
BORLAND

Turbo Assemble~

Reference Guide

Version 1.0

Copyright!!:> 1988
All rights reserved

Borland International
1800 Green Hills Road

P.O. Box 660001
Scotts Valley, CA 95066-0001

R3

This manual was produced with
Sprint® The Professional Word Processor

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks

or registered trademarks of their respective holders.
Copyright= 1988 Borland International.

Printed in the U.S.A.

109876543

Table of Contents

Introduction 1
Hard ware and Software Requirements 1
What's in This Manual. .. 1
Notational Conventions .. 2
How to Contact Borland .. 3

Chapter 1 Predefined Symbols 5
@code .. 6
®CodeSize .. 6
®Cpu ... 7
@curseg ... 8
@data ... 8
@DataSize .. 9
??date .. 9
@fardata .. 9
@fardata? .. 10
@FileN"ame ~ 10
??filename .. 10
??time ... 10
??version .. 11
@WordSize ... 11

Chapter 2 Operators 13
Arithmetic Precision ... 13

Operator Precedence ... 14
() .. 15
It •• 16
+ (Binary) .. 16
+ (Unary) .. 16
- (Binary) .. 17
- (Unary) .. 18
... 18
/ .. 19
... 19
? .. 20
[] operator ... 21
AND .. 21
ByTE .. 22
DATAPTR .. 22

DUP ... 23
DWORD ... 23
EQ .. 24
FAR ... 24
FWORD ... 25
GE .. 25
GT .. 26
HIGH ... 26
LARGE .. 27
LE ... 28
LENGTH .. 28
LOW .. 29
LT ... 30
MASK ... 30
MOD .. 31
NE .. 31
NEAR ... 32
NOT ... 32
OFFSET .. 33
OR .. 33
PROC ... 34
PTR ... 34
PWORD ... 36
QWORD ... 36
SEG ... 36
SHL ... 37
SHORT .. 37
SHR ... 38
SIZE ... 38
SMALL .. 39
SYMTYPE .. 40
TBYTE ... 40
THIS .. 41
.TYPE ... 41
TYPE .. 42
UNKNOWN ... 43
WIDTH .. 44
WORD ... 45
XOR ... 45
The Special Macro Operators 46
& ... 46
<> ... 47
! ... ~ 48
% ... 48

ii

;; .. 49

Chapter 3 Directives 51
Sample Directive .. 52
.186 .. 53
.286 ... 53
.286C .. 53
.286P .. 54
.287 ... 54
.386 ... 54
.386C .. 55
.386P .. 55
.387 ... 55
.8086 .. 56
.8087 .. 56
: .. 57
= .. 58
ALIGN .. 58
.ALPHA ... 59
ARG ... 60
ASSUME ... 62
%BIN .. 63
CA1'STR ... 64
.CODE ... 64
CODESEG ... 65
COMM .. 65
COMMENT .. 66
%CONDS .. 67
.CONST .. 67
CONST .. 68
.CREF ... 68
%CREF .. 68
%CREFALL .. 69
%CREFREF .. 69
%CREFUREF .. 70
%CTLS .. 70
.DATA ... 71
.DATA? .. 71
DATASEG .. 72
DB .. 72
DD .. 73
%DEPTH .. 74
DF .. 75
DISPLAy ... 76
DOSSEG ... 76

iii

DP .. 77
DQ .. 77
DT .. 78
DW ... 79
ELSE .. 80
ELSEIF .. 80
EMUL ... 81
END ... 82
ENDIF ... 82
ENDM ... 83
ENDP ... 83
ENDS ... 84
EQU ... 84
.ERR ... 85
ERR ... 86
.ERR1 .. 86
.ERR2 .. 86
.ERRB ... 87
.ERRDEF ... 87
.ERRDIF ... 88
.ERRDIFI ... 88
.ERRE ... 89
.ERRIDN ... 89
.ERRIDNI .. 90
ERRIF ... 91
ERRIF1 .. 91
ERRIF2 .. 91
ERRIFB .. 91
ERRIFDEF ... 91
ERRIFDIF 92
ERRIFDIFI ... 92
ERRIFE .. 92
ERRIFIDN ... 92
ERRIFIDNI .. 92
ERRIFNB .. 93
ERRIFNDEF .. 93
.ERRNB .. 93
.ERRNDEF 94
.ERRNZ .. 94
EVEN ... 94
EVENDATA .. 95
EXITM ... 96
EXTRN .. 96
.FARDATA ... 98

Iv

.FARDATA? .. 98
FARDATA ... 99
GLOBAL .. 100
GROUP ... 101
IDEAL .. 102
IF .. 103
IFl ... 103
IF2 ... 104
IFB ... 105
IFDEF .. 105
IFDIF, IFDIFI .. 106
IFE ... 106
IFIDN, IFIDNI ... 107
IFNB ... 108
IFNDEF ... 108
%INCL ... 109
INCLUDE. .. 109
INCLUDE LIB .. 110
INS1R .. 110
IRP ... 111
IRPC ... 111
JUMPS .. 112
LABEL .. 113
.LALL .. 114
.LFCOND ... 114
%LINUM ... 114
%LIST .. 115
.LIST ... 115
LOCAL ... 115
LOCALS .. 117
MACRO .. 119
%MACS .. 119
MASM .. 120
MASM51 .. 120
.MODEL .. 121
MODEL ... 124
MULTERRS ... 124
NAME .. 125
%NEWPAGE .. 125
%NOCONDS .. 125
%NOCREF 126
%NOCTLS .. 126
NOEMUL ... 127
%NOINCL .. 127

v

NOJUMPS .. 128
%NOLIST .. 128
NOLOCALS .. 128
%NOMACS ... 129
NOMASM51 .. 129
NOMULTERRS .. 130
%N()5YMS .. 131
%NOTRUNC .. 131
NOWARN .. 132
ORC .. 132
%OUT .. 133
P186 .. 133
P286 .. 133
P286N .. 134
P286P ... 134
P287 .. 134
P386 .. 134
P386N .. 134
P386P ... 135
P387 .. 135
P8086 .. 135
P8087 ... 135
PAGE .. 135
%PAGESIZE .. 136
%PCNT ... 137
PN087 .. 137
%POPLCTL ... 138
PROC .. 138
PUBLIC ... 141
PURGE ... 141
%PUSHLCTL .. 142
QUIRKS•.................. 142
.RADIX ... 143
RADIX .. 143
RECORD .. 143
REPT ... 144
.SALL .. 145
SEGMENT .. 145
.SEQ .. 148
.SFCOND ... 148
SIZESTR .. 148
.STACK ... 149
STACK ... 149
STRUC ... 149

vi

SUBSlR ... 151
SUBTIL .. 152
%SUBTIL .. 152
%SYMS ... 153
% TABSIZE .. 153
%TEXT ... 154
.TFCOND 154
TITLE .. 154
%TITLE ... 155
%TRUNC ... 155
UDATASEG ... 156
UFARDATA ... 156
UNION ... 156
USES ... 158
WARN .. 159
.XALL .. 160
.XCREF ... 160
.XLIST .. 160

Appendix A Turbo Assembler Syntax Summary 161
Lexical Grammar ... 161

valid_line ... 161
white_space ... 161
space_char .. 162
id_string .. 162
id_strng2 .. 162
id_char ... 162
id_chr2 ... 162
number_string .. 162
num_string .. 162
digits ... 162
digit .. 162
alphanums .. 163
alpha ... 163
exp ... 163
str_string .. 163
punctuation ... 163

MASM Mode Expression Grammar. .. 164
mexprl ... 164
mexpr2 ... 164
mexpr3 ... 164
mexpr4 ... 164
mexpr5 ... 164
mexpr6 ... 165
mexpr7 ... 165

vii

mexpr8 ... 165
mexpr9 ... 165
mexpr10 .. 165
mexpr11 .. 166
mexpr12 .. 166
mexpr13 .. 166

Ideal Mode Expression Grammar .. 166
pointer. .. 166
type .. 166
pointer2 .. 167
pointer3 .. 167
expr .. 167
expr2 ... 167
expr3 ... 167
expr4 ... 168
expr5 ... 168
expr6 ... 168
expr7 ... 168
expr8 ... 168
expr9 ... 168
exprl0 .. 169

Appendix B Compatibility Issues 171
Environment Variables. .. 172
Microsoft Binary Floating-Point Format 172

Turbo Assembler Quirks Mode. .. 172
Byte Move to / from Segment Register 173
Erroneous Near Jump to Far Label or Procedure 173
Loss of Type Information with = and EQU Directive 173
Segment-Alignment Checking 174
Signed Immediate Arithmetic and Logical Instructions 174
Masm 5.1 Features. .. 174
Masm 5ol/Quirks Mode Features 175

Appendix C Turbo Assembler Highlights 177
Extended Command-Line Syntax 177
GLOBAL Directive ... 177
Local Symbols ... 178
Conditional Jump Extension 178
Ideal Mode 178
UNION Directive/STRUC Nesting 178
EMUL and NOEMUL Directives 179
Explicit Segment Overrides .. 179
Constant Segments ... 179
Extended LOOP Instruction in 386 Mode 179

viii

Extended Listing Controls 180
Alternate Directives .. 180
Predefined Variables .. 180
Masm 5.0 and 5.1 Enhancements 180
Improved SHL and SHR Handling 181

Appendix D Turbo Assembler Utilities 183
The Stand-Alone MAKE Utility 183

A Quick Example .. 184
Creating a Makefile ... 185
U sing a Makefile ... 186
Stepping Through 187

Creating Makefiles ... 188
Componen ts of a Makefile .. 188

Comments .. 189
Explicit Ru1es 189

Special Considera tions 190
Implicit Ru1es .. 191

Special Considera tions 193
Examples ... 194

Command Lists .. 194
Prefix ... 194
Command Body. .. 195
Examples ... 195

Macros .. " .. 196
Defining Macros 197
Using Macros .. 197
Special Considera tions 198
Predefined Macros 198

Directives ... 200
File-Inclusion Directive 201
Conditional Directives 201
Error Directive .. 204
Undef Directive 204

Using MAKE .. 204
Command-Line Syntax 204
A Note About Stopping MAKE 205
The BUlL TINS.MAK File .. 205
How MAKE Searches for Makefiles .. 206
The TOUCH Utility. .. 206
MAKE Command-Line Options 206

MAKE Error Messages .. 207
Fatals ... 207
Errors .. 208

Turbo Link .. 210

ix

Invoking TLINK ... 210
Using Response Files 211

TLINK Options .. 213
The lx, 1m, Is Options 213
The 11 Option .. 214
The Ii Option .. 214
The In Option ... 214
The I c Option ... 214
The I d Option ... 215
The Ie Option ... 215
The It Option .. 216
The Iv Option ... 216
The 13 Option ... 216
Restrictions .. 216

Error Messages .. 217
Fatal Errors .. 217
Nonfatal Errors .. 219
Warnings. .. 220

TLIB: The Turbo Librarian .. 220
The Advantages of Using Object Module Libraries 221
The Components of a TLIB Command Line 221

The Operation List ... 222
File and Module Names .. 223
TLIB Operations ... 223

Creating a Library .. 224
Using Response Files ... 224
Advanced Operation: The IC Option 225
Examples ... 226
Creating an Extended Dictionary: The IE Option 226

GREP: A File-Search Utility .. 227
The GREP Options ... 227

Order of Precedence 229
The Search String .. 229

Operators in Regular Expressions 229
The File Specification ... 230
Examples with Notes ... 231

OBJXREF: The Object Module Cross-Reference Utility 234
The OBJXREF Command Line 234

Command-Line Options 235
Control Options .. 235
Report Options .. 235

Response Files ... 236
Freeform Response Files 236
Linker Response Files 237

x

The ID ComlI1and .. 237
The 10 Command ... 237
The IN Command ... 238

Sample OBJXREF Reports 238
Report by Public Names (lRP) 239
Report by Module (/RM) .. 240
Report by Reference (/RR) (Default) 240
Report by External References (/RX) 240
Report of Module Sizes (IRS) 241
Report by Class Type (/RC) 241
Report of Unreferenced Symbol Names (/RU) 242
Verbose Reporting (/RV) 242

Examples Using OBJXREF , 243
OBJXREF Error Messages and Warnings .. 243

Error Messages .. 243
Warnings. .. 244

TCREF: The Source Module Cross-Reference Utility 244
Response Files ... 245
Compa tibility with TLINK 245

Switches .. 245
Output ... 246
The Global (or Linker-Scope) Report 246
The Local (or Module-Scope) Report 246

Appendix E Error Messages 249
Information Messages .. 249
Warning and Error Messages 250
Fatal Error Messages .. 272

Index 275

xl

List of Tables

Table 2.1: MASM Mode Operator Precedence 14
Table 2.2: Ideal Mode Operator Precedence 15
Table 3.1: Default Segments and Types for Tiny Memory Model 122
Table 3.2: Default Segments and Types for Small Memory Model 123
Table 3.3: Default Segments and Types for Medium Memory Model 123
Table 3.4: Default Segments and Types for Compact Memory Model ... 123
Table 3.5: Default Segments and Types for Large or Huge Memory

Model .. 123
Table 3.6: Default Segments and Types for Turbo Pascal (TP ASCAL)

Memory Model .. 124

xii

N T R o D u c T o N

This book is the second of the two books accompanying the Turbo
Assembler package. Now that you've probably thoroughly perused the first
manual (User's Guide) in this set, you'll want to look at this one for all the
nitty-gritty in fo rma tion.

The Reference Guide is just that-a straight and to-the-point reference about
Turbo Assembler. If you find you still need to know more about the basics
of assembly language, go back to the User's Guide for some in-depth
discussions.

Hardware and Software Requirements

Turbo Assembler runs on the IBM PC family of computers, including the
XT, AT, and PS/2, along with all true compatibles. Turbo Assembler
requires MS-DOS 2.0 or later and at least 256K of memory.

Turbo Assembler generates instructions for the 8086, 80186, 80286, and
80386 processors. It also generates floating-point instructions for the 8087,
80287, and 80387 numeric coprocessors.

What's in This Manual

Here's what we discuss in this manual:

Chapter 1: Predefined Symbols tells you about Turbo Assembler's equates.

Chapter 2: Operators describes the various operators Turbo Assembler
provides.

Chapter 3: Directives provides, in alphabetical order, detailed information
about all the Turbo Assembler directives.

Appendix A: Turbo Assembler Syntax illustrates Turbo Assembler expres­
sions (both MASM and Ideal modes) in modified Backus-Naur form (BNF).

Introduction

Appendix B: Compatibility Issues covers the differences between MASM
and Turbo Assembler MASM mode.

Appendix C: Turbo Assembler Highlights details Turbo Assembler's
enhancements that add to those of MASM.

Appendix D: Turbo Assembler Utilities describes six utilities that come
with this package: MAKE, TLINK, TLIB, GREP, OBJXREF, and TCREF.

Appendix E: Turbo Assembler Error Messages describes all the error
messages that can be generated when using Turbo Assembler: information
messages, fatal error messages, warning messages, and error messages.

Notational Conventions

When we talk about IBM PCs or compatibles, we're referring to any
computer that uses the 8088, 8086, 80186, 80286, and 80386 chips (all of
these chips are commonly referred to as 80x86). When discussing PC-DOS,
DOS, or MS-DOS, we're referring to version 2.0 or greater of the operating
system.

All typefaces were produced by Borland's Sprint: The Professional Word
Processor, output on a PostScript printer. The different typefaces displayed
are used for the following purposes:

Italics In text, italics represent labels, placeholders, variables, and
arrays. In syntax expressions, placeholders are set in italics
to indicate that they are user-defined.

Boldface Boldface is used in text for directives, instructions, symbols,
and operators, as well as for command-line options.

CAPITALS In text, capital letters are used to represent instructions,
directives, registers, and operators.

Monospace Monospace type is used to display any sample code, text or
code that appears on your screen, and any text that you
must actually type to assemble, link, and run a program.

Keycaps In text, keycaps are used to indicate a key on your keyboard.
It is often used when describing a key you must press to
perform a particular function; for example, "Press Enter after
typing your program name at the prompt."

2 Turbo Assembler Reference Guide

How to Contact Borland

If, after reading this manual and using Turbo Assembler, you would like to
contact Borland with comments, questions, or suggestions, we suggest the
following procedures:

13 The best way is to log on to Borland's forum on CompuServe: Type GO
BPROGB at the main CompuServe menu and follow the menus to Turbo
Assembler. Leave your questions or comments here for the support staff
to process.

EI If you prefer, write a letter detailing your problem and send it to

Technical Support Department
Borland International

P.O. Box 660001
1800 Green Hills Drive

Scotts Valley, CA 95066 U.S.A.
ID You can also telephone our Technical Support department at (408)

438-5300. To help us handle your problem as quickly as possible, have
these items handy before you call:

o product name and version number
o product serial number
• computer make and model number
• operating system and version number

If you're not familiar with Borland's No-Nonsense License statement,
now's the time to read the agreement at the front of this manual and mail in
your completed product registration card.

Introduction 3

4 Turbo Assembler Reference Guide

c H A p T E R

1

Predefined Symbols

Turbo Assembler provides a number of predefined symbols that you can
use in your programs. These symbols can have different values at different
places in your source file. They are similar to equated symbols that you
define using the EQU directive. When Turbo Assembler encounters one of
these symbols in your source file, it replaces it with the current value of that
predefined symbol.

Some of these symbols are text (string) equates, some are numeric equates,
and others are aliases. The string values can be used anywhere that you
would use a character string, for example to initialize a series of data bytes
using the DB directive:

NOW DB ??time

Numeric predefined values can be used anywhere that you would use a
number:

IF ??version GT lOOh

Alias values make the predefined symbol into a synonym for the value it
represents, allowing you to use the predefined symbol name anywhere you
would use an ordinary symbol name:

ASSUME cs:@code

All the predefined symbols can be used in both MASM and Ideal mode.

If you use the Iml command-line option when assembling, you must use
the predefined symbol names exactly as they are described on the following
pages.

Chapter 7, Predefined Symbols 5

The following rule applies to predefined symbols starting with an at-sign
(@): The first letter of each word that makes up part of the symbol name is an
uppercase letter (except for segment names); the rest of the word is lowercase. As
an example,

@CodeSize
@FileName
@WordSize

The exception is redefined symbols, which refer to segments. Segment
names begin with an at-sign (@) and are all lowercase. For example,

@curseg
@fardata

For symbols that start with two question marks (??), the letters are all
lowercase. For example,

??data
??version

@code
Function

Remarks

Example

@CodeSize
Function

Remarks

6

Alias equate for .CODE segment name

When you use the simplified segmentation directives
(.MODEL, and so on), this equate lets you use the name
of the code segment in expressions, such as ASSUMEs
and segment overrides.

• CODE
mov ax,@code
mov dx,ax
ASSUME ds:@code

Numeric equate that indicates code memory model

@CodeSize is set to 0 for the small and compact memory
models that use near code pointers, and is set to 1 for all
other models that use far code pointers.

You can use this symbol to control how pointers to
functions are assembled, based on the memory model.

Turbo Assembler Reference Guide

Example

@Cpu

Function

Remarks

IF @CodeSize EQ 0
procptr DW PROCl ipointer to near procedure

ELSE
procptr DD PROCl

ENDIF
ipointer to far procedure

Numeric equate that returns information about current
processor

The value returned by @Cpu encodes the processor type
in a number of single-bit fields:

Bit Description

o 8086 instructions enabled
1 80186 instructions enabled
2 80286 instructions enabled
3 80386 instructions enabled
7 Privileged instructions enabled

(80286 and 80386)
8 8087 numeric processor instructions

10 80287 numeric processor instructions
11 80387 numeric processor instructions

The bits not defined here are reserved for future use.
Mask them off when using @Cpu so that your programs
will remain compatible with future versions of Turbo
Assembler.

Since the 8086 processor family is upward compatible,
when you enable a processor type with a directive like
.286, the lower processor types (8086, 80186) are auto­
matically enabled as well.

Note: This equate only provides information about the
processor you've selected at assembly-time via the .286
and related directives. The processor type your program
is executing on at run time is not indicated.

Chapter 1, Predefined Symbols 7

Example

@curseg
Function

Remarks

Example

@data
Function

Remarks

Example

8

IPUSH = @Cpu AND 2 ;allow immediate push on 186 and above
IF IPUSH
PUSH 1234
ELSE

mov ax,1234
push ax

ENDIF

Alias equate for current segment

@curseg changes throughout assembly to reflect the
current segment name. You usually use this after you
have used the simplified segmentation directives
(.MODEL, and so on).

Use @curseg to generate ASSUME statements, segment
overrides, or any other statement that needs to use the
current segment name.

• CODE
ASSUME cs:@curseg

Alias equate for near data group name

When you use the simplified segmentation directives
(.MODEL, and so on), this equate lets you use the group
name shared by all the near data segments (.DATA,
.CONST, .STACK) in expressions such as ASSUMEs
and segment overrides.

• CODE
mov ax,@data
mov ds,ax
ASSUME ds: @data

Turbo Assembler Reference Guide

@DataSize
Function

Remarks

Example

??date
Function

Remarks

See Also

Example

@fardata
Function

Remarks

Example

Numeric equate that indicates the data memory model

@DataSize is set to 0 for the tiny, small, and medium
memory models that use near data pointers, set to 1 for
the compact and large models that use far data pointers,
and set to 2 for the huge memory model.

You can use this symbol to control how pointers to data
are assembled, based on the memory model.

IF @DataSize EO 1
lea si,VarPtr
mov aI, [BYTE PTR sil

ELSE
les si, VarPtr
mov aI, [BYTE PTR es:sil

ENDIF

String equate for today's date

??date defines a text equate that represents today's date.
The exact format of the date string is determined by the
DOS country code.

??time

asmdate DB ??date i8-byte string

Alias equate for initialized far data segment name

When you use the simplified segmentation directives
(.MODEL, and so on), this equate lets you use the name
of the initialized far data segment (.FARDATA) in
expressions such as ASSUMEs and segment overrides.

mov ax,@fardata
mov ds,ax
ASSUME ds:@fardata

Chapter 7, Predefined Symbols 9

@fardata?
Function

Remarks

Example

@FileName
Function

See Also

??filename
Function

Remarks

Example

??time
Function

Remarks

See Also

Example

10

Alias equate for uninitialized far data segment name

When you use the simplified segmentation directives
(.MODEL, and so on), this equate lets you use the name
of the uninitialized far data segment (.FARDATA?) in
expressions such as ASSUMEs and segment overrides.

mov ax,@fardata?
mov ds,ax
ASSUME ds:@fardata?

Alias equate for current assembly file

??filename

String equate for current assembly file

??filename defines an eight-character string that repre­
sents ,the file name being assembled. If the file name is
less than eight characters, it is padded with spaces.

SrcName DB ??filename ;8-bytes always

String equate for the current time

??time defines a text equate that represents the current
time. The exact format of the time string is determined
by the DOS country code.

??date

asmtime DB ??time ;8-byte string

Turbo Assembler Reference Guide

??version
Function

Remarks

Example

@WordSize
Function

Remarks

Example

Numeric equate for this Turbo Assembler version

The high byte is the major version number, and the low
byte is the minor version number. For example, V2.l
would be represented as 201h.

??version lets you write source files that can take
ad vantage of features in particular versions of Turbo
Assembler.

This equate also lets your source files know whether
they are being assembled by MASM or Turbo Assem­
bler, since ??version is not defined by MASM.

IFDEF ??version
iTurbo Assembler stuff
ENDIF

Numeric equate that indicates 16- or 32-bit segments

@WordSize returns 2 if the current segment is a 16-bit
segment, or 4 if the segment is a 32-bit segment.

IF @WordSize EQ 4
mov esp,OlOOh

ELSE
mov sp,OlOOh

ENDIF

Chapter 7, Predefined Symbols 11

12 Turbo Assembler Reference Guide

c H A p T E R

2

Operators

Operators let you fonn complex expressions that can be used as an operand
to an instruction or a directive. Operators act upon operands, such as
program symbol names and constant values. Turbo Assembler evaluates
expressions when it assembles your source file and uses the calculated
result in place of the expression. One way you can use expressions is to
calculate a value that depends on other values that may change as you
modify your source file.

This chapter details the operators Turbo Assembler provides.

Arithmetic Precision

Turbo Assembler uses 16- or 32-bit arithmetic, depending on whether you
have enabled the 80386 processor with the .386 or .386P directive. When
you are assembling code for the 80386 processor or in Ideal mode, some
expressions will yield different results than when they are eva luted in 16-
bit mode; for example,

DW (lOOOh * lOOOh) / lOOOh

generates a word of 1000h in 32-bit mode and a word of 0 in 16-bit mode. In
16-bit mode, multiplication results in an overflow condition, saving only
the bottom 16 bits of the result.

Chapter 2, Operators 13

Operator Precedence

Turbo Assembler evaluates expressions using the following rules:

• Operators with higher precedence are performed before ones with lower
precedence.

• Operators with the same precedence are performed starting with the
leftmost one in the expression.

• If an expression contains a subexpression within parentheses, that
subexpression is evaluated first because expressions within parentheses
ha ve the highest priority.

Ideal mode and MASM mode have a different precedence for some
operators. The following two tables show the precedence of the operators
in both modes. The first line in each table shows the operators with the
highest priority, and the last line those operators with the lowest priority.
Within a line, all the operators have the same priority.

14

Table 2.1: MASM Mode Operator Precedence

<>,0, [], LENGTH, MASK, SIZE, WIDTH

. (structure member selector)

HIGH,LOW

+, - (unary)

: (segment override)

OFFSET, PTR, SEG, THIS, TYPE

*, I, MOD, SHL, SHR

+, - (binary)

EQ, GE, GT, LE, L T, NE

NOT

AND

OR,XOR

LARGE, SHORT, SMALL, .TYPE

Turbo Assembler Reference Guide

Table 2.2: Ideal Mode Operator Precedence

0, [], LENGTH, MASK, OFFSET, SEG, SIZE, WIDTH

HIGH,LOW

+,- (unary)

*, I, MOD, SHL, SHR

+, - (binary)

EQ, GE, GT, LE, L T, NE

NOT

AND

OR,XOR

: (segment override)

. (structure member selector)

HIGH (before Eointer), LARGE, LOW (before pointer),
PTR, SHORT, SMALL, SYMTYPE

The operators allowed in expressions follow in alphabetical order.

()

Function

Mode

Syntax

Remarks

See also

Example

Marks an expression for early evaluation

MASM, Ideal

(expression)

Use parentheses to alter the normal priority of operator
evaluation. Any expression enclosed within parentheses
will be evaluated before the operator(s) that comes
before or after the parentheses.

+, -, *,1, MOD, SHL, SHR

(3 + 4) * 5 ;evaluates to 35
3 + 4 * 5 ;evaluates to 23

Chapter 2, Operators 15

*
Function

Mode

Syntax

Remarks

See also

Example

+ (Binary)
Function

Mode

Syntax

Remarks

See also

Example

+ (Unary)
Function

Mode

Syntax

Remarks

16

Multiplies two integer expressions

MASM,Ideal

expressionl * expression2

expressionl and expression2 must both evaluate to integer
constants. The '" operator can also be used between a
register and a constant to support 386 addressing
modes.

+, -, /, MOD, SHL, SHR

SCREENSIZE = 25 * 80 i' chars onscreen

The '" operator can also be used between a register and a
constant to support 386 addressing modes.

Adds two expressions

MASM,Ideal

expressionl + expression2

At least one of expressionl or expression2 must evaluate to
a constant. One expression can evaluate to an address.

-, "', /, MOD, SHL, SHR

x ow 4 OUP (?)
XPTR ow x + 4 ithird word in buffer

Indicates a positive number

MASM,Ideal

+ expression

This operator has no effect. It is available merely to
make explicit positive constants.

Turbo Assembler Reference Guide

See also

Example

- (Binary)
Function

Mode

Syntax

Remarks

See also

Example

-, *,1, MOD, SHL, SHR

Foo DB +4 ;redundant +

Subtracts two expressions

MASM,Ideal

expressionl - expression2

There are three combinations of operands you can use
with subtraction:

• expression 1 and expression2 can both evaluate to
integer constants.

f:I expressionl and expression2 can both be addresses as
long as both addresses are within the same segment.
When you subtract two addresses, the result is a con­
stant. Ideal mode checks expressionl and expression2
for consistency much more stringently than MASM
mode. In particular, Ideal mode correctly handles
subtracting a segment from a far pointer, leaving just
an offset fixup in cases where this is a valid operation .

• expressionl can be an address and expression2 can be a
constant, but not vice versa. The result is another
address.

+, *, /, MOD, SHL, SHR

DATA SEGMENT
DW ?

XYZ EQU 10
VALl DW XYZ - 1 ;constant 9
VAL2 DW ?
V1SIZE DW VAL2 - VALl ;constant 2
V1BEFORE DW VALl - 2 ;points to DW before VALlE
DATA ENDS

Chapter 2, Operators 17

- (Unary)
Function

Mode

Syntax

Remarks

See also

Example

Function

Mode

Syntax

Remarks

See also

Example

18

Changes the sign of an expression

MASM,Ideal

- expression

expression must evaluate to a constant. If expression is
positive, the result will be a negative number of the
same magnitude. If expression is negative, the result will
be a positive number.

+, *, /, MOD, SHL, SHR

LOWTEMP DB -10 ipretty chilly

Selects a structure member

MASM, Ideal

memptr.fieldname

In MASM mode, memptr can be any operand that refers
to a memory location, and fieldname can be the name of
any member in any structure or even a constant expres­
sion. If memptr is the name of a structure (like XINST),
there is still no requirement that fieldname be a member
in that structure. This operator acts much like the +
operator: It adds the offset within the structure of field­
name to the memory address of memptr, but it also gives
it the size of field name.

In Ideal mode, its operation is much stricter. memptr
must evaluate to a pointer to a structure, and field name
must be a member of that structure. This lets you have
different structures with the same field names, but a
different offset and size. If you want to use a base and/
or index register for memptr, you must precede it with a
typecast for the name of the structure you want to access
(take a look at the example that follows).

STRUC

X STRUC
MEMBER1 DB ?

Turbo Assembler Reference Guide

/

Function

Mode

Syntax

Remarks

See also

Example

Function

Mode

Syntax

Remarks

MEMBER2 DW ?

X ENDS
XINST X <>

ian instance of STRUC X
;MASM mode

mov [bxl.Member2,1
;Ideal mode

mov [(X PTR bx) .Member2l,1 ;notice typecast

Divides two integer expressions

MASM,Ideal

expressionl / expression2

expressionl and expression2 must both evaluate to integer
constants. The result is expressionl is divided by
expression2; any remainder is discarded. You can get the
remainder by using the MOD operator with the same
operands you supplied to the I operator.

+,-, *, MOD, SHL, SHR

X = 55 / 10 ;= 5 (integer divide)

Generates segment or group override

MASM,Ideal

segorgroup : expression

The colon (:) forces the address of expression to be
generated relative to the specified segment or group.
You use this to force the assembler to use something
other than its default method for accessing expression.

You can specify segorgroup in several ways:

II as a segment register: CS, OS, ES, or 55 (or FS or GS if
you have enabled the 80386 processor with the P386
or P386N directive)

• as a segment name defined with the SEGMENT
directive

Chapter 2, Operators 19

Example

?
Function

Mode

Syntax

Remarks

See also

Example

20

• as a group name defined with the GROUP directive

• as an expression starting with the SEG operator

expression can be a constant- or a memory-referencing
expression.

mov cl,es: [si+4]
VarPtr DD DGROUP:MEMVAR

Initializes with indeterminate data

MASM,Ideal

Dx ?

Dx refers to one of the data allocation directives (DB,
DD, and so on). Use? when you want to allocate data
but don't want to explicitly assign a value to it.

You should use? when the data area is initialized by
your program before being used. Using? rather than 0
makes the initialization method explicit and visible in
your source code.

When you use ? as the only value in or outside a DUP
expression, no object code is generated. If you use?
inside a DUP expression that also contains initialized
values, it will be treated as a o.
Using? outside of a DUP causes the program counter to
be advanced but no data to be emitted. You can also use
? for the same purpose in, for example, a structure:

x struc
a db 1
x ends

xinst ?

DUP

ideclare structure

iundefined structure instance

MyBuf DB 20 DUP (?) iallocate undefined area

Turbo Assembler Reference Guide

[] operator
Function

Mode

Syntax

Remarks

See also

Example

AND
Function

Mode

Syntax

Remarks

Specifies addition or indexed memory operand

MASM,Ideal

[expressionl] [expression2]

This operator behaves very differently in MASM mode
and in Ideal mode.

In MASM mode, it can act as an addition operator,
simply adding expressionl to expression2. The same
limitations on operand combinations apply; for example,
expressionl and expression2 can't both be addresses. []
can also indicate register indirect memory operands,
using the BX, BP, SI, and DI registers. The indirect
register(s) must be enclosed within the []. An indirect
displacement may appear either inside or outside the
brackets.

In Ideal mode, [] means "memory reference." Any
operand that addresses memory must be enclosed in
brackets. This provides a clear, predictable, unam­
biguous way of controlling whether an operand is
immediate or memory-referencing.

+

; MASM mode
mov al,BYTE PTR es:[bx]
mov al,cs:l0h

Ideal mode
mov al,[BYTE es:bx]
moval,[cs:l0h]

Bitwise logical AND

MASM,Ideal

expressionl AND expression2

Performs a bit-by-bit logical AND of each bit in
expressionl and expression2. The result has a 1 in any bit
position tha t had a 1 in both expressions and a 0 in all
other bit positions.

Chapter 2, Operators 21

See also

Example

BYTE
Function

Mode

Syntax

Remarks

See also

Example

DATAPTR
Function

Mode

Syntax

Remarks

See also

Example

22

NOT,OR,XOR

mov al,11110000b AND 10100000B ;loads 10100000B

Forces expression to be byte size

Ideal

BYTE expression

expression must be an address. The result is an expres­
sion that points to the same memory address but always
has BYTE size, regardless of the original size of
expression.

You usually use this opera tor to define the size of a
forward-referenced expression, or to explicitly state the
size of a register indirect expression from which the size
cannot be determined.

In MASM mode, you must use the PTR directive
preceded with the BYTE type to perform this function.

PTR

mov [BYTE bx],l
mov [BYTE X],l
X DB 0

;byte immediate move
;forward reference

Forces expression to model-dependent size

Ideal

DATAPTR expression

Declares expression to be a near or far pointer,
depending on selected memory model.

PTR, UNKNOWN

mov [DATAPTR bx],l

Turbo Assembler Reference Guide

DUP
Function

Mode

Syntax

Remarks

Example

DWORD
Function

Mode

Syntax

Remarks

See also

Example

Repeats a data allocation

MASM, Ideal

count DUP (expression (,expression] .••)

count defines the number of times that the data defined
by the expression(s) will be repeated. The DUP operator
appears after one of the data allocation directives (DB,
DW, and so on).

Each expression is an initializing value that is valid for
the particular data allocation type that DUP follows.

You can use the DUP operator again within an expres­
sion, nested up to 17 levels.

You must always surround the expression values with
parentheses, O.

WRDBUF DW 40 DUP (1) ;40 words initialized to 1
SQUARE DB 4 DUP (4 DUP (0)) ;4x4 array of 0

Forces expression to be doubleword size

Ideal

DWORD expression

expression must be an address. The result is an expres­
sion that points to the same memory address but always
has DWORD size, regardless of the original expression
size.

You usually use this operator to define the size of a
forward-referenced expression.

To perform this function in MASM mode, you must use
the PTR directive preceded by the DWORD type.

PTR

call DWORD FPTR

Chapter 2, Operators 23

EQ
Function

Mode

Syntax

Remarks

See also

Example

FAR
Function

Mode

Syntax

Remarks

See also

Example

24

Returns true if expressions are equal

MASM,Ideal

expressionl EQ expression2

expressionl and expression2 must both evaluate to con­
stants. EQ returns true (-1) if both expressions are equal
and returns false (0) if they have different values.

EQ considers expressionl and expression2 to be signed
32-bit numbers, with the top bit being the sign bit. This
means that -1 EQ OFFFFFFFFh evaluates to true.

NE, LT, LE, GT, GE

ALIE 4 EQ 3 ;= 0 (false)
ATRUTH = 6 EQ 6 ;= 1 (true)

Forces an expression to be a far code pointer

Ideal

FAR expression

expression must be an address. The result is an expres­
sion that points to the same memory address but is a far
pointer with both a segment and an offset, regardless of
the original expression type.

You usually use this opera tor to call or jump to a
forward-referenced label that is declared as FAR later in
the source file.

To perform this function in MASM mode, you must use
the PTR directive preceded by the FAR type.

NEAR

call FAR ABC ;forward reference
ABC PROC FAR

Turbo Assembler Reference Guide

FWORD
Function

Mode

Syntax

Remarks

See also

Example

GE
Function

Mode

Syntax

Remarks

See also

Example

Forces expression to be 32-bit far pointer size

Ideal

FWORD expression

expression must be an address. The result is an expres­
sion that points to the same memory address but always
has FWORD size, regardless of the original expression
size.

You usually use this opera tor to define the size of a
forward-referenced expression or to explicitly state the
size of a register indirect expression from which the size
cannot be determined.

To perform this function in MASM mode, you must use
the PTR directive preceded by the FWORD type.

PTR,PWORD

.386
call FWORD [bx]
jrnp FWORD funcp
funcp DF myproc

;far indirect 48-bit call
;forward reference
iindirect pointer to PRoe

Returns true if one expression is greater than another

MASM,Ideal

expressionl GE expression2

expressionl and expression2 must both evaluate to con­
stants. GE returns true (-1) if expressionl is greater than
or equal to expression2 and returns false (0) if it is less.

GE considers expressionl and expression2 to be signed
33-bit numbers, with the top bit being the sign bit. This
means that 1 GE -1 evaluates to true, but 1 GE
OFFFFFFFFh evaluates to false.

EQ, GT, LE, LT, NE

TROOTH = 5 GE 5
AFIB = 5 GE 6

Chapter 2, Operators 25

GT
Function

Mode

Syntax

Remarks

See also

Example

HIGH
Function

Mode

Syntax

Remarks

See also

26

Returns true if one expression is greater than another

MASM, Ideal

expressionl GT expression2

expressionl and expression2 must both evaluate to con­
stants. GT returns true (-1) if expression1 is greater than
expression2, and returns false (O) if it is less than or equal.

GT considers expressionl and expression2 to be signed
33-bit numbers, with the top bit being the sign bit. This
means that 1 GT -1 evaluates to true, but 1 GT
OFFFFFFFFh evaluates to false.

EQ, GE, LE, LT, NE

AFACT = 10 GT 9
NOTSO = 10 GT 11

Returns the high part of an expression

MASM, Ideal

HIGH expression

Ideal mode only:
type HIGH expression

HIGH returns the top 8 bits of expression, which must
evaluate to a constant.

In Ideal mode, HIGH in conjunction with LOW becomes
a powerful mechanism for extracting arbitrary fields
from data items. type specifies the size of the field to
extract from expression and can be any of the usual size
specifiers (BYTE, WORD, DWORD, and so on). You can
apply more than one HIGH or LOW operator to an
expression; for example, the following is a byte address
pointing to the third byte of the doubleword DBL VAL:

BYTE LOW WORD HIGH DBLVAL

LOW

Turbo Assembler Reference Guide

Example

LARGE
Function

Mode

Syntax

Remarks

;MASM and Ideal modes
magic EQU 1234h
mov cl,HIGH magic
Ideal
;Ideal mode only
big DD 12345678h
mov ax, [WORD HIGH big] ;loads 1234h into AX

Sets an expression's offset size to 32 bits

MASM, Ideal (386 modes only)

LARGE expression

expression is any expression or operand, which LARGE
converts into a 32-bit offset. You usually use this to
remove ambiguity about the size of an operation. For
example, if you have enabled the 80386 processor with
the P386 directive, this code can be interpreted as either
a far call with a segment and 16-bit offset or a near call
using a 32-bit offset:

jmp [DWORD PTR ABC]

You can remove the ambiguity by using the LARGE
directive:

jmp LARGE [nWORD PTR ABC] ;32-bit offset near call

In this example, LARGE appears outside the brackets,
thereby affecting the interpretation of the DWORD read
from memory. If LARGE appears inside the brackets, it
determines the size of the address from which to read
the operand, not the size of the operand once it is read
from memory. For example, this code means XYZ is a
4-byte pointer:

jmp LARGE [LARGE nWORD PTR XYZ]

Treat it as a 32-bit offset, and]MP indirect through that
address, reading a]MP target address that is also a
32-bit offset.

By combining the LARGE and SMALL operators, both
inside and outside brackets, you can effect any combi­
nation of an indirect]MP or CALL from a 16- or 32-bit
segment to a 16- or 32-bit segment.

Chapter 2, Operators 27

See also

Example

LE
Function

Mode

Syntax

Remarks

See also

Example

LENGTH
Function

Mode

Syntax

28

You can alsq use LARGE to a void erroneous assump­
tions when accessing forward-referenced variables:

mov ax, [LARGE FOOBAR] ;FOOBAR is in a USE32 segment

LARGE and SMALL can be used with other ambiguous
instructions, such as LIDT and LGDT.

SMALL

;MASM and Ideal modes
magic EQU 1234h
mov bl, HIGH magic
Ideal

iIdeal mode only
big DD 12345678h
mov ax, [word HIGH big] ;leads 1234h into AX

Returns true if one expression is less than or equal to
another

MASM,Ideal

expressionl LE expression2

expressionl and expression2 must both evaluate to con­
stants. LE returns true (-1) if expressionl is less than or
equal to expression2 and returns false (0) if it is greater.

LE considers expressionl and expression2 to be signed 33-
bit numbers, with the top bit being the sign bit. This
means that 1 LE -1 evaluates to false, but 1 LE
OFFFFFFFFh evaluates to true.

EQ, GE, GT, LT, NE

YUP = 5 LT 6 ;true = -1

Returns number of allocated data elements

MASM,Ideal

LENGTH name

Turbo Assembler Reference Guide

Remarks

See also

Example

LOW
Function

Mode

Syntax

Remarks

See also

name is a symbol that refers to a data item allocated with
one of the data allocation directives (DB, DD, and so
on). LENGTH returns the number of repeated elements
in name. If name was not declared using the DUP
operator, it always returns 1.

LENGTH returns 1 even when name refers to a data item
that you allocated with multiple items (by separating
them with commas).

SIZE, TYPE

MSG DB "Hello"
array DW 10 DUP(O)
numbrs DD 1,2,3,4
var DQ?
Imsg = LENGTH MSG
Iarray = LENGTH ARRAY
Inumbrs = LENGTH NUMBRS
Ivar = LENGTH VAR

;= 1, no DUP
;=10, DUP repeat count
;= 1, no DUP
;= 1, no DUP

Returns the low part of an expression

MASM,Ideal

LOW expression

Ideal mode only:
type LOW expression

LOW returns the bottom 8 bits of expression, which
must evaluate to a constant.

In Ideal mode, LOW in conjunction with HIGH becomes
a powerful mechanism for extracting arbitrary fields
from data items. type specifies the size of the field to
extract from expression and can be any of the usual size
specifiers (BYTE, WORD, DWORD, and so on). You can
apply more than one LOW or HIGH operator to an
expression; for example,

BYTE LOW WORD HIGH DBLVAL

is a byte address pointing to the third byte of the
doubleword DBL VAL.

HIGH

Chapter 2, Operators 29

Example

LT
Function

Mode

Syntax

Remarks

See also

Example

MASK
Function

Mode

Syntax

Remarks

30

iMASM and Ideal modes
magic EQU 1234h
mov bl,LOW magic
ideal
iIdeal mode only
big DD 12345678h
mov ax, [WORD LOW big] iloads 5678h into AX

Returns true if one expression is less than another

MASM,Ideal

expression1 LT expression2

expressionl and expression2 must both evaluate to con­
stants. LT returns true (-1) if expressionl is less than
expression2 and returns false (0) if it is greater than or
equal.

LT considers expressionl and expression2 to be signed 33-
bit numbers, with the top bit being the sign bit. This
means that 1 L T -1 evaluates to false, but 1 L T
OFFFFFFFFH evaluates to true.

EQ, GE, GT, LE, NE

JA = 3 LT 4 ;true = -1

Returns a bit mask for a record field

MASM, Ideal

MASK recordfieldname
MASK record

recordfieldname is the name of any field name in a pre­
viously defined record. MASK returns a value with bits
turned on to correspond to the position in the record
that recordfieldname occupies.

record is the name of a previously defined record. MASK
returns a value with bits turned on for all the fields in
the record.

Turbo Assembler Reference Guide

See also

Example

MOD
Function

Mode

Syntax

Remarks

See also

Example

NE
Function

Mode

Syntax

Remarks

See also

Example

You can use MASK to isolate an individual field in a
record by ANDing the mask value with the entire
record.

WIDTH

STAT RECORD A:3,b:4,c:5
NEWSTAT STAT <0,2,1>
mov al,NEWSTAT iget record
and al,MASK B ;isolate B
mov al,MASK STAT ;get mask for entire record

Returns remainder (modulus) from dividing two ex­
pressions

MASM, Ideal

expressionsl MOD expression2

expressionl and expression2 must both evaluate to integer
constants. The result is the remainder of expressionl
divided by expression2.

+,-, *,1, SHL, SHR

REMAINS = 17 / 5 ;= 2

Returns true if expressions are not equal

MASM,Ideal

expressionl NE expression2

expressionl and expression2 must both evaluate to con­
stants. NE returns true (-1) if both expressions are not
equal and returns false (0) if they are equal.

NE considers expressionl and expression2 to be signed
32-bit numbers, with the top bit being the sign bit. This
means that -1 NE OFFFFFFFFh evaluates to true.

EQ, GE, GT, LE, LT

aint = 10 NE 10 ;false = 0

Chapter 2, Operators 31

NEAR
Function

Mode

Syntax

Remarks

See also

Example

NOT
Function

Mode

Syntax

Remarks

See also

Example

32

Forces an expression to be a near code pointer

Ideal

NEAR expression

expression must be an address. The result is an expres­
sion that points to the same memory address but is a
NEAR pointer with only an offset and no segment,
regardless of the original expression type.

You usually use this operator to call or jump to a far
label or procedure with a near jump or call instruction.
See the example section for a typical scenario.

