FORM
BCD
108-5.0

- 156 -

‘Bﬂ‘/’/ Los Angeles 45, California
Page _4 of _6
G-15D Prepared by Date:
PROGRAM PROBLEM : Computation Line _00
o 1 2 s L |ele [wfe]s |0 |ee NOTES
4 5 6 1 u2 ud | us | 0] 23| 28 N = (23.03) —>ARc
8 9 10 N uk us [u6 | 3] 23| 29 N = (23.01) —>AR+
12 13 14 15 ub 00 { oL fo| 22 31 Test for sign of AR (neg.)
6 17 18 18| o 03 {00 [o] 16| 31 Halt
2 21 22 23 02 04 | 10 |4 25| 21 N = (IDO,l)-———>21.00,01
24 25 26 27 10 13 {15 fo| 23| 31 Clear 2-wd. Registers
28 29 30 3 15 17 |21 [o]| 20 25 2a = (20.01) ——>ID;
32 33 M4 3 21 24 129 |4 | 21| 26 N = (21.00,01)—=PNj 1
% 37 38 39| 29 57 {89 |1} 25] 31 Divide
4 4 42 43 | 39 30 [u5 |0 24| 28 MQ, ——>~ARc
4 45 46 4] u5 u7 |24 (o] 28| 19 AR —319.u7
48 49 50 51 24 25 |28 |3]| 22| 28 0 = (22.01)—=ARc
52 53 54 55| 28 31 |33 |3 20 29 v = (20.03)——> AR+
5 57 58 &9 33 35 |37 |o| 29| 31 Test Overflow
60 61 62 63 | 37 38 [41 |1 | 28] 28 AR > AR
64 65 66 67 38 40 (00 |0 16 | 31 Halt
68 69 0 N 41 44 {45 10| 23 | 31 Clear 2-wd. Registers
12 13 14 15| 45 47 |49 o | 28| 25 AR —>1ID;
6 77 18 19 49 42 192 |o| 26 | 31 Shift ID right 21 bits
80 81 82 83 || 92 93 |95 |0 | 25| 28 ID, —>~AR
84 85 86 87 | os 96 |97 |2 | 28 | 28 | N} = (aR)}—> ARc
88 89 90 81) o7 ul |u3 |3 23| 29 |l = (23.01) = AR+
2 93 94 9| u us {51 |o | 22 | 31 Test for sign of AR (neg.)
% 97 98 99| 51 53 oo |o] 16 | 31 Halt
ug uwl w2 W) s2 54 156 4| 25| 21 N = (ID; ;)—>21.02,03
U4 us U 56 59 |59 [0] 23| 31 Clear 2-wd. Registers

FORM
108-5.0

- 157

“&endi”
Los Angeles 45, California
Page 5 of _6
G-15D Prepared by Date:
PROGRAM PROBLEM: Computation Line 00
T
o 1 2 3| L {Ph P | N|CES|D|BP NOTES
4 5 6 1 59 61 | 62 | 0] 20| 25 2a = (20.01)——>1ID,
8 9 0 nu 62 66 | 69 | 4| 21| 26 N = (21'02’03)""’PNQL1
12 13 14 15 69 57 1 25 { 1] 25| 31 Divide
® 17 18 19 25 26 | 31 | o] 24| 28 MQs——>ARc
20 21 22 23 31 ub | 48 | 0| 28] 19 AR—319.ub
24 25 2 27 48 50 | 50 | 2| 21| 31 Mark, Transfer—02.50
28 29 30 31
32 33 34 3
3% 37 38 39

4 4 42 4
4 45 46 4]
48 43 50 51

92 §3 54 55
5% 57 58 59
60 61 62 63
64 65 66 67
68 69 70 71
12 13 14 15
6 17 18 19
80 81 82 83
84 85 86 8
88 89 90 91
82 93 94 95
% 97 98 99

o w1 u2 w3
U4 us ub

- 158 -

“Bendi”

Los Angeles 45, California

Page 6 of 6

G-15D Prepared by o
PROGRAM PROBLEM : Input/Output Line 02
o 1 2 s | Lfefo|n]cls |0 [sp NOTES
4 5 6 1) 0000011
8 9 10 1y 800000x
L2 R L 00 01 042128 |28 1 Clear AR
© u w1 o5 | o6l 3|28 | 26 J
0 A 22 B o6 |u o7 | o7]o]28 |19 Clear line 19
B % 21) 07 | o7]ol2s |31 Test Ready
28 2 3% 3}y 10 | 10joli12 |31 Gate Type-in
2 B MU B, 10 | 10lo0]28 |31 Test Ready
%3 B/ VY, 14 | 15]0f23 |28 a=(23.02) > ARc
0 4 2 4 15 17 1810128 |21 a = (AR)™™ 2].0l
4 45 8 4 21 | 22023 |22 b = (23.01)=>22. 01
4 8 5 ST, 28 | 00]o 21 |31 Mark, Transfer —>00. 00
52 8 M 5| ., 52 | 071009 |31 Type line 19
5% 57 58 89
60 61 62 53
64 65 66 67
68 69 70 T
12 13 WK 1B
% 17 18 19
80 81 82 83
B85 8 8
88 89 90 9
92 93 94 95
9% 97 98 99

uo uwr w2 ul

0 us us s

108-5.0

- 159 -

At this point let's discuss the program as it is coded. The first
part of the program to be operated will be in the loader. With the
entire program tape, generated in a manner already described, loaded
on the photo-reader mechanism, you will strike the p key, and one
block of tape (the loader) will be read into line 19. Striking the

p key also sets the computer to take its next command from word 00

of command line 7 (line 23). This word will, of course, be the same
as word 00 in line 19, and, as a matter of fact, so will words 01,

02, and 03. The command located at 23.00 is a 'block copy" of all

of line 19 into all of line 02. Remember the function of the T num-
ber in an immediate command: it is to serve as a flag, stopping the
execution of the command after word-time T - 1, and before word-time
T. Word-time T, in this case, 01, will be the first word-time fol-
lowing the end of the execution of the command at 23.00, and it there-
fore is the first word-time available for the reading of another com-
mand. No time will be lost while the computer waits to read the next
command if it is located in word 0l. This, then, explains the choice
of word 01 as N in the command at 23.00. Of course, the next command
in the program must be located at word Ol in the same command line.

It is, and it is a "mark and transfer control" command, causing the
computer to take its next command from word 03 in line 02. This is
also an immediate command, and must be executed for one word-time, 02.
Thus 03 is the best possible location for the next command, and that's
why it was chosen as N in the command located at 23.0l.

Now, notice that line 19 contains, in words 00, 01, 02, and 03, the
same four words that are contained in line 23, and that line 02 con-
tains the same words as line 19. Therefore, words 00, 01, 02, and
03, in line 02 are the same as the four words in line 23. So command
03 in line 02 is the command as shown on the coding sheet for the
loader. At 03 a command from line 02 will be read which will call
for the reading of a block of tape, and the program will continue

to 05, the next command. Up to this point, no time has been lost in
either waiting to read the next command or in waiting to execute any
command .

The command located at 02.05 will cause the computer to test for the
normal input/output system "ready'. If it is not ready (there is an
input or an output in progress), the answer to the question asked of
the computer will be '"mo", and the program will continue at N. Remem-
ber that the G-15 will continue to compute while an input or output is
in progress. Since N of the test command is 05, the test will be re-
peated, over and over again, until the input/butput system is ready,
which will be the case only when the block of tape has been read. No-
tice that the computer has not stopped operating; it is merely repeat-
ing the same command until a given condition exists, at which point it
will go on to a new command, and the only reason it is doing this is
that this is the way the program was written. Notice that the ready
test is also an immediate command, executing during word-times 06
through 04, when it is stopped by the flag (05) in T. 05 is therefore
the next available word-time for reading a command, and N equals 05,
so there will be no lost time in waiting to read the next command.

- 160 -

Further study on your own should indicate that, because of the T's and
N's chosen in the commands of the loader, there will be no wait-time of
either variety involved in the operation of this part of the program.
Eventually, at word-time 14, another immediate command will be read, and
this one, during word-times 15 through 14, will "block copy" all of line
19 (at this point containing the input/butput portion of the program)
into all of line 02, destroying the loader, which has, at this point,
outlived its usefulness. Here the first wait-time is encountered. The
last word-time of execution of this command is 14, so the next available
word-time at which the next command could be read will be 15. But the
next command is called for from word 00 of line 02 (the program continues
in the same command line, although the contents of that line have changed).
Word-times 15 through u7 will be lost time during the current drum cycle,
while the computer waits to read the next command (at 00).

The next command in the program (02.00) calls for placing the magnitude
of AR's present contents in AR. Its execution time will be 01, and no
time will be lost in waiting to execute. You might ask yourself, looking
at the coding for 00 in the input portion of the program, in line 02,

why a drum cycle would not be lost. It has been stated previously (page
151) that PPR will make all commands with D % 31 deferred. And a long
time ago (page69) it was stated that, when the computer is directed to
defer execution of a command until the word-time indicated in T, it must
wait one word-time at least before it can execute the command. If, then,
a deferred command is given at word-time 00, to be executed in 01, why

is it that the computer will not have to wait until 0l in the next drum
cycle to execute the command? The reason is that, the authors of PPR,
thinking all the time, were one jump ahead of you. When PPR is directed
to make a command deferred (D 31), it first tests to determine the
relationship between T and L. If T is one greater than L, PPR increases
T by one (T = L2) and makes the command immediate. In other words, the
command at 00 of the input part of the program, could have been coded in
the following form, and the same effect in the resultant machine-language
program would be achieved:

L P I N C 5 D
00 u 02 04 2 28 28

Although no time will be lost waiting to execute this command, notice
that two word-times will be lost waiting to read the next command, since
it is called for at 04, even though the next available word-time for its
location will be 02. The reason for this is that line 02 must contain,
as well as this part of the program, the output format, which has already
been discussed, and which in this case, occupies words 02 and 03 of the
line. Obviously no command can be stored in either of these locations
without disturbing part of this format.

You should be able to carry out the rest of this analysis of the program,
as coded, for yourself, spotting any wait-to-execute or wait-to-read com-
mand time. Notice that an attempt has been made to cut down on this
wasted time as much as possible, although this program still wastes quite
a bit of time. You might devise for yourself ways in which to cut down

- 161 -

on this waste, by arranging the incoming data (a, b, and c) differently,
performing some of the operations in a different order, using different
temporary storage locations, etc.

Notice that, towards the end of the computation portion of the program,
in line 00, the amount of wait-time increases, due to the increasing
unavailability of storage locations for the necessary commands.

This program is not the most efficient method of arriving at the solu-
tion for the roots of a quadratic equation; it is straight-forward,
however, and coincides with the original flow-diagram for the solution
of the problem, as developed on pages 122 - 126.

It was operated with the inputs:

a =1 (0000080)
b =1 (0000080)
c = -6 (0000300-~)

and the results were:

X, = 0000101 = 2(2-21) 4+ Princeton round-off (from division)

x, =-0000181 =-3(2-21) + Princeton round-off (from division).

2
The Program Preparation Routine, as it appears on punched tape, is
very long, consisting of many blocks of information. Of all these
blocks, four are basic, in that they form the heart of the routine.
With them you can prepare all of the commands in machine language for
a long line; you can also enter hex constants into the long line at
any desired word-time; you can punch a tape of the line's contents;
and you can set up almost all of memory in any way you wish (not all
of memory, however, because PPR has been written to protect itself,
and, if you command it to destroy part of itself, it will reject your
command).

The line in which PPR stores the commands and constants you give it
is line 18. Word-times will be fixed in this line. The whole line
itself may, however, be placed in any other long line in the memory
of the G-15, with the exceptions of lines 05, 15, 16 and 17, since
these are the lines occupied by the basic package of PPR. Thus, we
could use PPR to enter the proper machine-language commands at proper
word-times in line 18, along with the properly located hex constants,
and then cause PPR to copy line 18 into line 00, thus setting up the
main computation part of our program. We could also cause PPR to
punch a block of tape containing this line of program, so that it
would be preserved in its machine-language form, relieving us of the
necessity of having to re-type all of the individual commands and
constants, in case it is ever desired to re-enter the program into
the computer.

