
I..;:

~ TURBO
: ASSEMBLER

-~--
'-.I

"-'

"-'

"-' QUICK REFERENCE GUIDE

, .

BORLAND

· '~J
~
~)

~J

~J

~
\~J

~
,~

~)

I:J

I~

Cj
C::.J
~I
--1---'

Turbo Assembler ®

Quick Reference Guide

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Rl

The material in Part 3 and Part 4 is reprinted with
permission of Intel Corporation, Copyright/Intel
Corporation 1987, 1990.

Copyright © 1991 by Borland International. All rights
reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc.
Other brand and product names are trademarks or
registered trademarks of their respective holders.

PRINTED IN THE USA.
109876432 1

- -'

c o N T

Part 1 Predefined symbols

$ 2
@code 2
@CodeSize 2
@CPU 2
@curseg 2
@data 2
@DataSize 2
??date 2
@fardata 2
@fardata? 2
@FileName 2
??filename 2
@Model 2
@Startup 3
??time 3
??version 3
@WordSize 3

Part 2 Operators

Ideal mode operator
precedence 6
MASM mode operator
precedence 6
Operators 7
() 7
*
+ (binary)
+ (unary)
- (binary)
- (unary)

/

?
[]
AND :
BYTE
BYTE PTR
CODEPTR
DATAPTR
DUP
DWORD

7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
9

E N T s

DWORDPTR 9
EQ 9
FAR 9
FARPTR 9
FWORD 9
FWORDPTR 9
GE 9
GT 9
HIGH 9
HIGH 10
LARGE to
LE 10
LENGTH 10
LOW 10
LOW 10
LT 10
MASK 10
MOD 10
NE 11
NEAR 11
NEARPTR 11
NOT 11
OFFSET 11
OR 11
PROC 11
PROC PTR 11
PTR 11
PWORD 12
PWORD PTR 12
QWORD 12
QWORD PTR 12
SEG 12
SHL 12
SHORT 12
SHR 12
SIZE 12
SMALL 13
SYMTYPE 13
TBYTE 13
TBYTE PTR 13
THIS 13
.TYPE 13

TYPE 13 .DATA? 22
TYPE 13 DB 22
UNKNOWN 13 DD 22
WIDTH 14 %DEPTH 22
WORD 14 DF 22
WORDPTR 14 DISPLAY 23
XOR 14 DOSSEG 23

The special macro operators 14 DP 23
& 14 DQ 23
< > 14 DT ... '" 23
! 14 DW 23
% 14 ELSE 24
;; 15 ELSEIF 0 ••••• 24

Part 3 Directives EMUL 24
END 24

.186 18 ENDIF 24

.286 18 ENDM 25

.286C 18 ENDP 25

.286P 18 ENDS 25

.287 18 EQU 0 •••••••••••••••• 25

.386 18 .ERR 25

.386C 18 ERR 0 ••••••••••••••• 25

.386P 18 .ERRI 25

.387 18 .ERR2 25

.486 18 .ERRB 25

.486C 18 .ERRDEF 0 •••••••• 26

.486P 19 .ERRDIF 26

.8086 19 .ERRDIFI 26

.8087 19 .ERRE 0 •••••••• 26
: 19 .ERRIDN 26
= 19 .ERRIDNI 26
ALIGN 19 ERRIF 26
.ALPHA 19 ERRIFI 26
ARG 19 ERRIF2 26
ASSUME 20 ERRIFB' 27
%BI 20 ERRIFDEF ... 0 ••••••••••••• 27
CATSTR 20 ERRIFDIF 0 •••• 27
.CODE 20 ERRIFDIFI 27
CODESEG 20 ERRIFE 0 ••••••••••••• 27
COMM 20 ERRIFIDN 27
COMMENT 21 ERRIFIDNI 27
%COND 21 ERRIFNB 0 •••••••• 27
CONST 21 ERRIFNDEF 27
.CREF 21 .ERRNB 28
%CREF 21 .ERRNDEF 28
%CREFALL 21 .ERRNZ 28
%CREFREF 21 EVEN . 0 ••••••••••••••••••• 28
%CREFUREF 21 EVENDATA 28
%CTLS 21 EXITM 28
.DATA 0 •••••••••• 22 EXTRN 28
DATASEG 22 .FARDATA 29

ii

-)

.~)

~)

:.:.)
-)

,-)

-'\

FARDATA 29
.FARDATA? 29
GLOBAL 29
GROUP 29
IDEAL 30
IF 30
IF1 30
IF2 30
IFB 30
IFDEF 31
IFDIF 31
IFDIFI 31
IFE 32
IFIDN 32
IFIDNI 32
IFNB 32
IFNDEF 32
%INCL 33
INCLUDE 33
INCLUDELIB 33
INSTR 33
IRP 33
IRPC 33
JUMPS 34
LABEL 34
.LALL 34
.LFCOND 34
%LINUM 34
%LIST 34
.LIST 34
LOCAL 34
LOCALS 35
MACRO 35
%MACS 35
MASM 35
MASM51 35
MODEL 36
.MODEL 36
MUL TERRS 36
NAME 36
%NEWP AGE 36
%NOCONDS 36
%NOCREF 36
%NOCTLS 37
NOEMUL 37
%NOINCL 37
NOJUMPS 37
%NOLIST 37
NOLOCALS 37
%NOMACS 37
NOMASM51 37

NOMULTERRS 37
NOSMART 37
%NOSYMS 37
%NOTRUNC 38
NOWARN 38
ORG 38
%OUT 38
P186 38
P286 38
P286N 38
P286P 38
P287 38
P386 38
P386N 39
P386P 39
P387 39
P486 39
P486N 39
P8086 39
P8087 39
%P AGESIZE 39
%PCNT 39
PN087 40
%POPLCTL 40
PROC 40
PUBLIC 40
PUBLICDLL 41
PURGE 41
%PUSHLCTL 41
QUIRKS 41
.RADIX 41
RADIX 41
RECORD 41
REPT 42
RETCODE 42
RETF 42
RETN 42
.SALL 42
SEGMENT 42
.SEQ 43
.sFCOND 43
SIZESTR 43
SMART 43
.sTACK 43
STACK 43
STRUC 43
SUBSTR 44
SUBTTL 44
%SUBTTL 44
%SYMS 44
% TABSIZE 44

iii

%TEXT 44
.TFCOND 44
TITLE 44
%TITLE 44
%TRUNC 44
UDATASEG 44
UFARDATA 45
UNION 45
USES 45
WARN 45
.XALL 45
.XCREF 45
.XLIST 45

Part 4 Processor Instructions

Operand-size and address-size
attributes 48

Default segment attribute ... 48
Operand-size and
address-size instruction
prefixes 48
Address-size attribute for
stack 49

Instruction format 49
ModR/M and SIB bytes 51
How to read the instruction
set pages 56
Flags 56
Opcode 57
Instruction 57
Clocks 60

AAA 61
AAD 61
AAM 61
AAS 62
ADC 62
ADD 63
AND 63
ARPL 64
BOUND 64
BSF 65
BSR 65
BSWAP 66
BT 66
BTC 66
BTR 67
BTS 67
CALL 67
CBW 69
CDQ 70
CLC 70

CLD 70
CLI 70
CLTS 71
CMC 71
CMP 72
CMPS, CMPSB, CMPSW,
CMPSD 72
CMPXCHG 73
CWD 74
CWDE 75
DAA 75
DAS 75
DEC 76
DIV 76
ENTER 76
HLT 77
IDIV 77
IMUL 78
IN 79
INC 79
INS, INSB, INSW, INSD 80
INT, INTO 81
INVD 82
INVLPG 82
IRET, IRETD 83
Jcc 83
JMP 86
LAHF 87
LAR 88
LEA 88
LEAVE 89
LGDT /LIDT 89
LGS, LSS, LFS, LDS, LES 90
LLDT 91
LMSW 91
LOCK 92
LODS, LODSB, LODSW,
LODSD 93
LOOP, LOOPcond 93
LSL 94
LTR 95
MOV 95
MOV 96
MOVS, MOVSB, MOVSW,
MOVSD 96
MOVSX 97
MOVZX 97
MUL 98
NEG 98
NOP 99
NOT 99

iv

OR 99 FCOMP 129
OUT 100 FCOMPP 129
OUTS, OUTSB, OUTSW, FCOS 129
OUTSD 100 FDECSTP 130
POP 101 FDISC FNOISI 130
POPA, POPAD 102 FDIV 130
POPF, POPFD 103 FDIVP 130
PUSH 103 FDIVR 131
PUSHA, PUSHAD 104 FDIVRP 131
PUSHF, PUSHFD 104 FENC FNENI 131
RCL, RCR, ROL, ROR 105 FFREE 131
REP, REPE, REPZ, REPNE, FIAOD 132
REPNZ 107 FICOM 132
RET 109 FICOMP 132
SAHF 110 FIDIV 132
SAL, SAR SHL, SHR 110 FIDIVR 133
SBB 112 FILO 133
SCAS, SCASB, SCASW, FIMUL 133
SCASD 112 FINCSTP 133
SETcc 113 FINIT, FNINIT 134
SGDT, SIDT 114 FIST 134
SHLD 115 FISTP 134

. SHRD 115 FISUB 134
SLDT 116 FISUBR 135
SMSW 116 FLD 135
STC 116 FLDCW 135
STD 117 FLDENV 135
STI 117 FLOLG2 136
STOS, STOSB, STOSW, FLOLN2 136
STOSO 117 FLOL2E 136
STR 118 FLOL2T 136
.SUB 119 FLOPI 137
TEST 119 FLDZ 137
VERR, VERW 120 FLDI 137
WAIT 120 FMUL 137
WBINVD 121 FMULP 138
XADD 121 'FNOP 138
XCHG 122 FPATAN 138
XLAT, XLATB 122 FPREM 138
XOR 123 FPREMI 139

Part 5 Coprocessor. instructions FPTAN 139
FRNDINT 139

F2XMl 127 FRSTOR 139
FABS 127 FSAVE, FNSAVE 140
FADD 127 FSCALE 140
FADDP 127 FSETPM 140
FBLD 128 FSIN 140
FBSTP 128 FSINCOS 141
FCHS 128 FSQRT 141
FCLEX ,FNCLEX 128 FST 141
FCOM 129 FSTCW ,FNSTCW 141

v

FSTENV , FNSTENV 142
'FSTP 142
FSTSW , FNSTSW 142
FSTSW AX , FNSTSW AX .. 142
FSUB 143
FSUBP 143
FSUBR 143
FSUBRP 143
FTST 144
FUCOM 144
FUCOMP 144
FUCOMPP 144
FWAIT 144
FXAM 145
FXCH 145
FXTRACT 145
FYL2X 145
FYL2XPI 146
F2XM1 146

vi

\
--/

,-j

~ ./

CJ

1

'-'

The Turbo Assembler Quick-Reference Guide contains abbreviated
discussions of the T ASM predefined symbols, operators, and directives in
Parts I, 2, and 3, and a thorough discussion of the processor and
coprocessor instructions in Parts 4 and 5.

Several notational conventions are followed in this manual:

• Italics: In text, italics represent labels, placeholders, variables, and ar­
rays. In syntax expressions, placeholders are set in italics to indicate
that they are user-defined.

• Boldface: Boldface is used in text for directives, instructions, symbols,
and operators, as well as for command-line options.

• CAPITALS: In text, capitalleUers are used to represent instructions, di­
rectives, registers, and operators.

• Monospace: Monospace type is used to display any sample code, text
or code that appears on your screen, and any text that you must actu­
ally type to assemble, link, and run a program.

• Keycaps: In text, keycaps are used to indicate a key on your keyboard. It
is often used when describing a key you must press to perform a par­
ticular function; for example, "Press Enter after typing your program
name at the prompt."

Introduction

,,...-

'-) p A R T

. ,

' /

Predefined symbols

-- /

~. "

-)

--)

$

All the predefined symbols can be used in both MASM and Ideal mode.

$
Represents the current location counter within the current segment.

@code

Alias equate for .CODE segment name.

@CodeSize

Numeric equate that indicates code memory model (O=near, l=far).

@CPU

Numeric equate that returns information about current processor directive.

@curseg

Alias equate for current segment.

@data

Alias equate for near data group name.

@DataSize

Numeric equate that indicates the data memory model (O=near, l=far,
2=huge).

??date

String equate for today's date.

@fardata

Alias equate for initialized far data segment name.

@fardata?

Alias equate for uninitialized far data segment name.

@FileName

Alias equate for current assembly file name.

??filename

String equate for current assembly file name.

@Model

Numeric equate representing the model currently in effect.

2 PART 7, Predefined symbols

-)

~)

~)

I
~j

'.- ~I

--'

'_ --I'

,~)

.~)

,_",')

@Startup

@Startup

Label that marks the beginning of startup code.

??time

String equate for the current time.

??version
Numeric equate for current Turbo Assembler version number.

@WordSize

Numeric equate that indicates 16- or 32-bit segments (2=16-bit, 4=32-bit).

PART 7, Predefined symbols 3

,--)

I
~ /

'- ~_I

,---)

,- "

,----I

,~)

~I

p A R T 2

Operators

This part covers the operators Turbo Assembler provides and their pre­
cedence. The two tables that follow detail operator precedence for Ideal
and MASM modes.

Ideal mode operator precedence

The following table lists the operators in order of priority (highest is first,
lowest is last):

• 0, [], LENGTH, MASK, OFFSET, SEG, SIZE, WIDTH

• HIGH, LOW

• +, - (unary)

• *, /, MOD, SHL, SHR

• +, - (binary)

• EQ, GE, GT, LE, LT, NE

• NOT

• AND

.OR,XOR

• : (segment override)

• . (structure member selector)

• HIGH (before pointer), LARGE, LOW (before pointer), PTR, SHORT,
SMALL, SYMTYPE

MASM mode operator precedence

• <, 0, [], LENGTH, MASK, SIZE, WIDTH

• . (structure member selector)

• HIGH, LOW

• +, - (unary)

• : (segment override)

• OFFSET, PTR, SEG, THIS, TYPE

• *, /, MOD, SHL, SHR

• +, - (binary)

• EQ, GE, GT, LE, LT, NE

• NOT

• AND

.OR,XOR

• LARGE, SHORT, SMALL, .TYPE

6 PART 2, Operators

()

-)

-) Operators
-)

() Ideal, MASM
'<

'- ./ (expression)

Marks expression for priority evaluation.

* Ideal, MASM

_) expressionl * expression2

Multiplies two integer expressions. Also used with 80386 addressing
modes where one expression is a register.

./

+ (binary)

expressionl + expression2

Adds two expressions.

+ (unary)

,~) + expression

C) Indicates that expression is positive.

' ___ I

- (binary)

expressionl - expression2

Subtracts two expressions.

- (unary)

- expression

Changes the sign of expression.

memptr·fieldname

-) Selects a structure member.

I~) /
'-_) expressionl / expression2

Divides two integer expressions.

PART 2, Operators

Ideal, MASM

Ideal, MASM

Ideal, MASM

Ideal, MASM

Ideal, MASM

Ideal, MASM

7

Ideal, MASM

segorgroup : expression

Generates segment or group override.

? Ideal, MASM

Dx?

Initializes with indeterminate data (where Dx is DB, DD, DF, DP, DQ,
DT,orDW).

[]

expression1 [expression2]

[expression1] [expression2]

Ideal, MASM

MASM mode: The [] operator can be used to specify addition or register
indirect memory operands.

Ideal mode: The [] operator .specifies a· memory reference.

AND
expression1 AND expression2

Performs a bit-by-bit logical AND of two expressions.

BYTE
BYTE expression

Forces address expression to be byte size.

BYTE PTR
BYTE PTR expression

Forces address expression to be byte size.

CODEPTR
CODEPTR expression

Returns the default procedure address size.

DATAPTR
DATAPTR expression

Forces address expression to model-dependent size.

DUP
count DUP (expression [,expression] ...)

Repeats a data allocation operation count times.

8

Ideal, MASM

Ideal

Ideal, MASM

Ideal, MASM

Ideal

Ideal, MASM

PART2, Operators

DWORD

'-)

'--) DWORD Ideal

,_ ./ DWORD expression

- ,I Forces address expression to be doubleword size.

DWORD PTR Ideal, MASM

DWORD PTR expression

) Forces address expression to be doubleword size.

EQ Ideal, MASM

expressionl EQ expression2
'--)

Returns true if expressions are equal.

FAR Ideal

FAR expression

Forces an address expression to be a far code pointer.

FAR PTR Ideal, MASM

~_) FAR PTR expression

'_) Forces an address expression to be a far code pointer.

FWORD Ideal ,-

FWORD expression

Forces address expression to be 32-bit far pointer size.

FWORD PTR Ideal, MASM

FWORD PTR expression

Forces address expression to be 32-bit far pointer size.

GE Ideal, MASM

expressionl GE expression2

Returns true if one expression is greater than or equal to the other.

GT Ideal, MASM

expressionl GT expression2

Returns true if one expression is greater than the other.

HIGH Ideal, MASM

HIGH expression

Returns the high part (8 bits or type size) of expression.

--
---.J PART 2, Operators 9

HIGH

HIGH Ideal

type HIGH expression

Returns the high part (8 bits or type size) of expression.

LARGE Ideal, MASM

LARGE expression

Sets expression's offset size to 32 bits. In Ideal mode, this operation is legal
only if 386 code generation is enabled.

LE
expressionl LE expression2

Returns true if one expression is less than or equal to the other.

LENGTH
LENGTH name

Returns number of data elements allocated as part of name.

LOW
LOW expression

Returns the low part (8 bits or type size) of expression.

LOW
type LOW expression

Returns the low part (8 bits or type size) of expression.

LT

expressionl L T expression2

Returns true if one expression is less than the other.

MASK
MASK recordfieldname
MASK record

Returns a bit mask for a record field or an entire record.

MOD

expressionl MOD expression2

Returns remainder (modulus) from dividing two expressions.

Ideal, MASM

Ideal, MASM

Ideal, MASM

Ideal

Ideal, MASM

Ideal, MASM

Ideal, MASM

10 PART 2, Operators

NE

NE Ideal, MASM

. -) expressionl NE expression2

-) Returns true if expressions are not equal.

NEAR Ideal

NEAR expression

Forces an address expression to be a near code pointer.

NEAR PTR Ideal, MASM

NEAR PTR expression

Forces an address expression to be a near code pointer.

- .) NOT Ideal, MASM

NOT expression

Performs a bit-by-bit complement (invert) of expression.

OFFSET Ideal, MASM

OFFSET expression

Returns the offset of expression within the current segment (or the group
that the segment belongs to, if using simplified segmentation directives or
Ideal mode).

OR Ideal, MASM

expressionl OR expression2

Performs a bit-by-bit logical OR of two expressions.

PROC Ideal

:1
PRoe expression

Forces an address expression to be a near or far code pointer.

I I PROC PTR Ideal, MASM

PRoe PTR expression

Forces an address expression to be a near or far code pointer.

PTR Ideal, MASM

:':'J type PTR expression

Forces address expression to have type size.

PART 2, Operators 11

PWORD

PWORD Ideal

PWORD expression

Forces address expression to be 32-bit far pointer size.

PWORD PTR Ideal, MASM

PWORD PTR expression

Forces address expression to be 32-bit far pointer size.

QWORD Ideal

QWORD expression

Forces address expression to be quadword size.

QWORD PTR Ideal, MASM

QWORD PTR expression

Forces address expression to be quadword size.

SEG Ideal, MASM

SEG expression

Returns the segment address of an expression that references memory.

SHL Ideal, MASM

expression SHL count

Shifts the value of expression to the left count bits. A negative count causes
the data to be shifted the opposite way.

SHORT Ideal, MASM

SHORT expression

Forces expression to be a short code pointer (within -128 to +127 bytes of
the current code location).

SHR Ideal, MASM

expression SHR count

Shifts the value of expression to the right count bits. A negative count
causes the data to be shifted the opposite way.

SIZE Ideal, MASM

SIZE name

Returns size of data item allocated with name. In MASM mode, SIZE re­
turns the value of LENGTH name multiplied by TYPE name. In Ideal
mode, SIZE returns the byte count within name's DUP.

12 PART 2, Operators

(-

I
-.'

SMALL

SMALL Ideal, MASM

SMALL expression

Sets expression's offset size to 16 bits . .In Ideal mode, this operation is legal
only if 386 code generation is enabled.

SYMTYPE

SYMTYPE

Returns a byte describing expression.

TBYTE

TBYTE expression

Forces address expression to be lO-byte size.

TBYTE PTR
TBYTE PTR expression

Forces address expression to be lO-byte size.

THIS
THIS type

Ideal

Ideal

Ideal, MASM

Ideal,MASM

Creates an operand whose address is the current segment and location
counter. type describes the size of the operand and whether it refers to
code or data .

. TYPE MASM

. TYPE expression

Returns a byte describing the mode and scope of expression.

TYPE IDEAL

TYPE namel name2

Applies the type of an existing variable or structure member to another
variable or structure member.

TYPE MASM

TYPE expression

Returns a number indicating the size or type of expression.

UNKNOWN Ideal

UNKNOWN expression

Removes type information from address expression.

PART 2, Operators 13

WIDTH

WIDTH
WIDTH recordfieldname
WIDTH record

Ideal, MASM

Returns the width in bits of a field in a record, or of an entire record.

WORD

WORD expression

Forces address expression to be word size.

WORD PTR

WORD PTR expression

Forces address expression to be word size.

XOR
expressionl XOR expression2

Performs bit-by-bit logical exclusive OR of two expressions.
Unconditional page break inserted for print formatting

The special macro operators

&
&name

Substitutes actual value of macro parameter name.

<>

Ideal

Ideal, MASM

Ideal, MASM

Ideal, MASM

Ideal, MASM

Treats text literally, regardless of any special characters it might contain.

Ideal, MASM

!character

Treats character literally, regardless of any special meaning it might other­
wise have.

% Ideal, MASM

% text

Treats text as an expression, computes its value and replaces text with the
result. text may be either a numeric expression or a text equate.

14 PART 2, Operators

..
"

;comment

-) Suppresses storage of a comment in a macro definition.
~j

d
~)

-)

-)

-)

,-)

-
,--)

PART 2, Operators

Ideal, MASM

15

(-

~)

-)

~j

~j

----------------- ~

~..J

.- .
-----J

=)

p A R T 3

Directives

.186

.186 MASM

Enables assembly of 80186 processor instructions .

. 286 MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc­
tions and 80287 numeric coprocessor instructions .

. 286C MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc­
tions and 80287 numeric coprocessor instructions .

. 286P MASM

Enables assembly of all 80286 (including protected mode) processor in­
structions and 80287 numeric coprocessor instructions .

. 287 MASM

Enables assembly of 80287 numeric coprocessor instructions .

. 386 MASM

Enables assembly of non-privileged (real mode) 386 processor instructions
and 387 numeric coprocessor instructions .

. 386C MASM

Enables assembly of non-privileged (real mode) 386 processor instructions
and 387 numeric coprocessor instructions .

. 386P MASM

Enables assembly of all 386 (including protected mode) processor instruc­
tions and 387 numeric coprocessor instructions .

. 387 MASM

Enables assembly of 387 numeric coprocessor instructions .

. 486 MASM

Enables assembly of non-privileged (real mode) instructions for the i486
processor .

. 486C MASM

Enables assembly of non-privileged (real mode) instructions for the i486
processor.

18 PART 3, Directives

(-

.486P

-) .486P MASM

~) Enables assembly of protected mode instructions for the 80486 processor .

-j

. 8086 MASM

Enables assembly of 8086 processor instructions only. This is the default
processor instruction mode used by Turbo Assembler .

. 8087 MASM

Enables assembly of 8087 numeric coprocessor instructions only. This is
the default coprocessor instruction mode used by Turbo Assembler.

Ideal, MASM

name:

- - Defines a near code label called name.

,~)

= Ideal, MASM

name = expression

Defines or redefines a numeric equate.

ALIGN Ideal, MASM

ALIGN boundary

Rounds up the location counter to a power-of-two address boundary (2, 4,
8, ...) .

. ALPHA MASM

Sets alphanumeric segment-ordering. The fa command-line option per­
forms the same function.

ARG Ideal, MASM

ARG argument [,argument] ... [=symbol]
[RETURNS argument [,argument]]

Sets up arguments on the stack for procedures. Each argument is assigned
a positive offset from the BP register, presuming that both the return ad­
dress of the procedure call and the caller's BP have been pushed onto the
stack already. Each argument has the following syntax (boldface items are
literal):

argname [[countll] [:[debug_size] [type] [:count211

The optional debug_size has this syntax:

[type] PTR

PART 3, Directives 19

ASSUME

ASSUME

ASSUME segmentreg:name [,segmentreg:name] ...
ASSUME segmentreg:NOTHING
ASSUME NOTHING

Ideal, MASM

Specifies the segment register (segmentreg) that will be used to calculate
the effective addresses for all labels and variables defined under a given
segment or group name (name). The NOTHING keyword cancels the asso­
ciation between the designated segment register and segment or group
name. The ASSUME NOTHING statement removes all associations be­
tween segment registers and segment or group names.

%81 Ideal, MASM

%BIN size

Sets the width of the object code field in the listing file to size columns.

CATSTR

name CATSTR string [,string] ...

Concatenates several strings to form a single string name .

. CODE

CODESEG

.CODE [name]
CODESEG [name]

Ideal, MASM51

MASM

Ideal, MASM

Defines the start of a code segment when used with the .MODEL direc­
tive. If you have specified the medium or large memory model, you can
follow the .CODE (or CODESEG) directive with an optional name that in­
dicates the name of the segment.

COMM Ideal, MASM

COMM definition ['definition] ...

Defines a communal variable. Each definition describes a symbol and has
the following format (boldface items are literal):

[distance] [language] symbolname[[countl]]:type [:count2]

distance can be either NEAR or FAR and defaults to the size of the default
data memory model if not specified. language is either C, PASCAL,
BASIC, FORTRAN, PROLOG, or NOLANGUAGE and defines any lan­
guage-specific conventions to be applied to symbolname. symbolname is the
communal symbol (or symbols, separated by commas). If distance is
NEAR, the linker uses countl to calculate the total size of the array. If dis- (
tance is FAR, the linker uses count2 to indicate how many elements there
are of size countl times the basic element size (determined by type). type
can be one of the following: BYTE, WORD, DATAPTR, CODEPTR,

20 PART 3, Directives

\ .)

_/

COMMENT

DWORD, FWORD, PWORD, QWORD, TBYTE, or a structure name.
count2 specifies how many items this communal symbol defines. Both
countl and count2 default to 1.

COMMENT MASM

COMMENT delimiter [text]
[text]
delimiter [text]

Starts a multiline comment. delimiter is the first non-blank character follow­
ing COMMENT.

%COND Ideal, MASM

Shows all statements in conditional blocks in the listing. This is the de­
fault mode for Turbo Assembler .

. CONST, MASM

CONST Ideal, MASM

,-) Defines the start of the constant data segment .

::.:.)

. CREF MASM

%CREF Ideal, MASM

Allows cross-reference information to be accumulated for all symbols en­
countered from this point forward in the source file .. CREF reverses the ef­
fect of any %XCREF or .XCREF directives that inhibited the information
collection.

%CREFALL Ideal, MASM

Causes all subsequent symbols in the source' file to appear in the cross­
reference listing. This is the default mode for Turbo Assembler.
%CREFALL reverses the effect of any previous %CREFREF or
% CREFUREF directives that disabled the listing of unreferenced or refer­
enced symbols.

%CREFREF Ideal, MASM

_J Disables listing of unreferenced symbols in cross-reference.

%CREFUREF Ideal, MASM

Lists only the unreferenced symbols in cross-:-reference.

%CTLS Ideal, MASM .

Causes listing control directives (such as % LIST, %INCL, and so on) to be
placed in the listing file.

PART 3, Directives. 21

. DATA

. DATA MASM

DATASEG Ideal

Defines the start of the initialized data segment in your module. You
must first have used the .MODEL directive to specify a memory model.
The data segment is put in a group called DGROUP, which also contains
the segments defined with the .STACK, .CONST, and .DATA? directives .

. DATA? MASM

Defines the start of the uninitialized data segment in your module. You
must first have used the .MODEL directive to specify a memory model.
The data segment is put in a group called DGROUP, which also contains

c·

the segments defined with the .STACK, .CONST, and .DATA directives. (--

DB Ideal, MASM

[namel DB expression [,expressionl ...

Allocates and initializes a byte of storage. name is the symbol you'll subse­
quently use to refer to the data. expression can be a constant expression, a
question mark, a character string, or a DUPlicated expression.

DD Ideal, MASM

[name] DD [type PTR] expression [,expression] ...

Allocates and initializes 4 bytes (a doubleword) of storage. name is the
symbol you'll subsequently use to refer to the data. type followed by PTR
adds debug information to the symbol being defined, so that Turbo De­
bugger can display its contents properly. type is one of the following:
BYTE,WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a 32-bit floating-point number, a question
mark, an address expression, or a DUPlicated expression.

%DEPTH

%DEPTH width

Ideal, MASM

Sets size of depth field in listing file to width columns. The default is 1 col-
umn.

DF Ideal, MASM

[name] DF [type PTR] expression [,expression] ...

Allocates and initializes 6 bytes (a far 4S-bit pointer) of storage. name is
the symbol you'll subsequently use to refer to the data. type followed by
PTR adds debug information to the symbol being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression

22 PART 3, Directives

(

r

I~

,)

_.)

. ,
I

-- ,
I ,

---...'

.- ,
I I

1-- ",

~)

DISPLAY

can be a constant expression, a question mark, an address expression, or a
DUPlicated expression.

DISPLAY
DISPLAY "text"

Ideal, MASM

Outputs a quoted string (text) to the screen.

DOSSEG Ideal, MASM

Enables DOS segment-ordering at link time. Use this directive only when
you are writing stand-alone assembler programs. Use DOSSEG once in
the main module that specifies the starting address of your program.

DP Ideal, MASM

[name] DP [type PTR] expression [,expression] ...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is
the symbol you'll subsequently use to refer to the data. type followed by
PTR adds debug information to the symbol being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a question mark, an address expression, or a
DUPlicated expression.

DQ Ideal, MASM

[name] DQ expression [,expression] ...

Allocates and initializes 8 bytes (a quadword) of storage. name is the sym­
bol you'll subsequently use to refer to the data. expression can be a con­
stant expression, a 64-bit floating-point number, a question mark, or a
DUPlicated expression.

01 Ideal, MASM

[name] DT expression [,expression] ...

Allocates and initializes 10 bytes of storage. name is the symbol you'll sub­
sequently use to refer to the data. expression can be a constant expression,
a packed decimal constant expression, a question mark, an 80-bit floating­
point number, or a DUPlicated expression.

OW Ideal, MASM

[name] DW [type PTR] expression [,expression] ...

Allocates and initializes 2 bytes (a word) of storage. name is the symbol
you'll subsequently use to refer to the data. type followed by PTR adds
debug information to the symbol being defined, so that Turbo Debugger
can display its contents properly. type is one of the following: BYTE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,

PART 3, Directives 23

ELSE

QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a question mark, an address expression, or a
DUPlicated expression.

ELSE

ELSE

IF condition
statementsl

[ELSE
statements2]

ENDIF

Ideal, MASM

Starts alternative conditional assembly block. The statements introduced
by ELSE (statements2) are assembled if condition evaluates to false.

ELSEIF
ELSEIF

IF conditionl
statementsl

[ELSEIF condition2
statements2]

ENDIF

Ideal, MASM

Starts nested conditional assembly block if condition2 is true. Several other
forms of ELSEIF are supported: ELSEIF1, ELSEIF2, ELSEIFB,
ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI, ELSEIFE, ELSEIFIDN,
ELSEIFIDNI, ELSEIFNB, and ELSEIFNDEF.