To perform this function in MASM mode, you must use
the PTR directive preceded with the NEAR type.

FAR

Ideal
PROC farp FAR

ibody of procedure
ENDP farp
istill in same segment
push cs
call NEAR PTR farp ifasterlsmaller than far call

Bitwise complement

MASM,Ideal

NOT expression

NOT inverts all the bits in expression, turning 0 bits into
1 and 1 bits into O.

AND,OR,XOR

mov aI, NOT 11110011b iloads 0000l100b

Turbo Assembler Reference Guide

OFFSET
Function

Mode

Syntax

Remarks

See also

Example

OR
Function

Mode

Syntax

Remarks

Returns an offset within a segment

MASM,Ideal

OFFSET expression

expression can be any expression or operand that
references a memory location. OFFSET returns a con­
stant that represents the number of bytes between the
start of the segment and the referenced memory
location.

If you are using the simplified segmentation directives
(MODEL, and so on) or Ideal mode, OFFSET
automatically returns offsets from the start of the group
that a segment belongs to. If you are using the normal
segmentation directives, and you want an offset from
the start of a group rather than a segment, you must
explicitly state the group as part of expression. For
example,

mov si,OFFSET BUFFER

is not the same as

mov si,OFFSET DGROUP:BUFFER

unless the segment that contains BUFFER happens to be
the first segment in DGROUP.

SEG

• DATA
msg DB "Starting analysis"
• CODE
mov si,OFFSET msg iaddress of MSG

Bitwise logical OR

MASM, Ideal

expressionl OR expression2

OR performs a bit-by-bit logical OR of each bit in
expressionl and expression2. The result has a 1 in any bit

Chapter 2, Operators 33

See also

Example

PROC
Function

Mode

Syntax

Remarks

See also

Example

PTR
Function

Mode

Syntax

Remarks

34

position that had a 1 in either or both expressions, and a
o in all other bit positions.

AND,NOT,XOR

mov al,11110000b OR 10101010b iloads 11111010b

Forces an expression to be a near or far code pointer

Ideal

PRoe expression

expression must be an address. The result is an expres­
sion that points to the same memory address but is a
near or far pointer, regardless of the original expression
type. If you specified the TINY, SMALL, or COMPACT
memory model with the .MODEL directive, the pointer
will be near. Otherwise, it will be a far pointer.

You usually use PROC to call or jump to a forward­
referenced function when you are using the simplified
segmentation directives. The example section shows a
typical scenario.

To perform this function in MASM mode, you must use
the PTR directive preceded with the PROC type.

NEAR, FAR

.MODEL large

. CODE
Ideal
call PROC Testl

PROC Testl iactually far due to large model

Forces expression to have a particular size

MASM,Ideal

type PTR expression

expression must be an address. The result of this
operation is a reference to the same address, but with a
different size, as determined by type.

Turbo Assembler Reference Guide

See also

Example

Typically, this operator is used to explicitly state the size
of an expression whose size is undetermined, but
required. This can occur if an expression is forward
referenced, for example.

type must be one of the following in Ideal mode:

• UNKNOWN, BYTE, WORD, DWORD, FWORD,
PWORD, QWORD, TBYTE, DATAPTR, or the name
of a structure, for data

• SHORT, NEAR, FAR, PROC for code

In Ideal mode, you don't need to use the PTR operator.
You can simply follow the type directly with expression.

In MASM mode, type can be any of the following
numbers:

.0 = UNKNOWN, 1 = BYTE, 2 = WORD, 4 =
DWORD,6 = PWORD, 8 = QWORD, 10 = TBYTE for
data

.0FFFFh = NEAR, OFFFEh = FAR for code

Corres pondingly, in MASM mode the following key­
words are recognized as having these values:

• UNKNOWN = 0, BYTE = 1, WORD = 2, DWORD =
4, PWORD = 6, FWORD = 6, QWORD = 8, TBYTE =
10, DATAPTR = 2 or 4 (depending on MODEL in use)
for data

• NEAR = OFFFFh, FAR = OFFFEh, PROC = OFFFFh or
OFFFEh (depending on MODEL in use) for code

BYTE, WORD, DWORD, QWORD, FWORD, PWORD,
TBYTE, NEAR, FAR, PROC, DATAPTR

mov BYTE PTR[SI],10 ibyte immediate mode
fld QWORD PTR val iload quadword float
val DQ 1234.5678

Chapter 2, Operators 35

PWORD
Function

Mode

See also

QWORD
Function

Mode

Syntax

Remarks

See also

Example

SEG
Function

Mode

Syntax

Remarks

36

Forces expression to be 32-bit, far pointer size

MASM,Ideal

FWORD

Forces expression to be quadword size

Ideal

QWORD expression

expression must be an address. The result is an expres­
sion that points to the same memory address but always
has QWORD size, regardless of the original size of
expression.

You usually use QWORD to define the size of a
forward-referenced expression, or to explicitly state the
size of a register indirect expression from which the size
cannot be determined.

To perform this function in MASM mode, you must use
the PTR directive preceded by the QWORD type.

PTR

fadd [QWORD BXl ;sizeless indirect
fsubp [QWORD Xl ;forward reference
• DATA
X DQ 1.234

Returns the segment address of an expression

MASM,Ideal

SEG expression

expression can be any expression or operand that
references a memory location. SEG returns a constant

Turbo Assembler Reference Guide

See also

Example

SHL
Function

Mode

Syntax

Remarks

See also

Example

SHORT
Function

Mode

Syntax

Remarks

that represents the segment portion of the address of the
referenced memory location.

OFFSET

• DATA
temp DW 0
.CODE
mov ax,SEG temp
mov ds,ax
ASSUME ds:SEG temp

iset up segment register
itell assembler about it

Shifts the value of an expression to the left

MASM,Ideal

expression SHL count

expression and count must evaluate to constants. SHL
performs a logical shift to the left of the bits in expression.
Bits shifted in from the right contain 0, and the bits
shifted off the left are lost.

A negative count causes the data to be shifted the
opposite way.

SHR

mov al,00000011b SHL 3 iloads 00011000B

Forces an expression to be a short code pointer.

MASM, Ideal

SHORT expression

expression references a location in your current code
segment. SHORT informs the assembler that expression
is within -128 to +127 bytes from the current code
location, which lets the assembler generate a shorter
IMP instruction.

You only need to use SHORT on forward-referenced
IMP instructions, since Turbo Assembler automatically

Chapter 2, Operators 37

See also

Example

SHR
Function

Mode

Syntax

Remarks

See also

Example

SIZE
Function

Mode

Syntax

Remarks

See also

38

generates the short jumps if it already knows how far
away expression is.

NEAR,FAR

jmp SHORT done igenerate small jump instruction
iless than 12B bytes of code here

Done:

Shifts the value of an expression to the right

MASM,Ideal

expression SHR count

expression and count must evaluate to constants. SHR
performs a logical shift to the right of the bits in
expression. Bits shifted in from the left contain 0, and the
bits shifted off the right are lost.

A negative count causes the data to be shifted the
opposite way.

SHL

mov al,BOh SHR 2 iloads 20h

Returns size of allocated data item

MASM, Ideal

SIZE name

name is a symbol that refers to a data item allocated with
one of the data allocation directives (DB, DD, and so
on). In MASM mode, SIZE returns the value of
LENGTH name multiplied by TYPE name. Therefore, it
does not take into account multiple data items, nor does
it account for nested DUP operators.

In Ideal mode, SIZE returns the byte count within a
DUP. To get the byte count ofDUP, use LENGTH.

LENGTH, TYPE

Turbo Assembler Reference Guide

Example

SMALL
Function

Mode

Syntax

Remarks

msg DB II Hello"
array DW 10 DUP(4 DUP (1), 0)
numbrs DD 1,2,3,4
var DQ

iMASM mode
smsg = SIZE msg
sarray = SIZE array
snumbrs = SIZE numbrs
svar = SIZE var
iIdeal mode
smsg = SIZE msg
sarray = SIZE array
snumbrs = SIZE numbrs
svar = SIZE var

iI, string has length 1
i= 20, 10 DUPS of DW
i4, length = 1, DD = 4 bytes
;= 8, 1 element, DQ = 8 bytes

iI, string has length 1
i= 20, 10 DUPS of DW
i4, length = 1, DD = 4 bytes
;=8, 1 element, DQ = 8 bytes

Sets an expression's offset size to 16 bits

MASM, Ideal (386 code generation only)

small expression

expression is any expression or operand. SMALL
converts it into a 16-bit offset. You usually use this to
remove ambiguity about the size of an operation. For
example, if you have enabled the 80386 processor with
the P386 directive,

jmp [DWORD PTR ABC]

can be interpreted as either a far call with a segment and
16-bit offset or a near call using a 32-bit offset. You can
remove the ambiguity by using the SMALL directive:

jmp small [DWORD PTR ABC] il6-bit offset far call

In this example, SMALL appears outside the brackets,
thereby affecting the interpretation of the DWORD read
from memory. If SMALL appears inside the brackets, it
determines the size of the address from which to read
the operand, not the size of the operand once it is read
from memory. For example,

CODE SEGMENT USE32
jmp small [small DWORD PTR XYZ]

means XYZ is a 4-byte pointer that's treated as a 16-bit
offset and segment, and JMP indirect through that

Chapter 2, Operators 39

See also

SYMTYPE
Function

Mode

Syntax

Remarks

See also

TBYTE
Function

Mode

Syntax

Remarks

See also

40

address, reading a near JMP target address that is also a
16-bit offset.

By combining the LARGE and SMALL operators, both
inside and outside brackets, you can effect any combi­
nation of an indirect JMP or CALL from a 16- or 32-bit
segment to a 16- or 32-bit segment. LARGE and SMALL
can also be used with other ambiguous instructions,
such as LIDT and LGDT.

LARGE

Returns a byte describing a symbol

Ideal

SYMTYPE <expression>

SYMTYPE functions very similarly to . TYPE, with one
minor difference: If expression contains an undefined
symbol, SYMTYPE returns an error, unlike .TYPE.

.TYPE

Forces expression to be 10-byte size

Ideal

TBYTE expression

expression must be an address. The result is an expres­
sion that points to the same memory address but always
has TBYTE size, regardless of the original size of
expression.

You usually use TBYTE to define the size of a forward­
referenced expression, or to explicitly state the size of a
register indirect expression from which the size cannot
be determined.

To perform this function in MASM mode, you must use
the PTR directive preceded by the TBYTE type.

PTR

Turbo Assembler Reference Guide

Example

THIS
Function

Mode

Syntax

Remarks

Example

. TYPE

Function

Mode

Syntax

Remarks

fld [TBYTE bxl ;sizeless indirect
fst [TBYTE Xl ;forward reference
X DT 0

Creates an operand whose address is the current seg­
ment and location counter

MASM,Ideal

THIS type

type describes the size of the operand and whether it
refers to code or data. It can be one of the following:

• NEAR, FAR, or PROC (PROC is the same as either
NEAR or FAR, depending on the memory set using
the MODEL directive)

.BYTE, WORD, DATAPTR, DWORD, FWORD,
PWORD, QWORD, TBYTE, ora structure name

You usually use this operator to build EQU and =
statements.

ptrl EQU THIS WORD ;same as following statement
ptr2 LABEL WORD

Returns a byte describing a symbol

MASM

.TYPE name

name is a symbol that mayor may not be defined in the
source file .. TYPE returns a byte that describes the sym­
bol with the following fields:

Chapter 2, Operators 41

See also

Example

TYPE

Function

Mode

Syntax

Remarks

42

Bit Description

o Program relative symbol
1 Data relative symbol
2 Constant
3 Direct addressing mode
4 Is a register
5 Symbol is defined
7 Symbol is external

If bits 2 and 3 are both zero, the expression uses register
indirection (like [BX], and so on).

If .TYPE returns zero, the expression contained an
undefined symbol.

• TYPE is usually used in macros to determine how to
process different kinds of arguments.

SYMTYPE

IF (.TYPE ABC) AND 3
ASSUME ds:SEG abc
mov ax,SEG abc
mov ds,ax

ENDIF

;is it segment-relative?

Returns a number indicating the size or type of symbol

MASM,Ideal

TYPE expression

TYPE returns one of the following values, based on the
type of expression:

Turbo Assembler Reference Guide

See also

Example

BYTE 1
WORD 2
DWORD 4
FWORD 6
PWORD 6
QWORD 8
TBYTE 10
NEAR OFFFFHh
FAR OFFFEh
constant 0
structure t of bytes in structure

LENGTH, SIZE

bvar DB

darray DD 10 DUP (1)
X STRUC

DW ?
DT ?

X ENDS
fp EQU THIS FAR
tbvar = TYPE bvar
tdarray = TYPE darray
tx = TYPE x
tfp = TYPE fp

;= 1
;= 4
;=12
;OFFFEh

UNKNOWN
Function

Mode

Syntax

Remarks

Removes type infonnation from an expression

Ideal

UNKNOWN expression

expression is an address. The result is the same expres­
sion, but with its type (BYTE, WORD, and so on)
removed.

Use UNKNOWN to force yourself to explicitly mention
a size whenever you want to reference a location. This is
useful if you want to treat the location as a type of
union, allowing the storage of many different data
types. Incorrectly then, if you define another name
without an explicit size to reference the location, the
assembler can't use the original data allocation size.

You can also use an address with UNKNOWN size
much like you would use register indirect memory­
referencing for one operand, and pin down the size of

Chapter 2, Operators 43

See also

Example

WIDTH
Function

Mode

Syntax

Remarks

See also

Example

44

the operation by using a register for the other operand.
By defining a name as UNKNOWN, you can use it
exactly as you would an anonymous register expression
such as [BX].

To perform this function in MASM mode, you must use
the PTR directive preceded by the BYTE type.

PTR

• DATA
workbuf DT 0
workptr EQU UNKNOWN WORKBUF

.CODE
;EXAMPLE 1

mov [BYTE PTR WORKPTR],l
fstp [QWORD PTR WORKPTR]
mov [WORKPTR],l

;EXAMPLE 2
mov aI, [WORKPTR]
mov ax, [WORKPTR]

;can hold up to a DT
;anonymous pointer

;store a byte
;store a qword
;error--no type

;no complaint
;no complaint either!

Returns the wid th in bits of a field in a record

MASM, Ideal

WIDTH recordfieldname
WIDTH record

recordfieldname is the name of any field name in a
previously defined record. WIDTH returns a value of
the number of bits in the record that recordfieldname
occupies.

record is the name of a previously defined record.
WIDTH returns a value of the total number of bits for
all the fields in the record.

MASK

;Macro determines maximum value for a field
maxval MACRO FIELDNAME
value=2

REPT WIDTH FIELDNAME - 1
value = value * 2;

ENDM

Turbo Assembler Reference Guide

WORD
Function

Mode

Syntax

Remarks

See also

Example

XOR
Function

Mode

Syntax

Remarks

See also

Example

value = value - 1
ENDM

Forces expression to be word size

Ideal

WORD expression

expression must be an address. The result is an expres­
sion that points to the same memory address but always
has WORD size, regardless of the original size of
expression.

You usually use WORD to define the size of a forward­
referenced expression, or to explicitly state the size of a
register indirect expression from which the size cannot
be determined.

To perform this function in MASM mode, you must use
the PTR directive preceded with the WORD type.

PTR

mov [WORD bxl,1
mov [WORD Xl,1
X DW 0

iword immediate move
iforward reference

Bitwise logical exclusive OR

MASM, Ideal

expressionl XOR expression2

XOR performs a bit-by-bit logical exclusive OR of each
bit in expressionl and expression2. The result has a 1 in
any bit position that had a 1 in one expression but not in
the other, and a 0 in all other bit positions.

AND, NOT, OR

mov al,11110000b XOR 11000011b ;AL = 00110011b

Chapter 2, Operators 45

The Special Macro Operators

You use the special macro operators when calling macros and within macro
and repeat-block definitions. You can also use them with the arguments to
conditional assembly directives.

Here's a brief summary of the special macro operators:

&
<>
!
%

Substitute operator

"

Literal text string operator
Quoted character operator
Expression evaluate operator
Suppressed comment

The operators let you modify symbol names and individual characters so
that you can either remove special meaning from a character or determine
when an argument gets evaluated.

&

Function

Mode

Syntax

Remarks

Example

46

Substitute operator

MASM,Ideal

&name

name is the value of the actual parameter in the macro
invocation or repeat block. In many situations, param­
eter substitution is automatic, and you don't have to use
this operator. You must use this operator when you wish
substitution to take place inside a quoted character
string, or when you want to "paste" together a symbol
from one or more parameters and some fixed characters.
In this case, the & prevents the characters from being
interpreted as a single name.

MAKEMSG MACRO StrDef,NUM
MSG & NUM DB '&StrDef'
ENDM

If you call this macro with

MAKEMSG 9,<Enter a value: >

it will expand to

MSG9 DB 'Enter a value: '

Turbo Assembler Reference Guide

<>
Function

Mode

Syntax

Remarks

Example

Literal text string operator

MASM, Ideal

<text>

text is treated as a single macro or repeat parameter,
even if it contains commas, spaces, or tabs that usually
separate each parameter. Use this operator when you
want to pass an argument that contains any of these
separator characters.

You can also use this operator to force Turbo Assembler
to treat a character literally, without giving it any special
meaning. For example, it you wanted to pass a semi­
colon (;) as a parameter to a macro invocation, you
would have to enclose it in angle brackets «;» to
prevent it from being treated as the start of a comment.

Turbo Assembler removes the outside set of angle
brackets each time a parameter is passed during the
invocation of a macro. To pass a parameter down
through several levels of macro expansion, you must
supply one set of angle brackets for each level.

MANYDB MACRO VALS
IRP X, <VALS>

ENDM
ENDM

When calling this macro, you must enclose multiple
values in angle brackets so they get treated as the single
parameter V ALS:

MANYDB <4,6,0,8>

The IRP repeat directive still has angle brackets around
the parameter name because the set of brackets around
the parameter are stripped when the macro is called.

Chapter 2, Operators 47

, .
Function

Mode

Syntax

Remarks

Example

%

Function

Mode

Syntax

Remarks

48

Quoted character opera tor

MASM, Ideal

! character

The! operator lets you call macros with arguments that
contain special macro operator characters. This is some­
what equivalent to enclosing the character in angle
brackets. For example,!& is the same as <&>.

MAKEMSG MACRO StrDef,NUM
MSG & NUM DB '&StrDef'
ENDM

MAKEMSG <Can't enter !> 99>

In this example, the argument would have been pre­
maturely terminatedif the! operator had not been used.

Expression evaluate operator

MASM,Ideal

% expressi on

expression can be either a numeric expression using any
of the operands and operators described in this chapter
or it can be a text equate. If it is a numeric expression,
the string that is passed as a parameter to the macro
invocation is the result of evaluating the expression. If
expression is a text equate, the string passed is the text of
the text equate. The evalua ted expression will be
represented as a numerical string in the current RADIX.

Use this operator when you want to pass the string
representing a calculated result, rather than the expres­
sion itself, to a macro. Also, a text macro name can be
specified after the %, causing a full substitution of the
text macro body for the macro argument.

Turbo Assembler Reference Guide

Example

11

Function

Mode

Syntax

Remarks

Example

DEFSYM MACRO NUM
???&NUM:
ENDM

DEFSYM %5+4

results in the following code label definition:

???9:

Suppressed comment

MASM,Ideal

iitext

Turbo Assembler ignores all text following the double
semicolon (;;). Normal comments are stored as part of
the macro definition and appear in the listing any time
the macro is expanded. Comments that start with a
double semicolon (;;) are not stored as part of the macro
definition. This saves memory, particularly if you have a
lot of macros that contain a lot of comments.

SETBYTES MACRO VarName,val
VarName DB 10 DUP (val) iithis comment doesn't get saved
ENDM

Chapter 2, Operators 49

50 Turbo Assembler Reference Guide

c H A p T E R

3

Directives

A source statement can either be an instruction or a directive. An instruction
source line generates object code for the processor operation specified by the
instruction mnemonic and its operands. A directive source line tells the
assembler to do something unrelated to instruction generation, including
defining and allocating data and data structures, defining macros, speci­
fying the fonnat of the listing file, controlling conditional assembly, and
selecting the processor type and instruction set.

Some directives define a symbol whose name you supply as part of the
source line. These include, for example, SEGMENT, LABEL, and GROUP.
Others change the behavior of the assembler but do not result in a symbol
being defined, for example, ORG, IF, %LIST.

The directives presented here appear in alphabetical order (excluding
punctuation); for example, .CODE appears just before CODESEG.

The reserved keywords %TOC and %NOTOC do not perform any
operation in the current version of Turbo Assembler. Future versions will
use these keywords, so you should avoid using them as symbols in your
programs.

The directives fall into three categories:

1. The MASM-style directives: Turbo Assembler supports all MASM-style
directives. When you use Turbo Assembler in Ideal mode, the syntax of
some of these directives changes. For these directives, the description
notes the syntax for both modes.

2. The new Turbo Assembler directives: These directives provide added
functionality beyond that provided by MASM.

Chapter 3, Directives 51

3. Turbo Assembler directives that are synonyms for existing MASM
directives: These synonyms provide a more organized alternative to
some existing MASM directives. For example, rather than .LIST and
.XLIST, you use %LIST and %NOLIST. As a rule, all paired directives
that enable and disable an option have the form xxxx and NOxxxx. The
synonyms also avoid using a period (.}as the first character of the
directive name. The MASM directives that start with a period are not
available in Turbo Assembler's Ideal mode, so you must use the new
synonyms instead.

All Turbo Assembler directives that control the listing file start with the
percent (%) character.

In the syntax section of each entry, the following typographical conventions
are used:

• Brackets ([]) indicate optional arguments (you do not need to type in the
brackets) .

.. Ellipses (...) indicate that the previous item may be repeated as many
times as desired .

• Items in italics are placeholders that you replace with actual symbols and
expressions in your program.

Sample Directive
Function

Mode

Syntax

Remarks

See also

Example

S2

Brief description of what the directive does.

What mode(s} the directive operates in.

How the directive is used; italicized items are user­
defined

General information about the directive.

Other related directives.

Sample code using the directive.

Turbo Assembler Reference Guide

.186
Function

Mode

Syntax

Remarks

See also

Example

.286
Function

Mode

Syntax

Remarks

See also

Example

.286C
Function

See also

Enables assembly of 80186 instructions

MASM

.186

.186 enables assembly of the additional instructions sup­
ported by the 80186 processor. (Same as P186.)

.8086, .286, .286C, .286P, .386, .386C, .386P, P8086, P286,
P286N, P286P, P386, P386N, P386P

.186
push 1 ;valid instruction on 186*

Enables assembly of non-privileged 80286 instructions

MASM

.286

.286 enables assembly of the additional instructions
supported by the 80286 processor in non-privileged
mode. It also enables the 80287 numeric processor
instructions exactly as if the .287 or P287 directive had
been issued. (Same as P286N and .286C.)

.8086, .186, .286C, .286P, .386, .386C, .386P, P8086, P286,
P286N, P286P, P386, P386N, P386P

.286
fstsw ax ionly allowed with 80287

Enables assembly of non-privileged 80286 instructions

.8086, .186, .286, .286P, .386, .386C, .386P, P8086, P286,
P286N, P286P, P386, P386N, P386P

Chapter 3, Directives 53

.286P
Function

Mode

Syntax

Remarks

See also

.287
Function

Mode

Syntax

Remarks

See also

Example

.386
Function

Mode

Syntax

54

Enables assembly of all 80286 instructions

MASM

.286P

.286P enables assembly of all the additional instructions
supported by the 80286 processor, including the
privileged mode instructions. It also enables the 80287
numeric processor instructions exactly as if the .287 or
P287 directive had been issued. (Same as P286P.)

.8086, .186, .286, .286C, .386, .386C, .386P, P8086, P286,
P286~,P286P,P386,P386~,P386P

Enables assembly of 80287 coprocessor instructions

MASM

.287

.287 enables assembly of all the 80287 numeric coproces­
sor instructions. Use this directive if you know you'll
never run programs using an 8087 coprocessor. This
directive causes floating-point instructions to be
optimized in a manner incompatible with the 8087, so
don't use it if you want your programs to run using an
8087. (Same as P287.)

.8087, .387, P8087, P~087, P287, P387

.287
fsetprn ;only on 287

Enables assembly of non-privileged 80386 instructions

MASM

.386

Turbo Assembler Reference Guide

Remarks

See also

Example

.386C
Function

See also

.386P

Function

Mode

Syntax

Remarks

See also

.387
Function

Mode

Syntax

Remarks

.386 enables assembly of the additional instructions sup­
ported by the 80386 processor in non-privileged mode. It
also enables the 80387 numeric processor instructions
exactly as if the .387 or P387 directive had been issued.
(Same as P386N and .386C.)

.8086, .186, .286C, .286, .286P, .386C, .386P, P8086, P286,
P286N, P286P, P386, P386N, P386P

.386
stosd ;only valid as 386 instruction

Enables assembly of 80386 instructions

.8086, .186, .286C, .286, .286P, .386, .386P, P8086, P286,
P286N, P286P, P386,P386N, P386P

Enables assembly of all 80386 instructions

MASM

.386P

.386P enables assembly of all the additional instructions
supported by the 80386 processor, including the
privileged mode instructions. It also enables the 80387
numeric processor instructions exactly as if the .387 or
P387 directive had been issued. (Same as P386P.)

.8086, .186, .286C, .286, .286N, .286P, .386, .386C, P8086,
P286,P286N,P286P,P386,P386N,P386P

Enables assembly of 80387 coprocessor instructions

MASM

.387

.387 enables assembly of all the 80387 numeric coproces­
sor instructions. Use this directive if you know you'll

Chapter 3, Directives 55

See also

Example

.8086
Function

Mode

Syntax

Remarks

See also

.8087
Function

Mode

Syntax

56

never run programs using an 8087 coprocessor. This
directive causes floating-point instructions to be
optimized in a manner incompatible with the 8087, so
don't use it if you want your programs to run using an
8087. (Same as P387.)

.8087, .287, 8087, PN087, P287, P387

.387
fsin iSIN() only available on 387

Enables assembly of 8086 instructions only

MASM

.8086

.8086 enables assembly of the 8086 instructions and dis­
ables all instructions available only on the 80186, 80286,
and 80386 processors. It also enables the 8087 copro­
cessor instructions exactly as if the .8087 or 8087 had
been issued.

This is the default instruction set mode used by Turbo
Assembler when it starts assembling a source file.
Programs assembled using this mode will run on all
members of the 80x86 processor family. If you know that
your program will only be run on one of the more
advanced processors, you can take advantage of the
more sophisticated instructions of that processor by
using the directive that enables that processor's
instructions. (Same as P8086.)

J.86, .286C, .286, .286P, .386C, .386, .386P, P8086, P286,
P286N,P286P,P386,P386N,P386P

Enables assembly of 8087 coprocessor instructions

MASM

.8087

Turbo Assembler Reference Guide

Remarks

See also

Example

. .
Function

Mode

Syntax

Remarks

See also

Example

.8087 enables all the 8087 coprocessor instructions, and
disables all those coprocessor instructions available only
on the 80287 and 80387.

This is the default coprocessor instructions set used by
Turbo Assembler. Programs assembled using this mode
will run on all members of the 80x87 coprocessor family.
If you know that your program will only be run on one
of the more advanced coprocessors, you can take advan­
tage of the more sophisticated instructions of that
processor by using the particular directive that enables
that processor's instructions. (Same as P8087.)

.287, .387, 8087, PN087, P287, P387

.8087
fstsw MEMLOC ino FSTSW AX on 8087

Defines a near code label

MASM, Ideal

name:

name is a symbol that you have not previously defined
in the source file. You can place a near code label on a
line by itself or at the start of a line before an instruction.
You usually use a near code label as the destination of a
]MP or CALL instruction from within the same
segment.

The code label will only be accessible from within the
current source file unless you use the PUBLIC directive
to make it accessible from other source files.

This directive is the same as using the LABEL directive
to define a NEAR label; for example A: is the same as A
LABEL NEAR.

LABEL

jne A iskip following instruction
inc si

A: iJNE goes here

Chapter 3, Directives 57

Function

Mode

Syntax

Remarks

See also

Example

ALIGN
Function

Mode

Syntax

Remarks

58

Defines a numeric equate

MASM,Ideal

name = expression

name is assigned the result of evaluating expression,
which must evaluate to either a constant or an address
within a segment. name can either be a new symbol
name, or a symbol that was previously defined using the
= directive.

You can redefine a symbol that was defined using the =
directive, allowing you to use the symbols as counters.
(See the example that follows.)

You can't use = to assign strings or to redefine keywords
or instruction mnemonics; you must use EQU to do
these things.

The = directive has far more predictable behavior than
the EQU directive in MASM mode, so you should use =
instead of EQU wherever you can.

EQU

BitMask = 1 ;initialize bit mask
BittBl LABEL BYTE

REPT 8
DB BitMask

BitMask = BitMask * 2 ;shift the bit to left
ENDM

Rounds up the location counter to a power-of-two
address

MASM,Ideal

ALIGN boundary

boundary must be a power of 2 (for example, 2, 4, 8, and
so on).

If the location counter is not already at an offset that is a
multiple of boundary, single byte NOP instructions are

Turbo Assembler Reference Guide

See also

Example

.ALPHA
Function

Mode

Syntax

Remarks

inserted into the segment to bring the location counter
up to the desired address. If the location counter is
already at a multiple of boundary, this directive has no
effect.

You can't reliably align to a boundary that is more strict
than the segment alignment in which the ALIGN
directive appears. The segment's alignment is specified
when the segment is first started with the SEGMENT
directive.

For example, if you have defined a segment with

CODE SEGMENT PARA PUBLIC

you can say ALIGN 16 (same as PARA) but you can't
say ALIGN 32, since that is more strict than the align­
men t indica ted by the PARA keyword in the
SEGMENT directive. ALIGN generates a warning if the
segment alignment is not strict enough.

EVEN, EVENDATA

ALIGN 4 ialign to DWORD boundary for 386
BigNum DD 12345678

Sets alphanumeric segment-ordering

MASM

• ALPHA

You usually use .ALPHA to ensure compatibility with
very old versions of MASM and the IBM assembler. The
default behavior of these old assemblers is to emit seg­
ments in alphabetical order, unlike the newer versions.
Use this option when you assemble source files written
for old assembler versions.

If you don't use this directive, the segments are ordered
in the same order that they were encountered in the
source file. The DOSSEG directive can also affect the
ordering of segments .

. ALPHA does the same thing as the IA command-line
option. If you used the IS command-line option to force
sequential segment-ordering, .ALPHA will override it.

Chapter 3, Directives 59

See also

Example

ARC
Function

Mode

Syntax

Remarks

60

DOSSEG, .SEQ,

.ALPHA
XYZ SEGMENT
XYZ ENDS
ABC SEGMENT ;this segment will be first
ABC ENDS

Sets up arguments on the stack for procedures

MASM,Ideal

arg argument [,argument] ... [=symbol] [RETURNS
argument [,argument]]

ARG usually appears within a PROC/ENDP pair,
allowing you to access arguments pushed on the stack
by the caller of the procedure. Each argument is assigned
a positive offset from the BP register, presuming that
both the return address of the function call and the
caller's BP have been pushed onto the stack already.

argument describes an argument the procedure is called
with. The language specified with the .MODEL directive
determines whether the arguments .are in reverse order
on the stack. You must always list the arguments in the
same order they appear in the high-level language
function that calls the procedure. Turbo Assembler
reads them in reverse order if necessary. Each argument
has the following syntax:

argname[[col,lntl]] [: [distance] PTR] type] [:count2]

argname is the name you'll use to refer to this argument
throughout the procedure. distance is optional and can
be either NEAR or FAR to indicate that the argument is
a pointer of the indicated size. type is the data type of the.
argument and can be BYTE, WORD, DATAPTR,
DWORD, FWORD, PWORD, QWORD, TBYTE, or a
structure name. countl and count2 are the number of
elements of the specified type. The total count is
calculated as countl "" count2.

If you don't specify type, WORD is assumed.

Turbo Assembler Reference Guide

If you add PTR to indicate that the argument is in fact a
pointer to a data item, Turbo Assembler emits this
debug information for Turbo Debugger. Using PTR only
affects the generation of additional debug information,
not the code Turbo Assembler generates. You must still
write the code to access the actual data using the pointer
argument.

If you use PTR alone, without specifying NEAR or FAR
before it, Turbo Assembler sets the pointer size based on
the current memory model and, for the 386 processor,
the current segment address size (16 or 32 bit). The size
is set to WORD in the tiny, small, and medium memory
models and to DWORD for all other memory models
using 16-bit segments. If you're using the 386 and are in
a 32-bit segment, the size is set to DWORD for tiny,
small, and medium models and to FWORD for compact,
large, and huge models.

The argument name variables remain defined within the
procedure as BP-relative memory operands. For
example,

Func1 PROC NEAR
ARG A:WORD,B:DWORD:4,C:BYTE = D

defines A as [BP+4], B as [BP+6], Cas [BP+14], and D as
20.

Argument names that begin with the local symbol prefix
when local symbols are enabled are limited in scope to
the current procedure.

If you end the argument list with an equal sign (=) and a
symbol, that symbol will be equated to the total size of the
argument block in bytes. You can then use this value at
the end of the procedure as an argument to the RET
instruction, which effects a stack cleanup of any pushed
arguments before returning (this is the Pascal calling
convention).

Since it is not possible to push a byte-sized argument on
the 8086 processor family, any arguments declared of
type BYTE are considered to take 2 bytes of stack space.
This agrees with the way high-level languages treat
character variables passed as parameters. If you really
want to specify an argument as a single byte on the
stack, you must explicitly supply a count field, as in

Chapter 3. Directives 61

See also

Example

ASSUME
Function

Mode

Syntax

Remarks

62

ARG REALBYTE:BYTE:l

If you don't supply a count for BYTE arguments, a
count of 2 is presumed.

The optional RETURNS keyword introduces one or
more arguments that won't be popped from the stack
when the procedure returns to its caller. Normally, if
you specify the language as PASCAL or TP ASCAL
when using the .MODEL directive, all arguments are
popped when the procedure returns. If you place
arguments after the RETURNS keyword, they will be
left on the stack for the caller to make use of, and then
pop. In particular, you must define a Pascal string return
value by placing it after the RETURNS keyword.

LOCAL, PROC, USES

A sample Pascal procedure:

fp PROC FAR
ARG SRC:WORD,DEST:WORD = ARGLEN
push bp
mov bp,sp
mov di,DEST
mov si,SRC
;<Procedure body>
pop bp
ret ARGLEN

fp ENDP

Associates segment register with segment or group
name

MASM, Ideal

ASSUME segmentreg:name {,segmentreg:namej .•.
ASSUME segmentreg:NOTHING
ASSUME NOTHING

segmentreg is one of CS, DS, ES, or SS registers and, if
you have enabled the 80386 processor with the P386 or
P386N directives, the FS and GS registers.

name can be one of the following:

Turbo Assembler Reference Guide

See also

Example

%BIN
Function

Mode

Syntax

Remarks

Example

• the name of a group as defined using the GROUP
directive

• the name of a segment as defined using the
SEGMENT directive or one of the simplified
segmentation directives

• an expression starting with the SEG operator

• the keyword NOTHING

The NOTHING keyword cancels the association
between the designated segment register and segment
or group name. The ASSUME NOTHING statement
removes all associations between segment registers and
segment or group names.

You can set multiple registers in a single ASSUME
statement, and you can also place multiple ASSUME
statements throughout your source file.

See "The ASSUME Directive" in Chapter 10 of the User's
Guide for a complete discussion of how to use the
ASSUME directive.

GROUP, SEGMENT

DATA SEGMENT
mov ax, DATA
mov ds,ax
ASSUME ds:DATA

Sets the width of the object code field in the listing file

MASM, Ideal

%BIN size

size is a constant. If you don't use this directive, the
instruction opcode field takes up 20 columns in the
listing file.

%BIN 12 ;set listing width to 12 columns

Chapter 3, Difecffves 63

CATSTR
Function

Mode

Syntax

Remarks

See also

Example

.CODE
Function

Mode

Syntax

Remarks

64

Concatenates several strings to form a single string

MASM51, Ideal

name CATSTR string[,string] •••

name is given a value consisting of all the characters
from each string combined into a single string.

Each string may be one of the following:

• a string argument enclosed in angle brackets,like
<abc>

• a previously defined text macro

• a numeric string substitution starting with percent (%)

SUBSTR, INSTR, SIZESTR

LETTERS CATSTR <abc>,<def> iLETTERS = lIabcdefli

Defines the start of a code segment

MASM

.CODE [name]

The .CODE directive indicates the start of the executable
code in your module. You must first have used the
.MODEL directive to specify a memory model. If you
specify the medium or large memory model, you can
follow the .CODE directive with an optional name that
indicates the name of the segment. This way you can put
multiple code segments in one file by giving them each a
different name.

You can place as many .CODE directives as you want in
a source file. All the different pieces with the same name
will be combined to produce one code segment exactly
as if you had entered all the code at once after a single
.CODE directive.

Using the .CODE directive allows the CS register to
access the current code segment. This behavior is exactly

Turbo Assembler Reference Guide

See also

Example

CODESEG
Function

Mode

Remarks

See also

COMM
Function

Mode

Syntax

Remarks

as if you had put this directive after each .CODE
directive in your source file:

ASSUME cs:@code

CODESEG, .DATA, .FARDATA, .FARDATA?,
.MODEL, .STACK, .DATA, .FARDATA, .FARDATA?,
.MODEL, .STACK

• CODE
mov al,X
• DATA
X DB ?

;here comes the code

;switch to data segment

Defines the start of the code segment

MASM, Ideal

CODESEG is the same as .CODE.

CODE, .DATA, .FARDATA, .FARDATA?, .MODEL,
.STACK

Defines a communal variable

MASM,Ideal

COMM definition [,definition] •..

Each definition describes a symbol and has the following
format:

[distance] name:type [:count]

distance is optional and can be either NEAR or FAR. It
specifies whether the communal variable is part of the
near data space (DGROUP) or whether it occupies its
own far segment. If you do not specify a distance, it will
default to the size of the default data memory model. If
you are not using the simplified segmentation directives
(.MODEL, and so on), the default size is NEAR. With
the tiny, small, and medium models, the default size is
also NEAR; all other models are FAR.

Chapter 3, Directives 65

See also

Example

name is the symbol that is to be communal and have
storage allocated at link time. type can be one of the
following: BYTE, WORD, DATAPTR, DWORD,
FWORD, PWORD, QWORD, TBYTE, or a structure
name.

The optional count specifies how many items this
communal symbol defines. If you do not specify a count,
one is assumed. The total space allocated for the com­
munal variable is the count times the length specified by
the type field.

You can define more than one communal symbol by
separating each definition with a comma (,).

Communal variables are allocated by the linker.

In MASM mode, communal symbols declared outside of
any segment are presumed to be reachable via the DS
register, which may not always be a valid assumption.
Make sure that you either place the correct segment
value in DS or use an explicit segment override when
referring to these variables. In Ideal mode, Turbo
Assembler correctly checks for whether the communal
variable is addressable, using any of the current segment
registers as described with the ASSUME directive.

Communal variables can't be initialized. Use the
GLOBAL directive if you wish to initialize data items
that are to be shared between modules. The linker also
doesn't guarantee the allocation of communal variables
in any particular order, so you can't make assumptions
about data items allocated by COMM directives on
sequential source lines.

EXTRN, GLOBAL, PUBLIC

COMM buffer:BYTE:512 ;allocated at link time

COMMENT
Function

Mode

Syntax

66

Starts a comment block

MASM

COMMENT delimiter [text]
[text]

delimiter

Turbo Assembler Reference Guide

Remarks

Example

%CONDS
Function

Mode

Syntax

Remarks

See also

Example

.CONST
Function

Mode

Syntax

Remarks

COMMENT ignores all text between the first delimiter
character and the line containing the next occurrence of
the delimiter. delimiter is the first nonblank character
after the COMMENT directive.

COMMENT *
Any old stuff

*

Shows all statements in conditional blocks in the listing

MASM,Ideal

%CONDS

%CONDS is the default conditional listing mode if you
don't use any listing control directives. (Same as
.LFCOND.)

When %CONDS is in effect, the listing will show all
statements within conditional blocks, even those blocks
that evaluate as false and don't result in the evaluation
of enclosed statements.

%NOCONDS, .LFCOND, .SFCOND, .TFCOND

%CONDS
IF 0

mov ax,l iin listing, despite "IF 0" above
ENDIF

Defines constant data segment

MASM

.CONST

The .CONST directive indicates the start of the segment
in your program containing constant data. This is data
your program requires, but it will not be changed when
the program executes. You can put things such as
prompt and message strings in this segment.

Chapter 3, Directives 67

See also

Example

CONST
Function

Mode

See also

.CREF
Function

Mode

Syntax

Remarks

See also

%CREF
Function

Mode

Syntax

68

You don't have to use this directive when writing an
assembler-only program. It exists so that you can write
routines that interface to high-level languages and then
use this for initializing constant data .

. CODE, .DATA, .DATA?, .FARDATA, .FARDATA?,

.MODEL

.CONST
MSG DB "Execution terminated"

Defines constant data segment

MASM, Ideal

.CODE, .CONST, .DATA, DATA?, .FARDATA,

.FARDATA?

Enables cross-reference listing (CREF)

MASM

.CREF

.CREF allows cross-reference information to be accumu­
lated for all symbols encountered from this point
forward in the source file. This directive reverses the
effect of any %XCREF or .XCREF directives that
inhibited the collection of cross-reference information.

Turbo Assembler includes cross-reference information
in the listing file, as well as in a separate.XRF file.

%CREF

Enables cross-reference listing (CREF)

MASM,Ideal

%CREF

Turbo Assembler Reference Guide

See also

Example

%NOCREF, .CREF, .XCREF, %CREFALL, %CREFREF,
%CREFUREF

%CREF
WVAL DW 0 iCREF shows WVAL defined here

%CREFALL
Function

Mode

Syntax

Remarks

See also

Example

Lists all symbols in cross-reference

MASM,Ideal

%CREFALL

%CREFALL reverses the effect of any previous
%CREFREF or %CREFUREF directives that disabled
the listing of unreferenced or referenced symbols. After
issuing %CREFALL, all subsequent symbols in the
source file will appear in the cross-reference listing.

By default, Turbo Assembler uses this mode when
assembling your source file.

%CREFREF, %CREFUREF

%CREFREF
ARGI EQU [bp+4]
%CREFALL
ARG2 EQU [bp+6]
ARG3 EQU [bp+8]
mov ax,ARG3
END

inot referenced, won't be in listing

inot referenced, appears anyway
ireferenced, appears in listing

%CREFREF
Function

Mode

Syntax

Remarks

See also

Disables listing of unreferenced symbols in cross­
reference

MASM,Ideal

%CREFREF

%CREFREF causes symbols that are defined but never
referenced to be omitted from the cross-reference listing.
Normally when you request a cross-reference, these
symbols appear in the symbol table.

%CREF, %CREFUREF, %CREFALL

Chapter 3, Directives 69

Example %CREF
abc EQU 4
xyz EQU 1
mov ax,xyz
END

iwill not appear in CREF listing
iwill appear in listing
imakes XYZ appear in listing

%CREFUREF
Function

Mode

Syntax

Remarks

See also

Example

%CTLS
Function

Mode

Syntax

Remarks

See also

Example

70

Lists only the unreferenced symbols in cross-reference

MASM, Ideal

%CREFUREF

%CREFUREF enables the listing of un referenced sym­
bols in the symbol table cross-reference. When you use
this directive, only unreferenced symbols appear in the
symbol table. To see both referenced and unreferenced
symbols, use the %CREFALL directive.

%CREFALL, %CREFREF

%CREF
abc EQU 2 idoesn't appear in listing
%CREFUREF
def EQU 1 iappears in listing
END

Prints listing controls

MASM,Ideal

%CTLS

%CTLS causes listing control directives (such as % LIST,
% INCL, and so on) to be placed in the listing file;
normally, they are not listed. It takes effect on all
subsequent lines, so the %CTLS directive itself will not
appear in the listing file.

%NOCTLS

%CTLS
%NOLIST ithis will be in listing file

Turbo Assembler Reference Guide

.DATA
Function

Mode

Syntax

Remarks

See also

Example

.DATA?
Function

Mode

Syntax

Remarks

Defines the start of a data segment

MASM

• DATA

The .DATA directive indicates the start of the initialized
data in your module. You must first have used the
.MODEL directive to specify a memory model.

You can place as many .DATA directives as you want in
a source file. All the different pieces will be combined to
produce one data segment, exactly as if you had entered
all the data at once after a single .DATA directive.

The data segment is put in a group called DGROUP,
which also contains the segments defined with the
.STACK, .CONST, and .DATA? directives. You can
access data in any of these segments by making sure that
one of the segment registers is pointing to DGROUP.

See the .MODEL directive for complete information on
the segment attributes for the data segment.

.CODE, .CONST, .DATA?, DATASEG, .FARDATA,

.FARDATA?, .MODEL, .STACK

• DATA
ARRAY 1 DB 100 DUP (0) iNEAR initialized data

Defines the start of an uninitialized data segment

MASM

• DATA?

The .DATA? directive indicates the start of the unini­
tialized data in your module. You must first have used
the .MODEL directive to specify a memory model.

You create uninitialized data using the DUP operator
with the? symbol. For example,

DB 6 DUP (?)

Chapter 3, Directives 71

See also

Example

DATASEG
Function

Mode

Syntax

Remarks

See also

DB
Function

Mode

Syntax

Remarks

72

You do not have to use this directive when writing an
assembler-only program. It exists so that you can write
routines that interface to high-level languages and then
use this directive for uninitialized data.

You can place as many .DATA? directives as you want
in a source file. All the pieces will be combined to pro­
duce one data segment, exactly as if you had entered all
the data at once after a single .DATA? directive.

The uninitialized data segment is put in a group called
DGROUP, which also contains the segments defined
with the .STACK, .CONST, and .DATA directives.

See .MODEL for complete information on the segment
attributes for the uninitialized data segment.

.CODE, .CONST, .DATA, .FARDATA, .FARDATA?,

.MODEL, .STACK

. DATA?
TEMP DD 4 DUP (?) ;uninitialized data

Defines the start of a data segment

MASM, Ideal

DATASEG

DAT ASEG is the same as .DAT A. It must be used in
Ideal mode only.

