THE z;eﬂdl;l/CORPORATION . COMPUTER DIVISION

5630 Arbor Vitae Street, Los Angeles 45, California

PROGRAMMING FOR THE G-15

100011001 11011000111000011010
+ 001000110101 11I000I011I001I0 X
1

10110000010010111000100000000 f(x)

FOREWORD

This manual is designed to teach the reader to program the G-15 com-
puter in machine language. It was written in essentially two sec-
tions: the first, from the standpoint of an available assembly rou-
tine, discusses coding in a simplified form and operations on deci-
mal numbers only; the second, from the standpoint of the machine it-
self, discusses coding and numbers in binary form.

It is assumed that the reader has previously read the introduction to
the G-15, entitled '"Bits of Meaning,'" and therefore is familiar with
the decimal, binary and sexadecimal number systems.

Many of the topics covered in this manual are of an advanced nature.
there are other complete programming systems available from Bendix
which are not discussed in this manual. These systems are quickly
learned and are easy to use.

Copyright 1960
Bendix Computer Division
The Bendix Corporation

MINOR REVISION
(July 1961)

This edition, APR-01601-1, July 1961, supersedes the
January 1960 edition. The changes are:

Page
14
17
45
46

52
57
97
130
140
154
158

First paragraph

The s key

Extract command, L T N C 31 D, first line
Other Extract command, L T N C 30 D,
middle of page

AR format

Extract commands

First paragraph

New illustration

Typewriter Output, AR format
Location 88, c¢ = (23.00)

Locations 11 through 50

TABLE OF CONTENTS

General Information 1
Problem Analysis 3
Method of Solution 3
Drum Memory and Addresses 5
Command s 13
Arithmetic Operations 20
Subroutines 27
Decimal Scaling 32
Multiply 35
Divide 39
Logical Operations 42
Shift 42
Extract 44
Repetitive Processing of Data - Loops 47
Input/butput System 51
Commands in Binary Form 60
Immediate vs. Deferred Commands 68
Sequencing of Commands 69
Command Lines 69
Special Commands 70
Multiplication and the Two-Word Registers 70
Division and the Two-Word Registers 76
Machine Form of a Number and Scaling 89
The Need to Automatically Check Computations 104
Test Commands 105
Test for Overflow 106
Test for Sign of AR (neg.) 108
Test for '"Ready" 108
Test for Punch Switch On 109
Test for Non-0 109
To Subtract a Magnitude 110
Subroutines 113
Inputs/butputs 127
Normal Inputs 128

Typewriter Inputs 128

TABLE OF CONTENTS (Cont'd.)

Enable Actions

Punched Tape Output and Output Format
Typewriter Output

Debugging

Break-~Point

Single-Cycle

Input/butput Commands

Blank Leader

Loader Program

Program Preparation Routine (PPR)
Precession, As Used by PPR

Other PPR Operations Available

Decimal Number Inputs and Scaling

Extract, And Its Use in Number Conversion

Other Programming Techniques
Indexing

Floating-Point Operation
Miscellaneous

Index «

133
134
140
141
141
142
142
145
147
150
163
165
167
177
186
191
201
203
209

PROGRAMMING THE G-15 IN MACHINE LANGUAGE

In the Introduction to the G-15, a separate booklet, we briefly traced
the development of a growing need for computers to solve two types of
problems:

1. problems whose solutions are essentially simple in nature,
but which must be solved over and over again, each time for
a different set of values; and

2. problems whose solutions are so complicated that men cannot
spare the time and effort to solve them by the pencil-and-
paper method.

In the first case, a progrm; can be written once to generate the solu-
tion, and then it can be operated again and again in the computer, each
time with a different set of inputs, and each time yielding a new out-
put. In this way literally hundreds or thousands of individual solu-
tions to the same problem can be "cranked out" by the computer in the
time required for a man with pencil and paper to generate a single solu-
tion. The cost of the computer is justified because it is less than the
cost of the man-hours needed to do the same thing without the computer.
In the second case, the programmer can decide what operations need to

be performed, write a program for the computer, directing it to perform
them in the proper sequence, and operate the program in the computer,
feeding it the necessary original inputs. The speed at which the com-
puter can perform these operations makes it possible to generate a solu-
tion in a reasonable period of time, whereas, with pencil and paper, so
much time would be consumed in performing individual operations that the
end solution would be years away. Just making a solution possible soon
enough to be of some value justifies the computer's cost.

We saw that there are essentially two types of computers: analog and
digital. The fact that precision is easier come by in a digital com-
puter accounts for the increasing demand for them in certain applica-
tions where accuracy is of primary importance. The G-15 fills the com-
mon need for a medium-priced digital computer.

The G-15, like all other digital computers, is composed of five major
sections:

1. input,

2. memory,

3. control,

4, arithmetic, and

5. output.

Numbers are stored in memory in binary form, and the computer works
in binary. Each word of memory can contain, in its 29 bits, either

a data number or an instruction in number form, referred to as a
command. Whether a number is treated as data or as a command depends
on the time during which it is inspected. There are three categories
of machine-time:

1. read command time (RC),
2. execute time (EX), and

3. wait time (WT).

Because each command contains the address of the operand, there may
be wait time before the operand is available. Similarly, because
each command contains the address of the next command to be read

and obeyed, there may be wait time before that command is available.
Wait time may thus be further subdivided into two categories:

1. wait to execute (WTE), which will follow the reading of a
command, and

2. walt to read (WTR), which will follow the execution of the
previous command.

It is the programmer's duty, among other things, to minimize this wait
time.

Commands contain the following basic parts:
1. a code for the desired operation or transfer,

2. address of operand,

3. address to which operand is to be transferred, and
4. address of the next command in the logical sequence of the
program,

The reason an address is given, to which the operand is to be trans-
ferred, is that numbers may be moved about in memory under control of
the program, without any arithmetic operations being performed on them.
In many digital computers, this cannot be done directly; every number
must go to the accumulator or from the accumulator to memory.

Words within the G-15 contain 29 bits. A data number is contained with-
in one 29-bit word, having 28 bits of magnitude and a sign-bit.

We pointed out that a knowledge of the machine's operations on numbers
as they appear to it will be important to programmers. Therefore, the
binary number system was discussed, as was binary arithmetic. Methods
for converting binary numbers to their decimal equivalents, and vice

versa, were pointed out. The possibility of overflow resulting from
an addition in the computer was brought up. This is the condition

that arises when an erroneous value results from an attempt to generate
a value too great for the computer to hold. It was also mentioned that
the computer must complement negative numbers prior to adding them to
other numbers, and that, in such a case, the result must be recomple-
mented, if negative, in order to restore it to the normal form of a
signed magnitude. In the addition of negative numbers, the end-around-
carry feature was described. It was pointed out that subtraction is
merely the addition of a number after changing its sign, and that the
computer subtracts by doing exactly this. i

The need for a "short-cut number system was brought up, since bit-
chasing is tedious when each number has 29 bits. The system adopted
was the hex number system, because of the ease in converting back and
forth between it and the birary system.

We then discussed briefly the duties of a programmer.
PROBLEM ANALYSIS

In order to use the computer to solve any problem, the programmer
must devise a general, logical method of arriving at the solution.
The first step in this is analysis of the problem itself. What is
called for? Take, for example, the problem of finding the roots of
a quadratic equation,

ax2 + bx + ¢ = 0.

Two values of x are called for, either of which, when substituted for

x, will satisfy the equation. This is a very simple problem; usually
the problem presented to a programmer will not be so clear-cut. He
might be asked, for example, to choose the best route for a road through
a mountain range, both from the standpoint of construction and from the
standpoint of usage. In this case, defining exactly what it is that is
called for is not so simple a task.

He will then have to find out as much as he can about the inputs for

the problem: the number of them, the range in values, from great to
small, the degree of accuracy that will be available. From this informa-
tion he will have to deduce the best degree of accuracy to maintain
throughout the solution of the problem. If there are too many inputs

to be stored all at one time in memory, he will have to write his pro-
gram to work in sections, calling for only a portion of the inputs at

any one time. In the example of the quadratic equation, only three in-
puts are necessary: a, b, and c. Storage space will not be a problem

in this case.

METHOD OF SOLUTION
When the programmer has adequately defined the problem and the data

available, he must choose a method of solution. Usually there will
be as many of these as there are programmers. Whether or not one

-4 -

method is better than another depends on several factors. Is the time
consumed in generating solutions an important factor? If they are to
be used to control aircraft, it is. If they are to be used to file
income-tax returns, it probably isn't. Time will probably be of little
importance in the generation of solutions for the quadratic equation.

If the program is going to be a long one, some choices of approach to
the problem might significantly reduce the length of the program itself,
saving the programmer work. The method of solution for the roots of a
quadratic equation is pretty well standardized.

-b t /bZ-4ac
2a

FLOW DIAGRAM

When a method of soluticn has been determined, it must be outlined,
one major step at a time, since this is the manner in which the com-
puter operates. Each arithmetic process should be shown.

An outline of the logical pattern, or "flow", of the method to be
used is called a "flow diagram". A flow diagram for the solution
of the roots for the quadratic equation might be:

Multiply a by 2 to get 2a

\..
Multiply 2a by 2 to get &4a

v
Multiply 4a by c to get 4ac

N

Multiply b by b to get b2

W
Subtract 4ac from b2 to get b2-4ac

|

2
Get the square root of b -4ac

L

Add VbZ-4ac to -b to get -b + vbZ-tac

l

Divide -b + vVb2-kac by 2a to get one answer

!

Subtract vbZ-4ac from -b to get -b - VbZ-4ac

|

Divide -b - VbZ-hac by 2a to get the other answer

l

Stop

Remember, the above is merely a break-down, step by step, of the
method of solution of the problem. Not shown in the method of so-
lution, but nevertheless essential to the program itself, will be
a provision for the input of the data (in this case, a, b, and c),
and the output of the answers. You have noticed that this problem
calls for additions, subtractions, multiplications, divisions, and
taking the square root of a number.

Before we go any further into the development of the program we
must explore the operation of the computer, with an eye toward
making up the proper commands to achieve a desired result.

DRUM MEMORY AND ADDRESSES

It has been pointed out that each word in the memory of the G-15 is

29 bits in length. Now picture 108 words laid out in a long line,
end-to-end, (29 x 108 =) 3132 bits in length. Find a cylinder (any
old cylinder will do), with a circumference somewhat greater than the
length of this long line, and wrap the line around it. Do this twenty
times, so that the cylinder has twenty long lines around it. Make
their leading and trailing edges line up. Leave some unused space for
more long lines (for various special purposes).

«— Trailing edge

<— leading edge

You will now have something similar to that shown above. Notice the
unused gap running the length of the cylinder on its circumference be-
tween the leading and trailing edges of the long lines (don't do any-
thing with it yet, just notice it). Mount the cylinder on an axle,
attach this to a motor, and supply some power. The cylinder will re-

volve. Mount a device length-wise over the cylinder barely raised
away from its surface, and use this device to look at the bits in the
long lines as they pass beneath it., Mount a similar device to write
bits into the long lines.

A% L% o o e o & 3 4 o 8 8 3

/4

S S 4 ¥ J—3 3 4 ¢ L3 1

Instead of using a paper cylinder and writing with a pencil, use a
metal cylinder coated with a magnetic coating, and write with elec-
trical pulses, magnetizing individual spots beneath the "write-heads"
(to represent 1) and leaving other spots unmagnetized (to indicate 0).
Read the magnetized spots with "read-heads", and generate the corres-
ponding electrical pulses. Attach some complicated circuitry, in-
cluding an input and an output system, put an attractive case around
the whole works, and you have the Bendix G-15 digital computer.

We call the cylinder a "drum", and we speak of "drum memory'. In the
long lines of memory, there are (20 x 108 =) 2160 words. Each bit of
each of these words is available at the read-heads once per drum rev-
olution; at each bit-time, 20 bits are available, one out of each long
line. The reason we use "“I'" numbers when numbering bits in a word, as
shown in the drawing below, is that the numbering is in the order in
which the bits will be inspected (Tl first, then T2 through T29, T
standing for time). Thus, the sign of a word will be inspected before
any of the magnitude bits. Similarly, each bit in each long line is
available to be written into once per drum revolution; at each bit-time
20 bits are available, one out of each long line. The sign (T1l) will
be written first, then the magnitude bits in the order in which they
are numbered (T2 through T29).

~ -~
o
-
+

<
o -

—

The speed at which the drum revolves is 1800 rpm, or 30 rps. If the
drum revolves once per 1/30th of a second, and, if there are 108 words
per long line, the time required for the reading or writing of one
complete word should be:

A S |

E—S_ 30 = m sec. = .00031 sec.
Within the next few pages, you will see that actually a complete word
can be read or written in slightly less time than this.

In computer operation, addresses of words in memory are of the utmost
importance. Now that the 20 long lines of memory have been described,
you can see that the location of a specific word is composed of two
parts:

Part I: a designation of the line in which the word is located,
and

Part II: a designation of the location of the word within that
line.

The 20 long lines are numbered 00 through 19, and the words in each
one, starting at the leading edge, are numbered 00 through 99, u0
(100) through u7 (107). (The substitution of the hex digit u for
the decimal digits 10 is for the purpose of holding the word-number
to two digits.) The addresses of all words in long lines are:

1ine : word
00 : 00
00 : w7
0L : 00
01l : u7
19 l' 00
19 4 u’/

Before looking at addresses, as they appear in commands in the com-
puter, we must fill out the rest of the picture of memory, since

every location in "working" memory (that part of memory available

to programmers, as opposed to the remaining part, which is essentially
of engineering importance only) is addressable in the same manner as
shown above.

The drawing to the left shows a cross-section of the drum, as already
described. It is now time to add to the previous description. The
drawing to the right shows an erase-head immediately following the

\r‘(\\e / \N "\\0
J
\ '?eod \ '?@ OQ/

read-head; this is true for each long line in memory. The read-head
feeds the write-head with electrical pulses mirroring the contents of
the bit-positions as they pass under the read-head. Each bit in each
line, as it is read, is moved ahead, along the circumference of the
drum. Of course the trailing edge of each long line is moving along
at the same speed as the leading edge, so each bit so written will be
placed in a vacated bit-position on the drum. The 'clear", or erased,
state of the drum is O's, so only l's are written, when called for.