- 162 -

When PPR has been read into the memory of the computer (p, then GO),
its four basic lines will be occupying lines 05, 15, 16, and 17, and
the computer will be "hung up' on a ready test, gating type-in. PPR
is waiting for a command from you to do something.

The first thing you would probably want PPR to do is to clear any
already existing garbage out of line 18; you would probably want to
do this just prior to making up any line of program or constants.

The command which will tell PPR to do this is x00 (tab) s. The neons
on the front panel of the computer will flicker momentarily, as line
18 is cleared.

PPR, after performing an indicated task, will always return to that
point where it gates type-in of a new command, eager to do more work.
The next thing you might want to have it do is start a series of com-
mands, accepting your commands in their '"decimal command" form, con-
verting them to their true binary machine language form, and storing
them in line 18 at the proper word-times. PPR can be told to start
such a series of commands at word-time ab by the command, yab (tab) s.
It will immediately type a carriage return and L = ab, and then gate
type-in of the command, itself. When the command has been typed in,
followed by (tab) s, PPR will convert the various portions of it, make
up the proper machine language command, and store it in word ab of
line 18. On the next line, on the typewriter, PPR will then type a
new L, equal to the N of the command just entered. PPR will be un-
able to notice the end of such a sequence of commands, and, at some
point, after a new L has been typed out, you will not enter another
decimal command to be converted and stored, but, instead, you will
enter another command to be interpreted by PPR as telling it what to
do next. PPR will be able to recognize this new command; there is no
danger of it trying to incorporate it as another machine language com-
mand in the program you are making up.

This next command you give PPR might be to reproduce, on punched tape,
the present contents of line 18; in this case it would be x06 (tab) s.
All of the words in line 18, 108 of them in all, will be added, regard-
less of overflow, and the sum, called a '"check sum', because it can be
used to check for accurate read-in of the tape later, will be typed
out, after which the contents of the line will be punched on tape. In
our previous discussion of typing out or punching the contents of line
19, it was pointed out that the output will end when the end code of
the output format is sensed, and a resulting check of all of line 19
indicates that the whole line is clear. PPR block copies all of line
18 to line 19, and then executes a command calling for the contents of
line 19 to be punched on tape, under control of an "abbreviated" format
(DDDDDDDDDDDDDDDDDDDDDDDDDDDDDE), which calls for four words of output
at a time. If each D calls for an output character representing four
bits, 29 D's will "cover" 116 bits = four full words. This tape will
be relatively unintelligible upon inspection but will serve as interim
storage of all bits. When it is read into line 19, line 19's original
setting, bit-by-bit, will be reproduced. If words 00, 01, 02, and 03
in line 18 are all clear, but there is some non-zero information in the
next higher group of four words, the last word of output would be word 04,

- 163 -

When such a tape is read into the computer, the last word from tape will
remain in 00 of line 19, leaving the first word of input in word u3 of
line 19. This would not be too good, since all the words in the line
would be removed from their correct location by four word-times. In
order to avoid such an embarrassing state of affairs, PPR will, when
called upon to punch line 18's contents on tape, check words 00 through
03 for non-zero. If they contain only zeroes, PPR will insert two bits
in word 03, so that its hex form will be 4400000. Thus, as the output
continues, every time the end code of the format is reached, a check of
line 19 will yield non-zero, causing output to continue for four more
word-times, until, finally, words 03 down through 00 will be punched on
tape, at which point line 19 will be entirely cleared to zero, and the
output will cease. This will assure us of a tape, which, when read into
the computer, will load word 00, and therefore all other words, correctly.
Remember that when such a tape is read, word 03, although you originally
set it with nothing, will now contain the hex number 4400000.

""PRECESSION'', AS USED BY PPR

When you call for the output of line 18's contents, there may be many
full words of zeroes at the high end of the line. Output of these words
is unnecessary since they need not be filled, during input, to guarantee
that the non~-zero words will be set correctly. If only the last four
words contain non-zero information, only four words will be punched on,
tape. When this tape is read into the computer, only the last four words
of line 19 will be set, but they will be properly set. PPR gets rid of
words containing all zeroes prior to punching out the contents of line
18, by four-word groups. As soon as the first non-zero four-word group,
counting from u7 down, is encountered, output is initiated. To under-
~stand how PPR eliminates words from a line four-at-a-time, you must
understand the effect of the following command, where both S and D are
less than 28, and C = 2:

L P I N C 5 D

L u Lk N 2 S D
Consider first a short line. S =D =20, T = Lg. A C code of 2 calls
for an exchange of AR with memory. During each word-time of execution,
(AR) =—>D.T and (S.T) —3»AR. Let the command be:

L P I N C S D

00 u 06 N 2 20 20

word-time of AR holds con- this word in line AR re-

execution: tents of: 20 receives: ceives:
01 (AR) (AR) (01)
02 (01) (o1) (02)
03 (02) (02) (03)
04As00 (03) (03) (00)

05,01 (00) (00) (AR) = (01)

- 164 -

The contents of line 20 have moved up one word-time: what was in 00 is
now in 0l, what was in 0Ol is now in 02, what was in 02 is now in 03,
and what was in 03 is now in 00. AR's original contents have been re-
stored to AR.

Notice that a fifth word-time of execution is necessary, even though
we are moving four words. It is necessary to complete the cycle and
restore AR.

In the case of a long line, where 108 words are to be moved up, it is
impossible to get a 109th word-time of execution in one immediate com-

mand. Yet this word-time of execution is necessary, to complete the
cycle and restore AR. Consider the command,

L £ I N C S D

00 u OL N 2 19 19

word-time of AR holds con- this word in line AR re-
execution: tents of: 19 receives: ceives:
01 (AR) (AR) (01)
02 f01) (o1) (02)
u’ (ub) (ub) (u7)
00 (u7) (u?) (00)

All 108 words in long line 19 have been moved up one word-time with
the exception of word 00, which never reached 01, although it would
have, had the execution been continued for one more word-time. AR
currently holds the contents of word 00, and its original contents
are in word 0l, where we desire to place the contents of word 00.
One more word-time of execution, during 0l, would cause the contents
of AR and 19.01 to be .exchanged, restoring AR with its original con-
tents, and placing the contents of 19.00 in 19.01. Therefore, the
command above, in order to achieve the desired effect on the entire
long line, must be followed by one more command, which exchanges the
contents of AR and 19.0l1. Why can't one immediate command be execu-
ted for 109 word-times? This question will be left for you to answer.

Let the above command be followed by another:

L2 I N C s D

01 0L N 2 19 19
These two commands, taken together, will cause all of line 19 to be
moved up by one word-time, and AR to be restored. Notice that a

whole drum cycle will, of necessity, be lost in wait-time, either
waiting to read the next command or waiting to execute a command.

- 165 -

It is essential that no commands affecting either AR or 19.01 intervene
between these two. For that reason you should try to keep them together
as a pair.

It is interesting to note that a long line can be moved up two word-
times, with the cycle completed and AR restored, in exactly the same
number of commands and time:

L ¢ I N C S D

00 u 01 01 2 19 19
01 wu 02 N 2 19 19

word-time of AR holds con- this word in line AR re-
execution: tents of: 19 receives: ceives:
01 (AR) (AR) (01)
02 (01) (01) (02)
a7 (u6) (u6) (u7)
00 (u7) (u7) (00)
02 (00) (00) (02)=(01)
03 (02)=(01) (o) (03)=(02)
00 (u7)=(ub) (u6) (00)=(u7)
01 (00)=(u7) (u?7) (01)=(AR)

All words in the long line have been moved up two word-times, and AR
has been restored.

Therefore, since PPR desires to eliminate words containing all zeroes
by groups of fours, from the high-order end of line 19, it is done
through pairs of commands of the type shown above. Two such pairs
move all words in any long line up by four word-times. By assumption,
if PPR tests and finds such may be done, four words containing zeroes
will move "up" from 19.u4 - u7 to 19.00 - 03.

The movement of words through a line in this fashion is called ''preces-
sion™. -

OTHER PPR OPERATIONS AVAILABLE

Before commanding PPR to punch a tape containing the contents of line 18,
you may want to place some hex constants in the line at strategic loca-
tions. The command which tells PPR to accept a seven-digit hex number
and store it at location ab in line 18 is: zab (tab) t di1dpdsdgdsdedy
(tab) s. Of course, this must be repeated for each constant to be so
entered.

- 166 -

If, in accepting a sequence of decimal commands, PPR finds that a loca-
tion which is about to receive a new command is already filled, PPR will
type out the contents of that location before accepting the new command.
You may disregard this typeout and proceed to enter the new command into
the location, if you desire to destroy the word currently contained there.
If you desire to keep that word, you may, of course, choose a new loca-
tion for the command you desire to enter, merely by giving PPR a new

yab (tab) s command, specifying a new ab. If the last yab, which started
the current sequence of commands, was followed by a minus (-) prior to
the (tab) s, the contents of any location called for which is found to

be non-zero, will be converted by PPR to decimal command form prior to
the typeout. 1If, in the last yab (tab) s command, there was no minus in-
serted, the contents of any such location will be typed out as a hex num-
ber.

If you cause PPR to enter a hex number in any location, it will enter the
number, and then it will type out the location into which the number was

entered, followed by a typeout of the original contents of that location,
if non-zero.

After a line of program and/or constants is made up in line 18, PPR may
be commanded to block copy all of line 18 into any other line of memory,
excepting lines 05, 15, 16, and 17, all of which are occupied by PPR
itself (PPR will refuse to destroy itself). The command which will cause
PPR to do this is k1x03, where kl stands for the desired line number.

If you find a mistake in a line of your program and wish to correct it
through the use of PPR, you can cause PPR to block copy any line of mem-
ory into line 18, and, as a bonus, to type out any given word in that
line. The command to do this is: k1lijx02 (tab) s, where line kl will
be copied into line 18, and word ij will be typed out. If a minus pre-
cedes the (tab) s, the word typed out will first be converted to decimal
command form; otherwise, it will be typed out as a hex number.

PPR may also be commanded to type out the entire contents of line 18:
x05 (tab) s. All words. will be typed out as hex numbers.

Line 18 will be typed out, and, at the same time, punched on tape, if
PPR is given the command, x07 (tab) s.

PPR will punch a block of tape containing the number track if it is
given the command x01 (tab) s.

PPR will read a block of tape which you have mounted on the photo-reader
mechanism if given any one of the following commands:

w00 (tab) s read tape, type check sum
w0l (tab) s read tape, type check sum, type out

w02 (tab) 8 cvveeenann read tape, type check sum, punch tape

- 167 -

w03 (tab) s

s o000 000 0

read tape, type check sum, type and punch

In any of these cases, the contents of the block of tape read will be

block copied into line 18. 1In all

of these cases, if the compute switch
is on GO, after the operation called for has been performed on one block

of tape, a new block will be read and the same operation will be per-

formed on it.

This will continue until all the tape has been read, and,

eventually, the photo-reader will be activated, even though no tape is

passing through it, in which case,
stop code will be read.

the input will never cease, since no

If the compute switch is thrown to BP, PPR will

stop at a breakpointed command in the read tape sequence of commands
which follows the reading of the current block.

If PPR is stopped at any time in this manner, remember that, if
compute switch is thrown to GO, it will immediately continue in

same sequence of steps. To return

the type-in of PPR commands, strike sc5f.
for any reason, you are not currently in PPR, but in some other

the
the

to that portion of PPR which gates
As a matter of fact, if,

pro-

gram, and you know that PPR remains in memory intact, you can always
return to that portion of PPR which gates type-in of PPR commands

through this keyboard action.

