PROGRAMMER'S REFERENCE MANUAL

BIT INCORPORATED, 5§ STRATHMORE ROAD, NATICK, MASSACHUSETTS

The BIT 483 Computer Programmer’s Reference Manual
was compiled and written by the Programming staff
of BIT, Incorporated.

Copyright, 1970 by

BIT. Incorporated

5 Strathmore Road
Natick, Massachusetts 01760

First Printing:
danuary, 1970

Printed in U.S.A.

Document No. 48306

contents

SECTION ONE INTRODUCTION

ORGANIZATION OF EQUIPMENT it ittt ittt et e e e
FUNCTIONAL CHARACTERISTICSt ittt it ittt et e e e

Internally Stored Program e e e
Fully-Shared Memory i e e e e e e e e
Instruction Repertoire L e e
Variable Word Length e e e e
Word Size L e e e e e e e e e e e e e e e e e e e
Memory Addressing i ittt e e e e e e e e
Types of Data Words e e e e
Timing L e e e e e e e e e e e e e e e e e
Interrupt Capability e
Data Transfer L . L e e e e e e e e e e

Utility Systems e e e e e e e e e e e e
FORTRAN and Mathematical Aids @ @ i i e e e e e e e e e

HARDWARE ELEMENTS o e e e e e e e e e e s e s e s s,
I/O Network 0 o i e e e e e e
Central Processor L . e e e e e e e e e e e e e e

MemMOTY i e
Control Panel e e e e e e e

SECTION TWO MEMORY

MEMORY ORGANIZATION
MEMORY ADDRESSING

..

...

ii

DATA COPY INSTRUCTIONS e i it ie e iiacemms s s e e aae e 3-16

Format L e e e e e e e e 3-16
Copy One Word i i i e e et e e e e et e e e e 3-16
Copy TwWo Words o o e e e e e e e e e e e e e e e e e e e 3-17
WORD-MARK INSTRUCTIONS ittt e e et ettt et i et e e e e aaee 3-18
Format L e e e e e e e e 3-18
TWO-BYTE JUMP INSTRUCTIONSt ittt it e e et et et ettt s e s 3-20
Format L e e e e e e e e e e e e e e e e e e e 3-21
DECIMAL OPERATIONS i e e e et et et e et e e e eee 3-22
Decimal Operand @ . i e e e e e e e 3-23
DECIMAL INSTRUCTIONSt e e e et et e et e e it e e e e e 3-23
Format e e e e e e e e e e e e e e e e 3-24
SECTION FOUR INPUT/OUTPUT
I/O INSTRUCTIONS i i i i e e e e e e ettt e e e e e e e e et e eeie e e 41
Peripheral Control Instruction e 4-1
Peripheral Transfer Instruction e 4-4
Peripheral Test and Jump o i e e 4-6
SECTION FIVE INTERRUPT
GENERAL e e e e e e e e e e e e 5-1
Enabling an Interrupt e e e e 5-1
Priority Chain L e e e e e e e e e e e e e e 5-1
Preservation of Machine State 5-3
Initiation of the Interrupt L e e e e e 5-4
APPENDIX A Numeric List of Instructions Al
APPENDIX B Alphabetic List of Instructions B-1
APPENDIX C ASCII Teletype Code ittt C1
APPENDIX D Programming Card D-1

11

1-3
1-4
1-5
21
2-2
23
24
25
2-6
2.7
31
5-1

21
2-2
2-3
2-4

FIGURES

BIT 483 Computer, Front Panel, 11
Equipment Configurations Possible with BIT 483 Computer 13
Variable Word Length Operations« oot vttt ittt 1-5
Block Diagram—I/O Networkottt 111
Block Diagram—Central Processor o o oo 1-12
Memory Core Layout vt i it it it e e e 21
Instruction Formatst i i i e e e e e 2-2
Data Words o o o i e i i e 2-4
Effective AdAress -« o v v i ot e e e e e e e e e e e e e e e e 2-5
Memory Location Effective Address Calculation, 21
Indirect Effective Address Calculations 0L 2-8
483 Comnsole i i e 29
Control Flop Setting for Both Signed and Unsigned Arithmetic 3-12
Interrupt Structure e e e e 5-2
TABLES
BIT 483 Register Size i i i i i i it ittt e e e e e © 22
Operation Codes i i i i i it it it it e e e e e e e e e e e e e 24
Identification of BIT 483 Controls and Indicators 2-10
Basic BIT 483 Instructions i ettt 2-14

section one

introduction

SCOPE

This manual covers the programming operation and capabilities of the BIT 483 Computer. This is a
compact, high-speed, solid-state, variable word-length computer, featuring an expandable memory, simulta-
neous input/output, and an extensive system of interrupts. It is constructed on the total modularity
principle.

A 350 nanosecond (ns) memory access time, coupled with a cycle-stealing capability, is standard. Multi-
level priority interrupts permit relatively simple handling of multiple terminal devices. Combined with a
single peripheral transfer instruction these features make the BIT 483 a singularly efficient communicator.

al

MEMORY AQ&RESS

iniangin il

Bl [0 B [F & G5

STOPRUN SC LOAD PER INT ME M [PAGE MEM [PAGE| PC DATA
L.

T & e TN C

Figure 1-1. BIT 483 Computer, Front Panel.

1-1

SPECIFICATIONS

The specifications and important characteristics of the BIT 483 are listed below.

A. Memory capacity
B. Memory cycle time
C. Word size

D. Pagesize

E. Arithmetic

F. Standard data channels
(buffered)

Optional data channel
(buffered)
G. Maximum output data rate
H. Maximum input data rate
Channel modes
(under program control)
Teletype modes
(under program control)
Priority interrupts
Sense switches
Memory protection
Primary power
Power consumption
Weight
Dimensions
Environmental temperature
Relative humidity
Mounting capabilities
Circuit technology

(]
.

&

CHPRPVOZEN R

ORGANIZATION OF EQUIPMENT

Variable from 1024 bytes to 65,536 bytes

980 ns

Variable, multiples of 8-bit bytes

256 bytes

Binary (signed)

Binary (unsigned)

Decimal (signed)
C 1 teletypewriter
G 32 peripheral devices

(if no A channel)

A 16 peripheral devices

8.16 million bits/sec

6 million bits/sec

Overlapped (cycle stealing),

non-overlapped

Buffered, non-interrupt mode;

buffered, interrupt mode

Eight basic (can be increased in groups of 8 up to 32)
Nine sense switches

Contents of memory protected during power interruption
115/230V, £10%, 50/60 Hz

500 watts

Approximately 50 pounds

10% inches high X 19% inches wide X 23 inches in length
0 to 50°C

95% maximum

Standard 19-inch rack, pedestal, or table top

Medium scale integration

The use of standard modular elements in a general-purpose, solid-state, stored-program computer such
as the BIT 483 permits flexible organization and expansion of equipment to satisfy a wide variety of com-
puter-installation requirements. This is shown in Figure 1-2. Any number of modules may be used in a 483
system. Memory expansion does not affect existing programs because system operation is controlled by an

internally stored program.

PAPER TAPE

PERFORATOR MAGNETIC DRUM
AND READER UNIT
.!:'f-' r: B
MAGNETIC TAPE e N
UNIT MAGNETIC
DISC FILE
DATA
CONCENTRATOR
CASSETTE

PLDTTER

@25

TELETYPE- MDDEM CRT DISPLAY
WRITER ¥ CONSDLE
P o el == 4 =

| ’ 1/ EXCHANGE
H!GH-SPEED -
LINE PRINTER

HIGH-SPEED
LARD READER

_——rhphtj::t::dzct

_j__.—-a‘—'-“’""

—)
—
-

et
J—

MEDIUM-SPEED
CARD READER
CRT WITH

KEYBDARD

SPECIAL INTERSYSTEM
DATA LINK BUFFER

Figure 1-2. Equipment Configurations Possible with BIT 483 Computer

1-3

FUNCTIONAL CHARACTERISTICS
The major functional characteristics of the BIT 483 Computer, briefly described, are as follows:
Internally Stored Program

Operation of the 483 is controlled by an internally stored program located in memory. A program con-
sists of the series of instructions and related operational data and constraints required for performing a par-
ticular job.

Fully-Shared Memory

The central processor and I/O network have direct access to the totally-shared core memory, permitting
the computing and I/O elements to communicate directly with all data. Partially-shared memory schemes may
also be implemented to satisfy the requirements of diverse system applications.

Instruction Repertoire

The instruction repertoire provided for the BIT 483 includes instructions for signed decimal and signed
or unsigned binary arithmetic, character and field operations, logical and control functions, varied data manip-
ulations, conditional jump operations, and subroutine control.

Variable Word Length

The variable word length capability in the BIT 483 enables the user to tailor the word length to the ac-
curacy requirements of a problem. Multiple precision arithmetic, involving subroutines and additional mem-
ory space, is never required. The 483 processor performs 8-bit, 16-bit, or even 2048-bit arithmetic with equal
facility, requiring only a single instruction.

In addition to possessing variable word length, each binary arithmetic or logical instruction is bidirec-
tional. Thus, either of the possibilities

(Storage) + (A) > A
(Storage) + (A) ~ Storage

is selectable by means of a control bit in the instructions. Four indicators: EQ (equal to zero), GR (greater
than zero), MI (minus indicator), and OVF (overflow), are set during every binary arithmetic and logical in-
struction. These indicators may be interrogated as a condition state for subsequent jump instructions. Fig-

ure 1-3 illustrates some of the possibilities inherent in the 483 variable word-length capability. In each ex-
ample, only a single instruction is required.

Word Size

A word 1n the BIT 483 processor is any integral number of bytes as shown below.

- Unsigned Binary Subtract two 24 bit numbers {result in accumulator)
Instruction: BSA X

Figure 1-3. Variable Word Length Operations.

1-5

ACC 10011100 01111001 oo0oo001010
X 01111110 10000100 01010011
ACC RESULT 00011101 11110100 10110111
. Signed Binary Subtract two 16 bit numbers (result in accumutator)
Instruction: BSA'Y
ACC 10011100¢0 01111001
Y 00001110 10000100
ACC RESULT 10001101 11110101
. Signed Binary Add two 24 bit numbers {result in memory)
fnstruction: BAM X
11001100 117110000 10101010
ACC 11110000 11001100 01010101
X RESULT 10111101 10111100 11111111
. Decimal Add two 6 digit decimal numbers (result in accumulator)
Instruction: DAA X
ACC 6 1 3 2
X 2 3 1 7 8
ACC RESULT 8 5 1 1 0
. Decimal Subtract two 4 digit decimal numbers {result in accumulator)
Instruction: DSA'Y
ACC 4 3 2 1
Y 9 8 7 6
ACC RESULT 5 5 5 (-)5
. Exclusive OR two 16 bit numbers {result in memory)
Instruction: ORM X
X 11001100 11110000
ACC 11110000 11001100
X RESULT 00111100 00111100
. Logical AND two 8 bit numbers (result in accumulator)
Instruction: ANA'Y
ACC 117001100
Y 11110000
ACC RESULT 11000000

INDICATORS

EQ GR Mi OVF

EQ GR Mi OVF

EQ GR Mmi OVF

EQ GR Ml OVF

EQ GR M OVF

EQ GR Ml QVF

L] OI0E]

ofn[ale

*remains unchanged

WM

_ 8 3 A B 32-bit word
Address
_—— M
bi8ts bi8ts 16-bit word
Address

The word is addressed at its low order byte and is word-marked at its high order end.

Both the accumulator (ACC) and words in core memory are made variable by program control. This
flexibility simplifies programming by permitting maximum efficiency in the use of core memory. Software
provided by BIT is structured to take maximum advantage of mixed word length processing as desired.

Memory Addressing

Memory locations are addressed by unsigned positive binary numbers. For addressing purposes, the
memory is divided into blocks of 256 bytes. Each 2-byte instruction can directly address 512 bytes, in either
the page containing the next instruction or a page previously designated by the program as the data page. In-
direct addressing to any location within either the program counter page or the page at which the page regis-
ter is set is likewise possible. The 4-byte instructions can address any location in any page.

Types of Data Words

Data words consist of any multiple of 8-bit bytes, where the most significant byte has a word-mark bit.
These bytes of information are used in the computer in the form of four different types of data words:

1. Binary

2. Purely numeric

3. Purely alphabetic

4. Alphanumeric
Timing

The time to fetch an instruction is measured in memory cycles. The time required for one memory
cycle, i.e., transferring a byte between the BIT 483 central processor and the memory, is 980 ns. Instruction
execution times vary with the instruction type, number of data bytes, use of indirect addressing, etc. For ex-

ample, the average execution time for a 2-byte jump instruction is .98 microseconds (us); for a binary add,
2.25 ps; and for a binary subtract, 2.25 us.

Interrupt Capability

The interrupt subsystem of the BIT 483 consists of an expandable priority chain, with eight priority

1-6

levels provided as standard equipment. The highest level is always reserved for the automatic power failure
interrupt of the memory retention feature. Level 3 is hard-wired on 483 processors for servicing teletype in-
terrupts. The control panel interrupt button is attached to Level 4. Additional interrupt levels can be pro-
vided as optional equipment (in groups of eight) up to a maximum of 32. The standard level assignments
are summarized below:

Level1l Power Failure

Level 2 Program Interrupt
Level 3 Teletype

Level 4 Front Panel Interrupt
Level 5 Open

Level 6 Open

Level 7 Open

Level 8 Open

The interrupt system further allows interrupts of interrupts to the maximum number of levels. Upon
each entrance to an interrupt, the program counter and indicator flops are stored, by hardware action, for
subsequent restoration upon completion of the interrupt subroutine. An interrupt at a given priority level
will interrupt all lower priority interrupts.

The automatic power failure interrupt allows the 483 sufficient time to react when the line voltage
drops below a prescribed level. When the processor detects a power failure condition, the program counter
and all indicators are automatically stored by hardware action. The program is then notified by interrupt
that the system is experiencing a power failure so that peripheral devices may be smoothly cycled down.
When line voltage is restored, the 483 can resume operation at the point in the program where the interrupt
occurred.

Data Transfer

The maximum output data transfer rate of the BIT 483 is 1.02 million bytes per second, or 8.16 million
information bits per second. The maximum input data transfer rate is 0.75 million bytes per second, or 6
million information bits per second.

Data transfer commands can be either overlapped (simultaneous with computation) or non-overlapped
(machine is dedicated to the data transfer function until completion of the specified transfer). This choice
is program controlled by means of a bit in the peripheral transfer instruction. Data transfers are fully
buffered by hardware in the 483 direct memory access (DMA) data channels.

Since the 483 is a variable word-length machine, the data transfer instruction can transmit either a single
byte or an entire block of data bytes of any length. A transfer can also be commanded to start transmission
from any location in core memory.

A number of methods can be employed for terminating a block transfer, depending upon the require-

ments of the I/O device. -One technique, possible because of the flexible 483 word structure, is the ending
of the transfer with a word mark. (Instructions for implementing this are provided in BIT IO literature.)

