

Turbo Basic ~

Owner;'s Handbook

Copyright © 1987
All Rights Reserved

BORLAND INTERNATIONAL, INC.
4585 SCOTTS VALLEY DRIVE

SCOTTS VALLEY, CALIFORNIA 95066

Table of Contents

Introduction ... 1
About this Manual ... 2
Typography ... 3
System Requirements .. 4
Acknowledgements .. 4

CHAYI'ER 1: About BASIC ... 5
Turbo Basic ... 6

Back to Basics - Machine Language ... 6
Interpreters ... 6
Compilers ... 8
Line Numbers and Turbo Basic .. 8

CHAFfER 2: Touring Turbo Basic .. 11
Backing Up Your Disks .. 11
Files on the Distribution Disk .. 11
Installation .. 12

Setting Up an Operating Environment .. 12
Starting Up Turbo Basic ... 13
Editor Survival Kit .. 15

Basic Operations ... 15
Block Operations .. 16
Search and Replace .. 17

A First Program .. 18
Options 20
Compiling ... 21

After t:h.e Compile .. . 21
Running t:h.e Program ... 22

About t:h.e Error .. 23
Saving to Disk ... 24

Saving t:h.e Executable Program ... 25
Executing MYFIRST from DOS .. 26
Tracing Your Program ... 26
The System Windows ... 27
The End of t:h.e Tour ... 27

CHAPTER 3: Turbo Basic: The Program .. 29
The Turbo Editor ... 29

Operating t:h.e Editor .. 30
Basic Movement Commands .. 33
Extended Movement Commands .. 33
Insert and Delete Commands .. 34
Block Commands ... 35
Miscellaneous Editing Commands .. 37
The Editor Versus WordStar .. 40

The Compiler .. 41
The Main Menu ... 42

The File Command .. 44
The Edit Command .. 46
The Run Command .. 46
The Compile Command ... 47
The Options Command .. 47
The Setup Command ... 52
The Window Command ... 55
The Debug Command ... 56

CHAPTER 4: Turbo Basic: The Language .. 59
Program Structure ... 59
Turbo Basic Character Set .. 62

Reserved Words .. 63
Numbers in Turbo Basic ... 65

Integers .. 65
Long Integers 65
Single-Precision Floating Point ... 66
Double-Precision Floating Point ... 66
Calculation and t:h.e 8087 ... 67

Turbo Basic Owner's Handbook

Constants .. 68
String Constants .. 68
Numeric Constants ... 68

Identifying Integer Constants in Other Bases ... 69
Named Constants .. 69

Variables .. 71
Arrays .. 72

Subscripts .. 72
String Arrays ... 74
Multidimensional Arrays .. 74
Array Bounds Testing ... 74
Array Storage Requirements .. 75
Dynamic Allocation .. 75
Declaring Static or Dynamic Arrays ... 76

Expressions ... 77
Operators ... 78

Arithmetic Operators ... 78
Relational Operators .. 79
Logical Operators .. 79
Bit Manipulations .. 80
Strings and Relational Operators ... 81

Subroutines, Functions, and Procedures ... 82
Subroutines .. 82
Functions ... 83

Formal Versus Actual Parameters .. 85
Function Types ... 86

Procedures ... 86
Passing Arrays to Procedures ... 87

Procedure and Function Definitions and Program Flow 87
Argument Checking ... 88

Advanced Topics in Functions and Procedures ... 88
Passing Parameters by Value or Reference ... 88
Local Variables ... 91
The Shared Attribute ... 93
Static Variables ... 93
Recursion .. 94

Files ... 96
Directories and Path Names .. 97
File Storage Techniques ... 99

Crash Course in Database Management .. 99
Sequential Files ... 99
Field-Delimited Sequential Files ... 101

Table of Contents iii

Nondelimited Sequential Files ... 102
Random Files .. 104
Binary Files ... 107
Device I/O .. 109

Graphics ... liO
The Text Modes ... 110
The Graphics Modes ... Ill

I...ast Point Referenced (LPR) .. ll2
Absolute and Relative Coordinates ... li3
Redefining Screen Coordinates .. li3

CHAPTER 5: Turbo Basic Reference Directory ... li5
The Directory Format .. li6
Typography .. 117
$COM metastatement .. 119
$DYNAMIC metastatement .. 120
$EVENT metastatement ... 121
$IF/$ELSE/$ENDIF metastatements ... 122
$INCLUDE metastatement .. 123
$INLINE metastatement .. 125
$SEGMENT metastatement ... 126
$SOUND metastatement .. 127
$STACK metastatement ... 128
$STATIC metastatement .. 129
ABS function ... 130
ASC function ... 131
ATN function ... 132
BEEP statement ... 134
BIN$ function ... 135
BLOAD statement .. 136
BSAVE statement ... 137
CALL statement ... 138
CALL ABSOLUTE statement .. 140
CALL INTERRUPT statement .. 142
CDBL function ... 143
CEIL function .. 144
CHAIN statement .. 145
CHDIR statement .. 147
CHR$ function .. 148
CINT function .. 149
CIRCLE statement .. 150
CLEAR statement .. 152

IV Turbo Basic Owner's Handbook

CLNG function .. 154
CLOSE statement ... 155
'CLS'statement ... 156
COLOR statement (graphics mode) .. 157
COLOR statement (text mode) .. 160
COM(n) statement ... 162
COMMAND$ function ... 164
COMMON statement ... 165
COS function .. 167
CSNG function ... 168
CSRLIN function .. 169
CVI, CVL, CVS, CVD functions .. 170
CVMD, CVMS functions .. 172
DATA statement ... 173
DATE$ system variable ... 175
DECR statement ... 176
DEF FN/END DEF statement .. 177
DEFINT, DEFLNG, DEFSNG, DEFDBL, DEFSTR statements 180
DEF SEG statement ... 182
DELAY statement .. 184
DIM statement .. 185
DO/LOOP statement .. 187
DRAW statement ... 189
END statement .. 192
ENDMEM function .. 193
ENVIRON statement .. 194
ENVIRON$ function ... 195
EOF function ... 196
ERAD R function ... 197
ERASE statement .. 198
ERDEV, ERDEV$ functions ... 199
ERL, ERR functions ... 200
ERROR statement ... 202
EXIT statement ... 203
EXP, EXP2, EXPI0 functions .. 206
FIELD statement .. 207
FILES statement ... 208
FIX function .. 209
FOR/NEXT statements ... 210
FRE function ... 212
GET statement (files) ... 213
GET statement (graphics) .. 214
GET$ function .. 216

Table of Contents v

GOSUB statement .. 218
GOTO statement .. 219
HEX$ function 220
IF statement 221
IF block·statement 223
INCR statement 225
INKEY$ function ... 226
INP function .. 228
INPUT statement 229
INPUT # statement .. 230
INPUT$ function ... 232
INSTAT function .. 233
INSTR function ... 234
INT function .. 235
IOCTL statement, IOCTL$ function .. 236
KEY statement ... 237
KEY(n) statement .. 239
KILL statement 241
LBOUND function .. 242
LCASE$ function .. 243
LEFT$ function ... 244
LEN function ... 245
LET statement ... 246
LINE statement .. 247
LINE INPUT statement .. 249
LINE INPUT # statement .. 250
LOC function ... 252
LOCAL statement ... 253
LOC,AJ:'E statement ... 254
LOF function ... 255
LOG, LOG2, and LOG10 functions .. 256
LPOS function 257
LPRINT, LPRINT USING statements .. 258
LSET statement .. 259
MEMSET statement 260
MID$ function .. 261
MID$ statement .. 262
MKDIR statement 263
MKI$, MKL$, MKS$, MKD$ functions .. 264
MKMD$, MKMS$ functions 266
MTIMER function and statement ... 267
NAME statement 268
OCT$ function ... 269

vi Turbo Basic Owner's Handbook

ON COM(n) statement ... 270
ON ERROR statement .. 271
ON/GOSUB statement ... 272
ON/GOTO statement .. 273
ON KEY(n) statement ... 274
ON PEN statement ... 276
ON PLAY statement .. 277
ON STRIG statement ... 279
ON TIMER statement .. 281
OPEN statement .. 282
OPEN COM' statement ... 286
OPTION BASE statement .. 288
OUT statement .. 289
PAINT statement ... 290
PALETIE, PALETIE USING statements .. 293
PEEK function' ... 295
PEN function ... 296
PEN statement ... 297
PLAY function .. 298
PLAY statement ... 299
PMAP ·function. . .. 302
POINT function ... 303
POKE statement .. 304
pas function .. 305
PRESET statement ... 306
PRINT statement ... 307
PRINT # and PRINT # USING statements .. 309
PRINT USING statement ... 311
PSET statement .. 313
PUT statement (files) ... 314
PUT statement (graphics) .. 315
PUT$ function ... 317
RANDOMIZE statement .. 318
READ statement .. 319
REG function and statement .. 320
REM statement .. 322
RESET statement .. 323
RESTORE statement .. 324
RESUME statement ... 325
RETURN statement .. 326
RIGHT$ function ... 327
RMDIR statement ... 328
RND function ... 329

Table of Contents vii

RSET statement .. 330
RUN statement ... 331
SCREEN function ... 332
SCREEN statement .. 333
SEEK statement .. 335
SELECT statement 337
SGN function ... 338
SHARED statement 339
SHELL statement 340
SIN function ... 341
SOUND statement .. 342
SPACE$ function ... 343
S PC function .. 344
SQR function ... 345
STATIC statement ... 346
STICK function ... 347
STOP statement ... 348
STR$ function .. 349
STRIG function ... 350
STRIG statement .. 351
STRING$ function 352
SUB/END SUB, SUB INLINE statements .. 353
SWAP statement .. 356
SYSTEM statement 357
TAB function .. 358
TAN function .. 359
TIME$ system variable 360
TIMER function ... 361
TIMER statement 362
TRON, and TROFF commands .. 363
UBOUND function ... 365
UCASE$ function 366
VAL function .. 367
VARPTR function ' .. 368
VARPTR$ function 369
VARSEG function 370
VIEW statement ... 371
WAIT statement .. 373
WHILE/WEND statements ... 374
WIDTH statement .. 376
WINDOW statement '" ... 378
WRITE statement .. 381
WRITE # statement 382

viii Turbo Basic Owner's Handbook

APPENDIX A: Numeric Considerations .. 383
Random Files with Floating-Point Data ... 384
Internal Representation of the Four Numeric Types 384
Computers and the Real Number System 385

Overflow and Underflow 386
Single-Precision Floating Point .. 386
Double-Precision Floating Point .. 387

APPENDIX B: Event Trapping .. 389
An Example 390
Fine-Tuning Event Trapping .. 391

APPENDIX C: Assembly Language Interface ... 393
The CALL ABSOLUTE Statement ... 394
The CALL INTERRUPT Statement ... 395

The Register Buffer 395
About DOS and BIOS Function Calls ... 396

Using CALL with INLINE .. 397
Passing Parameters to INLINE Procedures .. 398

Passing Numeric Variables ... 398
Passing Strings 398
Passing Arrays .. 398
Passing Expression Results 399
Passing Constants : 399

Creating an INLINE.COM file .. 399
Using DEBUG to create a .COM file ... 400
Using a Macroassembler to create a .COM file .. 400

INLINE Assembly Example ... 401

APPENDIX D: Comparing Turbo Basic and Interpretive BASIC 403
The Compiler Versus the Interpreter .. 403

Unsupported Commands 404
Statements Requiring Modification .. 405
Converting Interpretive BASIC Programs to Turbo Basic 406

Extensions to the BASIC Language .. 406
Structured Statements .. 407
Binary File I/O .. ; .. 407
Function and Procedure Definitions .. 407
Assembly Language Interface ... 407
Built-in Functions 407
New Commands 408

Table of Contents ix

Compiler Implementation .. 409
The Editor and Large Programs ... 409
Random Files with Floating-Point Values ... 409
Running in a Window .. 409
Intermediate Floating-Point Precision410
Strings ... 410
Improved Memory Use ... 410
PEEK and POKE Locations .. 410

APPENDIX E: Error Messages .. 411
Run-time Errors .. 412
Compiler Errors .. 416

APPENDIX F: Reference Materials ... 427
ASCII Codes .. 428
Extended Key Codes .. 429
Keyboard Scan Codes ... 430

APPENDIX G: A DOS Primer .. 433
What Is DOS? ... 433
How to Load a Program ... 434
Directories .. 435
Subdirectories .. 436
Where Am I? The $p $g Prompt ... 437
The AUTO EXEC. BAT File .. 437
Changing Directories .. 438
Setting up an Operating Environment ... 439

APPENDIX H: Summary of Functions and Procedures441
Chaining .. 441
Compiler Data ... 442
Devices ... 442
DOS .. 442
Error Handling ... 443
Files .. 443
Flow Control ... '" .. 444
Graphics .. 445
Hardware Events .. 445
Input ... 446
Keyboard Handling ... 446
Memory Management ... 446
Metastatements .. 447
Miscellaneous ... 447
Numeric .. 447

x Turbo Basic Owner's Handbook

Output ... 448
Printer 448
Screen ... 449
Sound .. 449
String Operations 450

APPENDIX I: Customizing Turbo Basic .. 451
Running TBINST .. 452

The Turbo Basic Directory Option 452
The Editor Command Option ... 452
The Default Edit Mode Option454
The Screen Mode Option 454

Default Display Mode ... 454
Color Display Mode 455
Black and White Display Mode ... 455
Monochrome Display Mode ... 455

Quitting the Program .. 455

INDEX .. 457

Table of Contents xi

xii Turbo Basic Owner's Handbook

Introduction

Turbo Basic is a self-contained programming environment for IBM® personal com­
puters and true compatibles. Following in the footsteps of its famous sibling, Turbo
Pascal®, Turbo Basic is a combination editor, fast memory-to-memory compiler,
run-time library, and internal linker. Its modern user interface uses windows and
pull-down menus. And for maximum speed and memory efficiency, Turbo Basic is
written entirely in assembly language.

Some other distinguishing characteristics include the following:

• Floating-point support (full 8087 integration and full software emulation)

• Professional development environment

• New block-structured programming statements

• Full EGA support.

A language for both the beginner and the experienced programmer, Turbo
Basic's integrated design permits quick program turnaround without sacrificing
the powerful features professional programmers demand. It is compatible with
IBM's Advanced BASIC (commonly referred to as BASICA) interpreter version
3.00 and Microsoft's GW BASIC TN (with minor exceptions because these are inter­
preters), and contains many extensions. (In general,· from now on we'll refer to
Advanced BASIC and GW BASIC collectively as "Interpretive BASIC.")

Programs created with Turbo Basic have access to all the memory available in
the target machine - 64K for scalars, 64K for strings, available memory for· arrays,
and more than 64K for programs. The compiler generates true .EXE files that

operate 4 to 100 times faster than their interpretive counterparts. And the incorpo­
ration of the 8087 support-puts the whip to numeric-intensive applications. Turbo
Basic . also supports all graphics capabilites and extensions of the Enhanced
Graphics Adapter (EGA).

Thanks to its advanced flow-control constructs (IFffHEN/ELSEIF/ELSE/
ENDIF,blocks, 'DO/LOOP, CASE/SELECT, CALL/SUB), Turbo ,Basic programs
are easier to write, debug, and maintain than Interpretive BASIC programs. Line
numbers are optional; alphanumeric labels can serve as the target of GOTO and
GOSUB statements. User-defined functions and procedures allow the declaration
of local, static" and shared variables, and permit recursion.

Turbo Basic supports a greatly expanded string range (up to 32,767 characters
per string), and does away with long delays of periodic string space "houseclean­
ing." There's a BINARY file mode for low-level file processing and a long integer
numeric type for fast, flexible,numeric processing. The CALL and REG statements
offer a straightforward linkage to assembly language, and there are numerous com­
piler directives for conditional compilation, error trapping, buffer control, and
more.

Turbo Basic is a powerful, Interpretive BASIC-compatible language that pro­
duces fast programs quickly.

About this Manual

First, what this manual is not. It isn't a comprehensive introduction to BASIC
programming. At last count there were over 15,000 books in print on this subject,
and more than 1,000 were about Interpretive BASIC (which has virtually the same
syntax as Turbo Basic) in particular. This manual is also not. a replacement for
information resources such as the DOS and technical manuals for your machine.

Instead, what this manual is is a reference to the program development system
known as Turbo Basic. We begin with a brief tutorial about installing the system
onto a working floppy or a hard disk, and then discuss how to use Turbo Basic to
edit and compile a simple program. Following the tutorial is background material,
split broadly between Chapter 3, "Turbo Basic: The Program," and Chapter 4,
"Turbo Basic: The Language." Chapter 5, "Turbo Basic Reference Directory," is an
alphabetically arranged look-up section of Turbo Basic commands, system vari­
ables, functions, statements, and metastatements.

The appendices -provide an ASCII chart and keyboard scan codes, and supple­
mental information about numeric considerations, event trapping, interfacing to
assembly language subroutines, compile-time and run-time errors, and the differ­
ences between Turbo Basic and Interpretive BASIC.

2 Turbo Basic Owner's Handbook

Typography

The body of this manual is printed in a normal typeface; other typefaces have
special meaning .

. Alternate type is used for example programs and screen output; for example:

Dir mask:

Italic type emphasizes an important concept or word. In particular, italics are
used in syntax descriptions to indicate areas within commands to be filled in with
application-specific information; for example:

REG register, value

UPPERCASE text denotes part of a BASIC command that must be supplied
verbatim; for example:

RESUME NEXT

Certain characters have special meaning when they appear in syntax descrip­
tions.

Brackets ([]) mean .that the enclosed information is optional. For example:

OPEN fi 1 espec AS [I] fi 7 enum

means that you can include a number sign (#) before the file number or leave it
out, at your option. Therefore, both of the follOwing are legal:

OPEN "cust.dta" AS 1
OPEN "cust.dta" AS #1

Braces ({ }) indicate a choice of two or more options, one of which mustbe used.
The options are separated by vertical bars (I). For example:

KEY {ONIOFF}

means that both KEY ON and KEY OFF are valid statements, and that KEY by
itself is not.

Ellipses (..•) indicate. that part of a command can be repeated as many times as
necessary. For example:

READ variable [, variable] •••

means that multiple variables, separated by commas, can be processed by a single
READ statement:

READ a$
READ as, b$, a,b, c

Introduction 3

Three vertically spaced periods indicate the omission of one or more lines of
program text; for example:

FOR n = 1 TO 10

NEXT n

System Requirements

Turbo Basic itself requires MS-DOS or PC-DOS 2.0 or above. In addition, any
program you create will require DOS 2.0 or above to execute.

Turbo Basic and the programs you create with it are designed to work on the
IBM PC, X'f®, or AT® models, or a fully compatible machine. Graphics features of
the language are not available without appropriate graphics hardware, such as the
Color/Graphics Adapter, the Enhanced Graphics Adapter, or equivalents, and a
suitable display.

Ackoowledgements

We refer to several different products in this manual; the following lists each one
and its respective company:

• Turbo Pascal and SideKick are registered trademarks and Turbo Basic is a trade-
mark of Borland International, Inc.

• GW BASIC and MS-DOS are registered trademarks of MicrosoftCorp.

• WordStar is a registered trademark ofMicroPro International, Inc.

• IBM, X1: and AT are. registered trademarks of International Business Machines
Corp.

• MultiMateis a trademark of MultiMate International Corp.

• dBASE is a registered trademark of Ashton-Tate.

• Lotus 1-2-3 is. a registered trademark of Lotus Development Corp.

4 Turbo Basic Owner's Handbook

c H A p T E R 1
About BASIC

Like Maine lobster, maple syrup, and basketball, BASIC is a product of New
England. Created in 1964 at Dartmouth College in Hanover, New Hampshire, as a
language for teaching programming, BASIC is commonly identified as an acronym
for "Beginner's All-purpose Symbolic Instruction Code." (However, cynics think
inventors John Kemeny and Thomas Kurtz first came up with a catchy name for
their new, easy-to-use language and then worked backward to concoct something it
could stand for.)

Students and programmers alike soon found that BASIC could do practically
anything that stuffy, awkward FORTRAN could do. And since BASIC was so easy
to learn and to work, its programs usually ended up taking less time to write than
its FORTRAN equivalents. BASIC was also available on most personal computers,
usually in ROM. So BASIC caught on in a big way.

Remarkably, of the dozens of general-purpose programming languages available
to programming aficionados, BASIC is still the easiest to learn more than 20 years
after its introduction. And better yet, BASIC gets the job done. C and Pascal snobs
notwithstanding, BASIC is a no-nonsense language gifted with powerful tools for
tackling the specific things that people do most with small computers, namely,
working with files and putting text and graphics on a display.

Although their language has its detractors, no one can deny that Kemeny and
Kurtz achieved their "BASIC" goal: to make programming more accessible to more
people. This leads us to Turbo Basic.

5

Turbo Basic

Turbo Basic is a compiled BASIC. You may be familiar with IBM's Advanced
BASIC (called GW BASIC™ on many compatibles, but which we're now referring
to as "Interpretive BASIC"), a popular interpreted version from Microsoft. Inter­
preting and compiling are two basic methods of implementing high-level lan­
guages. To understand the important differences between these two approaches,
and consequently between Turbo Basic and Interpretive BASIC, requires that we
descend briefly to the ground floor of programming.

Back to Basics - Machine Language

Surprisingly, a given computer is only able to execute programs written in its
native machine language. There are almost as many different machine languages as
there are computers, but all are variations on a similar theme - simple operations
performed lightning-quick on binary numbers. IBM personal computers use 8086-
family machine language because their hardware design is based on that particular
microprocessor family.

It is possible, although difficult, to write programs directly in machine language.
In the early days of computers (through the early 1950s), machine language was all
that there was, so people made do. To save programmers from the rigors of machine
language programming, high-level (that is, non-machine) languages were created
as a bridge between human beings and the machine language world of the com­
puter.

High-level languages work via translation programs that input "source code" (a
machine-readable hybrid of English and mathematical expressions), and ultimately
cause the computer to execute appropriate machine language instructions to get
the job done. The two basic types of translators are interpreters, which scan and
execute source code in a single step, and compilers, which scan source code to
produce machine language that is then executed separately.

Interpreters

Historically, BASIC has usually been implemented as an interpreter (a familiar
example being Interpretive BASIC itself). One oft-cited benefit of an interpretive
implementation is that it permits a "direct mode." A direct mode lets you give a
computer a problem like PRINT 3.14159 * 3A

2.1, and returns an answer to you as

6 Turbo Basic Owner's Handbook

soon as you press the Enter key (this allows a $3,000 computer to be used like a $10
calculator).

Additionally, interpreters have certain attributes that simplify debugging. For
one thing, it's possible to interrupt an interpreter's processing of a program, dis­
play the contents of certain variables, browse through the source program, and
then continue execution.

What programmers like most about interpreters is the instant response. There's
no compiling necessary; the interpreter is always ready to take a shot at your pro­
gram. Enter RUN and the effect of your most recent change is on the screen.

Interpreted languages are not without drawbacks, however. For one thing, it's
necessary to have a copy of the interpreter in memory at all times -and many of
the interpreter's features (and therefore much of its size) may not be necessary to .
execute a given program.

A subtle disadvantage of interpreters is that they tend to discourage good pro­
gramming style. Since comments and other formatting niceties take up valuable
program memory space, people tend not to use them. Hell hath no fury like an
Interpretive BASIC programmer trying to get 120K of program into 60K of
memory.

Worst of all, interpreters are slow. They spend too much time figuring out what
to do, instead of actually doing it.

In executing a program's statements, an interpreter must first scan each state­
ment for content (What's this human asking me to do here?), and then perform the
requested operation. Statements within loops are scanned redundantly.

Consider this three-line program:

10 FOR n = 1 TO 1000
20 PRINT nr SQR(n)
30 NEXT n

The first time through this program, a BASIC interpreter would figure out that
line 20 means:

1. Convert numeric variable n to a string.

2. Send the string to the screen.

3. Move the cursor to the next print zone.

4. Calculate the square root of n.

5. Convert the result to a string.

6. Send the string to the screen.

About BASIC 7

The second time through the loop it will figure it all out again, having totally
forgotten what it learned about this line a millisecond ago. Ditto the next 998
passes.

Clearly, if you could somehow separate the scanning/understanding phase from
the execution phase, you'd have a faster program. That's what compilers are all
about.

Compilers

A compiler is a text-to-machine-Ianguage translator that reads source text, evalu­
ates it according to the syntactic design of the language, and produces machine
language. The machine language output (called object code) is then run as an
independent step. In other words, a compiler doesn't execute programs, it builds
them. Interpreters can't be separated from the programs they run; compilers do
their job and then get out of the picture.

In working with a compiled language such as Turbo Basic, you'll come to think
about your programs in terms of the two major phases in their lives: compile time
and runtime. With an interpreter, there's only runtime.

The speed improvement you'll see with Turbo Basic depends on the program.
Most programs will run four to ten times faster than the interpretive equivalent. If
you work at it, you may achieve a lOO-fold speed improvement. On the other side of
the·coin, programs that spend most of their time shuffiing disk files or waiting for
input won't show a dramatic speed increase.

Line Numbers and Turbo Basic

Interpretive BASIC needs line numbers so that it can find its way when GOTOs
and GOSUBs send execution to a statement that isn't next in sequence. In addi­
tion, line numbers are at the core of its editing process.

Although tolerant of them, Turbo Basic has no need for line numbers. Instead of
GOTO 5000, in Turbo Basic you'll say something like GOTO ErrorExit, where
ErrorExit is a iabel" at the start of the ErrorExit routine.

There are compilers and there are compilers. Turbo Basic was designed from the
start to be fast. This goal was achieved with an integrated design that keeps the
compiler, editor, and program in memory at the same time, eliminating the endless
disk drive excursions that cause conventional compilers to make the text-to-test
transition 10 or 20 times more slowly.

8 Turbo Basic Owner's Handbook

Turbo Basic's enormous compilation speed (thousands of lines per minute) is
such that it retains Interpretive BASIC's interactiveness. Simply press R and a
Turbo Basic program runs.

Note: If you're new to BASIC, continue reading and/or exploring this manual.
However, for those seasoned BASIC programmers who are thinking of converting
Interpretive BASIC code to Turbo Basic, take a look at Appendix D, "Comparing
Turbo Basic and Interpretive BASIC."

About BASIC 9

10 Turbo Basic Owner's Handbook

c H A p T E R 2
Touring Turbo Basic

This chapter will get you started·using Turbo Basic. We11·begin with some basic
operations in Turbo Basic, including installing Turbo Basic, using the menu system,
and creating, running, and editing a program. However, before you.get started, you,
should·complete and mail in the license agreement at the front of this manual. This
agreement allows you to make as many copies of the program disk as you need for
your personal use and backup purposes only.

Backing Up Your Disks

For your own protection, make a backup copy of the distribution disk with your
file-copy or disk-copy program before you start using.Turbo Basic. Make certain all
files have transferred successfully, then store the original disk in a safe place.

Files on the Distribution Disk

The files you have just copied from your distribution disk are described here.

TB.EXE The all-in-one development environment/editor/compiler/run-time
library. When you type TB and press Enter, Turbo Basic is up and running.

II

* .BAS Sample Turbo Basic programs.

TBHELP.TBH Contains help screens for using Turbo Basic.

README.COM Use' this .program to read the README file.

README This text file mayor may not be present. If it is, it contains informa­
tion more current than that contained in this manual. Use README.COM to type
this or copy it to a printer.

Installation

For floppy-based systems, copy TB.EXE to a boot disk along with as many DOS
utility programs (for example, CHKDSK, FORMAT) as will fit. Use drive B to
store the source and executable programs you'll be creating.

For hard disk systems, create a new directory off the root called "TB: or some­
thing equally appropriate. Copy all the files on the distribution disk into .\ TB. If
you're tight on disk space, copy only TB.EXE. Log into this directory and you're
ready to go. A standard configuration with the hard disk addressed as drive C and
the first floppy as drive A requires the commands

C>MO \T8
C>COpy A:*.* \TB
C>CO \TB
C\TB>

To use Turbo Basic from other places on your hard disk, setup a path statement
or copy the file TB.EXE to the directory where you keep system programs such as
CHKDSK, FORMAT, and Advanced BASIC (this directory is often called \BIN).
(See Appendix I, "Customizing Turbo Basic," for more about setting up paths.) For
detailed information about creating. and managing subdirectories, consult your
DOS manual.

Setting Up an Operating Environrnent

If you have some special hardware needs or if you're a developer in need of a
dynamic environment, being able to set environment variables will afford you some
choices. Environment variables actually override compiler and/or program options,
and are determined by using the SET command in DOS.

Environment variables have an effect on the entire environment in which a
program is executed. Thus after setting a variable, it's in effect until you reset it to
another value or turn off your machine. If you find yourself setting these values
consistently one way, you may want to enter the SET command into a batch file or

12 Turbo Basic Owner's Handbook

your AUTO EXEC. BAT file (see Appendix G, "A DOS Primer: for more informa­
tion).

Turbo Basic's environment variables allow you to override compiler and run­
time options for 8087 support and Color/Graphics Adapter (CGA) "snow" checking.
For example, in the following example you're setting up your environment for 8087
use by typing at the DOS prompt

SET 87=yes

where yes means you have an 8087; no means even if you have an 8087 don't use it.
The default setting is yes.

In the case of CGA snow-checking, you could type

SET CGASNOWCHK=no

where no doesn't do snow-checking and yes does snow-checking. The default set­
ting is yes.

When your compiler begins executing or when a generated .EXE file starts
executing, it will actually search the environment variable space for these variables.

Though it's not necessary to set these variables, they're available when you need
them. If you choose not to set them, the current directory searches for files and
creates temporary ones to store the default variables.

Starting Up Turbo Basic

When you have a copy of the system on your working disk and you are in the
appropriate directory (or disk, if you have a floppy-based system), enter TB at the
DOS prompt and press Enter:

C>TB

and Turbo Basic's first screen appears:

Touring Turbo Basic 13

I.lit 'nce
G: NONAME. BAS Line 1 Coil Insert Indent Tab

Fl-Help FS-ZOOII FIi-Next F7-Goto SCROLL-Size/Move Alt-X-Exit

----------------------~./

Figure 2-1 Turbo Basic's Main Screen

The main menu bar at the top of the screen displays your command options and
the four windows, Edit, Message, Trace, and Run. You can choose an item from the
menu by pressing the associated highlighted capital letter (for example, E for Edit)
or by moving the highlighted bar with the left and right arrow keys to the desired
option and pressing Enter. (Note that the highlighted letters of each option on the
screen are expressed as boldface in the text.)

Experiment for a minute. Choose the File command. A series of options related
to files "pulls down." To choose one of these options, again, press the first letter of
the option or use the up and down arrows to set the highlighted bar and press
Enter. To return to the options available from the main menu, press Esc, which takes
you back to the main menu. No matter where you are in Turbo Basic, pressing Esc a
few times will get you back to the main menu. (For more information, see the
section in Chapter 3 entitled "The Main Menu.")

Note that the help line at the bottom of the screen changes according to where
you are in the menu system; look here first if you get stuck - it may be all the help
you need. If you need additional help, press Fl.

Some of the items on the main menu have no other options than the one dis­
played. For example, Compile simply compiles your loaded file; it has neither a
pull-down menu nor a pop-up menu. On the other hand, File has a pull-down
menu with several options.

In practice, most of the time you'll be making the same three menu selections
over and over:

• Edit to create and alter source programs

• Compile to compile source programs into executable form

14 Turbo Basic Owner's Handbook

• Run to execute programs or compile programs if they need it

For a more extensive explanation of the menu system and its pull-down menus,
refer to the section in Chapter 3, "The Main Menu."

Editor Suroival Kit

Before we get you into writing programs, we'd like you to know something about
the editor you'll be using. You need only read this section if you are unfamiliar with
either the Turbo Pascal editor, WordStar®, or Multimate TN. If you are already famil­
iar with this type of editor, go ahead to the section entitled, "A First Program." (If
you want more explanation, refer to the section, "The Turbo Editor," in Chapter 3.)

For those of you who need to learn the editor, take your time and practice a few
of the basic features. (Table 2-1 on page 17 summarizes the basic commands.) Then
later on you'll be able to concentrate on writing Turbo Basic programs rather than
spending your time learning the editor. Keep in mind that help is only a keystroke
away - pressing F I will bring you context-sensitive help for wherever you happen
to be.

Basic Operations

Select Edit from the main menu by pressing E from anyplace on the main menu bar
or press Enter when positioned at the Edit command.

First take a look at the status line to determine whether you're in Insert mode or
Overwrite mode. Insert mode means all characters entered on the keyboard are
inserted at the cursor position; existing text moves to the right of the cursor as you
type. When using Overwrite mode, every character typed replaces what is cur­
rently under the cursor. You can toggle these modes on and off with the Ins key or
Ctrl-V keys. Select whichever one you find most comfortable to use.

Now type in your name and address as you would on an envelope; for example:

Sam Spade
1264 Clinton St.
New York, NY 12345

and press Esc to finish editing. Then save the contents of the work file by selecting
File (press F when positioned anywhere on the main menu or press Enter when
positioned at File) and then Save. Since you didn't name the file previously, the
default file name NONAME.BAS was assigned. You can rename the file now by
saving what's in the editor under the file name ADDRESS. (If you don't specify an
extension, Turbo Basic will give your file a .BAS extension name.)

Touring Turbo Basic 15

Now use the New option to delete what you have typed into the editor. First
press F for File and N for New. Now press E and type in a list of your five favorite
foods, each on a separate line.

chi eken curry
sushi
blackened fish
chimichangas
lumpia

Now end the editing session again (press Esc) and select File from the main
menu, then Load. When asked for a file name, type ADDRESS followed by Enter.
The system asks if you want to save the text in the current work file. You do not, so
press N (for No) and notice what has happened in the editor window - your favor­
ite foods have been replaced by the ADDRESS file.

Block Operations

While in the Edit window, you can also mark a block of text to be deleted, moved,
or copied. Once marked, you can copy the block to another place in the text, delete
it from its current spot, or move it to another place in the text.

Marking a block is easy. To try it, first re-select the Edit command. With your
name and address still in the Edit window, use the arrow keys to position the
cursor at the top left comer. Mark the start of the block by pressing Ctrl-KB. Now
move the cursor to the last character in the last line of your address and mark the
end of the block by pressing Ctrl-KK.

Now make several copies of this block so that you've got more text to play with.
To do this, move the cursor to the end of your address and copy the block by
pressing Ctrl-KC. Move the cursor to the end of the newly created text and make
another copy of the block. Repeat the process until you have a total of ten copies of
your address in the Edit window. Use the arrow keys and PgUp and PgDn to move
around the text inside the Edit window.

Now let's mark a new block. Using the status line at the top of the Edit window
to determine what line number you're on, insert a new line 4 into the file consist­
ing of 20 letter X's. Now make line 11 a new line of 20 letter y's.

Your new block will be lines 5 to 10. Mark it with Ctrl-KB and Ctrl-KK as before.
To delete the block, press Ctrl-KY and you should now have a line of X's followed by
a line ofY's.

Next, mark a new block that consists of these two rows of X's and Y's. Move the
cursor to the end of the text, then move the new block here by pressing Ctrl-KV
(check that it has been moved and not copied by using PgUp and PgDn).

16 Turbo Basic Owner's Handbook

Block operations can be performed with fewer key presses by using the function
keys. The keys and their uses are displayed at the bottom of the screen. Note that
the F7 and F8 keys mark the beginning and end of a block, respectively. To mark a
block, move the cursor to the beginning of a block and press F7. Then move the
cursor to the end of the block, and press F8 to mark the end of the block

Search and Replace

The search-and-replace command comes in handy if you decide to change the
name of something in your program after you've written it. For example, to show
you how to use this command, let's delete everything currently in the editor (using
Del, the New option, or by marking a block) and type in this well-known phrase

To be or not to be
That is the question

Now replace every occurrence of To be with TB. First press Ctrl-QA and then
type To be when you are prompted for a search string. Press Enter and then when
prompted for the replacement string, type TB. Next, you can choose certain options
to be performed during your search. Select option G for a global search, selectN so
that the string is replaced everywhere without asking you for confirmation at each
occurrence, and select· U so that it ignores uppercase!1owercase. Press Enter after
you have selected all your options. The search and replace is carried out and the
text transformed to

TB or not TB
That is the question

If you simply want to find a string in the text, you can use the search command
(as opposed to search and replace). Press Ctrl-QF and you are prompted for a search
string. Use the search function to find the first occurrence ofTB in the preceding
text. Then use Ctrl-L to find subsequent occurrences.

Touring Turbo Basic 17

Tabk 2-1
Keys

Esc
Arrow' keys, PgUp, PgOn, Home,

End
Del
Ins/Ctrl-V
Ctrl-KB
Ctrl-KK
Ctrl-KH
Ctrl-KC

Ctrl-KY
Ctrl-KV

FI
F2
F3
F5
F6
F7
F8

A First Program

Sumf1Ulry of Editor Keystrokes
Function

, Exits the editor
Moves the cursor

Deletes the character under the cursor
Toggles Insert/Overwrite mode on and off
Marks the beginning of a block
Marks the end of a block
Un marks a block
Copies a marked block to the position indicated
by the cursor
Deletes a marked block
Moves a marked block to the position indicated
by the current cursor position
Help information
Saves file
New 6.le

Zoom
Switches windows
Begin block
End Block

Now let's create a short program with the editor. Go to the main menu and select
File, then Load. At the file name prompt, enter MYFIRSTand press Enter. Now
press E. to enter the'editor. You'll know the Edit window has become active because
its window has a double border.

18 Turbo Basic Owner's Handbook

/_ •. --------------------",

Turbo Basic

r=="------~ Uit Trace
G: HYFI RST. BAS Li ne 1 Co 1 1 I nsert I ndent Tab

.-------lIessa,e ------'1'---1 .. ----,1_
Fl-Help Fl-Save F3-Hew IS-ZOOM F6-Hext F7-Beg Blk F8-End Blk SCIOLL-Size/Move

' '-_._-------------------/

Figure 2-2 Blank Editor Screen

Those of you experienced with WordStar or some other program that uses its
control sequences, such as the SideKick® Notepad, will find Turbo Basic editing a
breeze. Those of you not familiar with this editor should refer to the quick review
section earlier in this chapter, "Editor Survival Kit." (If you find you still need more
information, refer to the section in Chapter 3 entitled "The Turbo Editor.")

Now type in the program MYFIRST that follows this paragraph. Type as pre­
cisely as possible, because Turbo Basic can>t do anything other than what you tell
it. Some of you may notice a Haw in this program -leave it in; we'll explain why
later.

WHILE -1
FOR n = 1 TO 8

READ a$
PRINT a$ " u;

NEXT n
PRINT
RESTORE

WEND
DATA Presenting, Turbo Basic --, The, Fastest, BASIC, on, Earth

What makes this program look different from BASIC programs you've seen in
the past is its lack of line numbers.

Line numbers are an integral part of both the editing and execution of Interpre­
tive BASIC programs. However, since Turbo Basic has a built-in screen editor, and
since it's a compiler, line numbers are so much excess baggage. Yet, Turbo Basic is
open-minded on the subject. If you like, you can number every line. Or every third
line. In order or backward. Or you may choose to number only those lines that are
the target of a GOTO or GOSUB. Better yet, you can use named labels.

Touring Turbo Basic 19

Doing without line numbers may seem odd at first, but after a few days you'll
wonder how you were able to put up with them for so long.

When you've got MYFIRST entered, sit back and admire it for a minute.

You have just created a Turbo Basic source program. Inside the memory of your
computer at this moment are the hundred .. odd ASCII codes that" make up
MYFIRST.BAS. So far, only the editor has worked with this text.

This source program, however, is only a means to an end. Before your system's
8086-family microprocessor chip can execute MYFIRST, the source text must be
translated, or compiled, into a fonn that it can understand; namely, 8086 machine
language.

The editor's part of the job is now finished, so press Esc to "leave the editor" and
return to the main menu. The selection bar becomes visible at the main menu,
indicating that you can now select another option.

While the editor is temporarily de-selected, you can't work with it; however, the
text of your prqgram is still in memory, ready to be added to or changed at a
moment's notice. (A quick press of £ demonstrates this; pressing Esc returns you to
the main menu.)

Options

You're about to take the second big step in the program creation process: compiling
your source code into executable form. But before you do, you must set a compiler
option. Press 0 to choose the Options menu (see Figure 2-3).

/--------------------
i

F1-Help F!i-Zoo. "-Next F7-Goto SCIOLL-Size/.ove Alt-X-Exit

'.' ... --------------------~"

Figure 2-3 Options Menu

20 Turbo Basic Owner's Handbook

As its name implies, the selections in the Options menu provide control over
certain aspects of the upcoming compilation. At this point, especially if Turbo
Basic is your first encounter with a compiled language, some of these selections
may seem somewhat mysterious. (The compiler options are discussed in detail in
Chapter 3 under the section entitled "The Options Command.")

Right now the only one you're interested in is Keyboard break, which is cur­
rently turned off. With this option on, however, you can interrupt most programs
(stop I/O) generated by the compiler. With this option off, you'll be unable to
interrupt (via Ctrl-Break) any program generated by the compiler. So to prevent
MYFIRST from running forever, press K (a toggle switch) to tum on the Keyboard
break option, and then press Esc to return to the main menu.

Compiling

Press C to compile MYFIRST (like the editor, the compiler processes the current
work file). Quickly and quietly the compiler examines the characters of your
program and builds the machine language equivalent. This phase, for even a sim­
ple program like MYFIRST, can take some BASIC compilers the better part of a
minute.

If the compiler finds something in your source program that isn't acceptable
Turbo Basic grammar, it will be noted on the editor status line and you'll be drop­
ped automatically into the editor at the point of the error. If this happens to you,
press Esc and edit your program. Then exit the editor and recompile: press Esc,
then C.

After the Compile

After a successful compilation, there are two versions of MYFIRST in memory: (1)
the source program you've created with the editor, and (2) the resulting executable
program 8086 machine language created by the compiler.

In the Message window, Turbo Basic brags about how fast it is and gives some
statistics on the compilation (see Figure 2-4).

Touring Turbo Basic 21

Turho BdSI(J L file EdIt Run :mnr ')pt IOns Setup Window Debug
- ---- --- - --- - - ---- - - -----------

.. it 'fN.,e
G:ItVFIRST.BIIS Line 7 Col 17 Insert Indent Tab

IIIIILI -1
rol.=ITOa

Il1O ;0$
'Inll' A$

IIIICT •
nnll'
usnu

II ..
lATA e.ti'" TUM I;osi., -- TIle. r;ostest. WIC. 0 •• lut.

1Iess;o,e

I
••

I
c:o.,i1i",: ItVrllST
Li .. : OJ Stat: 11
Coie: II'J4
I;ota: II ... sn: IMII rJ'etl: 31511

Fl-Heip "-"ext "-Goto SCIOLL-Size/aove Alt-K-Exit

Figure 2-4 Statistics of Compilation

The statistics indicate in Hex bytes the compiled program's code segment size,
stack size, and data area size. Also noted are the number of statements and lines
compiled, plus the amount of free space left in memory for compilation. (Be assured
that you don't need to know anything about hex or stacks or buffers to write Turbo
Basic programs, any more than you need to know these things to work with Inter­
pretive BASIC. The information is here if you need it; usually you won't.)

Running the Program

Now that you've translated your source program into machine language, you can
run it by pressing R. Check out your program output in the Run window (see
Figure 2-5).

22 Turbo Basic Owner's Handbook

I..ILI 1 •••••

roaa=lfte
(IOA$
Pllllf A$

IIIICT a
.IUIf
IISnU

IIlIIt
lArA ti .. r IAsie -- De. r •• test. _IC. Da. IU'U

,----- lies .. ,., -----",---- "a -------.
Se..rc.i .. : ItVFIIST
Liae: 1 Stat:

F •• test
MSIC
oa
IU'U

Fl-Help PZ-Save F3-New F5-Zoa. "-Next F7-Beg Blk FB-End Blk SCIOLL-Size/aove

Figure 2-5 Running MYFIRST

Hmmm. MYFIRST ran for a split second and then blew up.

That's because we deliberately included an error in MYFIRST to make a point:
The analysis performed by the compiler doesn't figure out everything that might
go wrong when the program runs. The compiler mainly checks errors of syntax,
such as misspelled commands, superfluous or missing commas, and unmatched
parentheses. There's a whole class of bad things that can happen at runtime, from
disk failures to attempts to compute mathematical impossibilities such as the
square root of a negative number.

Keep in mind that some of your mistakes will be caught at compile time; others
won't surface until runtime.

About the Error

In addition to telling you that an Out of Data error occurred, Turbo Basic also
shows you where it occurred by placing you at the point of error in the editor (see
Figure 2-5). Since MYFIRST.BAS is still in memory, this happens quickly.

Touring Turbo Basic 23

I " I ~ Turho B.s II J
~ :d.Jt :Jun lo_pde)ptlOns Setup ,..I Indo.. Jebug

~- - -- ------------- - - - - - -- - -- -- -
.. it rNee

G:IIVFJIST.BAS Line 9 Col 33 Insert Indent Ta •
.. lLa -1

nII.= 1187

-~ nllll' 1$" •
.cr •
mft
IISfftI -JiI1'A fI' .. "ti.,. r.. ... lui" --. rile. r .. .test. NSIC. 011

r-----"-- ----,IF=== •• ====.1
c-ili.,: IM'IJISr
Litle: ,Stat: 11

.It-PS-Z.... Alt-K-Mext

Figure 2-6 Running MYFIRST Successfully

The compiler automatically translates where the error occurred into the corre­
sponding spot in the source file.

What's wrong with this line, of course, is that it should only read seven con­
stants, not eight. Change the FOR/NEXT loop to stop at 7, and you should have a
working program.

Press Esc and then R to first compile and then run the corrected version. Turbo
Basic will recognize that you've changed the source program since the last compi­
lation and automatically recompiles MYFIRST before running it. When you get
comfortable with the keystrokes involved, you'll find that it takes only seconds to go
from editing to executing and vice versa.

Now MYFIRST runs in all its glory. Again, check your output in the Run win­
dow and press A1t-F5 to zoom the window in and out (see Figure 2-6).

When you're comfortable with this program, interrupt it by pressing Ctrl-Break
and then press Esc to return to the main menu.

Saving to Disk

So far everything you've done has been in memory only. If there were a power
failure at this instant or your program hung, both the source and executable forms
of MYFIRST would be lost. Prudent programmers, therefore, periodically save
their source programs to disk with the File menu's Save command. Do so now. You
may notice a burst of activity on the default drive as MYFIRST.BAS is written out.
(You can also use the Auto save edit option under Miscellaneous in the Setup menu
to automatically save your current file before running a program.)

24 Turbo Basic Owner's Handbook

Use the Directory option in the File menu to verify that a file named
MYFIRST.BAS now exits in the quasi-permanent world of your file system. Press­
ing 0 causes the quick response:

Enter mask

Turbo Basic is requesting the sort of file descriptor· you might include with
DOS's DIR command; for example, *.BAS, or MYFIRST.BAS. Just pressing Enter
causes every file to appear, as though you had typed *. *.

Saving the Executable Program

Saving the executable (machine language) form of MYFIRST to disk is a different
matter altogether. In fact, if you look, you won't see anything on any of the menus
for saving an executable program. If you're creating a program for your own use,
you may never need to save it. Since it can be created fresh each time by compil­
ing, why bother? However, there will come a time when you'll want a permanent
form of a compiled program.

Turbo Basic allows you to generate a stand-alone program (a file with the .EXE
extension) that can be executed directly at the DOS prompt. You can do this with
MYFIRST by setting the Compile to switch in the Options menu, as shown in
Figure 2-7.

/---------------------~ .

.------- lles",,,,e -----,Ir===== "0 --=~I
COIIpiliog: nllFIRST Presenthg T.1'1io "sic -- rile
Lhle: OJ St.t: 11 Presenting T.1'1io "sic -- rile

Presenting Tullo l;osic -- rile
Presenting Tullo "sic -- rile

Ft-Help FS-ZOOll "'-"ext F1-Goto SCIOLL-Size/Move AJt-X-Exit

\'-~-------------------~
Figure 2-7 Options Menu

First press 0 to get to the Options menu, then press C for Compile to. Select the
Executable file setting by pressing E. This doesn't change anything on disk yet­
you've only changed what the compiler will do the next time it is invoked. The
default, which is what we've used so far, is to compile to memory.

Touring Turbo Basic 25

Press Esc to exit the Options menu, then C to recompile MYFIRST. This time it
compiles more slowly, because Turbo Basic has to physically write to the· disk drive.

To see the resulting file, exit Turbo Basic altogether by first going to the· Files
menu and then pressing Q (for Quit). Once back at DOS level, enter

C>DIR MYFIRST

You should see both the source and executable forms of your program,
MYFIRST.BAS and MYFIRST.EXE, respectively.

Executing MYFIRST from DOS

You probably already know that files with the .EXE extension are directlyexecut­
able by the operating system. If you enter the file name at the DOS prompt

C>myfirst

it causes MYFIRST to run, producing the same program you saw before. This time
when you interrupt the program with Ctrl-Break, you'll be returned to DOS.

Tracing Your Program

Now go back to the Turbo Basic environment and your MYFIRST file by typing TB
MYFIRST at the DOS prompt. To give you a taste of everything on the main menu,
let's try tracing the MYFIRST program.

The Trace window will list any line numbers, labels, or procedure or function
names in your program, so add line numbers to MYFIRST so you can trace it.

In order to trace, or step through, your program as it runs, press D to go to the
Debug menu. Use the arrow keys or press T to get to the Trace option and then
toggle it on by pressing Enter. Press Esc to exit from the Debug menu and then
press R for Run. (Since you've modified your program, it will be automatically
recompiled before it is run.) Look at the Trace window to check out your program's
tracing.

Note that you can also trace your program by placing the trace compiler direc­
tive in your program when you write it.

26 liJrbo Basic Owner's Handbook

The System Windows

Turbo Basic provides four windows to· the programming environment:

• The Edit window lets you create/edit any of your programs.

• The Trace window (when toggled on) lists each program line number, label, and
procedure and function name as your program runs it.

• The Message window displays compilation statistics and other messages.

• The Run window displays your program output.

These windows can be used in any configuration, but only the Edit and Run
windows can be zoomed (one way is to press FS).

At any time in the menu system you can switch your point of view and reconfig­
ure a window's size and position. You can also permanently change a window so
that each time the system is booted, your preferred window layout is used. (Refer
to the Save Options/Window/Setup in "The Setup Menu" in Chapter 3.)

To open a window, select Open from the Window menu and then choose the
window you'd like to make active. By pressing Scroll Lock (along with the Shift and
arrow keys), you can move your selected window to any position on the screen. The
Tile option automatically makes all open windows visible and of equal size (in
other words, they take up equal portions of the screen). The Stack option lets you
stack, or layer, all open windows at the largest possible size. The active window is
on top; only a portion of the other open windows are visible. Use the Next option to
make another window the active window. The Zoom option lets you zoom to full
screen the Edit or Run windows. The Close option makes the selected window
invisible. For more information on resizing and moving windows, refer to the sec­
tion entitled "The Window Command" in Chapter 3.

The End of the Tour

That's it for your introductory tour of Turbo Basic. Let's quickly review the steps
involved in creating and testing a program:

• Start up TB.EXE and specify the source program you'll be working with. If
necessary, set any needed compiler options. Then edit the work file. Once ready
for testing, press R or C to compile the program. If the compiler spots any syntax
errors, you'll be dropped into the editor at the point where the error occurred.

• Once a source file is free of syntax errors (that is, it has compiled successfully),
run it. If you get the results you expect, save the source program to disk. If you
don't get the results you expect, edit the source program and repeat the cycle.
You may also choose to compile a working program to .EXE file form.

Touring Turbo Basic 27

On the distribution disk you'll find several sample source programs. You may
find it useful to study these programs, since several demonstrate aspects of Turbo
Basic that are different from or not present in Interpretive BASIC.

28 Turbo Basic Owner's Handbook

c H A p T E R 3
Turbo Basic: The Program

The Turbo Editor

Turbo Basic's built-in editor is specifically designed for creating program source
text. If you are familiar with MicroPro's WordStar program, you already know how
to use the editor, since its commands are almost identical to WordS tar' s.

When you choose Edit from Turbo Basic's main menu, the Edit window is
brought to the top and highlighted, and you are placed in the editor. To leave the
editor and return to the main menu bar, press Esc (the data in the Edit window
remains on screen).

You can enter text pretty much as though you were using a typewriter. To end a
line, press the Enter key. When you've entered enough lines to fill the screen, the
top line scrolls off the screen. Don't worry, it isn't lost, and you can move back and
forth in your text with the scrolling commands that are described later.

The Turbo Basic editor, unlike WordStar, has an "undo" facility that lets you take
back changes if you haven't yet left the line. This command (Ctrl-QL) is described in
the section entitled "Miscellaneous Editing Commands."

Now, let's take a look at the information the status line of the editor window
provides:

X:Fi1ename.typ Line Col Insert Indent Tab

29

X: Filename.typ
Indicates the drive, name, and extension of the file being edited. If the file name
and extension is NONAME.BAS, then you have not yet specified a file name.
(NONAME.BAS is Turbo Basic's default file name.)

Line
Indicates which line number contains the cursor (relative to the top of the file, not
the top of the screen).

Col
Shows which column number contains the cursor.

Insert
Indicates that you are currently in "'Insert mode." In Insert mode, characters
entered on the keyboard are inserted at the cursor position. Text in front of the
cursor moves to the right as you enter new characters. Use the Ins key or Ctrl-V to
toggle the editor between Insert mode and Overwrite mode, in which text entered
at the keyboard overwrites characters under the cursor instead of inserting them
before existing text. Note: new text lines cannot be entered when you're in Over­
write mode.

Indent
Indicates the auto-indent feature is on. Tum it off with the auto-indent on/off
command, Ctrl-Ol.

Tab
Indicates whether or not you can insert tabs. Use Ctrl-OT to toggle this on or off.

Operating the Editor

The most important thing to learn about any editor is how to move the cursor
around. You can move around the screen by using a special group of control charac­
ters: pressing the Ctrl key while simultaneously pressing any of the keys, A, S, D, F,
E, R, X, C, W, and Z.

The characters are arranged on the keyboard in a manner that logically indicates
their use. For example, in the following display:

E
S 0

X

pressing Ctrl-E moves the cursor up, Ctrl-X moves it down, Ctrl-S moves it to the
left, and Ctrl-D moves it to the right.

30 Turbo Basic Owner's Handbook

The editor uses approximately 50 commands to move the cursor around, page
through text, find and replace strings, and so on. These commands can be grouped
into four main categories:

• Cursor movement commands

• Insert and delete commands

• Block commands

• Miscellaneous commands

Each group contains logically related commands that are described in the fol­
lowing sections. (Table 3-1 summarizes the commands.) Each entry consists of a
command definition, followed by the default keystrokes used to activate the com­
mand.

Table 3-1 Summary of Editor Commands

Cursor Movement Commands
Character left
Character right
Word left
Word right
Line up
Line down
Scroll up
Scroll down
Page up
Page down

Extended Movement Commands
Beginning of line
End of line
Top of window
Bottom of window
Top of file
End of file
Beginning of block
End of block
Last cursor position

Turbo Basic: The Program

Ctrl-S or Left arrow
Ctrl-D or Right arrow
Ctrl-A
Ctrl-F
Ctrl-E. or Up arrow
Ctrl-X or Down arrow
Ctrl-W
Ctrl-Z
Ctrl-R or PgUp
Ctrl-C or PgDn

Ctrl-QS or Home
Ctrl-QD or E.nd
Ctrl-QE.
Ctrl-QX
Ctrl-QR
Ctrl-QC
Ctrl-QB
Ctrl-QK
Ctrl-QP

31

32

Table 3-1 Summary of Editor Commands, continued
Insert and Delete Commands
Insert mode on/off
Insert line
Delete line
Delete to end of line
Delete character left of cursor
Delete character under cursor
Delete word right

Block Commands
Mark block begin
Mark block end
Mark single word
Copy block
Move block
Delete block
Read block from disk
Write block to disk
Hide/display block
Print block

Miscellaneous Commands
Quit edit, no save
Save and edit
New file
Tab
Tab mode
Auto indent on/off
Restore line
Set place marker
Find place marker
Find
Find and replace
Repeat last find
Control character prefix
Abort operation
Restore error message

Ctrl-Vor Ins
Ctrl-N
Ctrl-Y
Ctrl-QY
Ctrl-H or Backspace
Ctrl-G or Del
Ctrl-T

Ctrl-KB or F7
Ctrl-KK or F8
Ctrl-KT
Ctrl-KC
Ctrl-KV
Ctrl-KY
Ctrl-KR
Ctrl-KW
Ctrl-KH
Ctrl-KP

Ctrl-KD, Ctrl-KQ, or Esc
Ctrl-KS or F2
F3
Ctrl-I or Tab
Ctrl-OT
Ctrl-Ol
Ctrl-QL
Ctrl-KN
Ctrl-QN
Ctrl-QF
Ctrl-QA
Ctrl-L
Ctrl-P
Ctrl-U
Ctrl-QW

Turbo Basic Owner's Handbook

Basic Movement Commaruls

Here are some basic commands to start you editing a file right away.

Character left Ctrl-S or Left arrow
Moves the cursor one character to the left.

Character right Ctrl-D or Right arrow
Moves the cursor one character to the right.

Word left Ctrl-A
Moves the cursor to the beginning of the word to the left. A word is defined as a
sequence of characters separated by one of the following:

space < > , ; . () [] A , * + _ / $

This command works across . line breaks.

Word right Ctrl-F
Moves the cursor to the beginning of the word to the right (see the definition of a
word in "Word left"). This command works across line breaks.

Line up Ctrl-E or Right arrow
Moves the cursor up one line.

Line down Ctrl-X or Down arrow
Moves the cursor to the line below.

Scroll up Ctrl-W
Scrolls toward the beginning of the file, one line at a time (the entire screen scrolls
down).

Scroll down Ctrl-Z
Scrolls toward the end of the file, one line at a time (the entire screen scrolls up).

Page up Ctrl-R or PgUp
Moves the cursor one page up, less one line.

Page down Ctrl-C or PgDn
Moves the cursor one page down, less one line.

Extended Movement Commaruls

You may sometimes want to move faster in your documents than the basic move­
ment commands allow. The editor provides six commands to move instantly to the
extreme ends of lines, to the beginning and end of the file, and to the last cursor
position.

Beginning of line Ctrl-QS or Home
Moves the cursor to the beginning of the current line (column one).

Turbo Basic: The Program 33

End of line Ctrl-QD or End
Moves the cursorto the end of the current line.

Top of screen Ctrl-QE
Moves the cursor to the top of the screen.

Bottom of screen Ctrl-QX
Moves the cursor to the bottom of the screen.

Top of file Ctrl-QR
Moves to the first character in the file.

End of file Ctrl-QC
Moves to the last character in the file.

Lastly, the Ctrl-Q prefix with a B, K, or P control character allows you to jump to
certain special points in a document.

Beginning of block Ctrl-QB
Moves the cursor to the block-begin marker set with Ctrl-KB. The command works
even if the block is not displayed (see "Hide/display block" under "Block Com­
mands") or if the block-end marker is not set.

End of block Ctrl-QK
Moves the cursor to the block-end marker set with Ctrl-KK. The command works
even if the block is not displayed (see "Hide/display block'") or the block-begin
marker is not set.

Last cursor position Ctrl-QP
Moves to the last position of the cursor before the last command. This command is
particularly useful after a Find or Find/replace operation has been executed and
you'd like to return to the last position before its execution.

Imert and Delete Commands

You can't write a program just by moving the cursor around. You've also got to be
able to insert and delete text. The following commands insert and delete charac­
ters, words, and lines.

Insert mode on/off Ctrl-Vor Ins
When entering text, you can choose between two basic entry modes: Insert and
Overwrite. You can switch between these modes with the Insert mode toggle,
Ctrl-Vor Ins. The current mode is displayed in the status line at the top of the
screen.

Insert mode is the editor's default, letting you insert new characters into old
text. Text to the right of the cursor simply moves to the right as you enter new text.

34 Turbo Basic Owner's Handbook

Use Overwrite mode to replace old text with new; any characters entered
replace existing characters under the cursor. You can't insert new lines of text in
Overwrite mode.

Delete character left of cursor Ctrl-H or Backspace
Moves one character to the left and deletes the character positioned there. Any
characters to the right of the cursor move one position to the left. This can also be
used to remove line breaks.

Delete character under cursor Ctrl-G or Del
Deletes the character under the cursor and moves any characters to the right of the
cursor one position to the left. This command does not work across line breaks.

Delete word right of cursor Ctrl-T
Deletes the word to the right of the cursor. This command works across line breaks,
and may be used to remove line breaks.

Insert line Ctrl-N
Inserts a line break at the cursor position.

Delete line Ctrl-Y
Deletes the line containing the cursor and moves any lines below it one line up.
There's no way to restore a deleted line, so use this command with care.

Delete· to. end of line Ctrl-QY
Deletes all text from the cursor position to the end of the line.

Block Commands

The block commands also require a control character command sequence. If you
feel dazzled at this point, return to this section when you feel the need to move,
delete, or copy whole chunks of text. For the persevering, let's continue.

A block of text is any amount of text, from a single character to hundreds of lines
that have been surrounded with special block-marker characters. There can be
only one block in a document at a time. A block is marked by placing a block-begin
marker before the first character and a block-end marker after the last character of
the desired portion of the text. Once marked, the block may be copied, moved,
deleted, or written to a file.

Mark. block begin Ctrl-KB or F7
Marks the beginning of a block. The marker itself is not visible, and the block itself
only becomes visible when the block.,end marker is set. Marked text (a block) is
displayed in.a different intensity.

Mark block end Ctrl-KK or F8
Marks the end of a block. The marker itself is invisible, and the block itself
becomes visible only when the block-begin marker is also set.

Turbo Basic: The Program 35

Mark single word Ctrl-KT
Marks a single word as a block. replacing the block-begin/block-end sequence.
which is a bit clumsy for marking a single word. If the cursor is placed within a
word. then this word will be marked. If it is not within a word. then the word to the
left of the cursor will be marked.

Hide/display block Ctrl-KH
Causes the visual marking of a block to be alternately switched off and on. The
block manipulation commands (copy. move. delete. and write to a file) work only
when the block is displayed. Block-related cursor movements uump to beginning/
end of block) work whether the block is hidden or displayed.

Copy block Ctrl-KC
Copies a previously marked block to the current cursor position.The original block
is unchanged, and the markers· are placed around the new copy of the block. If no
block is marked or the cursor is within the marked block, nothing happens.

Move block Ctrl-KV
Moves a previously marked block from its original position to the cursor position.
The block disappears from its original position and the markers remain around the
block at its new position. If no block is marked, nothing happens.

Delete block Ctrl-KY
Deletes a previously marked block. No provision exists to restore a deleted block,
so be careful with this command.

Write block to disk Ctrl-KW
Writes a previously marked block to a file. The block is left unchanged, and the
markers remain in place. When this command is issued, you are prompted for the
name of the file to write to. The file can be given any legal name (the default
extension is .BAS). (If you prefer to use a file name without .an extension, append a
period to the end of its name.)

You can use wildcards to select a file to overwrite; a directory is displayed. If the
file specified already exists, a warning is issued before the existing file is overwrit­
ten. If no block is marked, nothing happens.

Read block from disk Ctrl-KR
Reads a disk file into the current text at the cursor position, exactly as if it were a
block. The text read is then marked as a block. When this command is issued, you
are prompted for the name of the file to read. You can use wildcards to select a file
to read; a directory is displayed. The file specified may be any legal file name.

Print block Ctrl-KP
Sends the· marked block to the printer. If no block has been marked or if the
marked block is hidden, the entire file is printed.

36 Turbo Basic Owner's Handbook

Miscellaneous Editing Commands

This section describes commands. that do not fall into any of the aforementioned
categories.

Quit edit, no save Ctrl-KD, Ctrl-KQ, or Esc
Quits the editor and returns you to the main menu. Saving the edited file on disk is
done explicitly with the main menu's Save option under the Files command, auto­
matically via the Auto save edit option under Miscellaneous in the Setup menu, or
while in the editor (see the next command).

Save and Edit Ctrl-KS or F2
Saves the file and remains in the editor.

New file F3
Lets you erase text from your current edit file and create a new file; otherwise, it
simply creates a new file. When you press F3, you are queried whether you want to
save the current text file if one exists.

Tab Ctrl-I or Tab
Tabs are fixed to eight columns apart in the Turbo Basic editor.

Tab mode Ctrl-OT
Toggles the tab option on and off. When "Tab" is visible onscreen, you can insert
tabs; when toggled off, the tab is automatically set to the beginning of the first word
in the previous line. (When Tab is on, auto-indent is disabled.)

Auto indent on/off Ctrl-Of
Provides automatic indenting of successive lines. When active, the indentation of
the current line is repeated on each following line; that is, when you press Enter,
the cursor does not return to column one but to the starting column of the line you
just terminated. When you want to change the indentation, use the space bar and
Left arrow key to select the new column. When auto indent is on,. the message
Indent is displayed in the status line; when off, the message is removed. Auto
indent is on by default. (When Tab is on, auto-indent is disabled.)

Restore line Ctrl-QL
Lets you undo changes made to a line as long as you have not left the line. The line
is restored to its original state regardless of any changes you have made.

Set place marker Ctrl-KN
Mark up to four places in text by pressing Ctrl-K, followed by a single digit (0-3).
After marking your location, you can work elsewhere in the file and then easily
return to your marked location by using the Ctrl-QN command (being sure to use
the same marker number).

Find place marker Ctrl-QN
Finds up to four place markers (0-3) in text. Move the cursor to any previously set
marker by pressing Ctrl-QP and the marker number.

Turbo Basic: The Program 37

Find Ctrl-QF
Lets you search for a string of up to 30 characters. When you enter this command,
the status line is cleared, and you are prompted for a search string. Enter the string
you are looking for and then press Enter. The search string may contain any charac­
ters, including control characters. Control characters are entered into the search
string with the Ctrl-P prefix. For example, enter a '1 by holding down the Ctrl key
as you press P and then T. You may include a line break in a search string by
specifying -M -J (carriage return/line feed).

Search strings may be edited with the Character left, Character right, Word left,
and Word right commands. Word right recalls the previous search string, which
may then be edited. The search operation may be aborted with the Abort command
(Ctrl-U).

When the search string is specified, you are asked for search options. The follow­
ing options are available:

B Searches backward from the current cursor position toward the beginning of
the text.

G Globally searches the entire text, irrespective of the current cursor position.
This stops at the last occurrence.

n Where n equals a number, finds the nth occurrence of the search string,
counted from the current cursor position.

U Ignores uppercase/lowercase distinctions.

W Searches for whole words only, skipping matching patterns embedded in
other words.

Examples:

W Searches for whole words only. The search string "term" will match "term,"
for example, but not "terminal."

BU Searches backward and ignores uppercase/lowercase differences. "Block"
matches both "blockhead" and "BLOCKADE," and so on.

125 Finds the 125th occurrence of the search string.

You can end the list of find options (if any) by pressing Enter and the search
starts. If the text contains a target matching the search string, the cursor is posi­
tioned at the end of the target, or at the beginning if searching backward. The
search operation may be repeated by the Repeat last find command (Ctrl-L).

Find and replace Ctrl-QA
This operation works identically to the Find command except that you can replace
the "found" string with any other string of up to 30 characters.

38 Turbo Basic Owner's Handbook

When the search string is specifIed, you are asked to enter the string to replace
the search string. Enter up to 30 characters; control character entry and editing is
performed as stated in the Find command. If you just press Enter, the target is
replaced with nothing, and in effect is deleted.

Your choice of options are the same as those in the Find command, with the
addition of the following:

N Replaces without asking; does not ask for confIrmation of each occurrence
of the search string.

Examples:

NIO Finds the next ten occurrences of the search string and replaces without
asking.

GW Finds and replaces whole words in the entire text, ignoring uppercase/low­
ercase. It prompts for a replacement string.

GNU Finds throughout the flle uppercase, small antelope-like creatures (get it?)
and replaces them without asking.

Again, you can end the option list (if any) by pressing Enter, and the Find and
replace starts. When the item is found (and if the N option is not specifIed), the
cursor is positioned at the end of the item, and you are asked "Replace (Y/N)?" at
the prompt line at the top of the screen. You may abort the Find-and-replace opera­
tion at this point with the Abort command (Ctrl-U). The Find-and-replace operation
may be repeated by the Repeat last fInd command (Ctrl-L).

Repeat last fInd Ctrl-L
Repeats the latest Find or Find-and-replace operation as if all information had
been reentered.

Control character prefIx Ctrl-P
Allows you to enter control characters into the flle by prefIxing the desired control
character with a Ctrl-P; that is, first press Ctrl-P, then press the desired control char­
acter. Control characters will appear as low-intensity capital letters on the screen
(or inverse, depending on your screen setup).

Abort operation Ctrl-U
Lets you abort any command in process whenever it pauses for input, such as when
Find and replace asks "Replace Y/N?", or during entry of a search string or a flle
name (Block read and write).

Restore error message Ctrl-QW
Press these keys to restore the error message once it has disappeared from the
Editor window status line.

Turbo Basic: The Program 39

The Editor Versus WordStar

A few of the Turbo Basic editor's commands are slightly different from WordStar.
Note also that although the editor contains only a subset of Word S tar' s commands,
several features not found in WordStar have been added to enhance program
source code editing. These differences are discussed here.

Turbo's cursor movement controls, Ctrl-S, Ctrl-D, Ctrl-E, and Ctrl-X, move freely
around on the screen without jumping to column one on empty lines. This does not
mean that the screen is full of blanks - on the contrary, all trailing' blanks are
automatically removed. This way of moving the cursor is especially useful for pro­
gram editing; for example, when matching indented FOR/NEXT pairs.

Ctrl-S and Ctrl-D do not work across line breaks. To move from one line to another
you must use Ctrl-E, Ctrl-X, Ctrl-A, or Ctrl-F.

In Turbo Basic, carriage returns cannot be entered at the end of a file in Over­
write mode; that is, if Insert mode is off, pressing Enter at the end of a file will not
insert a carriage return character or move the cursor to the next line. However, you
can either switch to Insert mode or use Ctrl-N in Overwrite mode to enter carriage
returns.

The WordStar sequence Ctrl-Q Del, delete from cursor position to beginning of
line, is not supported.

Turbo Basic allows you to mark a single word as a block using Ctrl-KT. This is
more convenient than Word S tar' s two-step process of marking the beginning and
the end of the word separately.

Since editing in Turbo Basic is done entirely in memory, the Ctrl-KD command
does not change the file on disk as it does in WordStar. Updating the disk file must
be done explicitly with the Save option within the File menu or automatically via
the Auto save edit option under Miscellaneous in the Setup menu. You can also use
F2 or Ctrl-KS.

Turbo's Ctrl-KQ does not resemble WordStar's Ctrl-KQ (quit edit) command. The
changed text is not abandoned - it is left in memory, ready to be compiled and
saved.

Turbo's Ctrl-QL command restores a line to its pre-edit contents as long as the
cursor has not left the line.

The Turbo editor's Ctrl-QI command toggles the auto-indent feature on and off.

Last, but not least, Turbo's Backspace key works like WordS tar' s Del key: It
deletes the character to the left of the cursor. Del in Turbo deletes the character
under the cursor.

40 Turbo Basic Owner's Handbook

The Compiler

Turbo Basic's compiler is an all-assembly language, high-performance compiler. To
invoke the compiler, press C (for Compile) at the main menu. If a Main file has
been set, then, if necessary, you are prompted whether you'd like to save the cur­
rent work file. If so, the current work file is saved, the Main file brought in, and
compilation begins.

The compiler writes the compiled program either to memory (the default) or to
disk, depending on the current Compile to setting of the compiler Options menu.
As it works, the compiler ticks off in increments of 20 the number of lines and
statements processed to that point. The status of the compiler is displayed in the
Message window.

If an error is detected, the editor is automatically invoked and the cursor is
positioned on the offending statement. The error message is displayed on the top
line of the editor. When you move the error, the status line reappears. To restore
the error message, press Ctrl-QW.

After a successful compilation, the Message window displays the total number of
lines and statements in the program, plus the amount of free space left in memory
for compilation (see Figure 3-1). Note that the amount of free space left will be
greater when you compile to an .EXE or .TBC file than when you're compiling to
memory.

Turbo Basic

Uit T ... ce
G: I "STAT . BAS Line 1 Coil Insert Indent Tab

IIHILI IICIr I IISTAr • cIoeck if A key IMS press'"
LOCArE 1.1
PlUI1' ,"'''ith, for a key ••• "

1ID1.

'111It' IIIIIY$ • .ispla, tloe pres key

EIII • eM tloe PrDIrAa

!lesu,e ...
Co.piIi.,: IlIsrllr

1 1-
Liae: B Stat: B
Coole: .34
lab: .198 su: l14li Free: 3u.n

Fl-He I p ",-"ext "-Goto SCIOLL-S i ze/.ove AIt-K-Exit

Figure 3-1 Compilation Screen

The three-line object code summary lists in hexadecimal the size of the code
segments, the stack, and the data area of the generated program.

Turbo Basic: The Program 41

The Main-Menu,

Turbo Basic operates -by a series of commands, pull-down menus,and pop-up
menus, and offers four windows to the programming environment. {shown in Fig­
ure 3-2}. This section describes the function of each main menu command and
their respective pull-down menus and pop-up menu options (if any).

,/

~
rurbOBaSiC=

Ie ~tions
~ ---------

Edit ========Ir T .. ~ce
G: NO"AIIE. BAS Line 1 Coil Insert Indent Tab

Itess~le --------.11~ .. n ---'1_
Fl-Help r.;-Zo"" t'f.-Next r7-Goto SCIOLL-Size/Move Alt-X-Exit

',~---------------------

Figure 3-2 Main Menu

To make a selection and invoke a function at the main menu, press the key
corresponding to the highlighted, uppercase letter of the desired option or use the
arrow keys to move to the desired option and then press Enter. For example, press­
ing E (for Edit) starts up the editor. Pressing Enter after the selected keystroke is
not required. To exit from any of the pull-down menus, simply press Esc {more than
once if you are in pop-up menus} to return to the main menu.

If you are in the Edit window or any of the pull-down or pop-up menus, pressing
Aft and the first letter of a menu item will. take you to that menu item.

Installation of colors, directories, and other features can be performed via the
Setup pull-down menu (described later). Any changes made can be saved in a .TB
file or directly to the TB.EXE file in the same directory as the Turbo Basic system
(the Turbo directory). The default .TBfile is TBCONFIG.TB, but several ~TB files
can be maintained via the Setup command.

To resize and/or move the active window (the one'with the double bars around
it), press Scroll Lock. Then hold-down the Shift key and use any of the arrow keys to
move and/or size the window to the right, left, up, down, and so on.

42 Turbo Basic Owner's Handbook

Turbo Basic's context-sensitive help provides information relevant to your par­
ticular screen, no matter where you are in the menu system. To get help at any
level, press F I; pressing Alt-F I takes you to the previous help screen.

Turbo Basic also has a number of keys ("hotkeys'") you can use no matter where
you are in the main menu. For example, to exit Turbo.Basic from anywhere in the
menu system, you' can press Alt-X. For your convenience, all of the hotkeys are
listed in Table 3-2.

Keys

FI
Fl
F3
F5
F6
F7
Scroll Lock
Esc
Alt-C
Aft-E.
Alt-R
Aft-X
Alt-F
Aft-O
Aft-D
Alt-W

Turbo Basic: The Program

Table 3-2 Turbo Basic Hotkeys
Functions

Provides context-sensitive help
Saves your file
Creates new file
Zooms the Run or Edit window
Switches the active window
From within the menu system, goes to the active window
Sizes and moves the active window
Takes you back to . the main menu
Compiles the currently loaded program
Edits the currently loaded program
Runs the currently loaded program
Exits the Turbo Basic system
Takes you to the File 'menu
Takes you to the Options menu
Takes you to the .Debug menu
Takes you to the Window menu

43

The File Command

The File command provides a pull-down menu of several options (see Figure 3-3).
/~--------- .--.---------.----~",

Turbo Basic
[DC].lit cpn :Bo.pile :iJptions ~tup ~indoo. Dlehug

:== Load Edit Trace
, BAS Line t Col t I nsert I ndent Tab

I, " , ' I
I

tlessage

II
Run

I~
Ft-Help FS-ZOOM Fr.-Next F7-Goto SCIOLL-Size/Move Alt-K-Ex i t

Figure 3-3 File Menu

Load
Load lets you select a work file, which can then be edited, compiled, executed, or
saved.

After pressing L (for Load), you are prompted for a file name. You can enter
either of the following:

1. Any legal file name. If the period and file type (extension) are omitted, the
.BAS extension is automatically appended. To specify a file name with no
extension, 'enter the name followed by a period.

2. Afile name from a directory. The directory facility is consulted when the File
Name prompt is answered' by pressing Enter or by typing a file pattern con­
taining wildcards followed by Enter. If no file pattern is given, all files are
listed. In either case, the cursor can then be moved up and down in the
resulting list of file names by using the arrow keys, Home, End, PgUp, and
PgOn. Choose a file by pressing Enter. If you press Esc, the cursor returns to
the Load option.

If you choose to supply your own extensions, avoid those that have special mean­
ing for DOS, such as .EXE, .COM, and .BAT. In addition, don't use .BAK, because
the editor creates backups by appending this extension.

44 Turbo Basic Owner's Handbook

Be certain to choose unique file names, whether you use an extension or not. For
example, consider files MYPROG.Vl and MYPROG.V2. After editing and saving
MYPROG.Vl, Turbo Basic renames the original form of the program to MYPROG.
BAK. If you were to then edit MYPROG.V2, its original form would also be called
MYPROG.BAK, effectively erasing the backup of the first file.

When you press the Enter key after entering the name of the work file, Turbo
Basic searches the active directory of the logged disk for the file. If it can't find it, a
new file is created.

New
This option erases the text currently in the editor and gives the default name
NONAME.BAS to the file.

Save
Save saves the current work file to disk. The old version of the named file, if any, is
given a .BAK extension. If your work file is named NONAME.BAS and you
attempt to save your file, you are given a chance to rename it before the save is exe­
cuted. If you simply press Enter, the file named NONAME.BAS is saved.