Finally, PPR can be commanded to transfer control to any line from O
through 4, at any word-time, by the command, cijx04 (tab) s, where
¢ = 0 through 4, and ij is the location of the desired command in that

line.

Other operations are possible with
‘operations, of primary interest in

1. automatic compilation of
2, automatic compilation of
3. check-out and correction

commands and constants.

PPR and all its auxiliary routines
Bendix G-15 operating manual.

DECIMAL NUMBER INPUTS AND SCALING

PPR, including certain auxiliary
three main areas:

loader programs;
output formats;

of programs, including listing of

are thoroughly discussed in the

If PPR is capable of taking decimal numbers (for the various parts of
a .command), and generating the proper binary equivalents in the machine,

it stands to reason that, we, too,

could write our program to do this,

so that we would not have to convert each decimal input to binary and

then to hex prior to typing it in.

Let's figure out a method for ac-

cepting decimal inputs, rather than requiring hex inputs.

Obviously, the keys on the typewriter, since there is one for each hex

digit, will be sufficient for the decimal digits 0 - 9.
is struck, we know that four bits will enter line 23, word 00.

If a digit
If a

- 168 -

complete seven-digit decimal number and its sign are entered, the signed
number will appear in 23.00. But, unlike a hex entry, it will not be in
the form of a binary magnitude and sign; it will be in a code, each four
bits corresponding to a digit of the decimal number. The four most signi-
ficant bits in 23.00 will contain a four-bit code for the most significant
decimal digit; the next four bits will contain a similar code for the next
decimal digit entered, and so on. This four-bit code for decimal digits
is called 'Binary-Coded-Decimal'. Remember that a complete BCD (Binary-
Coded-Decimal) number, signed, as it occupies 29 bits of a word in the com-
puter, is not the binary equivalent of the represented decimal magnitude,
signed. As an example, suppose we entered the decimal number, (7196323-)
into the computer, digit-by-digit. 1In 23.00 we would have:

0111000110010110001100100011}2
representing
7 1 9 6 3 2 3 -

The problem now is to convert this code into a true, corresponding, bi-
nary magnitude. Let's treat the seven-digit decimal number entered as
an integral number, so that

7196323 = 7-106 + l-lO5 + 9'104 + 6-103 + 3~lO2 + 2'10l + 3'100.

Now consider the first four bits of the BCD number in 23.00: they re-
present a multiple of 100, If we had, stored in the computer's memory,
as a constant, a binary value for 106, we could multiply that value by
the four-bit multiplier (in this case, 7(10)=0111). Similarly, we could
multiply each digit times the corresponding binary equivalent of a power
of 10, and, when we added all these products together, the sum would be
the binary equivalent of the original decimal number. Because the dec-
imal number was integral, so would the binary equivalent be integral.

In order to prevent overflow in the additions, we would have to be sure
to scale each individual product in such a way that their sum could not
possibly overflow out of the most significant bit-position in the accu-
mulator. The maximum decimal number which could be specified is 9999999.
Since this is less than 224, twenty-four bits would be sufficient to ex-
press it. Therefore, if the individual products are scaled 2-24 in the
computer, no overflow can result from their sum; of course they will all
have to be scaled similarly. It is convenient, however, to scale a con-
verted decimal integer 2-28, for other reasons, which will be discussed
later. This will be alright; it merely means that the binary equivalent
will have at least four leading 0's.

The first four bits of the BCD number to be converted to binary are,

of course, scaled 274, They represent, in our example, 7. If we

scale the binary equivalent of 106 by 2-24, the resultant product, the
binary equivalent of 7.106, will be scaled 2-28, according to the rules
discussed previously.

The binary (hex form will be used) equivalents of the powers of 10 in-
volved in this case are:

- 169 -

106 = 0024240

lO5 = 00186u0
4

10 = 0002710

lO3 = 00003y8

lO2 = 0000064

lO1 = 000000u
0

10~ = 0000001

Scaled 2_24, rather than 2_28 these become:

b

lO6 = 0242400
lO5 = 0186ul0
4
10 = 0027100
3 As these magnitudes would appear
10” = 0003y80 in the machine, for our purposes,
y
2 scaled 2°24,
107 = 0000640
lOl = 00000u0
100 = 0000010

Now, suppose we clear the two-word registers, and then we store the BCD
number (7196323-), which we wish to convert, in MQp. Its sign will go
to IP. Since we are loading MQ, it will be added to what is already
there, but we know that is 0, since we previously cleared the two-word
registers. The 28 bits of BCD code will be in the 28 most significant
bits of MQ;. Now we load 106-2-2%4 into ID1, but with a C of 1, rather
than 0. Since this C is not even, the sign of the number will accompany
the magnitude, and will not be sent off to IP; of course the sign will
be 0. If ID is loaded with an odd C, the setting of it will not cause
PN to be cleared. We know that PN will contain O's, though, because

we previously cleared the two-word registers. Now suppose we multiply
these two numbers, but allow the multiplication to last only eight word-
times, rather than the usual 56. We said previously, we could cut a
multiplication short at any time, provided an even number of word-times
has been allowed, and be able to predict the result in PN. Eight word-

times would be just sufficient for four bits from the most significant
end of MQ] to be inspected. The effect, in PN, will be to generate the

product of these four bits times the contents of ID. In other words, in
PN we will have 7°106 scaled 2728, which is what we want. MQ will have
been shifted left by four bits. Thus the four-kit binary code for the
first decimal digit is gone, and the four most significant bits in MQil
contain the next decimal digit, scaled 2-4,

- 170 -

-2
Suppose now, we reload IDj, again with a C equal to 1, with 105-2 4.

The sign in IP and the product in PN will remain undisturbed. Now we
can again multiply for eight word-times. The effect will be to gener-
ate a sum in PN equal to the old product plus a new one which is, in
our example, 1-105-2-28, The sum will equal (7.106 + 1-105).2-28,

We can do this seven times in all, arriving at a sum in PN equal to

6 4 3 1 28

(7-10%1-10°+9-10%+6-10°+3-10%+2 .10 +3.10%) - 2"

. . ; . . , -28
which is the desired answer. It is a binary integer, scaled 2 in
the machine, representing the decimal integer we started with.

This number could be manipulated satisfactorily by a program; as far
as the computer is concerned it is a binary fraction, with the machine
binary point preceding the most significant bit. But, since the deci-
mal number may have been scaled, itself, in the decimal system, con-
taining fractional digits, this procedure would eventually lead to
misery, since both a decimal and a binary scale factor would have to
be remembered by the programmer. We would like to treat it as a deci-
mal fraction in the machine, represented in binary, and, just as we
previously spoke of the machine treating every number as a fraction,
scaled 2728, we would now like to speak of the machine treating every
number as a fraction, scaled 10-7, 1If only seven decimal digits are
allowed per number during input, then the machine value will always

be a fraction, if the machine treats this number as scaled 1077,

But there is something further that must be done to the converted num-
ber, as we left it, before we can say it is scaled 10-7 in the machine.
We have a decimal integer scaled 2-28; if we divide it by 107-2-28
(which, in hex, would be represented in the machine as 0989680), we
will truly have in the machine the binary equivalent of a decimal
fraction, and from hére on out, we can drop all references to binary
scaling, and speak only of decimal scaling. Therefore, in our con-
version process, one more major step is required: we have an integer
scaled 2728 in PNg; it is already properly located as the numerator

for a division. If we load the denominator (0989680j¢) into ID] with
a C of 1, leaving PN undisturbed, we can perform a single-precision
divide, and MQy will contain the quotient. 1IP will still contain the
sign of the number, which is what we want. The quotient will equal

the original decimal integer, call it 'D", divided by 107, or D-107-20,
We have thus completely eliminated binary scaling, and have substituted
decimal scaling, which jibes more closely with the way in which we are
used to handling numbers.

Applying the same rules here to decimal scaling that we applied earlier
to binary scaling, if we say that
A% = A-10'7,

where A* is the machine representation of A, we are saying that there
are no fractional digits in A; its true decimal point is seven decimal

- 171 -

places to the right of the machine decimal point, or, following the
least significant decimal digit.

In our problem, we originally chose to allow seven binary digits for
fractional accuracy, in order to carry accuracy at least to the near-
est 1/100th. Now we can carry accuracy exactly to the nearest 1/100th,
merely by rescaling a, b, and c. Rather than enter them as seven-
digit decimal numbers with the true decimal point following the least
significant digit, we can understand the true decimal point to be to
the left two places allowing fractional accuracy to the nearest l/lOOth.
We are saying, then, that the machine will contain a, b, and c, all
scaled 10 -10‘7, or 10-5, 1In other words, the true decimal point is
five decimal places to the right of the machine decimal point, and the
following two decimal digits are fractional, in the true sense of the
word.

This will make the inputs easier (we haven't yet discussed the outputs,
but they will be easier, too), and it will reduce the scaling problems
to a form with which we are familiar. But notice what else it will do;
it will greatly restrict the range of values we can have for these three
numbers, and therefore, for the answers. If seven decimal digits are
allowed for a number, and two of them must be interpreted as fractiomal,
the range of values for any number is -99999.99 < N < 99999.99. Compare
this with the ranges we were able to accommodate when we used binary
scaling and did our own conversions of inputs and outputs.

Whether you decide to use decimal or binary scaling will depend to a
great deal on the requirements of your particular problem, but you
should always be aware that operation of the computer is essentially
designed for work with binary numbers representing binary quantities.
Once you become familiar with the new number system, you will find it
no harder to use than the decimal number system; as a matter of fact,
you will find it easier.

The flow diagram of our computation will be simplified, if we treat
the numbers in the machine as decimal numbers. Notice that we will
again resort to double-precision numbers in order to retain both wide
range and the necessary accuracy. Notice dlso the mental gymnastics
we play in order to avoid repositioning an answer by shifting. Shift-
ing rescales a number in a binary manner. It will not usually be
adaptable to dealing with decimally scaled numbers.

a——» AR, clear & add a-lO-5
I .

AR——> AR, add 2a°10

Store 23— memory 2a~10-5

y

- 172 -

)

| AR—> 4R, add] 4a-107
Test Overflow
on
off
Clear 2-wd. reg.'s
! ’
AR—)IDl 4a-10
-5
c——)MQl c-10
-10
PN ——3memory 4ac+10
0,1
LClear 2-wd. reg.'s
: -5
b —>1ID; b-10
¥ -5
b—>MQ, b-10
lMultiplyl b2'10_l0
. 2 -10
bLac ——-->PNO 12 subtract (b"-4ac)-10
3>
(———-{Test Overflowl
on
off
PNO ~——————»AR, C =1 sign of radicand in AR
#—————-i,‘ie-st sign of AR (neg.)]
yes
no
lReturn command —> AR]
v

- 173 -

Mark, transfer to
square root subroutine

l Return

PNl-———§memory (\/bz-lhac)‘lO-5
LE:———?AR, clear & subtract -b-lO-5
bZ-4ac =2 AR, add (--b-i-\/b2-4ac)~10"5
il
f——— Test Over f1low|
on
off

{ AR——>AR, recomp lement|

LClear 2-wd. reg.ql

AR——> 1D, (-bwbZ-4ac)-107°
-5 -5
1-10 ———)MQl 1-10
Multiply
(T = 114)
PN0 | —>memory (-b+\/b2-4ac)~10_lo,
2 let odd word = N
2a ~—pAR,
Clear & add magnitude {Dl
y
AR-——>memory] lDl
N-—3> AR,
Clear & add magnitude (Nl
M—)AR, subtract] ‘Nl - iD‘

- 174 -

ale
k—————l?est sign of AR (neg.—)l

no
yes
Lg}ear 2-wd. reg.'s
-5
Za——ﬁIDl 2a°10
-bh/bZhae —> BN | (-bwhbZ-bac) 10710
3
lDividel
-b+/b2 - -
MQ,, —>» memory X, = (-b/b 461C)‘lO >
0 1 2a
Lb —> AR, Clear & Subtract -b-lO_5
y
Vb2 -bac —> AR, subtract (—b—\/b2—4ac:)-10_5
(———-—!Test Overflow
on
off
AR —> AR, recomplement
Clear 2-wd. reg.'s
AR—> 1D, (-b~/bZbac)-107°
5 : 5
1-10° —>MQ, 1-10
Multiply
(T = 114)
PN0 1—-—>memory (-b—\/bz-l\\ac)'lo-lo,
> let odd word = N
N AR
Clear & add magnitude IN’
v J/

- 175 -

hﬂ———»AR, subtract lN‘ - 'D\
k——————- Test sign of AR (neg.)
no [
yes

[Eiear 2-wd. reg.'s]

5

2a—> 1D | 2a-10

¥
—b-vbz—Aac-——~>PN0 (—b—¢b2—4ac)~10-10
3

1

- (-b~/b2-4ac) .10
2a

MQO——>memory x2

y

HALT

We have already discussed the manner in which we treat the input data,
in order to supply this computation program with the numbers it needs,
but, before we flow diagram a new input scheme, we should consider out-
put. We will write an input/output program for this case, just as we
did before.