.CODE, .CONST, .DATA, .DATA?, .FARDATA,

.FARDATA?, .MODEL, .STACK

Allocates byte-size storage

MASM, Ideal

[name] DB expression [,expression] .••

name is the symbol you'll subsequently use to refer to
the data. If you don't supply a name, the data will be

Turbo Assembler Reference Guide

See also

Example

DD
Function

Mode

Syntax

Remarks

allocated, but you won't be able to refer to it using a
symbolic name.

Each expression allocates one or more bytes and can be
one of the following:

• A constant expression that has a value between -128
and 255.

• The question mark (?) indeterminate initialization
symbol; this allocates storage without giving it a
specific value.

• A character string of one or more characters.

• A repeated expression using the DUP operator.

DD, DF, DP, DQ, DT, DW

fibs DB 1,1,2,3,5,8,13
BUF DB 80 DUP (?)
MSG DB "Enter value: "

Allocates doubleword-sized storage

MASM, Ideal

[name] DD [type PTR] expression [,expression] ...

name is the symbol you'll subsequently use to refer to
the data. If you don't supply a name, the data will be
allocated, but you won't be able to refer to it using a
symbolic name.

type followed by PTR is optional. It adds debug
information to the symbol being defined, so that Turbo
Debugger can display its contents properly. It has no
effect on the data generated by Turbo Assembler. type
can be one of the following: BYTE, WORD, DATAPTR,
DWORD, FWORD, PWORD, QWORD, TBYTE,
SHORT, NEAR, FAR or a structure name. For example,

person STRUC
name DB 32 DUP(?)
age DW ?
person ENDS
PPTR DD person PTR 0 iPPTR is a far pointer
i to the structure

Chapter 3, Directives 73

See also

Example

% DEPTH
Function

Mode

Syntax

Remarks

Example

74

Each expression allocates one or more doublewords
(4 bytes) and may be one of the following:

• A constant expression that has a value between
-2,147,483,648 and 4,294,967,295.

• A short (32-bit) floating-point number.
• The question mark (?) indeterminate initialization

symbol; this allocates storage without giving it a
specific value.

• An address expression, specifying a far address in a
16-bit segment (segment:offset) or a near address in a
32-bit segment (32-bit offset only).

• A repeated expression using the DUP operator.

DB, DF, DP, DQ, DT, DW

Data32 SEGMENT USE32
Xarray DB 0,1,2,3
Data32 ENDS
Data SEGMENT
Consts DD 3.141, 2.718
DblPtr DO Consts
NrPtr DO Xarray
Biglnt DO 12345678
Darray DO 4 DUP (1)

;floating-point constants
;16-bit far pointer
;32-bit near pointer
;large integer
;4 integers

Sets size of depth field in listing file

MASM, Ideal

%DEPTH width

width specifies how many columns to reserve for the
nesting depth field in the listing file. The depth field
indicates the nesting level for INCLUDE files and macro
expansions. If you specify a width of 0, this field does
not appear in the listing file. Usually, you won't need to
specify a width of more than 2, since that would display
a depth of up to 99 without truncation.

The default width for this field is 1 column.

%OEPTH 2 ;show nesting levels> 9

Turbo Assembler Reference Guide

DF
Function

Mode

Syntax

Remarks

See also

Example

Defines far 48-bit pointer (6 byte) data

MASM, Ideal

[name] DF [type PTR] expression [,expression] •••

name is the symbol you'll subsequently use to refer to
the data. If you don't supply a name, the data will be
allocated, but you won't be able to refer to it using a
symbolic name.

type followed by PTR is optional. It adds debug
information to the symbol being defined, so that Turbo
Debugger can display its contents properly. It has no
effect on the data generated by Turbo Assembler. type
can be one of the following: BYTE, WORD, DATAPTR,
DWORD, FWORD, PWORD, QWORD, TBYTE,
SHORT, NEAR, FAR or a structure name. For example,

person STRUC
name DB 32 dup(?)
age DW ?
person ENDS
DATA SEGMENT USE32
PPTR DF person PTR 0 iPPTR is a 32-bit far pointer
i to the structure

Each expression allocates one or more 48-bit far pointers
(6 bytes) and may be one of the following:

a A constant expression that has a value between
-140,737,488,355,328 and 281,474,976,710,655 .

• The question mark (?) indeterminate initialization
symbol; this allocates storage without giving it a
specific value.

II An address expression, specifying a far address in a
48-bit segment (segment:48-bit offset) .

• A repeated expression using the DUP operator.

This directive is normally used only with the 30386
processor.

DB, DD, DP, DQ, DT, DW

.386
DATA SEGMENT USE32

Chapter 3, Directives 75

DISPLAY
Function

Mode

Syntax

Remarks

See also

Example

DOSSEG
Function

Mode

Syntax

Remarks

76

MSG DB "All done"
FmPtr DF MSG iFAR pointer to MSG
DATA ENDS

Outputs a quoted string to the screen

Ideal,MASM

DISPLAY "text"

text is any message you want to display; you must sur­
round it with quotes (""). The message is written to the
standard output device, which is usually the screen. If
you wish, you can use the DOS redirection facility to
send screen output to a file.

Among other things, you can use this directive to inform
yourself of the genera tion of sections of conditional
assembly.

%OUT

DISPLAY "Assembling EGA interface routines"

. Enables DOS segment-ordering at link time

MASM, Ideal

DOSSEG

You usually use DOSSEG in conjunction with the
.MODEL directive, which sets up the simplified seg­
mentation directives. DOSSEG tells the linker to order
the segments in your program the same way high-level
languages order their segments.

You should 'only use this directive when you are writing
stand-alone assembler programs, and then you only
need to use the DOSSEG directive once in the main
module that specifies the starting address of your
program.

Segments appear in the following order in the execut­
able program:

Turbo Assembler Reference Guide

See also

Example

DP
Function

Mode

See also

DQ
Function

Mode

Syntax

Remarks

1. All segments that have the class name 'CODE'.

2. All segments that do not have the class name 'CODE'
and are not in the group named DGROUP.

3. All segments in DGROUP in the following order:

a. All segments that have the class name
'BEGDATA'.

b. All segments that do not have the class name
'BEG DATA' , 'BSS', or 'STACK'.

c. All segmen ts with a class name of 'BSS'.

d. All segments with a class name of 'STACK'.

.MODEL

DOSSEG
.MODEL medium

Defines a far 48-bit pointer (6 byte) data area

MASM, Ideal

DB, DD, DF, DQ, DT, DW

Defines a quadword (8 byte) data area

MASM,Ideal

[name] DQ expression [,expression] ..•

name is the symbol you'll subsequently use to refer to
the data. If you don't supply a name, the data will be
allocated, but you won't be able to refer to it using a
symbolic name.

Each expression allocates one or more quadwords
(8 bytes) and can be one of the following:

• A constant expression that has a value between _263

and 264_I.

• A long (64-bit) floating-point number.

Chapter 3, Directives 77

See also

Example

DT
Function

Mode

Syntax

Remarks

See also

Example

78

• The question mark (?) indeterminate initialization
symbol; this allocates storage without giving it a
specific value.

• A repeated expression using the DUP operator.

DB, DD, DF, DP, DT, DW

Huglnt DQ 314159265358979323
BigFlt DQ 1.2345678987654321
Qarray DQ 10 DUP (?)

Defines a IO-byte data area

MASM,Ideal

[name] DT expression [,expression] ••.

name is the symbol you'll subsequently use to refer to
the data. If you don't supply a name, the data will be
allocated, but you won't be able to refer to it using a
symbolic name.

Each expression allocates one or more IO-byte values and
may be one of the following:

• A constant expression that has a value between _279

and 280_l.

• A packed decimal constant expression that has a value
between 0 and 99,999,999,999,999,999,999.

• The question mark (?) indeterminate initialization
symbol; this allocates storage without giving it a
specific value.

• A IO-byte temporary real formatted floating-point
number.

• A repeated expression using the DUP operator.

DB, DD, DF, DP, DQ, DW

PakNum DT 123456
TempVal DT 0.0000000001

;beware--packed decimal
;high precision FP

Turbo Assembler Reference Guide

DW
Function

Mode

Syntax

Remarks

See also

Example

Defines a word-size (2 byte) data area

MASM,Ideal

[name] ow [type PTR] expression [,expression] •••

name is the symbol you'll subsequently use to refer to
the data. If you don't supply a name, the data will be
allocated, but you won't be able to refer to it using a
symbolic name.

type followed by PTR is optional. It adds debug
in fo rma tion to the symbol being defined, so that Turbo
Debugger can display its contents properly. It has no
effect on the data generated by Turbo Assembler. type
can be one of the following: BYTE, WORD, DAT APTR,
DWORD, FWORD, PWORD, QWORD, TBYTE,
SHORT, NEAR, FAR or a structure name. For example,

Narray ow 100 OUP (?)
NPTR ow WORD PTR narray ;NPTR is a near pointer
; to a word

Each expression allocates one or more words (2 bytes)
and may be one of the following:

• A constant expression that has a value between
-32,767 and 65,535.

• The question mark (?) indeterminate initialization
symbol; this allocates storage without giving it a
specific value.

• An address expression, specifying a near address in a
16-bit segment (offset only).

• A repea ted expression using the DUP opera tor.

DB, DD, DF, DP, DQ, DT

int ow 12345
Wbuf ow 6 OUP (?)
Wptr ow Wbuf

;16-bit integer
;6 word buffer
;offset--only pointer to WBUF

Chapter 3, Directives 79

ELSE
Function

Mode

Syntax

Remarks

See also

Example

ELSEIF
Function

Mode

Syntax

Remarks

80

Starts alternative conditional assembly block

MASM,Ideal

IF condi tion
statementsl
[ELSE
statements2]
ENDIF

The statements introduced by ELSE are assembled if the
condition associated with the IF statement evaluates to
false. This means that either statementsl will be
assembled or statements2 will be assembled, but not
both.

The ELSE directive always pairs with the nearest
preceding IF directive that's not already paired with an
ELSE directive.

ENDIF, IF, 1Ft, IF2, IFB, IFDEF, IFDIF, IFDIFI, IFE,
IFIDN, IFIDNI, IFNB, IFNDEF

IF LargeModel EQ 1
les di,ADDR

ELSE
lea di,ADDR

ENDIF

Starts nested conditional assembly block if an expression
is True

MASM,Ideal

ELSEIF expression

expression must evaluate to a constant and cannot con­
tain any forward -referenced symbol names. If expression
evaluates to a nonzero value, the statements within the
conditional block are assembled, as long as the
conditional directive (IF, and so on) preceding the
ELSEIF evaluated to False.

Turbo Assembler Reference Guide

See also

Example

EMUL
Function

Mode

Syntax

Remarks

See also

Example

You may have any number of ELSEIF directives in a
conditional block. As soon as an ELSEIF is encountered
that has a true expression, that block of code is as­
sembled, and all other parts of the conditional block
defined by ELSEIF or ELSE are skipped. You can also
mix the various ELSExx directives in the same con­
ditional block.

ELSEIFl, ELSEIF2, ELSEIFB, ELSEIFDEF, ELSEIFDIF,
ELSEIFDIFI, ELSEIFE, ELSEIFIDN, ELSEIFIDNI,
ELSEIFNB, ELSEIFNDEF

IF ARGSIZE EQ 1
rnov al,argnarne

ELSEIF ARGSIZE EQ 2
rnov aX,argnarne

ELSE
%OUT BAD ARGSIZE

ENDIF

Generates emulated coprocessor instructions

MASM,Ideal

EMUL

Turbo Assembler normally generates real floating-point
instructions to be executed by an BOx87 coprocessor. Use
EMUL if your program has installed a software
floating-point emulation package, and you wish to
generate instructions that will use it. EMUL has the
same effect as specifying the Ie command-line option.

You can combine EMUL with the NOEMUL directive
when you wish to generate real floating-point
instructions in one portion of a file and emulated
instructions in another portion.

NOEMUL

Finit
EMUL
Fsave BUF

ireal 8087 coprocessor instruction

iernulated instruction

Chapter 3, Directives 81

END
Function

Mode

Syntax

Remarks

Example

ENDIF
Function

Mode

Syntax

Remarks

See also

Example

82

Marks the end of a source file

MASM,Ideal

END [startaddress]

startaddress is an optional symbol or expression that
specifies the address in your program where you want
execution to begin. If your program is linked from
multiple source files, only one file may specify a start­
address. startaddress may be an address within the
module; it can also be an external symbol defined in
another module, declared with the EXTRN directive.

Turbo Assembler ignores any text after the END
directive in the source file.

.MODEL small
• CODE
START:
iBody of program goes here
END START iprogram entry point is "START"
THIS LINE IS IGNORED
SO IS THIS ONE

Marks the end of a conditional assembly block

MASM, Ideal

IF condition
statements
ENDIF

All conditional assembly blocks started with one of the
IFxxxx directives must end with an ENDIF directive.
You can nest IF blocks up to 255 levels deep.

ELSE, IF, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI, IFE,
IFIDN, IFIDNI, IFNB, IFNDEF

IF DebugMode
mov ax/O
call DebugDump

ENDIF

iassemble following if debug mode not 0

Turbo Assembler Reference Guide

ENDM
Function

Mode

Syntax

Remarks

See also

Example

ENDP
Function

Mode

Syntax

Remarks

See also

Example

Indicates the end of a repeat block or a macro

MASM,Ideal

ENDM

The ENDM directive identifies the end of the macro
definition or a repeat block.

IRP, IRPC, MACRO, REPT

IRP reg,<ax,bx,cx,dx>
push reg
ENDM

Indicates the end of a procedure

MASM,Ideal

MASMmode:
[procname] ENDP

Ideal mode:
ENDP [procname]

If you supply the optional procname, it must match the
procedure name specified with the PROC directive that
started the procedure definition.

Notice that in Ideal mode, the optional procname comes
after the ENDP.

ENDP does not generate a RET instruction to return to
the procedure's caller; you must explicitly code this.

ARG, LOCAL, PROC

Loadlt PROC
iBody of procedure
ret

Loadlt ENDP

Chapter 3, Directives 83

ENDS
Function

Mode

Syntax

Remarks

See also

Example

EQU
Function

Mode

Syntax

Remarks

84

Marks end of current segment structure or union

MASM,Ideal

MASMmode:
[segmentname] ENDS
[strucname] ENDS

Ideal mode:
ENDS [segmentname]
ENDS [strucname]

ENDS marks the end of either a segment, structure, or
union. If you supply the optional segmentname, it must
rna tch the segment name specified with the matching
SEGMENT directive. Likewise, the optional strucname
must match the structure name specified with the
matching STRUC or UNION directive.

Notice that in Ideal mode, the optional name comes after
the ENDS.

SEGMENT, STRUC, UNION

DATA SEGMENT
Barray DB 10 DUP (0)
DATA ENDS

STAT STRUC
Mode DW ?
FuncPtr DD?
ENDS

;start of data segment

;end of data segment,
; optional "data" included

;end of structure definition

Defines a string, alias, or numeric equate

MASM,Ideal

name EQU expression

name is assigned the result of evaluating expression. name
must be a new symbol name that has not previously
been defined in a different manner. In MASM mode, you
can only redefine a symbol that was defined using the
EQU directive if it was first defined as a string equate.

Turbo Assembler Reference Guide

See also

Example

.ERR
Function

Mode

Syntax

Remarks

See also

Example

In MASM mode, EQU can result in one of three kinds of
equates being generated:

• Alias: Redefines keywords or instruction mnemonics,
and also allows you to assign alternative names to
other symbols you have defined. Alias EQUs can be
redefined.

• Expression: Evaluates to a constant or address, much
like when using the = directive.

• String: expression is stored as a text string to be
substituted later when name appears in expressions.
When expression cannot be evaluated as an alias,
constant, or address, it becomes a string expression.
String EQUs can be redefined.

=
BlkSize EQU 512
BufBlks EQU 4
BufSize EQU BlkSize*BufBlks
BufLen EQU BufSize
DoneMsg EQU <'Returning to DOS'>

Forces an error message

MASM

• ERR

;alias for BUFSIZE

.ERR causes an error message to occur at the line it is
encountered on in the source file.

You usually use this directive inside a conditional
assembly block that tests whether some assemble-time
condition has been satisfied.

.ERR1, .ERR2, .ERRE, .ERRNZ, .ERRNDEF, .ERRDEF,

.ERRB, .ERRNB, .ERRIDN, .ERRIDNI, .ERRDIF,

.ERRDIFI

IF $ GT 400h
.ERR
%OUT Segment too big

ENDIF

;segment too big

Chapter 3, Directives 85

ERR
Function

Mode

Syntax

Remarks

See also

.ERR1
Function

Mode

Syntax

Remarks

See also

Example

.ERR2
Function

Mode

Syntax

Remarks

86

Forces an error message

MASM, Ideal

ERR

Same as .ERR.

.ERR1, .ERR2, .ERRE, .ERRNZ, .ERRNDEF, .ERRDEF,

.ERRB, .ERRNB, .ERRIDN, .ERRIDNI, .ERRDIF,

.ERRDIFI

Forces an error message on pass 1

MASM

.ERRl

Since Turbo Assembler is a single-pass assembler, the
fact that .ERRl forces a message on pass 1 means that
the error message is forced on the assembly pass. This
means that the error message will appear on the screen
but will not appear in the listing file, which is generated
during a second pass. (This directive would have a
different meaning with a two-pass assembler.)

Again, since this is a single-pass assembler, this directive
also generates a warning message so that you know it's
pass-dependent and may not work as you expect.

.ERR2

.ERRl ;this won't appear in listing

Forces an error message on pass 2

MASM

.ERR2

Since Turbo Assembler is a single-pass assembler, the
fact that this forces a message on pass 2 means that it's

Turbo Assembler Reference Guide

See also

Example

.ERRB

Function

Mode

Syntax

Remarks

See also

Example

.ERRDEF
Function

Mode

Syntax

Remarks

done during the listing pass. Thus, the error message
will appear in the listing file, but not on the screen
during the actual assembly process. (.ERR2 has a
different meaning with a two-pass assembler.)

Again, since this is a single-pass assembler, this directive
also generates a warning message so that you know it's
pass-dependent and may not work as you expect.

.ERRI

.ERR2 ;this will only appear in the listing file

Forces an error if argument is blank

MASM

.ERRB <argument>

You always use this argument inside a macro. It tests
whether the macro was called with a real argument to
replace the specified dummy argument. If the argument is
blank (empty), an error message occurs on the source
line where the macro was invoked.

You must always surround the argument to be tested
with angle brackets « ».

.ERRNB

DOUBLE MACRO ARGl
.ERRB <ARG1>
shl ARG1,1

ENDM

;require an argument
;double the argument's value

Forces an error if a symbol is defined

MASM

.ERRDEF symbol

.ERRDEF causes an error message to be generated at the
current source line number if symbol has already been
defined in your source file.

Chapter 3, Directives 87

See also

Example

.ERRDIF
Function

Mode

Syntax

Remarks

See also

Example

.ERRDIFI
Function

Mode

Syntax

Remarks

88

.ERRNDEF

SetMode MACRO ModeVal
.ERRDEF MODE ;error if already defined

_MODE EQU ModeVal
ENDM

Forces an error if arguments are different

MASM

.ERRDIF <argumentl>,<argument2>

You always use .ERRDIF inside a macro. It tests
whether its two arguments are identical character
strings. If the two strings are not identical, an error mes­
sage occurs on the source line where the macro was
invoked. The two strings are compared on a character­
by-character basis; case is significant. If you want case to
be ignored, use the .ERRDIFI directive.

You must always surround each argument in angle
brackets « »; separate arguments with a comma.

.ERRIDN, .ERRDIFI, .ERRIDNI

SegLoad MACRO reg, val
.ERRDIF <reg>,<es>
rnov ax, val
rnov reg,ax
ENDM

;only permit ES register

Forces an error if arguments are different, ignoring case

MASM

.ERRDIFI <argumentl>,<argument2>

You always use .ERRDIFI inside a macro. It tests
whether its two arguments are identical character
strings. If the two strings are not identical, an error mes­
sage occurs on the source line where the macro was
invoked. The two strings are compared on a character-

Turbo Assembler Reference Guide

See also

Example

.ERRE
Function

Mode

Syntax

Remarks

See also

Example

.ERRIDN
Function

Mode

Syntax

Remarks

by-character basis; case is insignificant. If you want case
to be significant, use the .ERRDIF directive.

You must always surround each argument in angle
brackets « »; separate arguments with a comma .

. ERRIDN, .ERRDIF, .ERRIDNI

SegLoad MACRO reg, val
.ERRDIF <reg>,<es>
mov ax, val
mov reg,ax
ENDM

;only permit ES register
;works no matter how reg typed

Forces an error if expression is false (0)

MASM

.ERRE expression

expression must evaluate to a constant and cannot
contain any forward-referenced symbol names. If the
expression evaluates to 0, an error message occurs at the
current source line.

.ERRNZ

PtrLoad MACRO PTR,val
.ERRE val ;error if attempt 0 load to pointer
mov si,val
ENDM

Forces an error if arguments are identical

MASM

.ERRIDN <argumentl>,<argument2>

You always use .ERRIDN inside a macro. It tests
whether its two arguments are identical character
strings. If the two strings are identical, an error message
occurs on the source line where the macro was invoked.
The two strings are compared on a character-by-

Chapter 3, Directives 89

See also

Example

.ERRIDNI
Function

Mode

Syntax

Remarks

See also

Example

90

character basis; case is significant. If you want case to be
ignored, use the .ERRIDNI directive.

You must always surround each argument in angle
brackets « »; separate arguments with a comma .

. ERRDIF, .ERRIDNI, .ERRDIFI

PushSeg MACRO reg, val
.ERRIDN <reg>,<cs> ;CS load is illegal
push reg
mov reg, val
ENDM

Forces an error if arguments are identical, ignoring case

MASM

.ERRIDNI <argumentl>,<argument2>

You always use .ERRIDNI inside a macro. It tests
whether its two arguments are identical character
strings. If the two strings are identical, an error message
occurs on the source line where the macro was invoked.
The two strings are compared on a character-by­
character basis; case is insignificant. If you want case to
be significant, use the .ERRIDN directive.

You must always surround each argument in angle
brackets « »; separate arguments with a comma.

.ERRDIF, .ERRIDN, .ERRDIFI

PushSeg MACRO reg, val
.ERRIDNI <reg>,<cs>
push reg
mov reg, val
ENDM

;CS load is illegal
;takes CS or cs

Turbo Assembler Reference Guide

ERRIF
Function

Mode

See also

ERRIFI
Function

Mode

See also

ERRIF2
Function

Mode

See also

ERRIFB
Function

Mode

See also

ERRIFDEF
Function

Mode

See also

Forces an error if expression is true (nonzero)

MASM,Ideal

.ERRE, .ERRNZ

Forces an error message on pass 2

MASM,Ideal

.ERRl

Forces an error message on pass 2

MASM,Ideal

.ERR2

Forces an error if argument is blank

MASM, Ideal

.ERRB

Forces an error if a symbol is defined

MASM, Ideal

.ERRDEF

Chapter 3, Directives 91

ERRIFDIF
Function

Mode

See also

ERRIFDIFI
Function

Mode

See also

ERRIFE
Function

Mode

See also

ERRIFIDN
Function

Mode

See also

Forces an error if arguments are different

MASM, Ideal

.ERRDIF

Forces an error if arguments are different, ignoring case

MASM,Ideal

.ERRDIFI

Forces an error if expression is false (0)

MASM,Ideal

.ERRE

Forces an error if arguments are identical

MASM,Ideal

.ERRIDN

ERRIFIDNI
Function

Mode

See also

92

Forces an error if arguments are identical, ignoring case

MASM,Ideal

.ERRIDNI

Turbo Assembler Reference Guide

ERRIFNB
Function

Mode

See also

Forces an error if argument is not blank

MASM,Ideal

.ERRNB

ERRIFNDEF
Function

Mode

See also

.ERRNB
Function

Mode

Syntax

Remarks

See also

Example

Forces an error if symbol is not defined

MASM, Ideal

.ERRNDEF

Forces an error if argument is not blank

MASM

.ERRNB <argument>

You always use .ERRNB inside a macro. It tests whether
the macro was called with a real argument to replace the
specified dummy argument. If the argument is not blank,
an error message occurs on the source line where the
macro was invoked.

You must always surround the argument to be tested
with angle brackets « ».

.ERRB

Dolt MACRO a, b

.ERRNB

ENDM

ionly need one argument

Chapter 3, Directives 93

·ERRNDEF
Function

Mode

Syntax

Remarks

See also

Example

.ERRNZ
Function

Mode

Syntax

Remarks

See also

Example

EVEN
Function

Mode

Syntax

Remarks

94

Forces an error if symbol is not defined

MASM

. ERRNDEF symbol

.ERRNDEF causes an error message to be generated at
the current source line number if symbol has not yet been
defined in your source file. The error occurs even if the
symbol is defined later in the file (forward-referenced) .

. ERRDEF

.ERRNDEF BufSize
BUF DB BufSize

ino buffer size set

Forces an error if expression is true (nonzero)

MASM

.ERRNZ expression

expression must evaluate to a constant and may not
contain any forward-referenced symbol names. If the
expression evaluates to a nonzero value, an error mes­
sage occurs at the current source line.

.ERRE

.ERRNZ $ GT lOOOh isegment too big

Rounds up the location counter to the next even address

MASM,Ideal

EVEN

EVEN allows you to align code for efficient access by
processors that use a 16-bit data bus (8086,80186, 80286).
It does not improve performance for those processors
with an 8-bit data bus (8088, 80188).

Turbo Assembler Reference Guide

See also

Example

You can't use this directive in a segment that has BYTE­
alignment, as specified in the SEGMENT directive that
opened the segment.

If the location counter is odd when an EVEN directive
appears, a single byte of a NOP instruction is inserted in
the segment to make the location counter even. By
padding with a NOP, EVEN can be used in code
segments without causing erroneous instructions to be
executed at run time. If the location is already even, this
directive has no effect. A warning is generated for the
EVEN directive if alignment is not strict enough.

ALIGN, EVENDATA

EVEN
@@A: lodsb

xor bl,al ;align for efficient access
loop @@A

EVENDATA
Function

Mode

Syntax

Remarks

See also

Rounds up the location counter to the next even address
in a data segment

Masm, Ideal

EVENDATA

EVENDATA allows you to align data for efficient access
by processors that use a 16-bit data bus (8086, 80186,
80286). It does not improve performance for those
processors with an 8-bit data bus (8088, 80188).
EVENDATA even-aligns by advancing the location
counter without emitting data, which is useful for
uninitialized segments. A warning is generated if the
alignment isn't strict enough.

You can't use this directive in a segment that has BYTE­
alignment, as specified in the SEGMENT directive that
opened the segment.

If the location counter is odd when an EVENDATA
directive appears, a single byte of 0 is inserted in the
segment to make the location counter even. If the loca­
tion is already even, this directive has no effect.

ALIGN, EVEN

Chapter 3, Directives 95

Example

EXITM
Function

Mode

Syntax

Remarks

See also

Example

EXTRN
Function

Mode

Syntax

Remarks

96

EVENDATA
VARl DW 0 ialign for efficient 8086 access

Terminates macro- or block-repeat expansion

MASM,Ideal

EXITM

EXITM stops any macro expansion or repeat block
expansion that's in progress. All remaining statements
after the EXITM are ignored.

This is convenient for exiting from multiple levels of
conditional assembly.

ENDM, IRP, IRPC, REPT, MACRO

Shiftn MACRO OP,N
Count = 0

REPT N
shl OP,N

Count = Count + 1
IF Count GE 8

EXITM
ENDIF
ENDM

ino more than 8 allowed

Indicates a symbol is defined in another module

MASM,Ideal

EXTRN definition [,definition] .••

Each definition describes a symbol and ·has the following
format:

name:type [:count]

name is the symbol that is defined in another module.
type must match the type of the symbol where it's
defined in another module. It can be one of the
following:

Turbo Assembler Reference Guide

See also

Example

• NEAR, FAR, or PROC. PROC is either NEAR or FAR
(depending on the memory model set using the
MODEL directive)

• BYTE, WORD, DWORD, DATAPTR, FWORD,
PWORD, QWORD, TBYTE, or a structure name

.ABS

The optional count specifies how many items this
external symbol defines. If the symbol's definition in
another file uses the DUP directive to allocate more than
one item, you can place that value in the count field.
This lets the SIZE and LENGTH operators correctly
determine the size of the external data item. If you do
not specify a count, it is assumed to be one.

You can define more than one external symbol by
separating each definition with a comma (,). Also, each
argument of EXTRN accepts the same syntax as an
argument of ARG or LOCAL.

name must be declared as PUBLIC in another module in
order for your program to link correctly.

You can use the EXTRN directive either inside or
outside a segment declared with the SEGMENT
directive. If you place EXTRN inside a segment, you are
informing the assembler that the external variable is in
another module but in the same segment. If you place
the EXTRN directive outside of any segment, you are
informing the assembler that you do not know which
segment the variable is declared in.

In MASM mode, external symbols declared outside of
any segment are presumed to be reachable via the DS
register, which may not always be a valid assumption.
Make sure that you either place the correct segment
value in DS, or use an explicit segment override when
referring to these variables.

In Ideal mode, Turbo Assembler correctly checks for
whether the external variable is addressable using any
of the current segment registers, as described with the
ASSUME directive.

C01Vll\1, GLOBAL, PUBLIC

EXTRN APROC:NEAR
call APROC ;calls into other module

Chapter 3, Directives 97

·FARDATA
Function

Mode

Syntax

Remarks

See also

Example

Defines the start of a far data segment

MASM

• FARDATA [name]

.FARDATA indicates the start of a far initialized data
segment. If you wish to have multiple, separate far data
segments, you can provide an optional name to override
the default segment name, thereby making a new
segment.

You can place as many .FARDATA directives as you
want in a source file. All the different pieces with the
same name will be combined to produce one data
segment, exactly as if you had entered all the data at
once after a single .FARDATA directive.

Far data segments are not put in a group. You must
explicitly make far segments accessible by loading the
address of the far segment into a segment register before
accessing the data.

See the .MODEL directive for complete information on
the segment attributes for far data segments .

. FARDATA?, .CODE, .DATA, .MODEL, .STACK

.FARDATA
FarBuf DB 80 DUP (0)
.CODE

mov ax,@fardata
mov ds,ax
ASSUME ds:@fardata
mov al,FarBuf[O] ;get first byte of buffer

.FARDATA?
Function

Mode

Syntax

Remarks

98

Defines the start of a far uninitialized data segment

MASM

.FARDATA? [name]

.FARDATA? indicates the start of a far un initialized
data segment. If you wish to have multiple separate far

Turbo Assembler Reference Guide

See also

Example

FARDATA
Function

Mode

Syntax

Remarks

See also

data segments, you can provide an optional name to
override the default segment name, thereby making a
new segment.

You can place as many .FARDATA? directives as you
want in a source file. All the different pieces with the
same name will be combined to produce one data seg­
ment, exactly as if you had entered all the data at once
after a single .FARDATA? directive.

Far data segments are not put in a group. You must
explicitly make far segments accessible by loading the
address of the far segment into a segment register before
accessing the data.

See the .MODEL directive for complete information on
the segment attributes for un initialized far data
segments .

. CODE, .DATA, .FARDATA, .MODEL, .STACK

.FARDATA?
FarBuf DB 80 DUP (?)
.CODE
mov ax,@fardata?
mov ds,ax
ASSUME ds:@fardata?
mov al,FarBuf[O] ;get first byte of buffer

Defines the start of a far data segment

MASM,Ideal

FARDATA [name]

Same as .FARDATA.

.FARDATA

Chapter 3, Directives 99

GLOBAL
Function

Mode

Syntax

Remarks

100

Defines a global symbol

MASM,Ideal

GLOBAL definition [,definition] •••

GLOBAL acts as a combination of the EXTRN and
PUBLIC directives. Each definition describes a symbol
and has the following format:

name:type [:count]

If name is defined in the current source file, it is made
public exactly as if used in a PUBLIC directive. If name is
not defined in the current source file, it is declared as an

. external symbol of type type, as if the EXTRN directive
had been used.

type must match the type of the symbol in the module
where it is defined. It can be one of the following:

• NEAR, FAR, or PROC

• BYTE, WORD, DATAPTR, DWORD, FWORD,
PWORD, QWORD, TBYTE, or a structure name

.ABS

The optional count specifies how many items this
symbol defines. If the symbol's definition uses the DUP
directive to allocate more than one item, you can place
that value in the count field. This lets the SIZE and
LENGTH operators correctly determine the size of the
external data item. If you do not specify a count, it is
assumed to be one.

The GLOBAL directive lets you have an INCLUDE file
included by all source files; the INCLUDE file contains
all shared data defined as global symbols. When you
reference these data items in each module, the GLOBAL
definition acts as an EXTRN directive, describing how
the data is defined in another module. In the module in
which you ·define the data item, the GLOBAL definition
acts as a PUBLIC directive, making the data available to
the other modules.

You can define more than one public symbol by
separating each definition with a comma (,).

Turbo Assembler Reference Guide

See also

Example

GROUP
Function

Mode

Syntax

Remarks

You must define a symbol as GLOBAL before you first
use it elsewhere in your source file. Also note that each
argument of GLOBAL accepts the same syntax as an
argument of EXTRN, ARG, or LOCAL.

Note: In QUIRKS mode, the GLOBAL directive can be
overridden. For example,

global DB ?

is a legal declaration under QUIRKS, though a warning
will be generated.

CO~, EXTRN, PUBLIC

GLOBAL X:WORD,Y:BYTE
X OW 0 imade public for other module

moval,Y iY is defined as external

Defines segments as accessible from a single segment
register

MASM, Ideal

MASMmode:
name GROUP segmentname [,segmentname] •••

Ideal mode:
GROUP name segmentname [,segmentname] .••

name defines the name of the group. segmentname can be
either a segment name defined previously with the
SEGMENT directive or an expression starting with
SEG. You can use name in the ASSUME directive and
also as a constant in expressions, where it evaluates to
the starting paragraph address of the group.

All the segments in a group must fit into 64K, even
though they don't have to be contiguous when linked.

In MASM mode, you must use a group override
whenever you access a symbol in a segment that is part
of a group. In Ideal mode, Turbo Assembler auto­
matically generates group overrides for symbols in
segments that belong to a group.

In the example shown here, even though var1 and var2
belong to different segments, they both belong to the

Chapter 3, Directives 101

See also

Example

IDEAL
Function

Mode

Syntax

Remarks

See also

Example

102

group DGROUP. Once the DS segment register is set to
the base address of DGROUP, varl and var2 can be
accessed as belonging in a single segment.

Notice tha t in Ideal mode, the name comes after the
GROUP directive.

SEGMENT, ASSUME

DGROUP GROUP SEG1,SEG2
SEGl SEGMENT
VARl DW 3
SEGl ENDS
SEG2 SEGMENT
VAR2 DW 5
SEG2 ENDS
SEG3 SEGMENT
mov ax,DGROUP
mov ds,ax
ASSUME DS:DGROUP
mov ax,VARl
mul VAR2
SEG3 ENDS

;get base address of group
;set up to access data
;inform assembler of DS

Enters Ideal assembly mode

MASM, Ideal

IDEAL

IDEAL makes the expression parser only accept the
more rigid, type-checked syntax required by Ideal mode.
See Chapter 12 of the User's Guide for a complete
discussion of the capabilities and advantages of Ideal
mode.

Ideal mode will stay in effect until it is overridden by a
MASM or QUIRKS directive.

QUIRKS, MASM

IDEAL
mov [BYTE ds:si],l ;Ideal operand syntax

Turbo Assembler Reference Guide

IF
Function

Mode

Syntax

Remarks

See also

Example

IFl
Function

Mode

Syntax

Remarks

Starts conditional assembly block; enabled if expression
is true

MASM,Ideal

IF expression

expression must evaluate to a constant and may not
contain any forward-referenced symbol names. If the
expression evaluates to a nonzero value, the statements
within the conditional block are assembled.

Use the END IF directive to terminate the conditional
assembly block.

END IF, ELSE, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI, IFE,
IFIDN, IFIDNI, IFNB, IFNDEF

IF DoBuffering
mov ax,BufNum
call ReadBuf

ENDIF

Starts conditional assembly block; enabled on pass 1

MASM, Ideal

IF!

Because Turbo Assembler is a single-pass assembler, the
statements within the conditional block are assembled
on the assembly pass, but not during any subsequent
listing pass. (IF1 has a different meaning with a two­
pass assembler.)

When using a forward-referenced operator redefinition,
you can't always tell from the listing file that something
has gone wrong. By the time the listing is generated on
pass 2, the operator has been redefined. This means that
the listing will appear to be correct, but the code would
not have been generated properly to the object file.

Use the END IF directive to terminate the conditional
assembly block.

Chapter 3, Directives 103

See also

Example

IF2

Function

Mode

Syntax

Remarks

See also

Example

104

ELSE, ENDIF, IF, IF2, IFB, IFDEF, IFDIF, IFDIFI, IFE,
IFIDN, IFIDNI, IFNB, IFNDEF

In
iThis line doesn't appear in listing

ENDIF

Starts conditional assembly block; enabled on pass 2

MASM, Ideal

IF2

Because Turbo Assembler is a single-pass assembler, the
statements within the conditional block are assembled
on the listing pass, but not during the previous assembly
pass. (IF2 has a different meaning with a two-pass
assembler.)

Because Turbo Assembler is a single-pass assembler, IF2
also generates a warning message to inform you that it is
pass-dependent and may not work as you'd expect.

When using a forward-referenced operator redefinition,
you can't always tell from the listing file that something
has gone wrong. By the time the listing is generated on
pass 2, the operator has been redefined. This means that
the listing will appear to be correct, but the code would
not have been generated properly to the object file.

Use the ENDIF directive to terminate the conditional
assembly block.

ELSE, ENDIF, IF, IF1, IFB, IFDEF, IFDIF, IFDIFI, IFE,
IFIDN, IFIDNI, IFNB, IFNDEF

IF2
iOnly appears in listing

ENDIF

Turbo Assembler Reference Guide

IFB

Function

Mode

Syntax

Remarks

See also

Example

IFDEF

Function

Mode

Syntax

Remarks

See also

Starts conditional assembly block; enabled if argument
is blank

MASM, Ideal

IFB <argument>

If argument is blank (empty), the statements within the
conditional block are assembled. Use IFB to test whether
a macro was called with a real argument to replace the
specified dummy argument.

You must always surround the argument to be tested
with angle brackets « ».

Use the END IF directive to terminate the conditional
assembly block.,

ELSE, ENDIF, IF, 1Ft, IF2, IFDEF, IFDIF, IFDIFI, IFE;
IFIDN, IFIDNI, IFNB, IFNDEF

PRINT MACRO MSG
IFB <MSG>
mov si,DefaultMsg
ELSE
mov si,MSG
ENDIF
call ShowIt
ENDM

Starts conditional. assembly block; enabled if symbol is
defined

MASM, Ideal

IFDEF symbol

If symbol is defined, the statements within the. condi­
tional block are assembled.

Use the ENDIF directive to terminate the conditional
assembly block.

ELSE, ENDIF,IF, 1Ft, IF2, IFB, IFDIF, IFDIFI, IFE,
IFIDN, IFIDNI, IFNB, IFNDEF

Chapter 3, Directives 105

Example IFDEF SaveSize
BUF DB SaveSize DUP (?)

ENDIF

;define BUFFER only if
; SAVESIZE is defined

IFD IF I IFD IFI
Function

Mode

Syntax

Remarks

See also

Exam.ple

IFE
Function

Mode

Syntax

106

Starts conditional assembly block; enabled if arguments
are different

MASM,Ideal

IFDIF <argumentl>,<argument2>

You usually use IFDIF inside a macro. It tests whether
its two arguments are different character strings. Either
of the arguments can be macro dummy arguments that
will have real arguments to the macro call that was
substituted before performing the comparison. If the
two strings are different, the statements within the
conditional block are assembled. The two strings are
compared on a character-by-character basis; case is
significant. If you want case to be ignored, use the
IFDIFI directive.

Use the ENDIF directive to terminate the conditional
assembly block.

ELSE, ENDIF, IF, 1Ft, IF2, IFB, IFDEF, IFDIFI, IFE,
IFIDN, IFIDNI, IFNB, IFNDEF

loadb MACRO source
IFDIF <source>,<si>

mov si,source
ENDIF
lodsb
ENDM

;set up string pointer

;read the byte

Starts conditional assembly block; enabled if expression is
false

MASM,Ideal

IFE expression

Turbo Assembler Reference Guide

Remarks

See also

Example

expression must evaluate to a constant and may not
contain any forward-referenced symbol names. If the
expression evaluates to zero, the statements within the
conditional block are assembled.

Use the ENDIF directive to terminate the conditional
assembly block.

ELSE, END IF, IF, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI,
IFIDN, IFIDNI, IFNB, IFNDEF

IFE StackSize
StackSize=1024

DB StackSize DUP (?)
ENDIF

;allocate stack

IFIDN, IFIDNI
Function

Mode

Syntax

Remarks

See also

Example

Starts conditional assembly block; enabled if arguments
are identical

MASM, Ideal

IFIDN <argumentl>,<argument2>

You usually use IFIDN inside a macro. It tests whether
its two arguments are identical character strings. Either
of the arguments can be macro dummy arguments that
will have real arguments to the macro call that was
substituted before performing the comparison. If the
two strings are identical, the statements within the
conditional block are assembled. The two strings are
compared on a character-by-character basis; case is
significant. If you want case to be ignored, use the
IFIDNI directive.

Use the ENDIF directive to terminate the conditional
assembly block.

ELSE, ENDIF, IF, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI,
IFE, IFIDNI, IFNB, IFNDEF

RDWR MACRO BUF,RWMODE
mov ax,BUF
IFIDN <RWMODE>,<READ>

call ReadIt
ENDIF
IFIDN <RWMODE>,<WRITE>

call WriteIt

Chapter 3, Directives 107

IFNB
Function

Mode

Syntax

Remarks

See also

Example

IFNDEF
Function

Mode

Syntax

Remarks

108

ENDIF
ENDM

Starts conditional assembly block, enabled if argument
is nonblank

MASM, Ideal

IFNB <argument>

If argument is nonblank, the statements within the condi­
tional block are assembled. Use IFNB to test whether a
macro was called with a real argument to replace the
specified dummy argument.

You must always surround the argument to be tested
with angle brackets « ».

Use the END IF directive to terminate the conditional
assembly block.

ELSE, ENDIF, IF, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI,
IFE, IFIDN, IFIDNI, IFNDEF

PopRegs MACRO REG1,REG2
IFNB <REG1>

pop REGl
ENDIF
IFNB <REG2>

pop REG2
ENDIF
ENDM

Starts conditional assembly block; enabled if symbol is
not defined

MASM,Ideal

IFNDEF symbol

If symbol has not yet been defined in the source file, the
statements within the conditional block are assembled.

Use the ENDIF directive to terminate the conditional
assembly block.

Turbo Assembler Reference Guide

See also

Example

%INCL
Function

Mode

Syntax

Remarks

See also

Example

INCLUDE
Function

Mode

Syntax

Remarks

ELSE, ENDIF,IF, IF1, IF2, IFB, IFDEF, IFDIF, IFDIFI,
IFE, IFIDN, IFIDNI, IFNB

IFNDEF BufSize
BufSize EQU 128
ENDIF

idefine buffer size if not defined

Allows listing of include files

MASM,Ideal

%INCL

Use %INCL after a %NOINCL directive has turned off
listing of INCLUDE files. This is the default INCLUDE
file listing mode.

% NOINCL

%INCL
INCLUDE DEFS.INC icontents appear in listing

Includes source code from another file

MASM,Ideal

MASMmode:
INCLUDE filename

Ideal mode:
INCLUDE "filename"

filename is a source file containing assembler statements.
Turbo Assembler assembles all statements in the
included file before continuing to assemble the current
file.

filename uses the normal DOS file-naming conventions,
where you can enter an optional drive, optional direc­
tory, file name, and optional extension. If you don't
provide an extension, .ASM is presumed.

If filename does not include a directory or drive name,
Turbo Debugger first searches for the file in any direc-

Chapter 3, Directives 109

Example

tories specified by the II command-line option and then
in the current directory.

You can nest INCLUDE directives as deep as you want.

Notice that in Ideal mode, you must surround the file­
name with quotes.

;MASM mode
INCLUDE MYMACS.INC
;Ideal mode
INCLUDE "DEFS.INC"

;include MACRO definitions

;include EQU definitions

INCLUDELIB
Function

Mode

Syntax

Remarks

Example

INSTR
Function

Mode

Syntax

Remarks

110

Tells the linker to include a library

MASM, Ideal

MASMmode:
INCLUDELIB filename

Ideal mode:
INCLUDELIB II fil en ame II

filename is the name of the library that you want the
linker to include at link time. If you don't supply an
extension with filename, the linker assumes .LIB.

Use INCLUDELIB when you know that the source file
will always need to use routines in the specified library.
That way you don't have to remember to specify the
library name in the linker commands.

Notice that in Ideal mode, you must surround the file­
name with quotes.

INCLUDELIB diskio ;includes DISKIO.LIB

Returns the position of one string inside another string

MASM51, Ideal

name INSTR [start,jstringl,string2

name is assigned a value that is the position of the first
instance of string2 in stringl. The first character in stringl

Turbo Assembler Reference Guide

See also

Example

IRP
Function

Mode

Syntax

Remarks

See also

Example

IRPC
Function

Mode

Syntax

has a position of one. If string2 does not appear any­
where within stringl, a value of 0 is returned.

CATSTR, SIZESTR, SUBSTR

COMMAPOS INSTR <aaa,bbb>,<,> iCOMMAPOS = 4

Repeats a block of statements with string substitution

MASM,Ideal

IRP parameter,<argl[,arg2] ..• >
statements

ENDM

The statements within the repeat block are assembled
once for each argument in the list enclosed in angle
brackets. The list may contain as many arguments as
you want. The arguments may be any text, such as
symbols, strings, numbers, and so on. Each time the
block is assembled, the next argument in the list is
substituted for any instance of parameter in the enclosed
statements.

