Quick Reference

<

Borland
Turbo Assembler

| Turbo Assemblere

Version 4.0

Quick Referehce Guide

COPYRIGHT © 1988, 1994 by Borland International. All rights
reserved. All Borland product names are trademarks or registered
trademarks of Borland International, Inc. Other brand and product
names are trademarks or registered trademarks of their respective
holders.

The material in Part 3 and Part 4 is reprinted with permission of
Intel Corporation, Copyright/Intel Corporation 1987, 1993.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE UNITED STATES OF AMERICA
2E0R0394

9495969798987 654 3
H1

TABLE OF

CONTENTS

PART 1
‘Predefined symbols 1
PP 2
@32Bit.....ooviiiiiii 2
@codeoiiiiiiiiiie 2
@CodeSize...........cvvvn... 2
@CPUovvveeeeinnn . 2
@curseg.ooviiiaai., 2
@data............coceiiin. 2
@DataSize............cooui... 2
dateo 2
@fardatacoon. 2
@fardata? 2
@FileName................... 2
Nfilename, 3
@Interface.................... 3
@Model.................ooln 3
@Object..............ooiilL 3
S @Stack. ...l 3
@Startup...........oooiuinnn 3
@Table_<objectname> 3
@TableAddr_<objectname> 3
tme ... 3
PVErSION. ..o 3
@WordSize.............. el 3
PART 2 .
Operators 5
Ideal mode operator
precedence.................. 6
MASM mode operator
precedence.................. 6
Operators. 7
) T 7
e e 7
+(binary)oL 7
+(unary). ..o 7
-(binary).......ooiiii i 7
-(unary) ..o 7
e e e 7
S e 7
.............................. 8
Y e e e 8
(1o 8
AND ... 8
BYTE....coovviiiie i 8

CODEPTRc0onnn.n. 8
DATAPTRcovennn.., 8
DUP.....covoiaaaian 8
DWORD.........cvvivuennnn. 9
DWORDPIR 9
10 JUROR 9
FAR......ooovvieaiiiaann.n, 9
FARPTRcoovvvennnn, 9
FWORDcovvinnennnn, 9
FWORDPTR................. 9
GE ..o, 9
1 N 9
HIGH ..o, 9
1316 (U 10
LARGE......cc0vverniannn.s 10
LE ot 10
LENGTHcc0vonnn.. 10
LOW ..oiitieeaeiaann 10
170 A 10
155 A 10
MASK. ..o, 10
MOD.....ccooieinnnnnnn. 10
NE..coiiiiriaiieainiaanns. 1
NEAR.......covvenninnnnn. 11
NEARPTR.................. 11
NOT ..o 11
OFFSETc.oovvenenn.. 11
OR...ooviiiiiaien, 11
PROC ..., 11
PROCPTR........c.ccvenn.. 11
PTR ...ovviaaniannns, 11
PWORDc.ocovvinnnn., 12
PWORDPTR................ 12
QWORD..........cvveennn.. 12
QWORDPIR 12
SEG . .iiieieneaaaainss 12
SHL......o'veeiieneannnn, 12
SHORT.......c0voveennenn. 12
SHR......oevenreannannnnns. 12
SIZE....\eiieenieaneanns, 12
SMALL.......cccvenvennn.. 13
SYMTYPEc......... 13
TBYTE. .. vveeeneennn.. 13
TBYTEPTR 13
THIS ...oooeeieeeeeen 13
TYPE ..o, 13
TYPE...ooioieieeniannnn, 13
TYPE....coovinrvennanninns. 13
UNKNOWN 13

WIDTH...........cooviinin. 14 %CREFo..o0 20

WORD..........oovininns. 14 ~ %CREFALL 20
WORDPIR 14 %CREFREF.................. 20
D (0) P 14 %CREFUREF................ 20
The special macro operators.. 14 %CTLS...................... 20
& 14 DATA.............ciial 20
K> 14 DATASEG 20
L 14 DATA? ... 20
Yot 14 DB ... 21
e e e e 14 DD ..ot 21
%DEPTH.oo... 21
‘ DF. i 21

PART3 DE..........
At DISPLAY...........cooivnne, 21
Directives 19 DOSSEG 21
186 . e 16 DP.....oovvvviiiiian.t, 22
286 . e 16 DQ.vvvrriiiiieiaaaiaaaaann, 22
286C .. 16 DTocovviiiiiiiiin... 22
286P. .. 16 DW.........ooooiiiiiiin, 22
287 16 ELSEcccoiivinnn.. 22
386, 16 ELSEIF.............cooviinn 23
386C .. 16 EMULool 23
386P. .. 16 = END...........ccoiviinnn 23
387 16 ENDIF...................... 23
486. .. 16 ENDM...............oono... 23
486C ... 160 ENDP..........ccooiivinnin, 23
486P. ... 16 ENDS..........coiviiiinnnn. 24
487 i 17 ENUM..........coovvennne. 24
586 . vt 17 EQU......ovviiiiiiiininn, 24
B86C .o 17 ERR........cooiiiiiiinnin 24
586P. .. 17 ERRcovvviiiiiiiinininn, 24
587 17 ERRI...........ccovoiinnn 24
8086vv i 17 ERR2...........ccciiinnnnn. 24
8087 ..t 17 ERRB............c.ooian.t. 24
............................. 17 ERRDEF.................... 25
S 17 ERRDIFcoiiiiine. 25
ALIGN........oovviiiiiin 17 ERRDIFI.................... 25
ALPHA............coiinn 17 ERRE.............icccoeenes 25
ALIAS ... 18 ERRIDN.........ccoovvven. 25
ARG, 18 ERRIDNI................... 25
ASSUME...........oovnnnn. 18 ERRIF.............coovnvnnnnn 25
YBIN ... 18 ERRIFL.......oovvnniiennt, 26
CALL......ccoviiiiiii, 18 ERRIF2..........ovvvvnnnn.. 26
CATSTR...........covvinnn, 18 ERRIFB............covonn... 26
CODE......ooovivvvivinn, 19 ERRIFDEF................ ... 26
CODESEG.cvnnnn. 19 ERRIFDIF................... 26
COMM.......oovviviininnnn 19 ERRIFDIFL.................. 26
COMMENT 199 ERRIFE 26
%CONDoovvvniinnnn.n 19 ERRIFIDN................... 27
CONST......ovvviviinnn .. 19 ERRIFIDNI.................. 27
CONST ..ovvviiiiaeiine 19 ERRIFNB.................... 27
CREF.........cooiviiiinn 20 ERRIFNDEF................. 27

i

ERRNDEF.................. 27 MASMBL ...l 36
ERRNZ...........covvvuent 27 MODEL.................... 36
EVENoooiiiiiin, 27 MODEL................... 37
EVENDATA 28 MULTERRS................. 37
EXIT. .o 28 NAME 37
EXITCODE. 28 %NEWPAGE................ 37
EXITM. ... 28 %NOCONDS................ 37
EXTRN ..., 28 %NOCREF.................. 37
FARDATA 28 %NOCTLSooviiin 37
FARDATA.................. 28 NOEMUL..............o.00. 37
FARDATA?. ...t 29 %NOINCL..............cc00 38
FASTIMUL. 29 NOJUMPSooovvete 38
FLIPFLAG e 29 %NOLIST.oouatn. 38
GETFIELD 29 NOLOCALS 38
GLOBAL.................... 29 Y%NOMACS. ...t 38
GOTO.......coiviiiiin 29 NOMASMS5L .. .ovviv it 38
GROUP.............coun 30 NOMULTERRS.............. 38
IDEAL. ..., 30 NOSMARTt 38
B 30 %NOSYMSooa 38
0 30 %NOTRUNC................ 38
IF2 oo 30 NOWARN.................. 38
IFB. ..o 31 ORGooinin e 39
IFDEFoiiiiii e 31 Y%OUT. ..o 39
IFDIF.. ..., 31 P186.......ccoviiiint 39
IFDIFL........coooiiiiie, 31 P286.........iiiiiiiit 39
IFE. ... 32 P286N.........ccooiiiiint 39
IFIDNoiiiii i 32 P286P ...l 39
IFIDNLcoooiiiiei e, 32 o 39
IENBcooviiiiii e 32 P386.......cooiiiiiiiil 39
IFNDEF..................... 33 P386N........covviiinn.. 39
%INCLoiiiiiiinn. 33 P386Pc.cooiiiiat 39
INCLUDE................... 33 P387.. . 39
INCLUDELIB 33 P486......... ..ol 40
INSTR. ... 33 PA86N.........ccooiiiiiiet. 40
IRP....ooov 33 PA87. .. . 40
IRPC ..o 34 P586.......ccoiiiiiiiiiit 40
JMP ..o 34 P586N.......ocovviviiiint 40
JUMPS. ...t 34 P587.. o 40
LABELooiuinn. 34 P8086. ..., 40
LALL oo 34 P8087. ...l 40
LARGESTACK 34 %PAGESIZE 40
LFCOND...........covetn 34 YPCNT. ... 4]
%LINUMooooviiinnn. 35 PNOS87coviiiiint 41
YLIST ..o 35 %POPLCTL. e 41
LIST oo 35 POPSTATE 41
LOCAL.........cooiiaiant 35 PROC.......ccooiiiii 41
LOCALS..............ol 36 PROCDESC..........ouvvten 42
MACROcoovvnniinn, 36 PROCTYPE 42
GMACSooiiiiiii 36 PUBLICounet 42
MASKFLAG 36 PUBLICDLL 42

fii

PURGEovveeeenn, 43
%PUSHLCTL 43
PUSHSTATE 43
QUIRKS. ..., 43
RADIX ..., 43
RADIX........ccvvvennn.. 43
RECORD.................... 43
REPT ...covoeiiaenn, 43
RETCODE..........c.cvv.... 44
RETF ..., 44
RETN.....couveninannnnn., 44
SALL....coiiiiiiiiiii, 44
SEGMENTcoeu.... 44
SEQ .. 45
SETFIELDccvvvnn... 45
SETFLAG ...eveeenens, 45
SFCONDc0ovn.. 45

CSIZESTR .eeeeeann . 45
SMALLSTACK. 45
SMART ..., 45
STACK ..o, 45
STACK.......couveueiini.. 45
STARTUP................... 45
STARTUPCODE 46
STRUC.....cooveeeanan.. 46
SUBSTR........cveeeueenn.. 46
SUBTTL......eeveennnnn.. 46
%SUBTTL ... 46
%SYMS ... 46
TABLE......cooveeenn.... 46
%TABSIZE 46
TBLINIT ..., 46
TBLINST ..., 47
TBLPTR.oenrnennnnn, 47
TESTFLAG ..., 47
%TEXT. . .o, 47
TFCOND ..., 47
TITLE. ..o, 47
%TITLE . . .'eeoeeeeain ., 47
%TRUNCvveeren.. 47
TYPEDEFccvueen... 47
UDATASEG ..., 48
UFARDATAccv... .. 48
UNION48
135) 21 TR 48
VERSION & ..o, 48
WARN......ccovuiinann... 48
WHILE. . ..o, 49
XALL. ..ot 49
XCREFcoveviinn. .. 49
XLIST ..o, 49

PART 4

Processor instructions 51
Operand-size and
address-size attributes. 52

Default segment attribute. .. .
Operand-size and
address-size instruction

prefixes.................... 52
Addpress-size attribute for
stackol 53
Instruction format 53
ModR/M and SIB bytes 55
How to read the instruction
setpages................... 59
Instruction
NAME .. oe et ie e eeeennn 59
Flagsooooiuin 59
Opcode.................... 60
Instruction 60
Clocks .. ivveeniiee i 63
AAA. ... 64
AAD....... ... 64
AAM 64
AAS . . 65
ADC. ... 65
ADD....... ..o 66
ANDo 66
ARPL..........cccovivu. ... 67
BOUND.........c.ovvnt. 67
BSF......cooiiiiiii 68
BSR......ov i 68
BSWAPcccovvinn... 69
BT.. ... i 69
BTC ... 69
BIR ... 70
BIS.... .o, 70
CALL.... ..ot 70
CBW. ..o 72
........................ 73
CLC .o 73
CID...coveeei it 73
CLI.. it 73
CLTS .. 74
CMC. . 74
CMP...o i 75
CMPS
CMPSB
CMPSW
CMPSD.......ocvvvean.n. 75
CMPXCHG.cconvn.... 76

CWDE............ccoiivenen 80
DAA 80
DAS......ciii 80
DEC....coiiiiiiiiiii 81
DIV . 81
ENTERcovviinenn.. 81
HLT.....oo i 82
IDIV...oee e 83
IMUL..........coiiiiia.., 83
IN. 84
INC .ot 85
INS

INSB

INSW

INSD ..o 85
INT
INTO......oiviiinnn. 86
INVD......oiiii i 87
INVIPG.........ccvvvninn. 87
IRET

IRETD

IRETW ... 88
Jeco oo 89
IMP e 91
LAHF ..., 93
LAR. ..., 93
LEA. ..., 93
LEAVE ..., 94
LGDT/LIDT 95
LGS ~

LSS

LFS

LDS

LES o 95
LLDT.....coiiiiiiiannn. 96
LMSW. ... 97
LOCK .o, 97
LODS

LODSB

LODSW
LODSD........cvivevvvnnn. 98
LOOP
LOOPcond.......covvvnnnns. 9
) 99
LTR. ... 100
MOV 100
MOVco i 101
MOVS

MOVSB

MOVSW

MOVSDccevvvennn. 102
MOVSX ... 102
MOVZX ..o eiii e 103
MUL ...t 103
NEG ... oiiiiiieii i, 104
NOP ..o 104
NOT ... 104
(@) 105
OUT ... 105
OUTS

OUTSB

OUTSW
OUTSD......ocvveiieennn 106
POP....coiiii i 107
POPA

POPAD

POPAW ... 108
POPF

POPFD
POPFW.......civviiiinnn. 108
PUSHooon... 109
PUSHA

PUSHAD
PUSHAW.................. 110
PUSHEF

PUSHFD

PUSHEWc.v.... 110
RCL

RCR

ROL

ROR....oiiiieiie i 111
REP

REPE

REPZ

REPNE
REPNZ........c.covivvvvntn 114
RET........ciiiiiiiinnn.. 116
SAHF 0 118
SAL

SAR

SHL
SHR......oiiiiiiiiiiennn, 118
SBB ... 119
SCAS .

SCASB

SCASW

SCASDciiiiiiiienn 120
SETcC. .. oovieieieii e 121
SGDT

SHLD.......ovvv i 122
SHRD.......oovvevvevennnn 123
SLDT ...cvieeee e 123
SMSW ... 124
STC. . e i 124
SID. ...ttt i 124
1= 3 S 125
STOS
STOSB
STOSW
STOSD.......ovvviiiinn 125
CSTR. e e 126
SUB. ..ot 126
TEST. ..o 127
VERR
VERW ..ol 127
WAIT. ... 128
WBINVD.........ooovvvnnns 128
XADD ... 130
XCHG ... 130
XLAT \
XLATB......coiiiiieaa.. 131
XOR .o, 131
PART 5 \
Coprocessor instructions 133
F2XM1.. .. oveiiie e 135
FABS 0ottt 135
FADD.......cocvviiiivenn .. 135
FADDPccovvvvvviennn. 135
FBLDcoiiiiiiinnnn, 136
FBSTP........coovvivvinnnnn 136
FCHS........oviviiiiinnn. 136
FCLEX
FENCLEXc.evvvvnvnnnn.. 136
FCOM ..., 137
FCOMPcovvvviinnnn. 137
FCOMPP...........cccvn. 137
FCOS ..., 137
FDECSTP................... 138
FDISI
FNDISL.........c.ooviven... 138
FDIV......cooivviiiiinann. 138
FDIVPcoviviinnnn.. 138
FDIVRcoviviii e 139
FDIVRP...........covvn.. 139
FENI
FNENI..................... 139
FFREEcccoun. 139
FIADD.........coiviiaann. 140

vi

13 (@0)Y A 140
FICOMPccvvvvnnn.. 140
1210\ 140
FIDIVRccc.uenn.. 141
FILD........oveiieenennn 141
121710) U 141
FINCSTP........cvvevenn. .. 141
FINIT .
128114 S 142
FIST ..o 142
FISTP.....cvvivveneninns. 142
FISUB......c.ovvennannnn... 142
FISUBRcccvvnn... 143
127 > N 143
FLDCW....oovvnnnnn. .. 143
FLDENV.........ccovvnn... 143
FLDLG2.......c0ovvennnn... 144
FLDLN2ccvvvnnn... 144
FLDL2E.........cvuvvnn... 144
FLDL2T.......c.cvvevnnn... 144
1200)) (R 145
FLDZ.....covieiennnn. .. 145
120 57 145
FMUL ..o, 145
FMULPcooeennnn. .. 146
FNOP.ovievinennnns. 146
FPATAN..........c.cvun... 146
FPREMcooovennrn.. 146
FPREMLcovvnnn... 147
FPTANovovninnnn, 147
FRNDINT.................. 147
FRSTOR.cevvnnn... 147
FSAVE

FNSAVEccoounn.n. 148
FSCALE..........cocunn... 148
FSETPMccvvnnn... 148
12571 148
FSINCOS.viernnnnn., 149
FSQRT ...ovvivennnnnnsn, 149
1553 A 149
FSTCW
FNSTCW......c.ovennn... 149
FSTENV
FNSTENV.................. 150
FSTP.....ovveieanannnnn, 1150
FSTSW

FNSTSW0ovieinnn. .. 150
FSTSW AX

FNSTSW AX. 150
12510 R 151
FSUBPcovveennnn... 151

FSUBRPco... 151
FIST ...t 152
FUCOM, 152
FUCOMP 152
FUCOMPP................. 152
FWAIT ...l 152
FXAM........ooooviat 153
FEXCH..........oooiiant 153
FEXTRACT................e. 153
FYL2Xo 153
FYL2XPLl.......ooooiiinntt. 154
F2XMI. ... 154

vii

il

Predefined symbols

PART 1, Predefined symbols

All the predefined symbols can be used in both MASM and Ideal mode.