EMUL Ideal, MASM

Causes all subsequent numeric coprocessor instructions to be generated as
emulated instructions, instead of real instructions. When your program is
executed, you must have a software floating-point emulation package in­
stalled or these instructions will not work properly.

END Ideal, MASM

END [startaddress]

Marks the end of a source file. startaddress is a symbol or expression that
specifies the address in your program where you want execution to begin.
Turbo Assembler ignores any text that appears after the END directive.

ENDIF
ENDIF

24

Ideal, MASM·

PART 3, Directives

c

ENDM

,)

',-) IF condition

-)

statements
ENDIF

Marks the end of a conditional assembly block started with one if the IF­
xxxx directives.

ENDM Ideal, MASM

:.) Marks the end of a repeat block or a macro definition.

'-.)

ENDP Ideal, MASM

ENDP [procname]
[procname] ENDP

Marks the end of a procedure. If procname is supplied, it must match the
procedure name specified with the PROC directive that started the proce­
dure definition.

ENDS
ENDS [segmentname I strucname]
[segmentname I strucname]ENDS

Ideal, MASM

Marks end of current segment, structure or union. If you supply the op­
tional name, it must match the name specified with the corresponding
SEGMENT, STRUC, or UNION directive.

EQU Ideal, MASM

name EQU expression

=-~~ Defines name to be a string, alias, or numeric equate containing the result
~=) of evaluating expression .

I' '\

. ERR MASM

ERR Ideal, MASM

Forces an error to occur at the line that this directive is encountered on in
the source file .

. ERRl MASM

~.) Forces an error to occur on pass 1 of assembly .

,-" ,
,_ .. ,I

. ERR2 MASM

Forces an error to occur on pass 2 of assembly if multiple-pass mode (con­
trolled by 1m command-line option) is enabled .

. ERRB MASM

.ERRB argument

PART 3, Directives 25

.ERRDEF

Forces an error to occur if argument is blank (empty) .

. ERRDEF MASM

.ERRDEF symbol

Forces an error to occur if symbol is defined .

. ERRDIF MASM

.ERRDIF argumentl,argument2

Forces an error to occur if arguments are different. The comparison is case
sensitive .

. ERRDIFI MASM

.ERRDIFI argumentl,argument2

Forces an error to occur if arguments are different. The comparison is not
case sensitive .

. ERRE MASM

.ERRE expression

Forces an error to occur if expression is false (0) .

. ERRIDN MASM

.ERRIDN argumentl,argument2

Forces an error to occur if arguments are identical. The comparison is case
sensitive .

. ERRIDNI MASM

.ERRIDNI argumentl,argument2

Forces an error to occur if arguments are identical. The comparison is not
case sensitive.

ERRIF Ideal, MASM

ERRIF expression

Forces an error to occur if expression is true (nonzero).

ERRIFl Ideal, MASM

Forces an error to occur on pass 1 of assembly.

ERRIF2 Ideal, MASM

Forces an error to occur on pass 2 of assembly if multiple-pass mode (con­
trolled by 1m command-line option) is enabled.

26 PART 3, Directives

ERRIFB

-) ERRIFB Ideal, MASM
...... ",.1

ERRIFB argument

Forces an error to occur if argument is blank (empty).

ERRIFDEF Ideal, MASM

_) ERRIFDEF symbol

~) Forces an error if symbol is defined.

ERRIFDIF Ideal, MASM

~ ~, ERRIFDIF argumentl,argument2

-. ~)

Forces an error to occur if arguments are different. The comparison is case
sensitive.

ERRIFDIFI Ideal, MASM

~) ERRIFDIFI argumentl,argument2

--j Forces an error to occur if arguments are different. The comparison is not
case sensitive.

I~)

CJ
- '"

,'" "
_.)

'-./

ERRIFE Ideal, MASM

ERRIFE expression

Forces an error if expression is false (0).

ERRIFIDN Ideal, MASM

ERRIFIDN argumentl,argument2

Forces an error to occur if arguments are identical. The comparison is case
sensitive.

ERRIFIDNI Ideal, MASM

ERRIFIDNI argumentl,argument2

Forces an error to occur if arguments are identical. The comparison is not
case sensitive.

ERRIFNB Ideal, MASM

ERRIFNB argument

,-) Forces an error to occur if argument is not blank.

'_J

ERRIFNDEF

ERRIFNDEF symbol

-'. Forces an error to occur if symbol is not defined.
-)

PART 3, Directives

Ideal, MASM

27

.ERRNB

.ERRNB
.ERRNB argument

Forces an error to occur if argument is not blank.

.ERRNDEF
.ERRNDEF symbol

Forces an error to occur if symbol is not defined .

. ERRNZ
.ERRNZ expression

Forces an error to occur if expression is true (nonzero).

EVEN

MASM

MASM

MASM

Ideal, MASM

Rounds up the location counter to the next even address.

EVEN DATA Ideal, MASM

Rounds up the location counter to the next even address in a data seg­
ment.

EXITM Ideal, MASM

Terminates macro- or block-repeat expansion and returns control to the
next statement following the macro or repeat-block call.

EXTRN Ideal, MASM

EXTRN definition [,definition] ...

Indicates that a symbol is defined in another module. definition describes a
symbol and has the following format:

[language] name[countl]:type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, ASSEMBLER, or PROLOG are to be applied to symbol
name. name is the symbol that is defined in another module and can op­
tionally be followed by countl, an array element multiplier that defaults to
1. type must match the type of the symbol where it's defined and must be
one of the following: NEAR, FAR, PROC, BYTE, WORD, DWORD,
DATAPTR, CODEPTR, FWORD, PWORD, QWORD, TBYTE, ABS, or a
structure name. count2 specifies how many items this external symbol de­
fines and defaults to 1 if not specified.

28 PART 3, Directives

c

r

(

-)

-)

,- ./

~)

,,- !

.FARDATA

FAR DATA

.FARDATA [segmentname]
F ARDATA [segmentname]

.FARDATA

MASM

Ideal, MASM

Defines the start of a far initialized data segment. segmentname, if present,
overrides the default segment name .

. FARDATA? MASM

.FARDATA? [segmentname]

Defines the start of a far uninitialized data segment. segmentname, if pres­
ent, overrides the default segment name.

GLOBAL Ideal, MASM

GLOBAL definition [,definition] ...

Acts as a combination of the EXTRN and PUBLIC directives to define a
global symbol. definition describes the symbol and has the following for­
mat (boldface items are literal):

[language1name [[countl]] :type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, NOLANGUAGE, or PROLOG are to be applied to symbol
name. If name is defined in the current source file, it is made public exactly
as if used in a PUBLIC directive. If not, it is declared as an external sym­
bol of type type, as if the EXTRN directive had been used. name can be fol­
lowed by an optional array count multiplier, countl, which defaults to l.
type must match the type of the symbol in the module where it is defined
and must be one of the following: NEAR, FAR, PROC, BYTE, WORD,
DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD,
TBYTE, ABS, or a structure name. count2 specifies how many items this
symbol defines (1 is the default).

GROUP Ideal,· MASM

GROUP groupname segmentname [,segmentname] .. .
groupname GROUP segmentname [,segmentname] .. .

Associates groupname with one or more segments, so that all labels and
variables defined in those segments have their offsets computed relative
to the beginning of group groupname. segmentname can be either a segment
name defined previously with SEGMENT or an expression starting with
SEG. In MASM mode, you must use a group override whenever you ac­
cess a symbol in.a segment that is part of a group. In Ideal mode, Turbo
Assembler automatically generates group overrides for such symbols.

PART 3, Directives 29

IDEAL

IDEAL Ideal, MASM

Enters Ideal assembly mode. Ideal mode will stay in effect until it is over­
ridden by a MASM or QUIRKS directive.

IF
IF

IF expression
truesta tements

[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that expression is true (nonzero).

IFl
IF1

IF1
truestatements

[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the current assembly pass is
pass one.

IF2
IF2

IF2
truestatements

[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that multiple-pass mode (controlled
by the 1m command-line option) is enabled and the current assembly pass
is pass two.

IFB
IFB

30

Ideal, MASM

PART 3, Directives

(

)

")

. - .
,-)

)

,--_.l

1,-)

I=-)

=)

IFDEF

IFB argument
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that argument is blank (empty) .

IFDEF
IFDEF

Ideal, MASM

IFDEF symbol
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that symbol is defined.

IFDIF
IFDIF

Ideal, MASM

IFDIF argumentl,argument2
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are different.
The comparison is case sensitive.

IFDIFI
IFDIFI

Ideal, MASM

IFDIFI argumentl,argument2
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are different.
The comparison is not case sensitive.

IFE
IFE

Ideal, MASM

PART 3, Directives 31

IFIDN

IFE expression
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that expression is false. (.

IFIDN
IFIDN

IFIDN argumentl,argument2
truestatements

[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are identical.
The comparison is case sensitive.

IFIDNI
IFIDNI

IFIDNI argumentl,argument2
truestatements

[ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are identical.
The comparison is not case sensitive.

IFNB
IFNB

IFNB argument
truestatements

ELSE
falsestatements]

ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that argument is nonblank.

IFNDEF
IFNDEF

32

Ideal, MASM

PART 3, Directives

(

-j

-)

- . .1

IFNDEF symbol
truestatements

[ELSE
falsestatements]

ENDIF

%INCl

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that symbol is not defined.

O/oINCL Ideal, MASM

Enables listing of include files. This is the default INCLUDE file listing
_) mode.

'-)

'-)

"

'-_.j

'-)

INCLUDE MASM, Ideal

INCLUDE filename or INCLUDE "filename"
Includes source code from file filename at the current position in the mod­
ule being assembled. If no extension is specified, .ASM is assumed.

INCLUDELIB MASM, Ideal

INCLUDELIB filename or INCLUDE LIB "filename"
Causes the linker to include library filename at link time. If no extension is
specified, .LIB is assumed.

INSTR Ideal, MASM51

name INSTR [start,]stringl,string2

name is assigned the position of the first instance of string2 in stringl.
Searching begins at position start (position one if start not specified). If
string2 does not appear anywhere within stringl, name is set to zero.

IRP

IRP parameter ,arg 1 [,arg2] ...
statements

ENDM

Ideal, MASM

Repeats a block of statements with string substitution. statements are as­
sembled once for each argument present. The arguments may be any text,
such as symbols, strings, numbers, and so on. Each time the block is as­
sembled, the next argument in the list is substituted for any instance of pa­
rameter in the statements.

IRPC

IRPC parameter,string
statements

ENDM

Ideal, MASM

Repeats a block of statements with character substitution. statements are as­
sembled once for each character in string. Each time the block is as-

PART 3, Directives 33

JUMPS

sembled, the next character in the string is substituted for any instances of
parameter in statements.

JUMPS Ideal, MASM

Causes Turbo Assembler to look at the destination address of a condi­
tional jump instruction, and if it is too far away to reach with the short
displacement that these instructions use, it generates a conditional jump (-
of the opposite sense around an ordinary jump instruction to the desired
target address. This directive has the same effect as using the /HUMPS
command-line option.

LABEL

name LABEL type
LABEL name type

MASM, Ideal

Defines a symbol name to be of type type. name must not have been de­
fined previously in the source file. type must be one of the following:
NEAR, FAR, PROC, BYTE, WORD, DATAPTR, CODEPTR, DWORD,
FWORD, PWORD, QWORD, TBYTE, or a structure name .

. LALL

Enables listing of macro expansions .

. LFCOND

Shows all statements in conditional blocks in the listing.

%LlNUM

%LINUM size

MASM

MASM

Ideal, MASM

Sets the width of the line-number field in listing file to size columns. The
default is four columns.

%LlST Ideal, MASM

.LlST MASM

Shows source lines in the listing. This is the default listing mode.

LOCAL Ideal, MASM

In macros:
LOCAL symbol [,symboll ...

In procedures:
LOCAL element [,elementl ... [=symbol]

Defines local variables for macros and procedures. Within a macro defini­
tion, LOCAL defines temporary symbol names that are replaced by new

34 PART 3, Directives

-)

-)

~)

-. ,,'

'-)

LOCALS

unique symbol names each time the macro is expanded. LOCAL must ap­
pear before any other statements in the macro definition.

Within a procedure, LOCAL defines names that access stack locations as
negative offsets relative to the BP register. If you end the argument list
with an equal sign (=) and a symbol, that symbol will be equated to the
total size of the local symbol block in bytes. Each element has the follow­
ing syntax (boldface brackets are literal):

symname [[countl]] [:[debug_size] [:type] [:count2]]

type is the data type of the argument. It can be one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, NEAR, FAR, PROC, or a structure name. If you don't
specify a type, WORD size is assumed.

count2 specifies how many items of type the symbol defines. The default
for count2 is 1 if it is not specified.

countl is an array element size multiplier. The total space allocated for the
symbol is count2 times the length specified by the type field times count1.
The default for countl is 1 if it is not specified.

The optional debug_size has this syntax:

[type] PTR

LOCALS Ideal, MASM

LOCALS [prefix]

Enables local symbols, whose names will begin with two at-signs (@@) or
the two-character prefix if it is specified. Local symbols are automatically
enabled in Ideal mode.

MACRO

MACRO name [parameter [,parameter). ..]
name MACRO [parameter [,parameter] ...]

Ideal, MASM

Defines a macro to be expanded later when name is encountered. parame­
ter is a placeholder that you use in the the body of the macro definition
wherever you want to substitute one of the actual arguments the macro is
called with.

%MACS Ideal, MASM

Enables listing of macro expansions.

MASM Ideal, MASM

_) Enters MASM assembly mode. This is the default assembly mode for
Turbo Assembler.

MASM51 Ideal, MASM

Enables assembly of some MASM 5.1 enhancements.

,,-. ,)

'--) PART 3, Directives 35

MODEL

MODEL Ideal, MASM

.MODEL MASM

MODEL [model modifier] memorymodel [module name]
[,[language modifier] language] ['model modifier]

.MODEL [model modifier] memorymodel [module name]
[,[language modifier] language] [,model modifier]

Sets the memory model for simplified segmentation directives. model modi­
fier can come before memorymodel or at the end of the statement and must
be either NEARST ACK or F ARST ACK if present. memorymodel is TINY,
SMALL, MEDIUM, COMPACT, LARGE, HUGE or TCHUGE. module
name is used in the large models to declare the name of the code seg­
ment.language modifier is WINDOWS, ODDNEAR, ODD FAR, or NOR­
MAL and specifies generation of MSWindows procedure entry and exit
code. language specifies which language you will be calling from to access
the procedures in this module: C, PASCAL, BASIC, FORTRAN, PRO­
LOG, or NOLANGUAGE. Turbo Assembler automatically generates the
appropriate procedure entry and exit code when you use the PROC and
ENDP directives. language also tells Turbo Assembler which naming con­
ventions to use for public and external symbols, and in what order proce­
dure arguments were pushed onto the stack by the calling module. Also,
the appropriate form of the RET instruction is generated to remove the ar­
guments from the stack before returning if required.

MULTERRS Ideal, MASM

Allows multiple errors to be reported on a single source line.

NAME Ideal, MASM

NAME modulename

Sets the object file's module name. This directive has no effect in MASM
mode; it only works in Ideal mode.

%NEWPAGE Ideal, MASM

Starts a new page in the listing file.

%NOCONDS Ideal, MASM

Disables the placement of statements in conditional blocks in the listing
file.

%NOCREF Ideal, MASM

%NOCREF [symbol, ...]

Disables cross-reference listing (CREF) information accumulation. If you
supply one or more symbol names, cross-referencing is disabled only for
those symbols.

36 PART 3, Directives

"

'-)

,---,I

%NOCTLS

%NOCTLS Ideal, MASM

Disables placement of listing-control directives in the listing file. This is
the default listing-control mode for Turbo Assembler.

NOEMUL Ideal, MASM

Causes all subsequent numeric coprocessor instructions to be generated as
real instructions, instead of emulated instructions. When your program is
executed, you must have an 80x87 coprocessor installed or these instruc­
tions will not work properly. This is the default floating-point assembly
mode for Turbo Assembler.

%NOINCL Ideal, MASM

Disables listing of source lines from INCLUDE files.

NOJUMPS Ideal, MASM

Disables stretching of conditional jumps enabled with JUMPS. This is the
default mode for Turbo Assembler.

%NOLIST Ideal, MASM

Disables output to the listing file.

NOLOCALS Ideal, MASM

Disables local symbols enabled with LOCALS. This is the default for
Turbo Assembler's MASM mode.

%NOMACS Ideal, MASM

Lists only macro expansions that generate code. This is the default macro
listing mode for Turbo Assembler.

NOMASM51 Ideal, MASM

Disables assembly of certain MASM 5.1 enhancements enabled with
MASM51. This is the default mode for Turbo Assembler.

NOMULTERRS Ideal, MASM

Allows only a single error to be reported on a source line. This is the de­
fault error-reporting mode for Turbo Assembler.

NOSMART Ideal, MASM

_j Disables code optimizations that generate different code than MASM.
,-

%NOSYMS Ideal, MASM

Disables placement of the symbol table in the listing file.

_-...-i

.:) PART 3, Directives 37

%NOTRUNC

%NOTRUNC Ideal, MASM

Prevents truncation of fields whose contents are longer than the corre­
sponding field widths in the listing file.
60 points

NOWARN Ideal, MASM

NOWARN [warnclassl

Disables warning messages with warning identifier warnclass, or all warn­
ing messages if warnclass is not specified.

ORG Ideal, MASM

aRC expression

Sets the location counter in the current segment to the address specified
by expression.

%OUT
%OUT text

Displays text on screen.

P186
Enables assembly of 80186 processor instructions.

P286

MASM

Ideal, MASM

Ideal, MASM

Enables assembly of all 80286 (including protected mode) processor in­
structions and 80287 numeric coprocessor instructions.

P286N Ideal, MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc­
tions and 80287 numeric coprocessor instructions.

P286P Ideal, MASM

Enables assembly of all 80286 (including protected mode) processor in­
structions and 80287 numeric coprocessor instructions.

P287 Ideal, MASM

Enables assembly of 80287 numeric coprocessor instructions.

P386 Ideal, MASM

Enables assembly of all 386 (including protected mode) processor instruc­
tions and 387 numeric coprocessor instructions.

38 PART 3, Directives

..)

P386N

P386N Ideal, MASM

Enables assembly of non-privileged (real mode) 386 processor instructions
and 387 numeric coprocessor instructions.

P386P Ideal, MASM

Enables assembly of all 386 (including protected mode) processor instruc­
tions and 387 numeric coprocessor instructions.

P387 Ideal, MASM

-) Enables assembly of 387 numeric coprocessor instructions.

P486 Ideal, MASM

Enables.assembly of all i486 (including protected mode) processor instruc.,.
tions.

P486N Ideal, MASM

_) Enables assembly of non-privileged (real mode) i486 processor instruc­
tions.

..)

'-.)

._J

"-)

P8086 Ideal, MASM

Enables assembly of 8086 processor instructions only. This is the default
processor instruction mode for Turbo Assembler .

P8087 Ideal, MASM

Enables assembly of 8087 numeric coprocessor instructions only. This is
the default coprocessor instruction mode for Turbo Assembler.
PAGE,MASM

%PAGESIZE Ideal, MASM

PAGE [rows] [,eoIs]
%PAGESIZE [rows] [,coIs]

Sets the listing page height and width, starts new pages. rows specifies the
number of lines that will appear on each listing page (10 .. 255). eo Is speci­
fies the number of columns wide the page will be (59 . .255). Omitting rows
or cois leaves the current setting unchanged. If you follow PAGE with a
plus sign (+), a new page starts, the section number is incremented, and
the page number restarts at 1. PAGE with no arguments forces the listing
to resume on a new page, with no change in section number.

%PCNT
%PCNTwidth

Ideal, MASM

Sets segment:offset field width in listing file to width columns. The default
is 4 for 16-bit segments and 8 for 32-bit segments.

PART 3, Directives 39

PN087

PN087 Ideal, MASM

Prevents the assembling of numeric coprocessor instructions (real or emu­
lated).

%POPLCTL
Resets the listing controls to the way they were when the last
% PUSHLCTL directive was issued.

PROC
PROC [language modifier] [language] name [distance]

[USES items,] [argument [,argument] ...]
[RETURNS argument [,argument] ...]

name PROC [language modifier] [language] [distance]
[USES items,] [argument [,argument] ...]
[RETURNS argument [,argument] ...]

Ideal, MASM

Ideal, MASM

Defines the start of procedure name. language modifier is either WINDOWS
or NOWINDOWS, to specify generation of MSWindows entry/exit code.
language specifies which language you will be calling from to access this
procedure: C, PASCAL, BASIC, FORTRAN, NOLANGUAGE, or PRO­
LOG. This determines symbol naming conventions, the order of any argu­
ments on the stack, and whether the arguments will be left on the stack
when the procedure returns. distance is NEAR or FAR and determines the
type of RET instruction that will be assembled at the end of the proce­
dure. items is a list of registers and/or single-token data items to be
pushed on entry and popped on exit from the procedure. argument de­
scribes an argument the procedure is called with. Each argument has the
following syntax:

argname[[countl]] [[:distance] [PTR] type] [:count2]

argname is the name you'll use to refer to this argument throughout the
procedure. distance is NEAR or FAR to indicate that the argument is a
pointer of the indicated size. type is the data type of the argument and can
be BYTE, WORD, DWORD, FWORD, PWORD, QWORD, TBYTE, or a
structure name. WORD is assumed if none is specified. countl and count2
are the number of elements of type. PTR tells Turbo Assembler to emit
debug information to let Turbo Debugger know that the argument is a
pointer to a data item. Using PTRwithout distance causes the pointer size
to be based on the current memory model and segment address size. RE­
TURNS introduces one or more arguments that won't be popped from
the stack when the procedure returns.

PUBLIC Ideal, MASM

PUBLIC [language] symbol [,[language] symbol] ...

Declares symbol to be accessible from other modules. If language is speci­
fied (C, PASCAL, BASIC, FORTRAN, ASSEMBLER, or PROLOG), sym­
bol is made public after having the naming conventions of the specified
language applied to it.

40 PART 3, Directives

. ~)

,
'- ---'

\ '

_.)

. ,

.J

.•.)

PUBLlCDLL

PUBLlCDLL Ideal, MASM

PUBLICDLL [language] symbol [,[language] symbol1 ...

Declares symbols to be accessible as dynamic link entry points from other
modules. symbol (a PROC or program label, data variable name, or nu­
meric constant defined with EQU) becomes accessible to other programs
under OS/2. If language is specified (C, PASCAL, BASIC, FORTRAN,
PROLOG, or NOLANGUAGE), symbol is made public after having the
naming conventions of the specified language applied to it.

PURGE Ideal, MASM

PURGE macroname [,macroname] ...

Removes macro definition macroname.

%PUSHLCTL Ideal, MASM

Saves current listing controls on a 16-level stack.

QUIRKS Ideal, MASM

Allows you to assemble a source file that makes use of one of the true
MASMbugs .

. RADIX MASM

RADIX Ideal, MASM

.RADIX radix
RADIX radix

Sets the default radix for integer constants in expressions to 2, 8, 10, or 16.

RECORD MASM, Ideal

name RECORD field [,field] .. .
RECORD name field [,field] .. .

Defines record name that contains bit fields. Each field describes a group of
bits in the record and has the following format (boldface items are literal):

fieldname:width[=expression]

fieldname is the name of a field in the record. width (1..16) specifies the
number of bits in the field. If the total number of bits in all fields is 8 or
less, the record will occupy 1 byte; 9 .. 16 bits will occupy 2 bytes; other­
wise, it will occupy 4 bytes. expression provides a default value for the
field .

PART 3, Directives 41

REPT

REPT

REPT expression
statements

ENDM

Repeats a block of statements expression times.

RETCODE

Ideal, MASM

Ideal, MASM

Generates either a near return (2-byte displacement) or a far return (4-byte
displacement) depending on the size of the memory model declared in
the .MODULE directive. A tiny, small, or compact memory model results
in a near return, while a medium, large, or huge memory model results in
a far return. See the RET processor instruction in Chapter 4 for more infor­
mation.

RETF Ideal, MASM

Generates a far return (4-byte displacement) from a procedure. See the
RET processor instruction in Chapter 4 for more information.

RETN Ideal, MASM

Generates a near return (2-byte displacement) from a procedure. See the
RET processor instruction in Chapter 4 for more information .

. SALL MASM

Suppresses the listing of all statements in macro expansions.

SEGMENT

SEGMENT name [align] [combine] [use] ['class']
name SEGMENT [align] [combine] [use] ['class']

MASM, Ideal

Defines segment name with full attribute control. If you have already de­
fined a segment with the same name, this segment is treated as a continu­
ation of the previous one. align specifies the type of memory boundary
where the segment must start: BYTE, WORD, DWORD, PARA (default),
or PAGE. combine specifies how segments from different modules but
with the same name will be combined at link time: AT expression (locates
segment at absolute paragraph address expression), COMMON (locates
this segment and all other segments with the same name at the same ad­
dress), MEMORY (concatenates all segments with the same name to form
a single contiguous segment), PRIVATE (does not combine this segment
with any other segments; this is the default used if none specified), PUB­
LIC (same as MEMORY above), STACK (concatenates all segments with
the same name to form a single contiguous segment, then initializes SS to
the beginning of the segment and SP to the length of the segment) or VIR­
TUAL (defines a special kind of segment that will be treated as a common
area and attached to another segment at link time). use specifies the de­
fault word size for the segment if 386 code generation is enabled, and can
be either USE16 or USE32. class controls the ordering of segments at link

42 PART 3, Directives

,-

1'0

time: segments with the same class name are loaded into memory to­
gether, regardless of the order in which they appear in the source file .

. SEQ

.SEQ

MASM

Sets sequential segment-ordering. This is the default ordering mode for
Turbo Assembler .. SEQ has the same function as the /s command-line op­
tion .

. SFCOND MASM

Prevents statements in false conditional blocks from appearing in the list­
ing file.

SIZESTR Ideal, MASM51

,_) name SIZESTR string

=j Assigns the number of characters in string to name. A null string has a
=-) length of zero.

~)

~j

::.J

CJ

,-)

~)

=J
~)

SMART Ideal, MASM

Enables all code optimizations.

.STACK MASM

STACK Ideal, MASM

.sTACK [size]
STACK [size]

Defines the start of the stack segment, allocating size bytes. 1024 bytes are
allocated if size is not specified.

STRUC
nameSTRUC

fields
[name] ENDS
STRUC name

fields
ENDS [name]

MASM, Ideal

Defines a structure called name containing fields. Each field uses the nor­
mal data allocation directives (DB, DW, and so on) to define its size. fields
may be named or remain nameless. Field names must be unique when
using MASM mode but don't need to be when using Ideal mode.

PART 3, Directives 43

SUBSTR

SUBSTR Ideal, MASM51

name SUBSTR string,position[,size]

Defines a new string name consisting of characters from string starting at
position, with a length of size. All the remaining characters in string, start­
ing from position, are assigned to name if size is not specified.

SUBTTL

%SUBTTL

SUBTTL text
%SUBTTL "text"

Sets subtitle in listing file to text.

%SYMS

MASM

Ideal, MASM

Ideal, MASM

Enables symbol table placement in listing file. This is the default symbol
listing mode for Turbo Assembler.

%TABSIZE Ideal, MASM

% TABSIZE width

Sets the number of columns between tabs in the listing file to width. The
default is 8 columns.

%TEXT

%TEXTwidth

Ideal, MASM

Sets width of source field in listing file to width columns .

. TFCOND

Toggles conditional block-listing mode.

TITLE

%TITLE

TITLE text
% TITLE "text"

Sets title in listing file to text.

%TRUNC

Truncates listing fields that are too long.

UDATASEG

Defines the start of an uninitialized data segment.

44

MASM

MASM

Ideal, MASM

Ideal, MASM

Ideal, MASM

PART 3, Directives

i'

(

(

-)

~j

'_J

-)

--_ .. '

UFARDATA

UFARDATA Ideal, MASM

Defines the start of an uninitialized far data segment.

UNION

UNION name
fields

ENDS [name]
name UNION

fields
[name] ENDS

Ideal, MASM (disabled by QUIRKS)

Defines a union called name. A union is just like a STRUC except that all
its members have an offset of zero from the start of the union. This results
in a set of fields that are overlayed, allowing you to refer to the memory
area defined by the union with different names and different data sizes.
The length of a union is the length of its largest member, not the sum of
the lengths of its members as in a STRUC. fields define the fields that com­
prise the union. Each field uses the normal data allocation directives (DB,
DW, and so on) to define its size.

USES Ideal, MASM

USES item [,item] ...

Indicates which registers or single-token data items you want to have
pushed at the beginning of the enclosing procedure and which ones you
want popped just before the procedure returns. You must use this direc­
tive before the first instruction that actually generates code in your proce­
dure.

WARN Ideal, MASM

WARN .[warnclass]

Enables the type of warning message specified with warnclass, or all warn­
ings if warn class is not specified. warn class maybe one of: ALN, ASS,
BRK, ICG, LCD, OPI, OPP, OPS, OVF, ,PDC, PRO, PQK, RES, or TPI.

.XALL MASM

=j Causes only macro expansions that generate code or data to be listed .

. XCREF MASM -..
~) Disables cross-reference listing (CREF) information accumulation .

. XLlST . MASM
~. ,. ~,

Disables subsequent output to listing file.

PART 3, Directives 45

~-)

~\

_J

p A R T 4

Processor Instructions

This part presents instructions for the x86 in alphabetical order. For each
instruction, the forms are given for each operand combination, including
object code produced, operands required, execution time, and a descrip­
tion. For each instruction, there is an operational description and a sum­
mary of exceptions generated.

Operand~size and address-size attributes

When executing an instruction, the x86 can address memory using either
16- or 32-bit addresses. Consequently, each instruction that uses memory
addresses has associated with it an address-size attribute of either 16 or 32
bits. Sixteen-bit addresses imply both the use of a 16-bit displacement in
the instruction and the generation of a 16-bit address offset (segment rela­
tive address) as the result of the effective address calculation. Thirty-two­
bit addresses imply the use of a 32-bit displacement and the generation of
a 32-bit address offset. Similarly, an instruction that accesses words (16
bits) or doublewords (32 bits) has an operand-size attribute of either 16 or
32 bits.

The attributes are determined by a combination of defaults, instruction
prefixes, and (for programs executing in protected mode) size-specifica­
tion bits in segment descriptors.

Default segment attribute

For programs executed in protected mode, the D-bit in executable-seg­
ment descriptors determines the default attribute for both address size
and operand size. These default attributes apply to the execution of all
instructions in the segment. A value of zero in the D-bit sets the default
address size and operand size to 16 bits; a value of one, to 32 bits.

Programs that execute in real mode or virtual-8086 mode have 16-bit ad­
dresses and operands by default.

Operand-size and address-size instruction prefixes

The internal encoding of an instruction can include two byte-long pre­
fixes: the address-size prefix, 67H, and the operand-size prefix, 66H. (A
later section, "Instruction format," shows the position of the prefixes in an
instruction's encoding.) These prefixes override the default segment attri­
butes for the instruction that follows. Table 4.1 shows the effect of each
possible combination of defaults and overrides.

48 PART 4, Processor Instructions

c--

c

(

,
~J

~.)