We will, upon completion of the computation, have two answers, each
scaled 10‘5, in 19.u7 and 19.u6. These will be binary numbers, but
they will be meaningless to us in their binary form. We must convert
them back to decimal and type out decimal answers. We can indicate
the proper scaling of the answers by the positioning of the decimal
point in the type-out. We know, if these answers are scaled 10-5 in
the computer, each of them should be typed out in the form: SDDDDDPDD.

The method we developed for the conversion of a BCD number to binary
grew directly out of the inspection process: we developed the binary
equivalent for each multiple of a power of ten, and then added these
binary equivalents., It stands to reason that, from the inspection
process, as it was defined in the Introduction, we can develop a re-
verse conversion process for our program, to convert a binary number
to its decimal equivalent.

The binary scaling of our numbers was eliminated by generating a binary
scale factor of 20, and leaving remaining only a decimal scale factor.

If each number, as it appears in the machine actually has a binary scal
factor of 20, it is truly a fraction. The general rule for converting

a binary fraction to its decimal equivalent is: multiply the binary

-5

e

fraction by the binary equivalent of 10, which is 1010.

- 176 -

integral portion of the product as the coefficient of 10-1.

the same operation on the fractional portion of the product.

Retain the

Perform
Retain

the integral portion of the new product as the coefficient of the next
power of 10 in the decreasing series, which would be 10-2.
process as often as necessary (the fractional portion of some product
equals 0), or until the desired accuracy in the converted form of the
original fraction is achieved.

Repeat the

As an example, consider the conversion to decimal of the binary frac-

tion,

7(10)

110y

?(10)

6(10)

3(10)-

2(10)

3(10)

.1011100000111001110101000011
1010

1 0111000001110011101010000110
101 11000001110011101010000110

0111.0011001001000010010010011110
1010

0 0110010010000100100100111100
001 10010G610000100100100111100

0001.1111011010010110111000101100
1010

1 1110110100101101110001011000
111 10110100101101110001011000

1001.1010000111100100110110111000
1010

1 0100001111001001101101110000
101 00001111001001101101110000

0110.0101001011110000100100110000
1010

0 1010010111100001001001100000
010 10010111100001001001100000

0011.0011110101100101101111100000
1010

0 0111101011001011011111000000
001 11101011001011011111000000

0010.0110010111111001011011000000
1010

0 1100101111110010110110000000
011 00101111110010110110000000

0011.1111101110111110001110000000

The decimal equivalent of the above binary fraction is .7196323.
Compare the binary equivalent of this fraction with the BCD number
corresponding to this fraction.

We can use the above method to convert each answer generated by our

program to its BCD equivalent.

Then we can type out this BCD number

as the answer, so that, on the typewriter, a decimal number will
appear which can be read directly. Of course, the BCD equivalent will
be in the form of a fraction: it will be a decimal number scaled 10-7.

- 177 -

If we choose to interpret it, as we do, scaled 10-5, we can move the
decimal point to the right five decimal places, arriving at a number,
as we have already seen, of the form SDDDDDPDD. Thus, we can use the
output format itself to properly scale the answer, as it is typed out,
so that it can be read directly.

We will place the answer in ID] and the multiplier, 1010(2), in MQ1,
in the four most significant bits. When we multiply a number scaled
20 (the answer) by a number scaled 2-4 (the multiplier), we get an
answer scaled 2-%4 (the integral portion of the product will be in the
first four bits of PNj). If we had a way of "extracting" these four
bits and saving them, we could then reload ID with the remaining bits
from PN, which constitute the fractional portion of the product, re-
load MQj with the same multiplier (the first one was shifted out as
it was inspected), and perform the process all over again. Eventually,
after seven such operations, each time saving the integral portion of
the product, we would have the seven BCD digits corresponding to our
answer. If we had a way of recombining them, end-to-end in one word,
we would have ewactly the number we wish to type out as an answer.

EXTRACT, AND ITS USE IN NUMBER CONVERSION

There is an extract operation available in the G-15. It is called for
by a special command of slightly different form from the other special
commands we have thus far considered. S in this command equals 31;
again the computer will know, since there is no line numbered 31, that

a special operation is being called for. C equals 0. Any destination
may be specified. The command will operate during whatever word-time(s)
is (are) specified; it may be either immediate or deferred. The number
out of which certain bits are to be extracted must be in line 21, in
whatever word you desire (of course, you must be sure that it will be

in the word available during the word-time of execution of this command).
In the corresponding word of line 20, there will be a 'mask', which will
specify to the computer which bits you wish extracted. The mask in line
20 will contain a 1 in each bit-position to be extracted, a O in each
bit-position you wish left behind. For instance, the mask in our case
above, would be: 1111000000000000000000000000, causing only the first
four bits of the product (the integral portion, a BCD digit) to be ex-
tracted. The result of the extraction, containing O's in all those bit-
positions not extracted, will be transferred to the destination during
the same word-time. The number from which the bits were extracted will
remain intact in line 21, while the mask will also remain intact in line
20.

There is a second extract operation available in the G-15, which causes
exactly the same sequence of operations to occur, with the exception that
the bits extracted from the number in line 21 will be those bits corre-
sponding to O's in the mask, while the others, corresponding to 1's in
the mask, will be left behind. 1In short, the extract operation is the
same, but interpretation of the mask is exactly reversed. The command
for this is: S = 30, C = 0, D may be any line.

- 178 -

Consider now, the first product we arrived at, on page l76.
01110011001001000010010010011110

This requires more than 29 bits, and therefore, we would have to use
two words in lines 20 and 21. This means we would have to make the
extract operations immediate for two word-times of execution (T = L3).
We could load this number in line 21, and a mask in line 20, as shown
below (word-boundaries have been ignored):

01110011001001000010010010011110 Line 21 (number)
11110000000000000000000000000000 Line 20 (mask)
01110000000000000000000000000000 Result 1
00000011001001000010010010011110 Result 2

The first extraction, S = 31, yields result 1, in which we have only
the first binary-coded~decimal digit, in its proper position. We
could now store this in memory.

The second extraction, S = 30, yields result 2, in which we have only

the remaining fractional portion of the product, similar to that shown

in the first product on page 176, except that here, there are four

leading O's. This is fine; if we transfer this to ID (double-precision)
and multiply it by 1010-2'4, we will get the second product shown on

page 176, except that it will be removed four places to the right. In
short, this second product will be: 000000011111011010010110111000101100.
If we load this into line 21, and a mask into line 20, as shown below, we
can perform the extractions all over again:

000000011111011010010110111000101100 Line 21 (number)
000011110000000000000000000000000000 Line 20 (mask)
000090010000000000000000000000000000 Result 1
000000001111011010010110111000101100 Result 2

The first extraction, S = 31, yields result 1, in which we have only
the first binary-coded-decimal digit, in its proper position (the
second group of four bits). We could now store this in memory.

The second extraction, S = 30, yields result 2, in which we have only
the remaining fractional portion of the product, similar to that shown
in the second product on page 176, except that here, there are eight
leading O's. This, again, is fine; if we transfer this to ID and multi-
ply it by 1010-2-%4, we will get the third product shown on page 176, ex-
cept that it will be removed eight places to the right.

We could continue this process until seven multiplications have been per-
formed, with all of the accompanying extractions. At that point, we would
have saved seven results from the first extractions, and they would be,

- 179 -

eliminating trailing O's, and expressing them as single-precision
28-bit magnitudes:

0111000000000000000000000000
0000000100000000000000000000
0000000010010000000000000000
0000000000000110000000000000
0000000000000000001100000000
0000000000000000000000100000
0000000000000000000000000011

If we now add these together, we will get:
0111L0001,100101100011,0010Q011
If this were typed out, it would yield:
7 1 9 6 3 2 3
which is the number we expected.

This method will work, and we could program it, but it involves many,
many commands. Prior to each set of extractions, the product must be
transferred from PN to line 21, and a new mask must be transferred into
line 20. Prior to each multiplication, the two-word registers must be
re-set-up. This method will also require quite a few storage locations
in memory.

The Bendix Computer Division engineers,
always aiming to make life easier for
the programmer, built into the G-15 a
special extract command, designed espe-
cially for the purpose of saving bits

in PN and resetting ID for further mul-
tiplication. It is a special command:

D =31, S =23, C =3. It may be either
deferred or immediate. In our case, we
will make it immediate, operating for
two word-times, thus covering both halves
of PN and ID.

During each word-time of execution of this command, the word in that word-
time of line 02 will serve as a mask for an extraction. The bits in those
bit-positions in PN which correspond to the bit-positions in the mask con-
taining 0's, will remain in PN. The bits in PN for which there are corre-
sponding l's in the mask in line 02 will be transferred to ID. PN will
retain only the results of the extraction which treated the mask in reverse
(extracting bits corresponding to 0's in the mask); ID will receive only the
results of the extraction which treated the mask in the normal manner (ex-
tracting bits corresponding to l's in the mask). Thus, if we set up masks
in line 02 which will have O's corresponding to the integral portions of
PN, and l's corresponding to the remaining bits (the fractional portions

- 180 -

in PN), we will, through execution of this one command, generate the

sum of the integral portions of the products in PNy, while we directly
reload ID for the next multiplication. Remember that the resultant pro-
duct, in each case, is moved to the right by four more places, so that
the integral portion of PN, as it grows longer, will never be disturbed
by the succeeding multiplication.

The extractor, or mask, used after the first multiplication will be:

odd word: Ozzzzzz-
even word: zzzzzzz

After the second multiplication:

odd word: 00zzzzz-
even word: zzzzzzz

After the third multiplication:

odd word: 000zzzz-
even word: zzzzzzz

After the fourth multiplication:

odd word: 0000zzz-
even word: zzzzzzz

After the fifth multiplication:

odd word: 00000zz-
even word: zzzzzzz

After the sixth multiplication:

odd word: 000000z-
even word: zzzzzzz

After the seventh multiplication, no extraction will be necessary:
the seventh BCD digit will occupy the desired four bits, and no fur-
ther multiplications are necessary.

The BCD number which results will be the desired answer in decimal.
It can be placed properly in line 19 for type-out under control of
the output format. Several times we have mentioned that we want the
form of ths decimal answers, as they are typed out, to be SDDDDDPDD,
Our output format, therefore, for two such answers, will be:

le)OOjOOI(jOOj OIJO I(1011100300011’1100 000]1) 000 j 1100100301000
F o e T,

8 l 0 I 0] O 11 8 | 1}

Word 03 Word 02 Word 01

- 181 -

One further point remains, before we flow-diagram this new input/Butput
program. We have mentioned, up to this point, that we will reload the
multiplier into MQ before each multiplication during the conversion

for output. The multiplier is 1010. Why not place seven multipliers

in MQ; all at once, and multiply for only eight word-times (therefore
four bits) each time? 1In that case, our multiplier will look like this:
0101010101010101010101010101. Cutting short a multiplication is fine,
and this will work. But, if we are going to do this, notice that each
multiplication will end with a multiplication by 0. This merely means
to the computer that it is not to add the shifted contents of ID to what
it already has in PN. Why must we tell the computer that? There is no
good reason for it, so we can eliminate the last O in each group of four
bits, making our multiplier look like this:

1011011011011011011010000000.
We will limit the word-times of execution of the multiplication, in
each case, to six, meaning that only three bits from MQ] will be in-

spected. The hex equivalent of this binary number is v6xv680.

