

Description of
BENDIX D=-12
DIGITAL DIFFERENTIAL ANALYZER

by
Lowell S. Michels

BENDIX COMPUTER DIVISION
Bendix Aviation Corporation
5630 Arbor Vitae Street
Los Angeles 45, California

March 13, 1954

INTRODUCTION TO DIFFERENTIAL ANALYZERS
PART I

Many problems arising in scientific and engineering appli-
cations are easily expressed as ordinary differential
equations or'simultaneous'sets of such equations. When

these equations are sufficiently complex that they cannot

be readily solved by ordinary analytic means, some means of”
approiimation must be used to analyze the system represented
by the equation(s). One such means is the electronic differ-

ential analyzer.
Two types of differential analyzers are in use:

}(l) Analog differential analyzers;
- (2) Digital differential analyzers.

Mechanical analog computing components have been known for

some time: from the time of Lord Kelvin in 1876. They were

not developed to any useful degree, however, until a group

at M,I1.T. headed by Dr. Vannevar Bush developed the»first differ-
ential analyzer in the early 1930's. During World War II,
electronic and electro-mechanical analog computers were devel-

oped to a rather advanced degree.

Immediately after the war a group at Northrop Aircraft, Inc.
realized the limitations of analog differential analyzers and
developed the first digital type analyzers. Because the tech-

‘niques are relatively new, few people, even in ihe computer

field, understand the techniques and this brochure is an
attempt to explain them to a sufficient extent so that

prospective users will realize their usefulness.

A digital differential analyzer is an electronic computer

whicg solves differential equations by numerical integration.

i S T

This dqes not, however, rule out the possibillty of the use

of this ty pe of computer for solving other types ef equations,
because many such equations may be expressed in the form of
differential equations. Problems falling under this category

include such calculations as: roots of transcendental

equations; rootsﬂgfmglggltaneeﬁswalgeyygicwequgtlpps; integral

equations; certain partial differential equations.

PR

These numerical solutions are accomplished by means of a net-
work of interconnected operational entities, called integrators,
each one of which may sequentially perform quééﬁggu}es in
accordance with a fixed program. Each integrator may also per-
form miscellaneous operations not directly connected with inte-

gration, such as decision, adding and servo operations.

—

Although the integrators are operational entities, they are not
actually physically separable, one from another, but afe said
to be time separable. The same electronic circuits perform the
operations for all of the integrators in time sequence., In

the Bendix D-12 it takes about 167 microseconds to perform the
Aoperations of one integrator, or .01 second to perform the

operations of all 60 of its integrators. The computer is

EEREREE & rodr SRk T

therefore said to have an iteration rate of 100 per second”

on all of its integrators.

Since the integrators are not physically separable, the inter-
connections between integrators are not made physically; i.e.,

by means of wires or plug boards. These interconnections are

S

it g v

made by electronic coding meagsmwhicﬁqinv01veﬁEiﬂgwgglA§M(3£

memory) g};ggig§. Moreover, the information concerning each

- integrator is stored in a memory after processing while the

circuits process the other integrators, and is taken from
storage only when the circuits are ready to process that
particular integrator again. The time of storage of the in-

formation for one integrator (.0l second) is called one machine

cycle.

The type of memory storage used is the magnetic drum, and the
information regarding the integrators is recorded sequentially

about the circumference of the drum.

A digital differential analyzer, then, is a group of operational
entities, called integrators, which are interconnected so as to
perform iterated cycles resulting in numerical solutions of

differential equations,

*If less than 30 integrators are required in a given problem,

the iteration rate may be increased to 200 per second.

1.0

1.0

.9
.8

o7
.6

ob

IS

o2
el

- | . d .
YJ N '::-7?&
, O 1 I
at({,d..
INEREy A EENE
). 3l N
N <-
’1/ L\b
/ " by
S SO g . F—
T N i !
: RN R P N R ‘
Viela
e SN & 4 £ e a7 Tyl 1Y gy >
—— Z ‘?.) \J ' 7

rue Z

o

L]

2

[E

. ‘;|5 \{

Exhibit 2-1

- b -

L47 ¢

PART II
METHOD OF INTEGRATION

Each of the operational entities in a digital differential

analyzer is called an integrator because of the type of
operation which it may perform. This operation is the per-
formance of quadratﬁres, in accordance with a fixed program
which results in an approximation to integration. In the
simplest case this program is one of rectangular integration,
in which the area under a curve is approximated by summing

the areas of a series of rectangles, as shown in exhibit 2-la.

Each integrator performs-a-repeated cycle of operations. In

any cycle, say the i-th, the integrator receives a primary .

incrementalﬂinpp&l%jggai, a secondary incremental input, (AY)i,

ot R Y

and emits an incremental output, (AZ);. Each of these incre-

ments is in the form of an. electronic sigpnal, but mathematically

_one of the variables, X, Y or Z respectively.

»

éAssociated with each integrator are two arithmeﬁic ?egistﬁxg.
%Qne of these, the Y register, serves to accumulate the secondary
incremental inputs (AY); from cycle to cycle. On the i-th
cycle, the value So accumulated may be given by the equation:

i .
2-1 I, =Y, + 3 (1),

J=1

where Y, is an initial value of Y. (See exhibit 2-la.) The
range of Y4 may be considered to be in the interval -1<TYj €+1.

