
\;1

)

Release Note for
BiiNTM Operating System Manuals

This relase note consists of three parts:

• General operating system infonnation

• The BUNTY/OS Guide part, and

• The BUNTY/OS Reference Manual part (including new chapters to be added to the manual).

General Operating System Information
This release note provides release infonnation for OS V 1.0 1.00 of the BiiNTY operating system.
This OS release is compatible with:

Table I. System Software Set FeSI RI.2

Release Description

SM V2.00.0l System Monitor-Finnware on EEPROM.

OSBASE V1. 01. 00 Operating System and CLEX.

OS UTIL Vl.Ol.OO Utilities 1.

UX V1. 01. 00 UNIX-Based Software and Utilities.

UTILS Vl.Ol.08 Utilities 2.

SPOOL V1. 01 . 07 Printer/Spooling Software.

MDS V1. 00.03 Maintenance and Diagnostics Software.

ADA V1. 00.06 Ada Compiler.

C V1. 00.06 CCompiler.

FORTRAN Vl.00.07 FORTRAN Compiler.

COBOL V1. 00.03 COBOL Canpiler.

PASCAL Vl.OO.O? Pascal Canpiler.

LINK VI. 01. 03 linker.

LIBRARIAN Vl.Ol.Ol Librarian.

DEBUGGER V2.00.00 Debugger.

EMACS V2.00.06 Emacs Text Editor.

FORMS V1.02.06 Form Service and Utilities.

SMS V2.00.01 Software Management System.

FTS V1. 02 .11 ISO File Transfer Software.

Compiling and Linking Information

322133-001

This section provides some additional infonnation about compiling and linking programs that
use most OS packages.

When compiling an Ada program that uses the OS, you must specify the location of the OS
package interface files. You do this using a pathname of the fonn:

© 1988 BiiNTM 26 September 1988

2 Release Note for BiiNTM Operating System Manuals

/ lib / module _name/os_library

You can compile Ada programs that make use of OS service calls by attaching OS libraries to (
your local ada_library. The following two libraries are required: \l

/lib/kernel/ada_library

/lib/gcos/ada_library

All the other as libraries also reside in /1 ib modules. The modules contained in / lib are:
ada rts/
bdisk/
bstreamer/
carrier mgt/
chouse/­
cluster svr/
cmsup/ -
cmtest/
comm trace/
cp async/
cp-mgt/
cp=scsi/

ctm/
dist supp/
dod echo daemon/
dod-tftp-daemon/
dod-transp mgt/
envrec/ -
ethernet/
fe/
field access/
forms!
fts/
gcos/
qdp diaq/

gsO hw
gsOhdlcline/
gsOlandriver/
has/
hdlc/
hsappl/
ieee8023/
iso echo daemon/
iso-transp mgt/
kernel/ -
linkcall/
nodeconfig/

nulldev/
pipe/
print inpmgt/
psmgt!
pss/
sct/
sms/
sort merge/
ssm/-
stream io/
term inpmgt/
termlnfo/
ux/

Each of these modules contains some or all of the following OS libraries:
views - A directory containing the views for the service, named

view.

image - The binary object image of the package.

vt abl e s - A directory containing one vtable file per view per
domain. A vtable file dermes the procedure entry
points to be included in a view.

viewdirs - A directory containing one view directive file for
each view supplied by the service.

ada _1 ibr ary - An optimized Ada library that provides the
Ada interfaces to the service.

inc 1 ude - A linker library containing the C header files needed
to compile and link a C program that uses C system
bindings to call as function calls.

s r c - package specification source files

lib - alias for ada_library/lib

kernel has one additional library, clib, a C library.

General Caveats

This section lists major as features that are not yet implemented:

1. as services are not distributed.

2. Subtransactions are not supported. Attempting to start a subtransaction raises
System_Exceptions.operation_not_supported.

26 September 1988 322133-001

/

l
\

Release Note for BiiNTM Operating System Manuals

3. The clustered and hashed fue organizations are not supported. Hashed indexes are not
supported.

4. The OS does not support fault tolerant hardware, that is, hardware configured for fault
checking or continuous operation.

5. The report selVice is not implemented.

6. IPI disks are not supported.

7. Basic tape devices are not supported (although basic streamer devices are supported).

3

322133-001 26 September 1988

4

26 September 1988

Release Note for BiiNTM Operating System Manuals

322133-001

I
\

Release Note for BiiNTM Operating System Manuals 5

BiiNTM/OS Guide Release Information

322133-001

This manual is about 65% complete. It does not describe:

The clearinghouse

Volume set management

Basic disks, streamers, or tapes

Guidelines for writing utilities

U sing time or timed requests

Resource control or accounting

Several types of advanced type managers

Adding device drivers.

Throughout Several reviewers remarked that excerpts from examples don't always
show enough context. If an excerpt is confusing, check the complete ex­
ample listing in Appendix A. We will be expanding our excerpts in many
cases in subsequent releases.

Throughout Some of the examples are tested. All of them have been compiled, though
with an earlier version of the Ada compiler than the version in this system
release.

11-3

IV-4

If an operation begins to store a master AD for an object, but fails, then no
master AD can ever be stored for the object. One way this can happen is to
store the master within a transaction and then abort the transaction. Abort­
ing the transaction does undo the storing of the AD, but still no master AD
can ever again be stored for the object A particular case to avoid is:

begin
Directory_Mgt.Store(s~_name, x);

exception
when Directory Mgt.entry exists =>

Directory Mgt.Delete(s~ ~);
Directory-Mgt.Store(s~~, x);

end; - -
Passive_Store_Mgt.Update(x);

This code will not work! The first Store tries to store the master AD and
fails; the subsequent store works but stores only an alias. The Update
call will raise Passive Store Mgt. no master AD. Such a code
fragment can be rewritten as follows: - -

begin
Directory_Mgt.Delete(so~_~);

exception
when Directory Mgt.no access =>

null; - -
-- There was nothing to delete.

end;
Directory Mgt.Store(s~ name, x);
Passive_Store_Mgt.Update(x);

Several of the illustrations show window shapes that are only possible on
graphic terminals. Windows on character terminals are always as wide as
the screen and are tiled, not overlapping.

26 September 1988

6

IV-4-10

IV-4-15

IV-6K

IV-7-6

VI-I-16

VI-3-3

26 September 1988

Release Note for BiiNTM Operating System Manuals

Figure IV -4-5 is incorrect.

Character display I/O can be used via an opened window even if the win­
dow was opened with another access method.

This Printing chapter now has updated examples from a new version of
Print_cmd_ex (included in this release note beginning on the next
page). Specific changes are:

• An application must specify Device _ Def s . nothing for the
allow parameter on an Open call.

• Ensure that the requested sheet size is within the printer's capability.

A slot in a relative file is not removed if the record it contains is deleted.

Table VI-I-2 should also list the resource exhausted local event.
By default it is enabled. The default handler kills the process.

Figure VI-3-1 is incorrect. There are no processes in queues greater than
priority 15.

322133~Ol

(

(

\

Release Note for BiiNllI Operating System Manuals

Print_cmd_ex Example Procedure
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

with
Byte Stream AM,
CL Defs, -
Command Handler,
Device Defs,
Directory Mgt,
Incident Defs,
Message_Services,
Process Mgt,
Process-Mgt Types,
Spool Defs,­
Spool-Device Mgt,
String List Mgt,
System-;- -
System Defs,
Text_Mgt;

procedure Print cmd ex is

Function:
Defines a command to print from a file or other
byte stream source

History:
12-??-87, E. Sassone:
06-30-88, E. Sassone:

Initial Version
Working Version

Command Definition:

--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*
--*D*

The command has the form:

print
[source=<pathname>]
[on=<pathname>]

The on argument can either be a spool queue or a
printer (for direct printing). The default is a
system standard spooling device. The source
argument will default to standard input.

manage. commands
create. invocation command

define.argument source :type = string
set.lexical class symbolic name
set.maximum-length 80 -
set.value default

end

define.argument on :type = string
set.lexical class symbolic name
set.maximum-length 80 -
set.value default " ..

end -
end

exit

use System;

msg_obj: constant System.untyped_word := System.null_word;

no print device code:
- constant Incident Defs.incident code :=

module - => 0, -
number => 1,
severity => Incident Defs.error,
message_object => msg_obj);

7

322133-001 26 September 1988

8

26 September 1988

Release Note for BiiNTM Operating System Manuals

69 units not supported code:
70 constant Incident Defs.incident code :=
71 module - => 0,
72 number => 2,
73 severity => Incident Defs.error,
74 message_object => msg_obj);
75
76
77 --*D* manage.messages
78
79 no print device: exception:
80 --*D* store :module=O :number=l \
81 --*D* :msg name=name space created code \
82 --*D* :short = \ - - -
83 --*D* "Print Device $p1<on> does not exist."
84
85
86 --*D* store :module=O :number=2 \
87 --*D* :msg name=units not supported code \
88 --*D* :short = \ - - -
89 --*D* "Unit $p1<on> not supported."
90
91 opened cmd: Device Defs.opened device:
92 -- Opened command input device.-
93
94 source: System Defs.text (80) := (80, 0, (others => ' '»;
95 -- Pathname of file-or device to print from
96
97 open source: Device Defs.opened device;
98 ---opened source file or input device
99

100 on device: System Defs.text(Incident Defs.txt length) :=
101 (Incident Defs.txt length, 0, (others => ' '»:
102 I -- Pathname-of spool-queue or printer
103
104 spool_queue: Device_Defs.device:
105
106 print_device: Device_Defs.device:
107
108 sheet size: constant Spool Defs.size t := (80,60):
109 NOTE: Make sure this is within the-capabilities
110 of your printer, otherwise the program will appear to
111 execute successfully but there will be no output.
112
113 open print: Device Defs.opened device;
114 ---opened print_devIce -
115
116 -- buffer variables
117 buffer size: constant System.ordinal := 4_096;
118 buffer: array(l .. buffer size) of
119 System. byte ordinal;
120 bytes_read: System. ordinal;
121
122 begin
123
124 -- Get command arguments:
125
126 opened_cmd:= Command_Handler.Open_invocation_command-processing;
127 Command Handler.Get string(
128 cmd-odo => opened cmd,
129 arg-number => 1, -
130 arg-value => source);
131 Command-Handler.Get string(
132 cmd-odo => opened cmd,
133 arg-number => 2, -
134 arg-value => on device);
135 Command=Handler.Close(opened_cmd);
136
137 uses terminal input if no file specified
138 if source.length = 0 then

322133-001

/
I

\

\

(

\

Release Note for BiiNTM Operating System Manuals

open source :=
Process_Mgt.Get-process_globals_entry(
Process_Mgt_Types.standard_input);

-- standard input from terminal
else

open_source := Byte_Stream_AM.Open_by_name(
name => source,
input output => Device_Defs.input);

end if; -

-- use default queue if not specified
if on device. length = 0 then

Text Mgt.Set(on device,rr/sys/spool qrr);
-- Current name-of default system spool queue

end if;

-- check the rron device rr for spooled or direct
-- printing, else error
spool_queue := Directory_Mgt.Retrieve(on_device);

if Spool Defs.Is spool queue(spool queue) then
-- spool file - - -
print device :=

Spool_Device_Mgt.Create-print_device(
spool queue => spool queue,
pixel-units => false~
print=area => sheet_size);

elsif Spool_Defs.Is-print_device(spool_queue) then
-- direct printing
print device :=

else

Spool_Device_Mgt.Create-print_device(
spool queue => spool queue,
pixel-units => false~
print-area => sheet size,
print=mode => Spool=Defs.page_wise);

RAISE no_print_device;
end if;

openyrint :=
Byte Stream AM.Ops.Open(

dev - => print device,
input output => Device Defs.output,
allow- => Device=Defs.nothing);

read file in 4K chunks

9

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

while not Byte Stream AM.Ops.At end of file(open source)
loop - - - - - -

322133-001

bytes read := Byte Stream AM.Ops.Read(
opened dev => open source,
buffer-VA => buffer' address,
length- => buffer_size};

Byte Stream AM.Ops.Write(
opened_dev => open-print,
buffer VA => buffer' address,
length- => bytes read);

end loop; -

Byte Stream AM.Ops.Close(open source};
Byte=Stream=AM.Ops.Close(open~rint);

exception

when no print device =>
Message Services. Write msg(

msg-id => no print-device code,
param1 => Incident=Defs.message_parameter' (

26 September 1988

10 Release Note for BiiNTM Operating System Manuals

209 typ => Incident Defs.txt,
210 len => on device.max length,
211 txt_val => on_device);
212
213 when Spool Device Mgt.units not supported =>
214 Message-Services.Write msg(-
215 msg-id => units not supported code,
216 param1 => Incident Defs.message parameter' (
217 typ => Incident Defs.txt, -
218 len => on device.max length,
219 txt_val => on_device);
220
221 when Device Defs.end of file =>
222 Byte Stream AM.Ops.Close(open source);
223 Byte=Stream=AM.Ops.Close(open=print);
224
225 end Print_cmd_ex;
226

26 September 1988 322133-001

Release Note for BliNN Operating System Manuals 11

BiiNTM/OS Reference Manual Release Information
This section describes detailed problems or limitations within this OS release. Workarounds
are provided for some problems.

This section is organized by selVice area, selVice and Ada package. See Chapter 2 for a
description of selVices and selVice areas. Only those selVice areas, selVices and packages that
have caveats are listed.

Support Services

Message Service

See the Release Note for BiiNTM Command and Message Guide.

Object Service

1. Passive_Store_Mgt. Copy is not supported for directories. One effect of this limita­
tion is that if you copy or move an executable program that is connected to command
definitions, the connection is lost and must be reestablished. This is because the program's
Outside Environment Object (OEO) is a standalone directory.

2. Passive_Store_Mgt. Set_horne_job is not supported. Therefore, local single­
activation type managers are not supported.

3. Pas si ve Store Mgt. Copy started within a transaction doesn't return claimed disk
space if Abort waS sent from another job.

This is unlikely to occur in most programming applications since the transaction and the
copy occur in the same job. In some applications, a user may surround a copy with the
CLEX commands start. transaction and abort. transaction. In this case, the
transaction is started and aborted in the CLEX job while any file copies are perfonned by
some other job. (Both the BiiN™rox cp command and the CLEX copy. object utility
use Passive_Store_Mgt. Copy.

Passive Store Mgt. Update with alternate rep does not work if invoked
with a page alternate rep that contaiDS one or more data-only pages. If this situation occurs,
an appropriate message is pushed on the caller's message stack and
"System_Exceptions.system_intemal_error" is raised. No damage has been done and the
system will continue to function normally.

Directory Services

Naming Service

322133-001

1. A patbname, when expanded to a full pathname, cannot exceed 256 bytes.

2. Directories do not support logging. The perform_logging parameters to
DirectorY_Mgt.Create_directoryand
Standalone_Directory_Mgt. Create_directory are ignored.

3. Directory_Mgt. Get_name does not read-lock any part of the resulting full pathname.

4. Directories (normal, active, or standalone) do not support the
Pas si ve _Store_Mgt. Copy call. Programs or scripts which have GCOS command
files cannot be copied since the command file is stored in the Outside Environment Object
which is a standalone directory. The program or script itself is copied, but
manage. conunands must be rerun on the program in the new location.

26 September 1988

12 Release Note for BiiNTU Operating System Manuals

5. Customized Name Mgt. Ops and Directory Mgt Rename and Delete opera­
tions on masterentries may fail due to a timestamp conflict if the object in question has
another alias on the same volume set and this alias is locked by a more recent transaction.
In this case, the transaction enclosing the rename or delete needs to be aborted and the
operation should be retried.

6. ID protection sets are currently limited to ten entries. This limits the number of users in a
single group.

I/O Services

Basic 110 Service

1. Byte stream I/O to record-structured files is not supported.

2. Record I/O to stream files is not supported.

Character Terminal Service

1. A character window cannot be opened by more than 64 jobs.

z. Character tenninal windows do not support record I/O.

3. The Character Display AM. Ops . Ring bell call only supports audible alarms,
regardless of the audible parameter's value. if the underlying device cannot produce an
audible alann, then Ring_bell does nothing.

4. The Terminal Defs. window attr. track cursor window output control field
is not supported.-Even if this field IS set to true, theview will not track the cursor.

S. The Terminal_Info. Processyaram_string call does not support
%code if-then-else.

Print Service and Spool Service

1. The Printinfo package, used to describe new printers, is not yet supported.

2. The print service does not provide any infonnation about a printer's physical status (for
example, offline, not ready, no paper). The user must check the printer for such problems.

3. Spooled data can be lost if a printer is switched off or disconnected during printing.

4. Removing a spool queue, other than with remove. spool_queue or
Spool_Device_Mgt. Delete_device, will crash the spooling daemon requiring
reinstallation of the spool service.

S. Invoke the stop. pss utility to safely shutdown spooling before rebooting the system. If
the system is locked up so that this cannot be done, then rebooting crashes spooling, requir­
ing reinstallation of the spool service. PSS may be crashed by a system cold start without
previous shutdown. (The shutdown script includes stopping PSS.)

6. If a small amount of data (less than lK bytes) is spooled into an empty spool queue, then
the spool file immediately disappears from the queue, even though it is not printed or may
not be printed at all (for example, due to an offline printer).

7. Print and Spool Services can service several spool queues each of which can only be con­
nected to a single printer.

26 September 1988 322133..001

Release Note for BiiNTM Operating System Manuals 13

322133-001

Print Priority Evaluation of Several Spool Queues:

If you have created several spool queues equipped with the same print priority be aware of this
Spool SelVice behavior:

Current documentation states that in such a case, spool queues of the same priority are spooled
out in the following manner:

first file from first queue,
first file from second queue, ... ,
first file from n-th queue,
second file from first queue,
second :file from second queue, ... ,
second file from n-th queue,
third fue from first queue, etc.

But Spool SelVice now spools out in the following manner:
first file from first queue,
second file from first queue, ... ,
n-th file from first queue,
first file from second queue,
second file from second queue, ... ,
m-th fue from second queue, etc.

Spool Queue Print Delay:

Spool SelVice internally defines an intelVal of four hours during which spooling out requests
are directed against spool files ready for printing.

Accordingly, a spool queue being equipped with a print delay of class time behaves as follows:

Beginning with the time of the day specified for the print time, Spool SelVice spools out all
spool files ready for printing during four hours. After print time plus four hours, no new
spooled in data are printed.

This also holds for a spool queue with a print delay of class size: If data are spooled in before
the print time specified is reached, only those spool files smaller than the size limit are im­
mediately printed. Four hours after the beginning of the print time, all spool files ready for
printing are spooled out. After print time plus four hours, only those spool files smaller than
the size limit are submitted to a printer.

Volume Space Exhaustion:

If during spooling the exception volume_space _exhausted is raised, the spool queue affected
cannot be removed. The OS raises this exception even if the AD to the spool queue affected is
simply retrieved. System Administrators should ensure that the volume set on which a spool
queue is installed has enough blocks free for the spool files to be created.

Printer Error Handling:

In case of errors on the Pf89 printer such as power failure, low paper, out of ink, or discon­
necting of the cable, switch the printer off-line and on-line again. This causes the device driver
to receive an XON character.

Printer Configuration Support:

26 September 1988

14 Release Note for BiiNTM Operating System Manuals

Currently Printer Management does not support the Detach and Stop operations of the
configuration attribute. So to deconfigure one or more printers, modify the System/U ser seo
and then perfonn a warmstart.

Native Mode Printing:

Applications doing native mode printing (spooled or directly) are constrained by the following
limitations:

• Although on an "Open", Spool SelVice checks the print area size and position against the
size of the currently mounted paper (exception device_inoperati ve), it is still pos­
sible to Write on the cylinder in native mode.

• Linewrap and scroll and all other page output attributes are not evaluated in native mode.

• If a native mode printing application sets top of fonn (via an escape sequence), the printer
device manager has no chance of resetting the correct top of fonn.

If you print characters in native mode, they get printed on the paper only if a FF or a LF or a
CR is issued. This is a common printer property (although often not documented).

Authority List Protection of Spool Service Objects:

Spool SelVice supports authority list protection of the different Spool SelVice objects. The
material presented in this section are more usage suggestions than caveats.

The application (utility) creating a spool queue should take into account that Spool SelVice
protects the spool queue by the authority list found in the process globals of the application
(utility) invoking the Install function of the Spool_Queue_Admin package. Accord­
ingly, the spool queue creator should have registered all users wanting to make use of that
spool queue with modify rights (for direct or spooled writing) and use rights (for inquiries) in
the authority list of his process globals:

• Create an authority list via the manage. authority utility granting use and modify
rights to all potential users of the spool queue.

• Register the authority list created in your process globals by the command
set.variable pglob.authority_list <new_authority_list>
: global.

• Alternatively, modify the spool queue's protecting authority list after you have created the
spool queue. On spool queue installation, Spool SelVice creates a standalone directory
within which you'll fmd an entry named. <spool_queue_basename> _AL. If you
modify this authority list (e.g. by granting "world" for "um" access), the user(s) to register
in this list with use and/or modify rights are allowed to deal with that spool queue. But
beware that you do not remove "system" (or any of system's rights) from that authority list.

• Spool Service registers the process doing the install as "Spool Queue Administrator". The
Spool Queue Administrator itself should make sure to have modify rights and use rights on
the printer(s) to be connected with the spool queue.

• When a user having use rights on the spool queue calls
Spool_Queue_Admin. Get_rank_list, he gets ADs with use rights of all spool
files ranked. If Spool SelVice determines the caller to be either the Spool Queue Ad­
ministrator or the owner of the spool file, that is, the application having created the spool
ftIe on an Open of a spooled print device, the corresponding spool ftIe AD(s) additionally
will get modify rights. According to the type rights necessary to delete a spool file the
owner of the spool file or the Spool Queue Administrator can remove a spool file from the
spool queue rank.

26 September 1988 322133-001

Release Note for BiiNTY Operating System Manuals 15

322133-001

Interrelation of BiiNTM lUX and Spool Service:

During the installation of Spool SeIVice, install. pss activates a (revised) User SCQ.
Within the appropriate SCQ description file there is a line that leads to the start of BiiNTM lUX.
Whether or not Spool SeIVice successfully is booted in case that line is omitted is undeter­
mined.

Spool Service Installation and User Access:

The user (1D and authority list) installing Spool SeIVice by invoking install. pss
represents "Spool SelVice". The user installing Spool SelVice must be granted access to create
entries in 1h:e Imsg, 1 sys [I lib], and Itdo directories. Hence, it is strongly recommend
that Spool SeIVice be installed as s y stem.

The system user should never remove the Spool SeIVice configuration object stored under
1 sysl spool, otherwise Spool SeIVice won't be usable. The same applies if the Spool Ser­
vice ID (system) and/or all access rights are removed from public objects such as spool
queue, printer, message file).

Print and Spool Service Interfaces: Following is a list of the Print and Spool SeIVices
external interfaces and AM support with comments pn the current support.

Package Spool_Defs:

Due to missing support for printinfo and printer emulation, Is _ emulation and
ISJ'rintinfo always return false.

Packagespool_Device_Mgt:

Get_spool_device_attr_ID returns a retyped instance of
Extra Attributes.attribute 1. - -
Package Spool_Queue _Admin:

Due to the lack printinfo support, Install does not evaluate a printinfo reference and
GetJ'rintinfo returns a System. null_word.

Package Printer_Admin:

SetJ'rinter_type accepts only '0' for a OENICQM printer or a 'P' for a Pr89 printer.

Access Method Support for Spooled and Direct Printing:

Previous documentation stated that during spooling data into a spool file, Print and Spool
Services destroy the spool fue and close the print device when the exception
File_Defs. volume_space_exhausted is raised. This functionality is not fully sup­
ported, that is, only the exception is propagated but the spool file is not destroyed nor is the
print device closed.

The Character Display AM is not supported for native mode print devices in any print mode.

Character_Display_AM.Ops.Set_enhancementand
Character_Display_AM.Ops. Set_region_enhancement are no-ops in both print
modes supported.

26 September 1988

16 Release Note for BiiNTM Operating System Manuals

Filing Service

1. For strucmred files, the unordered file organization is Recommended.

2. Disk space allocated to open temporary files is lost if the system crashes. Disk space
allocated to open stream files may also be lost if the system crashes.

3. An unnamed file created within a transaction cannot be removed if the transaction times
out.

4. Files cannot contain records longer than 4,000 bytes for unordered or relative files, nor
records longer than 60,000 bytes for sequential files.

5. File buckets must be 4K bytes. The bytesyer_bucket field in the logical file
descriptOr, supplied when creating a file, is ignored.

6. Long-term file logging is not supported. The
File_Admin .logical_file_descr .long_term_logging field is ignored.

7. File audit trails are not supported. The audi t_ trail_file parameter to
File_Admin. Create_file is ignored.

8. If an onened structured file is destroYed in a tran~action and the system crashes before the
- -

transaction is resolved, then broken file structures can result. To avoid this problem, don't
use Directory_Mgt. Delete or Passive_Store_Mgt. Destroy to destroy struc­
tured files within transactions. Instead, use a Destroy_file call.

9. Index keys cannot contain long real fields. For string fields, the t block type or the
t_string type with or without the pi_varying property can be used. However, the
t_string type with the pi_header property cannot be used. These types and
properties are defined in the Data_Definition_Mgt package.

10. If a Passive_Store_Mgt. Copy operation on a file fails, then disk space allocated for
the target file may not be reclaimed. Two cases in which disk space is not reclaimed are:

• The destination volume set becomes full during the copy operation.

• The copy operation is aborted because an enclosing transaction is aborted, and the job
that aborts the transaction is not the same job that started the transaction. Specifically,
avoid starting a transaction from the command line with start. transaction and
then doing a copy operation within that transaction.

11. Records cannot contain multivalued fields.

12. There are three ways to insert records into a relative file: last (insert at EOF), first (use first
available slot on the free list), and by a specific record number (by first using
Setyosition to select a record slot). The "fIrSt" and "specific record number" tech­
niques cannot both be used with the same file. Mixing these two techniques will have
undefined results.

13. The Field_Access package does not support conversion between base types.

14. Field_Access does not support initializing fields with default values.

15. Field_Access does not check constraints.

16. These File_Admin calls are not supported:

Assign new audit trail file
Deactivate-index- -
Get file status - -
Reorganize_file
Reorganize_index

26 September 1988 322133-001

Release Note for BiiNTM Operating System Manuals 17

17. The File Admin. Build index call requires its file parameter to be an empty and
nonopen fiie. In other words-:-an application should build all indexes immediately after
creating a file and before inserting any records into it.

18. The File Admin. Copy file call write-locks (exclusively locks) both the source and
target files:-Copy_file also ignores its shrink and contiguous boolean parameters,
behaving as if both are false.

19. File Admin. Empty file cannot be called within a transaction. A workaround is to
pop the transaction stackJust before calling Empt y _ file and then push the popped trans­
actions back onto the stack after the call.

20. File_Admin. Get_index_status does not report num_free_buckets.

21. Positioning of blocks in the reverse direction has not been fully tested for the
Join_Interface package.

22. Record AM. Ops . Insert control record does not raise
Device -Defs . length e;-ror when the record length is less than the minimum
length or greater than the maximum length.

23. Record AM. Ops . Unlock does not raise an exception if it is called for a non-existent
record. -

24. A second Record AM. Ops. Read call to read the current record after a successful
Setyosition can raises Record_AM. invalid_record_address, if the file
was created with xm _locking true.

25. After a Record_AM.Ops. Setyosition call with an invalid record ID, a
Record_AM. Ops . Read call to read the current record fails with an unspecified excep­
tion.

26.TheSort Merge Interface.Special collation sort mergecallomy
supports the t_block type defined by DataYefinition=..Mgt.-

27. Record AM. Truncate omy operates in the default mode: EOF is the beginning of the
rue and all records are removed. (File Admin. Empt y file perfonns the same
function.) --

Data Definition Service

1. Data Definition Mgt does not support binding of message names to message iden-
tifiers:- -

2. Data_Definition_Mgt does not support binding of subprogram names to subprogram
references.

Volume Set Service

322133-001

1. Dismounting a volume set can cause a delayed system crash in some cases. Typically, the
crash is caused because Memory Management tries to page in a page of a partially­
activated object that resides on the dismounted volume set. Since the page-in fails,
Memory Management crashes the system. No data is corrupted and the system will operate
nonnally when it is rebooted.

