
-- -

Quick Reference

Borland"
Turbo
Assembler"

Quick Reference

Borland®
Turbo Assembler®
Borland International, Inc., 100 Borland Way

\ P.O. Box 660001, Scotts Valley, CA95067-000l

Borland may have patents and/or pending patent applications covering subject matter in this
document The furnishing of this document does not give you any license to these patents.

Copyright © 1988, 1995 by Borland International. All rights reserved. All Borland products are
trademarks or registered trademarks of Borland International, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

The material in Chapter 3 and Chapter 4 is reprinted with permission of Intel Corporation,
copyright © Intel Corporation 1987, 1995.

Printed in the U.S.A

LSM1350WW2I772 5EOR1295
9596979899-9 8 7 6 5 4
HI

Contents
Chapter 1
Predefined symbols 1

$ 1
@32Bit 1
@code 1
@CodeSize 1
@CPU 1
@curseg 1
@data 1
@DataSize. 2
??date 2
@fardata 2
@fardata? 2
@FileName 2
??filename 2
@Interface. 2
@Model 2
@Objed 2
@ffi&k 2
@Startup 2
@Table_<objectname>.. 2
@TableAddr_<objectname> . .·3
??time 3
??version 3
@WordSize 3

Chapter 2
Operators 5
Ideal mode operator

precedence 5
MASM mode operator

precedence 5
Operators 6

() 6
* 6
+ (binary) 6
+ (unary) 6
- (binary) 6
- (unary) 6
.................... 7
/ 7
: 7
? 7
[j 7
AND 7
BYTE 7
BYTEPTR ., 7
CODEPTR. 7

DATAPTR 8
DUP 8
DWORD 8
DWORDPTR 8
EQ 8
FAR 8
FARPTR 8
FWORD 8
FWORDPTR 8
GE 9
GT '" 9
HIGH 9
HIGH 9
LARGE 9
LE 9
LENGTH 9
LOW 9
LOW 9
LT 10
MASK 10
MOD 10
NE 10
NEAR 10
NEARPTR 10
NOT 10
OFFSET 10
OR 10
PROC 11
PROCPTR 11
PTR 11
PWORD 11
PWORD PTR 11
QWORD 11
QWORD PTR 11
SEG 11
SHL 11
SHORT 12
SHR ... , 12
SIZE 12
SMALL 12
SYMTYPE 12
TBYTE 12
TBYTE PTR 12
THIS 12
.TYPE 13
TYPE 13
TYPE 13
UNKNOWN , ... 13
WIDTH 13
WORD 13

WORDPTR 13
XOR•.... 13

Macro operators
&
<>
1.
0/0•..

14
14
14
14
14
14

Run-time operators 14
-- 14
!= 14
> 14
>= 15
< 15
<= 15
I I 15
&& l .••. 15
& 15
! , 15
CARRY? 15
OVERFLOW? '" 15
PARITY? 15
SIGN? 16
ZERO? 16

Chapter 3
Directives 17

.186 17

.286 17

.286C 17

.286P 17

.287 17

.386 17

.386C 18

.386P 18

.387 18

.486 18

.486C 18

.486P 18

.487 18

.586 18

.586C 19

.586P 19

.587 19
,.8086 19
.8087 19

ALIGN
.ALPHA
ALIAS
ARG

19
19
19
19
20
20

ii

ASSUME 20
%BIN 20
.BREAK " 20
BYTE 21
CALL' 21
CATSTR 21
.CODE 21
CODESEG 21
COMM 21
COMMENT 22
%CONDS I. • • • • 22
.CONST 22
CONST 22
.CONTINUE 22
.CREF 22
%CREF 22
%CREFALL 22
%CREFREF 23
%CREFUREF 23
%CTLS 23
.DATA 23
DATASEG 23
.DATA? 23
DB ' 23
DD 24
%DEPTH 24
DF 24
DISPLAY 24
DOSSEG 24
DP 24
DQ ... '" 25
DT 25
DW 25
DWORD , 25
ECHO 25
ELSE 25
.ELSE 26
ELSEIF 26
EMUL 26
END 26
ENDIF 26
.ENDIF 27
ENDM 27
ENDP 27
ENDS 27
.ENDW 27
ENUM 27
EQU 27
.ERR 28
ERR 28
.ERR1 28
.ERR2 28

.ERRB 28

.ERRDEF 28

.ERRDIF 28

.ERRDIFI28

.ERRE 29

.ERRIDN 29

.ERRIDNI.29
ERRIF 29
ERRIF1 29
ERRIF229
ERRIFB 29
ERRIFDEF29
ERRIFDIF.30
ERRIFDIFI30
ERRIFE 30
ERRIFIDN30
ERRIFIDNI 30
ERRIFNB 30
ERRIFNDEF30
.ERRNB 30
.ERRNDEF 31
.ERRNZ 31
EVEN 31
EVENDATA 31
.EXIT 31
EXITCODE 31
EXITM 31
EXTERN 31
EXTERNDEF 31
EXTRN 32
.FARDATA 32
FARDATA 32
.FARDATA? 32
FASTIMUL32
FLIPFLAG32
FOR 33
FORC 33
FWORD 33
GETFIELD33
GLOBAL 33
GOTO34
GROUP 34
IDEAL34
IF 34
.IF 34
IF1 35
IF2 35
IFB 35
IFDEF 35
IFDIF 35
IFDIFI 36
IFE 36
IFIDN 36

iii

IFIDNI 36
IFNB 37
IFNDEF 37
%INCL 38
INCLUDE 38
INCLUDELIB 38
INSTR 38
INVOKE 38
IRP 39
IRPC 39
JMP 39
JUMPS 39
LABEL 39
.LALL 39
LARGESTACK. 39
.LFCOND 40
%LINUM 40
%LIST 40
.LIST 40
.LISTALL 40
.LISTIF 40
.LISTMACRO 40
.LISTMACROALL 40
LOCAL 41
LOCALS 41
MACRO 41
%MACS 41
MASKFLAG 41
MASM 41
MASM51 41
MODEL 41
.MODEL :'.. . 42
MULTERRS 42
NAME 42
%NEWP AGE. 42
%NOCONDS 42
%NOCREF 42
%NOCTLS 42
NOEMUL 43
%NOINCL 43
NOJUMPS 43
%NOLIST 43
.NOLIST 43
.NOLISTIF 43
.NOLISTMACRO 43
NOLOCALS 43
%NOMACS 44
NOMASM51 44
NOMULTERRS 44
NOSMART 44
%NOSYMS 44
%NOTRUNC. 44
NOWARN 44

OPTION 44
ORG 45
%OUT 45
P186 45
P286 45
P286N 45
P286P 45
P287 45
P386 45
P386N 45
P386P 46
P387 : 46
P486 46
P486N 46
P487 46
P586 . '.' 46
P586N 46
P587 46
P8086 47
P8087 47
PAGE 47
%PAGESIZE 47
%PCNT 47
PN087 47
%POPLCTL 47
POPSTATE 47
PROC 48
PROCDESC 48
PROCTYPE. 48
PROTO 49
PUBLic 49
PUBLICDLL 49
PURGE 49
%PUSHLCTL 49
PUSHSTATE 49
QUIRKS 50
QWORD 50
.RADIX 50
RADIX ' 50
REAL4 : 50
REAL8 50
REAL10 50
RECORD 50
REPEAT 51
.REPEAT 51
REPT 51
RETCODE 51
RETF 51
RETN 51
.sALL 52

iv

SBYTE 52
SDWORD 52
SEGMENT 52
.SEQ 52
SETFIELD 53
SETFLAG 53
.sFCOND 53
SIZESTR 53
SMALLSTACK 53
SMART 53
.sTACK : .. 53
STACK 53
.STARTUP 54
STARTUPCODE 54
STRUC '.' . 54
STRUCT 54
SUBSTR 54
SUBTITLE 54
SUBTTL 55
%SUBTTL 55
SWORD 55
%SYMS 55
TABLE 55
% TABSIZE 55
TBLINIT 55
TBLINST 55
TBLPTR 56
TBYTE 56
TESTFLAG 56
%TEXT 56
TEXTEQU 56
.TFCOND -. 56 .
TITLE 56
%TITLE 56
%TRUNC 56
TYPEDEF , .. 57
UDATASEG 57
UFARDATA 57
UNION 57
.UNTIL 57
.UNTILCXZ 57
USES 58
VERSION 58
WARN 58
WHILE 58
.WHILE 58
WORD 58
.xALL 58
.XCREF 59
.xLIST 59

Chapter 4
Processor instructions 61
Operand-size and address-size

attributes 61
Default segment attribute ... 61
Operand-size and address-size

Instruction prefixes62
Address-size attribute for

stack 62
Instruction format 62

ModR/M and SIB bytes63
How to read the instruction

set pages67
Instruction name67

Flags 67
Opcode -.68
Instruction68
Clocks 70

AAA 71
AAD 71
AAM 71
AAS 72
ADC 72
ADD 73
AND 73
ARPL 74
BOUND 75
BSF 75
BSR 75
BSWAP 76
BT ' 76
BTC 76
BTR 77
BTS 77
CALL 77
CBW 79
CDQ 80
CLC .. '.' 80
CLD 80
CLI 80
CLTS 81
CMC 81
CMP 81
CMPS,CMPSB, CMPSW,

CMPSD 82
CMPXCHG 83
CHPXCHG8B 84
CPUID 85
CWD '.' 85

v

CWDE 86
DAA 86
DAS 86
DEC 86
DIV 87
ENTER 87
HLT 88
IDIV 88
IMUL 89
IN 90
INC 90
INS, INSB, INSW, INSD 91
INT,INTO 91
INVD 92
INVLPG 93
IRET, IRETD, IRETW 93
Jcc 94
JMP 97
LAHF 98
LAR 98
LEA 99
LEAVE 99
LGDT /LIDT 100
LGS, LSS, LFS, LDS, LES 100
LLDT 101
LMSW 101
LOCK 102
LODS, LODSB, LODSW,

LODSD 103
LOOP, LOOPcond 103
LSL 104
LTR 104
MOV 105
MOV . ~ 106
MOVS, MOVSB, MOVSW,

MOVSD 107
MOVSX 107
MOVZX 108
MUL 108
NEG 108
NOP 109
NOT 109
OR 109
OUT 110
OUTS, OUTSB, OUTSW,

OUTSD 110
POP 111
POP A, POP AD, POP AW 112
POPF, POPFD, POPFW. 113

PUSH 113 FCLEX, FNCLEX 139
PUSHA, PUSHAD, FCOM 139

PUSHAW 114 FCOMP 139
PUSHF, PUSHFD, PUSHFW .. 114 FCOMPP 140
RCL, RCR, ROL, ROR 115 FCOS 140
RDMSR 117 FDECSTP 140
RDTSC 118 FDISI, FNDISI 140
REP, REPE, REPZ, REPNE, FDN 140

REPNZ 118 FDNP 141
RET 120 FDNR 141
RSM 121 FDNRP 141
SAHF 122 FENI, FNENI 141
SAL, SAR, SHL, SHR 122 FFREE 142
SBB 124 FIAD}) 142
SCAS, SCASB, SCASW, FICOM 142

SCASD 125 FICOMP 142
SETcc 125 FIDIV 143
SGDT, SIDT 126 FIDIVR 143
SHLD 127 FILD 143
SHRD 127 FIMUL 143
SLDT 128 FINCSTP 144
SMSW 128
STC 128

FINIT, FNINIT. 144
FIST 144

STD 128 FISTP 144
STI , 129 FISUB 145
STOS, STOSB, STOSW, .

STOSD 129
STR ... '.' 130
SUB 130
TEST 131
VERR, VERW 131
WAIT 132
WBINVD 132
WRMSR 132
XADD 133
XCHG 134
XLAT, XLATB 134
XOR 135

FISUBR 145
FLD 145
FLDCW 145
FLDENV 146
FLDLG2 146
FLDLN2 146
FLDL2E 146
FLDL2T 146
FLDPI 147
FLDZ 147
FLD1 147
FMUL 147
FMULP 148

ChapterS
Coprocessor instructions 137

FNOP 148
FPATAN 148
FPREM 148

F2XM1 138 FPREM1 148
FABS ; ... 138 FPTAN 149
FADD 138 FRNDINT 149
FADDP 138 FRSTOR 149
FBLD 138 FSA VE, FNSA VE 149
FBSTP 139 FSCALE 150
FCHS 139 FSETPM 150

vi

FSIN 150 FSUBRP 152
FSINCOS 150 ' FTST 153
FSQRT 150 FUCOM 153
FST 151 FUCOMP 153
FSTCW, FNSTCW 151 FUCOMPP153
FSTENV, FNSTENV 151 FWAIT 153
FSTP 151 FXAM 154
FSTSW, FNSTSW 151 FXCH 154
FSTSW AX, FNSTSW AX 152 FXTRACT 154
FSUB 152 FYL2X 154
FSUBP 152 FYL2XP1 154
FSUBR 152 F2XM1 155

vii

viii

Predefined symbols
All the predefined symbols can be used in both MASM and Ideal mode.

$
Represents the current location counter within the current segment.

@32Bit
Numeric equate indicating whether segments in the current model are declared
as 16 bit or 32 bit.

@code
Alias equate for .CODE segment name.

@CodeSize
Numeric equate that indicates code memory model (O=near, l=fi.u).

@CPU
Numeric equate that returns information about current processor directive.

@curseg
Alias equate for current segment.

@data
Alias equate for near data group name.

Chapter 1, Predefined symbols 1

@DataSize
Numeric equate that indicates the data memory model (O=near, l=far, 2=huge).

??date
String equate for today's date.

@fardata
Alias equate for initialized far data segment name.

@fardata?
Alias equate for uninitialized far data segment name.

@FileName
Alias equate for current assembly file name.

??filename
String equate for current assembly file name.

@Interface
Numeric equate indicating the language and operating system selected by
MODEL.

@Model
Numeric equate representing the model currently In effect.

@Object
Text macro containing the name of the current object.
= Alias equate for stack segment.

@Stack
Alias equate for stack segment.

@Startup
Label that marks the beginning of startup code.

@Table_<objectname>
Data type containing the object's method table.

2 Turbo Assembler Quick Reference

@TableAddr_<objectname>
Label describing the address of the instance of the object's virtual method table.

??time
String equate for the current time.

??version
Numeric equate for current Turbo Assembler version number.

@WordSize
Numeric equate that indicates 16- or 32-bit segments (2=16-bit, 4=32-bit).

Chapter 1, Predefined symbols 3

4 Turbo Assembler Quick Reference

Operators
This chapter covers the operators Turbo Assembler provides and their
precedence. The two tables that follow detail operator precedence for Ideal and
MASMmodes.

Ideal mode operator precedence
The following table lists the operators in order of priority (highest is first, lowest
is last):

• 0, [], LENGTH, MASK, OFFSET, SEG, SIZE, WIDTH

• HIGH, LOW

• +, - (unary)

• *, I, MOD, SHL, SHR

• +, - (binary)

• EQ, GE, GT, LE, L T, NE

• NOT

• AND
• OR,XOR

• : (segment override)

• . (structure member selector)

• HIGH (before pointer), LARGE, LOW (before pointer), PTR, SHORT,
SMALL, SYMTYPE

MASM mode operator precedence
• <, 0, [], LENGTH, MASK, SIZE, WIDTH

• . (structure member selector)

• HIGH,LOW

Chapter 2, Operators 5

• +, - (unary)

• : (segment override)

• OFFSET, PTR, SEG, THIS, TYPE

• *,/, MOD, SHL, SHR

• +, - (binary)

• EQ, GE, GT, LE, LT, NE

• NOT

• AND

• OR,XOR

• LARGE, SHORT, SMALL, .TYPE

Operators

() Ideal,MASM

(expression)

Marks expression for priority evaluation.

* Ideal,MASM

expression 1 * expression2

Multiplies two integer expressions. Also used with 80386 addressing modes
where one expression is a register .

. + (binary)
expression 1 + expression2

Adds two expressions.

+ (unary)
+ expression

Indicates that expression is positive.

- (binary)
expression 1 - expression2

Subtracts two expressions.

- (unary)
- expression

Changes the sign of expression.

6 Turbo Assembler Quick Reference

Ideal,MASM

Ideal,MASM

Ideal, MASM

Ideal, MASM

Ideal,MASM

memptr. fieldname

Selects a structure member.

Ideal,MASM

expression1 / expression2

Divides two integer expressions.

Ideal, MASM

segorgroup : expression

Generates segment or group override.

? Ideal, MASM

Ox?

Initializes with indeterminate data (where Dx is DB, DD, DF, OP, DQ, DT, or
DW).

[]
expression 1[expression2j

[expression 1][expression2j

Ideal,MASM

MASM mode: The [] operator can be used to specify addition or register
indirect memory operands. Ideal mode: The [] operator specifies a memory
reference.

AND Ideal, MASM

expression1 AND expression2

Performs a bit-by-bit logical AND of two expressions.

BYTE Ideal

BYTE expression
Forces address expression to be byte size.

BYTE PTR Ideal,MASM

BYTE PTR expression
Forces address expression to be byte size.

CODEPTR Ideal,MASM

CODEPTR expression
Returns the default procedure address size.

Chapter 2, Operators 7

DATAPTR Ideal

DATAPTR expression

Forces address expression tomodel-dependent size.

DUP Ideal, MASM

count DUP (expression [,expression] ...)

Repeats a data allocation operation count times.

DWORD Ideal

DWORD expression

Forces address expression to be doubleword size.

DWORDPTR Ideal,MASM

DWORD PTR expression

,Forces address expression to be doubleword size.

EQ Ideal,MASM

expression1 EO expression2

Returns true if expressions are equal.

FAR Ideal

FAR expression

Forces an address expression to be a far code pointer.

FARPTR Ideal,MASM

FAR PTR expression

Forces an address expression to be a far code pointer.

FWORD Ideal

FWORD expression

Forces address expression to be 32-bit far pointer size.

FWORDPTR Ideal,MASM

FWORD PTR expression

Forces address expression to be 32-bit far pointer size.

8 Turbo Assembler Quick Reference

GE Ideal, MASM

expression 1 G E expression2

Returns true if one expression is greater than or equal to the other.

GT Ideal, MASM

expression 1 GT expression2

Returns true if one expression is greater than the other.

HIGH Ideal,MASM

HIGH expression

Returns the high part (8 bits or type size) of expression.

HIGH Ideal

type HIGH expression
Returns the high part (8 bits or type size) of expression.

LARGE Ideal,MASM

LARGE expression

Sets expression's offset size to 32 bits. In Ideal mode, this operation is legal only if
386 code generation is enabled.

LE Ideal, MASM

expression 1 LE expression2

Returns true if one expression is less than or equal to the other.

LENGTH Ideal, MASM

LENGTH name
Returns number of data elements allocated as part of name.

LOW Ideal,MASM

LOW expression

Returns the low part (8 bits or type size) of expression.

LOW Ideal

type LOW expression

Returns the low part (8 bits or type size) of expression.

Chapter 2, Operators 9

LT
expression 1 L T expression2

Returns true if one expression is less than the other.

MASK
MASK recordfieldname
MASK record

Returns a bit mask for a record field or an entire record.

