4

Tlll' |l0 Assemhler

User’s Guide

Borland
Turbo Assembler®

Version 4.0

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1988, 1993 by Borland International. Al rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249
PRINTED IN THE UNITED STATES OF AMERICA

1EQR1193
9394959697-98765
Hi ;

Introduction 1 2 4 24
Hardware and software requirements ... 2 [0 e 25
Aboutthemanuals 2 o PP 25
Notational conventions 4 JOP e 25
Contacting Borland 5 JOS o 25
Chapter 1 Getting started with Turbo /2~ o8
Assembler A TP 26
Installing Turbo Assembler 7 /S e 27
Turbo Assembler’s executable files 8 & 2 27
Utility and example programs 8 JU e 28
Writing your first Turbo Assembler IV 28
Program EETRRRNEE 8 W 28
Assembling your first program 10 X 30
Linking your first program 11 JZ 30
Recommended reading 12 Jzd 30
Chapter 2 Using directives and JZh oo 31
switches 13 /Zl'l RRREREREEERERERERE 31
Starting Turbo Assembler 13 Indirect command files - 31
Command:-line options 16 The configurationfile 32
/a 17 Chapter 3 General programming
4 - S 17 concepts 35
[l 17 Turbo Assembler Idealmode 35
/d .. R R 18 Why use Ideal mode? 36
/ € i i i i i e e s e e e 18 Entering and leaving Ideal mode 37
/ h OF /2 it 19 MASM and Ideal mode differences ... 38
/ 1 19 Expressions and' operands 38
/] 20 , Operators 38
/ kh 21 Suppressed ﬁxups 39
/]. 21 / Operand for BOUND instruction . 39
/ la e s e e sisenses et s eess s 21 Segments and gl'Ol.lpS e 39’
/rn 22 ACCeSSiIlg data ina segment belonging
/ ml 22 toa group P 40
JIU o 23 Commenting the‘program 42
/ MVH e e e . 23 Comments af the end of the line 42
JIOX o et e 24 ' }

The COMMENT directive
Extending theline....................
Using INCLUDEfiles
Predefined symbols
Assigning values tosymbols
General module structure

The VERSION directive

The NAME directive
The END directive
- Displaying a message during assembly .
Displaying warning messages
Multiple error-message reporting

..................

.............

Chapter 4 Creating object-oriented
programs

Terminology
Why use objects in Turbo Assembler? . ..
What is an object? S
Asampleobject
Declaring objects
Declaring a base object
Declaring a derived object
Declaring a method procedure
The virtual method table
Initializing the virtual method table ..
Calling an object method
Calling a static method
Calling a virtual method
Calling ancestor virtual methods
More on calling methods
Creating an instance of an object
Programming form for objects
A programming example

........................

- Chapter 5 Using expressions and
symbol values

Constantsooviiiinnn...
Numeric constants
Changing the default radix
String constants e
Symbols
Symbol names
Symbol types
Simple address subtypes

Describing a complex address

subtype oo el
Expressions 0 76
Expression precision 76
Constants in expressions 77
Symbols in expressions 77
Registers 77
Standard symbol values 77
Simple symbol values 78
The LENGTH unary operator 79
The SIZE unary operator 79
The WIDTH unary operator 80
The MASK unary operator 80
General arithmetic operators 81
Simple arithmetic operators 81
Logical arithmetic operators 81
Bit shift operators 81
Comparison operators 82
Setting the address subtype of an
EXPresSioncoviiiiunninn 82

Obtaining the type of an expression . 83
Overriding the segment part of an
address expression 84
Obtaining the segment and offset of an
address expression 84
‘Creating an address expression using

~ the locationcounter 8
Determining the characteristics of an
expression 86

Referencing structure, union, and table

member offsets 86
Describing the contents of an

address 87
Implied addition 87

* Obtaining the high or low byte values
of an expression 87
Specifying a 16- or 32-bit expression . 83

Chapter 6 Choosing processor

directives and symbols 91
1APx86 processor directives 91
Predefined symbols 93
@CPU v 93
@WordSize e 94

7

8087 coprocessor directives
Coprocessor emulation directives

............

Chapter 7 Using program models and

segmentation

The MODEL directive

Symbols created by the MODEL

directive

The @Model symbol

The @32Bit symbol

The @CodeSize symbol

The @DataSize symbol

The @Interface symbol

Simplified segment directives

Symbols created by the simplified

segment directives

The STARTUPCODE directive

The @Startup symbol

The EXITCODE directive

Defining generic segments and groups .

The SEGMENT directive

Segment combination attribute ...

Segment class attribute

Segment alignment attribute

Segment size attribute

Segment access attribute

The ENDS directive

- The GROUP directive
The ASSUME directive

Segment ordering

Changing a module’s segment

ordering

The .ALPHA directive

The .SEQ directive

DOS ordering of segments: the

DOSSEG directive

Changing the size of the stack

............

........

.......................

...............

Chapter 8 Defining data types
Defining enumerated data types

Defining bit-field records
Defining structures and unions

Opening a structure or union
definition

......

97
98

101
101
101
102
102
102
103

104
104
105
105
105
105
106
107
107
108
108
108
109
109
111

111
111
111

112
112

115
115
117
118

118

Specifying structure and union
members 119
Defining structure member labels with

LABELooiiiiiiat. 120
Aligning structure members 120
Closing a structure or union
definition 120
Nesting structures and unions 121
Including one named structure within
another 122
Using structure names in
expressions 124
Defining tables 124
Overriding table members 126
Defining anamed type 126
Defining a procedure type 127
Defining anobject 128
The TBLPTR directive 129

Symbols defined by the extended STRUC

directivecoiviiiii 129
Chapter 9 Setting and using the
location counter 131
The $ location counter symbol 131
Location counter directives 132
The ORG directive 132
The EVEN and EVENDATA
directives oo 134
The ALIGN directive 135
Defininglabels 135
The: operator 136
The LABEL directive 136
The = directiveo e 137
Chapter 10 Declaring procedures 139
Procedure definition syntax 139
Declaring NEAR or FAR procedures . 140
Declaring a procedure language 142
Specifying a language modifier 144

Defining arguments and local variables . 145
ARG and LOCAL syntax 146
The scope of ARG and LOCAL variable
names : 148
Preserving registers

...............

Defining procedures using procedure

types ... 149
Nested procedures and scope rules 150
Declaring method procedures for :
ObJECtS .. \vv i 152
Using procedure prototypeso 152
Chapter 11 Controlling the scope of

symbols 155

Redefinable symbols 155
Block scoping 156

The LOCALS and NOLOCALS

directivesooal 156

MASM block scoping 157
MASM-style local labels 158
Chapter 12 Allocating data 159
Simple data directives 160
Creatmg an instance of a struct'ure or
L1010 ¢ U 164

Initializing union or structure

instancesol 164
Creating an instance of arecord 167

Initializing record instances 168
Creating an instance of an enumerated data
type e 169

Initializing enumerated data type

instancesl 169
Creating an instance of a table 170

Initializing table instances 170
Creating and initializing a named—type
instance ..., 171
Creating an instance of an object 172
Creating an instance of an object’s virtual
method table e 172
Chapter 13 Advanced codmg

instructions 173
Intelligent code generation: SMART and
NOSMARTcovviiiinninnn. 173
Extended jumps 174

Additional 80386 LOOP instructions ... 175
Additional 80386 ENTER and LEAVE

instructions e 175
Additional return instructions 176

Additional IRET instructions 177
Extended PUSH and POP instructions . 177
Multiple PUSHand POPs 177
Pointer PUSH and POPs 178
- PUSHing constants on the 8086 ,
ProCeSSOroviiiunnenrnnan nn 178
Additional PUSHA, POPA PUSHF and
POPF instructions 178
Extended shifts 179
Forced segment overrides: SEGxx
-instructions ool 179
Additional smart flag instructions 180
Additional field value manipulation
instructions. i, 181
The SETFIELD instruction 181
The GETFIELD instruction 182
Additional fast immediate multiply
instruction ol 182
Extensions to necessary instructions for the
80386 processor ... 183

Calling procedures with stack frames .. 184
- Calling procedures that contain

RETURNScovviiininn.. 186
Calling procedures that have been
prototypedl 186
Calling method procedures for objects:
CALL.METHOD 187
Tail recursion for object methods:
JMP.METHOD 188
Additional instruction for object-oriented
programming e 188
Chapter 14 Using macros ~ 189
Textmacrosoooiiiiat. 189
Defining text macros with the EQU
directive ...l 190
String macro manipulation directives . 190
The CATSTR directiveo 191
The SUBSTR directive 191
The INSTR directive 191
The SIZESTR directive 191
Text macro manipulation
examplesl 191
Multilinemacros 192

The multiline macrobody 192

Using & inmacros 193
Including comments in macro
bodies 194
Local dummy arguments 194
The EXITM directive 195
Tags and the GOTO directive 195
General multiline macros, 196
Invoking a general multiline
macro T, 197
The < > literal string brackets ... 198
The ! character 199
The % expression evaluation
character 199
Redefining a general multiline
0 (F: ol o R 199
Deleting a general multiline macro: The
PURGE directive 200
Defining nested and recursive
.1 Lo 0 200
The count repeatmacro 201
‘The WHILE directive 202
String repeat macros 202
The % immediate macro directive ... 204
Including multiline macro expansions in
thelistfile........................ 204
“Saving the current operating state 204

Chapter 15 Using conditional
directives 209
General conditional directives syntax .. 209
IFxxx conditional assembly

directives 209
ELSEIFxxx conditional assembly
directives 0. 211
ERRxxx error-generation directives .. 212
Specific directive descriptions 213
Unconditional error-generation
directives 213
Expression-conditional directives. ... 213
Symbol-definition conditional »
directives 214
Text-string conditional directives 215

Assembler-pass conditionals 217

Including conditionals in the list file ... 218
Chapter 16 Interfacing with the ‘
linker 219
Publishing symbols externally 219
Conventions for a particular
language ...l 219
Declaring public symbols 220
Declaring library symbols 221
Defining external symbols 221
Defining global symbols 222
Publishing a procedure prototype ... 222
Defining communal variables 222
Including a library 224
The ALIAS directive 224
Chapter 17 Generating a listing 225
Listing format 225
General list directives 226
Include file list directives 228
Conditional list directives 228
Macro list directives 229
Cross-reference list directives 230
Changing list format parameters 232

Chapter 18 Interfacing Turbo
Assembler with Borland

C++ 237
Calling Turbo Assembler functions from
Borland C++ol 238
The framework 239
Linking assembly language modules
withC++ ..o 239
Using Extern “C” to simplify
linkage 241
Memory models and segments 241
Simplified segment directives and
Borland C++ 242
Old-style segment directives and
Borland C++ 243
Segment defaults: When is it
necessary to load segments? 245
Publics and externals 247

Underscores and the C language . 248

The significance of uppercase and

lowercase 249
Label types el 249
Farexternals 251
Linker command line 252
Parameter passing 252
Preserving registers 260
Returning values 260
Calling an assembler function from
CHt o 262
Writing C++ member functions in
.assembly language 265
Pascal calling conventions 267
Calling Borland C++ from Turbo
Assembler o 269
Link in the C++ startup code 269
The segmentsetup 269
Performing thecall 270
Calling a Borland C++ function from
Turbo Assembler 271
Appendix A Program blueprints 275
Simplified segmentation segmeént
description P 275
DOSprograms4 276
DOS EXE program blueprint 277
COM program blueprint 278

vi

Windows programs 279
Windows DLL blueprint 280
Windows 16-bit application

“blueprint ... 281
Windows 32-bit application
blueprint 281
Appendix B Turbo Assembler syntax
summary 283

Lexical grammar 283

MASM mode expression grammar 285

Ideal mode expression grammar 287

Keyword precedence 290

Ideal mode precedence 290
MASM mode precedence 291

Keywords and predefined symbols 291
Directive keywords 292

Appendix C Compatibility issues 297

One-pass versus two-pass assembly ... 298

Environment variables 298

Microsoft binary floating-point format . 299

Appendix D Error messages 301 -

Information messages 301

Warning and error messages 302

Fatal error messages 329

Index 333

1.1: Turbo Assembler’s executable files8
4.1: Object-oriented programming
terminology 0l 54
4.2: Symbols defined for objects 54
4.3: Files in OOP example 69
S51:Radixes 71
5.2: Characters determining radixes 72
5.3: Numeric constants 72
54:Symboltypes 74
5.5: Address subtypes 74
5.6: Complex address subtypes 75
5.7: Distance syntax 75
5.8: Simple expressions 76
5.9: Standard symbols 77

