[
=
[v]
o
fw]
[
[v]
o

TURBO
- ASSEMBLER

)

)

QUICK REFERENCE GUIDE

Q
=
<
P
-4
(-]
[-<]

-

CcCuu

cereocoe

.

)
J

@

coeocococouoreau

oo

O

Turbo Assembler ®

Quick Reference Guide

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Rl

The material in Part 3 and Part 4 is reprinted with
permission of Intel Corporation, Copyright/intel
Corporation 1987, 1990.

Copyright © 1991 by Borland International. All rights
reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc.
Other brand and product names are trademarks or
registered trademarks of their respective holders.

PRINTED IN THE USA.
1098764321

[A T |

[N

|

[N

IR R O

el

-

(|

Part 1 Predefined symbols

S 2 DWORDPTIR 9
@codeiiiiiiiiia, 2 EQ i 9
@CodeSize 2 FAR ... 9
@CPU 2 FARPTIR 9
@curseg 2 FWORD 9
@data ...l 2 FWORDPIRc.u.n.. 9
@DataSize 2 GE .. 9
date ... 2 GT .. 9
@fardata 2 HIGH 9
@fardata? 2 HIGH 10
@FileName 2 LARGE 10
Nfilename 2 LE ... 10
@Modelll 2 LENGTH 10
@Startup ..., 3 LOW ... 10
Hme ... 3 LOW ... 10
?version ... 3 LT 10
@WordSize 3 MASK ...t 10

MODoooiiiil 10
Part 2 Operators NE ©@oviiiiiiaanannnns, 11
Ideal mode operator NEAR ...t 11
precedence 6 NEARPTR 11
MASM mode operator NOT ..., 11
precedence 6 OFFSETcoiviiiiiet. 11
Operators 7 OR ... 11
() e 7 PROC, 11
e 7 PROCPIRccovn.... 11
+ (binary) 7 PIR ... 11
+@nary) ...l 7 PWORD 12
-(binary)L 7 PWORDPTIR 12
-(unary) ... 7 QWORDcoovnn... 12
e 7 QWORDPTR 12
2 7 SEG ... 12
A 8 SHLooiiiiiit 12
P 8 SHORT 12
) 8 SHR ... 12
AND ... 8 SIZEoiiiial 12
BYTEoo.... 8 SMALL 13
BYTEPTR 8 SYMTYPE 13
CODEPTR 8 TBYTE 13
DATAPTR 8 TBYTEPIR 13
DUPcooiiiiiiiinn... 8 THIS ..., 13
DWORDo.eee 9 TYPE ...t 13

i

TYPEcoviiiiatt 13 DB .. 22
UNKNOWN 13 DD ... 22
WIDTH 14 %DEPTH 22
WORDcooiiie... 14 DF ... i 22
WORDPIR 14 DISPLAYcovn... 23
XOR ..ot 14 DOSSEGcovvuvnnnnn 23
The special macro operators 14 DP ..o 23
& 14 DQ . 23
<> e 14 DT .. 23
PP 14 DW 23
PO e 14 ELSE ...t 24
2 15 ELSEIF ...t 24
R EMULcooiiiiiiae. 24

Part 3 Directives END ..oovoooiiiiii 24
186 v 18 ENDIF ...t 24
286 e 18 ENDMcoieeine. 25
286C .. 18 ENDPoioie. 25
286P ... 18 ENDScoiiiiiiiiiiin 25
287 18 EQU ... 25
386 .. 18 ERR o 25
386C ... 18 ERR ...t 25
386P ... 18 ERRY oo 25
387 e 18 ERR2 oo 25
486 . 18 ERRB ...l 25
486C ... 18 ERRDEF 26
486P ...l 19 ERRDIFccocou0en. 26
8086 ... 19 ERRDIFI 26
8087 ..o 19 ERRE ..., 26
.......................... 19 ERRIDN0.... 26
et 19 ERRIDNI 26
ALIGN 19 ERRIF 26
ALPHA 19 ERRIF1 26
ARG ..., 19 ERRIF2coiiitn 26
ASSUME 20 ERRIFB0. 27
PBL o 20 ERRIFDEF 27
CATSTRcoviinnnn... 20 ERRIFDIF 27
CODE ..., 20 ERRIFDIFI 27
CODESEG c.ccvuennn 20 ERRIFEcoooa... 27
COMMcvvinvnnn. 20 ERRIFIDN 27
COMMENT 21 ERRIFIDNI 27
%CONDccovviiinnn. 21 ERRIFNB 27
CONSTovvvvninvnnn., 21 ERRIFNDEF 27
CREF ...l 21 ERRNBcciinae. 28
%CREFcc i, 21 ERRNDEF 28
%CREFALL 21 ERRNZooine. 28
%CREFREF 21 EVENocoiiiiiiiin, 28
%CREFUREF 21 EVENDATA 28
%CTLS .. 21 EXITM ...t 28
DATA ... 22 EXTRNovvviiiiiennn, 28
DATASEG 22 JFARDATA 29

FARDATA 29 NOMULTERRS 37

FARDATA? 29 NOSMART 37
GLOBAL 29 %NOSYMS 37
GROUPcuee. 29 %NOTRUNC 38
IDEAL ...l 30 NOWARN 38
IF oo 30 ORG ..., 38
IF1 oo 30 %OUT ... 38
IF2 oo 30 P186ot 38
IFB 30 P286 ...l 38
IFDEF 31 P286Nl 38
IFDIF ...t 31 P286P 38
IFDIFIcoviiinatt. 31 P287 ..o 38
IFE ... oot 32 P386l 38
IFIDNocoiiinaet 32 P386Noooiil 39
IFIDNI 32 P386P ..., 39
IENB ... i 32 P387 . 39
IFNDEF 32 P486l 39
%INCLcooiiien. 33 P486N 39
INCLUDE 33 P8086l 39
INCLUDELIB 33 P8087 ...l 39
INSTRcooiiieen. 33 %PAGESIZE 39
IRP ... 33 %PCNT ... 39
IRPC ...l 33 PNO87t 40
JUMPS ...l 34 %POPLCTL 40
LABEL 34 PROC ...t 40
LALL ..o 34 PUBLIC 40
LFCOND 34 PUBLICDLL 41
%LINUM 34 PURGEooae 41
%LIST ... 34 %PUSHLCTL 41
LIST ... 34 QUIRKSoeet. 41
LOCALcoiaet. 34 RADIX ...l 41
LOCALS 35 RADIX 41
MACROcoiunt 35 RECORD 41
FMACSl 35 REPToiiiiiiit, 42
MASMol 35 RETCODE 42
MASMS51 ... 35 RETF ..., 42
MODEL 36 RETIN ...t 42
MODEL 36 SALL 42
MULTERRS 36 SEGMENT 42
NAME 36 SEQ o 43
%NEWPAGE 36 SFCONDcouee, 43
%NOCONDS 36 SIZESTR 43
%NOCREF 36 SMART 43
%NOCTLS 37 STACK 43
NOEMUL 37 STACK 43
%NOINCL 37 STRUCcooiiin. 43
NOJUMPS 37 SUBSTRcoiue. 44
%NOLIST 37 SUBTTLc.oout. 44
NOLOCALS 37 %SUBTTL 44
%NOMACS 37 BSYMS ... 44
NOMASMS5T 37 %TABSIZE 44

fii

DTEXT ... 44
TFCONDcccvvnnnn.. 44
TITLE ..o 44
%TITLE ..., 44
%TRUNCcvvvvvnnn. 44
UDATASEG 44
UFARDATA 45
UNIONcoiiiiiiinann, 45
USES .ot 45
WARN ...t 45
XALL ..o 45
XCREF 45
XLIST ... 45
Part 4 Processor Instructions

Operand-size and address-size

attributes 48

Default segment attribute ... 48
Operand-size and
address-size instruction

prefixes 48

Address-size attribute for

stack il 49
Instruction format 49

ModR/M and SIB bytes 51
How to read the instruction

setpages 56

Flagsccoovvinnt, 56

Opcode 57

Instruction 57

Clocksoovvviiiiiis, 60
AAA 61
AAD ...l 61
AAM ... 61
AAS . 62
ADC ... 62
ADD ...l 63
AND ...l 63
ARPL 64
BOUND 64
BSF ... 65
BSR ... 65
BSWAP 66
BT o 66
BTC ..o 66
BTR ... 67
BIS ... 67
CALL ...l 67
CBW ... 69
CDQ . 70
CLC 70

iv

CLD .ottt 70
CLI o 70
CLTS ... 71
CMC ... it 71
CMP .. 72
CMPS, CMPSB, CMPSW,

CMPSDcovviiiiian.... 72
CMPXCHG 73
CWD i 74
CWDEcovviunnn., 75
DAA ... 75
DAS ... 75
DECiiiiiiiiiiaa., 76
DIV e 76
ENTERcoo..... 76
HLT ... i, 77
IDIV .. 77
IMUL ..., 78
IN (e 79
INC . 79
INS, INSB, INSW, INSD 80
INT,INTO 81
INVD ... 82
INVLPGccoviiiiaa... 82
IRET,IRETD 83
Jec oo 83
JMP 86
LAHF 87
LAR ... 88
LEA 88
LEAVE 89
LGDT/LIDTcovvnnnn... 89
LGS, LSS, LFS, LDS, LES 90
LIDT ..., 91
LMSW ... i, 91
LOCK ... 92
LODS, LODSB, LODSW,

LODSDcciviiiinn.. 93
LOOP, LOOPcond 93
ISL .. 94
LTR .t 95
MOV . 95
MOV ... 926
MOVS, MOVSB, MOVSW,
MOVSD 96
MOVSXiiiiiiiiaiann. 97
MOVZX ... 97
MUL ... i, 98
NEG ..ot 98
NOP .ooiiiii it 99
NOT ..o 99

() P 99
OUT ...t 100
QUTS, OUTSB, OUTSW,

OUTSDccvvvinvvnnn. 100
POP e 101
POPA,POPAD 102
POPF,POPFD 103
PUSHcccovvivnnnn 103
PUSHA, PUSHAD 104
PUSHEF, PUSHFD 104
RCL, RCR, ROL,ROR 105
REP, REPE, REPZ, REPNE,
REPNZ 107
RET ...t 109
SAHF 110
SAL, SAR,SHL,SHR 110
SBB ... 112
SCAS, SCASB, SCASW,

SCASD ...l 112
SETccoivviiiiinn, 113
SGDT,SIDT 114
SHLDount. 115
SHRD 115
SLDTccciiiien.. 116
SMSW ... 116
STC ..t 116
STD .. 117
STI ..t 117
STOS, STOSB, STOSW,

STOSDccviinen. 117
STR ... 118
SUB ... 119
TEST ..ot 119
VERR, VERW 120
WAIT ... 120
WBINVD 121
XADD ...l 121
XCHGcccu.e. 122
XLAT, XLATB 122
XOR .o, 123
Part 5 Coprocessor .instructions
F2XM1 ...l 127
FABScccoiiiiiinn. 127
FADDccoout 127
EADDP 127
FBLDco.ciiiiat. 128
FBSTP ..., 128
FCHSt 128
FCLEX, FNCLEX 128
FCOMcoone.. 129

FCOMP 129
FCOMPP 129
FCOS ...t 129
FDECSTP 130
FDISI,ENDISI 130
FDIV ...t 130
FDIVP 130
FDIVR 131
FDIVRP 131
FENI,FNENI 131
FFREE 131
FIADD 132
FICOM 132
FICOMP 132
FIDIV ..., 132
FIDIVRo.l. 133
FILDooiiiinnnt. 133
FIMUL 133
FINCSTP 133
FINIT ,ENINIT 134
FIST ..., 134
FISTP ...t 134
FISUBooooviitt. 134
FISUBRoo.t 135
FLD ...t 135
FLDCW 135
FLDENV 135
FIDLG2 136
FLDLN2coaee. 136
FLDL2E 136
FLDL2T 136
FLDPIcoiiett, 137
FLDZo... 137
FLD1coiiiet. 137
FMUL 137
FMULP 138
FNOPccoiat. 138
FPATAN 138
FPREM 138
FPREM1 139
FPTANol 139
FRNDINT 139
FRSTOR 139
FSAVE ,ENSAVE 140
FSCALE 140
FSETPM 140
FSINiieL. 140
FSINCOS 141
FSQRT ...t 141
FST ..o 141
FSTCW ,FNSTCW 141

FSTENV , ENSTENV 142

FSTP ..o 142
‘FSTSW , ENSTSW 142
FSTSW AX , ENSTSW AX .. 142
FSUBcoiviiiin, 143
FSUBPoovvinnnt, 143
FSUBRcoieinit 143
FSUBRP 143
FIST ... 144
FUCOMc..ciuae. 144
FUCOMP 144
FUCOMPP 144
FWAIT 144
FXAM ...l 145
FXCHcooiiit 145
EXTRACT 145
FYL2X ... it 145
FYL2XP1 ..ot 146

oo

The Turbo Assembler Quick-Reference Guide contains abbreviated
discussions of the TASM predefined symbols, operators, and directives in
Parts 1, 2, and 3, and a thorough discussion of the processor and
coprocessor instructions in Parts 4 and 5.

Several notational conventions are followed in this manual:

B Italics: In text, italics represent labels, placeholders, variables, and ar-
rays. In syntax expressions, placeholders are set in italics to indicate
that they are user-defined.

m Boldface: Boldface is used in text for directives, instructions, symbols,
and operators, as well as for command-line options.

m CAPITALS: In text, capital letters are used to represent instructions, di-
rectives, registers, and operators.

W Monospace: Monospace type is used to display any sample code, text
or code that appears on your screen, and any text that you must actu-
ally type to assemble, link, and run a program.

B Keycaps: In text, keycaps are used to indicate a key on your keyboard. It
is often used when describing a key you must press to perform a par-
ticular function; for example, “Press Enter after typing your program
name.at the prompt.”

Infroduction

»(':{,(l)xf;{‘:
B . . <

Predefined symbols

All the predefined symbols can be used in both MASM and Ideal mode.

$ o

Represents the current location counter within the current segment. .

@code
Alias equate for .CODE segment name.

@CodeSize

Numeric equate that indicates code memory model (O=near, 1=far).

@CPU

Numeric equate that returns information about current processor directive.

@curseg

Alias equate for current segment.

@data

Alias equate for near data group name.

@DataSize

Numeric equate that indicates the data memory model (O=near, 1=far,
2=huge).

??7date
String equate for today’s date.

@fardata

Alias equate for initialized far data segment name.

@fardata?

Alias equate for uninitialized far data segment name.

@FileName

Alias equate for current assembly file name.

??filename

String equate for current assembly file name.

@Model

Numeric equate representing the model currently in effect.

2 PART 1, Predefined symbols

[

Nt N

[

@Startup

@Startup
Label that marks the beginning of startup code.

?2?time

String equate for the current time.

??version

Numeric equate for current Turbo Assembler version number.

@WordsSize
Numeric equate that indicates 16- or 32-bit segments (2=16-bit, 4=32-bit).

PART 1, Predefined symbols 3

-
'

7

R
~
[t
—
R
-

-~

)
!

Operators

This part covers the operators Turbo Assembler provides and their pre-
cedence. The two tables that follow detail operator precedence for Ideal
and MASM modes.

ldeal mode operator precedence

The following table lists the operators in order of priority (highest is first,
lowest is last):

m (), [, LENGTH, MASK, OFFSET, SEG, SIZE, WIDTH
m HIGH, LOW

W +, - (unary)

m *,/, MOD, SHL, SHR

W +, - (binary)

B EQ, GE, GT, LE, LT, NE

m NOT

m AND

@ OR, XOR

W : (segment override)

| . (structure member selector)

® HIGH (before pointer), LARGE, LOW (before pointer), PTR, SHORT,
SMALL, SYMTYPE

MASM mode operator precedence

H <, (, [, LENGTH, MASK, SIZE, WIDTH
W . (structure member selector)

m HIGH, LOW

N +, - (unary)

| : (segment override)

B OFFSET, PTR, SEG, THIS, TYPE
m*, /,MOD, SHL, SHR

W +, - (binary)

m EQ, GE, GT, LE, LT, NE

m NOT

m AND

m OR, XOR

m LARGE, SHORT, SMALL, .TYPE

6 PART 2, Operators

O

Operators

O Ideal, MASM
(expression)

Marks expression for priority evaluation.

*

Ideal, MASM
expressionl * expression2

Multiplies two integer expressions. Also used with 80386 addressing
modes where one expression is a register.

+ (binary) Ideal, MASM
expressionl + expression2

Adds two expressions.

+ (unary) Ideal, MASM

+ expression

Indicates that expression is positive.

- (binary) Ideal, MASM
expression] - expression2

Subtracts two expressions.

- (unary) Ideal, MASM
- expression

Changes the sign of expression.

Ideal, MASM
memptr fieldname

Selects a structure member.

/ Ideal, MASM
expressionl / expression2

Divides.two integer expressions.

PART 2, Operators 7

Ideal, MASM
segorgroup : expression

Generates segment or group override.

? Ideal, MASM
Dx ?

Initializes with indeterminate data (where Dx ié DB, DD, DF, DP, DQ,
DT, or DW).

[1 Ideal, MASM
expression1lexpression2]
lexpression1]expression2]

MASM mode: The [] operator can be used to specify addition or register
indirect memory operands.

Ideal mode: The [] operator specifies a-memory reference.

AND ideal, MASM
expressionl AND expression2

Performs a bit-by-bit logical AND of two expressions.

BYTE Ideal

BYTE expression
Forces address expression to be byte size.

BYTE PTR Ideal, MASM
BYTE PTR expression

Forces address expression to be byte size.

CODEPTR Ideal, MASM -

CODEPTR expression

Returns the default procedure address size.

DATAPTR Ideal
DATAPTR expression

Forces address expression to model-dependent size.

DUP Ideal, MASM
count DUP (expression [,expression]...)

Repeats a data allocation operation count times.

8 PART 2, Operators

DWORD

DWORD
DWORD expression

Forces address expression to be doubleword size.

Ideal

DWORD PTR
DWORD PTR expression

Forces address expression to be doubleword size.

Ideal, MASM

EQ
expressionl EQ expression2

Returns true if expressions are equal.

Ideal, MASM

FAR
FAR expression

Forces an address expression to be a far code pointer.

Ideal

FAR PTR
FAR PTR expression

Forces an address expression to be a far code pointer.

Ideal, MASM

FWORD
FWORD expression

Forces address expression to be 32-bit far pointer size.

Ideal

FWORD PTR
FWORD PTR expression

Forces address expression to be 32-bit far pointer size.

Ideal, MASM

GE

expression] GE expression2

Ideal, MASM

Returns true if one expression is greater than or equal to the other.

GT

expressionl GT expression2

Returns true if one expression is greater than the other.

Ideal, MASM

HIGH
HIGH expression

Returns the high part (8 bits or type size) of expression.

PART 2, Operators

Ideal, MASM

HIGH

HIGH Ideal
type HIGH expression
Returns the high part (8 bits or type size) of expression.

LARGE Ideal, MASM
LARGE expression

Sets expression’s offset size to 32 bits. In Ideal mode, this operation is legal
only if 386 code generation is enabled.

LE Ideal, MASM
expression] LE expression2

Returns true if one expression is less than or equal to the other.

LENGTH Ideal, MASM
LENGTH name

Returns number of data elements allocated as part of name.

LOW ideal, MASM
LOW expression

Returns the low part (8 bits or type size) of expression.

LOW Ideal
type LOW expression

Returns the low part (8 bits or type size) of expression.

LT Ideal, MASM
expressionl LT expression2

Returns true if one expression is less than the other.

MASK Ideal, MASM

MASK recordfieldname
MASK record

Returns a bit mask for a record field or an entire record.

MOD Ideal, MASM
expression] MOD expression2

Returns remainder (modulus) from dividing two expressions.

10 PART 2, Operators

NE

NE
expression] NE expression2

Returns true if expressions are not equal.

Ideal, MASM

NEAR
NEAR expression

Forces an address expression to be a near code pointer.

Ideal

NEAR PTR
NEAR PTR expression

Forces an address expression to be a near code pointer.

Ideal, MASM

NOT
NOT expression

Performs a bit-by-bit complement (invert) of expression.

Ideal, MASM

OFFSET
OFFSET expression

Ideal, MASM

Returns the offset of expression within the current segment (or the group
that the segment belongs to, if using simplified segmentation directives or

Ideal mode).

OR
expression] OR expression2

Performs a bit-by-bit logical OR of two expressions.

Ideal, MASM

PROC
PROC expression

Forces an address expression to be a near or far code pointer.

Ideal

PROC PTR
PROC PTR expression

Forces an address expression to be a near or far code pointer.

Ideal, MASM

PTR
type PTR expression

Forces address expression to have type size.

PART 2, Operators

Ideal, MASM

1

PWORD

PWORD Ideal
PWORD expression

Forces address expression to be 32-bit far pointer size.

PWORD PTR ' Ideal, MASM
PWORD PTR expression

Forces address expression to be 32-bit far pointer size.

QWORD Ideat
QWORD expression

Forces address expression to be quadword size.

QWORD PTR Ideal, MASM
QWORD PTR expression

Forces address expression to be quadword size.

SEG Ideal, MASM
SEG expression

Returns the segment address of an expression that references memory.

SHL Ideal, MASM
expression SHL count

Shifts the value of expression to the left count bits. A negative count causes
the data to be shifted the opposite way.

SHORT idedl, MASM
SHORT expression

Forces expression to be a short code pointer (within -128 to +127 bytes of
the current code location).

SHR Ideal, MASM
expression SHR count

Shifts the value of expression to the right count bits. A negative count
causes the data to be shifted the opposite way.

SIZE Ideal, MASM
SIZE name

Returns size of data item allocated with name. In MASM mode, SIZE re-
turns the value of LENGTH name multiplied by TYPE name. In Ideal
mode, SIZE returns the byte count within name’'s DUP.

12 PART 2, Operators

SMALL

SMALL ideal, MASM
SMALL expression

Sets expression’s offset size to 16 bits. In Ideal mode, this operation is legal
only if 386 code generation is enabled.

SYMTYPE Ideal
SYMTYPE

Returns a byte describing expression.

TBYTE Ideal
TBYTE expression

Forces address expression to be 10-byte size.

TBYTE PTR Ideal, MASM
TBYTE PTR expression

Forces address expression to be 10-byte size.

THIS Ideal, MASM
THIS type

Creates an operand whose address is the current segment and location
counter. type describes the size of the operand and whether it refers to
code or data.

JYPE MASM
.TYPE expression

Returns a byte describing the mode and scope of expression.

TYPE IDEAL
TYPE namel name2

Applies the type of an existing variable or structure member to another
variable or structure member.

TYPE MASM
TYPE expression

Returns a number indicating the size or type of expression.

UNKNOWN Ideal
UNKNOWN expression

Removes type information from address expressjon.

PART 2, Operators ‘ 13

WIDTH

WIDTH Ideal, MASM

WIDTH recordfieldname
WIDTH record

Returns the width in bits of a field in a record, or of an entire record.

WORD Ideal
WORD expression

Forces address expression to be word size.

WORD PTR Ideal, MASM
WORD PTR expression

Forces address expression to be word size.

XOR Ideal, MASM
expressionl XOR expression2

Performs bit-by-bit logical exclusive OR of two expressions.
Unconditional page break inserted for print formatting

The special macro operators

& Ideal, MASM
&name

Substitutes actual value of macro parameter name.

<> Ideal, MASM

Treats text literally, regardless of any special characters it. might contain.

! Ideal, MASM
Icharacter

Treats character literally, regardless of any special meaning it might other-
wise have.

% Ideal, MASM
Yotext

Treats text as an expression, computes its value and replaces text with the
result. text may be either a numeric expression or a text equate.

14 PART 2, Operators

;comment

Suppresses storage of a comment in a macro definition.

PART 2, Operators

Ideal, MASM

15

Directives

T
i)

~
L

—
(]

-
[

)

N ATy Sy Ty Yy

IS B T N AR U A O

)

J

.186

.186 MASM

Enables assembly of 80186 processor instructions.

.286 MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc-
tions and 80287 numeric coprocessor instructions.

.286C MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc-
tions and 80287 numeric coprocessor instructions.

.286P MASM

Enables assembly of all 80286 (including protected mode) processor in-
structions and 80287 numeric coprocessor instructions.

.287 MASM

Enables assembly of 80287 numeric coprocessor instructions.

386 MASM

Enables assembly of non-privileged (real mode) 386 processor instructions
and 387 numeric coprocessor instructions.

.386C MASM

Enables assembly of non-privileged (real mode) 386 processor instructions
and 387 numeric coprocessor instructions.

.386P MASM

Enables assembly of all 386 (including protected mode) processor instruc-
tions and 387 numeric coprocessor instructions.

.387 MASM

Enables assembly of 387 numeric coprocessor instructions.

.486 MASM

Enables assembly of non-privileged (real mode) instructions for the i486
processor.

.486C MASM

Enables assembly of non-privileged (real mode) instructions for the i486
processor.

18 PART 3, Directives

.486P

.486P MASM

Enables assembly of protected mode instructions for the 80486 processor.

.8086 MASM

Enables assembly of 8086 processor instructions only. This is the default
processor instruction mode used by Turbo Assembler.

.8087 MASM

Enables assembly of 8087 numeric coprocessor instructions only. This is
the default coprocessor instruction mode used by Turbo Assembler.

Ideal, MASM
name:
Defines a near code label called name.
= Ideal, MASM
name = expression
Defines or redefines a numeric equate.
ALIGN Ideal, MASM

ALIGN boundary

Rounds up the location counter to a power-of-two address boundary (2, 4,
8,..).

ALPHA MASM

Sets alphanumeric segment-ordering. The /a command-line option per-
forms the same function.

ARG Ideal, MASM

ARG argument [argument] ... [=symbol]
[RETURNS argument [argument]]

Sets up arguments on the stack for procedures. Each argument is assigned
a positive offset from the BP register, presuming that both the return ad-
dress of the procedure call and the caller’s BP have been pushed onto the
stack already. Each argument has the following syntax (boldface items are
literal):

argname [[count1]] [:[debug_size] [type] [:count2]]
The optional debug_size has this syntax:
[type] PTR

PART 3, Directives 19

ASSUME

ASSUME Ideal, MASM

ASSUME segmentreg:name | segmentreg:namel...
ASSUME segmentreg:NOTHING
ASSUME NOTHING

Specifies the segment register (segmentreg) that will be used to calculate
the effective addresses for all labels and variables defined under a given
segment or group name (name). The NOTHING keyword cancels the asso-
ciation between the designated segment register and segment or group
name. The ASSUME NOTHING statement removes all associations be-
tween segment registers and segment or group names.

%BI Ideal, MASM
%BIN size
Sets the width of the object code field in the listing file to size columns.

CATSTR Ideal, MASM51
name CATSTR string [string]...

Concatenates several strings to form a single string name.

.CODE MASM
CODESEG Ideal, MASM
.CODE [name}
CODESEG [name]

Defines the start of a code segment when used with the .MODEL direc-
tive. If you have specified the medium or large memory model, you can
follow the .CODE (or CODESEG) directive with an optional name that in-
dicates the name of the segment.

COMM Ideal, MASM
COMM definition [definition]...

Defines a communal variable. Each definition describes a symbol and has
the following format (boldface items are literal):

[distance] llanguage] symbolnamel [count1 1 l:type [:count2]

distance can be either NEAR or FAR and defaults to the size of the default
data memory model if not specified. language is either C, PASCAL,
BASIC, FORTRAN, PROLOG, or NOLANGUAGE and defines any lan-
guage-specific conventions to be applied to symbolname. symbolname is the
communal symbol (or symbols, separated by commas). If distance is
NEAR, the linker uses countl to calculate the total size of the array. If dis-
tance is FAR, the linker uses count2 to indicate how many elements there
are of size countl times the basic element size (determined by type). type
can be one of the following: BYTE, WORD, DATAPTR, CODEPTR,

20 PART 3, Directives

[
NI

LN S A A B G I A
L NIV P NI N N

COMMENT

DWORD, FWORD, PWORD, QWORD, TBYTE, or a structure name.
count2 specifies how many items this communal symbol defines. Both
countl and count2 default to 1.

COMMENT MASM-

COMMENT delimiter [text]
[text]
delimiter [text]

Starts a multiline comment. delimiter is the first non-blank character follow-
ing COMMENT.

%COND Ideal, MASM

Shows all statements in conditional blocks in the listing. This is the de-
fault mode for Turbo Assembler.

.CONST, MASM
CONST Ideal, MASM
Defines the start of the constant data segment.
.CREF MASM
%CREF Ideal, MASM

Allows cross-reference information to be accumulated for all symbols en-
countered from this point forward in the source file. .CREF reverses the ef-
fect of any %XCREF or .XCREF directives that inhibited the information
collection.

%CREFALL Ideal, MASM

Causes all subsequent symbols in the source file to appear in the cross-
reference listing. This is the default mode for Turbo Assembler.
%CREFALL reverses the effect of any previous % CREFREF or

% CREFUREF directives that disabled the listing of unreferenced or refer-
enced symbols.

%CREFREF ideal, MASM

Disables listing of unreferenced symbols in cross-reference.

%CREFUREF . Ideal, MASM

Lists only the unreferenced symbols in cross-reference.

%CILS Ideal, MASM .

Causes listing control directives (such as. % LIST, %INCL, and so on) to be
placed in the listing file.

PART 3, Directives. 21

.DATA

.DATA MASM

DATASEG ideal

Defines the start of the initialized data segment in your module. You
must first have used the MODEL directive to specify a memory model.
The data segment is put in a group called DGROUP, which also contains
the segments defined with the STACK, .CONST, and .DATA? directives.

.DATA? MASM

Defines the start of the uninitialized data segment in your module. You
must first have used the MODEL directive to specify a memory model.
The data segment is put in a group called DGROUP, which also contains
the segments defined with the .STACK, .CONST, and .DATA directives.

DB Ideal, MASM
[name] DB expression [,expression]...

Allocates and initializes a byte of storage. name is the symbol you'll subse-
quently use to refer to the data. expression can be a constant expression, a
question mark, a character string, or a DUPlicated expression.

DD Ideal, MASM
[name] DD [type PTR] expression [expression]...

Allocates and initializes 4 bytes (a doubleword) of storage. name is the
symbol you’ll subsequently use to refer to the data. type followed by PTR
adds debug information to the symbol being defined, so that Turbo De-
bugger can display its contents properly. type is one of the following: -
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a 32-bit floating-point number, a question
mark, an address expression, or a DUPlicated expression.

%DEPTH Ideal, MASM
%DEPTH width

Sets size of depth field in listing file to width columns. The default is 1 col-
umn.

DF Ideal, MASM
[name] DF [type PTR] expression ,expression]...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is
the symbol you’ll subsequently use to refer to the data. type followed by
PTR adds debug information to the symbol being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression

22 PART 3, Directives

Y - Y T T

VN oy

-'»rrf‘,{-(\(.<l‘
L N S i N

RN

DISPLAY

can be a constant expression, a question mark, an address expression, or a
DUPIlicated expression.