MOD
expression 1 MOD expression2

Returns remainder (modulus) from dividing two expressions.

~ NE
expression 1 N E expression2

Returns true if expressions are not equal.

NEAR
NEAR expression

Forces an address expression to be a near code pointer.

NEARPTR
NEAR PTR expression

Forces an address expression to be a near code pointer.

NOT
NOT expression

Performs a bit-by-bit complement (invert) of expression.

OFFSET
OFFSET expression

Ideal,MASM

Ideal,MASM

Ideal,MASM

Ideal,MASM

Ideal

Ideal,MASM

Ideal,MASM

Ideal,MASM

Returns the offset of expression within the current segment (or the group that the
segment belongs to, if using simplified segmentation directives or Ideal mode).

OR Ideal,MASM

expression 1 OR expression2

Performs a bit-by-bit logical OR of two expressions.

10 T u r boA sse m b I e r Qui c k Ref ere nee

PRoe Ideal

PROC expression

Forces an address expression to be a near or far code pointer.

PRoe PTR Ideal,MASM

PROC PTR expression

Forces an address expression to be a near or far code pointer.

PTR Ideal, MASM

type PTR expression

Forces address expression to have type size.

PWORD Ideal

PWORD expression

Forces address expression to be 32-bit far pointer size.

PWORDPTR Ideal,MASM

PWORD PTR expression

Forces address expression to be 32-bit far pointer size.

aWORD Ideal

aWORD expression

Forces address expression to be quadword size.

aWORDPTR Ideal, MASM

aWORD PTR expression

Forces address expression to be quadword size.

SEG Ideal, MASM

SEG expression

Returns the segment address of an expression that references memory.

SHL Ideal, MASM

expressioQ SHL count

Shifts the value of expression to the left count bits. A negative count causes the
data to be shifted the opposite way.

Chapter 2, Operators 11

SHORT Ideal,MASM

SHORT expression

Forces expression to be a short code pointer (within -128 to +127 bytes of the
current code location).

SHR Ideal,MASM

expression SHR count

Shifts the value of expression to the right count bits. A negative count causes the
data to be shifted the opposite way.

SIZE Ideal,MASM

SIZE name

Returns size of data item allocated with name. In MASM mode, SIZE returns
the value of LENGTH name multiplied by TYPE name. In Ideal mode, SIZE
returns the byte count within name's DUP.

SMALL Ideal,MASM

SMALL expression

Sets expression's offset size to 16 bits. In Ideal mode, this operation is legal only if
386 code generation is enabled. .

SYMTYPE Ideal

SYMTYPE

Returns a byte describing expression.

TBVTE Ideal

TBYTE expression

Forces address expression to be lO-byte size.

TBVTE PTR Ideal,MASM

TBYTE PTR expression

Forces address expression to be 10-byte size.

THIS Ideal,MASM

THIS type

Creates an operand whose address is the current segment and location counter.
type describes the size of the operand and whether it refers to code or data.

12 T u r boA sse m b I e r Qui c k Ref ere nee

.TYPE MASM

.TYPE expression

Returns a byte describing the mode and scope of expression.

TYPE IDEAL

TYPE name1 name2

Applies the type of an existing variable or structure member to another variable
or structure member.

TYPE
TYPE expression

Returns a number indicating the size or type of expression.

UNKNOWN
UNKNOWN expression

Removes type information from address expression.

WIDTH
WIDTH recordfieldname
WI DTH record

Returns the width in bits of a field in a record, or of an entire record.

WORD
WORD expression

Forces address expression to be word size.

WORDPTR
WORD PTR expression

Forces address expression to be word size.

XOR
expression1 XOR expression2

MASM

Ideal

Ideal, MASM

Ideal

Ideal,MASM

Ideal, MASM

Performs bit-by-bit logical exclusive OR of two expressions. Unconditional
page break inserted for print formatting

C hap t e r 2, 0 per a tor s 13

Macro operators

& Ideal,MASM

&name

Substitutes actual value of macro parameter name.

<> Ideal, MASM

Treats text literally, regardless of any special characters it might contain.

Ideal,MASM

!character

Treats character literally, regardless of any special meaning it might otherwise
have.

% Ideal,MASM

%text

Treats text as an expression, computes its value and replaces text with the result.
text may be either a numeric expression or a text equate.

" Ideal, MASM

;;comment

Suppresses storage of a comment in a macro definition.

Run-time operators
The following operators are evaluated at run time, and can only be used inside
.IF, .REPEAT, and .WHILE loops. These operators are valid only in MASM
mode.

MASM

expressionl == expression2
Returns true when expressionl is equal to expression2.

!= MASM

expressionl != expression2
Returns true when expressionl is not equal to expression2.

> MASM

expressionl > expression2
Returns true when expressionl is greater than expression2.

14 Turbo Assembler Quick Reference

>= MASM
expressionl >= expression2
Returns true when expressionl is greater than or equal to expression2.

< MASM
expressionl < expression2
Returns true when expressionl is less than expression2.

<= MASM
expressionl <= expression2
Returns true when expressionl is less than or equal to expression2.

II MASM
expressionl I I expression2
Returns the logical ORed value of expressionl and expression2.

&& MASM
expressionl && expression2

Returns the logical ANDed value of expressionl and expression2.

& MASM
express ion 1 & expression2

Returns the bitwise ANDed value of expressionl and expression2.

MASM
!expression
Returns the logical negation of expression.

CARRY? MASM
Returns the status of the carry flag.

OVERFLOW? MASM

Returns the status of the overflow flag.

PARITY? MASM
Returns the status of the parity flag.

C hap t e r 2, 0 per a tor s 15

SIGN? MASM

Returns the status of the sign flag.

ZERO? MASM

Returns the status of the zero flag.

16 T u r boA sse m b I e r Qui c k Ref ere nee

Directives
.186 MASM

.186

Enables assembly of 80186 processor instructions .

. 286 MASM

.286

Enables assembly of non-privileged (real mode) 80286 processor instructions
and 80287 numeric coprocessor instructions .

. 286C MASM

.286c

Enables assembly of non-privileged (real mode) 80286 processor instructions
and 80287 numeric coprocessor instructions .

. 286P

.286P

Enables assembly of a1180286 (including protected mode) processor
instructions and 80287 numeric coprocessor instructions .

. 287

.287

Enables assembly of 80287 numeric coprocessor instructions.

MASM

MASM

C hap t e r 3, D ire c t i v e s 17

.386 MASM

.386

Enables assembly of non-privileged (real mode) 80386 processor ins:tructions
and 80387 numeric coprocessor instructions .

. 386C MASM

.386C

Enables assembly of non-privileged (real mode) 80386 processor instructions
and 80387 numeric coprocessor instructions .

. 386P

.386P

Enables assembly of all 80386 (including protected mode) processor
instructions and 80387 numeric coprocessor instructions .

. 387

.387

Enables assembly of 80387 numeric coprocessor instructions .

. 486

.486

Enables assembly of non-privileged (real mode) instructions for the i486
processor .

. 486C

.486C

Enables assembly of non-privileged (real mode) instructions for the i486
processor .

. 486P

.486P

Enables assembly of protected mode instructions for the i486 processor .

. 487

.487

Enables assembly of 80487 numeric processor instructions.

18 T u r boA sse m b I e r Qui c k Ref ere nee

MASM

MASM

MASM

MASM

MASM

MASM

·586
.586

Enables assembly of non-privileged (real mode) instructions for the
Pentium processor .

. 586e

.586e

Enables assembly of non-privileged (real mode) instructions for the
Pentium processor .

. 586P

.586P

MASM

MASM

MASM

Enables assembly of protected mode instructions for the Pentium processor .

. 587 MASM

.587

Enables assembly of Pentium numeric processor instructions .

. . 8086 MASM

.8086

Enables assembly of 8086 processor instructions only. This is the default
processor instruction mode used by Turbo Assembler .

. 8087 MASM

.8087

Enables assembly of 8087 numeric coprocessor instructions only. This is the
default coprocessor instruction mode used by Turbo Assembler.

Ideal,MASM

name:

Defines a near code label called name.

= Ideal,MASM

name = expression

Defin~s or redefines a numeric equate.

ALIGN Ideal,MASM

ALIGN boundary

Rounds up the location counter to a power-of-two address boundary (2,4,8, ...).

Chapter 3, Directives 19

.ALPHA MASM

.ALPHA

Sets alphanumeric segment-ordering. The fa command-line option performs
the same function.

ALIAS Ideal,MASM

ALIAS <alias _ name>=<targeL name>

Allows the association of an alias name with a particular target name. When the
linker encounters an alias name, it resolves the alias by referring to the target
name.

Note: The syntax for ALIAS is identical in both Ideal and MASM modes.

ARG Ideal,MASM

ARG argument [,argumen~ ... [=symbo~
[RETURNS argument [,argumenm

Sets up arguments on the stack for procedures.'Each argument is assigned a
positive offset from the BP register, presuming that both the return address of
the procedure call and the caller's BP have been pushed onto the stack already.
Each argument has the following syntax (boldface items are literal):

argname [[cauntt]] [:[debug_size] [type] [:caunt2]]

The optional debug_size has this syntax:

[type] PTR

ASSUME
ASSUME segmentreg:name [,segmentreg:name) ...

ASSUME segmentreg:NOTHING

ASSUME NOTHING

Ideal,MASM

Specifies the segment register (segmentreg) that will be used to calculate the
effective addresses for all labels and variables defined under a given segment or
group name (name). The NOTHING keyword cancels the association between
the designated segment register and segment or group name. The ASSUME
NOTHING statement removes all associations between segment registers and
segment or group names.

In addition, MASM mode supports the following syntax, which uses ASSUME
to assign a data type to a data register:

ASSUME datareg:type [,datareg:type)

%BIN Ideal,MASM

%BIN size

Sets the width of the object code field in the listing file to size columns.

20 T u r boA sse m b I e r Qui c k Ref ere nee

.BREAK MASM

.BREAK [.IF expression]

This directive generates code that terminates a . WHILE or .REPEAT block if the
expression evaluates true.

BYTE MASM

[name] BYTE expression [,expression] ...

Allocates and initializes a byte of storage. Synonymous with DB.

CALL Ideal,MASM

CALL<instance ytr>M ETHOD{ objeclname>:}
< method_ name>{USES{ segreg: }offsreg}{ <extended _ caILParameters>}

Calls a method procedure.

CATSTR Ideal, MASM51

name CATSTR string [,string] ...

Concatenates several strings to form a single string name .

. CODE MASM

.CODE [nameJ

Synonymous with CODESEG. MASM mode only.

CODESEG Ideal, MASM

CODESEG [name]

Defines the start of a code segment when used with the .MODEL directive. If
you have specified the medium or large memory model, you can follow the
.CODE (or CODESEG) directive with an optional name that indicates the name
of the segment.

COMM Ideal,MASM

COMM definition [,definition] ...

Defines a communal variable. Each definition describes a symbol and has the
following format (boldface items are literal):

[distance] [language] symbolname[[cauntt]]:type [:count2J

distance can be either NEAR or FAR and defaults to the size of the default data
memory model if not specified. language is either C, PASCAL, BASIC,
FORTRAN, PROLOG, or NOLANGUAGE and defines any language-specific
conventions to be applied to symbolname. symbolname is the communal symbol
(or symbols, separated by commas). If distance is NEAR, the linker uses countl
to calculate the total size of the array. If distance is FAR, the linker uses count2 to
indicate how many elements there are of size countl times the basic element size

C hap t e r 3, D ire c t i v e s 21

(determined by type). type can be one of the following: BYTE, WORD,
DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, or a
structure name. count2 specifies how many items this communal symbol
defines. Both countl and count2 default to 1.

COMMENT
COMMENT delimiter [tex~

[tex~
[tex~ delimiter [tex~

MASM

Starts a multiline comment. delimiter is the first non-blank character following
COMMENT.

%CONDS Ideal,MASM

%CONDS

Shows all statements in conditional blocks in the listing .

. CONST MASM

.CONST

Defines the start of the constant data segment. Synonymous with CONST.
MASM mode only.

CONST Ideal,MASM

CaNST

Defines the start of the constant data segment.

.CONTINUE MASM

.CONTINUE [.IF expression]

This directive generates code that jumps to the top of a .WHILE or .REPEAT
block if the expression evaluates true .

. CREF MASM

.CREF

Synonymous with %CREF. MASM mode only.

%CREF Ideal,MASM

%CREF

Allows cross-reference information to be accumulated for all symbols
encountered from this point forward in the source file .. CREF reverses the effect
of any O/OXCREF or .xCREF directives that inhibited the information collection.

22 T u r boA sse m b I e r Qui c k Ref ere nee

%CREFALL Ideal,MASM

%CREFALL

Causes all subsequent symbols in the source file to appear in the cross-reference
listing. This is the default mode for Turbo Assembler. %CREF ALL reverses the
effect of any previous %CREFREF or %CREFUREF directives that disabled the
listing of unreferenced or referenced symbols.

%CREFREF Ideal,MASM

%CREFREF

Disables listing of unreferenced symbols in cross-reference.

%CREFUREF Ideal,MASM

%CREFUREF

Lists only the unreferenced symbols in cross-reference.

%CTLS Ideal, MASM

%CTLS

Causes listing control directives (such as %LIST, %INCL, and so on) to be
placed in the listing file .

. DATA MASM

. DATA

Synonymous with DATASE6: MASM mode only.

DATASEG Ideal

DATASEG

Defines the start of the initialized data segment in your module. You must first
have used the .MODEL directive to specify a memory model. The data segment
is put in a group called DGROUP, which also contains the segments defined
with the .STACK, .CONST, and .DATA? directives .

. DATA? MASM

. DATA?

Defines the start of the uninitialized data segment in your module. You must
first have used the .MODEL directive to specify a memory model. The data
segment is put in a group called DGROUP, which also contains the segments
defined with the .STACK, .CONST, and .DATA directives.

Chapter 3, Directives 23

DB Ideal,MASM

[name] DB expression [,expression] ...

Allocates and initializes a byte of storage. name is the symbol you'll
subsequently use to refer to the data. expression can be a constant expression, a
question mark, a character string, or a DUPlicated expression.

DD Ideal, MASM

[name] DO [type PTR] expression [,expression] ...

Allocates and initializes 4 bytes (a doubleword) of storage. name is the symbol
you'll subsequently use to refer to the data. type followed by PTR adds debug
information to the symbol being defined, so that Turbo Debugger can display
its contents properly. type is one of the following: BYTE, WORD, DATAPTR,
CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, SHORT, NEAR,
FAR or a structure name. expression can be a constant expression, a 32-bit
floating-point number, a question mark, an address expression, or a
DUPlicated expression.

%DEPTH Ideal, MASM

%DEPTH width

Sets size of depth field in listing file to width columns. The default is 1 column.

DF Ideal,MASM

[name] OF [type PTR] expression [,expression] ...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is the
symbol you'll subsequently use to refer to the data. type followed by PTR adds
debug information to the symbol being defined, so that Turbo Debugger can
display its contents properly. type is one of the following: BYTE, WORD,
DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE,
SHORT, NEAR, FAR or a structure name. exprespion can be a constant
expression, a question mark, an address expression, or a DUPlicated
expression.

DISPLAY Ideal,MASM

DISPLAY "text'

Outputs a quoted string (text) to the screen.

DOSSEG Ideal,MASM

DOSSEG

Enables DOS segment-ordering at link time. DOSSEG is included for
backward compatibility only.

24 T u r boA sse m b I e r Qui c k Ref ere nee

OP Ideal,MASM

[name] DP [type PTR] expression [,expression] ...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is the
symbol you'll subsequently use to refer to the data. type followed by PTR adds
debug information to the symbol being defined, so that Turbo Debugger can
display its contents properly. type is one of the following: BYTE, WORD,
DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE,
SHORT, NEAR, FAR or a structure name. expression can be a constant
expression, a question mark, an address expression, or a DUPlicated
expression.

OQ Ideal,MASM

[name] DO expression [,expression] ...

Allocates and initializes 8 bytes (a quadword) of storage. name is the symbol
you'll subsequently use to refer to the data. expression can be a constant
expression, a 64-bit floating-point number, a question mark, or a DUPlicated
expression.

OT Ideal,MASM

[name] DT expression [,expression] ...

Allocates and initializes 10 bytes of storage. name is the symbol you'll
subsequently use to refer to the data. expression can be a constant expression, a
packed decimal constant expression, a question mark, an 80-bit floating-point
number, or a DUPlicated expression.

ow Ideal,MASM

[name] DW [type PTR] expression [,expression] ...

Allocates and initializes 2 bytes (a word) of storage. name is the symbol you'll
subsequently use to refer to the data. type followed by PTR adds debug
information to the symbol being defined, so that Turbo Debugger can display
its contents properly. type is one of the following: BYTE, WORD, DATAPTR,
CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, SHORT, NEAR,
FAR or a structure name. expression can be a constant expression, a question
mark, an address expression, or a DUPlicated expression.

OWORO MASM

[name] DWORD [type PTR] expression [,expression] ...

Allocates and initializes a doubleword (4 bytes) of storage. Synonymous with
DD.

ECHO MASM

ECHO text

Displays the message text to the standard output device (the screen, by default).
Synonymous with %OUT and DISPLAY.

Chapter 3, Directives 25

ELSE
IF condition

statements 1
[ELSE

statements2j
ENDIF

Ideal,MASM

Starts an alternative IF conditional assembly block. The statements introduced
by ELSE (statements2) are assembled if condition evaluates to false .

. ELSE

.1 F condition
statements 1

[.ELSE
statements2j

.ENDIF

MASM

Starts an alternative .IF conditional assembly block. The statements introduced
by .ELSE (statements2) are executed if condition evaluates to false.

ELSEIF
IF condition1

statements 1
[ELSEIF condition2

statements2j
ENDIF

Ideal,MASM

Starts nested conditional assembly block if condition2 is true. Several other
forms of ELSEIF are supported: ELSEIF1, ELSEIF2, ELSEIFB, ELSEIFDEF,
ELSEIFDIF, ELSEIFDIFI, ELSEIFE, ELSEIFIDN, ELSEIFIDNI, ELSEIFNB,
and ELSEIFNDEF.

EMUL Ideal,MASM

EMUL

Causes all subsequent numeric coprocessor instructions to be generated as
emulated instructions, instead of real instructions. When your program is
executed, you must have a software floating-point emulation package installed
or these instructions will not work properly.

END Ideal,MASM

END [stat1address]

. Marks the end of a source file. startaddress is a symbol or expression that
specifies the address in your program where you want execution to begin.
Turbo Assembler ignores any text that appears after the END directive.

26 T u r boA sse m b I e r Qui c k Ref ere nee

ENDIF
IFx condition

statements
ENDIF

Ideal, MASM

Marks the end of a conditional assembly block started with one of the IF
directives .

. ENDIF

.IF condition
statements

.ENDIF

MASM

Marks the end of a conditional assembly block started with the .IF directive.

ENDM Ideal,MASM

ENDM

Marks the end of a repeat block or a macro definition.

ENDP
ENDP [procname]

[procname] ENDP

Ideal, MASM

Marks the end of a procedure. If procname is supplied, it must match the
procedure name specified with the PROC directive that started the procedure
definition.