Now let's flow-diagram the new input/butput program, for line 02.

CX———-JEate type-in of a

Test

Ready'
no

yes

x4 -5
23.00——>MQl (a-10 7)

(10)

lGafé type-in of b|

Mark, transfer to con-
version subroutine

Return

MQO———anmory (a-10~
|Test Ready}

23.00—>MQ, (b-10~

!

5
)(2)

no
yes

5
) (10)

- 182 -

d

[Cate type-in of CJ

_

Mark, transfer to con-
version subroutine

| Return

MQO-——bnmmory (b-lO_S)

(2)

L

ITest Ready}—f]

no

yes

23.00—5MQ, (c-lo's)(lo)

Mark, transfer to con-
version subroutine

Return

MQO———anwmory (c-10~

5
)(2)

Lplear line 19]

N
Mark, transfer to

line 00

Return

[Convert answeré]

IType line 19]

Test Ready'
yes ' no

Notice tHat, in the preceding flow diagram, we made reference to a
conversion subroutine. This we are also going to write, since we now
know how. It will be in line 02, along with the input/output program.
The mark, transfer command need not cause control to be transferred
from one line to another; it may simply transfer control within the

same line to another word-time, as it will do in this case. We need
not supply this subroutine with a return command each time we enter it,
because we will code the subroutine with a return command already in it.

The reason for that provision, as we mentioned earlier, is to allow
very general use of a subroutine by any number of users, all of whom
may not wish to return to the same line upon completion of the sub-

routine.

The following is a flow diagram of the conversion subroutine for BCD

- 183 -

to binary, written assuming that the BCD number to be converted is

already in MQl.

106—-—9]'.D

1

Multiply
T =38

105-——~>ID

1
Multiply
T =28

104——>ID

1
Multiply
T =8

[

103—)ID1

¥
Multiply
T =28

-

102——91D1

R
Multiply
T =238

S

].O]'—-%IDl

d

106'2_24

131-10602'28

105'2-24

(1)1-106+Dz'105)-2'28

6 5 28

o 9 - 4 Y -
(D, *1074D, *107+D,*10") -2

103°2_24

-10%Dp 10%4p_-10%
(Dy *107+D, *107+D, 10 +D,,

-103) .,"28

102°2_24

b 5.4 3 .98
(D, *107+D, *107+D, *10"+D, *10°) *2

1

10tp724

- 184 -

— 6 5 4 3 2 1 0,
(D 10°+D, 10™4+D10™+D, 10°+D_10°+D107+D,10°) -2

Multiply] (0. 108D, -10%+D_ -10%D, -10%4p_-10%+D_-10%)-
1 2 3 4 5 6
T =8 28
r_L__— 2
lOO———)IDl 1090724
Multiply (Dl'106+D2'105+D3'104+D4'103+D5'102+D6'101
r=23 0. _-28
4+D_-10") -2

7

107—-—->ID1 1072728

107

Another conversion subroutine is also necessary in the program, and it,
too, will be in line 02. This is the subroutine for converting the bi-
nary answers to their BCD equivalents. When we discussed this conversion
process earlier, we omitted one point at that time, which now must be
mentioned, since you will see provision for it in the flow diagram which
follows.

The least significant BCD digit generated will be 10_7, or 1/107. This
quantity is a good deal greater than 2-28 or 1/228. For this reason,
the last bit in the binary number prior to conversion can have no effect
on the BCD result. As. a matter of fact, 2-23 > 10-7 > 2-24, 1In order
to asrive at the seven-digit decimal number closest to the value repre-
sented in 28 bits, we must round off the binary number prior to conver-
sion.

2:%3 = ,000000003725
13'2_28 = ,000000048425
142 = .000000052150
-28 ., -7 . -28
13-2 is very close to .5°10 "; so is 14°2 . But the latter exceeds

.5'10-7, and, faced with a choice, we choose to round up to the next

higher decimal digit only if we are at least within l/é of it. We will
therefore choose the smaller of the two round-off numbers, since it will
require a value in the original binary number of more than .5°10"7, oOur
round~off, expressed in hex, will be:

.000000x

Now we can flow-diagram the binary - BCD conversion subroutine, assuming
the number to be converted has already been placed in AR, with a C of 1.

0

- 185 -

[Round -of f ——&AR, add)

0
(X(Z) + .000000x) *2

[Qlear 2-wd. reg.'s

L

AR—1ID, X, "2
o

v6xv680-—)MQl

Multiply
T =6

|Special extractl

. 2
Multiply
T =6

4
lSpecial extract

S R
J{ D, *10” 4D, *10

Multiply
T =26

—

Special extract

1:)1-10'1+1)2-10'2+D3~10'3
Multiply
T =6
[?pecial extract], 1)1-10'1+1)2-10'2+1)3-10'3+1>4-1o'4
Multiply

T=26

[Special extract | D, 104D -107%4+p_+10 34D, -10 %, 107>
1 2 3 4 5

‘Multiply

T =6

}

- 186 -

r“L - a1 1Am2 a3 LAl
Special extract D1 10 +D2 10 +D3 10 +D4 10 +D5

102D -107°

6

— -1 -2 -3 -4
Multiply Dl'10 +D2‘lO +D3 10 +D4‘lO +D5
T-5 -5 -6 -7

*10 +D6'lO +D7'10

Return

The loader program and the square root subroutine will remain the same.
The square root subroutine just ''cranks out'" square roots of binary num-
bers. What those numbers represent makes no difference at all to the
subroutine.

The program tape thus prepared can be read into the computer with an p
switch action, followed by moving the compute switch to GO. The program
will gate type-in, at which time a must be typed in. Type-in will be
gated again, and this time b must be entered. Type-in will be gated a
third time, and ¢ must be entered. Notice that the program has been
written to make as much use as possible of the time required to type in
a number. You will be unable to type in the number so fast that the
computer will not have to wait for you. After the third type-in, compu-
tation will take place, and two decimal answers will be typed out. These
can be read directly, since their decimal points will be properly posi-
tioned. Type-in will again be gated, this time for a new set of values.

OTHER PROGRAMMING TECHNIQUES

A commonly needed programming technique remains undiscussed because the
program we have been considering up to this point dces not require it.
However, because it is such a common technique, it cannot remain unmen-
tioned any longer. It is called looping. Consider the case in which
you are given 50 random positive numbers in 19.00 - 49, and you must sort
them, placing the least number in 00, and the greatest number in 49.

We know that commands are in the same binary form as constants and data
in the memory of the computer. In fact, we know that the only distinction
the computer can make between commands and constants or data is based on
when it reads the words: 1if a word is read during RC time, it will be
treated and interpreted as a command; if it is read during EX time, it
will be treated and interpreted as data. Thus, any command could be
treated as data by the computer, if it were read during EX time. A com-
mand could be called into AR, and have something added to it, or sub-
tracted from it. We also know that a command can be executed out of AR,
the computer being told to do this by a special command, D = 31, S = 31,
C = 0. When this special command is executed, the computer is set up to
take the next command from AR at time N of the special command. After

- 187 -

the command in AR is executed, the computer will go to N (of the command
executed from AR) in the same command line from which it was previously
taking commands.

The requirements of the proposed problem are to pick a number, say 19.00,
and compare it with all 49 others, each time exchanging if necessary, to
assure that, at the end of the series of comparisons, the least number
of the 50 is in 19.00, and then repeat the process in order to get the
smallest number in 19.01, etc.. The total number of comparisons neces-
sary will be:

for 00: 49

for 01: 48
for 02: 47
for 48: 1
for 49: 0

1225 = total number of comparisons necessary.

It's an easy job to flow-diagram the comparison and exchange, if an ex-
change is necessary:

I (19.00) —>ARc

&

I (19.01) ——>AR+

;:JL, III

AR neg.? (19.00)—>Temp. storage (ID)
no
v 4
yes (19.01)——>Temp. storage (MQ)

y)

(MQ) —>19.00

go to next

comparison VI h
(ID) > 19.01

It would be an easy job to write this same sequence 1225 times, each
time for the comparison of a new pair of numbers, but the resultant
program would be too long to store in the memory of the computer. In
the flow diagram above, the next comparison would be of 19.00 against
19.02. The same diagram would be sufficient for our purposes if boxes
IT, IV, and VI were modified to affect 19.02, rather than 19.0l. We
could then modify them again, to affect 19.03, etc.. Eventually they
would affect 19.49, and after that, we could be sure that the least

- 188 -

number of the 50 would be in 19.00. 1If, instead of an arrow in the pre-
ceding flow diagram pointing to the next comparison, we inserted steps

to modify steps II, IV, and VI, and then drew an arrow going back to step

I, we would be indicating a loop which would be repeated over and over
again, each time comparing 19.00 with a new word from line 19. This loop
would be unending, and this, of course, would be disastrous. We will there-
fore establish a limit beyond which the loop will not continue; that limit
will be after 19.00 has been compared with 19.49. At that point we will
continue with the program, and the flow diagram will be as follows:

I I(l9.00)-——€>ARc

II [(19.01) —>ar+ 111 (19.00) —>ID
v ,
AR neg.? v (19.01)=——>MQ
no
yes v (MQ) —19.00
Modify II, IV, VI VI (ID)=——>19.01
Does II call for 19.507

no
yes

go to next set
of comparisons
for next number
position (19.01)

Now 19.01 must be compared with each succeeding location, resulting in
the placement of the next least value in 19.01, according to the terms
of the problem. This could also be done with a loop involving the above
flow diagram. After the above flow diagram is followed up through the
limit for step II, we can insert steps to modify I, III, and V to affect
the next higher location in line 19. But, notice that steps II, IV, and
VI will all be set to affect 19.50. They must all be reset, but not to
their original values. Every time the above flow diagram is entered for
a new set of comparisons, steps II, IV, and VI must be set to initially
affect a word in line 19 whose number is one greater than the word af-
fected by steps I, III, and IV. New initial values for II, IV, and VI
will have to be set in the program every time I, III, and V are modified.

- 189 -

‘ Set initial values
for steps II, IV, VI
Sy gy .

I (19.00)=—>ARc Loop A |

r
' L
||z (19.01)——3AR+
l L
| AR neg.? 111,](19.00)—>1D
l
l Modify II, IV, VI w | (19.01)—> MQ
! b
| Does IT call for 19.507 v Q) —>19.00
L_no
T i
|
Modify I, III, V y Lvr_|ap)—19.01
e e e - — .|

A

Does T call for 19.497

no

Modify initial values
for II, IV, VI

|
l

|

l

I

|

[1

{ |

|

||

|

no |l
yes JZ ‘“_-_JL-———_—__- L
||

||

(1

|

(I

[

|

|

[

I

|

[

|

Notice that we have established a limit for the looping back to step I
after modifying it, in order to prevent undesired continued operation

of the program after a certain point. Only 50 numbers are to be ordered;
the fiftieth is in 19.49. When all the preceding ones have been ordered,
the one remaining in 19.49 must be in its correct position and need not
be compared at all. So, when step I would call for 19.49, we wish to
leave the loop, having accomplished all that was originally asked for.

We have, then, in the above flow diagram, two loops, one within the other.
We will call the smaller one (which is operated a varying number of times
per each operation of the larger one) loop A. The larger loop we will
call loop B; it will be operated 49 times. A pass through a loop we will
call an "iteration'. The two loops are shown in the above flow diagram.