The result is that 1's appear where they should, and all other bits

are equal to 0. This is appropriately called a '"recirculating' memory.
Note that any specific bit in any specific word will not occupy the
same physical position on the drum during each revolution. Because it
is stepped ahead along the circumference, it actually will be available
slightly more than once per drum revolution. An entire long line is
inspected and recirculated in slightly less than one drum revolution.
The length of time necessary for the complete inspection and recircu-
lation of a long line is referred to as a "drum cycle".

The spacing between the read- and the write-heads is such that there
are approximately 2070 drum cycles per minute, or 34.5 per second.

Each drum cycle requires .029 seconds. Each word is read or written
in .00027 seconds. We refer to 1 th's of a second as "milliseconds".
Therefore, 1000

1 word-time = .27 milliseconds (ms.),
1 drum-cycle = 29 milliseconds (ms.).

It seems there is an unused strip along the drum, between the long line
erase- and write-heads. If a second erase-head is placed before the
long line write-head, it will merely duplicate the effect of the other
erase-head. But now, anything can go on between the two of them, and
there will be no injurious carry-over into the long line; in it, O0's
and 1's will be where they should be.

This space
isolated

and avail-
able

If, as shown in the drawing below, read- and write-heads are placed

in the isolated gap on the circumference of the drum, a recirculating
short line will be created. The shortness of the short line will be
determined by the proximity of one head to the other. As far as stor-
age capacity of the computer's memory is concerned, there is no ad-
vantage to this system; it would be more economical to increase the
length of each long line. But remember that it was pointed out that
any given bit, and therefore, any word, in a long line is available
only once per drum cycle, or once per 108 word-times. If a short line
contains four words, each bit, and therefore each word, will be avail-
able once per four word-times. Or, to put it another way, each word
in a 4-word short line is available (108 & 4 =) 27 times per drum cycle.

- 10 -

A consideration of timing within the computer will demonstrate the
value of 4-word short lines. It has been stated previously that every
word, whether it be data or a command, has a unique address. It can

be seen that the word '"address'" as used here denotes more than mere
location in space; it also denotes a location in time. At a given word-
time (specified in its address), a given word will be available at the
read-head. Suppose this word is a command, and the computer is in RC
(read command) time. This command will be read and interpreted at the
word-time specified in its address. It, in turn, calls for a data word,
located at another address, and, therefore, at another word-time. If
no care had been used originally in picking addresses for commands and
data, this command would call for a data word which would be, on the
average, l/é drum cycle away. The time a computer consumes in search-
ing for a specified word is called '"access-time'. It is the programmer's
job, among other things, to minimize this dead time by wisely selecting
the addresses for commands and data when he is writing a program for
the G-15. A well-written program, from this standpoint, and all other
things being equal, will operate in the computer much more rapidly than
will a poorly written one. The average access-time for any word in a
4-word short line is only two word-times. Availability of these short
lines makes the programmer's job easier and provides for faster program
operation than would otherwise be possible. The gaps between the lead-
ing and trailing edges of four of the long lines are used for short
lines of this nature. These short lines are numbered 20 through 23,

and the complete addresses of the words in them are:

20.00

20.03
21.00

21.03
22.00

22¥03

23.00

\
23.03

Three more of the gaps are used for 2-word short lines, referred to

as "2-word registers'. These are also available for storage, although
they have special circuitry associated with them which enables them

to be used for certain operations of arithmetic, as well. These are
numbered 24 through 26, and the complete addresses of the words they
contain are:

24,00
24.01
25.00
25.01
26.00
26.01

Line 24 is called the "MQ'" register; the two words in it are called
"MQo" and 'MQ1". It derives this name from the fact that it holds
the Multiplier prior to a multiplication and Quotient following a
division.

Line 25 is called the "ID" register; the two words in it are called
"IDg" and "ID1". It derives this name from the fact that it holds
the multiplIcand prior to a multiplication and the Denominator prior
to a division.

Line 26 is called the '"PN" register; the two words in it are called
“PNQ" and "PNji". It derives this name from the fact that it holds
the Product following a multiplication and the Numerator prior to a
division.

It can be seen, then, that multiplication and division, when called for
by the proper commands, will involve all three of the two-word registers.

Another gap is occupied by a l-word short line, referred to as "AR".
The number of this line may be either 28 or 29. This line has circui-
try associated with it making it a l-word accumulator; if it is re-
ferred to as line 28, this circuitry is not employed, and it behaves
the same as any other word in memory (in such a capacity it is very
convenient, of course, because it is available at every word-time);

if it is referred to as line 29, the special circuitry is employed,
and it will combine binery numbers, as discussed in the Introduction
to the G-15.

For the programmer whose application of the computer requires more
accuracy than can be carried in 29 bits, "double-precision' arith-
metic is possible within the G-15. It is no harder to program using
it than it is to program ordinary single-precision arithmetic. 1In
double-precision operations, two computer words are used to express
each data number. These two words must be contiguous in the same
line, the first in an even location, the second in the following odd
location. It has been pointed out (page 12 of the Introduction) that,
in single-precision operation, each word starts with sign-time. This
is true in double-precision, as well, except that sign-time occurs
only during even-numbered word-times. The remaining 28 bits in the
even-numbered word contain the least significant information in the
number, and all 29 bits of the odd-numbered word are used to complete
the magnitude. So a double-precision number actually has slightly
more than double the precision of a single word, since it has 57 bits
of magnitude, as opposed to 28. All operations which can be specified
by commands to affect single words can be very easily modified to
similarly affect double-precision numbers.

For the multiply and divide operations, the two-word registers which
are used for single-precision arithmetic will also suffice for double-
precision arithmetic. But in the cases of addition and subtraction,
AR, the one-word line used for single-precision arithmetic, is obvi-
ously not capable of performing double-precision operations. PN

(line 26) is used for this purpose: it is the double-precision ac-
cumulator, in addition to its other functions. If it is being used
for this purpose, it is referred to as line 30.

Line nudmbers 27 and 31 are also legal, but are actually special codes,
not referring to existing lines in the G-15 memory. They will be dis-
cussed later.

The remaining available gaps between the leading and trailing edges
of the long lines along the length of the drum are used for engineer-
ing purposes, and are not available to the programmer.

The remaining available space on the circumference of the drum for
additional long lines is used for timing and control information,
mostly from an engineering standpoint. One of these long lines is

of interest to programmers, however. It is called the '"number track".

The number track is a long line, divided into bits and words, similar

to any other long line. But each word in it contains, rather than

data or a command, timing information which affixes a word-number,
ranging from 00 through u7, to each similarly located word in each

long line. This number track is recirculated in the same manner,

about the circumference of the drum, as are the long lines. In word

u7 of the number track, there is a special indicator which signifies
that the next word is the beginning of the line, word 00. The pulse
which is generated by this indicator, when it is read, is referred

to as "TO". Thus the beginning, and each succeeding, word number in
each long line is fixed and remains constant. This, of course, is
essential for addressing words. The short lines are so situated that
word 00 in each of them will occur simultaneously with word 00 in each
long line. Notice that, for the 4-word short lines, word 00 will also
arise concurrently with the following words in the long lines: 04, 08,
12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80,
84, 88, 92, 96, u0, and u4. You might want to write for yourself a
similar list of long line locations corresponding to words 01, 02, and
03 in the short lines. We knew that such would be the case as soon as
we said that the short lines recirculate 27 times per each recirculation
of the long lines. The 2-word registers recirculate 54 times per long
line recirculation, and they are so situated that word 00 in them occurs
at every even word-time of the long lines (00 is considered even), and
word Ol in them occurs at every odd word-time of the long lines. AR,
the one-word register, occurs at every word-time, since it only requires
one word-time for its recirculation.

It is of the utmost importance to the programmer to know that the num-
ber track is correctly on the drum before he attempts to operate any
program in the computer. If the number track is not correct, the ad-
dresses associated with the words in memory will not be correct or

constant. Therefore, a command is available to the programmer, which
enables him to inspect the number track. This command will be discus-
sed later.

COMMANDS

Although commands, as well as data, are in binary form when stored in
the computer, we need not worry about the actual 29 bits that make up

a command. A program was written by Bendix personnel which can accept
commands in a simplified form and translate them into the binary lan-
guage of the computer. No flexibility in the operation of the computer
is lost in this translation. This Bendix program is called PPR (Pro-
gram Preparation Routine), and is made available to every user of the
G-15 computer.

A command for the G-15 must specify the following information:

1. desired operation,

2. address of operand,

3. address to which operand is to be transferred, and
4. address of next command to be obeyed.

In addition to this information, a command may contain information
relating to the duration of its execution.

FL plT N [c]s]|p]| s I/, I\EOT'E§7/
LL 7/ Nt Z
The desired operation is specified by a decimal digit ranging from O
through 7 in the C portion of the command.

0 - Calls for a straight transfer of a single-precision operand
from one location to another. After this transfer has been
performed, the operand, in its original form, will be in
both locations in memory. This is sometimes called a "copy".

1 - Calls for use of "inverting gates' during the transfer of
the operand from one location to another. The inverting
gates will complement negative numbers passing through them
in the manner described in the Introduction to the G-15.

2 - Depends, for its meaning, on the address of the operand and
the receiving location.

If both of these addresses refer to memory lines whose numbers
are less than 28, this C code calls for an exchange of AR,
which is the single-precision accumulator, and memory, in the
following way: the original contents of AR are copied into

the specified receiving address, and the operand is copied into
AR. If this exchange is called for at an even word-time, and
if the receiving address is a two-word register, AR's original

- 14 -

contents will be blocked from entering the even half of the
two-word register, and that half of the two-word register
will be cleared to 0 instead. AR's original contents will
be lost. The number in AR will be the absolute value of the
operand, i.e., Tl = 0, and the sign of the operand will be
held in a special flip-flop called "IP".

If AR is specified as either the operand or the receiving
address, or if PN, as line 30, is specified as the receiving
address, the absolute value of the operand (a positive number)
will be transferred to the receiving address.

Also depends on the specified address of the operand and the
receiving location for its meaning.

If both of these addresses contain line numbers less than

28, an exchange of AR with memory, similar to that described
above, is performed. 1In this case, however, the operand, on
its way to AR, will pass through the inverting gates and be
complemented if negative. If this exchange is called for at
an even word-time, and if the receiving address is a two-word
register, AR's original contents will be blocked from entering
the even half of the two-word register, and that half of the
two-word register will be cleared to O instead. AR's original
contents will be lost.

If AR is specified, either as the operand or the receiving
address, or if PN, as line 30, is specified as the receiving
address, the sign of the operand will be changed during the
transfer, and then the operand, with its new sign, will pass
through the inverting gates. This is, in effect, a 'subtract"
command .

Calls for a "copy'" of a double-precision number from one
memory location to another, being the double-precision
equivalent of 0.

Calls for use of inverting gates during the transfer of a
double-precision operand, being the double-precision equiva-
lent of 1.

Depends on the specified address of the operand and the
receiving location for its meaning.

If both of these addresses contain line numbers less than
28, this C code calls for an exchange of AR with memory for
two word-times, each exchange being similar to that called
for by a 2, under the same conditions. During the first
word-time of execution (even), AR's original contents are
copied to the first half of the receiving address, and the
first half of the operand is transferred to AR. During the
second word-time of execution (odd), AR's contents (now the
first half of the double-precision operand) are transferred
to the second half of the receiving address, and the second
half of the operand is transferred to AR. If the receiving

- 15 -

address is a two-word register, during the first word-time
of execution AR's original contents will be blocked from
entering the even half of that two-word register, and that
half of the two-word register will be cleared to O instead.
AR's original contents will be lost.

If either the operand or the receiving address contains a
line number greater than or equal to 28, the absolute value
of the double-precision operand will be transferred,

7 - Depends on the specified address of the operand and the
receiving location for its meaning.

If these both contain line numbers less than 28, a double-
precision exchange will be performed, in the manner described
above, for a C of 6, with the exception that all numbers
entering AR will pass through the inverting gates and be
complemented if necessary. If the receiving address is a
two-word register, during the first word-time of execution
AR's original contents will be blocked from entering the

even half of the two-word register, and that half of the
two-word register will be cleared to 0 instead. AR's orig-
inal contents will be lost.

If either the operand or the receiving address refers to a
line whose number is greater than or equal to 28, the sign
~of the double-precision operand will be changed during the
transfer, and then the double-precision operand, with its
new sign, will pass through the inverting gates and be com-
plemented if necessary. This is, in effect, a double-pre-

cision "subtract'".

The line in which the operand is located is called the Ysource', and,
in the layout of a command, the two-digit decimal number of this line,
ranging from 00 through 31, is referred to as "S". AR, as a source,
must always be referred to as line 28. PN, as a source, must always
be referred to as line 26.

The line which contains the receiving location is referred to as the
“"destination®, and, in the layout of a command, the two-digit decimal
number of this line, ranging from 00 through 31, is referred to as *'D'.

The address of the operand is completed by specification of a word-time.
A two-digit number, ranging from 00 through u7, in the "T" portion of

a command, specifies this word-time. This same T number is combined
with D, in order to complete the receiving address. So we see that,

if a word is copied from one long line to another, the word being trans-
ferred will occupy the same word-time in both lines.

The type of operation we have been discussing so far is referred to as
"deferred" operation. No matter when (what word-time) the command it-
self is read and interpreted, the computer will wait, or defer action,
until the word-time specified for the operation arises. There is

another type of operation called "immediate', in which the operation
called for by the C code may be performed continuously for any number
of word-times on S and D, up to 108 (a whole drum cycle). In this
type of operation, the transfer called for will start immediately, in
the word-time following that in which the command itself was read, and
it will comtinue through continuous word-times, until a "flag" is
reached. This flag will be a word-time specified as T in the command,
and the execution will cease with the word-time immediately preceding
the flag.

If immediate execution, rather than deferred, is desired, a one-digit
prefix must be placed in the "P" portion of the command. This digit
must be a "u". If no prefix is desired, this portion of the command
should be left blank.