$

Represents the current location counter within the cutrent segment.

@32Bit

Numeric equate indicating whether segments in the current model are de-
clared as 16 bit or 32 bit. '

@code ‘
Alias equate for .CODE segment name.

@CodeSize

Numeric equate that indicates code memory model (O=near, 1=far).

@CPU

Numeric equate that returns information about current processor direc-
tive.

@curseg
Alias equate for current segment.

@data

Alias equate for near data group name.

@DataSize

Numeric equate that indicates the data memory model (O=near, 1=far,
2=huge).

??date
String equate for today’s date.

@fardata

Alias equate for initialized far data segment name.

@fardata?
Alias equate for uninitialized far data segment name.

@FileName

Alias equate for current assembly file name.

2 ‘ Turbo Assembler Quick Reference Guide

??filename

??filename

String equate for current assembly file name.

@Interface

Numeric equate indicating the language and operating system selected
by MODEL.

@Model

Numeric equate representing the model currently in effect.

@Object

Text macro containing the name of the current object.
= Alias equate for stack segment.

@Stack

Alias equate for stack segment.

@Startup
Label that marks the beginning of startup code.

@Table_<objectname>
Data type containing the object’s method table.

@TableAddr_<objectname>

Label describing the address of the instance of the object’s virtual method
table. :

??time

String equate for the current time.

??version

Numeric equate for current Turbo Assembler version number.

@WordSize
Numeric equate that indicates 16- or 32-bit segments (2=16-bit, 4=32-bit).

PART 1, Predefined symbols ‘ 3

Turbo Assembler Quick Reference Guide

Operaftors

PART 2, Operators

This part covers the operators Turbo Assembler provides and their
precedence. The two tables that follow detail operator precedence for
Ideal and MASM modes.

ldeal mode operator precedence

The followmg table lists the operators in order of priority (highest is first,
lowest is last):

m (), [, LENGTH, MASK, OFFSET, SEG, SIZE, WIDTH
® HIGH, LOW ‘
N+, - (unary)

m *,/, MOD, SHL, SHR

‘W +, - (binary)

m EQ, GE, GT, LE, LT, NE

m NOT

m AND

m OR, XOR

B : (segment override)

B . (structure member selector)

W HIGH (before pointer), LARGE, LOW (before pomter), PTR, SHORT
SMALL, SYMTYPE .

MASM mode operator precedence

m <, (), [1, LENGTH, MASK, SIZE, WIDTH
| . (structure member selector)
m HIGH, LOW
W +, - (unary)
. W : (segment override)
m OFFSET, PTR, SEG, THIS, TYPE
m *,/, MOD, SHL, SHR
B +, - (binary)
m EQ, GE, GT, LE, LT, NE
E NOT
m AND
‘® OR, XOR
. LARGE, SHORT, SMALL, .TYPE

6 : Turbo Assembler Quick Reference Guide

O

Operators

O Ideal, MASM
(expression)
Marks expression for priority evaluation.

* ' Ideal, MASM
expressionl * expression2

Multiplies two integer expressions. Also used with 80386 addressing
modes where one expression is a register.

+ (binary) . : Ideal, MASM
expressionl + expression2
Adds two expressions.

+ (unary) Ideal, MASM
+ expression

Indicates that expression is positive.

- (binary) ' Ideal, MASM
expressionl - expression2
Subtracts two expressions.

- (undry) : Ideal, MASM
- expression

Changes the sign of expression.

Ideal, MASM
memptr fieldname

Selects a structure member.

/ C ~ Ideal, MASM
expressionl / expression2 '

Divides two integer expressions.

PART 2, Operators ‘, 7

. Ideal, MASM .
8eg0Tgroup : expression

Generates segment or group override.

? ' ‘ ; ‘ Ideal, MASM -
Dx ? /

Initializes with indeterminate data (where Dx is DB, DD, DF, DP DQ,
DT, or DW).

() Ideal, MASM
expression1[expression2]
[expression][expression2]

MASM mode: The [] operator can be used to specify addition or reglster
indirect memory operands.

Ideal mode: The [] operator specifies a memory reference.

AND Ideal, MASM
expressionl AND expression2
Performs a bit-by-bit logical AND of two expressions.

BYTE Ideal
BYTE expression

Forces address expression to be byte size.

BYTE PTR : ideal, MASM
BYTE PTR expression

Forces address expression to be byte size. -

CODEPTR ' Ideal, MASM
- CODEPTR expression

Returns the default procedure address size.

DATAPTR ' ' Ideal
DATAPTR expression

Forces address expression to model-dependent size.

bupP Ideal, MASM
count DUP (expression [expression]...) ‘

Repeats a data allocation operation count times.

8 ’ Turbo Assembler Quick Reference Guide

DWORD

DWORD
DWORD expression

Forces address expression to be doubleword size.

Ideal

DWORD PTR
DWORD PTR expression

Forces address expression to be doubleword size.

Ideal, MASM

EQ
expression1 EQ expression2

Returns true if expressions are equal.

Ideal, MASM

FAR
FAR expression

Forces an address expression to be a far code pointer.

Ideal

FAR PTR
FAR PTR expression

Forces an address expression to be a far code pointer.

Ideal, MASM

FWORD
FWORD expression

Forces address expression to be 32-bit far pointer size.

Ideal

FWORD PTR
FWORD PTR expression

Forces address expression to be 32-bit far pointer size.

Ideal, MASM

GE

expression] GE expression2

Ideal, MASM

Returns true if one expression is greater than or equal to the other.

GT

expressionl GT expression2

Returns true if one expression is greater than the other.

Ideal, MASM

HIGH
HIGH expressz'on

Returns the high part (8 bits or type size) of expression.

PART 2, Operators

Ideal, MASM

HIGH

HIGH Ideal
type HIGH expression '

Retumns the high part (8 bits or type size) of expression.

LARGE ' Ideal, MASM
LARGE expression

Sets expression’s offset size to 32 bits. In Ideal mode, this operation is legal
only if 386 code generation is enabled.

LE Ideal, MASM
expressionl LE expression2

Returns true if one expression is less than or equal to the other.

LENGTH ~ Ideal, MASM
LENGTH name

Returns number of data elements allocated as part of name.

LOW : Ildeal, MASM
LOW expression
Returns the low part (8 bits or type size) of expression.

LOwW \ Ideal
. type LOW expression

Returns the low part (8 bits or type size) of expression.

LT : Ideal, MASM
expressionl LT expression2
j

Returns true if one expression is less than the other.

MASK ' Ideal, MASM

MASK recordfieldname
MASK record

Returns a bit mask for a record field or an entire record.

MOD ‘ Ideal, MASM
expression1 MOD expression2

Returns remainder (modulus) from dividing two expressions.

10 Turbo Assembler Quick Reference Guide

NE

NE
expressionl NE expression2
Returns true if expressions are not equal.

Ideal, MASM

NEAR
NEAR expression

Forces an address expression to be a near code pointer.

Ideal

NEAR PTIR
NEAR PTR expression

Forces an address expression to be a near code pointer.

Ideal, MASM

NOT
NOT expression

Performs a bit-by-bit complement (invert) of expression.

Ideal, MASM

OFFSET
OFFSET expression

Ideat, MASM

Returns the offset of expression within the current segment (or the group
that the segment belongs to, if using simplified segmentation directives

or Ideal mode).

OR
expressionl OR expression2

Performs a bit-by-bit logical OR of two expressions.

Ideal, MASM

PROC
PROC expression

Forces an address expression to be a near or far code pointer.

Ideal

PROC PTR |
PROC PTR expression

Forces an address expression to be a near or far code pointer.

Ideal, MASM

PTR
type PTR expression

Forces address expression to have type size.

PART 2, Operators

Ideal, MASM

11

 PWORD

PWORD . ' : Ideal
PWORD expression

Forces address expression to be 32-bit far pointer size.

PWORD PIR Ideal, MASM
PWORD PTR expression

Forces address expression to be 32-bit far pointer size.

QWORD : Ideal
~ QWORD expression

Forces address expression to be quadword size.

QWORD PTR ' - Ideal, MASM
QWORD PTR expression

Forces address expression to be quadword size.

SEG : Ideal, MASM
SEG expression

Returns the segment address of an expression that references memory.

SHL I Ideal, MASM
expression SHL count

Shifts the value of expression to the left count bits. A negative count causes
the data to be shifted the opposite way.

SHORT : Ideal, MASM
SHORT expression

Forces expression to be a short code pointer (within -128 to +127 bytes of
the current code location).

SHR Ideal, MASM
expression SHR count

Shifts the value of expression to the right count bits. A negative count
causes the data to be shifted the opposite way.

SIZE ' Ideal, MASM
SIZE name

Returns size of data item allocated with name. ITn MASM mode, SIZE re-
turns the value of LENGTH name multiplied by TYPE name. In Ideal
mode, SIZE returns the byte count within name’s DUP.

12 ‘ Turbo Assembler Quick Reference Guide

SMALL

SMALL Ideal, MASM
SMALL expression '

Sets expression’s offset size to 16 bits. In Ideal mode, this operation is legal
only if 386 code generation is enabled.

SYMTYPE Ideal
SYMTYPE
Returns a byte describing expression.

TBYTE Ideal
TBYTE expression
Forces address expression to be 10-byte size.

TBYTE PTR Ideal, MASM
TBYTE PIR expression
Forces address expression to be 10-byte size.

THIS Ideal, MASM
THIS type

Creates an operand whose address is the current segment and location
counter. fype describes the size of the operand and whether it refers to
code or data. :

JYPE MASM

.TYPE expression
Returns a byte describing the mode and scope of expression.

TYPE IDEAL
" TYPE namel name2

Applies the type of an existing variable or structure member to another
variable or structure member.

TYPE MASM
TYPE expression

Returns a number indicating the size or type of expression.

UNKNOWN , Ideal
UNKNOWN expression ‘
Removes type information from address expression.

PART 2, Operators ' 13

WIDTH

WIDTH : Ideal, MASM

WIDTH recordfieldname
WIDTH record

Returns the width in bits of a field in a record, or of an entire record.

WORD Ideal -
WORD expression
Forces address expression to be word size.

WORD PTR Ideal, MASM
WORD PTR expression
Forces address expression to be word size.

XOR Ideal, MASM
expression1 XOR expression2

Performs bit-by-bit logical exclusive OR of two expressions.
Unconditional page break inserted for print formatting

‘The special macro operators

& Ideal, MASM
&name

Substitutes actual value of macro parameter name.

<> ‘ ' Ideal, MASM

Treats text literally, regardless of any special characters it might contain.

] ‘ Ideal, MASM
Icharacter

Treats character literally, regardless of any special meaning it might other-
wise have.

% S Ideal, MASM
Y%otext '

Treats text as an expression, computes its value and replaces text with the
result. text may be either a numeric expression or a text equate.

H) Ideal, MASM
scomment

Suppresses storage of a comment in a macro definition.

14 Turbo Assembler Quick Reference Guide

PART 3, Directives

Directives

15

186

.186 ' MASM

Enables assembly of 80186 processor instructions.

286 i : MASM

Enables aséembly of non-privileged (real mode) 80286 processor instruc- -
tions and 80287 numeric coprocessor instructions.

.286C MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc-
tions and 80287 numeric coprocessor instructions.

.286P , MASM

Enables assembly of all 80286 (including protected mode) processor in-
structions and 80287 numeric coprocessor instructions.

287 MASM
Enables assembly of 80287 numeric coprocessor instructions.
386 v MASM

Enables assembly of non-privileged. (real mode) 386 processor instruc-
tions and 387 numeric coprocessor instructions.

386C ‘ , MASM

Enables assembly of non-privileged (real mode) 386 processor instruc-
tions and 387 numeric coprocessor instructions.

.386P MASM

Enables assembly of all 386 (including protected mode) processor instruc-
tions and 387 numeric coprocessor instructions.

387 : ' MASM

Enables assembly of 387 numeric coprocessor instructions.
486 , ‘ MASM

Enables assembly of non-privileged (real mode) instructions for the 1486
processor. '

A86C - ' " : MASM

Enables assembly of non-privileged (real mode) instructions for the i486
processor. -

486P MASM

Enables’assembly of protected mode instructions for the 80486 processor.

16 Turbo Assemb/er Quiick Reference GiJide

.487

487 MASM

~ Enables assembly of 487 numeric processor instructions.

586 MASM

Enables assembly of non-privileged (real mode) instructions for the
Pentium processor.

.586C MASM

Enables assembly of non-privileged (real mode) instructions for the
Pentium processor.

.586P MASM

Enables assembly of protected mode instructions for the Pentium proces-
Sof.

587 MASM

Enables assembly of Pentium numeric processor instructions.

.8086 | MASM

Enables assembly of 8086 processor instructions only. This is the default
processor instruction mode used by Turbo Assembler.

.8087 MASM

Enables assembly of 8087 numeric coprocessor instructions only. This is
the default coprocessor instruction mode used by Turbo Assembler.

ideal, MASM
name:
Defines a near code label called name.
- Ideal, MASM
name = expression
Defines or redefines a numeric equate.
ALIGN ' Ideal, MASM

ALIGN boundary

Rounds up the location counter to a power-of-two address boundary (2,
4,8, ..).

..ALPHA MASM

Sets alphanumeric segment-ordering. The /a command-line option per-
forms the same function.

PART 3, Directives ' . 7

ALIAS

~ ALIAS) B Ideal, MASM
ALIAS <alias_name>=<target_name>

Allows the association of an alias name with a particular target name.
When the linker encounters an alias name, it resolves the alias by refer-
ring to the target name.

NOTE: The syntax for ALIAS is identical in both Ideal and MASM modes.

ARG ‘ Ideal, MASM

ARG argument [argument] ... [=symbol]
[RETURNS argument [,argument]]
Sets up arguments on the stack for procedures. Each argument is as-
signed a positive offset from the BP register, presuming that both the re-
turn address of the procedure call and the caller’s BP have been pushed
onto the stack already. Each argument has the following syntax (boldface
items are literal):

argname [[count1]] [:[debug_size] [type] [:count2]]
The optional debug_size has this syntax
[type] PTR

ASSUME Ideal, MASM ;

ASSUME segmentreg:name [segmentreg:namel...
ASSUME segmentreg:NOTHING
ASSUME NOTHING

Specifies the segment register (segmentreg) that will be used to calculate
the effective addresses for all labels and variables defined under a given
segment or group name (name). The NOTHING keyword cancels the as-
sociation between the designated segment register and segment or group
name. The ASSUME NOTHING statement removes all associations be-
tween segment registers and segment or group names.

%BIN , Ideal, MASM
%BIN size v o

Sets the width of the object code field in the listing file to size columns.

CALL \ Ideal, MASM

CALL<instance_ptr>METHOD/{object_name>:}
<method_name>{USES{segreg:}offsreg}{<extended_call_parameters>}

Calls a method procedure.

CATSTR ' | Ideal, MASMS51
name CATSTR string [string]... \

Concatenates several strings to form a single string narme.

18 Turbo Assembler Quick Reference Guide

.CODE

.CODE MASM
Same as CODESEG. MASM mode only.

