
El~~ 1i::m::L5 manual

{ -

prepared by BUTLER MFG. CO. ,

USERS t PROJECT NO. 293

TITLE:

TYPEr.

CATEG<llYt

EQUimENT AFFECTED:

SUBROUTINJ!S USED:

DATE: ~ February 1959

Fixed Point Manual
Scaling in G-150

General

Class l

Refer to the contents of this project.

PREPARED BY: B_utler Manufacturing Company
7h00 East 13th Street
Kansas City 26, Missouri

PREFACE

This manual is hereby presented to the Bendix G-15D Users Exchange
Organization. It may be used or published as the organization wishes.

The concept of fixed point scaling which is presented herein is a classic
method, and is well suited to scientific use. There are other methods
of handling fixed point operation, and this same method can be defined
another way. This particular method is favored by the author as being
straightforward and as requiring a minimum of study.

This manual covers the important features of fixed point storage, arith­
metic, input and output. The coverage of some of the features is rather
brief. However, enough information is provided to encourage thought
and experimentation on the computer. With that understanding, then,
this manual is a study outline for those who wish to program in fixed
point.

The author wishes to thank Mr. Raymond Walls of Bendix Computer for
instruction on the theory and practice of input conversion routines. For
criticism of the text and helpful suggestions on the arrangement of des­
criptive matter, the author is indebted to Messrs. Laurence English and
Donald Johnson of Butler Manufacturing Company and Messrs. Keith
Blann and Harry Lorch of Bendix Computer.