ENDS
ENDS [segmentname I strucname]

[segmentname I strucname] ENDS

Ideal, MASM

Marks end of current segment, structure or union. If you supply the optional
name, it must match the name specified with the corresponding SEGMENT,
STRUC, or UNION directive .

. ENDW

.WHILE expression
statements

.ENDW

Marks the end of a conditional assembly block started with the .WHILE
directive.

MASM

C hap t e r 3, D ire c t i v e s 27

ENUM Ideal,MASM

ENUM name[enum_va~,enum_var ...]]

name ENUM [enum_va~,enum_var ...]]

Declares an enumerated data type.

EQU Ideal,MASM

name EQU expression

Defines name to be a string, alias, or numeric equate containing the result of
evaluating expression .

. ERR MASM

.ERR <string>

Synonymous with ERR. MASM mode only.

ERR Ideal, MASM

ERR <string>

Forces an error to occur at the line that this directive is encountered on in the
source file. The optional string will display as part of the error message .

. ERR1 MASM

.ERR1 <string>

Forces an error to occur on pass 1 of assembly. The optional string will display
as part of the error message .

. ERR2 MASM

.ERR2 <string>

Forces an error to occur on pass 2 of assembly if multiple-pass mode (controlled
by 1m command-line option) is enabled. The optional string will display as part
of the error message .

. ERRS MASM

.ERRS argument <string>

Forces an error to occur if argument is blank (empty). The optional string will
appear as part of the error message .

. ERRDEF MASM

.ERRDEF symbol <string>

Forces an error to occur if symbol is defined. The optional string will appear as
part of the error message.

28 Turbo Assembler Quick Reference

.ERRDIF MASM

.ERRDIF argument1,argument2 <string>

Forces an error to occur if arguments are different. The comparison is case
sensitive. The optional string will appear as part of the error message .

. ERRDIFI MASM

.ERRDIFI argument1,argument2 <string>

Forces an error to occur if arguments are different. The comparison is not case
sensitive. The optional string will appear as part of the error message .

. ERRE MASM

.ERRE expression <string>

Forces an error to occur if expression is false (0). The optional string will appear
as part of the error message .

. ERRIDN MASM

.ERRIDN argument1,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is case
sensitive. The optional string will appear as part of the error message .

. ERRIDNI MASM

.ERRIDNI argument1,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is not case
sensitive. The optional string will appear as part of the error message.

ERRIF Ideal, MASM

ERRIF expression <string>

Forces an error to occur if expression is true (nonzero). The optional string will
appear as part of the error message.

ERRIF1 Ideal, MASM

ERRIF1 <string>

Forces an error to oCcur on pass 1 of assembly. The optional string will appear
as part of the error message.

ERRIF2 Ideal,MASM

ERRIF2 <string>

Forces an error to occur on pass 2 of assembly if multiple-pass mode (controlled
by 1m command-line option) is enabled. The optional string will appear as part
of the error message.

C hap t e r 3, 0 ire c ti v e s 29

ERRIFB Ideal, MASM

ERRIFB argument <string>

Forces an error to occur if argument is blank (empty). The optional string will
appear as part of the error message.

ERRIFDEF Ideal,MASM

ERRIFDEF symbol <string>

Forces an error if symbol is defined. The optional string will appear as part of the
error message.

ERRIFDIF Ideal,MASM

ERRIFDIF argumentt,argument2 <string>

Forces an error to occur if arguments are different. The comparison is case
sensitive. The optional string will appear as part of the error message.

ERRIFDIFI Ideal,MASM

ERRIFDIFI argument1,argument2 <string>

Forces an error to occur if arguments are different. The comparison is not case
sensitive. The optional string will appear as part of the error message.

ERRIFE Ideal,MASM

ERRIFE expression <string>

Forces an error if expression is false (0). The optional string will appear as part of
the error message.

ERRIFIDN Ideal,MASM

ERRIFIDN argumentt,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is case
sensitive. The optional string will appear as part of the error message.

ERRIFIDNI Ideal,MASM

ERRIFIDNI argument1,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is not case
sensitive. The optional string will appear as part of the error message.

ERRIFNB Ideal,MASM

ERRIFNB argument <string>

Forces an error to occur if argument is not blank. The optional string will appear
as part of the error message.

30 Turbo Assembler Quick Reference

ERRIFNDEF Ideal, MASM

ERRIFNDEF symbol <string>

Forces an error to occur if symbol is not defined. The optional string will appear
as part of the error message .

. ERRNB MASM

.ERRNB argument <string>

Forces an error to occur if argument is not blank. The optional string will appear
as part of the error message .

. ERRNDEF MASM

.ERRNDEF symbol <string>

Forces an error to occur if symbol is not defined. The optional string will appear
as part of the error message .

. ERRNZ MASM

.ERRNZ expression <string>

Forces an error to occur if expression is true (nonzero). The optional string will
appear as part of the error message.

EVEN Ideal, MASM

EVEN

Rounds up the location counter to the next even address.

EVEN DATA Ideal, MASM

EVENDATA

Rounds up the location counter to the next even address in a data segment.

.EXIT MASM

.EXIT [return_value_exp~

Produces termination code. MASM mode only. Synonymous with EXITCODE.

EXITCODE Ideal,MASM

EXITCODE [return_value_exp~

Produces termination code. You can use it for each desired exit point.
return_value_expr is a number to be returned to the operating system. If you
don't specify return_value_expr, the value in AX is returned.

Chapter 3, Directives 31

EXITM Ideal,MASM

EXITM

TeI1l1lnates macro- or block-repeat expansion and returns control to the next
statement following the macro or repeat-block call. .

EXTERN MASM

EXTREN definition [,definition] ...

Synonymous with EXTRN. MASM mode only.

EXTERNDEF MASM

EXTERNDEF [language] name:type [,[Ianguage] name: type] ...

This directive defines one or more external variables, labels, or symbols called
name, of type type. name is treated as PUBLIC if it is defined in the current
module; it is treated as EXTERN if it is referenced in the module. name is
ignored if it is not referenced in the module. If type is ABS, name can be
imported as a constant. This directive is normally used in include files.

EXTRN Ideal, MASM

EXTRN definition [,definition] ...

Indicates that a symbol is defined in another module. definition describes a
symbol and has the following format:

[language] name[count1]:type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, ASSEMBLER, or PROLOG are to be applied to symbol name.
name i$ the symbol that is defined in another module and can optionally be
followed by countl, an array element multiplier that defaults to 1. type must
match the type of the symbol where it's defined and must be one of the
following: NEAR, FAR, PROC, BYTE, WORD, DWORD, DATAPTR, ,
CODEPTR, FWORD, PWORD, QWORD, TBYTE, ABS, or a structure name.
count2 specifies how many items this external symbol defines and defaults to 1
if not specified .

. FARDATA

.FARDATA [segmentname]

Synonymous with FARDATA. MASM mode only.

FARDATA
FARDATA [segmentname]

Defines the start of a far initialized data segment. segmentname, if present,
overrides the default segment name.

32 T u r boA sse m b I e r Qui c k Ref ere nee

MASM

Ideal

• FAR DATA? MASM

.FARDATA? [segmentname]

Defines the start of a far uninitialized data segment. segmentname, if present,
overrides the default segment name.

FASTIMUL Ideal,MASM

FASTIMUL<deslreg>,<source_rlm>,<value>

Generates code that multiplies source register or memory address by value, and
puts it into destination register.

FLiPFLAG Ideal, MASM

f1agreg FLIPFLAG f1agreg]

Optimized form of XOR that complements bits with shortest possible
instruction. Use only if the resulting contents of the flags registers are
unimportant.

FOR
FOR parameter, arg 1[, arg2] ...

statements
ENDM

Synonymous with IRP. MASM mode only.

FORe
FORe parameter,string

statements
ENDM

Synonymous with IRPC. MASM mode only.

FWORD
[name] FWORD [type PTR] expression [,expression] ...

MASM

MASM

MASM

Allocates and initializes a 6 bytes (a far 48-bit pointer) of storage. Synonymous
with DF. MASM mode only.

GETFIELD Ideal,MASM

GETFI ELD<field _ name><destination Jeg>, <source_rim>

Generates code that retrieves the value of a field found in the same source
register or memory address, and sets the destination to that value.

Chapter 3, Directives 33

GLOBAL Ideal,M~SM

GLOBAL definition [,definition] ...

Acts as a combination of the EXTRN and PUBLIC directives to define a global
symbol. definition describes the symbol and has the following format (boldface
items are literal):

[language] name [[countt]] :type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, NOLANGUAGE, or PROLOG are to be applied to symbol name.
If name is defined in the current source file, it is made public exactly as if used in
a PUBLIC directive. If not, it is declared as an external symbol of type type, as if
the EXTRN directive had been used. name can be followed by an optional array
count multiplier, countl, which defaults to 1. type must match the type of the
symbol in the module where it is defined and must be one of the following:
NEAR, FAR, PROC, BYTE, WORD, DATAPTR, CODEPTR, DWORD,
FWORD, PWORD, QWORD, TBYTE, ABS, or a structure name. count2
specifies how many items this symbol defines (1 is the default).

GOTO Ideal,MASM

GOTO tag_symbol

Tells Turbo Assembler to resume execution at the specified macro tag
(tag_symbol). GOTO terminates any conditional block that it is found in.

GROUP Ideal,MASM

GROUP groupname segmentname [,segmentname] .. .

groupname GROUP segmentname [,segmentname] .. .

Associates groupname with one or'more segments, so that all labels and
variables defined in those segments have their offsets computed relative to the
beginning of group groupname. segmentname can be either a segment name
defined previously with SEGMENT or an expression starting with SEG. In
MASM mode, you must use a group override whenever you access a symbol in
a segment that is part of a group. In Ideal mode, Turbo Assembler
automatically generates group overrides for such symbols.

IDEAL Ideal,MASM

IDEAL

Enters Ideal assembly mode. Ideal mode will stay in effect until it is overridden
by a MASM or QUIRKS directive.

IF
I F expression

statements 1
[ELSE

34 Turbo Assembler Quick Reference

Ideal,MASM

statements2J
ENDIF

Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided that expression is true (nonzero). If expression
is falso (zero), statements2 are assembled .

.IF

.1 F expression
statements 1

[.ELSE
statements2J

.ENDIF

MASM

This directive generates code that executes statements1 if the expression evaluates
true. If an .ELSE follows the .IF, statements2 are executed if the expression
evaluates false. Because the expression is evaluated at run time, it can
incorporate the run-time relational operators. MASM mode only.

IF1
IF1

statements 1
[ELSE

statements2J
ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided directive, provided that multiple-pass mode
(controlled by the 1m command-line option) is enabled and that the current
assembly pass is pass one.

IF2
IF2

statements 1
[ELSE

statements2J
ENDIF

Ideal, MASM

Initiates a conditional block, causing the assembly of statements 1 up to the
optional ELSE directive, provided that multiple-pass mode (controlled by the
1m command-line option) is enabled and the current assembly pass is pass two.

IFB
IFB argument

statements 1
[ELSE

Ideal, MASM

Chapter 3, Directives 35

statements2J
ENDIF

Initiates a conditional block, causing the assembly of statementsl up to the
optional ELSE directive, provided that argument is blank (empty). If argument is
is not blank, statements2 are assembled.

IFDEF
IFDEF symbol

statements 1
[ELSE

statements2J
ENDIF

Ideal,MASM

Initiates a conditional block, causing the assembly of statementsl up to the
optional ELSE directive, provided that symbol is defined. If symbol is undefined,
statements2 are assembled.

IFDIF
IFDIF argument1,argument2

statements 1
[ELSE

statements2J
ENDIF

Ideal,MASM

Initiates a conditional block, causing the as'sembly of statementsl up to the
optional ELSE directive, provided that the arguments are different. If the
arguments are the same, statements2 are assembled. The comparison is case
sensitive. .

IFDIFI
IFDIFI argument1,argument2

statements 1
[ELSE

statements2]
ENDIF

Ideal,MASM

Initiates a conditional block, causing the assembly of truestatements up to the
optional ELSE directive, provided that the arguments are different. If the
arguments are the same, statements2 are assembled. The comparison is not case
sensitive.

IFE
IFE expression

statements 1
[ELSE

36 Turbo Assembler Quick Reference

Ideal,MASM

statements2J
ENDIF

Initiates a conditional block, causing the assembly of statementsl up to the
optional ELSE directive, provided that expression is false. If expression is true,
statements2 are assembled.

IFIDN
IFIDN argument 1 ,argument2

statements 1
[ELSE

statements2J
ENDIF

Ideal,MASM

Initiates a conditional block, causing the assembly of statementsl up to the
optional ELSE directive, provided that the arguments are identical. If the
arguments are not identical, statements2 are assembled. The comparison is case
sensitive.

IFIDNI
IFIDNI argument1,argument2

statements 1
[ELSE

statements2J
ENDIF

Ideal,MASM

Initiates a conditional block, causing the assembly of statements 1 up to the
optional ELSE directive, provided that the arguments are identical. If the
arguments are not identical, statements2 are assembled. The comparison is not
case sensitive.

IFNB
IFNB argument

statements 1
[ELSE

statements2J
ENDIF

Ideal,MASM

Initiates a conditional block, causing the assembly of statementsl up to the
optional ELSE directive, provided that argument is nonblank. If argument is
blank, statements2 are assembled.

IFNDEF
IFNDEF symbol

statements 1
[ELSE

Ideal, MASM

C hap t e r 3, D ire c t i v e s 37

statements2J
ENDIF

Initiates a conditional block, causing the assembly of statementsl up to the
optional ELSE directive, provided that symbol is not defined. If symbol is not
defined, statements2 are assembled.

%INCL Ideal,MASM

%INCL

Enables listing of include files. This is the default INCLUDE file listing mode.

INCLUDE MASM, Ideal

INCLUDE filename or INCLUDE "filename"

Includes source code from file filename at the current position in the module
being assembled. If no extension is specified, .ASM is assumed.

INCLUDELIB MASM, Ideal

INCLUDELIB filename or INCLUDELIB "filename"

Causes the linker to include library filename at link time. If no extension is
specified, .LIB is assumed.

INSTR Ideal,MASM

name INSTR [start,]string1,string2

name is assigned the position of the first instance of string2 in stringl. Searching
begins at position start (position one if start not specified). If string2 does not
appear anywhere-within stringl, name is set to zero.

IRP
IRP parameter,arg1[,arg2] ...

statements
ENDM

Ideal,MASM

Repeats a block of statements with string substitution. statements are assembled
once for each argument present. The arguments may be any text, such as
symbols, strings, numbers, and so on. Each time the block is assembled, the next
argument in the list is substituted for any instance of parameter in the statements.

38 Turbo Assembler Quick Reference

IRPC
IRPC parameter,string

statements
EN OM

Ideal,MASM

Repeats a block of statements with character substitution. statements are
assembled once for each character in string. Each time the block is assembled,
the next character in the string is substituted for any instances of parameter in
statements.

JMP Ideal, MASM

JM P <instance ytr>METHOO{ <objecl name>:}
<method _ name>{USES{ segreg:} offsreg}

Functions exactly like CALL..METHOD except that it generates a IMP instead
of a CALL and it cleans up the stack if there are LOCAL or USES variables on
the stack. Use primarily for tail recursion.

JUMPS Ideal,MASM

JUMPS

Causes Turbo Assembler to look at the destination address of a conditional
jump instruction, and if it is too far away to reach with the short displacement
that these instructions use, it generates a conditional jump of the opposite sense
around an ordinary jump instruction to the desired target address. This
directive has the same effect as using the IJJUMPS command-line option.

LABEL
name LABEL type

LABEL name type

MASM,ldeal

Defines a symbol name to be of type type. name must not have been defined
previously in the source file. type must be one of the following: NEAR, FAR,
PROC, BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, or a structure name .

. LALL MASM

.LALL

Enables listing of macro expansions.

LARGESTACK Ideal,MASM

LARGESTACK

Indicates that the stack is 32-bit.

C hap t e r 3, D ire c t i v e s 39

.LFCOND MASM

.LFCOND

Shows all statements in conditional blocks in the listing.

%LlNUM Ideal,MASM

%L1NUM size

Sets the width of the line-number field in listing file to size columns. The default
is four columns.

%LlST Ideal,MASM

%L1ST

Shows source ooes in the listing. This is the default listing mode .

. LIST MASM

.L1ST

Synonymous with %LIST. MASM mode only .

. LlSTALL MASM

.L1STALL

Begins the listing of all statements. Combines the directives .LIST, .LISTIF, and
.LISTMACROALL.

.LlSTIF MASM

.L1STIF

Lists all statements in conditional blocks, whether true or false. Synonymous
with .LFCOND. MASM mode only .

. LlSTMACRO

.L1STMACRO

Enables the listing of macro expansions that generate code or data.
Synonymous with .XALL. MASM mode only .

. LlSTMACROALL

.L1STMACROALL

MASM

MASM

Enables the listing of macro all macro expansions. Synonymous with .LALL.
MASM mode only.

40 Turbo Assembler Quick Reference

LOCAL
In macros:

LOCAL symbol [,symbo~ ...

In procedures:

LOCAL element [,elemen~ ... [=symbo~

Ideal, MASM

Defines local variables for macros and procedures. Within a macro definition,
LOCAL defines temporary symbol names that are replaced by new unique
symbol names each time the macro is expanded. LOCAL must appear before
any other statements in the macro definition.

Within a procedure, LOCAL defines names that access stack locations as
negative offsets relative to the BP register. If you end the argument list with an
equal sign (=) and a symbol, that symbol will be equated to the total size of the
local symbol block in bytes. Each element has the following syntax (boldface
brackets are literal):

symname [[count1]] [:[debug_size] [:type] [:count2]]

type is the data type of the argument. It can be one of the following: BYTE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD,
TBYTE, NEAR, FAR, PROC, or a structure name. If you don't specify a type,
WORD size is assumed.

count2 specifies how many items of type the symbol defines. The default for
count2 is 1 if it is not specified.

countl is an array element size multiplier. The total space allocated for the
symbol is count2 times the length specified by the type field times countl. The
default for countl is 1 if it is not specified.

The optional debug_size has this syntax:

[type] PTR

LOCALS Ideal,MASM

LOCALS [prefix]

Enables local symbols, whose names will begin with two at-signs (@@) or the
two-character prefix if it is specified. Local symbols are automatically enabled in
Ideal mode.

MACRO Ideal, MASM

MACRO name [parameter [,parametetj ...]

name MACRO [parameter [,parametetj ...]

Defines a macro to be expanded later when name is encountered. parameter is a
placeholder that you use in the the body of the macro definition wherever you
want to substitute one of the actual arguments the macro is called with.

Ideal, MASM

&MACS

Enables listing of macro expansions.

C hap t e r 3, D ire c t i v e s 41

MASKFLAG Ideal,MASM

f/agsreg MASKFLAG f/agsreg

Optimized form of AND that clears bits with the shortest possible instruction.
Use only if the resulting contents of the flags registers are unimportant.

MASM Ideal, MASM

MASM

Enters MASM assembly mode. This is the default assembly mode for Turbo
Assembler.

MASM51 Ideal,MASM

MASM51

Enables assemblr of some MASM 5.1 enhancements.