1-7

For an output data transfer, the execution time is .98 pus + .98n us. (One memory cycle is required to
set up the data channel, and one cycle is required for each of n bytes transmitted by the instruction.) For
an input data transfer, the execution time is .98 pus + 1.33n pus. (One memory cycle is required to set up the
data channel and 1.33 us are required for each data byte entered into core memory.) When data is entered
into core memory from an 1/O device, the word mark structure in memory is preserved.

For convenience in designing interfaces, BIT offers a series of dedicated logic-interface cards containing
device selection and synchronous logic. These cards simplify implementing the timing functions required in
designing an interface, and relieve the user of the task of generating such signals. (BIT I/O literature details
this feature.)

SOFTWARE ELEMENTS

Software provided for the BIT 483 ranges from compiler level to assembler level, supported by exten-
sive utility systems and mathematical aids.

Assemblers

Five assemblers are provided for use with the BIT 483 Computer, varying in size, sophistication, and
ease of use. They permit the programmer to code instructions in a symbolic language which is more con-
venient than the binary numbers which actually operate the machine.

1. ARBIT-1: asymbolic assembly language system designed for 483 units having a 1024- or 2048-byte
memory capacity.

2. ABIT-4: asymbolic assembly language system designed for 483 units having a 4096-byte memory
or larger.

3. MABIT: amodified ABIT-4 which includes 17 interpretive floating-point function single-state-
ment calls, including HTAN, ARCTAN, LOG, ¥, and others.

4. MACROBIT: amacroassembler for use with 8K memory or larger, with a novel form for macro-
calls and a syntax using the full ASCII character set to permit economy of expression. MACRO-
BIT can be thought of as a powerful string processor, followed by a very simple assembler.

The string processor features include IF and REPEAT statements, definition and redefinition of
string macros (variables which expand to strings), and a form for macro-calls in which there are no
special delimiters setting of a macro’s arguments.

Operating on the string generated by the string processor, the simple assembler has the features
normally found in an assembler. These include complete symbol table control for the programmer,
allowing definition, redefinition, purge, read-in, type out, and punch out, and extensive address
arithmetic, good error diagnostics, and convenient option selection via the console switches.

The macroassembler is able to use the same storage allocation algorithm described in IL (below),
simplifying the task of fitting small segments of program into page-size pieces.

1-8

5. IL: an advanced programming language for use with 8K memories or larger, pioneered by BIT for
minicomputer applications. It permits programming at a level. of detail intermediate between as-
sembly language and the conventional higher level languages. It is possible, for example, to write
assignment and conditional statements as in higher level languages, with extensive control over the
details of the code generated and full use of all of the features of the machine. The language is
more compact to use than an assembler in the sense that a statement in it may encompass a num-
ber of operations. As an example, the statement

A<B+C—D&A

in IL effects the following: B is placed in the accumulator. C is added to it. D is subtracted from
it. The result of this is then logically ANDed with A, and the result is then left in A.

The programmer, using IL, has all the advantages associated with assembly language and at the
same time much of the conciseness and readability of the higher level languages.

A unique storage allocation feature is also provided. A program can be written in segments, to
each of which an absolute origin can be assigned; if not, the allocator makes an efficient assign-
ment of these segments into the available core space, thus compiling an absolute binary tape.
This allocation process greatly simplifies the task of fitting programs efficiently into a core paged
machine.

Utility Systems

BIT 483 software features a text editor (EDIT), a symbolic tape edit program (SYTE), an online de-
bugging system (BOLD), automatic loaders (BINREAD and LOADER-C), and punch program (BINPUNCH).

1. EDIT: atext editor which permits source program modification, such as corrections, additions,
deletions, etc., in the assembly language.

2. SYTE: for processors with minimum memory sizes not large enough to accommodate EDIT,
SYTE permits source program modification in assembly language, corrections, additions, and de-
letions.

3. BOLD: an on-line debugging system for use with new programs, BOLD permits entry of break-
points, subprogram entries and exits, manual data entry, memory data listing, and pseudo inter-
rupts. It also permits direct operator control of all phases of processing. BOLD uses 1.5K of
core storage.

4. BINREAD and LOADER-C: to locate and load object programs and data into preselected memory
areas. As programs are operating, these loaders reside in memory ready for reuse whenever needed.

5. BINPUNCH: aprogram for independent use or as a segment of BOLD to copy selected memory
data or programs onto punched paper tape. It makes possible copying a modified operating pro-
gram directly onto paper tape for reuse at a later time, thereby eliminating the need for reassembling
a program for correction or modification.

1-9

FORTRAN and Mathematical Aids

The BIT 483 software further features a FORTRAN compiler; a set of mathematical subroutines,
MATH PACK, which perform floating-point arithmetic; and CALC, an automatic system performing 15
arithmetic keyboard calculations.

1. FORTRAN: the FORTRAN compiler, designed for use with a 483, having an 8K memory or
larger, includes every function of USA STANDARDS BASIC FORTRAN. It is a one-pass com-
piler which produces an object program. It simplifies the problem of program preparation by
enabling users with little or no knowledge of the computer’s organization to write programs by
expressing problems in a mixture of mathematical statements and English words.

2. MATH PACK: a set of subroutines which perform floating-point arithmetic. The set includes
add, subtract, multiply, divide, sine, cosine, tangent, square root, exponential and log.

3. CALC: essentially converts the 483 into a rapid desk calculator, capable of performing 15 arith-
matic functions automatically. The ASR-33 teletype keyboard is utilized for input and output.

HARDWARE ELEMENTS
The BIT 483 consists of the following four major hardware elements:
I/O Network

The BIT 483 1I/O network consists of a number of data channels, each capable of operating in a READ-
WRITE mode. The central processor can have a maximum of three suich READ-WRITE channels, as shown
in Figure 1-4. Each of these channels is capable of executing data transfers, while the processor is simulta-
neously computing. A maximum of 32 peripheral devices and a teletype can be addressed via the I/O net-
work. The teletype used with the 483 (unless otherwise specified) is a standard ASR-33.

Central Processor

The central processor (CPU) basically consists of (1) a set of registers to store various pieces of transient
information; (2) transfer buses for transferring information among the various registers or between the central
processor registers and other parts of the system; (3) control logic to execute the basic cycle of fetching and
decoding an instruction, address modification, etc.; and (4) control logic for executing the various individual
instructions in the 483 repertoire. Figure 1-5 is a block diagram of the central processor.

The processor has a single-address instruction capability with access to all memory locations in the main
core memory. It is controlled by the program stored in memory, and capable of processing data and perform-
ing arithmetic and logical operations. The logic is implemented with extensive medium scale integration (MSI)

techniques and transistor-transistor logic (TTL) elements.

Memory

The coincident core memory is the primary storage facility for the BIT 483. It provides rapid, random

1-10

1/0 DEVICES

CENTRAL PROCESSOR

CHANNEL (" BUS INPUT BUFFER

REGISTER
CHANNEL "G”

>

CONTROL LINES

g

—
PERIPHERAL AODRESS LINES
UPTO) .
CONTROL UNIT
15 PERIPHERAL ONTROL U
DEVICES (1 PER 1/0 DEVICE)
CHANNEL “A” Bus | [NPUT BUFFER
REGISTER
OPTIONAL .
y {) CHANNEL "A
w
UPTO CONTROL UNIT
16 PERIPHERAL L oea
DEVICES (1 1/0 QEVICE)

TELETYPE-

TELETYPE.
WRITER

WRITER

CHANNEL “C” BUS CONTROL UNIT

Figure 1-4. Block Diagram — I/O Network.

1-11

*10889001g [eijua) — weaderq yoolg ‘g-T aindyy

xop

ybiW meq] [moq meg

SWwEOc>

IVN

HVYW

AHOWIW
olLvivd
1 HoH | mo1
_‘E__. oW oW |
| v31s1934 al _.I|L W 03][=0 [[ies J[AO]
IEESEEER
—
(ewida Qg
|>>|_ F Mo Aseurg rl (1aW) M01
xny 0 M M 9 xoil xny e—YLYO AUOWIN)
1 Q 0 3 WNs L1INN INOW) HIH
y 1 I Y "HLIYY, V1va AHOWIW
L L {HYW) HOIH
4 rc__m r”L r_,_1. o.u $S34AAY AHOWIW
3
1 HOIH 1 @
T T /
ﬁ.l| i wns |9
W H H N
! 9 9 2 |
H] _ J -
v H H d -
W W
o ‘ 3
nowy §
ALCELER B
ONVINWOD
-Aans | 4
0 %2019

1-12

access data and instruction storage for both the central processor and the 1/0 network. The basic memory
consists of 18 planes, of which 16 store two 8-bit bytes and two planes which store word-mark bits. A pair
of additional planes, an optional feature, is available for use as an odd parity bit for each byte. The mini-
mum memory size available is 1024 bytes, expandable times two, up to 65,536 bytes.

Control Panel

The control panel is divided into two basic sections. An upper section contains indicator lamps, while
alower section contains control switches. The indicators display the status of the BIT 483, i.e., stop, illegal
instruction, etc., as well as any significant register. In addition to their normal functions, the switches have
the capability of accessing and changing the contents of any memory location. Identification and function
of panel switches and indicators are covered in the operating instructions presented in Section 2.

1-13

section two

memory

MEMORY ORGANIZATION

In the BIT 483 Computer, as noted in the Introduction, the primary storage facility is the coincident
core memory. This consists of 18 planes of which 16 are used to store two 8-bit characters called bytes and
the two remaining planes store a word-mark bit for each byte. The minimum memory size available is 1,024

bytes, expandable times two, up to 65,536 bytes. A simplified diagram of the memory layout is given in
Figure 2-1.

OCTAL ADDRESS
000 000 PAGEOCORE STORAGE 000 377
001 000 PAGE 1 CORESTORAGE 001 377

? 4

N ~N
Y Y
v
376 000
\J
377 000 PAGE 377 CORE STORAGE AND/OR ACCUMULATOR 3717317

Figure 2-1. Memory Core Layout.

21

MEMORY ADDRESSING

Memory locations are addressed by unsigned positive binary numbers. For addressing purposes the
memory is divided into blocks of 256 bytes, designated as pages. A 2-byte instruction can directly address
any byte in either the page containing the next instruction or a page previously designated by the program
as the data page. Indirect addressing to any location within either the program counter page or the data
page is also possible. The 4-byte instructions can address any location in any page.

Two registers, the program counter and the page register, within the central processing unit are directly
involved in all memory addressing. The size of these registers, tabulated in Table 2-1, is a function of the

memory size.

Table 2-1. BIT 483 Register Size

Program Page
Memory Size Counter Size Register Size

1K 10 bits 2 bits

2K 11 bits 3 bits

4K 12 bits 4 bits

8K 13 bits 5 bits

16K 14 bits 6 bits
32K 15 bits 7 bits
64K 16 bits 8 bits

In normal computer operations the program counter defines the address of the next instruction to be
executed. The program counter is divided into two parts: the 8 low-order bits, called the low program
counter (LPC); and the 8 high-order bits, called the high program counter (HPC). The LPC addresses the lo-
cation within a page; the HPC addresses the page.

The page register serves as the high-order bits of the effective address in instances where the operand is
not on the same page as the instruction. By program control, the page register is used with the address byte
of the 2-byte instruction to address any desired byte in memory (the two types of instruction are illustrated
in Figure 2-2).

lOP (lJODF M3 | M2 | M1 | MO LX

2-Byte Format

lOP CIIODF M3 | M2 | M1 | MO

4-Byte Format

Figure 2-2. Instruction Formats.

2-2

The accumulator in the 483 is the last page of memory. It is automatically addressed by the computer
in its high order address byte. The size of the accumulator depends upon the size of the word it contains,
which may be the total page. In all cases the extent of the accumulator used depends in turn upon the pro-
gram being operated, and may vary during operation because of the mixed word lengths usually encountered
within a program. (It is not necessary to fix the size of the accumulator since this is a result of normal data
manipulation.)

WORD FORMATS

Computer words in memory are either instruction or data words. Instruction words define the desired
operation, e.g., add, subtract. Data words provide the arguments for the instruction. Instruction words are
fixed — either two bytes or four bytes, in length. Data words in the BIT 483, on the other hand, are variable,
not fixed in length.

Instruction Word Formats*

Instruction words are either two or four bytes in length. The first byte always defines the operation to
be performed. The second byte of the 2-byte instruction, the higher address byte, contains an 8-bit address
(LX). It is the low-order byte of the effective address of the operand, in normal operation. When indirect
addressing is used, it is the address of a location within the current page where an 8-bit address, used as the
low-order byte of the effective address of the operand, is located. The format of each instruction type is il-
lustrated in Figure 2-2.

Two-Byte Instructions

The first byte of the 2-byte instruction is divided into two 4-bit fields. The first field contains a 4-bit
operation code, while the remaining field is made up of four modifier bits designated M3, M2, M1, MO. Un-
less otherwise specified, the function of these modifier bits is

M3 — Special modifier

M2 — Page register selection
M1 — Destination control
MO — Indirect addressing

Four-Byte Instructions

The 4-byte instructions are jump-on-condition instructions. They contain a 16-bit address in the low-
order bytes as Figure 2-2 demonstrates. In most cases they test the status of EQ, GR, MI, and OVF (see
Section One). If the test results in a positive reply, the 16-bit address replaces the program counter. The in-

dividual jump instructions are explained in detail in Section Three.

The operation code field essentially specifies the particular function to be performed. The operation is
further defined by the modifier bit configuration. All operation codes are defined in Table 2-2.

*]/0 instructions not included

2-3

Table 2-2. Operation Codes

Operation Code Function
0001 Peripheral transfer instruction
0010 Four-byte jump instructions
0011 Peripheral control instructions
0100 Logical instructions
0101 Binary instructions
0110 Page register instructions
0111 Data copy instruetions
1000 Word-mark instructions
1001 Two-byte jump instructions
1010 Decimal instructions

Data Word Format

Data words are stored in memory as consecutive 8-bit bytes. The length of any word is defined by the
program. The setting of a word-mark bit at the high-order byte of the word establishes the length. Some
typical variable length words are illustrated in Figure 1-3.

Data words occupy memory in ascending addresses starting with the high-order byte of the data word
in the low-order address. Since the data word can occupy more than one byte, it is usually addressed at its
low-order byte which is the higher order memory address. Figure 2-3 is an example of addressing variable
length words in memory.

Address
WM
001300 HIGH-ORDER BYTE WORD A
WORD A] 001 301
001 302 LOW-ORDER BYTE WORD A
WM
WORD B { 001 303 ONE-BYTE WORD
WM
001804 HIGH-ORDER BYTE WORD C
WORD C -
001305 LOW-ORDER BYTE WORD C
WM
001306 HIGH-ORDER BYTE WORD D
WORD D -
001 307 LOW-ORDER BYTE WORD D

Figure 2-3. Data Words.

Word A is a typical example of a 3-byte or 24-bit word in memory. Its address is page 1 location 302.
Word B is a typical example of a 1-byte or 8-bit word. Its address is page 1 location 303.