You must always surround the argument list with angle
brackets « », and arguments must be separated by
commas. Use the ENDM directive to end the repeat
block.

You can use IRP both inside and outside of macros.

IRPC,REPT

IRP reg,<ax,bx,cx,dx>
push reg

ENDM

Repeats a block of statements with character substitution

MASM,Ideal

IRPC parameter, string
statements

ENDM

Chapter 3, Directives 111

Remarks

See also

Example

JUMPS
Function

Mode

Syntax

Remarks

112

The statements within the repeat block are assembled
once for each character in string. The string may contain
as many characters as you want. Each time the block is
assembled, the next character in the list is substituted for
any instances of parameter in the enclosed statements.

Use the ENDM directive to end the repeat block.

You can use IRPC both inside and outside of macros.

IRP,REPT

IRPC LUCKY,1379
DB LUCKY

ENDM
iallocate a lucky number

This creates 4 bytes of data containing the values 1,3, 7,
and 9.

Enables stretching of conditional jumps to near or far
addresses

MASM, Ideal

JUMPS

JUMPS causes Turbo Assembler to look at the
destination address of a conditional jump instruction,
and if it is too far away to reach with the short
displacement that these instructions use, it generates a
conditional jump of the opposite sense around an
ordinary jump instruction to the desired target address.
For example,

jne xyz

becomes

je @@A
jmp xyz
@@a:

If the destination address is forward-referenced, you
should use the NEAR or FAR operator to tell Turbo
Assembler how much space to allocate for the jump
instruction. If you don't do this, inefficient code may be
generated.

Turbo Assembler Reference Guide

See also

Example

LABEL
Function

Mode

Syntax

Remarks

See also

Example

This directive has the same effect as using the IJJUMPS
command-line option.

NOJUMPS

JUMPS ;enable jump stretching
jne SHORT @A ;can reach A

@@A:

Defines a symbol with a specified type

MASM,Ideal

MASMmode:
name LABEL type

Ideal mode:
LABEL name type

name is a symbol that you have not previously defined
in the source file. type describes the size of the symbol
and whether it refers to code or data. It can be one of the
following:

• NEAR, FAR, or PROC. PROC is the same as either
NEAR or FAR, depending on the memory set using
the MODEL directive

• BYTE, WORD, DATAPTR, DWORD, FWORD,
PWORD, QWORD, TBYTE, or a structure name

The label will only be accessible from within the current
source file, unless you use the PUBLIC directive to make
it accessible from other source files.

Notice that in Ideal mode, name comes after the LABEL
directive.

Use LABEL to access different-sized items than those in
the data structure; see the example that follows.

WORDS LABEL WORD ;access "BYTES" as WORDS
BYTES DB 64 DUP (0)

mov WORDS[2],1 ;write WORD of 1

Chapter 3, Directives 113

.LALL
Function

Mode

Syntax

See also

.LFCOND
Function

Mode

Syntax

Remarks

See also

%LINUM
Function

Mode

Syntax

Remarks

Example

114

Enables listing of macro expansions

MASM

.LALL

%MACS

Shows all statements in conditional blocks in the listing

MASM

.LFCOND

.LFCOND enables the listing of false conditional blocks
in assembly listings .. LFCOND is not affected by the IX
option.

%CONDS

Sets the width of the line-number field in listing file

MASM,Ideal

%LINUM size

% LlNUM allows you to set how many columns the line
numbers take up in the listing file. size must be a
constant. If you want to make your listing as narrow as
possible, you can reduce the width of this field. Also, if
your source file contains more than 9,999 lines, you can
increase the width of this field so that the line numbers
are not truncated.

The default width for this field is 4 columns.

%LINUM 5 iallows up to line 99999

Turbo Assembler Reference Guide

%LIST
Function

Mode

Syntax

Remarks

See also

Example

.LIST
Function

Mode

Syntax

See also

Example

LOCAL
Function

Mode

Syntax

Remarks

Shows source lines in the listing

MASM,Ideal

%LIST

% LIST reverses the effect of a %NOLIST directive that
caused all listing output to be suspended.

This is the default listing mode; normally, all source
lines are placed in the listing output file .

. LIST, %NOLIST, .XLIST

%LIST
jmp xyz ithis line always listed

Shows source lines in the listing

MASM

.LIST

%LIST

.XLIST
INCLUDE MORE. INC

.LIST

iturn off listing

iturn on listing

Defines local variables for macros and procedures

MASM,Ideal

In macros:
LOCAL symbol [,symbol] .••

In procedures:
LOCAL name:type[:count] [,name:type[:count]] ••• [=symbol]

LOCAL can be used both inside macro definitions
started with the MACRO directive and within proce­
dures defined with PROC. It behaves slightly differently
depending on where it is used.

Chapter 3, Directives 115

116

Within a macro definition, LOCAL defines temporary
symbol names that are replaced by new unique symbol
names each time the macro is expanded. The unique
names take the form of ??number, where number is
hexadecimal and starts at 0000 and goes up to FFFF.

Within a procedure, LOCAL defines names that access
stack locations as negative offsets relative to the BP
register. The first local variable starts at BP (type X
count). If you end the argument list with an equal sign
(=) and a symbol, that symbol will be equated to the
total size of the local symbol block in bytes. You can then
use this value to make room on the stack for the local
variables.

Each localdefhas the following syntax:

localname:[[distance] PTR]type[:count]

You can use this alternative syntax for each localdef:

localname[[count]] [:[distance] PTR]type]

localname is the name you'll use to refer to this local
symbol throughout the procedure.

type is the data type of the argument and can be one of
the following: WORD, DATAPTR, DWORD, FWORD,
PWORD, QWORD, TBYTE, or a structure name. If you
don't specify a type, and you're using the alternative
syntax, WORD size is assumed.

count specifies how many elements of the specified type
to allocate on the stack.

The optional distance and PTR lets you tell Turbo
Assembler to include debugging information for Turbo
Debugger, which tells it this local variable is really a
pointer to another data type. See the PROC directive for
a discussion of how this works.

Here are some examples of valid arguments:

LOCAL X:DWORD:4,Y:NEAR PTR WORD

Here are some arguments using the alternative syntax:

LOCAL X[4]:DWORD,Y:PTR STRUCNAME

The type indicates how much space should be reserved
for name. It can be one of BYTE, WORD, DATAPTR,

Turbo Assembler Reference Guide

See also

Example

LOCALS
Function

Mode

Syntax

Remarks

DWORD, FWORD, PWORD, QWORD, or TBYTE for a
data value. It can be one of NEAR, FAR, or PROC for a
code pointer.

The LOCAL directive must come before any other
statements in a macro definition. It can appear anywhere
within a procedure, but should precede the first use of
the symbol it defines.

ARG, MACRO, PROC, USES

OnCarry MACRO FUNC
LOCAL DONE
jnc DONE
call FUNC

DONE:
ENDM

READ PROC NEAR
LOCAL N:WORD =LSIZE
push bp
mov bp,sp
sub sp,LSIZE
mov N,O

;Body of func goes here
add sp,LSIZE
pop bp
ret

READ ENDP

Enables local symbols

MASM, Ideal

LOCALS [prefix]

;hop around if no carry
;else call function

;make room for local var
;actually N = [BP-2]

;adjust stack

Local symbols normally start with two at-signs (@@),
which is the default, and are only visible inside blocks
whose boundaries are defined by the PROC/ENDP pair
within a procedure or by nonlocal symbols outside a
procedure. You define a nonlocal symbol using PROC,
LABEL, or the colon operator. If you use the LOCALS
directive, any symbols between pairs of nonlocal
symbols can only be accessed from within tha t block.
This lets you reuse symbol names inside procedures and
other blocks.

Chapter 3, Directives 117

See also

Example

prefix is the two-character symbol prefix you want to use
to start local symbol names. Usually, two at-signs
indicate a local symbol. If you have a program that has
symbols starting with two at-signs, or if you use your
own convention to indicate local symbols, you can set
two different characters for the start of local symbols.
The two characters must be a valid start of a symbol
name, for example .? is OK, but .. is not. When you set
the prefix, local symbols are enabled at the same time. If
you turn off local symbols with the NOLOCALS
directive, the prefix is remembered for the next time you
enable local symbols with the LOCALS directive.

Local symbols are automatically enabled in Ideal mode.
You can use the NOLOCALS directive to disable local
symbols. Then, all subsequent symbol names will be
accessible throughout your source file.

NOLOCALS, IDEAL

LOCALS
.MODEL small
• CODE
start:
@@1:

loop @@1
one:

loop one
@@1:

loop @@1

unique label

terminates visibility of @1 above

i unique label

Foo PROC NEAR ; terminates visibility of @1 above
@@1: unique label

loop @@1
two: ; doesn't terminate visibility of @@1

loop two
@@1:

loop @@1
Foo ENDP

END start

above because in PROCs local labels
have visibility throughout the PROC

conflicting label with @@1 above

118 Turbo Assembler Reference Guide

MACRO
Function

Mode

Syntax

Remarks

See also

Example

%MACS
Function

Mode

Syntax

Remarks

See also

Example

Defines a macro

MASM, Ideal

MASMmode:
name MACRO [parameter [,parameter] ..•]

Ideal mode:
MACRO name [parameter [,parameter] ..•]

You use name later in your source file to expand the
macro. parameter is a placeholder you can use through­
out the body of the macro definition wherever you want
to substitute one of the actual arguments the macro is
called with.

Use the ENDM directive to end the macro definition.

ENDM

SWAP MACRO a,b ;swap two word items
mov ax,a
mov a,b
mov b,ax
ENDM

Enables listing of macro expansions

MASM, Ideal

%MACS

%MACS reverses the effect of a previous %NOMACS
directive, so that the lines resulting from macro expan­
sions appear in the listing. (Same as .LALL.)

.LALL, %NOMACS, .SALL, .XALL

%MACS
MyMac 1,2,3 ;expansion appears in listing

Chapter 3, Directives 119

MASM
Function

Mode

Syntax

Remarks

See also

Example

MASM51
Function

Mode

Syntax

Remarks

See also

Example

120

Enters MASM assembly mode

MASM, Ideal

MASM

MASM tells the expression parser to accept MASM's
100se expression syntax. See Appendix B for a discussion
of how this differs from Ideal mode.

Turbo Assembler is in MASM mode when it first starts
assembling a source file.

QUIRKS, IDEAL

MASM
mov al,es:24h ;ghastly construct

Enables assembly of some MASM 5.1 enhancements

MASM,Ideal

MASM51

MASM51 enables the following capabilities that are not
normally available with Turbo Assembler:

• SUBSTR, CATSTR, SIZESTR, and INSTR directives
• Line continuation with backslash (\)

If you also enable Quirks mode with the QUIRKS
directive, these additional features become available:

• Local labels defined with @@ and referred to with @F
and@B

• Redefinition of variables inside PROCs
• Extended model PROCs are all PUBLIC.

NOMASM51

MASM51
MyStr CATSTR <ABC>,<XYz> ;MYSTR = "ABCXYZ"

Turbo Assembler Reference Guide

.MODEL
Function

Mode

Syntax

Remarks

Sets the memory model for simplified segmentation
directives

MASM

.MODEL memorymodel [,language]

.MODEL TPASCAL

memorymodel is a model of tiny, small, medium, compact,
large, or huge. The large and huge models use the same
segment definitions, but the @DataSize predefined
equate symbol is defined differently. (See the section
"Other Simplified Segment Directives" in Chapter 4 of
the User's Guide for a description of the @DataSize
symbol.)

When you want to write. an assembler module that
interfaces to Turbo Pascal, you use a special form of the
.MODEL directive:

.MODEL TPASCAL

This informs Turbo Assembler to use the Turbo Pascal
segment-naming conventions. You can only use the
.CODE and .DATA simplified segmentation directives
when you specify TPASCAL. There is no need to supply
a second argument to the .MODEL directive, TP ASCAL
says it all. If you try and use any of the directives that
are forbidden with Turbo Pascal assembler modules,
you will get a warning message.

To define memorymodel, you must use the .MODEL
directive before any other simplified segmentation
directives such as .CODE, .DATA, .STACK, and so on.
The code and data segments will all be 32-bit segments if
you've enabled the 80386 processor with the .386 or
.386P directive before issuing the .MODEL directive. Be
certain this is what you want before you implement it.
Also be sure to put the .MODEL directive before either
.386 or .386P if you want 16-bit segments.

language tells Turbo Assembler what language you will
be calling from to access the procedures in this module.
language can be C, Pascal, Basic, FORTRAN, or Prolog.
Turbo Assembler automatically generates the appro-

Chapter 3, Directives 121

Directive

.CODE

.FARDATA

.FARDATA?

.DATA

.CONST

.DATA?

.sTACK

122

priate procedure entry and exit code when you use the
PROC and ENDP directives.

If you specify the C language, all public and external
symbol names will be prefixed with an underscore (_).
This is because, by default, Turbo C starts all names
with an underscore. You don't need MASM51 or
QUIRKS if you want to prefix all PUBLIC and EXTRN
symbols with an underbar (_) for the C language.

language also tells Turbo Assembler in what order
procedure arguments were pushed onto the stack by the
calling module. If you set language to Pascal, Basic, or
FORTRAN, Turbo Assembler presumes that the argu­
ments were pushed from left to right, in the order they
were encountered in the source statement that called the
procedure. If you set language to C or Prolog, Turbo
Assembler presumes that the arguments were pushed in
reverse order, from right to left in the source statement.
With C and Prolog, Turbo Assembler also presumes that
the calling function will remove any pushed arguments
from the stack. For other languages, Turbo Assembler
generates the appropriate form of the RET instruction,
which removes the arguments from the stack before
returning to the caller.

If you don't supply language, .MODEL simply defines
how the segments will be used with the simplified
segmentation directives.

The following tables show the default segment attributes
for each memory model.

Table 3.1: Default Segments and Types for Tiny Memory Model

Name Align Combine Class Group

TEXT WORD PUBLIC 'CODE' DGROUP
FAR DATA PARA private 'FAR DATA'
FAR-BSS PARA ~rivate 'FAR-BSS'
DATA WORD UBLIC 'DATA' DGROUP

CONST WORD PUBLIC 'CONST' DGROUP
BSS WORD PUBLIC 'BSS' DGROUP

STACK PARA STACK 'STACK' DGROUP

Turbo Assembler Reference Guide

Table 3.2: Default Segments and Types for Small Memory Model

Directive Name Align Combine Class Group

.CODE TEXT WORD PUBLIC 'CODE'

.FARDATA FAR DATA PARA private 'FAR DATA'

.FARDATA? FAR-BSS PARA ~rivate 'FAR-BSS'

.DATA DATA WORD UBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

Table 3.3: Default Segments and Types for Medium Memory Model

Directive Name Align Combine Class Group

.CODE name TEXT WORD PUBLIC 'CODE'

.FARDATA FAR-DATA PARA private 'FAR DATA'

.FARDATA? FAR-BSS PARA ~rivate 'FAR-BSS'

.DATA DATA WORD UBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? BSS WORD PUBLIC 'BSS' DGROUP

.sTACK STACK PARA STACK 'STACK' DGROUP

Table 3.4: Default Segments and Types for Compact Memory Model

Directive Name Align Combine Class Group

.CODE TEXT WORD PUBLIC 'CODE'

.FARDATA FAR DATA PARA private 'FAR DATA'

.FARDATA? FAR-BSS PARA ~rivate 'FAR-BSS'

.DATA DATA WORD UBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

Table 3.5: Default Segments and Types for Large or Huge Memory Model

Directive Name Align Combine Class Group

.CODE name TEXT WORD PUBLIC 'CODE'

.FARDATA FAR-DATA PARA private 'FAR DATA'

.FARDATA? FAR-BSS PARA ~rivate 'FAR-BSS'

.DATA DATA WORD UBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP

Chapter 3, Directives 123

Table 3.6: Default Segments and Types for Turbo Pascal (TPASCAl) Memory Model

See also

Example

Directive Name Align Combine

.CODE

.DATA
CODE
DATA

BYTE
WORD

PUBLIC
PUBLIC

.CODE, .DATA, .FARDATA, .FARDATA?, .STACK

.MODEL MEDIUM iset small data, large code

MODEL
Function

Mode

Syntax

See also

Sets the memory model for simplified segmentation
directives

MASM,Ideal

MODEL

.MODEL

MULTERRS
Function

Mode

Syntax

Remarks

See also

Example

124

Allows multiple errors to be reported on a single source
line

MASM,Ideal

MULTERRS

MUL TERRS lets more than one error or warning
message appear for each source line. This is sometimes
helpful in locating the cause of a subtle error or when
the source line contains more than one error.

Note that sometimes additional error messages can be a
"chain reaction" caused by the first error condition;
these "chain" error messages may desist once you
correct the first error.

NOMULTERRS

MULTERRS
mov ax, [bp+abc iproduces two errors:

i1) Undefined symbol: abc
i2) Need right square bracket

Turbo Assembler Reference Guide

NAME
Function

Mode

Syntax

Remarks

Example

Sets the object file's module name

MASM,Ideal

NAME modulename

This directive has no effect in MASM mode; it only
works in Ideal mode.

Turbo Assembler usually uses the source file name with
any drive, directory, or extension as the module name.
Use NAME if you wish to change this default name;
modulename will be the new name of the module.

NAME loader

% NEWPAGE
Function

Mode

Syntax

Remarks

See also

Example

Starts a new page in the listing file

MASM, Ideal

%NEWPAGE

The source lines appearing after %NEWPAGE will
begin at the start of a new page in the listing file. (Same
as PAGE with no arguments.)

PAGE

%NEWPAGE
; Appears on flrst line of new page

%NOCONDS
Function

Mode

Syntax

Remarks

Disables the placement of statements in false conditional
blocks in the listing file

MASM,Ideal

%NOCONDS

%NOCONDS overrides the listing control. When this
control is in effect, the listing won't show statements
within conditional blocks, even those that evaluate as

Chapter 3, Directives 125

See also

Example

%NOCREF
Function

Mode

Syntax

Remarks

See also

Example

%NOCTLS
Function

Mode

Syntax

Remarks

126

false and don't result in the evaluation of enclosed
statements. (Same as .SFCOND.)

%CONDS, .LFCOND, .SFCOND, .TFCOND

%NOCONDS
IF 0

mov ax,l inot in listing, since "IF 0" above
ENDIF

Disables cross-reference listing (CREF)

MASM, Ideal

%NOCREF [symbol, ..•]

%NOCREF stops cross-reference information from
being accumulated for symbols encountered from this
point forward in the source file.

If you use %NOCREF alone without specifying any
symbols, cross-referencing is disabled completely. If you
supply one or more symbol names, cross-referencing is
disabled only for those symbols. (Same as .XCREF.)

%CREF, .CREF, .XCREF, %CREFALL, %CREFREF,
%CREFUREF

%XCREF xyz
rNAL DW 0 i CREF shows rNAL defined here
xyz DB 0 idoesn't appear in CREF

Disables printing of listing controls

MASM, Ideal

%NOCTLS

%NOCTLS reverses the effect of a previous %CTLS
directive, which caused all listing-control directives to
be placed in the listing file. After issuing %NOCTLS, all
subsequent listing-control directives will not appear in
the listing file.

Turbo Assembler Reference GUide

See also

Example

NOEMUL
Function

Mode

Syntax

Remarks

See also

Example

%NOINCL
Function

Mode

Syntax

Remarks

See also

This is the default listing-control mode that's in effect
when Turbo Assembler starts assembling a source file.

%CTLS

%NOCTLS
%L1ST ;this will not appear in listing

Forces generation of real 80x87 floating-poin t
instructions

MASM, Ideal

NOEMUL

NOEMUL sets Turbo Assembler to generate real
floating-point instructions to be executed by an 80x87
coprocessor. You can combine this directive with the
EMUL directive when you wish to genera te real
floating-point instructions in one portion of a file and
emulated instructions in another portion.

NOEMUL is the normal floating-point assembly mode
that's in effect when Turbo Assembler starts to assemble
a file.

EMUL

NOEMUL ;assemble real FP instructions
finit
EMUL ;back to emulation

Disables listing of include files

MASM, Ideal

%N01NCL

%NOINCL stops all subsequent INCLUDE file source
lines from appearing in the listing until a %INCL is
enabled. This is useful if you have a large INCLUDE file
that contains things such as a lot of EQU definitions that
never change.

%INCL

Chapter 3, Directives 127

Example

NOJUMPS
Function

Mode

Syntax

Remarks

See also

%NOLIST
Function

Mode

Syntax

Remarks

See also

Example

%NOINCL
INCLUDE DEFS.INC idoesn't appear in listing

Disables stretching of conditional jumps

MASM,Ideal

NOJUMPS

If you use NOJUMPS in conjunction with JUMPS, you
can control where in your source file conditional jumps
should be expanded to reach their destination addresses.

This is the default mode Turbo Assembler uses when it
first starts assembling a file.

JUMPS

Disables output to listing file

MASM, Ideal

%NOLIST

%NOLIST stops all output to the listing file until a sub­
sequent % LIST turns the listing back on. This directive
overrides all other listing controls. (Same as .XLIST.)

% LIST, .UST, .XLIST

%NOLIST
add dx,ByteVar inot in listing

NOLOCALS
Function

Mode

Syntax

Remarks

128

Disables local symbols

MASM,Ideal

NOLOCALS

If local symbols are enabled with the LOCALS directive,
any symbol starting with two at-signs (@@) is con­
sidered to be a local symbol. If you use symbols in your

Turbo Assembler Reference Guide

See also

Example

program that start with two at-signs but you don't want
them to be local symbols, you can use this directive
where appropriate.

Local symbols start off disabled in MASM mode.

LOCALS, MASM

NOLOCALS
abc PROC
@@$1:

loop @@$1
abc ENDP
xyz PROC
@@1:

loop @@1
xyz ENDP

ilabel conflict with @@1 above

% NOMACS
Function

Mode

Syntax

Remarks

See also

Lists only macro expansions that generate code

MASM, Ideal

%NOMACS

%NOMACS prevents the listing source lines that gener­
ate no code from being listed, for example, comments,
EQU and = definitions, SEGMENT and GROUP
directives.

This is the default listing mode for macros that's in effect
when Turbo Assembler first starts assembling a source
file. (Same as .XALL.)

.LALL, %MACS,.SALL

NOMASM51
Function

Mode

Syntax

Remarks

Disables assembly of certain MASM 5.1 enhancements

MASM,Ideal

NOMASM51

Disables the MASM 5.1 features described under the
MASM51 directive. This is the default mode when
Turbo Assembler first starts assembling your source file.

Chapter 3, Directives 129

See also

Example

MASM51

MASM51
SLEN SIZESTR <ax,bx> ;SLEN = 5
NOMASM51
CATSTR PROC NEAR

CATSTR ENDP

;CATSTR OK user symbol in
; non-MASM 5.1 mode

NOMULTERRS
Function

Mode

Syntax

Remarks

See also

Example

130

Allows only a single error to be reported on a source
line.

MASM,Ideal

NOMULTERRS

NOMUL TERRS only lets one error or warning message
appear for each source line. If a source line contains
multiple errors, Turbo Assembler reports the most­
significant error first. When you correct this error, in
many cases the other error messages disappear as well.
If you prefer to decide for yourself which are the most
important messages, you can use the MULTERRS
directive to see all the messages for each source line.

By default, Turbo Assembler uses this error-reporting
mode when first assembling a source file.

MULTERRS

NOMULTERRS
mov ax, [bp+abc ;one error:

;1) Undefined symbol: abc

Will produce the single error message:

Error MULTERRS.ASM(6) Undefined symbol: ABC

Turbo Assembler Reference Guide

%NOSYMS
Function

Mode

Syntax

Remarks

See also

Example

Disables symbol table in listing file

MASM,Ideal

%NOSYMS

%NOSYMS prevents the symbol table from appearing
in your file. The symbol table, which shows all the sym­
bols you defined in your source file, usually appears at
the end of the listing file.

%SYMS

%NOSYMS inow we won't get a symbol table

% NOTRUNC
Function

Mode

Syntax

Remarks

See also

Example

Wordwraps too-long fields in listing file

MASM,Ideal

%NOTRUNC

The object code field of the listing file has enough room
to show the code emitted for most instructions and data
allocations. You can adjust the width of this field with
the % BIN directive. If a single source line emits more
code than can be displayed on a single line, the rest is
normally truncated and therefore not visible. Use the
%NOTRUNC directive when you wish to see all the
code that was generated.

%NOTRUNC also controls whether the source lines in
the listing file are truncated or will wrap to the next line.
Use the %TEXT directive to set the width of the source
field.

%BIN, %TEXT, %TRUNC

%NOTRUNC
DQ 4 DUP (1.2,3.4) iwraps to multiple lines

Chapter 3, Directives 131

NOWARN
Function

Mode

Syntax

Remarks

See also

Example

ORG
Function

Mode

Syntax

Remarks

See also

Example

132

Disables a warning message

MASM, Ideal

NOWARN [warnclass]

If you specify NOWARN without warnclass, all warnings
are disabled. If you follow NOWARN with a warning
identifier, only that warning is disabled. Each warning
message has a three-letter identifier that's described
under the WARN directive. These are the same identi­
fiers used by the /W command -line option.

WARN

NOWARN OVF ;disable arithmetic overflow warnings
DW lOOOh * 1234h ;doesn't warn now

Sets the location counter in the current segment

MASM,Ideal

ORG expression

expression must not contain any forward-referenced
symbol names. It can either be a constant or an offset
from a symbol in the current segment or from $, the
curren t location counter.

You can back up the location counter before data or code
that has already been admitted into a segment. You can
use this to go back and fill in table entries whose values
weren't known at the time the table was defined. Be
careful when using this technique-you may acci­
dentally overwrite something you didn't intend to.

The ORG directive can be used to connect a label with a
specific absolute address. The ORG directive can also
set the starting location for .COM files (ORG lOOh).

SEGMENT

PROG SEGMENT
ORG lOOh ;starting offset for .COM file

Turbo Assembler Reference Guide

%OUT
Function

Mode

Syntax

Remarks

See also

Example

P186
Function

Mode

See also

P286
Function

Mode

See also

Displays message to screen

MASM

%OUT text

text is any message you want to display. The message is
written to the standard output device, which is usually
the screen. If you wish, you can use the DOS redirection
facility to send screen output to a file.

Among other things, you can use % OUT so you'll know
that sections of conditional assembly are being gener­
ated. (Same as DISPLAY.)

You can use the substitute operator inside a string
passed to the %OUT directive; for example,

MAKE DATA MACRO VALUE
%OUT initializing a byte to: &VALUE&
DB VALUE
ENDM

DISPLAY

%OUT Assembling graphics driver

Enables assembly of 80186 instructions

MASM, Ideal

186, .8086, .286, .286C, .286P, .386, .386C, .386P, P8086,
P286,P286P,P386,P386P

Enables assembly of all 80286 instructions

MASM, Ideal

.8086, .186, .286, .286C, .286P, .386, .386C, .386P, P8086,
P286N, P286P, P386, P386N, P386P

Chapter 3, Directives 133

P286N
Function

Mode

See also

P286P
Function

Mode

See also

P287
Function

Mode

See also

P386
Function

Mode

See also

P386N
Function

Mode

See also

134

Enables assembly of non-privileged 80286 instructions

MASM, Ideal

.8086, .186, .286C, .286P, .286, .386, .386C, .386P, P8086,
P286,P286P,P386,P386~,P386P

Enables assembly of privileged 80286 instructions

MASM,Ideal

.8086, .186, .286C, .286P, .286, .386, .386C, .386P, P8086,
P286,P286~,P386,P386~,P386P

Enables assembly of 80287 coprocessor instructions

MASM, Ideal

.8087, .287, .387, P8087, P~087, P387

Enables assembly of all 80386 instructions

MASM, Ideal

.8086, .186, .286C, .286, .286P, .386C, .386P, .386, P8086,
P286, P286~, P286P, P386~, P386P

Enables assembly of non-privileged 80386 instructions

MASM, Ideal

.8086, .186, .286C, .286, .286P, .386C, .386P, .386, P8086,
P286,P286~,P286P,P386,P386P

Turbo Assembler Reference Guide

P386P
Function

Mode

See also

P387
Function

Mode

See also

P8086
Function

Mode

See also

P8087
Function

Mode

See also

PAGE
Function

Mode

Syntax

Remarks

Enables assembly of privileged 80386 instructions

MASM,Ideal

.8086, .186, .286C, .286, .286P, .386C, .386P, .386, P8086,
P286, P286N, P286P, P386, P386N

Enables assembly of 80387 coprocessor instructions

MASM, Ideal

.8087, .287, .387, 8087, PN087, P287

Enables assembly of 8086 instructions only

MASM,Ideal

.186, .286C, .286, .286P, .386C, .386, .386P, .8086, P286,
P286N, P286P, P386, P386N, P386P

Enables assembly of 8087 coprocessor instructions

MASM, Ideal

.287, .387, .8087, 8087, PN087, P287, P387

Sets the listing page height and width, starts new pages

MASM

PAGE [rows] [,eals]
PAGE +

rows specifies the number of lines that will appear on
each listing page. The minimum is 10 and the maximum

Chapter 3, Directives 135

See also

Example

is 255. cols specifies the number of columns wide the
page will be. The minimum width is 59; the maximum is
255. If you omit either rows or cols, the current setting for
that parameter will remain unchanged. To change only
the number of columns, precede the column width with
a comma; otherwise, you'll end up changing the number
of rows instead.

If you follow the PAGE directive with a plus sign (+), a
new page starts, the section number is incremented, and
the page number restarts at 1.

If you use the PAGE directive with no arguments, the
listing resurnes on a new page, with no change in section
number.

%NEWPAGE, %PAGESIZE

PAGE
PAGE ,BO

istart a new page
;set width to BO, don't change height

%PAGESIZE
Function

Mode

Syntax

Remarks

See also

Example

136

Sets the listing page height and width

MASM, Ideal

%PAGESIZE [rows] [,eols]

rows specifies the number of lines that will appear on
each listing page. The minimum is 10 and the maximum
is 255. cols specifies the number of columns wide the
page will be. The minimum width is 59; the maximum is
255.

If you omit either rows or cols, the current setting for that
parameter will remain unchanged. If you only want to
change the number of columns, make sure you precede
the column width with a comma; otherwise, you will
end up changing the number of rows instead.

PAGE

%PAGESIZE 66,132 ;wide listing, normal height
%PAGESIZE ,BO ;don't change rows, eols = BO

Turbo Assembler Reference Guide

%PCNT
Function

Mode

Syntax

Remarks

See also

Example

PN087
Function

Mode

Syntax

Remarks

See also

Example

Sets segment:offset field width in listing file

MASM, Ideal

%PCNT width

width is the number of columns you wish to reserve for
the offset within the current segment being assembled.
Turbo Assembler sets the width to 4 for ordinary 16-bit
segments and sets it to 8 for 32-bit segments used by the
386 processor. %PCNT overrides these default widths.

%BIN, %DEPTH, %LINUM,

%PCNT 3
ORG 1234h ionly 234 displayed

Prevents the assembling of coprocessor instructions

MASM,Ideal

PN087

Normally, Borland's Turbo Assembler allows you to
assemble instructions for the 80x87 coprocessor family.
Use PN087 if you want to make sure you don't acci­
dentally use any coprocessor Instructions. Also, use
PN087 if your software doesn't have a floating-point
emulation package, and you know your program may
be run on systems without a numeric coprocessor.

.8087, .287, .387, P8087, P287, P387

PN087
fadd ithis generates an error

Chapter 3, Directives 137

%POPLCTL
Function

Mode

Syntax

Remarks

See also

Example

PROC
Function

Mode

Syntax

Remarks

138

Recalls listing controls from stack

MASM, Ideal

%POPLCTL

%POPLCTL resets the listing controls to the way they
were when the last %PUSHLCTL directive was issued.
All the listing controls that you can enable or disable
(such as %MACS, %LIST, %INCL, and so on) are
restored. None of the listing controls that set field width
are restored (such as % DEPTH, %PCNT). The listing
controls are saved on a 16-level stack. This directive is
particularly useful in macros and include files, where
you can invoke special listing modes that disappear
once the macro expansion terminates.

%PUSHLCTL

%PUSHLCTL
%NOLIST
%NOMACS

%POPLCTL ;restore listings

Defines the start of a procedure

MASM,Ideal

MASMmode:
name PROC [distance] [USES registers,]
[argument [,argument]. ••] [RETURNS argument [, argument]. ••]

Ideal mode:
PROC name [distance] [USES registers,]
[argument [,argument] .••] [RETURNS argument [, argument] ••.]

name is the name of a procedure. The optional distance
can be NEAR or FAR; it defaults to the size of the
default code memory model. If you are not using the
simplified segmentation directives (.MODEL, and so
on), the default size is NEAR. With the tiny, small, and

Turbo Assembler Reference Guide

compact models, the default size is also NEAR; all other
models are FAR. distance determines whether any RET
instructions encountered within the procedure generate
near or far return instructions. A FAR procedure is
expected to be called with a FAR (segment and offset)
CALL instruction, and a NEAR procedure is expected to
be called with a NEAR (offset only) CALL.

registers is a list of registers that the procedure will use.
registers must be pushed on entry and popped on exit
from the procedure. You can supply more than one
register name by separating the names with spaces.

argument describes an argument the procedure is called
with. The language specified with the .MODEL directive
determines whether the arguments are in reverse order
on the stack. You must always list the arguments in the
same order they appear in the high-level language func­
tion that calls the procedure. Turbo Assembler reads
them in reverse order if necessary. Each argument has the
following syntax:

argname[[countl]] [:distance] PTR] type] [:count2]

argname is the name you'll use to refer to this argument
throughout the procedure. distance is optional and can
be either NEAR or FAR to indicate that the argument is
a pointer of the indicated size. type is the data type of the
argument and can be BYTE, WORD, DWORD,
FWORD, PWORD, QWORD, TBYTE, or a structure
name. countl and count2 are the number of elements of
the specified type. The total count is calculated as countl
* count2.

If you don't specify type, WORD is assumed.

If you add PTR to indicate that the argument is in fact a
pointer to a data item, Turbo Assembler emits this
debug information for Turbo Debugger. Using PTR only
affects the generation of additional debug information,
not the code Turbo Assembler generates. You must still
write the code to access the actual data using the pointer
argument.

If you use PTR alone, without specifying NEAR or FAR
before it, Turbo Assembler sets the pointer size based on
the current memory model and, for the 386 processor,
the current segment address size (16 or 32 bit). The size

Chapter 3, Directives 139

See also

Example

140

is set to WORD in the tiny, small, and medium memory
models, and to DWORD for all other memory models
using 16-bit segments. If you're using the 386 and are in
a 32-bit segment, the size is set to DWORD for tiny,
small, and medium models, and to FWORD for
compact, large, and huge models.

The optional RETURNS keyword introduces one or
more arguments that won't be popped from the stack
when the procedure returns to its caller. Normally, if
you specify the language as PASCAL or TP ASCAL
when using the .MODEL directive, all arguments are
popped when the procedure returns. If you place
arguments after the RETURNS keyword, they will be
left on the stack for the caller to make use of, and then
pop. In particular, you must define a Pascal string return
value by placing it after the RETURNS keyword.

Use the ENDP directive to end a procedure definition.
You must explicitly specify a RET instruction before the
ENDP if you want the procedure to return to its caller.

Within PROC/ENDP blocks you may use local symbols
whose names are not known outside the procedure.
Local symbols start with double at-signs (@@).

You can nest PROC/ENDP directives if you want; if you
do, the local symbols nest also.

Argument names that begin with the local symbol prefix
when local symbols are enabled are limited in scope to
the current procedure.

ARG, ENDP, LOCAL, LOCALS, USES

ReadLine PROC NEAR
;body of procedure

ReadLine ENDP

call ReadLine

Turbo Assembler Reference Guide

PUBLIC
Function

Mode

Syntax

Remarks

See also

Example

PURGE
Function

Mode

Syntax

Remarks

See also

Example

Declares symbols to be accessible from other modules

MASM,Ideal

PUBLIC symbol [,symbol] •••

symbol is published in the object file so that it can be
accessed by other modules. If you do not make a symbol
public, it can only be accessed from the current source
file.

You can declare the following types of symbols to be
public:

• data variable names
• program labels
• numeric constants defined with EQU

COMM, EXTRN, GLOBAL

PUBLIC XYPROC imake procedure public
XYPROC PROC NEAR

Removes a macro definition

MASM,Ideal

PURGE macroname [,macroname] .••

PURGE deletes the macro definition specified by the
macroname argument. You can delete multiple macro
definitions by supplying all their names, separated by
commas.

You may need to use PURGE to restore the original
meaning of an instruction or directive whose behavior
you changed by defining a macro with the same name.

MACRO

PURGE add
add ax,4 jbehaves as normal ADD now

Chapter 3, Directives 141

%PUSHLCTL
Function

Mode

Syntax

Remarks

See also

Example

QUIRKS
Function

Mode

Syntax

Remarks

See also

Example

Saves listing controls on stack

MASM, Ideal

%PUSHLCTL

%PUSHLCTL saves the current listing controls on a
16-level stack. Only the listing controls that can be
enabled or disabled (%INCL, %NOINCL, and so on) are
saved. The listing field widths are not saved. This
directive is particularly useful in macros, where you can
invoke special listing modes that disappear once the
macro expansion terminates.

%POPLCTL

%PUSHLCTL
%NOINCL
%MACS
%POPLCTL

;save listing controls

;back the way things were

Enables acceptance of MASM bugs

MASM,Ideal

QUIRKS

QUIRKS allows you to assemble a source file that
makes use of one of the true MASM bugs. You should
try to stay away from using this directive, since it merely
perpetuates source code constructs that only work by
chance. Instead, you should really correct the offending
source code so that it does what you really intended.

See the section "Turbo Assembler Quirks Mode" (page
172) in Appendix B for a complete description of this
mode.

MASM,IDEAL

QUIRKS
BVAL DB 0
rnov BVAL,es ;load register into byte location

142 Turbo Assembler Reference Guide

.RADIX
Function

Mode

Syntax

Remarks

Example

RADIX
Function

Mode

Syntax

See also

RECORD
Function

Mode

Syntax

Remarks

Sets the default radix for integer constants in
expressions

MASM

.RADIX expression

expression must evaluate to either 2, 8, 10, or 16. Con­
stants in expression are always interpreted as decimal, no
matter what the current radix is set to.

.RADIX 8
DB 77

;set to octal
; 63 decimal

Sets the default radix for integer constants in
expressions

MASM, Ideal

RADIX

.RADIX

Defines a record that contains bit fields

MASM, Ideal

MASMmode:
name RECORD field [,field] •••

Ideal mode:
RECORD name field [, field] .••

name identifies the record so that you can use this name
later when allocating memory to contain records with
this format. Each field describes a group of bits in the
record and has the following format:

fieldname:width[=expression]

fieldname is the name of a field in the record. If you use
fieldname in an expression, it has the value of the number

Chapter 3, Directives 143

See also

Example

REPT
Function

Mode

Syntax

Remarks

See also

144

of bits that the field must be shifted to the right in order
to place the low bit of the field in the lowest bit in the
byte or word that comprises the record.

width is a constant between 1 and 16 that specifies the
number of bits in the field. The total width of all fields in
the record cannot exceed 32 bits. If the total number of
bits in all fields is 8 or less, the record will occupy 1 byte;
if it is between 9 and 16 bits, it will occupy 2 bytes;
otherwise, it will occupy 4 bytes.

expression is an optional field that provides a default
value for the field; it must be preceded with an equal
sign (=). When name is used to define storage, this
default value will be placed in the field if none is
supplied. Any unused bits in the high portion of the
record will be initialized to O.

The first field defined by RECORD goes into the most­
significant bits of the record with successive fields filling
the lower bits. If the total width of all the fields is not
exactly 8 or 16 bits, all the fields are shifted to the right
so that the lowest bit of the last field occupies the lowest
bit of the byte or word that comprises the record.

STRUC

MyRec RECORD val:3=4, MODE:2, SIZE:4

Repeats a block of statements

MASM,Ideal

REPT expression
statements

ENDM

expression must evaluate to a constant and cannot con­
tain any forward-referenced symbol names.

The statements within the repeat block are assembled as
many times as specified by expression.

REPT can be used both inside and outside of macros.

ENDM, IRP, IRPC

Turbo Assembler Reference Guide

Example

.SALL
Function

Mode

Syntax

Remarks

See also

Example

SEGMENT
Function

Mode

Syntax

Remarks

REPT 4

shl ax,l
ENDM

Suppresses the listing of all statements in macro
expansions

MASM

.SALL

Use .SALL to cut down the size of your listing file when
you want to see how a macro gets expanded.

.LALL, .XALL, %MACS, %NOMACS

.SALL
MyMacro 4
add ax,si

;invoke macro
;this line follows MYMACRO in listing

Defines a segment with full attribute control

MASM,Ideal

MASMmode:
name SEGMENT [align] [combine] [use] [' class']

Ideal mode:
SEGMENT name [align] [combine] [use] ['class']

name defines the name of a segment. If you have already
defined a segment with the same name, this segment is
treated as a continuation of the previous one.

You can also use the same segment name in different
source files. The linker will combine all segments with
the same name into a single segment in the executable
program.

align specifies the type of memory boundary where the
segment must start. It can be one of the following:

Chapter 3, Directives 145

146

BYTE Use the next available byte address

WORD Use the next word-aligned address

DWORD Use the next doubleword-aligned address

PARA Use the next paragraph address (16-byte
aligned)

PAGE Use the next page address (256-byte
aligned)

PARA is the default alignment type used if you do not
specify an align type.

combine specifies how segments from different modules
but with the same name will be combined at link time. It
can be one of the following:

• AT expression: Locates the segment at the absolute
paragra ph address specified by expression. expression
must not contain any forward-referenced symbol
names. The linker does not generate any data or code
for AT segments. You usually use AT segments to
allow symbolic access to fixed memory locations, such
as the display screen or the ROM BI05 data area.

• COMMON: Locates this segment and all other seg­
ments with the same name at the same address. The
length of the resulting common segment is the length
of the longest segment.

• MEMORY: Concatenates all segments with the same
name to form a single contiguous segment. This is the
same as the PUBLIC combine type.

• PRIV ATE: Does not combine this segment with any
other segments.

• PUBLIC: Concatenates all segments with the same
name to form a single contiguous segment. The total
length of the segment is the sum of all the lengths of
the segments with the same name.

• STACK: Concatenates all segments with the same
name to form a single contiguous segment. The linker
initializes the stack segment (55) register to the
beginning of this segment. It initializes the stack
pointer (5P) register to the length of this segment,
allowing your program to use segments with this
combine type as a calling stack, without having to

Turbo Assembler Reference Guide

See also

Example

explicitly set the SS and SP registers. The total length
of the segment is the sum of all the lengths of the
segments with the same name.

PRIVATE is the default combine type used if you do not
specify one.

use specifies the default word size for the segment, and
can only be used after enabling the 80386 processor with
the P386 or P386N directive. It can be one of the
following:

• USE16: This is the default segment type when you do
not specify a use-segment attribute. A USE16 segment
can contain up to 64K of code and/or data. If you
reference 32-bit segments, registers, or constants while
in a USE16 segment, additional instruction bytes will
be generated to override the default 16-bit size .

• USE32: A USE32 segment can contain up to 4 Gb
(gigabytes) of code and/or data. If you reference 16-
bit segments, registers, or constants while in a USE32
segment, additional instruction bytes will be
generated to override the default 32-bit size.

class controls the ordering of segments at link time.
Segments with the same class name are loaded into
memory together, regardless of the order in which they
appear in the source file. You must always enclose the
class name in quotes (' or ").

The ENDS directive closes the segment opened with the
SEGMENT directive. You can nest segment directives,
but Turbo Assembler treats them as unnested; it simply
resumes adding data or code to the original segment
when an ENDS terminates the nested segment.

GROUP, MODEL, CODESEG, DATASEG

PROG SEGMENT PARA PUBLIC 'CODE'

PROG ENDS

Chapter 3, Directives 147

.SEQ
Function

Mode

Syntax

Remarks

See also

Example

.SFCOND
Function

Mode

Syntax

See also

SIZESTR
Function

Mode

Syntax

Remarks

148

Sets sequential segment-ordering

MASM

• SEQ

.SEQ causes the segments to be ordered in the same
order in which they were encountered in the source file.
By default, Turbo Assembler uses this segment-ordering
when it first starts assembling a source file. The DOS­
SEG directive can also affect the ordering of segments .

. SEQ does the same thing as the IS command-line
option. If you used the IA command-line option to force
alphabetical segment-ordering, .SEQ will override it .

. ALPHA, DOSSEG

.SEQ
xyz SEGMENT
xyz ENDS
abc SEGMENT
abc ENDS

;this segment will be first

Prevents statements in false conditional blocks from
appearing in the listing file

MASM

.SFCOND

%CONDS, .LFCOND, %NOCONDS, .TFCOND

Returns the number of characters in a string

MASM51, Ideal

name SIZESTR string

name is assigned a numeric value that is the number of
characters in a string. A null string <> has a length of
zero.

Turbo Assembler Reference Guide

See also

Example

.STACK
Function

Mode

Syntax

Remarks

See also

Example

STACK
Function

Mode

See also

STRUC
Function

Mode

Syntax

SUBSTR,CATSTR,~STR

RegList EQU <si di>
RegLen SIZESTR RegList iRegLen = 5

Defines the start of the stack segment

MASM

.STACK [size]

size is the number of bytes to reserve for the stack. If you
do not supply a size, the .STACK directive reserves 1 Kb
(1024 bytes).

You usually only need to use .STACK if you are writing
a standalone assembler program. If you are writing an
assembler routine that will be called from a high-level
language, that language will normally have set up any
stack that is required.

.CODE, .CONST, .DATA, .DATA?, .FARDATA,

.FARDATA?, .MODEL, STACK

.STACK 200h iallocate 512 byte stack

Defines the start of the stack segment

MASM,Ideal

.CODE, .CONST, .DATA, .DATA?, .FARDATA,

.FARDATA?, .MODEL, .STACK

Defines a structure

MASM, Ideal

MASMmode:
name STRUC

fields

[name] ENDS

Chapter 3, Directives 149

Remarks

150

Ideal mode:
STRUC name

fields
ENDS [name]

The difference in how STRUC is handled in Ideal and
MASM mode is only in the order of the directive and the
structure name on the first line of the definition, and the
order of the ENDS directive and the optional structure
name on the last line of the definition. In Turbo
Assembler, you can nest the STRUC directive and also
combine it with the UNION directive.

name identifies the structure, so you can use this name
later when allocating memory to contain structures with
this format.

fields define the fields that comprise the structure. Each
field uses the normal data allocation directives (DB,
DW, and so on) to define its size. fields may be named or
remain nameless. The field names are like any other
symbols in your program-they must be unique. In
Ideal mode, the field names do not have to be unique.