- 190 -

After we leave loop B, we are done, and the 50 numbers are ordered as
desired. We could halt at this point, giving the HALT command an N
equal to the starting location of the entire program, so that it could
be repeated again, if desired.

There is one remaining difficulty with this program, as flow-diagram-

med on the preceding page. After it has operated once, steps I through

VI will be modified, and the program would not operate successfully in
another complete pass, from the beginning, without some restoring. Every
program which modifies itself should also restore itself to its initial
condition, so that it can be operated as many times as desired without
having to be reloaded, in its entirety, into the memory of computer. Such
restoration by the program itself is called "housekeeping'.

Housekeeping should be done initially in a program. We will therefore,
further alter the preceding flow diagram, as follows:

Set original values for
I, IITI, and V

Set original values for
initial values of II, IV,
and VI

jt;f oop B

Loop A I

Y

v

The only remaining question is, 'how do you modify a command in a pro-
gram?"

Take step II in the above flow diagram, for instance. It calls for the
transfer of 19.0l to AR+, with the sign changed and via the inverting
gates. A command corresponding to this might be:

L ¢ I N C S5 D

ub 01 50 3 19 29

To modify this command, transfer it into AR: (19.u6)—>»ARc. Use a
C of O to do this. 1If the command itself is negative, that is an

- 191 -

indication of the fact that the command calls for a double-precision
operation; this does not mean that we want to complement the binary
number, however. All we want to do is to modify it in its present form,
by adding a 1 to T. After (19.u6) is in AR, add the following constant
("dummy command') to it:

L P T N C S D
u 01 00 0 00 00

This is called a "dummy command' because it will never be read and
interpreted as a command; it is merely a constant, entered in decimal
command form when making up the program using PPR, for the sake of
convenience., Transfer this constant into AR+. The result in AR will
be:

L P I N C S5 D
02 50 3 19 29

Now store the present contents of AR into word u6 of the command line
containing step II, and the next time this word is interpreted as a
command it will be executed at word-time 02.

Notice that the dummy command has a prefix of u. Why? (Hint: will
this make the command immediate or deferred? What will be the effect
of this on the binary number generated by PPR?)

Rather than actually modify commands as they appear in a long line
(which would necessarily entail great time delays, since the command
would have to be picked up from a word in a long line, and then, in

its modified form, be restored into the same word-position in the same
long line), we would like to operate the modified command, in each
case, out of AR, which is always available. Now the problem arises,

if step I places a number in AR, how can we then modify a command there
and execute it from there without destroying the number which was orig-
inally placed there by step I? The answer is that we will have to store
the number called for by step I in a short line, then operate step II,
with a destination of ARc, rather than AR+. Then we will place a com-
mand in our program which calls for the original number from its short-
line temporary storage location. The destination of this command will
be AR+.

Always be careful, when executing commands from AR, that you don't
destroy valuable data already residing in AR.

INDEXING

"Indexing'" is probably the easiest and most convenient way of modifying
and operating a command out of AR. It involves a "Base' command, which
is modified by a '"Difference'" (dummy command), and the result is restored
into the Base, so that, on the next pass, the new base will again be mod-~
ified, and so on. Usually there will be a "Limit" associated with such

- 192 -

an index. If there is a limit, the modified version of the base will

be checked against it each time, in order to determine whether or not
the limit has been reached. All of this modification and checking will
be done in AR, and the final contents of AR will then be operated as a
command (unless the limit has been reached, of course). The sequence of
steps might be:

Base ——3ARcC

Difference —> AR+

o

Limi t ———>AR+
[Test (AR) for non-d}-————————) out
no
yes
[Limit —>AR+]
(AR)-——>Base

L

Next command from AR

Such an index for step II might be:

BASE€.eenecsannrsescncanss 00 50 3 19 28
Differencee..eeceeesceaee. u 01 00 O 00 00
5 11 o 50 50 3 19 28.

These could all be stored in a short line, and thus be available with-
out undue delay during the modification process. Notice, in the pre-
ceding flow diagram, modification takes place prior to execution of the
command, not after. If this is the case, and if we want to use the same
steps for all passes through the loop, including the first, the Base
must start out with a T number one lower than the first word-time at
which we want to execute the command. Notice above that the Base has

a T = 00, even though step II should initially contain T = 0l. The pre-
vious flow diagrams for this problem must now be revised slightly. Notice
in the revision that not all indices have been assigned a limit, because
we know that some bases can never be increased too far, due to the fact
that their modification is dependant upon modification of other bases,
where limits have been imposed.

- 193 -

Base I >20.00p

L

Limit T —» 20.01

i

Base II —»20.02

L

Limit II — 20.03

Base III —»21.00

[Base IV —>21.01

L

Base V—>21.02

\

Base VI —>21.03

J
Difference —» 22,00

L

a——31Base I —>ARc

[Difference —> AR+

Limit I—>AR+

L

(Continue)

"|Test (AR) non-0

yes

|Linit I—>AR+ |

(AR)—>Base I

LBase II-—)ART'

Difference — AR+

v

no

A

Halt

- 194 -

4

(AR) = Base II
22.01 (Base 1II,
new initial value)

A

Base IIT—>ARc

!

Difference —% AR+

M

(AR) ——>» Base III

Base IV —> ARc

Difference —»AR+

(AR)——>Base IV
22.02 (Base IV,
new initial value)

‘

Base V—ARC

-

Difference —»AR+

i

(AR) ——»Base V

;L ‘

Base VI —>» ARcC

b

Difference — 3 AR+

(AR) —> Base VI
22.03 (Base VI,
new initial value)

Base I —3ARcC

il

Next Command from AR

v

- 195 -

(AR) ~—->23.00 (Temp.

storage)

Base IV ———>ARcC

4

Difference ——>AR+

M

(AR) —>Base IV

!

Base VI —» ARc

v

Difference —> AR+

L

(AR)——>Base VI

¥

Base II —» ARc

I

Difference —» AR+

|

Limit IT—»AR+

lTest (AR) non-OJ

yes

[Limit II— ARH

(AR) ——»Base II

LNext Command from AR]

(23.00) —» AR+

L

Test (AR) neg.

no

b

& no

yes

- 196 -

”
Base III——ARc

{

Next Command from AR

Base IV——3ARC

Next Command from AR

Base V—3ARC

i

Next Command from AR

Base VI-=———3ARC

Next Command from AR - b

The following coding sheets contain the individual commands in this
program.

Notice that, in the Bases, T = w7 (127), and the command, so written,
has deliberately been made immediate. The eight most significant bits
in such a command will be:

(1) Ol1llllll...

All of the Bases are initially modified, prior to being executed,
through the addition of a Difference, whose eight most significant
bits are:

(2) 00000001...
When (2) is added to (1), the result will be:
(3) 10000000...,

which will be a deferred command with T = 00. This is what is ini-
tially desired. Bases II, IV, and VI are further modified by the

Difference, so that T = Ol prior to their execution for the first
time.

This program, as written, requires slightly less than three minutes
to sort numbers which are already in their proper order, and it re-
quires eight minutes to sort numbers in the worst possible arrangement

- 197 -

initially. It is not by any means, a ''good" program, because it is
inefficient. ©Notice that it will exchange numbers which are equal,
and it will "sort'" fifty numbers which are already in proper order.

It was written in this manner to demonstrate the use of indexing in
as straight-forward, and uncomplicated, a way as possible.

The '"Notes' column on each coding sheet has been left blank, for you to
fill-in, as a review.

FORM
108-5.0

- 198 -~

?Wd’)/ Los Angeles 45, California
Page _1 of
G-15D Prepared by Date:
PROGRAM PROBLEM : _ 50-Word Sort Line _00
o 1 2 3| L |P °lTL N S| D "BP NOTES
4 5 6 1 00 0L | 04 00 | 00
8 9 10 n 04 | uf 09 | 09 00 | 20 ”
12 3 ¥ 15| o5 | 49 | 49 19 | 28 jl] Limit I
6 17 18 18 o6f[ufw |51 19 | 28 H] Base II
20 21 22 23| o7 50 | 51 19 | 28 jll Limit II
24 25 26 21| osflulf wr |49 19 23j Base I
28 29 30 3| o9 [ulff 14 |14 00 | 21 ||
32 3 M | w(Julw |60 24 | 19 Base V
3 37 38 38| 1f]uf wr |us 25 | 19 Base VI
0 4 2 B oo |52 19 | 28 Base III
44 45 46 47 | 13[[u | w7 |58 19 | 28 Base IV
48 43 50 51 14 |ufl 19 |19 00 | 22 Il
52 53 54 55| 1s | | sase
5 57 58 89 f 16[[u o1 |00 00 | 00 % Difference
60 61 62 63 17.“ Base II
64 65 66 67 | 1s II Base IV
8 69 70 71| 1 20 {21 [o | 20| 28 | .
12 B 14 15| 21 24 |25 22 | 29
6 771 18 18 | 25 29 |30 20 | 29
80 81 82 8 | 30 31 |32 28 | 27
84 85 86 87 | 32 34 |00 16 | 31
88 89 90 91 || 33 37 |38 20 | 29
92 93 94 95 (| 38 40 |41 28 | 20
9% 97 98 99} s 42 |43 20 | 28
U0 W u2 ul3 || 43 4h | 45 22 | 29
u4 u5 ub 45 46 |47 28 | 20

FORM
108-5.0

0o

- 199 -

“Beroi Cormputer Los Angeles 45, California
Page _2 of
G-15D Prepared by Date:

PROGRAM PROBLEM : _ 50-Word Sort Line 00
o 1 2 3} L |P {I; N S|{D “BP NOTES
4 5 6 1 47 49 | 50 28| 22

8 9 10 N 50 52 | 53 21| 28

12 13 ¥4 15 53 56 | 57 22| 29

% 17 18 B 57 60 | 61 28| 21

20 2 2 2 61 65 | 66 21| 28

4 25 2 27 66 68 | 70 22 29

28 29 30 3 70 73 | 74 28 | 21

2 3B MU 3 74 78 | 79 28 | 22

% 37 3B 39 79 82 | 83 21 28

0 4 42 o 83 84 | 85 22| 29

4 &H & 4 85 86 | 87 28 | 21

48 49 50 51 87 91 | 92 21| 28

92 53 54 55 o2 96 | 97 22| 29

9% 57 58 59 f o 99 | wo 28| 21

60 61 62 B8 | .o u3 | b 28 | 22

64 65 66 67 ub 00 | 02 20| 28 b
68 69 70 M 02 04 | u6 31| 31

12 B W OB uw] [= |4 19 | 28]

16 77 18 19| 49 52 | 54 28 | 23

80 81 8 & 54 58 | 59 22 | 28

84 85 86 87 59 60 | 62 22 | 29

88 83 %0 91 62 66 | 67 28 | 22

92 93 94 9| 67 71 | 72 22 | 28

% 97 98 93 72 76 | 77 22 | 29

ue ul w2 ulf 77 79 | 80 28 | 22

U4 u5 U6 80 81 | 82 22 | 28

FORM
108-5.0

- 200 -

“Beroi Los Angeles 45, California Page 3 of
G-15D Prepared by Date:

PROGRAM PROBLEM : _ 50-Word Sort Line 00
o 1 2 3} L P {T; N S (D (BP NOTES
4 5 6 1 82 84 | 86 22 | 29

8 9 10 u 86 87 | 88 20 | 29

12 13 14 15 88 89 | 19 28 | 27

16 17 18 19 20 23 | 24 20 | 29

20 2 22 23| 24 25 | 02 28 | 22

24 %5 6 20 w || [= |5 19 | 28

28 29 30 31 51 52 | 55 23 | 29

32 33 34 3| 55 57 | u3 22 | 31

3 37 3B I/ | u3 ub | 02 21 | 28

w 4 2 B[w6 [|5 19 | 28

A4 45 46 4] || 52 54 | 56 28 | 25 "

48 43 50 51 56 58 | 02 22 | 28 ”

52 53 54 S5[| us J| [[xx |ss 19 | 28

% 57 58 59 | sg 60 | 63 28 | 24

60 61 62 63 | ¢3 66 | 02 21 | 28

64 65 66 67f uw | [[=x |6 24 | 19

68 69 70 71 | 6o 63 | 02 22 | 28

12 13 WU 15 xx | ub 25 | 19

% 17 18 19

80 8 82 8

B 85 8 8

88 89 90 91

92 93 94 95

% 97 98 99

uo w2z ul

u4 u5 ub

- 201 -

FLOATING-POINT OPERATION

When the range of numbers which is anticipated during a calculation
is either very large or unpredictable, it may become extremely diffi-
cult to work with fixed-point data. 1In such situations, floating-
point arithmetic is usually used.