- ,
,--)

I
\....J

C.J

'--....1

Table 4.1 Effective size attributes

Segment default D= ...
Operand-size prefix 66h
Address-size prefix 67h
Effective operand size
Effective address size

V = Yes, this instruction prefix is present.
N = No, this instruction prefix is not present.

o
N
N
16
16

o
N
Y
16
32

Address-size attribute for stack

o
y
N
32
16

o
y
V
32
32

1
N
N
32
32

1
N
Y
32
16

1
V
N
16
32

1
V
V
16
16

Instructions that use the stack implicitly (for example, POP EAX) also
have a stack address-size attribute of either 16 or 32 bits. Instructions with
a stack address-size attribute of 16 use the 16-bit SP stack pointer register;
instructions with a stack address-size attribute of 32 bits use the 32-bit eSP
register to form the address of the top of the stack.

The stack address-size attribute is controlled by the B-bit of the data-seg­
ment descriptor in the SS register. A value of zero in the B-bit selects a
stack address-size attribute of 16; a value of one selects a stack address­
size attribute of 32.

Instruction format

All instruction encodings are subsets of the general instruction format
shown in Figure 4.1. Instructions consist of optional instruction prefixes,
one or two primary opcode bytes, possibly an address specifier consisting
of the ModR/M byte and the SIB (scale index base) byte, a displacement,
if required, and an immediate data field, if required.

Smaller encoding fields can be defined within the primary opcode or op­
codes. These fields define the direction of the operation, the size of the dis­
placements, the register encoding, or sign extension; encoding fields vary
depending on the class of operation.

Most instructions that can refer to a operand in memory have an ad-dress­
ing form byte following the primary opcode byte(s). This byte, called the
ModR/M byte, specifies the address form to be used. Certain encodings
of the ModR/M byte indicate a second addressing byte, the SIB byte,
which follows the ModR/M byte and is required to fully specify the ad­
dressing form.

PART 4, Processor Instructions 49

Figure 4.1
386 instruction format

Instruction I Address-l operand-l Segment
prefix size prefix size prefix override

o or 1 o or 1 o or 1 o or 1

Number of bytes

oPcodel MOdr/M\ SIB \ DiSPlacement\lmmediate

1 or 2 0 or 1 0 or 1 O. 1. 2. or 4 O. 1. 2. or 4

Number of bytes

Addressing forms can include a displacement immediately following
either the ModR/M or SIB byte. If a displacement is present, it can be 8,
16, or 32 bits.

If the instruction specifies an immediate operand, the immediate operand
always follows any displacement bytes. The immediate operand, if speci­
fied, is always the last field of the instruction.

• The following are the allowable instruction prefix codes:

• F3h: REP prefix (used only with string instructions)

• F3h: REPE/REPZ prefix (used only with string instructions)

• F2h: REPNE/REPNZ prefix (used only with string instructions)

• FOh: LOCK prefix

The following are the segment override prefixes:

.. 2Eh: CS segment override prefix

II 36h: SS segment override prefix

• 3Eh: DS segment override prefix

• 26h: ES segment override prefix

• 64h: FS segment override prefix (386 only)

• 65h: GS segment override prefix (386 only)

• 66h: Operand-size override

• 67h: Address-size operand

50 PART 4, Processor Instructions

"

_.J ModR/M and SIB bytes
-)

-j

",,-.j

'-)

- .'

I,

,---'

- • ./1

..... /

The ModR/M and SIB bytes follow the opcode byte(s) in many of the x86
instructions. They contain the following information: the indexing type or
register number to be used in the instruction; the register to be used, or
more information to select the instruction; and the base, index, and scale
information.

The ModR/M byte contains three fields of information:

• The mod field, which occupies the two most significant bits of the byte,
combines with the rim field to form 32 possible values: 8 registers and
24 indexing modes.

• The reg field, which occupies the next three bits following the mod
field, specifies either a register number or three more bits of opcode
information. The meaning of the reg field is determined by the first (op­
code) byte of the instruction.

• The rim field, which occupies the three least-significant bits of the byte,
can specify a register as the location of an operand, or can form part of
the addressing-mode encoding in combination with the mod field as de­
scribed earlier.

• The based indexed and scaled indexed forms of 32-bit addressing re­
quire the SIB byte. The presence of the SIB byte is indicated by certain
encodings of the ModR/M byte. The SIB byte then includes the follow­
ing fields:

• The ss field, which occupies the 2 most-significant bits of the byte, speci­
fies the scale factor.

• The index field, which occupies the next 3 bits following the ss field
specifies the register number of the index register.

• The base field, which occupies the 3 least-significant bits of the byte,
specifies the register number of the base register.

Figure 4.2 shows the format of the ModR/M and SIB bytes .

PART 4, Processor Instructions 51

Figure 4.2
ModR/M and SIB byte formats

Modr/M Byte

7 6 5 4 3 2 0

Mod Reg/Opcode
I

RIM

SIB (Scale Index Base) Byte

7 6 5 4 3 2 1 0

SS Index Base

The values and corresponding addressing forms of the ModR/M and SIB
bytes are shown in Tables 4.2, 4.3, and 4.4.

52 PART 4, Processor Instructions

Ir--~

,_.

I

(

-)

~j

I

Table 4.2 16-bit addressing forms with ModR/M byte _J

r8(/r) AL CL OL BL AH CH OH BH
r16(/r) AX CX OX BX SP BP SI 01
r32(!r) EAX ECX EOX EBX ESP EBP ESI EOI

'- ~) Idigit (opcode) 0 1 2 3 4 5 6 7

-)
REG = 000 001 010 011 100 101 110' 111

~) Effective address' Mod RIM Mod RIM values in hexadecimal

~J [BX+ SI] 000 00 08 10 18 20 28 30 38
[BX+ 01] 001 01 09 11 19 21 29 31 39

~_~I
[BP + SI] 010 02 OA 12 1A 22 2A 32 3A
[BP + 01] 00 011 03 OB 13 1B 23 2B 33 3B
[SI] 100 04 OC 14 1C 24 2C 34 3C
[01] 101 05 00 15 10 25 20 35 30

,-/ disp16 110 06 OE 16 1E 26 2E 36 3E
[BX] 111 07 OF 17 1F 27 2F 37 3F

- j [BX + SI] + disp8 000 40 48 50 58 60 68 70 78

~~
) [BX + 01] + disp8 001 41 49 51 59 61 69 71 79

[BP + SI] + disp8 010 42 4A 52 5A 62 6A 72 7A
'-) [BP + 01] + disp8 01 011 43 4B 53 5B 63 6B 73 7B

~) [SI] + disp8 100 44 4C 54 5C 64 6C 74 7C
[01] + disp8 101 45 40 55 50 65 60 75 70
[BP] + disp8 110 46 4E 56 5E 66 6E 76 7E

; [BX] + disp8 111 47 4F 57 5F 67 6F 77 7F
-~ [BX + SI] + disp16 000 80 88 90 98 AO A8 BO B8

[BX + 01] + disp16 001 81 89 91 99 A1 A9 B1 B9
'._', [BP + SI] + disp16 010 82 8A 92 9A A2 M B2 BA
\.....~ [BP + 01] + disp16 10 011 83 8B 93 9B A3 AB B3 BB

,=.1 [SI] + disp16 100 84 8C 94 9C A4 AC B4 BC
[01] + disp16 101 85 80 95 90 A5 AO B5 BO

--' [BP] + disp16 110 86 8E 96 9E A6 AE B6 BE

':'J [BX] + disp16 111 87 8F 97 9F A7 AF B7 BF
EAXlAXIAL (386) 000 CO C8 00 08 EO E8 FO F8
ECXlCXlCL (386) 001 C1 C9 01 09 E1 E9 F1 F9
EOXlOXIOL (386) 010 C2 CA 02 OA E2 EA F2 FA
EBXlBXl8L (386) 11 011 C3 CB 03 OB E3 EB F3 FB

-- 1 ESP/SP/AH (386) 100 C4 CC 04 OC E4 EC F4 FC
EBP/BP/CH (386) 101 C5 CO 05 00 E5 EO F5 FO

,-) ESI/SI/OH (386) 110 C6 CE 06 OE E6 EE F6 FE
I EOI/OI/BH (386) 111 C7 CF 07 OF E7 EF F7 FF ~-'

disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added to the index. disp16
denotes a 16-bit displacement following the ModR/M by1e, to be added to the index. Default segment register is SS

----/ for the effective addresses containing a BP index, OS for other effective addresses.
I

"-- ~I

:'j

_.1

I
\.... ./

..... j

\ --
::J

=--J
-

PART 4, Processor Instructions 53

(-

Table 4.3 . 32-bit addressing forms with ModR/M byte (386
only)

r8(/r) AL CL OL BL AH CH OH BH
r16(/r) AX CX OX BX SP BP SI 01
r32(/r) EAX ECX EOX EBX ESP EBP ESI EOI
Idigit(opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective address ModR/M Mod RIM values in hexadecimal

[EAX] 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EOX] 010 02 OA 12 1A 22 2A 32 3A
[EBX] 00 011 03 OB 13 1B 23 2B 33 3B
[--] [--] 100 04 OC 14 1C 24 2C 34 3C
disp32 101 05 00 15 10 25 20 35 3D
[ESI] 110 06 OE 16 1E 26 2E 36 3E
[EOI] 111 07 OF 17 1F 27 2F 37 3F
disp8[EAX] 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 41 49 51 59 61 69 71 79
disp8[EOX] 010 42 4A 52 5A 62 6A 72 7A
disp8[EPXJ; 01 011 43 4B 53 5B 63 6B 73 7B
disp8[- -] [--J 100 44 4C 54 5C 64 6C 74 7C
disp8[EBP] 101 45 40 55 50 65 60 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E
disp8[EOI] 111 47 4F 57 5F 67 6F 77 7F
disp32[EAX] 000 80 88 90 98 AO A8 BO B8
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9
disp32[EOX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 10 011 83 8B 93 9B A3 AB B3 BB
disp32[- -] [- -] 100 84 8C 94 9C A4 AC B4 BC
disp32[EBP] 101 85 80 95 90 A5 AO B5 BO
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EOI] 111 87 8F 97 9F A7 AF B7 BF
EAXlAXIAL 000 CO C8 00 D8 EO E8 FO F8
ECXlCXlCL 001 C1 C9 01 09 E1 E9 F1 F9
EOXlDXlDL 010 C2 CA 02 OA E2 EA F2 FA
EBXlBXlBL 11 011 C3 CB 03 OB E3 EB F3 FB
ESP/SP/AH 100 C4 CC 04 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD 05 00 E5 EO F5 FD
ESI/SI/OH 110 C6 CE 06 OE E6 EE F6 FE
EOI/OI/BH 111 C7 CF 07 OF E7 EF F7 FF

[- -J [- -J means a SIB follows the ModR/M byte. disp8 denotes an 8-bit displacement following the SIB byte, to be
sign-extended and added to the index. disp32 denotes a 32-bit displacement following the ModRlM byte, to be
added to the index.

54 PART 4, Processor Instructions

-)

Table 4.4 32-bit addressing forms with SIB byte (386 only)

- -, r32 EAX ECX EOX EBX ESP [*] ESI EOI
Base = 0 1 2 3 4 5 6 7
Base = 000 001 010 011 100 101 110 111

-)
Scaled index SS index Mod RIM values in hexadecimal

-)

- j

) [EAX] 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 OA OB OC 00 OE OF -) [EOX] 010 10 11 12 13 14 15 16 17
[EBX] 00 011 18 19 lA lB lC 10 lE IF
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 20 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EOI] 111 38 39 3A 3B 3C 3D 3E 3F

- >
[EAX*2] 000 40 41 42 44 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 40 4E 4F

- > [ECX*2] 010 50 51 52 55 54 55 56 57
[EBX*2] 01 011 58 59 5A 5B 5C 50 5E 5F
none 100 60 61 62 63 64 65 66 67

- > [EBP*2] 101 68 69 6A 6B 6C 60 6E 6F
" , [ESI*2] 110 70 71 72 73 74 75 76 77 ,--)

[EOI*2] 111 78 79 7A 7B 7C 70 7E 7F
~-> [EAX*4] 000 80 81 82 83 84 85 86 87

I
[ECX*4] 001 88 89 8A 8B 8C 80 8E 8F _ .. " [EOX*4] 010 90 91 92 93 94 95 96 97

~- ,
) [EBX*4] 10 011 98 89 9A 9B 9C 90 9E 9F

r"" , none 100 AO Al A2 A3 A4 A5 A6 A7
'-->

I [EBP*4] 101 A8 A9 AA AB AC AD AE AF - ,
I [ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7

'- ~

[EOI*4] 111 B8 B9 BA BB BC BO BE BF
'--'

I [EAX*8] 000 CO Cl C2 C3 C4 C5 C6 C7

:::::J [ECX*8] 001 C8 C9 CA CB CC CO CE CF
[EOX*8] 010 DO 01 02 03 04 05 06 07

-J [EBX*8] 11 011 08 09 OA DB DC DO DE OF

,---,I
none 100 EO E1 E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8} 110 FO F1 F2 F3 F4 F5 F6 F7

-I [EOI*8] 111 F8 F9 FA FB FC FD FE FF
" ..J

[*) means a disp32 with no base if MOD is 00; otherwise, [ESP),
This provides the following addressing modes:

~~

disp32[index) (MOD=OO)
"- .'

I disp8[EBP)[index) (MOD=01)

~~)
disp32[EBP)[index) (MOD=10)

~- '\

---)

:~:J
I

'--'

~. "\

("- '\

I ----....'

~)

~)
I ___ ..I

--) PART 4, Processor Instructions 55

How to read the instruction set pages

Here's a sample of the format of this chapter:

Instruction
name

What the instruction name means
What processor the instruction works on

o D ITS ZAP C

Flag information goes here

Opcode Instruction Clocks
386 286 86

This table contains clock information

Flags

Each entry in this section includes information on which flags in the x86's
flag register are changed and how. Each flag has a one-letter tag for its
name.

o = Overflow flag

D = Direction flag

I = Interrupt flag

T = Trap flag

S = Sign flag

Z = Zero flag

A = Auxiliary flag

P = Parity flag

C = Carry flag

The following symbols indicate how the flag register has changed:

? = Undefined after the operation

* = Changed to reflect the results of the instruction

0= Always cleared

1 = Always set

56 PART 4, Processor Instructions

_J

--)

~)

~)

Opcode

The "Opcode" column gives the complete object code produced for each
form of the instruction. When possible, the codes are given as hexadeci­
mal bytes, in the same order in which they appear in memory. Definitions
of entries other than hexadecimal bytes are as follows:

Idigit
(digit is between 0 and 7.) Indicates that the ModR/M byte of the instruc­
tion uses only the rim (register or memory) operand. The reg field con­
tains the digit that provides an extension to the instruction's opcode.

Ir
Indicates that the ModR/M byte of the instruction contains both a register
operand and an rim operand.

cb, cw, cd, cp
A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for
the code segment register.

ib, iw, id
A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruc­
tion that follows the opcode, ModR/M bytes, or scale-indexing bytes. The
opcode determines if the operand is a signed value. All words and
doublewords are given with the low-order byte first.

+rb, +rw, +rd
A register code, from 0 through 7, added to the hexadecimal byte given at
the left of the plus sign to form a single opcode byte. The codes are

rb rw rd (386)

AL=O AX=O EAX=O
CL = 1 CX= 1 ECX = 1
DL=2 DX=2 EDX=2
BL= 3 BX=3 EBX= 3
AH=4 SP=4 ESP =4
AH=4 SP=4 ESP = 4
CH=5 BP=5 EBP=5
DH=6 SI = 6 ESI = 6
BH=7 DI = 7 EDI = 7

Instruction

The "Instruction" column gives the syntax of the instruction statement as
it would appear in a TASM 386 program. The following is a list of the
symbols used to represent operands in the instruction statements:

PART 4, Processor Instructions 57

reI8
A relative address in the range from 128 bytes before the end of the in­
struction to 127 bytes after the end of the instruction.

re116, reI32
A relative address within the same code segment as the instruction as­
sembled. re116 applies to instructions with an operand-size attribute of 16
bits; re132 applies to instructions with an operand-size attribute of 32 bits
(386 only).

ptr16:16, ptr16:32
A far pointer, typically in a code segment different from that of the
instruction. The notation 16:16 indicates that the value of the pointer has
two parts. The value to the right of the colon is a 16-bit selector or value
destined for the code segment register. The value to the left corresponds
to the offset within the destination segment. ptr16:16 is used when the in­
struction's operand-size attribute is 16 bits; ptr16:32 is used with the 32-bit
attribute (386 only).

r8
One of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.

r16
One of the word registers AX, CX, DX, BX, SP, BP, 51, or D!.

r32 (386)
One of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ES1, or
ED!.

imm8
An immediate byte value. imm8 is a signed number between -128 and
+ 127 inclusive. For instructions in which imm8 is combined with a word
or doubleword operand, the immediate value is sign-extended to form a
word or doubleword. The upper byte of the word is filled with the top­
most bit of the immediate value.

imm16
An immediate word value used for instructions whose operand-size attri­
bute is 16 bits. This is a number between -32,768 and +32,767 inclusive.

imm32 (386)
An immediate doubleword value used for instructions whose operand­
size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and -2,147,483,648.

r/m8
A I-byte operand that is either the contents of a byte register (AL, BL, CL,
DL, AH, BH, CH, DH), or a byte from memory.

r/m16
A word register or memory operand used for instructions whose operand-

58 PART 4, Processor Instructions

-)

'- ./

I

,---'

,,-)

.......... /

~)

size attribute is 16 bits. The word registers are AX, BX, CX, DX, SP, BP, SI,
DI. The contents of memory are found at the address provided by the ef­
fective address computation.

r/m32
A doubleword register or memory operand used for instructions whose
operand-size attribute is 32 bits. The doubleword registers are EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI. The contents of memory are found at the
address provided by the effective address computation.

m8
A memory byte addressed by DS:SI or ES:DI (used only by string instruc­
tions on the 386).

m16
A memory word addressed by DS:SI or ES:DI (used only by string instruc­
tions).

m32
A memory doubleword addressed by DS:SI or ES:DI (used only by string
instructions).

m16:16, m16:32 (386)
A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment
selector. The number to the right corresponds to its offset.

m16 & 32, m16 & 16 (186/286/386), m32 & 32 (386)
A memory operand consisting of data item pairs whose sizes are indi­
cated on the left and the right side of the ampersand. All memory address­
ing modes are allowed. m16 & 16 and m32 & 32 operands are used by the
BOUND instruction to provide an operand containing an upper and
lower bounds for array indices. m16 & 32 is used by LIDT and LGDT to
provide a word with which to load the limit field, and a doubleword with
which to load the base field of the corresponding Global and Interrupt De­
scriptor Table Registers.

moffs8, moffs16, moffs32 (memory offset; 386 only)
A simple memory variable of type BYTE, WORD, or DWORD (386) used
by some variants of the MOV instruction. The actual address is given by a
simple offset relative to the segment base. No ModR/M byte is used in
the instruction. The number shown with moffs indicates its size, which is
determined by the address-size attribute of the instruction.

Sreg
A segment register. The segment register bit assignments are ES = 0,
CS = 1, SS = 2, DS = 3, FS = 4 (386), and GS = 5 (386).

PART 4, Processor Instructions 59

Clocks

The "Clocks" column gives the number of clock cycles the instruction
takes to execute. The clock count calculations make the following assump­
tions:

• The instruction has been prefetched and decoded and is ready for execu­
tion.

• Bus cycles do not require wait states.

• There are no local bus HOLD requests delaying processor access to the
bus.

• No exceptions are detected during instruction execution.

• Memory operands are aligned.

Clock counts for instructions that have an rim (register or memory) oper­
and are separated by a slash. The count to the left is used for a register op­
erand; the count to the right is used for a memory operand.

The following symbols are used in the clock count specifications:

• n, which represents a number of repetitions.

• m, which represents the number of components in the next instruction
executed, where the entire displacement (if any) counts as one compo­
nent, the entire immediate data (if any) counts as one component, and
every other byte of the instruction and prefix(es) each counts as one
component.

• pm=, a clock count that applies when the instruction executes in pro­
tected mode. pm= is not given when the clock counts are the same for
protected and real address modes.

When an exception occurs during the execution of an instruction and the
exception handler is in another task, the instruction exception time is in­
creased by the number of clocks to effect a task switch. This parameter de­
pends on several factors:

• The type of TSS used to represent the current task (386 TSS or 286 TSS).

• The type of TSS used to represent the new task.

• Whether the current task is in V86 mode.

• Whether the new task is in V86 mode.

Note: Users should read Intel's documentation for more information
about protected mode and task switching.

60 PART 4, Processor Instructions

-)

--)

I
-...j

~)

,'. \

AAA ASCII adjust after addition

o D ITS ZAP C
? ? ? * ? *

Opcode Instruction Clocks Description

37 AAA 3 4 3 8 ASCII adjust after addition

Execute AAA only following an ADD instruction that leaves a byte result
in the AL register. The lower nibbles of the operands of the ADD instruc­
tion should be in the range 0 through 9 (BCD digits). In this case, AAA ad­
justs AL to contain the correct decimal digit result. If the addition pro­
duced a decimal carry, the AH register is incremented, and the carry and
auxiliary carry flags are set to 1. If there was no decimal carry, the carry
and auxiliary flags are set to 0 and AH is unchanged. In either case, AL is
left with its top nibble set to O. To convert AL to an ASCII result, follow
the AAA instruction with OR AL, 30H.

AAD ASCII adjust before division

o D ITS ZAP C
? * * ? * ?

Opcode Instruction Clocks Description

D50A AAD 14 19 14 60 ASCII adjust before division

AAD is used to prepare two unpacked BCD digits (the least-significant
digit in AL, the most-significant digit in AH) for a division operation that
will yield an unpacked result. This is accomplished by setting AL to AL
+ (10 * AH), and then setting AH to O. AX is then equal to the binary
equivalent of the original unpacked two-digit number.

AAM ASCII adjust AX after multiply

0 D I T S Z A P C

? * * ? * ?

Opcode Instruction Clocks Description

486 386 286 86
D40A AAM 15 17 16 83 ASCII adjust AX after multiply

Execute AAM only after executing a MUL instruction between two un­
packed BCD digits that leaves the result in the AX register. Because the
result is less than 100, it is contained entirely in the AL register. AAM un­
packs the AL result by dividing AL by 10, leaving the quotient (most­
significant digit) in AH and the remainder (least-significant digit) in AL.

PART 4, Processor Instructions 61

AAS ASCII adjust AL after subtraction

o D ITS ZAP C
? ? ? * ? *

Opcode Instruction Clocks Description

3F AAS 3 4 3 8 ASCII adjust AL after subtraction

Execute AAS only after a SUB instruction that leaves the byte result in the
AL register. The lower nibbles of the operands of the SUB instruction
must have been in the range 0 through 9 (BCD digits). In this case, AAS
adjusts AL so it contains the correct decimal digit result. If the subtraction
produced a decimal carry, the AH register is decremented, and the carry
and auxiliary carry flags are set to 1. If no decimal carry occurred, the
carry and auxiliary carry flags are set to 0, and AH is unchanged. In
either case, AL is left with its top nibble set to O. To convert AL to an
ASCII result, follow the AAS with OR AL, 30H.

ADC Add with carry

0 D I T S Z A P C

* * * * * *

Opcode Instruction Clocks Description

486 386 286 ~
10/r ADC r/m8,r8 1/3 217 217 3/16+EA Add with carry byte register to rIm byte
11/r ADC r/m16,r16 1/3 2/7 2/7 3/16+EA Add with carry word register to rIm word
11/r ADC r/m32,r32 1/3 217 Add with CF dword register to rIm word
12/r ADC r8,r/m8 1/2 2/6 2/7 3/9+EA Add with carry rIm byte to byte register
13/r ADC r16,r/m16 1/2 2/6 2/7 3/9+EA Add with carry rIm word to word register
13/r ADC r32,r/m32 1/2 216 Add with CF rIm dword to dword register
14 ib ADCAL,imm8 1 2 3 4 Add with carry immediate byte to AL
15 iw ADC AX,imm16 1 2 3 4 Add with carry immediate word to AX
15 id ADC EAX,imm32 1 2 Add with carry immediate dword to EAX
8012 ib ADC r/m8,imm8 1/3 2/7 317 4/17+EA Add with carry immediate byte to rIm byte
8112 iw ADC r/m16,imm16 1/3 2/7 317 4/17+EA Add with carry immediate word to rIm

word
81/2 id ADC r/m32,imm32 1/3 2/7 Add with CF immediate dword to rIm

dword
83/2 ib ADC r/m16,imm8 1/3 217 3/7 4/17+EA Add with CF sign·extended immediate

byte to rIm word
83/2 ib ADC r/m32,imm8 1/3 217 Add with CF sign·extended immediate

byte into rIm dword

ADC performs an integer addition of the two operands DEST and SRC
and the carry flag, CF. The result of the addition is assigned to the first op­
erand (DEST), and the flags are set accordingly. ADC is usually executed
as part of a multi-byte or multi-word addition operation. When an imme­
diate byte value is added to a word or doubleword operand, the immedi-

62 PART 4, Processor Instructions c

)

ate value is first sign-extended to the size of the word or doubleword op-
, erand.

--)

"'---'

\
'- j

:~)

'-)

'=-j
" ''I

I --.I
I

-_/

,~j
- ,

\
~

i
'-~

--)
I

'---'

ADD Add

0 D I T S Z A P C

* * * * * *

Opcode Instruction Clocks Description

486 386 286 ~
04 ib ADD AL,imm8 1 2 3 4 Add immediate byte to AL
05 iw ADD AX,imm16 1 2 3 4 Add immediate word to AX
05 id ADD EAX,imm32 1 2 Add immediate dword to EAX
8010 ib ADD r/m8,imm8 1/3 217 317 4/17+EA Add immediate byte to rim byte
8110 iw ADD r/m16,imm16 1/3 2/7 3/7 4/17+EA Add immediate word to rim word
8110 id ADD r/m32,imm32 1/3 2/7 Add immediate dword to rim dword
8310 ib ADD r/m16,imm8 1/3 2/7 3/7 4/17+EA Add sign·extended immediate byte

to rim word
8310 ib ADD r/m32,imm8 1/3 2/7 Add sign-extended immediate byte

to rim dword
OOlr ADD r/m8,r8 1/3 2/7 2/7 3/16+EA Add byte register to rim byte
01/r ADD r/m16,r16 1/3 2/7 217 3/16+EA Add word register to rim word
01/r ADD r/m32,r32 1/3 2/7 Add dword register to rim dword
02/r ADD r8,r/m8 1/2 2/6 2/7 3/9+EA Add rim byte to byte register
03/r ADD r16,r/m16 1/2 216 2/7 3/9+EA Add rim word to word register
03/r ADD r32,r/m32 1/2 2/6 Add rim dword to dword register

ADD performs an integer addition of the two operands (DEST and SRC).
The result of the addition is assigned to the first operand (DEST), and the
flags are set accordingly.

When an immediate byte is added to a word or doubleword operand, the
immediate value is sign-extended to the size of the word or doubleword
operand.

AND Logical AND

0 D I T S Z A P C

0 * * ? * a

Opcode Instruction Clocks Description
486 386 286 86

20/r AND r/m8,r8 1/3 2/7 2/7 3/16+EA AND byte register into rim byte
21/r AND r/m16,r16 1/3 217 217 3/16+EA AND word register into rim word
21/r AND r/m32,r32 1/3 2/7 AND dword register to rim dword
22/r AND r8,r/m8 1/2 216 217 3/9+EA AND rim byte to byte register
23/r AND r16,r/m16 1/2 2/6 2/7 3/9+EA AND rim word to word register
23/r AND r32,r/m32 1/2 2/6 AND rim dword to dword register
24 ib AND AL,imm8 1 2 3 4 AND immediate byte to AL
25 iw AND AX,imm16 1 2 3 4 AND immediate word to AX
25 id AND EAX,imm32 1 2 AND immediate dword to EAX

PART 4, Processor Instructions 63

Opcode Instruction Clocks Description

486 386 286 86
8014 ib AND r/m8,imm8 1/3 2/7 3/7 4/17+EA AND immediate byte to rIm byte
81/4 iw AND r/m16,imm16 1/3 2/7 3/7 4/17+EA AND immediate word to rIm word
81/4 id AND r/m32,imm32 1/3 2/7 AND immediate dword to rIm word
83/4 ib AND r/m16,imm8 1/3 2/7 AND sign-extended immediate byte

with rIm word
83/4 ib AND r/m32,imm8 1/3 2/7 AND sign-extended immediate byte

with rIm dword

Each bit of the result of the AND instruction is a 1 if both corresponding
bits of the operands are 1; otherwise, it becomes a 0_

ARPL

Opcode Instruction

Adjust RPL field of selector

80286/386/i486 protected mode only

o D ITS ZAP C

*

Clocks Description
486 386 286

631r ARPL rlm16,r16 9/9 pfTl=20/21 pfTl=10/11 Adjust RPL of rlm16 to not less than RPL of r16

The ARPL instruction has two operands. The first operand is a 16-bit
memory variable or word register that contains the value of a selector.
The second operand is a word register. If the RPL field ("requested privi­
lege lever --bottom two bits) of the first operand is less than the RPL field
of the second operand, the zero flag is set to 1 and the RPL field of the
first operand is increased to match the second operand. Otherwise, the
zero flag is set to 0 and no change is made to the first operand.

ARPL appears in operating system software, not in application programs.
It is used to guarantee that a selector parameter to a subroutine does not
request more privilege than the caller is allowed. The second operand of
ARPL is normally a register that contains the CS selector value of the
caller.

BOUND

Opcode Instruction

Check array index against bounds

80186/286/386/486 only

o D ITS ZAP C

Clocks Description
486 386 286 - -

62 Ir BOUND r16, 7 7 10
10

13 Check if r16 is within m16&16 bounds (passes test)
Check if r32 is within m32&32 bounds (passes test) 62 Ir BOUND r32, 7 7

BOUND ensures that a signed array index is within the limits specified by
a block of memory consisting of an upper and a lower bound. Each

64 PART 4, Processor Instructions

~

bound uses one word for an operand-size attribute of 16 bits and a
doubleword for an operand-size attribute of 32 bits. The first operand (a
register) must be greater than or equal to the first bound in memory
(lower bound), and less than or equal to the second bound in memory
(upper bound). If the register is not within bounds, an Interrupt 5 occurs;
the return EIP points to the BOUND instruction.

The bounds limit data structure is usually placed just before the array it­
self, making the limits addressable via a constant offset from the begin­
ning of the array.

BSF

Opcode Instruction

Bit scan forward

386 and i486 only

o D ITS ZAP C

*

Clocks Description

486 386
OF BC BSF r16,r/m16 6-4217-43 10+3n Bit scan forward on rim word
OF BC BSF r32,r/m32 10+3n Bit scan forward on rim dword

BSF scans the bits in the second word or doubleword operand starting
with bit O. The ZF flag is cleared if the bits are all 0; otherwise, the ZF flag
is set and the destination register is loaded with the bit index of the first
set bit.

BSR

Opcode Instruction

Bit scan reverse

386 and i486 only

o D ITS ZAP C

*

Clocks Description

486 386
OF BD BSR r16,r/m16 6-103/7-104 10+3n Bit scan reverse on rim word

:~) OF BD BSR r32,r/m32 6-10317 -104 10+3n Bit scan reverse on rim dword

-)

~I

.~I

I
,-J

BSR scans the bits in the second word or doubleword operand from the
most significant bit to the least significant bit. The ZF flag is cleared if the
bits are all 0; otherwise, ZF is set and the destination register is loaded
with the bit index of the first set bit found when scanning in the reverse
direction.