DISPLAY ideal, MASM
DISPLAY "text"

Outputs a quoted string (fext) to the screen.

DOSSEG Ideal, MASM

Enables DOS segment-ordering at link time. Use this directive only when
you are writing stand-alone assembler programs. Use DOSSEG once in
the main module that specifies the starting address of your program.

DP Ideal, MASM
[name] DP [type PTR] expression | expression]...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is
the symbol you'll subsequently use to refer to the data. type followed by
PTR adds debug information to the symbol being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a question mark, an address expression, or a
DUPlicated expression.

D@ Ideal, MASM
[name] DQ expression [expression]...

Allocates and initializes 8 bytes (a quadword) of storage. name is the sym-
bol you'll subsequently use to refer to the data. expression can be a con-
stant expression, a 64-bit floating-point number, a question mark, or a
DUPlicated expression.

DT Ideal, MASM
[name] DT expression [,expression]...

Allocates and initializes 10 bytes of storage. name is the symbol you'll sub-
sequently use to refer to the data. expression can be a constant expression,
a packed decimal constant expression, a question mark, an 80-bit floating-
point number, or a DUPlicated expression.

Dw Ideal, MASM
[name] DW [type PTR] expression [,expression]...

Allocates and initializes 2 bytes (a word) of storage. name is the symbol
you'll subsequently use to refer to the data. type followed by PTR adds
debug information to the symbol being defined, so that Turbo Debugger
can display its contents properly. type is one of the following: BYTE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,

PART 3, Directives 23

ELSE

QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a question mark, an address expression, or a
DUPlicated expression.

ELSE Ideal, MASM
ELSE

IF condition
statements1

[ELSE
statements2]

ENDIF

Starts alternative conditional assembly block. The statements introduced
by ELSE (statements2) are assembled if condition evaluates to false.

ELSEIF Ideal, MASM
ELSEIF

IF conditionl
statements1
[ELSEIF condition2
statements2]
ENDIF

Starts nested conditional assembly block if condition2 is true. Several other
forms of ELSEIF are supported: ELSEIF1, ELSEIF2, ELSEIFB,
ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI, ELSEIFE, ELSEIFIDN,
ELSEIFIDNI, ELSEIFNB, and ELSEIFNDEEF.

EMUL ideal, MASM

Causes all subsequent numeric coprocessor instructions to be generated as
emulated instructions, instead of real instructions. When your program is
executed, you must have a software floating-point emulation package in-
stalled or these instructions will not work properly.

END Ideal, MASM
END [startaddress]

Marks the end of a source file. startaddress is a symbol or expression that
specifies the address in your program where you want execution to begin.
Turbo Assembler ignores any text that appears after the END directive.

ENDIF ' Ideal, MASM'
ENDIF

24 PART 3, Directives

RN

L LR B O S

Cor 0 (0 (s
[N S G GV N

)

[N

(o

e

(g
{
-

.1";

(
-

ENDM

IF condition
statements
ENDIF

Marks the end of a conditional assembly block started with one if the IF-
xxxx directives.

ENDM Ideal, MASM

Marks the end of a repeat block or a macro definition.

ENDP Ideal, MASM

ENDP [procname)
[procname] ENDP

Marks the end of a procedure. If procname is supplied, it must match the
procedure name specified with the PROC directive that started the proce-
dure definition.

ENDS Ideal, MASM

ENDS [segmentname | strucname)
[segmentname | strucname]ENDS

Marks end of current segment, structure or union. If you supply the op-
tional name, it must match the name specified with the corresponding
SEGMENT, STRUC, or UNION directive.

EQU : Ideal, MASM
name EQU expression

Defines name to be a string, alias, or numeric equate containing the result
of evaluating expression.

.ERR MASM

ERR Ideal, MASM

Forces an error to occur at the line that this directive is encountered on in
the source file.

.ERR1 MASM

Forces an error to occur on pass 1 of assembly.

.ERR2 MASM

Forces an error to occur on pass 2 of assembly if multiple-pass mode (con-
trolled by /m command-line option) is enabled.

.ERRB MASM
.ERRB argument

PART 3, Directives 25

.ERRDEF

Forces an error to occur if argument is blank (empty).

.ERRDEF MASM
.ERRDEF symbol

Forces an error to occur if symbol is defined.

.ERRDIF MASM
.ERRDIF argumentl,argument2

Forces an error to occur if arguments are different. The comparison is case
sensitive.

.ERRDIFI MASM
.ERRDIFI argument1,argument2

Forces an error to occur if arguments are different. The comparison is not
case sensitive.

.ERRE MASM
.ERRE expression

Forces an error to occur if expression is false (0).

-ERRIDN MASM
.ERRIDN argument1,argument2

Forces an error to occur if arguments are identical. The comparison is case
sensitive.

-.ERRIDNI MASM
.ERRIDNI argument1,argument?

Forces an error to occur if arguments are identical. The comparison is not
case sensitive.

ERRIF Ideal, MASM
ERRIF expression

Forces an error to occur if expression is true (nonzero).

ERRIF1 Ideal, MASM

Forces an error to occur on pass 1 of assembly.

ERRIF2 Ideal, MASM

Forces an error to occur on pass 2 of assembly if multiple-pass mode (con-
trolled by /m command-line option) is enabled.

26 PART 3, Directives

ERRIFB

ERRIFB Ideal, MASM
ERRIFB argument

Forces an error to occur if argument is blank (empty).

ERRIFDEF Ideal, MASM
ERRIFDEF symbol

Forces an error if symbol is defined.

ERRIFDIF Ideal, MASM
ERRIFDIF argument1 argument2

Forces an error to occur if arguments are different. The comparison is case
sensitive.

ERRIFDIFI Ideal, MASM
ERRIFDIFI argument1,argument2

Forces an error to occur if arguments are different. The comparison is not
case sensitive.

ERRIFE Ideal, MASM
ERRIFE expression

Forces an error if expression is false (0).

ERRIFIDN Ideal, MASM
ERRIFIDN argument1,argument?

Forces an error to occur if arguments are identical. The comparison is case
sensitive. .

ERRIFIDNI Ideal, MASM
ERRIFIDNI argumentl,argument2

Forces an error to occur if arguments are identical. The comparison is not
case sensitive.

ERRIFNB Ideal, MASM
ERRIFNB argument

Forces an error to occur if argument is not blank.

ERRIFNDEF Ideal, MASM
ERRIFNDEEF symbol

Forces an error to occur if symbol is not defined.

PART 3, Directives 27

.ERRNB

.ERRNB MASM
.ERRNB argument

Forces an error to occur if argument is not blank.

.ERRNDEF MASM
.ERRNDEF symbol

Forces an error to occur if symbol is not defined.

.ERRNZ MASM
.ERRNZ expression

Forces an error to occur if expression is true (nonzero).

EVEN Ideal, MASM

Rounds up the location counter to the next even address.

EVENDATA Ideal, MASM

Rounds up the location counter to the next even address in a data seg-
ment.

EXITM Ideal, MASM

Terminates macro- or block-repeat expansion and returns control to the
next statement following the macro or repeat-block call.

EXTRN Ideal, MASM
EXTRN definition [definition]...

Indicates that a symbol is defined in another module. definition describes a
symbol and has the following format:

[languagel namelcount1]:type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, ASSEMBLER, or PROLOG are to be applied to symbol
name. name is the symbol that is defined in another module and can op-
tionally be followed by countl, an array element multiplier that defaults to
1. type must match the type of the symbol where it’s defined and must be
one of the following: NEAR, FAR, PROC, BYTE, WORD, DWORD,
DATAPTR, CODEPTR, FWORD, PWORD, QWORD, TBYTE, ABS, or a
structure name. count2 specifies how many items this external symbol de-
fines and defaults to 1 if not specified.

28 PART 3, Directives

ESRRRGERN

.FARDATA

.FARDATA MASM
FARDATA Ideal, MASM
.FARDATA [segmentname]
FARDATA [segmentname]

Defines the start of a far initialized data segment. segmentname, if present,
overrides the default segment name.

.FARDATA? MASM
FARDATA? [segmentname]

Defines the start of a far uninitialized data segment. segmentname, if pres-
ent, overrides the default segment name.

GLOBAL Ideal, MASM
GLOBAL definition [definition]...

Acts as a combination of the EXTRN and PUBLIC directives to define a
global symbol. definition describes the symbol and has the following for-
mat (boldface items are literal):

llanguagel name [[countl 1] :type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, NOLANGUAGE, or PROLOG are to be applied to symbol
name. If name is defined in the current source file, it is made public exactly
as if used in a PUBLIC directive. If not, it is declared as an external sym-
bol of type type, as if the EXTRN directive had been used. name can be fol-
lowed by an optional array count multiplier, count1, which defaults to 1.
type must match the type of the symbol in the module where it is defined
and must be one of the following: NEAR, FAR, PROC, BYTE, WORD,
DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD,
TBYTE, ABS, or a structure name. count2 specifies how many items this
symbol defines (1 is the default).

GROUP Ideal, MASM

GROUP groupname segmentname [,segmentnamel...
groupname GROUP segmentname [segmentnamel...

Associates groupname with one or more segments, so that all labels and
variables defined in those segments have their offsets computed relative
to the beginning of group groupname. segmentname can be either a segment
name defined previously with SEGMENT or an expression starting with
SEG. In MASM mode, you must use a group override whenever you ac-
cess a symbolin a segment that is part of a group. In Ideal mode, Turbo
Assembler automatically generates group overrides for such symbols.

PART 3, Directives 29

IDEAL

IDEAL Ideal, MASM

Enters Ideal assembly mode. Ideal mode will stay in effect until it is over-
ridden by a MASM or QUIRKS directive.

IF Ideal, MASM
IF

IF expression
truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that expression is true (nonzero).

IF1 Ideal, MASM
IF1

IF1
truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the current assembly pass is
pass one.

IF2 Ideal, MASM
I1F2

IF2
truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that multiple-pass mode (controlled
by the /m command-line option) is-enabled and the current assembly pass
is pass two.

IFB Ideal, MASM
IFB

30 PART 3, Directives

IFDEF

IFB argument
truestatements
[ELSE
falsestatements)
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that argument is blank (empty).

IFDEF Ideal, MASM
IFDEF

IFDEF symbol
truestatements
[ELSE
falsestatements])
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that symbol is defined.

IFDIF Ideal, MASM
IFDIF

IFDIF argument1,argument2
truestatements

[ELSE
falsestatements)

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are different.
The comparison is case sensitive.

IFDIFI Ideal, MASM
IFDIFI

IFDIFI argumentl,argument2
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are different.
The comparison is not case sensitive.

IFE Ideal, MASM
IFE

PART 3, Directives 31

IFIDN

IFE expression
truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that expression is false.

IFIDN Ideal, MASM
IFIDN

IFIDN argument1,argument2
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are identical.
The comparison is case sensitive.

IFIDNI Ideal, MASM
IFIDNI

IFIDNI argument1,argument2
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are identical.
The comparison is not case sensitive.

IFNB Ideal, MASM
IFNB

IFNB argument
truestatements
ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that argument is nonblank.

IFNDEF ideal, MASM
IFNDEF

32 PART 3, Directives

o f

o
[y

VOV e O
[N B X

_s

%INCL

IFNDEEF symbol
truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that symbol is not defined.

%INCL Ideal, MASM

Enables listing of include files. This is the default INCLUDE file listing
mode.

INCLUDE MASM, Ideal

INCLUBDE filename or INCLUDE "filename"
Includes source code from file filename at the current position in the mod-
ule being assembled. If no extension is specified, .ASM is assumed.

INCLUDELIB MASM, Ideal

INCLUDELIB filename or INCLUDELIB "filename"
Causes the linker to include library filename at link time. If no extension is
specified, .LIB is assumed.

INSTR Ideal, MASMS51
name INSTR [start, Istring1,string2

name is assigned the position of the first instance of string?2 in stringl.
Searching begins at position start (position one if start not specified). If
string? does not appear anywhere within stringl, name is set to zero.

IRP Ideal, MASM

IRP parameter,argll,arg2]...
statements
ENDM

Repeats a block of statements with string substitution. statements are as-
sembled once for each argument present. The arguments may be any text,
such as symbols, strings, numbers, and so on. Each time the block is as-
sembled, the next argument in the list is substituted for any instance of pa-
rameter in the statements.

IRPC Ideal, MASM

IRPC parameter,string
statements
ENDM

Repeats a block of statements with character substitution. statements are as-
sembled once for each character in string. Each time the block is as-

PART 3, Directives 33

JUMPS

sembled, the next character in the string is substituted for any instances of
parameter in statements.

JUMPS Ideal, MASM

Causes Turbo Assembler to look at the destination address of a condi-
tional jump instruction, and if it is too far away to reach with the short
displacement that these instructions use, it generates a conditional jump
of the opposite sense around an ordinary jump instruction to the desired
target address. This directive has the same effect as using the /JJUMPS
command-line option.

LABEL MASM, Ideal

name LABEL type
LABEL name type

Defines a symbol name to be of type type. name must not have been de-
fined previously in the source file. type must be one of the following:
NEAR, FAR, PROC, BYTE, WORD, DATAPTR, CODEPTR, DWORD,
FWORD, PWORD, QWORD, TBYTE, or a structure name.

LALL MASM

Enables listing of macro expansions.

.LFCOND MASM

Shows all statements in conditional blocks in the listing.

%LINUM Ideal, MASM
%LINUM size

Sets the width of the line-number field in listing file to size columns. The
default is four columns.

%LIST Ideal, MASM

LIST MASM

Shows source lines in the listing. This is the default listing mode.

LOCAL Ideal, MASM

In macros:
LOCAL symbol [,symbol]...

In procedures:
LOCAL element [,element]... [=symbol]

Defines local variables for macros and procedures. Within a macro defini-
tion, LOCAL defines temporary symbol names that are replaced by new

34 PART 3, Directives

LOCALS

unique symbol names each time the macro is expanded. LOCAL must ap-
pear before any other statements in the macro definition.

Within a procedure, LOCAL defines names that access stack locations as
negative offsets relative to the BP register. If you end the argument list
with an equal sign (=) and a symbol, that symbol will be equated to the
total size of the local symbol block in bytes. Each element has the follow-
ing syntax (boldface brackets are literal):

symname [[count1]] [:[debug_size] [:type] [:count2]]

type is the data type of the argument. It can be one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, NEAR, FAR, PROC, or a structure name. If you don’t
specify a type, WORD size is assumed.

count? specifies how many items of type the symbol defines. The default
for count? is 1 if it is not specified.

countl is an array element size multiplier. The total space allocated for the
symbol is count2 times the length specified by the type field times count1.
The default for countl is 1 if it is not specified.

The optional debug_size has this syntax:
[type] PTR

LOCALS Ideal, MASM
LOCALS [prefix]

Enables local symbols, whose names will begin with two at-signs (@@) or
the two-character prefix if it is specified. Local symbols are automatically
enabled in Ideal mode.

MACRO Ideal, MASM

MACRO name [parameter [,parameter]...]
name MACRO [parameter [,parameter]...]

Defines a macro to be expanded later when name is encountered. parame-
ter is a placeholder that you use in the the body of the macro definition
wherever you want to substitute one of the actual arguments the macro is
called with.

%MACS Ideal, MASM

Enables listing of macro expansions.

MASM Ideal, MASM

Enters MASM assembly mode. This is the default assembly mode for
Turbo Assembler.

MASMS51 Ideal, MASM

Enables assembly of some MASM 5.1 enhancements.

PART 3, Directives 35

MODEL

MODEL Ideal, MASM

.MODEL MASM

MODEL [model modifier] memorymodel [module name)
[llanguage modifier] language 1 [,model modifier]

.MODEL [model modifier] memorymodel [module name]
L[language modifier] language] [,model modifier]

Sets the memory model for simplified segmentation directives. model modi-
fier can come before memorymodel or at the end of the statement and must
be either NEARSTACK or FARSTACK if present. memorymodel is TINY,
SMALL, MEDIUM, COMPACT, LARGE, HUGE or TCHUGE. module
name is used in the large models to declare the name of the code seg-
ment. language modifier is WINDOWS, ODDNEAR, ODDFAR, or NOR-
MAL and specifies generation of MSWindows procedure entry and exit
code. language specifies which language you will be calling from to access
the procedures in this module: C, PASCAL, BASIC, FORTRAN, PRO-
LOG, or NOLANGUAGE. Turbo Assembler automatically generates the
appropriate procedure entry and exit code when you use the PROC and
ENDP directives. language also tells Turbo Assembler which naming con-
ventions to use for public and external symbols, and in what order proce-
dure arguments were pushed onto the stack by the calling module. Also,
the appropriate form of the RET instruction is generated to remove the ar-
guments from the stack before returning if required.

MULTERRS Ideal, MASM

Allows multiple errors to be reported on a single source line.

NAME Ideal, MASM
NAME modulename

Sets the object file’s module name. This directive has no effect in MASM
mode; it only works in Ideal mode.

%NEWPAGE Ideal, MASM

Starts a new page in the listing file.

%NOCONDS Ideal, MASM

Disables the placement of statements in conditional blocks in the listing
file.

%NOCREF Ideal, MASM
%NOCREF [symbol, ...]

Disables cross-reference listing (CREF) information accumulation. If you
supply one or more symbol names, cross-referencing is disabled only for
those symbols.

36 PART 3, Directives

%NOCTLS

%NOCTLS Ideal, MASM

Disables placement of listing-control directives in the listing file. This is
the default listing-control mode for Turbo Assembler.

NOEMUL Ideal, MASM

Causes all subsequent numeric coprocessor instructions to be generated as
real instructions, instead of emulated: instructions. When your program is
executed, you must have an 80x87 coprocessor installed or these instruc-
tions will not work properly. This is the default floating-point assembly
mode for Turbo Assembler.

%NOINCL Ideal, MASM
Disables listing of source lines from INCLUDE files.

NOJUMPS Ideal, MASM

Disables stretching of conditional jumps enabled with JUMPS. This is the
default mode for Turbo Assembler.

%NOLIST Ideal, MASM
Disables output to the listing file.

NOLOCALS Ideal, MASM

Disables local symbols enabled with LOCALS. This is the default for
Turbo Assembler's MASM mode.

%NOMACS Ideal, MASM

Lists only macro expansions that generate code. This is the default macro
listing mode for Turbo Assembler.

NOMASMS1 Ideal, MASM

Disables assembly of certain MASM 5.1 enhancements enabled with
MASMSL. This is the default mode for Turbo Assembler.

NOMULTERRS Ideal, MASM

Allows only a single error to be reported on a source line. This is the de-
fault error-reporting mode for Turbo Assembler.

NOSMART Ideal, MASM
Disables code optimizations that generate different code than MASM.

%NOSYMS Ideal, MASM
Disables placement of the symbol table in the listing file.

PART 3, Directives 37

%NOTRUNC

%NOTRUNC Ideal, MASM

Prevents truncation of fields whose contents are longer than the corre-
sponding field widths in the listing file.
60 points

NOWARN Ideal, MASM
NOWARN [warnclass]

Disables warning messages with warning identifier warnclass, or all warn-
ing messages if warnclass is not specified.

ORG Ideal, MASM
ORG expression

Sets the location counter in the current segment to the address specified
by expression.

%OUT MASM
%OUT text
Displays text on screen.

P186 Ideal, MASM

Enables assembly of 80186 processor instructions.

P286 Ideal, MASM

Enables assembly of all 80286 (including protected mode) processor in-
structions and 80287 numeric coprocessor instructions.

P286N Ideal, MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc-
tions and 80287 numeric coprocessor instructions.

P286P Ideal, MASM

Enables assembly of all 80286 (including protected mode) processor in-
structions and 80287 numeric coprocessor instructions.

pP287 Ideal, MASM

Enables assembly of 80287 numeric coprocessor instructions.

P386 Ideal, MASM

Enables assembly of all 386 (including protected mode) processor instruc-
tions and 387 numeric coprocessor instructions.

38 PART 3, Directives

P386N

P386N Ideal, MASM

Enables assembly of non-privileged (real mode) 386 processor instructions
and 387 numeric coprocessor instructions.

P386P Ideal, MASM

Enables assembly of all 386 (including protected mode) processor instruc-
tions and 387 numeric coprocessor instructions.

P387 ideal, MASM

Enables assembly of 387 numeric coprocessor instructions.

P486 Ideal, MASM

Enables assembly of all i486 (including protected mode) processor instruc-
tions.

P486N Ideal, MASM

Enables assembly of non-privileged (real mode) i486 processor instruc-
tions.

P8086 Ideal, MASM

Enables assembly of 8086 processor instructions only. This is the default
processor instruction mode for Turbo Assembler.

P8087 Ideal, MASM

Enables assembly of 8087 numeric coprocessor instructions only. This is
the default coprocessor instruction mode for Turbo Assembler.
PAGE, MASM

%PAGESIZE Ideal, MASM

PAGE [rows] [,cols]
%PAGESIZE [rows] [,cols]

Sets the listing page height and width, starts new pages. rows specifies the
number of lines that will appear on each listing page (10..255). cols speci-
fies the number of columns wide the page will be (59..255). Omitting rows
or cols leaves the current setting unchanged. If you follow PAGE with a
plus sign (+), a new page starts, the section number is incremented, and
the page number restarts at 1. PAGE with no arguments forces the listing
to resume on a new page, with no change in section number.-

%PCNT Ideal, MASM
%PCNT width

Sets segment:offset field width in listing file to width columns. The default
is 4 for 16-bit segments and 8 for 32-bit segments.

PART 3, Directives 39

PNO87

PNO87 Ideal, MASM

Prevents the assembling of numeric coprocessor instructions (real or emu-
lated).

%POPLCTL tdeal, MASM

Resets the listing controls to the way they were when the last
%PUSHLCTL directive was issued.

PROC Ideal, MASM

PROC llanguage modifier] llanguage] name [distance]
[USES items,] [argument [,argument]...]
[RETURNS argument [argument]...]

name PROC [language modifier] [language] [distance]
[USES items,] [argument [,argument]...]
[RETURNS argument [,argument]...]

Defines the start of procedure name. language modifier is either WINDOWS
or NOWINDOWS; to specify generation of MSWindows entry/exit code.
language specifies which language you will be calling from to access this
procedure: C, PASCAL, BASIC, FORTRAN, NOLANGUAGE, or PRO-
LOG. This determines symbol naming conventions, the order of any argu-
ments on the stack, and whether the arguments will be left on the stack
when the procedure returns. distance is NEAR or FAR and determines the
type of RET instruction that will be assembled at the end of the proce-
dure. items is a list of registers and/or single-token data items to be
pushed on entry and popped on exit from the procedure. argument de-
scribes an argument the procedure is called with. Each argument has the
following syntax:

argnamel[count1]] [[:distance] [PTR] type] [:count2]

argname is the name you’ll use to refer to this argument throughout the
procedure. distance is NEAR or FAR to indicate that the argument is a
pointer of the indicated size. type is the data type of the argument and can
be BYTE, WORD, DWORD, FWORD, PWORD, QWORD, TBYTE, or a
structure name. WORD is assumed if none is specified. countl and count2
are the number of elements of type. PTR tells Turbo Assembler to emit
debug information to let Turbo Debugger know that the argument is a
pointer to a data item. Using PTR without distance causes the pointer size
to be based on the current memory model and segment address size. RE-
TURNS introduces one or more arguments that won’t be popped from
the stack when the procedure returns.

PUBLIC Ideal, MASM
PUBLIC [language] symbol [,[language] symboll...

Declares symbol to be accessible from other modules. If language is speci-
fied (C, PASCAL, BASIC, FORTRAN, ASSEMBLER, or PROLOG), sym-
bol is made public after having the naming conventions of the specified
language applied to it.

40 PART 3, Directives

(

Py i
[N

s

PUBLICDLL

PUBLICDLL Ideal, MASM
PUBLICDLL [language] symbol [,[language] symbol]...

Declares symbols to be accessible as dynamic link entry points from other
modules. symbol (a PROC or program label, data variable name, or nu-
meric constant defined with EQU) becomes accessible to other programs
under OS5/2. If language is specified (C, PASCAL, BASIC, FORTRAN,
PROLOG, or NOLANGUAGE), symbol is made public after having the
naming conventions of the specified language applied to it.

PURGE Ideal, MASM
PURGE macroname [,macronamel...

Removes macro definition macroname.

%PUSHLCTL Ideal, MASM

Saves current listing controls on a 16-level stack.

QUIRKS Ideal, MASM

Allows you to assemble a source file that makes use of one of the true
MASM bugs.

.RADIX MASM
RADIX Ideal, MASM
RADIX radix
RADIX radix

Sets the default radix for integer constants in expressions to 2, 8, 10, or 16.

RECORD MASM, Ideal

name RECORD field [field]...
RECORD name field [field]...

Defines record name that contains bit fields. Each field describes a group of
bits in the record and has the following format (boldface items are literal):

fieldname:width[=expression]

fieldname is the name of a field in the record. width (1..16) specifies the
number of bits in the field. If the total number of bits in all fields is 8 or
less, the record will occupy 1 byte; 9..16 bits will occupy 2 bytes; other-
wise, it will occupy 4 bytes. expression provides a default value for the
field.

PART 3, Directives 4]

REPT

REPT Ideal, MASM

REPT expression
statements
ENDM

Repeats a block of statements expression times.

RETCODE Ideal, MASM

Generates either a near return (2-byte displacement) or a far return (4-byte
displacement) depending on the size of the memory model declared in
the MODULE directive. A tiny, small, or compact memory model results
in a near return, while a medium, large, or huge memory model results in
a far return. See the RET processor instruction in Chapter 4 for more infor-
mation.

RETF ideal, MASM

Generates a far return (4-byte displacement) from a procedure. See the
RET processor instruction in Chapter 4 for more information.

RETN Ideal, MASM

Generates a near return (2-byte displacement) from a procedure. See the
RET processor instruction in Chapter 4 for more information.

SALL MASM

Suppresses the listing of all statements in macro expansions.

SEGMENT MASM, Ideal

SEGMENT name [align] [combine] [use] ['class’]
name SEGMENT [align] [combine] [use] ['class’]

Defines segment name with full attribute control. If you have already de-
fined a segment with the same name, this segment is treated as a continu-
ation of the previous one. align specifies the type of memory boundary
where the segment must start: BYTE, WORD, DWORD, PARA (default),
or PAGE. combine specifies how segments from different modules but
with the same name will be combined at link time: AT expression (locates
segment at absolute paragraph address expression), COMMON (locates
this segment and all other segments with the same name at the same ad-
dress), MEMORY (concatenates all segments with the same name to form
a single contiguous segment), PRIVATE (does not combine this segment
with any other segments; this is the default used if none specified), PUB-
LIC (same as MEMORY above), STACK (concatenates all segments with
the same name to form a single contiguous segment, then initializes SS to
the beginning of the segment and SP to the length of the segment) or VIR-
TUAL (defines a special kind of segment that will be treated as a common
area and attached to another segment at link time). use specifies the de-
fault word size for the segment if 386 code generation is enabled, and can
be either USE16 or USE32. class controls the ordering of segments at link

42 PART 8, Directives

.SEQ

time: segments with the same class name are loaded into memory to-
gether, regardless of the order in which they appear in the source file.

SEQ MASM

Sets sequential segment-ordering. This is the default ordering mode for
Turbo Assembler. .SEQ has the same function as the /s command-line op-
tion.

.SFCOND MASM

Prevents statements in false conditional blocks from appearing in the list-
ing file.

SIZESTR Ideal, MASM51
name SIZESTR string

Assigns the number of characters in string to name. A null string has a
length of zero.

SMART Ideal, MASM
Enables all code optimizations.
.STACK MASM
STACK Ideal, MASM
STACK [size]
STACK [size]

Defines the start of the stack segment, allocating size bytes. 1024 bytes are
allocated if size is not specified.

STRUC MASM, Ideal

name STRUC
fields

[name] ENDS

STRUC name
fields

ENDS [name]

Defines a structure called name containing fields. Each field uses the nor-
mal data allocation directives (DB, DW, and so on) to define its size. fields
may be named or remain nameless. Field names must be unique when
using MASM mode but don’t need to be when using Ideal mode.

PART 3, Directives 43

SUBSTR

SUBSTR Ideal, MASMS1
name SUBSTR string,position size]

Defines a new string name consisting of characters from string starting at
position, with a length of size. All the remaining characters in string, start-
ing from position, are assigned to name if size is not specified.

SUBTTL MASM
%SUBTTL Ideal, MASM
SUBTTL text

%SUBTTL "text"

Sets subtitle in listing file to text.

%SYMS Ideal, MASM

Enables symbol table placement in listing file. This is the default symbol
listing mode for Turbo Assembler.

%TABSIZE Ideal, MASM
%TABSIZE width

Sets the number of columns between tabs in the listing file to width. The
default is 8 columns.

%TEXT Ideal, MASM
%TEXT width

Sets width of source field in listing file to width columns.

.TJTFCOND MASM

Toggles conditional block-listing mode.

TITLE MASM

%TITLE Ideal, MASM
TITLE text

%TITLE "text"

Sets title in listing file to text.

%TRUNC Ideal, MASM

Truncates listing fields that are too long.

UDATASEG Ideal, MASM

Defines the start of an uninitialized data segment.

44 PART 3, Directives

g

()

[

UFARDATA

UFARDATA Ideal, MASM

Defines the start of an uninitialized far data segment.

UNION Ideal, MASM (disabled by QUIRKS)

UNION name
fields

ENDS [name]

name UNION
fields

[name] ENDS

Defines a union called name. A union is just like a STRUC except that all
its members have an offset of zero from the start of the union. This results
in a set of fields that are overlayed, allowing you to refer to the memory
area defined by the union with different names and different data sizes.
The length of a union is the length of its largest member, not the sum of
the lengths of its members as in a STRUC. fields define the fields that com-
prise the union. Each field uses the normal data allocation directives (DB,
DW, and so on) to define its size.

USES _Ideal, MASM
USES item [,item]...

Indicates which registers or single-token data items you want to have
pushed at the beginning of the enclosing procedure and which ones you
want popped just before the procedure returns. You must use this direc-
tive before the first instruction that actually generates code in your proce-
dure.

WARN Ideal, MASM
WARN [warnclass]

Enables the type of warning message specified with warnclass, or all warn-
ings if warnclass is not specified. warnclass may be one of: ALN, ASS,
BRK, ICG, LCO, OPI, OPP, OPS, OVEF, PDC, PRO, PQK, RES, or TPL

XALL MASM

Causes only macro expansions that generate code or data to be listed.

.XCREF MASM

Disables cross-reference listing (CREF) information accumulation.

XLIST . MASM

Disables subsequent output to listing file.

