPUT N(CURRENT) ':'
BUMP CURRENT NEXT (CURRENT)

IDENT(CURRENT)

:F(BUMP)
LINE (CURRENT)

:F(TEST)

The same field names may exist for several data types. Thus,

DATA('LIST(VALUE,NEXT)')

defines a data type LIST which can coexist with the previous definition of the data type
TEXT. Although NEXT is a field name for both TEXT and LI ST, NEXT (X) is not
ambiguous because the data type of the argument X indicates the usage.

5.4.1 VALUE

VALUE IS a primitive field function defined on strings and names which refers to their
value. If

RADIX 'HEX'

then

V VALUE('RADIX')

assigns the string HEX to V. Similarly,

VALUE ('RADIX') 'DEC'

assigns the string DEC as the value of RADIX.

VALUE is supplied so that a programmer may define the field VALUE on programmer­
defined data types, and then apply VALUE to strings and names as well as the defined

Exercises 127

types. This permits a uniform treatment of 'value' without the necessity for checking data
type. If

DATA('LIST(VALUE,TEXT)')
DATA('NODE(FATHER,LSON,RSIB,VALUE)')

are used to define the data types LIST and NODE, then VALUE can be applied to objects
with data type LIST and NODE as well as names and strings.

Exercises

Exercise 5.1: One way to represent a directed graph is with an array of arrays. Suppose
the nodes of a graph are numbered 1 through N, and node I has S (I) successors. The
graph can be represented by an N*2 array. The I, 1 element is a one-dimensional array
of successors with S (I) elements. The 1,2 element can be used for a value associated
with the I th node.

Write a program to read in and construct a graph. The first data card should contain
the number of nodes. Each subsequent card should contain a node number and a list of
successors.

Exercise 5.2: A path between two nodes can be represented by a string of node numbers
separated by commas. Write a function PATH (I , J) that finds a path between the nodes
I and J. If there is no path, the function should fail.

Exercise 5.3: Assume the statements in an assembly language program have three fields:
label, operation, and operand. They are in free format and the label field is optional. The
branch sta temen t has the form

[label] BRANCH label

Write a program that analyzes an assembly language source deck and produces a flow
table that lists the labels and the numbers of the statements that branch to each label.

Exercise 5.4: Define a function MUL that computes the product of two complex numbers.
Redefine multiplication so that if either operand is complex the result is complex.
Otherwise, the product should be the usual result.

CHAPTER 6

Keywords, Names, and Code

6.1 Keywords

The unary operator ampersand, &, when applied to certain identifiers called keywords,
provides access to information used internally by the SNOBOL4 system. Some keywords
permit internal values to be changed. Thus

&ANCHOR 1

turns on the anchored pattern matching mode. Another example of a keyword is
& STCOUNT whose value is the number of statements that have been executed. If the
statement

GT(&STCOUNT,40000) :S(CLEAN.UP)

is executed, transfer to the statement labelled CLEAN. UP is made if more than 40000

statements have been executed. The value of &STCOUNT is automatically incremented as
statements are executed. The programmer cannot assign a value to &STCOUNT, and an
attempt to do so is an error. Such a keyword is protected Keywords to which the
programmer can assign values (such as &ANCHOR) are unprotected

6.1.1 Protected Keywords

There are fifteen protected keywords.

&ALPHABET: The value of &ALPHABET is a string of all the characters of the machine
on which SNOBOL4 is implemented. The characters are ordered according to their
internal coding.

&ABORT: The value of &ABORT is the same as the initial value of ABORT. The value of
ABORT can be changed, but the value of &ABORT cannot. There are corresponding
protected keywords for the other primitive patterns.

&ARB: The value of &ARB is the same as the initial value of ARB.

&BAL: The value of &BAL is the same as the initial value of BAL.

& ERRTYPE : When a program error occurs, an integer code identifying the error IS

128

6.1.2 Unprotected Keywords 129

assigned to SERRTYPE. See the discussion of errors In Chapter 10. The initial value of
SERRTYPE is zero, indicating no error has occured.

SFAIL: The value of SFAIL is the same as the initial value of FAIL .

SFENCE: The value of SFENCE is the same as the initial value of FENCE.

S FNCLEVEL : The value of S FNCLEVEL is the level of programmer-defined function calls.
The initial value of SFNCLEVEL is zero. SFNCLEVEL is incremented by one each time a
programmer-defined function is called, and decremented with each return.

SLASTNO: The compiler assigns a number to each statement. These numbers are used
primarily for diagnostic purposes. The value of SLASTNO is an integer corresponding to
the number of the last (previous) statement executed. See also S STNO.

SREM: The value of SREM is the same as the initial value of REM.

SRTNTYPE: The value of SRTNTYPE is the string RETURN, FRETURN, or NRETURN,

corresponding to the type of return made by the last programmer-defined function to
return. The initial value of S RTNTYPE is the null string.

S STCOUNT: The value of S STCOUNT is an integer corresponding to the number of
statements executed. The value of S STCOUNT is incremented when execution of a
statement begins.

S STFCOUNT : The value of S STFCOUNT is an integer corresponding to the number of
statements that have failed. S STFCOUNT is incremented when a statement fails.

S STNO : The value of S STNO is an integer corresponding to the number of the statement
currently being executed. See SLASTNO.

S SUCCEED: The value of S SUCCEED is the same as the initial value of SUCCEED.

6.1. 2 Unprotected Keywords

There are thirteen unprotected keywords to which a programmer can aSSIgn integer
values.

SABEND: If SABEND is nonzero, indicating a request for an abnormal ending, a system
core dump is given following program termination. When an abnormal end is forced in
this manner on the IBM 360, the user completion code is the value of SABEND (modulo
4096).

SANCHOR: If SANCHOR is nonzero, pattern matching is performed in the anchored mode.
See Chapter 2. The initial value of SANCHOR is zero.

SCODE: The value of SCODE is returned to the operating system on program completion.
On the IBM 360, the value of SCODE is returned as the condition code for that job step.
The initial value of SCODE is zero.

130 Keywords, Names, and Code 6.2

&DUMP: If &DUMP is nonzero at program termination, the values of natural variables and
unprotected keywords are listed at the end of the program printout. The initial value of
& DUMP is zero.

&ERRLIMIT: The value of &ERRLIMIT controls the handling of certain program errors.
See the description of program errors in Chapter 10. The initial value of &ERRLIMIT is
zero.

& FTRACE : If & FTRACE is greater than zero, diagnostic tracing information is provided
on calls to and returns from all programmer-defined functions. See Chapter B. The initial
value of &FTRACE is zero.

&FULLSCAN: If &FULLSCAN is nonzero, pattern matching is performed in the fullscan
mode. See Chapter 2. The initial value of & FULLSCAN is zero.

& INPUT: If & INPUT is nonzero, input occurs automatically for input-associated variables
(such as INPUT). If & INPUT is zero, input does not occur. The initial value of & INPUT IS

one.

&MAXLNGTH: The value of &MAXLNGTH limits the length of strings that can be formed. If
an attempt is made to form a string with more characters than &MAXLNGTH, a program
error occurs. The initial value of &MAXLNGTH is 5000, but this value can be changed. All
types of string formation are governed by &MAXLNGTH: concatenation, replacement, value
assignment as a result of pattern matching, and string input.

&OUTPUT: If &OUTPUT is nonzero, output occurs automatically whenever a value is
assigned to an output-associated variable. If &OUTPUT is zero, output does not occur. The
initial value of &OUTPUT is one.

& STLIMIT: The value of STLIMIT is the limit on the number of statements that can be
executed (see &STCOUNT). The initial value of &STLIMIT is 50000. Exceeding the limit
on statement execution causes program termination.

&TRACE: Diagnostic tracing facilities are available if &TRACE is greater than zero. See
Chapter B. The initial value of & TRACE is zero.

&TRIM: If &TRIM is nonzero, trailing blanks are trimmed on input. The initial value of
&TRIM is zero.

6.2 Names

A variable can be assigned a value during an assignment statement or by pattern
matching through use of the unary cursor position operator Ql or the binary value
assignment operators. and $. In SNOBOL4, variables fall into two major classes, natural
variables and created variables.

A natural variable is any variable whose name is a nonnull string. Thus,

6.2

A
$'AB'

$'",('

are examples of natural variables, whose names, respectively, are the strings

A
AB
, , , (

Names

The variable, , , (cannot appear explicitly in an assignment statement such as

",('x'

because it is syntactically incorrect. However,

$'",(' 'x'

131

is syntactically correct and performs the desired assignment. Every string except the null
string is the name of a natural variable. Natural variables are available at the start of a
program without any conscious act of creation on the part of the programmer. All natural
variables with the exception of ABORT, ARB, BAL, FAIL, FENCE, REM, and SUCCEED

have the null string as their initial value.

Created variables are generated during execution of a program when, for example, an
array is created. The statement

A ARRAY(10)

creates an array of ten variables. These variables are referenced by A< 1>, A<2>, ... ,
A<10>.

Some expressions yield variables when evaluated. Such variables are called generated
variables, and values can be assigned to them in the same manner that values can be
assigned to variables that appear explicitly. In the statements

M 2
$('N'M) 'INVOICE'

the subject $ ('N' M) generates the variable N2 which is assigned the value INVOICE.

Array and table references, field functions on programmer-defined data objects, and
programmer-defined functions that return by NRETURN are examples of expressions that
genera te variables.

Other expressions, for example arithmetic operations, yield values but not variables.
Thus, execution of the statement

(A + B) 2

IS an error.

Gotos require natural variables. These natural variables may also be generated. The
indirect goto

: S ($TRIM(INPUT))

132 Keywords, Names, and Code 6.2.2

is an example.

Some expressions, such as indirect references, always yield variables. Others, such as
literals, always yield only values. Some expressions mayor may not yield variables. For
example,

F(X) 2

mayor may not be erroneous, depending on the function F. To allow for such cases, the
syntax of SNOBOL4 permits any kind of expression as the subject of assignment.
Statements such as

2 3

are syntactically acceptable even though they are erroneous if executed.

6.2.1 Passing Names

Consider a function BUMP which increments the value of any variable by 1 . If the
value of variable N is to be incremented, the call

BUMP(N)

is not suitable because the value of N, not the name N, is passed to the procedure for
BUMP. The form of the call must be

BUMP ('N')

which passes the string N to the BUMP procedure. Since the string N IS the name of the
variable N, indirect referencing may be used to increment the value.

The defining statement and procedure for BUMP are:

DEFINE('BUMP(VAR)')

BUMP $VAR $VAR + : (RETURN)

6.2.2 The Unary Name Operator

Suppose BUMP is to increment the value of a created variable, such as the second
elemen t of the array A. The call

BUMP (A<2»

is not suitable, since only the value of A<2> is passed. The call

BUMP (, A<2> ,)

6.2.3

is not suitable either, since the string A<2> is passed, and

S'A<2>'

Returning a Variable 133

is a natural variable that bears no relation to the array element. The difficulty arises
because there is no explicit name for created variables. However, implicit names for
created variables can be obtained through use of a unary name operator.

The unary name operator. applied to any variable returns as its value the name of
that variable. Thus, the value of

.A<2>

is the created name of the second array element. The call

BUMP (. A<2>)

passes the name of the second array element to BUMP, so that incrementing IS done
properly.

The name operator serves much the same purpose for created variables as quotation
marks do for natural variables. Furthermore, the name operator applied to a natural
variable behaves the same as quotation marks. Thus, the value of

.LINE

is the string LINE. Both of the following pairs of statements assign the value 2 to MAY.

WORD
SWORD

WORD
SWORD

'MAY'
2

• MAY
2

If the argument of the name operator is a natural variable, the value returned by the
name operator is a string which is an explicit name. If the argument of the name operator
is a created variable, the value returned is an created name. If the argument is not a
variable, an error occurs. For example,

.SIZE(X)
• (A + B)

.+A

are erroneous because the arguments are not variables. If A and B are integers or numeral
strings,

.S(A + B)

is valid because S (A + B) is a natural variable.

134 Keywords, Names, and Code 6.3

6.2.3 Returning a Variable

When returning from a programmer-defined function via RETURN, the value of the
function name becomes the value of the function call. If NRETURN is used, the value of
the function name is returned as a variable, not as a value. Such a function call may thus
be used freely in any context that requires a variable.

Consider, for example, the function NEXT which returns the first unused element of an
array. The array is given as an argument and is assumed to have a zeroth element which
indicates the last used element.

*
NEXT

*
NEXT. END

DEFINE('NEXT(A)')

A<O>
NEXT

A<O> + 1
.A<A<O»

Th us, executing the four sta temen ts

B ARRAY('0:100')
NEXT(B) 'A'
NEXT(B) 'THE'
'STILL' 'T' REM. NEXT(B)

: (NEXT. END)

:S(NRETURN)F(FRETURN)

assigns to B<O> through B<3> values 3 , A, THE, and ILL, respectively.

When NEXT returns, the value of NEXT is . B<B<O», which is the name of the first
available array element. NEXT (B) becomes the variable B<B<O».

6.3 Gotos, Labels, and Code

Flow of control is governed by unconditional, success, and failure gotos. In the goto
field, variables indicate the next statement to which control is passed based on the
outcome of the current statement.

If a variable is used as a statement label, a label attribute pointing to the statement is
assigned to the variable. This label attribute is independent of the value of the variable.
Thus, a variable can be used in the label field and the goto field, as well as in the subject
field of a single statement. The statement

DELAY DELAY LT(DELAY,N) DELAY + 1 :S(DELAY)F(ONWARD)

is acceptable and unambiguous.

If a variable has no label attribute, its use in a goto field is erroneous.

It is possible, as illustrated in the next section, to change the label attribute of a
variable. In this way, a particular label variable, such as that appearing in

6.3.1 Creation and Execution of Code 135

:SCLOOP)

may cause transfer to one statement at the beginning of execution and an entirely different
statement later on.

6.3.1 Creation and Execution of Code

In the first phase of a SNOBOL4 run (compilation), the source program is converted
into Polish-prefix object code. In the second (execution) phase this object code is
interpreted. Object code is a type of data just as are strings, patterns, and arrays. During
the execution phase, it is possible, using the primitive function CODE C str ing) , to convert
a string of characters into object code. The argument to CODE is a string representing one
or more SNOBOL4 statements. The value of a call to CODE is executable object code.

A string to be compiled into object code consists of SNOBOL4 statements separated by
semicolons. For example, if the variable GET has a string value assigned by

GET &TRIM 1 ; ,

+ N 10; ,

+ LINE . ' ,
+ 'LOOP N GTCN,O) N 1 : F C OUT) ; ,

+ LINE LINE INPUT : C LOOP) ,

then

NUCODE CODECGET)

causes the statements in the value of GET to be compiled. The value of CODE C GET)

becomes the value of NUCODE .

Execution of statements in the value of NUCODE can be accomplished in two ways:

(1) transfer to a labelled statement appearing in NUCODE, and

(2) execution of a direct goto which passes control to the first statement in NUCODE ,

whether labelled or not.

Thus, execution of the goto

: C LOOP)

causes transfer to the statement labelled LOOP inside of NUCODE, even if the original
program had a statement labelled LOOP.

Blanks are as important in strings to be converted to code as they are In the program
itself. A statement without a label must begin with a blank.

A direct goto is a special construction in the goto field, permIttIng transfer directly to
the beginning of a block of object code rather than through a label. The direct goto uses
enclosing angular brackets rather than parentheses. The expression enclosed in the angular
brackets must be code-valued. Execution of the direct goto

136 Keywords, Names, and Code 6.3.1

: <NUCODE>

causes transfer to the first statement

&TRIM

Flowing off the end of a block of compiled object code results in normal termination, just
as if there were an end statement. If the label END is encountered in the string being
compiled, compilation ceases at that point.

The following statement illustrates the use of the function CODE in the goto itself.

:<CODE(' OUTPUT "RECOMPILED" :(RESTART)'»

The angular brackets indicate transfer to the beginning of the newly compiled block of
CODE, which prints RECOMPILED and transfers to the statement labelled RESTART. '

The primitive function CODE fails if its argument has a syntactic error.

It is a compilation error for the same label to appear more than once in the source
program. Statements compiled using CODE, however, may have the same labels as
statements compiled earlier. The label attribute for the corresponding variable references
the new statement. For example, the following program segment is used to call a function
PROCESS (N) with various values ofN.

BEGIN
LOOP

OUT

END

N 5
N LT(N,10) N +
PROCESS(N)

NEWLOOP 'LOOP
CODE (NEWLOOP)

N

:F(OUT)
: (LOOP)

GT (N , 0) N 1: F (END) ,
: (BEGIN)

Within the two-statement loop, PROCESS (N) is called with N having values 6, 7 , 8, 9,
10 before control passes to the statement labelled OUT. At that point, a new block of code
is com piled consisting of the statement

LOOP N GT(N,O) N 1 :F(END)

It is intended that PROCESS (N) be called for N with values 4, 3, 2, 1 , and 0, but this is
not the case. The original statement labelled LOOP is still in the program. It is not
overwritten by the compilation. The label attribute of LOOP no longer points to it. The
label attribute now points at the newly compiled statement. The new compilation is a
second program which can freely communicate with the original. Execution of the
program proceeds as if the following programs were compiled.

BEGIN

OUT

N 5
N LT(N,10) N +
PROCESS(N)

:F(OUT)
: (LOOP)

6.3.1

END

LOOP
END

N

NEWLOOP 'LOOP
CODECNEWLOOP)

GTCN,O) N

Creation and Execution of Code 137

N GT C N , 0) N 1: F C END) ,
: C BEGIN)

1 :FCEND)

After compilation of NEWLOOP, transfer to BEGIN causes N to be assigned the value 5.
Control flows into the statement originally labelled LOOP, which increments N to 6.
PROCESS CN) is called and, on completion, control passes to the new statement labelled
LOOP. N is decremented to 5, but PROCESS cannot be called as intended, since the new
statement does not overwrite the old, and no way is provided for getting back to the
original program.

The program segment c~n be rewritten to perform as intended by using explicit gotos to
control program flow rather than relying on the sequence of statements to control flow.

BEGIN
LOOP
PROC
OUT

END

N 5
N LTCN,10) N + 1
PROCESSCN)

NEWLOOP 'LOOP N
CODECNEWLOOP)

: C LOOP)
:FCOUT)
: C LOOP)

GT C N , 0) N 1: F C END) S C PROC) ,
: C BEGIN)

Following compilation of NEWLOOP, execution proceeds as if the following programs
were compiled.

BEGIN

PROC
OUT

END

LOOP
END

N

N 5
N LTCN,10) N + 1

: C LOOP)
:FCOUT)
: C LOOP) PROCESS(N)

NEWLOOP 'LOOP N GT C N , 0) N 1: F C END) S C PROC) ,
CODECNEWLOOP) : C BEGIN)

GTCN,O) N 1 :FCEND)SCPROC)

138 Keywords, Names, and Code

After assigning 5 to N, control passes from the statement labelled BEGIN to the new
statement labelled LOOP. N is properly decremented to 4 and control passes to the
statement labelled PROC which calls PROCESS. The loop continues until N is O.

Exercises

Exercise 6.1: A pushdown list can be implemented by means of an array. Let the first
element in the array be the index of the top of the list. Define three unary operators that
push onto the list and return a variable, pop from the list and return a value, and return
a variable at the top of the list.

Exercise 6.2: Write a program that reads in another SNOBOL4 program, forms it into a
string of statements separated by semicolons, converts it to code, and executes it. Assume
the program to be read in is terminated by a card containing EOF, rather than an actual
end of file. Test this program by using a copy of the program as input data.

CHAPTER 7

Types of Data

Most programs do not require any particular attention to types of data. Any variable
can have any type of data as value, and most conversions between data types are
performed automatically, without the need for any action on the part of the programmer.

In some situations, however, it is necessary to give more attention to data types. Explicit
conversion from one data type to another may be necessary. Sometimes the details of the
automatic, implicit conversions must be understood. This chapter covers these matters in
some detail.

7.1 Data Type Representations

Data objects are classified by type. The string used to refer to the data type IS called
the formal identification of the data type. The types of data are:

Data Type

string
integer
real number
pa ttern structure
array
table
crea ted name
unevaluated expression
object code
programmer-defined
external

Formal Identification

STRING
INTEGER
REAL
PATTERN
ARRAY
TABLE
NAME
EXPRESSION
CODE
Data type name (e.g. COMPLEX)
EXTERNAL

For notational convenience, the formal identification is sometimes abbreviated to the first
letter, with D standing for defined data types and X standing for EXTERNAL.

The function DATATYPE can be used to obtain the formal identification of the data
type of an object. The call DATATYPE (object) returns the formal identification. For
example,

139

140 Types of Data

DATATYPECLEN(1»

returns the value PATTERN. Similarly,

DATATYPE(37)
DATATYPEC.A<I»
DATATYPEC*P)

return

INTEGER
NAME
EXPRESSION

respectively.

7.2.1

The DATA function can be used to define a data type with the same formal
identification as another data type. For example,

DATAC 'STRINGCFIRST,LAST) ')

defines a new data type with formal identification STRING. The two data types STRING
are correctly distinguished by the SNOBOL4 system, but they cannot be differentiated
during program execution by their formal identifications.

7.2 Explicit Conversion of Data Types

In some cases, it is reasonable to convert an object of one data type into a
corresponding object of another data type. This can be accomplished by using the
CONVERT function, introduced earlier in connection with tables and arrays.

7.2.1 CONVERT

A call of the CONVERT function has the form CONVERT C object, data type) where
the object is to be converted to the given data type, expressed as a formal identification.
For example, the real number 2.5 can be converted into an integer by the statement

I CONVERTC2.5, 'INTEGER')

In REAL -to-INTEGER conversion, the fractional part is discarded, and I has the value 2.

Any data object can be converted to a string by CONVERT. In most cases conversion to
STRING simply returns the formal identification of the data type of the object to be
converted, and in this way behaves like DATATYPE. In four cases, INTEGER, REAL,
ARRA Y, and TABLE, special conversions are performed to provide more meaningful
representations of the object converted. In general, the result of converting any data object
to STRING is referred to as the string representation of that object.

7.2.1 CONVERT 141

In conversion from INTEGER to STRING, leading zeroes are suppressed and a sigd is
provided only if the integer is negative. Thus the value of

CONVERT(+00732, 'STRING')

is the string 7 3 2 .

In conversion from REAL to STRING, at least one digit is provided before the decimal
point. A sign is provided only if the real number is negative.

In conversion from ARRAY to STRING, the formal identification ARRAY is given,
followed by the array prototype enclosed in parentheses. For example, if an array A is
crea ted by the sta temen t

A ARRAY('0:10' ,3)

the value of

CONVERT(A,'STRING')

is ARRAY (, 0: 10') .

If the prototype is longer than 20 characters, only the formal identification, ARRAY, IS
given.

In conversion from TABLE to STRING the formal identification, TABLE, is given,
followed by the current size of the table and its secondary extent enclosed in parentheses.
For a typical table, T, the value of

CONVERT(T, 'STRING')

might be TABLE (300, 10) .

The following table summarizes the data type conversions that can be performed' USIng
CONVERT.

Data Type of Object Returned

Data Type of Argument S I R P A T N E C D X

STRING * F F F F

INTEGER S * C
REAL S F *

PATTERN I *
ARRAY S * F

TABLE S F *
NAME I *

EXPRESSION I *
CODE I *

defined type I (*)
external type I (*)

142 Types of Data 7.3

In this table, the symbols have the following meaning:

(1) * indicates that no conversion is performed, and the first argument is simply
returned as value. In the case of defined and external data types, the enclosing
parentheses indicate that conversion is successful only in converting an object to its
own data type. An object of one defined or external type cannot be converted to a
different type.

(2) F indicates the conversion may fail. For example, the string A cannot be
converted to an integer.

(3) I indicates the formal identification is returned.

(4) C indicates the conversion always succeeds.

(5) S indicates the string representation is returned.

If an attempt is made to perform a conversion that IS not available, the CONVERT

function fails.

7.3 Data Types of Functions and Operations

In many contexts, conversion from one type of data to another is performed implicitly
as required by the functions and operations involved. A typical example is the conversion
of strings to integers in arithmetic contexts. Another example is the conversion of any data
type to its string representation on output.

Unlike many programming languages, SNOBOL4 permits any variable to have any type
of data as value (keywords are the only exception). Furthermore, any expression, however
complicated, can appear wherever a value is required. It is the result of evaluating an
expression that is important. For example, the two statements

x
X

SIZE ('ABCDEF')
SIZE('A' 'BCD' 'EF')

produce the same effect since in both cases the result of evaluating the argument of SIZE

is the string ABCDEF. The way the string is created is irrelevant, but it is important that
the argument be a string. Throughout the language, values may be constructed in any
way, but individual functions and operations often require their arguments to have certain
data types.

7.3.1 Primitive Functions 143

To simplify programming, automatic data type converSIon is performed in many
circumstances. Consider, for example, the statement

y SIZE(1376)

Here the argument of S I Z E is an integer. This integer is automatically converted to a
string, however, and the value" is assigned to Y .