RTSMM
4-:1.0-59

- 1 -

~~~I~ 
Computer Project Engineer 
Butler ManUfacturing Company 



OUTLINE OF MANUAL FIXED POINT SCALING IN G-15D 

PAGE 

I Introduction 

A. Standard Commands and Fixed Point Binary Scaling ....... 3 

ll Basic Fixed Point Binary Scaling 

A. Fixed Point Numbers in Storage .•.........•............ .4 

B. Multiplication of Fixed Point Numbers ................... 5 

C. Division of Fixed Point Numbers ........................ 6 

D. Addition - Subtraction of Fixed Point Numbers ......... 7 - 8 

III Input-Output Scaling 

A. Output .. .. . . . . . . .. . .. . . "' ............ ~ ... !" ~ •••••••••••••• "' • • • 9 

1. Conversion from Binary to Decimal. ................ 9 

a) Scale Factor Selection. . . . . . . . . . . . . . . . . . . . . . 9 - 10 

b) Use of the Special Extract Command for 
Conversion ............................... 11thru14 

2. Output Format Selection ........................ 15 - 16 

3. Round Off For Type-Out •.......................... 17 

4. Summary of Output Procedure ................... 18 - 19 

B. Input ....... ~ ..................... ,- .. . . . . . . . . . ... . . . . .. . . . . 20 

1. Conversion from Decimal Coded Binary to Binary. 20 thru 22 

a) Use of the Special Extract Command for 
Conversion . ................ " ............... 20 thru 22 

b) Input Scale Factors ........................ 23 thru 28 

- 2 -



I Introduction 

A. Standard Commands and Fixed Point Binary Scaling 

The Bendix Computer has an impressive standard command 
list, which, coupled with internal programming, makes it an 
extremely versatile and relatively fast machine. Standard 
commands directly control computer circuitry and go hand in 
hand with fixed point scaling. Most problems of an engineer­
ing or scientific nature are well suited to fixed point operation, 
since the range of each variable seldom requires the use of 
floating point arithmetic subroutines. 

Fixed point binary scaling seems to be little understood or 
practiced. The author wishes to aid those who wish to use it 
in combination with standard commands by publishing this 
manual on the various phases of fixed point scaling. 

- 3 -



ll Basic Fixed Point Binary Scaling 

A. Fixed Point Numbers in Storage 

Fixed point binary scaling deals with numbers converted from 
decimal form to equivalent binary form. and with the method 
of storing such numbers in a cell of the computer's memory. 
The storage cell in the Bendix G-15D contains 29 bit positions, 
one bit for sign and 28 bits for numerical information. · The 
storage cell may also be used for specially coded information, 
and it may be combined with another cell for double precision 
computation. For purposes of this manual. however, single 
precision number storage only will be discussed. The storage 
cell may be diagrammed thusly: 

I. I I (,IL I. I I I, I I I. I I I ... I. I I [I 
"Z.' 1.V, "2.l U 'l( '7-'I "2.~ Z1. 1-1 W I~ 18 n lb IS" \-\ q V2. II ID ~ fl I b S 1' 3 'Z.. \ 

The bit positions are numbered as shown. Bit 1 is the sign 
and bit 29 is the most significant bit of the number being stored. 
The heavy vertical lines may be used as a convenience for plan­
ning purposes and are also shown because the input-output cir­
cuitry deals with the bits in these groups of four when operating 
under a standard format. 

The concept of fixed point binary scaling which is presented 
here will be termed the Point Location or PL method. As 
illustrated in the storage cell above, 28 bit positions are avail­
able for data storage. Numbers may be stored in the cell with 
the binary point positioned to suit the size, or range, of each 
variable. 

To illustrate this in everyday terms. a person using a desk 
claculator may position the decimal point on the keyboard to 
suit the numbers he will be handling. If large numbers are to 
be handled, the pointer or marker for the decimal point will 
have to be set far enough to the right to accomodate them, and 
vice versa for small numbers. 

Suppose a number requires 9 bit positions above the binary 
point. It can be placed in the storage cell with the binary point 
nine bit positions from the left of the storage cell. An example 
of such a number is 400. 5. Its binary equivalent is 110010000. 1 
and it would be placed in the storage cell thusly: 

l 1 • 1, o , o I 1 1 o , o , o I o , 1, o , o ( o , o , o, o I o 1 o • o , o I o 1 o, o , o I o 1 o , o, o lof 
9 bit positiogis to binary point 

This number is said to be scaled Z"' • The number of bit posi­
tions from the left of the storage cell to the binary point is the 
negative power of two by which the number i.s scaled. A number 
whose binary point lies 14 positions from the left is scaled 2-14etc. 

- 4 -



Sometimes scaling is indicated like this: 400. 5 · 2-9 or N· 2·9. 
As defined by the PL method, the number in storage is not 
multiplied by 2-9. It means the binary point is located 9 bit 
positions from the left of the storage cell. 

It is also common terminology to say the stored number has a 
"scale factor of 2-9 11 • This is used in the following examples 
in Part n, arithmetic operations, and it should be understood 
that the scale factor referred to ls a storage. or point location 
scale factor. This storage scale factor should not be confused 
with input-output scale factors discussed in Part Ill. 

B. Multiplication of Fixed Point Numbers 

The author presents the following information with the assump­
tion that the reader is familiar with the PN. ID, and MQ regis­
ters, their associated 1 bit sign register, the IP flip-flop, and 
with the operation of the multiplication process. This informa­
tion can be obtained from a Bendix schooled programmer if the 
reader so desires. 

Before multiplication, the ID register holds the multiplicand and 
the MQ register holds the multiplier. After multiplication. the 
PN register holds the product. The multiplication process is a 
high-order process, meaning it takes place from the most to the 
least significant bit of the multiplier. For this reason. the 
number of bit positions above the binary point in the multiplicand 
must be added to those in the multiplier to obtain the number of 
bit positions above the binary point in the product. 

In other words, the scale factor of the multiplicand must be 
multiplied by the scale factor of the multiplier to obtain the scale 
factor of the product. Suppose the multiplicand is scaled 2-14 
and the multiplier is scaled 2- 4. The product will be scaled 2-18. 
The following example illustrates this. 

Multiplicand = 1 O· 2- 14: 

0 0 0 0 0 0,0 0 0 ~-Q· 1 0 0 0 0 0 0 0 ~~_Q_LQ_ 0 0 0 0 
--------------'14 bit positions 

Multiplier = 5· 2- 4 : 

lo.1.o.1lo.o,o.olo.o,o,olo.o,o,olo.o,o,olo,o,o,olo.o,o,ol I 
4 bit positions 

Product = 50· 2- 18 : 

18 bit positions 

- 5 -



,. 

C. Division of Fixed Point Numbers 

The author presents the following information with the assump­
tion that the reader is familiar with the two word registers, 
and with the operation of the division process. 

Before division, the ID register holds the denominator and the 
PN register holds the numerator. After division, the MQ 
register holds the quotient. To obtain the number of bit posi­
tions above the binary point in the quotient, subtract the number 
of bit positions above the binary point in the denominator from 
the number of bit positions above the binary point in the numer­
ator. 

This is the same as dividing the scale factor of the numerator 
by the scale1factor of the denominator. Suppose the numerator 
is scaled 2- 4 and the denominator is scaled 2-8;the quotient 
will be scaled 2-6. 

The following example illustrates this: 

Numerator = 144. 2- 14 : 

lo,o,o,olo,o,1,olo,1,01olo,o,o,olo,o,o,o~,o,o,olo,o,o,ol 
.._ ___________ l 14 bit positions 

Denominator = 12· 2- 8 : 

I o, o, o, o I 1, 1 , o, o I o, o , o , o I o, o, o, o I o, o, o, o I o 1 o j_o, o Io, o, o, o I r 
8 bit po~itions 

-6 Quotient = 12· 2 : 

lo.o,1,1lo.o,o,olo.o,o,olo.o,o,olo.o,o,olo.o,o,olo.o,o,ol I 
i.;._ ____ _J 

6 bit positions 

The division process diff era from the multiplication process 
in two important features: 

1. The scaling of the answer can be changed if the programmer 
wishes to do so. 

2. Overflow is possible if. disregarding scaling, the contents 
of PN are equal to or greater than the contents of ID. Also, 
in cases of changing the scaling of the answer, erroneous 
answers are possible if, disregarding scaling, the contents 
of PN are equal to or greater than twice the contents of ID . 

... 6 -



The scaling of an answer can be changed by either increasing 
or decreasing the operation time of the division command. 
For each two word times it ls increased, the number of bit 
positions above the binary point in the quotient is decreased 
by 1. For each two word times it ls decreased, the number 
of bit positions above the binary point in the quotient ls in­
creased by 1. 

If, in the previous example, the division time is incre.ased by 
two word times the scaling of the quotient becomes 2- ~ . 

.----1 5 bit positions 

If the division time is decreased by two word times the scaling 
of the quotient becomes 2- 7. 

7 bit positions 

Io, o, 0]1, o, o, ol o, o, o, ol o, o, o, olo,o,o, olo,o ,o, olo, o ,o,o I J 

D. Addition - Subtraction of Fixed Point Numbers 

The author presents the following information with the assump­
tion that the reader is familiar with the AR, which is a 1 word 
adder. 

The AR can be used only.for addition and subtraction. As ex­
plained previously, the two word registers can be used for 
multiplication and division. It should be mentioned, however, 
that the PN register is the 2 word (double· precision) accumu­
lator. This explanation will be confined to the AR for simpli ... 
city, however. 

In the addition or subtraction of fixed point numbers in the AR, 
the binary points must be aligned. This means that numbers 
to be added to or subtracted from each other must have the same 
scaling, i.e., the number of bit position above the binary point 
must be the same. If they are not, one of the numbers may be 
aligned with the other by left shifting it in MQ, or right shifting 
it in ID, whichever is required. Since loss of the most signifi­
cant bits occurs during left shifting in MQ, it follows that some 
of these bits may be non ... zero, causing loss of part of the number 
being shifted. There is no indication these bits are lost. The 
author prefers to left- shift in AR or PN by executing a block 
command to add the register to itself for the required number of 
word times to obtain the shift. The number must be in form of 
absolute value and sign, of course. and a 2 or 6 transfer charac­
teristic should be used. 

. . 

This process produces overflow if significant bits are lost, 
thereby providing the programmer with evidence of error. 

- 7 -



Suppose two numbers scaled :r 6 are added: 

Augend = 10· 2- 6 = 001010. 

[o~:~[~~]~;.~,oio~,o~~:k~~ 
L--- --- .. ·-----·-··------····-·J 

Addend = 16· 2- 6 = 010000. 

b_o.o lo .o .o .o lo.o,o,olo,o ,o :o lo ,o .o .~f~-~~--,-~~-~J~.~=~~ 
1-- ---- .......... -· ....... J 

Sum = 26· 2- 6 -= 011010. 

lo.1,1 10f1 10 ,o .o.lo.. o,o~-tl~ 1 0 1~0 lo .~.L~~~~J;:~ 
1------···"-"'"-··· ..... I 

s_uppose a number scaled 2- 6 is to be added to a number scaled 
2-8. 

Addend = 16· 2- 8 = 00010000. 

jM-L9_1_!_[9-t9-.LQ.LQ~4Q~O 1 .. Qlo, o, o, o [g~_Q-~~~QIQ_l:~~;_,_J_Q~o ,o, o lJ 
L. ..... ____________________ l 

Shift Augend Right 2 Bit Positions 

[ o, o, o, ol 1,-~ 1 1 1 ol o, 01 o~J.Q.._ o. o~hi_Q.1 o ol o, o, o, ol o,_o l.Q_J!.LJ 
l--·-·····------·-·--·--- ....... _ ....... J 

Sum = 26· 2- 8 = 00011010. 

[<LJ!J_[l1_0_iJ_;_9j o, ~~~-~--~, Q.1 Q, o, ~~k~·.·o. QJ_9_J_~9_LQ_I] 
L ___ ........ ------ --···- -··- ··-· .... - . I 

... 8 -



m INPUT - OUTPUT SCALING 

A. Output 

l.. Conversion from Binary to Decimal 

General - Two steps are involved in output conversion. The 
first is applying a scale factor and the second is conversion 
of the resulting binary fraction from true binary to binary 
coded decimal. 

a) Scale Factor Selection 

Output scale factors must eliminate all powers of two by 
which a number is scaled and divide by enough powers of 
ten to keep the number to be converted less than 1. This 
may be accomplished by division by a scale factor contain­
ing negative powers of two and positive powers of ten or by 
multiplication by a scale factor containing positive powers 
of two and negative powers of ten. 

Suppose a number is scaled 2- 8. Its value must be less 
than 2+8, or 255. 9999 maximum. According to the rule 
above, the number must be divided by enough powers of 

