Reference Manual

ALTRAN
Translator

for the
Bendix G-15 Computer

ALTRAN TRANSILATOR REFERENCE MANUAL

FOR THE

BENDIX G-15 COMPUTER

Chapter 1
Chapter 2
Chapter 3
Chapter k4

Chapter 5

TABLE OF CONTENTS

Page
Introduction 1ii
Introduction to ALTRAN Coding, Formats, Examples 1

Basic Hardware Information, Commands, Numbers, Scaling ¢

Basic ALTRAN Information 13
Instructions 23
Commands L&

Chapter
Chapter
Chapter
Chapter

Chapter

(S} F W

TABLE OF CONTENTS

Page
Introduction iii
Introduction to ALTRAN Coding, Formats, Examples 1

Basic Hardware Information, Commands, Numbers, Scaling 6

Basic ALTRAN Information 13
Instructions 23
Commands Lo

Coding
Sheets

Typewriter

b1

G-15

\/

Punched
Tape

Punched
Tape

ii

Type-in

Translation

Punch-out

Read-in

Production
Run

INTRODUCTION

This manual is intended to instruct the programmer in the use of
ALTRAN and to serve as a reference when coding in ALTRAN. It
assumes little previous knowledge of the G-15 hardware or pro-
gramming in machine language. Only the following concepts are
necessary in order to use ALTRAN:

1. Basic knowledge of programming, including branches,
loops, and subroutines.

2. Binary and decimal representation.

3. Logic operations---extract, unite and complement.

_ THE G-15 COMPUTER

The Bendix G-15 is a powerful, compact, internally programmed,
digital computer. The basic unit provides a complete, general
purpose, computing system in a single cabinet. A photo-electric
tape reader and a tape punch are built into the machine. A spec-
ial typewriter is provided for control and can be used for input
and output. The system is expandable by means of numerous acces-
sories, '

Information can be expressed in decimal notation during input and
output. Internally during computation, information exists in
serial, binary form.

The memory of the G-15 consists of a rotating magnetic drum on
which information is stored serially in binary form. A "word"
of information contains 29 binary digits (bits) and may repre-
sent elther a command or a number. If the word represents a
number, the least significant bit is used for the sign of the
number and the remaining 28 bits represent the number's abso-
lute value.

Most of the information stored on the drum is in 20 channels or

"long lines", numbered 00 through 19. Each long line can contain
108 words numbered 00 through 99 and uO through u7 (100 thru 107).

iii

Four rapid access or "short lines" are provided on the drum, num-
bered 20 through 23. Each short line can contain 4 words numbered
00 through 03. Average access time for the short lines is 1/27
of the access time for a long line. The average access time for
a short line is .54 milliseconds.

Three 2-word registers are also provided for arithmetic and storage

as well as a one-word accumulator. The details of the operation
of these registers and the accumulator are discussed in Chapter 2.

CAPABILITIES OF ALTRAN

ALTRAN is a programming system which will translate simplified
commands with alphabetic operation codes into optimized G-15
machine language commands. The translator operates on a "one for
one" basis, producing one machine language command for each sim-
prlified command entered. The translation takes place immediately
and the translated command may be typed out for the operator's use,
at the option of the operator.

ALTRAN occupies lines 02, 05, 07-19, 20-23, and all the registers
and the accumulator during the translation operation. The remain-
ing long lines can be used by the programmer for the storage and
debugging of the translated machine language program. Therefore,
the operator can, if he desires, use lines 00, Ol, 03, Ok, and 06
for his program while retaining all the debugging facilities of
ALTRAN. If his program cannot be made to fit within these lines,
the programmer has the option of breaking the program into pieces
small enough to debug within these lines or translating his pro-
gram a line at a time and punching the object program onto paper
tape for later debugging through standard procedures such as the
use of "Short PPR" (a debugging routine available to all G-15
users). It should be emphasized that the object program can be
used in any command line and make use of the full capabilities

of the G-15 memory. The restrictions in memory mentioned above
apply only during the translation of the simplified commands to
machine language commands, not during the execution of the ob-
Ject program.

In translating a program to machine language, the programmer would
proceed as outlined below.

1., Load the ALTRAN programming system magazine.

2. Type in the simplified commands and constants used by
his program.

3. Punch a tape of his program.

4, Debug and repunch program’if necessary.

5. Run the translated program.

iv

CHAPTER 1

INTRODUCTION TO ALTRAN CODING

This chapter discusses some of the basic aspects of the
ALTRAN languasge and demonstrates some of the concepts
involved in programming with ALTRAN. Detailed explana-
tions of the instructions and commands used in this
chapter are presented in Chapters Four and Five and are

used here merely as examples of ALTRAN coding.

LOADING ALTRAN

ALTRAN is loaded into the computer by placing the rewound paper
tape magazine on the photo-reader, typing P with the Enable
switch ON, waiting for the Ready light to go ON, and placing
the Compute switch to GO. When the typewriter returns the car-
riage, ALTRAN is loaded and ready for input from the operator.
During the loading process, lines 00, Ol, 03, O4, and 06 are
not changed.

INPUT FORMAT

Instructions to the ALTRAN system and Commands to be translated
are typed into the computer in the following format:

Instructions

l-letter instruction code, "space'", address, "tab"

Example: Z 00ZZ (clears line 00)
Commands

3-letter command code, 'space", address, 'tab"

Example: ADD 2202 (add the contents of 2202)

Notice that "space" and "tab" mean that these keys are typed and
not the letters g paceandtabd.

In the case where the "address" field is zero (0000), the Instruc-
tion or Command code should be followed by "tab' to avoid unneces-
sary typing.

Notice that all Instruction and Command code letters must be entered
in lower case. If upper case letters are entered they will be re-
Jected by the system as invalid. (Upper case letters are shown in
this manual only because this corresponds more closely to the lower
case Elite Gothic type of the alphanumeric typewriter.)

EXAMPLES

The following pages represent some very simple examples of programs
translated and run using ALTRAN. They were typed into the computer
as shown and the comments were added after the fact. The reader may
wish to follow these examples to get a "feel" for the operation of
the system. Each example includes all of the type-in used including
the loading operation.

Information enclosed in a box is typed by the operator in all of the
following examples.

ADDITION OF TWO NUMBERS

It is required to write a program which will accept the input
of two T-digit decimal numbers, add the numbers together, and
type the sum (in decimal) on the typewriter.

P Load ALTRAN

Z 00ZZ Z .00ZZ Clear or "Zero' Line 00

X 18u2 X .18u2 Suppress Machine Language Command Type-back
X 18ub X .18ulk Suppress Verification of Input

C 0000 Permit ALTRAN Command Entry Starting at 0000.
.0000 | TII Type-in Integer

.0002 | SAR 2200 Store AR in 2200

. 0005 TII Type~in Integer

.0007 |SAR 2201 Store AR in 2201

.0010 |[CIA 2200 Clear and Add Contents of 2200

.0013 |ADD 2201 Add Contents of 2201

.0018 |sSsD 2800 Store Sum or Difference in 2800 (AR)

.0020 | PIC Print Integer, Carriage Return,

.0022 | TRA__ 0000 Transfer to 0000

.0000 w.02.81.2.21.31 S 0000 l Start Computing at 0000
1111111 @ 2222222 8§ |[.3333333 Program in Operation Showing
1234567 @ 1234567 & |.246913k Input of the Two Numbers
TITTTTT ® 2222222 € {.9999999 And Sum Typed by the

1010101 0101010 ® {,1111111 Computer.

1 ® ® [.0000003

222 ©333 & |.0000555

& chf egain ALTRAN Control.

P 0023 Punch 0000 Through 0023-1

T 0204 Transfer Line 02 to Line Ok,

C Oblk Permit ALTRAN Command Type-in Starting at OLLL

LOlllL

u.46.45.5.,20.31

Return to Marked Place, Line 00
1 [P okoo Punch Line O

‘\Error. Number 1 Entered Instead of P, Note Rejection of

Input Followed By ?

MULTIPLICATION OF TWO FRACTIONS

It is required to write a program which will accept the input of
two T-digit decimal fractions, find their product, and type out
the product as a decimal fraction.

P Load ALTRAN

Zo00Zz | Z .00ZZ Clear (Zero) Line 00

c I c Permit ALTRAN Command Entry Starting at 0000.
.0000 | TIF| TIF w.02.56.2.21.31 Type in Fraction

.0002 | SAR 2200] SAR .2200 w.04.05.0.28.22 Store AR in 2200
.0005 | TIF[TIF w.07.56.2.21.31 Type in Fraction

.0007 | SAR 2201] SAR .2201 Ww.09.10.0.28.22 Store AR in 2201
.0010 | CLR u.13.13.0.23.31 Clear 2-word Registers
.0013 | LID 2200| LID .2200 w.16.19.6.22.25 Load ID from 2200
.0019 | IMQ 2201 | IMQ .2201 w.21.23.0.22.24 Load MQ from 2201
.0023 | MPY[MPY u.56.80.0.24.31 Multiply (Single Precision).
.0080 | TPR| TPR u.82.82.0.26.28 Transfer Product to AR

.0082 | PFC| PFC w.84,14.2,21.31 Print Fraction, Carriage Return.
L0084 | TRA 0000| TRA ,0000 u.,00.00.0.21.31 Transfer to 0000.

. 0000 w.02.560.2.21.31 000] S .0000 Start Computing at 0000.
.500000 ©§.5000000 @ |.0250000

.5000000 @& 5000000 @®]+.2500000 ‘

.1000000 @ .1234567 ®|.0123457 Actual Input and Output
.1000000 @& .1234565 ®|.0123456 During Program Execution.
.1000000 ® .1234566 ®|.0123457

0010000 .0010000 .0000010

ALTRAN CODING FORM

OP

| ADDR

COMMENTS

oP

ADDR

COMMENTS

CHAPTER 2

SOME BASIC HARDWARE INFORMATION

This chapter explains some of the basic information about
the G-15 computer which is necessary for the ALTRAN pro-
grammer. The subjects covered include machine language

command structure, number forms, and scaling of numbers.

MACHINE LANGUAGE COMMAND STRUCTURE

The command generated by the ALTRAN system is called a machine
language command. This command is one which can be understood,
without further interpretation or translation, by the basic
circuits of the computer. The computer looks at this command
as being in binary. The programmer will normally use the dec-
imal equivalent of the binary command in communicating with the
computer in its language. That is to say,the programmer or oOp-
erator will normally enter the decimal equivalent, it will be
converted to binary, and the computer can then understand it.

It is important, since the ALTRAN system produces machine lan-
guage commands, that the programmer be familiar with the various
parts of the command., This information will enable the program-
mer to modify commands to give the desired operation in the case
where it is not available in the ALTRAN system and to understand
what each command generated by ALTRAN will accomplish.

The various formats which a command may have in the ALTRAN system
are described below. An explanation of the various components of
a command follows the formast diagram.

COMMAND FORMATS

The following illustration shows the various forms which a command
mey teke in the ALTRAN system. The first is the standard ALTRAN
command format. It is followed by the decimal machine language
command which would be generated by ALTRAN. The binary represen-
tation of this command is then shown, followed by the hexadecimal
equivalent. It is assumed that the command is to be stored in lo-
cation 0000 and that line OO is clear or empty when the command is
translated by the ALTRAN system.

O P R A C D |{BP
1 1

L

VAR
. N

X X

D BP

T T S S
117 118 1 4 2 |9 -

[
| /
v v

=[]

i v

¢
T BF o s D %
oJofiloJofofalijofofsjofonJofofifofiafafofr p 1o [1 o
9 1 9 2 5 x x |+

Notice that P, N, C, and D are made up by the ALTRAN system operating
on the ADD command. :
T

1+

In the preceding example of formats the path taken by the various
components between forms is showne. The ALTRAN command which was
entered was:

ADD 1h417-

meaning that the contents of location 1417 (line 14, word 17) are
to be added to the contents of the accumulator. The minus (-)
sign attached to the address field meant that a Breakpoint was

to be included in the translated command. The system would trans-
late this to the following machine language command:

P TT NN C SS DD
WelTos 180 1. lh‘o 29"

Since it was stated that the command was to be stored in location
0000 the operation of adding the contents of word 17 must be de=-
ferred until word 17 is read. (Otherwise words 01, 02, 03, Ok,

ete, would be added to the accumulator.) Any operation in the
computer is delayed until the word time specified by TT if the
prefix (P) is made equal to w. The prefix (P) of w is equivalent
to a 1-bit in the most significant bit position of the command.
Thus ALTRAN would generate a command which would be "deferred"
until word time 17. At word time 17 the operation would take place.

Under conditions where the operation specified can begin immediately,
ALTRAN would make up a prefix of u signaling the computer that the
operation must start immediately after the command is read and con-
tinue until time TT. A command with a prefix of u is often called
an "immediate" or "block' command.

In the example shown, the operation of adding the contents of lo-
cation 1417 to the accumulator takes place at word time 17. Since
line 00 was clear before entry of this command, location 18 is
available for storage of the next command. Therefore, NN is assigned
as location 18. This is the best choice of location for the next
command from the information given in the example. (By "best' we
mean that the program appears to be optimum in that no time is
wasted waiting for the next commend to be read after the execution
of the current command.)

The source of information is line 1k4; therefore, in the SS position
of the command, ALTRAN will place the number 14, It may now be
seen that in this case (and many others) the address of the operand
is specified by the combination of SS (the source line) and TT (the
word time at which information will be used from the source line).

|Q

s/d

In the G-15, information is usually transferred from one line to
another. The DD portion of the command is the line number to
which information is transferred. (There are some exceptions to
this rule in the special and input/output commands.) The accumu-
lator is normally considered to be line 28. If the programmer
wishes to add to the accumulator he specifies tne destination as
29 rather than 28 to signify that the information is to be added
to AR (accumulator) and does not replace the information in AR.
In the example, then, the system recognizes that the operation
is an "add to AR" and makes the DD part of the command equal to
29.

ALTRAN recognizes that in the addition process the number to be
added to the accumulator may be negative or positive. 1In the
case where a negative number is to be added to the accumulator
that number must be complemented. It therefore supplies the c
portion of the command with the characteristic of 1 which will
cause negative numbers to be complemented before the addition
process,

The addition of a breakpoint (BP) was signaled by the addition
of a minus (-) sign on the ALTRAN command entered. The system
will include a bit in the proper place if the command is meant
to halt on a breakpoint. A command with a breakpoint will cause
the computer to halt immediately after execution of this com-
mand if the Compute switch is in the BP position.

Below the binary representation of the command is the number
91925xx. This 1is the hexadecimal equivalent of the binary com-
mand. If the contents of a location holding a command are typed
out by the computer as a hexadecimal number they would appear as

a 7-digit hexadecimal number and sign. The sign position holds

a bit which tells the computer whether the operation to be per-
formed is a single or double-precision function. In general, a
single-precision operation involves a single word whereas a double-
precision operation usually involves two words which are processed
as one long word.

Most of the operation in ALTRAN will normally be single-precision.
Double-precision operations may be performed,if desired.

A more detailed explanation of the components of the command may
be found in Coding Manual for the Bendix G-15 (T 3-3) or Program-
ming for the G-15. Both manuals are available from Bendix Com-
puter Division.

NUMBER FORMATS

In the G-15 computer numbers are normally held in binary as either
fractions or integers. Most engineering computations are done
with binary fractions while data processing and counting opera-
tions are usually computed using the binary integer representation,

Fractional Notation

Binary numbers which are considered to be fractional are usually
stored so that the most significant bit position of the number
represents 1/2, the next position 1/4, the next 1/8 and so forth.
The chief disadvantage of this system is that many decimal frac-
tions cannot be represented exactly in this notation. That is to
say, the number can be represented very closely with the 28 bits
available but an infinite number of bits would be required to rep-
resent the fraction exactly.

Some fractions such as 1/2, 1/4, ete. can be represented exactly
using this notation. This notation is often used for engineering
work because the numbers used do not have to be more precise than
approximately 7 decimal digits. (Single-precision operations)

Consider the problem where an engineer has computed the length of
each leg of a course enclosing a piece of land. Suppose he now
wants to add up the length of all the legs to find the perimeter
of the land. If there were no more than ten legs and each leg
was no longer than 900.000 feet then he might enter the lengths
into the computer as follows:

Length (ft.) Length Entered into Computer (ft.)
900.000 . 0900000
545.750 ‘ .0545750
89.125 .0089125
125.000 .0125000
600.500 . 0600500

Notice that the actual values he computed were multiplied by lO-h

before they were entered into the computer. This was necessary

so they would be fractional. They were multiplied by 10-% rather
than 10-3 so that the sum of all the lengths would not exceed the
capacity of the wprd. (,9999999) Notice that with the numbers
multiplied by 10~% before entry, the sum will never exceed 0900000

times 10 lengths or .9000000.

10

Because all of the legs were multiplieduby lO'u before entry the
answer will have to be multiplied by 10" to get the correct answer.
The computer would come up with an answer of . 2260375 as the sum
of the number entered into the problem. The answer desired by the
engineer is 2260.375. Ee can get this either by mentally multi-
plying his answer by 107 or by making up a " format" which will
cause the typewriter to type the decimal point in the desired
place. By moving the decimal point from the left end of the num-
ber raght four places the programmer can "multiply” his answer

by 107,

The entire process described above is normally called scaling.
Scaling is a necessary part of programming any fixed point com-
puter. Bendix supplies programming systems which will automati-
cally take care of the scaling for the programmer but they do

so at some cost in operating speed. If the problem being pro-
grammed can be scaled easily (the ranges of intermediate and
final results are well known) and the program is to be run often
it will probably pay to program in ALTRAN rather than a system
such as INTERCOM 1000. The final program will normally run con-
siderably faster in machine language (ALTRAN) than in an inter-
pretive system.

The object of "scaling' is to keep as much significance in the
number as possible and yet not cause an overflow. Thus, numbers
should normally be held as far to the left (more significant
end) as possible, Notice that in the example shown above the
input number could have been scaled or multiplied by 107~ on
entry but that an overflow would have resulted when the addi-
tion took place, causing an erroneous answer.