The OAX)i increment, although an electronic signal, may be
Méqnsidered to take on one of three mathematical values: a
/positive value; a negative value; or zero. When it is not

zero, its absolute value is considered to be one on an ap-

propriate scale. Depending upon which of the values it |

assumes on the i-th cycle, it is used to signal the integrator
that the value in the second register, called the R register,
should be respectively increased or decreased by the value held

in the Y register, or remain unchanged. The resultant value

held in the R register would be expressed by

242 Ry = R + 2 Y, (BX)y,

=1

except that the value so held must be in the interval 012R1<:+i.

It is apparent that the R register will overflow; i.e., an

attempted carry will occur into the position in the register which
would have been occupied by the units digit. This occurs per-

iodically as the register attempts to attain a value greater than
one as ¥; is added to it. (See the top of exhibit 2-2,) There~-
fore, equation 2-2 must be modified.

Shown in exhibig,?-lb,iS»a~popre§gntation of the actual value

~—

held in the R register. Notice that the value held in the Y

R e S —

register, Yi of exhibit 2-1a, is succe551vely added to the value
n§n the R register at each increment, QAX)J, but when the R =
..value tries to exceed +1, the register overflows and the r esult-

ing value being held is obtained by subtracting one from the

value which would otherwise have been held.

i _ 1
Ry = Ry + Y, (AX), = (AZ). R
| : ° Afgi' ’J | ; ;;5} °d
Integratorl | Adder = (AX)y
i R
Ty= Yo+ 2 (AN |
!
Adder
| | Y * |
(AZ)i -'Ri-l + Yi(Ax)i' Ri . (AY)i
R
)
[_Adder | '
Integrator 2 I
z j%i (AZ) ' 1
)
| Adder
—{(AZ)

. Exhibit 2-2

This overflow, or attempted carry, of the R register may be
considered as the (AZ)4 output of the integrator. Since the
R register will not overflow every time a (AX)4 occurs, the
output of the integrator will sometimes be zero. Likewise,
since either (AX); or Y; may be negative, the overflow
actually may become an "attempted borrow" which is considered
as a negative overflow, and (AZ); is negative. Thus, (8Z)y
may take on three values similar to (AX)i. The secondary
incremental input (AY)y also may take on a similar three

values, but, as will be seen later, it may take on other values

as well, '

The incremental outputs of any of the various integrators in the
computer may be used as the primary and/or secondary incremental
input to any other integrator(s) including itself. Hence, in

exhibit 2-2 the output of the first integrator is used as the

i
2—3 Zi = Zo + Jztl (AZ)j,

which is represented by the step curve in exhibit 2-1lc. The

height of this curve is just the summation of the overflows of

R in exhibit 2-lb,

The modification of equation 2-2 to take into account the over-

flows of the R register takes the form of a subtraction of

the summation of all overflows.

i i
2- R, = - Z) (e
IR 4 = Ro * ;Ei Ty (Ax)y jéi (Az)
The value of (AZ)i is given by
2=5 (AZ)i = Ri-l + Yi (AX)i - Ri’

where R;y_; 1is the value held in the R register before Yy

was added to it, or subtracted from it, or neither.

The incremental outputs of a number of integrators may be accum-
ulated and simultaneously used as the sedondary inputs to any
integrator. It is apparent, then, that (4Y); may have any

value -n< (AY);=+n, where n is the number of integrators } rz

whose outputs are used as incremental inputs.

Although the incremental values (bX)4y and (Az)i were said to
take on the values plus one, minus one, or zero and (AY)i was A
assumed to take on values between =-n and +n, these concepts
are only assumed when talking in terms of machiné language.
Mathematically they may be considered as very sﬁall changes, h,
in the respective variables, X, Z and Y, where the h's in
general are different for each variable. These incremental
changes may be made very small, in which case they approach in-
‘finiteéimals. Hence, as an expedient, the infinitesimal no-
tation dX, dY and dZ is often used. Furthermore, if dZ is
considered very small, the value of the R register, being a

fraction of dZ, is even smaller and equation 2«5 may be approx-

imated by

2-6 dz = de.

This is the equations which will be assumed to express the

mathematical operation of an individual integrator. Corres-

pondingly, equatiom 2-3 in the new notation 1is

X
2-7 Z = [de.

X0
A schematic representation for each integrator is given by a
five sided block, which is used in a schematic information
flow diagram or "road map" shbwing the interconnections be-
tween integrators. In this case exhibit 2-2 would be re-

placed by a schematic diagram similar to exhibit 2-3.

i dXk
! \—1~——+ dz
I Y //

PARS S) 4

Exhibit 2-3

The X, Y and 7 variables are normally renamed to correspond

to variables defined by the problem.

In review, the "infinitesimals™, dX, dY and dZ, are in reality

finite small increments of the three variables. Each change

- 10 -

or increment of X and Z may take on the mathematical
values +h, -h, or zero where the h's, in general, will be
different for each variable, while the dY increments may
take on values in the interval -nh< dY<+nh and are accum-
ulated in the Y register of each integrator to give the
value Y. The operation performed by the integrator then may
be expressed by equation 2-6, where the X, Y and Z variables

are renamed to correspond to variables defined by the problem.

-1l -

PART III1
OTHER OPERATIONS OF INTEGRATORS

As stated in Part I, integration is not the only type of
operation than can be performed by integrators. These other
operations have nothing to do with integration as such, but

the name "integrator" will be retained in the interests of

uniformity.

In all of these operations the integrator receives the same
two inputs, dY and dX, and has an output, dZ. The method of
operation of the integrators when performing these other oper-
ations is different from that explained in Part II and is de=-
termined by the type of desired result. None of these special
operations makes any use of the B reeister; the dZ output
is not the overflow of this register.

There are basically three types of special operations which an

integrator may perform: servo; decision; adder operation.