PART 4, Processor Instructions 65

BSWAP Byte Swap

i486 only

o D ITS ZAP C

Opcode Instruction Clock Description

OF C8/r BSWAP r32 Swap bytes to convert Iittlelbig endian data in a 32-bit register to bigllittle
end ian form.

BSW AP reverses the byte order of a 32-bit register, converting a value in
little/big endian form to big/little endian form. When BSWAP is used
with a 16-bit operand size, the result left in the destination register is un­
defined.

BT Bit test

386 and i486 only

o D ITS ZAP C

*

Opcode Instruction Clocks Description
486 386

OF A3 BT r/m16,r16 3/8 3/12 Save bit in carry flag
OF A3 BT r/m32,r32 3/8 3/12 Save bit in carry flag
OF BA 14 ib BT r/m16,imm8 3/3 3/6 Save bit in carry flag
OF BA 14 ib BT r/m32,imm8 3/3 3/6 Save bit in carry flag

BT saves the value of the bit indicated by the base (first operand) and the
bit offset (second operand) into the carry flag.

BTC

Opcode

OF BB
OF BB
OF BA 17 ib
OF BA 17 ib

Bit test and complement

386 and i486 only

o D ITS ZAP C

*

Instruction Clocks Description
486 386

BTC r/m16,r16 6/13 6/13 Save bit in carry flag and complement
BTC r/m32,r32 6/13 6/13 Save bit in carry flag and complement
BTC r/m16,imm8 6/8 6/8 Save bit in carry flag and complement
BTC r/m32,imm8 6/8 6/8 Save bit in carry flag and complement

BTC saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then complements
the bit.

66 PART 4, Processor Instructions

BTR

'-)

Opcode

OF B3
OF B3
OF BA/6 ib
OF BA/6 ib

Bit test and reset
386 and i486 only

o D ITS ZAP C

*

Instruction Clocks Description
486 386

BTR r/m16,r16 6/13 6/13 Save bit in carry flag and reset
BTR r/m32,r32 6/13 6/13 Save bit in carry flag and reset
BTR r/m16,imm8 6/8 6/8 Save bit in carry flag and reset
BTR r/m32,imm8 6/8 6/8 Save bit in carry flag and reset

~~I BTR saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then stores 0 in the
bit.

'- ~j

BTS

Opcode

OFAB
OFAB
OF BA 15 ib
OF BA 15 ib

Bit test and set
386 and i486 only

o D ITS ZAP C

*

Instruction Clocks Description
486 386

BTS r/m16,r16 6/13 6/13 Save bit in carry flag and set
BTS r/m32,r32 6/13 6/13 Save bit in carry flag and set
BTS r/m16,imm8 6/8 6/8 Save bit in carry flag and set
BTS r/m32,imm8 6/8 6/8 Save bit in carry flag and set

BTS saves the value of the bit indicated by the base (first operand) and the
bit offset (second operand) into the carry flag and then stores 1 in the bit.

CALL Call Procedure

o D ITS ZAP C

,.J All flags are affected if a task switch occurs; no flags are affected if a task
,-.J switch does not occur.

::.")
~J
_, :J

Opcode

E8cw

FF 12

9Acd

Instruction
486

CALL rel16 3

CALL r/m16 5/5

CALL ptr16:16 18,pm=20

Clocks

386

7+m

7+m/10+m

17 +m,pm=34=m

PART 4, Processor Instructions

Description
286- ~
7 19 Call near, displacement

relative to next instruction
7/11 16/21+EA Call near, register

indirect/memory indirect
13,pm=26 28 Call intersegment, to full

pointer given

67

Opcode Instruction Clocks Description

486 386 286- 86

9A cd CALL ptr16:16 pm=35 pm=52+m 41 Call gate, same privilege
9A cd CALL ptr16:16 pm=69 pm=86+m 82 Call gate, more privilege,

no parameters
9A cd CALL ptr16:16 pm=77+4x pm=94+4X+m 86+4x Call gate, more privilege,

x parameters
9A cd CALL ptr16:16 pm=37+ts ts 177/182 Call to task (via task

state segment/task gate
for 286

FF 13 CALL m16:16 17,pm=20 22+m,pm38+m 16/29 37+EA Call intersegment,
address at rIm dword

FF 13 CALL m16:16 pm=35 pm=56+m 44 Call gate, same privilege
FF 13 CALL m16:16 pm=69 pm=90+m 83 Call gate, more privilege,

no parameters
FF 13 CALL m16:16 pm=77+4x pm=98+4X+m 90+4x+m Call gate, more privilege,

x parameters
FF 13 CALL m16:16 pm=37+ts 5 + ts 180/185 Call to task (via task

state segment/task gate
for 286)

E8 cd CALL rel32 3 7+m Call near, displacement
relative to next instruction

FF 12 CALL r/m32 515 7+m/10+m Call near, indirect
9A cp CALL ptr16:32 18,pm=20 17+m,pm=34+m Call intersegment, to full

pointer given
9A cp CALL ptr16:32 pm=35 pm=52+m Call gate, same privilege
9A cp CALL ptr16:32 pm=69 pm=86+m Call gate, more privilege,

no parameters
9A cp CALL ptr32:32 pm=77+4x pm=94+4x+m Call gate, more privilege,

x parameters
9A cp CALL ptr16:32 pm=37+ts ts Call to task
FF 13 CALL m16:32 17,pm=20 22+m,pm=38+m Call intersegment,

address at rIm dword
FF 13 CALL m16:32 pm=35 pm=56+m Call gate, same privilege
FF /3 CALL m16:32 pm=69 pm=90+m Call gate, more privilege,

no parameters
FF /3 CALL m16:32 pm=77+4x pm=98+4X+m Call gate, more privilege,

x parameters
FF /3 CALL m16:32 pm=37+ts 5 + ts Call to task

-Add one clock for each byte in the next instruction executed (80286 only).

The CALL instruction causes the procedure named in the operand to be
executed. When the procedure is complete (a return instruction is exe-
cuted within the procedure), execution continues at the instruction that fol-
lows the CALL instruction.

The action of the different forms of the instruction are described next.

Near calls are those with destinations of type r/m16, r/m32, re116, re132;
changing or saving the segment register value is not necessary. The CALL
re116 and CALL re132 forms add a signed offset to the address of the
instruction following CALL to determine the destination. The re116 form
is used when the instruction's operand-size attribute is 16 bits; re132 is
used when the operand-size attribute is 32 bits. The result is stored in the
32-bit ElP register. With reI 16, the upper 16 bits of ElP are cleared, result­
ing in an offset whose value does not exceed 16 bits. CALL r/m16 and

68 PART 4, Processor Instructions

...... ./

-'

'_-J'
, ,
- ...I'

'j

--I

CALL r I m32 specify a register or memory location from which the abso­
lute segment offset is fetched. The offset fetched from rim is 32 bits for an
operand-size attribute of 32 (r/m32), or 16 bits for an operand-size of 16
(r/m16). The offset of the instruction following CALL is pushed onto the
stack. It will be popped by a near RET instruction within the procedure.
The CS register is not changed by this form of CALL.

The far calls, CALL ptr16:16 and CALL ptr16:32, use a 4-byte or 6-byte op­
erand as a long pointer to the procedure called. The CALL m16:16 and
m16:32 forms fetch the long pointer from the memory location specified
(indirection). In real address mode or virtual 8086 mode, the long pointer
provides 16 bits for the CS register and 16 or 32 bits for the EIP register
(depending on the operand-size attribute). These forms of the instruction
push both CS and IP or EIP as a return address.

In protected mode, both long pointer forms consult the AR byte in the de­
scriptor indexed by the selector part of the long pointer. Depending on
the value of the AR byte, the call will perform one of the following types
of control transfers:

• a far call to the same protection level

• an inter-protection level far call

• a task switch

Note: Turbo Assembler extends the syntax of the CALL instruction to facil­
itate parameter passing to high-level language routines. See Chapter 7 of
the Turbo Assembler User's Guide for more details.

CBW Convert byte to word

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 ~

98 CBW 3 3 2 2 AX sign-extend of AL

CBW converts the signed byte in AL to a signed word in AX by extending
the most significant bit of AL (the sign bit) into all of the bits of AH .

PART 4, Processor Instructions 69

CDQ

Opcode Instruction

99 coa

Convert doubleword to quadword

386 and i486 only

o D ITS ZAP C

Clocks Description

EDX:EAX [(sign-extend of EAX)

CDQ converts the signed doubleword in EAX to a signed 64-bit integer in
the register pair EDX:EAX by extending the most significant bit of EAX
(the sign bit) into all the bits of EDX.

CLC Clear carry flag

0 D I T S Z A P C

0

Opcode Instruction Clocks

486 386 286 ~
F8 CLC 2 2 2 2

CLC sets the carry flag to zero. It does not affect other flags or registers.

CLD Clear direction flag

0 D I T S Z A P C

0

Opcode Instruction Clocks Description

486 386 286 ~
C CLD 2 2 2 2 Clear direction flag

CLD clears the direction flag. No other flags or registers are affected.
After CLD is executed, string operations will increment the index registers
(51 or DO that they use.

CLI Clear interrupt flag

0 D I T S Z A P C

0

Opcode Instruction Clocks

486 386 286 ~
FA CLI 5 3 3 2

70 PART 4, Processor Instructions

=-:)

C)
=)

CLI clears the interrupt flag if the current privilege level is at least as privi­
leged as IOPL. No other flags are affected. External interrupts are not rec­
ognized at the end of the CLI instruction or from that point on until the in­
terrupt flag is set.

CllS Clear task switched flag

80286/386/i486 protected mode only

o D ITS ZAP C

TS = 0 (TS is in CRO, not the flag register)

Opcode Instruction Clocks

486 386 286
OF 06 CLlS 7 5 2

CLTS clears the task-switched (TS) flag in register CRO. This flag is set by
the 386 every time a task switch occurs. The TS flag is used to manage
processor extensions as follows:

• Every execution of an ESC instruction is trapped if the TS flag if set.

• Execution of aWAIT instruction is trapped if the MP flag and the TS
flag are both set.

Thus, if a task switch was made after an ESC instruction was begun, the
processor extension's context may need to be saved before a new ESC in­
struction can be issued. The fault handler saves the context and resets the
TS flag.

CLTS appears in operating system software, not in application programs.
It is a privileged instruction that can only be executed at privilege level O.

CMC Complement carry flag

0 D I T S Z A P C

*

Opcode Instruction Clocks Description
486 386 286 ~

F5 CMC 2 2 2 2 Complement carry flag

CMC reverses the setting of the carry flag. No other flags are affected.

PART 4, Processor Instructions 71

CMP Compare two operands

0 0 I T S Z A P C

* * * * * *

Opcode Instruction Clocks Description

486 386 286 ~
3C ib CMPAL,imm8 1 2 3 4 Compare immediate byte to AL
3Diw CMP AX,imm16 1 2 3 4 Compare immediate word from AX
3D id CMP EAX,imm32 1 2 Compare immediate dword to EAX

8017 ib CMP r/m8,imm8 1/2 2/5 3/6 4/10+EA Compare immediate byte to rim byte
8117 iw CMP r/m16,imm16 1/2 215 3/6 4/10+EA Compare immediate word to rim word
8117 id CMP r/m32,imm32 1/2 2/5 Compare immediate dword to rim dword
8317 ib CMP r/m16,imm8 1/2 2/5 3/6 4/10+EA Compare sign extended immediate byte

to rim word
8317 ib CMP r/m32,imm8 1/2 2/5 Compare sign extended immediate byte

to rim dword
38/r CMP r/m8,r8 1/2 2/5 2/7 3/9+EA Compare byte register to rim byte
39/r CMP r/m16,r16 1/2 2/5 2/7 3/9+EA Compare word register to rim word
39/r CMP r/m32,r32 1/2 2/5 Compare dword register to rim dword
3A/r CMP r8,r/m8 1/2 2/6 2/6 3/9+EA Compare rim byte to byte register
38/r CMP r16,r/m8 1/2 2/6 2/6 3/9+EA Compare rim word to word register
38/r CMP r32,r/m32 1/2 2/6 Compare rim dword to dword register

CMP subtracts the second operand from the first but, unlike the SUB in­
struction, does not store the result; only the flags are changed. CMP is typ­
ically used in conjunction with conditional jumps and the SETcc instruc­
tion. If an operand greater than one byte is compared to an immediate
byte, the byte value is first sign-extended.

CMPS
CMPSB
CMPSW
CMPSD

Compare string operands
CM PSD 386 and i486 only

o 0 ITS ZAP C

*

Opcode Instruction

486
A6 CMPS m8,m8 8

A7 CMPS m16,m16 8

A7 CMPSm32,m32 8

A6
A7
A7

CMPS8
CMPSW
CMPSD

8
8
8

Clocks

386 286 - -
10 8

10 8

10

10 8
10 8
10

*

86
22

22

22
22

* * * *

Description

Compare bytes ES:[(E)DI] (second operand)
with [(E)SI} (first operand)

Compare words ES:[(E)DI] (second operand)
with [(E)SI] (first operand)
Compare dwords ES:[(E)DI] (second operand)
with [(E)SI] (first operand)
Compare bytes ES:[(E)DI] with DS:[SI]
Compare words ES:[(E)DI] with DS:[SI]
Compare dwords ES:[(E)OI] with DS:[SI]

CMPS compares the byte, word, or doubleword pointed to by the source­
index register with the byte, word, or doubleword pointed to by the desti­
nation-index register.

72 PART 4, Processor Instructions

c--
("--

Ir -

(-

~-)

If the address-size attribute of this instruction is 16 bits, SI and DI will be
used for source- and destination-index registers; otherwise ESI and EDI
will be used. Load the correct index values into SI and DI (or ESI and
EDI) before executing CMPS.

The comparison is done by subtracting the operand indexed by the desti­
nation-index register from the operand indexed by the source-index regis­
ter.

Note that the direction of subtraction for CMPS is [SI] - [DI] or [ESI] -
[ED!]. The left operand (SI or ESI) is the source and the right operand (DI
or EDI) is the destination. This is the reverse of the usual Intel convention
in which the left operand is the destination and the right operand is the
source.

The result of the subtraction is not stored; only the flags reflect the
change. The types of the operands determine whether bytes, words, or
doublewords are compared. For the first operand (SI or ESI), the DS regis­
ter is used, unless a segment override byte is present. The second operand
(DI or EDI) must be addressable from the ES register; no segment over­
ride is possible.

After the comparison is made, both the source-index register and destina­
tion-index register are automatically advanced. If the direction flag is 0
(CLD was executed), the registers increment; if the direction flag is 1 (STD
was executed), the registers decrement. The registers increment or decre­
ment by 1 if a byte is compared, by 2 if a word is compared, or by 4 if a
doubleword is compared.

CMPSB, CMPSW and CMPSD are synonyms for the byte, word, and
doubleword CMPS instructions, respectively.

CMPS can be preceded by the REPE or REPNE prefix for block compari­
son of CX or ECX bytes, words, or doublewords. Refer to the description
of the REP instruction for more information on this, operation.

I CMPXCHG Compare and Exchange
__ J i486 only

=)
o D ITS ZAP C

* * * * * *

Opcode Instruction

OF A6/r CMPXCHG r/m8,r8

OF A7/r CMPXCHG r/m16,r16

Clock

486
6/7 if comparison is
successful; 6/10 if
comparison fails
6/7 if comparison is
successful; 6/10 if
comparison fails

PART 4, Processor Instructions

Description

Compare AL with rim byte. If equal, set ZF and
load byte reg into rim byte. Else, clear ZF and
load rim byte into AL.
Compare AX with rim word. If equal, set ZF
and load word reg into rim word. Else, clear ZF
and load rim word into AX.

73

Opcode Instruction Clock Description

486
OF A7/r CMPXCHG r/m32,r32 6/7 if comparison is

successful; 6/10 if
comparison fails

Compare EAX with rIm dword. If equal, set ZF
and load dword reg into rIm dword. Else, clear
ZF and load rIm dword into EAX.

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX
register) with DE5T. If they are equal, 5RC is loaded into DE5T. Other­
wise, DE5T is loaded into the accumulator.

DE5T is the destination operand; 5RC is the source operand.

Protected mode exceptions: #GP(O) if the result is in a nonwritable seg­
ment; #GP(O) for an illegal memory operand effective address in the C5,
D5, E5, F5, or G5 segments; #55(0) for an illegal address in the 55 seg­
ment; #PF (fault code) for a page fault; #AC for an unaligned memory
reference if the current privilege level is 3.

Real mode exception: interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: interrupt 13, as in real mode; #PF and #AC,
as in protected mode.

Note: This instruction can be used with a LOCK prefix. In order to sim­
plify interface to the processor's bus, the destination operand receives a
write cycle without regard to the result of the comparison. DE5T is writ­
ten back if the comparison fails, and 5RC is written into the destination
otherwise. (The processor never produces a locked read without produc­
ing a locked write.)

CWO Convert word to doubleword
386 and i486 only

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 ~
99 CWD 3 2 2 5 DX:AX ~ sign-extend of AX

CWD converts the signed word in AX to a signed doubleword in DX:AX
by extending the most significant bit of AX into all the bits of DX. Note
that CWD is different from CWDE. CWDE uses EAX as a destination, in­
stead of DX:AX.

74 PART 4, Processor Instructions

(

r
I

-)

CWOE Convert word to doubleword

386 and i486 only

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 ~

98 CWDE 3 3 EAX f- sign-extend of AX

CWDE converts the signed word in AX to a doubleword in EAX by ex­
tend-ing the most significant bit of AX into the two most significant bytes
of EAX. Note that CWDE is different from CWD. CWD uses DX:AX
rather than EAX as a destination.

OAA Decimal adjust AL after addition

0 D I T S Z A P C

? * * * * *

Opcode Instruction Clocks Description
486 386 286 86

27 DAA 2 4 3 4 Decimal adjust AL after addition

Execute DAA only after executing an ADD instruction that leaves a two­
BCD-digit byte result in the AL register. The ADD operands should con­
sist of two packed BCD digits. The DAA instruction adjusts AL to contain
the correct two-digit packed decimal result.

OAS Decimal adjust AL after subtraction

0 D I T S Z A P C

? * * * * *

Opcode Instruction Clocks Description

486 386 286 ~
2F DAS 2 4 3 4 Decimal adjust AL after subtraction

Execute DAS only after a subtraction instruction that leaves a two-BCD­
digit byte result in the AL register. The operands should consist of two
packed BCD digits. DAS adjusts AL to contain the correct packed two­
digit decimal result.

PART 4, Processor Instructions 75

DEC Decrement by 1

0 D I T S Z A P C

* * * * *

Opcode Instruction Clocks Description
486 386 286 ~

FE/1 DEC r/m8 1/3 2/6 2/7 3/15+EA Decrement rIm byte by 1
FF 11 DEC r/m16 1/3 2/6 2/7 3/15+EA Decrement rIm word by 1

DEC r/m32 1/3 2/6 Decrement rIm dword by 1
48+rw DEC r16 1 2 2 3 Decrement word register by 1
48+rw DEC r32 1 2 Decrement dword register by 1

DEC subtracts 1 from the operand. DEC does not change the carry flag.
To affect the carry flag, use the SUB instruction with an immediate oper­
and of 1.

DIV

Opcode Instruction

F6/6 DIVr/m8
F7/6 DIVr/m16
F7/6 DIV r/m32

Unsigned divide

o D I
?

T S ZAP C
? ? ? ? ?

Clocks Description

486 386
16/16 14/17 Unsigned divide AX by rIm byte (AL=OUO, AH=REM)
24/24 22125 Unsigned divide DX:AX by rIm word (AX=OUO, DX=REM)
40/40 38/41 Unsigned divide EDX:EAX by rIm dword (EAX=OUO, EDX=REM)

DIV performs an unsigned division. The dividend is implicit; only the di­
visor is given as an operand. The remainder is always less than the divi­
sor. The type of the divisor determines which registers to use as follows:

Size Dividend Divisor Quotient Remainder
byte AX r/m8 AL AH
word DX:AX r/m16 AX DX
dword EDX:EAX r/m32 EAX EDX (386 only)

ENTER Make stack frame for procedure parameters

80186/286/386/486 only

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286
C8 iw 00 Enter imm16,0 14 10 11 Make procedure stack frame
C8 iw 01 Enter imm16,1 17 12 15 Make stack frame for procedure parameters

C8 iw ib Enter imm16,imm8 17+3n 15+4(n-1) 12+4(n-1) Make stack frame for procedure parameters

76 PART 4, Processor Instructions

/~ - -

r

-)

_.)

_../

:.J

ENTER creates the stack frame required by most block-structured high­
level languages. The first operand specifies the number of bytes of dy­
namic storage allocated on the stack for the routine being entered. The sec­
ond operand gives the lexical nesting level (0 to 31) of the routine within
the high-level language source code. It determines the number of stack
frame pointers copied into the new stack frame from the preceding frame.
BP (or EBP, if the operand-size attribute is 32 bits) is the current stack
frame pointer.

If the operand-size attribute is 16 bits, the processor uses BP as the frame
pointer and SP as the stack pointer. If the operand-size attribute is 32 bits,
the processor uses EBP for the frame pointer and ESP for the stack pointer.

If the second operand is 0, ENTER pushes the frame pointer (BP or EBP)
onto the stack; ENTER then subtracts the first operand from the stack
pointer and sets the frame pointer to the current stack-pointer value.

For example, a procedure with 12 bytes of local variables would have an
ENTER 12,0 instruction at its entry point and a LEAVE instruction before
every RET. The 12 local bytes would be addressed as negative offsets
from the frame pointer.

HLT Halt

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 86
F4 HLT 4 5 2 2 Halt

HLT stops instruction execution and places the x86 in a HALT state. An
enabled interrupt, NMI, or a reset will resume execution. If an interrupt
(including NMI) is used to resume execution after HL T, the saved CS:IP
(or CS:EIP on an 386) value points to the instruction following HLT.

IDIV Signed divide

0 D I T S Z A P C

? ? ? ? ? ?

Opcode Instruction Clocks Description

486 386 286 86
F6/7 IDIVr/m8 19/20 19 17/20 101-112/107-118+EA Signed divide AX by rIm byte

(AL=OUO, AH=REM)
F7/7 IDIVr/m16 27/28 27 25/28 165-184/171-190+EA Signed divide DX:AX by EA word

(AX=OUO, DX=REM)
F7/7 IDIV r/m32 43/44 43 Signed divide EDX:EAX by DWORD

byte (EAX=OUO, EDX=REM)

PART 4, Processor Instructions 77

IDIV performs a signed division. The dividend, quotient, and remainder
are implicitly allocated to fixed registers. Only the divisor is given as an
explicit rim operand. The type of the divisor determines which registers
to use as follows:

Size
byte
word
dword

Divisor
rim 8
r/m16
r/m32

Quotient
AL
AX
EAX

Remainder
AH
DX
EDX

Dividend
AX
DX:AX
EDX:EAX (386 only)

If the resulting quotient is too large to fit in the destination, or if the divi­
sion is 0, an Interrupt 0 is generated. Nonintegral quotients are truncated
toward O. The remainder has the same sign as the dividend and the abso­
lute value of the remainder is always less than the absolute value of the di­
visor.

IMUL Signed multiply

0 D I T S Z A P C

* ? ? ? ? *

Opcode Instruction Clocks Description
486 386 286 86

F6/5 IMUL r/m8 13-18/13-18 9-14112-17 13/16 80-98/86-104 AX ~AL • rim byte
+EA

F7/5 IMUL r/m16 13-26/13-26 9-22112-25 21/24 128-154/134- DX:AX ~AX· rim word
160+EA

F7/5 IMUL r/m32 12-42113-42 9-38/12-41 EDX:EAX ~EAX· rim dword
OF AF Ir IMUL r16,r/m16 13-26/13-26 9-22112-25 word register ~word register •

rim word
OF AF Ir IMUL r32,r/m32 13-42113-42 9-38/12-41 dword register ~dword register

• rim dword
68/r ib IMULr16,rl 13-26/13-26 9-14112-17 21/24 word register ~r/m16·

m16,imm8 sign-extended immediate byte
68 Ir ib IMUL r32,rl 13-42 9-14112-17 dword register ~r/m32 •

m32,imm8 sign-extended immediate byte
68/r ib IMUL r16,imm8 13-26 9-14/12-17 21/24 word register ~word register •

sign-extended immediate byte
68/r ib IMUL r32,imm8 13-42 9-14/12-17 dword register Hword register

• sign-extended immediate byte
69/r iw IMULr16,rl 13-26/13-26 9-22112-25 21/24 word register ~r/m16

m16,imm16 immediate word
69 Ir id IMUL r32,rl 13-42/13-42 9-38112-41 dword register r/m32 •

m32,imm32 immediate dword
69/r iw IMUL r16,imm16 13-26/13-26 9-22112-25 word register ~r/m16 •

immediate word
69 Ir id IMUL r32,imm32 13-42/13-42 9-38112-41 dword register ~r/m32 •

immediate dword

IMUL performs signed multiplication. Some forms of the instruction use
implicit register operands. The operand combinations for all forms of the
instruction are shown in the "Description" column above.

78 PART 4, Processor Instructions

(

r

"

(

r­
I.

. ,
~.) IMUL clears the overflow and carry flags under the following conditions:

.)

~)

~J

Instruction form

r/m8
r/m16
r/m32
r16,r/m16
r32,r/m32
r16,r/m16,imm16
r32,r I m32,imm32

Condition for clearing CF and OF

AL = sign-extend of AL to 16 bits
AX = sign-extend of AX to 32 bits
EOX:EAX = sign-extend of EAX to 32 bits
Result exactly fits within r16
Result exactly fits within r32
Result exactly fits within r16
Result exactly fits within r32

~) IN Input from port

0 D I T S Z A P C

~ j Opcode Instruction Clocks

I '-j

486 386 286
E4 ib IN AL,imm8 14,pm=8* 128**, vm=27 12,pm=6* 126** S

ES ib IN AX,imm8 14,pm=8*/28**,vm=27 12,pm=6*/26** S

ES ib IN EAX,imm8 14,pm=8*/28**,vm=27 12,pm=6*/26**

EC IN AL,DX 14,pm=8*/28**,vm=27 13,pm=7*/27** S

ED IN AX,OX 14,pm=8*/28**,vm=27 13,pm=7*/27** S

ED IN EAX,OX 14,pm=8*/28**,vm=27 13,pm=7*/27**

*If CPL ~ IOPL
**If CPL > IOPL or if in virtual 8086 mode

86
10

10

8

8

Input byte from
immediate port into AL
Input word from
immediate port into AX
Input dword from
immediate port into EAX
Input byte from port DX
into AL
Input word from port OX
into AX
Input dword from port
OX into EAX

IN transfers a data byte or data word from the port numbered by the sec­
ond operand into the register (AL, AX, or EAX) specified by the first oper­
and. Access any port from 0 to 65535 by placing the port number in the
OX register and using an IN instruction with OX as the second parameter.
These I/O instructions can be shortened by using an 8-bit port I/O in the
instruction. The upper eight bits of the port address will be 0 when 8-bit
port I/O is used.

INC Increment by 1

0 D I T S Z A P C

* * * * *

Opcode Instruction Clocks Description

486 386 286 86
FE 10 INC rima 1/3 2/6 2/7 3/1S+EA Increment rim byte by 1
FF 10 INCr/m16 1/3 2/6 217 3/1S+EA Increment rim word by 1

PART 4, Processor Instructions 79

Opcode Instruction Clocks Description

486 386 286 86
FF 16 INC r/m32 1/3 Increment rim dword by 1
40+ rw INC r16 1 2 2 3 Increment word register by 1
40+ rd INC r32 1 Increment dword register by 1

INC adds 1 to the operand. It does not change the carry flag. To affect the
carry flag, use the ADD instruction with a second operand of 1.

INS Input from port to string
INSB 80186/286/386/486 only
INSW
INSD 0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286
6C INS r/m8,DX 17,pm= 10*/32**, vm=30 15,pm=9*/29** 5 Input byte from port

DX into ES:(E)DI
6D INS r/m16,DX 17,pm=10*/32**,vm=30 15,pm=9* 129** 5 Input word from port

DX into ES:(E)DI
6D INS r/m32,DX 17,pm=10*/32**,vm=30 15,pm=9* 129** Input dword from

port DX into ES:(E)DI
6C INSB 17,pm=10*/32**,vm=30 15,pm=9*/29** 5 Input byte from port

DX into ES:(E)DI
6D INSW 17,pm=10*/32**,vm=30 15,pm=9* 129** 5 Input word from port

DX into ES:(E)DI
6D INSD 17,pm=10*/32**,vm=30 15,pm=9* 129** Input dword from

port DX into ES:(E)DI

*If CPL ::::: IOPL
**If CPL > IOPL or if in virtual 8086 mode

INS transfers data from the input port numbered by the DX register to the
memory byte or word at ES:dest-index. The memory operand must be ad­
dressable from ES; no segment override is possible. The destination regis­
ter is DI if the address-size attribute of the instruction is 16 bits, or EDI if
the address-size attribute is 32 bits.

INS does not allow the specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load
the correct value into DX before executing the INS instruction.

The destination address is determined by the contents of the destination
index register. Load the correct index into the destination index register
before executing INS.

After the transfer is made, DI or EDI advances automatically. If the direc­
tion flag is 0 (CLD was executed), DI or EDI increments; if the direction
flag is 1 (STD was executed) I DI or EDI decrements. DI increments or dec­
rements by 1 if a byte is input, by 2 if a word is input, or by 4 if a
doubleword is input.

80 PART 4, Processor Instructions

,-.)

-)

'I '- /

\..)

,'.- \
'--./

.... ~,

INSB, INSW and INSD are synonyms of the byte, word, and doubleword
INS instructions. INS can be preceded by the REP prefix for block input of
ex bytes or words. Refer to the REP instruction for details of this oper­
ation.

INT Call to interrupt procedure
INTO

0 D I T S Z A P C

0 0

Opcode Instruction Clocks Description

486 386 286 86
CC INT3 26 33 23 52 Interrupt 3--trap to debugger
CC INT3 44 pm=59 40 Interrupt 3--protected mode
CC INT3 71 pm=99 78 Interrupt 3--protected mode
CC INT3 82 pm=119 Interrupt 3--from V86 mode to

PLO
CC INT3 37+ts ts 167 Interrupt 3--protected mode
CD ib INTimm8 30 37 23 51 Interrupt numbered by

immediate byte
CD ib INTimm8 44 pm=59 40 Interrupt--protected mode
CD ib INTimm8 77 pm=99 78 Interrupt--protected mode
CD ib INTimm8 86 pm=119 Interrupt--from V86 mode to PLO
CD ib INTimm8 37+ts ts 167 Interrupt--protected modo
CE INTO Pass:28, Fail:3, pm=3; Fail:3, Fail:4, Interrupt 4--if overflow flag is 1

Fail:3 Pass:35 Pass:24 Pass:53
CE INTO 46 pm=59 41 Interrupt 4--Protected mode
CE INTO 73 pm=99 79 Interrupt 4--Protected mode
CE INTO 84 pm=119 Interrupt 4--from V86 mode to

PLO
CE INTO 39+ts ts 168 Interrupt 4--Protected mode

• Add one clock for each byte of the next instruction executed (80286 only).

The INT n instruction generates via software a call to an interrupt han­
dler. The immediate operand, from 0 to 255, gives the index number into
the interrupt descriptor table (IDT) of the interrupt routine to be called. In
protected mode, the IDT consists of an array of eight-byte descriptors; the
descriptor for the interrupt invoked must indicate an interrupt, trap, or
task gate. In real address mode, the IDT is an array of four byte-long
pointers. In protected and real address modes, the base linear address of
the IDT is defined by the contents of the IDTR.