5.10: Values of symbols used by
themselves 78

5.11: LENGTH operator return values79
512:SIZEvalues 79
513: WIDTH values 80
514: MASK returnvalues 80
515: Simple arithmetic operators 81
5.16: Logical arithmetic operators 81
5.17: Bit shift operators 81
518: Comparison operators 82
519: Type override operators 83
520: TYPEvaluesco.... 83
5.21: Bit fields from SYMTYPE and
TYPE oo 86
6.1: Processor directives 92
6.2: 8087 coprocessor directives 95
7.1: Standard memory models 100
7.2: Model modifiers 100
7.3: Model modifiers 102
7.4: Simplified segment directives 103
7.5: Symbols from simplified segment
directivesl 104

Vii

7.6: Segment combination attribute 106
7.7: Segment alignment attribute 107
7.8: Segment size attribute values 108

7.9: Segment access attribute 108

7.10: Stack size modification directives ..113
8.1: STRUC, UNION, and ENDS

directivesl 121
8.2:Blockmembers 122
8.3: Available modifiers 129

8.4: Symbols used or defined by STRUC .130

12.1: Data size directives 160
13.1: Intelligent code generation ,
directives ool 174
13.2: Return instructions 176
13.3: Segment override instructions 179
13.4: Smart flag instructions 180

13.5: Instructions for setting and retrieving
valuesl 181
13.6: Instructions affected by SMALL and

LARGE P 184
141: Dummy argument types 197
- 14.2: Uses for the ! character 199
15.1: Conditional assembly directives using
eXPressionshiieian. 213
15.2: Error-generation directives using
eXPressionsc...uian 214
15.3: Evaluation of defined and undefined
symbolol 214
15.4: Symbol-expression directives using
symbol_expr 215
15.5: Error-generation directives 215
15.6: Conditional assembly directives using
text_stringso i 215
15.7: Error-generation directives using
text_strings 216

18.1: Register settings when Borland C++
enters assembler
Al: Default segments and types for TINY

memorymodel 275
A.2: Default segments and types for SMALL
memorymodel 275

A.3: Default segments and types for
MEDIUM memory model276

- A.4: Default segments and types for
- COMPACT memory model 276

A.5: Default segments and types for LARGE

or HUGE memory model 276

A.6: Default segments and types for Borland
C++ HUGE (TCHUGE) memory

- model

wViii

B.1: Turbo Assember V1.0 (VERSION T100)

keywordsl 292
B.2: Turbo Assembler V2.0 (VERSION T200)
new keywords 295
B.3: Turbo Assembler V2.5 (VERSION T250)
new keywords 295
B.4: Turbo Assembler V3.0 (VERSION T300)
new keywords 295
B.5: Turbo Assembler V3.1 (VERSION T310) -
new keywords 295

B.6: Turbo Assembler V3.2 (VERSION T320)
- new keywords

1.1: The edit, assemble, link, and run
cycle
2.1: Turbo Assembler command line
10.1: How language affects procedures . .144
18.1: Compile, assemble, and link with
Borland C++, Turbo Assembler, and
TLINK

18.2: State of the stack just before executing

Test’s first instruction 254
18.3: State of the stack after PUSH and

MOV i 255
18.4: State of the stack after PUSH, MOV,

andSUB 256
18.5: State of the stack immediately after

MOVBP,SPcccvvvinn... 268

Welcome to Borland’s Turbo Assembler, a multi-pass assembler
with forward-reference resolution, assembly speeds of up to
48,000 lines per minute (on an IBM PS/2 model 60), Microsoft
Macro Assembler (MASM) compatibility, and an optional Ideal
mode extended syntax. Whether you're a novice or an experi-
enced programmer, you'll appreciate these features and others
we've provided to make programming in assembly language
easier. Here are the highlights—we’ll describe them in detail later:

m Object-oriented programming capabilities

m 32-bit model and stack frame support

m Full 386, i486, and Pentium support

m Simplified segmentation directives

m Table support

m Enumerations

m Smart flag instructions

m Fast immediate multiply operation

m Multiline definition support

u VERSION specification directive

m Nested directives

m Quirks mode to emulate MASM

m Full source debugging output

m Cross-reference utility (TCREF)

m Configuration and command files

m File converter utility (converts C .h files to TASM .ash files)
m Procedure prototyping and argument checking capabilities
m Alias support o
Turbo Assembler is a powerful command-line assembler that
takes your source (.(ASM) files and produces object (.OB])

Infroduction ‘ 1

modules. You then use TLINK.EXE, Borland’s high-speed linker
program, to lmk your object modules and create executable (.EXE)
files.

Hardware and software requwemen’rs

||||»

Turbo Assembler runs on the IBM PC family of computers,
including the XT, AT, and PS/2, along with all true compatibles.

Turbo Assembler generates instructions for the 8086, 80186, 80286,
386, 1486, and Pentium processors. It also generates floating-point
instructions for the 8087, 80287, and 387 numeric coprocessors.
(For more information about the instruction sets of the
80x86/80x87 families, consult the Intel data books.)

About the manuals

Part 1: Using Turbo Assembler

Turbo Assembler comes with the Turbo Assembler User’s Guide
(this book) and the Turbo Assembler Quick Reference Guide. The
User’s Guide provides basic instructions for using Turbo

- Assembler, explores how to interface Turbo Assembler with other

languages, and describes in detail the operators, predefined
symbols, and directives Turbo Assembler uses. The Quick
Reference Guide is a handy guide to directives and processor and
coprocessor instructions.

Here’s a more detailed look at what the User’s Guide contains.

‘Chapter 1: Getting started with Turbo Assembler tells you how to

install Turbo Assembler on your system

Chapter 2: Using directives and switches describes how you can
control the way the ’assembler runs when you use directives.and
switches.

Chapter 3: General programming concepts discusses the
differences between Ideal and MASM modes, how to use
predefined symbols, using comment characters, and so forth.

Chapter 4: Creating object-oriented prograrﬁs describes how you
can use object-oriented programming techmques in assembly

v language

Turbo Assembler User's Guide

Part 2: Appendixes

Introduction

Chapter 5: Using expressions and symbol values talks about
evaluating and defining expressions and operators.

Chapter 6: Choosing processor directives and symbols tells you
how to generate code for particular processors.

Chapter 7: Using program models and segmentation talks about
program models, creating symbols, simplified segments, and
ordering of segments.

Chapter 8: Defining data types explains how to define structures,
unions, tables, bit-field records, and objects.

Chapter 9: Setting and using the location counter describes how
and why you’d want to use the location counter, as well as how to
define labels.

Chapter 10: Declaring procedures examines how to use various
types of procedures, and how to define and use arguments and
local variables.

Chapter 11: Controlling the scope of symbols discusses how you
can limit or expand the area in which a symbol has a particular
value.

Chapter 12: Alloycating data describes simple data directives, and
how to create instances of structures, unions, records, enumerated
data types, tables, and objects.

Chapter 13: Advanced coding instructions covers Turbo
Assembler’s extended instructions, including prototyping and
calling language procedures.

Chapter 14: Using macros tells you how to use macros in your
code.

Chapter 15: Using conditional directives talks about the
directives that let you execute your code conditionally.

Chapter 16: Interfacing with the linker describes how you can
include libraries and publish symbols as you link your code.

Chapter 17: Generating a listing talks about Turbo Assembler
listing files and how to use them.

Chapter 18: Interfacing Turbo Assembler with Borland C++
explains how to use Borland’s line of C++ compilers with
assembly language.

Appendix A: Program blueprints contains examples of different
types of program structures.

Appendix B: Turbo Assembler syntax summary illustrates Turbo
Assembler expressions (both MASM and Ideal modes) in
modified Backus-Naur form (BNF).

Appendix C: Compatibility issues covers the d1fferences between
MASM and Turbo Assembler MASM mode.

Appendix D: Utilities lists the utilities you can use with Turbo

Assembler.

Appendix E: Error messages describes all the error messages that
can be generated when using Turbo Assembler: information
messages, fatal error messages, warning messages, and error

messages.

Notational conventions

When we talk about IBM PCs or compatibles, we’re referring to
any computer that uses the 8088, 8086, 80186, 80286, 386, and 1486
chips (all of these chips are commonly referred to as 80x86).

All typefaces were produced by Borland’s Sprint: The Professional
~Word Processor, output on a PostScript printer. The different
typefaces displayed are used for the following purposes:

Italics

Boldface

CAPITALS

Monospace

Keycaps

In text, italics represent labels, placeholders,
variables, and arrays. In syntax expressions, place-
holders are set in italics to indicate they are user-
defined. ' ’

Boldface is used in text for directives, instructions,
symbols, and operators, as well as for command-
line options.

In text, capital letters are used to represent
instructions, directives, registers, and operators.

Monospace type is used to display any sample
code or text that appears on your screen, and any
text that you must actually type to assemble, link,
and run a program.

In text, keycaps indicate a key on your keyboard. It
is often used when describing a key you must
press to perform a particular function; for example,
“Press Enter after typing your program name at the
prompt.”

Turbo Assembler User’s Guide

Contacting Borlomd

Borland offers a variety of services to help you with your
questions. Be sure to send in the registration card: registered
owners are entitled to receive technical support and information
on upgrades and supplementary products. North American
customers can register by phone 24 hours a day by calling
1-800-845-0147. Borland provides the following convenient
sources of technical information.

Service How to contact Available Cost Description
TechFax 1-800-822-4269 24 hours daily ~ Free Sends technical information to your
(voice) fax machine. You can request up to 3
documents per call. Requires a
Touch-Tone phone.
Automated support 408-431-5250 24 hours daily ~ The cost of Requires a Touch-Tone phone or
(modem) the phone call modem.
Borland Download 408-431-5096 24 hours daily ~ The cost of Sends sample files, applications, and
BBS the phone call technical information via your
) modem. Requires a modem (up to
9600 baud); no special setup
required.
CompuServe online Type GO BORLAND. 24 hours daily; Your online Sends answers to technical questions
service Address messagesto 1-working-day charges via your modem. Messages are
Sysop or AllL response time. public unless sent by CompuServe's
private mail system.
BIX online Type JOIN BORLAND. 24 hours daily; Your online Sends answers to technical questions
service Address messagesto 1-working-day charges via your modem. Messages are
Sysop or AlL response time. public unless sent by BIX’s private
mail system.
GEnie online Type BORLAND. 24 hours daily; Your online . Sends answers to technical questions
service Address messagesto 1-working-day charges via your modem. Messages are
Sysop or All response time. public unless sent by GEnie’s private
mail system.
For additional details on these and other Borland services, please
refer to the Borland Support and Services Guide that was included
with your product. '
Introduction 5

Turbo Assembler User’s Guide

Getting started with Turbo Assembler

You might have heard that programming in assembly language is
a black art suited only to hackers and wizards. However,
assembly language is nothing more than the human form of the
language of the computer. And, as you’'d expect, the computer’s
language is highly logical. As you might also expect, assembly
language is very powerful—in fact, assembly language is the only
way to tap the full power of the Intel 80x86 family, the processors
at the heart of the IBM PC family and compatibles.

You can write whole programs using nothing but assembly
language or you can mix assembly language with programs
written in high-level languages such as Borland C++ and Borland
Pascal. Either way, assembly language lets you write small and
blindingly fast programs. In addition to the advantage of speed,
assembly language gives you the ability to control every aspect of
your computer’s operation, all the way down to the last tick of the
computer’s system clock.

Installing Turbo Assembler

“The Turbo Assembler package consists of a set of executable
programs, utilities, and example programs. In addition, the
package includes a Quick Reference Guide and this User’s Guide.

For instructions on installing Turbo Assembler, refer to the
TSM_INST. TXT file on your installation disk:

Chapter 1, Getting started with Turbo Assembler 7

Turbo Assembler’s
executable files

Table 1.1
Turbo Assembler’s
executable files

Utility and
example
programs

1. Insert the TASM Install disk in drive A of your computer.

2. User your text editor to open TSM_INST.TXT, or issue the
following command at the DOS command-line:

TYPE A:TSM_INST.TXT | MORE

The Turbo Assembler 4.0 package comes complete with 3
different assemblers, as outlined in the following table:

File name Description

TASM.EXE - Real-mode assembler. Assembles 16- and 32-bit
applications using the 640K addressable by DOS.
Produces only 16-bit debug information.

TASMX.EXE Protected-mode assembler. Assembles 16-and
-32-bit applications using memory above 640K.
Produces only 16-bit debug information.

TASM32.EXE Protected-mode assembler. Assembles 16-and
32-bit applications using memory above 640K.
Produces only 32-bit debug information.

The Turbo Assembler package includes several utility programs
to help you build assembly programs. For a complete list of the
utilities included with Turbo Assembler, refer to the online text
file TSM_INST.TXT. For instructions on using the utilities, refer to
the text file TSM_UTIL.TXT.

To get you started writing assembler programs, the Turbo
Assembler package includes various example programs that
demonstrate different assembler programming techniques. The
example programs even include complete 16- and 32-bit Windows
assembly programs. For a complete listing of the example
programs, refer to the online text file TSM_INST.TXT.