2. The system needs to be rebooted after one or more volume sets have been restored from
backup tapes. IT this is not done, some infonnation on the newly restored volume sets may
not be accessible.

3. Don't use the system volume set for application files and objects. Filling the system
volume set and then crashing causes rebooting to fail, requiring a complete system rebuild.
Another good reason to do all work on other volume sets is that it is impossible to backup
the system volume set and later restore it.

26 September 1988

18 Release Note for BiiNTM Operating System Manuals

4. Volume space allocated to temporary files is not reclaimed after a system crash and restart.
Because of this, even the system administrator should avoid routinely logging in as
system, because temporary files associated with CLEX will then be created on the system ~
volume set, causing space to be lost if the system crashes and is restarted.

5. A volume cannot contain more than 128M bytes.

6. These Volume_Set_Admin calls are not supported:

Copy_volume_set
Empty_volume_set
Expand_volume_set
Move volume set - -

7. The VSM Disk Admin. Rename disk call is not available.

Human Interface Services

Command Service

See the Release Note/or Gemini Command Language Executive Guide and the Release Note

Form Service

See the Release Note/or Form Services.

Program Services

Concurrent Programming Service

1. Since the system administrator cannot limit the number of concurrent jobs, a large number
of jobs may consume all of virtual memory and the system may lock up. The OS code that
is invoked to kill a job may be on disk and unable to be swapped in. The system must be
rebooted.

2. The interactive attribute for pipes that are used in communications between EMACS and
programs executing in shell windows is now supported. An additional boolean parameter,
is_interactive has been added to Pipe_Mgt. Createyipe. When set to true,
the new pipe is interactive.

function Create pipe (
max size: - System. ordinal := 0;
DDe!: Data Definition Mgt.node reference :=

Data Definition Mgt.null node reference;
is interactive: boolean:= false)- --

return pipe_AD;

Program Building Service

1. It is possible to delete a program while it is executing but doing so may result in unpre­
dictable behavior.

Type Manager Services

Configuration Service

1. OS type managers that support the configuration attribute often have incomplete implemen­
tations of that attribute. Many type managers don't fully support these
Configuration.Opscalls:

26 September 1988 322133-001

(

\

Release Note for BiiNTM Operating System Manuals 19

Detach
Get creation-parameters
ModIfy
Scan
Stop

Transport Service

1. The Virtual Circuit AM package does not support expedited data or negotiated con-
nection establiShment. -

Device Services

Device Driver Service

1. The OS does not support IPI disk drives.

2. The OS driver for basic streamers does not retension the streamer tape. See the
manage. tape utility description for infonnation on how to retension the tape.

Hardware Interface Services

Hardware Service

1. Error reports logged in the SCT error log are not time-stamped.

2. PS Mgt. Retrieve raw PS can be used to retrieve an unintetpreted image of the data
in the EEPROM. All other cans in P S _Mgt are not supported.

3. seT Access. Get hw info returns a 0 or incorrect value for the starting address of
nomnterleaved memory. -

4. Test_Support. Test_BXU only supports these subtests: error_report, PRe and
parity.

5. Test_Support. Test_CP is not supported.

6. Test_Support. Test_memory_controller only uses Test_BXU to test the
BXUs on BXU-based memory boards.

BliNTM/OS Reference Manual Caveats

This section lists documentation caveats for the BiiNTM lOS Reference Manual. This manual is
about 85% complete. Packages are listed in alphabetical order.

Character_Display_AM

322133-001

Additional information about menus for character tenninal windows includes:

• Up to sixteen menu groups can be associated with a window.

• A menu group can contain up to sixteen menus. However, the sums of the lengths of the
menu titles plus five characters for each menu cannot exceed 80 characters. This ensures
that the title bar can fit on one line.

• A menu group title bar is displayed in the first row of the terminal screen if the active
window has an enabled menu group. The menu group title bar contains the title of each
menu plus a letter that can be used to select the menu.

• The maximum number of menu items per menu is either 21 or the number of screen rows
minus three, whichever is smaller.

26 September 1988

20 Release Note for BiiNTM Operating System Manuals

• Menu item text length cannot exceed 65 characters.

Command Handler

The Trigger_reclamation call requires a local AD with read and write rep rights for the
countable object.

Command_Handler. Get_line raises CL_Defs. illegal_syntax (symbol not
complete) rather than Device_Defs. end_of_file if a 1\0 is entered from the tenninal.

File Admin

A minor violation of Level 3 consistency is possible: if a process attempts to read a record that
does not exist, and if the record is then inserted by a concurrent process, and then the first
process attempts its read again, the inserted record is visible. This feature of Level 3 consis­
tency occurs because the "slot" or "10" of a nonexistent record is not locked if such a read is
attempted.

File Admin. Save unnamed file can raise
n....": "',.,...... C" ~.,.,.."'" "A'~"" ~ ~_ "'J\T\ ,n.~.n..,....,.,..., .. ;,n.. ; J...,.". .t;".",.11""""'.,.,,:,.. ;"""',.,..1 "".,..,f; ,...".A""It .. 1II.....,.,"""~ -----. -_- --- -_--~ _ __ _- ---_ .. - _ .. _-1:'-_ - ... _ - ,,· c-.. _,-"l.,.,._ ,."._.

File Admin.Create unnamed file
Transaction Mgt.Start transaction
File Admin.Save unnamed file
Transaction Mgt~Abort transaction
Transaction-Mgt.Start-transaction
File Admin.Save unnamed file - - -

This happens because if an operation begins to store a master AD for an object but fails, then
no master AD can ever be stored for the object. This happens if the master AD is first stored
within a transaction that is aborted.

Record AM

Many calls in this package can raise ODO_using_different_transaction, but this
exception is not yet listed. There are some other errors in the lists of what exceptions can be
raised.

Lock all cannot raise Device Defs. device in use. - -
The system-defined lock escalation counters are 124 locks for Insert and Read, and 248 for
Update and Delete.

Record_AM. Ops. Truncate cannot be used to truncate a sequential file beginning at a
particular record ID.

TM_Transaction_Mgt.Transaction_Resolution

The Notes section for Commit transaction was truncated. This section should read:

26 September 1988 322133-001

(

Release Note for DiiNN Operating System Manuals 21

Appendix A

A type manager should not release any locks or resources associated
with a transaction until its Conunit_transaction procedure is
called.

During post-crash recovery, a type manager may be called to commit a
transaction that it has no knowledge of. In such a case,
Conunit_transaction should return nonnally.

The type manager must be able to commit any prepared transaction.

This call should not raise any exceptions.

The last two steps in Section AA should be corrected to:

1. Make the appropriate directory one of the directories to be searched for include flIes by the
cgcommand:

2. clex-> Iset.variable cg.incldir ($cg.incldir /lib/kernel/include) \1
CONTINUE CMD: I : global 1

3. Place this line in each C source file that uses the OS package:

#include <Access_mgt.h>

Additional BIiNTM/OS Reference Manual Documentation

322133-001

The following Hardware Interface SelVice and FrS packages are contained in V 1.01.00 BiiNTM
Operating System but are not in the 7/88 BiiNTM/OS Reference Manual:

FT Support
FT-Testing
KMDS Defs
SCT Access
SSM-Access
SSM-Defs
Test Support
FTS Admin
FTS-Config Defs
FTS=Transfer

Not all of the procedures and functions in the Hardware Interface SelVice packages function as
intended. A table accompanies each of the packages affected.

The BiiN'TM/OS Reference Manual chapters for these packages are attached to this release note.
Please add them to your BiiNTM/OS Reference Manual.

NOTE

SSM_Defs and KMDS_Defs are only used by privileged (trusted) users.

26 September 1988

22 Release Note for BiiNTM Operating System Manuals

Procedure/Function Implemented

Set MC toggle
Set-FRC split
Set=transient_waiting-period
Attach bus
Detach-bus
Marry processor module
Divorce-processor_module

yes
yes
no
no
no
no
no

Procedure/Function Implemented

Enable FRC testing
Test_parity_and_BERL

~""T A ____ _ -- . -,.,---..,..,
Procedure/Function

yes
yes

yes

Implemented

Retrieve software entry
Set system monitor parameters
Retrieve cardcage entries
Retrieve-device entry
Get hardware info

yes
yes
yes
yes
yes - -

Get error log
Reserve hw entries
Release-hw-entries

Procedure/Function

Echo
Read revision
Read-UID
Read-TOD
Read-SSM Config
Write LED
DC Control
Blower control
Read error log
Read-SSM inputs
Send:toJ:.jo

26 September 1988

yes
yes
yes

Implemented

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

Comments

none.
none.
none.
none.
none.
none.
none.

Comments

none.
Due to BXU bug, this may
cause a system crash.
Due to BXU bug, this may
cause a system crash.

Comments

none.
none.
none.
none.
Value of non-interleaved
memory is wrong.
Errors are not time stamped.
none.
none.

Comments

Single SSM only.
Single SSM only.
Single SSM only.
Single SSM only.
Single SSM only.
Single SSM only.
Single SSM only.
Single SSM only.
Single SSM only.
Single SSM only.
Single SSM only.

\

Release Note for BiiN
TI

• Operating System Manuals

322133-001

Procedure/Function

Test GDP
Test-CP
Test BXU

Test memory controller
Test-memory-
Set board LED
Set-diagnostic mode
Set-normal mode
Map~rocessor_ID_to_CP

Implemented

yes
no
yes

yes

yes
yes
yes
yes
yes
yes

Comments

none.
Null procedure.
Only BCL tests from
FT Testing supported.
Only with system in
diagnostic mode.
BXU-based memory boards only.
BXU-based memory boards only.
none.
none.
none.
none.

23

26 September 1988

24 Release Note for BiiNTM Operating System Manuals

The following Hardware Interface Service and FrS packages are attached. Please add them to
your BiiNTM IDS Reference Manual.

FT Support
FT-Testing
KMDS Defs
SCT Access
SSM-Access
SSM-Defs
Test Support
FTS Admin
FTS-Config Defs
FTS-Transfer

26 September 1988 322133--001

(

Security

Calls

Summary

FT_Support

Provides support for managing Fault Tolerant (Ff) hardware functions.

Access to this package is restricted to callers carrying a privi1e~ed 10. See your System
Administrator for access.

Attach bus
Sends an attach bus command to an AP-bus agent.

Detach bus
Sends a detach bus command to the AP-bus agent.

Divorce-processor_ffiodule
Divorces a married processor and updates the SCf.

Marry-processor_ffiodule
Marries a shadow processor module to a primary processor module.

Set FRC split
Sets the PRC SPLITTING ENABLE bit in the PRC Splitting Control (FSC)
register of the AP Bus agents.

Set Me toggle
- - Enables the TOGGLE MASTER CHECKER bit in the PRC register of the

module's AP Bus agents.

Set_transient_waiting-period
Sets the MAXTIME register of every AP Bus agent in a cardcage.

Each procedure in this package perfonns a hardware Ff function on one or more modules in a
cardcage. FT _Support provides the first level of abstraction away from the hardware level
for Ff operations. These routines manipulate fault tolerant hardware.

All of the procedures in this package automatically update the System Configuration Table
(SCf) when necessary.

PRELIMINARY

Exceptions
not FReed

The system cannot perfonn an operation because one of the target modules is not
running as an FRC module.

module is QMRed
- The system cannot perfonn an operation because one of the target modules is

running as a QMR (married) modules.

FT.Support.operation failed
The system cannot complete an operation. This condition usually indicates that
one of the components in a target module will not respond to an Inter-agent Com­

-mand (lAC).

cannot be married
The system cannot marry two modules. For example, a primary processor module
that is running as the core module cannot marry a shadow processor module run­
ning as a noncore module.

one bus system
- - Failed an attempt to perfonn a detach or attach bus operation in a single-bus

system. A single-bus system only has one AP Bus per backplane.

PRELIMINARY

procedure Attach bus(
bus: KMDS Defs.one bit field;
backplane: KMDS-Defs.cardcage ID rep '= KMDS_Defs.sys);

pragma outerface(VALUE, Attach_bus);-

Parameters

bus

backplane

Operation

B us to be attached.

Cardcage location of the bus.

Sends an attach bus command to an AP-bus agent.

Attach bus

This procedure updates the System Configuration Table (SCf) and initiates an error report.
The agent is specified by bus and backplane.

Notes

You can only use this procedure in 2-bus systems.

Exceptions
one_bus_system

FT.Support.operation_failed

SCT Access.not in SCT - - -

PRELIMINARY

I Detach_bus I .
procedure Detach bus(

bus: KMDS Defs. one bit field;
backplane: KMDS-Defs.cardcage ID rep := KMDS_Defs.sys);

pragma outerface(VALUE, Detach_bus}; -

Parameters

bus

backpla~e

N arne of Bus to detach.

Location of bus (system or extension cardcage).

Operation

Notes

Sends a detach bus command to the AP-bus agent.

The command deactivates the bus specified by bus and backplane. It updates the scr and
initiates an error report.

You can only use this procedure in a 2-bus system.

Exceptions
one_bus_system

SCT Access.not in SCT

SCT_Access.reserved_by_others

PRELIMINARY

procedure Divorce processor module (
target: KMDS-Defs.logical ID rep);

pragma outer face (VALUE, Divorce_processor_module);

Parameters
target ID of module to divorce.

Operation

Divorces a married processor and updates the scr.
Divorcing implies the separation of one AP-bus system from another or the splitting of a
two-bus system into a one-bus system.

Exceptions
SCT Access.not in SCT

SCT_Access.reserved_by_others

module not married

PRELIMINARY

I Marry-processor_module

procedure Marry processor module (
primary module: KMDS-Defs.logical 1D rep;
shadow module: KMDS-Defs.logical-1D-rep);

pragma outerface(VALUE, Marry_processor_module);

Parameters
primary module

- ID of designated primary module.

shadow module
ID of designated shadow module.

Operation

Marries a shadow processor module to a primary processor module.

Marriage implies the union of one AP-bus system to another or the creation of a two-bus
system from two one-bus systems. After the marriage, this command enables the TOGGLE
PRIMARY SHADOW bit and updates the SeT.

Exceptions

Ff _ Support-6

SCT Access.not in SCT - -
SCT_Access.reserved_by_others

cannot be married

(~

(

PRELIMINARY

procedure Set FRC split(
target: - KMDS_Defs.logical_ID_rep;
backplane: KMDS_Defs.carctcage_ID_rep.- KMDS_Defs.sys;
enable: ' boolean:= true);

pragma outer face (VALUE, Set_FRC_split);

Parameters

target

backplarie

enable

Operation

Logical ID of module to set master checker to toggle.

AP-Bus backplane target resident.

If true, enable FRC splitting. If false, disable FRC splitting.

Sets the FRC SPLITTING ENABLE bit in the FRC Splitting Control (FSC) register of the AP
Bus agents.

target designates the module.

Exceptions
not FReed

module is_QMRed

SeT Access.not in seT - - -

PRELIMINARY

procedure Set MC toggle(
target: - KMDS Defs.logical ID rep;
backplane: KMDS-Defs.cardcage ID rep :=
enable: boolean := true); - -

pragma outerface(VALUE, Set_MC_toggle);

Parameters

KMDS_Defs.sys;

target

backplane

enable

Logical ID of module to set master checker to toggle.

AP-Bus backplane target resident.

If true, enable MC toggle. If false, disable MC toggle.

Operation

Enables the TOGGLE MASTER CHECKER bit in the FRC register of the module's AP Bus
agents.

target designates the module.

Exceptions
module is_QMRed

not FReed

seT Access.not in seT - -

Fe _ Support-8

(

(
\

PRELIMINARY

procedure Set transient waiting period(
max time:- KMDS Oefs.four bit field;
backplane: KMDS-Oefs.cardcage-ID rep := KMDS Defs.sys);

pragma outerface(VALUE, Set_transient=waiting_perIod);

Parameters

max time Timing value for MAXTIME register.

backplane Cardcage in which to change MAXTlME registers.

Operation

Sets the MAXTIME register of every AP Bus agent in a cardcage.

The register is set to the value in max _time. This procedure does not write the MAXTIME
TEST bit. As a result, this procedure does not allow you to test the MAXTlME counter. See
the BUn Hardware Reference Manual for infonnation about the MAXTlME counter.

Exceptions
FT.Support.operation_failed

SCT Access.not in SCT

Security

Calls

Summary

PRELIMINARY

Provides operations used for latent fault testing.

Access to this package is restricted to callers carrying a privileged ID. See your System
Administrator for access.

Enable FRC Testing
- SetS the TESTING ENABLE bit in the test detection register.

Test error report
- Tests the priority circuits in the fault handling logic.

Test-parity_and_BERL
Tests the parity checking logic of the AP bus.

This package provides operations used for latent fault testing. Fault tolerant operations must
be aware of which CPUs are operating as a shadow/primary or master/checker CPU. They
must also know on which AP bus the boards are operating and must satisfy certain test con­
ditions.

Exceptions

cannot run test
- caiiDot set up to run test.

Declarations

I agent_locations

type agent locations is(
shdw checker busO,
shdw-checker-bus1,
shdw-master busO,
shdw-master-bus1,
prim-checker busO,
prim-checker-bus1,
prim-master busO,
prim=master=bus1);

for agent locations
shdw checker busO
shdw-checker-bus1
shdw-master busO
shdw-master-bus1
prim-checker busO
pr~m=checker~bu~l
t-'J...J..lll 11lO"\"CJ.. JJ\.I.,v

prim=master=bus1

use

PRELIMINARY

=> 2#000#,
=> 2#001#,
=> 2#010#,
=> 2#011#,
=> 2#100#,
=> 2#101#,

=> 2#111#);

Lists all of the possible logical locations of an MCU or a BXU AP-Bus Agent in a logical
module. The following list interprets the bit positions for this representation:

bit 0 Indicates the AP-bus component.

bit 1

bit 2

Indicates master or checker, 0 = checker, 1 = master.

Indicates primary or shadow, 0 = shadow, 1 = primary.

Enumeration Literals:

shdw checker busO
- - Shadow Checker on AP-Bus O.

shdw checker bus!
- - Shadow Checker on AP-Bus 1.

shdw master busO
- - Shadow Master on AP-Bus O.

shdw master bus!
- Shadow Master on AP-Bus 1.

prim checker busO
- - Primary Checker on AP-Bus O.

prim checker bus!
- - Primary Checker on AP-Bus 1.

prim master busO
- - Primary Master on AP-Bus O.

prim master bus!
- - Primary Master on AP-Bus 1.

PRELIMINARY

type agent_test_list is array (agent_locations) of boolean;

Physical components within a logical module to test.

test all: constant agent_test_list := (others => true);

Available AP-Bus agents to test.

type agent_test_results is(
not run,
passed,
no response,
faIled) ;

for agent_test_results'size use System.storage_unit;

Possible test results for each physical component.

Enumeration Literals:

not run

passed

no_response

failed

Test was not run on component.

Component passed test.

Component did not respond to lAC which initiated test

Component failed the test

type test_results is array(agent_locations) of agent_test_results;

pragma pack{test_results);

PRELIMINARY

procedure Enable FRC Testing(
module 10: KMOS-Oefs.logical 10 rep);

pragma outerface(VALUE, Enable_FRC_Testing);

Parameters

module 1D Logical ID of module on which to enable testing.

Operation

Notes

Sets the TESTING ENABLE bit in the test detection register.

The FRC circuits are self-checking whenever this bit is set. There is no need for any special
test sequences to check their operation. Once enabled, the FRC circuits continue to check
themselves until an error report turns off the TESTING ENABLE bit. Any error report turns
off the TESTING ENABLE bit and disables FRC testing. See the BUN Hardware Reference
Mnnunl for ;nfonn~t;on ~hnnt thp tp~t tiptpl't;on rPo1(!tpr

- -Q --- -

This procedure modifies the contents of the COM Register. The FRC circuits use the value in
this register when they check themselves. See the system monitor information in the BUN
System Administrator's Guide for COM register information.

Exceptions

Ff_Testing-4

KMDS_Defs.unresponsive_target

FT_Support.operation_failed

PRELIMINARY

procedure Test_error_report(
module ID: KMDS Defs.logical_ID_rep;
passed: out boolean;
agent results: out test results;
agents to test: agent test list := test all);

pragma outerface(VALUE, Test=error_report); -

Parameters

module ID

passed

Address of target AP-Bus agent(s).

If true, all agents passed test.

agent results
- Test results for each physical component.

agents to test
- - List of agents to be tested.

Operation

Tests the priority circuits in the fault handling logic.

In addition, it corrupts the parity comparison in the long form error report receiver, which
results in an Error Reporting error. It corrupts the comparison of the two messages sent within
an error report, which also results in an Error Reporting error. See the BiiN Diagnostic User's
Guide for information about error reporting. The returned parameter is true if the test suc­
ceeds, and false if the test fails. You can only use this test for testing BXUs and MCUs.

Exceptions

KMDS_Defs.unresponsive_target

FT_Support.operation_failed

PRELIMINARY

procedure Test-parity_and_BERL(
module ID: KMDS Defs.logical ID rep;
passed: out boolean; - -
agent results: out test results;
agents to test: agent test list := test all);

pragma outerface(VALUE, Test=parity_and_BERL);-

Parameters

module ID

passed

Address of target AP-Bus agent(s).

If true, all agents passed test.

agent results
- Test results for each physical component.

agents to test
- - List of agents to be tested.

Operation

Tests the parity checking logic of the AP bus.

The package tests both parity trees of the parity checking logic of the AP bus. This operation
also tests BXUs and MCUs. Since this test causes error reports, it also checks the functionality
of the BERL. If the returned parameter is true, the test was successful; false if the test fails.

Exceptions
KMDS_Defs.unresponsive_target

FT_Support.operation_failed

Security

Summary

PRELIMINARY

KMDS Defs

Contains basic deftnitions that the System Monitor, the Secondary Bootstrap Loader, and the
Operating System need to operate.

Access to this package is restricted to callers carrying a privileged ID. See your System
Administrator for access.

This package contains basic definitions used by the System Monitor, the Secondary Bootstrap
Loader, and the Operating System. Changes to the types defmed in this package may affect
any or all of the systems listed above.

KMDS Defs-!

PRELIMINARY

Declarations

I string_range

subtype string_range is System.ordinal range 2 .. 255;

In general, using Ada strings causes the compiler to allocate the data from heap (= object
allocation), requiring system software support. Hence, the System Monitor has to define its
own string type in order to make sure all allocations can be done on the stack. Note, the
discriminan~ in fix_length_string is constrained, hence the compiler does not need to worry
about worst case allocation «».

type fix length string(
len:-string=range) is

val: seT Types.char array(l .. len);
end record;- -

pragma access_kind (fix_string_VA, virtual);

for fix length string use
record -

len at 0 range 0 .. 31;
end record;

(
I

(
\

PRELIMINARY

subtype one_bit_field is System.ordinal range a .. 16#1#:

1 bit field.

subtype two_bit_field is System.ordinal range a .. 16#3#:

2 bit field.

subtype three_bit_field is System. ordinal range a .. 16#7#:

3 bit field.

subtype four_bit_field is System.ordinal range a .. 16#F#:

4 bit field.

KMDS _ Defs-3

PRELIMINARY

subtype five_bit_field is System. ordinal range 0 .. 16#lF#:

5 bit field.

subtype six_bit field is System. ordinal range 0 .. 16#3F#:

6 bit field.

subtype seven_bit_field is System. ordinal range 0 .. 16#7F#:

7 bit field.

subtype nine_bit_field is System.ordinal range 0 .. 16#lFF#:

9 bit field.

subtype ten_bit_field is System.ordinal range 0 .. 16#3FF#:

10 bit field.

subtype eleven_bit_field is System.ordinal range 0 .. 16#7FF#:

11 bit field.

subtype twelve_bit_field is System.ordinal range 0 .. 16#FFF#:

12 bit field.

KMDS Defs-4

PRELIMINARY

subtype thirteen_bit_field is System.ordinal range 0 .. 16#lFFF#;

13 bit field.

subtype fourteen_bit_field is System.ordinal range 0 .. 16#3FFF#;

14 bit field.

subtype fifteen_bit_field is System. ordinal range 0 .. 16#7FFF#:

15 bit field.

subtype seventeen_bit_field is System. ordinal range 0 .. 16#lFFFF#:

17 bit field.

subtype eighteen_bit_field is System.ordinal range 0 .. 16#3FFFF#:

18 bit field.

subtype nineteen_bit_field is System.ordinal range 0 .. 16#7FFFF#:

19 bit field.

subtype twenty_bit_field is System.ordinal range 0 .. 16#FFFFF#:

20 bit field.

KMDS Defs-S

PRELIMINARY

subtype twenty_one_bit_field is System.ordinal range 0 .. 16#lFFFFF#;

21 bit field.

subtype twenty_two_bit_field is System. ordinal range 0 .. 16#3FFFFF#;

22 bit field.

subtype twenty_four_bit_field is System.ordinal range 0 .. 16#FFFFFF#;

24 bit field.

type raw 4 bytes is array (
System~ordinal range 0 .. 3) of System.byte_ordinal;

type raw 6 bytes is array(
System~ordinal range 0 .. 5) of System.byte_ordinal;

type raw 8 bytes is array(
System:ordinal range 0 .. 7) of System.byte_ordinal;

PRELIMINARY

type raw 16 bytes is array(
System.ordinal range 0

pragma pack(raw_16_bytes);

type raw 32 bytes is array (
System.ordinal range 0

pragma pack(raw_32_bytes);

type raw 64 bytes is array (
System.ordinal range 0

pragma pack(raw_64_bytes);

15) of System. byte_ordinal;

31) of System.byte_ordinal;

63) of System. byte_ordinal;

subtype zero to 6 is System.ordinal range 0 .. 6;

subtype zero to 23 is System.ordinal range 0 .. 23;

subtype zero to 59 is System.ordinal range 0 .. 59;

subtype zero to 99 is System.ordinal range 0 .. 99;

KMDS _ Defs-7

PRELIMINARY

subtype one to 31 is System. ordinal range 1 .. 31;

subtype one to 12 is System.ordinal range 1 .. 12;

type TOO is
record

hundredths sec:
seconds:
minutes:
UVUL;:; ~

day of week:
date: -
month:
year:

end record;

for TOO use
record

hundredths sec
seconds
minutes
hours
day of week
date -
month
year

end record;

at
at
at
at
at
at
at
at

0
1
2
3
4
5
6
7

zero to 99;
zero-to-59;
zero=:to=:59;
Lt:LV LV £J,

zero-to-6;
one to 31;
one-to-12;
zero_to_99;

range 0 6;
range 0 6;
range 0 5;
range 0 4;
range 0 2;
range 0 4;
range 0 3;
range 0 6;

Defmes the system's TOO counter (in hundredths of a second).

max_error_index: constant:= 27;

Maximum error record supported (range 0 .. max_error_index).

max ext box: constant System.ordinal := 7;

Maximum I/O extension box number (range 0 .. max_ext_box).

KMDS _Defs-8

PRELIMINARY

I max device_index

max_device_index: constant System.ordinal := 7;

Maximum device number supported by the System Monitor. (range 0 .. max_device_index).

max mem rec: constant System. ordinal := 7;

Maximum record number of a boot or dump image.

max_slot_number: constant System. ordinal := 13;

Maximum possible number of slots in a cardcage.

hw _header _ si ze,: constant := 8;

Size of header portion ofhw_entry_rep.

constant := seT Types.hw entry_size - hw_header_size;

Size of body portion ofhw_entry_rep.

type cardcage_ID_rep is (sys, ext);

subtype slot_number is System.ordinal range 0 .. max_slot_number;

Although slot 0 represents an invalid number, it is a convenient number to define as a default
value.

KMDS _ Defs-9

PRELIMINARY

I module _ ID _rep

type module_ID_rep is
record

slot:
don t care:
cardcage:

end record;

for module ID -record
slot

slot number;
two bit field;
cardcag~ID_rep;

_rep use

at 0 range
don t care at 0 range
cardcage

end record;

Fields:

slot

at 0 range

0
4
6

Mnst he initia1i'7.~d to '7.~m

cardcage

3;
5;
7;

null_module_ID: constant module_ID_rep := (cardcage => sys,
don t care => 0,
slot - => 0);

subtype AP_bus_reg is System. ordinal;

Dermes an arbitrary AP-Bus register.