CODESEG Ideal, MASM
CODESEG [name]

Defines the start of a code segment when used with the MODEL direc-
tive. If you have specified the medium or large memory model, you can
follow the .CODE (or CODESEG) directive with an optional name that
indicates the name of the segment.

COMM Ideal, MASM
COMM definition [definition]...

Defines a communal variable. Each definition describes a symbol and has
the following format (boldface items are literal):

[distance] [language] symbolnamel [countl]]:type [:count2]

distance can be either NEAR or FAR and defaults to the size of the de-
fault data memory model if not specified. language is either C, PASCAL,
BASIC, FORTRAN, PROLOG, or NOLANGUAGE and defines any lan-
guage-specific conventions to be applied to symbolname. symbolname is the
communal symbol (or symbols, separated by commas). If distance is
NEAR, the linker uses count1 to calculate the total size of the array. If dis-
tance is FAR, the linker uses count? to indicate how many elements there
are of size countl times the basic element size (determined by type). type
can be one of the following: BYTE, WORD, DATAPTR, CODEPTR,
DWORD, FWORD, PWORD, QWORD, TBYTE, or a structure name.
count2 specifies how many items this communal symbol defines. Both
countl and count2 default to 1. ‘

COMMENT MASM

COMMENT delimiter [text]
[text]
delimiter [text]

Starts a multiline comment. delimiter is the first non-blank character fol-
lowing COMMENT.

%COND ’ Ideal, MASM

Shows all statements in conditional blocks in the listing. This is the de-
fault mode for Turbo Assembler.

.CONST MASM
Same as CONST. MASM mode only.

CONST : Ideal, MASM
Defines the start of the constant data segment.

PART 3, Directives 19

.CREF

.CREF MASM
Same as %CREF. MASM mode only

%CREF Ideal, MASM

Allows cross-reference information to be accumulated for all symbols en-
countered from this point forward in the source file. .CREF reverses the
effect of any %XCREF or .XCREF dlrechves that inhibited the informa-
tion collection.

%CREFALL ' Ideal, MASM

Causes all subsequent symbols in the source file to appear in the
cross-reference listing. This is the default mode for Turbo Assembler.
%CREFALL reverses the effect of any previous %CREFREF or
%CREFUREF directives that disabled the listing of unreferenced

or referenced symbols.

%CREFREF , Ideal, MASM

Disables listing of unreferenced symbols in cross-reference.

%CREFUREF _ Ideal, MASM

Lists only the unreferenced symbols in cross-reference.

%CTLS ; " Ideal, MASM

Causes listing control directives (such as %LIST, %INCL, and so on) to
be placed in the listing file. .

.DATA MASM
Same as DATASE6. MASM mode only.

DATASEG ' . Ideal

Defines the start of the initialized data segment in your module. You
must first have used the MODEL directive to specify a memory model.
The data segment is put in a group called DGROUP, which also contains
the segments defined with the STACK, .CONST, and .DATA? directives.

DATA?] MASM

Defines the start of the uninitialized data segment in your module. You

must first have used the MODEL directive to specify a memory model.

+ The data segment is put in a group called DGROUP, which also contains
. the segments defined with the STACK, .CONST, and .DATA directives.

20 Turbo Assembler Quick Reference Guide

DB

DB “ Ideal, MASM
[name] DB expression [,expression]...

Allocates and initializes a byte of storage. name is the symbol you'll subse-
- quently use to refer to the data. expression can be a constant expression, a
question mark, a character string, or a DUPlicated expression.

DD Ideal, MASM
[name] DD [type PTR] expression [,expression]...

Allocates and initializes 4 bytes (a doubleword) of storage. name is the
symbol you'll subsequently use to refer to the data. type followed by
PTR adds debug information to the symbol being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a 32-bit floating-point number, a question
mark, an address expression, or a DUPlicated expression.

%DEPTH Ideal, MASM
%DEPTH width

Sets size of depth field in listing file to width columns. The default is 1 col-
umn.

DF ' Ideal, MASM
[name] DF [type PTR] expression [expression]...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is
the symbol you'll subsequently use to refer to the data. type followed by
PTR adds debug information to the symbol being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression

can be a constant expression, a question mark, an address expression, or
a DUPlicated expression.

DISPLAY Ideal, MASM
DISPLAY "text"
Outputs a quoted string (text) to the screen.

DOSSEG ‘ Ideal, MASM

Enables DOS segment-ordering at link time. DOSSEG is included for
backward compatibility only.

PART 3, Directives 21

bpP

DP Ideal, MASM
[name] DP [type PTR] expression [expression]...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is
the symbol you'll subsequently use to refer to the data. type followed by
PTR adds debug information to the symbol being defined, so that Turbo
Debugger can display its contents properly. type is one of the following:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a question mark, an address expression, or
a DUPlicated expression.

Da : Ideal, MASM
[rame] DQ expression [Lexpression]...

Allocates and initializes 8 bytes (a quadword) of storage. name is the sym-
bol you'll subsequently use to refer to the data. expression can be a con-
stant expression, a 64-bit floating-point number, a question mark, or a
DUPlicated expression.

DT ' Ideal, MASM
[name] DT expression [expression]...

Allocates and initializes 10 bytes of storage. name is the symbol you'll
subsequently use to refer to the data. expresszon can be a constant expres-
sion, a packed decimal constant expression, a question mark, an 80-bit
floating-point number, or a DUPlicated expression.

DW ' , ideal, MASM
[name] DW [type PTR] expression [expression]...

Allocates and initializes 2 bytes (a word) of storage. name is the symbol
you'll subsequently use to refer to the data. type followed by PTR adds
debug information to the symbol being defined, so that Turbo Debugger
can display its contents properly. type is one of the following: BYTE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, SHORT, NEAR, FAR or a structure name. expression
can be a constant expression, a question mark, an address expression, or
a DUPlicated expression.

ELSE Ideal, MASM
ELSE

IF condition
statements]

[ELSE
statements2]

ENDIF

Starts alternative conditional assembly block. The statements introduced
by ELSE (statements2) are assembled if condition evaluates to false.

22 » Turbo Assembler Quick Reference Guide

ELSEIF

ELSEIF Ideal, MASM
ELSEIF

IF conditionl
statements1
[ELSEIF condition2
statements2]
‘ENDIF

Starts nested conditional assembly block if condition? is true. Several
other forms of ELSEIF are supported: ELSEIF1, ELSEIF2, ELSEIFB,
ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI, ELSEIFE, ELSEIFIDN,
ELSEIFIDNI, ELSEIFNB, and ELSEIFNDEF.

EMUL ideal, MASM

Causes all subsequent numeric coprocessor instructions to be generated
as emulated instructions, instead of real instructions. When your pro-
gram is executed, you must have a software floating-point emulation
package installed or these instructions will not work properly.

END Ideal, MASM
END [startaddress)

Marks the end of a source file. startaddress is a symbol or expression that
specifies the address in your program where you want execution to be-
gin. Turbo Assembler ignores any text that appears after the END direc-
tive.

ENDIF _ ‘ Ideal, MASM
ENDIF

IF condition
statements
ENDIF

Marks the end of a conditional assembly block started with one if the
IExxxx directives.

ENDM Ideal, MASM
Marks the end of a repeat block or a macro definition.

ENDP Ideal, MASM

‘ENDP [procname]
[procname] ENDP

Marks the end of a procedure. If procname is supplied, it must match the
procedure name specified with the PROC directive that started the proce-
dure definition. '

PART 3, Directives o 23

ENDS

‘ ENDS Ideal, MASM

ENDS [segmentname | strucname]
[segmentname | strucname]ENDS

Marks-end of current segment, structure or union. If you supply the op-
tional name, it must match the name specified with the corresponding
SEGMENT, STRUC, or UNION directive.

ENUM , 7 Ideal, MASM

* ENUM namelenum_var|,enum_var...]]
name ENUM [enum_var[,enum_var...]]

Declares an enumberated data type.

EQU : ’ Ideal, MASM
name EQU expression

Defines name to be a string, alias, or numeric equate containing the result
of evaluating expression.

.ERR MASM

ERR <string>
ERR ' ; ideal, MASM
ERR <string>

Forces an error to occur at the line that this directive is encountered on in
the source file. The optional string will display as part of the error mes-
sage.

.ERR1 MASM
.ERR1 <string>

Forces an error to occur on pass 1 of assembly. The optional string will
display as part of the error message.

-.ERR2 MASM
ERR2 <string>

Forces an error to occur on pass 2 of assembly if multiple-pass mode (con-
trolled by /m command-line option) is enabled. The optional string will =
display as part of the error message.

.ERRB ‘ MASM
.ERRB argumént <string>

Forces an error to occur if argument is blank (empty). The optional string
will appear as part of the error message. -

24 . Turbo Assembler Quick Reference Guide

.ERRDEF

.ERRDEF ' MASM
ERRDEF symbol <string>

Forces an error to occur if symbol is defined. The optional string will ap-
pear as part of the error message.

.ERRDIF MASM
ERRDIF argumentl,argument2 <string>

Forces an error to occur if arguments are different. The comparison is
case sensitive. The optional string will appear as part of the error mes-
sage.

.ERRDIFI - MASM
.ERRDIFI argument1,argument? <string>

Forces an error to occur if arguments are different. The comparison is not
case sensitive. The optional string will appear as part of the error mes-
sage. :

.ERRE MASM
.ERRE expression <string>

Forces an error to occur if expression is false (0). The optional string will
appear as part of the error message.

.ERRIDN ‘ MASM
.ERRIDN argument1,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is
case sensitive. The optional string will appear as part of the error mes-
sage.

.ERRIDNI MASM
.ERRIDNI argumentl,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is not
case sensitive. The optional string will appear as part of the error mes-
sage. ‘

ERRIF Ideal, MASM
ERRIF expression <string> f

Forces an error to occur if expression is true (nonzero).' The optional string
will appear as part of the error message.

PART 3, Directives 5

ERRIF1

ERRIF1 ‘ Ideal, MASM
ERRIF1 <string> ‘

Forces an error to occur on pass 1 of assembly. The optional string will
appear as part of the error message.

ERRIF2 Ideal, MASM
ERRIF2 <string>

Forces an error to occur on pass 2 of assembly if multiple-pass mode (con-
trolled by /m command-line option) is enabled. The optional string will
appear as part of the error message. ‘

ERRIFB Ideal, MASM
ERRIFB argument <string> ' ‘

Forces an error to occur if argument is blank (empty). The optional string
will appear as part of the error message.

ERRIFDEF N Ideal, MASM
ERRIFDEF symbol <string>

Forces an error if symbol is defined. The optional string will appear as
part of the error message.

ERRIFDIF Ideal, MASM
ERRIFDIF argumentl,argument? <string> '

Forces an error to occur if arguments are different. The comparison is
case sensitive. The optional string will appear as part of the error mes-
sage.

ERRIFDIFI : Ideal, MASM
ERRIFDIFI argument1,argument2 <string>

Forces an error to occur if arguments are different. The comparison is not
case sensitive. The optional string will appear as part of the error mes-
sage. ’

ERRIFE T Ideal, MASM

ERRIFE expression <string>

Forces an error if expression is false (0). The optional string will appear as
part of the error message.

26 Turbo Assembler Quick Reference Guide

ERRIFIDN

ERRIFIDN Ideal, MASM
ERRIFIDN argument1,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is
case sensitive. The optional string will appear as part of the error mes-
sage.

ERRIFIDNI Ideal, MASM
ERRIFIDNI argumentl,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is not
case sensitive. The optional string will appear as part of the error mes-
sage.

ERRIFNB . Ideal, MASM
ERRIFNB argument <string>

Forces an error to occur if argument is not blank. The optional string will
appear as part of the error message.

ERRIFNDEF Ideal, MASM
ERRIFNDEF symbol <string>

Forces an error to occur if symbol is not defined. The optional string will
appear as part of the error message.

.ERRNB o ' MASM
.ERRNB argument <string>

Forces an error to occur if argument is not blank. The optional string will
appear as part of the error message.

.ERRNDEF MASM
ERRNDEF symbol <string> |

Forces an error to occur if symbol is not defined. The optional string will
appear as part of the error message.

.ERRNZ ' MASM
.ERRNZ expression <string>

Forces an error to occur if expression is true (nonzero). The optional string
will appear as part of the error message.

EVEN Ideal, MASM

Rounds up the location counter to the next even address.

PART 3, Directives ' ‘ ' 27

EVENDATA

EVENDATA) : Ideal, MASM

Rounds up the location counter to the next even address in a data seg-
ment.

EXIT MASM
EXIT [return_value_expr] ’
Produces termination code. MASM mode only Equivalent to EXITCODE.

EXITCODE ’ Ideal, MASM
EXITCODE [return_value_expr]

Produces termination code. You can use it for each desired exit point. re-
turn_value_expr is a number to be returned to the operating system. If you
don’t specify return_value_expr, the value in AX is returned.

EXITM ' = Ideal, MASM

Terminates macro- or block-repeat expansion and returns control to the
next statement following the macro or repeat-block call.

EXTRN » Ideal, MASM
EXTRN definition [,deﬁnztzon]

Indicates that a symbol is defined in another module. definition describes
a symbol and has the following format:

[language] name[count1].type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, ASSEMBLER, or PROLOG are to be applied to symbol
name. name is the symbol that is defined in another module and can op-
tionally be followed by countl, an array element multiplier that defaults
to 1. type must match the type of the symbol where it’s defined and must
be one of the following: NEAR, FAR, PROC, BYTE, WORD, DWORD,
DATAPTR, CODEPTR, FWORD, PWORD, QWORD, TBYTE, ABS, or .
a structure name. count2 specifies how many items this external symbol
defines and defaults to 1 if not specified.

.FARDATA o S MASM
Same as FARDATA. MASM mode only.

FARDATA o ideal
FARDATA [segmentnaime]

Defines the start of a far initialized data segment. segmentname, if present,
overrides the default segment name.

28 o Turbo Assembler Quick Reference Guide

.FARDATA?

.FARDATA? MASM
FARDATA? [segmentname]

Defines the start of a far uninitialized data segment. segmentname, if pre-
sent, overrides the default segment name.

FASTIMUL Ideal, MASM
FASTIMUL<dest_reg>,<source_r/m>,<value> \ '

Generates code that multiplies source register or memory address by
value, and puts it into destination register.

FLIPFLAG ; | Ideal, MASM

See syntax for the XOR processor instruction

Optimized form of XOR that complements bits with shortest possible in-
struction. Use only if the resulting contents of the flags registers are unim-
portant.

GETFIELD Ideal, MASM
GETFIELD<field_name><destination_reg>,<source_t/m>

Generates code that retrieves the value of a field found in the same ,
source register or memory address, and sets the destination to that value.

GLOBAL : Ideal, MASM
GLOBAL definition [definition]...

Acts as a combination of the EXTRN and PUBLIC directives to define a
global symbol. definition describes the symbol and has the followmg for-
mat (boldface items are literal):

[language] name [[countl 1] :type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, NOLANGUAGE, or PROLOG are to be applied to symbol
name. If name is defined in the current source file, it is made public ex-
actly as if used in a PUBLIC directive. If not, it is declared as an external
symbol of type type, as if the EXTRN directive had been used. name can
be followed by an optional array count multiplier, countl, which defaults
to 1. type must match the type of the symbol in the module where it is de-
fined and must be one of the following: NEAR, FAR, PROC, BYTE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, ABS, or a structure name. count2 specifies how many
itemns this symbol defines (1 is the default).

GOTO ideal, MASM
GOTO tag_symbol

Tells Turbo Assembler to resume execution at the specified macro tag
(tag_symbol). GOTO terminates any conditional block that it is found in.

PART 3, Directives o ' 29

GROUP

GROUP) ‘ ideal, MASM

GROUP grbupname segmentndme [segmentname]...
- groupname GROUP segmentname [,segmentnamel...

Associates groupname with one or more segments, so that all labels and
variables defined in those segments have their offsets computed relative
to the beginning of group groupname. segmentname can be either a seg-
ment name defined previously with SEGMENT or an expression starting
with SEG. In MASM mode, you must use a group override whenever
you access a symbol in a segment that is part of a group. In Ideal mode,
Turbo Assembler automatically generates group overrides for such sym-
- bols.

IDEAL " ideal, MASM

Enters Ideal assembly mode. Ideal mode will stay in effect until it is over-
ridden by a MASM or QUIRKS directive.

IF : v \ Ideal, MASM

IF expression
truestatements
[ELSE
falsestatements)
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that expression is true (nonzero).

IF1 - Ideal, MASM

IF1
truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the current assembly pass is
pass one. ' \

IF2 - ' Ideal, MASM

IF2
truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that multiple-pass mode (control-

led by the /m command-line option) is enabled and the current assembly
pass is pass two. :

30 Turbo Assembler Quick Refé(ence Guide

IFB,

IFB Ideal, MASM

IFB argument -
truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that argument is blank (empty).