PART 3, Directives 45

Processor Instructions

SOSO00000

—~

[I

[
BN I

L

ISERERE

This part presents instructions for the x86 in alphabetical order. For each
instruction, the forms are given for each operand combination, including L.

object code produced, operands required, execution time, and a descrip- e
tion. For each instruction, there is an operational description and a sum-)
mary of exceptions generated. L.

Operand-size and address-size attributes C

When executing an instruction, the x86 can address memory using either
16- or 32-bit addresses. Consequently, each instruction that uses memory
addresses has associated with it an address-size attribute of either 16 or 32
bits. Sixteen-bit addresses imply both the use of a 16-bit displacement in
the instruction and the generation of a 16-bit address offset (segment rela-
tive address) as the result of the effective address calculation. Thirty-two-
bit addresses imply the use of a 32-bit displacement and the generation of .
a 32-bit address offset. Similarly, an instruction that accesses words (16

bits) or doublewords (32 bits) has an operand-size attribute of either 16 or

32 bits.

The attributes are determined by a combination of defaults, instruction
prefixes, and (for programs executing in protected mode) size-specifica-
tion bits in segment descriptors.

Default segment atiribute

For programs executed in protected mode, the D-bit in executable-seg-
ment descriptors determines the default attribute for both address size
and operand size. These default attributes apply to the execution of all
instructions in the segment. A value of zero in the D-bit sets the default
address size and operand size to 16 bits; a value of one, to 32 bits.

Programs that execute in real mode or virtual-8086 mode have 16-bit ad-
dresses and operands by default.

Operand-size and address-size instruction prefixes

The internal encoding of an instruction can include two byte-long pre-
fixes: the address-size prefix, 67H, and the operand-size prefix, 66H. (A
later section, "Instruction format,” shows the position of the prefixes in an
instruction’s encoding.) These prefixes override the default segment attri-
butes for the instruction that follows. Table 4.1 shows the effect of each
possible combination of defaults and overrides.

48 PART 4, Processor Instructions

Yy Yy
R

PN N N

[IR I R B G
g ~

Table 4.1 Effective size aftributes

Segment default D= ... 0 0 0 0 1 1 1 1
Operand-size prefix 66h N N Y Y N N Y Y
Address-size prefix 67h N Y N Y N Y N Y
Effective operand size 16 16 32 32 32 32 16 16
Effective address size 16 32 16 32 32 16 32 16

Y = Yes, this instruction prefix is present.
N = No, this instruction prefix is not present.

Address-size aftribute for stack

Instructions that use the stack implicitly (for example, POP EAX) also
have a stack address-size attribute of either 16 or 32 bits. Instructions with
a stack address-size attribute of 16 use the 16-bit SP stack pointer register;
instructions with a stack address-size attribute of 32 bits use the 32-bit eSP
register to form the address of the top of the stack.

The stack address-size attribute is controlled by the B-bit of the data-seg-
ment descriptor in the SS register. A value of zero in the B-bit selects a
stack address-size attribute of 16; a value of one selects a stack address-
size attribute of 32.

Instruction format

All instruction encodings are subsets of the general instruction format
shown in Figure 4.1. Instructions consist of optional instruction prefixes,
one or two primary opcode bytes, possibly an address specifier consisting
of the ModR/M byte and the SIB (scale index base) byte, a displacement,
if required, and an immediate data field, if required.

Smaller encoding fields can be defined within the primary opcode or op-
codes. These fields define the direction of the operation, the size of the dis-
placements, the register encoding, or sign extension; encoding fields vary
depending on the class of operation.

Most instructions that can refer to a operand in memory have an ad-dress-
ing form byte following the primary opcode byte(s). This byte, called the
ModR /M byte, specifies the address form to be used. Certain encodings
of the ModR/M byte indicate a second addressing byte, the SIB byte,
which follows the ModR/M byte and is required to fully specify the ad-
dressing form.

PART 4, Processor Instructions 49

Figure 4.1
386 instruction format

Instruction | Address- Operand- | Segment
prefix size prefix | size prefix| override

Oort Oor1t Oor1 Oor1

Number of bytes

Opcode|Modr/M[SIB |Displacement| Immediate

1or2 Oori1 Qor1 0,1,2 0r4 0,1,2 0r4

Number of bytes

Addressing forms can include a displacement immediately following
either the ModR/M or SIB byte. If a displacement is present, it can be 8,
16, or 32 bits.

If the instruction specifies an immediate operand, the immediate operand
always follows any displacement bytes. The immediate operand, if speci-
fied, is always the last field of the instruction.

B The following are the allowable instruction prefix codes:

m E3h: REP prefix (used only with string instructions)

B F3h: REPE/REPZ prefix (used only with string instructions)

m F2h: REPNE/REPNZ prefix (used only with string instructions)

B FOh: LOCK prefix

The following are the segment override prefixes:

® 2Eh: CS segment override prefix

® 36h: SS segment override prefix

® 3Eh: DS segment override prefix

m 26h: ES segment override prefix

W 64h: FS segment override prefix (386 only)
W 65h: GS segment override prefix (386 only)
B 66h: Operand-size override

W 67h: Address-size operand

50 PART 4, Processor Instructions

Yo

[IEOR A

ModR/M and SIB bytes

The ModR/M and SIB bytes follow the opcode byte(s) in many of the x86
instructions. They contain the following information: the indexing type or
register number to be used in the instruction; the register to be used, or
more information to select the instruction; and the base, index, and scale
information.

The ModR/M byte contains three fields of information:

® The mod field, which occupies the two most significant bits of the byte,
combines with the r/m field to form 32 possible values: 8 registers and
24 indexing modes.

B The reg field, which occupies the next three bits following the mod
field, specifies either a register number or three more bits of opcode
information. The meaning of the reg field is determined by the first (op-
code) byte of the instruction.

® The r/m field, which occupies the three least-significant bits of the byte,
can specify a register as the location of an operand, or can form part of
the addressing-mode encoding in combination with the mod field as de-
scribed earlier.

8 The based indexed and scaled indexed forms of 32-bit addressing re-
quire the SIB byte. The presence of the SIB byte is indicated by certain
encodings of the ModR/M byte. The SIB byte then includes the follow-
ing fields:

® The ss field, which occupies the 2 most-significant bits of the byte, speci-
fies the scale factor.

B The index field, which occupies the next 3 bits following the ss field
specifies the register number of the index register.

@ The base field, which occupies the 3 least-significant bits of the byte,
specifies the register number of the base register.

Figure 4.2 shows the format of the ModR/M and SIB bytes.

PART 4, Processor Instructions 51

Figure 4.2
ModR/M and SIB byte formats

Modr/M Byte
7 6 5 4 3 2 1 0

Mod Reg/Opcode R/M

SIB (Scale Index Base) Byte
7 6 5 4 3 2 1 0

SS Index Base

The values and corresponding addressing forms of the ModR/M and SIB
bytes are shown in Tables 4.2, 4.3, and 4.4.

52 PART 4, Processor Instructions

{ i [! 1
[N N

(-

(
[N N W S

O

Table 4.2 16-bit addressing forms with ModR/M byte

18(/1) AL CL DL BL AH CH DH BH
r6{f) AX CX DX BX SP BP S DI
r32(1r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit (opcode) 0t 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110" 111

Effective address- ModR/M ModR/M values in hexadecimal

[BX + SI] 000 00 08 10 18 20 28 30
[BX + DI] 00t 01 09 11 19 21 29 31
[BP +SI] 010 02 O0A 12 1A 2 2A 32
[BP +DI| 0 o011 03 0B 13 1B 23 2B 33
&) 100 04 0C 14 1C 24 2¢ 34
DI 101 05 0D 15 1D 25 2D 35
disp16 110 06 OF 16 1E 2 26 36
BX] M1 07 OF 17 F 27 oF &
[BX + SI] + disp8 000 - 40 48 50 58 60 68 70
[BX + DI] + disp8 001 41 49 51 5 61 69 71
[BP + SI] + disp8 010 42 4A 52 5A 62 BA 72
[BP + DI] + disp8 o1 01 43 4B 53 58 63 6B 73
[S1] + disp8 100 44 40 54 5C 64 6C 74
D] + disp8 101 45 4D 55 5D 65 6D 75
[BP] + disp8 110 4 4E 56 S5E 66 6E 76
[BX] + disp8 111 47 4 57 S5F 67 6F 77
BX + SI] + disp16 000 80 8 90 98 A0 A8 B0
[BX + Di] + disp16 001 8 8 91 99 Al A9 B
[BP + SI] + disp16 010 82 BA 92 9A A2 AA B2
[BP + Di] + disp16 10 ot 8 8 93 98 A3 AB B3
[S] + disp16 100 8 8 94 9C A4 AC B4
[D1] + disp16 101 8 8 9 9D A5 AD B5
(BP] + disp16 10 8 8 9 OE A6 AE BB
[BX] + disp16 111 87 8 97 OF A7 AF B7
EAX/AX/AL (386) 000 Co C8 DO D8 E0 E8 FO
ECX/CX/CL (386) 0t C €3 DI D9 El E9 F
EDX/DX/DL (386) 00 C2 CA D2 DA E2 EA F2
EBX/BX/BL (386) 1 o1 €3 CB D3 DB E3 EB F3
ESP/SP/AH (386) 10 C4 CC D4 DC E4 EC F4
EBP/BP/CH (386) 104 ©5 CD D5 DD E5 ED F5
ESI/SUDH (386) 10 ©6 CE D6 DE E6 EE F6
EDIDVBH (386) 14 ¢7 CF D7 DF E7 EF F7

disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added to the index. disp16
denotes a 16-bit displacement following the ModR/M byte, to be added to the index. Default segment register is SS

for the effective addresses containing a BP index, DS for other effective addresses.

PART 4, Processor Instructions

53

Table 4.3 32-bit addressing forms with ModR/M byte (386

only)
r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP 8 DI
132(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111
Effective address ModR/M ModR/M values in hexadecimal
[EAX] 000 00 08 10 18 20 28 30 38
[ECX] 001 o 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 00 oit 03 0B 13 1B 23 2B 33 3B
F1E 100 04 0C 14 1C 24 26 34 3C
disp32 101 05 oD 15 iD 25 2D 35 3D
[ESH] 110 06 OE 16 1E 26 2 3 3E
[EDH] 1 07 OF 17 1F 27 2F 37 3F
disp8[EAX] 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 44 49 51 59 61 6 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A
disp8{EPX]; 0t ol 43 48 53 58 63 6B 73 7B
disp8{- -] [- -] 100 44 4 54 5C 64 6C 74 7C
disp8[EBP] 101 4 4D 55 5D 6 6D 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E
disp8[ED!] 1M 47 4F 57 5F 67 6F 77 TF
disp32[EAX] 000 80 88 90 98 A0 A8 BO B8
disp32[ECX]} 001 81 89 91 99 Al A9 B1 B9
disp32{EDX] 010 82 8A 92 A A2 AA B2 BA
disp32[EBX] 10 01 83 8B 93 9B A3 AB B3 BB
disp32[- -} [- -] 100 84 8C 9% 9C A AC B4 BC
disp32|EBP] 101 8 8D 9 9D A5 AD B5 BD
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EDI] 11 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL 000 Co C8 Do D8 EO E8 FO F8
ECX/CX/CL 001 C1 C9 D1 D9 E1 E9 F1 F9
EDX/DX/DL 010 C2 CA D2 DA E EA F2 FA
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 c7 CF D7 DF E7 EF F7 FF

[- -} - -] means a SIB follows the ModRM byte. disp8 denotes an 8-bit displacement following the SIB byte, to be
sign-extended and added to the index. disp32 denotes a 32-bit displacement following the ModR/M byte, to be

added to the index.

54

PART 4, Processor Instructions

'
RN

[

[

Table 4.4 32-bit addressing forms with SIB byte (386 only)

32 EAX ECX EDX EBX ESP [} ESI EDI

Base = 0 1 2 3 4 5 6 7

Base = 000 001 010 01t 100 101 110 111

Scaled index SS index ModR/M values in hexadecimal

[EAX] 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B 0C 0D OE OF
[EDX] 010 10 1 12 13 14 15 16 17
[EBX] 00 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 3t 32 3 34 3 3 37
[EDI] 11 38 39 3A 3B 3C 3D 3E 3F
[EAX*2] 000 40 41 42 44 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[ECX*2] 010 50 51 52 55 54 55 56 57
[EBX*2] 01 oM 58 59 5. 58 5 5D 5B 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EDI2] 111 78 79 7A 78 7C D 7E 7F
[EAX*4] 000 80 81 82 83 84 85 86 87
[ECX*4) 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 10 o1 98 89 9A 9B 9C 9D 9E 9F
none 100 A0 Al A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AD AE AF
[ESI*4] 110 BO BI B2 B3 B4 B5 Bs B7
[EDI*4] i B8 B9 BA BB BC BD BE BF
[EAX*8] 000 Co C1 c2 C3 C4 C5 C6 C7
[ECX*8] 001 C8 Cc9 CA CB C€C CD CE CF
[EDX*8] 010 Do DI D2 D3 D4 D5 D6 D7
[EBX*8] 1 011 D8 D9 DA DB DC DD ©DE DF
none 100 EO E1 E2 E3 E4 E5 E6 E7
|[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI'8] 110 FO F1 F2 F3 F4 F5 F6 F7
[EDI*8} 1 F8 F9 FA FB FC FD FE FF

['] means a disp32 with no base if MOD is 00; otherwise, [ESP).

This provides the following addressing modes:

disp32findex] (MOD=00)

disp8[EBP][index] (MOD=01)

disp32[EBP](index] (MOD=10)

PART 4, Processor Instructions 55

How to read the instruction set pages

Here’s a sample of the format of this chapter:

Instruction What the instruction name means
name What processor the instruction works on

(o} D I T S 4 A P o

Flag information goes here

Opcode Instruction Clocks
386 286 8

This table contains clock information

Flags

Each entry in this section includes information on which flags in the x86’s
flag register are changed and how. Each flag has a one-letter tag for its
name.

O = Overflow flag Z = Zero flag

D = Direction flag A = Auxiliary flag
I = Interrupt flag P = Parity flag

T = Trap flag C = Carry flag

S = Sign flag

The following symbols indicate how the flag register has changed:
? = Undefined after the operation

* = Changed to reflect the results of the instruction

0 = Always cleared

1 = Always set

56 PART 4, Processor Instructions

Opcode

The "Opcode" column gives the complete object code produced for each
form of the instruction. When possible, the codes are given as hexadeci-
mal bytes, in the same order in which they appear in memory. Definitions
of entries other than hexadecimal bytes are as follows:

/digit

(digit is between 0 and 7.) Indicates that the ModR/M byte of the instruc-
tion uses only the r/m (register or memory) operand. The reg field con-
tains the digit that provides an extension to the instruction’s opcode.

It
Indicates that the ModR/M byte of the instruction contains both a register
operand and an r/m operand.

cb, cw, cd, cp

A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for
the code segment register.

ib, iw, id

A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruc-
tion that follows the opcode, ModR/M bytes, or scale-indexing bytes. The
opcode determines if the operand is a signed value. All words and
doublewords are given with the low-order byte first.

+rb, +rw, +rd
A register code, from 0 through 7, added to the hexadecimal byte given at
the left of the plus sign to form a single opcode byte. The codes are

rb ™w rd (386)
AL=0 AX=0 EAX =0
CL=1 CX=1 ECX =1
DL=2 DX =2 EDX =2
BL=3 BX =3 EBX =3
AH=14 SP =4 ESP =4
AH=4 SP =4 ESP =4
CH=5 BP =5 EBP =5
DH=6 Sl=6 ESI=6
BH=7 DI=7 EDI =7
Instruction

The "Instruction” column gives the syntax of the instruction statement as
it would appear in a TASM 386 program. The following is a list of the
symbols used to represent operands in the instruction statements:

PART 4, Processor lnsfrucﬁQns 57

rel8
A relative address in the range from 128 bytes before the end of the in-
struction to 127 bytes after the end of the instruction.

relle, rel32

A relative address within the same code segment as the instruction as-
sembled. rel16 applies to instructions with an operand-size attribute of 16
bits; rel32 applies to instructions with an operand-size attribute of 32 bits
(386 only).

ptrl6:16, ptr16:32

A far pointer, typically in a code segment different from that of the
instruction. The notation 16:16 indicates that the value of the pointer has
two parts. The value to the right of the colon is a 16-bit selector or value
destined for the code segment register. The value to the left corresponds
to the offset within the destination segment. ptrl6:16 is used when the in-
struction’s operand-size attribute is 16 bits; ptr16:32 is used with the 32-bit
attribute (386 only).

18
One of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.

rlé
One of the word registers AX, CX, DX, BX, SP, BP, S, or DI

132 (386)
One of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or
EDL

imms8

An immediate byte value. imma8 is a signed number between -128 and
+127 inclusive. For instructions in which imms8 is combined with a word
or doubleword operand, the immediate value is sign-extended to form a
word or doubleword. The upper byte of the word is filled with the top-
most bit of the immediate value.

imm16
An immediate word value used for instructions whose operand-size attri-
bute is 16 bits. This is a number between -32,768 and +32,767 inclusive.

imma32 (386)

An immedjate doubleword value used for instructions whose operand-
size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and -2,147,483,648.

r/m8
A 1-byte operand that is either the contents of a byte register (AL, BL, CL,
DL, AH, BH, CH, DH), or a byte from memory.

r/m16
A word register or memory operand used for instructions whose operand-

58 PART 4, Processor Instructions

size attribute is 16 bits. The word registers are AX, BX, CX, DX, SP, BP, SI,
DI. The contents of memory are found at the address provided by the ef-
fective address computation.

1/m32

A doubleword register or memory operand used for instructions whose
operand-size attribute is 32 bits. The doubleword registers are EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI The contents of memory are found at the
address provided by the effective address computation.

m8
A memory byte addressed by DS:SI or ES:DI (used only by string instruc-
tions on the 386).

ml6
A memory word addressed by DS:SI or ES:DI (used only by string instruc-
tions).

m32
A memory doubleword addressed by DS:SI or ES:DI (used only by string
instructions).

m16:16, m16:32 (386)

A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer’s segment
selector. The number to the right corresponds to its offset.

m16 & 32, m16 & 16 (186/286/386), m32 & 32 (386)

A memory operand consisting of data item pairs whose sizes are indi-
cated on the left and the right side of the ampersand. All memory address-
ing modes are allowed. m16 & 16 and m32 & 32 operands are used by the
BOUND instruction to provide an operand containing an upper and

lower bounds for array indices. m16 & 32 is used by LIDT and LGDT to
provide a word with which to load the limit field, and a doubleword with
which to load the base field of the corresponding Global and Interrupt De-
scriptor Table Registers.

moffs8, moffs16, moffs32 (memory offset; 386 only)

A simple memory variable of type BYTE, WORD, or DWORD (386) used
by some variants of the MOV instruction. The actual address is given by a
simple offset relative to the segment base. No ModR/M byte is used in
the instruction. The number shown with moffs indicates its size, which is
determined by the address-size attribute of the instruction.

Sreg

A segment register. The segment register bit assignments are ES = 0,
CS=1,55=2,DS =3, FS = 4 (386), and GS = 5 (386).

PART 4, Processor Instructions 59

Clocks

The "Clocks" column gives the number of clock cycles the instruction
takes to execute. The clock count calculations make the following assump-
tions:

M The instruction has been prefetched and decoded and is ready for execu-
tion.

W Bus cycles do not require wait states.

B There are no local bus HOLD requests delaying processor access to the
bus.

M No exceptions are detected during instruction execution.
B Memory operands are aligned.

Clock counts for instructions that have an r/m (register or memory) oper-
and are separated by a slash. The count to the left is used for a register op-
erand; the count to the right is used for a memory operand.

The following symbols are used in the clock count specifications:

B n, which represents a number of repetitions.

W m, which represents the number of components in the next instruction
executed, where the entire displacement (if any) counts as one compo-
nent, the entire immediate data (if any) counts as one component, and
every other byte of the instruction and prefix(es) each counts as one
component.

W pm=, a clock count that applies when the instruction executes in pro-
tected mode. pm= is not given when the clock counts are the same for
protected and real address modes.

When an exception occurs during the execution of an instruction and the
exception handler is in another task, the instruction exception time is in-
creased by the number of clocks to effect a task switch. This parameter de-
pends on several factors:

@ The type of TSS used to represent the current task (386 TSS or 286 TSS).
W The type of TSS used to represent the new task.

B Whether the current task is in V86 mode.

B Whether the new task is in V86 mode.

Note: Users should read Intel’s documentation for more information
about protected mode and task switching.

60 PART 4, Processor Instructions

AAA ASCIl adjust after addition

o D I T S Z A P C

? 2 2 x 2 %
Opcode Instruction Clocks Description

485 386 286 86
37 AAA 3 4 3 8 ASCII adjust after addition

Execute AAA only following an ADD instruction that leaves a byte result
in the AL register. The lower nibbles of the operands of the ADD instruc-
tion should be in the range 0 through 9 (BCD digits). In this case, AAA ad-
justs AL to contain the correct decimal digit result. If the addition pro-
duced a decimal carry, the AH register is incremented, and the carry and
auxiliary carry flags are set to 1. If there was no decimal carry, the carry
and auxiliary flags are set to 0 and AH is unchanged. In either case, AL is
left with its top nibble set to 0. To convert AL to an ASCII result, follow
the AAA instruction with OR AL, 30H.

AAD ASCI adjust before division
(o] D I T S V4 A P C
? LI I
Opcode Instruction Clocks Description
486 386 286 86
D50A AAD 14 19 14 60 ASCII adjust before division

AAD is used to prepare two unpacked BCD digits (the least-significant
digit in AL, the most-significant digit in AH) for a division operation that
will yield an unpacked result. This is accomplished by setting AL to AL -
+ (10 * AH), and then setting AH to 0. AX is then equal to the binary
equivalent of the original unpacked two-digit number.

AAM ASCIl adjust AX after multiply
o D I T S 2z A P C
? x x 2 x 2
Opcode Instruction Clocks Description
486 386 286 86
D40A AAM 15 17 16 83 ASCll adjust AX after multiply

Execute AAM only after executing a MUL instruction between two un-
packed BCD digits that leaves the result in the AX register. Because the
result is less than 100, it is contained entirely in the AL register. AAM un-
packs the AL result by dividing AL by 10, leaving the quotient (most-
significant digit) in AH and the remainder (least-significant digit) in AL.

PART 4, Processor Instructions 61

AAS ASCIl adjust AL after subtraction

¢ b I T S8 2 A P C
? 2 2 x 2 %

Opcode Instruction Clocks Description
486 386 286 86
3F AAS 3 4 3 8 ASCII adjust AL after subtraction

Execute AAS only after a SUB instruction that leaves the byte result in the
AL register. The lower nibbles of the operands of the SUB instruction
must have been in the range 0 through 9 (BCD digits). In this case, AAS
adjusts AL so it contains the correct decimal digit result. If the subtraction
produced a decimal carry, the AH register is decremented, and the carry
and auxiliary carry flags are set to 1. If no decimal carry occurred, the
carry and auxiliary carry flags are set to 0, and AH is unchanged. In
either case, AL is left with its top nibble set to 0. To convert AL to an
ASCII result, follow the AAS with OR AL, 30H.

ADC Add with carry

o p I T S 2 A P ¢C

* * * * * *
Opcode Instruction Clocks Description

48 386 286 86

10/r ADC r/m8,18 13 27 277 3/16+EA Add with carry byte register to r/m byte
11/r ADCr/mi16,r16 113 271 27 3/16+EA Add with carry word register to r/m word
11/r ADCr/m32,32 13 217 Add with CF dword register to r/m word

12/r ADC8,/m8 12 26 27 3/9+EA Add with carry r/m byte to byte register
13/r ADCr16,/m16 12 266 27 3/9+EA Add with carry r/m word to word register

13 ADC 132,r/m32 12 256 Add with CF r/m dword to dword register
14ib ADC AL,imm8 1 2 3 4 Add with carry immediate byte to AL
15w ADC AX,mmi6 1 2 3 4 Add with carry immediate word to AX
15id ADC EAX,imm32 1 2 Add with carry immediate dword to EAX

80/2ib ADCrm8imm8 1/3 2/7 37 417+EA Add with carry immediate byte to r/m byte

81/2iw ADCrmi6immi6 1/3 2/7 37 417+EA Add with carry immediate word to r/m
word

81/2id ADC/m32,imm32 113 27 Add with CF immediate dword to r/m
dword

83/2ib ADC#/mi6imm8 13 27 37 4/17+EA Add with CF sign-extended immediate
byte to r/m word

83/2ib ADC /m32,mm8 13 27 Add with CF sign-extended immediate
byte into r/m dword

ADC performs an integer addition of the two operands DEST and SRC
and the carry flag, CF. The result of the addition is assigned to the first op-
erand (DEST), and the flags are set accordingly. ADC is usually executed
as part of a multi-byte or multi-word addition operation. When an imme-
diate byte value is added to a word or doubleword operand, the immedi-

62 PART 4, Processor Instructions

ate value is first sign-extended to the size of the word or doubleword op-
erand.

ADD Add
o D I T S Z A P C
* * * * * *
Opcode Instruction Clocks Description

8 36 286 8

04 ib ADD AL,imm8 1 2 3 4 Add immediate byte to AL
05 iw ADD AX,imm16 1 2 3 4 Add immediate word to AX
05 id ADD EAXimm32 1 2 Add immediate dword to EAX

80/0ib ADD r/m8,imm8 113 27 37 417+EA Add immediate byte to r/m byte
81/0iw ADDrmi6immi6 1/3 2/7 37 417+EA Add immediate word to r/m word

81/0id ADDrm32,imm32 13 277 Add immediate dword to r/m dword

83/0ib ADDrmi6imm8 13 27 37 417+EA Add sign-extended immediate byte
to r/m word

83/0ib ADDrm32,mm8 13 277 Add sign-extended immediate byte
to r/m dword

00/ ADD r/m8,18 113 27 27 3/16+EA Add byte register to r/m byte

01/ ADD r/m16,r16 113 27 27 3116+EA Add word register to r/m word

01/ ADD r/m32,r32 13 27 Add dword register to r/m dword

02/ ADD r8,//m8 12 26 27 3/9+EA Add r/m byte to byte register

03/ ADD r16,//m16 12 2/6 2I7 3/9+EA Add r/m word to word register

03/ ADD r32,//m32 12 26 Add r/m dword to dword register

ADD performs an integer addition of the two operands (DEST and SRC).
The result of the addition is assigned to the first operand (DEST), and the
flags are set accordingly.

When an immediate byte is added to a word or doubleword operand, the
immediate value is sign-extended to the size of the word or doubleword
operand.

AND Logical AND

(o] D I T S Z A P C

0 x x 2 x 0
Opcode Instruction Clocks Description

486 386 206 86

20/ AND r/m8,r8 113 27 2/7 3/116+EA AND byte register into r/m byte
21/ AND r/m16,r16 13 27 27 3/16+EA AND word register into r/m word
2t I AND r/m32,r32 13 217 AND dword register to r/m dword
2 AND r8,r/m8 12 2/6 2/7 3/9+EA AND r/m byte to byte register
23 I AND r16,/m16 12 206 2/7 3/9+EA AND r/m word to word register
23 I AND r32,r/m32 12 2/6 AND r/m dword to dword register
24ib AND AL,imm8 1 2 3 4 AND immediate byte to AL
25iw AND AX,imm16 1 2 3 4 AND immediate word to AX
25id AND EAX,imm32 1 2 AND immediate dword to EAX

PART 4, Processor Instructions 63

Opcode Instruction Clocks Description
486 386 286 86

80/4ib AND©m8jmm8 13 27 37 417+EA AND immediate byte to rim byte
81/4iw ANDrmi6immi6 /3 27 37 417+EA AND immediate word to r/m word

81/4id ANDr/m32,jmm32 13 277 AND immediate dword to r/m word

83/4ib ANDrmi6imm8 13 277 AND sign-extended immediate byte
with r/m word

83/4ib ANDr/m32,jmm8 1/3 277 AND sign-extended immediate byte

with r/m dword

Each bit of the result of the AND instruction is a 1 if both corresponding
bits of the operands are 1; otherwise, it becomes a 0.

ARPL Adjust RPL field of selector
80286/386/i486 protected mode only

(o) D I T S 4 A P Cc
*

Opcode Instruction Clocks Description
486 386 286
63/ ARPL/m16r16 99 pm=20/21 pm=10/11 Adjust RPL of /m16 to not less than RPL of r16

The ARPL instruction has two operands. The first operand is a 16-bit
memory variable or word register that contains the value of a selector.
The second operand is a word register. If the RPL field ("requested privi-
lege level” --bottom two bits) of the first operand is less than the RPL field
of the second operand, the zero flag is set to 1 and the RPL field of the
first operand is increased to match the second operand. Otherwise, the
zero flag is set to 0 and no change is made to the first operand.

ARPL appears in operating system software, not in application programs.
It is used to guarantee that a selector parameter to a subroutine does not
request more privilege than the caller is allowed. The second operand of
ARPL is normally a register that contains the CS selector value of the
caller.

BOUND Check array index against bounds
80186/286/386/486 only

(o] D I T S Z A P [¢]

Opcode Instruction Clocks Description

48 36 286
62/r BOUNDT6,7 7 10 13 Check if r16 is within m16&16 bounds (passes test)
62 Ir BOUND 32,7 7 10 Check if r32 is within m32&32 bounds (passes test)

BOUND ensures that a signed array index is within the limits épecified by
a block of memory consisting of an upper and a lower bound. Each

64 PART 4, Processor Instructions

bound uses one word for an operand-size attribute of 16 bits and a
doubleword for an operand-size attribute of 32 bits. The first operand (a
register) must be greater than or equal to the first bound in memory
(lower bound), and less than or equal to the second bound in memory
(upper bound). If the register is not within bounds, an Interrupt 5 occurs;
the return EIP points to the BOUND instruction.

The bounds limit data structure is usually placed just before the array it-
self, making the limits addressable via a constant offset from the begin-
ning of the array.

BSF Bit scan forward
386 and i486 only

(0] D I T S Z A P (o]

Opcode Instruction Clocks Description

48 386
OFBC BSFri6,/m16 6-42/7-43 10+3n Bit scan forward on /m word
O0F BC BSFr32,/m32 10+3n Bit scan forward on r/m dword

BSF scans the bits in the second word or doubleword operand starting
with bit 0. The ZF flag is cleared if the bits are all 0; otherwise, the ZF flag
is set and the destination register is loaded with the bit index of the first
set bit.

BSR Bit scan reverse
386 and 486 only

(o] D I T S 2 A P Cc

Opcode Instruction Clocks Description

486 386
OFBD BSRri6,/m16 6-103/7-104 10+3n Bit scan reverse on r/m word
OF BD BSRr32,/m32 6-103/7-104 10+3n Bit scan reverse on r/m dword

BSR scans the bits in the second word or doubleword operand from the
most significant bit to the least significant bit. The ZF flag is cleared if the
bits are all 0; otherwise, ZF is set and the destination register is loaded
with the bit index of the first set bit found when scanning in the reverse
direction.