You can supply a default value for any field by putting
that value after the data allocation directive, exactly as if
you were initializing an individual data item. If you do
not want to supply a default value, use the? indetermi­
nate initialization symbol. When you use the structure
name to actually allocate data storage, any fields
without a value will be initialized from the default
values in the structure definition. If you don't supply a
value, and there is no default value, ? will be used.

Be careful when you supply strings as default values;
they will be truncated if they are too long to fit in the
specified field. If you specify a string that is too short for
the field in MASM mode, it will be padded with spaces
to fill out the field. When in Ideal mode, the rest of the
string from the structure definition will be used. This
lets you control how the string will be padded by
placing appropriate values in the structure definition.

At any point while declaring the structure members, you
may include a nested structure or union definition by
using the STRUC or UNION directive instead of one of

Turbo Assembler Reference Guide

See Also

Example

SUBSTR
Function

Mode

Syntax

the data allocation directives, or you may use the name
of a previously defined structure.

When you nest structures or unions using the STRUC or
UNION directive, you still access the members as if the
structure only has one level by using a single period (.)
structure member operator. When you nest structures by
using a previously defined structure name, you use
multiple period operators to step down through the
structures.

ENDS, UNION

IDEAL
.MODEL small
DATASEG
STRUC B

BI DD 0
B2 DB ?

ENDS

STRUC A
Al DW
A2 DD
BINST
STRUC

?
?
B

D DB
E DQ

ENDS
ENDS

AINST A
CINST A
DINST A

CODESEG

<>

"XYZ"
1.0

<>

mov aI, [AINST.BINST.B2]
mov aI, [AINST.D]
mov ax, [WORD CINST.BINST.BI]

END

; first field
; second field

Defines a new string as a substring of an existing string

MASM51, Ideal

name SUBSTR string,position[,size]

Chapter 3, Directives 151

Remarks

See also

Example

SUBTTL
Function

Mode

Syntax

Remarks

See also

Example

%SUBTTL
Function

Mode

Syntax

Remarks

152

name is assigned a value consisting of characters from
string starting at position, and with a length of size. The
first character in the string is position 1. If you do not
supply a size, all the remaining characters in string are
returned, starting from position.

string may be one of the following:

• a string argument enclosed in angle brackets, like
<abc>

• a previously defined text macro
• a numeric string substitution starting with percent (%)

CATSTR, INSTR, SIZESTR

N = OAh
HEXC SUBSTR <0123456789ABCDEF>,N + 1,1 ;HEXC = "A"

Sets subtitle in listing file

MASM

SUBTTL text

The subtitle appears at the top of each page, after the
name of the source file, and after any title set with the
TITLE directive.

You may place as many SUBTTL directives in your
program as you wish. Each directive changes the sub­
title that will be placed at the top of the next listing page.

% SUB TTL

SUB TTL Video driver

Sets subtitle in listing file

MASM,Ideal

%SUBTTL "text"

The subtitle text appears at the top of each page, after the
name of the source file, and after any title set with the

Turbo Assembler Reference Guide

See also

Example

%SYMS
Function

Mode

Syntax

Remarks

See also

Example

% TAB SIZE
Function

Mode

Syntax

Remarks

See also

Example

%TITLE directive. Make sure that you place the subtitle
text between quotes ("").

You may place as many %SUBTIL directives in your
program as you wish. Each directive changes the
subtitle that will be placed at the top of the next listing
page.

SUBTIL

%SUBTTL "Output routines"

Enables symbol table in listing file

MASM,Ideal

%SYMS

Placing % SYMS anywhere in your source file causes the
symbol table to appear at the end of the listing file. (The
symbol table shows all the symbols you defined in your
source file.)

This is the default symbol listing mode used by Turbo
Assembler when it starts assembling a source file.

%NOSYMS

%SYMS ;symbols now appear in listing file

Sets tab column width in the listing file

MASM,Ideal

%TABSIZE width

width is the number of columns between tabs in the
listing file. The default tab column width is 8 columns.

%PAGE, %PCNT, %BIN, %TEXT

%TABSIZE 4 ;small tab columns

Chapter 3, Directives 153

% TEXT
Function

Mode

Syntax

Remarks

See also

Example

.TFCOND
Function

Mode

Syntax

Remarks

See also

TITLE
Function

Mode

Syntax

Remarks

154

Sets width of source field in listing file

MASM,Ideal

%TEXT width

width is the number of columns to use for source lines in
the listing file. If the source line is longer than this field,
it will either be truncated or wrapped to the following
line, depending on whether you've used %TRUNC or
% NOTRUNC.

%BIN, %DEPTH, %NOTRUNC, %PCNT, %TRUNC

%TEXT 80 ishow 80 columns from source file

Toggles conditional block-listing mode

MASM

.TFCOND

Normally, conditional blocks are not listed by Turbo
Assembler, and the first .TFCOND encountered enables
a listing of conditional blocks. If you use the IX
command-line option, conditional blocks start off being
listed, and the first .TFCOND encountered disables
listing them. Each time .TFCOND appears in the source
file, the state of false conditional listing is reversed.

%CONDS, .LFCOND, %NOCONDS, .SFCOND

Sets title in listing file

MASM

TITLE text

The title text appears at the top of each page, after the
name of the source file and before any subtitle set with
the SUBTIL directive.

Turbo Assembler Reference Guide

See also

Example

% TITLE
Function

Mode

Syntax

Remarks

See also

Example

%TRUNC
Function

Mode

Syntax

Remarks

See also

Example

You may only use the TITLE directive once in your
program.

SUBTTL, % SUBTTL, % TITLE

TITLE Sort Utility

Sets title in listing file

MASM,Ideal

%TITLE "text"

The title text appears at the top of each page, after the
name of the source file and before any subtitle set with
the %SUBTTL directive. Make sure that you place the
title text between quotes ("").

You may only use the % TITLE directive once in your
program.

SUBTTL, % SUB TTL, TITLE

%TITLE "I/O Library"

Truncates listing fields that are too long

MASM,Ideal

%TRUNC

%TRUNC reverses the effect of a previous %NO­
TRUNC directive. This directive changes the object-code
field and the source-line field so that too-wide fields are
truncated and excess information is lost.

% NOTRUNC

%TRUNC
DD 1,2,3,4,5 idon't see all fields

Chapter 3, Directives 155

UDATASEG
Function

Mode

See also

Defines the start of an uninitialized data segment

MASM,Ideal

.CODE, .CONST, .DATA, DATA?, .FARDATA,

.FARDATA?, .MODEL, .STACK

UFARDATA
Function

Mode

See also

UNION
Function

Mode

Syntax

Remarks

156

Defines the start of an uninitialized far data segment

MASM,Ideal

.CODE, .DATA, .FARDATA, .FARDATA?, .MODEL,

.STACK

Defines a union

MASM, Ideal (disabled by QUIRKS)

MASMmode:
NAME UNION

fields
[name] ENDS

Ideal mode:
UNION NAME

fields
ENDS [name]

The only difference in how UNION behaves in Ideal
and MASM mode is in the order of the directive and the
union name on the first line of the definition, and the
order of the ENDS directive and the optional union
name on the last line of the definition. Turbo Assembler
allows you to nest UNION and to combine it with
STRUC.

A UNION is just like a STRUC except that all its
members have an offset of zero (0) from the start of the
union. This results in a set of fields that are overlayed,
allowing you to refer to the memory area defined by the

Turbo Assembler Reference Guide

See also

Example

union with different names and different data sizes. The
length of a union is the length of its largest member, not
the sum of the lengths of its members as in a structure.

name identifies the union, so you can use this name later
when allocating memory to contain unions with this
format.

fields define the fields that comprise the union. Each field
uses the normal data allocation directives (DB, DW, etc.)
to define its size. The field names are like any other
symbols in your program-they must be unique.

You can supply a default value for any field by putting
that value after the data allocation directive, exactly as if
you were initializing an individual data item. If you
don't want to supply a default value, use the? indeter­
minate initialization symbol. When you use the union
name to actually allocate data storage, any fields that
you don't supply a value for will be initialized from the
default values in the structure definition. If you don't
supply a value and there is no default value, ? will be
used.

Be careful when you supply strings as default values;
they will be truncated if they are too long to fit in the
specified field. If you specify a string that is too short for
the field, it will be padded with spaces to fill out the
field.

At any point while declaring the union members, you
may include a nested structure or union definition by
using the STRUC or UNION directive instead of one of
the data-allocation directives. When you nest structures
and unions using the STRUC or UNION directive, you
still access the members as if the structure only has one
level by using a single period (.) structure member
operator. When you nest unions by using a previously
defined union name, you use multiple period operators
to step down through the structures and unions.

ENDS, UNION

UNION B
BMEMl DW
BMEM2 DB ?

ENDS
UNION A

Chapter 3, Directives 157

USES
Function

Mode

Syntax

Remarks

See also

Example

158

B OW?
C DO?

BUNION B <>
STRUC
o DB "XYZ"
E DQ 1.0
ENDS

ENDS

AINST A <>
mov al, [AINST.BUNION.BMEM1]
mov al, [AINST.D]

;first field--offset 0
;second field--offset 0
;starts at 0

;at offset 0
;at offset 1

;allocate a union of type A
;multiple levels
;single level

Indicates register usage for procedures

MASM,Ideal

USES register [,register] •••

USES appears within a PROC/ENDP pair and indicates
which registers you want to have pushed at the begin­
ning of the procedure and which ones you want popped
just before the procedure returns.

register can be any register that can be legally PUSHed
or POPped. There is a limit of 8 registers per procedure.

Notice that you separate register names with commas,
not with spaces like you do when specifying the
registers as part of the PROC directive. You can also
specify these registers on the same line as the PROC
directive, but this directive makes your procedure
declaration easier to read and also allows you to put the
USES directive inside a macro that you can define to set
up your procedure entry and exit.

You must use this directive before the first instruction
that actually generates code in your procedure.

Note: USES is only available when used with language
extensions to a .MODEL statement.

ARG, LOCALS, PROC

MyProe PROC
USES ex,si,di

mov ex,lO
rep movsb

Turbo Assembler Reference Guide

WARN
Function

Mode

Syntax

Remarks

See also

Example

ret ;this will pop ex, SI, & 01 registers
MyProc ENOP

Enables a warning message

MASM, Ideal

WARN [warnc1ass]

If you specify WARN without warnclass, all warnings are
enabled. If you follow WARN with a warning identifier,
only that warning is enabled. Each warning message has
a three-letter identifier:

ALN Segment alignment
ASS Assumes segment is 16-bit
BRK Brackets needed
ICG Inefficient code generation
LCO Location counter overflow
OPI Open IF conditional
OPP Open procedure
OPS Open segment
OVF Arithmetic overflow
PDC Pass-dependent construction
PRO Write-to-memory in protected mode needs

CS override
PQK Assuming constant for [const] warning
RES Reserved word warning
TPI Turbo Pascal illegal warning

These are the same identifiers used by the IW
command-line option.

WARN

NOWARN OVF ;disable arithmetic overflow warnings
OW lOOOh * l234h ;doesn't warn now

Chapter3,Offecffves 159

.XALL
Function

Mode

See also

.XCREF
Function

Mode

See also

.XLIST
Function

Mode

See also

160

Lists only macro expansions that generate code or data

MASM

.LALL, %MACS, %NOMACS, .SALL

Disables cross-reference listing (CREF)

MASM

%CREF, .CREF, %NOCREF

Disables output to listing file

MASM

%LIST, .LIST, %NOLIST

Turbo Assembler Reference Guide

A p p E N D x

A

Turbo Assembler Syntax Summary

This appendix uses a modified Backus-Naur form (BNF) to summarize the
syntax for Turbo Assembler expressions, both in MASM mode and in Ideal
mode.

Note: In the following sections, the ellipses (...) mean the same element is
repeated as many times as it is found.

Lexical Grammar

valid_line

II white_space valid_line

• punctuation valid_line
II number _string valid_line

• id_string valid_line
II null

white_space

• space_char white_space

• space_char

Appendix A, Turbo Assembler Syntax Summary 161

space_char

• All control characters, characters> 128, I I

id_string

• id_char id_strng2

id_strng2

• id_chr2 id_strng2

• null

• $, %, -I ?, alphabetic characters

id_chr2

• id_chars plus numerics

number _string

• num_string
• str _string

num_string

• digits alphanums
• digits ',' digits exp
• digits exp ; Only if MASM mode in aDD, DQ, or DT

digits

• digit digits

• digit

digit

.0 through 9

162 Turbo Assembler Reference Guide

alphanums

• digit alphanum
• alpha alphanum

• null

alpha

• alphabetic characters

exp

• E + digits
• E -digits
.E digits

• null

str_string

iii Quoted string, quote enterable by two quotes in a row

punctuation

I!!I Everything that is not a space_char, id_char, "", 1I1It, or digits

The period (.) character is handled differently in MASM mode and Ideal
mode. This character is not required in floating-point numbers in MASM
mode and also cannot be part of a symbol name in Ideal mode. In MASM
mode, it is sometimes the start of a symbol name and sometimes a punc­
tuation character used as the structure member selector.

Here are the rules for the period (.) character:

1. In Ideal mode, it is always treated as punctuation.

2. In MASM mode, it is treated as the first character of an ID in the
following cases:

a. When it is the first character on the line, or in other special cases like
EXTRN and PUBLIC symbols, it gets attached to the following
symbol if the character that follows it is an id_chr2, as defined in the
previous rules.

Appendix A, Turbo Assembler Syntax Summary 163

b. If it appears other than as the first character on the line, or if the
resulting symbol would make a defined symbol, the period gets
appended to the start of the symbol following it.

MASM Mode Expression Grammar

mexprl

• 'SHORT' mexprl
• '. TYPE' mexprl
• 'SMALL' mexprl (16-bit offset cast [386 only])
• 'LARGE' mexprl (32-bit offset cast [386 only])
.mexpr2

mexpr2

• mexpr3 'OR' mexpr3 .. .
• mexpr3 'XOR' mexpr3 .. .
• mexpr3

mexpr3

• mexpr4 'AND' mexpr4 ...
• mexpr4

mexpr4

• 'NOT' mexpr4
.mexpr5

mexpr5

• mexpr6 'EQ' mexpr6 .. .
• mexpr6 'NE' mexpr6 .. .
• mexpr6 'LT' mexpr6 .. .
• mexpr6 'LE' mexpr6 .. .
• mexpr6 'GT' mexpr6 .. .

164 Turbo Assembler Reference Guide

• mexpr6 'GE' mexpr6 ...
• mexpr6

mexpr6

• mexpr7 '+' mexpr7 .. .
iii mexpr 7 '-' mexpr 7 .. .

• mexpr7

mexpr7

• mexprB '*' mexprB .. .
• mexprB 'I' mexprB .. .
• mexprB 'MOD'mexprB .. .
• mexprB 'SHR' mexprB .. .
• mexprB 'SHL' mexprB .. .
II mexprB

mexprS

• mexpr9 'PTR' mexprB

• mexpr9
• 'OFFSET' mexprB
• 'SEG' mexprB
• 'TYPE' mexprB
• 'THIS' mexprB

mexpr9

• mexprl0 ';' mexprl0 ...
II mexprl0

mexprl0

• '+' mexprl0
• '-' mexprl0

• mexprll

Appendix A, Turbo Assembler Syntax Summary 165

mexprll

• 'HIGH' mexprll
• 'LOW' mexprll

• mexpr12

mexpr12

• mexpr13 mexpr13 '" (Implied addition only if '[' or '(' present)

• mexpr12 mexpr13 ',' mexpr8

mexpr13

• 'LENGTH' id
• 'SIZE' id
• 'WIDTH' id
• 'MASK' id
• '(' mexprl ')'

• '[' mexprl ']'
.id

• const

Ideal Mode Expression Grammar

pointer

• 'SMALL' pointer (16-bit offset cast [386 only])
• 'LARGE' pointer (32-bit offset cast [386 only])

• type 'PTR' pointer
• type 'LOW' pointer (Low caste operation)
• type 'HIGH' pointer (High caste operation)

• type pointer
• pointer2

type

• 'UNKNOWN'

• 'BYTE'

166 Turbo Assembler Reference Guide

• 'WORD'

• 'DWORD'

• 'QWORD'

• 'PWORD'

• 'TRYTE'
• 'SHORT'
.'NEAR'

• 'FAR'
.strucCid

• 'TYPE' pointer

pointer2

• pointer3 ',' id (Structure item operation)

• pointer3

pointer3

• expr ':' pointer3
.expr

expr

• 'SYMTYPE' expr (Symbol type operation)

• expr2

expr2

• expr3 'OR' expr3 '"
I! expr3 'XOR' expr3 '"
.expr3

expr3

• expr4 'AND' expr4 ,,'
.expr4

Appendix A, Turbo Assembler Syntax Summary 167

expr4
II 'NOT' expr4
.expr5

exprS

• expr6 'EQ' expr6 .. .
• expr6 'NE' expr6 .. .
• expr6 'LT' expr6 .. .
• expr6 'LE' expr6 .. .
• expr6 'GT' expr6 .. .
• expr6 'GE' expr6 .. .
• expr6

expr6

• expr7 '+' expr7 .. .
• expr7 '-' expr7 .. .

• expr7

expr7
• exprB ,*, exprB .. .

• exprB '/' exprB .. .
• exprB 'MOD' exprB .. .
• exprB 'SHR' exprB .. .
II exprB 'SHL' exprB .. .
81 exprB

exprB

• '+' exprB
• '-' exprB

• expr9

expr9

• 'HIGH' expr9

168 Turbo Assembler Reference Guide

• 'LOW' expr9

• exprl0

exprl0

• 'OFFSET' pointer

• 'SEG' pointer

• 'SIZE' id
• 'LENGTH' id
• 'WIDTH' id

• 'MASK' id
aid

• const
• '(' pointer ')'
• '[' pointer '] (Always means 'contents-of ')

Appendix A, Turbo Assembler Syntax Summary 169

170 Turbo Assembler Reference Guide

A p p E N D x

B

Compatibility Issues

Turbo Assembler in MASM mode is very compatible with MASM version
4.0, and additionally supports all the extensions provided by MASM
versions 5.0 and 5.1. However, 100% compatibility is an ideal that can only
be approached, since there is no formal specification for the language and
different versions of MASM are not even compatible with each other.

For most programs, you will have no problem using Turbo Assembler as a
direct replacement for MASM version 4.0 or 5.1. Occasionally, Turbo
Assembler will issue a warning or error message where MASM would not,
which usually means that MASM has not detected an erroneous statement.
For example, MASM accepts

abc EQU [BP+2]
PUBLIC abc

and generates a nonsense object file. Turbo Assembler correctly detects this
and many other questionable constructs.

If you are having trouble assembling a program with Turbo Assembler, you
might try using the QUIRKS directive; for example,

TASM IJQUIRKS MYFILE

which may make your program assemble properly. If it does, add QUIRKS
to the top of your source file. Even better, review this appendix and
determine which statement in your source file needs the QUIRKS directive.
Then you can rewrite the line(s) of code so that you don't even have to use
QUIRKS.

If you're using certain features of MASM version 5.1, you'll need MASM51
in your source file. These capabilities are discussed later in this appendix.

Appendix 8, Compatibility Issues 171

Environment Variables

In keeping with the approach used by other Borland language products,
Turbo Assembler does not use environment variables to control default
options. Instead, you can place default options in a configuration file and
then set up different configuration files for different projects. See Chapter 3
in the User's Guide for a discussion of how to do this.

H you have used the INCLUDE or MASM environment variables to
configure MASM to behave as you wish, you will have to make a configu­
ration file for Turbo Assembler. Any options that you have specified using
the MASM variable can simply be placed in the configuration file. Any
directories that you have specified using the INCLUDE variable should be
placed in the configuration file using the II command-line option.

Microsoft Binary Floating-Point Format

Older versions of MASM by default generated floating-point numbers in a
format incompatible with the IEEE standard floating-point format. MASM
version 5.1 generates IEEE floating-point data by default and has the
.MSFLOAT directive to specify that the older format be used.

Turbo Assembler does not support the old floating-point format, and
therefore does not let you use .MSFLOAT.

Turbo Assembler Quirks Mode

Some MASM features are so problematic in nature that they weren't
included in Turbo Assembler's MASM mode. However, programmers
occasionally like to take advantage of some of these "quirky" features. For
that reason, Turbo Assembler includes Quirks mode, which emulates these
potentially troublesome features of MASM.

You can enable Quirks mode either with the QUIRKS keyword in your
source file or by using the IlQUIRKS command~line option when running
Turbo Assembler.

The following constructs will cause Turbo Assembler to generate error
messages in MASM mode, but will be accepted in Quirks mode.

172 Turbo Assembler Reference Guide

Byte Move to/from Segment Register

MASM does not check the operand size when moving segment registers to
and from memory. For example, the following is perfectly acceptable under
MASM:

SEGVAL D... ?
USEFUL DB

rnov SEGVAL, es ioverwrites part of "USEFUL"!

This is clearly a programming error that only works because the corruption
of USEFUL does not affect the program's behavior. Rather than using
Quirks mode, redefine SEGV AL to be a DW, as was presumably intended.

Erroneous Near Jump to Far Label or Procedure

With MASM, a far jump instruction to a target within the same segment
generates a near or a short jump whether or not the target is overridden
with FAR PTR:

CODE SEGMENT
jrnp abc
jrnp FAR PTR abc idoesn't generate far JMP

abc LABEL FAR
CODE ENDS

. Turbo Assembler normally assembles a far JMP instruction when you tell it
that the destination is a far pointer. If you want it to behave as MASM does
and always treat it as a short or near jump if the destination is in the same
segment, you must enable Quirks mode.

Loss of Type Information with = and EQU Directive

Examine the following code fragment:

X DW 0
Y = OFFSET X

rnovax,Y

MASM will generate the instruction MOV AX,[X] here, where Turbo
Assembler will correctly generate MOV AX,OFFSET X. This happens
because MASM doesn't correctly save all the information that describes the
expression on the right side of the = directive.

This also happens when using the EQU directive to define symbols for
numeric expressions.

Appendix 8, Compatibility Issues 173

Segment-Alignment Checking

MASM allows the ALIGN directive to specify an alignment that is more
stringent than that of the segment in which it is used. For example,

CODE SEGMENT WORD
ALIGN 4 ;segment is only word aligned

CODE ENDS

This is a dangerous thing to do, since the linker may undo the effects of the
ALIGN directive by combining this portion of segment CODE with other
segments of the same name in other modules. Even then, you can't be
guaranteed that the portion of the segment in your module will be aligned
on anything better than a word boundary.

You must enable Quirks mode to accept this basically meaningless
construct.

Signed Immediate Arithmetic and Logical
Instructions

MASM version 4.0 only sign-extends immediate operands on arithmetic
instructions. When Turbo Assembler is not in Quirks mode, it does sign­
extension on immediate operands for logical instructions as well. This
results in shorter, faster instructions, but changes the size of code segments
containing these constructs. This may cause problems with self-modifying
code or any code that knows approximately how long the generated
instructions are. The following code shows an instruction that both MASM
and Turbo Assembler generate correctly, and another that Turbo Assembler
generates correctly and MASM version 4.0 does not:

add ax,-l ;MASM and Turbo do sign-extend
xor cx,OFFFFh ;MASM 4 uses word immediate

Here MASM version 4.0 generates the byte sequence 81 Fl FFFF for the
XOR instruction, and Turbo Assembler generates the shorter but compa­
tible 83 Fl FF.

Masm 5.1 Features

Some of the new features introduced with MASM version 5.1 are always
available when using Turbo Assembler. Other features must be enabled
with the MASM51 directive. Some features of MASM 5.1 and Turbo
Assembler (implemented more powerfully by Turbo Assembler) are

174 Turbo Assembler Reference Guide

discussed in a previous section, "Turbo Assembler Quirks Mode," on page
172.

When Turbo Assembler first starts assembling your source file, it is in
MASM mode with MASM 5.1 features disabled. This is like starting your
program with the MASM and NOMASM51 directives.

Each of the extensions listed here is outlined in more detail Chapter 2,
"Operators," or Chapter 3, "Directives" in this book.

The following MASM 5.1 features are always available:

• Parameters and local arguments to PROC directive

• .TYPE operator extensions

• COMM directive extension

• .CODE sets CS ASSUME to current segment

• .MODEL directive high-level language support

• List all command-line option (!LA)

• Additional debug information with DW, DD, and DF directives

• ELSEIF family of directives

• @Cpu and @WordSize directives

• % expression operator with text macros

• DW, DD, and DF debug information extensions

The following features are available when you use MASM51:

• SUBSTR, CATSTR, SIZESTR, and INSTR directives

• Line continuation with backslash

These features are only available when you use both MASM51 and
QUIRKS:

• Local labels defined with @@ and referred to with @F and @B

• Redefinition of variables inside PROCs; :: definitions

• Extended model PROCs are all PUBLIC

Masm 5.1IQuirks Mode Features

Since several features of MASM 5.1 adversely affect some of Turbo
Assembler's features, we've provided an alternative through Turbo
Assembler that achieves what MASM 5.1 intended. To use these features,
you must enable Quirks mode with the QUIRKS directive and the MASM
5.1 features with the MASM51 directive.

Appendix 8, Compatibility Issues 175

Here is a short summary of what is covered under the various operating
modes of TASM:

QUIRKS

1. Allows far jumps to be generated as near or short if CS assumes agree.
2. Allows all instruction sizes to be determined in a binary operation

solely by a register, if present.
3. Destroys OFFSET, segment override (and so on) information on = or

numeric EQU assignments.
4. Forces EQU assignments to expressions with PTR or : in them to be text.
5. Disables UNION directive.
6. Allows GLOBAL directive to be overridden.

MASM51

1. Enables Instr, Catstr, Substr, Sizestr, and \ line continuations.
2. Makes EQU's to keywords TEXT instead of ALIASes.

3. No longer discards leading whitespace on % textmacro in macro
arguments.

MASM51 and QUIRKS
Everything listed under QUIRKS and MASM51 in this summary, and the
following:

1. Enables @@F and @@B local labels.

2. In extended models, automatically makes PUBLIC procedure names.
3. Makes near labels in PROCs redefinable in other PROCs.

4. Enables :: operator to define symbols that can be reached outside of
current PROC.

176 Turbo Assembler Reference Guide

A p p E N D x

c

Turbo Assembler Highlights

Besides its high compatibility with MASM, Turbo Assembler has a number
of enhancements that you can use simultaneously with the typical MASM­
style statements. These enhancements can be used both in Ideal mode and
in MASM mode. (Chapter 12 in the User's Guide provides you with more
details about Ideal mode.)

Here we'll introduce you to each of the enhancements and point you to
where more-detailed discussions of each topic can be found in the manual.

Extended Command-Line Syntax

Turbo Assembler has a greatly improved command-line syntax that is a
superset of the MASM command-line syntax. You can specify multiple files
to assemble by entering each individually or by using wildcards (* and ?).
You can also group files so that one set of command-line options applies to
one set of files, and another set applies to a second set of files. For a
complete description of Turbo Assembler command-line options, tum to
Chapter 3 of the User's Guide.

GLOBAL Directive

The GLOBAL directive lets you define variables as a cross between an
EXTRN and a PUBLIC. This means you can put GLOBAL definitions in a
header file that's included in all source modules and then define the data in
just one module. This gives you greater flexibility, since you can initialize

Appendix C, Turbo Assembler Highlights 177

data defined with the GLOBAL directive and you can't with the COMM
directive.

The section entitled "The GLOBAL Directive" in Chapter 5 of the User's
Guide shows you how to use this directive. You can also refer to Chapter 3
in this book for a complete definition of GLOBAL.

Local Symbols

The LOCALS and NOLOCALS directives control whether symbols that
start with two at-signs (00) are local to a block of code.

For more information on local symbols, refer to the section "Local Labels"
in Chapter 10 of the User's Guide. These two directives are also defined in
Chapter 3 in this book.

Conditional Jump Extension

The JUMPS and NOJUMPS control whether conditional jumps get
extended into the "opposite sense" condition and a near jump instruction.
This lets you have a conditional jump with a destination address further
away than the usual-128 to +127 bytes.

The section entitled "Automatic Jump Sizing" in Chapter 10 of the User's
Guide discusses how to use this feature.

Ideal Mode

Turbo Assembler's Ideal mode gives you a new and more rational way to
construct expressions and instruction operands. By learning just a few
simple rules, you can handle complex instruction operands in a better
manner. (See Chapter 12 of the User's Guide for an introduction to the
power of Ideal mode.)

UNION Directive/STRUC Nesting

Unions are like structures defined with the STRUC directive except that all
the members have an offset of zero (0) from the start of the structure,
effectively "overlaying" all the members.

In Turbo Assembler, you can nest STRUC and also combine it with
UNION. The section entitled "The STRUC Directive" in Chapter 10 of the

178 Turbo Assembler Reference Guide

User's Guide shows you how to use this directive; Chapter 3 in this book
provides a complete definition of both STRUC and UNION.

EMUL and NOEMUL Directives

You can control whether floating-point instructions are emulated or are real
coprocessor instructions with the EMUL and NOEMUL directives. Within
a single source file, you can switch back and forth as many times as you
wish between emulated and real floating-point instructions.

Explicit Segment Overrides

The Turbo Assembler lets you explicitly force a segment override to be
generated on an instruction by using one of the SEGCS, SEGDS, SEGES,
SEGSS, SEGFS, or SEGGS overrides. They function much like the REP
and LOCK overrides.

The section entitled "Segment Override Prefixes" in Chapter 10 of the
User's Guide shows you how to use these overrides.

Constant Segments

The Turbo Assembler lets you use a constant value any time that a segment
value should be supplied. You can also add a constant value to a segment.
For example,

jrnp FAR PTR OFFFFh:O
LOWDATA SEGMENT AT 0

ASSUME DS:LOWDATA+40h
mov ax,DS:[3FH]

LOWDATA ENDS

ijump into the ROM BIOS

iDS points to BIOS data area
iread word from BIOS data area

The section entitled ''The SEGMENT Directive" in Chapter 10 of the User's
Guide explains this in more detail.

Extended LOOP Instruction in 386 Mode

When you are writing' code for the 80386, Turbo Assembler lets you
determine explicitly whether the LOOP instruction should use the CX or
the ECX register as its counter.

The section entitled "New Versions of LOOP and JCXZ" in Chapter 11 of
the User's Guide shows you how to use this instruction.

Appendix C, Turbo Assembler Highlights 179

Extended Listing Controls

You have much greater control over the format and the content of the
listing file with Turbo· Assembler. You can control whether INCLUDE files
are listed, push and pop the listing control state, and control the width of
all the fields in the listing, including whether they get truncated or wrap to
the next line.

Chapter 5 of the User's Guide provides a description of all the options you
can use.

Alternate Directives

The Turbo Assembler provides alternative keywords for a number of
directives, in particular those that start with a period (.). All alternative
listing control directives start with a percent sign (%), and all alternative
processor control directives start with a P.

Refer to Chapter 3 in this book for a complete list of all the directives that
Turbo Assembler supports.

Predefined Variables

The Turbo Assembler defines a number of variables that have a value you
can access from your source files. These include ??date, ??time, ??filename,
and ??version, in addition to the predefined variables supported for MASM
5.0 compatibility.

Take a look at Chapter I, "Predefined Symbols," of this book for a
definition of these variables.

Masm 5.0 and 5.1 Enhancements

Turbo Assembler has all the extensions Masm 5.0 and 5.1 have over MASM
4.0. If you are not familiar with these extensions, here's a list of where to
look for some of the more important topics:

.80386 Support: See "The 80386" in Chapter 11 of the User's Guide .
• Simplified Segmentation Directives: See "Simplified Segment Directives

and 80386 Segment Types" in Chapter 11 of the User'Guide .
• String Equates: See "Using Equate Substitutions" in Chapter 5 of the

User's Guide.

180 Turbo Assembler Reference Guide

• RETF and RETN Instructions: See "How Subroutines Work" in Chapter
4 of the User's Guide.

• Communal Variables: See the COMM directive in Chapter 3 in this
book.

• Explicitly Including Library Files: See the INCLUDELIB directive in
Cha pter 3 in this book.

II More Flexible Structure Definitions: See "Structures and Unions" in
Chapter 11 of the User's Guide.

• Predefined Variables: See "Simplified Segment Directives" in Chapter 4
and also Chapter 10 of the User's Guide.

Improved SHL and SHR Handling

When you use SHL and SHR as part of an arithmetic expression, MASM
does not permit the shift count to be negative. Turbo Assembler accepts
negative shift counts and performs the opposite type of shift. For example,
16 SHL -2 is equivalent to 16 SHR 2.

Appendix C, Turbo Assembler Highlights 181

182 Turbo Assembler Reference Guide

A p p E N D x

D

Turbo Assembler Utilities

Turbo Assembler provides five powerful stand-alone utilities. You can use
these stand-alone utilities with your Turbo Assembler files, as well as with
your other modules.

These highly useful adjuncts to Turbo Assembler are

• MAKE (including the TOUCH utility; the stand-alone program manager
(MAKE)

• TLINK (the Turbo Linker)
• TLIB (the Turbo Librarian)
• GREP (a file-search utility)
• OBJXREF (an object module cross-referencer)

• TCREF (a cross-reference utility)

This appendix explains what each utility is and illustrates, with code and
command-line examples, how to use them.

The Stand-Alone MAKE Utility

Turbo Assembler places a great deal of power and flexibility at your
fingertips. You can use it to manage large, complex programs that are built
from numerous source and object files. Unfortunately, that same freedom
requires that you remember which files are required to produce other files.
Why? Because if you make a change in one file, you must then do all the
necessary recompilation and linking. One solution, of course, is simply to
recompile everything each time you make a change-but as your program

Appendix D, Turbo Assembler Utilities 183

grows in size, that becomes more and more time consuming. So what do
you do?

The answer is simple: You use MAKE. Turbo Assembler's MAKE is an
intelligent program manager that-given the proper instructions·-does all
the work necessary to keep your program up-to-date. In fact, MAKE can do
far more than that. It can make backups, pull files out of different sub­
directories, and even automatically run your programs should the data files
that they use be modified. As you use MAKE more and more, you'll see
new and different ways it can help you to manage your program
development.

In this section, we describe how to use stand-alone MAKE with Turbo
Assembler and TLINK.

A Quick Example

Let's start with an example to illustrate MAKE's usefulness. Suppose
you're writing some programs to help you display information about
nearby star systems. You have one program-GETSTARS-that reads in a
text file listing star systems, does some processing on it, then produces a
binary data file with the resulting information in it.

GETSTARS uses certain definitions, stored in STARDEFS.INC, and certain
routines, stored in STARLIB.ASM (and declared in STARLIB.lNC). In
addition, the program GETSTARS itself is broken up into three files:

• GSP ARSE.ASM
• GSCOMP.ASM
• GETSTARS.ASM

The first two files, GSP ARSE and GSCOMP, have corresponding include
files (GSPARSE.INC and GSCOMP.INC). The third file, GETSTARS.ASM,
has the main body of the program. Of the three files, only GSCOMP.ASM
and GETSTARS.ASM make use of the STARLIB routines.

Here are the include files needed by each assembler file:

184 Turbo Assembler Reference Guide

.ASMFile

STARLIB.ASM
GSP ARSE.ASM
GSCOMP.ASM
GETSTARS.ASM

Include File(s)

None
STARDEFS.INC
STARDEFS.INC,STARLIB.INC
STARDEFS.INC,ST ARLIB.lNC,GSP ARSE.INC,
GSCOMP.INC

To produce GETSTARS.EXE (assuming a medium data mode!), you would
enter the following command lines:

tasrn It Irnl Is starlib
tasrn It Irnl Is gsparse
tasrn It Irnl Is gscornp
tasrn It Irnl Is getstars
tlink starlib gsparse gscornp getstars, getstars, getstars, lib\rnath lib\io

Looking at the preceding information, you can see some file dependencies.

a GSPARSE, GSCOMP, and GETSTARS all depend on STARDEFS.INC; in
other words, if you make any changes to STARDEFS.INC, then you'll
have to recompile all three.

• Likewise, any changes to STARLIB.INC Will require GSCOMP and GET­
STARS to be recompiled.

• Changes to GSPARSE.INC means GETSTARS will have to be recompiled;
the same is true of GSCOMP .INC.

• Of course, any changes to any source code file (such as STARLIB.ASM
and GSP ARSE.ASM) means that file must be recompiled.

• Finally, if any recompiling is done, then the link has to be done again.

Quite a bit to keep track of, isn't it? What happens if you make a change to
STARLIB.INC, recompile GETSTARS.ASM, but forget to recompile
GSCOMP .ASM? You could make a .BAT file to do the four compilations
and the one linkage given previously, but you'd have to do them every
time you made a change. Let's see how MAKE can simplify things for you.

Creating a Makefile

A makefile is just a combination of the two lists just given: dependencies
and the commands needed to satisfy them.

For example, let's take the lists given, combine them, massage them a little,
and produce the following:

Appendix 0, Turbo Assembler Utilities 185

getstars.exe: getstars.obj gscomp.obj gsparse.obj starlib.obj
tlink starlib gsparse gscomp getstars, getstars, \

getstars, lib\math lib\io

getstars.obj: getstars.asm stardefs.inc starlib.inc gscomp.inc gsparse.inc
tasm It Iml Is getstars.asm

gscomp.obj: gscomp.asm stardefs.inc starlib.inc
tasm It Iml Is gscomp.asm

gsparse.obj: gsparse.asm stardefs.inc
tasm It Iml Is gsparse.asm

starlib.obj: starlib.asm
tasm It Iml Is starlib.asm

This just restates what was said before, but with the order reversed some­
what. Here's how MAKE interprets this file:

• The file GETSTARS.EXE depends on four files: GETSTARS.OBJ,
GSCOMP.OB], GSPARSE.OB], and STARLIB.OB]. If any of those four
change, then GETSTARS.EXE must be updated. How? By using the
TLINK command given.

• The file GETSTARS.OB] depends on five files: GETSTARS.ASM,
STARDEFS.INC, STARLIB.INC, GSCOMP.INC, and GSPARSE.INC. If
any of those files change, then GETSTARS.OB] must be recompiled by
using the TASM command given.

• The file GSCOMP .OB] depends on three files: GSCOMP .ASM,
STARDEFS.INC, and STARLIB.INC. If any of those three change,
GSCOMP.OB] must be recompiled using the TASM command given.

• The file GSP ARSE.OBJ depends on two files: GSP ARSE.OBJ and
STARDEFS.INC. It must be recompiled using the TASM command given
if either of those files change.

• The file STARLIB.OBJ depends on only one file, STARLIB.ASM. It must
be recompiled via TASM if STARLIB.ASM changes.

What do you do with this? Type it into a file, which (for now) we'll call
MAKEFILE. You're then ready to use MAKE.EXE.

Using a Makefile

Assuming you've created MAKE FILE like the one we've described
here-and, of course, assuming that the source code files exist-then all
you have to do is type the command

make

186 Turbo Assembler Reference Guide

MAKE looks for MAKEFILE (you can call it something else; we'll talk
about that later) and reads in the first line, describing the dependencies of
GETSTARS.EXE. It checks to see if GETSTARS.EXE exists and is up-to-date.

This requires that it check the same thing about each of the files upon
which GETSTARS.EXE depends: GETSTARS.OBJ, GSCOMP.OBJ,
GSPARSE.OBI, and STARLIB.OBI. Each of those files depends, in turn, on
other files, which must also be checked. The various calls to TASM are
made as needed to update the .OBI files, ending with the execution of the
TLINK command (if necessary) to create an up-to-date version of
GETSTARS.EXE.

What if GETSTARS.EXE and all the .OBI files already exist? In that case,
MAKE compares the time and date of the last modification of each .OBI file
with the time and date of its dependencies. If any of the dependency files
are more recent than the .OBI file, MAKE knows that changes have been
made since the last time the .OBI file was created and executes the TASM
command.

If MAKE does update any of the .OBI files, then when it compares the time
and date of GETSTARS.EXE with them, it sees that it must execute the
TLINK command to make an updated version of GETSTARS.EXE.

Stepping Through

Here's a step-by-step example to help clarify the previous description.
Suppose that GETSTARS.EXE and all the .OBI files exist, and that
GETSTARS.EXE is more recent than any of the .OBI files, and, likewise,
each .OBI file is more recent than any of its dependencies.

If you then en ter the command

make

nothing happens, since there is no need to update anything.

Now, suppose that you modify STARLIB.ASM and STARLIB.INC,
changing, say, the value of some constant. When you enter the command

make

MAKE sees that STARLIB.ASM is more recent than STARLIB.OBI, so it
issues the command

tasm It Iml Is starlib.asm

It then sees that STARLIB.INC is more recent than GSCOMP.OBI, so it
issues the command

Appendix 0, Turbo Assembler Utilities 187

tasm It Iml Is gscomp.asm

STARLIB.INC is also more recent than GETST ARS.OBl, so the next
command is

tasm It Iml Is getstars.asm

Because of these three commands, the files STARLIB.OBJ, GSCOMP.OBJ,
and GETSTARS.OBJ are all more recent than GETSTARS.EXE, so the final
command issued by MAKE is

tlink star lib gsparse gscomp getstars, getstars, getstars,
lib\math lib\io

which links everything together and creates a new version of
GETSTARS.EXE. (Note that this TLINK command line must actually be one
line.)

You have a good idea of the basics of MAKE: what it's for, how to create a
make file, and how MAKE interprets that file. Now let's look at MAKE in
more detail.

Creating Makefiles

A makefile contains the definitions and relationships needed to help MAKE
keep your program(s} up-to-date. You can create as many makefiles as you
want and name them whatever you. want; MAKEFILE is just the default
name that MAKE looks for if you don't specify a makefile when you run
MAKE.

All rules, definitions, and directives end with a new line; if a line is too long
(such as the TLINK command in the previous example), you can continue it
to the next line by placing a backslash (\) as the last character on the line.

Whitespace-blanks and tabs-is used to separate adjacent identifiers (such
as dependencies) and to indent commands within a rule.

Components of a Makefile

Creating a makefile is almost like writing a program with definitions,
commands, and directives. Here's a list of the constructs allowed in a
makefile:

188 Turbo Assembler Reference Guide

• comments

• explicit rules

• implicit rules

• macro definitions
• directives-file inclusion, conditional execution, error detection, macro

undefinition

Let's look a t each of these in more detail.

Comments

Comments begin with a sharp (#) character; the rest of the line following
the # is ignored by MAKE. Comments can be placed anywhere and never
have to start in a particular column.

A backslash (\) will not continue a comment onto the next line; instead, you
must use a # on each line. In fact, you cannot use a backslash as a continu­
ation character in a line that has a comment. If it precedes the #, it is no
longer the last character on the line; if it follows the #, then it is part of the
comment itself.

Here are some examples of comments in a makefile:

t makefile for GETSTARS.EXE
t does complete project maintenance
getstars.exe: getstars.obj gscomp.obj gsparse.obj starlib.obj
t can't put a comment at the end of the next line

tlink starlib gsparse gscomp getstars, getstars,\
getstars, lib\math lib\io

t legal comment
t can't put a comment between the next two lines
getstars.obj: getstars.asm stardefs.inc starlib.inc gscomp.inc gsparse.inc

tasm It Iml Is getstars.asm t you can put a comment here

Explicit Rules

You are already familiar with explicit rules, since those are what you used
in the makefile example given earlier. Explicit rules take the form

target [target •••]: [source source •••]
[command]
[command]

where target is the file to be updated, source is a file upon which target
depends, and command is any valid MS-DOS command (including
invocation of .BAT files and execution of .COM and .EXE files).

Appendix 0, Turbo Assembler Utilities 189

Explicit rules define one or more target names, zero or more source files,
and an optional list of commands to be performed. Target and source-file
names listed in explicit rules can contain normal MS-DOS drive and
directory specifications, but they cannot contain wildcards.

Syntax here is important. target must be at the start of a line (in column 1),
where each command must be indented (must be preceded by at least one
blank or tab). As mentioned before, the backslash (\) can be used as a
continuation character if the list of source files or a given command is too
long for one line. Finally, both the source files and the commands are
optional; it is possible to have an explicit rule consisting only of target
[target .. . J followed by a colon.

The idea behind an explicit rule is that the command or commands listed
will create or update target, usually using the source files. When MAKE
encounters an explicit rule, it first checks to see if any of the source files are
themselves target files elsewhere in the makefile. If so, then those rules are
evaluated first.

Once all the source files have been created or updated based on other
explicit (or implicit) rules, MAKE checks to see if target exists. If not, each
command is invoked in the order given. If target does exist, its time and date
of last modification are compared against the time and date for each source.
If any source has been modified more recently than target, the list of
commands is executed.

A given file name can occur on the left side of an explicit rule only once in a
given execution of MAKE.

Each command line in an explicit rule begins with whitespace. MAKE
considers all lines following an explicit rule to be part of the command list
for that rule, up to the next line that begins in column 1 (without any
preceding whitespace) or to the end of the file. Blank lines are ignored.

Special Considerations

An explicit rule with no command lines following it is treated a little
differently than an explicit rule with command lines .

• If an explicit rule exists for a target with commands, the only files that the
target depends on are the ones listed in the explicit rule .

• If an explicit rule has no commands, the targets depend on the files given
in the explicit rule, and they also depend on any file that matches an
implicit rule for the target{s).

See the following section for a discussion of implicit rules.

190 Turbo Assembler Reference Guide

Here are some examples of explicit rules:

myprog.obj: myprog.asm
tasm It myprog.asm

prog2.obj : prog2.asm include\stdio.inc
tasm It Iml prog2.asm

prog.exe: myprog.asm prog2.asm include\stdio.inc
tasm It myprog.asm
tasm It Iml prog2.asm
tlink myprog prog2, prog, , lib\io

.The first explicit rule states that MYPROG.OBJ depends upon
MYPROG.ASM, and that MYPROG.OBJ is created by executing the given
TASM command .

