BENDIX COMPUTER DIVISION OF THE BENDIX CORPORATION
5630 Arbor Vitae Street, Los Angeles 45, California

TECHNICAL APPLICATIONS MEMORANDUM NO. T2

27 March 1961

TITLE: Programming notes for the ALGO system

PUnrOSE: The information contained in this memorandum answers several
questions which have been asked and which may arise concerning
use of the ALGO system. Other points of interest are included.

EQUIPMENT AFFECTED: G-15D and optionally MTA-2

EFFECTIVE DATE: 27 March 1961

MEMORANDUM NO. 72 -2- 27 March 1961

1.

2.

(Q)

(A)

(Q)
(A)

(Q)

(A)

What form is required for declaring processes which use no inputs
but use one or more outputs?
This question can best be answered by use of an example. Consider
& procedure called ALPHA which uses no inputs and only one output
called BETA. A dummy input must be used in the declaration of
ALPHA.
15. PROCEdure ALPHA (CUNK = BETA)
In this example, JUNK need not he mentioned again until the process
call at which time another dummy must be used.
33. ALPHA (GARB = z) .
The above example is also true for a FUNCTion.
What use should be made of the NEG operator in the ALGO system?
Minus signs (-) must not be used immediately following opening
parenthesis. The operator NEG must be used instead.
Example: The following expression is to be computed.

2
X = %32 This should be written as
17. x = yt2 / (NEG 3 * z2)
and not as
17, x=y N2/ (- 3m)
What rules govern the use of process calls as part of an algebraic
statement?
TOo insure reliable operation of the ALGO system, process calls
included as part of an algebraic statement should be the first
elements on the right of the equal sign. More than one process
call should not be included in an algebraic statement. If two
process calis were desired in a single algebraic statement, make
one of the process ralls as a preceding statement and use the
output variable ir. the following algebraic statement.
Example: Process I0TA and GAMMA are to be used in a statement.
IOTA and GAMMA have been declared.
5. IOTA {A; B = C)
€. BEGIN
7. C = A ¥ KEYRD - 8’1\2
8. RETURN
9. END
10. GAMMA 'E, F = G}
1. BEGIN
12. G=8/2+)2
13. RETURN

1Lk, END

MEMORANDUM NO. 72 -3- 27 March 1961

Q)

(A)

(Q)

(A)

The statement below including both procedures must not be written
= I0TA (w, v=1u) -MP2+ caMMA (P, Q = T)

Instead, the call could be

25. GAMMA (P, Q = T)

26. x = IOTA (w, v =u) - MT2+ T

Could the title of a program be typed out during object program
run?

No. The actual title of a program is not retained following the
operation of Package Nc. 2 cf the compiling process due to the
complexity of the ALGO system. Therefore the title could not be
typed out during the object program run.

What means of detection and correction should be employed con-
cerning scratch tape reading errors in Package No. 2 and Package
No. 3%

a) Paper Tape Scratch Pad

When Package No. 2 detects an error when reading the output
of Package No. 1, it halts and rings a bell. The operator

should rewind the scratch tape one block and cycle the com-
pute switch. If the program continually detects an error,

the operator should start over witk Package No. 1.

When Package No. 3 detects an error when reading the output
of Package No. 2, it types R and halts. Reread the tape
as above, or repeat the operatlon of Package No. 2.

b) Magnetic tape scratch pad

I1f Package No. 2 detects a read error, it halts and rings a
bell. ~ycle the compute switch and the block will be reread.
If the read error contirues, start over,

If Package No. 3 detects a read error, it types R and halits.
When this happens,the operatcr must use the updater to
rewrite the Editor output blocks | see updater instructions)
and go thru Package No. 2 again.

Is there a method of labeling keybcard inputs to an object program?

SPACE limitatione prchibit the autcmatic labeling (via typewriter)
of keyboard inputs %o tke object program. However, the programmer
can easily write his cwn labeles using ALGO language.

Example;

15. PRINT (FORMA} = 1 (®
16. X = KEYBD

17. PRINT {FORMA) = 2 (®
18. Y = KEYBD ()

ETC.

)

MEMORANDUM NO. 72 -h- 27 March 1961

10.

(Q)

(A)

Q)

(Q)
(A)

(Q)

(A)

KEYBD entries must be made in the same order in which they are
written.