In floating-point operation a data word is divided into two major por-
tions, similar in function to the characteristic and the mantissa of a
logarithm., One portion contains a fraction; the other, an integral
power of 2 by which the fraction is to be multiplied. The sign-bit of
the data word is associated with the fraction, as its algebraic sign.
Any arbitrary decision as to how many bits of a word will be used to
express the fraction and how many will be reserved to express the ac-
companying exponent of the base of 2 is permissible.

The Bendix programmers have generally adopted the following rule. The
fraction part of the data word is contained in bit positions T1l0 through
T29. The sign of the fraction is contained in bit Tl of the data word
and the scale factor is contained in bits T2 through T9.

i — WA S N S — U G — SN SN W W S— A F— Fa— e
Fraction Scale S
Factor

As Tl of the data word indicates the algebraic sign of the fraction and,
since signed exponents are desirable, the scale factor is formed by
adding 128 to the power of 2. Thus, the range of the scale factor is

0 < scale factor < 255, while the range of the power of 2 is -128 <
power of 2 < 127. Therefore, the larger the scale factor, the smaller

the number that is represented in the fraction or mantissa of the data
word.

In floating-point operation it is often desirable to keep as many signi-
ficant bits as possible in the mantissa of a data word and to use the
scale factor to express all leading zeroes. A special command is avail-
able in the G-15 that will allow the programmer to keep all significant
bits of a data word and will also keep a count of how many leading zeroes

were dropped. This command is the 'mormalize'" command. It's normal form
is:

L 5 N 0 27 31.
The '"normalize' command operates in the following manner:

1. MQO,l and AR are the only registers involved in the execution
of this instruction.

2. MQo,1 will shift left until a 1 bit appears in T29 of MQ]. For
every leading zero that is lost from MQ; a 1 is added to AR in

- 202 -

the 2—28 position. A zero will be inserted in Tl of MQp after
each shift,

3. As in a shift command, the location for the '"mormalize" com-
mand must be odd.

Unlike some other machines, floating-point arithmetic operations are not
automatic in the G-15. It is up to the programmer to keep track of the
scale factors and fractions that he is working with. Thus multiplication
and division become rather simple programming problems in floating-point
because all the programmer must do is separate the fractional portioms

of the numbers from the scale factors, do the multiplication or division
with the fractions, either add or subtract the scale factors to get the
new scale factor of the product or quotient and then combine the product
or quotient with the new scale factor for storage.

Addition and subtraction are now more difficult because the programmer
must compare the scale factors of the numbers to be added or subtracted,
and if they are unequal, must shift one of the numbers until the scale
factors do become equal. He must keep track of the number of shifts to
get the new scale factor of the number. A shift command is available

to help the programmer keep a count of the number of shifts that have
been made. This is a special command and its normal form is:

L 5% N 0 26 31.

This command will operate on ID and MQ in the same manner as the shift
command mentioned earlier with the following exception, for each bit-
position shift in ID and MQ a one will be added to AR scaled 2-28, If
at any time during the shift the one added to AR causes an end-around-
carry in AR, the shift will terminate and no more bits will be shifted
in ID and MQ. Therefore, by using this command the programmer can either
count the shifts in AR or use AR, loaded with the complement of the num-
ber of bit-positions that he desires shifted, to control the number of
shifts. The location of this command must be odd so that execution will
start at an even word-time.

The two extract commands previously discussed enable the programmer to
separate the fraction and the scale factor so that he can operate on them
separately. After the operations have been performed on both the scale
factors and the fraction, the programmer will want to combine the new
fractions and scale factors for storage. Another extract command is
available for this purpose. Its normal form is:

L T N 0 27 D.
This extract command operates in the following manner:
1. Where there are one bits in the mask at word-time T in line

20, the corresponding bits in line 21 are extracted to word-
time T of the destination.

- 203 -

2. Where there are zero bits in the mask at word-time T in line
20, the corresponding bits in AR are extracted to word-time
T of the destination.

Thus, by use of this extract command the programmer can unite his new
scale factor with the new fraction for storage.

From the preceding paragraphs, it can be seen that floating-point opera-
tion in the G-15, although it presents a somewhat more difficult program-
ming effort, can operate with very large or very small numbers that fixed-
point operation could not handle.

MISCELLANEOUS TOPICS TO BE COVERED BEFORE CLOSING

So far, in discussing outputs, we have mentioned the possibility of
either punching or typing the contents of line 19, 1If it is desired to
get both a tape and a typed copy of the line's contents, two separate
outputs would have to be called for.

On the base of the typewriter, as shown on page 130, there is a punch
switch. If this switch is on when a type-out of line 19's contents is
called for, the characters of output, as well as activating the type-
writer, will also activate the punch, and the two outputs will proceed
simultaneously as the result of one command (Type line 19). Of course
the speed of the punch will be slowed down to the speed of the type-
writer, which is considerably slower than the normal speed of the punch,
when used alone. This punch switch is merely a physical connection
enabling the pulses which reach the typewriter to also reach the punch.

Of course, the punch switch must be on prior to execution of the "type
line 19" command. And so the question arises, '"How can you be sure the
punch switch has been manually turned on?" A test command is available
which tests for this condition. It is a special command, D = 31, S = 17,
C =1. TIf the switch is on, the next command will be taken from N + 1;
if the switch is off, the next command will be taken from N.

Normally, you would use this test prior to calling for a type-out of
line 19's contents, if you want to be sure that a tape will also be
punched. The "type line 19" command would be available only after the
test was answered affirmatively, the next command coming from N + 1.

If the answer is '"no'", you would normally want to repeat the test until
the switch is turned on. 1In such a case, it would be desirable to call
the operator's attention to the fact that he is to throw the punch switch
on. "It is reasonable to assume that the operator will not be aware of
this desire of yours; he might not even be at the computer (coffee-break,
of course). What then?

There is a special command available (D = 31, S = 17, C = 0) which rings
a bell inside the computer once each time it is executed. At N you could
give this command, and then go back to the test again. The bell would
thus be rung once each time the test is executed and answered negatively.
Presumably this continuous bell-ringing would cause somebody to come to

- 204 -

the computer. There would be the operating instructions for your pro-
gram, containing one all-important sentence: "If the bell continuously
rings, turn on the punch switch.'

The ringing of the bell requires a physical action on the part of the
computer: the movement of a solenoid, striking the rim of the bell.

It is a safe bet that, whenever physical action is involved, timing
problems occur. In this case, it is safe to allow one complete drum-
cycle execution time for the command. This will be sufficient to cause
the solenoid to ring the bell. Since D = 31 in the '"ring bell" command,
PPR will make the command immediate. Set T (the flag) equal to L + 1,
allowing a complete drum cycle of execution.

Solenoids require a recovery time, and, i1if the solenoid which rings the
bell is not allowed to recover after each ring, it will merely vibrate
against the bell, causing a buzz, rather than a series of individual
rings. Recovery time for this solenoid is three drum cycles. Therefore,
three drum cycles must elapse between executions of the 'ring bell' com-
mand. These can be achieved through purposeful '"bad'" coding of commands,
requiring '"maximum access-time''., For instance, the following command
will waste two drum cycles:

L p T N C S D

51 51 50 0 00 00
50 e e e N

Notice that both the '"ring bell' and '"test punch switch" commands have
a special S code of 17.

ring bell: T N 0 17 31
test punch switch on: T N 1 17 31.

The punch switch test will also ring the bell, if a full drum cycle of
operation is allowed (T = L + 1). Of course, recovery time for the
solenoid is still necessary.

Recovery time is also mecessary in one other case already discussed in
this text. When type-in is called for, the stop code of the input is
supplied by striking the "s'" key. There is a physical contact involved
in this action, and that contact will remain closed for approximately
1/10 second (3 drum cycles). If another input or output is initiated
prior to the opening of that contact, the stop code pulse will still be
present, and that input or output will immediately stop.

Therefore, rule: after completion of typewriter input (ready test is
successfully met), allow three drum cycles to elapse before initiating
any other input or output.

Concerning punched tape output, one point should be made quite clear.
The reloading of the format will cause a reload code to be punched on
tape. If the tape being punched is later to be read into the computer

- 205 -

(interim storage) you must be sure that it is originally punched under
control of an output format which calls for four full words prior to
the reload.

The number track, mentioned previously, is a timing channel physically
located on the surface of the drum. It occupies a long line similar to
the long lines already discussed, and this long line recirculates once
per drum cycle in the same manner as all other long lines. There is no
way to program the loading of this channel: it is loaded automatically
when the computer is turned on. Two blocks of punched tape will auto-
matically be read: the computer will automatically load the number
track with the information from the first; the second should be a loader
program designed to read in a test routine, in the normal manner. The
contents of this block of tape will occupy line 19. Turn-on procedure,
including use of test routines, is fully discussed in the Operating
Manual.

The function of the number track is to affix specific word-times to all
words in memory. At each word-time, in the number track, the T and N
portions of the word contain the number of the next word-time to come up
under the read-heads. The computer compares T's and N's of commands being
interpreted with the T and N available from the number track, and in this
way is able to determine when to execute or read a command.

Page 206 contains a type-out of the number track. The words are typed in
four-word groups, reading from left to right, one group per line. The
first word typed out is u7, and the last is 00. Notice that in all words
except u7, the I/D bit is set equal to 1.

Word u7 is unlike any of the others. You would expect its T and N to
contain 00, but this is not the case. The counting of T and N is, of
necessity, modulo 128 (there are seven bits for each). However, there

are only 108 words per long line, and, therefore, only 108 word-times
possible for either T or N. Word u7 in the number track contains 20 in
each of these positions, so that, when this is added to the respective time
counters, they will be cleared to 00 indicating that the next word-time
will be 00. The meaning of other bits set in word u7 of the number track
would require more engineering background than the reader is assumed to
have at this point.

Notice, if you store a command in word u’7 of a command line, and if you
expect your program to read and interpret this command at word-time u7,

it will be interpreted simultaneously with the jumping ahead of the counters
by 20 word-times. Therefore, if you want to do this, the T and N portions
of your command must equal the desired word-time plus 20 in each case.