It is important to realize that when numbers are held in frac-
tional form they may not represent the number exactly. For
example if the fraction ,0000001 is entered into the computer
and repeatedly added to the accumulator, it will be found that
after 1000 additions to the accumulator the answer will not be
.0001000 as you might expect. Again, this is because the frac-
tion ,0000001 cannot be represented exactly as a binary fraction.

Multiplication in the G-15 is normally considered to operate on
fractions. For instance, if the multiplicand is loaded into
register ID.1 (LID command) and the multiplier is loaded into
MQ.l (IMQ command) and both numbers are the binary fractions
equivalent to the decimal fraction .5000000, then the product of
22500000 will be taken from the product register PN.1l (using a
TPR command).

The two-word registers mentioned above are described more fully
in the manual, Programming for the G-15.

11

Integer Notation

In some applications, such as data processing, the fact that a
binary fraction cannot represent a decimal fraction exactly is
a decided disadvantage. Perhaps the best example of this is in
the case where many sales of one or two dollars each are to be
added together to get a Sales Total. If the individual items
are entered as fractions such as:

Amount Amount Entered into the Computer
$ 1.23 0000123

2.45 .000024 5

1.98 . .0000198

eventually the total of all the amounts will be "of f" by a few
cents or dollars. Normally this cannot be tolerated in a data
processing application so the amounts are held internally as
integers.,

A binary integer is normally held in the computer so that the
least significant bit in the word represents one unit. The
next most significant bit represents two and so forth. Notice
that the amount $1.23 can then be entered as 123 units and thus
represented exactly in the computer. When the final total is
typed out by the ccmputer the "forma " controlling the type-out
will supply the decimal point where necessary.

Normally amounts of money, counts of items, etc. are processed

as binary integers. Counters used in the program for such things
as command modification and timing are normally held as integers.
ALTRAN has a command (DAR) which is most useful for decrementing
a binary integer in the AR by one in the least significant place.
Thus, counters can be modified easily if they are kept as integers.

Multiplication of the number of units times unit cost can be ac-
complished in the computer using the following multiplication
scheme. The registers are cleared. The register ID.1 is loaded
with the cost. The ID register is shifted right one bit position.
The register MQ.l is loaded with the number of units. The multi-
ply command is given followed by a command to take the product
from PN.O. The ALTRAN sequence would be:

CLR

LID cost (where cost represents the location holding
the value of the cost as an integer.)

SFT 02

IMQ units (where units represents a location.)

MPY

LAR 2600 (Load AR from PN.O)

12

CHAPTER 3

BASIC ALTRAN INFORMATION

This chapter deals with the basic methods used in the ALTRAN
system for command translation and other operations. It is
meant to give the reader some familiarity with the way in
which the system functions. The subjects covered include
command and instruction input, translation, information
flow, reservation of storage with rules for type-out and

the check-summing feature in ALTRAN.

The Opcode and Skeleton command tables are included at the

end of this chapter.

13

COMMAND AND INSTRUCTION INPUT

When the 3-letter command code or l-letter instruction code is
typed in by the operator and either a "space" or "tab" follows,
the system immediately begins to search through a "Valid Opcode
Table". This table is located in line 16 of the memory and
holds an ordered list of all the valid command or instruction
codes. (The search is called a binary search and takes place
normally while the operator is entering the address portion of
the command or instruction.) When the searching process finds
a "match" between the code typed in and a code in the Valid
Opcode List, the word position in which the matching code was
found is noted. (The Valid Opcode List and the corresponding
skeleton commands appear at the end of this chapter.)

This word number is used to pick up the corresponding word from
line 17, Line 17 holds a "Skeleton Command Table". There is
one skeleton command stored in line 17 for each valid opcode

in line 16. The skeleton command contains information necessary
for the translation (for commands) or execution (for instruc-
tions) of the code typed into the computer.

Both the Valid Opcode Table and the Skeleton Command Table are
108 words in length permitting a maximum of 108 possible codes.
(Notice that not all of the available locations are presently
used by the system. It is expected that users will add codes
which are of particular use to themselves.)

TRANSIATION

Tyranslation and decoding begins immediately after the skeleton
command has been located for the code typed in and the address
information is known. The NN portion of the skeleton command

is extracted from it and used to make a transfer of control com-
mand. This transfer of control command is executed and the sys-
tem branches to the required place. In the case of a command
code the translation of the command is accomplished by 16 pos-
sible routires. The NN of the skeleton command controls which
of the 16 routines will be used for the translation of this par-
ticular command code. Thus for commend translation, 16 "classes"

of commands exist.

Fach of the translation routines is designed to use the other
information in the skeleton command and the address field enter-
ed to make up the correct machine language command. It is, in
some cases, a simple matter to add codes to the valid opcode
table to increase the usefulness of the system. If the skele-
ton command can be made to conform to the rules for one of the
existing classes, no additional programming is necessary. '

1L

INFORMATION FLOW IN ALTRAN

Command and

Instruction
® et Input
Type-in of
—>/ Command or
Instirction
Search for a\ no
Valid "Match" Type-out
OPR?
VALID?
é yes
Use skeleton
command NN for
a switch
\/

NNa1-19 A »NN;20-39
Translate and Execute InstrucH
Store command tion entered
entered

j

The flow diagram represents, in general, the manner in which both
Commands and Instructions are entered, decoded and either executed
or translated and stored. Notice that the operator can always re-
turn to Command and Instruction Input by typing @ c5f with the
Compute switch OFF and the Enable switch ON. If the operator then
moves the Compute switch to GO the program will return to Command
and Instruction Input. .

15

RESERVATION OF STORAGE

In ALTRAN, locations which are reserved are marked either by
the operator or by ALTRAN itself by storing the hexadecimal
number xxxXxxxx in that location. If the system finds that
the next available location for a command is location 0018,
it will store 18 in NN of the command being translated and
then mark location 0018 with the number xxxxxxx. (Some com-
mands such as mark place and transfer would store the next
location number 18 in the TT portion of the command.)

Sometimes ALTRAN will reserve several locations in the course
of translating one ccmmand. In the case of a Test command
it will mark locations NN and NN plus 1 so both sides of the
test will be reserved. 1In the case where storage locations
are left to ALTRAN for assignment, they will also be marked
with xxxxxxx. (For example, the command IAR 00zz will find
the next free location after the command in line 00 and re-
serve it.)

It is not practical to type out the xxxxxxx as a command each
time ALTRAN finds a reserved location. To avoid having xxXxxxxx
converted to the equivalent machine language command
(We93+93.30.14.29 or SUB 1493 in some cases), the system tests
for the presence of the hexadecimal number xxxxxxx and behaves
in the following manner:

Instruction xxxxxxx Found 0000000 Found

M ABCD No Type=-out No type-out

M ABCD- Go to Command and Type as Machine
Instruction Input Language Command

D ABCD No type-out No type-out

D ABCD- Type Address Only No type-out

C ABCD No type-out No type-out

In the case where locations are typed with instructions H, F, or
I, the contents of the location will be treated as a number re-
gardless of whether it is xxxxxxxX. Zero locations will not be
typed out using these instructions,

Refer to Chapter 4 on Instructions for a full explanation of
the operation of the codes mentioned above.

16

CHECK-SUM FEATURE

The system has been programmed so that the operator can type
Enable ®c5f to gain control and go to Command and Instruction
Input. Word 00 of any line normally executed from line 05 as
a part of the ALTRAN system will transfer the correct starting
line to line 05 to give the operator control of the program.

When the starting line is in line 05, one of the first opera-
tions performed is the check-summing of all the fixed storage
associated with the ALTRAN system program. (Variable informa-
tion such as switches is stored in a block in the high order
end of line 18 and of course is not check-sumned.) This fea-
ture is quite useful in that it provides the operator with a
means for easily checking the validity of the entire system
program without unnecessarily reloading the program from paper
tape. If the system does not check-sum the program will ring
the bell 5 times and then halt. If the Compute switch is moved
to the center position and then back to GO, the system will
again be check-summed. If the check-sum is incorrect the op-
erator should reload the ALTRAN program from paper tape.

17

ADDR
. 1600

. 1601
.1602
.1603
.1604
. 1605
» 1606
. 1607
.1608
. 1609
.1610
1611
.1612
.1613
.1614
.1615
.1616
1617
.1618
.1619
.1620
.1621
. 1622

.1623

OPCODE & SKELETON COMMAND TABLE

oP

ADD

ADM

APN

ARL

BDF

BDI

BEL

BLA

BPT

CAM

CAR

CLA

CLR

CLs

DAR

DBF

D8l

DEL

Div

HLT

LAR

LMQ

LPN

HEX
X 1x4x40

«x1x4v40
«X1Y7v50
«x1y9v30
«X2X4x60
«X2%x4x90

«X2Xx5v30

«X2Y3x10

«X2Y7230
«Xx3x1v40
«x3x1y90
«x3Y3x10
-x3y3Y90
«x3v3220
«x4x1y90
«X4x2x60
.x4¥2x90
«x4x5v30
«X4x9250
-x8v3230
.Y3x1y90
.Y3x9x40
«Y3v4Y80

+Y3Y7Y50

18

ADDR
.1700

. 1701
1702
.1703
. 1704
1705
.1706
<1707
.1708
. 1709
1710
JA711
1712
1713
1714
1715
.1716
L1717
1718
1719
1720
1721
1722
1723

SKEL, Cﬂp.
u.60.01:5.00.29
u.00.01.2.00.29
u.w0,01.,0.00.30
u.00.04.2.28.29
w.35,07.2.21.31
w.37.07.2.21,31
v.01.06,0.17.31
U.00.16,1.00.29
v.02.06.0.06,31
u.00.,01,2.00.28
w.50.07,2.21,31
v.00.01,1.00.28
u.03.06,0.23.31
v.00,01.3.00,28
u.00,03.7.28.28
w.22.07.2.21.31
w.23.07.2.21.31
U.01.06,0.01,01
u.57.05,1.25.31
v.02,06.0,16.31
v.00,01,0,00,.28
u.w0.,01.0.00.25
U.w0.01,0.00.24
u.w0.01.0.00,26

ADDR
.1624
.1625
.1626
.1627
.1628
.1629
.1630
.1631
.1632
.1633
.1634
.1635
.1636
1637
.1638
.1639
.1640
.1641
.1642
.1643
.1644
. 1645
. 1646
. 1647

OPCODE & SKELETON COMMAND TABLE

or

LTL

MPT

MPY

NOP

NOR

OAR

PAA

PAN

PFC

PFR

PFT

PHC

PHE

PHT

PIC

PIN

PIT

PNA

PNN

PRE

PUN

RMP

RMT

RPT

HEX
.Y323Y30

eY4v7230
. Y4Y7280
.Y5Y6Y70
«Y5Y6Y30
«.Y6x1v90
LYTx1x10
«Y7x1¥50
«YTx6x30
«Y7X6Y30
.Y7x6230
.Y7x8x30
«Y7x8x50
.Y7x8230
«Y7x9x30
+YTx9Y50
«Y7x9230
«Y7Y5x10
«YTY5Y50
«YTY9X50
«Y724¥50
«Y9v4v70
.Y9Y4230

.Y9Y7230

19

ADDR
.1724

.1725
.1726
L1727
1728
.1729
.1730
1731
1732
1733
L1734
1735
1736
L1737
.1738
L1739
1740
1741
1742
1743
1744
1745
.1746
1747

SKEL. CMD.
v.00.02.C.00.00

w.00.12,0.21.31
v.56.05.0.24.31
v.00.15,0.01.01
u.54.05.0.27.31
U.02.11.0.31.31
U.05.06.4.08.31
U.05,06.4.09.31
w.14,07.2.21.31
w.34,07.2.21.31
W.76.07.2.21.31
W.13.07.2.21.31
W.68.07.2.21.31
W.41,07.2.21.31
W.79.C7.2.21.31
W.24.07.2.21.31
V.64,07,2.21,31
u.02,06,0.08.31
v.02.06.0.09.31
W.u3.07.2.21.31
W.15.07.2.21.31
v.00,13.0.20.,31
v.02.06.0.13.31

U00200600015.31

OPCODE & SKELETON COMMAND TABLE

oP

SAR

SFO

SFT

SID

SMA

sSMQ

SPN

SRE

SRY

SSD

suB

SZE

TAB

TIA

TIF

TIH

TNE

TNZ

TOF

TPR

TPS

HEX

.22x1v90
«22x6Y60
.22%x6230
.22X9%x40
«22Y4%x10
«22Y4Y80
«22Y52z90
.22Y7v50
«22Y9%50
.22v9z380
.2222x40
.2224%20
«2229%x50
.23x1x20
.23x9%x10
.23x9x60
.23x9x80
+23x9x90
.23x9Y50
«23Y5x50
.23v5290
.23Y6x60
«23Y7Y90

.23v7220

ADDR

.1748
. 1749
1750
1751
L1752
.1753
1754
.1755
.1756
L1757
.1758
.1759
.1760
1761
.1762
.1763
.1764
.1765
.1766
L1767
.1768
.1769
L1770

L1771

SKEL. CMD.

v.00.01,0.28.00
Ue16.06,0.05.31
U.08,05,1.26.31
v.00,01.0.25.00
u.00,01.2.28,00
U.00.01.0.24.00 _
v.00,01.3.29.C0
v.00,01,0,26.00
u.16.06,0.04.31
v.02,06.0.00.31
u.00,01.1.28.00
u.00.01.3.00.29
u.00.01.0.29.00
w.30.07.2.21,31
u.05,06,4.12.31
Ww.56.07.2.21.31
w.82.C7.2.21.31
w.81.07.2.21.31
U.02.C6,0.12.31
u.02.02,0.22.31
u.w1,01.C.00.27
U.02.09,0.29.31
U.C1.08,0,26.28

U.C2.09.1.17.31

OPCODE & SKELETON COMMAND TABLE

ADDR oP HEX ADDR SKEL. CMD.
1672 TQuU .23v8240 4772 u.00.08.0.24.28
.1673 TRA «23v9x10 1773 v.00.10.0.21,31
. 1674 TRY .23Y9280 1774 v.02.09,0,28.31
. 1675 TVA «2325x10 1775 v.00,.14,2.00.00
. 1676 WFC »26x6x30 1776 v.05.06.0.30,.31
. 1677 WMT .26Yv4230 1777 w.00.06,0.01.31
.1678 WRY .26Y9280 1778 w,31.07.2.21.31
1679 zaa .29x1x10 A

«1680 ZaB «29x1x20

. 1681 ZAC «29x1x30

.1682 ZAD «Z9x1x40

.1683 ZAE «Z9x1x50

.1684 ZAF «Z9x1x60 1679 ---- 1693
.1685 ZaG «Z9x1x70 and

.1686 ZAH .29x1x80 1779 =--- 1793
.1687 ZAl «29x1x90 are used only
.1688 ZAaJ «29x1v10 to fill table.
.1689 ZAK «29x1Y20

. 1690 zaL «29x1v30

. 1691 ZAM .29x1v40

. 1692 ZAN «29x1v50

. 1693 ZA0 .29x1v60

.1694 - B «2XZ%x%20 .1794 v.00.31.0.00.00
.1695 c .2XZxx30 .1795 v.C0.22.0.00.00

21

ADDR
. 1696
. 1697
.1698
. 1699
. 1600
. 16u1
.16u2
.16u3
.16u4
. 16u5
.16u6

1607

OPCODE & SKELETON COMMAND TABLE

opP HEX ADDR
D «ZX%2%x%x40 .1796
F «ZXZXX60 1797
H .ZXxzxx80 .1798
! .Zx2xx90 . 1799
L .2xzxY30 ' . 1700
M «ZXZXY40 . 17ul
P «ZXZXYTO 1702
R «ZXxzxY90 . 17u3
s «2ZXzX220 . 17u4
T .2x2%230 .17u5
X «.2x2x270 .17u6
z .2x2x290 1707

22

SKEL. CMD.
U.OO.33.0'OO.CO

u.00.24.0.00,00
u.00.23.0.00.00
u.00.25,0.00.00
v.00.32.0.00,00
u.00.30.0.C0.00
v.00.26.0.C0,C0
v.00.29.0,C0.00
U.OO.28.0.GO.CC
U.00,27.0.00.00
v.00,21,0.00.C0

UQOOQEO.(;.OOg(\'O

CHAPTER &4

INSTRUCTIONS

This chapter presents a detailed description of
the Instructions which the operator or programmer

uses to control ALTRAN,

A summary of the Instructions appears on page 26

of this chapter.

23

INSTRUCTIONS

Instructions are used by the operator to send a message to the
ALTRAN system. They cause AITRAN to proceed through certain
steps such as clearing a line of memory, permitting the oper-
ator to enter a series of numbers or documenting a program al-
ready in memory. In a number of cases ALTRAN will return after
the execution of the instruction to permit the operator to enter
still other instructions.

The reader will find that ALTRAN instructions are in many ways
similar to instructions given in the PPR system. That is, pro-
vision is made to assist the operator in the preparation, docu-
mentation, debugging and recording of his program.

Instructions can only be entered into the computer when the ALTRAN

system is at a point in its program called Command and Instruction

Input. ALTRAN will be at this point after any one of the following
conditions has taken place.

1. The ALTRAN system has Jjust been read into the
computer from paper tape.

2. The operator has moved the Compute switch to
center, typed &c5f and returned the Compute
switch to GO. (The underlined ©c5f means
that the Enable switch was ON when gc5f was

typed.)

3. The operator has been entering ALTRAN commands.
After the execution of the instruction to per-
mit entry of ALTRAN commands, the system returns
to Command and Instruction Input. After each
command is entered the system returns to this
same location.

4. The operator has been entering machine language
commands and has typed a "hollow point".

5. Instruction C, Z, X, P, T, R, L or B has been
executed.

In the examples describing the use of instructions, information

which is typed by the operator will be shown enclosed in a box.