When typing in an algebraic statement which is too long for one
line on the typewriter, can the operator hit the carriage return
key or must he return the carriage manually?

If, during type-in in Package No. 1, the type-in goes beyond one
line and the operator returns the carriage and completes his
type-in on the second line, the carriage return code generated
will be ignored unless it is in the middle of an identifier or
operator. The hyphen {-) key cannot pe used to separate words
at the end of lines.

What rules govern the typing out of a carriage return or tab
following the typing of a floating point number during the
object program run?

If a number is too large for the format under which it is to be
typed, the number will be typed in floating point. If there is
a carriage return in the format which was toco small, the type-
out will be followed by a carriage return. If not, the floating
point type-out will be followed by a tab. If (FL) is specified
as the format, the type-out will be followed by a tab.

Could a dicticnary check be made at the end of Package No. 1?7

Package No. 1 separates and encodes all declarations, converts
constants, forms formats and identifies statement types. It
does not investigate identifiers or operands within the state-
ment and therefore cannot make a dictionary check. This check
is one of the functions of Package Nc. 2.

By what means (cther then updating) can we change constants in
the object program?

In order to change a constant when the object program is being
run, the cperator must know *he location of the constant. If
the ccnetant is one cf an array, the operator can determine its
lccation in the fol owing manner. During the second phase of
compiling (Package No. 2), tke compurer typed the entry number
of the constant array declaration and also the lccation assigned
to the first constanrt of the array. All constants in the array
follow sequentially.

If the constant to te changed is not an element of a constant
array, i.e the constant is a numeric value contained in an
algebraic statement, its loraticn is determined by use of the
fellowing comments:

a) assignment starts in location 7.

b) L-words are assigned for every format.

¢) 1l-word is assigned for every constant.

d) count the number of assignments preceding the constant to
be changed

MEMORANDUM NO. 72 -5- 27 March 1961

e) this number plus 7 is the location of the constant to be
changed.

Caution: Constants of 0, 1, or 2 and constants modifying sub-
scripts cannot be changed and should not be counted in determining
constant locations as they are nct assigned locations.

Example: The following program is written.
TITLE EXAMPLE

FORMAT FORM1 (S3DP2DT), FORM2 {S2DP) (9
CONSTANT CON1 (3) (®

.

1.67

55..12§B ®

k2 ®

BEGIN

X = KEYBD *1,37

Y = KEYBD/ ,36

PRINT (FORM1) = ((X * CON1 [o]) + YY) *8 ®

e o . .

O\O()DNO\&I\F'FLA)I\)H

o
}-—J

The programmer wishes to change the constant 8 in statement 10.
To find its location he must count the number of previous assign-
ments and add T.

2 FORMATS = 8
CONSTANT ARRAY = 3
IN. 8 constant = 1
IN. 9 constant = 1
Total 13+ 7T =20

Once the location of the constant is determined the following
method is employed for changing it during the run of the object
program.

a) Put program in the manual mode «E)c f).

b) Type minus {-) followed by constant location and tab (§) .
(At this point the present contents of the location will be
typed out in floating pcint notaticn. This is a good check
to see if this is the location the operatcr desires).

¢) Put punck switch "on".

d) Type in new constant followed by tab (§)

e) Turn of f punch switch.

f) Type minus {-) followed by location of constant and tab (@
(optional for checking)

g) The changed constant will be typed out to the operator in
floating pcint. form.

L) Return tec program.,

MEMORANDUM NO. 72 : -6- 27 March 1961

11, (Q) Could the F in floating point type-out be deleted?

(A) Yes. Two G-15 words must be changed in Line Ob4 of the Op-Package
No. 4) for the cdeletion of F from the floating point typeout.
yp

Decimal EEZ
0k:85 w.u3.82.0.06.19 y7520x3
Ok:62 w.6L.05.1.28.28 wQ0579w

These changes can be made via PPR or the tape corrector
routine (ASP 72). Line 4 is the 11th blo-k with check sum
= 5xv7u3x. The corrections will not effect the check sum.

12. (Q) What method should be employed to process several ALGO programs
with first the Editor ‘Package No. 1), then the Rator/Cator
(Package No. 2) and finally with Packages 3 and 47

(A) a) The ALGO system must be on paper tape with paper tape
output.
b) Load the Editor and enter the first program. When the
first program has been edited, the Editor will type out
"LOAD No. 2". The programmer may now type(g) ¢ f, and
the Editor will permit the type-in of the next program.