MODEL Ideal, MASM

MODEL [model modifie~ memorymodel [module name]
[,[/anguage modifie1/anguage] [,model modifie~

Sets the memory model for simplified segmentation directives. model modifier
can come before memorymodel or at the end of the statement and must be either
NEARSTACK or FARSTACK if present. memorymodel is TINY, SMALL,
MEDIUM, COMPACT, LARGE, HUGE or TCHUGE. module name is used in
the large models to declare the name of the code segment. language modifier is
WINDOWS, ODDNEAR, ODDFAR, or NORMAL and specifies generation of
MS-Windows procedure entry and exit code. language specifies which language
you will be calling from to access the procedures in this module: C, PASCAL,
BASIC, FORTRAN, PROLOG, or NOLANGUAGE. Turbo Assembler
automatically generates the appropriate procedure entry and exit code when
you use the PROC and ENDP directives. language also tells Turbo Assembler
which naming conventions to use for public and external symbols, and in what
order procedure arguments were pushed onto the stack by the calling module.
Also, the appropriate form of the RET instruction is generated to remove the
arguments from the stack before returning if required .

. MODEL MASM

.MODEL

Synonymous with MODEL. MASM mode only.

MULTERRS Ideal,MASM

MULTERRS

Allows multiple errors to be reported on a single source line.

42 Turbo Assembler Quick Reference

NAME Ideal, MASM

NAME modulename
Sets the object file's module name. This directive has no effect in MASM mode;
it only works in Ideal mode.

%NEWPAGE Ideal, MASM

%NEWPAGE

Starts a new page in the listing file.

°kNOCONDS Ideal,MASM

%NOCONDS

Disables the placement of statements in conditional blocks in the listing file.

°kNOCREF Ideal,MASM

%NOCREF [symbol, ...] ,

Disables cross-reference listing (CREF) information accumulation. If you
supply one or more symbol names, cross-referencing is disabled only for those
symbols.

%NOCTLS Ideal,MASM

%NOCTLS

Disables placement of listing-control directives in the listing file. This is the
default listing-control mode for Turbo Assembler.

NOEMUL Ideal, MASM

NOEMUL

Causes all subsequent numeric coprocessor instructions to be generated as real
instructions, instead of emulated instructions. When your program is executed,
you must have an 80x87 coprocessor installed or these instructions will not
work properly. This is the default floating-point assembly mode for Turbo
Assembler.

%NOINCL Ideal, MASM

%NOINCL

Disables listing of source lines from INCLUDE files.

NOJUMPS Ideal,MASM

NOJUMPS

Disables stretching of conditional jumps enabled with JUMPS. This is the
default mode for Turbo Assembler.

Chapter 3, Directives 43

%NOLIST Ideal,MASM

%NOLIST

Disables output to the listing file .

. NOLIST MASM

.NOLIST

Disables output to the list file. Synonymous with .XLIST. MASM mode only .

. NOLISTIF MASM

.NOLISTIF

Prevents statements in false conditional blocks from appearing in the listing file.
Synonymous with .SFCOND. MASM mode only .

. NOLISTMACRO MASM

.NOLISTMACRO

Suppresses the listing of all statements in macro expansions. Synonymous with
.sALL. MASM mode only.

NOLOCALS Ideal,MASM

.NOLOCALS

Disables local symbols enabled with LOCALS. This is the default for Turbo
Assembler's MASM mode.

%NOMACS Ideal,MASM

%NOMACS

Lists only macro expansions that generate code. This is the default macro listing
mode for Turbo Assembler.

NOMASM51 Ideal,MASM

NOMASM51

Disables assembly of certain MASM 5.1 enhancements enabled with MASM51.
This is the default mode for Turbo Assembler.

NOMULTERRS Ideal,MASM

NOMULTERRS

Allows only a single error to be reported on a source line. This is the default
error-reporting mode for Turbo Assembler.

44 Turbo Assembler Quick Reference

NOSMART Ideal, MASM

NOS MART

Disables code optimizations that generate different code than MASM.

%NOSYMS Ideal, MASM

%NOSYMS

Disables placement of the symbol table in the listing file.

%NOTRUNC Ideal, MASM

%NOTRUNC

Prevents truncation of fields whose contents are longer than the corresponding
field widths in the listing file.

NOWARN Ideal,MASM

NOWARN [warne/ass]

Disables warning messages with warning identifier warn class, or all warning
messages if warnclass is not specified.

OPTION MASM

OPTION option

TASM supports the following MASM options: CASEMAP, DOTNAME,
EMULATOR, EXPR16, EXPR32, L}MP, NOEMULATOR, NOKEYWORD,
NOL}MP, NODOTNAME, NOSCOPED, PROC, SEGMENT, and SCOPED.

Note that all other MASM options are recognized, but are ignored, by TASM.

ORG Ideal, MASM

ORG expression

Sets the location counter in the current segment to the address specified by
expression.

MASM

%OUT text

Displays text on screen.

P186 Ideal, MASM

P186

Enables assembly of 80186 processor instructions.

Chapter 3, Directives 45

P286
P286
Enables assembly of a1180286 (including protected mode) processor
instructions and 80287 numeric coprocessor instructions.

P286N
P286N

Ideal,MASM

Ideal,MASM

Enables assembly of non-privileged (real mode) 80286 processor instructions
and 80287 numeric coprocessor instructions.

P286P
P286P
Enables assembly of a1180286 (including protected mode) processor
instructions and 80287 numeric coprocessor instructions.

P287
P287
Enables assembly of 80287 numeric coprocessor instructions.

P386
P386
Enables assembly of a1180386 (including protected mode) processor
instructions and 80387 numeric coprocessor instructions.

P386N
P386N

Ideal,MASM

Ideal,MASM

Ideal, MASM

Ideal,MASM

Enables assembly of non-privileged (real mode) 80386 processor instructions
and 80387 numeric coprocessor instructions.

P386P
P386P
Enables assembly of a1180386 (including protected mode) processor
instructions and 80387 numeric coprocessor instructions.

P387
P387
Enables assembly of 80387 numeric coprocessor instructions.

46 T u r boA sse m b I e r Qui c k Ref ere nee

Ideal,MASM

Ideal,MASM

I,MASM

e
'es the
leaves
gn (+),
ber
eona

I,MASM

1t is 4

al,MASM

ulated).

al,MAS~

CTL

eal, MA~M

. eal, MASM

WSor

is
OLOG.

Ideal, MASM

all i486 (including protected mode) processor instructions.

Ideal, MASM

lon-privileged (real mode) i486 processor instructions.

Ideal,MASM

87 numeric processor instructions.

Ideal,MASM

Pentium (including protected mode) processor

Ideal,MASM

l-privileged (real mode) Pentium processor

Ideal,MASM

ium numeric processor instructions .

Ideal, MASM

. Drocessor instructions only. This is the default
e for Turbo Assembler.

Ideal, MASM

umeric coprocessor instructions only. This is the
~on mode for Turbo Assembler.

MASM

HZE. MASM mode only.

C hap t e r 3, D ire c t i v e s 47

%PAGESIZE
I

Ide~~1

%PAGESIZE [rows] [,cols] I

Sets the listing page height and width, starts new pages. rows specifies t~:li
number of lines that will appear on each listing page (10 .. 255). cols speci~
number of columns wide the page will be (59 .. 255). Omitting rows or cols
the current setting unchanged. If you follow %PAGESIZE with a plus s11111
a new page starts, the section number is incremented, and the page nun !,

restarts at 1. %P A G ESIZE with no arguments forces the listing to reSUJ:l1
new page, with no change in section number.

%PCNT Idei'

%PCNT width

Sets segment:offset field width in listing file to width columns. The defal
for 16-bit segments and 8 for 32-bit segments.

PN087 Id~

PN087
I

I

Prevents the assembling of numeric coprocessor instructions (real or e~

%POPLCTL :

IdE

%POPLCTL

Resets the listing controls to the way they were when the last %PUSHI
directive was issued.

POPSTATE
POPSTATE

Returns to last saved state from Turbo Assembler's internal state stack

MOC ~ ________________________ -1[1

PROC name [language modifie~ [language] [distance]
[USES items,] [argument [,argumen~ ...]
[RETURNS argument [,argumen~ ...]

statements
name ENDP

name PROC [language modifie~ [language] [distance]
[USES items,] [argument [,argumen~ ...]
[RETURNS argument [,argumen~ ...]

statements
name ENDP

Defines the start of procedure name. language modifier is either WINDt
NOWINDOWS, to specify generation of MS-Windows entry/exit co
language specifies which language you will be calling from to access t
procedure: C, PASCAL, BASIC, FORTRAN, NOLANGUAGE, or P

I

48 Turbo Assembler Quick Reference I

This determines symbol naming conventions, the order of any arguments on
the stack, and whether the arguments will be left on the stack when the
procedure returns. distance is NEAR or FAR and determines the type of RET
instruction that will be assembled at the end of the procedure. items is a list of
registers and/ or single-token data items to be pushed on entry and popped on
exit from the procedure. argument describes an argument the procedure is
called with. Each argument has the following syntax:

argname[[count1]] [[:distance] [PTR] type] [:count2]

argname is the name you'll use to refer to this argument throughout the
procedure. distance is NEAR or FAR to indicate that the argument is a pointer of
the indicated size. type is the data type of the argument and can be BYTE,
WORD, DWORD, FWORD, PWORD, QWORD, TBYTE, or a structure name.
WORD is assumed if none is specified. countl and count2 are the number of
elements of type. PTR tells Turbo Assembler to emit debug information to let
Turbo Debugger know that the argument is a pointer to a data item. Using PTR
without distance causes the pointer size to be based on the current memory
model and segment address size. RETURNS introduces one or more
arguments that won't be popped from the stack when the procedure returns.

PROCDESC
PROCDESC name [language] [language modifie~ [distance] [arguments]

name PRODESC [[/anguage_modifie~ language] [distance] [arguments]

Ideal,MASM

Declares a procedure prototype, which lets Turbo Assembler check the types
and number of parameters to procedure calls and declarations, and specifies
language and distance. Also serves to PUBLIC or EXTRN the procedure name.

PROCTYPE
PROCTYPE name [procedure_description]

name PROCTYPE [procedure_description]

procedure_description has the following syntax:

[[language _ modifie~/anguage][distance][argumenLlis~

argument _list has the following syntax:

argumen~,argumen~ ...

where each argument has the following syntax:

[argname][[countC expressions]] :complex _ type[:count2 _ expression]

Ideal,MASM

Declares a procedure type. Describes a procedure but does not create a
prototype for it. Can be used in place of the language specifier in a call to allow
argument type checking during compilation.

PROTO MASM

name PROTO [[/anguage_modifie~ language] [distance] [arguments]

Prototypes the function name. Synonymous with PROCDESC. MASM mode
only.

C hap t e r 3, 0 ire c t i v e s 49

PUBLIC Ideal,MASM

PUBLIC [language] symbol [,[language] symbo~ ...

Declares symbol to be accessible from other modules. If language is specified
(C, PASCAL, BASIC, FORTRAN, ASSEMBLER, or PROLOG), symbol is
made public after having the naming conventions of the specified language
applied to it.

PUBLlCDLL Ideal, MASM

PUBLlCDLL [language] symbol [,[language] symbo~ ...

Declares symbols to be accessible as dynamic link entry points from other
modules. symbol (a PROC or program label, data variable name, or numeric
constant defined with EQU) becomes accessible to other programs under
Windows. If language is specified (C, PASCAL, BASIC, FORTRAN, PROLOG,
or NOLANGUAGE), symbol is made public after having the naming
conventions of the specified language applied to it.

PURGE
PURGE macroname [,macroname] ...

Removes macro definition macroname.

%PUSHLCTL
%PUSHLCTL

Saves current listing controls on a 16-level stack

PUSHSTATE
PUSHSTATE

Ideal,MASM

Ideal,MASM

Ideal,MASM

Saves current operating state on an internal stack that is 16 levels deep.

QUIRKS Ideal, MASM

QUIRKS

Allows you to assemble a source file that makes use of one of the true MASM
bugs.

QWORD MASM

[name] QWORD expression [,expression] ...

Allocates and initializes 8 bytes (a quadword) of storage. Synonymous with
DQ. MASM mode only .

. RADIX MASM

.RADIX radix

Synonymous with RADIX. MASM mode only ..

50 Turbo Assembler Quick Reference

RADIX Ideal,MASM

RADIX radix

Sets the default radix for integer constants in expressions to 2, 8, la, or 16.

REAL4 MASM

REAL4

Allocates a short (32 bit) real number. MASM mode only.

REAL8 MASM

REAL8

Allocates a long (64 bit) real number. MASM mode only.

REAL10 MASM

REAL10

Allocates a la-byte (80 bit) real or BCD number. MASM mode only.

RECORD MASM,ldeal

name RECORD field [,field] .. .

RECORD name field [,field] .. .

Defines record name that contains bit fields. Each field describes a group of bits
in the record and has the following format (boldface items are literal):

fieldname: width[=expression]

fieldname is the name of a field in the record. width (1..16) specifies the number of
bits in the field. If the total number of bits in all fields is 8 or less, the record will
occupy 1 byte; 9 .. 16 bits will occupy 2 bytes; otherwise, it will occupy 4 bytes.
expression provides a default value for the field.

REPEAT
REPEAT expression

statements
ENDM

Synonymous with REPT. MASM mode only.

MASM

C hap t e r 3, D ire c t i v e s 51

.REPEAT

.REPEAT
statements

.UNTIL expression

.REPEAT
statements

.UNTILCXZ [expression]

MASM

This directive generates code that repeats the execution of the block of
statements until the expression evaluates true. The directive .UNTILC:XZ, which
evaluates true when the register CX is zero, can be used with or without the
conditional expression. Because the expression is evaluated at run time, it can
incorporate the run-time relational operators. MASM mode only.

REPT
REPT expression

statements
ENDM

Repeats the statement block until expression evluates true.

RETCODE
RETCODE

Ideal, MASM

Ideal,MASM

Generates either a near return (2-byte displacement) or a far return (4-byte
displacement) depending on the size of the memory model declared in the
.MODULE directive. A tiny, small, or compact memory model results in a near
return, while a medium, large, or huge memory model results in a far return.
See the RET processor instruction in Chapter 4 for more information.

RETF Ideal,MASM

RETF

Generates a far return (4-byte displacement) from a procedure. See the RET
processor instruction in Chapter 4 for more information.

RETN Ideal,MASM

RETN

Generates a near return (2-byte displacement) from a procedure. See the RET
processor instruction in Chapter 4 for more information .

. SALL MASM

.SALL

Suppresses the listing of all statements in macro expansions. MASM mode only.

52 T u r boA sse m b I e r Qui c k Ref ere nee

SBVTE MASM

[name] SBYTE expression [,expression] ...

Allocates and initializes a signed byte of storage. name is the symbol you'll
subsequently use to refer to the data. expression can be a constant expression, a
question mark, a character string, or a DUPlicated expression.

SDWORD MASM

[name] SDWORD expression [,expression] ...

Allocates and initializes a signed doubleword (4 bytes) of storage. name is the
symbol you'll subsequently use to refer to the data. expression can be a constant
expression, a question mark, a character string, or a DUPlicated expression.

SEGMENT
SEGMENT name [align] [combine] [use] ['class']

name SEGMENT [align] [combine] [use]['class']

MASM,ldeal

Defines segment name with full attribute control. If you have already defined a
segment with the same name, this segment is treated as a continuation of the
previous one. align specifies the type of memory boundary where the segment
must start: BYTE, WORD, DWORD, PARA (default), or PAGE. combine
specifies how segments from different modules but with the same name will be
combined at link time: AT expression (locates segment at absolute paragraph
address expression), COMMON (locates this segment and all other segments
with the same name at the same address), MEMORY (concatenates all
segments with the same name to form a single contiguous segment), PRIVATE
(does not combine this segment with any other segments; this is the default
used if none specified), PUBLIC (same as MEMORY above), STACK
(concatenates all segments with the same name to form a single contiguous
segment, then initializes SS to the beginning of the segment and SP to the length
of the segment) or VIRTUAL (defines a special kind of segment that will be
treated as a common area and attached to another segment at link time). use
specifies the default word size for the segment if 386 code generation is enabled,
and can be either USE16 or USE32. class controls the ordering of segments at
link time: segments with the same class name are loaded into memory together,
regardless of the order in which they appear in the source file .

. SEQ MASM

.SEQ

Sets sequential segment-ordering. This is the default ordering mode for Turbo
Assembler .. SEQ has the same function as the Is command-line option.

SETFIELD Ideal,MASM

SETFI ELD <field _ name><destination -,1m>, <source Jeg>

Generates code that sets a value in a record field. Sets the field in the destination
register or memory address with the contents of a source register.

Chapter 3, Directives 53

SETFLAG Ideal,MASM

f/agreg SETFLAG f/agreg

Optimized form of OR that sets bits with shortest possible instruction. Use only
if the resulting contents of the flags register is unimportant.

.SFCOND MASM

.SFCOND

Prevents statements in false conditional blocks from appearing in the listing file.

SIZESTR Ideal,MASM

name SIZESTR string

Assigns the number of characters in string to name. A null string has a length of
zero.

SMALLSTACK Ideal,MASM

SMALLSTACK

Indicates that the stack is 16-bit.

SMART Ideal,MASM

SMART

Enables all code optimizations .

. STACK MASM

.STACK [size]

Synonymous with STACK. MASM mode only.

STACK Ideal,MASM

STACK [size]

Defines the start of the stack segment, allocating size bytes. 1024 bytes are
allocated if size is not specified .

. STARTUP
,STARTUP

Provides initialization code. MASM mode only. Equivalent to
STARTUPCODE.MASM mode only.

STARTUPCODE
STARTUPCODE

MASM

Ideal,MASM

Provides initialization code and marks the beginning of the program.

54 Turbo Assembler Quick Reference

STRUC
[name] STR UC{ <modifiers>}{ <parenLname>}{M ETHOD<method _list>}

<structure_data>
ENDS [name]

STRUC [name]{ <modifiers>}{ <parenLname>}{M ETHOD<method _list>}
<structure_data>

ENDS [name]

Ideal,MASM

parent_name is the name of the parent object's data structure. method_list is like
that of TABLE. structure _data is any (additional) data present in an instance of
the object. modifiers can be GLOBAL, NEAR, or FAR.

STRUCT
[name] STRUCT{<modifiers>}{<parenLname>}{METHOD<method_list>}

<structure_data>
ENDS [name]

STRUCT [name]{<modifiers>}{<parenLname>}{METHOD<method_list>}
<structure_data>

ENDS [name]

Synonymous with STRUC. MASM mode only.

SUBSTR
name SUBSTR string,position[,size]

MASM

Ideal, MASM51

Defines a new string name consisting of characters from string starting at
position, with a length of size. All the remaining characters in string, starting
from position, are assigned to name if size is not specified.

SUBTITLE MASM

SUBTITLE text

Sets the subtitle in the listing file to text. Synonymous with %SUBTTL and
.SFCOND. MASM mode only.

SUBTTL MASM

SUBTTL "text'

Synonymous with %SUBTTL. MASM mode only.