PART 4, Processor Instructions 65

BSWAP Byte Swap
i486 only

(o} D I T S 4 A P Cc

Opcode Instruction Clock Description

486

OF C8r BSWAP132 1 Swap bytes to convert little/big endian data in a 32-bit register to big/little
endian form.

BSWAP reverses the byte order of a 32-bit register, converting a value in
little/big endian form to big/little endian form. When BSWAP is used
with a 16-bit operand size, the result left in the destination register is un-
defined.

BT Bit test
386 and i486 only

o D I T S Z A P Cc

Opcode Instruction Clocks Description

486 386
OF A3 BT /m16,r16 38 312 Save bit in carry fiag
OF A3 BT r/m32,r32 38 312 Save bit in carry flag
OFBA/4ib BTrmi6imm8 33 36 Save bit in carry flag
OFBA/4ib BTrm32imm8 3/3 3/6 Save bit in carry flag

BT saves the value of the bit indicated by the base (first operand) and the
bit offset (second operand) into the carry flag.

BTC Bit test and complement
386 and i486 only

(o] D I T S Z A P (o]
*

Opcode Instruction Clocks Description

486 386
OF BB BTC r/m16,r16 6/13 6/13 Save bit in carry flag and complement
OF BB BTC r/m32,r32 613 613 Save bit in carry flag and complement
OFBA/7ib BTCr/m16imm8 6/8 6/8 Save bit in carry flag and complement
OFBA/7ib BTCrm32imm8 6/8 6/8 Save bit in carry flag and complement

BTC saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then complements
the bit.

66 PART 4, Processor Instructions

BTR Bit test and reset
386 and i486 only

(o} D I T S 2 A P o]

Opcode Instruction Clocks Description

48 386
OF B3 BTR r/m16,r16 613 6/13 Save bit in carry flag and reset
OF B3 BTR r/m32,r32 6/13 6/13 Save bit in carry flag and reset

OFBA/6ib BTRr/m16imm8 6/8 6/8 Save bit in carry flag and reset
OFBA/6ib BTRr/m32imm8 6/8 6/8 Save bit in carry flag and reset

BTR saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then stores 0 in the
bit.

BTS Bit test and set
386 and i486 only

(o] D I T S 2 A P o]

*
Opcode Instruction Clocks Description
486 386
OF AB BTS r/m16,r16 613 6/13 Save bit in carry flag and set
OF AB BTS r/m32,r32 6/13 6/13 Save bit in carry flag and set

OFBA/5ib BTSrmi6imm8 6/8 6/8 Save bit in carry flag and set
OFBA/5ib BTS1/m32,imm8 6/8 6/8 Save bit in carry flag and set

BTS saves the value of the bit indicated by the base (first operand) and the
bit offset (second operand) into the carry flag and then stores 1 in the bit.

CALL Call Procedure

(0] D I T S 2 A P c

All flags are affected if a task switch occurs; no flags are affected if a task
switch does not occur.

Opcode Instruction Clocks Description
486 386 26" 86

E8cw CALLrell6 3 7+m 7 19 Call near, displacement
relative to next instruction

FF/2 CALLr/m16 5/5 7+m/10+m 7M1 16/21+EA Call near, register
indirect/memory indirect

9Acd CALLptr16:16 18pm=20 17+mpm=34=m 13,pm=26 28 Call intersegment, fo full
pointer given

PART 4, Processor Insfructions 67

Opcode Instruction Clocks Description
486 386 28" 86

9Acd CALLptri6:16 pm=35 pm=52+m 41 Call gate, same privilege

9Acd CALLptr16:16 pm=69 pm=86+m 82 Call gate, more privilege,
no parameters

9Acd CALLptri6:16 pm=77+4x pm=94+4x+m 86+4x Call gate, more privilege,
X parameters

9Acd CALLptri6:16 pm=37+ts ts 1771182 Call to task (via task

. state segment/itask gate

for 286

FF/3 CALLm16:16 17,pm=20 22+mpm38+m 16/29 37+EA Call intersegment,
address at r/m dword

FF/3 CALLm16:16 pm=35 pm=56+m 44 Call gate, same privilege

FF/3 CALLm16:16 pm=69 pm=90+m 83 Call gate, more privilege,
no parameters

FF/3 CALLm16:16 pm=77+4x pm=98+4x+m S0+4x+m Call gate, more privilege,
x parameters

FF/3 CALLm16:16 pm=37+s 5+ts 180/185 Call to task (via task
state segment/task gate
for 286)

E8cd CALLrel32 3 7+m Call near, displacement
relative to next instruction

FF/2 CALL /m32 5/5 7+m/10+m Call near, indirect

9Acp CALLptr16:32 18,pm=20 17+m,pm=34+m Call intersegment, to full
pointer given

9Acp CALLptr6:32 pm=35 pm=52+m Call gate, same privilege

9Acp CALLptr16:32 pm=69 pm=86+m Call gate, more privilege,
no parameters

9Acp CALLptr32:32 pm=77+4x pm=94+4x+m Call gate, more privilege,
X parameters

9Acp CALLptr16:32 pm=37+s ts Call to task

FF/3 CALLm16:32 17,pm=20 22+m,pm=38+m Call intersegment,
address at r/m dword

FF/3 CALLm16:32 pm=35 pm=56+m Call gate, same privilege

FF/3 CALLm16:32 pm=69 pm=90+m Call gate, more privilege,
no parameters

FF/3 CALLm16:32 pm=77+4x pm=98+4x+m Call gate, more privilege,
X parameters

FF/3 CALLm16:32 pm=37+#s 5+ts Call to task

*Add one clock for each byte in the next instruction executed (80286 only).

The CALL instruction causes the procedure named in the operand to be
executed. When the procedure is complete (a return instruction is exe-

cuted within the procedure), execution continues at the instruction that fol-
lows the CALL instruction.

The action of the different forms of the instruction are described next.

Near calls are those with destinations of type r/m16, r/m32, rell6, rel32;
changing or saving the segment register value is not necessary. The CALL
rel16 and CALL rel32 forms add a signed offset to the address of the
instruction following CALL to determine the destination. The rel16 form
is used when the instruction’s operand-size attribute is 16 bits; rel32 is
used when the operand-size attribute is 32 bits. The result is stored in the
32-bit EIP register. With rel 16, the upper 16 bits of EIP are cleared, result-
ing in an offset whose value does not exceed 16 bits. CALL r/m16 and

68 PART 4, Processor Instructions

CALL r/m32 specify a register or memory location from which the abso-
lute segment offset is fetched. The offset fetched from r/m is 32 bits for an
operand-size attribute of 32 (r/m32), or 16 bits for an operand-size of 16
(r/m16). The offset of the instruction following CALL is pushed onto the
stack. It will be popped by a near RET instruction within the procedure.
The CS register is not changed by this form of CALL.

The far calls, CALL ptr16:16 and CALL ptr16:32, use a 4-byte or 6-byte op-
erand as a long pointer to the procedure called. The CALL m16:16 and
m16:32 forms fetch the long pointer from the memory location specified
(indirection). In real address mode or virtual 8086 mode, the long pointer
provides 16 bits for the CS register and 16 or 32 bits for the EIP register
(depending on the operand-size attribute). These forms of the instruction
push both CS and IP or EIP as a return address.

In protected mode, both long pointer forms consult the AR byte in the de-
scriptor indexed by the selector part of the long pointer. Depending on
the value of the AR byte, the call will perform one of the following types
of control transfers:

m a far call to the same protection level
an inter-protection level far call
® a task switch

Note: Turbo Assembler extends the syntax of the CALL instruction to facil-
itate parameter passing to high-level language routines. See Chapter 7 of
the Turbo Assembler User’s Guide for more details.

CBW Convert byte to word

o b I T S 2 A P ¢C
Opcode Instruction Clocks Description

486 386 286 86
98 CBW 3 3 2 2 AX sign-extend of AL

CBW converts the signed byte in AL to a signed word in AX by extending
the most significant bit of AL (the sign bit) into all of the bits of AH.

PART 4, Processor Instructions 69

cba Convert doubleword to quadword
386 and 486 only

(o] D I T S Z A P o]

Opcode Instruction Clocks Description
486 386
99 cbQ 3 2 EDX:EAX [(sign-extend of EAX)

CDQ converts the signed doubleword in EAX to a signed 64-bit integer in
the register pair EDX:EAX by extending the most significant bit of EAX
(the sign bit) into all the bits of EDX.

CLC Clear carry flag
(o} D I T S Z A P o]
0
Opcode Instruction Clocks
486 386 286 86
F8 CLC 2 2 2 2

CLC sets the carry flag to zero. It does not affect other flags or registers.

CLD Clear direction flag
o D I T S Z A P (o]
0
Opcode Instruction Clocks Description
486 386 286 86
C CLD 2 2 2 2 Clear direction flag

CLD clears the direction flag. No other flags or registers are affected.
After CLD is executed, string operations will increment the index registers
(SI or DI) that they use.

CLl Clear interrupt flag
o D I T S Z A P C
0
Opcode Instruction Clocks
486 386 286 86
FA cu 5 3 3 2

70 PART 4, Processor Instructions

o)

cLoou

-/

CLI clears the interrupt flag if the current privilege level is at least as privi-
leged as IOPL. No other flags are affected. External interrupts are not rec-
ognized at the end of the CLI instruction or from that point on until the in-
terrupt flag is set.

CLTS Clear task switched flag
80286/386/i486 protected mode only

o) D I T S Z A P (o]

TS = 0 (TS is in CRO, not the flag register)

Opcode Instruction Clocks
486 386 286

OF06 CLTS 7 5 2

CLTS clears the task-switched (TS) flag in register CRO. This flag is set by
the 386 every time a task switch occurs. The TS flag is used to manage
processor extensions as follows:

B Every execution of an ESC instruction is trapped if the TS flag if set.

M Execution of a WAIT instruction is trapped if the MP flag and the TS
flag are both set.

Thus, if a task switch was made after an ESC instruction was begun, the
processor extension’s context may need to be saved before a new ESC in-
struction can be issued. The fault handler saves the context and resets the
TS flag.

CLTS appears in operating system software, not in application programs.
It is a privileged instruction that can only be executed at privilege level 0.

CMC Complement carry flag

o D I T S z A P Cc
*

Opcode Instruction Clocks Description
486 33 286 86

F5 CMC 2 2 2 2 Complement carry flag

CMC reverses the setting of the carry flag. No other flags are affected.

PART 4, Processor Instructions 71

CMP Compare two operands
o b I T S 2 A P C
* * * * * *
Opcode Instruction Clocks Description

485 38 28 86

3Cib CMPAL,imm8 1 2 3 4 Compare immediate byte to AL
3Diw CMP AX,imm16 1 2 3 4 Compare immediate word from AX
3Did CMPEAXjmm32 1 2 Compare immediate dword to EAX

80/7ib CMPrm8imm8 12 2/5 3/6 4/10+EA Compare immediate byte to r/m byte
81/7iw CMPrmi6immi6 12 25 3/6 4/10+EA Compare immediate word to r/m word

81/7id CMPr/m32imm32 12 25 Compare immediate dword to r/m dword

83/7ib CMPrimi6imm8 1/2 25 3/6 4/10+EA Compare sign extended immediate byte
to r/m word

83/7ib CMPr/m32imm8 12 25 Compare sign extended immediate byte
to r/m dword

38/ CMP r/m8,r8 12 25 2,7 3/9+EA Compare byte register to r/m byte

39/ CMP1/mi6,r16 12 2/5 2/7 3/9+EA Compare word register to r/m word

39/ CMPr/im32,32 12 25 Compare dword register to r/m dword

3A CMP 8,r/m8 12 26 2/6 3/9+EA Compare r/m byte to byte register

3B/ CMPri6,/m8 12 26 2/6 3/9+EA Compare r/m word to word register

3B/ CMPr321/m32 12 26 Compare r/m dword to dword register

CMP subtracts the second operand from the first but, unlike the SUB in-
struction, does not store the result; only the flags are changed. CMP is typ-
ically used in conjunction with conditional jumps and the SETcc instruc-
tion. If an operand greater than one byte is compared to an immediate
byte, the byte value is first sign-extended.

CMPS Compare string operands
CMPSB CMPSD 386 and 486 only
CMPSW

CMPSD [} D I T S 2 A P [o]
Opcode Instruction Clocks Description

6 38 286 8

A6 CMPSm8m8 8 10 8 22 Compare bytes ES:[(E)DI] (second operand)
with [(E)SI} (first operand)

A7 CMPS m16,m16 8 10 8 22 Compare words ES:{(E)DI] (second operand)
with [(E)SI] (first operand)

A7 CMPSm32,m32 8 10 Compare dwords ES:{(E)DI] (second operand)
with [(E)SI] (first operand)

A6 CMPSB 8 10 8 22 Compare bytes ES:[(E)DI] with DS:[S]

A7 CMPSW 8 10 8 22 Compare words ES:[(E)DI] with DS:[SI]

A7 CMPSD 8 10 Compare dwords ES:[(E)Di] with DS:[SI]

CMPS compares the byte, word, or doubleword pointed to by the source-
index register with the byte, word, or doubleword pointed to by the desti-
nation-index register.

72 PART 4, Processor Instructions

If the address-size attribute of this instruction is 16 bits, SI and DI will be
used for source- and destination-index registers; otherwise ESI and EDI
will be used. Load the correct index values into SI and DI (or ESI and
EDI) before executing CMPS.

The comparison is done by subtracting the operand indexed by the desti-
nation-index register from the operand indexed by the source-index regis-
ter.

Note that the direction of subtraction for CMPS is [SI] - [DI] or [ESI] -
[EDI]. The left operand (SI or ESI) is the source and the right operand (DI
or EDI) is the destination. This is the reverse of the usual Intel convention
in which the left operand is the destination and the right operand is the
source.

The result of the subtraction is not stored; only the flags reflect the
change. The types of the operands determine whether bytes, words, or
doublewords are compared. For the first operand (SI or ESI), the DS regis-
ter is used, unless a segment override byte is present. The second operand
(DI or EDI) must be addressable from the ES register; no segment over-
ride is possible.

After the comparison is made, both the source-index register and destina-
tion-index register are automatically advanced. If the direction flag is 0
(CLD was executed), the registers increment; if the direction flag is 1 (STD
was executed), the registers decrement. The registers increment or decre-
ment by 1 if a byte is compared, by 2 if a word is compared, or by 4 if a
doubleword is compared.

CMPSB, CMPSW and CMPSD are synonyms for the byte, word, and
doubleword CMPS instructions, respectively.

CMPS can be preceded by the REPE or REPNE prefix for block compari-
son of CX or ECX bytes, words, or doublewords. Refer to the description
of the REP instruction for more information on this operation.

CMPXCHG Compare and Exchange

i486 only
(0] D I T S Z A P C
* * * * * *
Opcode Instruction Clock Description
486

OF A6/r CMPXCHG r/m8,r8 6/7 if comparison is Compare AL with r/m byte. If equal, set ZF and
successful; 6/10if load byte reg into r/m byte. Else, clear ZF and
comparison fails load r/m byte into AL.

OF A7Ir CMPXCHG /m16,r16 6/7 if comparison is ~ Compare AX with r/m word. If equal, set ZF
successful; 6/10if and load word reg into r/m word. Else, clear ZF
comparison fails and load r/m word into AX.

PART 4, Processor Instructions 73

Opcode Instruction Clock Description

486

OF A7 CMPXCHG rim32,32 6/7 if comparisonis Compare EAX with r/m dword. If equal, set ZF
successful; 6/10if and load dword reg into r/m dword. Else, clear
comparison fails ZF and load r/m dword into EAX.

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX
register) with DEST. If they are equal, SRC is loaded into DEST. Other-
wise, DEST is loaded into the accumulator.

DEST is the destination operand; SRC is the source operand.

Protected mode exceptions: #GP(0) if the result is in a nonwritable seg-
ment; #GP(0) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #55(0) for an illegal address in the S5 seg-
ment; #PF (fault code) for a page fault; #AC for an unaligned memory
reference if the current privilege level is 3.

Real mode exception: interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: interrupt 13, as in real mode; #PF and #AC,
as in protected mode.

Note: This instruction can be used with a LOCK prefix. In order to sim-
plify interface to the processor’s bus, the destination operand receives a
write cycle without regard to the result of the comparison. DEST is writ-
ten back if the comparison fails, and SRC is written into the destination
otherwise. (The processor never produces a locked read without produc-
ing a locked write.)

CWD Convert word to doubleword
386 and i486 only

(¢} D I T s Z A P Cc

Opcode Instruction Clocks Description
486 386 286 86

99 CWD 3 2 2 5 DX:AX « sign-extend of AX

CWD converts the signed word in AX to a signed doubleword in DX:AX
by extending the most significant bit of AX into all the bits of DX. Note
that CWD is different from CWDE. CWDE uses EAX as a destination, in-
stead of DX:AX.

74 PART 4, Processor Instructions

N

CWDE Convert word to doubleword
386 and i486 only

(o} D I T S 4 A P c

Opcode Instruction Clocks Description
486 386 286 86
98 CWDE 3 3 EAX « sign-extend of AX

CWDE converts the signed word in AX to a doubleword in EAX by ex-
tend-ing the most significant bit of AX into the two most significant bytes
of EAX. Note that CWDE is different from CWD. CWD uses DX:AX
rather than EAX as a destination.

DAA Decimal adjust AL after addition
o p I T S Z A P C
2 * * * * *
Opcode Instruction Clocks Description
486 386 286 86
27 DAA 2 4 3 4 Decimal adjust AL after addition

Execute DAA only after executing an ADD instruction that leaves a two-
BCD-digit byte result in the AL register. The ADD operands should con-
sist of two packed BCD digits. The DAA instruction adjusts AL to contain
the correct two-digit packed decimal result.

DAS Decimal adjust AL after subtraction

o Db I T S Z A P C

? * * * * *
Opcode Instruction Clocks Description

486 386 286 86
2F DAS 2 4 3 4 Decimal adjust AL after subtraction

Execute DAS only after a subtraction instruction that leaves a two-BCD-
digit byte result in the AL register. The operands should consist of two
packed BCD digits. DAS adjusts AL to contain the correct packed two-
digit decimal result.

PART 4, Processor Instructions 75

DEC Decrement by 1

o D I T S Z A P C

* * * * *
Opcode Instruction Clocks Description

48 386 286 86
FEN DECrm8 1/3 2/6 2/7 3/15+EA Decrement r/m byte by 1
FF /1 DECrmi6 1/3 2/6 277 3/15+EA Decrement r/m word by 1

DECrm32 13 2/6 Decrement r/m dword by 1

48+rw DEC 16 1 2 2 3 Decrement word register by 1
48+w DECr32 1 2 Decrement dword register by 1

DEC subtracts 1 from the operand. DEC does not change the carry flag.
To affect the carry flag, use the SUB instruction with an immediate oper-

and of 1.

DIV

Unsigned divide

(o} D I T S 4 A P Cc
? ? ? ? ? ?
Opcode Instruction Clocks Description
486 386

F6/6 DIVim8 16/16 14/17
F7/6 DIVrmi16 24/24 22/25
F7/6 DIVim32 40/40 38/41

Unsigned divide AX by r/m byte (AL=QUO, AH=REM)
Unsigned divide DX:AX by r/m word (AX=QUO, DX=REM)
Unsigned divide EDX:EAX by r/m dword (EAX=QUO, EDX=REM)

DIV performs an unsigned division. The dividend is implicit; only the di-
visor is given as an operand. The remainder is always less than the divi-
sor. The type of the divisor determines which registers to use as follows:

Size Dividend Divisor Quotient Remainder

byte AX /m8 AL AH

word DX:AX r/m16 AX DX

dword EDX:EAX 1/m32 EAX EDX (386 only)

ENTER Make stack frame for procedure parameters

80186/286/386/486 only

o} D I T S 4 A P C

Opcode Instruction Clocks Description
486 386 286
C8iw 00 Enterimm16,0 14 10 1 Make procedure stack frame
C8iw 01 Enterimm16,1 17 12 15 Make stack frame for procedure parameters

C8iwib Enterimm16,mm8 17+3n 15+4(n-1) 12+4(n-1) Make stack frame for procedure parameters

76 PART 4, Processor Instructions

ENTER creates the stack frame required by most block-structured high-
level languages. The first operand specifies the number of bytes of dy-
namic storage allocated on the stack for the routine being entered. The sec-
ond operand gives the lexical nesting level (0 to 31) of the routine within
the high-level language source code. It determines the number of stack
frame pointers copied into the new stack frame from the preceding frame.
BP (or EBP, if the operand-size attribute is 32 bits) is the current stack
frame pointer.

If the operand-size attribute is 16 bits, the processor uses BP as the frame
pointer and SP as the stack pointer. If the operand-size attribute is 32 bits,
the processor uses EBP for the frame pointer and ESP for the stack pointer.

If the second operand is 0, ENTER pushes the frame pointer (BP or EBP)
onto the stack; ENTER then subtracts the first operand from the stack
pointer and sets the frame pointer to the current stack-pointer value.

For example, a procedure with 12 bytes of local variables would have an
ENTER 12,0 instruction at its entry point and a LEAVE instruction before
every RET. The 12 local bytes would be addressed as negative offsets
from the frame pointer.

HLT Halt

o D I T S 2 A P o

Opcode Instruction Clocks Description
486 386 286 86
F4 HLT 4 5 2 2 Halt

HLT stops instruction execution and places the x86 in a HALT state. An
enabled interrupt, NMI, or a reset will resume execution. If an interrupt
(including NMI) is used to resume execution after HLT, the saved CS:IP
(or CS:EIP on an 386) value points to the instruction following HLT.

IDIV Signed divide

[0} D I T S 4 A P C
? ? ? ? ? ?

Opcode Instruction Clocks Description

486 386 286 86

F6/7 IDIVm8 1920 19 17/20 101-112/107-118+EA Signed divide AX by /m byte
(AL=QUO, AH=REM)

F777 IDVumi6 27/28 27 25/28 165-184/171-190+EA Signed divide DX:AX by EA word
(AX=QUO, DX=REM)

F7/7 IDIVim32 43/44 43 Signed divide EDX-EAX by DWORD
byte (EAX=QUO, EDX=REM)

PART 4, Processor Instructions 77

IDIV performs a signed division. The dividend, quotient, and remainder
are implicitly allocated to fixed registers. Only the divisor is given as an
explicit r/m operand. The type of the divisor determines which registers
to use as follows:

Size Divisor Quotient Remainder Dividend

byte r/m8 AL AH AX

word r/mié AX DX DX:AX

dword r/m32 EAX EDX EDX:EAX (386 only)

If the resulting quotient is too large to fit in the destination, or if the divi-
sion is 0, an Interrupt 0 is generated. Nonintegral quotients are truncated
toward 0. The remainder has the same sign as the dividend and the abso-
lute value of the remainder is always less than the absolute value of the di-
visor.

IMUL Signed multiply
o bp I T S zZ A P C
* ?2 2?2 2?2 0?2 %
Opcode Instruction Clocks Description
486 86 286 8
F6 /5 IMUL r/m8 13-18/13-18 9-14/12-17 13/16 8%-/‘.\)8/86-104 AX «AL * r/m byte
+
F7 /5 IMUL r/m16 13-26/13-26 9-22/12-25 21/24 128-154/134- DX:AX «AX * t/m word
160+EA
F7/5 IMUL/m32 12-42/13-42 9-38/12-41 EDX:EAX «EAX* r/m dword
OF AF /r IMULr16,/im16 13-26/13-26 9-22/12-25 word register <—word register *
1/m word
OF AF /r IMUL r32,r/m32 13-42/13-42 9-38/12-41 dword register «<—dword register
* r/m dword
6B/rib IMULr16,r/ 13-26/13-26 9-14/12-17 21/24 word register «-r/m16 *
m16,imm8 sign-extended immediate byte
6B/rib IMUL 32,1 13-42 9-14/12-17 dword register <r/m32 *
m32,imm8 sign-extended immediate byte
6B/rib IMULr16,imm8 13-26 9-14/12-17 21/24 word register <—word register *
sign-extended immediate byte
6B/rib IMULr32,imm8 13-42 9-14/12-17 dword register «—dword register
* sign-extended immediate byte
69 friw IMUL 16,1/ 13-26/13-26 9-22/12-25 21/24 word register «~r/m16
m16,imm16 immediate word
69/rid IMULr32,r/ 13-42/13-42 9-38/12-41 dword register r/m32 *
m32,imm32 immediate dword
69 /riw IMULT16,mm16 13-26/13-26 9-22/12-25 word register «~r/m16 *
immediate word
69/rid IMULr32,imm32 13-42/13-42 9-38/12-41 dword register «-r/m32 *

immediate dword

IMUL performs signed multiplication. Some forms of the instruction use
implicit register operands. The operand combinations for all forms of the
instruction are shown in the "Description” column above.

78 PART 4, Processor Instructions

IMUL clears the overflow and carry flags under the following conditions:

Instruction form Condition for clearing CF and OF

r/m8 AL = sign-extend of AL to 16 bits

r/mlé6 AX = sign-extend of AX to 32 bits

r/m32 EDX:EAX = sign-extend of EAX to 32 bits
rl6,r/mlé6 Result exactly fits within r16

r32,r/m32 Result exactly fits within 132
rl6,r/m16,imm16 Result exactly fits within r16
r32,r/m32,imm32 Result exactly fits within r32

IN Input from port

o) D I T S 2 A P (o]

Opcode Instruction Clocks

486 386 286 86
E4ib INALimm8 14,pm=8*28**,vm=27 12,pm=6'/26"* 5 10 Input byte from
immediate port into AL
E5ib IN AX,imm8 14,pm=8*/28"*,ym=27 12pm=6"/26"* 5 10 Input word from
immediate port into AX
E5ib IN EAX,imm8 14,pm=8"/28"*vm=27 12,pm=6"/26" Input dword from
immediate port into EAX
EC IN AL,DX 14,pm=8*/28" vm=27 13,pm=7*27"* 5 8 Input byte from port DX

into AL

ED IN AX,DX 14,pm=8"/28"*vm=27 13,pm=7"/27** 5 8 Input word from port DX
into AX

ED IN EAX,DX 14,pm=8*/28**ym=27 13,pm=7*/27* Input dword from port
DX into EAX

*If CPL < IOPL

**If CPL > IOPL or if in virtual 8086 mode

IN transfers a data byte or data word from the port numbered by the sec-
ond operand into the register (AL, AX, or EAX) specified by the first oper-
and. Access any port from 0 to 65535 by placing the port number in the
DX register and using an IN instruction with DX as the second parameter.
These I/O instructions can be shortened by using an 8-bit port I/O in the
instruction. The upper eight bits of the port address will be 0 when 8-bit
port I/0O is used.

INC Increment by 1
o bp I T S 2 A P C
* * * * *
Opcode Instruction Clocks Description

486 386 286 86
FE /0 INC r/m8 1/3 2/6 217 3/115+EA Increment r/m byte by 1
FF /0 INC r/m16 13 2/6 2n 3/15+EA Increment r/m word by 1

PART 4, Processor Instructions 79

Opcode Instruction Clocks Description
486 36 286 86

FF /6 INC /m32 13 Increment r/m dword by 1
40+w INCri6 1 2 2 3 Increment word register by 1
40+rd INCr32 1 Increment dword register by 1

INC adds 1 to the operand. It does not change the carry flag. To affect the
carry flag, use the ADD instruction with a second operand of 1.

INS Input from port to string

INSB 80186/286/386/486 only

INSW

INSD o b I T S 2 A P C

Opcode Instruction Clocks Description

486 386 286

6C INS r/m8,DX 17,pm=10"/32""ym=30 15pm=9*/29™* 5 Input byte from port
DX into ES:(E)DI

6D INS /m16,DX 17,pm=10*/32"*ym=30 15,pm=9*/29** 5 Input word from port
DX into ES:(E)D!

6D INS/m32,DX 17,pm=10*/32"*ym=30 15,pm=9*/29** Input dword from
port DX into ES:(E)DI

6C INSB 17,pm=10*/32"*ym=30 15,pm=9*/29** 5 Input byte from port
DX into ES:(E)DI

6D INSW 17,pm=10*/32"vym=30 15pm=9*/29"* 5 Input word from port
DX into ES:(E)DI

6D INSD 17,pm=10%/32"*,vm=30 15,pm=9*/29"* Input dword from
port DX into ES:(E)DI

*If CPL < 10PL

**If CPL > IOPL or if in virtual 8086 mode

INS transfers data from the input port numbered by the DX register to the
memory byte or word at ES:dest-index. The memory operand must be ad-
dressable from ES; no segment override is possible. The destination regis-
ter is DI if the address-size attribute of the instruction is 16 bits, or EDI if
the address-size attribute is 32 bits.

INS does not allow the specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load
the correct value into DX before executing the INS instruction.

The destination address is determined by the contents of the destination
index register. Load the correct index into the destination index register
before executing INS.

After the transfer is made, DI or EDI advances automatically. If the direc-
tion flag is 0 (CLD was executed), DI or EDI increments; if the direction
flag is 1 (STD was executed), DI or EDI decrements. DI increments or dec-
rements by 1 if a byte is input, by 2 if a word is input, or by 4 if a
doubleword is input.

80 PART 4, Processor Instructions

INSB, INSW and INSD are synonyms of the byte, word, and doubleword
INS instructions. INS can be preceded by the REP prefix for block input of
CX bytes or words. Refer to the REP instruction for details of this oper-
ation.

INT Call to inferrupt procedure
INTO
0O D I T S Z A P c
0 0
Opcode Instruction Clocks Description
486 386 286 86
cC INT3 26 33 23 52 Interrupt 3--trap to debugger
cC INT3 44 pm=59 40 Interrupt 3--protected mode
cC INT3 7 pm=99 78 Interrupt 3--protected mode
cC INT3 82 pm=119 IF%rrupt 3--from V86 mode to
cC INT3 37+ts ts 167 Interrupt 3--protected mode
CDb INTmm8 30 37 23 51 Interrupt numbered by
immediate byte
CDib INTimm8 44 pm=59 40 Interrupt--protected mode
CDib INTimm8 77 pm=99 78 Interrupt--protected mode
CDib INTimm8 86 pm=119 Interrupt--from V86 mode to PLO
CDib INTimm8 37+s ts 167 Interrupt--protected mode
CE INTO Pass:28, Fail:3, pm=3; Fail:3, Fail:4, Interrupt 4--if overflow flag is 1
Fail:3 Pass:35 Pass24 Pass:53
CE INTO 46 pm=59 41 Interrupt 4--Protected mode
CE INTO 73 pm=99 79 Interrupt 4--Protected mode
CE INTO 84 pm=119 :glierrupt 4--from V86 mode to
0
CE INTO 39+is ts 168 Interrupt 4--Protected mode

* Add one clock for each byte of the next instruction executed (80286 only).