This method may be :ontinued until all the programs have
been processed by the Editor.

c¢) Load the Rator/Catcr with compute s«itch on breakpoint.
When "MOUNT No. 1 OUTPUT" is typed out, the progremmer will
mount one of the Editor cutput tapes. This program will
then be processed. When completed, the Rator/Cator may now
be reloaded on breakpoint. When so instructed, the program-
mer will mount the next Editor output.

This method may be continued until all the edited programs
have been processed by the Rator/Cator

d) Load the Lyzer/Lator {Package No. 3) with compute switch on
breakpoint.

When so instru:ted,; the programmer will mount one of the
prcgram outputs from the Rator/Cator= Further processing
will continue in the norral manner as described in the ALGO
Operating Instruction Manual. Following the completion of
cach program (i.e., processed by the Lyzer/Lator and the Op-
Package, Parkage No. k), the Lyzer/Lator may be loaded on
breakpoirt. The programmer will then mount the next Rator/
Cator output.

13. (Q) How does the programmer write machine language subroutines using
inputs and/or outputs in the ALGO system?

(A) Subroutines which will use inputs and outputs /i.e. alphanumeric
subroutine, Decimal Tape conversion subroutine, magnetic tape
subroutine) must knew twe thing::

a) Starting location of the stcrage for the input or output.
b) Length of the hizek of data coming in or going out.

MEMORANDUM NO. 72 =T~ 27 March 1961

A method of denoting to the subrcutine what these values

are can best be shcwn by an example.

In the following example, the programmer wishes to enter
data (numeric or alphanumeric) into the computer; perhaps
convert it into binary floating point form and store it in
data arrays. '

Call the subroutine INPUT with check sum 0200000 and
starting loz. at 00. The LIBRARY declaration would be:

2. LIBRARY INPUT /0200000)
Now some data storage must also be declared. Two blocks
of information are required. Call one block of T6 words
A and the other block of 130 words B.

3. DATA A(76), B{(130)
The statement tc call the subroutine for use on the lst
block would be

15. A [0]= INPUT (76)
The stacement tc call the subroutine for use on the 2nd
block would be

16. B [0]= INPUT (130)
The statements written in this manner result in the length
of the block in the ALGO accum:lator MQy or MQj. Store
this information and by using the follcwing sequence of
commands, the location of the 1lst word of the table is
found.

All subroutines operate out of line 05.

:80 u.82.82.0.22.28 Pick up N.C.

:82 u.84.8Lk,2,28.20 set ovfl if store

:8h u.86.86.0.29.31 is it store command?
:86 w.89.90.C0.22.18y No. Go get next command
:90 w.94.03.0.05.29

194 ~7wOu80

:03 u.05,05.0.31. 3%

:87 w.89.91.0.20.26 Yes Put in PN 1

191 w.u5.07.3.23.32% CH to PN, Rest To ID
:07 w.09.28.2.26.28 CH to AR

:28 u.34.29.2.28.29 Shift to source

129 w.31.33.2.25.2G Add WD + Junk

133 u.3%.E.3.05.29 - Junk E = Exit to Program
: 34 72036yk

At this point the accumulater contains: w.wd.00.0.CH.0O
of the lst word. With this infcrmation and the stored
length of the block, the progremmer may write his machine
language program anid exit keeping in mird all of the con-
ditions for writirg macaine language subrcutines as out-
lined irn the AIGC Cperatirg Instructions.

MEMORANDUM NO. 72 -8- 27 March 1961

1k,

15.

(Q)
(A)

()

(A)

Can decimal data from paper tape be used with ALGO?

Yes. Three methods of using decimal tape input to an ALGO object

program are described below.

a) The object program accepts data from tape in binary floating
point form. If the data is in decimal, the programmer may
write a machine language subroutine for converting it as
outlined in 13 above.

b) Another method would be to us. Latarcom 550 with the flex

input sutroutine to convert th decimal tape to a binary
tape and use the binary tape as input to the ALGO object
program.

¢) Another method is described in Answer No. 15.

Can data be prepared in decimal ficating point nctation on punched
tape off linc on a flexowriter and read into memory by the ALGO
read statement?

Yes. A special use of the Decimal tc Binary Conversion Routine

is in conjunction with flexowriter preparcd data. Data may be
prepared in decimal floating point nctation on punched tape off
line on a flexowriter and read into memory by the ALGO read state-
ment. These data are then converted to binary flow .ing point by
the conversion routine.