This type nonnally represents all AP-Bus registers (in the System Monitor and SCI'). This
type will be retyped to the desired register type only if you need to examine the contents of a
particular register (e.g. physical ID).

I position

subtype position is System.ordinal;

position (sector #) on device

KMDS _ Ders=10

PRELIMINARY

I physical_ addr

subtype physical_addr is System. ordinal;

Physical memory address.

I memory _ descr

type memory descr is
record - -

addr: physical_addr;
length: System. ordinal;

end record;

for memory_descr use
record

addr at 0 range
length at 4 range

end record;

Fields:

0 31;
0 31;

addr

length

Start address in memory.

Length of record in bytes.

type mem_rec is array(O .. max_mem_rec) of memory_descr;

Global types related to I/O devices.

type 10 device 10 is
record -

10 addr:
application index:
don t care:­
processor:
module 10:

end record;

for 10 device 10 use
record -

io addr
application index
don t care -
processor
module 10

end record;

Fields:

System. short ordinal;
four bit field;
three bit field;
one bIt fIeld;
module_YO_rep;

at 0 range 0
at 0 range 16
at 0 range 20
at 0 range 23
at 0 range 24

15;
19;
22;
23;
31;

KMDS Defs-11

PRELIMINARY

io addr Controller address.

application index
- Index for identifying a CP application.

don t care

processor

module ID

I device_number

Must be initialized to zero.

Local processor ID.

System bus number and slot number.

subtype device number is System. ordinal range 0 .. max_device_index;

I device_list

type device list is array (device_number) of IO_device_IO;

I null_device

null device: constant IO device IO :=

type hw entry type is
- -free,

cardcage,
module,
device) ;

- - (module_id => null module IO,
processor => 0, - -
don t care => 0,
application index => 0,
io addr - => 16#0000#);

for hw_entry_type'size use System.storage_unit;

Types of SCT elements.

Enumeration Literals:

free

cardcage

module

device

Free element, currently not used.

Cardcage entry.

Module (board) entry.

Device (boot/console) entry.

PRELIMINARY

I functional_status

type functional status is
not used,
onlIne,
offline,
faulty,
offline_or_faulty);

for functional status' size use System.storage_unit;

for functional status use(
not used
onlIne
offline
faulty
offline_or~faulty

=> 0,
=> 1,
=> 2,
=> 3,
=> 4);

Possible status of hardware configuration parts.

Enumeration Literals:

Slot is currently not used.

Module is available for use.

not used

online

offline Module is not available because it is reserved for use by maintenance
software.

faulty Module is not available because it is faulty.

offline or faulty
- - Module is not available and system cannot determine why.

I component_class

type component_class is (BXU, MCU);

type physical ID rep is
record --

class: component class;
component: five_bit_field;

end record;

for physical ID rep use
record --

class
component

end record;

at a range 5
at a range 0

5;
4;

KMDS Defs-13

PRELIMINARY

I logical ID rep

subtype logical_10_rep is six bit field;

AP-bus logical ID.

I psor select

for psor select use(
psor-O => 0,
psor:) => 1);

I processor _ ID

type processor 10 is
record -

unit: logical 10 rep;
psor: psor select;
zero: one_bit_field;

end record;

for processor_1O use
record

zero at 0 range 0
psor at 0 range 1
unit at 0 range 2

end record;

I null J'sor _ ID

0;
1;
7;

constant processor_10

type arb 10 rep is
record- -

cycle:
drive:

four bit field;
two_bit_field;

end record;

for arb 10 rep use
record -

cycle at 0
drive at 0

end record;

range 0
range 4

AP-bus arbitration ID.

KMDS _ Defs-14

3;
5;

:= (psor => psor 0,
unit => 0, -
zero => 0);

PRELIMINARY

invalid arb 1D: constant arb_1D_rep .- (cycle => 16#F#,
drive => 16#3#);

Invalid arbitration ID value, usually given to passive modules.

I error_record

type erro~ record is
record -

error type:
time stamp:
unit-name:
ord paraml:
ord-param2:

System. short_ordinal;

end record;

for error record
record -

raw 6 bytes;
fix-16 string;
System-:-ordinal;
System. ordinal;

use

at 0 range 0
at 2 range 0
at 8 range 0
at 12 range 0

15;
(6 *
31;
31;

8)
error type
time stamp
ord par amI
ord-param2
unit name at 16 range 0 (16 + 4)

end record;

Fields:

Type of error being recorded.

Time when error was logged.

- 1;

* 8 - 1;

error_type

time_stamp

unit name

ordyaraml

ordyaram2

Name of module which is associated with the error.

Parameter #1, meaning defined by error_type.

Parameter #2, meaning defined by error_type.

error_record_size: constant:= 36;

Size of an error record in bytes.

subtype error_log_index is System. ordinal range 0 .. max_error_index;

Index for entries in SCf's error log.

KMDS Defs-IS

PRELIMINARY

I error log_rep

type error log rep is array (
seT Error log represention.

This error log is a circular buffer. The
most recent entry in this buffer must be indicated by an index of
type error log index.

ror_log_index) of error_record;

pragma pack(error_log_rep);

error_log_size: constant:= error record size * (max_error_index + 1);

Size of scr error log in bytes.

type error log record is
record - -

error count:
count-time:
last error:
error log:

end record;

for error_log_
record

System. ordinal;
raw 6 bytes;
error-log index;
error=log=rep;

record use

error count at a range
count-time at 4 range
last error at 12 range
error_log at 16 range

end record;

a 31;
a (8 * 6) - 1;
a 31 ;
a error_log_size * 8 - 1;

Error Log Record. Used to overlay area in scr object reselVed for error log.

Fields:

error count

count time

last error

error_log

KMDS _ Ders-16

Total number of errors reported, since count _time.

Time when error count was last reset to O.

Pointer to last entry put into the log.

Circular buffer used to record error reports.

PRELIMINARY

I error log VA

pragma access_kind(error_log_VA, virtual);

type ext_box_rep is array(System.ordinal range 0 .. max_ext_box) of boolean;

Array of flags. If true, extension box is switched on. The list defines one entry for each I/O
extension box.

I addr _recognizer

type addr recognizer is
record -

mask: AP_bus_reg;
match: AP bus reg;

end record;

for addr _recognizer use
record

mask at 0 range
match at 4 range

end record;

0 31;
0 31;

Represents address recognizers as defined for the different AP bus agents.

Every BXU has four address recognizers on its local. bus interface and one on its AP bus
interface. The MCU supports one address recognizer. Space for the other address recognizers
is not used for MCUs.

Fields:

mask

match

Memory window's size.

Base address of memory window.

type addr_recognizer_set is array(O .. 4) of addr_recognizer;

KMDS Defs-!7

PRELIMINARY

null addr rec: constant addr recognizer set :=
others - => (0, 0)); - -

Null values for addr_recognizers.

I VLSI _locations

type VLS1 ·locations is(
busO,
bus1,
psorO,
psor1) ;

Enumeration Literals:
........ e. "III _

.uu~u ~U1UVVUC1U.l~ \,;Ul.l11C\,;lCU W /"\..[""-DU~ u .

busl

psorO

psorl

Component is connected to AP _Bus 1.

Component is processor 0 on the local bus.

Component is processor 1 on the local bus.

I VLSI _status

type VLS1 status is array (VLS1_locations) of functional_status;

type VLS1 desc is
record -

physical 10:
logical 10:
arb ID:-
status:

end record;

for VLS1 desc use
record-

physical 10 rep;
logical 10 rep;
arb 10 rep;
VLSY_status;

physical 10 at Orange 0
1 range 0
2 range 0
4 range 0

logical Yo at
arb_IO - at
status at

end record;

for VLS1 desc'size use 8*8;

7;
7;
7;
31;

I null_ VLSI _ desc

null VLSI desc:

I component_flags

PRELIMINARY

constant VLSI desc
physical 10
logical Yo
arb 10 -
status

:= (
=> (BXU, 0),
=> 0,
=> invalid arb 10,
=> (others-=> not_used»;

type component_flags is array (System.ordinal range 0 .. 3) of boolean;

pragma pack(component_flags);

Component flag array. Each position in this array corresponds to a component position on a
board.

type memory types is(
not_avaIlable,
ORAM,
SRAM,
PROM) ;

for memory types use(
not available => 0,
o RAM => 1,
SRAM => 2,
PROM => 3);

Types of memory modules.

Enumeration Literals:

not available
- Memory module is not available.

DRAM

SRAM

PROM

Memory module contains dynamic RAM.

Memory module contains static RAM.

Memory module contains ROM.

type memory desc is
record -

mem type: memory types;
index: four_bIt_field;

end record;

for memory desc use
record -

index at 0
mem type at 0

end record;

range 0
range 4

3;
5;

KMDS _ Defs-19

PRELIMINARY

Breakdown of memory module fields in COM Word 1.

Fields:

mem_type

index

Type of memory in this module.

Index in system memory module sizes table.

type base boards is(
GS2_psor,
gen 10,
BXU=mem,
MCU mem,
free 4,
free-5,
free-6,
free-7,
GS1 FRC,
GS1-SBC_
free 10,
free -11,
free -12,
free -13,
free -14,
GS2_probe) ;

for base boards
GS2_psor
gen_ 10
BXU mem
MCU-mem
free 4 -
free 5 -free 6 -free 7
GS1 FRC -GS1 SBC
free 10 -
free 11 -free 12 -free 13 -
free 14
GS2_probe

use (
=> 2#:0000#,
=> 2#:0001#,
=> 2#:0010#,
=> 2#:0011#,
=> 2#:0100#,
=> 2#:0101#,
=> 2#:0110#,
=> 2#:0111#,
=> 2#:1000#,
=> 2#:1001#,
=> 2#:1010#,
=> 2#1011#,
=> 2#:1100#,
=> 2#:1101#,
=> 2#:1110#,
=> 2#1111#);

Known AP-bus base board types.

I IOPMs

type IOPMs is(
no PM,
low speed on board,
E bus, --
LAN PM,
HDLe,
SCSI,
IPI master,
IPI-slave,
mUltibus II adapter,
high_speed_on_board);

for IOPMs use(

PRELIMINARY

no PM
low speed on board
E bus --
LAN PM
HDLC
SCSI
IPI master
IPI-slave
multibus II adapter
high_speed_on_board

=> 0,
=> 1,
=> 2,
=> 3,
=> 4,
=> 5,
=> 6,
=> 7,
=> 8,
=> 9) ;

Known typeS of 10 Personality Modules (IOPMs).

Enumeration Literals:

no PM IOPM not available.

low_speed_on_board

E bus

LAN PM

HDLC

SCSI

IPI master

IPI slave

multibus_II_adapter

high_speed_on_board

I IODMs

type IODMs is(
no DM,
digital modem,
analog_modem) ;

for IODMs use(
no DM
digital modem
analog_modem

=> 0,
=> 1,
=> 2);

Known types of 10 Distribution Modules (IODMs).

Enumeration Literals:

digital~modem

analog_modem

IODM not installed.

KMDS Defs-21

PRELIMINARY

type com word (number: two bit field := 0) is
record-

parity: boolean;
case number is

when 0 =>
core:
core enabled:
two buses:
CP fail:
GDP fail:
init count:
AI? agents:
CPs:
GDPs:
board type:

when 1 ;;;;;->
artwork rev:
assembly rev:
buffered:
memory interleave:
_____ -,,: _.: ... ~ _, .: __ -1 '" ... -... -- .. _ .. - --------.
on board mem:
mem mod 13:
mem-mod-A:

when '2 =>­
reserved 2:
IOPM 3: -
IOPM-2:
IOPM-1:
IOPM-O:
IODM:

when 3 =>
uC firmware rev: - -
company:
overflow rev:
reserved-3:

end case;
end record;

boolean;
boolean;
boolean;
component flags;
component-flags;
two bit fIeld;
component flags;
component-flags;
component -flags;
base_boards;

three bit field;
four bit field;
boolean;-
two bit field;
l.. __ 1 _-=-
memory desc;
memory-desc;
memory:=desc;

nine bit field;
IOPMs; -
IOPMs;
IOPMs;
IOPMs;
IODMs;

System.byte ordinal;
one bit field;
System.byte ordinal;
twelve_bit_field;

pragma suppress(discriminant_check,com_word);

for com word use
record

number at 0 range 30
parity at 0 range 0
core at 0 range 1
core enabled at 0 range 2
two buses at 0 range 3
CP fail at 0 range 4
GDP fail at 0 range 8
init count at 0 range 12
AP _agents at 0 range 14
CPs at 0 range 18
GDPs at 0 range 22
board_type at 0 range 26
artwork rev at 0 range 1
assembly_rev at 0 range 4
buffered at 0 range 8
memory_interleave at 0 range 9
memory_initialized at 0 range 11
on board mem at 0 range 12
mem mod 13 at 0 range 18
me m-mod-A at 0 range 24
reserved 2 at 0 range 1
IOPM 3 at 0 range 10
IOPM-2 at 0 range 14

31;
0;
1;
2;
3;
7;
11;
13;
17;
21;
25;
29;
3;
7;
8;
10;
11;
17;
23;
29;
9;
13;
17;

PRELIMINARY

IOPM 1 at 0 range 18
IOPM-O at 0 range 22
IODM- at 0 range 26
uC firmware rev at 0 range 1 - -
company at 0 range 9
overflow rev at 0 range 10
reserved-3 at 0 range 18

end record;

Fields:

Format of COM Words. number

parity Odd parity bit for all COM words.

core

core enabled

two buses

CP fail

GDP fail

init count

AP_agents

CPs

GDPs

board_type

artwork rev

assembly_rev

buffered

memory_interleave

memory_initialized

on board mem

mem mod B - -
mem mod A

reserved 2

lOPM 3

lOPM 2

lOPM 1

lOPM 0

lODM

uC firmware rev

company

overflow rev

reserved 3

21;
25;
29;
8;
9;
17;
29;

KMDS _ Defs-23

PRELIMINARY

invalid com word: constant com word(3} :=
InvalId value for COM word. -

number
reserved 3
uC firmware -company
overflow
parity

type env status bits is
PSaO-installed,
PSa1-installed,
PSbO-installed,
PSb1-installed,
PSaO-Sv failed.
PSaO 12v failed,
PSa1-Sv failed,
PSal-12v failed,
PSbO-failed,
PSb1-failed,
buf 5v failed,
other AC down,
UPS on, -
sys-batt fault,
extrn batt fault,
PS temp fault,
cage temp fault,
periph temp fault,
air intake fault,
blower fault,
boxO fault,
box1-fault,
box2-fault,
box3-fault,
reserved 1,
reserved-2,
reserved-3,
reserved-4,
reserved-S,
reserved-6,
reserved-7,
re se rve()} ;

Enumeration Literals:

PSaO installed

-

rev

=> 3,
=> 0,

rev => 0,
=> 0,
=> 0,
=> false};

Power Supply A:O installed.
PSal_installed

Power Supply A: 1 installed.
PSbO installed

Power Supply B:O installed.
PSbl installed

Power Supply B:l installed.

KMDS _ Defs-24

PRELIMINARY

PSaO 5v failed
Power Supply A:O 5 volt failed.

PSaO 12v failed
- Power Supply A:O 12 volt failed.

PSal 5v failed
- - Power Supply A: 1 5 volt failed.

PSal 12v failed
- - Power Supply A:112 volt failed.

PSbO failed Power Supply B:O failed.

PSbl_fai,led Power Supply B:l failed.

buf 5v failed
Buffered 5 volt supply failed.

other AC down
AC feed to other Power Supply C down.

UPS on Uninterruptable Power Supply on.

sys batt fault
- - Internal system battery failed.

extrn batt fault
- - External battery failed.

PS temp fault
- - Temperature fault in power supply.

cage temp fault
- - Temperature fault in cardcage.

periph temp fault
- - Temperature fault in peripheral area.

air intake fault
- - Temperature fault in air intake.

blower fault Blowerfault

boxO fault Fault signalled by Extension Box O.

boxl fault Fault signalled by Extension Box 1.

box2 fault

box3 fault

reserved 1

reserved 2

reserved 3

reserved 4

reserved 5

reserved· 6

reserved 7

reserved 8

Fault signalled by Extension Box 2.

Fault signalled by Extension Box 3.

reserved for future expansion.

reserved for future expansion.

reserved for future expansion.

reserved for future expansion.

reserved for future expansion.

reserved for future expansion.

reserved for future expansion.

reserved for future expansion.

KMDS Defs-2S

PRELIMINARY

pragma pack(env_status_array):

This two dimensional array is used to completely describe the environmental status of the
system and extension containers, in the largest possible system. The first index selects the
SSM which is provided the information, and the second index selects an environmental status
bit.

~ ~... ... ""',.. ,..... "'- ---- ~ --- - ,...,....

IVIMHlmUl ~lze Ul t:nVIIlJILmt:n~l ~t~W~ ~lT~y ~.L. ~~Nl~ ~nu ",.L. ~t~U!~ OOUlt:€:lJ:l~ pt:r ~~lVl);

type cardcage rep is
record -

num slots:
two-bus system:
status bus 0:
status-bus-1:
status-SSB-O:
status-SSB-1:
SSMO lInk:­
SSM1-link:
io ext box:
box_type:
env status:

end record;

System. byte ordinal;
boolean; -
boolean;
boolean:
boolean;
boolean;
slot number;
slot-number:
ext box rep:
System. byte_ordinal;
env_status_array;

for cardcage_rep use
record

num slots at 0 range 0
two-bus system at 2 range 0
status bus 0 at 3 range 0
status-bus-1 at 4 range 0
status-SSB-O at 5 range 0
status-SSB-1 at 6 range 0

lInk -SSMO - at 7 range 0
SSM1 link at 8 range 0
io ext box at 11 range 0
box_type at 12 range 0
env status at 13 range 0

end record;

7;
7;
7;
7;
7;
7;
7:
7;
7;
7:
env_status_array_size - 1:

for cardcage_rep'size use hw_body_size*8:

Fields:

KMDS Defs~26

PRELIMINARY

num slots Number of slots on backplane.

two bus system
- - If true, two bus system.

status_bus_O If true, GO AP-Bus O.

status_bus_l If true, GO AP-Bus 1.

status SSB ° If true, GO SSB O.

status SSB 1 If true, GO SSB 1 (Serial System Bus).

SSMO link Slot number on which the SSM1 connection is established.

SSMl link Slot number on which the SSM2 connection is established.

io ext box Status of io extension boxes.

box _ type Enclosure or box type. This is the type of physical package in which the
cardcage is housed. This byte is heavily encoded, to decode it, retype it to
be of type SSM_Defs. ssm_loc_rec.

env status Environmental status for the System and Extension containers.

I module_rep

type module rep is
record -

diag lock:
slot:
spouse:
buffered:
FRC err count:
FRC-d: -
QM(::d:
primary:
VLSI master:
VLSI-checker:
com 0:
com-1:
com-2:
com-3:
res-O:
res -1:
config_request-param:
memory size:
bus interleaved:
cache status:
addr recognizer:
res-2:

end record:

for module rep use
record -

diag lock
slot-
spouse
buffered
FRC err count
FRC-d -
QMR=d
primary
VLSI master
VLSr-checker
com 0
com-1
com-2
com-3

System. ordinal;
slot number:
slot-number;
boolean;
System. byte ordinal:
boolean; -
boolean:
boolean:
VLsr desc:
VLSr-desc;
com word;
com-word;
com-word;
com-word;
System. ordinal:
System. ordinal:
System. ordinal;
System. ordinal;
boolean;
functional status;
addr recognizer set:
System.ordinal;-

at 0 range 0
at 4 range 0
at 5 range 0
at 6 range 7
at 8 range 0
at 9 range 0
at 9 range 1
at 9 range 2
at 16 range 0
at 24 range 0
at 32 range 0
at 36 range 0
at 40 range 0
at 44 range 0

31;
7;
7;
7;
7;
0;
1;
2;
8*8-1;
8*8-1;
31;
31;
31;
31;

KMDS Defs-27

PRELIMINARY

res 0 at 48 range 0 31 ;
-

res 1 at 52 range 0 31 ;
config_request_param at 56 range 0 31;
memory_ size at 64 range 0 31;
bus interleaved at 68 range 0 7;
cache status at 69 range 0 7; -addr _recognizer at 72 range 0 5*8*8-1;
res 2 at 112 range 0 31 ;

end record;

for module _ rep' size use hw_body _ size*8;

Fields:

diag_lock

slot

spouse

buffered

FRC err count

FRC d

QMR_d

If not equal to zero then, this module has been reserved by a diagnostic or
maintenance process and other processes should not attempt to access the
AP-Bus agents on it. The non-zero value used to reserve a module is the
reserving process' 10, which is the binary form of the process' AD.

Slot number of module.

Slot number of spouse module.

The memory on this module was battery backed-up when INIT occurred
(corresponds to the (AP _Bus agents WARM START bit)

Number ofFRC errors occurred (used to identify transient errors).

If true, the module is FRC'd.

If true, this module is QMR'd.

primary If true, this module is the hardware dermed PRIMARY.

VLSI master VLSI IDs and status MASTER bus.

VLSI checker VLSI IDs and status CHECKER bus.

com 0

com 1

com 2

com 3

res 0

res 1

COM words contain board configuration information, such as board type
and VLSI.

Configuration, 10 _distribution module type, INIT _counter, CTRL-bits,
10 _personality.

Module types, layout type, and revision level.

Extended revision level.

Reserved for additional board-level information.

Reserved for additional board-level information.

config_request-param
Configuration parameters copied from Parameter Store.

memory_size Memory available on module (size in bytes).

bus interleaved
- If true, this module has its address recognizer set for bus interleaving.

cache status Status of the on-board cache.

addr recognizer
- Address recognizer values for up to five recognizers (Le., for one BXU of

a module); note, the second BXU has the same set, or can be derived out
of this set (e.g., in case of interleaving).

KMDS _ Defs-28

PRELIMINARY

res 2 Handle to allow using the additional space using external type definitions
as long as this definition is not yet updated.

I null module rep

null_module_rep:

I 10_ application

constant module rep .=
diag lock -
slot-
spouse
buffered
FRC err count
FRC-d -
QMR:=d
primary
VLSI master
VLSI-checker
com 0
com-l
com-2
com-3
res-O
res 1
config_request-param
memory size
bus interleaved
cache status
addr recognizer
res 2"

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

0,
0,
0,
false,
0,
false,
false,
false,
null VLSI desc,
null-VLSI

-
desc,

invalid
-

word, com
invalid-com word,
invalid-com word,
invalid-com word,
0,
0,
0,
0,
false,
offline,
null addr rec, - -
0) ;

type IO application is (
unused, ASYNC, HDLC_LS, HDLC_HS, LAN, SCSI, IPI, SSB, EDS);

for IO_application'size use 8;

I device yaram _rep

An scr device entry can hold two Parameter Store device parameter entries.

type device rep is
record -

level: System. byte ordinal:
device flavor:
device-ID:
parameter:

end record;

for device rep use
record -

IO applicatIon;
IO-device ID;
device_param_rep;

level at 0
device flavor at 3

range 0
range 0

7;
7;

KMDS _ Defs-29

device 10
parameter

end record;

Fields:

PRELIMINARY

at 4 range 0
at 16 range 0

31;
2*64*8-1;

level Identifies auxiliary entries used to record additionalI/O parameters for a
device. If this entry is equal to 0 then is this the master entry for the
device. Ifit is not equal to 0 this entry contains extra params. which did
not fit into the master entry.

device flavor
Type of application required to handle the device (used to identify CP
application and Device Driver)

device ID Device ID of the device to which this entry belongs.

parameter Array of device-specific parameters to be used in Device Object.

I hardware_entry_rep

type hardware entry rep (entry type: hw entry type := cardcage) is
record - - - --

cardcage_10: cardcage 10 rep;
status: functional status;
case entry type is -

when cardcage =>
cardcage: cardcage_rep;

when module =>
module: module_rep;

when device =>
device: device_rep;

when free =>
null;

end case;
end record;

pragma suppress(discriminant_check,hardware_entry_rep);

for hardware _entry_rep use
record

entry_type at 0 range 0 7;
cardcage_1O at 1 range 0 7;
status
cardcage
module
device

end record;

Fields:

entry_type

cardcage_ID

status

cardcage

at 3 range 0 7;
at hw header size range 0 hw body size*8-1;
at hw-header - size 0 hw-body-size*8-1; range

hw-header - size 0 hw=body=size*8-1; at range

Indicates which cardcage this module is associated with.

Current status of the corresponding configuration part.

This entry describes a cardcage.

PRELIMINARY

module

device

This entry describes a module (Le. board).

This entry describes a boot or console device.

pragma access_kind(hardware_entry_VA, virtual);

I hardware ~ entry _header

type hardware entry header is
record - -

entry type: hw entry type;
cardcage_ID: cardcage-ID rep;
status: functional status;

end record;

for hardware_entry_header use
record

entry_type at 0 range 0
cardcage_1D at 1 range 0
status at 3 range 0

end record;

7;
7;
7;

Used by the System Monitor to do partial initialization of hardware entries. The representation
of this type must match the representation for the header portion of hardware_en try_rep.

type system type rep is
GS 0, - -
GS-l,
GS-2,
S1M) ;

for system type rep use(
GS 0 => 0, -
GS-l => 1,
GS-2 => 2,
S1M => 3);

Enumeration Literals:

GS 0

GS 1

GS 2

SIM

Identifies a OS 0 system.

Identifies a OS 1 system.

Identifies a OS 2 system.

For debugging only.

KMDS _ Defs-31

PRELIMINARY

type system_mode_rep is (normal,

Enumeration Literals:

diagnostic required,
diagnostic-ready,
diagnostic~
diagnostic_done);

normal System is configured for and running in nonnal system operation mode.

diagnostic required
- System is running, but requests to get transferred to diagnostic mode.

diagnostic ready
- System has been reconfigured and is ready to run in diagnostic mode.

diagnostic System is configured for and running in diagnostic mode.

diaanostic done
System is ready to get reconfigured for normal mode of operation.

type sm_ctrl-param is
record

gdp_test:
cp test:
bxu test:
mem-ctrl test: - -mem array test:
spare console:
spare=boot_dev:
spare image:
auto dump:
auto-continue:
auto-mask:
load:
start:

end record;

for sm_ctrl_param
record

gdp_test
cp_test
bxu test
mem=ctrl_test
mem_array_test
spare_console
spare boot dev
spare:=image
auto_dump
auto continue
auto-mask
load
start

end record;

boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;

use

at 0
at 0
at 0
at 0
at 0
at 2
at 2
at 2
at 3
at 3
at 3
at 3
at 3

range
range
range
range
range
range
range
range
range
range
range
range
range

0
1
2
3
4
0
1
2
0
1
2
6
7

0;
1;
2;
3;
4 ;
0;
1;
2;
0;
1;
2;
6;
7;

System Monitor's control parameters. System software may use those entries to control the
System Monitor's behavior during the next initialization sequence.

KMDS _ Defs-32

Fields:

gdp_test

cp_test

bxu test

mem ctrl test

PRELIMINARY

Enables GOP confidence test.

Enables CP confidence test.

Enables BXU confidence test.

Enables memory controller test, either (MCU or BXU).

mem array test
- - Enables memory array testing.

spare console
- - Enables spare system console.

spare boot dev
- - Enables spare boot device.

spare_image Enables spare boot image.

auto_dump Enables auto dump.

auto continue _
If true, forces the System Monitor to continue operation in the auto mode
after failures (e.g. error during dumping).

auto mask Used to force entering the System Monitor's manual mode in cases the
system nonnally would perfonn an AUTO_START (e.g. restart after
power failure) when the System Monitor had been active before the PF
occurred.

If true, forces the System Monitor to load an image. load

start If true, enables the System Monitor to activate booted image System Con­
figuration Table.

number_of_ranges: constant:= 8:

Maximum number of special memory ranges which can be allocated.

I range_description

type range description is
record -

valid:
start pa:
size_Inyages:
cacheable:
AD:

end record;

boolean:
physical addr:
System. short ordinal:
boolean: -
System. untyped_word;

for range_description use
record

valid at a range a 7;
cacheable at 1 range a 7;
size _in_pages at 2 range a 15;
start_pa at 4 range a 31;
AD at 8 range a 31;

end record;

KMDS _ Defs-33

PRELIMINARY

Fields:

valid

startya

If true, This range description is valid.