Words C and D are both 2-byte or 16-bit words. Their addresses are page 1 location 305 and page 1 lo-
cation 307, respectively. While it is possible to address all bytes in core, a word’s length may be easily modi-
fied by modifying its address when used in the instruction word or by changing the word-mark location at
the high-order byte.

DIRECT ADDRESSING

When addressing directly, the effective address of an operand consists of two entities, the page and the
location within the page. The page value can be supplied by either the page register or the HPC. The loca-
tion within the page is always represented in the address byte of the instruction. Since the page value can
take on the value of one of two registers, two direct addressing modes actually exist. The mode of address-
ing is selected by the program. The selection is based on the condition of modifier bit 2. A block diagram
illustrating the addressing modes including the program counter.and the page register, is presented in Figure
2-4.

OP CODE M3 |M2M1iMO 8-Bit Address
M2 %‘/‘;: 1
¥ v
Page Register High Program Counter
S & v
Operand Address (high) Operand Address (low)

Figure 2-4. Effective Address.
Page Register Mode

The page register is used as the high-order bits of the effective address when M2 is equal to 0. The con-
tents of this regfster may be changed any time it is necessary to access data from a page other than the pro-
gram counter page or the page presently represented by the page register. This mode allows for the retrieval
of data from any page in memory.

The number of bits in the page register used for direct addressing is a function of memory size. The
page register is combined with the address byte of the instruction to form the effective address. The follow-
ing example binary-adds (BAA) an 8-bit word from memory to the accumulator (the instruction is located in
page 1 location 100, while the operand is in page 2 location 250, assuming a memory size of 8K):

2-5

Page Location Instruction Address Mnemonic (ABIT-4)

001 100 120 250 BAA NUMB

-1

Q

002 250 \001 NUMB OCT1 w001

To perform this operation, the page register must be set previously by the program to a value represent-
ing the page on which the data is located, specifically 2. The value of the program counter and the page reg-
ister at the time of execution are:

X X X 0 0 0 0 1 0 1 0 0 0 0 1 0

High Program Counter Low Program Counter

PROGRAM COUNTER

X X X 0 0 0 1 0

PAGE REGISTER

The program counter points to the next instruction to be executed at memory location page 1 location
102, and the page register is set to address a memory location in page 2. The assumption of an 8K memory
system limits the number of bits used in addressing in both the HPC and the page register to the low-order 5
bits. During execution, the page register combines with the low-order byte of the instruction to form the ef-
fective address:

X X X 0 0 0 1 0 1 0 1 0 1 0 0 0

Operand Address High Operand Address Low
High Program Counter (HPC) Mode

The HPC is used as the high-order bits of the effective address when M2 is equal to 1. This mode is used
when the data is in the same page as the instruction. As in the case of the Page Register Mode, the 8-bit ad-
dress contained in the address byte of the instruction is placed in a work register. The contents of the HPC
complete the effective address. At the time of execution, this combination accesses the memory location
containing the operand. The following example binary adds (BAAP) an 8-bit word from memory to the ac-
cumulator, with the operand located in the same page as the instruction:

Page Location Instruction Address Mnemonic (ABIT-4)
001 200 124 300 BAAP NUM1
001 300 \002 NUM1 OCT1 W002

26

A flow diagram of the effective address calculation is shown in Figure 2-5.

START

Fetch 2-Byte
Instruction

(Program Counter) =
(Program Counter) + 2

|

(Work Register) =
(Address Byte)

Contents of Page
Register
Prefixed to Work
Register

Contents of High

Program Counter

Prefixed to Work
Register

Execute

Figure 2-5. Memory Location Effective Address Calculation.

2-7

OP CODE

M3

M2iM1

MO

—— i Thrw - —— — — — — — - e RMS et St P20t e o]

]
:M2=0

MO

M2=1:
i

1}
et

Page Register

HPC

E

-

(High)

Operand Address

8-Bit Address
|

HPC 8-Bit Address

Interim Address

Low-Order Byte of | g pit Address
Effective Address
4
Operand Address
(Low)
Effective Address

Figure 2-6. Indirect Effective Address Calculations.

2-8

INDIRECT ADDRESSING

Indirect addressing is controlled by modifier bit MO. If MO is equal to 0, the 8-bit address in the ad-
dress byte of the instruction is used directly with the page register or the high program counter to address a
memory location (see preceding discussion).

Indirect addressing is specified when modifier bit MO is equal to 1. The address in the address byte of
the instruction is combined with the HPC to form an interim address. This address points to a location in
the program counter page, which contains a final 8-bit address for use in the effective address calculation.
After the retrieval of this final 8-bit address modifier, bit M2 is examined for its status. If M2 is equal to 1,
the page register is used as the high-order bits of the effective address. If M2 is equal to 0, the HPC is used
as the high-order bits of the effective address. Figure 2-6 illustrates the effective address calculation when
indirect addressing is specified.

OPERATING INFORMATION
Console

Controls and indicators for operating the BIT 483 Computer are illustrated in Figure 2-7, coordinated
with and referenced to Table 2-3.

24
-u...-'—lh:-’_
WM /
MEMORY ADDRESS .Q"‘
» _EIZIZ] Priar me
oot
-. 1§ ON INCR wMm . 3 __O
: . 1.1 ; 1
o—++d HE
A - 1 ' LOCK 3 !
OFF DECR ENTER DISPLAY CLEAR !
STOPRUN SC LOAD PER \INT MEM|PAGE MEM | PAGE DATA|MA/PC & ‘
--ll-n L0 CL] II ay) |

OB ONOI0J0 gg\@D (5)

Figure 2-7. 483 Console

2-9

Table 2-3. Identification of BIT 483 Controls and Indicators

No.* Name Function
CONTROLS
1 ON/OFF Turns 115 VAC primary voltage ON and OFF.
2 INCR/DECR INCREMENT/DECREMENT switch. Causes the main memory
address register to be incremented or decremented, depending
on INCR or DECR position of switch, when either ENTER
MEM or DISPLAY MEM switch is pressed.
3 STOP STOP switch. When pressed, program execution stops; STOP
(Momentary Contact Switch) indicator lamp lights.

4 RUN RUN switch. When pressed, starts program execution at the
(Momentary Contact Switch) address specified in the program counter.

5 SC SINGLE CYCLE switch. When pressed, executes a single in-
(Momentary Contact Switch) struction.

6 LOAD LOAD switch. When pressed, starts to read paper tape into
(Momentary Contact Switch) memory from teletype reader; stopped automatically by blank

character on tape.
7 PER PERIPHERAL switch. When pressed, resets all peripheral lines
{(Momentary Contact Switch) to zero without affecting the 483 processor registers.
8 INT INTERRUPT switch. When pressed, interrupts processor
(Momentary Contact Switch) operation.

9 WM WORD-MARK switch. A data switch which, when pressed,
enters a word mark bit (9th bit of a byte) into the DATA
indicators.

10 ENTER MEM ENTER MEMORY switch. When pressed, data displayed on
(Momentary Contact Switch) DATA indicators are actually entered into the memory at the
address shown on the MEMORY ADDRESS indicators.
11 ENTER PAGE ENTER PAGE switch. When pressed, data displayed on DATA

{(Momentary Contact Switch)

indicators are actually entered into the page register.

*Numbers correspond to those in Figure 2-7.

2-10

Table 2-3 (continued)

No. Name Function

12 DISPLAY MEM DISPLAY MEMORY switch. When pressed, displays on the
(Momentary Contact Switch) DATA indicators the information stored at the address dis-

played on the MEMORY ADDRESS indicators. The contents
of sequential memory locations are displayed each time the
switch is pressed.

13 DISPLAY PAGE DISPLAY PAGE switch. When pressed, displays contents of
(Momentary Contact Switch) page register on DATA indicators.

14 DISPLAY PC DISPLAY PROGRAM COUNTER switch. When pressed, dis-
(Momentary Contact Switch) plays location of next instruction in program counter on

MEMORY ADDRESS indicators.

15 CLEAR DATA CLEAR DATA switch. When pressed, clears data appearing on
(Momentary Contact Switch) DATA display indicators and in the data register.

16 CLEAR MA/PC CLEAR MEMORY ADDRESS/PROGRAM COUNTER switch.
(Momentary Contact Switch) When pressed, clears the contents of the memory address reg-

ister, the program counter, and the MEMORY ADDRESS
indicators.

17 LOCK A manual lock and key is provided to lock the control panel

switches in order to prevent unintentional setting of switches.
When the key is horizontal, the panel is locked; when vertical,
open.

18 DATA Switches A series of DATA switches provides the capability of manually
(upper positions only) entering data into the memory. The switches are colored in

groups to facilitate reading in the octal system.

18 SENSE Switches Nine SENSE switches are available for use on the control panel.
(downward position on 8 DATA Any permutation of these switches can be tested by the pro-
switches and WM switch) gram to determine if specialized processing is necessary. It is

possible to set and reset any code while the CPU is actively en-
gaged processing other requirements.

19 MC MASTER CLEAR switch. When pressed, resets all major regis-

(Momentary Contact Switch)

ters and peripheral lines to zero (has no effect on memory).

211

Table 2-3 (continued)

No.

Name

Function

20

21

21

21

21

21

21

22

23

24

MEMORY ADDRESS Switches

STOP

ILL

EQ

GR

MI

OVF

MEMORY ADDRESS

DATA

WM

A series of 16 switches is provided for inspecting the contents
of any memory location. This is accomplished by setting the
memory address register and the program counter to the speci-
fied value.

INDICATORS

Lights when the STOP switch is pressed, when the program
halts, or when the computer tries to execute an illegal instruc-
tion.

ILLEGAL OPERATION indicator. Lights when the processor
halts in attempting to execute an illegal operation code.

EQUAL-TO-ZERO indicator. Lights when the result of a bi-
nary logical or decimal operation is zero, or it and the greater-
than-zero (GR) indicator are both set to indicate word size has
been exceeded, i.e., when there is a carry out of the highest
order byte of the results.

GREATER-THAN-ZERO indicator. Lights when the result of
a decimal operation is greater than zero, or the result of a bi-
nary or logical operation is non-zero, or it and the EQ indicator
are both set to indicate word size has been exceeded (as per the
preceding explanation).

MINUS indicator. Lights when the highest order bit of the re-
sult of a binary operation equals one.

OVERFLOW indicator. Lights after a binary operation when
either a “‘carry out” of the highest order bit of the result oc-
curs without an accompanying ‘‘carry into,” or when a “carry
into” the highest order bit occurs without an accompanying
“carry out.”

Light when MEMORY ADDRESS switches are pressed. Dur-
ing operation indicate the current memory address.

Light when DATA switches are pressed. During operation in-
dicate data entering memory.

WORD-MARK indicator. Lights when a 9th bit is set indicating
the presence of a word mark.

2-12

Instructions

Operating instructions for the BIT 483 Computer are provided in Table 2-4.

2-13

auynoiqns 03 dump 150 T00TOTO0 USSP 9'g aupnoiqns 03 dunp

juawdmbe
rersyduad woay asuodsaz sapisod j1 dump 0S0 00010100 L1dPx o1 1599 reroyditad uo dunpg
398 J0u st Py 10 Yo Jt dump L0 TTT00TO00 HON 01 bd » ¥ yrdump
398 yjoq a8 Hy pue ¥p Ji dump 9%0 0TT00T00 qOLx% 0T bd » 4o Jrdump
jesjou st Yo 1 dunp 3 40] T0T00TO00 HUON* 0T y¥o Judump
jos st 4o i dumnp 4%V 00T00T00 UOrx 0T 4o 1 dump
798 jou st oy Jt dump £¥0 11000100 OIN* 0T Od yt dumnp
395 st Oy J1 dump 440 0T000T00 bArx 0T bF jrdunp
dum(ppuonipuosur) 1§20) 10000100 dINP 01 dun({ feuonipuooup)
jdnussjut woay uangax dump 0%0 00000100 T4P* 01 jdnarejul woxy uangax dunp

SNOILLO{1Y.LSNI dIN(1P

20140p [BIoyduad woay s934q BIRP USOM)AQ W) = §
pIom IOoje[nWINDOB 8Y) Ut $994q JO IaquINU 9} = Bu
piom Arowawr 9y ul sa34q JO 13qunu ayj} = Wu
Is[rewIs ST I8A0YOTYM ‘puerado JojeMmiunode 10 AI0WAW 9y} IsyjIe Ul s944q JO IaquIinu ayj = u
81040 T = BuissaIppVY J0811pU]
s 086" = WY, 9[04) AIOWI
(91040 L1oWdW g = SUOKONIISUI IBYJO [[B 10F ButuIL], Yoo) SO[0A0 Lrowaw § = SutwIi], Yo19 4

‘SHLON

(s91049)

WIL], @JNO9XH uo3onajsuy

uondiIosa(] [euorouny apo) 8100 9PpO) Areulqg OIUOWRSUN Sur

suononysu] £8% LIg oised 'p-g dIelL

2-14

AJowawr JO §juUaU0D
3y} 0} 103B[NWINIOE 3Y} JO SJUIUO0D 8Y} ANV

Ioje[nuwinooe ayj} jo sjua}
-U02 9y} 0} AI0WaW JO §JUU0I 3y} NV

AIOWAW JO SJUIIU0D Y3} 0} 103%¥]
-NWNIIE 9y} JO SIUIIUOD 3Y} YO IAISN[OXH

I038[NWNI0Y 3y} JO SHUIJUO0D
ayj} 07 AIOWAW JO SJUU0D Y} YO SAISNIXH

Addd ad1asp 53109188

clt

011

40] 8

0ot

ITdTO0TO

10dT00TO

ITd000TO

10d000TO

NV

VNV

W40

Va0

SNOLLONYLSNI TVOIDOT

aaadartoo

IDd

U gg

uge

ugg

U g3

NOLLDNYLSNI TOULNOD TVHIHIIYEd

Lrowewr 0} (ONV [ed180]

JojeMmuwnooe 03 (JNV [edtdor]

AIowawr 0} YO dAISN[OXH

I0e[nNooe 0} YO IAISN[OXHY

100108 rexaydusg

395 Jou a1e Py pue Yo 1 dunp LSO TITTI0TO00 DNH 01 YD 10 By jrdump
398 ST YD 10 HF J1 dwnp 950 OTTIO0TO00 DOH 01 ¥o 10 By jrdump
395 J0U ST JAO JT dumnp 9GS0 T0TT0T00 AON 0T dAQ jtdump
398 ST JAO J1 dump ¥S0 TOTT0T00 AOPs 01 AAO Jtdump
jos jou st [N 31 dwmp £90 11070100 IINN* 0T I 31 dwmp
30s st N J1 dump 2%0 0T0TOT00 IINL (1 IN 1 dunp
uopduosa(] reuorpouny apo) 8190 9po) Areulg OIUOWLUN Sut (s01040) uoonajsuy

Wiy, 9JNd9xXy

(panunuod) $-g 9qeL,

2-15

Alowswt

0} Ioje[nuwIndoe 3y} wolij piom auo Ado) %91 ITdOTITTIO WTD BU (0'C Ajowawr 0] pIOM dUO A0
Jojemu