%SUBTIL Ideal, MASM

%SUBTTL "text'

Sets subtitle in listing file to text.

Chapter 3, Directives 55

SWORD MASM

[name] SWORD expression [,expression] ...

Allocates and initializes a signed word (2 bytes) of storage. name is the symbol
you'll subsequently use to refer to the data. expression can be a constant
expression, a question mark, a character string, or a DUPlicated expression.

%SYMS Ideal,MASM

O/OSYMS

Enables symbol table placement in listing file. This is the default symbol listing
mode for Turbo Assembler.

TABLE Ideal,MASM

TABLE name [table_member [,table_member ...]]

Constructs a table structure used to contaih method pointers for objects.

%TABSIZE Ideal,MASM

%TABSIZE width

Sets the number of columns between tabs in .the listing file to width. The default
is 8 columns.

TBLINIT Ideal,MASM

TBLINIT

Initializes pointer in an object to the virtual method table.

TBLINST Ideal,MASM

TBLINST

Creates an instance of the virtual table for the current object and defines
@TableAddr_<object>. Must be used after every object definition that includes
virtual methods, so that the virtual table is allocated. You should use this
directive in only one module of your program.

TBLPTR Ideal,MASM

TBLPTR

Places a virtual table pointer within the object data. Defines a structure member
of the name @Mptr_<object>. This can only be used inside an object definition.

TBYlE MASM

[name] TBYTE expression [, expression] ...

Allocates and initializes 10 bytes of storage. Synonymous with DT.

56 Turbo Assembler Quick Reference

TESTFLAG Ideal, MASM '

flagreg TESTFLAG flagreg

Optimized form of TEST that tests bits with the shortest possible instruction.

%TEXT Ideal, MASM

%TEXT width

Sets width of source field in listing file to width columns.

TEXTEQU MASM

name TEXTEQU [item]

Assigns item to name. The item can be either a literal string, a string returned by
a macro function, or a string constant (must be preceded by a %) .

. TFCOND MASM

TFCOND

Toggles conditional block-listing mode. MASM mode only.

TITLE
TITLE "text'

Synonymous with % TITLE. MASM mode only.

%TITLE
%TITLE "text'

Sets title in listing file to text.

%TRUNC

Truncates listing fields that are too long.

TYPEDEF
TYPEDEF type_name complex_type

type_name TYPEDEF complex_type

Defines named types.

UDATASEG
UDATASEG

Defines the start of an uninitialized data segment.

MASM

Ideal, MASM

Ideal,MASM

Ideal,MASM

Ideal,MASM

C hap t e r 3, D ire c t i v e s 57

UFARDATA Ideal, MASM

UFARDATA

Defines the start'of an uninitialized far data segment.

UNION
UNION name

fields
ENDS [name]

name UNION
fields

[name] ENDS

Ideal, MASM (disabled by QUIRKS)

Defines a union called name. A union is just like a STRUC except that all its
members have an offset of zero from the start of the union. This results in a set
of fields that are overlayed, allowing you to refer to the memory area defined
by the union vyith different names and different data sizes. The length of a
union is the length of its largest member, not the sum of the lengths of its
members as in a STRUC. fields define the fields that comprise the union. Each
field uses the normal data allocation directives (DB, DW, and so on) to define
its size .

. UNTIL

.REPEAT
statements

.UNTIL expression

MASM

Termination directive to a .REPEAT loop. When expression evaluates true, the
loop started with the .REPEAT directive terminates .

. UNTILCXZ

.REPEAT
statements

.UNTILCXZ [expression]

MASM

Termination directive to a .REPEAT loop. The directive .UNTILCXZ, which
evaluates true when the register ex is zero, can be used with or without the
conditional expression.

USES Ideal,MASM

USES item Litem] ...

Indicates which registers or single-token data items you want to have pushed at
the beginning of the enclosing procedure and which ones you want popped just
before the procedure returns. You must use this directive before the first
instruction that actually generates code in your procedure.

58 T u r bo Ass e m b Ie r Qui c k Ref ere nee

VERSION MASM, Ideal

VERSION <version_/D>

Places Turbo Assembler in the equivalent operating mode for the specified
version.

WARN Ideal,MASM

WARN [warne/ass]

Enables the type of warning message specified with warnclass, or all warnings if
warnclass is not specified. warnclass may be one of: ALN, ASS, BRK, ICG, LCO,
OPI, OPP, OPS, OVF, PDC, PRO, PQK, RES, or TPI.

WHILE
WHILE while_expression

macro body
ENDM

Repeats a macro body until while_expression evaluates to 0 (false) .

. WHILE

.WHILE expression
statements

.ENDW

Ideal,MASM

MASM

This directive generates code that executes the block of statements while the
expression evaluates true. Because the expression is evaluated at run time, it can
incorporate the run-time relational operators. MASM mode only.

WORD MASM

[name] WORD [type PRT] expression [,expression] ...

Allocates and initializes 2 bytes (a word) of storage. Synonymous with DW .

. XALL MASM

.XALL

Causes only macro expansions that generate code or data to be listed .

. XCREF MASM

.XCREF

Disables cross-reference listing (CREF) information accumulation .

. XLlST MASM

.xLlST

Disables subsequent output to listing file. MASM mode only.

C hap t e r 3, D ire c t i v e s 59

60 Turbo Assembler Quick Reference

Processor instructions
This chapter presents instructions for the 80x86 processor set in alphabetical
order. For each instruction, the forms are given for each operand combination,
including object code produced, operands required, execution time, and a
description. For each instruction, there is an operational description and a
summary of exceptions generated.

Operand-size and address-size attributes
When executing instructions in a 16-bit application, 80x86 processors address
memory using either 16- or 32-bit addresses. Consequently, each instruction
that uses memory addresses has associated with it an address-size attribute of
either 16 or 32 bits. Sixteen-bit addresses imply both the use of a 16-bit
displacement in the instruction and the generation of a 16-bit address offset
(segment relative address) as the result of the effective address calculation.
Thirty-two-bit addresses imply the use of a 32-bit displacement and the
generation of a 32-bit address offset. Similarly, an instruction that accesses
words (16 bits) or doublewords (32 bits) has an operand-size attribute of either
16 or 32 bits.

The attributes are determined by a combination of defaults, instruction prefixes,
and (for programs executing in protected mode) size-specification bits in
segment descriptors.

Default segment attribute
For programs executed in protected mode, the D-bit in executable-segment
descriptors determines the default attribute for both address size and operand
size. These default attributes apply to the execution of all instructions in the
segment. A value of zero in the D-bit sets the default address size and operand

c size to 16 bits; a value of one, to 32 bits.

Programs that execute in real mode or virtual-8086 mode have 16-bit addresses
and operands by default.

Chapter 4, Processor instructions 61

Operand-size and address-size instruction prefixes
The internal encoding of an instruction can include two byte-long prefixes: the
address-size prefix, 67H, and the operand-size prefix, 66H. (A later section,
"Instruction format," shows the position of the prefixes in an instruction's
encoding.) These prefixes override the default segment attributes for the
instruction that follows. Table 4.1 shows the effect of each possible combination
of defaults and overrides.

Table 4.1 Effective size attributes
Segment default D= .. , 0 0 0 0 1 1

Operand-size prefix 66h N N y y N N y y

Address-size prefix 6711 N y N y N y N y

Effective operand size 16 16 32 32 32 32 16 16

Effective address size 16 32 16 32 32 16 32 16

Y = Yes, this instruction prefix is present.
N = No, this instruction prefix is not present.

Address-size attribute for stack
Instructions that use the stack implicitly (for example, POP EAX) also have a
stack address-size attribute of either 16 or 32 bits. Instructions with a stack
address-size attribute of 16 use the 16-bit SP stack pointer register; instructions
with a stack address-size attribute of 32 bits use the 32-bit ESP register to form
the address of the top of the stack .

The stack address-size attribute is controlled by the B-bit of the data-segment
descriptor in the SS register. A value of zero in the B-bit selects a stack address­
size attribute of 16; a value of one selects a stack address-size attribute of 32.

Instruction format
All instruction encodings are subsets of the general instruction format shown in
Figure 4.1. Instructions consist of optional instruction prefixes, one or two
primary opcode bytes, possibly an address specifier consisting of the ModR/M
byte and the SIB (scale index base) byte, a displacement, if required, and an
immediate data field, if required.

Smaller encoding fields can be defined within the primary opcode or opcodes.
These fields define the direction of the operation, the size of the displacements,
the register encoding, or sign extension; encoding fields vary depending on the
class of operation.

Most instructions that can refer to a operand in memory have an addressing
form byte following the primary opcode byte(s). This byte, called the ModR/M
byte, specifies the address form to be used. Certain encodings of the ModR/M
byte indicate a second addressing byte, the SIB byte, which follows the ModR/
M byte and is required to fully specify the addressing form.

62 T u r boA sse m b I e r Qui c k Ref ere nee

Figure 4.1 80386 instruction format

Instruction I Address- I operand-I Segment
prefix size prefix size prefix override

o or 1 o or 1 o or 1 o or 1

Number of bytes

oPcodelMOdr/MI SIB _I DisPlacementl Immediate

1 or 2 0 or 1 0 or 1 0, 1, 2, or 4 0, 1, 2, or 4

Number of bytes

Addressing forms can include a displacement immediately following either the
ModR/M or SIB byte. If a displacement is present, it can be 8, 16, or 32 bits.

If the instruction specifies an immediate operand, the immediate operand
always follows any displacement bytes. The immediate operand, if specified, is
always the last field of the instruction.

The following are the allowable instruction prefix codes:

• F3h: REP prefix (used only with string instructions)
• F3h: REPE/REPZ prefix (used only with string instructions)
• F2h: REPNE/REPNZ prefix (used only with string instructions)
• FOh: LOCK prefix

The following are the segment override prefixes:

• 2Eh: CS segment override prefix
• 36h: 55 segment override prefix
• 3Eh: DS segment override prefix
• 26h: ES segment override prefix
• 64h: FS segment override prefix (386 processors and greater)
• 65h: GS segment override prefix (386 processors and greater)
• 66h: Operand-size override
• 67h: Address-size operand

ModR/M and SIB bytes
The ModR/M and SIB bytes follow the opcode byte(s) in many of the 80x86
instructions. They contain the following information: the indexing type or
register number to be used in the instruction; the register to be used, or more
information to select the instruction; and the base, index, and scale information.

The ModR/M byte contains three fields of information:

• The mod field, which occupies the two most significant bits of the byte,
combines with the rim field to form 32 possible values: 8 registers and 24
indexing modes.

• The reg field, which occupies the next three bits following the mod field,
specifies either a register number or three more bits of opcode information.

Chapter 4, Processor instructions 63

The meaning of the reg field is determined by the first (opcode) byte of the
instruction.

• The rIm field, which occupies the three least-significant bits of the byte, can
specify a register as the location of an operand, or can form part of the
addressing-mode encoding in combination with the mod field as described
earlier.

• The based indexed and scaled indexed forms of 32-bit addressing require
the SIB byte. The presence of the SIB byte is indicated by certain encodings of
the ModR/M byte. The SIB byte then includes the following fields:

e The ss field, which occupies the 2 most-significant bits of the byte,
specifies the scale factor.

e The index field, which occupies the next 3 bits following the ss field
specifies the register number of the index register.

• The base field, which occupies the 3 least-significant bits of the byte,
specifies the register number of the base register.

Figure 4.2 shows the format of the ModR/M and SIB bytes.

Figure 4.2 Mod RIM and SIB byte formats

Modr/M Byte

7 6 5 4 3 2

Mod Reg/Opcode I RIM

SIB (Scale Index Base) Byte

7654321

I S8 I Index Base

The values and corresponding addressing forms of the ModR/M and SIB bytes
are shown in Tables 4.2, 4.3, and 4.4.

Table 4.2 16-bit addressing forms with ModR/M byte
r8(!r) AL CL DL BL AH CH DH BH

r16(!r) AX CX DX BX 5P BP 51 DI

r32(!r) EAX ECX EDX EBX E5P EBP E51 EDI

/ digit (opcode) 0 2 3 4 5 6 7

REG = 000 001 010 011 100 101 110 111

[BX+ 51] 000 00 08 10 18 20 28 30 38

[BX+ DI] 001 01 09 11 19 21 29 31 39

[BP+ 51] 010 02 OA 12 1A 22 2A 32 3A

[BP+ DI] 00 011 03 OB 13 1B 23 2B 33 3B

[51] 100 04 OC 14 1C 24 2C 34 3C

[DI] 101 05 OD 15 1D 25 2D 35 3D

disp16 110 06 OE 16 IE 26 2E 36 3E

[BX] 111 07 OF 17 IF 27 2F 37 3F

[BX + 51] + disp8 000 40 48 50 58 60 68 70 78

[BX + DI] + disp8 001 41 49 51 59 61 69 71 79

[BP + 51] + disp8 010 42 4A 52 5A 62 6A 72 7A

[BP + DI] + disp8 01 011 43 4B 53 5B 63 6B 73 7B
[51] + disp8 100 44 4C 54 5C 64 6C 74 7C

[DI] + disp8 101 45 4D 55 5D 65 6D 75 7D

64 Turbo Assembler Quick Reference

Table 4.2 16-bit addressing forms with ModR/M byte (continued)

[BP] + disp8
[BX] +disp8
[BX + SI] + disp16

[BX + DI] + disp16

[BP + SI] + disp16

[BP + DI] + disp16
[SI] + disp16

[DI] + disp16

[BP] + disp 16
[BX] + disp16

EAX/ AX/ AL (386)
ECX/CX/CL (386)

EOX/OX/OL (386)
EBX/BX/BL (386)

ESP /SP / AH (386)

EBP /BP /CH (386)

ESI/Sl/OH (386)
EDI/DI/BH (386)

10

11

110
111
000
001

010
011
100
101

110
111
000
001
010

011
100

101

110
111

46
47

80
81

82

83
84

85

86
87

co
C1
C2

C3

C4

C5

C6
C7

4E 56 5E 66
4F 57 SF 67

88 90 98 AO

89 91 99 Al

8A 92 9A A2

8B 93 9B A3
8C 94 9C A4
80 95 90 AS

8E 96 9E A6

8F 97 9F A7
C8 DO 08 EO

C9 01 D9 E1
CA 02 OA E2

CB 03 OB E3

CC 04 DC E4
co 05 00 E5

CE 06 OE E6
CF 07 OF E7

6E 76
6F 77

A8 BO

A9 B1
AA B2

AB B3
AC B4

AO B5

AE B6
AF B7

E8 Fa

E9 F1
EA F2
EB F3

EC F4

EO F5

EE F6
EF F7

7E
7F

B8

B9
BA

BB
BC

BO

BE
BF

F8

F9
FA
FB

FC

FO

FE
FF

disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and
added to the index. disp 16 denotes a 16-bit displacement following the ModR/M byte, to be
added to the index. Default segment register is SS for the effective addresses containing a BP
index, DS for other effective addresses.

Table 4.3 32-bit addressing forms with ModR/M byte (80386 only)
r8(!r)

r16(jr).
r32(jr)

/ digit(opeode)

REG =

[EAX]

[ECX]
[EOX]
[EBX]

[- -] [--]

disp32
[ESI]
[EDI]

disp8[EAX]
disp8[ECX]

disp8[EOX]
disp8[EPX];

disp8[- -] [--]
disp8[EBP]

disp8[ESI]

disp8[EOI]

disp32[EAX]

AL CL OL BL AH CH OH BH

'AX a m ~ ~ & ~ DI
EAX ECX EOX EBX ESP EBP ESI EOI
o 1

000 001

000

001
010

00 all

01

100

101
110

111
000

001
010

all

100
101

110
111
000

2 3 4 5 6 7
010 all 100 101 110 111

00 08 10 18 20

01 09 11 19 21
02 OA 12 lA 22
03 OB 13 1B 23

04 DC 14 lC 24

05

06
07
40
41

42

43

44
45

46
47

80

00 15 10 25

OE 16 IE 26
OF 17 IF 27
48 50 58 60

49 51 59 61

4A 52 SA 62

4B 53. 5B 63
4C 54 5C 64

4D 55 50 65

4E 56 5E 66

4F 57 5~ 67

88 90 98 AO

28 30 38

29 31 39

2A 32 3A
2B 33 3B

2C 34 3C

2D 35
2E 36

2F 37
68 70

69 71

6A 72

6B 73

6C 74
6D 75

6E 76
6F 77

A8 BO

30

3E
3F
78

79
7A

7B

7C
7D

7E

7F

B8

Chapter 4, Processor instructions 65

Table 4.3 32-bit addressing forms with Mod RIM byte (80386 only) (continued)

disp32[EOX]

disp32[EBX]

disp32[- -] [--]

disp32[EBP]

disp32[ESI]

disp32[EOI]

EAX/AX/AL

ECX/CX/CL

EOX/OX/OL

EBX/BX/BL

ESP/SP/AH

EBP/BP/CH

ESI/SI/OH

EOI/OI/BH

10

11

010

all

100

101

110

111

000

001

010

all

100

101

110

111

82

83

84

85

86

87

CO
C1

C2

C3

C4

C5

8A 92

8B 93

8C 94

80 95

8E 96

8F 97

C8 DO

C9 D1

CA D2

CB D3

CC 04

CO D5

9A

9B A3

9C A4

9D A5

9E A6

9F A7

D8 EO

D9 E1

OA E2

DB E3

DC E4

OD E5

AA

AB B3

AC B4

AD B5

AE B6

AF B7

E8 Fa
E9 F1

EA F2

EB F3

EC F4

ED F5

BA

BB

BC

BD

BE

BF

F8

F9

FA

FB

FC

FD

C6 CE D6 DE E6 EE F6 FE

C7 CF D7 DF E7 EF F7 FF

[- -] [- -] means a SIB follows ~!e ModR/Mbyte. disp8 denotes an 8-bit displacement
following the SIB byte, to be sign-extended and added to the index. disp32 denotes a 32-bit
displacement following the ModR/M byte, to be added to the index.