Writing your first Turbo Assembler program

If you have not yet written an assembly program, the following
“Greetings, World!” program is a good place to start. To begin
writing this program, open your favorite program editor and

Turbo Assembler User’s Guide

enter the following lines of code to create the HELLO.ASM

program:
.MODEL SMALL
.STACK 100h
.DATA
TimePrompt DB ‘Is it after 12 noon (Y/N)?$’
GoodMorningMessage DB 13,10, 'Good morning, World!’,13,10,'S’
GoodAfternoonMessage DB 13,10, 'Good afternoon, World!’,13,10,'S’
DefaultMessage DB 13,10, 'Greetings, Worldi’,10,13,’s’
.CODE
start:
mov ax,@data
mov ds,ax ;set DS to point to the data
segment
nov dx, OFFSET TimePrompt ;point to the time prompt
mov ah,9 ;DOS: print string
int 21h ;display the time prompt
mov ah,1 ;DOS: get character
int 21h ;get a single-character response
or al,20h ;force character to lower case
cmp al, 'y’ ;typed Y for afternoon?
je IsAfternoon
cmp al,’'n’ ;typed N for morning?
je IsMorning
mov dx,OFFSET DefaultMessage ;default greeting
Jmp DisplayGreeting
IsAfternoon:
nov dx,OFFSET GoodAfternoonMessage ;afternoon greeting
jmp DisplayGreeting
IsMorning:
mov dx,OFFSET GoodMorningMessage ;before noon greeting
DisplayGreeting:
mov ah,9 ;DOS: print string
int 21h ;display the appropriate greeting
nov ah,4ch ;DOS: terminate program
mov al,0 ;return code will be 0
int 21h ;terminate the program
END start

After you've entered the preceding program, save it to disk as
HELLO.ASM.

If you're familiar with high-level languages (such as C, C++, or
Pascal), you might think that HELLO.ASM is a bit long for a

Chapter 1, Getting started with Turbo Assembler

Assembling your
first program

Figure 1.1

The edit, assemble, link, and

10

run cycle .

“Greeting, World!” program. Indeed, assembler programs tend to
be much longer than high-level language programs because each
high-level language statement actually breaks down to form
many assembler instructions. However, assembly language gives
you complete freedom over the actual instructions that are given
to the computer’s CPU. With assembly language, you can write
programs that tell the computer to do anything that it's capable of
doing. i o :

Now that you've saved HELLO.ASM, you’ll want to run it. -

‘However, before you can run it, you'll have to assemble it into an

.OBJ file, and then link the file to form an executable program.
This program development cycle is shown in Figure 1.1.

Create a New Program

Assembler Source File
HE!TLO.ASM

"~ Assemble

Object File
HELLO.OBJ .

Link

&

Executable File
- HELLO.EXE

) Run

(if changes are needed)—‘

Turbo Assembler User’s Guide

The assembly step turns your source code into an intermediate
form called an object module, and the linking step combines one or
more.object modules into an executable program. You can do
your assembling and linking from the command line.

To assemble HELLO.ASM, type the following line at the DOS
command line:

TASM hello

Unless you specify another file name, HELLO.ASM will be
assembled to form the object file HELLO.OB]. (Note that you
don’t need to type in the file extension name; Turbo Assembler
assumes all source files end with .ASM.) If you entered the
HELLO.ASM program correctly, you'll see the following
information displayed onscreen:

Turbo Assembler Version 4.0 Copyright (c) 1992 by Borland
International, Inc.

Assenmbling file: HELLO.ASM
Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 266K

If you get warnings or etrors, they are displayed with the
program line numbers to indicate where they occurred. If you do
get errors, edit HELLO.ASM make sure it’s precisely the same as
the program shown above. After editing the program, reassemble
it with the TASM hello command.

Linking your first

program After you've successfully assembled HELLO.ASM; you'll need to
~ link the program using TLINK. At the DOS command line, type:

TLINK hello

If no errors or warnings are reported, an executable file is created,
named HELLO.EXE. To run this program, enter the command
HELLO from the DOS comumand line.

Errors can occur during the linking process, although it’s unlikely
with this example program. If you do receive linker errors,

- modify your code to exactly match the code shown here, then
assemble and link again.

Chapter 1. Getting started with Turbo Assembler ‘ . 1

Recommended reading

Although HELLO.ASM is a good program for testing TASM.EXE
and TLINK.EXE, the example is of little use if you're trying to
learn assembly language. However, many books are available that
teach both the fundamentals and the advanced features of
assembly language. To help you get started with assembly
language, refer to one or more of the following book titles:

m Duntemann, Jeff. Assembly Language from Square One: For the PC .
AT and Compatibles. Glenview, IL: Scott, Foresman and
Company, 1990 ‘

m Hummel, Robert L. Programmers Technical Reference: Processor
and coprocessor. Emeryville, CA: Ziff Davis press, 1992

m Mischel, Jim. Macro Magic with Turbo Assembler. New York, NY:
John Wiley & Sons, 1993

m Swan, Tom. Mastering Turbo Assembler. Carmel, IN: Howard W.
Sams and Co., 1989.

u Syck, Gary. The Waite Group’s Turbo Assembler Bible. Carmel, IN:
Howard W. Sams and Co., 1990.

In addition to these books, Intel Corporation offers fact sheets and
~ reference manuals on the workings of their processor products.
For more information, contact Intel at the following address:

Intel Literature Sales
P.O. Box 7641
Mount Prospect, IL 60056-7641

12 ' , . Turbo Assembler User’s Guide

Using diirectives and switches

This chapter is dedicated to familiarizing you with Turbo
Assembler’s command-line options. We’ll describe each of the
command-line options you can use to alter the assembler’s
behavior, and then show how and when to use command files.
We'll also describe the configuration file, and how you can control
the display of warning and error messages.

Starting Turbo Assembler

If you start Turbo Assembler from your operating system '
command line without giving it any arguments, like this,

TASM

you'll get a screenful of help describing many of the command-
line options, and the syntax for specifying the files you want to
assemble. Figure 2.1 shows you how this looks.

Turbo Assembler cglr%r!;\%r%é Turbo Assembler Version 4.0 Copyright (c) 1988, 1993 Borland
line International .

Syntax: TASM [options] source [,object] [,listing] [,xref]
/a,/s Alphabetic or Source-code segment ordering
/c Generate cross-reference in listing
/ASYM[=VAL] Define symbol SYM = 0, or = value VAL
/e, /r Emulated or Real floating-point instructions
/h, /2 Display this help screen '
/1PATH Search PATH for include files
/3CMD Jam in an assembler directive CMD (eg. /3IDEAL)

Chapter 2, Using directives and switches 13

/khi " Hash table capacity # symbols

/1, /1a ‘Generate listing: l=normal listing, la=expanded
listing

/ml,/mx,/mu ~ Case sensitivity on symbols: ml=all, mx=globals,
mu=none . :

/mv# Set maximum valid length for symbols

Pl Allow # multiple passes to resolve forward references
/n Suppress symbol tables in listing

Jos,/0,/op,/oi Object code: standard, standard w/overlays; Phar Lap,
or IBM .
/p Check for code segment overrides in protected mode

/d Suppress OBJ records not needed for linking
/t Suppress messages if successful assembly
[uxxxx Set version emulation, version Xxxx

/w0, /wl, /w2 Set warning level: w0=none, wl=w2=warnings on
/w-xxx, /w+xxx Disable (-) or enable (+) warning xxx

/x Include false conditionals in listing

/z Display source line with error message

/zi,/zd,/zn Debug info: zi=full, zd=line numbers only, zn=none

With the command-line options, you can specify the name of one
or more files that you want to assemble, as well as any options
that control how the files get assembled.

The general form of the command line looks like this:
TASM fileset [; fileset]...

The semicolon (;) after the left bracket (]) lets you assemble
multiple groups of files on one command line by separating the
file groups. If you prefer, you can set different options for each set
of files; for example,

TASM /e FILEl; /a FILE2

assembles FILE1.ASM with the /e command-line option and
assembles file FILE2. ASM with the /a command-line option.

In the general form of the command line, fileset can be

[option]...sourcefile [[+] sourcefile]...
[,lobjfile] [, [listfile] [, [xreffile]l]]

This syntax shows that a group of files can start off with any
options you want to apply to those files, followed by the files you
want to assemble. A file name can be a single file name, or it can
use the normal wildcard characters * and ? to specify multiple
files to assemble. If your file name does not have an extension,
Turbo Assembler adds the .ASM extension. For example, to

Turbo Assembler User’s Guide

assemble all the .ASM files in the current directory, you would
’ type
TASM *

If you want to assemble multiple files, you can separate their
names with the plus sign (+):

TASM MYFILEl + MYFILE2

You can follow the file name you want to assemble by an optional
object file name, listing file name, and a cross-reference file name.

If you do not specify an object file or listing file, Turbo Assembler
creates an object file with the same name as the source file and an

extension of .OBJ. :

A listing file is not generated unless you explicitly request one. To
request one, place a comma after the object file name, followed by
a listing file name. If you don’t explicitly provide a listing file
name, Turbo Assembler creates a listing file with the same name
as the source file and the extension .LST. If you supply a listing
file name without an extension, .LST is appended to it.

A cross-reference file is not generated unless you explicitly
request one. To request one, place a comma after the listing file
name, followed by a cross-reference file name. If you don’t
explicitly provide a cross-reference file name, Turbo Assembler
creates a cross-reference file with the same name as the source file
and the extension .XRF. If you supply a cross-reference file name
without an extension, .XRF is appended to it. (TCREF a cross-
reference ut111ty is described on disk.)

If you want to accept the default object file name and also request
a listing file, you must supply the comma that separates the object
file name from the listing f11e name:

TASM FILEL, ,TEST

This assembles FILE1.ASM to FILE1.OBJ and creates a listing file
named TEST.LST.

If you want to accept the default object and listing file names and
also request a cross-reference file, you must supply the commas
that separate the file names:

TASM MYFILE, , ,MYXREF

This assembles file MYFILE.ASM to MYFILE.OB]J, with a listing in
file MYFILE.LST and a cross-reference in MYXREF.XREF.

 Chapter 2, Using directives and switches ' ' ' 15

If you use wildcards to specify the source files to assemble, you
can also use wildcards to indicate the object and listing file names.
For example, if your current directory contains XX1.ASM and
XX2.ASM, the command line

TASM XX*, Yy*

assembles all the files that start with XX, generates object files that
start with YY, and derives the remainder of the name from the
source file name. The resulting object files are therefore called
YY1.0BJ and YY2.0OB]J.

If you don’t want an object file but you do want a listing file, or if
you want a cross-reference file but don’t want a listing file or
object file, you can specify the null device (NUL) as the file name.
For example,

TASM FILEL,,NUL,

assembles file FILE1.ASM to object file FILE1.OB]J, doésn’t
produce a listing file, and creates a cross-reference file FILE1. XRF.

Commond-lihe options

16

[2

The command-line options let you control the behavior of the
assembler, and how it outputs information to the screen, listing,
and object file. Turbo Assembler provides you with some options
that produce no action, but are accepted for compatibility with the
current and previous versions of MASM:

/b Sets buffer size
v Displays extra statistics

You can enter options using any combination of uppercase and
lowercase letters. You can also enter your options in any order
except where you have multiple /i or /j options; these are pro-
cessed in sequence. When using the /d option, you must also be
careful to define symbols before using them in subsequent /d
options.

You can override command-line options by usmg conflicting
directives in your source code.

Figure 2.1 on page 13 summarizes the Turbo Assembler
command-line options; here’s a detailed description of each
option.

Turbo Assembler ‘User’s Guide

/a

/a
Function gpecifies alphabetical segment-ordering
Syntax
Remarks The /a option tells Turbo Assembler to place segments in the object file in
alphabetical order. This is the same as using the .ALPHA directive in your
source file.
You usually only have to use this option if you want to assemble a source
file that was written for very early versions of the IBM or Microsoft
assemblers. .
The /s option reverses the effect of this option by returning to the default
sequential segment-ordering.
If you specify sequential segment-ordering with the .SEQ directive in
your source file, it will override any /a you provide on the command line.
Example i /a TESTL
This command line creates an object file, TEST1.0B]J, that has its segments
in alphabetical order.
Syntax
Remarks The /b option is included for compatibility. It performs no action and has |
no effect on the assembly.
/c
Function Enables cross-reference in listing file
Syntax /.
Remarks

The /¢ option enables cross-reference information in the listing file. Turbo

- Assembler adds the cross-reference information to the symbol table at the

end of the liSting file. This means that, in order to see the cross-reference
information, you must either explicitly specify a listing file on the
command line or use the /I option to enable the listing file.

Chapter 2, Using directives and switches ‘ 17

/c

/d

Example

For each symbol, the cross-reference shows the line on which it is defined
and all lines that refer to it.