Data is punched in four-word groups (i.e., CR word tab word tab
word tab word tab /) in floating point decimal notetion, (i.e.,
EEDDDDDS where EE is the decimal exponent, DDDDD is the decimal
mantissa, and S is the sign). If the number of data words is
not a multiple of four, a filler word (i.=., O0COUCU tab) is
Eﬁﬁched a sufficient number of times in the first four-word
group in order to make the number of cata words a multiple of
four. If the number of data words is a multiple of four, no
filler word is required. When the last fcur-word group of data
is punched, a stop code is puncked in place of a /"

Example No. 1

Given three data words, prepare flexowriter tape. Data tape
is punchea as follows:

C/R
000C00¢ tub EEDDDDD tab EEDDDLD tab EEDDDDD tab stop 2

mxample No. 2

Given eight data words prepare flexowriter tape. Data tape is
punched as follows:

C/R
£ADDDDD tab KEDDDDD tab EEDDDDD tab EEDDDDD tab / C/R
ZEDDDDD tab EEDDDDD tab EEDDDDD tab EEDDDDD tab stop 2

Attached is an exampie ALGO source program, data input and cutput
which d<aonstrates the special use of the Decimal to Binary Con-
version Koutlne,

MEMORANDUM NO. 72 -9- 27 March 1961

16. (Q)

(A)

It has been stated in the Programming manual that entry numbers
start with 001 and continue congecutively to 511. Please clarify.

The compiler assigns the entry number as the programmer enters
the ALGO language program. Entry numbers start with 001 and con-
tinue consecutively. The number of entry numbers that the com-
piler assigns for a program will depend upon the complexity of
the statements. The ALGO compiler has provisions for handling
up to 511 entry numbers, however, this does not mean that the
compiler will process 511 statements.

MiMORANDUM NO. 72 ~10-

ALGO SOURCE PROGRAM

‘e TITLE DEMONSTRATION OF FLEX LIBRARY ROUTINE ®
Ze L1IBRARY FLEXx (0202000) ®
3. #ORMAT TAG (s5opSoc) ®
4o SUBSCRIPT I, 4 ®
5. DATA ALPHA(35) ®
5¢ BEGIN ®
7. START: cCARrR(3) &
£« READ(P) ALPHA @
e 1=0 0O
0. J=34 &
. LOOP: HOLD=ALPHA [J] @
2e ALPHA [J] =FLex(ALPHA [1]) ®
13. aLpHA [(] =FLEx(HOLD) ®
14 1=141 9
15. J=d~-1 ®
16 1F 2>1 @
17 Go 70 Loor ®
18¢ 1F u=1 O®
19, acepHa [1]=FLex(aLeHa [1]) ®
20. LasT: BELLS(S) ®
21« For 1=0(1)34 ®
22. PRINT(TAG)=ALPHA [1] ®

23. END ®
24.
5 865
START 2
0P 3
.JLD 864
LAST 4
12
864

2 0120013
3 0220024
4 «0470048

27 March 1961

MEMORANDUM NO. 72 -11- 27 March 1961

DATA INPUT
0000000 5514161 5515361 5516637 /
5518010 5519480 5521046 5522709 /
5524466 5526316 5528258 5530293 /
5532421 5534630 5536909 5539359 /
5541679 5544169 5546739 5549400 /
5552152 5554995 5557929 5560951 /
5564059 5567253 5570532 5573897 /
5577350 5580893 5584526 5588250 /
5592064 5595990 5310005 5010424 /

MEMORANDUM NO. 72 -12- 27 March 1961

OUTPUT

12 ®

14161.00000
15361.00000
16637.00000
18010.00000
19480.00000
21046.00000
22709.00000
24L466.00000
26316.00000
28258.00000
30293.00000
32421.,00000
34630.00000
36909 .00000
39359.00000
41679.00000
4L169.00000
46739.00000
49400 .00000
52152.00000
54995.00000
57929 .00000
60951.00000
64059 .00000
67253.00000
70532.00000
73897.00000
77350.00000
8089 3.00000
8L526.00000
88250 .00000
92064 .00000
95990 .00000
100.05000
.10kob

ACTION BY: All personnel concerned
PREFARED BY: E. J. Records

APPROVED BY: T. Yamashita

]