Each command contains within it the address of the next command to be
obeyed, and this is why the computer can perform a sequence of commands
of any length automatically, after once being told where to start. The
word-time of the next command is entered as a two-digit number, ranging
from 00 through u7, in the *N* portion of a command. This address con-
tains no line number, because once the computer has started to obey a
sequence of commands from one of the memory lines, it continues to look
in the same line for the next command in the sequence.

The computer can follow a sequence of commands in either of two modes;
continuous operation or break-point operation. Ordinarily the computer
will be in the continuous mode, but the computer operator can, at any
time, cause the computer to switch to the break-point mode through an
external switch action. When in the continuous mode, the computer can
only be stopped, under program control, through execution of a special
command, called the halt command. When in the break-point mode, how-
ever, the computer can be stopped, under program control, after execu-
tion of a specially marked command, as well as by the halt command.
Any command may be so marked, and this is done through insertion of

a minus (-), in the "BP" portion of the command. If no break-point
mark is desired in the command, this portion of the command should be
left blank.

Shown in the layout of a command are two shaded portions: "L" and
YNOTES"™. From experience, programmers of the G-15 have found it
desirable to include, with each command, as it is written on a coding
sheet, the word-time in which the command is located and some brief
note explaining the function of the command. This information, al-
though on the coding sheet, is not entered into the computer as part
of the command.

If D = 31 in a command, the computer will treat this command as a
"special" command, and interpret it in a special way. The S number
will be treated as a special operation code, and the C number will
usually be interpreted in the light of the special operation called
for. Additions, subtractions, and copies of various types can be
performed through any chosen combinations of the various portions of
commands already discussed, but multiplications, divisions, and other

- 17 -

special operations are called for through use of special commands.
We will discuss each special command as necessary, and they will be
summarized on pages 56-59.

With a firm knowledge of:
1. the binary form of data within the machine, and
2, the format of machine commands,

we are ready to consider the various machine operations which can be
combined to form a program.

Since many programs need data upon which to operate, usually one of
the first things they do is to call for a computer input. The normal
inputs to the G-15 computer are:

1. typewriter, and
2. punched paper tape.

The G-15 has an input/butput system which only operates when commanded.
There are two ways of commanding this system to operate:

1. special commands, under program control, and

2. special external switch actions, which the computer operator
can take at will.

Initially, of course, when the computer is first turned on, there is no
useful information in its memory. The question arises, therefore, how
is a program initially entered into the memory of the computer, so that
it can be operated later, calling in its own data upon which to operate?
The answer is to make available some sort of external action for the |
computer operator to take, in order to activate the computer's input/
output system. The external control console for the G-15 is an electric
typewriter, connected by a cable to the computer., A picture of this
typewriter is on page 130. Certain keys on the typewriter, namely q, r,
t, i, p, a, s¥ £, ¢, b, and m, can directly activate the computer in the
ways indicated in the drawing, if the computer operator chooses to enable
them to do so. He does this by moving the enable switch, mounted on the
base of the typewriter, to the "ON" position. This switch should never
be turned on until the compute switch, which controls the automatic op-
eration of the computer in either of the two modes already discussed,

is turned off. The "OFF" position for the compute switch is the center
position.

The use of the keys already named, while the enable switch is on, is
referred to as 'enable action'". Notice in the drawing that a 'p' enable
action will cause the computer's input/output system to read punched
tape. From now on we will adopt the custom of underlining a letter in

order to indicate the appropriate enable action; e.g., p.

The earlier model typewriter had no (® key; throughout this manual,
wherever the s key is indicated, use the key .

- 18 -

Given a punched paper tape containing the PPR program, you can mount
this tape on the photo-reader of the computer, strike p, and you will
see the photo-reader light turn on and the tape winding mechanism
.start to work, pulling the tape past the reader. One "block" of the
tape will be read. A block of tape is a line's worth of information
destined for the memory of the computer. When this initial block

has been *read'" into the computer, and the photo-reader light goes
off, if you turn off the enable switch and turn the compute switch

on to "GO'", the commands now in the memory of the computer will be
operated, and they have been written to call for the reading of four
more blocks of punched tape. You will be able, of course, to see the
photo-reader turn on again and four blocks of tape pass by it, at
which point the basic portion of the PPR program will be in the memory
of the computer. It will be occupying long lines 17, 16, 15, and 05.
The initial block of tape, which was read in because of the p actionm,
will no longer be in the memory of the computer.

With the compute switch still on "GO", PPR will operate. As a program
operates, the neons on the front of the computer will flicker rapidly,
as they reflect certain portions of each command being operated in the
sequence of the program. A drawing of these neons is on page 208.
Notice that there is a set of five neons for both S and D, and that
each neon has a numerical value associated with it, the neons being
arranged in the form of a binary number containing five bits. Through
reading the lighted neons, you can determine the values for S and D

of the command which has just been executed. Of course it will be im-
possible for you to read these neons as the program operates, because
the computer is executing commands very rapidly. But when the computer
stops, these neons will remain steady, showing the S and D of the last
command executed. Below the S and D neons there is another set of

five neons, which reflect the status of the input/output system. When
no input or output is in progress, the "ready" neon, marked with an "R"
will be on. If an input or output is in progress, this neon will be
off, and some configuration of the other four will be lighted, showing
the binary number associated with the input or output in progress.

Each input and each output has a unique special number associated with
it.

After PPR has been entered into the computer and is operating, the
neons will eventually stop flickering, showing an S of 28, a D of 31,
and an input or output called for with the unique number 12, 12 is
the special number associated with a typewriter input. In PPR, a
special command has been executed, and this command has told the com-
puter to start a typewriter input. The special command for this is:

L L+2 N O 12 31.

Notice that this is a special command (D = 31), and that the special
operation code is 12, the number associated with the input called for.
This is the case in all input/butput commands. Special commands with
D = 31 are always immediate. This can be overridden, and any special
command can be made deferred through the insertion of a prefix, P = w.
There is no such prefix in this command. It therefore will start

- 19 -

execution immediately, in L + 1, and this execution will continue up
through the last word-time preceding the "flag" in T. This flag is

L + 2; therefore the last word-time of execution will also be L + 1,
and we have thus limited execution of this command to one word-time,
L+ 1. This is all that is necessary, since the input/output system
can be properly activated in one word-time of execution.

When the input/butput system has been activated through the execution
of one of the appropriate special commands, the computer continues
obeying commands in the normal sequence, taking the next command from
location N. There is no interlock built into the G-15 to prevent
computation during an input or output. If the program, in this case
PPR, depends on the arrival of data in memory from the input called
for, something must be done to prevent the computer from following
the sequence of commands until the data has arrived. The programmer
does this, when writing his program, through insertion, at a given
point in the program, of a command designed to cause the computer to
wait for the completion of the input before proceding to further com-
mands in the sequence. This was done by the programmers who wrote
PPR.

In order to understand how this can be done, you must first understand
that the G-15, like most digital computers, can make simple decisions,
based on the existence or non-existence of a given condition within the
circuitry of the computer itself. The computer can be directed to
interrogate any of several conditions through the use of certain spe-
cial commands, called "test" commands., When the computer reads a com-
mand and finds that the command calls for a test, it performs that test
during the specified word-time or word-times of execution. After the
execution is complete, if the condition being tested for was not found
to exist, in other words, the answer to the question asked was ''no'",
the computer will take its next command from N. If on the other hand,
the condition tested for was found to exist, in other words, the answer
to the question asked was "yes", the computer will automatically take
the next command from N + 1.

The special command which prevents the computer from continuing the
sequence in a program until an input or an output is finished is a test
command, called the "ready' test, which tests the input/output system

for being ready. If the input/butput system is ready, there is no input
or output currently in progress. Thus, after an input or output has

been called for, and the ready test is given, the test cannot be answered
"yes"™ until the specified input or output is finished. 1In order to stop
the computer from proceeding in the sequence of a program, the ready

test is written in the following way:

L L L O 28 31.

You can see, from inspection of this command, that, as long as the
answer to the question is "no'", the next command, being taken from N,
will be the ready test itself. The only way this test can be prevented
from repeating itself over and over again is for the input/butput system
to "go ready", making the answer to the question '"yes", at which time

- 20 -

the next command will be taken from N + 1, which is in reality L + 1.
The sequence of the program would resume at L + 1. Notice that it
was said that the neons would remain steady at some point during the
operation of PPR, with S = 28, D = 31, and the input/output neons
indicating the special number 12.

At this point during the operation of PPR, the commands comprising
any desired program can be typed in. PPR is also able to accept
other inputs and operate on them at this time, but we will postpone
a discussion of the various inputs to PPR until page 59, after you
have some knowledge of the make-up of a program.

Only the computer operator will know when the typewriter input is
finished because he will be doing the typing. When he is done, he
strikes the *"s'" key in order to notify the computer that the input

is finished. When he does this, the input/butput neons will change,
and only the 'ready" neon will be lighted. The ready test in PPR
will be answered "'yes', and the program, in this case, PPR, will con-
tinue its normal sequence.

Now that we have some general knowledge (to be expanded later on) of
the manner in which programs and data are entered into the computer,
let's inspect the available methods for performing arithmetic and
other operations on numbers under program control.

ARITHMETIC OPERATIONS

We will assume at this point that the numbers upon which we desire to
perform these operations have already been entered into the proper
memory locations of the computer.

Single-precision numbers are combined to form totals in the one-word
short line called AR. If the destination during the transfer of a
number is 28, the original contents of AR will be replaced with the
number being transferred. If, however, the destination is 29, the
number being transferred will be combined with the original contents
of AR in whatever manner is prescribed by the C code in the command.
Usually, when numbers contained in specified computer words are to be
added or subtracted from each other in a program, we cannot predict,
at the time we write the program, what the signs of these numbers will
be. In such a case, it is, of course, necessary, in order to generate
the proper sum or difference in AR, to transfer the numbers through
the inverting gates on their way to AR. We would therefore use C
codes of 1 for "add"™ and 3 for "subtract".

tfel e | n|c]s | | NOTES
00 02 o3 | 1| 10] 28 10.02 L)ARC
03 o {05 | 1] 10} 29 10.04 — 4R,
05 o6 | w 1] 28] 10 AR—F310.06

- 21 -

L{Ple | N fc|s | [NOTES
00 02 |03 {1]| 10| 28 10.02 —+—)ARC
03 04 |05 | 3] 10| 29 10.04 —AR
05 06 | ~ | 1| 28] 10 AR —510.06
L|Ple [N fc|s|oD [NOTES
00 02 |03 |3| 10| 28 10.02 — AR

03 o4 |os |1] 10| 29 10.04 AR,

05 06 | v |1 28| 10 AR —F510.06

If double-precision numbers are to be added or subtracted, the two-
word short line, PN, which serves as a double-precision accumulator,

is used as the destination for the transfer of the numbers. If D = 26,
the original contents of PN are replaced by the number being transfer-
red. If, however, D = 30, the number being transferred is combined
with the original contents of PN in order to form the proper sum or
difference, as called for by the C codes in the transfers. Here, of
course, we would use the double-precision equivalents of 1 and 3 for

C, 5 and 7 respectively. Notice that, although a single-precision
number can be subtracted into a cleared accumulator, AR, with a C of

3 and a D of 28 (sometimes called "clear and subtract"), such is not
the case with the doubie-precision accumulator, PN. 1In order to replace
the original contents of PN with the number being transferred, D must
equal 26, If D = 26 and the source line is any other line in memory
(other than AR, of course), a C of 7 will be interpreted as calling for
an exchange of AR with memory, because both S and D will be less than
28. Therefore in order to "clear and subtract" a double-precision
number in PN, PN must first be cleared to zero and then the double-
precision number subtracted using a C of 7. A special command is
available, which will clear all of the two-word registers:

L I+#3 N O 23 31.
Because D = 31, this command will be immediate. It will operate for

two word-times, L + 1 and L + 2, during which it will cause 0's to be
written into both halves of all three two-word registers.

- 22 -

T
L {P) & | N|C|]S|D|BP NOTES
00 02 | o4 | 5] 10] 26 10.02-03 — PN,
04 o6 | 08 | 5| 10| 30 10.06-07— 3 BN,
08 |~ |5 26| 10 PN, ;— 10.10-11
T
L (Py g | N|C]S|D|BP NOTES
+
0 _
0 02 | o4 | 5|10 | 26 10.02-03 —3 BN, ,
04 06 | 08 [7] 10 30 10.06-07 —»PN, .,
08 10| N | 526 | 10 PN, ,——310.10-11
T
L {Pj | NJC|S|D|BP NOTES
00 03 [03 0| 23 31 Clear 2-word registers
03 04 |06 |7 10| 30 10.04-05 —Y PNgy 14
+
06 08 {10 |5} 10] 30 10.08-09 3 BN,
10 12 [N |5] 26| 10 PN, |13 10.12-13

The magnitude of a single-precision number can be added to a quantity
in AR through the use of a C of 2, since AR, as the destination, will
be line 29. The magnitude of a single-precision number can be placed
in AR, replacing the original contents of AR, preparatory to adding
something to it, through the use of the same C and a destination of 28.
In either case the C of 2 will call for the transfer of the magnitude
of the operand, because the destination is greater than or equal to 28.
Similarly, the magnitude of an answer in AR can be transferred to some
predetermined storage location in memory through the use of a C of 2,
because the source in this command would be 28 (AR).

- 23 -

T
L|efle | Nfc|s | [ee NOTES
00 or |02 | 1] 10] 28 10.01 —t AR

— ¥
02 03 | o0& | 1] 10] 29 10.03 5 AR,
04 05 |x |2 28] 10 | s} — 10.05
L (Pl ¢ | N{c|s|D |sp NOTES
00 o1 | o2 | 2] 10] 28 [10.0]—>ar_

+
02 03 |04 | 1] 10] 29 10.03 3 AR,
04 05 |n | 1| 28] 10 & F310.05
T

L [Py | N[C}]S |D|BP NOTES
00 o1 o2 [1] 10] 28 10.01 -5 AR _
02 03 [04 (2] 10| 29 l 10.03] —> ARy
04 05 | N 1] 28| 10 AR —¥-310.05

In order to generate a +0 in AR, we find the use of absolute values
advantageous. You might guess that you could generate a +0 in AR
by subtracting the contents of AR from AR, in a fashion similar to
the one below:

L T N 3 28 29.