IFDEF Ideal, MASM

IFDEF symbol
truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that symbol is defined.

IFDIF Ldect, NASH

IFDIF argumentl,argument?
truestatements
[ELSE
- falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are different.
The comparison is case sensitive.

IFDIFI dedl, MASM

IFDIFI argument1,argument2
truestatements

[ELSE
Jalsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are different.
The comparison is not case sensitive. .

PART 3, Directives - ') | 31

IFE

IFE Ideal, MASM

IFE expression
- truestatements
[ELSE
falsestatements]
ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that expression is false.

IFIDN v Ideal, MASM

IFIDN argument1 argument2
truestatements

[ELSE
falsestatements]

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are identical.
The comparison is case sensitive.

IFIDNI) ‘ Ideal, MASM

IFIDNI argumentl,argument?
truestatements

[ELSE
falsestatements)

ENDIF

Initiates a conditional block, causing the assembly of truestatements up to
the optional ELSE directive, provided that the arguments are identical.
The comparison is not case sensitive.

IFNB Ideal, MASM

IFNB argument
truestatements
ELSE ,
" falsestatements]
ENDIF

Initiates a conditional block,.causing the assembly of truestatements up to
the optional ELSE directive, provided that argument is nonblank.

32 : Turbo Assembler Quick Reference Guide

IFNDEF

IFNDEF ‘ Ideal, MASM

IENDEF symbol
truestatements
[ELSE
falsestatements)
ENDIF

Initiates a conditional block, causing the assembly of ¢truestatements up to
the optional ELSE directive, provided that symbol is not defined.

%INCL Ideal, MASM

Enables listing of include files. This is the default INCLUDE file listing
mode.

INCLUDE MASM, Ideal

INCLUDE filename or INCLUDE "filename"
Includes source code from file filename at the current position in the mod-
ule being assembled. If no extension is specified, .ASM is assumed.

INCLUDELIB MASM, Ideal

INCLUDELIB filename or INCLUDELIB "filename"
Causes the linker to include library ﬁlenume at link time. If no extension is
specified, .LIB is assumed.

INSTR ideal, MASMS51
name INSTR [start,|string1,string?2

name is assigned the position of the first instance of string2 in stringl.
Searching begins at position start (position one if start not specified). If
string2 does not appear anywhere within string1, name is set to zero.

IRP : Ideal, MASM

IRP parameter,argl[,arg2]...
statements
ENDM

Repeats a block of statements with string substitution. statements are as-
sembled once for each argument present. The arguments may be any
text, such as symbols, strings, numbers, and so on. Each time the block is
assembled, the next argument in the list is substituted for any instance of
parameter in the statements.

PART 3, Directives ’ ' _ g 33

IRPC

IRPC Ideal, MASM

IRPC parameter string
statements
ENDM

Repeats a block of statements with character substitution. statements are
assembled once for each character in string. Each time the block is assem-
bled, the next character in the string is substituted for any instances of pa-
rameter in statements.

JMP ideal, MASM
JMP<instance_ptr>METHOD{<object_name>:}
<method_ name>{USES({segreg:}offsreg}

Functions exactly like CALL. METHOD except that it generates a]MP in-
stead of a CALL and it cleans up the stack if there are LOCAL or USES
variables on the stack. Use primarily for tail recursion.

JUMPS , : Ideal, MASM

Causes Turbo Assembler to look at the destination address of a condi-
tional jump instruction, and if it is too far away to reach with the short
displacement that these instructions use, it generates a conditional jump -
of the opposite sense around an ordinary jump instruction to the desired.
target address. This directive has the same effect as using the /JJUMPS
command-line option. .

LABEL : MASM, Ideal

name LABEL type
LABEL name type

Defines a symbol name to be of type type. name must not have been de-
fined previously in the source file. type must be one of the following:
NEAR, FAR, PROC, BYTE, WORD, DATAPTR, CODEPTR, DWORD,
FWORD, PWORD, QWORD, TBYTE, or a structure name.

.LALL ‘) MASM

Enables listing of macro expansions.

LARGESTACK ‘ ' Ideal, MASM
Indicates that the stack is 32 bit.

.LFCOND \ . MASM

Shows all statements in conditional blocks in the listing.

34 Turbo Assembler Quick Reference Guide

%LINUM

%LINUM ideal, MASM
%LINUM size

Sets the width of the line-number field in listing file to size columns. The
default is four columns.

%LIST Ideai, MASM
Shows source lines in the listing. This is the default listing mode.

LIST MASM
Same as %LIST. MASM mode only.
LOCAL ‘ Ideal, MASM
In macros:
LOCAL symbol [,symbol]...

In procedures:
LOCAL element [element]... [=symbol]

Defines local variables for macros and procedures. Within a macro defini-
tion, LOCAL defines temporary symbol names that are replaced by new
unique symbol names each time the macro is expanded. LOCAL must ap-
pear before any other statements in the macro definition.

Within a procedure, LOCAL defines names that access stack locations as
negative offsets relative to the BP register. If you end the argument list
with an equal sign (=) and a symbol, that symbol will be equated to the
total size of the local symbol block in bytes. Each element has the follow-
ing syntax (boldface brackets are literal):

symname [[count1]] [:[debug_size] [:type] [:count2]]

type is the data type of the argument. It can be one of the following;:
BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, NEAR, FAR, PROC, or a structure name. If you don’t
specify a type, WORD size is assumed.

count?2 specifies how many items of type the symbol defines. The default
for count2 is 1 if it is not specified.

countl is an array element size multiplier. The total space allocated for
the symbol is count2 times the length specified by the fype field times
countl. The default for count1 is 1 if it is not specified.

" The optional debug_size has this syntax:
[type] PTR

PART 3, Directives . 35

LOCALS

- LOCALS , Ideal, MASM
LOCALS [prefix]

Enables local symbols, whose names will begin with two at-signs (@@) or
the two-character prefix if it is specified. Local symbols are automatically
enabled in Ideal mode.

MACRO ‘ ‘ Ideal, MASM

MACRO name [parameter | parameter]...]
name MACRO [parameter [,parameter]...] .

Defines a macro to be expanded later when name is encountered. parame-
ter is a placeholder that you use in the the body of the macro definition
wherever you want to substitute one of the actual arguments the macro
is called with. ‘

%MACS ideal, MASM

Enables listing of macro expansions.

MASKFLAG Ideal, MASM

See the syntax for the AND processor instruction

Optimized form of AND that clears bits with the shortest possible instruc-
tion. Use only if the resulting contents of the flags registers are unimpor-
tant. :

MASM ideal, MASM

Enters MASM assembly mode. Thls is the default assembly mode for
Turbo Assembler.

MASMS51 ‘ Ideal, MASM
Enables assembly of some MASM 5.1 enhancements.

MODEL ; Ideal, MASM

MODEL [model modifier] memorymodel [module name]
[[language modifier] language | [model modifier]

Sets the memory model for simplified segmentation directives. model modi-
_ fier can come before memorymodel or at the end of the statement and must
be either NEARSTACK or FARSTACK if present. memorymodel is TINY,
SMALL, MEDIUM, COMPACT, LARGE, HUGE or TCHUGE. module
name is used in the large models to declare the name of the code seg-
ment. language modifier is WINDOWS, ODDNEAR, ODDFAR, or NOR-
MAL and specifies generation of MSWindows procedure entry and exit
code. language specifies which language you will be calling from to access
the procedures in this module: C, PASCAL, BASIC, FORTRAN,

36 Turbo Assembler Quick Reference Guide

.MODEL

PROLOG, or NOLANGUAGE. Turbo Assembler automatically gener-
ates the appropriate procedure entry and exit code when you use the
PROC and ENDP directives. language also tells Turbo Assembler which
naming conventions to use for public and external symbols, and in what
order procedure arguments were pushed onto the stack by the calling
module. Also, the appropriate form of the RET instruction is generated to
remove the arguments from the stack before returning if required.

.MODEL " MASM
Same as MODEL. MASM mode only.

MULTERRS Ideal, MASM

Allows multiple errors to be reported on a single source line.

NAME Ideal, MASM
NAME modulename

Sets the object file’s module name. This directive has no effect in MASM
mode; it only works in Ideal mode.

%NEWPAGE , Ideal, MASM
Starts a new page in the listing file.

%NOCONDS ideal, MASM

Disables the placement of statements in conditional blocks in the listing
file.

%NOCREF v Ideal, MASM
%NOCREE [symbol, ... |

Disables cross-reference listing (CREF) information accumulation. If you
supply one or more symbol names, cross-referencing is disabled only for
those symbols.

%NOCITLS Ideal, MASM

Disables placement of listing-control directives in the listing file. This is
the default listing-control mode for Turbo Assembler.

NOEMUL : Ideal, MASM

Causes all subsequent numeric coprocessor instructions to be generated
as real instructions, instead of emulated instructions. When your pro-
gram is executed, you must have an 80x87 coprocessor installed or these
instructions will not work properly. This is the default floating-point as-
sembly mode for Turbo Assembler.

PART 3, Directives _ 37

%NOINCL

%NOINCL Ideal, MASM
Disables listing of source lmes from INCLUDE files.

NOJUMPS - Ideal, MASM

Disables stretching of conditional | jumps enabled with JUMPS. This is the
default mode for Turbo Assembler.

%NOLIST ‘ o Ideal, MASM
Disables output to the listing file.
NOLOCALS Ideal, MASM

Disables local symbols enabled with LOCALS. This is the default for
Turbo Assembler’'s MASM mode.

%NOMACS | | \door, MASM

Lists only macro expansions that generate code. This is the default macro
hstmg mode for Turbo Assembler.

NOMASMS51) ’ Ideal, MASM

Disables assembly of certain MASM 5.1 enhancements enabled with
MASMS51. This is the default mode for Turbo Assembler.

NOMULTERRS ' _ Ideal, MASM

Allows only a single error to be reported on a source line. This is the de-
fault error-reporting mode for Turbo Assembler.

NOSMART » ’ ‘Ideal, MASM
Disables code optimizations that generate different code than MASM.

%NOSYMS ' ‘ Ideal, MASM
Disables placement of the symbol table in the listing file.

%NOTRUNC - Ideal, MASM

Prevents truncation of fields whose contents are longer than the corre- -
sponding field widths in the hstmg file.
60 points

NOWARN : Ideal, MASM
NOWARN [warnclass] ,

Disables warning messages with warning identifier warnclass, or all warn-
ing messages if warnclass is not specified.

38 Turbo Assembler Quick Reference Guide

ORG

ORG ‘ Ideal, MASM
ORG expression)

Sets the location counter in the current segment to the address specified
by expression. :

%OUT MASM
%QUT text

Displays text on screen.

P186 Ideal, MASM

Enables assembly of 80186 processor instructions.

P286 ' Ideal, MASM

Enables assembly of all 80286 (including protected mode) processor in-
structions and 80287 numeric coprocessor instructions.

P286N : v Ideal, MASM

Enables assembly of non-privileged (real mode) 80286 processor instruc-
tions and 80287 numeric coprocessor instructions.

P286P ' Ideal, MASM

Enables assembly of all 80286 (including protected mode) processor in-
structions and 80287 numeric coprocessor instructions.

pP287 | ideal, MASM

Enables assembly of 80287 numeric coprocessor instructions.

P386 ' ideal, MASM

Enables assembly of all 386 (including protected mode) processor instruc-
tions and 387 numeric coprocessor instructions.

P386N Ideal, MASM

Enables assembly of non-privileged (real mode) 386 processor instruc-
tions and 387 numeric coprocessor instructions.

P386P ' ideal, MASM

Enables assembly of all 386 (including protected mode) processor instruc-
- tions and 387 numeric coprocessor instructions.

P387 ‘ Ideal, MASM
Enables assembly of 387 numeric coprocessor instructions.

PART 3, Directives v 39

P486

P486 Ideal, MASM

Enables assembly of all i486 (including protected mode) processor instruc-
tions.

P486N ideal, MASM

Enables éssembly of non—pfivileged (real mode) i486 processor instruc-
tions.

P487 Ideal, MASM

Enables assembly of 487 numeric processor instructions.

P586 Idedl, MASM

Enables assembly of all Pentium (including protected mode) processor in-
structions. ‘ '

P586N Ideal, MASM

Enables assembly of non-privileged (real mode) Pentium processor in-
structions.

P587 . Ideal, MASM

Enables assembly of Pentium numeric processor instructions.

'P8086 | Ideal, MASM

Enables assembly of 8086 processor instructions only. This is the default
processor instruction mode for Turbo Assembler.

P8087 | Ideal, MASM

Enables assembly of 8087 numeric coprocessor instructions only. This is
the default coprocessor instruction mode for Turbo Assembler.
PAGE, MASM

%PAGESIZE ideal, MASM

PAGE [rows] [,cols]
%P AGESIZE [rows] [,cols}

Sets the listing page height and width, starts new pages. rows specifies
the number of lines that will appear on each listing page (10..255). cols
specifies the number of columns wide the page will be (59..255). Omitting
rows or cols leaves the current setting unchanged. If you follow PAGE
‘with a plus sign (+), a new page starts, the section number is incre-

- mented, and the page number restarts at 1. PAGE with no arguments
forces the listing to resume on a new page, with no change in section
number.

40 Turbo Assembler Quick Reference Guide

%PCNT

%PCNT : Ideal, MASM
%PCNT width

Sets segment:offset field width in listing file to width columns. The de-
fault is 4 for 16-bit segments and 8 for 32-bit segments.

PNO87 » Ideal, MASM

Prevents the assembling of numeric coprocessor instructions (real or emu-
lated).

%POPLCTL Ideal, MASM

Resets the listing controls to the way they were when the last
%PUSHLCTL directive was issued.

POPSTATE ' Ideal, MASM

Returns to last saved state from Turbo Assembler’s internal state stack.

PROC Ideal, MASM

For VERSION T310 or earlier:

PROC [language modifier] {language] name [distance]
[USES items,] [arqument [,argument]...]
[RETURNS argument [,argument]...]

For VERSION T320 or later:

PROC name [language modifier] [language] [distance]
[USES items,] [argument [,argument]...]
[RETURNS argument [,argument]...]

name PROC [language modifier] [language] [distance]
[USES items,] [arqument [argument]...]
[RETURNS argument [argument]...]

Defines the start of procedure name. language modifier is either
WINDOWS or NOWINDOWS, to specify generation of MSWindows en-
try/exit code. language specifies which language you will be calling from
to access this procedure: C, PASCAL, BASIC, FORTRAN,
NOLANGUAGE, or PROLOG. This determines symbol naming conven-
‘tions, the order of any arguments on the stack, and whether the argu-
ments will be left on the stack when the procedure returns. distance is
NEAR or FAR and determines the type of RET instruction that will be as-
sembled at the end of the procedure. items is a list of registers and/or sin-
gle-token data items to be pushed on entry and popped on exit from the
procedure. argument describes an argument the procedure is called with.
Each argument has the following syntax:

;argnume[[countl]] [[:distance] [PTR] type] [:count2]

argname is the name you'll use to refer to this argument throughout the
procedure. distance is NEAR or FAR to indicate that the argument is a
pointer of the indicated size. fype is the data type of the argument and
can be BYTE, WORD, DWORD, FWORD, PWORD, QWORD, TBYTE,

PART 3, Directives ‘41

PROCDESC

ora structure name. WORD is assumed if none is specified. countl and
count2 are the number of elements of type. PTR tells Turbo Assembler to
emit debug information to let Turbo Debugger know that the argument is
a pointer to a data item. Using PTR without distance causes the pointer
size to be based on the current memory model and segment address size.
RETURNS introduces one or more arguments that won’t be popped
from the stack when the procedure returns.

- PROCDESC- » Ideal, MASM

PROCDESC name [language] [language modzﬁer] [distance]
[arguments]

name PRODESC [[language_modifier] language] [dzstance]
[arguments]

Declares a procedure prototype, which lets Turbo Assembler check the
types and number of parameters to procedure calls and declarations, and
specifies language and distance. Also serves to PUBLIC or EXTRN the
procedure name.

PROCTYPE ' | Ideal, MASM

PROCTYPE name [procedure_description]
name PROCTYPE [procedure_description]

procedure_description has the following syntax:
[[language_modifier|language][distance][argument_list]

argument_list has the following syntax:
argument|,argument]...

where each argument has the following syntax:
[argname][[count]_expressions]]:complex_type|:count2_expression]

Declares a procedure type. Describes a procedure but does not create a
prototype for it. Can be used in place of the language specifier in a call to
allow argument type checking during compilation.