In most cases, the problem of data type conversion can be ignored since conversion is
automatically provided in the most common situations. Care must be observed, however,
in the use of IDENT and DIFFER where no conversions are performed. There are
occassional hazards of conversion. For example, the value of

SIZE(+00732)

IS 3 because of the normalization performed during converSIon, as described In a
preceding section.

Specific information concerning expected data types and automatic conversions IS gIven
in the following sections.

7.3.1 Primitive Functions

The following table lists all primItIve functions, including some described in later
chapters. This table indicates the data types expected for each argument and the data
type of the value returned. The following notation is used.

(1) Upper case letter abbreviations are used for formal identification of data types.
For example, S stands for STRING.

(2) The letter x indicates that any data type is possible.

(3) The letter y indicates several data types are possible. Refer to the description of
the individual function for details.

(4) The letter n indicates a number, either integer or real, is possible.

(5) The symbols -S indicate the null string.

(6) The letter v indicates a variable. Where a variable results from return by name,
the resultant data type is indicated. For example x v indicates a variable whose
value may be of any data type.

144 Types of Data 7.3.2

Function Call Return Function Call Return

ANY(S or E) P INPUT(S or N, I, I) -S
AP PLY (S , x, . . . , x) x INTEGER(x) -S
ARBNO(P) P ITEM (A, I , ... , I) x"'v
ARG(S,I) S ITEM(T,x) x"'v
ARRAY(S,x) A LE(n,n) -S
BACKSPACE(I) -S LEN(I or E) P
BREAK(S or E) P LGT(S,S) -S
CLEAR(x) -S LOCAL(S,I) S
CODE(S) C LT(n,n) -S
COLLECT(I) I NE(n,n) -S
CONVERT(x,S) x NOTANY(S or E) P
COPY(y) y OPSYN(S,S,I) -S
DATA(S) -S OUTPUT(S or N, I, S) -S
DATATYPE(x) S POS(I or E) P
DATE(x) S PROTOTYPE (A) S
DEFINE(S,S) -S REMDR(I,I) I
DETACH(S or N) -S REPLACE(S,S,S) S
DIFFER(x,x) -S REWIND(I) -S
DUMP(I) -S RPOS(I or E) P
DUPL(S,I) S RTAB(I or E) P
ENDFILE(I) -S SIZE(S) I
EQ(n,n) -S SPAN(S or E) P
EVAL(S or E) x STOPTR(S or N, S) -S
EVAL(I) I TAB(I or E) P
EVAL(R) R TABLE(I,I) T
FIELD(S,I) S TIME(x) I
GE(n,n) -S TRACE(S or N, S, S, S) -S
GT(n,n) -S TRIM(S) S
IDENT(x,x) -S VALUE(S or N) x"'v

7.3.2 U nary Operators

A unary operator is essentially the same as a function with one argument, but with a
more compact syntactic representation. A table of expected data types and values returned
for the defined unary operators follows. The previous notation is used with two additions:

(1) S 1 indicates strings that are protected keywords.
(2) S 2 indicates strings that are unprotected keywords.

7.3.4 Statement Components 145

Call Return

...,x .S
?x .s
$(S or N) x"v
.S S
.v N

*x E
+n n
-n n
Q)(v or E) P
&S1 Y
&S2 I"v

7.3.3 Binary Operators

A binary operator is essentially the same as a function of two arguments. A table of
expected data types and values returned for the defined binary operators follows.

Call Return

(p $ v) p

(p • v) P

(n ** n) n

(n * n) n
(n / n) n
(n + n) n
(n - n) n
(x .S) x
(.S x) x
(S S) S
(p p) p

(p I p) p

If either argument of concatenation is the null string, the other argument is returned as
value. Automatic conversion of other data types is described in following sections.

146 Types of Data 7.3.4

7.3.4 Statement Components

In addition to functions and operators, there are three other constructions in which data
types are important:

(1) assignment,
(2) pattern matching, and
(3) pattern matching with replacement.

For assignment, the expected data types are simple:

subject object

x
I

Thus the only restriction on the object of assignment occurs when assignment is made to
an unprotected keyword. The same restriction applies to assignment performed as a result
of pattern matching in which components contain conditional or immediate value
assignment operators.

In pattern matching, the situation is even simpler. The expected data types are:

subject

s
s

pattern

s
p

Pattern matching with replacement can be considered in three steps:

(1) Pattern matching determines the string matched, and hence the initial and
terminal unmatched parts of the subject string.

(2) Concatenation of the initial part, the replacement object, and the terminal part
forms a new object.

(3) This new object is assigned to the subject variable.

Thus, the many possible cases of replacement can be analyzed using the preceding
information. A typical form of replacement is

subject

S-v
s-v

pattern

S

P

object

S

S

where the resulting data type of the subject is a string. A number of special cases can be
determined also. For example, if the pattern matches the entire string, the initial and

7.4.2 Conversion to PATTERN 147

terminal parts are null strings, and as described in the discussion of concatenation, the
replacement object may have any data type. Similarly, if the subject is an unprotected
keyword, the resulting replacement must be an integer.

7.4 Implicit Conversion of Data Types

The previous sections detail the data types expected by the various functions and
operations. As indicated earlier, automatic conversion is provided in many contexts. The
following sections describe such conversion in detail.

7.4.1 Conversion to STRING

Conversion to STRING is one of the most frequent of all implicit conversions. The
string representation, which includes the conversion of all data types, is provided in the
following situations:

(1) On output.

(2) Where required in trace printout (see Chapter 8).

(3) In dumps of variables, both from DUMP (N) (see Chapter 8) and after program
termination (see Chapter 10).

INTEGER -to-STRING conversion is provided in the following situations:

(1) Where STRING is an expected data type.

(2) Where STRING is specified for the argument of an external function.

REAL -to-STRING conversion is performed in a few contexts:

(1) Where STRING is expected in concatenation, including concatenation performed
in replacement statements.

(2) Where STRING is expected as the subject of pattern matching.

(3) Where STRING is specified for the argument of an external function.

148 Types of Data 7.4.4

7.4.2 Conversion to PATTERN

Although there is no explicit conversion to PATTERN, implicit conversion occurs In
many circumstances. Conversion from INTEGER, REAL, STRING, and EXPRESSION to
PATTERN is provided wherever PATTERN is specified as an expected data type in the
preceding sections. A typical example of conversion to PATTERN is the concatenation of a
string with a pattern.

7.4.3 Conversion to INTEGER

STRING -to-INTEGER converSIon IS frequently required. It is provided In the following
si tua tions:

(1) Where INTEGER is an expected data type. This includes arithmetic contexts that
accept reals as well as integers.

(2) Where INTEGER is specified for the argument of an external function. This
converSIon includes conversion of numeral string reals in addition to the regular
converSIon.

REAL -to-INTEGER conversion is provided only for arguments of external functions.

7.4.4 Conversion to REAL

INTEGER -to-REAL and STRING -to-REAL conversion IS provided In the following
situations:

(1) Where REAL is an expected data type. This includes arithmetic contexts that
accept integers as well as real numbers. Both numeral string integers and numeral
string reals are converted.

(2) Where REAL is specified for an argument of an external function.

CHAPTER 8

Tracing

Tracing facilities are provided to permit the programmer to get diagnostic information
about the execution of his program without interfering with its logic or structure. The
tracing mode is turned on by assigning a positive integer to the keyword &TRACE. When
this mode is in effect, certain types of program actions can be sensed, causing
corresponding messages to be printed. The types of actions sensed are:

(1) change in the value of a variable,
(2) call of a defined function,
(3) return from a defined function,
(4) transfer to a label, and
(5) change in the value of certain keywords.

8.1 Standard Trace Procedures

The TRACE function is used to make specific trace requests.

TRACECname,type,tag)

associates the name with the type of action for tracing purposes. The tag provides
identifying information which is included in the trace printout if the name is not a
natural variable. If the name is a natural variable, the tag is ignored. One trace
association must be made for each name and type desired.

Trace printout includes the statement number in which the action occurs, the result of
the action, and the time of the action in milliseconds measured from the beginning of
program execution.

If &TRACE is not positive, there is no tracing, even though trace requests have been
made. The value of &TRACE is decremented by one every time an action is traced, and
tracing is automatically turned off when the value of & TRACE reaches zero. Therefore the
value assigned to &TRACE may be chosen to limit the amount of trace printout.

149

150 Tracing 8.1.1

8.1.1 Value Tracing

TRACE (name, 'VALUE' ,tag)

causes trace printout whenever the value of name is changed. Consider the following
program.

* * PRINT PERMUTATIONS OF SIZE N'OF A GIVEN STRING

*

*
READ

+

'TRIM 1; 'TRACE 100
TRACE('CH' ,'VALUE'); TRACE('STRING' ,'VALUE')
DEFINE('PERM(STRING,N,HEAD)CH,USED')
PERMREQ BREAK(', ') . STRING LEN(1) REM. N

CARD INPUT :F(END)
CARD PERMREQ :F(ERROR)
OUTPUT 'THE PERMUTATIONS OF ' STRING ' TAKEN ' N

, AT A TIME ARE:'
PERM(STRING,N)

PERM
PERMA

OUTPUT EQ(N,O) HEAD
STRING LEN(1) CH

: (READ)
:S(RETURN)
:F(RETURN)

USED
+
ERROR
END

PERM(STRING USED,N - 1,HEAD CH)
OUTPUT '*** ERROR IN ' CARD

The printed output for the input ABCD, 2 IS

STATEMENT 8 : STRING = ' ABCD' , TIME = 17
THE PERMUTATIONS OF ABCD TAKEN 2 AT A TIME

STATEMENT 12: CH = 'A' ,TIME = 17
STATEMENT 12 : STRING = 'BCD' , TIME = 17
STATEMENT 12 : CH = 'B' ,TIME = 34
STATEMENT 12 : STRING = 'CD',TIME = 34

AB
STA~EMEKT 12 : CH = 'c' ,TIME = 50
STATEMENT 12 : STRING = 'D' ,TIME = 50

AC
STATEMENT 12 : CH = 'D' ,TIME = 50
STATEMENT 12 : STRING = ' , ,TIME = 67

AD
STATEMENT 12 : CH = ' B ' , T I ME = 6 7
STATEMENT 12 : STRING = 'CD',TIME 67
STATEMENT 12 : CH = ' C' , TIME = 84
STATEMENT 12: STRING = 'DA' ,TIME 84

BC
STATEMENT 12 : CH = 'D' ,TIME = 100
STATEMENT 12: STRING = 'A' ,TIME = 100

BD

USED CH : (PERMA)
: (READ)

ARE:

3
5
6

7
8
9
9
1 (
1 .

8.1.1 Value Tracing 151

STATEMENT 12: CH = 'A' ,TIME = 100
STATEMENT 12: STRING = ' , ,TIME = 117

BA
STATEMENT 12 : CH = 'c' ,TIME = 117
STATEMENT 12 : STRING = 'D' ,TIME = 117
STATEMENT 12 : CH = 'D' ,TIME = 134
STATEMENT 12: STRING = 'AB' ,TIME = 134

CD
STATEMENT 12 : CH = 'A' ,TIME = 150
STATEMENT 12 : STRING = 'B' ,TIME = 150

CA
STATEMENT 12 : CH = 'B' , TIME = 150
STATEMENT 12 : STRING = ' , ,TIME = 167

CB
STATEMENT 12 : CH = 'D' ,TIME = 167
STATEMENT 12 : STRING = ' , ,TIME = 183
STATEMENT 12 : CH = 'A' ,TIME = 183
STATEMENT 12 : STRING = 'BC' ,TIME = 183

DA
STATEMENT 12 : CH = 'B' ,TIME = 200
STATEMENT 12 : STRING = 'c' ,TIME = 200

DB
STATEMENT 12 : CH = 'c' ,TIME = 200
STATEMENT 12 : STRING = ' , ,TIME = 217

DC

Value tracing is the default type of tracing, and value tracing is assumed if the second
argument to TRACE is omitted. Thus TRACE ('CH') and TRACE (, STRING') would be
sufficient in the example above. Value tracing occurs whenever a value is assigned to a
traced variable by an assignment statem~nt or as a result of value assignment in pattern
matching. Value tracing does not occur when a value is assigned as the result of input or
when values are assigned to formal arguments and local variables in the call of a
programmer-defined function.

If the name is not a natural variable, the tag is printed to identify the name being
traced. For example, TRACE (. SUM<3> , 'VALUE' , , SUM<3>') traces the third element of
the array SUM. Here the tag SUM<3> (chosen to correspond to the created variable
SUM<3» provides a string that identifies the name of the trace request. As an example,
consider the following program, which forms sums in several bins as given on data cards.
The trace association must appear after creation of the array SUM, since the name
. SUM<3> does not exist before the array is created.

*

&ANCHOR
&TRIM
&TRACE
CARD PAT

1
1

1000
BREAK(' ') . BIN SPAN(' ') REM. NUMBER

* THE FIRST CARD GIVES THE NUMBER OF BINS

1
2
3
4

152 Tracing 8.1.1

*
SUM ARRAY(INPUT,O) :F(ERR)

* * TRACE THE THIRD BIN.

*
TRACE(.SUM<3>,'VALUE', 'SUM<3>')

* * SUBSEQENT CARDS CONTAIN A BIN NUMBER FOLLOWED BY A BLANK AND THEN
* THE NUMBER TO BE ADDED TO THE BIN.

*
READ CARD INPUT

CARD CARDPAT
SUM<BIN> SUM<BIN> + NUMBER

* * PRINT OUT THE SUMS

*
DISPLAY

I
PRINT OUTPUT 'SUM<' I '> , SUM<I>

I I + 1
END

For the input data

10
3 25
1 27
9 -75
5 +65
3 77
7 -89
2 75
10 0
3 -756
7 499
2 76
4 23
1 456
5 87
2 33
10 23
3 0025
8 657
3 +45

the printed output is

STATEMENT 9: SUM<3>
STATEMENT 9: SUM<3>
STATEMENT 9: SUM<3>

25,TIME = 0
102,TIME = 50
-654,TIME = 83

:F(DISPLAY)
:F(ERR)
:S(READ)F(ERR)

:F(END)
: (PRINT)

5

6

7
8
9

10
1 1
12
13
14

8.1.2

STATEMENT 9: SUM<3>
STATEMENT 9: SUM<3>

SUM<1> 483
SUM<2> 184
SUM<3> -584
SUM<4> 23
SUM<5> 152
SUM<6> 0
SUM<7> 410
SUM<8> 657
SUM<9> -75
SUM<10> = 23

8.1. 2 Function Tracing

-629,TIME
-584,TIME

166
183

Function Tracing 153

There are three types of tracing for programmer-defined functions: CALL, RETURN, and
FUNCTION. CALL and RETURN cause trace printout on the call to and return from a
function. FUNCTION causes trace printout for both call and return.

CALL tracing gives the level from which the call is made, the function name, and the
value of its arguments. RETURN tracing gives the level to which the return is made. The
following examples indicate the three types of tracing applied to a program that computes
the number of combinations of N things taken M at a time.

READ

*
C

END

&TRACE 1000
TRACE('C', 'CALL')
NM BREAK(' ,') . N
DEFINE('C(N,M)')
INPUT NM

, , , BREAK (' ') . M

:F(END)
OUTPUT 'C(' N ',' M ')=' C(N,M)

M
C

C

LT(N - M,M) N - M
EQ(M,O) 1
N * C(N - 1,M - 1) / M

:S(RETURN)
: (RETURN)

For the input 15,6 the ou tpu t is

: (READ)

STATEMENT 6: LEVEL 0 CALL OF C('15', '6'),TIME = 16
STATEMENT 9: LEVEL 1 CALL OF C (1 4 , 5) , T I ME 50
STATEMENT 9: LEVEL 2 CALL OF C (1 3 , 4) , TIME 50
STATEMENT 9: LEVEL 3 CALL OF C (12 , 3) , TIME 66
STATEMENT 9: LEVEL 4 CALL OF C (11 ,2) , TIME 66
STATEMENT 9: LEVEL 5 CALL OF C (1 0 , 1) , TIME 83
STATEMENT 9: LEVEL 6 CALL OF C(9,0),TIME = 83

C(15,6)=5005

2
3
4
5
6

7
8
9
10

154 Tracing 8.1.2

If TRACE ('C' , 'RETURN') is used instead, the output is

STATEMENT 8: LEVEL 6 RETURN OF C 1 , TIME = 34
STATEMENT 9: LEVEL 5 RETURN OF C 10,TIME = 34
STATEMENT 9 : LEVEL 4 RETURN OF C 55,TIME = 50
STATEMENT 9: LEVEL 3 RETURN OF C 220,TIME = 50
STATEMENT 9: LEVEL 2 RETURN OF C 715,TIME = 67
STATEMENT 9: LEVEL 1 RETURN OF C 2002,TIME 67
STATEMENT 9: LEVEL 0 RETURN OF C 5005,TIME = 67

C(15,6)=5005

and ifTRACE('C','FUNCTION') is used, the output is

STATEMENT 6: LEVEL 0 CALL OF C('15', '6'),TIME 16
STATEMENT 9: LEVEL 1 CALL OF C (14 ,5) , TIME 16
STATEMENT 9: LEVEL 2 CALL OF C (1 3 , 4) , T I ME 33
STATEMENT 9: LEVEL 3 CALL OF C (12, 3) , TIME 33
STATEMENT 9: LEVEL 4 CALL OF C (11 ,2) , TIME 50
STATEMENT 9: LEVEL 5 CALL OF C (1 0 , 1) , T I ME 50
STATEMENT 9: LEVEL 6 CALL OF C(9,0),TIME = 66
STATEMENT 8: LEVEL 6 RETURN OF C 1,TIME = 66
STATEMENT 9: LEVEL 5 RETURN OF C 10,TIME = 66
STATEMENT 9: LEVEL 4 RETURN OF C 55,TIME = 83
STATEMENT 9: LEVEL 3 RETURN OF C 220,TIME = 83
STATEMENT 9: LEVEL 2 RETURN OF C 715,TIME = 83
STATEMENT 9: LEVEL 1 RETURN OF C 2002,TIME 99
STATEMENT 9 : LEVEL 0 RETURN OF C 5005,TIME = 99

C(15,6)=5005

To facilitate the tracing of programmer-defined functions, the keyword &FTRACE is
provided. When &FTRACE is a positive integer, all programmer-defined functions are
traced on call and return. The value of &FTRACE is decremented by one each time a
programmer-defined function is called or returns. When the value of & FTRACE reaches
zero, function tracing stops. & TRACE and & FTRACE are independent, and both may be
used at the same time. The following program illustrates the use of &FTRACE.

*
*
*
*
*
*

&FTRACE 1000; &TRIM 1

THIS PROGRAM COMPUTES THE NUMBER OF SYMMETRIC BISECTIONS OF
A CHECKERBOARD OF EVEN ORDER. THE PROBLEM IS DESCRIBED IN
MARTIN GARDNER'S "MATHEMATICAL GAMES" IN SCIENTIFIC AMERICAN
NOVEMBER, 1962.

DEFINE('AXIS(X,Y)')
DEFINE('RIGHT(X,Y)')
DEFINE('LEFT(X,Y)')
DEFINE('UP(X,Y)')
DEFINE('DOWN(X,Y),)
DEFINE('COUNT(X)')

3
4
5
6
7
8

8.1.2

READ

*
AXIS

*
RIGHT

*
UP

*
LEFT

*
DOWN

Function Tracing 155

SUM 0 9
N INPUT : F (END) 10
BOARD ARRAY(-N ':' N ',' -N ':' N) 11
BOARD<O , 0> = ' : ' 1 2
AXIS(O,O) 13
OUTPUT 'THERE ARE' SUM' SYMMETRIC BISECTIONS OF A ' 2 * 14
N ' BY , 2 * N ' CHECKERBOARD' : (READ) 14

X X + 1
EQ(X,N) COUNT()
IDENT(BOARD<-X,-Y»
IDENT(BOARD<X,Y»
BOARD<X,Y> ':'
AXIS(X,Y)
Up(X,y)
BOARD<X,Y>

X X + 1
EQ(X,N) COUNT()
IDENT(BOARD<-X,-Y»
IDENT(BOARD<X,Y»
BOARD<X,Y> ':'
RIGHT(X,Y)
Up(X,y)
DOWN(X,Y)
BOARD<X,Y>

Y Y + 1
EQ(Y,N) COUNT()
IDENT(BOARD<-X,-Y»
IDENT(BOARD<X,Y»
BOARD<X,Y> ':'
RIGHT(X,Y)
Up(X,y)
LEFT(X,Y)
BOARD<X,Y>

X X 1
EQ(X,-N) COUNT()
IDENT(BOARD<-X,-Y»
IDENT(BOARD<X,Y»
BOARD<X, Y> ' : '
LEFT(X,Y)
Up(X,y)
DOWN(X,Y)
BOARD<X,Y>

Y Y 1

:S(RETURN)
:F(FRETURN)
:F(FRETURN)

: (RETURN)

:S(RETURN)
:F(FRETURN)
:F(FRETURN)

: (RETURN)

:S(RETURN)
:F(FRETURN)
:F(FRETURN)

: (RETURN)

:S(RETURN)
:F(FRETURN)
:F(FRETURN)

: (RETURN)

15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31

32
33
34
35
36
37

38
39
40

41
42
43
44
45
46
47
48
49

50

156 Tracing

EQ(Y,-N) COUNT()
IOENT(BOARO<-X,-Y»
IOENT(BOARO<X,Y»
BOARO<X, Y> ' : '
RIGHT(X,Y)
LEFT(X,Y)
OOWN(X,Y)
BOARO<X,Y>

8.1.2

:S(RETURN)
:F(FRETURN)
:F(FRETURN)

: (RETURN)

*
COUNT SUM SUM + 1 : (RETURN)

*
ENO

For an input value of 2, this program produces the following output.

STATEMENT 13: LEVEL 0 CALL OFAXIS(O,O),TIME 17
STATEMENT 20: LEVEL 1 CALL OFAXIS(1,0),TIME = 34
STATEMENT 16: LEVEL 2 CALL OF COUNT(' '),TIME = 34
STATEMENT 59: LEVEL 2 RETURN OF COUNT = ",TIME = 34
STATEMENT 16: LEVEL 1 RETURN OF AXIS = ",TIME = 50
STATEMENT 21: LEVEL 1 CALL OF UP(1,0),TIME = 50
STATEMENT 37: LEVEL 2 CALL OF RIGHT(1,1),TIME = 50
STATEMENT 24: LEVEL 3 CALL OF COUNT(' '),TIME = 67
STATEMENT 59: LEVEL 3 RETURN OF COUNT = ",TIME 67
STATEMENT 24: LEVEL 2 RETURN OF RIGHT = ",TIME = 67
STATEMENT 38: LEVEL 2 CALL OF UP(1,1),TIME = 83
STATEMENT 33: LEVEL 3 CALL OF COUNT(' '),TIME = 83
STATEMENT 59: LEVEL 3 RETURN OF COUNT = ",TIME = 83
STATEMENT 33: LEVEL 2 RETURN OF UP = ",TIME 100
STATEMENT 39: LEVEL 2 CALL OF LEFT(1,1),TIME = 100
STATEMENT 46: LEVEL 3 CALL OF LEFT(0,1),TIME = 117
STATEMENT 46: LEVEL 4 CALL OF LEFT(-1,1),TIME = 117
STATEMENT 42: LEVEL 5 CALL OF COUNT(' '),TIME = 117
STATEMENT 59: LEVEL 5 RETURN OF COUNT = ",TIME = 133
STATEMENT 42: LEVEL 4 RETURN OF LEFT = ",TIME = 133
STATEMENT 47: LEVEL 4 CALL OF UP(-1,1),TIME = 133
STATEMENT 33: LEVEL 5 CALL OF COUNT(' '),TIME = 150
STATEMENT 59: LEVEL 5 RETURN OF COUNT = ",TIME = 150
STATEMENT 33: LEVEL 4 RETURN OF UP = ",TIME = 150
STATEMENT 48: LEVEL 4 CALL OF OOWN(-1,1),TIME = 167
STATEMENT 52: LEVEL 4 FRETURN OF OOWN,TIME = 167
STATEMENT 49: LEVEL 3 RETURN OF LEFT = ",TIME = 183
STATEMENT 47: LEVEL 3 CALL OF UP(0,1),TIME = 183
STATEMENT 33: LEVEL 4 CALL OF COUNT(' '),TIME = 183
STATEMENT 59: LEVEL 4 RETURN OF COUNT = ",TIME = 200
STATEMENT 33: LEVEL 3 RETURN OF UP = ",TIME = 200
STATEMENT 48: LEVEL 3 CALL OF DOWN(0,1),TIME = 200
STATEMENT 52: LEVEL 3 FRETURN OF OOWN,TIME = 217
STATEMENT 49: LEVEL 2 RETURN OF LEFT = ",TIME = 217

51
52
53
54
55
56
57
58

59

60

8.1.3 Label Tracing

STATEMENT 40: LEVEL 1 RETURN OF UP = ",TIME = 217
STATEMENT 22: LEVEL 0 RETURN OF AXIS = ' ',TIME = 217

THERE ARE 6 SYMMETRIC BISECTIONS OF A 4 BY 4 CHECKERBOARD

8.1.3 Label Tracing

TRACE(name,'LABEL')

157

causes trace printout whenever transfer is made to name. No printout occurs if the
statement labelled with the name is flowed into, or is entered as a function entry point.