Write to
After editing, use the Write to option to write the current edit file to disk under a
new name. You are prompted to select a new name.

Main file
When working with large programs, you may choose to break the source up into
manageable sections. If you exceed the character capacity of the editor, you will
have no choice in the matter. The individual parts of a large program are stored and
edited as independent "include" files, but when it comes time to compile, they are
put together into a single unit.

In tandem with appropriate $INCLUDE metastatements, the Main file selec­
tion allows you to compile multiple source file programs.

The source module you define as the Main file should be the one with the
$INCLUDE directives. As always, to edit any module of the program (even the
Main module), make it the currently loaded file.

Upon receiving a Compile command, Turbo Basic checks to see if the current
work file is different from the Main file. If it isn't different (or if no Main file is
selected), the work file is compiled. If it is different, you are prompted to save the
work file (if it has been changed), and the Main file is then loaded into memory. If
an error is found during compilation, the file containing the error is automatically

Turbo Basic: The Program 45

loaded so that it may be edited. When the error has been corrected and compila­
tion restarted, you are prompted to save the corrected work file. The Main file is
then reloaded.

Directory
Press 0 to get a directory listing, to search subdirectories, and to change the mask
on the fly.

Change dir
Change dir is used to select another directory. After pressing C, you are prompted
for a directory path; this becomes your current directory (wherever you go, there
you are). Any legal path name can be given. See "The Setup Command" for a
description of the other directories used by the system.

OS shell
Pressing 0 calls the DOS operating system; Turbo Basic remains resident in mem­
ory. Once DOS has been loaded, any DOS commands can be executed. Control is
returned to the resident Turbo Basic system with the EXIT command.

Quit
Quit exits you from the Turbo Basic program to DOS. You are prompted if your
current edit file has been modified and has not been saved. (You may also exit
Turbo Basic by pressing Alt-X from anywhere in the menu system.)

The Edit Command

The Edit command invokes the built-in screen editor, passing it the work file for
editing. (You name the work file via the Load command in the File pull-down
menu). If a work-file name has not been specified, NONAME.BAS is provided.

To exit the editor and return to the main menu, press Esc. Your source text
remains displayed on the screen, you need only press E to return to it.

The Run Command

The Run command executes a program residing in memory. If a compiled program
is already in memory, and the source of that program has not been modified in the
editor since the last Compile or Run and no options have changed, it is executed
immediately. If the compiled program is not in memory, the source program in the
editor is first compiled, and the resulting program executed.

During program execution, pressing Ctrl-Break interrupts program execution if
the Keyboard break option is set and the running program does I/O. If an error is

46 Turbo Basic Owner's Handbook

detected, you are placed in the editor at the point in the program where the error
occurred. A description of the error appears on the status line of the editor. Then
correct your error and rerun your program (recompilation will occur automatically).

In the Message window, Turbo Basic displays in increments of 20 the number of
lines and statements processed. The Run window displays the program output.

Press Alt-F5 to zoom the Run window while running a program.

The Compile Command

The Compile command compiles the program currently in the editor. Compilation
results in a program resident in memory (the default), in an .EXE file, or in a .TBC
(chain) file, depending on the current setting of the Compile to switch in the
Options pull-down menu.

Press C (or press Enter when positioned on this option) to begin compilation. If a
Main file is not specified, the loaded file is compiled.

If a Main file has been selected, you are prompted whether you want to save the
current work file (if the file in the editor has been modified). The Main file is then
loaded and compiled.

As the compilation proceeds, Turbo Basic displays in the Message window the
number of lines and statements that have been processed in increments of 20.
Ctrl-Break aborts the compilation.

If an error is detected, you are placed in the editor at the point in the program
where the error occurred. A description of the error appears on the status line of
the editor. Correct the offending statement and then recompile.

The Options Command

The Options command provides a pull-down menu of compiler options (see Figure
3-4). These options are global, controlling the entire compilation unless overridden
by internal source program metastatements.

Turbo Basic: The Program 47

./--------------------~

rtessa,e ---.11==_ .. 0 ==
FI-Help F5-Z0OM "-"ext F7-Goto SCIOLL-Size/Move A1t-X-Exit

"

~---------------------~

Figure 3-4 Options Menu

Compile to
This setting lets you compile your programs to Memory, an EXE file, or a Chain
file. Press C and Enter (or you can press just Enter) to reach the pop-up menu listing
these options, then use the arrow keys or press the key that corresponds to the
highlighted uppercase letter to make your choice.

The default, Compile to Memory, is best for program debugging and testing,
since it produces the fastest results.

The EXEcutable file setting causes the compiler to create programs that can run
from the operating system (programs with the .EXE extension). Normally, this
mode is selected after a program has been debugged, although certain features of
the language (for example, CHAINing) can only be tested from DOS.

The Chain file setting produces files (with the .TBC extension) suitable for
CHAINing or RUNning from a Turbo Basic-created .EXE file. These files don't
include library routines, so they can't be run independently.

Turbo Basic has several code generation switches accessed through the Options
menu. Each switch defaults to off, and produces by default the fastest, smallest,
and most versatile programs possible. You may choose to turn on some or all of
these switches during your program's development and debugging stages. To reach
any option, use the arrow keys or press the highlighted uppercase letter of your
choice. These options can be saved to a configuration file via the Setup menu.

You can toggle on and off the following options by pressing Enter when posi­
tioned at the desired item:

• 8087 required

• Keyboard break

48 Turbo Basic Owner's Handbook

• Bounds

• Overflow

• Stack test

8087 required
Tum on this option when you're using an 8087 coprocessor chip for program execu­
tion. With this option on, Turbo Basic generates the best possible code for Hoating­
point operations, both fast·and compact, using inline 8087 statements. The disad~
vantage is that a program generated with this option on won't run on a machine
without an 8087.

With the 8087 option off {the default), programs can go both ways; that is, if an
8087 is available, the program will use it. If not, the program will use software
routines to accomplish the same thing (albeit more slowly).

Note: In some cases, a program will read that your machine has an 8087 chip
when it really doesn't; for example, if you've set the switch on for 8087 but have yet
to install the chip. This will either cause Turbo Basic to hang when running a
program or to generate compile-time errors when compiling. Environment vari­
ables solve this problem nicely. Add the following to your AUTOEXEC.BAT file:

SET87=no

Take a look at Appendix G, "A DOS Primer," for more information on environment
variables and AUTOEXEC.BAT files.

Keyboard break .
If you want to interrupt a program with Ctrl-Break, tum this option on. Note that
this applies to Ctrl-Break only, not Ctrl-C; Ctrl-C cannot interrupt a Turbo Basic pro­
gram. Keep in mind that interrupting a program with Ctr/~Break is final-there is
no way to continue execution later.

It is also important to note that Ctrl-Break doesn't take effect until.the program
outputs text (not graphics) to the screen or printer or performs keyboard input.
This means that you cannot interrupt sequences that don't perform I/O; for exam­
ple:

TightLoop: GOTO TightLoop

runs until you reset the system. (However, to save you from this tight loop problem,
we have equipped Turbo Basic with an Auto save edit option. In other words, you
can set this option on so that if you need to exit from a program by rebooting, you
can still manage to save your program. Refer to "The Setup Menu.")

You can use the follOwing options for trapping certain types of run-time errors.
Normally, when a program is in the development phase, you'll want all of these
options turned on so that you can catch any problems. When your program is
debugged, turn these options off to generate a final program version that is faster
and requires less memory.

Turbo Basic: The Program 49

Bounds
If turned on, this option causes the compiler to generate array-sub script-checking
code. Subscript-checking code ensures that a subscript is appropriate, given the
size of the array it is about to be used ont before reading or writing the indicated
element. With Bounds checking on, a Subscript range error (error 9) is reported
whenever your program attempts to use a subscript too· large or too small for a
given array.

For example, consider this program:

DIM myArray(100)
x = 114
y = myArray(x)

myArray doesn't have a 114th element, although this blunder won't be caught by
the compiler. However, if the program is compiled with Bounds testing turned on,
a Subscript range error occurs when the third line is executed.

If you run this program with bounds checking turned. off, no error is reported,
and the value loaded into y is whatever is in'memory.a few bytes beyond the last
element of myArray. Writing to a nonexistent array element'is even worse, since
memory used to store who-knows-what is silently overwritten.

Note that the compiler always reports constant out-of-range subscripts. The fol­
lowing program won't compile, regardless of the value of the Bounds switch:

DIM myArray(lOO)
y = myArray(114)

Overflow
Overflow results when an arithmetic operation produces a value beyond the stor­
age capacity of integers (- 32,768 to + 32,767). For example, the code fragment

x% = 22555
x% = x% + 19000

overflows the + 32,767 limit of integer variables. If you compile this program with
Overflow checking on, an Overflow run-time error is generated. However, with
checking off, an erroneous value is assigned to x%, and execution continues as if
nothing had happened (which the rest of your program probably won't appreciate).

Watch out for intermediate overflow; for example:

y% = 20000 : x% = y%
z = (y% + x%) * 2.1

Even though the ultimate result of expression (y% + x%) * 2.1 easily fits into
single precision floating-point format, overflow occurs when y% and x% are added
byinteger routines before the result is converted to single precision and multiplied
by 2.1. Use the CSNG and CDBL functions to force integer operations to be car­
ried out in floating-point form.

50 Turbo Basic Owner's Handbook

Note that Overflow checking occurs for integers, long integers, or either of the
floating-point types; however, integers have some exceptions (for instance, register
calculations).

Stack test
Turning this switch on causes Turbo .Basic to generate code that checks. for stack
collisions upon entry to each subroutine, function, or procedure. If you suspect that
your programs are running out. of stack space, compile with this switch turned on.
To allocate more stack space, use the $STACK metastatement.

The last two entries in the Options menu are Parameter line and Metastate­
ments.

Parameter line
Selecting P causes Turbo Basic to prompt for the string that COMMAND$ will
return the next time a program is run. This allows you to simulate command line
information to assist you in debugging from within Turbo Basic. Pressing Enter
after entering your string and then pressing Esc returns you to the main menu.

Metastatements
The last of the options in the Options menu, Metastatements, has its own pop-up
menu, shown in Figure 3-5. You can select any option by pressing 5 for Stack, M for
Music, or C for the Communications option; otherwise, you can use the arrow keys
and press Enter when positioned on the desired option. Note that your source
program can override these settings.

~
~ •• un icat ions

.------ rtessage ------1jijiilt-~ I

Fl-He I p FS-Zoo. '''-"ext F7-Goto SCIOLL-S i ze/Move Alt-X-Exit

.--------------------~/.

Figure3-5 Metastatements Pop-Up Menu

• Stack size is used to (re)define the stack size. The default is 1024 decimal or 400
Hex bytes (1 paragraph is 16 bytes). When you press 5, you are prompted for a
new stack size in the interval 400 to 7FFE Hex bytes. (See the $STACK metas­
tatement in Chapter 5, "Turbo Basic· Reference Directory.")

Turbo Basic: The Program 51

• Music buffer is the size of the background music buffer. If you're not using
SOUND or PLAY, then your resulting code will be smaller if you set this to zero.
The minimum is 0; the maximum is 4096 notes. Note that 1 note equals Bbytes;
the default is 32 notes or 256 bytes. (See the $SOUND metastatement in Chap­
ter 5.)

• Communications refers to the receive buffer for each communications port. (In
some programs, you can use the $COMn metastatement to change the allocation
of either buffer.) The .minimum is 0; the maximum is 32767; the default is 256
bytes.

The Setup Command

Select Setup when you want to inspect any of the setup parameters, change them,
or record the current configuration permanently in a .TB file. The Setup menu is
shown in Figure 3-6.

Ft-Help FS-Zoo.-Next F7-Goto SCIOLL-Size/.ove Alt-IC-Exit

\,--------------------~/./
Figure 3-6 Setup Menu

Colors
Use this entry to define the colors of one or more system boxes, menus, or windows.
Press C or Enter to bring up the pop-up menu and select Windows, .. Menus, or
System boxes (see Figure 3-7) . Three more pop;..up menus are available to help you
further define changes to the selected window, menu, or box.

52 Turbo Basic Owner's Handbook

.... ---_._----- .-

ltes 'e -------'1'-----1 .. ---.1

~----------------~
F1-He I p F!i-ZOIlll Pf.-Next n-Goto SCIOLL-S i ze/.ove Alt-X-Exit

... ,--'

Figure 3-7 Colors' First Pop-Up Menu

As an example, if you select Menus from the first pop-up menu, you must choose
whether to define the Mainlpull-downs, the First pop-up, Second pop-up, or Third
pop-up. If you choose Main/pull-downs, another pop-up appears so you can deter­
mine how to alter your selection. Your options are Title, Border, Normal text, First
letter, Selection bar, and Restore defaults (see Figure 3-8) .

. /.---------------------------------------~".

F1-Help F!i-Zoo. Ff.-Next n-Goto SCIOLL-Size/llDve Alt-X-Exit

.. ---.---------------------------------------~.

Figure 3-8 Colors' Second Pop- Up Menu

Once you have decided what aspect of the menu to change, say, for example, you
choose Selection bar, a palette selection box appears on your screen. Use the arrow
keys to select the desired color from the color palette. Press Enter to make your
choice and then press Esc. The window you have selected reflects the current color
value.

Turbo Basic: The Program 53

Directories
The Include, Executable, and Turbo entries define a drive and path for each of the
three directories used by the system. The default directory is wherever you happen
to be when you start Turbo Basic.

When selecting a directory, you are prompted for a drive and a path. Type in the
drive and/or path, press Enter, and Turbo Basic accepts your specification. If you
change your mind about which directory you've chosen and want to res elect, you
can press Esc at any point prior to leaving the system box and before pressing Enter
and be returned to the directory selections.

The Include directories are used for files that contain the Include compiler
directive. You can specify multiple directories by separating each one with a semi­
colon.

The Executable directory is used for the .EXE and .TBC files generated by the
Turbo Basic system, as well as for compiler-created temporary files. You can only
select one directory at a time.

The Turbo directory is used for the Turbo Basic system itself; that is, for the
system file TB.EXE, the configuration files (.TB), and the help files (TBHELP.
TBH). Again, you can only select one directory at a time.

Miscellaneous
Pressing M brings up a pop-up menu with two special parameters:

• Auto save edit. Toggle this on when you want to automatically save your current
work file before running a program.

• Backup source files. Toggling this on will automatically back up your files. Tog­
gle it off when you don't want to create a backup file each time you do a save.

All compiler options and setup values are loaded and saved in a configuration file
(unless you specify TB.EXE). This is useful for tuning the development environ­
ment in different ways. For example, when debugging programs you might want to
turn all the compiler options on, as well as enlarge the Trace window and put the
global trace flag on. Another sample configuration might be for final production
compilations without the Trace or Run windows visible and all option toggles off.

The following options allow you to load and save, respectively, a new configura­
tion setup.

Load Options/Window/Setup
Press L to load a .TB file from the Turbo directory and reset the system according to
the parameters it contains.

54 Turbo Basic Owner's Handbook

Save Options/Window/Setup
S saves the current setup in a .TB file in the Turbo directory. The configuration can
be given any name, but the default (TBCONFIG.TB) is automatically used when
Turbo Basic is first started up.

The WiruWw Command

As stated in the main menu section, you can resize and move any active window by
pressing Scroll Lock, then hold down the Shift key and use any of the arrow keys to
move the window in the direction desired. By default, all windows are active until
you choose to close them.

Press W now to activate the Window command's pull-down menu, shown in
Figure 3-9.

TUl'bo Basic
~ile ~it !:pn i>apile :iJptions ;:'letup 311m!! W)ebug

I
P~n. i== r .. ilce

, ,

iiiiiiiiii

Edit
G: "O"AI1E. BAS Line 1 Coil Insert Indent Tab

tlessage -----'1=1 =_Iun ==1'_
FI-Help FS-ZOOM F"'-"ext F1-Goto SCIOLL-S i ze/Move Alt-X-Exit

\,.''"--------------------~.
Figure 3-9 Window Menu

Open
Press 0 and select Edit, Run, Message, or Trace from the pop-up menu. Open
makes the selected window "active." This means if the window had been previously
closed, it will be created, and in all cases the "opened" window will be brought to
the top of the screen. All other window commands now affect the active window.

Close
Close hides the currently selected window, though it can still be written to.

Turbo Basic: The Program 55

Next
The Next option lets you select another window as the active window without
returning to the Open option to select a new window. Repeatedly pressing Next
cycles through the windows. If in a window or main menu, the F6 key operates the
same as the Next option.

Goto
After opening a window, use Goto to enter that window without returning to the
main menu.

Tile
Press T to make all active windows occupy an equal portion of the screen. F6
switches the active window.

Stack
Use the Stack option to layer all open windows to the largest possible size. Press F6
to bring the last screen in the stack to the top of the screen.

Zoom
Selecting the Zoom option (or F5) makes the selected window fill the screen; how­
ever, this option only works on the Run and Edit windows. To regain your original
screen setup, toggle Zoom again.

The Debug Command

The Debug facility offers you two valuable options in its pull-down menu: Trace
and Run-time error.

Trace
Trace lets you globally set program tracing. This switch can be overridden with
embedded TRON and TROFF statements. Statement labels, line numbers, and
procedure and function names are displayed in this window.

When running in trace mode, use Alt-F9 to toggle between tracing and executing
your program. Pressing Alt-F 10 single-steps to the next line number, label, and so
on.

Run-time error
This option is used primarily to find errors that occur in .EXE or .TBC flIes (stand­
alone programs); no messages are given in these cases. If you are running a pro­
gram under the Turbo Basic system, all of the following is done automatically.

Invoke this function by pressing R or Enter. You are then asked to provide the
program counter value. Turbo Basic then determines the corresponding point in
the source code and puts the cursor on the offending statement.

56 Turbo Basic Owner's Handbook

When a run-time error occurs, Turbo Basic tells you the type of error (always in
numeric form, and in words if launched from within Turbo· Basic) as well as the
value in the processor's program counter at the time of the error.

By recompiling, Turbo Basic is able to calculate the point in a source program
corresponding to a run-time address in an object program. For example, consider
program TEST.BAS:

x = 256
PRINT CHR$(x)

Although this program is syntactically correct, and will therefore compile suc­
cessfully, a run-time error will be generated when the system attempts to print a
character with an ASCII value of 256:

Error 5 Illegal function call at pgm-ctr: 29

The Run-time error option uses this program counter value to find the statement
that caused the error.

57

58 Turbo Basic Owner's Handbook

c H A p T E R 4
Turbo Basic: The Language

Program· Structure

Turbo Basic programs consist of one or more lines of source text, each of which has
the following format:

[7inenumber] statement [:statement] ••. [I corrment]

or,

7 abe7:

or,

$metastatement

linenumber is an integer in the range 0 to 65,535, which may optionally identify
program lines. Turbo Basic takes a relaxed stance toward line numbers. They can
be freely interspersed with labels, and used in some parts of a program and not in
others. In fact, they need not follow in numeric sequence; although no two lines
can have the same number, and no line can have both a label and a number. Line
numbers are essentially labels.

statements are the building. blocks that makeup programs. Turbo Basic has
approximately 100 statement types (see Chapter 5, "Turbo Basic Reference Direc­
tory; for a complete list). A line can contain none, one, or several statements, each
separated by a colon.

59

The following are all valid lines of Turbo Basic:

Start:
10
$INCLUDE "CONST. TBS"
20 a = a + 1
a = a + 1 : b = b + 1

I label only
I line number only
I metastatement
I line number plus statement
I two statements

30 a = a + 1 : b = b + 1 : c = a + b I line number. three statements

The 249 column width of Turbo Basic is the only limit to how many statements
can appear on a line. Be aware, however, that some schools of programming
thought hold that it is· poor practice to put more than one statement on a line,
unless you .are required to do so by a particular syntactic construction (for example,
IFffHENIELSE). Unlike Interpretive BASIC, Turbo Basic charges no run-time
penalty for spacing and commenting your programs generously - spaces, com­
ments,and blank lines are ignored by the compiler.

All schools of thought hold that it is bad form to write lines wider than the editor
window's 80 column width (despite the editor's snazzy horizontal scrolling capabil­
ity). Go wider than 80 columns and you can't see everything on a line all at once. It
won't print·out very nicely, either.

In situations where syntax requirements force you to build a line longer than 80
characters (the FIELD statement is notorious for this), put an underscore (_) at the
end of the line. This· causes Turbo Basic to regard the next line as an extension of
the first. This line can be similarly continued. For example:

FIELD 11, 30 AS nameS, 30 ASaddress1$, 30 AS address2$,_
15 AS city$, 2 AS stateS, 5 ASzip$,_
30 AS comnents$

As far as the compiler is concerned, this is one big line starting with FIELD and
ending with comments$, without any underscore characters.

comment can be any text added to the end of a line and separated from the
program itself by a single quote ('). The single quote n can be used in place of
REM to delimit comments from the statements on that line unless it is at the end of
a DATA statement (DATA will think it's part of the string). Unlike REM, it isn't
necessary to separate. single quoted comments from adjoining statements with a
colon. For example, the follOwing are equal in the eyes of the compiler:

area = radiusA 2 * 3.14159
area = radiusA 2 * 3.14159

I calculate the area
: REM calculate the area

label must appear on a line by itself (though a comment may follow), and serves
to identify the statement immediately follOwing it. Labels must begin with a letter,
and can contain any number of letters and digits. Case is insignificant: THIS­
LABEL and ThisLabel are equivalent. A label must be followed by a colon; how­
ever, statements that refer to the label (for example, GOSUB) must not include the
colon.

60 Turbo Basic Owner's Handbook

Examples include:

SORTSUBROUTINE:
Ex;tPo;nt: a = a +
Sortlnvo;ces:
GOSUB Sortlnvo;ces

I illegal; labels must be alone on a line

I referencing a label

$metastatements are statements that operate at a different level than standard
statements. Called compiler directives, they always begin with a dollar sign ($).
Standard statements control the computer at runtime; metastatements, like the
selections in the Options menu, control. the comp~ler at compile time.

An example is the $INCLUDE metastatement, which causes the compiler to
introduce the contents of another file at a point indicated in the current file. Note
that Turbo Basic metastatements don't appear within REMarks like those of some
other BASIC compilers. There can be only one metastatement per line.

Turbo Basic: The Language 61

Thrbo Basic Character Set

Turbo Basic is something like an erector set for building programs. It provides you
with a set of fundamental language elements (reserved words and symbols) that
can be put together in infinite ways to build any software machine conceivable.

The letters A to Z or a to z, and the numbers 0 to 9 can be used in forming
identifiers (labels, variables, procedures, and function names).

The numbers 0 to 9; the symbols ., +, and -; and the letters E, e, D and d can
all be used in forming numeric constants.

The following symbols have specific meaning to Turbo Basic:

Symbol Description/Function

Equal sign (assignment operator, relational operator)
+ Plus sign (addition and string concatenation operator)

Minus sign (subtraction and negation operator)
* Asterisk (multiplication operator)
/ Slash (division operator)
\ Backslash (integer division operator)

Caret (exponentiation operator)
% Percent sign (integer-type declaration character)
& Ampersand (long integer-type declaration character and nondecimal base

descriptor)
Exclamation point (single-precision type declaration character)

Number sign (double-precision type declaration character)
$ Dollar sign (string-type declaration character, metastatement prefix)
() Parentheses (function/procedure arguments, arrays, expression prioritizing)
[] Square brackets (valid only for arrays)

Space (separator)
Comma (all-purpose delimiter)
Period (decimal point, filename extension separator)
Single quote (remark delimiter)
Semicolon (all-purpose delimiter)
Colon (statement delimiter)

? Question mark (PRINT substitute)
< Less than (relational operator)
> Greater than (relational operator)

Double quote (string delimiter)
Underscore (line continuation character)

62 Turbo Basic Owner's Handbook

Reseroed Words

Turbo Basic reserves the use of certain words for predefined syntactic purposes.
These reserved words cannot be used as labels, variables, named constants, or
procedure or function names, although your identifiers can contain them (see Table
4-1 on page 64).

For example, END is an invalid variable name, because it conflicts with the
reserved word END. However, ENDHERE and FRIEND are acceptable. Start­
ing an identifier with FN is also invalid, because it conflicts with the syntax for
user-defined functions.

Attempting to use a reserved word as an identifier produces a compile time
syntax error.

Turbo Basic: The Language 63

Table 4-1 Turbo Basic Reseroed Words
$COMI CLOSE ERR LOC POKE STRING$
$COM2 CLS ERROR LOCAL POS SUB
$DEBUG COLOR EXIT LOCATE PRESET SWAP
$DYNAMIC COM EXP LOF PRINT SYSTEM
$ELSE COMMAND$ EXPIO LOG PRINT # TAB
$ENDIF COMMON EXP2 LOGIO PSET TAN
$EVENT COS FIELD LOG2 PUT THEN
$IF CSNG FILES LOOP PUTS TIME$
$INCLUDE CSRLIN FIX LPOS RANDOM TIMER
$INLINE CVD FN LPRINT RANDOMIZE TO
$LIST CVI FOR LPRINT # READ TROFF
$OPTION CVL FRE LSET REG TRON
$SEGMENT CVMD GET MEMSET REM UBOUND
$SOUND CVMS GET$ MID$ RESET UCASE$
$STACK CVS GOSUB MKDIR RESTORE UNTIL
$STATIC DATA GOTO MKD$ RESUME USING
ABS DATE$ HEX$ MKI$ RETURN USR
ABSOLUTE DECR IF MKL$ RIGHT$ USRO
AND DEF IMP MKMD$ RMDIR USRI
APPEND DEFDBL INCR MKMS$ RND USR2
AS DEFINT INKEY$ MKS$ RSET USR3
ASC DEFLNG INLINE MOD RUN USR4
AT DEFSNG INP MTIMER SAVE USRS
ATN DEFSTR INPUT NAME SCREEN USR6
BASE DELAY INPUT # NEXT SEEK USR7
BEEP DIM INPUT$ NOT SEG USR8
BIN$ 00 INSTAT OCT$ SELECT USR9
BINARY DRAW INSTR OFF SERVICE VAL
BLOAD DYNAMIC INT ON SGN VARPTR
BSAVE ELSE INTERRUPT OPEN SHARED VARPTR$
CALL ELSEIF IOCTL OPTION SHELL VARSEG
CASE END IOCTL$ OR SIN VIEW
CDBL ENDMEM KEY OUT SOUND WAIT
CEIL ENVIRON KILL OUTPUT SPACES WEND
CHAIN ENVIRON$ LBOUND PAINT SPC WHILE
CHOIR EOF LCASE$ PALETTE SQR WIDTH
CHR$ EQV LEFT$ PALETTE USING STATIC WINDOW
CINT ERADR LEN PEEK STEP WRITE
CIRCLE ERASE LET PEN STICK WRITE #
CLEAR ERDEV LINE PLAY STOP XOR
CLNG ERDEV$ LIST PMAP STR$

ERL POINT STRIG

64 Turbo Basic Owner's Handbook

Numbers in Turbo·Basic

The care and feeding of numbers constitutes an important part of every program­
mingsystem. Turbo Basic, in keeping with the BASIC tradition, has been designed
to let you pretty much ignore technical considerations about internal numeric han­
dling. If you never give a thought to such matters as calculation speed, precision,
and memory requirement, your. programs will still. probably work as you expect.
However, an understanding of the underlying issues will help you write ·programs
that are faster, more accurate, and require less memory.

For efficiency, Turbo Basic stores and processes numbers in four different forms;
that is, it supports four unique numeric "types": integers, long integers, single­
precision floating point, and double-precision floating point.

Integers

The simplest and fastest numbers rattling around inside Turbo Basic programs are
integers. To Turbo Basic, an integer is a number with no decimal point (what
mathematicians callwhole numbers} within the range -32,768 to 32,767. These
values stem from the underlying 16-bit representation of integers: 32,768 is 215

•

Although this range limits the usefulness of integers, there are almost certainly a
few variables in every program you will write (such as the counters in FOR/NEXT .
loops) that can function within these constraints. If so, using integers produces
extremely fast and compact code. Your computer is uniquely comfortable perform­
ing integer arithmetic (for example, it does it fast), and each number requires only
2 bytes of memory.

The Overflow debugging switch in the Options menu lets you create programs
that automatically check and report incidences of integer variable overflow.

Umg Integers

In a significant extension to Interpretive BASIC, Turbo Basic supports a numeric
type known as long integers. To avoid round-off errors, long integers are the perfect
data type for financial applications. Like regular integers, long integers cannot con­
tain decimal points. Unlike integers, however, they span a vast range, from
- 2,147,483,648 to + 2,147,483,647 (- 231 to 23

\ or - 2 billion to + 2 billion). The
down side of this expanded range is that long integers· require 4 bytes of storage,
and calculating with them takes longer than with integers;

Turbo Basic: The Language 65

Long Integers are relatively efficient, and are definitely worth a close look, espe­
cially in machines that aren't 8087 -equipped. Depending on your application, deci­
mal points may be less important than you think. For example, you can define
monetary amounts in terms of pennies, and divide by 100 to display dollars. Values
as large as $20'million can be expressed this way.

Single-Precision Floating Point

Single-precision floating point (or simply single precision) may be the most versa­
tile numeric type within Turbo Basic. Single-precision values can contain decimal
points and have a phenomenal range: from 10-38 (a number very close to zero:
0.00000000000000000000000000000000000001) to 1038 (a gigantic number:
100,000,000,000,000,000,000,000,000,000,000,000,000), both positive and nega­
tive. You would be hard-pressed to dig up a quantity that wouldn't fit into a single­
precision number. Calculation speed isn't bad, although not as' quick as that for
long integers, and 4 bytes are required for each number.

The down side of single precision is that although single precision can represent
both enormous and microscopic numbers, it cannot handle beyond six-digit accu­
racy. In other words, single precision does a good job with figures like $451.21 and
$6,411.92, but $671,421.22 can't be represented exactly because it contains too
many digits. Neither can 234.56789 or 0.00123456789; a single-precision represen­
tation will come as close as it can in six digits: $671,421, or 234.568, or 0.00123457.
Depending on your application, this rounding off can be a trivial or crippling defi­
ciency.

Double-Precision Floating Point

Double precision is to single precision what long integers are to integers. They
take twice as much space in memory (8 bytes versus 4 bytes), and consequently
take longer to calculate and have greater range (10308

) and accuracy (16 digits
versus 6 digits for single precision).

The storage requirement of double-precision numbers becomes especially sig­
nificant when dealing with arrays. A double-precision, 5,000-element array
requires 40,000 bytes. An integer array with the same number of elements
occupies only 10,000 bytes.

Note: Turbo Basic uses the IEEE standard for floating-point arithmetic, not the
proprietary Microsoftformat used by Interpretive BASIC. You must therefore use
the special Microsoft/IEEE translation functions (CVMS, CVMD, MKMS$, and
MKMD$) to read andwrite.floating-point data contained in random files created

66 Turbo Basic Owner's Handbook

by Interpretive BASIC. (For more information, see the section, "Random Files,"
later in this chapter.

If you're not sure what floating-point type to use, we suggest double precision.
Internally, Turbo Basic's numeric engine runs most efficiently on double-precision
gas. Its transcendental functions,· such as COS or LOG, return double-:-precision
values. Single precision may still be best for large arrays, however, where its size
advantage becomes more pronounced.

Calculation and the 8087

The 8087 coprocessor (80287 on AT-type machines) dramatically closes the calcula­
tion speed gap between the numeric types offered. Since the 8087 does all calcula­
tions in double precision, regardless of type, it makes double precision even more
attractive.

Unlike Interpretive BASIC, Turbo Basic does not always round upward the frac­
tional part of a number. Turbo Basic treats in a special manner any number con­
taining a 5 in its fractional part: The number is. rounded toward the closest even
number. For instance,the number 0.5 would be rounded down to 0, the closest
even number. And the number 9.005 would also be rounded down to the closest
even number, which in this case would·be 9.000.

Since the most-typical method of rounding numbers always· rounds them
upward, Turbo Basic's method actually provides a more even·distribution.

Turbo Basic: The Language 67

Constants

Turbo Basic programs process two distinct classes of data: constants and variables
(discussed after this section). A variable is allowed to change its value asa program
runs. A constant's value is fixed at compile time and cannot change. during program
execution. Turbo Basic supports three types of constants: string constants, numeric
constants, and in an extension to Interpretive BASIC, a special form of integer
constant, named constants.

String Constants

String constants are simply groups of characters surrounded by double quotes; for
example:

"This is a string"
"3.14159"
"Tim Jones, Attorney at law"

If a string constant is ,the last thing on a line, the closing quotes are optional:

PRINT "This is sloppy but legal.

Numeric Constants

Numeric constants represent numeric values, and consist primarily of the digits 0
through 9 and a decimal point. Negative constants need a leading minus sign (-);
a plus sign (+) is optional for positive constants. The amount of precision you
supply determines the internal representation (integer, long integer, single preci­
sion, or double precision) Turbo Basic will use in processing that constant.

If the value contains no decimal point and is in the range -32,768 to 32,767, then
Turbo Basic uses its integer type.

If the value is an integer in the range - 231 to 231
-

1 inclusive (about - 2 billion to
+ 2 billion), yet outside the range for integer constants, Turbo Basic uses its long
integer type. (Note: The long integer type is not available in Interpretive BASIC.)

If the value contains a decimal point, and has up to six digits, Turbo Basic uses
its single-precision floating-point type.

68 Turbo Basic Owner's Handbook

A numeric constant with a decimal point and more than six digits. or a whole
number too large to be a long integer. is stored in double-precision floating-point
format. For example:

345.1

1.10321

1.103213

3453212.1234

Single precision
Single precision
Double precision
Double precision

Identifying Integer Constants in Other Bases

It is sometimes convenient to express integers in bases other than decimal. This is
particularly true when expressing information that is binary in character; for exam­
ple. machine addresses. Turbo Basic allows you to specify integer data in hexadeci­
mal (base 16). octal (base 8). and binary (base 2) notation. Note that long integers
can't be represented with the alternate notation.

Hexadecimal constants consist of up to four characters. where each character is
from the set 0 through 9 and A through F. and must be preceded by &11.

Octal constants contain only the characters 0 through 7. can be up to 6 digits
long. and must be preceded by &0 (or &Q or simply &).

Binary constants contain only Os and Is. can be up to 16 digits long, and must be
preceded by &B.

Each of the following constants represents the integer. 256 decimal:

256
&H100
&0400
&400
&B100000000

Named Constants

Turbo Basic allows you to refer to integer constants by name. This is an enhance­
ment to Interpretive BASIC. something like the CaNST feature of Pascal. Only
integers can be named in this way.

To name an integer constant, precede its identifier with the percent sign (%) and
assign an integer constant to it. Unlike a variable. you can use a named constant on
the left side of an assignment statement exactly once. and only a constant value (not
a variable or expression) may be assigned to it. For example:

%debug = -1
debug% = 12409
PRINT %debug, debug%

Turbo Basic: The Language

I a named constant, value -1
I an integer variable
I they are separate entities ••.

69

Use named constants for conditional compilation Hags (see the metastatements
in Chapter 5) and to increase the readability of your programs. (You can also use
named constants to reduce the incidence of "magic numbers" in your programs.
Magic numbers are mysterious values that mean something to you when you first
write a program, but not when you come back to it six months later.)

70 Turbo Basic Owner's Handbook

Variables

A variable is an identifier that represents a numeric or string value. Unlike a con­
stant, the value of a variable can change during program execution. Like labels,
variable names must begin with a letter and can contain any number of letters and
digits. Be generous in naming important variables. Unlike Interpretive BASIC, in
Turbo Basic long variable names don't steal run-time memory. The variables
EndOfMonthTotals and emt both require exactly 4 bytes of run-time storage.

Turbo Basic supports five variable types: string, integer, long integer, single preci­
sion, and double precision. A variable's name determines its type. Usually, variable
typing is accomplished by appending a type declaration character to the variable
name.

String variables end with a dollar sign ($):

a$ = "Turbo Basic"

Integer variables use a percent sign (%):

a% = 15

Long integers use the ampersand (&) as a type identifier:

a& = 7000

Single-precision floating-point variables use the exclamation point (!):

a! = 1.1

Double-precision floating-point variables end with the number sign (#):

a# = 1.031

If you don't include a type declaration character with a variable, Turbo Basic will
use its default type, single precision. To make another type the default, use the
DEFtype statement. For example:

a# = 1.031 I a# is a double precision variable
b = 16.5 I b is single preciSion
a% = 3 I a% is an integer variable; a# is a separate variable
DEFINT m I default type for variables beginning with m now integer
m = 16 I m is an integer ••.

Note that a%, a#, a&, a$, and a! are five separate variables.

Turbo Basic: The Language 71

Arrays

An array is a group of string or numeric data sharing the same variable name. The
individual values that make up an array are called elements. An element of an array
can be used in a statement or expression wherever you would use a regular string
or numeric variable. In other words, each element of an array is itself a variable.

At program startup time, each element of each numeric array is set to zero.
String arrays are set to the null string (" "). DIMensioning a dynamic array also
clears each element. If a program is later restarted with the RUN statement, this
initializing is repeated.

Declaring the name and type of an array, as well as the number and organization
of its elements, is performed by the DIMension statement. For example:

DIM payments(55}

creates an array variable payments, consisting of 56 single-precision elements,
numbered 0 through 55. Array payments and a single-precision variable also
named payments are separate variables.

Subscripts

Individual array elements are selected with subscripts, integer expressions within
parentheses to the right of an array variable's name. For example, payments(3) and
payments(44) are two of payment's 56 elements. Normally, the first element of an
array is selected with a subscript value of zero, although this can be changed with
either the DIM or OPTION BASE statements; for example:

I This DIM statement declares a 56-element array
I with subscript bounds of 0 to 55.
DIM payments(55}

OPTION BASE 1
I This DIM statement declares a 55-element array
I with subscript bounds of 1 to 55 because of the
I OPTION BASE statement.
DIM payments(55)

If you use an array in a program without DIMensioning it, Turbo Basic proceeds
as though you had declared an eleven-element array (subscript values 0 through
10). However, we strongly recommend that you take the time to explicitly dimen­
sion every array your program uses.

72 Turbo Basic Owner's Handbook

In an enhancement to Interpretive BASIC array handling, Turbo Basic allows
you to define a range· of subscript values rather than just an· upper limit. For
example, the DIM statement

DIM b(50:60)

creates array b, consisting of eleven single-precision elements numbered 50
through 60.

The statement:

DIM c(50:60, 25:45)

creates the two-dimensional array c, containing 231 (ll * 21) elements.

Turbo Basic's subscript range declaration capability allows you to model a pro­
gram's data structures more closely to the problem at hand.

For example, consider a program tracking 19th century birth statistics. This pro­
gram's central data structure is a single-precision array of 100 elements that con­
tain the number of babies born in each year of the last century. Ideally, you would
create an array that used subscript values equal to the year in which the births
occurred (for example, births(1851) represents how many babies came into the
world in 1851), so that a code passage like

DIM births(1899)

FOR n =1800 TO 1899
PRINT "There were" births(n) "births in" n

NEXT n

would be as straightforward as possible. Unfortunately, DIM births(1899) creates a
1,900-element array, of which the first 1,800 are waste. Traditionally, BASIC pro­
grammers have tackled this problem by declaring the array as

DIM births(99)

and by playing games with subscripts:

FOR n = 1800 TO 1899
PRINT "There were" births(n-1800) "births in" n

NEXT n

While this sort of thing works, it complicates things and slows programs down,
because suddenly there's 100 subtractions to do that weren't there before.

The related OPTION BASE statement can also be used to determine the lowest
element of an array, although the range mechanism is more powerful and pre­
ferred.

Turbo Basic: The Language 73

String Arrays

The elements of string arrays hold strings instead of numbers. Each string can be a
different length, from 0 to 32,767 characters. The total string space for strings and
string arrays is 64K. For example:

DIM a$(50)

creates a sequence of 51 independent string variables:

a$(O) = "A medium length string"
a$ (1) = 1111

la 21 character string

a$(2) = SPACE$(20000)
la null string (the default)
la 20,000 character string

a$(50) "The last one"

Multidimensional Arrays

Arrays can have one or more dimensions, up to a maximum of 8. A one-dimensional
array such as payments is a simple list of values. A two-dimensional array repre­
sents a table of numbers with rows and columns of information. Multidimensional
arrays with no ready analog in the real world are equally possible:

DIM a(15) (a one-dimensional list)
DIM b(15,20) (a two-dimensional table)
DIM c(5,5,10,20,3) (a five-dimensional Blurfquatz)

The maximum number of elements per dimension is 32,768.

Array Bounds Testing

Turbo Basic tries hard to keep you from getting into trouble with bad subscripts
(that is, subscripts that are too large or too small for a given array). And the com­
piler tells you about bad constant subscripts:

DIM a(50)
a(51) = 33

This program won't compile, because Turbo Basic won't knowingly generate
code to access the 52nd element of a 51-element array. However, if you use vari­
ables as subscripts, the compiler won't find the mistake:

DIM a(50)
n = 51
a(n) = 33

74 Turbo Basic Owner's Handbook

Even though this code compiles without error, you can still trap the out of range
reference in line 3 at runtime by compiling with the Bounds debugging switch
turned on. (See the Options Command" in Chapter 3 for more information on
subscript checking.)

Array Storage Requirements

For technical reasons relating to execution speed and code size efficiency, Turbo
Basic limits the size of individual arrays to 64 Kbytes, although a program can have
as many 64K arrays as memory permits. The maximum number of elements an
array may contain is a function of its type, as shown in the following:

Type

Integer
Long Integer
Single Precision
Double Precision
String

Storage Requirement

2 bytes per element (32,768 per 64K)
4 bytes per element (16,384 per 64K)
4 bytes per element (16,384 per 64K)
8 bytes per element (8,192 per 64K)
4 bytes per element (16,384 per 64K)

Note: Only pointer and length information is contained in a string array ele­
ment. The string data itself is stored in string space, and occupies as many bytes as
the string has characters. String space can contain a maximum of64K characters.

Dynamic Allocation

Turbo Basic supports dynamic memory allocation. Dynamic allocation means creat­
ing variable-size arrays at runtime, rather than defining fixed-sized (or static)
structures at compile time.

This allows you to construct arrays that are exactly as large as they need to be to
handle data the program is given at runtime. Once their function is complete,
memory allocated to dynamic arrays can be given back and used again.

To create a dynamic array, simply use variable arguments in a DIM statement; if
the memory is available, the array will be created. When your program is finished
using that array, use the ERASE statement to get rid of it so the memory can be
used for other purposes.

Turbo Basic: The Language 75

For example:

I figure out how many records are in an inventory file,
I then dimension dynamic arrays and load them up
OPEN "PARTS.DTA" AS #1 LEN = 56
count = LOF(I) / 56
DIM partNo(count), desc$(count), quan(count), cost(count)
GOSUB LoadArrays
GOSUB UseArrays
ERASE partNo, desc$, quan, cost

To take advantage of Turbo Basic's dynamic arrays, you need only make a judg­
ment call about each array in your program: static or dynamic? Is its size fixed
according to the design of the program, or is it dependent on some parameter that
isn't known until runtime? For example, array births from the earlier example is
best created as a static structure - it's always going to be exactly 100 elements long.

The pitfall of dynamic arrays is that you may try to DIMension a large array and
fail because there isn't enough free memory around at runtime to fulfill your
request. If a program contains only static arrays and has enough memory to
get started, it can't run out; its arrays are created before the program even begins
to run.

A program using dynamic arrays must therefore be aware that there may not be
enough memory available at runtime to declare the arrays desired. Before attempt­
ing to DIMension a dynamic array, use the FRE(-1) function to see if there's
enough room for it.

Declaring Static or Dynamic Arrays

The $DYNAMIC and $STATIC metastatements control the default type of arrays
in a program. Usually a program will only contain one of these metastatements. By
default, the compiler assumes the $STATIC attribute.

The storage class of an array can also be set by using the STATIC and
DYNAMIC attributes within a DIM statement. In addition, an array is always
dynamic if an expression is used in the associated DIM statement. For example:

$STATIC
DIM a(40), b(20,20)
DIM DYNAMIC c(20)
DIM den)
$DYNAMIC
DIM e(50)

I from here on, assume arrays are static
I therefore a and b are both static arrays
I DYNAMIC attribute overrides $STATIC default
I using a variable in DIM also forces DYNAMIC attribute
I from here down, compiler assumes arrays are dynamic
I therefore e is dynamiC

Dispose of dynamic arrays with the ERASE statement. ERASEing a static array
doesn't reclaim any memory, but does set its elements to zero (for string arrays, to
the null string).

76 Turbo Basic Owner's Handbook

Expressions

An expression consists of operators and operands that perform certain operations
when an expression is evaluated. There are two fundamental types of expressions
in Turbo Basic: string and numeric.

A string expression consists of string constants, string variables, and string func­
tions (those that end with "$"), optionally combined with the concatenation opera­
tor, the plus sign (+). String expressions reduce to a string; that is, a sequence of
ASCII characters of known length. Examples of string expressions include:

"Cats and dogs"
a$
a$ + z$
LEFT$(a$ + z$)
a$ + MID$("Cats and dogs",5,3)
RIGHT$(MID$(a$ + z$,1,6),3)

Numeric expressions consist of numeric constants, variables, and functions,
optionally separated by numeric operators. Numeric expressions always reduce to a
value of one of the four numeric types (integer, long integer, single precision, dou­
ble precision). Examples of numeric expressions include:

37
37/15
a
37/a
SQR (37/a)
SQR «c + d)/a} * SIN (37/a)

In forming numeric expressions, you should be aware that certain operations
will be performed first. Following is a list of the order of expression evaluation.
Exponentiation has the highest priority; IMP the lowest.

• Exponentiation n
• Negation (-)

• Multiplication, Floating-Point Division (*, I)

• Integer Division (\)

• Modulo (MOD)

• Addition, Subtraction (+ , -)
• Relational Operators (<, < =, =, > =, >, < >)

• NOT

• AND

• OR, XOR

• EQV

• IMP

Turbo Basic: The Language 77

For example, the expression 3 + 6 /3 evaluates to 5, not 3. Because division has
a higher priority than addition, the division operation (6/3) is performed first.

To handle operations of the same priority, Turbo Basic proceeds from left to
right. For example, in the expression 4 - 3 + 6, subtraction (4 - 3) is performed
before the addition (3 + 6), producing the intermediate expression 1 + 6.

Operations inside parentheses are of highest priority and are always performed
first; within parentheses, standard precedence is used.

Operators

The numeric operators are classified into three major groups: arithmetic, relational,
and logical.

Arithmetic Operators

Arithmetic operators perform normal mathematical operations. Table 4-2 lists the
Turbo Basic arithmetic operators in precedence order.

Table 4-2 Arithmetic Operators

Operator Action Example

Exponentiation lOA4

Negation -16

*,/ Multiply, FP divide 45 * 19, 45 / 19

\ Integer division 45 \ 19
MOD Modulo 45 MOD 19

+,- Add, Subtract 45 + 19, 45 - 19

A couple of these operators merit a word of explanation. The backslash (\) repre­
sents integer division. Integer division rounds its operands to integers and pro­
duces a truncated quotient with no remainder; for example, 5 \ 2 evaluates to 2,
and 9 \ 10 evaluates to O.

The remainder of an integer division can be determined with the MOD (mod­
ulo) operator. (Note that the MOD operator is only valid for short integers.) The
MOD operator is like integer division except that it returns the remainder of the
division rather than the quotient; for example, 5 MOD 2 equals 1, and 9 MOD 10
equals 9.

78 Turbo Basic Owner's Handbook

Relational Operators

Relational operators allow you to compare the values of two strings or two numbers
(but not one of each) to obtain a Boolean result of TRUE or FALSE. The result of
the comparison is assigned an integer value of - 1 if the relation is TRUE, and 0 if
the relation is FALSE. For example:

PRINT 5 > 6, 5 < 6, (5 < 6) * 15

prints out 0, - 1, and - 15. Although they can be used in any numeric expression
(for example, a = (b > c) / 13), the numeric results returned by relational opera­
tors are generally used in an IF or other decision statement to make a judgment
regarding program flow. Table 4-3 lists the relational operators.

Table 4-3 Relational Operators
Operator Relation Example

Equality x = y
<> Inequality x<>y
< Less than x < y
> Greater than x > y
<= Less than or equal to x<=y
>= Greater than or equal to x>=y

When arithmetic and relational operators are combined in an expression, arith­
metic operations are always evaluated first. For example, 4 + 5 < 4 * 3 evaluates
to -1 (TRUE), because the arithmetic operations are carried out before the rela­
tional operation, which ultimately tests the truth of the assertion: 9 < 12.

Logical Operators

Logical operators perform logical (Boolean) operations on integers. Used with rela­
tional operators, they allow you to set up complex tests like

IF day> 29 AND month = 2 THEN PRINT "Error in date"

This statement performs a logical AND on the integer results returned by the
two relational operators. (The AND operator has a lower priority than the " > " and
"=" relational operators, so parentheses aren't needed.) For example, if day = 30
and month = 2, both relational operators return TRUE (- 1). The underlying
binary representation of integers is such that - 1 has a value of &HFFFF (all bits
turned on); 0 is &HOOOO, all bits turned off.

The AND operator then performs a logical AND on these two TRUE results:

1111 1111 1111 1111 (-1)
AND 1111 1111 1111 1111 (-1)

1111 1111 1111 1111 (-1)

producing a TRUE (nonzero) result.

Turbo Basic: The Language 79

The OR (sometimes called inclusive or) operation returns TRUE if one or both
of its arguments are TRUE, and returns FALSE only if both arguments are
FALSE. For example:

-lOR 0 is TRUE
o OR 0 is FALSE
5 > 6 OR 6 < 7 is TRUE

The XOR (exclusive or) operation returns TRUE if the values being tested are
different, and returns FALSE if they are the same. For example:

-1 XOR Ois TRUE
-1 XOR -1 is FALSE
5 > 6 XOR 6 < 7 is TRUE

The EQV (equivalence) function is the opposite of XOR. It returns TRUE if the
two logical values being tested are the same, and returns FALSE if they are not:

-1 EQV 0 is FALSE
-1 EQV -1 is TRUE
5 > 6 EQV 1 > 99 is TRUE

The IMP (implication) operator returns FALSE only if the first operand is
TRUE and the second one FALSE:

-1 IMP -1 is TRUE
o IMP -1 is TRUE
o IMP 0 is TRUE
-1 IMP 0 is FALSE

Note that the logical operators operate on integers, not long integers or Hoating­
point values. If the operands of a logical expression cannot be converted to inte­
gers, overflow occurs:

x = 500000
IF x OR y THEN GOTO Exit

This IF statement results in an overflow error when x cannot be successfully
converted to an integer.

Bit Manipulations
In addition to creating complex tests, logical operators permit control over the

underlying bit patterns of their integer operands. The most common operations are
AND, OR, and XOR (exclusive OR) masking.

AND masks are used to clear selected bits of an integer quantity without affect­
ing the other hits of that quantity. For example, to clear the most-significant 2 bits
in the integer value &H9700, use AND with a mask of &H3FFF; that is, the mask
contains all ones, except for the bit positions you wish to force to zero:

1001 0111 0000 0000 &H9700
AND 0011 1111 1111 1111 &H3FFF (the mask)

0001 0111 0000 0000 &H1700 (the result)

80 Turbo Basic Owner's Handbook

An OR mask sets selected bits of an integer without affecting the other bits. To
set the most-significant 2 bits in&H9700, use OR with a mask of &HCOOO; that is,
the mask contains all zeros, except for the bit positions you wish to force to one:

1001 0111 0000 0000&H9700
OR 1100 0000 0000 0000 &HCOOO (the mask)

1101 0111 0000 0000 &HD700 (the result)

An XOR mask complements (reverses) selected bits of an integer quantity with­
out affecting the other bits of that quantity. For example, to complement the most­
significant 2 bits in &H9700, use XORs with a mask of &COOOO; that is, all zeros,
except for the positions to be complemented:

1001 0111 0000 0000 &H9700
XOR 1100 0000 0000 0000 &HCOOO (the mask)

0101 0111 0000 0000 &H5700 (the result)

XOR operations are common in graphics, since they permit an object to be
moved nondestructively against a complex background. XOR the object once to
draw it against the background, then XOR the same object in the same place to
erase it, restoring the background to its original condition.

Strings and Relational Operators

Turbo Basic allows you to compare string data. String expressions can be tested for
equality as well as for "greater than" and 1ess than" alphabetic ordering.

Two string expressions are equal if and only if they contain exactly the same
characters in exactly the same order. For example:

a$ = "CAT"
PRINT a$ = "CAT", a$ = "CATS", a$ = "cat"

String ordering is based on two criteria and in this order: (1) the underlying
ASCII values of the characters they contain~ and (2) length. For example, A is less
than B because the ASCII code for A, 65, is less than the code for B, 66. Note,
however, that B is less than a because the ASCII code for each lowercase letter is
greater than the corresponding uppercase character (exactly 32 greater). When
sorting mixed uppercase and lowercase information, you may choose to use the
UCASE$ or LCASE$ functions to keep case differences from interfering with the
sort.

Length figures in only ifboth strings are identical up to the length of the shorter
string, in which case the shorter one evaluates as less than the longer one; for
example, "CAT" is less than "CATS."

Turbo Basic: The Language 81

Subroutines, Functions, and Procedures

Turbo Basic-program structure can be simplified by using subroutines, procedures,
andfunctions. A subroutine is a labeled set of instructions to be executed when a
eOSUB is reached. A procedure is like a miniprogram (also referred to as a sub­
program) that performs some vital part of your main program. A function is a set of
routines that return a string or· numeric result,usually related to the parameters
passed to the function. By placing complex and/or frequently used code into these
structures, you can both simplify and shorten your programs.

Turbo Basic's procedures and user-defined functions go beyond the simple
structuring offered by subroutines. Although millions of BASIC programs have
been written with eOSUB/RETURN as their primary organizational device, we
encourage you to use these more advanced structures.

The procedures and functions in Turbo Basic offer true recursion, parameter
passing, and access to local, static, and global variables. If you've never experi­
enced the benefits of parameter passing, local variables, and recursion, you owe it
to yourself to give these a try.

Procedures and functions are more alike than they are different. The most
obvious distinction between them is that functions return a value, and are there­
fore invoked implicitly by appearing within expressions (with "FN" tacked on the
front). Procedures do not return a value, and must be explicitly invoked with the
CALL statement. For example:

a = b t FNCubeRoot(c)
CALL OutChar(a)

Subroutines

I a function call
I a procedure call

Subroutines are the traditional method of subdividing BASIC programs, consisting
of labeled groups of statements ending with a RETURN. To execute a subroutine,
you can use a eOSUB statement to indicate the label associated with the subrou­
tine's first statement. When a RETURN statement is encountered, control returns
to the statement immediately after the calling eOSUB. For example:

GOSUB AddMonths
PRINT total
END

AddMonths:
total = 0
FOR i = 1 TO 12

tota 1 = total t month (i)
NEXT i

RETURN

82 Turbo Basic Owner's Handbook

Functions

There are two types of functions: predefined functions (such as COS and LEFT$),
which are defined by the language, and user-defined functions, which can be
either single or multiline. (For more detail on predefined functions, see the specific
entries in Chapter 5, "Turbo Basic Reference Directory.'")

The syntax for defining·a single-line function is

DEF FNidentifier [(parameter 1ist)] = expression

where identifier is a user-defined name for a specific expression. 'parameter list is
an optional comma-delimited sequence of one or more identifiers that represent
data objects to be sent to the function when it is called at runtime. (You are limited
to 16 parameters for any function.) expression defines the.processing to attain the
value the function returns.

For example, consider a meteorologic program that must .constantly convert
between degrees Celsius (which is used internally) and degrees Fahrenheit (which
is displayed on the screen and accepted from the keyboard). Single-line functions
are a boon to this type of program:

DEF FNCtoF{degreesC) = (1.8 * degreesC) + 32
DEF FNFtoC(degreesF) = (degreesF - 32) * .555555

To display variable temperature, which by convention always holds Celsius
values, useFNCtoF (read as "function C to F") in any statement that can accept a
numeric expression; for example,PRINT:

temp = 100
PRINT FNCtoF(temp)

To convert your values from Fahrenheit to Celsius, use FNFtoC:

INPUT "Entertoday's high: ", th
temp = FNFtoC{th)

Turbo Basic's multiline functions take,on a larger role than that permitted by. the
simple single-line functions of Interpretive BASIC. Turbo Basic allows a function
to spread over many program lines and in effect to be used like a subroutine that
also happens to return a value. The formal syntax for declaring a multiline func­
tion is

DEF FNidentiffer[{parameter 7ist)]
[variab7e dec7aratfon]

. statements

[EXIT DEF]
[FNfunction name = expression]

ENDDEF

Turbo Basic: The Language 83

where identifier declares the function name. parameter list is an optional comma­
delimited list of formal parameters that represent variables to be passed' to the
function when it is called.

To illustrate, consider multiline function Factorial, a statistician's best friend.
(You may recall from a past classroom experience that the factorial of positive inte­
ger n, written as nl, is the product of the positive integers less than or equal to n.
For instance, 61 = 6 * 5 * 4 * 3 * 2 * 1 = 720.)

Factorials are not included in Turbo Basic's set of built-in math operators, but
multiline functions pick up the slack:

100 OEF FNFactorial#(x%)
110 LOCAL i%, totall
120 IF x% < 0 OR x% > 170 THEN FNFactorial# = -1 : EXIT OEF
130 totall = 1
140 FOR i% = x% TO 2 STEP -1 I we could also work up .••
150 totall = totall * i%
160 NEXT i%
170 FNFactoriall = totall
180 END OEF

FNFactorial demonstrates the structure of a multiline function (the line num­
bers are included so we. can refer to various lines by number in this discussion­
they are, of course, optional).

Function definitions are bracketed by the DEF FNand END DEF statements;
indenting the statements between DEF FN and END DEF a couple of spaces
clarifies this structure.

Line 100 gives the function its name and consequently a type (# equals double
precision). FNFactorial has a single integer formal parameter, x%.

Line 110 declares a pair of 10cal" variables, i% and total#. Local variables are
temporary structures available and visible only within function and procedure defi­
nitions (they're discussed in detail in a later section entitled 'Local Variables").

Line 120 performs error checking on the argument passed to FNFactorial.
There's no point in trying to figure out the factorial of a negative number (no such
animal) or of a value so large that it produces a result beyond the 10308 range of
double precision (factOrials get big in a hurry-1701 is a whopping 7.26E +308). In
these cases, you define the function's return value as -1 and EXIT DEF. Pro­
grams that use FNFactorial need to recognize that a return value of - 1 represents
an error condition and behave accordingly. (Incidentally, 01 is defined to be 1.)

EXIT DEF is to functions what RETURN is to subroutines: It returns control to
the statement that called the function in the first· place. It's tempting to use
RETURN for this purpose, but don't. Note that EXIT DEF is not necessary unless
you need to return before reaching the end of the function.

Lines 130 through 160 define an algorithm for calculating factorials. This part of
a multiline function (the "body") can be as long or as short as necessary.

84 Turbo Basic Owner's Handbook

Line 170 determines the value FNFactorial returns by making an assignment to
the function name. Surprisingly, an assignment isn't a syntactic requirement for
function definitions. If you don't perform an assignment to the function name, the
value returned is undefined.

FNFactorial's definition is terminated by the END DEF statement in line 180.
END DEF, like EXIT DEF, returns execution to the statement that called the
function in the first place. (The END statement gets a workout in Turbo Basic
syntax - it's used to terminate a number of structures.)

Ever wondered how many permutations are possible with a deck of playing
cards? FNFactorial knows:

PRINT FNFactorial'(52)

yields the result of 8.065817517094388E069.

Since FNFactorial is defined as having an integer formal parameter, Hoating­
point arguments are rounded to integers before being passed to it; for example,
FNFactorial{2.7) is the same as FNFactorial(3). If you call FNFactorial with a
number larger than Turbo Basic's convert-to-integer routine can handle (greater
than 32,767 or less than - 32,768), you'll get run-time error 6, Overflow.

This same processing is performed on arguments to Turbo Basic's built-in func­
tions that expect integer arguments; for example, LOCATE 2.7,1 puts the cursor on
line 3.

Formal Versus Actual Parameters

The variables that appear in a function definition's parameter list are called formal
parameters. They serve only to define the function, and are entirely separate from
other variables in the program with the same name. To illustrate, consider this
short program:

100 OEF FNArea(x,y) = x * Y
110 x = 56
120 PRINT x. FNArea(2.3}, x

Variable x in lines 110 and 120 of this program is unrelated to formal parameter x
that is defined in function Area in the first line. When this program runs, x retains
its value on either side of the call to FNArea: It prints out as 56 both times.

The values provided at runtime to a function are sometimes called actual param­
eters. In the last example, the numeric constants 2 and 3 were the actual parame­
ters passed to FNArea. The actual parameters could just as easily have been vari­
ables:

a = 2 : b = 3
PRINT FNArea(a. b}

Turbo Basic: The Language 85

Function Types

Functions can return any of the four numeric types (integer, long integer, single
and double precision floating point), as well as string types. A function's type, like a
variable's, is controlled by its name. It uses type declaration characters and the
DEFtype statement; for example:

DEF FNIntSquareRoot%(x) = INT(SQR(x»
PRINT FNIntSquareRoot%(2)

and

DEF FNRepeatFirst$(a$) = LEFT$(a$,l) + a$
PRINT FNRepeatFirst$("Hello")

Attempting to assign a string function to a numeric variable or a numeric func­
tion to a string variable produces what you'd expect-error 13, Type Mismatch.

Procedures

Procedures are code blocks surrounded by the SUB and END SUB statements.
The fonnal syntax for declaring a procedure is

SUB procname [(parameter 7ist)] [INLINE]
[variab7e dec7aration]

• statements

[EXIT SUB]
END SUB

procname declares the procedure name, which can be up to 31 characters long
but whose name cannot be contained within any other SUB statement in the pro­
gram. parameter list is an optional comma-delimited list of formal parameters that
represent variables to be passed to the procedure when it is called. (You are limited
to 16 parameters for any procedure.) INLINE specifies that the procedure has a
variable number of untyped parameters and that the procedure will contain inline
assembly code (see Appendix C, "Assembly Language Interface").

As stated earlier, the most obvious difference between functions and procedures
is that procedures don't return a value; however, they also are not called from
within expressions, don't have a type, and don't include an assignment to the pro­
cedure name. Procedures are invoked with the CALL statement, much like
GOSUB invokes subroutines.

86 Turbo Basic Owner's Handbook

Consider this program that defines and calls procedure PrintTotal:

SUB PrintTotal(a,b,c,d)
LOCAL total
total = a + b + c + d
PRINT total

END SUB
w = 1 : x = 2 : y = 0 : z = 3
CALL PrintTotal(w,x,y,z)

Passing Arrays to Procedures

Unlike functions, procedures allow you to pass entire arrays as arguments. The
procedure definition must declare that it expects an array argument by including
an appropriate entry in its formal parameter list. Array arguments are indicated by
appending to a formal parameter identifier a set of parentheses enclosing a
numeric constant. This value indicates the number of dimensions in the array, not
the size of the array. To illustrate,

SUB CountZeros(a(l), size, count)
I count returns the number of zero elements in one-dimensional,
I single-precision array a, which has size +1 elements

LOCAL i
count = 0
FOR i = 0 TO size

IF a(i) = 0 THEN count = count +
NEXT i

END SUB

The presence of a(l) in the parameter list defines CountZeros' first argument as
a one-dimensional array. It doesn't tell how large the array will be. That task falls to
the second argument, size. count is used to return the number of zero elements
found in array a. Calling CountZeros goes like this:

size = 100 : DIM Primes(size)
GOSUB StrikePrimes I all nonprimes get a nonzero value
CALL CountZeros (Primes(), size, primesCount)
PRINT "There are" primesCount "prime numbers <=" size
END

Procedure and Function Definitions and Program Flow

The position of procedure and function definitions within a program is immaterial.
A function can be defined in line 1 or line 1000 of a program regardless of where it
is used. And you need not direct program flow through a procedure or function as
an initialization step (which you must do with single-line functions in Interpretive
BASIC). The compiler sees your definitions wherever they are positioned.

Turbo Basic: The Language 87

Also, unlike subroutines, program execution can't accidentally "fall into" a proce­
dure or function. As far as the execution path of a program is concerned, function
and procedure definitions are invisible. For example, when this four-line program
is executed:

CALL PrintSomething
SUB PrintSomething

PRINT "Printed from within PrintSomething"
END SUB

the message appears only once.

Note: You must treat your procedure and function definitions as isolated islands
of code. Don·t jump into or out of them with GOTO, GOSUB, or RETURN state­
ments - you may get unpredictable and/or disastrous results.

Note that neither procedure nor function definitions may be nested; that is, you
cannot define another procedure or function within a procedure or function defini­
tion (although a procedure or function can contain calls to other procedures and
functions).

Argument Checking

Unlike some other BASIC compilers, Turbo Basic checks to make sure that the
number and type of arguments in a program's procedure and function calls agrees
with the number and type of formal parameters in the corresponding definitions.
For instance, attempting to compile the program

DEF FNDummy(a,b)
END DEF
t = FNDummy(3)

results in a Parameter Mismatch error in line 3, because FNDummy requires two
arguments.

Advanced Topics in Functions and Procedures

Passing Parameters by Value or Reference

There are some subtle but important differences between functions and proce­
dures, and understanding these differences requires understanding how Turbo
Basic processes procedure and function calls at runtime (see Table 4-4).

88 Turbo Basic Owner's Handbook

Table 4-4 Procedure/Function Differences
Action

Return a value
Calling method
Parameter passing
Default variables
Array arguments

Functions

Yes
Called within expressions
Pass by value
SHARED
No

Procedures

No
Use CALL statement
Pass by reference and by value
STATIC

Yes

First, take a look at this short program that defines and calls function CylVol:

OEF FNCylVol(radius, height) STATIC
FNCylVol = radius * radius * 3.14159 * height

END OEF
r = 4.7 : h = 12.1
vol = FNCylVol(r,h)

Now, imagine the run-time processing necessary to execute this program. First,
you assign values to variables rand h. Then you'll call FNCyIVol, passing it the
numeric information in rand h. But wait-just how do you provide this informa­
tion to the function?

There are two ways: (1) use 4.7 as the radius and l2.1 as the height, or (2) use
variable r as the radius and variable h as the height. The first technique is called
pass-by-value; the second, pass-by-reference.

Pass-by-value means a copy of the arguments in a call are placed in storage
temporarily and then transmitted when needed into the called routine. Once the
procedure/function has executed, the value in storage vanishes; thus the originals
are left unchanged.

Pass-by-reference means a pointer is passed that indicates where (the address)
the data is stored. In the example, the addresses of variables rand h are passed as
parameters. The called routine can then get and change the actual values itsel£

Turbo Basic uses both passing schemes (their ramifications will become clear in
a moment).

The pass-by-value method allows any constant or expression to be used as an
argument. At runtime, the expression is evaluated and reduced to a simple value
that is passed to the function. For example:

v = FNCylVol(r, h*2 + 4.1)

The pass-by-value technique has no problem communicating h * 2 + 4.l to
FNCylVol. The expression is evaluated, and the result sent off to the function.

On the other hand, however, the pass-by-reference method, since it allows the
routine to manipulate the value, does not handle constants and expressions (an
expression like h * 2 + 4.l has no address in memory-only variables do). The
pass-by-reference method only works when an argument to a procedure isa single
variable argument.

Turbo Basic: The Language 89

Uzw I of parameter passing: Both variables and expressions 'can be transmitted
using the pass-by-value technique: Pass-by-reference permits only variables or
arrays to be sent.

The advantage of pass-by-reference is that the called routine can affect the value
of variables passed to it, and thereby pass information back to the caller. Since a
routine passed data by reference is given an address, it knows where that variable
is located and is therefore able to both read and write it. By contrast, a routine that
is passed a variable by value cannot affect the original variable, because it doesn't
know where the original variable is stored.

Uzw II of parameter passing: Variables passed by reference can be changed by a
called routine; variables passed by value cannot.

To illustrate, consider this program:

a = 0 : b = 2 : c = 3
CALL Add(a,b,c,total)
PRINT a, total
END
SUB Add(i,j,k, sum) STATIC

sum = i + j + k
END SUB

When Add returns, variable total contains the sum of a, b, and ,c. After calling the
procedure, a now has a, new value because the parameter i was changed in the,
procedure. (Add could have been defined to change the value of each, of its ,argu­
ments; however, since it only assigns to its fourth parameter, only total is affected
by the call to Add.)

Law III is the consequence of Laws I and II for Turbo Basic: Function argu­
ments are passed by value; procedure arguments are passed by reference, and by
value.

This means that single variable names can appear as arguments in a procedure
call and those variables, can be altered. If you want to pass by value a single
variable to a procedure, enclose the variable in parentheses. This forces Turbo
Basic to parse it as an expression. Procedures may also accept, constants and
expressions as pass by value.

Function calls can accept constants, variables, and expressions but they cannot
alter' their values.

You are free to assign to a formal 'parameter within a function definition; in fact~
it is often convenient to use aJunction~s formal parameters as temporary variables.

90 Turbo Basic Owner's Handbook

Doing sO'will not, however, change the value of the actual parameter; for example:

DEF FNDumrny(a,bic)
a = a + b + c
PRINT a

END DEF
x = 1 : y = 2 : z = 3
t = FNDummy(x,y,z)
PRINT x

Dummy's assignment to its formal parameter a doesn't affect the value of vari­
able x.

Since passing a variable to a function causes a copy of that variable's data to be
placed into local storage, problems arise if the variable is very large (that is, an
array). Therefore, Turbo Basic doesn't permit array variables to be passed by value,
although you can pass individual elements of arrays.

weal Variables

In Interpretive BASIC, all variables are global. This means that no matter where a
variable appears in a program, at the most important sequence of the main pro­
gram or the most trivial loop in an obscure subroutine, that variable is available to
the entire program. This allows the following sort ·of bug to creep in:

I main program
EmployeeCount = 10
n = 1
GOSUB CalcChecks
n = n + 1
GOSUB'PrintChecks

CalcChecks:
GOSUB CalcDeductions
RETURN

CalcDeductions:
FOR n = 1 TO EmployeeCount

NEXT n
RETURN

PrintChecks:

RETURN

Variable n in obscure subroutine CalcDeductions and variable n in the main
program are one and the same. As a result, when control finally returns to the main

Turbo Basic: The Language 91

program, n doesn't hold the 1 the main program put there earlier, but holds the
value of Employee Count + 1 as a result of the FOR/NEXT loop in CalcDeductions.

In keeping with its informal style, BASIC doesn't'require that you "declare"
variables (that is, specify in a statement someplace that you are about to use a
variable named such-and-such). Even if you religiously track your program's vari­
ables, a single slip of a finger can foul things up.

To help prevent this problem, Turbo Basic allows 1ocal" variables within proce­
dures and functions. A local variable, unlike a global variable, only exists in the
routine in which it is declared. Local variables alone are a sufficiently good reason
to swear off subroutines forever. For example, study function AddReceipts:

DEF FNAddReceipts
LOCAL x, y, total
FOR x = 1 TO 12

FOR y = 1 TO 30
total = total + receipts(x,y)

NEXT y
NEXT x
FNAddReceipts = total

END DEF

Since variables x and yare declared as local to FNAddReceipts, you can use
variable names x and y elsewhere in this program (programmers with a mathemati­
cal bent are wont to use x and y for every variable) without affecting the values of x
and y in FNAddReceipts (or vice versa).

FNAddReceipts' local variables exist only while that function is being called­
before and after that function, it's as though they never existed. To illustrate, con­
sider this code segment that calls FNAddReceipts:

x = 35
thisYear = FNAddReceipts
PRINT x

The fact that the name x has been given to other variables in the process of
calculating a return value for FNAddReceipts doesn't affect the x in lines one and
three. Through the magic of stack allocation, the x in FNAddReceipts is a separate
variable, one that doesn't exist after the function returns.

Local variables must be declared before any executable statements in a proce­
dure or function. Local variables can be arrays; simply dimension the array after
declaring it as local.

SUB DUI11T1Y
LOCAL a, locArray()
DIM DYNAMIC locArray(50)

ERASE locArray
END SUB

92 Turbo Basic Owner's Handbook

Local arrays are automatically deallocated on exit from a procedure or function.

A quirk of local variables is that they lose their value between each routine that
contains them. With each invocation, their storage is freshly created and they are
initialized to zero (or null strings). For example:

SUB Dummy
LOCAL c
PRINT c
c = c + 1

END SUB

You can CALL Dummy all day long and it will always print O.

The Shared Attribute

Procedures and functions can also declare variables with the shared attribute. A
shared variable is the opposite of a local variable: It is visible to and usable by the
rest of the program (such variables are often called global variables).

DEF FNDummy
SHARED a
a = 6
FNDummy = a

END DEF
PRINT FNDummy. a

Because of the SHARED declaration, variable a in FNDummy and variable a in
the PRINT statement are one and the same. .

Undeclared variables within function definitions default to the shared attribute;
for example, in function AddReceipts shown earlier, array receipts was assumed to
be a shared variable. Within procedure definitions, the default is STATIC. We
strongly urge you, however, to explicitly declare every variable that appears in a
procedure or function definition.

Static Variables

Static . variables are a cross between local and shared variables. Like a local
variable, a static variable doesn't interfere with other variables in the program that
have the same identifier-it is only visible from within the procedure or function
that declares it. Like a shared variable, a static variable occupies a permanent spot
in memory, and therefore does not lose its value between invocations of the func­
tion or procedure. It is initialized to zero or null (in the case of strings) only when
the program begins.

Turbo Basic: The Language 93

SUB Dunmy STATIC
STATIC i
i = i + 1
PRINT i

END SUB
i = 16
CALL Dunmy
CALL DUI11l1Y
PRINT i

Dummy's static variable i is a different variable from variable i in the "main
program." Unlike a local variable, however, it retains its value between invocations
of its enclosing procedure. It starts out as 0, like any variable, and is incremented
twice by the two calls to Dummy.

With the appropriate use of arguments and local variables, procedure~ and func­
tions can be made totally independent of the programs in which they appear. Using
Turbo Basic's main-flle/work-flle concept and $INCLUDE metastatement, these
procedures and functions can be effortlessly passed into new programs.

Recursion

Turbo Basic supports recursion, a process whereby a function or procedure calls
itself, either directly or indirectly. Here's a recursive rendition of FNFactorial:

DEF FNFactorial#(n%)
IF n% > 1 AND n% <= 170 THEN

FNFactorial# = n% * FNFactorial#(n%-1)
ELSEIF n% = 0 OR n% = 1 THEN

FNFactori a 1 # = 1
ELSE

FNFactorial# = -1
END IF

END DEF

One thing is immediately obvious: The recursive algorithm is shorter than the
non recursive one. FNFactorial has been reduced to a single IF block with no local
variables. Brevity is a characteristic of recursive programs.

Another characteristic of recursive code is deceptive complexity. The best way to
understand a recursive algorithm is to work through some test cases with pencil
and paper. Let's determine the factorial of 3 by mentally going through the gyra­
tions a Turbo Basic program would if given the statement

PRINT FNFactoriall(3)

To start off, an argument of 3 is passed by value to the function. The first thing
FNFactorial does is check to see if its argument is greater than 1 and less than or

94 Turbo Basic Owner's Handbook

equal to 170; 3 passes this test, so the statement controlled by the first THEN
clause is executed:

FNFactoriall = 3 * FNFactoriall(2)

This line assigns the function name the value 3 (so far so good) multiplied by the
value of FNFactorial(2), whatever that is. Before the assignment can take place,
you must call FNFactorial again, this time with an argument of 2. Put this to-be­
continued assignment statement on hold; you'll return to it later.

A second invocation of FNFactorial receives the argument of 2 and proceeds
normally. Again, it finds that its argument is greater than 1 and less than or equal to
170, so again you'll find yourself at the recursive statement

FNFactoriall = 2 * FNFactoriall(l)

Put this assignment statement on hold also, and call FNFactorial a third time,
this time with an argument of 1.

FNFactorial(l) is easy to figure out-it's defined as 1 in the second THEN
clause. This time, finally, FNFactorial is allowed to return, and it returns the value
of 1 to the most recently put-on-hold invocation of FNFactorial. And its assignment
statement is allowed to finish:

FNFactoriall = 2 * 1

With this middle invocation of FNFactorial complete, a value of 2 is returned to
the original invocation of FNFactorial and the first to-be-continued statement:

FNFactorial# = 3 * 2

After this last assignment, control returns to the PRINT statement and a "6"
appears on the screen.

There are no black and white answers to when you should use recursion, but in
general use it when the problem itself has a recursive flavor. Factorials, for exam­
ple, are sometimes defined in math textbooks recursively:

For any positive integer n,
if n > 1 then

n! = n * (n-1)!
else

n! = 1

Using a recursive algorithm will probably require that you increase your pro­
gram's run-time stack with the $STACK metastatement, since each level of recur­
sion could take l25 bytes (this amount varies). To determine the amount of stack
space left, use the FRE(- 2) function.

Turbo Basic: The Language 95

Files

Once you have created a program or a collection of data that you'll need to access
again, the next logical step is to save it. In saving your data, you are creating a file
that can be used for input or output. There are three file types you can create:
sequential, random access, and binary. We'll discuss each of these types here, but
first let's look at how to name files and/or directories (which contain several files or
subdirectories).

As a citizen of an MS-DOS world, the files you create and access using Turbo
Basic must conform to DOS naming conventions. File names consist of two parts,
separated by a period:

filename. ext

where filename can be from one to eight characters, and ext is an optional type
extension of up to three characters. If a file name is longer than eight characters,
Turbo Basic automatically truncates the name and adds a period at its end. For
example, if you enter

TESTINGOATA

it becomes

TESTINGO.