Information not shown enclosed may be assumed to have been typed
by the computer.

2L

Notice that all instructions are entered using the same format.
The examples do not show "spaces" and "tabs" typed by the oper-
ator. The format follows: :

Instruction letter, "space", address, "tab"

Errors in instruction entry can be corrected by typing a "hollow
point" if the error is discovered before typing the "tab". Con-
trol is transferred to Command and Instruction Input and the cor-
rect instruction may then be typed. If the "tab" key was typed
before the error was discovered the instruction may be executed
and the operator must take appropriate corrective action.

If the error consisted of an incorrect address or the substitution
of one instruction code for another, the instruction will be ex-
ecuted. If the instruction code is illegal (not a letter in the
list of valid instructions) the illegal code will be typed out
followed by a "?" signifying to the operator that the code was
questioned and that the instruction was not executed. The opera-
tor would then enter the correct instruction since control is re-
turned to Command and Instruction Input after typing out the "?".

It is important to note that all of the opcodes for instructions
and commands must be typed as lower case letters. Failure to
type opcodes as lower case will result in the rejection of that
particular code by the system.

25

Z ABCD

X ABCD

C AECD

H ABCD
H ABCD-

F ABCD
F ABCD-

I ABCD
I ABCD-

P ABCD

T ABCD

S ABCD

R ABCD

M ABCD
M AEBCD-

D ABCD

D ABCD-

L ABCD

B ABCD -

B ABCD-

ALTRAN INSTRUCTIONS

ZERO (CLEAR) LOCATION ABCD.
IF CD MADE EQUAL TO ZZ, THEN ZERO ENTIRE LINE AB.

FILL LOCATION ABCD WITH XXXXXXX.
IF CD MADE EQUAL TO ZZ, THEN FILL ENTIRE LINE AB.

ENTER ALTRAN COMMANDS STARTING WITH LOCATION ABCD.

ENTER HEXADECIMAL NUMBERS STARTING WITH LOCATION ABCD.
LIST HEXADECIMAL NUMBERS STARTING WITH LOCATION AECD.

ENTER FRACTIONS STARTING WITH LOCATION ABCD.
LIST FRACTIONS STARTING WITH LOCATION ABCD.

ENTER INTEGERS STARTING WITH LOCATION ABCD.
LIST INTEGERS STARTING WITH LOCATION ABCD.

PUNCH PAPER TAPE FROM LOCATIONS ABOO THROUGH ABCD-1.
TRANSFER ALL OF LINE AB TO LINE CD.

START COMPUTING AT LOCATION ABCD.

READ PAPER TAPE INTO LOCATIONS ABOO THROUGH ABCD-1.

ENTER MACHINE LANGUAGE COMMANDS STARTING WITH ABCD.
LIST MACHINE LANGUAGE COMMANDS STARTING WITH ABCD.

ENTER MACHINE LANGUAGE COMMANDS SEQUENTIALLY STARTING

AT LOCATION ABCD.
DOCUMENT MACHINE LANGUAGE COMMANDS SEQUENTIALLY

STARTING AT LOCATION ABCD.

LIST ALL EMPTY (CLEAR) LOCATIONS IN LINE AB STARTING
WITH LOCATION ABCD.

ADD A BREAKPOINT TO THE COMMAND IN LOCATION ABCD.
REMOVE A BREAKPOINT FROM THE COMMAND IN LOCATION ABCD.

26

Z ABCD

INSTRUCTIONS

Zero location ABCD. If CD=7Z, zero line AB.

The location ABCD will be cleared to zero where ABCD

is one of the long line locations available to the
operator while ALTRAN is in the computer. If the CD
portion of ABCD is made equal to ZZ, the entire long
line AB will be cleared to zero. Since ALTRAN searches
for clear or zero locations during data or command as-
signment, it is necessary to clear those locations
vwhich the operator wishes to release to the system for
assignment by the system.

Example: Assume that all of line 00 is to be made
available to ALTRAN for command or data assignment.
This can be accomplished by the instruction:

Z 00ZZ

which clears or zeros all of line 00 (0000-00uT).

Example: To clear location 0625 type the instruction:

Z 0625

27

X ABCD Fill location ABCD with XXXXXXX. If CD=ZZ, fill line AB.

The location ABCD will be filled with the hexadecimal
number XXXXXXX where AB is one of the long lines avail-
able to the operator while ALTRAN is in the computer.

If the CD portion of ABCD is made equal to ZZ, the en-
tire line AB will be filled with XXXXXXX. Since /LTRAN
searches for clear or zero locations during data or com-
mand assignment, it is possible to reserve location,
making them unavailable to the ALTRAN system, by use of
the instruction X. (Any non-zero information would serve
.the same purpose as the number XXXXXXX but since this
can be easily recognized by the operator as a reserved
location signal it is used in ALTRAN.)

Example: Assume that locations 0199, OluO and 0406 are
to be reserved for later use. The following instruc-
tions would be used:

X 0199

X Olu0

X 0406

Locations may be reserved in any order desired.

28

C ABCD

Enter Commands starting with location ABCD.

Permit entry of ALTRAN Commands starting with location
ABCD. The computer will respond by causing the type-
writer to carriage return twice and print; .ABCD (where
ABCD is some long line location available to the oper-
ator while ALTRAN is in the computer)., The computer
then waits for the operator to type in the command.

If location ABCD held a non-zero value, other than a
hexadecimal XXXXXXX, it will be typed out in decimal
machine language form prior to command entry.

Example: Assume that commands are to be stored beginning
with location 0033 and that this location presently holds
a zero (0000000). The operator types:

C 0033 The computer responds with:

0033

Example: Assume that commands are to be stored beginning
with location OCOO and that location 0000 presently holds
the machine language command w.35.36.0.06.28. The opera-
tor would type:

C 0000 The computer responds with:

.00C0 W.35.36.0.06.28

Even after the operator has typed in, as in the previous
examples, he may change his mind and then enter any other
instruction rather than the command normally entered at
this time,

Example: If, in the previous example, the operator decided
that he wanted to start entering commands at 0050 rather
than 0000, the sequence would have been:

C 0000

.0000 Ww.35.36.0.06.28 | C 0050

.0050

29

C ABCD

(continued)

Since the input section is common for both commands and
instructions it is possible to enter a command when no
location has been specified. If this is done, the com-
mand will be stored in the location held in the location
counter L, L is set to 0000 when ALTRAN is loaded. L
is kept in location 1896 by the AITRAN system.

The following examples demonstrate the use of the Verify
and Command Type-out switches.

Example: Assume that line 00 is clear and the Verify and
Command Type-Out switches are both off (non-zero). The
following sequence illustrates that no verification or
command type-out occurs,

C 0000

.0000 |LAR 0010

.0011 |SAR 0034

.0035 (HLT

.0037 etc.

Example: The same example as above with the Verify switch
on (zero) would be:

C 0000 | ¢ 0000

.0000 R 0010| IAR .0010

.0011 [SAR 0034| SAR .0034

.0035 [HLT | LT

.0037 etc.

30

C ABCD

(continued)

Example: The same example as above with both the Verify
and Command Type-out switches on (zero) would be:

C 0000 C 0000

.0000 [LAR 0010] LAR 0010 w.10.11.0.00.28
.0011 |SAR 0034 | SAR 0034% w.34.35.0.28.00
.0035 HLT u.37.37.0.16.31

.0037 etc.

Fither one or the other or both of the Verify or Command
Type-out switches may be on (zero) or off (non-zero).

31

H ABCD Enter Hexadecimal numbers starting with location ABCD.
H ABCD- List Hexadecimal numbers starting with location ABCD.
" If no sign is attached to the ABCD field, it is assumed to
be positive which is interpreted to mean that Hexadecimal

" numbers are to be entered. These numbers are right justi
fied so that leading zeros need not be typed. :

Example: Assume that line O4 is clear and the following
numbers are to be stored:

Ok15 0000002

o416 1234567-

okl7 202Z0Z0Z-

The operator would type the following information to enter
these numbers:

H 0415

L0415 | 0000002 @® | (or 2 &)

L0416 | 1234567- & |

o417 | zozozoz- & |
L0418

An error in input can be corrected as shown below for the
same example.

Example: Same as previous example only with errors and
corrections.

H Ok15

L0415 | 3 0000002 | (nit "tab" then type correct 7 digit:

L0416 | 124 1234567- @ |

L0417 | 20Z0zZ0- Z0Z0Z0Z- ®© |

32

H ABCD
H ABCD- (continued)
Example: Same numbers desired as in above example. This

example demonstrates error correction after the "tab" ®
has been typed.

H Ok15

LO0k15
L0416 [1234h56- & |

20417 [8c5F I (Take Compute switch OFF, put Enable switch ON

H o416 while typinggc5f. Compute switch to GO.)

L0416 1234456 [1234567 ® | (note previous contents typed.)

0417 [2020Z0Z- © |
.0418

The previous example showed that the contents of a location will be
typed if it is non-zero. (Location O4%16 held the hexadecimal number
1234456 after the error was made. The number was typed out when the
operator requested hexadecimal input to O416.)

When a negative sign is attached to the ABCD field the instruction
H is useful for listing the contents of a series of sequential lo-
cations.

Example: Assume that the following locations hold the numbers:

0415 0000002

ok16 1234567~

Okl7 Z0Z0Z0Z-

0418 0000000

0419 Z720000

33

H ABCD

H ABCD (continued)

Confirmation of the previous contents can be obtained by
the use of:

H 0415~

L0415 +0000002

.0k16 -.1234567

LOk17 -,Z20Z0Z0Z

.0419 »ZZ2Z0000
Listing of non-zero locations will continue to u7 of the
current line unless stopped by the operator. Listing is

terminated by moving the Compute switch to center, typing
®c5f, and then, Compute to GO.

34

F ABCD Enter Fractions starting with location ABCD.
F ABCD- List Fractions starting with location ABCD.
This instruction is operationally the same as instruction
H with the exception that it will convert as follows:
Input--Decimal fractions converted to binary.
Output--Binary fractions converted to decimal.
Example: Store the following decimal fractions as binary
fractions in memory:
0078 .0000100 (
0079 . 5000000
0080 -.9999900

The operator would type the following (assume line 00
clear):

F 0078

.0078 | 0000100 ® | (or simply 100 ®)

.0079 | 5000000 @ |

.0080 [9999900- @ |
.0081

When a negative sign is attached to the ABCD field, the
contents of locations starting with ABCD are converted to
decimal fractions and typed out.

Example: List the contents of locations starting with 0078
after execution of the previous example.

F 0078-

.0078 «0000100
.0079 « 5000000
.0080 -.9999900
.0081 etc.

See instruction H for details of the operation of error
correction, stopping listing and so forth.

35

I ABCD Enter Integers starting with location ABCD,
I ABCD~- List Integers starting with location ABCD.
This instruction is operationally the same as instruction
H with the exception that it will convert as follows:
Input--Decimal integers to binary.
Output~--Binary integers to decimal.
Example: Store the following decimal integers as binary
integers in memory:
ohk5 0001234
Ohhé 0000001L
olLT 0000128
okL8 0000044

The operator would type the following (assume that line
Ok is clear):

I Oklhs5

LOuk5 | 0001234 & | (or simply 123k ®)

Lokk6 | 0000001 & | (or simply 1 ®)

0T
s

When a negative sign 1s attached to the ABCD field, the
contents of locations starting with ABCD are converted to
decimal integers and typed out.

Example: List the contents of locations starting with OLL5
after execution of the previous example.

I Okh5-

LOlhs .0001234
LOlk6 .0000001
LOLLT .0000128
e . 0000044

See instruction H for details of the operation of error cor-
rection, stopping listing and so forth.

36

P ABCD

Punch paper tape from locations ABOO thru ABCD-1.

Line 19 is cleared and information transferred to it from
line AB words 00 through CD-1. If words OO through O3 are
clear, a minus zero (0000000-) is stored in location 1900.
(This ensures that a line punched out with the P instruction
can be read back into the original locations.) A standard
line 19 format is stored in locatioms 0200 through 0203

and line 19 is precessed toward word u7. When non-zero
information is stored in locations 19ul through 19u7, line
19 is punched onto paper tape.

If the entire line AB is to be punched, then the CD portion
of the instruction 1s made equal to 00.

Example: Punch all of line OO onto paper tape.

P 0000

Example: Punch locations 1800 through 1899 onto paper tape.

P 18u0

Do not attempt to punch line 19 onto tape. It is cleared by
this instruction.

T ABCD Transfer all of line AB to 1line CD.

The contents of locations ABOO through ABu7 are transferred
to line CD, replacing the previous contents of line CD.

The contents of line AB remain unchanged by the execution
of this instruction.

Example: Transfer the contents of line 06 to line 00.

T 0600

Line CD of course should be memory which is available to
the operator while ALTRAN is stored in the computer.

This instruction will normally be used to position data
and commands prepared using the ALTRAN system.

38

S ABCD Start computing at location ABCD.

The ALTRAN line 02 input/output subroutine will have a
"peturn to marked place in line 05" command stored in it
during the operation of ALTRAN. When the operator de-
sires to begin computing automatically using his own pro-
gram, this instruction is usually given. It stores a
"yeturn to marked place in line OO" command in line 02 so
the input/output subroutine will function normally for
his program. This assumes that his program will use the
input/output commands which require subroutines and that
these commands are located in line 00. If the input/
output subroutines are entered from other lines (other
than line 00) the operator will have to make provision
for storing his own "return" command in 0244 before en-
try is made.

Example: Assume that the operator wishes to start com-
puting at location 0000. He would type:

S 0000

The operator must of course choose a "command line" from
which to execute commands. Lines 00, Ol, 03, O4 in ALTRAN
Commands may not be executed from line 06.

Notice that "overflow" is reset before command is trans-
ferred to the location specified.

39

R ABCD

Read paper tape and store in locations ABOO through ABCD-1

Lines 23 and 19 are cleared and the information is read
from paper tape through line 23 to line 19. When "Ready"
is set (stop code sensed on tape), line 19 is transferred
to location ABOO through ABCD-1l. If all of line 19 is to
be transferred to line AB, then CD is made equal to 0O.

Example: Read punched paper tape into line 19 and trans-
fer all of line 19 to line Ok4.

R 0k0O

Example: Read punched paper tape into line 19 and trans-
fer words 00 through 99 into line 06.

R 06u0

The line into which the information is transferred should
be one which is available to the operator while ALTRAN is
in the computer memory. It should not be a line occupied
by ALTRAN.,

Lo

M ABCD

Enter Machine language commands starting with location ABCD.

M ABCD- List Machine language commands starting with location ABCD.

This instruction is used when the operator wishes to enter
or list machine language commands.

The commands entered or listed have the form:

P.TT.NN.C.SS.DD (no breakpoint)
or

P.TT.NN.C.SS.DD- (breakpoint)

The various functions of the parts of a machine language
command are given in Chapter 2 of this manual, in "Coding
Manual for the G-15" (T 3-2), and in the "Programming

for the G-15" (Jan. 1960) both by Bendix Computer.

ALTRAN will not change the timing number (TT) typed in

‘by the operator to some other value. Each command entered

should have a prefix (P) attached to it. If no prefix is
entered, ALTRAN will consider the command as if a prefix
of "u" had been typed with the command.

When listing commands using the M ABCD- instruction, com-

mands will be listed in their NN number order. In most
cases this will be normal order of execution.

Example: Assume that line 00 is clear and the operator
Wishes to enter the following machine language command
into location OOLO:

w.LL.60.0.06.28

he would type:

M 0040
0040 [w.hk.60.0.06.28 |

.0060 etc.

b

M ABCD

M ABCD- (continued)

Example: If the operator now wanted to modify the command
in location 0040 to be:

w.46,60.1,06.28

he would type:

M 00kO

L0040 w.44,60.0.06.28 |w.46.60.1.06.28

.0060 etc.

Since location OO4O held the previously entered command,
it was typed out by the computer.

When listing machine language commands using the M ABCD-
instruction listing will continue unless the operator
moves the Compute switch to center and types Enable ®c5f
and returns the Compute switch to GO. This action can
always be used to return to Command and Instruction input
in ALTRAN.

Lo

D ABCD Enter machine language command sequentially starting at ABCD.

D ABCD- Document machine language commands sequentially starting at
location ABCD.

This instruction is very similar to instruction M. It
differs only in the choice of the next location to be
filled or typed by the computer. Entry or listing of
machine language commands will always proceed in sequence
without regard to the NN number in the command entered or
listed.

k3

L ABCD

List all empty locations in line AB starting at word CD.

This instruction is normally used to present the operator
with a statement of how many and which locations in a
line are as yet unused. If a location is equal to zero
its number will be typed by the computer.

Example: Assume that line Ok is full with the exception
of locations 10, 45, 60, and 99. If the operator was
interested in knowing which locations above O450 were
empty (zero) he would type:

L 0450

60 99

Locations reserved by ALTRAN (filled with the hexadecimal
number XXXXXXX) will not be typed out by the L instruc-
tion. Therefore locations which are reserved may still
be useful for command storage and not be typed out by the
L instruction.

L

B ABCD Add a Breakpoint to the command in location ABCD.

B ABCD- Remove a Breakpoint from the command in location ABCD.

This instruction is used normally during the debugging
phase of programming. The addition of a Breakpoint to
a command allows the computer to compute at full speed
up until it executes the command with the breakpoint.
At that point, if the "Compute" switch is in the "BP"
(breakpoint) position, computation will stop. Computa-
tion may be resumed by placing the "Compute" switch to
"GO" or "BP" after moving it to the center position.
Computation can also be resumed one command at a time
by striking the "i" key on the typewriter keyboard with
the "Enable' switch "on".

Thus portions of a program already "debugged" may be ex-
ecuted quite rapidly up until the uncertain part is
reached. The programmer may then proceed with caution
by "i keying" through the unchecked part of his program.
The operator will normally place a breakpoint at the end
of portions of his program as they are checked-out, re-
moving the previously added breakpoint.

Example: Add a breakpoint to the command in location
0527.