The following program, which converts numbers from hexadecimal form to decimal
form, illustrates label tracing.

*

*
DEHEX
DEHEX1

DEHEX.END

*
*
READ

&TRIM 1
&TRACE 100
TRACE ('DEHEX 1 ' , 'LABEL')
FINDNO BREAK(*NO) NO
ONE LEN(1) . NO
LO PO S (0) SPAN (, 0 ')

DEFINE('DEHEX(STR)NO')

STR LO
STR ONE
DEHEX INTEGER(NO) 16 * DEHEX + NO
'ABCDEF' FINDNO
DEHEX = 16 * DEHEX + 10 + SIZE(NO)

NUMBER INPUT

: (DEHEX.END)

:F(RETURN)
:S(DEHEX1)
:F(FRETURN)
: (DEHEX 1)

:F(END)
+ OUTPUT 'DEHEX(, NUMBER ') = , DEHEX(NUMBER)
+ :S(READ)

OUTPUT 'UNABLE TO CONVERT
,

NUMBER : (READ)
END

The output for the indicated input is

STATEMENT 10: TRANSFER TO DEHEX 1 , TIME 16
STATEMENT 10: TRANSFER TO DEHEX1,TIME 16
STATEMENT 10: TRANSFER TO DEHEX 1 , TIME 16

DEHEX(100) = 256
STATEMENT 10: TRANSFER TO DEHEX 1 , TIME 50
STATEMENT 10: TRANSFER TO DEHEX 1 , TIME 50

DEHEX(00011) = 17
STATEMENT 12 : TRANSFER TO DEHEX 1 , TIME 66

DEHEX(OOOF) = 15
STATEMENT 10: TRANSFER TO DEHEX 1 , TIME 83

2
3
4
5
6

7

8
9
10
1 1
12
13

14
15
15
16
1 7

158 Tracing 8.1.4

STATEMENT 12 : TRANSFER TO DEHEX 1 , TIME 99
STATEMENT 12 : TRANSFER TO DEHEX 1 , TIME 99
STATEMENT 12: TRANSFER TO DEHEX 1 , TIME 116

UNABLE TO CONVERT 1ABCG
STATEMENT 10: TRANSFER TO DEHEX 1 , TIME 133
STATEMENT 12 : TRANSFER TO DEHEX 1 , TIME 133
STATEMENT 12: TRANSFER TO DEHEX 1 , TIME 149
STATEMENT 12 : TRANSFER TO DEHEX 1 , TIME 149

DEHEX (1ABC) = 6844
STATEMENT 12: TRANSFER TO DEHEX 1 , TIME 199
STATEMENT 12: TRANSFER TO DEHEX 1 , TIME 199
STATEMENT 12 : TRANSFER TO DEHEX1,TIME 199
STATEMENT 12: TRANSFER TO DEHEX 1 , TIME 216

DEHEX(OOOFACE) = 64206

8.1.4 Keyword Tracing

TRACE(name,'KEYWORD')

causes trace printout when the value of the named keyword is changed. Only four
keywords can be traced: ERRTYPE, FNCLEVEL, STCOUNT, and STFCOUNT. The
following program, which converts numbers from decimal to hexadecimal form, illustrates
keyword tracing.

READ

*
*
HEXER

HEX. END

END

&TRACE 1000; &TRIM
TRACE('STFCOUNT', 'KEYWORD')
DEFINE('HEXER(N)Q,R')
HIGITS '0123456789ABCDEF'
LOCATN LEN(*N) LEN(1) R
LOCATR LEN(*R) LEN(1) R
NUM INPUT
OUTPUT 'HEXER(' NUM ') = ' HEXER(NUM)
OUTPUT = 'UNABLE TO CONVERT ' NUM

INTEGER(N)
Q = GT(N,15) N / 16
R = N - Q * 16
N = Q
HIGITS LOCATR
HEXER = R HEXER
HIGITS LOCATN
HEXER = R HEXER

:F(END)
:S(READ)
: (READ)

:F(FRETURN)
:F(HEX.END)

:F(FRETURN)
: (HEXER)
:F(FRETURN)
: (RETURN)

1
3
4
5
6
7
8
9
10

1 1
12
13
14
15
16
17
18
19

8.2

The printed output for the indicated input is

STATEMENT 12: &STFCOUNT
HEXER(15) = F

STATEMENT 12: &STFCOUNT
HEXER(6844) = 1ABC

1 , TIME

2,TIME

Programmer-Defined Trace Functions

17

33

STATEMENT 11: &STFCOUNT 3,TIME 50
STATEMENT 9: &STFCOUNT = 4,TIME = 67

UNABLE TO CONVERT 1239.0003
STATEMENT 12: &STFCOUNT 5,TIME 83

HEXER(236) = EC
STATEMENT 12: &STFCOUNT 6,TIME 100

HEXER(64206) = FACE
STATEMENT 12 : &STFCOUNT 7,TIME 133

HEXER(699050) = AAAAA
STATEMENT 12 : &STFCOUNT 8,TIME 150

HEXER(O) = 0
STATEMENT 12: &STFCOUNT 9,TIME 166

HEXER(OOO) = 0
STATEMENT 12 : &STFCOUNT 10,TIME 183

HEXER(256) = 100
STATEMENT 12: &STFCOUNT 11,TIME 266

HEXER(123456789) = 75BCD15
STATEMENT 8: &STFCOUNT = 12,TIME = 266

Note that the keyword name, without the ampersand, is given in the call of TRACE.

8.1. 5 Discontinuation of Tracing

159

Tracing is a global condition that depends upon the value of &TRACE. Regardless of
trace requests made through the TRACE function, there is no trace output if &TRACE is
not positive. The value of &TRACE may be set to zero explicitly, or may reach zero as it
is decremented as the result of tracing. Individual trace associations may be cancelled,
however, by executing

STOPTR(name,type)

which cancels a single trace association for the name and type. Thus the tracing of
statement failure is stopped by executing

STOPTR('STFCOUNT', 'KEYWORD')

If an attempt is made to cancel a trace association that has not been made, the call of
STOPTR fails.

160 Tracing 8.2.2

B.2 Programmer-Defined Trace Functions

The TRACE function has an optional fourth argument that permits the programmer to
supply procedures for tracing. The complete form of the function is

TRACECname,type,tag,function)

where function is a programmer-defined function.

When the traced action occurs, the function is called with name as its first argument
and tag as its second argument. The keywords &TRACE and &FTRACE are automatically
set to zero on entry to a programmer-defined trace procedure and restored on return. This
prevents accidental tracing of a trace procedure. The programmer may change the values
&TRACE and &FTRACE while in a trace procedure. Upon return from the function, the
former values are restored.

B.2.1 Invoking Programmer-Defined Trace Procedures

The time at which a programmer-defined trace procedure IS called depends on the type
of trace.

(1) VALUE: just after assignment of the new value.

(2) CALL: just after evaluation of the arguments, but before execution of the first
statement in the function.

(3) RETURN: just before the return is made.

(4) FUNCTION: same as for CALL and RETURN.

(5) LABEL: just before transfer to the label.

(6) KEYWORD: just after the keyword is changed.

B.2.2 Tools for Writing Programmer-Defined Trace Procedures

Special information is required for writing more elaborate programmer-defined trace
procedures. Three keywords and three functions are provided expressly for this purpose.

1. & STNO is a protected keyword whose value is the statement number of the statement
currently being executed.

2. &LASTNO is a protected keyword whose value is the statement number of the last
statement executed.

8.2.2 Tools for Writing Programmer-Defined Trace Procedures 161

3. &RTNTYPE is a protected keyword whose value is the type of return (RETURN,
FRETURN, or NRETURN) made by the last defined function to return.

4. ARG (function, n) is a function whose value is the name of the nth argument of the
programmer-defined f unc t i on. ARG is useful in writing programmer-defined trace
procedures that trace several functions and need to determine the names of the formal
arguments of the functions being traced.

5. LOCAL (function, n) is a function whose value is the name of the nth local variable
of the defined function.

6. FIELD (data type, n) is a function whose value IS the name of the nth field of the
programmer-defined da ta type.

The following example illustrates a programmer-defined function, VALTR, that prints a
trace output only when a traced variable is assigned a specified value. KEY is a global
variable. Trace output only occurs when a traced variable is assigned the value of KEY. If
the variable being traced is not a string, the tag is used in the printed output. Use of this
function is illustrated in the following program, which produces trace output when certain
variables are assigned the value 25 .

*

POWER
KEY

ARRA Y (, 25 , 5 ')
25

DEFINE('VALTR(VAR,TAG)ST,TIME')
&TRACE 1000
TRACE('I', 'VALUE'" 'VALTR')
TRACE(.POWER<5,2>,'VALUE' ,'5 ** 2','VALTR')
TRACE(.POWER<25,1>, 'VALUE', '25 ** l' ,'VALTR')

* SET UP MATRIX OF INTEGER POWERS

*
J

NEXTI I
1
o

NEXTP I I + 1

*
VALTR

POWER<I,J> I ** J
J LT(J,5) J + 1

ST &LASTNO
TIME TIME()

:S(NEXTP)
:S(NEXTI)F(END)

IDENT($VAR,KEY) :F(RETURN)

+
+
END

TAG IDENT(DATATYPE(VAR), 'STRING') VAR
OUTPUT 'KEY VALUE '" KEY'" ASSIGNED TO ' TAG

, IN STATEMENT ' ST ' AT TIME ' TIME
: (RETURN)

1
2
3
4
5
6
7

8
9
10
1 1
12

13
14
15
16
17
1 7

17
18

162 Tracing 8.3

The printed ou tpu t is

KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 67
KEY VALUE "25" ASSIGNED TO 25 ** 1 IN STATEMENT 11 AT TIME 83
KEY VALUE "25" ASSIGNED TO 5 ** 2 IN STATEMENT 11 AT TIME 117
KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 167
KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 250
KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 333
KEY VALUE "25" ASSIGNED TO I IN STATEMENT 10 AT TIME 416

8.3 Other Tracing Techniques

Only programmer-defined functions can be traced. Occasions arise, however, when it is
desirable to trace primitive functions, or even operators. The effect of such a trace can be
achieved by using programmer-defined functions in conjunction with OPSYN. Suppose, for
example, a trace of the function SIZE is desired. Execution of the statements

OPSYN{'SIZE.', 'SIZE')
DEFINE{'SIZE{S)')
TRACE{'SIZE' ,'FUNCTION')

in conjunction with the procedure

SIZE SIZE SIZE. (S) : (RETURN)

provides a suitable redefinition of SIZE that performs the same operation as the primitive
function SIZE, and which can be traced as indicated.

Operators can be traced in a similar manner. Two applications of OPSYN are required
'as indicated in the following example that traces addition of data given on input cards.

*
ADD

*
SUM

*
END

DEFINE('SUM(X,Y)')
OPSYN (, # ' , '+' ,2)
OPSYN{'+' ,'SUM' ,2)
&TRIM 1; &FTRACE

TOTAL TOTAL + INPUT
OUTPUT 'THE TOTAL IS

SUM X # Y

100

:S(ADD) ,
TOTAL : (END)

: (RETURN)

The printout, for the data indicated, is

STATEMENT 6: LEVEL 0 CALL OF SUM{" ,'123'),TIME = 17
STATEMENT 8: LEVEL 0 RETURN OF SUM = 123,TIME = 17
STATEMENT 6: LEVEL 0 CALL OF SUM{123, '4.92'),TIME = 33
STATEMENT 8: LEVEL 0 RETURN OF SUM = 127.9199,TIME = 33
STATEMENT 6: LEVEL 0 CALL OF SUM{127.9199, '87'),TIME = 50

2
3
4

6
7

8

9

Exercises 163

STATEMENT 8: LEVEL 0 RETURN OF SUM = 214.9199,TIME = 50
STATEMENT 6: LEVEL 0 CALL OF SUM(214.9199,'0.05'),TIME = 66
STATEMENT 8 : LEVEL 0 RETURN OF SUM = 214.9699,TIME = 66
STATEMENT 6 : LEVEL 0 CALL OF SUM(214.9699,'3.17'),TIME = 83
STATEMENT 8: LEVEL 0 RETURN OF SUM = 218.1399,TIME = 83
STATEMENT 6: LEVEL 0 CALL OF SUM(218.1399,'20'),TIME = 100
S'l'ATEMENT 8: LEVEL 0 RETURN OF SUM = 238.1399,TIME = 100

8.4 Dumping Natural Variables

A listing of natural variables and their values can be obtained by executing the function
DUMP. A call of DUMP (N) provides this dump if N is a nonzero integer. The list of
variables is not alphabetized, and variables that have null string values are omitted. If N

is zero, no dump is given. Thus diagnostic dump statements can be placed in a program
and the dumping turned on and off globally by assigning nonzero and zero values to the
argument of DUMP.

Exercises

Exercise B.1: Write a programmer-defined trace procedure that produces trace printout of
the same form that is produced by standard value tracing.

Exercise B.2: Write a programmer-defined trace procedure and use it to trace 50 variables,
COLo (0= 1 , •.. , 50), so that when COLD is assigned a value, a copy of the value is
printed, indented 0 columns.

Exercise B.3: Write a programmer-defined trace procedure that traces OUTPUT so that
when EOF is assigned to OUTPUT, & OUTPUT is set to zero to stop further output.

CHAPTER 9

Input and Output

Input and output are accomplished by using variables associated with data sets (files).
In the case of a variable associated in the output sense, each time the variable is assigned
a value, a copy of the value is put out onto the associated data set. In the case of a
variable associated in the input sense, each time the value of the variable is used, a new
value is read from the associated data set and becomes the new value of the variable.
Thus, input and output go on during program execution without any explicit 1/0
statements, as a result of 1/0 associations.

Details of the material contained in this chapter vary from machine to machine.
Material appearing here refers specifically to the IBM System/360 operating under OS.

9.1 Printed Output

The variable OUTPUT is associated with the system print data set. Consequently,
whenever OUTPUT is assigned a value, printout is generated. For example,

OUTPUT = 'THE SELECTED VALUES ARE'

produces the output

THE SELECTED VALUES ARE

Output may also result from value assignment specified in patterns. For example,

PEXP BAL. EXP1 . OUTPUT '+' BAL. EXP2 . OUTPUT

EXP PEXP

prints the two terms in EXP, and assigns their values to EXP 1 and EXP2. This type of
output is often useful for diagnostic purposes, and does not affect the pattern matching or
the assignments made to EXP 1 and EXP2.

Ordinary printout is printed 132 characters per line, with as many lines as necessary
being generated. Carriage control is provided to give single spacing. The null string is
treated as a blank character and a blank line is printed for it. Strings are usually assigned

164

9.3 Input 165

to output variables. If an object other than a string is assigned to an output variable, the
string representation of the object (as described in Chapter 7) is printed.

9.2 Punched Output

The variable PUNCH is associated with the standard punch data set. Consequently,
whenever PUNCH is assigned a value, a punched card is generated. For example,

PUNCH o
produces a card with zero punched in column one.

All the remarks about print output apply to punch output, except that 80 characters are
punched per card, with additional cards punched as necessary for longer strings. The
cards have no sequence numbering or identification unless provided in the strings that are
punched.

9.3 Input

The variable INPUT is associated with the standard input data set. Whenever the value
of INPUT is used, a card image is read from the input stream and becomes the new value
of INPUT. For example,

OUTPUT INPUT

reads a card image and prints it. Similarly,

INPUT BAL • EXP

reads a card image and attempts to match a balanced string. If &TRIM is zero, all 80
columns of the card images are read, and the value of INPUT is an eighty character
string. If &TRIM is nonzero, trailing blanks are automatically deleted.

Since each use of INPUT reads a card image, previous values of INPUT are lost unless
they are assigned to other variables.

If the end of the input data set is encountered when a value of INPUT is requested,
failure results. This failure can be used to detect the end of an input data set. For
example, the following statements

I
READ DATA<I>

I I +
OUT

INPUT :F(OUT)
: (READ)

read card images into the array DATA until the input data stream is exhausted (or I

exceeds the range of DATA). Control is then transferred to OUT.

166 Input and Output 9.4

9.4 The I/O System

All input/output is handled by FORTRAN IV I/O routines. That is, 8NOBOL4 I/O
is done by the same system that does I/O for FORTRAN IV object programs.
Consequently, the conventions and I/O concepts specified for the FORTRAN IV language
also apply to 8NOBOL4. In addition, the version of the language described here operates
under 08/360. It is necessary to understand both the fundamentals of FORTRAN IV
I/O [7,8] and job control language (]CL) [9] in order to use the I/O facilities of
8NOBOL4 effectively.

In FORTRAN, data sets (files) have numbers (data set reference numbers). These
numbers are referred to in source-language programs and are associated at run time with
specific data sets by]CL statements. There are three standard data sets:

normal input stream (5)
normal print output (6)
normal punch output (7)

DDNAMEs in]CL are used to associate the data set reference numbers with actual
data sets. DDNAMEs for FORTRAN have the form FTxxFyyy, where xx corresponds to
the data set reference number and yyy is a file sequence number for multifile data sets.
The typical DD cards used in 8NOBOL4 associate the standard data set reference
numbers 5,6, and 7 as follows:

IIFT06F001 DD SYSOUT=A
IIFT07F001 DD UNIT=PUNCH
IIFTOSF001 DD *
This]CL, or its equivalent, is contained in the SNOBOL4 cataloged procedure, and is
supplied automatically when the cataloged procedure is used.

A wide range of devices and record structures can be specified on DD cards. By
changing the DD cards, the data streams can be assigned to different data sets at run
time. Thus,

IIFTOSF001 DD DSN=PROG1,VOL=SER=BTLXX1,UNIT=DISK,DISP=OLD

specifies an input stream from a data set PROG 1 on a disk file. Similarly,

IIFT07F001 DD DSN=PUNCHER,VOL=SER=MYSAV1,UNIT=9TRACK,DISP=(,PASS),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),LABEL(1,SL)

causes punched output to go onto a 9-track tape with a blocking factor of ten.

A complete discussion of DD statements is beyond the scope of this book, and is an
involved and difficult subject. The important fact is that]CL permits the specification of
a wide variety of devices and record structures. This specification is made when the
program is run and requires no alteration of the program.

9.5 Output Associations 167

FORTRAN supports multifile data sets. The last three characters in the DDNAME
· specify the file number. When FORTRAN comes to the end of a file, it automatically

opens the next file of the same data set reference number.

Thus, for example, input may come from several files:

//FTOSF002 DD DSN=DATA2,UNIT=DISK,VOL=SER=BTLH04,DISP=OLD
//FTOSF001 DD *

With these DD cards, when the in-line data stream is exhausted, failure occurs. A
subsequent attempt to input reads data from DATA2. In a multifile data set, failure occurs
each time the end of a file is reached.

9.5 Output Associations

The variables OUTPUT and PUNCH have predefined output associations. Programmer­
defined associations may be made using the function OUTPUT. The form of the function is

OUTPUT(name,number,format)

OUTPUT associates the name with the data set reference number according to the given
format. The format is a string specifying a FORTRAN IV format. The following
statements correspond to the associations for the variables OUTPUT and PUNCH:

OUTPUT('OUTPUT' ,6, '(1X,132A1)')
OUTPUT('PUNCH' ,7,'(SOA1)')

Using the OUTPUT function, any variable can be associated with any data set reference
number. For example,

PRFORM '(1X,132A1)'
TEST ARRAY('S,S')
OUTPUT(.TEST<1,1>,6,PRFORM)
OUTPUT(.TEST<S,S>,6,PRFORM)

associate the array elements TEST< 1 , 1> and TEST<S, S> with the ordinary print data
set and with the standard print format. As a result, whenever either TEST< 1 , 1> or
TEST<S , S> is assigned a value, the new value is printed.

Data set reference numbers are not restricted to 5, 6, and 7, but can range from 1
through 99. Associations can be made with data set reference numbers other than the
standard ones. In this case, a DD statement for that number must be provided when the
program is run. For example

168 Input and Output

OUTPUT('TEXT' ,7, '(80A1)')

associates TEXT with the punch data set. On the other hand,

OUTPUT('TEXT' ,20,'(80A1)')

and the DD statement

//FT20F001 DD DSN=NEWF,UNIT=TAPE,VOL=SER=MYSAV1,LABEL=(2,SL),
II DISP=(,PASS),DCB=(RECFM=FB,BLKSIZE=800,LRECL=80)

9.5

allow the program to put card images onto the second file of a tape. The LRECL
parameter of 80 and the format (8 OA 1) relate the record size of the file to the record
size in the format.

Formats used in output assocIatIon must specify the conversion of at least one element
by A-conversion. (Normally nA 1 -conversion is used.) Integers and reals are converted into
strings by SNOBOL4. F - and I -conversion must not be used. In addition to
A-conversion, quoted literals, X-, H-, T-, and Z -conversion may be specified [7,8]. Carriage
control must be provided for printing; otherwise the first character of the string is
consumed for this purpose. Consider

OUTPUT ('TITLE' ,6, , (1 H 1 , 13 2A 1 / (1 X, 13 2A 1)) ,)

When a value is assigned to TITLE, a page is ejected and the value titles the next page
of output. The use of literals is illustrated by

OUTPUT (, SUM' ,6, " (' SUM=', 12 8A 1/ (1 X, 13 2A 1)) ")

which includes identifying information with the format. Subsequently,

SUM 300

causes the printout

SUM=300

On the IBM 360, the largest number accepted In format statements is 255. Larger
numbers are reduced modulo 256. Thus

OUTPUT('OUT' ,10, '(400A1)')

is equivalent to

OUTPUT('OUT' ,10,'(144A1)')

The effect of larger numbers can be obtained by using repetition. For example,

OUTPUT('OUT' ,10,'(20(20A1»')

specifies 4 0 0 -character output.

The predefined associations can be changed. Thus,

OUTPUT('OUTPUT' ,6,'(1X,120A1)')

shortens the line length for OUTPUT to 1 20 characters.

9.7.1 BACKSPACE 169

The second and third arguments of OUTPUT can be defaulted. If the second argument is
zero or null, the standard output unit, 6, is assumed. If the third argument is null, the
standard print format, (1 X, 1 3 2A 1) , is assumed. Thus

OUTPUT (, OUT')

provides the same association as is predefined for OUTPUT.

9.6 Input Associations

Programmer-defined input associations can be made using the function INPUT. The
form of this function is

INPUT(name,number,length)

INPUT associates the name with the data set reference number, and specifies that the
resulting string is to have the given length. (Notice in particular that no format is
specified.) INPUT has a predefined association equivalent to

INPUT('INPUT' ,5,80)

If the length is less than the record size on the data set being read, the last part of the
record is lost. Hence,

INPUT('INPUT' ,5,72)

changes the association for INPUT so that only 72 columns are read. Columns 73 through
80 are lost if data set reference number 5 is associated with ordinary card input. A length
longer than the record size should not be specified.

The second and third arguments of INPUT can be defaulted. If the second argument is
zero or null, the standard input unit,S, is assumed. If the third argument is zero or null,
the standard length of 80 is assumed. Thus

INPUT (, IN')

provides the same association for IN as is predefined for INPUT.

9.7 Other 1/0 Functions

Several other functions are provided for I/O-related operations [7,8]. All of these
functions return the null string as value.

170 Input and Output 9.7.4

9.7.1 BACKSPACE

BACKSPACE (number) backspaces one record on the data set associated with the number.
For example,

BACKSPACE(15)

backspaces a record on the data set associated with data set reference number 15.

9.7.2 DETACH

DETACH (name) removes any input and output association that the name may have. For
example,

DETACH ('OUTPUT')

terminates normal print output.

9.7.3 ENDFILE

ENDFILE(number) writes an end of file on (closes) the data set specified by the number.
For example,

ENDFILE(20)

closes the data set associated with data set reference number 20.

9.7.4 REWIND

REWIND (number) repo~itions the data set associated with the number to the first file. For
example,

REWIND(10)

rewinds the data set associated with data set reference number 10. Subsequently, reference
to 1 0 refers to the beginning of the data set specified by FT 1 0 F 00 1 (even if 1 0 is a
multifile data set).

9.8 Turning Off Input and Output 171

9.8 Turning Off Input and Output

Input and output occur automatically as a result of associations with variables, provided
& INPUT and &OUTPUT are nonzero. Both these keywords have initial default values of
one.

In some circumstances, it may be desirable to turn off input or output, or both. This
may be achieved by setting the corresponding keyword to zero. Normal automatic input
and output can be restored by assigning nonzero values to the keywords.