This method is fine if AR is originally positive, because the C of 3
will cause the sign of AR's contents to be changed, thus yielding a
negative number, and then it will cause this negative number to pass
through the inverting gates and be complemented. Because D = 29, this
negative complement will be added to the original contents of AR, so
that the sum generated in AR will be a positive number plus its nega-
tive complement. Any positive number plus its negative complement will
yield +0 as a result. ’

1000110110010001000011111100p
011100100110111011110000010Q1
} 000000000000000000000000000¢1
DL
0

00000000000000000000000000040

But, if AR originally contains a negative number, the C of 3 will
cause the sign of this number to be changed to a positive sign, and
thus the magnitude bits will pass through the inverting gates un-
complemented. The initial sum generated in AR, therefore will be
negative, and its magnitude will be twice that of the original con-
tents of AR; if, in the generation of the sum, an end-around-carry
is generated, the final sign of the sum will be positive, but the
magnitude, in most cases, will be unequal to O.

100011011001000100001111110q1
10001101100100010000111111030
} 000110110010001000011111100q1
M1
0

0001101100100010000111111004

Usually, when it is desired to generate a +0 in AR, you cannot pre-
dict, at the time you are writing your program, what the sign of the
original contents of AR will be. Therefore, in order to insure a
positive number in AR, you must precede the command shown above with
another command whose purpose is to replace the original contents of
AR with their absolute value. This command will be of the form:

L T N 2 28 28.

L|p| ¢ | N{c|s | [se NOTES
00 o1 Jo2 |2] 28] 28 [AR\-——)ARC

02 03 [N [3] 28} 29 AR —> AR,
L{p|e [N]c|s | |ee NOTES
00 or | 02 | 2| 10| 28]10.01}——-)ARC

02 03 | o4 | 3] 28| 28 AR—_—}ARC

04 05 | 06 | 2] 10] 29 J10.05/ —> ar,

06 07 | v | 1| 28] 10 AR —23 10.07

- 25 -

The absolute value of a double-precision number may be added to the
original contents of the double-precision accumulator, PN, through
the use of the double-precision equivalent of a C of 2: this would
be a C of 6. The absolute value of the double-precision number will
be transferred because D = 30. The command would be of the form:

L T N 6 S 30.

T
L P g | N fc|s|o |se NCTES
00 02 |os 5| 10] 26 10.02-03 —-'-—)PNO .
bl
A 06 |08 |6] 10| 30]10.06-07]——-}PN0_1JC
08 10 |n |5 26|10 | PN, — 10.10-11

Notice that a C of 6 cannot be used to replace the original contents

of PN with a double-precision absolute value, because D, in this case,
would have to be 26, and therefore the rule that, for a C of 6 to call
for the transfer of absolute value, either S or D must be greater than

or equal to 28, would be violated. Similarly, the absolute value of a
double-precision number in PN cannot be transferred to a predetermined
storage location in memory by a C of 6, because PN, as a source, must
always be referred to as line 26, The answer to this problem is to

first clear the two-word registers, including PN, and then add the magni-
tude to PN, C = 6 and D = 30.

T
lr L JPy & | NJC|S|D|BP NOTES
00 03 |03 {0} 23 31 Clear 2-word registers
03 04 |06 6] 10| 30 |10.04-05| —en, |,
06 08 |10 |6 10] 30 l10.08—09l—9PN0.1+
10 12 |v |[5]26] 10 PN, ,——10.12-13

Any command which would normally affect only one data word, such as
the deferred commands we have been discussing up to this point, can
be made to affect a "block" of contiguous data words by being made

immediate.

o 4

[
k
09 | N 0 10 11

N |[C|S DBP“ NOTES
|

10.09 —>11.09

| os

Lt e
|

- 26 -

: T

Lfelg [w{c|s |0 | NOTES

00 u " 09 N 0 10 11 10.01-08 —/>11.01-08
T

el e | w el s | o | NOTES

00 | u " 01 N joOo} 10] 11 “ line lO-—-} line 11

We thus can have "block adds"™, '"block subtracts™, "block copies",
etc.

L|p)g | nfc|s|o [NOTES

00 or o1 | 1| 0] 28 10.01 X3 ar_

o1 | uf o1 | o2 [1] 10] 29 10.02-00 3 4R,

02 03 | n |1} 28] 09 AR —309.03
L|p|g [N |c|s |0 [sr NOTES

00 o1 | 02 | z| 28] 28 Jar] —>ar_

02 037{ 04 | 3| 28} 29 AR — AR

04 | ull 05|05 o] 28] 18 AR — 18.05-04

05 06 | N 1] 31| 31 Number track to line 18

We have already mentioned the number track. There is a special com-
mand available, which will copy words from the number track into line
18, where they may be treated as data:

L T N 1 31 31.

PPR will make this command immediate, because D = 31. Any number of
words may be copied, depending on the relationship of T to L. If the
entire number track is desired in line 18, T should equal L + 1.

In this particular case only, the words arriving at line 18 will not
replace the original contents of that line, but they will be logically
added to the original contents, instead. Logical addition is an
"either-or"™ proposition, in which a 1 will result in the sum if either
of the numbers being added, or each of them, contains a 1; there is no
"carry".

0+0
0+1

1+0
1+1

Il
N I N -

For this reason, line 18 should be cleared prior to receiving the
contents of the number track.

So far we have been treating data words in the computer as if they were
in binary form. Although this is correct, it is desirable to give a
program decimal numbers as inputs and receive from the program decimal
numbers as outputs. 1In such a case, the program itself will have to
convert the decimal numbers it receives to their binary equivalents
before performing operations on them, and it will have to convert its
binary answers to their decimal equivalents before transmitting them
as outputs. Fortunately each programmer who uses the G-15 does not
have to write the necessary number-conversion routines in each program
he develops, because this work has already been done for him by the
Bendix Computer Division.

SUBROUTINES

The final effort of a programmer may go by any of various names, de-
pending on the use for which it is intended. Some programmers write
programs which are complete entities in themselves, in that they
accept some raw data, perform all of the necessary operations on it,
and yield valuable, final answers which are of use to the computer
user., Other programmers write sequences of commands designed to
accomplish some intermediate result which will be necessary during

the manipulation of the raw data in other programs. The conversion

of decimal numbers to binary is such a manipulation, and the binary
numbers which result are intermediate to a final answer of a program.
A sequence of commands designed to yield such useful intermediate re-
sults is called a subroutine, implying that it is designed to be a
subordinate part of a longer routine, which might be called a program.
Subroutines are written in such a way that they can be easily incorpo-
rated into longer routines in a manner prescribed by their author.
These specifications always accompany a subroutine when it is distrib-
uted, or "issued', to computer users in general.

- 28 -

In order to understand how subroutines can be incorporated into your
program, you must first be aware of the fact that it is possible, by

a special command, to cause the computer to cease taking commands from
the normal sequence, and start a new sequence at a prescribed location.
Commands which can cause the computer to do this are referred to as
"jump", "branch", or "transfer" commands; in programming the G-15, we
refer to them as transfer commands, where we use the word transfer to
mean "transfer control"™. The special command which will cause the
G-15 to do this is:

L Li2 N C 21 31,
or,
LwT N C 21 31.

Normally the G-15 continues taking commands in a sequence from the

same line in memory, where each command is found in that line at the
word-time equal to N of the previous command. When this special
transfer command is interpreted and executed, however, the computer
will transfer program control to the line in memory specified by the

C number in this command, and the first command in the new line will

be found at the word-time equal to N of the transfer command. Notice
that only eight lines can be specified as command lines, because C is

a one digit number ranging from O through 7. This correctly implies
that not all lines in the memory of the computer are capable of being
read for commands. A memory line which has this capability is referred
to as a "command line'". Command line numbers are associated with memory
lines according to the following table:

Command line number Memory line number

00
01
02
03
04
05
19
23

~NoounpPwhh e O

The specifications for each available subroutine will contain the line
number in which the subroutine must operate, the word-time in that line
at which the first command of the subroutine is located, and the memory
location in which the data upon which the subroutine is to operate is to
be stored, along with other information.

Thus, if you have a data number which you want converted from decimal

to binary, you must consult the specifications for the number-conversion
subroutine for this information, and then incorporate into your program
the necessary commands to:

1. place the decimal number in that memory location prescribed,
and

2. transfer control to the prescribed command line, in which
the subroutine is located, at the initial word-time in
that line, which is also prescribed in the specifications.

When a subroutine has been entered, in the course of operation of a
program, and the subroutine has done its work, there must be some
provision for having the subroutine return program control to the
main part of the program. The specifications for each subroutine
will state where the output of the subroutine will be stored, and
the main program can be written so that, upon re-entry from the sub-
routine, it will perform its operations using the intermediate re-
sult in this location. A question arises, for the programmer who is
writing the subroutine, as to what line and what word-time within
that line the subroutine is to transfer control to. Obviously, this
will be different for each main program which uses the subroutine,
and therefore a transfer command, coded in the form we have already
discussed, will not help the programmer writing a subroutine.

The solution adopted for this problem is a second type of transfer
comnand, called a “return" command. This is also a special command,
and is coded in the following way:

L I+2 L+l C 20 31.

When this command is executed, it will transfer control to command
line C, at a predetermined word-time. The manner in which this word-
time is predetermined is through the prior execution of a transfer
command. When a transfer command is executed, in addition to trans-
ferring control to line C, word N, it "marks" a word-time, which is
the first word-time of execution of the transfer command. This mark
determines the word-time in line € to which the return command will
return control; when a return command is executed, subsequent to the
execution of a transfer command, control will be returned to line C
(C in the return command) at the marked word-time. Because it gener-
ates this mark, the transfer command, whose specigl operation code

is 21, is called a "Mark, Transfer" command.

Assume that the number-conversion subroutine is in line 02, and the
main program is in line 00, and the following information is contained
in the specifications for that subroutine:

Execution.siseeeveesnensssceaseses.Command line 02
Entry.eeeesescessesossesseascanesas.Word-time 46
EXitoeeoieiaoesoaoessovnseansnnsses.Word-time 47
INpUL. . iievivecerosionacnaeeeseeesX (decimal) in ID]

(7 digits and sign)
Return command in AR
Output..evetveeiueervoanennerasas..X (binary) in MQqg

Assuming x (decimal), consisting of seven digits and a sign, is in
23,00, and that x (binary) is desired in 00.59, the following se-
quence of commands will satisfy the requirements:

- 30 -

L (Pl | NJCIS DﬂBP NOTES

00 04 |06 6| 23| 25 X = (23.00)——-——:>IDl

06 07 {08 |0} 00 | 28 00.07 —>AR

07 [: 49 | 48 |0} 20| 31 i Return Command

08 |wi 50 {46 |2 21 31 Mark, transfer to 02.46
50 52 | 53 {0} 24 | 28 x = (MQp) —>AR

53 59 | N 01 28| 00 x = (AR) —> 00.59

Now we come to an interesting point, which, we hope, has been bothering
you: if all words in the memory of the computer are of binary form,
how is it that decimal numbers can be entered during an input? In
order to answer this question, which now, at least, is bothering you,
you must understand the input system for the G-15.

INPUTS

On the keyboard of the typewriter, as shown on page 130, the digit keys,
certain letter keys, and the minus sign, tab, carriage return and '/"
keys can all cause a direct effect in the way of data input. Any of the
digit keys, 1 through O, and the letter keys, u, v, w, X, y, and z, which
are sufficient to complete the hex number system, will generate a 4-bit
code during an input:

4-bit code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

N X € €800~ HWN O E?

- 31 -

The minus key sets a "sign flip-flop®™ with a 1; if the minus key is
not struck during the input of a number, this flip-flop will retain
a 0. The tab and carriage return keys have identical effects on the
input system; they each cause the sign flip-flop's contents to be
placed in the sign-bit of a word.

Each time a 4-bit code is entered, during an input, it causes all
of short line 23 (four words = 116 bits) to be shifted towards the
high-order end of the line, in the direction shown by the arrow in
the drawing below. The four vacated bit-positions in the low-order
end of the line, bits Tl through T4 of 23.00, are cleared to 0000.
These four bit-positions receive the incoming 4-bit code.

T29 T
[o3 I 02 o1 [oo

——

Thus, after seven digits have been entered, there are 28 bits properly
set in 23.00, Tl through T28. 1If hex digits, representing a binary
number, were entered, the 28-bit magnitude is exactly reproduced in
these 28 bits. Unfortunately this magnitude is not properly positioned
in the word, however, because we know that it should occupy bits T2
through T29, and a sign should occupy bit Tl. Either the tab or the
carriage return key will have the same effect on line 23: it will

shift the line's contents toward the high-order end by one bit-position,
vacating Tl of 23.00, and that bit will receive the present contents of
the sign flip-flop. Four words, each consisting of seven hex digits

and a sign, could be entered into line 23 by repeating this process.

At any point, line 23's contents can be transferred, word-for-word, into
the low-order four words of line 19, 19.00-19.03, by striking the "/"
key, referred to, because of its effect, as the "“reload" key. Line 19's
contents will be shifted towards the high-order end of the line by four
full word-times whenever this action is taken. Thus you can see that

it is possible to enter an entire long line's contents (108 words)
during one input operation.

Now, if the seven digits that are entered for any given number are dec-
imal digits, rather than hex digits, we will have a 28-bit magnitude
consisting of 4-bit codes, each of which ranges in value from 0000 to
1001. TIt is obvious that this binary number is not the binary equiva-
lent of the decimal number entered.

Digits typed in: 9876543 (tab) s

23.00: 1001100001llOllOOlOlOlOOOOllb

binary integral value equivalent to 9876543.(10):
0000100101lOlOllOlOOOOllllllb

We call a binary number in this form '"binary-coded-decimal®. It is

a number of this form which we will obtain when typing in decimal digits
and which we will supply as an input to the number-conversion subroutine.