The INTO conditional software instruction is identical to the INT n inter­
rupt instruction except that the interrupt number is implicitly 4, and the
interrupt is made if the 86, 286, or 386 overflow flag is set.

The first 32 interrupts are reserved by Intel for system use. Some of these
interrupts are use for internally generated exceptions.

INT n generally behaves like a far call except that the flags register is
pushed onto the stack before the return address. Interrupt procedures re-

PART 4, Processor Instructions 81

turn via the IRET instruction, which pops the flags and return address
from the stack.

In real address mode, INT n pushes the flags, CS and the return IP onto I,

the stack, in that order, then jumps to the long pointer indexed by the in-
terrupt number.

INVD Invalidate cache
i486 only

0 D I T S Z A P C

Opcode Instruction Clock Description
486

OF 08 INVD 4 Invalidate entire cache

The internal cache is flushed, and a special-function bus cycle is issued
which indicates that external caches should also be flushed. Data held in
write-back external caches is discarded.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors.

It is the responsibility of hardware to respond to the external cache flush
indication.

INVLPG Invalidate TLB entry
i486 only

o D ITS ZAP C

Opcode Instruction Clock Description

486
OF 01/7 INVLPG m 12 for hit Invalidate TLB entry

The INVLPG instruction is used to invalidate a single entry in the TLB,
the cache used for table entries. If the TLB contains a valid entry that
maps the address of the memory operand, that TLB entry is marked in­
valid.

In both protected mode and virtual 8086 mode, an invalid opcode is gener­
ated when used with a re~ister operand.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors.

82 PART 4, Processor Instructions

I
'- /

~)

I ,-j

:J
--.../'

:'J
--./1

IRET Interrupt return
IRETD IRETD 386 and i486 only

0 D I T S Z A P C

* * * * * * * * *
The flags register is popped from stack.

Opcode Instruction Clocks Description

486 386 286 86
CF IRET 15 22,pm=38 17,pm=31 32 Interrupt return (far return and pop flags)
CF IRET 36 pm=82 55 Interrupt return
CF IRET ts+32 ts 169 Interrupt return
CF IRETD 15 22,pm=38 Interrupt return (far return and pop flags)
CF IRETD 36 pm=82 Interrupt return to lesser privilege
CF IRETD 15 pm=6O Interrupt return to V86 mode
CF IRETD ts+32 ts Interrupt return

• Add one clock, for each byte in the next instruction executed (80286 only).

In real address mode, IRET pops the instruction pointer, CS, and the flags
register from the stack and resumes the interrupted routine.

In protected mode, the action of IRET depends on the setting of the
nested task flag (NT) bit in the flag register. When popping the new flag
image from the stack, the IOPL bits in the flag register are changed only
when CPL equals o.

If NT equals 0, IRET returns from an interrupt procedure without a task
switch. The code returned to must be equally or less privileged than the
interrupt routine (as indicated by the RPL bits of the CS selector popped
from the stack). If the destination code is less privileged, IRET also pops
the stack pointer and SS from the stack.

If NT equals 1, IRET reverses the operation of a CALL or INT that caused
a task switch. The updated state of the task executing IRET is saved in its
task state segment. If the task is re-entered later, the code that follows
IRET is executed.

Jcc Jump if condition is met

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 ~
77 cb JA rel8 3/1 7+m,3 7,3 16,4 Jump short if above (CF=O and ZF=O)
73 cb JAE rel8 3/1 7+m+,3 7,3 16,4 Jump short if above or equal (CF=O)
72 cb JB rel8 3/1 7+m,3 7,3 16,4 Jump short if below (CF=l)
76 cb JBE rel8 3/1 7+m,3 7,3 16,4 Jump short if below or equal (CF=l or

ZF=l)
72 cb JC rel8 3/1 7+m,3 7,3 16,4 Jump short if carry (CF=l)

PART 4, Processor Instructions 83

Opcode Instruction Clocks Description

486 386 286 86 (-
E3 cb JCXZ rel8 3/1 9+m,5 8,4 18,6 Jump short if CX register is 0
E3 cb JECXZ rel8 3/1 9+m,5 Jump short if ECX register is 0 (

74 cb JE rel8 3/1 7+m,3 7,3 16,4 Jump short if equal (ZF=1)
74 cb JZ rel8 3/1 7+m,3 7,3 16,4 Jump short if 0 (ZF=1)
7F cb JG rel8 3/1 7+m,3 7,3 16,4 Jump short if greater (ZF=O and SF=OF)
7D cb JGE rel8 3/1 7+m,3 7,3 16,4 Jump short if greater or equal (SF=OF)
7C cb JL rel8 3/1 7+m,3 7,3 16,4 Jump short if less (SF<>OF)
7E cb JLE rel8 3/1 7+m,3 7,3 16,4 Jump short if less or equal (ZF=1 and

SF<>OF)
76 cb JNA rel8 3/1 7+m,3 7,3 16,4 Jump short if not above (CF=1 or ZF=1)
72 cb JNAE rel8 3/1 7+m,3 7,3 16,4 Jump short if not above or equal (CF=1)
73 cb JNB rel8 3/1 7+m,3 7,3 16,4 Jump short if not below (CF=O)
77 cb JNBE rel8 3/1 7+m,3 7,3 16,4 Jump short if not below or equal (CF=O

and ZF=O)
73 cb JNC rel8 3/1 7+m,3 7,3 16,4 Jump short if not carry (CF=O)
75 cb JNE rel8 3/1 7+m,3 7,3 16,4 Jump short if not equal (ZF=O) r -

7E cb JNG rel8 3/1 7+m,3 7,3 16,4 Jump short if not greater (ZF=1 or
SF<>OF)

7C cb JNGE rel8 3/1 7+m,3 7,3 16,4 Jump short if not greater or equal
(SF<>OF)

7D cb JNL rel8 3/1 7+m,3 7,3 16,4 Jump short if not less (SF=OF)
7F cb JNLE rel8 3/1 7+m,3 7,3 16,4 Jump short if not less or equal (ZF=O and

SF=OF)
71 cb JNO rel8 3/1 7+m,3 7,3 16,4 Jump short if not overflow (OF=O)
7B cb JNP rel8 3/1 7+m,3 7,3 16,4 Jump short if not parity (PF=O)
79 cb JNS rel8 3/1 7+m,3 7,3 16,4 Jump short if not sign (SF=O)
75 cb JNZ rel8 3/1 7+m,3 7,3 16,4 Jump short if not zero (ZF=O)
70 cb JO rel8 3/1 7+m,3 7,3 16,4 Jump short if overflow (OF=1)
7A cb JP rel8 3/1 7+m,3 7,3 16,4 Jump short if parity (PF=1)
7A cb JPE rel8 3/1 7+m,3 7,3 16,4 Jump short if parity even (PF=1)
7B cb JPO rel8 3/1 7+m,3 7,3 16,4 Jump short if parity odd (PF=O)
78 cb JS rel8 3/1 7+m,3 7,3 16,4 Jump short if sign (SF= 1)
74 cb JZ rel8 3/1 7+m,3 7,3 16,4 Jump short of zero (ZF=1)
OF 87 cw/cd JA re116/32 3/1 7+m,3 Jump near if above (CF=O and ZF=O)
OF 83 cw/cd JAE re116/32 3/1 7+m,3 Jump near if above or equal (CF=O)
OF 82 cw/cd JB re116/32 3/1 7+m,3 Jump near if below (CF=1)
OF 86 cw/cd JBE re116/32 3/1 7+m,3 Jump near if below or equal (CF=10r ZF=1)
OF 82 cw/cd JC re116/32 3/1 7+m,3 Jump near if carry (CF=1)
OF 84 cw/cd JE re116/32 3/1 7+m,3 Jump near if equal (ZF= 1)
OF 84 cw/cd JZ re116/32 3/1 7+m,3 Jump near if 0 (ZF=1)
OF 8F cw/cd JG re116/32 3/1 7+m,3 Jump near if greater (ZF=O and SF=OF)
OF 8D cw/cd JGE re116/32 3/1 7+m,3 Jump near if greater or equal (SF=OF)
OF 8C cw/cd JL re116/32 3/1 7+m,3 Jump near if less (SF<>OF)
OF 8E cw/cd JLE re116/32 3/1 7+m,3 Jump near if less or equal(ZF=1 and

SF<>OF)
OF 86cw/cd JNA re116/32 3/1 7+m,3 Jump near if not above (CF=1 or ZF=1)
OF 82 cw/cd JNAE re116/32 3/1 7+m,3 Jump near if not above or equal (CF=1)
OF 83 cw/cd JNB re116/32 3/1 7+m,3 Jump near if not below (CF=O)
OF 87 cw/cd JNBE re116/32 3/1 7+m,3 Jump near if not below or equal (CF=O

and ZF=O
OF 83 cw/cd JNC re116/32 3/1 7+m,3 Jump near if not carry and ZF=O)
OF 85 cw/cd JNE re116/32 3/1 7+m,3 Jump near if not equal (ZF=O)
OF 8E cw/cd JNG re116/32 3/1 7+m,3 Jump near if not greater (ZF=1 or SF<>OF)
OF 8C cw/cd JNGE rej16/32 3/1 7+m,3 Jump near if not greater or equal (SF<>OF)
OF 8D cw/cd JNL re116/32 3/1 7+m,3 Jump near if not less (SF=OF)

84 PART 4, Processor Instructions (

!
~ ,

I

'- -

--j

'-)

I
'--;

1... J

'~)
."

~ "
_J

-

--~'

Opcode Instruction Clocks Description

486 386 286 86
OF 8F cw/cd JNLE re116/32 3/1 7+m,3 Jump near if not less or equal (ZF=O and

SF=OF)
OF 81 cw/cd JNO re116/32 3/1 7+m,3 Jump near if not overflow (OF=O)
OF 88 cw/cd JNP re116/32 3/1 7+m,3 Jump near if not parity (PF=O)
OF 89 cw/cd JNS re116/32 3/1 7+m,3 Jump near if not sign (SF=O)
OF 85 cw/cd JNZ re116/32 3/1 7+m,3 Jump near if not zero (ZF=O)
OF 80 cw/cd JO re116/32 3/1 7+m,3 Jump near if overflow (OF=1)
OF 8A cw/cd JP re116/32 3/1 7+m,3 Jump near if parity (PF=1)
OF 8A cw/cd JPE re116/32 3/1 7+m,3 Jump near if parity even (PF=1)
OF 88 cw/cd JPO re116/32 3/1 7+m,3 Jump near if parity odd (PF=O)
OF 88 cw/cd JS re116/32 3/1 7+m,3 Jump near if sign (SF= 1)
OF 84 cw/cd JZ re116/32 3/1 7+m,3 Jump near if zero (ZF= 1)

• When a jump is taken, add one clock for every byte of the next instruction executed (80286 only).

Note: The first clock count is for the true condition (branch taken); the sec-
ond clock count is for the false condition (branch not taken). re116/32 indi-
cates that these instructions map to two; one with a 16-bit relative dis-
placement, the other with a 32-bit relative displacement, depending on
the operand-size attribute of the instruction.

Conditional jumps (except JCXZ/JECXZ) test the flags which have been
set by a previous instruction. The conditions for each mnemonic are given
in parentheses after each description above. The terms "less" and "greater"
are used for comparisons of signed integers; "above" and "below" are used
for unsigned integers.

If the given condition is true, a jump is made to the location provided as
the operand. Instruction coding is most efficient when the target for the
conditional jump is in the current code segment and within -128 to + 127
bytes of the next instruction's first byte. The jump can also target -32768
through +32767 (segment size attribute 16) or -2 to the 31st power +2 to
the 31st power -1 (segment size attribute 32) relative to the next
instruction's first byte. When the target for the conditional jump is in a dif­
ferent segment, use the opposite case of the jump instruction (that is, JE
and JNE), and then access the target with an unconditional far jump to
the other segment. For example, you cannot code

JZ FARLABEL;

You must instead code

JNZ BEYOND;
JMP FARLABEL;

BEYOND:

Because there can be several ways to interpret a particular state of the
flags, TASM provides more than one mnemonic for most of the condi­
tional jump opcodes. For example, if you compared two characters in AX
and want to jump if they are equal, use JE; or, if you ANDed AX with a

PART 4, Processor Instructions 85

bit field mask and only want to jump if the result is 0, use JZ, a synonym
for JE.

JCXZ/JECXZ differs from other conditional jumps because it tests the con­
tents of the CX or ECX register for 0, not the flags. JCXZ/JECXZ is useful
at the beginning of a conditional loop that terminates with a conditional
loop instruction {such as LOOPNE TARGET LABETJ. The JCXZ/JECXZ
prevents entering the loop with CX or ECX equal to zero, which would
cause the loop to execute 64K or 32G times instead of zero times.

JMP Jump

0 D I T S Z A P c

All if a task switch takes place; none if no task switch occurs

Opcode Instruction Clocks Description
486 386 286 §£

EB cb JMP rel8 3 7+m 7 15 Jump short
E9 cw JMP rel16 3 7+m 7 15 Jump near
FF 14 JMP r/m16 5/5 7+m/10+m 7/11 11/18+EA Jump near indirect
EA cd JMP ptr16:16 17pm=19 12+m, pm=27+m 11,pm=23 15 Jump intersegment, 4-byte

immediate address
EA cd JMP ptr16:16 32 pm=45+m 38 Jump to call gate, same

privilege
EAcd JMP ptr16:16 42+ts ts 175 Jump via task state

segment
EA cd JMP ptr16:16 43+ts ts 180 24+EA Jump via task gate
FF 15 JMP m16:16 13,pm=18 43+m,pm=31+m 15,pm=26 Jump r/m16:16 indirect

and intersegment
FF 15 JMP m16:16 31 pm=49+m 41 Jump to call gate, same

privilege
FF 15 JMP m16:16 41+ts 5+ts 178 Jump via task state

segment
FF 15 JMP m16:16 42+ts 5+ts 183 Jump via task gate
E9 cd JMP rel32 3 7+m Jump near
FF 14 JMP r/m32 5/5 7+m,10+m Jump near
EAcp JMP ptr16:32 13,pm=18 12+m, pm=27+m Jump intersegment, 6-byte

immediate address
EAcp JMP ptr16:32 31 pm=45+m Jump to call gate, same

privilege
EAcp JMP ptr16:32 42+ts ts Jump via task state

segment
EAcp JMP ptr16:32 43+ts ts Jump via task gate
FF 15 JMP m16:32 13,pm=18 43+m, pm=31+m Jump intersegment

address at rIm dword
FF 15 JMP m16:32 31 pm=49+m Jump to call gate, same

privilege
FF 15 JMP m16:32 41+ts 5 + ts Jump via task state

segment
FF 15 JMP m16:32 42+ts 5 + ts Jump via task gate

• Add one clock for every byte of the next instruction executed (80286 only).

86 PART 4, Processor Instructions

~)

'-.-)

The JMP instruction transfers control to a different point in the instruction
stream without-recording return information.

The action of the various forms of the instruction are shown below.

Jumps with destinations of type r/m16, r/m32, re116, and re132 are near
jumps and do not involve changing the segment register value.

The JMP-re116 and JMP rel32 forms of the instruction add an offset to the
address of the instruction following the JMP to determine the destination.
The re116 form is used when the instruction's operand-size attribute is 16
bits (segment size attribute 16 only); re132 is used when the operand-size
attribute is 32 bits (segment size attribute 32 only). The result is stored in
the 32-bit EIP register. With re116, the upper 16 bits of ElP are cleared,
which results in an offset whose value does not exceed 16 bits.

JMP r/m16 and JMP r/m32 specifies a register or memory location from
which the absolute offset from the procedure is fetched. The offset fetched
from r/m is 32 bits for an operand-size attribute of 32 bits (r/m32), or 16
bits for an operand-size attribute of 16 bits (r/m16).

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or
six-byte operand as a long pointer to the destination. The JMP m16:16 and
m16:32 forms fetch the long pointer from the memory location specified
(indirection). In real address mode or virtual 8086 mode, the long pointer
provides 16 bits for the C5 register and 16 or 32 bits for the EIP register
(depending on the operand-size attribute). In protected mode, both long
pointer forms consult the access rights (AR) byte in the descriptor indexed
by the selector part of the long pointer. Depending on the value of the AR
byte, the jump will perform one of the following types of control transfers:

• a jump to a code segment at the same privilege level

• a task switch

LAHF Loads flags into AH register

o 0 ITS ZAP C

Opcode Instruction Clocks Description

9F LAHF 3 2 2 4 Load: AH = flags SF ZF xx AF xx PF xx CF

LAHF transfers the low byte of the flags word to AH. The bits, from M5B
to L5B, are sign, zero, indeterminate; auxiliary carry, indeterminate, par­
ity, indeterminate, and carry.

PART 4, Processor Instructions 87

LAR Load access rights byte

80286/386/486 protected mode only

0 D I T S Z A P C

*

Opcode Instruction Clocks Description
486 386 286

OF 02lr LAR r16,r/m16 11/11 pm=15/16 14/16 r16f-r/m16 masked by FFOO
OF 02 Ir LAR r32,r/m32 11/11 pm=15/16 r32f-r/m32 masked by OOFxFFOO

The LAR instruction stores a marked form of the second doubleword of
the descriptor for the source selector if the selector is visible at the CPL
(modified by the selector's RPL) and is a valid descriptor type. The desti­
nation register is loaded with the high-order doubleword of the descriptor
masked by OOFxFFOO, and ZF is set to 1. The x indicates that the four bits
corresponding to the upper four bits of the limit are undefined in the
value loaded by LAR. If the selector is invisible or of the wrong type, ZF
is cleared.

If the 32-bit operand size is specified, the entire 32-bit value is loaded into
the 32-bit destination register. If the 16-bit operand size is specified, the
lower 16-bits of this value are stored in the 16-bit destination register.

All code and data segment descriptors are valid for LAR. (See your Intel
manual for valid segment and gate descriptor types for LAR.)

LEA Load effective address offset

o D ITS ZAP C

Opcode Instruction Clocks Description

486 386 286 86
8D/r LEA r16,m 2 3 2+EA Store effective address for m in register r16
8D/r LEA r32,m 2 Store effective address for m in register r32
8D/r LEA r16,m 2 Store effective address for m in register r16
8D/r LEA r32,m 2 Store effective address for m in register r32

LEA calculates the effective address (offset part) and stores it in the speci­
fied register. The operand-size attribute of the instruction is determined
by the chosen register. The address-size attribute is determined by the
USE attribute of the segment containing the second operand. The address­
size and operand-size attributes affect the action performed by LEA, as fol­
lows:

88 PART 4, Processor Instructions

- ,
I

J _.,

:--)

~)

'~~
)

-)

~.

Operand Address Action
size size performed

16 16 16-bit effective address is calculated and stored
in requested 16-bit register destination.

16 32 32-bit effective address is calculated. The lower
16 bits of the address are stored in the requested
16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit
address is zero-extended and stored in the re-
quested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in

LEAVE

Opcode Instruction

the requested 32-bit register destination.

High-level procedure exit

80186/286/386/486 only

o D ITS ZAP C

Clocks Description
486 386 286

C9 LEAVE 5 4 5 Set SP to SP
Set ESP to ESP C9 LEAVE 5 4

LEAVE reverses the actions of the ENTER instruction. By copying the
frame pointer to the stack pointer, LEAVE releases the stack space used
by a procedure for its local variables. The old frame pointer is popped
into BP or EBP, restoring the caller's frame. A subsequent RET nn instruc­
tion removes any arguments pushed onto the stack of the exiting proce­
dure.

LGDT/liDT Load global/interrupt descriptor table register

80286/386/486 protected mode only

o D ITS ZAP C

Opcode Instruction
486

OF 01/2 LGDT m16&32 11
OF 01/3 LlDT m16&32 11

Clocks Description
386 286 - -
11
11

11 Load m into global descriptor table register
12 Load m into interrupt descriptor table register

The LGDT and LIDT instructions load a linear base address and limit
value from a six-byte data operand in memory into the GDTR or IDTR,
respectively. If a 16-bit operand is used with LGDT or LIDT, the register
is loaded with a 16-bit limit and a 24-bit base, and the high-order 8 bits of

PART 4, Processor Instructions 89

the 6-byte data operand are not used. If a 32-bit operand is used, a 16-bit
limit and a 32-bit base is loaded; the high-order 8 bits of the 6-byte oper­
and are used as high-order base address bits.

The SGDT and SIDT instructions always store into all 48 bits of the 6-byte
data operand. With the 80286, the upper 8 bits are undefined after SGDT
or SIDT is executed. With the 386, the upper 8 bits are written with the
high-order 8 address bits, for both a 16-bit operand and a 32-bit operand.
If LGDT or LIDT is used with a 16-bit operand to load the register stored
by SGDT or SIDT, the upper 8 bits are stored as zeros.

LGDT and LIDT appear in operating system software; they are not used
in application programs. They are the only instructions that directly load
a linear address (Le., not a segment relative address) in 386 protected
mode.

LGS Load full pointer
LSS LGS/LSS/LFS 386 and i486 only
LFS
LOS 0 D I T S Z A P c

LES
Opcode Instruction Clocks Description

486 386 286 ~
C5/r LDS r16,m16:16 6/12 7,pm=22 7,pm=21 16+EA Load DS:r16 with pointer from memory
C5/r LDS r32,m16:32 6/12 7,pm=22 Load DS:r32 with pointer from memory
OF 82 /r LSS r16,m16:16 6/12 7,pm=22 Load SS:r16 with pointer from memory
OF 82 /r LSS r32,m16:32 6/12 7,pm=22 Load SS:r32 with pointer from memory
C4/r LES r16,m16:16 6/12 7,pm=22 7,pm=21 16+EA Load ES:r16 with pointer from memory
C4/r LES r32,m16:32 6/12 7,pm=22 Load ES:r32 with pointer from memory
OF 84/r LFS r16,m16:16 6/12 7,pm=25 Load FS:r16 with pointer from memory
OF 84 /r LFS r32,m16:32 6/12 7,pm=25 Load FS:r32 with pointer from memory
OF 85/r LGS r16,m16:16 6/12 7,pm=25 Load GS:r16 with pointer from memory
OF 85 /r LGS r32,m16:32 6/12 7,pm=25 Load GS:r32 with pointer from memory

These instructions read a full pointer from memory and store it in the se­
lected segment register: register pair. The full pointer loads 16 bits into
the segment register SS, DS, ES, FS, or GS. The other register loads 32 bits
if the operand-size attribute is 32 bits, or loads 16 bits if the operand-size
attribute is 16 bits. The other 16- or 32-bit register to be loaded is deter­
mined by the r16 or r32 register operand specified.

When an assignment is made to one of the segment registers, the de-scrip­
tor is also loaded into the segment register. The data for the register is ob­
tained from the descriptor table entry for the selector given.

A null selector (values 0000-0003) can be loaded into DS, ES, FS, or GS reg­
isters without causing a protection exception. (Any subsequent reference
to a segment whose corresponding segment register is loaded with a null

90 PART 4, Processor Instructions

I - ./

'- -'

,-_I'

I --.'

,-,I

selector to address memory causes a #GP(O) exception. No memory refer­
ence to the segment occurs.)

LLDT Load local descriptor table register

80286/386/486 protected mode only

0 0 I T S Z A P C

Opcode Instruction Clocks Description
486 386 286

OF 00/2 LLDT rim 16 11/11 20 17/19 Load selector r/m16 into LDTR

LLDT loads the local descriptor table register (LDTR). The word operand
(memory or register) to LLDT should contain a selector to the global de­
scriptor table (GDT). The GDT entry should be a local descriptor table. If
so, then the LDTR is loaded from the entry. The descriptor registers DS,
ES, SS, FS, GS, and CS are not affected. The LDT field in the task state seg­
ment does not change.

The selector operand can be 0; if so, the LDTR is marked invalid. All de­
scriptor references (except by the LAR, VERR, VERW or LSL instructions)
cause a #GP fault.

LLDT is used in operating system software; it is not used in application
programs.

LMSW Load machine status word

80286/386/486 protected mode only

o 0 ITS ZAP C

Opcode Instruction Clocks Description

486 386 286
OF 0116 LMSW rim 16 13/13 10/13 316 Load rim 16 into machine status word

LMSW loads the machine status word (part of CRO) from the source oper­
and. This instruction can be used to switch to protected mode; if so, it
must be followed by an intrasegment jump to flush the instruction queue.
LMSW will not switch back to real address mode.

LMSW is used only in operating system software. It is not used in applica­
tion programs.

PART 4, Processor Instructions 91

LOCK Assert LOCK# signal prefix

o D ITS ZAP C

Opcode Instruction
486

Fa LOCK

Clocks
386 286 - -a a

86
2

Description

Assert LOCK# signal for the next instruction

The LOCK prefix causes the LOCK# signal of the CPU to be asserted dur­
ing execution of the instruction that follows it. In a multiprocessor envi­
ronment, this signal can be used to ensure that the CPU has exclusive use
of any shared memory while LOCK# is asserted. The read-modify-write
sequence typically used to implement test-and-set on the 386 is the BTS in­
struction.

On the 386 and i486, the LOCK prefix functions only with the following
instructions:

BT, BTS, BTR, BTC
XCHG
XCHG
ADD, OR, ADC, SBB,
AND, SUB, XOR
NOT, NEG, INC, DEC

mem, reg/imm
reg, mem
mem,reg
mem, reg/ imm

mem

An undefined opcode trap will be generated if a LOCK prefix is used
with any instruction not listed above.

XCHG always asserts LOCK # regardless of the presence or absence of the
LOCK prefix.

The integrity of the LOCK is not affected by the alignment of the memory
field. Memory locking is observed for arbitrarily misaligned fields.

Locked access is not assured if another CPU processor is executing an in­
struction concurrently that has one of the following characteristics:

• Is not preceded by a LOCK prefix.

• Is not one of the instructions in the preceding list.

• Specifies a memory operand that does not exactly overlap the destina­
tion operand. Locking is not guaranteed for partial overlap, even if one
memory operand is wholly contained within another.

92 PART 4, Processor Instructions

) --
~)

_._J

')

-~

I
~,

- /

I
~~

~j

'--.

) - -

~.

'- /

,-J
.. - \

LODS Load string operand
LODSB LODSD 386 and i486 only
LODSW
LODSD 0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

AC LODS m18 5 5 5 12 Load byte [(E)SI] into AL
AD LODS m16 5 5 5 12 Load word [(E)SI] into AX
AD LODS m32 5 5 Load dword [(E)SI] into EAX
AC LODSB 5 5 5 12 Load byte DS:[(E)SI] into AL
AD LODSW 5 5 5 12 Load word DS:[(E)SI] into AX
AD LODSD5 5 Load dword DS:[(E)SI] into EAX

LaDS loads the AL, AX, or EAX register with the memory byte, word, or
doubleword at the location pointed to by the source-index register. After
the transfer is made, the source-index register is automatically advanced.
If the direction flag is 0 (CLD was executed), the source index increments;
if the direction flag is 1 (STD was executed), it decrements. The increment
or decrement is 1 if a byte is loaded, 2 if a word is loaded, or 4 if a double­
word is loaded.

If the address-size attribute for this instruction is 16 bits, SI is used for the
source-index register; otherwise the address-size attribute is 32 bits, and
the ESI register is used. The address of the source data is determined
solely by the contents of ESI/SI. Load the correct index value into SI
before executing the LaDS instruction. LODSB, LODSW, LODSD are syn­
onyms for the byte, word, and doubleword LaDS instructions.

LaDS can be preceded by the REP prefix; however, LaDS is used more
typically within a LOOP construct, because further processing of the data
moved into EAX, AX, or AL is usually necessary.

LOOP Loop control with CX counter
LOOPcond Loop control with CX/ECX counter

(386 and i486 only)

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

E2 cb LOOP rel8 2,6 11+m 8,noj=4 17,noj=5 DEC Count; jump short if Count 0
E1 cb LOOPE rel8 9,6 11+m 8,noj=4 18,noj=6 DEC Count; jump short if Count 0 and ZF=1
E1 cb LOOPZ rel8 9,6 11+m 8,noj=4 18,noj=6 DEC Count; jump short if Count 0 and ZF= 1
EO cb LOOPNE rel8 9,6 11+m 8,noj=4 19,noj=5 DEC Count; jump short if Count 0 and ZF=O
EO cb LOOPNZ rel8 9,6 11+m 8,noj=4 19,noj=5 DEC Count; jump short if Count 0 and ZF=O

PART 4, Processor Instructions 93

LOOP decrements the count register without changing any of the flags.
Conditions are then checked for the form of LOOP being used. If the con­
ditions are met, a short jump is made to the label given by the operand to
LOOP. If the address-size attribute is 16 bits, the CX register is used as the
count register; otherwise the ECX register is used (386 only). The operand
of LOOP must be in the range from 128 (decimal) bytes before the instruc­
tion to 127 bytes ahead of the instruction.

The LOOP instructions provide iteration control and combine loop index
management with conditional branching. Use the LOOP instruction by
loading an unsigned iteration count into the count register, then code the
LOOP at the end of a series of instructions to be iterated. The destination
of LOOP is a label that points to the beginning of the iteration.

LSL Load segment limit

80286/386/486 protected mode only

0 0 I T S Z A P C

*

Opcode Instruction Clocks Description

486 386 286
OF 03 Ir LSL r16,r/m16 10/10 pm=20/21 14/16 Load: r16(-segment limit, selector r/m16

(byte granular)
OF 03 Ir LSL r32,r/m32 10/10 pm=20/21 Load: r32(-segment limit, segment limit,

selector r/m32 (byte granular)
OF 03 Ir LSL r16,r/m16 10/10 pm=2S/26 14/16 Load: r16(-segment limit, segment limit,

selector r/m16 (page granular)
OF 03 Ir LSL r32,r/m32 10/10 pm=26/26 Load: r32(-segment limit selector r/m32

(page granular)

The LSL instruction loads a register with an unscrambled segment limit,
and sets ZF to 1, provided that the source selector is visible at the CPL
weakened by RPL, and that the descriptor is a type accepted by LSL. Oth­
erwise, ZF is cleared to 0, and the destination register is unchanged. The
segment limit is loaded as a byte granular value. If the descriptor has a
page granular segment limit, LSL will translate it to a byte limit before
loading it in the destination register (shift left 12 the 20-bit "raw" limit
from descriptor, then OR with OOOOOFFFH).

The 32-bit forms of this instruction store the 32-bit byte granular limit in
the 16-bit destination register.

Code and data segment descriptors are valid for LSL.

94 PART 4, Processor Instructions

-)

-)

'-J'

'--)

--)

LTR Load task register

80286/386/486 protected mode only

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286

OF 00/3 LTR r/m16 20/20 pm=23/27 17/19 Load EA word into task register

L TR loads the task register from the source register or memory location
specified by the operand. The loaded task state segment is marked busy.
A task switch does not occur.

L TR is used only in operating system software; it is not used in applica­
tion programs.