CHAPTER 10

Running a SNOBOL4 Program

Most of this book is devoted to language features and how they are used In
programming. This chapter is concerned with the running of a SNOBOL4 program.

A SNOBOL4 run consists of three parts:

(1) compilation,
(2) execution, and
(3) termination.

10.1 Compilation

During compilation, the SNOBOL4 system is initialized and the source program is
converted into intermediate object code, which is in a form suitable for interpretation
during execution. Compilation uses the same procedures that are used by the CODE

function. Additional procedures are used to read the source program from the input data
set, print a compilation listing on the output data set, and note errors detected in the
source program.

1 0.1.1 Source-Program Input

Input to the compiler comes from the standard input stream associated with data set
reference number S. On the IBM 360, the compiler begins reading the program from the
data set associated with FTO SFO 01 . Only the first 72 characters of a line are processed by
the compiler, and columns 73 through 80 can be used for sequential numbering or other
identification.

The compiler continues to read until it encounters the end statement of the program. If
an end of file is encountered before the end statement is found, the compiler goes to the
next file for reference number S. The input program may therefore be in several sections
given by FTOSFOO 1 , FTOSF002, etc. When the end statement is encountered, compilation
stops. If the end statement is missing from the program, the compiler tries to find the next
file, assuming more program remains to be compiled. When this file is not found, an error
message is printed by the FORTRAN I/O system and the run is terminated.

172

173 10.1.4 Operator Precedence and Associativity
--~------------------------~----

10. 1. 2 Source Listing

A listing of the source program with identifying statement numbers is printed on the
standard output data set. The format of this listing is illustrated by examples later in this
chapter. These examples have been slightly modified to fit within the page width of this
book, but are otherwise accurate.

10.1. 3 Listing Control

Listing of the source program and placement of statement numbers is controlled by
control lines appearing in the source program. A minus sign at the beginning of a line
identifies that line as a control line. There are three controls: LIST, UNLIST, and EJECT.

LIST turns on listing of the source program and controls placement of the statement
n urn bers. The control line

-LIST LEFT

causes placement of statement numbers at the left side of the listing. The control line

-LIST RIGHT

causes placement of statement numbers at the right. In the initial, default mode, the
source program is listed with numbers at the right. The control line

-LIST

is equivalent to

-LIST RIGHT

The control line

-UNLIST

turns off listing of the source program. Listing may be restored by using LI ST.

A page eject in the source listing may be obtained by the control line

-EJECT

Blanks may appear between the minus sign and the control word. One or more blanks
must separate LI ST from LEFT or RIGHT. Any characters other than LEFT following
blanks on the LI ST control line cause the same action as RIGHT. An erroneous control
line is ignored.

174 Running a SNOBOL4 Program 10.1.4

10.1.4 Operator Precedence and Associativity

SNOBOL4 permits considerable flexibility during program execution. Functions can be
defined then, data objects created, and operators redefined. The precedence and
associativity of operators cannot be changed, however. Precedence and associativity are
properties of the operator symbol and are used during compilation to determine the
structure of expressions. For example, the statement

p A B $ e D Q

is equivalent to

p «A (B $ e» D) Q

Of course, parentheses can always be used to override the built-in precedence and
associativity. The statement

p (A B) $ e (D Q)

is quite different than the previous statement.

For reference purposes, the precedence and associativity of the binary operators IS listed
in the following table.

Binary Operators

Graphic Definition Associativity Precedence

..., none right 12
? none left 12
$ immediate value assignment left 11
. conditional value assignment left 11

! ,** exponen tia tion right 10

" none left 9

* multiplication left 8
/ division left 7
It none left 6
+ additIon left 5
- subtraction left 5
Ql none left 4

blank conca tena tion left 3
I alternation left 2
& none left 1

10.1.6 Compilation Error Messages 175

10.1.5 Errors Detected during Compilation

Certain kinds of errors in the source program are detected during compilation. When an
error is detected in a statement, compilation of that statement is terminated, and an error
message is printed below the statement. A marker indicating the vicinity of the error is
printed also. This marker indicates how much of the statement the compiler had accepted
before detection of the error. Depending on the nature of the error, this marker may be
before or after the point of the error. A typical error is failure to place blanks around a
binary operator. An example, with the resulting error message, is

x A+B

*** ILLEGAL CHARACTER IN ELEMENT

The compiler detects this error as an erroneous character (+) In an element, and refuses
to accept the element as indicated by the marker.

Since compilation of a statement stops when an error is encountered, only the first error
in anyone statement is detected. Compilation continues with the next statement. However
if more than fifty erroneous statements are encountered, compilation of the program ceases
and the program is not executed.

10.1.6 Compilation Error Messages

A list of compilation error messages follows.

1. BINARY OPERATOR MISSING OR IN ERROR. This error indicates an erroneous binary
operator or a missing blank between expressions. Some examples are

X

TEXT
M

F(X)*** 2
'('TEXT I)'

(A B)N

2. ERRONEOUS INTEGER. This error occurs if an integer literal in a statement exceeds the
magnitude of the largest possible integer. On the IBM 360, the largest integer is 2 3

1 -1 .

3. ERRONEOUS LABEL. This error occurs if the first character of a statement is not a
blank, integer, letter, *, or -.

4. ERRONEOUS OR MI S SING BREAK CHARACTER. This error occurs if a break character
appears in an erroneous context, or if a nested expression is not closed. Some examples are

X
A< 1 ,2)
F(G(X)

(A, B)

5
:S(LOOP)

5. ERRONEOUS REAL NUMBER. This error occurs if a real literal that IS too large or too

176 Running a SNOBOL4 Program 10.2

small appears in a statement. On the IBM 360, reals have the approximate range 10- 7 8

to 10 7
5 •

6. ERRONEOUS SUBJECT. This error occurs if an erroneous construction appears In the
subject field. An example is

2

7. ERROR IN GOTO. This error occurs when a syntactic error IS found In the goto field.
Some typical errors are

:S(L1)S(L2)
: S (A 1) : F (A2)
:<CODE)

8. ILLEGAL CHARACTER IN ELEMENT. This error typically occurs when blanks are not
provided where required. Some examples are

X

E
3 :
3.SP

9. IMPROPERLY TERMINATED STATEMENT. This error occurs when a statement
terminates before a construction is complete. An example is

N M +

10. PREVIOUSLY DEFINED LABEL. This error occurs when a duplicate label is
encountered. The first occurrence of a label holds, and subsequent occurrences are
erroneous.

11. UNCLOSED LITERAL. This error occurs when a closing quotation mark IS omitted.
Exam pIes are

LETTER
TEXT

10.2 Execution

'A
'HE YELLED STOP"

Execution of the compiled program begins when compilation is complete. Ordinarily,
program execution begins with the first statement of the program. Program execution can
be started with any labelled statement by specifying that label in the end statement. The
label of the first statement to be executed is placed in the position of the subject. For
example,

END INIT

causes program execution to begin with the statement labelled INIT. The end statement

END END

has the effect of a compile-only run.

10.2.1 The Sequence of Evaluation 177

10.2.1 The Sequence of Evaluation

An understanding of the sequence of evaluation requires an understanding of the overall
evaluation of a statement in terms of its major components. There are three major types of
statements: assignment, pattern matching, and replacement. These have the forms:

label subject
label subject
label subject

object goto
pattern goto
pattern object goto

Labels and gotos are optional. The object may be explicitly omitted, In which case the
object is taken to be an expression that has the null string as value.

There are two degenerate sta temen t forms as well:

label subject
label goto

goto

Labels and gotos are optional in these forms as well. Thus a blank line is an acceptable
statement. The replacement statement is the most complicated and general form and is
used for illustration. All other statement forms can be considered formally as degenerate
replacement statements, and the evaluation of the degenerate forms can be understood
from the evaluation of the replacement statement by skipping the missing components. The
sequence of evaluation is:

1. The label requires no evaluation, and In fact IS not part of the statement at all. It
merely serves to identify the statement.

2. The subject is evaluated first. If the evaluation of the subject fails, the statement fails,
the goto is processed, and evaluation of all other components is skipped. If no failure goto
is specified, control passes to the next statement.

3. The pattern is evaluated next. If this evaluation fails, the statement fails and the goto is
processed as in the case of subject failure.

4. The pattern match is performed next. If the pattern match fails, the statement fails,
conditional value assignment is not performed, the replacement is skipped, and the goto is
processed. Immediate value assignment, and other effects which occur dynamically during
pattern matching, may take place before the pattern match fails. If pattern matching
succeeds, conditional value assignment is performed for those components that matched.

5. The object is evaluated. If this evaluation fails, the statement fails, no replacement 18

performed, and the goto is processed.

6. The replacement is performed.

7. The goto is processed. Goto processing depends on the structure of the goto and
whether or not the statement fails. If the statement succeeds, only an unconditional or
success goto in the statement is evaluated. If the statement fails, only an unconditional
goto or failure goto in the statement is evaluated. Transfer is made to the evaluated goto,

178 Running a SNOBOL4 Program 10.2.1

if there is one, or control is passed to the next statement. Failure in evaluation of a goto
is an error.

Any of the components of a statement may be arbitrarily complicated and may invoke
many kinds of processes. Calls to programmer-defined functions can occur, for example, in
any component of a statement (except the label), and even take place in the middle of
pattern matching as the result of the evaluation of unevaluated expressions.

Within an expression, the order of evaluation depends pn the order of the components
and the operations performed on them. Evaluation of the components of an expression is
from left to right. In complicated expressions, components are nested, and the order of
evaluation may be determined by examining the fully parenthesized form of the expression
as determined from the rules of precedence and association. Consider the expression

(K L F(A + B * e»
which has the fully parenthesized form

«K L) F«A + (B * e»»
I I I I
1 2 " 5 6
\/

3 \ \/
8/

9/
/

10

The order of evaluation of this expression is as indicated. If F is a programmer-defined
function, its evaluation involves the execution of other statements and may in itself be
very complicated.

In order to understand how failure IS handled, it IS important to know what operations
can fail.

1. Obtaining the value of a variable fails if the variable has an input association
and an end-of-file condition is encountered. An attempt to read occurs only if the
value of the variable is required, not merely because the variable appears in a
statement. Thus, neither

INPUT '0 '

nor

LT(N,M) :S(INPUT)

10.2.2 Error Conditions 179

requires the value of INPUT and hence no attempt is made to read.

2. Primitive predicates fail if the stated condition is not met. The unary negation
operator, for example, fails only if its operand does not fail.

3. The primitive functions ARG, CODE, COLLECT, CONVERT, DUPL, EVAL, FIELD,
LOCAL, REPLACE, and STOPTR fail in certain circumstances.

4. Array references fail if an index is out of bounds.

5. Pattern matching may fail for a variety of reasons.

6. Programmer-defined functions fail by transferring to FRETURN .

Failure is a condition that causes a process to terminate and return to the process that
called it, which in turn terminates and passes the failure condition back, until eventually
the statement itself fails. The exception is the unary negation operator that converts a
failure condition into successful evaluation, and converts successful evaluation into a
failure condition. A statement fails if failure occurs in the evaluation of its subject or
pattern, if pattern matching fails, or if failure occurs in evaluation of its object.

Details of function evaluation deserve special note. All the arguments to a programmer­
defined function are evaluated before the function is called. If too many arguments are
provided to the call of a programmer-defined function, the extra arguments are evaluated,
but not passed. If the evaluation of any argument fails, a failure condition is returned and
the function is not entered.

Primitive functions are called before their arguments are evaluated, and each function
evaluates its own arguments. Too many arguments in the call ofa primitive function is an
error. If too few arguments are provided in the call of a primitive function, null strings
are provided for the omitted arguments. An exception to this rule concerns functions
invoked by APPLY or called through an OPSYNed synonym. Such calls must contain the
correct number of arguments.

10.2.2 Error Conditions

As indicated throughout this book, there are a number of errors that may occur during
program execution. Some errors are relatively insignificant, while others are so severe that
continued program execution is impossible. Error conditions are therefore divided into two
ca tegories:

180 Running a SNOBOL4 Program

(1) conditionally fatal, and
(2) unconditionally fatal.

10.2.3

The handling of conditionally fatal errors is controlled by two keywords. &ERRLIMIT

limits the number of conditionally fatal errors that are allowed. If a conditionally fatal
error occurs and the value of &ERRLIMIT is greater than zero, the value of ERRLIMIT is
decremented by one, and failure occurs in the expression with the error. If the value of
&ERRLIMIT is zero, program execution terminates with an error message. For example,

&ERRLIMIT 10

permits ten conditionally fatal errors. The eleventh error causes error termination. The
initial, default value of &ERRLIMIT is zero, so that any error causes error termination
unless the value of &ERRLIMIT is changed.

Each error has a number. When the error occurs, this number becomes the value of the
protected keyword & ERR TYPE , serving to identify the error. ERRTYPE can be traced,
permitting diagnosis of conditionally fatal errors under program control.

10.2.3 Program Error Messages

A list of errors follows. Errors 1 though 16 are conditionally fatal. Errors 17 through 28
are unconditionally fatal and cause error termination regardless of the value of
&ERRLIMIT.

1. ILLEGAL DATA TYPE. This error IS one of the most frequent to occur. A typical
example is

x x + 'A'

since A is not a numeral string.

2. ERROR IN ARITHMETIC OPERATION. This error occurs if an attempt is made to
divide by zero, raise zero to a nonpositive power, or if the result of an arithmetic
operation exceeds the magnitude for integers or reals. On the IBM 360, integers have the
range of - 2 3 1 to 2 3 1 - 1 and reals have the approximate range 1 0 - 7 8 to 1 0 7 5 •

3. ERRONEOUS ARRAY OR TABLE REFERENCE. This error occurs if the value of the
variable given in a reference is not an array or a table, or if the first argument of ITEM IS
not an array or table. An example is

ITEM ('A' ,3)

4. NULL STRING IN ILLEGAL CONTEXT. This error occurs In a variety of situations. A
typical one is

A $X

where the value of X is the null string.

10.2.3 Program Error Messages 181

5. UNDEFINED FUNCTION OR OPERATION. This error occurs if an attempt is made to
call a function or use an operator that has no definition. For example,

A x # Y

produces this error if # is not given a definition by using OPSYN .

6. ERRONEOUS PROTOTYPE. This error occurs when ARRAY, DATA, DEFINE, or LOAD IS
called with a prototype that is syntactically erroneous. An example is

DEFINE('F(X')

7. UNKNOWN KEYWORD. This error occurs if the unary operator & IS applied to a string
that is not a keyword.

8. VARIABLE NOT PRESENT WHERE REQUIRED. Assignment and goto requIre variables.
The following statement illustrates this error.

3 2

9. ENTRY POINT OF FUNCTION NOT LABEL. The entry point for a defined function
given in DEFINE need not be a label, but must be by the time the defined function is
first called. Otherwise this error occurs.

10. ILLEGAL ARGUMENT TO PRIMITIVE FUNCTION. This error occurs when certain
primitive functions are called with illegal arguments. Specific cases are in the first
argument of ARG, FIELD, and LOCAL, the second argument of TRACE and STOPTR, and
the third argument of OPSYN.

11. READING ERROR. This error occurs when an error condition is encountered during an
attempt to read a record.

12. ILLEGAL I/O UNIT. If a negative data set reference number (unit) is given as an
argument to BACKSPACE, ENDFILE, or REWIND, or as the second argument to INPUT or
OUTPUT, this error occurs.

13. LIMIT ON DEFINED DATA TYPES EXCEEDED. This limit on the number of different
defined data types is 899. This error occurs if that limit is exceeded.

14. NEGATIVE NUMBER IN ILLEGAL CONTEXT. Several functions require nonnegative
integer arguments. A negative number causes this error. The specific cases are in the
arguments to LEN, POS , RPOS , RTAB, and TAB, and in the third argument of INPUT.

15. STRING OVERFLOW. This error occurs if a string longer than the value of
&MAXLNGTH is formed. The initial, default value of &MAXLNGTH is 5000 .

16. OVERFLOW DURING PATTERN MATCHING. This error occurs if an internal stack
overflows during pattern matching. Such overflow may be caused by a looping pattern, or
excessively recursive one.

17. ERROR IN SNOBOL4 SYSTEM. This error occurs if an internal error or inconsistency is
detected by the SNOBOL4 system. Such an error indicates an implementation problem,
and listings should be sent to the authors.

182 Running a SNOBOL4 Program 10.2.3

18. RETURN FROM ZERO LEVEL. This error occurs if a transfer to RETURN, FRETURN, or
NRETURN is made outside the call of a programmer-defined function.

19. FAILURE DURING GOTO EVALUATION. This error occurs if failure occurs in the
process of computing a label for a transfer. An example is

:($(IDENT(X,Y) X y))

if X and Y are not identical.

20. INSUFFICIENT STORAGE TO CONTINUE. This error occurs when there is not enough
storage available for continued operation of the SNOBOL4 system.

21. STACK OVERFLOW. This error occurs if the internal stack used by the SNOBOL4
system overflows. This error is usually the result of excessive recursion in programmer­
defined functions. Stack overflow may also occur during storage regeneration.

22. LIMIT ON STATEMENT EXECUTION EXCEEDED. This error occurs if the number of
statements executed exceeds the value of & STLIMIT. The initial default value of
&'STLIMIT is 50000.

23. OBJECT EXCEEDS SIZE LIMIT. This error occurs if an attempt is made to create an
object larger than the maximum possible size. On the IBM 360, this maximum size is
22 Ii -1 bytes.

24. UNDEFINED OR ERRONEOUS GO TO . This error occurs if an attempt is made to
transfer to a label that does not occur in the program, or if the result of evaluating the
goto field is not a natural variable. An example is

:('LOOP' N)

25. INCORRECT NUMBER OF ARGUMENTS. This error occurs if a pnmitive function is
called with an incorrect number of arguments. In the case of explicit function calls, this
error results only from too many arguments, since null strings are automatically provided
for omitted trailing arguments. In the case of functions OPSYN ed to primitive functions, or
invoked by APPLY, this error is also caused by too few arguments.

26. LIMIT ON COMPILATION ERRORS EXCEEDED. Up to 50 erroneous statements are
permitted during compilation of a SNOBOL4 program. If that number is exceeded, this
error occurs. Note that this error occurs during compilation and prevents program
execution.

27. ERRONEOUS END STATEMENT. This error occurs if there is a syntactic error in the
end statement of a program, or if the label specified in the end statement does not occur
in the program. This error prevents program execution.

28. EXECUTION OF STATEMENT WITH A COMPILATION ERROR. This error occurs if an
attempt is made to execute a statement in which an error was detected during
compilation.

10.3.1 Normal Termination 183

Two kinds of failure occur in pattern matching as a result of conditionally fatal errors.
If Error 16 occurs, the entire pattern match fails, as if ABORT had been encountered. Any
other error causes the pattern component involved to fail to match, as if FAIL had been
encountered.

10.3 Termination

There are three principal kinds of program termination:

(1) normal,
(2) error, and
(3) cancellation.

10. 3.1 Normal Termination

Normal termination occurs when the program transfers to END or flows into the end
statement. Various information is printed at the end of the listing, including counts of
certain program operations and timing information. If the value of &DUMP is nonzero at '
program termination, a listing of the values of natural variables and unprotected keywords
is provided. Only natural variables with nonnull values are included in the listing.

The following program illustrates the printout produced by a program that terminates
normally.

SNOBOL4 (VERSION 3.0, DEC. 17, 1969)
BELL TELEPHONE LABORATORIES, INCORPORATED

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

&DUMP 1 ; &TRIM 1

THIS PROGRAM IS THE ALGORITHM BY HAO WANG (CF. 'TOWARD
MECHANICAL MATHEMATICS', IBM JOURNAL OF RESEARCH AND
DEVELOPMENT 4(1) JAN 1960 PP.2-22.) FOR A PROOF-DECISION
PROCEDURE FOR THE PROPOSITIONAL CALCULUS. IT PRINTS OUT A
PROOF OR DISPROOF ACCORDING AS A GIVEN FORMULA IS A THEOREM
OR NOT. !THE ALGORITHM USES SEQUENTS WHICH CONSIST OF TWO
LISTS OF FORMULAS SEPARATED BY AN ARROW (--*). INITIALLY, FOR
A GIVEN FORMULA F THE SEQUENT

--* F

IS FORMED. WANG HAS DEFINED RULES FOR SIMPLIFYING A FORMULA
IN A SEQUENT BY REMOVING THE MAIN CONNECTIVE AND THEN
GENERATING A NEW SEQUENT OR SEQUENTS. THERE IS A TERMINAL

184

*
*
*
*
*
*
*
*
*
*
*

+

*

*
READ

*

Running a SNOBOL4 Program 10.3.1

TEST FOR A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS:

A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS IS VALID IF
THE TWO LISTS OF FORMULAS HAVE A FORMULA IN COMMON.

BY REPEATED APPLICATION OF THE RULES, ONE IS LED TO A SET OF
SEQUENTS CONSISTING OF ATOMIC FORMULAS. IF EACH ONE OF THESE
SEQUENTS IS VALID THEN SO IS THE ORIGINAL FORMULA.

UNOP
BINOP
FORMULA

ATOM

'NOT'
'AND' I 'IMP' I 'OR' I 'EQU'

, , UNOP . OP '(' BAL. PHI ')'
, , BINOP . OP '(' BAL. PHI ',' BAL. PSI ')'

(, , BAL ' ,) . A

DEFINE('WANG(ANTE,CONSEQ)PHI,PSI')

EXP
OUTPUT
OUTPUT
OUTPUT

INPUT

, FORMULA: ' EXP

:F(END)

WANG (, ,
OUTPUT

INVALID OUTPUT

, EXP)
'VALID'
'NOT VALID'

:F(INVALID)
: (READ)
: (READ)

*
WANG

TEST

*
*
ANOT

*
AAND

*
AOR

*
*
AIMP

*

OUTPUT ANTE
, --* ,

CONSEQ
ANTE FORMULA
CONSEQ FORMULA
ANTE ANTE

, ,

CONSEQ
, ,

CONSEQ
, ,

ANTE ATOM
CONSEQ A

WANG(ANTE,CONSEQ ' , PHI)

WANG(ANTE ' , PHI ' , PSI,CONSEQ)

WANG(ANTE ' , PHI,CONSEQ)
WANG(ANTE ' , PSI,CONSEQ)

WANG(ANTE ' , PSI,CONSEQ)
WANG(ANTE,CONSEQ ' , PHI)

: S ($ (, A' OP)
: S ($ ('C' Op)

:F(FRETURN)
:S(RETURN)F(TEST)

:S(RETURN)F(FRETURN)

:S(RETURN)F(FRETURN)

:F(FRETURN)
:S(RETURN)F(FRETURN)

:F(FRETURN)
:S(RETURN)F(FRETURN)

3
4
5
5
6

7

8
9
10
11

12
13
14

15
16
17
18
19
20
21

22

23

24
25

26
27

10.3.1

AEQU WANG(ANTE·' , PHI' , PSI,CONSEQ)
WANG(ANTE,CONSEQ ' , PHI ' , PSI)

*
CNOT WANG(ANTE" PHI,CONSEQ)

*
CAND WANG(ANTE,CONSEQ" PHI)

WANG(ANTE,CONSEQ ' , PSI)

*
COR WANG(ANTE,CONSEQ ' , PHI ' , PSI)

*
CIMP WANG (ANTE ' , PHI,CONSEQ ' , PSI)

*
CEQU WANG(ANTE" PHI,CONSEQ ' , PSI)

WANG(ANTE ' , PSI,CONSEQ ' , PHI)
END

NO ERRORS DETECTED IN SOURCE PROGRAM

FORMULA: IMP(NOT(OR(P,Q»,NOT(P»

--* IMP(NOT(OR(P,Q»,NOT(P»
NOT(OR(P,Q» --* NOT(P)
--* NOT(P) OR(P,Q)
P --* OR(P,Q)
P --* P Q

VALID

FORMULA: NOT(IMP(NOT(OR(P,Q»,NOT(P»)

--* NOT(IMP(NOT(OR(P,Q»,NOT(P»)
IMP(NOT(OR(P~Q»,NOT(P» --*
NOT(P) --*
--* P

NOT VALID

FORMULA: IMP(AND(NOT(P),NOT(Q»,EQU(P,Q»

--* IMP(AND(NOT(P),NOT(Q»,EQU(P,Q»
AND(NOT(P),NOT(Q» --* EQU(P,Q)
NOT(P) NOT(Q) --* EQU(P,Q)
NOT(Q) --* EQU(P,Q) P
--* EQU(P,Q) P Q
P --* P Q Q
Q --* P Q P

VALID

Normal Termination 185

:F(FRETURN) 28
:S(RETURN)F(FRETURN) 29

:S(RETURN)F(FRETURN) 30

:F(FRETURN) 31
:S(RETURN)F(FRETURN) 32

:S(RETURN)F(FRETURN) 33

:S(RETURN)F(FRETURN) 34

:F(FRETURN) 35
:S(RETURN)F(FRETURN) 36

37

186 Running a SNOBOL4 Program

FORMULA: IMP(IMP(OR(P,Q),OR(P,R»,OR(P,IMP(Q,R»)

--* IMP(IMP(OR(P,Q),OR(P,R»,OR(P,IMP(Q,R»)
IMP(OR(P,Q),OR(P,R» --* OR~P,IMP(Q,R»

OR(P,R) --* OR(P,IMP(Q,R»
P --* OR(P,IMP(Q,R»
P --* P IMP(Q,R)
P Q --* P R
R --* OR(~,IMP(Q,R»

R --* P IMP(Q,R)
R Q --* P R
--* OR(P,IMP(Q,R» OR(P,Q)
--* OR(P,Q) P IMP(Q,R)
--* P IMP(Q,R) P Q
Q --* P P Q R

VALID

NORMAL TERMINATION AT LEVEL 0

LAST STATEMENT EXECUTED WAS 8

DUMP OF VARIABLES AT TERMINATION

NATURAL VARIABLES

A = ' Q '
ABORT PATTERN
ARB = PATTERN
ATOM = PATTERN
BAL = PATTERN
BINOP = PATTERN
EXP = 'IMP(IMP(OR(P,Q),OR(P,R»,OR(P,IMP(Q,R»)'
FAIL = PATTERN
FENCE = PATTERN
FORMULA = PATTERN
INPUT = 'IMP (IMP (OR.(P , Q) , OR (P , R)) , OR (P , IMP (Q , R))) ,
OP = 'IMP'
OUTPUT = 'VALID'
REM = PATTERN
SUCCEED = PATTERN
UNOP = 'NOT'

10.3.1

10.3.2

UNPROTECTED KEYWORDS

&ABEND = 0
&ANCHOR 0
&CODE = 0
&DUMP = 1
&ERRLIMIT = 0
&FTRACE = 0
&FULLSCAN 0
&INPUT = 1
&MAXLNGTH = 5000
&OUTPUT = 1
&STLIMIT = 50000
&TRACE = 0
&TRIM = 1

SNOBOL4 STATISTICS SUMMARY-
1731 MS. COMPILATION TIME

349 MS. EXECUTION TIME
163 STATEMENTS EXECUTED, 34 FAILED

o ARITHMETIC OPERATIONS PERFORMED
63 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE
5 READS PERFORMED

45 WRITES PERFORMED
2.14 MS. AVERAGE PER STATEMENT EXECUTED

10.3.2 Error Termination

Error Termination 187

Error termination occurs if an unconditionally fatal error occurs, or if a conditionally
fatal error occurs when &ERRLIMIT is zero. A message identifying the error is printed,
and then statistics and dumps are provided as for normal termination.