Starting physical address of range, must be on a page boundary.

size in pages
- - Number of contiguous pages reserved for object.

cacheable If true, Object is cacheable.

AD Access Descriptor, created and filled in by SBL, which points to memory
described by this record.

type memory_ranges is array(1 .. number_of_ranges) of range_description;

pragma pack(memory_ranges);

I software_entry

type software entry is
record -

system type:
system-subtype:
system-mode:
conf complete:
start event:
sm ctrl:
FT-config:
inIt count:
max count:
dev:
SM OT:
SM-PRCB:
SM-res 1:
SM-res-2:
SM-res-3:
self lAC:
reserved_memory:
image version:
image-addr:
image-OT:
image-PRCB:
dump dev:
dumpyosition:
dump rec:
spare_bootyos:
MM 10:
control reg:

end record;

system type rep;
System~short ordinal;
system mode rep;
boolean; -
system start event;
sm ctrI param;
raw 8 bytes;
System.ordinal;
System. ordinal;
device list;
physical addr;
physical-addr;
System. untyped word;
System. untyped-word;
System. untyped-word;
System.untyped=word;
memory ranges;
raw_32:=bytes;
mem rec;
physical addr;
physical-addr;
10 device ID;
position;-
mem rec;
posItion;
System. address;
System.byte_ordinal;

for software_entry use
record

system_type at 0 range 0
system_subtype at 1 range 0
system_mode at 4 range 0
start event at 5 range 0
conf_complete at 6 range 0
sm ctrl at 8 range 0
inIt count at 12 range 0
max count at 16 range 0
FT_config at 20 range 0

7;
15;
7;
7;
7;
31;
31 ;
31 ;
63;

PRELIMINARY

dev at 32 range 0 32*8-1;
SM OT at 64 range 0 31;
SM-PRCB at 68 range 0 31;
SM-res 1 at 72 range 0 31 ;
SM-res-2 at 76 range 0 31;
SM-res-3 at 80 range 0 31;
self IAC at 84 range 0 31;
reserved memory at 96 range 0 12*number of_ranges*8-1;
image version

-
256 0 32*8-1; at range

image-addr at 288 range 0 64*8-1;
image-OT at 352 range 0 31;
image=PRCB at 356 range 0 31 ;
dump_dev at 360 range 0 31 ;
dumpyosition at 364 range 0 31 ;
dump_rec at 368 range 0 64*8-1;
spare_boot_pos at 432 range 0 31 ;
MM IO at 484 range 0 63;
control _reg at 492 range 0 7;

end record;

for software_entry'size use SCT_Types.sys_sw~size * 8;

Contains user visible infonnation from the software entry.

Fields:

system_type Type of system (e.g. GS2).

system subtype
- Differentiates system flavors (initialized with value from Parameter

Store).

system_mode Mode in which the system is currently operating.

conf complete
- If true, the system has been completely configured.

start event Event which caused the system start.

sm ctr 1 Control parameter set used by the System Monitor to control the next init
sequence. The parameters are set to default if the scr has to be built
before activating the loaded image. They can be set by the current image if
a particular init sequence is desired with the next system restart.

FT _con fig Ff configuration parameters from Parameter Store.

ini t count Counter will be initialized with 0; every time the start event is a h/w­
driven watchdog timer reset, INIT_COUNT will be incremented. Re-init
stops if count exceeds MAX_COUNT; the counter has to be reset by the
booted image.

max count Threshold value for INIT_COUNT.

dev List of eightr device aliases. 0: default System Console 1: default Boot
Device 2: spare System Console 3: spare Boot Device 4-7: not predefined

SM OT Physical addresses of Object

SM PRCB Table (OT) and Processor Control Block (PRCB).

SM res 1 Reserved for System Monitor.

SM res 2 Reserved for System Monitor.

SM_res_3 Reserved for System Monitor.

self lAC AD to an object that allows to send an lAC to itself.

KMDS _ Defs-35

PRELIMINARY

reserved memory
- List of special reseved memory ranges for which SBL must create objects.

image version
- ID, version number, and date of the image loaded. During auto dumping

used as ID for the dump data, hence, system software should set this field
appropriately. Also note, version number gets incremented by one with
every dump.

image_addr Start addresses and lengths of the image's records

physical addresses of Object image_OT

image_PRCB

dump_de v

Table (OT) and Processor Control Block (PRCB).

Information to perfonn auto dumping.

dump-position .
Information to perfonn auto dumping.

dump _ rec Information to perfonn auto dumping.

spare_bootyos
Position of spare image (i.e. spare VSM~_disk_header) on primary
boot device (0: disk does not provide spare image).

MM IO

control_reg

Virtual address allowing DDs to access I/O registers.

Actual control register value.

I software;entry _ V A

type software_entry_VA is access software_entry;

pragma access_kind(software_entry_VA, virtual);

type hw info rep is
record -

KMDS _ Defs-36

num system buses:
num-slots:­
num-GDP:
num-CP:
stable rnem addr:
stable-rnem-length:
interl-rnem-addr:
interl-rnem-length:
non interl-mem addr:
non-interl-mem-length:

end record: - -

for hw info _rep use
record

num_system_buses
num slots
num-GDP
num-CP
stable mem addr
stable-mem-length
interl-mem-addr
interl-mem-length
non interl-mem addr
non=interl=mem=length

System.byte ordinal;
System.byte-ordinal;
System. byte-ordinal;
System.byte-ordinal;
physical addr:
System. ordinal;
physical addr:
System. ordinal;
physical addr:
System. ordinal;

at 0 range
at 1 range
at 2 range
at 3 range
at 4 range
at 8 range
at 12 range
at 16 range
at 20 range
at 24 range

0
0
0
0
0
0
0
0
0
0

7;
7;
7;
7;
31:
31;
31;
31;
31 ;
31:

PRELIMINARY

end record;

pragma external;

Hardware summary infonnation record.

Fields:

num system buses
- - Number of system buses.

num slots

num GDP -

num CP

Number of slots in cardcage.

Number physical OOPs.

Number physical CPs.

stable mem addr
- Physical start address (byte).

stable mem length
- - Size in bytes.

interl mem addr
- - Physical start address (byte).

interl mem length
- - Size in bytes.

non inter 1 mem addr
- - Physical start address (byte).

non interl mem length
- - Slze in bytes.

KMDS _ Defs-37

Security

Calls

Summary

PRELIMINARY

seT Access

Provides access to the System Configuration Table (SCT).

Access to this package is restricted to callers carrying a privileged ID. See your System
Administrator for access.

Get error log
- Retrieves the error log record from the SCT.

Get hardware info
- Gets hardware infonnation about a cardcage.

Release hw entries
- Reserves modules which have already been reserved by the calling process.

Reserve hw entries
- Reserves the specified modules entries in SCf and returns the list of modules in

the cardcage.

Retrieve cardcage entries
Returns a record which contains an entry describing the selected modules in the
designated cardcage.

Retrieve_device_entry
Retrieves infonnation stored in the scr about a device.

Retrieve software entry
Extracts user visible infonnation from the SCf's software entry and returns this
infonnation in a record.

Set_system_monitor-parameters
Sets the System Monitor parameters in the SCf's software entry.

This package provides access to the SCf using four types:

• Retrieve functions return records which contain images of various entries in the SCf
(card-module, device, or cardcage entries).

PRELIMINARY

• The Set procedure allows the caller to set the System Monitor's control parameters.

• Reserve/Release functions allow the caller to reserve and release various card­
modules in a cardcage.

• The Get procedure returns either the summary for the scr hardware information (that is,
data on modules in a particular cardcage) or it's error logs.

This package provides you with read access only to the System Configuration Table except for
the System Monitor control parameters in the software entry.

The SCI' consists of three parts. The first part includes the system software entry which con­
tains information used by the system software to cOnfigure the system.

The second part contains an error log. The error log is a circular buffer that records the most
recent hardware-related errors. It also contains a total error count field which can be used to
detect an error log overflow.

The third part of the scr contains the hardware entries. These entries contain a detailed
descriotion of the current hardware confi2Ufation.

Exceptions
reserved by others

An attempt was made to reselVe modules already reselVed by another process or
release a module already reselVed by another process, using a Reserve or
Release function.

not in seT
- Indicates a non-existant HW entry in the SCT.

inconsistent data
Indicates an attempt to update the SCT with corrupt data.

PRELIMINARY

Declarations

I max Jlarameter _number

max_parameter_number: constant:= 8;

Maximum number of parameters for each 10 device in the SCf's device list.

free_hw_entry: constant KMDS Defs.hardware entry rep :=
(entry type - => KMDS Defs.free~
cardcage ID => KMDS-Defs.sys,
status - => KMDS=Defs.not_used);

HW entry of type free.

I module_array

type module_array is array (
System.ordinal range
o .. KMDS_Defs.max_slot_number) of KMDS_Defs.hardware_entry_rep;

List of module data, in a cardcage.

type entry list is
record -

cardcage: KMDS Defs.hardware entry rep;
modules: module_array; - -

end record;

List of entries.

I parameter_array

type parameter array is array (
1 .. max_parameter_number) of KMDS_Defs.device-param_rep;

Defme the data structures that hold device entry infonnation retrieved either from the SCf, or
infonnation used to update the SCf.

PRELIMINARY

I device entry

type device entry is
record -

cardcage_ID:
status:
module:
device ID:
param_length:
parameters:

KMDS Defs.cardcage ID rep;
KMDS-Defs.functional status;
KMDS-Defs.slot number;
KMDS-Defs.IO device ID;
System. ordinal;
parameter_array;

end record;

The following fields define pertinent elements of the device.

Fields:

cardcage _ ID ID of the cardcage device belongs to.

status Functional status of the device.

module Slot number of the device.

device ID Device iD infonnation.

param_length The number of entries placed in the parameter field.

parameters Device parameters.

type reserve by option is
physical_ID, logical_ID, slot_number, ignore);

for reserve_by_option'size use System.storage_unit;

Module identification options to reselVe modules in a cardcage.

I module_reserve _options

type module reserve options (
option: reserve by option := physical_ID) is
record - -

case option is
when physical ID =>

phys ID: KMDS Defs.physical ID rep:
when logical ID -=> - -

logic ID: -KMDS Defs.logical ID rep;
when slot number ~> - -

slot num: KMDS Defs.slot number:
when ignore ~> -

null:
end case;

end record:

pragma suppress(discriminant_check,module_reserve_options);

for module _reserve_options use
record

option at 0 range 0 7;
phys ID at 1 range 0 7;
logic_ID at 1 range 0 7;

slot num
end record;

PRELIMINARY

at 1 range 0 .. 7;

Reserve the module with this physical 10.

Fields:

option

phys_ID

logic_ID

slot num

Reserve the module with this logical_ID.

Reserve the module with this slot_number.

I module_entries _array

type module entries array is array (
1 .. KMDS_Defs.max_slot_number) of module_reserve_options;

Array type specifies a set of modules in a cardcage with it's slot number, VLSI physical_
ID, or VLSI logi ca 1_ ID. Reserve and Release functions then use it to reserve or release
the modules in a cardcage. To specify the ID of each module, you need to set the option field
of each array entry as defined by module_reserve_options record declaration.

dont care list: constant module entries array := module entries array' (
- 1 .~ KMDS_Defs.max_slot_nuffiber => (option => ignore»; -

Denotes an empty list of modules passed to Reserve _ hw _ entr ie s when the list of
modules to reserve is not needed (reserving all modules in the cardcage), and passed to
Re lea s e hw ent r i e s when the list of modules to release is not needed. This releases all
modules in the cardcage reserved by the current process.

I requested_modules

type requested modules is (
all_modules,-cardcage, offline, bad);

Used by the retrieve functions to indicate what set of modules in the cardcage to retrieve
infonnation from.

• all_modules: Retrieve info from all modules in cardcage.

• cardcage: Retrieve info from the cardcage entry, only.

• offline: Retrieve info from modules with functional status of offline in cardcage.

• bad: Retrieve info from modules with functional status of offline, faulty, or,
offline_or_faulty in cardcage.

PRELIMINARY

function Get error log(
zero error count: boolean := false)

return-KMDS Defs.error log record;
pragma outerface(value, Get_error_log);

Parameters
zero error count

- A directive to zero (clear) out the error count field (total number of errors
logged) in the System Configuration Table.

Return Type and Value
KMDS Defs.error log record

- The retrieved fault record.

Operation

Retrieves the error log record from the SCT.

If zero_error_count is true, the SCT error count is set to zero.

Exceptions
not in seT

PRELIMINARY

function Get hardware info(
cardcage-IO: KMOS Oefs.cardcage IO rep)

return KMOS Oefs.hw Info rep; --
pragma outerface(value, Get_hardware_info);

Parameters

cardcage_ID ID of cardcage to access.

Return Type and Value
KMDS Defs.hw info rep

- - Summary of cardcage hardware infonnation.

Operation

Gets hardware infonnation about a cardcage.

Scans through the entire System Configuration Table, gathers all the hardware infonnation
belonging to the indicated cardcage, and returns a summary of this infonnation.

Exceptions
not in seT

PRELIMINARY

function Release hw entries(
cardcage ID:- KMDS Defs.cardcage ID rep;
release list: module entries array ~- dont care list;
force: - boolean := false; -
every module: boolean:= true)

return module entries array;
pragma outerface(value,-Release_hw_entries);

Parameters

cardcage_ID ID of the cardcage to be accessed.

release list List of modules to be released.

force Release the specified module entries regardless of who had reserved them
originally, when set to true.

every_module If true, release every module reserved by the caller.

Return Type and Value
module entries array

- iJst of modules that were released.

Operation

Warning

Notes

Reserves modules which have already been reserved by the calling process.

The list of modules to be released is specified by release_list. Modules in this list must
be identified through their physical_ID, logical_ID, or slot_number. Therefore, it
is possible to specify a list of modules within a cardcage identified through different types of
ID's.

If every_module is true, the function releases every module in the cardcage already
reserved by the caller. The list of returned modules is returned for the caller's verification and
must be identical to release list.

Improper use of force may result in unpredictable diagnostics behavior and results.

Modules are released by the caller's process 10. If any of the modules specified in release_list
are reserved by another process 10, then none of the modules in this list are released, and an
exception is raised.

force forces the release of module entries which are reserved with a process number dif­
ferent than that of the caller. It should only be used to release those module entries that are
remained reserved by processes that no longer exist (Le. abnormally terminated).

Exceptions
not in seT
reserved_by_others

PRELIMINARY

seT Access-9

PRELIMINARY

function Reserve hw entries(
cardcage ID:- KMDS Defs.cardcage ID rep;
reserve list: module entries array ~= dont_care_list;
force: - boolean := false;
every module: boolean:= true)

return module entries array;
pragma outerface(value,-Reserve_hw_entries);

Parameters

cardcage_ID ID of the cardcage to be accessed.

reserve list List of modules to be reserved.

force Reserve the specified module entries regar<lless of who had reserved them
originally, when set to true.

every_module Reserve every module, if true.

Return Type and Value
module entries array

- Ust of modules that were reserved.

Operation

Warning

Notes

Reserves the specified modules entries in scr and returns the list of modules in the cardcage.

The returned list of modules include the given ID (cardcage_ID) reserved for the caller.

re serve _li st specifies the list of modules to reserve. The caller should specify their
identity through the module's physical_ID, logical_ID, or slot_number. Any entry
set to ignore is ignored. This allows you to specify a list of modules within a cardcage
reserved through different ID options. The list of reserved modules is returned for the caller's
verification and must be identical to reserve list.

If every_module is true, every module in the cardcage is reserved.

Improper use of this parameter may result in unpredictable diagnostics behavior and results.

Modules are reserved by the caller's process 10. If any of the modules specified in
reserve_list are reserved by another process ID, then none of the modules in this list are
reserved, and an exception is raised.

for c e forces reservation of module entries which have a different process number than that
of the caller. It should only be used to reserve those module entries that remain reserved with
processes that no longer exist (Le. abnormally terminated).

Exceptions
not in seT
reserved_by_others

PRELIMINARY

SeT_Access-11

PRELIMINARY

I Retrieve _ card cage _entries

function Retrieve cardcage entries(
cardcage: KMDS_Defs.cardcage_ID_rep;
modules: requested modules := all modules)

return entry list; - -
pragma outerface(value, Retrieve_cardcage_entries);

Parameters

cardcage

modules

ID of cardcage entry from which to retrieve information.

Set of module entries in cardcage from which to retrieve information.

Return Type and Value

Record of all modules in the cardcage.

Operation

Notes

Returns a record which contains an entry describing the selected modules in the designated
cardcage.

The contents of modules defines the set of modules to retrieve, as follows:
"all modules": Retrieve information about every module.

"offline":

"bad":

Retrieve information about modules with
functional status of "offline".

Retrieve information about modules with
functional status of "offline",
"faulty", or "offline_or_faulty".

Entries in the returned array are indexed by their slot number. For example, if a module entry
resides on slot 5, the procedure places it in the fifth entry of the array. It then sets the unused
entries in the array to free _ hw _entry.

Exceptions

not in seT

PRELIMINARY

function Retrieve device entry (
device num: KMDS Defs.device number)

return device entry; -
pragma outerface(value, Retrieve_device_entry);

Parameters

device num Number of device to for which to retrieve information.

Return Type and Value

device_entry Information about device.

Operation

Retrieves information stored in the SCT about a device.

device num is the displacement of the device's ID in the software entries device list. For
example,if the caller wanted to retrieve infonnation about the actual System Console .
device, the procedure sets the device to O.

Exceptions
not in SeT

seT _ Access-13

PRELIMINARY

function Retrieve software entry
return KMDS Defs.software entry;

pragma outerface(value, Retrieve_software_entry);

Return Type and Value
KMDS Defs.software entry

- User vIsible software information.

Operation

Extracts user visible information from the scr's software entry and returns this information in
a record.

PRELlMINARY

procedure Set system monitor parameters(
parameters: KMDS_Defs.sm_ctrl-param);

pragma outerface(value, Set_system_monitor_parameters);

Parameters

parameters New System Monitor Control Parameters.

Operation

Sets the System Monitor parameters in the SCf's software entry.

These parameters control System Monitor behavior during the next system wann start.

seT _Access-IS

Security

Calls

PRELlMINARY

SSM_Access

Allows the caller to access System Support Module (SSM) functions.

Access to this package is restricted to callers carrying a privileged 10. See your System
Administrator for access.

Blower control
Sends a BlwrCtl request to the default SSM.

DC control
- Sends a DCCt 1 request to the default SSM. DC power in the box (Le. system

enclosure) selected by box will be either turned on or off depending on the value
of turn on.

Echo Sends an EchoChar request to the master microcontroller, which returns the
character.

Read error log
- Sends a RdErrLog request to the selected SSM. The error log from the specified

SSM is returned.

Read NID
Sends a RdNID request to the SSM microcontroller, which then returns a Unique
ID.

Read revision
- Sends a RdRev request to the master microcontroller, which returns the revision

level of its finnware.

Read SSM config
- Sends a RdSSMCfg request to the SSM. The SSM replies with a description of its

configuration.

Read SSM inputs
- Sends a Rdlnp request to the selected SSM. The raw input signals to the selected

SSM are returned.

Read TOD
Sends a RdTOD request to the SSM. The SSM replies with the value of its back-up
Time Of Day (TOO) timer.

Summary

Warning

PRELIMINARY

Write LED
Sends a Wr LED request to the default SSM. The SSM will set the mode of the
system error LED to mo de.

Write TOD
- Sends a WrTOD request to the SSM.

This package contains procedures which allow the caller to access some of the System Support
Module's (SSM) functions. The functions accessible by this package allow System Ad­
ministratorS, (or Diagnostic Users with System Administrator level access) to retrieve infor­
mation from the SSM, and to test the communication path to the SSM.

In some systems, there will be a primary and a secondary SSM. When appropriate, the
procedures and functions in this package will have an input parameter, which allows the caller
to send a request to a specific SSM.

The default handling for a request is: to send it to all SSMs in the system, and return the reply
from the primary SSM. If the primary SSM is not available, or does not respond, the secondary
SSM's reply will be returned to the caller.

The communication path to the SSM consists of a microcontroller (sometimes called the
Master microcontroller), which is attached to one of the computational system's buses and the
Serial System Bus (SSB). The microcontroller receives requests for SSM seIVices from sys­
tem software (e.g. this package), and transmits them across the SSB to the SSM, which acts on
the request, and returns a reply. For more infonnation about how the SSM hardware works see
the hardware reference manuals.

Misuse of these SSM functions could result in a system crash or physical damage to the system
(e.g. overheating because the blowers were turned off). This interface should only be used by
software and users who are aware of this possibility.

To fully understand the consequences of calls to the procedures in this package the user must
be familiar with the SSM hardware.

Exceptions
request nacked

- Raised when a request is not accepted by the SSM.

SSM Access .. 2

Declarations

type SSM_select is(
primary,
secondary,
default) ;

for SSM select use(
primary => 0,
secondary => 1,
default => 2);

PRELIMINARY

PRELIMINARY

I Blower_control

procedure Blower control (
turn on: - boolean;
full-speed: boolean;
select_SSM: SSM_select := default):

Parameters

turn on

full_sp~ed

select SSM

True => Tum blower on, False => Tum blower off.

True => Blower on 100%, False => Blower on 50%.

Selects which SSM the request will be sent to.

Operation

Sends a BlwrCtl request to the default SSM.

The air blower in the system continer will be either turned on or off, and if it is turned on it
will be set to full or half speed depending on the value of full_speed.

Exceptions
request_nacked

SSM Access-4

PRELIMINARY

procedure DC_control (
turn on:
buftered:

boolean;
boolean := true;
boolean := true;
boolean := true;

psIIa:
psIIb:
select SSM:
box: -

Parameters

turn on

buffered

pslla

psllb

select SSM

box

Operation

SSM select := default;
SSM-Defs.enclosure select

True => Tum power on, False => Tum power off.

True => Control buffered power supply.

True => Control power to PS-IIa's.

True => Control power to PS-IIb's.

Selects which SSM the request will be sent to.

Selects enclosure whose power will be affected.

Sends a DCCt 1 request to the default SSM. DC power in the box (Le. system enclosure)
selected by box will be either turned on or off depending on the value of turn_on.

Also, ifpsllb_only is true then only the PS-Ilb power supplies in the box will be affected.

If the caller specifies SSM_Defs.reserved_ext for the box a System_Exceptions. bad_
parameter exception will be raised.

Exceptions

request_nacked

/EChO

PRELIMINARY

function Echo(
character: KMDS_Defs.seven_bit_field;
select SSM: SSM select := default)

return KMDS_Defs.seven_bit_field;

Parameters
character

select SSM

Return Type and Value

Character to be echoed.

Selects which SSM the request will be sent to.

KMDS Defs.seven bit field
diaracter echoed by master microcontroller.

Operation

Sends an EchoChar request to the master microcontroller, which returns the character.

This function's returned value is the character echoed by the master microcontroller.

Exceptions
request_nacked

SSM _ Access-6

/

\

'",

PRELIMINARY

function Read error log(
select SSM: - SSM select := default)

return SSM_Defs.SSM_error_log;

Parameters

select SSM Selects which SSM the request will be sent to.

Return Type and Value
SSM Defs.SSM error log

- - Error iog from selected SSM.

Operation

Sends a RdErrLog request to the selected SSM. The error log from the specified SSM is
returned.

Exceptions
request_nacked

PRELIMINARY

IRead~NID
function Read NID(

select SSM: SSM select := default)
return System. ordinal;

Parameters

select SSM Selects which SSM the request will be sent to.

Return Type and Value
System. ordinal

SSM Unique 10.

Operation

Sends a RdNID request to the SSM microcontroller, which then returns a Unique ID.

Exceptions
request_nacked

SSM Access-8

)

PRELIMINARY

function Read revision(

Parameters

select SSM: SSM select .- default)
return SYstem.byte=ordinal;

select SSM Selects which SSM the request will be sent to.

Return Type and Value
System.byte ordinal

- Master micro finnware revision level.

Operation

Sends a RdRev request to the master microcontroller, which returns the revision level of its
finnware.

Exceptions
request_nacked

SSM Access-9

function Read SSM config(
select SSM: - SSM select := default)

return SSM_Defs.SSM_config;

Parameters

select SSM Selects which SSM the request will be sent to.

Return Type and Value
SSM Defs.SSM config

- - SSM's configuration information.

Operation

Sends a RdSSMCfg request to the SSM. The SSM replies with a description of its configura- !

tion. \

Exceptions
request_nacked

\
I

/

PREUMINARY

function Read SSM inputs (
select SSM: - SSM select := default)

return SSM_Defs.SSM_inputs;

Parameters

select SSM Selects which SSM the request will be sent to.

Return Type and Value
SSM Defs.SSM inputs

- - Raw input signals to selected SSM.

Operation

Sends a Rdlnp request to the selected SSM. The raw input signals to the selected SSM are
returned.

Exceptions
request_nacked

SSM_Access-!!

PRELIMINARY

function Read TOD(
select SSM: SSM select := default)

return KMDS_Defs.TOD;

Parameters

select SSM

Return Type and Value
KMDS Defs.TOD

Operation

Selects which SSM the request will be sent to.

Back-up TOO time from SSM.

Sends a RdTOD request to the SSM. The SSM replies with the value of its back-up Time Of
Day (TOO) timer.

Exceptions
request_nacked

/
I"",

\

?RELIMINARY

procedure Write_LED(
LED 1D: KMDS Defs.two bit field;
mode: SSM_Defs.LED_modes);

Parameters

LED ID Selects the LED whose mode will be altered.

Selected LED's new mode. mode

Operation

Sends a Wr LED request to the default SSM. The SSM will set the mode of the system error
LED to mo de.

Either the System Error LED or the Online Replacement LED can be selected.

Exceptions
request_nacked

SSM _ Access-13

procedure Write TOD(
time: KMDS=Defs.TOD);

Parameters

time Time of day to send to backup TOD timers.

Operation

Sends a WrTOD request to the SSM.

time is the data portion of this request

Exceptions
request_nacked

SSM _ Access-14

(
~

Security

Summary

PRELIMINARY

SSM Oefs

Defmes types and constants used to interface to the SSM.

Access to this package is restricted to callers carrying a privileged 10. See your System
Administrator for access.

The System Support Module provides the following functions:

• Watchdog timer

• Time-of-day backup timer

• Power supply control and monitoring

• Control panel interface

• Unique system identification number (UID)

• Link to the serial system bus

• Generalization of intialization events

• Environmental mOnitoring.

SSM_Defs-l

Declarations

I SSM_requests

type SSM requests is
echo -char,
read-rev,
gen OR int,
read status,
read-config,
sys Init,
DC cntrl,
blower cntrl,
read err log,
read-inputs,
load-env timer,
read-TOO;
write TOO,
write-LED,
write-watchdog,
confi"g SSM,
read NID,
send-to MD,
confIg OR int,
single-inItO,
single-initl,
double-init,
load COM word,
basic, -
read TOO RAM,
write TOO RAM,
load_mem_Init_bit);

PRELIMINARY

Standard messages which can be sent to or received from an SSM.

SSM Defs-2

I SSM_replies

type SSM replies is
acknowledge,
neg acknowledge,
echo char reply,
read-rev reply,
read-status reply,
read-config-reply,
read-err log reply,
read-inputs reply,
read-TOO reply,
read-NID-reply,
read-TOO-RAM reply,
no_reply); -

SSM replies to requests.

I unsol_ msgs

type unsol msgs is
switch-request,
power fail,
environment fail,
from MD, -
external interrupt,
undefined,
request_timeout);

PRELIMINARY

Types of unsolicited messages which can be generated by SSM.

I enclosure_select

type enclosure select is
tower 0, -
tower-I,
tower-2,
tower=3,
main system,
reserved_ext);

for enclosure select use(
tower 0 - => 2*000#,
tower-l => 2#001#,
tower-2 => 2*010*,
tower-3 => 2*011*,
main system => 2*100#,
reserved ext => 2#101*);

Used to select the system enclosure upon which the SSM Command will act.

I watchdog_interval

type watchdog interval is
record -

time base: KMDS Defs.two bit field;
time-interval: KMDS=Defs.seven_bIt_field;

end record;

Watchdog timer interval.

Fields:

time base Values of time base are: 0 => timer is off. 1 => 0.1 second per count. 2
=> 1.0 second per count 3 => undefmed.

time interval
Number of counts in interval.