-node 8y 03 AIowd W Wy piom duo Ado)H 091 10dOTTTO YID wu (g IojenuInodde 03 pIiom U0 SAON

SNOLLONYILSNI AdOD

Arowswr uf s3u1)yes Yyoms FSNIS oY) 948g 4] ITd10TTO SSS £1 sayIMSs FSNH'S 91078
- LIowrawt

ut 19951321 OV J 2Y) JO SUSJUO0D Y3 dALS 44 1Td00TTO Uds €1 1951801 FOVJ 21018
Alowdw JO sjUdU0D Y} Yjm

19951321 OV J Y3 JO sjusaju0d ayy do8[doy oyl 10d00TTO dHO 1 Ixsi8ox FOVJ 28uey)

SNOLLONYLSNI HHLSIOHAY HOVd

Aiowrawr Jo SJUdIUOD Y} WOIJ 10je[nu AJowaw

-MOOE 3y} JO SJUAU0D 3Y) LOVHIANS Areulq 441 ITdIT0TO0 nsd ugg woy LOVYILENS Areulg

J10o38[NWNIIE 9Y) JO SJUIRUO0D Y] WO Jojenwr

Alowow Jo sjuUIU0d oY} LOVYILANS Areurqg 0et 10d1T0TO vsd ugg -noo8 woxy LOVYILENS Areulg
Aiowaw JO SHUIIU0D Y]} 09

I0je[UINDOE 9Y) JO SJURUOD 9Y) AV Areurg 44 ITdOTO0TO Ve ugg Alowsw 03 AV Areuig
Joje[nuwinooe 8yj Jo sJUaU0d

8y} 03 AI0WAW JO SJUANUOD Y} AV ATeurg 03T 10d0TOTO vvd ugg Ioyenumooe 0} qQV Areuig

SNOLLONYILSNI AMVNIL
(sa1049)

uondurosa(] reuorjouny

apo) 18100 9po) Areulg OIUOWIUN Sut

Wiy, 9NdexXy

uoroNISU]

(panuyuod) $-g dlqey,

2-16

ALl @y} uo
1apeai ade) 1aded ay} woay I07suel} B SITEIIU]

SPUOJIST[I

440 0TOTTO000 Ldd

HAON LdNYYULNI"NON HdALATHL

0ot

apow jdnizajul-uou 19pead
ade) saded g 1,1, woij 10jsuel],

doy
jdnaiajui 398 pue 1j3unod weidoad aduryn 233 1IdOTO00T AIS 0T dum[7 jdnaisgur 308
ey pue 19junod wrexdoxd e3ueyp 0€3 10dTT00T LTH 0T dum(2 9pey
J9j3unoo werdord adueyn 0232 10d0TO00T md 01 dwn[934q-omJ,
SNOILONYLSNI dNNP HLAH-OML
uo1ed0] A1owswt pary
-10ads 9y} ut 395 sl 31q yrew-piom ay3 i dump 01c 10410001 WML 01 AYVIN-QHOM uo dump
uo1}e00| L10
-Wwaw payy1oads 9y Ut 31q }IeW-pIoM 3y} 495 414 ITd0000T NMS €1 MHVIN-TYOM 198
uonedo| Lrowdw
poizioads ayj Ul 31q HIewW-PIOM 8Yj dsely 003 10d0000T NMHE g1 AUYVIN-AHOM oselq
SNOILONYLSNI IYVIN-THOM
A1owawt wu 0'g +
0} 101e[nWINooe ay) woiy splom omj Adop ZL1 ITdTITITO I Ae) 0'% £I0wWaW 0} SPIOM OM] DAOIN
Joje[nua WU 0'g +
-noode ayj 03 Arowew woiy spiom omjy Ado) oLT 10dTTITI10 \ 440 0% 10)e[NWINIOB O} SPIOM OM) SAOW
(sa[04£9)

uonduosa(] reuonouny

apo) 18100 2apo) Areulg OIUOWBUN S

Wiy, 9NodXH

uonoONI}SU]

(panunuod) $-g 21qe],

2-17

0 [PU
-uey) /1 uo jndjno 103 pajosres Asnoraard

901A9p ® 0} 19)suel) paddejiaao ue sajerpiul

D
leuuey) O/1 uo Indut 103 pajoaes Asnowaid
9018p ® 07 19]suer} paddejioso ue saje1IUL

V puueyy
0O/1 uo mdino 103 pajoards Asnowmaad 201

-9p ® 0} Iaysuelj padde(iaao-uou e sajeriuy

V puueyn
0O/1 uo ndut 103 pajoales A[snoiaaid aota

-9p ® 0} 193suel) paddefisaso-uou B sejeriu]

0 puuey)
O/1 uo 1ndino 10] pajIses A[snoiasld 901

-9p e 03} J97sue) paddesac-ucu v seyBI}IU]

N puusy)
0O/1 uo jndut 103 pajodfas A[snoiadad 801

-ap ® 09 Iajsuel) paddeorc-uou € sojBIHIU]

Geo

S€0

020

020

¥€0

¥€0

TOT11000

TOT1T000

00001000

00001000

00TITITO00

00TTTO00

D10

DILO

Vid

Vid

DId

Dld

NO'T+T

NE'T+I

S+NO'T+1

S+NE€T+1

S+NO'T+T

S+NE€T1+1

SNOLLONYLSNI HHISNVHL TVHHIHIIYHEd

0 [puuey)) Jajsuer}
rezayduad yndqno paddeaaQ

) [puuey)) I9jsue}
ereyduad gndur pedde(zoap

V [puuey) raysuer rexoyd
-uad gndjno paddepaso-uoN

V [euurey) 19)suer}
rezeyduad yndur paddepaso-uoN

n) puuey) Iaysuery rerayd
-uad yndyno paddeiaso-uoN

0 [puuey) Iajsuer)
rexsyduad yndur paddepsso-uoN

XLL 23 SPUOJIST[TW apow jdnatejui-uocu preoq

uo pireoqAay/yound ayy 03 Iaysuel} B sajelIUL 1€0 T00T1000 Ldd 00T -Ka%/yound £ 1,1, 03 I9fsuel],

ALL SPUODISI{T apow jdnusjui-uou

a3 uo pIeoq4sy aYj w0l 19jsuBl} € SARIPU] 0€0 000TT000 AHN 00t preoq4ay X L], woly Iajsues],
(se10402)

uonpduosa(] euonoung

apo)d (8300 Opo) Areulg OIUCWAUN S

Wi f, 9Jnoaxy

uopon1ysuf

(penupuod) -z aIqe],

2-18

2-19

V Bu
-uey) O/1 uo ndyno 103 pajosres A[snowaid

301A3p ® 03 J0ysuel) pedderaao ue sajerIu]

V [pu
-uey) /1 uo 3ndur 103 payosjes Ajsnowsad
301A9p ® 0} I9ysues) paddeiaao ue sajerIuy

130 TO00TO000 V10

T30 00001000 V10

NO'T+1

NE 1+1

Vv [putey) 9ysuel) rerayd
-13ed jndino peddeoaQ

V [ouuBy) Iaysuel}
reroyduad ndur paddeeap

uonpduwoss(feuonjounyg

apon 8190 9po) Areulqg OIUOWAURN 3w

(s010402)
], 9noexy

uor} oNnI}su|

(ponunjuod) $-g 9(qer,

section three

instructions

This section describes all BIT 483 Computer instructions, except the I/O instructions covered in Section
Four. The instructions are discussed by class, with each class consisting of several instructions.

The instructions of the BIT 483 and the modifiers to these instructions are often inseparable. The mod-
ifiers are set by appending the suffixes P and/or I to the mnemonics recognized by the assembler ABIT-4.
The suffix P causes modifier bit M2 to be set to one. If this suffix is omitted, modifier bit M2 is set to zero.
The suffix I causes modifier bit MO to be set to one. If the I suffix is omitted, modifier bit MO is set to zero.

Accordingly, the description of each instruction includes all the possible combinations of that instruc-
tion as a result of appending the suffixes which control the modifier bits M2 and MO. Each mnemonic is as-
sembled into a corresponding octal code, and placed in the high-order byte of the instruction. The mnemonic
is followed by an English language definition of the instruction and its timing. The timing includes both the
fetch and execution times. A block diagram of the instruction format and a description of its function has
also been included.

FOUR-BYTE JUMP INSTRUCTIONS

There are sixteen 4-byte jump instructions, and all allow a program branch to any location in memory.
Two program statements for each of these instructions are written. The first statement defines the jump
command and conditions; the second statement is usually the jump address (JAD) “pseudo-op” (see the
ABIT-4 Assembler Manual) or may be any constant, two bytes in length, that provides a complete 16-bit
address.

If, when the BIT 483 executes the jump instruction, the conditions are met, the jump address is placed
into the program counter. If the conditions are not met, the program counter is incremented by two, thus
bypassing the jump address and proceeding to the next sequential instruction. The jump instruction (other
than a JRI) does not affect the indicators. Unless otherwise specified, the second byte of the instructions is
not used by the instruction. This byte may be used as a data location by the programs when the circum-
stances permit.

JRI Jump Return From Interrupt 4.9 us

040 unused

E|G|M
QIR
4

<|O

HX LX

i

0 7 0 7 0 7 0 7

This instruction performs the same operations as the JMP instruction, plus two additional functions.

First, when executed in the appropriate location the JRI resets the interrupt state flop of the present level,
which returns the processor to the previous mode of operation from this level of interrupt. Second, the

3-1

EQ, GR, MI, and OVF indicators are set according to the values contained in the second byte of the instruc-
tion upon execution. If the program does not alter this byte before execution, the indicators will be restored
to their original states at the time the interrupt occurred.

JMP Unconditional Jump 4.9 us

041 unused HX LX

This instruction causes the 16-bit address specified in its low-order two bytes to be placed in the pro-
gram counter. Control is then transferred to the instruction sequence at that location.

JEQ Jump If EQ 4.9 us

042 unused HX LX

This instruction replaces the program counter with the jump address, if EQ is set. Otherwise, the instruc-
tion ends.

NEQ Jump If Not EQ 4.9 us

043 unused HX LX

This instruction replaces the program counter with the jump address, if EQ is not set. Otherwise, the
instruction ends. '

JGR Jump If GR 4.9 us

044 unused HX LX

This instruction replaces the program counter with the jump address, if GR is set. Otherwise, the instruc-
tion ends.

NGR Jump If Not GR 4.9 us

045 unused HX LX

This instruction replaces the program counter with the jump address, if GR is not set. Otherwise, the
instruction ends.

3-2

JGE Jump If GR and EQ 4.9 us

046 unused HX LX

This instruction replaces the program counter with the jump address, if both GR and EQ are set. Other-
wise, the instruction ends.

NGE Jump If Not GR and EQ 4.9 us

047 unused HX LX

This instruction replaces the program counter with the jump address, if GR and EQ are not both set.
Otherwise, the instruction ends.

JPT Jump On Peripheral Test 4.9 ps

050 test HX LX

This instruction replaces the program counter with the jump address if the selected peripheral device
meets the condition specified in the second byte (see I/O Section). Otherwise, the instruction ends.

JSR Jump To Subroutine 7.5 us

051 unused HX LX

This instruction saves the program counter in memory at the location specified by the jump address,
and replaces the program counter with the jump address plus 2.

JMI Jump If Minus 4.9 ps

052 unused HX LX

This instruction replaces the program counter with the jump address, if MI is set. Otherwise, the instruc-
tion ends.

NMI Jump If Not Minus 4.9 us

053 unused HX LX

This instruction replaces the program counter with the jump address, if MI is not set. Otherwise, the
instruction ends.

JOV Jump If Overflow 4.9 us

054 unused HX LX

This instruction replaces the program counter with the jump address, if OVF is set. Otherwise, the in-
struction ends.

NOV Jump If Not Overflow 4.9 us

055 unused HX LX

This instruction replaces the program counter with the jump address, if OVF is not set. Otherwise, the
instruction ends.

EOG Jump If EQ or GR 4.9 us

056 unused HX LX

This instruction replaces the program counter with the jump address, if either GR or EQ is set. Other-
wise, the instruction ends.

ENG Jump If Not EQ and Not GR 4.9 us

057 unused HX LX

This instruction replaces the program counter with the jump address, if neither GR nor EQ is set.
Otherwise, the instruction ends.

LOGIC COMMANDS

Two basic logical operations may be performed: logical exclusive OR and logical AND. The result of
the operation may either be stored in the accumulator or in the designated memory location. The logical

operations terminate when a word mark is first sensed in either operand. The following example illustrates
each operation:

Logical Exclusive OR two 16-bit numbers (results in accumulator)

Instruction ORAY
WM

ACC 01101101 11101101 EQ GR MI OVF
WM

Y 00001110 01010111
WM

ACC Results 01100011 10111010 0 1 X X

3-4

Logical AND a 16-bit number and an 8-bit number (results in accumulator)

Instruction ANA Z
WM
ACC 01111011 10101011 EQ GR MI OVF
WM
Z 10001111
WM
ACC 01111011 10001011 0 1 X X

Before the execution of a logical instruction, EQ and GR are cleared. If the result of the operation is
equal to binary zero, EQ is set. If the result is not equal to binary zero, GR is set. This setting reflects only
the bytes operated upon, even if the result field is the longer of the two operands. This instruction class
does not alter the state of either MI or OVF.

Format
0]11(10] 0 M3)] M2]MI | MO 1LX
M3: 1 logical AND M2: 1 high program counter (HPC)
0 exclusive OR 0 page register (PR)
M1: 1 memory MO: 1 indirect address
0 accumulator 0 direct address
Logical AND

Beginning with the memory location specified and the highest address in memory (accumulator), a byte
at a time is logically ANDed between the contents of the effective address and the contents of the accumulator.
The results are stored in either the accumulator or the location specified by the effective address. The desti-
nation is controlled by modifier bit M1.

The logical AND operates as follows:

X 0 0 1 1
Y

Z 0 0 0 1

o
ot
o
ot

AND To Accumulator

AND the contents of the effective address to the contents of the accumulator. The contents of memory
are not changed.

3-5

ANA (110) Timing: 4.21 us + 2.25 us/byte
EFAD: (PR),LX

ANAP (114) Timing: 4.21 ps + 2.25 pus/byte
EFAD: (HPC),LX

ANAI(111) Timing: 5.19 us+ 2.25 us/byte
EFAD: (PR), [(HPC), LX]

ANAPI (115) Timing: 5.19 us + 2.25 ps/byte
EFAD: (HPC), [(HPC), LX]

AND To Memory

AND the contents of the accumulator to the contents of the effective address. The contents of the ac-
cumulator are not changed.

ANM (112) Timing: 4.21 ps+ 2.25 us/byte
EFAD: (PR),LX

ANMP (116) Timing: 4.21 ps + 2.25 us/byte
: EFAD: (HPC),LX

ANMI (113) Timing: 5.19 us + 2.25 us/byte
EFAD: (PR), [(HPC), LX]

ANMPI (117) Timing: 5.19 us + 2.25 ps/byte
EFAD: (HPC), [(HPC), LX]

Exclusive OR

Beginning with the memory location specified and the highest address in memory (accumulator), a byte
at a time is exclusive ORed between the contents of the effective address and the contents of the accumulator,
with the results stored in either the accumulator or the location specified by the effective address.