• Similarly, the second rule states that PROG2.0BJ depends upon
PROG2.ASM and STDIO.INC (in the INCLUDE subdirectory) and is
created by the TASM command .

• The last rule states that PROG.EXE depends on MYPROG.ASM,
PROC2.ASM, and STDIO.INC, and that should any of the three change,
PROG.EXE can be rebuilt by the series of commands given. However,
this may create unnecessary work because, even if only MYPROG.ASM
changes, PROG2.ASM will still be recompiled. This occurs because all of
the commands under a rule will be executed as soon as that rule's target
is out of da teo

a If you place the explicit rule

prog.exe: myprog.obj prog2.obj
tlink myprog prog2, prog, , lib\io

as the first rule in a makefile and follow it with the rules given (for
MYPROG.OBJ and PROG2.0BJ), only those files that need to be re­
compiled will be.

Implicit Rules

MAKE allows you to define implicit rules as well. Implicit rules are
generalizations of explicit rules. What do we mean by that?

Here's an example that illustrates the relationship between the two types of
rules. Consider this explicit rule from the previous sample program:

starlib.obj: starlib.asm
tasm It Iml Is starlib.asm

This rule is a common one because it follows a general principle: An .OBJ
file is dependent on the .ASM file with the same file name and is created by

Appendix D, Turbo Assembler Utilities 191

executing TASM. In fact, you might have a makefile where you have
several (or even several dozen) explicit rules following this same format.

By redefining the explicit rule as an implicit rule, you can eliminate all the
explicit rules of the same form. As an implicit rule, it would look like this:

.asm.obj:
tasm It /ml Is $<

This rule means, /I Any file ending with .OBI depends on the file with the
same name that ends in .ASM, and the .OBI file is created using the
command

tasm It Iml Is $<

where $< represents the file's name with the source (.ASM) extension."
(The symbol $< is a special macro and is discussed in the next section.)

The syntax for an implicit rule is

. source_extension. target_extension:
{command}
{command}

where, as before, the commands are optional and must be indented.

The source_extension (which must begin in column 1) is the extension of the
source file; that is, it applies to any file having the format

fname.source extension

Likewise, the target_extension refers to the the file

fname.target_extension

where fname is the same for both files. In other words, this implicit rule
replaces all explicit rules having the format

fname.target_extension: fname.source extension
{command}
{command}

for any fname.

Implicit rules are used if no explicit rule for a given target can be found, or
if an explicit rule with no commands exists for the target.

The extension of the file name in question is used to determine which
implicit rule to use. The implicit rule is applied if a file is found with the
same name as the target, but with the mentioned source extension.

192 Turbo Assembler Reference Guide

For example, suppose you had a make file (named MAKEFILE) whose
contents were

.asm.obj:
tasm It Iml Is $<

If you had an assembler program named RATIO.ASM that you wanted to
compile to RATIO.OBI, you could use the command

make ratl0.obj

MAKE would take RATIO.OBI to be the target. Since there is no explicit
rule for creating RATIO.OBI, MAKE applies the implicit rule and generates
the command

tasm It Iml Is ratlo.asm

which, of course, does the compile step necessary to create RATIO.OBI.

Implicit rules are also used if an explicit rule is given with no commands.
Suppose, as mentioned before, you had the following implicit rule at the
start of your makefile:

.asm.obj:
tasm It Iml Is $<

You could then rewrite the last several explicit rules as follows:

getstars.obj: stardefs.inc starlib.inc gscomp.inc gsparse.inc
gscomp.obj: stardefs.inc starlib.inc
gsparse.obj: stardefs.inc

Since you don't have explicit information on how to create these .OBI files,
MAKE applies the implicit rule defined earlier. And since STARLIB.OBI
depends only on STARLIB.ASM, that rule was dropped altogether from
this list; MAKE automatically applies it.

Several implicit rules can be written with the same target extension, but
only one such rule can apply at a time. If more than one implicit rule exists
for a given target extension, each rule is checked in the order the rules
appear in the make file, until all applicable rules are checked.

MAKE uses the first implicit rule that discovers a file with the source
extension. Even if the commands of tha t rule fail, no more implicit rules are
checked.

All lines following an implicit rule are considered to be part of the
command list for the rule, up to the next line that begins without white­
space or to the end of the file. Blank lines are ignored. The syntax for a
command line is provided later in this chapter.

Appendix 0, Turbo Assembler Utilities 193

Special Considerations

Unlike explicit rules, MAKE does not know the full file name with an
implicit rule. For that reason, special macros are provided with MAKE that
allow you to include the name of the file being built by the rule. (See the
discussion of macro definitions in this section for details.)

Examples

Here are some examples of implicit rules:

.c.obj:
tcc -c $<

.asm.obj:
tasm $* /mx;

In the first implicit rule example, the target files are .OBJ files and their
source files are .C files. This example has one command line in the
command list; command-line syntax is covered later in this section.

The second example directs MAKE to assemble a given file from its .ASM
source file, using TASM with the IMX option.

Command Lists

We've talked about both explicit and implicit rules and how they can have
lists of commands. Let's talk about those commands and your options for
setting them up.

Commands in a command list must be indented-that is, preceded by at
least one blank or tab-and take the form

[prefix •••] command_body

Each command line in a command list consists of an (optional) list of
prefixes, followed by a single command body.

Prefix

The prefixes allowed in a command modify the trea tmen t of these
commands by MAKE. The prefix is either the at (@) symbol or a hyphen (-)
followed immediately by a number.

194 Turbo Assembler Reference Guide

@ Forces MAKE to not display the command before executing it.
The display is hidden even if the -s option was not given on the
MAKE command line. This prefix applies only to the command
on which it appears.

-num Affects how MAKE treats exit codes. If a number (nurn) is
provided, then MAKE will abort processing only if the exit
status exceeds the number given. In this example, MAKE will
abort only if the exit status exceeds 4:

-4 myprog sample.x

If no -nurn prefix is given, MAKE checks the exit status for the
command. If the status is nonzero, MAKE will stop and delete
the current target file.

With a hyphen but no number, MAKE will not check the exit
status at all. Regardless of what the exit status was, MAKE will
continue.

Command Body

The command body is treated exactly as it would be if it were entered as a
line to COMMAND.COM, with the exception that redirection and pipes are
not supported.

MAKE executes the following built-in commands by invoking a copy of
COMMAND.COM to perform them:

BREAK
CTTY
MD
RENAME

CD
DATE
MKDIR
SET

VERIFY VOL

CHDIR
DEL
PATH
TIME

CLS
DIR
PROMPT
TYPE

COPY
ERASE
REN
VER

MAKE searches for any other command name using the MS-DOS search
algorithm:

• The current directory is searched first, followed by each directory in the
path.

Ii In each directory, first a file with the extension .COM is checked, then an
.EXE, and finally a .BAT .

• If a .BAT file is found, a copy of COMMAND.COM is invoked to execute
the batch file.

Obviously, if an extension is supplied in the command line, MAKE searches
only for that extension.

Appendix 0, Turbo Assembler Utilities 195

Examples

This command will cause COMMAND.COM to execute the command:

cd c:\include

This command will be searched for using the full search algorithm:

tlink x y,z,z,lib\io

This command will be searched for using only the .COM extension:

myprog.com geo.xyz

This command will be executed using the explicit file name provided:

c:\myprogs\fil.exe -r

Macros

Often certain commands, file names, or options are used again and again in
your makefile. In the examples at the start of this appendix, all the TASM
commands looked for the source in the current directory. Suppose you
wanted to control which subdirectories the source files came from and
where the output is placed. You could go through and modify each line of
your makefile every time you change these, or you could define macros to
semi-automate the process.

A macro is a name that represents some string of characters. A macro
definition gives a macro name and the expansion text; thereafter, when
MAKE encounters the macro name, it replaces the name with the
expansion text.

Suppose you define the following macros at the start of your makefile:

SRC = c: \ASM\

OUT = OBJS\

INC = C:\INC\

Now, if the rest of your makefile is

getstars.exe: $(OUT)getstars.obj $(OUT)gsparse \
$ (OUT)gscomp.obj $ (OUT) starlib.obj

tlink $ (OUT)starlib $(OUT)gsparse $(OUT)gscomp $(OUT)getstart, \
$(OUT)getstars, $(OUT)getstars, lib\math lib\io

getstars.obj: $(SRC)getstars.asm $(INC)stardefs.inc \
$(INC)starlib.inc $ (INC)gscomp.inc \
$(INC)gsparse.inc

tasm It Iml Is li$(INC) $(SRC)getstars.asm, $(OUT)getstars.obj

196 Turbo Assembler Reference Guide

gscomp.obj: $(SRC)gscomp.asm $ (INC) stardefs.inc $(INC)starlib.inc
tasm It Iml Is li$(INC) $ (SRC)gscomp.asm, $(OUT)gscomp.obj

gsparse.obj: $(SRC)gsparse.asm $(INC)stardefs.inc $(INC)starlib.inc
tasm It Iml Is li$(INC) $(SRC)gsparse.asm, $(OUT)gsparse.obj

starlib.obj: $(SRC)starlib.asm
tasm It Iml /s li$(INC) $(SRC)starlib.asm, $(OUT)starlib.obj

When you run MAKE, $(SRC) is replaced with the expansion text C: \
ASM\, $(INC) is replaced with the expansion text C:\INC\, and $(OUT) is
replaced with the expansion text OBJS\.

SO, what have you gained? Flexibility. By changing anyone of the macros,
you have changed all the commands that depend on that macro. For
instance, suppose you decide to move the include files to a new subdirec­
tory called C:\INC\STAR. All you have to do to update the makefile is
change the INC macro to

INC = C:\INC\STAR\

and you've changed all the commands to use this new include sub­
directory.

Defining Macros

Macro definitions take the form

macro_name=expansion text

where macro_name is the name of the macro: A string of letters and digits
with no whitespace in it, though you can have whitespace between
macro_name and the equal sign (=). The expansion text is any arbitrary string
containing letters, digits, whites pace, and punctuation; it is ended by
newline.

If macro_name has previously been defined, either by a macro definition in
the makefile or by the -D option on the MAKE command line, the new
definition replaces the old.

Case is significant in macros; that is, the macros named mdl, Mdl, and
MDL are all considered different.

Using Macros

Macros are invoked in your makefile with the format

$ (macro_name)

The parentheses are required for all invocations, even if the macro name is
just one character long, with the exception of three special predefined

Appendix 0, Turbo Assembler Utilities 197

macros that we'll talk about soon. This construct-$(macro_name)-is
known as a macro invocation.

When MAKE encounters a macro invocation, it replaces the invocation
with the macro's expansion text. If the macro is not defined, MAKE
replaces it with the null string.

Special Considerations

Macros in macros: Macro cannot be invoked on the left (macro_name) side
of a macro definition. They can be used on the right (expansion text) side,
but they are not expanded until the macro being defined is invoked. In
other words, when a macro invocation is expanded, any macros embedded
in its expansion text are also expanded.

Macros in rules: Macro invocations are expanded immediately in rule
lines.

Macros in directives: Macro invocations are expanded immediately in !if
and !elif directives. If the macro being invoked in an !if or !elif directive is
not currently defined, it is expanded to the value 0 (FALSE).

Macros in commands: Macro invocations in commands are expanded
when the command is executed.

Predefined Macros

MAKE comes with several special macros built in: $d, $*, $<, $:, $., and $&.
The first is a defined test macro used in the conditional directives !if and
!elif; the others are file name macros used in explicit and implicit rules. In
addition, the current SET environment strings are automatically loaded as
macros, and the macro _MAKE_ is defined to be 1 (one).

Defined Test Macro ($d) The defined test macro $d expands to 1 if the
given macro name is defined, or to 0 if it is not. The content of the macro's
expansion text does not matter. This special macro is allowed only in!if and
!elif directives.

198 Turbo Assembler Reference Guide

For example, suppose you wanted to modify your makefile so that it would
use the medium memory model if you didn't specify one, you could put
this at the start of your makefile:

! if ! $d (INC)
INC=C:\INC\
!endif

t if INC is not defined
t define the default path

If you invoke MAKE with the command line

make -DINC=C:\INC\STAR\

then INC is defined as C:\INC\STAR\. If, however, you just invoke MAKE
by itself,

make

then INC is defined as C: \INC\, your "default" memory model.

Various File Name Macros The various file name macros work in similar
ways, expanding to some variation of the full path name of the file being
built.

Base File Name Macro ($*)
The base file name macro is allowed in the commands for an explicit or an
implicit rule. This macro ($*) expands to the file name being built, exclud­
ing any extension, like this:

File name is A:\P\TESTFILE.ASM
$* expands to A:\P\TESTFILE

For example, you could modify the explicit GETSTARS.EXE rule already
given to look like this:

getstars.exe: getstars.obj gscomp.obj gsparse.obj starlib.obj
tlink starlib gsparse gscomp $*, $*, $*, \

lib\emu lib\math lib\io

When the command in this rule is executed, the macro $* is replaced by the
target file name (sans extension), getstars. For implicit rules, this macro is
very useful.

For example, an implicit rule for TASM might look like this:

.asm.obj:
tasm It $*

Full File Name Macro ($<)
The full file name macro ($<) is also used in the commands for an explicit
or implicit rule. In an explicit rule, $< expands to the full target file name
(including extension), like this:

Appendix 0, Turbo Assembler Utilities 199

File name is A:\P\TESTFILE.ASM
$< expands to A:\P\TESTFILE.ASM

For example, the rule

starlib.obj: starlib.asm
copy $< \oldobjs
tasm It $*

will copy STARLIB.OBJ to the directory \OLDOBJS before compiling
STARLIB.ASM.

In an implicit rule, $< takes on the file name plus the source extension. For
example, the previous implicit rule

.obj.asm:
tasm It $*.asm

can be rewritten as

.obj.asm:
tasm It $<

File Name Path Macro ($:) This macro expands to the path name (without
the file name), like this:

File name is A:\P\TESTFILE.ASM
$: expands to A:\P\

File Name and Extension Macro ($.) This macro expands to the file name,
with extension, like this:

File name is A:\P\TESTFILE.ASM
$. expands to TESTFILE.ASM

File Name Only Macro ($&) This macro expands to the file name only,
without path or extension, like this:

File name is A:\P\TESTFILE.ASM
$& expands to TESTFILE

Directives

Turbo Assembler's MAKE allows something that other versions of MAKE
don't: directives similiar to those allowed for assembler itself. You can use
these directives to include other makefiles, to make the rules and com­
mands conditional, to print out error messages, and to "undefine" macros.

Directives in a make file begin with an exclamation point (!) as the first
character of the line, unlike assembler, which uses the sharp character (#).
Here is the complete list of MAKE directives:

200 Turbo Assembler Reference Guide

! include
!if
!else
!elif
!endif
terror
!undef

File-Inclusion Directive

A file-inclusion directive (!include) specifies a file to be included into the
makefile for interpretation at the point of the directive. It takes this form:

!include II filename II

These directives can be nested arbitrarily deep. If an include directive_
attempts to include a file that has already been included in some outer level
of nesting (so that a nesting loop is about to start), the inner include
directive is rejected as an error.

How do you use this directive? Suppose you created the file MODEL.MAC,
which contained the following:

! if ! $d (MDL)
MDL=medium
!endif

You could then make use of this conditional macro definition in any
makefile by including the directive

!include "MODEL.MAC"

When MAKE encounters the !include directive, it opens the specified file
and reads the contents as if they were in the makefile itself.

Conditional Directives

Conditional directives (!if, !elif, !else, and !endif) give a programmer a
measure of flexibility in constructing makefiles. Rilles and macros can be
conditionalized so that a command-line macro definition (using the -D
option) can enable or disable sections of the makefile.

The format of these directives parallels that of the assembler preprocessor:

!if expression
[lines]

!endif

!if expression
[lines]

!else

Appendix D, Turbo Assembler Utilities 201

[lines]
!endif

!if expression
[lines]

!elif expression
[lines]

!endif

Note: [lines] can be any of the following:

macro definition
explicit _rule
implicit Jule
include directive
if_group
error directive
undef directive

The conditional directives form a group, with at least an !if directive
beginning the group and an !endif directive closing the group.

• One !else directive can appear in the group.
• !elif directives can appear between the !if and any !else directives.
• Rules, macros, and other directives can appear between the various

conditional directives in any number. Note that complete rules with their
commands cannot be split across conditional directives.

• Conditional directive groups can be nested arbitrarily deep.

Any rules, commands, or directives must be complete within a single
source file.

Any !if directives must have matching !endif directives within the same
source file. Thus the following include file is illegal, regardless of what is
contained in any file that might include it because it does not have a
matching !endif directive:

!if $(FILE_COUNT) > 5
some rules

!else
other rules

<end-of-file>

Expressions Allowed in Conditional Directives

The expression allowed in an !if or an !elif directive uses a assembler-like
syntax. The expression is evaluated as a simple 32-bit signed integer
expression.

Numbers can be entered as decimal, octal, or hexadecimal constants. For
example, these are legal constants in an expression:

202 Turbo Assembler Reference Guide

4536 f decimal constant
0677 f octal constant
Ox23aF f hexadecimal constant

An expression can use any of the following unary operators:

negation
bit complement
logical not

An expression can use any of the following binary operators:

+ addition
subtraction

* multiplica tion
I division
% remainder
» right shift
« left shift
& bitwise and
I bitwise or

A bitwise exclusive or
&& logical and
II logical or
> grea ter than
< less than
>= greater than or equal
<= less than or equal
-- equality ,-.- inequality

An expression can contain the following ternary operator:

?: The operand before the? is treated as a test.

If the value of that operand is nonzero, then the second operand
(the part between the ? and :) is the result. If the value of the first
operand is zero, the value of the result is the value of the third
operand (the part after the :).

Parentheses can be used to group operands in an expression. In the absence
of parentheses, binary operators are grouped according to the same
precedence given in assembler.

As in assembler, for operators of equal precedence, grouping is from left to
right, except for the ternary operator (? :), which is right to left.

Macros can be invoked within an expression, and the special macro $dO is
recognized. After all macros have been expanded, the expression must

Appendix D, Turbo Assembler Utilities 203

have proper syntax. Any words in the expanded expression are treated as
errors.

Error Directive

The error directive (!error) causes MAKE to stop and print a fatal
diagnostic containing the text after terror. It takes the format

! error any_text

This directive is designed to be included in conditional directives to allow a
user-defined condition. For example, you could insert the following code in
front of the first explicit rule:

! if ! $d (MDL)
f if MDL is not defined
!error MDL not defined
!endif

If you reach this spot without having defined MDL, then MAKE will stop
with this error message:

Fatal makefile 5: Error directive: MDL not defined

Undef Directive

The undefine directive (!undef) causes any definition for the named macro
to be forgotten. If the macro is currently undefined, this directive has no
effect. The syntax follows:

!undef macro name

Using MAKE

You now know a lot about how to write makefiles; now's the time to learn
how to use them with MAKE.

Command-Line Syntax

The simplest way to use MAKE is to type the command

make

at the MS-DOS prompt. MAKE then looks for MAKEFILE; if it can't find it,
it looks for MAKEFILE.MAK; if it can't find that, it halts with an error
message.

204 Turbo Assembler Reference Guide

What if you want to use a file with a name other than MAKEFILE or
MAKEFILE.MAK? You give MAKE the file option (-f},like this:

make -fstars.mak

The general syn tax for MAKE is

make option option ••• target target •••

where option is a MAKE option (discussed later), and target is the name of a
target file to be handled by explicit rules.

Here are the syntax rules:

II The word make is followed by a space, then a list of make options.
II Each make option must be separated from its adjacent options by a space.

Options can be placed in any order, and any number of these options can
be entered (as long as there is room in the command line).

II After the list of make options comes a space, then an optional list of
targets .

• Each target must also be separated from its adjacent targets by a space.
MAKE evaluates the target files in the order listed, recompiling their
constituents as necessary.

If the command line does not include any target names, MAKE uses the
first target file mentioned in an explicit rule. If one or more targets are
mentioned on the command line, they will be built as necessary.

Here are some more examples of MAKE command lines:

make -n -fstars.mak
make -s
make -linclude -DMDL = compact

A Note About Stopping MAKE

MAKE will stop if any command it has executed is aborted via a GIrl Break.
Thus, a Glrl-G will stop the currently executing command and MAKE as
well.

The BUlL TINS.MAK File

When using MAKE, you will often find that there are macros and rules
(usually implicit ones) that you use again and again. You've got three ways
of handling them. First, you can put them in each and every makefile you
create. Second, you can put them all in one file and use the !include

Appendix 0, Turbo Assembler Utilities 205

directive in each makefile you create. Third, you can put them all in a file
named BUILTINS.MAK.

Each time you run MAKE, it looks for a file named BUlL TINS.MAK; if it
finds the file, MAKE reads in it before handling MAKEFILE (or whichever
makefile you want it to process).

The BUlL TINS.MAK file is intended for any rules (usually implicit rules) or
macros that will be commonly used in files anywhere on your computer.

There is no requirement that any BUlL TINS.MAK file exist. If MAKE finds
a BUILTINS.MAK file, it interprets that file first. If MAKE cannot find a
BUlL TINS.MAK file, it proceeds directly to interpreting MAKEFILE (or
whatever makefile you specify).

How MAKE Searches for Makefiles

MAKE will search for BUILTINS.MAK in the current directory or any
directory in the path. You should place this file in the same directory as the
MAKE.EXE file.

MAKE always searches for the makefile in the current directory only. This
file contains the rules for the particular executable program file being built.
The two files have identical syntax rules.

MAKE also searches for any !include files in the current directory. If you
use the -I (Include) option, it will also search in the specified directory.

The TOUCH Utility

There are times when you want to force a particular target file to be
recompiled or rebuilt, even though no changes have been made to its
sources. One way to do this is to use the TOUCH utility included with
Turbo Assembler. TOUCH changes the date and time of one or more files to
the current date and time, making it "newer" than the files that depend on
it.

To force a target file to be rebuilt, touch one of the files that target depends
on. To touch a file (or files), enter

touch filename [filename •.•]

at the DOS prompt. TOUCH will then update the file's creation date(s).

Once you do this, you can invoke MAKE to rebuild the touched target
file(s). (You can use the DOS wildcards * and? with TOUCH.)

206 Turbo Assembler Reference Guide

MAKE Command-Line Options

We've alluded to several of MAKE's command-line options; now we'll
present a complete list of them. Note that case (upper or lower) is
significant.

-a Generates an autodependency check.

-Didentifier Defines the named identifier.

-Diden=string Defines the named identifier iden to the string after the
equal sign. The string cannot contain any spaces or tabs.

-Idirectory MAKE will search for include files in the indicated
directory (as well as in the current directory).

-Uidentifier Un defines any previous definitions of the named
identifier.

-5 Normally, MAKE prints each command as it is about to
be executed. With the -5 option, no commands are
printed before execution.

-n Causes MAKE to print the commands, but not actually
perform them. This is useful for debugging a makefile.

-f/ilename Uses filename as the MAKE file. If filename does not exist,
and no extension is given, tries FILENAME.MAK.

-? or -h Prints help message.

MAKE Error Messages

MAKE diagnostic messages fall into two classes: fatals and errors. When a
fatal error occurs, compilation immediately stops. You must take appro­
priate action and then restart the compilation. Errors will indicate some sort
of syntax or semantic error in the source makefile. MAKE will complete
interpreting the makefile and then stop.

Fatals

Don't know how to make XXXXXXXX
This message is issued when MAKE encounters a nonexistent file name in
the build sequence, and no rule exists that would allow the file name to be
built.

Appendix D, Turbo Assembler Utilities 207

Error directive: XXXX
This message is issued when MAKE processes an #error directive in the
source file. The text of the directive is displayed in the message.

Incorrect command-line argument: XXX
This error occurs if MAKE is executed with incorrect command-line
arguments.

Not enough memory
This error occurs when the total working storage has been exhausted. You
should try this on a machine with more memory. If you already have 640K
in your machine, you may have to simplify the source file.

Unable to execute command
This message is issued after a command was to be executed. This could be
caused because the command file could not be found, or because it was
misspelled. A less likely possibility is that the command exists but is
somehow corrupted.

Unable to open makefile
This message is issued when the current directory does not contain a file
named MAKEFILE.

Errors

Bad file name format in include statement
Include file names must be surrounded by quotes or angle brackets. The file
name was missing the opening quote or angle bracket.

Bad undef statement syntax
An !undef statement must contain a single identifier and nothing else as
the body of the statement.

Character constant too long
Character constants can be only one or two characters long.

Command arguments too long
The arguments to a command executed by MAKE were more than 127
characters-a limit imposed by MS-DOS.

Command syntax error
This message occurs if

• The first rule line of the makefile contained any leading whitespace.

• An implicit rule did not consist of .ext.ext:.
• An explicit rule did not contain a name before the: character.

• A macro definition did not contain a name before the = character.

208 Turbo Assembler Reference Guide

Division by zero
A divide or remainder in an !if statement has a zero divisor.

Expression syntax error in !if statement
The expression in an !if statement is badly formed-it contains a
mismatched parenthesis, an extra or missing operator, or a missing or extra
constant.

File name too long
The file name given in an !include directive was too long for the compiler
to process. File names in MS-DOS must be no more than 64 characters long.

Illegal character in constant expression X
MAKE encountered some character not allowed in a constant expression. If
the character is a letter, this indicates a (probably) misspelled identifier.

Illegal octal digit
An octal constant was found containing a digit of 8 or 9.

Macro expansion too long
A macro cannot expand to more than 4,096 characters. This error often
occurs if a macro recursively expands itself. A macro cannot legally expand
to itself.

Misplaced elif statement
An !elif directive was encountered without any matching!if directive.

Misplaced else statement
An !else directive was encountered without any matching !if directive.

Misplaced endif statement
An !endif directive was encountered without any matching!if directive.

No file name ending
The file name in an include statement was missing the correct closing quote
or angle bracket.

Redefinition of target XXXXXXXX
The named file occurs on the left-hand side of more than one explicit rule.

Unable to open include file XXXXXXXXX.XXX
The named file could not be found. This could also be caused if an include
file included itself. Check whether the named file exists.

Unexpected end of file in conditional started on line #
The source file ended before MAKE encountered an !endif. The !endif was
either missing or misspelled.

Unknown preprocessor statement
A ! character was encountered at the beginning of a line, and the statement
name following was not error, undef, if, elif, include, else, or endif.

Appendix D, Turbo Assembler Utilities 209

Turbo Link

Turbo Link (TLINK) is invoked as a separate program and can also be used
as a stand-alone linker.

TLINK is lean and mean; while it lacks some of the bells and whistles of
other linkers, it is extremely fast and compact.

In this appendix, we describe how to use TLINK as a stand-alone linker.

Invoking TLINK

You can invoke TLINK at the DOS command line by typing tlink with or
without parameters.

When invoked without parameters, TLINK displays a summary of
parameters and options that looks like this:

Turbo Link Version 2.0 Copyright (c) 1987,1988 Borland International
The syntax is: TLINK objfiles, exefile, mapfile, libfiles
@xxxx indicates use response file xxxx
Options:/m = map file with publics

Ix = no map file at all
Ii = initialize all segments
II = include source line numbers
Is = detailed map of segments
In = no default libraries
Id = warn if duplicate symbols in libraries
Ic = lowercase significant in symbols
13 = enable 32-bit processing
Iv = include full symbolic debug information
Ie = ignore Extended Dictionary
It = create COM file

In TLINK's summary display, the line

The syntax is: TLINK objfiles, exefile, mapfile, libfiles

specifies that you supply file names in the given order, separating the file
types with commas.

For example, if you supply the command line

tlink Ic mainline wd In tx,fin,mfin,lib\comm lib\support

TLINK will interpret it to mean that

• Case is significant during linking (Ie).

210 Turbo Assembler Reference Guide

II The .OBJ files to be linked are MAINLINE.OBJ, WD.OBJ, LN.OBJ, and
TX.OBJ.

II The executable program name will be FIN.EXE.
1'1 The map file is MFIN.MAP.
D The library files to be linked in are COMM.LIB and SUPPORT. LIB, both

of which are in subdirectory LIB.

TLINK appends extensions to file names that have none:

II .OBJ for object files
• .EXE for executable files; .COM for executable files with the It option
II .MAP for map files
• .LIB for library files

Be aware that where no .EXE file name is specified, TLINK derives the
name of the executable file by appending .EXE to the first object file name
listed. If for example, you had not specified FIN as the .EXE file name in the
previous example, TLINK would have created MAINLINE.EXE as your
executable file.

TLINK always generates a map file, unless you explicitly direct it not to by
including the Ix option on the command line.

II If you give the 1m option, the map file includes publics .
• If you give the Is option, the map file is a detailed segment map.

These are the rules TLINK follows when determining the name of the map
file.

II If no .MAP file is specified, TLINK derives the map file name by adding a
.MAP extension to the .EXE file name. (The .EXE file name can be given
on the command line or in the response file; if no .EXE name is given,
TLINK will derive it from the name of the first .OBJ file.)

• If a map file name is specified in the command line (or in the response
file), TLINK adds the .MAP extension to the given name.

Note that even if you specify a map file name, if the Ix option is specified
then no map file will be created at all.

Using Response Files

TLINK lets you supply the various parameters on the command line, in a
response file, or in any combination of the two.

Appendix 0, Turbo Assembler Utilities 211

A response file is just a text file that contains the options and/or file names
that you would usually type in after the name TLINK on your command
line.

Unlike the command line, however, a response file can be continued onto
several lines of text. You can break a long list of object or library files into
several lines by ending one line with a plus character and continuing the
list on the next line.

Also, you can start each of the four components on separate lines: object
files, executable file, map file, libraries. When you do this, you must leave
out the comma used to separate components.

To illustrate these features, suppose that you rewrote the previous
command-line example as a response file, FINRESP, like this:

Ie mainline wdt
In tx, fint
mfin+
lib\eomm lib\support

You would then enter your TLINK command as

tlink @finresp

Note that you must precede the file name with an "at" character (@) to
indicate that the next name is a response file.

Alternately, you may break your link command into multiple response
files. For example, you can break the previous command line into the
following two response files:

FileName

LISTOBJS

LISTLIBS

Contents

mainline+
wdt
In tx
lib\commt
lib \ suppo rt

You would then enter the TLINK command as

tlink Ie @listobjs,fin,mfin,@listlibs

212 Turbo Assembler Reference Guide

TLINK Options

TLINK options can occur anywhere on the command line. The options
consist of a slash (/) followed by the option-specifying letter (m, s, 1, i, n, d,
x, 3, v, e, t, or c).

If you have more than one option, spaces are not significant (Imle is the
same as 1m Ie), and you can have them appear in different places on the
command line. The following sections describe each of the options.

The Ix, 1m, Is Options

By default, TLINK always creates a map of the executable file. This default
map includes only the list of the segments in the program, the program
start address, and any warning or error messages produced during the link.
Use the Ix option if you don't want to generate a map file at all.

If you want to create a more complete map, the 1m option will add a list of
public symbols to the map file, sorted in increasing address order. This kind
of map file is useful in debugging. Many debuggers, such as Periscope, can
use the list of public symbols to allow you to refer to symbolic addresses
when you are debugging.

The Is option creates a map file with segments, public symbols and the
program start address just like the 1m option did, but also adds a detailed
segment map. The following is an example of a detailed segment map:

Address
Length
(Bytes) Class Segment Name Group Module

Alignment!
Combining

0000:0000 OE5B C=COOE S=5YMB TEXT G=(none) M=SYMB.ASM ACBP=28
OOE5:000B 2735 C=COOE S=QUAL~TEXT G=(none) M=QUAL.ASM ACBP=28
0359:0000 002B C=CODE S=5COPY TEXT G=(none) M=5COPY ACBP=28
035B:000B 003A C=CODE S=LRSH TEXT G=(none) M=LRSH ACBP=20
035F:0005 0083 C=CODE S=PAOATEXT G=(none) M=PADA ACBP=20
0367:0008 005B C=CODE S=PAOO-TEXT G=(none) M=PAOO ACBP=20
036D:0003 0025 C=CODE S=PSBP TEXT G=(none) M=PSBP ACBP=20
036F:0008 OSCE C=CODE S=BRK TEXT G=(none) M=BRK ACBP=28
03CC:0006 066F C=CODE S=FLOAT TEXT G=(none) M=FLOAT ACBP=20
0433:0006 oooB C=OATA 5= DATA- G=DGROUP M=5YMB.ASM ACBP=48
0433:0012 0003 C=OATA S=-OATA G=DGROUP M=QUAL.ASM ACBP=48
0433:00E6 OOOE C=OATA S=-OATA G=DGROUP M=BRK ACBP=48
0442:0004 0004 C=BSS S=-BSS G=DGROUP M=5YMB.ASM ACBP=48
0442:0008 0002 C=BSS S=-BSS G=DGROUP M=QUAL.ASM ACBP=48
0442:000A OOOE C=BSS S==BSS G=DGROUP M=BRK ACBP=48

For each segment in each module, this map includes the address, length in
bytes, class, segment name, group, module, and ACBP information.

Appendix D, Turbo Assembler Utilities 213

If the same segment appears in more than one module, each module will
appear as a separate line (for example, SYMB.ASM). Most of the infor­
mation in the detailed segment map is self-explanatory, except for the
ACBP field.

The ACBP field encodes the A (alignment) and C (combining) attributes into a
set of 4 bit fields, as defined by Intel. TLINK uses only two of the fields, the
A and C fields. The ACBP value in the map is printed in hexadecimal: The
following values of the fields must be DR'ed together to arrive at the ACBP
value printed.

Field Value

The A field
(alignment)

Thee field
(combination)

The 11 Option

00
20
40
60
80

AO
00
08

Description

An absolute segment
A byte-aligned segment
A word-aligned segI!\ent
A paragrapb-aligned segment
A page-aligned segment
An unnamed abso1ute portion of storage

May not be combined
A public combining segment

The II option creates a section in the .MAP file for source code line
numbers. To use it, you must have created the .OBI files by compiling with
the -y (Line numbers ... On) option. If you tell TLINK to create no map at all
(using the Ix option), this option will have no effect.

The Ii Option

The Ii option causes trailing segments to be output into the executable file
even if the segments do not contain data records. Note that this is not
normally necessary.

The In Option

The In option causes the linker to ignore default libraries specified by some
compilers. This option is necessary if the default libraries are in another
directory, because TLINK does not support searching for libraries. You may
want to use this option when linking modules written in another language.

214 Turbo Assembler Reference Guide

The Ie Option

The Ie option forces the case to be significant in publics and externals. For
example, by default, TLINK regards fred, Fred, and FRED as equal; the Ie
option makes them different.

The /d Option

Normally, TLINK will not warn you if a symbol appears in more than one
library file. If the symbol must be included in the program, TLINK will use
the copy of that symbol in the first file mentioned on the command line.
Since this is a commonly used feature, TLINK does not normally warn
about the duplicate symbols. The following hypothetical situation
illustrates how you might want to use this feature.

Suppose you have two libraries: one called SUPPORT.LIB, and a supple­
mental one called DEBUGSUP.LIB. Suppose also that DEBUGSUP.LIB
contains duplicates of some of the routines in SUPPORT.LIB (but the
duplicate routines in DEBUGSUP.LIB include slightly different
functionality, such as debugging versions of the routines). If you include
DEBUGSUP.LIB first in the link command, you will get the debugging
routines and not the routines in SUPPORT.LIB.

If you are not using this feature or are not sure which routines are
duplicated, you may include the Id option. This will force TLINK to list all
symbols duplicated in libraries, even if those symbols are not going to be
used in the program.

The Id option also forces TLINK to warn about symbols that appear both in
an .OB] and a .LIB file. In this case, since the symbol that appears in the first
(left-most) file listed on the command line is the one linked in, the symbol
in the .OB] file is the one that will be used.

The Ie Option

The library files that are shipped with Turbo C all contain an Extended
Dictionary with information that enables TLINK to link faster with those
libraries. This Extended Dictionary can also be added to any other library
file using the IE option with TLIB (see the section on TLIB, beginning on
page 220).

Although linking with libraries that contain an Extended Dictionary is
faster, there are two reasons you might want to use the Ie switch, which
disables the use of the Extended Dictionary:

Appendix D, Turbo Assembler Utilities 215

• A program may need slightly more memory to link when an Extended
Dictionary is used.

• TLINK will ignore any debugging information contained in a library that
has an Extended Dictionary, unless Ie is used.

The It Option

If you compiled your file in the tiny memory model and link it with this
switch toggled on, TLINK will generate a .COM file instead of the usual
.EXE file.

When It is used, the default extension for the executable file is .COM.

Note: .COM files may not exceed 64K in size, may not have any segment­
relative fixups, may not define a stack segment, and must have a starting
address equal to 0:100h. When an extension other than .COM is used for
the executable file (.BIN, for example), the starting address may be either
0:0 or O:l00h.

The Iv Option

The Iv option directs TLINK to include debugging information in the
executable file.

Note: When linking· with the Iv option, TLINK initializes all segments, If
you have a program that runs differently when linked with debug
information, you have an uninitialized variable somewhere.

The 13 Option

The 13 option should be used when one or more of the object modules
linked has been produced by TASM or a compatible asembler, and contains
32-bit code for the 80386 processor. This option increases the memory
requirements of TLINK and slows down linking, so it should be used only
when necessary.

Restrictions

As we said earlier, TLINK is lean and mean; it does not have an excessive
supply of options. Following are the only serious restrictions to TLINK:

• Overlays are not supported.

216 Turbo Assembler Reference Guide

1:1 Common variables are only partly supported: A public must be supplied
to resolve them .

• You can have a maximum of about 4,000 logical segments.

m Segments that are of the same name and class should either all be able to
be combined, or not.

a TLINK loads last any segments of class STACK, even if they are part of
DGROUP .

.. Code compiled in Microsoft C or Microsoft Fortran cannot be linked with
TLINK. This is because Microsoft languages have undocumented object
record formats in their .OBI files, which TLINK does not currently
support.

TLINK is designed to be used with Turbo Assembler, Turbo C (both the
integrated environment and command-line versions), Turbo Prolog, and
other compilers; however, it is not a general replacement for MS Link.

Error Messages

TLINK has three types of errors: fatal errors, nonfatal errors, and warnings.

a A fatal error causes TLINK to stop immediately; the .EXE and .MAP files
are deleted.

D A nonfatal error does not delete .EXE or .MAP files, but you shouldn't
try to execute the .EXE file.

m Warnings are just that: warnings of conditions that you probably want to
fix. When warnings occur .EXE and .MAP files are still created.

The following generic names and values appear in the error messages listed
in this section. When you get an error message, the appropriate name or
value is substituted.

<sname> symbol name
<mname> module name
<fname> file name

XXXXh a 4-digit hexadecimal number, followed by 'h'

Fatal Errors

When fatal errors happen, TLINK stops and deletes the .EXE and .MAP
files.

Appendix O. Turbo Assembler Utilities 217

XXXXXXXX.XXX: bad object file
An ill-formed object file was encountered. This is most commonly caused
by naming a source file or by naming an object file that was not completely
built. This can occur if the machine was rebooted during a compile, or if a
compiler did not delete its output object file when a elrl-Break was struck.

XXXXXXXX.XXX: unable to open file
This occurs if the named file does not exist or is misspelled.

Bad character in parameters
One of the following characters was encountered in the command line or
in a response file:

"*<=>?[] I

or any control character other than horizontal tab, linefeed, carriage return,
or elrl-Z.

msdos error, ax = XXXXh
This occurs if an MS-DOS call returned an unexpected error. The AX value
printed is the resulting error code. This could indicate a TLINK internal
error or an MS-DOS error. The only MS-DOS calls TLINK makes where this
error could occur are read, write, and close.

Not enough memory
There was not enough memory to complete the link process. Try removing
any terminate-and-stay-resident applications currently loaded or reduce
the size of any RAM disk currently active. Then run TLINK again.

Segment exceeds 64K
This message will occur if too much data was defined for a given data or
code segment, when segments of the same name in different source files are
combined. This message also occurs if a group exceeds 64K bytes when the
segments of the group are combined.

Symbol limit exceeded
You can define a maximum of 8,182 public symbols, segment names, and
group names in a single link. This message is issued if that limit is
exceeded.

Unexpected group definition
Group definitions in an object file must appear in a particular sequence.
This message will generally occur only if a compiler produced a flawed
object file. If this occurs in a file created by Turbo Assembler, try re­
compiling the file. If the problem persists, contact Borland.

Unexpected segment definition
Segment definitions in an object file must appear in a particular sequence.
This message will generally occur only if a compiler produced a flawed

218 Turbo Assembler Reference Guide

object file. If this occurs in a file created by Turbo Assembler, try
recompiling the file. If the problem persists, contact Borland.

Unknown option
A slash character (I) was encountered on the command line or in a
response file without being followed by one of the allowed options.

Write failed, disk full?
This occurs if TLINK could not write all of the data it attempted to write.
This is almost certainly caused by the disk being full.

Nonfatal Errors

TLINK has only two nonfatal errors. As mentioned, when a nonfatal error
occurs, the .EXE and .MAP files are not deleted. Here are the error
messages:

XXX is unresolved in module YYY
The named symbol is referenced in the given module but is not defined
anywhere in the set of object files and libraries included in the link. Check
the spelling of the symbol for correctness.

Fixup overflow, frame = xxxxh, target = xxxxh,
offset = xxxxh in module XXXXXXX
This indicates an incorrect data or code reference in an object file that
TLINK must fix up at link time. In a fix up, the object file indicates the name
of a memory location being referenced and the name of a segment that the
memory location should be in. The frame value is the segment where the
memory location should be according to the object file. The target value is
the segment where the memory location actually is. The offset field is the
offset within the target segment where the memory location is.

This message is most often caused by a mismatch of memory models. A
near call to a function in a different code segment is the most likely cause.
This error can also result if you generate a near call to a data variable or a
data reference to a function.

To diagnose the problem, generate a map with public symbols (1m). The
value of the target and offset fields in the error message should be the
address of the symbol being referenced. If the target and offset fields do not
match some symbol in the map, look for the symbol nearest to the address
given in the message. The reference is in the named module, so look in the
source file of that module for the offending reference.

If these techniques do not identify the cause of the failure, or if you are
programming in assembly language or some other high-level language
besides Turbo Assembler, there may be other possible causes for this

Appendix 0, Turbo Assembler Utilities 219

message. Even in Turbo Assembler, this message could be generated if you
are using different segment or group names than the default values for a
given memory model.

Warnings

TLINK has only three warnings. The first two deal with duplicate
definitions of symbols; the third, applicable to tiny model programs,
indicates that no stack has been defined. Here are the messages:

Warning: XXX is duplicated in module YYY
The named symbol is defined twice in the named module. This could
happen in Turbo Assembler object files, for example, if two different pascal
names were spelled using different cases in a source file.

Warning: XXX defined in module YYY is duplicated in module ZZZ
The named symbol is defined in each of the named modules. This could
happen if a given object file is named twice in the command line, or if one
of the two copies of the symbol were misspelled.

Warning: no stack
This warning is issued if no stack segment is defined in any of the object
files or in any of the libraries included in the link. This is a normal message
for the tiny memory model in Turbo C, or for any application program that
will be converted to a .COM file. For other programs, this indicates an error.

If a Turbo Assembler program produces this message for any but the tiny
memory model, check the COx start-up object files to be sure they are
correct.

TLIB: The Turbo Librarian

TLIB is Borland's Turbo Librarian: It is a utility that manages libraries of
individual .OBJ (object module) files. A library is a very convenient way of
dealing with a collection of object modules as a single unit.

Using TLIB, you can build your own libraries, or you can modify your own
libraries, libraries furnished by other programmers, or commercial libraries
you have purchased. You can use TLIB to

• create a new library from a group of object modules
• add object modules or other libraries to an existing library

• remove object modules from an existing library

• replace object modules from an existing library

220 Turbo Assembler Reference Guide

a extract object modules from an existing library

ll!llist the contents of a new or existing library

When modifying an existing library, TLIB always creates a copy of the
original library with a .BAK extension.

TLIB can also create (and include in the library file) an Extended
Dictionary, which may be used to speed up linking. See the section on the
IE option for details.

Although TLIB is not essential to creating executable programs with Turbo
Assembler, it is a useful programmer productivity tool. You will find TLIB
indispensable for large development projects. If you work with object
module libraries developed by others, you can use TLIB to maintain those
libraries when necessary.

The Advantages of Using Object Module Libraries

When you program in Assembler, you often create a collection of useful
Assembler functions, like the functions in the Assembler run-time library.
Because of Assembler's modularity, you are likely to split those functions
into many separately compiled source files. You use only a subset of
functions from the entire collection in any particular program. It can
become quite tedious, however, to figure out exactly which files you are
using. If you always include all the source files, on the other hand, your
program becomes extremely large and unwieldy.

,
An object module library solves the problem of managing a collection of
Assembler functions. When you link your program with a library, the
linker scans the library and automatically selects only those modules
needed for the current program. In addition, a library consumes less disk
space than a collection of object module files, especially if each of the object
files is small. A library also speeds up the action of the linker, because it
only opens a single file, instead of one file for each object module.

The Components of a TLIB Command Line

To get a summary ofTLIB's usage, just type TLIB at the DOS prompt.

The TLIB command line takes the following general form, where items
listed in square brackets ([like this]) are optional:

tlib libname [/C] [IE] [operations] [, listfile]

Appendix D, Turbo Assembler Utilities 221

This section summarizes each of these command-line components; the
following sections provide details about using TLIB. For examples of how
to use TLIB, refer to the "Examples" section on page 226.

Component

tlib

libname

Ie

IE

operations

listfile

Description

The command name that invokes TLIB.

The DOS path name of the library you want to create or manage.
Every TLIB command must be given a libname. Wildcards are not
allowed. TLIB assumes an extension of .LIB if none is given. We
recommend that you do not use an extension other than .LIB,
since TASM's object-make facility requires the .LIB extension in
order to recognize library files.

Note that if the named library does not exist and there are add
operations, TLIB creates the library.

The 'Case sensitive' flag. This option is not normally used; see
"Advanced Operation: The IC Option" for a detailed
explanation.

Create Extended Dictionary; see "Creating an Extended
Dictionary: The IE Option" on page 226 for a detailed
explanation.