PUBLIC Ideal, MASM
PUBLIC [language] symbol [,[language] symbol]...

-Declares symbol to be accessible from other modules. If language is speci-
fied (C, PASCAL, BASIC, FORTRAN, ASSEMBLER, or PROLOG), sym-
bol is made public after having the naming conventions of the specified
language applied to it. ‘

PUBLICDLL ‘ Idedl, MASM
PUBLICDLL [language] symbol [,[language] symbol]...

Declares symbols to be accessible as dynamic link entry points from
other modules. symbol (a PROC or program label, data variable name, or
numeric constant defined with EQU) becomes accessible to other pro-
grams under Windows. If language is specified (C, PASCAL, BASIC,
FORTRAN, PROLOG, or NOLANGUAGE), symbol is made public after
having the naming conventions of the specified language applied to it.

42 ' : Turbo Assembler Quick Reference Guide

PURGE

PURGE Ideal, MASM
PURGE macroname [,macroname]...
Removes macro definition macroname.

%PUSHLCTL \deal, MASM

Saves current listing controls on a 16-level stack.

PUSHSTATE Ideal, MASM

Saves current operating state on an internal stack that is 16 levels deep.

QUIRKS : Ideal, MASM

Allows you to assemble a source file that makes use of one of the true
MASM bugs.

.RADIX MASM
Same as RADIX. MASM mode only.

RADIX ' Ideal, MASM
" RADIX radix ’

Sets the default radix for integer constants in expressions to 2, 8, 10, or 16.

RECORD MASM, Ideal

name RECORD field [field]...
RECORD name field [field]...

Defines record name that contains bit fields. Each field describes a group
of bits in the record and has the following format (boldface items are lit-
eral):

fieldname:width[=expression]

fieldname is the name of a field in the record, width (1..16) specifies the
number of bits in the field. If the total number of bits in all fields is 8 or
less, the record will occupy 1 byte; 9..16 bits will occupy 2 bytes; other-
wise, it will occupy 4 bytes. expression provides a default value for the
field. :

REPT , " Idedl, MASM

" REPT expression
statements
ENDM

Repeats a block of statements expression times.

PART 3, Directives ' 43

RETCODE

RETCODE ideal, MASM

Generates either a near return (2-byte displacement) or a far return (4-
byte displacement) depending on the size of the memory model declared
in the MODULE directive. A tiny, small, or compact memory model re-
sults in a near return, while a medium, large, or huge memory model re-
* sults in a far return. See the RET processor instruction in Part 4 for more
information. ‘

RETF Ideal, MASM

Generates a far return (4-byte displacement) froma procedure. See the
RET processor instruction in Part 4 for more information.

RETN . Ideal, MASM

Generates a near return (2-byte displacement) from a procedure. See the
RET processor instruction in Part 4-for more information.

SALL MASM

Suppresses the listing of all statements in macro expansions.

SEGMENT MASM, Ideal

SEGMENT narme [align] [combine] [usé] ["class’]
name SEGMENT [align] [combine] [use] ['class’]

Defines segment name with full attribute control. If you have already de-
fined a segment with the same name, this segment is treated as a continu-
ation of the previous one. align specifies the type of memory bounda
where the segment must start: BYTE, WORD, DWORD, PARA (default),
or PAGE. combine specifies how segments from different modules but

. with the same name will be combined at link time: AT expression (locates
segment at absolute paragraph address expression), COMMON (locates
this segment and all other segments with the same name at the same ad-
dress), MEMORY (concatenates all segments with the same name to
form a single contiguous segment), PRIVATE (does not combine this seg-
ment with any other segments; this is the default used if none specified),
PUBLIC (same as MEMORY above), STACK (concatenates all segments
with the same name to form a single contiguous segment, then initializes
S5 to the beginning of the segment and SP to the length of the segment)
or VIRTUAL (defines a special kind of segment that will be treated as a
common area and attached to another segment at link time). use specifies
the default word size for the segment if 386 code generation is enabled,
and can be either USE16 or USE32. class controls the ordering of seg-
ments at link time: segments with the same class name are loaded into
memory together, regardless of the order in which they appear in the
source file. ' _

44 ‘ ' Turbo Assembler Quick Reference éuide

SEQ

SEQ MASM

Sets sequential segment-ordering. This is the default ordering mode for
Turbo Assembler. .SEQ has the same function as the /s command-line op-
tion.

SETFIELD : Ideal, MASM
SETFIELD<field_name><destination_r/m>,<source_reg>

Generates code that sets a value in a record field. Sets the field in the des-
tination register or memory address with the contents of a source register.

SETFLAG Ideal, MASM
see the syntax for the OR processor instruction

Optimized form of OR that sets bits with shortest possible instruction.
Use only if the resulting contents of the flags register is unimportant.

SFCOND MASM

Prevents statements in false conditional blocks from appearing in the list-
ing file.

SIZESTR : Ideal, MASMS!
name SIZESTR string '

Assigns the number of characters in string to name. A null string has a
length of zero. '

SMALLSTACK Ideal, MASM

Indicates that the stack is 16 bit.

SMART ' ideal, MASM

Enables all code optimizations.

STACK MASM

Same as STACK. MASM mode only.

STACK ‘ : Ideal, MASM
STACK [size]

Defines the start of the stack segment, allocating size bytes. 1024 bytes are
allocated if size is not specified.

STARTUP MASM

Provides initialization code. MASM mode only. Equivaient to STARTUP-
CODE. '

PART 3, Directives ' 45

STARTUPCODE

STARTUPCODE ; Ideal, MASM
Provides initialization code and marks the beginning of the program.

STRUC ' | : Ideal, MASM

[name] STRUC{<modifiers>H<parent_; nume>}{METHOD<method lzst>}
<structure_data>
ENDS [name]

STRUC [name]{<modzﬁers>}{<parent name>}{METHOD<method list>}
<structure_data>
ENDS [name]

parent_name is the name of the parent object’s data structure. method_list is
like that of TABLE. structure_data is any (additional) data present in an in-
stance of the object. modifiers can be GLOBAL, NEAR, or FAR.

SUBSTR , Ideal, MASM51
name SUBSTR string,position] ,size]

Defines a new string name consisting of characters from string starting at
position, with a length of size. All the remaining characters in string, start-
ing from position, are assigned to name if size is not specified.

SUBTTL | ‘ MASM
Same as %SUBTTL. MASM mode only. '

%SUBTTL ; Ideal, MASM
%SUBTTL "text" ‘
Sets subtitle in listing file to text.

%SYMS ' Ideal, MASM

Enables symbol table placement in listing file. This is the default symbol .
listing mode for Turbo Assembler. .

TABLE " Ideal, MASM
TABLE name [table_member [table_member...]]

Constructs a table structure used to contain method pointers for objects.

%TABSIZE Ideal, MASM
%TABSIZE width

Sets the number of columns between tabs in the listing f11e to wzdth The
default is 8 columns.

TBLINIT Ideal, MASM

Initializes pointer in an object to the virtual method table.

46 Turbo Assembler Quick Reference Guide

TBLINST

TBLINST Ideal, MASM
TBLINST ‘

Creates an instance of the virtual table for the current object and defines
@TableAddr_<object>. Must be used after every object definition that in-
cludes virtual methods, so that the virtual table is allocated. You should
use this directive in only one module of your program.

TBLPTR Ideal, MASM
TBLPTR

Places a virtual table pointer within the object data. Defines a structure
member of the name @Mptr_<object>. This can only be used inside an ob-
ject definition.

TESTFLAG Ideal, MASM
See the syntax for the TEST processor instruction

Optimized form of TEST that tests bits with the shortest possible instruc-
tion. ‘ ‘

%TEXT ‘ Ideal, MASM
%TEXT width

Sets width of source field in listing file to width columns.

.TFCOND MASM

Toggles conditional block-listing mode..

TITLE ‘ MASM
Same as %TITLE. MASM mode only.

%TITLE Ideal, MASM
%TITLE "text"
Sets title in listing file to fext.

%TRUNC Ideal, MASM
Truncates listing fields that are too long.

TYPEDEF Ideal, MASM

TYPEDEF type_name complex_typé
type_name TYPEDEF complex_type

Defines named types.

PART 3, Directives o 47

UDATASEG

UDATASEG ideal, MASM

Defines the start of an uninitialized data segment.

UFARDATA ' / Ideal, MASM
Defines the start of an uninitialized far data segment.

UNION Ideal, MASM (disabled by QUIRKS)

UNION name
fields

ENDS [name]

name UNION
flelds

[name] ENDS

Defines a union called name. A union is just like a STRUC except that all
its members have an offset of zero from the start of the union. This re-
sults in a set of fields that are overlayed, allowing you to refer to the
memory area defined by the union with different names and different
data sizes. The length of a union is the length of its largest member, not
the sum of the lengths of its members as in a STRUC. fields define the
fields that comprise the union. Each field uses the normal data allocation
dlrechves (DB, DW, and so on) to define its size.

USES ' Ideal, MASM
USES item [iter]...

Indicates which registers or single-token data items you want to have
pushed at the beginning of the enclosing procedure and which ones you
want popped just before the procedure returns. You must use this direc-

. tive before the first instruction that actually generates code in your proce-
dure.

VERSION MASM, Ideai
VERSION <version_ID> ’

Places Turbo Assembler in the equivalent operating mode for the speci-
fied version.

WARN (' _ Ideal, MASM
WARN [warnclass]

Enables the type of warning message specified with warnclass, or all warn-
ings if warnclass is not specified. warnclass may be one of: ALN, ASS,
BRK, ICG, LCO, OPI, OPP, OPS, OVF, PDC, PRO, PQK, RES, or TPL

48 ' Turbo Assembler Quick Reference Guide

WHILE

WHILE Ideal, MASM

WHILE while_expression
macro body
ENDM

Repeats a macro body until while_expression evaluates to 0 (false).

XALL) MASM

Causes only macro expansions that generate code or data to be listed.

XCREF MASM

Disables cross-reference listing (CREF) information accumulation.

XLIST MASM
Disables subsequent output to listing file.

PART 3, Directives 49

Turbo Assembler Quick Reference Guide

Processor instructions

PART 4, Processor instructions

51

This part presents instructions for the x86 in alphabetical order. For each
instruction, the forms are given for each operand combination, including
object code produced, operands'required execution time, and a descrip-
tion. For each instruction, there is an operational description and a sum-.
mary of exceptions generated

Operand-size ond address-size attributes

When executing an instruction, the x86 can address memory using either
16- or 32-bit addresses. Consequently, each instruction that uses memory
addresses has associated with it an address-size attribute of either 16 or
32 bits. Sixteen-bit addresses imply both the use of a 16-bit displacement
in the instruction and the generation of a 16-bit address offset (segment
relative address) as the result of the effective address calculation. Thirty-
two-bit addresses imply the use of a 32-bit displacement and the genera-
tion of a 32-bit address offset. Similarly, an instruction that accesses
words (16 bits) or doublewords (32 bits) has an operand-size attribute of
either 16 or 32 bits. '

The attributes are determined by a combination of defaults, instruction
prefixes, and (for programs executing in protected mode) 31ze-spec1ﬁca-
tion bits in segment descriptors.

Default segment attribute

For programs executed in protected mode, the D-bit in executable-seg-
ment descriptors determines the default attribute for both address size
and operand size. These default attributes apply to the execution of all in-
structions in the segment, A value of zero in the D-bit sets the default ad-
dress size and operand size to 16 bits; a value of one, to 32 bits.

Programs that execute in real mode or virtual-8086 mode have 16-bit ad-
dresses and operands by default.

Operond-size and address-size instruction prefixes

The internal encoding of an instruction can include two byte-long pre-
fixes: the address-size prefix, 67H, and the operand-size prefix, 66H. (A
later section, "Instruction format,” shows the position of the prefixes in an
instruction’s encoding.) These prefixes override the default segment attri-
butes for the instruction that follows. Table 4.1 shows the effect of each
possible combination of defaults and overrides.

52 ~ Turbo Assembler Quick Reference Guide

Table 4.1 Effective size attributes

Segment default D= ... 0 0 0 0 1 1 1 1
Operand-size prefix 66h N N Y Y N N Y Y
Address-size prefix 67h N Y N Y N Y N Y
Effective operand size 16 16 32 32 32 32 16 16
Effective address size 16 3 16 32 3R 16 3 16

Y = Yes, this instruction prefix is present.
N = No, this instruction prefix is not present.

Address—size aftribute for stack

Instructions that use the stack implicitly (for example, POP EAX) also
have a stack address-size attribute of either 16 or 32 bits. Instructions
with a stack address-size attribute of 16 use the 16-bit SP stack pointer
register; instructions with a stack address-size attribute of 32 bits use the
32-bit ESP register to form the address of the top of the stack.

The stack address-size attribute is controlled by the B-bit of the data-seg-
ment descriptor in the SS register. A value of zero in the B-bit selects a
stack address-size attribute of 16; a value of one selects a stack address-
size attribute of 32.

Instruction formd’r

All instruction encodings are subsets of the general instruction format
shown in Figure 4.1. Instructions consist of optional instruction prefixes,
one or two primary opcode bytes, possibly an address specifier consist-
ing of the ModR/M byte and the SIB (scale index base) byte, a displace-
ment, if required, and an immediate data field, if required.

. Smaller encoding fields can be defined within the primary opcode or op-
codes. These fields define the direction of the operation, the size of the
displacements, the register encoding, or sign extension; encodmg fields
vary depending on the class of operation.

Most instructions that can refer to a operand in memory have an ad-
dressing form byte following the primary opcode byte(s). This byte,
called the ModR/M byte, specifies the address form to be used. Certain
encodings of the ModR/M byte indicate a second addressing byte, the
SIB byte, which follows the ModR /M byte and is required to fully spec-
ify the addressmg form.

PART 4, Processor instructions ' - 53

Figure 4.1
386 instruction format

Instruction.| Address- | Operand- | Segment
prefix size prefix | size prefix{ override

0ori Oori L Oori Oor1
N

Number of bytes

Opcode|Modr/M} SIB |Displacement| Immediate

for2 Qor1 Qori 0,1,20r4 0,1,20r4

Number of bytes

Addressing forms can include a displacement immediately following
either the ModR/M or SIB byte. If a dlsplacement is present, it can be 8
16, or 32 bits.

If the instruction specifies an immediate operand, the immediate operand
always follows any displacement bytes. The immediate operand, if speci-
fied, is always the last field of the instruction.

B The following are the allowable instruction prefix codes:

m F3h: REP prefix (used only with string instructions)

m F3h: REPE/REPZ prefix (used only with string instructions)

m F2h: REPNE/REPNZ prefix (used only with string instructions)
® FOh: LOCK prefix

The following are the segment override prefixes:

® 2Eh: CS segment override prefix

W 36h: SS segmenit override prefix

m 3Eh: DS segment override prefix

W 26h: ES segment override prefix

W 64h: FS segment override prefix (386 processors and greater)
® 65h: GS segment override prefix (386 processors and greater)
m 66h: Operand-size override

W 67h: Address-size operand

54 ‘ Turbo Assembler Quick Reference Guide

ModR/M and SIB bytes

The ModR/M and SIB bytes follow the opcode byte(s) in many of the x86
instructions. They contain the following information: the indexing type or
register number to be used in the instruction; the register to be used, or
more information to select the instruction; and the base, index, and scale
information.

The ModR/M byte contains three fields of information:

® The mod field, which occupies the two most significant bits of the byte,
combines with the r/m field to form 32 possible values: 8 registers and
24 indexing modes.

B The reg field, which occupies the next three bits following the mod
field, specifies either a register number or three more bits of opcode in-
formation. The meaning of the reg field is determined by the first (op-
code) byte of the instruction.

B The r/m field, which occupies the three least-significant bits of the byte,
can specify a register as the location of an operand, or can form part of
the addressing-mode encoding in combination with the mod field as
described earlier.

B The based indexed and scaled indexed forms of 32-bit addressing re-
quire the SIB byte. The presence of the SIB byte is indicated by certain
encodings of the ModR /M byte. The SIB byte then includes the follow-
ing fields:

B The ss field, which occupies the 2 most—51gn1ﬁcant bits of the byte,
specifies the scale factor.

B The index field, which occuples the next 3 bits following the ss ﬁeld
specifies the register number of the index register.

® The base field, which occupies the 3 least-significant bits of the byte,
specifies the register number of the base register.

Figure 4.2 shows the format of the ModR/M and SIB bytes.