The following example illustrates error termination. In this example, the input data was
removed, causing failure in statement 3. The resulting attempt to transfer to ERR is
erroneous since ERR does not occur as a label in the program.

SNOBOL4 (VERSION 3.0, DEC. 17, 1969)
BELL TELEPHONE LABORATORIES, INCORPORATED

&ANCHOR
CARDPAT BREAK(' ') . BIN LEN(1) BREAK(' ') . NUMBER

* THE FIRST CARD GIVES THE NUMBER OF BINS
SUM ARRAY(TRIM(INPUT),O) :F(ERR)

2

3

188 Running a SNOBOL4 Program 10.3.2

'TRACE 1000
TRACE(.SUM<3>,'VALUE' ,'SUM<3>') 5

* SUBSEQENT CARDS CONTAIN A BIN NUMBER FOLLOWED BY A BLANK AND THEN
* THE NUMBER TO BE ADDED TO THE BIN.
READ CARD INPUT

CARD CARD PAT
SUM<BIN> SUM<BIN> + NUMBER

* PRINT OUT THE SUMS
DISPLAY

I 1
PRINT OUTPUT 'SUM<' I '> , SUM<I>

I I + 1
END

NO ERRORS DETECTED IN SOURCE PROGRAM

ERROR 24 IN STATEMENT 3 AT LEVEL 0

UNDEFINED OR ERRONEOUS GOTO

SNOBOL4 STATISTICS SUMMARY-
1148 MS. COMPILATION TIME

50 MS. EXECUTION TIME
3 STATEMENTS EXECUTED, 1 FAILED
o ARITHMETIC OPERATIONS PERFORMED
o PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE
1 READS PERFORMED
o WRITES PERFORMED

16.67 MS. AVERAGE PER STATEMENT EXECUTED

:F(DISPLAY)
:F(ERR)
:S(READ)F(ERR)

:F(END)
: (PRINT)

Another form of error termination occurs when an error is detected by the FORTRAN
1/0 routines. In this case, an error message is printed by the 1/0 routines, followed by
the message CUT BY SYSTEM.

This type of error is illustrated by the following program in which no failure exit is
provided on the statement reading data. Eventually data is exhausted, and a subsequent
attempt to read causes the 1/0 routines to attempt to read from the second file for data
set reference number 5. This file does not exist, and on the IBM 360 the error message
IHC2 1 9 I is printed.

6
7
8

9
10
1 1
12
13

10.3.2 Error Termination 189

SNOBOL4 (VERSION 3.0, DEC. 17, 1969)
BELL TELEPHONE LABORATORIES, INCORPORATED

&TRIM 1
FINDNO BREAK(*NO) NO
ONE LEN (1) . NO
LO POS(O) SPAN('0')

*
DEFINE('DEHEX(STR)NO') : (DEHEX.END)

*
*
DEHEX
DEHEX1

DEHEX.END
*

*
READ

STR LO
STR ONE
DEHEX INTEGER(NO)
'ABCDEF' FINDNO
DEHEX = 16 * DEHEX +

INPUT

:F(RETURN)
16 * DEHEX + NO :S(DEHEX1)

:F(FRETURN)
10 + SIZE(NO) : (DEHEX 1)

+

NUMBER
OUTPUT
OUTPUT 'DEHEX(' NUMBER ') = ' DEHEX(NUMBER)

:S(READ)
OUTPUT 'UNABLE TO CONVERT' NUMBER : (READ)

END

NO ERRORS DETECTED IN SOURCE PROGRAM

DEHEX(100) = 256
DEHEX(00011) = 17
DEHEX(OOOF) = 15
UNABLE TO CONVERT 1ABCG
DEHEX(1ABC) = 6844
DEHEX(OOOFACE) 64206
DEHEX(OOOFACE) = 64206

IHC219I

CUT BY SYSTEM IN STATEMENT 12 AT LEVEL 0

2
3
4

5

6
7
8
9
10
1 1

12
13
13
13
14
15

190 Running a SNOBOL4 Program

SNOBOL4 STATISTICS SUMMARY-
1048 MSo COMPILATION TIME

216 MS. EXECUTION TIME
111 STATEMENTS EXECUTED, 28 FAILED

59 ARITHMETIC OPERATIONS PERFORMED
52 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE
8 READS PERFORMED
7 WRITES PERFORMED

1.95 MS. AVERAGE PER STATEMENT EXECUTED

10.3.3

The message CUT BY SYSTEM may also occur if an error in the SNOBOL4 system
causes a program interrupt.

10.3.3 Cancellation Termination

On the IBM 360, job cancellation prevents the SNOBOL4 system from regaInIng
control. A system completion code is given, but no further output is printed. Statistics and
dumps are lost, and it is not possible, in general, to determine where the program was
when it was cancelled. In fact, program output may not be completely printed because of
buffered output.

A typical cause for cancellation is a program loop, causing execution to exceed specified
limits. Since some printed output may be lost, the program listing may be misleading. It is
possible, for example, for a program to be cancelled in an execution loop, even though the
compilation listing is incomplete, giving the erroneous impression of cancellation during
compilation.

CHAPTER 11

Programming Details and Storage Management

This chapter is concerned with efficient programming techniques and good utilization of
storage. The material that follows is in tended for experienced programmers and
individuals who have difficulties in running SNOBOL4 programs that are very large and
time-consuming.

The most efficient programming and best use of the SNOBOL4 language requires
considerable experience and sophistication. A student just learning the language should not
attach too much importance to the material in this chapter. The various interdictions and
comparisons will only obscure the underlying structure of SNOBOL4.

11.1 Implementation Overview

The key to efficient use of SNOBOL4 is an understanding of its implementation. The
implementation is in itself a very large and involved topic. Only the most superficial
description is attempted here.

The SNOBOL4 system consists of three maIn parts: A compiler, an interpreter, and a
storage allocator.

The compiler analyzes the source program and converts it to a form of object code. In
the analysis, each language element is converted into a suitable internal representation
consisting of numbers, pointers, and flags. The object code is put in a Polish prefix form
suitable for interpretation.

During the execution phase, the compiled object code is interpreted; functions are
called, arguments fetched, and the resulting language operations are performed. Because of
the nature of SNOBOL4, procedures are implemented in a recursive way.

Storage allocation occurs frequently during both compilation and interpretation. Strings
identified by the compiler are entered into a storage area. During execution, storage is also
allocated for new strings, patterns, arrays, and so forth. SNOBOL4 is unusual in this
sense. In most languages, data objects are identified by declarations handled during
compilation and hence little, if any, allocation is required during execution. Allocation of
new data objects typically continues throughout execution of a SNOBOL4 program. As a
result of continued allocation, available storage may be exhausted. Storage regeneration,

191

192 Programming Details and Storage Management 11.3

which discards old, unneeded objects to make more space available, IS therefore an
important function of the storage allocator.

11.2 Strings

Handling strings is fundamental to the operation of the language. SNOBOL4 supports
operations on strings of essentially unlimited length, without requiring any attention on
the part of the programmer. This is particularly important In string formation where
strings of any length can be assigned to any variable.

More important to the internal operation of the language is the fact that any nonnull
string can be used as a variable. Some natural variables are explicit in the source
program. Indirect referencing permits any string to be used asa variable, arid hence have
an assigned value. The statement

$INPUT x

is an extreme example in which a string is read in and used as a variable.

To support the use of any nonnull string as a variable, every newly formed string is
created as a variable. Space is provided for the value of that variable, and the null string
is provided as the initial value. Proper functioning of the language requires that those
natural variables be unique. Otherwise two different copies of the variable might have
different values. In SNOBOL4 these problems are handled by assuring that each string
occurs exactly once in storage. When a new string is formed, a search must be performed
to determine whether that string already exists. Since string formation is a frequent
operation, special techniques are used to make the search efficient. A combination of hash
addressing [10,11] and a linked-bin structure is used. Each string, once it is formed, is
uniquely represented by a pointer (address). The value of a natural variable is obtained
by referencing the location to which it points. In the statement

x y z

the variables X, Y, and Z are represented by pointers. Values of Y and Z are easily
obtained. Assuming these values are strings, concatenation is performed, resulting in a new
string. A search for this string is then performed. If it already exists as a variable, a
pointer to it is returned. If the string is new, space is allocated for it, and a pointer to the
new variable is returned. Assignment of this pointer as the value of X is now simple. This
example illustrates a general characteristic of strings. Obtaining and assigning values is a
simple operation. Creation of a new string is relatively more time consuming.

From the discussion, it should be evident that indirect referencing is a relatively efficient
operation. Since natural variables are represented by pointers, an indirect reference only
requires going from a pointer to the value to which it points.

11.4 Patterns and Pattern Matching 193

11. 3 Other Variables

Strings are only one kind of variable. Others are array and table references, fields of
programmer-defined data objects, and keywords.

To reference an array, the variable is computed from the given indices. This operation
is relatively simple and efficient. A similar operation is required. for fields.

Table references are more complicated, and require a search of the table for the
referencing item. This search is linear, but only requires comparison of pointer-type
quantities. No string comparison is required since strings are represented by pointers. The
time required to reference a table depends on the size of the table and the location of the
referencing item within the table.

A typical alternative to tables is indirect referencing. The statements

x

and

$('L' N) x

are representative of the two choices. Generally speaking, the two take simila'r amounts of
time. The time spent searching the table T is similar to the time taken to perform the
concatenation and locate the corresponding natural variable. The space required for many
natural variables with the prefix L is much greater than the space required for the table
T, however.

On the other hand, if no prefix is required,

$N x

is more efficient than the table reference. Of course tables can be referenced with objects
of any data type, while indirect referencing is limited to strings. Another consideration is
whether a list of referenced items must be kept if indirect referencing is used. Conversion
from TABLE to ARRAY provides such a list in a simple, efficient manner if tables are used.

Keyword references also require a linear search through a small table. Since keyword
references are infrequent and the search small, keywords can be considered on a par with
natural variables.

11.4 Patterns and Pattern Matching

A pattern is a data object, and may be very large if the pattern is complicated. The
construction of a pattern is an involved process. For these reasons, it is more efficient to
construct patterns outside of pattern matching statements, rather than to construct them
repetitiously with each execution of the pattern matching statements. Unevaluated
expressions make it possible to avoid construction of patterns in pattern matching

194 Programming Details and Storage Management 11.5

statements, even if components of the pattern vary. An unevaluated expression amounts to
a pointer to another pattern, which is accessed during pattern matching when the
unevaluated expression is encountered.

Chapter 2 describes pattern matching in some detail, and much information about
efficiency can be obtained by considering the bead diagrams and operation of the scanner.
Several simple rules are worth remembering:

(1) Use the anchored mode if possible.
(2) Use BREAK instead of ARB if possible.
(3) Use ANY instead of alternation if possible.
(4) Avoid use of ARBNO .

(5) Use conditional rather than immediate value assignment if possible.
(6) Use the quickscan mode if possible.

Many programs can execute entirely in the anchored mode, avoiding much useless,
time-consuming searching during pattern matching. In the unanchored mode, individual
patterns can be anchored by using FENCE or POS (0) as their first component.

Where a known delimiter is sought, BREAK should be used. ARB, as its bead diagram
illustrates, matches each character individually, which may be very inefficient.

Where one of a number of· single characters is sought, ANY should be used. Alternation
requires a large pattern with many components that must be matched one at a time. The
time required for ANY to match is independent of the order in which the characters in its
argument appear. In alternation, as indicated by the bead diagrams, the time depends
strongly on the order of the alternatives.

ARBNO should be used only where its function is really needed. SPAN often will do, and
is much more efficient.

Immediate value assignment often performs several assignments in the course of pattern
matching. These additional operations should be avoided unless the dynamic effects of
immediate assignment are really needed.

As illustrated in Chapter 2, the quickscan mode is designed to improve the efficiency of
pattern matching by avoiding alternatives that cannot lead to successful matching. The
fullscan mode, on the other hand, permits attempts to match, however futile they may be.
For this reason, the fullscan mode may cause pattern matching to take much longer than
the quickscan mode. The fullscan mode should be used only when pattern matching
involves dynamic effects resulting from unevaluated expressions or immediate value
assignment. If fullscan is needed only in a few statements, it is worth changing modes for
these statements rather than running the entire program in the fullscan mode.

11.6.1 Forcing Storage Regeneration 195

11. 5 Input and Output

Automatic input and output occurs because of variables associated with data sets. If
&OUTPUT is nonzero, output association is checked by a table lookup for every assignment
of value to every variable. The time required to determine whether a particular variable is
output-associated depends on the number of output-associated variables. This checking can
be bypassed entirely by setting the value of &OUTPUT to zero during periods of program
execution where output is not required. Input is handled in a similar manner, although
checking is usually more frequent because it is required for every use of every variable.
& INPUT can also be set to zero if input is not required.

Trimming of trailing blanks by setting &TRIM to a nonzero value has the benefit of
creating shorter strings on input. Space is not allocated for the trailing blanks. Automatic
trimming on input should be used, where appropriate, rather than explicit application of
the TRIM function. TRIM applied to INPUT results in two strings: one consisting of the
full input line, and another consisting of the trimmed result.

11. 6 Storage Management

Dynamic storage is continually allocated during program compilation and execution. All
forms of programmer data reside in allocated storage and compete for available space.
This includes object code, strings, patterns, arrays, and so forth. Some data, depending on
its use, is transient and may be discarded. Other data is always accessible to program and
must be kept.

When available space is exhausted, the storage allocator regenerates storage, collecting
all needed data and discarding all data inaccessible to the program. This process occurs
automatically and usually does not concern the programmer directly. Statistics indicating
a large number of regenerations suggest potential trouble. Repetitious construction of
patterns and manipulation of very long strings are the most common causes of frequent
storage regeneration. The amount of time required to regenerate storage depends on many
factors and no specific figures can be given. A rough rule of thumb is that storage
regeneration takes about 20 to 100 times as long as the execution of a typical statement.
Thus storage regeneration is not a factor in program efficiency unless it occurs frequently.

11. 6.1 F ordng Storage Regeneration

In special circumstances, a programmer may want to force storage regeneration or find
out how much storage is available. This is done with the function COLLECT, which forces
storage regeneration. COLLECT returns as value the amount of storage available (in bytes
on the IBM 360) after regeneration. COLLECT (N) fails if less than N bytes remain.

196 Programming Details and Storage Management 11.6.2

11.6.2 Clearing Variable Values

Some programs are organized to process several sections of data independently, making
it possible or necessary to remove residual data between sections. The function CLEAR

assists in this manner. A call of CLEAR () sets the values of all natural variables to the
null string. CLEAR does not affect the values of keywords, created variables, I/O
associations, or function definitions. Furthermore, values are cleared only at the level at
which CLEAR is called. If values are saved by a call to a programmer-defined function,
these values are restored when the function returns. This fact may be used to save the
values of selected variables by calling CLEAR in a function in which these variables are
formal arguments. If the values of X, Y, Z, and PAT are to be saved, a function RESET

could have the defining statement

DEFINE('RESET(X,Y,Z,PAT)')

with the procedure

RESET CLEAR() : (RETURN)

The values of X, Y, Z, and PAT (and RESET) are saved when RESET IS called, and
restored when it returns. All other natural variables are cleared.

CLEAR applies to the natural variables ABORT, ARB, FAIL, FENCE, REM, and SUCCEED,

and clears their primitive pattern values. The corresponding keywords &ABORT, &ARB,

&FAIL, &FENCE, &REM, and &SUCCEED, which are not affected by CLEAR, can be used
to restore primitive patterns.

APPENDIX A

Syntax of SNOBOL4

This formal description of the syntax of SNOBOL4 is given in a syntax notation used
in many IBM manuals [10]. Rules explaining this notation follow.

(1) A class of elements is denoted by a notation variable, which consists of lower
case letters and periods and must begin with a letter.

(2) Literal characters are denoted by capital letters or special characters. Lower case
letters and syntactic symbols are underlined when they represent literals. A lone
underscore stands for itself.

(3) A syntactic unit is defined as one of the following:
a. a notation variable,
b. literal characters, or
c. any collection of variables, literals, and syntax notation surrounded by braces
or brackets.

(4) Braces { } denote a grouping.

(5) Square brackets [] denote an option. Anything enclosed within brackets may
appear or be omitted.

(6) Vertical stacking of syntactic units and the vertical stroke I denote alternatives.

(7) Three dots. •. denote optional repetition of the immediately preceding syntactic
unit one or more times.

(8) Footnotes are used where restrictions apply to notation variables.

197

198 Syntax of SNOBOL4 A.l

A 1 Syntax of Statements

The following notation variables define the components of a statement, leading to the
defini tion of a sta temen t itself.

digit: 0111213141516171819

letter: AIBlclDIEIFIGIHIIIJIKILIMINlolplQIRlslTlulvlwlxlYlz

alphanumeric: letterldigit

identifier: letter [alphanumericl~I_] ...

blanks: one or more blank characters

integer: digit [digit] ...

real: integer. [integer]

unary: operator

binary: blanks [[operatorl**] blanks]

str ing: zero or more EBCDIC characters

sliteral: '{string}1'

dliteral: "{stringJ 2
"

literal: sliteralldliterallintegerlreal

element: [unary] ... identifier
literal
function. call
reference
(expression)

operation: element binary {elementlexpressionJ

expression:. [blanks] [element 1 operation] [blanks]

arg.list: expression [, expression] ...

function.call: identifier (arg.list

reference: identifier < arg.list >
label: {alphanumeric {stringJ3J4

subject. field: blanks element

pattern. field: blanks expression

A.2 Syntax of Programs

object. field: blanks expression

equal: blanks

goto: {(expression) 1< expression >}

goto.field: blanks .l... [blanks] (gO to)
S goto [blanks] [F goto]
F goto [blanks] [S goto]

eol: end of line

eos: [blanks] {; leol}

assign. statement: [label] subject. field equal [object. field]
[goto.field] eos

199

match. statement:

repl.statement:

[label] subject. field pattern. field [goto.field] eos

[label] subject. field pattern. field equal
[object.field][goto.field] eos

degen.statement: [label] [subject. field] [goto.field] eos

end. statement: END [blanks [labellEND]] eos

statement: assign.statementlmatch.statementlrepl.statementl
degen.statement I end. statement

The following notes apply to the syntax given above:

1 not including a single quote'
2 not including a double quote"
3 not including a blank or semicolon
4 but not END. (RETURN, FRETURN, and NRETURN are syntactically acceptable, but
do not override the standard function returns.)

A 2 Syntax of Programs

A SNOBOL4 program consists of a sequence of statements terminating with an end
statement. Interspersed among these statements may be comment lines and control lines.

comment. line: * string eol

control.line: - [blanks] (LIST blanks [LEFT I RIGHT]
UNLIST
EJECT

[blanks) eOl}

200 Syntax of SNOBOL4 A.4

A statement begins immediately following the preceding statement, i.e. at the beginning
of a line or following a semicolon. A statement may be continued on the next line by
using a continue line.

continue. line: {+I~} remainder of statement

Comment, control, and continue lines must begin at the beginning of a line. They may
not start in the interior of a line following a semicolon. A statement may be broken over a
line boundary anywhere a blank is optional in the syntax. If a statement has the form

part1 [blanks] part2

it may be continued as

part1 [blanks] eol
{+I~} [blanks] part2

where the + or • begins a new line as indicated, and takes the place of the optional
blank.

A 3 Syntax of Prototypes

Prototypes for arrays, programmer-defined functions, programmer-defined data types, and
external functions are evaluated during program execution, not during compilation. These
prototypes may be given explicitly as literals or may be computed in a variety of ways.
When ARRAY, DEFINE, DATA, or LOAD is executed, the corresponding prototype is then
analyzed. The syntax of these prototypes follows.

item: [identifier]

item.list: item [, item] .•.

data.prototype: identifier (item. list)

function.prototype: identifier item. list item. list

external.prototype: identifier item. list item

signed. integer: [[+ 1-] integer]

dimension: signed. integer [~signed.integer]

array.prototype: dimension [, dimension] ...

A.S Character Codes for Various Machines 201

A4 Syntax of Data Type Conversions

Conversion from STRING to another data 'type involves a syntactic analysis of the string
to be converted. Explicit conversions are performed to INTEGER, REAL, EXPRESSION,

and CODE. Implicit conversions are performed for INTEGER and REAL.

string. integer: signed. integer

string.real: [[+I-]real]

string. expression: expression

string.code: statement [; statement] ...

A 5 Character Codes for Various Machines

The character codes and graphics for symbols used in SNOBOL4 vary from machine to
machine. The graphics used in this book correspond to the IBM 360 implementation. The
following table summarizes the card codes and graphics for other implementations, using
the IBM 360 as the point of reference. Not included in this table are the RCA Spectra 70
and XDS Sigma 5/6/7 which have the same codes and graphics as the IBM '360. The
PDP-IO characters are similar to the IBM 360 as noted below. Punched card codes and
typical printer graphics are given. Internal codes vary, and communication terminals may
have different graphics.

IBM 360 CDC 6600 UNIVAC 1108 GE 635

0-3-8 0-3-8 0-3-8 0-3-8
2-8 2-8 5-8 5-8
6-8-11 7-8-12 6-8-11 6-8-11

" 7-8 =F 4-8 7-8-11 " 0-6-8
5-8 5-8-11 4-8 7-8-11
5-8-12 0-4-8 0-4-8 5-8-12
5-8-11 4-8-12 4-8-12 5-8-11

< 4-8-12 7-8 5-8-12 2-8
> 0-6-8 0-2-8 5-8-11 4-8-12

6-8 3-8 3-8 0-5-8
..., 7-8-11, 6-8-12 \ 0 6-8 \ 7-8-12
? 0-7-8 ~ 0-5-8 ? 0-12 ? 7-8
$ 3-8-11 $ 3-8-11 $ 3-8-11 $ 3-8-11

202 Syntax of SNOBOL4 A.6

IBM 360 CDC 6600 UNIVAC 1108 GE 635

3-8-12 3-8-12 3-8-12 3-8-12
2-8-11 none none none

% 0-4-8 ~ 5-8-12 % 0-5-8 % 0-4-8

* 4-8-11 * 4-8-11 * 4-8-11 * 4-8-11
/ 0-1 / 0-1 / 0-1 / 0-1
3-8 :::; 5-8 # 7-8-12 # 3-8

+ 6-8-12 + 12 + 12 + 0-12
1 1 1 1 1 1 1 1

Q) 4-8 J, 6-8-11 Q) 7-8 Q) 4-8

I 7-8-12 V 0-11 0-11 0-7-8
& 12 1\ 0-7-8 & 2-8 & 12

Notes:
1. The PDP-I0 has the same character set as the IBM 360, except! is equivalent to I ,
and \ (card code 7 - 8) is equivalent to -,.