3.1 Servos and Decision lntegrators

The operation of an integrator to perform either servo or
decision operation is essentially the same, differing only in
a mathematical sense as determined mainly by the initial con-
ditions set into the Y register of the integrator at the
start of a problem. The value of the dZ incremental output
on any given cycle (i) is determined by the value of the dX
increment and the value held in the Y register in that cycle,

according to the following table:

- 12 -

0

(a) If 2>(Y)31, (82)4
(b) If 0> Y;>-1, (AZ)y

(¢) If 0<Yy;< 1, (AZ),
(d) If Y; = O, (az)y =

~(AX)4

(AX)3 =
0

Exhibit 3-1

The main difference between the operation of the integrator
when operating as a servo and when operating as a decision

\iitegraLovwismthewrelaxixemxalus,abnnxnuhinh the Y register

NI e ...,

Yalue ds.qperating. As the name implies, a_servo should

always have an _output which tends to reduce an error value to

N o

55‘&‘ This error value is actually the value which the inte-
grator holds in its Y register. This indicates that the Y
register value will operate around zéro,kand“ip‘reality the Y
egister val i all l. Th iti b
registe ue is usually very smal’ he COndlthﬂS (o), (c)
and (d) are the only ones used by a servo under these circum-

Ao

stances, and the dX input is always positive every iteration,

s o v i

A decision integrator, on the other hand, does not,necessarily
~have ité Y value near zero. It can use the fact that the
output increments éssentially‘rgyggse\sigghas the integrand
passes through zero (conditions b and c), or it can use the
vcondition that the output increments become zero when the ig}e-

grand exceeds one in absolute value.

The sample problem of Part VI contains a decision integrator

for.generating the absolute value of a problem variable.

3.2 Adders

An adder generates an incremental output which is the sum of

-13 -

[

very similar to a servo in that the output increment is de-

termined in the same manner as in a servo (conditions given

in exhibit 3-1). The diffe ; ~an

adder has the negative of its ownoutput fed into itself as

e R St 38
[

a dY input. This is done automatically (including the
_———“"—__’M

multiplication of the output increment by -1) when the given
integrator is coded as an adder. The dX input to an adder

is always positive.

The resulting operation of an adder is as follows: if the
value in the Y register is slightly positive on a given
iteration, the output increment (from exhibit 3-1) will be
positive. On the next jteration this positive increment

will be multiplied by -1 and used as a dY incremental input.
This resulting negative increment will be added algebraically
to the Y register value, making this value less positive.
This will continue until the value in the Y register is re-
duced to zero, at which time the output increments will become
zZero. Likewise, if the value in the Y register is negative,
the output increments will be negative and the Y regiéter

value will be increased until it is zero.

The term "adder" is readily apparent when it is considered
that other dY incremental inputs are also present on each
jteration (the series of increments of the tﬁo variables which
are being added together). These increments will tend to make

the Y register value other than zero--positive when the

- 14 -

-

increments are positive and negative when they are negative.
Hence, when one of the incoming increments is positive, the
adder will have one, and only one, positive output increment;

and when there is a negative input increment, a negative out-

put increment will result.

It can be seen, then, that whenever either of the two (or more)
dY inputs have non-zero increments, the output of the adder
is a non-zero increment and the number of incremental outputs

of the adder is the sum of the incremental inputs from all

dY sources.,

- 15 -

PART IV

SPECIAL FEATURES OF THE BENDIX D-12

In the foreroin~ parts the rmenercl overation of the computer
has been exrlained in sufficient detail to show how the
comnuter is able to solve problems: an example problem shown
tn Fart VI will serve further to clarify the method of work-
ing problems. lowever, no mention has been made of input-
outrut and other finer points about the internal operation
cf the computer. In thils part the method of communicating
witlhi the machine will be explained and certain internal

features polinted ocut.

4.1 Numbering System

It might have been assumed by the reader when lookine at
exhibit 2-1 that the decimal numbering system 1s used in
the computer. Since many computers use the binary systen,
this assumption might reasonably have been false. However,
the reader is hereby reassured that if he were to use the

comnuter he would find that the decimal nunbering syctem ig

used exclusively. The Internal operations of the computer

are accomplished using excess-three coded decimal digits.
Furthermore, although it is definitely helpful for the
operator to know the excess-three code when using the

computer, it is not necessary.

- 16 -

4.2 Output Multipliers

Although output multipliers are used to increase the ef-
ficlency of decimal scaling, and scaling is presented in
a later section, the reasons for output multipliers can

be given without explaining scaling.

To do this, assume that the known maximum ?alue which will
ever be attained in the Y register 1s 0.2; i.e., a 2 in
the left-most position of the Y register next to the
decimal point. Then as the dX incremental inputs to the
integrator cause this value to be added to the value in
the R register there results a situation similar to that
shown in exhibit 4-1 with a non-zero output every fifth

dX increment.

01d R Value -1 03 v5) 07 n9
Y value .2 .2 .2 . 2 etc,
New R value .3 5 .T .9 .1
zZero zero zZero zZero non-zero

output output output output output

Exhibit 4-1

The outputs occur whenever the value in the R register tries

to exceed one,

Now assume that the R register value cannot exceed .5, so
that when its value tries to exceed this amount an output
occurs and the resulting value will be the sum modulo .5.