The exclusive OR operates as follows:

o
ot
o
("

X
Y
Z

Exclusive OR To Accumulator

Exclusive OR the contents of the effective address to the word in the accumulator. The contents of the
effective address are not changed.

3-6

ORA (100) Timing: 4.21 ps + 2.25 ps/byte
EFAD: (PR),LX

ORAP (104) Timing: 4.21 us + 2.25 ps/byte
EFAD: (HPC),LX

ORAI (101) Timing: 5.19 ps + 2.25 ps/byte
EFAD: (PR), [(HPC), LX]

ORAPI (105) Timing: 5.19 us+ 2.25 us/byte
EFAD: (HPC), [(HPC), LX]

Exclusive OR To Memory

Exclusive OR the contents of the accumulator to the contents of the effective address. The contents of
the accumulator are not changed.

ORM (102) Timing: 4.21 ps + 2.25 us/byte
EFAD: (PR), LX

ORMP (106) Timing: 4.21 us + 2.25 us/byte
EFAD: (HPC),LX

ORMI (103) Timing: 5.19 us + 2.25 us/byte
EFAD: (PR), [(HPC), LX]

ORMPI (107) Timing: 5.19 us + 2.25 us/byte
EFAD: (HPC), [(HPC), LX]

BINARY OPERATIONS

The instructions of the BIT 483 Computer provide for variable-length arithmetic, allowing both signed
and unsigned operations. Both operations use 2’s complement notation. The operands need not be of the
same length, since the operation ends when a word mark is found in either of the operands. During the proc-
ess of the operation, four indicators, EQ, GR, MI, and OVF, can be set. They are cleared at the beginning of
all binary arithmetic operations.

Signed Binary Arithmetic

The first bit position of a fixed point binary number holds the sign of the binary number; the remaining
bits designate the magnitude of the number. Positive numbers are represented in a true binary fashion with
the sign bit equal to zero. Negative numbers are represented in 2’s complement notation with the sign bit

equal to 1.

The 2’s complement of a binary number (N) with n binary digit positions is:

2’s complement of N = 20 — N
Thus, for an 8-bit binary number (N) the 2’s complement is:
28 — N = 100000000 — N
The 2’s complement of the binary number 00111001, for example, is 28 00111001, or

100000000
— 00111001
11000111

Note that the subtraction is not required, since the 2’s complement can be obtained by inspection of the

number. Each bit of the numbers is simply inverted (that is, a 1 is changed to ¢, and a 0 is changed toa 1)
and a 1 is then added to the low-order (least-significant) bit at right. Thus, the

binary number 00111001
is inverted 11000110
1 is added + 1
to obtain 11000111 = 2’s complement of 00111001,

which checks with the result obtained above. This conversion technique can be used on any number regard-
less of size. The following examples illustrate the above method with a 16-bit number and a 24-bit number.

Binary number 01101101 01110111
is inverted 10010010 10001000
1 is added + 1

10010010 10001001 = 2’s complement of 01101101 01110111.

Binary number 01010111 01111100 00000011
is inverted 10101000 10000011 11111100
1 is added + 1

10101000 10000011 11111101 = 2’s complement of
01010111 01111100 00000011.

The BIT 483 regards a number with a zero sign bit as a positive number. Whereas the word length of the 483
is variable, the maximum number is a function of the word’s length.

For example:
S
a 16-bit word 01111111 11111111 = TT17g

S
an 8-bit word 01111111 =177g

S
a24-bit word 11111111 11111111 11111111 = 3T177177g

3-8

Therefore, the largest number (N)is

N=2(8n"1)_3
where n is equal to the number of bytes in a word.

A number will be regarded as negative if the sign bit is a 1. The smallest negative number consists of an
all-zero integer field with a sign bit of 1. For example:
S
8-bit number 10000000 = 200g

S
16-bit number 10000000 00000000 = 100000g

Therefore, the smallest negative number (M) is

M=— 2(8!1—1)

where n is the number of bytes in the number. Whenever the results of a binary operation are negative (sign
bit = 1) the MI is set.

Summing up, the positive numbers range from 0 through 2(80—1) _ 1 and the negative numbers range
from —2(8n—1) through —1, where n is the number of bytes in the number.

Overflow

When the result of an add or subtract exceeds the capacity of the field containing the result, an overflow
condition results. Since an overflow carries into the left most- or sign-bit position, it changes the sign. Thus,
in a positive overflow, the final sum or difference comes out negative, while a negative overflow results in a
positive sum.

The presence or absence of an overflow condition may be recognized by the condition of the carries.
The result of an operation does not overflow if there is either no carry into the high-order bit position and
no carry out, or a carry of 1 into the high-order bit position and also a carry out. In contrast, an operation
overflows if there is either a carry into the high-order position and no carry out, or a carry out, but no carry
into the high-order bit position. The overflow conditions are tested for by the computer and if a result ex-
ceeds the capacity of its destination, the OVF flop will automatically be set.

Examples of 2’s complement notation using 8-bit numbers:

No Overflow:
EQ GR MI OVF +62 =00111110
+27=00011011
0 1 0 0 +89 01011001

3-9

No Overflow:

EQ GR MI OVF +62 = 00111110
—27=11100101 (2’s complement of 0011011 = 27)
1 1 0 0 +35 1<« carryin
00100011
1 « carry out
Overflow:
EQ GR MI OVF + 62=00111110
+ 89=01011001
0 1 1 1 +151 1 <« carryin
10010111
no carry out,

whereas 151 exceeds 127, which is the maximum number which can be contained in an 8-bit number, an
overflow results.

Overflow:
EQ GR MI OVF — 62 =11000010 (2’s complement of 00111110 = 62)
— 89=10100111 (2’s complement of 01011001 = 89)
1 1 0 1 —151 01101001 (2’s complement of 10010111 = 151)
1 < carry out

In this case there was no carry into the high order bit position, but there is a carry out indicating an overflow.
Unsigned Binary Arithmetic

Unsigned binary variable-length word arithmetic is also standard in the BIT 483. Such numbers are rep-
resented in a binary fashion, and the operations are conducted using 2’s complement arithmetic. The values
of the operands range from 0 to o8n _ 1, where n is the number of bytes in a word. All operands are con-
sidered as positive numbers.

As in the case of signed binary arithmetic, the arithmetic operations in unsigned arithmetic proceeds a
byte at a time in parallel progressing from the addressed data descending éequentially until a word mark is
sensed in either operand (ACC or memory word). The results will be positive or zero. If the result is a posi-
tive non-zero value, GR is set. If the result is zero, EQ is set.

If the word in memory contains more bytes than the accumulator, one of two results indicated below
occurs.

1. If a carry from the word-marked bytes in the accumulator is generated, GR and EQ are set to indi-

cate overflow and the instruction terminates. The following example illustrates the addition of a 16-bit num-
ber in memory to an 8-bit number in the accumulator with the results in the accumulator:

3-10

WM

ACC 10101100 EQ GR MI OVF
WM
X 11011100 11010011
WM
ACC Results 01111111 1 1 0 1

1 « carry out

2. If no carry from the word-marked byte in the ACC is generated, the instruction terminates with
either GR or EQ set in accordance with the above rules. In neither case does the instruction continue beyond
the first word mark encountered.

If the accumulator word contains more bytes than the word in memory, the same logical results are ob-
tained. If a carry is generated by the accumulator byte corresponding to the memory byte containing the
word mark, the instruction sets GR and EQ, indicating an overflow and terminates without examining or
altering any additional bytes.

MI and OVF are not usually used by the program in unsigned binary arithmetic. The programmer is not
restricted from using them, however, in the appropriate circumstances. The following flow chart, Figure 3-1,
illustrates the method of setting the indicators in both signed and unsigned arithmetic.

BINARY INSTRUCTIONS

As noted earlier, the following binary operations use 2’s complement arithmetic. The lengths of the bi-
nary operands are some multiple of 8-bit bytes. The operands need not be of the same length, since the opera-
tion ends when a word mark is found in either of the operands. The operands are considered either signed or
unsigned by program control. During the process of operation four indicators can be set. They are EQ, GR,
MI, and OVF. They are cleared at the beginning of all binary operations.

Format
0]l]1]10}1 |M3| M2} M1 | MO LX
M3: 1 subtract M2: 1 high program counter (HPC)
0 addition 0 page register (PR)
Mil: 1 memory MO: 1 indirect address
0 accumulator 0 direct address
Subtraction

Subtraction is performed in direct binary fashion, with the results stored in either the accumulator or
memory. All results are represented in 2’s complement notation. The following instructions are used in both
signed and unsigned arithmetic, determined by the method by which the program tests the indicators EQ,
GR, MI, and OVF.

3-11

S

CLEAR
EQ, GR, MI, OVF

BINARY
OPERATION
(EXECUTION)

YES

EQ=1

YES

NO 1

RESULTS
SIGNED

UNSIGNED
OVERFLOW

Figure 3-1. Control Flop Setting for Both Signed and Unsigned Arithmetic.

3-12

Subtract From Accumulator

The following instructions subtract the contents of the effective address from the word in the accumu-
lator. The contents of the effective address are not changed.

BSA (130) Timing: 4.21 us + 2.25 us/byte
EFAD: (PR),LX

BSAP (134) Timing: 4.21 ps+ 2.25 us/byte
EFAD: (HPC),LX

BSAI (131) Timing: 5.19 us + 2.25 us/byte
EFAD: (PR), [(HPC),LX]

BSAPI (135) Timing: 5.19 us + 2.25 us/byte
EFAD: (HPC), [(HPC), LX]

Subtract From Memory

The following instructions subtract the contents of the accumulator from the word in memory located
at the effective address. The contents of the accumulator are not changed.

BSM (132) Timing: 4.21 us + 2.25 us/byte
EFAD: (PR),LX

BSMP (136) Timing: 4.21 ps + 2.25 us/byte
EFAD: (HPC), LX

BSMI (133) Timing: 5.19 us + 2.25 us/byte
EFAD: (PR), [(HPC), LX]

BSMPI (137) Timing: 5.19 us + 2.25 us/byte
EFAD: (HPC), [(HPC), LX]

Addition

Addition is also performed in direct binary fashion. All the result rules are identical to those for sub-
traction.

Add To Accumulator

The following instructions add the contents of the effective address to the word in the accumulator.
The contents of the effective address are not changed.

3-13

BAA (120) Timing: 4.21 ps + 2.25 us/byte
EFAD: (PR),LX

BAAP (124) Timing: 4.21 ps+ 2.25 pus/byte
EFAD: (HPC), LX

BAAI (121) Timing: 5.19 us + 2.25 us/byte
EFAD: (PR), [(HPC), LX]

BAAPI (125) Timing: 5.19 us + 2.25 us/byte
EFAD: (HPC), [(HPC), LX]

Add To Memory

The following instructions add the contents of the accumulator to the word in memory located at the
effective address. The contents of the accumulator are not changed.

BAM (122) Timing: 4.21 us + 2.25 ps/byte
EFAD: (PR),LX

BAMP (126) Timing: 4.21 us + 2.25 us/byte
EFAD: (HPC),LX

BAMI (123) Timing: 5.19 us + 2.25 us/byte
EFAD: (PR), [(HPC), LX]

BAMPI (127) Timing: 5.19 us + 2.25 us/byte
EFAD: (HPC), [(HPC), LX]

PAGE REGISTER INSTRUCTIONS

The page register instruction controls and tests the page register. As discussed previously, the page reg-
ister can be used as the higher order bits of the effective address when addressing data on a page other than
the program counter page. Any single setting of the page register permits the programmer to work with one
page of 256 data bytes directly. Each different setting of the page register designates another 256 byte page
in memory. A setting of all 1’s in the page register addresses the highest page in memory, the accumulator.

These instructions also allow for the testing of the sense switches on the control panel. The switches
may be manually set while the program is operating.

3-14

Format

0|1 |1 |0 [(M3| M2]| M1 | MO LX
M3: 1* store sense switch M2: 1 high program counter
0 page register operation 0 page register
M1: 1 memory MO: 1 indirect address
0 page register 0 direct address

*memory only
Change Page Register
This instruction causes the single byte (word marked or not) stored at the specified location to be in-

serted into the page register. This 8-bit value becomes the high-order half of the effective address in succeed-
ing instructions where address control specifies the use of the page register.

CHP (140) Timing: 2.94 ps
EFAD: (PR), LX

CHPP (144) Timing: 2.94 ps
EFAD: (HPC), LX

CHPI (141) Timing: 3.92 ps
EFAD: (PR), {(HPC), LX]

CHPPI (145) Timing: 3.92 ps
EFAD: (HPC), {(HPC), LX]

Store Page Register

This instruction stores the contents of the page register at the effective address. One byte only is stored,
having no effect on the word mark. As discussed in Section Two, the size of the page register is a function of
memory size. The unused high-order bits of the result are set to 1’s after the operation of this instruction.

SPR (142) Timing: 3.23 ps
EFAD: (PR),LX

SPRP (146) Timing: 3.23 us
EFAD: (HPC), LX

SPRI (143) Timing: 4.21 us
EFAD: (PR), [(HPC), LX]

SPRPI (147) Timing: 4.21 us
EFAD: (HPC), [(HPC), LX]

3-15

Store Sense Switches

This instruction stores the sense-switch setting at the effective address. One byte only, including the
word mark, is stored. This configuration may then be tested using normal test methods to determine what
response is required by the program’s logic.

SSS (152) Timing: 3.23 us
EFAD: (PR),LX

SSSP (156) Timing: 3.23 us
EFAD: (HPC), LX

SSSI (153) Timing: 4.21 ps
EFAD: (PR), [(HPC), LX]

SSSPI (157) Timing: 4.21 ps
EFAD: (HPC), [(HPC), LX]

DATA COPY INSTRUCTIONS

Data words are considered as some multiple of 8-bit bytes. They are usually addressed at the low-order
byte, and transferred to sequential-descending memory locations until a byte with a word mark is transferred.
All data and word marks in the destination field are lost. The word mark at the high-order byte of the data
word is transferred with the byte. This effectively copies the entire data word from the address specified into
the destination field with the word mark at the high-order byte. The copy instructions are not limited by page
boundaries.

Format
0|1 |11 |M3|M2 M| MO LX
M3: 1 copy 2 words M2: 1 high program counter (HPC)
0 copy 1 word 0 page register (PR)
M1l: 1 memory MO: 1 indirect address
0 accumulator 0 direct address
Copy One Word

This instruction copies one word which may be a single byte or group of bytes from the specified ad-
dress to the accumulator or from the accumulator to the memory address specified. The source and destina-
tion are controlled by modifier bit M1.