B 0467

Example: Remove breakpoints from the commands in locations
0054, 0199 and O4u6. The operator would type:

B 0054-

B 0199-
B Ohub-

L5

CHAPTER 5

' COMMANDS

The detailed description of the Command functions is

presented in this chapter.

A summary of the Commands appears on page 51 of this

chapter.

L6

COMMANDS

Commands are typed into the computer by the operatdr, translated
by ALTRAN and then become part of the object or final program de-
sired by the operator. There are two types of commands in ALTRAN:

1. Commands such as ADD, SUB, MPY and DIV which are
translated into an optimized machine language com-
mand which performs one basic operation.

2. Commands such as TIF which are translated into a
transfer and mark command. When the command TIF
ig executed it will cause the program to mark place
and transfer to an optimized subroutine stored in
1ine 02. The subroutine in line 02 is concerned
with input/output functions and conversion routines.
It contains all of the commonly used 1nput/output
functions and is normally used during the operation
of ALTRAN and of the object program. If the opera-
tor must use line 02 for another function in his ob-
ject program he should avoid the use of all commands
of this type. Commands of this type are marked with
an asterisk (%*) as they are discussed. ,

Commands can only be entered into the computer when the system is

at a point in its program called Command and Instruction Input.
Normally an instruction C ABCD will be used to set the location
counter (L) to the number ABCD. Control is then returned to Com-
mand and Instruction Input and the next commend entered and trans-
Jated will be stored in location ABCD. The location counter is
adjusted by the ALTRAN System and need not be changed during com-
mand entry unless the operator wishes to break a sequence. (He
will want to do this to follow both branches of a test, for~example.)

In the examples describing the use of commands, information which is
typed by the operator will be shown enclosed in a box. Information
not shown enclosed mey be assumed to have been typed by the computer.
The format for command entry follow:
3 command letters, "space"”, address, "tab"
LAR "space" 04LOO "tab"

3 command letters, "tab" (where no address is required)

TIF "tab"

T

Errors in command entry can be corrected by typing a "hollow point"
if the error is discovered before typing the "tab". Control is
transferred to Command and Instruction Input, the location counter
is unchanged, and the correct entry may then be typed. If the error
is not discovered until the "tab" has been entered the operator will
have to take corrective measures to remove the incorrect command,
clear any locations reserved by the translator, reset the location
counter by using the instruction C ABCD, and then enter the correct
command. Examples are shown of this type of error correction.

In the following examples the comments describe the operation per-
formed by the command at the time the obJject program is run, not at
the time it is typed-in. .

Command opcodes (such as ADD, SUB, etc.) must be typed in lower -case
or they will be rejected as invalid. If they are rejected as in-
valid the operator may then type the correct command opcode follow-
ing the "?" typed by the system.

When the ALTRAN system is read into the computer from paper tape,

2 switching locations are clear or zero. These switches are the
Verify Switch (location 18ult) and the Command Type-out Switch (loca-
tion 18u2). The Verify Switch, when set to zero, will cause all com-
mands and instructions entered by the operator to be typed back out
by the computer. The Command Type-out Switch, when set to zero, will
cause the machine language command resulting from the translation to
be typed out for the operator's use.

These switches may be set to zero or non-zero by the operator. A con-
venient method of changing the setting of a switch is by using the

Z ABCD (to set the switch to zero) or the X ABCD instruction (to set

a switch to non-zero). For instance, the Verify and Command Type-out
functions can be stopped by setting both switches to non-zero:

L8

X 18u2 Set the Command Type-out switch to non-zero.

X 18uk Set the Verify switch to non-zero.

Although not shown on the individual command descriptions, each
command entered may have a "Breakpoint" attached if the programmer
desires. A Breakpoint allows the operator, at the time the pro-
gram is run, to place the Compute Switch in the Breakpoint posi-
tion and run at "full speed" up to the command which has the
Breakpoint attached. After reaching this point the operator or
programmer can proceed with caution by executing one command at

a time in a process called "single-cycling". (Each time the "i"
key is typed with the Enable switch ON, the computer executes one
command.)

The programmer specifies commands to be Breakpointed by adding a
minus (-) sign to the address field of the commands entered.

Notice that the Instruction B can be used to add or remove Break-
points at the time a program is debugged.

Example: Attach a Breakpoint to the first command in the program.
The first command is LAR 0625.

.0000 | LAR 0625-

With ALTRAN,automatic optimization of storage locations is permitted
within the long lines available to the programmer while ALTRAN is in
memory. (Lines 00, Ol, 03, O4, and 06) The optimum locations are
marked by hexadecimal number XXXXXXX. The locations reserved at the
request of the operator are assigned and those locations are typed
out by the computer beside the ALTRAN command entered.

Example: Assume that the programmer has planned to use line 06 for
the storage of constants and some infrequently used temporary stor-
age locations. The programmer at one point in the program wishes

to pick up a constant which is to be stored in line 06 but does not

k9

know the best available word position to choose. ALTRAN
will pick the word location as the next available (empty
or zero) location after the command using that location
is read. The command using this location is IAR and is
to be entered into location 0160. Line 06 is non-zero
from locations 0661 to 0695.

.0160 | LAR 06zz | .0696 ALTRAN would pick 0696

.0197 as shown at the left.

This technique of assigning locations may not be used
with commands which are assigned 5 digit addresses.
(LID KABCD, SID KABCD,etc.) It would be permissible
with LID 06ZZ, ADD 00ZZ, etc.

50

ALTRAN COMMANDS

INFORMATION TRANSFER COMMANDS

LAR ABCD
ARL AB
DAR

TVA ABCD
SZE ABCD
SNZ ABCD
SMA ABCD
SAR ABCD

LID KAECD
IMQ KABCD
LPN KABCD
SID KABCD
SMQ KABCD
SPN KAECD .

LTL ABCD

LOAD AR

SHIFT AR LEFT
DECREMENT AR
TRANSFER VIA AR
STORE ZERO
STORE NON-ZERO
STORE MAGNITUDE
STORE AR

LOAD ID
LOAD MQ
LOAD PN
STORE ID
STORE MQ
STORE PN

LINE TO LINE

ADDITION AND SUBTRACTION COMMANDS

CIA ABCD
CAM ABCD
CLS ABCD
ADD ABCD
ADM ABCD
SUB ABCD
SSD ABCD
APN KABCD
BIA AB

CLEAR AND ADD

CLEAR AND ADD MAGNITUDE
CLEAR AND SUBTRACT

ADD

ADD MAGNITUDE

SUBTRACT

STORE SUM OR DIFFERENCE
ADD TO PN

BLOCK ADD

MULTIPLY DIVIDE SHIFT NORMALIZE COMMANDS

CLR

LID ABCD
IMQ ABCD
LPN ABCD
MPY AB
DIV AB
SFT AB
NOR AB
TPR

TQU

CLEAR TWO WORD REGISTERS
LOAD ID.1

LOAD MQ.1

LOAD PN.1

MULTIPLY

DIVIDE

SHIFT

NORMALIZE

TRANSFER PRODUCT
TRANSFER QUOTIENT

51

TEST COMMANDS

TNZ ABCD TEST NON-ZERO
TNE TEST NEGATIVE

TOF TEST OVERFLOW
TRY TEST READY

TPS TEST PUNCH SWITCH

TRANSFER OF CONTROL COMMANDS

TRA ABCD TRANSFER CONTROL

NOP AB NO OPERATION

OAR AB OBEY AR

MPT ABCD MARK PLACE AND TRANSFER
RMP AB RETURN TO MARKED PLACE

INPUT OUTPUT AND SPECIAL COMMANDS

TIA TYPE IN ALPHANUMERIC
TIN TYPE IN NUMERIC
PAA PRINT ALPHANUMERIC AR
PAN PRINT ALPHANUMERIC NINETEEN
PNA PRINT NUMERIC AR
PNN PRINT NUMERIC NINETEEN
RPT READ PAPER TAPE
BPT BACK PAPER TAPE
RMT A READ MAGNETIC TAPE
WMT A WRITE MAGNETIC TAPE
WFC A WRITE FILE CODE
SFO A SEARCH FORWARD
SRE A SEARCH REVERSE
DEL DEIAY
SRY SET READY
* WRY WAIT READY
BEL BELL
HLT HALT

52

CONVERSION COMMANDS

¥ DBF DECIMAL TO BINARY FRACTION

* DBI DECIMAL TO BINARY INTEGER

* BDF BINARY TO DECIMAL FRACTION

¥ BDI BINARY TO DECIMAL INTEGER
INPUT OUTPUT COMMANDS

* TIH TYPE IN HEXADECIMAL

* TIF TYPE IN FRACTION

* TII "TYPE IN INTEGER

* PHE PRINT HEXADECIMAL

* PFR PRINT FRACTION

* PIN PRINT INTEGER

* PHT PRINT HEXADECIMAL TAB

* FPFT PRINT FRACTION TAB

* PIT PRINT INTEGER TAB

* PHC PRINT HEXADECIMAL CARRIAGE RETURN

* FFC PRINT FRACTION CARRIAGE RETURN

* PIC PRINT INTEGER CARRIAGE RETURN

* TAB TAB

* CAR CARRIAGE RETURN

* PRE PRECESS

* PUN PUNCH

*

Line 02 subroutine

53

COMMANDS

INFORMATION TRANSFER COMMANDS

LAR ABCD Load AR

The contents of location ABCD are transferred to the accumu-
lator (AR) replacing the previous contents of AR. The con-
tents of location ABCD are left unchanged. Information trans-
ferred in this manner is not changed (complemented) during
transfer.

Normally the address ABCD will be a long line or a four word
line. With experience, however, the operator can address

the two-word registers as well as sources 27, 29, 30 and 31l.
Sources 27, 30 and 31 are used for extracting while source

2% may be used as a source of zeros if no "special input reg-
igter" is tied to the G-15., Some of the following examples
illustrate the use of this command.

Example: Assume that location 0665 holds the hexadecimal
number -123#567 and it is desired to move this information
to the accumulator (AR). The operator would type the fol-
lowing: (Assume that location 0000 has been chosen for the
command.)

.0000 |LAR 0665 AR will hold -1234567

Example: Assume that location 2201 holds the number 0000050
in hexadecimal and the number is to be transferred to the ac-
cumulator. The operator would type:

.0000 |IAR 2201 - AR will hold 0000050

- Example: Assume that no "special input register” is attached
to the G-15 and it is desired that the accumulator (AR) be
cleared to zero. As above, the command location has already
been chosen to be 0000. The operator types:

.0000 |IAR 2900 AR will hold 0000000

5k

LAR ABCD (Continued)

The extract sources 27, 30 and 31 involve the four word
lines 20 and 21. The mask or extractor is placed in

line 20 while the number to be operated on is put in the
corresponding word in line 21l. The functions are outlined

below:

Source Function

o7 20-21 + 20°AR - AR
30 2021 - AR

31 20-21 . AR,

Example: Source 3l. Assume that location 2102 holds the
number 1201234 and it is required that the most significant
three digits be extracted or placed in AR. An extractor
containing 1-bits in the positions to be extracted must be
placed in the corresponding word of line 20 (2002). Such
an extractor in hexadecimal would be the number ZZZOOOO.
The operator, after loading the extractor would type the
command as follows:

0000 IAR 3102 AR will hold the number 1200000

Example: Source 30. Assume that the number 1201234 is in lo-
cation 2102 as above and that the extractor ZZzZ0000 is stored
in location 2002, It is required to place the four least sig-
nificant digits of the number in 2102 into AR. The operator
would type:

.0000 |ILAR 3002 AR will hold the number 0001234

55

IAR ABCD (continued)

Notice that with only one extractor in line 20, the number
being operated upon can be broken into two "pieces".

Example: Source 27. Assume that the number 1234567 is in
location 2100 and that the number UVWXYZO is stored in AR
in hexadecimal. It is required to combine the four most
significant digits of the number in 2100 with the three
least significant digits in AR and to send the result of
the combination to AR. An extractor of Zzz7000 would be
loaded into location 2000 and the operator would type:

.0000 |IAR 2700 AR will hold the number 1234Y70

The two-word registers can be addressed as:

Register Address
MQ.0 2400
MQ.1 2401
1D.0 2500
ID.1 2501
PN.O 2600
PN.1 2601

In each case where a two-word register is addressed using an
LAR command, the sign is taken from the sign flip-flop (IP)
associated with the two word registers and placed in AR.

Machine language commands which are to be modified in the ac-
cumulator should always be loaded into the accumulator using

the IAR command. This is true even in the case where addition
or subtraction is to take place. Since double precision com-
mands are treated as negative numbers they may be complemented

on their way to the accumulator, if the LAR command is not used.
Modification using addition or subtraction in most cgses re-
quires that the amount added or subtracted apply to the absolute
value of the command and yet the sign of the command must be pre-
served. The use of the LAR command will preserve the sign of the
command but will not complement the command in the case where it
is negative (double precision).

56

ARL AB Shift AR Left AB bits

The contents of the accumulator (AR) are shifted left AB "bits".
The original sign of AR is retained and is not shifted with the
numerical portion of AR.

The shifting is accomplished by adding the absolute value of the
contents of AR to AR. Since the shifting is an addition process,
it is important that digits not be shifted out of AR since this

is equivalent to an overflow. If the shifting produces an over-
flow, the sign of AR may change from its original value although
the shifting continues normally. If the operator is not concerned
about the sign of the number in AR then, of course, it is permis-
sable to shift digits out of AR causing overflows.

Example: Assume that the accumulator holds the number 0000005 and
it is required that it be shifted left 20 bit positions. The op-
erator would type:

.0000 | ARL 20 AR will hold 0500000

The shift AR command is very useful for "multiplying" by a power
of 2 since each left shift of one bit doubles the value in AR.

Example: Assume that the number in AR is 000000l- and that this
number is to be "multiplied" by 16 or o4, The operator would type:

.0000 | ARL 4 | or ARL Ok

The accumulator then holds the hexadecimal number 0000010- which
is equivalent to the decimal integer 0000016-.

The command ARL is also quite useful for moving counters into the
various positions of a machine language command when the operator
is modifying commands. It is then possible to keep all counters
as binary integers and move them to the appropriate positions when
required.

o7

DAR

Decrement AR

The contents of AR, if positive, will be decremented by

1. 228,

Example: Assume that a counter equal to the number 0000006
has been loaded into the accumulator. It is required that
the number in the accumulator be decremented by 1 in the
least significant position. The operator would type:

.0000 [DAR AR will hold the number 0000005

The use of this command makes it convenient to store all
counters as binary integers scaled at 1 . 220, The stand-
ard input/output ALTRAN subroutine provides for converting
decimal to binary integers so scaled.

If the programmer attempts to decrement a number until it
becomes negative, the result will be incorrect. Normally
this command will be useful in connection with & test for
non-zero since positive numbers in AR can be successfully
decremented to zero.

58

TVA ABCD Transfer Via AR

Transfer the contents of line AB to line CD via the AR. The
operation begins at the command location plus 1 and continues
through word uT.

This operation is useful for inserting and removing information
from a recirculating list. Information is inserted into the
list from AR, the list is "pushed down", and the value pushed
out of the list is left in AR.

Example: A list or table of informaition is stored in line 10

words 50 through u7. Each time the list is consulted the value

in word u7 is required by the program, the list must be advanced

1 position (50 into 51, 51 into 52, etc.) and the original contents
of AR placed in location 50. The TVA command must be located in
word 49 so the action can begin at time or word 50. AR will
receive the contents of 10uT.

0049 |TVA 1010

It is not necessary that AB and CD in the address of the TVA
commend be the same., One line of information can be trans-
ferred to another wvia AR if desired.

°9

SZE ABCD Store Zero

Store a positive zero word into location ABCD. This command
“ assumes’ ‘that ‘the’ obgect ‘program will be run on'a computer
-+ ywhick does not have a specialiinput register”. Most G-15
computers have provision for attaching an external input
register but no register is required. The command generated
calls for input from the special register and if no register
‘8 plugged into the back of the computer zeros will be sent
'*to 10cat10n ABCD.

This command is very useful for setting locations tojzero
such as a sw1tch1ng locatlon which is later tested for non-
‘Zero.'

?Fxémgle. ‘Loecation- 0099 1s to be cleared to zéro.. The op-
-erator would type: R Ee SRR S CoLen

.0000 |SZE 0699

60

SNZ ABCD Store Non-Zero

Non-zero information will be sent to location ABCD by the
execution of this commend. -The informstion will consist

of the hexadeCimalfnumberfOGOOO@O-:ﬁf S

This command is very useful for setting a switching loca-
tion to non-zero for later testing. Notice that the sign
-position of the “information ‘sent to ABCD will hold a T-bit
(minus) and that this bit ‘is the ‘information which is: non-

zero.

The same restrictions apply to this command as to SZE in
that the object program should not use this command if it
is to be .run on a computer with ‘a "special -input register".

Example: Location 0699 is to be set to non-zero. That is
to say the word 0699 must contain one or more 1l-bits.

.0000 |SNZ 0699

SMA ABCD Store Magnitude

The magnitude of the contents of AR are sent to location
ABCD. The sign of the information stored in AR is ig-
nored when the magnitude is transferred to ABCD.

Example: AR holds the hexadecimal number -1234567 and the
magnitude (1234567) is to be stored in location 2203.

.0000 |[SMA 2203

After execution of this command location 2203 will hold
the number 1234567.

62

SAR ABCD Store AR

The contents of AR are stored in location ABCD. The contents
of the accumulator are not changed. (Unless AB is made 29.)

Normally the address will be one of the long lines or a four
word line.

Example: The AR holds the hexadecimal number -1234567 and the
contents of AR are to be stored in location 2203. The operator
would type:

.0000 SAR 2203 Location 2203 will hold -1234567

AR is unchanged

Commands which are modified in the accumulator (AR), even by
addition or subtraction, should be stored using the SAR com-
mand. This is true because double-precision commands have a
negative sign attached to them and yet must not be comple-
mented during the storage process. The SAR command will not
complement negative numbers (or commands) during its execution.