TASM /1 /c TEST1

This code creates a listing file that also has cross-reference information in
the symbol table. ‘

/e

Function
Syntax

Remarks

Example

Defines a symbol
/dsymbol [=value or expression]

The /d option defines a symbol for your source file, exactly as if it were
defined on the first line of your file with the = directive. You can use this

- option as many times as you want on the command line.

You can only define a symbol as being equal to another symbol or a con-
stant value. You can’t use an expression with operators to the right of the
equal sign (=). For example, /dX=9 and /dX=Y are allowed, but /dX=Y-4 is
not.

TASM /dMAX=10 /AMIN=2 TEST1

This command line defines two symbols, MAX and MIN, that other
statements in the source file TEST1.ASM can refer to.

18

bFunction
Syntax

Remarks

Generates floating-point emulator instructions
/e |

The /e option tells Turbo Assembler to generate floating-point instructions
that will be executed by a software floating-point emulator. Use this
option if your program contains a floating-point emulation library that
mimics the functions of the 80x87 numeric coprocessor.

Normally, you would only use this option if your assembler module is
part of a program written in a high-level language that uses a floating-

~point emulation library. (Borland’s line of C++ compilers, Borland Pascal,

Turbo Basic, and Turbo Prolog all support floating-point emulation.) You
can’t just link an assembler program with the emulation library, since the
library expects to have been initialized by the compiler’s startup code.

Turbo Assembler User’s Guide

Example

/hor/?

/e

The /r option reverses the effect of this option by enabling the assembly of
real floating-point instructions that can only be executed by a numeric
COProcessor.

If you use the NOEMUL directive in your source file, it will override the /e
option on the command line.

The /e command-line option has the same effect as using the EMUL
directive at the start of your source file, and is also the same as using the
/JEMUL command-line option.

TASM /e SECANT
TCC -f TRIG.C SECANT.OBJ

The first command line assembles a module with emulated floating-point
instructions. The second command line compiles a C source module with
floating-point emulation and then links it with the object file from the
assembler.

Function Displays a help screen
Syntax /por /2
Remarks The /h option tells Turbo Assembler to display a help screen that describes
the command-line syntax. This includes a list of the options, as well as the
various file names you can supply. The /? option does the same thing.
Example magy /n
/i
Function Sets an include file path
Syntax /i pary
Remarks

The /i option lets you tell Turbo Assembler where to look for files that are
included in your source file by using the INCLUDE directive. You can
place more than one /i option on the command line (the number is only
limited by RAM). :

When Turbo Assembler encounters an INCLUDE directive, the location
where it searches for the include file is determined by whether the file

Chapter 2, Using directives and switches . 19

/i

- name in the INCLUDE directive has a directory path or is just a simple file

name. «

If you supply a directory path as part of the file name, that path is tried
first, then Turbo Assembler searches the directories specified by /i
command-line options in the order they appear on the command line. It
then looks in any directories specified by /i options in a configuration file. -

If you don’t supply a directory path as part of the file name, Turbo
Assembler searches first in the directories specified by /i command-line
options, then it looks in any directories specified by /i options in a
configuration file, and finally itlooks in the current directory.

Example Tagy /i\INCLUDE /iD:\INCLUDE TESTL

If the soutce file contains the statement
INCLUDE MYMACS.INC
Turbo Assembler will first look for \INCLUDE\MYMACS.INC, then it
will look for D:\INCLUDE\MYMACS.INC. If it still hasn’t found the file,
it will look for MYMACS.INC in the current directory. If the statement in
your source file had been
INCLUDE INCS\MYMACS.INC
Turbo Assembler would first look for INCS\MYMACS.INC and then it
would look for \INCLUDE\MYMACS.INC, and finally for D:\
INCLUDEA\MYMACS.INC.
5
Function Defines an assembler startup directive
Syntax /jdirective

Remarks The /j option lets you specify a directive that will be assembled before the
first line of the source file. directive can be any Turbo Assembler directive
that does not take any arguments, such as .286, IDEAL, %MACS,
NOJUMPS, and so on. "
You can put more than one /j option on the command line; they are
processed from left to right across the command line.

Example 1agy /§.286 /§IDEAL TESTL

20

This code assembles the file TEST1.ASM with 80286 instructions enabled
and Ideal mode expression-parsing enabled.

Turbo Assembler User’s Guide

/kh

/kh

/|

Function
Syntax

Remarks

Example

Sets the maximum number of symbols allowed
/'khnsymbols

The /kh option sets the maximum number of symbols that your program
can contain. If you don’t use this option, your program can only have a
maximum of 8,192 symbols; using this option increases the number of
symbols to nsymbols, up to a maximum of 32,768.

Use this option if you get the Out of hash space message when assembling
your program.

You can also use this option to reduce the total number of symbols below
the default 8,192. This releases some memory that can be used when you
are trying to assemble a program but don’t have enough available
memory.

TASM /kh10000 BIGFILE

' This command tells Turbo Assembler to reserve space for 10,000 symbols

when assembling the file BIGFILE.

/la

Function
Syntax

Remarks

Example

Generates a listing file
/1

The /l option indicates that you want a listing file, even if you did not
explicitly specify it on the command line. The listing file will have the
same name as the source file, with an extension of .LST.

TASM /1 TEST1

This command line requests a listing file that will be named TEST1.LST.

Function

Syntax

Shows high-level interface code in listing file

/la

Chapter 2, Using directives and switches 21

/la

Remarks

Example

The /la option tells Turbo Assembler to show all generated code in the
listing file, including the code that gets generated as a result of the hlgh-
level language interface .MODEL directive.

TASM /la FILEL

Function
Syntax
Remarks

Example

/ml

Sets the maximum number of assembly passes
/m[npasses]

Normally, Turbo Assembler functions as a single-pass assembler. The /m
option lets you specify the maximum number of passes the assembler
should make during the assembly process. TASM automatically decides
whether it can perform less than the number of passes specified. If you
select the /m option, but don’t specify npasses, a default of five is used.

You might want to specify multiple passes either if you want Turbo
Assembler to remove NOP instructions added because of forward

- references or if you are assembling a module containing instructions that

require two passes. If multiple passes are not enabled, such a module will
produce at least one “Pass-dependent construction encountered”
warning. If the /m option is enabled, Turbo Assembler assembles this
module correctly but will not optimize the code by removing NOPs, no
matter how many passes are allowed. The warning “Module is pass
dependent—compatibility pass was done” is displayed if this occurs.

TASM /M2 TEST1

This tells Turbo Assembler to use up to two passes when assembling
TESTl

Function
Syntax

Remarks

22

Treats symbols as case-sensitive

~/ml

The /ml option tells Turbo Assembler to treat all symbol names as case-
sensitive. Normally, uppercase and lowercase letters are considered
equivalent so that the names ABCxyz, abcxyz, and ABCXYZ would all refer
to the same symbol. If you specify the /ml option, these three symbols will

- be treated as distinct. Even when you specify /ml, you can still enter any

Turbo Assembler User's Gufde

Example

/ml

assembler keyword in uppercase or lowercase. Keywords are the symbols
built into the assembler that have special meanings, such as mstrucuon
mnemonics, directives, and operators. . :

TASM /ml TEST1

where TEST1.ASM contains the following statements:

abc DW 0)
ABC DW 1 ;not a duplicate symbol
Mov Ax, [Bpl] ;mixed case OK in keywords

The /ml switch used together with /mx has a special‘meaning for Pascal
symbols. See the /mx section for further details.

/mu
Function Converts symbols to uppercase
Syntax
Remarks The /mu option tells Turbo Assembler to ignore the case of all symbols. By
default, Turbo Assembler specifies that any lowercase letters in symbols
will be converted to uppercase unless you change it by using the /ml
directive. :
Example Tagy /mu TESTL
‘ makes sure that all symbols are converted to uppercase (which is the
default):
EXTRN myfunc:NEAR
call myfunc ;don’t know if declared as
; MYFUNC, Myfunc,...
- /mvi#
Function - gets the maximum length of symbols.
- Syntax® /s
Remarks

The /mv# option sets the maximum length of symbols that TASM will
distinguish between. For example, if you set /mv12, TASM will see
ABCDEFGHIJKLM and ABCDEFGHIJIKLL as the same symbol, but not
ABCDEFGHIJKL. Note that the minimum number you can have here is 12.

Chapter 2, Using directives and switches ’ 23

/mx

/ mX

Function

Syntax

Remarks

Example

/n

Makes public and external symbols case-sensitive
/mx

The /mx option tells Turbo Assembler to treat only external and public
symbols as case-sensitive. All other symbols used (within the source file)
are treated as uppercase.

You should use this directive when you call routines in other modules
that were compiled or assembled so that case-sensitivity is preserved; for
example, modules compiled by one of Borland’s line of C++ compilers.

TASM /mx TESTI;
where TEST1.ASM contains the following source lines:

EXTRN Cfunc:NEAR
myproc PROC NEAR
call Cfunc

Note: using the /mx and /ml options together has a épecial meaning for
symbols declared as Pascal; if you use these symbols together, the symbols
will be published as all uppercase to the linker. . '

Function
Syntax

Remarks

Example

.24

Suppresses symbol table in listing file
/n

The /n option indicates that you don’t want the usual symbol table at the
end of the listing file. Normally, a complete symbol table listing appears at
the end of the file, showing all symbols, their types, and their values.

You must specify a listing file, either explicitly on the command line or by
using the /I option; otherwise, /n has no effect.

TASM /1 /n TEST1

This code generates a listing file showing the generated code only, and not
the value of your symbols.

Turbo Assembler User’s Guide

/o

/o
Function Generates overlay code for TLINK
Syntax

Remarks Specifying the fo switch on the command line causes overlay&ompatible
fixups to be generated. When this switch is used, 386 references to USE32
segments should not be made since they won't link properly.

[Oi
Function Generates overlay code for the IBM linker
Syntax /o1

Remarks Specifying the loi switch on the command will generate overlay-
compatible fixups for the IBM linker. The resulting object file will not be
compatible with TLINK, Borland’s linker.

/op
Function Generates overlay code for the Phar Lap linker
Syntax /o)

Remarks gpecifying the fop switch on the command will generate overlay-
compatible fixups for the Phar Lap linker. The resulting object file will not
be compatible with TLINK, Borland’s linker.

fos

Function Outputs TLINK-compatible objects without ovetlay support. This is the

default selection.
Syntax /g
Remarks . Specifying the bs switch on the command will generate objects without

overlay support for use with TLINK.

Chapter 2, Using directives and switches ‘ 25

/p

/P

/a

Function
Syntax
Remarks

Example

Checks for impure code in protected mode

/p

The /p option specifies that you want to be warned about any instructions
that generate “impure” code in protected mode. Instructions that move
data into memory by using a CS: override in protected mode are con-

sidered impure because they might not work correctly unless you take
special measures.

“You only need to use this option if you are writing a program that runs in

protected mode on the 80286, 386, or i486.

TASM /p TESTL

- where TEST1.ASM contains the following statements:

.286P
CODE SEGMENT
temp DW °?
mov CS:temp,0 ;impure in protected mode

Function
Syntax
Remarks

Suppresses .OBJ records not needed for linking

q,

The /q option removes the copyright and file dependency records from
the resulting .OB] files, making it smaller. Don’t use this option if you are

- using MAKE or a similar program that relies on the dependency records.

26

Function ‘

Syntax

Remarks

Generates real floating-point instructions
/T V

The /r option tells Turbo Assembler to generate real floating-point
instructions (instead of generating emulated floating-point instructions).
Use this option if your program is going to run on machines equipped
with an 80x87 numeric coprocessor.

Turbo Assembler User’s Guide.

/r

The /e option reverses the effect of this option in generating emulated

. floating-point instructions.

If you use the EMUL directive in your source file, it will override the /r
option on the command line.

The /r command-line option has the same effect as using the NOEMUL
directive at the start of your source file, and is also the same as using the
/JNOEMUL command-line option.

Example tagy /r sEcant
TPC /$N+ /$E- TRIG.PAS
The first command line assembles a module with real floating-point
instructions. The second compiles a Pascal source module with real
floating-point instructions that links in the object file from the assembler.

/s
Function gpecifies sequential segment-ordering
Syntax /¢

Remarks The /s option tells Turbo Assembler to place segments in the object file in
the order in which they were encountered in the source file. By default,
Turbo Assembler uses segment-ordering, unless you change it by placing
an /a option in the configuration file.
If you specify alphabetical segment-ordering in your source file with the
.ALPHA directive, it will override /s on the command line.

Example ragy /s TESTL o
This code creates an object file (TEST1.0B]J) that has its segments ordered
exactly as they were specified in the source file.

Function gyppresses messages on successful assembly

Syntax /¢ '
Remarks

The /t option stops any display by Turbo Assembler unless warning or
error messages result from the assembly.