- 32 -

DECIMAL SCALING

At this point, we must settle on some accepted system for discussing
the quantities that are being handled by the computer. Since no
decimal points are entered during the type-in of inputs, a system is
necessary ior interpreting the numbers entered. It is convenient, and
therefore common, to consider all numbers in the computer as fractionms.
In other words, if we enter the decimal number, -9876543, we will as-
sume that the computer handles it as the number, -.9876543. Now, this
does not mean that the computer can only handle fractional quantities;
it does mean that we must have some method for properly interpreting
the numbers that are in the machine. If the quantity we are represent-
ing with this number is really -98.76543, we will say that the machine
holds this number divided by 100, or multiplied by 10-2. And we can,
in general, say that the machine holds our number, A, multiplied by a
factor of 10 raised to some power. This factor we call the 'scale fac-
tor". 1If A* represents the machine form of the number A, and S repre-
sents the scale factor of A, then A* = S-A, This determination of
scale factors for numbers is called *scaling'". Usually the scale fac-
tor associated with a number in the computer which is being affected

by a given command will be entered in the notes column for that com-
mand on the coding sheet.

As you know, numbers whose decimal points are not lined up cannot be
added to, or subtracted from, each other, without first shifting either
or both of them, in order to line up the decimal points.

1.654 = 1.654
+ 398.7 = 398.7
400.354

The decimal scale factor of a number in the computer merely fixes the
decimal point in that number.
A = A .8
.0001654 0001.654-10"
.0003987

000398.7:10

4
6

Therefore, numbers in the computer must have like scale factors before
they can be properly added to, or subtracted from, each other. This can
be accomplished by multiplying either or both of them by 1-10%® , where

n equals the number of decimal places the number is to be shifted.
.0001654(=0001.654'10h4) =.0001654(=0001.654°10-4)
.0003987(=000398.7-10-6)»100.000000(=l-102)=.0398700(=0398.700'10-4)

.0400354(=oaoo.354-1o'4)

We have already said that it is convenient to consider all numbers in

the machine as fractions. This would eliminate the multiplier,

10.0000000, in the above example. An obvious solution to this dilemma
would be to rescale .0001654 rather than .0003987, in the following manner:

- 33 -
.0001654(=0001.654-10_4)-.OlOOOOO(=Ol.00000-10-2)=.0000016(=000001.6-10-6)
.ooo3987(=ooo39s.7-1o'6) =.0003987(=ooo398.7-10'6)

.oooaoo3(=ooo4oo.3-1o'6)

Unfortunately, this method of rescaling, although it properly aligns the
decimal points for the addition of the two numbers, causes a loss of ac-
curacy in one of them, and therefore, in the result. It is desirable to
rescale .0003987, by shifting it to the left, because no significance will
be lost in that number, as you saw above, and yet, no accuracy will be
lost, either. If we cannot have the number, 10.0000000, in the computer,
we must find a substitute for it. A substitute for multiplication by any
number is division by its reciprocal. The reciprocal of 1-102 is 1.10-2.
Therefore, instead of multiplying .0003987 by 10.0000000¢=1-102), we can
divide .0003987 by .0100000(=01.00000-10-2):

.0001654(=0001.654-10-4) =.0001654(=0001.654-10-4)
.0003987(=000398.7-10-6)%30100000(=01.OOOOO-10-2)=.0398700(=0398.700-10_4)
.0400354(=0400.354-1o'4)

When two numbers are multiplied together, the scale factor of the product
equals the product of the scale factors:

a-10%b-10"=a.b-10%™

When a number is divided by another, the scale factor of the quotient
is the quotient of their respective scale factors:

The method of scaling we have just discussed is called "fixed-point"

scaling, because it is a means of interpreting numbers in the machine
in relation to a fixed machine-point, which immediately precedes the

most significant bit of a number, making the number a fraction, as it
appears in the machine.

Because scaling is merely a means of interpreting values in the machine,
however, any method of scaling is permissable, as long as it is consistent
and dependable. Another method in common usage is "floating-point"™ scaling.
For a discussion of this method, see page 20l.

BACK TO ARITHMETIC

Because the G-15 has a limit of 28 magnitude bits for a single-precision
number, it is possible to attempt to generate a sum in AR which cannot

be contained within 28 bits, and therefore the sum which is generated is
erroneous. The condition that arises in such a case is called "overflow",
and the machine is equipped to detect this, although it will do nothing
about it automatically. However, an overflow test command is available
for inclusion in programs, and the programmer can take whatever action

he deems necessary in that sequence of commands which starts with the

- 34 -

1 1) 1"

ves" answer for any overflow test. The overflow test command is:

L L#2 N 0 29 31.

In addition to testing for the presence of the overflow condition,
this command also turns off the overflow indicator. Furthermore,

that indicator can only be turned off by the overflow test command.
The corollary to this, naturally, is that, once the overflow indicator
has been turned on, through the generation of an overflow, it will
remain on until it is tested.

It is essential, when checking for the generation of overflow by a
certain command or sequence of commands, to be sure that the indi-
cator is off when that command or sequence of commands is entered.
Turning off the overflow indicator through use of the overflow test
command is the only way to insure this, but you must remember that,
even though you are only using the test command for this purpose,
nevertheless it is a test command, and, depending on the original
setting of the indicator, the next command may be taken from either
N or N+ 1. One solution to this is, of course, to place the same
command at N and N + 1, so that, regardless of the answer to the
test, the same sequence of commands will follow.

L|ple | N{c|s|D [sp NOTES

00 02 02 0 29 31 Turn off overflow

02 o4 | os [1] 21| 28 21.00 > aR_ 107°
03 o4 |os [1] 21| 28 21.00 > ar_ 107
05 07 o8 | 1| 21| 29 21.03 — 3aR, 107>
08 10 |10 [o] 29 31]l Overflow?

10 12 | N 1] 28] 22 No AR —3 22.00 107
11 13 oo |o]| 16| 31 Yes Halt

Another solution is to write the overflow test command in the following
way:

L L+2 L-1 0 29 31.

If the answer is "no", the program will continue at L - 1. If the answer
is "yes", the next command will be taken from N (= L -1) + 1 = L, and
the test will be repeated. Of course it will be answered '"no" the second
time, because the indicator was turned off by the test the first time.

- 35 -

L (P ¢ | Njc|s|o s NOTES

05 07 04 0 29 31 Turn off overflow

A 08 |09 | 1| 21 28 21.00 —3 AR | 1072
09 11 |12 [1] 21] 29 21.03-—3'—>AR+ 107
12 14. 14 0 29 31 Overflow?

14 16 | N |1 28] 22 No AR —¥322.00 107>
15 17 |00 o] 16| 31 Yes Halt

The same overflow test is also effective for double-precision arith-
metic in PN.

L|Pl e | N|cfs|D [ep NOTES

00 02 02 0 29 31 Turn off overflow

02 o4 |07 |5] 21| 30 21.00-01 BN, | 107
03 o4 {07 |5] 21| 30 21.00-01-—-1"—913»10-l 1078
07 10 |12 |7 | 21] 30 21.02-03 —3 BN, 1078
12 14 |16 {of 20 31 Overflow?

14 16 |N |5] 26 | 22 No PN<_1;>22.00-01 1078
15 17 {00 |o | 16 | 31 Yes Halt

Two arithmetic operations remain undiscussed: they are multiplication
and division. These cannot be performed by normal commands which call
for the transfer of words. They require special commands.

MULTIPLY
The special command for multiply is:
L T N 0 24 31,

When this command is given, the computer will automatically multiply
two numbers in specific locations of its memory: the multiplicand
will be in the two-word register ID, and the multiplier will be in
the two-word register MQ. The product will be generated in the two-
word register PN.

- 36 -

Multiplication is essentially a double-precision process, and both
halves of ID and MQ enter into it, a double-precision product being
generated in all of PN. We know that the most significant half of
a double-precision number is in an odd word-time, and the least
significant half of the same number is in the immediately preceding
even word-time. Therefore, if we draw the two-word registers as
shown below, the most significant bit in each number involved will
be the left-most bit, as is customary in the writing of numbers in
any number system.

[1 L -
104 ¥ 0,

| 1] [—]
M, M "Q,

[] C 0
[PN,

But single-precision multiplication can also be performed in the
two-word registers, the only difference being that the single-
precision multiplicand will occupy only the most significant, or
odd, half of ID, and the multiplier will occupy the same position,
respectively, in MQ.

A single-precision multiplication will, nevertheless, yield a double-
precision product in PN, due to the fact that multiplication, in the
machine, is a double-precision process. The product, in PN, is gen-
erated through a series of successive additions of ID into PN (see
pages 70 - 75 for an explanation of multiplication). For this
reason, if a single-precision multiplicand is loaded into the odd
half of ID, the even half of ID must be cleared to 0. After a mul-
tiplication of two single-precision numbers has been performed, and
the product is in PN, if a single-precision product is desired, it
will be available in the odd half of PN; if a double-precision prod-
uct is desired, it will be available in all of PN.

The T number in the multiply command is a "relative timing number”
indicating the number of word-times for which the multiplication is

to be performed. Two word-times are necessary for each bit in the
multiplier which is to enter into the multiplication. If two single-
precision numbers are to be multiplied, obviously the multiplier will
contain 28 magnitude bits which are to enter into the operation;
therefore, the T number in the multiply command should be 56. If the
multiplier is a double-precision number, 57 bits of magnitude are to
enter into the operation; therefore, the T number in the multiply com-
mand should be v4 (= 114).

The location of the multiply command should always be an odd word-
time, because the operation is essentially double-precision in nature,
and immediate. It has already been pointed out that double-precision
operations must begin in even word-times. You will find this situation
applying in the cases of other commands, as well.

- 37 -

If the multiply command automatically multiplies the two numbers in
ID and MQ, it stands to reason that, before the multiply command is
given, the proper numbers must be in those two registers. They can
be there only if your program places them there prior to calling for
a multiplication. But copying words into the two-word registers is

a bit more complicated than copying words into any other memory loca-
tions.

There is a flip-flop called "IP", which is associated with the two-
word registers. Under certain conditions, the sign of a number will
be divorced from the magnitude bits and sent to IP, when the desti-
nation is a two-word register; the magnitude bits will always be
transmitted to the addressed register, however. Whenever a sign of
a number is divorced and sent to IP, the bit in the two-word register
which would normally have received the sign is cleared to 0. Simi-
larly, under certain conditions, the sign of a number being trans-
ferred from a two-word register to some other memory location may be
taken from IP, rather than from the two-word register source; the
magnitude bits of the number being transferred will always come from
the two-word register source, however.

It should be noted here that the clear two-word registers command
also clears the IP flip-flop.

The following rules apply to transfers of information to and from
the two-word registers.

1. If the destination is a two-word register (24, 25, 26) and
C is even (0, 2, 4, 6), the sign of the number will be sent
to IP.

a. If ID is the destination, IP will be cleared prior to
receiving the sign of the number.

b. If either MQ or PN (26) is the destination, IP will
not be cleared prior to receiving the sign of the
number, but the sign will be added to the present
contents of IP. Since IP can retain only one bit,
it will contain, in this case, the least significant
bit of the sum, and any carry generated by the sum
will be lost.

2. If the source is a two-word register (24, 25, 26) and C is
even, the sign accompanying the number will be taken from
IP, rather than from the normal sign bit in the two-word
register source.

3. If ID is the destination and C is even, for every bit set
in ID, the corresponding bit in PN will be cleared.

4, If an exchange of AR with memory is called for (C =2, 3, 6, 7)
and the destination is a two-word register, during any even
word-time of execution, AR's contents will be blocked from

- 138 -

entering the two-word register, and twenty-nine O's will be
transferred instead; AR's contents will be lost.

As an exception to rules 1 - 4, if the transfer called for
is from one two-word register to another, IP will remain
unaffected.

As an exception to rules 1 - 5, if the source is PN (26),

the destination is PN (26), and C = 0 or 4, the sign bit in
IP will be combined with the magnitude bits from PN, this
number will pass through the inverting gates, and the result-
ant number will be placed in PN, the sign remaining with the
magnitude bits.

L e | N {c|s | D [NOTES

00 03 | 03 O] 23 31 Clear 2-word registers

03 05 | o6 |o| 10] 25 10.05 —> 1D, 107°
06 07 |09 (o] 20| 24 20.03 —> MQ, 107>
09 s6 |66 (0] 24| 31 Multiply 10710
66 68 [N |4 26| 21 PN, ,—>21.00-01 10 1°
1 ALRUERER NOTES

00 02 |04 |&4] 10] 25 10.02-03 —5 ID) | 107
04 08 | 11 |4 21| 24 21.00-01) MQ 107
11 ve |18 o] 24| 31 Multiply 10710
18 70 8 |af 26| 10 PN, 7> 10.70-71 1070
L e | N [c|s |0 [se NOTES

00 02 | o4 | 6| 10| 25 10.02 —> 1D, 107°
04 06 | 09 | 6| 20| 24 20.02 — MQ, 107>
09 56 | 66 | 0] 24| 31 Multiply 10710
66 67 | n |o] 26| 11 PN ——>11.67 10710

- 39 -

DIVIDE
The special command for divide is:
L T N (1 or 5) 25 31.

There is no difference in the effect of the divide command between a
Cof 1l and a C of 5. When this command is given, the computer will
automatically divide the numerator, in PN, by the denominator, in ID,
generating a quotient in MQ.

Division is also essentially a double-precision process, both halves
of ID and PN entering into it, but the precision of the quotient gen-
erated in MQ is determined by the number of word-times for which the
division is carried out. The T number in the divide command is also
a relative timing number. If a single-precision quotient is desired,
let T = 57; the single-precision quotient will be generated in the
even half of MQ. If a double-precision quotient is desired, let

T = v6 (= 116); the double-precision quotient will occupy both halves
of MQ. A more complete description of the division process is con-
tained in pages 76 - 84,

The location of the divide command should always be an odd word-time.