This is 1llustrated in exhibit 4.2,

-17 -

0ld R value .1 .3 .0 .2 A
Y value .2 .2 .2 .2 .2
New R value .3 .0 .2 A .1
zero non-zero zero zero non-zero
output output output output output

Exhibit 4-2

Notice that in every five iterations (or non-zero 4aX
incremental 1nputs)‘there are two non-zero dZ outputs,
whereas in exhibit 4-1 there was only one. In this case

the output multiplier 1s sald to be 2, because the frequency
éf non-zero outputs 1is dpubled over that of the normal

operation where the output multiplier is said to be one.

There 1s one other possible output multiplier: five. 1In
this case the value in the R register cannot exceed .2, as
shown in exhibit 4-3. Hence, if Y = .2 is successively

added to the value in the R register, the R register value

does not change and there 1s an output every iteration.

0ld R value .1 .1
Y value .2 .2 etc.
New R value .1 .1
non-zero non-zero
output output
Exhibit 4-3

Since there is a non-zero output every iteration, the
frequency of output 1s five times the case where the output

multiplier is one.

- 18 -

The net result of the output multipliers of two and five,
then, is to increase the frequency of non-zero output over
that when an output multiplier of one is used. Because of
this there results a definite advantage in scaling (this
will be more apparent later) and a greater amount of pre-
cision may be obtained in a given problem with the same

running time.

h.3 Tefnarz Transfer

In order to point out one feature of the Bendix D-12, 1t 1is
neceéaary to explain a system of incremental transfer used

in other differential analyzers:. As was stated, the dX and
dZ increments may take on three values including zero. This

is called ternary transfer of information. Other types of

differential analyzers use what is called a binary transfer

system in which the increments may not assume the value zero.
This is done by using a method of adding Y to R such that
the R register is induced to overflow (either positively or
negatively) every cycle. Since there 1s no zero, if a
variable 1s not changing or is changing slowly, the system
of transfer must adopt a series of plus-one-minus-one
increments to shbw a zero rate. (This "plus-one-minus-one"

~

1s sometimes referred to as "one-zero™.)

It is apparent in such a case that the last diglt of each Y

register is not completely significant. Its oddness or

- 19 -

eveness is completely predetermined by whether the number
of the cycle is odd or even, and by the oddness or evenness
of the number of dY inputs coded for the particular

integrator.

It has been found that such a system induces certain errors
ether than round-off or truncation errors; hence, the ternary
transfer system has been adopted in the Bendix computer, and

no more will be said about binary transfer.

4.4 Truncation Correction

In any numerical method for solving differential equations--
especially non-linear equations--many integrations are belng
performed, each of which depends upon the outcome of other
integrations. Physically, then, it 1s impossible to have
exact up-to-date data for each integration. In any cycle it
will be possible to receive the results of certaln integra-
tions to be used in others, but not the other way around.
The starting point of the process must use old data.
The two cases can be represented by two curves shown 1in

R TRAPOLAT 21
exhibit 4-4. The first 1s the case for the starting inte-
grators which use old data, and the latter the case for other

IRFERFPOCATIR)
integrators using the results of the first integrators.

r"/ﬂ
3 Ay
A
: 4 TER Pocwrs i
|
!
] ﬂ

t t —r t —
i

Exhibit 4-4a Exhibit 4-4p

These curves are in contrast to the condition shown in
exhibit 2-1a in which the true Y was assumed to be straddled
by the Y, values. Here it 1s seen that the starting }nte-
grator uses the height of the curve at the front of the
rectangle as the value of Yi,'when, for’the best approxima-
tion, it should use the average of this value and that at
the back of the rectangle. The other case shows that the

Yi value being used 1s the height of the curve at the back
of the rectangle, where the average of this height and that
at the beginning of the strip should actually be used.

Now, since the integrator in the first case does not know
the neight of the curve at the back of the rectangle, it
must make a guess at the height of the curve in the middle.

- 21 -

The best guess 1s to use the height of the curve at the
beginning of the rectangle and add to it one-half of the
(A Y); on that cycle. This is called extrapolation and

an integrator that does this is called an extrapolative

integrator.

Sihce the integrator in the second case may obtain the height
of the curve at the beginning of the rectangle by subtracting
(O Y); from the height at the end, 1t can just as easiiy
obtain the average height of the curve in the rectangle by
subtracting one-half of the amount. An integrator which uses

this scheme 1s called an interpolative integrator.

The rectangular areas shown in exhibit 4-4 are now modified

to correspond to those shown in exhibit 2-la, in that the /

true Y value is actually straddled by the tops of the rectangles.
Another interpretation of this process is that the rectangular
areas are actually replaced by trapezoidal areas as shown in
exhibit 4-5, where the top of the trapezoid is a straight

line chord of the curve. Therefore, the term trapezoidal

integration is used to distinguish this process.

-
=

i

/i

1o

Exhibit 4.5

- 22 -

R

Equation 2-6 may be considered part of the Taylor series
where only the first order term is used and all others are
truncated. Because finite increments are used, it would
be better if the second term could be used. It can be
shown by rigorous mathematics that trapezoidal integration
results in this. For that reason, it 1s sometimes called

gsecond order integration. Also, since the correction

prevents the truncation of the second order term 1t 1s

gsometimes called truncation correction.

4.5 1Initial Condition Reset and Variable Initial Conditions

In order to prevent the necessity of having to refill the

e |

computer to start a problem over from the beginning, a separate

gister 1is provided in the arithmetic sect;on of each Ainte-

S

grator to hold the initial conditions of the integrand. At

any time, under control of the operator, these may be auto-
matically copled into the Y registers and computations re-

started.

An incremental input may be coded to the initlal condition
register (Yi register) of any integrator.in a simllar manner
to coding Inputs to the Y registers. The computer then may
be coded to automatically reset the new initial conditions

and restart computations using these new conditions.