Table 4.4 32-bit addressing forms with SIB byte (80386 only)
r32 EAX ECX EOX EBX ESP [*] ESI EOI

Base = a 2 3 4 5 6 7

Base = 000 001 010 all 100 101 110 111

[EAX]

[ECX]

[EOX]

[EBX]

none
[EBP]

[ESI]

[EOI]

[EAX*2]

[ECX*2]

[EDX*2]

[EBX*2]

none
[EBP*2]

[ESI*2]

[EOI*2]

[EAX*4]

[ECX*4]

[EOX*4]

[EBX*4]

none
[EBP*4]

[ESI*4]

00

01

10

000 00

001 08

010 10

all 18

100 20

101 28

110 30

111 38

000 40

001 48

010 50

011 58

100 60

101 68

110 70

111 78

000 80

001 88

010 90

all 98

100 AO

101 A8

110 BO

01

09

11

19

21

29

31

39

41

49

51

59

61

69

71

79

81

89

91

89

Al

A9

B1

02 03

OA QB

12 13

1A 1B

22 23

2A 2B

32 33

3A 3B

42 44

4A 4B

52 55

5A 5B

62 63

6A 6B

72 73

7A 7B

82 83

8A 8B

92 93

9A 9B

A2 A3

AA AB

B2 B3

66 Turbo Assembler Quick Reference

04

OC
14

1C

24

2C

34

3C

44

4C

54

5C

64

6C

74

7C

84

8C

05

00
15

10

25

20

35

3D

45

40

55

50

06 07

OE ,OF

16 17

1E IF

26 27

2E 2F

36 37

3E 3F

46 47

4E 4F

56 57

5E 5F

65 66 67

6F

77

7F

87

8F

60 6E

75 76

7D 7E

85 86

80 8E

94 95 96 97

9C 90 9E 9F

A4 A5 A6 A7

AC AD AE AF

B4 B5 B6 B7

Table 4.4 32-bit addressing forms with SIB byte (80386 only) (continued)

'·SC~~~.~~~x+ i .. ··.·;J~~~9~*;;i ··,;M9d~;¥~~~~,;i,~4~~~'~im.~!
[EDI*4] 111 B8 B9 BA BB BC BO
[EAX*8] 000 CO C1 C2 C3 C4 C5 C6 C7
[ECX*8] 001 C8 C9 CA CB CC CO CE CF
[EOX*8] 010 DO 01 02 03 D4 05 06 07
[EBX*8] 11 011 08 09 OA DB DC DO DE OF
none 100 EO El E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8] 110 FO Fl F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 F9 FA FB FC FD FE FF

[*] means a disp32 with no base if MOD is 00; otherwise, [ESP]. This provides the following
addressing modes:
disp32[index](MOD=OO)
disp8[EBP] [index](MOD=Ol)
disp32[EBP] [index](MOD=10)

How to read the instruction set pages
Here's a sample of the format of this chapter:

Instruction
name

What the instruction name means
What processor the instruction works on
a D ITS ZAP C

Flag information goes here

386 286* 86

This table contains clock information

*Because the 80186 processor is effectively a 80286 without protected mode instructions, the
80186 timings are identical to the timings listed for the 80286.

Flags
Each entry in this section includes information on which flags in the 80x86' s flag
register are changed and how. Each flag has a one-letter tag for its name.

D = Overflow flag Z = Zero flag
D = Direction flag A = Auxiliary flag
I = Interrupt flag P = Parity flag
T = Trap flag C = Carry flag
S = Sign flag

The following symbols indicate how the flag register has changed:

? = Undefined after the operation
* = Changed to reflect the results of the instruction
o = Always cleared
1 = Always set

C hap t e r 4, Pro c e S so r ins t rue t ion S 67

Opcode
The "Opcode" column gives the complete object code produced for each form
of the instruction. When possible, the codes are given as hexadecimal bytes, in
the same order in which they appear in memory. Definitions of entries other
than hexadecimal bytes ate as follows:

Idigit
(digit is between 0 and 7.) Indicates that the ModR/Mbyte of the instruction
uses only the rim (register or memory) operand. The reg field contains the digit
that provides an extension to the instruction's opcode.

Ir
Indicates that the ModR/M byte of the mstruction contains both a register
operand and an rim operand.

cb, cw, cd, cp
A I-byte (cb),2-byte (cw),4-byte (cd), or 6-byte (cp) value following the opcode
that is used to specify a code offset and possibly a new value for the code
segment register.

ib, iw, id
A I-byte (ib),2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, ModR/M byte$, or scale-indexing bytes. The opcode
determines if the operand is a signed value. All words and doublewords are
given with the low-order byte first.

+rb, +rw, +rd
A register code, from 0 through 7, added to the hexadecimal byte given at the
left of the plus sign to form a single opcode byte. The codes are

AL=O AX=O EAX=O

CL=1 CX=1 ECX=1

DL=2 DX=2 EDX=2

BL=3 BX=3 EBX=3

AH=4 SP=4 ESP=4

AH=4 SP=4 ESP=4

CH=5 BP=5 EBP=5

DH=6 SI=6 ESI=6

BH=7 DI=7 EDI=7

Instruction
The "Instruction" column gives the syntax of the instruction statement as it
would appear in a TASM 80386 program. The following is a list of the symbols
used to represent operands in the instruction statements:

reiS
A relative address in the range from 128 bytes before the end of the instruction
to 127 bytes after the end of the instruction.

reI16, reI32
A relative address within the same code segment as the instruction assembled.
re116 applies to instructions with an operand-size attribute of 16 bits; reI32
applies to instructions with an operand-size attribute of 32 bits (386 only).

68 Turbo Assembler Quick Reference

ptr16:16, ptr16:32
A far pointer, typically in a code segment different from that of the instruction.
The notation 16:16 indicates that the value of the pointer has two parts. The
value to the right of the colon is a 16-bit selector or value destined for the code
segment register. The value to the left corresponds to the offset within the
destination segment. ptr16:16 is used when the instruction's operand-size
attribute is 16 bits; ptr16:32 is used with the 32-bit attribute (80386 only).

r8
One of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.

r16
One of the word registers AX, CX, DX, BX, SP, BP, SI, or DI.

r32 (386)
One of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or ED!.

imm8
An immediate byte value. imm8 is a signed number between -128 and +127
inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or
doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

imm16
An immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between -32,768 and +32,767 inclusive.

imm32 (386)
An immediate doubleword value used for instructions whose operand-size
attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
-2,147,483,648.

r/m8
A I-byte operand that is either the contents of a byte register (AL, BL, CL, DL,
AH, BH, CH, DH), or a byte from memory.

r/m16
A word register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word registers are AX, BX, CX, DX, SP, BP, SI, DI. The
contents of memory are found at the address provided by the effective address
computation.

r/m32
A doubleword register or memory operand used for instructions whose
operand-size attribute is 32 bits. The doubleword registers are EAX, EBX, ECX,
EDX, ESP, EBP, ESI, ED!. The contents of memory are found at the address
provided by the effective address computation.

m8
A memory byte addressed by DS:SI or ES:DI (used only by string instructions
on the 80386).

m16
A memory word addressed by DS:SI or ES:DI (used only by string instructions).

m32
A memory doubleword addressed by DS:SI or ES:DI (used only by string
instructions).

m16:16, m16:32 (80386)
A memory operand containing a far pointer composed of two numbers. The

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 69

number to the left of the colon corresponds to the pointer's segment selector.
The number to the right corresponds to its offset.

m16 & 32, m16 & 16 (80186/80286/80386), m32 & 32 (80386)
A memory operand consisting of data item pairs whose sizes are indicated on
the left and the rigli.t side of the ampersand. All memory addressing modes are
allowed. m16 & 16 and m32 & 32 operands are used by the BOUND instruction
to provide an operand containing an upper and lower bounds for array indices.
m16 & 32 is used by LIDT and LGDT to provide a word with which to load the
limit field, and a doubleword with which to load the base field of the
corresponding Global and Interrupt Descriptor Table Registers.

moffs8, moffs16, moffs32 (memory offset; 80386 only)
A simple memory variable of type BYTE, WORD, or DWORD (80386) used by
some variants of the MOV instruction. The actual address is given by a simple
offset relative to the segment base. No ModRIM byte is used in the instruction.
The number shown with moffs indicates its size, which is determined by the
address-size attribute of the instruction.

Sreg
A segment register. The segment register bit assignments are ES = 0, CS = I,
SS = 2, DS = 3, FS = 4 (80386), and GS = 5 (80386).

Clocks
The "Clocks" column gives the number of clock cycles the instruction takes to
execute. The clock count calculations make the following assumptions:

• The instruction has been prefetched and decoded and is ready for execution.
• Bus cycles do not require wait states.
• There are no local bus HOLD requests delaying processor access to the bus.
• No exceptions are detected during instruction execution.
• Memory operands are aligned.

Clock counts for instructions that have an rim (register or memory) operand are
separated by a slash. The count to the left is used for a register operand; the
count to the right is used for a memory operand.

The following symbols are used in the clock count specifications:

• n, which represents a number of repetitions.

• m, which represents the number of components in the next instruction
executed, where the entire displacement (if any) counts as one component,
the entire immediate data (if any) counts as one component, and every other
byte of the instruction and prefix(es) each counts as one component.

• pm=, a clock count that applies when the instruction executes in protected
mode. pm= is not given when the clock counts are the same for protected
and real address modes.

When an exception occurs during the execution of an instruction and the
exception handler is in another task, the instruction exception time is increased
by the number of clocks to effect a task switch. This parameter depends on
several factors:

• The type of TSS used to represent the current task (386 TSS or 286 TSS).
• The type of TSS used to represent the new task.
• Whether the current task is in V86 mode. .
• Whether the new task is in V86 mode.

70 T u r boA sse m b I e r Qui c k Ref ere nee

Note: Users should read Intel's documentation for more information about
protected mode and task switching.

AAA ASCII adjust after addition
0 D T S Z A P C

Opcode Instruction Clocks Description

486 386 286 86

37 AAA 3 4 3 8 ASCII adjust after addition

Execute AAA only following an ADD instruction that leaves a byte result in the
AL register. The lower nibbles of the operands of the ADD instruction should
be in the range a through 9 (BCD digits). In this case, AAA adjusts AL to
contain the correct decimal digit result. If the addition produced a decimal
carry, the AH register is incremented, and the carry and auxiliary carry flags are
set to 1. If there was no decimal carry, the carry and auxiliary flags are set to a
and AH is unchanged. In either case, AL is left with its top nibble set to O. To
convert AL to an ASCII result, follow the AAA instruction with OR AL, 30B.

AAD ASCII adjust before division
o D ITS ZAP C

* *

486 386 286 86

D50A AAD 14 19 14 60 ASCII adjust before division

AAD is used to prepare two unpacked BCD digits (the least-significant digit in
AL, the most-significant digit in AH) for a division operation that will yield an
unpacked result. This is accomplished by setting AL to AL + (10 * AH), and
then setting AH to O. AX is then equal to the binary equivalent of the original
unpacked two-digit number.

AAM ASCII adjust AX after multiply
o D ITS ZAP C

486 386 286 86

D40A AAM 15 17 16 83 ASCII adjust AX after multiply

Execute AAM only after executing a MUL instruction between two unpacked
BCD digits that leaves the result in the AX register. Because the result is less
than lOa, it is contained entirely in the AL register. AAM unpacks the AL result
by dividing AL by 10, leaving the quotient (most-significant digit) in AH and
the remainder (least-significant digit) in AL.

Chapter 4, Processor instructions 71

AAS ASCII adjust AL after subtraction
o D ITS ZAP C

486 386 286 86

3F AAS 343 8 ASCII adjust AL after subtraction

Execute AAS only after a SUB instruction that leaves the byte result in the AL
register. The lower nibbles of the operands of the SUB instruction must have
been in the range a through 9 (BCD digits). In this case, AAS adjusts AL so it
contains the correct decimal digit result. If the subtraction produced a decimal
carry, the AH register is decremented, and the carry and auxiliary carry flags
are set to 1. If no decimal carry occurred, the carry and auxiliary carry flags are
. set to 0, and AH is unchanged. In either case, AL is left with its top nibble set to
O. To convert AL to an ASCII result, follow the AAS with OR AL, 30H.

ADC Add with carry
o D ITS ZAP C
* *

486 386 286 86

10/r ADCr/m8,r8 1/3 2/7 2/7 3/16+EA Add with carry byte register to
rim byte '

11 Ir ADC r/m16,r16 1/3 2/7 2/7 3/16+EA

11 Ir ADC r/m32,r32 1/3 2/7

12/r ADCr8,r/m8 1/2 2/6 2/7 3/9+EA

13/r ADC r16,r/m16 1/2 2/6 2/7 3/9+EA

13/r ADC r32,r / m32 1/2 2/6

14ib ADCAL,imm8 2 3 4

15iw ADC AX,imm16 1 2 3 4

15id ADC EAX,imm32 2

Add with carry word register to
rim word

Add with CF dword register to
rim word

Add with carry rim byte to byte
register

Add with carry rim word to
word register

Add with CF rim dword to
dword register

Add with carry immediate byte to
AL

Add with carry immediate word
to AX

Add with carry immediate dword
toEAX

80/2 ib ADC r/m8,imm8 1/3 2/7 3/7 4/17+EA Add with carry immediate byte to
r/mbyte

81 /2 iw ADC r/m16,imm16 1/3 2/7 3/7 4/17+EA Add with carry immediate word
tor/mword

81/2 id ADC r/m32,imm32 1/3 2/7 Add with CF immediate dword
to rim dword

8312 ib ADC r/m16,imm8 1/3 2/7 3/7 4/17+EA Add with CF sign-extended
immediate byte to rim word

83/2 ib ADC r/rn32,imm8 1/3 2/7 Add with CF sign-extended
immediate byte into rim dword

ADC performs an integer addition of the two operands DEST and SRC and the
carry flag, CF. The result of the addition is assigned to the first operand (DEST),
and the flags are set accordingly. ADC is usually executed as part of a

72 Turbo Assembler Quick Reference

multi-byte or multi-word addition operation. When an immediate byte value is
added to a word or doubleword operand, the immediate value is first sign­
extended to the size of the word or doubleword operand.

ADD

04ib

Add
o D ITS ZAP C
*

ADDAL,imm8

486

1

386 286 86

2 3 4 Add immediate byte to AL
05 iw ADD AX,imm16 1 2 3 4 Add immediate word to AX
05 id ADD EAX,imm32 1 2 Add immediate dword to EAX

8010ib ADDr/m8,imm8 1/3 2/7 3/7 4/17+EA Add immediate byte to rim
byte

8110 iw ADD r/m16,imm16 1/3 2/7 3/7 4/17+EA Add immediate word to rim
word

81/0id ADDr/m32,imm32 1/3 2/7 Add immediate dword to rim
dword

83/0ib ADQr/m16,imm8

8310 ib ADD r/m32,imm8

00 Ir ADD r/m8,r8
01 Ir ADD r/m16,r16

01/r

02/r

03/r

03/r

ADD r/m32,r32

ADDr8,r/m8

ADD r16,r/m16

ADD r32,r 1m32

1/3 2/7 3/7 4/17+EA Add sign-extended immediate
byte to rim word

1/3 2/7 . Add sign-extended immediate
byte to rim dword

1/3 2/7 2/7 3/16+EA Add byte register to rim byte

1/3 2/7 2/7 3/16+EA Add word register to rim
word

1/3 2/7 Add dword register to rim
dword

1/2 2/6 2/7 3/9+EA Add rim byte to byte register
1/2 2/6 2/7 3/9+EA Add rim word to word

register

1/2 2/6 Add rim dword to dword
register

ADD performs an integer addition of the two operands (DEST and SRC). The
result of the addition is assigned to the first operand (DEST), and the flags are
set accordingly.

When an immediate byte is added to a word or doubleword operand, the
immediate value is sign-extended to the size of the word or doubleword
operand.

AND

20/r

21/r

21/r

Logical AND
o D ITS ZAP C
o * 0

ANDr/m8,r8

AND r/m16,r16

AND r/m32,r32

486

1/3

1/3

1/3

386 286

2/7 2/7

2/7 2/7

2/7

86

3/16+EA AND byte register into rim
byte

3/16+EA AND word register into rim
word

AND dword register to rim
dword

Chapter 4, Processor instructions 73

22 Ir ANDr8,r/m8

23/r AND r16,r/m16

23/r AND r32,r Im32

24ib ANDAL,imm8

25 iw AND AX~imm16

25 id AND EAX,imm32

486 386 286 86

1/2 2/6 2/7 3/9+EA

1/2 2/6 2/7 3/9+EA

1/2 2/6

234

2

2

3 4

AND rim byte to byte
register

AND rim word to word
register

AND rim dword to dword
register

AND immediate byte to AL

AND immediate word to AX

AND immediate dword to
EAX

80/4ib ANDr/m8,imm8 113 2/7 3/7 4/17+EA ANDimmediatebytetor/m
byte

81 14iw ANDr/ml6,imml6- 113 2/7 3/7 4/17+EA AND immediate word to
r/m word

81/4id ANDr/m32,imm32 113 2/7 ANDimmediatedword to
rim word

83/4ib ANDr/m16,imm8 1/3 2/7 3/7 4/17+EA AND sign-extended
immediate byte with rim
word

83 14 ib AND r Im32,imm8 1/3 2/7 AND sign-extended
immediate byte with rim
dword

Each bit of the result of the AND instruction is a 1 if both corresponding bits of
the operands are 1; otherwise, it becomes a O.

The optimized form of AND is MASKFLAG (see Chapter 3).

ARPL

63/r ARPLrl
m16,r16

Adjust RPL field of selector
80286 and greater protected mode only
o D ITS ZAP C

486

9/9

386 286

pm=20/21 pm=lO/l1 Adjust RPL of rlm16 to not less than
RPLofr16

The ARPL instruction has two operands. The first operand is a 16-bit memory
variable or word register that contains the value of a selector. The second
operand is a word register. If the RPL field ("requested privilege level"­
bottom two bits) of the first operand is less than the RPL field of the second
operand, the zero flag is set to 1 and the RPL field of the first operand is
increased to match the second operand. Otherwise, the zero flag is set to 0 and
no change is made to the first operand.

ARPL appears in operating system software, not in application program~. It is
used to guarantee that a selector parameter to a subroutine does not request
more privilege than the caller is allowed. The second operand of ARPL is
normally a register that contains the CS selector value of the caller.

74 Turbo Assembler Quick Reference

BOUND

Opcode

62/r

62/r

Check array index against bounds
80186 processors and greater
o D ITS ZAP C

Instruction Clocks

486 386

BOUND r16, 7 7 10

BOUND r32, 7 7 10

Description

286

13 Check if r16 is within m16&16 bounds
(passes test)
Check if r32 is within m32&32 bounds
(passes test)

BOUND ensures that a signed array index is within the limits specified by a
block of memory consisting of an upper and a lower bound. Each bound uses
one word for an operand-size attribute of 16 bits and a doubleword for an
operand-size attribute of 32 bits. The first operand (a register) must be greater
than or equal to the first bound in memory (lower bound), and less than or
equal to the second bound in memory (upper bound). If the register is not
within bounds, an Interrupt 5 occurs; the return ElP points to the BOUND
instruction.

The bounds limit data structure is usually placed just before the array itself,
making the limits addressable via a constant offset from the beginning of the
array.

BSF

OFBC

OFBC

Bit scan forward
386 processors and greater
o D T S ZAP C

BSF r16,r/m16
BSF r32,r/m32

486 386

6--42/7-43 10+3n

10+3n

Bit scan forward on rim word

Bit scan forward on r / m dword

BSF scans the bits in the second word or doubleword operand starting with bit
o. The ZF flag is cleared if the bits are all 0; otherwise, the ZF flag is set and the
destination register is loaded with the bit index of the first set bit.

BSR

OFBD

OFBD

Bit scan reverse
386 processors and greater
o D T S ZAP C

486 386

BSRr16,r/m16 6-103/7-104 10+3n

BSRr32,r/m32 6-103/7-104 10+3n

Bit scan reverse on r / m word

Bit scan reverse on r / m dword

BSR scans the bits in the second word or doubleword operand from the most
significant bit to the least significant bit. The ZF flag is cleared if the bits are
all 0; otherwise, ZF is set and the destination register is loaded with the bit
index of the first set bit found when scanning in the reverse direction.