SSM Defs-3

PRELIMINARY

I disable_timer

disable timer: constant watchdog_interval (time base => 0,
time-interval => 0);

Turn off the watchdog timer.

min timeout: constant watchdog_interval '= (time base => 1,
time-interval => 1);

Shortest possible watchdog timeout interval (l00 milliseconds).

I~rn __ a_x ___ t_im __ e_o_u_t __ ~I I

max timeout: constant watchdog_interval := (time base => 2,
time-interval =>·16#7F#);

Maximum possible watchdog timeout internal (127 seconds or about 2 minutes).

I standard_timeout

standard timeout: constant watchdog_interval := (time base => 1,
time-interval => 100);

Standard short timeout interval. Current value of 10 seconds is arbitrary.

type ssm loc rec is
ssm=:container,
ssm tower,
ssm=:mini);

for ssm lcc rec use(
ssm container
ssm tower
ssm mini

SSM location.

Enumeration Literals:

ssm container

=> 2#000#,
=> 2#001#,
=> 2#010#);

ssm tower

ssm mini

SSM installed in container.

SSM installed in tower.

SSM installed in minibox.

\

type SSM config is
record­

pslla 0:
psIla -1:
psllb-O:
pslIb -1:
psllc-1:

PRELIMINARY

boolean;
boolean;
boolean;
boolean;
boolean;
ssm loc rec;
System.byte ordinal;

ssm location:
firmware rev:
board rev:
boar()ayout :
company:
rev overflow1:
rev-overflow2:

KMDS Defs.four bit field;
KMDS-Defs.three bit field;
KMDS-Defs.one bIt fIeld;
KMDS-Defs.four bit field;
KMDS-Defs.four-bit-field;

end record; - -

for SSM_config use
record

psIIa_O at 0 range 0
psIIa_1 at 0 range 1
pslIb_O at 0 range 2
psIlb_1 at 0 range 3
psllc_ 1 at 0 range 4
ssm location at 1 range 0
firmware rev at 2 range 0
board rev at 3 range 0
board=layout at 3 range 4
rev_overflow1 at 4 range 0
company at 4 range 4
rev overflow2 at 5 range 0

end record;

SSM configuration information.

Fields:

pslla_O PS-IIa-O installed.
pslla_l PS-IIa-l installed.

ps lIb _ ° PS-JIb-O installed.
psllb_l PS-IIb-l installed.
psllc_l PS-IIc-l installed.

ssm location Where SSM is installed.

firmware_rev SSM finnware rev. level.
board rev SSM board rev. level.

board_layout SSM board layout level.

0;
1 ;
2;
3;
4 ;
7;
7;
3;
6;
3;
4;
3;

company Company which produced SSM board.
rev overflowl

- SSM Board revision overflow area.
rev overflow2

SSM Board revision overflow area.

SSM Defs-S

SSM_Defs-6

PRELIMINARY

I LED modes

type LED modes is
off,
on,
slow,
fast);

for LED modes use(
off => 2#00# ,
on => 2#01# ,
slow => 2#10#,
fast => 2#11#) ;

LED modes.

Enumeration Literals:

off

on

slow

fast

Tum the LED off.

Tum the LED on.

Set LED to slow blink(1Hz).

Set LED to fast blink (5Hz).

type SSM error log is
record- -

parity errors:
message retries:

end record;

System.byte ordinal;
System.byte=ordinal;

for SSM error log use
record -

parity errors
message retries

end record;

SSM error log.

Fields:

at 0 range 0
at 4 range 0

parity errors
- Number of parity errors.

message retries
- Number of retried messages.

type SSM inputs is
record-

not SF AO:
not-12F AO:
not-SF A1:
not -12F AI:
not-DCF-BO:
not-BDCF:

boolean;
boolean;
boolean;
boolean;
boolean;
boolean;

7;
7;

not BA F: boolean:
not -MAN BUT: boolean:
not OL()UT: boolean: -not RST BUT: boolean: -not TEST: boolean: -
not AIR F: boolean:
not -ERR: boolean: -not DCF Bl: boolean:
FLT - EXO: boolean:
FLT-EXI : boolean:
FLT-EX2: boolean:
FLT EX3: boolean: -not TF I: boolean: - -not TF CC: boolean: -not TF-P: boolean: -
not CPS~AO: boolean: -not CPS _AI: boolean; -not CPS BO: boolean; - -not CPS Bl: boolean; - -not 5BF C: boolean; - COCF: boolean; not
TowER: boolean;
not UPS: boolean: -not BAX F: boolean;
not-TF A: boolean:
MINrBOX: boolean:
DCON S: boolean;
not ACF: boolean;
ACFX: boolean:
not EXT INTO: boolean; - -not EXT INTI: boolean: - -not EXT INT2: boolean: - -not EXT INT3 : boolean; -not -EXT INT4: boolean;
not -EXT-INT5: boolean: - EXT-INT6: boolean: not -not EXT INT7: boolean;

end record;

for SSM_inputs use
record

not SF AO at a range a 0; - 12F AO not at a range 1 1; -
SF A1 not at a range 2 2: - 12F Al not at a range 3 3; -not DCF BO at a range 4 4 : - BOCF not at a range 5 5; -not BA F at a range 6 6:

not -MAN BUT at 1 range a 0;
not -OLR-BUT at 1 range 1 1; - RST-BUT 1 2 2: not at range -

TEST not at 1 range 3 3: -not AIR_F at - 1 range 4 4 :
not ERR at 1 range 5 5: -not OCF - B1 at 1 range 6 6;
FLT-EXO at 2 range a a:
FLT-EX1 at 2 range 1 I:
FLT EX2 at 2 range 2 2:
FLT-EX3 at 2 range 3 3:
not TF I at 2 range 4 4: - TF -CC 2 5 5: not at range -not TF P at 2 range 6 6: -

CPS not AO at 3 range 0 0: -not CPS Al at 3 range 1 1; - -not CPS BO at 3 range 2 2: - -not CPS Bl at 3 range 3 3; - -not 5BF C at 3 range 4 4: -
CDCF 5 5: not at 3 range

TOWER at 3 range 6 ~:
not UPS at 4 range a 0; -

SSM_Defs-7

PRELIMINARY

not BAX F at 4 range 1 1;
not-TF A at 4 range 2 2;
MINIBOX at 4 range 3 3;
DCON S at 4 range 4 4 ;
not ACF at 4 range 5 5;
ACFX at 4 range 6 6;
not EXT INTO at 5 range 0 0;
not-EXT-INT1 at 5 range 1 1;
not-EXT-INT2 at 5 range 2 2;
not-EXT-INT3 at 5 range 3 3;
not-EXT-INT4 at 6 range 0 0;
not-EXT-INT5 at 6 range 1 1;
not-EXT - INT6 6 2 2; at range
not-EXT - INT7 at 6 3 3; range

end record;

Names of the SSM input signals. A not prefix indicates that the signal uses negative true
logic.

Fields:

not SF AO

not 12F AO

not SF Al

not I2F Al

not DCF BO - -
not BDCF

not BA F

not MAN BUT - -
not OLR BUT

not RST BUT - -
not TEST

not AIR F

not ERR

not DCF BI

FLT EXO

FLT EXI

FLT EX2

FLT EX3

not TF I

not TF CC

not TF P

not CPS AO - -
not CPS Al - -
not CPS BO - -
not CPS BI

not SBF C - -

;11

~

(

PRELIMINARY

not CDCF

TOWER

not UPS

not BAX F

not TF A

MINIBOX

DCON S

not ACF

ACFX

In minibox: not_RESET

In tower: CPS_Cl

not EXT INTO

not EXT INTI - -
not EXT INT2

not EXT INT3

not EXT INT4

not EXT INT5 - -
not EXT INT6

not EXT INT7

type

for

OR int type is
disable,
on line insert,
turn on-stable store,
local reset, -
turn_~n_board);

OR int type use(
disable
on line insert
turn on-stable store
local reset -
turn en board

Possible OR interrupts.

Enumeration Literals:

=> 2#"000#",
=> 2#"001#",
=> 2#"010#",
=> 2#"011#",
=> 2#"100#");

disable Disable the OR interrupt.

on line insert - -
Use OR interrupt for on_line insertion on AP bus.

turn on stable store
- - Use OR interrupt for stable store tum on.

local reset Use OR interrupt for local reset of board.

turn on board
Use OR interrupt for board tum on after insertion.

SSM Defs-9

SSM Defs-l0

type board mode is
normal,
lbO active,
lb1-active,
default) ;

for board mode use(
normal
lbO active
lb1-active
default

Y K.r..LliVllNAK l:

=> 2#00#,
=> 2#01#,
=> 2#10#,
=> 2#11#);

Possible mode of boards after init.

Enumeration Literals:

normal Follow the predicted BXU/MCU mode.

IbO active

Ibl active

default

Use LBO's resource, for GDP board PRC split mode.

Use LB 1 's resource, for GDP board, only LB 1 is functional.

Use default mode, for GDP board PRC mode for others lbO mode.

type OR param rec (
select int: OR int type := local_reset) is

record - --
case select int is

when local reset =>
core:
non core:
init mode:

when others
null;

end case;
end record;

boolean;
boolean;
board_mode;

=>

pragma suppress(discriminant_check,OR_param_rec);

for ORyaram_rec use
record

select int -core
non core
init mode

end record;

Fields:

select int

core

non core

init mode

at 0 range 0 2;
at 0 range 3 3;
at 0 range 4 4 ;
at 0 range 5 6;

Possible OR interrupt configurations.

True => all core boards pay attention.

True => all non_core boards pay attention.

Indicates which mode the board should come up in after init.

I

\

(

PRELIMINARY

I SSM yaram _rec

type SSM_param_rec is
record

box: enclosure select:
test: boolean; -
battery: boolean;
extension: boolean;

end record;

for SSM_param_ rec use
record

box at 0 range 0 2;
test at 0 range 4 4 ;
battery at 0 range 5 5;
extension at 0 range 6 6;

end record;

Parameter for configure SSM command.

Fields:

box

test

battery

extension

Selects box which will be affected.

If true, test mode on.

If true, external battery connected.

If true, container connected.

type DC cntrl rec is
record -

box: enclosure_select;
turn on:
buftered:
PSlla:
PSllb:

end record;

for DC cntrl
record

box
buffered
PSlla
PSllb
turn on

end record;

boolean;
boolean;
boolean;
boolean;

rec use

at
at
at
at
at

0 range 0 2;
0 range 3 3;
0 range 4 4 ;
0 range 5 5;
0 range 6 6;

Format of a DC power control record.

Fields:

box

turn on

buffered

PSlla

Selects box which will be affected.

If true, tum DC power on. If false, tum DC power off.

If true, affect source of buffered memory power.

If true, affect PS-IIa power supplies.

SSM Defs-ll

SSM = Defs-12

PSllb If true, affect PS-llb power supplies.

type blower cntrl rec is
record - -

box: enclosure select;
full_speed: boolean;-
turn on: boolean;

end record;

for blower cntrl rec use -
record

box at a range 0 2;
full _speed at 0 range 5 5;
turn on at

end record;
0 range 6 6;

Format of an air blower control record.

Fields:

Selects box which will be affected. box

full_speed

turn on

If true, set blower for full speed. If false, set blower for half speed.

If true, turn blower on. If false, turn blower off.

type SSM status is
record-

watchdog overflow:
DC on: -
reset:
AC_power_return:
sys init request:

end record;

for SSM status use
record

watchdog overflow
DC on -
reset
AC power return
sys init-request

end record;

SSM status data.

Fields:

boolean;
boolean;
boolean;
boolean;
boolean;

at
at
at
at
at

0
0
0
a
0

range a
range 1
range 2
range 3
range 4

watchdog overflow
- INIT assertion due to watchdog timer.

DC 0 n INIT assertion due to DC-ON button.

reset INIT assertion due to RESET button.

ACyower_return

0;
1;
2;
3;
4 ;

INIT assertion due to return of AC power.

(
\

(

PRELIMINARY

sys init request
- - INIT assertion due to SSM lnit. request.

I NID_byte

type NID byte is
record-

NID nibble:
zero:

KMDS Defs.four bit field;
KMDS=Defs. fou<)it=field;

end record;

for NID byte use
record

NID nibble
zero

end record;

at 0
at 0

Format of raw NID data byte.

Fields:

range 0
range 4

3;
7;

NID nibble

zero

Low four bits of byte contain NID data.

High four bits are zero.

type raw_NID is array (System.ordinal range 1 .. 8) of NID_byte;

pragma pack(raw_NID};

Raw NID data returned by SSM.

type raw data buffer is array (System.ordinal range 1 .. 8)
of System~byte_ordinal;

pragma pack(raw_data_buffer};

Raw data buffer.

type request format
request: SSM requests := write_TOD} is

record -
case request is

when echo char
send-to MD =>

char: KMDS Defs.seven_bit_field;
when read rev-I

gen OR int I
read NID I
read-TOD I
single_initO

SSM _ Defs-13

SSM Defs-14

single init1 I
double-init I
basic T
read_TOD_RAM =>

null;
when read status I

sys Init I
read err log I
read-inputs I
read-config =>

PRELIMINARY

box: - enclosure_select;
when DC cntrl =>

DC: - DC cntrl rec;
when blower cntrl ~> -

blower: - blower cntrl rec;
when load env timer =>- -

counter: - enclosure select;
count: KMDS Defs~seven bit field;

when write TOD I - -
write-TOD RAM =>

time: - KMDS Defs.TOD;
when write LED =>

LED select: KMDS Defs.two_bit_field;
mode: LED modes;

when write watchdog-=>
interval: watchdog interval;

when config SSM => -
SSM param: SSM param rec;

when config OR int ~> -
OR param:- - OR param rec;

when-load COM word-=> -
index: - - System.ordinal range 0 .. 2;

when load mem init bit =>
set bit: - boolean;

end case;
end record;

pragma suppress(discriminant_check,request_format);

for request_format use
record

request
char
box
DC
blower
counter
count
time
LED select
mode
interval
SSM_param
ORyaram
index
set bit

end record;

Fields:

request

char

box

DC

at 0 range 0 7;
at 1 range 0 7;
at 1 range 0 2;
at 1 range 0 7;
at 1 range 0 7;
at 1 range 0 2;
at 2 range 0 7;
at 1 range 0 8 * 8 - 1;
at 1 range 0 1;
at 1 range 5 6;
at 1 range 0 2 * 8 - 1;
at 1 range 0 7;
at 1 range 0 7;
at 1 range 5 6;
at 1 range 0 0;

Format of SSM requests with data bytes.

Character argument. High-order bit will be forced to O.

Selects enclosure whose SSM will perfonn the request.

DC power supply control data.

/'
I
\
'11

blower

counter

count

time

PRELIMINARY

Blower control data.

Selects SSM whose environment timer will be loaded.

Count.

Time of Day.

LED select Selects the LED (System Error or Online Rep OK) whose mode will be
changed.

mode

interval

SSMyaram

ORyaram

index

Display mode for LED (i.e. on, off, fast blink, or slow blink).

Time before watchdog timer goes off.

Informs SSM about cOnfiguration.

Configures the OR interrupt.

Indicates which COM word to load (i.e. 0, 1, or 2).

set bit If true, set Memory Initialized bit in COM word 1. If false, clear Memory
Initialized bit.

I reply_format

type reply format (
reply:- SSM replies := acknowledge) is

record -
case reply is

when echo char reply
read-rev reply =>

char: - - KMDS Defs.seven bit field;
when read status reply => -

status:- SSM status;
when read config reply =>

config:- SSM config;
when read err log reply =>

error log: - SSM error log;
when read inputs reply =>-

inputs:- SSM inputs;
when read TOD reply-I

read-TOD-RAM reply =>
TOD: - - KMDS Defs.TOD;

when read NID reply ~>
NID: - - raw_NID;

when others =>
raw data:

end case;
end record;

pragma suppress (discriminant _check,reply_format);

for reply_format use
record

reply at 0 range 0 7 ;
char at 1 range 0 7;
status at 1 range 0 7;
config at 1 range 0 6 * 8 - 1;
error log at 1 range 0 6 * 8 - 1;
inputs at 1 range 0 7 * 8 - 1;
TOD at 1 range 0 8 * 8 - 1;
NID at 1 range 0 8 * 8 - 1;
raw data at 1 range 0 8 * 8 - 1;

end record;

SSM Defs-IS

SSM _ Defs-16

PRELIMINARY

type unsol msg format (
msg: unsoT msgs :=

record -
power_fail) is

primary:
source:

boolean;
enclosure_select;

case msg is
when switch request =>

manual request:
online-replacement:
DC off:
test:

when power fail =>
AC fail other PSllc:
AC-ret other PSllc:
UPS on: -
UPS-off:
sys-battery fail:
ext-battery-fail:
buf-Sv bus fail:
PSllaO-Sv fail:
PSllaO-12v fail:
PSllal-Sv fail:
PSllal-12v fail:
PSllbO-faiT:
PSllbl-fail:
buf Sv-supply fail:
AC faiT: -

boolean;
boolean;
boolean;
boolean;

boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;

AC-returns: boolean;
when-environment fail =>

PSllc_temp:
cage temp air:
periph temp air:
air intake temp:
blower: -
mini 0:
mini-I:
mini-2:
mini-3:

when {rom MD =>

boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;

char: - System.byte_ordinal;
when external interrupt =>

ext intO: - boolean;
ext-intI: boolean;
ext-int2: boolean;
ext-int3: boolean;
ext-int4: boolean;
ext-intS: boolean;
ext-int6: boolean;
ext-int7: boolean;

when ethers =>
null;

end case;
end record;

pragma suppress(discriminant_check,unsol_msg_format);

for unsol_msg_format use
record

msg at 0 range 0 7;
primary at 4 range 0 7;
source at 1 range 0 7;
manual _request at 2 range 0 0;
online _replacement at 2 range 1 1;
DC off at 2 range 2 2;
test at 2 range 3 3;
AC - fail other PSllc at 2 range 0 0; -

AC ret_other_PSllc
UPS on
UPS-off
sys-battery fail
ext-battery-fail
buf-5v bus fail
PSI!aO 5v fail
PSllaO-12v fail
PSllal-5v fail
PSllal-12v fail
PSllbO-fail
PSllbl-fail
buf 5v-supply fail
AC faiT -
AC-returns
PS!Ic temp
cage temp air
periph temp air
air intake temp
blower -
mini 0
mini-l
mini-2
mini 3
char-
ext intO
ext-intI
ext-int2
ext-int3
ext-int4
ext-int5
ext-int6
ext-int7

end record;

Fields:

PRELIMINARY

at 2
at 2
at 2
at 2
at 2
at 2
at 3
at 3
at 3
at 3
at 3
at 3
at 3
at 4
at 4
at 2
at 2
at 2
at 2
at 2
at 3
at 3
at 3
at 3
at 2
at 2
at 2
at 2
at 2
at 3
at 3
at 3
at 3

range 1
range 2
range 3
range 4
range 5
range 6
range 0
range 1
range 2
range 3
range 4
range 5
range 6
range 0
range 1
range 0
range 1
range 2
range 3
range 4
range 0
range 1
range 2
range 3
range 0
range 0
range 1
range 2
range 3
range 0
range 1
range 2
range 3

1;
2;
3;
4;
5;
6;
0;
1;
2;
3;
4;
5;
6;
0;
1;
0;
1;
2;
3;
4;
0;
1 ;
2;
3;
7;
0;
1;
2;
3;
0;
1;
2;
3;

Format of data in an unsolicited message. msg

primary If true, this message came from primary SSM. If false, this message came
from secondary SSM.

source System box (i.e. enclosure) which caused this message.

manual request
- Manual mode requested.

online replacement
- Online replacement requested.

DC off Tum off DC power request.

test Test request.

AC fail other PSllc
- -AC power to the other PS-IIc failed.

AC ret other PSllc
- - - AC power returned on the other PS-llc.

UPS on

UPS off

Container's UPS is on.

Container's UPS is off.

sys battery fail
- - Battery failure in a container.

ext_battery_fail
External battery failure.

SSM Defs-17

SSM Defs-I8

PRELIMINARY

buf 5v bus fail
- - - Buffered +5VDC bus failure in a container.

PSllaO 5v fail
- - PS-IIa-O +5VDC failure in a container.

PSllaO I2v fail
- - PS-IIa-O 12VDC failure in a container.

PSllal 5v fail
- - PS-IIa-1 +5VDC failure in a container.

PSllal I2v fail
- - PS-IIa-1 12VDC failure in a container.

PSllbO fail

PSllbl fail

PS-IIb-O failure in a container.

PS-IIb-1 failure in a container.

buf 5v supply fail
- - -Buffered +5VDC supply failure in a container.

AC fail AC input power fai1.

AC returns

PSllc_temp

AC input power returns after failure.

PS-llc internal temperature fault in a container.

cage temp air
- - Temp/Airflow fault in a container's cardcage.

periph temp air
- - Temp/Airflow fault in a container's peripherals.

air intake temp
- - Ambient air intake temp. fault in a container.

blower Blower fault

mini 0 Fault in extension minibox O. -
mini 1 Fault in extension minibox 1.

mini 2 Fault in extension minibox 2.

mini 3 Fault in extension minibox 3. -
char

ext intO External interrupt 0 is active. -
ext intI External interrupt 1 is active. -
ext int2 External interrupt 2 is active.

ext int3 External interrupt 3 is active. -
ext int4 External interrupt 4 is active. -
ext int5 External interrupt 5 is active. -
ext int6 External interrupt 6 is active. -
ext int7 External interrupt 7 is active. -

PRELIMINARY

pragma ACCESS_KIND (unsol_msg_VA, VIRTUAL);

invalid slot number: constant KMDS Defs.slot number := 0; - -

scr _Mgt indicates an empty slot by setting the slot number to zero.

constant := 2;

scr fault type (f_type) code for SSM Daemon warnings.

I no_warning

no_warning: constant .= 0;

I timeout

timeout: constant .- 1;

constant := 2;

I overlapped_requests

overlapped_requests: constant .- 3;

PRELIMINARY

I illegal_ control_char

illegal_control_char: constant:= 4;

I unexpected_reply

unexpected_reply: constant '= 5;

I badyarity

constant '= 6;

/
I
\ I extraneous_etx

extraneous etx: constant := 7;

I unexpected_exception

unexpected_exception: constant := 8;

I extraneous_ nack

extraneous _nack: constant := 9;

constant KMDS Defs.two bit field 2#01#; - --

constant KMDS_Defs.two_bit_field := 2#10#;

Constants defmed for quick check for standard replies.

SSM _ Defs-20

PRELIMINARY

constant reply format (reply => acknowledge) :=(
- reply => acknowledge,

raw_data => (others => 0);

constant reply format (reply => neg acknowledge) :=(
- reply => neg acknowledge,

raw_data => (others => 0»;

Encodings of SSM control characters. Note: The control characters used to comunicate with
the SSM are NOT ASCII. They have a special unique encoding.

I stx

stx: constant System.byte_ordinal .- 2#10000000#;

I etx

etx: constant System.byte_ordinal '= 2#11111000#;

laCk

ack: constant System.byte_ordinal := 2#11111001#;

I nack

nack: constant System.byte_ordinal := 2#11111010#;

I rdy

rdy: constant System.byte_ordinal := 2#11111011#;

SSM Defs-21

I sync

sync: constant System.byte_ordinal .- 2#11111100#;

I control char format

type control_char_format is
record

control: boolean;
c bits: KMDS Defs.four bit field;
m-bits: - KMDS=Defs.three_bit_field;

end-record;

for control_char_format use
record

control at 0
c bits at 0
m-bits at 0

end-record;

range 7
range 3
range 0

7;
6:
2:

Used to break down control bytes into meaningful bit fields.

not stx: constant KMDS_Defs.four_bit_field := 2#1111#;

The c_bits have this value for all control characters except stx.

\

PRELIMINARY

)

Constants used to build Designate Master request.

des master code: constant System.byte_ordinal .- 16#08#;

des master des db1: - -- constant System.byte_ordinal := 2#01000000#;

des_master_undes_db1: constant System.byte_ordinal := 2#00000000#;

Encodings stx byte of unsolicited messages.

constant System.byte_ordinal := 16#48#;

constant System.byte_ordinal .- 16#49#;

I environment _ fail_code

environment_fail_code: constant System.byte_ordinal := 16#4A#;

constant System.byte_ordinal .- 16#4B#;

SSM _ Defs-24

constant System.byte_ordinal := 16#4C#;

Memory Addresses for accessing SSM Master Micros

I primary_address

primary_address:

I secondary_address

secondary_address:

BXU mask:

I core_status _address

constant System.ordinal := 16#2000_0000#;

constant System. ordinal := 16#2004_0000#;

constant KMDS Defs.fourteen bit field :=
primary_address / (2**18); -

constant KMDS Defs.fourteen bit field :=
secondary_address / (2**18); -

constant KMDS_Defs.fourteen_bit_field := 16#3FFF#;

constant System.ordinal := 16#00200000#;

constant System.ordinal := 16#00400000#;

(

PRELIMINARY

constant .- 0:

Word displacement

constant '= 4:

Word displacement

constant Systern.byte_ordinal 16#09#:

constant Systern.byte_ordinal '= 16#OA#;

constant Systern.byte_ordinal := 16#OB#:

constant Systern.byte_ordinal .- 16#18#:

constant Systern.byte_ordinal := 16#19#:

constant Systern.byte_ordinal := 16#lA#:

PRELIMINARY

I DC_cntrl_reCLcode

DC_cntrl_req_code: constant System. byte_ordinal .- 16#lB#;

I blower cntrl_reCLcode

blower_cntrl_req_code: constant System. byte_ ordinal '= 16#lC#;

I read_err _Iog_ reCL code

read_err_log_req_code: constant System. byte_ordinal := 16#lD#;

I read_inputs _ reCL code

read_inputs_req_code: constant System.byte_ ordinal .- 16#lE#;

Iload_env_timer_reCLcode

load_env_timer_req_code: constant System. byte_ordinal := 16#lF#;

I read_TOD_reCLcode

read_TOD_req_code: constant System. byte_ordinal := 16#20#;

I write_TOD_re'Lcode

write TOO _req_code: constant System. byte_ordinal := 16#21#;

I write_LED _rf<L code

write_LED_req_code: constant System. byte_ordinal .- 16#22#:

SSM _Defs-26

PRELIMINARY

constant System. byte_ordinal := 16*23*:

constant System. byte_ordinal := 16*26*:

constant System. byte_ordinal .= 16#30#:

constant System.byte_ordinal "= 16*41#:

SSM Defs-27

SSM Defs-28

PRELIl\fiNARY

I singJe_initl_re<Lcode

constant System. byte_ordinal .- 16#43#;

constant System.byte_ordinal .- 16#44#:

constant System.byte_ ordinal .- 16#45#;

constant System. byte_ ordinal .- 16#46#:

load mem init bit code: - - - - constant System.byte_ordinal .- 16#47#:

subtype xmit_index is System.byte_ordinal range 1 .. 11;

Index into transmission buffers.

Maximum size of a SSM message is 11 bytes (1 stx byte + 8 data bytes + 1 parity byte + 1 etx
byte).

I xmit _butTer

type xmit_buffer is array (xmit_index) of System.byte_ordinal:

pragma pack(xmit_buffer);

Transmit buffer array.

I

i
\

\

(

PRELIMINARY

I xmit _buffer _ V A

type xmit_buffer_VA is access xmit_buffer;

pragma ACCESS_KIND (xmit_buffer_VA, VIRTUAL);

reply stx codes: constant
-ack~owledge

array (SSM replies)
=> 16#00#,

of System.byte_ordinal .=

neg acknowledge
echo char reply
read-rev reply
read-status reply
read-config-reply
read-err log reply
read-inputs reply
read-TOD reply
read-NID-reply
read=TOD=RAM_reply

=> 16#01#,
=> 16#10#,
=> 16#11#,
=> 16#28#,
=> 16#29#,
=> 16#2B#,
=> 16#2C#,
=> 16#2A#,
=> 16#2D#,
=> 16#2E#);

type request bit mask is array(
xmit_index-range 1 .. 8) of System.byte_ordinal;

pragma pack(request_bit_mask);

type request data record is
record - -

data length:
reply:
stx code:
mask:

end record;

for request data
record -

data length
reply
stx code
mask

end record;

Request data record.