MOV Move data

o D I T s ZAP C

Opcode Instruction Clocks Description

486 386 286 86
88/r MOVr/m8,r8 1 2/2 2/3 2/9+EA Move byte register into rIm byte
89/r MOV r/m16,r16 1 2/2 2/3 2/9+EA Move word register into rIm word
89/r MOV r/m32,r32 1 2/2 Move dword register to rIm dword
8A/r MOV r8,r/m8 1 2/4 2/5 2/8+EA Move rIm byte into byte register
88/r MOV r16,r/m16 1 2/4 2/5 2/8+EA Move rIm word into word register
88/r MOV r32,r/m32 1 2/4 Move rIm dword into dword register
8C Ir MOV r/m16,Sreg 3/3 2/2 2/3 2/9+EA Move segment register to rIm register
8D/r MOV Sreg,r/m16 3/9 2/5,pm= 2/5,pm= 2/8+EA Move rIm word to segment register

1/198 17/19
AO MOV AL,moffs8 4 5 10 Move byte at (seg:offset) to AX
A1 MOV AX,moffs16 4 5 10 Move word at (seg:offset) to AX
A1 MOV EAX,moffs32 4 Move dword at (seg:offset) to EAX
A2 MOV moffs8,AL 4 3 10 Move AL to (seg:offset)
A3 MOV moffs16,AX 2 3 10 Move AX to (seg:offset)
A3 MOV moffs32,EAX 2 Move EAX to (seg:offset)
80+ rb MOV reg8,imm8 2 2 4 Move immediate byte to register
88+ rw MOV reg16,imm16 2 2 4 Move immediate word to register
88+rd MOV reg32,imm32 2 Move immediate dword to register
C6 MOV r/m8,imm8 2/2 2/3 4/10+EA Move immediate byte to rIm byte
C7 MOV r/m16,imm16 2/2 2/3 4/10+EA Move immediate word to rIm word
C7 MOV r/m32,imm32 2/2 Move immediate dword to rIm dword

MOV copies the second operand to the first operand.

If the destination operand is a segment register (D5, E5, 55, etc.), then
data from a descriptor is also loaded into the register. The data for the reg-
ister is obtained from the descriptor table entry for the selector given. A
null selector (values 0000-0003) can be loaded into D5 and E5 registers

PART 4, Processor Instructions 95

without causing an exception; however, use of D5 or E5 causes a #GP(O),
and no memory reference occurs.

A MOV into S5 inhibits all interrupts until after the execution of the next
instruction (which is presumably a MOV into e5P).

MOV Move to/from special registers

386 and i486 only

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386

OF 22 Ir MOV,CRO,r32 16 Move (register) to (control register)
OF 20 Ir MOV r32,CRO/CR2/CR3 4 6 Move (control register) to (register)
OF 22 Ir MOV CRO/CR2/CR3,r32 4 1014/5
OF 21 Ir MOV r32,DRO - 3 10 22 Move (debug register) to (register)
OF 21 Ir MOV r32,DR6/DR7 10 14 Move (debug register) to (register)
OF 23 Ir MOV DRO -3,r32 11 22 Move (register) to (debug register)
OF 23 Ir MOV DR6/DR7,r32 11 16 Move (register) to (debug register)
OF 24 Ir MOV r32,TR6/TR7 4 12 Move (test register) to (register)
OF 26 Ir MOV TR6/TR7,r32 4 12 Move (register) to (test register)
OF 24 Ir MOV r32,TR3 3 Move (registers) to (test register3)

These forms of MOV store or load the following special registers in or
from a general-purpose register:

• Control Registers CRO, CR2, and CR3

• Debug Registers DRO, DR1, DR2, DR3, DR6, and DR7

• Test Registers TR3, TR4, TR5, TR6, and TR7

32-bit operands are always used with these instructions, regardless of the
operand-size attribute.

MOVS Move data from string to string
MOVSB MOVSD 386 and i486 only
MOVSW
MOVSD 0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 86
A4 MOVS m8,m8 7 7 5 18 Move byte [(E)SI] to ES:[(E)DI]
AS MOVS m16,m16 7 7 5 18 Move word [(E)SI] to ES:[(E)DI]
AS MOVm32,m32 7 7 Move dword [(E)SI] to ES:[(E)DI]
A4 MOVSB 7 7 5 18 Move byte DS:[(E)SI] to ES:[(E)DI]
AS MOVSW 7 7 5 18 Move word DS:[(E)SI] to ES:[(E)DI]
AS MOVSD 7 7 Move dword DS:[(E)SI] to ES:[(E)DI]

96 PART 4, Processor Instructions

_/

MOVS copies the byte or word at [(E)SI] to the byte or word at ES:
[(E)OI]. The destination operand must be addressable from the ES regis­
ter; no segment override is possible for the destination. A segment over­
ride can be used for the source operand; the default is OS.

The addresses of the source and destination are determined solely by the
contents of (E)SI and (E)OI. Load the correct index values into (E)SI and
(E)OI before executing the MOVS instruction. MOVSB, MOVSW, and
MOVSO are synonyms for the byte, word, and doubleword MOVS
instructions.

After the data is moved, both (E)SI and (E)OI are advanced automatically.
If the direction flag is a (CLO was executed), the registers are incre­
mented; if the direction flag is 1 (STO was executed), the registers are
decremented. The registers are incremented or decremented by 1 if a byte
was moved, 2 if a word was moved, or 4 if a doubleword was moved.

MOVS can be preceded by the REP prefix for block movement of CX
bytes or words. Refer to the REP instruction for details of this operation.

MOVSX

Opcode

OF BE Ir
OF BE Ir
OF BE Ir

Move with sign-extend

386 and i486 only

o D ITS ZAP C

Instruction

MOVSX r16,r/m8
MOVSX r32,r/m8
MOVSX r32,r/m16

Clocks

486 386
3/3 3/6
3/3 3/6
3/3 3/6

Description

Move byte to word with sign extend
Move byte to dword
Move word to dword

MOVSX reads the contents of the effective address or register as a byte or
a word, sign-extends the value to the operand-size attribute of the instruc­
tion (16 or 32 bits), and stores the result in the destination register.

MOVZX

Opcode

OF B6 /r
OF B6 /r
OF B7 /r

Move with zero-extend

386 and i486 only

o D ITS ZAP C

Instruction Clocks Description

486 386
MOVZX r16,r/m8 3/3 3/6 Move byte to word with zero extend
MOVZX r32,r/m8 3/3 3/6 Move byte to dword
MOVZX r32,r/m16 3/3 3/6 Move word to dword

PART 4, Processor Instructions 97

MOVZX reads the contents of the effective address or register as a byte or
a word, zero extends the value to the operand-size attribute of the instruc­
tion (16 or 32 bits), and stores the result in the destination register.

MUL Unsigned multiplication of AL or AX

0 D I T S Z A P C

* ? ? ? ? *

Opcode Instruction Clocks Description

486 386 286 86
F6/4 MUL r/m8 13/18,13/18 9-14/12-17 13/16 70-77176-83+ EA Unsigned multiply (AX

[(AL 8 rIm byte)
F7/4 MUL r/m16 13/26, 13/26 9-22/12-25 21/24 118-113/124-139+EA (DX:AX[AX * rIm word)
F7/4 MUL r/m32 13/42, 13/42 9-38/12-41 Unsigned multiply

(EDX: EAX[EAX * rIm
dword)

MUL performs unsigned multiplication. Its actions depend on the size of
its operand, as follows:

• A byte operand is multiplied by AL; the result is left in AX. The carry
and overflow flags are set to 0 if AH is 0; otherwise, they are set to l.

• A word operand is multiplied by AX; the result is left in DX: AX. DX
contains the high-order 16 bits of the product. The carry and overflow
flags are set to 0 if DX is 0; otherwise, they are set to 1.

• A doubleword operand is multiplied by EAX and the result is left in
EDX:EAX. EDX contains the high-order 32 bits of the product. The
carry and overflow flags are set to 0 if EDX is 0; otherwise, they are set
to 1 (386 only).

NEG Two's complement negation

0 D I T S Z A P C

* * * * * *

Opcode Instruction Clocks Description

486 386 286 86
F6/3 NEG r/m8 1/3 2/6 2/7 3/16+EA Two's complement negate rIm byte
F7/3 NEG r/m16 1/3 2/6 2/7 3/16+EA Two's Gomplement negate rIm word
F7/3 NEG r/m32 1/3 2/6 Two's complement negate rIm dword

NEG replaces the value of a register or memory operand with its two's
complement. The operand is subtracted from zero, and the result is
placed in the operand.

The carry flag is set to 1, unless the operand is zero, in which case the
carry flag is cleared to O.

98 PART 4, Processor Instructions

I
~j

'-)

....)

:~.J

NOP No operation

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 86
90 NOP 1 3 3 3 No operation

Nap performs no operation. Nap is a one-byte instruction that takes up
space but affects none of the machine context except (E)IP.

Nap is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

NOT One's complement negation

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 86
F6/2 NOT r/m8 1/3 2/6 217 3/16+EA Reverse each bit of rim byte
F7/2 NOT r/m16 1/3 216 2/7 3/16+EA Reverse each bit of rim word
F7/2 NOT r/m32 1/3 2/6 2/7 Reverse each bit of rim dword

:-J NOT inverts the operand; every 1 becomes a 0, and vice versa.

,=J
_J
::.~)

=-)
,-}

'-~!

OR

Opcode

DC ib
ODiw
00 id
8011 ib
8111 iw
8111 id
8311 ib

8311 ib

08/r
09/r
09/r
OA/r
08/r
08/r

Logical inclusive OR

0 D I T S Z

0 * *

Instruction Clocks

486 386 286 86
ORAL,imm8 1 2 3 4
OR AX,imm16 1 2 3 4
OR EAX,imm32 1 2
OR r/m8,imm8 1/3 2/7 3/7 4/17+EA
OR r/m16,imm16 1/3 2/7 3/7 4/17+EA
OR r/m32,imm32 1/3 2/7
OR r/m16,imm8 1/3 2/7

OR r/m32,imm8 1/3 2/7

OR r/m8,r8 1/3 2/6 2/7 3/16+EA
OR r/m16,r16 1/3 2/6 2/7 3/16+EA
OR r/m32,r32 1/3 2/6
OR r8,r/m8 1/2 2/7 2/7 3/9+EA
OR r16,r/m16 1/2 2/7 2/7 3/9+EA
OR r32,r/m32 1/2 2/7

PART 4, Processor Instructions

A P C

? * 0

Description

OR immediate byte to AL
OR immediate word to AX
OR immediate dword to EAX
OR immediate byte to rim byte
OR immediate word to rim word
OR immediate dword to rim dword
OR sign-extended immediate byte
with rim word
OR sign-extended immediate byte
with rim dword
OR byte register to rim byte
OR word register to rim word
OR dword register to rIm dword
OR byte register to rim byte
OR word register to rIm word
OR dword register to rIm word

99

OR computes the inclusive OR of its two operands and places the result
in the first operand. Each bit of the result is 0 if both corresponding bits of
the operands are 0; otherwise, each bit is 1.

OUT Output to port

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 §§
E6 ib OUT imm8,AL 16,pm=11*/31**,vm=29 10,pm=4*/24** 3 10 Output byte AL to

immediate port number
E7 ib OUTimm8,AX 16,pm=11*/31**,vm=29 10,pm=4*/24** 3 10 Output word AX to

immediate port number
E7 ib OUT 16,pm=11*/31**,vm=29 10,pm=4*/2S** Output dword EAX to

imm8,EAX immediate port number
EE OUT DX,AL 16,pm=11*/31**,vm=29 11 ,pm=S* /2S** 3 8 Output byte AL to port

number in OX
EF OUT DX,AX 16,pm=11*/31**,vm=29 11,pm=S*/2S** 3 8 Output word AX to

port number in OX
EF OUT DX,EAX 16,pm=11*/31**,vm=29 11,pm=S*/2S** Output dword EAX to

port number in OX

*If CPL ~ IOPL
** II CPL > IOPL or il in virtual 8086 mode

OUT transfers a data byte or data word from the register (AL, AX, or
EAX) given as the second operand to the output port numbered by the
first operand. Output to any port from 0 to 65535 is performed by placing
the port number in the DX register and then using an OUT instruction
with DX as the first operand. If the instruction contains an eight-bit port
ID, that value is zero-extended to 16 bits.

OUTS Output string to port
OUTSB OUTS/OUTSB/OUTSW 80186/286/386/486 only
OUTSW OUTSD 386 and i486 only
OUTSO

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286
6E OUTS DX,r/m8 17,pm=10*/32**,vm=30 14,pm=8*/28** S Output byte [(E)SI] to port

in OX
6F OUTS DX,r/m16 17,pm=10*/32**,vm=30 14,pm=8*/28** S Output word [(E)SI] to port

in OX
6F OUTS DX,r/m32 17,pm=10*/32**,vm=30 14,pm=8* /28** Output dword [(E)SI] to

port in OX
6E OUTSB 17,pm=10*/32**,vm=30 14,pm=8*/28** S Output byte DS:[(E)SI] to

port in OX
6F OUTSW 17,pm=10*/32**,vm=30 14,pm=8*/28** S Output word DS:[(E)SI] to

port number in OX

100 PART 4, Processor Instructions

-(,

._.1

Opcode Instruction Clocks

486 386
6F OUTSD 17,pm=10'/32",vm=30 14,pm=8'/28"

286

Description

Output dword DS:[(E)SI] to
port in OX

OUTS transfers data from the memory byte, word, or doubleword at the
source-index register to the output port addressed by the DX register. If
the address-size attribute for this instruction is 16 bits, SI is used for the
source-index register; otherwise, the address-size attribute is 32 bits, and
ESI is used for the source-index register.

OUTS does not allow specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load
the correct value into DX before executing the OUTS instruction.

The address of the source data is determined by the contents of source­
index register. Load the correct index value into SI or ESI before executing
the OUTS instruction.

After the transfer, source-index register is advanced automatically. If the
direction flag is 0 (CLD was executed), the source-index register is incre­
mented; if the direction flag is 1 (STD was executed), it is decremented.
The amount of the increment or decrement is 1 if a byte is output, 2 if a
word is output, or 4 if a doubleword is output.

OUTSB, OUTSW, and OUTSD are synonyms for the byte, word, and
doubleword OUTS instructions. OUTS can be preceded by the REP prefix
for block output of CX bytes or words. Refer to the REP instruction for de­
tails on this operation.

POP

Opcode

8F /0
8F /0
58HW
58Hd
1F
07
17
OF A1
OF A9

Instruction

POP m16
POP m32
POP r16
POP r32
POP OS
POP ES
POPSS
POP FS
POPGS

Pop a word from the stack

o D ITS ZAP C

486
6
6
4
4
3
3
3
3
3

Clocks

386
5
5
4
4
7,pm=21
7,pm=21
7,pm=21
7,pm=21
7,pm=21

286 ~

5 17+EA

5 8

5,pm=20 8
5,pm=20 8
5,pm=20 8

Description

Pop top of stack into memory word
Pop top of stack into memory dword
Pop top of stack into word register
Pop top of stack into dword register
Pop top of stack into OS
Pop top of stack into ES
Pop top of stack into SS
Pop top of stack into FS
Pop top of stack into GS

POP replaces the previous contents of the memory, the register, or the seg­
ment register operand with the word on the top of the stack, addressed

,._) by SS:SP (address-size attribute of16 bits) or SS:ESP (address-size attri-
," bute of 32 bits). The stack pointer SP is incremented by 2 for an operand-.J

PART 4, Processor Instructions 101

size of 16 bits or by 4 for an operand-size of 32 bits. It then points to the
new top of stack.

POP CS is not an instruction. Popping from the stack into the CS register
is accomplished with a RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the
value popped must be a selector. In protected mode, loading the selector
initiates automatic loading of the descriptor information associated with
that selector into the hidden part of the segment register; loading also initi­
ates validation of both the selector and the descriptorinformation.

A null value (0000-0003) may be popped into the DS, ES, FS, or GS regis­
ter without causing a protection exception. An attempt to reference a seg­
ment whose corresponding segment register is loaded with a null value
causes a #GP(O) exception. No memory reference occurs. The saved value
of the segment register is null.

A POP SS instruction inhibits all interrupts, including NMI, until after exe­
cution of the next instruction. This allows sequential execution of POP SS
and POP ESP instructions without danger of having an invalid stack dur­
ing an interrupt. However, use of the LSS instruction is the preferred
method of loading the SS and eSP registers.

Note: Turbo Assembler extends the syntax of the POP instruction to facili­
tate popping multiple items in sequence. The items popped can include
any legal POP value, including registers, immediate values, and memory
locations. This feature does not actually affect the code generated.

POPA
POPAD

Pop all general registers

POPA 80186/286/386/486 only
POPAD 386 and i486 only

o D ITS ZAP C

Opcode Instruction Clocks Description

61
61

POPA
POPAD

9
9

24
24

19 Pop DI
Pop EDI

paPA pops the eight 16-bit general registers. However, the SP value is dis­
carded instead of loaded into SP. POP A reverses a previous PUSHA, re­
storing the general registers to their values before PUSHA was executed.
The first register popped is DI.

POP AD pops the eight 32-bit general registers. The ESP value is discarded
instead of loaded into ESP. POPAD reverses the previous PUSHAD, re­
storing the general registers to their values before PUSHAD was executed.
The first register popped is EDI.

102 PART 4, Processor Instructions

POPF
POPFD

Opcode Instruction

9D POPF
9D POPFD

Pop from stack into FLAGS or EFLAGS register
POPFD 386 and i486 only

o D ITS ZAP C
* * * * * * * * *

Clocks Description
486 386 286 ~
9,pm=6 5 5 8 Pop top of stack FLAGS
9,pm=6 5 Pop top of stack into EFLAGS

POPF /POPFD pops the word or doubleword on the top of the stack and
stores the value in the flags register. If the operand-size attribute of the in­
struction is 16 bits, then a word is popped and the value is stored in
FLAGS. If the operand-size attribute is 32 bits, then a doubleword is
popped and the value is stored in EFLAGS.

Note that bits 16 and 17 of EFLAGS, called VM and RF, respectively, are
not affected by POPF or POPFD.

The I/O privilege level is altered only when executing at privilege level o.
The interrupt flag is altered only when executing at a level at least as priv­
ileged as the I/O privilege level. (Real-address mode is equivalent to privi­
lege level 0.) If a POPF instruction is executed with insufficient privilege,
an exception does not occur, but the privileged bits do not change.

PUSH Push operand onto the stack

o D ITS ZAP C

Opcode Instruction Clocks Description
486 386 286 ~

FF 16 PUSH m16 4 5 5 16+EA Push memory word
FF 16 PUSH m32 4 5 Push memory dword
50+ Ir PUSH r16 1 2 3 11 Push register word
50+ Ir PUSH r32 1 2 Push register dword
6A PUSH imm8 1 2 3 Push immediate byte
68 PUSH imm16 1 2 3 Push immediate word
68 PUSH imm32 1 2 Push immediate dword
OE PUSH CS 3 2 3 10 Push CS
16 PUSH SS 3 2 3 10 Push SS
1E PUSH DS 3 2 3 10 Push DS
06 PUSH ES 3 2 10 Push ES
OF AO PUSH FS 3 2 Push FS
OF A8 PUSH GS 3 2 Push GS

PUSH decrements the stack pointer by 2 if the operand-size attribute of
the instruction is 16 bits; otherwise, it decrements the stack pointer by 4.
PUSH then places the operand on the new top of stack, which is pointed
to by the stack pointer.

PART 4, Processor Instructions 103

The 386 PUSH eSP instruction pushes the value of the eSP as it existed
before the instruction. The 80286 PUSH SP instruction also pushes the
value of SP as it existed before the instruction. This differs from the 8086,
where PUSH SP pushes the new value (decremented by 2).

Note: Turbo Assembler extends the syntax of the PUSH instruction to fa­
cilitate pushing multiple items in sequence. The items pushed can include
any legal PUSH value, including registers, immediate values, and
memory locations. This feature does not actually affect the code gener­
ated. In addition, the PUSH instruction allows constant arguments even
when generating code for the 8086 processor. Such instructions are re­
placed in the object code by a lO-byte sequence that simulates the
80186/286/386 PUSH immediate value instruction.

PUSHA
PUSHAD

Push all general registers

PUSHA 80186/286/386/486 only

PUSHAD 386 and i486 only

o D ITS ZAP C

Opcode Instruction Clocks Description

60
60

PUSHA 11
PUSHAD 11

18
18

17 Push AX,CX,DX,BX,original SP,BP,SI
Push EAX,ECX,EDX,EBX

PUSHA and PUSH AD save the 16-bit or 32-bit general registers, respec­
tively, on the stack. PUSHA decrements the stack pointer (SP) by 16 to
hold the eight word values. PUSHAD decrements the stack pointer (ESP)
by 32 to hold the eight doubleword values. Because the registers are
pushed onto the stack in the order in which they were given, they appear
in the 16 or 32 new stack bytes in reverse order. The last register pushed
is DI or ED!.

PUSHF Push flags register onto the stack
PUSHFD PUSHFD 386 and i486 only

0 D I T S Z A P C

r'lnf'nno Instruction Clocks Description _I'"'vv_v

486 386 286 86
9C PUSHF 4,pm=3 4 3 10 Push FLAGS
9C PUSHFD 4,pm=3 4 Push EFLAGS

PUSHF decrements the stack pointer by 2 and copies the FLAGS register
to the new top of stack; PUSHFD decrements the stack pointer by 4, and
the 386 EFLAGS register is copied to the new top of stack which is
pointed to by SS:eSP.

104 PART 4, Processor Instructions

c-
("

(

(

~~)

~)

~
)

RCL Rotate
-~ RCR
~j ROL 0 D I T S Z A P C

:.:) * * ROR
~)

~J Opcode Instruction Clocks Oescription

~) 486 386 286 86

~)
00/2 RCL r/m8,1 3/4 9/10 2/7 2/15+EA Rotate 9 bits (CF,r/m byte)

left once

~~) 02/2 RCL r/m8,CL 8-30/9-31 9/10 5/8 8+4 per bit/(20+4 Rotate 9 bits (CF,r/m byte)
per bit)+EA left CL times

=-J CO 12 ib RCL r/m8,imm8 8-30/9-31 9/10 5/8 Rotate 9 bits (CF,r/m byte)

:::'J
left imm8 times

01/2 RCL r/m16,1 3/4 9/10 2/7 2/15+EA Rotate 17 bits (CF,r/m

:.) word) left once
03/2 RCL r/m16,CL 8-30/9-31 9/10 5/8 8+4 per bit/(20+4 Rotate 17 bits (CF, rim

=:J per bit)+EA word) left CL times
-. '\ C1 12 ib RCL r/m16, 8-30/9-31 9/10 5/8 Rotate 17 bits (CF,r/m
'--.I imm8 word)) left imm8 times

~J 01/2 RCL r/m32,1 3/4 9/10 Rotate 33 bits (CF,r/m
dword) left once

:J 03/2 RCL r/m32,CL 8-30/9-31 9/10 Rotate 33 bits (CF,r/m

=J
dword) left CL times

C1 12 ib RCL r/m32, 8-30/9-31 9/10 Rotate 33 bits (CF,r/m

:'J imm8 dword) left, imm8 times
00/3 RCR r/m8,1 3/4 9/10 217 2/15+EA Rotate 9 bits (CF,r/m byte)

~j right once

=-) 02/3 RCR r/m8,CL 8-30/9-31 9/10 5/8 8+4 per bit/(20+4 Rotate 9 bits (CF,r/m byte)
per bit)+EA right CL times

=-) CO 13 ib RCR r/m8,imm8 8-30/9-31 9/10 5/8 Rotate 9 bits (CF,r/m byte)
right imm8 times

:J 01/3 RCR r/m16,1 3/4 9/10 2/7 2/15+EA Rotate 17 bits (CF,r/m

:) word) right once
03/3 RCR r/m16,CL 8-30/9-31 9/10 5/8 8+4 per bit/(20+4 Rotate 17 bits (CF,r/m

=J per bit)+EA word) right CL times
C1 13 ib RCR r/m16, 8-30/9-31 9/10 5/8 Rotate 17 bits (CF,r/m

~-'
imm8 word) right imm8 times

:J 01/3 RCR r/m32,1 3/4 9/10 Rotate 33 bits (CF,r/m
dword) right once

D3/3 RCR r/m32,CL 8-30/9-31 9/10 Rotate 33 bits (CF,r/m
..... .! dword) right CL times

~j C1 13 ib RCR r/m32, 8-30/9-31 9/10 Rotate 33 bits (CF,r/m
imm8 dword) right imm8 times

I ~J 00/0 ROL r/m8,1 3/4 3/7 217 2/15+EA Rotate 8 bits rim byte left

~~j
once

02/0 ROL r/m8,CL 3/4 317 5/8 8+4 per bit/(20+4 Rotate 8 bits rim byte left
:::] per bit)+EA CL times

COlO ib ROL r/m8, imm8 2/4 3/7 5/8 Rotate 8 bits rim byte left
:J imm8 times

=:) 0110 ROL r/m16,1 3/4 3/7 2/7 2/15+EA Rotate 16 bits rim word left
once

=J 03/0 ROL r/m16,CL 3/4 3/7 5/8 8+4 per bit/(20+4 Rotate 16 bits rim word left
per bit)+EA CL times

=J C1 10 ib ROL r/m16, 2/4 3/7 5/8 Rotate 16 bit rim word left

:J imm8 imm8 times

:J
:J
~ PART 4, Processor Instructions 105

Opcode Instruction Clocks Description
486 386 286 86

0110 ROL r/m32,1 3/4 3/7 Rotate 32 bits rim dword left
once

03/0 ROL r/m32,CL 3/4 3/7 Rotate 32 bits rim dword left
CL times

C1 10 ib ROLr/m32, 2/4 3/7 Rotate 32 bits rim dword left
imm8 imm8 times

00/1 ROR r/m8,1 3/4 3/7 2/7 2/15+EA Rotate 8 bits rim byte right
once

02/1 ROR r/m8,CL 3/4 3/7 5/8 8+4 per bit/(20+4 Rotate 8 bits rim byte right
per bit)+EA CL times

CO/1 ib ROR r/m8, 2/4 3/7 5/8 Rotate 8 bits rim word right
imm8 imm8 times

01/1 ROR r/m16,1 3/4 317 2/7 2/15+EA Rotate 16 bits rim word
right once

03/1 ROR r/m16,CL 3/4 3/7 5/8 8+4 per bit/(20+4 Rotate 16 bits rim word
per bit)+EA right CL times

C1 11 ib ROR r/m16, 214 317 5/8 Rotate 16 bit rim word right
imm8 imm8 times

01/1 ROR r/m32,1 3/4 3/7 Rotate 32 bits rim dword
right once

03/1 ROR r/m32,CL 3/4 317 Rotate 32 bits rim dword
right CL times

C1 11 ib ROR r/m32, 2/4 317 Rotate 32 bits rim dword
imm8 right imm8 times

Add 1 clock to the times shown for each rotate made (80286 only).

Each rotate instruction shifts the bits of the register or memory operand
given. The left rotate instructions shift all the bits upward, except for the
top bit, which is returned to the bottom. The right rotate instructions do
the reverse: The bits shift downward until the bottom bit arrives at the top.

For the RCL and RCR instructions, the carry flag is part of the rotated
quantity. RCL shifts the carry flag into the bottom bit and shifts the top
bit into the carry flag; RCR shifts the carry flag into the top bit and shifts
the bottom bit into the carry flag. For the ROL and ROR instructions, the
original value of the carry flag is not a part of the result, but the carry flag
receives a copy of the bit that was shifted from one end to the other.

The rotate is repeated the number of times indicated by the second oper­
and, which is either an immediate number or the contents of the CL regis­
ter. To reduce the maximum instruction execution time, the 80286/386
does not allow rotation counts greater than 31. If a rotation count greater
than 31 is attempted, only the bottom five bits of the rotation are used.
The 8086 does not mask rotation counts. The 386 in virtual 8086 mode
does mask rotation counts.

The overflow flag is defined only for the single-rotate forms of the instruc­
tions (second operand = 1). It is undefined in all other cases. For left
shifts/rotates, the CF bit after the shift is XORed with the high order re­
sult bit. For right shifts/rotates, the high-order two bits of the result are
XORed to get OF.

106 PART 4, Processor Instructions

i"

r '
I

.. ,

.)

:~

~) REP Repeat following string operation
-. j REPE
~) REPZ 0 D I T S Z A P C

* ~J REPNE ..
-) REPNZ
~
~) Opcode Instruction Clocks Description

486 386 286 86 " ,
--) F36C REP INS 16+8(E)CX, 13+6*(E)CX, S+4*CX Input (E)CX bytes from

~j r/m8,DX pm= 1 O+8(E)CX*1/ pm=7+6*(E)CXI port DX into ES:[(E)DI]
30+8(E)CX*2, VM= 27+6*1*(E)CX*2

__ .J 29+8(E)CX
F36D REP INS 16+8(E)CX, 13+6*(E)CX, S+4*CX Input (E)CX words from

_.1 r/m16,DX pm= 1 O+8(E)CX*1/ pm=7+6*(E)CXI port DX into ES:[(E)DI]
I

30+8(E)CX*2, VM= 27+6*1*(E)CX*2
~./ 29+8(E)CX
~\ F36D REP INS 16+8(E)CX, 13+6*(E)CX, Input (E)CX dwords _.)

r/m32,DX pm= 1 O+8(E)CX*1/ pm=7 +6*(E)CXI from port DX into
-) 30+8(E)CX*2,VM= 27 +6*1*(E)CX*2 ES:[(E)DI]

29+8(E)CX
~) F3 A4 REP MOVS S*3, 13*4, 12+3(E) S+4*(E)CX S+4*CX 9+ 17*CX Move (E)CX bytes from

m8,m8 CX*s [(E)SI] to ES:[(E)DI]
,-j F3 AS REP MOVS S*3, 13*4, 12+3(E) S+4*(E)CX S+4*CX 9+ 17*CX Move (E)CX words from -- ,

I m16,m16 CX*s [(E)SI] to ES:[(E)DI]
"--'

F3 AS REP MOVS S*3, 13*4, 12+3(E) S+4*(E)CX Move (E)CX dwords
~) m32,m32 CX*s from [(E)SI] to ES:[(E)DI]

~) F36E REP OUTS 17+S(E)CX, S+ 12* (E)CX, S+4*CX Output (E)CX bytes
DX,r/m8 pm= 11 +S(E)CX*l/ pm=6+S*(E) from [(E)SI] to port DX

... '\ 31 +S(E)CX*2 CXl26+S*1*(E)
'-.) CX*2
~) F36F REP OUTS 17+S(E)CX, S+ 12*(E)CX, S+4*CX Output (E)CX words
~ ~ DX,r/m16 pm=11 +S(E)CX*l/ pm=6+S*(E) from [(E)SI] to port DX
~) 31 +S(E)CX*2 CXl26+S*1*(E)

CX*2
,-.I F36F REP OUTS 17+S(E)CX, S+ 12*(E)CX, Output(E)CX dwords
~J DX,r/m32 pm= 11 +S(E)CX*l/ pm=6+S*(E) from [(E)SI] to port DX

31+S(E)CX*2 CXl26+S*1*(E)
~J

I CX*2

=-J
F2 AC REP LODS S*3, 7 +4(E)CX*6 Load (E)CX bytes from

m8 [(E)SI] to AL
-~) F2 AD REP LODS S*3,7+4(E)CX*6 Load (E)CX words from

m16 [(E)SI] to AX

=~J F2 AD REP LODS S*3,7+4(E)CX*6 Load (E)CX dwords
m32 from [(E)SI] to EAX

,-) F3 AA REP STOS S*3,7+4(E)CX*6 S+S*(E)CX 4+3*CX 9+10*CX Fill (E)CX bytes at
I m8 ES:[(E)DI] with AL -. ,

F3AB REP STOS S*3,7+4(E)CX*6 S+S*(E)CX 4+3*CX 9+10*CX Fill (E)CX words at
~J m16 ES:[(E)DI] with AX

=-) F3AB REP STOS S*3,7+4(E)CX*6 S+S*(E)CX Fill (E)CX dwords at
m32 ES:[(E)DI] with EAX

I:) F3 A6 REPE S*3,7+7(E)CX*6 S+9*N S+9*N 9+22*N Find nonmatching bytes
CMPS in ES:[(E)DI] and [(E)SI]
m8,m8

:..)
F3 A7 REPE S*3,7+7(E)CX*6 S+9*N S+9*N 9+22*N Find nonmatching

CMPS words in ES:[(E)DI] and

,:J m16,m16 [(E)SI]

:.J
:J
~J PART 4, Processor Instructions 107

Opcode Instruction Clocks Description
4S6 3S6 2S6 S6

F3 A7 REPE S*3,7+7(E)CX*6 S+9*N Find nonmatching
CMPS dwords in ES:[(E)DI]
m32,m32 and [(E)SI]

F3AE REPE S*3, 7 +S(E)CX*6 S+S*N S+S*N 9+1S*N Find non-AL byte
SCAS mS starting at ES:[(E)DI]

F3 AF EPE SCAS S*3,7+S(E)CX*6 S+S*N S+S*N 9+1S*N Find non-AX word
m16 starting at ES:[(E)DI]

F3 AF REPE S*3, 7 +S(E)CX*6 S+S*N Find non-EAX dword
SCAS m32 starting at ES:[(E)DI]

F2 A6 REPNE S*3, 7 + 7(E)CX*6 S+9*N S+9*N 9+22*N Find matching bytes in
CMPS ES:[(E)DI] and [(E)SI]
mS,mS

F2 A7 REPNE S*3,7+7(E)CX*6 S+9*N S+9*N 9+22*N Find matching words in
CMPS ES:[(E)DI] and [(E)SI]
m16,m16

F2 A7 REPNE S*3,7+7(E)CX*6 S+9*N Find matching dwords
CMPS in ES:[(E)DI] and [(E)SI]
m32,m32

F2 AE REPNE S*3,7+S(E)CX*6 S+S*N S+S*N 9+1S*N Find AL
SCAS mS

F2 AF. REPNE S*3, 7 +S(E)CX*6 S+S*N S+S*N 9+1S*N Find AX
SCAS m16

F2 AF REPNE S*3,7+S(E)CX*6 S+S*N Find EAX
SCAS m32

*1 II ePL ~ IOPL
*2 If ePL > IOPL
*3 II (E) ex = 0
*4 If(E) ex = 1
*5 II (E) ex 1
*611 (E) ex 0

REP, REPE (repeat while equal), and REPNE (repeat while not equal) are
prefixes that are applied to string operations. Each prefix causes the string
instruction that follows to be repeated the number of times indicated in
the count register or (for REPE and REPNE) until the indicated condition
in the zero flag is no longer met.