- 23 .

4,6 1Input-Output

There are a number of means for inserting information into
and taking information out of the computer, and the cholce
of which ones are used is dependent upon the desired result.

of Sgggﬁg,wxhgggmgre two baslc types of input and output:

b

e

;fl?éﬁajthgwinformgtionﬂput in and taken out of the computer
when it is not computing; second, information input and out-

put during computations,,

T

4,6.1 Typewriter Input_ and Output

An electric typewriter is the principal means by which the
operator communicates with the computer. In preparing a
problem for solution on the computer, a coding form 1s pre-
pared which gives a set of data to be typed on the typewriter.
As this data is typed, a punched paper tape 18 prepared con-
taining this information. A paper tape reader then extracts
the information from the tape and enters it into the computer,
the computer interpreting the informatlion as a problem which
it 1s to work.

As the problem proceeds in the solution, the computer will

have been programmed to type out answers on the typew?iter.

These answers will consist of the values contained in the Y
registers of designated integrators; hence, are the values of

some of the variables of the problem.

- 24 <

Although only the selected variables of the problem will
be typed out automatically by the computer, any Y register
value may be typed out on the typewriter at any point in
the problem by means of manual control. This allows the
operator to monitor the problem when in the process of
trouble shooting the program when the problem 1s first

started.

4,6,2 Manual Fill and Monitoring

The method of £illing and ofwmqnitor;ngkdeacribed above 1s

~ngticient for filling the gqggg&sr, monitoring, and trouble
shooting and correcting the program; but frequently it is
easier and quicker to make minor changes in the program and
to view the operations of the computer by a readier means.

A small display oscilloscope is provided as an integral part
of the operator's console to examine the information channels
of the computer at any time during the operation of the
computer, and a small manual keyboard is supplied with which
the operator may enter information into the computer without

using the typewriter.

4.6.3 Memory Read-in and Read-out

If the running time of a problem is very long, and it 1s
desired to run it in two or more parts, perhaps shutting the

computer down between parts, the entire information of the

- 25 -

memory may be taken out of the computer and stored on
punched tape. (This 1s distinguished from the automatic
programming tape described above.) When the problem 1s
ready to be resumed, the inf:%aation on this tape may be ’
copied back into the memory automatically and computation%

!
continued,

4.6.4 Plotter Output

With the exception of the automatic type-out as descrilbed

in 4.5.1, all of the above sections are concerned with
getting information into the machine in preparation to work-
ing a problem, whereas input and output during computatlons

are concerned now.

A second method of output from the computer is the automatic

graph plotter. As any designated variable changes during

the running of the problem, its incremental changes can be

fed out of the computer to one of the axes of an incremental
type graph plotter. Increments of a second variable are fed
to the other axis and a plot of one variable versus another

1s obtalned.

4,6,5 Punction Input

There are two methods for inserting into the computations
information of an empirical nature such as experimental data.

If such information is in the form of a curve, first or second

- 26 -

differences in the dependent variable at equal increments
of the independent variable may be punched onto paper tape
and this entered into computation in an incremental manner.

This method is called incremental input. The same method

may be used to enter information in the form of tables but
the second method is of such a nature as to provide means
for entering the tabular values into the integrands directly.

This second method is called non-incremental linput.

= 27 -

PART V
PROGRAMMING

Although it is apparent that the subject of programming ia.
much too large to cover in a few short paragraphs, and, in-
deed, many of the facets must come by experience, those
readers most interested may be able to obtain somevbackground
through a brief discussion. With this and the sample problem
in Part VI, the reader will be able to do some sample program=-

ming and get a better feel for the subject.

There are three basic steps in preparing a problem for\solution

on the computer:

(1) Mapping;
(2) Scaling;
(3) Coding.

5.1 Mapping
In Part II reference was made to the schematic block diagram

which represents the information flow between integrators (see
exhibit 2-3). The process-of mapping is the drawing of this

information flow diagram for all of the integrators used in the

problem.

. This information flow diagram will be determined by the particu-
lar problem being solved, and the relations which express the

operation of the various integrators (equation 2«6 and exhibit

3-1).

- 28 -

5.2 Scaling

In general, scaling consists in assigning mathematical values

to each increment of all of the series of increments being

transferred from integrator to integrator. For any series of

increments the scale value is expressed as the reciprocal of

the value of any one increment. This ecale value 1s also the

e e A TR T

number of increments whlch, 1f accumulated would glve one

W e ETNT

unit of the variable concerned.

s A

As a result, associated with the dX and the dY inputs to

each integrator 1s a scale factor; and in the case of the uY

e RS

1ncrements, since they are actually be1n5wgggumglg§eq, the

scale factor gives the number of increments necessary to pro-

g e =

e e et ey 77

duce a change of one unit in the Y value. The scaling for

et SRR < e T

each indlvidual integrator consists in calculating the scale

factor for the dZ output increments.

One other scale factor must be defined--that of the value held

in the Y register of an integrator. Normally the value so

held will be considered by the machine to. be less than one in

PRI e

absolute value; i.e., the de01mal point will be before the

most significant digit. If such is the case, since the problem

value need not necessarily be less than one, the true Problem

R

value must be multiplled by a sultable quantlgy to make it less
uttipried. :

L B T g

— N R N 18 ot

than one. Also, since the problem value may be guite small,

it may be deeirable to multiply it by a valuewgreater than one,

In elther case, the quantity by Whlch the oroblem value is
At A

s ot~ o s A

e A AT et

multiplied is called the scale value of ther I _register.