~~~!~ ~ij§P ~~:t n~:i:::d~o t~{~~~~\te=d J~s~ut!~~~ .to t1et~~~-
verted from binary to decimal. If a division scale factor is
used, it would have to be 2-8 x 103.

Proof: N· 2- 8 = N· 10- 3 = . 2559999
2-8 x 103 Maximum.

If~ a multiplication scale factor is used, it would have to be
28 x 10-3.

Proof: N· 2-8 (28 x 10-a) = N· lo- 3 =. 2559999

Maximum.

Only one of the scale factors can be used, however. The divi­
sion scale factor could never be contained in storage because
103 converted to binary contains 10 significant bits and cannot
be scaled .2- 8.

Two significant bits would be left outside of the storage cell,
and to change its scaling to 2-10 would make it unusable as a
scale factor for a number scaled J- H.

The ref ore, the multiplication scale factor must be used.. From
G-15 Card 10-3 =. 004189375 hex. To make up 28 .10-3 scale
factor, lay . 004189375 out in binary.

0 0 4 1 8 9 .· 3 7 5
:oooo'oooo'.0100'.oooi'.1000)001 :0011',0111',0101 • .

. 4 1 '8 9 3 7 5
Move binary point to right 8 bit positions (multiplies by 28) and
regroup bits in groups of four. Answer = 10-3. 28 =. 4189375 hex.

- 9 -

The simple way to determine which scale factor is usable ls to
evaluate them as shown below. The scale far.tor which is less than
one must be used. In the above case:

2-8 x 103 = lOOO > 1 • No Good
256 '

28 x 10· 3 = 256 < 1 · OK
1000 ,

Here ls another example. Find the scale factor for N• 2- 15.

N < 2+15 = 32, 768 ; Power of 10 is the fifth power = 105
5 .

Division S. F. = .!.Q__ lOO, OOO > 1; No Good.
215 32,768

Mult. S.F. = 215 x10- 5

= 32, 768 < 1; 0. K.
100,000

From G-15 card: 10- 5 = . 0000 u7w5uw4 hex

The scale factor is . 53Y2X62 hex and must be multiplied by .the number
to be converted from binary to decimal coded binary.

If this process is used to determine the scale factor for the entire
range of scalings from 2- l to 2- 28, it will be found that the output
scale factor always has to be multiplied by the number to be converted.
Let us consider when an output scale factor could be divided into a
number to be converted, and why this might be desirable in special
cases. Suppose a number is scaled 2-7. Its value must be less than
128. But suppose this number was always less than 100. This means
its decimal form contains only two significant digits, and to use the
multiply scale factor (27 x 10-3) would always leave a leading zero
after conversion: 099. 9999. In this special case, a scale factor of
2-7 x 102 could be divided into the number to be converted, making
the number appear as 99. 99999 after conversion. The advantage is
elimination of the leading zero in front, and an additional digit of
accuracy will be converted below the decimal point. The scale factor
fOJ;' 2- 7 x 102 is .w800000 hex.

102 = 64 hex
6 4

1 0110'0100:
I I I ·I I I '

.w 8 00000.
Note that in this case the binary point was moved to the left to make up
the scale factor. This is because the scale factor, 2- 7x 102, contains a
negative power of two and is a division scale factor. In any case, the
binary point must be somewhere to the left of the most significant bit of
the scale factor. If any one bits lie to the left of the point, the scale
factor is not usable in a standar<li;zed system.

- 10 -

b) Use of the Special Extract Command for Conversion

A method of converting binary fractions to decimalcoded binary
will be explained first. The method described applles to conver­
sion of binary f ractlons to any base other than binary, but conver­
sion to the base ten only will be discussed here.

The first step is to multiply the binary fraction by ten in binary.
This will produce a whole number and a fraction, both in binary.
The whole number is the first decimal digit of the fraction, and
ls in decimal coded binary. The remaining fractional part is
again multiplied by ten in binary. The whole number produced
this time is the second decimal digit of the fraction being converted.
This process can be continued as many times as necessary to com­
pletely convert the binary fraction to decimal coded binary, or the
process can be discontinued after a satisfactory accuracy is obtained.

Take .1111 binary as an example. The decimal value of this fraction
is Z x 15-J i~ = • 9375.

STEP 1: .1111
1010

11110
11110

1001pi10
9 = first decimal digit

STEP %: Remaining fractional part

= . 0110
x 1010.

1100
1100

00111100 •
3 = next decimal digit

STEP 3: Remaining fractional part

= • 1100
x 1010

11000
11000

011\1000
7 = next decimal digit

STEP 4: Remaining fractional part

= .1000
1010

10000
10000

01oi.oooo
5 = next digit

- 11 -

The remaining f ractiorial part is zero, the ref ore further conversion
is unnecessary. Collecting the decimal coded whole numbers in the
order they were produced, the answer is . 9375 which is the correct
value. If the binary coding of these decimal digits were typed from
AR, or line 19, the type-out would actually be . 9375:

. 1001 0011 0111 0101
9 3 7 5

In presenting the following information, the author assumes the
reader is familiar with the operation of the special extract command
3. 23. 31. The special extract command can be used to good advan­
tage making this conversion, using the two word registers. The
following extractors are necessary for single precision conversion.