The INT n instruction generates via software a call to an interrupt han-
dler. The immediate operand, from 0 to 255, gives the index number into
the interrupt descriptor table (IDT) of the interrupt routine to be called. In
protected mode, the IDT consists of an array of eight-byte descriptors; the
descriptor for the interrupt invoked must indicate an interrupt, trap, or
task gate. In real address mode, the IDT is an array of four byte-long
pointers. In protected and real address modes, the base linear address of
the IDT is defined by the contents of the IDTR.

The INTO conditional software instruction is identical to the INT n inter-
rupt instruction except that the interrupt number is implicitly 4, and the
interrupt is made if the 86, 286, or 386 overflow flag is set.

The first 32 interrupts are reserved by Intel for system use. Some of these
interrupts are use for internally generated exceptions.

INT n generally behaves like a far call except that the flags register is
pushed onto the stack before the return address. Interrupt procedures re-

PART 4, Processor Instructions 81

turn via the IRET instruction, which pops the flags and return address
from the stack.

In real address mode, INT n pushes the flags, CS and the return IP onto
the stack, in that order, then jumps to the long pointer indexed by the in-
terrupt number.

INVD Invalidate cache
i486 only

(o] D I T S 2 A P [}

Opcode Instruction Clock Description
486
OF 08 INVD 4 Invalidate entire cache

The internal cache is flushed, and a special-function bus cycle is issued
which indicates that external caches should also be flushed. Data held in
write-back external caches is discarded.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors.

It is the responsibility of hardware to respond to the external cache flush
indication.

INVLPG Invalidate TLB entry
i486 only

(o) D I T s 2 A P [of

Opcode Instruction Clock Description

486
OF01/7 INVLPGm 12forhit Invalidate TLB entry

The INVLPG instruction is used to invalidate a single entry in the TLB,
the cache used for table entries. If the TLB contains a valid entry that
maps the address of the memory operand, that TLB entry is marked in-
valid.

In both protected mode and virtual 8086 mode, an invalid opcode is gener-
ated when used with a register operand.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors.

82 PART 4, Processor Instructions

IRET Interrupt return
IRETD IRETD 386 and 486 only

(o] D I T S z A P Cc
* * * * * * * * *

The flags register is popped from stack.

Opcode Instruction Clocks Description
486 386 286 86
CF IRET 15 22pm=38 17pm=31 32 Interrupt return (far return and pop flags)
CF IRET 36 pm=82 55 Interrupt return
CF IRET ts+32 s 169 Interrupt return
CF IRETD 15 22,pm=38 Interrupt return (far return and pop flags)
CF IRETD 36 pm=82 Interrupt return to lesser privilege
CF IRETD 15 pm=60 Interrupt return to V86 mode
CF IRETD 15432 s Interrupt return

* Add one clock, for each byte in the next instruction executed (80286 only).

In real address mode, IRET pops the instruction pointer, CS, and the flags
register from the stack and resumes the interrupted routine.

In protected mode, the action of IRET depends on the setting of the
nested task flag (NT) bit in the flag register. When popping the new flag,
image from the stack, the IOPL bits in the flag register are changed only
when CPL equals 0.

If NT equals 0, IRET returns from an interrupt procedure without a task
switch. The code returned to must be equally or less privileged than the
interrupt routine (as indicated by the RPL bits of the CS selector popped
from the stack). If the destination code is less privileged, IRET also pops
the stack pointer and SS from the stack.

If NT equals 1, IRET reverses the operation of a CALL or INT that caused
a task switch. The updated state of the task executing IRET is saved in its
task state segment. If the task is re-entered later, the code that follows
IRET is executed.

Jcc Jump if condition is met

(o) D I T S Z A P [of

Opcode Instruction Clocks Description

486 386 286 86
77¢b JA rel8 3 7+m3 73 164 Jump shortif above (CF=0 and ZF=0)
73¢cb JAE rel8 n 7+m+3 7,3 16,4 Jump short if above or equal (CF=0)
72 ¢ch JBrel8 3n 7+m3 7,3 16,4 Jump short if below (CF=1)
76 cb JBE rel8 an 7+4m3 73 16,4 Jump shortif below or equal (CF=1 or

ZF=1)

72¢cb JCrel8 31 7+m3 73 16,4 Jump shortif carry (CF=1)

PART 4, Processor Instructions 83

Opcode Instruction Clocks Description -
486 386 286 86 (-
E3 cb JCXZ rel8 31 9+m5 84 186 Jump shortif CX registeris 0 .
E3cb JECXZrel8 31 9+m5 Jump short if ECX register is 0 ‘
74 cb JE rel8 331 7+m3 73 164 Jump shortif equal (ZF=1) o
74 cb JZ rel8 3 7+m3 73 164 Jump shortif O (ZF=1)
7F cb JG rel8 31 7+m3 73 164 Jump shortif greater (ZF=0 and SF=OF)
7Dcb JGE rel8 3N 7+m3 73 164 Jump shortif greater or equal (SF=OF)
7Ccb JL rel8 31 7+m3 73 164 Jump shortif less (SF<>OF)
7Ecb JLE rel8 3 7+4m3 73 164 Jump short if less or equal (ZF=1 and
SF<>OF)
76 cb JNA rel8 3n 7+m3 73 16,4 Jump shortif not above (CF=1 or ZF=1)
72¢b JNAE rel8 31 7+m3 73 164 Jump shortif not above or equal (CF=1)
73¢cb JNB rel8 an 7+m3 73 16,4 Jump shortif not below (CF=0)
77¢cb JNBE rel8 3 7+m3 73 164 Jump shortif not below or equal (CF=0 B
and ZF=0)
73¢cb JINC rel8 31 7+m3 73 164 Jump short if not carry (CF=0)
75¢cb JNE rel8 3 7+m3 73 164 Jump shortif not equal (ZF=0) P
7Ecb JNG rel8 3n 7+m3 73 16,4 Jump short if not greater (ZF=1 or :
SF<>OF)
7Ccb JNGE rel8 I 7+m3 73 164 Jump shortif not greater or equal
(SF<>0F)
7D cb JNL rel8 3an 7+m3 73 16,4 Jump short if not less (SF=OF)
7F cb JNLE rel8 3 7+m3 73 164 ‘él;:mg é;wrt if not less or equal (ZF=0 and
71¢cb JNO rel8 3t 7#m3 7,3 164 Jump shortif not overflow (OF=0)
7B ¢cb JNP rel8 3 7+m3 73 164 Jump shortif not parity (PF=0)
79 ¢cb JNS rel8 31 7+m3 73 164 Jump short if not sign (SF=0)
75¢cb JNZ rel8 3 7+m3 73 164 Jump shortif not zero (ZF=0)
70cb JO reld 3N 7+m3 73 164 Jump short if overflow (OF=1)
7Acb JP rel8 3 7+m3 73 164 Jump short if parity (PF=1)
7Acb JPE rel8 31 7+m3 73 164 Jump shortif parity even (PF=1)
7B ¢b JPO rel8 31 7+m3 73 164 Jump short if parity odd (PF=0)
78 cb JS rel8 31 7+m3 73 164 Jump shortif sign (SF=1)
74 cb JZrel8 3N 7+m3 73 164 Jump short of zero (ZF=1)
OF 87 cwied JATell6/32 31 7+m3 Jump near if above (CF=0 and ZF=0)
OF 83 cw/ed JAErel16/32 31 7+m3 Jump near if above or equal (CF=0)
OF 82cwed JBrel6/32 31 7+m3 Jump near if below (CF=1)
OF 86 cw/ed JBErel16/32 31 7+m3 Jump near if below or equal (CF=1or ZF=1)
OF 82cw/ed JCrelt6/32 31 7+m3 Jump near if carry (CF=1) R
OF 84 cw/cd JE rel16/32 n 7+m,3 Jump near if equal (ZF=1) ‘
OF 84 cw/ed JZ rel16/32 3N 7+m,3 Jump near if 0 (ZF=1)
OF 8F cw/icd JG rel16/32 n 7+m,3 Jump near if greater (ZF=0 and SF=OF)
OF 8D cw/cd JGE rel16/32 3/ 7+m3 Jump near if greater or equal (SF=OF)
OF 8C cwicd JL rel16/32 n 7+m3 Jump near if less (SF<>OF) -
OF 8Ecw/icd JLErel16/32 3/ 7+m,3 Jump near if less or equal(ZF=1 and
SF<>0F)
OF 86cw/cd JNArel16/32 3/1 7+m,3 Jump near if not above (CF=1 or ZF=1) .
OF 82 cwied JNAErel16/32 31 7+m3 Jump near if not above or equal (CF=1) '
OF 83 cw/cd JNBrel16/32 31 7+m3 Jump near if not below (CF=0)
OF 87 cw/icd JNBE rel16/32 3/ 7+m,3 Jump FQear if not below or equal (CF=0
and ZF=0
OF 83 cwicd JNC rel16/32 3/1 7+m,3 Jump near if not carry and ZF=0)
OF 85cwicd JNErel16/32 31 7+m3 Jump near if not equal (ZF=0)
OF BE cwied JNGrel16/32 31 7+m3 Jump near if not greater (ZF=1 or SF<>OF)
OF 8Ccwicd JNGE re/16/32 3/1 7+m3 Jump near if not greater or equal (SF<>OF)
OF 8D cwicd JNLrel16/32 3/1 7+4m3 Jump near if not less (SF=OF)
84 PART 4, Processor Instructions

Opcode Instruction Clocks Description

@ 36 28 86

OF 8F cw/cd JNLE rel16/32 311 7+#m,3 ‘él;:mg lr:l)ear if not less or equal (ZF=0 and
OF 81 cw/cd JNOrel16/32 3/1 7+m,3 Jump near if not overflow (OF=0)
OF 8Bcw/ed JNPrel16/32 3/ 7+#m,3 Jump near if not parity (PF=0)
OF 89 cw/cd JINSrel16/32 3/1 7+#m,3 Jump near if not sign (SF=0)

OF 85 cw/cd JUNZrel16/32 3/1 7+m3 Jump near if not zero (ZF=0)

OF 80 cw/ed JOreli6/32 31 74m,3 Jump near if overflow (OF=1)

OF 8A cw/cd JP rel16/32 3N 7+m,3 Jump near if parity (PF=1)

OF 8BAcw/cd JPE rel16/32 311 7+m,3 Jump near if parity even (PF=1)
OF 8Bcw/cd JPOrel16/32 311 7+#m3 Jump near if parity odd (PF=0)
OF 88 cw/ed JS rel16/32 n 7+m,3 Jump near if sign (SF=1)

OF 84 cw/cd JZ rel16/32 3 7+m3 Jump near if zero (ZF=1)

* When a jump is taken, add one clock for every byte of the next instruction executed (80286 only).

Note: The first clock count is for the true condition (branch taken); the sec-
ond clock count is for the false condition (branch not taken). rel16/32 indi-
cates that these instructions map to two; one with a 16-bit relative dis-
placement, the other with a 32-bit relative displacement, depending on

the operand-size attribute of the instruction.

Conditional jumps (except JCXZ/JECXZ) test the flags which have been
set by a previous instruction. The conditions for each mnemonic are given
in parentheses after each description above. The terms "less" and "greater”
are used for comparisons of signed integers; "above" and "below" are used
for unsigned integers.

If the given condition is true, a jump is made to the location provided as
the operand. Instruction coding is most efficient when the target for the
conditional jump is in the current code segment and within -128 to + 127
bytes of the next instruction’s first byte. The jump can also target -32768
through +32767 (segment size attribute 16) or -2 to the 31st power +2 to
the 31st power -1 (segment size attribute 32) relative to the next
instruction’s first byte. When the target for the conditional jump is in a dif-
ferent segment, use the opposite case of the jump instruction (that is, JE
and JNE), and then access the target with an unconditional far jump to

the other segment. For example, you cannot code

JZ FARLABEL;
You must instead code
JNZ BEYOND;
JMP FARLABEL;
BEYOND :
Because there can be several ways to interpret a particular state of the
flags, TASM provides more than one mnemonic for most of the condi-

tional jump opcodes. For example, if you compared two characters in AX
and want to jump if they are equal, use JE; or, if you ANDed AX with a

PART 4, Processor Instructions 85

bit field mask and only want to jump if the result is 0, use JZ, a synonym
for JE.

JCXZ/JECXZ differs from other conditional jumps because it tests the con-
tents of the CX or ECX register for 0, not the flags. JCXZ/JECXZ is useful
at the beginning of a conditional loop that terminates with a conditional
loop instruction (such as LOOPNE TARGET LABEL). The JCXZ/JECXZ
prevents entering the loop with CX or ECX equal to zero, which would
cause the loop to execute 64K or 32G times instead of zero times.

JMP Jump

o] D I T s 4 A P C

All if a task switch takes place; none if no task switch occurs

Opcode Instruction Clocks Description
a6 386 2 86

EBcb JMPrel8 3 7+m 7 15 Jump short

E9cw JMPreli6 3 7+m 7 15 Jump near

FF/4 JMPrmi6 5/5 7+m/10+m 711 11/18+EA Jump near indirect

EAcd JIMPptr16:16 17pm=19 12+m, pm=27+m 11,pm=23 15 Jump intersegment, 4-byte
immediate address

EAcd JMPptri6:16 32 pm=45+m 38 Jump to call gate, same
privilege

EAcd JMPptr16:16 42+ts ts 175 Jump via task state
segment

EAcd JMPptr16:16 43+ts ts 180 24+EA Jump via task gate

FF/5 JMPm16:16 13,pm=18 43+mpm=31+m 15pm=26 Jump r/m16:16 indirect
and intersegment

FF/5 JMPmi6:16 31 pm=49+m 41 Jump to call gate, same
privilege

FF/5 JMPm16:16 414is 5+s 178 Jump via task state
segment

FF/5 JMPmi16:16 42+ts S4ts 183 Jump via task gate

E9cd JMPrel32 3 7+m Jump near

FF/4 JMPrm32 5/5 7+m,10+m Jump near

EAcp JMPptri6:32 13,pm=18 12+m, pm=27+m Jump intersegment, 6-byte
immediate address

EAcp JMPptri6:32 31 pm=45+m Jump to call gate, same
privilege

EAcp JMPptri6:32 42+ts ts Jump via task state
segment

EAcp JMPptr16:32 43+s is Jump via task gate

FF/5 JMPm16:32 13,pm=18 43+m, pm=31+m Jump intersegment
address at r/m dword

FF/5 JMPm16:32 31 pm=49+m Jump to call gate, same
privilege

FF/5 JMPm16:32 41+t 5+t Jump via task state
segment

FF/5 JMPmI16:32 42+s 5+1s Jump via task gate

* Add one clock for every byte of the next instruction executed (80286 only).

86 PART 4, Processor Instructions

[O
e

e

ceooe

The JMP instruction transfers control to a different point in the instruction
stream without recording return information.

The action of the various forms of the instruction are shown below.

Jumps with destinations of type r/m16, r/m32, rell6, and rel32 are near
jumps and do not involve changing the segment register value.

The JMP 1ell6 and JMP rel32 forms of the instruction add an offset to the
address of the instruction following the JMP to determine the destination.
The rel16 form is used when the instruction’s operand-size attribute is 16
bits (segment size attribute 16 only); rel32 is used when the operand-size
attribute is 32 bits (segment size attribute 32 only). The result is stored in
the 32-bit EIP register. With rell6, the upper 16 bits of EIP are cleared,
which results in an offset whose value does not exceed 16 bits.

JMP r/m16 and JMP r/m32 specifies a register or memory location from
which the absolute offset from the procedure is fetched. The offset fetched
from r/m is 32 bits for an operand-size attribute of 32 bits (r/m32), or 16
bits for an operand-size attribute of 16 bits (r/m16).

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or
six-byte operand as a long pointer to the destination. The JMP m16:16 and
m16:32 forms fetch the long pointer from the memory location specified
(indirection). In real address mode or virtual 8086 mode, the long pointer
provides 16 bits for the CS register and 16 or 32 bits for the EIP register
(depending on the operand-size attribute). In protected mode, both long
pointer forms consult the access rights (AR) byte in the descriptor indexed
by the selector part of the long pointer. Depending on the value of the AR
byte, the jump will perform one of the following types of control transfers:

W a jump to a code segment at the same privilege level
W a task switch

LAHF Loads flags into AH register

o} D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86
9F LAHF 3 2 2 4 Load: AH = flags SF ZF xx AF xx PF xx CF

LAHF transfers the low byte of the flags word to AH. The bits, from MSB
to LSB, are sign, zero, indeterminate; auxiliary carry, indeterminate, par-
ity, indeterminate, and carry.

PART 4, Processor Instructions 87

LAR Load access rights byte .-
80286/386/486 protected mode only

o) D I T S 2 A P C

* s

\

Opcode Instruction Clocks Description)

486 386 286 !

OF 02/r LARM6,/m16 11/11 pm=15/16 14/16 r16«r/m16 masked by FFOO '
OF02/r LARr32/m32 1111 pm=15/16 132¢—1/m32 masked by 00FxFF00

\

The LAR instruction stores a marked form of the second doubleword of
the descriptor for the source selector if the selector is visible at the CPL
(modified by the selector’s RPL) and is a valid descriptor type. The desti-
nation register is loaded with the high-order doubleword of the descriptor
masked by 00FxFF00, and ZF is set to 1. The x indicates that the four bits
corresponding to the upper four bits of the limit are undefined in the
value loaded by LAR. If the selector is invisible or of the wrong type, ZF
is cleared.

If the 32-bit operand size is specified, the entire 32-bit value is loaded into
the 32-bit destination register. If the 16-bit operand size is specified, the
lower 16-bits of this value are stored in the 16-bit destination register.

All code and data segment descriptors are valid for LAR. (See your Intel
manual for valid segment and gate descriptor types for LAR.)

LEA Load effective address offset

o D I T S 2z A P C
Opcode Instruction Clocks Description

46 386 286 86
8D/ LEAri6m 1 2 3 2+EA Store effective address for m in register r16
8DIr LEA2m 1 2 Store effective address for m in register r32
8D/r LEAri6m 1 2 Store effective address for m in register r16
8D/r LEAI32m 1 2 Store effective address for m in register r32

LEA calculates the effective address (offset part) and stores it in the speci-

fied register. The operand-size attribute of the instruction is determined

by the chosen register. The address-size attribute is determined by the '
USE attribute of the segment containing the second operand. The address- .
size and operand-size attributes affect the action performed by LEA, as fol-
lows:

88 PART 4, Processor Insfructions

Operand Address Action
size size performed

16 16 16-bit effective address is calculated and stored
in requested 16-bit register destination.

16 32 32-bit effective address is calculated. The lower
16 bits of the address are stored in the requested
16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit
address is zero-extended and stored in the re-
quested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in
the requested 32-bit register destination.

LEAVE High-level procedure exit
80186/286/386/486 only

(e} D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286

C9 LEAVE 5 4 5 Set SP to BP

C9 LEAVE 5 4 Set ESP to EBP

LEAVE reverses the actions of the ENTER instruction. By copying the
frame pointer to the stack pointer, LEAVE releases the stack space used
by a procedure for its local variables. The old frame pointer is popped
into BP or EBP, restoring the caller’s frame. A subsequent RET nn instruc-
tion removes any arguments pushed onto the stack of the exiting proce-
dure.

LGDT/LIDT Load global/interrupt descriptor table register
80286/386/486 protected mode only

o D I T S 2 A P c

Opcode Instruction Clocks Description
486 386 286

OF01/2 LGDTm16&32 11 11 1 Load m into global descriptor table register
OF01/3 LIDT m16&32 1 1 12 Load m into interrupt descriptor table register

The LGDT and LIDT instructions load a linear base address and limit
value from a six-byte data operand in memory into the GDTR or IDTR,
respectively. If a 16-bit operand is used with LGDT or LIDT, the register
is loaded with a 16-bit limit and a 24-bit base, and the high-order 8 bits of

PART 4, Processor Instructions 89

the 6-byte data operand are not used. If a 32-bit operand is used, a 16-bit
limit and a 32-bit base is loaded; the high-order 8 bits of the 6-byte oper-
and are used as high-order base address bits.

The SGDT and SIDT instructions always store into all 48 bits of the 6-byte
data operand. With the 80286, the upper 8 bits are undefined after SGDT
or SIDT is executed. With the 386, the upper 8 bits are written with the
high-order 8 address bits, for both a 16-bit operand and a 32-bit operand.
If LGDT or LIDT is used with a 16-bit operand to load the register stored
by SGDT or SIDT, the upper 8 bits are stored as zeros.

LGDT and LIDT appear in operating system software; they are not used
in application programs. They are the only instructions that directly load
a linear address (i.e., not a segment relative address) in 386 protected
mode.

LGS Load full pointer
LSS LGS/LSS/LFS 386 and 486 only
LFS
LDS o D I T S Z A P (o]
LES
Opcode Instruction Clocks Description

486 386 286 8
C51r LDSri6m16:16 6/12 7,pm=22 7,pm=21 16+EA Load DS:r16 with pointer from memory
G5/ LDSr32,m16:32 6/12 7,pm=22 Load DS:r32 with pointer from memory
OF B2/r LSSri6mi16:16 6/12 7,pm=22 Load SS:r16 with pointer from memory
OFB2/r LSSr32mi6:32 6/12 7,pm=22 Load SS:r32 with pointer from memory
C4rr LESri6m16:16 6/12 7,pm=22 7pm=21 16+EA Load ES:xr16 with pointer from memory
Calr LESr32mi6:32 6/12 7,pm=22 Load ES:r32 with pointer from memory
OFB4/r LFSrigmi6:16 6/12 7,pm=25 Load FS:r16 with pointer from memory
OF B4/r LFS132mi16:32 6/12 7,pm=25 Load FS:r32 with pointer from memory
OFB5/r LGSri6mi6:16 6/12 7,pm=25 Load GS:r16 with pointer from memory
OF B5/r LGSr32m16:32 6/12 7,pm=25 Load GS:r32 with pointer from memory

These instructions read a full pointer from memory and store it in the se-
lected segment register: register pair. The full pointer loads 16 bits into
the segment register SS, DS, ES, FS, or GS. The other register loads 32 bits
if the operand-size attribute is 32 bits, or loads 16 bits if the operand-size
attribute is 16 bits. The other 16- or 32-bit register to be loaded is deter-
mined by the 116 or 132 register operand specified.

When an assignment is made to one of the segment registers, the de-scrip-
tor is also loaded into the segment register. The data for the register is ob-
tained from the descriptor table entry for the selector given.

A null selector (values 0000-0003) can be loaded into DS, ES, FS, or GS reg-

isters without causing a protection exception. (Any subsequent reference
to a segment whose corresponding segment register is loaded with a null

90 PART 4, Processor Instructions

selector to address memory causes a #GP(0) exception. No memory refer-
ence to the segment occurs.)

LLDT Load local descriptor table register
80286/386/486 protected mode only

o D I T S 4 A P C

Opcode Instruction Clocks Description

486 386 286

0F00/2 LLDTrm16 1111 20 17119 Load selector rim16 into LDTR

LLDT loads the local descriptor table register (LDTR). The word operand
(memory or register) to LLDT should contain a selector to the global de-
scriptor table (GDT). The GDT entry should be a local descriptor table. If
so, then the LDTR is loaded from the entry. The descriptor registers DS,
ES, S5, FS, GS, and CS are not affected. The LDT field in the task state seg-
ment does not change.

The selector operand can be 0; if so, the LDTR is marked invalid. All de-
scriptor references (except by the LAR, VERR, VERW or LSL instructions)
cause a #GP fault.

LLDT is used in operating system software; it is not used in application
programs.

LMSW Load machine status word
80286/386/486 protected mode only

(o) D I T S Z A P c

Opcode Instruction Clocks Description

486 386 286

OF01/6 LMSWr/m16 1313 1043 36 Load r/m 16 into machine status word

LMSW loads the machine status word (part of CR0) from the source oper-
and. This instruction can be used to switch to protected mode; if so, it
must be followed by an intrasegment jump to flush the instruction queue.
LMSW will not switch back to real address mode.

LMSW is used only in operating system software. It is not used in applica-
tion programs.

PART 4, Processor Instructions 91

LOCK Assert LOCK# signal prefix

[o} D I T S Z A P o]

Opcode Instruction Clocks Description
486 386 286 86
FO LOCK 1 0 0 2 Assert LOCK# signal for the next instruction

The LOCK prefix causes the LOCK# signal of the CPU to be asserted dur-
ing execution of the instruction that follows it. In a multiprocessor envi-
ronment, this signal can be used to ensure that the CPU has exclusive use
of any shared memory while LOCK# is asserted. The read-modify-write
sequence typically used to implement test-and-set on the 386 is the BTS in-
struction.

On the 386 and i486, the LOCK prefix functions only with the following
instructions:

BT, BTS, BTR, BTC mem, reg/imm
XCHG reg, mem
XCHG mem, reg
ADD, OR, ADC, SBB, mem, reg/imm
AND, SUB, XOR

NOT, NEG, INC, DEC mem

An undefined opcode trap will be generated if a LOCK prefix is used
with any instruction not listed above.

XCHG always asserts LOCK # regardless of the presence or absence of the
LOCK prefix.

The integrity of the LOCK is not affected by the alignment of the memory
field. Memory locking is observed for arbitrarily misaligned fields.

Locked access is not assured if another CPU processor is executing an in-
struction concurrently that has one of the following characteristics:

B Is not preceded by a LOCK prefix.

M Is not one of the instructions in the preceding list.

W Specifies a memory operand that does not exactly overlap the destina-
tion operand. Locking is not guaranteed for partial overlap, even if one
memory operand is wholly contained within another.

92 PART 4, Processor Insfructions

1

LODS Load string operand
LODSB LODSD 386 and 486 only
LODSW
LODSD o D I T S Z A P c
Opcode Instruction Clocks Description

486 386 286 86
AC LODSmi8 5 5 5 12 Load byte [(E)SI] into AL
AD LODSm16 5 5 5 12 Load word [(E)SI] into AX
AD LODSm32 5 5 Load dword [(E)SI] into EAX
AC LODSB 5 5 5 12 Load byte DS:[(E)S] into AL
AD LODSW 5 5 5 12 Load word DS:((E)SI] into AX
AD LODSD5 5 Load dword DS:[(E)SI] into EAX

LODS loads the AL, AX, or EAX register with the memory byte, word, or
doubleword at the location pointed to by the source-index register. After
the transfer is made, the source-index register is automatically advanced.
If the direction flag is 0 (CLD was executed), the source index increments;
if the direction flag is 1 (STD was executed), it decrements. The increment
or decrement is 1 if a byte is loaded, 2 if a word is loaded, or 4 if a double-
word is loaded.

If the address-size attribute for this instruction is 16 bits, SI is used for the
source-index register; otherwise the address-size attribute is 32 bits, and
the ESI register is used. The address of the source data is determined
solely by the contents of ESI/SI. Load the correct index value into SI
before executing the LODS instruction. LODSB, LODSW, LODSD are syn-
onyms for the byte, word, and doubleword LODS instructions.

LODS can be preceded by the REP prefix; however, LODS is used more
typically within a LOOP construct, because further processing of the data
moved into EAX, AX, or AL is usually necessary.

LOOP Loop control with CX counter
LOOPcond | oop control with CX/ECX counter
(386 and 1486 only)

[¢] D I T S Z A P (o]

Opcode Instruction Clocks Description

486 386 286 86

E2cb LOOPrel8 26 11+m 8noj=4 17,n0j=5 DEC Count; jump short if Count 0

Etcb LOOPErel8 96 11+4m 8,noj=4 18,n0j=6 DEC Count; jump short if Count 0 and ZF=1
E1cb LOOPZrel8 96 11+m 8,noj=4 18,n0j=6 DEC Count; jump short if Count 0 and ZF=1
EOcb LOOPNErel8 9,6 11+m 8,noj=4 19,n0j=5 DEC Count; jump short if Count 0 and ZF=0
EOcb LOOPNZrel8 9,6 11+m 8noj=4 19,n0j=5 DEC Count; jump short if Count 0 and ZF=0

PART 4, Processor Instructions 93

LOOP decrements the count register without changing any of the flags.
Conditions are then checked for the form of LOOP being used. If the con-
ditions are met, a short jump is made to the label given by the operand to
LOOQRP. If the address-size attribute is 16 bits, the CX register is used as the
count register; otherwise the ECX register is used (386 only). The operand
of LOOP must be in the range from 128 (decimal) bytes before the instruc-
tion to 127 bytes ahead of the instruction.

The LOOP instructions provide iteration control and combine loop index
management with conditional branching. Use the LOOP instruction by
loading an unsigned iteration count into the count register, then code the
LOOP at the end of a series of instructions to be iterated. The destination
of LOOP is a label that points to the beginning of the iteration.

LSL Load segment limit
80286/386/486 protected mode only

(o} D I T s Z A P C
*

Opcode Instruction Clocks Description
486 386 286
OF03/ LSLri6,/mi6 1010 pm=20/21 14/16 Load: r16<—segment limit, selector /m16
(byte granular)
OF03/r LSLr32,/m32 1010 pm=20/21 Load: r32¢—segment limit, segment limit,

selector /m32 (byte granular)

OF 03/ LSLri6rmi6 1010 pm=2526 14/16 Load: r16«segment limit, segment limit,
selector /m16 (page granular)

OF 03/ LSLr32/m32 1010 pm=26/26 Load: r32<—segment limit selector r/m32
(page granular)

The LSL instruction loads a register with an unscrambled segment limit,
and sets ZF to 1, provided that the source selector is visible at the CPL
weakened by RPL, and that the descriptor is a type accepted by LSL. Oth-
erwise, ZF is cleared to 0, and the destination register is unchanged. The
segment limit is loaded as a byte granular value. If the descriptor has a
page granular segment limit, LSL will translate it to a byte limit before
loading it in the destination register (shift left 12 the 20-bit "raw"” limit
from descriptor, then OR with 00000FFFH).

The 32-bit forms of this instruction store the 32-bit byte granular limit in
the 16-bit destination register.

Code and data segment descriptors are valid for LSL.

Q4 PART 4, Processor Instructions

LTR Load task register
80286/386/486 protected mode only

o D I T S 2 A P Cc

Opcode Instruction Clocks Description

486 386 286
0F00/3 LTRrm16 20/20 pm=23/27 17/19 Load EA word into task register

LTR loads the task register from the source register or memory location
specified by the operand. The loaded task state segment is marked busy.
A task switch does not occur.

LTR is used only in operating system software; it is not used in applica-
tion programs.