The information transfer commands:

LID KABCD
IMQ KABCD
LPN KAEBCD
SID KABCD
SMQ KABCD
SPN KABCD

are included here for use by programmers familiar with the op-
eration of the two-word registers and are not intended to be
used by persons programming the G-15 for the first time. They
do provide the experienced programmer with a more flexible
command structure but require more of the programmer.

It is suggested that they be avoided by persons writing their
first ALTRAN programs.

63

LID KABCD Load ID using a characteristic of K
i .

The ID register will be loaded from location ABCD (and ABCD plus
.1 in some cases) The transfer command will be translated and

supplled with the characterlstic de31gnated by the K in the ad-

dress field. Refer to Chapter 2 for‘a discussion of the use of
‘,pharecterlstics w1th the two-word reglsters.f”_

Zxample. Location 0420 and 0421 holds a double-precision number
which is to be transferred to register ID. The sign of the
~double-precision number is to be transferred to the 51gn flip-
flop assoc1ated w1th the two-word registers (IP)

.0000 The command will be 'Sﬁﬁblied

w;th.a,charaegerlstlc of L,

Example: Location 2202 holds a single-precision number which is
to be transferred to ID.0. The sign of the number in 2202 is to
, be placed 1n IP

‘ "‘AH,QQOQ LID 02202 :_fj The commano will be supplied

) w1th a characterlstic of 0.

L?AIt is 1mportant to notice’ that the O must be typed 1f a char-
acteristic of 0 is de31red it will not be supplied by ALTRAN,

The command LID operates ina dlfferent manner if the address
field is only 4 digits long. This case is discussed under
Multiply Divide Shift and Normalize commands.

The LID command is discussed here because of 1ts possible use for
storing and transferring information. It is included so that per-
sons quite familiar with the G-15 can retaln the flex1b111ty as-
sociated with the two-word registers. S

It is suggested that the programmer rev1ew the operation of the
"two-word registers carefully if he is not quite familiar with

bhem, and ‘that. persons u81ng the —15 for the first time not use

the two~word register commands hav1ng a 5 diglt aduress fleld.

64

LMQ KABCD

Load MQ using a characteristic of K

‘The MQ reglster will be loaded from 1ocat10n ABCD

(and ABCD plus 1 in some cases). The command will
be translated and supplied with the characteristic

designated by the K in the address field.

Example: Location 2101 holds: the number 1234567-
in complemented form. The normal form of the
number is desired in the. odd side of MQ The op-
erator would type:

0000 {IMQ 12101 | - The normal form of the
B T ‘number and the negative
sign would be- loaded in-
to MQ.1.

65

LPN KABCD Load PN using a characteristic of K

The PN register will be loaded from location ABCD (and ABCD
plus 1 in some cases). The command will be translated and
supplied with the characteristic designated by the K in the
address field.

Example: Locations 0366 and 0367 hold a double-precision
-number in normal form. This number is to be transferred
to PN in normal form and its sign is to be added to the
sign in the IP flip-flop.

.0000 [LPN 40366

Example: Two double-precision numbers are to be added in
PN, The first number is held in 2202 and 2203 and is in

normal form (absolute value and sign). It is transferred
to PN and complemented if negative by the following com-

mand :

.0000 LPN 52202 The number in PN is now in

a form ready for addition
or subtraction.

66

SID KABCD

Store ID

The contents of ID will be stored in location ABCD
(and ABCD plus 1 in some cases). The store command
will be translated and contain the characteristic
designated by the K in the address field of the
command .

Example: A number shifted right in ID.1 is to be
stored in location 2003. The sign of the number
is presently held in the IP flip-flop.

»0000 Ts1D 02003 Location 2003 will hold

the number and its sign.

Example: A double-precision number has been trans-
ferred to ID and the sign of the number is presently
stored in IP. Transfer the number and its sign to
locations 0080 and 0081.

.0000 |SID 40080

67

SMQ KABCD

Store MQ

The contents of MQ will be stored in location ABCD
(and ABCD plus 1 in some cases). The store command
will be translated and contain the characteristic
designated by the K in the address field.

Example: A number has been shifted left in MQ.1l and
is to be stored in AR. The sign of the number is
presently held in the IP flip-flop.

.0000 | SMQ 12801 AR will hold the number
and its sign.

68

SPN KABCD

Store PN

The contents of PN will be stored in location
ABCD (and ABCD plus 1 in some cases). The store
command will be translated and contain the char-
acteristic designated by the K in the address
field.

Example: A double-precision addition has just
been made to PN and the answer is to be stored
in location 2100 and 210l1. The number in PN
may be in complemented form after the addition
and must be recomplemented if negative in order
to be in normal form. It will be complemented
if necessary and stored in 2100 and 2101 by the
following command:

0000 SPN 52100 The number in 2100
and 2101 will be in
normal form.

69

LTL ABCD Line To Line

The contents of all of line AB are transferred to line CD
while the contents of line AB remain unchanged. Lines AB
and CD will normally be long lines and 108 words of infor-
mation will be transferred.

Example: Assume that line 06 holds commands of a program
which is to operate from line Ol. The operator can transfer
the commands from line 06 to line Ol, for execution, by the
command :

.0000 |LTL 0601

The information in line 06 will not be changed.

Some other uses for the command include the transfer of in-
formation from the accumulator to a long line.

Example: Assume that the accumulator holds the number ZZZZZZZ
and it is required to fill all of line 06 with the contents of

the accumulator. The operator types:

.0000 |LTL 2806

Example: Assume that the G-15 computer being used has no "special
input register’ attached to it. It is required to clear all of
line O7 during the execution of a program. The operator would type:

.0000 |LTL 2907 Line O7 will be cleared

With no "special input register" attached, the source 29 supplies
"zeros" to the destination line.

The command is operative for one drum cycle and therefore is not

efficient for the transfer of information between four word lines
or two-word registers.

70

ADDITION AND SUBTRACTION COMMANDS

CLA ABCD Clear and Add

The number in location ABCD is transferred to the accumulator,
replacing the previous contents of the accumulator, in prepara-
tion for an addition or subtraction. If the number transferred
is negative, it will be complemented so that addition or sub-
traction can take place. The number which is then stored in
AR is not in absolute value and sign form.

Example: Assume that location 0067 holds the number 0000005
and that this number is to be transferred to the accumulator
in preparation for an addition or subtraction. The operator
types:

.0000 |CLA 0067 AR will hold the number 0000005

Normally the address ABCD will refer to a long line or a four
word line in memory. The two-word registers should not be
addressed unless the operator is quite familiar with the logic
involving the two-word registers. (Refer to pages 37 and 38
of "Programming for the G-15".) Addresses such as 27, 30, and
31 may be used. Refer to the IAR command .

In the execution of the CLA command, the previous contents of

location ABCD will remain unchanged unless the accumulator it-
self was addressed. If this is done, the contents of the ac-

cumulator will be complemented if the number was negative.

Examgle: Assume the accumulator holds the number 0000001~ and
the command CLA is executed. The operator types:

.0000 |CLA 2800 AR will hold ZZZZZZZ-

(The number 7777777- is the complement of 0000001-)

TL

CAM ABCD

Clear and Add Magnitude

The magnitude or absolute value of the contents of
location ABCD is transferred to the accumulator,
replacing the previous contents of the accumulator.
The previous contents of location ABCD are left un-
changed. (Provided ABCD is not equal to 2800.)

Example: Assume that location 2203 holds the number
000123k - and it is required to transfer only the mag-
nitude of this number to the accumulator. The opera-

tor types:

.0000 |CAM 2203 AR will hold the number
0001234

Refer to CLA for address limitations.

12

CLS ABCD

Clear and Subtract

The contents of location ABCD will be subtracted
from zero and transferred to the accumulator, re-
placing the previous contents of the accumulator.
The previous contents of location ABCD are left
unchanged. (Provided ABCD is not equal to 2800.)

Example: Assume that the number 1234567~ is stored
in location 0099 and the command CLS is to be exe-
cuted. The operator types:

.0000 {CLS 0099 AR will hold the number
1234567

Refer to CIA for address limitations.

This command will normally be followed by another
arithmetic operation. The result of the CLS com-
mand may not be in absolute value and sign form.

73

ADD ABCD

ADD

The contents of location ABCD will be added to the
contents of the accumulator and the result stored

in the accumulator. The contents of location ABCD
are not disturbed. (Unless ABCD was equal to 2800.)

If the resulting sum in the accumulator is positive,
it will be in absolute value and sign form; if neg-
ative, it will be in complementary form. As a gen-
eral rule, this command should be followed by a SSD
(Store Sum or Difference) command which will auto-
matically put the stored sum in the form of absolute
value and sign.

Example: Assume that location 2100 holds the number
0000002 and the accumulator holds the number 0000006.
It is required to add the contents of location 2100
to the accumulator. The operator types:

.0000 |ADD 2100 AR will hold the sum
0000008

Refer to CLA for address restrictions.

h

ADM ABCD Add Magnitude

The megnitude (absolute value) of the contents of
location ABCD will be added to the contents of the
accumulator and the result stored in the accumula-
tor. The contents of location ABCD are not dis-
turbed. (Unless ABCD was equal to 2800.)

If the resulting sum in the accumulator is positive,
it will be in absolute value and sign form; if neg-
ative, it will be in complementary form. As a gen-
eral rule, this command should be followed by a SSD
(Store Sum or Difference) command which will auto-
matically put the stored sum in the form of absolute
value and sign.

Example: Assume that location 2100 holds the number

0000002~ and the accumulator holds the number 0000006.
It is required to add the magnitude of the contents of
location 2100 to the accumulator. The operator types:

.0000 |ADM 2100 ‘AR will hold the sum
0000008

Refer to CLA for address restrietions.

()

SUB ABCD

Subtract

The contents of location ABCD will be subtracted
from the contents of the accumulator and the dif-
ference stored in the accumulator. The contents
of location ABCD are not disturbed. (Unless ABCD
was equal to 2800)

If the resulting difference in the accumulator is
positive, it will be in absolute value and sign
form; if negative, it will be complemented. As a
general rule, this command should be followed by

a SSD (Store Sum or Difference) command which will
automatically put the stored difference in the form
of absolute value and sign.

Example: Assume that location 0410 holds the number
0000003 and the accumulator holds the number 0000009.
It is required to subtract the contents of location
0410 from the contents of the accumulator. The oper-
ator would type:

.0000 |SUB 0410 AR will hold the difference
0000006

For addressing restrictions, refer to CILA.

76

SSD ABCD Store Sum or Difference

The contents of the accumulator (the result of an
addition or a subtraction) will be stored in loca-
tion ABCD in the absolute value and sign form.
This command will normally be used after an addi-
tion or a subtraction. Numbers which are held in
the accumulator in complementary form after an ad-
dition or a subtraction will be recomplemented as
necessary by this command. The contents of the
accumulator are undisturbed, unless ABCD was made
equal to 2800 or 2900.

Example: Assume that the accumulator holds the
complement of 0000001- as the result of a subtrac-
tion. (The complement of OO0000L- 1is 7772297)
It is desired to store the number held in the ac-
cumulator in its absolute value and sign form in
location 2202. The operator types:

.0000 |[SSD 2202 AR will still hold

the complement ZZZZZZZ-.
Location 2202 will hold
0000001 -.

Refer to CLA for address restrictions.

T

APN KABCD

Add to PN

The contents of ABCD (and ABCD plus 1 in some cases)
will be added to the double-precision accumulator

PN. The command which is translated will contain a
characteristic designated by K in the address field.

Example: The PN register has been loaded with a double-
precision number in preparation for an addition. Loca-
tions O340 and 0341 hold the number to be added to PN.
The operator would type the following command:

.0000 l APN 503h0| The sum of PN and the con-
tents of 0340 and 0341 will
be in PN.

Example: Same as example above only the number in 0340
and 03E1 is to be subtracted from the contents of PN.

.0000 | APN 70340 The difference between PN and
the number in O340 and 0341
will be in PN.

78

BIA AB

Block Add

The contents of line AB are added to the AR. The
operation takes place for one drum cycle (108
word-times) and is often used for check-summing
information, or adding up various parts of an
answer.,

Example: Line 06 is clear with the exception of
word 50 which holds 0000008 and word 60 which
holds the number 0000003-. The accumulator is
clear and the programmer wishes to sum the con-
tents of line 06.

.0000 | BIA 06 The AR will hold the
number 0000005

9

MULTIPLY, DIVIDE, SHIFT AND NORMALIZE COMMANDS

CLR Clear two-word registers.

The contents of the two-word registers MQ, ID and
PN are cleared to zero. The sign associated with
the two-word registers (IP flip-flop) is also set
to zero or plus. This command is normally given
prior to a multiply, divide, shift or normalize
command.

Example: To clear the two-word registers, the op-
erator would type in the command:

.0000 [CLR The registers will be
cleared to zero.

LID ABCD

Load ID.1

The contents of location ABCD will be transferred to
the odd half of the two-word register called ID.1.

The information transferred to ID.l will normally
serve as the multiplicand in multiplication, as the
denominator in division, or as the value to be shifted
right in ID.1l. The contents of the accumulator will
be changed if ABCD is even.

As a general rule, ABCD should be the address of a
location in either a long line or a four word line.
(Refer to pages 37 and 38 of "Programming for the
G-15" before using other addresses.)

This command must be given before the IMQ command in
a multiply sequence and before a LPN command in a
divide sequence.

Example: Assume that the contents of location 0050
are to be loaded into ID.l. Location 0050 holds
the number 1234567. The operator types:

.0000 [LID 0050 ID.1 will hold 1234567.

The contents of 0050 remain unchanged.
The contents of AR will change.

The ALTRAN system will assign the next command location
a8 an odd location sc that a shift command following
the LID command will be located in an odd word position.
(This is required by the shift command.)

81

IMQ ABCD

Load MQ.1l

The contents of location ABCD will be transferred to
the odd half of the two-word register called MQ.l.
The information transferred will normally serve as
the multiplier in multiplication or as the value to
be shifted left in MQ.l. The contents of the accum-
ulator will be changed if ABCD is even.

As a general rule, ABCD should be the address of a
location in either a long line or a four word line.
(Refer to pages 37 and 38 of "Programming for the
G-15" before using other addresses.)

The contents of ABCD remain unchanged after the ex-
ecution of this command.

Example: Assume that location O409 holds the number
0000111 and it is required to load this number into
the odd half of MQ (MQ.l). The operator would type:

. 0000 IMQ 0409 MQ.1 will hold the
number 0000111

ALTRAN will assign the next command location as an
odd word position for multiply or shift commands.

82

LPN ABCD

Load PN.1l

The contents of location ABCD will be transferred to
the odd half of the two-word register called PN.l.
The information transferred will normally serve as
the numerator for division. The contents of the ac-
cumulator will be changed if ABCD is even.

As a general rule, ABCD should be the address of a
location in either a long line or a four word line.
(Refer to pages 37 and 38 of "Programming for the
G-15" before using other addresses.)

The contents of location ABCD remain unchanged after
the execution of this command.

Example: Assume that location 0666 holds the number
765E321 and it is required to load this number into

the odd half of PN (PN.l). The operator would type:

.0000 [LPN 0666 PN.1 will hold
7654321

ALTRAN will assign the next command location as an odd
word position for a divide command following.

83

MPY AB

Multiply

The number in register ID is multiplied by the number
in register MQ and the product is stored in register
PN. This command must be located in an odd word po-
sition, a detail taken care of by the operation of
the IMQ command.

For single-precision multiplication, AB need not be
entered. If the operator wishes to multiply for a
number of word times different than the standard 56
used for single-precision, he can enter a value for
AB corresponding to the length of the multiplication.
One bit of the multiplier 1s processed for every two
word times of multiplication.

Example: Assume that the operator wishes to carry
on a single-precision multiplication. He would

type:

.0001 |MPY The operation will be
a single-precision
multiplication.

DIV AB

Divide

The number in the PN register is divided by the number
in the ID register and the quotient is placed in MQ.
This command must be located in an odd word position,
a detail taken care of by the LPN command which should
preceed it.

For single-precision division the number of word times
for the division need not be specified (AB is not typed).
If the operator wishes to divide for a number of word
times other than the standard 57 used for single-preci-
sion, he should enter a value for AB corresponding to
the length of the division. One bit of the quotient is
shifted into MQ.O for each 2 word times allowed for op-
eration.

It is important to remember that division should not be
attempted if the quotient is equal or greater than 1.
The quotient should be & fraction and the operator must
scale his numbers so this occurs. Overflow will be
turned on if the quotient is not a fraction and the re-
sult in MQ will be incorrect.

Example: Assume that the operator wishes to carry on a
single-precision division. He would type:

.0001 {DIV The operation will be a
single-precision division.

85

SFT AB

Shift

The contents of ID will be shifted right and the contents
of MQ will be shifted left 1l=bit position for each 2 word
times of execution. The command should be located in an
odd word position, a detail taken care of by the LID or
IMQ command which should preceed it.

If the operator wishes to shift these registers other than
4-bit positionshe should type in an AB equal to twice the
number of bits. If no AB is typed ALTRAN will assign .an
AB of 08 which will cause a shift of U-bit positions.

Example: Assume that the number 1234567 has been loaded
into ID.1 and is to be shifted right 16 bit positions so
that the 123 remain in the numeric portion of ID.l. The
operator would enter:

.0001 | SPFT 32 The number 0000123 will
be in the numeric portion
of ID.1

Notice that during the shift of ID, MQ also shifts.

Notice that the contents of the AR are not changed by the
execution of this command (characteristic is made equal
to 1).

86

NOR AB

Normalize

The contents of MQ will be normalized. A left shift
of 1-bit will occur in the attempt to normalize the
contents of MQ for each 2 word times of operation.

The command should be located in an odd word position,
a detail taken care of by the IMQ command which should
preceed it.