2. The CDC 3600 and the rest of the CDC 6000 series have the same character set as the
CDC 6600. Card code 2-8-11 can also be used for V .

A 6 Extended Syntax for the IBM 360 Implementation

On the IBM 360 implementation, alternatives for several syntactically significant
characters are provided. The extended syntax permits the use of characters available from
terminal input and for which there are graphics on some print trains. The following table
illustrates the added characters available in addition to the standard ones. Lower-case
letters are also available on the IBM 360 implementation.

Added

tab
[

r
I
L

Hexadecimal Code

05
AD

BD

4A
9F

AC

4F
AB

Language Use

conca tena tion, separator
left bracket and
left direct goto delimiter
right bracket and
right direct goto delimiter
assignment
exponen tia tion
commen t line
commen t line
commen t line

Standard

blank

<

>

*
*
*

A.6 Extended Syntax for the IBM 360 Implementation 203

Notes:
1. The tab character cannot be used in OPSYN to represent concatenation, and is not
treated like a blank in trimming.

2. The PDP-IO implementation permits the use of [,] , tab, ... , and t in the same way as
the extended IBM syntax.

APPENDIX B

Versions 2 and 3 of SNOBOL4

The first edition of this book describes Version 2 of SNOBOL4. This edition describes
Version 3, which became available in December of 1969. Differences between the two
versions are significant, and are detailed in the following sections.

B.I Running Version 2 Programs under Version 3

Since Version 3 supercedes Version 2, the most serious differences are those that require
changes in Version 2 programs to run them under Version 3. These differences are minor,
and almost all programs written to run under Version 2 will run properly under Version
3 without modification. Points of difference follow.

1. In Version 2, negative values of &FTRACE and &TRACE turn on the tracing modes. In
Version 3, the tracing modes are only on for positive values of these keywords.

2. An improvement in pattern matching heuristics for patterns involving LEN may be
detectable during pattern matching in the qu"ickscan mode. Fewer alternatives are
attempted in Version 3.

3. Data type checking in the pattern-valued functions causes detection of erroneous
arguments when the functions are called. In Version 2 such errors are not detected until
pa ttern matching takes place.

4. The CONVERT function now performs conversions to STRING and INTEGER that fail in
Version 2.

5. The DATATYPE function does not fail on external data types in Version 3 as it does in
Version 2.

6. Negative arguments to COLLECT are erroneous in Version 3, but not in Version 2.

7. The standard print line length in Version 3 is 132, as opposed to 131 in Version 2.

8. Several constructions that are erroneous in Version 2 are acceptable in Version 3.
Mixed-mode.arithmetic is typical.

9. Program listing formats and messages are somewhat different in the two versions.

204

B.2 Running Version 3 Programs under Version 2 205

10. Program timing typically varies between the two versions.

11. On the IBM 360, handling of program interrupts, FORTRAN liD error conditions,
and step termination differs in the two versions.

B.2 Running Version 3 Programs under Version 2

Version 3 contains a number of features not available in Version 2. For this reason, many
Version 3 programs will not run under Version 2 without considerable modification.
Principal differences follow.

1. Version 2 does not have tables, or any of the features relating to them.

2. Version 2 does not have error control. All errors are fatal.

3. Version 2 does not permit mixed-mode arithmetic, comparison of real numbers,
automatic conversion to and from REAL, or REAL -to-INTEGER conversion.

4. Version 2 does not support exponentiation of reals.

5. Version 2 does not permit operator definition by OPSYN. The unary operators
are lacking, as well as the binary operators.." ? , $, and 1 .

6. A string to be converted to CODE must end with a semicolon.

and I

7. The following functions are not included in Version 2: DUMP, DUPL, REMDR, and
TABLE.

8. The following keywords are not included in Version 2: &CODE, &ERRLIMIT,
&ERRTYPE,&INPUT,&OUTPUT, and&TRIM.

There are many other minor differences, mainly relating to data type conversions.

APPENDIX C

Sample Programs

Sample Program 1

SNOBOL4 (VERSION 3.0, DEC. 17, 1969)
BELL TELEPHONE LABORATORIES, INCORPORATED

*
*
*
*
*
*
*

*
*
*

*
DEAL

NLOOP

*

THIS PROGRAM USES ARRAYS, PROGRAMMER-DEFINED FUNCTIONS, AND
A VARIETY OF OUTPUT FORMATS TO PRODUCE SETS OF BRIDGE HANDS.
THE FUNCTION DEAL() USES A PSEUDO-RANDOM NUMBER GENERATOR [13]
TO DEAL CARDS INTO FOUR ARRAYS NORTH, EAST, SOUTH, AND WEST.
THE FUNCTION DISPLAY() PRINTS THE HANDS, ONE TO A PAGE.

OUTPUT('TITLE' ,6,'(14H1THIS IS HAND ,110A1)')
OUTPUT('DEALER' ,6, '(11H DEALER IS ,110A1)')
OUTPUT('SKIP' ,6,'(A1)')

FUNCTIONS

DEF INE ('DEAL () ,)
DEFINE('DISPLAY(),)
DEFINE('LINE(STR1,COL1,STR2,COL2)BL1,BL2')
DEFINE('RANDOM(N)')
DEFINE('SUITL(HAND,SUIT)N')

DEAL SEQ DEALHAND
DECK COpy (NEWDECK)
N 51
DEALSEQ NXTHAND
CARD RANDOM(N + 1)
DECK<CARD> SUITRANK
ITEM($HAND,SUIT,RANK)

NE(CARD,N) DECK<N>
$ RANK

: (CONSTANT)

N GT(N,O) N - 1 :S(NLOOP)F(RETURN)

DISPLAY TITLE NTHDEAL

206

1
2
3

4
5
6
7
8

9
10
1 1
12
13
14
15
16

17

+

+

+

+

+

*
*
LINE

LINE1

*
*
RANDOM

*
*
SUITL
SUITL1

*
*
*
CONSTANT

DEALER
SKIP = '
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
SKIP = '
OUTPUT
OUTPUT
OUTPUT

OUTPUT

OUTPUT

OUTPUT

SKIP = '
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

DEALR

LINE ('NORTH' , 40)

LINE(SUITL(NORTH, 'S'),40)
LINE(SUITL(NORTH, 'H'),40)
LINE(SUITLCNORTH,'D'),40)
LINE(SUITL(NORT~,'C'),40)

LINE('WEST' ,20, 'EAST' ,60)

LINE(SUITL(WEST, 'S'),20,
SUITL(EAST,'S'),60)

LINE(SUITL(WEST,'H'),20,
SUITL(EAST,'H'),60)

LINE(SUITL(WEST,'D'),20,
SUITL(EAST, 'D'),60)

LINE(SUITL(WEST,'C'),20,
SUITL(EAST,'C'),60)

LINE ('SOUTH' ,40)

LINE(SUITL(SOUTH,'S'),40)
LINE(SUITL(SOUTH, 'H'),40)
LINE(SUITL(SOUTH, 'D'),40)
LINE(SUITL(SOUTH, 'C'),40)

BL LEN (COL 1 - 1) . BL 1

Sample Program 1 207

: (RETURN)

BL2 DIFFER(STR2) DUPL(' ',COL2 - (COL1 + SIZE(STR1»)
LINE DUPL(" ,COL1 - 1) STR1 BL2 STR2 : (RETURN)

RAN.VAR RAN.VAR * 1061 + 3251
RAN.VAR RTAB(5)
RANDOM (RAN.VAR * N) / 100000

SUITL SUIT
SUITL SUITL HAND<$SUIT,N>
N N + 1

CONSTANTS

S 1
H 2
D 3

: (RETURN)

:F(RETURN)
: (SUITL 1)

18
19
20
21
22
23
24
25
26
27
28
29
29
30
30
31
31
32
32
33
34
35
36
37
38
39
39

40
41
42

43
44
45

46
47
48

49
50
51

208 Sannple Progranns

BLDDEK

BLDDK1

*
*

C
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12

4
'A'
'K'
'Q'

'J'
' 10'
'9 '
'8 '
'7 '
'6 '
'5 '

'4 '
'3 '
'2 '

'NORTH,EAST,SOUTH,WEST,NORTH,'
*NAND ',' BREAK(','). HAND

DEALSEQ
NXTHAND
DEALHAND
SUIT~ANK

EMPTYHAND
NEWDECK
RAN.VAR
DEALMAX
NTHDEAL
DEALR

*DEALR ',' BREAK(' ,') • HAND. DEALR
LEN(1) . SUIT REM. RANK

N 0
I I +
R 0
NEWDECK<N>

ARRAY (, 4 , 0 : 1 2 ')
ARRAY (, 0 : 5 1 ')
157
3

'WEST'

1

I R
N LT(N,51) N + 1
R LT(R,12) R + 1

:F(NEWDEAL)
:S(BLDDK1)F(BLDDEK)

NEWDEAL NTHDEAL LT(NTHDEAL,DEALMAX) NTHDEAL + 1 :F(END)
COPY(EMPTYHAND)

*

*
END

NORTH
EAST
SOUTH
WEST

DEAL ()

DISPLAY ()

COPY(EMPTYHAND)
COpy (EMPTYHAND)
COpy (EMPTYHAND)

NO ERRORS DETECTED IN SOURCE PROGRAM

: (NEWDEAL)

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86

87

88
89

THIS IS HAND 1
DEALER IS NORTH

NORTH

S AQ974
H KS
D AJ93
C Q8

Sample Program 1 209

WEST EAST

S J83
H A108
D 872
C K1042

SOUTH

S K10S
H J64
D Q10S
C A7S3

S 62
H Q9732
D K64
C J96

210 Sample Programs

THIS IS HAND 2
DEALER IS EAST

NORTH

S J
H AKQJ95
D J107
C A83

WEST EAST

S Q852
H 10732
D 83
C J75

SOUTH

S 1063
H 4
D Q965
C KQ1042

S AK974
H 86
D AK42
C 96

THIS IS HAND 3
DEALER IS SOUTH

NORTH

S J 10·7
H Q
D A985
C K7653

Sample Program 1 211

WEST EAST

S 954
H 864
D K7643
C J10

SOUTH

S K2
H .AK73
D QJ2
C 9842

S AQ863
H J10952
D 10
C AQ

212 Sample Programs

NORMAL TERMINATION AT LEVEL 0

LAST STATEMENT EXECUTED WAS 82

SNOBOL4 STATISTICS SUMMARY-
2279 MS. COMPILATION TIME
3295 MS. EXECUTION TIME
3026 STATEMENTS EXECUTED, 142 FAILED
1783 ARITHMETIC OPERATIONS PERFORMED

516 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE
o READS PERF.ORMED

69 WRITES PERFORMED
1.09 MS. AVERAGE PER STATEMENT EXECUTED

Sample Program 2 213

Sample Program 2

SNOBOL4 (VERSION 3.0, DEC. 17, 1969)
BELL TELEPHONE LABORATORIES, INCORPORATED

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*

*
*
*

* * *

* * *

*
*

THIS PROGRAM COMPUTES AND PRINTS A TABLE OF N FACTORIAL *
FOR VALUES OF N FROM 1 THROUGH AN UPPER LIMIT "NX". *

*
IT DEMONSTRATES A METHOD OF MANIPULATING NUMBERS WHICH ARE *
TOO LARGE FOR THE COMPUTER, AS STRINGS OF CHARACTERS. THE *
COMMAS IN THE PRINTED VALUES ARE OPTIONAL, ADDED FOR READING *
EASE. *

*
*

INITIALIZATION.

NX = 35

N = 1 NSET
NUM = ARRAY(1000)
NUM<l> = 1
FILL = ARRAY('0:3')
FILL<O> = '000'; FILL<l> , 00 ' ; FILL<2> = '0'

OUTPUT
OUTPUT

TABLE OF FACTORIALS FOR 1 THROUGH ' NX

COMPUTE THE NEXT VALUE FROM THE PREVIOUS ONE.

L1 I = 1
L2 NUM<I> = NUM<I> * N

I = LT(I,NSET) I + 1
1=1

L3 LT(NUM<I>,1000)
NUMX = NUM<I> / 1000
NUM<I + 1> = NUM<I + 1> + NUMX
NUM<I> = NUM<I> - 1000 * NUMX

L4 I = LT(I,NSET) I + 1

*
*
*
L5

FORM A STRING REPRESENTING THE FACTORIAL.

NSET DIFFER(NUM<NSET + 1» NSET + 1
NUMBER = NUM<NSET>
I = GT(NSET,l) NSET - 1

:F(ERR)
:S(L2)

:S(L4)
:F(ERR)
:F(ERR)
:F(ERR)
:S(L3)

:F(ERR)
:F(L7)

1

2
4
5
6
7

10
1 1

12
13
14
15
16
17
18
19
20

21
22
23

214 Sample Programs

L6

*
*
*
L7

*
*
*
ERR

*
END

NUMBER = NUMBER ',' FILL<SIZE(NUM<I»> NUM<I>
I ='GT(I,1) I - 1 :S(L6)

OUTPUT A LINE OF THE TABLE.

. OUTPUT N' ! = ' NUMBER
N = LT(N,NX) N + 1

ERROR TERMINATION.

:S(L1)F(END)

OUTPUT
OUTPUT

N '! CANNOT BE COMPUTED BECAUSE OF TABLE OVERFLOW.'
INCREASE THE SIZE OF ARRAY "NUM".'

NO ERRORS DETECTED IN SOURCE PROGRAM

24
25

26
27

28
29

30

TABLE OF FACTORIALS FOR 1 THROUGH 35

=1
2 =2
3 =6
4 =24
5 =120
6 =720
7 =5,040
8 =40,320
9 =362,880
10!=3,628,800
11!=39,916,800
12!=479,001,600
13 1=6,227,020,800
14 =87,178,291,200
15 =1,307,674,368,000
16 =20,922,789,888,000
17 =355,687,428,096,000
18 =6,402,373,705,728,000
19 =121,645,100,408,832,000
20 =2,432,902,008,176,640,000
21 =51,090,942,171,709,440,000
22 =1,124,000,727,777,607,680,000
23 =25,852,016,738,884,976,640,000
24 =620,448,401,733,239,439,360,000
25 =15,511,210,043,330,985,984,000,000
26 =403,291,461,126,605,635,584,000,000
27 =10,888,869,450,418,352,160,768,000,000
28 =304,888,344,611,713,860,501,504,000,000
29 =8,841,761,993,739,701,954,543,616,000,000
30 =265,252,859,812,191,058,636,308,480,000,000
31 =8,222,838,654,177,922,817,725,562,880,000,000
32 =263,130,836,933,693,530,167,218,012,160,000,000

Sample Program 2 215

33 =8,683,317,618,811,886,495,518,194,401,280,000,000
34 =295,232,799,039,604,140,847,618,609,643,520,000,000
35 =10,333,147,966,386,144,929,666,651,337,523,200,000,000

216 Sample Programs

NORMAL TERMINATION AT LEVEL 0

LAST STATEMENT EXECUTED WAS 27

SNOBOL4 STATISTICS SUMMARY-
1381 MS. COMPILATION TIME
1747 MS. EXECUTION TIME
1880 STATEMENTS EXECUTED, 274 FAILED
1686 ARITHMETIC OPERATIONS PERFORMED

o PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE
o READS PERFORMED

37 WRITES PERFORMED
0.93 MS. AVERAGE PER STATEMENT EXECUTED

Sample Program 3 217

Sample Program 3

SNOBOL4 (VERSION 3.0, DEC. 8, 1969)
BELL TELEPHONE LABORATORIES, INCORPORATED

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

THIS PROGRAM USES PROGRAMMER-DEFINED DATA TYPES TO
REPRESENT AN ARBITRARILY LONG INTEGER AS A LINKED LIST
CALLED ALI. OPSYN IS USED TO DEFINE A BINARY OPERATOR
AND TWO UNARY OPERATORS FOR MANIPULATING ALIS.

% APPENDS A NODE TO THE HEAD OF A LIST. H AND / RETURN
THE VALUE OF THE HEAD OF THE LIST, AND THE LIST LINKED
FROM THE HEAD, RESPECTIVELY.

THE OPERATORS + AND • ARE GENERALIZED TO RETURN INTEGERS
IF THE OPERANDS ARE INTEGERS AND THE RESULT LESS THAN
MAX (10000). IF THE RESULT IS GREATER THAN MAX, AN ALI
IS GENERATED WITH THE VALUE OF THE HEAD EQUAL TO THE LOW
ORDER DIGITS, AND THE LINK POINTING TO AN ALI WITH THE
HIGHER DIGITS. IF EITHER OPERAND IS AN ALI, THE RESULT
IS AN ALI.

THE USE OF ALIS IS ILLUSTRATED BY COMPUTING THE FIRST K
POWERS OF AN INTEGER N.

&ANCHOR 1
OPSYN('SUM' ,'+' ,2)
OPSYN('PROD' ,'.' ,2)
DATA (, AL I (V , L) ,)
DEFINE('OUT(OUT)')
DEFINE('APPEND(V,L)')
DEFINE('ADD(I1,I2)C')
DEFINE('MUL(I1,I2)C')
DEFINE('VAL(VAL)')
DEFINE('LINK(I)')
OPSYN('+', 'ADD' ,2)
OPSYN('.'~'MUL' ,2)
OPSYN('%' ,'APPEND' ,2)
OPSYN('/', 'LINK' ,1)
OPSYN('H', 'VAL' ,1)
MAX 10000
ADDFIX RTAB(SIZE(MAX) - 1)
MULFIX RTAB(SIZE(MAX) - 1)

C REM
C REM

ADD
MUL

2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18

218 Sample Programs

* FUNCTION DEFINITIONS

*

*
APPEND

*
*
ADD

*
LINK

*
VAL

*
*
*
OUT

+

*
*
MUL

+

+
FEND

L

END

APPEND

ADD
ADD
ADD

LT(ADD,MAX)
ADD

ALI(V,L)

I DENT (I2) I 1
I DENT (I 1) I2
SUM(#I1,#I2)

: (FEND)

: (RETURN)

:S(RETURN)
:S(RETURN)

INTEGER(I1) INTEGER(I2) :S(RETURN)
LT(ADD,MAX) ADD" (/I1 + /I2) :S(RETURN)

ADD
ADD

ADDFIX

LINK

VAL

OUT
OUT

MUL
LT(MUL,MAX)
MUL

ADD" (C + (/I1 + /I2» : (RETURN)

~INTEGER(I) L(I) : (RETURN)

~INTEGER(VAL) V(VAL) : (RETURN)

IDENT(/OUT) lOUT :S(RETURN)
OUT(/OUT) DUPL('O' ,SIZE(MAX) - SIZE(#OUT) - 1)

lOUT : (RETURN)

DIFFER(#I1) DIFFER(#I2) PROD(#I1,#I2) :F(RETURN)
INTEGER(I1) INTEGER(I2) :S(RETURN)
LT(MUL,MAX) MUL" (I1 * /I2 + I2 * /I1)

:S(RETURN)
MUL MULFIX
MUL

N
K
P
OUTPUT
OUTPUT
I
P
OUTPUT

MUL " (C + I1 * /I2 + I2 * /I1)
: (RETURN)

256
25
1
'POWERS OF' N

LT(I,K) I + 1

P * N
I ':' OUT (p)

:F(END)

: (L)

NO ERRORS DETECTED IN SOURCE PROGRAM

19

20

21
22
23
24
25
26
27

28

29

30
31
31

32
33
34
34
35
36
36
37
38
39
40
41
42
43
44
45
46

POWERS OF 256

1: 256
2: 65536
3: 16777216
4: 4294967296
5: 1099511627776
6: 281474976710656
7: 72057594037927936
8: 18446744073709551616
9: 4722366482869645213696
10: 1208925819614629174706176
11: 309485009821345068724781056
12: 79228162514264337593543950336
13: 20282409603651670423947251286016
14: 5192296858534827628530496329220096
15: 1329227995784915872903807060280344576
16: 340282366920938463463374607431768211456
17: 87112285931760246646623899502532662132736
18: 22300745198530623141535718272648361505980416
19: 5708990770823839524233143877797980545530986496

Sample Program 3 219

20: 1461501637330902918203684832716283019655932542976
21: 374144419156711147060143317175368453031918731001856
22: 95780971304118053647396689196894323976171195136475136
23: 24519928653854221733733552434404946937899825954937634816
24: 6277101735386680763835789423207666416102355444464034512896
25: 1606938044258990275541962092341162602522202993782792835301376

220 Sample Programs

NORMAL TERMINATION AT LEVEL 0

LAST STATEMENT EXECUTED WAS 43

SNOBOL4 STATISTICS SUMMARY-
1514 MS. COMPILATION TIME
5159 MS. EXECUTION TIME
6511 STATEMENTS EXECUTED, 2782 FAILED

762 ARITHMETIC OPERATIONS PERFORMED
229 PATTERN MATCHES PERFORMED

o REGENERATIONS OF DYNAMIC STORAGE
o READS PERFORMED

27 WRITES PERFORMED
0.79 MS. AVERAGE PER STATEMENT EXECUTED

Sample Program 4 221

Sample Program 4

SNOBOL4 (VERSION 3.0, DEC. 17, 1969)
BELL TELEPHONE LABORATORIES, INCORPORATED

* TOPOLOGICAL SORT

* * MAPS A PARTIAL ORDERING OF OBJECTS INTO A LINEAR ORDERING

* * A (1), A (2), ..., A(N)

* * SUCH THAT IF A(S) < A(T) IN THE PARTIAL ORDERING,THEN S < T.
* (CF. D.E.KNUTH, THE ART OF COMPUTER PROGRAMMING,VOLUME 1,
* ADDISON-WESLEY,MASS.,1968, P.262)

*
&DUMP
&TRIM

= 1
1

1
2

OUTPUT('OUT' ,6, '(121A1)') 3
PAIR = BREAK('<') . MU LEN(1) BREAK(',') . NU LEN(1) 4
DATA('ITEM(COUNT,TOP)') 5
DATA('NODE(SUC,NEXT)') 6
DEFINE('DECR(X)') 7

*
*

*

SET UP A TABLE THAT ASSOCIATES WITH EACH OBJECT AN ITEM.
X TABLE(50)

* EACH ITEM HAS TWO FIELDS, (COUNT,TOP), WHERE
* COUNT = NO. OF ELEMENTS PRECEEDING THE OBJECT.
* TOP = TOP OF A LIST OF OBJECTS SUCCEEDING IT.

* * READ IN RELATIONS.

* * INITIALIZE THE ITEMS TO (O,NULL).

* * FOR EACH RELATION, MU < NU, INCREASE THE COUNT OF PREDECESSORS
* OF NU AND ADD A NODE TO THE LIST OF SUCCESSORS OF MU.

*
T1A
T2A

T2

*

OUT
REL

'0 THE RELATIONS ARE:'
INPUT',' :F{T3A)

OUTPUT REL
REL PAIR :F(T2A)
X<NU> IDENT(X<NU» ITEM(O)
COUNT{X<NU» COUNT (X<NU» + 1
X<MU> IDENT(X<MU» ITEM(O)
TOP (X<MU» NODE(NU,TOP(X<MU») :(T2)

* A QUEUE IS MAINTAINED OF THOSE ITEMS WITH ZERO COUNT FIELD.

8

9
10
1 1
12
13
14
15
16

222 Sample Programs

* THE LINKS FOR THE QUEUE, QLINK, ARE KEPT IN THE COUNT FIELD.
* THE VARIABLES F,R POINT TO THE FRONT AND REAR OF THE QUEUE.

*
T3A

*

OPSYN('QLINK' ,'COUNT')
Y CONVERT (X, 'ARRAY')
PROTOTYPE(Y) BREAK(' ,') . N

* INITIALIZE THE QUEUE FOR OUTPUT.

*
T4

T4A
T4B

*
*
*
T5
T5A

*

K
K
F
R

K
QLINK(R)

= 0
?Y<K + 1,1> K + 1
EQ(COUNT(Y<K,2»,0) Y<K,1>
Y<K,2>
?Y<K + 1,1> K + 1

EQ(COUNT(Y<K,2»,0) Y<K,1>

:F(T8)
:F(T4)

:F(T5)
:F(T4B)S(T4A)

OUTPUT THE FRONT OF THE QUEUE.

OUT '0 THE LINEAR ORDERING IS: '
OUTPUT DIFFER(X<F» F :F(T8)
N N - 1
P TOP(X<F»

* ERASE RELATIONS.

*
T6

*

IDENT(P)
DECR(.COUNT(X<SUC(p»»

* IF COUNT IS ZERO ADD ITEM TO QUEUE.

*

T6A

*

QLINK(R)
R

P

SUC(p)
X<SUC(p»

NEXT(P)

* REMOVE FROM QUEUE.

