EE[:]

Central Processor
Machine Language

THE BENDIX G-20
CENTRAL PROCESSOR
MACHINE LANGUAGE

CONTENTS

INTRODUCTION A 12
FUNCTIONAL DESCRIPTION 315
Addressing Facilities 3
Format Description 6
Roundoff Rules 10
Interrupt Facilities 11
Address Preparation Commands : 13
Arithmetic Processes 14
DESCRIPTION OF COMMANDS 16-43
Arithmetic Commands 16
Add-Subtract Test Commoands 17
Non-numeric Commands 18
Non-numeric Test Commands 22
Putaway Commands 25
Control Commands 27
Index Commands 28
Register Commands 29
Repeat Commands 31
Repeat Add-Subtract Commands 33
Repeat Add-Subtract Test Commands 35
Repeat Non-numeric Commands 38
Repeat Non-numeric Test Commands 41
CENTRAL PROCESSOR INPUT-OUTPUT 44-53
APPENDIX 54-59
Standard Input-Output Instruction Codes . 54
Average Execution Times 55
TABLES
Table 1 Range of Values 6
Table 2 Interrupt Registers 11
Table 3 Repeat Add-Subtract Interrupts 34
Table 4 Repeat Add-Subtract Test Interrupts 36
Table 5 Repeat Non-numeric Interrupts 39
Table 6 Repeat Non-numeric Test Interrupts 43
Table 7 Line Response Register 52
Table 8 Input-Output Error Branch 52

Table 9 Incomplete Transmission Word Code 53

INTRODUCTION

The Bendix G-20 general purpose computing system
is modular in construction. The system con be ex-
panded in size or the nature of its operation changed
when desired. The major computing and controlling
module in the system is the Central Processor. It is
built of solid state components and includes a ran-
dom access, expandable, magnetic core memory.
The system contains peripheral equipment that can
operate concurrently with, and independently of,
the central processor. The Central Processor may
have from 4096 to 32,768 words of magnetic core
memory, in modules of 4096 words each. Each word
contains 33 bits, including a parity bit. 2 <4

; k' cctaly 2 ﬂc‘t“(l
This manual describes the Centiral Processor's basic
machine language. Descriptions of other units in the
G-20 System and instructions for the use of cuto-
matic programming systems will be found in sepa-
rate publications.

The bulletin, “The Bendix G-20 System for High-
Speed Computing,” contains a technical introduction
to the G-20 System. It is suggested that this booklet
be read before reading the material in this monual.

COMMAND STRUCTURE

The basic machine command specifies a single oper-
and. Either the value of the operand, or its address,
may be written in the command. By combining the
contents of any number of addresses, using com-
mands provided for this purpose, a very flexible
index register operation is provided. Other special
commands facilitate use of memory locations 1
through 63 as address modifiers.

NUMBER FORMS

Numerical information is stored in memory in one
of three formats: Single Precision, Extended Preci-
sion and Pickapoint. A Single Precision quantity is
a floating-point number that is contained in a single
memory location. An Extended Precision quaontity is
a floating-point number that is contained in two con-
secutive memory locations. A Pickapoint quemtity is
a floating-point number that is stored in a single
memory location without the exponent; during stor-
age the quontity is automatically adjusted to an
exponent selected by the programmer. All internal
computation is performed in Extended Precision
floating-point form. If a Single Precision or Picka-
point number is internally copied into an arithmetic
register for computation, zeros are automatically
appended so the number appears at Extended Pre-

cision length. Therefore, Single Precision, Pickapoint
and Extended Precision numbers may be mixed dur-
ing computation. The numeric result may then be
stored in memory in any of the forms.

REGISTERS

There are five registers which are used to control
information flow (see page 29). Special commands
are used to set and reset these registers

The Next Command register contains the ad-
dress of the next command to be executed.

The Interrupt Request register contains switches
which are set by the computer when a request
for interrupt is encountered.

The Enable register contains switches which are
set by the programmer to permit computation to
be interrupted when specific requests for inter-
rupt occur. The first switch in the Enable reg-
ister controls all of the interrupt operations and
is called “Control.”

The Pickapoint Exponent register contains the
Pickapoint exponent.

The Line Response register is concerned with
Input-Output and its operation is discussed in
the section on Input-Output:

INDEX REGISTERS

Locations 1 through 63 of the memory are special
locations which can be used as Index registers. Spe-
cial commands are available which increment,
decrement, and test these locations (see page 28).
These locations can also be used for normal storage.

ACCUMULATOR

The accumulator consists of three registers. The first
register will contain the l4-octal digit momtissa of
any operand brought to the accumulator, The sec-
ond register will contain the sign of that operand.
The third register will contain the 2-octal digit expo-
nent and the sign of the exponent.

0 6 5643 210

Bits 41

ACCUMULATOR

OPERAND ASSEMBLY REGISTER

The Operand Assembly register is a register like the
Accumulator containing a 14-octal digit montissa
with its sign and a 2-octal digit exponent with its
sign.

Octal Digits 14 o oo

Bits 41

OPERAND ASSEMBLY REGISTER

COMMAND PRESENTATION

The commands which are developed in later sec-
tions are presented in the following form:

Operation Octal Function Operation
Code Designation

The explanation of the command will immedi-
ately follow the heading.

Example

The Addition command is given as:
AD 045 Add (Acc)+B— (Acc)
Notes

In internal computation, numeric information is
handled in gctal form. An octal number is equiv-
alent to a binary number in which each group
of these bits, from right to left, is represented by
a digit from 0 to 7.

“"Operand” is the name given any quanuty
being operated on by the “operation code”
phase of a command. “Operand B is the name
given the result of the “operand select’ phase
of a command (see page 3).

In addition to the normal use of parentheses,
they are also used to denote “contents of.” For
example, the (Accumulator) is read “contents of
the accumulator.”

Brackets “[1" are used, instead of parentheses,
where context demands, to denote separations.

Numeric subscripts are used to denote the por-
tion of the contents of a register which are oper-
ated on by a command operation. For example,
y(Accumulator), means that the least significant
thirty-two bits of the accumulator will be oper-
ated on.

ADDRESSING FACILITIES

The G-20 Computer uses a single-operand command
structure. Each command operates in two phases.
The first is the “operand select” phase and the sec-
ond is the “operation code” phase such as add or
multiply. During the operand select phase, the
addressing mode is inspected and the operand B is
assembled in the Operand Assembly register,which
contains a 14-octal digit mantissa with its sign and

a 2-octal digit exponent with its sign.

Flags Addressing Operation Index F Field

Vil .

28|27 26 25 24 2822 21/2019 18 17 16 1414 131211109876548210

Command Word

A command word consists. of two flag bits, a 2-bit
addressing mode code, an operation code, and two
number fields designated “F” and "L.” The F field
covers the least significant fifteen bits and the I field
covers the 6 bit positions 15 through 20. These desig-
nate two octal integers of 5 digits and 2 digits,
respectively. The 5-octal digit F field is used as a
part of the address of the operand B. The I field is
the Index field. The 2-octal ‘digits of the I field are
used to address any of the Index locations, 01
through 63. Therefore, the programmer may use an
Index register with all Standard Addressing (see
exceptions, page 4). An Index field of zero is

ignored by the addressin ing assembly. The contents

of these two fields, taken as integers, or the contents
of the locations they individually address are
summed in one of four distinct ways with the con-
tents of the Operand Assembly register to form the
operand B of any command with Standard Address-
ing. The form of each of these four sums is con-
trolled by the addressing mode.

STANDARD ADDRESSING

Addressing Action
Mode
0 (OA)+F+ () =B

In addressing mode 0, the action of the “operand
select” phase of the command is to sum the F field,

l’laqsq Op Code

the contents of the location specified by the I field
and the contents of the Operand Assembly register.

The addition is performed in floating-point. In all

modes, the I field designates an address in the
range 01 through 63 and any of these locations may
contain numbers in eny format. Therefore, the oper-
and B con be in any number format (see page 6).

Example

Consider a Clear and Add command (octal code
005). Using addressing mode 0, let the F field
contain 1200 and the I field contain 13:

Mode 1 Field

Flags Op Code F Field

31 30 20 28 27 26 25 24 2322 21 2019181716 15 14131211109876548210

Let the contents of the Operand Assembly reg-
ister be 0 and the contents of location 13 be 5.0.
The operand B will be:

B=(OA) + F + () = 0 + 1200 + (13) =0 + 1200
+ 5.0 = 1205

Therefore, the number 1205 will be placed in
the accumulator.

Addressing Action
Mode
1 (OA)+(F)+(D=B

In addressing mode 1, the action of the command
specifies that the F field will be taken as an integer
and used as an address. Therefore, the operand B
will be composed of the sum of the contents of the
location specified by the F address, the contents of
the location specified by the I field and the contents
of the Operand Assembly register.

Example

Consider a Clear and Add command (octal
code 005). Using addressing mode 1, let the F
field contain 1200 end the I field contain 13:

"7£1M[[,/ /(,fu‘,,z e hind i pmide 50" gk con addross

o 14—«/»0/ =z
Mode I Field 7T
Fiel

313029 28 27 20 26 24 28 2321 201918171615 14131211100876548210

L U4 25C ¢4 32 7 f

’ A 1 V]
qu{ Yl,cr'l' 2 ;ﬂj\ba I)' uw r{({g/@ fu (L/L/{w

Let the contents of the Operand Assembly reg-
ister be 0, the contents of location 13 be 5.0 and
the contents of location 1200 be 652.0. The oper-
and B will be:

B=(OA) + (F) + (D) =0+ (1200) + (13) =0
+ 652.0 + 5.0 = 657.0

Therefore, the number 657.0 will be placed in
the accumulator.

Addressing Action
Mode
2 ((CA)+F+ M) =B

In addressing mode 2, the “operand select” phase,
using an action identical with addressing mode 0,
first prepares a number which may be in floating-
point. If the number first brought to the Operand
Assembly register is not an integer, it is shifted to
zero exponent and bits 15 through 41 are made zero.
The least significant 15 bits are not disturbed. This
number is then used as an address and the operand
B is the contents of that address.

Example

Consider a Clear and Add command (octal
code 005). Using addressing mode 2, let the F
field contain 1200 and the I field contain 13:

Mode I Field

F Field

20191817 16

Let the contents of the Operand Assembly reg-
ister be 0, the contents of location 13 be 5.0 and
the contents of location 1205 be 55. The oper-
and B will be:

B=((OA) + F + (I)) = (0 + 1200 + (13)) = (0
+ 1200 + 5.0) = (1205) = 55.

Therefore, the number 55 will be placed in the

accumulator.
Addressing Action
Mode
3 (CA)+(F)+ (D)=B

In addressing mode 3, the “operand select” phase
prepares a number in a manner identical with
mode 1 but then, this number, shifted to zero expo-
nent and truncated, is used as the address of a
memory location and the contents of that location
are used as the operand B.

4

Example

Consider a Clear and Add command (octal
code 005). Using addressing mode 3, let the
F field contain 1200 and the I field contain 13:

Mode 1 Field

51 80 20 28 27 26 25 24 282221 20191817161514181211109876543210

Let the contents of the Operand Assembly reg-
ister be 0, the contents of location 13 be 5.0, the
contents of location 1200 be 652.0 and the con-
tents of location 657 be 43.0. The operand B
will be:

B=((OA) + (F) + (D) = (0 + (1200) + (13))
= (0 + 652.0 + 5.0) = (657) = 43.0

Therefore, the number 43.0 will be placed in
the accumulator.

INDEX ADDRESSING

Reference has been made to Standard Addressing.
Commands with Standard Addressing are the
Numeric, Non-numeric and Test commands. There
are two groups of commands with non-standard
addressing. One such group is the set of Index
commands (page 28) and the set of Register com-
mands (page 28). Index Addressing is used with
this group of commands. The “operand select”
phase of the command is altered in form. The 6-bit
I field is used as an identification tag, specifying
which of the 63 Index register addresses is to be
operated on, or on which of the five registers will
the operation be performed. Therefore, the “oper-
and select” phase of these commands operates with-
out the "(I)" portion of the operand format.

OPERAND SELECT FOR THE INDEX
AND REGISTER COMMANDS

Mode Action
0 (OA)+F=B
1 (OA)+(F)=B
2 ((OA)+ F)=B
3 ((OA)+(F))=B

2 _ o -
Wb 26 gt duo Wi bR

PUTAWAY ADDRESSING

The other group of commands with non-standard
addressing, is the set of Putaway or store commands.
The action of these commands is to store, in a speci-
fied location, a number which is currently in the
accumulator. Putaway Addressing is used with these
commands In Putaway Addressing, though the
“operand select” phase still functions like the Stand-
ard Addressing operation, the final B is not the
operand but specifies the location for storage of the
contents of the accumulator. paed A

: o ot
ﬁu @(/M ﬁ/jﬂ A\f’i”;f L(J,{V ’UW“E(
Example o ¢ s (dats? Wf&bw""/; WA)EWE/{W"‘

Consider again the example from the Standard
Command explanation:

Mode I Field
Flags Op Code F Field

27 26 25 24 28 22 21 20 19 18 17 16 15 14 181211109

In memory locations 13 and 1200, respectively,
5.0 and 652.0 are stored, the Operand Assembly
register contains a zero and 300 is in the accu-
mulator. Use mode 1 and a Putaway commend
to store the contents of the accumulator in B.
Therefore:

B=(OA) + (F) + (0 = 0+ (1200) + (13)
=0+ 652.0 + 5.0 = 657.00

The Putaway command would store 300 in mem-
ory location 00657.

FORMAT DESCRIPTION

In the G-20 a memory word consists of 32 bits of
information plus a parity bit. All internal arithmetic
is performed in floating-point form with the result
having a signed mantissa and a signed exponent.
Internally, numerical data can be of three forms:
Extended Precision, Single Precision and Pickapoint.

A Single Precision quantity consists of a 7-octal digit
number in the form * NNNNNNN X 8*NN. An Ex-

The form in which information is held in memory is
explicitly explained on the following pages.

When a piece of data is putaway in memory, the
central processor automatically places the correct
indicators in the specified location along with the
data:

The precision of the number is indicated in bit
number 29.

A 0 in bit number 29 indicates Single Pre-
cision or Pickapoint.

A 1 in bit number 29 indicates Extended Pre-
cision.

tended Precision quantity consists of a 14-octal digit
number in the form * NNNNNNNNNNNNNN X §=NN,
A Pickapoint quantity consists of a 9-octal digit num-
ber in the form * NNNNNNNNN X 8*PE where *PE
indicates the contents of the Pickapoint Exponent

register.

The following table lists the range of values for the
different number formats.

The sign of the mantissa, and the sign of the
exponent (except Pickapoint), is placed in bit
numbers 27 and 28.

A Oindicates a positive sign.
A 1 indicates a negative sign.

When the Pickapoint switch is ON and a number
is putaway:

A 1 in bit number 27 indicates a Pickapoint
number.

A 0 in bit number 27 indicates a 'Pickapoint
integer.

The way in which numerical data is brought from
memory is explained on page 9, following the de-
scription of the number formats.

SINGLE PRECISION FLOATING POINT NUMBER

fesss oNE W s !

31 3029 28 27 26 35 24 232221 201918171618141312111098765648210

This number form has a 7-octal digit mantissa with
a 2-octal digit exponent, and is stored in memory
in the following format:

Bit positions 0 through 20 contain the mantissa
Bit positions 21 through 26 contain the exponent
Bit position 27 contains the sign of the exponent
Bit position 28 contains the sign of the mantissa

Bit position 29 contains a 0 to indicate a Single
Precision number

Bit positions 30 and 31 contain interrupt flag bits

31 30 29 28 27 26 25 24 23 2221 2019 1817161514 131211109876548210
least significant half

81 3029 28 27 26 2524282221201918171616141312111098765348210

most significant half
This number form has a 14-octal digit mantissa with
a 2-octal digit exponent. The Extended Precision
number is stored in adjacent locations automati-
cally and any “clear and add”’ type command or
"operand select” phase of a command operating
on such a number will bring all 14 octal digits from
memory. This number form is stored in memory in
the following format:

Bit positions 0 through 20 of the first word con-
tain the least significant 7 octal digits of the
mantissa

Bit positions 21 through 26 of the first word con-
tain the exponent

Bit position 27 of the first word contains the sign
of the exponent

Bit position 28 of the first word contains the sign
of the mantissa

Bit position 29 of the first word contains a 1 to
indicate an Extended Precision number

Bit positions 30 and 31 of the first word contain
interrupt flag bits

Bit positions 0 through 20 of the second word
contain the most significant 7 octal digits of the
mantissa

Bit positions 21 through 31 of the second word
are ignored

PICKAPOINT NUMBER

31 30 29 28 27 26 25 24 23 2221 201918171615 14 131211109876548210

This number form has a 9-octal digit mantissa with
a 2-octal digit exponent which is taken from the
Pickapoint Exponent register. It is stored in memory
in the following way:

Bit positions 0 through 26 contain the momtissa

Bit position 27 contains a 1 to indicate that the
value of the exponent is taken from the Picka-
point Exponent register

Bit position 28 contains the sign of the mantissa

Bit position 29 contains a 0 to indicate a Single
Precision number

Bit positions 30 and 31 contain interrupt flag bits

The signed exponent in the PE register will be
brought from memory to the accumulator or Oper-
and Assembly register with the number, if and
only if, the Pickapoint Switch is ON .

PICKAPOINT INTEGER

b e
rt& e

31 30 29 28 27 26 26 24 232221 201918171615 14 131211109876848210

The Pickapoint number can be stored in memory in
integer format where:

Bit positions 0 through 26 contain the integer

Bit position 27 contains a 0 to indicate that the
number is an integer (The contents of the Pick-
apoint Exponent register is disregarded when this
form is brought from memory.)

Bit position 28 contains the sign of the integer

Bit position 29 contains a 0 to indicate a Single
Precision number

Bit positions 30 and 31 contain interrupt flag bits

7

A positive zero exponent will be provided when the
integer is brought from memory, if and only if, the
Pickapoint Switch is ON (see Putaway, page 25).

LOGIC WORD

e

26 25 24 23 224

G

L s
98765643210

e
11

The Logic word is 32 bits long. Bit positions 30 and
31 are interrupt flag bits but are also part of the
Logic word.