Copy One Word To Accumulator

This instruction transfers a word, whose highest memory location is addressed, a byte at a time to the

3-16

accumulator. The bytes placed in the accumulator replace its previous contents, erasing any word marks
which might have been in the accumulator locations before. Thus, the length of the accumu}ator becomes
the length of the word just placed into it.

ClA (160) Timing: 3.92 us + 1.96 us/byte
EFAD: (PR),LX

C1AP (164) Timing: 3.92 us +1.96 us/byte
EFAD: (HPC), LX

Cl1AI(161) Timing: 4.9 us+ 1.96 us/byte
EFAD: (PR), [(HPC), LX]

C1API (165) Timing: 4.9 us + 1.96 us/byte
EFAD: (HPC), [(HPC), LX]

Copy One Word To Memory

This instruction copies one word with its word mark from the accumulator into sequentjal-descending
memory locations beginning at the effective address.

C1M (162) Timing: 3.92 ps + 1.96 us/byte
EFAD: (PR),LX

C1MP (166) Timing: 3.92 us + 1.96 us/byte
EFAD: (HPC), LX

C1MI (163) Timing: 4.9 us + 1.96 us/byte
EFAD: (PR), [(HPC), LX]

C1MPI (167) Timing: 4.9 us + 1.96 us/byte
EFAD: (HPC), [(HPC), LX]

Copy Two Words

Beginning at the specified address, two consecutive words are copied to the accumulator or from the ac-
cumulator to the memory address specified. The source and destination are controlled by modifier bit M1.

Copy Two Words To Accumulator
This instruction copies two words adjacent in memory with both word marks into the accumulator. The
transfer begins exactly as a C1A instruction. The instruction does not terminate when the firgt word mark is

encountered in the operand, however, but continues sequentially through descending memory address loca-
tions until it encounters a second word mark. After encountering the second word mark, execution terminates.

3-117

C2A (170)

C2AP (174)

C2AI (171)

C2API (175)

Copy Two Words To Memory

This instruction copies two words with both word marks from the accumulator to sequential-descending
memory locations starting at the address specified.

C2M (172)

C2MP (176)

C2MI (173)

C2MPI (177)

WORD-MARK INSTRUCTIONS

The word-mark bit is the ninth bit of each byte throughout memory. It is not used as an additional bit
of magnitude of the byte, but for defining the length of a word. It may be set or reset at any byte. It may

Timing:
EFAD:

Timing:
EFAD:
Timing:
EFAD:

Timing:
EFAD:

" Timing:

EFAD:

Timing:
EFAD:
Timing:
EFAD:

Timing:
EFAD:

also be tested as to status by a 4-byte jump instruction.

Format

Word Mark Control

5.88 us + 1.96 ps/byte
(PR), LX

5.88 us + 1.96 us/byte
(HPC), LX

6.86 us + 1.96 us/byte
(PR), [(HPC), LX]

6.86 us + 1.96 us/byte
(HPC), [(HPC), LX]

5.88 us + 1.96 ps/byte
(PR), LX

5.88 ps + 1.96 us/byte
(HPC), LX

6.86 us + 1.96 ps/byte
(PR), [(HPC), LX]

6.86 us + 1.96 us/byte
(HPC), [(HPC), LX]

M3

M2

Mi

MO

LX

M3: 1 test word mark*
0 word mark control

M1: 1 erase word mark

0 set word mark

*specifies a 4-byte jump on word mark operation

M2:

MO:

3-18

1 high program counter
0 page register

1 indirect address
0 direct address

Four-Byte Jump on Word Mark

110010 M3 | M2 | ML | MO LX
HIGH ’ LOwW
Jump Address
M3: 1 test word mark M2: 1 high program counter
0 word mark control* 0 page register
M1l: unused MO: 1 indirect address
0 direct address

*specifies a word mark control operation
Erase Word Mark

This instruction erases the word-mark bit at the effective address. The previous state of this bit makes
no difference. This instruction operates on a single byte in memory.

EWM (200) Timing: 3.23 us
EFAD: (PR), LX

EWMP (204) Timing: 3.23 us
EFAD: (HPC), LX

EWMI (201) Timing: 4.21 ps
EFAD: (PR), [(HPC), LX]

EWMPI (205) Timing: 4.21 ps
EFAD: (HPC), [(HPC), LX]

Set Word Mark

This instruction sets the word mark bit at the effective address. The previous status of the bit makes no
difference. This instruction operates on a single byte in memory.

3-19

SWM (202) Timing: 3.23 ps
EFAD: (PR), LX

SWMP (206) Timing: 3.23 us
EFAD: (HPC), LX

SWMI (203) Timing: 4.21 s
EFAD: (PR), [(HPC), LX]

SWMPI (207) Timing: 4.21 ps
EFAD: (HPC), [(HPC), LX]

Jump on Word Mark

The jump on word mark instruction is a 4-byte test and jump instruction. The second byte of the in-
struction is combined with either the page register or HPC to specify the byte in memory which is to be
tested. This address calculation follows the normal rules of calculating the effective address of an operand.
The word mark bit at the effective address is tested. If it is set, the two low-order bytes of the instruction
(jump address) are placed into the program counter, and control is then transferred to the instruction se-
quence at that location. If the word mark is not set at the effective address, the program counter is incre-
mented by two, thus bypassing the jump address and operating the next sequential instruction.

JWM (210) Timing: 4.9 us
EFAD: (PR),LX

JWMP (214) Timing: 4.9 us
EFAD: (HPC), LX

JWMI (211) Timing: 5.88 us
' EFAD: (PR), [(HPC), LX]

JWMPI (215) Timing: b5.88 ps
EFAD: (HPC), [(HPC), LX]

TWO-BYTE JUMP INSTRUCTIONS

Two-byte jump instructions permit a jump to any location in either the program counter page or the
page represented in the page register. There are three variations of the 2-byte jump, but all have the one com-
mon result of being unconditional when the jump is executed. Unlike the 4-byte jump instructions, only one
program statement is written for the 2-byte jump.

3-20

Format

M3 | M2 | M1

MO

LX

M3: 1 jump and halt
0 jump

M1: 1 setinterrupt
0 unconditional jump

Jump and Halt

M2:

MO:

1 high program counter
0 page register

1 indirect address
0 direct address

This instruction replaces the program counter with the effective address. The computer then halts, re-
taining the status of all indicators and hardware registers. It is possible to restart the program at the memory
location represented by the program counter, which now contains the EFAD of the jump and halt instruction,

by pressing the RUN switch on the console.

HLT (230)

HLTP (234)

HLTI (231)

HLTPI (235)

Two-Byte Jump

Timing:
EFAD:

Timing:
EFAD:

Timing:
EFAD:

Timing:
EFAD:

2.94 us
(PR), LX

2.94 us
(HPC), LX

3.92 us
(PR), [(HPC), LX]

3.92 us
(HPC), [(HPC), LX]

This is a 2-byte instruction which causes an unconditional jump to a memory location within the pro-
gram counter page or the memory page referenced by the page register.

PGJ (220)

PGJP (224)

PGJI (221)

PGJPI (225)

Timing:
EFAD:

Timing:
EFAD:

Timing:
EFAD:

Timing:
EFAD:

3-21

2.94 ps
(PR), LX

2.94 pus
(HPC), LX

3.92 us
(PR), [(HPC), LX]

3.92 us
(HPC), [(HPC), LX]

Set Interrupt and Jump

This instruction causes a program interrupt that places the central processor in the interrupt mode. The
sequence of events is as follows:

1. Place the effective address in the program counter.

2. Set interrupt condition for level 2.

3. Store the program counter, i.e., the EFAD of the set interrupt and jump instruction, in address
storage for level 2.

4. Store control flops in control flop storage of level 2.

5. Jump in interrupt mode to address 002 in highest page in memory.

SIF (222) Timing: 2.94 us
EFAD: (PR),LX

SIFP (226) Timing: 2.94 us
EFAD: (HPC), LX

SIFI (221) Timing: 3.92 ps
EFAD: (PR), [(HPC), LX]

SIFPI (227) Timing: 3.92 us
EFAD: (HPC), [(HPC), LX]

DECIMAL OPERATIONS

A decimal operand is a variable length, signed number starting at the byte in the specified location (least
significant digit) and stored in sequentially descending memory locations to the first byte with a word mark
(most significant digit). Each byte contains one binary coded decimal digit in its low-order four bits. The
sign of the operand is indicated in the high-order bit of the least-significant byte. The following illustrates a
3-byte positive base 10 number and a 3-byte negative base 10 number.

+ 901 = 071 060 061g = 00111001 00110000 001100019

— 852 =070 065 262g = 00111000-00110101 101100104

A 0 in the sign-bit position of the least significant byte indicates a positive number; a 1 in this sign-bit posi-
tion indicates a negative number. Except for the sign bit in the least significant byte of the number, the
high order bits are ignored in the operand field. The sign bit is changed, if the result sign is different than

the sign originally in the accumulator. The high order bit of the remaining bytes is always set to 0. The
following illustrates the format of any decimal number:

WM . sign bit
T Decimal T Decimal T Decimal -
E Ignored Number -~ -0 | lgnored Number - - - |8 | Ignored Number
Most significant byte Operand field Least significant byte

3-22

Decimal Operand

In cases where different length operands are used, the accumulator operand must be at least as long as
the operand at the effective address. If the accumulator operand is larger than the operand at the effective
address, zeros are assumed until a word mark is detected in the accumulator. The following addition illus-
trates this rule:

WM
ACC 432 =064 063 062g = 00110100 00110011 00110010
WM
X + 10 = 068 2608=00000000*00111000 00110000
WM
ACC +442 065 061 062g 00110101 00110001 00110010

*zero assumed

When performing this addition, a word mark is first encountered in X. From this point, until a word mark is
encountered in the accumulator, zero bytes are used with subsequent accumulator bytes.

If an alphanumeric character is sensed in either operand whose low-order four bits are greater than
9, that is greater than 1001 9, the bytes involved are ignored and any carry from the preceding byte pair is
passed on to the next byte pair. Such a character causes no change whatever to the character in the result lo-
cation byte.

Thus, pre-edited numbers may be operated upon with extracting the non-numeric bytes, compacting
them, and later inserting the results back into the edited data field. This feature allows the programmer to
add directly such numbers as 1,730.90 and 2,943.47 to get 4,674.37, without manipulating either commas
or decimal points, as long as they are aligned. It is necessary to align the non-numeric fields. The following
examples illustrate this editing feature:

Correct Incorrect
ACC 01.43 21.37
X +21.37 _143
22.80 23.30
DECIMAL INSTRUCTIONS

The destination of the results of any decimal operation is the accumulator. EQ and GR are set as a func-
tion of every decimal operation. If the resultis zero, EQ is set. If the result is greater than zero, GR is set.
If the result is less than zero, neither is set. If overflow occurs, both GR and EQ are set. MI and OVF are
not affected by any decimal operation.

3-23

Format

1 0|1 0 M3 | M2 | M1 | MO LX
M3: 1 decimal subtract M2: 1 high program counter
0 decimal addition 0 page register
M1: 1 illegal MO: 1 indirect address
0 accumulator 0 direct address

Decimal Subtract

This instruction subtracts the word in memory located at the effective address from the word in the ac-
cumulator, treating each byte as a decimal integer.

DSA (250) Timing: 4.21 ps + 2.25 ps/byte
EFAD: (PR), LX

DSAP (254) Timing: 4.21 ps + 2.25 ps/byte
EFAD: (HPC), LX

DSAI (251) Timing: 5.19 us + 2.25 us/byte
EFAD: (PR), [(HPC), LX]

DSAPI (255) Timing: 5.19 ps + 2.25 us/byte
EFAD: (HPC), [(HPC), LX]

Decimal Add

This instruction adds the word in memory located at the effective address to the word in the accumu-
lator, treating each byte as a decimal integer.

DAA (240) Timing: 4.21 ps + 2.25 us/byte
EFAD: (PR), LX

DAAP (244) Timing: 4.21 ps + 2.25 us/byte
EFAD: (HPC), LX

DAAP (241) Timing: 5.19 ps + 2.25 us/byte
EFAD: (PR), {(HPC), LX]

DAAPI (245) Timing: 5.19 us+2.25 us/byte
EFAD: (HPC), [(HPC), LX]

3-24

section four

input/output

The 1/O system of the BIT 483 consists of a number of data channels each capable of operating in a
Read-Write mode. The processor may have one, two or three such Read-Write channels. These channels are
called channel C, channel G and channel A. Channel C and channel G are standard equipment with all BIT
483 computer systems.

All 1/O channels have direct memory access capability. Through the control of one instruction, data
may be transferred to or from any memory location. Furthermore, channel A or channel G may be used in
either an overlapped or non-overlapped mode. This permits data transfers while the processor is simultane-
ously computing.

I/O INSTRUCTIONS
There are three instructions which are used by the computer to control the I/O system. They are:
Peripheral Control Instruction
Peripheral Transfer Instruction
Peripheral Test and Jump Instruction
Peripheral Control Instruction
The Peripheral Control Instruction (PCI) is used to select and command a peripheral device to perform.

The function which it performs is controlled by the second byte of this 2-byte instruction. The following
diagram illustrates the general format:

0 0 1 1 1/0 Device

Chatlmels

Control
1

[}] 1 1 1

As in all other 2-byte instructions, the first byte of this instruction indicates the operation to be performed
by the central processor. This operation is indicated by the high-order four bit operation code. The opera-
tion is further defined by the field designated I/O and the field designated device.

The I/O bit signifies to the I/O device whether the data transfer is to be In or Out of the computer. The
significance of the I/O bit is as follows:

I/O =1 Transfer to device
I/O = 0 Transfer from device

The device field contains the address unique to the desired peripheral device located on the channel
specified. Only the device addressed will respond to the command.

4-1

The second byte of this instruction contains two significant fields. The high order two bits are used to
define one of three possible 1/O channels. Two of these channels, A and G, permit simultaneous I/O and
compute allowing the execution of data transfers by stealing memory cycles of the core memory only when
necessary. The remaining channel, channel C, is dedicated to the standard teletype supplied with the 483.
The channel address bits are assigned to data channels as follows:

Channel Address Channels
00 , A
10 C
11 G

The control bits define the operation to be performed on the I/O device which is being addressed. There are
four general classes of operation which may be specified by the control bits. Each class is specified by the
high order two bits of the control field. In general, the functions are:

Class Value Function
I 00 Initiate backspace, rewind, etc.
I 01 Select an I/O device for data transfer
I 10 Select an I/O device for test
Iv 11 Control device interrupt capability

The remaining four bits in the field further define operation. The 1/O Manual (document No. 48307)
explains in detail the use of the control field. As an addendum to this explanation the individual peripheral
specifications must be used as the source of the exact bit configuration for each operation the peripheral is
capable of performing.

PCID (06D) Timing: 3.0 us
EFAD: N/A

The device whose address is D is selected to do the operation indicated by the control field. The trans-
fer is considered to be an input from the device to the computer.

PCOD (07D) Timing: 3.0 us
EFAD: N/A

This instruction causes the same result as the PCI except the operation is considered to be an output
operation rather than an input operation.