Synonymous forms of REPE and REPNE are REPZ and REPNZ, respec­
tively.

The REP prefixes apply only to one string instruction at a time. To repeat
a block of instructions, use the LOOP instruction or another looping con­
struct.

The precise action for each iteration is as follows:

1. If the address-size attribute is 16 bits, use CX for the count register; if
the address-size attribute is 32 bits, use ECX for the count register.

2. Check CX. If it is zero, exit the iteration, and move to the next instruc­
tion.

3. Acknowledge any pending interrupts.

108 PART 4, Processor Instructions

I
'--'

-)

-..)

.... - .)

~\

~I

4. Perform the string operation once.

5. Decrement CX or ECX by one; no flags are modified.

6. Check the zero flag if the string operation is SCAS or CMPS. If the re­
peat condition does not hold, exit the iteration and move to the next in­
struction. Exit the iteration if the prefix is REPE and ZF is 0 (the last com­
parison was not equal), or if the prefix is REPNE and ZF is one (the last
comparison was equal) .

7. Return to step 1 for the next iteration.

Repeated CMPS and SCAS instructions can be exited if the count is ex­
hausted or if the zero flag fails the repeat condition. These two cases can
be distinguished by using either the JCXZ instruction, or by using the con­
ditional jumps that test the zero flag OZ, JNZ, and JNE).

RET Return from procedure

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 86
C3 RET 5 10+m 11 16 Return (near) to caller
CB RET 13,pm=18 18+m,pm= 15,pm=25 26 Return (far) to caller, same

32+m privilege
CB RET 13,pm=33 pm=68 55 Return (far)
C2iw RET imm16 5 10+m 11 20 Return (near)
CAiw RETimm16 14,pm=17 18+m,pm= 15,pm=25 25 Return (far) pop imm16 bytes

32+m
CAiw RET imm16 14,pm=33 pm=68 55 Return (far)

RET transfers control to a return address located on the stack. The ad­
dress is usually placed on the stack by a CALL instruction, and the return
is made to the instruction that follows the CALL.

The optional numeric parameter to RET gives the number of stack bytes
(OperandMode = 16) or words (OperandMode = 32) to be released after
the return address is popped. These items are typically used as input pa­
rameters to the procedure called.

For the intrasegment (near) return, the address on the stack is a segment
offset, which is popped into the instruction pointer. The CS register is un­
changed. For the intersegment (far) return, the address on the stack is a
long pointer. The offset is popped first, followed by the selector.

In real mode, CS and IP are loaded directly. In protected mode, an inter­
segment return causes the processor to check the descriptor addressed by
the return selector. The AR byte of the descriptor must indicate a code seg­
ment of equal or lesser privilege (or greater or equal numeric value) than

PART 4, Processor Instructions 109

the current privilege level. Returns to a lesser privilege level cause the
stack to be reloaded from the value saved beyond the parameter block.

The DS, ES, FS, and GS segment registers can be set to 0 by the RET
instruction during an interlevel transfer. If these registers refer to seg­
ments that cannot be used by the new privilege level, they are set to 0 to
prevent unauthorized access from the new privilege level.

SAHF Store AH into Flags

o D ITS ZAP C

Opcode Instruction

9E SAHF
486
2

Clocks

386 286
3 2

~
4

* * * * *

Description

Store AH flags SF ZF xx AF xx PF xx CF

SAHF loads the flags listed above with values from the AH register, from
bits 7, 6, 4,2 and 0, respectively.

Shift instructions SAL
SAR
SHL
SHR

o D ITS ZAP C

* * * ? * *

Opcode Instruction Clocks

486 386 286 86
DO 14
D2/4

SAL r/m8,1
SAL r/m8,CL

CO 14 ib SAL r/m8,imm8
D1 14 SAL r/m16, 1
D3/4 SAL r/m16,CL

3/4
3/4

2/4
3/4
3/4

C1/4 ib
D1/4
D3/4
C1/4 ib
DO 17
D2/7

SAL r/m16,imm8 214
SAL r/m32,1 3/4
SAL r/m32,CL 3/4
SAL r/m32,imm8 2/4
SAR r/m8,1 3/4
SAR r/m8,CL 3/4

CO 17 ib SAR r/m8,imm8
D117 SAR r/m16,1
D3 17 SAR r/m16,CL

2/4
3/4
3/4

3/7
3/7

3/7
3/7
3/7

3/7
3/7
3/7
3/7
3/7
3/7

3/7
3/7
3/7

2/7
5/8

5/8
2/7
5/8

5/8

2/7
5/8

5/8
217
5/8

C1/7 ib SAR r/m16,imm8 214 3/7 5/8
D1 17 SAR r/m32,1 3/4 3/7
D3 17 SAR r/m32,CL 3/4 317

C1 17 SAR r/m32,imm8 214 3/7

2I15+EA
8+4 per bit/(20+4
per bit)+EA

2/15+EA
8+4 per bit (20+4
per bit)+EA

2/15+EA
8+4 per bit (20+4
per bit)+EA

2I15+EA
8+4 per bit (20+4
per bit)+EA

DO 14 SHL r/m8,1 3/4 3/7 2/7 2/15+EA

Description

Multiply rIm byte by 2
Multiply rIm byte by 2, CL times

Multiply rIm byte by 2
Multiply rIm word by 2
Multiply rIm word by 2, CL times

Multiply rIm word by 2
Multiply rIm dword by 2
Multiply rIm dword by 2
Multiply rIm dword by 2
Signed divide" rIm byte by 2
Signed divide" rIm byte by 2

Signed divide" rIm byte by 2
Signed divide" rIm word by 2
Signed divide" rIm word by 2

Signed divide" rIm word by 2
Signed divide" rIm dword by 2
Signed divide" rIm dword by 2,
CL times
Signed divide" rIm dword by 2
Multiply rIm byte by 2

110 PART 4, Processor Instructions

-)

,. ,
----)

I
~,

,- ,
-....J

Opcode Instruction Clocks Description

486 386 286 86
D2/4 SHL r/m8,CL 3/4 3/7 5/8 8+4 per bit (20+4 Multiply rim byte by 2, CL times

per bit)+EA
CO 14 ib SHL r/m8,imm8 2/4 3/7 5/8 Multiply rim byte by 2
D1/4 SHL r/m16,1 3/4 3/7 2/7 2/15+EA Multiply rim word by 2
D3/4 SHL r/m16,CL 3/4 3/7 5/8 8+4 per bit (20+4 Multiply rim word by 2, CL times

per bit)+EA
C1 14 ib SHL r/m16,imm8 2/4 3/7 5/8 Multiply rim word by 2
D1I4 SHL r/m32,1 3/4 3/7 Multiply rim dword by 2
D3/4 SHL r/m32,CL 3/4 3/7 Multiply rim dword by 2
C1/4 SHL r/m32,imm8 2/4 3/7 Multiply rim dword by 2
DO 15 SHR r/m8,1 3/4 3/7 2/7 2/15+EA Unsigned divide rim byte by 2
D2/5 SHR r/m8,CL 3/4 3/7 5/8 8+4 per bit (20+4 Unsigned divide rim byte by 2

per bit)+EA
CO 15 ib SHR r/m8,imm8 2/4 3/7 5/8 Unsigned divide rim byte by 2
D1/5 SHR r/m16,1 3/4 3/7 2/7 2/15+EA Unsigned divide rim word by 2
D3/5 SHR r/m16,CL 3/4 3/7 5/8 8+4 per bit (20+4 Unsigned divide rim word by 2

per bit)+EA
C1 15 ib SHR r/m16,imm8 2/4 3/7 5/8 Unsigned divide rim word by 2
D1/5 SHR r/m32,1 3/4 3/7 Unsigned divide rim dword by 2
D3/5 SHR r/m32,CL 3/4 3/7 Unsigned divide rim dword by 2
C1 15 ib SHR r/m32,imm8 2/4 3/7 Unsigned divide rim dword by 2

*Not the same division as IDIV; rounding is toward negative infinity.
"Add 1 clock to the times shown for each shift performed.

SAL (or its synonym, SHU shifts the bits of the operand upward. The
high-order bit is shifted into the carry flag, and the low-order bit is set to
O.

SAR and SHR shift the bits of the operand downward. The low-order bit
is shifted into the carry flag. The effect is to divide the operand by 2. SAR
performs a signed divide with rounding toward negative infinity (not the
same as IDIV); the high-order bit remains the same. SHR performs an un­
signed divide; the high-order bit is set to O.

The shift is repeated the number of times indicated by the second oper­
and, which is either an immediate number or the contents of the CL regis­
ter. To reduce the maximum execution time, the 80286/386 does not allow
shift counts greater than 31. If a shift count greater than 31 is attempted,
only the bottom five bits of the shift count are used. (The 8086 uses all
eight bits of the shift count.)

The overflow flag is set only if the single-shift forms of the instructions
are used. For left shifts, OF is set to 0 if the high bit of the answer is the
same as the result of the carry flag (that is, the top two bits of the original
operand were the same); OF is set to 1 if they are different. For SAR, OF is
set to 0 for all single shifts. For SHR, OF is set to the high-order bit of the
original operand.

PART 4, Processor Instructions 111

SBB

Opcode Instruction

1C ib SSB AL,imm8

Integer subtraction with borrow

o D I T s
* *

Clocks

486 386 286 ~

2 3 4

ZAP c
* * * *

Description

Subtract with borrow immediate byte
from AL

10 iw SSB AX,imm16 2 3 4 Subtract with borrow immediate word
from AX

1 D id SSB EAX,imm32 2 Subtract with borrow immediate dword
from EAX

8013 ib SSB r/m8,imm8 1/3 2/7 3/7 4/17+EA Subtract with borrow immediate byte
from rIm byte

8113 iw SSB r/m16,imm16 1/3 2/7 3/7 4/17+EA Subtract with borrow immediate word
from rIm word

81 13 id SSB r/m32,imm32 1/3 2/7 Subtract with borrow immediate dword
from rIm dword

8313 ib SSB r/m16,imm8 1/3 2/7 3/7 4/17+EA Subtract with borrow sign-extended
immediate byte from rIm word
Subtract with borrow sign-extended
immediate byte from rIm dword

8313 ib SSB r/m32,imm8 1/3 2/7

18/r SSB r/m8,r8

19/r SSB r/m16,r16

19 Ir SSB r/m32,r32

1A Ir SSB r8,r/m8

1 B Ir SSB r16,r/m16

1 B Ir SSB r32,r/m32

1/3 2/6

1/3 2/6

2/7

2/7

3/16+EA Subtract with borrow byte register from
rIm byte

3/16+EA Subtract with borrow word register
from rIm word

1/3 2/6 Subtract with borrow dword register
from rIm dword

1/2 2/7 2/7 3/9+EA Subtract with borrow byte register from
rIm byte

1/2 2/7 2/7 3/9+EA Subtract with borrow word register
from rIm word

1/2 2/7 Subtract with borrow dword register
from rIm dword

SBB adds the second operand (DEST) to the carry flag (CF) and subtracts
the result from the first operand (SRC). The result of the subtraction is as­
signed to the first operand (DEST), and the flags are set accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended.

SCAS
SCASB
SCASW
SCASO

Opcode Instruction

AE SCAS m8

112

Compare string data
SCASD 386 and i486 only

o D I T s
* *

Clocks

486 386 286 ~

6 7 7 15

Z A

* *

Description

P

*
c
*

Compare bytes AL - ES:[DI]

PART 4, Processor Instructions \.

~~

I
_J

-)

I -.
~~

__ ... J

~)

=1

.- '~

_. ,
I

Opcode Instruction Clocks Description
486 386 286 86

AF SCAS m16 6 7 7 15 Compare words AX - ES: [01]
AF SCAS m32 6 7 Compare dwords EAX - ES: [01]
AE SCASB 6 7 7 15 Compare bytes AL - ES:[DI]
AF SCASW 6 7 7 15 Compare words AX - ES: [01]
AF SCASD 6 7 Compare dwords EAX - ES: [01]

SCAS subtracts the memory byte or word at the destination register from
the AL, AX or EAX register. The result is discarded; only the flags are set.
The operand must be addressable from the ES segment; no segment over­
ride is possible.

If the address-size attribute for this instruction is 16 bits, DI is used as the
destination register; otherwise, the address-size attribute is 32 bits and
EDI is used.

The address of the memory data being compared is determined solely by
the contents of the destination register, not by the operand to SCAS. The
operand validates ES segment addressability and determines the data
type. Load the correct index value into DI or EDI before executing SCAS.

After the comparison is made, the destination register is automatically up­
dated. If the direction flag is a (CLD was executed), the destination regis­
ter is incremented; if the direction flag is 1 (STD was executed), it is
decremented. The increments or decrements are by 1 if bytes are com­
pared, by 2 if words are compared, or by 4 if doublewords are compared.

SCASB, SCASW, and SCASD are synonyms for the byte, word and
doubleword SCAS instructions that don't require operands. They are sim­
pler to code, but provide no type or segment checking.

SCAS can be preceded by the REPE or REPNE prefix for a block search of
CX or ECX bytes or words. Refer to the REP instruction for further details.

SETcc

Opcode Instruction

OF 97
OF 93
OF 92
OF 96
OF 92
OF 94
OF 9F
OF 90

SETA r/m8
SETAE r/m8
SETB r/m8
SETBE r/m8
SETe r/m8
SETE r/m8
SETG r/m8
SETGE r/m8

Byte set on condition

386 and i486 only

o D ITS ZAP C

Clocks Description
486 386
4/3
4/3
4/3
4/3
4/3
4/3
4/3
4/3

4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5

Set byte if above (CF=O and ZF=O)
Set byte if above or equal (CF=O)
Set byte if below (CF=l)
Set byte if below or equal (CF=l or ZF=l)
Set if carry (CF=l)
Set byte if equal (ZF=l)
Set byte if greater (ZF=O or SF=OF)
Set byte if greater or equal (SF=OF)

PART 4, Processor Instructions 113

Opcode Instruction Clocks Description

OF 9C
OF 9E
OF 96
OF 92
OF 93
OF 97
OF 93
OF 95
OF 9E
OF 9C
OF 90
OF 9F
OF 91
OF 9B
OF 99
OF 95
OF 90
OF 9A
OF 9A
OF 9B
OF 98
OF 94

486 386

SETl r/m8 4/3
SETlE rImS 4/3
SETNA r/m8 4/3
SETNAE rImS 4/3
SETNB r/m8 4/3
SETNBE r/m8 4/3
SETNC r/m8 4/3
SETNE r/m8 4/3
SETNG r/m8 4/3
SETNGE r/m8 4/3
SETNl r/m8 4/3
SETNlE r/m8 4/3
SETNO r/m8 4/3
SETNP rImS 4/3
SETNS rImS 4/3
SETNZ r/m8 4/3
SETO r/m8 4/3
SETP r/m8 4/3
SETPE r/m8 4/3
SETPO r/m8 4/3
SETS r/m8 4/3
SETZ rImS 4/3

4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5

Set byte if less (SFOF)
Set byte if less or equal (ZF=1 and SF<>OF)
Set byte if not above (CF=l)
Set byte if not above or equal (CF=l)
Set byte if not below (CF=O)
Set byte if not below or equal (CF=O and ZF=O)
Set byte if not carry (CF=O)
Set byte if not equal (ZF=O)
Set byte if not greater (ZF= 1 or SF<>OF)
Set byte if not greater or equal (SF<>OF)
Set byte if not less (SF=OF)
Set byte if not less or equal (ZF=l and SF<>OF)
Set byte if not overflow (OF=O)
Set byte if not parity (PF=O)
Set byte if not sign (SF=O)
Set byte if not zero (ZF=O)
Set byte if overflow (OF=l)
Set byte if parity (PF= 1)
Set byte if parity even (PF=l)
Set byte if parity odd (PF=O)
Set byte if sign (SF=l)
Set byte if zero (ZF=l)

SETcc stores a byte containing 1 at the destination specified by the effec­
tive address or register if the condition is met, or a 0 byte if the condition
is not met.

SGOT
SlOT

Store global/interrupt descriptor table

80286/386/486 protected mode only

o D ITS ZAP C

Opcode Instruction Clocks Description

486 386 286
OF 0110 SGDT m 10 9 11 Store GDTA to m
OF 0111 SlOT m 10 9 12 Store IOTA to m

SCDT /SIDT copies the contents of the descriptor table register to the six
bytes of memory indicated by the operand. The LIMIT field of the register
is assigned to the first word at the effective address. If the operand-size at­
tribute is 32 bits, the next three bytes are assigned the BASE field of the
register, and the fourth byte is written with zero. The last byte is unde­
fined. Otherwise, if the operand-size attribute is 16 bits, the next four
bytes are assigned the 32-bit BASE field of the register.

SCDT and SIDT are used only in operating system software; they are not
used in application programs.

114 PART 4, Processor Instructions

I
-----'

I
-j

:.J

SHLD

Opcode

OF A4
OF A4
OF AS
OF AS

Double precision shift left
386 and i486 only

o D ITS ZAP C
? * * ? * *

Instruction Clocks Description
486 386

SHLD r/m16,r16,imm8 2/3 3/7 r/m16 gets SHL of r/m16 concatenated with r16
SHLD r/m32,r32,imm8 2/3 3/7 r/m32 gets SHL of r/m32 concatenated with r32
SHLD r/m16,r16,CL 2/3 317 r/m16 gets SHL of r/m16 concatenated with r16
SHLD r/m32,r32,CL 2/3 3/7 r/m32 gets SHL of r/m32 concatenated with r32

SHLD shifts the first operand provided by the r / m field to the left as
many bits as specified by the count operand. The second operand (r16 or
r32) provides the bits to shift in from the right (starting with bit 0). The re­
sult is stored back into the r / m operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the con­
tents of the CL register. These operands are taken MODULO 32 to pro­
vide a number between 0 and 31 by which to shift. Because the bits to
shift are provided by the specified registers, the operation is useful for
multiprecision shifts (64 bits or more). The SF, ZF and PF flags are set ac­
cording to the value of the result. CF is set to the value of the last bit
shifted out. OF and AF are left undefined.

SHRD Double precision shift right

386 and i486 only

0 D I T S Z A P C

? * * ? * *

Opcode Instruction Clocks Description
486 386

OFAC SHRD r/m16,r16,imm8 2/3 3/7 r/m16 gets SHR of r/m16 concatenated with r16
OFAC SHRD r/m32,r32,imm8 2/3 3/7 r/m32 gets SHR of r/m32 concatenated with r32
OFAD SHRD r/m16,r16,CL 3/4 3/7 r/m16 gets SHR of r/m16 concatenated with r16
OFAD SHRD r/m32,r32,CL 3/4 3/7 r/m32 gets SHR of r/m32 concatenated with r32

SHRD shifts the first operand provided by the r / m field to the right as
many bits as specified by the count operand. The second operand (r16 or
r32) provides the bits to shift in from the left (starting with bit 31). The re­
sult is stored back into the r / m operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the con­
tents of the CL register. These operands are taken MODULO 32 to pro­
vide a number between 0 and 31 by which to shift. Because the bits to
shift are provided by the specified register, the operation is useful for
multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set ac-

PART 4, Processor Instructions 115

cording to the value of the result. CF is set to the value of the last bit
shifted out. OF and AF are left undefined.

SLOT Store local descriptor table register

80286/386/486 protected mode only

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286

OF 00 /0 SLOT r/m16 2/3 pm=2/2 2/3 Store LDTR to EA word

SLDT stores the Local Descriptor Table Register (LDTR) in the two-byte
register or memory location indicated by the effective address operand.
This register is a selector that points into the global descriptor table.

SLDT is used only in operating system software. It is not used in applica­
tion programs.

SMSW

Opcode Instruction

Store machine status word

80286/386/486 protected mode only

o D ITS ZAP C

Clocks Description
486 386 286

OF 01 /4 SMSW r/m16 2/3 2/3,pm=2/2 2/3 Store machine status word to EA word

SMSW stores the machine status word (part of CRO) in the two-byte regis­
ter or memory location indicated by the effective address operand.

STC Set carry flag

0 D I T S Z A P C

1

Opcode Instruction Clocks Description
486 386 286 ~

F9 STC 2 2 2 2 Set carry flag

STC sets the carry flag to 1.

116 PART 4, Processor Instructions

~-j

-j

~J

-.. ..'

\ _J

~)

'-',

~I

I ___ J

~)

STD Set direction flag

o D ITS ZAP C
1

Opcode Instruction Clocks Description

486 386 286 ~

FD STD 2 2 2 2 Set direction flag so (E)SI or (E)DI decrement

STD sets the direction flag to 1, causing all subsequent string operations
to decrement the index registers, (E)SI and/ or (E)DI, on which they oper­
ate.

STI Set interrupt enable flag

0 D I T S Z A P C

1

Opcode Instruction Clocks Description
486 386 286 ~

FS STI 5 3 2 2 Set interrupt flag

STI sets the interrupt flag to 1. The CPU then responds to external inter­
rupts after executing the next instruction if the next instruction allows the
interrupt flag to remain enabled. If external interrupts are disabled and
you code STI, RET (such as at the end of a subroutine), the RET is allowed
to execute before external interrupts are recognized. Also, if external inter­
rupts are disabled and you code STI, CLI, then external interrupts are not
recognized because the CLI instruction clears the interrupt flag during its
execution.

STOS Store string data
STOSB STOSD 386 and i486 only
STOSW
STOSD 0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

AA STOS m8 5 4 3 11 Store AL in byte ES:[(E)DI]
AS STOS m16 5 4 3 11 Store AX in word ES:[(E)DI]
AS STOS m32 5 4 Store EAX in dword ES:[(E)DI]
AA STOSS 5 4 3 11 Store AL in byte ES:[(E)DI]
AS STOSW 5 4 3 11 Store AX in word ES:[DI]
AS STOSD 5 4 Store EAX in dword ES:[(E)DI]

STOS transfers the contents of the AL, AX, or EAX register to the memory
byte or word given by the destination register relative to the ES segment.

PART 4, Processor Instructions 117

The destination register is DI for an address-size attribute of 16 bits or
EDI for an address-size attribute of 32 bits.

The destination operand must be addressable from the ES register. A seg­
ment override is not possible.

The address of the destination is determined by the contents of the desti­
nation register, not by the explicit operand of STOS. This operand is used
only to validate ES segment addressability and to determine the data
type. Load the correct index value into the destination register before exe­
cuting STOS.

After the transfer is made, DI is automatically updated. If the direction
flag is 0 (CLD was executed), DI is incremented; if the direction flag is 1
(STD was executed), DI is decremented. DI is incremented or
decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a
doubleword is stored.

STOSB, STOSW, and STOSD are synonyms for the byte, word, and dou­
ble-word STOS instructions, that do not require an operand. They are sim­
pler to use, but provide no type or segment checking.

STOS can be preceded by the REP prefix for a block fill of CX or ECX
bytes, words, or doublewords. Refer to the REP instruction for further de­
tails.

STR Store task register

80286/386/486 protected mode only

0 D I T S Z A l? C

Opcode Instruction Clocks Description
486 386 286

OF 00 11 STR r/m16 2/3 pm=23/27 2/3 Load EA word into task register

The contents of the task register are copied to the two-byte register or
memory location indicated by the effective address operand.

STR is used only in operating system software. It is not used in applica­
tion programs.

118 PART 4, Processor Instructions

--)

~)

_ ...)

~!

--)

:.J

SUB Integer Subtraction

0 D I T S Z A P C

* * * * * *

Opcode Instruction Clocks Description

486 386 286 ~
2C ib SUB AL,imm8 1 2 3 4 Subtract immediate byte from AL
2Diw SUB AX,imm16 1 2 3 4 Subtract immediate word from AX
2D id SUB EAX,imm32 1 2 Subtract immediate dword from EAX
80 IS ib SUB r/m8,imm8 1/3 217 3/7 4/17+EA Subtract immediate byte from rim byte
81 IS iw SUB r/m16,imm16 1/3 2/7 317 4/17+EA Subtract immediate word from rim word
81 IS id SUB r/m32,imm32 1/3 2/7 Subtract immediate dword from rim dword
83 IS ib SUB r/m16,imm8 1/3 217 3/7 4/17+EA Subtract sign-extended immediate byte

from rim word
83 IS ib SUB r/m32,imm8 1/3 2/7 Subtract sign-extended immediate byte

from rim dword
28/r SUB r/m8,r8 1/3 2/6 2/7 3/16+EA Subtract byte register from rim byte
29/r SUB r/m16,r16 1/3 2/6 2/7 3/16+EA Subtract word register from rim word
29/r SUB r/m32,r32 1/3 2/6 Subtract dword register from rim dword
2A/r SUB r8,r/m8 1/2 2/7 2/7 3/9+EA Subtract EA byte from byte register
2B Ir SUB r16,r/m32 1/2 2/7 2/7 3/9+EA Subtract EAword from word register
2B Ir SUB r32,r/m32 1/2 2/7 Subtract EA dword from dword register

SUB subtracts the second operand (SRC) from the first operand (DEST).
The first operand is assigned the result of the subtraction, and the flags
are set accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended to the size of the destination oper­
and.

TEST Logical compare

0 D I T S Z A P C

0 * * ? * 0

Opcode Instruction Clocks Description

486 386 286 86
A8 ib TEST AL,imm8 1 2 3 4 And immediate byte with AL
A9 iw TEST AX,imm16 1 2 3 4 And immediate word with AX
A9 id TEST EAX,imm32 1 2 And immediate dword with EAX
F6/0 ib TEST r/m8,imm8 1/2 2/5 3/6 5/11+EA And immediate byte with rim byte
F7/0 iw TEST r/m16,imm16 1/2 2/5 3/6 5/11+EA And immediate word with rim word
F7/0 id TEST r/m32,imm32 1/2 2/5 And immediate dword with rim dword
84/r TEST r/m8,r8 1/2 2/5 2/6 3/9+EA And byte register with rim byte
85/r TEST r/m16,r16 1/2 2/5 2/6 3/9+EA And word register with rim word
85/r TEST r/m32,r32 1/2 2/5 And dword register with rim dword

TEST computes the bit-wise logical AND of its two operands. Each bit of
the result is 1 if both of the corresponding bits of the operands are 1;

PART 4, Processor Instructions 119

otherwise, each bit is O. The result of the operation is discarded and only
the flags are modified.

VERR Verify a segment for reading or writing
VERW 80286/386/486 protected mode only

0 D I T S Z A P C

*

Opcode Instruction Clocks Description
486 386 286

OF 00 14 VERR r/m16 11/11 pm=10/11 14/16 Set ZF=1 if segment can be read
OF 00 15 VERW r/m16 11/11 pm=15/16 14/16 Set ZF=1 if segment can be written

The two-byte register or memory operand of VERR and VERW contains
the value of a selector. VERR and VERW determine whether the segment
denoted by the selector is reachable from the current privilege level and
whether the segment is readable (VERR) or writable (VERW). If the seg­
ment is accessible, the zero flag is set to 1; if the segment is not accessible,
the zero flag is set to O. To set ZF, the following conditions must be met:

• The selector must denote a descriptor within the bounds of the table
(GDT or LDT); the selector must be "defined."

• The selector must denote the descriptor of a code or data segment (not
that of a task state segment, LDT, or a gate).

• For VERR, the segment must be readable. For VERW, the segment must
be a writable data segment.

• If the code segment is readable and conforming, the descriptor privilege
level (DPL) can be any value for VERR. Otherwise, the DPL must be
greater than or equal to (have less or the same privilege as) both the cur­
rent privilege level and the selector's RPL.

The validation performed is the same as if the segment were loaded into
DS, ES, FS, or GS, and the indicated access (read or write) were per­
formed. The zero flag receives the result of the validation. The selector's
value cannot result in a protection exception, enabling the software to an­
ticipate possible segment access problems.

WAIT Wait until BUSY# pin is inactive (HIGH)

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 86
9B WAIT 1·3 6 3 4+5n Wait until BUSY pin is inactive (HIGH)

120 PART 4, Processor Instructions

~)

-) WAIT suspends execution of CPU instructions until the BUSY# pin is inac­
tive (high). The BUSY# pin is driven by the 80x87 numeric processor ex­
tension.

"--.. '

I
-. ..)

_____ I

I
---./

-. \
--.-,'

WBINVD Write-back and Invalidate cache
i486 only

o D ITS ZAP C

Opcode Instruction Clock Description

486
OF 09 WBINVD 5 Write-back and invalidate entire cache

The internal cache is flushed, and a special-function bus cycle is issued
which indicates that the external cache should write-back its contents to
main memory. Another special-function bus cycle follows, directing the
external cache to flush itself.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors. It is the responsibility
of the hardware to respond to the external cache write-back and flush in­
dications.

XADD

Opcode Instruction

OF COlr XADD r/m8,r8

Exchange and add
i486 only

o D ITS ZAP C

* * * * * *

Clock Description

486
3/4 Exchange byte register and rim byte; load sum into rim byte.

OF C1/r XADD r/m16,r168 3/4 Exchange word register and rim word; load sum into rim word.
OF C1/r XADD r/m32,r32 3/4 Exchange dword register and rim dword; load sum into rim dword.

The XADD instruction loads DEST into SRC, and then loads the sum of
DEST and the original value of SRC into DEST.

DEST is the destination operand; SRC is the source operand.