If a string has a period that separates the file name and its extension but the file
name is over eight characters long, Turbo Basic truncates the name to eight charac­
ters and then appends the extension, like so:

VERYLONGFILENAME.TBS

becomes

VERYLONG.TBS

If you use an extension with more than three characters, the extra characters are
truncated; for example:

TESTING. DATA

becomes

TESTING.OAT

File names and extensions can contain the following characters:

A-Z 0-9 () { } @ # $ % - & ! - _ ' / -

96 Turbo Basic Owner's Handbook

Note that the space character cannot be used, and lowercase letters are automat­
ically converted into uppercase. FollOwing are examples of valid· file names:

MYFIRST. TBS
MYlST. TBS
MY -ABCS • (1)
lO-25-51.@@@

In addition to statements for creating, reading, and writing files, Turbo Basic has
tools to perform certain DOS-like utility functions from within a program. The
NAME statement renames files. KILL. deletes files. MKDIR creates directories.
CHDIR changes the active directory. RMDIR deletes directories. There isn't a
COpy command; use binary file techniques instead (or use SHELL to invoke
COMMAND.COM).

File names used in Turbo Basic statements (for example, KILL and OPEN)
must be in string form; for example:

KIll "myfil e.bak"

or

a$ = "myfil e.bak" KIll a$

but not

KI II myfil e. bak

For more information about files and directories, consult Appendix G, "A DOS
Primer," and your DOS manual.

Directories and Path Names

In MS-DOS 2.0 and above (Turbo Basic and the programs it creates won't run on
earlier versions), formatting a floppy or hard disk creates a fixed-sized directory
known as the root. Entries in the root directory can represent both files and addi­
tional directories (called subdirectories).

Like ordinary files, subdirectories have standard file names and extensions, and
can grow and expand as necessary. Subdirectories can contain subdirectories of
their own, resulting in a system of files and directories resembling an upside-down
tree (see Figure 4-1).

Turbo Basic: The Language 97

(ROOf DIRECTORy)

I I I
BIN TURBOBAS WORDSTAR

I
I

FORMAT

I
CHKDSK

I I
EXAMPLES MYFIRST.BAS MYFIRST.EXE

I

EXt.BAS EX2.BAS

Figure 4-1 Hierarchy of a File System

At the top of the file system tree is the root directory, the name of which is
predefined as a single backslash: (\). Files in the tree are specified by indicating
the directory chain, or path name, that leads to them. .

Path names are formed by listing the subdirectories leading to. the file, separated
by backslashes (\). In other words, the complete description of file CHESS.BAS in
,directory \TURBO\BASIC\GAMES is

disk drive letter and colon
I
C:\TURBO\BASIC\GAMES\CHESS.BAS

I 11-11-1
I I I

directory file extension
path name

A leading backs lash (\) indicates that a path starts from the root directory, as
'opposed to the current directory. DOS keeps track of the current directory,(also
known as the active or default directory), the one it will search for files when you
don't specify a path. If a path name doesn't· begin with a backslash, then it
describes a path relative to the current directory. For example, if\TURBO\BASIC
is the current directory, ,both of the following accurately.describe the location of
CHESS.BAS:

GAMES\CHESS.BAS

or

\TURBO\BASIC\GAMES\CHESS.BAS

In every subdirectory, a directory listing from either DOS or Turbo Basic (using
FILES) lists two special files: . and ... The single period file name identifies the
directory being listed as a subdirectory; The double period file name refers to the

98 Turbo Basic Owner's Handbook

parent of this directory. For example, to change the active directory to the parent of
the current active directory, use the CHDIR statement with the special double
period file name.

CHOIR " .• "

File Storage Techniques

Turbo Basic offers three distinct ways to store and retrieve information from disk:
sequential, random, and binary file I/O. Each has advantages and disadvantages,
which one works best for you will depend on your application.

Crash Course in Database Management

Traditional programming nomenclature subdivides data files into individual
records, each of which consists of one or more fields. For example, in a mailing list
program, each record in the data file represents a person. Within each record are
fields containing specific facts about that person. For example, state and zip code
are two fields you might find in a mailing list file. When put on paper, rows repre­
sent records, and columns fields:

Name Address City St. Zip Class Contrib.

Cathy Harvey 1010 E. Redwood Sioux City IA 51103 73 0.00
Andrew Rich 37 Anderson Rd. Houston TX 77018 58 500.00
Larry Irving 3210 Main Lindsborg KS 67456 81 0.00

This alumni mailing list file has three records, each with seven fields. For rea­
sons we'll explain shortly, a distinction is usually made between numeric and string
fields. In this example, the last three fields are numeric and the rest are string.

Sequential Files

Sequential file techniques are a straightforward way to read and write ,files. Turbo
Basic's sequential file commands create text files: ,files of ASCII characters with
carriage-return/line-feed pairs separating records.

Turbo Basic: The Language 99

Quite possibly the best reason for using sequential files is their degree of porta­
bility to other programs, programming languages, and computers. Because of this,
you can often look at sequential files as the common denominator of data process­
ing: They can be read by word processing programs and editors (such as Turbo
Basic's), absorbed by other MS-DOS applications such as database managers, and
sent through serial ports to alien computers.

The idea behind sequential files is simplicity itself: write to them as though they
were the screen, and read from them as though they were the keyboard.

Create a sequential file using the following steps:

1. OPEN the file in sequential OUTPUT mode. To create a file in Turbo Basic,
you must use the OPEN statement. Sequential files have two options to
prepare a file for output:

OUTPUT: If a file does not exist, a new file is created. If a file already exists,
its contents are erased and the file is then treated as a new file.

APPEND: If a file does not exist, a new file is created. If a file already exists,
Turbo Basic appends any data written to that file at its end.

2. Output data to afile. Use WRITE#, PRINT #, or PRINT# USING to write
data to a sequential file.

3. CWSE the file. The CLOSE statement closes a file variable after the pro­
gram has completed all I/O operations.

To read a sequential file:

1. OPEN the file in sequential INPUT mode. Prepare the file to be read from.

2. Read data in/rom the file. Use Turbo Basic's INPUT #, INPUT$, or LINE
INPUT# statements.

3. CWSE the file. The CLOSE statement closes a file variable after the pro­
gram has completed all I/O operations.

(See Chapter 5, "Turbo Basic Reference Directory; for detailed information
about the file operations mentioned here.)

The drawback to sequential files is that you only have sequential access to your
data: You access one record at a time, starting with the first record. This means if
you want to get to the last record in a sequential file of 23,000 records, you'll have
to go through the first 22,999 records.

Sequential files, therefore, are best suited to applications that perform sequen­
tial processing (for example, word counting, spelling-checking, printing mailing
labels in file order) or in which all the data can be held in memory simultaneously.
This allows you to read the entire file in one fell swoop at the start of a program and

100 Turbo Basic Owner's Handbook

to write it all back at the end. In between. the information can be accessed through
temporary. random access homes in numeric and string arrays.

Sequential files lend themselves to database situations in which the length of
individual records is variable. For example. suppose the alumni list had a com­
ments field. Some people may have 100 bytes or more of comments; others. per­
haps most. will have none. Sequential files handle this problem without wasting
disk space.

Two types of sequential files can be created using Turbo Basic: (1) field­
delimited sequential files, where each field on each line in the file is separated
(delimited) by special characters, and (2) nondelimited sequential files, where each
file looks exactly the same as it would whether its data is displayed on the screen or
printed on the printer. These two file types are created using the WRITE # and
PRINT # statements, respectively. (Use INPUT #. INPUT$, or LINE INPUT#
for reading the information back in from either type of sequential file.)

Field-Delimited Sequential Files

If you look at a sequential file created by Turbo Basic, you can see that the data in
the file is separated (delimited) by commas and any strings are enclosed in double
quotes - in exactly the form the INPUT # statement expects to find the data. (The
double quotes around strings keep you from getting into trouble with embedded
commas. Numbers don't need the quotes because they are written without
commas.)

Consider the following program and execute it:

I This program opens a sequential file for output. It writes a couple lines of
I different types of data to the file using the WRIT£ I statement.

OPEN "SEQUENTI.BAS" FOR OUTPUT AS #1

StringVariable$ = "This is a string of text"
Integer% = 1000
FloatingPoint! = 30000.1234

I assign the file variable
I to 11

I define some
I variables and
I initialize them

I now write a line of text to the sequential file
WRITEI 1, StringVariable$, Integer%, FloatingPoint!

StringVariable$ = "Another String"
Integer% = -32767
FloatingPoint! = 12345.54321

I write another line of text
WRITEI 1, Integer%, StringVariable$, FloatingPointl

CLOSE 11 I close the file variable

END I end the program

Turbo Basic: The Language 101

The contents of the file SEQUENTI.BAS look like this:

"This is a string of text",1000,30000.123046875
-32767,"Another String",12345.54296875

The most important thing to note here is that the WRITE # statement outputs
information to the sequential file exactly as the INPUT # statement expects to find
it.

The following program reads in the sequential file that the last example program
created:

I This program opens a sequential file for input. It reads a
I couple of lines of different types of data from the file using
I the INPUT # statement.

OPEN "SEQUENTI.BAS" FOR INPUT AS #1

StringVariable$ = ""
Integer% = 0
FloatingPoint! = 0

I assign the file variable
I to #1

I define some
I variables and
I initialize them

I now read a line of text from the sequential file
INPUT # I, StringVariable$, Integer%, FloatingPoint!

PRINT StringVariable$, Integer%, FloatingPoint!

StringVariable$ = ""
Integer% = 0
FloatingPoint! = 0

'read another line of text
INPUT # I, Integer%, StringVariable$, FloatingPoint!

PRINT Integer%, StringVariable$, FloatingPoint!

CLOSE #1 I close the file variable

END I end the program

The important thing to remember here is that the previous examples would not
work correctly if you used the PRINT # statement to create the data file. When
creating a file to be read with the INPUT # statement, use the WRITE # state­
ment rather than PRINT #.

Nondelimited Sequential Files

In a nondelimited sequential file, the data looks exactly as it would if it had been
displayed to the screen using PRINT or printed on the printer using LPRINT. You
may use the USING optional parameter when performing output to a sequential
file exactly as you would when doing screen or printer output.

102 Turbo Basic Owner's Handbook

Consider the following program and execute it:

, This program opens a sequential file for output. It writes
, a couple lines of different types of data to the file using
, the PRINT I and PRINT' USING statements.

OPEN "SEQUENTI.BAS" FOR OUTPUT AS 11

StringVariable$ = "This is a string of text"
Integer% = 1000
FloatingPoint! = 30000.1234

, assign the file variable
, to 11

, define some
, variables and
, initialize them

, now write a line of text to the sequential file
PRINT I 1, StringVariable$, Integer%, FloatingPoint!

StringVariable$ = "Another String"
Integer% = -32767
FloatingPoint! = 12345.54321

'write another line of text but format it with USING
PRINT I 1, USING "tll##1 & I#.II-";Integer%, _

StringVariable$, FloatingPoint!

CLOSE #1 , close the file variable

END , end the program

The contents of the file SEQUENTLBAS look like this:

This is a string of text 1000 30000.123046875
-32767 Another String 12.35Et03

As with field-delimited sequential files, the most important thing to note here is
the format of the data and how it can be read. If you attempt to use the same
INPUT # statement as the one in the second example program, Turbo Basic would
return a run-time error. Turbo Basic would read the word "This" in the first line as
the string variable and try to read the next two words as the two numeric variables.
Instead, you must use the INPUT$ or the LINE INPUT# statements to read in
this information.

The following program reads in the sequential file that the last example program
created:

, This program opens a sequential file for input. It reads a
, couple lines of different types of data from the file using
, the LINE INPUTI and INPUT$ statements.

OPEN "SEQUENTI.BAS" FOR INPUT AS II

StringVariable$ = ""

, assign the file variable
, to #1

, now read a string of 80 characters in from the sequential file
StringVariable$ = INPUT$(80, 1)

PRINT StringVariable$

Turbo Basic: The Language 103

I input an entire line of input regardless of its length
LINE INPUTI I, StringVariable$

PRINT StringVariable$

CLOSE 11 I close the file variable

END I end the program

Following are Turbo Basic statements and functions that control sequential fIle
I/O:

Statement/Function

CWSE
EOF
INPUT #
INPUT$
LINK INPUT #
OPEN

PRINT #, PRINT #
USING

WRITE #

Random Files

Operation

Terminates operations on a file(s).
Returns a signal when the end of a file is reached.
Reads a record (line of text) into the indicated variable(s).
Reads n characters into a string variable.
Reads an entire line into a single string variable.
Opens a file for INPUT, OUTPUT, or APPEND mode and
gives it a number.
Prints to the file as though it were the printer or screen.

Writes comma-delimited data to a file.

Random access files consist of records that can be accessed in any sequence. What
this means is that the data is stored exactly as it appears in memory, thus saving
processing time (because no translation is necessary) both when the fIle is-written
to and when it is react

Generally speaking, random fIles are a better solution to database problems than
sequential files, although they are not without disadvantages. For one thing, ran­
dom files aren't especially transportable. You can't peek inside them with an editor
or type them in a meaningful way to the screen. In fact, moving a Turbo Basic
random file to another computer or language will probably require that you write a
translator program to read the random fIle and output a text (sequential) file. One
example of the transportability problem strikes close to home. Since Interpretive
BASIC uses Microsoft's nonstandard format for floating-pOint values, and Turbo
Basic uses IEEE standard floating-point conventions, you can't read the floating­
point fields of random fIles created by Interpretive BASIC with a Turbo Basic
program, or vice versa, without a bit of extra work.

We've provided four special functions to get around this hurdle: CVMS and
CVMD to turn Microsoft-format numeric fields into bona fide Turbo Basic single­
and double-precision variables, and MKMS$ and MKMD$ to tum single- and

104 Turbo Basic Owner's Handbook

double-precision values into Microsoft-format strings that can then be written to a
file.

The major benefit of random files is implied in their name: Every record in the
file is available at any time. For example, in a database of 23,000 alumni, a program
can go straight to record 22,709 or 11,663 without reading any others. This capabil­
ity makes it the only reasonable choice for large files, and probably the better
choice for small ones, especially those with relatively consistent record lengths.

Random files can be wasteful of disk space, because space is allocated for the
longest possible field in every record. For example, including a comment field of
100 bytes makes every record take an extra 100 bytes of disk space, even if only one
in a thousand uses it.

On the other extreme, if records are consistent in length, especially if they con­
tain mostly numbers, random files can save space over the equivalent sequential
form. In a random file, every number of the same type (integer, long integer, single
precision, double precision) occupies the. same amount of disk space. For example,
the following five single-precision values each require 4 bytes (the same space they
occupy in memory):

o
1.660565E-27
15000.1
641
623000000

By contrast, in a sequential file, numbers require as many bytes as they have
ASCII characters when PRINTed, plus one for the delimiting comma. For exam­
ple:

WRITE #1, 0;0

takes 3 bytes, and

PRINT #1, 0;0

takes 6 bytes, and

PRINT #1.660565E-27

takes 13 bytes.

The modest price you pay for the benefits of random files is a bit of extra process­
ing necessary to get strings and numbers into and out of a form that the random file
routines can handle.

You can create, write, and read random files using the following steps:

1. OPEN the file and specify the length of each record.

OPEN fi 1 espec AS [#J fi 7 enum LEN = record. size

Turbo Basic: The Language 105

The LEN parameter indicates to Turbo Basic that this is a random access
file. Unlike sequential files, you don't have to declare whether you're OPEN­
ing for input or output, because you can simultaneously read and write a
random file.

2. Execute a FIELD statement to define a mapping between a series of string
variables (after this operation they become field variables") and the file
buffer."

FIELD filenum, width AS string-var [width AS string-var] •.•

This buffer is the loading dock for data to be written to or read from this
particular file. The FIELD statement must be executed at least once for a
given random file.

3. To write a record to the file, use LSET and RSET to load the field variables
with the data to be written. Numbers must first be converted to string form
with the appropriate "make" function (for example. MKS$ for single preci­
sion) before LSET or RSET can be used. Finally, use PUT to write the
record to the file at the position you specify.

4. To read a record from the file, use the GET statement to read the record you
want. Then load your program's string and numeric variables from the appro­
priate buffer variables. Before you can do anything with it, numeric data
must be converted from string form with one of the "convert" functions (for
example, CVS for single precision).

5. When finished, CWSE the file.

Following are Turbo Basic statements and functions that control random file
reading and writing:

Statement/Function

CLOSE
CVI, CVL, CVS, CVD

FIELD
GET
LOC
LSET, RSET
MKI$, MKL$, MKS$, MKD$

MKMS$, MKMD$, CVMS, CVMD
OPEN
PUT

106

Operation

Closes the file.
Converts field variable into the corresponding
numeric type.
Defines the field variables.
Reads a record.
Determines the last record number read.
Assigns to a field variable.
Converts specific numeric types into.a form
that can be assigned to a field variable.
Special Microsoft-format translation functions.
Opens the file as random.
Writes a record.

Turbo. Basic Owner's Handbook

And following is a sample program using random files:

, program to read from a mailing list database
, user inputs. record number; program displays
, all the fields for that record.
, this program couldn't read the sequential file described before
OPEN "ADDRESS.DTA" AS 11 LEN = 81 ' "LEN = 81" declares file as random

, define the record layout of file #1
, note use of continuation character
FIELD 11, 25 AS fname$. 25 AS address$,_

15 AS city$, 2 AS state$,_
4 AS zipS, 2 AS class$, 8 AS contrib$

, lip$ is a long integer, class$ an integer, contrib$ a double-precision real.
, all now exist in the file as strings.
, When we read one of these numeric fields, we must
, convert it back into a number before using it.

INPUT "Which record do you want to see: ", recnumber
GET 11, recnumber
, the data is now in the file buffer
PRINT "Data for record" recnumber
PRINT "Name: " fname$
PRINT "Address: " address$
PRINT "City/State/lip" city$, stateS, CVL(zip$)
PRINT "Class: " CVI(class$)
PRINT "Most recent contrib: " CVL(contrib$)

Warning: Don't ever assign to a field variable; that is, don't use a field variable
on the left side of an assignment statement. Assigning to a field variable discon­
nects the variable from its designated buffer. For example, after

zipS = a$

field variable zip$ no longer refers to the buffer it was assigned,to in the FIELD
statement. And subsequent LSETs and RSETswon't bring it back.

Binary Files

Turbo Basic's binary file technique is an extension to Interpretive BASIC that
allows you to treat any file as a numbered sequence of bytes, without regard to
ASCII characters, number versus string considerations, record length, carriage
returns, or anything else. With the binary approach to a file problem, you read and
write a file by specifying which bytes to write and where in the file they should go;
This is similar to the services provided by DOS system calls (used in assembly
language) for reading and writing files.

Flexibility always comes at a price. BINARY mode files require that you do all
the work to decide what goes where. Binary may be the best option when dealing
with alien files that aren't in ASCII format; for example, a dBASE® or Lotus® 1-2-3
file. Of course, you'll have to know the precise structure of the file before you even
attempt to break it down into numbers and strings agreeable to Turbo Basic.

Turbo Basic: The Language 107

Every file opened in BINARY mode has an associated position indicator that
points to the place in the file that will be read or written to next. Use the SEEK
statement to set the position indicator and the LOC function to read it.

Binary files are accessed in the following way:

1. OPEN the file in BINARY mode. You need not specify whether you're read­
ing or writing-you can do either or both.

2. To read the file, use SEEK to position the file pointer at the byte you want to
read. Then use GET$ to read a specifIed number of characters (from 1 to
32,767) into a string variable.

3. To write to the file, load a string variable with the information to be written.
Then use PUT$ to specify the string data and the point in the file to which it
should be written.

4. When finished, CLOSE the file.

Following are the Turbo Basic statements and functions that control binary file
reading and writing:

S tatement/Function

CLOSE
GET$
LOC
LOF
OPEN
PUT$
SEEK

108

Operation

Closes the file
Reads the specified number of bytes starting at seek position
Determines the seek position in the file
Returns the length of file
Opens the file and declares it as binary
Writes the specified number of bytes starting at seek position
Moves the position indicator

Turbo Basic Owner's Handbook

Device I/O

Turbo Basic supports so-called device files; that is, it supports hardware devices
such as the keyboard, screen, and printer as though they were sequential files.
Each supported device has a reserved file name that ends in a colon:

Name

KYBD:

Function

The keyboard can be opened for input. Reading from device file
KYBD: is like using INKEY$.

SCRN: The screen can be opened for output. Writing to the SCRN: device file
is like PRINTing.

LPTl-3: Line printers 1 to 3.
COMl-2: Communcations ports 1 and 2.

For example:

OPEN "SCRN:" FOR OUTPUT AS #1 PRINT #1, "Hello"

has the same effect as

PRINT "Hello"

and

OPEN "KYBD:" FOR INPUT AS #1 INPUT 11, as, b$

is the same as

INPUT as, b$

Turbo Basic: The Language 109

Graphics

When it comes to displaying information on the screen, a program generated by
Turbo Basic must work within the constraints of the display hardware available to
it. Turbo Basic supports three main class~s of video interfaces on PCs and com­
patibles: the Monochrome Display Adapter, which is only capable of mono­
chrome text, and the Color/Graphics Adapter (CGA) and the Enhanced Graphics
Adapter (EGA), both of which can produce text and graphics in color and in black
and white (see Table 4-5).

Table 4-5 Graphics Adapter Characteristics

Adapter Screen Mode

Monochrome o

CGA 0,1,2

EGA 0, 1, 2, 7, 8, 9, 10

CGA = Color/Graphics Adapter
EGA = Enhanced Graphics Adapter

Text Format

80 column

40/80 col.

40/80 col.

Comments

80 x 25 characters, with 4
attributes (normal, highlight,
blinking, underline)
Up to 16 colors (in text mode
only); up to 4 colors in
graphics mode. Screen resolu­
tion: 640 x 200 pixels.
Screen resolution: up to 640
X 350 pixels. Up to 16 colors
out of a 64-color palette
(depending on EGA memory)

Corresponding to the talents of these video boards, Turbo Basic can select any of
the supported text or graphics modes with the SCREEN and/or WIDTH state­
ments.

The Text Modes

In 80 column text mode (the only mode available with the Monochrome Display
Adapter), the screen consists of 25 lines of 80 character positions each, numbered 1
to 25 (top to bottom) and 1 to 80 (left to right). (See Figure 4-2.) In 40 column text
mode (available with the CGA/EGA adapters), the screen consists of 25 lines of 40
characters. Each position on each line can contain any of the characters listed in
the character set chart in Appendix F.

110 Turbo Basic Owner's Handbook

Line 1, Column 1 Columns (1-80)

~

7/ Lme 25 Reserved for Soft key DIsplay

Figure 4-2 Text Mode Screen

80

• 25
Lme 25, Column 80

Generally speaking, you place characters on the screen by moving the cursor to
the desired position with the LOCATE statement and then using PRINT. Exotic
characters that are difficult to generate at the keyboard can be produced with the
CHR$ function (see Appendix F).

The 25th (lowest) line of the screen rates special consideration: The KEY state­
ment loads it with function key descriptions ("soft keys"). To protect these key
descriptions, the 25th line is never scrolled or written to unless you tum off the
function key display with KEY OFF.

For monochrome adapters, the COLOR statement can be used to create special
effects such as inverse and reduced intensity video and underlined and/or blinking
text. With a CGA/EGA adapter, the COLOR statement is used to select the actual
color to be displayed for output from PRINT statements.

In text mode, the CGA/EGA adapters support up to eight display "pages"; the
page being processed and/or displayed is set with the SCREEN statement.

The Graphics Modes

Turbo Basic has a full complement of commands to plot points, lines, and graphic
shapes on the screen in various colors. Unless you have appropriate video display
hardware, such as the Color/Graphics Adapter or the Enhanced Graphics Adapter
or equivalent, these commands won't work as described. (In general, attempting to
use a graphics command on text-only hardware produces an Illegal Function Call
error.)

In graphics modes, the screen is treated as a grid of small dots, or pixels, anyone
of which can be turned on (white or some color), or off (the background color,
usually black). The pixels are identified by their position on an (x,y) grid, the origin

Turbo Basic: The Language III

of which by default is at the upper left-hand corner of the screen. x values repre­
sent horizontal distance from the left edge of the screen, and y values represent
vertical distance from the top edge of the screen. Note that this convention for y is
reversed from conventional cartesian geometry, in which y values get smaller as
you move from high to low.

Depending upon the mode selected (and possibly upon the amount of video
memory installed), the horizontal resolution may be 320 or 640 pixels, while the
vertical resolution may be 200 or 350 (see Figure 4-3). This combination also
determines the number of colors available (2/4/16), as well as the maximum num­
ber of video "pages" (1/2/4/8). Pixel numbering is indexed to zero, unlike text row
and column counting, which starts at one.

320 Pixels Horizontall"
(0,0)/ (319,0)

• (160,100)

8
N

(0,199)1 '---_______________ --1 (319,199)

Figure 4-3 Example of Medium Resolution Screen

Each pixel has an associated color value (or attribute) ranging from ° to the maxi­
mum for the mode. The color resulting from each value is controlled by the
COLOR and PALE TIE statements.

Last Point Referenced (LPR)

Mter most graphic operations, an imaginary pen point is poised at an x,y coordi­
nate on the screen. The position of this pen is called the last point referenced, or
LPR. When you first invoke a graphics mode with the SCREEN statement, the
LPR is set to the center of the screen.

Certain drawing commands are able to accept the LPR as a coordinate argu­
ment. For example, if the LINE statement is given only a destination point, the
line is drawn between the LPR and the specified destination point. Mterward, the
LPR becomes the destination point.

112 Turbo Basic Owner's Handbook

Absolute and Relative Coordinates

Most of Turbo Basic's plotting statements can specify coordinates in both relative
and absolute form.

In absolute form, an (x,y) coordinate pair describes exactly where an operation
should occur; for example, PSET (50,75) turns on the pixel 50 pixels from the left of
the screen and 75 pixels from the top.

In relative form, a coordinate is specined relative to the LPR and represents the
horizontal and vertical displacement from the LPR. This form uses the keyword
STEP to differentiate it from standard absolute coordinates. For example, if the
LPR is (60,75):

PSET(10,20}

specines the point (10,20), and

PSET STEP (10,20)

specines the point (70,95),10 over and 20 down from the LPR. A negative relative
coordinate value specines a point above or to the left of the LPR.

Redefining Screen Coordinates

If you aren't comfortable with this addressing system, use the WINDOW state­
ment to change the mapping between the (x,y) pairs given in plotting statements
and the pixels on the screen. For example:

WINDOW (-1,1) - (1,-1)

redennes screen coordinates to more closely resemble the cartesian plane of analyt­
ical geometry, with the origin in the middle, and y values- increasing as you move
upward. After this WINDOW statement, PSET (0,0) turns on physical pixel
(100,160), PSET (-1, -1) turns on the screen's lower left-most pixel, and PSET
(.5,.5) turns on physical pixel (220,50) in the middle of the upper right-hand quad,.
rant. Using WINDOW can greatly simplify mathematical charts and graphs.

The VIEW statement allows you to create an active region, or "window; on the
graphics screen, and to optionally specify coordinates relative to the window's
upper left-hand corner. You cannot manipulate pixels outside of the window.

Turbo Basic: The Language 113

The graphics commands include the following:

114

Command

CIRCLE
COLOR
DRAW
GET
LINE
PAINT
PALETTE
PALETTE USING
PMAP
POINT
PRESET
PSET
PUT
SCREEN
VIEW
WINDOW

Function

Draws all or part of a circle.
Selects color palette and background color.
A mini-drawing language.
Loads numeric array with pixel information from screen.
Draws a line or a box, given two points.
Fills an enclosed area with a solid color or pattern.
Controls and selects one or more colors in the palette.
Changes all palette entries with one statement.
Performs mapping between physical and world coordinates.
Returns information about a point or last point referenced.
Plots a point (default = attribute 0).
Plots a point (default = max attribute for current resolution).
Copies the contents of a numeric array to the screen (see GET).
Selects graphics mode.
Declares active area for graphics operations.
Defines window coordinates.

Turbo Basic Owner's Handbook

c H A p T E R 5
Turbo Basic Reference Directory

Turbo Basic's 200-odd commands can be grouped according to their syntactical
class as functions, statements, system variables, and metastatements.

Functions (predefined, as opposed to user-defined) return a value and must
therefore be used within expressions. Most require one or more arguments; for
example:

t = C05(3.1) 1 numeric function wI 1 numeric argument
t$ = LEFT$(ICat".2) 1 string function wI 1 string and 1 numeric argument

Statements are the indivisible building blocks that makeup programs. State­
ments must appear on a line all by themselves or with delimiting colons between
adjacent statements; for example:

CIRCLE (160.100). 50 1 draw a circle
CALL My5ub (x.y.z) 1 call a procedure
a = a + 1 ,I do an assignment (see LET statement)

System variables are predefined identifiers for accessing and controlling certain
system information; for example:

a$ = DATE$ 1 read system date
TIME$ = "00:00" 1 set system time

Metastatements are compiler directives. Strictly speaking they aren't part of the
language, but instead operate· at a different level, controlling the behavior of the
compiler; for example:

$INCLUDE I module1.tbs"
$5TACK &H1000

I load and-process include file
I set stack size

115

Metastatements, like the switches in the compiler Options submenu, control the
compiler at compile time rather than the computer at runtime. Metastatements are
preceded by a dollar sign ($) to differentiate them from ordinary statements. There
can be only one metastatement per line, and unlike some other compiled BASICs,
they are not placed inside REMarks.

The Directory Format

Each directory entry contains a description, the syntax, general remarks, and an
example using the statement, function, or procedure. Where appropriate, related
entries are cross-referenced, any use restrictions are outlined, and any differences
between Turbo Basic's and Interpretive BASIC's use of an item are noted.

Following are the syntax description conventions used in the alphabetical com­
mand reference.

numeric expression
A numeric constant, numeric function, or numeric variable, or a combination

thereof, using arithmetic, logical, and relational operators. Sometimes.the type of a
numeric expression is specified; for example, integer expression. Examples include:

16
x
16 * x
SIN(3.14159)
SIN(x 1(16 * x»

string expression
A string constant, string variable, or string function, or a combination thereof,

optionally including the concatenation operator, the plus sign (+). Examples
include:

"Cat"
a$ + "Cat"
LEFT$(a$ + "Cat",4)

filespec
A string expression describing an MS-DOS file name (eight characters with an

optional three-character extension preceded by a period, case insignificant), possi­
bly including a drive and/or path specification. Except where noted, file names
must be expressed as string variables or enclosed in double quotes; for example:

"MYFIRST. BAS"
"turbobas\myfirst.bas"
"a:\turbobas\myfirst.bas"

116 Turbo Basic Owner's Handbook

path
A string expression describing a valid subdirectory on the logged drive. Exam­

ples include:

"\TURBOBAS"
"GAMES"

LPR
The "Last Point Referenced" is used as an implicit coordinate value in some

plotting operations, and is set by most graphics statements.

label
label represents either an alphanumeric label or line number identifying a pro­

gram line. Line numbers and labels are more or less interchangeable in Turbo
Basic syntax except that labels must appear on a line by themselves.

Typography

Italics indicate areas within commands to be filled in with application-specific
information; for example:

REG register,va7ue

UPPERCASE text denotes part of a command that must be supplied verbatim;
for example:

RESUME NEXT

Brackets ([]) mean that the enclosed information is optional; for example:

OPEN filespec AS [I] filenum

means that you can include a number sign (#) before the file number in an OPEN
statement or leave it out, at your option. Therefore both of the following are legal:

OPEN "cust.dta" AS 1
OPEN "cust.dta" AS 11

Braces ({}) indicate a choice of two or more options, one of which must be used.
The options are separated by vertical bars (I). For example:

KEY {ONIOFF}

means that both KEY ON and KEY OFF are valid statements, and that KEY by
itself is not.

Turbo Basic Reference Directory 117

Ellipses (...) indicate that part of a command can be repeated as many times as
necessary. For example:

READ variable [, variable] •••

means that multiple variables, separated by commas, can be processed by a single
READ statement:

READ a$
READ as, b$, a, b, c

Three vertically spaced periods indicate the omission of one or more lines of
program text; for example:

FOR n = 1 TO 10

NEXT n

118 Turbo Basic Owner's Handbook

$COM metastatement

Function $COM allocates space for the serial port receive buffer.

Syntax $COMn 5 i ze

Remarks n indicates the communications adapter (1 or 2) and size is an inte­
ger constant defining the capacity of the buffer for that adapter (0 to
32,767). The default is 2-56. The default value can be set and saved
in the Options menu. Default values can be overridden by metas­
tatements in the code.

Restrictions The size of the buffer specified in the $COM metastatement must
be within the range 0 to 32,767. Interpretive BASIC will allocate
the same size buffer for both communications ports if they exist. In
Turbo Basic, the sizes of these two buffers are set independently.

Differences This functionality is only available via command-line parameters
when invoking Interpretive BASIC.

~xample I $COM metastatement is used to alter the
I default space allocated to buffers
I for serial ports

I set up routine to process COM input
$COMl 1024 Iset up a lK input buffer
ON COM(l) GOSUB GetComInput

COM(l) ON I turn on COM input handling
OPEN ICOM1" AS #1 I open file variable as COMl

PRINT "Press any key to terminate the program ••. II
I while a key hasn't been pressed
WHILE NOT INSTAT

LOCATE 2,1
PRINT TIME$ I display the time

WEND

END I end of program

GetComInput: I process COM port interrupt
I read input from COM port buffer
INPUT# 1,ComPortInput(HeadPtr%)
RETURN

EndOfInput: I end of COM port input
PRINT "Reached the end of input ••. "
END I end program

Turbo Basic Reference Directory 119

$DYNAMIC metastatement

Function

Syntax

Remarks

See Also

. Example

120

$DYNAMIC declares default array allocation to be dynamic.

$DYNAMIC

The $DYNAMIC metastatement takes no argument and declares
the default array allocation type to be dynamic.

Space for dynamic arrays is allocated at runtime. You can use the
ERASE statement to deallocate the array. Dynamic arrays provide
more efficient use of memory.

Arrays can also be declared as dynamic by using the DYNAMIC
keyword or expression arguments in a DIM statement. Arrays with
variable dimensions that are declared common or local to a proce­
dure or function are always dynamic.

DIM
ERASE
FRE
$ STATIC

$DYNAMIC

I set up error handler
ON ERROR GOTO ErrorHandler

I display memory available in array space
PRINT FRE(-l)

DIM BigArray(lOOOO) I declare dynamic array
BigArray(6666) = 66 I assign data
I display memory available in array space
PRINT FRE{-l)

ERASE BigArray I deallocate dynamic array
I display memory available in array space
PRINT FRE{-l)

I run-time error returned if run with
I bounds checking on
PRINT BigArray(6666)
END I end program

ErrorHandler:
PRINT "An error of type II ERR;
PRINT II has occurred at address ll ERADR
END

Turbo Basic Owner's Handbook

$EVENT metastatement

Function

Syntax

Remarks

Example

$EVENT controls generation of event-trapping code.

$EVENT{ONIOFF}

If your program contains an event trap of some sort (for example,
ON KEY, ON COM), then $EVENT defaults to ON, causing the
compiler to generate event-checking code between every statement
of your program. If your program doesn't do trapping, then
$EVENT is OFF·and no event-checking code is generated.

$EVENT gives you control over what parts of your program will
do event checking. If there's an area where maximum speed is more
important than instant event response, then bracket this code with
$EVENT OFF and $EVENT ON metastatements.

'EVENT example
ON TIMER (1) GOSUB WasteTime
TIMER ON

PRINT "Slow loop"
x = timer
FOR i = 1 TO 10000

i = i + i - i
NEXT i
y = timer
PRINT "loop time is " y-x

$EVENT OFF

PRINT "Fast loop"
x = timer
FOR i = 1 TO 10000

i = i + i - i
NEXT i
y = timer
PRINT "loop time is " y-x

END
WasteTime:

FOR j = 1 TO 1000
RETURN

= j + j - j NEXT j PRINT

Turbo Basic Reference Directory 121

$IF/$ELSE/$ENDIFmetastatements

Function

Syntax

Remarks

Example

122

$IF, $ELSE, and $ENDIF define portions of a source program to
be compiled or skipped (often referred to as conditional compila­
tion).

$IF const

. statements

[$ELSE

statements]

$ENDIF

canst is a named constant or constant value. If canst is nonzero
(TRUE), then the statements between $IF and $ELSE are com­
piled, and the statements between $ELSE and $ENDIF are not. If
canst is zero (FALSE), then the statements between $IF and
$ELSE are ignored, and those between $ELSEand $ENDIF are
compiled.

The $ELSE clause is optional, but $ENDIF is required.

Conditional compilation statements can be nested to a level of
256 deep.

%Co10rScreen = 1 'setting named constant to nonzero value
, indicates operation on color system

, setting zero value indicates operation
, on monochrome system
$IF %Co10rScreen

DEF SEG = &HB800 ' address of graphics
, screen memory

$ELSE
DEF SEG = &HBOOO 'address of monochrome

$ENDIF ' screen memory

FOR 1% = 0 to 4000 STEP 2
POKE I%,ASC("A") 'fill screen with A's

NEXT 1%

, save all 4000 bytes of video ram
BSAVE "$IF.DTA",O,4000

END , end program

Turbo Basic Owner's Handbook

$INCLUDE metastatement

Function

Syntax

Remarks

$INCLUDE includes a text file.

$INCLUDE filespec literal

Use $INCLUDE to compile the text of another file along with the
current file. filespec literal is a string constant and the file it repre­
sents must follow DOS file name conventions and must represent a
Turbo Basic source file. If no file name is specified for the include
file, the extension .BAS is assumed.

The $INCLUDE mechanism causes the compiler to treat the
included file as though it were physically present in the original text
at that point. This allows you to break your source program up into
manageable chunks. Turbo Basic's work-file/main-file concept is
related to $INCLUDE. To illustrate, consider the files CAL­
CAREA.BAS and CONST.BAS:

File CALCAREA. BAS

PRINT "Circle area calculating program ll

PRINT "If you find this program useful"
PRINT "Please send $3,500 to:"
PRINT
PRINT "Frank Borland"
PRINT "4585 Scotts Valley Drive"
PRINT "Scotts Valley, CA 95066"
PRINT "-------------------------------"
$INCLUDE "CONST.BAS II

INPUT "Enter radius ", r
PRINT "Area = " pi * r * r
END

Fil e CONST. BAS

I All purpose constants
pi = ATN(l} * 4
%true = -1
%false = 0
%maxx = 319
%maxy = 199

To compile this program, CALCAREA must be made the "main
file," since it is the file with the $INCLUDE statement. The work
file shifts back and forth between either one, depending on which
needs editing (that is, has, errors). Regardless of the current work
file, a compilation always starts with CALCAREA (the main file).
(For more information, see the section in Chapter 3, "The Main
Menu.")

Turbo Basic Reference Directory 123

Example

124

When the Turbo Basic compiler encounters the $INCLUDE
metastatement in line 7 of CALCAREA, it suspends reading from
the code, and loads and begins to read characters from CONST.
BAS. When this code is exhausted, the compiler picks up where it
left off in the original program.

$INCLUDE metastatements can be nested to 5 deep; that is, an
included file may have $INCLUDE metastatements of its own.

I Save the following to a file
I called "EXAMPLE. INC"

SUB SayHello I procedure prints
PRINT "Hello" I Hello on screen

END SUB

I The following is the main program
$INCLUDE "EXAMPLE.INC" I include source file

CALL SayHello

END

I call procedure defined
I in the include file

I end program

Turbo Basic Owner's Handbook

$INLINE metastatement

Function

Syntax

Remarks

Example

$INLINE declares inline machine code in an inline subprocedure.

$INLINE [byte list] I [fi1espec literal]

$INLINE may only occur within the body of an inline sub­
procedure.

byte list is a sequence of integer values in the range 0 to 255 to be
coded directly into the object code at this point.

filespec literal is the name of a file that contains the code to be
inserted inline. This code must be relocatable and must preserve
and restore the follOwing registers: Stack Segment (8S), Stack
Pointer (SP), Base Pointer (BP), and. Data Segment (DS). Inline
code may reference parameters using BP relative addressing. For
more information, refer to Appendix A, "Numeric Considerations,"
and Appendix C, "Assembly Language Interface."

SUB Shriek INLINE
I $INLINE makes the speaker give off a shriek

$INLINE &HBA, &HOO, &H07, &HE4, &H61, &H24
$INLINE &HFC, &H34, &H02, &HE6, &H61, &HB9
$INLINE &H40, &H01, &HE2, &HFE, &H4A, &H74
$INLINE &H02, &HEB, &HF2

END SUB
CALL Shriek
END 'end the program

Turbo Basic Reference Directory 125

$SEGMENT metastatement

Function

Syntax

Remarks

Example

126

$SEGMENT declares a new code segment.

$SEGMENT

Use the "no-argument" $SEGMENT metastatement to break up
your source program when the compiler reports that the 64K code
segment limitation has been exceeded:

Error 409 Segment Overflow Press <ESC>

Everything after the $SEGMENT metastatement will be placed
into a new code segment. This makes every flow control statement
(GOSUB, GOTO) that passes control across this boundary an
intersegment (far) move, call, or jump, which requires slightly more
time and stack space to complete. This effect can be minimized by
placing $SEGMENT statements where natural lines of division
occur in your program; for example, between major subroutines or
between the main program and initialization or termination code.

There can be up to 16 code segments in a Turbo Basic program.
The compilation status data printed after compilation will show the
sizes of each segment, separated by slashes (/).

Note: You cannot use a $SEGMENT statement within a struc­
tured block; for example, FOR/NEXT, DO/LOOP, WHILE/
WEND, IF BLOCK.

SUB Proc1
PRINT "This is a dummy procedure II

END SUB

$SEGMENT I define second segment

SUB Proc2
PRINT "This is another dummy procedure II

END SUB

$SEGMENT I define third segment

SUB Proc3
PRINT "This is another dummy procedure II

END SUB

CALL Procl
CALL Proc2
CALL Proc3

END I end the program

Turbo Basic Owner's Handbook

$SOUND metastatement

Function

Syntax

Remarks

$SOUND declares the capacity of the background music buffer.

$SOUND buffer size

buffer size is a numeric constant and indicates the note capacity of
the PLAY statement's background buffer, from 1 to 4,096. Increas­
ing the capacity of the buffer to the maximum number of notes you
intend to play in a given program makes note-count trapping (and
the attendant degradation in performance) unnecessary.

Each note requires 8 bytes of memory; the default capacity is 32
notes or 256 bytes. The default value can be changed and saved
using the Music Buffer entry on the Options menu. Default values
are overridden by metastatements embedded in the code.

Turbo Basic Reference Directory 127

$STACK metastatement

Function

Syntax

Remarks

See Also

Example

128

$STACK declares the size of the run-time stack.

$STACK count

count is a numeric constant from 1024 to 32K. $STACK determines
how much run-time memory will be devoted to the stack. The stack
is used for return addresses during subroutine calls and within
structured statements, and is used for the local variables of multi­
line functions. The default (and minimum) size is 1024 (400H)
bytes.

You may want to allocate more stack space if your program is
abnormally nested, uses large local variables, or performs recursion ..
If you suspect that a program is running out of stack space, recom­
pile it with the Stack test option in the Options menu. Programs
generated with this debugging switch turned on always check the
available stack space before entering subroutines, procedures, and
functions. Default values are overridden by metastatements
embedded in the code.

You can check the amount of free stack space for yourself with the
FRE(- 2) function.

FRE

I Gives a stack of 4,096 bytes •••
$STACK &HIOOO
PRINT FRE (-2) , display the amount of stack

, space available

Turbo Basic Owner's Handbook

$STATIC metastatement

Function

Syntax

Remarks

See Also

Example

$STATIC declares the default array allocation to be static.

$STATIC

The $STATIC metastatement takes no argument and declares the
default array allocation type to be static. Space for static arrays is
allocated at compile time. Arrays with constant dimensions are
always static except if the array is declared local to a procedure or a
function or if there' s more than one dimension for the same array.

Static arrays cannot be erased. The ERASE statement only initi­
ates each element in the array to zero or to null strings.

Note that the $STATIC metastatement, despite a cosmetic simi­
larity, has nothing whatever to do with the STATIC statement,
which declares a special type of local variable within procedures
and functions.

The compiler's default is $STATIC.

DIM
$DYNAMIC
ERASE
FRE

$STATIC I explicitly declares static arrays

PRINT "Memory available: ",FRE{-l}
I memory remains the same

DIM A{50} I A is a static array
PRINT "Memory available: ",FRE{-l}

N = 50

I B is a dynamic array because of the
I expression used as the argument
I in the DIM statement
DIM B{N}
PRINT "Memory available: ",FRE{-l}
I now there is less

ERASE A
PRINT "Memory available: II ,FRE{-l}
I no difference because A not deallocated
I just zeroed

ERASE B
PRINT IIMemory available: ",FRE{-l}
I more memory because dynamic
I arrays deallocated
END I end the program

Turbo Basic Reference Directory 129

ABS functian

Function

Syntax

Remarks

Example

130

ABS returns. an absolute value.

y = ABS(numeric expression)

ABS returns the absolute value of a numeric expression. The abso­
lute value of x indicates its magnitude without regard to its sign.
For example, the absolute value of - 3 is 3; the absolute value of
+3 is 3.

I ABS returns the current distance from home by
I taking the absolute value of the distance

I assign a location
Location# = -6.5
I display the current position
PRINT "Current location: ",Location#
I display.the distance from home
PRINT "Oi stance from home: ''',ABS(Oi stancel) (Locati on#)

Turbo Basic Owner's Handbook

ASC function

Function

Syntax

Remarks

Restrictions

See Also

Example

ASC returns the ASCII code of a string's first character.

y = ASC(string expression)

ASC returns the ASCII code (0 to '255) of the first character of
string expression.

To convert an integer to a character string, use the complemen­
tary function CHR$, which ,produces a one-character string when
fed an ASCII value.

The string expression passed to ASC may not be a null (empty)
string. If it is, run-time ,error 5 is generated, Illegal Function Call.

CHR$

PRINT liThe ASCII value of A is ";ASC("A")

Turbo Basic Reference Directory 131

ATN function

Function

Syntax

Remarks

132

ATN returns a trigonometric arctangent.

y = ATN(numeric expression):

ATN returns the arctangent (inverse tangent) of numeric expression;
that is, the angle with a tangent of numeric expression. ATN returns
a double-precision result.

The result, as with all operations involving angles in Turbo Basic,
is in radians rather than degrees. Radians are a unit of angle mea­
surement that is mathematically more convenient than degrees.
Where angles specified in degrees range from 0 to 360, angles
specified in radians range from 0 to 2"IT, with 0 radians measured
along the positive X axis and increasing counterclockwise. This puts
the positive Y axis (90 degrees) at "IT/2 radians, the negative X axis
(180 degrees) at "IT radians, and the negative Y axis (270 degrees) at
3"IT/2 radians:

90 0 = 7r/2 Radians

0 0 =0 Radians

If you (or your application) are more comfortable with degrees,
radians can be converted to degrees by multiplying a radian value
by 57.2958. For example, the arctangent of 0.23456 is

ATN(.23456) radians
= 0.230395 radians
= (0.230395 * 57.2958) degrees
= 13.2 degrees

Turbo Basic Owner's Handbook

See Also

Example

Convert degrees to radians by multiplying by 0.0174533. For
example:

14 degrees
= (0.0174533 * 14) radians
= 0.24435 radians

Rather than memorizing the radians/degrees conversion factors,
calculate them for yourself by remembering this relationship: 2".
radians equals a full circle equals 360 degrees, so 1 radian is 180/".
degrees. Conversely, 1 degree equals "./180 radians.

For your reference, ". to 16-digit accuracy is

3.14159 26535 89793

This value can be calculated by the expression

pi# = 4 * ATN(l)

Degrees-to-radians and radians-to-degrees conversions are a
good application for single-line functions.

COS
SIN
TAN

I calculate the value of PI using ATN
PII = 4 * ATN(1)
PRINT PI#

Turbo Basic Reference Directory 133

BEEP statement

Function

Syntax

Remarks

See Also

Example

134

BEEP makes the speaker sound.

BEEP [count]

BEEP plays an 800 Hz tone through the built-in speaker for 0.25
seconds. The optional numeric argument causes count BEEPs.

BEEP has the same effect as outputting the ASCII bell character
(code 7) to the screen; for example, PRINT CHR$(7). More melo­
dious tones can be created with the SOUND and PLAY statements.

PLAY
SOUND

BEEP 2 I get the user 's attenti on

Turbo Basic Owner's Handbook

BIN$ function

Function

Syntax

Remarks

See Also

Example

BIN$ returns the binary string equivalent of a number.

s$ = BIN$(numeric expression)

numeric expression is in the range - 32,768 to 65,535. Any frac­
tional part is rounded before the string is created. If numeric
expression is negative, BIN$ returns the two's complement form of
the number.

HEX$
OCT$

I This example displays both decimal and
I binary values for -5 to 5

FOR 1% = - 5 TO 5 I for - 5 to 5
I display decimal and binary values of 1&

PRINT USING "The binary equivalant of -II = &";I%,BIN$(I%)
NEXT 1%

END I end the program

Turbo Basic Reference Directory 135

BLOAD statement

Function

Syntax

Remarks

BLOAD loads a BSAVEd file into memory.

BLOAD fi7 espec [, address]

filespec is a string expression specifying the file to load, and must
follow standard DOS naming conventions, optionally including a
drive specifier and/or path. address is an optional numeric expres­
sion from 0 to 65,535 indicating where in the current segment the
file should be loaded. If omitted, BLOAD places the file at the
address from which it was BSAVEd initially.

If address is given, it overrides the address information saved
with files produced by the BSAVE statement. Since no checking is
done on the address of a BLOAD, it is quite possible to inadver­
tently load a RIe on top of DOS and/or your program and crash the
system.

Restrictions BLOAD will not directly load EGA memory.

See Also BSAVE
DEFSEG

Example REM LoadGraphicsScreen
DEF SEG &HB800
BLOAD IPicture",O

136 Turbo Basic Owner's Handbook

BSAVE statement

Function

Syntax

Remarks

BSAVE saves a memory range to disk.

BSAVE fi7espec, address, 7ength

filespec is a string expression specifying the file the data should be
written to. filespec must follow standard DOS naming conventions,
and may optionally include a drive specifier and/or path informa­
tion. address is a numeric expression ranging from 0 to 65,535 and
indicates the offset part of the address from which filespec will be
saved (see DEF SEG statement). length is the number of bytes to
save, from 0 to 65,535.

BSAVE saves a memory range to disk (in effect saves a digital
snapshot of the indicated range at the time of the BSAVE). Files
created with BSAVE can then be reloaded with the BLOAD com­
mand; optionally, files can be loaded at a different address than
where the BSAVE occurred.

BSAVE and BLOAD are often used to save and load screen
images by directly reading and writing display memory. The display
buffer of the Monochrome Display Adapter is 4,000 bytes long and
begins at offset 0 in segment &HBOOO. The display buffer for the
Color/Graphics Adapter is 4,000 bytes long in text mode (SCREEN
0), and 16,384 bytes long in both medium and high resolution
graphics modes; both begin at offset 0 in segment &HB800.

Restrictions Before executing a BSAVE statement, the programmer should
explicitly set the segment that will be saved to disk using the DEF
SEG statement.

See Also BLOAD
DEFSEG

Example ' BSAVE fills the screen with A's and saves to disk

FOR 1% :: 1 to 2000
PRINT "A"; 'fills screen with A's
NEXT 1%

, define segment for BSAVE
DEF SEG :: &HBOOO

, saves monochrome video ram
BSAVE "TEXT.PIC",0,4000
, twice the number of characters
, because of attributes

END ' end the program

Turbo Basic Reference Directory 137

CALL statement

Function

Syntax

Remarks

See Also

Example

138

CALL invokes a procedure (subprogram).

CALL procname [(parameter list)]

procname is the name of a procedure defined elsewhere in the pro­
gram with the SUB statement. parameter list is an optional,
comma-delimited list of variables, expressions, and/or constants to
be passed to procname.

There are three types of SUB procedures: STATIC, standard pro,.
cedures, and INLINE. The proceeding discussion applies to all
types; however, the way the compiler handles parameter ,lists is
dependent on the type of SUB procedure.

The number and. type of arguments passed must agree with the
parameter list in procname's definition; otherwise, a compile-time
Parameter Mismatch error occurs.

If the SUB procedure is an INLINE procedure, the number of
arguments is variable and no type checking is performed on the
parameters. It is the responsibility of the SUB INLINE procedure
to know or determine the number and type of parameters that are
passed to it. (For more on SUB INLINE, refer to Appendix· C,
"Assembly Language Interface.")

When procedure arguments are passed by reference (that is,
variables), they are changeable by the called procedure. When a
variable is enclosed in parentheses, it is passed by value and the
original value cannot be changed. Note that expressions and con­
stants are always passed by value.

Array arguments are specified by using an empty set of paren­
theses after the array name. Entire arrays are always passed by
reference. For example:

CALL SumArray (a(»
CALL SumArray (a(3»

$INLINE
SUB

I pass array a to SumArray
I pass element 3 of a to SumArray

DIM Array(l) I declare array of 2 numbers

SUB TestProcedure(I%, L&, Sf, 01, E, A(l»
I This procedure 'simply outputs the values
I of each parameter passed to it.

PRINT 1%; L&; Sf; 01; E; A(O)
END SUB I end procedure TestProcedure

Turbo Basic Owner's Handbook

Integer% = 1
Longlnt& = 2
SinglePrel = 3
DoublePre# = 4
Array(O} = 5

CALL TestProcedure{Integer%, Longlnt&, SinglePrel, _
DoublePre#, Integer%A2,Array(}}

END I end the program

Turbo Basic Reference Directory 139

CALL ABSOLUTE statement

Function

Syntax

Remarks

140

CALL ABSOLUTE invokes an assembly language routine.

CALL ABSOLUTE address(parameter Ust)

address is a numeric scalar containing the offset of the external
routine to be invoked. The segment is defined by the most recent
DEF SEG statement. address must be in the range - 32,768 to
65,535. Negative values will be converted by the compiler to posi­
tive.

The parameter list form maintains compatibility with Interpre­
tive BASIC by passing short integer parameters onto the stack. This
form only allows integers to be passed. (See Appendix C, "The
Assembly Language Interface.")

The register buffer is loaded into the processor's registers just
before a CALL ABSOLUTE or CALL INTERRUPT and is saved
back just after returning. At any given time, the buffer contains the
state of the processor as it existed at the completion of the most
recent external subroutine.

The register buffer is accessed by the REG statement and func­
tion, which uses a numeric argument to reference the correspond­
ing register, as shown in the following:

Register Argument Register

0 Flags
1 AX
2 BX
3 ex
4 DX
5 SI
6 Dr
7 BP
8 DS
9 ES

REG as a statement loads the selected element of the register
buffer with the indicated integer value:

REG 2,&HIOOO I load lOOOH into BX of register buffer

Turbo Basic Owner's Handbook

See Also

Example

REG as a function returns the value of the selected element in
the register buffer:

PRINT REG(2) I print value in BX of register buffer.

The programmer is responsible for preserving the Data Segment
(DS), Base Pointer (BP), Stack Segment (SS), and Stack Pointer
(SP) registers.

CALL INTERRUPT
DEFSEG
REG

DEFINT a-z
DIM a(100)
DIM FillRoutine(10)

FillRoutine (0) = &HF2FC
FillRoutine (1) = &HCBAA

REG 1, -1
REG 3, 101 * 2
REG 9, VARSEG(a(O»
REG 6, VARPTR(a(O»

DEF SEG = VARSEG(FillRoutine(O»
PRINT a (1)
WHILE NOT INSTAT : WEND
FillAdr = VARPTR(FillRoutine(O»
CALL ABSOLUTE FillAdr I (REG)

PRINT a (1)
END

Turbo Basic Reference Directory 141

CALL INTERRUPT statement

Function

Syntax

Remarks

CALL INTERRUPT calls a system interrupt.

CALL INTERRUPT n

n is an integer expression representing the interrupt to call, from 0
to 255. Just before the interrupt handler receives control, the pro-
cessor's registers are loaded with the values in the machine register
buffer. When the interrupt handler returns, the buffer takes on the
values in the processor's registers. At any given time, the buffer
contains the state of the processor's registers as they existed at the
completion of the most recent external call or REG statement.

The DOS technical reference manual contains complete informa­
tion on the many functions available through the CALL INTER­
RUPT mechanism.

The programmer is responsible for preserving the Stack Segment
(SS) and Stack Pointer (SP) registers.

Restrictions Before executing the CALL INTERRUPT statement, the appropri­
ate CPU registers must be initialized through the REG statement.
After executing the CALL INTERRUPT statement, the CPU regis­
ters' values must be accessed through the REG function.

See Also CALL ABSOLUTE
REG

Example I CALL INTERRUPT executes a DOS interrupt service

142

$INCLUDE "REGNAMES. INC"
REG %AX, &H0200
I AH = 02 Hex DOS standard output char function

REG %DX, REG(%DX)AND &HFF02
I DL = 02 Hex DH remains the same
I DL:= character to output

CALL INTERRUPT &H21 I call interrupt 21

Turbo Basic Owner's Handbook

CDBLfunction

Function

Syntax

CDBL converts a number to double-precision format.

y = CDBL(numeric expression)

CDBL converts a numeric variable or expression into double­
precision form.

Use CDBL to eliminate the chance of integer overflow in expres­
sions that combine integer and floating-point operands. For exam­
ple:

y# = (z% + x%) / a#

This expression will result in overflow if (z% + x%) is greater
than 32,767. To avoid the possibility, use CDBL to force one of the
integer variables to double-precision form. This causes the entire
expression to be evaluated in double precision:

y# = (CDBL(z%) + x%) / at

Restrictions The range of the expression passed to CDBL must be within the
legal range for a double-precision number.

See Also CINT
CLNG
CSNG

Example I CDBL is useful in preventing run-time errors

X% = 2000
Y% = 2000
Z# = CDBL(X%)

I declare an integer variable
I assign Y% the value of X%

* Y% I prevent overflow by converting X%

PRINT X%, Y%, Z# I display values of three variables

END

Turbo Basic Reference Directory 143

CEIL function

Function CEIL converts a numeric variable or expression to an integer by
returning the smallest integer greater than or equal to its argument.

Syntax y = CEIL(numeric expression)

The CEIL function converts a numeric variable or expression to .
an integer by returning the largest integer that is greater than or
equal to its argument.

Differences This function is not available in Interpretive BASIC.

See Also CINT
FIX
INT

Example FOR I I = -2.5 to 2.5 STEP 0.5

144

I display the ceiling for a series of values
PRINT USING "The ceiling of #1# is ##I.";II,CEIL(I!).
NEXT I I

END I end program

Turbo Basic Owner's Handbook

CHAIN statement

Function

Syntax

Remarks

CHAIN invokes a Turbo Basic chain module (created as a .TBC or
.EXE file).

CHAIN filespec

filespec is a string expression that follows standard DOS naming
conventions and represents a Turbo Basic chain module (extension
.TBC). If the extension is omitted, .TBC is assumed. Therefore, if
you want to specify an .EXE file, you must append .EXE to the file
name. The variables listed as COMMON in both the current pro­
gram and the destination program are passed to the destination
program.

In the testing phase, the calling program must be compiled to an
.EXE file, because you can't chain from within Turbo Basic. The
called program must be compiled to disk as a chain module (an
.EXE or .TBC file).

If the arguments to the COMMON statements in the calling pro­
gram and the called program don't match (for example, floating­
point variables in one place and integers in another), a run-time
error occurs.

Turbo Basic doesn't support Interpretive BASIC's line number­
oriented CHAIN options, including DELETE, MERGE, and
CHAIN linenumber. Since you can't specify a line number within a
destination chain module, execution always starts at the beginning.

In translating a CHAINed system of Interpretive BASIC pro­
grams to Turbo Basic, you may find that Turbo Basic's expanded use
of memory allows consolidating individual modules into a single
program, making chaining unnecessary.

Restrictions CHAINing can only be done when a program is being executed
from DOS; that is, from an .EXE file. MERGE, DELETE, ALL,
and CHAINing to a line number are not supported.

Differences In Turbo Basic, CHAINing is done from one compiled program to
another that has been compiled to a .TBC or .EXE file.

See Also COMMON

Turbo Basic Reference Directory 145

Example

146

Consider PROGI that chains to PROG2:

PROG1.BAS
, declare variables to be passed
, to the chained program:
, single precision scalar variables a and b,
, and integer array c%
DIM c%(3000)
a = 65 : b = 13 : c%(2000) = 12
COMMON a, b, c%(l)
, specify # of dimensions in array
CHAIN IPROG2"

PROG2.BAS

, declare variables to be ~eceived
, from the invoking program
, they must be in the same order, have the same
, type, but don't need the same name
COMMON x, y, z%(l)
PRINT x, y, z%(2000)

When PROGl.EXE is invoked from DOS, it will automatically
bring in module PROG2.TBC and execute it, printing out the
values assigned inPROGl. When PROG2 ends, it returns to DOS,
not to ·PROGl.

Turbo Basic Owner's Handbook

CHDIR statement

Function

Syntax

Remarks

Example

CHDIR changes the current directory (DOS's CHDIR, or CD,
command).

CHOIR path

path is a string expression conforming to DOS path conventions
(described in Chapter 4's section entitled "Files"). If path does not
indicate a valid directory, run-time error 76 occurs, Path Not
Found.

The CHDIR statement changes the current (active or default)
directory. It is analogous to DOS's CHDIR command except that it
can't be abbreviated as CD. Running a program that changes the
current directory from within Turbo Basic also changes Turbo
Basic's active directory.

INPUT "New directory: ",Path$
CHOIR Path$ I change to user-specified directory

END

Turbo Basic Reference Directory 147

CHR$ function

Function

Syntax

Remarks

See Also

Example

148

CHR$ converts an ASCII code into a one-character string.

s$ = CHR$(integer expression)

CHR$ returns a one-character· string whose single character has
ASCII.code integer expression, a value from from 0 to 255. CHR$
complements the ASC function, which returns an ASCII code of a
string's first character; CHR$ is handy for creating characters that
are difficult to enter at the keyboard, such as graphics characters for
screen output and control sequences· for printer output.

The value of the integer expression passed to CHR$ must be
within 0 to 255. Using an argument out of the range 0 to 255 pro­
duces run-time error 5, Illegal Function Call.

ASC

I CHR$ displays the ASCII character set on screen

FOR 1% = 0 TO 255
PRINT USING" !";CHR$(I%);
I display ASCII character represented by 1%

NEXT 1%

END

Turbo Basic Owner's Handbook

CINT function

Function

Syntax

Remarks

CINT converts its argument to an integer.

y = CINT(numeric expression)

The CINT function converts a numeric variable or expression to an
integer by rounding the fractional part of numeric expression. If
numeric expression is out of the range - 32,768 to + 32,767, an
Overflow error occurs (run-time error 6).

This conversion is performed implicitly by assigning to an integer
variable or calling a procedure or function that takes an integer
argument.

Differences Unlike Interpretive BASIC, Turbo Basic does not always round the
fractional part of a number up. If the fractional part of a number is
equal to .5, it is rounded toward the even number.

See Also CDBL

Example

CEIL
CLNG
CSNG
FIX
INT

FOR I! = 0.0 TO 5.0 STEP 0.2
I display converting result
PRINT USING "CINT of 1.1 = I";I!,CINT(I!)

NEXT I!

END I end the program

Turbo Basic Reference Directory 149

CIRCLE statement

Function

Syntax

Remarks

150

CIRCLE draws a circle or part of a circle.

CIRCLE (x,y) , radius [, co7or [, start, end [, aspect]]]

(x,y) is the center of the circle, and can be specified in either abso­
lute or relative form (using STEP). (See Chapter 3's section on
graphics for more information about absolute and relative coordi­
nates.)

radius is a numeric expression controlling the size of the circle.

color is an integer expression determining the color of the circle.
Acceptable values are 0 to 3 in medium resolution graphics (default
is 3), and 0 to 1 in high resolution graphics (default is 1). The
default color is the highest possible color for the mode you are in.
Using a color argument out of these ranges produces run-time error
5, Illegal Function Call. (See the COLOR statement for more infor­
mation about color selection.)

start and end are optional numeric parameters defining the start­
ing and ending points of the arc to be drawn, specified in radians
(see the discussion of radians in the ATN entry). Use them when
you want to draw only part of a circle. If start and end are omitted,
the entire circle is drawn. For example:

SCREEN 1 : pi = 4 * ATN(l)
CIRCLE (160,100), 50, 3, 0, pi

draws a white semicircular arc from 0 radians (0 degrees) to 'IT
radians (180 degrees).

Negative start and end values cause pie-chart-style wedges to be
drawn; that is, the edges of the arc are automatically connected to
the center point. For example:

SCREEN 1 : pi = 4 * ATN(l)
CIRCLE (160,100),50" -pi/4, -pi/2

draws a 45 degree pie slice, from 'IT/4 radians (45 degrees) to 'IT/2
radians (90 degrees), which is depicted on page 149. To start a
wedge on the positive x axis, use a negative number slightly less
than zero (for example, .0001) rather than - O.

Turbo Basic Owner's Handbook

Example

o

aspect is a numeric expression controlling how oval or round the
circle will be. The default is 5/6 (0.833333) in medium resolution,
and 5/l2 (0.416667) in high resolution. Depending on your partic­
ular display board/video monitor combination, you may need to
tinker with these values (or adjust your monitor) to get round
circles.

The LPR after drawing a circle is its center.

, This program demonstrates CIRCLE's capabilities:
, changing the location, the radius, the color,
, and the aspect ratio. CIRCLE can also draw arcs
I and wedges, useful for "pak-man" games.

PI# = 4 * ATN(I) 'calculate the value of PI
SCREEN 1 'go into graphi cs mode

FOR Radius% = 1 TO 20 ' increase the size of the circle
Colour% = Radius% MOD 4 ' calculate a display color
CIRCLE(2S0,IS0), Radius%, Colour% ' center at 250, 150

NEXT Radius%

CIRCLE(220,60), SO,I,-(PI#*S/4), -(PI#*3/4) 'pak-man body
CIRCLE STEP (-5,-25), 5,1 ' and eye

Radius% = 50
, ellipses can produce illusions like spheres ...
FOR Aspect = 0 TO 2.0 STEP 0.09

CIRCLE(90,100),Radius%""Aspect
NEXT Aspect
END

Turbo Basic Reference Directory 151

CLEAR statement

Function

Syntax

Remarks

CLEAR clears variable memory.

CLEAR

CLEAR is a parameterless command that sets numeric variables to
zero and string variables to null. CLEAR turns off any event trap-
ping that is on (such as music that may be PLAYing), and re-initial­
izes array and string memory.

Note: A CLEAR statement inside a loop will clear the counter
causing an endless loop.

Use the ERASE command to selectively free up arrays in mem­
ory.

Restrictions Turbo Basic does not support dynamically setting the stack and data
segments; thus, there are no parameters to this statement.

Differences The differences between Interpretive BASIC's CLEAR statement
and Turbo Basic's stem primarily from the differences between
compilers and interpreters. Interpretive BASIC allows you to
dynamically set the stack and data space, where Turbo Basic's stack
and data space is fixed at compile time.

See Also ERASE
$STACK

Example ' This program demonstrates what CLEAR can do

152

DIM Array$(l} 'declare an array of strings

PLAY "MB Ll EFGABCDEF" , play music in background
ON PEN GOSUB PenHandler 'set up light pen trapping
ON STRIG(O) GOSUB ButtonOHandler 'set up joystick trapping

'initialize the string data
Array$(O) = "This is a string in Array$(O)"
Array$(l) = "This is a string in Array$(l)"

'display the string data
PRINT USING "Array element 1: &";Array$(O)
PRINT USING "Array element 2: &";Array$(I)
PRINT
INPUT "Press <ENTER> to execute CLEAR statement";_Dummy$

CLEAR , do a CLEAR

Turbo Basic Owner's Handbook

PRINT
I display no longer existing string data
PRINT USING "Array element 1: &";Array$(O)
PRINT USING "Array element 2: &";Array$(l)
PRINT
PRINT "The string variables are now empty."

END I end the program

PenHandler: I define a dummy label for the light pen trap
RETURN

ButtonOHandler: I define a dummy label for the joystick
RETURN

Turbo Basic Reference Directory 153

CING function

Function CLNG converts to a long integer.

Syntax y = CLNG(numeric expression)

Remarks CLNG converts a numeric variable or expression to a long integer
by rounding the fractional part of its argument. If numeric expres­
sion is out of the range of - 231 to + 231 -1 (approximately - 2
billion to + 2 billion), run-time error 6 occurs, Overflow.

Restrictions The numeric expression passed to the CLNG function must be
within the legal range of a long integer.

Differences This function is not available in most Interpretive BASICs because
they do not support long integers.

See Also CDBL
CINT
CSNG
FIX
INT

Example PRINT CLNG(2.0E9), CLNG(33.4), CLNG(-121.9), CLNG(l00251.6)

END I end the.program

154 Turbo Basic Owner's Handbook

CLOSE statement

Function

Syntax

Remarks

See Also

Example

CLOSE closes a file or device.

CLOSE [[I] fi1enum [, [I] fi1enum] •••]

CLOSE ends the relationship between a file number and a file
established in an OPEN statement and concludes I/O to that file.
The file buffer is Hushed, and if filenum represents a file (rather
than a device), a DOS CLOSE is performed on it to update the
directory.

It's good practice to periodically CLOSE files that a program
writes. This ensures that all the information is written and the file's
operating system directory entry is properly updated in case of a
subsequent power failure or other problem.

A CLOSE with no file number specified closes all open devices
and files (so do RESET, END, STOP, and RUN).

END
OPEN
STOP

I Open a file assigned to the printer device
OPEN "LPTI:" AS #1

PRINT' I,"THIS IS A TEST" I send string to printer

CLOSE' I I close file variable
OPEN "CLOSEFIL.ONE" FOR AS II I open two different fil es
OPEN "CLOSEFIL. TWO" FOR AS 12

PRINT' I,"THIS IS A TEST" I write string to each file
PRINT' 2,"THIS IS A TEST"

CLOSE I close all open files

END

Turbo Basic Reference Directory 155

CLS statement

Function

Syntax

Remarks

See Also

Example

156

CLS clears the screen.

CLS

In text mode,. CLS clears the screen to the background color and
homes the cursor to the upper left-hand corner (row 1, column 1).

CLS in graphics mode clears the screen to the background color.
The LPR becomes the center of the screen, either (160,100) or
(320,100), depending on whether the current mode is medium or
high resolution, respectively.

If a VIEW. statement has been executed, CLS clears only the
viewport. To erase the entire display, nrst use VIEW without argu­
ments to turn off the viewport and then CLS to clear the screen.

COLOR
SCREEN
VIEW

I CLS clears the screen to the background color

Print" This is a test of the CLS statement"
INPUT "Press <ENTER> to clear the screen ... ",Dummy$

Color 10,1 I set color to Green on Blue

CLS I clear the screen to Blue

END

Turbo Basic Owner's Handbook

COLOR statement (graphics mode)

Function

Syntax

Remarks

COLOR sets the colors for graphics operations.

For SCREEN 1: COLOR [background] [, [pa 7ette]]

For SCREENs 7, 8, 9, lO: COLOR [foreground] [, [background]]

background is an integer expression from 0 to 63 specifying back­
ground color. palette is an integer expression from 0 to 1, selecting
one of two color palettes. foreground is an integer expression from
1-15.

Arguments to this command determine the screen's background
color and the palette of four colors that will be used in subsequent
drawing statements. After you've determined the palette and back­
ground color with a COLOR statement, the color of individual
objects is controlled by arguments to the various plotting commands
(CIRCLE, LINE, and so on).

In high resolution mode on a Color/Graphics Adapter, black and
white are the only possible colors. Consequently, the COLOR state­
ment has no meaning in this mode, and trying to use it results in
run-time error 5, Illegal Function Call.

SCREEN 1
Background 0-255: The actual background color used is background
MOD 16. Thus a background of 1 and 16 produces the same result.

Palette 0-255: Select a predefined palette, as shown in the fol­
lowing:

Color

1
2
3

Palette 0

Green
Red
Brown

Palette 1

Cyan
Magenta
White

Even numbers select Palette 0, and odd numbers select Palette 1,
the default. Palette 0 gives your program the ability to create
objects in green, red, and brown. Palette 1 offers the colors cyan
(greenish blue), magenta (reddish purple), and white.

Turbo Basic Reference Directory 157

SCREENS 7 and 8
EGA only: Colors are dependent on the current palette.

Foreground 1-15: The selected color is used for both writing
characters and drawing graphics.

Background 0-15: Selects background color.

SCREEN 9
Foreground 1-15: The selected color is used for both writing char­
acters and drawing graphics. If your EGA has only 64K of memory,
you can only use values in the 1-3 range.

Background 0-63: Selects background color.

SCREEN 10
Foreground 1-3: The selected color is used for writing characters
and drawing graphics; 1 = Black, 2 = Blink, 3 = High Intensity. A
foreground color of 0 results in an Illegal Function Call.

Use the PALETTE statement to change default attributes:

Background 0-8: The selected color is used for background.

Note: Color value 0 for either palette is the background color
specified in this statement, and the foreground color defaults to the
maximum attribute.

Restrictions In screen mode 2, the COLOR statement returns run-time error 5,
Illegal Function Call.

158 Turbo Basic Owner's Handbook

Example I This program demonstrates the COLOR statement
I in graphics mode.

I switch to medium resolution graphics mode,
I and set palette 0

SCREEN 1
COLOR ,0

FOR Radius% = 1 TO 20 I increase the size of the circle
Colour% = Radius% MOD 4 I calculate a display color
CIRCLE(160,100), Radius%, Colour% I display a circle

NEXT Radius% I with center at 250, 150

delay 2

COLOR ,1 I change the palette

delay 2

I set the palette and background color,
I and clear the screen

COLOR 6,0 : CLS

I draw a red circle in the middle of the screen
CIRCLE (160,100), 50, 2

delay 2

END

Turbo Basic Reference Directory 159

COLOR statement (text nwde)

Function

Syntax

Remarks

160

COLOR sets text color.

COLOR [foreground] [, [background] [, border]]

foreground is an integer expression from 0 to 31 specifying
character color. background is an integer expression from 0 to 7
specifying background color. border is an integer expression from 0
to 15 and determines border color. If any of these parameters are
outside the indicated range, run-time error 5 occurs, Illegal Func­
tion Call.

For standard Color/Graphics-type video boards, your foreground
choices include the following:

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 High Intensity White

Characters can be made to blink by setting foreground to the
desired color value plus 16. For example, a foreground setting of 22
(6 + 16) produces blinking brown characters.

Monochrome display adapters can't display color, so foreground
values are interpreted as follows:

0 Black

1 Underlining

2-7 White

8 Black
9 High intensity underline

10-15 High intensity

16 Black
17 Underline black
18-23 Blink
24 Black

25 High intensity, underline, blink

26-31 High intensity, blink

Turbo Basic Owner's Handbook

Background values of 0 through 6 produce a black background.
Value 7 results in a white background.

Note: On either adapter, characters become invisible when the
foreground is equal to the background.

Enhanced Graphics Adapters with enhanced monitors can dis­
play 16 colors· from a palette of 64 colors (see PALETTE).

Restrictions The border parameter has no effect on an EGA with an enhanced
monitor.

Example I Thi s program demonstrates the COLOR statement
I in both text and graphics modes.

I display a table of· attributes
FOR Back% = 0 TO 7

FOR Fore% = 0 TO 15
COLOR Fore%, Back%
PRINT USING" '" ";Back%*16tFore%;

NEXT Fore%
PRINT

NEXT Back%

PRINT

FOR Back% = 0 TO 7 I display a table of all the attributes
FOR Fore% = 16 TO 31 I with blinking

COLOR Fore%, Back% I set display color
PRINT USING" "# ";Back%*16tFore%-16;

NEXT Fore%
PRINT

NEXT Back%

END

Turbo Basic Reference Directory 161

COM(n) statement

Function

Syntax

Remarks

See Also

Example

162

COM(n} controls the trapping of serial port events.

COM(n) {ONIOFFISTOP}

n is the number of the communications adapter to be trapped (1
or 2).

A COM(n) ON statement allows trapping by the routine speci­
fied in a previous ON COM(n) statement. After COM(~) ON,
Turbo Basic checks between the execution of every statement to

. see if any characters have arrived at the specified serial port. If it
finds that such an event.has occurred, it calls the subroutine speci­
fied in the ON COM{n) statement.

If COM(n) is OFF, activity at serial port n is ignored.

Communications trapping stops ·after a COM(n) STOP state­
ment; however, any activity is remembered so that an immediate
trap occurs when a COM(n) ON statement is executed.

Use the $COM metastatement to increase or decrease the size of
the COM buffer.

ON COM(n)

I The COM(n) .statement demonstrated. Note: This
I program will not display anything if your COMI
I port is not receiving input

I set up routine to process COM input
ON COM(I) GOSUB GetComInput

I allocate a SK array to store input
DIM ComPortInput(S * 1024)
I allocate a pointer to next available buffer space
HeadPtr% = 0
I and the next to print
Tail Ptr% = a

I turn COM input handling on
COM(l) ON
I setup lK input buffer
$COMI 1024
I open a file variable as COM1
OPEN "COM1" AS #1

PRINT "Press any key to terminate the program ... 11

I while a key hasn't been pressed
·WHIlE NOT INSTAT

I if the buffer isn't empty
IF TailPtr% <>HeadPtr% THEN

I display input

Turbo Basic Owner's Handbook

PRINT IICOM Port input: II;ComPortInput(TailPtr%)
I step ~o next spot in buffer
TailPtr% = TailPtr% + 1

END IF
LOCATE 2,1
PRINT TIME$

WEND

END I end of program

I process COM port interrupt
GetComInput:

I read input from COM port buffer
INPUT# 1,ComPortInput(HeadPtr%)
I point to next buffer space
HeadPtr% = HeadPtr% + 1
RETURN

EndOfI nput: I e'nd of COM port input
PRINT IIReached the end of input ... "
END I end the program

Turbo Basic Reference Directory 163

COMMAND$ function

Function

Syntax

Remarks

COM MAND$ returns the command line used to start the program
from DOS.

s$ = COMMAND$

COMMAND$ returns everything that was typed at the DOS
prompt in the process of invoking a program, with the exception of
the program name itself (some manuals refer to this text as the
"trailer").