If no AB is entered the translated command will be as-
signed a timing number of 54 permitting the normaliza-
tion of a single-precision number. If the programmer

knows that the number which he is trying to normalize

will never have to be shifted more than say 10 bit po-
sitions he would enter an AB equal to 20.

The AR is incremented by 102'28 for each bit shift.
Thus, a tally of the number of shifts required to nor-
malize the number is easily kept in AR. This facil-~
jtates operating on floating point numbers.

Example: The programmer has loaded the odd side of MQ
With the hexadecimal number 0090000. He has cleared AR.
To normalize this number he would type:

.0001 NOR MQ.1 will hold 9000000 and
AR will contain 0000008.

87

TPR Transfer Product

The contents of PN.l are transferred to AR along with
the sign in IP. This command is normally used after
a single-precision multiply command.

Example: The odd half of PN (PN.1l) holds the result
of a single-precision multiplication. The operator
wishes to transfer the product to AR for further pro-
cessing.

.0000 |[TPR AR will hold the product
transferred from PN.1l.

88

U

Transfer Quotient

The contents of MQ.0O are transferred to AR along with
the sign in IP. This command is normally used after
a single-precision division command.

Example: The even half of MQ (MQ.0) holds the quotient

after a single-precision division command has been ex-
ecuted., The operator wishes to transfer the quotient
to AR for further processing.

.0000 |TQU AR will hold the quotient
transferred from MQ.O.

TEST COMMANDS

TNZ ABCD Test Non-Zero

The contents of location ABCD are tested for non-zero.
ALTRAN will look for the next available pair of com-
mands following location ABCD and reserve them with

):0.0:0.0.0:0. 88

As with all of the test commands, if the answer to the
test is "NO", control is sent to the next command; if
"YES" control is sent to the next command plus 1.
ALTRAN will assign the pair (reserve them) and then
type out the lower of the two location numbers so the
operator may pursue the "NO" branch of the test. The
operator will, at a later time, break this sequence
and begin to enter commands in the "YES" branch of
the test,

Example: Location 0602 holds a switch which may be
either zero or non-zero. The programmer wishes to
test the "position" of this switch to determine which
of two possible branches of his program to follow.

He would type:

.0000 |TNZ 0602 If the program line 00
is clear ALTRAN will as-
sign 0003 and OOO4 as the
"NO" and "YES" branches,
respectively.

90

TNE Test Negative

The contents of AR are tested for negative. If
the contents of AR are not negative, control is
transferred to the next command. If the contents
of AR are negative, control is transferred to the
next command plus 1.

Example: Test the contents of AR for negative
(sign minus).

.0000 |TNE If line 00 is clear
ALTRAN will assign

0002 and 0003 as the
"NO" and "YES" branches
of this test command.

91

TOF

Test Overflow

If an overflow has occurred as the result of an addition
or division the answer to this test will be "YES"; if not
the answer will be "NO".

Example: The programmer has reached a point in his program
where he must test for the overflow condition.

.0000 |TOF , If line 00 is clear,
ALTRAN will assign
0002 and 0003 as the
"NO" and "YES" branches
of this test command.

Notice that the testing of overflow resets the overflow flip-
flop or turns it off. It will be turned on again by an

_overflow resulting from an addition or a division.

When the instruction S ABCD is used to start computing,
ALTRAN will turn overflow off prior to transferring control

to location ABCD.

92

TRY

TEST READY

The computer's input-output circuitry is tested by this com-
mand. If the answer to this test is "YES" then the computer
is "READY" to perform another input-output task. If the
answer to this test is "NO" then the input-output circuits
of the computer are busy working. This command 1is normally
given before an input-output command to make certain that
one input-output operation is complete before another is
started.

There are some qualifications to the answer "YES". For in-
stance, if the operator has been typing & number into the
computer and then hit the ® key, Ready will test "YES" and
yet another type-in command should not be given for at least
3 drum cycles to allow the® function to reset.

Magnetic tape operations require some delays after READY has
tested "YES". These timing restrictions are found in the
Technical Bulletin describing the magnetic tape unit MTA-2.

Example: The programmer has initiated an alphanumeric type-
in and wishes to know when the operator has hit the ® key.

.0000 |TRY If line OO is clear,
ALTRAN will assign
0002 and 0003.

93

TPS

Test Punch Switch

The Punch Switch on the typewriter is tested for
"ON", If the switch is "ON" the answer to this
test will be "YES". If the switch is in the center
position the answer to the test will be "NO".

Example: The programmer wishes to interrupt the
computation of a problem whenever the Punch Switch
is turned "ON". He would test its position by
giving the commands: :

.0000 |TPS If line 00 is clear,
ALTRAN will assign
0002 and 0003 as the
"NO" and"YES" branches
of the test.

9l

TRA ABCD

TRANSFER CONTROL COMMANDS

Transfer Control

Control is transferred to command line AB word CD.
Any previously marked place is destroyed.

This command is normally used to transfer control
from one command line to another., It is an uncon-
ditional transfer and does not depend on a previous
mark.

Example: The programmer wishes to transfer control
from line 00 to word 40 of line 03. He would type:

.0000 |TRA 0340 ALTRAN will not reserve
location O340 but will

.0340 : expect the programmer
to enter a command in
0340.

The AB portion of the address may refer to any valid
command line. It may be: 00, 01, 02, 03, Ok, 05,
19 or 23.

Notice that no "next command" location will be reserved
by the command TRA. The programmer may reserve a loca-
tion using the X ABCD instruction if he desires.

95

NOP AB No Operation

The NOP command is used when control is to be transferred

to some command in the present command line and the pro-
grammer either does not need to, or does not want to change
some "Mark Place". It is most useful for transferring con-
trol within a subroutine to which the programmer has 'Marked
and Transferred". In this case a TRA command would remove
the "Mark" and "Return" from the subroutine would be improb-
able.

Example: The programmer wishes to transfer control to word
0010 in a subroutine located in line 00.

.0000 NOP 10 Control will be trans-
ferred to location 0010.

ALTRAN will not reserve the location to which control is being
transferred. If the programmer wishes to reserve this loca-
tion he may do so by using the instruction X ABCD.

96

OAR AB Obey AR

Control is transferred to the command held in AR. After the
execution of the command in AR, control is automatically re-
turned to the original command line at the word specified by
the command executed from AR.

Example: Command is to be transferred to the command in AR
so that the command in AR behaves as though it were stored in
word 60 of some command line. The operator types:

.0000 | OAR 60

-If AB is not entered the command in AR will be executed as
though it were stored in word position OO.

Notice that ALTRAN will not assign any next command location
for the command OAR.

97

MPT ABCD Mark Place and Transfer

The next available location in the present command line will
be marked and control will be transferred to location ABCD.
The next available location is reserved by ALTRAN and the
operator would normally continue entering commands in the
present command line.,

Example: The programmer is about to enter a MPT command
into location 0000. The next available location in line 00
is at word 50. He wishes to transfer control to 0330.

.0000 |MPT 0330
.0050

The AB portion of the address may be 00, Ol, 02; 03, O4, 05,
19 or 23.

In the above example it should be noticed that location 0050
will be marked with XXXXXXX to show its reservation by ALTRAN.

98

RMP AB Return to Marked Place

A commend will be translated which will be a "return to
marked place” command. This command normally would come
at the end of a subroutine which is to be entered from
several places in one command line.

Example: Assume that the programmer has marked place in
Jine 00 and transferred to location 0330. A sequence of
commands in line 03 ended with the return to marked place
commend. To return to line 00 at the word marked the pro-
programmer would type:

.03-~ | RMP 00 Upon execution of this
command, control will
be returned to the
marked place in line 0O.

Address AB may be 00, Ol1, 02, O3, ok, 05, 19 or 23.

No next command location will be assigned or reserved by ALTRAN
for this command.

99

INPUT-OUTPUT AND SPECIAL COMMANDS

Type in Alphanumeric

This command will cause the computer to permit alphanumeric
information to enter lines 23 and 19. Information is auto-
matically transferred to line 19 when line 23 is full to
permit more information to enter line 23. When the ® key
is typed, line 23 will normalize to the left and transfer
the last information to line 19. The information may then
be transferred to another line for storage.

Example: The programmer wishes to permit the entry of alpha-
numeric information into the computer. He would type:

0000 TIA Alphanumeric type-in will
be permitted after the ex-
ecution of this command.

Under normal circumstances, no Input or Output command should
be given unless "READY" is set. That is, no input-output op-

eration should be started while one is already in progress.

Lines 19 and 23 should not be used for other program purposes
during the type-in operation.

Timing Restrictions

The TIA command should not be given until a delay of 3 drum
cycles has elapsed since Ready was set in the case where
Ready was set by g . It takes 3 drum revolutions for the @
function to reset or return to its normal position. The same
timing restriction holds for the command TIN.

100

TIN

Type In Numeric

Numeric information may be entered into the computer through
line 23 and line 19 after the execution of this command .
Each numeric key typed by the operator will cause a h-bit
binary-coded-decimal or hexadecimal number to enter line 23.
Information is shifted into line 23 from the least signifi-
cant end of location 2300. Line 23 may be transferred to
line 19 by use of the slash (/) key. Input is terminated by

typing ®.

Example: The programmer wishes to permit type-in of a 12
digit number. The number will be picked up from words 2300
and 2301 after type-in is complete. He would give the
command :

.0000 |TIN Numeric type-in will be
permitted.

Lines 19 and 23 may not be used during the type-in operation
for other program purposes such as storage of information.

Timing Restriction

See command TIA for the timing restriction placed on this
command.,

101

PAA

Print Alphanumeric AR

The contents of AR will be typed as alphanumeric characters.
Information in AR must be left justified or normalized. The
alphanumeric characters will be taken from AR 8 bits at a time.

This command will be of some use in typing short (3 character)
labels.

Example: The programmer has stored 3 alphanumeric characters
in AR and would like to type them out on the typewriter.

.0000 |PAA Alphanumeric type-out will
be initiated.

AR may not be used during the type-out operation for compu-
tation or information transfer.

102

PAN

Print Alphanumeric Nineteen

The execution of this command will cause the alphanumeric
characters in line 19 to be typed. They must be left
justified or normalized so that the most significant char-
acter is in the most significant position of location 19u7.

Example: Assume that alphanumeric information is stored in
line 1G and that it is normalized or justified toward the
most significant position of 19u7. To initiate the type-
out the operator would type the command: .

.0000 PAN The output will be initiated.

Notice that information typed into the computer in the alpha-
numeric mode is left justified within any 4 word group but
that the four word groups may not reach words 19ul through
19u7. The PRE(Precess) command described later will permit
the programmer to move the information until the most signi-
ficant group of four words is positioned in 19uk through

19uT.

Line 19 may not be used during the type-out operation.

103

PNA Print Numeric AR

The contents of AR will be typed out in numeric mode under
the control of a format in line 03 words OO through O3.

Example: The programmer has tested for Ready, loaded a
format into 03,00-03, loaded information into AR and
wishes to initiate a type-out.

.0000 |PNA Numeric type-out of AR
will begin

The operation and preparation of formats is described in
detail beginning on page 134 of "Programming for the G-15".

It is important to realize that once the type-out of AR has
been initiated, the programmer cannot use AR for computation
or information transfer during the duration of the output.
The operator will have to "Wait for Ready".

104

PNN

Print Numeric Nineteen

The contents of line 19 will be typed out in numeric
mode under the control of a format in line 02 words

00 through 03.

Example: The programmer has tested for Ready, loaded a
format into 02.00-03, loaded information into line 19
and wishes to initiate a numeric type-out of line 19.

.0000 |PNN

Numeric type-out of 19
will begin

Computation may be resumed after the execution of this
command so long as line 19 is not required during the

type-out.

105

RPT

Read Paper Tape

This command will initiate paper tape reading. Information
will be read into line 23 and transferred to line 19 when-
ever a "reload" or "stop" code is read. The reading of a
"stop" code will terminate read-in.

Example: The programmer has tested for Ready, cleared lines
23 and 19 if necessary and wishes to read-in paper tape.

.0000 (RPT The photo-electric reader
will start reading paper
tape.

Lines 19 and 23 are "busy" during the entire read-in process
and should not be used by the program until reading stops.

106

BPT

Back Paper Tape

The execution of this command causes the photo-reader to
reverse the paper tape magazine 1 block. The contents of
lines 23 and 19 may be destroyed by this operation and so
should not be used during the BPT operation.

Example: The operator has tested for Ready and wishes to
reverse the paper tape magazine 1 block.

.0000 |BPT

107

The reader will reverse
and Ready will be set
when the operation is
complete.

RMT A Read Magnetic Tape

This command causes magnetic tape unit "A" to read until a
"stop" code is sensed. The reading operation uses lines 23
and 19 so they must not be used for other purposes at that
time,

Example: The programmer has tested for Ready, cleared line
19 and wishes to initiate a magnetic tape read-in from tape
unit 3.

.0000 | RMT 3 Magnetic tape unit 3 will
begin to read information.

Timing Restrictions

A RMT command must be delayed by the following amounts of
time after Ready is set following these commands:

WMT L drum cycles
WFC 4 drum cycles
RMT 15 word times
SFO 16 drum cycles *
SRE 16 drum cycles *
* This delay after a search on any tape unit, not just a search

on the tape unit being read with the RMT command.

108

WMT A Write on Magnetic Tape

*

The WMT command causes the contents of line 19 to be written
onto magnetic tape unit "A". Lines 19 and 23 are involved in
this operation and so should not be used during this time.
Information is written beginning with word u7 and proceeding
until line 19 is empty. If words OO through O3 are empty, a
"short" block of tape will be written. To avoid this the pro-
grammer should store information in words 00 through 03.

(One "bit" anywhere in the four words is sufficient to cause
a"full" 108 word block to be written.)

If the programmer wishes to write a "short" block of informa-
tion he should remember that information is read (and shifted)
into line 19 beginning with word OO and so information may be
displaced from its original position.

Example: The programmer has waited for Ready, transferred a
Tine of information into line 19, checked to be sure that some
non-zero information is in locations 00 through O3 and wishes
to write the block onto magnetic tape unit 2.

,0000 | WMT 2 The information will start to
be written onto magnetic tape
from line 19.

Timing Restrictions

A WMT command must be delayed by the following amounts of time
after Ready is set following these commands:

WMT 15 word times

WFC 0

RMT 15 word times

SFO 16 drum cycles *
SRE 16 drum cycles *

This delay after a search on any tape unit, not just a search
on the tape unit addressed with the WMT command.

109

WFC A Write File Code on magnetic tape

The execution of this command will cause a file code to be
written on magnetic tape unit "A".

A file code is a mark placed in the sixth channel on the mag-
netic tape. The file code on magnetic tape cannot be read in
the normal sense. It does not contain a block number. It does
however, permit the execution of "search" operations on magnetic
tape. A file code will stop the magnetic tape transport, if it
is searching forward or backward. Once the unit is stopped, the
programmer can then initiate a read operation which could be used
to read a short block containing & block identification number.

Example: The programmer has waited for Ready after positioning
the magnetic tape to the desired place, and wishes to write a
file code on magnetic tape unit O (could also be called unit k).

.0000 | WFC O or | WFC L

Timing Restrictions

The only timing restriction associated with WFC is that it must
be given only when Ready is set.

110

SFO A Search Forward

The tape unit specified by "A" will begin to search forward
after the execution of the command SFO. Searching will con-
tinue until a File Code is sensed by the magnetic tape unit.

The search operation proceeds at 45 inches per second and per-
mits the programmer to quickly move from one group of informa-
tion to another. As an example, the programmer might write a
file code every 5 or 10 blocks and thus be able to search at
high speed to the desired section of magnetic tape before in-
itiating a read operation. The programmer might also count
the number of file codes sensed until he has searched the de-
sired number of file codes. (He would have to initiate a
search operation after each file code is sensed.)

Example: The programmer has waited for Ready and wishes to
search magnetic tape in the forward direction until a file
code is sensed on unit 3.

.0000 | SFO 3 Searching will begin in the
forward direction.

Timing Restrictions

A SFO or SRE command must be delayed by the following amounts
of time after Ready is set following these commands :

WMT Lk drum cycles
WFC 4 drum cycles
RMT 15 word times
SFO 15 word times
SRE 15 word times

111

SRE A Search Reverse

This command operates in the same fashion as the SFO command
with the exception that searching takes place in the reverse
direction.

Example: The programmer wishes to reverse magnetic tape unit
number 1 until a file code is sensed.

.0000 | SRE 1 Tape unit 1 will begin to
search in the reverse di-
rection.

Timing Restrictions

The timing restrictions which apply to the SFO command also
apply to the SRE command. See SFO for this information.

112

DEL

Delay

The programmer may wish to delay the next operation for a
number of drum cycles in certain input-output situations.
This command will provide a delay of at least 1 drum cycle.,

The next command will be executed as soon after the one drum
cycle delay as possible. In the case where the command line
is almost full, the next free command location may not be
found for as much as one drum cycle. In this case, the DEL
command will provide a total delay of 2 drum cycles. (One
for the delay and one waiting to read the next command.)

Example: Assume that the programmer has waited for Ready
and stored the input from a TIN (type-in numeric) command.
Because the ® function takes 3 drum cycles to reset, the
programmer should not give another input-output operation
without waiting or delaying for 3 drum cycles. The delay
sequence might look like this:

. 0000 Delay 1 drum cycle
.0001 |DEL Delay 1 drum cycle
.0002 |DEL Delay 1 drum cycle
.0003 |TIA Type in Alphanumeric
.0005

113

SRY

Set Ready

The execution of this command causes Ready to be set and
stops any input-output operation which may be in process.

The SRY command might be used, for example, in the case
where the programmer has called for a RPT (read paper tape)
and yet no information has entered the computer after X
seconds. The programmer might then want to stop the photo-
reader and type a signal to the operator saying that the
photo-reader is "out" of paper tape information. He would
stop the photo-reader by giving a SRY command.