The list of operations TLIB performs. Operations may appear in
any order. If you only want to examine the contents of the library,
you don't have to give any operations at all.

The name of the file listing library contents. The listfile name (if
given) must be preceded by a comma. If you do not give a file
name, no listing is produced. The listing is an alphabetical list of
each module, followed by an alphabetical list of each public
symbol defined in that module. The default extension for the
listfile is .LST.

You may direct the listing to the screen by using the listfile name
CON, or to the printer by using the name PRN.

The Operation List

The operation list describes what actions you want TLIB to do. It consists of
a sequence of operations given one after the other. Each operation consists
of a one- or two-character action symbol followed by a file or module name.
Whitespace may be used around either the action symbol or the file or
module name, but it cannot appear in the middle of a two-character action
orin a name.

222 Turbo Assembler Reference Guide

You can put as many operations as you like on the command line, up to the
DOS-imposed line-length limit of 127 characters. The order of the opera­
tions is not important. TLIB always applies the operations in a specific
order:

1. All extract operations are done first.
2. All remove operations are done next.
3. All add operations are done last.

Replacing a module is treated as first removing it, then adding the
replacement module.

File and Module Names

When TLIB adds an object module file to a library, the file is simply called a
module. TLIB finds the name of a module by taking the given file name and
stripping any drive, path, and extension information from it. (Typically,
drive, path, and extension are not given.)

Note that TLIB always assumes reasonable defaults. For example, to add a
module that has an .OBI extension from the current directory, you only
need to supply the module name, not the path and .OBI extension.

Wildcards are never allowed in file or module names.

TLIB Operations

TLIB recognizes three action symbols (-, +, *), which you can use singly or
combined in pairs for a total of five distinct operations. For operations that
use a pair of characters, the order of the characters is not important. The
action symbols and what they do are listed here:

Appendix D, Turbo Assembler Utilities 223

Action
Symbol Name Description

+ Add TUB adds the named file to the library. If the file has no
extension given, TUB assumes an extension of .OBJ. If
the file is itself a library (with a .LIB extension), then the
operation adds all of the mod ules in the named library to
the target library.

If a module being added already exists, TUB displays a
message and does not add the new module.

Remove TUB removes the named module from the library. If the
module does not exist in the library, TUB displays a
message.

Extract TUB creates the named file by copying the corre-
sponding module from the library to the file. If the
module does not exist, TUB displays a message and does
not create a file. If the named file already exists, it is
overwritten.

-+ Replace TUB replaces the named module with the corre-
+- sponding file. This is just shorthand for a remove

followed by an add operation.
_tfo Extract & TUB copies the named module to the
tfo - Remove corresponding file name and then removes it from the

library. This is just a shorthand for an extract followed by
a remove operation.

A remove operation only needs a module name, but TLIB allows you to
enter a full path name with drive and extension included. However,
everything but the module name is ignored.

It is not possible to rename modules in a library. To rename a module, you
must first extract and remove it, rename the file just created, and, finally,
add it back into the library.

Creating a Library

To create a library, you simply add modules to a library that does not yet
exist.

224 Turbo Assembler Reference Guide

Using Response Files

When you are dealing with a large number of operations, or if you find
yourself repeating certain sets of operations over and over, you will
probably want to start using response files. A response file is simply an
ASCII text file that contains all or part of a TLIB command. Using response
files, you can build TLIB commands larger than would fit on one DOS
command line.

To use a response file pathname, specify @<pathname> at any position on the
TLIB command line.

CI More than one line of text can make up a response file; you use the "and"
character (&) at the end of a line to indicate that another line follows.

II You don't need to put the entire TLIB command in the response file; the
file can provide a portion of the TLIB command line, and you can type in
the rest.

a You can use more than one response file in a single TLIB command line.

See the "Examples" section on page 226 for a sample response file and a
TLIB command line incorporating it.

Advanced Operation: The Ie Option

When you add a module to a library, TLIB maintains a dictionary of all
public symbols defined in the modules of the library. All symbols in the
library must be distinct. If you try to add a module to the library that
would cause a duplicate symbol, TLIB will display a message and not add
the module.

Normally, when TLIB checks for duplicate symbols in the library,
uppercase and lowercase letters are not considered as distinct. For example,
the symbols lookup and LOOKUP are treated as duplicates. Since Assembler
does treat uppercase and lowercase letters as distinct, you need to use the Ie
option to add a module to a library that includes a symbol that differs only
in case from one already in the library. The Ie option forces TLIB to accept a
module with symbols in it that differ only in case from symbols already in
the library.

It may seem odd that without the Ie option TLIB rejects symbols that differ
only in case, especially since Assembler is a case-sensitive language. The
reason is that some linkers fail to distinguish between symbols in a library
that differ only in case.

Appendix 0, Turbo Assembler Utilities 225

TLINK has no problem distinguishing uppercase and lowercase symbols,
and it will properly accept a library containing symbols that differ only in
case. As long as you only use the library with TLINK, you can use the TLIB
Ie option without any problems.

However, if you want to use the library with other linkers (or allow other
people to use the library with other linkers), for your own protection you
should not use the Ie option.

Examples

Here are some simple examples demonstrating the different things you can
do with TLIB.

1. To create a library named MYLIB.LIB with modules X.OB], Y.OB}, and
Z.OB}, type

tlib mylib +x +y +z

2. To create a library as in #1 and get a listing, too, type
tlib mylib +x +y +z, mylib.lst

3. To get a listing of an existing library CS.LIB, type
tlib cs, cs .1st

4. To replace module X.OB} with a new copy, add A.OB} and delete Z.OB}
from MYLIB.LIB, type

tlib mylib -+x +a -z

5. To extract module Y.OB} from MYLIB.LIB and get a listing, type
tlib mylib *y, mylib.lst

6. To create a new library with modules A.OB}, B.OB}, ... , G.OB} using a
response file:
First create a text file, ALPHA.RSP, with

+a.obj +b.obj +c.obj &
+d.obj +e.obj +f.obj &
+g.obj

Then use the TLIB command
tlib alpha @alpha.rsp, alpha. 1st

Creating an Extended Dictionary: The IE Option

To speed up linking with large library files, you can direct TLIB to create an
Extended Dictionary and append it to the library file. This dictionary
contains, in a very compact form, information that is not included in the

226 Turbo Assembler Reference Guide

standard library dictionary. This information enables TLINK to process
library files faster, especially when they are located on a floppy disk or a
slow hard disk. All the libraries on the Turbo Assembler distribution disks
contain the Extended Dictionary.

To create an Extended Dictionary for a library that is being modified, just
use the IE option when you invoke TLIB to add, remove, or replace
modules in the library. To create an Extended Dictionary for an existing
library that you don't want to modify, use the IE option and ask TLIB to
remove a nonexistent module from the library. TLIB will display a warning
that the specified module was not found in the library, but it will also create
an Extended Dictionary for the specified library. For example, enter

tlib IE mylib -bogus

GREP: A File-Search Utility

GREP is a powerful search utility that can search for text in several files at
once.

The general command-line syntax for GREP follows:

grep [options] searchstring filespec [filespec filespec ..• filespec]

For example, if you want to see in which source files you call the
setupmodem function, you could use GREP to search the contents of all the
.ASM files in your directory to look for the string setupmodem, like this:

grep setupmodem *.asrn

The GREP Options

In the command line, options are one or more single characters preceded by
a hyphen symbol (-). Each individual character is a switch that you can turn
on or off: type the plus (+) after a character to turn the option on, or type a
hyphen (-) after the character to turn the option off.

The default is on (the + is implied): for example, -r means the same thing as
-r+. You can list multiple options individually (like this: -i -d -1), or you
can combine them (like this: -ild or -il -d, and so forth); they're all the
same to GREP.

Here is a list of the option characters used with GREP and their meanings:

-c Count only: Only a count of matching lines is printed. For each file
that contains at least one matching line, GREP prints the file name

Appendix 0, Turbo Assembler Utilities 227

and a count of the number of matching lines. Matching lines are
not printed.

-d Directories: For each filespec specified on the command line, GREP
searches for all files that match the file specification, both in the
directory specified and in all subdirectories below the specified
directory. If you give a filespec without a path, GREP assumes the
files are in the current directory.

-i Ignore case: GREP ignores uppercase/lowercase differences (case­
folding). GREP treats all letters a-z as being identical to the
corresponding letters A-Z in all situations.

-1 List match files: Only the name of each file containing a match is
printed. After GREP finds a match, it prints the file name and
processing immediately moves on to the next file.

-n Numbers: Each matching line that GREP prints is preceded by its
line number.

-0 UNIX output format: Changes the output format of matching lines
to support more easily the UNIX style of command-line piping. All
lines of output are preceded by the name of the file that contained
the matching line.

-r Regular expression search: The text defined by searchstring is
treated as a regular expression instead of as a literal string.

-u Update options: GREP will combine the options given on the
command line with its default options and write these to the
GREP.COM file as the new defaults. (In other words, GREP is self­
configuring.) This option allows you to tailor the default option
settings to your own taste.

-v Non-match: Only non-matching lines are printed. Only lines that do
not contain the search string are considered to be non-matching
lines.

-w Word search: Text found that matches the regular expression will
be considered a match only if the character immediately preceding
and following cannot be part of a word. The default word character
set includes A-Z, 9-0, and the underscore (J. An alternate form of
this option allows you to specify the set of legal word characters. Its
form is -w [set], where set is any valid regular expression set
definition. If alphabetic characters are used to define the set, the set
will automatically be defined to contain both the uppercase and
lowercase values for each letter in the set, regardless of how it is
typed, even if the search is case-sensitive. If the -w option is used

228 Turbo Assembler Reference GuIde

in combination with the -u option, the new set of legal characters is
saved as the default set.

-z Verbose: GREP prints the file name of every file searched. Each
matching line is preceded by its line number. A count of matching
lines in each file is given, even if the count is zero.

Order of Precedence

Remember that each of GREP's options is a switch: Its state reflects the way
you last "flipped" it. At any given time, each option can only be on or off.
Each occurrence of a given option on the command line overrides its
previous definition. For example,

grep -r -i- -d -i -r- main(my*.asm

Given this command line, GREP will run with the -d option on, the -i
option on, and the -r option off.

You can install your preferred default setting for each option in GREP.COM
with the -u option. For example, if you want GREP to always do a verbose
search (-z on), you can install it with the following command:

grep -u -z

The Search String

The value of searchstring defines the pattern GREP will search for. A search
string can be either a regular expression or a literal string. In a regular
expression, certain characters have special meanings: They are operators
that govern the search. In a literal string, there are no operators; each
character is treated literally.

You can enclose the search string in quotation marks to prevent spaces and
tabs from being treated as delimiters. Matches will not cross line
boundaries (a match must be contained in a single line).

An expression is either a single character or a set of characters enclosed in
brackets. A concatenation of regular expressions is a regular expression.

Operators in Regular Expressions

When you use the -r option, the search string is treated as a regular
expression (not a literal expression) and the following characters take on
special meanings:

Appendix D, Turbo Assembler Utilities 229

"

$

,..

+

[1

\

A circumflex at the start of the expression matches the start of a
line.

A dollar sign at the end of the expression matches the end of a line.

A period matches any character.

An expression followed by an asterisk wildcard matches zero or
more occurrences of that expression. For example, in fo*, the ,..
operates on the expression 0; it matches f, fo, foo, and so on. <t
followed by zero or more os), but doesn't match fa.

An expression followed by a plus sign matches one or more
occurrences of that expression: fo+ matches fo, foo, and so on, but
notf·

A string enclosed in brackets matches any character in that string,
but no others. If the first character in the string is a circumflex ("),
the expression matches any character except the characters in the
string. For example, [xyzl matches x, y, or z, while ["xyz} matches a
and b, but not x, y, or z. You can specify a range of characters with
two characters separated by a hyphen (-). These can be combined to
form expressions (like [a-bd-z?l to match? and any lowercase letter
except c).

The backs lash escape character tells GREP to seach for the literal
character that follows it. For example, \. matches a period instead
of "any character."

Note: Four of the previously described characters ($, .,"', and +) do not have
any special meaning when used within a bracketed set. In addition, the
character" is only treated specially if it immediately follows the beginning
of the set definition (that is, immediately after the D.

Any ordinary character not mentioned in the preceding list matches that
character. (> matches >, # matches #, and so on.)

The File Specification

The third item in the GREP command line is filespec, the file specification; it
tells GREP which files (or groups of files) to search. filespec can be an
explicit file name, or a generic file name incorporating the DOS ? and *
wildcards. In addition, you can enter a path (drive and directory infor­
mation) as part of filespec. If you give filespec without a path, GREP only
searches the current directory.

230 Turbo Assembler Reference Guide

Examples with Notes

The following examples assume that all ofGREP's options default to off:

Example 1

Command line: grep start: *. asm

Matches: start:
restart:

Does not match: restarted:
ClockStart:

Files Searched: * .ASM in current directory.

Note: By default, the search is case-sensitive.

Example 2

Command line: grep -r ["a-z]main\ *(*.asm

Matches: main(i:integer)
main(i,j:integer)
if (main ()) halt;

Does not match: mymain ()
MAIN(i:integer);

Files Searched: * .ASM in current directory.

Note: GREP searches for the word main with no preceding
lowercase letters ([I\a-z]), followed by zero or more
occurrences of blank spaces (\ *), then a left
paren thesis.

Example 3

Since spaces and tabs are normally considered to be
command-line delimiters, you must quote them if you
want to include them as part of a regular expression.
In this case, the space after main is quoted with the
backslash escape character. You could also accomplish
this by placing the space in double quotes

["a-z]main" "*

Command line: grep -ri [a-c] :\\data\.fil * .asm * .inc

Matches: A:\data.fil
c:\Data.Fil
B:\DATA.FIL

Appendix 0, Turbo Assembler Utilities 231

Does not match: d: \data. fil
a:data.fil

Files Searched: "'.ASM and "'.INC in current directory.

Note: Because the backslash and period characters (\ and .)
usually have special meaning, if you want to search
for them, you must quote them by placing the
backslash-escape character immediately in front of
them.

Example 4

Command line: grep -ri ["a-z]word["a-z] * .doc

Matches: every new word must be on a new line.
MY WORD!
word--smallest unit of speech.
In the beginning there was the WORD, and the WORD

Does not match: Each file has at least 2000 words.

Files Searched:

Note:

ExampleS

He misspells toward as toword.

'" .DOC in the current directory.

This format basically defines how to search for a
given word.

Command line: grep -iw word *.doc

Matches: every new word must be on a new line However,
MY WORD!
word: smallest unit of speech which conveys meaning.
In the beginning there was the WORD, and the WORD

Does not match: each document contains at least 2000 words!
He seems to continually misspell "toward" as "toword."

Files searched: "'.doc in the current directory.

Note: This format defines a basic "word" search.

Example 6

Command line: grep "search string with spaces" * .doc * .asm
a:\work\myfile.*

Matches: This is a search string with spaces in it.

Does not match: THIS IS A SEARCH STRING WITH SPACES IN IT.

This is a search string with many spaces in it.

232 Turbo Assembler Reference Guide

Files Searched: *.DOC and *.ASM in the current directory, and
MYFILE.* in a directory called \ WORK on drive A:.

Note: This is an example of how to search for a string with
embedded spaces.

Example 7

Command line: grep -rd "[,.:?'\"]"$ *.doc

Matches: He said hi to me.
Where are you going?
Happening in anticipation of a unique situation,
Examples include the following:
"Many men smoke, but fu man chu."

Does not match: He said "Hi II to me
Where are you going? I'm headed to the beach this

Files Searched: *.DOC in the root directory and all its subdirectories
on the current drive.

Note: This example searches for the characters ,.:?' and II

at the end of a line. Notice that the double quote
within the range is preceded by an escape character
so it is treated as a normal character instead of as the
ending quote for the string. Also, notice how the $
character appears outside of the quoted string. This
demonstrates how regular expressions can be con­
ca ten a ted to form a longer expression.

ExampleS

Command line: grep -ild II the II \ * .doc

Matches:

or grep -i -1 -d II the II * .doc
or grep -il -d II the II \ * .doc

Anyway, this is the time we have
do you think? The main reason we are

Does ~ot match: He said "Hi II to me just when I
Where are you going? I'll bet you're headed to

Files Searched: * .DOC in the root directory and all its subdirectories
on the current drive.

Note: This example ignores case and just prints the names
of any files that contain at least one match. The three
examples show different ways of specifying multiple
options.

Appendix 0, Turbo Assembler Utilities 233

OBJXREF: The Object Module Cross­
Reference Utility

OBJXREF is a utility that examines a list of object files and library files and
produces reports on their contents. One type of report lists definitions of
public names and references to them. The other type lists the segment sizes
defined by object modules.

There are two categories of public names: global variables and function
names. The TESTl.ASM and TEST2.ASM files in the section "Sample
OBJXREF Reports" on page 238 illustrate definitions of public names and
external references to them.

Object modules are object (.OBJ) files produced by TC, TCC, or TASM. A
library (.LIB) file contains multiple object modules. An object module
generated by TASM is given the same name as the .ASM source file it was
compiled from, unless a different output file name is specifically indicated
on the command line.

The OBJXREF Command Line

The OBJXREF command line consists of the word OBIXREF, followed by a
series of command-line options and a list of object and library file names,
separated by a space or tab character. The syntax is as follows:

OBJXREF < options> filename < filename ••. >

The command-line options determine the kind of reports OBJXREF will
generate and the amount of detail that OBJXREF will provide. They are
discussed in more detail in the next section "Command-Line Options."

Each option begins with a forward slash (I) followed by a one- or two­
character option name.

Object files and library files may be specified either on the command line or
in a response file. On the command line, file names are separated by a space
or a tab. All object modules specified as .OBJ files are included in reports.
Like TLINK, however, OBJXREF includes only those modules from .LIB
files which contain a public name referenced by an .OBJ file or by a
previously included module from a .LIB file.

As a general rule, you should list all the .OBJ and .LIB files that are needed
if the program is to link correctly, including the libraries.

File names may include a drive and directory path. The DOS? and *
wildcard characters may be used to identify more than one file. File names

234 Turbo Assembler Reference Guide

may refer to .OBJ object files or to .LIB library files. (If no file extension is
given, the .OBJ extension is assumed.)

Options and file names may occur in any order in the command line.

OBJXREF reports are written to the DOS standard output. The default is the
screen. The reports may be sent to a printer (as with >LPT1:) or to a file (as
with >lstfile) with the DOS redirection character (».

Entering OBJXREF with no file names or options produces a summary of
available options.

Command-Line Options

OBJXREF command-line options fall into two categories: control options
and report options.

Control Options

Control options modify the default behavior of OBJXREF (the default is
that none of these options are enabled).

II Ignore case differences in public names: Use this option if you use
TLINK without the Ie option (which makes case differences
significant).

IF Include Full library: All object modules in specified .LIB files are
included even if no public names they contain are referenced by an
object module being processed by OBJXREF. This provides
information on the entire contents of a library file. (See example 4 in
the section "OBJXREF Examples.")

N Verbose output: Lists names of files read and displays totals of public
names, modules, segments, and classes.

IZ Include Zero Length Segment Definitions: Object modules may define
a segment without allocating any space in it. Listing these zero length
segment definitions normally makes the module size reports harder to
use but it can be valuable if you are trying to remove all definitions of
a segment.

Report Options

Report options govern what sort of report is generated, and the amount of
detail OBJXREF provides.

Appendix 0, Turbo Assembler Utilities 235

IRe Report by Class Type: Module sizes ordered by class type of
segment.

IRM Report by Module: Public names ordered by defining module.

IRP Report by Public Names: Public names in order with defining
module name.

IRR Report by Reference: Public name definitions and references
ordered by name. (This is the default if no report option is
specified.)

IRS Report of Module Sizes: Module sizes ordered by segment name.

IRU Report of Unreferenced Symbol Names: Unreferenced public
names ordered by defining module.

IRV Verbose Reporting: OBJXREF produces a report of every type.

IRX Report by External Reference: External references ordered by
referencing module name.

Response Files

The command line is limited by DOS to a maximum of 128 characters. If
your list of options and file names will exceed this limit, you must place
your file names in a response file.

A response file is a text file that you make with an text editor. Since you
may already have prepared a list of the files that make up your program for
other Turbo Assembler programs, OBJXREF recognizes several response
file types.

Response files are called from the command line using one of the following
options. The response file name must follow the option without an
intervening space (lLresp not IL resp).

More than one response file can be specified on the command line, and
additional .OBJ and .LIB file names may precede or follow them.

Freeform Response Files

You can create a freeform response file with a text editor. Just list the names
of all .OBJ and .LIB files needed to make your .EXE file.

To use freeform files with OBJXREF, type in each file name on the
command line, preceded by a at-sign (@), and separate it from other
command-line entries with a space or tab:

236 Turbo Assembler Reference Guide

@filename @filename •••

Note: Any file name that is listed in the response file without an extension
is assumed to be a .OBJ file.

Linker Response Files

Files in TLINK response file format can also be used by OBJXREF. A linker
response file called from the command line is preceded by IL:

/Lfilename

To see how to use one of these files, refer to Example 2 in the section,
"Examples Using OBJXREF/' on page 243.

The ID Command

If you want OBJXREF to look for .OBJ files in a directory other than the
current one, include the directory name on the command line, prefixed
with/D:

C:>OBJXREF/Ddirl[;dir2[;dir3]]

or

C:>OBJXREF/Ddirl[/Ddir2] [/Ddir3]

OBJXREF will search each of the directories in the specified order for all
object and library files. If you don't use the ID option, only the current
directory will be searched. However, if you use a ID option, the current
directory will not be searched unless it is included in the directory list. For
example, to first search the BORLAND directory for files and then search
the current directory, you would type

C:>OBJXREF/Dborland;

If multiple search directories are specified, and a file matching the file
specification is found, OBJXREF will include the file as part of the cross­
reference. OBJXREF will only continue to search the other directories for
the same file specification if the file specification contains wildcards.

The 10 Command

The 10 option allows you to specify an output file where OBJXREF will
send any reports generated. It has the following syntax:

Appendix D, Turbo Assembler Utilities 237

C:>OBJXREF myfile.obj /RU /Ofilename.ext

By default, all output is sent to the console.

The IN Command

You can limit the modules, segments, classes, or public names that
OBJXREF reports on by entering the appropriate name on the command
line, prefixed with the IN command. For example,

OBJXREF <filelist> /RM /NTest

tells OBJXREF to generate a report listing information only for the module
named Test.

Sample OB/XREF Reports

Suppose you have two source files in your Turbo Assembler directory, and
wish to generate OBJXREF reports on the object files compiled from them.
The source files are called TESTl.ASM and TEST2.ASM, and they look like
this:

; TEST1.ASM

.MODEL
STACK

EXTRN
EXTRN

PUBLIC
PUBLIC

• DATA
HELLO DB
NOTUSED DW
HIDDEN DW

• CODE
SAYBYE PROC

mov
mov
int
ret

SAYBYE ENDP

START PROC
mov
mov
call

238

small
200h

GOODBYE: BYTE
SAYHELLO:NEAR

HELLO
NOTUSED

'Hello' ,10, 13, '$'
?
?

NEAR
dx,OFFSET GOODBYE
ah,9
21h

NEAR
ax,@data
ds,ax
SAYHELLO

;refers to Goodbye
;refers to SayHello

;makes Hello public
;makes NotUsed public

;defines Hello

;defines Say Bye

; defines Start

;refers to SayHello

Turbo Assembler Reference Guide

call SAYBYE irefers to SayBye
EXIT:

mov ax,04COOh
int 2lh

START ENDP
END START

i TEST2.ASM

• MODEL small

EXTRN HELLO: BYTE irefers to Hello

PUBLIC GOODBYE imakes Goodbye public
PUBLIC SAY HELLO imakes SayHello public

• DATA
GOODBYE DB 'Goodbye' ,10, 13, , $' idefines Goodbye

• CODE
SAY HELLO PROC NEAR idefines SayHello

mov dx,OFFSET HELLO irefers to Hello
mov ah,9
int 2lh
ret

SAY HELLO ENDP
END

The object modules compiled from them are TEST1.0BJ and TEST2.0BJ.
You can tell OBJXREF what kind of report to generate about these .OBJ files
by entering the file names on the command line, followed by a JR and a
second letter denoting report type.

Note: The examples that follow show only fragments of the output.

Report by Public Names (/RP)

A report by public names lists each of the public names defined in the
object modules being reported on, followed by the name of the module in
which it is defined.

If you enter the following on the command line,

OBJXREF /RP test 1 test2

OBJXREF will generate a report that looks like this:

Appendix D, Turbo Assembler Utilities 239

Symbol

GOODBYE
HELLO
NOTUSED
SAYHELLO

Defined in

TEST2
TEST!
TEST!
TEST2

Report by Module (/RM)

A report by module lists each object module being reported on, followed by
a list of the public names defined in it.

If you enter the following on the command line,

OBJXREF /RM test! test2

OBJXREF will generate a report that looks like this:

Module: TEST! defines the following symbols:

HELLO
NOTUSED

Module: TEST2 defines the following symbols:

GOODBYE
SAY HELLO

Report by Reference (/RR) (Default)

A report by reference lists each public name with the defining module in
parentheses on the same line. Modules that refer to this public name are
listed on following lines indented from the left margin.

If you enter the following on the command line,

OBJXREF /RR test! test2

OBJXREF will generate a report that looks like this:

GOODBYE (TEST2)
TESTl

HELLO (TEST!)
TEST2

NOTUSED (TESTl)
SAY HELLO (TEST2)

TEST!

240 Turbo Assembler Reference Guide

Report by External References (/RX)

A report by external references lists each module followed by a list of
external references it contains.

If you enter the following on the command line,

OBJXREF IRX test1 test2 CS.LIB

OBJXREF will genera te a report that looks like this:

Module: TEST1 references the following symbols:

GOODBYE
SAYHELLO

Module: TEST2 references the following:

HELLO

Report of Module Sizes (IRS)

A report by sizes lists segment names followed by a list of modules that
define the segment. Sizes in bytes are given in decimal and hexadecimal
notation. The word uninitialized appears where no initial values are
assigned to any of the symbols defined in the segment. Segments defined at
absolute addresses in a .ASM file are flagged Abs to the left of the segment
size.

If you enter the following on the command line,

OBJXREF IRS test1 test2

OBJXREF will generate a report that looks like this:

iModule sizes by segment
STACK

512 (OO200h) TEST1, uninitialized
512 (OO200h) total

DATA
12 (OOOOCh) TEST1
10 (ODODAh) TEST2
22 (OOO16h) total

TEXT
24 (OO018h) TEST1
8 (OOO08h) TEST2

32 (OO020h) total

Appendix D, Turbo Assembler Utilities 241

Report by Class Type (/RC)

A report by class type lists segment size definitions by segment class. The
CODE class contains instructions, DATA class contains initialized data and
BSS class contains unitialized data. Segments that don't have a class type
will be listed under the notation "No class type."

If you enter the following on the command line,

OBJXREF /RC testl test2

OBJXREF will generate a report that looks like this:

iModule sizes by class
CODE

24 (00018h) TESTI
8 (00008h) TEST2

32 (00020h) total
DATA

12 (OOOOCh) TESTI
10 (OOOOAh) TEST2
22 (OOO16h) total

STACK
512 (00200h) TESTl, uninitialized
512 (OO200h) total

Report of Unreferenced Symbol Names (/RU)

A report of un referenced symbol names lists modules that define public
names not referenced in other modules. Such a symbol is either

• Referenced only from within the defining module and doesn't need to be
defined as a public symbol (in that case, if the module is in C, the key­
word static should be added to the definition; if the module is in T ASM,
just remove the public definition) .

• Never used (therefore, it can be deleted to save code or data space).

If you enter the following on the command line,

OBJXREF /RU testl test2

OBJXREF will generate a report that looks like this:

Module:

TESTI defines the following unreferenced symbols:

NOTUSED

242 Turbo Assembler Reference Guide

Verbose Reporting (/RV)

If you enter fRV on the command line, one report of each type will be
generated.

Examples Using OB/XREF

These examples assume that the application files are in the current
directory of the default drive and that library files are in the \LIB directory.

Example 1

Example 2

Example 3

C>OBJXREF testl test2 \lib\io.lib

In addition to the TEST1.0BJ and TEST2.0BJ files, the
library file \LIB\IO.LIB is specified. Since no report type
is specified, the resulting report is the default report by
reference, listing public names and the modules that
reference them.

C>OBJXREF /RV /Ltestl.arf

The TLINK response file TEST1.ARF contains the same
list of files as the command line in Example 1. The IRV
option is specified so that a report of every type will be
generated. TEST1.ARF contains

testl test2
testl.exe
testl.map
\lib\io

C>OBJXREF /F /RV \lib\IO.lib

This example reports on all the modules in the library
file IO.LIB; OBJXREF can produce useful reports even
when the files specified don't make a complete program.
The IF causes all modules in IO.LIB file to be included in
the report.

OB/XREF Error Messages and Warnings

OBJXREF generates two sorts of diagnostic messages: error messages and
warnings.

Appendix 0, Turbo Assembler Utilities 243

Error Messages

Out of memory
OBJXREF performs its cross-referencing in RAM memory and may run out
of memory even if TLINK is able to link the same list of files successfully.
When this happens, OBJXREF aborts. Remove memory-resident programs
to get more space or add more RAM.

Warnings

WARNING: Unable to open input file rrrr
The input file rrrr could not be located or opened. OBJXREF proceeds to the
next file.

WARNING: Unknown option - 0000

The option name 0000 is not recognized by OBJXREF. OBJXREF ignores the
option.

WARNING: Unresolved symbol nnnn in module mmmm
The public name nnnn referenced in module mmmm is not defined in any of
the .OBJ or .LIB files specified. OBJXREF flags the symbol in any reports it
generates as being referenced but not defined.

WARNING: Invalid file specification ffff
Some part of the file name ffff is invalid. OBJXREF proceeds to the next file.

WARNING: No files matching ffff
The file named ffff listed on the command line or in a response file could
not be located or opened. OBJXREF skips to the next file.

WARNING: Symbol nnnndefined in mmmml duplicated in mmmm2
Public name nnnn is defined in modules mmmml and mmmm2. OBJXREF
ignores the second definition.

TCREF: The Source Module Cross-Reference
Utility

TCREF is designed to produce two reports: a cross-reference list of where
all global symbols are used and defined, and a list of individual modules
and the symbols used within them.

TCREF accepts as input a group of .XRF files produced by TASM. These
files contain cross-reference information for individual modules. From

244 Turbo Assembler Reference Guide

these input files, a single .REF file is produced that contains one or more
reports in ASCII text. The command format follows:

TCREF <XRF files separated by '+' characters> ','
<REF filename> <switches>

For example, the following would take the FOOl.XRF, FOO2.XRF, and
FOO3.XRF as input files and produce FOO.REF:

TCREF fo01+fo02+fo03,foo

R~sponse Files

TCREF also accepts ASCII files as command strings. Simply precede the file
name with an @ sign to include a file in the command string. For example,

TCREF @dofoo

where DOFOO contains

foo1+foo2+foo3,foo

will do the same thing as the previous example.

Compatibility with TLINK

TCREF accepts command strings that TLINK accepts. TCREF ignores any
irrelevant switches and fields, such as any libraries or MAP files, or
switches that pertain only to the linker function. Similarly, if an J(RF file
cannot be located, TCREF will simply ignore it.

Beware! When using a TLINK response file, don't explicitly specify file
extensions, since doing so will override TCREF's internal defaults and
possibly result in disaster. For example, if the response file reads a

fo01+foo2+foo3,foo.exe

you should not use this file without modification with TCREF because the
.REF file it creates will be named FOO.EXE, presumably overwriting your
program.

Switches

TCREF accepts all the switches present in TLINK, but most of them are
discarded. TCREF only uses these switches:

./e makes GLOBAL report case-sensitive.

Appendix D. Turbo Assembler Utilities 245

./r generates LOCAL reports for all the specified modules .

• /p# sets report page length to # lines .
• /w# sets report page width to # columns.

Output

TCREF takes great care to make semantic sense of symbols. Cross-reference
information is useless when symbols with the same name but different
meanings are lumped together. TCREF therefore takes into account the
SCOPE of a symbol when producing its reports. Cross-reference infor­
mation is always listed for the source file and source line number.

The Global (or Linker-Scope) Report

TCREF's global report lists cross-reference information for global symbols
as they appear to the linker. Use the Ie switch if you want to produce case­
sensitive reports.

In this report, global symbols appear alphabetically in the left column.
References, organized by source file, are listed in the right column.
Wherever #'s appear indicates that definition occurs at that line.

Here's an example symbol printout:

Global Symbols
BAR

eref I = definition
TEST.ASM: 1 3 6 9 12 15 18 +

21 23 29
I TEST2.ASM: 2 4 6 18

What does this tell you? The leading # sign before the TEST2.ASM
indicates that BAR was defined somewhere in that module. For each source
file, the source line at which the reference occurred is listed. This list can
occupy more than one line, as in the case of the lines for TEST.ASM. The +
character indicates that wrap has occurred. Finally, the # sign before the 8
indicates that a definition of BAR occurred in TEST2.ASM on line 8.

The Local (or Module-Scope) Report

If you specify Ir on the command line, a local report will be made for each
module. It will contain all the symbols used in that module, listed in
alphabetical order. The Ie switch will have no effect on these reports, since
the appropriate case-sensitivity has already been determined at assembly
time.

246 Turbo Assembler Reference Guide

Like global reports, references are organized by source file in the right
column. A sample printout looks like this:

Module TEST.ASM Symbols Cref 1 = definition
UGH TEST .ASM: 1 3 6 9 12 15 18 +

21 23 29
1 UGH. INC: 12

Appendix D, Turbo Assembler Utilities 247

248 Turbo Assembler Reference Guide

A p p E N D x

E

Error Messages

This chapter describes all the messages that Turbo Assembler generates.
Messages usually appear on the screen, but you can redirect them to a file
or printer using the standard DOS redirection mechanism of putting the
device or file name on the command line, preceded by the greater than (»
symbol. For example,

TASM MYFILE >ERRORS

Turbo Assembler generates several types" of messages:

II information messages
• warning messages
• error messages
• fatal error messages

Information Messages

Turbo Assembler displays two information messages, one when it starts
assembling your source file(s) and another when it has finished assembling
each file. Here's a sample startup display:

Turbo Assembler Version 1.00 Copyright (C)" 1988 Borland International
Assembling file: TEST.ASM

When Turbo Assembler finishes assembling your source file, it displays a
message that summarizes the assembly process; the message looks like this:

Appendix E, Error Messages 249

Error messages: None
Warning messages: None
Remaining memory: 279k

You can suppress all information messages by using the rr command-line
option. This only suppresses the information messages if no errors occur
during assembly. If there are any errors, the rr option has no effect and the
normal startup and ending messages appear.

Warning and Error Messages

Warning messages let you know that something undesirable may have
happened while assembling a source statement. This may be something
such as the Turbo Assembler making an assumption that is usually valid,
but may not always be correct. You should always examine the cause of
warning messages to see if the generated code is what you wanted.
Warning messages won't stop Turbo Assembler from generating an object
file. These messages are displayed using the following format:

Warning filename (line) message

If the warning occurs while expanding a macro or repeat block, the
warning message contains additional information, naming the macro and
the line within it where the warning occurred:

Warning filename (line) macroname{macroline) message

Error messages, on the other hand, will prohibit Turbo Assembler from
generating an object file, but assembly will continue to the end of the file.
Here's a typical error message format:

Error filename (line) message

If the error occurs while expanding a macro or repeat block, the error
message contains additional information, naming the macro and the line
within it where the error occurred:

Error filename (line) macroname{macroline) message

The following warning and error messages are arranged in alphabetical
order:

Argument needs type override
The expression needs to have a specific size or type supplied, since its
size can't be determined from the context. For example,

mov [bx),l

250 Turbo Assembler Reference Guide

You can usually correct this error by using the PTR operator to set the
size of the operand:

mov WORD PTR[bxj,l

Argument to operation or instruction has illegal size
An operation was attempted on something that could not support the
required operation. For example,

Q LABEL QWORD
QNOT = not Q ;can't negate a qword

Arithmetic overflow
A loss of arithmetic precision occurred somewhere in the expression. For
example,

x = 20000h * 20000h ;overflows 32 bits

All calculations are performed using 32-bit arithmetic.

ASSUME must be segment register
You have used something other than a segment register in an ASSUME
statement. For example,

ASSUME ax:CODE

You can only use segment registers with the ASSUME directive.

Assuming segment is 32 bit
You have started a segment using the SEGMENT directive after having
enabled 80386 instructions, but you have not specified whether this is a
16- or 32-bit segment with either the USE16 or USE32 keyword.

In this case, Turbo Assembler presumes that you want a 32-bit segment.
Since that type of code segment won't execute properly under DOS
(without you taking special measures to ensure that the 80386 processor
is executing instructions in a 32-bit segment), the warning is issued as
USE32.

You can remove this warning by explicitly specifying USE16 as an argu­
ment to the SEGMENT directive.

Bad keyword in SEGMENT statement
One of the align/combine/use arguments to the SEGMENT directive is
invalid. For example,

DATA SEGMENT PAFA PUBLIC ;PAFA should be PARA

Can't add relative quantities
You have specified an expression that attempts to add together two
addresses, which is a meaningless operation. For example,

Appendix E, Error Messages 251

ABC DB ?
DEF = ABC + ABC ;error, can't add two relatives

You can subtract two relative addresses, or you can add a constant to a
relative address, as in:

XYZ DB 5 DUP (0)
XYZEND EQU $
XYZLEN = SYZEND - XYZ
XYZ2 = XYZ + 2

;perfectly legal
;legal also

Can't address with currently ASSUMEd segment registers
An expression contains a reference to a variable for which you have not
specified the segment register needed to reach it. For example,

DSEG SEGMENT
ASSUME ds:DSEG
mov si,MPTR

DSEG ENDS
XSEG SEGMENT
MPTR DW ?
XSEG ENDS

Can't convert to pointer

;no segment register to reach XSEG

Part of the expression could not be converted to a memory pointer, for
example, by using the PTR opera tor,

mov cl, [BYTE PTR all ;can't make AL into pointer

Can't emulate 8087 instruction
The Turbo Assembler is set to generate emulated floating-point
instructions, either via the IE command-line option or by using the
EMUL directive, but the current instruction can't be emulated. For
example,

EMUL
FNSAVE [WPTR] ;can't emulate this

The following instructions are not supported by floating-point
emulators: FNSA VE, FNSTCW, FNSTENV, and FNSTSW.

Can't make variable public
The variable is already declared in such a way that it can't be made
public. For example,

EXTRN ABC:NEAR
PUBLIC ABC ;error, already EXTRN

Can't override ES segment
The current statement specifies an override that can't be used with that
instruction. For example,

252 Turbo Assembler Reference Guide

stos DS:BYTE PTR[di]

Here, the STOS instruction can only use the ES register to access the
destination address.

Can't subtract dissimilar relative quantities
An expression subtracts two addresses that can't be subtracted from
each other, such as when they are each in a different segment:

SEGI SEGMENT
A:
SEGI ENDS
SEG2 SEGMENT
B:

mov ax,B-A
SEG2 ENDS

;illegal, A and B in different segments

Can't use macro name in expression
A macro name was encountered as part of an expression. For example,

MyMac MACRO
ENDM
mov ax,MyMac ;wrong!

Can't use this outside macro
You have used a directive outside a macro definition that can only be
used inside a macro definition. This includes directives like ENDM and
EXITM. For example,

DATA SEGMENT
ENDM ;error, not inside macro

Code or data emission to undeclared segment
A statement that generated code or data is outside of any segment
declared with the SEGMENT directive. For example,

;First line of file
inc bx
END

;error, no segment

You can only emit code or data from within a segment.

Constant assumed to mean immmediate constant
This warning appears if you use an expression such as [0], which under
MASM is interpreted as simply O. For example,

mov ax[O] imeans mov ax,O NOT mov ax,DS:[O]

Constant too large
You have entered a constant value that is properly formatted, but is too
large. For example, you can only use numbers larger than Offffh when
you have enabled 80386 instructions with the .386 or .386P directive.

Appendix E. Error Messages 253

CS not correctly assumed
A near CALL or JMP instruction can't have as its target an address in a
different segment. For example,

SEGl SEGMENT
LABl LABEL NEAR
SEGl ENDS
SEG2 SEGMENT

jmp LABl
SEG2 ENDS

ierror, wrong segment

This error only occurs in MASM mode. Ideal mode correctly handles this
situation.

CS override in protected mode
The current instruction requires a CS override, and you are assembling
instructions for the 286 or 386 in protected mode (P286P or P386P
directives). For example,

P286P
• CODE

CVAL DW ?
mov CVAL,l ;generates CS override

The IP command-line option enables this warning. When running in
protected mode, instructions with CS overrides won't work without you
taking special measures.

CS unreachable from current segment
When defining a code label using colon (:), LABEL or PROC, the CS
register is not assumed to either the current code segment or to a group
that contains the current code segment. For example,

PROGl SEGMENT
ASSUME cs:PROG2

START: ;error, bad CS assume

This error only occurs in MASM mode. Ideal mode correctly handles this
situation.

Declaration needs name
You have used a directive that needs a symbol name, but none has been
supplied. For example,

PROC
ret

ENDP

;error, PROC needs a name

You must always supply a name as part of a SEGMENT, PROC, or
STRUC declaration. In MASM mode, the name precedes the directive; in
Ideal mode, the name comes after the directive.

254 Turbo Assembler Reference Guide

Directive ignored in Turbo Pascal model
You have tried to use one of the directives that can't be used when
writing an assembler module to interface with Turbo Pascal. Read about
the .MODEL directive that specifies Turbo Pascal in Chapter 3. Refer to
Chapter 7 of the User's Guide for information about interfacing to Turbo
Pascal.

Directive not allowed inside structure definition
You have used a directive inside a STRUC definition block that can't be
used there. For example,

x STRUC
MEMl DB ?

ORG $+4
MEM2 DW ?
ENDS

ierror, can't use ORG inside STRUC

Also, when declaring nested structures, you cannot give a name to any
that are nested. For example,

FOO STRUC

ENDS

F002 STRUC
ENDS

ican't name inside

If you want to use a named structure inside another structure, you must
first define the structure and then use that structure name inside the
second structure.

Duplicate dummy argument_
A macro defined with the MACRO directive has more than one dummy
parameter with the same name. For example,

XYZ MACRO A,A
DB A
ENDM

ierror, duplicate dummy name

Each dummy parameter in a macro definition must have a different
name.

ELSE or ENDIF without IF
An ELSE or ENDIF directive has no matching IF directive to start a
conditional assembly block. For example,

BUF DB 10 DUP (?)
ENDIF ierror, no matching IFxxx

Expecting offset quantity
An expression expected an operand that referred to an offset within a
segment, but did not encounter the right sort of operand. For example,

Appendix E, Error Messages 255

CODE SEGMENT
mov ax, LOW CODE

CODE ENDS

Expecting offset or pointer quantity
An expression expected an operand that referred to an offset within a
specific segment, but did not encounter the right sort of operand. For
example,

CODE SEGMENT
mov ax,SEG CODE

CODE ENDS

Expecting pointer type

;error, code is a segment not
; a location within a segment

The current instruction expected an operand that referenced memory.
For example,

les di,4 ;no good, 4 is a constant

Expecting scalar type
An instruction operand or operator expects a constant value. For
example,

BB DB 4
rol ax,BB ;ROL needs constant

Expecting segment or group quantity
A statement required a segment or group name, but did not find one.
For example,

DATA SEGMENT
ASSUME ds : FOO

FOO DW 0
DATA ENDS

Extra characters on line

;error, FOO is not a group or segment name

A valid expression was encountered, but there are still characters left on
the line. For example,

ABC = 4 shl 3 3 ;missing operator between 3 and 3

This error often happens in conjunction with another error that caused
the expression parser to lose track of what you intended to do.

Forward reference needs override
An expression containing a forward-referenced variable resulted in more
code being required than Turbo Assembler anticipated. This can happen
either when the variable is unexpectedly a far address for a IMP or
CALL or when the variable requires a segment override in order to
access it. For example,

256 Turbo Assembler Reference Guide

ASSUME cs:DATA
call A

A PROC FAR
mov ax,MEMVAR

DATA SEGMENT
MEMVAR DI'I ?

;presurne near call
;oops, it's far

;doesn't know it needs override

;oops, needs override

Correct this by explicitly supplying the segment override or FAR
override.

ID not member of structure
In Ideal mode, you have specified a symbol that is not a structure
member name after the period (.) structure member operator. For
example,

IDEAL
STRUC DEMO

DB
ENDS
COUNT DW 0

mov ax, [(DEMO bx) .COUNT] ;COUNT isn't part of structure

You must follow the period with the name of a member that belongs to
the structure name that precedes the period.

This error often happens in conjunction with another error that caused
the expression parser to lose track of what you intended to do.

Illegal forward reference
A symbol has been referred to that has not yet been defined, and a
directive or operator requires that its argument not be forward­
referenced. For example,

IF MYSYM

ENDIF
MYSYM EQU 1

;error, MYSYM not defined yet

Forward references may not be used in the argument to any of the IFxxx
directives, nor as the count in a DUP expression.

Illegal immediate
Aninstruction has an immediate (constant) operand where one is not
allowed. For example,

mov 4,al

Illegal indexing mode
An instruction has an operand that specifies an illegal combination of
registers. For example,

Appendix E, Error Messages 257

mov aI, [sitaxl

On all processors except the 80386, the only valid combinations of index
registers are: BX, BP, 51, DI, BX+SI, BX+DI, BP+SI, BP+DI.

Illegal instruction
A source line starts with a symbol that is neither one of the known
directives nor a valid instruction mnemonic.

move ax,4 ishould be "MOV"

Illegal instruction for currently selected processor(s)
A source line specifies an instruction that can't be assembled for the
current processor. For example,

.8086
push 1234h ino immediate push on 8086

When Turbo Assembler first starts assembling a source file, it generates
instructions for the 8086 processor, unless told to do otherwise.

If you wish to use the extended instruction mnemonics available on the
186/286/386 processors, you must use one of the directives that enables
those instructions (P186, P286, P386).