Use COMMAND$ to collect run-time arguments such as file
names and program options. For example, consider the DOS com­
mand:

FASTSORT cust.dta cust.new

where FASTSORT is a Turbo Basic-produced .EXE program.
When FASTSORT gets control, COMMAND$ will hold everything
that was typed at the DOS prompt after the program name itself, in
this case, the string "cust.dta cust.new." It's up to the definition of
FASTSORT to decide what to do with this string (maybe it could
break COMMAND$ into jilenamel and jilename2, and sort the
contents ofjilenamel into new filejilename2).

To test a program that uses COMMAND$ from within Turbo
Basic, use the Parameter line option of the Options menu to set the
string that COMMAND$ returns.

Restrictions The maximum length of the DOS command line is 127 characters.

Example I This program demonstrates the COMMAND$ function.

164

PRINT "The command line parameters passed to this program are"
PRINT COMMAND$

Compile this program in memory and run it twice, changing the
parameter entry in the Options menu each time.

Turbo Basic Owner's Handbook

COMMON statement

Function

Syntax

Remarks

COMMON declares one or more variables to be passed to a
chained program.

COMMON variab7e [, variab7e} •••

variable is an array or scalar variable to be made available to the
next CHAINed program. Arrays are specified by including the
number of dimensions in parentheses after the variable name.

COMMON statements can appear anywhere in a program, and
there can be more than one, but a given variable can appear only
once.

A matching COMMON statement(s) must appear in the program
that is CHAINed to. The names of the variables used in the COM­
MON statement don't matter, but the number and type does. If the
variables declared as common in the invoking program don't match
the type and quantity of variables declared as common in the
receiving program, a run-time error is generated.

Differences Turbo Basic does not support the CHAIN ALL parameter provided
by Interpretive BASIC. You must explicitly define each variable to
be common across the chained programs.

When specifying an array as a common variable in Turbo Basic,
you must specify the number of dimensions of the array.

Interpretive BASIC doesn't require matched COMMONs be­
cause only the CHAIN from needs a COMMON; CHAIN to needs
none. Turbo Basic, on the other hand, requires that the variables
in each common statement be correctly ordered. In other words,
the names of the variables in the main and chain programs can be
different but the types of the variables must correspond. The follow­
ing COMMON statement is correct:

I Main program
COMMON 1%, Array(l), JI

I Chained program
COMMON Int%, RealArray(l), DblPre#

Restrictions Turbo Basic does not support Interpretive BASIC's CHAIN ALL
COMMON override.

Turbo Basic Reference Directory 165

Example

166

I These programs demonstrate the COMMON statement.
I In order to execute these programs, do the following:
I (1) compile the first program to an .EXE file,
I (2) compile the second program to a .TBC file,
I (3) at the DOS prompt, execute the first program.

I Program MASTER. Compile this program to an .EXE file.
DIM 01dArray$(1) I declare an array of two strings
OldArray$(O) = "This is the first string in the array"
01dArray$(1) = "This is the second string in the array"

OldInteger% = 12345
01dLongInt& = 123450000
01dSinglePrel = 12345.12345
01dDoub1ePrei = 1.0E+300

I specify the variables that are common to the master
I and slave programs
COMMON OldArray$(), OldInteger%, OldLongInt&,_

01dSinglePrel, OldDoub1ePre#

CHAIN "SLAVE. TBC" I chai n to sl ave program

END I end program

I Program SLAVE. Compile this program to a .TBC file.
COMMON NewArray$(), NewInteger%, NewLongInt&,_

NewSinglePrel, NewDoublePre#

PRINT NewArray$(O)
PRINT NewArray$(1)
PRINT NewInteger%, NewLongInt&, NewSinglePrel,_

NewDoublePre#

Turbo Basic Owner's Handbook

COS function

Function

Syntax

Remarks

COS returns a trigonometric cosine.

y = COS (numeric expression)

numeric expression is an angle specified in radians. To convert
radians to degrees, multiply by 180/11'. To convert degrees to
radians, multiply by 'll'/180. (See the discussion of radians under the
ATN function.)

COS returns a double-precision value.

See Also ATN

Example

SIN
TAN

I This program demonstrates the COS function

PIt = ATN(l) * 4

FOR 1% = 0 TO 360 STEP 45
PRINT USING "The Cosine of III degrees = 11.11";_

I%,COS(PII/l80 * 1%)
NEXT 1%

END

Turbo Basic Reference Directory 167

CSNG function

Function

Syntax

Remarks

See Also

Example

168

CSNG converts a numeric expression to its single-precision equiva­
lent.

y = CSNG(numeric expression)

CSNG converts a numeric variable or expression into single-preci­
sion, floating-point form. CSNG is usually used to prevent interme­
diate overflow when processing integer operands.

CDBL
CINT
CLNG

PRINT CSNG(&HFFF), CSNG(13241.1324), CSNG(&HFOOO)

Turbo Basic Owner's Handbook

CSRLIN function

Function

Syntax

Remarks

See Also

Example

CSRLIN returns the current vertical cursor position (row number).

y = CSRUN

CSRLIN returns an integer from 1 to 25, representing the current
vertical position (row number) of the cursor. Use the POS function
to read the cursor's horizontal position (column number).

The LOCATE statement moves the cursor to a specific line and
column.

LOCATE
POS

Col=POS save cursor row
Row=CSRLIN 'save cursor column
CLS
LOCATE Row, Col 'restore cursor position
END

Turbo Basic Reference Directory 169

CVI, CVL, CVS, CVD functions

Function

Syntax

Remarks

See Also

Example

170

CVI,· CVL, CVS, and CVD convert string data read from random
files to numeric form.

y% = CVI(2-byte string) .
y@ = CVL(4-byte string)
yl = CVS(4-byte string)
yl = CVD(B-byte string)

CVI converts a 2-byte string to an integer. CVL converts a 4-byte
string to a long integer. CVS converts a 4-byte string to a single~
precision value. CVD converts an 8,-byte string to a double-preci­
sion value.

Because of the way Turbo Basic handles random files, numeric
values must be translated into strings before they can be written to
disk, and translated back into numbers when the file is read.

Don't confuse these functions (which are strictly for random file
processing) with the VAL function, which takes a string like "3.7"
and turns it into a number.

MKD$
MKI$
MKL$
MKS$

I This program creates a random access data
I file and writes some data·to'it. It then
I reads this data back, converting it to usable
I form using the preceding functions.

I open a random access file
OPEN "R", II, "CVISLD.DTA" ,18

FIELD II, 2 AS Integer$, 4 AS LongInt$,_
4 AS SinglePre$, 8 AS DoublePre$

MaxInt% = 32767

I write data to file, convert it, and assign it
I to the buffer before writing it to the data
I file
FOR 1% = 1 TO 5

LSET Integer$ = MKI$(I%)
LSET LongInt$ = MKL$(I% +CLNG(MaxInt%»
LSET SinglePre$ =MKS$(CSNG{I% * CSNG(,MaXlnt%».)
LSET DoublePre$ = MKD$(MaxInt%AI%) .
PUT #1,1%

NEXT 1%

Turbo Basic Owner's Handbook

FOR I% = 1 TO 5 I read data from file
GET 11, I% I display it on screen
PRINT CVI(Integer$), CVL(LongInt$),_

CVS(SinglePre$), CVD(DoublePre$)
NEXT I%

CLOSE 11 I close the fil e

END

Turbo Basic Reference Directory 171

CVMD, CVMS functions

Function

Syntax

Remarks

Example

172

CVMD and CVMS convert string variables read from Microsoft­
format random files to numeric form.

y! = CVMS(4-byte string)
y# = CVMD(8-byte string)

CVMS (ConVert Microsoft Single-precision string) converts a
4-byte string representing a single-precision value in Microsoft for­
mat to a single-precision value in Turbo Basic IEEE format.

CVMD (ConVert Microsoft Double-precision string) converts an
8-byte string representing a double-precision value in Microsoft
format to a double-precision value in Turbo Basic IEEE format.

These functions are provided solely for compatibility with exist­
ing Interpretive BASIC random files.

I open a random access file
OPEN "CVMD.DTA" AS #1 LEN = 12

FIELD #1, 4 AS SingleS, 8 AS Double$

FOR I = 1 TO 5 I write some data to the file
I convert the data and assign data file
LSET SingleS = MKMS$(I)
LSET Double$ = MKMD$(I~I)
PUT #1, I

NEXT I

FOR I = 1 TO 5 I read the data from the file
GET #1, I I display data on screen
PRINT CVMS(Single$), CVMD(Double$}

NEXT 1%

PRINT CVS(x$), CVMS(x$)
CLOSE #1 I close the file

END

Turbo Basic Owner's Handbook

DATA statement

Function

Syntax

Remarks

DATA declares constants for READ statements.

DATA constant [, constant] ...

constant is a numeric or string constant. Numeric constants can be
floating point or integer and can optionally be expressed in hexa­
decimal or octal. String constants don't have to be enclosed in
quotes unless they contain delimiters (commas or colons) or signifi­
cant leading or trailing blanks, and can be freely mixed with
numeric constants. For example:

DATA Taco, .79,Chicken Supreme,2.29, "Dr. Pepper, large", .89

A program can contain many DATA statements and they need not
be on sequential lines. Each can contain as many constants as you
can fit on a line.

At runtime, READ statements access the DATA constants from
left to right and top to bottom in the order in which they appear in
the source program. The most common error associated with DATA
statements and READing is getting out of sync and trying to load
string data into a numeric variable; this generates a syntax error
(run-time error 2). Unfortunately, you won't get an error loading
numeric constants into string variables, even though that is proba­
bly not what you intended.

The RESTORE command lets you reread constants from the first
statement or any specified DATA statement.

If you try to READ more times than your program has constants,
run-time error 4 results, Out of Data.

Restrictions You cannot use underscore continuation characters in DATA state­
ments.

Don't use the single quote (') to comment a DATA statement
because Turbo Basic will think that the last entry and your com­
ment are part of a single, long string constant. For example:

DATA cats,dogs, pigs I 1 i st the animal s

is interpreted as containing three string constants:

"cats," "dogs," and "pigs I list the animals.";

You can, however, safely use :REM for this purpose:

DATA cats,dogs,pigs : REM list the animals

Turbo Basic Reference Directory 173

See Also

Example

174

READ
RESTORE
'This program demonstrates use of
, the DATA statement

SUB ProcessResults(StudentName$, StudentAverage%)
LOCAL Total%, Value%, 1%

Total% = 0
READ StudentName$
FOR 1% = 1 TO 10

READ Value%
Total% = Total% t Value%

NEXT 1%
StudentAverage% = Total%\10

END SUB

FOR Student% = 1 TO 3
CALL ProcessResults(SName$, Average%)
PRINT USING "&'s average ;s #1#";SName$, Average%

NEXT Student%

END 'end program

DATA W. Perry, 78, 65, 35, 79, 86, 93, 79, 85, 99, 96
DATA P. Watson, 98, 94, 70, 88, 99, 100, 75, 96, 100, 95
DATA M. Ciccone, 65, 59, 75, 82, 56, 79, 82, 76, 69, 89

Turbo Basic Owner's Handbook

DATE$ system variable

Function

Syntax

Remarks

DATE$ sets and retrieves the system date.

DATE$ = s$ (set date according to information in s$)
s$ = DATE$ (s$ now contains date information)

Assigning a properly formatted string value to DATE$ sets the sys­
tem date.

Assigning DATE$ to a string variable makes the system date
available for processing. DATE$ returns a 10-character string in the
form mm-dd-yyyy, where mm represents the month, dd the day, and
yyyy the year.

To change the date, your string must format the date in one of the
following ways:

mm-dd-yy
mm/dd/yy
mn-dd-yyyy
rrm/dd/yyyy

For example:

DATE$ = "10-25-86"

sets the system date to October 25, 1986.

Restrictions The year assigned to the DATE$ system variable must be within
the range 1980 to 2099.

See Also TIME$

Example , display the current system date
PRINT "The current system date is " DATE$
INPUT "Please enter the new date in the form MM-DD-VY"; NewDate$
DATE$ = NewDate$

PRINT "The system date is now set to " DATE$

END 'end the program

Turbo Basic Reference Directory 175

DEeR statement

Function

Syntax

Remarks

See Also

Example

176

DECR decrements a variable.

DECR variab7e [, size]

variable is a numeric variable, and size is an optional numeric
expression that indicates the value to be subtracted from variable.
If size is omitted, 1 is used.

DECR is a handy way to decrement a variable. Use the INCR
statement to increment a variable.

INCR

1% = 15
J% = 500

WHILE 1% > 0
PRINT 1%, J%
DEeR 1%
DECR J%, 5

WEND

END

I initialize counter variables

I display the value
I decrement the value by 1
I decrement the value by 5

I end the program

Turbo Basic Owner's Handbook

DEF FN/END DEF statement

Function

Syntax

Remarks

DEF FN/END DEF define a function.

Single line:

DEF FNidentifier [(argument list)] expression

Multiline:

DEF FNidentifier [(argument list)]
[LOCAL variable list]
[STATIC variable list]
[SHARED variable list]

. statements

[EXIT DEF]
[FNidentifier = expression]

END DEF

identifier is the unique name to be associated with the function, and
must follow the naming conventions for labels and variables (that is,
a letter followed by any number of letters and/or digits). argument
list is an optional, comma-delimited sequence of formal parameters.
The parameters used in the argument list serve only to define the
function: They have no relationship to other variables in the pro­
gram with the same name.

DEF FN and END DEF bracket and name a subroutine-like
group of statements called a function. A function may be optionally
passed one or more arguments by value. Functions return a value
(the type of which is controlled by the function's name, as though it
were a variable) and may therefore be called from any statement
that can accept a value of the appropriate type.

Function Definitions and Program Flow
The position of function definitions is immaterial. A function can

be defined in line 1 or line 1,000 of a program without regard for
where it is used; and you need not direct program How through a
function as an initialization step (as you must do with single-line
functions in Interpretive BASIC). The compiler sees your defini­
tions wherever they might be.

Also, unlike subroutines, execution can't accidentally "fall into" a
function. As far as the execution path of a program is concerned,
function and procedure definitions are invisible.

Turbo Basic Reference Directory 177

178

For example:

t = FNPrintStuff
DEF FNPrintStuff

PRINT "Printed from within FNPrintStuff"
END DEF

When this four-line program is .executed, the message appears
only once, since PrintS tuff is called in the first line.

Function definitions should be treated as isolated islands of code;
don'tjump,into or out of them with GOTO, GOSUB, or RETURN
statements. Within definitions, however, such statements are legal.

Note'that function and procedure definitions may not be nested;
that is, it is illegal to defi.ne a procedure or function within a proce­
dure or function (although a procedure or function definition can
contain calls to other procedures and functions).

,Declaring Local Variables (Multiline Functions Only)
To declare local variables within a function, use the LOCAL

statement before any executable statements in the definition. For
example:

LOCAL a%, bl, bigArray%()

creates three local variables: a% and b# (integer and double preci­
sion, respectively), and integer array bigArray. The array must then
be dimensioned appropriately:

DIM DYNAMIC bigArray%(lOOO)

Static and Shared Variables
By default, variables that appear within function definitions have

the SHARED attribute; that is, they are global to the rest of the
program. Since this default is subject to change, you should make
an effort· to declare every variable used in a function.

Declare variables with the STATIC attribute if it is important
that a variable not lose its value 'with every invocation, and yet it
may only be altered within the function.

A multiline function definition usually includes an assignment to
the function identifier and must be terminated with END DEF. If
you choose not· to include an assignment to the function identifier,
then the value returned by the function is undefined.

Use the EXIT'DEF statement to·return from a function that is
someplace other than at the end.

Turbo Basic Owner's Handbook

See Also

Example

LOCAL
SHARED
STATIC

$STACK &H7FFF
Total = 1

DEF FNFactorial%(I%)
I This function calculates the factorial of the
I parameter 1%

Total = Total * 1%

IF 1% > 1 THEN
Subb% = FNFactorial%(I% - 1)

END IF

FNFactorial% = Total

END'DEF I end function FNFactorial

PRINT "Input the number you wish to calculate the ":
INPUT "factorial of: ",J%

PRINT FNFactorial%(J%)

END I end the program

Turbo Basic Reference Directory 179

DEFINT, DEFLNG, DEFSNG, DEFDBL,
DEFSTR statements

Function

Syntax

Remarks

180

DEFINT, DEFLNG, DEFSNG, DEFDBL, and DEFSTR declare
the default type of variable identifiers.

DEFtype letter range [,letter range] ..•

type represents one of the five Turbo Basic variable types: INT,
LNG, SNG, DBL, and STR.ietter range is either a single alphabetic
character (A through Z, case insignificant), or a range of letters (two
letters separated by a dash; for example, A-M).

The DEFtype statement tells the compiler that variables and
user-defined functions beginning with the specified letter or range
of letters will be a certain type. This allows· you to use variables
other than single precision floating point in your program without
including type identifiers (for example, %, #).

By default, when the compiler finds a variable name without a
type identifier, it assumes the variable to be single precision floating
point. For example, in this statement, both nand m are assumed to
be single precision:

n = m t 16

1£ however, this statement were preceded by

DEFINT n, m

then nand m would both be integer variables, as would any other
variable whose name started with n or m in uppercase or lowercase.

Turbo Basic's execution of DEFtype is subtly different from
Interpretive BASIC's. The interpreter makes typing judgments
according to where the DEFtype statement occurs in program exe­
cution order. Turbo Basic, as a compiler, considers DEFtype's posi­
tion in the source file. For example, in executing this program

10 GOTO 30
20 DEFINT A-M
30 j = 45.3 : PRINT j

Interpretive BASIC never sees the typing statement in line 20.
When it encounters j in line 30, j becomes a single-precision vari­
able and is printed as 45.3. Turbo Basic, by contrast, makes deci­
sions about variable typing at compile time, without regard for the
execution path (which, at compile time, it knows nothing about). It
only cares that a DEFINT statement appeared physically before

Turbo Basic Owner's Handbook

variable j's first appearance, so it makes j an integer variable and
prints out 45.

Restrictions A DEFtype statement will redefine the type of any corresponding
variables that are already being used in the program. The example
program demonstrates this rather subtle point.

Example I assign a value to a single-precision number
I = 35567.999
PRINT "Single Precision number",1
I display the value

I explicitly declare a variable of the
I same name and type
DEFSNG I

PRINT "Single Precision number",I

I explicitly declare a variable of the same name,
I but different type
DEFINT I

I print the value of the new variable
PRINT "Integer number: ", I

I All identifiers starting with the letters
I A to C are double-precision type until
I another DEF statement
DEFDBL A-C

I all identifiers starting with the letters
I J to Z are Long Integer type until another
I DEF statement
DEFLNG J-Z

I assign a value to a double-precision variable
A = 32767.1
I assign a value to a Long Integer
Z = -1
I assign a value to the previously defined
I integer variable
I = &H8FFF

PRINT "Three different types: ",A,Z,I

END I end the program

Turbo Basic Reference Directory 181

DEF SEC statement

Function

Syntax

Remarks

See Also

Example

182

DEF SEC defines the data segment to be used by BLOAD,
BSAVE, CALL ABSOLUTE, PEEK, and POKE statements.

DEF SEG [=numeric expression]

numeric expression can range from 0 to 65,535.

DEF SEC defines the memory segment into which subsequent
BLOAD, BSAVE, CALL ABSOLUTE, PEEK, and POKE state­
ments will specify offsets. A segment is an addressing construct
used by Intel 86 family processors. Addresses must be specified
with two integers: a segment and an offset into the segment.

DEF SEC with no argument returns the segment value to its
start-up default value. The first 256 bytes of the default segment
contains information used by your program's run-time support sys­
tem. One interesting address is at offset &HF4E in this segment.
POKEing values into this address changes the color of text written
to the screen in any graphics mode. The color depends on what
mode you're in. Another useful address in the default data segment
is at location 0 and 1. This word contains the segment of Turbo
Basic's strings.

COLOR

'This program fills the screen with A's,
, poking directly into video ram.

'Define a function that determines the
, address of video memory

, get the type of video board from user
DEF FN VideoScreen%
, LOCAL ScreenType% 'declare a local variable

PRINT "Please enter the type of screen you are using"
INPUT "[1 for Mono, 2 for Color] : ":ScreenType%
SELECT CASE ScreenType% 'assign function's result

CASE 1 ' based on user's input
, monochrome video ram location
FN VideoScreen% = &HBOOO

CASE 2
, color video ram location
FN VideoScreen% = &HB800

END SELECT
END DEF ' end the function

Turbo Basic Owner's Handbook

, define segment for POKE and BSAVE
DEF SEG = FN VideoScreen%

FOR 1% = 0 to 4000 STEP 2
POKE I%,ASC("A") 'fill screen with A's

NEXT 1%

END

Turbo Basic Reference Directory 183

DELAY statement

Function

Syntax

Remarks

Example

DELAY inserts a pause.

DELAY seconds

seconds is a numeric expression indicating the number of seconds
Turbo Basic should pause before executing the next statement.
Note: DELAY accepts floating-point arguments, and fractional
delays with a resolution of approximately 0.054 seconds may be
specified.

Using DELAY rather than software do-nothing loops results in
programs that run appropriately on machines of differing process­
ing speeds (that is, 8088-based versus 80286-based, or 6 MHz
versus 8 MHz).

PRINT uPress any key to tenninate the program ••• 11

WHILE NOT INSTAT I while a key has not been pressed
LOCATE 10,30
PRINT TIMES I display the time
DELAY 5 I delay for 5 seconds

WEND

END I end the program

184 Turbo Basic Owner's Handbook

DIM statement

Function

Syntax

Remarks

DIM declares arrays.

DIM {STATICIDYNAMIC} var (subscripts) [,var(subscripts)] .••
DIM {STATIC I DYNAMIC} var (min:max [,min:max] ..•)[,var [,min:max]] ..•

var is an identifier used for the array.

subscripts is a comma-delimited list of one or more integer
expressions defining the dimensions of the array.

DIM declares array variables and defines their size and number
of dimensions.

In an enhancement to Interpretive BASIC syntax, Turbo Basic
allows you to define a range of subscript values (min:max) rather
than just an upper limit. For example:

DIM b(50:60)

creates an array of 11 single-precision elements, numbered 50
through 60. The statement

DIM c(50:60, 25:45)

creates a two-dimensional array of 11 X 21 total elements.

The range syntax can be extended for multidimensional arrays:

DIM births(1800:1899,1:12)

The related OPTION BASE statement can also be used to deter­
mine the lowest element in an array, although the range mechanism
is more powerful and is preferred.

Turbo Basic sets each element of a numeric array to 0 when a
program is first executed, and sets string arrays to the null string
(length = 0). If a program is restarted again with the RUN state­
ment, numeric arrays are reset to 0 and string arrays to the null
string.

If an array variable is used without a preceding DIM statement,
the maximum value of its subscripts defaults to 10, as though you
had included (10) in your DIM statement. It is good practice, how­
ever, to explicitly declare every array.

The minimum value that can be used as an array subscript is 0,
unless specified otherwise with the OPTION BASE command.

The optional STATIC and DYNAMIC arguments control, respec­
tively, whether space for the array will be pre-allocated by the com­
piler or allocated dynamically. If omitted, arrays default to static

Turbo Basic Reference Directory 185

allocation unless the $DYNAMIC metastatement has been given,
an expression is used in the DIMension statement, the array name
appears in two DIM statements, or the array is declared local to a
procedure or a function.

The bounds.,-checking switch accessed through the Options menu
causes the compiler to create code that checks subscripts for appro­
priateness whenever an array is referenced.

Differences Turbo Basic allows the programmer to specify both the starting'and
ending indices of an array. Interpretive BASICallocates all arrays
dynamically, but Turbo Basic will try to allocate arrays statically (at
compile time), which makes them faster. You may explicitly over"'
ride the type of allocation used.

See Also $DYNAMIC
FRE
$ STATIC

Example DIM declares an array

186

, named constant specifying array's upper dimension
%MaxDim = 20
, named constant specifying array's lower dimension
%MinDim = 1

, allocate array of %MaxDim integer elements
DIM Array%(%MinDim:%MaxDim)

, initialize array with random numbers
FOR Count1% = %MinDimto %MaxDim

Array%(Count1%) = INT(RND *, 10)
NEXT Count1%

END

Turbo Basic Owner's Handbook

DO/LOOP statement

Function

Syntax

Remarks

DO/LOOP is a loop with a test for TRUE or FALSE at the top and/
or bottom of the loop.

DO [{WHILEIUNTIL} expression]

• statements [EXIT LOOP]

[LOOpIWEND] [{WHILEIUNTIL} expression]

expression is a numeric expression, in which nonzero values repre­
sent TRUE, and zero values FALSE:

DO and LOOP are loop builders for all seasons. They allow you
to create loops with the test for the terminating condition at the top'
of the loop, the bottom, both places, or neither. A DO statement
must always be paired with a, matching LOOP statement at the
bottom of the loop. Failure to match DO and, LOOPrt!sults in com­
pile-time errors.

Use WHILE and UNTIL to add a test to a DO/LOOP. Use the
WHILE reserved word if the loop should be repeated if expression
is TRUE, and'terminated. if expression, is FALSE. UNTIL causes
the opposite effect; that is, the loop will be terminated if the condi­
tion is TRUE, and repeated if FALSE.

For example:

DO WHILE a = 13

• statements

LOOP

executes the statements between DO and LOOP as long as a is 13.

DO UNTIL a = 13

• statements

LOOP

executes the statements between DO .and LOOP as long as a is
not 13.

At any point in a DO/LOOP you may include an EXIT/LOOP
statement. This, is equivalent to performing a GOTO to the state­
ment after the terminating LOOP. (For more information; see the
EXIT statement.)

Turbo Basic Reference Directory 187

Example

188

Note that this DO/LOOP:

DO WHILE a < b

LOOP

has the same effect as thisWHILE/WEND loop:

WHILE a < b

WEND

Although the compiler doesn't care about such things, indent the
statements between DO and LOOP a couple of spaces. This helps
to clarify the structure of the loop.

I This program waits until a key is pressed.
DO
LOOP UNTIL INSTAT

END

Turbo Basic Owner's Handbook

Function

Syntax

Remarks

DRAW draws shapes onto the graphics screen.

DRAW string expression

DRAW plots objects onto the graphics screen according to
commands embedded in the string argument passed to it. In effect,
string expression is a program for an interpretive DRAW 1anguage."
DRAWexectItes command strings to produce images on the screen,
much as PLAY executes command strings to create music.

Movement Commands

Un Move up
Dn Move down
Ln Move left
Rn Move right
En Move up and right
Fn Move down and right
Gn Move down and left
Hn Move up and left

n is the distance to move (see Sn, the scaling factor that follows).
Movement always begins at the LPR, and adjusts the LPR accord­
ingly. (LPR stands for 1ast point referenced," and refers to the last
point referred to by certain drawing statements. For more informa­
tion, see the graphics section in Chapter 4.)

For example:

DRAW "D10R5 11

draws an L shape (down 10, right 5) starting with the LPR. It leaves
the LPR set to the last pixel plotted.

M x,y moves to coordinate x, y. If x has a leading plus or minus
sign, the move is relative; otherwise it is absolute. For example:

DRAW "010 R5 M30,50"

draws the L from before, and then finishes it off with a line to pixel
(30,50).

The following prefixes can precede any movement command:

B moves, but doesn't plot.

N moves, but returns to the original position when finished.

Turbo Basic Reference Directory 189

190

For example:

DRAW "BM 180,20 NU10 NOlO NL10 NR10"

moves without drawing to pixel (180,20), and then draws a plus
sign.

Other Commands

An sets angle n. The value of n can range from 0 to 3, where 0
equals 0 degrees, 1 equals 90 degrees, 2 equals 180 degrees, and 3
equals 270 degrees.

TAn turns angle n. The value of n can range from - 360 to + 360
degrees. If n is positive, the angle turns counterclockwise. If it is
negative, then the angle turns clockwise. Values outside the valid
range cause run-time error 5, Illegal Function Call.

Cn draws in color n. Check the PALETTE statement for the
range of n in each display mode. The default color is the highest
legal attribute.

Sn sets scale factor to n/4, where n can range from 1 to 255. For
example, if n = 8, the scale factor is 2. DRAW multiplies the scale
factor by arguments to the U, D, L, R, E, F, G, H, and relative M
commands to determine the ultimate size of objects. The default for
n is 4, which results in a unity scaling factor (that is, no scaling).

The aspect ratio of the display you are using determines the rela­
tionship between X and Y. On an ideal (nonexistent) display with an
aspect ratio of 1/1, a dot in the X is the same length as a dot in the Y
direction. However, the displays for IBM computers have the fol­
lowing aspect ratios:

Monitor/Adapter Screen 1 Screen 2 Screen 7/8/9 Screen 10

Color 5/6 5/12 N/A N/A
Enhanced 5/6 5/12 8.76/12 N/A
Enhanced Mono N/A N/A N/A 9.52/12

X VARPTR$(variable); executes substring; that is, it executes a
second command string from within a primary DRAW string. The X
command is something like a GOSUB; for example:

DRAW "X" t VARPTR$(X$)

P color,boundary starts at the current (x,y) coordinate and fills
with color color, stopping at areas of color boundary.

Turbo Basic Owner's Handbook

In each instance, the n, x, or y argument can be either a constant
(as has been shown thus far in examples) or a variable in the form

= VARPfR$(variable);

For example:

DRAW "e15"

is the same as

a :: 15
DRAW "e::" t VARPTR$(a)

DRAW ignores spaces in its command string-you may want to
use them to make your DRAW programs more readable.

Restrictions Turbo Basic does not recognize variable names in DRAW strings.

Example

Thus, you must use VARPfR$(n) to access the contents of variables
at runtime within the DRAW string. Instead of

DRAW "U = 1%; II

use

DRAW "U =" tVARPTR$(I%}

I switch into medium resolution graphics mode
SCREEN 1

House$: "U20 G5 E20 F20 H5 020 L30"
DRAW HouseS

DRAW IBE3"
DRAW "P1,3"
FOR 1% : 1 TO 280 STEP 40

DRAW "BM: " tVARPTR$ (1%) t ",40"
DRAW House$

NEXT 1%

END I end the program

Turbo Basic Reference Directory 191

END statement

Function

Syntax

Remarks

See Also

Example

192

END terminates execution of a program or defines the end of a
structured block.

END [{DEFIIFISELECTISUB}]

END without arguments terminates program execution. END
statements can be placed anywhere in a program, and there can be
more than one. Encountering an END causes a program to close all
open files and return to DOS (or to Turbo Basic, depending on
where the program was launched).

An END isn't strictly required by the compiler, although using it
is good practice. If a program simply runs out of statements to exe­
cute, the same effect is generated.

END followed by the DEF, IF, SUB, or SELECT reserved
words defines the end of a structured block.

DEF
IF
SELECT
STOP
SUB

SUB DunmyProc
PRINT "Hell 0"

END SUB I end definition of procedure

DEF FN DummyFunc$
FN DummyFunc$ = "Hello aga in"

END DEF I end function definition

INPUT "Execute the procedure or the function [lor 2]";Which%
IF Which% > 0 THEN

SELECT CASE Which%
CASE 1

CALL DummyProc
END I end the program

CASE 2
PRINT FN DummyFunc$
END I end the program

CASE ELSE
PRINT "An illegal choice was made •.• "

END SELECT I end case statement
END IF I end if then block

END I end the program

Turbo Basic Owner's Handbook

ENDMEM function

Function

Syntax

Remarks

See Also

Example

ENDMEM returns the address of the end of physical memory.

y = ENDMEM

ENDMEM returns a long integer representing the address of the
last byte of physical memory. ENDMEM, in conjunction with· the
MEMSET statement, can be used to allocate space in high memory
for assembly language subroutines.

While executing a program in memory, ENDMEMactually'
returns the end of physical memory minus the size of the symbol
table. When Turbo Basic is compiling in memory, it stores the sym­
bol table at the highest address in memory.

MEMSET

'display the result
PRINT liThe end of addressable memory is: ",ENDMEM

END ' end the program

Turbo Basic Reference Directory 193

ENVIRON statement

,Function

Syntax

Remarks

ENVIRON modifies information in the environment table.

ENVIRON string expression

string expression defines both the name of parameter to be changed,
added, or deleted, and the new parameter 'information itself The
two must be separated by an equal sign (=).

ENVIRON and the related function ENVIRON$ are used to
configure the environment to be passed to programs executed via
the SHELL statement. (For, more information, see the SHELL
statement. in this manual and the SET command in the DOS refer­
ence manual.)

For example:

ENVIRON '!PATH=\TURBOBAS"

sets DOS's PATH parameter to "\TURBOBAS." A subsequently
SHELLed copy of COMMAND.COM will automatically search
directory \TURBOBAS,to find files that aren't in the current direc­
tory.

To ,delete a parameter from the environment table, include only a
semicolon (;) after, the equal sign:

ENVIRON "PATH=;"

deletes the path parameter from the environment table.

Restrictions You may not expand the' environment space. To add new entries,
you must free up space by deleting existing entries.

See Also ENVIRON$
SHELL

Example I Display and change the PATH
I ,environment variable
PRINT ENVIRON$("PATH")
ENVIRON "PATH=\"

194 Turbo Basic Owner's Handbook

ENVIRON$ function

Function

Syntax

Remarks

Example

ENVIRON$ retrieves environment table parameters.

s$ = ENVIRON$(parameter string)
s$ = ENVIRON$ (n)

parameter string is a string expression containing the parameter to
be retrieved. n is an integer expression inthe range 1 to 255.

ENVIRON$ and the related statement ENVIRON are used to
configure the environment to be passed to programs executed via
the SHELL statement. (For more information, seethe SHELL
statement in this manual and the SET command in the DOS refer­
ence manual.)

If a string argument is used, ENVIRON$ returns the text that
follows parameter string in the environment table. Note that ENVI­
RON$ distinguishes between uppercase and lowercase letters. If
parameter string is not .found or no text follows the equal sign, the
null string is returned.

If the numeric form is used, ENVIRON$ returns a string con­
taining the nth parameter from the start of the table. If there is no
nth parameter, a null string is returned.

See the example in the ENVIRON entry.

Turbo Basic Reference Directory 195

EOF function

Function

Syntax

Remarks

Example

196

EOF returns end-of-fHe status.

y = EOF(filenum)

filenum is the value specified when the fHe was OPENed.

EOF returns TRUE (-1) if end-of-fHe has been reached on the
specified fHe; otherwise, FALSE (0) is returned.

EOF is only valid for disk files opened for sequential input and
for communications fHes. An EOF return of -1 for a communica­
tions fHe means the buffer is empty.

The following example reads information from sequential fHe
TEXT.DTA until the end of the fHe is reached:

OPEN "TEXT.OTA" FOR INPUT AS #1
top:

IF EOF(1) THEN
PRINT c "records (lines) in file TEXT.OTA"

END IF
INPUT #1, dummy$
c = c + 1

GOTO top

or, stated more elegantly:

OPEN "TEXT.OTA" FOR INPUT AS #1
WHILE NOT EOF(l)

INPUT #1, dummy$
INCR c

WEND
PRINT c "records (lines) in file TEXT.OTA" END

Turbo Basic Owner's Handbook

ERADRfunction

Function

Syntax

Remarks

See Also

Example

ERADR returns the address of the most recent error.

y = ERADR

ERADR returns a long integer value representing the position of
the most recent error. ERADR is the same program counter value
that would have been printed had error trapping not been turned
on (that is. it can be used by the Run-time error selection of the
Options menu to find the position in the source program of the
statement generating the error).

ERADR is intended as a last resort in error-handling routines. If
an error routine has no plan for handling a particular error. the least
you can do is print the error code (ERR) and ERADR to the screen
and tell your users to report the occurrence.

ERL
ERR
ERROR
ON ERROR

ON ERROR GOTO Trap I set up run-time error handling

DIM X%(10)
FOR 1% = 1 TO 10

READ X%(I%)
PRINT X%(I%);

NEXT 1%

I Read X ten times
I with only seven data items
I returns out-of-data error

I an insufficient number of data
I elements are available
DATA 1,2,3,4,5, 6, 7

END I end the program

I The following error handler prints
I the ERRor number and ADRess.
Trap:

LOCATE 10,15
I Print message in middle of screen
PRINT "An error of type II ERR II has occurred at address" ERADR
LOCATE ll.15
PRINT "Please note these values and check your manual·
END I end the program

Turbo Basic Reference Directory 197

ERASE statement

Function

Syntax

Remarks

ERASE deletes dynamic arrays and resets static arrays.

ERASE array name L array name] •••

array name is the name of an array(s) you want to reset or deallo­
cate. Note that empty parentheses should not be included with
array name.

If array name is dynamic, its space in memory is released and
array name can later be redimensioned with another DIM state­
ment.

If array name is static, ERASEing it simply clears its elements to
o (or the null string for string arrays).

Restrictions You cannot ERASE an array that never existed or, in the case of
dynamic arrays, has already been erased.

Differences Turbo Basic allows static arrays that are faster than dynamic arrays.
Interpretive BASIC only allows dynamic arrays.

See Also CLEAR
DIM
$DYNAMIC
FRE
$ STATIC

Example ON ERROR GOTO ErrorHandler I set up error handler

198

PRINT FRE(-l) I display array space available

I declare dynamic array, assign data to it,
I and display array space available
DIM DYNAMIC BigArray(lOOOO)
BigArray(6666) = 66
PRINT FRE(-l)

ERASE BigArray I deallocate dynamic array
PRINT FRE(-l) I display array space available

I This statement will return a run-time error
I if the program is run with bounds checking on
PRINT BigArray(6666)
END I end the program

ErrorHandler:
PRINT "An error of type " ERR;
PRINT " has occurred at address" ERADR
END

Turbo Basic Owner's Handbook

ERDEV, ERDEV$functions

Function

Syntax

Remarks

Example

ERDEVand ERDEV$ return device driver information.

y = ERDEV
y$ = ERDEV$

When a device error occurs, integer function ERDEV returns error
information in its least-significant byte. This byte represents the
INT 24 error code. The most-significant byte contains bits 15, 14,
13, 3, 2, 1, and 0 of the device attribute word.

ERDEV$ contains the name of the device: 8 bytes for charac­
ter devices and 2 for block devices. (See the IBM DOS Technical
Reference Manual for more information.)

I set up an error handler
ON ERROR GOTO ErrorHandler

PRINT "Open the door to drive A and press any key •.. "
WHILE NOT INSTAT : WEND I wait for a key

I try to get a directory
FILES "A:*.*"

END

ErrorHandler:

I end the program

I critical error handler

I display an error message indicating
I problem and source
PRINT USING "Critical error II occurred with &";

ERDEV,ERDEV$
RESUME NEXT

Turbo Basic Reference Directory 199

ERL, ERR/unctions

Function

Syntax

Remarks

ERL and ERR return the line and error code of the most recent
error.

y = ERL
y = ERR

ERL returns the line number of the most recent error. If the error
occurs in a statement without a line number, ERL returns the num-
ber of the nearest numbered line, working backward toward the
beginning of the program. If there are no numbered lines b~tween
the point of the error and the start of the program, ERL retumsO.

ERR returns the number of the most recent run-time error. Test
it in error-trapping subroutines to execute code appropriate to the
type of error that occurred.

Note: The ERL, RESUME, and RESUME NEXT statements
cause the compiler to generate a 4-byte pointer for each statement
in a program. Therefore, programmers concerned with the size of
their generated code should take note. Using RESUME [Line #]
generates a single jump .instruction. ERL is normally used for
debugging purposes so it is probably of little concern.

Differences The rules concerning which side of a relational operator a line num­
ber compared to ERL should be on are not applicable to Turbo
Basic. This is because Turbo Basic does not have a RENUM
instruction. Also, the result of Interpretive BASIC's ERL when an
error occurs during the execution of a DIRECT MODE statement
is not applicable in Turbo Basic.

See Also ERADR
ERROR
ON ERROR

Example ' set up a run-time error handling
ON ERROR GOTO Trap

200

DIM X%(10)

FOR 1% = 1 TO 10
40 READ X%(I%)

PRINT X%(I%):
NEXT 1%

, Read X ten times
, with only 7 data items,

I returns out-of-data error

Turbo Basic Owner's Handbook

I an insufficient number of data
I elements are available
70 DATA 1,2,3,4,5, 6, 7

80 END

90 Trap:
IF ERL=40 THEN

RESTORE
RESUME

ELSE

I end the program

PRINT "Unknown Error" END
END If

Turbo Basic Reference Directory 201

ERROR statement

Function

Syntax

Remarks

Example

202

ERROR forces a run-time error.

ERROR errcode

errcode is an·· integer expression from 0 to 255.

If errcode is a predefined run-time error code (see Appendix E),
then ERROR causes your program to behave as though that error
had occurred. This is intended· as an aid in debugging error-trap­
ping routines.

To define your own error codes, use values for errcode that aren't
used by Turbo Basic. If you don't define an error-handling proce­
dure for these new custom error codes, then Turbo Basic displays
the message:

Error n at pgm-ctr:. address,

where n is the error code and address is the value.in the processor's
program counter at the time the error was encountered.

I Force illegal function call error for bad input

DEF FN func%=(X%)
IF X% > 65 THEN

ERROR 5 I Raise illegal function call error
ELSE

FNfunc%= X%*1000
END IF

END DEF

PRINT FN func(66) I cause illegal function call error

Turbo Basic Owner's Handbook

EXIT statement

Function

Syntax

Remarks

EXIT leaves a structure prematurely.

EXIT {SELECTIDEFIFORIIFILOOPISUBIWHILE}

The EXIT statement lets you leave -a structured statement or- proce­
dure or function definition someplace other than at its. end. The
type of structure being EXITed must be included as part of the
EXIT statement, according.to the following:

EXIT Option Structure Exited

SELECT SELECT statement
DEF Function definition
FOR FOR/NEXT loop
IF IF Block
LOOP DO/WOP loop
SUB Procedure definition
WHILE WHILE/WEND loop

Using EXIT can· save messy GaTOs.

Restrictions When using EXIT to exit from a function, you must assign the func­
tion a result before the EXIT is executed.

Example ' Thi s program demonstrates all the -EXIT
, statements. Both a procedure and,function
, are used to terminate execution.
, Subroutines also demonstrate different'
, available EXIT statements by implementing
, LOOP constructs along with SELECT CASE
, and IF THEN ELSE.

SUB Controls(Sel%. Dummy%)

, EXIT statements can be used to terminate
, SELECT CASE and IF THEN ELSE constructs.
, EXIT also terminates the procedure's
, execution.

SELECT CASE Sel%
CASE 1

, use case statement to te-ll the. user
, something about the number entered
SELECT CASE Dummy%

CASE < 0
PRINT flNumber is less than zero"
, exit select case statement
EXIT SELECT

CASE > 0
PRINT "Number is greater than zero"

, exit select case statement

Turbo Basic Reference Directory 203

204

EXIT SELECT
CASE ELSE

PRINT "Number is 0"
END SELECT
EXIT SUB I exit the procedure

CASE 2
I use IF THEN ELSE to do what SELECT
I CASE does
IF Dummy% < 0 THEN

PRINT "Number is less than zero"
EXIT IF

ELSEIF Dummy% > 0 THEN
PRINT "Number is greater than zero"
EXIT IF I exit if then

ELSE
PRINT "Number is 0"

END IF
END SELECT
PRINT "You selected number 2"

END SUB

DEF FN Loops(Sel%)

I A parameter passed to the function indicates
I which EXIT will be executed. Each loop
I structure does the same thing to demonstrate
I how EXIT can be used to terminate the
I execution of the loop.

I We are also demonstrating how EXIT
I can be used to exit out of a function.
I EXIT DEF is used to EXIT from the first
I two selections. This prevents the
I print statement from being executed.

I assign a value to the function result
FN Loops = -1
SELECT CASE Sel%

CASE 1
I use EXIT to leave this loop instead
I of letting it terminate normally
FOR 1% = 1 TO 32767

PRINT RND(Dummy%)
EXIT FOR I exit the for loop

NEXT 1%
EXIT DEF I exit entire function

CASE 2
I use EXIT to leave this infinite loop
I instead of letting it terminate normally
DO

PRINT RND(Dummy%)
EXIT LOOP I exit the loop

LOOP
EXIT DEF I exit entire function

CASE 3
I use EXIT to leave this infinite loop
I instead of letting it terminate normally
WHILE 1

Turbo Basic Owner's Handbook

PRINT RND(Dummy%)
I this is the same as exiting
EXIT LOOP

WEND I a DO loop
END SELECT
PRINT "You executed selection 3"

END DEF I end function definition

I start Main program

I make three calls to Loops selecting each
I of the different loops available
PRINT FN Loops(l)
PRINT FN Loops(2)
PRINT FN Loops(3)

INPUT "Enter a number: ";Dummy% I get user's input
I execute Controls selecting each
I control structure
FOR Count% = 1 TO 2

CALL Controls(Count%, Dummy%)
CALL Controls(Count%, Dummy%)

NEXT Count%

END I end the program

Turbo Basic Reference Directory 205

EXP, EXP2, EXPIO /unctions

Function

Syntax

Remarks

Example

206

EXP returns eX; EXPI0 returns UY; EXP2 returns 2%.

EXP:
y" EXP(x)

EXP2:
y" EXP2(x)

EXPI0:
y" EXP10(x)

EXP returns e to the xth power, where x is a numeric expression
and e is the base for natural logarithms, approximately 2.718282.
You'd get the same result with the statement e-x. One thing you can
do with EXP is calculate e itself:

e " EXP(1)

EXP2(x) returns 2 to the xth power, where x is a numeric vari­
able or expression. You'd get the same result with the expression
2-x.

EXPI0(x) returns 10 to the xth power, where x is a numeric vari­
able or expression. You'd get the same result with the expression:
lO-x.

EXP, EXP2, and EXPI0 return double-precision results.

FOR I " 1 TO 10
PRINT USING "EXP of ##" ##U-II;I,EXP(I)

NEXT I
END

Turbo Basic Owner's Handbook

FIELD statement

Function FIELD defines field variables of a random file buffer.

Syntax FIELD [I] fi1enum, width AS string-var
[, width AS string-var] •••

Remarks filenum is the number used when the file was opened, width is the
number of bytes allocated to the field variable, and string-var is the
field variable itself

FIELD defines a mapping between string variables and the I/O
buffer of a random access file. Once used in a FIELD statement,
these string variables gain a special status as "field variables." They
should only be assigned using RSET and LSET in preparation for
writing to the indicated random access file.

Restrictions An identifier used in a FIELD statement must never be used on
the left side of an assignment statement. Doing this causes the
identifier to no longer be identified with the random access file's
field definitions.

See Also LSET
RSET

Example • open a random access fi 1 e
OPEN "R", #1, "CVISLD.DTA" ,18
• OPEN "FIELD.DTA" FOR OUTPUT AS #1 LEN = 18

• make two field definitions for each field
FIELD II, 2 AS Integer$, 4 AS LongInt$,_

4 AS SinglePre$, 8 AS OoublePre$
FIELD 11, 2 AS A$, 4 AS S$, 4 AS CS, 8 AS 0$

MaxInt% = 32767

• write some data to the file
FOR 1% = 1 TO 5

• convert the data and assign it to the
• buffer before writing it to the data file
LSET Integer$ = MKI$(I%)
LSET LongInt$ = MKL$(I% + CLNG(MaxInt%»
LSET SinglePre$ = MKS$(CSNG(I% * CSNG(MaxInt%»)
LSET DoublePre$ = MKD$(MaxInt%AI%)
PUT #1,1%

NEXT 1%

• read the data from the file
FOR 1% = 1 TO 5

• and display it on screen
GET #1, 1%
PRINT CVI(A$), CVL(B$), CVS(C$). CVD(D$)

NEXT 1%

CLOSE 11' close the file

END ' end the program

Turbo Basic Reference Directory 207

FILES statement

Function

Syntax

Remarks

FILES displays the directory contents (like DOS's DIR command).

FILES [filespec]

filespec is a string expression following DOS naming conventions,
and may optionally include a drive specifier and path information. If
filespec is omitted, all the flIes in the current directory are dis­
played.

filespec can contain wildcard characters; for example, ? and *, a la
DOS's DIR command:

FILES 11*.*"

lists all the files in the current directory.

FILES "* • BASil

lists only Turbo Basic source files.

At the end of the FILES listing, Turbo Basic displays the number
of free bytes on the device containing the current directory. Subdi­
rectory files are indicated by the DIR suffix.

Restrictions Specifying a nonexistent drive or directory in the FILES statement
will cause a run-time error.

Example INPUT "Enter the dri ve and di rectory you woul d 1 ike to 1 i st II ;..I>i r$

208

I display the directory specified
FILES Dir$

END I end the program

Turbo Basic Owner's Handbook

FIX function

Function

Syntax

Remarks

See Also

Example

FIX truncates to integer.

y = FIX (numeric expression)

FIX strips off the fractional part of its argument and returns the
integer part (unlike CINTand INT, which perform rounding).

CEIL
CINT
INT

FOR I = 50 TO 52 STEP RND
PRINT USING "The integer part of 11.11 is II";I,FIX(I)

NEXT I

END I end the program

Turbo Basic Reference Directory 209

FOR/NEXT statements

Function

Syntax

-Remarks

210

FORand NEXT define an automatically incrementing (or
decrementing) loop.

FOR variable = x TO y [STEP z]

• statements

NEXT [variable [, variable] •••]

variable is a numeric variable serving as the loop counter, and x, y,
and z are numeric expressions defining the starting and stopping
conditions of the loop. x is the initial value of the counter, y is the
final value of the counter, andz is an optional incrementing value.

The statements between FOR and NEXT are executed repeat­
edly. With each pass through the loop, variable is incremented by z.
If z is omitted, the stepping value defaults to 1. The loop terminates
when the counter variable is greater than or equal to y (or, for a
negative z, less than or equal-to y).

FOR/NEXT loops run fastest with integer variables as the coun­
ter variable and constants for x, y, and z.

, The body of the loop is skipped altogether if the initial value of x
is greater than y or if z is negative and x is less than y.

FOR/NEXT ,loops can be nested within other FOR/NEXT
loops. Be sure to use unique counter variables' and to make sure
that the inner loop's NEXT statement.occurs before the outer loop's
NEXT.

This code has crossed loops and won't compile:

FOR n = 1 TO 10
FOR m = 1 TO 20

NEXT n
NEXT m

If multiple loops end at the same point, a single NEXT statement
containing each counter variable suffices:

FOR n = 1 TO 10
FOR m = 1 TO 20

NEXT m,n

Turbo Basic Owner's Handbook

Example

The counter variable in the NEXT statement can be omitted
altogether, but if you include it, it must be the right variable. For
example:

FOR n = 1 TO 10

NEXT I NEXT n would work too, but not NEXT m

. Although the compiler doesn't care about such things, indent the
statements between FOR and NEXT by two or three spaces to set
off the structure of the loop.

Use the EXIT FOR statement to leave a FOR/NEXT loop before
it has completed.

If a NEXT is encountered without a corresponding FOR, run­
time error 1 occurs, NEXT Without FOR.

FOR 1% = 1 TO 10
PRINT "For loop iteration" 1%
I display iterations

NEXT 1%

PRINT "Press any key ... " I pause
WHILE NOT INSTAT
WEND

I use STEP to decrement FOR loop
FOR 1% = 50 to 1 STEP -5

PRINT "For loop iteration" (45-1%)\ 5
I notice the lack of parameter for NEXT

NEXT

END

Turbo Basic Reference Directory 211

FRE function

Function FRE returns the amount of free memory available to your program.

Syntax y = FRE({string expressionl-11-2})

Remarks FRE with a string argument returns a long integer representing the
number of bytes of free RAM· in string memory. FRE(- 1) returns
the free RAM in your program's array space. FRE(- 2) tells how
much room is left on the stack.

Differences Turbo Basic's FRE function provides more information than that of
Interpretive BASIC. The FRE statement in Interpretive BASIC
returns the amount of available memory in the BASIC data seg­
ment; thus a call to FRE(S$) and FRE(O) return the same number.

Example

212

However, since Turbo Basic provides more memory to work with,
its FRE statement has more functions. Turbo Basic has a separate
string segment; thus, FRE(S$) returns available string space. Turbo
Basic has a large (> 64K) array space so FRE(-1) returns available
array memory. And Turbo Basic supports procedure and recursion
so FRE(- 2) returns available stack space.

ON ERROR GOTO ErrorHandler I set up error handler

I display memory available in string,
I data, and stack segments
PRINT FRE("String Space"),FRE(-1),FRE(-2)

DIM DYNAMIC BigArray(lOOOO) I declare dynamic array
BigArray(6666) = 66 I assign some data to it
I display memory available in string,
I data, and stack segments
S$="abc •• z"
PRINT FRE("String Space"),FRE(-1),FRE(-2)

ERASE BigArray I deallocate dynamic array
I display memory available in string,
I data, and stack segments
S$=""
PRINT FRE("String Space"),FRE(-1),FRE(-2)

I This statement returns a run-time error if
I the program is run with bounds checking on
PRINT BigArray(6666)
END I end program

ErrorHandl er:
PRINT "An error of type II ERR " has occurred at address" ERADR
END

Turbo Basic Owner's Handbook

GET statement (fiks)

Function

Syntax

Remarks

Example

GET reads a record from a random file.

GET ['] fil enum [, recnum]

filenum is the number the file was opened under, and recnum is the
record to be read, from 1 to 16,777,215 (224 -1). If recnum is omit­
ted, then the next record in sequence (following the one specified
by the most recent GET or PUT) is read.

I open a random access file
OPEN "GET.DTA" AS 'I LEN = 18

I make two field definitions for each field element
FIELD 'I, 2 AS Integer$, 4 AS LongInt$,_

4 AS SinglePre$, 8 AS DoublePre$
FIELD 'I, 2 AS A$, 4 AS B$, 4 AS C$, 8 AS 0$

MaxInt% = 32767

FOR 1% = 1 TO 5 I write some data to the file
I convert data and assign to buffer
I before writing to data file
LSET Integer$ = MKI$(I%)
LSET longInt$ = MKl$(I% + ClNG(MaxInt%»
LSET SinglePre$ = MKS$(CSNG(I% * CSNG(MaxInt%»)
lSET DoublePre$ = MKD$(MaxInt%-I%)
PUT #1,1%

NEXT 1%

FOR 1% = 1 TO 5 I read data from file
GET II, 1% I display it on screen

PRINT CVI(A$). CVL(B$), CVS(C$). CVD(D$)
NEXT 1%

CLOSE 11 I close the fil e

END I end the program

Turbo Basic Reference Directory 213

GET statement (graphics)

Function

Syntax

Remarks

214

GET reads all or part of the graphics screen into an array.

GET (xl,yl)-(x2,y2), array

(xl, yl) and (x2, y2) specify the upper left and lower right bound­
aries, respectively, of the area on the graphics screen to GET. array
is a numeric array.

GET and its complementary command PUT are used to first read
and then write graphic images onto the screen. The only constraint
on the numeric array used to hold the data read from the screen is
that it must be large enough to hold it. Use this formula to calculate
the size of an array necessary to hold a given range of the screen:

BytesNecessary = 4 + INT«x *bitsPerPixel + 7) / 8) * Y

where x and yare the horizontal and vertical dimensions, respec­
tively, of the area to be captured. bitsPerPixel is a constant related to
graphics mode: 2 for medium resolution and 1 for high resolution.

Screen Bits per pixel

1 2
2 1
7 4

8 4

9 4

10 2

For example, to store a medium resolution image 35 pixels wide
by 45 pixels high, you'll need an array of

4 + INT«35 * 2 + 7) / 8) * 45 bytes

or 409 bytes.

The 409 bytes represent an integer array of 205 elements, thus a
dimension statement of DIM buffer%(204) gets the job done.
(Remember that by default every array has a zeroth element; so
array buffer% has 205 two-byte elements, 0 to 204, for a total of 410
bytes.)

Turbo Basic Owner's Handbook

Example

Turbo Basic stores the graphics data in the buffer array in the fol­
lowing format:

buffer%(O):
buffer%(l):
buffer%(2)

The number of bits horizontally
The number of bits vertically

The graphic information itself

buffer%(204)

Because of the organization of display memory, animations based
on GET and PUT are faster if you choose screen regions aligned on
byte boundaries. For medium resolution, use x values evenly divisi­
ble by 4; for high resolution, use x values evenly divisible by 8.

The basic strategy in using GET and PUT to animate an object
from point A to point B is as follows:

Draw the object
GET the object into an array
position = old location = pOint A
DO UNTIL position = pOint B

PUT XOR the object at old location
position = position + increment
PUT XOR the object at position
Delay if necessary
old location = position

LOOP

I erase/draw

I allocate a buffer to store graphics image
DIM Buffer%(143)

I switch to medium resolution graphics mode
SCREEN 1

CIRCLE (16,16),8,2- I draw a circle

GET (0,0) - (31,31), Buffer% I get the circle

I copy it allover the screen
FOR 1% = 0 TO 9

PUT(I% * 32,100), Buffer%
NEXT 1%

END I end the program

Turbo Basic Reference Directory 215

GET$ function

Function

Syntax

Remarks

See Also

Example

216

GET$ reads a string from a file opened in BINARY mode.

6ET$ [I] fi7enum, count, string variable

count is an integer expression ranging from 0 to 32.767.

GET$ reads count bytes. beginning from the current file position
(which can be set by SEEK). from file number filenum and assigns
it to string variable. File filenum must have been opened in
BINARY mode. Mter the GET$. the current file position will have
been advanced by count bytes.

GET$. PUT$. and SEEK provide a low-level alternative to
sequential and random file-processing techniques that allows you to
deal with files on a byte-by-byte basis.

OPEN
PUT$
SEEK

SUB CreateFil e
I 6ET$ opens a file and writes
I 256 characters to it.

LOCAL 1%

I open file for BINARY I/O
OPEN 16ET$.DTA" FOR BINARY AS #1

I write some data to it
FOR 1% = 0 TO 255

PUT$ II, 1%, CHR$(I%)
NEXT 1%

END SUB I end procedure CreateFile

DEF FNReadlt$(Start%, Size%)
I 6ET$ reads in the indicated amount of data
I from the file.

LOCAL TempStr$, Char$, 1%

I seek to correct position in file
SEEK 1, Start%

I read in Size% bytes
6ET$11, Size%, TempStr$

FNReadlt$ = TempStr$
END DEF I end function Readlt

Turbo Basic Owner's Handbook

CALL CreateFile , create data file

, get user's input
PRINT "Enter the starting pOint[O .. 255] and how many"
PRINT "bytes of data[O .• 255] you wish to "
INPUT "read from the file: ",St%, Sz%

PRINT FNReadIt$(St%, Sz%) , read the data

END 'end the program

Turbo Basic Reference Directory 217

GOSUB statement

Function

Syntax

Remarks

See Also

Example

218

caSUB invokes a subroutine.

GOSUB label

The caSUB statement causes Turbo Basic to jump to the state­
ment prefaced by label, after first saving its current address on the
stack. Executing a RETURN returns control to the statement
immediately following the caSUB.

Turbo Basic's procedures and functions can do the work of sub­
routines with the added benefits of recursion, parameter passing,
and local and static variables.

DEFFN
SUB
RETURN

PI# = ATN(l) * 4 I calculate value of Pi

Radius! = 55
GOSUB CalcArea

Radi us! = 13
GOSUB CalcArea

I declare single-precision variable
I jump to subroutine

I jump to subroutine

END I end the program

I calculate and display the area of a circle
CalcArea:

Area = PI' * Radius~2 I calculate area
PRINT Area I display result
RETURN I return from subroutine

Turbo Basic Owner's Handbook

GOTO statement

Function

Syntax

Remarks

See Also

Example

GOTO sends program How to the statement identified by label.
GOTO label

GOTO causes program How to shift unconditionally to the code
identified by label.

Used· in moderation, GOTOs are a fast and effective program­
ming device. Used carelessly, they can choke a' program with
kudzu-like strands of code that can. be almost impossible to puzzle
out (especially months and years after they are written). Modern
programming practice minimizes GOTO usage with subroutines,
procedures, and functions and structured statements such as FOR/
NEXT, WHILE/WEND, DO/LOOP, IF BLOCK, and SELECT.
The EXIT statement can also assist in GOTO reduction.

EXIT

x = 0

Start: I define a label
X = X + 1 I increment X
IF X < 20 THEN I if X < 20 then jump the PrintOut

GOTO PrintOut
END IF

END

PrintOut: I display the value of X
PRINT "Variable X = " X
GOTO Start I jump back to Start

Turbo Basic Reference Directory 219

HEX$ function

Function

Syntax

Remarks

See Also

Example

220

HEX$ converts a number into its hex string equivalent.

s$ = HEX$(numerjc express jon)

numeric expression can range from from -32,768 to 65,535. Any
fractional part of numeric expression is rounded before the string is
created. If the argument to HEX$ is negative, HEX$ returns the
two's complement form of the number.

BIN$
aCTS
PRINT HEX$(65535)
PRINT HEX$(-l)

Turbo Basic Owner's Handbook

IF statement

Function

Syntax

Remarks

IF tests a condition and alters program How if the condition is met.

IF integer expression [,] THEN statement(s) [ELSE statement(s)]

If integer expression is TRUE (evaluates to a nonzero result), the
statement(s) following THEN and before any optional ELSE is exe­
cuted. If expression is FALSE (zero result), then the statement(s)
following the ELSE is executed. If the optional ELSE clause is
omitted, execution continues with the next line of the program.

Usually, integer expression will be a result returned by a rela­
tional operator, although not always, as shown here:

IF printerOn THEN LPRINT answer$

Here, the LPRINT statement is executed if "'flag" variable print­
erOn has a nonzero value.

A colon must not appear before the ELSE keyword; for example,
the following statement will not compile:

IF a < b THEN c = d : ELSE e = f

The IF statement and all its associated statements, including
those after an ELSE, must appear on the same logical line. The
following is therefore illegal:

IF a < b THEN t = 15 : u = 16 : v = 17
ELSE t = 17 : u = 16 : v = 15

because the compiler treats the second line as a brand-new state­
ment unrelated to the one above it. If you have more statements to
squeeze in than can fit on one line, you can use the line continuation
character, the underscore (_), to spread a single logical line over sev­
eral physical lines. For example, following is a legal way of restating
the last example:

IF a < b THEN t = 15 : u = 16 : v = 17_
ELSE t = 17 : u = 16 : v = 15

However, a better alternative is to use the block IF statement.
You can also use the block IF statement to form a multiline series of
IF statements.

Differences Turbo Basic has extended the IF THEN ELSE statement to enable
multiple lines of code in an IF THEN ELSE construct. Turbo Basic
also provides the ELSEIF and END IF statements for the block IF
statement.

Turbo Basic Reference Directory 221

See Also

Example

222

IF block
SELECT

I single line IF
INPUT "Enter a number", X
IF X > 100 THEN PRINT "BigNumber" ELSE PRINT "Small Number"
END

Turbo Basic Owner's Handbook

IF block statement

Function

Syntax

Remarks

See Also

IF block creates a series of IF statements.

IF integer expression [,] THEN

· statement(s)

[ELSEIF integer expression [,] THEN

· statement(s)]

[ELSE

· statement(s)]

END IF

IF block is an extension to Interpretive BASIC, allowing multiple
tests over multiple lines.

In executing IF block statements, the truth of the expression in
the IF statement is checked first. If FALSE (zero result), each of
the following ELSEIF statements are examined in order (there can
be as many ELSEIF statements as desired). As soon as one is found
to be TRUE, Turbo Basic executes the statement(s) following the
associated THEN and jumps to the statement just after the termi­
nating END IF without making any further tests. The statement{s)
after the optional ELSE clause are executed if none of the earlier
tests are successful.

Note that there can be nothing on the first line of an IF block
after the THEN keyword; that's how the compiler can tell an IF
block from a conventional IF statement.

IF block statements can be nested; that is, any of the statements
after any of the THEN s may contain IF blocks.

(It is useful to indent the statements controlled by each test a
couple of spaces, as shown in the example section.)

IF block statements must be terminated with END IF. Note that
END IF has a space ~md ELSEIF does not.

SELECT

Turbo Basic Reference Directory 223

Example

224

RANDOMIZE TIMER
bankroll = 100 : bet = 5 : delayVal = .5
WHILE NOT INSTAT I press a key to stop

roll = INT(RND(l) * 6) + INT(RND(l) * 6) + 2
PRINT STRING$(30,"-")
PRINT "Bankroll =" bankroll
PRINT roll : DELAY delayVal
IF roll = 2 OR roll = 3 OR roll 12 THEN

PRINT "You lose"
bankroll = bankroll - bet

ELSEIF roll = 7 OR roll = 11 THEN
PRINT "You win!"
bankroll = bankroll + bet

ELSE
PRINT "Your point is" roll
noPoint = -1
WHILE noPoint

nextRoll = INT(RND(1) * 6) + INT(RND(l) * 6) + 2
PRINT nextRoll : DELAY delayVal
IF roll = nextRoll THEN I nested IF block

PRINT "You win!"
bankroll = bankroll + bet
noPoint = 0

ELSEIF nextRoll = 7 THEN
PRINT "You lose"
bankroll = bankroll - bet
noPoint = 0

I ends the IF roll = nextRoll
END IF

block

WEND
END IF

WEND

I ends noPoint WHILE loop
I ends first IF block
I ends WHILE NOT INSTAT loop

Turbo Basic Owner's Handbook

INCR statement

Function

Syntax

Remarks

INCR increments a variable.

INCR numeric variable [,size]

size is an optional numeric expression that indicates the value to be
added to the specified variable. If size is omitted, 1 is used.

INCR is simply a quick way to increment a variable without using
an assignment statement.

Differences This statement is not available in Interpretive BASIC.

See Also DECR

Example 1% = -15
J% = -500

WHILE 1% < a

I initialize counter variables

PRINT 1%, J% I display the value
INCR 1% I increment value by 1
INCR J%, 5 I increment value by 5

WEND

END I end the program

Turbo Basic Reference Directory 225

INKEY$ function

Function

Syntax

Remarks

See Also

226

INKEY$ reads the keyboard without echoing the character.

s$ = INKEY$

INKEY$ returns a string of 0, 1, or 2 characters reflecting the status
of the keyboard buffer.

A null string (LEN(s$) = 0) means that the buffer is empty.

A string of length (LEN(S$) = 1) means the string contains the
ASCII value of the most recently pressed key; for example, 13 for
Enter (also known as carriage return), 65 for A.

A two-character string (LEN(S$) == 2) means a non-ASCII key
was pressed. The first character in the -string has a value of 0 and
the second, an extended keyboard code, represents one of the key­
board's non-ASCII keys, such as Home, PgOn, or the arrow keys.
(See the extended keyboard code chart in Appendix F to determine
the key pressed.)

If a defined function key 'is pressed (see the KEY statement),
INKEY$ returns the sequence of characters (one per invocation of
INKEY$) that would have resulted had the characters in the defini­
tion been typed independently.

INKEY$ is designed as a bulletproof mechanism for getting user
input into your program without the restrictions of the INPUT
statement. Since INKEY$ doesn't wait for a character to be pressed
before returning a result, you will usually use it within a loop in a
low-level subroutine, continuously checking it and building an
input string to be checked by higher level routines.

INKEY$ passes all keystrokes, including control keys such as Tab,
Enter, and Backspace, to your program without displaying or pro­
cessing them, with the following exceptions:

• Ctrl-Break terminates the program unless the Keyboard break
option was turned off when the program was compiled.

• Ctrl-Alt-Del causes a system reset.

• Shift-PrtSc performs a screen dump.

INSTAT

Turbo Basic Owner's Handbook

Example PRINT "Enter some characters followed by <ENTER>:"

I read some keys and display them
WHILE CharS <> CHR$(13)

CharS = INKEY$
InputString$ = InputString$ + CharS

WEND

PRINT InputString$

END I end the program

Turbo Basic Reference Directory 227

INP function

Function

Syntax

Remarks

See Also

Example

228

INP reads from an I/O port.

y = INP(portno)

INP returns the byte read from I/O port portno, where portoo indi~
cates a hardware input port and must be in the range 0 to 65,535.

INP is useful for reading status information presented by various
hardware subsystems, such· as a communications port. (See your
computer's technical reference manual for port assignments.)

Use the OUT statement to write to an I/O port.

OUT

I The program makes the speaker shriek
I by reading the status register and
I toggling (on and off) the bits
I that control the speaker.

I read value in port 61 Hex
StatusReg% = INP(&H61)
StatusReg% = StatusReg% AND &HOOFC
I mask the value read in

I make the tone long enough to hear
FOR J = 1 to 1000

StatusReg% = StatusReg% XOR 2
OUT &H61,StatusReg%

I toggle speaker
I output new status

delay .001
NEXT J

END

Turbo Basic Owner's Handbook

INPUT statement

Function

Syntax

Remarks

INPUT prompts the user for values to assign to one or more vari­
ables.

INPUT [;] [prompt string {; I,}] variab7e list

prompt string is an optional string constant. variable list is a comma­
delimited sequence of one or more string or numeric variables.

INPUT waits for the user to enter data from the keyboard and
assigns this data to one or more variables.

If you include a semicolon after prompt string, Turbo Basic out­
puts a question mark after the string. Use a comma instead to sup­
press the question mark.

Your entry must match the variable type in the INPUT state­
ment; that is, nonnumeric characters are unacceptable for numeric
variables. If your entry doesn't match, Turbo Basic will make you
reenter the information. For example, entering nonnumeric charac­
ters into a numeric variable produces the message

?Redo from start

If more than one variable is prompted for in a single INPUT
statement, then your response for each variable must be separated
by commas.

If a semicolon appears· immediately after the INPUT keyword,
the cursor will remain on the same line when you press Enter to
terminate the response. Otherwise, a carriage-retumAine-feed pair
is sent to the display.

Differences Turbo Basic allows information entered in response to an input
statement to be separated either by spaces or commas. Interpretive
BASIC requires that all input be separated by commas.

Example INPUT "Enter your age and weight: II,Age, Weight

PRINT USING "You are a ##1 year old & and weigh 111";_
Age, Weight

END I end the program

Turbo Basic Reference Directory 229

INPUT # statement

Function

Syntax

Remarks

See Also

Example

230

INPUT # loads variables with data from a sequential file.

INPUT Ifi7enum, variable list

filenum is the number given when the file was opened, and variable
list is a comma-delimited sequence of one or more string or numeric
variables.

The file can be either a disk file, a serial port (COMn:), or the
keyboard (KYBD:).

The data in the file must match the type(s) of the variable(s)
defined in the INPUT # statement. The variable should appear just
as if it were being typed by you in response to an INPUT state­
ment; that is, it should be separated by commas with a carriage
return at the end. This is the way the WRITE # statement creates
files.

WRITE #

SUB MakeFil e

I INPUT I opens a sequential file for output.
I Using WRITE I, it writes lines of different
I types of data to the file.

I assign the file variable to #1
OPEN "INPUTI.DTA" FOR OUTPUT AS #1

I define some variables and initialize them
StringVariable$ = "1 1 11 be back."
Integer% = 1000
FloatingPoint! = 30000.1234

I write a line of text to the sequential file
WRITEI 1, StringVariable$, Integer%, FloatingPoint!

CLOSE 1 I close file variable

END SUB I end procedure MakeFile

SUB ReadFil e
I This procedure opens a sequential file
I for input. Using INPUT I, it reads
I lines of different types of data
I from the fil e.

I assign the file variable to #1
OPEN "INPUTI.DTA" FOR INPUT AS #1

StringVariable$ =
Integer% = 0
FloatingPoint! = 0

I define some
I variables and
I initialize them

Turbo Basic Owner's Handbook

I read a line of text from the
I sequential file
INPUTI I, StringVariable$, Integer%, FloatingPoint!

PRINT StringVariable$, Integer%, FloatingPointl

CLOSE II I close file variable

END SUB I end procedure ReadFile

CALL MakeFile
CALL ReadFile

END I end the program

Turbo Basic Reference Directory 231

INPUT$ functian

Function

Syntax

Remarks

See Also

Example

232

INPUT$ reads a specific number of characters from the keyboard
or a file.

s$ = INPUT$(n [. [I] filenum])

n is the number of characters to be read and filenum is the file to
read from. If filenum is omitted, the keyboard is read.

If the keyboard is used, no characters appear on the screen, and
all characters are passed to the destination string. INPUT$' s main
virtue, relative to other techniques for reading files or the keyboard,
is that it allows you to accept all characters including control char­
acters.

The BINARY file mode offers this attribute in a more flexible
way.

Note: Certain keys and key combinations (for example, the func­
tion and cursor control keys) do not return ASCII values. When
such keys are pressed, INPUT$ substitutes CHR$(O); INKEY$
doesn't have this limitation.

INKEY$

OPEN "INPUTI.DTA" FOR INPUT AS #1
S$ = INPUT$(15, II};
PRINT S$
CLOSE II
END

Turbo Basic Owner's Handbook

INS TAT function

Function

Syntax

Remarks

See Also

Example

IN STAT returns keyboard status.

y = INSTAT

INSTAT returns keyboard status information. If a key has been
pressed, INSTAT returns -1; otherwise it returns O. INSTAT
doesn't remove a keystroke from the buffer, so if it ever returns
TRUE (-I). it will continue to return TRUE until the keystroke is
removed by INKEY$ or another keyboard.,.reading command.

INKEY$

WHILE NOT INSTAT I check if a key was pressed
LOCATE 1,1
PRINT "Waiting for a key .•• "

WEND

PRINT INKEY$ I display the pressed key

END I end the program

Turbo Basic Reference Directory 233

INSTRfunction

Function

Syntax

Remarks

Example

234

INSTR searches a string for a pattern.

y = INSTR(en,] target' strjng,pattern strjng)

n is an integer expression ranging from 1 to 32,767, and target string
and pattern string are any string variables, expressions, or con­
stants.

INSTR returns the position of pattern string in target string. If
pattern string isn~t in target string; INSTRreturns O. If the optional
n parameter is included, the search begins at position, n in target
string.

If pattern string is null (length 0), INSTR returns 1 (or n if n is
specified) .

INSTR is case sensitive.

, get user's input
LINE INPUT "Please input a string: ";DumnyStr$
PRINT "Now input a substring that exists in the ";
INPUT "first string: ";SubStr$

I display the location of substring
PRINT USING "The string I & ' exists starting ~t ";_

SubStr$;
PRINT USING" location III, in &";_

INSTR(l,DumnyStr$,SubStr$), DumnyStr$

END I end the program

Turbo Basic Owner's Handbook

INT function.

Function

Syntax

Remarks

See Also

Example

INT converts a numeric expression to an integer.

y = INT(numedc expression)

INT returns the largest integer less than or equal to numeric
expression.

CEIL
CINT
FIX

PRINT "X", "INT(X)"
PRINT
FOR N = 1 TO 6

READ XI
PRINT XI, INT(X')

NEXT N

DATA 3.1, -3.1, 3.5, -3.5, 3~9, -3.9

END

Turbo Basic Reference Directory 235

JOCTL statement, IOCTL$ function

Function

Syntax

Remarks

236

IOCTL and IOCTL$ communicate with a device driver.

Statement:

IOCTL [I] fi7enum, string expression

Function:

s$ = IOCTL$ [IJ fil enum

filenum is the file number of the desired device driver. string
expression contains information to be sent to the driver. The format
of the string information sent to or received from a device driver is a
function of the driver itself

IOCTL sends data to a device driver. IOCTL$ reads data from a
device driver.

For more information, consult the device driver section of the
IBM DOS Technical Reference Manual.

Turbo Basic Owner's Handbook

KEY statement

Function

Syntax

Remarks

KEY sets and displays function key contents and defines key trap
values.

KEY {ONIOFFILIST}
KEY n, string expression
KEY n, CHR$(shiftstatus)+CHR$(scancode)

KEY ON and KEY OFF turn on and off the function key display at
the bottom of the screen. Note that turning off the display doesn't
affect function key definitions. KEY LIST sends the current func­
tion key definitions to the screen. When function keys are dis­
played, the 25th line of the screen is never scrolled, and attempting
to LOCATE the cursor on that line results in an Illegal Function
Call (run-time error 5).

KEY n, string expression sets function key n to string expression,
where string expression has a length of 15 characters or less (only
the first 6 appear on the status line). To disable a function key,
assign it the null string. A carriage return in the string (CHR$(13))
is displayed as a small left arrow.

KEY n, CHR$(shiftstatus) + CHR$(scancode) associates a key (or
combination of keys) with a number (n, from 15-20) for key trap­
ping with subsequent ON KEY and KEY(n) ON statements. The
format is as follows:

• shiftstatus is an integer expression ranging from 0 to 255 that
controls the response of the trap to the state of the Ctrl, Caps Lock,
Num Lock, Alt, and both Shift keys.

• scancode is a numeric value from 1 to 83 that defines the key to
trap, according to the Scan Code Table in Appendix F. Note that
keys 59 through 68, 72, 75, 77, and 80 are trapped already
(they're the function and cursor control keys), so defining them
has no effect.

Use the following to build a value for shiftstatus:

Modifier Key Binary Value Hex Value

Right Shift 00000001 01

Left Shift 00000010 02

Ctrl 00000100 04

Alt 00001000 08

Num Lock 0010 0000 20
Caps Lock 01000000 40

Turbo Basic Reference Directory 237

See Also

Example

238

As an example, suppose we want to trap "shift-escape"; that is,
we want a certain subroutine to get control whenever the Esc key is
pressed along with either Shift key. First, you must build the shif­
tstatus mask. You want both Shift keys to be recognized, so you must
add the masks for each: 01H + 02H = 03H. Next you can consult
the scan code table in Appendix F and discover that the Esc key has
scan code 1. The following statement tells Turbo Basic about your
plan:

KEY 15,CHR$(&03) + CHR$(I)

You must use key value 15 because the first 14 are predefined to
represent the function and cursor control keys. Next you define a
trap subroutine to be called whenever Shift-Esc is pressed:

ON KEY(15) GOSUB ShiftEscape

where ShiftEscape is a label at the start of the trap subroutine.
Finally you turn on trapping for key 15 with the KEY(n) statement:

KEY(15) ON

KEY(n)
ON KEY

, This program shows the KEY ON/OFF and
, KEY N string expressions

, turn off function key display
KEY OFF

, assign string expressions to the function keys
FOR N% = 1 TO 10

READ A$
KEY N%, A$ + CHR$(13)

NEXT N%
KEY LIST 'Display function key definitions
, turn on function key display
KEY ON

, wait for user to press a key
WHILE NOT INSTAT
WEND

, data statements used by READ
DATA Help, Enter, Edit, Change, Report, Print, Setup
DATA DOS, Copy, Quit

END , end the program

Turbo Basic Owner's Handbook

KEY(n) statement

Function

Syntax

Remarks

See Also

Example

KEY(n) turns trapping on or off for a specifIc key.