COMMAND WORD

31302928 2726252423222120191817161514131211109876543210

The command word is stored in memory in the
following form:

Bit positions 0 through 14 contain the F field

Bit positions 14 through 20 contain the Index
field

Bit positions 21 through 27 contain the octal Oper-
ation Code

Bit positions 28 and 29 contain the Addressing
Mode code

Bit positions 30 and 31 contain interrupt flag bits

ROUNDOFF RULES

A number produced by a machine operation such
as multiplication, whose magnitude exceeds the
physical limitations of the arithmetic unit, is rounded
to avoid loss of precision due to truncation. (Division
is the exception.) Roundoff will occur only when a
number has been shifted right as a result of some
machine operation or when a number of more than
14 octal digits is generated in the arithmetic unit.

ROUNDOFF RULES

When the magnitude of the digits to be dis-
carded is greater than one half of the value of
the first digit position to be retained, the magni-
tude of the digit in that position is increased by
one.

When the magnitude of the digits to be dis-
carded is exactly equal to one half of the value
of the first digit position to be retained, and if
that last digit is even, the magnitude of the
digit is increased by one. In all other cases the
digits are simply discarded.

ADD-SUBTRACT

If the exponents of the two operands in an Add or
Subtract command are equal or if the exponents
can be made equal by a left shift of the number
with the larger exponent, no digit will be shifted
out of the register, and no roundoff will be necessary.

If the exponents are not equalized after left shifting
the number with the larger exponent, right shifts of
the number with the smaller exponent will be exe-
cuted until the exponents are equal or until the
number has been shifted out of the register, at
which time a true zero will replace the number.
The right-shifted number will be rounded according
to the Roundoff Rules.

If an Add or Subtract operation produces an over-
flow out of the most significant end of the arithmetic
unit, a right shift will occur and the number will
be rounded according to the Roundoff Rules.

MULTIPLICATION

The product generated by the multiplication
command is octally normalized. If the normalized
product exceeds the l4-octal digit capacity of the
arithmetic unit, the remaining most significant 14
digits of the number are rounded according to the
Roundoff Rules.

10

DIVISION

In the division process the quotient is truncated at
14 octal digits and the remainder is lost.

SINGLE PRECISION STORAGE
PREPARATION

In the Single Precision, floating-point, Putaway com-
mands, the contents of the accumulator are prepared
for storage in the least significant 21 bits of the
arithmetic unit. If the number in the accumulator
contains more than 7 octal digits of significance, it
is shifted right until only 7 octals remain. The lost
digits are examined and the remaining number is
rounded according to the Roundoff Rules. If the
roundoff produces an overflow into the eighth least
significant digit, one more shift to 7 octal digits
occurs (see page 295).

In the Pickapoint Putaway command, the contents
of the accumulator are prepared for storage in the
least significant 27 bits of the arithmetic unit. The
number in the accumulator is shifted (if necessary)
until its exponent is equal to the Pickapoint ex-
ponent and then 9 octal digits are putaway. If the
exponent of the contents of the accumulator cannot
be made equal to the Pickapoint exponent without
generating more than 9 octal digits, an interrupt
request is generated

INTERRUPT FACILITIES

Internal computation can be interrupted under pro-
gram control. An interrupt may be due to: exponent
overflow, an illegal operation code, an illegal ad-
dress, an elapse of a selected period of time, a signal
from an accessory unit, a flagged command, or a
flagged word of data. Interrupt requests, how to
enable them and how to request them, are discussed
in this section. Input-output interrupt requests are
discussed in the input-output section on page 44.

Two 15-bit registers, the Enable register and the
Interrupt Request register, are used in preparing
and executing interrupt requests (see Table 2 be-
low). The commands which are used to address
these registers are explained on page 29.

The first bit in the Enable register controls the entire
interrupt process. It will be referred to as “Control”.
It must be in the ON position (contain a 1) before
any interrupt request will interrupt computer
operation.

The interrupt enable switches are in bits 9 through
14 of the Enable register as follows:

The enable switch for the flag in bit position 31
of the command word is in bit 14.

The enable switch for the flag in bit position 30
of the command word is in bit 13.

The enable switch for the flag in bit position 31
of the logic word is in bit 12.

The enable switch for the flag in bit position 30
of the logic word is in bit 11.

The enable switch for the flag in bit position 31
of the data word is in bit 10.

The enable switch for the flag in bit position 30
of the data word is in bit 9.

The Pickapoint switch is in bit 8. A real time inter-
rupt enable switch is in bit 7. Bit positions 3 and 4
in the Enable register are for input-output (see page
45). Bit positions 1, 2 and 6 are not assigned.

The Interrupt Request register contains the indicators
which are turned on by the computer when an inter-
rupt condition is encountered as follows:

The interrupt request indicator for the flag in bit
position 31 of the command word is in bit 14.

The interrupt request indicator for the flag in bit
position 30 of the command word is in bit 13.

The interrupt request indicator for the flag in bit
position 31 of the logic word is in bit 12.

The interrupt request indicator for the flag in bit
position 30 of the logic word is in bit 11.

The interrupt request indicator for the flag in bit
position 31 of the data word is in bit 10.

The interrupt request indicator for the flag in bit
position 30 of the data word is in bit 9.

The real time interrupt request indicator is in bit 7.
The overflow interrupt request indicator is in bit 8.

The illegal address indicator is in bit 0. Since the
occurrence of the exponent overflow and the illegal
address interrupts is abortive in nature, no corre-
sponding enable switches exist in the Enable regis-
ter. Bit positions 1, 2, 3 and 4 in the Interrupt Request
register are for input-output (see page 45). Bit posi-
tions 5 and 6 are not assigned.

11

To cause an interrupt of computation by the interrupt
flags in word positions 30 and/or 31 the program
must:

’1. Turn Control ON,

2. Set the desired flag, or flags, in the Enable
register to a one (see page 29 for the com-
mands), then

3. Process an operand which has a “one’ in the
corresponding bit position 30 and/or 31. This
will set the flag bit or bits to one in the Inter-
rupt Request register.

The previous three operations will cause the central
processor to:

1. Mark the place of return to the program by
placing the contents of the Next Command
register in the first 15 bit positions of location
64 (a zero is loaded into bits 15 through 31).

2. Turn Conirol OFF and

3. Transfer to location 65 to the first command
of the Interrupt Service Routine, which will
inspect the Interrupt Request register to de-
termine the interruption, report as the pro-
grammer wishes and turn the Control ON
again.

If a one is encountered in a flag bit, in a command,
data or logic word, but the flag is not enabled (i.e.
the corresponding bit is not a one in the Enable
register), the one is ignored.

If a one in an enabled flag bit is encountered in a
command, data or logic word and Control is OFF,
the corresponding flag bit is set to a one in the Inter-
rupt Request register, but there is no transfer to
location 65. The Next Command in sequence is
executed. When Control is turned ON again, the
interrupt and transfer will occur.

If Control is ON and an exponent overflow occurs in
either the accumulator, the Operand Assembly reg-
ister, the arithmetic unit, or, if a number in the Picka-
point mode is too large for the Pickapoint Exponent,
the exponent overflow bit will be turned on in the
Interrupt Request register, the contents of the Next
Command register will be marked in location 64 and
the Interrupt Service Routine will be entered at loca-
tion 65.

If Control is OFF and an exponent overflow occurs
in either the accumulator, the Operand Assembly
register, the arithmetic unit, or, if a number in the

12

Pickapoint mode is too large for the Pickapoint Ex-
ponent, the exponent overflow bit is made a one in
the Interrupt Request register and the Next Com-
mand in sequence is executed.

Note

Exponent underflows (i.e. attempts to generate
a number with an exponent less than — 63) do
not result in interrupt requests. The number is
shifted right, increasing the exponent back within
range, if possible. If the number is shifted en-
tirely out of the register, it is replaced by a true
zero, which has positive zero mantissa and posi-
tive zero exponent.

If Control is ON and an illegal code is processed,
the illegal code bit will be made a one in the Inter-
rupt Request register, the contents of the Next Com-
mand register will be marked in location 64 as before
and the Interrupt Service Routine will be entered at
location 65.

If Control is OFF and an illegal address is encoun-
tered, the results of the command being processed
are not predictable. The illegal code indicator will
be made a one in the Interrupt Request register and
the Next Command in sequence is executed.

The real time interrupt (Bit 7 of the Interrupt Request
register) is turned on once per second, if Control
is ON and the clock bit (number 7) of the Enable
register is a one. This interrupt is turned on and off
by command.

An aqudio tone is turned on, if Control is ON and the
fifth bit in the Enable register is made a one. The
audio tone is turned off when the fifth bit of the
Enable register is made a zero.

Interrupt requests are processed after the Operand
Assembly register is cleared during a command
operation. The set of Address Preparation commands
(page 13) and the Selectively Read register to OA
command (page 29) do not clear the Operand As-
sembly register during their operation. Therefore, no
interrupt request can occur while using these com-
mands, but if an interrupt condition is encountered,
the appropriate bit in the Interrupt Request register
is set. This interrupt request will be processed as
soon as a command is used which clears the Oper-
and Assembly register. A memory overflow and an
exponent overflow are exceptions to the above rules
about the Operand Assembly register and the com-
mands noted.

ADDRESS PREPARATION COMMANDS

These commands are used to assemble addresses and operands
in the Operand Assembly (OA) register. The Standard Addressing
Modes (page 3) are used with these commands. All operands B
are brought from memory in a numeric form. The Operand Assem-
bly register is not cleared upon completion of any of these commands.

OCA 000 Clear and Add to OA B—(0A)

The contents of the Operand Assembly register are
replaced by the operand B. The Operand Assembly
register is not cleared at the completion of this com-

mand. The contents of the accumulator are undis-
turbed.

This command can be used as a no-operation com-
mand if the contents of the Operand Assembly
register are zero, the Index address I is zero and
addressing mode 0 is used with the F field equal
to zero.

0CS 020 Clear and Subtract from 0A — B—(0A)

The contents of the Operand Assembly register are
replaced by the operand B with its sign changed.
The Operand Assembly register is not cleared at the
completion of this command. The contents of the
accumulator are undisturbed.

OAD 040 Addin OA (Acc)+B— (0A)
The operand B is added to the contents of the accu-
mulator. The sum replaces the previous contents
of the Operand Assembly register. Unnormalized
floating-point addition is performed. (See page 14).
The Operand Assembly register is not cleared at
the completion of this command. The contents of the
accumulator are undisturbed.

OSU 060 Subtractin OA {Acc) — B— (0A)
The operand B is subtracted from the contents of the
accumulator. The difference replaces the previous
contents of the Operand Assembly register. Unnor-
malized floating point-subtraction is performed. The
Operand Assembly register is not cleared at the
completion of this command. The contents of the
accumulator are undisturbed.

0SS 100 Add and Reverse Signin OA — [(Acc) B]—(0A)
The operand B is added to the contents of the accu-
mulator. The sum with its sign reversed then replaces
the previous contents of the Operand Assembly
register. Unnormalized floating-point addition is per-
formed. The Operand Assembly register is not
cleared at the completion of this command. The
contents of the accumulator are undisturbed.

ORS 120 Reverse Subtract in OA B — (Acc)— (0A)

The contents of the Accumulator are subtracted from
the operand B. The difference replaces the previous
contents of the Operand Assembly register. Unnor-
malized floating-point subtraction is performed. The
Operand Assembly register is not cleared at the
completion of this command. The contents of the
accumulator are undisturbed.

OAV 140 Add and Take Absolute
Value in OA

|(Acc) + B|— (0A)

The operand B is added to the contents of the accu-
mulator. The absolute value is taken and the result
replaces the previous contents of the Operand As-
sembly register. Unnormalized floating-point addition
is performed. The Operand Assembly register is not
cleared at the completion of this command. The con-
tents of the accumulator are undisturbed.

0SV 160 Subtract and Take Absolute
Value in OA

|(Ace) — B|— (0A)

The operand B is subtracted from the contents of the
accumulator. The absolute value of the difference is
taken and replaces the previous contents of the
Operand Assembly register. Unnormalized floating-
point addition is performed. The Operand Assembly
register is not cleared at the completion of this com-
mand. The contents of the accumulator are undis-
turbed.

13

ARITHMETIC PROCESSES

ADDITION

Addition is performed in an arithmetic unit of 14-
octal digit capacity. The two operands involved in
the addition are not normalized before the addition
process begins. The exponenis of the numbers are
made equal and the resulting mantissas are sum-
med, with the result having the equalized exponent.
This method is called unnormalized floating-point
addition.

The exponents of the two numbers are compared.
If the exponents are equal, the mantissas are alge-
braically added together and the result is placed in
the accumulator. The exponent of the operand B
replaces the exponent of the accumulator. If the
result of the addition contains more than 14 sig-
nificant octal digits, the least significant digit is
inspected, discarded and the sum is rounded accord-
ing to the Roundoff Rules to 14 octal digits. These
14 digits are placed in the accumulator and the
exponent of the accumulator is increased by one.

If the exponents of the two numbers are unequal,
an attempt to equalize them is made by left shifting
the mantissa of the number with the larger exponent.
The exponent of the number is decreased by one for
each left shift of one-octal digit position. The left
shifts will cease when a non-zero octal digit is shifted
into the most significant octal digit position (14th)
of the arithmetic unit.

Example

To add 25 X 8, in the accumulator, to an oper-
oand B of 13 x 85, the operand B is left-shifted
three digits before the addition. 25 x 83+ 13 X 86
= 25 X 8% + 13000 x 8% = 13025 x 83, After the
addition, the accumulator will contain 13025 X 83,

If the exponents can be made equal by left shifting,
the algebraic addition of the mantissas occurs when
they are equal and the result is placed in the accu-
mulator. The smaller exponent is taken as that of the
result. If the result of the addition contains more than
14 significant octal digits, the least significant digit
is inspected, discarded and the sum is rounded ac-
cording to the Roundoff Rules to 14 octal digits.
These 14 digits are placed in the accumulator and
the smaller exponent, increased by one, is taken as
the exponent of the result.

14

Example

The addition command AD is used to add the
number in location 100 to the contents of the
accumulator. Location 100 contains 36 X 820
and the accumulator contains 36 X 8%, Using
mode 1 with a 0 Index field, an F field of 100,
and a 0 in the Operand Assembly register, oper-
and B will be 25 X 820, The contents of the ac-
cumulator are shifted to 3600000 X 82° and then
added to 25 X 820, The result, 360025 X 829, is
placed in the accumulator. The contents of loca-
tion 100 are undisturbed.

If the exponents cannot be equalized by left shifts,
an attempt to equalize them is made by right shift-
ing the mantissa of the number with the smaller
exponent. After the left shifts of the number with the
larger exponent have been accomplished, right shift-
ing of the other number begins. The smaller ex-
ponent is increased by one for each right shift of
one octal digit. The digits which are shifted out of
the right end of the arithmetic unit are remembered
and when the exponents are equalized these digits
are inspected and the number is rounded by the
Roundoff Rules.

The resulting mantissas are algebraically added
together, the sum is placed in the accumulator and
the number equal to the final exponents is taken as
the exponent of the accumulator. If the result con-
tains more than 14 significant octal digits, the least
significant digit is inspected, discarded and the sum
is rounded according to the Roundoff Rules to 14
octal digits and the exponent is increased by one.

If all of the non-zero digits are right-shifted out of
the register before the exponents are equalized, the
number is replaced by a true zero with a positive
zero exponent and positive sign and the addition is
performed without further shifting.

Example

The addition command AD (octal 045) is used
to add the number in location 100 to the con-
tents of the accumulator. Location 100 contains
257 X 8°2 and the accumulator contains 234,434,-
433,540 X 8%, Using mode 1 with a 0 Index field
and a 0 in the Operand Assembly register,
operand B is 257 X 802,

Mode I Field

L

17161514131211108876548210

b R i
26 25 24 28 2

”’3’1 \3(;\‘29 28 27 2”1“2‘19 18
The contents of the accumulator are shifted to
23,443,443,354,000 x 8%, The exponents are not
equal so the operand B is shifted right until they
are equal and B is rounded to 26. X 8%, The

addition is performed,

23,443,443,354,000. x 803
00,000,000,000,026. x 803

23,443,443,354,026. X 8%,

and 23,443,443,354,026. x 8%
is placed in the accumulator. The contents of
location 100 are undisturbed.

SUBTRACTION

Subtraction is performed exactly like addition except
that the sign of the subtrahend is reversed before
computation.

MULTIPLICATION

In multiplication, the multiplicand, the number in the
accumulator, is octally normalized before the arith-
metic operation begins. The multiplier, operand B,
is not normalized or modified in any way before the
multiplication begins. The multiplication begins with
the least significant octal digit of the multiplier and
ends when the last non-zero octal digit has been
processed. An octally normalized product is formed
and is placed in the accumulator. If the product con-
tains more than 14 octal digits, the excess digits from
the least significant end of the number are inspected,
discarded and the product is rounded to 14 digits.

DIVISION

Upon the completion of a division operation, the
accumulator contains an octally normalized, 14-digit,
truncated quotient with the appropriate exponent.

15

ARITHMETIC COMMANDS

Operation Octal Function Operation
Code Designation
CA 005 Clear and Add B— (Acc)

The contents of the accumulator are replaced by the
operand B.

CS 025 Clear and Subtract

—B—>(Acc
The contents of the accumulator are replaced by the
operand B with its sign reversed.

AD 045 Add (Acc) 4 B— (Acc)
The operand B is added to the contents of the ac-
cumulator. The sum replaces the previous contents
of the accumulator. Unnormalized floating-point ad-
dition is performed (see Addition, page 14).

Su 065 Subtract (Acc)—B— (Acc)
The operand B is subtracted from the contents of the
accumulator. The difference replaces the previous
contents of the accumulator. Unnormalized floating-
point subtraction is performed. (See Subtraction,
pagel5).

SS 105 Add and Change Sign — [(Acc)+-B]— (Acc)
The operand B is added to the contents of the ac-
cumulator. The sum with its sign reversed replaces
the previous contents of the accumulator. Unnormal-
ized floating-point addition is performed.

RS 125 Reverse Subtract B — (Acc)— (Acc)

The contents of the accumulator are subtracted from
the operand B. The difference replaces the previous
contents of the accumulator. Unnormalized floating-
point subtraction is performed.

AV 145 Add and Take

Absolute Value

|(Acc)+B|— (Acc)

The operand B is added to the contents of the ac-
cumulator. The absolute value is taken and this
result replaces the previous contents of the accu-
mulator. Unnormalized floating-point addition is
performed.