T
L {P) g | NJCIS|D|BP NOTES
00 03 03 0 23 31 Clear two-word registers
03 05 {06 {0] 211 25 21.01—> 1D, 1077
06 07 |09 o} 10| 26 10.07 ——->PN1 10'7
=)
09 57 {67 |51 25| 31 Divide 10
2
67 68 | N 0| 24| 28 MQ,— AR 10
T
L |P ‘{L N |C| S D [[BP NOTES
-5
00 02 |os |6] 10| 25 10.02 — 1D, 10
04 05 {07 {o]| 201 26 20.01— PN, 1077
07 57 |es 1] 25| 31 Divide 1072
2
65 66 | N ol 24 | 21 MQO—*——? 21.02 10

- 40 -

L{p| e [N c]s|o |sp NOTES

00 02 | o4 | 4| 10] 25 10.02-03 — 1D, 1070
A 06 | 09 | 4] 21| 26 21.02-03— PN, 1078
09 ve | 18 | 5| 25| 31 Divide 1072
18 22 | v | 4| 24| 20 MQ, ;— 20.02-03 1077

Some problems require more mathematical processes than we have discussed
up to this point, for instance, the generation of a square root or a
trigonometric function. Any of these more exotic processes can be per-
formed through a series of arithmetic operations which approximate the
desired value. Subroutines have been written by the Bendix Computer
Division for various mathematical processes, and each of these subrou-
tines can be incorporated into a main program in the same manner in
which the number-conversion subroutine was, in the previous example.

Suppose the following information is included in the specifications for
the square root subroutine, and you desire to store in 19.u6-u7 the
double-precision square root of a double-precision number in 21.00-01:

EXecUution..iieeesneeesoesacoseaanns From command line 0l
Entry.eceeeeeas. ceeeenes cheasae e At word-time 94
EXiCeeeeereotonencaeanononnanenanes .Return command from 01.98
TOPUE e e e vereeeanns R ceree. . N=t3PNO,1
Return command w——p AR
OQUELPUL c v e vevevsnnsnesansnas cecenen ./ﬁ»double-precision = PNp, 1
N single-precision = 20.03
N = 21.00-01

A sequence of commands starting at word-time 56 in the main program,
which could be in any command line other than 0l of course, in this
case, line 00, to accomplish the above purpose,might be:

L{p[¢ [N]{c|s|o [NOTES

56 57 | 58 o] 00| 28 00.57 —3 AR_

570 [Lw |99 [0} 20| 311 Return command

58 60 | 62 | 5| 21| 26 21.00-01-"— PN,

62 64 94 1 21 31 Go to square root subroutine
63 ub | N [5] 26| 19 PN0’1—+—> 19.u6-u7

- 41 -

Mention of taking the square root of a number gives rise to the discus-
sion of two more test commands which are available, and which operate
in the same fashion as the other test commands which have already been
discussed. These two test commands are:

L T N C S 27:

the contents of the operand will be tested for non-zero. If all of the
bits tested equal 0, the answer to this question will be "no"; the next
command will be taken from N. If any of the bits tested equals 1, the
answer will be "yes"; the next command will be taken from N + 1. Any C
may be used in this test command, and the test will be performed on bits
in a predictable manner, depending on the C used.

L L#2 N O 22 31:

the sign of AR will be tested for negative. If the sign is negative,
the answer will be "“yes".

L|p) g | N |c|s|o [NOTES
00 oL | 02 | 1| 20| 28 20.01 —3 AR_

02 03 | 04 | 3] 10| 29 10.03 —>AR,

04 06 | 06 | of 28] 27 Test AR £ 0

06 08 | 00 | of 16| 31 =0 Halt

07 09 | |1 28] 21 Ao ar-Ty21.01
L|efe [N {c|s || NOTES
00 | uf 05 {05 |o| 20| 27 Test line 20 £ 0

05 | ufl 10| 06 ol 21| 20 =0 Line 21 —Line 20
06 07 | 11 | 1| 20 28 £0 20.03 = AR
11 | ull 15|15 | 1| 20] 29 20.00-02 3R,

15 17 17 0 22 31 Test AR negative

17 20|~ [1] 28] 10 + ar t310.20

18 20 | N |1] 28] 11 - aR-—F511.20

- 42 -

LOGICAL OPERATIONS

So far the only operations upon data which we have discussed are arith-
metic, and we have assumed that the data numbers represent quantities.
But we spoke earlier of another meaning for numbers: code. Programs
can be written to process data which is in code form, where each bit,

or group of bits, in a data word represents some information other than
a quantity; it might, for instance, represent the answer to a question,
or the sex or marital status of a person who is being treated by the
program as a statistic. There are operations available in the computer
which are essentially logical, rather than arithmetic, in nature. The
bits in a word may be shifted to the right or to the left, or individual
bits in a word may be isolated from the rest, for independent treatment.

SHIFT
The shifting process can be performed by either of two commands:
L T N 1 26 31

or
L T N O 26 31.

In either case, the words shifted, and the directions in which they are
shifted, are the same: ID shifts right, and MQ shifts left, concurrently.

L — i, L 10, .I
C 1 C 1

The data word which is to be shifted must be placed in either of these
two-word registers, depending on the desired direction of the shift,
prior to giving the shift command. All of ID will shift to the right,
with the exception of bit Tl of IDy, the sign bit, which will not be
involved in the shift. All 58 bits of MQ will shift left.

The number of shifts that will be performed is determined by the number
of word-times of execution allowed; each shift will move all bits in ID
to the right one bit-position and all bits in MQ to the left one bit-
position. T, in each of the shift commands, is a relative timing number,
indicating the number of word-times of execution; two word-times are
necessary for each shift. Therefore, T should equal 2 times the number
of shifts desired: T will always be an even number.

The shift command, L. T N 1 26 31, will operate on ID and MQ in the
above manner for the number of shifts called for by the T number. The
other shift command, L T N 0 26 31, will also operate in the above
manner, but the duration of its execution may be determined either by
the T number in the command, or by the contents of AR. For every shift
performed by this command, a 1 will be added to AR, in the least signi-
ficant magnitude bit-position, bit T2, and the generation of an end-
around-carry in AR will terminate the shifting process with the shift

- 43 -

causing it. If the number of word-times of execution called for by T
in the command is fulfilled before the occurrence of this end-around-
carry in AR, the shift will also be terminated. Therefore, T, in this
command, sets a limit upon the number of shifts that will be performed,
but the number of shifts might be less, depending on the contents of
AR. The location of a shift command should always be an odd word-time.

Before Execution

D 10101101911000010111111001140 ID 1101111010101001001111010111b

1 0
MQl 011000111100011111100011011ﬂ0 MQO 1101001111000001111111010100h

AR 00111101111000000000000001140

L ele [N |c|s|o[se NOTES
00 02 [o4 |5 20| 25 20.02-03 3 10 |
04 08 |11 |5 | 20| 24 20.00-01 5 mq .,
11 s [N |1 26 31 Shift '

After Execution
ID OOOOOOOOOOOOOOOOOOOOIO10110q0 IDO 1100001011llllOOllOOllOllllOb
MQI 001101110110100111100000111ql MQO 11010100lOOOOOOOOOOOOOOOOOOOP
AR 0011110111IOOOOOOOOOOOOOOIIOF

Before Execution
ID 10101lOlOllOOOOlOllllllOOllqO IDO 11011llOlOlOlOOlOOllllOlOlllb
MQ1 011000111100011111100011011ﬂO MQO 1101001lllOOOOOlllllllOlOlOOF

AR OOOOOOOOOOOOOOOOOOOOOOOOOOOOP

T
L [Pl | NJCIS | D (BP NOTES
+
00 02 |oa | 5] 20 25 20.02-03—3 10,
04 08 |11 [5] 20 24 20.00-01— MQ,
11 s |n Jol 26| 31 Shift

- 44 -

After Execution

IDl OOOOOOOOOOOOOOOOOOOO101011040 IDO l1000010111111001100110111140
MQl 001101llOllOlOOllllOOOOOlllﬂl MQO l1010100lOOOOOOOOOOOOOOOOOOdO
AR OOOOOOOOOOOOOOOOOOOOOOO10IOdO
Before Execution
ID1 10101101011000010111111001140 ID0 11011110101010010011110101140
MQl Ol100011110001111110001101140 MQO 11010011110000011111110101041
AR 11111111111111111111111110041
T
L {Pj | NjCIS | D IBP NOTES
00 02 04 5 20 | 25 20.02-O3A—i;}ID0,1
04 08 11 5 20 | 24 20.00-01-—t—)MQ0.l
11 40 N 0} 26 31 Shift
After Execution
ID1 00000000101011010110000101141 ID0 11001100110111101010100100140
MQ1 110001lllllOOOllOlllOllOlOOﬂl MQO llOOOOOl11111101010010000000P
AR 0O000000000000000000000000040
EXTRACT

The isolation of certain bits in a word, so that they may be treated
independently of the other bits in the word, is accomplished through

a logical operation called, logically enough, "extraction'". There

are several "extract® commands, of which we will discuss only two here.

When

you call for an extract operation, you must, of course, specify

the bits to be extracted; you do this by using a "mask” during the
extraction, which is a word in which you have set 1's in those bit-
positions corresponding to the bits in the data word you want to save
and O's in all the rest. For example, we want bits T29 - T22 and Tl
only? the following mask should be used:

111111110000000000000000000
T29 1

One of the extract commands we will discuss now is:

- 45 -

L T N C 31 D.

The source of 31 marks this as a special command, but it will be defer-
red unless a prefix of u is inserted in the command. During each word-
time of execution, the contents of the appropriate word in short line

21 will be compared with a mask in the corresponding word in short line
20, and the bits marked for saving by the mask will be saved. The re-
sulting word, containing bits duplicating those in the data word in line
21, and having O's in the bit positions not "covered" by the mask, will
be transmitted to the appropriate word in the destination. All of this
happens within a single word-time. It may be repeated for as many con-
tiguous word-times as called for, if the command is immediate.

Before Execution
10.06 00111000011100001100111010040
10.07 01101110001101011111000010141
10.08 00011100001110011101111000040

10.09 10011100000100111100111100041

L{efg [N]c|s | [er NOTES
00 Juf o5 |05 |0o] 00| 20 00.01-04 —»20.01-00
01 zzz0000+

02 z000000+

03 0000zzz-

04 z000zzz+

05 fulff 10 10 {O0] 10| 21 10.06-09 — 21.02-01
10 |ul]l 15 [N o 31| 22 20-21 —> 22.03-02

After Execution
22.02 00110000000000000000000000040
22.03 000000000000000011llOOOOlOldl
22.00 00010000000000001101111000040

22.01 10011100000100000000000000040

- 46 -

Before Execution

10.05 10110111110100010011011110041

L|p) o | N |c|s|o [NOTES
00 0L | 02 | o] o0| 20 00.01—>20.01

01 zz00000-

02 05 | 06 [0} 10| 21 10.05 —>21.01

06 09 | 11 | o] 31| 28 20°21 —> AR,

11 05 | N 0| 28| 10 AR —10.05

After Execution
10.05 10110111000000000000000000041

The other extract command to be discussed here is:

L T N C 30 D.

The use of a mask in line 20 and a data word in line 21 is the same

as for the previous command, and the resulting word will be transmit-
ted, as in the other case, to the destination, at the appropriate
word-time. But the effect of the mask is reversed. Those bits in the
word in line 21 corresponding to O's in the mask in line 20 will be
saved, and 0's will be transmitted in all those bit-positions corre-
sponding to l's in the mask. This is called '"not mask" extraction.

Before Execution

10.05 10110111110100010011011110041

L {Pl¢ | N {c|s | | NOTES
00 o1 |02 Jo| ool 20 00.01 —>20.01

01 zz00000-

02 05 | o6 Jo| 10| 21 " 10.05—>21.01

06 09 [11 |o] 30| 28 20-21 — AR¢

11 05 [N fo] 28] 10 AR—10.05

- 47 -

After Execution
10.05 00000000110100010011011llOOIb
Before Execution
10.06 00111000011100001100111010040
10.07 0110111000110101111100001010h
10.08 00011100001110011101111000040

10.09 10011100000100111100111100041

L|p) g | nfc|s|o [NOTES
00 | uf o5 | 05 ol 00| 20 00.01-04 —>20.01-00
oL 2zz0000+

02 2000000+

03 0000zzz -

04 z000zzz+

05 | ufl 20|10 [0 10| 21 10.06-09 — 21.02-01
10fuf 158 Jo] 30] 22 20°21-—>22.03-02

After Execution

22,02 00001000011100001100111010040

22.03 Ol101110001101010000000000040

22.00 00001100001110010000000000040

22.01 000000000000001111001111000q1
Neither of these extract commands will alter the data word in line 21,
or the mask in line 20. The extraction performed by the first command
is expressed logically as: 20-21. It is read as '20 and 21". The
other extraction is expressed logically as 20-21. It is read as "not
20 and 21",
REPETITIVE PROCESSING OF DATA - LOOPS

Very often a programmer is faced with a necessity of writing a program
designed to perform the same process, be it mathematically or logically,

- 48 -

on each of a sequence of stored data words. For instance, all of line
19 might be filled with 108 single-precision data numbers, each of which
is to be processed in the same manner.

To write a program which contains 108 sequences of commands, so that the
same process can be performed on each of these words, will be, in many
cases, impractical, because the program will be too long to be stored

in memory along with the data upon which it will operate, For this rea-
son, programmers have adopted a method of repeating a given sequence of
commands for any desired number of times. In the sequence, certain key
commands, usually those which call for a data word and those which store
a result, will be '"modified' during each pass through the sequence, so
that, each time they are interpreted, they will call for the same opera-
tion on a different word.

Because the computer's only method of determining whether a word is data
or a command is based on the time during which it is read, RC or EX, a
command can be treated as data by another command. This enables us to
incorporate into a program one command which can transfer another com-
mand into AR, where a constant can be added to it, causing a predictable
change in it. We can then transfer the new form of this command from
AR to the command's original location in our program. Thus, the next
time this command is read and interpreted, during the flow of our pro-
gram, it will call for something different.

L|efe [N]c|s | [NOTES

00 00 o1 |1 0] 28 10.00 3 AR, -«
o1 02 |03 | 3| 11| 29 11.02 — AR}

03 00 {o4 [1| 28] 10 AR —53 10.00

04 00 |06 |o0]| 00| 28 00.00 — ARc

06 07 |08 |0 oo | 29 " 00.07 — AR,

07 [fuf o1 [00 |O]| 00| 00

08 00 {10 |O| 28 | 00 AR —00.00
10 03 o5 o] oo | 28 00.03 — ARc
05 07 |09 |o| o0 | 29 00.07—) ARy

09 03 |00 JO | 28 | 0O AR ——00.03 -

- 49 -

The preceding example is fine for the hypothetical case previously
mentioned, with the one exception that the "loop" which we have gen-
erated will be unending. There must be some provision, within the
loop, for exiting from it. We can do this through use of a "counter",
as shown in the example below, where we test this counter for reach-
ing a certain limit, at which point we exit from the loop.