C hap t e r 4, Pro c e s S 0 r i n st rue t ion s 75

BSWAP

OFC8/r

,Byte Swap
i486 processors and greater
o D T S ZAP C

BSWAPr32

486

1 Swap bytes to convert little/big endian data in a 32-
bit register to big/little endian form.

BSW AP reverses the byte order of a 32-bit register, converting a value in little/
big endian form to big/little endian form. When BSWAP is used with a 16-bit
operand size, the result left in the destination register is undefined.

BT Bit test
386 processors and greater
o D ITS ZAP C

486 386

OFA3 BTr/m16,r16 3/8 3/12 Save bit in carry flag

OFA3 BTr/m32,r32 3/8 3/12 Save bit in carry flag

OFBA /4ib BTr/m16,imm8 3/3 3/6 Save bit in carry flag

OFBA /4 ib BT r/m32,imm8 3/3 3/6 Save bit in carry flag

BT saves the value of the bit indicated by the base (first operand) and the bit
offset (second operand) into the carry flag.

BTC

OFBB

OFBB

OFBA/7ib
OF BA /7ib

Bit test and complement
386 processors and greater
o D ITS ZAP C

486 386

BTC r/m16,r16 6/13 6/13 Save bit in carry flag and complement

BTC r / m32,r32 6/13 6/13 Save bit in carry flag and complement

BTC r/m16,imm8 6/8 6/8 Save bit in carry flag and complement

BTC r/m32,imm8 6/8 6/8 Save bit in carry flag and complement

BTC saves the value of the bit indicated by the base (first operand) and the bit
offset (second operand) into the carry flag and then complements the bit.

76 T u r boA sse m b I e r Qui c k Ref ere nee

BTR Bit test and reset
386 processors and greater
o D T S ZAP C

Opcode InstniCtion Clocks Description

486 386

OFB3 BTR r/m16,r16 6/13 6/13 Save bit in carry flag and reset
OFB3 BTR r / m32,r32 6/13 6/13 Save bit in carry flag and reset
OFBA /6 ib BTRr/m16,imm8 6/8 6/8 Save bit in carry flag and reset

OFBA /6 ib BTRr/m32,imm8 6/8 6/8 Save bit in carry flag and reset

BTR saves the value of the bit indicated by the base (first operand) and the bit
offset (second operand) into the carry flag and then stores 0 in the bit.

BTS Bit test and set
386 processors and greater
o D ITS ZAP C

CIQ~ks IJ~scripti()n •

486 386

OFAB BTS r / m16,r16 6/13 6/13 Save bit in carry flag and set
OFAB BTS r / m32,r32 6/13 6/13 Save bit in carry flag and set
OFBA /5ib BTSr/m16,imm8 6/8 6/8 Save bit in carry flag and set

OFBA /5ib BTS r/m32,imm8 6/8 6/8 Save bit in carry flag and set

BTS saves the value of the bit indicated by the base (first operand) and the bit
offset (second operand) into the carry flag and then stores 1 in the bit.

CALL Call Procedure
o D ITS ZAP C

All flags are affected if a task switch occurs; no flags are affected if a task switch
does not occur.

486 386 286* 86

E8cw CALLre116 3 7+m 7 19 Call near,
displacement
relative
to next
instruction

FF /2 CALLr/m16 5/5 7+m/10+m 7/11 16/21+EA Call near,
re~ster
in irect/
memory
indirect

9Acd CALL ptr16:16 18,pm=20 17+m, 13, 28 Call
pm=34=m pm=26 intersegment,

tc? full pointer
gIVen

9Acd CALL ptr16:16 pm=35 pm=52+m 41 Call gate,
same privilege

Chapter 4, Processor instructions 77

486 386 286* 86

9Acd CALL ptr16:16 pm=69 pm=86+m 82 Call gate,
more
privilege, no
parameters

9Acd CALL ptr16:16 pm=77+4x pm=94+4x+m 86+4x Call gate,
more
privilege, x
parameters

9Acd CALL ptr16:16 pm=37+ts ts 177/182 Call to task
(via task state
segment/task
gate for 286

FF /3 CALL.m16:16 17,pm=20 22+m,pm38+m 16/29 37+EA Call
intersegment,
address at
r/mdword

FF /3 CALLm16:16 pm=35 pm=56+m 44 Call gate,
same privilege

FF /3 CALLm16:16 pm=69 pm=90+m 83 Call gate,
more
privilege, no
parameters

FF /3 CALLm16:16 pm=77+4x pm=98+4x+m 90+4x+m Call gate,
more
privilege, x
parameters

FF /3 CALLm16:16 pm=37+ts 5 + ts 180/185 Call to task
(via task state
segment! task
gate for 286)

E8cd CALLre132 3 7+m Call near,
displacement
relative to next
instruction

FF /2 CALLr/m32 5/5 7+m/10+m Call near,
indirect

9Acp CALL ptr16:32 18,pm=20 17+m,pm= Call
34+m intersegment,

t~ full pointer
gIven

9Acp CALL ptr16:32 pm=35 pm=52+m Call gate,
same privilege

9Acp CALL ptr16:32 pm=69 pm=86+m Call gate,
more
privilege, no
parameters

9Acp CALL ptr32:32 pm=77+4x pm=94+4x+m Call gate,
more
privilege,x
parameters

9Acp CALL ptr16:32 pm=37+ts ts Call to task

FF /3 CALLm16:32 17,pm=20 22+m,pm=38+ Call
m intersegment,

address at
r/mdword

FF /3 CALLm16:32 pm=35 pm=56+m Call gate,
same privilege

FF /3 CALLm16:32 pm=69 pm=90+m Call gate,
more
privilege, no
parameters

78 Turbo Assembler Quick Reference

Optode Iilstruction Clocks "Qescriptiort

486 386 286* 86

FF /3 CALLm16:32 pm=77+4x pm=98+4x+m Call gate,
more
privilege, x
parameters

FF /3 CALLm16:32 pm=37+ts 5+ts Call to task

* Add one clock for each byte in the next instruction executed (80286 only).

The CALL instruction causes the procedure named in the operand to be
executed. When the procedure is complete (a return instruction is executed
within the procedure), execution continues at the instruction that follows the
CALL instruction.

The action of the different forms of the instruction are described next.

Near calls are those with destinations of type r I m16, r I m32, re116, rel32;
changing or saving the segment register value is not necessary. The CALL re116
and CALL rel32 forms add a signed offset to the address of the instruction
following CALL to determine the destination. The re116 form is used when the
instruction's operand-size attribute is 16 bits; rel32 is used when the operand­
size attribute is 32 bits. The result is stored in the 32-bit EIP register. With rel16,
the upper 16 bits of EIP are cleared, resulting in an offset whose value does not
exceed 16 bits. CALL r I m16 and CALL r I m32 specify a register or memory
location from which the absolute segment offset is fetched. The offset fetched
from rim is 32 bits for an operand-size attribute of 32 (r/m32), or 16 bits for an
operand-size of 16 (r/m16). The offset of the instruction following CALL is
pushed onto the stack. It will be popped by a near RET instruction within the
procedure. The CS register is not changed by this form of CALL.

The far calls, CALL ptr16:16 and CALL ptr16:32, use a 4-byte or 6-byte operand
as a long pointer to the procedure called. The CALL m16:16 and m16:32 forms
fetch the long pointer from the memory location specified (indirection). In real
address mode or virtual 8086 mode, the long pointer provides 16 bits for the CS
register and 16 or 32 bits for the EIP register (depending on the operand-size
attribute). These forms of the instruction push both CS and IP or EIP as a return
address.

In protected mode, both long pointer forms consult the AR byte in the
descriptor indexed by the selector part of the long pointer. Depending on the
value of the AR byte, the call will perform one of the following types of control
transfers:

• a far call to the same protection level
• an inter-protectioi1level far call
• a task switch
Note: Turbo Assember extends the syntax of the CALL instruction to facilitate
parameter passing to high-level language routines. See Chapter 7 of the Turbo
Assember User's Guide for more details.

CBW Convert byte to word
o D ITS ZAP C

486 386 286 86

98 CBW 3 3 2 2 AX sign-extend of AL

C hap t e r' 4, Pro c e S S 0 r ins t rue t ion S 79

CBW converts the signed byte in AL to a signed word in AX by extending the
most significant bit of AL (the sign bit) into all of the bits of AB.

CDQ

99 CDQ

Convert doubleword to quadword
386 processors and greater
o 0 ITS ZAP C

486 386

3 2 EDX:EAX [(sign-extend ofEAX)

CDQ converts the signed doubleword in EAX to a signed 64-bit integer in the
register pair EDX:EAX by extending the most significant bit of EAX (the sign
bit) into all the bits of EDX.

CLC Clear carry flag
0 0 T S Z A P C

0

486 386 286 86

F8 CLC 2 2 2 2

CLC sets the carry flag to zero. It does not affect other flags or registers.

CLD Clear direction flag
0 0 T S Z A P C

0

486 386 286 86

c CLD 2 2 2 2 Clear direction flag

CLD clears the direction flag. No other flags or registers are affected. After CLD
is executed, string operations will increment the index registers (51 or Dl) that
they use.

CLI

FA CLI

Clear interrupt flag
o 0 ITS ZAP C

o

486 386 286 86

5 332

CLI clears the interrupt flag if the current privilege level is at least as privileged
as lOPL. No other flags are affected. External interrupts are not recognized at
the end of the CLI instruction or from that point on until the interrupt flag is set.

80 Turbo Assembler Quick Reference

CllS

OF 06 CLTS

Clear task switched flag
80286 and greater protected mode only
o D T S ZAP C

TS = 0 (TS is in CRO, not the flag register)

486

7

386

5

286

2

CLTS clears the task-switched (TS) flag in register CRO. This flag is set by the
386 every time a task switch occurs. The TS flag is used to manage processor
extensions as follows:

• Every execution of an ESC instruction is trapped if the TS flag if set.

• Execution of aWAIT instruction is trapped if the MP flag and the TS flag are
both set.

Thus, if a task switch was made after an ESC instruction was begun, the
processor extension's context may need to be saved before a new ESC
instruction can be issued. The fault handler saves the context and resets the TS
flag.

CL TS appears in operating system software, not in application programs. It is a
privileged instruction that can only be executed at privilege level O.

CMC Complement carry flag
o D ITS ZAP C

486 386 286 86

F5 CMC 2 2 2 2 Complement carry flag

CMC reverses the setting of the carry flag. No other flags are affected.

CMP Compare two operands
0 D I T S A P C

*

486 386 286 86

3Cib CMPAL,imm8 1 2 3 4 Compare immediate byte to AL
3Diw CMP AX,imm16 1 2 3 4 Compare immediate word from

AX
3Did CMP EAX,imm32 2 Compare immediate dword to

EAX

80/7ib CMP r/m8,imm8 1/2 2/5 3/6 4/10+EA Compare immediate byte to r / m
byte

81 /7 iw CMP r/m16,imm16 1/2 2/5 3/6 4/10+EA ComJ'are immediate word to r / m
wor

81 /7 id CMP r/m32,imm32 1/2 2/5 Compare immediate dword to
r/maword

Chapter 4, Processor instructions 81

486 386 286 86

83/7ib CMP r/ml6,imm8 1/2 2/5 3/6 4/10+EA Compare sign extended immediate
byte to r / m word

83/7ib CMP r /m32,imm8 1/2 2/5 Compare sigtl extended immediate
byte to r/mdword

38/r CMPr/m8,r8 1/2 2/5 2/7 3/9+EA Compare byte register to r / m byte

39/r CMP r/mI6,r16 1/2 2/5 2/7 3/9+EA Conrare word register to r / m
wor

39/r CMP r /m32,r32 1/2 2/5 Compare dword register to r/m
dword

3A/r CMPr8,r/m8 1/2 2/6 2/6 3/9+EA Compare r / m byte to byte register
3B /r CMP r16,r/m8 1/2 2/6 2/6 3/9+EA Compare r / m word to word

register

3B /r CMP r32,r/m32 1/2 2/6 Compare r/m dword to dword
register

CMP subtracts the second operand from the first but, unlike the SUB
instruction, does not store the result; only the flags are changed. CMP is
typically used in conjunction with conditional jumps and the SETcc instruction.
If an operand greater than one byte is compared to an immediate byte, the byte
value is first sign-extended.

CMPS Compare string operands
CMPSB CMPSD 386 processors and greater
CMPSW 0 D T S Z A P c

CMPSD

486 386 286 86

A6 CMP5m8,m8 8 10 8 22 Com~are b~tes E5:[(E)OI] (second operand)
with (E)51 (first operand)

A7 CMP5 m16,m16 8 10 8 22 Compare words E5:[(E)DI] (second
operand) with [(E)SI] (first operand)

A7 CMP5m32,m32 8 10 Compare dwords E5:[(E)OI] (second
operand) with [(E)SI] (first operand)

A6 CMP5B 8 10 8 22 Compare bytes E5:[(E)DI] with OS:[51]
A7 CMP5W 8 10 8 22 Compare words E5:[(E)DI] with 05:[SI]
A7 CMP50 8 10 Compare dwords E5:[(E)DI] with 05:[SI]

CMPS compares the byte, word, or doubleword pointed to by the source-index
register with the byte, word, or doubleword pointed to by the destination-index
register.

If the address-size attribute of this instruction is 16 bits, SI and DI will be used
for source- and destination-index registers; otherwise ESI and EDI will be used.
Load the correct index values into SI and DI (or ESI and EDI) before executing
CMPS.

The comparison is done by subtracting the operand indexed by the destination­
index register from the operand indexed by the source-index register.

Note that the direction of subtraction for CMPS is [SI] - [DI] or [ESI] - [EDI].
The left operand (SI or ESI) is the source and the right operand (DI or EDI) is the
destination. This is the reverse of the usual Intel convention in which the left
operand is the destination and the right operand is the source.

82 T u r boA sse m b I e r Qui c k Ref ere nee

The result of the subtraction is not stored; only the flags reflect the change. The
types of the operands determine whether bytes, words, or doublewords are
compared. For the first operand (SI or ESI), the DS register is used, unless a
segment override byte is present. The second operand (DI or EDI) must be
addressable from the ES register; no segment override is possible.

After the comparison is made, both the source-index register and destination­
index register are automatically advanced. If the direction flag is 0 (CLD was
executed), the registers increment; if the direction flag is 1 (STD was executed),
the registers decrement. The registers increment or decrement by 1 if a byte is
compared, by 2 if a word is compared, or by 4 if a doubleword is compared.

CMPSB, CMPSW and CMPSD are synonyms for the byte, word, and
doubleword CMPS instructions, respectively.

CMPS can be preceded by the REPE or REPNE prefix for block comparison of
CX or ECX bytes, words, or doublewords. Refer to the description of the REP
instruction for more information on this operation.

CMPXCHG Compare and Exchange
i486 processors and greater
o D ITS ZAP C

486

OF BO I r CMPXCHG r I m8,r8 617 if comparison Compare AL with rim byte. If equal, set
issuccessfUli6/10 if ZF and load byte reg into rim byte. Else,
comparison fails clear ZF and load r / m byte into AL.

OF B1/r CMPXCHG r/m16,r16 6/7ifcomparison Compare AX with rim word. If equal, set
issuccessfUli6/10if ZF and load word reg into rim word.
comparison fails Else, dear ZF and load rim word into AX.

OF B1 I r CMPXCHG r I m32,r32 617 if comparison Compare EAX with rim dword. If equal,
is successfUli 6/10 if set ZF and load dword reg into rim
comparison fails dword. Else, clear ZF and load rim dword

intoEAX.

Note: The A-stepping of the i486 used the apcades OF A6 and OF A7.

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX
register) with DEST. If they are equal, SRC is loaded into DEST. Otherwise,
DEST is loaded into the accumulator.

DEST is the destination operand; SRC is the source operand.

Protected mode exceptions: #GP(O) if the result is in a nonwritable segment;
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #5S(O) for an illegal address in the SS segment; #PF (fault code) for
a page fault; #AC for an unaligned memory reference if the current privilege
level is 3:
Real mode exception: interrupt 13 if any part of the operand would lie outside
the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: interrupt 13, as in real mode; #PF and #AC, as in
protected mode.

Note: This instruction can be used with a LOCK-prefix. In order to simplify
interface to the processor's bus, the destination operand receives a write cycle
without regard to the result of the comparison. DEST is written back if the

Chapter 4, Processor instructions 83

comparison fails, and SRC is written into the destination otherwise. (The
processor never produces a locked read without producing a locked write.)

CHPXCHG88 Compare and Exchange 8 bytes
Pentium processors and greater

OFC7

o D T S ZAP C

Pentium

CMPXCHG64 r/m64 10 compare EDX:EAX with rim qword. If equal,
set ZF and load ECX:EBX into rim qword.
Else, clear ZF and load rim into EDX:EAX.

The CMPXCHG8B instruction compares the 64-bit value in EDX:EAX with
DEST. EDX contains the high-order 32 bits and EAX contains the low-order 32
bits of the 64-bit value. If they are equal, the 64-bit value in ECX:EBX is stored
into DEST. ECX contains the high-order 32 bits and EBX contains the low-order
32 bits. Otherwise, DEST is loaded into EDX:EAX.

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise
it is cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Protected mode exceptions: #GP(O) if the result is ina nonwritable segment;
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #55(0) for an illegal address in the SS segment; #PF(fault code) for
a page fault; #AC for unaligned memory reference if the current privilege level
is 3.

The destination operand must be a memory operand, not a register. If the
CMPXCHG8B instruction is executed with a modr / m byte representing a
register as the destination operand, #UD occurs.

Real mode exception: interrupt 13 if any part of the operand would lie outside
the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: same exceptions as in real mode, plus #PF(fault
code) for a page fault; #AC for unaligned memory reference if the current
privilege level is 3. #UD if the modr / m byte represents a register as the
destination.

Notes: This instruction can be used with a LOCK prefix. In order to simplify
interface to the processor's bus, the destination operand receives a write cycle
without regard to the result of the comparison. DEST is written back if the
comparison fails, and SRC is written into the destination otherwise. (The
processor never produces a locked read without also producing a locked write.)

The "r/m64" syntax had previously been used only in the context of floating
point operations. It indicates a 64-bit value, in memory at an address
determined by the modr / mbyte.

84 Turbo Assembler Quick Reference

CPUIO

OFA2 CPUID

CPU identification
Pentium processors and greater
o D ITS ZAP C

Pentium

14 EAX <- CPOU identification info.

The CPUID instruction provides information to software about the vendor,
family, model, and stepping of microprocessor on which it is executing. An
input value loaded into the EAX register for this instruction indicates what
information should be returned by the CPUID instruction.