Example: Assume that the magnetic tape unit assigned to a
problem has been searching forward for 30 seconds and yet
has not encountered a file code. The programmer knows if
the tape unit is in the area of his information, it will
find at least one file code every 10 seconds. Since the
unit has searched forward for 30 seconds without finding a
file code the programmer wishes to stop the tape unit and
then search in the other direction for his information. The
command to stop the tape unit would be:

.0000 |[SRY The tape unit will stop
searching.

114

WRY Wait for Ready

The command WRY is included as a convenience to the programmer,
to provide him with means of waiting for an input-output opera-
tion without using the normal TRY (test ready) command. In the
majority of cases the programmer will come to a point in his
program where he must wait for an input -output operation to end.
This can be done using a TRY and TRA pair arranged so the "NO"
side of the Test Ready command transfers back to the Test Ready
command. In this fashion the program goes through the TRY, TRA
loop until Ready is set. Control is then transferred to the
"YES" branch of the TRY command.

In the case where the programmer has the line 02 input-output
subroutine in memory at the time of execution of his object
program, he may use the WRY command. ALTRAN will generate a
mark place and transfer command which will transfer control to
a section of the input-output subroutine which has a TRY, NOP
combination of commands. Control will remain in line 02 until
Ready is set, at which time the subroutine will return to the
marked place. (The return to marked place command is stored
in location 0244 of the input-output subroutine and may be
changed if desired.)

Requires that the line 02 input-output subroutine be in memory
during the execution of the object program.

Example: Assume that the programmer has given a PAN (print
alphanumeric nineteen) command and would like to read in a
block of paper tape. He must wait until the input-output
circuitry is Ready before giving the RPT command. He would
therefore give a WRY command before the RPT command.

.0000 |[WRY Wait for Ready

.0002

115

BEL

Ring Bell

The bell in the computer will ring if the command BEL is
executed. The command is active for one drum cycle in
order to give the control circuits time to respond.

Three drum cycles should elapse before this command is
again executed to allow time for the bell solenoid to
return to its rest position.

Example: The programmer wants to signal the operator at
one point in his program. The signal will mean that the
program is waiting for the operator to type in some data.
He would give the command:

.0000 |BEL The bell will ring once.

116

HLT Halt computation

The execution of this command will cause computation to halt
immediately after it is processed. Computation may be re-
sumed only by moving the compute gswitch to the center posi-
tion and then returning it to BP (breakpoint) or GO. Compu-
tation will be resumed at the location assigned by ALTRAN
after the HLT command.

Example: Assume that the programmer has written a data pro-
cessing program which requires that paper tape magazines be
changed at intervals during its execution. The programmer
could have written his program sO that the operators atten-
tion would be called to this task by ringing the bell and
then halting computation. The operator would change the
paper tape magazine and then move the compute switch to re-
sume computation.

.0000 | BEL
.0001 | HLT Computation will halt
.0003 Computation resumes here

Notice that the HLT command will reserve the next location with
ook (location 0003) as would a LAR or ADD command.

117

CONVERSION SUBROUTINES

The conversion subroutines discussed in this section are in-
cluded in the ALTRAN line 02 subroutine for input-output. It
is necessary that this subroutine be in memory at the time of
execution of the object program if these conversion commands
are to be used.

The conversion subroutines included in the ALTRAN input-output
subroutine use the common "return to marked place” command
stored in location O24lk. When the S ABCD instruction is given,
this return command (then a return to line 05 command) is re-
placed with a return to marked place in line 00 command. Thus
ALTRAN assumes that the operator will use the subroutines stored
in line 02 with commands stored or executed in line 00. If any
of these subroutines are entered from a line other than line 00
the programmer should first store a return command in 0244 which
will return control to the line from which his program is being
executed. If he has changed the return command to other than
return to line OO0 he must of course restore the return to line
00 command when he wants to execute the commands from line 00.

In practice, it may be simpler to execute all of these functions
from line OO bringing new program into line 00 as needed.

118

* DBF Decimal to Binary Fraction

The decimal (binary-coded-decimal) number in AR is converted
to a binary fraction and stored in AR.

Example: The AR holds the decimal fraction .5000000 and the
programmer wants to convert this to a binary fraction.

.0000 |DBF After execution, AR will
hold .8000000

* DBI Decimal to Binary Integer

The decimal (binary-coded-decimal) number in AR is converted
to a binary integer and stored in AR.

Example: The AR holds the decimal integer OO000l5 and the
programmer wants to convert this to a binary integer.

.0000 |DBI After execution, AR will
hold 000000Z

119

* BDF Binary to Decimal Fraction

The binary number in AR is converted to a decimal fraction
and stored in AR.

Example: The AR holds the binary fraction .8000000 and the
programmer wants to convert this to a decimal fraction.

.0000 |BDF After execution, AR will
hold .5000000

* BDI Binary to Decimal Integer

The binary integer in AR is converted to a decimal integer
and stored in AR.

Example: The AR holds the binary integer 000000Z and the
programmer wishes to convert this to a decimal integer.

.0000 |BDI After execution, AR will
hold 0000015

120

INPUT-OUTPUT SUBROUTINES

The input-output functions described in this section are
included in the ALTRAN line 02 subroutine for input-output.
If these commands are to be used, this subroutine must be
in memory at the time the object program is executed. See
the Conversion Subroutines preceeding this section for de-
tails regarding the execution of these commands from com-
mand lines other than line 0O.

These subroutines have been programmed to provide most of

the typewriter input-output, punch-out, and conversion func-
tions normally associated with single-precision programs.

In some cases the formats associated with type-outs will

want to be changed to suit the programmer's task more closely.

The format associated with PHT, PFT, and PIT is stored in
location 0290 and 0291 of the input-output subroutine.

The format associated with PHC, PFC, and PIC is stored in
locations 0292, and 0293 of the input-output subroutine.

The common return to marked place command is stored in O2kh,

It is important to remember that lines 19 and 23 as well as
the two-word registers and AR are used by some of the line
02 subroutines.

In the following commands it was necessary to store the format
in 0202 and 0203 before testing Ready in the input-output sub-
routine. For most single-precision work this will be of no
disadvantage since formats for single-word output operations
seldom "reload" from 0202 and 0203 during the type-out process.
The format for one operation will have been picked up from line
02 before another can possibly be stored in line 02 using these
subroutines. These commands are:

PAT, FFT, PIT
PHC, PFC, PIC

TAB, CAR

121

There is one area where caution should be exercised and that
is in the case where one of the single-word output commands
follows the command PUN. Since the PUN (punch-out) command
usually is concerned with the punch-out of an entire line of
information, it is common for the format to reload itself
from line 02. The use of another command such as PIC follow-
ing PUN will cause the format in line 02 to be changed to the
PIC format. This will cause the informa.ion being punched to
be in error. The insertion of a WRY command between PUN and
another type-out command will prevent this from happening.

Test Ready commands are not used in the subroutine following

an output operation so the normal buffering can take place to
provide simultaneous output and computation.

122

* TIH Type in Hexadecimal

*

This command provides the programmer with an easy method of
entering hexadecimal information into the running program.
The following operations take place:

Wait for Ready

Clear 2300

GCate Numeric Type-in
Wait for Ready

Store input number in AR

Return to Marked Place

Example: The programmer wants the operator to enter some data
into the program at "run-time". The information is to be en-
tered as a 3 digit hexadecimal pumber. (Notice that up to 7
digits plus sign could have been entered and stored in AR.)
For the purposes of this example let us assume that the opera-
tor types in the hexadecimal number XYZ ©® .

.0000 |TIH The operations described above
take place and AR will hold the
hexadecimal number XYZ after
the operator's type-in.

Line 02 subroutine

123

TIF

*

Type In Fraction

The execution of the TIF command allows the operator to enter
decimal information, have it converted to a binary fraction
and stored in AR during the execution of a running program.
The following operations take place:

Wait for Ready

Clear 2300

Gate Numeric Type-in

Wait for Ready

Convert the decimal input to a Binary Fraction

Store the Binary Fraction in AR

Return to Marked Place

Example: The programmer wants the operator to enter some deci-
mal information into the program at "run-time". The information
to be entered in this case is the decimal number .5000000. The
number must be converted to a binary fraction so that it may enter
the computations.

.0000 |[TIF The operations described above
take place and AR will hold the
converted binary fraction .8000000
after the operator's type-in.

Line 02 subroutine

124

* TII Type In Integer

*

The execution of the TII command allows the operator to enter
decimal information, have it converted to a binary integer
and stored in AR during the execution of a running program.
The following operations take place:

Wait for Ready

Clear 2300

Gate Numeric Type-in

Wait for Ready

Convert the decimal input to a Binary Integer

Store the Binary Integer in AR

Return to Marked Place

Example: The programmer wants the operator to enter some deci-
mal_information into the program at "run-time”. The information
to be entered in this case is the decimal integer 15. The number
must be converted to a binary integer so it may enter the compu-
tations.

.0000 |TII The operations described above
will take place and AR will hold
the converted binary integer
000000Z after the operator's

type-in.

Line 02 Subroutine

125

% PHE Print Hexadecimal

The hexadecimal number stored in the AR will be printed on
the typewriter from line 19. The format previously stored
by the programmer in 0200 through 0203 will be used to con-
trol the print-out.
The following operations take place:

Wait for Ready

Clear line 19

Store the contents of AR in 19u7

Print Numeric Nineteen

Return to Marked Place

Example: The AR holds the hexadecimal number 0123 XyZ and a
format is already stored for its print-out in locations 0202
and 0203. Print the contents of AR from line 19 under control
of the stored format in line 02.

0000 PHE The contents of AR will be
printed.

* Line 02 Subroutine

126

* PFR) Print Fraction

This command is similar to PHE with the exception that the
pumber in AR is converted from binary to a decimal fraction
prior to print-out. As in PHE, the format used is the format

previously stored in 0200 through 0203 by the programmer.

* PIN Print Integer

This command is similar to PHE with the exception that the
pumber in AR is converted from binary to a decimal integer
prior to print-out. As in PHE, the format used is the format
previously stored in 0200 through 0203 by the programmer.

* Line 02 Subroutine

127

% PHT Print Hexadecimal and Tab

The hexadecimal number stored in the AR will be printed on the
typewriter from line 19. The format stored in 0290 and 0291 is
stored in 0202 and 0203 to control the print-out.
The following operations take place:

Store SPTDTE format from 0290, 0291 to 0202, 0203

Wait for Ready

Clear line 19

Store the contents of AR in 19u7

Print Numeric Nineteen (Line 19)

Return to Marked Place

Example: The AR holds the hexadecimal number 0Z0Z0ZO- which
is to be printed out on the typewriter followed by a "tad".

.0000 PHT The contents of AR will be
printed as ~-.0Z0Z0ZO (tab)
on the typewriter.

* Line 02 Subroutine

128

* PFT Print Fraction and Tab

This command is similar to the PHT command with the
exception that the number in AR will be converted
from binary to a decimal fraction before print-out.

* PIT Print Integer and Tab

This command is similar to the PHT command with the
exception that the number in AR will be converted
from binary to a decimal integer before print-out.

* Line 02 Subroutine

129

* PHC Print Hexadecimal and Carriage return

*

The hexadecimal number stored in AR will be printed on the
typewriter from line 19. The format stored in 0292 and 0293
is stored in 0202 and 0203 to control the print-out.

The following opérations take place:

Store SPTDCE format from 0292, 0293 to 0202, 0203
Wait for Ready
Clear line 19
Store the contents of AR in 19u7
Print Numeric Ninteen (line 19)
Return to Marked Place
Example: The AR holds the hexadecimal number 123UVWX which

is to be printed on the typewriter followed by a "carriage
return".

.0000 PHC The contents of AR will be
printed as .123UVWX (carriage
return) on the typewriter.

Line 02 Subroutine

130

¥ PFC Print Fraction and Carriage return

This command is similar to the PHC command with the exception
that the number in AR will be converted from binary to a deci-
mal fraction before print-out.

* PIC Print Integer and Carriage return

Phis command is similiar to the PHC command with the exception
that the number in AR will be converted from binary to a deci-
mal integer before print-out.

Line 02 subroutine

131

% TAB Tabulate

The execution of this command causes the typewriter carriage to
move to the next "TAB" stop. The following operations take place:

Store TE format in 0202 and 0203
Clear AR

Wait for Ready

Clear line 19

Store AR (clear) in 19u7

Print Numeric Nineteen

Return to Marked Place

% CAR Carriage Return

The execution of this command causes the typewriter carriage to
advance one line and "return" to the left side of the page.

The operations are similar to those of TAB except that a CE
format is stored in 0202 and 0203.

* Line 02 Subroutine

132

¥ PRE Precess line 19

This command causes line 19 to be precessed or moved 4 words
at a time toward word u7. Precession will not occur when
there is non-zero information in words 19ul through 19u7. If
started, precession will cease when there is non-zero infor-
mation in 19ult through 19uT.

This command is most useful when punching paper tape. It is
much faster to precess information toward word u7 than to punch
zero information. Normally then, information is precessed in
line 19 before punching. If this is done it is important to
remember that the tape punched may not have 108 words in it.
During input therefore it may be necessary to clear line 19
before reading the punched tape into it. This will place

zero information in the positions originally holding zeros.

It is important that line 19 have at least one 1l=bit in it
when it is precessed. If not the precession will be attempted
anyway and will have to be stopped by manual intervention of
the operator.

At the end of the precession control will return to the marked
place.

Line 02 Subroutine

133

* PRE Precess (continued)

Example: Asgsume that line 19 is clear except for location
1900 which holds the hexadecimal number 0000005. The pro-
grammer wishes to punch this information onto paper tape.

He wants to precess line 19 so he can avoid punching unneces-
sary Zzeros.

.0000 PRE After the precession line 19
will be clear except for lo-
cation 19ult which holds 0000009

It is important to notice that no test for Ready preceeds the
precession operations in the subroutine. It is assumed that
the operator waited for Ready before transferring his infor-
mation to line 19 for precession.

This operation must proceed at full computer speed. That is
the programmer must not attempt to "single-cycle" through the
PRE command or the precession will not operate correctly. The
programmer should add a "Breakpoint" to the command following
PRE if he anticipates single-cycle operation through his pro-
gram. He can then proceed through PRE to his "Breakpoint" at
full speed.

* Line 02 Subroutine

13k

* PUN Punch

This commend causes the contents of line 19 to be punched out
preceeded by about 8 inches of "leader". It assumes that the
programmer has tested for Ready, loaded a format into line 02
words 0O through 03, loaded the output information into line
19, and precessed line 19 is desired. -

It is important to notice that the format loaded into line 02
must contain a "sign" format character as its first character.
If the first character of the format is not a sign format char-
acter the "leader" will not be punched correctly, and useful
output information may be lost.

The PUN command, like the PRE command, must be operated at

full computer speed for correct operation. The PUN command
(subroutine in line 02) should not be executed one command

at a time by means of the "i" key on the typewriter.

The subroutine exits without testing for Ready so that the
normal output may proceed while computation is going on.

* Line 02 Subroutine

135

ALTRAN

I. LOADING ALTRAN

l. Altran magazine, rewound, on photo-reader. Com-
pute switch center, punch switch off, type#* P
and wait for the photo-reader light.to turn off.

2. Compute switch QO and wait for the typewriter
carriage to return. (Computer will be ready
to accept ALTRAN instructions.)

II. TO PERMIT ENTRY OF ALTRAN INSTRUCTIONS

1. Compute switch center, punch switch off, type
8c5f and return the compute switch to GO, or

2. Type a "hollow point" if entering Instructions
or Commands.

III. INSTRUCTION AND COMMAND INPUT FORMAT

Iv.

VI.

*

Enter 1 or 3 Digit

Alphabetic Opcode

Will Address NO Depress "Tab" Key
Field Be Non- -
Zero ?
Depress "Space Bar" Execute Instruction
or
Enter Address Translate Command

ALTRAN TYPE-BACK FEATURES

INSTRUCTION FUNCTION

x 18u2) Suppress machine command type-back
z 18u2 Permit machine command type-back

x 18ulb Suppress verification

z 18ub Permit verification

TO PUNCH LINE O2 SUBROUTINE

1. Move line 02 to a free line (0, 1, 3, 4, 6)
2. Make location 44 a RMP O command.

3. Punch the new information.

4, Example:

T 0200

C 0044
.00k RMP
P

PROGRAM FXAMPLE
PROBLEM: Write a program to allow the input of two

T-digit decimal fractions, sum the numbers and print
the T7-digit decimal sum.

SOLUTION: z 00zz Zero line 00.
c Enter command in 0000,
.0000 TIF Type in fraction; Convert.
.0002 SAR 2200 Store binary fraction.
.0005 TIF Type in fraction; Convert.

.0007 SAR 2201 Store binary fraction.
.0010 CLA 2200 Clear and Add.

.0013 ADD 2201 Add.

.0018 SsSD 2800 Store sum or difference.

.0020 PFC Convert, Print fraction; C.R.
.0022 HLT Halt.
L0024 S Start computing at 0000.

.5000000 s 1234567 s .6234567

Underlined characters signify that the Comﬁute switch is OFF
and the "Enable" switch is ON while those characters are typed.