- 0 Z Z Z Z Z Z + Z Z Z Z Z Z Z o2
- 0 0 Z Z Z Z Z + Z Z Z Z Z Z Z o3
- 0 0 0 Z Z Z Z + Z Z Z Z Z Z Z o4
- 0 0 0 0 Z Z Z + Z Z Z Z Z Z Z o5
- 0 0 0 0 0 z z + z z z z z z z 06
- 0 0 0 0 0 0 Z + Z Z Z Z Z Z Z o7

The number after conversion will have 7 digits, thus: 01020304050607.
The first digit, 01 can be formed quite simply by placing the binary
fraction in IDl and 1010 in MQl. After multiplying for eight word times,
01 will be formed in the four most significant bits of PN1. and the re­
mainder of PN1 holds the remaining binary fraction. If the special ex­
tract command is given using the 02 extractor, 01 remains in PN1.
while that portion of ID1 is cleared to zero, and the binary fraction below
01 is copied into ID1 while that portion of PNl is cleared to zero.

By placing another ten (1010} in MQ1 and multiplying for eight moreword
times, 02 is formed below D1 in PN1 and the remaining binary fraction
can be extracted into ID1 and cleared out of PN1 using the ,03 extractor.
This process continues in the order Multiply - Extract through use of
the D7 extractor after which one more multipllcation forms 07, and the
binary coded decimal equivalent of the original binary fraction is now in
PN1.

Two improvements can be made on the process as explained here. The
first is to use . V6XV680 in MQ1 instead of 1010. This multiplier con­
sists of seven 101 groups thus:

, 101 1,01 10.i. 101, 101 ~01 10).
v 6 x v 6 8 0

By doing this, it is unnecessary to place 1010 in MQ1 before each
multiplication, and each multiply command lasts for six word times.
The effect is the same as multiplication by 1010. The second improve­
ment would be to carry out the conversion in PNo, reducing the ex­
tractors to the following:

- 12 -

0 Z Z Z Z Z Z D2
0 0 Z Z Z Z Z D3
0 0 0 Z Z Z Z D4
0 0 0 0 Z Z Z o5
0 0 0 0 0 Z Z 0 6
0 0 0 0 0 0 Z o7

in even word times only.

The previous example of . 1111 === • 9375 can again be given, using the
PPR tracer on the Bendix output conversion subroutine. This appears
on the next page.

- 13 -

pwOO s .1101000
sc5f020x0000002x03 ssc7fq.z000000 81002zw sima .zOOOOOO
rq/p0290 9

.90 .91.92.0.28.25 .zOOOOOO

.92 .93.95.0.02.24 .v6xv680

.95 .o6.u2.0.24.31 .0000000 .9600000

.u2 .us.us.3.23.31

.us .06.10.0.24.31 .0000000 .93w0000

.10 .13.13. 3.23. 31

.13 .06.20.0.24.31 .0000000 .9378000

.20 .23.23.3.23.31

.23 .06.30.0.24.31 .0000000 .9375000

.30 .33.33.3.23.31

.33 .06.40.0.24.31 .0000000 .9375000

.40 .43.43.3.23.31

.43 .06.50.0.24.31 .0000000 .9375000

.so .53.53.3.23.31

.53 .06.60.0.24.31 .0000000 .9375000

.60 .61.63.0.26.28 .9375000

These commands are on Page 7 of 9 of Input-Output Routine.

- 14 -

2. Output Format Selection

The following information is presented with the assumption that
the reader is familiar with the functions of each of the format
characters. If not, a detailed description of each may be found
in the Bendix Coding Manual or in the newer Programmers
Reference Books.

The format characters will be discussed here from the standpoint
of type- out. Perhaps the best way to explain output format is to
take a specific example.

Take N· 2-8 as an example. The output scale factor was 28 x 10- 3
and the conve.rted number now is ready for type-out. It is presently
divided by 103, so the period should be called for after the third
digit is typed, which is where the decimal point actually belongs.
The format would be

SDDDPDDDDTE
and, if the number converted was, say±: 189. 9870, that is .the way
it would actually be typed out. The way to actually cause type- out
of converted numbers is to place the compiled format in words 03
and 02 of line 03, put the number to be typed in AR, and give the
command L2. N. 0. 08. 31. This will cause type-out of AR. The
converted number can also be typed from line 19 by placing the
compiled format in words 03 and 02 of line 02, clearing line 19,
transferring the number to be typed into 19. U7, and executing the
command L2. N. 0. 09. 31. If line 19 is not clear, the end code in
the compiled format will be changed to a reload code, causing
further type- out under the same for mat until line 19 has been
emptied of all non- zero information.

The for mat can be compiled using the 03 x 08 code in Standard PPR
or can be compiled by the individual. The procedure is simple.

Write the letter abbreviations first:
SDDDPDDDDTE

Then, using a table of format characters, write each three bit
character in sequence. The G-15 reference card has a table on the
back side.
SDDDPD DD DTE

:1 oo' 0 I 00 I 00 I 0 I 000 : 011' 0 I 00 I 00 I o' 000 : 000I1, 1, doo i:
8 0 0 6 0 0 1 - 1

The next step is to regroup the bits in groups of four until seven hex
digits have been made UJ;>. Then allow one bit for sign, and continue
with the same grouping (7 hex digits and sign) until the last format
character has been taken care of. Fill out the remaining of the 7
hex digits and their sign as zero. The first seven hex digits are for
storage in word 03 of line 03 or 02, and the next are for storage in
word.02.

The format for line 19 may extend into words 01 and 00 of line 02,
if required. This is very handy for typing up to four numbers at a
time, and each 7 digit number could have a different format, if
required.

- 15 -

One further difference between type-out of line 19 and AR should
be mentioned. AR does not have to be empty before type-out will
cease. If only two digits are desired, AR may be typed with ODE.
and the five remaining digits in AR will not cause the format to
reload, as would be the case for line 19.

If trailing digits are not desired, they can be omitted by replacing
their digit format characters with wait format characters. Suppose
the last two digits are not required in the previous example·. The
format could be changed to

SDDDPDDWWTE
The compiled format would become

S DOPP DD WWTE
I I I I I I I i I I I i
,100 0, 00 00 I 0 000, 0110,00 00, 0 1111 1111, 1,0001,

8 0 0 6 0 7 z -1
and, using the previous example of ± 189. 9875, the type-out now
would be± 189. 98. No round-off occurs. However, by correlating
the compiled format With a round-off factor, the number can be
rounded off. This is discussed in the next section.