KEY(n) {ONIOFFISTOP}

n is the trapped key, an integer expression from 1 to 25, according
to the following:

n Key

1-10 Function keys 1-10
11 Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down
15-25 Keys defined by

KEY statement

KEY(n) ON turns on trapping of key n. This means that a check is
made between every statement to see if key n has been pressed;
and if it has, program execution is diverted to the routine specifIed
in an ON KEY statement for that key.

KEY(n) OFF disables trapping of key n.

KEY(n) STOP also disables key trapping but remembers the
occurrence of KEY (n) pressing, so that if a KEY ON statement is
subsequently executed, a trap occurs immediately.

$EVENT
ON KEY

I turn on key checking
KEY ON

I assign strings to keys
KEY I, "Hello" + CHR$(13)
KEY 2, "GoodBye" + CHR$(l3)
KEY 10, CHR$(13)

I set up a key trap for FlO
I assign a string to it.

ON KEY(10) GOSUB GoodBye

I turn on FlO trapping
KEY(lO) ON

I get user's input
INPUT "Press Fl: ";Dummy$
INPUT "Press F2: ";Dummy$

Turbo Basic Reference Directory 239

240

PRINT "Press FlO now

I now, the GoodBye subroutine will be called
WHILE NOT INSTAT : WEND I wait for the flO key

END I end the program

GoodBye:
KEY(IO) OFF I turn off trapping

I now, the character string assigned
I to FlO will be played back
PRINT "Press FlO now to quit the program .•. "
RETURN

Turbo Basic Owner's Handbook

KILL statement

Function

Syntax

Remarks

Example

KILL deletes a file (like the DOS DEL command).

KI LL fj 7 espec

filespec is a string· expression and represents the file or files to be
deleted, and. can optionally include a path name and/or wildcard .
characters. KILL is analogous to DOS's DEL (ERASE) command.

Like DEL, KILL cannot delete a directory. Use RMDIR instead,
after first deleting all the files in the directory.

, set some simple error handling
ON ERROR GOTO FileError

, get the file's name
INPUT "Please enter the file to delete:" FileName$

I delete the file
IF FileName$ <> "" THEN

KILL FileName$
END IF

END I end the program

FileError: I tell about the error
PRINT "Error ";
PRINT Err" occurred when deleting the file"
END

Turbo Basic Reference Directory 241

·LBOUND function

Function

Syntax

Remarks

. See Also

Example

242

LBOUND returns the . lowest bound possible (the smallest sub­
script) for an array's -specified dimension.

LBOUND{array{dimension»

array is the·name of the array being dimensioned. dimension repre­
sents an integer from 1 up to the number of dimensions in array.
You can detennine an array's size by using . LBOUND with
UBOUND. To determine the upper ·limit of an array dimension,
use UBOUND.

Uyou don't specify a subscript range (see DIM), then the default
lower bound is O. You can override the default lower bound using
the OPI'ION BASE statement.

DIM
. OPTION ·BASE
UBOUND

I dimension array with lower and upper bounds
DIM· Array%(1900:2000,lO:20}

I print out the lower array bound
'PRINT "Lower Array Bound of Dimension 2· is lI;lBOUND{Array%(2»
END

Turbo Basic Owner's Handbook

LCASE$ function

Function

Syntax

Remarks

See Also

Example

LCASE$ returns a lowercase-only string.

s$ = LCASE$(string expression)

LCASE$ returns a string equal to string expression except that all
the uppercase letters in string expression will have been converted
. to lowercase.

UCASE$

. PRINT LCASE$("What I s that WATERMELON for?");

Turbo Basic Reference Directory 243

LEFT$ function

Function

Syntax

Remarks

See Also

Example

244

LEFT$ returns the left-most n characters of a string.

s$ = LEFT$(string expression,n)

n is an integer expression and specifies the number of characters in
string expression to be returned. n must be in the range 0 to 32,767.

LEFT$ returns a string consisting of the left-mostn characters of
its string argument. If n is greater than or equal to the length of
string expression, all of string expression is returned. If n is 0,
LEFT$ returns the null string.

MID$
RIGHT$

PRINT lEFT$("Hello out there in the universe!", 5)

Turbo Basic Owner's Handbook

LEN function

Function

Syntax

Remarks

Example

LEN returns the length of a string.

y = LEN (string expression)

LEN returns a value from 0 to 32,767, representing the number of
characters in string expression. Note that this range is vastly
expanded over Interpretive BASIC's maximum string length of255.

INPUT "Enter a string: ",DunmyStr$

PRINT USING liThe length of the string = III ";_
LEN (DunmyStr$)

END I end the main program

Turbo Basic Reference Directory 245

LET statement

Function

Syntax

Remarks

Example

246

LET assigns a value to a variable.

[LET] variable = expression

variable is a string or numeric variable, and expression is of a suit­
able type (that is, string for string variables and numeric for
numeric variables).

LET is optional in assignment statements and in practice is usu­
ally omitted.

INPUT "Enter a string: ",DunmyStr$

I assign TempStr$ a value using LET
LET TempStr$ = DunmyStr$

PRINT TempStr$, DunmyStr$

END

Turbo Basic Owner's Handbook

LINE statement

Function LINE draws a straight line or an optionally filled box.

Syntax LINE [(xl,yl)] - (x2,y2) [, [color] [,B[F]] [,pattern]]

Remarks (xl,yl) and (x2,y2) are the coordinates of two points on the graphics
screen and can be specified in either absolute or relative form. (See
Chapter 4 for more information about absolute and relative coordi­
nates.) color is an integer expression describing the color in which
the line or box should be drawn. pattern is an integer mask control­
ling how the line or box is drawn.

See Also

To draw a line to point (x,y) from the LPR in the default color,
type

LINE -(x,y)

To draw that same line in a different color, type

LINE -(x,y), 2

To draw a line from point (xl,yl) to point (x2,y2), type

LINE (xl,yl) - (x2,y2)

To draw a box with upper left comer (xl,yl) and lower right
comer (x2,y2), type

LINE (xl,yl) - (x2,y2)"B

To fill a box with attribute 2, type

LINE (xl,yl) - (x2,y2),2,BF

To draw a nonsolid line, include the pattern argument. For exam­
ple, to create a dotted line. use a pattern value of &HAAAA (1010
1010 1010 1010 binary). Note that pattern does not affect filled
boxes.

LINE (xl,yl) - (x2,y2)",maskword

After a LINE statement, the LPR becomes the second of the two
points in the LINE statement.

FILL

Turbo Basic Reference Directory 247

Example

248

I draw a diagonal line across the screen
SCREEN 1,0
LINE (0,0) - (319,199)

I draw a horizontal dashed line
LINE (O,100) - (319,100)",&HCCCC

I draw a 50 pixel square filled with color 2
I and the upper left-hand corner at (10,20)
LINE (10,20) - (60,70), 2, BF

I play connect the dots
READ X,V
PSET (X,V) 'set the LPR
FOR N = 1 TO 11

READ X,V
LINE -eX, Y)

NEXT N

LOCATE 9,9
PRINT "ORLAND"

END I end the program

DATA 10,20, 50,20, 55,25, 55,40, 50,45, 10,45
DATA 50,45, 55,50, 55,65, 50,70, 10,70, 10,20

Turbo Basic Owner's Handbook

UNE INPUT statement

Function

Syntax

Remarks

Example

LINE INPUT reads a line from the keyboard into a string variable,
ignoring delimiters.

LINE INPUT [:] [prompt string:] string variab7e

prompt string is an optional string constant to be sent to the screen
prior to waiting for your response. string variable is the variable
that will be loaded with the data you enter at the keyboard. Use
LINE INPUT instead of INPUT when you have to enter string
information that contains delimiters (that is, commas) that would
otherwise confuse an INPUT statement. For example:

INPUT "Enter patient address: ": a$

will fail if the address contains a comma:

Enter patient address: 101 Main Street, Apt 2
? Redo from start

LINE INPUT accepts commas without a problem.

If a semicolon follows the LINE INPUT· statement, then when
Enter is pressed to end the input sequence, a carriage return won't
be sent to the display (that is, .the cursor will stay on the same line).

PRINT "Enter several fields ~f input, you needn't"
LINE INPUT "worry about del imiting them in any way:"_

DummyStr$

PRINT DummyStr$

END 'end the main program

Turbo Basic Reference Directory 249

LINE INPUT # statement

Function

Syntax

Remarks

Example

250

LINE INPUT ·#reads a line from a sequential file into a string
variable) ignoring delimiters.

LINE INPUT Ifi 7enum. string' variab7e

filenum. is the number of the file to read, and string variable is the
string variable .to be loaded.

LINE INPUT # is like LINE INPUT except that the data is
read from a sequential file rather than from the keyboard. The cur­
rent record in the fileis read and loaded into string variable. As
with LINE INPUT) use LINE INPUT' # to collect data that has
delimiter characters (commas) mixed in with data.

If the data in the file was written with the WRITE # statement,
it is already correctly delimited- and INPUT # is the best way to
read it.

SUB MakeFile
, LINE INPUT I opens a sequential file
, for output. USing PRINT I and PRINT I USING.
, it writes different types of data
, to the file

, assign a file variable to #1
OPEN "LINEINPI.DTA" FOR OUTPUT AS 11

, define some variables. and initialize them
StringVariable$ = "There's trouble in River City."
Integer% = 1000
FloatingPoint! = 30000.1234

, write a line of text to the sequential file
PRINT # 1. StringVariable$. Integer%. FloatingPoint!

CLOSE #1 , close the file variable

END SUB , end procedure MakeFile

SUB ReadFile
, Opens a sequential file for input
, uses LINE INPUT I and INPUT$ to read
, lines of different types of data
, from the file.

, assign the file variable to 11
OPEN "LINEINPI.DTA" FOR INPUT AS 11

StringVariable$ = ""

Turbo Basic Owner's Handbook

I input an entire line regardless of length
LINE INPUT t I, StringVariable$

PRINT StringVariable$

CLOSE #l

END SUB

CALL MakeFi 1 e
CALL ReadFile

I close the file variable

I end procedure ReadFile

END I end the program

Turbo Basic Reference Directory 251

LOC function

Function

Syntax

Remarks

Example

252

LOC returns the current file position.

y = lOC(filenum)

filenum is the value under which the file was OPENed. The
behavior of LOC depends on the mode in which the file was
OPENed.

If filenum is a random file, LOC returns the number of the last
record written or read.

If filenum is a sequential file, LOC returns the number of 128-
byte blocks written or read since .opening the file. By convention,
LOC returns one block for files that have been opened but have not
yet been written or read.

Iffilenum is a binary file, LOC returns the SEEK file position.

For a communications file, LOC returns the number of charac­
ters in the input buffer.

OPEN "lOC.DTA" FOR BINARY AS #1
PUT$ #1, "TurboBasic"
PRINT lOC(1)
CLOSE
END

Turbo Basic Owner's Handbook

LOCAL statement

Function

Syntax

Remarks

See Also

Example

LOCAL declares local variables in a procedure or function.

LOCAL variable 7ist

The LOCAL statement is legal only in function and procedure defi­
nitions, and must appear before any executable statements in the
associated definition. LOCAL defines one or more variables as
"local" to the enclosing procedure or function. A local variable can
have the same name as other variables in other parts of the program
and can also have the same name as other local variables in other
function and procedure definitions without conflict; they are sepa­
rate variables.

To declare a local array, include its identifier and an empty set of
parentheses in the variable list, then DIMension the array in a sub­
sequent statement.

Local variables are allocated on the stack and are initialized to
zero (for string variables, use the null string) with every invocation
of the enclosing function or procedure.

Undeclared variables in procedures are given the static attribute
by default; nonetheless, we recommend that you explicitly declare
each variable.

DIM
SHARED
STATIC

SUB Locals
LOCAL aO. i%
DIM DYNAMIC a(lO:20)

FOR i% = 10 TO 20
a(i%) = i%

NEXT i%
END SUB

Turbo Basic Reference Directory 253

LOCATE statement

Function

Syntax

Remarks

See Also

LOCATE positions the cursor and/or defines the cursor's shape.

LOCATE [row] [, [column] [, [cursor] [, start] [, stop]]]

row is an integer expression defining the screen line on which the
cursor should be positioned (1-25). column specifies the column (1-
BO). cursor is a numeric value that controls whether or not the cur­
sor will be visible (0 means i~visible; 1 means visible). The 25th
line is not available unless the function key display is inactive (see
the KEY OFF statement).

start and stop are integer expressions that control the size of the
cursor and represent how many scan lines the cursor will consist o£
The top scan line is line 0; the bottom is 7 for Color/Graphics
Adapters and 13 for Monochrome Adapters.

LOCATE is used most often before a PRINT statement to con-
trol where on the screen the output will go.

KEY OFF
PRINT

Example CLS

254

CRSLIN and POS
INPUT "Input X and Y coordinates: ",X%, Y%

I position cursor and change its shape
LOCATE X%,Y%,l,4,5
PRINT "Hi":
WHILE NOT INSTAT : WEND I wait for a key

END I end the program

Turbo Basic Owner's Handbook

LOF function

Function

Syntax

Remarks

Example

LOF returns the length of a file.

y = LOF (fiT enum)

filenum is the number under which the file was opened.

LOF returns the length of the indicated file in bytes. For com­
munications files, LOF represents the size of the available space in
the communications buffer.

OPEN "TB.EXE" FOR BINARY AS #1
PRINT "The size of Turbo Basic is":LOF(1)
CLOSE 11
END

Turbo Basic Reference Directory 255

LOG, LOG2, and LOGIO functions

Function

Syntax

Remarks

Example

256

LOG returns the natural (base e) logarithm; LOG2 returns the log­
arithm of base 2; LOG10 returns the logarithm of base 10.

LOG:
y = lOG (numeric expression)

LOG2:
y = lOG2(numeric expression)

LOG10:
y = lOG 10 (numeric expression)

LOG returns the natural logarithm (base e, where e = 2.718282 ...)
of its argument. If numeric expression is less than or equal to zero,
run-time error 5 results, Illegal Function Call.

The natural logarithm of x is the power to which e would have to
be raised to equal x.

LOG, LOG2, and LOG10 return double-precision results.

FOR II = 1 TO 50 STEP 2.5
PRINT USING "The natural log of II = I#~"; _

I I, lOG (I I)
NEXT I I

END I end the program

Turbo Basic Owner's Handbook

LPOS function

Function

Syntax

Remarks

See Also

Example

LPOS returns the "cursor position" of the printer buffer.

y = LPOS(printer)

printer is an integer expression from 0 to 3, selecting the printer
from the following:

0, LPTl:
2 LPT2:
3 LPT3:

LPOS reports how many characters have been sent to the printer
since the last carriage return character was output.

POS

I assign width of printer to a named constant
%Wid = 80

I display ASCII and extended ASCII characters
I on the screen and to the printer.
FOR 1% = 0 TO 255

IF (1% > 32) THEN
PRINT USING "!";CHR$(I%);
LPRINT USING II !";CHR$(I%);

END IF

I advance to next line if running out of room
IF LPOS(O) = %Wid THEN

LPRINT CHR$(13) + CHR$(lO)
END IF

NEXT 1%

END I end the program

Turbo Basic Reference Directory 257

LPRlNT, ,LPRlNT USING statements

Function

Syntax

Remarks

See Also

Examples

258

LPRINT and LPRINT USING send data to the printer (LPTl:).

'LPRINT [expression list [ill
LPRINT USING lonnat string; expression list

expression list is a' comma- or semicolon-delimited series of
numeric and/or string expressions. format string contains format­
ting information.

LPRINT and LPRINT USING perform the same actions as
PRINT and PRINT USING except that expression list is sent to
the printer (LPTl) rather than to the screen.

Note: By default, Turbo Basic inserts a carriage-return/line-feed
pair after printing· 80 characters on a ,line. This characteristic can

. be changed with the WIDTH statement.

LPOS
PRINT
PRINT USING

'WIDTH

lPRINT USING II is my luckynumber."i7
END

Turbo Basic Owner's Handbook

LSET statement

, Function

Syntax

Remarks

See Also

Example

LSET moves string data into the random file buffer.

LSET field variable = string expression

LSET and its sister statement RSET move string information into
field variables defined as belonging to the buffer of a random file.

If the length, of string expression is less than the size of field
variable specified in a FIELD statement, LSET left-justifies this
field by padding it with spaces. This means spaces are appended
after the last character of string expression such that after the LS ET
assignment, LEN(jield variable) still equals ··the width defined in
the associated FIELD statement.

RSET does right-justification with space padding (spaces are
added'before the first character of string expression).

LSETand RSET can, also be used to format output to the screen
or printer:

a$ = space$(20)
RSET a$ = "Right-just"
PRINT a$

FIELD
LEN
RSET

OPEN "LSET.DTA" AS #1 LEN = 18

, define the field names and sizes of files
FIELD 1,2 AS FileInt$, 4 AS FileLong$,_

4 AS FileSngl$,8 AS FileDbl$

'assign values to the fields and write
, the record to the random access file
FOR Count% = 1 TO 5

LSET FileInt$ = MKI$(Count%)
LSET FileLong$ = MKL$(Count%~2)
LSET FileSngl$ = MKS$(Count%~2.1)
LSET Fi.leDbl$ = MKD$(Count%~4.4)
PUT I,Count%

NEXT Count%

CLOSE 1 ' close the file

END ' end main program

Turbo Basic Reference Directory 259

MEMSET statement

Function

Syntax

Remarks

See Also

Example

260

MEMSET declares the. upper memory limit.

MEMSET address

address is a long integer expression defining the absolute address of
Turbo Basic's upper memory limit. address must be less than the
amount of memory installed in the system. In practice, address is
usually calculated by subtracting a constant from the value
returned by the ENDMEM function.

MEMSET is designed to set aside memory for assembly lan­
guage subroutines. If Turbo Basic cannot accommodate this request
because of either an inappropriate argument or insufficient mem­
ory, then run-time error 7 results, Out of Memory.

ENDMEM

PRINT FRE(-I) I display available array space

I save 12S·bytes at the top of memory
MEMSET ENDMEM - &HSO
PRINT FRE(-I) I display available memory

END I end the program

Turbo Basic Owner's Handbook

MID$ function

Function

Syntax

Remarks

See Also

Example

MID$ returns a character string.

s$ = MIO$(string expression,n [,m])

nand m are numeric variables or expressions, and can range from 1
to 32,767 and 0 to 32,767, respectively.

M ID$ as a function returns an m-character string beginning with
the nth character of string expression. If m is omitted or there are
fewer than m characters to the right of the nth character of string
expression, the remaining characters of string expression, up to and
including the nth character, are returned. If n is greater than the
length of string expression, MID$ returns a null string.

LEFT$
MID$ statement
RIGHT$

INPUT "Input a string: ",OurnnyStr$

TempStr$ = OummyStr$
PRINT DummyStr$
I Reverse the order of characters using MID$
I function and statement simultaneously.
FOR 1% = 1 TO LEN(DummyStr$)

MID$(DummYStr$,I%,1) = MID$(TempStr$,_
(LEN(TempStr$) - 1%) + 1, 1)

NEXT 1%

PRINT DummyStr$

END I end the program

Turbo Basic Reference Directory 261

MID$ statement

Function

Syntax

Remarks

See Also

Example

262

MID$ replaces string characters.

MIO$(string variable,n [,m]) = replacement string

nand m are numeric variables or expressions, and can range from 1
to 32,767 and 0 to 32,767, respectively.

As a statement, MID$ replaces m characters of string variable,
beginning at character position n with the contents of replacement
string. If m is included, it determines how many characters of
replacement string are inserted into string variable. If omitted, all of
replacement string is used. MID$ will never alter the length of a
string.

LEFf$
MID$ function
RIGHT$

I MIO$, the statement
b$ = "Hurricane Camille"
MID$(b$,ll) = "Carla " I Omitted optional m parameter
PRINT b$

Turbo Basic Owner's Handbook

MKDIR statement

Function

Syntax

Remarks

Example

MKDIR creates a subdirectory (like DOS's MKDIR command).

MKDIR path

path is a string expression describing the directory to be created.
(See Chapter 4 for information about file names and paths.)

MKDIR (make directory) creates the subdirectory specified by
path.

If you try to create a directory that already exists, run-time error
5 occurs, Illegal Function Call.

I set up an error handler
ON ERROR GOTO DirError

PRINT "Please enter the directory you would like to ";
INPUT "create: ",DirName$

MKDIR DirName$ I create directory

END I end the program

DirError:
PRINT "There is a problem in creating the directory."
END

Turbo Basic Reference Directory 263

MKI$, MKL$, MKS$, MKD$ functi(J118

Function

Syntax

Remarks

MKI$, MKL$, MKS$, and MKD$ convert numeric data into
strings (for random file output).

s$ = MKI$(integer expression)
s$ = MKL$(7ong integer expression)
s$ = MKS$(sing7e-precision expression)
s$ = MKD$(doub7e-precision expression)

The Make functions are part of the process of getting numeric
values into random access files. Since the statements that write
information to the buffer of a random file (LSET and RSET) oper­
ate only on strings, numeric data must be translated into string
form before it can be PUT into a random file.

MKI${i) returns a two-character string consisting of the two 8-bit
values that Turbo Basic uses to internally represent integer variable
i. MKL$ returns a 4-byte string equivalent of a long integer. MKS$
returns a 4-byte string equivalent of a single-precision value.
MKD$ returns an 8-byte string equivalent of a double-precision
value. The complementary functions eVI, eVL, evs, and eVD are
used when reading random files.

Don't confuse these functions with STR$ and VAL, which
respectively turn a numeric expression into printable form and vice
versa:

i = 123.45
a$ = STR$(i) : b$ = MKS$(i)
, a$ contains something worth putting
, on the screen; b$ doesn't
PRINT as, b$

See Also eVD

264

eVI
eVL
evs

Turbo Basic Owner's Handbook

Example OPEN "MKILSD.DTA" AS 11 LEN = 18

I define the field names and sizes
I of the fields
FIELD 1,2 AS Filelnt$, 4 AS FileLong$,_

4 AS FileSngl$, 8AS FileDbl$

I assign values to the fields and write
I the record to the random access file
FOR Count% = 1 TO 5

LSET FileInt$ = MKI$(Count%)
LSET FileLong$ = MKL$(Count%A2)
LSET FileSngl$ = MKS$(Count%A2.1)
LSET FileDbl$ = MKD$(Count%A4.4)
PUT I, Count%

NEXT Count%

CLOSE 1 I close the file

END I end main program

Turbo Basic Reference Directory 265

MKMD$, MKMS$ functions

Function

Syntax

Remarks

See Also

Example

266

MKMD$ and MKMS$ convert numeric data into Microsoft-format
strings (for random file output).

s$ = MKMS$ (single-precision expression)
s$ = MKMD$(double-precision expression)

The "Make Microsoft" functions are provided solely for compatibil­
ity with existing random files that contain floating-point values~ in.
Microsoft format.

MKMS$ creates a Microsoft-format 4-byte string from a single­
precision value; MKMD$ makes an 8-byte Microsoft string given a
double-precision value.

CVMD
CVMS

I open a random access file
OPEN "CVMD~DTA" AS II LEN = 12

FIELD 11~ 4 ASSingle$~ 8 AS Double$

MaxInt% = 32767

FOR 1% = 1 TO 5 I write data to file
LSET Double$ = MKMD$(I% + MaxInt%)
PUT 11,1%

NEXT 1%

FOR 1% = 1 TO 5 I read data from file
GET '1, 1% I display on screen
PRINT CVMS(Single$), CVMD(Double$)

NEXT 1%

CLOSE #1 I close the file

END I end the program

Turbo Basic Owner's Handbook

MTIMERfunction and statement

Function

Syntax

Remarks

MTIMER reads or resets the microtimer.

Function:

y = MTIMER

Statement:

MTIMER

MTIMERis designed to measure elasped time, primarily for very
short operations; It offers greatly improved resolution; however, the
accuracy drops off sharply after approximately 54 milliseconds.

As a function, MTIMER returns the number of microseconds
that have elapsed since the most recent MTIMER statement:
MTIMER is accurate to'within about two microseconds.

As a statement, MTIMER resets the microtimer to zero.

Restrictions The MTIMER statement and function are used in pairs. You must
issue the MTIMER statement and then call the function to get the
result. Subsequent references to the function will yield a value of
zero if you haven't restarted the microtimer with the MTIMER

Example

statement.

MTIMER and SOUND/PLAYeach use channel 2 of the 8255
timer chip, and are mutually exclusive. Therefore, execution of
SOUND or PLAY statements between the MTIMER statement
and MTIMER function forces the microtimer to be reset to zero
elapsed time.

I initialize the timer
MTIMER

PII = ATN(l) * 4 I calculate PI

I get the value of the timer
ElapsedTime% = MTIMER

PRINT USING "It took IIIII milliseconds ";ElapsedTime%;
PRINT" to calculate the value of PI."

END I end the program

Turbo Basic Reference Directory 267

NAME statement

Function

Syntax

Remarks

Example

268

NAME renames a file (like DOS's REN function).

NAME fj lespecl AS fj lespec2

jilespecl and jilespec2 are string expressions conforming to DOS
path and file name conventions. The NAME operation gives the
data represented by jilespecl the name jilespec2. Since jilespec2
can contain a path name, it is possible to move the data from one
directory to another, as long as you don't try to rename from one
disk to another.

INPUT "Enter the name of the file to rename: 11,00dName$
INPUT "Enter the new name of the file: ",NewName$

print oldname$,newname$
NAME OldName$ AS NewName$

END I end of program

Turbo Basic Owner's Handbook

OCT$ function

Function

Syntax

Remarks

See Also

Example

OCT$ returns a string representing the octal (base 8) form of a
numeric expression.

s$ = OCT$(numeric expression)

numeric expression is in the range - 32,768 to 65,535. OCT$
returns a string representing the octal form of its integer argument.
If numeric expression has a fractional portion, it is rounded before
the conversion takes place.

Use the HEX$ and BIN$ functions to convert values to hexadeci­
mal and binary strings, respectively.

BIN$
HEX$

PRINT OCT$(-l)
PRINT OCT$(65535)

Turbo Basic Reference Directory 269

ON COM(n) statement

Function

Syntax

Remarks

See Also

270

ON COM(n) declares the trap subroutine for serial port events.

ON COM(n) GOSUB label

n is the number (lor 2) of the communications adapter (serial port)
to be read. label identifies the trap subroutine. If label is the special
line number 0, then trapping is disabled.

The ON COM(n) statement has no effect until communications
events are enabled for a given serial port by an appropriate COM
ON statement. Once the COM ON statement has been executed,
checking occurs between the execution of every subsequent state­
ment to see if a character has arrived at the specified serial port. If
one has, a GOSUB is performed to the designated subroutine.

Appendix B, "Event Trapping"

Turbo Basic Owner's Handbook

ON ERROR statement

Function

Syntax

Remarks

See Also

Example

ON ERROR specifies an error-handling routine and turns on error
trapping.

ON ERROR GOTO 7abe7

label identifies the first line of the error-trapping routine.

Once error handling has been turned on with this statement,
instead of displaying an error message and terminating execution,
all run-time errors result in a jump to your error-handling code. Use
the RESUME statement to continue execution.

To disable error trapping, use ON ERROR GOTO O. You could
use this technique if an error occurs for which you have not defined
a recovery path; you may also choose to display the contents of ERL
at this time.

If you're running an .EXE program from DOS with error trap­
ping turned off, any run-time errors that occur cause a message to
be printed and the program to terminate. The message is in the
fonn

Error errnum at pgm-ctr = address

If the program is launched from within Turbo Basic and an error
occurs, you are placed in the editor at the location of the error. On
the status line will be a brief description of the run-time error:

Error errnum: error message

ERADR
ERL
ERR
ERROR
RESUME

I Set up the error handler
ON ERROR GOTO ErrorHandler

WHILE 1 I this loop ends with an error
I = 10/0 I this causes a run-time error

WEND

ErrorHandler:
PRINT "Handler caught run-time error ";
PRINT ERR," at line" ERL

END

Turbo Basic Reference Directory 271

ON/GOSUB statement

Function

Syntax

Remarks

Example

272

ON/GOSUB calls one of several possible subroutines according to
the value of a numeric expression.

ON n GOSUB label [,labe~ ••.

n is a numeric expression ranging from 0 to 255, and label identifies
a statement to branch to.

n determines which label is jumped to (for example, if n = 4, the
fourth label in the list receives control). If n is 0 or greater than the
number of labels in the list, Turbo Basic continues execution with
the next statement in sequence.

Each subroutine should end with RETURN to resume execution
with the statement immediately following the ON/GOSUB state­
ment.

The SELECT and IF block statements can also perform multi­
way branching and are more flexible than ON/GOSUB.

FOR 1% = 1 TO 3
ON 1% GOSUB OneHandler, TwoHandler, ThreeHandler

NEXT 1%

END I end main program

OneHandler:
PRINT "Handler number",I%
RETURN

TwoHandler:
PRINT "Handler number",I%
RETURN

ThreeHandler:
PRINT "Handler number",I%
RETURN

Turbo Basic Owner's Handbook

ON/GOTO statement

Function

Syntax

Remarks

Example

ON/GOTO sends program How to one of several possible destina­
tions based on the value of a numeric expression~

ON n GOTO. 1abe7 [, labe7]· •••

n is a numeric expression ranging from 0 to 255. and label identifies
a statement in the program to branch to.

n determines which label is jumped to (for example. if n = 4. the
fourth label in the list receives control). If n is 0 or greater than the
number of labels in the list. Turbo Basic- continues execution with
the next statement in sequence.

The SELECT and IF block statements can perform multi-way
branching with greater flexibility.

FOR·I% = 1 TO 3
ON 1% GOTO OneHandler, TwoHandler, ThreeHandler

Back:

NEXT 1%

END ' end main program

OneHandler:
PRINT "Handler number", 1%
GOTO Back:

TwoHandler:
PRINT "Handler number", 1%
GOTO Back:

ThreeHandler:
PRINT "Handler number",I%
GOTO Back:

Turbo Basic Reference Directory 273

ON KEY(n) statement

Function

Synax

Remarks

See Also

Example

274

ON KEY(n) declares the trap subroutine to get control if a specific
key is pressed.

ON KEY(n) GOSUB TabeT

label identifies the first statement of the trap subroutine, and n is an
integer expression ranging from 1 to 20 that describes the key to be
,trapped, according, to the following:

n Key

1 .. 10 Function keys F1-F10
11 Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down
15-25 Keys defined by, KEY statement
30 Function key F11
31 'Function key F12

The ON KEY statement has no effect until key events are
enabled by a KEY ON statement. Once a KEY ON statement has
been executed, Turbo Basic checks between the execution of every
subsequent statement to see if the specified key was pressed. If it
was, Turbo Basic performs a GOSUB to the designated subroutine.

The ,KEY(n) OFF statement turns off checking for key n. Use the
KEY statement to define a key for trapping that isn't a function or
cursor control key.

Use the $EVENT metastatement for fine control over Turbo
Basic's generation of event-checking code.

$EVENT
KEY(n)

I This program demonstrates the KEY(n) statement.

I turn key checking on
KEY ON

I assign strings to keys
KEY 1, "Hell 0" + CHR$ (13)
KEY 2, "GoodBye" + CHR$(13)
KEY 10 ,CHR$ (13)

I set up a key trap for FlO in addition
I to assigning a string to it.

Turbo Basic Owner's Handbook

ON KEY(IO) GOSUB GoodBye

I turn FlO trapping on
KEY (10) ON

I get user input
INPUT "Press Fl: ";Dumny$
INPUT "Press F2: ";Dumny$

PRINT "Press FlO now ••. "

I when user presses FlO now, the GoodBye
I subroutine will be called
WHILE NOT INSTAT : WEND I wait for the FlO key

END I end the program

GoodBye:
KEY LIST I list the current defined keys
KEY(IO) OFF I turn trapping off

I now when the user presses FlO, the character
I string assigned to the key will be played back
PRINT "Press flO now to quit the program ••• "
RETURN

Turbo Basic Reference Directory 275

ON PEN statement

Function

Syntax.

Remarks

See Also

Example

276

ON PEN declares the trap subroutine to get control if light-pen
activity occurs.

ON PEN GOSUB label

label identifies the first statement in the light-pen-handling sub­
routine.

The ON PEN statement has no effect until light-pen events are
enabled by a PEN ON statement. Once a PEN ON statement has
been executed, a check is made between· the execution of every
subsequent statement to see if the light pen was activated. If so, the
designated subroutine is called.

The PEN OFF statement turns off light-pen checking.

After a light-pen trap, an implicit PEN STOP statement is exe­
cuted to keep from calling the trap subroutine repetitively from
within itself (and filling up the stack). The closing RETURN of the
handling subroutine automatically performs a PEN ON unless the
routine executes an explicit PEN OFF statement.

Use the $EVENT metastatement for finer control over Turbo
Basic's generation of event-checking code.

$EVENT
PEN

ON PEN GOSUB PenHandler I set event handler

PEN ON I turn on event trapping

PRINT "Press any key to stop ••• "
WHILE NOT INSTAT
WEND

END I end the program

PenHandler:
FOR 1% = 1 TO 9

PRINT PEN (1%)
NEXT 1%
RETURN

Turbo Basic Owner's Handbook

ON PLAY statement

Function

Syntax

Remarks

See Also

Example

ON PLAY declares the trap subroutine to get control if the back­
ground music buffer contains less than the specified number of
notes.

ON PLAY(notecount) GOSUB label

notecount is an integer expression, and label identifies the first
statement in the music-playing subroutine.

The ON PLAY statement has no effect until note checking is
enabled by a PLAY ON statement. Once PLAY ON has been exe­
cuted, Turbo Basic checks between the execution of every subse­
quent statement to see if the number of notes remaining to be
played in the music buffer is less than notecount. If it is, Turbo Basic
performs a GOSUB to the designated subroutine.

The PLAY OFF statement turns off music buffer checking.

After a music trap, an implicit PLAY STOP statement is executed
to~keep from calling the trap subroutine repetitively from within
itself (and filling up the stack). The closing RETURN of the han­
dling subroutine automatically performs a PLAY ON statement
unless the routine has previously executed an explicit PLAY OFF
statement.

A PLAY event is not trapped if the buffer is already empty when
PLAY ON is executed.

Use the $EVENT metastatement to control the generation of
event-checking code. Use the $SOUND metastatement to set the
size of the background music buffer.

$EVENT
PLAY (statement)
$SOUND

I This program demonstrates ON PLAY(n)

I allocate 30 bytes of sound buffer space
$SOUND 100

I turn sound event checking on
PLAY ON

I set up play buffer checking
ON PLAY(S) GOSUB FillPlayBuffer

Turbo Basic Reference Directory 277

278

Notes$ = "GEAGFDGFECFEDGGG"
I play octaves 2 through 4

PlayStr$ = "MB"
FOR Octave% = 2 TO 4

OctaveS = "0" + STR$(Octave%)
PlayStr$ = PlayStr$ + OctaveS + Notes$

NEXT Octave%

PLAY PlayStr$
DO
LOOP UNTIL INSTAT
CLEAR

END I end the program

Fi 11 Pl ayBuffer:

PRINT PlayStr$
PLAY PlayStr$
RETURN

Turbo Basic Owner's Handbook

ON STRIG statement

Function

Syntax

Remarks

See Also

Example

ON STRIG declares the trap subroutine for the joystick button.

ON STRIG(n) GOSUB label

label identifies the first statement in the "button-pressed" handling
subroutine, and n is an integer expression indicating the button to
be trapped, according to the following:

n Button

0 Button 1, Joystick A

2 Button 1, Joystick B

4 Button 2, Joystick A

6 Button 2, Joystick B

The ON STRIG statement has no effect until joystick button
events are enabled by a STRIG ON statement. Once STRIG ON
has been executed, a check is made between the execution of every
subsequent statement to see if the indicated button was pressed. If
so, the designated subroutine is called.

STRIG OFF turns off checking for the indicated joystick button.

After a trap, an implicit STRIG STOP statement is executed to
keep from calling the trap subroutine repetitively from Within itself
(and filling up the stack). The closing RETURN of the handling
subroutine automatically performs a STRIG ON statement unless
the routine has previously executed an explicit STRIG OFF state­
ment.

Use the $EVENT metastatement to fine-tune the compiler's gen­
eration of event-checking code.

$EVENT
STRIG{n)

ZeroX = 1
ZeroY = 1
One2
TwoY = 1
FourX = 3
FourY = 1
SixX = 4
SixY = 1

I set event handlers
ON STRIG(O) GOSUB TriggerZero
ON STRIG(2) GOSUB TriggerTwo
ON STRIG(4) GOSUB TriggerFour

Turbo Basic Reference Directory 279

280

ON STRIG(6) GOSUB TriggerSix

, turn on event checking
STRIG(O) ON
STRIG(2) ON
STRIG(4) ON
STRIG(6) ON

, while a button isn't being pressed, display
, joystick's current coordinates
WHILE NOT INSTAT

LOCATE 15,15,0
PRINT STICK{O), STICK{l);

WEND

END ' end the program

TriggerZero:
LOCATE ZeroX, ZeroY
PRINT "Button I"
LOCATE 15,15,0
RETURN

TriggerTwo:
LOCATE TwoX, TwoY
PRINT "Button 2"
LOCATE 15,15,0
RETURN

TriggerFour:
LOCATE FourX, FourY
PRINT "Button 4"
LOCATE 15,15,0
RETURN

TriggerSix:
LOCATE SixX, SixY
PRINT "Button 4"
LOCATE 15,15,0
RETURN

Turbo Basic Owner's Handbook

ON TIMER statement

Function

Syntax

Remarks

See Also

Example

ON TIMER declares the trap subroutine to get control every n
seconds.

ON TIMER(n) GOSUB Tabel

label identifies the fir-st statement of the "time-elapsed" handling
subroutine, and n is an integer expression indicating the number of
seconds to wait, from 1 to 86,400 (24 hours).

The ON TIMER statement has no effect until time-checking is
enabled by a TIMER ON statement. Once a TIMER ON statement
has been executed, an internal seconds count begins and a check is

. made between the execution of every statement to see if the indi­
cated number of seconds have elapsed. If so, the designated sub­
routine is called.

The TIMER OFF statement turns off time-checking.

After a trap, an implicit TIMER STOP statement is executed to
keep from calling the trap subroutine repetitively from within itself
(and filling up the stack). The closing RETURN of the handling
subroutine automatically performs a TIMER ON statement unless
the routine has previously executed an explicit TIMER OFF state­
ment. This· means. that the seconds count is reset to zero after a
timer trap.

Use the $EVENT metastatement to control the generation of
event-checking code.

$EVENT
TIMER

ON TIMER(I) GOSUB DisplayTime I set timer trap

I turn on timer event-checking
TIMER ON

I wait for a key to be .pressed
WHILE NOT INSTAT : WEND

END I end the program

DisplayTime:
LOCATE 1,70
PRINT TIME$;
RETURN

Turbo Basic Reference Directory 281

OPEN statement

Function

Syntax

Remarks

282

OPEN prepares a file or device for reading or writing.

OPEN fi7espec [FOR mode] AS [I] fi7enum [LEN=record size]

or

OPEN mode string, [1]fi7enum,fi7espec [,record size]

flUJde is one of the following:

OUTPUT
INPUT

APPEND
RANDOM
BINARY

Specifies a sequential file to be written to
Specifies a sequential file to be read from
Specifies a sequential file to be appended to
Specifies a random file for reading or writing
Specifies a binary file for reading or writing

flUJde string is a string expression whose first (and usually only)
character is one of the following:

o Specifies sequential output mode
I Specifies sequential input-mode
A Specifies sequential output mode at end of file
R Specifies random input/output mode
B Specifies binary input/output mode

filenum can be any integer value. Use DOS's FILES statement
in a CONFIG.SYS file to increase or decrease this value. (See the
DOS reference manual for more information.)

filespec is a string expression specifying the name of the file to be
opened and, optionally, a drive and/or path specification.

record size is an integer expression ranging from 1 to 32,767,
specifying the length in bytes of each record in a random access file.
The default record size is 128 bytes.

The main function of OPEN is to associate a number (jilenum)
with a file or physical device and to prepare that·device for reading
and/or writing. This number is used, rather than its name, in every
statement that refers to the file. Contained in the OPEN statement
is information indicating the "mode" of the file; that is, the methods
by which the file will be accessed: sequential (for input, 'output to a
new file, or .output to an existing file), random access, and binary.
An OPEN statement is usually balanced by a matching CLOSE.

Turbo Basic Owner's Handbook

See Also

Example

The two forms of the command differ only in the level of ver­
bosity:

OPEN "myfile.dta" FOR OUTPUT AS 11

has the same effect as:

OPEN "0" ,11, "myfile.dta"

OPEN Errors

Attempting to OPEN a file for INPUT that doesn't exist causes
run-time error 53, File Not Found. If you try to OPEN a nonexist­
ent fHe for OUTPUT, APPEND, random access, or BINARYopera­
tions, then it is created.

OPEN COM

1 This program is divided into five procedures. The
1 difference between each procedure is the mode
I.- in whi ch the fi 1 e is opened and the way the
1 data in the file is manipulated.

DEF FN PForKey$(Msg$)
PRINT Msg$, "Press Bny key to continue ••• "
WHILE NOT INSTAT : WEND
FN PForKey$ = INKEY$

END DEF 1 end procedure PForKey

SUB Sequential Output
1 The file is opened for sequential
1 output and some data is written to it.

KeyP$ = FNPForKey$("Now for some sequential output")

1 open a sequential file for output
OPEN "OPEN.DTA" FOR OUTPUT AS 11

Integer% = 12345
TempStr$ = "History is made at night."

1 write the data to the sequential file
WRITE' l,TempStr$, Integer% * 2, TempStr$, Integer% \ 2

CLOSE 1 1 close the file
END SUB 1 end procedure SequentialOutput

SUB SequentialAppend
1 The file is opened for sequential
1 output. However, the data in this case
1 is added to the end of the file.

KeyP$ = FNPForKey$("Now to append some more stuff")

1 open a sequential file to append data to it
OPEN "OPEN.DTA" FOR APPEND AS Ii

Turbo Basic Reference Directory 283

284

Integer% = 32123
TempStr$ = "The best vision is insight--M.Forbes"

, append data
WRITEI 1,TempStr$, Integer% * 0.2,TempStr$, Integer% \ 2

, close the file CLOSE 1
END SUB , end procedure ~equentialAppend

SUB Sequential Input
, The file is opened for sequential input,
I and data that is read in is displayed
, to the screen.

KeyP$ = FNPForKey$ (" Now to read it back")

, open a sequential file and read from it
OPEN"OPEN~DTA" FOR INPUT AS II

, read·first·line using LINE INPUTI
LINE INPUTI l,TempStr$
PRINT TempStr$

, use INPUT$ to read the rest of the file
, a character at a time.
TempStr$ =""
WHILE NOT EOF(1) 'check if at end of file
TempStr$ = TempStr$ t INPUT$(l,l)

WEND
PRINT TempStr$

CLOSE 1 , close the file

KeyP$ = FNPForKey$("")

END SUB 'end procedure Sequential Input

SUB BinaryIO
, The file is opened for binary I/O.
, Data is read using GET$.
, SEEK explicitly moves the file pointer
, to the end of the file and you write
, the same data back to the file.

KeyP$ = FNPForKey$("Now for binary input AND output")

, open a sequential file, read from it
OPEN "OPEN.DTA" FOR ·BINARY AS II

TempStr$ = ""

, use GET$ to read data in and store
, it in a string
WHILE NOT EOF(l)

GET$ 1, 1, CharS
TempStr$ = TempStr$ t CharS

WEND

PRINT TempStr$

Turbo Basic Owner's Handbook

, move the file pOinter to the end of the file
SEEK 1, LOF(I)

, PUT$ copies the data back into the binary file
FOR 1% = 1 TO LEN(TempStr$)

PUT$ I,MID$(TempStr$,I%,I)
NEXT 1%

CLOSE 1 , close the file

KeyP$ = FNPForKey$("I)

END SUB I end procedure BinaryIO

SUB RandomIO
, Open a file for random I/O. Use FIELD
, to declare a buffer to hold the data that
, is written and read. GET and PUT read and
, write the data. Note that before GET
, is performed, LSET or RSET are used to
, store the data in the file's buffer.

KeyP$ = FNPForKey$("Now for some random 1/0")

, open a random access file
OPEN "OPEN.DTA" AS 11 LEN = 1

FIELD I, 1 AS Char$

TempStr$ = 1111

TempSize% = LOF(I)

, define a I-byte buffer

, save file size

, using GET, read in the entire file
FOR 1% = 1 TO TempSize%

GET 1,1%
TempStr$ = TempStr$ + Char$, store data

NEXT 1%

, PUT copies the data in reverse into
, the random file
FOR 1% = LEN(TempStr$) TO 1 STEP -1

LSET Char$ = MID$(TempStr$,I%,I)
PUT l,LOF(l) I put at end of file

NEXT 1%

CLOSE 1 I close the file

END SUB I end procedure RandomIO

I begin body of the main program

CALL Sequential Output
CALL SequentialAppend
CALL Sequential Input
CALL BinaryIO
CALL RandomIO

END I end the program

Turbo Basic Reference Directory 285

OPEN COM statement

Function

Syntax

Remarks

286

OPEN COM opens and configures a communications port.

OPEN tlCOMn: [baud] [,parity][,data][,stop][options]tI
AS [Ilfi lenum [LEN=num]

n indicates the serial port to be opened. baud is an integer constant
specifying the communications rate: Valid rates are 75, no, 150,
300, 600, 1200, 1800, 2400, 4800, and 9600 (the default is 300).

parity is a single character specifying parity status according to
the following:

S Space parity (parity bit always 0)
o Odd parity
M Mark parity (parity bit always 1)
E Even parity
N No parity (ignored on received characters and omitted on

transmitted characters)

The default is even parity.

data is an integer constant from 5 to 8 specifying the number of
data bits. The default is 7.

stop is an integer constant from 1 to 2 specifying the number of
data bits. The default is a I-stop bit (for baud rates 75 and no, it
is 2).

filenum is an integer expression and specifies the numeric handle
through which you access the communications port.

num is the maximum number of bytes that can be read from or
written to the communications port with GET or PUT; the default
is 128. This value cannot be greater than the size of the buffer for
that port, which is set with the $COM metastatement.

The OPEN COM statement includes an option block that con­
trols status-line handling, parity, and carriage-return/line-feed pro­
cessing.

options = [,RS] [,CS[msec]] [,DS[msec]] [,CD[msec]] [,IF] [,PE]

RS suppresses the RTS line. CS[msec] controls CTS. DS[msec]
controls DSR. CD[msec] controls CD. LF causes a line-feed char­
acter to be appended to every carriage-return character. PE turns
on parity checking.

Turbo Basic Owner's Handbook

See Also

Example

The msec argument of the CS, DS, and CD options can range
from 0 to 65,535 and specifies how many milliseconds Turbo Basic
will wait before returning a Device Timeout error. If it is 0 or omit­
ted, then no line-status checking is performed. The default for msec
is 1,000 for CS and DS, and 0 for CD.

COM
$COM
ON COM

, allocate a string array to store input
DIM ComPortInput$(I}

$COMI 1024 , set up a lK input buffer

OPEN "COMI:" AS II LEN = 1

PRINT "Press any key to terminate the program ••• "
WHILE NOT INSTAT ' while a key hasn't been pressed

, if there is any input available
IF LOF(I) > 0 THEN

, read any info available in the com port buffer
ComPortInput$(O} = INPUT$(LOF(I}. II}
, display input
PRINT "COM Port input: .. ; ComPortInput$(O)

END IF
WEND

END ' end of program

Turbo Basic Reference Directory 287

OPTION BASE statement

Function

Syntax

Remarks

See Also

Example

288

OPTION BASE sets minimum value for array subscripts.

OPTION BASE integer expression

integer expression can range from 0 to 32,767.

OPTION BASE controls what subscript value references the first
element of array variables. For example, after OPTION BASE 1,
declaring array x with the statement

DIM x(20)

sets aside memory for 20 elements (1 through 20), rather than the
default 21 (0 through 20).

Although you can use OPTION BASE to control subscript
ranges, Turbo Basic offers a more powerful method via the DIM
statement.

DIM

I allocate an array of three integers
DIM FirstArray%(2)

I set the starting index of any declared arrays
OPTION BASE 1

I allocate an array of two integers
DIM SecndArray%(2)

FOR 1% = 0 TO 2
I no zero index; check for zero
IF 1% > 0 THEN

SecndArray%(I%) 1%
END IF

FirstArray%(I%) 1%
NEXT 1%

FOR 1% = 0 TO 2
I no zero index; check for zero
IF 1% > 0 THEN

PRINT SecndArray%(I%)
END IF
PRINT FirstArray%(I%)

NEXT 1%

END I end the program

Turbo Basic Owner's Handbook

OUT statement

Function

Syntax

Remarks

Example

OUT writes to an I/O port.

OUT portno,integer expression

OUT sends a byte value (0 to 255) to hardware output port portno,
where portno is an integer expression from 0 to 65,535.

OUT is necessary for controlling various hardware subsystems~
such as a communications or video adapter. Used improperly, OUT
can easily crash a system.

I The program makes the' speaker shriek
I by reading the status register and
I toggling (on and off) the bits
I that control the speaker.

I read value in port 61 Hex
StatusReg% = INP(&H61)
StatusReg% = StatusReg% AND &HOOFC
I mask the value read in

I make the tone long enough to hear
FOR J = 1 to 1000

StatusReg% = StatusReg% XOR 2
OUT &H61,StatusReg%
delay .001

NEXT J

END

I toggle speaker
I output new status

Turbo Basic Reference Directory 289

PAINT statement

Function

Syntax

Remarks

290

PAINT fills an enclosed area on the graphics screen with a selected
color.

PAINT (x,y) [[,co7or] [,boundary] [,backgroundj]

(x,y) specify a seed point in an enclosed area to be filled. If the seed
point is within the enclosed· area, then the inside will be filled. If
the seed is outside the enclosed area, then the exterior will be
filled.

color can be either a numeric or string expression. If it is
numeric, it specifies the attribute (color) to fill with. If it is string,
then it contains mask information that causes the area to be filled
with a pattern rather than a solid color. If you do not specify color,
then the foreground color is used.

boundary is the border color of the figure you are filling. PAINT
stops the filling whenever it encounters the boundary color.

background is an optional string mask used when you want to
repaint areas. The background mask is a tile slice to skip· when
checking for already filled areas.

The PAINT statement can fill any enclosed shape, no matter how
complex. Turbo Basic chooses a byte to be plotted using the formula

y mod tile length

Make sure the region to be filled is fully enclosed, because if the
fill "leaks," your entire picture may be ruined.

If argument color is numeric, then PAINT fills the shape with the
indicated color, stopping at pixels of attribute boundary or attribute
color.

If color is a string expression, then tiling is used to define a pat­
tern the area is to be filled with. The pattern represented by string
color arguments is I-byte wide (representing 4 pixels in medium
resolution and 8 pixels in high resolution mode), and from 1 to 64
bytes long (representing 1 to 64 scan lines vertically).

When tiling, color must be formatted like so:

CHR$(&Hnn) + CHR$(&Hnn) .••

The mask is based on the underlying bit values of color, with the
first character representing the first line of the pattern, the second
character the second. line of the pattern, and so on.

Turbo Basic Owner's Handbook

For example, the following pattern represents a checkerboard
pattern (50 percent gray scale) in high resolution mode:

10101010 (first byte)
01010101 (second byte)

To fill an area with this checkerboard, build a string with the
appropriate. mask information. First convert the binary form to hex:

10101010 = &HAA
01010101 = &H55

Now construct a two-character string using CHR$:

pattern$ = CHR$(&HAA) + CHR$(&H55)

Now the statement

PAINT (50,50),pattern$

fills with gray (checkerboard) paint.

Background is used to define the stop condition when filling an
already patterned area. If the fill operation hits a pixel. that agrees
with the corresponding bit in background, then the fill doesn't stop,
even if that pixel has color boundary.

When tiling, the number of color attributes in each screen mode
determines how a screen's pattern is designed. Remember that the
number of bits per pixel correlates to the number of color attributes
in any given screen mode. You can use the following formula to
calculate the number of bits per pixel:

LOG
2
(X) = Y

where X equals the total color attributes of your screen and Y
equals the number of bits per pixel.

Tiling SCREEN 1
In medium resolution, using the preceding formula, X· equals 4

pixels (which are represented by 1 medium resolution tile byte) and
thus Yequals 2 bits per pixel. Since each pixel has a corresponding
color attribute, it will take 2 bits of the tile byte to describe lout of
the 4 attributes.

The following table shows the decimal and hexadecimal values
that correspond to each attribute:

Turbo Basic Reference Directory 291

Example

292

Color Palette Attribute in Pattern in Pattern in hex
binary binary

0
green 01 01OlO101 &H55
red 10 10101010 &HAA
brown 11 11111111 &HFF
1

cyan 01 01OlO101 &H55
magenta 10 10101010 &HAA
white 11 11111111 &HFF

Tiling. SCREEN 2
There is 1 bit per pixel in high resolution, allowing each tile to

represent 8 pixels onscreen. Wherever the mask is valued at 1, a
point is plotted. The string can contain up to 64 bytes.

The pattern is depicted in a consistent manner throughout the
area defined by hourulary. When hourulary is undefined, the entire
screen becomes patterned.

Tiling SCREENs 7, 8, 9, and 10
For these enhanced screen modes, the tile pattern is devised by a

technique that stores and interprets the string as a stack of 8-bit
units known collectively as a hit plane. Each screen mode needs 4
bit planes to define 1 tile byte, except mode 10, which requires 2 bit
planes.

, Here's how to use tile patterns
SCREEN 1: CLS
, define tile pattern for diagonal lines
TIL$=CHR$(&H40)tCHR$(&H40)tCHR${&HI0)tCHR$(&HI0)t

CHR$(4)tCHR$(4)tCHR$(1)tCHR$(1)
CIRCLE (100,100),50
PAINT (100,100),TIL$
, define checkerboard tile pattern
TIL2$=CHR$ (&HAA) tCHR$ (&HAA) tCHR$(&H80) tCHR$(&H80)t

CHR$(&H80) tCHR$(&H80) tCHR$(&H80) tCHR$ (&H80)
CIRCLE (225,100),50
PAINT (225,100),TIL2$

Turbo Basic Owner's Handbook

PALETTE, PALETTE USING statements

Function

Syntax

Remarks

PALETTE and PALETTE USING allow you to change one or more
colors in the palette. (To use these statements you must have an
Enhanced Graphics Adapter.)

PALETTE[attribute,co7or]
PALETTE USING integer array name(array index)

attribute represents a color in the palette. color is an actual display
color that replaces the attribute in the palette. The color displayed
on your screen depends on the screen mode setting and hardware
display (see the SCREEN statement).

The PALETTE statement allows you to change text or graphics
with a color currently on the screen and that change also affects any
subsequent text and graphics. This is a handy feature that saves you
from redrawing text or graphics if you just want to change a color
(see the example section).

PALETTE also lets you map color numbers greater than 15 into
the palette. You can even display text invisibly against a hackground
color. and then change the palette for the text color to make it sud­
denly become visible.

If no arguments are specified in the PALETTE statement, the
palette is set to the predefined default colors.

The PALETTE USING statement lets you modify all of your
palette entries in a single statement. integer array name names the
array. When setting your palette. use array index to indicate the
index of the first array element in the array. (The majority of the
time you will specify 0 as the array index.) Make sure you dimen­
sion the integer array large enough to fit all sixteen palette entries
after array index. Any attribute in the palette is paired with a color
from the integer array.

Using a color argument of - 1 in an array entry effects no change
in the paired attribute; however. all other negative values for color
are illegal.

Turbo Basic Ref~rence Directory 293

Following is a list of attribute and color ranges for different
screen modes and monitors:

Table 5-1 Color arul Attribute Ranges

Mode Monitor Attribute Range Color Range

0 Mono/EGA 0-15 0-2
Color/EGA 0-31 0-15

1 Color/EGA 0-3 0-15
2 Color/EGA 0-1 0-15
7 Color/EGA 0-15 0-15
8 Color/EGA 0-15 0-15
9 EGA (64K) 0-3 0-15

EGA (>64K) 0-15 0-63
10 Mono/EGA 0-3 0-8

Mono = Monochrome
EGA = IBM Enhanced Graphics Adapter

Restrictions The PALETTE and PALETTE USING statements require an
Enhanced Graphics Adapter.

See Also COLOR

Example

DRAW
SCREEN

I the following shows how to use PALETTE
I to change the color of graphics (and text)
I without having to redraw or redisplay the graphics

SCREEN 8 I set EGA 640x200 16 color mode
PALETTE I set default EGA palette colors
LINE (10,10)-(630,190),1,BF I draw a box, fill it with blue
DO

FOR 1% = 2 TO 14
PALETTE 1,1% I change the box color from blue
DELAY .2 I delay, so you can see the change

NEXT 1%
LOOP UNTIL INSTAT I do it until a key is pressed
END

294 Turbo Basic Owner's Handbook

PEEK function

Function

Syntax

Remarks

See Also

Example

PEEK returns the byte stored at the specified memory location.

y = PEEK(offset)

offset is a numeric expression from 0 to 65,535, representing the 16-
bit offset into the current segment set by the most recent DEF
SEG statement. The value returned can range from 0 to 255.

PEEK and the complementary POKE statement are low-level
escapes from Turbo Basic's defined uses for memory. One applica­
tion for PEEK and POKE is in forming byte arrays for applications
that don't require the full - 32,768 to 32,767 range of integer
arrays.

DEFSEG
POKE

DIM Array%(5) I all ocate an array of 6 integers

DEF SEG = VARSEG(Array%(O»

I using POKE, initialize the array
FOR 1% = 0 TO 11

POKE 1%, &HFF
NEXT 1%

I using PEEK, display the contents of the array
FOR 1% = 0 TO 11

PRINT HEX$(PEEK(I%»
NEXT 1%

END I end the program

Turbo Basic Reference Directory 295

PEN functioo

Function

Syntax

Remarks

Example

296

PEN reads light-pen status.

y = PEN(option)

option is a numeric option that controls the information returned by
PEN, according to the following:

Option

o
1
2
3
4
5
6
7
8
9

Effect

Pen down since last check? (-1 = yes; 0 = no)
x coordinate where pen last activated
y coordinate where pen last activated
Current switch value (-1 = down; 0 = up)
Most recent x coordinate
Most recent y coordinate
Row where pen last activated (1-24)
Column where pen last activated (1-80)
Most recent row (1-24)
Most recent column (1-80)

The light pen must be turned on with PEN ON before perform­
ing any PEN function requests.

ON PEN GOSUB PenHandler I set up the event handler

PEN ON I turn on event trapping

PRINT "Press any key to stop ••• "
WHILE NOT INSTAT
WEND

END I end the program

PenHandler:
FOR 1% = 1 TO 9

PRINT PEN(I%)
NEXT 1%
RETURN

Turbo Basic Owner's Handbook

PEN statement

Function

Syntax

Remarks

See Also

Example

PEN controls the checking of light-pen events.

PEN {ONIOFFISTOP}

The PEN statement controls the checking of light-pen events. The
light pen must be turned on with PEN ON before performing any
PEN function requests. Executing PEN ON also enables trapping
of light-pen events by the routine indicated in an ON PEN state­
ment.

PEN OFF disables the PEN function and turns off pen-event
checking.

PEN STOP turns off pen-event trapping, but remembers pen
events so that if PEN ON is later issued, a trap occurs immediately.

ON PEN

I This program demonstrates
I the PEN ON statement

ON PEN GOSUB PenHandler
I set up event handler

PEN ON I turn on event trapping

PRINT "Press any key to stop ... "
WHILE NOT INSTAT
WEND

END I end the program

PenHandler:
FOR 1% = 1 TO 9

PRINT PEN(I%)
NEXT 1%
RETURN

Turbo Basic Reference Directory 297

PLAY function

Function

Syntax

Remarks

See Also

Example

298

PLAY returns the number of notes in the background music buffer.

y = PLAY (x)

x is a dummy numeric argument.

PLAY returns the number of notes in the background music
buffer waiting to be played. If music is being played in the fore­
ground or not at all, PLAY returns O.

$SOUND

I Play do-re-mi-fa-sol
I and count notes remaining
PLAY "MB CDEFG"
Again:

n = PLAY(l) I could be PLAY(anything)
PRINT n "notes left in buffer"
IF n = 0 THEN PRINT "Buffer Empty" : END

GOTO Again

Turbo Basic Owner's Handbook

PLAY statement

Function

Syntax

Remarks

PLAY creates music.

PLAY string expression

PLAY is an interpretive mini-language that does for music what
DRAW does for graphics. PLAY allows you to define musical pas­
sages as a sequence of characters in a string expression and to play
them through the computer's speaker.

There are 84 notes available, corresponding to most of the keys
on a piano from three octaves below middle C to one note less than
four octaves above middle C. A note may be represented by its
numeric value (1-84), or by a written description (that is, A through
G with sharps and Hats and octave information).

For example, PLAY "N44" plays note 44, G above middle C.
PLAY "03G" plays G in octave 3 (the same note).

Music definition statements may be grouped into lengthy com­
mand sequences:

PLAY I03FGA"

plays three notes (F, G, and A) in octave 3. Spaces are ignored by
the music interpreter, and should be used to clarify the structure of
the command string.

The Commands

The follOwing one- and two-character commands make. up the
PLAY language:

note-letter [{#I + 1-}]
Plays note note-letter; note-letter is. a letter from A through G

(case is insignificant). Including an optional sharp (# or +) or Hat
(-) modifier after note-letter selects the equivalent of a black key
on a piano. You cannot sharp or Hat a note to obtain a white key
result; for example, "F -" is invalid.

Nn
Plays note n, where n is the numeric representation of a note

from 1 to 84. Note 1 is the lowest C on.a piano; 84 the highest B.
Middle C is note 37. Note 0 produces no sound, and can be used as
a rest.

Turbo Basic Reference Directory 299

300

On
Selects octave n, where n is 0 to 6. Each octave begins with C

and ends with B. Middle C is the first note of octave 3. The default
is octave 4.

>n
Advances the current octave by land plays note n. If the octave

is 6 (the highest octave), it stays at 6.

<n
Decrements the current octave and plays note n. If the octave is

o (the lowest octave), it stays at O.

Ln
Sets the duration of notes to follow, according to the following:

Ll Whole note
L2 Half note
LA Quarter note
L8 Eighth note
L16 Sixteenth note

L64 Sixty-fourth note

In-between values are acceptable (L5 is a valid duration state­
ment). The largest permissible value for n is 64.

Pn
Pauses for n beats (where n represents the period of time speci­

fied in the most recent L command).

Placing a period after a note causes that note to play for one and a
half times its normal value. For example, a dotted quarter note has
the combined duration of a quarter note and an eighth note. More
than one dot can be used. A second dot acts on the note-dot pair as a
whole; for example, a double dotted quarter note plays for 1.5 * (1.5
* 1/4) beat. Dots can also adjust the length of a pause.

Tn
Sets the tempo, where n is the number of quarter notes in a

minute, and can range from 32 to 255. The default is 120.

Turbo Basic Owner's Handbook

See Also

Example

MF
"Music Foreground" causes music created by PLAY to run in the

foreground (that is, the next statement in your program will not be
executed until this one is finished).

MB
"Music Background" causes music to keep playing even while

your program is off doing something else. By default, Turbo Basic
has a 32-note buffer for background playing, and this can be
expanded by the $SOUND metastatement. Also look at the PLAY
ON and ON PLAY statements, which are able to periodically
inspect the progress of a Music Background song and add new
notes as needed.

MN/ML/MS
Depending on this setting, notes can last either three-fourths of

the time specified by L (MS: "Music Staccato"), seven-eighths of
the time specified by L (MN: "Music Normal"), or all of the time
specified by L (ML: "Music Legato").

X VARPTR$(string variable) (execute substring)
The X (execute) command allows you to insert a substring into a

PLAY statement as a musical subroutine; for example:

a$ = "C 0 E" : PLAY liE 0 E X" + VARPTR$(a$}

plays notes E, D, E, C, D, and E, in that order.

Variable Arguments
In each PLAY command, the argument can be a constant value or

it can be specified in the form =VARPTR$(variable), where vari­
able is a numeric variable. Note: Interpretive BASIC allows you to
specify variable names within the play string. For example, PLAY
"T=x;" sets the tempo to the contents of variable x. Although it
would be nice if it did, this doesn't work in Turbo Basic because the
name information associated with variable x isn't around at run­
time. Instead, you m~st use the VARPTR$ technique described
earlier.

ON PLAY
PLAY ON
$SOUND

firstline$ = "03 L4 C L2 E E L8 E L4 E E 0 C F Ll <A"
secondline$ = "03 L8 C C C L4 E 0 L2 <A L4 A Ll >C"
thirdline$ = "L4 CLIO F F. F Ll E"
PLAY ITlSO" • speed up tempo
FOR n = 1 TO 4

PLAY firstline$
NEXT n
PLAY secondline$ + thirdline$

Turbo Basic Reference Directory 301

PMAP function

Function

Syntax

Remarks

See Also

Example

302

PMAP translates physical coordinates to world coordinates and vice
versa.

y = PMAP(x,optfon)

x is the coordinate of the point to be mapped, and option is an
integer expression from 0 to 3 that controls the PMAP function
according to the following:

Option

o
1
2
3

Effect

Map world coordinate x to physical coordinate x.
Map world coordinate y to physical coordinate y.

Map physical coordinate x to world coordinate x.
Map physical coordinate y to world coordinate y.

PMAP does the scaling specifled by the most recent WINDOW
statement without putting anything on the screen.

WINDOW

I switch to medium resolution graphics mode
SCREEN 1

I define a cartesian origin-in-the-middle kind
I of screen with a generous range of x
I and y values that get larger as you move up
I instead of down.

WINDOW (-1000,1000) - (1000, -1000)

I PMAP can now do "plot-free" scaling between
I the cartesian screen and physical pixels

PSET (PMAP(O,O), PMAP(O,l», 2
PSET (PMAP(50,2), PMAP(50,3», 2
PRINT PMAP(O,O), PMAP(O,l), PMAP(50,2), PMAP(50,3)

END I end the program

Turbo Basic Owner's Handbook

POINT functian

Function

Syntax

Remarks

See Also

Example

POINT returns the color of a pixel or LPR information.

First form:

color = POINT (x,y)

Second Form:

y = POINT (option)

In the first form, (x,y) specify the coordinates of a medium or high
resolution graphics pixel. POINT returns the attribute value (color)
of the pixel at (x,y). If either x or y is out of range, POINT returns
-1.

In the second form, option is a numeric variable or expression
and controls the effect of POINT, according to the following:

Option

o
1
2
3

Effect

Returns current physical x coordinate
Returns current physical y coordinate
Returns current world x coordinate
Returns current world y coordinate

The first form of POINT is useful for simple pixel-at-a-time ani­
mation. Use POINT to read the color of a background pixel about to
be overwritten into a temporary variable. Then PSET the point to
the color of the moving object. Finally, to erase the point, return it
to its initial color.

PSET

, switch to medium resolution graphics mode
SCREEN 1

CIRCLE (160, 100), 50, 2 'display a circle

, put a dot in the middle of the circle
PSET (160, 100), 1

, display the dot's color and position
PRINT POINT(160, 100)
PRINT POINT(O), POINT(l)

END ' end the program

Turbo Basic Reference Directory 303'

POKE statement

Function

Syntax

Remarks

See Also

Example

304

POKE writes a byte to a specified address.

POKE offset,va7ue

offset is the address, a numeric value ranging from 0 to 65,535.
value is the byte value to be written to that address, ranging from 0
to 255. offset is relative to the segment defined by the most recent
DEF SEC statement.

POKE writes byte-sized values to the indicated address, and is a
low-level escape from Turbo Basic's normal use of memory. Since
POKE performs no error checking, it isn't difficult to crash DOS
and/or your program by improper use of this command.

PEEK

DIM Array%(5) t allocate array of 6 integers

DEF SEG = VARSEG(Array%(O»

t using POKE initialize the array
FOR I% = 0 TO 11

POKE I%, &HFF
NEXT I%

t using PEEK display array contents
FOR I% = 0 TO 11

PRINT HEX$(PEEK(I%»
NEXT I%

END t end the program

Turbo Basic Owner's Handbook

POS functian

Function

Syntax

Remarks

See Also

Example

POS returns the cursor horizontal position (column number).

y = POS(x)

x is a dummy numeric argument. The value returned by POS
ranges from 1 to 80 and represents the horizontal position (column
number) of the cursor. Use the CSRLIN function to get the vertical
position (row number).

Use the LOCATE statement to move and hide the cursor.

CSRLIN
LOCATE
LPOS

I set up the event handler
ON TIMER(l) GOSUB DisplayClock

I turn on event trapping
TIMER ON

I while a key has not been pressed
PRINT "Press any key to stop •.. "
WHILE NOT INSTAT
WEND

END I end the program

DisplayCLock:
OldX% = POS
01 dY% = CSRLIN
LOCATE 1, 72 , 1
PRINT TIME$
LOCATE OldY%, OldX%,
RETURN

Turbo Basic Reference Directory 305

PRESET statement

Function

Syntax

Remarks

See Also

Example

306

PRESET plots a point on the graphics screen.

PRESET (x,y) [, color]

(X,y) are the coordinates of the point to plot on the graphics screen
and can be given in either absolute or relative form. color is an
integer expression defining the color the point should have. Normal
mode restrictions apply for the color attribute. Refer to the PAL­
ETIE statement for valid attribute ranges in each screen mode.

If a color is specified, PRESETand its complementary command
PSET operate identically. The difference between the two is that
PRESET has a default color value of 0 (the background color),
while PSET defaults to the maximum allowable attribute value for
the mode you are ,in. In other words, without color arguments,
PSET turns on pixels and PRESET turns them off.

PSET

I switch to medium resolution graphics mode
SCREEN 1

FOR 1% = 0 TO 359
FOR J% = 0 TO 199

DELAY 0.01
PSET (1%, J%)

NEXT J%
NEXT 1%

FOR 1% = 0 TO 359
FOR J% = 0 TO 199

DELAY 0.01
PRESET (1%, J%)

NEXT J%
NEXT 1%

END I end the program

Turbo Basic Owner's Handbook

PRINT statement

Function

Syntax

Remarks

See Also

PRINT sends. data to the screen.

PRINT [expression list] [;]

expression list is a series of numeric and/or string expressions sepa­
rated by semicolons, blanks, or commas. If expression list doesn't
end with a semicolon, Turbo Basic outputs. a carriage return after
the information in expression list. If expression list is omitted,
PRINT outputs only the carriage return.

PRINT uses the punctuation separating the items in its expres­
sion list to determine where to put things on the screen.

Print Zones
For quick and tidy output, Turbo Basic divides the screen into

"print zones" of 14 columns each. Using a comma between items in
the expression list causes each to be printed at the beginning of the
next zone.

A semicolon or space between elements causes each item to be
printed next to the previous one, without regard for print zones.

If a PRINT statement is terminated with a comma, semicolon, or
SPC or TAB function, the next PRINT statement will output to the
same line. Otherwise, the next PRINT statement starts at the left­
most column of the next line.

Numeric values are always followed by a space. Positive numbers
are also preceded by a space; negative numbers by a minus sign.

The PRINT statement can be abbreviated as a question mark (a
typing aid of dubious merit dating from interpretive days of yore):

? "Hello"

is the same as

PRINT "Hello"

LPRINT
LPRINT USING
PRINT USING
SPC
TAB

Turbo Basic Reference Directory 307

Example N = 2

308

PRINT "Strings and numbers are" N" of the";
PRINT "things you can PRINT"

I commas as delimiters put data into
I 14-column print zones
A = 1
B = 2
C = 3
PRINT A, B, C, "Text"

I spaces or semicolons as delimiters
I print data flush
PRINT A; B; C; "Text"

END I end the program

Turbo Basic Owner's Handbook

PRINT # and PRINT # USING statements

Function

Syntax

Remarks

PRINT # and PRINT # USING write formatted infonnation to a
file.

PRINT Ifi7enum, [USING fonnat string;] expression list [;]

filenum is the value under which the file was opened. fcmnat string
is an optional sequence of formatting characters (described in the
PRINT USING statement). expression list is a series of numeric
and/or string expressions to be output to the file.

PRINT # sends data to a file exactly like PRINT sends it to the
screen. So if you're not careful, you can waste a lot of disk space
with unnecessary spaces, or worse, put fields so close together that
you can't tell them apart when they are later INPUT #.
For example:

PRINT 11 1,2,3

sends

1 2 3

to file # 1. Because of the 14-column print zones between charac­
ters, superfluous spaces are sent to the file. On the other hand,

PRINT 11 1;2;3

sends

123

to the file, and you can't read the separate numeric values from this
record because INPUT # requires commas as delimiters. The sur­
est way to delimit fields is to put a comma between .each field, like
so:

PRINT 'I, 1 "," 2 "," 3

writes

1 , 2 , 3

to the file, a packet that wastes the least possible space and is easy
to read with an INPUT # statement. The WRITE :# statement
delimits fields with commas automatically.

Turbo Basic Reference Directory 309

Example

310

SUB MakeFile

I INPUT I opens a sequential file for output.
I Using WRITE I, it writes lines of different
I types of data to the file.

I assign the file variable to 11
OPEN "INPUTI.DTA" FOR OUTPUT AS 11

I define some variables and initialize them
StringVariable$ = "1111 be back."
Integer% = 1000
FloatingPointl = 30000.1234

I write a line of text to the sequential file
WRITEI 1, StringVariable$, Integer%, FloatingPointl

CLOSE 1 I close file variable

END SUB I end procedure MakeFile

SUB ReadFil e
I This procedure opens a sequential file
I for input. Using INPUT I, it reads
I lines of different types of data
I from the file.

I assign the file variable to 11
OPEN "INPUTI.DTA" FOR INPUT AS Ii

StringVariable$ =
Integer% = 0
FloatingPointl = 0

I define some
I variables and
I initialize them

I read a line of text from the
I sequential file
INPUTI 1, StringVariable$, Integer%, FloatingPointl

PRINT StringVariable$, Integer%, FloatingPointl

CLOSE 11 I close file variable

END SUB I end procedure ReadFile

CALL MakeFile
CALL ReadFil e

END I end the program

Turbo Basic Owner's Handbook

PRINT USING statement

Function

Syntax

Remarks

PRINT USING sends formatted information to the screen.

PRINT USING (onmat strjng; expressjon 7jst [;]

format string is a string constant or variable that describes how to
format the information in expression list. expression list is the string
or numeric information to be printed, separated by commas, spaces,
or semicolons. PRINT USING ignores the punctuation in expres­
sion list.

Formatting String Fields
To print the first n characters of a string: If the format string con­

sists of backslashes (\) enclosing zero or more spaces, then Turbo
Basic prints as many characters of the output string as the format
string is long (including the backslashes). For example, if the format
string is "\ \» (no spaces, length = 2), then two characters are
printed; for "\ \» (two spaces, length = 4), four characters are
printed.

a$ = "cats and dogs"
PRINT USING "\ \"; a$: PRINT USING "\\"; a$

A format string of "I" causes PRINT USING to output exactly
one character of an output string:

a$ = "cats and dogs"
PRINT USING "I"; a$

To print all of a string, use an ampersand (&) as the format string:

a$ = "cats and dogs"
PRINT USING "&"; a$

Formatting Numbers
Number signs (#) in the format string represent the digits of a

number. Decimal points and other special characters (for example,
dollar signs) are then placed appropriately to indicate the format­
ting, such as the number of digits to the right of the decimal point.
For example:

PRINT USING "11.11"; 3.14159 •. 01032

PRINT USING "tl'.II"; 12.0101, -6.2
(include sign before number)

PRINT USING "11.11-"; 12.0101, -6.2
(include minus sign after number if negative)

PRINT USING "$$11.11"; 12.0101
(print a dollar sign flush with number)

Turbo Basic Reference Directory 311

312

PRINT USING "**11.11"; 12.0101
(fill leading spaces w/asterisks)

PRINT USING "**$11.1#"; 12.0101
(combine the above)

PRINT USING "11111,.1#"; 6666.66
(comma before decimal point means group by 3s)

PRINT USING 111.1111-"; 34567.12
(4 carets means use scientific notation)

PRINT USING "_111.11"; 12.1010
(underscore preceding a predefined formatting
character causes that character to be output
verbatim rather than be used for formatting
purposes)

If a value is too large to be printed in the specified format, a
percent sign (%) is printed in front of it:

PRINT USING "1.1"; 27.4

Turbo Basic Owner's Handbook

PSET statement

Function

Syntax

Remarks

See Also

Example

PSET plots a point on the graphics screen.

PSET (x ,y) [, co 7 or]

(x,y) are the coordinates of the point to plot on the graphics screen
and can be given in either absolute or relative .fonn. color is an
integer expression that defines the color the point should have. Nor­
mal mode restrictions apply for the color attribute. In medium reso­
lution, color values 0 through 3 are acceptable; in high resolution, 0
and 1 are the only possible color values.

If a color is specified, PSET and its complementary command
PRESET operate identically. The difference between the two is
that PRESET has a default color value of 0 (the background color),
while PSET defaults to the maximum allowable attribute value
(that is, 3 for medium resolution, 1 for high resolution). In other
words, without color arguments, PSET turns on pixels and PRE­
S ET turns them off.

POINT
PRESET

I switch to medium resolution graphics mode
SCREEN 1

FOR 1% = 0 TO 359
FOR J% = 0 TO 199

DELAY 0.01
PSET (1%, J%)

NEXT J%
NEXT 1%

FOR 1% = 0 TO.359
FOR J% = 0 TO 199

DELAY 0.01
PRESET (1%, J%)

NEXT J%
NEXT 1%

END I end the program

Turbo Basic Reference Directory 313

PUT statement (files)

Function

Syntax

Remarks

Example

314

PUT writes a record to a random file.