The standard I/O element of the 483 system is an ASR-33 teletype with a paper tape reader and paper
tape punch. Channel Cis dedicated to this unit. The channel is fully buffered and each device may operate
in either the interrupt or non-interrupt mode. The mode of operation is controlled by a select group of PCI
instructions. Once a device is selected to operate in either of the two modes it remains in that mode until it
is reselected to operate in the alternative mode. If it is desired for a device to operate in the non-interrupt
mode and it has not been previously selected to run in the interrupt mode, the PCI instruction is not neces-
sary. The following Peripheral Control Instructions perform the indicated functions:

4-2

Printer

0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0

Select Interrupt Mode (PCI3 00260)

0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1

Select Non-Interrupt Mode (PCI3 00261)

If the interrupt mode has been selected for the printer, the interrupt will not occur until a peripheral
transfer instruction has been executed. Upon this execution the central processor will be placed in the in-
terrupt mode and the following will occur:

1. Set the interrupt condition for level 3.

2. Store the program counter in the address storage locations of level 3.

3. Store the control flops in the control flop storage location of level 3.

4. Set program counter equal to address 376 362 and transfer execution to this location.
Reader

0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0

Select Interrupt Mode (PCI2 00260)
0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1

Select Non-Interrupt Mode (PCI2 00261)

If the interrupt mode has been selected for the reader, the results are the same as for those previously
discussed for the printer.

Keyboard
0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0
Select Interrupt Mode (PCIO 00260)
0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1

Select Non-Interrupt Mode (PCI0 00261)

If the interrupt mode has been selected for the keyboard, the computer may simultaneously compute
while waiting for a keyboard input. Upon depressing a key on the keyboard an interrupt will occur placing

the central processor in the interrupt mode. Level 3 interrupt condition will be entered as previously dis-
cussed as in the case of the printer. To input the data to memory from the data buffer of the channel, a peri-
pheral transfer instruction must be executed following the interrupt.

Peripheral Transfer Instruction

This instruction causes data (single byte or string of bytes) to be accepted from or addressed to the data
channel specified. The object I/O device must have been previously selected for the transfer by the PCI in-
struction.

Data is moved to or from memory at sequential ascending locations beginning with the byte in the loca-
tion specified by the address field entry. This address will refer to a location within the memory page speci-
fied by the page register. For any data channel the transfer will continue across memory page boundaries
(without affecting the page register) so that records of any length up to memory capacity may be read in or
out with a single command. The length of the data transfer is controlled by the PCI instruction to select the
data transfer to or from the object device. The transfer mode (overlapped or non-overlapped) is defined by
the transfer instruction itself.

Format
0O(0{0}1}| M3} M2 | ML | MO LX
Channel C
M3 M2 M1 MO Function
1 0 0 0 Keyboard input
1 0 0 1 Print
1 0 1 0 Read paper tape
Channel A
M3 M2 M1 MO Function

0 0 0 0 Non-overlapped transfer

0 0 0 1 Overlapped transfer

Channel G

M3 M2 Ml MO Function
1 1 0 0 Non-overlapped transfer
1 1 0 1 Overlapped transfer

Modifier bits M3 and M2 identify the channel on which the transfer is to take place. Modifier bits M1
and MO define the transfer mode for channels A and G; for channel C they identify the I/O function to be
performed on the teletype.

Timing: 3.0 us + 1.0 us/byte (output)
PTA (020) 3.0 us + 1.3 us/byte (input)
EFAD: (PR),LX

Initiates a non-overlapped data transfer on channel A beginning with the byte at the effective address.
Computer is stalled until the transfer is completed.

Timing: 3.0 us + 1.0 us/byte (output)
OTA (021) 3.0 us + 1.3 us/byte (input)
EFAD: (PR),LX

Initiates an overlapped data transfer on channel A beginning with the byte at the effective address. This
mode allows simultaneous computation while the transfer is taking place since the I/O logic steals memory
cycles only when necessary.

Timing: 3.0 us + 1.0 us/byte (output)
PTG (034) 3.0 us + 1.3 us/byte (input)
EFAD: (PR),LX

Initiates a non-overlapped data transfer on channel G beginning with the byte at the effective address.
Computer remains dedicated to the I/O function until the transfer is completed.

Timing: 3.0 us + 1.0 us/byte (output)
OTG (035) 3.0 us + 1.3 us/byte (input)
EFAD: (PR), LX

This instruction works exactly as OTA except the transfer is directed to the G channel.

KEY (030) Timing: 100 msec
EFAD: (PR), LX

In the non-interrupt mode this instruction turns on the ‘““type light”” on the ASR-33. The computer is
“idled”” until a keyboard key is depressed. The bit pattern associated with the key is then transferred into
the computer and the “type light” goes off. Characters associated with any key are considered legal and
are transferred into the memory locations specified by the instruction.

4-5

In the interrupt mode depressing a key on the keyboard causes the buffer register to be loaded with the
8-bit character code. As soon as the register is loaded, an interrupt is created for level 3 of the priority inter-
rupt system. The subsequent processing of this instruction to the keyboard causes the contents of the buffer
register to be loaded into the location specified by the effective address. The type light is also on in this mode
after the operation of the PCI instruction and until the interrupt occurs.

PRT (031) Timing: 100 msec
EFAD: (PR),LX

This«nstruction causes the teletype buffer register to be loaded with the contents of the effective ad-
dress. The character is then printed and the instruction ends. If the punch is on, the bit pattern is duplicated
on the paper tape. The punch control must be manually activated.

The printer may be operated in either the interrupt or non-interrupt mode. If the printer is in the inter-
rupt mode, an interrupt will occur for level 3 after the buffer register is emptied. If the printer is not in the
interrupt mode, control proceeds to the next sequential instruction.

RPT (032) Timing: 100 msec
EFAD: (PR),LX

This instruction causes the 8-bit character over the read fingers to be transferred into the teletype buffer
register. The character is then loaded into the location specified by the effective address. The paper tape is
also advanced one character position.

If the reader is in the interrupt mode of operation, an interrupt will occur for level 3 after the instruc-
tion ends. If the reader is not in the interrupt mode, control proceeds to the next sequential instruction.

Peripheral Test and Jump

This is a 4-byte jump instruction in which the low-order 6 bits of the second byte define the condition
being tested and in which a reply from the addressed device causes the jump to occur. “No reply” causes the
program counter to be incremented by two, thereby bypassing the jump address and operating the next se-
quential instruction. The peripheral device being tested must have been previously selected for test by a PCI
instruction.

The bit configuration defining individual tests for a given peripheral device are explained and identified
in the individual peripheral equipment specifications provided by BIT.

Format:

] i T
0 0 1 0 1 0 0 0 PA5 | PA4 Test Condition

HX LX

This jump instruction is a variant of the 4-byte jump instruction explained in Section Three.

JPT (050) Timing: 5.0 us
EFAD: N/A

4-6

section five

interrupt

GENERAL

The BIT 483 is equipped with an extensive, multi-level priority interrupt system. This allows the nor-
mal execution of a program to be interrupted in order to process a program of higher priority or to service a
peripheral device. The interrupt may occur on one of eight standard levels. The system may be expanded in
groups of eight up to 32 levels. Figure 5-1 illustrates the configuration of the Interrupt System.

The central processor enters the Interrupt Mode when an interrupt is encountered. This mode is main-
tained until a Jump Return Interrupt (JRI) instruction is executed from the appropriate location. When en-
tering the Interrupt Mode the hardware automatically saves the necessary internal elements in the reserved
location of the subject level. The program counter is then altered to transfer control to the interrupt sub-
routine which will service the interrupt call.

An interrupt at a given priority level will interrupt all outstanding priority interrupts of lower value. If,
for example, another interrupt occurs while a prior interrupt is being serviced, the subroutine will be inter-
rupted if it is lower on the priority chain. Conversely, if the additional interrupt is of a lower priority level,
the interrupt will not be serviced until all higher levels have been serviced.

Enabling an Interrupt

Interrupt levels 1, 2 and 4 are not dedicated to peripheral devices. They are automatically enabled to
interrupt by hardware action and require no special program activity. The remaining levels, however, are
usually dedicated to peripheral devices. In most instances it is possible to operate these peripherals in either
the interrupt or non-interrupt mode. The mode of operation is controlled by a Peripheral Control Instruction
(PCI) discussed in Section Four. The PCI both enables and disables the interrupt capability of a device. Once
in either mode a subsequent PCI must be issued to change that mode. A Master Clear places all peripheral de-
vices in the non-interrupt mode.

Priority Chain

An interrupt request from the priority chain is honored following the completion of the instruction
under execution. If an overlapped data transfer is in progress the transfer will continue although an interrupt
is encountered. Again, an interrupt at a given priority level cannot interrupt any higher priority interrupts.
However, it will interrupt any lower priority interrupt. The standard levels of priority are given below. If
an interrupt is requested when an interrupt exists, it will'enter the waiting state until no higher priority inter-
rupt is waiting or is being serviced. If more than one interrupt enters the waiting state, each will be honored
by the central processor according to assigned priority.

5-1

Level 32

Level 31

Level 4

Level 3

Level 1

Level 2

376 006
376 010
376 012
376 014
376 016
376 020
376 022
376 024

376 336
376 340
376 342
376 344
376 346
376 350
376 352
376 354
376 356
376 360
376 362
376 364
376 366
376 370
376 372
376 374
376 376
377 000
377 002
377 004

3717 376

Q

0 4 1
JRI EQ GR MI OV
HPC LPC
JMP
HX LX
JRI EQ GR MI OV
HPL LPC
JMP
HX LX
JRI EQ GR MI OV
HPC LPC
JMP
HX LX
JRI EQ GR MI OV
HPC LPC
JMP
HX LX
JRI EQ GR MI OV
HPC LPC
JMP
HX LX
JRI EQ GR MI OV
HPC LPC
JMP
HX LX
JRI EQ GR MI OV
HPC LPC
JMP
HX LX

$
ACCUM}JLATOR

Figure 5-1. Interrupt Structure.

5-2

Peripheral

Peripheral

Peripheral

Peripheral

Interrupt Switch

Teletype

Power Failure

Program

377 311

Interrupt Priorities

Priority Description Address
1 Power Failure 376 366
2 Two-Byte Jump 376 376
3 Teletype 376 356
4 Interrupt Switch 376 346
5 Peripheral 376 336
6 Peripheral 376 326
1 Peripheral 376 316
8 Peripheral 376 306

Preservation of Machine State

Within the computer there are a number of indicators and registers which constitute the normal mode
configuration of the machine. During the initiation of an interrupt subroutine, part or all of this configura-
tion must be preserved for a subsequent return. Generally, the following elements should be preserved:

A. EQ, GR, MI, and OVF Indicators

B. Program Counter

C. Page Register

D. Accumulator

A. Indicators

The EQ, GR, MI, and OVF indicators are stored by hardware action in the second byte of the interrupt
level requesting an interrupt. They are stored in the four least significant bits as shown below:

I | I
| I 1 EQ | GR| MI |OVF

A value of one in any of these bit positions indicates the associated indicator is set, and a zero value indicates
that it is reset. Upon executing a JRI instruction, the flops will be reset to the values indicated by these bit
positions. If this byte is altered during the interrupt subroutine, it will be reflected when the JRI is executed,
thereby not restoring the original indicator configuration.

B. Program Counter

The Program Counter, during the Normal Mode, contains the address of the next instruction to be oper-
ated. This register is automatically saved by hardware action in the third and fourth bytes of the interrupt
level requesting the interrupt (figure 5-1 illustrates the storage locations for each level). The third byte of the
interrupt will contain the High Program Counter (HPC), and the fourth byte will contain the Low Program
Counter (LPC). The original state of the word marks at these locations are maintained.

5-3

C. Page Register

Because the page register may be used extensively for addressing during the Normal Mode, it should be
saved by the interrupt subroutine. It may be preserved by issuing a Store Page Register instruction (see Sec-
tion 3). Upon exiting from the interrupt subroutine it may be restored by issuing a Change Page Register in-
struction.

D. Accumulator

The accumulator is also an essential element of the Normal Mode configuration. It, like the Page Register,
is preserved through program action at the beginning of the interrupt subroutine and is restored at the end of
the subroutine. The subroutine must guarantee the preservation of all meaningful information in the accu-
mulator by storing and restoring all the bytes of the accumulator which may be destroyed by the interrupt
subroutine.

Initiation of the Interrupt

During both the Normal Mode and the Interrupt Mode, the computer tests for the existence of an
interrupt request, just before each instruction fetch. Upon detection of a request, the computer copies the
program counter into the third and fourth bytes of the requesting level. The interrupt subroutine must be
arranged such that the stored program counter constitutes the address portion of a ‘““Jump Return from In-
terrupt” instruction (see figure 5-1). This instruction, when executed, restores both the requesting level and
the computer to the operating mode preceding the interrupt and returns control to the interrupted program.

The states of EQ, GR, MI, and OVF are also saved by hardware action. They are stored in the second
byte of the requesting level. Upon executing the Jump Return from Interrupt instruction for this level, they
are reinstated from the stored location. If this byte is altered during the interrupt subroutine, EQ, GR, MI
and OVF may not be restored to their original configuration.