- 16 -

3. Round Off For Type-Out

It is often desirable to round off numerical data for type-out. The
procedure is quite simple. The round off must be added to the
number being converted after the scale factor has been applied to
it and before use of the special extract command for conversion ..
The round off must be a 5 positioned after the last digit to be typed
thus: ·

Number of digits
to be typed

.x

.xx :xxx

.xxxx

.xxxxx

.xxxxxx

.xxxxxxx

Round Off

. 05

. 005

. 0005

. 00005

. 000005

. 0000005

. 00000005

Round Off
converted to a
binary fraction
(hex)
• Owwwwwx
. 0147uy1
. 0020w49
. 000346x
• 000053z
. 0000087
• OOOOOOx

Since the number being converted is a binary fraction scaled 2° at
the time the round off is added, the round off must also be a binary
fraction scaled 20.

Going back to the previous example of± 189. 9870, it was seen that
if the last two digits were "waited". the type- out became ± 189. 98.
This could be rounded off to ± 189. 99 by use of the proper round off
factor, • 000005 =. 000346x. The round off would have to be added
to the number before the conversion process, immediately after the
scale factor was applied, when it was still in its binary fraction
equivalent of . 189 9870. The round off would make it the binary
equivalent of . 189 9920 and after conversion. it would appear in
decimal coded binary as . 189 9920. The format of

SDDDPDDWWTE
cuts off the last two digits, making the type-out ± 189. 99.

- 17 -

4. Summary Of Output Procedure

The output procedure takes a scaled binary number. and converts
it to decimal coded binary and types it out. The first step is to
convert the number from whatever scaling it may have to a binary
fraction. The reason for reducing it to a fraction is because the
special extract command can be used to great advantage in convert­
ing binary fractions to decimal coded frations. The output format
is selected. placing the period where the decimal point really be­
longs, and omitting trailing digits, 1f desired. In order to round
off numbers being typed out, a round off can be added to the number
after its reduction to a binary fraction by the scale factor. This
round off should always be compatible with the output format. In
other words, it shoul<l add the binary equivalent a(a 5 in the position
after the last digit typed, so that the last digit typed ls rowided off.

The fallowing example shows the Bendix· output conversion subroutine
converting and typing N· a-8 where N = 189. 9870 = VX. ZWVWO hex. ·
The format comliled previously of SDDDPDDWWE ls _shown at the
point mar!Wd (1 being transferred from ID to 0:&02. o:s. The scale
factor of 2 x 1 -3 =. 4189375 hex ls multiplied by the number being
converted at the point marked (2), giving .1899870 =. 30U2ZWZ hex.
The round off of • 000005 =. 000053Z hex is added at the point marked
(3), giving. 1899920 =. 30U350y hex. The combination of Multiply -
Extract is used at the point marked (4) to convert Dt through D7. The
rounded number is typed at the point marked (5), and the type-out is
189. 99, which is 189. 9870 rounded off to two digits below the decimal
point.

For those who are interested in the typed information at the top of
the page, the author did this while setting up the demonstration. The
number 189. 987 ls typed in to a fixed point input routine, and a stan­
dard command ls typed into line 23 and executed, which brings the
converted number into AR. It is typed from AR. using the a key.
This is marked with the letter A. PPR is loaded next, and llie Bendix
output subroutine is read in to liile 18, and the round off of • 00000005
= • OOOOOOX hex in word 76 is replaced with • 000005 = • 000053Z hex.
The 03 x 08 code of PPR is used to compile the SDDDPDDWWE format
at point C. The 02 x 03 code transfers the subroutine, still in line 18,
to line 02 from which it must be executed. This ls marked D. The
remainder of that line and the next line are type-in of format, scale
factor, N. 2-8, and return command, and standard commands to place
them in positions specified by the subroutine specifications. This is
marked E. The scale factor was entered with a minus slam, which
was a code to the output routine for multiplication by N· 2:8. The sign
was a code only, and absolute value was used.

- 18 -

p10lw0.' s.
101 t89/9a1 s 1s9.9810 · J A
102 sc7fq810023w sia .vxzwuwO ·. •
ppwOO s .1101000 J ~
sc5fv76 s t:::>
.76 .OOOOOOx 00000500 s .000053z

.03
03x08 s j(_ ·
40003007761 . ~
-.800607z .100000 02x03 ssc7fq•800607z 1000000 0000000 -82002z9 siq] E
-4189375 /8000275 siqvxzwuwO 81002z5 siq808021z 81002zw sima .808021z
rq/p02u6 s
.u6 .02.05.4.25.02 .1000000 -.800607z CD
.o5 .oa.08.0.23.31
• 08 • 08 • 08 • 0 0 28 • 31
.09 u.10.15.0.26.19
.15 .45.56.0.02.25
.56 .65.34.0.25.02
.34 .36.37.2.21.02
.31 .39.44.2.28.25
.44 .45.48.0.22.31

.0000000

.yvOy393

.yv0y393

.80802lz

.4189375

.49 .53.55.0.21.24 .vxzwuwO

.55 .56.04.0.24.31 .167x380
• o4 • os. 24. o.'26. z5'
.24 .25.61.0.02.28,
.61 .63.64.0.28.02
.64 .65.75.0.25.28
.1s .76.84.0.02.29
.84 .90.90.0.23.31
.90 .91.92.0.28.25
.92' .93.95.0.02.24
.95 .06.u2.0.24.31
.u2 .u5.'us.·3.23.31

.30u2zwz

.w04139w

.w04139w

.30u2zwZ-} @

.jOu35.Ql_

.30u350y
11v6xv680
.soooooo -.ly66128 0,

.u5 .06.l0.0.24.31 .zOOOOOO .18nwv9 P'\.

.10 .13.13.3.23.31

.13 .06.20.0.24.31 .x600000 -.l89zxz3 e,

.20 .23.23.3.23.31

.23 .06.30.0.24.31

.30 .33.33.3.23.31

.33 .06.40.0.24.31

.40 .43.43.3.23.31

.y5w0QOO .1899yv8 t)'t

.8z98000 .1899933. t>s-
.43 .06.50.0.24.31 .19vz000 .1899920 1)(...
.so .53.53.3.23.31
.53 .06.60.0.24.31
.60 .61.63.0.26.28
.63 .64.65.0.28.23
.65 .u7.14.0.28.19
.14 .26.36.0.09.31
.36 w.00.00.0.16.31

.1017600 .1892920 l:?"l

.1899920

.1899920

.1899920
189.99-©

- 19 -

©

B. Input

1. Conversion From Decimal Coded Binary To Binary

a) Use of the special extract command for conversion

A method of converting decimal coded binary whole numbers to
binary whole numbers will be discussed f.irst. Take a 7 digit
decimal coded binary whole number, N = D1 D2 D3 D4 D5 D6 D7
as an example. To reduce it to a true binary whole number.
simply multiply Di by ten in binary six times. D2 for five times,
D3 for four times. etc .• and add the products. The effective
multipliers are listed in the table below.