L|pfe [N {c|s | |sp NOTES
00 00 |01 1] 10| 28 10.00 — AR -
01 02 |03 [3] 11| 29 11.02—> AR,

03 00 |04 [1] 28] 10 AR —*310.00

04 14 |15 |o| oo | 28 00.14 —H AR

14 0000000+ Counter
15 16 |17 |3] oo | 29 00.16 — AR,

16 00000u7+ Limit

17 18 [19 [0] 28 | 27 Test AR # 0

19 21 {00 |o| 16| 31 =0 Halt

20 16 {21 [o] oo | 29 #0 00.16 — AR
21 22 |23 {o| 00| 29 00.22—) AR,

22 0000001+

23 14 {26 |o]| 28| oo AR—> 00.14

26 00 {06 o | 00 | 28 00.00 —> AR

06 07 {08 |o| oo | 29 00.07 —> AR,

07 [[ulf o1 |00 o] 00| 00 ;]I

08 00 |10 |o | 28| 00 AR— 00.00

10 03 {05 o | oo | 28 00.03 —AR.

05 07 {09 [0t 00 | 29 00.07 ——)AR+

09 03 |oo |o{ 28| oo AR —> 00.03 —

- 50 -

Another, more complex, method of looping and providing for an exit from
the loop, is to set up a '"base" command, as was done in the previous
examples, a '"difference'" dummy command, by which we modify the base, as
was also done in the previous examples, and a "1limit", which equals the
base command plus a predetermined number of increments. This method is
shown in the example below.

L el e [N |c|s|o e NOTES
00 0L | 02 {o] oo 28 Base I-—3AR¢ a
otffull w7 |15 | 1] 10| 28] Base I

02 03 [04 O] 00| 29 Difference ———}AR+
03[ull o1 {00 |o] oo 00T Difference

04 05 |06 [3] o0 29 Limit —3 AR}

05 | [Lws |15 {1] 10] 28]] Limit

06 07 |08 |o| 28| 27 Test AR £ 0

08 10 |00 |of 16| 31 =0 Halt

09 05 |10 |o| oo | 29 A0 Limit — AR,
10 0l 12 0 28 00 Reset Base 1

12 14 | 20 0 31 31 Next command from AR
20 00 |15 |1 10| 28 :]

15 102 |07 |3] 11| 29 11.02 — ARy

07 |uf 12 |13 |1 | 28| 20 AR +3 20.00-03

13 14 16 |O{ 00 | 28 Base II — AR
1[lulfw [00 {0 20] 10]] Base II

16 03 11 0 00 29 Difference———)ARf
11 14 17 0 28 00 Reset Base II

17 19 19 0 31 31 Next command from AR
19 [:oo 00 {0} 20| 10 :] -

- 51 -

Also shown in the example is the use of another special command, as
yet undiscussed. This new command is:

L T N 0 31 3l.

It directs the computer to take the next command, at word time N,
from AR. As you can see, it would be possible to have the modified
form of the base command in AR when the computer is given the 'mext
command from AR" command. This will usually save the machine time,
and is therefore preferable to the previous method of looping.

THE INPUT/OUTPUT SYSTEM

When all the arithmetic and logical operations necessary have been
performed on the data by a program, the only remaining work for the
program to do is to communicate the answers to the outside world.
This necessitates use of the input/ﬁutput system again.

The input/Butput system can perform only one operation at a time, and
care must be taken, when programming this system, to prevent giving it

a second operation, either input or output, to perform while it is still
engaged in a previous one. The result of such a mistake will be that
the system will attempt to start an operation called for by the "logical"
sum of the two special codes. For instance, if you desired to type out
the answers, and chose the command, L L+ N 0 09 31, which
does call for a "type-out'", and the input/output system was still per-
forming a '"type-in', whose special code, as we know, is 12, the system
would attempt to start an operation called for by the logical sum of
these two special codes. 1In logical addition, a 1 will result in a bit-
position if either of the numbers being added has a 1, or if they both
have a 1, and there will be no '"carry"™ from one bit-position to the
next:

0+0=0,0+1=1,1+40=1, 1+1=1.

12 = 1100
09 = 1001
1101 = 13.

In this case, an input or output whose special code is 13 would be called
for, and this, of course, would be erroneous.

The way to prevent this from happening is to precede each input and each
output command with a ready test, previously discussed, so that the pro-
gram cannot continue to the new input/butput command until the input
output system is ready.

OUTPUTS

There are two normal outputs of the G-15:

1. typewriter, and

2, punched paper tape.

- 52 -

Line 19 is the only source of information for the tape punch; either
line 19 or AR may be the source of information for the typewriter.
The three output commands are:

1. L I+#2 N 0 08 31 : type AR's contents,
2. L I+#42 N O 09 31 : type line 19's contents, and
3. L I+ N O 10 31 : punch line 19's contents.

The computer is very flexible in its choice of forms for an output;

the form of an output may be determined by the programmer. As a matter-
of-fact, the programmer must tell the computer what form the output is
to be in. He does this by supplying the computer with a "format" for
the output. This format must be placed in a specific location in memory
prior to calling for the output. When the output is called for, the
computer will automatically, in this order:

1. copy the format from its location in memory into a special
buffer, called the MZ buffer, where it can control the out-
put, and

2, start the output.

The location for this format depends on the source of the information:
line 19 format: 02.00 - 02.03
AR format: 03.02 - 03.03.

When an output has been called for, and the proper format has been
loaded automatically into the MZ buffer, inspection of the format
will begin, and it will proceed in the direction shown by the arrow
in the drawing below.

MZ

03 o2 o/ oo

- 53 -

Inspection of the format will be from the high-order end of word 03

toward

the low-order end of word 00. Each group of three bits will

be inspected and interpreted as calling for some character of output,
according to the following table:

Character Code
digit 000
end 001
carriage return 010
period (point) 011
sign 100
reload 101
tab 110
wait 111

Example 1:

SDDPDDDWWTE

s
100 o0 000 011, 000 QOO 0G0 111, 111 ﬁdO 001,

02.03 803007z-
02.02 1000000+
Example 2:

SDDDDDDDTSDDDDDDDTSDDDDDDDTSDDDDDDDCE

s
100 Q00 000 006, 000 Q00 000 000, 110 ﬂqo 000, 000 000 0Q0 000, 000 §OO

S $
110 10g bpo 0go 000, 000 g0o 000 000, 110 Udo 0go 000 GOO 0GO 000, 000

000 010 001,

02.03
02.02
02.01
02.00

If the

800000x
0000034
00000x0
0000110

output information being called for by the format is coming

from line 19, the following rules apply to the inspection of the

output

1.

format:

each sign code will cause the sign-bit (T1l) of 19.u7 to
be inspected, and the appropriate sign will be transmitted;

each digit code will cause the inspection of bits T26-T29
of 19.u7, and the proper hex digit will be transmitted,
after which the entire contents of line 19 will be shifted
toward the high-order end of the line by four bit-positions;

- 54 -

3. each carriage return code will cause a carriage return to
be transmitted, after which the entire contents of line 19
will be shifted toward the high-order end of the line by
one bit-position;

4, each tab code will cause a tab to be transmitted, after
which the entire contents of line 19 will be shifted toward
the high-order end of the line by one bit-position;

5. each wait code will cause a blank to be transmitted, after
which the entire contents of line 19 will be shifted toward
the high-order end of the line by four bit-positions;

6. each period (point) code will cause a period to be transmitted;

7. each reload code will cause the transmission, if tape is being
punched, of a reload character, but, if the typewriter is be-
ing activated, nothing will be transmitted, after which the
format will be reloaded and the inspection of the format will
be resumed with the first code;

8. each end code will cause the output to cease, and the input/
output system to go ready, as well as causing the transmission
of a "stop code'", if tape is being punched; but, before an
end code is interpreted as an end code by the output system,
that system will cause a check of all of line 19 for at least
one non-zero bit: if no 1 is found, the end code will be
allowed to operate as an end code, but, if a 1 is found, any-
where in the line, the end code will be interpreted as a re-
load code, as described above (7).

If the output information being called for by the format is coming from
AR, the rules applying to outputs from line 19 apply, with the following
exceptions:

1. all references to line 19 must be changed to refer to AR;

2, the end code will be interpreted as an end code, regardless
of the current contents of AR.

You might wonder about the desirability of punching tape as an output,
rather than typing the outputs. Punched tape output is useful for two
purposes:

1. to keep a permanent, easily reproducible set of outputs,
which can be reproduced, without using the computer, through
use of a relatively cheap tape interpreter; and

2. as interim storage of results, to be used as inputs by the
same program or another later on. The command to read tape
is:

L I+2 N O 15 31.

- 55 -

A tape input is the same as a typewriter input, but it is
ended by the "stop code" already mentioned, rather than by

activation of the '"'s" key.

Just as we converted decimal inputs to binary numbers for computer op-
eration, so we must now convert the binary answers to their decimal

equivalents, through another conversion subroutine, so that the outputs

will be in decimal form.

If the specifications for the binary-to-decimal number conversion sub-
routine contain the following information, and if you have a binary

answer (x-107(2)) in AR, the following sequence of commands, starting
at word-time 10 in the main program in line 00, is designed to convert
this answer to decimal form, and store the converted answer, ready for
output, in 19.u7.

Execution....iieineeieretnsnenonnns Command line 02

) ¢ o Word-time 61

. T o Word-time 63

INPUE . ettt tnesenecaannaneoanennns X (binary)-———;IDl
Return command se——p AR

OULPUL . e e et e ne e ennennronenoneennnns t'x' (decimal) in AR

(7 digits and sign)

T

L (P ¢ | NJC| S | D BP NOTES

10 11 | 12 o 28| 25 AR — ID,

12 13 | 14 o] 00| 28 00.13— AR

13| [l 65|64 [of 20| 317 Return command

14 | w 70 61 2 21 31 Go to n?mber conversion
subroutine

70 u7 [N |0 28| 19 AR—>19.u7

The output of this subroutine will be a decimal fraction, and, if we
know the scale factor for the answer, we can properly position the
decimal point (called for by a period code in the format) in the
type-out of the answer.

In the above example, assume that the answer is x-10_2. An output
format for properly positioning the decimal point during the type-
out would be:

S DD P DDDUDDC E
100 000 000 011 000 000 000 000 000 010 001

When a program has reached the end of all that it is to do, and the
only thing left is to stop, this can be accomplished by a special

- 56 -

command, called the '"halt" command:
L I1I+2 N C 16 31.

The € in this command has no effect upon its interpretation or execution.
A halt command may be given at any time, but, if it is given while an
input or an output is in progress, the input/ﬁutput system will continue
to operate until the end of the process.

After the computer has been stopped by either a halt command or a break-
pointed command, it will continue to operate under program control, with
the next command taken from the location called for by the N of the com-
mand which halted the computer, if the compute switch is moved to '"OFF",
and back to either "GO" or "BP".

At this point we have covered the bulk of special commands which are
available, although some remain unmentioned.

L P T N C S D

L T N 0 23 31 Clear two-word registers. T must equal
at least L + 3, since at least two word-
times of execution are necessary. All
58 bits of ID, MQ, and PN, and the IP
flip-flop will be cleared to 0.

L 56 N 0 24 31 Multiply, single-precision. The single-
precision number in ID] will be multiplied
by the single-precision number in MQj, and
the product will occupy PN, while the sign
of the product will occupy the IP flip-
flop. If a single-precision product is
desired, it is in PN1. If a double-preci-
sion product is desired, it is in all of
PN.

L vh N O 24 31 Multiply, double-precision. The double-
precision number in ID will be multiplied
by the double-precision number in MQ, and
the double-precision product will be in
PN, while the sign of the product will be
in the IP flip-flop.

L 57 N 1 25 31 Divide, single-precision. The number in
or PN (if single-precision, in PN1) will be
L 57 N 5 25 31 divided by the number in ID (if single-

precision, in IDy1), and the single-preci-
sion quotient will be in MQg, while the
sign of the quotient will be in the IP
flip-flop.

L vb
or

L v6
L T
L T
L T
L T
L T
L T
L T

25

25

26

26

31

31

30

22

28

31

31

31

31

31

31

- 57 -

Divide, double-precision. The double-
precision number in PN will be divided
by the double-precision number in ID,
and the double-precision quotient will
be in MQ, while the sign of the quotient
will be in the IP flip-flop.

Shift, ID will shift right, and MQ will
shift left, for the indicated number of
shifts. T = 2 times the number of shifts
to be performed.

Shift under control of AR. ID will shift
right, and MQ will shift left, for the
indicated number of shifts. Shifting will
cease at the end of execution time or
after an end-around-carry has been gener-
ated in AR, whichever occurs earlier.

1 will be added to AR for each shift per-
formed, Usually T will equal 54, allowing
27 shifts, which is the maximum that can
be performed without shifting all bits

of a word out of the word,

Extract 20:21. The bits from word T in
21 called for by the mask in word T in
20 will be transferred to word T in the
destination. All other bits in word T
in the destination will equal O.

Extract 20:21. The bits from word T in

21 called for by the reverse of the mask
in word T in 20 will be transferred to
word T in the destination. All other bits
in word T in the destination will equal O.

Test word T in line S for non-0. The bits
tested will depend on the C in this com-
mand. If none of the bits tested contain
a 1, the next command will be taken from N.
If any one of the bits tested does contain
a 1, the next command will be taken from
N+ 1.

Test the sign bit of AR for negative. Only
one word-time of execution is necessary,

and the flag in T may be L + 2. 1If the sign
of AR is positive, the next command will be
taken from N. If the sign of AR is negative,
the next command will be taken from N + 1.

Ready test, If the input/butput system is
not ready, the next command will be taken
from N. If the input/butput system is ready,

- 58 -

the next command will be taken from N + 1.

If it is desired to use this command in order
to "hold up" a program from proceeding until
the input/output system goes ready, both T
and N should be set equal to L.