16

SV 165 Subtract and Take

Absolute Value

|(Acc) — B|— (Acc)

The operand B is subtracted from the contents of the
accumulator. The absolute value is taken and this
result replaces the previous contents of the accu-
mulator. Unnormalized floating-point subtraction is
performed.

ML 077 Multiply B+(Acc)— (Acc)

The contents of the accumulator are normalized. The
normalized contents of the accumulator are multi-
plied by operand B. The multiplication process be-
gins with the least significant octal digit of operand
B and ends when the least non-zero digit has
been processed. Floating-point multiplication is per-
formed. The octally normalized product replaces
the previous contents of the accumulator. Only the
most significant 14 octal digits are retained. If the
product has more than 14 significant digits, it is
rounded by the Roundoff Rules.

DI 053 Divide (Acc)/B— (Acc)

The contents of the accumulator and the operand B
are normalized. The normalized contents of the ac-
cumulator are divided by the normalized operand B.
The quotient is a 14-octal digit number and it re-
places the previous contents of the accumulator.

RD 057 Reverse Divide: B/(Acc)— (Acc)

The contents of the accumulator and the operand B
are normalized. The normalized operand B is di-
vided by the normalized contents of the accumu-
lator. The quotient is a 14-octal digit number and
replaces the previous contents of the accumulator.

Shifting

The contents of the accumulator can be shifted by
either multiplication or division. Multiplication is pre-
ferred because it is faster. The most common shifting
situation is that of shifting a 32-bit logic word left
or right by multiples of 8 bits. For example, to shift
the mantissa of a number in the accumulator 8 bits
to the left, multiply the number by 28=400,. The result
of the multiplication will be octally normalized and
will have the appropriate exponent. Any logic com-
mand (see page 18) operating on the product causes
automatic shift to zero exponent and thus returns
the mantissa to the desired form.

ADD-SUBTRACT TEST COMMANDS

TP 001 Transfer on
Positive

Goto (NC)if B > 0,
Resume at (NC)+1if B < 0

The operand B is tested. If B is greater than zero, the
Next Commoand in sequence is executed. If B is less
than or equal to zero, the next commoand in sequence
is skipped and the following command is executed.
The contents of the accumulator remain unchanged.

TN 021 Transfer on Go to (NC)if B < 0,
Negative Resume at (NC)-1ifB > 0

The operand B is tested. If B is less than zero, the
Next Command in sequence is executed. If B is
greater than or equal to zero, the Next Command in
sequence is skipped and the following command is
executed. The contents of the accumulator remain
unchanged.

T2 041 Transfer on
Sum Positive

Go to (NC) if (Acc)-+-B > 0,
Resume (NC)4-1if (Acc)+-B <0

The operand B is added to the contents of the ac-
cumulator and the sum is tested. If (Acc)+B is
greater than zero, the Next Command in sequence
is executed. If (Acc)+B is less than, or equal to
zero, the Next Command in sequence is skipped
and the following command is executed. The con-
tents of the accumulator remain unchanged.

TG 061 Transfer on (Acc) > B, If Yes, Go to (NC),
Contents of If No, Resume at (NC) -1
Accumulator
Greater than
Operand B

The operand B is tested against the contents of the
accumulator. If the contents of the accumulator are
greater than the operand B, the Next Command in
sequence is executed. If the contents of the accumu-
lator are less than or equal to the operand B, the
Next Command in sequence is skipped and the fol-
lowing command is executed. The contents of the
accumulator remain unchanged.

Go to (NC) if (Acc)+-B < 0
Resume at (NC)4 1 if (Acc)4+-B > 0

T1 101 Transferon
Sum Negative

The contents of the accumulator are added to the
operand B and the sum is tested. If (Acc)+B is less
than zero, the Next Command in sequence is exe-
cuted. If (Acc)+B is greater than or equal to zero,
the Next Command in sequence is skipped and the
following command is executed. The contents of the
accumulator remain unchanged.

TL 121 Transfer on
Contents of
Accumulator
That are Less
than Operand B

(Acc) < BIf Yes, Go to
(NC), If No, Resume at
(NC)4-1

The operand B is tested against the contents of the
accumulator. If the contents of the accumulator are

less than the operand B, the Next Command in se-

quence is executed. If the contents of the accumu-
lator are greater than or equal to the operand B,
the Next Command in sequence is skipped and the
following command is executed. The contents of
the accumulator remain unchanged.

T3 141 Transferon Go to(NC)if |(Acc)+-B| > 0,
Sum Not Equal Resume at (NC)-1 if |(Acc)+-B| =0
to Zero

The absolute value of the sum of the contents of the
accumulator and the operand B is tested. If |(Acc)+B|
is greater than zero, the Next Command in sequence
is executed. If |(Acc)+B| is equal to zero, the Next
Command in sequence is skipped and the following
command is executed. A less than zero case is not
possible. The contents of the accumulator remain
unchanged.

TU 161 Transferon
Contents of
Accumulator
not equal to
Operand B

(Acc)>4B if Yes, Go to
(NC), If No, Resume at
(NC)4-1

The operand B is tested against the contents of the
accumulator. If the contents of the accumulator are
not equal to the operand B, the Next Command in
sequence is executed. If the contents of the accu-
mulator are equal to the operand B, the Next Com-
mand in sequence is skipped and the following
command is executed. The contents of the accumu-
lator remain unchanged.

17

NON-NUMERIC COMMANDS

These commands can handle a word of information
as a code of ones and zeros instead of a numeric
quomtity. They can be used to handle alphonmumeric
characters or to set up and use bit patterns as
switches or logic words.

The result of all of these commands is a 32-bit con-
figuration of ones and zeros placed in the least
significant 32 bit positions of the accumulator. The
addressing modes, which are used in preparing the
operand B, perform a very importemt function in the
operation of these commands. In addressing modes
0 and 1, all operands are prepared exactly like the
operand for any numeric command, including num-
bers stored in Extended Precision form. In address-
ing modes 2 and 3, the 32 bits in the specified loca-
tion are placed into the least signmificant 32 bit
positions of the Operand Assembly register. (See
Logic format, page 38). Bit positions 32 through 41
in the Operand Assembly register are made zero,
the exponent is cleared to zero and the sign of the
Operand Assembly register is made positive. This
number in the Operand Assembly register is used
as the operand B.

In the following figures, the numeric subscripts de-
note which part of the number is operated on. In a
Unite” operation, indicated vV , two operands are
combined in this manner:

00000000000000000000000000101101 Value in
31 o Accumulator

Value of
Cperand B

00000000000000000000000000011001
31 0

00000000000000000000000000111101 Result in
31 o Accumulator

A "one" appears in the result in each position that
a “one” appears in either operand.

18

In an "Extract” operation, indicated A , two oper-
ands are combined in this manner:

00000000000000000000000000101101 Value in
31 o Accumulator

Value of
Operand B

00000000000000000000000000011001
31 0

00000000000000000000000000001001 Result in
31 o0 Accumulator

A "one" appears in the result in each position that
a “one” appears in both operands.

The complement of an operand B, indicated B, is
a value in which ones and zeroes have been re-
versed. For example:

Operand B

00000000000000000000000000001001
31 0

The Complement
of Operand B

11111111111111111111111111110110
31 0

BB 015 Logical Bring s1Bo—> 51(AcC)y , 0—> 44(AcC)s,

In addressing modes 0 and 1, the mantissa of the
operand B is shifted until the exponent of the oper-
and is zero. Any digits shifted out of the register
are lost and the operand is truncated. The least
significant 32 bits of the result replace the least
significant 32 bits of the accumulator. Bits 32 through
41 of the accumulator are made zero. The sign of
the operand B is taken as the sign of the accumulator.

In addressing modes 2 and 3, the 32 bits in the
specified location are placed in the least significant
32 bit positions of the accumulator. Bit positions 32
through 41 are made zero, the exponent is cleared
to zero and the sign of the accumulator is made
positive.

Example

Consider the octal number 202 X 873 to be stored,
Single Precision floating-point with both flags
zero, in location 142 in memory. The number
would have the following form in memory:

00 000 000011 000000000000010000010

Let the contents of the I field and the contents of
the Operand Assembly register be zero, and let
the contents of the F field be 142. The command
format would be:

Mode I Field

81 80295827 26 28 24 28 22 21 2019 18171615 14131211109816548210‘

F Field

The results of the BB command operating in
addressing mode number 1 would be:

(OA) + (F)+ () =0+ (142) + 0 =202 x 8*3 =B

The operand B, shifted to zero exponent or
202000 X 879, would be loaded into the accumu-
lator with positive sign. Bit positions 32 through
41 would be made zero. The bit pattern in the
least significant 32 positions of the accumulator
would be:

00000000000000010000010000000000
31 0

If the same operation code were used in mode
number 2 (Logic format) the same location would
be specified, but since the Logic access brings
all 32 bits from memory, supplies a positive
zero exponent and positive mantissa sign, the
same 32 bit positions of the accumulator would
contain:

0000000001100006000000001000C010
31 0

BC 035 Bring Complement ;Bo— si(Acc), , 0—> 4i(AcC)s,
In addressing modes 0 and 1, the mantissa of the
operand B is shifted, if necessary, until the exponent
of the operand is zero. Any digits shifted out of the
register are lost and the operand is truncated. The
complement of the least significant 32 bits of the
result replace the least significant 32 bits of the
accumulator. Bits 32 through 41 of the accumulator
are made zero. The sign of the uncomplemented
operand B is taken as the sign of the accumulator.

In addressing modes 2 and 3, the complement of
the 32 bits in the specified location is placed in the
least significant 32 bit positions of the accumulator.
Bit positions 32 through 41 are made zero, the ex-
ponent is cleared to zero and the sign of the ac-
cumulator is made positive.

AL 055 Add Logical s;(Acc)+ By—> s1(Acc), , 0— 4i(ACC)s,
In addressing modes 0 and 1, the operand B in
normal numeric form is added to the contents of
the accumulator using unnormalized floating-point
addition. This sum is shifted until the exponent is
zero. Any digits shifted out of the register are lost
and the sum is truncated. The least significant 32
bits of the sum replace the least significant 32 bits
of the accumulator. Bits 32 through 41 of the ac-
cumulator are made zero. The sign of the sum is
taken as the sign of the accumulator.

In addressing modes 2 and 3, the 32 bits in the
specified location are placed in the least significant
32 bit positions of the Operand Assembly register,
the exponent is cleared to zero (no shifting), the
sign is made positive and bits 32 through 41 of the
Operand Assembly register are made zero. This
number in the Operand Assembly register is then
added to the contents of the accumulator, the sum
is shifted to zero exponent as in modes 0 and 1 and
the least significant 32 bits of the sum replace the
least significant 32 bits of the accumulator. Bits 32
through 41 of the accumulator are made zero. The
sign of the sum is taken as the sign of the accu-
mulator.

SL 075 Subtract
Logical

s1(Acc) — By— 51 (Acc), 0— ..(Acc)s.

In addressing modes 0 and 1, the operand B in
normal numeric form is subtracted from the contents
of the accumulator using unnormalized floating-point
subtraction. This difference is shifted until the ex-
ponent is zero. Any digits shifted out of the register
are lost and the difference is truncated. The least
significant 32 bits of the difference replace the least
significant 32 bits of the accumulator. Bits 32 through
41 of the accumulator are made zero. The sign of
the difference is taken as the sign of the accumulator.

In addressing modes 2 and 3, the 32 bits in the
specified location are placed in the least significant
32 bit positions of the Operand Assembly register,
the exponent is cleared to zero, the sign is made
positive and bits 32 through 41 of the Operand
Assembly register are made zero. This number in
the Operand Assembly register is then subtracted

19

from the contents of the accumulator, the difference
is shifted to zero exponent as in modes 0 and 1 and
the least significant 32 bits of the sum replace the
least significant 32 bits of the accumulator. Bits 32
through 41 of the accumulator are made zero. The
sign of the difference is taken as the sign of the
accumulator.

XX 115 Extract s1{Ace) ABy,— 5.(Acc), , 0— 41 (AcC)s,

In addressing modes 0 and 1, the operand B is
assembled in normal numeric form in the Operand
Assembly register. Both the operand B and the con-
tents of the accumulator are shifted to zero exponent
and any digits shifted out of either are lost and the
operands truncated. Bits 32 through 41 of both are
set to zero. Then the least significant 32 bits of the
operand B are extracted from the least significant
32 bits of the accumulator and the result is placed
in the least significant 32 bits of the accumulator.
Bit positions 32 through 41 of the accumulator are
made zero. The previous sign and the zero exponent
of the accumulator are retained. (see Extract, page

18).

In addressing modes 2 and 3, the 32 bits in the
specified location are placed in the least significant
32 bit positions of the Operand Assembly register,
the exponent is cleared to zero, the sign is made
positive and bits 32 through 41 of the Operand
Assembly register are made zero. The contents of
the Operand Assembly register are then operand B.
The contents of the accumulator are shifted to zero
exponent, any digits shifted out of the accumulator
are lost (no roundoff) and bits 32 through 41 are
made zero. The least significant 32 bits of operand B
are extracted from the least significant 32 bits of
the accumulator and the result is placed in the least
significant 32 bits of the accumulator. Bit positions
32 through 41 of the accumulator are made zero. The
previous sign and the zero exponent of the accu-
mulator are retained.

XC 135 Extract 31(ACC)A§0—'> a1(Acc), , 0— ,1(Acc)s,

Complement

In addressing modes 0 and 1, the operand B is
assembled in normal numeric form in the Operand
Assembly register. Both the operand B and the con
tents of the accumulator are shifted to zero exponent
and any digits shifted out of either are lost and the
operands are truncated. Bits 32 through 41 of both are
set to zero. Then, the complement of the least signifi-
cant 32 bits of the operand B are extracted from the
least significant 32 bits of the accumulator and the
result is placed in the least significant 32 bits of the

20

accumulator. Bit positions 32 through 41 of the accu-
mulator are made zero. The previous sign and the
zero exponent of the accumulator are retained.

In addressing modes 2 and 3, the 32 bits in the
specified location are placed in the least significant
32 bit positions of the Operand Assembly register,
the exponent is cleared to zero, the sign is made
positive and bits 32 through 41 of the Operand
Assembly register are made zero. The contents of
the Operand Assembly register are then the operand
B. The contents of the accumulator are shifted to
zero exponent, any digits shifted out of the accu-
mulator are lost (no roundoff) and bits 32 through
41 are made zero. The complement of the least
significant 32 bits of the operand B are extracted
from the least significant 32 bits of the accumulator
and the result is placed in the least significant 32
bits of the accumulator. Bit positions 32 through 41
of the accumulator are made zero. The previous
sign and the zero exponent of the accumulator are
retained.

UU 155 Unite s1(AcC) VB, — 51(Acc), , 0— 41(ACC)sz

In addressing modes 0 and 1, the operand B is
assembled in normal numeric form in the Operand
Assembly register. Both the operand B and the con-
tents of the accumulator are shifted to zero exponent
and any digits shifted out of either are lost and the
operands are truncated. Bits 32 through 41 of both
are set to zero. Then, the least significant 32 bits of
the operand B are united with the least significant
32 bits of the accumulator and the result is placed
into the least significant 32 bits of the accumulator.
Bit positions 32 through 41 of the accumulator are
made zero. The previous sign and the zero exponent
of the accumulator are retained.

In addressing modes 2 and 3, the 32 bits in the
specified location are placed in the least significant
32 bit positions of the Operand Assembly register,
the exponent is cleared to zero, the sign is made
positive and bits 32 through 41 of the Operand
Assembly are made zero. The contents of the Oper-
and Assembly register are then used as the operand
B. The contents of the accumulator are shifted to
zero exponent, any digits shifted out of the accu-
mulator are lost (no roundoff) and bits 32 through
41 are made zero. The least significant 32 bits of the
operand B are united with the least significant 32
bits of the accumulator, and the result is placed in
the least significant 32 bits of the accumulator. Bit
positions 32 through 41 of the accumulator are made
zero. The previous sign and the zero exponent of
the accumulator are retained.

UC 175 Unite 21(AcC) VB, —> 1(AcC), , 0—> 41(ACC)s:
Complement

In addressing modes 0 and 1, the operand B is
assembled in normal numeric form in the Operand
Assembly register. Both the operand B and the
contents of the accumulator are shifted to zero ex-
ponent and any digits shifted out of either are lost
and the operands are truncated. Bits 32 through 41
of both are set to zero. Then the complement of the
least significant 32 bits of the operand B are united
with the least significant 32 bits of the accumulator
and the result is placed in the least significant 32
bits of the accumulator. Bit positions 32 through 41
of the accumulator are made zero. The previous
sign and the zero exponent of the accumulator are
retained.

In addressing modes 2 and 3, the 32 bits in the
specified location are placed in the least significant
32 bit positions of the Operand Assembly register,
the exponent is cleared to zero, the sign is made
positive and bits 32 through 41 of the Operand
Assembly register are made zero. The contents of
the Operand Assembly register are then used as the
operand B. The contents of the accumulator are
shifted to zero exponent, any digits shifted out of
the accumulator are lost (no roundoff) and bits 32
through 41 are made zero. The complement of the
least significant 32 bits of the operand B are united
with the least significant 32 bits of the accumulator
and the result is placed in the least significant 32
bits of the accumulator. Bit positions 32 through 41
of the accumulator are made zero. The previous
sign and the zero exponent of the accumulator are
retained.

21

NON-NUMERIC TEST COMMANDS

The preparation of all B operands and accumulator
contents prior to the test is identical with that of
the Non-numeric Commands (page 18). The previous
contents of the accumulator are left undisturbed
upon completion of any test.

JO 011 Jumpon Go to (NC)if ,,B,=0
Zeros Resume at (NC)-}-1 if ,,B,540

In addressing modes 0 and 1, the operand Bis placed
in the Operand Assembly register, the mantissa of
the operand is shifted until the exponent of the
operand is zero, any digits shifted out of the register
are lost (no roundoff) and bits 32 through 41 are
made zero. The contents of the Operand Assembly
register are then tested. If the contents are equal
to zero, the Next Command in sequence is executed.
If the contents are not equal to zero, the Next Com-
mand in sequence is skipped and the following com-
mand is executed. The operand B is not retained
upon completion of this command. The previous con-
tents of the accumulator remain unchanged.