MOV Move data

(0] D I T S z A P (o]

Opcode Instruction Clocks Description

~
(o]
(=2

38 286 86
2/2 2/3 2/9+EA Move byte register into r/m byte
212 2/3 2/9+EA Move word register into /m word
212 Move dword register to r/m dword
2/4 2/5 2/8+EA Move r/m byte into byte register
8B/ MOV r16,r/m16 2/4 2/5 2/8+EA Move r/m word into word register
8B /r MOV r32,r/m32 2/4 Move r/m dword into dword register
8CIr MOV rm16,Sreg 33 212 2/3 2/9+EA Move segment register to r/m register
8D Ir MOV Sreg,/m16 3/9 2/5pm= 2/5pm= 2/8+EA Move r/m word to segment register
1198 17119

88/ MOV r/m8,r8
89/ MOV 1/m16,r16
89 /r MOV /m32,r32
8AIr MOV 18,r/m8

.._.._;_._;l

Cé MOV r/m8,imm8
c7 MOV r/m16,imm16
Cc7 MOV /m32,imm32

212 23 4/10+EA Move immediate byte to r/m byte
212 2/3 4/10+EA Move immediate word to r/m word
212 Move immediate dword to r/m dword

A0 MOV AL,moffs8 1 4 5 10 Move byte at (seg:offset) to AX
Al MOV AXmoffs16 1 4 5 10 Move word at (seg:offset) to AX
A1 MOV EAX,moffs32 1 4 Move dword at (seg:offset) to EAX
A2 MOV moffs8,AL 1 4 3 10 Move AL to (seg:offset)
A3 MOV moffs16,AX 1 2 3 10 Move AX to (seg:offset)
A3 MOV moffs32 EAX 1 2 Move EAX to (seg:offset)
BO+rb MOV reg8,imm8 1 2 2 4 Move immediate byte to register
B8+mw MOV reg16,mmi6 1 2 2 4 Move immediate word to register
B8+d MOVreg32,mm32 1 2 Move immediate dword to register
1
1
1

MOV copies the second operand to the first operand.

If the destination operand is a segment register (DS, ES, SS, etc.), then
data from a descriptor is also loaded into the register. The data for the reg-
ister is obtained from the descriptor table entry for the selector given. A
null selector (values 0000-0003) can be loaded into DS and ES registers

PART 4, Processor Instructions 95

without causing an exception; however, use of DS or ES causes a #GP(0),
and no memory reference occurs.

A MOV into SS inhibits all interrupts until after the execution of the next
instruction (which is presumably a MOV into eSP).

MOV Move to/from special registers
386 and i486 only

(o} D I T S Z A P Cc

Opcode Instruction Clocks Description

486 386
OF 22 I MOV,CR0,r32 16 Move (register) to (control register)
0F20/r MOV r32,CRO/CR2/CR3 4 6 Move (contro! register) to (register)
OF22/r MOV CRO/CR2/CR3,r32 4 10/4/5
OF21/r MOVIr32,DRO-3 10 22 Move (debug register) to (register)
OF 21 /r MOV r32,DR6/DR7 10 14 Move (debug register) to (register)
OF 23 /r MOV DRO -3,r32 11 22 Move (register) to (debug register)
OF 23 /r MOV DR6/DR7,132 11 16 Move (register) to (debug register)
OF 24 Ir MOV r32,TR6/TR7 4 12 Move (test register) to (register)
OF 26 /r MOV TR6/TR7,r32 4 12 Move (register) to (test register)
OF24/r MOV r32,TR3 3 Move (registers) to (test register3)

These forms of MOV store or load the following special registers in or
from a general-purpose register:

m Control Registers CRO, CR2, and CR3

B Debug Registers DRO, DR1, DR2, DR3, DR6, and DR7

W Test Registers TR3, TR4, TR5, TR6, and TR7

32-bit operands are always used with these instructions, regardless of the
operand-size attribute.

MOVS Move data from string to string
MOVSB MOVSD 386 and i486 only
MOVSW
MOVSD o D I T S 2z A P ¢
Opcode Instruction Clocks Description
486 386 286 86
A4 MOVS m8,m8 7 7 5 18 Move byte [(E)SI] to ES:[(E)DI]
A5 MOVS m16,m16 7 7 5 18 Move word [(E)SH] to ES:[(E)DI]
A5 MOVm32,m32 7 7 Move dword {(E)SI] to ES:{(E)DI]
Ad MOVSB 7 7 5 18 Move byte DS:[(E)SI] to ES:[(E)DI]
A5 MOVSW 7 7 5 18 Move word DS:[(E)S!] to ES:[(E)DI]
A5 MOVSD 7 7 Move dword DS:[(E)SI] to ES:[(E)DI]

96 PART 4, Processor Instructions

(‘\!"11114‘(v"1
R A VP S

1

(
[

MOVS copies the byte or word at [(E)SI] to the byte or word at ES:
[(E)DI]. The destination operand must be addressable from the ES regis-
ter; no segment override is possible for the destination. A segment over-
ride can be used for the source operand; the default is DS.

The addresses of the source and destination are determined solely by the
contents of (E)SI and (E)DI. Load the correct index values into (E)SI and
(E)DI before executing the MOVS instruction. MOVSB, MOVSW, and
MOVSD are synonyms for the byte, word, and doubleword MOVS
instructions.

After the data is moved, both (E)SI and (E)DI are advanced automatically.
If the direction flag is 0 (CLD was executed), the registers are incre-
mented; if the direction flag is 1 (STD was executed), the registers are
decremented. The registers are incremented or decremented by 1 if a byte
was moved, 2 if a word was moved, or 4 if a doubleword was moved.

MOVS can be preceded by the REP prefix for block movement of CX
bytes or words. Refer to the REP instruction for details of this operation.

MOVSX Move with sign-extend
386 and 486 only

o D I T S Z A P (o]

Opcode Instruction Clocks Description
486 386
OF BE /r MOVSX r16,r/m8 33 36 Move byte to word with sign extend

OF BE/r MOVSX r32,r/m8 33 36 Move byte to dword
OF BE /r MOVSX r32,/m16 33 36 Move word to dword

MOVSX reads the contents of the effective address or register as a byte or
a word, sign-extends the value to the operand-size attribute of the instruc-
tion (16 or 32 bits), and stores the result in the destination register.

MOVZX Move with zero-extend
386 and i486 only

(o} D I T S 2 A P Cc

Opcode Instruction Clocks Description

486 386
OF B6/r MOVZX r16,r/m8 3/3 36 Move byte to word with zero extend
OF B6/r MOVZX r32,r/m8 33 36 Move byte to dword

OF B7 Ir MQOVZX r32,/m16 33 36 Move word to dword

PART 4, Processor Instructions Q7

MOVZX reads the contents of the effective address or register as a byte or
a word, zero extends the value to the operand-size attribute of the instruc-
tion (16 or 32 bits), and stores the result in the destination register.

MUL Unsigned multiplication of AL or AX
o D I T s Z A P (o]
* 2 2?2 2?2 2 x
Opcode Instruction Clocks . Description
486 386 26 8
F6/4 MULr/m8 13/18,13/18 9-14/12-17 13/16 70-77/76-83+EA Unsigned multiply (AX
[(AL 8 r/m byte)
F7 /4 MUL /m16 13/26, 13/26 9-22/12-25 21/24 118-113/124-139+EA (DX:AX[AX * /m word)
F7/4 MUL©m32 13/42, 13/42 9-38/ 12-41 Unsigned multiply
(EDX: EAX{EAX * rim
dword)

MUL performs unsigned multiplication. Its actions depend on the size of
its operand, as follows:

M A byte operand is multiplied by AL; the result is left in AX. The carry
and overflow flags are set to 0 if AH is 0; otherwise, they are set to 1.

® A word operand is multiplied by AX; the resuit is left in DX: AX. DX
contains the high-order 16 bits of the product. The carry and overflow
flags are set to 0 if DX is 0; otherwise, they are set to 1.

m A doubleword operand is multiplied by EAX and the result is left in
EDX:EAX. EDX contains the high-order 32 bits of the product. The
carry and overflow flags are set to 0 if EDX is 0; otherwise, they are set
to 1 (386 only).

NEG Two’s complement negation

[o} D I T s 2 A P (o]
* * * * * *

Opcode Instruction Clocks Description

486 386 285 86
F6 /3 NEGrm8 113 2/6 2/7 316+EA Two's complement negate r/m byte
F713 NEGrmi6 1/3 2/6 2/7 3/16+EA Two's complement negate r/m word
F713 NEGrm32 13 206 Two’s complement negate r/m dword

NEG replaces the value of a register or memory operand with its two’s
complement. The operand is subtracted from zero, and the result is
placed in the operand.

The carry flag is set to 1, unless the operand is zero, in which case the
carry flag is cleared to 0. ‘

98 PART 4, Processor Instructions

NOP No operation

o D I T S Z A P C

Opcode Instruction Clocks Description
486 386 286 86
90 NOP 1 3 3 3 No operation

NOP performs no operation. NOP is a one-byte instruction that takes up

space but affects none of the machine context except (E)IP.

NOP is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

NOT One’s complement negation

(o] D I T S 4 A P (o

Opcode Instruction Clocks Description

486 386 286 86
F6/2 NOTrWm8 1/3 2/6 277 3/16+EA Reverse each bit of /m byte
F712 NOTrmi6 1/3 2/6 277 3/16+EA Reverse each bit of /m word
F7 12 NOTrm32 113 266 277 Reverse each bit of r/m dword

NOT inverts the operand; every 1 becomes a 0, and vice versa.

OR Logical inclusive OR
O D T S Z P C
0 * * * 0
Opcode Instruction Clocks Description
486 3% 206 86
0Cib OR AL,imm8 1 2 3 4 OR immediate byte to AL
0D iw OR AX,imm16 1 2 3 4 OR immediate word to AX
0D id OR EAX,mm32 1 2 OR immediate dword to EAX
80/1ib OR r/m8,imm8 13 27 37 417+EA OR immediate byte to /m byte
8t/1iw OR1/m16,mmi6 1/3 27 37 417+EA OR immediate word to r/m word
81/1id ORIm32,mm32 1/3 27 OR immediate dword to r/m dword
83/1ib ORrm16,imm8 1/3 27 OR sign-extended immediate byte
with r/m word
83/1ib OR©m32,imm8 1/3 27 OR sign-extended immediate byte
with t/m dword
08 /r OR r/m8,r8 1/3 2/6 2/7 316+EA OR byte register to r/m byte
09 /r OR r/m16,r16 113 206 2/7 3116+EA OR word register to r/m word
09 /r OR r/m32,r32 1/3 2/6 OR dword register to r/m dword
0A /r OR r8,r/m8 12 27 27T 3/9+EA OR byte register to r/m byte
0B/ OR r16,r/m16 12 21 27 3/9+EA OR word register to r/m word
0B/ OR r32,r/m32 172 217 OR dword register to r/m word

PART 4, Processor Instructions

99

OR computes the inclusive OR of its two operands and places the result
in the first operand. Each bit of the result is 0 if both corresponding bits of
the operands are 0; otherwise, each bit is 1.

ouTt Output to port

(o) D I T S 2 A P Cc

Opcode Instruction Clocks Description
486 386 286 86
E6ib OUTimm8AL 16,pm=11"/31"*vm=29 10,pm=4"/24"" 3 10 Output byte AL to
immediate port number

E7ib OUT imm8,AX 16,pm=11*/31"*ym=29 10,pm=4"/24"* 3 10 Output word AX to
immediate port number

E7ib OUT 16,pm=11%/31**,ym=29 10,pm=4"/25** Output dword EAX to
imm8,EAX immediate port number
EE QUT DX,AL 16,pm=11*/31**vm=29 11,pm=5%25"" 3 8 Output byte AL to port
number in DX

EF OUTDXAX 16pm=11"/31"*vm=29 11,pm=5/25"* 3 8 Output word AX to
port number in DX

EF OUT DX,EAX 16pm=11/31**vm=29 11,pm=5'25"" Output dword EAX to
port number in DX

*If CPL < IOPL

** If CPL > IOPL or if in virtual 8086 mode

OUT transfers a data byte or data word from the register (AL, AX, or
EAX) given as the second operand to the output port numbered by the
first operand. Output to any port from 0 to 65535 is performed by placing
the port number in the DX register and then using an OUT instruction
with DX as the first operand. If the instruction contains an eight-bit port
ID, that value is zero-extended to 16 bits.

OuTsS Output string to port
OUTSB OUTS/OUTSB/OUTSW 80186/286/386/486 only
outsw OUTSD 386 and 1486 onl
OUTSD Y
[o] D I T S Z A P [o]
Opcode Instruction Clocks Description
486 386 286

6E OUTS DX,/m8 17,pm=10"/32"*,vm=30 14,pm=8"/28""

w

OQutput byte [(E)SI] to port

in DX

6F OUTS DX,/m16 17,pm=10*/32"*,vm=30 14,pm=8"/28"* 5 Output word [(E)SI] to port
in DX

6F OUTS DX,/m32 17,pm=10%/32**,vm=30 14,pm=8"/28"* Output dword [(E)SI] to
port in DX

6E OUTSB 17,pm=10%/32* ym=30 14,pm=8*/28** 5 Output byte DS{(E)SI] to
port in DX

6F ouTsSW 17,pm=10*/32"*ym=30 14,pm=8"/28** 5 Output word DS{(E)SI] to

port number in DX

100 PART 4, Processor Instructions

Opcode Instruction Clocks Description
486 386 286
6F OUTSD 17,pm=10"/32"*,ym=30 14,pm=8"/28"* Output dword DS:[(E}SI] to
port in DX

OUTS transfers data from the memory byte, word, or doubleword at the
source-index register to.the output port addressed by the DX register. If

the address-size attribute for this instruction is 16 bits, SI is used for the

source-index register; otherwise, the address-size attribute is 32 bits, and
ESl is used for the source-index register.

OUTS does not allow specification of the port number as an immediate
value. The port must be addressed through the DX register value. Load
the correct value into DX before executing the OUTS instruction.

The address of the source data is determined by the contents of source-
index register. Load the correct index value into SI or ESI before executing
the OUTS instruction.

After the transfer, source-index register is advanced automatically. If the
direction flag is 0 (CLD was executed), the source-index register is incre-
mented; if the direction flag is 1 (STD was executed), it is decremented.
The amount of the increment or decrement is 1 if a byte is output, 2 if a
word is output, or 4 if a doubleword is output.

OUTSB, OUTSW, and OUTSD are synonyms for the byte, word, and
doubleword OUTS instructions. OUTS can be preceded by the REP prefix
for block output of CX bytes or words. Refer to the REP instruction for de-
tails on this operation.

POP Pop a word from the stack

o D I T S Z2 A P C

Opcode Instruction Clocks Description

486 386 286 86
8F /0 POP m16 6 5 5 17+EA Pop top of stack into memory word
8F 10 POP m32 6 5 Pop top of stack into memory dword
58+rw POPr16 4 4 5 8 Pop top of stack into word register
58+rd POP r32 4 4 Pop top of stack into dword register
1F POP DS 3 7pm=21 5pm=20 8 Pop top of stack into DS
07 POP ES 3 7pm=21 5pm=20 8 Pop top of stack into ES
17 POP SS 3 7pm=21 5pm=20 8 Pop top of stack into SS
OF A1 POP FS 3 7,pm=21 Pop top of stack into FS
OF A9 POP GS 3 7,pm=21 Pop top of stack into GS

POP replaces the previous contents of the memory, the register, or the seg-
ment register operand with the word on the top of the stack, addressed

by SS:SP (address-size attribute of 16 bits) or SS:ESP (address-size attri-
bute of 32 bits). The stack pointer SP is incremented by 2 for an operand-

PART 4, Processor Instructions 101

size of 16 bits or by 4 for an operand-size of 32 bits. It then points to the
new top of stack.

POP CS is not an instruction. Popping from the stack into the CS register
is accomplished with a RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the
value popped must be a selector. In protected mode, loading the selector
initiates automatic loading of the descriptor information associated with
that selector into the hidden part of the segment register; loading also initi-
ates validation of both the selector and the descriptor information.

A null value (0000-0003) may be popped into the DS, ES, FS, or GS regis-
ter without causing a protection exception. An attempt to reference a seg-
ment whose corresponding segment register is loaded with a null value
causes a #GP(0) exception. No memory reference occurs. The saved value
of the segment register is null.

A POP SS instruction inhibits all interrupts, including NMI, until after exe-
cution of the next instruction. This allows sequential execution of POP SS
and POP ESP instructions without danger of having an invalid stack dur-
ing an interrupt. However, use of the LSS instruction is the preferred
method of loading the SS and eSP registers.

Note: Turbo Assembler extends the syntax of the POP instruction to facili-
tate popping multiple items in sequence. The items popped can include
any legal POP value, including registers, immediate values, and memory
locations. This feature does not actually affect the code generated.

POPA Pop all general registers
POPAD POPA 80186/286/386/486 only
POPAD 386 and i486 only

(o} D I T S 4 A P C

Opcode Instruction Clocks Description
486 386 286

61 POPA 9 24 19 Pop DI

61 POPAD 9 24 Pop EDI

POPA pops the eight 16-bit general registers. However, the SP value is dis-
carded instead of loaded into SP. POPA reverses a previous PUSHA, re-
storing the general registers to their values before PUSHA was executed.
The first register popped is DI.

POPAD pops the eight 32-bit general registers. The ESP value is discarded
instead of loaded into ESP. POPAD reverses the previous PUSHAD, re-
storing the general registers to their values before PUSHAD was executed.
The first register popped is EDI.

102 PART 4, Processor Instructions

1O [
coo

SYERCIENG

s
{

(

V()
o

POPF Pop from stack into FLAGS or EFLAGS register
POPFD POPFD 386 and 486 only
o b I T S 2zZ A P C
* * * * * * * * *
Opcode Instruction Clocks Description
8 36 206 86
9D POPF gpm=6 5 5 8 Pop top of stack FLAGS
9D POPFD 9pm=6 5 Pop top of stack into EFLAGS

POPE/POPFD pops the word or doubleword on the top of the stack and
stores the value in the flags register. If the operand-size attribute of the in-
struction is 16 bits, then a word is popped and the value is stored in
FLAGS. If the operand-size attribute is 32 bits, then a doubleword is
popped and the value is stored in EFLAGS.

Note that bits 16 and 17 of EFLAGS, called VM and RF, respectively, are
not affected by POPF or POPFD.

The I/O privilege level is altered only when executing at privilege level 0.
The interrupt flag is altered only when executing at a level at least as priv-
ileged as the I/O privilege level. (Real-address mode is equivalent to privi-
lege level 0.) If a POPF instruction is executed with insufficient privilege,
an exception does not occur, but the privileged bits do not change.

PUSH Push operand onto the stack

[o) D I T S 4 A P (o]

Opcode Instruction Clocks Description

48 385 286 86
FF /6 PUSH m16 4 5 5 16+EA Push memory word
FF /6 PUSH m32 4 5 Push memory dword
50+/r PUSHr16 1 2 3 11 Push register word
50+/r PUSHr32 1 2 Push register dword
6A PUSH imm8 1 23 Push immediate byte
68 PUSH imm16 1 2 3 Push immediate word
68 PUSH imm32 1 2 Push immediate dword
OE PUSH CS 3 2 3 10 Push CS
16 PUSH SS 3 2 3 10 Push SS
1E PUSH DS 3 2 3 10 Push DS
06 PUSH ES 3 2 10 Push ES
OF A0 PUSHFS 3 2 Push FS
OF A8 PUSHGS 3 2 Push GS

PUSH decrements the stack pointer by 2 if the operand-size attribute of
the instruction is 16 bits; otherwise, it decrements the stack pointer by 4.
PUSH then places the operand on the new top of stack, which is pointed
to by the stack pointer.

PART 4, Processor Instructions 103

The 386 PUSH eSP instruction pushes the value of the eSP as it existed _
before the instruction. The 80286 PUSH SP instruction also pushes the i
value of SP as it existed before the instruction. This differs from the 8086, ‘
where PUSH SP pushes the new value (decremented by 2).

Note: Turbo Assembler extends the syntax of the PUSH instruction to fa-
cilitate pushing multiple items in sequence. The items pushed can include
any legal PUSH value, including registers, immediate values, and
memory locations. This feature does not actually affect the code gener- (
ated. In addition, the PUSH instruction allows constant arguments even p
when generating code for the 8086 processor. Such instructions are re-

placed in the object code by a 10-byte sequence that simulates the

80186/286/386 PUSH immediate value instruction.

PUSHA Push all general registers
PUSHAD PUSHA 80186/286/386/486 only
PUSHAD 386 and i486 only

o D I T S Z A P Cc

Opcode Instruction Clocks Description

485 3% 286
60 PUSHA 11 18 17 Push AX,CX,DX,BX original SP,BP,SI
60 PUSHAD 11 18 Push EAX,ECX,EDX,EBX

PUSHA and PUSHAD save the 16-bit or 32-bit general registers, respec-
tively, on the stack. PUSHA decrements the stack pointer (SP) by 16 to
hold the eight word values. PUSHAD decrements the stack pointer (ESP)
by 32 to hold the eight doubleword values. Because the registers are
pushed onto the stack in the order in which they were given, they appear
in the 16 or 32 new stack bytes in reverse order. The last register pushed
is DI or EDL

PUSHF Push flags register onto the stack
PUSHFD PUSHFD 386 and i486 only

(o} D I T S Z A -4 Cc

Opcode Instruction Clocks Description
486 36 206 86

9C PUSHF 4pm=3 4 3 10 Push FLAGS

9C PUSHFD 4pm=3 4 Push EFLAGS

PUSHF decrements the stack pointer by 2 and copies the FLAGS register
to the new top of stack; PUSHFD decrements the stack pointer by 4, and
the 386 EFLAGS register is copied to the new top of stack which is
pointed to by S5:eSP.

104 : PART 4, Processor Instructions

JU

PO

SRS

RCL Rotate
RCR
ROL i) D I T S Z A P (;.‘
ROR
Opcode Instruction Clocks Description
46 386 286 86
D0/2 RCL1/m8,1 3/4 9/10 217 2/15+EA Rotate 9 bits (CF,r/m byte)
left once
D2/2 RCL¢¥m8,CL 8-30/3-31 9/10 5/8 8+4 per bit/(20+4 Rotate 9 bits (CF,/m byte)
per bit)}+EA left CL times
C0/2ib RCLr/m8,mm8 8-30/9-31 9/10 5/8 Rotate 9 bits (CF.r/m byte)
left imm8 times
D1/2 RCL©m16,1 34 9/10 2/7 2/15+EA Rotate 17 bits (CF,r/m
word) left once
D3/2 RCLrmi6,CL 8-30/9-31 9/10 5/8 8+4 per bit/(20+4 Rotate 17 bits (CF, r/m
per bit)+EA word) left CL times
C1/2ib RCLr/m16, 8-30/9-31 9/10 5/8 Rotate 17 bits (CF,r/m
imm8 word)) left imm8 times
D172 RCL r/m32,1 3/4 9/10 Rotate 33 bits (CF,r/m
dword) left once
D3/2 RCLv/m32,CL 8-30/9-31 9/10 Rotate 33 bits (CF,r/m
dword) left CL times
C1/2ib RCLr/m32, 8-30/9-31 9/10 Rotate 33 bits (CF,r/m
imm8 dword) left, imm8 times
D0/3 RCR/m8,1 3/4 9/10 207 2115+EA Rotate 9 bits (CF,r/m byte)
right once
D2/3 RCRmm8CL 8-30/8-3t 9/10 5/8 8+4 per bit/(20+4 Rotate 9 bits (CF/m byte)
per bit}+EA right CL times
C0/3ib RCRr/m8,mm8 8-30/9-3t 9/10 5/8 Rotate 9 bits (CF,r/m byte)
right imm8 times
D1/3 RCRrmig1 3/4 9/10 207 2/15+EA Rotate 17 bits (CF,r/m
word) right once
D3/3 RCRrmi16,CL 8-30/3-31 9/10 5/8 8+4 perbit/(20+4 Rotate 17 bits (CF,r/m
per bit)+EA word) right CL times
C1/3ib RCRr/m16, 8-30/9-31 9/10 5/8 Rotate 17 bits (CF,r/m
imm8 word) right imm8 times
D1/3 RCRWm321 3/4 9/10 Rotate 33 bits (CF,r/m
dword) right once
D3/3 RCRr¥m32,CL 8-30/9-31 9/10 Rotate 33 bits (CF,i/m
dword) right CL times
C1/3ib RCR1/m32, 8-30/9-31 9/10 Rotate 33 bits (CF,r/m
imm8 dword) right imm8 times
D0/0 ROL/m8,1 3/4 317 2/7 2115+EA Rotate 8 bits r/m byte left
once
D2/0 ROLrm8CL 3/4 37 5/8 8+4 perbit/{20+4 Rotate 8 bits r/m byte left
per bit)+EA CL times
C0/0ib ROL r/m8, imm8 2/4 37 5/8 Rotate 8 bits r/m byte left
imm8 times
D1/0 ROLvmi61 3/4 317 217 2/15+EA Rotate 16 bits r/m word left
once
D3/0 ROLrmi6CL 3/4 37 5/8 8+4 perbit/(20+4 Rotate 16 bits /m word left
per bit}+EA CL times
C1/0ib ROL vm16, 2/4 37 5/8 Rotate 16 bit r/m word left

jmm8

PART 4, Processor Instructions

imm8 times

105

Opcode Instruction Clocks Description

48 3 286 86
D1/0 ROLrm32,1 3/4 37 Rotate 32 bits r/m dword left
. once
D3/0 ROLmWm32,CL 3/4 an Rotate 32 bits r/m dword left
CL times
C1/0ib ROLrm32, 2/4 37 Rotate 32 bits r/m dword left
imm8 imm8 times
D0/t RORrim8,1 3/4 37 27 2115+EA Rotate 8 bits r/m byte right
once
D2/4 RORrm8CL 3/4 37 58 8+4 per bit/(20+4 Rotate 8 bits r/m byte right
per bit}+EA CL times
CO/1ib RORr/m8, 2/4 k4 5/8 Rotate 8 bits r/m word right
imm8 imm8 times
Di A RORr/mi61 3/4 37 27 2/15+EA Rotate 16 bits r/m word
right once
D3/4 RORvmi6CL 3/4 37 5/8 8+4 perbit/(20+4 Rotate 16 bits r/m word
per bit)+EA right CL times
C1/1ib ROR1/m16, 2/4 37 5/8 Rotate 16 bit r/m word right
imm8 imm8 times
Di/1 ROR©m321 34 37 Rotate 32 bits r/m dword
right once
D3/1 ROR©m32,CL 3/4 37 Rotate 32 bits r/m dword
right CL times
C1/1ib RORrm32, 2/4 3 Rotate 32 bits r/m dword
imm8 right imm8 times

Add 1 clock to the times shown for each rotate made (80286 only).

Each rotate instruction shifts the bits of the register or memory operand
given. The left rotate instructions shift all the bits upward, except for the
top bit, which is returned to the bottom. The right rotate instructions do
the reverse: The bits shift downward until the bottom bit arrives at the top.

For the RCL and RCR instructions, the carry flag is part of the rotated
quantity. RCL shifts the carry flag into the bottom bit and shifts the top
bit into the carry flag; RCR shifts the carry flag into the top bit and shifts
the bottom bit into the carry flag. For the ROL and ROR instructions, the
original value of the carry flag is not a part of the result, but the carry flag
receives a copy of the bit that was shifted from one end to the other.

The rotate is repeated the number of times indicated by the second oper-
and, which is either an immediate number or the contents of the CL regis-
ter. To reduce the maximum instruction execution time, the 80286/386
does not allow rotation counts greater than 31. If a rotation count greater
than 31 is attempted, only the bottom five bits of the rotation are used.
The 8086 does not mask rotation counts. The 386 in virtual 8086 mode
does mask rotation counts.

The overflow flag is defined only for the single-rotate forms of the instruc-
tions (second operand = 1). It is undefined in all other cases. For left
shifts/rotates, the CF bit after the shift is XORed with the high order re-
sult bit. For right shifts/rotates, the high-order two bits of the result are
XORed to get OF.

106 PART 4, Processor Instructions

REP Repeat following string operation
REPE
REPZ o D I T S f A P C
REPNE
REPNZ
Opcode Instruction Clocks Description
486 386 2086 8
F36C REPINS 16+8(E)CX, 13+6°(E)CX, 5+4'CX Input (E)CX bytes from
r/m8,DX pm=10+8(E)CX*)/ pm=7+6*(E)CX/ port DX into ES(E)DI}
30+8(E)CX"2VM= 27+6*1*(E)CX"2
29+8(E)CX
F36D REPINS 16+8(E)CX, 13+6*(E)CX, 5+44°CX Input (E}CX words from
/m16,0X pm=10+8(E)CX*/ pm=7+6"(E)CX/ port DX into ES:[(E)DI]
30+8(E)CX2VM= 27+6"*(E)CX*2
29+8(E)CX
F36D REPINS 16+8(E)CX, 13+6*(E)CX, Input (E)CX dwords
/m32,DX pm=10+8(E)CX*/ pm=7+6"(E)CX/ from port DX into
30+8(E)CX2VM= 27+6*1*(E)CX"2 ES{(E)DI]
29+8(E)CX
F3A4 REPMOVS 59313*1243(E) 5+4'(E)CX 5+4°CX 9+17°CX Move (E)CX bytes from
m8,m8 CX*s [(E)SI) to ES{(E)DI]
F3A5 REPMOVS 5%13*412+3(E) 5+4*(E)CX 5+44'CX 9+17°CX Move (E)CX words from
mi6mi6 CX'S [(E)SI} to ES{(E)DI]
F3A5 REPMOVS 5%13*1243(E) 5+4*(E)CX Move (E)CX dwords
m32m32 CX's from [(E)SI] to ES:[(E)DI]
F36E REPOUTS 17+5(E)CX, 5+12YE)CX, 5+4°CX Output (E)CX bytes
DX,1/m8 pm=11+5(E)CX*)/ pm=6+5*(E) from [(E)SI] to port DX
3145(E)CX"2 CX/264+5'™(E)
CX*
F36F REPOUTS 17+5(E)CX, 5+12'(E)CX, 5+4'CX Output (E)CX words
DX,r/m16 pm=11+5(E)CX"/ pm=6+5"(E) from [(E)S!] to port DX
3145(E)CX"2 CX/26+5'*(E)
CX*2
F36F REPOUTS 17+5(E)CX, 5+12*(E)CX, Output(E)CX dwords
DX,/m32 pm=11+5(E)CX"/ pm=6+5'(E) from [(E)SI] to port DX
3145(E)CX"2 CX/2645**(E)
CX?2
F2AC REPLODS 5%,7+4(E)CX’8 Load (E)CX bytes from
m8 [(E)SI] to AL
F2AD REPLODS 5%,7+4(E)CX'8 Load (E)CX words from
mig [(E)SI} to AX
F2AD REPLODS 5% 7+4(E)CX's Load (E)CX dwords
m32 from [(E)S1] to EAX
F3AA REPSTOS 5%7+4(E)CX® 5+5*(E)CX 4+3'CX 9+10°CX Fill (E)CX bytes at
m8 ES:[(E)DI] with AL
F3AB REPSTOS 5%,7+4(E)CX" 5+5*(E)CX 44+3'CX 9+10°CX Fill (E)CX words at
m16 ES:{(E)DI} with AX
F3AB REPSTOS 5%37+4(E)CX'6 5+5*(E)CX Fill (E)CX dwords at
m32 ES:[(E)DI} with EAX
F3A6 REPE 5%3,7+7(E)CX*6 5+9°N 5+9'N 9+22'N Find nonmatching bytes
CMPS in ES:[(E)DI] and [(E)SI}
m8,m8
F3A7 REPE 5%3,7+7(E)CX"6 5+9'N 5+¢9'N 9+22'N Find nonmatching
CMPS words in ES:[(E)DI] and
mi6,m16 [E)SI]

PART 4, Processor Instructions

107

Opcode Instruction Clocks Description -
486 386 2% 86
F3A7 REPE 5%,7+7(E)CX*¢ 5+9*'N Find nonmatching N
CMPS dwords in ES:{(E)DI] i
m32,m32 and [(E)S]
F3AE REPE 5" 7+5(E)CX*'® 5+8*N 5+8'N 9+15'N Find non-AL byte f
SCAS m8 starting at ES:{(E)DI] .
F3AF EPESCAS 5% 7+5(E)CX'® 5+8'N 5+8'N 9+15'N Find non-AX word s
m16 starting at ES:{(E)DI] ’
F3AF REPE 5'3,745(E)CX'® 5+8'N Find non-EAX dword
SCAS m32 starting at ES:[(E)DI] .
F2 A6 REPNE 5%, 7+7(E)CX'® 5+9*N 5¢9'N 9+22'N Find matching bytes in -
CMPS ES:{(E)DI} and [(E)SI]
m8,m8
F2 A7 REPNE 5%,7+7(E)CX*® 5+9'N 5+9'N 9+22'N Find matching words in
CMPS ES:{(E)DI] and [(E)SI]
mi6,m16
F2 A7 REPNE 5" 7+7(E)CX's 5+9*N Find matching dwords
CMPS in ES;[(E)DI] and [(E)SI)
m32,m32
F2 AE REPNE 5'37+5(E)CX's 5+8'N 5¢#8'N 9+15°'N Find AL
SCAS m8
F2 AE REPNE 5'37+5(E)CX® 5+48"N 5¢8'N 9+15'N Find AX
SCAS m16
F2 AF REPNE 5'37+5(E)CX*6 5+8'N Find EAX
SCAS m32

"4 It CPL<I0PL
*2 1 CPL > IOPL
*31f(E) CX =0
*41f(E) CX = 1
*51f(E) CX 1
*61f (E) CX 0

REP, REPE (repeat while equal), and REPNE (repeat while not equal) are
prefixes that are applied to string operations. Each prefix causes the string
instruction that follows to be repeated the number of times indicated in
the count register or (for REPE and REPNE) until the indicated condition
in the zero flag is no longer met.