T N 0 29 31 Test for overflow. Only one word-time of
execution is necessary, so the flag in T
may be set equal to L + 2. If the over-
flow flip-flop has not been set, the next
command will be taken from N. If the over-
flow flip-flop has been set, the next com-
mand will be taken from N + 1. Execution
of this command automatically resets the
overflow flip-flop to the "off" condition.

T N C 16 31 Halt. This command needs only one word-
time of execution, so the flag in T may
be set equal to L + 2. The C in this
command will have no affect on its opera-
tion. The computer will start a new se-
quence of commands at N, if, after it has
halted, the compute switch is moved to the
"off" position and then to either "GO" or
"BP" .

T N € 21 31 Mark, transfer control. Only one word-
time of execution is necessary for this

T N € 21 31 command. Program control will be trans-
ferred to line C, word N. The last word-
time of execution of this command will be
'marked", for use by a subsequent return
command ,

I+2 I+1 € 20 31 Return command. Program control will be
transferred to line C at the marked word-
time.

T N O 12 31 "Gate Type-in'". Only one word-time of
execution is necessary for this command,
so the flag in T may be set equal to L + 2,
The typewriter will be activated for input
to the computer.

T N O 15 31 Read punched tape. Only one word-time of
execution is necessary for this command,
so the flag in T may be set equal to L + 2.
One block of tape will be read into the
computer.

T N 0 06 31 Reverse punched tape. Only one word-time
of execution is necessary for this command,
so the flag in T may be set equal to L + 2.

- 59 -

The tape will automatically be reversed,
and positioned for the read-in of the
last block previously read into the com-
puter.

L T N 0 08 31 Type AR's contents. This command needs
only one word-time of execution, so the
flag in T may be set equal to L + 2.
The type-out will be under control of the
format contained in words 03.00 - 03.03.

L T N 0 09 31 Type line 19's contents. This command
needs only one word-time of execution, so
the flag in T may be set equal to L + 2.
The type-out will be under control of the
format contained in words 02.00 - 02.03.

L T N O 10 31 Punch line 19's contents on tape. This
command needs only one word-time of exe-
cution, so the flag in T may be set equal
to L + 2. The punch-out will be under
control of a format contained in words
02.00 - 02.03.

L T N 1 31 31 Copy number track into line 18. Any
words may be copied, depending on L and
T of this immediate command. To copy
the entire number track into line 18,
T should equal L+ 1. Line 18 should be
cleared prior to giving this command.

L T N 0 31 31 Take next command from AR. The next com-
mand will be read from AR at word-time N.
Program control will return to the same
line in which this command is located, for
the succeeding command.

The commands we have discussed can be combined to constitute a program,
and when this is done, PPR is used to enter the program into the computer.
PPR takes each command and converts it to the binary form needed by the
machine and places it in its proper location. PPR can also punch a block
of tape containing the information in any long line in memory. It can
accept hex constants and place them in their proper locations, and it can
accept decimal constants, convert them to binary, and place them in their
proper locations. It can read tape, accept corrections to the information
from the tape, and produce a new, corrected tape.

Through certain auxiliary routines associated with it, PPR can help the
programmer in checking out his program, it can automatically prepare
output formats, and it can list, in decimal command form, all the com-
mands in a program, either in the order in which they would be operated,
or in the numeric order in which they are located.

- 60 -

In addition, PPR has other capabilities. The various tasks it can
perform, and the way in which it is told to perform each of them,
are listed and discussed in detail in the G-15 operating manual.

Although PPR can be used to enter a program into the memory of the
computer, there must be a way of doing this that does not require
PPR to already be in the memory of the computer. We know this,
because PPR, itself, can be loaded into the computer when there is
no useful information already in memory. It stands to reason that
the same method by which PPR is originally loaded, could also be
used to originally load any other program, under similar conditionms.

This method is a "loader'" program which operates in the manner
described on pages 147 - 149.

Once we have used PPR to initially make up a program, we can give
PPR an instruction to punch a block of tape containing this program,
and we can precede this block of tape with another block, containing
such a loader program. In this manner, any program prepared by PPR
can be made self-sufficient, and PPR will no longer be necessary
either to load the program into the memory of the computer, or to
operate 1it.

Several times, in the preceding pages, reference has been made to
information in the following portion of this manual. An attempt
has been made, up to this point, to present a basic, yet fairly
complete, picture of the G-15 and the methods to follow in program-
ming it. The following pages present the same picture, in much
greater detail, complete with some of the more exotic possibilities
in utilizing the full powers of the computer.

COMMANDS IN BINARY FORM

Remember it has been pointed out several times that there is no
difference in appearance between data numbers and commands in the
computer; each form of computer word occupies 29 bits. We have
already had a brief look at data words, both single- and double-
precision; it is now time to consider the contents of commands.
Commands occupy only single words; there is no such thing, in the
G-15, as a double-precision form of a command, occupying 58 bits,
although you will see the term "double-precision command' used.
This term is used to refer to a command calling for an operation
on a double-precision data number. In the 29 available bits, the
following information must be specified:

1. operation,
2. address of operand,
3. address to which operand is to be transferred, and

4. address of next command to be obeyed.

29

28

- 61 -

22]21]20 14 J13 12]11 07 |os 02 o1

ID

T BP N cH s D s/D

Specification of the operation requires three bits: 01, 12, and 13.

Bit 01 indicates whether single- or double-precision operation is
required; if it contains 0, single-precision is indicated; if it con-
tains 1, double-precision is indicated. Bits 12 and 13 contain a two-

bit code for the operation itself; this code is called the 'characteristic
(cu)".

00 - calls for a straight transfer of the operand from one location

01

10

into another. After this operation has been performed, the
operand, in its original form, will be in both locations in
memory.

calls for use of "inverting gates' during the transfer of the
operand from one location to another. Inverting gates perform
the complementation which has been previously described. The
sign of the number is the first bit to be transferred. The
inverting gates inspect it to determine whether or not it is

a l: if it is not 1, they allow the following magnitude bits
to pass through unchanged; if it is a 1, they complement the
following magnitude bits.

calls for an exchange of numbers between memory and the one-
word register, AR. After execution of a command calling for
this, the specified receiving address will contain the orig-
inal contents of AR, as the result of a straight transfer;

AR will contain the specified operand, also as the result of

a straight transfer. It obviously makes no sense to exchange
AR with itself in this manner. Therefore, this characteris-
tic has an entirely different meaning if AR is specified in
the command as either the operand or the receiving address.
Any other memory locations may be specified, but if PN is
specified as either of the two addresses in the command, the
line number 26 should be used, rather than the number 30, each
of which, you remember, may refer to PN. In this way we have
a rule governing the meaning of this characteristic: 10 calls
for an exchange between memory and AR if neither the address
of the operand nor the receiving address contained in the com-
mand is equal to, or exceeds, 28. Do not worry about line
number 31; it is a special address, and it will be better to
cover it later. We see, then, that the contents of AR and a
memory location may be exchanged (the address of the operand =
the receiving address), or the contents of AR may be transfer-
red to one place in memory and AR may receive the contents of
another, entirely different, word.

If AR is specified as the operand (AR is always referred to
as 28 when it is the operand) in a command whose operation
code is 10, the absolute value of the contents of AR is

11

- 62 -

transferred to the receiving address (28 bits of magnitude,
less sign-bit). The result of the transfer will always be
a positive number. Similarly, if AR is specified as the
receiving address, it will receive only the absolute value
of the operand. If, in such a case, AR is referred to as
line 28, this absolute value will appear in AR, of course
always positive. If AR is referred to as line 29, special
circuitry which turns AR into an accumulator is called into
action, and the absolute value of the operand (a positive
number) will be added to the present contents of AR. The
result may or may not be positive, depending on the previous
contents of AR.

If line 30 (PN, as the double-precision accumulator) is
specified as the receiving address, the magnitude of the
operand will be added to PN. This will normally be a
double-precision command. If it is not (it is, therefore,

a single-precision command), 28 bits of the operand will

be transferred to the receiving half (odd or even, depending
on the address of the operand) of PN, and added to the present
contents of that half of PN.

if neither the specified address of the operand nor the spec-
ified receiving address is equal to, or exceeds, 28 (AR), an
exchange of AR and memory similar to that called for by 10,
discussed above, is performed. There is one important dif-
ference, however. Note that this characteristic is a combi-
nation of 10 and 0l. If you remember that 0l called for use
of the inverting gates (to complement negative numbers), you
could make an informed guess that they are involved in this
exchange of AR with memory. You would be right. The contents
of the operand, on its way to AR, pass through the inverting
gates, and the operand will be complemented if negative. The
inverting gates will not be used for that part of the exchange
that transfers the original contents of AR to memory. So,
upon execution of this command, the original contents of AR
will appear in memory, as the result of a straight transfer,
and the contents of the operand, complemented if negative,
will appear in AR,

Again, there is a special meaning for this characteristic if
AR is specified as either the sending or the receiving address,
or if PN, referred to as line 30, is specified as the receiving
address. In either of these cases, one covering single-preci-
sion operation, the other, double-precision operation, this
operation will cause a subtraction, which is, in the terms of
the computer, as already mentioned, a combination of changing
the sign of the operand and then complementing the operand on
its way to the receiving address, if necessary. If AR is
specified as line 28 and as the receiving address, the operand,
with changed sign and complemented if necessary will be trans-
ferred into AR. This we could call a 'clear and subtract'.

If AR is specified as line 29 and as the receiving address,

- 63 -

the special circuitry which activates AR as an accumulator
will be called into action, and the operand, so modified,
will be added to the original contents of AR, which, in
effect, is a subtraction. If PN is referred to as line 30
and as the receiving address, the contents of a double-
precision operand will be subtracted from the original
contents of PN. Notice there is no ''clear and subtract"
possible with PN; if this is desired, two commands will

be necessary, one to clear it to 0, and another to subtract
the desired operand from 0. If AR is referred to as the
operand in a subtraction, the sign of the operand will be
changed, and then the operand will be complemented if
necessary on its way to the receiving address.

Notice here that one way to clear either of the accumulators
(AR or PN) would seem to be to subtract its contents from
itself. A - A = 0. Since they behave in similar fashion,
we will consider here only AR, thus limiting the examples

to 29 bits, rather than 58. If the number contained in AR
is positive,

l11010101011llOOllOOllOlOllOb,

and we subtract it from itself (change the sign, complement
if the new sign is negative, and add),

lllOlOlOlOllllOOllOOllOlOllQE
0001010101000011001100101019
{700000OOOOOOOOOOOOOOOOOOOOOOO

il
ca I
00000000000000000000000000000,
we're in good shape; we get what we expect. AR is cleared
to 0. But, if AR is originally negative,

11101010101111001100110101101,

and we subtract it from itself (change the sign, complement
if the new sign is negative, and add),

111010101011110011001101011
111010101011110011001101011
} 1101010101111001100110101100&

1101010101111001100110101100p
we're in terrible shape. We expected 0, and didn't get it.

You see, there was a basic assumption underlying the sugges-
tion that subtracting a number from itself in AR would clear
AR to 0. That assumption was that, when a 28-bit magnitude
is added to its 28-bit complement, 28 O0's must result with
an end-around-carry of 1 into the sign position. Since the

- 64 -

addition of positive and negative sign yields 1 in the sign
position, when the end-around-carry of 1 is added to the
result, a positive sign (0) is obtained. Thus, remembering
that there is no carry from the sign position into the least
significant magnitude position, in such a case, 29 0's (+ 0)
The fallacy in our original suggestion was that,
because two magnitudes were being added together, one with a
negative sign and the other with a positive sign, we assumed
that a magnitude and its complement magnitude would be added.
We never did get the complement, however, if our original

must result.

number was negative.

When its sign was changed, during the

subtraction process, a positive sign resulted, and the in-
verting gates allowed the number to pass through, unmodified.

0f course we can always make sure that AR contains a positive
number to begin with, by transferring the contents of AR into
itself with a characteristic of 10, calling for absolute value.
Now AR can be cleared by subtracting its contents from itself.

We have now covered all of the possible combinations that can be squeezed
out of the three bits in a G-15 command that specify the operation. For
the sake of ease in remembering these, we'll assign a corresponding dec-

imal number, called a 'C' code,

HCII

0

4

s/p cH
0 00
1 00
0 o1l
1 o1
0 10
0 10
1 10

to each one, as shown below.

Meaning
Straight single-precision transfer.
Straight double-precision transfer.

Single-precision transfer via the
inverting gates.

Double-precision transfer via the
inverting gates.

If 28, 29, 30 or 31 not specified,
transfer contents of AR to receiving
address, operand to AR.*

If 28, 29 or 30 is specified, trans-
fer absolute value of operand to re-
ceiving address.

If 28, 29, 30 or 31 not specified,
transfer contents of AR to first

word of specified double-precision
receiving address, first word of
double-precision operand to AR.

Then transfer the present contents

of AR to second word of specified
double-precision receiving address,

and the second word of double-precision
operand to AR. *

llcll

s/p cH
1 10
1 10
1 10
0 11
0 11
111
111
1 11

- 65 -

Meaning

If 30 is specified as the receiving
address, transfer a double-precision
absolute value (57 bits).

If 28 is specified as operand, trans-
fer absolute value from AR to first
half of double-precision address, then
transfer all 29 bits from AR, treated
this time as most significant half of
a double-precision magnitude, to the
second word of the double-precision
receiving address.

If 28 or 29 is specified as receiving
address, transfer absolute value of
least significant half of double-
precision number to AR, then trans-
fer the most significant half of the
double-precision magnitude (all 29
bits) to AR.

If 28, 29, 30 or 31 not specified,
transfer contents of AR to receiving
address, and operand via inverting
gates to AR.*

If 28, 29 or 30 is specified, change
sign of operand, then transfer operand
with new sign, via inverting gates, to
receiving address.

If 28, 29, 30 or 31 not specified,
perform same transfers as for opera-
tion code 6 under these conditions,
except that all numbers transferred
to AR are transferred via the in-
verting gates. *

If 30 is specified as the receiving
address, change sign of double-
precision operand and transfer it
to the receiving address, via the
inverting gates.

If 28 is specified as the operand,
transfer the number in AR with its
sign changed, and complemented if
necessary, to the first word in the
double-precision receiving address.
Then transfer all 29 bits from AR,
treated as the second 29 bits of a
double-precision number, and comple-