System.byte ordinal;
SSM replies;
System.byte ordinal;
request_bit=mask;

record use

at 0
at 1
at 2
at 3

range 0
range 0
range 0
range 0

7;
7;
7;
8 * 8 - 1;

Fields:

data_length

reply

stx code

Number of data bytes in request.

Expected reply to this request.

Start of TeXt byte for this request.

SSM Defs-29

SSM _ Defs-30

PRELIMINARY

mask Mask used to force reserved data bits to zero.

I request_data _table

request data table:
(echo_char

read rev

read status

read_config

DC cntrl

blower cntrl

read_inputs

load env timer

read TOO

write TOO

constant array(SSM requests) of request data record .=
=> (data length - => 1, - -

reply => echo char reply,
stx code => stx + echo char req code,
mask => (16#7F#, others-=> 0»,

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply

=> 0,
=> read rev reply,
=> stx + read rev req code,
=> (others =>-0»; -

=> af

=> acknowledge,
=> stx + gen OR int code,
=> (others => 0»,

=> 1,
=> read status reply,
=> stx + read status req code,
=> (16#07#, others => 0»,

=> 1,
=> read config reply,
=> stx + read config req code,
=> (16#07#, others => 0»,

=> 1,
=> no reply,
=> stx + sys init req code,
=> (16#07#, others =>-0»,

=> 1,
=> acknowledge,
=> stx + DC cntrl req code,
=> (16#7F#,-others =>-0»,

=> 1,
=> acknowledge,
=> stx + blower cntrl req code,
=> (16#67#, others =>-O»~

=> 1,
=> read err log reply,
=> stx + read err log req code,
=> (16#07#, others =>-0»;

=> 1,
=> read inputs reply,
=> stx + read Inputs req code,
=> (16#07#, others => 0»,

=> 2,
=> acknowledge,
=> stx + load env timer req code,
=> (16#07#, 16#7Fi, others ~> 0»,

=> 0,
=> read TOO reply,
=> stx + read TOO req code,
=> (others =>-0»; -

=> 8,
=> acknowledge,

(

\~

(

!
~

write LED

write_watchdog

read NID

send to MD

double in it

load COM word

basic

read TOO RAM

PRELIMINARY

stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> (data length
reply
stx code
mask

=> stx + write TOO req code,
=> (16#7F#, - - -

16#3F#,
16#3F#,
16#lF#,
16#07#,
16#lF#,
16#OF#,
16#7F#»,

=> 1,
=> acknowledge,
=> stx + write LED req code,
=> (16#63#, others-=> 0»,

=> 2,
=> acknowledge,
=> stx + write watchdog req code,
=> (16#03#, 16#7F#, others ~> 0»,

=> 1,
=> acknowledge,
=> stx + config SSM req code,
=> (16#77#, others ~> 0»,

=> 0,
=> read NID reply,
=> stx + read NID req code,
=> (others => O»~ -

=> 1,
=> acknowledge,
=> stx + send to MD req code,
=> (16#7F#, others ~> 0»,

=> 1,
=> acknowledge,
=> stx + config OR int code,
=> (16#7F#, others-=> 0»,

=> 0,
=> acknowledge,
=> stx + single initO req code,
=> (others => 0»,

=> 0,
=> acknowledge,
=> stx + single initl req code,
=> (others => 0», - -

=> 0,
=> acknowledge,
=> stx + double init req code,
=> (others => 0»,

=> 1,
=> acknowledge,
=> stx + load COM word req code,
=> (16#60#, others => 0»,

=> 0,
=> acknowledge,
=> stx + basic req code,
=> (others => 0»,-

=> 0,
=> read TOO RAM reply,
=> stx + read TOO RAM req code,
=> (others =>-O»~ - -

SSM Defs-32

write TOO RAM

PRELIMINARY

=> (data length
reply
stx code
mask

load mem init bit => (data length
reply -
stx code
mask

pragma external;

=> 8,
=> acknowledge,
=> stx + write TOD_RAM_req_code,
=> (16#7F#, -

16#3F#,
16#3F#,
16#lF#,
16#07#,
16#lF#,
16#OF#,
16#7F#)),

=> 1,
=> acknowledge,
=> stx + load mem in it bit code,
=> (16#01#, others => 0)));

Security

Calls

PRELIMINARY

This package allows the user to access KMDS's built-in diagnostic functions. In general,
differences in implementation are masked by the test procedures provided here. For example:
Test_memory _controller can be used to test any type of memory controller in any type of
system, and the caller does not have to be aware of what type of memory controller is being
tested. The subtest_result record, which is returned by all of the test procedures, has
been generalized to simplify things. Some of the parameters do not make sense in all of the
tests. It is up to the caller to determine what to do with the results and isolate the failure to a
specific part of the module. The test procedures will run different sets of subtests depending
on the type of module under test and the type of system.

Access to this package is restricted to callers carrying a privileged ID. See your System
Administrator for access.

GDP diag driver
- This is a template for a GDP Diagnostics Driver procedure.

Map-processor_ID_to_CP
This function maps a processor ID to a CP object.

Set board LED
- Attempts to turn the LED on the board in the given slot number on or off as

indicated by LED_on.

Set diagnostic mode
- This proCedure sets the system to be brought up in diagnostics mode at its next

boot It also brings all of the online memory board entries offline with in the
System Configuration Table. The functional status of the stable store is not al­
tered.

Set normal mode
- This procedure sets the system to be brought up in normal mode at its next boot. It

also brings all of the offline memory board entries online with in the System Con­
figuration Table. The functional status of the stable store and the memory
modules with status of faulty, or offline_or_faulty is not altered.

Test BXU
- This test makes extensive use testability features built into the VLSI component in

order to test AP bus register set, timer, FRC circuits, parity checking logic, error
reporting mechanisms, and the cache. These functions will be tested in the logical
BXU identified by logical ID and bus ID.

Test_Support-!

PRELIMINARY

Test CP Test_CP initiates execution of the CP's built-in tests. These tests are the Internal
and External Self-Tests and the lOS Test. pas sed indicates whether the CP
passed the tests. The subte st s array indicates whether the individual subtests
passed. If pa s sed is true than all of the subtests passed.

Test GDP
Test_GOP runs the given diagnostics routines on the specified GOP. In general
these subroutines should address those areas of the GOP that are not covered by its
self-test. test procs is the virtual address to the list of test procedure to run on
the selected GOP. The GDP is identified through the given logical_ID and
processor_select. Iftestyrocs is null then a standard test will be run.

_ timeout specifies the maximum time (in milliseconds) for the test procedures to
run on the GDP.

Test memory
- Built-in test features are used to test the memory in the range between

starting_displacement and ending_displacement. The "ending_
displacement" is the address of the memory location which was tested most
recently. If Test_memory failed, it is the address of the failed word. The output
parameter passed is TRUE, if the test succeeded, and FALSE, if the test failed.
All displacements are byte displacements, however the two least significant bits
are always masked to zero, so testing must start and end on word boundaries.

Test memory controller
- Thisprocedure tests the ECC generation of the memory controllers in the memory

module. This is done by loading data with bad ECC into memory (using special
memory controller hooks), and then reading that data back via a normal memory
access. Normal, memory error reporting will be disabled during this test. Since
some memory modules can have more than one memory controller (one for each
system bus), and BXU based memory controllers are actually on a local bus, the
out parameter controller will indicate which memory controller failed.

Testyrivate_memory
The procedure tests the external RAM used by BXU caches. This test may only be
run when the system is in the diagnostic mode of operation. module is the 10 of
the module (GOP or 10) which contains the cache RAM to be tested. If this test
finds a failure faulty _disp will indicate which cache RAM is faulty. Ifno
failures are found pa s s ed will be True.

Virtual ADR

Exceptions

unresponsive_target
Raised when an attempt to deactivate or activate a hardware component (Le. a
processor) has failed.

diag target unknown
- Raised when the necessary information pertaining to the hardware component un­

der test cannot be retrieved.

wrong target type
- Raised when a test is run on an incorrect component. For example running GOP

diagnostics on memory.

Test_Support-2

PRELIMINARY

invalid test range
- Raised when caller specifies a test range other than the test allows to be specified

(e.g., Test_Memory_controller allows only 'bel' or 'all_tests'

invalid memory range
- Raised when caller specifies a starting displacement bigger than the ending dis­

placement, or when either exceeds the size of the memory module

target not offline
- Rai-sed when a (memory) module does not have offline status before testing.

CP not in pool
- - Rrused by Map_processor_ID_to_CP when CP _Mgt's pool of CPs does not con-

tain a CP with the requested processor ID.

interleaved~artner_not_found

Raised when testing a memory module requires an inter- leaved partner memory
module that cannot be found.

PRELIMINARY

Declarations

I possible sub results

type possible_sub_results is (passed,
failed,
not run,
running) ;

Enumeration Literals:

passed

failed

not run

running

The subtest was executed correctly.

The subtest was executed incorrectly.
The subtest was not run (or does not exist).

Subtest is currently running.

type test_type is (memory,
GDP,
CP,
MCU,
BXU) ;

(

~

/
\

I I
(

L-a_-_o_k _________________________________ --I. '\,

a ok: constant integer := 0;

Reserved for use when there is no error.

I unknown_error

unknown error: constant integer := 1;

Signals an undefined error.

bad access: constant integer := -1;

Used for errors in accessing the registers or locations.

Test_Support-4

(
\

\

PRELlMINARY

could_not_run_test: constant integer := 2;

Indicates that the test code tried to run the subtest but could not complete the test for some
reason. This is probably due to a lack of resources due to a conflict with another test procedure.

I memory_record

type memory record is
record -

data word:
tag:
ecc check:
spare:
reserved:

end record;

System. ordinal;
KMDS Defs.one bit field;
KMDS-Defs.seven bIt field;
KMDS-Defs.one bIt fIeld;
KMDS=Defs.seven_blt_field;

for memory_record use
record

data word
tag
ecc check -
spare
reserved

end record;

Fields:

data word

tag

ecc check

spare

reserved

at 0 range o .• 31;
at 0 range 32 .. 32;
at 0 range 33 .. 39;
at 0 range 40 .. 40;
at 0 range 41. .47;

The actual 32-bit data word.

The GDP-defined tag bit

The check bits generated by ECC

The spare bit provided by memory.

Only used to make the container size an even multiple of bytes.

I memory_controller _ desc

type memory_controller_desc is (none,
local bus,
sys busO,
sys=busl) ;

Enumeration Literals:

none

local bus

sys_busO

sys_busl

None of the memory controllers failed the test

The memory controller on local bus failed (private memory)

The MCU connected to system bus 0 failed.

The MCU connected to system bus 1 failed.

PRELIMINARY

I memory _ test_types

type memory_test_types is (data bus ripple,
address bus ripple,
march, - -
refresh) ;

Enumeration Literals:

data bus ripple
- - Ripple test of data bus.

address bus ripple
- - Ripple test of address bus.

march

refresh

Marching test both up and down.

Array refresh test.

type memory_controller_subtests is (all tests,
bcl:-

Enumeration Literals:

memory array test,
partial word-update,
ECC_correct_detect);

Perfonns all Memory _controller_subtests

Test MCU/BXU AP bus interface
memory_array_test

partial_word_update

ECC correct detect
- - This type describes the subtests that can be done on private memory

(GDP/GENIO cachellocal memory)

type private_memory_subtests is (nibble,
stuck_at);

Enumeration Literals:

nibble

stuck at

Checks 4 bit wide static RAMs.

Checks for bits stuck a 0 or 1.

I test step

type test_step is (all bits,
data,
ecc,
tag);

Enumeration Literals:

all bits

data

ecc
tag

Perfonn test on data, ecc, tag bits

Perfonn test on data portion of memory array only

Perfonn test on ecc portion of memory array only

Perfonn test on tag bits only

I pattern miscompare

pattern_miscornpare: constant integer := 2;

U sed for errors detected by comparing expected and actual values.

pattern_fault: constant integer .= 3;

Used for the errors detected by the HW.

I parity_fault

parity_fault: constant integer := 4;

Used for tag/spare errors detected by BXU_mem hardware.

I ECC _detect_fault

constant integer := 5;

Used for incorrect detecting of pattern errors (Le., should have been detected by hardware, but
wasn't).

Test_Support-7

PRELIMINARY

I ECCyarity_detect_fault

constant integer := 6;

Used for incorrect detecting of tag/spare errors (Le., should have been detected by hardware,
but wasn't).

I array _not_usable

constant integer := -2;

Used by controller tests when the memory array won't work for the controller test.

type bi word is
record

worda: System. ordinal;
word1: System. ordinal;

end record;

for bi word use
record

worda at a range a 31;
word1 at 4 range a 31;

end record;

I data_types

type data_types is (one byte,
two-bytes,
four bytes,
eight bytes,
sixteen bytes,
mem_record);

Enumeration Literals:

one_byte

two_bytes

four_bytes

eight_bytes

One byte data.

Two byte data.

Four byte data.

Eight byte data.

sixteen bytes
- Sixteen byte data.

mem record

Test _ Support-8

Defme a record which hold up to the largest (sixteen_bytes, AKA quad_
word) of the memory data types.

I pattern_rep

type pattern rep is
_r~cord -

any data type:
memory record:

end record;

for pattern rep use
record -

PRELIl\1INARY

System Defs.quad word:
Test_Support.memory_record:

any data type at
memory record at

Orange
16 range

o
o

127;
47;

end record:

Fields:

any data type
- - Type has space for the largest data (quad_word). It can also have smaller

types. Used by memory controller test.

memory record
- The 41-bit memory record. This is most commonly used by memory tests.

type mem_subtest_result (bcl_test: boolean := false) is
record

sub result:
failure code:
case bcl test is

when false =>

possible sub results :=
integer := 0;

not_run;

last displacement: System. ordinal:
type-of data: data types := mem record;
expected: pattern_rep := (any_data_type =>

memory_record =>

actual:

memory_record =>

expected syndrome: KMDS Oefs.seven bit field := 0;
actual syndrome: KMDS-Oefs.seven-bit-field:= 0;
controller: memory_controller_desc;

when true =>
component status:

end case; -
end record;

pragma suppress(discriminant_check,mem_subtest_result);

for mem subtest result use
record -

(wordO => 0,
word1 => 0,
word2 => 0,
word3 => 0),

(data_word => 0,
tag => 0,
ecc check => 0,
spare => 0,
reserved => 0)

(wordO => 0,
word1 => 0,
word2 => 0,
word3 => 0),

(data_word => 0,
tag => 0,
ecc check => 0,
spare => 0,
reserved => 0)

bcl test
sub-result
failure code
last_displacement
type_of_data
expected
actual
expected_syndrome
actual_syndrome
controller
component_

end record;

Fields:

bcl test

status

at
at
at
at
at
at
at
at
at
at
at

PRELIMINARY

0 range 0 0:
0 range 1 7:
1 range 0 31 :
5 range 0 31:
9 range 0 7 :

10 range 0 175;
32 range 0 175:
54 range 0 7;
55 range 0 7;
56 range 0 7;

5 range 0 63;

sub res u 1 t Indicates results of this subtest.

failure code Indicates why test failed. Values for this field are assigned by the subtests
so the same value may have different meanings for different subtests.
True if all memory controllers passed.

last displacement
- Address of last word tested

type _of _ da ta This identifies which type of data.

expected

actual

Data expected to be read from array.

Actual data from array that was read read.

expected syndrome
- The ECC syndrome bits expected.

actual syndrome
- The ECC syndrome bits received.

controller When testing controller, contains ID of controller. When testing
BXU/MCU, contains ID of the bus agents.

component_status

pragma pack(mem_array_results):

is array (memory_controller_subtests) of mem subtest

pragma pack(mem_ctlr_results);

PRELIMINARY

I private _ mem _results

type private_mem_results is array (private_memory_subtests) of mem subtest re

pragma pack(private_mem_results);

I max_number _ subtests

constant := 12;

Each GOP diagnostics routine may write data pertaining to the results of it's particular test to a
diagnosis buffer. The following is the size of such an array.

module_diag_buffer_size: constant System.ordinal := 8;

Maximum number of processes that are allowed to be spawned by a diagnostic process, it is an
arbitrary value.

max_number_of_processes: constant System.ordinal := 50;

The default maximum time (in milliseconds) to wait for a set of given GOP tests to complete.
Tests that do not return in this time frame indicate a faulty (or dead) GOP. This value is used
by procedure Test_GDP. Users of this routine may wish to specify a different timeout period
as necessary.

GDP_test_timeout-period: constant System. ordinal := 1000;

The structure of the buffer used to disclose farther diagnosis of the GOP under test by the test
routine. Developers of the GDP diagnostics routine may wish to use such a structure to report
more meaningful messages by their routine.

I diagnosis_buffer

type diagnosis_buffer is array (1 .. module_diag_buffer_size) of System.byte

Test_Support-ll

PRELIMINARY

I GDP _ subtest _result

type GDP subtest result (bel_test: boolean := false) is
record- -

sub result:
failure code:
completed:
test report:

end record;

for GDP subtest
record

sub result

-

failure code
completed
test_report

end record;

Fields:

bcl test

possible sub results '= not_run;
integer := 0;
boolean := false;
diagnosis_buffer;

result use

at 0 range 0
at 1 range 0
at 5 range 0
at 9 range 0

7;
31 ;
31;
63;

sub result Indicates results of this subtest.

failure code Indicates why test failed. Values for this field are assigned by the subtests
so the same value may have different meanings for different subtests.
True if all memory controllers passed.

completed Signals that the current GDP diagnostics routine is completed, when it is
set to true.

test_report Optional value. May be used by user's GDP test routines to write diag­
nostic messages (Le. It may be used to write certain error messages).

I subtest _index

subtype subtest index is System. ordinal range 1 .. max_number_subtests;

type GDP_subtest_results is array (subtest_index) of GDP_subtest_result;

pragma pack(GDP_subtest_results);

type GDP_diag_routine_list is array (subtest_index) of System. subprogram_type

pragma pack(GDP_diag_routine_list);

Test_Support-12

PRELIMINARY

I diagJ>roc list

type diag proc list is
record - -

num tests:
diag modules:

end record;

Fields:

subtest index;
GDP_diag_routine_list;

num tests Number of test routine pointers in diag_modules.

diag_modules List of pointers to GOP diagnostics routines.

I diagJ>roc list_VA

type diag status buffer is
record - -

done: boolean:= false;
results: GDP_subtest_results;

end record;

Fields:

done Status of the entire GOP diagnostics routine. When set to true, it indicates
that all of the given test routines have completed running on the desig­
nated GOP (nonnally or abnonnally).

results List of GOP diagnostics test results.

The following data structure is used by the callers to Test_GOP to define the necessary data for
this module. Using this infonnation Test_GOP will locate the processor under test, sets it up,
and runs the given diagnostics routines on it.

Test _ Support-13

PRELIMINARY

I processor_under _test_data

type processor under test data is
record - - -

cardcage 1D: KMDS Defs.cardcage 1D rep := KMDS Defs.sys;
slot: - KMDS-Defs.slot number-:= 0; -
psor: KMDS-Defs.one bit field := 0;
master: boolean := true; -

end record;

Fields:

cardcage _ ID 10 of the cardcage containing the processor board, that holds the GDP to
be diagnosed.

slot Slot number of the processor board in the given cardcage. Note that value
of zero indicates an invalid slot number.

psor The GOP to be tested.

master Test the master GOP when set to true.

I BXU_subtests

type BXU subtests is
FRC,-
parity,
error report,
timeout,
LERL,
cache directory,
10yrefetch,
extend) ;

This first group of subtests only require access to the BXU from the AP-Bus side. These tests
make up the BXU BCL test.

Enumeration Literals:

FRC Start self checking FRC circuitso

par i t Y Check parity detection circuits.

error_report Check error reporting circuits.

timeout Bus bad access timeout.

LERL Check Local Error Report Line (LERL).

cache_directory
Check internal cache directory.

10 yrefetch Check 10 prefetcher (10 boards only).

extend

Test_Support-14

Check additional BXU logical units. I.e. lAC message support, Memory
support, and etc.

PRELIMINARY

I BXU_subtest_result

type BXU subtest result (logical_failure: boolean := false) is
record- -

sub result: possible_sub_results .- not_run;
failure code: integer := a;
case logical failure is

when true - =>
logical detail: System.ordinal;

when false =>
component status:

end case; -
end record;

pragma suppress(discriminant_check,BXU_subtest_result);

for BXU subtest result use
record

-

logical_ failure at a range a 0;
sub result at a range 1 7;
failure code at 1 range a 31;
logical= detail at 5 range a 31 ;
component_status at 5 range a 63;

end record;

Fields:

logical_failure

sub result Indicates results of this subtest.

fail ure code Indicates why test failed. Values for this field are assigned by the subtests
so the same value may have different meanings for different subtests.
True if all memory controllers passed.

logical_detail

component_status

type BXU_subtest_results is array (BXU_subtests) of BXU_subtest_result;

pragma pack(BXU_subtest_results);

type CP subtests is
self test,

-IOS);

Enumeration Literals:

self test

ros
CP's built-in internal/external self-tests.

CP's built-in lOS Test.

Test_Support-lS

PRELIMINARY

type other subtest result is
record - -

sub result: possible sub results .- not_run;
failure code: integer ~= 0;

end record;

for other subtest result use
record

sub result
failure code

end record;

Fields:

at 0 range 1
at 1 range 0

7;
31 ;

sub result Indicates results of this subtest.
failure code Indicates why test failed. Values for this field are assigned by the subtests

so the same value may have different meanings for different subtests.
True if all memory controllers passed.

type CP_subtest_results is array (CP_subtests) of other_subtest_result;

pragma pack(CP_subtest_results};

subtype GDP_diag_driver_type is System. subprogram_type;

Test_Support-16

PRELIMINARY

procedure GDP diag driver(
subprogram: - GDP_diag_driver_type;
result: out GDP_subtest_result);

Parameters
subprogram

result

Operation

Result of the GDP diagnostics.

This is a template for a GDP Diagnostics Driver procedure.

procedure <Name> (result: out GDP _subtest_result);

pragma subprogram_ value(GDP _dia~driver, <Name»;

where <Name> is the user's GDP diagnostic routine procedure. result is the result of the
test just run. The actual diagnostics routine is reponsible for updating it's fields.

The pragma indicates that <Name> provides an alternate body to the GDP _dia~driver
template defined above. res u 1 t specifies the results of the test that was just run on the GDP
under test.

Test_Support-17

PRELIMINARY

function Map-processor_ID_to_CP(
psor id: KMDS Defs.processor ID}

return-CP_Mgt.CP_AD; -

Parameters

Return Type and Value
CP_Mgt.CP_AD

Operation

This function maps a processor ID to a CP object.

Exceptions

System Exceptions.bad parameter
- This is raised if processor ID is null.

Test _ Support-18

PRELIMINARY

procedure Set board LED(
slot: - KMDS Defs.slot number;
LED on: boolean := false);

Parameters

slot

LED on

Operation

The slot number in the given cardcage that the board resides on.

Signal to tum the LED on the subject board on (when true), or off (when
false).

Attempts to tum the LED on the board in the given slot number on or off as indicated by LED_
on.

Test _ Support-19

PRELIMINARY

procedure Set_diagnostic_mode;

Operation

This procedure sets the system to be brought up in diagnostics mode at its next boot. It also
brings all of the online memory board entries offline with in the System Configuration Table.
The functional status of the stable store is not altered.

Test_Support-20

PRELIMINARY

procedure Set_normal_mode;

Operation

This procedure sets the system to be brought up in nonnal mode at its next boot. It also brings
all of the offline memory board entries online with in the System Configuration Table. The
functional status of the stable store and the memory modules with status of faulty, or offline_
or_faulty is not altered.

Test _ Support.21

I TesCBXU

procedure Test BXU(
logical 10:
bus 10:­
passed: out
subtests: out
BeL_only:

Parameters

PRELIMINARY

KMOS Oefs.logical 10 rep;
KMOS-Oefs.VLS1 locatIons;
boolean; -
BXU subtest results;
boolean := false);

logical_ID

bus ID

passed

subtests

BeL_only

Logical ID of target logical BXU.

System Bus BXU is attached to.

Operation

If true, than all subtests were passed.

Array with results of the subtests.

If true, only run the BXU BCL subtests.

This test makes extensive use testability features built into the VLSI component in order to test
AP bus register set, timer, PRe circuits, parity checking logic, error reporting mechanisms, and
the cache. These functions will be tested in the logical BXU identified by logical ID and
bus ID.

If the parameter BeL_only is set to true, then only subtests which do not need to access the
BXU from the local bus side will be executed.

If the system is not in Diagnostic mode then only the BCL tests can be executed. If the system
is in Diagnostic mode then all of the tests can be run.

Ifpassed is true then all of the subtests run on the logical BXU passed. Otherwise, (i.e.
passed is false) one or more of the subtests failed.

Exceptions

FT_Testing.cannot_run_test

SCT_Access.reserved_by_others

seT Access.not in seT

Test_Support-22

PRELIMINARY

Test CP

KMDS Defs.logical ID rep;
boolean; - -
CP subtest results;

procedure Test CP(
logical ID:
passed:- out
subtests: out
psor: KMDS_Defs.psor_select .- KMDS_Defs.psor_O);

Parameters

logical_ID

passed

subtests

psor

Operation

Logical ID of module containing target CP.

If true, than all subtests were passed.

Array with results of the subtests.

Processor in module to be tested.

Test_CP initiates execution of the CP's built-in tests. These tests are the Internal and External
Self-Tests and the lOS Test. pa s s ed indicates whether the CP passed the tests. The
subtests array indicates whether the individual subtests passed. Ifpassed is true than all
of the subtests passed.

Exceptions

diag_target_unknown

unresponsive_target

wrong_target_type

SCT_Access.not_in_SCT

Test_Support-23

PRELIMINARY

iTesCGDP

procedure Test GOP (
GOP data: - processor under test data;
passed: out boolean; - - -
status: out diag status buffer;
testyrocs:
timeout:

diag-proc lIst VA := null;
System.ordinal-:= GOP_test_timeout_period);

Parameters

GDP data

passed

status

testyrocs

timeout

Oata used to identify and locate the processor to be tested.

If true, then the GOP has passed all of the subtests.

Status buffer with results of the subtests.

List of pointers to diagnostics procedures to run on the selected processor.
It is to be prepared by the users of Test_GOP.

The maximum time period needed by a set of GOP diagnostics routines
(given through test_procs) to execute on the GOP under test.

Operation

Warning

Test_GOP runs the given diagnostics routines on the specified GOP. In general these sub­
routines should address those areas of the GOP that are not covered by its self-test. t est_
procs is the virtual address to the list of test procedure to run on the selected GOP. The GOP
is identified through the given logical_ID and processor_select. Iftestyrocs
is null then a standard test will be run. timeout specifies the maximum time (in
milliseconds) for the test procedures to run on the GOP.

If the output parameter pa s s ed is TRUE, the test succeeded, if it is FALSE the test failed. In
either case, the array subtests will contain details about which subtests passed or failed. If
passed is true than all of the subtests passed.

Some diagnostics routines may crash the system or inactivate the GOP under test. Thus it
should be extremely important to the users of this procedure to make sure the system is

\

prepared for such a possibility (specially in a single processor system). (

Exceptions

diag_target_unknown

unresponsive_target

SCT Access.not in SCT - - -

Test_Support-24

(

procedure Test memory(

Parameters

slot: -
selected test:
step:
starting displacement:
ending_dIsplacement:
num errors:
test result:
passed:

PRELIMINARY

KMDS Defs.slot number;
memory_test_types;
test step;
System.ordinal;
System. ordinal;

in out System.ordinal;
out mem subtest result;
out boolean); -

slot Slot number of memory module to be tested.

selected test
Run this memory test.

step selects memory region to be tested

Test_memory

starting displacement
- Beginning displacement to start test. Default of zero means absolute low

address.

ending displacement
- Final displacement of test. Default of zero means absolute high address.

num errors (in) The maximum number of errors to detect before returning. (out) The
number of errors actuall detected.

test result Record with results of the test.

pa s s ed True if memory module passes.

Operation

Built-in test features are used to test the memory in the range between starting_
displacement and ending_displacement. The "ending_displacement" is the ad­
dress of the memory location which was tested most recently. If Test_memory failed, it is the
address of the failed word. The output parameter passed is TR DE, if the test succeeded, and
FALSE, if the test failed. All displacements are byte displacements, however the two least
significant bits are always masked to zero, so testing must start and end on word boundaries.