Figure 4.2
ModR/M and SIB byte formats

Modr/M Byte
7 6 5 4 3 2 1 0
| Mod | Reg/Opcode | RM —|
SIB (Scale Index Base) Byte
7 6 5 4 3 2 1 0
L Ss | Index ‘ Base l

The values and corresponding addressing forms of the ModR/M and SIB
bytes are shown in Tables 4.2, 4.3, and 4.4.

PART 4, Processor instructions ‘ 55

Table 4.2 16-bit addressing forms with ModR/M byte

18(/r) AL CL DL BL A4 CH DH BH

r16(/r) AX CcX DX BX SP BP Sl DI

132(/r) EAX ECX EDX EBX ESP EBP ESI EDI

/digit (opcade) 0 1 2.3 4 5 6 7

REG = 000 001 010 011 100 101 110 111

Effective address ModR/M ModR/M values in hexadecimal

[BX '+ SI] 000 00 08 10 18 20 28 30 38
[BX + DI 001 01 09 1 19 21 29 31 39
[BP + SI] 010 02 0A 12 A 2 2A 32 3A
[BP + DIj 00 011 03 0B 13 1B 23 2B 33 3B
[sn 100 04 0C 14 1IC 24 20 34 3C
[o]i} 101 05 0D 15 iD 25 2D 35 3D
disb16 110 06 0E 16 iE 26 2E 36 3E
[BX] 111 07 OF 17 1E 27 2F 37 3F
[BX + SI] + disp8 000 40 48 50 58 60 68 70 -78
[BX + DI} + disp8 001 41 49 51 59 61 69 71 79
{BP + Sl] + disp8 010 42 4A 52 5A 62 6A 72 7A
[BP + DI] + disp8 01 o1 43 4B 53 5B 63 6B 73 7B
[S1] + disp8 100 44 4C 54 5C 64 6C 74 7C
[D1] + disp8 101 45 4 55 5D 65 6D 75 7D
[BP] + disp8 ’ 110 46 4E 56 5E 66 6E . 76 7E
[BX] + disp8 111 47 4F 57 5F 67 6F 77 7F
[BX + SI} + disp16 000 80 88 90 98 A0 A8 B0 B8
[BX + DI] + disp16 001 8 89 91 99 Al A9 Bt B9
[BP +SI] + disp16 010 82 8A 92 9A A2 AA B2 BA
[BP + DI] + disp16 10 011 83 8B 93 9B A3 AB B3 BB
[SI] + disp16 100 84 8 94 9o M AC B4 BC
[DI] + disp16 101 85 8D 95 90 A5 AD BS BD
[BP] + disp16 110 86 8E 96 9E A6 AE . B6 BE
[BX] + disp16 11 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL (386) 000 (¢1] c8 DO D8 EO E8 FO F8
ECX/CX/CL (386) 001 C1 Cc9 D1 D9 Ef E9 F1 F9
EDX/DX/DL (386) 010 c2 CA D2 DA E2 EA F2 FA
EBX/BX/BL (386) 11 011 Cc3 CB D3 DB E3 EB F3 FB
ESP/SP/AH (386) 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH (386) 101 C5 ¢cb D5 DD E5 ED F5 FD
ESI/SI/DH (386) 110 Cé CE D6 DE E6 EE F6 FE
EDI/DI/BH (386) 1M1 c7 CF D7 DF E7 EF F7 FF

disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added to the index. d|sp16
denotes a 16-bit displacement following the ModR/M byte, to be added to the index. Default segment register is SS
for the effective addresses containing a BP index, DS for other effective addresses.

Turbo Assemb/er QUick Reference ‘Guide

Table 4.3 32-bit addressing forms with ModR/M byte (386 only)

8() AL CL DL BL AH CH DH BH
r16() AX CX DX BX SP BP S DI
32() EAX ECX EDX EBX ESP EBP ESI EDI
Idigit{opcode) 0 1 2 3 4 5 & 7
REG = 000 001 010 Ot 100 101 110 111

Effective address ModR/M ModR/M values in hexadecimal

[EAX] 00 00 08 10 18 20 28 30 38
[ECX] o0 oL 09 11 19 21 29 31 39
[EDX] 010 02 O0A 12 1A 2 2o 8 A
(EBX] 00 o1 03 0B 13 1B 23 28 33 3B
N : 10 04 0OC 14 1C 24 26 34 3C
disp32 1 05 O 15 1 25 20 35 3D
[ESI] 10 06 OE 16 1E 26 2 3 3E
[EDI] M 07 OF 17 1F 27 2F 87 OF
disp8[EAX] 000 40 48 50 58 60 68 70 78
disp8[ECX] 01 4 49 51 5 61 6 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A
disp8[EPX); 0 o1 4 4 53 58 63 6 73 7B
disp8[- | [100 44 4C 54 50 64 6C 74 TC
disp8[EBP] 11 4 4 5 5D 6 60 75 7D
disp8[ESI] 10 46 4E 56 5E 66 6E 76 7E
disp8[EDI] 111 47 4 57 SF 67 6F 71 TF
disp32[EAX] 000 80 8 9 9 A0 A8 BO BS
disp32[ECX] oo 8 8 91 99 Al A9 Bl B9
disp32[EDX] 010 8 8 92 9A A2 AA B2 BA
disp32[EBX] 10 ot 8 8 9 9B A3 AB B3 BB
disp32[- -] [- 1 100 8. 8 94 9 A4 AC B4 BC
disp32EBP] 11 8 8 9 9D A5 AD B5 BD
disp32[ESH] 110 8 S8 9 OE A6 AE B6 BE
disp32[EDI] 111 8 8 97 9OF A7 AF B7 BF
EAX/AX/AL W0 CO ©8 DO D8 E0 E8 FO F8
ECX/CX/CL 0of C1 ©9 DI D9 Et E9 Fi F9
EDX/DX/DL . 00 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 1 o1 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 10 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 11 C5 CD D5 DD E5 ED F5 FD
ESI/SIDH - flo C6 CE D6 DE E6 EE F6 FE
EDIDIBH 11 C7 CF D7 DF E7 EF F7 FF

[} [- -] means a SIB follows the ModRM byte. disp8 denotes an 8-bit displacement following the SIB byte, to be
sign-extended and added to the index. disp32 denotes a 32-bit displacement following the ModR/M byte, to be
added to the index.

PART 4, Processor instructions

57

Table 4.4 32-bit addressing forms with SIB byte (386 only)

r32 EAX . ECX EDX EBX ESP [ESt. EDI
Base = 0 1 2 3 4 5 6 7
Base = 000 001 010 01t 100 101 110 111
Scaled index SS index ModR/M values in hexadecimal
[EAX] 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B 0c 0D 0E OF
[EDX] 010 1 1 12 13 14 15 16 17
[EBX] 00 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 26 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[ED]] 11 38 39 3A 38 3¢ - 3D 3E 3F
[EAX*2] 000 40 4 42 44 4“4 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[EDX*2] 010 50 51 52 55 54 55 56 57
[EBX"2] 01 011 58 59 5A 5B 5¢ 5D 5E 5F
none 100 60 . 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI2] 110 70 71 72 73 74 75 76 77
[EDI2] 111 78 79 7A 7B 7C 7D 7E 7F
[EAX*4] 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8 8 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 10 011 98 89 A 9B 9 9D 9E 9F
none : 100 Ao At A2 A3 Ad4 A5 A6 A7
[EBP*4] 101 A8 A 'AA AB AC AD AE AF
[ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7
[EDI*4) 1. B8 B9 BA BB BC BD BE BF
[EAX*8] 000 co cCi c2 € Cc4 ¢ C8 C7
[ECX*8] 001 c8 C9 CA CB CC CD CE CF
[EDX*8] " 010 Do D1 D2 D3 D4 D5 D6 D7
[EBX*8] 1 011 D8 D9 DA DB DC DD DE DF
none 100 EO E1 E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA. EB EC ED EE EF
[ESI*8] 110 Fo F1 F2 F3 F4 F5 Fé F7
[EDI'] ik FB F@ FA .FB FC FD FE FF

[means a disp32 with no base if MOD is 00; otherwise, [ESP].
This provides the following addressing modes: ’

disp32[index]
disp8[EBP]findex]
disp32[EBP](index]

58

(MOD=00)
(MOD=01)
(MOD=10)

Turbo Assembler Quick Reference Guide

How to read the insfruction set pages

Here’s a sample of the format of this chapter:

Instruction What the instruction name means
name What processor the instruction works on

[o] D I T s 4 A P [o4

Flag information goes here

Opcode Instruction Clocks
36 2" 8

This table contains clock information

*Because the 186 processor is effectively a 286 without protected mode instructions, the 186 timings are identical
to the timings listed for the 286. :

Flags

Each entry in this section includes information on which flags in the x86's
flag register are changed and how. Each flag has a one-letter tag for its
name.

O = Overflow flag Z = Zero flag
D = Direction flag A = Auxiliary flag
I = Interrupt flag ‘ P = Parity flag
T = Trap flag C = Carry flag
S =Sign flag

The following symbols indicate how the flag register has changed:
? = Undefined after the opérat-ion

* = Changed to reflect the results of the instruction

0 = Always cleared

1= Always set

PART 4, Processor insfrucﬁons 59

Opcode

The "Opcode" column gives the complete object code produced for each
form of the instruction. When possible, the codes are given as hexadeci-
mal bytes, in the same order in which they appear in memory. Defini-
tions of entries other than hexadecimal bytes are as follows:

/digit

(digit is between 0 and 7.) Indicates that the ModR /M byte of the instruc-
tion uses only the r/m (register or memory) operand. The reg field con-
tains the digit that provides an extension to the instruction’s opcode.

Ir
Indicates that the ModR/M byte of the instruction contains both a regis-
ter operand and an r/m operand.

cb, cw, cd, cp

A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for
the code segment register.

ib, iw, id

A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruc-
tion that follows the opcode, ModR/M bytes, or scale-indexing bytes. The
opcode determines if the operand is a signed value. All words and dou-
blewords are given with the low-order byte first.

+1b, +rw, +rd
A register code, from 0 through 7, added to the hexadecimal byte given
at the left of the plus sign to form a single opcode byte. The codes are

b ™w rd (386)
AL =0 AX =0 EAX=0
CL=1 cX=1 ECX =1
DL=2 DX=2 EDX =2
BL =3 BX=3 - EBX=3
AH=4 SP=4 ESP =4
AH=4 SP=4 ESP =4
CH=5 BP=5 EBP =5
DH=6 SI=6 ESI=6
BH=7 DI=7 EDI=7
Insfruction

The "Instruction” column gives the syntax of the instruction statement as
it would appear in a TASM 386 program. The following is a list of the
symbols used to represent operands in the instruction statements:

60 | Turbo Assembler Quick Reference Guide

rel8
A relative address in the range from 128 bytes before the end of the in-
struction to 127 bytes after the end of the instruction.

rell6, rel32

A relative address within the same code segment as the instruction as-
sembled. rel16 applies to instructions with an operand-size attribute of 16
bits; rel32 applies to instructions with an operand-size attribute of 32 bits
(386 only).

ptrl6:16, ptrl6:32

A far pointer, typically in a code segment different from that of the in-
struction. The notation 16:16 indicates that the value of the pointer has
two parts. The value to the right of the colon is a 16-bit selector or value
destined for the code segment register. The value to the left corresponds
to the offset within the destination segment. ptr16:16 is used when the in-
struction’s operand-size attribute is 16 bits; ptrl16:32 is used with the 32-
bit attribute (386 only).

18
One of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.

rl6
One of the word registers AX, CX, DX, BX, SP, BP, SI, or DL

132 (386) v
One of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ES], or
EDL

imm8

An immediate byte value. imm8 is a signed number between -128 and
+127 inclusive. For instructions in which imm8 is combined with a word
or doubleword operand, the immediate value is sign-extended to form a
word or doubleword. The upper byte of the word is filled with the top-
most bit of the immediate value.

imm16
An immediate word value used for instructions whose operand-size at-
tribute is 16 bits. This is a number between -32,768 and +32,767 inclusive.

imm32 (386)

An immediate doubleword value used for instructions whose operand-
size attribute is 32 bits. It allows the use of a number between

+2,147 483,647 and -2,147 483,648.

r/m8 :
A 1-byte operand that is either the contents of a byte register (AL, BL,
CL, DL, AH, BH, CH, DH), or a byte from memory.

r/m16
A word register or memory operand used for instructions whose oper-

PART 4, Processor instructions 61

and-size attribute is 16 bits. The word registers are AX, BX, CX, DX, SP,
BP, SI, DI The contents of memory are found at the address provided by
the effective address computation.

r/m32 ' '

A doubleword reglster or memory operand used for instructions whose

operand-size attribute is 32 bits. The doubleword registers are EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI. The contents of memory are found at the
address provided by the effective address computation.

m8
A memory byte addressed by DS: SI or ES:DI (used only by string mstruc-
t10ns on the 386).

ml6
A memory word addressed by DS:SI or ES:DI (used only by string in-
structions).

m32
A memory doubleword addressed by DS:SI or ES:DI (used only by strmg
instructions).

m16:16, m16:32 (386)

A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer’s segment
selector. The number to the right corresponds to its offset.

m16 & 32, m16 & 16 (186/286/386), m32 & 32 (386)

A memory operand consisting of data item pairs whose sizes are indi-
cated on the left and the right side of the ampersand. All memory ad-
dressing modes are allowed. m16 & 16 and m32 & 32 operands are used
by the BOUND instruction to provide an operand containing an upper
and lower bounds for array indices. m16 & 32 is used by LIDT and
LGDT to provide a word with which to load the limit field, and a double-
word with which to load the base field of the corresponding Global and
Interrupt Descriptor Table Registers.

moffs8, moffs16, moffs32 (memory offset; 386 only)

A simple memory variable of type BYTE, WORD, or DWORD (386)
used by some variants of the MOV instruction. The actual address is
given by a simple offset relative to the segment base. No ModR/M byte
is used in the instruction. The number shown with moffs indicates its
size, which is determined by the address-size attribute of the instruction.

Sreg

A segment register. The segment register bit assignments are ES =0,
C5=1,55=2,DS =3, FS = 4 (386), and GS =5 (386).

62 . Turbo Assembler Quick Reference Guide

Clocks

The "Clocks" column gives the number of clock cycles the instruction
takes to execute. The clock count calculations make the following assump-
tions:

B The instruction has been prefetched and decoded and is ready for exe-
cution.
m Bus cycles do not require wait states.

B There are no local bus HOLD requests delaying processor access to the
bus. -

m No exceptions are detected during instruction execution.
B Memory operands are aligned.

Clock counts for instructions that have an r/m (register OI memory) oper-
and are separated by a slash. The count to the left is used for a register
operand; the count to the right is used for a memory operand.

The following symbols are used in the clock count specifications:

W n, which represents a number of repetitions.

® m, which represents the number of components in the next instruction
executed, where the entire displacement (if any) counts as one compo-
nent, the entire immediate data (if any) counts as one component, and
every other byte of the instruction and prefix(es) each counts as one
component.

N pm=, a clock count that applies when the instruction executes in pro-
tected mode. pm= is not given when the clock counts are the same for
protected and real address modes.

When an exception occurs during the execution of an instruction and the
exception handler is in another task, the instruction exception time is in-
creased by the number of clocks to effect a task switch. This parameter
depends on several factors:

B The type of TSS used to represent the current task (386 TSS or 286 TSS).
B The type of TSS used to represent the new task.

B Whether the current task is in V86 mode.

B Whether the new task is in V86 mode.

Note: Users should read Intel’s documentation for more information
about protected mode and task switching.

PART 4, Processor instructions : / 63

AAA ASCIl adjust after addition

(o} D I T S Z A P C

? ? 7 * 2
Opcode Instruction Clocks Description
s 486 386 286 86
37 AAA 3 4 3 8 ASCII adjust after addition

Execute AAA only following an ADD instruction that leaves a byte result
in the AL register. The lower nibbles of the operands of the ADD instruc-
tion should be in the range 0 through 9 (BCD digits). In this case, AAA
adjusts AL te contain the correct decimal digit result. If the addition pro-
duced a decimal carry, the AH register is incremented, and the carry and
auxiliary carry flags are set to 1. If there was no decimal carry, the carry
and auxiliary flags are set to 0 and AH is unchanged. In either case, AL is
left with its top nibble set to 0. To convert AL to an ASCII result, follow
the AAA instruction with OR AL, 30H.

AAD ASCII adjust before division
0O p I T S8 Z A P C
? L I
Opcode Instruction Clocks Description
486 38 286 86
D50A AAD 14 19 14 60 ASCII adjust before division

AAD is used to prepare two unpacked BCD digits (the least-significant
digit in AL, the most-significant digit in AH) for a division operation that
will yield an unpacked result. This is accomplished by setting AL to AL

-+ (10 * AH), and then setting AH to 0. AX is then equal to the binary
equivalent of the original unpacked two-digit number.