DIGIT NUMBER or TIMES
MULTIPLIED BY
TEN IN BINARY

6
5
4
3
2

1
0

EFFECTIVE
MULTIPLIER

106
105
104
103
102
101

10°= 1

In the two word registers. this process can be accomplished very
neatly by a.ix successive Extract-Multiply operations. using these
extractors:

El = zOOOOOO

E2 = zzOOOOO

Ea = zzzOOOO
E4 = zzzzOOO
Es = zzzzzOO
E5 = zzzzzzO

and the same v6xv680 multiplier (7 u' s) that is used on output con­
version.

The process begins with N in PNt and the v6xv680 multiplier in
MQ1. The first Extract- Multiply operation works as follows. The
extract command copies the first four bits of PNt into ID1, leaving
the remaining contents of PN1 undisturbed and clearing the remainder
of m1. These first four bits contain Dt in decimal coded binary. The
multiply command causes D1 x 10 in binary to be· added into the first
eight bits of PN1. The first four of these bits were cleared when 01
was extracted into ID1. The next four bits contain 02. Therefore,
the first eight bits of PNl now contain Dt x 10 plus 02.

- 20 -

The next Extract-Multiply operation works in like manner,
taking the first eight bits of PN1 into ID1. which now contain
D1 x 10 + D2. and multiplying by 10, giving

(D1 x 10 + D2) 10 plus n3
2 = D1 x 10 + D2 x 10 + n3 in the

first twelve bits of PN1.

After the sixth Extract-Multiply operation, PN1 will contain
Dl x 106 + D2 x 105 + D3 x 104 + D4 x 103 + D5 x 102 + D6 x 10 + D7
which is the original number N converted as a decimal coded binary
whole number to a binary whole number.

The following shows the PPR tracer on a series of six Extract•
Multiply commands doing the conversion operation described above.
The top half of the page was typed by the author when setting up the
demononstration. The program which is traced is given below:

L T N c s D

04 06 07 3 23 31 Extract

07 06 14 0 24 31 MPY

14 16 17 3 23 31 Extract

17 06 24 0 24 31 MPY

24 26 27 3 23 31 Extract

27 06 34 0 24 31 MPY

34 36 37 3 23 31 Extract

37 06 44 0 24 31 MPY

44 46 47 3 23 31 Extract

47 06 54 0 24 31 MPY

54 56 57 3 23 31 Extract

57 06 64 0 24 31 MPY

64 66 64 0 16 31 Halt

05 zOOOOOO El
15 zzOOOOO E2
25 zzzOOOO E3
35 zzzzOOO E4
45 zzzzzOO Es
55 zzzzzzO E5

The number being converted is 2222222. The answer, which
appeared in hex as 217887 should be equal to 2222222 in decimal.

2 x 165 = 2,097,152
1x164 = 65,536
y x 16~ = 57,344
8 x 161 = 2,048
8 x 16 = 128
y x 160 = 14

2,222,222

- 21 -

py04 I
.04 .8505000 xOO 1y04 1

.04 060732331 •
• 07 061402431 I

el4 161732331 I

.17 062402431 I

.24 262732331 •
127 063402431 I

.J4 363732331 •
e37 0644~2431 I

.44 46473233l I
e47 065402431 I

.54 565732331 •
• 51 06640.2431 •
• 64 666401631 •
• 64 .424021z z05 zOOOOOO 1
.05 zl5 zzOOOOO 1

.15 z25 zzzOOOO I

.25 z35 zzzzOOO I
,35 z4S szzzzOO •
.45 z55 zzzzzzO 1

.55 x06 1•.54xzxw3
02x03. 11c7fq03002zz 1iq2222222 81002zu 1iqv6xv680 8l002z8 •iq
/p0204 •
• 04 .06.07.3.23.31
.01 .06.14.0.24.31
.14 .16.17.3.23.31
.17 .06.24.0.24.31
• 24 .• 26.27.3.23.31
.21 .• 06.34.0.24.31
.34 . '.36.37.3.23.31
• 31 .OG.44.0.24.31
.44 .46,47.3.23.31

. ,47 .oG.54 •. 0.24.31
.54 .• su.57.3.23.31
.57 .OG.64.0.24.31
,64 ,66.64.0.16.31

.0000000

.0000000

.0000000

.0000000

.0000000

.0000000.

- 22 -

.1622222

.• oxy2222 .

•. 08uy222

.• 056wy22 .

.03640y2,

• 02ly88y --=., -=----- 2, 222. 222 converted
to binary. Type-out
in hex.

b) Input Scale Factors

The job of the input scale factor is to eliminate all powers of ten
by which a number is scaled and divide by enough powers of two
to effect the scaling which is intended for the number ..

Suppose a number ranges from 0 ta.500. A scaling of 2-9 could
be used, since 20 = 512, .and the actual maximum value which
could be stored with a z-0 scaling is 511. 9999. .As explained
under input conversion, the process described converts whole
numbers only. In other words, this particular number would be
converted as lf it were 5, 119, 999. The input scale factor for
this number must divide by 104, as well as by 29. This will re­
duce its value to 511. 9999 (eliminate all powers of 10) and scale
it 2-9. The scale factor can be made up using the G-15 Reference
Card.

2 7 1 0 add 9 binary O's = 104• 29

104 = , '0,010' q111 1 0,001' qooo ! opoo~_,,oooo
0 4 y. 2 0 0 o.

Input scale factor = 104. 29 = 04y2000. This input scale factor
must be divided into the number, giving

5, 119, 999 = 511. 9999 (2-9)
10 4 . 29

An input scale factor which would be multiplied by the number
could also be compiled:

0 O O 6 8 xv 8 v v 1

. 10-4 = ~0000 I 0000 I 0000 I 0110 11000 1 1101 1 1011I1000 I 1011 1 1011,I

add 9 more binary 0' s = 2-9 6 8

,oooo, 0000, d.ooo ~ooo·~-aooo, do11, d~
0 0 0 0 0 3 2

=. 0000032 hex. This is a very poor scale factor, since it is not
exact, or even very accurate. In general, all input scale factors
should be made up for division into the number to be scaled •

.. £here are cases where input scale factors are not needed. Tally
limits are an example. No fractional part of the number is ne~ded,
therefore scaling is unnecessary. Simply take the number from the
decimal to binary conversion routine as a binary whole number and
store without scaling.