PUT [I] (i lenum [, record number]

filenum is the value specified when· the file was OPENed. record
number is a numeric expression describing the record to be written,
and can range from 1 to 16,777,216.

PUT is complementary to GET and writes one record to a ran­
dom access file. record number is optional. If it is omitted, Turbo
Basic uses the value used in the last PUT or GET statement plus 1.

, open a random access file
OPEN "GET.DTA" AS #1 LEN = 18

, make two field definitions for each field element
FIELD #1, 2 AS Integer$, 4 AS LongInt$,_

4 AS SinglePre$, 8 AS DoublePre$
FIELD #1, 2 AS A$, 4 AS B$, 4 AS C$, 8 AS 0$

MaxInt% = 32767

FOR 1% = 1 TO 5 'write some data to the file
, convert data and assign to buffer
, before writing to data fil e
LSET Integer$ = MKI$(I%)
LSET LongInt$ = MKL$(I% + CLNG(MaxInt%»
LSET SinglePre$ = MKS$(CSNG(I% * tSNG(MaxInt%»))
LSET OoublePre$ = MKD$(Maxlnt%~I%)
PUT #1,1%

NEXT 1%

FOR 1% = 1 TO 5 I read data from file
GET #1, 1% ' display it on screen

PRINT CVI(A$), CVL(B$), CVS(C$), CVO(D$)
NEXT 1%

CLOSE #1 I close the file

END I end the program

Turbo Basic Owner's Handbook

PUT statement (graphics)

Function

Syntax

Remarks

PUT plots the contents of a numeric array to the.graphics screen.

PUT (x,y), array [, option]

(x,y) are the coordinates of the top left comer of the rectangle to
which the array will be transferred; they can be specified in either
absolute or relative form. array is a numeric array that contains the
graphic data to place on the screen. option is one of the reserved
words that follow, and controls how the information in array will be
applied to what's already on the screen:

PUT Options

PSET
PRESET
XOR

OR

AND

Effect

Map exact copy of image in array
Map complementary copy of image in array
Perform XOR operation.between array image and
screen
Perform OR operation between array image and
screen
Perform AND operation between array image and
screen

The PSET option causes· the data in the array to be put on the
screen exactly as GET found it originally, without regard for what is
there currently. PRESET maps. a complementary image to the
screen. For example, if the original data had attribute 3 at some
pixel, the copy PUT to the screen with the PRESET attribute will
have attribute 0 for that pixel and vice versa. Similarly, attribute 1
will be converted to attribute 2 and vice versa.

The AND, OR, and XOR options perform a logical operation
between each pixel in the destination region and before the PUT
and the data in the buffer array. When moving objects across com­
plex backgrounds, the XOR option is especially useful; in fact, it is
the default. The· first PUT XOR draws the object to the screen; a
second application in the same place restores the background to its
previous condition.

Turbo Basic Reference Directory 315

Example

316

The basic strategy behind animations based on GET and PUT is
to

DRAW an object into a rectangular area
GET the object into an array
DO

ERASE the object at its old location
PUT the object at a new location

LOOP

, allocate a buffer to store graphics' image
DIM Buffer%(143}

, switch to medium resolution graphics mode
SCREEN 1

CIRCLE {16,16},8,2 ' draw a circle

GET {O,O} - {31,31}, Buffer% 'get the circle

, copy it allover the screen
FOR 1% = a TO 9

PUT{I% * 32,100}, Buffer%
NEXT 1%

END , end the program

Turbo Basic Owner's Handbook

PUT$ function

Function

Syntax

Remarks

See Also

Example

PUT$ writes a string to a binary mode file.

PUTS [1]fi7enum, string expression

PUT$ writes the contents of string expression to file filenum at the
SEEK file position for this file. Filefilenum must have been opened
in BINARY mode.

GET$
OPEN
SEEK

OPEN "BASIC.DOC" FOR BINARY A$ 1
PUTS II, "BASIC compilers are 99% perspiration"
PUTS II, "and 1% inspiration."
CLOSE 11

END

Turbo Basic Reference Directory 317

RANDOMIZE statement

Function

Syntax

Remarks

See Also

Example

318

RANDOMIZE seeds the random number generator.

RANDOMIZE [numeric expression]

If numeric expression is omitted, program execution stops and the
user is prompted for a seed value upon encountering the RAN­
DoMIzE statement:

Random Number Seed?

About Random Numbers
Without reseeding, the values returned by the RND function

aren't random at all; for a given seed value, the RND function
always returns the same sequence of values. Without reseeding, a
craps simulation will play out exactly the same way each time the
program runs.

A convenient way to assure a unique run each time (assuming
your program isn't run at exactly the same time every day) is to use
the TIMER function to provide the seed value:

RANDOMIZE TIMER

Another technique uses the fine-resolution MTIMER {micro­
timer} statement to time the delay associated with a keypress at the
start of the program. It then uses that value to seed the random
number generator:

MTIMER
PRINT "Press any key to begin ••. "
WHILE NOT
INSTAT : WEND
RANDOMIZE MTIMER

RND

I initialize the microtimer
MTIMER

PRINT "Press any key to begin ... "

WHILE NOT INSTAT
WEND

DUlTIIly$ = INKEY$
I seed the random number generator
RANDOMIZE MTIMER

FOR 1% = 1 TO 5 STEP RND(1.5)
PRINT 1%
IF INSTAT THEN STOP

NEXT 1%
END I end the program

Turbo Basic Owner's Handbook

READ statement

Function

Syntax

Remarks

See Also

Example

READ loads variables from DATA statement constants.

READ variab7e [, variab7e] •••

variable is a numeric or string variable.

READ loads the indicated variable(s) from constants appearing
after DATA statements.

At runtime, READ accesses DATA statement constants in the
order in which they appear. The most common error associated
with DATA statements and READing them is getting out of sync
and attempting to load a string into a numeric variable. If this hap­
pens, a syntax error (run-time error 2) is issued.

You won't get an error if your program errs in the other direction;
that is, if your program loads a numeric constant into a string vari­
able.

If you try to READ more times than your program has constants,
Turbo Basic produces run-time error 4, Out of Data.

The RESTORE statement lets you reread constants from the first
or any specified DATA statement.

RESTORE

'This program demonstrates
, the READ statement

SUB ProcessResults(StudentName$, StudentAverage%)
LOCAL Total%, Value%, 1%

Total% = 0
READ StudentName$
FOR 1% = 1 TO 10

READ Value%
Total% = Total% + Value%

NEXT 1%
StudentAverage% = Total%\lO

END SUB

FOR Student% = 1 TO 3
CALL ProcessResults(SName$, Average%)
PRINT USING n&'s average is ###n;SName$, Average%

NEXT Student%

END 'end program

Turbo Basic Reference Directory 319

REG function and statement

Function

Syntax

Remarks

320

REG sets or returns a value in the register buffer.

Function:

y = REG(register)

Statement:

REG register,va7ue

register indicates a processor register according to the following:

Number Register

0 Flags

1 AX
2 BX
3 ex
4 DX
5 SI
6 DI
7 BP
8 DS
9 ES

If register is not in the range 0 through 9, run-time error 5 is
generated, Illegal Function Call.

value is a numeric variable or expression in the range 0 to 65,535.

REG as a function returns the value of the selected element in
the "register buffer." REG as a statement causes the selected ele­
ment in the register buffer to be loaded with the indicated integer
value.

Use REG to pass information to and from assembly language
subroutines. The register buffer is loaded into the processor's regis­
ters just before an ABSOLUTE or an INTERRUPT call; it is saved
back just after returning. At any given time, the buffer contains the
state of the processor's registers as they existed at the completion of
the most recent external subroutine.

Turbo Basic Owner's Handbook

Example DEFINT a-z
DIM a(100)
DIM FillRoutine(10)

FillRoutine (0) = &HF2FC
FillRoutine (1) = &HCBAA

REG I, -1
REG 3, 101 * 2
REG'9, VARSEG(a(O»
REG 6, VARPTR(a(O»

DEF SEG = VARSEG(FillRoutine(O»
PRINT a (1)
WHILE NOT INSTAT : WEND
FillAdr = VARPTR(FillRoutine(O»
CALL ABSOLUTE FillAdr I (REG)

PRINT a (1)
END

Turbo Basic Reference Directory 321

REM statement

Function

Syntax

Remarks

Example

322

REM delimits the programmer's remarks (comments).

REM conrnent

comment is any sequence of characters. Unlike Interpretive
BASIC's treahuent of comments, Turbo Basic REMarks appear
only in the source version of a program and consequently don't
affect execution in any way.

Note: A comment can appear on a line with other statements, but
it must be the last thing on that line. For example, the following
won't work:

REM now add the numbers : a = b + c

because the compiler can't tell where the comment ends and the
statement begins. This is right:

a = b + c : REM now add the numbers •••

The single quotation mark (') is an alternative comment delim­
iter. When a single quote is used, a colon isn't necessary to separate
the remark from the other statements on the same line.

Don't use a single quote to delimit comments after a DATA state­
ment. Use :REM instead.

Comments are ignored by the compiler and take no space in
object programs, so use them copiously.

REM This program demonstrates the REM statement

PRINT "This program demonstrates the REM statement."

REM "END"

END

DATA 1, 2, 3, I'll be back! : REM comment
, Note that the single quote is not treated
, as a comment.

Turbo Basic Owner's Handbook

RESET 'statement

Function

Syntax

RESET closes and Hushes all disk files.

RESET

Remarks RESET is the same as a CLOSE statement with no arguments.

Turbo Basic Reference Directory 323

RESTORE statement

Function

Syntax

Remarks

See Also

Example

324

RESTORE allows DATA statement constants to be read again.

RESTORE [7 abe 7]

label is optional and identifies the DATA statement that the next
READ will access.

RESTORE causes Turbo Basic to reset its DATA statement coun­
ter so that when the next READ statement is encountered, the first
item of the first (or indicated) statement is used again.

READ

I read some data and restore
I the data pointer
READ A$, B$
RESTORE

I read some more data
READ C$, 0$

I display the data
PRINT A$, B$, C$, 0$

I pOint the data pOinter at first
I data after label
RESTORE MoreData

I read and display the data
READ A$, B$
PRINT A$, B$

END I end the program

I define some data
DATA CAT, DOG

MoreData:
DATA MONKEY, GNU

Turbo Basic Owner's Handbook

RESUME statement

Function

Syntax

Remarks

Example

RESUME restarts execution after error handling.

RESUME [{OINEXTI'abe'}]

RESUME and RESUME 0 cause execution to resume at the state­
ment that caused the error.

RESUME NEXT causes execution to resume with the statement
directly following the one that caused the error.

RESUME label causes execution to resume at the code identi­
fied by label.

If a RESUME statement is encountered when the program isn't
in an error-trapping routine, then run-time error 20 results,
Resume Without Error.

Note: The ERL, RESUME, and RESUME NEXT statements
cause the compiler to generate a 4-byte pointer for each statement
in a program. Therefore, programmers concerned with the size of
their generated code should take note. Using RESUME [Line #]
generates a single jump instruction. ERL is normally used for
debugging purposes so it is probably of little concern.

I set the error trap
ON ERROR GOTO ErrorHandler

I this statement causes a run-time error
II = LOG(-l)

PRINT "The error was trapped

END

ErrorHandler:
PRINT "Error" ERR " at " ERL
RESUME NEXT

Turbo Basic Reference Directory 325

RETURN statement

Function

Syntax

Remarks

See Also

Example

326

RETURN returns from the subroutine to the calling program.

RETURN [1 abe 1]

label identifies a line you may optionally direct the flow to.

RETURN terminates the execution of a subroutine and passes
control to the statement directly after the calling GOSUB.

The optional label is designed to facilitate returning from trap­
and error-handling routines. RETURN label throws away the
address at the top of the stack and performs a GOTO to the state­
ment identifIed by label. In some versions of BASIC, this operation
is performed by a POP and a GOTO.

Doing a RETURN without doing a GOSUB first will cause unex­
pected and difficult-to-track errors. We suggest that you tum Stack
test on in the Options pull-down to catch these errors.

GOSUB
GOTO

See GOSUB's example.

Turbo Basic Owner's Handbook

RIGHT$ function

Function

Syntax

Remarks

See Also

Example

RIGHT$ returns the right-most n characters of the target string.

s$ = RIGHT$(string expression,n)

n is an integer expression specifYing the number of characters in
string expression to be returned; it must be in the range 0 to 32,767.

RIGHT$ returns the indicated number of characters from its
string argument, starting from the right and working left. If n is
greater than the length of string expression, all of string expression
is returned. If n is 0, RIGHT$ returns the null string.

LEFT$
MID$

RIGHT$("JOHN JONES",5)

Turbo Basic Reference Directory 327

RMDIR statement

Function

Syntax

Remarks

Example

328

RMDIR removes the directory (like DOS's RMDIR command).

RMOIR path

path is a standard path description string.

RMDIR removes the directory indicated by path. This statement
is the equivalent of DOS's RMDIR command (except that it can't
be abbreviated). The same restrictions apply, namely that path
specify a valid, empty directory. If the directory isn't empty, then
run-time error 75 occurs, Path/File Access Error.

• set up an error handler
ON ERROR GOTO ErrorHandler

INPUT "Enter the name of the directory to remove: ", 0$

RMOIR 0$ • removes directory

END , end the program

ErrorHandler:
PRINT "Error " ERR " at " ERAOR
RESUME NEXT

Turbo Basic Owner's Handbook

RND function

Function

Syntax

Remarks

See Also

Example

RND returns a random number.

y = RND [(numerjc express jon)]

RND returns a random double-precision value between ° and 1.

Numbers generated by RND aren't really random, but are the
result of applying a pseudorandom transformation algorithm to a
starting, or seed, value. Given the same seed, Turbo Basic's RND
algorithm .always produces the same chain of "random" numbers.

The performance of RND depends on the optional numeric value
you supply as the argument. With no argument or with a positive
argument, RND generates the next number in sequence based on
its initial seed value.

With an argument of 0, RND repeats the last number generated.

A negative argument causes the random number generator to be
reseeded, so that subsequent uses of RND with no argument or
with a positive argument result in a new sequence of values.

In general, use RANDOMIZE TIMER once at the start of your
program to produce a new sequence of values with the RND state­
ment. Don't use ° or negative value arguments with RND unless
you are looking for the special effects caused by those values.

To produce random integers between 1 and n, inclusive, use this
technique:

randomNo% = INT(RND * n) + 1

Better yet, create it as a function:

DEF FNRndInt% (x%) = INT(RND * x%) + 1

RANDOMIZE

FOR I! = 1 TO 10 STEP 1.34
PRINT USING "###.##-11 :RND(I!)

NEXT I!
END

Turbo Basic Reference Directory 329

RSET statement

Function

Syntax

Remarks

See Also

Example

330

RSET moves string data into the random file buffer.

RSET field variable = string expression

RSET and LSET both move string data into "field variables" that
have been defined in a previous FIELD statement as belonging to
the buffer of a random file.

If the length of string expression is less than the size of field
variable specified in a FIELD statement, RSET right-justifies this
field by padding it with spaces. This means that spaces are inserted
before the first character of string expression so that after the. RS ET .
operation LEN(field variable) still equals the width defined in. the
associated FIELD statement.

LSET does left-justification with space padding (spaces are
appended after the last character of string expression).

RSET can also be used toformat output to the screen or printer:

a$ = space$(20)
RSET a$ = "Right-just"
PRINT a$

LSET

OPEN "RSET.DTA" AS #1 LEN =18

, define files' field names and sizes
FIELD 1,2 AS FileInt$, 4 AS FileLong$,_

4 AS FileSngl$, 8 AS FileDbl$

, assign some values to the fields and
, write the record to the random access file
FOR Count% = 1 TO 5

RSET FileInt$ = MKI$(Count%)
RSET FileLong$ = MKL$(Count%~2)
RSET FileSngl$ = MKS$(Count%~2.1)
RSET FileDbl$ = MKD$(Count%~4.4)
PUT I,Count%

NEXT Count%

CLOSE 1 , close the file

END , end main program

Turbo Basic Owner's Handbook

RUN statement

Function

Syntax

Remarks

Example

RUN restarts the· program.

RUN [filespec]

RUN with no argument causes a Turbo Basic program to. restart
itself All numeric variables (including the elements of arrays) are
reset to 0, and string variables are set to the null string.

If filespec is included, it is a string expression representing. a
.TBC or an .EXE file (produced with the compiler Options menu's
Chain or EXE Compile to setting). If filespec has no extension,
.TBC is assumed; if it does have an extension, then it is used. If
running or chaining to an .EXE file, you must explicitly append the
. EXE extension to your file name.

I Compile this program to a file called:
I MASTER.EXE

I input the name SLAVE in response
I to this prompt
INPUT "Enter the name of the program to RUN: ",N$

RUN N$ I run the indicated program

END I end the program

I compile this program to SLAVE.TBC with the
I Compile to Chain entry in the Options menu
PRINT "We are now in the SLAVE program"

END I end the program

Turbo Basic Reference Directory 331

SCREEN function

Function

Syntax

Remarks

Example

332

SCREEN returns the ASCII code of the character at the specified
row and column.

y = SCREEN(row,co7umn [,option])

row and column are integer expressions and can range from 1 to 25
and 1 to 80, respectively.

The SCREEN function is text mode's counterpart to the POINT
function of graphics modes. It returns information about the charac­
ter at the specified row and column; for example, SCREEN 1,1
returns the ASCII code of the character at row 1, column 1 .

. If the optional option parameter is set to 1, it will cause SCREEN
to return the attribute stored at (row,column) rather than the char­
acter.

LOCATE 10, 10
PRINT "ASCII"

I The ASCII code for "A" is 65; the default
I display attribute (white on black) is 7
PRINT SCREEN(10,10), SCREEN(10,10,1)

END I end the program

Turbo Basic Owner's Handbook

SCREEN statement

Function

Syntax

Remarks

SCREEN sets the screen display mode.

SCREEN [mode] [, [co 7 orf7 ag]] [, [apage]] [, [vpage]]

mode is an integer expression ranging from ° to 10, and has the fol­
lowing effect:

Mode Effect

o Sets text mode without changing width
1 Sets medium resolution graphics mode; changes width to 40
2 Sets high resolution graphics mode; changes width to 80
7 Sets medium resolution mode on an EGA, allowing 16 colors

and 640 X 200 pixels
8 Sets high resolution mode on an EGA, allowing 16 colors

and 640 x 200 pixels
9 Sets enhanced high resolution mode on an EGA with an

enhanced display; allows 4 or 16 colors (depending on EGA
memory) out of a palette of 64, and 640 X 350 pixels

10 Sets high resolution mode on an EGA with a monochrome
monitor; allows 4 attributes and 640 X 350 pixels

colorflag controls whether color information will be passed to
composite monitors that are connected to the composite video port
of Color/Graphics Adapters. In text mode, a FALSE (0) value turns
color off. In medium resolution graphics mode, a FALSE value
turns color on.

apage is an integer expression ranging from ° to 7 that controls
the text page to be written when PRINT and other output com­
mands write to the screen. This argument is only valid on Color/
Graphics Adapters and Enhanced Graphics Adapters and screen
modes 0, 7, 8, 9, and 10. (See Chapter 4' s section on graphics.)

vpage selects which of the possible screens (0-7) is actually dis­
played. This argument is only valid on Color/Graphics Adapters and
Enhanced Graphics Adapters and screen modes 0,7,8,9, and 10.

Executing the SCREEN statement causes the new mode to be
started and the screen to be cleared. The foreground color is set to
white and background and border colors to black.

If the mode specified in the SCREEN statement is the same as
the current mode, nothing happens.

Turbo Basic Reference Directory 333

Example

334

If the mode is text and only apage and vpage arguments are
included, then the display pages are adjusted as requested.

I switch to medium resolution graphics
I with color disabled
SCREEN 1,0
CIRCLE (160,100),50, 2

WHILE NOT INSTAT : WEND
A$ = INKEY$

I switch to text mode with color disabled and
I both active and visual pages set to page 0
SCREEN 0,0,0,0
PRINT "Active page is page 0"

WHILE NOT INSTAT : WEND
A$ = INKEY$

I change the active page to page 2
SCREEN ,,2
PRINT "Active page is page 2"

WHILE NOT INSTAT : WEND
A$ = INKEY$

I now switch to HIRES graphics mode
SCREEN 2
CIRCLE (320,100), 100, 1

END

Turbo Basic Owner's Handbook

SEEK statement

Function

Syntax

Remarks

See Also

Example

SEEK sets the position in a binary file for GET$ and PUT$;

SEEK [I] filenum, position

SEEK declares that the next GET$ or PUT$ performed on file
filenum will occur position bytes deep into the file. File filenum
must have been opened in BINARY mode.

Use the LOC function to return a binary file's current SEEK
position.

LOC

SUB CreateFile
, SEEK opens a file and writes 256
, characters to it.

LOCAL 1%

, open a file for BINARY I/O
OPEN "SEEK.DTA" FOR BINARY AS It

, write some data to it
FOR 1% = 1 TO 256

PUTS I, CHR$(I% - 1)
NEXT 1%

END SUB ' end procedure CreateFile

DEF FNReadlt$(Start%, Size%)
, This function reads in the indicated
, data from the file.

LOCAL TempStr$, CharS, 1%

, seek to the correct position
, in the file
SEEK I, Start%

1% = 1
TempStr$ = ""

, read in the indicated data--don't
, read past end of file
WHILE (NOT EOF(l» AND (1% <= Size%)

GET$ I, 1%, CharS
TempStr$ = TempStr$ + CharS
INCR 1%

WEND

I assign the function's result
FNReadIt$ = TempStr$

END DEF ' end function Readlt

Turbo Basic Reference Directory 335

336

, create a data file
CALL CreateFile

, get user's input
PRINT "Enter the starting point[1 .. 256] and how many"
PRINT "bytes of data(256 - Staring Point) you wish to "
INPUT "read from the fil e: ",St%, Sz%

, read the data
PRINT FNReadIt$(St%, Sz%)

END , end the program

Turbo Basic Owner's Handbook

SELECT statement

Function

Syntax

Remarks

See Also

Example

SELECT returns a general purpose testing statement.

SELECT CASE expression
CASE test 7ist

statements
[CASE test 7ist

statements]
[CASE ELSE

statements]
END SELECT

test list is one or more tests, separated by commas, to be performed
on expression. expression can be either string or numeric, but all
test lists in a SELECT block must be of the same type.

The tests that may be performed by a CAS E clause include
equality, inequality, greater than, less than, and range ("from to")
testing. Examples of CASE clause tests include:

CASE < b
CASE 14
CASE b TO 99
CASE 14, b
CASE b TO 99, 14

I relational
I equality (":" is assumed)

range
I two equality tests
I combinations (implicitly ORed)

There's an implied OR between multiple tests in the same CASE
clause. If one or more of the tests in a clause are found to be TRUE,
then all the statements up till the next CASE clause are executed.
After the last statement, control passes to the statement after END
SELECT.

The SELECT statement is a powerful tool for comparing a vari­
able against a number of possible values and then proceeding
accordingly. Using it may produce a clearer source program than
you could achieve with multiple IFs.

END SELECT
EXIT CASE

INPUT "Enter a number", x
SELECT CASE x
CASE < 10

PRINT "small number"
CASE < 1000

PRINT "medium number"
CASE 1111, 2222, 3333, 4444

PRINT "boring number"
CASE ELSE

PRINT "just another big number"
END SELECT

Turbo Basic Reference Directory 337

· SGN function

Function

Syntax

Remarks

See Also

Example

338

SGN returns the sign of a numeric expression.

y = SGN(numeric. expression)

If numeric expression is positive, SGN returns + 1. If numeric
expression is zero, SGN returns O. If numeric expression is negative,
SGN returns -1.

In conjunction with the ON/GOTO and ON/GOSUB statements,
the SGN function can produce a FORTRAN .. like three-way branch:

ON SGN(balance) + 2 GOTO InTheRed, . BreakingEven, InTheMoney

ON/GOSUB
ON/GOTO

I set x and y to 0
x = 0 : y = 0

I user defines x and y
INPUT "Please input a value for x "; x
INPUT "Please input a value for y "; y

I ON the SGN value of x * y
I GOSUB the appropriate subroutine
ON SGN (x * y) +2 GOSUB Minus, Zero, Plus

END I end the program

Minus:
PRINT "Minus Value Entry" : RETURN

Zero:
PRINT "Zero Value Entry" : RETURN

Plus:
PRINT "Positive Value Entry" : RETURN

Turbo Basic Owner's Handbook

SHARED statement

Function

Syntax

Remarks

See Also

Example

SHARED declares shared (global) variables in a procedure or func­
tion.

SHARED variab7e list

SHARED defines the variables in its comma-delimited variable list
as global to the entire program, rather than limited in scope to the
enclosing procedure or function definition. This gives a procedure
or function access to variable(s) without having to pass them as
parameters. The SHARED statement may appear only in function
and procedure definitions, and must come before any executable
statements in the associated definition.

To declare an array as a shared variable belonging to a procedure
or function, include its identifier and an empty set of parentheses in
the variable list-you need not, and shouldn't, dimension it again.

Undeclared variables in function definitions default to the shared
attribute, but you shouldn't rely on this default in future versions of
the compiler. You should explicitly declare all variables that appear
in a function or procedure according to their class (LOCAL,
STATIC, or SHARED).

LOCAL
STATIC

DIM Array$(5)

DEF FNDummy$
SHARED Array$ ()

FNDummy$ = Array$(O)
END DEF I end the function FNDummy$

Array$(O) = "It works for me."

PRINT FNDummy$

END I end the program

Turbo Basic Reference Directory 339

SHELL statement

Function

Syntax

Remarks

See Also

Example

340

SHELL loads and executes child process.

SHELL [parameter string]

parameter string is a string expression that contains the name of the
.COM, .EXE, or .BAT program ("child process") to run, and option­
ally contains the parameters you may wish to pass to the child pro­
cess.

If parameter string is omitted, no program is loaded. Instead, the
DOS prompt appears and you may enter standard DOS commands;
for example, DIR, COPY. You can return to your program by typing
EXIT at the DOS prompt.

If parameter string is included, then the specified program is
executed. When it terminates, your program continues with the
next statement.

ENVIRON
ENVIRON$
SHELL in DOS manual

PRINT" We will now use the Turbo Basic SHELL"
PRINT II statement to issue the DOS DIR/W command "
PRINT" to see what files are on your drive."
DELAY 3 I wait 3 seconds

I Use SHELL to leave Turbo Basic and
I issue DIRwith /woption
SHELL "DIR/W"

I Print at bottom of display
LOCATE 21,1
PRINT "Now back in Turbo Basic"

END I end the program

Turbo Basic Owner's Handbook

SIN function

Function

Syntax

Remarks

See Also

Example

SIN returns a trigonometric sine.

y =SIN(numeric expression)

numeric expression is an angle specified in radians. To convert
radians to degrees, multiply by 57.296. To convert degrees to
radians, divide by 0.17453. (See the discussion of radians under the
ATN statement.)

SIN returns a double-precision result.

ATN

I Choose a value for b$ to print-in sample
b$ = II Turbo Basic from Borland II

I find the center
~enter = (79 - LEN(b$» / 2

I SIN(theta) returns a repeating sequence
I of values ranging smoothly from -1 to I,
I so tabValue is always between -center
I and tcenter

tabValue = center * SIN (theta)
PRINT TAB (center t tabValue tl) b$
theta = theta t .1

WEND

END I end the program

Turbo Basic Reference Directory 341

SOUND statement

Function

Syntax

Remarks

SOUND generates a tone of specified frequency and duration.

SOUND frequency, duration

frequency is an integer expression representing the desired pitch in
the range 37 to 32,767 Hertz. duration is a floating-point expression
that controls the length of the tone as measured in "clock ticks."
Clock ticks occur at the rate of 18.2 times per second, so a duration
value of 36 lasts just under two seconds. duration can range from
0.0015 to 65,535 (one hour).

The SOUND statement doesn't hold up program execution.
When one is encountered, the requested tone is begun and execu­
tion proceeds normally. If another SOUND is encountered and the
duration parameter of the new SOUND statement is zero, then the
previous SOUND is turned off. Otherwise, Turbo Basic waits until
the first sound completes before executing the new SOUND state­
ment.

SOUND is better at creating special effects (for example, sirens,
clicks, and slide whistles) than music.

Restrictions Note that the SOUND statement will re-initialize the MTIMER
microtimer.

See Also

Example

342

PLAY

I Set music buffer to 800 bytes
$SOUND 100 I 8 bytes per note

I Use SOUND to produce sound effects
I Following is a motorcycle changing gears.

I first gear
FOR i = 150 TO 175

SOUND i, 2
NEXT i

I second gear
FOR j = 125 TO 152

SOUND j, 1.5
NEXT j

I third gear
FOR k = 100 TO 127

SOUND k, 1.25
NEXT k

Turbo Basic Owner's Handbook

SPACE$ function

Function

Syntax

Remarks

See Also

Example

SPACE$ returns a string consisting of all spaces.

s$ = SPACE$(count)

count is a positive integer expression ranging from 0 to 32,767 that
specifies how many spaces the function is to return.

SPACE$ is one of many text formatting aids available within
Turbo Basic.

LSET
PRINT USING
RSET
SPC
STRING$
TAB

I reserve 46 spaces for a$
a$ = SPACE$(46)

I make up a string 46 characters long.
b$ = "This is a string 46 characters long"

I do the same as a$ using the space bar
c$ = "

I print the LENgth of a$, b$, and c$
PRINT LEN(a$), LEN(b$), LEN(c$)
PRINT
PRINT "As you can see, by using the Space$ I can"
PRINT "Give a$ same value as b$ and c$."

END I end the program

Turbo Basic Reference Directory 343

SPC functian

Function

Syntax

Remarks

See Also

Example

344

SPC skips n spaces (used in PRINT statement).

PRINT SPC(n)

n is an integer expression in- the range 0 to 255.

Like its sister function TAB, SPC can only be used within the
expression list of a PRINT, LPRINT, or PRINT # statement.
SPC(n) causes n spaces to be printed. Don't confuse SPC with the
SPACE$ function.

If n is larger than the line width defined by the WIDTH state­
ment, then SPC inserts (n MOD width) spaces.

If SPC appears at the end of the expression list with or without a
following semicolon, a carriage return is not output.

TAB
WIDTH

• Using SPC. print the words boy and girl
• 40 spaces apart and underline using
• the STRINGS function.
PRINT SPC(5)"Boys" SPC(40) "Girls"
PRINT SPC(5) STRINGS(4,61) SPC(40) STRINGS(S.61)

FOR i = 1 TO 5

READ boyS
READ girlS

• print the names of each boy and
• girl under the proper column.
PRINT Spe(5) boyS SPC(40) girlS

NEXT i

END • ends the program

DATA "Johnl,"Ann"
DATA "Mark","Eve"
DATA "Mike","Kathy"
DATA IPaul","Elizabeth"
DATA "Tonyl,ISue"

Turbo Basic Owner's Handbook

SQRfunction

Function

Syntax

Remarks

Example

SQR returns a square root function.

y=SQR(numericexpression)

numeric expression is greater than or equal to zero.

SQR calculates square roots using an algorithm faster than the
power-of-O.5 method of calculating square roots (that is, y =
SQR(x) takes less time to execute than y = xA.5).

Attempting to take the square root of a negative number results
in run-time error 5, Illegal Function Call.

SQR returns a double-precision result.

I Square Root Table

I label two columns
PRINT "NUMBER" TAB (10) "SQUARE ROOT VALUE"
PRINT

FOR N = 1 TO 10

I use TAB to print square root under
I correct column, use SQR to get square root
PRINT N, TAB(15) SQR(N)

NEXT N

END I end the program

Turbo Basic Reference Directory 345

STATIC statement

Function

Syntax

Remarks

See Also

Example

346

STATIC declares the static variables in a procedure or function ..

STATIC variable list

The STATIC statement, which is legal only in procedure and func­
tion definitions, defines the variables in its comma-delimited vari­
able list as having a fixed address in memory rather than being
stack-based. The identifier associated with a static variable is
known. only to the enclosing procedure or function; that is, other
variables in other parts of the program. and other local variables in
other definitions can have thesame.name.

STATIC must appear before any executable statements in the
associated definition. To declare an array as a static variable belong­
ing to a procedure or function, include its identifier and an empty
set of parentheses in the variable list, then DIMension the array in
a subsequent statement.

Unlike local variables, static variables do not change their value
between invocations of a procedure or function. They are initialized
only at the start of a program.

LOCAL
SHARED

I declare STATIC procedure with
I a STATIC local

SUB Dummy STATIC I variable
STATIC 1%

INCR I
PRINT I

END SUB I end procedure Dummy

I = 16

I call the procedure twice
CALL Dummy
CALL Dummy

PRINT I

END I end the program

Turbo Basic Owner's Handbook

STICK/unction

Function

Syntax

Remarks

See Also

Example

STICK returns joystick position information.

y = STICK(option)

option is an integer expression ranging from 0 to 3 and has the fol­
lowing effect:

Option

o
1
2
3

Effect

Returns x coordinate for joystick A
Returns y coordinate for joystick A
Returns x coordinate for joystick B
Returns y coordinate for joystick B

Note: Because of the design of the joystick interface, you must
first execute STICK(O) to trigger the reading process before you
can read either dimension of either joystick.

STRIG (statement)

I poll the joysticks to determine
I their current position
WHILE NOT INSTAT

LOCATE 15,15
PRINT STICK(O), STICK(l), STICK(2), STICK(3);

WEND

END I end the program

Turbo BasicReference Directory 347

STOP statement

Function STOP halts the program.

Syntax STOP

Remarks STOP terminates a program and returns control to the operating
system (or to Turbo Basic, depending on where it was launched
from). The END statement does the same thing, and is preferred.

Differences Unlike Interpretive BASIC, once Turbo Basic programs are STOP­
ped, they cannot be CONTinued.

See Also END

Example 1 set up an infinite loop
DO

348

1 stop if a key was pressed
IF INSTAT THEN STOP

LOOP

END 1 end the program

Turbo Basic Owner's Handbook

STR$ function

Function

Syntax

Remarks

See Also

Example

STR$ returns the string equivalent of a number.

s$ = STR$(numeric expression)

STR$ returns the string form of a numeric variable or expression;
that is, it returns what you would see on the screen were you to
PRINT numeric expression. If numeric expression is greater than
zero, STR$ adds a leading space; for example, STR$(14) returns a
three-character string, of which the first character is a space.

The complementary function is VAL, which takes a string argu­
ment and returns a number.

VAL

, set a% to a number
a% = 56.789

, use STR$ to return a$'s numeric value
a$ = STR$(a%)

PRINT a%, a$

, test to see that a% has the same value as a$
IF a% = VAL(a$) THEN

PRINT II STR$ and VAL appear to work II

END IF

END ' end the program

Turbo Basic Reference Directory 349

STRIG function

Function

Syntax

Remarks

See Also

Example

350

STRIG returns the status of the joystick buttons.

y = STRIG(option)

The STRIG function returns joyStick TRIGger information accord­
ing to the value of option. option is an integer expression that con­
trols the action performed by the STRIG function, according to the
following:

Option

o

1

2

3

4

5

6

7

Action

Ifbutton 1 on joystick A has been pressed since the last
STRIG(l) call, STRIG returns -1; otherwise, STRIG
returns O.
STRIG returns - 1 if button 1 on joystick A is currently
down; if not, it returns O.
If button 1 on joystick B has been pressed since the last
STRIG(2) call, STRIG returns -1; otherwise, STRIG
returns O.
STRIG returns - 1 if button 1 on joystick B is currently
down; otherwise, it returns O.
If button 2 on joystick A has been pressed since the last
STRIG(4) call, STRIG returns -1; otherwise, STRIG
returns O.
STRIG returns - 1 if button 2 on joystick A is currently
down; otherwise, it returns O.
Ifbutton 2 on joystick B has been pressed since the last
STRIG(6) call, STRIG returns -1; otherwise, STRIG
returns O.
STRIG returns - 1 if button 2 on joystick B is currently
down; otherwise, it returns O.

Before making any STRIG function calls, you must enable joy­
stick button checking with the STRIG ON statement.

Use the STICK function to read the position of the joystick itself

STICK

See the example under the STRIG statement.

Turbo Basic Owner's Handbook

STRIG statement

Function

Syntax

Remarks

See Also

Example

STRIG controls the joystick button event checking.

STRIG {ONIOFFISTOP}

The STRIG statement controls joystick button checking.

STRIG ON turns on trigger-event checking so that STRIG func­
tion requests can be made and trapping performed by the routine
specified in an ON STRIG statement.

STRIG OFF turns off trigger-event checking. STRIG STOP
keeps a program from responding to a trigger event, but retains a
memory of such an event so that if STRIG ON is later executed, an
immediate trap occurs.

ON STRIG

I turn on event checking
STRIG(O) ON
STRIG(2) ON
STRIG(4) ON
STRIG(6) ON

I poll event status to see if a
I button was pressed
WHILE NOT INSTAT

LOCATE 1,1
PRINT STRIG(O), STRIG(l), STRIG(2), STRIG(3)
PRINT STRIG(4), STRIG(5), STRIG(6), STRIG(7)

WEND

END I end the program

Turbo Basic Reference Directory 351

STRING$ function

Function

Syntax

Remarks

Example

352

STRING$ returns a string consisting of multiple copies of the indi­
cated character.

s$: STRING$(count,{vaTuelstring expression})

count and value are integer expressions. count can range from 1 to
32,767; value from 0 to 255.

STRING$ with a numeric argument returns a string of count
copies of the character with ASCII code value. STRING$ with a
string argument returns a string of count copies of string expres­
sion's first character.

STRING$(n,32), STRING$(n," "), and SPACE$(n) all do the
same thing - produce a string of n spaces.

I STRING$ and TAB builds a box

I Use 40 equals (:) characters to build
I the top of the box, then print
topS : STRING$(40,61)
PRINT topS

I use a 1-second delay so you
I can see the box being built.
DELAY 1

I use a loop to build the sides
FOR i : 1 TO 5
PRINT TAB(1) //:// TAB(40) //://
DELAY 1
NEXT i
DELAY 1

I use the top string for the bottom
PRINT topS
DELAY 1

I find the middle of the box and
I print some text
LOCATE 4,15
PRINT // THE MIDDLE "
DELAY 1

I put the cursor out of the way
LOCATE 20,1
END I end the program

Turbo Basic Owner's Handbook

SUB/END SUB, SUB INLINE statements,

Function

Syntax

Remarks

SUB/END SUB and SUB INLINE define a procedure (subpro­
gram).

SUB identifier [(parameter list)]
[LOCAL variable list]
[STATIC variable list]
[SHARED variable list]

• statements

[EXIT SUB]
END SUB

For SUB INLINE:

SUB procname INLINE

identifier is the unique name to be associated. with the procedure)
and must follow the naming conventions for labels and variables.
parameter list is an optional, comma-delimited sequence of formal
parameters. The parameters used in the argument list serve only to
define the procedure; they have no relationship to other variables in
the program with the same name.

SUB and END SUB delimit and name a subroutine-like state­
ment group called a procedure (or subprogram), which is invoked
with the CALL statement and optionally passed parameters by
value or by reference.

Inline assembly language programming uses the same calling
sequence used with regular procedures. For example:

CALL procname[(parameter list)]

SUB procname INLINE
$INLINE byte list
$INLINE "COM File Name"

END SUB

Any number of $INLINE statements can be specified in any
order. A maximum of 16 COM files in anyone procedure is the only
limitation.

Note that you do not specify the parameter list in the SUB defini­
tion.

byte lists are made up of constants or expressions equal to an
integer between 0 and 255, and are separated by commas. (Nor­
mally, you'll use hex constants for bytes.)

Turbo Basic Reference Directory 353

354

Returns are not necessary in your assembly language code, nor at
the end of SUB. The compiler sees to that. (For more information,
refer to Appendix C, "Assembly Language Interface.")

Procedure Definitions and Program Flow
The position of procedure definitions is ,immaterial. A procedure

can be defined in line 1 or line 1,000 of a program without regard
for where it is used. And you need not direct program flow through
a procedure as an initialization step - the compiler sees your defini­
tions wherever they might be.

Also, unlike subroutines, execution can't accidentally "fall into" a
procedure. As far as the execution path of a program is concerned,
function and procedure definitions are invisible. For example:

CALL PrintStuff
SUB PrintStuff

PRINT "Printed from within PrintStuff"
END SUB

When this four-line program is executed, the message appears
only once because PrintStuff is called in the first line.

Procedure definitions should be treated as isolated islands of
code; don't jump into or out of them with GOTO, GOSUB, or
RETURN statements. Within definitions, however, such state­
ments are legal.

Note that function and procedure definitions may not be nested;
that is, you cannot define a procedure or function within another
procedure or function (although a procedure or function definition
can contain calls-to other procedures and functions).

Array Parameters
Array parameters are declared .by enclosing in . parentheses the

number of dimensions (not elements) of the array parameter. For
example:

SUB CalcArray (a(2),sizDiml,sizdim2)

declares that CalcArray expects three arguments: a two-dimen­
sional, single-precision array; and two single-precision scalar vari­
ables. Typically, these scalar arguments would be used to pass the
size of array a's two dimensions.

Declaring Local Variables
To declare local variables within a procedure, use the LOCAL

statement before any executable statements in the definition. For
example:

LOCAL a%, bl, bigArray%()

Turbo Basic Owner's Handbook

See Also

Example

creates three local· variables: scalar variables a% and b# (integer
and double precision,. respectively), and .integer array bigArray%.
The array must. then be dimensioned appropriately:

DIM DYNAMIC bigArray%(lOOO)

Local array variables must be dynamic. They are automatically
deallocated when the procedure. terminates.

Static·and Shared Variables
By ·default, variables that appear within procedure definitions

have the local attribute. However, since this default is subject to
change, you should make an effort to d~clare every variable used in
a procedure.

Use the SHARED statement to declare variables that are global
to the rest of the program.

Declare variables with the STATIC statement if it is important
that a variable not lose its value with every invocation.

A procedure definition must be terminated with END DEF,
which logically returns control to the statement directly after the
invoking CALL. Use the EXIT SUB statement to return from a
procedure definition from someplace other than· at its end.

$INLINE
CALL
·EXIT SUB
LOCAL
SHARED
STATIC

DIM Array(l) 'declare array of numbers

SUB TestProcedure(I%, L&, S!, Of, E, A(l»
, SUB/END SUB outputs the values of
, each parameter passed to it
PRINT 1%; L&; S!; Of; E; A(O)

END SUB 'end procedure TestProcedure

Integer% = 1
Longlnt& = 2
SinglePre! = 3
Doub1ePre# = 4
Array(O) = 5

CALL TestProcedure (Integer%, Longlnt&, Si ng1 ePre! ,_
DoublePre#, Integer% A2,Array(»

END ' end the program

Turbo Basic Reference Directory 355

SWAP statement

Function

Syntax

Remarks

Example

356

SWAP exchanges the values of two variables.

SWAP varl, var2

varl and var2 are two variables of the same type. If you try to swap
variables of differing types (for example, string and integer or single
precision and double precision), compiler error 475 occurs, Type
Mismatch.

SWAP is handy, because a simple trading of values in two con­
secutive assignment statements doesn't get the job done:

a = b : b = a

By the time you make the second assignment, variable a doesn't
contain the value it used to. To do this without SWAP requires a
temporary variable and a third assignment:

temp = a : a = b : b = temp

, set a value to a% and b%
a% = 15 : b% = 17

, print the values of each on the same line
PRINT TAB(6)"The value of 'a%' is:"; a%_

TAB(42) " The value of 'b%' is:"; b%
PRINT

, use SWAP to exchange their values
SWAP a%,b%

, print the new values below the old values.
PRINT" The value of 'a%' is now:"; a%_

TAB(38) " The value of 'b%' is now:";b%

End 'end the program

Turbo Basic Owner's Handbook

SYSTEM statement

Function

Syntax

Remarks

See Also

Example

SYSTEM terminates a program.

SYSTEM

SYSTEM terminates a program and returns control to the operat­
ing system (or to Turbo Basic, depending on where it was launched
from). The END statement does the same thing, and is preferred.

END
STOP

I the answer is 5
ans% = 5

I total turns to guess number
FOR i = 1 to 10

INPUT II Please enter a number between 1 and 10 "; x%

I if user gets answer then leave loop and reward
IF x% = ans% THEN GOTO reward

I ask user if he/she wants to go again
INPUT II Do you want to try another number (YIN) "; x$

I if user wants to quit then leave program
IF UCASE$(x$) <> CHR$(89) THEN SYSTEM

NEXT i

reward:
PRINT
PRINT II You got it ! II

END I end the program

Turbo Basic Reference Directory 357

TAB function

Function

Syntax

Remarks

See Also

Example

358

TAB tabs to a specifIed print position n (PRINT statement only).

PRINT TAB(n)

n is an integer expression in the range 1 to 255.

Like SPC, TAB can only be used in the expression list of a
PRINT, LPRINT, or PRINT # statement. Use TAB to line up col­
umns of information. TAB causes Turbo Basic's print routines to
output to the nth position of the current line. If the current cursor
position is already past n (for example, PRINT TAB(20) with the
cursor at column 30), then Turbo Basic skips down to the nth posi­
tion of the next line.

If TAB appears at the end of a PRINT statement's expression list
with or without a following semicolon, Turbo Basic does not output
a carriage return; that is, there is an implied semicolon after TAB.

LPRINT
PRINT
PRINT #
SPC

I This program reads list of friends and phone numbers
I then prints to screen using PRINT and TAB

I DIMension two arrays
DIM friend$(l),phone$(l)

I print an empty line then print the words
I name and phone at 5th and 40th position
PRINT
PRINT TAB(5) "NAME" TAB(40) "PHONE"
PRINT

FOR i = 1 TO 5

READ friend$
READ phone$

I print data at the same location as labels
PRINT TAB(5) friend$ TAB(40) phone$

NEXT i

END I end the program

DATA "John Blaze","423-4598"
DATA "Ann Span","335-2343"
DATA "Bill Write","668-9834"
DATA "Mark Jones","425-5593"
DATA "Dan Moore","438-4593"

Turbo Basic Owner's Handbook

TAN function

Function

Syntax

Remarks

See Also

Example

TAN returns a trigonometric tangent.

y = TAN (numeric expression)

numeric expression is an angle specified in radians. To convert
radians to degrees, multiply by 180hr. To convert degrees to
radians, multiply by 'IT/I80. (See the discussion of radians under the
ATN statement.)

TAN returns a double-precision result.

ATN
COS
SIN

DEFDBL a-z
I using the arctangent function ATN,
I set the value of pi#
pi = ATN(1) * 4

I print the value of pi#
PRINT pi

I pi divided by 4 radians equals 45 degrees
I using the trigonometric tangent function,
I return the number of radians
PRINT TAN (pi / 4)

END I end the program

Turbo Basic Reference Directory 359

TIME$ system variable

Function

Syntax

Remarks

Example

360

TIME$ reads or sets system time.

To read the time:

s$ = TIME$

To set the time:

TIME$ = string expression

System variable TIME$ contains an eight-character string that rep­
resents the time of the system clock in the form hh:mm:ss, where hh
is hours (in military form, 0-23), mm is minutes, and ss is seconds.
TIME$ won't be accurate unless DOS's clock was set correctly
when the computer was last booted up.

Assigning to TIME$ sets the system clock. Build a string expres­
sion containing time information in military (24 hour) format and
then assign it to TIME$. Minute and second information can be
omitted. For example:

TIME$ = "12" , set clock to 12 noon
TIME$ = "13:01" , set clock to 1:01 P.M.
TIME$ = "13:01:30" 'set clock to 30 seconds after 1:01 P.M.
TIME$ = "0:01" , set clock to one minute after midnight

If the hour, minutes, or seconds parameter is out of range (for
example, a minutes value of 61), run-time error 5 occurs, Illegal
Function Call.

Use the TIMER function to return the number of seconds that
have elapsed since the system was booted.

, turn timer checking on
TIMER ON

, print time from the system clock
PRINT" The time is now": TIME$

, reset the time
INPUT" Please set a new time (0 to 23)": ANS$

, set new value
TIME$ = ANS$

, print the new time value
PRINT" The new time is "; TIME$

END , end the program

Turbo Basic Owner's Handbook

TIMER function

Function

Syntax

Remarks

See Also

Example

TIMER returns the number ofseconds since midnight.

y = TIMER

TIMER takes no arguments and returns the number of seconds
since midnight as a single-precision, floating-point value with a res­
olution of about one tenth of a second. If the system time hasn't
been set since the last boot (with either DOS's TIME command or
Turbo Basic's TIME$ system variable), TIMER returns the num­
ber of seconds since the system was booted.

MTIMER

TIME$ = "12"
PRINT USING "Noon is "#,, seconds past midnight";TIMER

END I end the program

Turbo Basic Reference Directory 361

TIMER statement

Function­

Syntax

Remarks

See Also

Example

362

TIMER controls the checking of timer events.

TIMER {ONIOFFISTOP}

TIMER controls the checking of timer events; that is, it decides
whether or not to pass CQntrol to the routine specified in an ON
TIMER statement after the designated number of seconds have
elapsed.

TIMER ON turns on timer event checking. TIMEROFF turns
it off. TIMER STOP turns off timer event trapping, but remembers
timer events so that if TIMER ON is later issued, a trap occurs
immediately.

ON TIMER

I set up event handler
ON TIMER(2) GOSUB UpdateClock

I turn on event checking
TIMER ON

WHILE NOT INSTAT : WEND

END I end the program

UpdateClock:
SaveX% = CSRLIN I save cursor position
SaveY% = POS(O)
LOCATE 24, 36
PRINT TIME$;
LOCATE SaveX%, SaveY% I restore cursor
RETURN

Turbo Basic Owner's Handbook

THON and THOFF commands

Function

Syntax

Remarks

TRON and TROFF tum on and off execution trace.

TRON (trace on)

TROFF (trace off)

TRONputs your program into a debugging mode in which. source
line numbers, statement labels, and procedure and function names
are sent to the Trace window as each statement is executed; TROFF
turns this debugging mode off.

When running in text mode under Turbo Basic, the trace line
numbers, labels, and procedure and function names are sent to the
Trace window.

While tracing, press Alt-F9 to alternate between tracing and exe­
cuting. Use Alt-F 10 to single-step to the next line number, label, or
procedure or function name.

Differences Unlike Interpretive BASIC, in Turbo Basic the physical position of
TRON and TROFF in your source program controls their effect
rather than their position in the run-time execution path. For exam­
ple, consider this program:

10 GOTO 30
20 TRON
30 x = y + z
40 TROFF
50 END

When executing this program,. Interpretive BASIC will never
tum on the trace, because as far as it's concerned the TRON state­
ment in line 20 doesn't exist. Turbo,Basic, on the other hand, makes
trace/no trace decisions at compile time and considers all statements
after the appearance ofTRON as being turned on for tracing. There-:­
fore, a Turbo Basic-produced program will output:

[30] [40]

when the preceding program runs.

Turbo Basic Reference Directory 363

Example

364

I set values for X, Y, and Z,
10 X = 0 : Y = 1 : Z = 2

20 go to 40

30 TRON

I when run, displays line numbers 20, 30,
I and 40, not their contents
40 X = Y + Z

I after trace is turned off, value of
I X wi 11 pri nt
50 PRINT X

60 TROFF

70 END I end the program

Turbo Basic Owner's Handbook

UBOUND function

Function

Syntax

Remarks

See Also

Example

UBOUND returns the highest bound possible (largest subscript)
for an array's specified dimension.

UBOUND (array(dimension»

array is the array being dimensioned. dimension is an integer from
1 up to the number of dimensions in array.

To find the lower limit of an array, use the LBOUND function.

LBOUND
OPTION BASE

I dimension an array with lower and upper bounds
DIM Array%(1900:2000)

I print out the values of the array
FOR index% = LBOUND(Array%(l» TO UBOUND(Array%(l»

PRINT "Array Element (":Index%:") is =":Array%(Indent5)
NEXT Index%

END

Turbo Basic Reference Directory 365

UCASE$ function

Function

Syntax

Remarks

See Also

Example

366

UCASE$ returns an all uppercase string.

s$ = UCASE$(string expression)

UCASE$ returns a string equal to string expression except that all
the lowercase alphabetic characters in string expression are con­
verted to uppercase.

LCASE$

PRINT UCASE$ ("TB or not TB ... ");

Turbo Basic Owner's Handbook

VAL function

Function

Syntax

Remarks

See Also

Example

VAL returns the numeric equivalent of a string.

y = VAL(string expression)

The VAL function turns its string argument into a number. If string
expression begins with numeric characters (0 - 9, +, -, ., E, D)
but also contains nonnumeric characters, then VAL returns the
number up to the point of the nonnumeric character. If string
expression doesn't begin with a numeric character, VAL returns O.
White space characters (space, tab) are ignored.

VAL is often part of entry routines, since it allows a program to
prompt a user for string data. It then turns the data into numeric
information as needed, without the risk of your entering nonnu­
meric data into numeric variables and producing messy ?Redo
From Start errors.

STR$

, an address-type string
a$ = "34 N. Main St."

, a string without numbers
b$ = "that's right, thirty four"

, numbers with symbols
c$ = "+3.4e1"

, numbers with a leading space
d$ = "123 go"

, print each VAL from the strings
PRINT VAl(a$), VAL(b$), VAl(c$), VAL(d$)

END ' end the program

Turbo Basic Reference Directory 367

VARPTRfunction

Function

Syntax

Remarks

See Also

Example

368

VARPTR returns the address of a variable.

y = VARPTR(variab7e)

variable is any numeric or string variable or element of an array.

VARPTR returns the offset part of the address in memory where
variable is stored. Such address information is sometimes called a
"pointer"; for example, VARPTR{x) is said to return a "pointer to x.'"

Because of the expanded memory model used by Turbo Basic
programs, VARSEG is also required to fully define the address of a
variable. (VARSEG returns the segment part of the address.)

VARPTR is used most often to provide an assembly language
subroutine with the location of a variable in memory.

VARSEG

B% = 55
DEF SEG = VARSEG(B%)

Address% = VARPTR(B%)

PRINT PEEK(Address%)

END 'end the program

Turbo Basic Owner's Handbook

VARPTR$ function

Function

Syntax

Remarks

See Also

Example

VARPTR$ returns a pointer to a variable in string form.

s$ = VARPTR$(variab7e)

variable is any numeric or string variable or element of an array.

VARPfR$ returns a pointer to a variable in string form, and is
used primarily in the PLAY and DRAW statements to include vari­
able names within command strings.

DRAW
PLAY
VARSEG

I switch into medium resolution graphics mode
SCREEN 1

House$ = "U20 G5 E20 F20 H5 020 L30"
DRAW House$

DRAW "BE3"
DRAW "Pl,3"
FOR 1% = 1 TO 280 STEP 40

DRAW "M = " + VARPTR$(I%) + ",40"
DRAW House$

NEXT 1%

END I end the program

Turbo Basic Reference Directory 369

VARSEG function

Function

Syntax

Remarks

See Also

Example

370

VARSEG returns the segment address of a variable.

y = VARSEG(variable)

variable is any numeric or string variable or element of an array.
Because of Turbo Basic's expanded memory model. VARSEG is
required along with VARPTR to fully define the address of a
variable.

VARSEG returns a numeric value in the range 0 to 65,535. Use
VARSEG in conjunction with VARPTR to get the address of a vari­
able, so that a CALL can tell an assembly language routine where
the argument it should process is located in memory.

Turbo Basic programs put all nonarray variables in a single seg­
ment that can be up t064K in length. Therefore, using VARSEG on
all the nonarray variables in a given program always returns the
same value. In fact, this segment value is the default for statements
that rely on DEF SEC (for example, PEEK, POKE).

VARPTR

, B% = 55
DEF SEG = VARSEG(B%)

Address% = VARPTR(B%)

PRINT PEEK(Address%)

END 'end the program

Turbo Basic Owner's Handbook

VIEW statement

Function

Syntax

Remarks

VIEW defines the active area (viewport) of the graphics screen.

VIEW [[SCREEN] [(xl,yl) - (x2, y2) [, [co7or [boundary]]]]]

(xl, yl) and (x2, y2) are the upper left-hand and lower right-hand
comers, respectively, of the viewport being defined. color is an
optional numeric argument; if included, the new viewport is filled
with this color. boundary is an optional numeric argument, which
when included causes Turbo Basic to draw a border around the new
viewport in the specified color. If omitted, no border is drawn.

VIEW defines an area on the graphics screen that can be written
to or, conversely, an area that may not be written to. Attempts to set
pixels outside of the viewport fail; this is called clipping.

SCREEN Option
If the SCREEN keyword is omitted, future .point references are

. taken relative to the top left corner of the viewport, rather than the
top left corner of the screen. For example, after

VIEW (100,50) - (300,180)

then

PSET (0,0)

turns on the pixel at (100,50).

If SCREEN is included, points are specified in the normal way;
that is, relative to the upper left-hand comer of the display. For
example,PSET(O,O) refers to the pixel in the extreme upper left­
hand comer of the display. However, only those points that fall
within the specified viewport are visible (pOints outside the view­
port are clipped).

VIEW with no arguments defines the entire screen as the view­
port.Using the SCREEN statement to change screen modes (for
example, to go from medium resolution to high resolution), cancels
any VIEW setting that may have existed previously.

When a viewport has been defined, CLS clears only the view­
port.

Turbo Basic Reference Directory 371

See Also

Example

372

CLS
SCREEN
WINDOW

SCREEN 1

FOR I = 0 TO 6
I set up a view port
VIEW (10 * (I + 1), 10 * (I + 1)) - _

(25 * (I + 1),25 * (I + 1)), I, 3 - I

I display a circle in the view port
CIRCLE (10, 10), I + 1, 3 - I

NEXT I

END I end the program

Turbo Basic Owner's Handbook

WAlT statement

Function

Syntax

Remarks

Example

WAIT waits for the indicated hardware status condition.

WAIT port, n [,m]

port is an integer expression (in the range 0 to 65,535) specifying a
hardware input port. nand m are integer expressions in the range 0
to 255.

WAIT halts program execution until the specified port presents
the specified bit pattern. The byte read from the port is Exclusive
ORed with m and ANDed with n. If the resulting value is zero, the
process repeats. If nonzero. Turbo Basic proceeds with the next
statement.

If m is omitted, WAIT uses a 0 for its value.

wait &H60,1

PRINT "hi"

END

Turbo Basic Reference Directory 373

WHILE/WEND statements

Function

Syntax

Remarks

See Also

374

WHILE and WEND build a loop with the test at the top.

WHILE integer expression

• [statements]

WEND

If integer expression is TRUE (evaluates to a nonzero value), all the
statements between the WHILE and the terminating WEND are
executed. Turbo Basic then jumps to the WHILE statement and
repeats the test, and if still nonzero, executes the enclosed state­
ments again. This process is repeated until the test expression
finally evaluates to zero, at which time execution passes to the
statement after WEND.

If integer expression evaluates FALSE (zero) on the first pass,
then none of the statements in the loop are executed.

Loops built with WHILE/WEND can be nested (enclosed
within each other). Each WEND matches the closest WHILE. If
Turbo Basic encounters a WEND statement without a pending
WHILE, run-time error 30 occurs, WEND Without WHILE. A
WHILE without a matching WEND generates run-time error 29,
WHILE Without WEND.

Although the compiler couldn't care less, indent the statements
between WHILE and WEND by a couple of spaces to clarify the
structure of the loop you've constructed.

Note: WHILE - 1 ... WEND creates an infinite loop.

To exit a WHILE/WEND loop prematurely, use the EXIT
WHILE statement.

DO/LOOP
EXIT

Turbo Basic Owner's Handbook

Example I set the value of I to 0
I and the value of X to 10
I 0
X = 10

I do this loop until I = 10
WHILE I < X

I add 1 to the value of
= I + 1

I see the value of
PRINT" 1 = ";1

I wait one second
DELAY 1

I END loop when WHILE condition is met
WEND

PRINT
PRINT" The value of 1 and X both 10"
PRINT I
PRINT X

END I end the program

Turbo Basic Reference Directory 375

WIDTH statement

Function

Syntax

Remarks

376

WIDTH sets the logical line size.

WIDTH [{device name I Ifilenum}.] size

size is an integer expression from 0 to 255 that specifies the new
logical line size.

device name is a string expression optionally describing the
device whose WIDTH should be set. Options for device are
SCRN:, LPT1:, LPT2:, LPT3:, COM 1:, and COM2:. If omitted,
WIDTH refers to the display (SCRN:). filenum is an integer
expression representing a file opened for output.

In general, WIDTH determines how many characters can be
"printed- to a given device before a carriage return is output,
although its exact effect varies according to the device it is applied
to.

WIDTH size or WIDTH "SCRN: "', size sets the screen width.
The only valid values for size are 40 and 80, and 40 is invalid for a
monochrome display.

If the screen is in a graphics mode, changing the width has the
effect of changing the graphics mode. For example, if the current
mode is high resolution, then WIDTH 40 turns on medium resohi­
tion graphics.

WIDTH device, size determines the logical line size of the speci­
ned device when it is next opened. If the device has already been
opened, its width setting is not changed.

Note: LPRINT implicitly OPENs the printer; thus, the effect of
WIDTH "LPT1:"', size is seen immediately.

WIDTH #filenum, size changes the width of the device repre­
sented by filenum immediately. The only devices for which this
statement means anything are LPT1:, LPT2:, LPT3:, COM 1:, and
COM2:.

The WIDTH of each printer defaults to 80. Specifying a
WIDTH of 255 effectively disables logical line width counting so
that no carriage returns are ever inserted.

Turbo Basic Owner's Handbook

Example , set to medium resolution graphics mode
SCREEN 1,0
PRINT" This is a sample of medium res graphics mode."
DELAY 3 ' wait 3 seconds

, using WIDTH, set to ~igh resolution graphics
WIDTH 80
PRINT" This is sample of Hi-res graphics mode"
DELAY 3

, set back to medium resolution graphics mode
WIDTH 40
PRINT" Note, the letters are bigger in medium graphics mode"
DELAY 3

SCREEN 0,1 ' text mode
WIDTH 80
PRINT" This is 80-character text mode"
DELAY 3

, forty-character text mode
WIDTH 40
PRINT" This is 40-character text mode"

, eighty-character text mode
WIDTH 80

, Ask if user's printer can continue the example
INPUT" Are EPSON printer codes supported? (Y or N)"; ans$

, END if your printer does not support Epson codes
IF UCASE$(ans$) <> CHR$(89) THEN END

LPRINT CHR$(15) , set physical WIDTH

WIDTH "LPT1:",130 ' set logical WIDTH
LPRINT "Testing in compressed mode set to 130 columns.";
LPRINT " The same line continued to the end of the page."

LPRINT CHR$(18)
WIDTH "LPTl:", 80

END

, Reset

, end the program

Turbo Basic Reference Directory 377

lVINDOW statement

Function

Syntax

Remarks

378

WINDOW defines the graphics coordinate system.

WINDOW [[SCREEN] (xl,yl) - (x2,y2)]

(xl,yl) and (x2,y2) are two single-precision coordinate pairs. (xl,yl)
represent the lower left-hand portion of the screen, while· (x2,y2)
represent the upper right-hand portion of the screen.

If you don't like Turbo Basic's standard 0 to 319 (or 0 to 639), 0 to
199, origin-at-top-Ieft method of addressing the graphics screen, the
WINDOW statement allows you to do it your way.

The WINDOW statement translates arbitrary "world" coordi­
nates (which may be a more. natural way for your program to
express locations) into "physical" coordinates (the addresses of the
display's pixels).

One application for WINDOW is to remap the display to corre­
spond to the screen coordinates used by a different computer
system. For example, the Apple II graphic display consists of 280
pixels horizontally by 192 pixels vertically. This WINDOW state­
ment

WINDOW SCREEN (0,0) - (279,191)

causes the PC's display to use the same· addressing scheme. After
executing this statement, a program migrated from an Apple II that
attempts to plot the lower right-most pixel on the Apple II screen it
was written for. For example, PSET(279,191) turns on physical pixel
319,199 (the PC's lower right-hand corner).

As another example, suppose you are working with an application
in which it is convenient to describe lines and other objects in
terms of coordinates much larger than the 0 to 199 and. 0 to 639
allowed by standard screen addressing. In this sample application,
suppose it would also be useful to have the origin in the center of
the display, and to have positive y values become larger as you
move up from the origin, as they do in analytical geometry.

The WINDOW statement allows you to treat the medium or
high resolution graphics screen as though it were really arranged
this way. WINDOW allows you to map the full range of single­
precision numbers to the display; for example:

WINDOW (-1E6,1E6) - (1E6,-1E6)

Turbo Basic Owner's Handbook

See Also

creates a 4 trillion point (2 million by 2 million) coordinate system.
(-1000000,1000000) is mapped to the upper left-hand pixel, (0,0)
to the center of the screen, and (1000000, -1000000) to the lower
right-most pixel. This approximates the standard cartesian plane of
coordinate geometry: The origin is in the middle, positive x values
are right of the origin, and positive y values are above the origin.

After executing this statement, any operation that writes to the
screen (CIRCLE, LINE, and so forth) will use this new coordinate
system.

PSET (O,O)

turns on the pixel in the center of the screen.

PSET (25000,25000)

turns on a pixel slightly up and to the right of the center of the
screen. The arguments to WINDOW are single-precision floating
point, allowing the screen map to make a huge area (millions of
pixels in both dimensions), or a tiny fractional area with coordinates
between 0 and 1.

If the optional SCREEN keyword is included, it will cause the
new coordinate system to retain the default quality that y coordi­
nates get larger as you move downward. For example:

WINDOW SCREEN (1,-1) - (-1,1)

creates a coordinate system in which the top of the screen is repre­
sented by y coordinates of -1 and the bottom of the screen by y
coordinates of l.

Any active WINDOW mapping is turned off by the execution of
RUN, SCREEN, or WINDOW with no arguments. The PMAP
function performs scaling according to the current WINDOW set­
ting but without putting anything on the screen.

COS
PMAP

Turbo Basic Reference Directory 379

Example

380

I set medi.um resolution graphics mode
SCREEN 1

pi: ATN(l) * 4 I define a constant

vall: 5 : va12 6: steps:400 I choose some values

WINDOW (-1,1) - (1,-1) I origin at middle

I go around the circle once
FOR theta: 0 to 2 * pi STEP 2 * pi/steps

I circles with unity radius
radius = COS(2 * theta)

I translate to cartesian
x : radius * cos(val1 * theta)

I coordinates with a twist
y : radius * sin(va12 * theta)

PSET(x,y) I set a pixel

NEXT theta I repeat

I press any key to return to editor
WHILE NOT INSTAT WEND

END I end the program

Turbo Basic Owner's Handbook

WRITE statement

Function

Syntax

Remarks

See Also

Example

WRITE sends comma-delimited data to the screen.

WRITE [expression 1 ist]

expression list is a sequence of numeric and/or string expressions
separated by commas or semicolons.

If expression list is omitted. a blank line is output.

WRITE is like PRINT except that WRITE inserts commas
between items in the expression list. puts string data inside double
quote marks. and doesn't output a space before positive numbers.

PRINT

I This loop reads a piece of data and prints it
I using PRINT statement. Then it prints
I the same data using the WRITE statement.

FOR i = 1 TO 3

READ words$, number%
PRINT words$
PRINT number%
WRITE words$,number%

NEXT i

DATA" HELLO ",10 ," HOW ARE ",20 ," YOU ",30

END I end the program

Turbo Basic Reference Directory 381

WRITE # statement

Function

Syntax

Remarks

See Also

Example

382

WRITE # outputs data to a sequential file.

WRITE Ifi7enum, expression 7ist

filenum is the number associated with a device or file when the file
was OPENed.

expression list is a sequence of numeric and/or string expressions
separated by commas or semicolons.

WRITE # is similar to PRINT # except that WRITE # inserts
commas between items in the expression list, puts string data inside
double quote marks, and doesn't output a space before positive
numbers.

WRITE # is the preferred method of writing data fields to a
sequential file, since it automatically delimits variables with
commas and puts quotes around strings. This makes it easy to
INPUT# what you've written out.

PRINT #
I open a sequential output file
OPEN "FILE.PRN" FOR OUTPUT AS #1

I read information from DATA statements
I and output to the file
FOR I = 1 TO 6

READ info$
WRITE I 1, i nfo$

NEXT I

CLOSE 1 I close the fil e

END I end the program

I define some data
DATA "Mike","Smith","12 Main St.","Paris","Ca","95066"

Turbo Basic Owner's Handbook

A p p E N o x A
Numeric Considerations

During the execution of a program, Turbo Basic must sometimes convert numbers
from one internal representation to another; for example, from single precision to
integer:

a = 14.1
b% = a

In such cases, Turbo Basic decides what to do with the excess (or missing)
precision. The follOwing rules govern numeric type conversion:

• In an assignment statement, the number is stored in the precision of the variable
being assigned (that is, on the left side of the equal sign). For example:

b = 1.1
a% = b
PRINT a%

• Whenever a more precise representation is assigned to a less precise representa­
tion, rounding occurs. For example:

a% = 1.5
b = 123.456789
PRINT a%, b

Note, however, that Turbo Basic treats in a special manner any number con­
taining a 5 in its fractional part: The number is always rounded toward the
closest even number. For example, 0.5 would be rounded down to 0; 9.005 would
be rounded down to 9.000.

383

• When a less precise number is converted into a more precise number, the result­
ing value cannot be any more accurate than the original lower precision value.
After this assignment, for example, only the first six digits of b# are significant:

a = 123.456
b# = a
PRINT b#

• In evaluating a numeric expression, Turbo Basic converts all operands in the
expression to the precision of the most precise operand in the expression. For
example:

a = 1.1 : b# = 1.123456
c = a * b#
PRINT a * bl, c

Note: When an expression contains both single- and double-precision operands,
the result's accuracy is only single precision.

Random Files with Floating-Point Data

Because Interpretive BASIC uses Microsoft's non-standard floating-point formats,
Turbo Basic programs must perform a special translation to read and write floating­
point data in random flIes created by Interpretive BASIC. The MKMS$ and
MKMD$ ("make Microsoft") functions create Microsoft-format numeric strings;
CVMS and CVMD ("convert Microsoft") take Microsoft-format numeric strings
and return Turbo Basic-format numeric data.

Internal Representation of the Four Numeric Types

Integers are represented by 16-bit (2 byte) signed numbers, with negative values
stored in two's complement form. The least-significant byte is stored at the lowest
memory address. For example, 531 decimal equals 213H, and is stored as the 2-
byte sequence 13H 02H (13H at lowest address):

byte ° byte 1

Hex I 13H 02H

Binary :======00=0=10=0=11======:======0=0=00=00=1=0=====:

384 Turbo Basic Owner's Handbook

And -531 decimal equals two's complement of 213H equals FDEDH~ and is
stored as the 2-byte sequence ED FD (ED at lowest address):

byte 0 byte 1

Hex I EDH FDH

Binary :======1=11=0=110=1=======:=======11=11=110=1======:
Two's complement means all the bits are Hipped and added.

Long integers are represented by 32-bit (4 byte) signed numbers. Negative
values are stored in two's complement form. The least-signifIcant word is stored
fIrst (in the lowest address), and the least-signifIcant byte of each word comes
before the most signifIcant byte. For example, 79033 decimal equals 000134B9H,
and is stored as the byte sequence B9H 34H 01H OOH:

Hex

Binary

byte 0

B9

10111001

byte 1 byte 2

34 01
00110100 00000001

And -70033 decimal equals two's oomplement of 00013469H
and is stored as the byte sequence 47 CB FE FF.

Computers and the Real Number System

byte 3

00
00000000

FFFECB47H,

The real number system is both infInitely long and infInitely dense. In addition to
stretching from negative to positive infInity, between any two points on the num­
ber line, there are an infInity of points (numbers). For example, between 17.1 and
17.11 are the points 17.101, 17.104, 17.1041, and so on.

Finite machines that they are, computers cannot exactly represent this transcen­
dent system of numbers, although they can be made to approximate it. Compro­
mises between the quality of the approximation on one hand (that is, accuracy) and
calculation speed and memory requirement on the other have resulted in two pop­
ular models of the real number system: single-precision reals and double-precision
reals.

Both of these models map a fInite, but usably large, set of discrete values onto a
useful length of the real number line. There are gaps between adjacent represent­
able values. When a calculation produces a result in one of the gaps, rounding
occurs to the nearest representable point.

Numeric Considerations 385

The density of representable values is not distributed evenly along the number
line. An equal number of representable values exists between successive powers of
two. For example, there are as many representable values between 1 and 2 as there
are between 131,072 and 262,144. In other words, the gaps between representable
values get larger as you move farther from zero in either direction on the number
line. Eventually, you get so far away from zero that there are no representable
points left. Producing numbers beyond the last representable value in either direc­
tion is called overflow.

Overflow and Underflow

Floating-point overflow occurs when a result is calculated greater than the maxi­
mum positive· representable value or less than the most negative representable
value. Because of the wide range of values permitted by Turbo Basic, floating-point
overflow is a relatively unusual occurrence. Unlike integer overflow, floating-point
overflow is always detected.

Floating-point underflow occurs when a result falls within the tiny gap between
o and the first representable points on either the positive or negative arms of the
number line. Turbo Basic's math routines handle underflow by inserting a 0 in
place of the underflow result, and then continue execution without producing an
error message.

Single-Precision Floating Point

Turbo Basic single-precision values are IEEE standard short reals. This format
requires 4 bytes of memory, and results in a precision of 6 to 7 decimal digits and a
range of approximately

8.43 x 10-
37

S Ixl s 3.37 x 10
38

Single-precision values consist of a 23-bit normalized mantissa, an 8-bit expo­
nent with a bias of 7FH, and a sign bit, arranged as shown in Figure A-I. (Bias
refers to the difference between the unsigned integer within the exponent field of a
floating-point number and the exponent it represents.)

386 Turbo Basic Owner's Handbook

Increasing Significance

Word '-1 S-Ir---M-a-g-ni-tu-de--,·I (Two's Complement)
Integer .

15 0

Long lS_I'--____ M_a_g_ni_tu_de ____ ----I1 (Two's Complement)
Integer .

31 0

Single I I Biased
Real S Exponent

31

I Mantissa

23~
L-I.

I
o

Do~~~I&..s_I'--_E_X~!~_·~_::_t __ ~I~------M-an-ti-ss-a ______ ~
63 52~

L-I!
NarES:
S Sign bit (0 = positive, I = negative)
dn Decimal digit (2 per byte)
X Bits have no significance: 80287 ignores when loading, zeros when storing.

Position of implicit binary point
I Integer bit of significant: stored in temporary real, implicit (always I) in short and long real
Exponent bias (normalized values):

Short Real: 127 (7FH) Long Real: 1023 (3FFH) Temporary Real: 16383 (3FFFH)

Figure A-I Data Formats

Double-Precision Floating Point

Turbo Basic double-precision values are IEEE standard long reals. This format
requires 8 bytes of memory, and results in a precision of 15 to 16 decimal. digits,
and a range of approximately

4.19 x 10-
307

S Ixl s 1.67 x 10
308

Double-precision values consist of a 52-bit normalized mantissa, anll-bit expo­
nent with a bias of 3FFH, and a sign bit, arranged as shown in Figure A-I.

Numeric Considerations 387

Following is a program that demonstrates Turbo Basic's internal single-precision
format.

a! = 167.25
address = VARPTR(a!)
FOR n = 0 TO 3

byteval = PEEK(addresstn)
PRINT HEX$(byteval)

NEXT n

I address1 points to a!
I default segment is okay

Let's decode these 4-byte values that supposedly represent 167.25 into single­
precision form. First, rearrange them so that the most-significant byte comes first:

43 27 40 00

Now break them into binary:

Hex 4 3 2 7 4 ° ° ° Binary 0100 0010 0010 0111 0100 0000 0000 0000

Now break it into sign bit, exponent, and normalized mantissa:

sign exponent mantissa

Binary 1 ___ 0 __ ----1 ___ 10_0_00_1_10 __ __ 0_10_0_111_0_10_0_00_0_0o_00_00_0_0_0----1

Subtract the 7FH bias from the exponent:

86H - 7FH = true binary exponent of 7

A normalized mantissa has an assumed 1 and a binary point at the extreme left,
so the mantissa is really

1.01001110100000000000000

Shifting the binary point right seven places to adjust for the exponent results in

10100111.0100000000000000 = 167.25

388 Turbo Basic Owner's Handbook

A p p E N D x B
Event Trapping

Turbo Basic supports a background processing capability known as event trapping,
which can at once simplify and speed up certain operations. Event trapping means
getting Turbo Basic to check for various "events," such as a specific key being
pressed, rather than having to write statements to do it yourself Turbo Basic is able
to do this checking between every statement in your program, guaranteeing the
fastest possible response. If and when the event occurs, the subroutine you defined
for handling the event is called automatically.

The following event types can be checked:

• Keystrokes: Has FlO been pressed? Or the space bar? Or Shift-A1t-K? You can
have traps for 20 different keys, all running at the same time.

• The status of a countdown timer-control is given to a trap subroutine when n
seconds have elapsed; for example, to update an on-screen clock every 60 sec­
onds.

• Joystick button pressing.

• Light-pen activity.

• Characters arriving at a serial port (for communications applications).

• The status of the background music buffer (check to see if it needs more notes
loaded into it).

You can get a thumbnail sketch of what's trappable and what's not by glancing
through the 0 section of Chapter 5, "Turbo Basic Reference Directory," of this

389

manual. Most of the ON something COSUB statements are related to event trap­
ping.

You need not specify to Turbo Basic that you want event-trapping code to be
generated. Event-trapping code is automatically generated whenever the compiler
encounters any trappable instructions.

An Example

Imagine an accounting program with dozens of menus to choose from and screens
to fill out. As the author of this complex application, you want to include a help
screen that provides basic infonnation about using it; for example, the keystrokes
necessary to edit data fields or to abort a menu selection. For the sake of simplicity,
the help system we're about to describe isn't context-sensitive; that is, the same
text always appears without regard to where you are in the program when you're
asking for help.

Let's make F' the help key. In other words, whenever F' is pressed, whatever
the context, help text will be put on the screen.