*
T7

*
F = QLINK(X<F»

* FUNCTION DEFINITIONS.

*
DECR $X

$X
GT ($X, 1) $X - 1
o

:S(T7)
:S(T6A)

: (T6)

: (T5A)

:S(RETURN)
: (FRETURN)

*
T8 OUTPUT NE(N,O) 'THE ORDERING CONTAINS A LOOP.'
END

NO ERRORS DETECTED IN SOURCE PROGRAM

17
18
19

20
21
22
23
24
25

26
27
28
29

30
31

32
33
34

35

36
37

38
39

THE RELATIONS ARE:
LETTERS<ALPHANUM,NUMBERS<ALPHANUM,
BLANKS<OPTBLANKS,
NUMBERS<REAL,
NUMBERS<INTEGER,
LETTERS<VARIABLE,ALPHANUM<VARIABLE,
BINARY<BINARYOP,BLANKS<BINARYOP,
UNQALPHABET<DLITERAL,

Sample Program 4 223

UNQALPHABET<SLITERAL,
SLITERAL<LITERAL,DLITERAL<LITERAL,INTEGER<LITERAL,REAL<LITERAL,

THE LINEAR ORDERING IS:
LETTERS
NUMBERS
BLANKS
BINARY
UNQALPHABET
INTEGER
REAL
ALPHANUM
OPTBLANKS
BINARYOP
SLITERAL
DLITERAL
VARIABLE
LITERAL

224 Sample Programs

NORMAL TERMINATION AT LEVEL 0

LAST STATEMENT EXECUTED WAS 38

DUMP OF VARIABLES AT TERMINATION

NATURAL VARIABLES

ABORT PATTERN
ARB PATTERN
BAL = PATTERN
F = 0
FAIL = PATTERN
FENCE = PATTERN
INPUT = 'SLITERAL<LITERAL,DLITERAL<LITERAL,INTEGER<LITERAL,REAL<LITERAL'
K = 14
MU = 'REAL'
N = 0
NU = 'LITERAL'
OUT = '0 THE LINEAR ORDERING:'
OUTPUT = 'LITERAL'
PAIR = PATTERN
R = ITEM
REM = PATTERN
SUCCEED = PATTERN
X TABLE(sO,10)
Y = ARRAY('14,2')

UNPROTECTED KEYWORDS

&ABEND = 0
&ANCHOR 0
&CODE = 0
&DUMP = 1
&ERRLIMIT 0
&FTRACE = 0
&FULLSCAN 0
&INPUT = 1
&MAXLNGTH = 5000
&OUTPUT = 1
&STLIMIT = 50000
&TRACE = 0
&TRIM = 1

SNOBOL4 STATISTICS SUMMARY-
1847 MS. COMPILATION TIME

349 MS. EXECUTION TIME
310 STATEMENTS EXECUTED, 71 FAILED

64 ARITHMETIC OPERATIONS PERFORMED
25 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE

10 READS PERFORMED
25 WRITES PERFORMED

1.13 MS. AVERAGE PER STATEMENT EXECUTED

Sample Program 4 225

226 Sample Programs

Sample Program 5

SNOBOL4 (VERSION 3.0, DEC. 17, 1969)
BELL TELEPHONE LABORATORIES, INCORPORATED

+

+

This program is a syntactic recognizer for SNOBOL4 statements.
The extended graphics for the IBM 360 are used in the program
and in the data.

A series of patterns is built, culminating in a pattern that
matches SNOBOL4 statements.

Card images are then read in and processed.

DEFINE('opt(pattern)')
OPSYN('t' ,'opt' ,1)
OPSYN('%' ,'SPAN' ,1)
OPSYN('I' ,'ANY' ,1)
leftbr - * '~[,
rightbr - I'>]'
letters - 'ABCDEFGHIJKLNMOPQRSTUVWXYZabcdefghijklmnopqrstuvw'

'xyz'
digits - '0123456789'
alphanumerics - letters digits
blanks - %' ,
integer - %digits
real - integer'.' tinteger
identi f ier - Iletters t % (alphanumer ics' ,)
opsyms - '.?$.!%*/I+-@I"
unary - lopsyms
binarysyms - lopsyms I '**'
unaryop - %opsyms
binaryop - blanks t(binarysyms blanks)
unqalpha - 'ALPHABET
unqalpha '"' -
unqalpha "'" -
dliteral -'"' t%(unqalpha "'") '"'
sliteral - "'" t%(unqalpha '"') "'"
literal - sliteral I dliteral I integer I real
element - tunaryop (identifier I literal I *function call

'(' *expression ')' I *array_ref) -

2

3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28

+
+

+
+

Sample Program 5 227

operation - *element binaryop (*element 1 *expression)
expression - tblanks (*element 1 *operation 1 null) tblanks
arglist - *expression t(',' *arglist)
function call - identifier '(' *arglist ')'
array ref - identifier leftbr *arglist rightbr
label- - #alphanumerics (BREAK(' i') 1 REM)
label field - tlabel
goto - '(' expression ')' 1 leftbr expression rightbr
goto_field - t(blanks ':' FENCE tblanks (goto 1 's' goto

1 'F' goto 1 's' goto tblanks 'F' goto 1 'F' goto
tblanks 's' goto) tblanks)

- # '=-' eql
rule - t(blanks element (blanks eql t(blanks expression) 1

t(blanks expression t(blanks eql t(blanks expression»
)))

eos - RPOS(O) 1 'i'
statement - label field rule goto_field eos

The recognizing program follows. Comment and control cards
are not processed. If an erroneous statement is encountered
in a string of statements separated by semicolons, subsequent
statements in that string are not processed.

INPUT(.input,5,72)
&ANCHOR - 1
&TRIM - 1
&FULLSCAN
eof -

- 1

space - DUPL(' ',5)
line -
comment - #'*-1 rL'
continue - #'+.' . cc

:F(END)

29
30
31
32
33
34
35
36
37
37
37
38
39
39
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54

readi image - input
OUTPUT - space line
image comment

nextst IDENT(eof)
:F(readc)S(readi) 55
:F(END) 56

readc

anlyz

+

OUTPUT
image
line
line

- space line
- line

- input
comment

line continue -
OUTPUT - space cc line
image - image line
image statement -
DIFFER(image)

:F(endgam)
:S(print)
:F(anlyz)

: (readc)
:F(error)
:S(anlyz)
F(nextst)

57
58
59
60
61
62
63
64
65
65

228 Sample Programs

error OUTPUT .. '«< syntactic error »>' : (nextst)
print OUTPUT .. space line :(readc)
endgam eof .. 1 : (anlyz)

*
opt opt - null I pattern : (RETURN)
END

NO ERRORS DETECTED IN SOURCE PROGRAM

x Y+z
«< syntactic error »>

ELEMENT<I,J>- ELEMENT<I,-J> T ELEMENT<-I,J>
«< syntactic error »>

SETUP
+

A<X,Y,Z + 1>
PAT 1 ..

- F(X,STRUCTURE.BUILD(TYPE,LENGTH + 1»
(BREAK(' ,:') $ FIRST I SPAN(' .') $ SECOND
. VALUE ARBNO(BAL I LEN(1» : ($SWITCH)

DEF INE (, F (X , y))

«< syntactic error »>
L - LT(N,B<J> L + 1

«< syntactic error »>
NEWONE.TRIAL X

TRIM(INPUT)
«< syntactic error »>

X .. 3.01; Y
RANDOM -

LOOP OUTPUT
«< syntactic error »>

LOOP OUTPUT
OUTPUT

?M<X>
OUTPUT
F(","",)
F(","",)

«< syntactic error »>

.. ~COORD<1,K> X * X
PAT 1 : S (OK) : F (BAD)

2. ; Z X * -Y
(RAN.VAR * N) / 10000
LT (N , 1 0) : S (LOP

LT (N, 10) :S(LOOP)
X : (FAST)
: S (A 1) F (A2) , ,

" ,

66
67
68

69
70

NORMAL TERMINATION AT LEVEL 0

LAST STATEMENT EXECUTED WAS 56

SNOBOL4 STATISTICS SUMMARY-
1930 MS. COMPILATION TIME
3594 MS. EXECUTION TIME

232 STATEMENTS EXECUTED, 56 FAILED
o ARITHMETIC OPERATIONS PERFORMED

63 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE

24 READS PERFORMED
30 WRITES PERFORMED

15.49 MS. AVERAGE PER STATEMENT EXECUTED

Sample Program 5 229

230 Sample Programs

Sample Program 6

•
SNOBOL4 (VERSION 3.0, DEC. 17, 1969)
BELL TELEPHONE LABORATORIES, INCO~PORATED

*
*
*
*
*
*
*

WHEN THE OUTPUT ASSOCIATION FOR "SING" IS CHANGED TO
A DIGITAL-TO-ANALOG CONVERTER WITH THE PROPER MELODY
SYNTHESIZER, THIS PROGRAM SINGS THAT OLD CHRISTMASTIME
FAVORITE, "A PARTRIDGE IN A PEAR TREE."

M. D. SHAPIRO

ACAPPELLA.CHOIR = 6 OR MORE PEOPLE SINGING IN TUNE

*
+

DAYS = 'FIRST,SECOND,THIRD,FOURTH,FIFTH,SIXTH,'
'SEVENTH,EIGHTH,NINTH,TENTH,ELEVENTH,TWELFTH, ,
NEXT = BREAK(' ,') . WHICH LEN(1)

* TRACE('SING' ,'VALUE' ,,'SONG')
STRACE = 1000

SONG
+

DEFINE (, SONG () ,)
PAUSE IDENT(SING) OUTPUT('SING',
" (' " PAUSE "', 1 0 OA 1) ") = '

: (NEXT. DAY)
ACAPPELLA.CHOIR,

*
NEXT.DAY DAYS NEXT =

SING (TAKE A BREATH)
SING 'ON THE' WHICH' DAY OF CHRISTMAS,'
SING 'MY TRUE LOVE GAVE TO ME, ,

TWELFTH SING 'TWELVE LORDS A-LEAPING,'
ELEVENTH SING 'ELEVEN LADIES DANCING,'
TENTH SING 'TEN PIPERS PIPING,'
NINTH SING 'NINE DRUMMERS DRUMMING,'
EIGHTH SING 'EIGHT MAIDS A-MILKING,'
SEVENTH SING 'SEVEN SWANS A-SWIMMING,'
SIXTH SING 'SIX GEESE A-LAYING,'
FIFTH SING 'FIVE GOLD RINGS,'
FOURTH SING 'FOUR COLLY BIRDS,'
THIRD SING 'THREE FRENCH HENS,'
SECOND SING 'TWO TURTLEDOVES,'
FIRST SING AND 'A PARTRIDGE IN A PEAR TREE.'

AND = IDENT(AND) 'AND'

*
CODA

*
END

SING = INPUT

NO ERRORS DETECTED IN SOURCE PROGRAM

: (RETURN)

:F(CODA)

: ($WHICH)

: (NEXT • DAY)

:S(CODA)

2
2
3

4
5
6
7
7

8
9
10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

ON THE FIRST DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
A PARTRIDGE IN A PEAR TREE.

ON THE SECOND DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE THIRD DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE FOURTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE FIFTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE SIXTH DAY OF CHRISTMAS,
MY TRUE LOVE ~AVE TO ME,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE SEVENTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

Sample Program 6 231

232 Sample Programs

ON THE EIGHTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE NINTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
NINE DRUMMERS DRUMMING,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE TENTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
TEN PIPERS PIPING,
NINE DRUMMERS DRUMMING,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SI~ GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

ON THE ELEVENTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
ELEVEN LADIES DANCING,
TEN PIPERS PIPING,
NINE DRUMMERS DRUMMING,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,

FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,

Sample Program 6 233

AND A PARTRIDGE IN A PEAR TREE.

ON THE TWELFTH DAY OF CHRISTMAS,
MY TRUE LOVE GAVE TO ME,
TWELVE LORDS A-LEAPING,
ELEVEN LADIES DANCING,
TEN PIPERS PIPING,
NINE DRUMMERS ·DRUMMING,
EIGHT MAIDS A-MILKING,
SEVEN SWANS A-SWIMMING,
SIX GEESE A-LAYING,
FIVE GOLD RINGS,
FOUR COLLY BIRDS,
THREE FRENCH HENS,
TWO TURTLEDOVES,
AND A PARTRIDGE IN A PEAR TREE.

*

III

234 Sample Programs

NORMAL TERMINATION AT LEVEL 0

LAST STATEMENT EXECUTED WAS 25

SNOBOL4 STATISTICS SUMMARY-
1149 MS. COMPILATION TIME

565 MS. EXECUTION TIME
276 STATEMENTS EXECUTED, 123 FAILED

o ARITHMETIC OPERATIONS PERFORMED
25 PATTERN MATCHES PERFORMED
o REGENERATIONS OF DYNAMIC STORAGE
9 READS PERFORMED

121 WRITES PERFORMED
2.05 MS. AVERAGE PER STATEMENT EXECUTED

APPENDIX D

Solutions to Exercises

Solution 1.1

R

END

Solution 1.2

R

END

Solution 1.3

LOOP

END

OUTPUT
OUTPUT
PUNCH

FRONT
X

X

OUTPUT

E
POWER
OUTPUT
POWER
OUTPUT
SUM
I
OUTPUT

'& '

FRONT

INPUT

OUTPUT

LEN(8)
INPUT

X

2.11828
1
'POWERS OF

:F(END)
: S (R)
: (R)

:F(END)

: (R)

E: '
POWER * E
POWER
SUM + POWER
LT(I,9) I + 1 :S(LOOP)
'SUM:

,
SUM

235

236 Solutions to Exercises

Solution 1.4

READ
END

Solution 1.5

READ

PRINT

END

Solution 1.6

*

H

+
END

&TRIM
IN
CODE
OUTPUT

&TRIM
A
I
A<I>
I
I
OUTPUT

CH
HEX
HEX<'O'>
HEX<'4'>
HEX<'8'>
HEX<'C'>

1
'ABCDEFGHIJKLMNOPQRSTUVWXYZ,.:~I?0123456789+-*/Q~ ,

'0123456789+-*/Q~ ABCDEFGHIJKLMNOPQRSTUVWXYZ,.:;I?'
REPLACE(INPUT,IN,CODE) :S(READ)

1
ARRAY(INPUT)
1
INPUT
I + 1
I 1
A<I>

LEN (1) • X
TABLE(16)

:F(PRINT)
: (READ)

:S(PRINT)

O~ HEX<'1'> 1~ HEX<'2'> 2; HEX<'3'> = 3
4; HEX<'S'> 5; HEX<'6'> 6; HEX<'7'> = 7
8; HEX<'9'> 9; HEX<'A'> 10; HEX<'B'> = 11
12; HEX<'D'> = 13~ HEX<'E'> = 14; HEX<'F'> = 15

DEFINE('H(N)X')

N
H

CH :F(RETURN)
DIFFER(HEX<X» 16 * H + HEX<X>

:F(FRETURN)S(H)

Solution 1.7

PARTA
PARTB
PARTC

DATA('BNODE(VALUE,LSON,RSON)')
N BNODE('+' ,BNODE('X'),BNODE('Y'»
DEFINE('LLIST(N)')

LLIST

END

Solution 2.1

READ

C

PRINT

END

Solution 2.2

+

Solution 2.3

READ
NEXTW

END

Solution 2.4 237

OUTPUT DIFFER(N) VALUE(N) :F(RETURN)
LLIST(LSON(N))
LLIST(RSON(N» : (RETURN)

&TRIM
COUNT
PAT
TEXT
OUTPUT
N
TEXT
COUNT
OUTPUT
OUTPUT

P

&TRIM
WORD
N
OUTPUT
TEXT
TEXT
OUTPUT

1

PAT

o
POS(O)
INPUT
TEXT
o

LEN(*N) BREAK('.,:,?!()"' "'H) LEN(1) QN
:F(PRINT)

COUNT + 1
:F(READ)
: (C)

'THERE ARE ' COUNT ' PUNCTUATION MARKS. '

('c' I ' CR ') $ OUTPUT (' 0 ' I ' 00 ' I ' EE ') $ OUTPUT
('p' I 'Ps') $ OUTPUT RPOS (0)

BREAK (' ,.:;?') . W LEN (1)
INPUT
, WORDS OF LENGTH' N ' ARE:'
INPUT " :F(END)

WORD :F(READ)
EQ(SIZE(W),N) W : (NEXTW)

This program assumes the word length is given left justified on the first input card. Text
on subsequent cards is assumed to be broken between words.

238 Solutions to Exercises

Solution 2.4

+

R

END

Solution 2.5

Solution 2.6

+
READ

LETTER
DIGIT
LABEL

&ANCHOR
CARD
CARD
OUTPUT

QUOTE
LITERAL

&TRIM
ABC

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
'0123456789'

, , I ANY(LETTER) (SPAN(LETTER DIGIT) QN *LE(N,8)
I NULL) , ,
1
INPUT

LABEL
CARD

ANY (, '" WI' Ii)

:F(END)
: S (R)

: (R)

(QUOTE $ Q BREAK(*Q) LEN(1))

1 ; &FULLSCAN 1
POS (0) (SPAN (, A') QN SPAN (, B ')
POS(*(2 * N» RPOS(*N) SPAN('C') RPOS(O»

INPUT :F(END) CARD
CARD
OUTPUT
OUTPUT

ABC :F(NO)

NO
END

Solution 2.7

+

Solution 2.8

REP

HOL

, " ,
, " ,

CARD
CARD

'" MATCHES.' : (READ)
'" DOES NOT MATCH.' : (READ)

POS(O) (LEN(1) ARB) $ X (RPOS(O) ABORT
I ARBNO(*X) RPOS(O»

POS(O) BREAK('H') $ N LEN(*(N + 1» RPOS(O)

Solution 2.9

+
READ

NO
END

Solution 3.1

+
R

END

Solution 3.2

+
READ

+
+

ERROR
END

Solution 3.3

+

Solution 3.3 239

&FULLSCAN 1 ; &TRIM 1
PALIN LEN (1) $ H QlX (*GT(2 * X,SIZE(S» I

*RTAB(X) QlY QlZ (*H QlZ I *EQ(Y,Z) ABORT) FAIL)
S INPUT :F(END)
S PALIN :F(NO)
OUTPUT
OUTPUT

B2
FIELDS

INPUT
OUTPUT

&TRIM
BB
FIELDS

CARD
CARD
IMAGE

OUTPUT
PUNCH
OUTPUT

&TRIM
BB
QL
FIELDS

, " , S ' " IS A PALINDROME.
, : (READ)

, " , S ' " IS NOT A PALINDROME.
, : (READ)

LEN(7) LAB LEN(S) • OP LEN(20) • OPER
LEN(41) . COM

FIELDS :F(END)
= LAB B2 OP B2 OPER COM :(R)

1 ; &ANCHOR 1
BREAK (' '); SB SPAN (' ')
BB • F1 SB BB . F2 SB (BB • F3 SB REM • F4
I REM. F3 NULL. F4)
INPUT :F(END)

FIELDS :F(ERROR)
F 1 DUPL (' " 9 - S I Z E (F 1 » F 2 DUPL (' "

1 ;

10 - SIZE(F2» F3 DUPL(' ',20 - SIZE(F3» F4
:F(ERROR)

LE(SIZE(IMAGE),SO) IMAGE :F(ERROR)
OUTPUT : (READ)

'*** FORMAT ERROR IN: ' CARD : (READ)

&ANCHOR
BREAK (, ,) ; SB SPAN (, ,)
ANY("''') BREAK("''') LEN(1)
BB . F1 SB BB . F2 SB ((QL I BB) . F3 SB REM

I REM . F3 NULL . F4)
. F4

240 Solutions to Exercises

READ

+
+

ERROR
END

Solution 3.4

READ

PRINT
END

Solution 3.5

READ

L

PRINT
ERROR
+
END

Solution 3.6

READ

C

PRINT

COMMENT
CARD
CARD
CARD
IMAGE

OUTPUT
PUNCH
OUTPUT

&TRIM
X
MAX
OUTPUT

&TRIM
N
FACT
I

I
FACT
OUTPUT
OUTPUT

&TRIM
X
COUNT
Y
Z
COUNT
Z
OUTPUT

('*' REM) . OUTPUT
INPUT :F(END)

COMMENT :S(READ)
FIELDS :F(ERROR)

F 1 DUPL (' ',9 - SIZE (F 1 » F2 DUPL (' "
1 0 - S I Z E (F 2)) F 3 DUPL (' " 20 - S I Z E (F 3 » F 4

:F(ERROR)
LE(SIZE(IMAGE),80) IMAGE :F(ERROR)

OUTPUT : (READ)
'*** FORMAT ERROR IN: ' CARD

1
INPUT

GT(X,MAX) X
'MAXIMUM: '

1

:F(PRINT)
: (READ)

MAX

INPUT :F(END)
INTEGER (N) GT (N) 1 : F (ERROR)
1
LT(I,N) I + 1 :F(PRINT)
FACT * I :(L)
N 'I = ' FACT : (READ)

: (READ)

'**** ERROR : ' N 'NOT A POSITIVE INTEGER.'
: (READ)

INPUT :F(END)
1
INPUT :F(END)
R~PLACE(X,X,y)

DIFFER(Z,X) COUNT + 1 :F(PRINT)
REPLACE(Z,X,Y) : (C)
'THE PERMUTATION (, X

, ,
Y ,) HAS INDEX

,

+
END

COUNT

Solution 4.2 241

: (READ)

This program assumes the members of the permutation are gIven left justified on
successive cards.

Solution 3.7

READ

END

Solution 3.8

Solution 3.9

Solution 4.1

SUBSTR

LEN(7) • OUTPUT :F(END) INPUT
OUTPUT
OUTPUT

REPLACE('ABCDEFG' ,'GFEDCBA' ,OUTPUT)
: (READ)

OPSYN('#' ,'SIZE' ,1)

o P S YN (, # ' , '+' , 2)

DEFINE('SUBSTR(S,N)')

S LEN(N) $ OUTPUT RPOS(O) : (RETURN)

This function requires the unanchored mode.

Solution 4.2

F

DEFINE ('F (N) ,)

F

F
F

EQ (N) 0

EQ (N , 1) 1
F(N - 1) +

:S(RETURN)
:S(RETURN)
F(N - 2) : (RETURN)

242 Solutions to Exercises

Solution 4.3

+

+

POL

+

+

+

Solution 4.4

FLAG
NOT
+

Solution 5.1

+

*

&ANCHOR
EXPAT BAL. X 'I' • OP REM. Y
PMPAT (ARBNO(BAL ANY('+-'» $ X FAIL I *DIFFER(X)

TAB(*(SIZE(X) - 1») • X LEN(1) • OP REM. Y
MDPAT (ARBNO(BAL ANY('*/'» $ X FAIL I *DIFFER(X)

TAB(*(SIZE(X) - 1») . X LEN(1) . OP REM. Y
STRIP '(' BAL. POL ')' RPOS(O)
DEFINE('POL(POL)X,Y,OP')

POL STRIP :S(POL)
POL PMPAT OP , (, POL (X)

, , POLey) ,
:S(RETURN)

POL MDPAT OP , (, POL (X) , , POLey) ,
:S(RETURN)

POL EXPAT OP , (, POL (X) , , POLey) ,
: (RETURN)

DEFINE('NOT(P)')
&FULLSCAN 1
DEF INE ('FLAG () ,)

1 : (RETURN) FLAG.
NOT NULL $ FLAG. P *FLAG() FAIL

I *IDENT(FLAG.) : (RETURN)

&FULLSCAN 1
&ANCHOR
&TRIM 1
DEF INE (, INCR () ,)
G ARRAY(INPUT ',2')
NUMBER BREAK (' ') N SPAN (,
NODE BREAK (, ') X SPAN('

,)
,)

,) .
,) ,

,) ,

COUNT @CT @K SUCCEED TAB(*K) BREAK(' ') *INCR()
SPAN (' ') @K RPO S (0)

*
R

S

GO

G01

G02

INCR
END

LINE INPUT
,

OUTPUT LINE
LINE NUMBER
LINE COUNT
G<N,1> ARRAY(CT)
I 0
I I + 1
LINE NODE
ITEM (G<N , 1> , I)
N 0

x

,

BB DUPL (, , ,5)

N N + 1
X G<N,1>
OUTPUT N
I DIFFER(G<N, 1»
I I + 1
OUTPUT BB X<I>
CT CT + 1

:F(GO)

: F (R)

:S(S)F(ERR)

:F(END)

0 :F(G01)

:S(G02)F(G01)
: (RETURN)

Solution 5.2 243

The pattern COUNT counts the number of fields separated by blanks. Transfer to the
undefined label ERR causes program termination with an error message.