Protected mode exceptions: #GP(O) if the result is in a nonwritable seg­
ment; #GP(O) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #SS(O) for an illegal address in the SS seg­
ment; #PF (fault code) for a page fault; #NM if either EM or TS in CRO is
set; # AC for an unaligned memory reference if the current privilege level
is 3.

PART 4, Processor Instructions 121

Real address mode exceptions: interrupt 13 if any part of the operand
would lie outside the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: same exception as in real-address mode;
same #PF and #AC exceptions as in protected mode.

XCHG Exchange memory/register with register

0 D I T S Z A P C

Opcode Instruction Clocks Description

486 386 286 ~
86/r XCHG r/m8,r8 3/5 3/5 3/5 4/17+EA Exchange byte register with EA byte
86/r XCHG r8,r/m8 3/5 3/5 3/5 4/17+EA Exchange byte with EA byte register
87/r XCHG r/m16,r16 3/5 3/5 3/5 4/17+EA Exchange word register with EA word
87/r XCHG r16,r/m16 3/5 3/5 3/5 4/17+EA Exchange word register with EA word
87/r XCHG r/m32,r32 3/5 3/5 Exchange dword register with EA dword
87/r XCHG r32,r/m32 3/5 3/5 Exchange dword register with EA dword
90H XCHGAX,r16 3 3 3 3 Exchange word register with AX
90H XCHG r16,AX 3 3 3 3 Exchange word register with AX
90H XCHG EAX,r32 3 3 Exchange dword register with EAX
90H XCHG r32,EAX 3 3 Exchange dword register with EAX

XCHG exchanges two operands. The operands can be in either order. If a
memory operand is involved, BUS LOCK is asserted for the duration of
the exchange, regardless of the presence or absence of the LOCK prefix or
of the value of the IOPL.

XLAT Table look-up translation
XLATB

0 D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86

D7 XLAT m8 4 5 5 11 Set AL to memory byte DS:[(E)BX + unsigned ALI
D7 XLATB 4 5 5 11 Set AL to memory byte DS:[(E)BX + unsigned ALI

XLAT changes the AL register from the table index to the table entry. AL
should be the unsigned index into a table addressed by DS:BX (for an ad­
dress-size attribute of 16 bits) or DS:EBX (for an address-size attribute of
32 bits).

The operand to XLAT allows for the possibility of a segment override.
XLAT uses the contents of BX even if they differ from the offset of the
operand. The offset of the operand should have been moved into BX/EBX
with a previous instruction.

The no-operand form, XLATB, can be used if the BX/EBX table will
always reside in the DS segment.

122 PART 4, Processor Instructions

.......
~~'

-~

---.J

I
XOR Logical exclusive OR

-~

-~
I 0 D I T S Z A P C

0 * * ? * 0
I .. -.. -./

~~ Opcode Instruction Clocks Description
486 386 286 ~

I 34 ib XORAL,imm8 1 2 3 4 Exclusive-OR immediate byte to AL
'-~

35 iw XOR AX,imm16 1 2 3 4 Exclusive-OR immediate word to AX
35 id XOR EAX,imm32 1 2 Exclusive-OR immediate dword to EAX

I 8016 ib XOR r/m8,imm8 1/3 217 317 4/17+EA Exclusive-OR immediate byte to rim byte
~J 8116 iw XOR r/m16,imm16 1/3 217 317 4/17+EA Exclusive-OR immediate word to rim word

8116 id XOR r/m32,imm32 1/3 217 Exclusive-OR immediate dword to rim
dword

8316 ib XOR r/m16,imm8 1/3 217 XOR sign-extended immediate byte to
~

rim word
---' 8316 ib XOR r/m32,imm8 1/3 217 XOR sign-extended immediate byte to

rim dword
30/r XOR r/m,r8 1/3 216 217 3/16+EA Exclusive-OR byte register to rim byte
31/r XOR r/m16,r16 1/3 216 217 3/16+EA Exclusive-OR word register into rim word
31/r XOR r/m32,r32 1/3 2/6 Exclusive-OR dword register to rim dword

~~

32/r XOR r8,r/m8 1/2 2/7 217 3/9+EA Exclusive-OR rim byte to byte register
'--' 33/r XOR r16,r/m16 1/2 217 217 3/9+EA Exclusive-OR rim word to word register

33/r XOR r32,r/m32 1/2 2/7 Exclusive-OR to rim dword to dword
register

~J
XOR computes the exclusive OR of the two operands. Each bit of the re-
sult is 1 if the corresponding bits of the operands are different; each bit is

~~

) a if the corresponding bits are the same. The answer replaces the first op-

--)
erand.

.- "

0

--~

~I

~I

~)

PART 4, Processor Instructions 123

I ' ___ I

~)

--':1

.-=.)

,=-)

p A R T 5

Coprocessor instructions

This part lists the 80x87 instructions in alphabetical order.

There is one entry for each combination of operand types that can be
coded with the mnemonic. The following table explains the operand iden­
tifiers used in this section:

Identifier

ST

ST(1)

Short-real

Long-real

Temp-real

Packed-decimal

Word-integer

Short-integer

Long-integer

nn-bytes

Explanation

Stack top; the register currently at the top of the stack.

A register in the stack i(O~i~7) stack elements from the
top. ST(1) is the next-on-stack register, ST(2) is below
ST(1), etc.

A short real (32 bits) number in memory.

A long real (64 bits) number in memory.

A temporary real (80 bits) number in memory.

A packed decimal integer (18 digits, 10 bytes) in
memory.

A word binary integer (16 bits) in memory.

A short binary integer (32 bits) in memory.

A long binary integer (64 bits) in memory.

A memory area nn bytes long.

Here is a summary of the possible exceptions each instruction can cause:

• IS = invalid operand due to stack overflow /underflow

• I = invalid operand due to other cause

• D = denormal operand

• Z = zero-divide

• 0 = Overflow

• U = Underflow
• P = Inexact result (precision)

126 PART 5, Coprocessor instructions

I
'--

I '--

--'

. -

I

--'

- "

J -

-~

--'
- "

~~I

I -'

I '-
I

~

"

. ---\
) '--

'_J

~~ ... --' ;

~.)

. \

j
~

F2XMl

Operands

No operands

FABS

Operands

No operands

FADD

Operands

IIST,ST(i)!
ST(i),ST
short real
long real

FADDP

Operands

ST(i),ST

Computer 2x-l

Exceptions: p, U, D, I, S

F2XMl (no operands)

Execution clocks Code bytes Example

~ 287 387 486
211-476 211-476 242(140·279) 2 F2XM1

Absolute value

Exceptions: 1

FABS (no operands)

Execution clocks Code bytes Example

~ 287 387 486
10-17 10-17 22 3 2 FABS

Add real

Exceptions: I, D, 0, U, P

FADD / /source/destination, source

Execution clocks Code bytes

87 287 387 486
70-100 70-100 23-34 10(8-20) 2

90-120+EA 90-120 24-32 10(8-20) 2-4
9S-12S+EA 95-125 29-37 10(8-20) 2-4

Add real and pop

Exceptions: I, D, 0, U, P

FADDP destination, source

Example

FADD ST,ST(4)

FADD AIR_TEMP[SI]
FADD [BX].MEAN

Execution clocks Code bytes Example

~ 287 387 486
75-105 75-105 23-34 10(8-20) 2 FADDP ST(2),ST

PART 5, Coprocessor instructions 127

FBLD

Operands

Packed decimal

FBSTP

Operands

Packed decimal (BCD) load

Exceptions: I

FBLDsource

Execution clocks

~ 287 387
290-310 290-310 5

Code bytes Example
486
75(70-103) 2-4 FBLD YTD SALES

Packed decimal (BCD) store and pop

Exceptions: I

FBSTP destination

Execution clocks

~ 287 387 486

Code bytes Example

Packed decimal 520-540+EA 520-540+EA 512-534 175(172-176) 2-4 FBSTP
[BXI·FORECAST

FCHS Change sign

Exceptions: I

FCHS (no operands)

Operands Execution clocks Code bytes Example
87 287 387 486

No operands 10-17 10-17 24-25 6 2 FCHS

FCLEX Clear exceptions
FNCLEX

Exceptions: None

FCLEX/FNCLEX (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 2-8 2-8 11 7 FNCLEX

128 PART 5, Coprocessor instructions

- .
~-)

.- .
~)

---)

FCOM

Operands

//ST(i)
short real
long real

FCOMP

Operands

//ST(i)
short real
long real

FCOMPP

Operands

No operands

FCOS

Operands

No operands

Compare real

Exceptions: I, D

FCOM / / source

Execution clocks

40-50 40-50
60-70+EA 60-70
65-75+EA 65-75

24
26
31

4
4
4

Code bytes Example

2-4
2-4

FCOM ST(1)
FCOM [BP].UPPER_LlMIT
FCOM WAVELENGTH

Compare real and pop

Exceptions: I, D

FCOMP / / source

Execution clocks

~ 287 387
42-52 45-52 26
63-73+EA 63-73 26
67-77+EA 67-77 31

Code bytes Example

486
4 2 FCOMP ST(2)
4 2-4 FCOMP [BP+2].N_READINGS
4 2-4 FCOMP DENSITY

Compare real and pop twice

87
45-55

Exceptions: I, D

FCOMPP (no operands)

Execution clocks

287 387 486
45-55 26 5

Cosine of ST(O)

387 and i486 only

Exceptions: IS, I, D, U, P

Feos

Execution clocks

486

Code bytes Example

2 FCOMPP

Code bytes Example

123-772' 241(193-279) 2 FCOS

:J 'These timings hold for operands in the range Ixl 14. For operands not in this range, up to 76 additional clocks may
=:J be needed to reduce the operand.

:J
:J

PART 5, Coprocessor instructions 129

FDECSTP

Operands

No operands

FDISI
FNDISI

Decrement stack pointer

Exceptions: None

FDECSTP (no operands)

Execution clocks Code bytes Example

!!Z 287 387 486
6-12 6-12 22 3 2 FDECSTP

Disable interrupts
8087 only

Exceptions: None

FDISI (no operands)

Execution clocks: Operand word Code
Operands Typical Range transfers bytes Example
No operands 5 2-8 o 2 FDISI

FDIV Divide real

Exceptions: I, D, Z, 0, u, P

FDIV / / source/ destination, source

Operands Execution clocks Code bytes Example

!!Z 287 387 486
//ST(i),ST 193-203 193-203 88-91 73 2 FDIV
short real 215-225 215-225 89 73 2-4 FDiV DISTANCE
long real 220-230 220-230 94 73 2-4 FDIV ARC[DI]
//ST,ST(i) 73

FDIVP Divide real and pop

Exceptions: I, D, Z, 0, u, P

FDIVP destination, source

Operands Execution clocks Code bytes Example

!!Z 287 387 486
IIST(i),ST 197-207 198-209 88-91 73 2 FDIVP ST(4),ST

130 PART 5, Coprocessor instructions

.-- \
'-J FDIVR Divide real reversed

Exceptions: I, D, Z, 0, u, P

FDIVR / / source/ destination, source

Operands Execution clocks Code bytes Example

§l 287 387 486
IIST,ST(i)J 194-204 198-208 88-91 73 2 FDIVR ST(2),ST
ST(i),ST 73
short real 216-226+EA 215-225 89 73 2-4 FDIVR [8X].PULSE_RATE
long real 221-231+EA 220-230 94 73 2-4 FDIVR RECORDER.FREQUENCY

FDIVRP Divide real reversed and pop

Exceptions: I, D, Z, 0, u, P

FDIVRP destination, source

Operands Execution clocks Code bytes Example
87 287 387 486

ST(i),ST 198-208 198-208 88-91 73 2 FDIVRP ST(1),ST

FENI Enable interrupts
FNENI 8087 only

Exceptions: None

FENI (no operands)

Operands Execution clock Code by1es Example

87
(no operands) 5(2-8) 2 FNENI

-"',

FFREE Free register

Exceptions: None

FFREE destination

Operands Execution clocks Code by1es Example

87 287 387 486
ST(i) 9-16 9-16 18 3 2 FFREE ST(1)

PART 5, Coprocessor instructions 131

FIADD

Operands

word integer
short integer

FICOM

Operands

word integer
short integer

FICOMP

Operands

word integer
short integer

FIDIV

Operands

word integer
short integer

132

§Z

Integer add

Exceptions: I, D, 0, P

FIADD source

Execution clocks

287 387 486

Code Example
bl1es

102-137+EA 102-137 71-85 22.5(19-32) 2-4 FIADD DISTANCE_TRAVELLED
108-143+EA 108-143 57-72 24(20-35) 2-4 FIADD PULSE_COUNT [SI)

Integer compare

Exceptions: I, D

FICOM source

Execution clocks Code bytes Example
87 287 387 486
72-86+EA 72-86 71-75 18(16-20) 2-4 FICOM TOOL.N_PASSES
78-91+EA 78-91 56-63 16.5(15-17) 2-4 FICOM [BP+4).PARM COUNT

Integer compare and pop

Exceptions: I, D

FICOMP source

Execution clocks Code bytes Example
87 287 387 486
74-88+EA 74-88 71-75 18(16-20) 2-4 FICOMP [BP).LlMIT [SI)
80-93+EA 80-93 56-63 16.5(15-17) 2-4 FICOMP N_SAMPLES

Integer divide

Exceptions: I, D, Z, 0, u, P

FIDIV source

Execution clocks Code Example
bytes

§Z 287 387 486
224-238+EA 224-238 136-140 73 2-4 FIDIV SURVEY.OBSERVATIONS
230-243+EA 230-243 120-127 73 2-4 FIDIV RELATIVE_ANGLE [01)

PART 5, Coprocessor instructions

"

---)

~)

",,-_ ... 1

FIDIVR

Operands

word integer
short integer

FILD

Operands

word integer
short integer
long integer

FIMUL

Operands

word integer
short integer

FINCSTP

Operands

No operands

Integer divide reversed

Exceptions: I. D. Z. O. u. P

FIDIVR source

Execution clocks

~ 287 387 486
225-239+EA 224-238 135-141 73
231-245+EA 230-243 121-128 73

Integer load

Exceptions: I

FILDsource

Execution clocks
87 287 387 486
46-54+EA 46-54 61-65 11.5(9-12)
52-60+EA 52-60 45-52 14.5(13-16)
60-68+EA 60-68 56-67 16.8(10-18)

Integer multiply

Exceptions: I. D. O. P

FIMUL source

Execution clocks

87 287
124-138+EA 124-138
130-144+EA 130-144

387 486
76-87 8
61-82 8

Increment stack pointer

Exceptions: None

FINCSTP (no operands)

Code bytes Example

2-4 FIOIVR [BP1.X_COORO
2-4 FIOIVR FREQUENCY

Code bytes Example

2-4 FILO [BX1.SEQUENCE
2-4 FILO STANDOFF [Oil
2-4 FILD RESPONSE. COUNT

Code bytes Example

2-4
2-4

FIMUL BEARING
FIMUL POSITION.Z AXIS

Execution clocks Code bytes Example

~ 287 387 486
6-12 6-12 21 3 2 FINCSTP

PART 5, Coprocessor instructions 133

FINIT
FNINIT

Operands

!IT

Initialize processor

Exceptions: None

FINIT /FNINIT (no operands)

Execution clocks Code bytes Example
287 387 486

No operands 2-8 2-8 33 17 2 FINIT

FIST

Operands

word integer
short integer

FISTP

Operands

word integer

short integer
long integer

FISUB

Operands

word integer
short integer

134

Integer store

Exceptions: I, P

FIST destination.

Execution clocks

!IT 287 387 486
80-90+EA 80-90 82-95 33.4(29-34)
82-92+EA 82-92 79-93 32.4(28-34)

Code
bytes

2-4
2-4

Integer store and pop

Exceptions: I, P

FISTP destination

Example

FIST OBS.COUNT [SI]
FIST [BP;].FACTORED PULSES

Execution clocks Code bytes Example

!IT 287 387 486
82-92+EA 82-92 82-95 33.4(29-34)

84-94+EA 84-94 79-93 33.4(29-34)
94-105+EA 94-105 80-97 33.4(29-34)

!IT

Integer subtract

Exceptions: I, D, 0, P

FISUB source

Execution clocks
287 387 486

2-4

2-4
2-4

102-137+EA 102-137 71-83 22.5(19-32)
108-143+EA 108-143 57-82 24(20-35)

FISTP [BX].
ALPHA_COUNT [SI]
FISTP CORRECTED_TIME
FISTP PANEL. N READINGS

Code
bytes Example

2-4 FISUB BASE_FREQUENCY
2-4 FISUB TRAIN SIZE [01]

PART 5, Coprocessor instructions

.-""1

"--)

- '.
-)

_.J

_ .. 'I

,-j

CJ

---. .. /

FISUBR

Operands

word integer
short integer

FLO

Operands

ST(i)
short real
long real
Temp real

FLOCW

Operands

2 bytes

FLOENV

Operands

14 bytes

Integer subtract reversed

Exceptions: I, D, 0, P

FISUBR source

Execution clocks Code bytes Example

~ 287 387 486
103-139+EA 102-137 72-84 22.5(19-32)
109-144+EA 108-143 58-83 24(20-35)

Load real

Exceptions: I, D

FLDsource

Execution clocks Code bytes
87 287 387 486
17-22 17-22 14 4 2
38-56+EA 38-56 20 3 2-4
40-60+EA 40-60 25 3 2-4
53-65+EA 53-65 44 6 2-4

Load control word

Exceptions: None

FLDCW source

2-4 FISUBR FLOOR [BX][SI]
2-4 FISUBR BALANCE

Example

FLD ST{O)
FLD READING [SI].PRESSURE
FLD [BP].TEMPERATURE
FLD SAVEREADING

Execution clocks Code bytes Example

87
7-14+EA

287 387 - -
7-14 19

486
4

Load environment

Exceptions: None

FLDENV source

2-4 FLDCW CONTROL WORD

Execution clocks Code bytes Example

87 287 387 486
35-45+EA 35-45 71 44 real or virtual 2-4

34 protected
FLDENV [BP+6]

PART 5, Coprocessor instructions 135

FLDLG2 Load \og102

Exceptions: I

FLDLG2 (no operands)

Operands Execution clocks Code bytes Example

QZ 287 387 486
No operands 18-24 18-24 41 8 2 FLDLG2

FLDLN2 Load \oge2

Exceptions: I

FLDLN2 (no operands)

Operands Execution clocks Code bytes Example

QZ 287 387 486
No operands 17-23 17-23 41 8 2 FLDLN2

FLDL2E Load \og2e

Exceptions: I

FLDL2E (no operands)

Operands Execution clocks Code bytes Example
87 287 387 486

No operands 15-21 15-21 40 8 2 FLDL2E

FLDL2T Load \og210

Exceptions: I

FLDL2T (no operands)

Operands Execution clocks Code bytes Example
87 287 387 486

No operands 16-22 16-22 40 8 2 FLDL2T

136 PART 5, Coprocessor instructions

'-)

~J

I
,-j

.- 1

FLOPI Load P (pi)

Exceptions: I

FLDPI (no operands)

Operands Execution clocks Code bytes Example

!!Z 287 387 486
No operands 16-22 16-22 40 8 2 FLOPI

FLOZ Load +0.0

Exceptions: I

FLDZ (no operands)

Operands Execution clocks Code bytes Example

!!Z 287 387 486
No operands 11-17 11-17 20 4 2 FLOZ

FLOl Load +1.0

Exceptions: I

FLDI (no operands)

Operands Execution clocks Code bytes Example

87 287 387 486
No operands 15-21 15-21 24 4 2 FL01

FMUL Multiply real

Exceptions: L D, 0, U, P

FMUL / / source/ destination,source

Code
Operands Execution clocks bytes Example

!!Z 287 387 486
IIST(i),ST/ST, 90-105,ST(1)* 90-105 90-145 29-57 16 2 FMUL ST,ST(3)
IIST(i),ST/ST, ST,ST(1) 130-145 90-145 29-57 16 2 FMUL ST,ST(3)
short real 110-125+EA 110-125 27-35 11 2-4 FMUL SPEED_FACTOR
long real' 112-126+EA 112-168 32-57 2-4 FMUL IBPj.HEIGHT
long real 154-168+EA 112-168 32-57 14 2-4 FMUL IBPj.HEIGHT

'Occurs when one or both operands is "short"--it has 40 trailing zeros in its fraction (for example, it was loaded from
_) a short-real memory operand).

I
~,

PART 5, Coprocessor instructions 137

FMULP

Operands

ST(i),ST*
ST(i),ST

Multiply real and pop

Exceptions: I, D, 0, U, P

FMULP destination, source

Execution clocks Code bytes Example

'!IT 287
94-108 198-208
134-148 198-208

387 486
29-57
29-57 16

2
2

FMULP ST(1),ST
FMULP ST(1),ST

·Occurs when one or both operands is "short"--it has 40 trailing zeros in its fraction (for example, it was loaded from
a short-real memory operand),

FNOP No operation

Exceptions: None

FNOP (no operands)

Operands Execution clocks Code bytes Example

!IT 287 387 486
No operands 10-16 10-16 12 3 2 FNOP

FPATAN Partial arctangent

Exceptions: U, P (operands not checked)

FP AT AN (no operands)

Operands Execution clocks Code bytes Example

!IT 287 387 486
No operands 250-800 250-800 314-487 5(2-17) 2 FPATAN

138 PART 5, Coprocessor instructions

(

--)

---)

I
'_~.J

FPREMl

Operands

No operands

FPTAN

Operands

No operands

FRNDINT

Operands

No operands

FRSTOR

87

87
30-540

~
16-50

Partial remainder

387 and i486 only

Exceptions: I, D, U

FPREM (no operands)

Execution clocks Code bytes

287 387 486
95-185 94.5(72-167) 2

Partial tangent

Exceptions: I, P (operands not checked)

FPTAN (no operands)

Execution clocks

287 387 486
30-540 191-573 244(200-273)

Round to integer

Exceptions: I, P

FRNDINT (no operands)

Execution clocks

287 387
16-50 66-80

486
29.1(21-30)

Restore saved state

Exceptions: None

FRSTOR source

Code bytes

2

Code bytes

2

Example

FPREM1

Example

FPTAN

Example

FRNDINT

Operands Execution clocks Code bytes Example

~ 287 387
94 bytes 197-207+EA 205-215 308

486
131 real or virtual
120 protected

2-4 FRSTOR [BPI

Note: The 80287 execution clock count for this instruction is not meaningful in determining overall instruction execu­
tion time. For typical frequency ratios of the 80286 and 80287 clocks, 80287 execution occurs in parallel with the op­
erand transfers. The operand transfers determine the overall execution time of the instructions. For 80286:80287
clock frequency ratios of 4:8, 1: 1, and 8:5, the overall execution clock count for this instruction is estimated at 490,
302, and 22780287 clocks, respectively.

PART 5, Coprocessor instructions 139

FSAVE
FNSAVE

Save state

Exceptions: None

FSA VE/FNSA VE destination

Operands Execution clocks Code bytes

!IT 287 387 486
94 bytes 197-207+EA 205-215 375-376 2-4

Example

FSAVE [BP]

Note: The 80287 execution clock count for this instruction is not meaningful in determining overall instruction execu­
tion time. For typical frequency ratios of the 80286 and 80287 clocks, 80287 execution occurs in parallel with the op­
erand transfers. The operand transfers determine the overall execution time of the instruction. For 80286:80287
clock frequency ratios of 4:8, 1 :1, and 8:5, the overall execution clock count for this instruction is estimated at 376,
233, and 17480287 clocks, respectively.

FSCALE Scale

Exceptions: I, 0, U

FSCALE (no operands)

Operands Execution clocks Code bytes

87
No operands 32-38

FSETPM

287
32-38

387 486
67-86 31(30-32)

Set protected mode

Exceptions: None

FSETPM (no operands)

2

Operands Execution clock Code bytes Example

287
No operands 2-8 2 FSETPM

FSIN Sine of STeO)

387 and i486 only

Exceptions: IS, L D, U, P

FSIN

Operands Execution clocks Code bytes

387 486
No operands 122-771" 241 (193-279) 2

Example

FSIN

Example

FSCALE

"These timings hold for operands in the range Ixl 14. For operands not in this range, up to 76 additional clocks may
be needed to reduce the operand.

140 PART 5, Coprocessor instructions

(

I
..... _-,

FSINCOS Sine and cosine of ST(O)

387 and i486 only

Exceptions: IS, I, D, U, P

FSINCOS

Operands Execution clocks Code bytes Example
387 486

No operands 194-809* 291 (243-329) 2 FSINCOS

"These timings hold for operands in the range Ixl 14, For operands not in this range, up to 76 additional clocks may
be needed to reduce the operand,

FSQRT

Operands

No operands

FST

Operands

ST(i)
short real

Square root

Exceptions: I, D, P

FSQRT (no operands)

Execution clocks

§Z 287 387 486
Code bytes Example

180-186 180-186 122-129 85,5(83-87) 2 FSQRT

§Z
15-22

Store real

Exceptions: I, 0, U, P

FST destination

Execution clocks
287 387 486
15-22 11 3

84-90+EA 84-90 44 7

Code bytes Example

2 FST ST(3)
2-4 FST CORRELATION [011

~~I long real 96-104+ EA 96-1 04 45 8 2-4 FST MEAN_READING

,
--.'

\
~.1

FSTCW
FNSTCW

Operands

2 bytes

Store control word

Exceptions: None

FSTCW destination

Execution clocks Code bytes Example
§Z 287 387 486
12-18+EA 12-18 15 2-4 FSTCW SAVE_CONTROL

PART 5, Coprocessor instructions 141

FSTENV
FNSTENV

Operands

14 bytes

FSTP

Operands

ST(i)
short real
long real
Temp real

FSTSW
FNSTSW

Operands

2 bytes

Store environment

Exceptions: None

FSTENV destination

Execution clocks

!IT 287 387 486
40-50+EA 40-50 103-104

!IT
17-24

Store real and pop

Exceptions: 1,0, U, P

FSTP destination

Execution clocks
287 387 486
17-24 12 3

86-92+EA 86-92 44 7
98-106+EA 98-106 45 8
52-58+EA 52-58 53 6

Store status word

Exceptions: None

Code bytes Example

2-4 FSTENV [BP]

Code bytes Example

2 FSTP ST(2)
2-4 FSTP [BX]. ADJUSTED_RPM
2-4 FSTP TOTAL_DOSAGE
2-4 FSTP REG SAVE [SI]

FSTSW /FNSTSW destination

Execution clocks

!IT 287 387
12-18+EA 12-18 15

486
3

Code bytes Example

2-4 FSTSW SAVE STATUS

FSTSW AX Store status word to AX
FNSTSW AX

Exceptions: None

FSTSW destination

Operands Execution clocks Code bytes Example

!IT 287 387 486
AX 10-16 13 3 2 FSTSW AX

142 PART 5, Coprocessor instructions

,-)

I
"--/

... - "

:~

=-1
:J
.-"'\
,_.J

J
-.~

:J
'--'

-.-J
-
~_J

FSUB

Operands

//ST,ST/(i)/
ST(i),ST
short real
long real

FSUBP

Operands

ST(i),ST

FSUBR

Operands

//ST,ST(i)/
ST(i),ST
short real
long real

FSUBRP

Operands

ST(i),ST

Subtract real

Exceptions: I, D, 0, U, P

FSUB / / source/ destination,source

Execution clocks Code bytes Example

~ 287 387 486
70-100 70-100 26-37 7(5-17) 2

90-120+EA 90-120 24-32 7(5-17) 2-4
95-125+EA 95-125 28-36 7(5-17) 2-4

Subtract real and pop

Exceptions: I, D, 0, U, P

FSUBP destination, source

FSUB ST,ST(2)

FSUB BASE_VALUE
FSUB COORDINATE.X

Execution clocks Code bytes Example

87 287 387 486
75-105 75-105 26-37 7(5-17) 2 FSUBP ST(2),ST

Subtract real reversed

Exceptions: I, D, 0, U, P

FSUBR / / source/ destination, source

Execution clocks
87 287 387
70-100 70-100 26-37

90-120+EA 90-120 25-33
95-125+EA 95-125 29-37

Code bytes
486
7(5-17) 2

7(5-17) 2-4
7(5-17) 2-4

Example

FSUBR ST,ST(1)

FSUBR VECTOR [SI]
FSUBR [BX].INDEX

Subtract real reversed and pop

Exceptions: I, D, 0, U, P

FSUBRP destination, source

Execution clocks Code bytes Example

!!Z 287 387 486
75-105 75-105 26-37 7(5-17) 2 FSUBRP ST(1),ST

PART 5, Coprocessor instructions 143

FTST

Operands

No operands

FUCOM

Operands

//ST(i)

FUCOMP

Operands

§I
38-48

Test stack top against +0.0

Exceptions: I, D

FfSI (no operands)

Execution clocks Code bytes
287 387 486
38-48 28 4 2

Unordered compare
387 and i486 only

Exceptions: IS, I, D

Execution clocks Code bytes Example

387 486
24 4 2 FUCOM ST(1)

Unordered compare

387 and i486 only

Exceptions: IS, I, D

Execution clocks Code bytes Example

Example

FTST

//ST(i) 26 4 2 FUCOMP ST(2)

FUCOMPP Unordered compare

387 and i486 only

Exceptions: IS, I, D

Operands Execution clocks Code bytes

387 486
No operands 26 5 2

FWAIT Wait

Example

FUCOMPP

Exceptions: None (CPU instruction)

FW AlI (no operands)

144 PART 5, Coprocessor instructions

Operands Execution clocks Code bytes Example

387 486

No operands 3t5n* 1-3 FWAIT

* n = number of time CPU examines BUSY line before 80287 completes execution of previous instruction.

-
--) FXAM Examine stack top

--.)
Exceptions: None

FXAM (no operands)

Operands Execution clocks Code bytes Example
87 287 387 486

No operands 12-23 12-23 30-38 8 2 FXAM

FXCH Exchange registers

~I
Exceptions: I

FXCH / / destination

Operands Execution clocks Code bytes Example

§Z 287 387 486
//ST(i} 10-15 10-15 18 4 2 FXCH ST(2}

=)

FXTRACT Extract exponent and significant

Exceptions: I

FXTRACT (no operands)

Operands Execution clocks Code bytes Example

§Z 287 387 486
No operands 27-55 27-55 70-76 19(16-20} 2 FXTRACT

--) -
FYL2X Y * log2X

Exceptions: P (operands not checked)

FYL2X (no operands)

Operands Execution clocks Code bytes Example

§Z 287 387 486
No operands 900-1100 900-1100 120-538 311 (196-329) 2 FYL2X

_./

~l

PART 5, Coprocessor instructions 145

FYL2XPl Y * log2(X+ 1) :

Exceptions: P (operands not checked)

FYL2XPI (no operands)
~

Operands Execution clocks Code bytes Example [

~ 287 387 486
No operands 700-1000 700-1000 257-547 313(171-326} 2 FYL2XP1

F2XMl 2x-l

Exceptions: U, P (operands not checked)

F2XMl (no operands)

Operands Execution clocks Code bytes Example

~ 287 387 486
No operands 310-630 310-630 211-476 242(140-279} 2 F2XM1

146 PART 5, Coprocessor instructions

:)

o
o
o
o
o
o
o
o
o

TURBO
ASSEMBLER

BORLAND

CORPORATE HEADQUARTERS: 1800 GREEN HILtS ROAD, P.O. BOX 660001, scans VAUEY, CA
95067-0001, (408) 438-5300. OFFICES IN: AUSTRALIA, DENMARK, FRANCE, GERMANY, ITALY,
JAPAN, SWEDEN AND THE UNITED KINGDOM. PART II 15MN-ASD05-20 • BOR 1482B