Chapter 2, Using directives and switches 27

/t

/u

Example

You can use this option when you are assembling many modules, and you
only want warning or error messages to be displayed onscreen.

TASM /t TESTL

Function
Syntax

Remarks

Sets version ID in command line
/u version

The /u option lets you specify which version of Turbo Assembler or
MASM you want to use to run your modules. This is the command-line
version of the VERSION directive.

/W

Syntax -

Remarks

/v

The /v option is included for compatibility. It performs no action and has

no effect on the assembly.

28

Function

Syntax

Remarks

Controls the generation of warning messages

/w

- w-[warnclass]

w+[warnclass]

The /w option controls which warning messages are emitted by Turbo
Assembler.

If you specify /w by itself, “mild” Warniﬁgs are enabled. Mild warnings
merely indicate that you can improve some aspect of your code’s
efficiency.

If you specify /w- without warnclass, all warnings are disabled. If you
follow /w- with warnclass, only that warning is disabled. Each warning
message has a three-letter identifier:

ALN Segment alignment _
ASS Assuming segment is 16-bit

Turbo Assembler User’s Guide

Example

/W

BRK Brackets needed

GTP Global type doesn’t match symbol type

ICG Inefficient code generation

INT INT 3 generation

LCO Location counter overflow

MCP MASM compatibility pass

Or1 Open IF conditional

orr Open procedure

OPs Open segment

OVF Arithmetic overflow

PDC Pass-dependent construction

PQK Assuming constant for [const] warning

PRO Write-to memory in protected mode needs CS override
RES Reserved word warning

TPI Borland Pascal illegal warning

UNI For turning off uninitialized segment warning

If you specify /w+ without warnclass, all warnings are enabled. If you
specify /w+ with warnclass from the preceding list, only that warning will
be enabled.

By default, Turbo Assembler first starts assembling your file with all
warnings enabled except the inefficient code-generation (ICG) and the
write-to-memory in protected mode (PRO) warnings.

You can use the WARN and NOWARN directives within your source file to
control whether a particular warning is allowed for a certain range of
source lines. These directives are described later in this chapter.

TASM /w TEST1

The following statement in TEST1.ASM issues a warning message that
would not have appeared without the /w option:

mov bx,ABC ;inefficient code generation warning
ABC =1
With the command line

TASM /w-OVF TEST2

no warnings are generated if TEST2.ASM contains

dw -1000h * 20h

Chapter 2, Using directives and switches 29

/x

/X

Function [ncludes false conditionals in listing
Syntax /x ' ;

Remarks [f 5 conditional IF, IFNDEF, IFDEF, and so forth evaluates to Falsé, the /x
option causes the statements inside the conditional block to appear in the
listing file. This option also causes the conditional directives themselves to
be listed; normally they are not.

You must specify a listing file on the command line or use the /I option,
otherwise /X has no effect.

You can use the .LFCOND, .SFCOND, and .TFCOND directives to override
the effects of the /x option.

Example ragy /x TESTI

/z
Function Displays source lines along with error messages
Syntax ;, '

Remarks The /z option tells Turbo Assembler to display the corresponding line
from the source file when an error message is generated. The line that
caused the error is displayed before the error message. With this option
disabled, Turbo Assembler just displays a message that describes the
error.

Example 1agy /2 TESTI

/zd
Function Engables line-number information in object files
Syntax /;4
Remarks

30

The /zd option causes Turbo Assembler to place line-number information
in the object file. This lets the debugger display the current location in
your source code, but does not put the information in the object file that
would allow the debugger to access your data items.

Turbo Assembler User's Guide

Example

/Zi

/zd

If you run out of memory when trying to debug your program, you can
use /zd for some modules and /zi for others.

TASM /zd TEST1

Function Enables debug information in object file
Syntax ;i
Remarks The /zi option tells Turbo Assembler to output complete debugging
information to the object file. This includes line-number records to
synchronize source code display and data type information to let you
examine and modify your program’s data.
The /zi option lets you use all the features of the debugger to step through
your program and examine or change your data items. You can use /zi on
all your program’s modules, or just on those you're interested in
- debugging. Since the /zi switch adds information to the object and exe-
cutable programs, you might not want to use it on all your modules if you
run out of memory when running a program under the debugger.
Example 1agy /zi TESTL
/zn
Function Djsables debug information in object file
Syntax -/

Remarks

The /zn option tells Turbo Assembler to disable the output of debugging -
information to the object file. It’s useful for overriding any prevailing /zi
switch in a configuration file. ,

Indirect command files

At any point when entering a command line, Turbo Assembler lets you
specify an indirect command file by preceding its name with an “at” sign
(@). For example,

TASM /ATESTMODE @MYPROJ.TA

Chapter 2, Using directives and switches 31

causes the contents of the file MYPRO].TA to become part of the

command line, exactly as if you had typed in its contents directly.

- This useful feature lets you put your most frequently used command lines

and file lists in a separate file. And you don’t have to place your entire
command line in one indirect file, since you can use more than one
indirect file on the command line and can also mix indirect command files
with normal arguments. For example,

TASM @MYFILES @QIOLIBS /dBUF=1024

This way you can keep long lists of standard files and options in files, so
that you can quickly and easily alter the behavior of an individual
assembly run.

You can either put all your file names and options on a single line in the
command file, or you can split them across as many lines as you want.

The configuration file

32

Turbo Assembler also lets you put your most frequently used options into
a configuration file in the current directory. This way, when you run

Turbo Assembler, it looks for a file called TASM.CFG in your current

directory. If Turbo Assembler finds the file, it treats it as an indirect file
and processes it before anything else on the command line.

This is helpful when you have all the source files for a project in a single
directory, and you know that, for example, you always want to assemble
with emulated floating-point instructions (the /e option). You can place
that option in the TASM.CFG file, so you don't have to spec1fy that option
each time you start Turbo Assembler

The contents of the configuration file have exactly the same format as an
indirect file. The file can contain any valid command-line options, on as
many lines as you want. The options are treated as if they all appeared on
one line.

The contents of the configuration file are processed before any arguments
on the command line. This lets you override any options set in the

“configuration file by simply placing an option with the opposite effect on
* the command line. For example, if your configuration file contains

/a /e

and you invoke Turbo Assembler with

Turbo Assembler User’s Guide

TASM /s /r MYFILE

MYFILE is your program file, and your file will be assembled with
sequential segment-ordering (/s) and real floating-point instructions (/r),
-even though the configuration file contained the /a and /e options that
specified alphabetical segment-ordering and emulated floating-point
instructions.

Chapter 2, Using directives and switches

33

34

Turbo Assembiler User’s éuide

General programming concepts

This chapter introduces you to the basic concepts of Turbo
Assembler. We’ll look at Ideal mode versus MASM mode,
commenting your programs and extending lines of code,
including files, using predefined symbols, and using several
important directives that produce module information. Although
this is a lot of ground to cover, it will give you a good idea of
what assembly language is all about.

Turbo Assembler |deal mode

For those of you struggling to make MASM do your bidding, this
may be the most important chapter in the manual. In addition to
near-perfect compatibility with MASM syntax, Turbo Assembler
smooths the rough areas of assembly language programming
with a MASM derivative we call Ideal mode.

Among other things, Ideal mode lets you know solely by looking
at the source text exactly how an expression or instruction
ooperand will behave. There’s no need to memorize all of MASM’s
many quirks and tricks. Instead, with Ideal mode, you write clear,
concise expressions that do exactly what you want. .

Ideal mode uses nearly all MASM’s same keywords, operators,
and statement constructions. This means you can explore Ideal
mode’s features one at a time without having to learn a large
number of new rules or keywords.

Chapfer 3, General programming concepts v v : 35

36

Why use Ideal

mode?

Ideal mode adds strict type checking to expressions. Strict type
checking helps reduce errors caused by assigning values of wrong
types to registers and variables, and by using constructions that
appear correct in the source text, but are assembled differently
than you expect Instead of playing guessing games with values
and expressions, you can use Ideal mode to write code that makes
logical and aesthetic sense.

With strict type checking, Ideal mode expressions are both easier
to understand and less prone to producing unexpected results.
And, as a result, many of the MASM idiosyncrasies we warn you
about in other chapters disappear.

Ideal mode also has a number of features that make programming
easier for novices and experts alike. These features include the
following:

m duplicate member names among multiple structures
m complex HIGH and LOW expressions

m predictable EQU processing

m correct handling of grouped data segments

m improved consistency among directives

m sensible bracketed expressions

There are many good reasons why you should use Turbo
Assembler’s Ideal mode. If you are just learning assembly
language, you can easily construct Ideal mode expressions and
statements that have the effects you desire. You don’t have to
experiment trying different things until you get an instruction
that does what you want. If you are an experienced assembly
language programmer, you can use Ideal mode features to write
complex programs using language extensions such as nestable
structures and unions.

As a direct benefit of cleaner syntax, Ideal mode assembles files
30% faster than MASM mode. The larger your projects and files,
the more savings in assembly time you'll gain by sw1tchmg to
Ideal mode.

Strong type-checking rules, enforced by Ideal mode, let Turbo
Assembler catch errors that you would otherwise have to find at

. run time or by debugging your code. This is similar to the way

high-level language compilers point out questionable
constructions and mismatched data sizes.

Turbo‘ Assembler User’s Guide

Although Ideal mode uses a different syntax for some expres-
sions, you can still write programs that assemble equally well in
both MASM and Ideal modes. You can also switch between
MASM and Ideal modes as often as necessary within the same
source file. This is especially helpful when you're experimenting
with Ideal mode features, or when you're converting existing
programs written in the MASM syntax. You can switch to Ideal
mode for new code that you add to your source files and maintain
full MASM compatibility for other portions of your program.

Entering and
leaving Ideal
mode

Use the IDEAL and MASM directives to switch between Ideal and
MASM modes. Turbo Assembler always starts assembling a

source file in MASM mode. To switch to Ideal mode, include the
IDEAL directive in your source file before using any Ideal mode
capabilities. From then on, or until the next MASM directive, all
statements behave as described in this chapter. You can switch
back and forth between MASM and Ideal modes in a source file as
many times as you wish and at any place. Here’s a sample:

DATA SEGMENT
abc LABEL BYTE
xyz DW 0
DATA ENDS

IDEAL

SEGMENT CODE
PROC MyProc

ENDP MyProc
ENDS

MASM

CODE SEGMENT
Func2 PROC

IDEAL

MASM

Func2 ENDP
CODE ENDS

Chapter 3, General programming concepts

;start in MASM mode
;abc addresses xyz as a byte
;define a word at label xyz
;end of data segment

;switch to Ideal mode

;segment keyword now comes first
;proc keyword comes first, too

; Ideal mode programming goes here
;repeating MyProc label is optional
;repeating segment name not required

;switch back to MASM mode

;name now required before segment keyword

;name now comes before proc keyword, too

;MASM-mode programming goes here
;switch to Ideal mode again!

;do some. programming. in Ideal mode
;back to MASM mode. Getting dizzy?

iname -again required before keyword
;name again required here

37

MASM and Ideal
mode differences

38

Expressions and
operands

Operators

. InIdeal mode, directive keywords such as PROC and SEGMENT

appear before the identifying symbol names, which is the reverse
of MASM’s order. You also have the option of repeating a segment
or procedure name after the ENDP and ENDS directives. Adding
the name can help clarify the program by identifying the segment
or procedure that is ending. This is a good idea, especially in
programs that nest multiple segments and procedures. You don't
have to include the symbol name after ENDP and ENDS, however.

This section describes the main differences between Ideal and
MASM modes. If you know MASM, you might want to experi-
ment with individual features by converting small sections of
your existing programs to Ideal mode. Further details of these
differences are in Chapter 5, “Using expressions and symbol
values.” ;

The biggest difference between Ideal and MASM mode expres-
sions is the way square brackets function. In Ideal mode, square

brackets always refer to the contents of the enclosed quantity.

Brackets never cause implied additions to occur. Many standard
MASM constructions, therefore, are not permitted by Ideal mode.

In Ideal mode, square brackets must be used in order to get the
contents of an item. For example,

mov ax,wordptr

displays a warning message. You're trying to load a pointer
(wordptr) into a register (AX). The correct form is

mov ax, [wordptr]

Using Ideal mode, it’s clear you are loading the contents of the
location addressed by wordptr (in the current data segment at DS)
into AX.