The event-trapping capability of Turbo Basic allows you to code a "display help
text" feature in one place, and call it from allover the program with no further
effort. Without event trapping, you'd have to check the status ofF' (with a COSUB
to the help routine) every place in the program where a user might spend some
time.

First, since this is a key you're trapping (not a joystick button or a light pen), you
should use the ON KEY(n) statement to define the subroutine to get control when­
ever F' is pressed. n is an integer expression defining the key to be trapped; it so
happens that 1 is the name by which ON KEY knows function key 1.

ON KEY(l) GOSUB DispHelpText

This line says: When the key trap is turned on, check between every statement
to see if F' has been pressed. If it has been pressed, call subroutine DispHelpText;
if it hasn't, execute the next statement.

Subroutine DispHelpText itself isn't much more than a series of PRINT state­
ments. Since it doesn't want to disturb the part of the program that was inter­
rupted, it saves the current cursor position before doing anything, and restores it
afterward. It prints the help text on the bottom four lines of the screen, where by
convention no other part of the program writes.

390 Turbo Basic Owner's Handbook

DispHelpText:
oldcsrx = POS(O) : oldcsry = CSRLIN
LOCATE 22,1
PRINT "This program was shipped with a fantastic manual"
PRINT "carefully prepared by professional writers at great expense."
PRINT "It contai ns more i nformati on than you will ever need."
INPUT "Use it. Press Enter to proceed.", dummy$
LOCATE 22,1 : PRINT SPACE$(320)
LOCATE oldcsrx, oldcsry

RETURN

Now that the trap subroutine has been declared (the code that will get control
when F I is pressed), tum on trapping with the KEY(n) statement:

KEY (10) ON

After executing this statement, Turbo Basic goes into event-checldng mode.
Between executing every subsequent statement, it does a quick check to see if F I
has been pressed. If not, execution continues normally with the next statement. If
it finds F I pressed, subroutine DispHelpText is called. When it RETURNs, control
passes to the next statement in the interrupted sequence.

When an event trap occurs, an implicit "trap stop" statement is executed to keep
the trap subroutine from being called repetitively from within itself (and filling up
the stack). The closing RETURN of the handling subroutine automatically per­
forms an implicit "trap on" statement unless the subroutine, in its body, executes an
explicit "trap off." You can substitute the words PEN, PLAY, KEY, STRIG, TIMER,
and COM for the word "trap."

Fine-Tuning Event Trapping

Event trapping is a powerful tool, but at a price. Since your program must check
between the execution of every statement for the indicated event(s), processing
slows down, which, depending on the application, may produce an unacceptable
speed penalty. In addition, a program that does event trapping causes the compiler
to generate more code (exactly 1 byte more per statement) than it would for a
program with no event-trapping statements.

You can control Turbo Basic's generation of event-checking code with the
$EVENT metastatement. Use $EVENT in programs that need to do event trap­
ping, but not everywhere. $EVENT OFF prevents event-trapping code from being
generated until the appearance of an $EVENT ON metastatement.

To illustrate, consider a sort routine in the accounting program described earlier.
Sorts are slow enough already without being interrupted between every statement
to see if F I has been pressed. Furthermore, since the sort doesn't require any user
input, what's the point in putting a help message on the screen?

Event Trapping 391

The solution is to bracket the sort subroutine with $EVENT metastatements:

ON KEY(l) GOSUB DispHelpText
KEY(1) ON

• main program stuff •••

$EVENT OFF
SortRoutine:

• in here. event-checking code isn't generated •••
• this saves time and code size

EndSortRoutine:
$EVENT ON

• the rest of the program •••

END

There's an important difference between $EVENT and simply turning off the
trap with KEY(IO) OFF, as you would in Interpretive BASIC. KEY(lO) OFF is a
dynamic statement (that is, it's executed at runtime) that keeps your program from
resporuling to F I being pressed, but not from making the test and wasting some
time in the process. It goes through the motions because the code to make the
check is embedded throughout the program between every statement. $EVENT is
a compile-time statement that controls whether the compiler generates event-trap­
ping code.

If $EVENT OFF has been used to defeat the generation of event-checking code
in an area, then doing a KEY(l) ON statement in that area has no effect.

392 Turbo Basic Owner's Handbook

A p p E N o x c
Assembly Language Interface

In designing an application, a task may arise that is performed too slowly by Turbo
Basic or for some reason can't be performed at all. To address these needs for
greater speed and flexibility, Turbo Basic allows your program to call assembly
language subroutines and to make DOS and BIOS function requests.

Three forms of the CALL statement are provided in Turbo Basic:

1. CALL to a procedure. This procedure can be either a Turbo Basic or an
INLINE assembly language procedure. INLINE assembly is the most pow­
erful form of assembly language interface.

2. CALL ABSOLUTE to the address of an assembly language routine already
loaded in memory. This is provided for minimal compatibility with Interpre­
tive BASIC.

3. CALL INTERRUPT to a software interrupt vector number that will take
you to an assembly language routine for software interrupt handling. CALL
INTERRUPT is generally used to call DOS and BIOS services.

Chapter 5, "Turbo Basic Reference Directory," discusses in detail the CALL and
SUB statements for Turbo Basic statements. In this appendix, we will concentrate
on the assembly language aspects of the CALL and SUB statements.

Note that the techniques of interfacing with assembly language subroutines are
by their nature somewhat complicated. You should become reasonably familiar
with assembly language concepts before tackling the information in this appendix.

393

The CALL ABSOLUTE Statement

Using the CALL ABSOLUTE statement in your Turbo Basic programs invokes an
assembly language subroutine that has been previously loaded with the BLOAD
statement or is a part of the program's data space.

As an example:

DEF SEG = $H5000
MyAsmSub% = &H4000
CALL ABSOLUTE MyAsmSub%

invokes the assembly language procedure at offset 4000 Hex (16,384 decimal) into
segment 5000 Hex (20,480 decimal). This address is more commonly specified in
segment:offset form as 5000:4000.

Syntax of CALL ABSOLUTE:

CALL ABSOLUTE <numeric identifier> [(parameter list)]

where numeric identifier is a numeric scalar variable and evaluates to the range
- 32768 to + 65535. If it is negative, it is forced to positive via two's complement
arithmetic. This offset is used in conjunction with the most recently declared DEF
SEC to form a callable 32-bit absolute address. If you want to use an expression for
the address, you must assign it to numeric identifier and then use the identifier in
the CALL statement.

Optional parameters are limited to only short integer scalar variables. Parame­
ters are passed by reference with the 16-bit pointers pushed on the stack in order
from left to right. All parameters are located in the main data segment pointed to
by Data Segment (DS).

This CALL method allows minimal compatibility with Interpretive BASIC.
Turbo Basic provides the more powerful SUB INLINE procedures to give you full
access to its data storage extensions.

After completing the desired function, the assembly language procedure must
perform· a intersegment (far) RETURN to Turbo Basic. Execution then proceeds
with the statement following the CALL.

The programmer is responsible for preserving the Data Segment (DS), Base
Pointer (BP), Stack Segment (SS) and Stack Pointer (SP) registers.

394 Turbo Basic Owner's Handbook

The CALL INTERRUPT Statement

The CALL INTERRUPT statement uses an interrupt vector number to get to an
assembly language routine. This call is normally used to call DOS and BIOS inter~
rupt handlers, but can also be used for user-defined software interrupt handlers.

CALL INTERRUPT's syntax follows:

CALL INTERRUPT <integer expression>

where integer expression must evaluate to a value between 0 and 255.

Prior to making the interrupt call, you must set up the appropriate registers
using the REG statement. Results returned in registers are stored internally by the
compiler and may be accessed with the REG function.

After completing the desired function, the assembly language procedure must
perform a RETURN from Interrupt (IRET) to Turbo Basic. Execution then pro­
ceeds with the statement following the CALL.

The programmer is responsible for preserving the Stack Segment (SS) and Stack
Pointer (SP) registers.

Note: DOS interrupts 25H and 26H leave the flag register on the stack, which is
in violation of 8086 programming techniques. Turbo Basic's CALL INTERRUPT
statement handles this inconsistency for you by automatically adjusting the stack
pointer. Interrupt 25H is Absolute Disk Read, and 26H is Absolute Disk Write.

The Register Buffer

The CALL INTERRUPT statement uses the register buffer for passing data to and
from assembly language subroutines. This is a numbered sequence of I6-bit inte­
gers that are mapped to the processor's registers immediately before and after a
CALL INTERRUPT.

REG as a statement stores the I6-bit contents of an integer variable into the
specified register, according to the numeric argument (0 to 9) specified.

REG as a function returns the I6-bit contents of the specified register, according
to the numeric argument (0 to 9) passed to it. The relationship between REG
arguments and actual processor registers are depicted in the following table:

Assembly Language Interface 395

Number Register

0 Flags
1 AX
2 BX
3 ex
4 DX
5 SI
6 DI
7 BP
8 DS
9 ES

To set an element in the register buffer, use REG as a statement; for example:

REG 5,&H8000

loads 8000 Hex into the buffer's SI register.

Note that REG does not immediately cause a processor register to be loaded or
read - it reads and writes the intermediate buffer.

To read an element in the register buffer, use REG as a function; for example:

y% = REG(1)

loads the integer variable y% with the register buffer's counterpart to the AX
register.

Again, note that the register buffer is loaded into the processor at the inception
of a CALL INTERRUPT statement, and copied from the processor after returning
from a CALL INTERRUPT statement.

About DOS and BIOS Function Calls

Interrupts lOH through IFH are BIOS calls that perform various utility functions.
(For more information about BIOS calls, consult the IBM DOS Technical Reference
Manual.)

Interrupt 21H (33 decimal) is an especially interesting interrupt value, since it is
the general calling mechanism for DOS. The request value is put into the most­
significant byte of the AX register (AH) and additional parameters are put into
other registers as needed. DOS provides scores of useful functions that can be
easily accessed through this mechanism. (For more information, consult the DOS
reference manual.)

396 Turbo Basic Owner's Handbook

As an example, function FNFreeSpace returns the amount of free disk space:

DEF FNFreeSpace(drive%) • DOS function 36H returns the number of

REG 4,drive%
REG 1,&H3600
CALL INTERRUPT &H21

• free clusters on selected drive
• 0 = default drive, 1 = A:, 2 = B:, etc.
• pass drive number in OX
• AH = function number

• space = available clusters * bytes/sector * sectors/cluster
• = BX*CX*AX
FNFreeSpace = CSNG(REG(2» * REG(3) * REG(1)
END DEF

Once defined, FNFreeSpace can be called like any other function:

• How much room on default drive?
PRINT FNFreeSpace(O)

Using CALL 'With INLINE

INLINE assembly language programming and normal Turbo Basic procedures use
the same calling sequence. The definition for the SUB procedure is changed to
specify the INLINE assembly language program. This is the most powerful mode
of assembly language programming in Turbo Basic.

Syntax:

CALL <procname> [(parameter list)]

Syntax:

SUB <procname> INLINE
$INLINE <byte list>
$INLINE "COM File Name"

END SUB

Any number of $INLINE statements can be specified in any order. The only
limitation is a maximum of 16 COM files in anyone procedure.

Byte lists are made up of constants or expressions that evaluate to an integer
between 0 and 255 and are separated by commas. Normally, you will use Hex
constants for bytes (&H4C,&H90).

Returns are not allowed in your assembly language code, nor at the end of the
SUB. The compiler automatically sees to that. If you wish to exit the procedure
early, just jump to an assembly language label at the end of your inline code.

Notice that you do not specify the parameter list in the SUB definition.

The programmer is responsible for preserving the Data Segment (DS), Base
Pointer (BP), Stack Segment (SS), and Stack Pointer (SP) registers.

Assembly Language Interface 397

Passing Parameters to INLINE Procedures

Parameters are pushed on the stack as 32-bit pointers to the data items (except for
full arrays). Parameters are pushed on the stack in order from left to right.

Passing Numeric Variables

For numeric variables (integer, floating point), you get a 32-bit pointer to the data.
(See Appendix A, "Numeric Considerations," for the numeric formats.)

Passing Strings

For string parameters (other than full string arrays), you get a 32-bit pointer to the
4-byte string descriptor. The first 2 bytes contain the length of the string. The next
2 bytes contain the offset of the string data in the string segment.

Note: You must ignore the upper bit on the string length bytes, since it is
reserved and may be set. You must AND off this bit before using the length, but the
value in memory must never be altered.

Note: You can modify bytes in the string but you can't modify the string's length.
To get the string segment pointer, use the first word of the default data segment
(word at DS:O). The format of a string descriptor follows:

Bytes 0,1: Length of string (upper bit is reserved)

2,3: Offset of data within the string segment

Passing Arrays

For array parameters, the array descriptor (60 bytes long) is pushed on the stack.
The format of an array descriptor follows:

Bytes 0,1: Segment address of the array data. The first element always starts at
offset O. For dynamic arrays, it contains zero until the array is dimen­
sioned.

2: Type of the array elements
o = integer
2 = long integer
4 = single-precision floating-point
6 = double-precision floating-point
8 = reserved

10 = string

3: Number of subscripts

398 Turbo Basic Owner's Handbook

4,5: Number of elements in the array
6,7: Array item length

2 bytes = integer
4 bytes = long integer
4 bytes = single-precision floating-point
8 bytes = double-precision floating-point
4 bytes = string descriptor

8,9: Lower bound for the fIrst subscript of the array

10,11: Upper bound for the fIrst subscript of the array

The next 6 bytes repeat for up to 8 dimensions (or subscripts).

Bytes 12,13:

14,15:

16,17:

Reserved

Lower bound for the next subscript of the array

Upper bound for the next subscript of the array

Warning: Some parts of the array descriptor are reserved and subject to change
in future versions of the compiler. We strongly suggest that you pass the number of
elements and the fIrst and last items of an array, and use the resulting pointers.

Array elements are always stored in contiguous memory locations (row major
order).

Passing Expression Results

You can pass the result of an expression to assembly language routines but you
cannot guarantee the numeric data type that might result. We suggest that you
assign the expression to a variable and pass the variable.

Passing Constants

You can pass constants to assembly language routines but you need to identify the
resulting type. To do so, use the identifIer definition character (%,&,!,or #) after
the constant.

Creating an INLINE.COMfile

You can create an INLINE.COM file using a debugger (like the DEBUG that
comes with your DOS disk) or a macroassembler (purchased separately).

Assembly Language Interface 399

Using DEBUG to create a . COM file

In DEBUG, you can use the A (assemble) command to key in the assembly lan­
guage statements, N (name) to give the code a file name with the extension .COM,
and W (write) to write out the .COM file to disk. Check out the DEBUG section of
your DOS manual.

Using a Macroassembler to create a . COM file

When you're using a macroassembler, you actually need four programs: an editor
(like SideKick's notepad), the macroassembler, a linker, and a program called
EXE2BIN.

First key in your assembly language program with the editor. Next run the
macroassembler to create an object file. Then use the linker (LINK on your DOS
disk or a linker supplied with your macroassembler) to create an executable (.EXE)
file. Finally use EXE2BIN (included on your DOS disk) to convert the executable
file to a .COM file.

You can use the following batch file to automate the process:

MASM %1;
LINK %1;
EXE2BIN %1 %l.COM

Here are some guidelines for converting an assembly language program from an
.EXE file to a .COM file to be used by Turbo Basic:

• Do not include a stack segment (the linker will report an error message for No
Stack Segment, but ignore it).

• All instructions must use only relative addressing for both data and code refer­
ences.

• It's advisable to keep all local data on the stack, and address it with stack-relative
adressing.

• Use an ORG lOOH statement at the beginning of the program.

• Preserve the Data Segment (DS), Base Pointer (BP), Stack Segment (SS), and
Stack Pointer (SP) registers.

400 Turbo Basic Owner's Handbook

INLINE Assembly Example

Suppose you come up with an algorithm that requires some nonzero value, say 100,
to be quickly loaded into each element of a 200-element integer array. This could
be done within a loop like this:

DEFINT a-n
DIM a(199)
FOR n = 0 TO 19999
a(n) = 100
NEXT n

Unfortunately, for your particular application this "element-at-a-time" scheme is
just too slow. So you look for an assembly language solution to the problem of
setting every member of an array to a value as close to instantly as possible.

As mentioned earlier, in Turbo Basic you call an assembly language procedure
just like you call a regular BASIC procedure. The definition of the procedure
specifies that you are using INLINE assembly language code. Look at the follow­
ing example program:

DEFINT A-Z
DIM ARRAY(200)
CALL FILL(ARRAY(O»
FOR I = 0 TO 199

PRINT A(I)
NEXT I
END

SUB FILL INLINE
$INLINE &H55 I push BP
$INLINE &H89,&HE5 I mov BP,SP
$INLINE &HC4,&H7E,&H06 I les DI,[BP+6]
$INLINE &HB8,&H64,&HOO I mov AX,64H
$INLINE &HB9,&HC8,&HOO I mov CX,C8H
$INLINE &HFC I cld
$INLINE &HF3 rep
$INLINE &HAB I stosw
$INLINE &H5D I pop BP

END SUB

save the Base Pointer
move stack pOinter to BP
offset address of parm
constant to FI LL
length of FILL
clear the direction flag
fill the words

restore Base Pointer

The INLINE assembly language procedure FILL doesn't care about arrays. It
only knows that it is to load a constant value a number of times into memory, given
a specific starting point. Passing the first element in array A will accomplish this.

Assembly Language Interface 401

A simple run-time mapis depicted in Figure C-l.

0000:0000

XXXX:OOOO

XXXX:FFFF

AOOO:FFFF

DOS

Other resident programs

Turbo Basic
Run-time System
Data Area
Run-time stack

User· Program Area

Scalar Segment
Pooled Constants
Scalar Variables
String Descriptors
Array Descriptors

Array Space

String Segment

Free Space

(SideKick, SuperKey, &
Lightning)

FRE(-2)

Up to 1664K
Segments of User
Code

YYYY:OOOO

YYYY:FFFF

i
FRE(-I) variable size

FRE(S$)

MEMSET

Figure C-l Run-time Map

402 Turbo Basic Owner's Handbook

A p p E N D x D
Comparing Turbo Basic and Interpretive BASIC

There are three principal differences between Turbo Basic and Interpretive
BASIC:

1. The Compiler versus the Interpreter

2. Turbo Basic's extensions to the BASIC language

3. Compiler implementation

Each of these items points to many other underlying distinctions between the
two BASIC implementations, which we will detail here.

The Compiler Versus the Interpreter

Interpreters tend to blur the distinction between commands for creating programs
and those actually used in programs; in other words, between the program devel­
opment system and the language itsel£ For example, EDIT and AUTO aren't part
of the language in the sense that GOSUB and PRINT are.

Interpreters execute program code in order. Compilers, on the other hand, first
scan all source statements, then generate executable code for the source state­
ments. This latter attribute causes Turbo Basic, as a compiler, to catch errors for

. program code that would never be executed by Interpretive BASIC.

403

In the following example using Interpretive BASIC:

10 X = 5
20 IF X = 3 THEN GOTO 30 : X = 10 : Z = "AAA"

if X never equals 3 in the first place, then the statements following THEN will
never be executed, and the syntax error of trying to assign a string to a numeric
variable Will never be found. Secondly, the X = 10 and Z = "AAA" statements will
never be executed if X = 3 because of the GOTO line 30. The compiler will Hag
any "dead code" as an error at compile-time.

Unsupported Commands

Turbo Basic, because of its true full-screen editor and menu-driven commands for
auxiliary functions, has no need for any statements related to loading, saving, and
editing source programs; therefore they have been omitted. The corresponding
Interpretive BASIC commands are usually used in DIRECT mode and include the
following:

AUTO

DELETE

EDIT

LIST

LOAD

NEW

RENUM

SAVE

Turbo Basic lets you create and modify your programs with a text editor, so you
have no need for commands to change or erase programs lines (such as EDIT or
DELETE). If you want to erase a line, just move the cursor to the specified line
and press Ctrl-Y. Similarly, there's no need for LIST-instead, you execute the
appropriate keystrokes to get the desired portion of the program on the screen.

Turbo Basic's main menu functions perform the same tasks (and more) as that of
Interpretive BASIC's SAVE, LOAD, and NEW. And since you don't need line
numbers in Turbo Basic, you don't need AUTO and RENUM.

The following commands are also not supported in Turbo Basic:

CONT
Turbo Basic doesn't permit an interrupted program to be restarted. Interrupting a
program with STOP or Ctrl-Break is the same as executing an END statement.

MERGE
Turbo Basic compiles programs into executable code, therefore it's not possible to
merge source program lines at execution time.

404 Turbo Basic Owner's Handbook

MOTOR
The cassette port has not proven to be the most popular attribute of the PC.

USR
The CALL statement does USR's job and more.

Statements Requiring Modification

CALL ABSOLUTE
CALL ABSOLUTE only accepts integer parameters and has been included for
minimal compatibility with Interpretive Basic. Turbo Basic provides more power­
ful CALL INTERRUPf and INLINE assembly procedures for complete assembly
language programming. (For more information, see Appendix C, '"Assembly Lan­
guage Interface.")

CHAIN
CHAINed programs must be compiled as either .EXE or .TBC files by selecting
the Compile to EXE or Compile to Chain switch in the compiler Options menu.
COMMON statements in both the originating and chained-to programs must list
common variables in the right order (although not necessarily with the same
name). You cannot execute a CHAIN statement when running from within Turbo
Basic's environment. You can only use CHAIN when running from DOS. The
MERGE and DELETE line-number-range options are not supported.

DEFtype, TRON, TROFF, OPTION BASE
The performance of these statements differ subtly from Interpretive BASIC. Turbo
Basic considers each statement's physical position in the source program rather
than its position in the execution path of the object program. In other words, it is
the position of these statements at compile-time rather than runtime that controls
their effect. Using DEFtype as an example, consider this simple program:

10 GOTO 30
20 DEFINT X
30 x = 2.3
40 PRINT x

When Interpretive BASIC executes this program, it never sees the typing state­
ment in line 20. Thus, it uses its default variable type (single precision) when it
encounters variable x in line 30, and then prints out 2.3.

Turbo Basic, on the other hand, gets typing considerations out of the way at
compile-time. Since the DEFINT statement physically precedes the first occur­
rence of x, x becomes an integer variable, and the PRINT statement outputs 2.

Comparing Turbo Basic and Interpretive BASIC 405

DRAW, PLAY
Both of these statements execute complex instruction strings that cause graphics to
be drawn or music to be played, respectively. In Interpretive BASIC, the string
information that drives these commands can contain the names of string or numeric
variables embedded within the instruction string. For example, in Interpretive
BASIC, the statements

n = 50
PLAY "T=n; COl

set the tempo of PLAYed music to 50 quarter notes per minute and play note C.
Turbo Basic cannot understand this construction, because after compiling, all infor­
mation about the identifier associated with variable n is lost. However, you can get
the same effect by using the VARPTR$ function:

n = 50
PLAY "T="+ VARPTR$(n) + "C"

Function Parameters
For function parameters, Interpretive BASIC allows you to use the same parame­
ter variable name. Turbo Basic gives a duplicate, local variable error message.

RUN
A Turbo Basic program can use RUN to load and execute another program or to
restart itself, but there is no way to restart the current program at any point except
the beginning; you cannot specify a line number option.

Converting Interpretive BASIC Programs to Turbo Basic

The first step in converting an Interpretive BASIC program to Turbo Basic is to
save it to disk in ASCII format. For example, to save your current program, type

SAVE "progname.txt",A

The ",A" option causes Interpretive BASIC to write out a text (ASCII) file with­
out performing tokenizing. This file will be directly readable by Turbo Basic,
although if it is larger than 64K, you will have to subdivide it into separate main
and include files before editing or compiling with Turbo Basic.

Extensions to tire BASIC Language

Turbo Basic has added many new command features and extensions to the BASIC
language. Several extensions are discussed here. (Refer to Chapter 5, "Turbo Basic
Reference Directory," for further details.)

406 Turbo Basic Owner's Handbook

Structured Statements

In an enhancement to Interpretive BASIC, Turbo Basic uses IF/ELSEIF/ELSE/
END IF and SELECT CASE statements to control program How and to promote
easy-to-read programs. The new block-structured statement DO/LOOP allows
total control over program loops with testing at the beginning and end of the loop.

Binary File I/O

Turbo Basic supports a new BINARY mode of file input and output. The GET$,
PUT$, and SEEK commands give the programmer a very low level of file control.
The program can read and write bytes to a file, and position the file pointer at any
byte.

Function and Procedure Definitions

In Turbo Basic, function definitions can be both single line, like standard Interpre­
tive BASIC functions, and multiline, permitting a more structured subroutine
mechanism. The SUB and END SUB statements allow the creation of procedures.
(For more information see Chapter 4' s section entitled "Subroutines, Functions,
and Procedures.")

Turbo Basic supports recursive procedures and functions with true local variable
support. Use the LOCAL statement to define which variables will be pushed on to
the stack during recursive execution.

Assembly Language Interface

In Turbo Basic, the CALL statement has three forms: CALL procname, CALL
INTERRUPT, and CALL ABSOLUTE. CALL INTERRUPT uses the REG com­
mand to pass data via a register buffer. INLINE assembly language bytes or .COM
files can be embedded inside procedures using the $INLINE directive. (See
Appendix C, "Assembly Language Interface," for more details.)

Built-in Functions

Unlike Interpretive BASIC, Turbo Basic's transcendental functions return double­
precision results.

Comparing Turbo Basic and Interpretive BASIC 407

New Commands

Turbo Basic has many new commands, as well as new options for old ones. Table
D-l partially lists the enhancements to Interpretive BASIC.

BIN$
BINARY
CEIL, FIX
COMMAND$

Table D-I

CVMS, CVMD, MKMS$,
MKMD$

DECR/INCR
DEFLNG. MKL$, CVL
DELAY
DO/WOP
ERADR
EXIT

EXP2, EXPIO
GET$
IF/ELSEIF/ELSE/END IF
INLINE
INSTAT
LCASE$
WCAL/SHARED/STATIC
WG2,WGIO
MEMSET
MTIMER
PUT$
REG
SEEK
SELECT CASE
SUB/END SUB.
VARSEG

Thrbo Basic's Enhancements to BASIC
Returns binary fonn of an integer
New file mode for low-level access
Floating point to integer functions
Returns command line trailer
Translates existing Microsoft-fonnat data

Alternate way to increment and decrement variables
Support for new numeric-type long integer
Waits n seconds (for machine-independent delays)
Flexible ANSI standard looping construct
Address of most recent error
Leaves a FOR/NEXT, WHILE/WEND, or DO/WOP
loop, IF block, procedure, or function
Returns powers of 2 and 10
Reads data from BINARY mode files
Perfonns multiple IF tests
Inserts bytes directly into object code
Returns keyboard status
Converts string to lowercase.
Declares procedure and function variables
Returns logarithms of base 2 and base 10
Defines free space in high memory
Fine-resolution timer
Writes data to BINARY mode files
Reads/writes register buffer
Detennines file position in BINARY mode files
Powerful CASE statement testing facility
Defines procedure
Returns segment address of variable or array element

If you inadvertently use some of these reserved words as variables, you will get
a syntax error at compile-time. To compile correctly, do a Find and replace opera­
tion to change conflicting variable names.

408 Turbo Basic Owner's Handbook

Compiler Implementation

Compiler implementation will affect some·existing BASIC programs and also allow
greater control over program compilation and code generation.· We have already
discussed· some of the differences and extensions; other important points that grew
out of the powerful implementation of Turbo Basic will be discussed in this section.

The Editor and Large Programs

The editor integrated within Turbo Basic allows source programs to be no larger
than 64K in size. The $INCLUDE directive allows programs larger than 64K to be
compiled. If you have a source program that is larger than 64K, you will need to
split it up into several separate files. Use the Main file option in the File pull­
down menu to specify the program you want Turbo Basic to start compiling (if it is
different from the file currently in the edit buffer).

The Turbo Basic editor supports lines up to 248 characters wide. Interpretive
BASIC supports lines as wide as 255 characters. Lines that are longer than 248 will
automatically be split with a carriage return after column 248. However, you'll still
need to check whether the line formation is· correct before . loading your program
into the Turbo Basic editor.

Turbo Basic also supports programs that are larger than 64K of executable code.
The $SEGMENT directive specifies that a new code segment will be generated
and all CALLs/GaTOs will be changed to far calls and jumps.

Random Files with Floating-Point Values

Because Turbo Basic uses the IEEE floating-point standard values and Interpre­
tive BASIC uses Microsoft's nonstandard format for single- and double-precision
variables, a Turbo Basic program must translate floating-point fields in existing
random files created by Interpretive BASIC programs. The MKMS$ and MKMD$
functions create Microsoft-format numeric strings; the CVMS and CVMD func­
tions take Microsoft-format strings and return Turbo Basic-format numeric data.

Note that this applies only to floating-point fields in random access files, not
integer or string fields.

Running in a Window

In the Turbo Basic environment, programs that output text can run in the Run
window, which is a virtual 25-row-by-80-column screen. Use Alt-F5 to zoom the
Run window while your program is executing.

Comparing Turbo Basic and Interpretive BASIC 409

If the program does any special POKEs to set the cursor location or change color
attributes while running in a window, the screen may not display correctly. How­
ever, if you zoom the Run window before execution, the display will be fine. Pro­
grams that output graphics will take over the entire screen.

Intermediate Floating-Point, Precision

Because Turbo Basic uses the "IEEE standard for floating point, intermediate
results are calculated to full 80-bit precision. Some Interpretive BASIC programs
handle limited floating-point precision by adding to certain calculations a "fudge
factor" of 1 to elicit the correct result.. Since Turbo Basic gives you extended preci­
sion, code that takes advantage of limited precision arithmetic may have to be
modified.

Strings

String handling has been enhanced in Turbo Basic. The maximum string length
has been.expanded,from 255 to 32,767 characters. Also, the "garbage collection"
performed periodically by Interpretive BASIC has been done away with-so
there's no good reason to use FRE intermittently to force this operation.

Improved Memory Use

Turbo Basic makes all your system's memory available to your programs, without
the stingy 64K limitation of Interpretive BASIC. Programs can have an unlimited
amount of code, up to 64K of scalar (nonarray) variables, up to 64K of string data,
and an unlimited number of arrays, each up to 64K in length.

PEEK and POKE Locations

When in graphics mode, text color has been preserved in PEEK/POKE location
4E Hex offset in the BASIC data segment. PEEKs and POKEs of other locations
may have unpredictable results.

410 Turbo Basic Owner's Handbook

A p p E N D x E
Error Messages

There are two fundamental types of errors in Turbo Basic: compile-time and run­
time. Compile-time errors are errors in syntax discovered by the compiler. Run­
time errors are anomalies caught by error-detection mechanisms the compiler
places in your object programs.

Most compile-time errors are errors of syntax, caused by missing symbols, mis­
spelled commands, unbalanced parentheses, and so on. If the compiler finds some­
thing in a source program that it cannot understand or permit, you are
automatically placed in the editor, with the cursor positioned at the point of the
error. Press any key to clear the error message, then edit the offending statement
and recompile.

At the bottom of the screen, Turbo Basic lists the error number and a brief
description of the error. Compiler errors have error codes of 256 and above.

Run-time errors occur when a compiled program is executed. Examples include
£He-system errors (disk full or write-protected), improper function calls (graphics
statements without a graphics adapter), trying to take the square root of -14,
memory errors (usually, not enough), and a host of other problems.

Run-time errors can be trapped; that is, you can cause a designated error-han­
dling subroutine to get control should an error occur using the ON ERROR state­
ment. This routine can "judge" what to do next based on the type of error that
occurs. File-system errors in particular (for example, disk full) are well-suited to
handling such routines; they are the only errors that a thoroughly debugged pro­
gram should have to deal with.

411

The ERROR statement can simulate run-time errors as a debugging technique
for error-handling routines.

For more information about run-time error trapping, see the ON ERROR and
ERROR statements and the ERR, ERL, and .ERADR functions in Chapter 5,
"Turbo Basic Reference Directory."

If run-time errors are not trapped by your program, then a Turbo Basic program
aborts upon encountering an error condition and displays the error number and a
brief message to describe the condition. If the program was executed from within
Turbo Basic~ the editor cursor is also positioned at the statement that caused the
error. Run-time errors have error codes between 0 and 255; for example:

Error 5 Illegal function call at pgm-ctr: 761

Error messages aren't included in .EXE programs; therefore, run-time errors
that occur in programs launched from DOS do not include error text, only num­
bers. Debug's Find run-time error option is able to translate the program counter
value returned by a run-time error into the exact statement within the sourcefHe
that caused the error. For example:

nnnError-description<CR/LF>

where nnn is athree~digit error code. (For more information, see Chapter 3, "The
Debug Command.")

Run-time Errors

2 Syntax error
A run-time syntax error has been created by a READ statement trying to
load string data into a numeric variable. Other syntax errors are caught by
the compiler.

3 RETURN without GOSUB
A RETURN was encountered without a matching GOSUB; that is, there is
nothing to RETURN from.

4 Out of data
A READ statement ran out of DATA statement values.

5 Illegal function call

412

This is a catch-all error related to passing an inappropriate argument to some
statement or function. A few of the 101 things that can cause it:

• Too large a color or screen mode argument

• Issuing a graphics statement without a graphics adapter or setting the
proper mode with the SCREEN statement

Turbo Basic Owner's Handbook

• Trying to perform invalid mathematical operations, such as taking the
square root of a negative number.

• Too large (or negative) a record number in a GET or PUT.

• Attempting to use the WIDTH statement on a sequential file.

6 Overflow
An overflow is the result of a calculation producing a value too large to be
represented in the indicated numeric type. For example, x% = 32767 + 1
causes overflow because 32,768 can't be represented by an integer. Integer
overflow error is not caught unless a program is compiled with the Overflow
switch turned on in the Options menus; floating-point overflow is always
caught.

7 Out of memory
Many different situations can cause this message, including dimensioning
too large an array.

9 Subscript out of range
You attempted to use a subscript larger than the maximum value established
when the array was DIMensioned. This error is not reported unless the
compiler Options' Bounds switch is turned on.

10 Duplicate definition
You attempted to dynamically dimension an array for the second time, with­
out first erasing it.

11 Division by zero
You attempted to divide by zero or to raise zero to a negative power.

13 Type mismatch
You used a string value where a numeric value was expected or vice versa.
This can occur in PRINT USING, DRAW, or PLAY statements.

14 Out of string space
String storage space is exhausted; string memory is limited to 64K.

15 String too long
The string produced by a string expression is longer than 32,767 bytes.

19 No RESUME
Program execution ran to the physical end of the program while in an error­
trapping routine. There may be a missing RESUME statement in an error
handler.

20 RESUME without error
You executed a RESUME statement without an error occurring; that is,
there is no error-handling subroutine to RESUME from.

Error Messages 413

24 Device time-out
The specified time-out value for a communication status line has expired.
Time-out values can be specified for the ClearToSend, CarrierDetect, and
DataSetReady status lines. The program should either abort execution or
retry the communications operation. (See the OPEN COM statement in
Chapter 5 for further information.)

25 Device fault
A hardware error has occurred; for example, with the printer interface or a
communications adapter.

27 Out of paper
The printer interface indicates that the printer is out of paper. It may simply
be turned off or have some other problem.

50 Field overflow
Given the file's record length, you attempted to define too long a set of field
variables in a FIELD statement.

5! Internalerror
A malfunction occurred within the Turbo Basic run-time system. Call Bor­
land's Technical Support Group with information about your program.

52 Bad file number
The file number you gave in a file statement doesn't match one given in an
OPEN statement or the file number may be out of the range of valid file
numbers.

53 File not found
The file name specified could not be found on the indicated drive.

54 Bad file mode
You attempted a PUT or a GET (or PUT$ or GET$) on a sequential file.

55 File already open
You attempted to open a file that was already open or you tried to delete an
open file.

57 Device I/O error
A serious hardware problem occurred when trying to carry out some com­
mand.

58 File already exists
The new name argument specified by the NAME command already exists.

61 Disk full

414

There isn't enough free space on the indicated or default disk to carry out a
file operation. Make sure there is enough free disk space and retry your
program.

Turbo Basic Owner's Handbook

62 Input past end
You tried to read more data from a file than it had to read. Use the EOF (end
of file) function to avoid this problem. This error can also be caused by trying
to read from a sequential file opened for output or append.

63 Bad record number
A negative number or one larger than 16,777,215 was specified as the record
argument to a random file PUT or GET statement.

64 Bad file name
The file name specified in a FILES, KILL, or NAME statement contains
invalid characters.

67 Too many flIes
This error can be caused either by trying to create too many files in a drive's
root directory or by an invalid file name that affects the performance of
DOS's Create File system call.

68 Device unavailable
You tried to OPEN a device file on a machine without that device; for exam­
ple, COM1: on a system without a serial adapter or modem.

69 Communications buffer overflow
You executed a statement to INPUT characters into an already full commu­
nications buffer. Your program should either check and empty the buffer
more often or provide a larger buffer size.

70 Permission denied
You tried to write to a write-protected disk.

71 Disk not ready
The door of a floppy disk drive is open or there is no disk in the indicated
drive.

72 Disk media error
The controller board of a Hoppy or hard disk indicates a hard media error in
one or more sectors.

74 Rename across disks
You can't rename a file across disks or directories. A file isn't moved by a
NAME statement, it's only given a new title.

75 Path/File access error
During a command capable of specifying a path name (OPEN, RENAME,
MKDIR, for example), you used a path inappropriately; for example, trying
to OPEN a subdirectory or to delete an in-use directory.

76 Path not found
The path you specified during a CHDIR, MKDIR, OPEN, and so forth,
can't be found.

Error Messages 415

202 Out of string temp space
A string expression required the use of too many temporary string buffers.
This can be caused by an expression like MID$(LEFT$(MID$(RIGHT$(... }.
Try simplifying your string expressions by storing intermediate results in
temporary string variables.

203 Mismatched common variables
You attempted to CHAIN between two program segments that did not con­
tain matching COMMON statements. Turbo Basic checks the type and num­
ber of variables in COMMON statements.

204 Mismatched program options
You attempted to CHAIN between two program segments that were com­
piled with different program options (different math library, math coproces­
sor required, and so forth).

205 Mismatched program revisions
You attempted to CHAIN between two program segments that were created
with different versions of the Turbo Basic compiler.

206 Invalid program file
You attempted to CHAIN or RUN a program segment that was not compiled
with Turbo Basic.

242 String/array memory corrupt
The string memory area has been improperly overwritten. This could be
caused by the improper action of an assembler subroutine, string array
access outside of the dimensioned limits, or by an error within the Turbo
Basic run-time system.

243 CHAIN /RUN from .EXE file only
You attempted to CHAIN or RUN a program segment from within the Turbo
Basic environment. You must compile your program to disk using the com­
piler Options menu selection and then execute programs that use CHAIN or
RUN from DOS.

Compiler Errors

401 Expression too complex
The expression contained too many operators/operands; break it down into
two or more simplified expressions.

402 Statement too complex
The statement complexity caused an overflow of the internal compiler
buffers; break the statement down into two or more simplified statements.

416 Turbo Basic Owner's Handbook

403 $IF nesting overflow·
Conditional compilation blocks ($IF/$ELSE/$ENDIF) can only be nested
up to 16 levels deep.

404 $INCLUDE nesting overHow
Include files may be nested up to five levels deep, including the main pro­
gram itself That allows the program to have four nested include files.

405 Block nesting overflow
Your program has too many statement block structures nested within each
other. Turbo Basic block structures may be nested 255 levels deep.

406 Compiler out of memory
Available compiler memory for symbol space, buffers, and so on, has been
exhausted. If no more memory is available, separate your program into a
small main program that uses the $INCLUDE metastatement to include the
rest of your program. If you are compiling your program to memory and get
this error, try compiling the program to disk with the compiler Options
menu.

407 Program too large
Your program contains more than 65,530 statements.

408 Segment exceeds 64K
Your program contains a segment that exceeds the 64K limitation. Add a
$SEGMENT metastatement to your source program to force program code
into another segment.

409 Variables exceed 64K
Scalar variables are limited to 64K total space. In this space we include
pointers to strings, integers, long integers, and single- and double-precision
reals. Get rid of any unused variables or split up your program into separate
Main and CHAIN programs.

410 "," expected
The statement's syntax requires a comma (,).

411 ";" expected
The statement's syntax requires a semicolon (;).

412 "(" expected
The statement's syntax requires a right parenthesis (().

413 ")" expected
The statement's syntax requires a left parenthesis ()).

414 " =" expected
The statement's syntax requires an equal sign (=).

415 "-" expected
The statement's syntax requires a hyphen (-).

Error Messages 417

416 Statement expected
A Turbo Basic statement was expected. Some character .could not be identi­
fied as a command, a metacommand, or a variable.

417 Label/line number expected
A valid label or line number reference was expected in an IF, GOTO,
GOSUB, or ON statement.

418 Numeric expression requires relational.operator
The compiler has found a string· operand in a position where a numeric
operator should be.

419· String expression requires string operand
The compiler expected a string expression and found something else; for
example:

X$ = A$ + B

420 Scalar variable expected
The compiler expected a scalar variable as a formal parameter to a user­
defined function. Scalar variables include strings, integers, long integers, and
single-.and double-precision reals.

421 Array variable expected
An array variable was expected in a ·DIMstatement or in the graphics GET
and PUT statements.

422 Numeric variable·expected
A numeric variable was expected in an INCR, DECR, or CALL ABSO­
LUTE offset specification.

423 String variable expected
A string variable was expected ina FIELD, GET$, PUT$ or LINE INPUT
statement.

424 Variable expected
A variable was expected in a VARPTR, VARPTR$, or VARSEG function.

425 Integer constant expected
An integer constant was expected in a named constant assignment or a con­
ditional compilation $IF/$ELSEIF.

426 Positive integer constant expected
A positive integer constant was expected in the array bounds .for a DIM
STATIC array orin the $COM, $SOUND, and $STACK metastatements.

427 String constant expected

418

A string constant was expected for the file.name in an $INCLUDE meta­
statement.

Turbo Basic Owner's Handbook

428 Numeric scalar variable expected
Either an integer, long integer, or single- or double-precision real variable is
expected; for example, in a FOR/NEXT loop.

429 Integer scalar variable expected
An integer variable was expected as a parameter in a CALL ABSOLUTE
statement.

430 Integer array variable expected
An integer array variable was expected; for example, in a PALETTE state­
ment.

431 End of line expected
No characters are allowed on a line (except for a comment) following a
metastatement, END SUB, or a statement label.

432 AS expected
The AS reserved word is.missing in either a FIELD or an OPEN statement.
Check the syntax of the FIELD and OPEN statements in Chapter 5.

433 DEF FN expected
The compiler found a END FN or EXIT FN statement without a function
defined. When defining a function, it must begin with a DEF FN statement.

434 IF .expected
The compiler found an END IF or an EXIT IF statement without a begin­
ning IF statement defined.

435 DO LOOP expected
The compiler found a LOOP or EXIT LOOP statement without a beginning
DO statement defined.

436 SELECT expected
When defining a SELECT CASE statement, you either forgot to include the
reserved word SELECT or the compiler ran into a END SELECT or EXIT
SELECT without a beginning SELECT CASE statement. This error can
also· occur if you try to use the reserved word CASE as a variable name in
your program.

437 CASE expected
When defining a SELECT CASE statement, you forgot to include the
reserved word CASE. This error can also occur if you try to use the reserved
word SELECT as a variable name in your program.

438 FOR LOOP expected
The compiler found an EXIT FOR statement without a. beginning FOR
statement defined.

Error Messages 419

439 SUB .expected
The compiler found an END SUB or EXIT SUB statement without a sub­
procedure defined. You must define a subprocedure by beginning it with a
SUB statement.

440 END DEF expected
A function wasn't terminated bya corresponding END DEF statement.

441 END IF expected
An IF block wasn't terminated by a corresponding END IF statement.

442 LOOP/WEND expected
A DO or WHILE loop was not terminated with a corresponding LOOP or
WEND statement.

443 END SELECT expected
A SELECT CASE statement was not properly· terminated with an END
SELECT statement.

444 END SUB expected
A procedure was not properly terminated with an END SUB statement.

445 NEXT expected
A FOR loop was not properly terminated with a NEXT statement.

446 THEN expected
An IF statement is missing its accompanying THEN part.

447 TO expected
A FOR statement is missing its accompanying TO part.

448 GOSUB expected
An ON statement is missing its accompanying GOSUB part.

449 GOTO expected
An ON statement is missing its accompanying GOTO part.

450 $ENDIF expected
An $IF conditional compilation metastatement is missing its accompanying
$ENDIF. Look for aU· $IF metastatements and find out where to put the
associated $ENDIF.

451 Unmatched $ELSE
The compiler encountered an $ELSE metastatement that was missing a pre­
ceding $IF conditional compilation metastatement. Go back in the source
code from the $ELSE and determine where to put the associated $IF.

452 Unmatched $ENDIF
The compiler encountered an $ENDIF metastatement that was missing a
preceding $IF conditional compilation metastatement. Go back in the .source
code from the $ENDIF and determine where to put the associated $IF.

420 Turbo Basic Owner's Handbook

453 Undefined name constant
You used a named constant in your program without defining it. Define the
named constant or use a literal constant in the statement.

454 Undefined function reference
You used a function name in an expression without defining the function.
Check the name of the function for mistakes or provide a definition for the
function.

455 Undefined subprogram reference
You used CALL to a subprogram, but you did not define the subprogram.
Check the name of the subprogram for mistakes or provide the subprogram.

456 Undefined label/line reference
You used a line number or label in an IF, GOTO, GOSUB, or ON statement,
but you did not define the label or line number. Check the label or line
number for mistakes or provide a label.

457 Undefined array reference
An array was referenced but was never defined in a DIM statement. Check
the array name for mistakes or provide a DIM statement for it.

458 Duplicate label/line number
The same line number was used twice or the same statement label name was
defined twice. Check your program and any include files for duplicate line
numbers or labels and change one or both of them.

459 Duplicate named constant
Two named constants were defined with the same name. Check your pro­
gram and any include files for duplicate names and change one or both of
them.

460 Duplicate function definition
Two DEF FN functions were defined with the same name. Check your pro­
gram and any include files for duplicate names and change one or both of
them.

461 Duplicate subprogram definition
Two SUB procedures were defined with the same name. Check your pro­
gram and any include files for duplicate names and change one or both of
them.

462 Duplicate common variable
Two variables with the same name were listed in a COMMON statement.
Check your program and any include files for duplicate names and change
one or both of them.

Error Messages 421

463 Duplicate variable declaration
Two variables with the same name have been declared with a LOCAL,
STATIC, or SHARED statement. Check your program and any include files
for duplicate names and change one or both of them.

464 Duplicate $COM definition
Only one $CO M metastatement for each communications port can be used
in your program. Check your program and any include files for $COM defi­
nitions and delete one of them.

465 Duplicate $SOUND definition
Only one $SOUND metastatement can be used in your program. Check
your program and any include files for $SOUND definitions and delete one
of them.

466 Duplicate $STACK definition
Only one $STACK metastatement can be used in your program. Check your
program and any include files for $STACK definitions and delete one of
them.

467 Invalid line number
Line numbers must be in the range 0 to 65535.

469 Metastatements not allowed here
Metastatements must be the first statement on the line.

470 Block/Scanned statements not allowed here
Block statements like WHILE/WEND, DO/LOOP, and SELECT CASE
are not allowed in single line IF statements.

471 Unknown identifier/ syntax error
Something is incorrect on the line - the compiler could not determine a
proper error message.

472 Array subscript error
You dimensioned an array with a number of subscripts and used it with
another number of subscripts.

473 Array bounds error
For a static dimensioned array, your program referenced the array with a
literal value that was out of the range.

474 Type mismatch
The variable types in a SWAP statement are not the same.

475 Parameter mismatch
The type or number of parameters does not correspond with the declaration
of the function or procedure.

422 Turbo Basic Owner's Handbook

476 CLEAR parameter error - use MEMSET/$STACK
The additional parameters available to the CLEAR statement are not avail­
able in a BASIC compiler like Turbo Basic.

477 LOCAL requires DEF FN/SUB
You can only declare LOCAL variables in a function or procedure.

478 SHARED requires DEF FN/SUB
You can only declare SHARED variables in a function or procedure.

479 STATIC requires DEF FN/SUB
You can only declare STATIC variables in a function or procedure.

480 COMMON arrays must be dynamic
Arrays used in a COMMON statement must be declared DYNAMIC.

481 LOCAL arrays must be dynamic
Arrays defined as LOCAL cannot be defined as STATIC. Get rid of the
STATIC specifier or move the array definition out of the procedure or func­
tion and into your main program.

482 Parameter arrays cannot be altered
You cannot ERASE and DIM an array used as a parameter in a function or
subprocedure.

483 Array is not STATIC
A static array may not be DIMensioned using variables as the index descrip­
tors. You must use either named constants or literal constants when specifY­
ing the indices of STATIC arrays.

484 Array previously STATIC
If you have two DIM statements in a program for the same array, the array is
automatically declared as DYNAMIC. You then tried to declare the array
STATIC in another place or your program tried to issue a DIM DYNAMIC
to an array that was previously declared STATIC.

485 Array name without "()" expected
When using the ERASE statement, you need not specifY the parentheses
with the array name.

486 Array exceeds 64K
The size of an array cannot exceed 64K (one data segment). If you need
larger arrays, you can split up one array into several arrays.

487 Arrays limited to eight dimensions
The maximum number of dimensions that can be specified for an array is
eight. This is an internal limit for the compiler.

488 Invalid numeric format
Your program declared a number with more than 36 digits or a floating-point
number with an E component without the exponent value.

Error Messages 423

489 Invalid function/procedure name
In the case of a function, FN must be followed by a letter and then other
letters, digits, and periods, optionally ended with a type identifier (%, &, !,
#, or $). In the case of a procedure, the name must begin with a letter and
may be followed by other letters, digits, and periods, but may not include a
type identifier.

490 No parameters with INLINE SUB
You did not specify a formal parameter list in an INLINE SUB procedure
declaration. The assembly language program is responsible for knowing the
number and type of parameters being passed to it. No type-checking is done
by the compiler.

491 Only $INLINE allowed here
Only $INLINE statements are allowed in a SUB procedure declared with
the INLINE option.

492 $INLINE requires SUB INLINE
$INLINE statements can only be used in a SUB procedure with the
INLINE option.

493 $INCLUDE file not found
An include file could not be found in the specified directory path, current
directory, or in the path specified by Setup's Directories option. Check the
Directories path or make sure that the speci:6.ed include file name exists.

494 $INCLUDE disk error
When Turbo Basic tried to open the include file, a disk error was reported
during compilation.

495 $INCLUDE file too large
Include files, like all files that can be loaded by the Turbo Basic editor, must
be no larger than 64K.

496 $INLINE file not found
An INLINE file could not be found in the specified directory path or current
directory. Make sure that the specified include file name exists.

497 $INLINE disk read error
When Turbo Basic tried to open the INLINE file, a disk error was reported
during compilation.

498 Temporary file access error
While compiling to disk (an .EXE or a .TBC file), the compiler was unable to
access its temporary file. Check the Turbo directory in the Directories option
of the Setup pull-down menu to make sure that the directory defined exists.

424 Turbo Basic Owner's Handbook

499 Destination file write error
While compiling to disk (an .EXE or a .TBC file), the compiler received a
disk write error.

600-610 Internal Error
If this error occurs, report it immediately to Borland's Technical Support
Group.

Error Messages 425

426 Turbo Basic Owner's Handbook

A p p E N D x F
Reference Materials

This chapter is devoted to various reference materials, and includes an ASCII
table, keyboard scan codes, and extended codes.

ASCII Codes

The American Standard Code for Information Exchange is code that translates
alphabetic and numeric characters and symbols and control instructions into 7 -bit
binary code. Table F-l shows both printable characters and,control characters.

427

D H Ch Clrl Mne [) H Ch

00 00 @ NUL 32 20 SP

01 01 ~ A SOH 33 21 ,

02 02 • B STX 34 22 "

03 03 • C ETX 35 23 II

04 04 • D EaT 36 24 $

05 05 ... E ENQ 37 25 ~

06 06 • F ACK 38 26 &

07 07 · G BEL 39 27

08 08 a H BS 40 28 (

09 09 0 I HT 41 29)

100A Il J LF 42 2A *
II OB d' K VT 43 2B +

12 OC 9 L FF 44 2C

13 OD)' M CR 45 20 -

14 OE ~ N SO 46 2E

15 OF (l- '0 SI 47 2F /

16 10 .. 'P DLE 48 30 0

17 11 ... Q DCI 49 31 1

18 12 t R DC2 50 32 2

19 13 " S DC3 51 33 3

20 14 11 T DC4 52 34 4

21 15 ~ U NAK 53 35 5

22 16 0 V SYN 54 36 6

23 17 ~ 'W ETB 55 37 7

24 18 t 'X CAN 56 38 8

25 19 I 'Y EM 57 39 9

26 IA - Z SUB 58 3A

27 IB - [ESC 59 3B

28 1C L \ FS 60 3C <
29 ID .~ J GS 61 3D =

30 IE .- 1\ RS 62 3E >
31 IF .. US 63 3F .)

-

D = decimal
Ctrl = control character
Ch = character

428

[)

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Table F-l ASCII Table

H Ch I) H Ch D H

40 @ 96 60 128 80

41 A 97 61 a 129 81

42 B 98 62 b 130 82

43 C 99 63 c 131 83

44 D 100 64 d 132 84

45 E 101 65 e 133 85

46 F 102 66 f 134 86

47 G 103 67 g 135 87

48 H 104 68 h 136 88

49 I 105 69 i 137 89

4A J 106 6A j 138 8A

4B K 107 6B k 139 8B

4C L 108 6C I 140 8C

4D M 109 6D m 141 8D

4E N 110 6E n 142 8E

4F a 111 6F 0 143 8F

50 P 112 70 P 144 90

51 Q 113 71 q 145 91

52 R 114 72 r 146 92

53 S 115 73 s 147 93

54 T 116 74 t 148 94

55 U 117 75 u 149 95

56 V 118 76 v 150 96

57 W 119 77 w 151 97

58 X 120 78 x 152 98

59 Y 121 79 Y 153 99

SA Z 122 7A z 154 9A

5B [123 7B { 155 9B

5C \ 124 7C
I

156 9C I

50 J 125 7D I 157 90

5E 1\ 126 7E ~ 158 9E

SF - 127 7F /':, 159 9F

H = hexadecimal
Mne = mnemonic

Ch

<;
ii
e
" a
a
a
it
~

e
e
e
Y

" 1

'1

A
A
E
z

)E

" a

0
0
1\
U

U
Y
O.
0
C

£
¥

R

f

D H Ch D H Ch D H Ch

160 AO a 192 co L 224 EO oc

161 AI f 193 CI .-L 225 EI fJ
162 A2 6 194 C2 -r- 226 E2 I'

163 A3 U 195 C3 ~ 227 E3 1T

164 A4 n 196 C4 - 228 E4 ~

165 AS N 197 C5 + 229 E5 a

166 A6 g 198 C6 F 230 E6 ~
167 A7 Q 199 C7 I~ 231 E7 T

168 A8 ~ 200 C8 Ik 232 E8 Q

169 A9 I 201 C9 rr= 233 E9 e
170 AA -, 202 CA -.JL 234 EA n
171 AB Y2 203 CB II 235 EB 0
172 AC ~ 204 CC If= 236 EC 00

173 AD i 205 CO - 237 ED tP

174 AE « '206 CE -.JL 238 EE E II

175 AF » 207 CF ---L 239 EF n
176 BO 208 DO -1L 240 FO -...

177 BI ~~m 209 DI -, 241 F1 ±
178 B2 m 210 D2 """lr 242 F2 ~

179 B3 1
211 D3 lL 243 F3 ::;

180 B4 ---j 212 D4 b 244 F4 (

181 B5 ~ 213 D5 F 245 F5 J

182 B6 -il 214 D6 rr 246 F6

183 B7 II 215 D7 -it- 247 F7 ;::::;

184 B8 =, 216 D8 =F 248 F8
0

185 B9 =H 217 D9 .J 249 F9 .
186 BA II 218 DA I 250 FA .
187 BB =;] 219 DB • 251 FB "
188 BC ~ 220 DC 252 FC n

•
189 BO ~ 221 DO I 253 FO 2

190 BE d 222 DE I 254 FE •
191 BF 223 OF • 255 FF I

Turbo Basic Owner's Handbook

Extended Key Codes

Extended key codes are returned by those keys or key combinations that cannot be
represented by the standard ASCII codes listed in Table F-1.

The extended codes are returned by the system variable INKEY$. In a two­
character string, a imll character is returned as the first character. Generally, the
second character is the scan code of the first key.

Table F -2 shows the second code and what it means.

Table F-2 Extended Key Codes

Second Code Meaning

3 NUL (null character)
15 Shift Tab (- < + +)
16-25 Alt-QIW/E/R{f!Y!U/I/O/P
30-38 Alt-A/S/D/F /G/H/If]/K/L
44-50 Alt-Z/X/CN/B/N /M
59-68 Keys FI-FI0 (disabled as softkeys)
71 Home
72 Up arrow
73 PgUp
75 Left arrow
77 Right arrow
79 End
80 Down arrow
81 PgDn
82 Ins
83 Del
84-93 Fll-F20 (Shift-Fl to Shift-FlO)
94-103 F2l-F30 (Ctrl-Fl through FlO)
104-113 F3l-F40 (Alt-Fl through FlO)
114 Ctrl-PrtSc
115 Ctrl-Left arrow
116 Ctrl-Right arrow
117 Ctrl-End
118 Ctrl-PgDn
119 Ctrl-Home

Reference Materials 429

Table F-2 Extended Key Codes, continued

Second Code Meaning

l20-131 Alt-1/2/3/4/5/6{7/8/9/0/-/ =
132 Ctrl-PgUp
133 Fll
134 Fl2
135 Shift-Fll
136 Shift-Fl2
137 Ctrl-Fll
138 Ctrl-Fl2
139 Alt-Fll
140 Alt-F12

Keyboard Scan Codes

Keyboard scan codes are the codes returned from the keys on the IBM PC key­
board, as they are seen by Turbo Basic. These keys are useful when you're working
at the assembly language level. Note that the keyboard scan codes displayed in
Table F -3 are in hexadecimal values.

430 Turbo Basic Owner's Handbook

Table F-3 Keyboard Scan Codes
Key Scan Code in Hex Key Scan Code in Hex
Esc 01 Left/Right arrow OF
!I 02 Q 10
@2 03 W 11
#3 04 E 12
$4 05 R 13
o/oS 06 T 14
A6 07 y 15
&7 08 U 16
*S 09 I 17
(9 OA 0 18
)0 OB P 19
- - OC {[lA
+= OD }] IB
Backspace OE Enter lC
Ctrl ID 1\ 2B
A IE Z 2C
S IF X 2D
D 20 C 2E
F 21 V 2F
G 22 B 30
H 23 N 31
) 24 M 32
K 25 <, 33
L 26 >. 34
., 27 7/ 35

28 RightShift 36
29 PrtScr* 37

LeftShift 2A Alt 38
Spacebar 39 7Home 47
Caps Lock 3A SUp arrow 48
FI 3B 9PgUp 49
F2 3C 4A
F3 3D 4Left arrow 4B
F4 3E 5 4C
F5 3F 6Right arrow 4D
F6 40 + 4E
F7 41 lEnd 4F
FS 42 2Down arrow 50
F9 43 3PgDn 51
FlO 44 Olns 52
FII D9 Del 53
FI2 DA
Num Lock 45
Scroll Lock 46

Reference Materials 431

432 Turbo Basic Owner's Handbook

A p p E N D x G
A DOS Primer

If you are new to computers or to DOS, you may have trouble understanding
certain terms used in this manual. This appendix provides you with a brief over­
view of the following DOS concepts and functions:

• What DOS is and ,does

• The proper way to load a program

• Directories, subdirectories, and the Path command

• Using AUTOEXEC.BAT files

This information is by no means a complete explanation of the DOS operating
system. If you need more details, please refer to the MS-DOSTM or PC-DOS user's
manual that came with your computer.system.

Turbo Basic runs under the MS-DOS or PC-DOS operating system, version 2.0
or later.

What Is DOS?

DOS is shorthand for Disk Operating System. MS-DOS is Microsoft's version of
DOS, while PC-DOS is IBM's rendition. DOS is the traffic coordinator, manager,
and operator for the transactions that occur between the parts of the computer
system and the computer system and you. DOS operates in the background; taking

433

care of many of the menial computer tasks you wouldn't want to have to think
about - for instance, the flow of characters between your keyboard and the com­
puter, between the computer and your printer, and between your disk(s) and inter­
nal memory (RAM).

Other transactions are ones that you initiate by entering commands on the DOS
command line; in other words, immediately after the DOS prompt. Your DOS
prompt looks like one of the following:

A>
B>
C>

The capital letter refers to the active disk drive (the one DOS and you are using
right now). For instance, if the prompt is A>, it means you are working with the
files on drive A, and that the commands you give· DOS will refer to this drive.
When you want to switch to another disk, making it the active disk, all you do is
type the letter of the disk, followed by a colon and Enter. For instance, to switch to
drive B, just type B:Enter.

There are a few commands that you will use often with DOS, if you haven't
already, such as

DEL or ERASE
DIR
COPY

TB

To erase a file
To see a list of files on the logged disk
To copy files from one disk to another
To load Turbo Basic

DOS doesn't care whether you type in uppercase or lowercase letters or a com­
bination of both, so you can enter your commands however you like.

We'll assume you know how to use the first three commands listed; if you don't,
refer to your DOS manual. Next, we will explain the proper way to load a program
like Turbo Basic (see the last command on the list).

How to Load a Program

On your Turbo Basic system disk, you'll find the file name TB.EXE. This program
file contains all the·main BASIC functions. A file name with the 1ast name," or
extension, .COM or.EXE means a program file that you can load and run (use) by
typing only its "first name" on the DOS command line. So, to invoke the Turbo
Basic program, you simply type TB and press Enter to load Turbo Basic into your
computer's memory.

434 Turbo Basic Owner's Handbook

There's one thing you need to remember about loading Turbo Basic and other
similar programs: You must be logged on·to the disk and directory where the pro­
gram is located in order to load it; unless you have set up a DOS path (described
shortly), DOS won't know where to find the program.

Say your system disk with the TB.EXE program is in drive A but the prompt you
see on your screen is B>. If you type TB and press Enter, DOS won't know what
you're talking about and will give you the message "Bad command or file name."

In other words, you're in the. wrong place.

So if you happen to get that DOS message, simply switch to drive A' by typing A:
and then press Enter. Then type TB. and press Enter to load Turbo Basic.

You can set up a "path" to your Basic files so that DOS can find them using the
DOS Path command. See the section, "The AUTOEXEC.BAT File; for more infor­
mation.

Directories

A directory is a convenient way to organize your floppy or hard disk files.Directo­
ries allow you to subdivide your disk into sections, much the way you might put
groups of manila file folders into separate file boxes. For instance, you might want
to put all your file folders having to do with finance - for instance, a bank statement
file, an income tax file, or the like....- into a box labeled "Finances.'"

On your computer, it would be convenient to make a directory to hold all your
Turbo Basic files, another for your SideKick files, another for your letters, and so
on. That way, when you type DIR on the DOS command line, you don't have to
wade through hundreds of file names looking for the file you want. You'll get a
listing of only the files on the directory you're currently logged on to.

Although you can make directories on either floppy or hard disks, they are used
most often on hard disks. This is because they can hold a greater volume of data;
however, this also leads to a. greater need for organization and compartmentaliza­
tion of data.

When you're at the DOS level, rather than in Turbo Basic or another program,
you can tell DOS to create directories~ move files around between directories, and
display which files are in a particular directory.

In the examples that follow, we .assume you are.using a hard·disk system, and
that you are logged on to the hard disk so that the prompt you see on your screen is
C >. If you want to create directories on your Hoppy disks, just substitute A or B
for C in the example.

A DOS Primer 435

To make a directory for your Turbo Basic files, do the following:

1. At the C> prompt, type MKDIR BASIC and press Enter. The MKDIR
command tells DOS to make a directory called BASIC.

2. Type CHDIR BASIC and press Enter. The CHDIR command tells DOS to
move you into the BASIC directory.

3. Now, put the Turbo Basic disk you want to copy from into one of your floppy
drives-let's say A for this example-and type COPY A:*.* Enter. (The aster­
isks are wildcards that stand for all files.) The COpy command tells DOS to
copy all files on the A drive to the BASIC directory on the C drive. As each
file on the disk is copied, you will see it listed on the screen.

That's all there is to it. Treat a directory the same way you would a disk drive: To
load Turbo Basic, you must be in the BASIC directory before typing TB and press­
ing Enter, or else DOS won't be able to find the program.

Subdirectories

If you are someone who really likes organization, you can further subdivide your
directories into subdirectories. You can create as many directories and subdirec­
tories as you like-just don't forget where you put your files!

A subdirectory is created the same way as a directory; To create a subdirectory
from the BASIC directory (for instance, for storing your graphics files), do the
following:

1. Be sure you are in the BASIC directory.

2. Type MKDIR GRAPH Enter.

3. Type CHDIR GRAPH. You are now in the GRAPH subdirectory.

4. If you already have BASIC graphics files you want to store in this subdirec­
tory, copy them now. If the files are on a floppy disk with the extension .GRP,
insert the disk in drive A and press Enter. If the files are in the root directory
of your hard disk, type COpy \ *.GRP and press Enter.

436 Turbo Basic Owner's Handbook

"Where Am If The $p $g Prompt

You probably have noticed that when you change directories, you still see the C >
prompt; there is no evidence of what directory or subdirectory you are in. This can
be confusing, especially if you leave your computer for a while. It's easy to forget
where you were when you left.

DOS gives you an easy way to find out. Just type

prompt=$p $9

and from now on (until you turn your computer off or reboot). the prompt will show
you exactly where you are. Try it. If you are still in the GRAPH subdirectory. your
DOS prompt should look like this:

C:\BASIC\GRAPH >

The AUTOEXEC.BAT File

To avoid typing the prompt command (discussed in the previous section) to see
"where you are" every time you turn on your computer. you can set up an
AUTOEXEC.BAT RIe to do it for you each time you turn on your computer.

The AUTOEXEC.BAT RIe is a useful tool and does much more than this. but
rather than go into great detail here. we suggest referring to your DOS manual for
more information. However. we will show you how to create an AUTOEXEC.BAT
RIe that will automatically change your prompt so you know where you are in your
directory structure. set a path to the BASIC directory. and then load Turbo Basic.

The DOS Path command tells your computer where to look for commands it
doesn't recognize. DOS only recognizes programs in the current (logged) directory
unless there is a path to the directory containing pertinent programs or RIes.

In the following example. we will set a path to the BASIC directory and a subdi­
rectory called FILES.

If you have an AUTOEXEC.BAT RIe in your root directory. your computer will
do everything in that RIe when you first turn your computer on. (The root directory
is where you see the C> or C:\ prompt. with no directory names follOwing it.)

Here's how to create an AUTOEXEC.BAT RIe.

1. Type CHDIR \ to get to the root directory.

2. Type COpy CON AUTOEXEC.BAT Enter. This tells DOS to copy whatever
you type next into a RIe called AUTOEXEC.BAT.

A DOS Primer 437

3. Type

ECHO OFF
PROMPT=$P $G Enter
PATH=C:\BASIC;C:\BASIC\FILES
CHOIR\BASIC
\BASIC
Ctrl-Z Enter

The Ctrl-Z sequence saves your commands in the AUTOEXEC.BAT file.

To test your new AUTO EXEC. BAT file, reboot your computer by holding down
the Ctrl and Alt keys and then pressing Del. You should see C:\BASIC > when your
system comes up.

Changing Directories

How do you get from one directory to another? It depends on where you want to
go. The basic DOS command for changing directories is CHDIR. Use it like this:

• To move from one directory to another: For example, to change from the
BASIC directory to one called WP, type the following from the BASIC directory:

C:\BASIC> CHOIR \WP Enter

Notice the backslash (\) before the directory name. Whenever you are moving
from one directory to another unrelated directory, type the name of the directory,
preceded by a backslash.

• To move from a directory to its subdirectory: For example, to move from the
BASIC directory to the GRAPH subdirectory, type the following from the
BASIC directory:

C:\BASIC> CHOIR GRAPH Enter

In this case, you did not need the backslash, because the GRAPH directory is a
direct offshoot of the BASIC directory. In fact, DOS would have misunderstood
what you meant if you had used the backslash in this case. If you had included
the backslash, DOS would have thought that GRAPH was a directory off the
main (root) directory.

• To move from a subdirectory to its parent directory: For example, to move
from the GRAPH subdirectory to the BASIC directory, type the following from
the GRAPH subdirectory:

C:\BASIC\GRAPH> CHOIR .. Enter

DOS will move you back to the BASIC directory. Anytime you want to move
back to the parent directory, use a space followed by two periods after the
CHDIR command.

438 Turbo Basic Owner's Handbook

• To move to the root directory: The root directory is the original directory. It is
the parent (or grandparent) of all directories (and subdirectories). When you are
in the root directory, you see this prompt: C: \ > .

To move to the root directory from any other directory, simply type

CHOIR \ Enter

The backslash without a directory name signals DOS that you want to return
to the root directory.

Setting Up an Operating Environment

If you have some special hardware needs or if you're a developer in need of a
dynamic environment, being able to set environment variables will afford you some
choices. Environment variables actually override compiler and/or program options,
and are determined by using the SET command in DOS.

Environment variables have an effect on the entire environment in which a
program is executed. Thus after setting a variable, it's in effect until you reset it to
another value or turn off your machine. If you find yourself setting these values
consistently one way, you may want to enter the SET command into a batch file or
your AUTOEXEC.BAT file (see the earlier section detailing this file).

Turbo Basic's environment variables allow you to override compiler and run­
time options for 8087 support and Color/Graphics Adapter (CGA) "snow" checking.
For example, in the follOwing example you're setting up your environment for 8087
use by typing at the DOS prompt

SET 87=yes

where yes means you have an 8087; no means even if you have an 8087 don't use it.
The default setting is yes.

In the case of CGA snow-checking, you could type

SET CGASNOWCHK=no

where no doesn't do snow-checking and yes does snow-checking. The default set­
ting is yes.

When your compiler begins executing or when a generated .EXE file starts
executing, they actually search the environment variable space for these variables.

Though it's not necessary to set these variables, they're available when you need
them. If you choose not to set them, the current directory searches for files and
creates temporary ones to store the default variables.

A DOS Primer 439

This appendix presents only a quick look at DOS and some of its functions. Once
you're familiar with the information given here, you may want to study your DOS
manual and discover the many things you can do with your computer's operating
system. There are many other DOS functions not mentioned here that can simplify
and enhance your computer use.

440 Turbo Basic Owner's Handbook

A p p E N o x H
Summary of Functions and Procedures

Use this appendix as a quick reference to operation-specific procedures and func­
tions. For example, under the heading "String Operations," you'll find in particular
the $BIN function that returns the binary string equivalent of a number, and in
general other string-related operations.

Chaining

CHAIN
COMMON
RUN

Invokes a Turbo Basic chain module (extension .TBC)
Declares a variable(s) to be passed to a chained program

Restarts the program

441

Compiler Data

DIM
LET
LOCAL
OPTION BASE
REM
SHARED
STATIC
TRONffROFF

Devices

COM(n)
INP
IOCTL/IOCTL$
OPEN COM
OUT

DOS

CHDIR
KILL
MKDIR
RMDIR
SHELL
SYSTEM

442

Declares arrays
Assigns a value to a ,variable
Declares local variables in a procedure or function
Sets minimum value for array subscripts
Delimits the programmer's, remarks
Declares shared (global) variables in a procedure or function
Declares the static variables in a procedure or function '
Turns on and off execution trace

Controls the trapping of serial port events
Reads from an I/O port
Communicates with a device driver
Opens and configures a communications ,port
Writes to an I/O port

Changes the current directory (DOS CD command)
Deletes a file (like the DOS DEL command)
Creates a subdirectory (like DOS's MKDIR command)
Removes the directory (like DOS's RMDIR command)
Loads and executes child process (DOS 3.0 only)
Terminates a program

Turbo Basic Owner's Handbook

Error Handling

ERADR
ERDEV/ERRDEV$
ERL/ERR
ERROR

Files

BLOADS
BSAVE
CLOSE
EOF
FIELD
FILES
GET (files)
GET (graphics)
LINE INPUT #

LOC
LOF
LSET
NAME
OPEN
PRINT #,

PRINT # USING
PUT
PUT$
RESET
RSET
SEEK
WRITE #

Returns the address of the most recent error
Returns device driver information
Returns the line and error code of the most recent error
Simulates a run-time error

Loads a.BSAVEd file into memory
Saves a memory range to disk
Closes a file or device
Returns end-of-file status
Defines field variables of a random file buffer
Displays the directory contents (like DOS's DIR command)
Reads a record from a random file
Reads all or part of the graphics screen. into an array
Reads a line from a sequential file into a string variable,
ignoring delimiters
Returns the current file position
Returns the length of a file
Moves string data into the random file buffer
Renames a file (like DOS's REN function)
Prepares a file or device for reading or writing
Writes formatted information to a file

Writes a record to a random file
Writes a string to a binary mode file
Closes and flushes all disk files
Moves string data into the random file buffer
Sets the position in a binary file for GET$ and PUT$
Outputs data to a sequential file

Summary of Functions and Procedures 443

Flow Control

CALL
CALL ABSOLUTE
CALL INTERRUPT
DEF FN/END DEF
DO/LOOP
END

EXIT
FOR/NEXT

GOSUB
GOTO
IF

IF BLOCK
INLINE
RESUME
RETURN
SELECT
STOP
SUB/END SUB
WHILE/WEND

444

Invokes a procedure (subprogram)
Invokes an assembly language routine
Calls the system interrupt
Defines a function
Builds a loop with the test at the top and/or bottom
Terminates execution of a program or defines the end of a
structured block
Leaves a structure prematurely
Defines an automatically incrementing (or decrementing)
loop
Invokes a subroutine
Sends program flow to the statement identified by label
Tests a condition and alters program flow if the condition is
met
Creates a series of IF statements
Declares inline machine code
Restarts execution after error handling
Returns from the subroutine to the calling program
Returns a general purpose testing statement
Hal ts the program
Defines a procedure (subprogram)
Builds a loop with the test at the top

Turbo Basic Owner's Handbook

Graphics

CIRCLE
DRAW
LINE
PAINT

PEEK
PEN (function)
PEN (statement)
PMAP

POINT
POKE
PRESET
PSET
PUT
VIEW
WINDOW

Hardware Events

ON COM(n)
ON ERROR
ON/GOSUB

ON/GOTO

ON KEY(n)

ON PEN

ON PLAY

ON STRIG
ON TIMER
STICK
STRIG (function)
STRIG (statement)
WAIT

Draws a circle or part of a circle
Draws shapes onto the graphics screen
Draws a straight line or box
Fills an enclosed area on the graphics screen with a selected
color
Returns the byte stored at the specified memory location
Reads light-pen status
Controls the checking of light-pen events
Translates physical coordinates to world coordinates and vice
versa
Returns the color of a pixel or LPR information
Writes a byte to a specified address
Plots a point on the graphics screen
Plots a point on the graphics screen
Plots the contents of a numeric array to the graphics screen
Defines the active area (viewport) of the graphics screen
Defines the graphics coordinate system

Declares trap subroutine for serial port events
Specifies error-handling routine and turns on error trapping
Calls one of several possible subroutines according to the
value of a numeric expression
Sends program flow to one of several possible destinations
based on the value of a numeric expression
Declares the trap subroutine to get control if a specific key is
pressed
Declares the trap subroutine to get control if light-pen activity
occurs
Declares the trap subroutine to get control if the background
music buffer contains less than the specified number of notes
Declares the trap subroutine for the joystick button
Declares/the trap subroutine to get control every n seconds
Returns joystick position information
Returns the status of the joystick buttons
Controls the joystick button event checking
Waits for the indicated hardware status condition

Summary of Functions and Procedures 445

Input

INKEY$
INPUT
INPUT #
INPUT$
INSTAT
LINE INPUT

READ
RESTORE

Reads the keyboard
Prompts the user for values to assign to one or more variables
Loads variables with data from a sequential file
Reads a specific number of characters from the keyboard or a file
Returns keyboard status
Reads a line from the keyboard into a string variable, ignoring
delimiters
Loads variables from DATA statement constants
Allows DATA statement constants to be read again

Keyboard Handling

KEY
KEY(n)

Sets and displays function key contents and defines key trap values
Turns trapping on or off for a specific key

Memory Management

CLEAR
DEFSEG

ENDMEM
ERASE
FRE
MEMSET
POKE
VARPTR
VARPTR$
VARSEG

446

Clears variable memory
Defines the data segment to be used by BLOAD, BSAVE, CALL
ABSOLUTE, PEEK, and POKE statements
Returns the address of the end of physical memory
Deletes dynamic arrays and resets static arrays
Returns the amount of free memory available to your program
Declares the upper memory limit
Writes a byte to a specified address
Returns the address of a variable
Returns a pointer to a variable in string form
Returns the segment address of a variable

Turbo Basic Owner's Handbook

Metastatements

$COM
$DYNAMIC
$EVENT
$IF/$ELSE/$ENDIF

$INCLUDE
$SEGMENT
$SOUND
$ STACK
$STATIC

Miscellaneous

DATA
DELAY
REG
SWAP

Numeric

ABS
ASC
ATN
CDBL
CEIL

CINT
CLNG
COS
CSNG

CVI/CVL/CVS/CVD

CVMD/CVMS

Allocates space for the serial port receive buffer
Declares a default array allocation to be dynamic
Controls generation of event-trapping code
Defines portions of a source program to be compiled or
skipped
Includes a text file
Declares a new code segment
Declares the capacity of the background music buffer
Declares the size of the run-time stack
Declares the default array allocation to be static

Declares constants for READ statements
Inserts a pause
Sets or returns a value in the register buffer
Exchanges the values of two variables

Returns an absolute value
Returns the ASCII code of a string's first character
Returns a trigonometric arctangent
Converts a number to double-precision format
Returns the largest integer greater than or equal to its
argument
Converts to an integer
Converts to a long integer
Returns a trigonometric cosine
Converts a numeric expression to its single-precision
equivalent
Converts string data read from random files to numeric
form
Converts string variables read from Microsoft-format
random files to numeric form

Summary of Functions and Procedures 447

DECR
DEFINT/DEFLNG/
DEFSNG/DEFDBL/
DEFSTR

EXP
EXP2
EXPlO
FIX
INCR
INT
LOG
LOG2
LOG 10
MKI$/MKL$/
MKS$/MKD$

MKMD$/MKMS$

RANDOMIZE
RND
SGN
SIN
SQR
TAN

Output

PRINT
PRINT USING
SPC
TAB
WRITE

Printer

LPOS
LPRINT,

LPRINT USING

448

Decrements a variable
Declares the default type of variable identifiers

Returns e1"

Returns 21"
Returns 101"

Truncates to integer
Increments a variable
Converts a numeric expression to an integer
Returns the natural (base e) logarithm
Returns the logarithm of base 2
Returns the logarithm of base 10
Converts numeric data into strings (for random file output)

Converts numeric data into Microsoft-format strings (for
random file output)
Seeds the random number generator
Returns a random number
Returns the sign of a numeric expression
Returns a trigonometric sine
Returns a square root
Returns a trigonometric tangent

Sends data to the screen
Sends formatted information to the screen
Skips n spaces (used in PRINT statement)
Tabs to a specified print position n (PRINT statement only)
Sends comma-delimited data to the screen

Returns the "cursor position" of the printer buffer
Sends data to the printer (LPTl:)

Turbo Basic Owner's Handbook

Screen

CLS
COLOR
COLOR
CSRLIN
LOCATE
POS
SCREEN (files)

SCREEN (graphics)
WIDTH

Sound

PLAY (function)
PLAY (statement)
SOUND

Clears the screen
Sets text color
Sets the colors for graphic operations
Returns the current vertical cursor position (row number)
Positions the cursor and/or defines the cursor's shape
Returns the cursor horizontal position (column number)
Returns the ASCII code of the character at the specified
row and column
Sets the screen display mode
Sets the logical line size

Returns the number of notes in the background music buffer
Returns the number of notes in the background music buffer
Generates a tone of specified frequency and duration

Summary of Functions and Procedures 449

String Operations

BIN$
CHR$
GET$
HEX$
INSTR
LCASE$
LEFf$
LEN
MID$
MID$
OCT$
RIGHT$
SPACE$
STR$
STRING$

UCASE$
VAL

450

Returns the binary string equivalent of a number
Converts an ASCII code into a one-character string
Reads a string from a file opened in BINARY mode
Converts a number into its hex string equivalent
Searches a string for a pattern
Returns a lowercase-only string
Returns the left-most n characters of a string
Returns the length of a string
Returns a character string
Replaces string characters
Returns a string representing the octal (base 8) form of an integer
Returns the right-most n characters of the target string
Returns, a string consisting of all spaces
Returns the string equivalent of a number
Returns a string consisting of multiple copies of the indicated
character
Returns an all-uppercase string
Returns the numeric equivalent of a string

Turbo Basic Owner's Handbook

A p p E N D x I
Customizing Turho Basic

The program TBINST.COM lets you do four things:

• set up a path to your help and setup files

• customize your keyboard

• modify your default edit modes

• set up your default screen mode

If you want to store your help (TBHELP.TBH) and/or setup files (TBCONFIG.
TB) on a directory other than the one where you have TB.EXE, you'lf need to use
the Turbo Basic directory option to set a path to those files.