In addressing modes 2 and 3, the 32 bits in the
specified location are placed in the least significant
32 bit positions of the Operand Assembly register.
Bit positions 32 through 41 are made zero, the ex-
ponent is cleared to zero and the sign of the Operand
Assembly register is made positive. The operation of
the test with this operand B is identical with that for
addressing modes 0 and 1.

JI 031 Jumpon Go to(NC)if 5B, =0,
Ones Resume at (NC)4- 1 if ;,B, =<0

In addressing modes 0 and 1, the operand B is placed
in the Operand Assembly register, the mantissa of
the operand is shifted until the exponent is zero,
any digits shifted out of the register are lost (no
roundoff) and bits 32 through 41 are made zero.
The complement of the contents of the Operand
Assembly register are then tested. If the complement
of the contents is equal to zero, the Next Command
in sequence is executed. If the complement of the
contents is not equal to zero, the Next Command in
sequence is skipped and the following command is
executed. The operand B is not retained upon com-
pletion of this command. The previous contents of
the accumulator remain unchanged.

22

In addressing modes 2 and 3, the 32 bits in the
specitied location are placed in the least significant
32 bit positions of the Operand Assembly register.
Bit positions 32 through 41 are made zero, the
exponent is cleared to zero and the sign of the
Operand Assembly register is made positive. The
operation of the test with this operand B is identical
with that for addressing modes 0 and 1.

Go to (NC) if 54(Acc) - B, 20
Resume at (NC) 4 1 if 5,(Acc)+B, =0

JS 051 Jumpon
Sum Non-
zero

In addressing modes 0 and 1, the operand B in
normal numeric form is added to the contents of
the accumulator using unnormalized floating-point
addition. The sum is shifted to zero exponent, any
digits shifted out of the register are lost (no roundoff)
and bit positions 32 through 41 are made zero. Then
the modified sum is tested. If the sum is not equal to
zero, the Next Command in sequence is executed.
If the sum is equal to zero, the Next Commoand in
sequence is skipped and the following command is
executed. The operand B is not retained upon com-
pletion of this command. The previous contents of
the accumulator remain unchanged.

In addressing modes 2 and 3, the 32 bits of the
specified location are placed in the least significant
32 bit positions of the Operand Assembly register.
Bit positions 32 through 41 are made zero, the
exponent is cleared to zero and the sign of the
Operand Assembly register is made positive. The
operation of the test with this operand B is identical
with that for addressing modes 0 and 1.

JG 071 Jumpon Go to (NC)if ,(Acc) — B,520,
Difference Resume at (NC) -1 if ,.(Acc) —B, =0
Non-zero

In addressing modes 0 and 1, the operand B in nor-
mal numeric form .is subtracted from the contents of
the accumulator using unnormalized floating-point
subtraction. The difference is shifted to zero expo-
nent, any digits shifted out of the register are lost (no
roundoff) and bit positions 32 through 41 are made
zero. Then the modified difference is tested. If the
difference is not equal to zero, the Next Command in

sequence is executed. If the difference is equal to
zero, the Next Command in sequence is skipped and
the following command is executed. The Operand B
is not retained upon completion of this command.
The previous contents of the accumulator remain
undisturbed.

In addressing modes 2 and 3, the 32 bits of the speci-
fied location are placed in the least significant 32 bit
positions of the Operand Assembly register. Bit posi-
tions 32 through 41 are made zero, the exponent is
cleared to zero and the sign of the Operand Assem-
bly register is made positive. The operation of the
test with this operand B is identical with that for
addressing modes 0 and 1.

JX 111 Jumpon
Extract

Go to (NC) if ,,(Acc)AB, =0
Resume at (NC)-1 if ,,(Acc) ABy540

In addressing modes 0 and 1, the operand B is as-
sembled in normal numeric form in the Operand
Assembly register. Both the operand B and the con-
tents of the accumulator are shifted to zero exponent,
any digits shifted out of either are lost (no roundoff)
and bits 32 through 41 of both are set to zero. The
least significant 32 bits of the operand B are ex-
tracted from the least significant 32 bits of the con-
tents of the accumulator (see Extract, page 18). The
result of the extraction is tested. If the result is zero,
the Next Command in sequence is executed. If the
result is not zero, the Next Command in sequence is
skipped and the following command is executed. The
operand B is not retained upon completion of this
command. The previous contents of the accumulator
remain undisturbed.

In addressing modes 2 and 3, the 32 bits of the speci-
fied location are placed in the least significant 32 bit
positions of the Operand Assembly register. Bit posi-
tions 32 through 41 are made zero, the exponent is
cleared to zero and the sign of the Operand Assem-
bly register is made positive. The operation of the
test with this operand B is identical with that for
addressing modes 0 and 1.

Go to (NC)if 4 (Acc)AB, =0 _
Resume at (NC)—+- 1 if 5,(Acc) AB, =0

X) 131 Jumpon
Extract
Complement

In addressing modes 0 and 1, the operand B is as-
sembled in normal numeric form in the Operand

Assembly register. Both the operand B and the con-
tents of the accumulator are shifted to zero exponent,
any digits shifted out of either are lost (no roundoff)
and bits 32 through 41 of both are set to zero. The
complement of the least significant 32 bits of the
operand B is extracted from the least significant 32
bits of the contents of the accumulator. The result of
the extraction is tested. If the result is zero, the Next
Command in sequence is executed. If the result is
not zero, the Next Command in sequence is skipped
and the following command is executed. The oper-
and B is not retained upon completion of this com-
mand. The previous contents of the accumulator
remain undisturbed.

In addressing modes 2 and 3, the 32 bits of the speci-
fied location are placed in the least significant 32 bit
positions of the Operand Assembly register. Bit
positions 32 through 41 are made zero, the exponent
is cleared to zero and the sign of the Operond As-
sembly register is made positive. The operation of
the test with this operand B is identical with that for
addressing modes 0 and 1.

JU 151 Jumpon Go to (NC)if 5,(Acc)vB, =0
Unite Resume at (NC)+ 1 if 5,(Acc) vB, 540

In addressing modes 0 and 1, the operand B is
assembled in normal numeric form in the Operand
Assembly register. Both the operand B and the con-
tents of the accumulator are shifted to zero exponent,
any digits shifted out of either are lost (no roundotf)
and bits 32 through 41 of both are set to zero. The
least significant 32 bits of the operand B are united
with the least significant 32 bits of the contents of
the accumulator. The result of the union is tested.
If the result is zero, the Next Command in sequence
is executed. If the result is not zero, the Next Com-
mand in sequence is skipped and the following
command is executed. The operand B is not retained
upon completion of this command. The previous
contents of the accumulator remain undisturbed.

In addressing modes 2 and 3, the 32 bits of the
specified location are placed in the least significant
bit positions of the Operand Assembly register. Bit
positions 32 through 41 are made zero, the exponent
is cleared to zero and the sign of the Operand As-
sembly register is made positive. The operation of
the test with this operand B is identical with that for
addressing modes 0 and 1.

23

Ul 171 Jumpon Go to (NC) if 31(Acc)V_B_0=0 .
Unite Com- Resume at (NC)-- 1 if ;,(Acc)v Bos40
plement

In addressing modes 0 and 1, the operand B is as-
sembled in normal numeric form in the Operand
Assembly register. Both the operand B and the con-
tents of the accumulator are shifted to zero exponent,
any digits shifted out of either are lost (no roundoff)
and bits 32 through 41 of both are set to zero. The
complement of the least significant 32 bits of the
operand B is united with the least significant 32 bits
of the contents of the accumulator. The result of the
union is tested. If the result is zero, the Next Com-
mand in sequence is executed. If the result is not
zero, the Next Command in sequence is skipped and
the following command is executed. The operand B
is not retained upon completion of this command.
The previous contents of the accumulator remain
undisturbed.

In addressing modes 2 and 3, the 32 bits of the speci-
fied location are placed in the least significant bit
positions of the Operand Assembly register. Bit posi-
tions 32 through 41 are made zero, the exponent is
cleared to zero and the sign of the Operand Assem-
bly register is made positive. The operation of the
test with this operand B is identical with that for
addressing modes 0 and 1.

24

PUTAWAY COMMANDS

Putaway Addressing, as explained on page §, is
used for Putaway commands. B is the location to be
filled by the number in the accumulator when using
Putaway commands. A number format is used in
preparing the Putaway address B. Therefore, the
operand select operation is the same as in the Stand-
ard command operand assembly but the final oper-
and B is always an address. The contents of the
accumulator are left undisturbed at the completion
of the command. A zero stored by any numeric Put-
away command will be a true zero. The storage
formats are shown on page 6 .

Interrupt flag bits 30 and 31 of location B are cleared
to zero during the execution of all of the Putaway
commands except the Putaway Logic command.
To set either or both of the interrupt flags to a “one”
or "zero":

The word to be placed in location B is brought

to the accumulator in Logic form (see page 18
and 38),

The desired bit configuration is put in bit posi-
tions 30 and 31 of the accumulator using, for
instance, a Unite command,

And the word in the accumulator is stored in
location B using the Putaway Logic command
which will not clear the flag bits.

PF 153 Putaway Extended
Precision

(Acc)— [(Location B),
solLocation B4-1),)

In the Extended Precision Putaway, the full 14-octal
digit floating-point number is stored, the right halt
in location B, bits 0 through 20, and the left half in
location B+1, bits 0 through 20. Flag bits 30 and 31
in location B are cleared. An Extended Precision tag
is set in bit 29 of location B. The sign and the
exponent from the accumulator are stored in loca-
tion B. Bits 21 through 31 of location B+1 are left
undisturbed. The previous contents of the accumu-
lator are left undisturbed.

PH 113 Putaway Single Precision (Acc)— (Location B)

In the Single Precision Putaway, the action depends
on the state of the Pickapoint switch. When the
Pickapoint switch (page 11) is OFF, the PH command
stores the accumulator as a Single Precision floating-
point number. The contents of the accumulator are
shifted to the right (if necessary) and rounded (see
Roundoff Rules, page 10) to 7 octal digits, then stored
with sign, adjusted exponent and a Single Precision
flag (bit 29) in location B. Flag bits 30 and 31 are
made zero. If the contents of the accumulator are too
large to be held as a Single Precision number,
nothing is putaway and an interrupt request is gen-
erated. The contents of the accumulator are left
undisturbed.

When the Pickapoint Switch is ON, the number in
the accumulator is shifted (if necessary) until its
exponent is equal to the contents of the PE register,
then rounded to 9 octal digits. These 9 digits are
stored in location B with the sign of the accumulator
(except + if the magnitude is zero) and with a Single
Precision flag in bit 29. Flag bits 30 and 31 are made
zero. Pickapoint does not carry an exponent or ex-
ponent sign to storage but does store a negative
exponent sign to differentiate between Pickapoint
numbers (negative exponent sign, 1 bit in the ex-
ponent sign bit, number 27), and Pickapoint in-
tegers (positive exponent sign, 0 bit in the exponent
sign bit, number 27). If the exponent of the contents
of the accumulator cannot be made equal to the
Pickapoint exponent without generating more than 9
octal digits, nothing is putaway and an interrupt
request is generated. The contents of the accumu-
lator are left undisturbed.

PL 173 Putaway Logic a1(AcC)o—> s:(Location B),

The contents of the accumulator are shifted to zero
exponent and truncated (if necessary). Then the least
significant 32 bits of the accumulator are stored in
location B. The remaining bits of the accumulator
are ignored. This command is the only Putaway
command which does not set flag bits 30 and 31
to zero. The previous contents of the accumulator
are left undisturbed upon completion of this com-
mand.

25

Pl 133 Putaway Integer (Acc)— (Location B)

In the Integer Putaway, the action depends on the
state of the Pickapoint Switch. When the Pickapoint
Switch is OFF, the contents of the accumulator are
shifted to zero exponent and truncated (if necessary).
The least significant 7 octal digits are stored in
location B with a Single Precision flag in bit position
29, the same sign as the accumulator (4 if magni-
tude zero) and a positive zero exponent. Flag bits 30
and 31 are made zero. If there are any non-zero
digits in positions of significance greater than 7 after
the exponent has been adjusted to zero, they are
ignored.

When the Pickapoint Switch is ON, the contents of
the accumulator are shifted (if necessary) to zero
exponent and truncated. The least significant 9 octal
digits are stored in location B with a Single Precision
flag in bit position 29, the same sign as the accumu-
lator (+ if magnitude is zero) and a positive zero
exponent. Flag bits 30 and 31 are made zero. If there
are any non-zero digits in positions of significance
greater than 9 after the exponent has been adjusted
to zero, they are ignored.

PZ 073 Putaway Zeros 0— ,.(B),

The PZ command clears all 32 bits of location B to
Zero.

26

CONTROL COMMANDS

These commands are used to transfer control from
one sequence of commands to another.

The destination of the transfer is specified by the
operand B, assembled in the normal way. In all four
modes the “operand select” phase of the command
assembles the operand B as usual. After assembly,
B is shifted to zero exponent and any digits shifted
out of the Operand Assembly register are lost. The
least significant five octal digits are then used as
the transfer location B and all other bits in the
Operand Assembly register are ignored. If the loca-
tion specified is negative, or if it exceeds the mem-
ory capacity, an interrupt request will occur. (See
Interrupts, page 11).

Example

Consider an unconditional transfer which has
an I field equal to zero, 01400 in the F field and
is operating in addressing mode 1. Let 1332 x
81 be stored in location 01400. The contents of
the Operand Assembly register are zero.

The destination of transfer with these conditions
is prepared by the operand select in two steps.
B is found as below:

B = (OA) + (F) + () = 0 + (1400) + (0) = 0 +
1332 x 81+ 0,

Then 1332 x 81 is shifted to zero exponent and
truncated to equal 133. x 8°. The destination of
transfer location B is then 133.

GO 017 Go to Location B 14Bo—(NC)

The next command executed is the command in lo-
cation B. The contents of the accumulator are not
disturbed.

GE 037 Go and Enable 1:Bo—>(NC)

The next command executed is the command in lo-
cation B. Contro! is turned ON (see Control, page
11). The contents of the accumulator are not dis-
turbed. '

SK 137 Go to Location (NC)+B ,4(NC)+ B,—(NC)

The operand B is prepared in the Operand Assem-
bly register as in a Standard command. Before shift-
ing to zero exponent, operand B is added to the
contents of the Next Command address register us-
ing floating-point addition and placed back in the
Next Command address register. Operand B may be
negative, but if the sum is negative, an interrupt
request is generated in the illegal address indicator.
Also, if the sum exceeds the memory capacity, an
interrupt occurs. (i.e. bit number zero of the Interrupt
Request register is set to a “one”). If the result of the
addition is rounded due to an exponent shift, an
interrupt request is generated in the illegal address
indicator. :

The Next Command executed is the command in the
address specified by the sum placed in the Next
Command address register. If the SK command is in
location C, the next command executed is the com-
mand in location C+14B. The contents of the accu-
mulator are undisturbed.

MT 177 Mark Place in (NC)— 1.(B)o
Location B 0— 5:(B)s
Go to Location B--1 14(B+ 1)o— (NC)

The Next Command address is placed in the least
significant 15 bit positions of location B. Bit positions
15 through 31 of B are made zero. The Next Com-
mand executed is the command in location B+1.

27

INDEX COMMANDS

The Index commands set, increment, decrement, and
test the Index registers. These commands connot be
indexed because the field of the command structure
is used to specify the number of the Index register.
Locations 0 through 63 can be addressed by any of
the Index commands. During the “operand select”
phase of the Index commands, Index Addressing is
used instead of Standard Addressing (page 4). A
numeric format is used in the preparation of operand
B in all four addressing modes. This format is the
same as the one described for the Single Precision
Integer Putaway command (page 25).

LP 012 Load Index Positive B—{l)

The operand B replaces the contents of the Index
address I. The contents of the accumulator are not
disturbed.

LN 032 Load index Negative —B—(l)

The operand B with its sign reversed replaces the
contents of the Index address I. The contents of the
accumulator are not disturbed.

IN 002 Increment Index B+ ()= (1)

The Operand B is added to the contents of location
I using unnormalized floating-point addition. The
sum is placed back into location I as an integer.
The contents of location I are brought to the arith-
metic unit in numeric form. The contents of the ac-
cumulator are not disturbed.

DE 022 Decrement Index h—B—(l)

The operand B is subtracted from the contents of
" location I using unnormalized floating-point sub-
traction. The difference is placed back into location
I, as an integer. The contents of location I are
brought to the arithmetic unit in numeric form. The
contents of the accumulator are not disturbed.

28

PT 016 Load Positive and Test B—(), If()=0

then NC4-1—(NC)

The operand B replaces the contents of location I.
If the new contents of location I are zero, the Next
Command in sequence is skipped and the following
command is executed. If the new contents of loca-
tion I are not zero, the Next Command in sequence
is executed. The contents of the accumulator are
not disturbed.

NT 036 Load Negative and Test —B—(l), lf ()=0

then NC+- 1—(NC)

The operand B with its sign reversed replaces the
contents of location I. If the new contents of location
I are zero, the Next Command in sequence is skip-
ped and the following command is executed. If the
new contents of location I are not zero, the Next
Command in sequence is executed. The contents of
the accumulator are not disturbed.

IT 006 Increment Index (4+B—(1)

and Test

The operand B is added to the contents of location I
using unnormalized floating-point addition. The sum
is placed back into location I as an integer. If the
new contents of location I are zero, the Next Com-
mand in sequence is skipped and the following
command is executed. If the new contents of location
I are not zero, the Next Commoand in sequence is
executed. The contents of the accumulator are not
disturbed.

DT 026 Decrement Index
and Test

() —B—(l)

The operand B is subtracted from the contents of
location I using unnormalized floating-point sub-
traction. The difference is placed back into location
I as an integer. If the new contents of location I are
zero, the Next Command in sequence is skipped and
the following command executed. If the new con-
tents of location I are not zero, the Next Command
in sequence is executed. The contents of the accu-
mulator are not disturbed.

REGISTER COMMANDS

These commands put information into the various
control registers of the G-20. These commands can-
not be indexed because the I field of the command
is used to specify which register is being addressed.
During the “operand select” phase of the register
commands, Index Addressing is used instead of
Standard Addressing (page 4).