136

ALTRAN COMMANDS

INFORMATION TRANSFER COMMANDS

LAR ABCD LOAD AR

ARL AB SHIFT AR LEFT
DAR DECREMENT AR
TVA ABCD TRANSFER VIA AR
SZE ABCD STORE ZERO

SNZ ABCD STORE NON-ZERO
SMA ABCD STORE MAGNITUDE
SAR ABCD STORE AR

LID KABCD LOAD ID

IMQ KABCD LOAD MQ

LPN KABCD LOAD PN

SID KABCD STORE 1D

SMQ KABCD STORE MQ

SPN KABCD STORE PN

LTL ABCD LINE TO LINE

ADDITION AND SUBTRACTION COMMANDS

CLA ABCD CLEAR AND ADD .
CAM ABCD CLEAR AND ADD MAGNITUDE
CLS ABCD CLEAR AND SUBTRACT

ADD ABCD ADD

ADM ABCD ADD MAGNITUDE

SUB.ABCD SUBTRACT

SSD ABCD STORE SUM OR DIFFERENCE
APN KABCD ADD TO PN

BIA AB BLOCK ADD

MULTIPLY DIVIDE SHIFT NORMALIZE COMMANDS

CLR CLEAR TWO WORD REGISTERS
LID ABCD LOAD ID.1

LMQ ABCD LOAD MQ.1

LPN ABCD LOAD PN.1

MPY AB MULTIPLY

DIV AB DIVIDE

SFT AB SHIFT

NOR AB NORMALIZE

TPR TRANSFER PRODUCT

TQU TRANSFER QUOTIENT

TEST COMMANDS

TNZ ABCD TEST NON-ZERO
TNE TEST NEGATIVE
TOF TEST OVERFLOW
TRY TEST READY

TPS TEST PUNCH SWITCH

TRANSFER OF CONTROL COMMANDS

TRA ABCD TRANSFER CONTROL

NOP AB NO OPERATION

OAR AB OBEY AR

MPT ABCD MARK PLACE AND TRANSFER
RMP AB RETURN TO MARKED PLACE

INPUT OUTPUT AND SPECIAL COMMANDS

TIA TYPE IN ALPHANUMERIC
TIN TYPE IN NUMERIC
PAA PRINT ALPHANUMERIC AR
PAN PRINT ALPHANUMERIC NINETEER
PNA PRINT NUMERIC AR
PNN PRINT NUMERIC NINETEEN
RPT READ PAPER TAFE
BPT BACK PAPER TAFE
RMT A READ MAGNETIC TAPE
WMT A WRITE MAGNETIC TAPE
WFC A WRITE FILE CODE
SFO A SEARCH FORWARD
SRE A SEARCH REVERSE
DEL DEIAY
SRY SET READY
WRY WAIT READY
BEL BELL
HLT HALT

Z ABCD
X ABCD

C ABCD

H ABCD
H ABCD-

F ABCD
F ABCD-

I ABCD
I ABCD-

P ABCD
T ABCD
S ABCD
R ABCD

M ABCD
M ABCD-
D ARCD
D ABCD-

L ABCD

B ABCD
B ABCD-

ALTRAN INSTRUCTIONS

ZERO (CLEAR) LOCATION ABCD.
IF CD MADE ‘EQUAL TO ZZ, THEN ZERO ENTIRE LINE AB

FILL LOCATION ABCD WITH XOOOOXXX.,
IF CD MADE EQUAL TO 22, THEN FILL ENTIRE LINE AB..

ENTER ALTRAN COMMANDS STARTING WITH LOCATION ABCD.

ENTER HEXADECIMAL NUMBERS STARTING WITH LOCATION ABCD.
LIST HEXADECIMAL NUMBERS STARTING WITH LOCATION ABCD.

ENTER FRACTIONS STARTING WITH LOCATION ABCD.
LIST FRACTIOR STARTING WITH LOCATION ABCD.

ENTER INTEGERS STARTING WITH LOCATION ABCD.
LIST INTEGERS STARTING WITH LOCATION ABCD.

PUNCH PAPER TAPE FROM LOCATIONS ABOO THROUGH ABCD-1.
TRANSFER ALL OF LINE AB TO LINE CD.

START COMPUTING AT LOCATION ABCD.

READ PAPER TAPE INTO LOCATIONS ABOO THROUGH ABCD-1.

ENTER MACHINE LANGUAGE COMMANDS STARTING WITH ABCD.
LIST MACHINE LANGUAGE COMMANDS STARTING WITH ABCD.

ENTER MACHINE IANGUAGE COMMANDS SEQUENTIALLY STARTING
AT LOCATION ABCD.

DOCUMERT MACHINE LANGUAGE COMMANDS SEQUENTIALLY
STARTING AT LOCATION ABCD.

LIST ALL EMPTY (CLEAR) LOCATIONS IN LINE AB STARTING
WITH LOCATION ABCD.

ADD A BREAKPOINT TO THE COMMAND IN LOCATION ABCD.
REMOVE A BREAKPOINT FROM THE COMMAND IN LOCATION
ABCD.

CONVERSION COMMANDS

* DBF
DBI
* BDF
BDI

DECIMAL TO BINARY FRACTION
DECIMAL TO BINARY INTEGER
BINARY TO DECIMAL FRACTION
BINARY TO DECIMAL INTEGER

INPUT OUTPUT COMMANDS

TIH
TIF
TII
PHE
FFR
PIN

* ok ok ok %k k ok & Kk &k Kk k %k Kk k X

TYPE IN HEXADECIMAL
TYPE IN FRACTION
. TYPE IN INTEGER
PRINT HEXADECIMAL
PRINT FRACTION
PRINT INTEGER
PRINT HEXADECIMAL TAB
PRINT FRACTION TAB
PRINT INTEGER TAB
PRINT HEXADECIMAL CARRIAGE RETURN
PRINT FRACTION CARRIAGE RETURN
PRINT INTEGER CARRIAGE RETURN

CARRIAGE RETURN
PRECESS
PUNCH

LINE 02 SUBROUTINE

27 51.33 GAS FOR CARS '
_____ 3l 1288 OO e

36 114.35 BANK LOANS
33 L 4,04 _CIOTUES _CLEAN_ o oo oo
43 39.05 LICENSE PLATES
44 12.30 NEWSPAPER
50 4,16 WARDo
___________ 23034 CHECK) o
9 3.90 LiC
_____ SE L E C T e oo oo oo o
-1122334 445566.7 778399
=UUVVWWX XXYYZZ.0 2345
------------------- CAR - CAR ——-We36.50,2.21 e 3 e
.0036 PRE PRE W.38,u3.2.21.31
-------------------- 0038 PUN-—RUN-—- W 40, 15,2,21 43
0040 Gc5F '
G5

M 01-31 M- ,0131
"""""""""""""" 31 w.s.at.ouze.:
-------------------- w0131 031310286 3 e

0131 Ue31.31,0.28.,31 &c5F

M-=0132 M= 0132

.................... 20132 U Ad A 00000
.0144 y.46,45,5.20.31

0105 u,08.,12.7.28.28 Gc5F
ORrX00—Br07x08 &

.31 .31.31.0.28.31

L A i P L R ey N - it

______________-_mﬂxoe,__;4e-ﬂ_ﬁ_~_~__"_ e e et e o s e e e e
.31 .31.31.0.23.31

——————————————————— B
.44 .46,45.5,20.31

22 .40.42.0.29.02

«51 53 53 3 23. 31

oA 21

oa
o JIJ .UU"JU.U.C'T.\Jl

«60 w.62 63. 3 23. 31

.78 W.BO 83 3 23.31
_____________________ s o T L B i
.04 .06.10,0.26,23

an AL A N OD D7
o TV e T\Ue T deVeUlellT

———————————————————— $43 ---349549,0:83:3 -
.49 .51.53.0.28.26

____________________ s58---35956361302:25 -0 - : i
.61 .57.11.1.25.31

TH——= 12440724528
——————————————————— T

——————————————————— 375 A0SO FRGGOR e o me e
.54 ,57.57.0.23.31

e .59.93.0.92.25
.98 .99.u1.0.28.26

————————————————————— 013555 HaRE B -
55 .64,65.0.24.28

——————————————————— e T T
o «71.72.0.02,29

TTe .73.74.0.23.25
74 J75.77.0.02.24

--_.___-_____-___._..__:.7. _____06 8.4._6 24_.31___._.___»“__-_..*._..___.__,, B . . U S
¢34 .87.37.3.23.31

B ittt -T"‘_~136 €h$_e.ip$.31-___.,__~,,W,m__.~m__ﬂuwAw,,,,_A_“~Ww.»,A_,,, - - .
.94 ,97.97.3.23.31

9T 06 v 084531
U4 U7 eU7.3.23.31

"""""""""""""" U 06:26.0:84.31 s e
.26 «29. 29.3 23. 31

«36 37 33, O 26,28

26— #0:670:02:27 s
———————————————————— 67 0 HH A4 0300500
————————————————————— $68 - iB876830:8. 31—

.69 u.70.86.0.29. 19

oL
o VU QUIQCJQUQCO.IU

.25 .27.44,0.09.31
82 .67.20.0.02.28
————————————————————— 280 W03 8005 B33~ e
.21 .40.39.0.29.23

21

003 AW.QHoOOQU.IC.uu .
.88 W.68,88.0.28.31
_____________________ B s AR5 PBSOP e
.00 00.0.08,16

81 +23.20.0.02.28

68
"""""""""""" St -1 A40;65:3:09,08 -t oTTTTTT oo T e

————————————————— P

A1 +90:33:4.02725
.33 .02.68.4.25.02

76 .90.U2.4.02.25
e g2 502 344 R50R T T

64— 90,00 4502725
OUO .02.24.4025002

14 ,92.u2.4.02.25

79 .92.u0.4.02.25

30 .88.96.6.02.25
___________________ :96____;9,0.._38_.0:29..28-__-,_«_-A.,,,,.-_.,,_,;, e i n = e e e m . e e e

o V. -V]
U e e J0e0 el el

—————————————————— 6636835730508
.73 +u0.99.0.00.31

PR Y S o G, I o W ~ v]
o JJ UeUNeODeUe 1 Tal/

""""""""""""" ;61T --0300:00.0:06,16 -~~~ ;000000 -~~~ s
.03 u.,96,01.2.04.00 6001380

-------------- S06---309,09,3:83,31 - -;0908vyzz T
.07 .00,00.7.31.31 -.0000z22

SO8 W WT Wi 3. 31 31= cZZZL222
.09 .06.,16.0,24.31 .061031z2

————————————————————— 6 19-19.3:28.30 188z
017 000.0004007.31 "‘.OOOOOZZ

.19 .06.26.0.24.31 061u31z

o7 007005400 15——=-0000002 - R
28 WeW7eW7e3.31.31- 02222222
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 35— 40,65,0.29,02- - su84t3v2 -~ T
47 o44,19.2.04.00~ Luw93330
""""""""""" 58--1:15:,15:0:07 550202020 -
.56 .22.20.0.02.23 .961405w

J FaV¥al FoVa 1 LN FaVal FaVal
el TeJTdeUTe | o U U™ e JITOIJTOTOT

.62 JV2e15,3.,24,.00 2002200

------------------- 2303wV 0:00.00= 32220000 -
.35 15 WTeT7e31.31- —.0zz2222

O O A P W aVaVa Vo YaYa Gl -

Fava 4 O
90— 160070700500 - 1000000

091 .12¢00.4000001 "QSWOOOO“

= 2
-1 coe
o

="

=08cr0013 @

=0~

=1

=0P0013 €

=0

=16cr0014 ©

=0

_1"

~Ocr0013 Gaz 2222943000000000008cF0013 ®) 1 Azz22294300000000000000000009 11 1111
| Ill'llllllll R R NI I TR IR A e I I I [B I AR AR A R
o

=1|i|"|!"‘i,l|’|‘illr”!|"?”|3|(‘l3||I’|||I|X§l|l|‘*il‘ 1
prOPGBBBPBEBBPO013 O

AEaesattataat C

=1

o

=1

=08cr0014 @

=

z1@%r09?2"<3"' ’

- L2

=1Ghr0011 GB o

pOOIZ '€ -

=0cr0014 6

=0cF00i2 '@ -

=0cr0011 &

=0

=

=0 -

=1p :

z 00zz z .00zz

¢ 0000 ¢ L0000

L0000 LTL 0201 uTi L0201 v.01.01.0.02. 01
<0001 HLT HLT U.03.03.0,16.31

,0000 u.01.01.0.02.01
.0001 v.03.03.0.16.31

c 0000 ¢ .0000

.0000 u.01.01.0.02.01 WRY WRY W.,02.31.2.21.31
.0002 oBF DBF Ww,04.22.2.21.31
.0004 oB1 DBI W,06.23.2.21.31
.0006 DBF DBF W.08.22.2.21.31
0008 8D BDI W.10,37.2.21.31
L0010 TIH TiIH W.12.82.2.21.31
L0012 T T wl14.81.2.21.31
L0014 PHE PHE W.16.68.2.21,31
.0016 PFR PFR W.18.34.2.21.31
.0018 PIN PIN W.20.24.2.21.31
L0020 PHT PHT W.22.41.2.21.31
0022 PFT PFT W.24,76.2.21.31
L0024 PIT PIT W.26.64.2.21,31
.0026 PHC PHC W.28,13.2.21,31
.0028 PFC PFC W.30.14.,2.21.31
0030 Pic PiC W.32.79.2.21.31
.0032 TAB TAB W.34,30.2.21.31

52
«59
.62
«64
.71
75
.76
.80
.85

+UD
-Ub

Ue15.15.0.07.16
v.09.09.1.20,00-
v2415.3.24.00
+90,U0.4.02.25
U.00,00.0.00.13
.54,91.1.20.00-
«90,u2.4.02.25
«W7.v2.0.,00,00~
<15.w7.7.31.31-
v.16.00.0.00.00
.12.00.4.00.01
v.16.00.0.00.00

©.12.00.4.00,00
.00.V7¢7.31 .31"'

.00.15.7.31.31
WeW7aW7e363131=

0202020
+0989680

«2002200
-+ Xu64059
«000000x
»V6xVv680
-« XU66059
2220000
-.0222222
. 1000000
-+ 8w00001
. 1000000
-« 8Ww00000
;.OOzzzzz
-.0002222

02222222

0222 2

.40
.22
.42

.46

.48
.51
.53
.60
.63
.78
.83
.04
.10

.43
.49
.58
.61
RY

44

.23

.35
.65
.70
.72

.40.42.0,29.02
+46.46.0.23.31

. 47 04800002024 ¢

+50,51.0,28.26
.53,53.3.23.31
.06.60.0,24.31
.62,63.3.23.31
.12,78,0.24.31
W 80.83.3.23.31
¢24,04,0.24.31
.06.10.0.26,28
.40.43.0.02.27

+49,49,0,23,31
«51.58,0.28,26
«59.61.1.02.25
57.11.1.25.31

.12.44,0,24,28
.46.45.5.20.31

.40.42.3.29,02

.40,65.0,29.02
«70.,70.0.23. 31
«71.72.0.02.29
«73¢74.0.28.25

EM'}PVI -par

(mw?3850)

(oZoZoR0)

(200 220)

| (222 0000)

PR

DB & (comt)

-29

E'V*ru' plv‘ bBI

EW‘""j Lor BD F

Add R 0.

’Enhu,_, for CAR

: Ev\+f‘b’ for PRE

fn*rv SLor ?U'V

| MM D‘ bzb’ D¢

All but D“'ﬁ),‘

.50 .68,96.6.02.25
U3 U.00.66.0.19.27

.66 .68.73.0.08.31

73 .u0,99.0.00.31

.99 U.U4.66.0.19.27

.15 .17.45.2.02.28

.45 u.oo.os.o.m.sn

.05 .06,12,7.28.28

.12 .13.44.0.28.27
U400.00,0,08.16 0000110
.01 U.00.00,0.06.16 .00000X0
.02 1.16,00.0,00.00 .1000000
03 U.97.00,7,00,08~ -.6180w09
06 .09.,09.3,23.31 .0909vzz
.07 .00.06,.7.31.31 -+0000222
.08 w.w7.,w‘7.‘3.31.31- 02222222
.09 ,06,16.0.24.31 .061031z
.16 .19.19.3.23.31 .1313v2z
.17 .00.00.4.07.31 -.00000z2
.18 v.w?.v7.3.3l;31- .zzzzizz
.19 .06.26.0.24.31 .061u31z
.27 u.00.00.4.00.15 -.0000002
e28 WoWTeWT7.3.31.31= o2222222
A1 .90.33.4.02.25 ~.xu21059

ad7 44,192 04 00encididAIBR0

82 .67.20.0.02.28 Ewkry for TIH
.20 W.20,20.0.28.31
.21 .40,39.0,29.23
.39 w.39,88,0,12.31
.88 w.68,88,0.28,31

.89 040.4002023002
M0 M 44.440,0000 for TIH

.56 .22.20.0.02.28 éwl-m, Lor TIF
040 4o “zo..nnoz P,'- T,F

.81 .23.20.0.02.28 |
,H0 w0 42,2,29,02 for TIT

.68
.3 .40,65.3.20.02 Entry Por PFR

024 0"0054.3.29,02 ‘ EV\ +V‘l1 ‘GV ?' N

.13 +92,33.4.02,25 N "'V‘l’ p"” 1’ o<

.33 .02.68.4.25,02

4 .92,u2.4.02,25 Ewtry for PEc

w2 .02.34.4.25,02

.79 .92.00.4.02.25 Entry lo PIL C

OUO ‘ 002¢24Q4o25002

.30 .88,96.6.02.25 - Ewtry for TAB

«96 <W0,33.0.29.28

.74
W77
.84
.87
.94
.97
U4
U7

.29

.36
«38

.67

.68
.69
.86
-]

.31
.32

«75.77.0.02.24
+06.84.0.24.31
«87.87.3.23.,31
+06.94.0.24 .31
-97.97.3.23.31
- ,06.,u4.0.24.31
eU7.07.3.23.31
.06.26.0.24.31
.29.29.3.23.31
.06.36.0.24,31
+37.38.0.26.28
.40,67.0,02.27

v.44.44,0,00.00
«68468.0.28431
0070086.0.29“9
+U7.25.0.28.19

027e44.,0.09.31"

04005400029.02
057057¢°.23’31
.59,98.0,02.25

10’4 : +e’¢$‘¢aP.J |
. aﬁl'4%df I>’

ad 4wt D Do

ol At DDV,
' .06
- ol At Di""bé

E'\+rh1 'er T’hﬁE

Enfry for 'Bﬁm |

et

.99.01.0.28.26}

057.55;1;25.31
.64.65.0.24,28

.31.31.0‘28‘31
u,44'440000000°

k "Em‘"\: fon ey

Janvary 1962

Bendix Computer Division

LOS ANGELES 45, CALIFORNIA

APR-01621

	00000
	00001
	00002
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	xBack