B
vt i dm

s

~ x All of these scale factors, viz., the dX, dY, Y and dZ scale
factors, are practically always expressed as an integer (usually
1, 2 or 5, but not always) multiplied by an integral power of

phe output multipliers.

The relationships between the four basic scale factors and the
output multiplier associated with each integrator may be ex-

pressed by established formulas. Since the dX and dY scale

e —

factors will be given for a particular integrator, excepting

the case where they might subsequently be changed, and the Y

——

scale factor and the output multiplier will, to a large extent,

— e

be determined by the maximum range of the Y value, the dZ

o s e s it i 7 S BN 58 03 e,

scale factor is the only unknown for the particular integrator.

Therefore, the following formula will express this scale factor

as a function of the known quantities:

where: Sy, 18 the scale factor of the dZ output,
Sqx 1is the scale factor of the dX input,
M is the output multiplier,

Sy is the scale factor of the Y value.

Furthermore, if

I4y is the integral part of the dY scale factor,
Iy is the integral part of the Y scale factor,
N s_the number of significant dec1mal digits

of the fractional part of the Y register

which will be used,

EdY is the exponent of ten in the dY scale factor,

and Ey 1is the exponent of ten in the Y scale factor,
then

5-2 IY = IdY’ and /h,,\,/' 7f [) ?

5.3 Coding

In section 4.6.1 it was mentioned that filling of the machine;
was accomplished automatically when information from a punchéa
paper t ape is copied into the computer. This information was
put on the tape when the coding form was typed on the typewriter
keyboard. Coding consists in preparing this form for typing,
and will probably be done simultaneously with the typing, al-
though the information for the coding will be written on the

programming sheet.

No attempt will be made here to explain all of the meaning of

this form, but a sample form 1s shown in exh;bit 5-2.

f,l;{*rcu»(ﬂ?ﬂ I;‘*] Cﬁ;/ﬁ, /N<7 I /‘OIJV#\.: zn/ o ¢
11 00000 31212 90”**Y16 17 18
12 0000000 21212 90 11
13 00000 31212 90 19 20 21
1L 0005000 21212 90 13
15 0005000 21112 14 13
16 0217995 111-1 12

17 00161435 11111 15
18 03162831 11111 14
19 06434593 111-1 14
20 01375565 111-1 15
21 -0480014 11111 12

etc.

Exhibit 5-2

- 31 -

The first column is the number of the particular integrator

for which the information on the same line is intended. The
next group of numbers gives the initial condition to be filled
into the Y register, while the third group is the operational
code group which gives operation instructions to the integrator.
The following successive columns give the integrator numbers
whose outputs are used as inputs to the particular integrator.
The first column is the dX input, the second is the variable
jnitial condition input, and the last few (maximum of eight) are
the dY inputs. 1In thelform shown no inputs are coded for the

variable initial condition; hence, the column reserved for cod-

ing such inputs is blank.

A better understanding of programming will be obtained when

Part VI is read.

.32 -

PART VI
SAMPLE PRUBLEM

In order to show more clearly the method which would be used
on the computer in preparing a problem for solution, a sample
problem is programmed completely, the program is explained in

some detail, and the typed results given.

A typical well-behaved ordinary differential equation which
gives the mathematical relation for a system of damped oscil-

lations with non-linear damping is given by:

6-1 u" + 0.5 u' . u'l + 0.4 u' + u =0,

where u' and u" are the first and second derivatives respec-

tively of u in respect to an independent variable, X.

If equation 6-1 is transformed so that u" is expressed in

terms of the rest of the equation, and the differential of the

equation is taken, there results:
6-2 du” = =0.5 d(u'. |u'|) -0.4 du' - du.

The "road-map" for the interconnections of the integrators is

shown iﬁ»figure 6-1. The scaling is also shown.

If it is assumed that in integrator 11 the Y register holds
a,value corresponding to u", and this is integrated with
respect to dx, then du' = u"dx is the result, and the incre-
mental outputs are the increments of u'. These are then used
as the dX and dY inputs to integrator 12, as the dX input

to 13, and the dY inputs to integrators lk and 15. As the

- 33 -

. T :\ ’k , ’
53107 = y

I 2 - e Ty du'(11
000 T3z ~f2] - 0.4 TR o o
@[Bkl 8 pev R
£ 107 (-un) aun(13) (14)(15)(16) ; 04

L20° qur(11)
0 hhhf 3

.) 11 0.21000 |3l1l2l101 -
O, el @ -
107+ u? , ,

_ -1 3
2 €:103 du?(11) 10" u -—du(15)
o 10° aur(11) @5110%,
0.00000 1]2]2[5) B

0.002 1111

'. “ o : 103 iru" cdu? ‘ o A
(O R e (@ -

. — lQEé dlu'l(IZ) 0,002 ~

Oy

3

, 10> gjur| (12)
0.00000 Lliiifxls ,

0.1 1{1(11]2
103 é U'.r d"\l" K ;‘ } dx
1 .

10 u! 10-3 duﬁ(ll) 10?; Y A A
‘SolQde -
@ 0.00000 [2f1lifh]z2 3 0.000000 |3{1]2f1i1
-1 G an -2
" 10 u' g:; 3 du'(ll) 10 “x 3 dx(01)

Exhibit 6-1

result, the Y registers of 12, 14 and 15 will contain u'.