Perhaps it would be a good idea to review the foregoing information
in order to help the reader's understanding.

The decimal to binary conversion process explained in this manual
converts whole numbers only. Or, to say it another way, it con- .
verts all numbers as if they were whole numbers. Thus. the number
511. 9999 is converted as if it were 5, 119, 999. and is effectively
multiplied by 1 o4. .

- 23 -

The intended scaling of the number, (in this case 2-9) and elimi­
nation of the extra powers of ten lin this case 104) can be done in
one process by dividing by 104. 2g. An example is given next, in
the form of a traced program. The program being traced is
given fallowing the example.

The program is contained in one line and must be loaded with p
key. Type in the decimal number to be converted followed by-
tab s. Then type the binary scale factor in hex fallowed by tab s.
Typeout will be : Wand N scaled. Wis the decimal number con­
verted to binary as if it were a whole number. N scaled is the
result of dividing the scale factor into N. If this division produced
overflow. a bell ring will occur and a. wwwwwww flag will follow
N scaled to indicate it is incorrect.

The example being traced is 200. 9375 being converted and .scaled
2..:lf. The scale factor has previously been compiled as 104. 29 =
04y2000. The type-out shows N"" = 2. 009, 375 = 1yu91z and N =
200 .. 9375 (2-9) = 6478000. N should equal 200. 9375:

6 4 7 8
10116'0100' 0111' 1oolr

I I I I

w 8 ,z

w x 161 = 192
8 x 16° = 8

z x 16- 1 ~ . 9375
200.9375

The program was reloaded and used without the tracer at the
bottom of the page. The first example is the same one that was
traced. The second one is 189. 9870 beintt converted to binary and
scaled 2-&. The scale factor would be 10-4. 28 =

2 7 1 0 " add 8 more zeros
'0010' 0111' 0001 1 oooO'oo"CiOTooo·O'
-----J--~··-····-·-:.l.·----· .. --L....::..---l..----·-...:...1--- .J

2 7 1 0 0 o.
The typeout showsN = 1, 889, 870 = 1wzx5y hex and N = 189. 9870
(2-8) = vxzwuwO. N should equal 189. 9870:

v x z w u w 0
11011 1 1101 1 1111' 1100 1 1010 1 1100 10000 1
I I I I I I I I v x .z w u ·w --·-er··
v x 161 = 176
xx 16° = 13
z x 16- 1 =
w x 16- 2 =

1·5-s ux =
w x 16- 4 =

. 9375

. 046875
• 0024414
. 0001831

189.9869995

The last example shows • 9375000 being scaled 2°. The scale factor
is 107. 20 =00989680 hex. N = 9, 375, OQO is 8f0x18 hex and N =
. 9375000 (2) =. zOOOOOO • z = z x 16- = 15/16 = • 9375

- 24 -

ppsc5fl900 s
.00 u.01.01.0.19.02 8404uvz
.01 w.04.04.2.21.31
.04 .05.90.0.02.28 .4400000
.90 .03.29.0.28.03 8w00001
.29 .31.06.0.08.31

.06 12.07.0.29.23

. 07 .07.07.0.28.31

.08 .10.09.0.12.31

.09 .12.12.0.23.31

.12 13.10.0.02.24

.10 .10.10.0.28.31

.11 .12.15.6.23.26

.15 .12.11.0.29.23

.17 19.16.0.29.31

.16 .18.18.0.12.31

.18 18.18.0.28.31

.19 20.22.0.23.28

.22 .24.25.3.23.31

.25 .06.32.0.24.31

.32 34.35.3.23.31

.35 .06.42.0.24.31

.42 44.45.3.23.31

.45 .06.52.0.24.31

.52 54.55.3.23.31

.55 06.62.0.24.31

.62 .64.65.3.23.31

.65 .06.72.0.24.31

.72 .74.75.3.23.31

.75 06.82.0.24.31

.82 .83.84.0.26.23

.84 .as.a1.2.2a.25

.87 .v6.96.l.25.31

.96 .97.ul.0.24.28

.ul u2.u4.0.28.23

.u4 .00.20.4.29.23

.20 .22.26.0.29.31

.26 u.27.u3.0.29.19

.u3 u.00.24.0.23.19

.24 .26.28.0.09.31

.28 28.28.0.28.31

.29 .31.06.0.08.31

.06 .12.07.0.29.23

.07 .07.07.0.28.31

.08 10.09.0.12.31

0000000
Number type- in

"'",,.. .-'·
2009375 s

, .. in decimal coded binary
(or hex)

v6xv680

0000000 .2009375
.0000000

..--·-
04y2000~

.04y2000

.0000000 1409375

0000000 .Ow89375

0000000 07x9375

.0000000 .04y7x75

.0000000 .0310y95

0000000 .Olyu9lz
• Olyu9lz
.04y2000
0000001 .6478000

.6478000
6478000
0000000 .0000000

Binary scale factor
type- in in hex

ooooooo / N = 2. 009, 375 in binary
0000000 _,,11r .. -·..- (type- out in hex)
Olyu9lz .6478000

\
0000000

N = 200. 9375 (2- 9)
in binary
(typeout in hex)

f~859sn()_._;z;~ioJo·~51-·o~y:~r.z-·--:·r;4;Woo~ HJ99G70 s271000 s .Olwzx5y vxzwuwO
9375000 s9896BO s OBzOxli .zOOOOOO

Type- in Type- out

'

- 25 -

• Butler Manufacturing Company Page -1.. of -
Kansas City 26, Mo. Date: 2- 22- 59

Bendix G-150 Program Sheet Line 02

Prepared by R 1 T, Smith Problem Ingut Stu.ax RQutin~

0 1 2 3 L p T N c s D BP NOTES

4 5 6 7 00 u 01 01 0 19 02 Ll9-L02
8 9 10 11 01 03 04 2 21 3j_ N_C_:_ 2. O_i

12 13 14 15 02 10 00 0 00 00 Fo_r_mat_._f_or

03 -8 w 0 00 00 SPDDDDDDDTE
16 17 18 19

O_i 05 90 0 02 2-8 0_2_ 0_5_ - __ABc_

20 21 22 23 Jl5. 44 00 0 00 00 F :1r maLior CE

24 25 26 27 90 03 29 0 28 03 AR~ oa.Lo...z.