For example, if, at word-time u7, you desire to call for the transfer of
word 10 from line 08 to line 09, and then you desire to take your next com-
mand at word-time 11, your command would be coded in the following manner:

L P I N C 5 1D

u’/ 30 31 0 08 09
11 o ee ce e

-1414794
y868000
y464000
y060000
xw5w000
x858000
x454000
x050000
wwiw000
w848000
wi44000
w040000
vw3w000
v838000
v434000
v030000
uw2w(000
u828000
u424000
u020000
9wlw000
9818000
9414000
9010000
8wOw000
8808000
8404000

- 206 -

Number Track

yv6v000
y767000
y363000
xz5z2000
xv5v000
x757000
x353000
wz42z000
wv4v000
w747000
w343000
vz3z000
vv3v000
v737000
v333000
uz2z000
uv2v000
u727000
u323000
9z1z000
9v1v000
9717000
9313000
8z0z000
8v0v000
8707000
8303000

yub6u000
y666000
y262000
xy5y000
xu5u000
x656000
x252000
wy4y000
wu4u000
w646000
w242000
vy3y000
vu3u000
v636000
v232000
uy2y000
uu2u000
u626000
u222000
9y1y000
9ulu000
9616000
9212000
8y0y000
8u0u000
8606000
8202000

v9659000
y565000
y161000
xx5x000
x959000
x555000
x151000
wx4x000
w949000
w545000
wl41000
vx3x000
v939000
v535000
v131000
ux2x000
u929000
u525000
ul21000
9x1x000
9919000
9515000
9111000
8x0x000
8909000
8505000
8101000

Powers of

l|2I|

k = no. of pre-zeros

o B~ N

16
32

64

128

256

512

1024

2048

4096

8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912

-n

1
.50000000
.25000000
.12500000
.06250000
.03125000
.01562500
.00781250
.k3906250
.k1953125
.k9765625
.k4882812
k2441406
.k1220703
.k6103516
.k3051758
.k1525879
.k7629395
.k3814697
.k1907349
.k9536743
k4768372
.k2384186
.k1192093
.k5960464
.k2980232

- «k1490116

.k7450581
.k3725290
.k1862645

P

OO NNNATAAOOOTLVLUULEPRPRPWLWWLWWLWWNNOOOOOOOO

=]

wo~NoOI UL WwNhEFEO

Hex Powers of "10"

k = no.

10" (Hex)

0000001
000000u
0000064
00003y8
0002710
00186u0
0024240
0989680
525y100

Constants

w
T
V7
e
log e
log 2
log

OO OCONMNEF VW

[| A S B O

of pre-zeros

10 ™ (Hex)

1
.199999u
.k28z5w29
k4189375
. k68xv8vv
Jku7wbuwh
.kl0Owb6z7u
.klux7z2u
k2uz3lxw

.14159265
.86960440
.77245385
.71828183
.43429448
.30103000
.49714987

=

aca P PrPLONEHEOO

=}

o~NONV P WD HEO

- 208 -

CHARACTERISTIC SOURCE O'FtO GO HALT
: 16 8 4 2 1 : D.A.

COMMAND LINE DESTINATION

000 (00000) 0 O

NC-AR INPUT-OUTPUT TEST
PROD./QUOT.
Command Line @ @ @ @ @ @ @ Sign Indic.
SELECT. INDIC. R 8 4 2 1
| / / \
/

READY DOUBLE
Light PRECISION
If LIT, If LIT, Next
Next Command Command from N + 1
from AR instead of N

- 209 -
INDEX

Abbreviated Format (see Input/butput System)
Absolute Value (see Magnitude)
Access Time, 10, 150, 152, 159-161
Accumulator
Double Precision (see PN Register)
Single Precision (see AR Register)
"Add", 20, 103
"Add Magnitude', 22, 25, 103
Address, 7, 10-11, 15, 66
of next command, 16, (see also Next Command)
Analysis (see Problem Analysis)
Arithmetic Operations, 20-27, 33-41, 202
AR Register, 11, 20

Bell (see Ring Bell)
Binary-Coded-Decimal (see Decimal Inputs)
Binary Point
in machine (see Machine Point)
true, 91
Binary Scaling (see Scaling)
Bits
ordering of, 6
Blank Leader (see Leader)
Block of Punched Tape, 18, 138, 140
Block Operations, 25-26, 68-69, 163-165
"Bootstrap'" (see Loader)
Break-Point Operation, 16, 141-142

"C" Codes, 13-15, 64-66
Characteristic (CH), 61-66
Check Sum, 162
Clear (see Erase)
"Clear & Add", 20, 103
"Clear & Add Magnitude', 22, 25, 103
"Clear & Subtract', 21, 62, 103
Coding Sheets, 152-158
Command
binary form, 60-61
decimal form, 13, 150-151, 162
modification of, 122, 186-191, (see also Indexing)
ordering of, 69
next command from AR, 51, 122, 186-187, 191
parts of with respect to computer operation, 13-17, 61-70, 141-142,
205
restoration of (see '""Housekeeping')
special (see Special Command)

- 210 -

Command Line, 28, 69-70

selection of, 134
Complement, 23-24, 63-64
Complementation (see Inverting Gates)
Compute Switch, 17, 130, 142, 167
Control Information (see Timing)
Copy, 13-14
Copy via AR, (see Transfer via AR)
Cycle, drum (see Drum Cycle)

Debugging, 141-142
Decimal Command (see Command)
Decimal Inputs, 31, 167-168
conversion to binary, 28-30, 168-170
Decimal Scaling (see Scaling)
Decision-Making (see Test Commands)
Deferred Command, 15, 69, 160
Destination, 15, 66-68
Divide, 39-40, 76-84
considered as a ratio, 81-82
round-off (see Round-0ff)
Double Precision, 11-12
Drum Cycle, 8
Drum Revolution, 6
Drum Memory, 5-13

Enable Actions, 17, 133-134, 142
Enable Switch, 17, 130, 133, 142
End-Around-Carry, 106-108
Erase, 8-9
Erase Head, 8-9
Exchange AR with Memory, 13-15, 61-62, 163-165
D = two-word register (see Two-Word Registers)
Extract, 44-47, 177-180, 202-203

Fixed-Point Operation (see Scaling)
Flag (see Immediate Command)
Flip-Flop
sign, 131
Floating-Point Operation, 201-203, (see also Scaling, Floating-Point)
Flow Diagrams
description of, 4-5
Format (see Input/butput System)

Halt Command, 56, 111
"Housekeeping', 190

- 211 -

ID Register (see Two-Word Registers)
Immediate Command, 16, 18-19, 68-69, 160
Immediate-Deferred Bit, 68
Indexing, 50, 191-196
Input/butput System
commands, normal, 18, 142-143
enable actions (see Enable Actions)
normal inputs, 17, 128-133
punched tape, 18, 140
typewriter, 17-19, 30-31, 128-134, 204
drawing of, 130
normal outputs, 51-52
abbreviated format, 162
format, 52-55, 135-136, 138, 204-205
punched tape, 54, 134-139, 145-147, 162-163, 203-205
typewriter, 140-141, 203-204
ready (see Test Ready)
requirements, 127
simultaneous with computation, 19, 144
stop code, }32, 136, 140
recovery time for S key, 204
Introduction, 1-3
Inverting Gates, 13, 61, 67, 106
IP Flip-Flop (see Two-Word Registers, use of, in multiplication)

Leader, 145-147
Loader Program, 60, 147-149
Logical Addition, 27, 51, 143
Logical Operations, 42-47
Long Lines, 6-7
Loop
simple, 47-49, 145
through command modification and indexing, 50-51, 186-196

Machine Point, 89
Magnitude

of a number (see following: ''Clear & Add'", 'Add", and "Subtract')
Mark & Transfer, 28, 29, 114-121
Mask (see Extract)
Maximum Access (see Access Time)
Memory (see Drum Memory)
Method of Solution, 3-4
Millisecond, 8
Minimum Access (see Access Time)
MQ Register (see Two-Word Register)
Multiply, 35-38, 70-75

Round-Off (see Round-0ff)

- 212 -

Neons, front panel, 18, 132, 208
Next Command (see Commands, ordering of)
Next Command from AR, 51, 122, 186-187, 191
“"Normalize', 201-202
Notes, 16
Number
BCD (see Decimal Inputs)
conversions, 27, 28-30, 55, 168-170, 175-180, 182-186
machine form, 89
table of powers, 207
Number Track, 12-13, 26-27, 205-206

Operand, 15, 66
Operation Code
special (see Special Operations)
Output (see Input/Output System)
Overflow (see also Test)
definition, 33
indicator, to turn off, 34, 111-112
resulting from divide, 80
temporary, 79

Photo Reader, 18

PPR (see Program Preparation Routine)

PN Register (see Two-Word Register)
Precession, 163-165

Prefix, 16, 18, 151

"Princeton' Round-0ff (see Round-0ff)
Problem Analysis, 3

Problem Method (see Method of Solution)
Program Preparation Routine, 13, 18-20, 59-60, 150-151, 160-163, 165-167
Psuedo-Commands for PPR, 151, 162, 165-167
Punched Tape (see Input/butput System)
Punch Switch, 130, 203-204

Range of Values

associated with scaling, 97-100, 171
Read Heads, 6, 8-9
Ready (see Test Ready)
Recirculating Memory, 8-9, 67-68
Recovery Time, 204
Relative Timing Number, 36, 39
Rescaling, 91-92
Return Command, 29, 114-121, 142
Return Line, 29, 114
Revolution, Drum (see Drum Revolution)
Ring Bell, 203-204

- 213 -

Round-Of f
after division, 82
of binary number prior to conversion to BCD, 184

Scaling, Fixed Point
binary, 89-97
decimal, 32-33, 170-171
in BCD output, 175, 180
Scaling, Floating Point, 201-202
Selector, Source & Destination, 67
Self-Destroying Loader (see Loader)
Set Ready, 146-147
Shift, 42-44, 93-94, 201-202
Short Lines, 9-12
Sign Flip~Flop (see Flip-Flop)
Sign Time (see Bits, ordering of)
"Single-Cycle", 142
Single-Double Precision Bit, 61, 64-66
Solenoid, 204
Special Commands, 16-17, 18, 70
table of, 56-59
Sorting, 186-197
Source, 15, 66-68
Stop Code (see Input/butput System)
"Store', 103
"Store Magnitude", 22
"Subtract', 14-15, 20, 62, 103
"Subtract Magnitude", 110
Subroutines, 27, 113, 118
square root, 40

"T'" Numbers
pertaining to bits, 6
Temporary Overflow (see Overflow)
Test Commands, 19, 105-109
non-zero, 41, 109
overflow, 33-34, 106-108
punch switch on, 109, 203-204
and ring bell, 204
ready, 19-20, 108, 143
sign of AR negative, 41, 108
Timing (see Machine Time)
Problems where physical action is required, 204
Timing and Control Information, 12, (see also Number Track)
in immediate commands (see Immediate Commands)
relative timing number (see Relative Timing Number)
"TO" Pulse, 12
Transfer Control (see Mark & Transfer)

- 214 -

Transfer via AR
divide, 82, 84
multiply, 82-23
Two-Word Registers, 10-12
double precision accumulator, PN register, 11, 21
exchange of AR with memory, D = two-word register, 13-15
summary of rules, 37-38
use of, in division, 39-40, 76-84
use of, in multiplication, 35-38, 70-75

Word-Time, 6-7, 8, (see also Number Track)
as part of address, 15, 66

"Working Memory', 7

Write Heads, 6, 8-9

Offices:

BOSTON 16

114 Waitham Street
Lexington 73, Massachusetts
862-7976

CHICAGO 1

919 N. Michigan Avenue
Mlchigan 2-6692

CLEVELAND 13

55 Public Square
CHerry 1-7789

DALLAS 1

2626 Mockingbird Lane
FLeetwood 1-9951

DAYTON 2

1900 Huiman Bldg.
BAldwin 6-2341, Area code 513

DETROIT 37 *

12950 West Eight Mile Road
JOrdan 6-8789

HUNTSVILLE

Holiday Office Center
Memorial Parkway
South 539-8471

LLOS ANGELES

291 S. La Cienega Boulevard
Beverly Hills, California
OlLeander 5-9610

NEW YORK 17

205 East 42nd Street
Room 1205
ORegon 9-6990

PHILADELPHIA

723 Street Road
Southampton, Pa.
ELmwod 5-0600, Area code 215

WASHINGTON 6, D.C.

1000 Connecticut Avenue, N.W.
GTerling 3-0311

CANADA

Computing Devices
of Canada
P.O. Box 508
Ottawa 4, Ontario, Canada
TAibot 8-2711

OTHER COUNTRIES

Bendix International
Division

205 E. 42nd Street

New York 17, New York
MUrray Hill 3-1100

Bendix Computer Division L/

LOS ANGELES 45, CALIFORNIA CORPORATION

July 1961 APR-01601-1