Now, integrator 12 is a decision integrator, and one use of a

decision integrator is hereby presented. Since the absolute

value of u' is required, the differentials of this variable

are produced by integrator 12. If the Y register of 12 is

positive (u' positive), then the incremental changes of u!'

will be passed through unchanged and will become the dZ out-

put increments of 12. Since, when u' is positive, the differ-

entials of u' are identical'to the differentials of \uﬂ,

the output of 12 is what is desired. Likewise, when u' is

negative the negative of the differentials of u' occur as

outputs of 12. Since, when u' 1s negative, the derivative

of
of

u' is the negative of the derivative of \uﬂ, the outputs

12 are correct in this case also. Thus, the outputs of 12

are the differentials of the absolute value of u'.

Integrators 13 and 14 work in conjunction with one another.

Since \u'l and u' must be multiplied together, the differ-

ential of this vroduct must be generated by 13 and l4. The

differential of the product of two variables, u and v, is given

by

the formula d(uv) = u dv + v du. The two terms on the right

of this formula require one integrator each, and in the case

in

In
is
17

question the two integrators are 13 and 1l4.

integrator 15 the integration of u' with respect to dx
accomplished to produce du which is accumulated in integrator

in order to be typed out,

- 35 -

Iﬂtegrator 16 is used to multiply du' by O.4 to produce the
next to the last term of equation 6-2. The output of this
integrator plus the outputs of integrators 13, 14 and 15, which
produce the other two terms of equation 6-2, are used in dY
inputs to integrator 11, Together all of these inputs form

-du" from equation 6-2.

appears on the surfigg that ‘the multiplication of dLu'glu 1

by 0.5 has not been done, but, as will be seen later, this is
‘automatlcally accomplished in scaling. Along the same line,
the signs might be mentioned. Since all of the signs on the
right of equation 6-2 are negative and the ihtegrators produce
the positive of these terms, the input increments to 11 will
not be du" but -du” and -u" will be held in the register.

Unless the output of 11 was reversed -du' would result; hence,

this output has a sign reversal, as will be seen later.

Before the other integrators are explained, consider the

scaling of the integrators mentioned thus far. The scale value
of the independent variable (machine time, an artificial variable
having a positive increment each iteration) is chosen fairly
arbitrarily as 5°103, as seen by the number near the dX input
of integrator 1l. It is known (or assumed) that u" will not
exceed five in absolute value at any point during the running

of the problem. This results in a Y scale factor in 11 to be
10~1 so that when u" is five, the Y register of this inte-

grator will contain 0.5. From the earlier discussion about

- 36 _

output multipliers, it can be seen that a multiplier of

two can be used 1f the Y value will not exceed 0.5. Using
such a multiplier, the dX scale factor, Y register scale
factor, and the output multiplier are multiplied together
to produce 103 as the dZ output scale factor. The other
scaling relationships are also satisfied by this scaling;
namely, the integral part of the Y scale factor equals the
integral part of the dY scale factor, and the number of
decimal digits in the Y register will be 3 - (-1), the dif-
ference between the exponential parts of the dY and the Y

scale factors.
Identical scaling 1s evidenced in integrator 15.x»x

The output scale factor of decision integrator is almo§t

always identical to phe scale factor of the dX input; hence,

in integrator 12 the scale of dZ is the same as the scale

A R TSRO

of dx, or 10~.

4
The scaling of 12 and 13 is not so readily apparent. If

the normal procedure 1s followed in these integrators, the

2, and indeed it is for what

dZ scale factor should be 5.10
would normally be the expected output. 'But as will be seen,
a one-half is multiplied by the expected differential output,
80 the multiplication must have been done through scaling.

If there are 500 increments per unit of u'. | u'{ , as repre-

-37-

!

sented by the expected scale factor of 13 and 14, then
there are 1000 or 105 increments of 1/2 u'. |u'| . This
results in the 103 scale factor on the outputs of 13 and
14,

The five characters in the upper right hand corner of each
integrator block are the five coding digits described under
section 5-3. Two of them are rather apparent and have been
discussed for each integrator: the right one being the output
multiplier of the integrator, and the second from the right
being the sign reversal code. If this character 1s negative
there is a sign reversal on the output (integrator 11), other-

wise it 1is a one.

In the third of the five positions is put a 2 in any integrator

which is to be typed out during computations, and a one other-
wise. Hence, in this problem the integrands of 11, 13, 17,
and 02 will be typed out.

The second digit position is concerned with selecting inte-
- grators whose Y values are to be reset periodically during
computations. Since this sample problem does not use variable

initial condition, all of the characters in this position are

one's,

The firstlbf the digits is the mode or type of operation
performed by the integrator. The character put in this

- 38-

position is determined by the following chart.

1 - used when the mode is relatively immaterial
(integrators 16 and 17)
2 - interpolative integratorﬁ% $2*?¥7
3 - extrapolative integrator
4 - integrator doing multiplication as 13 and 14
5 - adder
9 - servo - decislon integrator
The method used by the operator to select the extrapolative

B N e

or interpolative mode is the following. If the dY lnputs

to an integrator come from higher numbered integrators, the

integrator : 1s an extrapolator; if they come from integrators

PO e s

polator.

e e

The purpose of integrators 18, 01 and 02 may now be discussed.
It is desiréble in this problem to type out the variables al-
ready mentioned at equal intervals of the independent
variable, x. Integrator 17 will determine the interval of
typeout. If an output multiplier of 5 1s put in any inte-
_§£E§gg (the last character of the operational code of inte-

" grator 18), whenever that integrator has a non-zero output

e i s

all of the designated variables will be typed out. In inte-

e e st i - e
v i o . NP,

i o

gratorﬂ}ngggngooa is added to the R register each iteration,
1t will take 500 iterations for 1t to have a non-zero output.