28 29 30 31
29 __3_1 06 0 OR 31 ..Tme AR -..-.-

32 33 34 35 06 J.2 01_ 0 29 23 _Cl p~--2.3__ _O_

36 37 38 39 _Q'Z_ Jl7 07 0 ?.R 31 RP::\.dv ___,,_ _Te~t
--.r

43
08 10 09 0 12 31 Gate T_me- in {N)

40 41 42
09 12 12 0 23 31 Clear

44 45 46 47 12 13 10 0 02 24 02.13 ~ M...Qi

48 49 50 51 13 V6 x v 68 0 7 u's

52 53 54 55
10 10 10 0 28 31 Reagy --... Test

11 12 15 6 23 26 23.0 CVA--PNl
56 57 58 59 15 12 17 0 29 23 Clear 23. 0 & Skin 1 rev

60 61 62 63 17 _1_9 16 0 29 3_1 _Re_s_e_t 0' fl 0

64 65 66 67 16 18 18 0 12 31 Gate -1YD_e_- in ~{£ F)

_1_8 _1_8 18 0 ...2.8 -31 ReadY - ..T.e..s1
68 69 70 71 19 20 22 0 23 28 23 0 - _a ~ ---=- AR...

72 73 74 75

76 77 78 79

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96. 97 98 99

uO ul u2 u3

u4 u5 u6 u7

- 26 -

• Butler Manufacturing Company Page ..1.. of _
Kansas City 26, Mo. Date: 2-22-59

Bendix G-150 Program Sheet Line 02

Pr~ared b_y R, T, ~mith Problem Ing:u.t St1.ui~ Rgutine

0 1 2 3 L p T N c s D BP NOTES

4 5 6 7
22 _2_4 25 3 23 31 Extract

8 9 10 11 23 < z 00 0 00 0 El

12 13 14 15 25 06 32 0 24 31 MPY
32 34 35 3 23 31 Extract

16 17 18 19 33 < lz zO 0 00 0 > E?.
20 21 22 23 35 06 42 0 24 31 MPY

24 25 26 27 42 44 45 3 23 31 Extract
43 < Lz zz 0 00 0 E3

28 29 30 31
45 06 52 0 24 31 MPY

32 33 34 35 --5.2_ 5_i 55 3 23 3_1_ Extract

36 37 38 39 53 ~ Lz_ __zz_ LZ_ 00 _n_ I> E.4

40 41 42 43
_55 06 62 0 24 31 MPY
62 64 65 3 23 31 Extract

44 45 46 47 6_3_ ~ lz_ zz iz zO 0 E5

48 49 50 51 65 106 ~7_2_ lo_ 24 -31 M2Y

52 53 54 55
__ll 14_ 15_ La 23 31 Extract

73 < zz z zz zO > E6
56 57 58 59 75 06 82 0 24 31 MPY
60 61 62 63 82 83 84 0 26 23 PNt---..... 23. 3

64 65 66 67 84 85 87 2 28 25 AR -- ID_i

87 v6 96 1 25 31 Divide
68 69 70 71 96 97 ul 0 28 23 MQ1 ... A_&_

72 73 74 75 ul Lu2 u4 0 28 23 AR =- 23. 2

76 77 78 79 _u4 00 _2_0 4 29 _2_3 Clear 23.0 1

80 81 82 83

84 85 86 87

88 89 90 91

92 93 94 95

96 97 98 99

uO ul u2 u3

u4 u5 u6 u7

- 27 -

• Butler Manufacturing Company
Kansas City 26, Mo.

Page _a_ of _

Date: 2- 22- 59
Bendix G-150 Program Sheet Line o~

Prepared by

0

4

8

12

16

l

5

9

13

17

2

6

10

14

18

3

7

11

15

19

R. T. Smith Problem Input Study Routine

L p T N C S D BP NOTES

20 22 26 0 29 31. 0' flo Test

26 u 27 u3 0 29 19 Clear Ll9

u3 u 00 24 0 23 19 L23 - 19. u4-u7

24 26 28 0 09 31 Type L19

28 28 28 0

20 21 22 23 n-=2=9-+--;r=S=e=ec......:iPr-=a=~,..,,.e'-fl=--r----+--+1---+r--------------1
24 25 26 27

28

32

36

40

29 30

33 34

37 38

41 42

31 0' fl ~= ...HJnil: ~ell, set f ag

35 1 r-=2~7-+--ti~2=8-+~3~6--+-'0~_1~7:.-i--=31=-++-'--it-=R=in=LK~b=e=ll=-~~~~~~-1
39 lt--=-3~6-+--!+~3~7-+-~2~6-+-=0-+-~0~2-+---"'2~3-++--;+-~0~2~.3~7:__--~2=3~.~1~~~~---l

43 1~3~7-+-~<---tt-'w~·w~ __ w=--f-!-'w--+--=..!.w-w_~+-=w~~>~~F=la~'g·~~~~~-~~~~

44 45 46 47

51 Tnle-dut wJ l be: 48

52

56

49 50

53 54

57 58

55 lt----+--++---+---+--+--+--ff---H---------------1
N {uh~c: LlP.d_1_ lLLscalEtdt ~lasz lf 0 Uo)

59

60 61 62 63 n----r--tt----+----+---+---+--+1---H---------------l

64 65 66 67 ti----.+-~-- ---r---+--+--tt---tt---------------l

11----+----++-----+-·-···--+----+---+--·.j.j......-~--------------~

68 69 70 71

72 73 74 75 1~-+-~--l-----+--+---l---.U.---U--------·-·-------1

76 77 78 79 11---+--tt---+---+----+---+---H---*------··------·--·-----··--·-·---!

80 81 82 83 lt---+----++---+--+----+---1---- ~-~ ------·····-··--··------·-·--·-·-·-·-·-

11--+---++----+--+---+---l-------l+---t+------···-········--·······-----·--·--·-··-·------1

84 85 86 87 lt----+--++----+---+--+---+--·#---*---------------1

88 89 90 91
92 93 94 95 tl----f-.-~-4-·--+----+----+--~-4'-----·····-····--····-------·····-------

11-----+--------+---+---+----+--~-~------·-···-···-·---------1

96 97 98 99

uO u1 u2 u3 11----+---11---+---+---+----+--~~-------·---------·---1

u4 u5 u6 u7

- 28 ..