If you wish to refer to the offset of a symbol within a segment,
you must explicitly use the OFFSET operator, as in this example:

mov ax,0FFSET wordptr

The changes made to the expression operators in Ideal mode
increase the power and flexibility of some operators while leaving
unchanged the overall behavior of expressions. The precedence

Turbo Assembler User’s Guide

levels of some operators have been changed to facilitate common
operator combinations. :

The period (.) structure member operator is far more strict in Ideal
mode when accurately specifying the structure members you're
referring to. The expression to the left of a period must be a
structure pointer. The expression to the right must be a member
name in that structure. Here’s an example of loading registers
with the values of specific structure members:

;Declare variables using the structure types
S_Stuff SomeStuff <>
O_Stuff OtherStuff <>
mov ax, [S_Stuff.Amount] ;load word value
mov bl, [O_Stuff.Amount] ;load byte value

Suppressed fixups Turbo Assembler in Ideal mode does not generate segment-

o relative fixups for private segments that are page- or paragraph-
aligned. Because the linker does not require such fixups, assem-
bling programs in Ideal mode can result in smaller object files that
also link more quickly than object files generated by MASM
mode. The following demonstrates how superfluous fixups occur

in MASM but not in Ideal mode:
This difference has no effect
on code that you write. The SEGMENT DATA PRIVATE PARA
documentation here is simply VARL DB 0
for your information. VAR2 DW 0

ENDS
SEGMENT CODE

ASSUME ds:DATA -

mov ax,VAR2 ;no fixup needed
ENDS ’

Operand for BOUND The BOUND instruction expects a WORD operand, not a DWORD:
instruction Thg lets you define the lower and upper bounds as two constant
words, eliminating the need to convert the operand to a DWORD

with an explicit DWORD PTR. In MASM mode, you must write

BOUNDS DWw 1,4 ;lower and upper bounds
BOUND AX, DWORD PTR BOUNDS ;required for MASM mode

but in Ideal mode, you need only write

BOUNDS , DW 1,4 - ;lower and upper bounds
BOUND AX, [BOUNDS] ;legal in Ideal mode

Chapter 3, General programming concepts ' 39

Segments and groups

Accessing datain a
segment belonging to
a group

40

The way Turbo Assembler handles segments and groups in Ideal
mode can make a difference in getting a program up and running.
If you're like most people, you probably shudder at the thought
of dealing with a bug that has anything to do with the interaction
of segments and groups.

Much of the difficulty in this process stems from the arbitrary

way that MASM and, therefore, Turbo Assembler’s MASM mode,
makes assumptions about references to data or code within a .
group. Fortunately, Ideal mode alleviates some of the more nag-
ging problems caused by MASM segment and group directives,

as you'll see in the information that follows.

In Ideal mode, any data item in a segment that is part of a group
is considered to be principally a member of the group, not of the
segment. An explicit segment override must be used for Turbo
Assembler to recognize the data item as a member of the segment.

MASM mode handles this differently; sometimes a symbol is
considered to be part of the segment instead of the group. In
particular, MASM mode treats a symbol as part of a segment
when the symbol is used with the OFFSET operator, but as part of
a group when the symbol is used as a pointer in a data allocation.
This can be confusing because when you directly access the data
without OFFSET, MASM incofrectly generates the reference
relative to the segment instead of the group.

'Here's an example of how easily you can get into trouble with

MASM’s addressing quirks. Consider the following incomplete
MASM program, which declares three data segments:

dsegl SEGMENT PARA PUBLIC 'data’
2l DB 0

dsegl - ENDS

dseg2 SEGMENT PARA PUBLIC ‘data’
v2 DB 0

dseg2 ENDS

dseg3 SEGMENT PARA PUBLIC ‘data’
v3 DB 0

dseg3 ENDS

DGROUP GROUP dsegl,dseg2, dseq3
cseg SEGMENT PARA PUBLIC ‘code’

ASSUME cs:cseg, ds :DGROUP

Turbo Assembler User’s Guide

start:
mov ax,OFFSET vl
mov bx,OFFSET v2
mov cx,OFFSET v3
cseg ENDS
END start

The three segments, dseg1, dseg2, and dseg3, are grouped under
one name, DGROUP. As a result, all the variables in the individual
segments are stored together in mémory. In the program source
text, each of the individual segments declares a BYTE variable,
labeled v1, v2, and v3.

In the code portion of this MASM program, the offset addresses of
the three variables are loaded into registers AX, BX, and CX.
Because of the earlier ASSUME directive and because the data
segments were grouped together, you might think that MASM
would calculate the offsets to the variables relative to the entire
group in which the variables are eventually stored in memory.

But this is not what happens. Despite your intentions, MASM
calculates the offsets of the variables relative to the individual
segments, dseg1, dseg2, and dseg3. It does this even though the
three segments are combined into one data segment in memory,
addressed here by register DS. It makes no sense to take the
offsets of variables relative to individual segments in the program
text when those segments are combined into a single segment in
memory. The only way to address such variables is to refer to
their offsets relative to the entire group.

To fix the problem in MASM, you must specify the group name
along with the OFFSET keyword:

mov ax,OFFSET DGROUP:v1
mov . bx,OFFSET DGROUP:v2
mov ¢x,0FFSET DGROUP:v3

Although this now assembles correctly and loads the offsets of v1,
v2, and v3 relative to DGROUP (which collects the individual
segments), you might easily forget to specify the DGROUP
qualifier. If you make this mistake, the offset values will not
correctly locate the variables in memory and you'll receive no
indication from MASM that anything is amiss. In Ideal mode,
there’s no need to go to all this trouble: :

IDEAL .
SEGMENT dsegl PARA PUBLIC 'data’
vl DB 0

Chapter 3, General programming concepts 41

ENDS

SEGMENT dseg2 PARA PUBLIC ‘data’

v2 DB 0

ENDS

SEGMENT dseg3 - PARA PUBLIC ’‘data’
v3 DB 0

ENDS

GROUP DGROUP dsegl,dseg2,dseg3

SEGMENT cseg PARA PUBLIC ’'code’

ASSUME cs:cseg, ds:DGROUP
start: .

mov ax,OFFSET vl

mov ax,OFFSET v2-

mov ax,OFFSET v3
ENDS

END start

The offsets to v1, v2, and v3 are correctly calculated relative to the
group that collects the individual segments to which the variables
belong. Ideal mode does not require the DGROUP qualifier to
refer to variables in grouped segments. MASM mode does require
the qualifier and, even worse, gives no warning of a serious
problem should you forget to specify the group name in every
smgle reference.

Commenting the program

Commen’rs at the

end of the line

42

Commenting your code is a great way to help you (or anyone
who has to maintain your code in the future) quickly understand
how it functions. Using comments is good programming practice
in any language. They can describe the semantic as opposed to
syntactic function of your code. We recommend that you use
comments liberally in your Turbo Assembler code, and this
section describes how you can do so.

There are several ways to comment assembler code. One
approach is to add a comment at the end of a line using the

‘semicolon (;), such as

movv[bx],al ;store the modified character

Turbo Assembler User’s Guide

Another way to comment assembler code is to use the line contin-
uation character (\) as a comment character. See the section called
“Extending the line” for an example of how this is done.

The COMMENT

directive The COMMENT directive lets you comment blocks of code.
COMMENT ignores all text from the first delimiter character and
the line containing the next occurrence of the delimiter. The
following example uses * as a delimiter character:

 COMMENT only works in
MASM mode. COMMENT *
stuff here

*

Extending the line

For lines of code that are longer than 80 characters, Turbo
Assembler provides the \ line continuation character. Use this
character at the end of your line, because Turbo Assembler
ignores any characters that follow it on the same line.

The maximum line length is 1024 when you use \; however,
tables, records, and enums might have definitions that are longer
than 1024 characters. An alternative that does not have the 1024
character limitation is the multiline definition syntax. Here’s an
example of the syntax (for an enum definition):
foo enum { ;Multiline version

f1

£2

3

£4

5

£6

£7

8

}

A more compact version of the same definition:

égéi}ﬂﬂ foo enum f1,f2,{ ; Compact multiline version
£3,£4 ,

5,16
£7.£8}

When using multiline definitions, remember these rules:

Chapter 3, General programming concepts , 43

m The left brace that starts the definition must be the last token on
the starting line. It does not, however, have to precede the first
element in the list. ‘

& You cannot include any directives such as IF or INCLUDE inside
the multiline definition.

MASM-mode line continuation is available if you select VERSION
M510, M520. Strings and other tokens can be extended across
multiple lines if the “* character is the last character on the line.
For example,

VERSION M510
DB ‘Hello out there \

you guys’

You can place standard Turbo Assembler mode line continuation
anywhere in a line, and it is always available. It functions as a
comment as well. For example,

ARG al:word, \first argument
a2:word, \second argument
a3 :word ;final argument

“Using INCLUDE files

You can nest INCLUDE
directives as deep as you
want,

44

Include files let you use the same block of code in several places
in your program, insert the block in several source modules, or
reduce the size of your source program without having to create
several linkable modules. Using the INCLUDE directive tells
Turbo Assembler to find the specified files on disk and assemble
them as if they were a part of the source program.

The Ideal mode syntax:

- INCLUDE *filename"

The MASM mode syntax:
INCLUDE filename

filename can specify any drive, directory, or extension. If filename
does not include a directory or drive name, Turbo Assembler first
searches for the file in any directories you specify with the /I
command-line option, and then in the current directory.

Turbo Assémb/er User’s Guide

Predefined symbols

Turbo Assembler provides a number of predefined symbols that
you can use in your programs. These symbols can have different
values at different places in your source file, and are similar to
equated symbols you define using the EQU directive. When Turbo
Assembler encounters one of these symbols in your source file, it
replaces it with the current value of that predefined symbol.

Some of these symbols are text (string) equates, some are numeric
equates, and others are aliases. The string values can be used
anywhere that you would use a character string, for example, to
initialize a series of data bytes using the DB directive:

NOW DB ??time

Numeric predefined values can be used anywhere that you would
use a number:

IF ??version GT 100h

Alias values make the predefined symbol into a synonym for the
value it represents, allowing you to use the predefined symbol
name anywhere you would use an ordinary symbol name:

ASSUME cs:@code

All the predefined symbols can be used in both MASM and Ideal
mode. ‘ .

If you use the /ml command-line option when assembling, you
must use the predefined symbol names exactly as they are
described on the following pages.

> The following rule applies to predefined symbols starting with an
at-sign (@): The first letter of each word that makes up part of the
symbol name is an uppercase letter (except for segment names); the rest
of the word is lowercase. As an example,

@FileName

Notice that @FileName performs an alias equate for the current
assembly line.

Chapter 3, General programming concepts ' 45

The exception is redefined symbols, which refer to segments
Segment names begin with an at-sign (@) and are all lowercase
For example,

@curseg
@fardata

For symbols that start with two question marks (??), the letters are
all lowercase. For example,

?2date
??version

Note that the ??date symbol defines a text equate that represents
today’s date. The exact format of the date string is determined by
the country code. The ??version symbol lets you write source
files that can take advantage of features in particular versions of
Turbo Assembler. This equate also lets your source files know
whether they are being assembled by MASM or Turbo Assembler,
since ??version is not defined by MASM. Similarly, ??filename
defines an eight-character string that represents the file name
being assembled. The file name is padded with spaces if it it
contains fewer than eight characters. The ??time symbol defines a
text equate that represents the current time. The exact format of
the time string is determined by the country code.

Assigning values to symbols

46

Turbo Assembler prox;ides two directives that let you assign
values to symbols: EQU and =. The EQU directive defines a string,

- alias, or numeric equate. To use it, specify the following syntax,

name EQU expression

where name is assigned the result of evaluating expression. name
must be a new symbol name that you haven’t previously defined
in a different manner. In MASM mode, you can only redefine a
symbol that you defined using the EQU directive if you first
define it as a string equate. In MASM mode, EQU can generate
any one of three kinds of equates: alias, expression, or string.

The = directive defines only a numeric equate. To use it, specify

name = expression

- where name is assigned the result of evaluating expression, which

must evaluate to either a constant or an address within a segment.

Turbo Assembler User’s Guide

name can either be a new symbol name, or a symbol that you
previously defined with =. Since the = directive has far more
predictable behavior than the EQU directive in MASM mode, use
= instead of EQU wherever you can.

General module structure

Turbo Assembler provides several directives to help you work
with modules of code. The remainder of this chapter describes
these directives.

The VERSION

directive Using the VERSION directive lets you specify which version of
Turbo Assembler or MASM you've written particular modules for.
This is helpful for upward and downward compatibility of
various versions of TASM and MASM. The VERSION directive
also puts you into the operating mode for the specified version.

You can specify the VERSION directive as either a command-line
switch or within program source code.

Within code, the syntax is
VERSION <version_ID>

You can specify the following legal version IDs:

M400 MASM 4.0
M500 MASM 5.0
M510 MASM 5.1
M520 MASM 5.2 (Quick ASM)
T100 . Turbo Assembler 1.0
T101 Turbo Assembler 1.01
T200 Turbo Assembler 2.0
T250 Turbo Assembler 2.5
T300 Turbo Assembler 3.0
T310 Turbo Assembler 3.1

© T320 Turbo Assembler 3.2
T400 Turbo Assembler 4.0

The command-line syntax is:

/U<wversion_ID>

Chapter 3, General programming concepfs 47

48

||||}

The NAME directive

This directive only works in
Ideal mode.