Since 5000 increments of dx are equivalent to a change of

-39-

- S PR

one unit in x, the typeout will occur. at intervals of 0.1

of x. Incidentally, if the typeout was to occur at intervals

———————————

of any other variable, the dX of integrator 18 could be made

the increments of the desired variable.

It is desirable to accumulate the independent varlable, x, in

S e

an integrator in order that it may be typed out also. If, how-

e#er, dx is used as the dY input to an integrator directly,
since its scale factor is 5-103, the value held in the Y regis-

ter will not be x but five times x. Hence, integrator 0l is

e e

used to change the scale factor of dx, and its output is used

as the dY 1nput to 02.

P [P —
AR

The explanation of the program is complete except, possibly,
the selection of integrator numbers. In general, the only cri-
terion was to select the numbers in a logical order, proceeding
from higher derivatives to lower ones. However, since printing
will occur in numerical order, to get the desired format on the
printed output page, the numbers of 01 and 02 were chosen so

that x would occur in the first column of the printed page.

In the upper left-hand corner of eacn block is the 1nit1al con-

P e g i

ditions of each integrand. The first digit of this number is

the units digit and is zero in all of the integrators of this

problem., Next come the gggg;ficant digits the number of which
is determined by the exponential part of the dY and _Y scale

factors. The last digit is a round-off digit. This digit is

never changed during the problem, but must be put in initially.

In all of the integrators in this problem this digit is zero.
However, since there is no input to a constant multiplier this
digit is the same as any other digit, hence no special differ-

ence is made in 16, 18, etc.
The coding for this problem is shown in exhibit 6-2,

R 3 .
"1 *021000 ‘ 312-2‘90 ('\/ 13 lb, 15 16/)1
12,Z§§OOOOOO 9111y 11 11

000000{t<; 51215 11 .- 12 .

14 000000 41115 12 11
15 000000 21112 90 11
16 O4 11111 11
17 021000 11211 15
18 0002 11116 90
01 01 11112 90
02 000000 11211 0l
Exhibit 6-2

Since the coding sheet is practically a recopy of the numbers
written on the "road-map", little explanation is necessary.

The first column, of course gives the integrator number. A

space is always left after this number, and a second space is
left if the initial condition of the integrand is positive,

which it is in all integrators of this problem; if any of them
were negative, a minus sign would have been put in this position.
The initial condition of the integrand is next copied from the
programming sheet, giving the units digit, the significant digits,
and the round-off digit. Since there are a total of nine digits
that could be filled into the register, one space is left for
each unused digit position. Thus in integrator 1l three more

spaces are left. One extra space is left to separate the

- 41 -

integrand from thé operational code. The five digit oper-
ational code is then typed verbatum from the programming

sheet, and one more space left. The dX source is then typed,
includihg the digits 90 if the machine independent variable is
the source of the dX input. One more space is left and the
source of the variable initial condition input is given(there
are none for this problem): After that the sources of the dY

inputs are given, a space separating each additional input.

The last character typed is a period (below the last integrator
number) which signifies the end of the coding. The tape, when

being read by the computer will automatically stop at this point.

%103 -u"+103 u'+103 u-103

00000 02100 00000 02100
00100 01987 -00205 02090
00200 01824 =00396 02060
00300 01623 -00568 02011
00400 01400 -00719 01947
00500 01170 -00848 01868
00600 00943 -00953 01778
00700 00726 -01037 01678
00800 00527 -01099 01571
00900 00349 -01143 01459
01000 00191 -01170 01343
01100 00055 -01182 01225

s ARGt s eGP PGB GRED P W Wb P D E» WS - s w» o -
AP RGP G UR AL D D b ER GS WO O OB WP & - en om wo -

02000 -00519 -00903 00250
Exhibit 6-3

In exhibit 6-3 is shown the table of values which was actually
typed out by the computer. Notice that the variables were typed

- 42 -

out by numerical order by integrator. The method of labeling
the columns is purely arbitrary, but in this case the decimal
paint of all of the numbers was considered at the right, i.e.,
all of the numbers are whole numbers. Therefore, to obtain the
actual problem values, one must divide the values by the dY
scale factor. The columns are then labeled as the pertinent

variable times the dY scale factor.

PART VII
FUNCTION GENERATORS

In this part is presented some sample integrator hook-ups
which will result in the generation of certain often used
functions. No explanation is included but the variables are
expressed quite explicitly and no difficulty should be en=-
countered in understanding the hook-ups. The mode and sign

digits of the operational code are presented, also.

exponentlal generator dx

| YRV
01> — Y seXdx =deX
_/ x L(
e &—— deX(01)
sine-cosine dx
i | | N
N AR i

Q%{) l e - CO0S X dx=d sin x

! cos X _ . .—..—-d cos x(03)

T ?._‘%_.*T‘-.,R,*_;-,N._._m_-dx
2| -
(6%) T -+=sin x dx=d cos x
- sin x - -~d sin x(02)
, natural log andr{gq}procal dx
. . ; ! !
—~ 30 N -
N e e dX
I | --— =d ln X
SeZl : s

-(05)

R S - —dx
oY 3 J’> =0

’05 | l S “-, dx d 1
! X x
) - e d—-(OS)
saw_tooth generator d u
[SomrOoR —dt
0.0 9] 1 l1]af
{ | —= -+ sign u dt-dv
{06 servo
| u e du(07)

X \ P e
__~m_,~-w.,..b dt | \\\///
@ | e

servo - 8ign v dtami
e O dv(06

Exhibit 7-1
S ¥ N

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44