Illegal local argument
The LOCAL directive inside a macro definition has an argument that is
not a valid symbol name. For example,

x MACRO
LOCAL 123 ;not a symbol
ENDM

Illegal local symbol prefix
The argument to the LOCALS directive specifies an invalid start for
local symbols. For example,

LOCALS XYZ ;error, not 2 characters

The local symbol prefix must be exactly two characters that themselves
are a valid symbol name, such as _ -' @@, and so on (the default is @@).

Illegal macro argument
A macro defined with the MACRO directive has a dummy argument
that is not a valid symbol name. For example,

X MACRO 123 ;invalid dummy argument
ENDM

Illegal memory reference
An instruction has an operand that refers to a memory location, but a
memory location is not allowed for that operand. For example,

258 Turbo Assembler Reference Guide

mov [bx],BYTE PTR A ;error, can't move from MEM to MEM

Here, both operands refer to a memory location, which is not a legal
form of the MOV instruction. On the 80x86 family of processors, only
one of the operands to an instruction can refer to a memory location.

Illegal number
A number contains one or more characters that are not valid for that
type of number. For example,

Z = OABCGh

Here, G is not a valid letter in a hexadecimal number.

Illegal origin address
You have entered an invalid address to set the current segment location
($). You can enter either a constant or an expression using the location
counter ($), or a symbol in the current segment.

Illegal override in structure
You have attempted to initialize a structure member that was defined
using the DUP operator. You can only initialize structure members that
were declared without DUP.

Illegal override register
A register other than a segment register (CS, DS, ES, SS, and on the
80386, FS and GS) was used as a segment override, preceding the colon
(:) operator. For example,

mov dx:XYZ,l ;DX not a segment register

Illegal radix
The number supplied to the .RADIX directive that sets the default
number radix is invalid. For example,

.RADIX 7 ;no good

The radix can only be set to one of 2, 8, 10, or 16. The number is
interpreted as decimal no matter what the current default radix is.

Illegal register multiplier
You have attempted to multiply a register by a value, which is not a legal
operation; for example,

mov ax*3,1

The only context where you can multiply a register by a constant expres­
sion is when specifying a scaled index operand on the 80386 processor.

Appendix E, Error Messages 259

Illegal use of constant
A constant appears as part of an expression where constants can't be
used. For example,

rnov bx+4,S

Illegal use of register
A register name appeared in an expression where it can't be used. For
example,

x = 4 shl ax ican't use register with SHL operator

Illegal use of segment register
A segment register name appears as part of an instruction or expression
where segment registers cannot be used. For example,

add SS,4 iADD can't use segment regs

Illegal USES register
You have entered an invalid register to push and pop as part of entering
and leaving a procedure. The valid registers follow:

AX CX OS ES
BX DI DX 51

If you have enable the 80386 processor with the .386 or .386P directive,
you can use th~ 32-bit equivalents for these registers.

Illegal warning ID
You have entered an invalid three-character warning identifier. See the
options discussed in Chapter 3 of the User's Guide for a complete list of
the allowed warning identifiers.

Instruction can be compacted with override
The code generated contains NOP padding, due to some forward­
referenced symbol. You can either remove the forward reference or
explicitly provide the type information as part of the expression. For
example,

jmp X
jmp SHORT X

x:
Invalid model type

iwarning here
ino warning

The model directive has an invalid memory model keyword. For
example,

.MODEL GIGANTIC

Valid memory models are tiny, small, compact, medium, large, and
huge.

260 Turbo Assembler Reference Guide

Invalid operand(s) to instruction
The instruction has a combination of operands that are not permitted.
For example,

fadd ST(2),ST(3)

Here, FADD can only refer to one stack register by name; the other must
be the stack top.

Labels can't start with numeric characters
You have entered a symbol that is neither a valid number nor a valid
symbol name, such as 123XYZ.

Line too long - truncating
The current line in the source file is longer than 255 characters. The
excess characters will be ignored.

Location counter overflow
The current segment has filled up, and subsequent code or data will
overwrite the beginning of the segment. For example,

ORG OFFFOh
ARRAY DW 20 DUP (0) ioverflow

Missing argument list
An IRP or IRPC repeat block directive does not have an argument to
substitute for the dummy parameter. For example,

IRP X ino argument list
DB X

ENDM

IRP and IRPC must always have both a dummy parameter and an
argument list.

Missing argument or <
You forgot the angle brackets or the entire expression in an expression
that requires them. For example,

ifb ineeds an argument in <>s

Missing argument size variable
An ARG or LOCAL directive does not have a symbol name following
the optional = at the end of the statement. For example,

ARG A:WORD,B:DWORD=
LOCAL X:TBYTE=

ierror, no name after =

isame error here

ARG and LOCAL must always have a symbol name if you have used
the optional equal sign (=) to indicate that you want to define a size
variable.

Appendix E, Error Messages 261

Missing COMM ID
A COMM directive does not have a symbol name before the type
specifier. For example,

COMM NEAR ierror, no symbol name before "NEAR"

COMM must always have a symbol name before the type specifier,
followed by a colon <:) and then the type specifier.

Missing dummy argument
An IRP or IRPC repeat block directive does not have a dummy
parameter. For example,

RP
DB X

ENDM

ino dummy parameter

IRP and IRPC must always have both a dummy parameter and an
argument list.

Missing end quote
A string or character constant did not end with a quote character. For
example,

DB "abc
mov al,'X

imissing " at end of ABC
imissing , after X

You should always end a character or string constant with a quote
character matching the one that started it.

Missing macro ID
A macro defined with the MACRO directive has not been given a name.
For example,

MACRO ierror, no name
DB A
ENDM

Macros must always be given a name when they are defined.

Missing module name
You have used the NAME directive but you haven't supplied a module
name after the directive. Remember that the NAME directive only has
an effect in Ideal mode.

Missing or illegal language ID
You have entered something other than one of the allowed language
identifiers after "the .MODEL directive. See Chapter 3 of this book for a
complete description of the .MODEL directive.

262 Turbo Assembler Reference Guide

Missing or illegal type specifier
A statement that needed a type specifier (like BYTE, WORD, and so on)
did not find one where expected. For example,

RED LABEL XXX ;error, "XXX" is not a type specifier

Missing term in list
In Ideal mode, a directive that can accept multiple arguments (EXTRN,
PUBLIC, and so on) separated by commas does not have an argument
after one of the commas in the list. For example,

EXTRN XXX:BYTE"YYY:WORD

In Ideal mode, all argument lists must have their elements separated by
precisely one comma, with no comma at the end of the list.

Missing text macro
You have not supplied a text macro argument to a directive that requires
one. For example,

NEWSTR. SUBSTR ;ERROR - SUBSTR NEEDS ARGUMENTS

Model must be specified first
You used one of the simplified segmentation directives without first
specifying a memory model. For example,

• CODE ;error, no .MODEL first

You must always specify a memory model using the .MODEL directive
before using any of the other simplified segmentation directives.

Name must come first
You put a symbol name after a directive, and the symbol name should
come first. For example,

STRUC ABC ;error, ABC must come before STRUC

Since Ideal mode expects the name to come after the directive, you will
encounter this error if you try to assemble Ideal mode programs in
MASMmode.

Need address or register
An instruction does not have a second operand supplied, even though
there is a comma present to separate two operands; for example,

mov ax, ;no second operand

Need angle brackets for structure fill
A statement that allocates storage for a structure does not specify an
initializer list. For example,

Appendix E, Error Messages 263

STRl STRUC
Ml DW ?
M2 DD ?

ENDS
STRl ino initializer list

Need colon
An EXTRN, GLOBAL, ARG, or LOCAL statement is missing the colon
after the type specifier (BYTE, WORD, and so on). For example,

EXTRN X BYTE,Y:WORD iX has no colon

Need expression
An expression has an operator that is missing an operand. For example,

x = 4 + * 6

Need file name after INCLUDE
An INCLUDE directive did not have a file name after it. For example,

INCLUDE ;include what?

In Ideal mode, the file name must be enclosed in quotes.

Need left parenthesis
A left parenthesis was omitted that is required in the expression syntax.
For example,

DB 4 DUP 7

You must always enclose the expression after the DUP operator in
parentheses.

Need pointer expression
This error only occurs in Ideal mode and indicates that the expression
between brackets ([]) does not evaluate to a memory pointer. For
example,

mov ax, [WORD PTR]

In Ideal mode, you must always supply a memory-referencing expres­
sion between the brackets.

Need quoted string
You have entered something other than a string of characters between
quotes where it is required. In Ideal mode, several directives require
their argument to be a quoted string. For example,

IDEAL
DISPLAY "ALL DONE"

264 Turbo Assembler Reference Guide

Need register in expression
You have entered an expression that does not contain a register name
where one is required.

Need right angle bracket
An expression that initializes a structure, union, or record does not end
with a> to match the < that started the initializer list. For example,

MYSTRUC STRUCNAME <1,2,3

Need right parenthesis
An expression contains a left parenthesis, but no matching right paren­
thesis. For example,

x = 5 * (4 + 3

You must always use left and right parentheses in matching pairs.

Need right square bracket
An expression that references a memory location does not end with a] to
match the [that started the expression. For example,

mov ax, lsi ierror, no closing] after SI

You must always use square brackets in matching pairs.

Need stack argument
A floating-point instruction does not have a second operand supplied, even
though there is a comma present to separate two operands. For example,

fadd ST,

Need structure member name
In Ideal mode, the period (.) structure member operator was followed by
something that was not a structure member name. For example,

IDEAL
STRUC DEMO

DB ?
ENDS
COUNT DW 0

mov ax, [(DEMO bx) .]

You must always follow the period operator with the name of a member in
the structure to its left.

Not expecting group or segment quantity
You have used a group or segment name where it can't be used. For
example,

Appendix E, Error Messages 265

CODE SEGMENT
rol ax, CODE ierror, can't use segment name here

One non-null field allowed per union expansion
When initializing a union defined with the UNION directive, more than
one value was supplied. For example,

U UNION

ENDS

DW ?
DD

UINST U <1,2> ierror, should be <?,2> or <1,?>

A union can only be initialized to one value.

Open conditional
The end of the source file has been reached as defined with the END
directive, but a conditional assembly block started with one of the IFxxx
directives has not been ended with the END IF directive. For example,

IF BIGBUF
END ;no ENDIF before END

This usually happens when you type END instead of ENDIF to end a
conditional block.

Open procedure
The end of the source file has been reached as defined with the END
directive, but a procedure block started with the PROC directive has not
been ended with the ENDP directive. For example,

MYFUNC PROC
END ino ENDIF before ENDP

This usually happens when you type END instead of ENDP to end a
procedure block.

Open segment
The end of the source file has been reached as defined with the END
directive, but a segment started with the SEGMENT directive has not been
ended with the ENDS directive. For example,

DATA SEGMENT
END ;no ENDS before END

This usually happens when you type END instead of ENDS to end a
segment.

266 Turbo Assembler Reference Guide

Open structure definition
The end of the source file has been reached as defined with the END
directive, but a structure started with the STRUC directive has not been
ended with the ENDS directive. For example,

x STRUC
VALl DW ?

END ino ENDS before it

This usually happens when you type END instead of ENDS to end a
structure definition.

Operand types do not match
The size of an instruction operand does not match either the other
operand or one valid for the instruction; for example,

ABC DB 5

mov ax, ABC

Pass-dependent construction encountered
The statement may not behave as you expect, due to the one-pass nature
of Turbo Assembler. For example,

IF1

ENDIF
IF2

ENDIF

iHappens on assembly pass

;Happens on listing pass

Most constructs that generate this error can be re-coded to avoid it, often
by removing forward references.

Pointer expression needs brackets
In Ideal mode, the operand contained a memory-referencing symbol that
was not surrounded by brackets to indicate that it references a memory
location. For example,

B DB 0
mov al,B ;warning, Ideal mode needs [B]

Since MASM mode does not require the brackets, this is only a warning.

Positive count expected
A DUP expression has a repeat count less than zero. For example,

BUF -1 DUP (?) ;error, count < 0

The count preceding a DUP must always be lor greater.

Appendix E, Error Messages 267

Record field too large
When you defined a record, the sum total of all the field widths
exceeded 32 bits. For example,

AREC RECORD RANGE: 12,TOP:12, BOTTOM: 12

Recursive definition not allowed for, EQU
An EQU definition contained the same name. that you are defining
within the definition itself. For example,

ABC EQU TWOTIMES ABC

Register must be AL or AX
An instruction which requires one operand to be the AL or AX register
has been given an invalid operand. For example,

IN CL,dx ;error, "IN" must be to AL or AX

Register must be DX
An instruction which requires one operand to be the OX register has
been given an invalid operand. For example,

IN AL,cx ;error, must be DX register instead of CX

Relative jump out of range by _ bytes
A conditional jump tried to reference an address that was greater than
128 bytes before or 127 bytes after the current location. If this is in a
USE32 segment, the conditional jump can reference. between 32,768
bytes before and 32,767 bytes after the current location.

Relative quantity illegal
An instruction or directive has an operand that refers to a memory
address in a way that can't be known at assembly time, and this is not
allowed. For example,

DATA SEGMENT PUBLIC
X DB 0

IF OFFSET X GT 127 ;not known at assemble time

Reserved word used as symbol
You have created a symbol name in your program that Turbo Assembler
reserves for its own use. Your program will assemble properly, but it is
good practice not to use reserved words for your own symbol names.

Rotate count must be constant or CL
A shift or rotate instruction has been given an operand that is neither a
constant nor the CL register. For example,

rol ax,DL ;error, can't use DL as count

268 Turbo Assembler Reference Guide

You can only use a constant value or the CL register as the second
operand to a rotate or shift instruction.

Rotate count out of range
A shift or rotate instruction has been given a second operand that is too
large. For example,

.8086
shl DL,3
.286
ror ax,40

;error, 8086 can only shift by 1

;error, max shift is 31

The 8086 processor only allows a shift count of 1, but the other
processors allow a shift count up to 31.

Segment alignment not strict enough
The align boundary value supplied is invalid. Either it is not a power of
2, or it specifies an alignment stricter than that of the align type in the
SEGMENT directive. For example,

DATA SEGMENT PARA
ALIGN 32 ;error, PARA is only 16
ALIGN 3 ;error, not power of 2

Segment attributes illegally redefined
A SEGMENT directive re-opens a segment that has been previously
defined, and tries to give it different attributes. For example,

DATA SEGMENT BYTE PUBLIC
DATA ENDS
DATA SEGMENT PARA
DATA ENDS

;error, previously had byte alignment

If you re-open a segment, the attributes you supply must either match
exactly or be omitted entirely. If you don't supply any attributes when
re-opening a segment, the old attributes will be used.

Segment name is superfluous
This warning appears with a .CODE xxx statement, where the model
specified doesn't allow more than code segment.

String too long
You have built a quoted string that is longer than the maximum allowed
length of 255.

Symbol already defined: _
The indicated symbol has previously been declared with the same type.
For example,

BB DB 1,2,3
BB DB ? ierror, BB already defined

Appendix E, Error Messages 269

Symbol already different kind
The indicated symbol has already been declared before with a different
type. For example,

BB DB 1,2,3
BB DW ? ;error, BB already a byte

Symbol has no width or mask
The operand of a WIDTH or MASK opera tor is not the name of a record
or record field. For example,

B DB 0
mov ax, MASK B ;B is not a record field

Symbol is not a segment or already part of a group
The symbol has either already been placed in a group or it is not a
segment name. For example,

DATA SEGMENT
DATA ENDS
DGROUP GROUP DATA
DGROUP2 GROUP DATA ;error, DATA already belongs to DGROUP

Too few operands to instruction
The instruction statement requires more operands than were supplied.
For example,

add ax ;missing second arg

Too many errors or warnings
No more error messages will be displayed. The maximum number of
errors that will be displayed is 100i this number has been exceeded.
Turbo Assembler continues to assemble and prints warnings rather than
error messages.

Too many initial values
You have supplied too many values in a structure or union initialization.
For example,

XYZ STRUC
A1 DB ?
A2 DD ?
XYZ ENDS
ANXYZ XYZ <1,2,3> ;error, only 2 members in XYZ

You can supply fewer initializers than there are members in a structure
or union, but never more.

Too many register multipliers in expression
An 80386 scaled index operand had a scale factor on more than one
register. For example,

270 Turbo Assembler Reference Guide

mov EAX, [2*EBX+4*EDX] ;too many scales

Too many registers in expression
The expression has more than one index and one base register. For
example,

mov ax, [BP+S1+D1] ;can't have SI and D1

Too many USES registers
You specified more than 8 USES registers for the current procedure.

Trailing null value assumed
A data statement like DB, DW, and so on, ends with a comma. TASM
treats this as a null value. For example,

db 'hello' ,13,10 ;same as .•• ,13,101

Undefined symbol
The statement contains a symbol that wasn't defined anywhere in the
source file.

Unexpected end of file (no END directive)
The source file does not have an END directive as its last statement.

All source files must have an END statement.

Unknown character
The current source line contains a character that is not part of the set of
characters that make up Turbo Assembler symbol names or expressions.
For example,

add ax,!l ;error, exclamation is illegal character

Unmatched ENDP:
The ENDP directive has a name that does not match the PROC directive
that opened the procedure block. For example,

ABC PROC
XYZ ENDP ;error, XYZ should be ABC

Unmatched ENDS:
The ENDS directive has a name that does not match either the
SEGMENT directive that opened a segment or the STRUC or UNION
directive that started a structure or union definition. For example,

ABC STRUC
XYZ ENDS
DATA SEGMENT
CODE ENDS

;error, XYZ should be ABC

;error, code should be DATA

Appendix E, Effor Messages 271

USE32 not allowed without .386
You have attempted to define a 32-bit segment, but you have not
specified the 80386 processor first. You can only define 32-bit segments
after you have used the .386 or .386P directives to set the processor to be
80386.

User-generated error
An error has been forced by one of the directives, which then forces an
error. For example,

.ERR ;shouldn't get here

Value out of range
The constant is a valid number, but it is too large to be used where it
appears. For example,

DB 400

Fatal Error Messages

Fatal error messages cause Turbo Assembler to immediately stop
assembling your file. Whatever caused the error prohibited the assembler
from being able to continue. Here's a list of possible fatal error messages.

Bad switch
You have used an invalid command-line option. See Chapter 3 of the
User's Guide for a description of the command-line options.

Can't find @file
You have specified an indirect command file name that does not exist.
Make sure that you supply the complete file name. Turbo Assembler
does not presume any default extension for the file name. You've
probably run out of space on the disk where you asked the cross­
reference file to be written.

Can't locate file
You have specified a file name with the INCLUDE directive that can't be
found. Read about the INCLUDE directive in Chapter 3 in this book to
learn where Turbo Assembler searches for included files.

An INCLUDE file could not be located. Make sure that the name
contains any necessary disk letter or directory path.

Error writing to listing file
You've probably run out of space on the disk where you asked the listing
file to be written.

272 Turbo Assembler Reference Guide

Error writing to object file
You've probably run out of space on the disk where you asked the object
file to be written.

File not found
The source file name you specified on the command line does not exist.
Make sure you typed the name correctly, and that you included any
necessary drive or path information if the file is not in the current
directory.

File was changed or deleted while assembly in progress
Another program, such. as. a pop-up utility, has changed or deleted the
file after Turbo Assembler opened it. Turbo Assembler can't re-open a
file that was previously opened successfully.

Insufficient memory to process command line
You have specified a command line that is either longer than 64K or can't
be expanded in the available memory. Either simplify the command line
or run Turbo Assembler with more memory free.

Internal error
This message should never happen during normal operation of Turbo
Assembler. Save the file(s) that caused the error and report it to
Borland's Technical Support department.

Invalid command line
The command line that you used to start Turbo Assembler is badly
formed. For example,

TASM ,MYFILE

does not specify a source file to assemble. See Chapter 3 of the User's
Guide for a complete description of the Turbo Assembler command line.

Invalid number after
You have specified a valid command-line switch (option), but have not
supplied a valid numeric argument following the switch. See Chapter 3
of the User's Guide for a discussion of the command-line options.

Maximum macro expansion size exceeded
A macro expanded in to more text than would fit in the macro expansion
area. Since this area is up to 64 Kb long, you will usually only see this
message if you have a macro with a bug in it, causing it to expand in­
definitely.

Out of hash space
The hash space has one entry for each symbol you define in your
program. It starts out allowing 16,384 symbols to be defined, as long as
Turbo Assembler is running with enough free memory. If your program

Appendix E, Error Messages 273

has more than this many symbols, use the!KH command-line option to
set the number of symbol entries you need in the hash table.

Out of memory
You don't have enough free memory for Turbo Assembler to assemble
your file.

If you have any TSR (RAM-resident) programs installed, you can try
removing them from memory and try assembling your file again. You
may have to reboot your system in order for memory to be properly
freed.

Another solution is to split the source file into two or more source files,
or rewrite portions of it so that it requires less memory to assemble. You
can also use shorter symbol names, reduce the number of comments in
macros, and reduce the number of forward references in your program.

Out of string space
You don't have enough free memory for symbol names, file names,
forward-reference tracking information, and macro text. You can use the
!KS command-line option to allocate more memory to the string space.
Normally, half of the free memory is assigned for use as string space.

Too many errors found
Turbo Assembler has stopped assembling your file because it contained
so many errors. You may have made a few errors that have snowballed.
For example, failing to define a symbol that you use on many lines is
really a single error (failing to define the symbol), but you will get an
error message for each line that referred to the symbol.

Turbo Assembler will stop assembling your file if it encounters a total of
100 errors or warnings.

Unexpected end of file (no END directive)
Your source file ended without a line containing the END directive. All
source files must end with an END directive.

274 Turbo Assembler Reference Guide

Index

Index 275

80287 coprocessor
.287 directive 54, 134

80387 coprocessor
.387 directive 55, 135

.8086 directive 56

.8087 directive 56
80186 processor

.186 directive 53, 133
80286 processor

.286 directive 53, 133, 134

.286C directive 53

.286P directive 54
80386 processor

.386 directive 54, 134

.386C directive 55

.386P directive 55, 134, 135
arithmetic operations 13
Ideal vs. MASM mode 179

8087 coprocessor
.8087 directive 56, 135
emulating 127

.186 directive 53

.286 directive 53

.287 directive 54

.386 directive 54

.387 directive 55
8086 processor

.8086 directive 56, 135
<> (angle brackets) operator

within macros 47
.286C directive 53
.386C directive 55
[] operator 21
.286P directive 54
.386P directive 55
+ (binary) operator 16
- (binary) operator 17
: (colon) directive 57
: (colon) operator 19

local symbols and 117
- (hyphen), makefile prefix 194
() operator 15
;; operator, within macros 49
. (period) character

Ideal vs. MASM mode 163
. (period) operator 18
+ (unary) operator 16
- (unary) operator 18

276

character 189
! character, MAKE utility 200
\ character, makefile comments 189
_ character, Turbo C and 122
= directive 58

Ideal vs. MASM mode 173
.. operator 16
I operator 19
? operator 20
! operator, within macros 48
& operator, within macros 46
% sign

directives 52
within macros 48

@-sign
local symbols and 117
makefile prefix 194
TLINK and 212

Iml option, case sensitivity 5

A
action symbols (TLIB) 223
addition

operator 16, 21
alias values 5
ALIGN directive 58

Ideal vs. MASM mode 174
.ALPHA directive 59
AND operator 21
angle brackets, within macros 47
ARG directive 60

BYTE type and 61
Turbo Debugger and 60, 139

arithmetic operations 13
Ideal vs. MASM mode 174

assembling
conditional 80

directives 103-109
ENDIF directive 82
error messages 85
EXITM directive %
listing files 114

MAKE utility and 183-209
ASSUME directive 62

B
BASIC See Turbo Basic

Turbo Assembler Reference Guide

Basic Input/Output System See BIOS
%BIN directive 63
bit fields, directive 143
bit masks 30
bitwise complement operator 32
bitwise OR operator 33
brackets operator 21
BUILTINS.MAK 205
BYfE operator 22
BYfEtype

ARG directive and 61
bytes, DB directive 72

c
C See Turbo C
/ C option, TUB 225
/ c option, TUNK 214
case sensitive option, TUB 225
case sensitivity

MAKE utility 206
string comparisons 88, 89
TCREF246
TUB 225

CATSTR directive 64, 120
characters

displaying 133
literal 47
quoted 48

@code symbol 6
.CODE directive 64
code segment

directive 64
code segment, directive 65
CODESEG directive 65
@CodeSize symbol 6
colon directive 57
colon operator 19

local symbols and 117
Color Graphics Adapter See CGA
COMM directive 65
COMMAND.COM, MAKE utility and

195
command-line options

MAKE utility 206
TUNK213

command-line syntax
GREP227

Index

Ideal vs. MASM mode 177
MAKE utility 204
OBJXREF234
TLIB221

command lists (makeflles) 194
COMMENT directive 66
comments 66

makefile 189
suppressing 49

comparisons
case sensitivity and 88, 89

compatibility with other assemblers
59, 171-176, See also MASM
compatibility

compiler options See individual
listings

conditional
directives (MAKE) 201
jumps See jumps, conditional

conditional assembly
ELSE directive 80
ENDIF directive 82
error messages 85
EXITM directive 96
false conditionals 125, 148
IFl directive 103
IF2 directive 104
IFB directive 105
IFDEF directive 105
IFDIF directive 106
IFE directive 106
IFIDN directive 107
IFNB directive 108
IFNDEF directive 108
listing files 114, 125, 148, 154
macros 106, 107, 108
screen display 133

%CONDS directive 67
.CONST directive 67
CONST directive 68
constants

integer 143
segments

Ideal vs. MASM mode 179
copying data See data, copying
@Cpu symbol 7
CREF 126, 160
%CREF directive 68

277

.CREF directive 68
%CREFALL directive 69
%CREFREF directive 69
%CREFUREF directive 70

cross-reference
disabling 126
in listing files 68, 69, 126, 160

un referenced symbols 69
TCREF utility 244-247

cross-reference utility See TCREF
utility, See OBJXREF utility

CS register
.CODE directive and 64

%CfLS directive 70
@curseg symbol 8

D
/D option, OBJXREF 237
/ d option, TLINK 215
data

allocating 20, 23, 28
size

DQ directive 77
DT directive 78
SIZE operator 38

types
UNKNOWN 43

uninitialized 71
.DATA? directive 71
.DAT A directive 71
@data symbol 8
data segment

directives 67,68,71-72
EVENDAT A directive 95
uninitialized 156

data structures See structures
DATAPTR operator 22
DAT ASEG directive 72
@DataSize symbol 9, 121
date 9
??date symbol 9
DB directive 72
DD directive 73

Turbo Debugger and 73
debugging 60,73,75,79, 116, 139

map files and 213
%DEPTH directive 74

278

DF directive 75
Turbo Debugger and 75

directives 51-160, See also individual
listings
byte storage 72
code segment 64, 65
comments 66
communal variables 65
conditional assembly SO, 82,
103-109,114,148,154
conditional jumps 112, 128
coprocessor emulation 81
cross-reference 68, 69, 126, 160
current segment 132
data segment 67, 68, 71-72, 95, 156
data size 77, 78, 79
disabling symbol table 131
doubleword storage 73
equate 58, 84
error messages 85-94,130, 132, 159
even address 94, 95
expressions 143
external symbols 96
false conditionals 125, 148
far data 156
global symbols 100
Ideal mode 102
Ideal vs. MASM mode 180
include file listing 127
include files 109
integer constants 143
labels 113
linking libraries 110
listing controls 126
listing files 67-70, 74, 109, 114, 115,
125, 128, 131, 135-137,138, 142,
145,148,152-155,160
local symbols 117, 128
local variables 115
macro expansion 96, 114, 119, 129,
160
macros 119, 141, 145
MAKE utility 200
MASM mode 120, 129,142
memory model 121, 124
module names 125
near data 57
pointers 75, 77

Turbo Assembler Reference Guide

procedures 83, 138
processor

control 133-135
mode 53-57

program termination 82
public symbols 141
pushing/ popping registers 158
quoted strings 76
records 143
repeating 111, 144
se~ents145,156

alignment 58, 94
groups 101
names 62
ordering 59,76, 148

stack 60
stack segment 149
string

concatenation 64
definition 151
position 110
size 148

structures/unions 84, 149, 156
suppressing floating-point 137
symbols 87, 93, 94, 117

table 153
Disk Operating System See DOS
DISPLAY directive 76
displaying characters See characters

displaying ,
division, operators 19,31
DOS

date 9
MAKE utility and 195
se~ent ordering 76
time 10

DOS wildcards
TUB utility 223

DOSSEG directive 76
doublewords

DD directive 73
DWORD operator 23

DP directive 77
DQ directive 77
DT directive 78
DUP operator 23
DW directive 79

Turbo Debugger and 79

Index

DWORD operator 23

E
/ e option, TLINK 215
!elif directive 201
ELSE directive 80
!else directive 201
ELSEIF directive 80
EMUL directive 81
END directive 82
ENDIF directive 82
!endif directive 201
ENDM directive 83
ENDP directive 83
ENDS directive 84
environment variables

MASM mode 172
EQ operator 24
EQU directive 5, 84

Ideal vs. MASM mode 173
THIS operator and 41

equal (=) directive 58
Ideal vs. MASM mode 173

equate directives 58, 84
Ideal vs. MASM mode 84

equate substitutions 5
ERR directive 86
.ERRl directive 86
.ERR2 directive 86
.ERR directive &5
.ERRB directive 87
.ERRDEF directive 87
.ERRDIF directive 88
.ERRDIFI directive 88
.ERRE directive 89
.ERRIDN directive 89
.ERRIDNI directive 90
ERRIFl directive 91
ERRIF2 directive 91
ERRIF directive 91
ERRIFB directive 91
ERRIFDEF directive 91
ERRIFDIF directive 92
ERRIFDIFI directive 92
ERRIFE directive 92
ERRIFIDN directive 92
ERRIFIDNI directive 92

279

ERRIFNB directive 93
ERRIFNDEF directive 93
.ERRNB directive 93
.ERRNDEF directive 94
.ERRNZ directive 94
!error directive 204
error messages 249-274

conditional assembly 85
directives 85-94, 130, 132, 159
disabling 132
fatal 272
macros 93
MAKE utility 204, 207
multiple 124
OBJXREF243
symbols 87,91-94
TUNK217
warning 250

errors, programming See also pitfalls
EVEN directive 94
EVENDAT A directive 95
exclamation mark, within macros 48
.EXE files, TLINK 211
EXITM directive 96
explicit rules (makefiles) 189
expressions

byte size 22
doubleword size 23
evaluating 48
far pointer size 25, 36
integer constants 143
operators in 13-45
order of evaluation 14
quad word size 36
size of 34
ten-byte size 40
word size 45

Extended Dictionary 215, 221
creating 226
flag, TUB 222

external symbols See symbols,
external

EXTRN directive 96
Ideal vs. MASM mode 97

F
far data 9, 10

280

OF directive 75
DP directive 77
.FARDAT A? directive 98
FARDATA directive 99
.FARDATA directive 98
operator 24
UFARDATA directive 156

FAR operator 24
?FARDATA? directive 98
@fardata? symbol 10
FARDATA directive 99
.FARDAT A directive 98
@fardata symbol 9,
fatal error messages 272
file names 10
??filename symbol 10
@FileName symbol 10
files

assembly 10
forcing compilation 206
including (MAKE) 201
listing See also listing files
MAKE utility 183-209
managing (MAKE) 183-209
naming, TUB 223
object 220-226

OBJXREF utility 234-244
output (OBJXREF) 237
response 234
response (OBJXREF) 236
searches (GREP) 227-233

floating-point
emulation 127

Ideal vs. MASM mode 179
Ideal vs. MASM mode 172
instructions 1
suppressing assembly 137

forward references
FAR operator 24

forward slash operator 19
FWORD operator 25

G
GE operator 25
general-purpose registers See also

individual listings
GLOBAL directive 100

Turbo Assembler Reference GuIde

Ideal vs. MASM mode 177 INCLUDE directive 109
global symbols 100 incl ude files

cross-referencing 244-247 GLOBAL directive and 100
greater than operators 25,26 Ideal mode 110
GREP utility 227-233 listing 109, 127, 138

command-line syntax 227 INCLUDELIB directive 110
examples 231 inequality operator 31
me specification 230 input/output See I/O
operators 229 INSfR directive 110, 120
search string 229 instruction mnemonics See

GROUP directive 101 mnemonics
grouping segments 8, 101 instruction set See also individual
GT operator 26 listings

integers

H constants 143

HIGH operator 26 -
integers, constants 143
I/O, screen 133
IRP directive 111

I IRPC directive 111
/i option, TLINK 214
IBM XT See IBM PC J IDEAL directive 102

/JJUMPS option 113
Ideal mode 102

expression grammar 166
jumps

conditional 112
include files 110 Ideal vs. MASM mode 178
labels 113

size of 128
linking libraries 110 forward referenced 112
local symbols 118 Ideal vs. MASM mode 173
MASM modevs.171-176 Quirks mode 173
operator precedence 14 SHORT operator and 37
predefined symbols 5 size of 112
segment groups 102

JUMPS directive 112 IFl directive 103
IF2 directive 104

L IF directive 103
!if directive 201 /1 option, TLINK 214
IFB directive 105 LABEL directive 113
IFDEF directive 105 Ideal mode 113
IFDIF directive 106 labels
IFDIFI directive 106 defining 113
IFE directive 106 PUBLIC directive and 113
IFIDN directive 107 .LALL directive 114
IFIDNI directive 107 language syntax 161-169
IFNB directive 108 LARGE operator 27
IFNDEF directive 108 LE operator 28
implicit rules (makefiles) 191 LENGTH operator 28
%INCL directive 109 less than operators 28, 30
!include directive 201 lexical grammar 161

Index 281

.LFCOND directive 114
libraries

creating extended dictionaries 226
including 110
object module 220-226, 234-244

linking See also TLINK utility
high-level languages 121
libraries 110
Turbo Pasca1121

%LINUM directive 114
%LIST directive 115
.L1ST directive 115
listing files 115

%BIN directive 63
conditional assembly 154
conditional blocks 114
control directives 67, 70, 126, 138,
142, 180
cross-reference information 68 69
126, 160, 244-247 ' ,
directives 52, 74
disabling 128, 160
error messages 86
false conditionals in 125, 148
fonnat 114, 125, 131, 135, 136, 137,
152-155
include files in 109, 127
macro expansion 114, 119, 129
suppressing macros 145
titles 152, 154, 155
unreferenced symbols 69

LOCAL directive 115
Turbo Debugger and 116

local symbols 117
disabling 128
Ideal vs. MASM mode 118, 178

local variables 115
LOCALS directive 117
logical operations

AND 21
Ideal vs. MASM mode 174
NOT 32
OR 33
SHL37
SHR38
XOR45

LOOP instruction
Ideal vs. MASM mode 179

282

LOW operator 29
LT operator 30

M
1m option

TLINK213
1m option, TLINK 211
MACRO directive 119
macros

conditional assembly 107,108
conditional assembly directives
106
defining 119
deleting 141
error messages 88, 89, 90, 93
expansion

directives 129
EXITM directive 96
listing files 119, 160
suppressing listing 145

IRP directive and 111
IRPC directive and 112
listing 114, 138
local variables 115
MAKE utility 196
operators within 46-49

%MACS directive 119
MAKE utility 183-209

aborting 205
BUILTINS.MAKE file 205
case sensitivity 206
command-line options 206
creating makefiles 188-204
directives 200
error messages 207
example 184
forcing compilation 206
macros 196
syntax 204
TOUCH utility 206

map files, TLINK 211, 213
MASK operator 30
MASM51 directive 120, 171
MASM compatibility 171-176

80386 processor 179
ALIGN directive 174
alternate directives 180

Turbo Assembler Reference Guide

arithmetic operations 174
BYfE operator 22
command-line syntax 177
conditional jumps 178
constant segments 179
directives 51, 120, 129
DWORD operator 23
enhancements 177-181
environment variables 172
equate directives 58,173
expression grammar 164
FAR operator 24
floating-point

emulation 179
format 172

FWORD operator 25
GLOBAL directive 177
jumps 173
listing controls 180
local symbols 129, 178
logical operations 174
LOOP instruction (80386) 179
NEAR operator 32
operator precedence 14
predefined

symbols 5
variables 180

PROC operator 34
Quirks mode 120, 142, 171, 172,

175
QWORD operator 36
segment

alignment 174
groups 101
ordering 59
overrides 179
registers 173

shifts 181
signed instructions 174
TBYfE operator 40
Turbo C and 122
unions 178
UNKNOWN operator 44
variable redefinition 120
version 5.1120,129,171,175
??version symbol 11

MASM directive 120

Index

MASM mode See MASM
compatibility

math coprocessor See numeric
coprocessor

memory
models

directives 121, 124
pointers 6, 9, 22
Turbo Pascal 121

operands 21
Microsoft Assembler See MASM

compatibility
MOD operator 31
MODEL directive 124
.MODEL directive 121

RETURNS keyword and 62, 140
modular programming

code segment 64
combine types 146
COMM directive and 65
cross-referencing 244-247
EXTRN directive 96
module names 125
PUBLIC directive 141

modulus operator 31
moving data See data, moving
MS-DOS See DOS
MULTERRS directive 124
multiplication, operator 16

N
IN option, OBJXREF 238
In option, TLiNK 214
NAME directive 125
NE operator 31
near data 8

: directive 57
operator 32

NEAR operator 32
%NEWPAGE directive 125
%NOCONDS directive 125
%NOCREF directive 126
%NOCTLS directive 126
NOEMUL directive 127
%NOINCL directive 127
NOJUMPS directive 128
%NOLlSI' directive 128

283

NOLOCALS directive 128
%NOMACS directive 129
NOMASM51 directive 129
NOMULTERRS directive 130
%NOSYMS directive 131
NOT operator 32
NOTHING keyword 63
%NOTOC directive 51
%NOTRUNC directive 131
NOWARN directive 132
numeric coprocessor

emulating 81, 127
suppressing assembly 137

o
/0 option, OB]XREF 237
object See object files
object files

cross referencing 234-244
libraries 220-226
module name 125

object mod ules
cross-referencer (OB]XREF)

warnings 244
cross-referencing 244
OB]XREF244
OB]XREF utility 234-244
TLIB220

OB]XREF utility 234-244
changing directories 237
command-line options 235
/D option 237
error messages 243
examples 238
/N option 238
reports 235, 239
syntax 234

OFFSET operator 33
offsets

size operator 27
SMALL operator 39

operands
memory 21
THIS operator 41

operators 13-49, See also individual
listings
addition 16, 21

284

allocated data 28
comments 49
data size 38
division 19,31
equality 24
expression evaluate 48
expression size 23,25,34,36,40,45
greater than 25, 26
GREP229
Ideal vs. MASM mode 21
inequality 31
less than 28, 30
literal text string 47
logical 21, 32, 33, 37,38,45
macros 46-49
modulus 31
multiplication 16
offset size 27,39
order of precedence 14, 15
pointers 34, 37
quoted character 48
records 44
repeating 23
segment address 36
substitute 46
subtraction 17
symbol 40, 41, 42

options, command line See
command-line options

OR operator 33
ORG directive 132
%OUT directive 133
overlays, TLINK utility 216

P
P8086 directive 135
P8087 directive 135
P186 directive 133
P286 directive 133
P287 directive 134
P386 directive 134
P387 directive 135
P286N directive 134
P386N directive 134
P286P directive 134
P386P directive 135
PAGE directive 135

Turbo Assembler Reference Guide

%P AGESIZE directive 136
parentheses operator 15
Pascal See Turbo Pascal
PC-DOS See DOS
%PCNT directive 137
percent sign

directives 52
within macros 48

period
Ideal vs. MASM mode 163
operator

Ideal mode 18
pipes 195
PN087 directive 137
pointers

48-bit 75, 77
DAT APTR operator 22
DF directive 75
PROC operator 34

%POPLCTL directive 138
precedence (operators) 14, 15
predefined symbols See symbols
prefixes, makefiles 194
PROC directive 138

RETURNS keyword 62, 140
PROC operator 34
procedures

ending 83
local variables 115
start of 138

processor control directives 133-135
processor type, determining 7
program management (MAKE)

183-209
program termination

END directive and 82
Prolog See Turbo Prolog
PTR operator 34
PUBLIC directive 141
public names

OBjXREF utility 234, 239
public symbols 141
PURGE directive 141
%PUSHLCfL directive 142
PWORD operator 36

Index

Q
quadwords

DQ directive 77
operator 36

question mark
operator 20
symbols using 6

QUIRKS directive 120, 142, 171, 175
QUIRKS mode 120
Quirks mode 172, 175
QWORD operator 36

R
RADIX directive 143
.RADIX directive 143
RECORD directive 143
records

bit fields 143
bit masks 30
WIDTH operator 44

redirection 195
registers See also individual listings
repeating instructions 23, Ill, 144
reports (OBjXREF)

by class type 235
REPT directive 144
response files

OBjXREF 234, 236
TCREF245
TLIB224
TLINK211

RETURNS keyword 62, 140
rules (makefiles) 189-194

S
IS option 148
Is option

TLINK 211,213
.5ALL directive 145
searches (GREP) 227-233
SEG operator 36
SEGMENT directive 145
segments

address operator 36
alignment

Ideal vs. MASM mode 174

285

types 145
alphabetical order 59
ASSUME directive 62
combine types 146
constant

Ideal vs. MASM mode 179
current 8, 132
data 156
defmingl45
directives 145

memory model 121, 124
OFFSET operator 33
simplified 6,8,9, 10

end of 84
groups 8, 101

Ideal mode 101
names 62
NOTHING keyword 63
OFFSET operator 33
ordering 76, 148
override 19

Ideal vs. MASM mode 179
registers See also individual

listings
Ideal vs. MASM mode 173
Quirks mode 173

sequential order 148
size 11
stack 149

semicolon, within macros 49
.SEQ directive 148
.SFCOND directive 148
shifts

Ideal vs. MASM mode 181
SHL operator 37
SHR operator 38

SHL operator 37
SHORT operator 37
SHR operator 38
sign, changing 18
signed instructions

Ideal vs. MASM mode 174
simplified segment directives 6, 8, 9,

10
memory model 121, 124

size of data See data, size
SIZE operator 38
SIZESTR directive 120, 148

286

slash, operator 19
SMALL operator 39
square brackets, operator 21
stack

ARG directive 60
STACK directive 149
stack segment directive 149
.STACK directive 149
strings

concatenating 64
defining 64, 151
directives 151
DISPLAY directive 76
displaying 76
literal 47
position 110
quoted 48
size 148

STRUC directive 149
Ideal vs. MASM mode 150
vs. UNION 156

structures
defining 149
directive 149
ENDS directive 84
LABEL directive and 113
nesting 151
period operator 18

SUBsrR directive 120, 151
subtraction

Ideal vs. MASM mode 17
operator 17

SUBTTL directive 152
%SUBTTL directive 152
symbol tables

listing files 153
suppressing 131

symbols 5-11
aliases 5
@code6
@CodeSize6
communal 65

Ideal vs. MASM mode 66
multiple 66

OCpu7
cross-referencing 69
@curseg8
@data8

Turbo Assembler Reference Guide

@DataSize9
??date 9
defining 113
error messages 87, 91, 93, 94
external, EXTRN directive 96
@fardata? 10
@fardata9
??filename 10
@FileName 10
global 100

cross-referencing 244-247
local 117

disabling 128
operators 42
public 141
SYMTYPE operator 40
??time 10
.TYPE operator 41
undefined 94
unreferenced 69
??version 11
@WordSize 11

%SYMS directive 153
SYMTYPE operator 40
syntax 161-169

T

command-line See command-line
syntax
lexical grammar 161

It option, TLINK 216
%TABSIZE directive 153
TASM

summary, operating modes 175
TBYfE operator 40
TCREF utility 244-247

command-line options 245
output 246
TLINK and 245

termination
END directive and 82

text strings See strings
%TEXT directive 154
.TFCOND directive 154
THIS operator 41
13 option, TLINK 216
time 10

Index

??time symbol 10
TITLE directive 154
%TITLE directive 155
TLIB utility 220-226

examples 226
Extended Dictionary 221

flag 222
file names 223
operation list 222
operations 223
response files 224
syntax 221

TLINK utility 210-220
command-line options 213
error messages 217
Extended Dictionary 215
generating .COM files 216
map files 211, 213
response files 211
restrictions 216
segment map 213
TCREF and 245

%TOC directive 51
TOUCH utility 206
TPASCAL memory model 121
%TRUNC directive 155
Turbo C, linking to 122
Turbo Debugger

ARC directive and 60, 139
DD directive and 73
DF directive and 75
DW directive and 79
LOCAL directive and 116

Turbo Librarian See TUB utility
Turbo Link See TLINK utility
Turbo Pascal

ARC directive and 62
linking to 121
.MODEL directive 121
PROC directive and 140

Turbo Prolog, linking to 122
two-pass assemblers

compatibility with 86, 104
TYPE operator 42
.TYPE operator 41
typefaces in this manual 2
types See data, types

287

U
UDAT ASEG directive 156
UFARDATA directive 156
unconditional jumps See jumps,

unconditional
!undef directive 204
underscore

local symbols and 117
Turbo C and 122

UNION directive ISO, 156
vs. STRUC 156

unions
directive 156
Ideal vs. MASM mode 178

UNKNOWN operator 43
USES directive 158
utilities 183-247

GREP 227-233
MAKE 183-209
OBJXREF 234-244
TCREF 244-247
TUB 220-226
TUNK 210-220

V
Iv option, TLINK216
variables

communal 65
global (OBJXREF utility) 234

288

local 115
predefined

Ideal vs. MASM mode 180
redefining 120

??version symbol 11
version number (Turbo Assembler)

11

W
WARN directive 159
warning messages 250

directives 159
disabling 132
TLINK217

WIDTH operator 44
wildcards See DOS wildcards
WORD operator 45
words

DW directive 79
WORD operator 45

@WordSize symbol 11

X
Ix option, TLINK 211
.xALL directive 160
.xCREF directive 160
.XLIST directive 160
XOR operator 45

Turbo Assembler Reference Guide

BO ,RLAND

BORLANO INTERNATIONAL, INC , 1800 GREEN HILLS ROAD, PD BOX 660001 , scans VALLEY, CA 95066-0001 PART# 15MN-ASD02-10 BaR 0852