Synonymous forms of REPE and REPNE are REPZ and REPNZ, respec-

tively.

The REP prefixes apply only to one string instruction at a time. To repeat
a block of instructions, use the LOOP instruction or another looping con-

struct.

The precise action for each iteration is as follows:

1. If the address-size attribute is 16 bits, use CX for the count register; if

the address-size attribute is 32 bits, use ECX for the count register.

2. Check CX. If it is zero, exit the iteration, and move to the next instruc-

tion.

3. Acknowledge any pending interrupts.

108

PART 4, Processor Instructions

4. Perform the string operation once.
5. Decrement CX or ECX by one; no flags are modified.

6. Check the zero flag if the string operation is SCAS or CMPS. If the re-
peat condition does not hold, exit the iteration and move to the next in-
struction. Exit the iteration if the prefix is REPE and ZF is 0 (the last com-
parison was not equal), or if the prefix is REPNE and ZF is one (the last
comparison was equal).

7. Return to step 1 for the next iteration.

Repeated CMPS and SCAS instructions can be exited if the count is ex-
hausted or if the zero flag fails the repeat condition. These two cases can
be distinguished by using either the JCXZ instruction, or by using the con-
ditional jumps that test the zero flag (JZ, JNZ, and JNE).

RET Return from procedure
o D I T S 2z A P (o]
Opcode Instruction Clocks Description
486 386 286 8
(0] RET 5 10+m 1 16 Return (near) to caller
CcB RET 13,pm=18 18+mpm= 15pm=25 26 Return (far) to caller, same
32+m privilege
cB RET 13,pm=33 pm=68 55 Return (far)
C2iw RETimmi6 5 10+m 1 20 Return (near)
CAiw RETimm16 14pm=17 18+mpm= 15pm=25 25 Return (far) pop imm16 bytes
32+m
CAiw RETimmi16 14pm=33 pm=68 55 Return (far)

RET transfers control to a return address located on the stack. The ad-
dress is usually placed on the stack by a CALL instruction, and the return
is made to the instruction that follows the CALL.

The optional numeric parameter to RET gives the number of stack bytes
(OperandMode = 16) or words (OperandMode = 32) to be released after
the return address is popped. These items are typically used as input pa-
rameters to the procedure called.

For the intrasegment (near) return, the address on the stack is a segment
offset, which is popped into the instruction pointer. The CS register is un-
changed. For the intersegment (far) return, the address on the stack is a
long pointer. The offset is popped first, followed by the selector.

In real mode, CS and IP are loaded directly. In protected mode, an inter-
segment return causes the processor to check the descriptor addressed by
the return selector. The AR byte of the descriptor must indicate a code seg-
ment of equal or lesser privilege (or greater or equal numeric value) than

PART 4, Processor Instructions 109

the current privilege level. Returns to a lesser privilege level cause the
stack to be reloaded from the value saved beyond the parameter block.

The DS, ES, FS, and GS segment registers can be set to 0 by the RET
instruction during an interlevel transfer. If these registers refer to seg-
ments that cannot be used by the new privilege level, they are set to 0 to
prevent unauthorized access from the new privilege level.

SAHF Store AH into Flags
o D I T S 2 A P C
* * * * *
Opcode Instruction Clocks Description

486 386 286 86

9E SAHF 2 3 2 4 Store AH flags SF ZF xx AF xx PF xx CF

SAHF loads the flags listed above with values from the AH register, from
bits 7, 6, 4, 2 and 0, respectively.

SAL Shift instructions
SAR
o D I T S 2 A P C

SHL * * * ? * *

SHR

Opcode Instruction Clocks Description

486 386 206 86

D0/4 SAL1/m8,1 3/4 37 27 2115+EA Multiply r/m byte by 2

D2/4 SAL r/m8,CL 3/4 3/7 5/8 B8+4perbit/(20+4 Multiply r/m byte by 2, CL times
per bit)+EA

CO/4ib SAL/m8imm8 2/4 3/7 58 Muttiply r/m byte by 2

D1/4 SALt/m16,1 34 37 27 2115+EA Muttiply r/m word by 2

D3/4 SAL m16,CL 34 37 5/8 8+4 per bit (20+4 Multiply /m word by 2, CL times
per bit)}+EA

C1/4ib SALYm16imm8 2/4 3/7 58 Multiply r/m word by 2

D1/4 SAL1/m32,1 34 37 Multiply r/m dword by 2

D3/4 SALrm32CL 34 377 Multiply r/m dword by 2

C1/4ib SALrm32,imm8 2/4 377 Multiply r/m dword by 2

D0/7 SARMm8,1 34 37 271 215+EA Signed divide** r/m byte by 2

D2/7 SARrm8,CL 3/4 37 58 8+4 perbit (20+4 Signed divide** r/m byte by 2
per bit)+EA

C0/7ib SAR©m8imm8 2/4 37 58 Signed divide™ r/m byte by 2

D1/7 SARr/mi6,1 34 37 27 21154EA Signed divide** r/m word by 2

D3/7 SARrmieCL 3/4 377 58 8+4perbit (20+4 Signed divide** r/m word by 2
per bit)}+EA

C1/7ib SARrmi6jmm8 2/4 3/7 58 Signed divide** r/m word by 2

D1/7 SARrm32,1 34 317 Signed divide** r/m dword by 2

D377 SAR r/m32,CL 3/4 377 Signed divide** r/m dword by 2,

CL times
C1/7 SARrm32jmm8 2/4 3/7 Signed divide** /m dword by 2
DO/4 SHL/m8,1 34 37 27 2/15+EA Multiply r/m byte by 2

110 PART 4, Processor Instructions

coeeel

(0
.

Opcode Instruction Clocks Description

485 386 286 86
D2 /4 SHL r/m8,CL 3/4 37 58 8+4 per bit (20+4 Multiply r/m byte by 2, CL times

per bit}+EA

CO/4ib SHLr/m8,mm8 2/4 37 58 Multiply r/m byte by 2

D1/4 SHL1/m16,1 34 37 27 2115+EA Multiply r/m word by 2

D3/4 SHLr/mi16,CL 3/4 37 5/8 B+4perbit (20+4 Multiply /m word by 2, CL times
per bit}+EA

Cl/4ib SHLrmi6jmm8 2/4 37 58 Multiply r/m word by 2

D1/4 SHL1/m32,1 3437 Multiply #m dword by 2

D3/4 SHLm32,CL 34 37 Multiply r/m dword by 2

C1/4 SHLYm32,mm8 2/4 377 Multiply r/m dword by 2

D0/5 SHR rm8,1 34 37 217 2/15+EA Unsigned divide r/m byte by 2

D2/5 SHRrm8,CL 3/4 37 58 8+4perbit (20+4 Unsigned divide r/m byte by 2
per bit}+EA

C0/5ib SHRr/m8,mm8 2/4 37 58 Unsigned divide r/m byte by 2

D1/5 SHRrmi6,1 34 37 27 215+EA Unsigned divide r/m word by 2

D3/5 SHRrYm16CL 3/4 377 58 8+4perbit (20+4 Unsigned divide r/m word by 2

) per bit)+EA

Ci/5ib SHRrmi6imm8 24 377 58 Unsigned divide r/m word by 2

D1/5 SHRrm32,1 34 37 Unsigned divide r/m dword by 2

D3/5 SHR /m32,CL 3/4 37 Unsigned divide r/m dword by 2

C1/5ib SHRrm32,jmm8 2/4 3/7 Unsigned divide r/m dword by 2

*Not the same division as IDIV; rounding is toward negative infinity.
**Add 1 clock to the times shown for each shift performed.

SAL (or its synonym, SHL) shifts the bits of the operand upward. The
high-order bit is shifted into the carry flag, and the low-order bit is set to
0.

SAR and SHR shift the bits of the operand downward. The low-order bit
is shifted into the carry flag. The effect is to divide the operand by 2. SAR
performs a signed divide with rounding toward negative infinity (not the
same as IDIV); the high-order bit remains the same. SHR performs an un-
signed divide; the high-order bit is set to 0.

The shift is repeated the number of times indicated by the second oper-
and, which is either an immediate number or the contents of the CL regis-
ter. To reduce the maximum execution time, the 80286/386 does not allow
shift counts greater than 31. If a shift count greater than 31 is attempted,
only the bottom five bits of the shift count are used. (The 8086 uses all
eight bits of the shift count.)

The overflow. flag is set only if the single-shift forms of the instructions
are used. For left shifts, OF is set to 0 if the high bit of the answer is the
same as the result of the carry flag (that is, the top two bits of the original
operand were the same); OF is set to 1 if they are different. For SAR, OF is
set to 0 for all single shifts. For SHR, OF is set to the high-order bit of the
original operand.

PART 4, Processor Instructions 111

SBB Integer subtraction with borrow

(o] D I T S Z A P Cc

* * * * * *
Opcode Instruction Clocks Description
486 386 286 86

1Cib SBBAL,mm8 1 2 3 4 Subtract with borrow immediate byte
from AL

1Diw SBB AX,imm16 1 2 3 4 Subtract with borrow immediate word
from AX

1Did SBBEAX,mm32 1 2 Subtract with borrow immediate dword
from EAX

80/3ib SBBr/m8,mm8 113 27 37 417+EA Subtract with borrow immediate byte
from r/m byte

81/3iw SBBrmi6,mmi6 1/3 27 37 417+EA Subtract with borrow immediate word
from r/m word

81/3id SBBrm32jmm32 13 27 Subtract with borrow immediate dword
from r/m dword

83/3ib SBBrmi6,jmm8 1/3 277 37 4/17+EA Subtract with borrow sign-extended
immediate byte from r/m word

83/3ib SBBrm32mm8 13 277 Subtract with borrow sign-extended
immediate byte from r/m dword

18/ SBB r/m8,r8 113 2/6 2/7 3/16+EA Subtract with borrow byte register from
1/m byte

19/ SBB r/m16,r16 113 266 2/7 3/16+EA Subtract with borrow word register
from r/m word

19/ SBB /m32,r32 13 26 Subtract with borrow dword register
from r/m dword

1Al SBB r8,r/m8 12 27 27 3/9+EA Subtract with borrow byte register from
r/m byte

1B /r SBB r16,/m16 12 271 27 3/9+EA Subtract with borrow word register
from r/m word

1B/ SBB r32,r/m32 12 an Subtract with borrow dword register
from r/m dword

SBB adds the second operand (DEST) to the carry flag (CF) and subtracts
the result from the first operand (SRC). The result of the subtraction is as-
signed to the first operand (DEST), and the flags are set accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended.

SCAS Compare string data

SCASB SCASD 386 and 486 only
SCASW

SCASD (o] D I T S 2 A P (o}
Opcode Instruction Clocks Description

486 386 286 86
AE SCAS m8 6 7 7 15 Compare bytes AL - ES:[DI]

112 PART 4, Processor Instructions

LI (O T SR R SR T SRR |
\L{ A

f
<

SEREORERSRS

1

SESRE

RN
N

1V

X

Opcode Instruction Clocks Description

486 386 285 86
AF SCASmi6 6 7 7 15 Compare words AX - ES: [DI]
AF SCASm32 6 7 Compare dwords EAX - ES: [DI]
AE SCASB 6 7 7 15 Compare bytes AL - ES{DI]
AF SCASW 6 7 7 15 Compare words AX - ES: [DI]
AF SCASD 6 7 Compare dwords EAX - ES: [DI]

SCAS subtracts the memory byte or word at the destination register from
the AL, AX or EAX register. The result is discarded; only the flags are set.
The operand must be addressable from the ES segment; no segment over-
ride is possible.

If the address-size attribute for this instruction is 16 bits, DI is used as the
destination register; otherwise, the address-size attribute is 32 bits and
EDI is used.

The address of the memory data being compared is determined solely by
the contents of the destination register, not by the operand to SCAS. The
operand validates ES segment addressability and determines the data
type. Load the correct index value into DI or EDI before executing SCAS.

After the comparison is made, the destination register is automatically up-
dated. If the direction flag is 0 (CLD was executed), the destination regis-
ter is incremented; if the direction flag is 1 (STD was executed), it is
decremented. The increments or decrements are by 1 if bytes are com-
pared, by 2 if words are compared, or by 4 if doublewords are compared.

SCASB, SCASW, and SCASD are synonyms for the byte, word and
doubleword SCAS instructions that don’t require operands. They are sim-
pler to code, but provide no type or segment checking.

SCAS can be preceded by the REPE or REPNE prefix for a block search of
CX or ECX bytes or words. Refer to the REP instruction for further details.

SETcc Byte set on condition
386 and i486 only

(0] D I T] 2z A P Cc

Opcode Instruction Clocks Description
485 386
0F97 SETAr/m8 4/3 45 Set byte if above (CF=0 and ZF=0)
OF93 SETAErm8 43 45 Set byte if above or equal (CF=0)
O0F92 SETBr/m8 43 45 Set byte if below (CF=1)
OF96 SETBErWm8 43 4/5 Set byte if below or equal (CF=1 or ZF=1)
OF92 SETCrm8 43 45 Set if carry (CF=1)
OF 94 SETEr/m8 43 455 Set byte if equal (ZF=1)
OF9F SETGrm8 4/3 4/5 Set byte if greater (ZF=0 or SF=0F)
OF9D SETGErm8 4/3 4/5 Set byte if greater or equal (SF=OF)

PART 4, Processor Instructions 113

Opcode Instruction Clocks Description
486 306
OF9C SETLrm8 43 45 Set byte if less (SFOF)
OF9E SETLErm8 4/3 45 Set byte if less or equal (ZF=1 and SF<>OF)
OF96 SETNAr/m8 4/3 4/5 Set byte if not above (CF=1)
OF92 SETNAErm8 4/3 4/5 Set byte if not above or equal (CF=1)
0F93 SETNBrm8 4/3 4/5 Set byte if not below (CF=0)
OF 97 SETNBErm8 4/3 4/5 Set byte if not below or equal (CF=0 and ZF=0)
OF93 SETNCr/m8 4/3 4/5 Set byte if not carry (CF=0)
OF95 SETNEr/m8 43 4/5 Set byte if not equal (ZF=0)
OF9E SETNGrm8 43 4/5 Set byte if not greater (ZF=1 or SF<>OF)
OF9C SETNGErm8 4/3 4/5 Set byte if not greater or equal (SF<>OF)
OF9D SETNLvm8 4/3 4/5 Set byte if not less (SF=OF)
OF9F SETNLErm8 4/3 4/5 Set byte if not less or equal (ZF=1 and SF<>OF)
OF91 SETNOWm8 413 45 Set byte if not overflow (OF=0)
OF9B SETNPrm8 4/3 4/5 Set byte if not parity (PF=0)
OF99 SETNSrm8 43 4/5 Set byte if not sign (SF=0)
OF95 SETNZrm8 43 4/5 Set byte if not zero (ZF=0)
OF90 SETOrm8 43 45 Set byte if overflow (OF=1)
OF9A SETPr/m8 43 45 Set byte if parity (PF=1)
OF9A SETPErm8 43 4/5 Set byte if parity even (PF=1)
OF9B SETPOrm8 413 4/5 Set byte if parity odd (PF=0)
0F98 SETSr/ms8 43 455 Set byte if sign (SF=1)
O0F94 SETZv/m8 43 45 Set byte if zero (ZF=1)

SETcc stores a byte containing 1 at the destination specified by the effec-
tive address or register if the condition is met, or a 0 byte if the condition
is not met.

SGDT Store global/interrupt descriptor table
SIDT 80286/386/486 protected mode only

(¢} D I T S Z A P Cc

Opcode Instruction Clocks Description
486 386 286

OFO1/0 SGDTm 10 8 11 StoreGDTRiom
OFO1A SDTm 10 9 12 StoreIDTRtom

SGDT/SIDT copies the contents of the descriptor table register to the six
bytes of memory indicated by the operand. The LIMIT field of the register
is assigned to the first word at the effective address. If the operand-size at-
tribute is 32 bits, the next three bytes are assigned the BASE field of the
register, and the fourth byte is written with zero. The last byte is unde-
fined. Otherwise, if the operand-size attribute is 16 bits, the next four
bytes are assigned the 32-bit BASE field of the register.

SGDT and SIDT are used only in operating system software; they are not
used in application programs.

114 PART 4, Processor Instructions

SHLD Double precision shift left
386 and i486 only

(o) D I T S Z A P c
? * * ? * *

Opcode Instruction Clocks Description

486 386
OF A4 SHLD /m16,r16,mm8 2/3 3/7 r/m16 gets SHL of /m16 concatenated with r16
OF A4 SHLD m32,r32,mm8 2/3 377 r/m32 gets SHL of /m32 concatenated with r32
OF A5 SHLD r/m16,r16,CL 2/3 317 r/m16 gets SHL of /m16 concatenated with r16
OF A5 SHLD r/m32,r32,CL 23 37 r/m32 gets SHL of /m32 concatenated with r32

SHLD shifts the first operand provided by the r/m field to the left as
many bits as specified by the count operand. The second operand (r16 or
r32) provides the bits to shift in from the right (starting with bit 0). The re-
sult is stored back into the r/m operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the con-
tents of the CL register. These operands are taken MODULO 32 to pro-
vide a number between 0 and 31 by which to shift. Because the bits to
shift are provided by the specified registers, the operation is useful for
multiprecision shifts (64 bits or more). The SF, ZF and PF flags are set ac-
cording to the value of the result. CF is set to the value of the last bit
shifted out. OF and AF are left undefined.

SHRD Double precision shift right
386 and 1486 only

O D I T S Z A P (o]
? * * ? * *

Opcode Instruction Clocks Description

486 386
OFAC SHRD©m16r16,mm8 213 3/7 r/m16 gets SHR of /m16 concatenated with r16
OF AC SHRD r/m32,r32,mm8 2/3 37 1/m32 gets SHR of /m32 concatenated with r32
OF AD SHRD r/m16,r16,CL 34 37 r/m16 gets SHR of /m16 concatenated with r16
OF AD SHRD r/m32,r32,CL 34 37 1/m32 gets SHR of ¥/m32 concatenated with r32

SHRD shifts the first operand provided by the r/m field to the right as
many bits as specified by the count operand. The second operand (r16 or
r32) provides the bits to shift in from the left (starting with bit 31). The re-
sult is stored back into the r/m operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the con-
tents of the CL register. These operands are taken MODULO 32 to pro-
vide a number between 0 and 31 by which to shift. Because the bits to
shift are provided by the specified register, the operation is useful for
multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set ac-

PART 4, Processor Instructions 115

cording to the value of the result. CF is set to the value of the last bit
shifted out. OF and AF are left undefined.

SLDT Store local descriptor table register
80286/386/486 protected mode only
o] D I T S Z A P (o}
Opcode Instruction Clocks Description

486 386 286
OF00/0 SLDTrmi6 2/3 pm=222 2/3 Store LDTR to EA word

SLDT stores the Local Descriptor Table Register (LDTR) in the two-byte
register or memory location indicated by the effective address operand.
This register is a selector that points into the global descriptor table.

SLDT is used only in operating system software. It is not used in applica-
tion programs.

SMSW Store machine status word
80286/386/486 protected mode only

[o) D I T S Z A P (o}

Opcode Instruction Clocks Description
486 386 286

OF01/4 SMSWrmi6 23 2/3pm=22 2/3 Store machine status word to EA word

SMSW stores the machine status word (part of CRO) in the two-byte regis-
ter or memory location indicated by the effective address operand.

STC Set canry flag
o D I T S Z A P o]
1
Opcode Instruction Clocks Description

486 386 286 8
F¢ STC 2 2 2

n

Set carry flag

STC sets the carry flag to 1.

116 PART 4, Processor Instructions

STD Set direction flag
[e] D I T S Z A P Cc
1
Opcode Instruction Clocks Description
486 386 266 86
FD STD 2 2 2 2 Set direction flag so (E)SI or (E)DI decrement

STD sets the direction flag to 1, causing all subsequent string operations
to decrement the index registers, (E)SI and/or (E)DI, on which they oper-
ate.

STI Set interrupt enable flag
o D I T S Z A P C
1
Opcode Instruction Clocks Description
486 386 286 86
FB STl 5 3 2 2 Set interrupt flag

STI sets the interrupt flag to 1. The CPU then responds to external inter-
rupts after executing the next instruction if the next instruction allows the
interrupt flag to remain enabled. If external interrupts are disabled and
you code STI, RET (such as at the end of a subroutine), the RET is allowed
to execute before external interrupts are recognized. Also, if external inter-
rupts are disabled and you code STI, CLI, then external interrupts are not
recognized because the CLI instruction clears the interrupt flag during its
execution.

STOS Store string data
STOSB STOSD 386 and 1486 only
STOSW
STOSD o b I T S 2z A P C
Opcode Instruction Clocks Description

48 386 286 86
AA STOS m8 5 4 3 1 Store AL in byte ES:[(E)DI]
AB STOSm16 5 4 3 11 Store AX in word ES:[(E)DI]
AB STOSm32 5 4 Store EAX in dword ES{(E)DI]
AA STOSB 5 4 3 1 Store AL in byte ES:[(E)DI]
AB STOSW 5 4 3 1 Stare AX in word ES:[DI]
AB STOSD 5 4 Store EAX in dword ES:[(E)DI]

STOS transfers the contents of the AL, AX, or EAX register to the memory
byte or word given by the destination register relative to the ES segment.

PART 4, Processor Instructions 117

The destination register is DI for an address-size attribute of 16 bits or
EDI for an address-size attribute of 32 bits.

The destination operand must be addressable from the ES register. A seg-
ment override is not possible.

The address of the destination is determined by the contents of the desti-
nation register, not by the explicit operand of STOS. This operand is used
only to validate ES segment addressability and to determine the data
type. Load the correct index value into the destination register before exe-
cuting STOS.

After the transfer is made, DI is automatically updated. If the direction
flag is 0 (CLD was executed), DI is incremented; if the direction flag is 1
(STD was executed), DI is decremented. DI is incremented or
decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a
doubleword is stored.

STOSB, STOSW, and STOSD are synonyms for the byte, word, and dou-
ble-word STOS instructions, that do not require an operand. They are sim-
pler to use, but provide no type or segment checking.

STOS can be preceded by the REP prefix for a block fill of CX or ECX
bytes, words, or doublewords. Refer to the REP instruction for further de-
tails.

STR Store task register
80286/386/486 protected mode only

(o] D I T S 2 A P o

Opcode Instruction Clocks Description

486 386 286

OF00/ STRYmI6 23 pm=23/27 23 Load EA word into task register

The contents of the task register are copied to the two-byte register or
memory location indicated by the effective address operand.

STR is used only in operating system software. It is not used in applica-
tion programs.

118 PART 4, Processor Instructions

O
AN

Voot

SUB Integer Subtraction
O D I T S zZ A P C
* * * * * *
Opcode Instruction Clocks Description

485 386 286 8

2Cib SUBAL,mm8 1 2 3 4 Subtract immediate byte from AL
2Diw SUB AXimm16 1 2 3 4 Subtract immediate word from AX
2Did SUBEAX,mm32 1 2 Subtract immediate dword from EAX

80/5ib SUBr/m8imm8 1/3 277 377 4117+EA Subtract immediate byte from r/m byte

81/5iw SUBrm16immi6 1/3 2/7 3/7 417+EA Subtract immediate word from r/m word

81/5id SUBrm32,jmm32 13 27 Subtract immediate dword from r/m dword

83/5ib SUBrmi6imm8 1/3 2/7 3/7 4/17+EA Subtract sign-extended immediate byte
from r/m word

83/5ib SUBrm32jmm8 1/3 277 Subtract sign-extended immediate byte
from r/m dword

281 SUB 1/m8,r8 113 26 2/7 3116+EA Subtract byte register from r/m byte
29/ SUB /m16,r16 1/3 2/6 2/7 3/16+EA Subtract word register from r/m word
29 /r SUB r/m32,r32 1/3 2/6 Subtract dword register from r/m dword
2A It SUB 18,r/m8 12 27 2,7 3/9+EA Subtract EA byte from byte register

2B /r SUB r16,r/m32 12 2/7 2/7 3/9+EA Subtract EA word from word register
2B/ SUB r32,r/m32 1 7 Subtract EA dword from dword register

SUB subtracts the second operand (SRC) from the first operand (DEST).
The first operand is assigned the result of the subtraction, and the flags
are set accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended to the size of the destination oper-
and.

TEST Logical compare
(o] D I T S V4 A P Cc
0 * * ? 0
Opcode Instruction Clocks Description

486 386 286 86

A8ib TEST AL,imm8 1 2 And immediate byte with AL

A9 iw TEST AX,imm16 1 2 3 And immediate word with AX
Agid TEST EAX,mm32 1 2 And immediate dword with EAX
F6/0ib TEST r/m8,imm8 12 25 366 511+EA- And immediate byte with r/m byte
F7/0iw TESTr/mi6,immi6 172 2/5 3/6 5/11+EA And immediate word with r/m word

w
b&l

F7/0id TESTrm32imm32 12 2/5 And immediate dword with r/m dword
84 Ir TEST 1/m8,r8 12 2/5 2/6 3/9+EA And byte register with r/m byte

85/r TEST /m16,r16 12 2/5 2/6 3/9+EA And word register with /m word
85/r TEST r/m32,r32 12 25 And dword register with r/m dword

TEST computes the bit-wise logical AND of its two operands. Each bit of
the result is 1 if both of the corresponding bits of the operands are 1;

PART 4, Processor Instructions 119

otherwise, each bit is 0. The result of the operation is discarded and only
the flags are modified.

VERR Verify a segment for reading or writing

VERW 80286/386/486 protected mode only
(o] D I T S zZ A P C

Opcode Instruction Clocks Description

486 36 286
OF00/4 VERRrmi6 11/11 pm=10/11 14/16 Set ZF=1 if segment can be read
OF00/5 VERWrmi6 11/11 pm=1516 14/16 SetZF=1 if segment can be written

The two-byte register or memory operand of VERR and VERW contains
the value of a selector. VERR and VERW determine whether the segment
denoted by the selector is reachable from the current privilege level and
whether the segment is readable (VERR) or writable (VERW). If the seg-
ment is accessible, the zero flag is set to 1; if the segment is not accessible,
the zero flag is set to 0. To set ZF, the following conditions must be met:

B The selector must denote a descriptor within the bounds of the table
(GDT or LDT); the selector must be "defined."

W The selector must denote the descriptor of a code or data segment (not
that of a task state segment, LDT, or a gate).

| For VERR, the segment must be readable. For VERW, the segment must
be a writable data segment.

W If the code segment is readable and conforming, the descriptor privilege
level (DPL) can be any value for VERR. Otherwise, the DPL must be
greater than or equal to (have less or the same privilege as) both the cur-
rent privilege level and the selector’s RPL.

The validation performed is the same as if the segment were loaded into
DS, ES, FS, or GS, and the indicated access (read or write) were per-
formed. The zero flag receives the result of the validation. The selector’s
value cannot result in a protection exception, enabling the software to an-
ticipate possible segment access problems.

WAIT Wait until BUSY# pin is inactive (HIGH)

o bp I T S zZ A P C
Opcode Instruction Clocks Description

48 386 286 86
9B WAIT 1-3 6 3 4+5n Wait until BUSY pin is inactive (HIGH)

120 PART 4, Processor Instructions

{

N RN
SN N

WAIT suspends execution of CPU instructions until the BUSY# pin is inac-
tive (high). The BUSY# pin is driven by the 80x87 numeric processor ex-
tension.

WBINVD Write-back and Invalidate cache
i486 only

(o) D I T S Z A P Cc

Opcode Instruction Clock Description

486
OF03 WBINVD 5 Write-back and invalidate entire cache

The internal cache is flushed, and a special-function bus cycle is issued
which indicates that the external cache should write-back its contents to
main memory. Another special-function bus cycle follows, directing the
external cache to flush itself.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors. It is the responsibility
of the hardware to respond to the external cache write-back and flush in-
dications.

XADD Exchange and add
i486 only
o b I T S8 Z A P C
* * * * * *
Opcode Instruction Clock Description
486

OF CO/r XADD r/m8,18 3/4 Exchange byte register and r/m byte; load sum into r/m byte.
OF C1/r XADD r/m16,r168 3/4 Exchange word register and r/m word; load sum into r/m word.
OF Ci/r XADD/m32r32 3/4 Exchange dword register and r/m dword; load sum into r/m dword.