The END directive

As an example, if you wanted to assemble a program written for .

'MASM 5.0, you could leave the source for the program intact and

use the switch /uM510.

Here are the general rules:

1. The VERSION directive always selects MASM mode by
default, because that is the starting mode of operation for both
MASM and Turbo Assembler.

2. The VERSION directive limits the high-priority keywords
available to those in the specified compiler and version. As a
result, some features that were added to later versions are
unavailable to you.

3. From Ideal mode, the VERSION directive is unavailable if you
select a version prior to T300. To use the VERSION directive in
this case, you must switch to MASM mode first.

4. No attempt is made to limit access to low priority keywords
since these will not affect compatibility.

Previous versions of Turbo Assembler controlled MASM
compatibility with directives such as MASM51, NOMASM51,
QUIRKS, SMART, and NOSMART. The VERSION directive
supersedes these older directives. See Appendix B for a complete
list of keywords available with each prior version of Turbo
Assembler

Use the NAME directive to set the object file's module name. Here
is the syntax for it:

NAME modulename

Turbo Assembler usually uses the source file name with any
drive, directory, or extension as the module name. Use NAME if
you wish to change this default name; modulename will be the new
name of the module. For example,

NAME loader ’

Use the END directive to mark the end of your source file. The
syntax looks like this:

END [startaddress]

startaddress is an optional symbol or expression that specifies the.
address in your program where you want execution to begin. If

Turbo Assembler User’s Guide

your program is linked from multiple source files, only one file
can specify a startaddress. startaddress can be an address within the
module; it can also be an external symbol defined in another
module, declared with the EXTRN directive.

Turbo Assembler ignores any text after the END directive in the
source file.

Example wopEL small
.CODE
START:
;Body of program goes here _
END START ;program entry point is "START®
THIS LINE IS IGNORED
S0 IS THIS ONE

Displaying a message during assembly

Turbo Assembler provides two directives that let you display a
string on the console during assembly: DISPLAY and %OUT. You
can use these directives to report on the progress of an assembly,
either to let you know how far the assembly has progressed, or to
let you know that a certain part of the code has been reached.

The two directives are essentially the same except that DISPLAY
displays a quoted string onscreen, and %OUT displays a
nonquoted string onscreen.

In both Ideal and MASM modes, the syntax for DISPLAY is
DISPLAY "text"

where text is any message you want to display.

The syntax for %OUT in both Ideal and MASM modes is
0UT text

where, again, text is the message that you want displayed.

Chapter 3, Genera/ programming concepts : 49

Displaying warning messages

WAkN without warnclass

‘enables all wamings. WARN

enables that warmning.

NOWARN without warnclass

disables all warnings.
NOWARN with an identifier
disables only that warning.

50

Turbo Assembler lets you choose what (if any) warning messages
with an identifier only ~ you'll receive for certain parts of your code. Each warning mes-
sage contains a three-letter identifier, which you can specify ahead
of time to let the assembler know whether or not you want to see

warnings of that kind. You can use the WARN directive to enable

warning messages, and the NOWARN directive to disable them.
The syntax of the WARN directive is

WARN [warnclass]

where warnclass is the three-letter identifier that represents a
particular type of warning message. The available warnclasses are:

ALN
BRK
GTP
ICG
INT
LCO
MCP
OFPI

OPP

OPS
OVF
PDC
PRO
PQK
RES

TPI

Segment alignment
Brackets needed

Global type doesn’t match symbol type
Inefficient code generation
INT 3 generation
Location counter overflow
MASM compatibility pass
Open IF conditional

Open procedure

Open segment

Arithmetic overflow

. Pass-dependent construction

Write-to-memory in protected mode using CS
Assuming constant for [const] warning
Reserved word warning

Borland Pascal illegal warning

Note that these are the same identifiers used by the /W
command-line option.

Here’s an example using WARN:

WARN -OVF
DW 1000h * 1234h

;enables arithmetic overflow warning
;overflow warning will occur

Use the NOWARN directive to disable specific (or all) warning

messages. NOWARN uses the same identifiers described earlier
under WARN. Here’s an example that uses NOWARN:

NOWARN OVF
DW 1000h * 1234h

;disable arithmetic overflow warnings
;doesn’t warn now

Turbo Assembler User’s Guide

Multiple error-message reporfing

i

By default, Turbo Assembler only allows one error message to be
reported for each line of source code. If a source line contains
multiple errors, Turbo Assembler reports the most-significant
error first. You can control the number of error messages you get
for each source line by using the MULTERRS and NOMULTERRS
directives.

The MULTERRS directive allows the assembler to report more
than one error message for each source line. This is sometimes
helpful in locating the cause of a subtle error or when the source
line contains more than one error. .

Note that sometimes additional error messages can be a “chain
reaction” caused by the first error condition; these “chain” error
messages may disappear once you correct the first error.

Here’s an example of the MULTERRS directive:

MULTERRS
mov ax, [bp+abc ;produces two errors:
- ;1) Undefined symbol:. abc
;2) Need right square bracket

The NOMULTERRS directive only lets one error or warning
message (the most significant message) appear for each source
line. When you correct this error, the other error messages may
disappear as well. To avoid this problem, use the MULTERRS
directive to see all of the error messages.

Here is an example of using the NOMULTERRS directive:

NOMULTERRS
mov ax, [bp+abc ;one error:
;1) Undefined symbol: abc

Chapter 3, General programming concepts : 51

52

Turbo Assembler User'’s Guide E

Creafing object-oriented programs

Object-oriented programming is an approach to software design
that is based on objects rather than procedures. This approach
maximizes modularity and information hiding. The underlying
premise behind object-oriented programming is the binding or
encapsulation of a data structure with procedures for
manipulating the data in the structure into a unit.

Object-oriented design provides many advantages. For example,
every object encapsulates its data structure with the procedures
used to manipulate instances of the data structure. This removes
interdependencies in code that can quickly make maintenance -
difficult. Objects can also inherit a data structure and other
characteristics from a parent object, which saves work and lets
you transparently use a single chunk of code for many purposes.

If you're not an experienced Turbo Assembler user, you might
want to skim through this chapter now, but come back to it later
after reading the other chapters of this manual. We've put it here
to make you aware of these features, but object-oriented
programming in Turbo Assembler is really an advanced topic. It
will make more sense after going through the rest of the manual.

Terminology

These terms are described in . i i itHes i iact-
detall later in his chapter C-I'-+ and Pascal use .dlfferent terms for various entities in object:
, oriented programming. Turbo Assembler more closely resembles

Chapter 4, Creating object-oriented programs 53

* Pascal in this way, although not all terms are the same. The
following table outlines these differences among these languages:

Table 4.1

Object-oriented Turbo Assembler Borland C++ Borland Pascal
programming terminology . -
' , ' method ‘ member function method
method procedure '
object , class - object
base object base class base object
parent object - parent class parent object
derived object derived class derived object
field. data member field

Why use objects in Turbo Aséembler?

Most people think of assembly language as a low-level language.
Turbo Assembler, however, provides many of the features of a
high-level language (such as abstract data types, and easy
interfacing to other languages). The addition of object-oriented
data structures gives Turbo Assembler the power to create object-
oriented programs as easily as high-level languages while
retaining the speed and flexibility of assembly language.

What is an object?

An object consists of a data structure and associated procedures
(called methods) that manage data stored in instances of the data
structure. ~

We strongly recommend that . : . s e i . .
you use fdeal mode for An object can inherit characteristics from a parent object. This

object-orienfed means that the new object’s data structure includes the parent
programming In TUIbo - ghject’s data structure, as well as any new data. Also, the new
Assembler, since symbol 4 o
scoping is global in MASM, object can call all the method procedures of the parent object, as

and you can’t distinguish . ;
dlifforent postions of Shown well as any new metth procedures it declares.

methods. ap object having no inheritance is called a base object; an object

that inherits another is a derived object.

Turbo Assembler defines several symbols you can use when
declaring objects. The following table lists these symbols.

Table 4.2 -
Symbols defined for objects Symbol ' Meaning

@Obiject ' A text macro containing the name of the
current object (the object last declared).

54 ‘ : Turbo Assembler User’s Guide

Table 4.2: Symbols defined for objects (continued)

<objectname> A STRUC data type that describes the
object’s data structure.
@Table_<objectname> A TABLE data type containing the

object’s method table, which is not the
same as an instance of the virtual
method table.

@TableAddr_<objectname> A label describing the address of the
instance of the object’s virtual method
table, if there is one.

A sample object

As an example of where you can use objects, consider any
program that uses linked lists. Think of a linked list as an object
consisting of the linked list data and the operations (methods)
that you can perform on it.

The linked list data consists of pointers to the head and tail of the
linked list (this example contains a doubly linked list because of
its flexibility). Each element of the linked list is a separate object
instance.

The following operaﬁons provide the power needed to use a
linked list:

m Creating the linked list (allocating memory for it).

m Destroying the linked list (deallocating memory for it).

m Initializing the linked list.

m Deinitializing the linked list.

m Inserting an item into the middle of the linked list before an

existing item. :

m Appending an item to the end of the linked list.

m Deleting an item from the linked list.

m Returning the first item in the linked list.

m Returning the last item in the linked list.
Keep in mind that create and initialize, as well as destroy and
deinitialize methods are not synonymous. create and destroy
methods allocate and deallocate memory for the linked list object,
while the initialize and deinitialize methods only initialize and
deinitialize previously allocated instances of the object. If you

don’t combine initialization with creation, it’s possible to statically
allocate linked list objects.

Chapter 4, Creating object-oriented programs : 55

- Declaring objects

Declaring a base

For more on STRUC as it

applies to declarin

56

see

object

objects,
hapter 8.

You can see how the linked list object can be inherited by a queue
or stack object, since a queue or a stack can be implemented as a
linked list with limited operations. For example, you can
implement a queue as a linked list where items can be added to
the start and taken off the end. If you implement a queue in this
way, you must disable the inherited linked list methods that are
illegal on a queue (such as inserting into the middle of the list).

‘Declaring an object consists of declaring the data structure for the

object, and declaring the method procedures that you can call for
the object. Declaring an object does not involve creating an
instance of the object. You'll learn how to do this later.

When you declare an object, Turbo Assembler creates a STRUC
that declares the data for the object, and a TABLE that declares the
methods for the object. The object’s data declaration is a structure
with the same name as the object. The object’s method
declarations are stored in a TABLE data type, named
@Table_<objectname>.

For example, for the list object, two data types are declared:
list A STRUC declaring the following members:

list_head dword pointer to head of list
list_tail ~ dword pointer to tail of list

@Table_list A TABLE declaring the following methods:

construct dword pointer to the procedure list_construct
destroy ~ dword pointer to the procedure list_destroy
and so on...

~ STRUC declares the data for the object that is created whenever

you create an instance of the object. TABLE declares the table of
default method procedures for the declaration. Turbo Assembler
maintains this data type; it does not create an instance of the table
anywhere in your program memory. However, you'll see later
that you must include an instance of the table for any object that
uses virtual methods. Here’s an example of an object declaration
for a linked list:

Turbo Assembler User’s Guide

The METHOD keyword shows
that you're using an
extended form of STRUC, and
are defining an object Ca”,?"f'
ist.

Each entry consists of a
method name, a colon, and
the size of a pointer to the
method procedure (WORD
for near procedures, DWORD
for far procedures). This is
followed by an equal sign,
and the name of the
procedure fo call for that
method.

list STRUC GLOBAL METHOD {

construct:dword = list_construct
destroy:dword = list_destroy
init:dword = list_init
deinit:dword = list_deinit
virtual insert:word = list_insert

;1ist constructor procedure
;list destructor procedure
;list initializer procedure
;1ist deinitializer procedure
;list node insert procedure

;list node append procedure
;1ist node remove procedure
;list first node procedure
;list last node procedure

virtual append:word = list_append
virtual remove:word = list_delete
virtual first:word = list_first
virtual last:word = list_last

}

list_head dd ? ;1list head pointer
list_tail d4d ? ;list tail pointer
ENDS

Let’s look at this example to see what’s happening.

METHOD indicates an object method call and is followed by a list
of the method procedure declarations for the object. These
declarations are ‘enclosed in braces ({ }) because the list of methods
requires more than one line.

Each method declaration tells Turbo Assembler which procedure
it should use to manipulate the object when invoking that method
name. For example, the first method procedure declaration

construct:dword = list_construct

declares a method named construct that is a far procedure
(because a DWORD stores the pointer to it). The actual procedure
name of the method is list_construct, which should be defined
elsewhere in the source code.

Turbo Assembler considers a method to be virtual if it's preceded

by the keyword VIRTUAL. When you call such a method, Turbo
Assembler will locate the method’s procedure address by looking
it up from a table present in memory at run time. Otherwise, the
method is a static method, meaning that Turbo Assembler can
determine its address at compile time. For example, the method
construct is a static method, while the method insert is declared as
a virtual method. Later in this chapter, we'll explain why you
might want to choose virtual or static methods.