Solution 5.2

P

PATH

PATH 1

PATH T

PATH D
PATH A

DEFINE('PATH(I,J)K') DEFINE('PATH1(I,J)S,L,K')

K
G<K,2>
PATH
S

G<I,2>
L

K
PATH 1
L
L

K
PATH 1

K + 1
:S(PATH)

PATH1(I,J) :S(RETURN)F(FRETURN)
DIFFER(G<I,1» G<I,1> :F(FRETURN)
IDENT(G<I,2» 1 :F(FRETURN)
L + 1
S<L> :F(PATH D)
EQ(K,J) I ',' J :F(PATH T)S(RETURN)
o
L + 1
S<L>
I

, , ,
:F(FRETURN)

PATH1(K,J) :S(RETURN)F(PATH A)

These functions supplement Solution 5.1.

244 Solutions to Exercises

Solution 5.3

+
R

BRANCH

MULTI
LIST

LOOP

OUTPUT
+
LIST1

END

'PUMP
'ANCHOR
ALPHA
ALPHANUM
LABEL

1
1
ANY('ABCDEFGHIJKLMNOPQRSTUVWXYZ')
ANY('ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')
(ALPHA ARBNO(ALPHANUM» • L SPAN(' ')

OUTPUT('EJECT' ,,'(1H1)')
DEFINED BREAK(':')
FLOW TABLE(10,10)
BRANCH (SPAN(' ') I NULL) 'BRANCH' SPAN(' ')

. L BREAK (, ')
LINE INPUT :F(LIST)
OUTPUT
STNO
LINE
FLOW<L>
FLOW<L>
LINE
FLOW<L>
OUTPUT
LIST
EJECT
OUTPUT
OUTPUT
I

LINE
STNO + 1

LABEL
DEFINED

STNO ':'

:F(BRANCH)
:S(MULTI)

FLOW<L>
:F(R) BRANCH

FLOW<L> STNO
, , ,

' ••••• ERROR-MULTIDEFINED LABEL ••••• ' :(R)
CONVERT (FLOW, 'ARRAY')

DUPL(' ',2D) 'FLOW TABLE'

o
I 1+1
X LIST<I,1> :F(END)
LIST<I,2> DEFINED :S(LIST1)

' ••• 'LIST<I,1> 'IS UNDEFINED LABEL:'
LIST<I,2> : (LOOP)

OUTPUT X DUPL(' ',15 - SIZE(X» LIST<I,2> :S(LOOP)
OUTPUT X DUPL(' ',5) LIST<I,i> : (LOOP)

In the flow table, each label is given with the defining statement number, followed by a
list of statement numbers containing branches to the label.

Solution 5.4

MUL
+

DATA('COMPLEX(R,I)')
DEFINE('MUL(X,Y)')
o P S YN (, " ' , , .' , 2)
OPSYN('.' ,'MUL' ,2)

: (END)
MUL = DIFFER(DATATYPE(X), 'COMPLEX')

DIFFER(DATATYPE(Y),'COMPLEX')

Solution 6.2 245

+ x I Y :S(RETURN)
MUL DIFFER(DATATYPE(X),'COMPLEX')

+ COMPLEX(X I R(Y),X I I(Y» :S(OUT)
MUL DIFFER(DATATYPE(Y), 'COMPLEX')

+ COMPLEX(Y * R(X),Y * I(X» :S(OUT)

+
OUT

MUL COMPLEX(R(X) I R(Y) - I(X) ~ I(Y),
R(X) ~ I(Y) + R(Y) ~ I(X»

MUL EQ(I(MUL» R(MUL) : (RETURN)

An example of the use of this function would be the execution of the following statements:

A COMPLEX(S,3)
B COMPLEX(6,2)
PR A * B
PR 4 * A
PR B * 5
PR 5 * 4

Solution 6.1

DEFINE('PUSH(A)')
DEF INE ('poP (A) ,)
DEF INE ('TOP (A) ,)
OPSYN('~' ,'PUSH' ,1)
OPSYN('#' ,'POP' ,1)
OPSYN('!' ,'TOP' ,1)
'TRIM = 1

PUSH A<O> A<O> + 1
PUSH .A<A<O»

*
POP POP = A<A<O»

A<O> = GT(A<O» A<O> -

*
TOP TOP = .A<A<O»

:F(FRETURN)S(NRETURN)

1 :S(RETURN)F(FRETURN)

: (NRETURN)

A typical list could be defined by the statement

X = ARRAY('0:10' ,0)

246 Solutions to Exercises

Solution 6.2

READ

&ANCHOR 1
&TRIM = 1
PROG =

CONT = '+' I ,
STRING = INPUT
STRING 'EOF'
STRING '* '
STRING CONT
PROG PROG

, .

' . ' , STRING

:F(ERR)
:S(EXEC)

:S(READ)
:S(CONTINUE)
: (READ)

CONTINUE
EXEC

PROG
PROG

PROG STRING
CODE(PROG)

: (READ)
:S<PROG>F(ERR)

END

Solution 8.1

TR

TRA

+
+

Solution 8.2

INIT

DEFINE('TR(VAL,TAG)NO,T,N,Q')
OPSYN('D' ,'DATATYPE')
&TRACE 10000

NO
T
N
N
Q
OUTPUT

&TRIM

&LASTNO
TIME ()
IOENT(D(VAL),'NAME') TAG
IDENT(O(VAL),'STRING') VAL
IDENT(O($VAL),'STRING') "'"

'STATEMENT' NO ':' N ' = '
Q CONVERT($VAL,'STRING') Q
" TIME = ' T : (RETURN)

&TRACE 1000
OEFINE('PUT(V)I')
N LT(N,SO) N + 1 :F(TEST)
TRACE ('COL' N",' PUT') : (INIT)

:S(TRA)

PUT

TEST

Solution 8.3

OUTOFF

V 'COL' REM. I
OUTPUT DUPL(' ',I)

STRACE 10000
DEFINE('OUTOFF(X)')
TRACE('OUTPUT' '" 'OUTOFF')

:F(ERR)
$V : (RETURN)

IDENT($X, 'EOF') :F(RETURN)
SOUTPUT 0 STOPTR('OUTPUT')

Solution 8.3 247

: (RETURN)

'References

1. Farber, D. J., R. E. Griswold, and I. P. Polonsky. 'SNOBOL, A String Manipulation
Language,' Journal of the Association for Computing Machinery, Vol. 11, No.1 (January, 1964),
pp. 21-30.

2. Farber, D. J., R. E. Griswold, and I. P. Polonsky. 'The SNOBOL3 Programming
Language.' Bel: System Technical Journa4 Vol. XLV, No.6 (July-August, 1966), pp. 895-
944.

3. Forte, Allen. SNOBOL3 Primer, The MIT Press, Cambridge, Massachusetts, 1967.

4. Strauss, H. J. External Functions for SNOBOL4 (S4DI0). Unpublished, 1968.

5. Lukasiewicz, Jan. Aristotle's Syllogistic from the Standpoint of Modem Formal Logic, Clarendon
Press, Oxford, England, 1951, p.78.

6. Burks, A. W., D. W. Warren, and J. B. Wright. 'An Analysis of a Logical Machine
Using Parenthesis-free Notation,' Mathematical Tables and Other Aids to Computation, Vol.
VIII, 1954, pp. 53-57.

7. IBM System/360 Operating System. FORTRAN IV [G and H] Programmer's Guide.
Form C28-6817-1, International Business Machines Corporation, 1969.

B. IBM System/360 FORTRAN IV Language. Form C28-6515-7, International Business
Machines Corporation, 1968.

9. IBM System/360 Operating System. Job Control Language. Form C28-6539-7,
International Business Machines Corporation, 1968.

10. Peterson, W. W. 'Addressing for Random-Access Storage,' IBM Journal of Research and
Development, Vol. 1, No.2 (1957), pp. 130-146.

11. Morris, R. 'Scatter Storage Techniques,' Communications of the Association for Computing
Machinery, Vol. 11, No. 1 (1968), pp 38-44.

12. IBM System/360 PL/I [F] Language Reference Manual. Form C28-8201-2,
International Business Machines Corporation, 1969, pp. 242-243.

13. Hammersley, J. M. and D. C. Handscomb. Monte Carlo Methods, Methuen & Co. Ltd.,
London, 1965, pp. 27-29.

248

Index

&ABEND 129
ABORT 49
&ABORT 128
addition (+) 2, 89, 145
&ALPHABET 80, 128
alternation (I) 8, 25, 89, 145
&ANCHOR 29, 32, 128, 129
anchored mode 31
anchored pattern matching 31
ANY 40
APPLY 84
ARB 56,66
&ARB 128
ARBNO 58,67
ARG 161
arguments (see function call)
ari thmetic 2
ari thmetic expressions 2
arithmetic operators

addition (+) 2, 89, 145
division (/) 2, 89, 145
exponentiation (** or !) 2, 89, 145
multiplication (*) 2, 89, 145
subtraction (-) 2, 89, 145
unary minus (-) 2, 89, 145
unary plus (+) 2, 89, 145

ARRAY 113, 119, 120, 122
arrays

data type 18, 113, 119, 122, 139, 141
dimensions 17, 113, 120
elements 113
indexing 120
initial value 18, 113
references 18, 115, 121, 193

assignment statements 1, 146
associative arrays 118
associativity 89, 104, 174

automatic conversion of data types
EXPRESSION to PATTERN 148
INTEGER to PATTERN 148
INTEGER to REAL 148
INTEGER to STRING 147
REAL to INTEGER 148
REAL to PATTERN 148
REAL to STRING 147
STRING to INTEGER 148
STRING to PATTERN 148
STRING to REAL 148

BACKSPACE 170
BAL 60
&BAL 128
balanced expressions 60
BCD 81
bead diagrams 26, 41, 44, 56
binary operators 88, 89, 145, 174

addition (+) 2, 89, 145
alternation (I) 8, 25, 89, 145
concatenation (blank) 4, 8, 25, 89, 145
conditional value

assignment (•) 9, 32, 89, 145, 177
division (/) 2, 89, 145
exponentiation (** or !) 2, 89, 145
immediate value

assignment ($) 10, 33, 89, 145
multiplication (*) 2, 89, 145
subtraction (-) 2, 89, 145
un used (...,? % # Q) &) 89

BREAK 38
break characters 38
bubble sort 116

249

250 Index

call tracing 153
cancellation termination 190
carriage control 167
CLEAR 196
clearing variable values 196
CODE

data type 139
function 135, 172

COLLECT 195
com men t line 20
compilation

source program 1 72, 176, 191
during execution 135

compilation errors 175
concatenation (blank) 4, 8, 25
concatenation with null string 78, 145, 147
conditional goto 10
conditional value assignment (.) 9, 32,

177
conditionally fatal errors 180
continuation lines 20
con trol lines

EJECT 173
LIST 173

LEFT 173
RIGHT 173

UNLIST 173
conversion of data types

explicit 140
implicit 147

CONVERT 122, 140
COpy 119
created names 133, 139, 141
created variables 131
cursor 26, 30
cursor position (Q)) 36, 145

DATA 19, 123, 139
da ta set reference n umbers 166
data sets 166
data type conversion

explicit 140
implicit 147

data type representation 139

data types
array 18, 113, 119, 122, 139, 141
created name 133, 139, 141
external 85, 139, 141
integer 2, 78, 139, 141, 147, 148
object code 135, 139, 141
pattern structure 24, 25, 26, 79, 139, 141,

148, 193
programmer-defined

data type 19, 123, 139, 141
real number 3, 79, 139, 141, 147, 148
string 3, 79, 139, 141, 147, 148, 192
table 19, 118, 139, 141
unevaluated expression 50, 62, 83, 139,

141, 148
da ta types of arguments

binary operators 145
primitive functions 143
unary operators 144

data types of operations 142
binary 145
unary 144

data types of primitive functions 143
DATATYPE 139
DATE 83
DD names 166
DD cards 166
DEFINE 14, 92, 162
degenerate statements 177
DETACH 170
diagnostics 149, 163
DIFFER 14, 79
direct gotos 135
discontinuation of tracing 159
division (/) 2, 89, 145
DUMP 163
&DUMP 17, 130, 183
DUPL 12, 42, 82

EBCDIC 80, 81
efficiency 193
EJECT 173
END 176
end of file 172

end statement 1, 172, 176
ENDFILE 170
entry point 14, 92
error conditions

conditionally fatal 180
unconditionally fatal 180

error control 187
& ERRLIMIT 130, 158, 180, 187
&ERRTYPE 128, 180

error messages
compilation 175
program 180

error termination 187
EQ 77
equal sign 1
EVAL 50,83
evaluation of expressions 177
evaluation of statements 177
execution of object code 135
exponentiation (** or !) 2, 89, 145
expressIons

arithmetic 2
balanced 60
evaluation of 177
unevaluated 50, 62, 83

extended syntax for IBM 360 202
external functions

calls 86
data type 86, 139
library 86
loading 85
prototype 86
unloading 87

FAIL 47
&FAIL 129
failure

during input 10, 165
in expression evaluation 178
in pattern matching 10, 49, 179
of array references 18, 115, 121, 177
of functions 13, 77, 94, 179

fatal errors
conditional '180

unconditional 180
FENCE 49
&FENCE 129
FIELD 161
field functions 19, 124, 126
field name 124
fields (see programmer-defined

data types)
files (see 1/0)
flow of control 10, 134
&FNCLEVEL 129, 158
forcing storage regeneration 195
formal arguments 14, 92, 95
formal identification 139, 140
formats 167
FORTRAN IV 166
FRETURN 15, 94
&FTRACE 130, 154, 160
&FULLSCAN 29, 62, 130
fullscan mode 72
function calls

Index 251

arguments of 12, 14, 76, 92, 95
failure of 13, 77, 94, 179
level of 153
preservation of values 95, 99
recursive 16, 98
restoration of values 95
value of 77, 93, 94

function definitions
DEFINE 14, 92, 162
entry points 14, 92
function names 14, 92, 93, 95
formal arguments 14, 92, 95
local variables 14, 92, 95
prototype 14, 92

function name as argument 101
function procedures 14, 76, 92, 93

primitive 76
programmer-defined 15, 93, 134

external 85
FRETURN 14, 94
NRETURN 95, 134
RETURN 15, 94, 153
returning value 93

252 Index

function synonyms 87
function tracing 153

GE 77
generated variables 11, 131
gotos 10, 134

conditional 10
failure 10
success 10

direct 135
processing of 177
unconditional 11

GT 77

hash addressing 192
heuristics 62

IDENT 14, 79
identifiers 198
immediate value assignment ($) 10, 33
implementation 191
im plici t alterna ti ves 56
implicit names 133
indirect reference ($) 11, 131, 192, 193

in goto 11, 131
infix notation 102, 104
ini tial position of cursor 31
initial value of

array elements 18, 113
variables 131

INPUT
function 169
variable 5, 10, 17, 165, 178

&INPUT 130,171,195
input association 169
input data 5, 20, 164, 195
INTEGER 78
integer data type 2, 139
integers 1, 2, 79
interpreter 191
interrogation (?) 84
ITEM 121

1/0
functions

BACKSPACE 170
DETACH 170
ENDFILE 170
INPUT 169
OUTPUT 167
REWIND 170

keywords
&INPUT 130,171,195
&OUTPUT 130, 171, 195

system 166
FORTRAN IV 166

job control language (JCL) 166

keywords 17, 128
&ABEND 129
&ABORT 128
&ALPHABET 80, 128
&ANCHOR 29, 30, 31, 128, 129
&ARB 128
&BAL 128
&CODE 129
&DUMP 17, 130, 183
&ERRLIMIT 130, 158, 180
&ERRTYPE 128, 180
&FAIL 129
&FENCE 129
&FNCLEVEL 129, 158
&FTRACE 130, 154, 160
&FULLSCAN 29, 62, 130
&INPUT 130, 171, 195
&LASTNO 129, 160
&MAXLNGTH 130
&OUTPUT 130, 171, 195
&REM 129
&RTNTYPE 129, 160
&STCOUNT 129, 158
& STFCOUNT 129, 158
& STLIMIT 130
& STNO 129, 160
&SUCCEEDI29

&TRACE 130, 149, 159, 160
&TRIM 17, 82, 130, 195

protected 128
unprotected 129

keyword operator (&) 17, 128
keyword tracing 158

label 10, 134, 177, 198
attribute 134
tracing 157

&LASTNO 129, 160
LE 13, 77
left recursion 67
LEN 13, 37
LGT 14, 80
LIST 173
listing control 173

EJECT 173
LIST 173

LEFT 173
RIGHT 173

UNLIST 173
literals 2, 6, 198
LOAD 85
LOCAL 161
local variables 14, 92, 95
loop control 13, 77
loops in pattern matching 67
LT 77

&MAXLNGTH 130
modes of scanning 29
multiplication (*) 2, 89, 145

name operator (.) 89, 132, 145
names 130
natural variables 130, 151, 163, 192
NE 77
needle 26
negation (..,) 84
normal termination 183
NOTANY 40

NRETURN 95, 131, 134
null string 4, 13, 35, 44, 77
numeral strings 4
numerical predicates 77

EQ 77
GE 77
GT 77
INTEGER 78
LE 13, 77
LT 77
NE 77

object 7, 24, 146, 177
object code 135, 172, 191
object comparison predicates 79

DIFFER 14, 79
IDENT 14, 79
LGT 14,80

Index 253

object evaluation 177
omitted arguments 13, 17, 77, 96

. operator definition 87
operator precedence 2, 174
operator synonyms 87
OPSYN 87, 162
OS/360 166
OUTPUT

function 167
variable 5, 34, 164

&OUTPUT 130, 171, 195
output association 167

parentheses 3, 174
passing names 133
pattern evaluation 24, 177
pattern matching 6, 24, 177, 193
pattern matching statements 6, 24, 146
pattern structures 24, 25, 26, 79, 193

left recursion 67
pattern-valued expressions 8
pattern-valued functions 13, 37
patterns 6, 7, 8, 24, 146
Polish prefix notation 102, 104, 191
POS 44

254 Index

precedence 2, 89, 174
predicates (see numerical and

object comparison)
primitive functions 12, 76, 143

ANY 40
APPLY 84
ARBNO 58,67
ARG 161
ARRAY 113, 119, 120
BACKSPACE 170
BREAK 38,44
CLEAR 196
CODE 135, 172
COLLECT 195
CONVERT 120, 140
COpy 119
DATA 19, 123, 140
DATATYPE 139
DATE 83
DEFINE 14, 92, 162
DETACH 170
DIFFER 14, 79
DUMP 163
DUPL 12, 42, 82
ENDFI~E 170
EO 77
EVAL 50,83
FIELD 161
GE 77
GT 77
IDENT 14, 79
INPUT 169
INTEGER 78
ITEM 121
LE 13, 77
LEN 13, 37
LGT 14, 80
LOCAL 161
LT 77
NE 77
NOTANY 40
OPSYN 87, 162
OUTPUT 167
POS 44
PROTOTYPE 120

REMDR 82,99
REPLACE 12, 81
REWIND 170
RPOS 44
RTAB 41
SIZE 12,81
SPAN 38
STOPTR 159
TAB 41
TABLE 19, 118, 122, 139
TIME 83
TRACE 149
TRIM 82
VALUE 126

primitive pattern structures
ABORT 49
ARB 56,67
BAL 60
FAIL 47
FENCE 49
REM 41
SUCCEED 61

printed output 164, 167
program error messages 180
program execution 176
program format 20
program statistics 183
program termination 172, 183
programmer-defined

data types 19, 123
DATA 19, 123, 139
FIELD 161
prototype 123

functions
DEFINE 14, 92, 162
entry label '14, 92
formal arguments 14, 92, 95
FRETURN 15, 94
local variables 14, 92, 95
name 14, 92, 93, 95
NRETURN 95, 131, 134
procedure 15, 93
prototype 14, 92
RETURN 14, 94, 153

trace procedures 160

programming details 191
protected keywords 128
PROTOTYPE 120
prototypes

arrays 113, 120, 122
external functions 86
programmer-defined data types 123
programmer-defined functions 14, 92
syntax of 200

PUNCH 5, 165
punched output 165

quickscan mode 62
quotation marks 1, 3, 133

real numbers 3, 79
recursive function calls 16, 98
recursive pattern definitions 53, 54
redefinition of functions 97
REM 41
&REM 129
REMDR 82, 99
REPLACE 12, 81
replacement 177
replacement statements 7, 24, 35, 146
RETURN 14, 94, 134
RETURN tracing 153
returning a variable 134
REWIND 170
RPOS 44
RTAB 41
&RTNTYPE 129, 161

scanner 26, 47, 62
scanning 26
SIZE 12,81
SNOBOL4 syntax 197
source listing 173
source program 172
SPAN 38
statements

assignment 1, 146

end 1, 20, 172, 176
degenerate 177
pattern matching 6, 24, 146
replacement 7, 24, 35, 146

statement components 146
statement continuation 20
statement evaluation 177
statement numbers 173

LIST LEFT 173
LIST RIGHT 173

sta temen t term ina tor 20
&STCOUNT 129, 158
&STFCOUNT 129, 158
& STLIMIT 130
&STNO 129, 160
STOPTR 158
storage aBoca tor 191
storage management 195
storage regeneration 195

forcing 195
strings 1, 3, 79, 192
string-valued expression 4
subject 6, 7, 24, 146
subject evaluation 177
subtraction (-) 2, 89, 145
SUCCEED 61
&SUCCEED 129
success 10, 13, 177
syntax 197

extended 202
of data type conversions 201
of prototypes 200
of SNOBOL4 prograrns 199
of statements 199

system labels
END 176
FRETURN 15, 94
NRETURN 95, 131, 134
RETURN 14, 94, 134

TAB 41
TABLE 19, 118, 122, 139
tables 19, 118

extensions 119

Index 255

256 Index

references 118, 121, 193
size 119

tags 151
termination

cancellation 190
error 187
normal 183

TIME 83
Tower of Hanoi 109
TRACE 149
&TRACE 130, 149, 159, 160
trace associations 149
trace procedures

programmer-defined 160
standard 149

tracing 149
CALL 153
FUNCTION 153

level 153
KEYWORD 158
LABEL 157
RETURN 153
VALUE 150

TRIM 82
&TRIM 17, 82, 130, 195

unanchored mode 30, 67
unary operators 2, 87, 89, 144

cursor position (Q)) 36
indirect reference ($) 11, 131, 192, 193
interrogation (?) 84
keyword (&) 17, 128
minus (-) 2
name (.) 132

negation (...,) 84
plus (+) 2
unevaluated expression (*) 50, 67, 83
unused (! %/# I) 89

unconditional goto 11
unconditionally fatal errors 180
unevaluated expressions 50, 62, 83
UNLIST 173
UNLOAD 87
unprotected keyworjs 129
un used operators

binary 89
unary 89

VALUE 126
value 1

of arguments 77, 79
of external functions 86
of programmer-defined

functions 93
value assignment

by assignment statements 1
by cursor position opera tor 36
in array initialization 18, 113
in replacement statements 7, 35, 177
through pattern matching 9, 32, 33, 177

value tracing 150
variables 1

created 131
generated 11, 131
ini tial value 131
local 14, 92, 95
natural 130, 151, 163, 192

variable association 32, 33, 35

. g, £ • &

PROGRAMMING IN BASIC, THE TlME·SHARING LANGUAGE
by Mario V. Farina
This book is a complete self-teaching description of the BASIC time-sharing language as it is
used on teletype machines linked to computers by telephone lines_
OUTSTANDING FEATURES: Written in easy-to-understand style with a minimum of technical
terms' "Extended" features soon to be implemented are included in the text· Material is or­
ganized logically into 25 lessons' An actual;program example is shown from its conception to
final results' Actual computer print-outs are reproduced_
Published 1968 164 pages

SYSTEM SIMULATION
by Geoffrey Gordon

, This book concerns the techniques of simulation as applied to ' both continuous and discrete
systems, and compares those techniques with other methods of problem-solving.
OUTSTANDING FEATURES include: Programmed examples fully worked out in six different sim­
ulation languages' Illustrated with complete examples drawn from a variety of applications
• A detailed discrete system example: first solved by hand calculations and later by FORTRAN
and two discrete simulation languages (GPSS and SIMSCRIPT) • The technique of Industrial
Dynamics as applied to business systems' The probability and statistics theory involved in the
construction of models and in the analysis of simulation results' Examples of applications
drawn from a variety of fields: engineering, biology, economics, business systems, ' switching
systems and inventory control.
Published 1969 '320 pages

PROGRAMMING LANGUAGE/ONE, 2nd Edition
by Frank Bates and Mary L. Douglas
This new Second Edition retains all the highly-readable "extras" of the First, while exploring
the many new concepts that have emerged in the past three years.

OUTSTANDING FEATURES: Analyzes computer programming in general, with particular attention
paid to the PL/ l programming' Emphasizes the distinction between physical and logical pro­
gram structure • Shows how various features of the program can be used to solve different
versions of the same problems' Covers storage classes, dynamic storage allocation, ,and stor­
age management techniques' Intr.oduces pointers and based variables, and describes them in
terms of a practical application-an airline reservation system.
Published 1970 432 pages

Prentice-Hall, Inc., Englewood Cliffs, New Jersey