The operand B is always brought to the Operand
Assembly register in number format, and floating-
point arithmetic is used in assembling it. The oper-
and B is automatically shifted to a zero exponent
and is truncated before the action of the command
begins. In the commands with two operands, the
number brought from the register is automatically
supplied with a zero exponent and positive sign. The
names, the alphabetic codes and the numeric desig-
nations of these registers are given below:

NUMERIC
REGISTER ALPHA DESIGNATION

NAME CODE IN OCTAL
Next Command NC 00
Enable CE 01
Line Response LR 02
Interrupt Request IR 03
Pickapoint Exponent PE 04

The Next Command register contains the address
of the next command to be executed. It is automatic-
ally incremented by one as soon as the operand for
the current command is brought to the Operand
Assembly register and before the operation speci-
fied by that command has begun. When the oper-
ation specified is a transfer, the transfer address is
placed in the Next Command register and the pro-
gram is continued from the transfer address.

The Enable register is a 15-bit register which con-
tains the enable indicators for the interrupt flags
(bits 30 and 31 in the three formats, command,
Logic and data), the Pickapoint switch bit, a one-
second real time interrupt bit, a sound tone enable
bit and various other interrupt and input-output
switches. The Control switch which controls the in-

terrupt hardware is in the 0 bit of the Enable register
(see page 11 for further explanations).

The Line Response register is concerned with Input-
Output and its operation is discussed on page 52.

The Interrupt Request (IR) register is a 15-bit register

.which contains the interrupt request bits correspond-

ing to the enable bits of the CE register (see Table
2, page 11). The exceptions are the exponent over-
flow interrupt request indicator, the illegal address
request and four receive interrupt requests.

The Pickapoint Exponent (PE) register holds the
Pickapoint exponent in sign and magnitude form.
Bit number six is a 1 if the exponent is negative, a
0 if it is positive. The mantissa of the exponent is
contained in the first six bit positions. Do not load a
negative zero into the Pickapoint Exponent register
since the result of this action is unpredictable.

LR 056 Load Register | 14Bo—> (Reg. 1)

The contents of the specified register are replaced
by the first fifteen bits of the operand B. The Next
Command register cannot be addressed with this
command.

XR 076 Selectively Reset
Register |

(Reg.) A,,Bo—>(Reg. I)

The indicators in the Enable, Interrupt Request and
Line Response registers are selectively turned OFF.
Enter zeros into the operand B at those positions
which are to be turned OFF.

X0 052 Selectively Read
Register | to OA

(Reg. 1) A1:Bo—>14(0A),,
0— ,,(0A);5

Specific bit positions in a specified register I can be
read by this command. The answer is placed in the
least significant 15 bit positions of the Operand As-
sembly register.

29

Enter “ones"” into the operand B, assembled as de-
scribed on page 29, in positions corresponding to the
bit positions of register I to be read. Enter “zeros”
into those positions of B not to be read. Those bit
positions and bit positions 15 through 41 of the Oper-
and Assembly register are cleared to zero by the
commoand. Only the Pickapoint Exponent register can-
not be read. No interrupts can occur other thom expo-
nent overflow or illegal address when using this
commond.

XA 072 Selectively Read Reg- (Reg.) A 1.Bo—> 14(AcC), ,
ister | to Accumulator 0— ..(Acc)s

Specific bit positions in a specified register I can be
read by this commond. The answer is placed in the
least significant 15 bit positions of the accumulator.
Enter “ones” into the operond B, assembled as de-
scribed on page 29, in positions corresponding to the
bit positions of register I to be read. Enter "'zeros” into
those positions of B not to be read. Those bit positions
and bit positions 15 through 41 of the accumulator are
cleared to zero by the command. Only the Pickapoint
Exponent register comnot be read. The Operand As-
sembly register is cleared to zero.

30

REPEAT COMMANDS

Two command words are required to initiate and to
set a limit on the repeat operation. The first word
consists of an operation code, MO, and the initial
address of the block. When using the multiple-access
commands, the B in all four addressing modes is the
location at which the operation will begin. In prepar-
ing B, a number format is used, and floating-point
arithmetic is performed. The final operand B will be
shifted to a zero exponent and bit positions 15 through
41 will be made zero before the operations are per-
formed. The remaining 15 bits, 0 through 14, are used
as the location B. This is identical with the Putaway
command addressing modes. For example, in mode
3, the addressing assembly would proceed like this:

If 40 is stored in location 00030 = F
35 is stored in location 00040,
the contents of the Operand Assembly

register is 0
and the contents of the Index field is 0
then
B=((AO)+{E)+ D)=
(0 + (00030) +0) = (+00040) = 35

The Repeat command will begin operation at location
00035. The contents of cny location B in the Repeat
commands will be referred to as operand B.

The second word designates the operation to be re-
peated and gives the upper limit N on the block length
desired. N is held in integer form in the F number field
of the second word. The numbers operated on by the
Repeat commands can be Single or Extended preci-
sion. Therefore, the block length N is a count of the
numbers, Single and Extended, which are brought
from memory, not a count of addresses in the block.

REPEAT COMMAND FORMAT
FIRST WORD

81!029282126252428222120101817161514131211109878543210

SECOND WORD

31 30 20 28 27 26 25 24 28 22 21 20191817 161514 1312111C 0878643210

MO 013 Initiate Repeat Operations, Begin at Location B

The operation to be repeated is completely specified
in the most significant five bits (bits 23 through 27) in
the operation code field of the second command word.
Therefore, bit positions 21 and 22 are ignored in the
operation of any Repeat command. Any one of the
Non-numeric, Non-numeric Tests, Add-Subtract, and
Add-Subtract Test commands can be repeated. Any
other operation code which has a bit pattern identical
with any of the above in the last five bit positions but
different in the first two bit positions (21, 22) will be
taken as one of the repeatable commands and the
computer will not be aware of this error. Also, bits 28
through 31 ond the I field (bits 15 through 20) of the
second word will be ignored by the repeat operation.
Before the execution of the M0 command, the follow-
ing indicators in the Interrupt Request register should
be in the OFF state:

Operand flag indicators (bit positions 12
through 9)

Overflow indicator IR8 (bit position 8)

Illegal address indicator IR0 (bit position 0)

(see Interrupt Request, page 11)

The MO command and the next command are then
read. If, as the operation proceeds, any of the above
indicators are turned on, the operation is terminated
and an interrogation of “Control” occurs.

If Control is OFF (contains a zero bit), computation
continues at the location contained in the Next Com-
mand (NC) register.

If Control is ON (contains a one bit), the contents of
the Next Command register are marked in location 64
and the program continues at location 65 at the start
of the Interrupt Service Routine.

If the operation is terminated by the set limit or by
the function of a test as in a Repeat Test command,
the interrupt request indicators are interrogated as
outlined on page 12.

31

The order of priority of repeat commcand terminations
is as follows:

Repeat Add-Subtract and Non-numeric
Commands

1. Any program fault interrupt
2. An enabled flag or the completion of
block length

Repeat Add-Subtract Test and Non-numeric Test
Commands

1. Any program fault interrupt

A result of the test

3. An enabled flag or the completion of the
block length

N

When using the Repeat Non-numeric commands and
Repeat Non-numeric Test commands, the word in lo-
cation B will be used in the Logic format with all four
addressing modes. When using the Repeat Add-Sub-
tract commands and Repeat Add-Subtract Test com-
mands, the word in location B will be used in a
number format with all four addressing modes.

The Repeat commands function the same as those not
repeated except where explicitly stated.

In this section the Repeat commands will be referred
to by prefixing the command with an R. This will
replace both the MO and the second command. For
example, a repeated clear and add command CA
will be RCA.

Example

Consider:

Repeat Add command, RAD

Use ablock length of N = 3

Use addressing mode 1

Use data flags in all words in the block of 0
Use command flags equal to zero

Use the following:

Contents of the accumulator equal to
25x 8°
Contents of the Operand Assembly
register equal to 0
Contents of the Index field equal to 0
Starting address equal to 1100
Contents of location 1100 equat to 3100.0
Contents of location 3100 equal to 5.0
Contents of location 3101 equal to 0
Contents of location 3102 equal to 1000
The octal code for the MO command is 013
The octal code for the AD command is 045

32

Therefore, the commands will have the following
form:

Mode I Field

F Field

8180292827 262524282221201918171615614131211108876548210

These commands will:
assemble the starting location B which will be

B=(AO) + (F) + (I) = 0 + (1100) + 0 = 3100;

add the contents of the accumulator to the sum
of the contents of the locations in the block;

place the final results in the accumulator, namely,

(Acc) = 25 x 83 + 5.0 + 0 + 1000.0 = 26005.0

Note

The Control swiich controls the interrupt trams-
fers and is the zero bit of the Enable register (see
Interrupt, page 11).

REPEAT ADD-SUBTRACT COMMANDS

RCA Search for the First Flagged
Operand

B;—> (Acc)

The first operand B with an enabled flag is placed in
the accumulator. If the Control switch is ON, the Next
Command address is marked in location 64. The
corresponding data flag bit in the Interrupt Request
register is made a one, Control is turned OFF and the
commoand in location 65 is executed.

If no enabled flag is encountered, the last operand B
in the block is placed in the accumulator and the Next
Command in sequence is executed.

If any other interrupt request is encountered, the
search is terminated as shown in Table 3, page 34.

RCS Search for the First Flagged
Operand and Bring with the
Sign Reversed

— B;—(Acc)

The first operand B with an enabled flag is placed in
the accumulator with its sign reversed. If the Control
switch is ON, the Next Command address is marked
in location 64. The corresponding data flag bit in the
Interrupt Request register is made a one, Control
is turned OFF and the command in location 65 is
executed.

If no enabled flag is encountered, the last operand B
in the block is placed in the accumulator with its sign
reversed and the Next Command in sequence is
executed.

If any other interrupt request is encountered, the
search is terminated as shown in Table 3, page 34.

RAD Add the Contents of the
Accumulator to the = B

{Acc)+ SB— (Acc)

All of the operands B in the block are added to the
contents of the accumulator and the sum is placed in
the accumulator. The Next Command in sequence is
executed.

If an enabled flag or any other interrupt request
is encountered, see Table 3, page 34, for the opera-
tion of the command.

RSU Subtract the 3B from the
Contents of the Accumulator

{Acc) — 3B— (Acc)

All of the operands B in the block are subtracted
from the contents of the accumulator and the dif-
ference is placed in the accumulator. The Next Com-
mand in sequence is executed.

If an enabled flag or any other interrupt request is
encountered, see Table 3, page 34, for the operation
of the command.

RRS (—1)'[(Acc) — B, 4B, — .. .]—>(Acc)
or (— 1)t [(Acc)4-=(— 1) (By)]— (Acc)

The contents of the accumulator are subtracted from
the first operand B. This difference is placed in the
accumulator. The new contents of the accumulator
are subtracted from the second operand B. This dif-
ference is placed in the accumulator. This procedure
continues through the last operand B in the block.
The Next Command in sequence is executed.

If an enobled flag or any other interrupt request is
encountered, see Table 3, page 34, for the operation
of the command.

RSS (— 1)'[(Acc)+B, — B,...]—(Acc)
or (— 1)![(Acc) — =(— 1) B;]— (Acc)

The contents of the accumulator are added to the
first operand B. This sum with its sign reversed is
placed in the accumulator. The new contents of the
accumulator are added to the second operand B.
This sum with its sign reversed is placed in the
accumulator. This procedure continues through the
last operand B in the block. The Next Command in
sequence is executed.

If an enabled flag or any other interrupt request is
encountered, see Table 3, page 34, for the operation
of the command.

RAV |...||(Acc)+-By|+-By]. . . + By|—>(Acc)

The first operand B is added to the contents of the
accumulator. The absolute value of this sum is
placed in the accumulator. The new contents of the
accumulator are added to the second operand B.
The absolute value of this sum is placed in the
accumulator. This procedure continues through the
last operand B in the block. The Next Command in
sequence is executed.

If an enabled flag or any other interrupt request is
encountered, see Table 3, page 34, for the operation
of the command.

RSV I, |[{Acc) — B, — B, | —B|... — Bo|—>(Acc)

The first operand B is subtracted from the contents
of the accumulator. The absolute value of this dif-
ference is placed in the accumulator. The second

33

operand B is subtracted from the new contents of
the accumulator. This procedure continues through
the last operand B in the block. The Next Commond
in sequence is executed.

If an enabled flag or any other interrupt request is
encountered, see Table 3, page 34, for the operation
of the command.

EXPLANATION OF TABLE 3

If a flagged operand B is encountered, the flag is
ignored if the flag is not enabled in the Enable
register.

If a flagged operand B (enabled) is encountered
when Control is OFF, a one is placed in the data
flag bit in the Interrupt Request register which cor-
responds to the enabling bit in the Enable register.
The result of the command function operating through
location TL is placed in the accumulator and the
Next Command in sequence is executed. The en-
abling flag must be a data flag.

If a flagged operand B (enabled) is encountered
when Control is ON, a one is placed in the data
flag bit in the Interrupt Request register which cor-
responds to the enabling bit in the Enable register.
The result of the command function operating through
location TL is placed in the accumulator, the Next
Command address is marked in location 64, Control
is turned OFF and the command in location 65 is
executed.

If an illegal address is encountered when Control is
OFF, a one is placed in bit number zero of the
Interrupt Request register, the result of the command
function operating through location TL—1 is placed
in the accumulator and the Next Command in se-
quence is executed.

If an illegal address is encountered when Control
is ON, a one is placed in bit number zero of the
Interrupt Request register, the result of the command
function operating through location TL—1 is placed
in the accumulator, the Next Command address is
marked in location 64, Control is turned OFF and
the command in location 65 is executed.

H an exponent overflow is encountered when Con-
trol is OFF, a one is placed in bit number eight of
the Interrupt Request register, the result of the com-
mand function operating on TL is placed in the
accumulator and the Next Command in sequence
is executed.

If an exponent overflow is encountered when Con-
trol is ON, a one is placed in bit number eight of
the Interrupt Request register, the result of the com-
mand function operating on TL is placed in the
accumulator, the Next Command address is marked
in location 64, Control is turned OFF and the com-
mand in location 65 is executed.

REPEAT ADD-SUBTRACT TEST COMMANDS

RTP Find the Address of
the First Non-Positive
Operand B

IfB =0, TL 4 1 — (Acc)

A search is made for the first non-positive operand
B. If a non-positive operand B is encountered, an
address one greater than the address of B is placed
in the accumulator. The Next Command in sequence
is skipped and the following command is executed.

If o non-positive operand B is not encountered, an
address one greater than the address of the last
operand in the block is placed in the accumulator.
The Next Command in sequence is executed.

If any flagged operand or other interrupt request is
encountered, the search is terminated as shown in
Table 4, page 36.

RTN Find the address of
the First Non-negative
Operand B

IfB=0,TL 4+ 1 — (Acc)

A search is made for the first non-negative operand
B.

If a non-negative operand B is encountered, an
address one greater than the address of B is placed
in the accumulator. The Next Command in sequence
is skipped and the following command is executed.

If a non-negative operand B is not encountered, an
address one greater than the address of the last
operand in the block is placed in the accumulator.
The Next Command in sequence is executed.

If any flagged operand or other interrupt request is
encountered, the search is terminated as shown in
Table 4, page 36.

RT2 Find the address of
the first Operand B
such that (Acc) +B=<0

If (Ace) + B =0, TL + 1 — (Acc)

A search is made for the first operand B, which,
when added to the contents of the accumulator, will
produce a sum that is less than or equal to zero.

If such an operand B is encountered, an address
one greater than the address of B is placed in the
accumulator. The Next Command in sequence is
skipped and the following command is executed.

If no such operand B is encountered, an address one
greater than the address of the last operand in the

block is placed in the accumulator. The Next Com-
mand in sequence is executed.

If any flagged operand or other interrupt request is
encountered, the search is terminated as shown in
Table 4, page 36.

RTG Find the address of
the first operand B
which is greater than
or equal to the contents
of the accumulator

If B > (Acc), TL 41— (Acc)

A search is made for the first operand B which is
greater than or equal to the contents of the accu-
mulator.

If such an operand B is encountered, an address one
greater than the address of B is placed in the accu-
mulator. The Next Command in sequence is skipped
and the following command is executed.

If no such operand B is encountered, an address one
greater than the address of the last operand in the
block is placed in the accumulator. The Next Com-
mand in sequence is executed.

If any flagged operand or other interrupt request
is encountered, the search is terminated as shown
in Table 4, page 36.

RTL Find the address of
the first operand B
which is less than
or equal to the contents
of the accumulator

If B < (Acc), TL 4+ 1 — (Acc)

A search is made for the first operand B which is
less than or equal to the contents of the accumulator.

If such an operand B is encountered, an address one
greater than the address of B is placed in the accu-
mulator. The Next Command in sequence is skipped
and the following command is executed.

If no such operand B is encountered, an address one
greater than the address of the last operand in the
block is placed in the accumulator. The Next Com-
mand in sequence is executed.

If any flagged operand or other interrupt request
is encountered, the search is terminated as shown
in Table 4, page 36.

35

RT1 Find the address of If — {(Acc) - B] = G,
the first operand B TL4 1—(Acc)
such that — [B 4 (Acc)] <0

A search is made for the first operand B which,
when added to the contents of the accumulator and
the sign of the sum is reversed, will produce a result
that is less than or equal to zero.

If such an operand B is encountered, an address
one greater than the address of B is placed in the
accumulator. The Next Command in sequence is
skipped and the following command is executed.

If no such operand B is encountered, an address one
greater than the address of the last operand in the
block is placed in the accumulator. The Next Com-
mand in sequence is executed.

If any flagged opérand or other interrupt request
is encountered, the search is terminated as shown
in Table 4.

RT3 Find the address of
the first operand B
which is equal to the
contents of the accum-
ulator with its sign
reversed

If —B=(Acc), TL+ 1— {Acc)

A search is made for the address of the first operand
B which is equal to the contents of the accumulator
with its sign reversed. If such an operand B is en-
countered, an address one greater than the address
of B is placed in the accumulator. The Next Com-
mand in sequence is skipped and the following
command is executed.

If no such operand B is encountered, an address one
greater than the address of the last operand in the
block is placed in the accumulator. The Next Com-
mand in sequence is executed in the accumulator.

If any flagged operand or other interrupt request
is encountered, the search is terminated as shown
in Table 4.

RTU Find the address of
the first operand B
which is equal to the
contents of the
accumulator

If B ={Acc), TL+ 1—(Acc)

A search is made for the first operand B which is
equal to the contents of the accumulator.

36

If such an operand B is encountered, an address one
greater than the address of B is placed in the accu-
mulator. The Next Command in sequence is skipped
and the following command is executed.