AAM ASCII adjust AX affer multiply
(o} D I T s Z A P
? * * ? * ?
Opcode Instruction ' Clocks -) Description
, 48 386 286 8 .
-D40A AAM 15 17 16 83 ASCII adjust AX after multiply

Execute AAM only after executing a MUL instruction between two un-
packed BCD digits that-leaves the result in the AX register. Because the
result is less than 100, it is contained entirely in the AL register. AAM un-
. packs the AL result by dividing AL by 10, leaving the quotient (most-
significant digit) in AH and the remainder (least-significant digit) in AL.

64 ; Turbo Assembler Quick Reference Guide

AAS ASCIl adjust AL after subtraction
o p I T S§ %2 A P :.C
? 2?2 * 72
Opcode Instruction Clocks Description
‘ 486 386 286 86
3F AAS 3 4 3 8 ASCIl adjust AL after subtraction

Execute AAS only after a SUB instruction that leaves the byte result in
the AL register. The lower nibbles of the operands of the SUB instruction
must have been in the range 0 through 9 (BCD digits). In this case, AAS
adjusts AL so it contains the correct decimal digit result. If the subtrac-
tion produced a decimal carry, the AH register is decremented, and the
carry and auxiliary carry flags are set to 1. If no decimal carry occurred,
the carry and auxiliary carry flags are set to 0, and AH is unchanged. In
either case, AL is left with its top nibble set to 0. To convert AL to an AS-
CII result, follow the AAS with OR AL, 30H.

ADC Add with carry
o b I T S8 Z A P C
* * * * * *
Opcode Instruction Clocks Description
486 386 286 86
10 /r ADC r/m8,r8 113 27 27 316+EA Add with carry byte register to r/m byte
nr ADC r/m16,r16 18 27 27 316+EA Add with camry word register to r/m word
11 ADC r/m32,r32 13 27 Add with CF dword register to r/m word
12r ADC r8,r/m8 2 .26 27 3/9+EA Add with carry r/m byte to byte register
131 ADC r16,r/m16 12 2/6 27 3/9+EA Add with cary r/m word to word register
13/ ADC r32,rm32 12 2/6 " Add with CF r/m dword to dword register

2 3 4 Add with carry immediate byte to AL
15w ADC AX,jmmi6 1 2 3 4 Add with carry immediate word to AX
15id ADC EAX,imm32 1 2 Add with carry immediate dword to EAX
80/2ib ADCr/m8jimm8 1/3 277 377 4/17+EA Add with carry immediate byte to r/m byte
81/2iw ADC r/mi6,mmi6 13 27 37 417+EA Add with carry immediate word to r/m
word
21 Add with CF immediate dword to r/m
dword
83/2ib ADCr/m16,jmm8 1/3 277 37 4/17+EA Add with CF sign-extended immediate
27

14ib ADC AL,mm8 1

81/2id ADC r/m32,imm32 1/3

byte to r/m word
Add with CF sign-extended immediate
byte into r/m dword

83/2ib ADC r/m32,jmm8 1/3

'ADC performs an integer addition of the two operands DEST and SRC
and the carry flag, CF. The result of the addition is assigned to the first
operand (DEST), and the flags are set accordingly. ADC is usually exe-
cuted as part of a multi-byte or multi-word addition operation. When an
immediate byte value is added to a word or doubleword operand, the im-

PART 4, Processor instructions o ' 65

mediate value is first sign-extended to the size of the word or double-
word operand

ADD Add
o p I T S Z A P C
* * * * * *
Opcode Instruction Clocks Description
486 386 286 86
04 ib ADD AL,imm8 1 3 4 Add immediate byte to AL
05 iw ADD AX,imm16 1 3 4 Add immediate word to AX

05 id ADD EAX,imm32 1

80/0.b ADD r/m8,imm8 1/3
81 /0iw ADD r/m16,mm16 1/3
81/0id ADDrm32,mm32 1/3
83/0ib ADD r/mi6,mm8 1/3

Add immediate dword to EAX
37 417+EA Add immediate byte to r/m byte
3/7 417+EA Add immediate word to r/m word
Add immediate dword to r/m dword
3/7 417+EA Add sign-extended immediate byte

IR Rl

to r/m word
- 83/0ib ADD r/m32,mm8 1/3 Add sign-extended immediate byte

to r/m dword

00 /r ADD r/m8,r8 113 2,7 2,7 316+EA Add byte register to rim byte

01 /r ADD r/m16,r16 13 27 27 316+EA Add word register to r/m word

ot/ ADD r/m32,132 13 217 Add dword register to r/m dword

02/ ADD r8,r/m8 12 26 27 3/9+EA Add r/m byte to byte register

03 ADD r16,r/m16 12 26 27 3/9+EA Add r/m word to word register

03 /r ADD r32,r/m32 12 206 Add r/m dword to dword register

ADD performs an integer addition of the two operands (DEST and SRC).
The result of the addition is assigned to the first operand (DEST), and the
flags are set accordingly.

When an immediate byte is added to a word or doubleword operand, the

immediate value is sign-extended to the size of the word or doubleword
operand.

AND Logical AND

[e] D I T S Z A P o]
0 ;

* Opcode Instruction Clocks Description

486 386 286 86 .
20 /r AND r/m8,8 183 21 27 3/16+EA AND byte register into r/m byte
21 AND 1/m16,r16 183 27 27 316+EA AND word register into r/m word
21 fr AND 1/m32,r32 18 27 ' AND dword register to /m dword
2k AND r8;r/m8 12 26 27 3/9+EA AND r/m byte to byte register
23/~ AND r16,/mi6 12 26 27 3/9+EA AND r/m word o word register
23 AND r32,r/m32 12 26 AND r/m dword to dword register
24 b AND AL,imm8 1 2 3 4 . AND immediate byte to AL
25 iw AND AXimm16 1 2 3 4 AND immediate word to AX

25id AND EAX;mm32 1 2 AND immediate dword to EAX

66 Turbo Assembler Quick Reference Guide

Opcode Instruction Clocks ‘ Description

486 386 285 86
80 /4ib AND r/m8,imm8 183 27 37 417+EA AND immediate byte to r/m byte
81 /4w ANDrmi16,mmi6 18 207 3/7 4/17+EA AND immediate word to r/m word
81/4id ANDr/m32,mm32 13 277 AND immediate dword to r/m word
83/4ib ANDr/m16,mm8 183 27 37 417+EA AND sign-extended immediate byte
with r/m word
83/4ib AND r/m32,mm8 13 27 AND sign-extended immediate byte

with r/m dword

Each bit of the result of the AND instruction is a 1 if both corresponding
bits of the operands are 1; otherwise, it becomes a 0.

The optimized form of AND is MASKFLAG (see Part 3).

ARPL Adjust RPL field of selector
80286 and greater protected mode only
(o] D I T S Z A 4 C

Opcode Instruction Clocks Description

486 386 286

63/ ARPLOMI6r16 99 pm=2021 pm=10/11 Adjust RPL of /6 to not less than RPL of r16

The ARPL instruction has two operands. The first operand is a 16-bit
memory variable or word register that contains the value of a selector.
The second operand is a word register. If the RPL field ("requested privi-
lege level” —-bottom two bits) of the first operand is less than the RPL
field of the second operand, the zero flag is set to 1 and the RPL field of
the first operand is increased to match the second operand. Otherwise,
the zero flag is set to 0 and no change is made to the first operand.

ARPL appears in operating system software, not in application programs.
1t is used to guarantee that a selector parameter to a subroutine does not
request more privilege than the caller is allowed. The second operand of
ARPL is normally a register that contains the CS selector value of the
caller.

BOUND Check array index against bounds
80186 processors and greater

o) D I T S Z A P Cc

Opcode Instruction Clocks Description

486 386 286
62 I BOUND 16,7 7 10 13 Check if r16 is within m16&16 bounds (passes test)
62/ BOUNDR2,7 7 10 Check if r32 is within m32&32 bounds (passes test)

PART 4, Processor instructions 67

BOUND ensures that a signed array index is within the limits specified
by a block of memory consisting of an upper and a lower bound. Each
bound uses one word for an operand-size attribute of 16 bits and a dou-
bleword for an operand-size attribute of 32 bits. The first operand (a regis-
ter) must be greater than or equal to the first bound in memory (lower
.bound), and less than or equal to the second bound in memory (upper
bound). If the register is not within bounds, an Interrupt 5 occurs; the re-
turn EIP points to the BOUND instruction.

The bounds limit data structure is usually placed just before the array it-
self, making the limits addressable via a constant offset from the begin-
ning of the array.’ ,

BSF Bit scan forward
386 processors and greater

o D I T S Z A P C
*

Opcode Instruction Clocks Description

48 36
OFBC BSFri6ymi6 6-42/7-43 10+3n Bit scan forward on r/m word
OFBC BSFr32rm32 ~ 10+3n Bit scan forward on r/m dword

BSF scans the bits in the second word or doubleword operand starting
with bit 0. The ZF flag is cleared if the bits are all 0; otherwise, the ZF
flag is set and the destination reglster is loaded with the bit index of the
first set bit. :

BSR Bit scan reverse
386 processors and greater

o b I T S8 Z A P C

Opcode Instruction Clocks - Description
486 386
- OFBD BSRr6rm16 6-103/7-104 10+3n Bit scan'reverse on r/m word
OFBD BSR2rm32 6-103/7-104 10+3n Bit scan reverse on r/m dword

BSR scans the bits in the second word or doubleword operand from the
most significant bit to the least significant bit. The ZF flag is cleared if the
bits are all 0; otherwise, ZF is set and the destination register is loaded.
with the bit index of the first set bit found when scanning in the reverse
direction.

68 ' Turbo Assembler Quick Reference Guide

BSWAP Byte Swap
i486 processors and greater

o D I T s 4 A P C

Opcode Instruction ~ Clock Description

486
OF C8r BSWAPr32 1 Swap bytes to convert little/big endian data in a 32-bit. register to big/little
endian form.

BSWARP reverses the byte order of a 32-bit register, converting a value in
little/big endian form to big/little endian form. When BSWAP is used
with a 16-bit operand size, the result left in the destination register is un-
defined. '

BT Bit test
386 processors and greater

0o D I T S Z A P C
*

Opcode Instruction Clocks Description

486 386
OF A3 BT r/m16,r16 38 312 Save bit in carry flag
OF A3 BT r/m32,r32 38 312 Save bit in carry flag
OFBA/4ib BTrmi16ijmm8 33 3/6 Save bit in carry flag
OFBA/4ib BTrm32jmm8 33 3/6 Save bit in carry flag

BT saves the value of the bit indicated by the base (first operand) and the
bit offset (second operand) into the carry flag.

BTC Bit test and complement,
386 processors and greater

(o] D I T S Z A P]
*

Opcode Instruction Clocks Description

486 38
OF BB BTC r/m16,r16 6/13 6113 Save bit in carry flag and complement
OF BB BTC r/m32,r32 6/13 6/13 Save bit in carry flag and complement
OFBA/7ib BTCr/mi6,mm8 6/8 6/8 Save bit in carry flag and complement
OFBA/7ib BTCr/m32,mm8 '6/8 6/8 Save bit in carry flag and complement

BTC saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then complements
the bit.

PART 4, Processor instructions , 69

BTR Bit test and reset
386 processors qnd greater

0 D I T S 4 A P C
*

Opcode Instruction Clocks Description

485 386
OF B3 BTR rim16,ri6 6/13 613 Save bit in carry flag and reset
OF B3 BTR r/m32,r32 6/13 6113 Save bit in carry flag and reset

OFBA/6ib BTRr/mi6,mm8 6/8 6/8 Save bit in carry flag and reset
OFBA/6ib BTRrm32,mm8 6/8 6/8 Save bit in carry flag and reset

BTR saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then stores 0 in the
bit.

BTS Bit test and set
386 processors and greater
0o D I T S Z A P C
*
Opcode Instruction Clocks Description
486 36
OF AB BTS rim16,r16 6/13 6/13 Save bit in carry flag and set
OF AB BTS r/m32,r32 613 613 Save bit in carry flag and set

OFBA/5ib BTSrmi16ijmm8 6/8 6/8 Save bit in carry flag and set
OFBA/5ib BTSrm32imm8 6/8 6/8 Save bit in carry flag and set

BTS saves the value of the bit indicated by the base (first operand) and
the bit offset (second operand) into the carry flag and then stores 1 in the
bit. ‘ :

CALL Call Procedure

o.D I T S8 Z A P C

All flags are affected if a task switch occurs} no flags are affected if a task
switch does not occur.

Opcode Instruction C Clocks Description
) 386 . 286" 86 '
E8 cw CALLrel16 3 7+m 7 19 Call near, displacement
relative to next instruction
FF/2 CALLr/m16 5/5 7+m/10+m 711 16/21+EA Call near, register

indirect/memory indirect

70 Turbo Assembler Quick Reference Guide

Opcode Instruction Clocks Description
8 36 8 %
9Acd CALLptr16:16 18pm=20 17+m,pm=34=m 13,pm=26 28 Call intersegment, to full
pointer given
9Acd CALLptri6:16 pm=35 pm=52+m 41 Call gate, same privilege
9Acd CALLpir16:16 pm=69 pm=86+m 82 Call gate, more privilege,
no parameters
9Acd CALLptr16:16 pm=77+4x pm=94+4x+m 86+4x Call gate, more privilege,
X parameters
9Acd CALLptr16:16 pm=37+s fts 1771182 Call to task (via task
. state segment/task gate
for 286
FF/3 CALLm16:16 17,pm=20 22+m,pm38+m 16/29 37+EA Call intersegment,
address at r/m dword
FF/3 CALLm16:16 pm=35 pm=56+m 44 Call gate, same privilege
FF/3 CALLm16:16 pm=69 pm=90+m 83 Call gate, more privilege,
no parameters
FF/3 CALLm16:16 pm=77+4x pm=98+dx+m 90+4x+m Call gate, more privilege,
) X parameters
FF/3 CALLm16:16 pm=37+ts 5+1s 180/185 Call to task (via task
) state segment/task gate
for 286)
E8cd CALLrel32 3 7+m Call near, displacement
relative to next instruction
FF/2 CALLr/m32 5/5 7+m/10+m Call near, indirect
9Acp CALLptr16:32 18pm=20 17+m,pm=34+m Call intersegment, to full
pointer given
9Acp CALLpir16:32 pm=35 pm=52+m Call gate, same privilege
9Acp CALLpir16:32 pm=69 pm=86+m Call gate, more privilege,
no parameters
9Acp. CALLp32:32 pm=77+4x pm=94+4x+m Call gate, more privilege,
X parameters
SAcp CALLpir16:32 pm=37+s s Call to task
FF/3 CALLm16:32 17,pm=20 22+m,pm=38+m Call intersegment,
address at r/m dword
FF/3 CALLm16:32 pm=35 pm=56+m Call gate, same privilege
FF/3 CALLm16:32 pm=69- pm=90+m Call gate, more privilege,
no parameters
FF/3 CALLm16:32 pm=77+4x pm=98+4x+m Call gate, more privilege,
‘ X parameters
FF/3 CALLm16:32 pm=37+s 5+ts Call to task

*Add one clock for each byte in the next instruction executed (80286 only).

The CALL instruction causes the procedure named in the operand to be
executed. When the procedure is complete (a return instruction is exe-

cuted within the procedure), execution continues at the instruction that
follows the CALL instruction.

The action of the different forms of the instruction are described next.

Near calls are those with destinations of type r/m16, r/m32, rell6, rel32;
changing or saving the segment register value is not necessary. The
CALL rel16 and CALL rel32 forms add a signed offset to the address of
the instruction following CALL to determine the destination. The rell6
form is used when the instruction’s operand-size attribute is 16 bits; rel32
is used when the operand-size attribute is 32 bits. The result is stored in

PART 4, Processor instructions

71

the 32-bit EIP register. With rel 16, the upper 16 bits of EIP are cleared, re-
sulting in an offset whose value does not exceed 16 bits. CALL r/m16
and CALL r/m32 spec1fy a register or memory location from which the
absolute segment offset is fetched. The offset tetched from r/m is 32 bits
for an operand-size attribute of 32 (r/m32), or 16 bits for an operand-s1ze
of 16 (r/m16). The offset of the instruction following CALL is pushed
onto the stack. It will be popped by a near RET instruction within the pro-
-cedure. The CS register is not changed by this form of CALL.