Exceptions
unresponsive_target

wrong_target_type

SCT_Access.not in_SCT

Test _ Support.25

PRELIMINARY

I Tescmemory_controller

procedure Test memory controller (
slot: - - KMDS Defs.slot number;
selected test: Memory controller subtests;
test results: out mem ctlr results;-
passed: out boolean)-;

Parameters
slot Slot number of memory module to be tested.

selected:-test
Run this controller test.

test results Array with results of subtests.

passed True if all memory controllers passed.

Operation
This procedure tests the ECC generation of the memory controllers in the memory module.
This is done by loading data with bad BCC into memory (using special memory controller
hooks), and then reading that data back via a nonnal memory access. Nonnal, memory error
reporting will be disabled during this test. Since some memory modules can have more than
one memory controller (one for each system bus), and BXU based memory controllers are
actually on a local bus, the out parameter controller will indicate which memory con­
troller failed.

Note: If a failure is detected in the first memory controller tested, the module's second
memory controller will not be tested.

Note: Before this procedure calls the code to actually test a BXU- based memory controller, it
first calls some BXU tests to test the memory module's BXU and AP-Bus interface.

Exceptions
wrong_target_type

unresponsive_target

SCT_Access.not_in_SCT

Test_Support-26

I

\

(

(

PRELIMINARY

procedure Test private memory(
logical ID: KMDS Defs.logical ID rep;
passed:- out boolean; - -
subtests: out private_mem_results);

Parameters

logical_ID

passed

subtests·

Operation

10 of module containing memory to be tested.

If True, then memory passed all tests.

Array with results of the subtests.

The procedure tests the external RAM used by BXU caches. This test may only be run when
the system is in the diagnostic mode of operation. module is the 10 of the module (GOP or
10) which contains the cache RAM to be tested. If this test fmds a failure faulty_disp will
indicate which cache RAM is faulty. If no failures are found passed will be True.

Exceptions
FT_Testing.cannot_run_test

SCT_Access.reserved_by_others

SCT Access.not in SCT

Test _ Support-27

PRELIMINARY

I VirtuaLADR

function Virtual ADR(
s: System. address)

return diag-proc_list_VA;

Parameters

s Source value, of type System. address.

Return Type and Value
diag-proc_list_VA

Result type.

Operation

Changes an expression's Ada type.

Notes

No runtime code is generated.

Test _ Support.28

(
~

(

Security

Calls

PRELIMINARY

FTS Admin

Contains administrative operations for a File Transfer Service (FrS), including defining
remote entities, changing service parameters, and retrieving service infonnation.

Access to this package is restricted to callers carrying a privileged ID. See your System
Administrator for access.

Change_service-params
Changes some parameters of the active service.

Define account
Creates an account, which is allowed to be used by the specified users (name,
location).

Disable local entity
- Disables one or all local entities; subsequent connection requests are rejected.

Enable local entity
- Enables one or all local entities; new connection requests can be processed through

the entities.

Force activity state
- Sets the desired state for the activity identified by the request identifier.

Get account info
Gets Information about a given account.

Get account names
- Gets-the names of all accounts.

Get_activity_descriptions
Gets descriptions of the current activities (transfers) within the service.

Get local entity info
- Get local entity's parameters, status, and statistics.

Get local entity titles
- Gets the titles of all local entities.

FTS Admin-!

Summary

PRELIMINARY

Get remote entity info
- Gets the system definition record for a remote entity.

Get remote entity names
- Gets the local-names of all remote entities.

Get service info
- GetsselVice parameters and statistics.

Get transfer info
Gets descriptions of the current activities within the selVice and information about

. all current transfer requests.

Register remote entity
Registers a remote entity within the selVice.

Switch remote entity
- Enables or disables a remote entity for local users.

FrS allows the local system to exchange files with registered remote systems. An FrS con­
sists of one or more local entities, some registered remote entities, and some remote user
accounts. One or more transfers (activities) may be in progress, or enqueued.

(

\:

Administering the FTS

Some parameters of the selVice may be changed dynamically by calling Change_service_
params. Other parameters may be changed after stopping the selVice (see the Conf igure
utility),

Get service info
- Gets infonnation about the FrS itself, including both parameters and

status.

Local Entities

Files are transferred through local entities. Local entities are identified by (
title. Currently, only one local entity is supported by FrS. There are \
several calls to manage local entities:

Enable_local_entity and Disable_local_entity
Enables or disables one or all local entities. Either the initiating or the
responding parts or both may enabled or disabled.

Get local entity titles
- - Gets-a list of all local entities' titles (names).

Get local entity info
- - GetSinfonnation about a local entity, given the entity's title. There are

three items gotten: the local entity's parameters, and both its initiating and
responding parts' statuses and statistics.

(

PRELIMINARY

Remote Entities

Remote entities are the local system's view of remote systems. A remote
system may have several remote entities in it; each entity is treated
separately.

Register remote entity
- Re~sters a remote entity with the local FrS. The remote entity's name,

address, title, type (BiiN or non-BiiN), and other parameters may be set.
The parameters are read by calling Get_remote_entity_info .

Switch remote entity
- Enables or disables a remote entity for local users.

Get remote entity names
- - Gets alist of the registered remote entities' names.

Get remote entity info
- - Givena remote entity's name, gets its status and parameters.

File Transfers

File transfers (activities) occur as a result of transfer requests from the
manage. transfer utility or the FTS_Transfer package's
procedural interface.

Get activity descriptions
- - Gets a list of activity (transfer) description records, including the as-

sociated local and remote entities, the transfer state, and the activity and
transfer request IDs.

Get transfer info

Accounts

- Gets the same infonnation as Get activity descriptions, but
also includes specific transfer information (last operation, local and remote
filenames, transfer parameters, log file if any, and so forth).

An account is used for access control for remote users. An account has a
name and contains a list of allowed remote users' names and locations;
these remote users, at the allowed locations, can transfer files to and from
the local system. An account can also include a local login name for the
remote user, a home (base) directory, and passwords for the local or public
login.

Define account
- Defines one account's passwords and parameters, including a list of al­

lowed user names and locations.
Get account names - - Gets a list of the current accounts' names.

Get account info
- - Given an account name, gets a list of its users' names and locations, as

well as the account's local login name, local directory, and its passwords.

FTS _ Admin-3

Warning

PRELIMINARY

If a remote user uses an unknown (undefined) account, and the FrS parameter FTS_
Config_Defs. serviceyarams_t. reject_unknown_users is false, there is no
further protection. The unknown remote user can access any destination account where the
destination user's protection set includes the system ID.

FTS Admin-4

PRELIMINARY

Declarations

I desired_activity _state _ t

type desired activity state t is
suspended, --
resume,
aborted,
process);

Parameter to Force_activity_state.

Enumeration Literals:

suspended

resume

aborted

process

Activity is suspended until a resume.

Resume a suspended activity.

Abort an activity being processed.

Process the activity as soon as possible.

FTS _ Admin-S

PRELIMINARY

procedure Change service params(
service: FTS Config-Defs.service AD t;
params: FTS=Config=Defs.service=params_t);

Parameters
service

params

FrS selVice, with control rights.

New selVice parameters.

Operation

Changes some parameters of the active selVice.

For a description of the parameters see FTS_Config_Defs. serviceyarams_t .

Only those parameters for which the selVice need not be stopped can be changed:

• finished_requests_deadline

• low cost time

• reject_anonymous_users

• reject_unauthorized_users

• reject_unknown_users

• suspended_deadline

• timed_queuing_enabled

• timed_requests_offset

• timeout deadline

• trace level

FTS _ Admin-6

,/

'\l.

(

\

PKELIMlNAKY

Define_account

procedure Define account(
service: - FTS Config Defs.service AD t;
account name: System Defs.text; --
users: - FTS Config Defs.identifications t;
local login: System Defs.text .= System Defs~null text;
public-password: System-Defs.text System-Defs.null-text;
implicit password: System-Defs.text:= System-Defs.null-text;
home dir: system=Defs.text .= System=Defs.null=text);

Parameters

service FrS selVice, with control rights.

ac coun t name Account name.

users

If an account with the same name exists already, the existing account
definition is replaced by the new definition.

User names and locations allowed to use this account. If use r s . name is
null, all names will match. Ifuser . location is null, all locations will
match.

Optional. Local login name. If Sy stem Def s . null text (default),
the local login name is the account's name. -

publicyassword
Optional. Public password to be matched by remote users, rather than the
account's password. If System Defs. null text (default), only the
local account's password must be matched. -

implicityassword
Optional. Password that is supplied for the local login.

home dir Optional. Directory subtree to be accessible when using this account.

Operation

Creates an account, which is allowed to be used by the specified users (name, location).

The remote users allowed to use this account are specified by name and location. The loca­
tions associated with the user names must be registered as remote entities.

Exceptions

FTS_Config_Defs.string_too_long

FTS Admin-7

PRELIMINARY

I Disable_locaLentity

procedure Disable_local_entity(
service: FTS Config Defs.service AD t;
title: System Defs.text System-Defs.null text;
initiating part: boolean := true; - -
responding~art: boolean := true;
wait until idle: boolean := true;
max seconds to wait: System.ordinal:= 3600;
abort_connections: boolean:= false);

Parameters

service FrS service, with control rights.

title Optional. Local entity's title. If System_Defs. null_text (default),
all local entities are disabled.

initiatingyart
Optional. If true (default), the initiating part of the local entity is disabled.

respondingyart
Optional. If true (default), the responding part of the local entity is dis­
abled.

wait until idle
Optional. If true (default), the local entity will not be disabled until it is
idle. If false, the entity will be disabled immediately.

max seconds to wait
Optional. Number of seconds to wait before disabling the entity.

abort connections

Operation

- Optional. If true, active connections through this entity are aborted. If
false (default), the currently active connections will be completed nor­
mally.

Disables one or all local entities; subsequent connection requests are rejected.

Either the initiating (sending) part, or the responding (receiving) part, or both parts of the
entity(s) may be disabled.

Exceptions

FTS Config Defs.unknown entity
- ti"tle is unknown. -

FTS Config Defs.string too long
- t ft: 1 e is longer than the maximum name size.

FrS _ Admin-8

I

\

I
\

(~
I

\i

l"KELIM1NAK Y

procedure Enable local entity{
service: - FTS Config Defs.service AD t;
title: System Defs.text := System-Defs.null text;
initiating-part: boolean'= true; -
responding_part: boolean:= true);

Parameters

service FrS selVice, with control rights.

title Optional. Local entity's title. If System Defs. null text (default),
all local entities are enabled. - -

initiatingyart
Optional. If true (default), the initiating part of the local entity is enabled.

respondingyart
Optional. If true (default), the responding part of the local entity is en­
abled.

Operation

Enables one or all local entities; new connection requests can be processed through the entities.

Either the initiating (sending) part, or the responding (receiving) part, or both parts of the
entity(s) may be enabled.

Exceptions
FTS_Config_Defs.unknown_entity

FTS_Config_Defs.string_too_long

FTS Admin-9

PRELIMINARY

procedure Force activity state(
service: - FTS Config Defs.service AD t;
request id: System.ordInal; - -
desired=state: desired_activity_state_t);

Parameters

service

request_id

FrS service, with control rights.

Request identification, from a Get_activity_descriptions call.

desired 'state

Operation

Desired activity state:

suspended A batched or timed batch activity is suspended until a
resume.

resume

aborted

process

Activity processing is resumed if it was suspended.

If the activity is still queued it is marked as aborted
and will never be processed. If the activity is already
processed, the connection will be aborted.'

The activity is forced to process as soon as possible.

Sets the desired state for the activity identified by the request identifier.

Exceptions

System Defs.bad parameter
- request=id is unknown.

FTS Config Defs.state invalid
- The activity is already aborted or tenninated, or resume was requested without a

previous suspend, or suspend was requested for an active transfer.

(

I

~

PRELIMINARY

procedure Get_account_info(
service:

Parameters

account name:
users: out
local login: out
public-password: out
implicit-password: out
home dir: out

FTS Config Defs.service AD t;
System Defs.text; --
FTS Config Defs.identifications t;
System Defs.text; -
System-Defs.text;
System-Defs.text;
System=Defs.text);

service FrS service, with control rights.

account name Local account's name.

use r s Variable that receives a list of the users allowed to use the account.

local_login Variable that receives the account's local login name, if any.

publicyassword
Variable that receives the account's public password, if any.

implicityassword
Variable that receives the account's implicit password, if any.

home dir Variable that receives the account's home directory, if any.

Operation

Gets information about a given account.

The returned user s . length field indicates the total number of user identifications.

The caller should check if the returned users . length field is greater than users. rna x_
length. If so, only those identifications which fit in the provided array are returned; re­
allocate an array with max_length >= users . length and repeat the call.

Similarly, for the four returned text records, the returned text . length field indicates the
length of each text. The caller should check if any of the returned text . length fields are
greater than text . max_length. If so, only the characters which fit in the text are returned;
re-allocate a text record with max_length >= text . length and repeat the call.

Exceptions

FTS Config Defs.unknown account
- The account does not exist.

FTS_Config_Defs.string_too_long

FTS Admin-II

PRELIMINARY

I Gecaccouncnames

procedure Get account names (
service: - FTS-Config Defs.service AD t;
names: out System_Defs.string_list); -

Parameters

service FrS service, with control rights.

names Variable that receives a list of account names.

Operation

Gets the names of all accounts.

The returned names. count field indicates the total number of accounts.

The caller should check if the returned names . length field is greater than names. max_
length. If so, only those names which fit in the string list are returned; re-allocate a string
list record with max_length >= names . length and repeat the call.

FTS Admin-12

I

\

)

PRELIMINARY

Get_8ctivity_descriptions

procedure Get activity descriptions(
service: - FTS Config Defs.service AD t;
activities: out FTS=Config=Defs.activitIes=t);

Parameters

service

activities

Operation

FrS service, with control rights.

Variable that receives a list of activities (transfer requests).

Gets descriptions of the current activities (transfers) within the service.

The returned acti vi ties . length field indicates the total number of activity descriptions.

The caller should check if the returned act i v i tie s . 1 engt h field is greater than
activities . max_length. If so, only those activity descriptions which fit in the
provided array are returned; re-allocate an array with max_length >= activities
. length and repeat the call.

PRELIMINARY

procedure Get local entity info(
service: - - -FTS Config Defs.service AD t;
title: System Defs.text;
info: out FTS Config Defs.entity params t;
istatus: out FTS-Config-Defs.status-t; -
rstatus: out FTS-Config-Defs.status-t;
reset statistics: boolean :=-false); -

Parameters

service

title

info

istatus

rstatus

FrS service, with control rights.

Entity's title.

Variable that receives the entity's definition.

Variable that receives the status and statistics of the entity's initiating part.

Variable that receives the status and statistics of the entity's responding
part.

reset statistics
If true, statistics are reset.

Operation

Get local entity's parameters, status, and statistics.

Exceptions
FTS Config Defs.unknown entity

- t it 1 e is not a defined local entity.

FTS_Config_Defs.string_too_long

FTS Admin-14

/

procedure Get local entity titles(
service: - FTS ConfIg Defs.service AD t;
titles: out System_Defs.string_list); -

Parameters

service FrS service, with control rights.

titles Variable that receives a list of local entity titles.

Operation

Gets the titles of all local entities.

The returned ti tIes. count field indicates the total number of entities.

The caller should check if the returned ti tIes . length field is greater than titles
. max_length. If so, only those titles which fit in the string list are returned; re-allocate a
string list record with max_length >= titles . length and repeat the call~

FTS _Admin-IS

PRELIMINARY

procedure Get remote entity info(
service: - FTS Config Defs.service AD t;
name: System Defs.text; --
info: out FTS_Config_Defs.system_rec_t);

Parameters

service FrS service, with control rights.

Remote entity's local name. name

info

Operation

Variable that receives the entity's definition.

Gets the system definition record for a remote entity.

Exceptions
FTS Config Defs.unknown entity

- name is not a registered remote entity.

FTS Config Defs.string too long
- name is too long. - -

/

rK~LINllNAK r

procedure Get_remote_entity_names(
service: FTS Config Defs.service AD t;
names: out System_Defs.string_list); -

Parameters

service FrS service, with control rights.

names Variable that receives a list of remote entities' names.

Operation

Gets the local names of all remote entities.

The returned name s . co un t field indicates the total number of remote entities.

The caller should check if the returned names . length field is greater than names. max_
length. If so, only those names which fit in the string list are returned; re-allocate a string
list record with max_length >= names . length and repeat the call.

FTS Admin-I7

PK~LIMlNAKY

procedure Get service info(
service: - - FTS Config Defs.service AD t;
info: out FTS=Config=Defs.service~arams_t;
status: out FTS Config Defs.status t;
reset statistics: boolean :=-false); -

Parameters

service FrS service, with control rights.

info

status

Variable that receives the service parameters.

Variable that receives the status and statistics of the service.

reset statistics

Operation

- Optional. If true, statistics are reset for the service and for a11local en­
tities.

Gets service parameters and statistics.

FTS _Admin-18

(
~

PRELIMINARY

Get transfer info - -
procedure Get transfer info(

service: - Frs Config Defs.service AD t;
activities: out FTS-Config-Defs.activitles-t;
infos: out FTS=Config=Defs.transfer_infos_t);

Parameters

service

activities

infos

Operation

FrS service, with control rights.

Variable that receives a list of activities.

Variable that receives a list of transfer information records.

Gets descriptions of the current activities within the service and information about all current
transfer requests.

The returned activities . length and infos . length fields indicate the total number
of activity descriptions and transfers.

The caller should check if either of the returned x .lengt h fields is greater than x . max_
length. If so, only those records which fit in the provided array are returned; re-allocate an
array with max_length >= x . length and repeat the call.

FTS Admin-19

PRELIMINARY

procedure Register remote entity(
service: - - FTS Config Defs.service AD t;
name: System Defs.text; --
object id: System-Defs.text;
transport address: System-Defs.text;
session selector: System-Defs.text .= System Defs.null text;
presentation selector: System-Defs.text:= System-Defs.null-text;
title: - System-Defs.text := System=Defs.null=text;
alien: boolean := true;
time out deadline: integer : = 2;
virtual_filename_spec: boolean:= false);

Parameters
service FrS service, with control rights.

Remote entity's local name. name

Numeric fonn of the object identifier for the remote entity.

transport address
- Transport service part of the remote entity's presentation address.

session selector
Optional. Session service part of the presentation address.

presentation selector
- Optional. Presentation service part of the presentation address.

title Optional. Remote entity's title. If System Defs. null text
(default), name is used. --

alien Optional. If true (default), the remote entity is on an alien (non-BiiN)
system.

time out deadline
- Optional. Number of minutes to wait after a request before retry or abort.

virtual filename spec
- Optional. If true, remote filenames must be specified in the virtual files­

tore convention. If false (default), remote filenames must be specified in
the convention of the remote system.

Operation

Registers a remote entity within the service.

The remote entity is initially enabled.

The presentation address of the remote entity is composed of:

transport address must be provided (and which is in tum composed of network address and
TSAP endpoint).

session selector may be provided.

presentation selector
may be provided.

The object ID, address, and selectors are specified as a sequence of numbers (decimal byte
values) separated by periods, as 47 . 1 . 0 . 101

FrS _ Admin-20

I'K~LIMINAK Y

Exceptions
FTS_Config_Defs.string_too_long

System Exceptions.bad parameter
- The syntax of the number string is wrong. Either a component is missing, or too

many components are contained, or a component has an invalid value.

FTS Admin-21

PRELIMINARY

procedure Switch remote entity(
service: - - FTS Config Defs.service AD t;
name: system_Defs. text; --
enable: boolean;
previously_enabled: out boolean);

Parameters

service FrS service, with control rights.

Registered remote entity's local name. name

enable If true, the remote entity is enabled; else it is disabled.
pr~viously enabled

- Variable that receives true if the remote entity was enabled before this
call; false otherwise.

Operation

Enables or disables a remote entity for local users.

If a remote entity is disabled, it cannot be addressed through FrS.

Exceptions
FTS Config Defs.unknown entity

- name does not deSignate a registered remote entity.

FrS Admin-22

Security

PRELIMINARY

FTS_Config_Defs

Defmes types, objects, and exceptions used for the administration of the File Transfer Service
(FrS).

Access to this package is restricted to callers carrying a privileged ID. See your System
Administrator for access.

Summary

This package defines service and entity objects and their parameters and status records.
Remote system objects, parameters, and remote user identifications are also defmed.

These definitions are used by the FTS_Admin package. A status record (transfer_info_
t) from the FTS _Transfer package is used to declare an array of status records for the
FTS Admin. Get transfer info call. - - -

Terms in italics are defined in the ISO File Transfer, Access, and Management protocol, ISO
8571 FTAM.

Exceptions
state invalid

The service is in an improper state for a requested operation.

entity not idle
- An entity to be aborted is not idle.

already attached
- The ISO transport service is already attached.

no ts attached
- - The ISO transport service is not yet attached.

unknown entity
- An entity is not registered within the service.

unknown account
An account name is unknown within the service.

no entity attached
- No local entity has been attached to the service.

string too long
- A text parameter exceeded an implementation-defmed constraint (see s ubt ype

identifier_t).

PRELIMINARY

Declarations

type service_obj_t is limited private;

type entity_obj_t is limited private:

I entity_AD_t

type default syntax t is
binary, - -
text) ;

Default syntax for data transfer.

Enumeration Literals:

binary

text

Binary data is a sequence of uninterpreted octets.
Text data is a sequence of characters, with special handling of fonnat ef­
fectors such as < CR>.

subtype line_t is System_Defs.text{252};

Used for directory pathnames.

FTS _ Contig_ Defs-2

(

~

\

I"K~LIM1NAKY

subtype short_line_t is System_Defs.text(124);

Used for transport addresses, session and presentation selectors.

subtype identifier_t is System_Defs.text(28);

Used for titles, remote and local entities, and remote user's names and locations.

I service J>arams _ t

type service-params_t is

for

record
max initiator connections:
max-direct connections:
max-responder connections:
timed requests offset:
low cost time:­
checkpoint strategy:
bulk data size:
buffer size:
copy lImit:
publIc directory:
FTS directory:
requeue after boot:
timed queuing-enabled:
securIty attrIbute group:
private attribute group:
file access service class:
enhanced file mgt service class:
unconstrained-service class:
restart functIonal unIt:
recovery functional unit:
reject_unknown_users:
reject anonymous users:
reject-unauthorized users:
timeout deadline: -
finished requests deadline:
suspended deadline:
default syntax:

end record;

service-params_t use
record

max initiator connections at 0
max-direct connections at 4
max=responder_connections at 8
timed_requests_offset at 12
low cost time at 16
checkpoint strategy at 20
bulk data size at 24
buffer -

size at 28
copy_ lImit at 32
public_directory at 36
FTS_directory at 292
requeue after boot at 548
timed_queuing=enabled at 549
security_attribute_group at 550

System. ordinal;
System. ordinal;
System.ordinal;
integer;
integer;
integer;
integer;
integer;
integer;
line t;
line-t:
boolean;
boolean;
boolean;
boolean;
boolean:
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
integer;
integer;
integer;
default_syntax_t;

range 0 31;
range 0 31;
range 0 31;
range 0 31;
range 0 31;
range 0 31;
range 0 31;
range 0 31;
range 0 31;
range 0 256*8-1;
range 0 256*8-1;
range 0 7;
range 0 7:
range 0 7;

FTS _ Config_ Defs-3

PRELIMINARY

private attribute group
file access service class
enhanced file mgt service class
unconstrained-service class
restart functIonal unit
recovery functional unit
reject unknown users
reject-anonymous users
reject-unauthorized users
timeout deadline -
finished requests deadline
suspended deadline
default syntax

end record;

at 551
at 552
at 553
at 554
at 555
at 556
at 557
at 558
at 559
at 560
at 564
at 568
at 572

range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0

7;
7;
7;
7;
7;
7;
7;
7;
7;
31;
31;
31;
15;

Defmes parameters for an FrS service. Some parameters may be compared against the im­
plemented functionality.

Fields:

max initiator connections
-Maximum number of simultaneously running initiator processes
(including batched and non-batched processing), The batch daemon will
not be started if the number ofbatched connections is zero.

max direct connections
- Maximum number of connections which can be established directly, with­

out the batcher.

max responder connections
- -Maximum number of simultaneously running responder processes. If

zero, the responder daemon will not be started.

timed requests offset
- Number of minutes by which the start time of a timed request must exceed

the current time.

low cost time
- Hour of the day at which transfer costs are low.

checkpoint strategy
- selects the checkpoint strategy:

o
1

2

3

No checkpointing.

Checkpoints between data elements.

Checkpoints between data units.

Checkpoint insertion detennined by bulk data
size, below. - -

bulk data size - -

buffer size

copy_limit

Minimum number of bytes before inserting a checkpoint. Only used if
checkpoint_strategy is 3.

Size of the protocol data unit (PDU) receive buffer, in bytes.

Maximum size of copied data elements, in bytes. Data elements which are
smaller than copy _1 imi t are passed by value (copied) during encoding;
other (larger) elements are passed by reference.

public directory
- The directory, if any, for anonymous or unauthorized users.

FTS _ Config_ Defs-4

I

\~

r A~L.l1Yl.ll~ftA I

FTS directory
- Root directory for the FrS directories.

requeue_after_boot
If true, connections interrupted by local system crash or reset should be
requeued.

timed queuing enabled
- If true, timed batch transfer requests may be queued. If false, timed batch

transfer requests are rejected.

security attribute group
- If true:the security attribute group should be supported.

private attribute group
- If true, the private attribute group should be supported.

file access service class
If true, the file access service class should be supported

enhanced file mgt service class
- If true, the enhanced file management service class should be supported.

unconstrained service class
If true, the unconstrained service class should be supported.

restart functional unit
If true:the restart functional unit should be supported.

recovery functional unit
- If true, the recovery functional unit should be supported

reject unknown users
- if true, unknown users are not allowed access. If false, unknown users are

treated like anonymous users.

reject anonymous users
- If true, anon users are not allowed access. An accounting object must be

defined for anonymous users; see FTS_Admin. Define_account.

reject unauthorized users
- If true, remote users who do not provide a filestore password are rejected.

If false, they are treated as unknown users.

timeout deadline
Default deadline, in seconds, after which timeout will be raised when the
remote systems keeps quiet.

finished requests deadline
- Deadline, in minutes, when information about fInished requests (requests

which have been completed or rejected) should be removed.

Information about transfer requests will also be removed if FTS Trans-
fer. Transfer info is called after transfer completion. -

suspended deadline
- Deadline, in minutes, after which suspended requests (not timed

suspended) should be resumed. This parameter affects suspended transfers
which may have been forgotten.

default syntax
- Default syntax to be used for data transfer, either binary or text.

PRELIMINARY

I entity yarams _ t

type entity params t is
record - -

title:
object identifier:
max in-connections:
max-out connections:
tsap endpoint:
sessIon selector:
presentation selector:

end record; -

for entityyarams_t use
record

title at 0
object_ identifier at 32
max in connections at 288
max-out connections at 292
tsap endpoint at 296
sessIon selector at 300
presentation_selector at 304

end record;

identifier_t;
line t;
System.ordinal;
System.ordinal;
System.ordinal;
System.ordinal;
System.ordinal;

range 0 32*8-1;
range 0 256*8-1;
range 0 31;
range 0 31;
range 0 31;
range 0 31;
range 0 31;

Defmes the information necessary to create a local entity.

Fields:

title Local entity's title.

object identifier
- Local entity's object identifier.

max in connections
- - Maximum number of remotely requested connections allowed through this

entity.

max out connections
- Maximum number of locally requested connections allowed through this

entity.

tsap endpoint
- Desired transport service access point (TSAP) endpoint (one of the well­

known endpoints), The well-known FrS endpoint is 97, The value 0
requests dynamic assignment of the TSAP endpoint (no well-known
TSAP endpoint available).

session selector
Local entity's session selector. The value 0 means no session selector.

presentation selector
- Presentation selector. The value 0 means no presentation selector.