If no such operand B is encountered, an address one
greater than the address of the last operand in the
block is placed in the accumulator. The Next Com-
mand in sequence is executed.

If any flagged operand or other interrupt request
is encountered, the search is terminated as shown
in Table 4.

EXPLANATION OF TABLE 4

If a flagged operand B is encountered, the flag is ig-
nored if the flag is not enabled in the Enable register.

If a flagged operand B (enabled) is encountered when
Control is OFF, a one is placed in the data flag bit in
the Interrupt Request register which corresponds to
the enabling bit in the Enable register. An address
one greater than the address of the flagged operand
is placed in the accumulator and the Next Commond
in sequence is executed. The enabling flag must be
a data flag.

If a flagged operand B (enabled) is encountered when
Control is ON, a one bit is placed in the data flag bit
in the Interrupt Request register which corresponds to
the enabling bit in the Enable register. An address one
greater than the address of the flagged operand is
placed in the accumulator, the Next Command ad-
dress is marked in location 64, Control is turned OFF
and the command in location 65 is executed.

If an illegal address is encountered when Control is
OFF, a one is placed in bit number zero of the Inter-
rupt Request register, the address is placed in the
accumulator and the Next Command in sequence is
executed.

If an illegal address is encountered when Control is
ON, a one is placed in bit number zero of the Interrupt
Request register, the address is placed in the accumu-
lator, the Next Command address is marked in loca-
tion 64, Control is turned OFF and the command in
location 65 is executed.

If an exponent overflow is encountered when Control
is OFF, a one is placed in bit number eight of the
Interrupt Request register, the address of the interrupt-
ing operand is placed in the accumulator and the Next
Command in sequence is executed.

If an exponent overflow is encountered when Control
is ON, a one is placed in bit number eight of the
Interrupt Request register, the address of the inter-
rupting operand is placed in the accumulator, the
Next Command address is marked in location 64,
Control is turned OFF and the command in location
65 is executed.

37

REPEAT NON-NUMERIC COMMANDS

Each operand B in this section will be assembled in
Logic form as follows:

The entire 32 bits in location B are placed in the
least significant 32 bit positions of the Operand
Assembly register (Accumulator).

Bit positions 32 through 41 of the Operand As-
sembly register (Accumulator) are made zero.

The sign in the Operand Assembly register (Ac-
cumulator) is made positive.

The exponent in the Operand Assembly register
(Accumulator) is made a positive zero.

(See page 18 for more explanation of this form.)

RBB Search for the First s1(Blo—> s1(Acc)y,
Logic Flagged Operand 0— ,,(Acc),

The contents of the first location B which contains an
enabled Logic flag are placed in the accumulator in
Logic form. If the Control switch is ON, the Next Com-
mand address is marked in location 64, the corre-
sponding Logic flag bit in the Interrupt Request reg-
ister is made a one, Control is turned OFF and the
command in location 65 is executed.

If no enabled flag is encountered, the contents of the
last location in the block are placed in the accumu-
lator in Logic form (page 18). The Next Command in
sequence is executed.

If any other interrupt request is encountered, the
search is terminated as shown in Table 5, page 39.
31 ‘E-)o"‘> s1(Acc),,

0— 4,(Acc),

RBC Search for the First
Flagged Operand and
Place the Complement
of It

The complement of the contents of the first location B
which contains an enabled Logic flag is placed in the
accumulator in Logic form. If the Control switch is
ON, the Next Command address is marked in location
64, the corresponding Logic flag bit in the Interrupt
Request register is made a one, Control is turned OFF
and the command in location 65 is executed.

If no enabled flag is encountered, the complement of
the contents of the last location in the block is placed
in the accumulator in Logic form. The Next Command
in sequence is executed.

If any other interrupt request is encountered, the
search is terminated as shown in Table 5, page 39).

38

RAL Repeat Add Logical s1(AcC) + 3(B 4 n)y—> 5,(Acc), ,

0— .1(Acc)s,

As each operand B in the block is encountered, it is
assembled in Logic form. All of the operands B in the
block are added to the contents of the accumulator.
The first 32 bits of the sum are placed in the accumu-
lator and bits 32 through 41 are made zero. The Next
Command in sequence is executed.

If an enabled flag or any other interrupt request is
encountered see Table 5, page 39, for the operation
of the commands.

RSL Repeat Subtract
Logical

s1(Acc)— 3 (B+-n)— 4 (Acc), ,
0— ., (Ace)s,

As each operand B in the block is encountered, it is
assembled in Logic form (page 18). All of the operands
B in the block are subtracted from the contents of
the accumulator. The first 32 bits of the difference
are placed in the accumulator and bits 32 through
41 are made zero. The Next Command in sequence
is executed.

If an enabled flag or any other interrupt request is
encountered see Table 5, page 39 for the operation
of the command.

RXX Repeat Extract ,,[(Acc)AB,AB, A...AB,]o—> 5, (AcC)o,

0— .1(Acc)s,

As each operand B in the block is encountered, it
is assembled in Logic form (page). The contents
of the accumulator are shifted to zero exponent and
any digits shifted out of the accumulator are trun-
cated. The first operand B is exiracted from the con-
tents of the accumulator. The result is placed in the
accumulator. The second operand B is extracted
from the new contents of the accumulator. The re-
sult is placed in the accumulator. This procedure
continues through the last operand B in the block.
The sign of the original contents of the accumulator
is retained. The Next Command in sequence is exe-
cuted.

If an enabled flag or any other interrupt request is
encountered, see Table 5, page 39, for the operation
of the command.

RXC Repeat Extract
Complement

s1[(Acc)AB, AB, A . . AB,]o—> 51(AcC)s
0— ,.(Acc)s,

As each operand B in the block is encountered, it
is assembled in Logic form. The contents of the ac-
cumulator are shifted to zero exponent and any
digits shifted out of the accumulator are truncated.

The complement of the first operand B is extracted
from the contents of the accumulator. The result is
placed in the accumulator. The complement of the
second operand B is extracted from the new con-
tents of the accumulator. The result is placed in the
accumulator. This procedure continues through the
last operand B in the block. The sign of the original
contents of the accumulator is retained. The Next
Command in sequence is executed.

If an enabled flag or any other interrupt request is
encountered, see Table 5, page 39, for the operation
of the command.

RUU Repeat Unite s1[(AcC)VB, VB,V . . . VB,]o—> a:(Acc),

0— ..(Acc)s,

As each operand B in the block is encountered, it
is assembled in Logic form (page 18). The contents
of the accumulator are shifted to zero exponent and
any digits shifted out of the accumulator are trun-
cated. The first operand B is united with the con-
tents of the accumulator. The result is placed in the
accumulator. The second operand B is united with
the new contents of the accumulator. The result is
placed in the accumulator. This procedure continues
through the last operand B in the block. The sign of
the original contents of the accumulator is retained.
The Next Command in sequence is executed.

If an enabled flag or any other interrupt request is
encountered, see Table 5, page 39, for the operation
of the command.

RUC Repeat Unite
Complement

[(Acc)VB, VB.V . . . VB,]o—> a(Acc),,
0— ;. (Acc)s,

As each operand B in the block is encountered, it
is assembled in Logic form. The contents of the
accumulator are shifted to zero exponent and any
digits shifted out of the accumulator are truncated.
The complement of the first operand B is united with
the contents of the accumulator. The result is placed
in the accumulator. The complement of the second
operand B is united with the new contents of the
accumulator. The complement of the second operand
B is united with the new contents of the accumulator.
The result is placed in the accumulator. This pro-
cedure continues through the last operand B in the
block. The sign of the original contents of the accu-
mulator is retained. The Next Command in sequence
is executed.

If an enabled flag or any other interrupt request is
encountered, see Table 5, page39, for the operation
of the command.

EXPLANATION OF TABLE S5

If a flagged operand B is encountered, the flag is
ignored if the flag is not enabled in the Enable reg-
ister.

If a flagged operand B (enabled) is encountered
when Control is OFF, a one is placed in the Logic
flag bit in the Interrupt Request register which cor-
responds to the enabling bit in the Enable register.
The result of the command function operating on
TL is placed in the accumulator and the Next Com-
mand in sequence is executed. The enabling flag
must be a Logic flag.

39

If a flagged operand B (enabled) is encountered
when Control is ON, a one is placed in the Logic
flag bit in the Interrupt Request register which cor-
responds to the enabling bit in the Enable register.
The result of the command function operating on TL
is placed in the accumulator, the Next Command
address is marked in location 64, Control is turned
OFF and the command in location 65 is executed.

If an illegal address is encountered when control is
OFF, a one is placed in bit number zero of the Inter-
rupt Request register, the result of the command
function operating on TL—1 is placed in the accumu-
lator and the Next Command in sequence is exe-
cuted.

If an illegal address is encountered when Control
is ON, a one is placed in bit number zero of the
Interrupt Request register, the result of the command
function operating on TL—1 is placed in the accu-
mulator, the Next Command address is marked in
location 64, Control is turned OFF and the command
in location 85 is executed.

An Exponent Overflow is not possible with a Repeat
Non-numeric command.

40

REPEAT NON-NUMERIC TEST COMMANDS

RIO Find the Address of the First
Non-zero Operand B

If 3,(B)o 40,
then TL+1—(Acc)

A search is made for the first non-zero operand B.

As each operand B in the block is encountered, it is
assembled in Logic form (page 38).

If a non-zero operand B is encountered, an address
one greater than the address of B is placed in the
accumulator. The Next Command in sequence is
skipped and the following command is executed.

If a non-zero operand B is not encountered, an ad-
dress one greater than the address of the last oper-
and in the block is placed in the accumulator. The
Next Command in sequence is executed.

If any Logic flagged operand or other interrupt re-
quest is encountered, the search is terminated as
shown in Table 6, page 43.

RJ1 Find the Address of the First
Operand B which is not all ones

If 5,8, 540,
then TL-+ 1—(Acc)

A search is made for the first operand B which is
not all ones.

As each operand B in the block is encountered, it is
assembled in Logic form.

If an operand B is encountered which is not all ones,
an address one greater than the address of B is
placed in the accumulator. The Next Command in
sequence is skipped and the following command is
executed.

If every operand B encountered is all ones, an ad-
dress one greater than the address of last operand
B in the block is placed in the accumulator. The
Next Command in sequence is executed.

If any Logic flagged operand or other interrupt re-
quest is encountered, the search is terminated as
shown in Table 6, page 43.

RJS Find the Address of the First
Operand B, which when added
to the Contents of the
Accumulator is equal to zero.

If 5.B4-(Acc), =0,
then TL4- 1— (Acc)

A search is made for the first operand B which,
when added to the contents of the accumulator, is
equal to zero.

As each operand B in the block is encountered, it is
assembled in Logic form.

If an operand B is encountered which, when added
to the contents of the accumulator, is equal to zero,
an address one greater than the address of B is
placed in the accumulator. The Next Command in
sequence is skipped and the following command
is executed.

If such an operand B is not encountered, an address
one greater than the address of the last operand B
in the block is placed in the accumulator. The Next
Command in sequence is executed.

If any Logic flagged operand or other interrupt re-
quest is encountered, the search is terminated as
shown in Table 6, page 43.

RJG Find the Address of the First
Operand B which, when sub-
tracted from the contents of
the Accumulator, is equal
to zero.

If ,.(Acc) — B, =0,
then TL4- 1— (Acc)

A search is made for the first operand B which, when
subtracted from the contents of the accumulator, is
equal to zero.

As each operand B in the block is encountered, it is
assembled in Logic form (page 38).

If an operand B is encountered which, when sub-
tracted from the contents of the accumulator, is
equal to zero, an address one greater than the
address of B is placed in the accumulator. The Next
Command in sequence is skipped and the following
command is executed.

If such an operand B is not encountered, an address
one greater than the address of the last operand B
in the block is placed in the accumulator. The Next
Command in sequence is executed.

If any Logic flagged operand or other interrupt re-
quest is encountered, the search is terminated as
shown in Table 6, page 43.

RJX Find the Address of the First
Operand B which has a “one”
in any of the bit positions
indicated by a ““one” in the
Accumulator

If ;:BA(Acc), 40,
then TL4+ 1— (Acc)

A search is made for the first operand B which has
a “one” in any of the bit positions indicated by a
"one” in the accumulator.

41

As each operand B in the block is encountered, it is
assembled in Logic form. The contents of the accu-
mulator are shifted to zero exponent and any digits
shifted out of the accumulator are truncated. Bit posi-
tions 32 through 41 of the accumulator are then set
to zero.

If an operand B is encountered which has a “one”
in any of the bit positions indicated by a “one” in
the accumulator, an address one greater than the
address of B is placed in the accumulator. The Next
Command in sequence is skipped and the following
command is executed.

If such an operand B is not encountered, an address
one greater than the address of the last operand B
in the block is placed in the accumulator. The Next
Command in sequence is executed.

If any Logic flagged operand or other interrupt
request is encountered, the search is terminated as
shown in Table 6, page 43.

RXJ Find the Address of the First
Operand B which has a “zero”
in any of the bit positions
indicated by a “one” in the
Accumulator

If ..BA(Acc), =<0,
then TL--- 1— (Acc)

A search is made for the first operand B which has
a "zero” in any of the bit positions indicated by a
“one” in the accumulator.

As each operand B in the block is encountered, it is
assembled in Logic form (page 38). The contents of
the accumulator are shifted to zero exponent and
any digits shifted out of the accumulator are trun-
cated. Bit positions 32 through 41 of the accumulator
are then set to zero.

If an operand B is encountered which has a "“zero” in
any of the bit positions indicated by a “one” in the
accumulator, an address one greater than the ad-
dress of B is placed in the accumulator. The Next
Command in sequence is skipped and the following
command is executed.

If such an operand B is not encountered, an address
one greater than the address of the last operand B
in the block is placed in the accumulator. The Next
Command in sequence is executed.

If a Logic flagged operand or other interrupt request
is encountered, the search is terminated as shown in
Table 6, page 43.

42

RJU Find the address of the first
operand B which, when united
with the contents of the
Accumulator, has a “one” in
any bit position

If 5,BV(Acc), 40,
then TL -~ 1—({Acc)

This command unites the contents of the accumulator
with each operand B and tests this union for a “one”
in any position.

As each operand B in the block is encountered, it is
assembled in Logic form. The contents of the accu-
mulator are shifted to zero exponent and any digits
shifted out of the accumulator are truncated. Bit
positions 32 through 41 of the accumulator are set
to zero.

If an operand B is encountered, which, when united
with the contents of the accumulator, has a “one” in
any bit position, an address one greater than the
address of B is placed in the accumulator. The Next
Command in sequence is skipped and the following
command is executed.

If such an operand B is not encountered, an address
one greater than the address of the last operand B
in the block is placed in the accumulator. The Next
Command in sequence is executed.

If a Logic flagged operand or other interrupt request
is encountered, the search is terminated as shown in
Table 6, page 43.

If 4,BV (Acc), 20,
then TL41— (Acc)

RUJ Find the address of the first
operand B which when united
with the contents of the
accumulator has a “zere” in
any of the 32 bit positions

This command unites the contents of the accumu-
lator with the complement of each operand B and
tests this union for a one in any position.

As each operand B in the block is encountered, it
is assembled in Logic form (page 38). The contents
of the accumulator are shifted to zero exponent and
any digits shifted out of the accumulator are trun-
cated. Bit positions 32 through 41 of the accumulator
are set to zero.

If the contents of the accumulator contain a “one”
in any bit position, an address one greater than the
address of the first operand B is placed in the accu-
mulator. The Next Command is skipped and the
following command is executed.

“If an operand B is encountered, which has a “zero”

in any of the 32 bit positions, an address one greater
-than the address of B is placed in the accumulator.
The Next Command in sequence is skipped and the
following commoand is executed.

If such an operand B is not encountered, an address
one greater than the address of the last operand B
in the block is placed in the accumulator. The Next
Command in sequence is executed.

If any Logic flagged operand or other interrupt re-
quest is encountered, the search is terminated as
shown in Table 6, (page 43).

EXPLANATION OF TABLE 6

If a flagged operand B is encountered, the flag is
ignored if the flag is not enabled in the Enable
register.

If a flagged operand B (enabled) is encountered when
Control is OFF, a one is placed in the Logic flag bit in
the Interrupt Request register which corresponds to
the enabling bit in the Enable register. An address
one greater than the address of the flagged operand
is placed in the accumulator and the Next Command
in sequence is executed. The enabling flag must be a
Logic flag.

If a flagged operand B (enabled) is encountered when
Control is ON, a one bit is placed in the Logic flag
bit in the Interrupt Request register which corresponds
to the enabling bit in the Enable register. An address
one greater than the address of the flagged operomd
is placed in the accumulator, the Next Command ad-
dress is marked in location 64, Control is turned OFF
and the command in location 65 is executed.

If an illegal address is encountered when Control is
OFF, a one is placed in bit number zero of the Inter-
rupt Request register, the address is placed in the
accumulator and the Next Command in sequence is
executed.

If an illegal address is encountered when Control is
ON, a one is placed in bit number zero of the Inter-
rupt Request register, the address is placed in the
accumulator, the Next Command address is marked in
location 64, Control is turned OFF and the command
in location 65 is executed.

An exponent overflow is not possible with a Repeat
Non-numeric Test Command.

43

CENTRAL PROCESSOR INPUT-OUTPUT

The Bendix Communication System is a transmit—
answer system. Conversations between units take
place via Communication Lines which physically
connect main terminal units to each other in the sys-

tem. Every communication on a Communication Line

is a series of individual character transmissions, such
that one character is sent from one unit and a reply
is given to it from the other unit in the communication,
for every character in a transmission.

The Bendix Communication System is a three-element
system, consisting of a controller, transmitter and
receiver for every transmission. The controller noti-
fies the unit which is to be the transmitter and sets
it for transmission. The controller notifies the unit
which is to be the receiver and sets it for reception.
The controller then initiates the transmission, which
is carried out between transmitter and receiver. The
controller may also be one of the transmitting or
receiving units. For example, the central processor,
as a controller, can initiate a communication between
a magnetic tape unit and a control buffer; or the
control buffer, as both receiver and controller, can
initiate and continue a magnetic tape to control
buffer communication.