The far calls, CALL ptr16:16 and CALL ptrl6:32, use a 4-byte or 6-byte op-
erand as a long pointer to the procedure called. The CALL m16:16 and
m16:32 forms fetch the long pointer from the memory location specified
(indirection). In real address mode or virtual 8086 mode, the long pointer
provides 16 bits for the CS register and 16 or 32 bits for the EIP register

- (depending on the operand-size attribute). These forms of the instruction
‘push both CS and IP or EIP as a return address.

In protected mode, both long pointer forms consult the AR byte in the de-
scriptor indexed by the selector part of the long pointer. Depending on
the value of the AR byte, the call will perform one of the following types
of control transfers:

B a far call to the same protection level

B an inter-protection level far call
W a task switch
Note: Turbo Assembler extends the syntax of the CALL instruction to fa-

cilitate parameter passing to high-level language routines. See Chapter 7
of the Turbo Assembler User’s Guide for more details.

CBW Convert byte to word

© »p I T § /2 A P C
Opcode Instruction Clocks Description

486 386 286 86

98 CBW 3 3.2 2 AX sign-extend of AL

CBW converts the signed byte in AL to a signed word in AX by extend-
- ing the most significant bit of AL (the sign bit) into all of the bits of AH.

72 ’ “Turbo Assembler Quick Reference Guide

cba Convert doubleword to quadword
386 processors and greater

o D I T) Z A P c

Opcode Instruction Clocks Description
486 386
99 cbQ 3 2 EDX:EAX [(sign-extend of EAX)

CDQ converts the signed doubleword in EAX to a signed 64-bit integer
in the register pair EDX:EAX by extending the most significant bit of
EAX (the sign bit) into all the bits of EDX.

CLC Clear carry flag
o p I T S Z A P C
0
Opcode Instruction Clocks
486 386 286 86
F8 CLC 2 2 2 2

CLC sets the carryflag to zero. It does not affect other flags or registers.

CLD Clear direction flag

(o] D I T S Z A P Cc
0

Opcode Instruction Clocks Description
486 386 266 86
C CLD 2 2 2 2 Clear direction flag

CLD clears the direction flag. No other flags or registers are affected. Af-
ter CLD is executed, string operations will increment the index reg1sters

(SI or DI) that they use.

CLI Clear inferrupt flag
(o] D I T S Z A 4 Cc
0
Opcode Instruction Clocks
486 386 286 86
FA Cl 5 3 3 2

PART 4, Processor instructions

CLI clears the interrupt flag if the current privilege level is at least as
privileged as IOPL. No other flags are affected. External interrupts are
not recognized at the end of the CLI instruction or from that pomt on un-
til the mterrupt flag is set.

" CLTS Clear task switched flag
' 80286 and greater protected mode only
(o] D I T S b4 A P C
TS = 0 (TS is in CRO, not the_ flag register)
Opcode Instruction Clocks |

486 386 286

OF06 CLTS 7 5 2

CLTS clears the task-switched (TS) flag in register CRO. This flag is set by
the 386 every time a task switch occurs. The TS flag is used to manage
processor extensions as follows:

m Every execution of an ESC instruction is trapped if the TS flag if set.

B Execution of a WAIT instruction is trapped if the MP flag and the TS
flag are both set.

Thus, if a task switch was made after an ESC instruction was begun, the
processor extension’s context may need to be saved before a new ESC in-
struction can be issued. The fault handler saves the context and resets the
TS flag. .

CLTS appears in operating system software, not in application programs.
It is a privileged instruction that can only be executed at privilege level 0.

CMC Complement carry flag
o b I T § Z A P C
*
Opcode Instruction Clocks Description
486 386 286 86
F5 CMC 2 2 2 2 Complement carry flag

CMC reverses the setting of the carry flag. No other flags are affected.

74 ‘ Turbo Assembler Quick Reference Guide

CMP Compare two operands

(] D I T) 4 A P (o]

* * * * * *
Opcode Instruction Clocks Description
486 38 286 86
3Cib CMPALimm8 1 2 3 4 Compare immediate byte to AL
3Diw CMP AXimm16 1 2 3 4 Compare immediate word from AX

3Did CMPEAXjimm32 1 2 Compare immediate dword to EAX

80/7ib CMP r/m8,imm8 12 25 36 410+EA Compare immediate byte to r/m byte
81/7w CMPrmi6immi6 12 2/5 36 410+EA Compare immediate word to r/m word

81/7id CMPrm32jmm32 12 2/5 Compare immediate dword to r/m dword

83/7b CMPrmi6imm8 12 255 3/6 4/10+EA Compare sign extended immediate byte
to r/m word

83/7ib CMPrm32,mm8 12 2/5 Compare sign extended immediate byte
to r/m dword

38/ CMP r/m8,r8 12 26 27 39+EA Compare byte register to r/m byte

39/ CMP r/m16,r16 12 26 271 3/9+EA Compare word register to r/m word

39/ CMPr/m32r32 12 25 Compare dword register to r/m dword

3A CMP r8,/m8 12 2/6 2/6 3/9+EA Compare r/m byte to byte register

3B/ CMPri6,/m8 12 26 266 3/9+EA Compare r/m word to word register

3B/ CMPr32rm32 12 26 Compare t/m dword to dword register

CMP subtracts the second operand from the first but, unlike the SUB in-
struction, does not store the result; only the flags are changed. CMP is
typically used in conjunction with conditional jumps and the SETcc in-
struction. If an operand greater than one byte is compared to an immedi-
ate byte, the byte value is first sign-extended.

CMPS Compare string operands

CMPSB CMPSD 386 processors and greater
CMPSW

CMPSD (o] D I T S Z A P C
Opcode Instruction Clocks Description

486 386 286 86

A6 CMPSm8m8 8 10 8 22 Compare bytes ES:[(E)DI] (second operand)
with [(E)SI} (first operand)

A7 CMPS migmi6 8 10 8 22 Compare words ES:[(E)DI] (second operand)
with [(E)SI] (first operand)

A7 CMPSm32,m32 8 10 Compare dwords ES:[(E)DI] (second operand)
. with [(E)SI] (first operand)

‘A6 CMPSB 8 10 8 22 Compare bytes ES:[(E)DI] with DS:[SI]

A7 CMPSW 8 10 8 22 Compare words ES:{(E)DI] with DS:{S]

A7 CMPSD 8 10 Compare dwords ES:[(E)DI] with DS:[SI]

CMPS compares the byte, word, or doubleword pointed to by the source-
index register with the byte, word, or doubleword pointed to by the desti-
nation-index register.

PART 4, Processor instructions 75 \

If the address-size attribute of this instruction is 16 bits, SI and DI will be
used for source- and destination-index registers; otherwise ESI and EDI
will be used. Load the correct index values into SI and DI (or ESI and
EDI) before executing CMPS.

The comparison is done by subtracting the operand indexed by the desti-
nation-index register from the operand indexed by the source-index regls-
ter.

Note that the direction of subtraction for CMPS is [SI] - [DI] or [ESI] -
[EDI]. The left operand (SI or ESI) is the source and the right operand (DI

or EDI) is the destination. This is the reverse of the usual Intel convention
- in which the left operand is the destination and the right operand is the

. source.

The result of the subtraction is not stored; only the flags reflect the
change. The types of the operands determine whether bytes, words, or
doublewords are compared. For the first operand (SI or ESI), the DS regis-
ter is used, unless a segment override byte is present. The second oper-
and (DI or EDI) must be addressable from the ES reglster, no segment
override is possible.

After the comparison is made, both the source-index register and destina-
tion-index register are automatically advanced. If the direction flag is 0
(CLD was executed), the registers increment; if the direction flag is 1
(STD was executed), the registers decrement. The registers increment or
decrement by 1 if a byte is compared, by 2 if a word is compared, or by 4
if a doubleword is compared.

CMPSB, CMPSW and CMPSD are synonyms for the byte, word, and dou-
bleword CMPS instructions, respectively.

CMPS can be preceded by the REPE or REPNE prefix for block compari-
son of CX or ECX bytes, words, or doublewords. Refer to the description
of the REP instruction for more 1nformat10n on this operation.

- CMPXCHG Compare and Exchange
i486 processors and greater

0O D I T § zZ A P ¢
* x kK %

Opcode Instruction Clock Description

OF BO/r . CMPXCHG r/m8,r8 6/7 if comparison is Compare AL with r/m byte. If equal, set ZF and

: - successful; 6/10 if load byte reg into r/m byte. Else, clear ZF and
comparison fails load r/m byte into AL.

~ OFB1r CMPXCHG r/m16,16 6/7 if comparisonis = Compare AX with r/m word. If equal, set ZF

successful; 6/10 if and load word reg into r/m word. Else, clear ZF

comparison fails and load r/m word into AX.

76 Turbo Assémbler Quiick Reference Guide

Opcode Instruction Clock Description
486

OF B1r CMPXCHG r/m32,32 6/7 if comparisonis Compare EAX with /m dword. If equal, set ZF
successful; /10 f and load dword reg into r/m dword. Else, clear
comparison fails ZF and load r/m dword into EAX. :

Note: The A-stepping of the i486 used the opcodes OF A6 and OF A7.

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX
register) with DEST. If they are equal, SRC is loaded into DEST. Other-
wise, DEST is loaded into the accumulator.

'DEST is the destination operand; SRC is the source operand.

Protected mode exceptions: #GP(0) if the result is in a nonwritable seg-
ment; #GP(0) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #55(0) for an illegal address in the SS seg-
ment; #PF (fault code) for a page fault; #AC for an unaligned memory ref-
erence if the current privilege level is 3.

Real mode exception: interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: interrupt 13, as in real mode; #PF and
#AC, as in protected mode.

Note: This instruction can be used with a LOCK prefix. In order to sim-
plify interface to the processor’s bus, the destination operand receives a
write cycle without regard to the result of the comparison. DEST is writ-
ten back if the comparison fails, and SRC is written into the destination
otherwise. (The processor never produces a locked read without produc-
ing a locked write.)

CHPXCHG8B Compare and Exchange 8 bytes
Pentium processors and greatfer

(¢} D I T S zZ A P C
*

Opcode Instruction Clocks Description
. Pentium
OF C7 CMPXCHG64 r/m64 10 compare EDX:EAX with r/m qword. If equal,

set ZF and load ECX:EBX into r/m qword.
Else, clear ZF and load r/m into EDX:EAX.

The CMPXCHGSB instruction compares the 64-bit value in EDX:EAX
with DEST. EDX contains the high-order 32 bits and EAX contains the
low-order 32 bits of the 64-bit value. If they are equal, the 64-bit value in
ECX:EBX is stored into DEST. ECX contains the high-order 32 bits and
EBX contains the low-order 32 bits. Otherwise, DEST is loaded into
EDX:EAX.

PART 4, Processor instructions 77

The ZF ﬂag‘is set if the destination operand and EDX:EAX are equal; oth-
erwise it is cleared. The CF, PF,V AF; SF, and OF ﬂags are unaffected.

Protected mode excpetions: #GP(0) if the result is in a nonwritable seg-
ment; #GP(0) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #55(0) for an illegal address in the SS seg-
ment; #PF(fault code) for a page fault; #AC for unaligned memory refer-
ence if the current privlege level is 3.

 The destination operand must be a memory operand, not a register. If
the CMPXCHGSB instruction is executed with a modr/m byte repre-
senting a register as the destination operand, #UD occurs.

-Real mode exception: interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: same exceptions as in real mode, plus

. #PF(fault code) for-a page fault; #AC for unalligned memory reference if
the current privilage level is 3. #UD if the modr/m byte represents a reg-
ister as the destination.

Notes: this instruction can be used with a LOCK prefix. In order to sim-
plify interface to the processor’s bus, the destination operand receives a
write cycle without regard to the result of the comparison. DEST is writ-
ten back if the comparison fails, and SRC is written into the destination
otherwise. (The processor never produces a locked read without also pro-
ducing a locked write.)

The "r/m64" syntax had previously been used only in the context of float-
ing point operations. It indicates a 64-bit value, in memory at an ad-
dress determined by the modr/m byte.

CPUID CPU identification
Pentium processors and greater

o D I T S Z A P C

Opcode Instruction Clocks ' Description
Pentium

OF A2 CPUID 14 - EAX <- CPOU identification info.

The CPUID instruction provides information to.software about the ven-
dor, family, model, and stepping of microprocessor on which it is execut-
ing. An input value loaded into the EAX register for this instruction indi-
cates what information should be returned by the CPUID instruction.

Following execution of the CPUID instruction with a zero in EAX, the

EAX register contains the highest input value understood by the CPUID
instruction. For the Pentium processor, the value in EAX will be one.

78 . ’ Turbo Assembler Quick Reference Guide

Also returned is a vender identification string contained in the EBX, EDX,
and ECX registers. EBX contains the first four characters. For Intel proc-
essors, the vender identification string is "Genuinelntel" as follors:

EBX -- 756e6547h (* "Genu", with ‘G’ in the low nibble of BL *)
EDX -- 49656e69h (* "inel"”, with 'i’ in the low nibble of DL *)
ECX -- 6c65746¢eh (* "ntel", with 'n’ in the low nibble of CL *)

Following execution of the CPUID instruction with an input value of one
loaded into the EAX register, bits 0-3 in EAX contain the stepping id of
the microprocessor, bits 4-7 of EAX contain the model (the first model
will be indicated by a 0001b in these bits) and bits 8-11 of EAX contain
the family (5 for the Pentium processor family). Bits 12-31 of EAX are re-
served, as well as EBX, and ECX. The Pentium processor sets the feature
register, EDX, to 1bfh, indicating which features the Pentium processor
supports. A feature flag set to one indicates that the corresponding fea-
ture is supported. The feature set is defined as follows:

EDX (bit 0) FPU on chip

EDX (bits 1-6) Non-essential, proprietary information (contact Intel
for more information)

EDX (bit 7) " Machine Check Exception

EDX (bit 8) CMPXCHGSB Instruction

EDX (bits 9-31) = Reserved

Software should determine the vender identification in order to properly
interpret the feature register flag bits.

This function does not affect the CPU flags.

CWD. Convert word to doubleword
386 processors and greater
o] D I T S Z A P C
Opcode Instruction ‘ Clocks Description

86 3% 28 86

99 CWD '3 2 2 5 DXAX < sign-extend of AX

CWD converts the signed word in AX to a signed doubleword in DX:AX
by extending the most significant bit of AX into all the bits of DX. Note
that CWD is different from CWDE. CWDE uses EAX as a destination, in-
stead of DX:AX.

PART 4, Processor instructions 79

CWDE Convert word to doubleword
386 processors and greater

(o] D I T) Z A P o]

Opcode Instruction Clocks Description

486 386 286 86
98 CWDE 3 3 ’ EAX « sign-extend of AX

CWDE converts the signed word in AX to a doubleword in EAX by ex-
tend-ing the most significant bit of AX into the two most significant bytes
of EAX. Note that CWDE is different from CWD. CWD uses DX:AX
rather than EAX as a destination.

DAA Decimal adjust AL after addition

©o D I T s z A P C

? * * * * *
Opcode Instruction Clocks Description

486 386 286 8 ~
27 DAA 2 4 3 4 Decimal adjust AL after addition

Execute DAA only after executing an ADD instruction that leaves a two-
BCD-digit byte result in the AL register. The ADD operands should con-
sist of two packed BCD digits. The DAA instruction adjusts-AL to con-
tain the correct two-digit packed decimal result.

DAS Decimal adjust AL after subtraction

o b I T S Z A P C

? * * * * *
Opcode Instruction Clocks Description

46 386 286 8
2F DAS . 2 4 3 4 Decimal adjust AL after subtraction

Execute DAS only after a subtraction instruction that leaves a two-BCD-
digit byte result in the AL register. The operands should consist of two
packed BCD digits. DAS adjusts AL to contain the correct packed two-
digit decimal result.

80 SR Turbo Assembler Quick Reference Guide

DEC Decrement by 1

o D I T S Z A P Cc
* * * * *

Opcode Instruction Clocks Description

48 386 286 86
FE A DECrm8 13 2/6 2/7 3/15+EA Decrement r/m byte by 1.
FF A DECr/m16 13 2/6 2/7 3/15+EA Decrement r/m word by 1

DECrm32 13 2/6 Decrement r/m dword by 1
48+rw DEC r16 1 2 2 3 Decrement word register by 1
48+rw DEC r32 1 2 Decrement dword register by 1

DEC subtracts 1 from the operand. DEC does not change the carry flag.
To affect the carry flag, use the SUB instruction w1th an immediate oper-
and of 1.

DIV Unsigned divide

O D I T S§ Z A

? ? ? k3 ? i
Opcode Instruction Clocks Description

486 386 286 86
F6/6 DIVrm8 16/16 14417 14117 80/86+EA Unsigned divid<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>