The data structure for the method immediately follows the
method procedure declaration section. This definition uses the
syntax for the standard STRUC directive. This example contains
declarations for the linked list’s head and tail pointers.

Chdpfer 4, Creating object-oriented programs ‘ 57

-~ Declaring a derived

58

object

The method declaration portion of the object declaration doesn’t
place any data in the object’s data structure unless you've used
virtual methods. Instead, these declarations cause Turbo
Assembler to build a separate table data structure that contains
the specified method procedure addresses as default values. You
should have an instance of this table for every object, and you
must explicitly place the table. We'll explain how to do this later
in this chapter.

Since the object declaration must exist in the module containing
the method procedures for the object (as well as included in any
source code that uses the object), you should declare the object
itself in a separate file that can be INCLUDEJ into the source code.
We recommend using a file name in the form objectname. ASO
(ASsembly Object). This file should consist of only the object
declaration. The object methods should be in another source file
so that you can include the object declaration wherever you need
it. For example, the linked list object declaration in the previous

" example would be placed in the file LIST.ASO. The file LIST.ASM

could be used to define the object’s method procedures. Any
program making use of the objects would include LIST.ASO, but
not LIST.ASM.

The keyword GLOBAL in the object declaratlon causes Turbo
Assembler to publish information that lets you use the objectin a
module other than the one it’s defined in. The object declaration
must also be included in all modules that use the object.

An object that inherits another object’s methods and data is called
a derived object. You can’t override the members of the parent data
structure, but you can override the individual methods by
respecifying them in the new object method list.

An object can inherit any other single object, whether that other
object is a base or derived object itself. The inherited object is
called the parent object. The derived object inherits the data and
methods of the parent object, so you should only use inheritance
when these methods and data are useful to the new object.

For example, you can define a queue object that inherits the

‘linked list object because you can implement a queue as a linked

list. Here’s an example of such a derived object:
queue STRUC GLOBAL list METHOD {

init :DWORD=queue_init
virtual insert:word = queue_insert ; (queue node insert

Turbo Assembler User’s Guide

; procedure)

virtual remove:word = queue_delete ; (queue node delete

; procedure)
virtual first:word = queue_ first ; (queue first node procedure)
virtual last:word = queue_last ; {queue end node procedure)
virtual enqueue:word = list_append . ;queue enqueue procedure

virtual dequeue:word = queue_dequeue ;queue dequeue procedure

}4
ENDS
Placing the object name list before the METHOD keywords tells-
Turbo Assembler that the new object queue inherits the methods
and data of the object, list. Any object name placed in this location
will be inherited by the object being declared. You can use only
one name (only single inheritance is supported).

The new queue object inherits all the data and methods from the
list object, unless you override it. Note that queue needs its own
init to install the pointer to the virtual method table for queues.

The inherited insert, remove, first, and last method declarations for
the queue are respecified in the declaration, so these methods are
replaced with the indicated procedures.

Two new methods have been declared for the queue: enqueue and
dequeue. Notice that the method procedure for enqueue is the same
as for appending to a linked list. However, we need a new
procedure to dequeue from the queue, and this we call
queue_dequeue.

The queue object has no additional data declared other than what
it inherits from list. It inherits the linked list’s head and tail
pointers, which are still needed for the queue because of the
linked list methods used to manage the queue.

Declaring a method procedure

Method procedures manipulate instances of the object. They are
‘much like library routines in that they should have a well-defined
call and a return value interface, but knowledge of how the
method procedures work internally is not necessary.

The method procedures for an object should provide
comprehensive management of the objects; that is, they should be
the only procedures allowed direct access to the objects.
Furthermore, you should use the concepts of data abstraction

Chapter 4, Creating object-oriented programs ' 59

60

Il 2

[l 2

when you design the methods: You should be able to call the
method procedures without having any knowledge of the inner
workings of the method procedures.

In all other respects, you can write method procedures for any
language or interface you want, although usually C++ or Pascal
calling conventions are used. Any arguments to the procedures
are up to you as well. One argument that is usually required is a
pointer to an object instance. Some method procedures might
require additional parameters. For example, the initialization

- method for the list object requires just the pointer to the list object,

while the list insert method requires a pointer to the list, a pointer
to the new node to insert, and a pointer to the node it’s inserted
after.

There are advantages and disadvantages to using both static and
virtual methods. Static methods are resolved at compile time, and
result in direct calls to the method procedure. This makes the call
faster, and does not require you to use intermediate registers (as
in virtual method calls). However, since these calls are resolved at
compile time, static method calls don’t have the ﬂex1b111ty of
virtual method calls.

Virtual method calls are made indirectly through an instance of
the virtual method table for the object. The fact that the call is
indirect gives virtual methods the disadvantage of requiring you
to use intermediate registers when you make the call (which
could complicate your code). A big advantage, however, is that
virtual method calls are resolved at run time. Thus, you can make
virtual method calls for a derived object by calling a common
ancestor object’s method without having to know exactly what
sort of descendant object you're dealing with.

Declare static and virtual method procedures exactly the same
way as any other procedure, with the following exception: if you
omit the procedure name for virtual methods, you’'ll cause an
empty uninitialized location in the virtual method table and
Turbo Assembler won't warn you if you do this. Omitting the
procedure name is an error if the method is not virtual, since
virtual methods don’t go into the table.

Here’s an example of a method procedure:

;Construct a Linked-List object.

;This is the method "construct".

iThis must be a static method.

:Returns DX:AX pointing to linked-list object, null if none.

TUrbo Assembler User’s Guide

;Object is allocated but not yet initialized.
list_construct PROC PASCAL FAR
USES ds
;-- Allocate the Linked-List object --
;1<<do the allocation here>>
ret
ENDP

The virtual method table

The virtual method table (VMT) is a table of addresses of the
procedures that perform virtual methods. Usually this table is
placed in the program’s data segment. Any object having virtual
methods requires an instance of the VMT somewhere in the
program.

Use the TBLINST directive to create the instance of the VMT for
an object. Since this directive creates a table for the most recently
declared object, you should place this directive immediately after
‘the object declaration, as in the following:

INCLUDE list.aso
DATASEG.
TBLINST

Initializing the
virfual method Simply creating the instance of the VMT is not enough to let you
table make calls to virtual methods. Every object with virtual methods

includes a pointer to the VMT in its data structure. You must

initialize this pointer whenever you create an instance of an
object, and can use TBLINIT to do so.

Initialize the VMT pointer in the init method for the Object as

follows:
Notice that the init method ;Initialize a Linked List object.
must be static because you “This is th W e
can’t call a virtual method iThis is the method "init".
for an object instance until ;This must be a static method!
affer you initialize the Vi['fual list_init PROC PASCAL FAR
fable pointer. ARG @elist:dword
USES ds, bx

1ds bx,@@list

;-- Initialize any virtual method table for the object at ds:bx
TBLINIT ds:bx '

;-- Initialize the object’s data --

Chapter 4, Creating object-oriented programs el

~

ti<<initialize any data for the object here...>>
ret
ENDP

“Calling an object method

The CALL syntax is similar for
cdlling static or virtual

62

methods.

Calling a static
method

Use the CALL instruction to invoke object methods.Turbo
Assembler provides an extension to the standard CALL
instruction, CALL..METHOD, for calling method procedures.

When making a call to a method procedure, you should write the
CALL..METHOD instruction as if you were making a call to a
virtual method, even if you know that you're calling a static
method. Doing so will have no ill effects on static method calls,
and gives you the flexibility of changing methods from static to
virtual or back again without having to change all the calls to the
method. For the same reasons, you should specify a reasonable
selection for the intermediate calling registers, even if you know
that the method you're calling is static.

Calls to static methods are resolved at compile time to direct calls
to the desired method procedure for the object. However, when
making the call, you should not make a direct call to the method
procedure; instead, use the extended CALL..METHOD instruction.

The following example shows a sample call to the static init
method for the linked list object.

CALL foolist METHOD list:init pascal,ds offset foolist
CALL es:di METHOD list:init pascal,es di

The call address itself is the address of an instance of the object.
This address is used for syntactic reasons only; the actual call
generated is a direct call to the method procedure.

In this example, the first call is to the init method for the object list.
Since this is a static method, you make a direct call to the method
procedure list_init. Turbo Assembler ignores the object instance,
foolist (except that it’s passed as an argument to the method
procedure).

The method name is followed by the usual extended call language
and parameter list. The language and parameters depend on the

Turbo Assémb/er User’s Guide

Calling a virtual
method

Chapter 4, Creating object-orien ted programs

method you're calling, and one of the parameters is generally a
pointer to the instance of the object. In this example, the method
accepts a single parameter, which is a pointer to the instance of
the object.

Any call to a virtual method requires an indirect call to the
method procedure. You can use the extended CALL..METHOD
instruction to let this happen. Turbo Assembler generates the
following instructions to perform the call:

1. Load intermediate registers from the object instance with a
pointer to the VMT.

2. Make an indirect call to the appropriate table member. -

Therefore, when you specify

CALL <instance> METHOD <object>:<method> USES <segs:<regs
<calling_stuff>

the generated instructions are as follows:

MOV <reg>, [<instance>.<virtual_method_table_pointer>]
CALL [(<seg>:<reg>).<method>] <calling_stuff>

The first instruction loads the selected register <reg> with the
address of the table from the VMT pointer field of the object
structure. The second instruction makes an indirect call to the
appropriate method in the table.

For example, a call of the form
CALL es:di method list:insert uses ds:bx pascal,es di,es dx,es cx
generates a sequence like

mov bx, [es:di.@Mptr_list]
CALL [ds:bx.insert] pascal,\
es di,es dx,es cx

Note that for objects declared with NEAR tables, only the offset
register will be loaded by the CALL..METHOD instruction. The
segment register should already contain the correct value. The
following example shows how to make sure that the segment
register is properly set up.

:Bppend a node at the end of a Linked-List object.
;This is the virtual method "list|append".

63

64

list_append PROC PASCAL NEAR
ARG @elist:dword, \
@@new: dword
USES ds,bx,es,di
mov ax,@Data
mov ds,ax
les di,@@list
sub ax,ax
CALL es:di method list:insert uses ds:bx pascal,\
es di,@enew,ax ax
ret
ENDP

Note You can'’t call any virtual methods until after you initialize the
VMT pointer in the object’s data. This is because the pointer loads
the address of the VMT (from which the address of the desired
virtual method procedure is retrieved). Thus, if you haven’t
initialized the pointer to the VMT, any virtual method call will
result in a call to some random address.

As another example, consider the base object node, which you can
include in any object placed in a linked list or a queue.

node STRUC GLOBAL METHOD {

construct:dword = node_construct ;node constructor routine
destroy:dword = node_destroy ;node destructor routine
init:dword = node_init ;node initialization routine
deinit:dword = node_deinit ;node deinitialization
. R routine

virtual next:word = node_adv ;next node routine
virtual prev:word = node_back ;previous node routine
virtual print:word = node_print . ;print contents of node
} .
node_next dd ? ;next node pointer
node_prev dd ? ;prev node pointer

ends

You can define any number of other objects inheriting the node
object, to let it use a linked list or queue. Here are two examples:

mlabel STRUC GLOBAL node METHOD {
virtual print:word = label_print
}
label name db 80 dup (?)
label_addr db 80*2 dup (?)°
label_city db 80 dup (?)
label_state db 2 dup (?)

. label_zip db 10 dup (?)

ENDS ’

~ Turbo Assembler User's Guide

book STRUC GLOBAL node METHOD {
virtual print:word = book_print
} .
book_title db 80 dup (?)
book_author db 80 dup (?)

ENDS

In the next example, we're making calls to methods by calling
printit for both label and book objects. It doesn’t matter what
object gets passed to printit, as long as node is an ancestor. Because
the print method is a virtual method, the call is made indirectly
through the VMT for the object. For the first call to printit, the
method procedure label_print is called, because we’re passing an
instance of a label object. For the second call to printit, the method
procedure book_print is called, because we’re passing an instance
of a book object. Note that if the method print were static, then the
call in printit would always call the node_print procedure (which is
not desirable).

call printit pascal,<<instance address of label object>>
call printit pascal,<<instance address of book object>>

printit proc pascal near
arg @Qobj:dword
uses ds,si,es,bx
mov ax,@data
mov es,ax
1ds si,@@obj
call ds:si method node:print uses es:bx pascal,ds si
ret
endp

Calling ancestor

virtual methods Using ancestor virtual methods can help you write methods for
' derived classes since you can reuse some of the code. For
example, queues can use the same listing method as a list, as long
as you specify whether the item is a queue or a list. Within the list
class, you can have
v<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space: failed reallocation of scalar replaced objects</ns1:faultstring></ns1:XMLFault>