If you're either unfamiliar with Turbo Basic's editor or inexorably tied to another
editor, you can use the Editor commands option to reconfigure (customize) the
editor keystrokes to your liking.

You can use the Default edit mode option to set several defaults for the editor:
insert or overwrite mode, tabs,· and auto-indenting.

And, finally, you can set up the display mode that Turbo Basic will use when it is
in operation.

451

Running TBINST

To get started, type TBINSTat the-DOS prompt. The first menu lets you select the
Turbo Basic .directory,. Editor commands,. Default edit modes, Screen mode, or
Quit. You can either press the highIighted capital letter' of the preferred option or
use the Up and Down arrow keys to move to your selection and then press Enter; for
instance, press 0 to modify the Default edit modes. In general, pressing Esc will
eventually return you to the main screen.

The Turbo Basic Directory· Option

The Turbo Basic directory option is really only useful for hard disk users. You'll use
this option to specify a path to your configuration files, so that these files will be
accessible from wherever you call up Turbo Basic (assuming' that you set up a path
statement for Turbo.Basic).

When you select the Turbo Basic directory option, you're prompted to enter the
full path to your Turbo directory. (This is where your .configuration files are. kept;
see the Directories option in the Setup pull-down menu in Chapter 3). For exam- .
pIe, if you want· to keep the. configuration files in a subdirectory of Borland prod­
ucts, you might type for your path name

C:\BORLAND\BASIC

After entering a path~ press Enter to accept it and the main menu will redisplay.
When you exit the program, you're prompted whether or not to save the changes.
Once you save the path, thelocation is written to disk. (Note that the 25th line tells.
you which keystrokes to use when you're in this screen.)

The Editor Command Option

This option allows you to change the default keys that you use while you're in the.
Turbo Basic editor. To modify the Editor commands, press E. or move the selection
bar to the option and press Enter. The help· line at .the top of the screen shows you
which keys to use to move 'around and make changes. Most of these commands·are
simply movement commands; however,the R option is useful when you want to
restore the keystrokes to their factory defaults. You'll notice that you can only mod­
ify the secondary, or highlighted, keystrokes.

452 Turbo Basic Owner's Handbook

Once you press Enter to modify a keystroke(s}, you'll see a selection bar next to
the command you want to redefine. If you take another look at the top of the screen,
you'll see the help line now lists the available commands:

... backspace C clear R restore accept edit <Scroll Lock> literal

Use the Backspace key to backspace and/or delete something in the keystroke
box. The C option clears, or erases, the whole box. Use R to restore ~e original
keystrokes before exiting from the screen. The accepts the keystroke modifi­
cation you've made. And finally, the < Scroll Lock> is a toggle that lets you
alternate between command and literal modes.

To explain the < Scroll Lock> option, let's take a look at the Enter key, which is
used to modify and accept the editing of a key command. If you wanted to use Enter
as part of, say, Find string's keystrokes (< CtrlQ > < CtrlF >), you would have to
toggle Scroll Lock to literal mode so that when you press the Enter key, it will be
interpreted literally as part of the new keystroke you are entering. Follow these
steps:

1. Make sure < Scroll Lock> is toggled to command mode (check the upper
right-hand comer of your screen).

2. Then press Enter at the Find string command line.

3. Press Backspace to delete the < CtrlF > part of the string.

4. Now toggle <Scroll Lock> to literal and press Enter-voila.

5. Again, toggle < Scroll Lock> to command mode and then press Enter to
accept.

After you've defined a new keystroke(s} for a command, press Enter to accept it.
If you're finished making changes, press Esc to exit. If you still have more changes
to make, then use the arrow keys to scroll up and down the list and select your next
command.

At this point, if you've accidentally assigned a keystroke sequence that's been
used as a control character sequence in the primary command column, the message

Command conflicts need to be corrected. Press Esc

will flash across the screen. Any duplicated sequences will be highlighted, which
enables you to easily search for any disallowed items and reselect a sequence. If
you change your mind, you can use the R option to restore the factory defaults.

Customizing Turbo Basic 453

The Default Edit MoCk Option

Press 0 to bring up the Default edit mode menu. There are three editor modes that
can be installed: Insert mode, Auto-indent mode, and Tabs.

With Insert mode on, anything you enter at the keyboard is inserted at the
cursor position, pushing any text to the right of the cursor further right. Toggling
Insert mode off allows you to overwrite text at the cursor.

With Auto-indent mode on, the cursor returns to the starting column of the pre­
vious line. When toggled off, the cursor always returns to column one.

Toggle on Tab mode when you want to insert tabs; toggle off and the tab is
automatically set to the beginning of the first word in the previous line.

When you load Turbo Basic, the default values for all three modes are on. You
can change the defaults to suit your preferences and save them back to Turbo
Basic. Of course, you'll still be able to toggle these modes from inside Turbo Basic's
editor.

Look to the 25th line for directions on how to select these options: Either use the
arrow keys to move the selection bar to the option and then press Enter or else
press the key that corresponds to the highlighted capital letter of the option.

The Screen MoCk Option

Press S to select Screen mode from the installation menu. A pull-down menu will
appear from which you can select the screen mode Turbo Basic will use during
operation. Your options include

• Default

• Color

• Black and white

• Monochrome

Default Display MoCk

By default, Turbo Basic will always operate in the mode that is active when you
load it.

454 Turbo Basic Owner's Handbook

Color Display Mode

Turbo Basic will use color mode with 80 X 25 characters no matter what mode is
active, switching back to the active mode when you exit.

Black and White Display Mode

Turbo Basic will use black and white mode with 80 X 25 characters no matter
what mode is active, switching back to the active mode when you exit.

Monochrome Display Mode

Turbo Basic will use monochrome mode no matter what mode is active, switching
back to the active mode when you exit.

Quitting the Program

Once you have finished making all desired changes, select Quit at the main menu.
The message "Save changes to TB.EXE?" will appear at the bottom of the screen.
If you press Y (for Yes), all of the changes you have made will be pennanently
installed into Turbo Basic. (Of course, you can always run this program again if you
want to change them.) If you press N (for No), your changes will be ignored and
you will be returned to the operating system prompt.

If you decide you want to restore the original Turbo Basic factory defaults, sim­
ply copy TB.EXE from your master disk onto your work disk. You can also restore
the Editor commands by selecting the E option at the main menu, then press R (for
Restore) and Esc.

455

456 Turbo Basic Owner's Handbook

Index

457

$COM metastatement; 119
$DYNAMIC metastatement, 76,120

and DIM, 185-186
$EVENT metastatement, 121

and ON PLAY,277
$IF{ELSE{ENDIF metastatements, 122
$INCLUDE metastatement, 123-124

and Main file option, 45
$INLINE metastatement, 125

and SUB/END SUB, 353
in assembly language, 397-401

$p $g prompt (DOS), 437
$SEGMENT metastatement, 124
$SOUND metastatement, 126

and ON PLAY, 277
$STATIC metastatement, 76,128

in recursion, 95

A

,A option, 406
ABS function, 130
Active window, 18
Advanced BASIC, 1, 6. See also

Interpretive BASIC
An command, 190
Angle measurement

ATN function, 132-133
COS function, 167
SIN function, 341
TAN function, 359

Arctangent, 132-133
Arithmetic operators, 78
Array parameter passing, 398-399
Arrays, 72

and DIM, 185-186
and LOCAL, 253
bounds testing, 74-75
declaring parameters of, 354
dynamic allocation of, 75-76
elements of, 72-74
multidimensional, 74
passing to procedures, 87
static, 76
storage requirements, 75
string, 74
subscripts of, 72-73

Array subscripts 185,288
ASC function, 131
ASCII character codes, 131, 148, 427-428
Assembly language

and CALL, 138--139
and CALL ABSOLUTE, 140-141

458

and CALL INTERUPT, 142
and MEMSET, 260
and VARPTR, 368

ATN function, 132:-133
AUTOEXEC.BAT file, 13, 437-438
Auto save edit option, 24, 49, 54

B

Backup source files option, 54
BASIC

history of, 5-9
BASICA, 1. See also Interpretive BASIC
BEEP statement, 134
BIN$ function, 135
Binary conversion, 135
BINARY file mode, 2, 107-108

and GET$, 216
and INPUT$, 232

Binary files, 107-108
BIOS function calls, 393, 396
BIOS interrupts, 396
BLOAD statement, 136

and BSAVE, 137
and DEF SEG, 182
in assembly language, 394

Boolean expressions, 221-224
Boolean operations, 79-81
Bounds option, 50

and DIM, 185
in array testing, 75, 186

BSAVE statement, 137
and BLOAD, 136
and DEF SEG, 182-183

C

CALL ABSOLUTE statement, 140-141
and DEF SEG, 182
in assembly language, 394

CALL INTERRUPT, 142
in assembly language, 395

CALL statement, 2, 138--139. See also
SUB statement

in assembly language, 393, 397
CDBL function, 143
CEIL function, 144
Chain file setting, 48
Chaining functions/procedures, 441
CHAIN statement, 145-146

and COMMON, 165
Change dir option, 46
Character set, 62, 64
CHDIR statement, 147

Turbo Basic Owner's Handbook

CHR$ function, 148
and ASC, 131
and PAINT, 290-292

CINT function, 149
CIRCLE statement, 114, 150-151
CLEAR statement, 152-153
CLNG function; 154
Close option, 27, 55
CLOSE statement, 104, 106, 108, 155

and OPEN, 282
versus RESET, 323

CLS statement, 156
Cn command, 190
Color/Graphics Adapter, 4, 111-114

and COLOR (graphics), 157-159
and COLOR (text), 160-161
and SCREEN (statement), 333

Colors options, 52-54
COLOR statement (graphics), 111, 114,

157-159
COLOR statement (text), 111, 160-161
.COM file

creating with DEBUG, 400
creating with INLINE, 399
creating with a macroassembler, 400

COMMAND$ function, 164
COMMON statement, 165-166

and CHAIN, 145
Communications setting, 51-52
COM(n) statement, 162-163

and ON COM(n), 270
Comparing Turbo Basic and Interpretive

BASIC, 403-410
Compile command, 14,21-22,41,46-47
Compiler Data functions/procedures, 442
Compiler-Interpreter differences, 6-8.

See also Interpretive BASIC
Compilers, 6, 8, 41
Compile-time errors, 416-425
Compile to option, 25, 41, 48
Constants

named, 69-70
numeric, 68-69
passing of, 399
string, 68

COS function, 167
CSNG function, 168
CSRLIN function, 169

and POS, 305
Customizing Turbo Basic, 451-454
CVI, CVL, CVS, CVD functions, 170-171
CVMD, CVMS functions, 106,172

Index

D

DATA statement, 173,-175
and REM,322
and RESTORE, 324

DATE$ system variable, 175
Debug command, 26, 56
DEBUG program, 399-400
DECR statement, 176
Default edit mode installation, 454
DEF FN/END DEF statements, 84,

177-179
DEFINT, DEFLNG, DEFSNC,
DEFDBL, DEFSTR statements,
180-181

DEF SEG statement, 182-183
in assembly language, 394

DELAY statement, 184
Device functions/procedures, 442
Device I/O, 109
DIM statement, 72, 75-76, 185-186

and LBOUND, 242
and STATIC, 346
versus OPTION BASE, 288

Directories, 97-99
customizing in Turbo Basic, 452
in DOS, 435-436, 438-439

Directories option (Setup), 54
Directory option (Files), 25, 46
Display

altering colors, 52-53
altering windows, 27, 42, 55-56

Distribution disk, 11-12
DO/LOOP statements, 187-188
DOS function calls, 393, 396
DOS functions/procedures
(in Turbo Basic), 442

DOS interrupts, 395
DOS primer, 433-440
Double-precision floating point, 66-67,

387-388
converting to, 143
variables, 71

DRAW statement, 114, 189-191
and VARPTR$, 369

Dynamic arrays, 76
and $DYNAMIC, 120
memory allocation, 75-76

DYNAMIC attributes, 76

459

E

Edit command, 15-17, 46
Editor, 30-31

basic operations, 15-16, 32
block operations, 16-17, 35-36
customizing keystrokes, 452-453
extended movement commands, 33-34
find and replace commands, 17-18,
38-39

insert and delete commands, 34-35
keystroke summary, 18, 31-32
miscellaneous commands, 37-39
search and replace operations, 17-18,

38-39
versus WordS tar, 40

Edit window, 13, 55
8087 required option, 48
8087support,I-2,48,67
ENDMEM function, 193, 260
END statement, 192
Enhanced Graphics Adapter, 1-2,4,

111-114
and COLOR (graphics), 157-159
and SCREEN (statement), 333

Environment variables, 12-13, 439
ENVIRON statement, 194
ENVIRON$ function, 195
EOF function, 102, 196
ERADR function, 197
ERASE statement, 73-74, 150, 198

and dynamic/static arrays, 75
ERDEV, ERDEV$ functions, 199
ERL, ERR functions, 200-201
Error-handling functions/procedures, 443
Error messages

compiler, 416-425
run-time, 412-416

Errors
correcting, 21, 23-24, 41

ERROR statement, 202
Event trapping, 389-394

and $EVENT metastatement, 121
and ON COM (n), 270
and ON KEY (n), 274
and ON PEN, 276
and ON PLAY, 277
and ON STRIG, 279-280
and ON TIMER, 281

Executable directory option, 54
.EXE files, 2, 25-26

460

.EXE file setting, 48
EXIT DEF statement, 84-85
Exiting Turbo Basic, 26, 43, 46
EXIT statement, 203-205

and GOTO, 219
EXP function, 206
EXP2 function, 206
EXPIO function, 206
Expression result passing, 399
Expressions

operators, 78-81
order of evaluation, 77

Extended key codes, 429-430

F
FIELD statement, 106-107,207

and LSET, 259
and RSET, 330

File functions/procedures, 443
Files, 96

backing up, 11
directories and, 97
execution from DOS, 26
saving, 15, 24-26, 37, 45, 54
storage techniques, 99-109

File command, 14, 16
Change dir option, 46
Directory option, 46
Load option, 44-45
Main file option, 45
New option, 45
OS shell option, 46
Quit option, 46
Save option, 45
Write to option, 45

FILES statement, 208
Find and replace command, 38-39
FIX function, 209
Floating-point numbers, 66-67, 384,
386-388

Flow-control functions/procedures, 444
Formatting output

numbers, 311-312
string fields, 311, 343

FOR/NEXT statements, 210-211
FRE function, 128, 212
Function keys, 111, 226, 237-238
Functions, 83-86, 177-179

summary of, 441-450

Turbo Basic Owner's Handbook

G

GET statement (files), 106, 108, 114, 213
and PUT, 315

GET statement (graphics) 214-215
and PUT, 315-316

GET$ function, 216-217
and SEEK, 335

Global variables, 93, 339
GOSUB statement, 2, 8, 19, 82, 218

and RETURN, 326
Goto option, 56
GOTO statement, 2, 8, 19, 219

and DO/LOOP, 187
and EXIT, 203-205

Graphics
adapter characteristics, 110
functions/procedures, 445
LPR,l12
modes, 111
plotting coordinates, 113
redefining coordinates, 113-114
text modes, 110

GW BASIC, 1, 6. See also Interpretive
BASIC

H

Hardware event functions/procedures, 445
HEX$ function, 220
Hexadecimal conversion, 220
Hotkeys, 43

I

IF block statement, 223-224
IF statement, 221-222
Include directories option, 54
INCR statement, 176, 225
INKEY$ function, 226-227, 233
INLINE assembly language, 397-401
INP function, 228
Input functions/procedures, 446
INPUT statement, 100, 102,229-230
INPUT # statement, 100-104, 230-231
INPUT$ function, 232
Insert mode, 15, 30
Installation, 12

default edit modes, 454
editor commands, 452-453
screen mode, 454-455
Turbo Basic directory, 452

INSTAT function, 233
INSTR function, 234

Index

Integers, 65-66, 68-69
conversion to, 149, 209, 235

INT function, 235
Interpreters, 6-8
Interpretive BASIC, 1-2, 6

and $COM, 119
and CALL ABSOLUTE, 140
and CINT, 149
and CLEAR, 152
and CLNG, 154
and COMMON, 165
and DEFINT, 180-181
and DIM, 185
and ERASE, 198
and ERL, ERR, 200
and FRE, 212
and INPUT, 229
and LEN, 245
and STOP, 348
and TRON, TROFF, 363
compared with Turbo Basic, 403-410

Intersegment return, 395
Intrinsic functions, 341, 345
IOCTL statement, 236
IOCTL$ function, 236

K

Kemeny John, 5
KEY statement, 111, 226, 237-238
KEY(n) statement, 237, 239-240, 274
Keyboard break option, 21, 49
Keyboard-handling functions/procedures,
446

Keyboard scan codes, 430-431
KILL statement, 241
Kurtz, Thomas, 5

L

LBOUND function, 242
LCASE$ function, 243
LEFT$ function, 244
LEN function, 245
LET statement, 246
Light-pen event trapping. See also Event

trapping
LINE INPUT statement, 249
LINE INPUT # statement, 102-104,
250-251

Line numbers, 8, 19-20
LINE statement, 112,247-248
Line width, 376
Ln command, 300

461

Loading a program
in DOS, 434-435
in Turbo Basic, 44-45

Load option, 16, 44-45
Load Options/Window/Setup, 54

and SEEK, 335
LOCAL statement, 90, 253
Localvariables,91-93,176,354-355

and LOCAL, 253
LOCATE statement, 111, 169, 254

and POS, 305
LOC function, 106, 108, 252
LOF function, 108, 255
LOG function, 256
LOG2 function, 256
LOG 10 function, 256
Logical operators, 79-81
Long integers, 65-66, 71
Looping statements, 187-188, 210-211,
374-375

LPOS function, 257
LPRINT, LPRINT USING statements,

258
and SPC, 344
and TAB, 358

LSET statement, 106-107, 259
and RSET, 330

M

Machine language, 6
Macroassembler

creating an INLINE.COM file,
399-400

MB command, 301
Main file option, 41, 45-47

and $INCLUDE, 123-124
Main menu, 42
Memory management functions/
procedures, 446

Memory setting, 48
MEMSET statement, 260

and ENDMEM, 193
Menu commands,

Compile, 14-15, 21-22, 41, 46-47
Debug, 26, 56-57
Edit, 14-16, 46
Files, 14-16, 44-46
Options, 20-21, 25, 47-52
Run, 15, 46-47
Setup, 42, 52-55
Window, 27, 55-56

Message window, 14,21-22,27,41,47
in Open option, 55

462

Metastatements, 61
functions/procedures, 447

Metastatements option, 51-52
MF command, 301
Microsoft IEEE translation functions,
66-67,104-107,266,384

MID$ function, 261
MID$ statement, 262
Miscellaneous functions/procedures, 447
Miscellaneous option, 54
MKDIR statement, 263
MKI$, MKL$, MKS$, MKD$ functions,
104,264-265

MKMD$, MKMS$ functions, 104-106,
266

ML command, 301
MN command, 301
Monochrome display adapter, 110-111

and COLOR (text), 160-161
MS command, 301 .
MTIMER function and statement, 267

and RANDOMIZE, 318
and SOUND, 342

Multiline function, 83-84, 177-179
Music buffer setting, 51-52
Music statements, 277, 299-301

N
> n command, 300
< n command, 300
Named constants, 69-70
NAME statement, 268
Naming files, 44-45, 96-97
New option, 16,45
Next option, 27, 56
Nn command, 299
NONAME.BAS, 15, 45-46
Note-letter command, 299
Numeric constants, 68-69
Numeric conversion, 383-388

double-precision, 143
integer, 149, 209, 235
single-precision, 168

Numeric expression, 77
Numeric functions/procedures, 447-448
Numeric parameter passing, 398
Numeric types, 65-67

o
OCT$ function, 269
Octal conversion, 269
On command, 300

Turbo Basic Owner's Handbook

ON COM(n) statement, 270
ON ERROR statement, 271
ON/GOSUB statement, 272

and SGN, 338
ON/GOTO statement, 273

and SGN, 338
ON KEY(n) statement, 237, 274-275
ON PEN statement, 276

and PEN, 297
ON PLAY statement, 277-278
ON STRIG statement, 279-280

and STRIG statement, 351
ON TIMER statement, 281
OPEN COM statement, 286-287
Open option, 55
OPEN statement, 104-106, 282-285

and CLOSE, 155
Operators

arithmetic, 78
logical,77-79
relational, 78-81
string, 81

OPTION BASE statement, 72, 288
and DIM, 183
and LBOUND, 242
and UBOUND, 365

Options command, 20-21, 25, 47
Bounds option, 50
Compile to option, 48
8087 required option, 49
Keyboard break option, 49
Metastatements option, 51-52
Overflow option, 50
Parameter line option, 51
Stack test option, 51

OS shell option, 46
Output functions/procedures, 448
OUT statement, 289

and INP, 228
Overflow, 386
Overflow option, 50

and integers, 65
Overwrite mode, 15, 30

P
PAINT statement, 114, 290-292
PALETTE, PALETTE USING
statements, 112-114,293-294

and COLOR (graphics), 158
Parameter line option, 51
Parameter passing, 88-91

to INLINE procedures, 398-399

Index

Parameters, 85
Pass-by-reference, 88-91

in assembly language, 394
Pass-by-value, 88-91
Path names, 97-99
P color boundary command, 190-191
PEEK function, 295

and DEF SEG, 182
PEN function, 296
PEN statement, 297

and ON PEN, 276
Physical coordinates, 302
PLAY function, 298
PLAY language, 299-301
PLAY statement, 299-301

and $SOUND, l26
and MTIMER, 267
and Music buffer setting, 51
and ON PLAY, 277
and VARPTR$, 369

PMAP function, 114, 302
and WINDOW, 380

Pn command, 300
Pointers, 394
POINT function, 114, 303
POKE function, 304

and DEF SEG, 182-183
and PEEK, 295

POS function, 305
PRESET statement, 114, 306

and PSET, 313
Printer functions/procedures, 448
PRINT statement, 111, 254, 258,307-308

and SPC, 344
and TAB, 358
and WRITE, 381

PRINT #, PRINT # USING statements,
100, 102, 309-310
and SPC, 344
and TAB, 358
and WRITE #, 382

PRINT USING statement, 258, 311-3l2
Procedures, 86-87

and parameter passing, 88-91
and program flow, 354
summary of, 441-450

Program structure, 59-61
functions in, 83-86
procedures in, 86-88
recursion and, 94-95
subroutines in, 82

463

PSET statement, 113-114,313
and POINT, 303
and PRESET, 306

PUT statement (files), 106, 314
PUT statement (graphics), 114,315-316

and GET (graphics), 214
PUT$ function, 317

and GET$, 216
and SEEK, 335

Q
Quit option, 26, 46

R

Random access files, 96, 104-107
and FIELD, 207
and LOC, 252
with floating-point data, 384

RANDOMIZE statement, 318
and RND, 329

README, l2
README.COM, l2
READ statement, 319

and DATA, 173
and RESTORE, 324
real number system, 385-386

Recursion, 94-95
REG function and statement, 2, 320-321

and CALL ABSOLUTE, 140
and CALL INTERRUPT, 142
in assembly language, 395-396

Register buffers, 395-396
Relational operators, 77, 79
REM delimiter, 60, 173
REM statement, 322
Reserved words, 63-64
RESET statement, 323
RESTORE statement, 324

and READ, 319
RESUME statement, 200, 325

and ON ERROR, 271
RETURN statement, 326

and GOSUB, 218
RIGHT$ function, 327
RMDIR statement, 328
RND function, 329

and RANDOMIZE, 318
Rounding numbers, 67, 149, 383
RSET statement, 106-107, 330

and LSET statement, 259
Run command, 15, 22, 46-47
RUN statement, 331

464

Run-time error option, 56
Run-time errors, 23-24, 46-47, 56-57,
412-416

Run-time map, 402
Run window, 14, 22-24,47

in Open option, 55

S

Save option, 25-26, 45
Save Options/Window Setup, 55
Saving to disk, 24-25
SCREEN function, 332
Screen functions/procedures, 449
Screen mode installation, 454-455
SCREEN statement, 111-1l2, 114,
333-334

and PALETTE, 293
and VIEW, 371

SEEK statement, 108, 216,335-336
and LOC, 252
and PUT$, 317

SELECT statement, 337
Sequential files, 96, 99-104, 196,230,
250,252,255,282,382

Setup command, 52
Colors options, 52-53
Directories option, 54
Load Options/Window/Setup, 54
Miscellaneous option, 54
Save Options/Window/Setup, 55

SGN function, 338
SHARED statement, 93, 339
Shared variable, 93, 178, 339
SHELL statement, 340

and ENVIRON, ENVIRON$, 194-195
Shell to DOS, 46
SIN function, 341
Single line functions, 83-85, 177-179
Single-precision floating point, 386

numbers, 66
variables, 71

Sn command, 190
Sound functions/procedures, 449
SOUND statement, 342

and MTIMER, 267
and Music buffer setting, 51

SPACE$ function, 343
SPC function, 344
SQR function, 345
Stack option (Window), 27, 56
Stack size setting (Metastatements), 51
Stack test option (Options), 50, l28
Starting Turbo Basic, 13-15

Turbo Basic Owner's Handbook

Statements, 59-60
Static arrays, 76

and $STATIC, 128
and DIM, 185
and ERASE. 198

STATIC statement, 76, 93-94, 346
Static variable, 93, 178-179, 356
Status line, 15, 29-30, 41
STICK function, 347
STOP statement, 348
STR$ function, 349
STRIG function, 350
STRIG statement, 351

and ON STRIG, 279.
String constants, 68
String expression, 77
String parameter passing, 398
String variables, 71
STRING$ function, 352
SUB/END SUB, SUB INLINE

statements, 86, 353-355
in assembly language, 394
with CALL, 397

Subdirectories in DOS, 436
Subroutines, 82
Subscripts, 185, 288
SWAP statement, 356
System requirements, 4
SYSTEM statement, 357

T

TAB function, 358
TAn command, 190
TAN function, 359
TB.EXE, 11-12; 27, 54-55
TBHELP.TBH, 12, 54
TBINST.COM,451-455
Tile option, 27, 56
TIME$ system variable, 360
TIMER function, 361
TIMER statement, 362

and ON TIMER, 281
and RANDOMIZE, 318

Tn command, 300
Tokenizing, 406
Trace compiler directive, 26
Trace option, 26, 56
Trace window, ·14, 27

in Open option, 55
TRON and TROFF commands, 363-364
Turbo Basic

compared with Interpretive BASIC,
403-410

Index

directory customization; 452
Turbo directory option, 54
Two's complement, 384-385

U

UBOUND function, 242, 365
UCASE$ function, 243, 366
Underflow, 386
Undo command, 37

V

VAL function, 168, 367
and STR$, 349

Variables, 71, 178
array, 185
global, 91, 93
local, 91-93, 253, 354-355
shared,93,339,355
static, 93-94, 355

VARPTR function, 368
and VARSEG, 370

VARPTR$ function, 190-191, 369
VARSEG function, 370
VIEW statement, 113-114, 371-372

and CLS, 156

W

WAIT statement, 373
WHILE/WEND statements, 187-188,

374-375
WIDTH statement, 110, 258, 377-378

and SPC, 345
Window command, 27, 55-56
WINDOW statement, 113-114,378-380

and PMAP, 302
WordStar, 15, 19, 29

versus Turbo. Basic editor, 40
World coordinates, 302
WRITE. statement, 381
WRITE # statement, 100-102,104,382

and INPUT #,230
Write to option, 45

x
X VARPTR$ command

and DRAW, 190
and PLAY, 301·

Z

Zoom option, 24, 27, 56

465

466 Turbo Basic Owner's Handbook

Borland
Software

INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Available at better dealers nationwide.
To order by credit cam., call (BOO) 255-8008; CA (BOO) 742-'1133;
CANADA (BOO) 237-1136.

.11'~.lr'''I.·® "E IE'IlI',
IJ'~ r;~ ... ~ ,; •• ,AIIIE.'
Whether you're running WordStar,® Lotus,® dBASE,®

or any other program, SideKick puts all these desktop
accessories at your fingertips-Instantly!

A lull-screen WordStar-like Editor to jot
down notes and edit files up to 25 pages
long.

A Phone Directory for names, addresses,
and telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3."
From bottom to top: SideKick's "Menu Window," ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through
2099.

Appointment Calendar to remind you
of important meetings and appointments.

A lull-leaturedCalculator ideal for
business use. It also performs decimal
to hexadecimal to binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In ,the
SideKick Notepad you'll notice data· that's been imported
directly from the Lotus screen. In the upper right you can
see the Calculator.

The Critics' Choice
"In a simple, beautiful· implementation of WordStar's
block copy commands, SideKick can transport all
or any part of the display· screen (even an area
overlaid by the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SideKick deserves a place in every PC."
-Gary Ray, PC WEEK

"SideKick is by far the best we've seen. It is also
the least expensive."

-Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SideKick. You'll soon become

dependent on it." -Jerry Pournelle, BYTE

Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCjr and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk
drive. A Hayes-compatible modem, IBM PCjr internal modem, or AT&T Modem 4000 is required for the autodialer function.

SideKick is a registered trademark of Borland International, Inc. dBASE is a registered trademark of
Ashton-Tate. IBM, Xl AT, and PCjr are registered trademarks of International Business Machines Corp.
AT&T is a registered trademark of American Telephone & Telegraph Company. Lotus and 1-2-3 are
registered trademarks of Lotus Development Corp. WordStar is a registered trademark of MicroPro
International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.
Copyright 1987 Borland International BOR0060C

The Organizer For The Computer Age!
Traveling SideKick is BinderWare,® both a binder you take with you when you travel
and a software program-which includes a Report Generator-that generates and

prints out all the information you'll need to take with you.

Information like your phone list, your client list,
your address book, your calendar, and your
appointments. The appointment or calendar files
you're already using in your SideKick8 can auto­
matically be used by your Traveling SideKick. You
don't waste time and effort reentering information
that's already there.

One keystroke prints out a form like your address
book. No need to change printer paper;

What's inside Traveling SideKick

you simply punch three holes, fold and clip
the form into your Traveling SideKick binder, and
you're on your way. Because Traveling SideKick is
CAD (Computer-Age Designed), you don't fool
around with low-tech tools like scissors, tape, or
staples. And because Traveling SideKick is
electronic, it works this year, next year, and all the
"next years" after that Old-fashioned daytime
organizers are history in 365 days.

What the software program and its
Report Generator dQ for you before
you go-and when you get back

Before you go:
• Prints out your calendar,

appointments, addresses, phone
directory, and whatever other
information you need from your
data files

When you return:
• lets you quickly and easily enter aU

the new names you obtained while
you were away into your
SideKick data files

It can also:
• Sort your address book by contact,

zip code or company name
• Print mailing labels
• Print information selectively
• Search files for existing addresses

or calendar engagements

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, Portable, PCjr, 3270 and true compatibles. PC-DOS (MS-DOS) 2.0 or later.
256K RAM mimimum.

BORLAND
INTERNATIONAL

SideKick, BinderWare and Traveling SideKick are registered trademarks of Borland
International, Inc. IBM, AT, XT, and PCjr are registered trademarks of International Business
Machines Corp. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987
Borland International BOA 0083A

RAM-resident
Increased productivity lor IBM@pCs or compatibles

SuperKey's simple macros are electronic shortcuts to success.
By letting you reduce a lengthy paragraph into a single keystroke

of your choice, SuperKey eliminates repetition.

SuperKey turns 1,000 keystrokes into 11
SuperKey can record lengthy keystroke sequences and play them back at the touch of a single key.
Instantly. Like magic.
In fact, with Super Key's simple macros, you can turn "Dear Customer: Thank you for your inquiry.
We are pleased to let you know that shipment will be made within 24 hours. Sincerely," into the
one keystroke of your choice!

SuperKey keeps your confidential files-confidential!
Without encryption, your files are open secrets. Anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).
With SuperKey you can encrypt any file, even while running another program. As long as you keep
the password secret, only you can decode your file correctly. SuperKey also implements the U.S.
government Data Encryption Standard (DES).

~ RAM resident-accepts new macro files ~ Keyboard buffer increases 16 character
keyboard "type-ahead" buffer to 128
characters

even while running other programs
~ Pull-down menus
~ Superfast file encryption
~ Choice of two encryption schemes
~ On-line context-sensitive help
~ One-finger mode reduces key

commands to single keystroke

~ Real-time delay causes macro playback
to pause for specified interval

~ Transparent display macros allow
creation of menus on top of application
programs

~ Screen OFF/ON blanks out and restores
screen to protect against "burn in"

~ Data entry and format control using
"fixed" or "variable" fields

~ Command stack recalls last 256
characters entered ~ Partial or complete reorganization of

keyboard

Suggested Retail Price: $99.9S (not copy protected)

Minimum system configuration: IBM PC. Xl AT. PCjr. and true compatibles. PC-DOS (MS-DOS)
2.0 or greater. 128K RAM. One disk drive.

SuperKey is a registered trademark of Borland International, Inc. IBM. Xl, AT, and PCjr are
registered trademarks of International Business Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp. BOA 0062C

1'££1 £1@rIEIArAIA.E
'rl'~ : _AIASEI

The high-performance database manager
that's so advanced it's easy to use!

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists,
customer files, or even your company's budgets-Reflex is the database manager for you!

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends
database management with business graphics. Because a picture is often worth a 1000 words, Reflex
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see.

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports.
You can use database files created with Reflex or transferred from Lotus 1-2-3,@ dBASE,@ PFS: File,@
and other applications.

Reflex: The Critics' Choice

" ... if you use a PC, you should know about Reflex ... may be the best bargain in software today."
Jerry Pournelle, BYTE

"Everyone agrees that Reflex is the best-looking database they've ever seen."
Adam B. Green, InfoWorld

"The next generation of software has officially arrived." Peter Norton, PC Week

Reflex: don't use your PC without it!
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of
Borland's award-winning Reflex.

Suggested Retail Price: $149.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules
Monochrome Graphics CArd, or equivalent. PC·DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. lotus 1-2-3, dBASE,
or PFS: File optional.

Reflex is a trademark of Borland/ Analytica Inc. Lotus 1-2-3 IS a registered trademark of Lotus
Development Corporallon dBASE is a registered trademark of Ashton-Tate. PFS: File is a
registered trademark of Software Publishing Corporation. IBM, XT. AT. and IBM Color Graphics
Adapter are registered trademarks of International Business Machines Corporation. Hercules
Graphics Card is a trademark of Hercules Computer Technology MS-OOS IS a registered
trademark of Microsofl Corp Copyright 1987 Borland International BOR 0066C

IEILEI: liE trIIIBII'~
Includes 22 Uinstant templates" covering a broad range of

business applications (listed below). Also shows you how to
customize databases, graphs, cross tabs, and reports. It's an invaluable

analytical tool and an important addition to another one of
our best sellers, Reflex: The Database Manager.

Fasl-slart tulorial examples:
Learn Reflex8 as you work with practical business applications. The Reflex Workshop Disk supplies
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in each
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple
steps to adapt the files to your own needs.
22 practical business applications:
Workshop's 22 "instant templates" give you a wide range of analytical tools:

Administration
• Scheduling Appointments
• Planning Conference Facilities
• Managing a Project
• Creating a Mailing System
• Managing Employment Applications

Sales and Marketing
• Researching Store Check Inventory
• Tracking Sales Leads
• Summarizing Sales Trends
• Analyzing Trends

Production and Operations
• Summarizing Repair Turnaround

• Tracking Manufacturing Quality Assurance
• Analyzing Product Costs

Accounting and Financial Planning
• Tracking Petty Cash
• Entering Purchase Orders
• Organizing Outgoing Purchase Orders
• Analyzing Accounts Receivable
• Maintaining Letters of Credit
• Reporting Business Expenses
• Managing Debits and Credits
• Examining Leased Inventory Trends
• Tracking Fixed Assets
• Planning Commercial Real Estate Investment

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex:
The Workshop will help you quickly become an expert database analyst.

MlnlmWII system configuration: I. pc, AT, and Xl, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 384K RAM minimum. Requires Reflex:
The Database Manager, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card Dr equivalent.

Suggested Retail Price: $69.95
(not copy protected)

Reflex is a registered trademark and Reflex: The Workshop is a trademark of Borland/Analytica, Inc. IBM, AT, and Xl are registered trademarks of International Business
Machines Corp. Hercules is a trademcrk of Hercules Computer Technology. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987 Borland International

BOR 0088B

If you use an IBM® PC, you need

T U R B 0

Lightning®
. Turbo Lightning teams up
.with the Random House
Concise Word List to
check your spelling as
you type!

Turbo Lightning, using the
BO,OOO-word Random House
Dictionary, checks. your spelling
as you type. If you misspell a
word, it alerts you with a
"beep." At the touch of a key,
Turbo Lightning opens a
window on top of your
application program and
suggests the correct spelling.
Just press one key and the
misspelled word is instantly
replaced with the correct word.

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give· you instant access
to synonyms

Turbo Lightning lets you
choose just the right word from
a list of alternates, so you
don't say the same thing the
same way every time. Once
Turbo Lightning opens the
Thesaurus window, you see a
list of alternate words; select
the word you want, press
ENTER and your new word will
instantly replace the original
word. Pure magic!

If you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

The Turbo Lightning Proofreader

The Turbo Lightning Thesaurus

Suggested Retail Price: $99.95 (not copy protected)

You can teach Turbo
Lightning new words

You can teach your new Turbo
Lightning your name, business
associates' names, street
names, addresses, correct
capitalizations, and any
specialized words you use
frequently. Teach Turbo
Lightning once, and it
knows forever.

Turbo Lightning is the
engine that powers
Borland's Turbo Lightning
Library®

Turbo Lightning brings
electronic power to the
Random House Concise Word
List and Random House
Thesaurus. They're at your
fingertips-even while you're
running other programs. Turbo
Lightning will also "drive"
soon-to-be-released
encyclopedias, extended
thesauruses, specialized
dictionaries, and many other
popular reference works. You
get a head start with this
first volume in the Turbo
Lightning Library.

Minimum system configuration: IBM PC, Xl, Al, PCjr, and true compatibles with 2 floppy disk drives. PC-DOS (MS-DOS) 2.0 or greater.
256K RAM. Hard disk recommended.

BORLAND
INTERNATIONAL

Turbo Lightning and Turbo Lightning Library are registered trademarks 01 Borland InternatIOnal. Inc
IBM. XT. AT, and PCjr are registered trademarks of International Business Machines Corp. Random
House is a registered trademark of Random House, Inc Copyright 1987 Borland International

BOR 0070B

Your Development Toolbox and Technical Reference Manual for Thrbo Lightning®

l I G H T N I N G

Lightning Word Wizard includes complete, commented .. Turbo
Pascal® source code and all the technical information you'll

need to understand and work with Turbo Lightning's "engine."
More than 20 fully documented Turbo Pascal procedures

reveal powerful Turbo Lightning engine calls. Harness the full power
of the complete and authoritative'Random House® Concise

Word List and Random House Thesaurus.

Turbo Lightning's "Reference
Manual"
Developers can use the versatile on-line
examples to harness Turbo Lightning's
power to do rapid word searches. Lightning
Word Wizard is the forerunner of the data­
base access systems that will incorporate
and engineer the Turbo Lightning Library®
of electronic reference works.

The ultimate collection of word
games and crossword solvers!
The excitement, challenge, competition,
and education of four games and three
solver utilities-puzzles, scrambles, spell­
searches, synonym-seekings, hidden words,
crossword solutions, and more. You and
your friends (up to four people total)· can
set the difficulty level and contest the high­
speed smarts of Lightning Word Wizard!

Turbo Lightning-Critics' Choice
"Lightning's good enough to make programmers and users cheer, executives of other
software companies weep." Jim Seymour, PC Week

"The real future of Lightning clearly lies not with the spelling checker and thesaurus currently
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles

"This newest product from Borland has it all." Don Roy, 'Computing Now!

Minimum system configuration: IBM PC, XT, AT, PCjr, Portable, and true compatibles: 256K RAM minimum. PC-DOS (MS-DOS) 2.0
or greater. Turbo lightning software required .. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code.

Suggested Retail Price: $69.95
(not copy protected)

Turbo Pascal, Turbo lightning and Turbo Lightning library are registered trademarks and lightning Word Wizard is a trademark of Borland International. Inc. Random
House is a registered trademark of Random House, Inc, IBM. XT. AT, and PCjr are registered trademarks of International Business Machines Corp MS-DOS is a
registered trademark 01 Microsoft Corp. COPYright 1987 Borland International BOR0087B

Version 3.0 with 8081 support and BCD reals

Free MicroCa/c Spreadsheet With Commented Source Code!
FEATURES:
One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct them, and instantly
recompiles. You're off and running in
record time.

Built-in Interactive Editor: WordStar@Qike
easy editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

THE CRITICS' CHOICE:
"Language deal of the century ... Turbo Pascal:
it introduces a new programming environment
and runs like magic."

-Jeff Duntemann, PC Magazine

"Most Pascal compilers barely fit on a disk, but
Turbo Pascal packs an editor, compiler, linker,
and run-time library into just 39K bytes of
random access memory."

-Dave Garland, Popular Computing

MicroCalc: A sample spreadsheet on your disk
with ready-to-compile source code.

"What I think the computer industry is headed
for: well-documented, standard, plenty of
good features, and a reasonable price."

IBM@ PC Version: Supports Turtle Graphics,
color, sound, full tree directories, window
routines, input/output redirection, and
much more.

-Jerry Pour nelle, BYTE

LOOK AT TURBO NOW!

r;r More than 500,000 users worldwide. r;r Turbo Pascal named "Most

r;r Turbo Pascal is the de facto industry
Significant Product of the Year" by
PC WEEK.

standard.

r;r
r;r Turbo Pascal 3.0-the fastest Pascal

Turbo Pascal wins PC MAGAZINE'S development environment on the
award for technical excellence. planet, period.

Suggested Retail Price: $99.95;CPIM@-8o version without 8087 and BCD: $69.95 .

Features for 16-bit Systems: 8087 math co-processor support for intensive calculations.
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business application.

Minimum system configuration: 128K RAM minimum. Includes 8087 & BCD ·features for 16-bit MS-DOS 2.0 or later and
CP/M-861.1 or later. CP/M-80 version 2.2 or later 48K RAM minimum (8087 and BCD features not available). 8087
version requires 8087 or 80287 co-processor ..

Turbo Pascal is a registered trademark of Borland International, Inc. CPIM is a registered trademark
of Digital Research Inc. IBM is a registered trademark of International Business Machines Corp.
MS-DOS is a registered" trademark of Microsoft Corp. 'MlrdStar is a regislered trademark of
MicroPro International. Copyright 1987 Bortand International BOA 00618

VERSION 2.0

Learn Pascal From The Folks Who Created
The Turbo Pascal® Family

Borland International proudly presents Turbo Tutor, the perfect complement
to your Turbo Pascal compiler. Turbo Tutor is really for everyone-

even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine paints.
The manual and program disk focus on the whole spectrum of Turbo
Pascal programming techniques.

• For the Novice: It gives you a concise history of Pascal, tells you how to write a
simple program, and defines the basic· programming terms you need to know.

• Programmer's Guide: The heart of Turbo Pascal. The manual covers the fine pOints
of every aspect of Turbo Pascal. programming: program structure, data types, control
structures, . procedures and functions, scalar types, arrays, strings, pointers, sets, files,
and records.

• Advanced Concepts: If you're an expert, you'll love the sections detailing such topics as
linked lists, trees, and graphs. You'll also find sample program examples for PC-DOS and
MS-DOS.@

10,000 lines of commented source code, demonstrations of 20 Turbo Pascal features, multiple­
choice quizzes, an interactive on-line tutor, and more!

Turbo Tutor may be the only reference work about Pascal and programming you'll ever need!

Suggested Retail Price: $39.95 (not copy protected)

Minimum system configuration: Turbo Pascal 3.0. PC-DDS (MS-DOS) 2.0 or later. 192K RAM minimum (CP/M-80
version 2.2 or later: 64K RAM minimum).

Turbo Pascal and Turbo Tutor are registered trademarks of Borland International Inc. CP/M is a
registered trademark of Digital Research Inc. MS-DOS is a registered trademark of Microsoft Corp
Copyright 1987 Borland International BOR 0064C

nIRBO PASCAl.

DATARJlSE100tsox®
Is The Perfect Complement To Turbo Pascal@

It contains a complete library of Pascal procedures that
allows you to sort and search your data and build powerful database

applications. It's another set of tools from Borland that will give
even the beginning programmer the expert's edge.

THE TOOLS YOU NEED!
TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it
possible to access records in a file using key words instead of numbers. Now available with
complete source code on disk, ready to be included in your programs.

TURBO SORT: The fastest way to sort data using the aUICKSORT algorithm-the method
preferred by knowledgeable professionals. Includes source code.

GINST (General Installation Program): Gets your programs up and running on other
terminals. This feature alone will save hours of work and research. Adds tremendous value
to all your programs.

GET STARTED RIGHT AWAY.-FREE DATABASE!
Included on every Toolbox diskette is the source code to a working database which
demonstrates the power and simplicity of our Turbo Access search system. Modify it to suit
your individual needs or just compile it and run.

THE CRITICS' CHOICE!
"The tools include a B+ tree search and a sorting system. I've seen stuff like this, but not as
well thought out, sell for hundreds of dollars." -Jerry Pournell, BYTE MAGAZINE

"The Turbo Database Toolbox is solid enough and useful enough to come recommended."
-Jeff Duntemann, PC TECH JOURNAL

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: 128K RAM and one disk drive (CP/M·80: 48K). 16·bit systems: Turbo Pascal 2.0 or greater for
MS· DOS or PC· DOS 2.0 or greater. Turbo Pascal 2.1 or greater for CP/M·86 1.0 or greater. 8·bit systems: Turbo Pascal 2.0 or
greater for CP/M·80 2.2 or greater.

Turbo Pascal and Turbo Database Toolbox are registered trademarks of Borland International
Inc. CPIM is a registered trademark of Dig~al Research. Inc. MS-DOS is a registered
trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0063C

A Library of Graphics Routines for Use with Turbo Pasca/®
High-resolution graphics for your IBM" PC, Al," Xl,'"' PCjf', true PC compatibles, and the Heath

Zenith Z-100:" Comes complete with graphics window management.

Even if you're new to Turbo Pascal programming, the Turbo Pascal Graphix Toolbox will get you started
right away. It's a collection of tools that will get you right into the fascinating world of high-resolution
business graphics, including graphics window management. You get immediate, satisfying results. And
we keep Royalty out of American business because you don't pay any-even if you distribute your own
compiled programs that include all or part of the Turbo Pascal Graphix Toolbox procedures.

What you get includes:

• Complete commented source code on disk.
• Tools for drawing simple graphics.
• Tools for drawing complex graphics, including

curves with optional smoothing.
• Routines that let you store and restore graphic

images to and from disk.
• Tools allowing you to send screen images to

Epson@-compatible printers.

• Full graphics window management.
• Two different font styles for graphic labeling.
• Choice of line-drawing styles .
• Routines that will let you quickly plot functions

and model experimental data.
• And much, much more ...

"While most people only talk about low-cost personal computer software, Borland has been doing
something about it. And Borland provides good technical support as part of the price."

John Markov & Paul Freiberger, syndicated columnists.

II you ever plan to create Turbo Pascal programs that make use of business graphics or scientific
graphics, you need the Turbo Pascal Graphix Toolbox.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PCjr, true compatibles and the Heath Zenith Z-100. Turbo Pascal 3.0 or later. 192K
RAM minimum. Two disk drives and an IBM Color Graphics Adapter (CGA), IBM Enhanced Graphics Adapter (EGA), Hercules Graphics
Card or compatible.

BORLAND
INTERNATIONAL

Turbo Pascal and Turbo Graphix Toolbox are registered trademarks of Borland International,
Inc. IBM. Xl, AT. and PCjr are registered trademarks of International Business Machines
Corporation. Hercules Graphics Card is a trademark of Hercules Computer Technology. Heath
Zenith Z -100 is a trademark of Zenith Data Systems. Epson is a registered trademark of
Epson Corp. Copyright 1987 Borland Intemational BOR 0068C

mRBOPASCAl.

.EDJ2OR 2t:ol,BOX®
It's All You Need To Build Your Own Text Editor

Or Word Processor
Build your own lightning-fast editor and incor­
porate it into your Turbo Pascal8 programs.
Turbo Editor Toolbox gives you easy-to-install
modules. Now you can integrate a fast and powerful
editor into your own programs. You get the source
code, the manual, and the know-how.

Create your own word processor. We provide all
the editing routines. You plug in the features you want.
You could build a WordStar8 -like editor with pull-down
menus like Microsoft's8 Word, and make it work as fast
as WordPerfect.@

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for
two sample editors:

Simple Editor A complete editor ready to include in your programs. With windows, block commands, and
memory-mapped screen routines.

MicroStar A full-blown text editor with a complete pull-down menu user interface, plus a lot more.
Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

• Wordwrap
• UN-delete last line
• Auto-indent
• Find and Find/Replace with options
• Set left and right margin
• Block mark, move, and copy
• Tab, insert and overstrike modes,

centering, etc. MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

~ RAM-based editor. You can edit very large ~ Multiple windows. See and edit up to eight
files and yet editing is lightning fast. documents-or up to eight parts of the same

~ Memory-mapped screen routines. In- document-all at the same time.
stant paging, scrolling, and text display. ~ Multitasking. Automatically save your

~ Keyboard installation. Change control text. Plug in a digital clock, an appointment
keys from WordStar-like commands to any that alarm-see how it's done with MicroStar's
you prefer. "background" printing.

Best of all, source code is included for everything in the Editor Toolbox.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, 3270, PCjr, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 192K RAM.
You must be using Turbo Pascal 3.0 for IBM and compatibles.

Turbo Pascal and Turbo Editor Toolbox are registered trademarks 01 Borland International, Inc.
WordStar is a registered trademark 01 MicroPro International Corp. Word and MS-DOS are
registered trademarks 01 Microsoft Corp. WordPerfect is a trademark 01 Satellite Software
International. IBM, XT, AT, and PCjr are registered trademarks 01 International Business Machines
Corp. BOR 0067B

TURBO PASCAL

"MEBICAlIE1111IB 11111lBIIITM
New from Borland's Scientific & Engineering Division!

A complete collection 01 Turbo Pascar routines and programs
New from Borland's Scientific & Engineering Division, Turbo Pascal Numerical Methods Toolbox
implements the latest high-level mathematical methods to solve common scientific and engineering
problems. Fast.

So every time you need to calculate an integral, work with Fourier Transforms or incorporate any of the
classical numerical analysis tools into your programs, you don't have to reinvent the wheel. Because
the Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs that
gives you applied state-of-the-art math tools. It also includes two graphics demo programs, Least
Squares Fit and Fast Fourier Transforms, to give you the picture along with the numbers.

The Numerical Methods Toolbox is a must for you if you're involved with any type of scientific or
engineering computing. Because it comes with complete source code, you have total control of
your application.

What Numerical Methods Toolbox will do for you now:

• Find solutions to equations
• Interpolations
• Calculus: numerical derivatives and

integrals
• Fourier transforms

• Matrix operations: inversions, determinants
and eigenvalues

• Differential equations
• Least squares approximations

5 free ways to look at "Least Squares Fit"!

As well as a free demo "Fast Fourier Transforms," you also get "Least Squares Fit" in 5
different forms-which gives you 5 different methods of fitting curves to a collection of data pOints.
You instantly get the picture! The 5 different forms are:

1. Power 4. 5-term Fourier
2. Exponential 5. 5-term
3. Logarithm Polynomial

They're all ready to compile and run "as is." To modify or add graphics to your own programs,
you simply add Turbo Graphix Toolbox@ to your software library. Our Numerical Methods Toolbox is
designed to work hand-in-hand with our Turbo Graphix Toolbox to make professional graphics in
your own programs an instant part of the picture!

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 256K. Turbo Pascal 2.0 or later.
The graphics modules require a graphics monitor with an IBM CGA, IBM EGA, or Hercules compatible adapter card, and require the Turbo
Graphix Toolbox. MS-DOS generic version will not support Turbo Graphix Toolbox routines. An 8087 or 80287 numeric co-processor is
not required, but recommended for optimal performance.

Turbo Pascal Numerical Methods Toolbox is a Irademark and Turbo Pascal and Turbo Graphix
Toolbox are registered trademarks of Borland International, Inc. IBM, XT, and AT are
registered trademarks of International Business Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp Hercules is a trademark of Hercules Computer Technology.
Apple is a registered trademark of Apple Computer, Inc. Macintosh is a trademark of Mcintosh
Laboratory. Inc. licensed to Apple ComputerCoPYflght 1987 Borland International BOR 0219A

~.2VR80,PASCA£' , GAM.EWo.Rrcs®
Secrets And Strategies 01 The Masters Ale

Revealed For The First Time
Explore the world, of state-of-the-art computer games with Turbo GameWorks. Using

easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal.@> Or, for instant excitement, play the three

great computer games we've included on disk-compiled and ready to run.

TURBO CHESS

Test your chess-playing skills against your computer challenger: With Turbo GameWorks, you're on your way to
becoming a master chess player. Explore the complete Turbo Pascal source code and discover the secrets of
Turbo Chess.

"What impressed me the most was the fact that with this program you can become a computer chess analyst.
You can add new variations to the program at any time and make the program play stronger and stronger chess.
There's no limit to the fun and enjoyment of playing Turbo GameWorks Chess, and most important of all, with this
chess program there's no limit to how it can help you improve your game."

-George Koltanowski, Dean of American Chess; former President of
the United Chess Federation, and syndicated chess columnist.

TURBO BRIDGE,

Now play the world's most popular card game-bridge. Play one-on-one with your computer or against up to
three other opponents. With Turbo Pascal source code, you can even program your own bidding or scoring'
conventions.

"There has never been a bridge program written which plays at the expert level, and the ambitious user will
enjoy tackling that challenge, with the format already structured in the program. And for the inexperienced player,
the bridge program provides an easy-to-follow format that allows the user to start right out playing. The user can
'play bridge' against real competition without having to gather three other people."

-Kit Woolsey, writer of several articles and books on bridge,
and twice champion of the Blue Ribbon Pairs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku-the exciting strategy game also
known as Pente.e In this battle of wits, you and the computer take turns placing X's and D's on a grid of 19X19
squares until five pieces are lined up in a row. Vary the game if you like, using the source code available on your
disk.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PCjr, and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 192K
RAM minimum. To edit and compile the Turbo Pascal source code, you must be using Turbo Pascal 3.0 for IBM PCs and
compatibles.

TURBO

the natural language of ArtifIciaI.lnteIgence

Turbo Prolog brings fifth-generation supercomputer
power to your IBM®PCI

Turbo Prolog takes
programming into a new,
natural, and logical
environment
With Turbo Prolog,
because of its natural,
logical approach, both
people new to programming
and professional programmers
can build powerful applica­
tions such as expert systems,
customized knowledge
bases, natural language
interfaces, and smart
information management systems.
Turbo Prolog is a declarative language which
uses deductive reasoning to solve
programming problems.

Turbo Prolog's development system
includes:
o A complete Prolog compiler that is a variation

of the Clocksinand Mellish Edinburgh
standard Prolog.

o A full-screen interactive editor.
o Support for both graphic and text windows.
o All the tools that let you build your own

expert systems and AI applications with
unprecedented ease.

BORLAND
INTERNATIONAL

Turbo Prolog provides
a fully integrated pro­
gramming environment
like Borland's Turbo
Pascal,® the de facto
worldwide standard.
You get the
complete .Turbo
Prolog programming
system
You get the 200-page
manual you're holding,
software that includes
the lightning-fast Turbo
Prolog six-pass

compiler and interactive editor, and the
free GeoBase natural Query language
database, which includes commented
source code on disk, ready to compile.
(GeoBase is a complete database designed
and developed around U.S. geography.
You can modify it or use it "as is.")

Minimum system configuration: IBM PC, Xl,' AT, Portable, 3270, PCjr
and true .compatibles. PC-DOS (MS-DOS) 2.0 or later. 384K RAM
minimum.

Suggested Retail Price: $99.95
(not copy protected)

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark of Borland International. Inc.
IBM, AT, XT, and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a
registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR 00160

"'" ",,,,,D .-
Enhances Turbo Prolog with more than 80 tools

and over 8,000 lines 01 source code

Turbo Prolog, the natural language of Artificial Intelligence, is the
most popular AI package in the world with more than 100,000 users.

Our new Turbo Prolog Toolbox extends its possibilities.

The Turbo Prolog Toolbox. enhances Turbo Prolog-our 5th-generation computer programming
language that brings supercomputer power to your IBM PC and compatibles-with its more than 80
tools and over 8,000 lines of source code that can be incorporated into your programs, quite easily.

Turbo Prolog Toolbox features include:
@ Business graphics generation: boxes, circles, ellipses, bar charts, pie charts, scaled graphics
@ Complete communications package: supports XModem protocol
@ File transfers from Reflex,8 dBASE 111,8 Lotus 1-2-3,8 Symphony8
@ A unique parser generator: construct your own compiler or query language
@ Sophisticated user -interface design tools
@ 40 example programs
@ Easy-to-use screen editor: design your screen layout and I/O
@ Calculated fields definition
@ Over 8,000 lines of source code you can incorporate into your own programs

Suggested Retail Price: $99.9S (not copy protected)

Minimum system configuration: IBM PC, XT, AT or true compatibles. PC-DOS (MS-DOS) 2.0 or later. Requires Turbo Prolog 1.10
or higher. Dual-floppy disk drive or hard disk. 512K.

=a~, BORLAND
INTERNATIONAL

Turbo Prolog Toolbox and Turbo Prolog are trademarks of Borland International, Inc. Reflex
is a registered trademark of Borlandl Analytica, Inc. dBASE III is a registered trademark of
Ashton-Tate. Lotus 1-2-3 and Symphony are registered trademarks of lotus Devetopment
Corp. IBM, XT, and AT are registered trademarks of International Business Machines Corp.
MS-DOS is a registered trademark of Microsoft Corp. BOR 0240

E"'EIA: '''E BlIlrE'"
The solution to your most complex

equations-in seconds!
If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap.

Eureka also handles maximization and minimization problems, plots functions, generates reports, and
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you
solve your real-world mathematical problems fast, without having to learn numerical approximation
techniques. Using Borland's famous pu'll-down menu design and context-sensitive help screens, Eureka
is easy to learn and easy to use-as simple as a hand-held calculator.

X + exp(X) = 10 solved instantly instead of eventually!
Imagine you have to "solve for X," where X + exp(X) = 10, and you don't have Eureka: The Solver.
What you do have is a problem, because it's going to take a lot of time guessing at "X." With Eureka,
there's no guessing, no dancing in the dark-you get the right answer, right now. (PS: X = 2.0705799,
and Eureka solved that one in .4 of a second!)

How to use Eureka: The Solver
It's easy.
1. Enter your equation into the

full-screen editor
2. Select the "Solve" command
3. Look at the answer
4. You're done

Some of Eureka's key features
You can key in:
~ A formula or formulas
~ A series of equations-and solve for

all variables
~ Constraints (like X has to be

< or = 2)
~ A function to plot
~ Unit conversions
~ Maximization and minimization problems
~ Interest Rate/Present Value calculations
~ Variables we call "What happens?," like

You can then tell Eureka to
• Evaluate your solution
• Plot a graph
• Generate a report, then send the output

to your printer, disk file or screen
• Or all of the above

Eureka: The Solver includes
~ A full-screen editor
~ Pull-down menus
~ Context-sensitive Help
~ On-screen calculator
~ Automatic 8087 math co-processor

chip support
~ Powerful financial functions
~ Built -in and user -defined math and

financial functions
~ Ability to generate reports complete with

plots and lists
"What happens if I change this variable to
21 and that variable to 277"

~ Polynomial finder
~ Inequality solutions

Minimum system configuration: IBM PC, AT, XT, Portable,
3270 and true compatibles. PC-DOS (MS-DOS) 2.0 and
later. 384K.

Suggested Retail Price: $99.95*
(not copy protected)

Eureka The Solver IS a trademark of Borlirld International, Inc IBM, AT, and XT are registered
trademarks of International Business Machines Corp MS,DOS is a registered trademark of
Microsoft Corp Copyright 1987 Borland International 80R 0221 A
'Introductory price explfes July 1. 1987

Includes tree
MicroCalc spreadsheet

with source code

A complete interactive development environment
With Turbo C, you can expect what only Borland delivers:
Quality, Speed, Power and Price. And with its compilation
speed 01 more than 1000 lines a minute, Turbo C makes

everything else look like an exercise in slow motion.

Turbo C: The C compiler for both amateurs and professionals
If you're just beginning and you've "kinda wanted to learn C," now's your chance to do it the easy way.
Turbo C's got everything to get you going. If you're already programming in C, switching to Turbo C will
considerably increase your productivity and help make your programs both smaller and faster.

Turbo C: a complete interactive development environment
Like Turbo Pascal~ and Turbo Prolog,'" Turbo C comes with an interactive editor that will show
you syntax errors right in your source code. Developing, debugging, and running a Turbo C
program is a snap!

Technical Specifications
[y' Compiler: One-pass compiler generating native in- [y' Development Environment: A powerful "Make" is

line code, linkable object modules and assembler. included so that managing Turbo C program
The object module format is compatible with the development is easy. Borland's fast "Turbo
PC-DOS linker. Supports small, medium, compact, Linker" is also included. Also includes pull-down
large, and huge memory model libraries. Can mix menus and windows. Can run from the environ-
models with near and far pointers. Includes ment or generate an executable file.
floating pOint emulator (utilizes 8087/80287 if [y' Links with relocatable object modules created
installed). using Borland's Turbo Prolog into a

[y' Interactive Editor: The system includes a powerful, single program.
interactive full-screen text editor. If the compiler [y' ANSI C compatible. .
detects an error, the editor automatically positions ~ Start-up routine ~ource ~ode Included ..
the cursor appropriately in the source code. ~ Both. co~mand line and Integrated enVIronment

versions Included.

"Sieve" benchmark (25 iterations)

TUfbo C Microsoft~ C Lattice C

Compile time 3.89 16.37 13.90

Compile and link time 9.94 29.06 27.79

Execution time 5.11 9.51 13.79

Object code size 274 297 301

Price $99.95 $450.00 $500.00

Benchmark run on a 6 Mhz IBM AT using Turbo eversion 1.0 and the Turbo Linker version 1.0; Microsoft eversion 4.0 and the
MS overlay linker version 3.51; Lattice eversion 3.1 and the MS object linker version 3.05.

Suggested Retail Price: $99.95* (not copy protected) "Introductory offer good through July 1. 1987

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. One floppy drive. 320K.

~~~BORLAND 
l!l!IJ!a~ I N T ERN A TID N A L 

Turbo C and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of Borland 
International, Inc. Microsoft C and MS-DOS <re registered trademarks of Microsoft Corp. Lattice C 
is a registered trademark of Lattice, Inc. IBM, XT, and AT are registered trademarks of International 
Business Machines Corp. BOR 0243 



~lrnElr'PI® TIE IEBITI' 
IJJ II~J ... ~ : " •• Release 2.0 

MacintoshT

• 

The most complete and comprehensive collection of 
desk accessories available for your Macintosh! 

Thousands of users already know that SideKick is the best collection of desk accessories available 
for the Macintosh. With our new Release 2.0, the best just got better. 

We've just added two powerful high-performance tools to SideKick-Outlook": The Outliner 
and MacPlan": The Spreadsheet. They work in perfect harmony with each other and while you 
run other programs! 

Outlook: The Outliner 
• It's the desk accessory with more power than a stand-alone outliner 
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics 

into your outlines 
• Works hand-in-hand with MacPlan 
• Allows you to work on several outlines at the same time 

MacPlan: The Spreadsheet 
• Integrates spreadsheets and graphs 
• Does both formulas and straight numbers 
• Graph types include bar charts, stacked bar charts, pie charts and line graphs 
• Includes 12 example templates free! 
• Pastes graphics and data right into Outlook creating professional memos and reports, complete 

with headers and footers. 

SideKick: The Desktop Organizer, 
Release 2.0 now ineludes 

~ Outlook: The Outliner 
~ MacPlan: The Spreadsheet 
~ Mini word processor 
~ Calendar 
~ Phone Log 
~ Analog clock 
~ Alarm system 
~ Calculator 
~ Report generator 
~ Telecommunications (new version 'flOW 

supports XModem file transfer protocol) 

.;;~~~~~~~~"-i~89·····: 1990 
····i~S'5·94- $7324:: 

• 1367~ 5.11.$ t­
o 1'394'15 ~"'IE 

• O~ &~E4'".ii'~ 
o O:H~ Ltb,'r 

[]l <It£:" N;,ot .. n~\;. 

e 621<J1 O¥,rf'lud 

o l11E:'15 TotalE)(pifnSfS 

El "'. 
• 1843'15 heotF'rohl 

$683'5-;' $3'5449 
$1,:15.9::.3 $1:58691 

$1331 $1464 
$1936-5- $21962 
$20:.6:0 $2928: 
$47916 $52708 

$79037 $1,o5''''B4 

MacPlan does both spreadsheets and business 
graphs. Paste them into your Outlook files and 

generate professional reports. 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One BOOK or two 400K drives are recommended. 
With one 400K drive. a limited number of desk accessories will be installable per disk. 

BORLAND 
INTERNATIONAL 

SideKick is a registered trademark and Outlook and MacPlan are trademarks of Borland 
International, Inc. Macintosh is a trademark of Mcintosh Laboratory, tnc. licensed to Apple 
Computer, Inc. Copyright 1987 Borland International BOR 00690 



l ,rIIEl; 111 IA1AIA" 
~rj • • AIASEI 

The easy-to-use relational database that thinks like a spreadsheet. 
Reflex for the Mac lets you crunch numbers by entering formulas and link 

databases by drawing on-screen lines. 

• A sample 1040 tax application with Sched­
ule A, Schedule B, and Schedule D, each 
contained in a separate report document. 

• A portfolio analysis application with linked 
databases of stock purchases, sales, and 
dividend payments. 

• A checkbook application. 

• A client billing application set up for a law 
office, but easily customized by any 
professional who bills time. 

• A parts explosion application that breaks 
down an object into its component parts 
for cost analysis. 

Reflex for the Mac accomplishes all of these tasks without programming-using 
spreadsheet-like formulas. Some other Reflex for the Mac features are: 

• Visual database design. 
• "What you see is what you get" report and form layout 

with pictures. 
• Automatic restructuring 'of database files when data 

types are changed, or fields are added and deleted. 
• Display formats which include General, Decimal, 

Scientific, Dollars, Percent. 

• Data types which include variable length text, number, 
integer, automatically incremented sequence number, 
date, time, and logical. 

• Up to 255 fields per record. 
• Up to 16 files simultaneously open. 
• Up to 16 Mac fonts and styles are selectable for 

individual fields and labels. 

• file Edit rortnel Oeltrlbe Database Search Mise Window 
DefllBo,.ouerulew 

r"" ~::YI ~:::::::!~f "Ports 

components 1.loot 

(omponentOrl.leg 

~O$t I 
10 ___ ol'8mbl -.!... 

After opening the "Overview" window, you 
draw link lines between databases directly 
onto your Macintosh screen. 

The link lines you draw establish both 
visual and electronic relationships between 
your databases. 

You can have multiple windows open 
simultaneously to view all members of a 
linked set-which are interactive and truly 
relational. 

Critic's Choice 
" ... a powerful relational database ... uses a visual approach to information management." InloWorld 
" ... gives you a lot of freedom in report design; you can even import graphics." A+ Magazine 
" ... bridges the gap between the pretty programs and the power programs." Stewart Alsop, PC Letter 

Suggested Retail Price: $99.95* 
(no't copy protected) 

Minimum system conI/guilt/on: Macirtosh 512K or Macintosh Plus with one disk drive. Second external drive recommended. 

Reflex is a registered trademark of BorlandiAnalytica, Inc. Macintosh is a trademark of Mcintosh laboratory, Inc. and is used with express permission of its owner. 
Copyright 1987 Borland International 

"Introductory price expires July 1, 1987 

BOR0149A 



The ultimate Pascal development environment 

Borland's new Turbo Pascal for the Mac is so incredibly fast that it can 
compile 1,420 lines of source code in the 7.1 seconds it took you to read this! 

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac 
to compile at least 60,000 more lines of source code! 

Turbo Pascal for the Mac does both Windows and "Units" 
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units," 
which can be linked to any Turbo Pascal program. This "modular pathway" gives you "pieces" which can 
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the 
time it takes to develop large programs. 

Turbo Pascal for the Mac is so compatible with Lisae that they should be living together 
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run 
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File 
System of the Macintosh. 

The 27 -second Guide to Turbo Pascal for the Mac 
• Compilation speed of more than 12,000 lines 

per minute 
• "Unit" structure lets you create programs in 

modular form 
• Multiple editing windows-up to 8 at once 

Workshop Pascal (with minimal changes) 
• Compatibility with Hierarchical File System of 

your Mac 
• Ability to define default volume and folder names 

used in compiler directives 
• Compilation options include compiling to disk or 

memory, or compile and run 
• Search and change features in the editor speed up 

and simplify alteration of routines 
• No need to switch between programs to compile 

or run a program 
• Ability to use all available Macintosh memory 

without limit 
• Streamlined development and debugging • "Units" included to call all the routines provided by 
• Compatibility with Macintosh Programmer's Macintosh Toolbox 

Suggested Retail Price: $99.95* (not copy protected) 
"Introductory price expires July 1, 1987 

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive. 

Turbo Pascal and SideKick are registered trademarks of Borland International, Inc. and Reflex is a 
registered trademark of Bortand/ Analytica, tnc. Macintosh is a trademark of Mcintosh Laboratories, Inc. licensed 
to Apple Computer with its express permission. Lisa is a registered trademark of Apple Computer, Inc. Inside 
Macintosh is a copyright of Apple Computer, Inc. 
Copyright 1987 Borland International BOR 0167A 



Borland 
Software 
OBDBll fODAY 

-

_______ I I 

j 4585 Scotts Valley Drive Scotts Valley, California 95066 I i 
I In Ii I To Orde~ 141" ... , California II' 

By Credit call I' 

I Card, ' ... ,' (800) fi 
I Call 7A2 1133 r i (800) IAt, - II 

I 255-8008 In Canada call I' 

(800) 237-1136 I' 

I -------i 
I 

BOR0234 I 

I 







rou probably know us for our Turbo Pascale and Turbo Prolog.'" i 
Well, we've done it againl We'~e created Turbo Basic, becauS

I BASIC doesn't have to be slow. .' 

/I BASIC taught you how Free MicroCa'c 
to walk, Turbo Basic will spreadsheet 
teach you how to runl with source code 

With Turbo Basic, your only 
speed is "Fult Speed Ahead"! 

Turbo Basic isa complete 
development environme'1t. with a 
lightning fast compiler, an inter­
active editor and a trace debugging 
system. And because Turbo Basic 
is also compatible with BASICA, 
chances are that you already know 
how to use Turbo Basic. 

Turbo Basic ends the 
basic confusion. 

There's now one standard: 
Turbo Basic. 

And because Turbo Basic is a 
Borland product, the price is right, 
the quality is there, and the power 
is at your fingertips. Turbo Basic 
is part of the fast-growing Borland 
family of programming languages 
we call the~'Turbo Family." And 
hundreds of thousands, of users are 
already using Borland's languages. 
So, welcome to a whore new genera­
tion of smart PC users! 

Yes, we've included MicroCalc, OUi, 
sample spreadsheet, complete with: 
source code. So you can get started 
right away with a "real program." YOl 
can compile and run it "as is," 
or modify it. 

A technical look at Turbo Basic 
s' 

's' 
s' 

Full recursion supported 
Standard IEEE floating-point format 
Floating-point support, with full 8087 
coprocessor) integration. Software 
emulation if no 8087 present 

s' Program size limited only by available 
memory (no 64K limitation) 

s' EGA and CGA support 
s' Full integration of the compiler, editor, 

and executable program, with separate 
windows for editing, messages, 

. tracing, and execution 
s' Compile and run-time errors place you 

in source code where error occurred 
s' Access to local, static and global 

variables 
s' 
s' 
s' 

New long integer (32-bit) data type 
Full 80-bit precision 
Pull-down menus 

s' Full window management 

Minimum system ~onfiguration: IBM PC, AT, XT or true compatibles. 256K. pne floppy drive. PC-DOS 
(MS-DOS) 2.0 or later. 

Turbo Basic and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of Borlandlnternalional, Inc. 
IBM, AT, and XTare registered trademarks of International Business Machines Corp. MS-DOS is a registered trademark 
of Microsoft Corp. Copyright'1986 Borland International BOA 020' 



YOU probably know us for our Turbo Pascal· and Turbo ProJog.N 

Well, we've done it again! We '~e created Turbo Basic, because 
BASIC doesn't have to be slow. _ 

If BASIC taught you how Free MicroCalc , 
to walk, Turbo Basic will spreadsheet 
teach you how to run! \ with source cod!,. 

With Turbo Basic, your only -
speed is "Full Speed Ahead"! Yes, we've included MicroCalc, our 

Turbo Basic is a completp sample spreadsheet, complete with 
development environment with a source code. So you can get started 
lightning fast compiler, an inter- right away with a "real program." You 
active editor and a trace debugging can compile and run it "as is," 
system. And because Turbo Basic or modify it. 
is also compatible with BASICA, 
chances are that you already know 
how to use Turbo Basic. 

Turbo Basic ends the 
basic confusion. 

There's now one standard: 
Turbo Basic. 

And because Turbo Basic is a 
Borland product, the price is right. 
the qual ity is there, and the power 
is at your fingertips. Turbo Basic 
is part of the fast-growing Borland 
family of programming languages 
we call the "Turbo Family." And 
hundreds of thousands of users are 
already using Borland's languages. 
So, welcome to a whole new genera­
tion of smart PC users! 

A technical look at Turbo Basic 
B 
B 
B 

Full recursion supported 
Standard tEEE floating-point format 
Floating-point support, with full 8087 
coprocessor) integration. Software 
emulation if no 8087 present 

B Program size limited only by available 
memory (no 64K limitation) 

B EGA and CGA support 
B Full integration of the compiler, editor, 

and executable program, with separate 
windows for editing, messages, 

. tracing, and execution 
B Compile and run-time errors place you 

in source code where error occurred 
B Access to local, static and global 

variables 
B New long integer (32 -bit) data type 
B Full 80-bit precision 
B PUll-down menus 
B Full window management 

Minimum .yslem configuration: IBM PC, AT, XT or Irue compalibles. 256K. ene lIoppy drive. PC-DOS 
IMS-DDS) 2.0 or laler. 

Turbo Basic and Turbo Pascal are regislered Irademarks and Turbo Prolog is a trademark 01 Borland Inlernalional, Inc. 
IBM, AT, and XT are regislered Irademarks of Inlernational Business Machines Corp. MS-DOS is a registered Irademark 
of Microsoll Corp. Copyright 1986 Borland International BOA 0204 