The XADD instruction loads DEST into SRC, and then loads the sum of
DEST and the original value of SRC into DEST.

DEST is the destination operand; SRC is the source operand.

Protected mode exceptions: #GP(0) if the result is in a nonwritable seg-
ment; #GP(0) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS seg-
ment; #PF (fault code) for a page fault; #NM if either EM or TS in CRO is
set; #AC for an unaligned memory reference if the current privilege level
is 3.

PART 4, Processor Instructions 121

Real address mode exceptions: interrupt 13 if any part of the operand
would lie outside the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: same exception as in real-address mode;
same #PF and #AC exceptions as in protected mode.

XCHG Exchange memory/register with register

(o] D I T S 4 A P o]

Opcode Instruction Clocks Description

486 386 286 86
86/ XCHG r/m8,r8 35 35 35 417+EA Exchange byte register with EA byte
86 Ir XCHG r8,r/m8 35 35 35 417+EA Exchange byte with EA byte register
871 XCHGrmt6r16 35 35 35 4/17+EA Exchange word register with EA word
871 XCHGri6r/m16 3/5 3/5 3/5 4/17+EA Exchange word register with EA word

87 1Ir XCHG /m32,r32 35 35 Exchange dword register with EA dword
871 XCHGr32,/m32 35 35 Exchange dword register with EA dword
90+ r XCHG AX,r16 3 3 3 3 Exchange word register with AX

90+ 1 XCHG r16,AX 3 3 3 3 Exchange word register with AX

90+r XCHGEAXs32 3 3 Exchange dword register with EAX

90+ 1 XCHGr32EAX 3 3 Exchange dword register with EAX

XCHG exchanges two operands. The operands can be in either order. If a
memory operand is involved, BUS LOCK is asserted for the duration of
the exchange, regardless of the presence or absence of the LOCK prefix or
of the value of the IOPL.

XLAT Table look-up translation
XLATB

o b I T S 2 A P C
Opcode Instruction Clocks Description

486 386 206 86
D7 XLATm8 4 5 5 1 Set AL to memory byte DS:[(E)BX + unsigned AL]
D7 XLATB 4 5 5 1 Set AL to memory byte DS:[(E)BX + unsigned AL]

XLAT changes the AL register from the table index to the table entry. AL
should be the unsigned index into a table addressed by DS:BX (for an ad-
dress-size attribute of 16 bits) or DS:EBX (for an address-size attribute of
32 bits).

The operand to XLAT allows for the possibility of a segment override.
XLAT uses the contents of BX even if they differ from the offset of the
operand. The offset of the operand should have been moved into BX/EBX
with a previous instruction.

The no-operand form, XLATB, can be used if the BX/EBX table will
always reside in the DS segment.

122 PART 4, Processor Instructions

XOR Logical exclusive OR
o pD I T S 2 A P C
0 *x x 2 x 0
Opcode Instruction Clocks Description
486 386 286 86
34ib XORAL,jmm8 1 2 3 4 Exclusive-OR immediate byte to AL
35iw XOR AX,mm16 1 2 3 4 Exclusive-OR immediate word to AX

35id XOREAX,mm32 1 2 Exclusive-OR immediate dword to EAX
80/6ib XORrm8imm8 1/3 2/7 37 417+EA Exclusive-OR immediate byte to r/m byte
81/6iw XORr/mi6,immi6 1/3 27 3/7 417+EA Exclusive-OR immediate word to r/m word

81/6id XORr/m32,imm32 13 277 Exclusive-OR immediate dword to r/m
dword

83/6ib XORrmi6imm8 1/3 277 XOR sign-extended immediate byte to
t/m word

83/6ib XORrm32,jmm8 13 277 XOR sign-extended immediate byte to
r/m dword

30/r XORr/m,8 13 266 2,7 316+EA Exclusive-OR byte register to r/m byte

3 XOR r/m16,r16 13 266 277 3/16+EA Exclusive-OR word register into r/m word

31 XOR r/m32,r32 113 266 Exclusive-OR dword register to r/m dword

2/ XOR r8,//m8 1227 277 3/9+EA Exclusive-OR r/m byte to byte register

33/r XORr16,r/mi6 12 27 27 39+EA Exclusive-OR r/m word to word register

337 XOR r32,r/m32 12 217 Exclusive-OR to r/m dword to dword
register

XOR computes the exclusive OR of the two operands. Each bit of the re-
sult is 1 if the corresponding bits of the operands are different; each bit is
0 if the corresponding bits are the same. The answer replaces the first op-
erand.

PART 4, Processor Instructions 123

Coprocessor instructions

This part lists the 80x87 instructions in alphabetical order.

There is one entry for each combination of operand types that can be
coded with the mnemonic. The following table explains the operand iden-
tifiers used in this section:

Identifier Explanation

ST Stack top; the register currently at the top of the stack.

ST(1) A register in the stack i(0<i<7) stack elements from the
top. ST(1) is the next-on-stack register, ST(2) is below
ST(1), etc.

Short-real A short real (32 bits) number in memory.

Long-real A long real (64 bits) number in memory.

Temp-real A temporary real (80 bits) number in memory.

Packed-decimal

Word-integer
Short-integer
Long-integer
nn-bytes

A packed decimal integer (18 digits, 10 bytes) in
memory.

A word binary integer (16 bits) in memory.
A short binary integer (32 bits) in memory.
A long binary integer (64 bits) in memory.
A memory area nn bytes long.

Here is a summary of the possible exceptions each instruction can cause:

W IS = invalid operand due to stack overflow/underflow

W I = invalid operand due to other cause

B D = denormal operand

m Z = zero-divide

B O = Overflow

B U = Underflow

& P = Inexact result (precision)

126

PART 5, Coprocessor instructions

; PART 5, Coprocessor instructions

by F2XM1 Computer 2%-1
o Exceptions: P,U, D, 1,$
L F2XM1 (no operands)
- Operands Execution clocks Code bytes Example
e 8 287 387 486
‘;| No operands 211-476 211-476 242(140-279) 2 F2XM1
- FABS Absolute value
”_l Exceptions: |
o FABS (no operands)
- o Operands Execution clocks Code bytes Example
& 2871 387 486
) No operands ~ 10-17 10-17 22 3 2 FABS
o FADD Add real
o Exceptions: |,D, O, U, P
D FADD / /source/destination, source
'__“: Operands Execution clocks Code bytes Example
- & 87 37 486
HST,ST(i)) 70-100 70-100 23-34 10(8-20) 2 FADD ST,ST(4)
= ST(i),ST
e short real 90-120+EA 90-120 24-32 10(8-20) 2-4 FADD AIR_TEMP{SI|
- longreal 95-125:EA 95-125 20-37 10(8-20) 2-4 FADD [BX].MEAN
o FADDP Add real and pop
T Exceptions: 1,D, O, U, P
7 FADDP destination, source
_ Operands Execution clocks Code bytes Example
D &7 287 %87 486
. ST([),ST 75105 75-105 2334 10(8-20) 2 FADDP ST(2),ST
___/
.

127

FBLD Packed decimal (BCD) load

Exceptions: |
FBLD source
Operands Execution clocks Code bytes Example
8 %87 387 486
Packed decimal 290-310 290-310 5 75(70-103) 24 FBLD YTD_SALES
FBSTP Packed decimal (BCD) store and pop
Exceptions: |
FBSTP destination
Operands Execution clocks Code bytes Example
87 287 87 486
Packed decimal 520-540+EA 520-540+EA 512-534 175(172-176) 2-4 FBSTP
[BX).FORECAST
FCHS Change sign
Exceptions: |
FCHS (no operands)
Operands Execution clocks Code bytes Example
8 87 3 486
No operands ~ 10-17 10-17 24-25 6 2 FCHS
FCLEX Clear exceptions
FNCLEX ,
Exceptions: None
FCLEX/FNCLEX (no operands)
Operands Execution clocks Code bytes Example
& 287 3,7 488
Nooperands 2-8 2-8 " 7 FNCLEX

128 PART 5, Coprocessor instructions

Py e g
\ N

FCOM Compare real

Exceptions: |, D

FCOM / /source
Operands Execution clocks Code bytes Example

& 27 7 486

ST 40-50 4050 24 4 FCOM ST(1)
short real 60-70+EA 60-70 26 4 2-4 FCOM [BP).UPPER_LIMIT
long real 65-75+EA 65-75 31 4 2-4 FCOM WAVELENGTH
FCOMP Compare real and pop

Exceptions: |, D

FCOMP / /source
Operands Execution clocks Code bytes Example

&7 287 387 486

NIST() 42-52 45-52 26 4 2 FCOMP ST(2)
short real 63-73+EA 63-73 26 4 2-4 FCOMP [BP+2).N_READINGS
long real 67-77+EA 67-77 31 4 2-4 FCOMP DENSITY
FCOMPP Compare real and pop twice

Exceptions: I, D

FCOMPP (no operands)
Operands Execution clocks Code bytes ~ Example

& 81 3 486

No operands ~ 45-55 45-55 26 5 FCOMPP
FCOS Cosine of ST(0)

387 and 486 only

Exceptions: IS,I,D, U, P

FCOS
Operands Execution clocks Code bytes Example

87 287 387 486

No operands 123-772" - 241(193-279) 2 FCOS

*These timings hold for operands in the range /x/ /4. For operands not in this range, up to 76 additional clocks may

be needed to reduce the operand.

PART 6, Coprocessor instructions

129

FDECSTP Decrement stack pointer

Exceptions: None

FDECSTP (no operands) ‘

Operands Execution clocks Code bytes Example (
8 287 387 486 -

No operands 6-12 6-12 22 3 2 FDECSTP P
FDISI Disable interrupts .
FNDISI 8087 only :

Exceptions: None

FDISI (no operands)

Execution clocks: Operand word Code ’

Operands Typical Range transfers bytes Example
No operands 5 2-8 0 2 FDISI
FDIV Divide real

Exceptions: 1,D,Z,0,U,P

FDIV / /source/destination, source

Operands Execution clocks Code bytes Example
& 287 %7 486
/IST(i),ST 193-203 193-203 88-91 73 2 FDIV
short real 215-225 215-225 89 73 2-4 FDIV DISTANCE
long real 220-230 220-230 94 73 2-4 FDIV ARC[DI]
1IST,ST() 73
FDIVP Divide real and pop
Exceptions: 1, D, Z, O, U, P
FDIVP destination, source ,
Operands Execution clocks Code bytes ~ Example -
& 7 %7 486 -
NIST(H),ST 197-207 198-209 8891 73 2 FDIVP ST(4),ST ;

130 PART 5, Coprocessor instructions

FDIVR Divide real reversed
Exceptions: ,D,Z, O, U, P
FDIVR / /source/destination, source
Operands Execution clocks Code bytes Example
87 87 37 486
NST,ST()Y 194-204 198208 8891 73 2 FDIVR ST(2),ST
ST(i),ST 73
shortreal 216-226+EA 215-225 89 73 24 FDIVR [BX].PULSE_RATE
longreal 221-231+EA 220230 94 73 24 FDIVR RECORDER.FREQUENCY
FDIVRP Divide real reversed and pop
Exceptions: 1.D,Z,. O, U, P
FDIVRP destination, source
Operands Execution clocks Code bytes Example
& 28 38 486
ST(i),ST 198-208 198-208 88-91 73 2 FDIVRP ST(1),ST
FENI Enable interrupts
FNENI 8087 only
Exceptions: None
FENI (no operands)
Operands Execution clock Code bytes Example
87
(no operands) 5(2-8) 2 FNENI
FFREE Free register
Exceptions: None
FFREE destination
Operands Execution clocks Code bytes Example
& 287 31 486
ST() 9-16 9-16 18 3 2 FFREE ST(1)

PART 5, Coprocessor instructions 131

FIADD Integer add
Exceptions:|,D, O, P
FIADD source
Operands Execution clocks Code Example
bytes
[287 387 486
word integer 102-137+EA 102-137 71-85 22.5(19-32) 2-4 FIADD DISTANCE_TRAVELLED

short integer

108-143+EA 108-143 57-72 24(20-35) 2-4

FIADD PULSE_COUNT [SI]

FICOM Integer compare
Exceptions: |, D
FICOM source
Operands Execution clocks Code bytes Example
[287 381 486
word integer 72-86+EA 72-86 7175 18(16-20) 2-4 FICOM TOOL.N_PASSES

short integer

78-91+4EA 7891 56-63 16.5(15-17) 2-4

FICOM [BP+4].PARM_COUNT

FICOMP Integer compare and pop
Exceptions: I, D
FICOMP source
Operands Execution clocks Code bytes Example
8 27 387 486
word integer ~ 74-88+EA 74-.88 71-75 18(16-20) 24 FICOMP [BP}.LIMIT [SI}

short integer

80-93+EA 80-93 56-63 16.5(15-17) 2-4

FICOMP N_SAMPLES

FIDIV Integer divide
Exceptions:1,D,Z,0,U,P
FIDIV source
Operands Execution clocks Code Example
bytes
87 287 387 486
word integer 224-238+EA 224-238 136-140 73 24 FIDIV SURVEY.OBSERVATIONS

short integer

230-243+EA 230-243 120-127 73 2-4

FIDIV RELATIVE_ANGLE [DI}

132

PART 5, Coprocessor instructions

FIDIVR Integer divide reversed
Exceptions:1,D,Z, O, U, P
FIDIVR source
Operands Execution clocks Code bytes Example
87 287 387 486

word integer 225-230+EA 224238 135141 73 24

FIDIVR [BP].X_COORD

short integer 231-245+EA 230-243 121-128 73 2-4 FIDIVR FREQUENCY
FILD Integer load
Exceptions: |
FILD source
Operands Execution clocks Code bytes Example
8 287 387 486
word integer 46-54+EA 4654 6165 115(9-12) 24 FILD [BX].SEQUENCE
shortinteger 52-60+EA 52-60 4552 14.5(13-16) 24 FILD STANDOFF [DI]
long integer 60-68+EA 60-68 56-67 16.8(10-18) 2-4 FILD RESPONSE.COUNT
FIMUL Integer muitiply
Exceptions: I,D, O, P
FIMUL source
Operands Execution clocks Code bytes Example
87 287 381 488
word integer 124-138+EA 124-138 7687 8 2-4 FIMUL BEARING
short integer 130-144+EA 130-144 61-82 8 2-4 FIMUL POSITION.Z_AXIS
FINCSTP Increment stack pointer
Exceptions: None
FINCSTP (no operands)
Operands Execution clocks Code bytes Example
8 287 37 486
No operands 6-12 6-12 21 3 2 FINCSTP

PART 5, Coprocessor instructions

133

FINIT Initialize processor

FNINIT -
Exceptions: None
FINIT/ENINIT (no operands)
Operands Execution clocks Code bytes Example
8 287 381 486
No operands ~ 2-8 2-8 33 17 2 FINIT
FIST Integer store
Exceptions: I, P
FIST destination
Code
Operands Execution clocks bytes Example
& 27 37 486
word integer 80-90+EA 80-90 82-95 334(29-34) 24 FIST OBS.COUNT {S]]
shortinteger 82-92+EA 8292 7993 324(28-34) 24 FIST [BP;.FACTORED_PULSES
FISTP Integer store and pop
Exceptions: I, P
FISTP destination
Operands Execution clocks Code bytes Example
87 287 387 486
word integer 82-92+EA 82-92 8295 33.4(29-34) 2-4 FISTP [BX].
ALPHA_COUNT [S1}
shortinteger 84-94+EA 84-94 79-93 334(29-34) 24 FISTP CORRECTED_TIME
long integer 94-105+EA 94-105 80-97 33.4(29-34) 24 FISTP PANEL. N_READINGS
FISUB Integer subtract
Exceptions: 1.D, O, P
FISUB source
Code
Operands Execution clocks bytes Example
8 87 31 486
word integer 102-137+EA 102-137 71-83 22.5(19-32) 24 FISUB BASE_FREQUENCY
shortinteger 108-143+EA 108-143 57-82 24(20-35) 24 FISUB TRAIN_SIZE D]

134

PART 5, Coprocessor instructions

r*(‘{_)
Cooe e

T

YOY MY of
[SEPIY

~-

BRGRE:

{

{
[

FISUBR Integer subtract reversed
Exceptions: I,D, O, P
FISUBR source
Operands Execution clocks Code bytes Example
8 287 37 486
word integer 103-139+EA 102-137 72-84 22.5(19-32) 2-4 FISUBR FLOOR [BX][SI]
shortinteger 109-144+EA 108-143 58-83 24(20-35) 24 FISUBR BALANCE
FLD Load real
Exceptions: I, D
FLD source
Operands Execution clocks Code bytes Example
8 %7 387 486
ST(i) 17-22 1722 14 4 2 FLD ST(0)
short real 38-56+EA 3856 20 3 2-4 FLD READING [SI}.PRESSURE
long real 40-60+EA 4060 25 3 2-4 FLD [BP).TEMPERATURE
Tempreal 53-85+EA 53-65 44 6 2-4 FLD SAVEREADING
FLDCW Load control word
Exceptions: None
FLDCW source
Operands Execution clocks Code bytes ~ Example
& 7 38 488
2 bytes 7-14+EA 7-14 19 4 2-4 FLDCW CONTROL_WORD
FLDENV Load environment
Exceptions: None
FLDENV source
Operands Execution clocks Code bytes Example
& 287 37 486
14 bytes 35-45:EA 3545 71 44 real or virtual 2-4 FLDENV [BP+86]
34 protected

PART 5, Coprocessor instructions 135

FLDLG2 Load logi02
Exceptions: |
FLDLG2 (no operands)
Operands Execution clocks Code bytes Example
8 287 387 486
No operands 18-24 18-24 41 8 2 FLDLG2
FLDLN2 Load loge?2
Exceptions: |
FLDLN2 (no operands)
Operands Execution clocks Code bytes ~ Example
& 87 %87 486
No operands ~ 17-23 17-23 41 8 2 FLDLN2
FLDL2E Load logee
Exceptions: |
FLDL2E (no operands)
Operands Execution clocks Code bytes ~ Example
& 81 38 486
No operands ~ 15-21 15-21 40 8 2 FLDL2E
FLDL2T Load log210
Exceptions: |
FLDL2T (no operands)
Operands Execution clocks Code bytes Example
& 21 %1 486
No operands ~ 16-22 16-22 40 8 2 FLDL2T
136 PART 5, Coprocessor insfructions

-

Lo

(1Yo

PEREPEEN

T

FLDPI Load P (pi)
Exceptions: |
FLDPI (no operands)
Operands Execution clocks Code bytes ~ Example
87 287 387 486
No operands ~ 16-22 16-22 40 8 2 FLDPI
FLDZ Load +0.0
Exceptions: |
FLDZ (no operands)
Operands Execution clocks Code bytes Example
o 87 87 486
No operands ~ 11-17 1117 20 4 2 FLDZ
FLD1 Load +1.0
Exceptions: |
FLD1 (no operands)
Operands Execution clocks Code bytes Example
& w1 W 48
No operands 15-21 15-21 24 4 2 FLD1

FMUL Multiply real

Exceptions: I,D, O, U, P

FMUL / /source/destination,source

Code
Operands Execution clocks bytes Example
87 287 387 486

/iST(),ST/ST, 90-105,ST(1)* 90-105 90-145 2057 16 2 FMULST,ST(3)
/IST(i),ST/ST, ST,ST(1) 130-145 90-145 2057 16 2 FMULST,ST(3)
short real 110-1254EA 110-125 27-35 11 24 FMUL SPEED_FACTOR
long real* 112-126+EA 112-168 32-57 2-4 FMUL [BP].HEIGHT
long real 154-168+EA 112-168 32-57 14 2-4 FMUL [BP].HEIGHT

*Occurs when one or both operands is "short™-it has 40 trailing zeros in its fraction (for example, it was loaded from
a short-real memory operand).

PART 5, Coprocessor instructions

137

FMULP

Multiply real and pop

Exceptions: |,D, O, U, P
FMULP destination,source

Operands Execution clocks Code bytes Example

‘87 287 387 486
ST(i)ST* 94-108 198-208 29-57 2 FMULP ST(1),8T
ST(i),ST 134-148 198-208 2957 16 2 FMULP ST(1),ST

*Occurs when one or both operands is "short™-it has 40 trailing zeros in its fraction (for example, it was loaded from
a short-real memory operand).

FNOP No operation
Exceptions: None
FNOP (no operands)
Operands Execution clocks Code bytes Example
& %7 37 486
No operands 10-16 10-16 12 3 2 FNOP
FPATAN Partial arctangent
Exceptions: U, P (operands not checked)
FPATAN (no operands)
Operands Execution clocks Code bytes Example
8 287 387 486
No operands ~ 250-800 250-800 314-487 5(2-17) 2 FPATAN
FPREM Partial remainder
Exceptions: |, D, U
FPREM (no operands)
Operands Execution clocks Code bytes Example
8 287 387 4%
Nooperands 15190 15-190 74155 2(2-8) 2 FPREM

138

PART 5, Coprocessor instructions

' {
(reor i

{

P

e

T
DR

N

SORGRRIEE:

10

1
{

FPREM1 Partial remainder
387 and i486 only

Exceptions:1,D,U

FPREM (no operands)
Operands Execution clocks Code bytes Example
& 27 3 486
No operands 95-185 945(72-167) 2 FPREM1
FPTAN Partial tangent
Exceptions: I, P (operands not checked)
FPTAN (no operands)
Operands Execution clocks Code bytes Example
8 287 38 486
No operands ~ 30-540 30-540 191-573 244(200-273) 2 FPTAN

FRNDINT Round to integer

Exceptions: |, P

FRNDINT (no operands)

Operands Execution clocks Code bytes Example
87 87 387 486

No operands ~ 16-50 16-50 66-80 29.1(21-30) 2 FRNDINT
FRSTOR Restore saved state

Exceptions: None

FRSTOR source
Operands Execution clocks Code bytes Example

8 87 387 486
94 bytes 197-207+EA 205-215 308 131 real orvirtual 2-4 FRSTOR [BP)
120 protected

Note: The 80287 execution clock count for this instruction is not meaningful in determining overall instruction execu-
tion time. For typical frequency ratios of the 80286 and 80287 clocks, 80287 execution occurs in parallel with the op-
erand transters. The operand transfers determine the overall execution time of the instructions. For 80286:80287
clock frequency ratios of 4:8, 1:1, and 8:5, the overall execution clock count for this instruction is estimated at 490,
302, and 227 80287 clocks, respectively.

PART 5, Coprocessor instructions 139

FSAVE Save state

FNSAVE :
Exceptions: None e
FSAVE/FNSAVE destination

Operands Execution clocks Code bytes Example

87 287 387 486
94 bytes 197-207+EA 205215 375-376 2-4 FSAVE [BP]

Note: The 80287 execution clock count for this instruction is not meaningful in determining overall instruction execu-
tion time. For typical frequency ratios of the 80286 and 80287 clocks, 80287 execution occurs in parallel with the op-
erand transfers. The operand transfers determine the overall execution time of the instruction. For 80286:80287
clock frequency ratios of 4:8, 1:1, and 8:5, the overall execution clock count for this instruction is estimated at 376,
233, and 174 80287 clocks, respectively.

FSCALE Scale

Exceptions: |, O, U

FSCALE (no operands)
Operands Execution clocks Code bytes ~ Example
& & % 48
No operands ~ 32-38 32-38 67-86 31(30-32) 2 FSCALE
FSETPM Set protected mode
Exceptions: None
FSETPM (no operands)
Operands Execution clock Code bytes Example
287
No operands 2-8 2 FSETPM
FSIN Sine of ST(0)
387 and 486 only
Exceptions: IS,1,D, U, P
FSIN
Operands Execution clocks Code bytes Example
387 486
No operands 122-771* 241(193-279) 2 FSIN
*These timings hold for operands in the range /x/ /4. For operands not in this range, up to 76 additional clocks may \

be needed to reduce the operand.

140 PART 5, Coprocessor instructions

FSINCOS

Sine and cosine of ST(0)
387 and i486 only

Exceptions: IS,1.D, U, P

FSINCOS
Operands Execution clocks Code bytes Example
387 486
No operands ~ 194-809* 291(243-329) 2 FSINCOS

*These timings hold for operands in the range /x/ /4. For operands not in this range, up-to 76 additional clocks may
be needed to reduce the operand.

FSQRT Square root
Exceptions: I, D, P
FSQRT (no operands)
Operands Execution clocks Code bytes Example
8 287 387 486
No operands 180-186 180-186 122-123 85.5(83-87) 2 FSQRT
FST Store real
Exceptions: 1, O, U, P
FST destination
Operands Execution clocks Code bytes ~ Example
& 287 %7 486
ST(i) 15-22 15-22 1 3 2 FST ST(3)
short real 84-90+EA 84-90 44 7 2-4 FST CORRELATION [DI)
long real 96-104+EA96-104 45 8 2-4 FST MEAN_READING
FSTCW Store control word
FNSTCW
Exceptions: None
FSTCW destination
Operands Execution clocks Code bytes Example
&7 287 3.7 486
2 bytes 12-18+EA 12-18 15 2-4 FSTCW SAVE_CONTROL

PART 5, Coprocessor instructions 141

FSTENV

Store environment

FNSTENV
Exceptions: None s
FSTENYV destination
Operands Execution clocks Code bytess ~ Example
87 87 387 486
14 bytes 40-504EA 40-50 103-104 2-4 FSTENV [BP]
FSTP Store real and pop .
Exceptions: I, O, U, P
FSTP destination
Operands Execution clocks Code bytes Example
87 287 37 486
ST(i) 17-24 17-24 12 3 2 FSTP ST(2)
short real 86-92+EA 86-92 44 7 2-4 FSTP [BX]. ADJUSTED_RPM
long real 98-106+EA 98-106 45 8 2-4 FSTP TOTAL_DOSAGE
Temp real 52-58+EA 52-58 53 6 24 FSTP REG_SAVE [SI]
FSTSW Store status word
FNSTSW
Exceptions: None
FSTSW /FNSTSW destination
Operands Execution clocks Code bytes Example
87 287 381 486
2 bytes 12-18+EA 12-18 15 3 2-4 FSTSW SAVE_STATUS
FSTSW AX Store status word to AX
FNSTSW AX :
Exceptions: None
FSTSW destination
Operands Execution clocks Code bytes Example
87 287 37 486 |
AX 10-16 13 3 2 FSTSW AX ’
142

PART 5, Coprocessor instructions -

FSUB Subtract real

Exceptions: ,D, O, U, P

FSUB / /source/ destination,source
Operands Execution clocks Code bytes Example

8 281 387 486

UST.ST/iY 70-100 70-100 2637 7(5-17) 2 FSUB ST,ST(2)
ST(),ST
short real 90-120+EA 90-120 24-32 7(5-17) 24 FSUB BASE_VALUE
long real 95-125+¢EA 95-125 28-36 7(5-17) 24 FSUB COORDINATE.X
FSUBP Subtract real and pop

Exceptions: 1,D, O, U, P

FSUBP destination, source
Operands Execution clocks Code bytes Example

& 287 387 486

ST(i),ST 75105 75-105 26-37 7(5-17) 2 FSUBP ST(2),ST
FSUBR Subtract real reversed

Exceptions: 1,D, O, U, P

FSUBR / /source/destination, source
Operands Execution clocks Code bytes Example

& 27 37 486

JIST,ST(i)/ 70-100 70-100 26-37 7(5-17) 2 FSUBR ST,ST(1)
ST(i,ST
short real 90-120+EA 90-120 25-33 7(5-17) 2-4 FSUBR VECTOR [S]]
long real 95-125+EA 95125 29-37 7(5-17) 24 FSUBR [BX].INDEX
FSUBRP Subtract real reversed and pop

Exceptions:,D, O, U, P

FSUBRP destination, source
Operands Execution clocks Code bytes ~ Example

8 287 387 486
ST(i),ST 75105 75105 2637 7(5-17) 2 FSUBRP ST(1),ST
PART 5, Coprocessor instructions 143

FTST Test stack fop against +0.0

Exceptions: |, D

FTST (no operands)
Operands Execution clocks Code bytes Example
8 287 37 48
No operands ~ 38-48 38-48 28 4 2 FTST
FUCOM Unordered compare

387 and i486 only

Exceptions: IS, 1. D

Operands Execution clocks Code bytes Example
87 486
/IST(i) 24 4 2 FUCOM ST(1)

FUCOMP Unordered compare
387 and i486 only

Exceptions: IS, I, D

Operands Execution clocks Code bytes Example
37 486
1IST(i) 26 4 2 FUCOMP ST(2)

FUCOMPP Unordered compare
387 and 486 only

Exceptions: IS, 1, D

Operands Execution clocks Code bytes Example
37 486

No operands 26 5 2 FUCOMPP

FWAIT Wait

Exceptions: None (CPU instruction)
FWAIT (no operands)

144 PART 5, Coprocessor instructions

Operands Execution clocks Code bytes Example
¥ 486
No operands 3+51" 1-3 1 FWAIT

“n = number of time CPU examines BUSY line before 80287 completes execution of previous instruction.

FXAM Examine stack top
Exceptions: None
FXAM (no operands)
Operands Execution clocks Code bytes Example
8 287 387 486
No operands ~ 12-23 12-23 30-38 8 2 FXAM
FXCH Exchange registers
Exceptions: |
FXCH //destination
Operands Execution clocks Code bytes Example
8 287 387 486
1ST() 10-15 1015 18 4 2 FXCH ST(2)
FXTRACT Extract exponent and significant
Exceptions: |
FXTRACT (no operands)
Operands Execution clocks Code bytes Example
& 287 .7 48
No operands ~ 27-55 27-55 70-76 19(16-20) 2 FXTRACT
FYL2X Y * log2X
Exceptions: P (operands not checked)
FYL2X (no operands)
Operands Execution clocks Code bytes Example
8 287 37 486
No operands ~ 900-1100 900-1100 120-538 311(196-329) 2 FYL2X

PART 5, Coprocessor instructions

FYL2XP1 Y " log2(X+1)

Exceptions: P (operands not checked)
FYL2XP1 (no operands)

Operands Execution clocks Code bytes Example
& 28 W48

No operands ~ 700-1000 700-1000 257-547 313(171-326) 2 FYL2XP1

F2XM1 2%

Exceptions: U, P (operands not checked)
F2XM1 (no operands)

Operands Execution clocks Code bytes ~ Example
& 281 W 486
No operands ~ 310-630 310-630 211-476 242(140-279) 2 F2XM1

146 PART 5, Coprocessor instructions

0000000000000 NN0NNN0N0AR"AKABANBNNHNON00B0000000

TURBO

BORLAND

CORPORATE HEADQUARTERS: 1800 GREEN HILLS ROAD, P.0. BOX 660001, SCOTTS VALLEY, CA
95067-0001, (408) 438-5300. OFFICES IN: AUSTRALIA, DENMARK, FRANCE, GERMANY, TALY,
JAPAN, SWEDEN AND THE UNITED KINGDOM = PART # 15MN-ASD05-20 = BOR 14828