COMMUNICATION LINE

A Communication Line contains 24 conducting lines
distributed as follows:

Character Lines

Data Indicator,
ON-OFF
Parity,
Spare RE\\

|28 22212018 10'17‘18 151418 12111 9|4765482 1 0‘

Interrupt Lines

Character Lines 10
(8 numeric, 1 data indicator, 1 parity)

REQ (Request Data) signal line 1
Interrupt lines 6
System on/off control 1
Spare 6

44

CHARACTER LINES

10-bit data and instruction characters are transmitted
via the character lines. 8 bits of information will be
sent over lines 0 through 7 each time a character is
tronsmitted over a Communication Line. A data indi-
cator, sent on line 8, and a parity bit, sent on line 9,
will complete every character sent over the Com-
munication Line.

The first 8 bits can be:

Instructions to the external equipment, or
Data to be stored by the external equipment, or

Output data to the external equipment.

With these 8 bits, 255 instructions can be sent over
the Communication Line. Line number 8 (ninth least
significant line) is used as a data character indicator.
It will be made a “one”” by the communication sys-
tem when data is being transmitted from the central
processor to the external equipment. It is “'zero” when
an instruction is being transmitted. These 8 lines can
be represented by a three-octal digit code. The octal
codes for the input-output instructions range from
octal 001 to 377. The octal codes for data characters
range in magnitude from 400 to 777. The general
designations are listed below.

Line number 9 contains an “even” parity bit. A “one”
bit is put on line 9 by the communication system when
necessary to make the numeric sum of the information
on the first 10 lines even. Each character tramsmitted
is checked for even parity by the receiver and, if
there is a parity error, an altemate branch condition
will be created (page 52).

REQUEST LINE, REQ

A "one" is transmitted on the REQ line by a receiving
device (including the central processor) to request
the next data character from the transmitting device.
The REQ line is used only when data characters are
being tromsmitted. When instructions are being trams-
mitted, reply is made by a character sent on the
character lines.

INPUT-OUTPUT INTERRUPTS AND
INTERRUPT LINES

Lines 11 through 14 are “receive interrupt”’ lines.
Interrupt requests are transmitted to the Interrupt Re-
quest register from external equipment via lines 11
through 14.

Line number 11 tums bit number 1 of the Inter-
rupt Request register ON

Line number 12 turns bit number 2 of the Inter-
rupt Request register ON

Line number 13 tums bit number 3 of the Inter-
rupt Request register ON

Line number 14 turns bit number 4 of the Inter-
rupt Request register ON

These interrupts operate like the exponent overflow
interrupt and do not need corresponding enabling bits
in the Enable register.

If Control is ON and one of the interrupt request bits
is turned ON by one of the interrupt lines, the contents
of the Next Command register will be marked in loca-
tion 64 and the Interrupt Service Routine will be
entered at location 65.

If Control is OFF and one of the interrupt request bits
is turned ON by one of the interrupt lines, the Next
Command in sequence is executed. When Control
is again turned ON, an interrupt request will then be
generated.

Any unit which is to be allowed to interrupt the cen-
tral processor should be connected to one of the inter-
rupt lines 11 through 14. An interrupt signal coming
from any one of the external units connected to the
interrupt line 2, for example, will set bit number 2 in
the Interrupt Request register.

Lines 15 ond 16 are tremsmit interrupt lines. Interrupt
requests are tramsmitted to external equipment from
the central processor via these lines. A “one” bit
placed in bit position 3 in the Enable register (page
11) will transmit an interrupt to any equipment on
interrupt line 15. A “one” bit loaded into bit position
4 in the Enable register will tronsmit an interrupt to
any equipment on interrupt line 16. These two lines
will normally be used to interrupt control units or
other G-20’s in a complex system. These bits are
tumed off automatically after the interrupt. The Con-
trol switch has no effect over these two indicators.

ON-OFF LINE

Line 17, ON-OFF Line, is a power line which can turmn
on all of the equipment in a system when the power
is turned on at the master switch.

COMMUNICATION INSTRUCTIONS

An explanation of the following instruction charac-
ters is included to clarify discussion of external
device operating states.

A GRN character is the response the central processor
will receive to tell it to continue in the expected se-
quence. Its octal code is 002.

A RED character is the response the central processor
will receive to tell it to branch to em altemate action.
Its octal code is 003.

Example

A search for the device which requested an
interrupt is expected to continue until the device
is found; any device questioned which did not
send the interrupt will answer GRN. The device
which sent the interrupt will answer RED to halt
the search and cause the program to branch to
the next section.

An END character is sent in a communication to
signify the completion of a correct data transmission.
The next line signal can come only from a controlling
device. The octal code is 004.

An ERR character is sent in a communication to
signify that the data transmission ended erroneously.
The next line signal can come only from a controlling
device. The octal code is 005.

An SDT character is used by the central processor
to initiate a series of data transmissions. It is usually
the 8-bit code in the second word of a block trans-
mission command (page 48). The octal code is 010.

45

The OUT character switches a piece of external
equipment to the “out of service” or offline state.
The octal code is 011.

OPERATING STATES

When Out of Service, a unit is effectively discon-
nected, and can only be put on-line by manual
operation of the ON-LINE button. This will place the
unit in the “Standby” state.

When in the Standby state, a unit examines and
rejects all call signals until it receives its own unique
call (with correct parity). When it hears this call,
it answers GRN and enters the “Called” state.

When in the Called state, a unit can answer all quer-
ies and execute all instructions meaningful to it.
Undefined characters or characters with incorrect
parity are ignored.

When in the Briefing (partly instructed) state, a unit
has received and acknowledged one or more mean-
ingful instructions but is not completely instructed.
In this state a unit can receive more instructions or
answer queries. When it receives its own call in this
state, it answers GRN and returns to the "“Called”
state. If it receives a call directed to another unit, it
returns to Standby without issuing any signal.

When in the Instructed state, a unit has been given
the complete set of instructions required to establish
a data transfer but has not yet been told by the
control unit to start data transfer.

A unit which has been set up to receive will, upon
receiving an SDT instruction, enter the Message state
and send a REQ signal.

A unit which has been instructed to transmit will
enter the Message state when it receives SDT. No
response is sent to the SDT, but an REQ character
is transmitted by the receiver. A unit in the Instructed
state, upon receiving its own call, will answer GRN
and return to the Called state. No instructions except
SDT and its own call are meaningful to a unit in the
Instructed state. (Magnetic tape is an exception to
these conditions, it goes directly to the Message state
when completely instructed without waiting for SDT).

When in the Busy state, a unit is executing an opera-
tion other than a data transfer or it is interlocked.
The Busy state has two substates—Busy-quiet and
Busy-alert. In Busy-quiet, a unit can hear only its
own call, which it will answer and go to Busy-alert.
In Busy-alert, the unit will answer all queries and
some instructions. Upon hearing a call directed to
another unit, it will return to Busy-quiet without

46

answering. Upon completing an operation, a Busy
unit goes to Standby and sends an interrupt. (Mag-
netic tape is an exception; it goes to Standby without
issuing any signal).

A unit engaged in a block communication is said to
be in the Message state. All other units are forbidden
to use the data character lines during this time.
When the block transmission is terminated, the
transmitter sends END or ERR and returns to Standby.
The END or ERR signal returns the receiver to
Standby. If the central processor is the receiver, it
may terminate the block by sending END or ERR.

LC 157 Line Command «(Blo— (CL),

In all addressing modes, the mantissa of the operand
B assembled in numeric form is shifted, if necessary,
until the exponent of B is zero. Any digits shifted out
of the register are lost and the operand is truncated.
Then the least significant 8 bits of the operand B are
transmitted over the character lines of the Communi-
cation Line. A "“0” bit is automatically sent on line
number 8 and a parity bit is sent on line number 9
to complete the 10-bit instruction character.

1f the central processor then receives a GRN response
from the specified input-output device, the Next Com-
mand in sequence is skipped and the following
command is executed.

If any response other than GRN is received, that
response is placed in the least significant 9 bit posi-
tions of the Line Response register and the Next
Command in sequence is executed. The programmer
must determine what the response is and take ap-
propriate action.

If the response is REQ, bit positions 0 through 8 of
the Line Response register are cleared, but bit num-
ber 10 is made a “1”. The Next Command in se-
quence is executed. The programmer must determine
what the response is and take appropriate action.

If the response contains a parity error, it is placed
in the least significant 9 bit positions—0 through 8—
of the Line Response register, bit number 9 is made
"1" and the Next Command in sequence is executed.
The programmer must determine what the response
is and take appropriate action.

If no response occurs within one second, bit number
11 of the Line Response register is made “1” and the
Next Command in sequence is executed. The pro-
grammer must determine what the response is and
take appropriate action.

DC 117 Data Character #(B)o—>(CL),

In all addressing modes, the mantissa of the operand
B in normal numeric form is shifted, if necessary,
until the exponent of B is zero. Any digits shifted out
of the register are lost and the operand is truncated.
Then the least significant 8 bits of operand B are
transmitted over the character lines of the Communi-
cation Line. A 1" data character indicator is auto-
matically sent on line number 8 and a parity bit is
sent on line number 9 to complete the 10-bit data
character.

The GRN, REQ, parity error, no response and all
other responses are handled exactly like those in
the Line Command.

The Block Input-Output Command
Three basic block operations can be performed:

"Receive” data characters and place them in
memory

"Transmit” a block of computer words from mem-
ory to an output device as “"Data” characters

"Transmit” ablock of computer words from mem-
ory to an output device as "Instructions”

Two command words are required to initiate, set a
limit on, and specify the repeat input-output opera-
tion. The first word consists of an operation code—
M!l—and the initial address of the block. When using
these commands, the B in all four addressing modes
is the location at which the operation will begin.
In preparing B, a number format is used, and floating
point arithmetic is performed. The final operand B
will be shifted to a zero exponent in the Operand
Assembly and bit positions 15 through 41 will be
made zero before the operations are performed. The
remaining 15 bits—0 through 14—are used as the
address of location B. This is identical with the Put-
away Addressing modes. The octal code for the M1
command is 033.

FIRST WORD
Mode 1 Field

Mp o

31 80 2928‘21 262524282221 20191817161514131211109876548210

F Fleld

The second word designates the operation to be
repeated, the upper limit N on the block length
desired, and the starting instruction to the com-
munication system. N is held in integer form in
the F number field of the second word and is the
number of machine words in the block. A block
length N = 0 will cause one word to be transmitted.

The information specified in the second word is:

SECOND WORD

Starting Instruction

Block Length N

31 30 29 28 27 26 25 24 23 2221 201918171615 14131211109876543210
Bits 0 through 14 contain the block length N

Bits 15 through 22 contain the Starting Instruc-
tion such as Start Data Transmission (SDT).

Bits 23 and 24 are ignored

Bits 25 and 26, AB, specify which type of oper-
ation is to be performed:

B A

0 0 Tronsmit Data
0 1 Receive

1

0 Transmit Instructions

Bit 27 must be a ""1” to specify the 8-bit character
format and a 0" to specify the 6-bit character
format.

Bits 28 through 31 are ignored.

CHARACTER FORMAT

There are two character formats used with the block
input-output commands. These are four 8-bit charac-
ters per computer word or one 8-bit character fol-
lowed by four 6-bit characters from one computer
word.

It is not necessary for terminal equipment to transmit
the full 8 or 6 bits in a character. Zeros will be in-
serted in the most significant positions to fill the
format (i.e. if some piece of equipment sends 4 bit
characters to the computer, the most significant four
spaces will be filled with zeros). In the 6-bit trans-
mission, the bit positions 8 and 7 are filled with zeros
to fill the 8 character lines.

COMMANDS

In this section the block input-output commands are
discussed by format as well as by command. Both
the M1 command word and the second command
word are represented by a single, three-character
code. The first character is an 8 or a 6 to denote the
transmission format. For example, a block Transmit
Data command, TD, in the 8-bit format is denoted
by 8TD.

47

87D Block Transmit Data,
8-bit Characters

Send 51(B)zs, 25(B)s,
15(B)sy 7(Boy a1(B—+1)24,
...7BEN—1),

2nd Data

Character

5th Data

Character

4Nth Data

Character
1 1’;‘4‘13 12, i.l 1 9

Upon receipt of REQ the response from the instruc-
tion in bits 15 througn 22 of the second word of the
Block Transmit Data Command, 8-bit data characters
are tronsmitted to that piece of equipment starting
with location B and continuing through location
B + N — 1, where N is the block length. An REQ is re-
ceived from the external equipment before the trans-
mission of each data character.

The first data character sent contains the 8 bits, 31
through 24, of location B. A 1" bit is automatically
sent on line number 8 (ninth least significant bit of
the data character) along with a parity bit on line
number 9 to complete the 10-bit transmission. The
“1"'s purpose is to indicate to the external equip-
ment that the character is data, not an instruction.
The second data character sent contains the 8 bits,
23 through 16, of location B. A 1" bit is automatically
sent on line 8 along with a parity bit on line 9 to
complete the 10-bit transmission. The fifth data char-
acter sent contains the 8 bits, 31 through 24, of loca-
tion B+ 1. A "1” bit is sent on line 8 along with a
parity bit on line 9. This transmission procedure con-
tinues until the last data character is sent. This char-
acter contains the 8 bits, 7 through 0, of location
B+ N — 1. The “1” data bit and the parity bit are sent

48

%

as before. Upon receipt of the next REQ an END
character is transmitted. An address two greater
than the address of the last location in the block is
placed in the accumulator. The Next Command in
sequence is skipped and the following command is
executed.

If any response other than REQ is received, that
response is placed in bit positions 0 through 8 of the
Line Response register. The transmit operation ter-
minates and an error, ERR, is transmitted. An address
two larger than the address of the last location op-
erated on is placed in the accumulator. The Next
Command in sequence is executed.

If a parity error, time delay error, or memory over-
flow is encountered, the operation is terminated as
shown in Table 8, page 52 . In these cases an ERR
will be transmitted.

When the operation is terminated in the middle of a
word, a code representing the character count of that
word is placed in bits 14 through 12 of the Line
Response register so that the programmer may de-
termine the number of characters transmitted (see
Table 9, page 53).
6TD Block Transmit Data Send 5,(B)ss, 25(Bhis, 11(B)iz,
11(B)s, 5(Blo; 31(B+ 1)z,
23(B+1)18; .. 5(B+N - 1)0-

"1’ Data Indicator Bit
i

Two 0's Complete format

28 22 21 20 19 18

3rd Data
Character

1st Data
Character

123 22 21 20 19 18

Upon receipt of REQ, the response from the SDT
instruction in bits 15 through 22 of the second word
of the Block Transmit Data command, one 8-bit and
four 6-bit data characters per word are transmitted
to that piece of equipment starting with location B
and continuing through location B + N — 1 where N is
the block length. An REQ is received from the ex-
ternal equipment before each transmission.

The first character sent contains the 8 bits, 31 through
24, of location B. A 1" bit is automatically sent on
line 8 along with a parity bit on line 9 to complete
the 10-bit transmission. The second data character
sent contains the 6 bits, 23 through 18, of location B.
Zeros are transmitted on lines 6 and 7 of the charac-
ter. A 1" bit is automatically sent on line 8 along
with a parity bit on line 9 to complete the transmission.
The third data character sent contains the 6 bits, 17
through 12, of location B. Zeros are transmitted on
lines 6 and 7. A 1" bit is automatically sent on line
8 along with a parity bit on line 9 to complete the
transmission. The sixth data character sent contains
the 8 bits, 31 through 24, of location B+ 1, trans-
mitted as before with a 1" on line 8 and a parity bit
on line 9 of the transmission. This transmission pro-
cedure continues until the last data character is sent.
This character contains the 6 bits, 5 through 0, of
location B + N — 1. Zeros are transmitted on lines 6
and 7. The 1" data bit and the parity bit are sent as
before. Upon receipt of the next REQ, an END char-
acter is transmitted. An address two greater than the
address of the last location in the block is placed in
the accumulator. The Next Command in sequence is
skipped and the following command is executed.

If any response other than REQ is received, that re-
sponse is placed in bit positions 0 through 8 of the
Line Response register. The transmit operation ter-
minates and an error, ERR, is transmitted. An address
two larger than the address of the last location oper-
ated on is placed in the acchimulator. The Next Com-
mand in sequence is executed.

If a parity error, time delay error, or memory over-
flow is encountered, the operation is terminated as
shown in Table 8, page 52. In these cases an ERR
will be transmitted.

When the operation is terminated in the middle of
a word, a code representing the character count of
that word is placed in bits 14 through 12 of the Line
Response register so that the programmer may de-
termine the number of characters transmitted (see
Table 9, page 53).

8Tl Block Transmit Instructions Send ;1(B).s, 25(Bs, 15(B)s,
8-hit Characters

7(Blo, 51(B+1).s
B4 N—1)

F

R

Blocl; Léngtl; N

3rd
Instruction

6th 8th

Instruction Instruction

When a Block Transmit Instruction is processed, 8-bit
instructions are transmitted to the specific piece of
equipment starting with the 8-bit instruction in the
second word of the Block Operator command, taking
the next from location B, and continuing through
location B+ N — 1 where N is the block length. A GRN
is received from the external equipment acknowl-
edging receipt of a proper instruction.

The first instruction sent is the 8-bit instruction in bits
15 through 22 of the second word of the Block Trans-
mit Instruction command. A “0” bit is sent on line 8
along with a parity bit on line 9 to complete the
10-bit transmission.

The second instruction sent contains the 8 bits, 31
through 24, of location B. A “0" bit is automatically
sent on line 8 along with a parity bit on line 9 to
complete the 10-bit transmission. The “0" bit indi-
cates to the external equipment that this is an in-
struction to be executed. The third instruction sent
contains the 8 bits, 23 through 16, of location B. A
“0" bit is automatically sent on line 8 along with a
parity bit on line 9 to complete the transmission. The
sixth instruction sent contains the 8 bits, 31 through
24, of location B+ 1. A "0 bit is sent on line 8 along
with a parity bit on line 9. This transmission pro-
cedure continues until the last instruction is sent. This
instruction contains the 8 bits, 7 through 0, of loca-
tion B + N-1. The “0” instruction bit and the parity
bit are sent as before. Upon receipt of the next GRN,
no character is sent to indicate the end of transmis-

49

sion. An address two greater than the address of the
last location in the block is placed in the accumula-
tor. The Next Command in sequence is skipped and
the following command is executed.

If any response other than GRN is received, that
response is placed in bit positions 0 through 8 of the
Line Response register. The transmit operation ter-
minates but no error, ERR, is transmitted. An address
two larger than the address of the last location
operated on is placed in the accumulator. The Next
Command in sequence is executed.