After the computer terminates its housekeeping activities, the program counter is set to execute the in-
struction at the fetch byte of the requesting level. This instruction should be an unconditional jump to the
interrupt subroutine, thereby permitting the interrupt to be serviced. The last instruction of the interrupt

subroutine should generally be a jump to the location containing the JRI. A typical interrupt level configu-
ration is illustrated below:

CONTROL FLOPS

JRI EQ jGR |MI |OVF | —

Program Counter HPC LPC]

First Instruction]
of Subroutine JMP

HX LX]

Interrupt Level —

appendix A

Numerie List of Instructions

Code Mnemonic Code Mnemonic
020 PTA 126 BAMP
021 OTA 127 BAMPI
030 KEY 130 BSA
031 PRT 131 BSAI
032 RPT 132 BSM
034 PTG 133 BSMI
035 OTG 134 BSAP
040 JRI 135 BSAPI
041 JMP 136 BSMP
042 JEQ 137 BSMPI
043 NEQ 140 CHP
044 JGR 141 CHPI
045 NGR 142 SPR
046 JGE 143 SPRI
047 NGE 144 CHPP
050 JPT 145 CHPP1
051 JSR 146 SPRP
052 JMI 147 SPRPI
053 NMI 152 SSS
054 JOV 153 SSS1
055 NOv 154 SSS
056 EOG 155 SSSPI
057 ENG 160 ClA
060 PCI 161 ClAIl
070 PCO 162 CiM
100 ORA 163 CIM1I
101 ORAI 164 CIAP
102 ORM 165 CIAPI
103 ORMI 166 CiMP
104 ORAP 167 CIMPI
105 ORAPI 170 C2A
106 ORMP 171 C2AI1
107 ORMPI 172 C2M
110 ANA 173 C2M1
111 ANAI 174 C2AP
112 ANM 175 C2API
113 ANMI 176 C2MP
114 ANAP 177 C2MPI
115 ANAPI 200 EWM
116 ANMP 201 DWMI
117 ANMPI 202 SWM
120 BAA 203 SWMI
121 BAAI 204 EWMP
122 BAM 205 EWMPI

Code Mnemonic Code Mnemonic

123 BAMI 206 SWMP
124 BAAP 207 SWMPI
125 BAAPI 210 JWM
211 JWMI 231 HLTI
214 JWMP 234 HLTP
215 JWMPI 235 HLTPI
220 PGJ 240 DAA
221 PGJ1 241 DAAI
222 SIF 244 DAAP
223 SIF1 245 DAAPI
224 PGJP 250 DSA
225 PGJPI 251 DSAI
226 SIFP 254 DSAP
227 SIFPI 255 DSAPI
230 HLT

A-2

Mnemonic

ANA
ANAI
ANAP
ANAPI
ANM
ANMI
ANMP
ANMPI
BAA
BAAI
BAAP
BAAPI
BAM
BAMI
BAMP
BAMPI
BSA
BSAI
BSAP
BSAPI
BSM
BSM1I
BSMP
BSMPI
CHP
CHPI
CHPP
CHPPI
CiA
ClAI
Cl1AP
C1API
CiM
C1MI
C1MP
C1MPI
C2A
C2Al
C2AP
C2API
C2M
C2MI
C2MP
C2MPI
DAA
DAAI
DAAP
DAAPI

Alphabetic List of Instructions

Code Mnemonic
110 DSA
111 DSAI
114 DSAP
115 DSAPI
112 ENG
113 EOG
116 EWM
117 EWMI
120 EWMP
121 EWMPI
124 HLT
125 HLTI
122 HLTP
123 HLTPI
126 JEQ
127 JGE
130 JGR
131 JMI
134 JMP
135 JOV
132 JPT
133 JRI
136 JSR
137 JWM
140 JWMI
141 JWMP
144 JWMPI
145 KEY
160 NEQ
161 NGE
164 NGR
165 NMI
162 NOV
163 ORA
166 ORAI
167 ORAP
170 ORAPI
171 ORM
174 ORMI
175 ORMP
172 ORMPI
173 OTA
176 oTG
177 PC1
240 ‘ PCO
241 PGJ
244 PGJI
245 PGJP

B-1

appendix B

Code

250
251
254
255
057
056
200
201
204
205
230
231
234
235
042
046
044
052
041
054
050
040
051
210
211
214
215
030
043
047
045
053
055
100
101
104
105
102
103
106
107
021
035
060
070
220
221
224

Mnemonic Code Mnemonic Code

PGJPI 225 SPRP 146
PRT 031 SPRPI 147
PTA 020 SSS 152
PTG 034 SSSI 153
RPT 032 SSSP 156
SIF 222 SSSPI 157
SIFI 223 SWM 202
SIFP 226 SWMI 203
SIFPI 2217 SWMP 206
SPR 142 SWMPI 207
SPRI 143

B-2

appendix €

The ASCII Teletype Code (Octal and Binary)

Character Octal Binary Character Octal Binary
A 301 11000001 ! 241 10100001
B 302 11000010 “ 242 10100010
C 303 11000011 # 243 10100011
D 304 11000100 $ 244 10100100
E 305 11000101 % 245 10100101
F 306 11000110 & 246 10100110
G 307 11000111 ’ 247 10100111
H 310 11001000 (250 10101000
I 311 11001001) 251 10101001
J 312 11001010 * 252 10101010
K 313 11001011 + 253 10101011
L 314 11001100 , 254 10101100
M 315 11001101 - 255 10101101
N 316 11001110 . 256 10101110
¢) 317 11001111 / 257 10101111
P 320 11010000 : 272 10111010
Q 321 11010001 ; 273 10111011
R 322 11010010 < 274 10111100
S 323 11010011 = 275 10111101
T 324 11010100 > 276 10111110
U 325 11010101 ? 2717 10111111
A 326 11010110 @ 300 11000000
w 327 11010111 [333 11011011
X 330 11011000 \ 334 11011100
Y 331 11011001] 335 11011101
yA 332 11011010 t 336 11011110

- 337 11011111
0 260 10110000 Line/Feed 212 10001010
1 261 10110001 Carriage/Return 215 10001101
2 262 10110010 Space 240 10100000
3 263 10110011 Rub-Out 3717 11111111
4 264 10110100
5 265 10110101
6 266 10110110
7 267 10110111
8 270 10111000
9 271 10111001

C1

BIT 483 SERIES PROGRAMMING CARD

BIT INC. 5 STRATHMORE RD. NATICK MASS. TELE: 617 - 237-2930 TWX 710 - 386-6494

TWO BYTE INSTRUCTIONS

Executa Fetch Timing Execute Fetch Timing
Instruction Mnemonic | Octal | Timing (MCT) {MCT) Instruction Mnemonic | Octal | Timing (MCT) {MCT}
anl o, ! Pag. Im ..%on
Angw . 210 ACC Cla 160 20 2 Chee e Pay CHP 140 1 2
C1AP 164 20 2 CHPP 144 1 2
C1Al 161 20 3 CHPI 141 1 3
C1AP 165 20 3 CHPP! 145 1 3
One word to mem Cim 162 20 2 Store Page SPR 142 1.3 2
CIMP 166 20 2 SPRP 146 13 2
Cimi 163 20 3 SPRI 143 13 3
C1MPI 167 20 3 SPRPI 147 13 3
Two words to ACC C2A 170 4.0 2 Store Sense Switches §SS 152 13 2
C2AP 174 40 2 sSSP 156 13 2
C2Al m 4.0 3 §SS1 153 13 3
C2AP 175 40 3 SSSPI 157 13 3
Two words to mem C2M 172 4.0 2
Czmp 176 490 2 % 1M ex instruction
Cami 173 40 3 Era e ww EWM 200 13 2
C2MP(177 40 3 EwWMP 204 13 2
2 EWMI 20t 13 3
L o EwmP | 205 13 3
.17 9 ACC ORA 100 23 2 Set WM SWM 202 13 2
ORAP 104 23 2 Swmp 206 13 2
ORA| 101 23 3 SWMI 263 13 3
ORAP! 105 23 3 SWMPI 207 13 3
XOR to mem ORM 102 23 2
ORMP 106 23 2 Twn: Byte Jump
ORMI 103 23 3 Hae HLT 236 1 2
ORMP! 107 23 3 HLTP 234 1 2
And to ACC ANA 110 23 2 HLTI 231 1 3
ANAP 114 23 2 HLTPI 235 1 3
ANA} m 23 3 Set Interrupt SIF 222 1 2
ANAPL 115 23 3 Sifp 226 1 2
And to mem ANM n2 23 2 SIF! 223 1 3
ANMP 1s 23 2 SIFP1 227 1 3
ANV 13 23 3 Jump PGJ 220 1 2
ANMro 117 23 3 PGJP 224 1 2
PGt 73] 1 3
St netic PGJIP1 225 1 3
A-1:3ACC BAA 120 23 2
BAAP 124 213 2 Us aal
BAA} pFdl 23 3 Aij10 ACC DAA 246 23 2
BAAPI {125 23 3 DAAP 44 23 2
Add to mem BAM 122 23 2 DAAI A1 23 3
BAMP 126 23 2 DAAPE 245 23 3
BAM! 123 2.3 3 Sub from ACC DSA 250 23 2
BAMP! 127 23 3 0SAP 254 23 2
Sub from ACC BSA 130 23 2 DSAI 51 23 3
BSAP 134 23 2 DSAPt | 255 23 3
8SAI K] 23 3
8SAP} 135 23 3 Mnemonic Suffix | = Indirect Addressing
Sub from mem BSM 132 23 2 Mremanic Suffix P = High Drder Operand Address Bits from Program Cournter
RSMP 136 23 2
:}::I :g; gg g (1} Jam Copy Instruction executron time 1s 2.6 MCT per byte
) {2} Logical and Antnmetic execution time 15 2.3 MCT per byte
INSTRUCTION FORMATS
Two Byte Instruction
1] 7 0 7
OF M3 [M2] M1] M0 Low Address
Lon [wejujwju) [, , t#@=, |] EFFECTIVE ADDRESS CALCULATION
Moditier Bits
M0 — Indirect Address Bit Modifier EFAD
M1 — Destination Bit Mo -0
M2 - Selection Bit 0 = "
M3— ::gr;tion Bt M2=0 (Page Register), Address
Mo=0
Four Byte Instruction M2=1 {HPC), Address
) 1 0 7 MO =1 I
_ (Page Regsster), | (HPC), Address]
M2=0 iy
Lon , wsfwelm]w] []
Mo=1
: {HPC), Em:c), Addras]
1] 7 0 7 M2=1
" p
[Morases |][twaddes "~]

NOTE Modrfier bits are used as used in the Two Byte Instructions only
by the JWM Instruction. Byte two s used to contain the address
of the location being tested for a wordmark by the JWM Instruc-
ton Othsiwis, 1t 15 unused and may be used as a data byte.

I/0 INSTRUCTION FORMAT

PERIPHERAL CONTROL INSTRUCTION (PCH

MODEL ASR/KSR-33
THE ASCH TELETYPE CODE {OCTAL & BINARY)

Cheractar Octel Benary Charactar Ociad Binary
0 LA 1 A 301 11000001 i 241 10100001
[IEIRIR 8 302 11000010 * 242 10100010
c 106 -Mm 43 19100011 -
n/0ut Device Channel Control D ﬁ :I&umn s 244 10100100
E 305 110Gu 61 % 245 10100101
F 306 11000110 & 246 10100110
/0 Code |BIT Nos. | Vaiue Function G 307 11000111 ‘ 247 10100111
H 310 11001000 { 250 10101000
1 mn 11001001) 251 10101001
1n/Dut 4 0 | Specities an input instruction (PCY J 312 11001010 . 252 10107010
4 1 Specifies an output instruction (PCO) K 313 11001011 + 253 10101011
L 314 11001100 . 254 10101100
Device 57 Device number M 315 11001101 - 255 10101101
* N 316 11001110 256 10101110
Channal 01 00 Channel A 0 3 1N / 257 1010111
10 Channel C [4 320 11010600 272 10111010
1n Channel G a n 11016001 . 273 101Mmm
R 322 11010010 < 274 10111100
Control 27 S 323 11010011 = 275 ARRRIN]
23 00 {imuates functions such as backspace, rewind, T 324 11010106 > 276 10111110
or move to top of form. U 325 11010101 ? m wmim
23 01 Select the specified device for data trans v 326 11010116 @ 300 11000066
mission. w 327 nnomm | 333 1wonon
23 10 | Select the specified device for test X 33 11011000 \ 34 11011100
23 11 | Contral the specified 1/0 device. Y 331 11N] 335 10N
To z 332 11911010 3 336 11011110
7 0 Enable Interrupt - 337 nomm
7 1 Disable Intertupt
[1] Transmission will not contan WM. 0 260 101500 = Line/Feed 212 10001010
1 | Transmission will contain WM 1 261 100100 | Carnage/Return 215 10001101
2 262 1071061y Space 240 10100000
3 263 10110011 Rub Out 3N ASREARNG]
I3 264 10110100
PERIPHERAL TRANSFER INSTRUCTION (PT1) g ;gg :g::g:%
7 267 10110111
T N 8 270 10111000
[Lofofof1[m]mefmim][Address 1 9 21 10111003
Channgt
170 INSTRUCTIONS
M3 M2 Channel Channel | M1 MO | Transfer Made
Fetch T Execute Timeng
o 0 A A] 0 | Non Overlapped Instrugtion Mremonic | Octal :(MclT")"ng X (uMCT; "
0 1 N/A A 0 1 | Overlapped Peripheral Contral | PCIX® | 06X 2 1
PCOX 07X 2 1
1 1] c G 1] 1] Non Overlapped Non Overlapped
Peripheral Transfer
1 1 G G 0 1 Dverlapped A PTA 020 2 1/byte
G PTG 034 2 1/byte
*EFAD = {Page Register), Address Overlapped
Penipheral Transfer
A 0TA o1 2 1/byte
G 076G 035 2 1/byte
Peripheral Transfer
Tyt
Channel M3 M2 M1 MO Function (TTY) € Non-nterrupt KEY 030 2 10 cps
PRT o3 2 10 cps
RPT 032 2 10 cps
\J 1 u 0 ° Keyboard Input ¢ Interrupt KEy | 030 2 1/byte
PRI 031 2 1/yte
c ! 0 0 1 Print H¥i 032 2 1/yte
c 1 '] 1] Read Paper Tape *X = Dewice Number
1Total execute ime determined by pernipheral device speed
FOUR BYTE INSTRUCTIONS
Execute
Instruction Mnemonic | Octal | Timing {MCT) | Fetch {MCT)
JUMP ON PERIPHERAL TEST (JPT)
Jump if EQ JEQ 042 30 2
Jumpf EQ NEQ 043 3.
dump EQ MEQ | M3 L 2 [oJotJoms]mefm]wm] [] Jeus[crefeusferz]erifou |
Jump if GR NGR 045 36 2
Jump f GR and EQ JGE 045 30 2 I High Address Low Address
Jump if GRand EQ NGE 047 30 2 * J [J
Jump Unconditionally IMP 041 30 2
Jump on Peripheral Test| JPT 050 30 2 M3 = 1 Peripheral Test sent to all devices
Jump to Subroutine JSR 051 5.6 2
Jumgp Return Int JRI 040 30 2 .
Jump on WM! mwn | 20 30 2 £15-C10 Tost
wnp | 218 30 2
WML M1 30 3 001060 1/0 Oevice Busy
wue | o215 30 3 000001 Interrupt Requested
Jump if MI i 052 30 2 010000 Channel Busy
Jumap it MI NMi 053 30 2
Jump if BV Jov 054 30 2
Jump if OV NOV 055 30 2
Jump if GR or EQ EOG 056 30 2
Jump i GRor EQ ENG 057 30 2

1 Refer to Note of Instruction Format

COPYRIGHT 1969, BIT INCORPORATED

PRINTEDINUSA

READER’S COMMENTS

BIT, Incorporated continuously strives to maintain and improve the quality of its publications. To help us
do this effectively, your criticism is needed.

Space is provided below for your comments on this manual.

Remarks on accuracy, organization, usefulness, etc.

Errors Noted

«—— Cut Along This Line ———»

Suggested Improvements

Other Literature Available:

] FORTRAN Manual
3 FORTRAN Library Vol. 1
[) NUMERICOM (N/C)

Name Position
Company Department
Street

City State Zip

No
Postage Stamp
Necessary

BTG of & =12D If Mailed in
USA.

FIRST CLASS PERMIT NO 50, NATICK, MASS. 01760

Postage Will Be Paid By

BIT, INCORPORATED
5 STRATHMORE ROAD
NATICK, MASSACHUSETTS (1760

L]
L]
L - -]
TR ISR
L e]
L
L
L
R TR
BRGSO
L
L o

	001
	002
	003
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	A-1
	A-2
	B-1
	B-2
	C-1
	D-1
	D-2
	x0
	x1