FrS _ Contig_ Defs-6

PRELIMINARY

I system rec t

type system_rec_t is
record

enabled:
defined:
title:

boolean;
boolean;
identifier t;
short line-t;
short-line-t;
short-line-t;
short-line-t;
boolean; -
integer;
boolean;
boolean;

object identifier:
transport address:
session selector:
presentation selector:
alien: -
timeout deadline:
virtual-filename spec:
private-attr: -

end record; -

for system rec t use
record - -

enabled at 0
defined at 1
title at 4
object identifier at 36
transport address at 164
session selector at 292
presentation selector at 420
timeout deadline at 548
alien - at 552
virtual filename spec at 553
private-attr - at 554

end record;

Defmes a remote entity.

Fields:

range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0
range 0

7;
7;
32*8-1;
128*8-1;
128*8-1;
128*8-1;
128*8-1;
31;
7;
7;
7;

enabled

defined

If true, this entity definition can be used in addressing a remote entity.

If true, this definition has been explicitly defined with FTS Admin
. Register remote entity. If false, this definition has been
created by FrS due to a request from a unknown remote system.

title PrAM application entity title of the remote entity.
object identifier

- Object identifier of the remote entity.

transport address
- Transport seIVice part of the presentation address for the remote entity.

session selector
Session seIVice part of the presentation address for the remote entity.

presentation selector
- Presentation seIVice part of the presentation address for the remote entity.

alien If true, the remote entity resides on an alien (non-BiiN) system.

timeout deadline
Number of minutes to wait after a request before retry or abort. 0 in­
dicates that the default deadline (service yarams _ t . timeout_
deadline) for the seIVice is used.

virtual filename spec
- If true, FrS has to provide the filename in Fr AM virtual jilestore

PRELIMINARY

convention. If false, in the convention of the remote system to the remote
entity.

pr i vate _ attr If true, there is a special use of the private attribute.

type status t is
record -

enabled:
nr of entities:
nr-of-activities:
nr-of-connections:
requests queued:
total number of connections:
total-number-of-local requests:
total-number-of-remote requests:
rejected remote-requests:
recovered connections:
aborted connections:
number of timeouts:

end record;-

boolean;
System.ordinal;
System.ordinal;
System.ordinal;
System.ordinal;
System. ordinal;
System.ordinal;
System. ordinal;
System.ordinal;
System. ordinal;
System.ordinal;
System. ordinal;

Contains status and statistics infonnation for either an entity or the total service. If a record of
this type is retrieved for the service the component values are related to the service. If a record
of this type is retrieved for a specific entity the component values are related to that entity
only.

Fields:

enabled If true, either the entity is allowed to accept requests or the service has
been started.

nr of entities
- - For the service, the number of local entities.

nr of activities
Current number of activities.

nr of connections
- - Number of currently active connections.

requests queued
- Number of currently queued requests.

total number of connections
- - Total number of connections established since the service was started or

statistics were reset

total number of local requests
- - Total number of local connection requests since the service was started or

statistics were reset

tot~l_number_of_remote_requests

Total number of remote connection requests since the service was started
or statistics were reset.

rejected remote requests
- Number of remote requests which had to be rejected because the max­

imum number of connections already existed.

recovered connections

FrS _ Config_ Defs-8

- Number of connections which have been recovered since the service was
started or statistics were reset.

PRELIMINARY

aborted connections
Number of connections which have been aborted since the service was
started or statistics were reset.

number of timeouts
Number of timeouts which have occurred since the service was started or
statistics were reset.

I activity_description_t

type activity description t is
record - -

initiating entity:
daemon: -
state:
remote entity:
local entity:
time:-
activity id:
request Id:
recovered:

end record;

boolean;
boolean;
FTS Transfer.transfer state_t;
identifier t;
identifier-t;
System Defs.system time units;
System~ordinal; - -
System. ordinal;
boolean;

Describes an activity (a transfer) within the selVice.

Fields:

initiating entity
- If true, the activity is handled by an initiating entity. If false, by the

responding entity.

daemon

state

If true, this activity is handled by a daemon.

Activity's current state.

remote entity
- Local name of the involved remote entity.

local_ enti ty Title of the involved local entity.

time Meaning depends on the activity's state:

queued Submitting time.

timed_queued Desired start time.

suspended Time when the request becomes active.

timed_suspended
Resume time.

requesting Actual start time.

transferring Actual start time.

transferred Actual start time.

terminated

aborted

rejected

Time of completion.

Time of abortion.

Time of rejection.

act i vi t y _ id Unique activity identifier for one pair of local and remote entities.

request_id Internal request identifier, unique within the selVice.

FTS _ Config_ Defs-9

PRELIMINARY

recovered If true, this activity has been recovered.

I activity descriptions_t

type activity descriptions t is array(positive range <» of
activity_description_t;

Array of activity description records, used in activities_t, below.

I activities_t

type activities t(
max length: Integer) is
record

length: integer;
value: activity descriptions t(l .. max length);

end record; - --

List of activities, gotten by FTS_Adrnin. Get_activity_descriptions or FTS_Ad­
min. Get transfer info.

Fields:

max_length

length

value

Maximum number of activities.

Actual number of activities.

Array (list) of max_length activity records.

type transfer info list t is array(positive range <» of
FTS_Transfer.transfer_info_t;

Array of transfer information records, used in transfer_infos_t, below.

type transfer infos t(
max length:- integer) is

-record
length: integer;
value: transfer info list t(l .. max length):

end reGord: - - - -

List of transfer information records, gotten by FTS_Admin. Get_transfer_info.

Fields:

max_length

length

FTS _ Config_ Defs-lO

Maximum number of transfers.

Actual number of transfers.

PRELIMINARY

value Array (list) of max_length transfer infonnation records.

I identification _ t

type identification t is
record

name: identifier t;
location: identifier-t;

end record;

Remote users are identified by their initiator names and locations.

Remote users' access to the local filestore is controlled through a local account which has a list
of valid remote user identifications.

Fields:

name

location

Initiator name.

Application title of the remote ftlestore.

type identification list t is array(natural range <» of
identification_t;

Array of user identification records, used in identifications_t, below.

I identifications _ t

type identifications t(
max_length: integer) is

record
length: integer;
value: identification list t(l .. max length);

end record; - - -

private

List of remote user/locationpairs. Given to FTS_Admin. Define_account and gotten
from FTS_Admin. Get_account info.

Fields:

rna~length

length

value

Maximum number of identifications.

Actual number of identifications.

Array (list) of max_length identification records.

/

Calls

PRELIMINARY

FTS Transfer

Provides the procedural interface of the File Transfer Service (FTS), including transfer opera­
tions.

Abort transfer
Aborts a transfer.

Resume transfer
Restarts a suspended transfer.

Suspend transfer
- Suspends a batched data transfer either until a Re s ume _ t ran sf e r call, or for a

given duration.

Transfer
Initiates a file transfer, returning the transfer ID.

Transfer info
Gets information about a transfer, including the current state of the transfer.

Summary

FTS implements the ISO File Transfer, Access, and Management protocol, ISO 8571
FTAM. Italicized terms are defmed in that protocol.

This package provides operations for:

• transferring files between the local system and remote systems,

• suspending and resuming a transfer,

• aborting a transfer,

• retrieving transfer status information.

Transferring a File

, The only information needed for a Tr an sf e r call is the local and remote filenames.

Optionally, you may specify whether the source file is to be removed after the transfer, what to
do if the destination file exists, the type of processing (synchronous, asynchronous, batch, or
timed batch), passwords for the remote filestore, whether a log file is used, and an event to be
signalled upon transfer completion.

A file transfer may result in the loss of some fue attributes, if either the local or the remote
filestore does not support those attributes. For example, an indexed file may be transferred as
a sequential file.

FTS Transfer-l

PRELIMINARY

Types of File Transfers

There are four ways of processing a transfer request:

• synchronously within the current job,

• asynchronously within the current job,

• in the batch queue, to be executed as soon as possible,

• in the batch queue, with a given starting time.

Suspending and Resuming a Transfer

A transfer in the (timed) batch queue may be suspended by calling Suspend_transfer.
The suspension may be indefmite (until a Resume_transfer call) or timed. A timed
suspended transfer is automatically resumed after the given duration.

A transfer in progress cannot be suspended.

When a batch or timed batch transfer is suspended, it may be delayed past its scheduled start
time. If a timed batch transfer is timed suspended, the suspension time is added to the
transfer'S start time.

Aborting a Transfer

A transfer can be aborted at any time with Abort_transfer. When a transfer is aborted,
the associated connection, if any, is closed. A batch transfer that has not been started is
removed from the queue.

Aborted transfers cannot be resumed.

Transfer Information

The status of a transfer is gotten by calling Transfer_info. The status record may be
retrieved only once for a completed transfer. The status record contains infonnation about the
transfer, including the last transfer operation, the transfer state, reason for abort if any, direc­
tion of transfer, local and remote filenames, starting time, and transfer duration.

For synchronous transfers, non-recoverable errors are indicated by exceptions. For other types
of transfers, non-recoverable errors are indicated by the abort_reason field with an in­
cident code corresponding to the exception.

If logging was enabled for a transfer, detailed infonnation about the transfer is contained in the
given log fue.

Exceptions
append not supported

- The append operation on an existing destination fue is not supported by the remote
filestore.

access_control_not_supported
Attribute access control is not supported by the remote filestore.

transfer aborted
The connection broke and could not be recovered.

destination file already exists
The destination fue already exists and the file should not be extended or over­
written (see Transfer parameter if_file_exists).

FrS _ Transrer-2

PRELIMINARY

destination file busy
The destination fue is currently in use and may not be written to concurrently.

document type not applicable
The specified-document type cannot be associated with the file; the document type
may be too complex.

document type not supported
The required document type is unknown or is not supported by the remote files­
tore.

document_type_not_supported_locally
The required document type is not supported by the local filestore.

document· type unknown
A document type number has been specified for which no document type is
defined locally.

illegal remote filename
- A filename was specified in an incorrect format. For example, it could not be

divided in filestore and filename components.

illegal start time
- The specified start time has already passed.

illegal transfer id
- A given ID 18 not a transfer ID. This exception may be raised by every operation,

and is therefore not mentioned explicitly.

insufficient functionality
The remote filestore is not able to read or write a file as requested.

insufficient-permission_on_source
The user does not have permission to read the source file. If the source file is a
local file, it may not exist

insufficient-permission_for_deletion
The user does not have permission to delete a file, either the destination file prior
to creation, or the source file after transfer.

insufficient-permission_for_creation
The user does not have permission to create the destination file.

insufficient rights
A given transfer ID does not have the appropriate rights for invoking the opera­
tion. This may be raised by every operation, hence not mentioned.

protocol error
A protocol error by the remote system has been encountered.

remote filestore keeps quiet
- The remote filestore did not acknowledge a connection request within a given

amount of time.

remote filestore unknown
- No informatiOn is available about the addressed remote filestore.

source file busy
- The source file is currently in use and may not be read concurrently.

source file not exist
- The source file does not exist

suspend rejected
- A requested suspend operation could not be applied successfully to a transfer.

FrS _ Transrer-3

PRELIMINARY

transfer already suspended
A given transfer has already been suspended.

transfer completed
A given transfer cannot be suspended because it has already completed.

transfer not suspended
A transfer to be resumed was not suspended.

transfer timed suspended
A transfer cannot be directly resumed because it was suspended for a given dura­
tion.

transfer rejected locally
A transfer request was rejected by the local system due to resource exhaustion.

transfer rejected remotely
A transfer request was rejected by the remote filestore without any specific com­
ment.

unacceptable request
A transfer was requested for two remote files. Only one of the filenames may be a
remote filename.

unknown location
A location specified in an access control condition is unknown.

unsupported-parameter_value
A parameter value is not supported locally. For example, too many conditions for
access control in Transfer, or a filename is too long.

user locally unacceptable
- The caner is not allowed to use the transfer operation.

user remotely unacceptable
- The caller of the transfer operation (the initiator) is not allowed to access files on

the remote filestore.

FrS Transfer-4

/
i
'IJj

PRELIMINARY

Declarations

type transfer_object_t is limited private;

Represents a transfer.

ID of a transfer.

info rights: constant Object Mgt.rights mask :=
Object_Mgt.use_rights; - -

Required to get infonnation about the status of a transfer (Transfer_info call).

I control_rights

control rights: constant Object Mgt.rights mask .-
Object_Mgt.control_rights; - -

Required to invoke an operation concerning the transfer (Suspend_transfer, Resume_
transfer, and Abort_transfer calls).

type access set t is
read, - -
write,
read attributes,
delete,
create) ;

Enumerates the possible actions on a fIle during a file transfer.

Enumeration Literals:

read

write

Read the file.

Write the fIle.

read attributes
Read the file's attributes.

FrS Transfer-5

PRELIMINARY

delete

create

Delete the file.

Create the file.

type access_t is array (access_set_t) of boolean;

Array of access conditions. A true element indicates that the associated (indexing) access
operation is allowed. See also type accessyasswords_t.

subtype identifier_t is Systern_Defs.text(28);

Container for short texts, such as passwords, object identifiers, and titles.

I null_identifier

null identifier: constant identifier t .=
28, 0, (others => ' '»;

Null or default identifier.

subtype line_t is Systern_Defs.text(252);

Container for long texts, such as local and remote filenames.

I access yasswords _ t

type access-passwords_t is array(access_set_t) of identifier_t;

Array of access passwords. Each element is a password which may be necessary for the
corresponding access.

type condition t is

FrS _ Transfer-6

record -
action list:
identity:
passwords:
location:

end record;

access t := (others => false);
identifier t := null identifier;
access-passwords_t :~ (others => null_identifier);
identifier_t := null_identifier;

PREU:MINARY

File access condition record. Each of the four components must be satisfied to fulfill the
condition.

Fields:

action list

identity

passwords

location

Types of access which are allowed by this access condition.

Accessor identity to be matched, if any.

Passwords to be matched, if any, for each allowed type of access.

Accessor location (filestore name) to be matched, if any.

I condition:.array _ t

type condition_array_t is array(natural range <» of condition t;

Array of access condition records, used in a cc e s s _ co n t ro 1_ t, below.

type ~ccess control t(
rnaxnr: natural) Is

record
actlen: natural;
value: condition_array_t(l .. rnaxnr);

end record;

Array of access control conditions under which access to a file is allowed. Access to a file is
allowed if at least one of these conditions (which in tum consist of four tenns, all of which
have to be matched) is satisfied.

Fields:

maxnr Maximum number of access control conditions.

act len

value

Number of valid access control conditions in value array.

Array of maxnr access control conditions.

default access control: access_control_t(O) :=(
0, 0, (others => (

(others=>false),
null identifier,
(others => null identifier),
null_identifier»);

Default (null) access control value.

FrS Transfer-7

PRELIMINARY

\ MAX_CONDITIONS

MAX CONDITIONS: constant integer := 4;

Maximum number of conditions which can be specified with a Transfer call.

subtype document_type_t is integer range 0 .. 127;

\

A document type describes the file model and the file contents in a standardized manner, hence
allowing the fIle characteristics to be maintained in the remote filestore.

Some document types are predefmed by FT AM, others will be defined successively by stan­
dardization organisations. Therefore, the following list may be extended in later versions of
this package. Other values may be used when they are implemented in FTS.

I FTAM_l

FTAM 1: constant document_type_t := 1;

Unstructured text file.

I FTAM_2

FTAM 2: constant document_type_t := 2;

Sequential text file.

\FTAM_3

FTAM 3: constant document_type_t .= 3;

Unstructured binary file.

\FTAM_4

FTAM 4: constant document_type_t := 4;

Sequential binary fue.

FTS _ Transfer-8

/

\

I processing_ t

type processing t is
synchronous, -
asynchronous,
batch,
timed_batch);

PRELIMINARY

Possible modes of file transfer processing.

Enumeration Literals:

synchronous A Transfer call returns only after the transfer is complete or aborted.

asynchronous A Transfer call executes concurrently.

ba t c h A transfer request is put into the batch queue.

timed batch A transfer request is put into the batch queue for execution at a specified
time.

type if_file_exists_t is
error,
overwrite,
append) ;

Action to be taken when the destination file already exists.

Enumeration Literals:

error

overwrite

append

An error will be signaled.

The existing destination file will be overwritten.

The new data will be appended to the existing file.

type duration t is
record -

hours:
minutes:
seconds:

end record;

System.byte ordinal range 0
System.byte-ordinal range 0
System.byte=ordinal range 0

255;
59;
59;

An amount of time, used for timed suspensions and for timing transfers.

Fields:

hours

minutes

seconds

Number of hours.

Number of minutes.

Number of seconds.

FrS Transfer-9

type time t is
record -

month:
day:
hour:
minute:
second:
relative time:

end record;

PRELIMINARY

System.byte ordinal range 0 .. 12;
System.byte-ordinal range 0 .. 31;
System.byte-ordinal range 0 .. 23;
System.byte-ordinal range 0 .. 59;
System.byte-ordinal range 0 .. 59;
boolean; -

Describes a. time (such as the start time of batch request), either relative to the current time or
absolute.

Fields:

month

day

hour

minute

second

relative time

Number of month (January = 1, ... , December = 12).

Day of the month.

Day 0 indicates that no start time has been specified.

Hour of the day, in 24-hour format.

Minute of the hour.

Second of the minute.

- If true, the specified time is relative to the time when the request was
invoked. If false, the specified time is absolute.

I no_start _time

no_start_time: constant time t := (O,O,O,O,O,false);

Null or default start time.

type operation t is
Transfer, -
Suspend transfer,
Resume transfer,
Abort transfer,
Transfer_state):

Enumerates the possible transfer operations. Used in the transfer information record (see
transfer_info _ t).

Enumeration Literals:

Transfer The last operation was a Transfer call.

Suspend_transfer
The last operation was a Suspend_transfer call.

FrS _ Transrer-lO

PRELIMINARY

Resume transfer
- The last operation was a Resume_transfer call.

Abort transfer
- The last operation was a Abort_transfer call.

Transfer state
- The last operation was a Tr an s fer _ i nf 0 call.

I transfer _ state _ t

type transfer state t is
queued,· - -
timed queued,
suspended,
timed suspended,
requesting,
transferring,
transferred,
terminated,
rejected,
aborted) ;

Enumerates the possible states of a transfer. Used in the transfer infonnation record (see
transfer_info_t).

Enumeration Literals:

queued The transfer is in the batch queue.

timed _ qu eued The transfer is in the timed batch queue.

suspended The transfer has been suspended.

timed suspended
- The transfer has been suspended for a given duration.

requesting Connection requests are due to be issued.

transferring The transfer is in progress.

transferred The file has been completely transferred.

terminated

rejected

aborted

The connection has been tenninated after a successful transfer.

The transfer request has been rejected.

The transfer and the connection have been aborted.

type transfer info t is
record - -

last_operation:
state:
abort reason:
diagnostic:
processing:
attributes altered:
filename truncated:
remote to local:
remote-filestore:
remote-file:
local file:

operation t;
transfer state t;
Incident-Defs.Incident code;
System. short_ordinal; -
processing t;
boolean; -
boolean;
boolean;
identifier t;
line t; -
line=t;

FrS _Transfer-II

PRELIMINARY

access control:
erase source:
if file exists:
destination file existed:
document type: -
document-type simplified:
access passwords:
logging enabled:
logfile:
start time:
transIerred bytes:
transfer time:

access control t(MAX CONDITIONS);
boolean; - -
if file exists t;
boolean; -
document type t;
boolean;- -
access passwords t;
boolean; -
line t;
time-t;

'end record;

integer;
duration_t;

Transfer information record gotten by Transfer_info.

Fields:

last operation
- Last operation which has been perfonned for this transfer request.

s tat e Transfer state.

abort reason Reason for a transfer being aborted, for asynchronous, hatched. and timed
batch transfers.

diagnostic Last diagnostic code according to FTAM Diagnostic Definitions (Part III).

proces sing Processing mode for this transfer.

attributes altered
If true, the attributes of the destination flie have been altered due to files­
tore restrictions.

filename truncated
- If true, the remote fliename has been truncated by the remote filestore due

to restrictions on filename length.

remote to local
- If true, the transfer request is from remote to local filestores. If false, the

transfer is from local to remote fliestores.

remote filestore
- Remote filestore's name.

remote file Remote file's name. May have been truncated (when filename
truncated is true). -

local file Local file's pathname.

access control
- Access control conditions for this transfer request If the Transfer

call's dest_access_control parameter was specified, contains the
actually requested access controls.

Values will be contained in this record only if the transfer ID given to the
Transfer_info operation has control rights.

era s e sour ce If true, the source file is to be erased after the transfer (a file move).

if file exists
- - Action to be taken if the destination flie exists.

destination file existed

FTS __ Transfer-12

- If tiiie, the creation of a new file caused the deletion of a previously exist­
ing file.

/

~,

PRELIMINARY

document type
- Actual document type name/number.

document type simplified
- If true, the original document type was unacceptable to the destination

filestore and had to be simplified.

access-passwords
Access control passwords for this transfer request.

Values will be contained in this record only if the transfer ID given to the
Transfer_info operation has control rights.

logging enabled
- If true, transfer logging is perfonned.

logfile

start time

Transfer log file's pathname. Only valid if logging_enabled is true.

Actual transfer start time.

transferred bytes
- Number of bytes successfully transferred.

transfer time
Total amount of time needed for the file transfer.

Virtual address of a transfer infonnation record.

FrS _ Transfer-13

PRELlMINARY

I AborCtransfer

procedure Abort transfer(
transfer_id: transfer_id_t};

Parameters

transfer id ID of transfer to be aborted.

Operation

Aborts a transfer.

A transfer cannot be resumed after it has been aborted. If a transfer is still in the batch queue,
the transfer request is removed from the queue. Even a suspended transfer can be aborted.

Exceptions
transfer aborted

The transfer was already aborted.

transfer completed
The transfer was already completed.

'\
)

PRELIMINARY

procedure Resume transfer(
transfer id:- transfer id t;
restart:- boolean := false);

Parameters

transfer id ID of suspended transfer to be resumed.

Resu me, ,trs'nsfer

restart Optional. If true, the transfer should be restarted at the begiruUng'ofthe
file. If false (default), the transfer is continued at the last acknowledged
checkpoint.

Operation

Restarts a suspended transfer.

Exceptions
insufficient_rights

remote filestore unknown

remote_filestore_keeps_quiet

transfer aborted

transfer_not_suspended

transfer timed suspended
A timed_suspended transfer cannot be resumed; it will be automatically
resumed after the given delay.

transfer_completed

~.i~·1.';Il~nl:"'llr ~':r;~
~S_1rranSfer-15

PRELIMINARY

procedure Suspend transfer (
transfer id: - transfer id t;
timed resume: boolean := false;
suspension_time: duration_t:= (0,1,0));

Parameters

transfer_id ID of transfer to be suspended.

timed resume Optional. If true, the transfer is to be resumed automatically after
suspension time has expired. If false (default) the user has to restart
the transfer explicitly with a Resume_transfer call.

su'spension time
- Optional. Duration after which the suspended transfer is automatically

continued. The default suspension time is one minute.

Ignored if timed_resume is false.

Operation

Suspends a batched data transfer either until a Re s ume _ t ran sf e r call, or for a given dura­
tion.

Suspending a batch transfer affects its start time.

:>Exceptions

'(iL. ",.
transfer aborted

transfer_already_suspended

transfer_completed

"insufficient_rights

suspend rejected
- The local FrS has detennined that the transfer cannot be suspended.

\

PRELIMINARY

function Transfer (
source file:
destination file:
document type:

System Defs.text
System-Defs.text
document type t = 0;

Parameters

dest access control: - -
erase source:
if file exists:
processIng:
start time:
access-passwords:
filestore_password:
remote account:
logging enabled:
logfile:
terminate action:

return transfer_id_t;

access control t := default_access_control;
boolean := false;
if file exists t := error;
processIng t :~ asynchronous;
time t := no start time;
access-passwords_t-:= (others => null identifier);
identifier t := null identifier;
identifier-t := null-identifier;
boolean :=-false; -
System Defs.text := System Defs.null text;
Event_Mgt.action_record .--Event_Mgt~null_action}

source file Source file's patbname.

destination file
Destination file's patbname.

document type
- Optional. Document type to be associated with the file and used for the

transfer. A value of 0 (default) indicates the unknown document type.

dest access control - -
Optional. If the source file is created, specifies access conditions, f9J ~e
newly created file. Default is no restrictions.

erase source Optional. If true, the source file is erased after the transfer (a file move).
If false (default), the source file is not erased (a fue copy).

if file exists
Optional. Action to be taken if the destination file already exists. Possible
values are error, overwri te, and append.

processing Optional. Type of data transfer, either synchronous,
asynchronous,batch,ortimed_batch.

start time Optional. Transfer starting time for timed batch requests. If no start
time (default), FrS uses the service's default low cost transfer-
time. - - -

Ignored ifprocessing is not timed_batch.

access-passwords
Optional. Set of access passwords which may be necessary for the remote
filestore to pennit operation.

filestore-password
Optional. Remote login's password.

remote account
Optional. Remote account name. The default is the caller's login name.

logging enabled
- Optional. If true, detailed transfer infonnation is written to a log file~

logfile Optional. Log file's pathname. If System Defs. null text
(default), standard output is used. - -

PRELIMINARY

Ignored if logging_enabled is false.,'"

terminate action
Optional. Action to be signalled on transfer tennination.

Ignored ifprocessing is synchronous, bat.ch, or timed_batch.

Return Type and Value
transfer id t

- - Transfer request 10.

Operation

Initiates a file transfer, returning the transfer 10.

The caller defines the transfer direction by specifying the remote filename either as the source
or as the destination.

The transfer ID is used for subsequent operations (such as Suspend _ t ran sf e r).

The local filename is specified as usual (for example, Imy _dir / local_file). The remote
filename must be of the fonn /FTS/remote_system_name/remoteJilename.

~ , "

For synchronous transfers (processing => synchronous), all errors are reported by
exceptions. In the other types of processing, errors concerning parameters are reported by
exceptions. For asynchronous and batch transfers, errors occuring during the transfer are only
reported in the transfer_info_t. abort_reason field.

If logging is enabled (logging_enabled => true), error messages and infonnation
about the transfer are written to the given log file (default is standard output). The error
messages are similar to the exception names and may be more detailed.

The caller may request to be notified by an event (terminate action) about nonnal or
abnonnal completion of an non-synchronous transfer. If synchronous processing is requested,
any action record is ignored.

Fr AM introduced document types to describe classes of files and ftIe contents (see subtype
document_type=t). Several document types have been defined, and new document types
may be defmed later. Not all of the defined document types are supported by FrS. If no
document type is specified (document_type => 0), FrS chooses the actual document
type of the rtIe which is to be transferred; otherwise, the given document type is used. The
specified document type must be either the same as the actual document type of the ftIe, or a
simplification; otherwise the exception document type not applicable is raised.
The document type actually used can be found in the transfer information record.

Exceptions

access_control_not_supported

append_not_supported

destination_file_already_exists

destination_file_busy

document_type_not_applicable

)

PRELIl\fiNARY

document_type_not_supported

document_type_not_supported_locally

document_type_unknown

illegal_remote_filename

illegal_start_time

insufficient-permission_on_source

insufficient-permission_for_deletion

insufficient-permission_for_creation

insufficient_functionality

protocol_error

remote_filestore_keeps_quiet

remote filestore unknown

source_file_busy

source file not exist

transfer aborted

~~' ..
'J'.,

.:']'

,; (

transfer rejected locally .,. ;"!J.Lr;;:;:1.L~
An asynchronous transfer cannot be performed due to a restricted number of direct
requests.

transfer_rejected_remotely

unknown location

unsupported-parameter_value

unacceptable request
Two remote or two local filenames were specified.

user_locally_unacceptable

user_remotely_unacceptable

') ~ .""-:;'

, ".:":'L"" <.:r,

J.: '<:";.:0.
, ',.~i;.~Joob

r; ~~A:r{j

Alo:J(~;'

2sb

PRELIMINARY

I Transfer'~info
procedure Transfer info(

transfer info VA: transfer info VA t;
transfer=id: - transfer=id_t); -

Parameters·
transfer info VA

- -Virtual address of a transfer infonnation record which receives the infor-
mation.

transfer id ID of transfer for which infonnation is retrieved.

Operation

Gets information about a transfer, including the current state of the transfer.

If the transfer has been completed (perhaps unsuccessfully), the transfer infonnation can only
be retrieved once.

Exceptions
transfer completed

The transfer infonnation record has already been retrieved.

/

\