If a parity error, time delay error, or memory over-
flow is encountered, the operation is terminated as
shown in Table 8, page 52 . In these cases, no ERR
will be transmitted.

When the operation is terminated in the middle of
a word, a code representing the character count of
that word is placed in bits 14 through 12 of the Line
Response register so that the programmer may de-
termine the number of instructions transmitted (see
Table 9, page 53).

6T Block Transmit Instructions Send ;,(B).s, 25(B);s, 17(B)1z,
6-Bit Characters 11(B)u, 5(B)0: 31(B+1)241
. s(B+N—1)

0" Instruction Indicator

3rd In-

struction

17 16156 14 1312

When a Block Transmit Instruction command is proc-
essed, first the 8-bit instruction in the second word
of the command, then one 8-bit and four 6-bit instruc-
tions per word are transmitted to the specified piece
of equipment, starting with location B and continuing

50

through location B+ N —1 where N is the block
length. A GRN is received from the external equip-
ment before each transmission acknowledging re-
ceipt of a proper instruction.

The first instruction sent is the 8-bit instruction in bits
15 through 22 of the second word of the Block Trans-
mit Instruction command. A 0" bit is sent on line 8
along with a parity bit on line 9 to complete the
10-bit transmission.

The second instruction sent contains the 8 bits, 31
through 24, of location B. A 0" bit is automatically
sent on line 8 along with a parity bit on line 9 to
complete the 10-bit transmission. The third instruc-
tion sent contains the 6 bits, 23 through 18, of loca-
tion B. Zeros are transmitted on lines 6 and 7 to fill
the instruction format. A "0 bit is automatically sent
on line 8 along with a parity bit on line 9 to complete
the transmission. The fourth instruction sent contains
the 6 bits, 17 through 12, of location B. Zeros are
transmitted on lines 6 and 7 to fill the instruction
format. A “0" bit is automatically sent on line 8 along
with a parity bit on line 9 to complete the tronsmis-
sion. The seventh instruction sent contains the 8 bits,
31 through 24, of location B + 1, transmitted as before
with a “0” on line 8 and a parity bit on line 9 of the
transmission. This transmission procedure continues
until the last instruction is sent. This instruction con-
tains the 6 bits, 5 through 0, of location B+ N — 1.
The zeros, the “0” instruction bit, and the parity bit
are sent as before. Upon receipt of the next GRN,
no character or instruction is sent to indicate the end
of transmission. An address two greater than the
address of the last location in the block is placed in
the accumulator. The Next Command in sequence is
skipped and the following command is executed.

If any response other than GRN is received, that
response is placed in bit positions 0 through 8 of
the Line Response register. The transmit operation
terminates but no error, ERR, is transmitted. An ad-
dress two larger than the address of the last location
operated on is placed in the accumulator. The Next
Command in sequence is executed.

It a parity error, time delay error, or memory over-
flow is encountered, the operation is terminated as
shown in Table 8, page 52. In these cases, no ERR
will be transmitted.

When the operation is terminated in the middle of a
word, a code representing the character count of that
word is placed in bits 14 through 12 of the Line
Response register so that the programmer may de-
termine the number of characters transmitted (see
Table 9, page 53).

8RD Block Deceive Data
8-bit character

Receive in 31(B)24, ZS(B)161
15(B)s, 7(B)o, 31(B+1)24y
...(B+N—-1)

Location B

41 32 81 24 23 16 18 87]

The computer will send an REQ signal to the speci-
fied piece of external equipment. It will then accept
the 8-bit data characters from that piece of equip-
ment, form machine words with them and place the
machine words into memory, starting at location B
and continuing through location B + N — 1 where N
is the block length. Upon receipt of a data character,
an REQ is sent out and the computer waits to accept
the next data character. If the operation is terminated
in the middle of a word by some unusual response,
the word will be character-normalized and the re-
maining least significant positions will be filled with
Zeros.

The first data character received will be placed in
the least significant 8 bit positions (7 through 0) of
the arithmetic unit. The REQ is sent out, the 8 bits in
the arithmetic unit are shifted into positions 15
through 8, and the next 8-bit character is placed in
bit positions 7 through 0. The REQ is sent out, the 16
bits are shifted into positions 23 through 8, and the
next 8-bit character is placed in positions 7 through
0. The REQ is sent out, the 24 bits are shifted into
positions 31 through 8 and the next 8-bit character is
placed in positions 7 through 0. These 32 bits then
replace the contents of location B.

This procedure continues until the last four 8-bit
characters replace the contents of location B+ N— 1.
The computer then transmits an END character to the
external device. An address one greater than the
address of the last location in the block is placed in
the accumulator. The Next Command in sequence is
skipped and the following command is executed.

If any response other than a data character is re-
ceived, that response is placed in bit positions 0
through 8 of the Line Response register. The receive
operation terminates and an error, ERR, is trans-
mitted. An address one greater than the address of
the last location filled is placed in the accumulator.
The Next Command in sequence is executed.

If a parity error, time delay error, or memory over-
flow is encountered, the operation is terminated as
shown in Table 8, page 52. In these cases, ERR will
be transmitted.

6RD Block Receive Data
6-bit characters

Receive in 51(B)ss, 25(Bis,
17(B)12, 11(B)e, 5(Blo 31(B-+)zs,
- sBEN—1)

Location B ’ T

41 81 24 28 18 17 1211

The computer will send a REQ signal to the specified
piece of external equipment. It will then accept one
8-bit and four 6-bit data characters from that piece
of equipment, form a machine word with them and
place it into memory in location B. Another set of
one 8-bit and four 6-bit data characters is accepted
and placed into memory in location B + 1. This pro-
cedure is continued until location B + N — 1 is filled.
Upon receipt of each data character, a REQ is sent
out and the computer waits to accept the next data
character. If the operation is terminated in the middle
of a word by some unusual response, the word will
be character-normalized and the remaining least
significant positions will be filled with zeros.

The first data character received will be placed in the
least significant 8 bit positions (7 through 0) of the
arithmetic unit. The REQ is sent out, the 8 bits in the
arithmetic unit are shifted into positions 13 through
8, and the first 6-bit character is placed in bit positions
5 through 0. The REQ is sent out, the 14 bits are shifted
into positions 21 through 6, and the next 6-bit char-
acter is placed in positions 5 through 0. The REQ is
sent out, the 20 bits in the arithmetic unit are shifted
into positions 27 through 6, and the next 8-bit character
is placed in positions § through 0.

The REQ is sent out, the 26 bits in the arithmetic unit
are shifted into positions 31 through 6, and the last
6-bit character of this word is placed in positions 5
through 0. These 32 bits then replace the contents of
location B.

This procedure continues until the last five charac-
ters, one 8-bit and four 6-bit, replace the contents of
location B+ N — 1. The computer then tronsmits an
END character to the external device. An address one
greater than the address of the last location in the
block is placed in the accumulator. The Next Com-
mand in sequence is skipped and the following com-
mand is executed.

If any response other than a data character is re-
ceived, that response is placed in bit positions 0
through 8 of the Line Response register. The receive
operation terminates and an error, ERR, is transmitted.

51

An address one greater than the address of the last If a parity error, time delay error, or memory over-

location filled is placed in the accumulator. The Next flow is encountered, the operation is terminated as

Command in sequence is executed. shown in Table 8, page 52. In these cases, ERR will
be tramsmitted.

For example, if there are two characters remaining
to be processed in a word at the termination of an
8-bit transmission, the contents of bits 14 through 12
of the Line Response register read in that order, will
be the octal number 2. If there are four characters
remaining to be processed in a word at the termin-

ation of a 6-bit transmission, the contents of bits 14
through 12, read in that order, will be the octal

number 1.

Entries 4 and 5 are not defined for the 8-bit trans-

mission.

53

54

Octal
Code

000
002

003

004

005

010
011

014

Alpha
Code

GRN

RED

END

ERR

SDT
ouT

RCV

STANDARD INPUT-OUTPUT INSTRUCTION CODES

Description

Cannot be detected.

"Proceed” response to in-
structions and queries.

"Branch” response to instruc-
tions and queries.

Signal from transmitter that
a data transmission has
ended. The next line signal
can come only from the con-
trolling device.

Signal from transmitter that
the data transmission which
has just ended was errone-
ous. The next line signal can
come only from the control-
ling device.

Start Data Transfer.

Command to switch to the
OFF-LINE state.

Command to switch to the
INSTRUCTED state and pre-
pare to receive a data block.

Octal
Code

016

060

061

062

067

Alpha
Code

TRA

QRD

QER

QIL

QIN

Description

Command to switch to the
INSTRUCTED state and pre-
pare to transmit a data block.

Ready query: GRN response
means ‘proceed’”; RED re-
sponse means "'not ready for
additional commands.”

Error: GRN response means
that the device has not de-
tected an error since the pre-
vious QER; RED indicates
that an error has been de-
tected.

Interlock query: GRN re-
sponse means “proceed’’;
RED response means the de-
vice is halted because of an
interlock condition.

Interrupt query: GRN re-
sponse means that the de-
vice has not sent an inter-
rupt request since the previ-
ous QIN; Red indicates that
an interrupt has been sent.

APPENDIX
AVERAGE EXECUTION TIMES FOR G-20 CENTRAL PROCESSOR

The execution times given in the following tables
include the average amount of time necessary to:

bring the command from memory
assemble the operand B, and

decode and execute the command.

All times are given in microseconds.

Address Address Address Address Address Address Address Address
Mode 0 Mode0 Model Model Mode2 Mode2 Mode3 Mode 3
Command No One No One No One No One
Command Function Index Index Index Index Index Index Index Index

SINGLE PRECISION

Address Preparation Commands

0CA Clear and Add to OA 9 15 15 21 15 21 21 27

0CS Clear and Subtract 9 15 15 21 15 21 21 27
from OA

OAD Add in OA 13 19 19 25 15 21 21 27

osu Subtract in 0A 13 19 19 25 15 21 21 27

ORS Reverse Subtract in OA 13 19 19 25 15 21 21 27

0SS Add & Reverse Sign 13 19 19 25 15 21 21 27
in OA

OAV Add & Take Ab-13 solute 13 19 19 25 15 21 21 27
Value in 0A

osv Subtract & Take 13 19 19 25 15 21 21 27

Absolute Value in OA

Add-Subtract Commands (floating-point)

CA Clear & Add 6 12 12 18 12 18 18 24
cS Clear & Subtract 6 12 12 18 12 18 18 24
AD Add 12 18 18 24 14 20 20 26
Su Subtract 12 18 18 24 14 20 20 26
RS Reverse Subtract 13 19 19 25 15 21 21 27
SS Add & Change Sign 13 19 19 25 15 21 21 27
AV Add & Take Absolute 13 19 19 25 15 21 21 27
Value
sv Subtract & Take 13 19 19 25 15 21 21 27

Absolute Value

Address Address Address Address Address Address Address Address
Mode 0 Mode0 Model Model Mode2 Mode2 Mode3 Mode3
Command No One No One No One No One
Command Function Index Index Index Index Index Index Index Index

Multiply-Divide Commands (floating-point)

ML Multiply 39 45 45 51 45 51 51 57
Dl Divide 74 80 80 86 80 86 86 92
RD Reverse Divide 75 81 81 87 81 87 87 93

Add-Subtract Test Commands (floating-point)

TP Transfer on Positive 16 22 22 28 18 24 24 30
TN Transfer on Negative 16 22 22 28 18 24 24 30
TL Transfer on Contents of 16 22 22 28 18 24 24 30
Accumulator are Less
than Operand B
TG Transfer on Contents of 16 22 22 28 18 24 24 30

Accumulator Greater
than Operand B

TU Transfer on Contents of 16 22 22 28 18 24 24 30
Accumulator not Equal
to Operand B

T1 Transfer on Sum 16 22 22 28 18 24 24 30
Negative

T2 Transfer on Sum 16 22 22 28 18 24 24 30
Positive

T3 Transfer on Sum 16 22 22 28 18 24 24 30

Not Equal to Zero

Add-Subtract Commands (Pickapoint)

CA Clear & Add 6 12 12 18 12 18 18 24
cS Clear & Subtract 6 12 12 18 12 18 18 24
AD Add 10 16 16 22 12 18 18 24
SU Subtract 10 16 16 22 12 18 18 24
RS Reverse, Subtract 11 17 17 23 13 19 19 25
SS Subtract, Subtract 11 17 17 23 13 19 19 25
AV Add & Take Absolute 11 17 17 23 13 19 19 25
Value
sV Subtract & Take 11 17 17 23 13 19 19 25

Absolute Value

Multiply-Divide Commands (Pickapoint)

ML Multiply 30 36 36 42 36 42 42 43
DI Divide 70 76 76 82 76 82 82 88
RD Reverse Divide 71 77 77 83 77 83 83 89

56

Address Address Address Address Address Address Address Address
Mode0 ModeO0 Model Model Mode2 Mode?2 Mode3 Mode 3

Command No One No One No One No One
Command Function Index Index Index Index Index Index Index Index
EXTENDED PRECISION
Add-Subtract Commands (floating-point)
CA Clear and Add 18 24 18 24 24 30
CS Clear and Subtract 18 24 18 24 24 30
AD Add 24 30 20 26 26 32
SU Subtract 24 30 20 26 26 32
RS Reverse Subtract 25 31 21 27 27 33
SS Add & Change Sign 25 31 21 27 27 33
AV Add & Take Absolute 25 31 21 27 27 33
Value
SV Subtract & Take 25 31 21 27 27 33
Absolute Value
Multiply-Divide Commands (floating-point)
ML Multiply 51 57 51 57 57 63
DI Divide 86 92 86 92 92 98
RD Reverse Divide 87 93 87 93 93 99
Add-Subtract Test Commands (floating-point)
TP Transfer on Positive 28 34 24 30 30 36
TN Transfer on Negative 28 34 24 30 30 36
TL Transfer on Contents of 28 34 24 30 30 36
Accumulator Less than
Operand B
TG Transfer on Contents of 28 34 24 30 30 36
Accumulator Greater
than Operand B
TU Transfer on Contents of 28 34 24 30 30 36
Accumulator not Equal
to Operand B
T1 Transfer on Sum 28 34 24 30 30 36
Negative
T2 Transfer on Sum 28 34 24 30 30 36
Positive
13 Transfer on Sum 28 24 24 30 30 36
Not Equal to Zero
SINGLE PRECISION
Non-numeric Commands
The quantities involved in these commands are assumed to be integers.
BD Bring 10 16 22 12 18 18 24
BC Bring Complement 10 16 22 12 18 18 24
AL Logical Add 10 16 22 12 18 18 24

57

Address Address Address Address Address Address Address Address
Mode0 Mode0 Model Model Mode2 Mode2 Mode3 Mode3

Command No One No One No One No One

Command Function Index Index Index Index Index Index Index Index
SL Logical Subtract - 10 16 16 22 12 18 18 24
XX Extract 10 16 16 22 12 18 18 24
XC Extract Complement 10 16 16 22 12 18 18 24
uu Unite 10 16 16 22 12 18 18 24
uc Unite Complement 10 16 16 22 12 18 18 24

Non-numeric Test Commands

The quantities involved in these commands are assumed to be integers.

Jo Jump on Zeros 14 20 20 26 16 22 22 28

1 Jump on Ones 14 20 20 26 16 22 22 28

JG Jump on Difference not 14 20 20 26 16 22 22 28
Equal to Zero

1N Jump on Sum not 14 20 20 26 16 22 22 28
Equal to Zero

X Jump on Extract 14 20 20 26 16 22 22 28

X) Jump on Extract 14 20 20 26 16 22 22 28
Complement

U Jump on Unite 14 20 20 26 16 22 22 28

ul Jump on Unite 14 20 20 26 16 22 22 28
Complement

Putaway Commands

PF Putaway Extended 21 27 27 33 27 33 33 39
Precision
PH Putaway Single 18 24 24 30 24 30 30 36
Precision
PI Putaway Integer 14 20 20 26 20 26 26 32
(Minimum Time)
PL Putaway Logic 12 18 18 24 18 24 24 30
PZ Putaway Zero 12 18 18 24 18 24 24 30
Control Commands
GO Go to Location B 6 12 12 18 12 18 18 24
GE Go & Enable 6 12 12 18 12 18 18 24
SK Go to Location (NC) + B 8 14 14 20 14 20 20 26
MT Mark Place & Transfer 14 20 20 26 20 26 26 32
Index Commands
LP Load Index Positive 13 19 19 25
LN Load Index Negative 13 19 19 25
IN Increment Index 20 26 26 32
DE Decrement Index 20 26 26 32
PT Load Positive and Test 13 19 19 25

NT Load Negative and Test 13 19 19 25

Address Address Address Address Address Address Address Address

Mode 0 Mode 0

Model Model Mode2 Mode?2 Mode3 Mode 3

: Command No One No One No One No One
Command ~ Function Index Index Index Index Index Index Index Index
IT Increment Index 20 26 26 32
and Test
DT Decrement Index 20 26 26 32
and Test
Register Commands
LR Load Register 7 13 13 19
XR Selectively 11 17 17 26
Reset Register |
X0 Selectively 11 17 17 26
Read Register | to OA
XA Selectively Read 11 17 17 26
Register |
to Accumulator
Repeat Commands
RCA, RCS, RTP, RTN 13+6N 19-+6N 19+6N 25+6N 19+6N 25+6N 25+6N 3146N
RJU, RUJ 15+9N 21+9N 21+9N 27+9N 21+9N 27+9N 2749N 33+9N
RJO, RI1, RIG, RJS, RJX, RX] 14+8N 208N 20+8N 26+8N 20+8N 26+8N 26+8N 32+8N
All Other Repeat Commands 13+7N 19+7N 19+7N 25+7N 19+7N 25+7N 25+7N 31+/N
N is the block length in words.
Input-Output Commands
LC Line Command 21 27 27 33 27 33 33 39
DC Data Character 21 27 27 33 27 33 33 39
Block 8-bit Command 26+20N 32+20N 32+20N 38+20N 32+20N 38+20N 38+20N 44+20N
Block 6-bit Command 26+15N 32+15N 32+15N 38-+15N 32+15N 38+15N 38+15N 44+15N

N is the block length in words.

59

Bendix Computer Division

LOS ANGELES 45, CALIFORNIA

T23-1
 DECEMBER, 1960