Following execution of the CPUID instruction with a zero in EAX, the EAX
register contains the highest input value understood by the CPUID instruction.
For the Pentium processor, the value in EAX will be one. Also returned is a
vender identification string contained in the EBX, EDX, and ECX registers. EBX
contains the first four characters. For Intel processors, the vender identification
string is "GenuineIntel" as follows:

EBX-756e6547h (* "Genu", with 'G' in the low nibble of BL *)
EDX-49656e69h (* "ine!", with 'i' in the low nibble of DL *)
ECX-6c65746eh (* "ntel", with In' in the low nibble of CL *)

Following execution of the CPUID instruction with an, input value of one
loaded into the EAX register, bits 0-3 in EAX contain the stepping id of the
microprocessor, bits 4-7 of EAX contain the model (the first model will be
indicated by a 0001b in these bits) and bits 8-11 of EAX contain the family (5 for
the Pentium processor family). Bits 12-31 of EAX are reserved, as well as EBX,
and ECX. The Pentium processor sets the feature register, EDX, to 1bfh,
indicating which features the Pentium processor supports. A feature flag set to
one indicates that the corresponding feature is supported. The feature set is
defined as follows:

EDX (bit 0)
EDX (bits 1-6)

EDX (bit 7)
EDX (bit 8)
EDX (bits 9-31)

FPU on chip
Nonessential, proprietary information (contactIntel for
more information)
Machine Check Exception
CMPXCHG8B Instruction
Reserved

Software should determine the vender identification in order to properly
interpret the feature register flag bits.

This function does not affect the CPU flags.

cwo·

99 cwo

Convert word to doubleword
386 processors and greater
o D T S ZAP C

486 386 286 86

3 2 2 5 DX:AX ~ sign-extend of AX

CWD converts the signed word in AX to a signed doubleword in DX:AX by
extending the most significant bit of AX into all the bits of DX. Note that CWD
is different from CWDE. CWDE uses EAX as a destination, instead of DX:AX.

Chapter 4, Processor instructions 85

CWDE Convert word to doubleword
386 processors and greater
0 D T S Z A P C

486 386 286 86

98 CWDE 3 3 EAX f- sign-extend of AX

CWDE converts the signed word in AX to a doubleword in EAX by extending
the most significant bit of AX into the two most significant bytes of EAX. Note
that CWDE is different from CWD. CWD uses DX:AX rather than EAX as a
destination.

DAA Decimal adjust AL after addition
o D T S ZAP C

*

486 386 286 86

27 DAA 2 4 3 4 Decimal adjust AL after addition

Execute DAA only after executing an ADD instruction that leaves a two-BCD­
digit byte result in the AL register. The ADD operands should consist of two
packed BCD digits. The DAA instruction adjusts AL to contain the correct two­
digit packed decimal result.

DAS Decimal adjust AL after subtraction
o D T S ZAP C

*

486 386 286 86

2F DAS 2 4 3 4 Decimal adjust AL after subtraction

Execute DAS only after a subtraction instruction that leaves a two-BCD-digit .
byte result in the AL register. The operands should consist of two packed BCD
digits. DAS adjusts AL to contain the correct packed two-digit decimal result.

DEC Decrement by 1
0 D I T S Z A P C

*

486 386 286 86

FE /1 DECr/m8 1/3 2/6 2/7 3/15+EA Decrement r / m byte by 1

FF /1 DECr/mI6 1/3 2/6 2/7 3/15+BA Decrement r / m word by 1

DEC r/rh32 1/3 2/6 Decrement r / m dword by 1

48+rw DECr16 2 2 3 Decrement word register by 1

48+rW DECr32 1 2 Decrement dword register by 1

86 Turbo Assembler Quick Reference

DEC subtracts 1 from the operand. DEC does not change the carry flag. To
affect the carry flag, use the SUB instruction with an immediate operand of 1.

DIV Unsigned divide
0 D T S Z A P C

OpCO(l.e InstrUction Clocks D~sCrlption

486 386 286 86

F6/6 DIVr/m8 16/16 14/17 14/17 80/86+EA UnsilS!led divide AX by r / m byte
(AL=QUO, AH=REM)

F7/6 DIVr/m16 24/24 22/25 22/25 144/154+EA Uns~ed divide DX:AX bY' r /m
wor (AX=QUO, DX=REM)

F7/6 DIVr/m32 40/40 38/41 Unsigned divide EDX:EAX ~ r /m
dword (EAX=QUO, EDX= M)

DN performs an unsigned division. The dividend is implicit; only the divisor is
given as an operand. The remainder is always less than the divisor. The type of
the divisor determines which registers to use as follows:

s~~:

byt~

word

dword

Dl\i{derid
AX

DX:AX
EDX:EAX

;t)~viso~
r/m8

r/ml6

r/m32

"Quotient
AL

AX
EAX

R4am~irid~ti '.
AH

DX

EDX (386 only)

ENTER Make stack frame for procedure parameters
80186 processors and greater
o D T S ZAP C

486 386 286

C8 iw 00 Enter imm16,O 14 10 11 Make procedure stack frame
C8 iw 01 Enter imm16,1 17 12 15 Make stack frame for procedure

parameters
C8 iw ib Enter imm16,imm8 17+3n 15+4(n-l) 12+4(n-l) Make stack frame for procedure

parameters

ENTER creates the stack frame required by most block-structured high-level
languages. The first operand specifies the number of bytes of dynamic storage
allocated on the stack for the routine being entered. The second operand gives
the lexical nesting level (0 to 31) of the routine within the high-level language
source code. It determines the number of stack frame pointers copied into the
new stack frame from the preceding frame. BP (or EBP, if the operand-size
attribute is 32 bits) is the current stack frame pointer.

If the operand-size attribute is 16 bits, the processor uses BP as the frame
pointer and SP as the stack pointer. If the operand-size attribute is 32 bits, the
processor uses EBP for the frame pointer and ESP for the stack pointer.

If the second operand is 0, ENTER pushes the frame pointer (BP or EBP) onto
the stack; ENTER then subtracts the first operand from the stack pointer and
sets the frame pointer to the current stack-pointer value.

For example, a procedure with 12 bytes of local variables would have an
ENTER 12,0 instruction at its entry point and a LEAVE instruction before every

C hap t e r 4, Pro c e S S 0 r ins t rue t ion s 87

RET. The 12 local bytes would be addressed as negative offsets from the frame
pointer.

HLT
o D ITS ZAP C

486 386 286 86

F4 HLT 4 5 2 2 Halt

HLT stops instruction execution and places the x86 in a HALT state. An enabled
interrupt, NMI, or a reset will resume execution. If an interrupt (including
NMI) is used to resume execution after HLT, the saved CS:IP (or CS:EIP on an
386) value points to the instruction following HLT.

IDIV Signed divide
o D ITS ZAP C

486 386 286 86

F6/7 IDIVr/m8 19/20 19 17/20 101-112/107-118+EA , Srmed divide AX ~
r m ~e (AL=QU ,
AH= M)

F7/7 IDIVr/m16 27/28 27 25/28 165-184/171-190+EA Si~ed divide DX:AX
~ EA word (AX=QUO,

X=REM)

F7/7 IDIVr/m32 43/44 43 S~eddivide
E X:EMC by DWORD
~e (EAX=QUO,

X=REM)

IDIV performs a signed division. The dividend, quotient, and remainder are
implicitly allocated to fixed registers. Only the divisor is given as an explicitr/
m operand. The type of the divisor determines which registers to use as follows:

byte
word

dword

r/m8

r/m16

r/m32

AL

AX

EAX

AH
DX

EDX

AX
DX:AX

EDX:EAX (386 only)

If the resulting quotient is too large to fit in the destination, or if the division
is 0, an Interrupt 0 is generated. Non-integral quotients are truncated toward o.
The remainder has the same sign as the dividend and the absolute value of the
remainder is always less than the absolute value of the divisor.

88 Turbo Assembler. Quick Reference

IMUL Signed multiply
o D ITS ZAP C

486 386 286 86

F6/5 IMUL r/m8 13-18/13-18 9-14/12-17 13/16 80-98/86- AX ~AL * rim byte
104+EA

F7/5 IMUL r/m16 13-26/13-26 9-22/12-25 21/24 128-154/1~ DX:AX ~AX * rim
160+EA word

F7/5 IMUL r/m32 12-42/13-42 9-38/12-41 EDX:EAX ~EAX* rim
dword

OF AF /r IMUL r16, 13-26/13-26 9-22/12-25 word re~ster ~word
register r / m word r/m16

OF AF /r IMUL r32, 13-42/13-42 9-38/12-41 dword register
~dword register * r / m
dword

r/m32

6B /rib IMULr16, 13-26/13-26 9-14/12-17 21/24 word register ~r/m16
* sign-extended
immediate byte

r/m16,imm8

6B / r ib IMUL r32, 13-42
r/m32,imm8

6B / r ib IMUL 13-26
r16,imm8

6B /rib IMUL 13-42
r32,imm8

9-14/12-17

9-14/12~17 21/24

9-14/12-17

dword register ~r /
m32 * sign-extended
immediate byte

word re~ter ~word
register sign-extended
immediate byte

dword register
~dword register * sign­
extended immediate
byte

69/riw IMULr16,
r/m16,imm16

13-26/13-26 9-22/12-25 21/24 word register ~r/m16
immediate word

69 / r id IMUL r32,
r/m32,imm32

13-42/13-42 9-38/12-41 dword register r / m32 *
immediate dword

69/riw IMUL
r16,imm16

13-26/13-26 9-22/12-25 word register ~r/m16
* immediate word

69/rid IMUL
r32,imm32

13-42/
13-42

9-38/12-41 dword ref:ter
~r/m32 immediate
dword

IMUL performs signed multiplication. Some forms of the instruction use
implicit register operands. The operand combinations for all forms of the
instruction are shown in the "Description" column above.

IMUL clears ilie overflow and carry flags under the following conditions:

Instruction form
r/m8
r/m16
r/m32
r16,r/m16
r32,rI m32
r16,r I m16,imm16
r32,r I m32,imm32

Condition for clearing CF and OF
AL = sign-extend of AL to 16 bits
AX = sign-extend of AX to 32 bits
EDX:EAX = sign-extend of EAX to 32 bits
Result exactly fits within r16
Result exactly fits within r32
Result exactly fits within r16
Result exactly fits within r32

C hap t e r 4, Pro c e 5 50 r ins t rue t ion s 89

IN Input from port
0 D T S Z A P C

486 386 286 86

E4ib INAL,immS 14,pm=S* /2S**,vm=27 12,pm=6* /26** S 10 Input byte from
immedIate port
intoAL

ESib INAX,immS 1,4,pm=S* /2S**,vm=27 12,pm=6* /26** S 10 Input word from
immediate port
into AX

ESib IN EAX,immS 14,pm=S* /2S**,vm=27 12,pm=6* /26** Input dword from
immediate port
intoEAX

EC INAL,OX 14,pm=S* /2S**,vm=27 13,pm=7* /27** S S Input byte from
port OX into AL

EO INAX,OX 14,pm=S* /2S**,vm=27 13,pm=7* /27** S S Input word from
port OX into AX

EO INEAX,OX 14,pm=S* /2S**,vm=27 13,pm=7* /27** Input dword from
port OX into EAX

*I£ CPL ::; IOPL
**I£ CPL > IOPL or if in virtual 8086 mode

IN transfers a data byte or data word from the port numbered by the second
operand into the register (AL, AX, or EAX) specified by the first operand.
Access any port from 0 to 65535 by placing the port number in the DX register
and using an IN instruction with DX as the second parameter. These I/O
instructions can be shortened by using an 8-bit port I/O in the instruction. The
upper eight bits of the port address will be 0 when 8-bit port I/O is used.

INC Increment by 1
0 D I T S Z A P C

*

486 386 286 86

FE /0 INCr/mS 1/3 2/6 2/7 3/1S+EA Increment r / m byte by 1

FF /0 INCr/m16 1/3 2/6 2/7 3/1S+EA Increment r / m word by 1

FF /6 . INCr/m32 1/3 Increment rim dword by 1

40+rw INCr16 2 2 3 Increment word register by 1

40+rd INCr32 1 Increment dword register by 1

INC adds 1 to the operand. It does not change the carry flag. To affect the carry
flag, use the ADD instruction with a second operand of 1.

90 Turbo Assembler Quick Reference

INS
INSB
INSW
INSD
Opcocie Instruction

6C INSr/m8,DX

Input from port to string
80186 processors and greater
o D T S ZAP C

486

Clocks

386 286

17,pm=1O* /32**,vm=30 15,pm=9* /29** 5

6D INS r/m16,DX 17,pm=10* /32**,vm=30 15,pm=9* /29** 5

Description

In~ut byte from rort
D into ES:(E)D

In~ut word from port
D into ES:(E)DI

6D INS r/m32,DX 17,pm=1O* /32**,vm=30 15,pm=9* /29** In~ut dword from port
D into ES:(E)DI

6C INSB 17,pm=1O* /32**,vm=30 15,pm=9* /29** 5 In~ut byte from rort
D into ES:(E)D

6D INSW 17,pm=10* /32**,vm=30 15,pm=9* /29** 5 In~ut word from port
D into ES:(E)DI

6D INSD 17,pm=10* /32**,vm=30 15,pm=9* /29** In~ut dword from port
D into ES:(E)DI

*If CPL ::; IOPL
**If CPL > IOPL or if in virtual 8086 mode

INS transfers data from the input port numbered by the DX register to the
memory byte or word at ES:dest-index. The memory operand must be
addressable from ES; no segment override is possible. The destination register
is DI if the address-size attribute of the instruction is 16 bits, or EDI if the
address-size attribute is 32 bits.

INS does not allow the specification of the port number as an immediate value.
The port must be addressed through the DX register value. Load the correct
value into DX before executing the INS instruction.

The destination address is determined by the contents of the destination index
register. Load the correct index into the destination index register before
executing INS.

After the transfer is made, DI or EDI advances automatically. If the direction
flag is 0 (CLD was executed), DI or EDI increments; if the direction flag is 1
(STD was executed), DI or EDI decrements. DI increments or decrements by 1 if
a byte is input, by 2 if a word is input, or by 4 if a doubleword is input.

INSB, INSW and INSD are synonyms of the byte, word, and doubleword INS
instructions. INS can be preceded by the REP prefix for block input of CX bytes
or words. Refer to the REP instruction for details of this operation.

INT Call to interrupt procedure .
INTO 0 D I T S Z A P C

0 0

486 386 286 86

CC INT3 26 33 23 52 Interrupt 3-trap to debugger

CC INT3 44 pm=59 40 Interrupt 3-protected mode

CC INT3 71 pm=99 78 Interrupt 3-protected mode

Chapter 4, Processor instructions 91

486 386 286 86

CC INT3 82 pm=119 Interrupt 3-from V86 mode to
PLO

CC INT3 37+ts ts 167 Interrupt 3-protected mode

CDib INTimm8 30 37 23 51 Interrupt numbered by
immedIate byte

CDib INTimm8 44 pm=59 40 Interrupt-protected mode

CDib INTimm8 77 pm=99 78 Interrupt-protected mode

CDib INTimm8 86 pm=119 Interrupt-from V86 mode to PLO

CDib INTimm8 37+ts ts 167 Interrupt-protected mode

CE INTO Pass:28, Fail:3, Fail:3, Fail:4, Interrupt 4-if overflow flag is 1
Fail:3 ~m=3; Pass:24 Pass:53

ass:35

CE INTO 46 pm=59 41 Interrupt 4-Protected mode

CE INTO 73 pm=99 79 Interrupt 4-Protected mode

CE INTO 84 pm=119 Interrupt 4-from V86 mode to
PLO

CE INTO 39+ts ts 168 Interrupt 4-Protected mode

*Add one clock for each byte of the next instruction executed (80286 only).

The INT n instruction generates via software a call to an interrupt handler. The
immediate operand, from a to 255, gives the index number into the interrupt
descriptor table (IDT) of the interrupt routine to be called. In protected mode,
the IDT consists of an array of eight-byte descriptors; the descriptor for the
interrupt invoked must indicate an interrupt, trap, or task gate. In real address
mode, the IDT is an array of four byte-long pointers. In protected and real
address modes, the base linear address of the IDT is defined by the contents of
theIDTR.

The INTO conditional software instruction is identical to the !NT n interrupt
instruction except that the interrupt number is implicitly 4, and the interrupt is
made if the 86, 286, or 386 overflow flag is set.

The first 32 interrupts are reserved by Intel for system use. Some of these
interrupts are uSe for internally generated exceptions.

!NT n generally behaves like a far call except that the flags register is pushed
onto the stack before the return address. Interrupt procedures return via the
lRET instruction, which pops the flags and return address from the stack.

In real address mode, !NT n pushes the flags, CS and the return IP onto the
stack, in that order, then jumps to the long pointer indexed by the interrupt
number.

INVD

OF 08

Invalidate cache
i486 processors and greater
o D T S ZAP C

INVD

486

4 Invalidate entire cache

92 Turbo Assembler Quick Reference

The internal cache is flushed, and a special-function bus cycle is issued which
indicates that external caches should also be flushed. Data held in write-back
external caches is discarded.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors.

It is the responsibility of hardware to respond to the external cache flush
indication.

INVLPG Invalidate TLB entry
i486 processors and greater
0 D T S Z A P C

Qpcode hlstructb.lll Clock DeScrl.i'ti~~
486

OF 01/7 INVLPGm 12 for hit Invalidate TLB entry

The INVLPG instruction is used to invalidate a single entry in the TLB, the
cache used for table entries. If the TLB contains a valid entry that maps the
address of the memory operand, that TLB entry is marked invalid.

In both protected mode and virtual 8086 mode, an invalid opcode is g~nerated
when used with a register operand.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors.

IRET
IRETD
IRETW

CF

CF
CF
CF

CF
CF
CF
CF

IRETW

IRETW

IRETW

IREID

IRETD

IREID

IRETD

IRET

Interrupt return
IRETD 386 processors and greater
o D ITS ZAP C

* *
The flags register is popped from stack.

486 386 286 86

15 22,pm=38 17,pm=31 32 Interrupt return (far return and pop
flags)

36 pm=82 55 Interrupt return

ts+32 ts 169 Interrupt return

15 22,pm=38 Interrupt return (far return and pop
flags)

36 pm=82 Interrupt return to lesser privilege

15 pm=60 Interrupt return to V86 mode

ts+32 ts Interrupt return

Selects IRETW or IREID depen~
on segment size of 16 or 32 bits. y
workS for VERSION T320 or higher.

*Add one clock, for each byte in the next instruction executed (80286 only).

In real address mode, lRET pops the instruction pointer, CS, and the flags
register from the stack and resumes the interrupted routine.

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 93

In protected mode, the action of IRET depends on the setting of the nested task
flag (NT) bit in the flag register. When popping the new flag image from the
stack, the IOPL bits in the flag register are changed only when CPL equals O.

If NT equals 0, IRET returns from an interrupt procedure without a task switch.
The code returned to must be equally or less privileged than the interrupt
routine (as indicated by the RPL bits of the CS selector popped from the stack).
If the destination code is less privileged, IRET also pops the stack pointer and
SS from the stack.

If NT equals 1, IRET reverses the operation of a CALL or INT that caused a task
switch. The updated state of the task executing IRET is saved in its task state
segment. If the task is re-entered later, the code that follows IRET is executed.

IRETW pops WORD-style (if you use VERSION T320 or higher). If you're using
VERSION T310 or less, use IRET; IRETW replaces old functionality of IRET.

Jee

77cb

73cb

72cb
76cb

72cb

E3cb
E3cb

74cb

74cb
7Fcb

7Dcb

7Ccb

7Ecb

76cb

72cb

73cb

77cb

73cb
75cb

7Ecb

7Ccb

7Dcb

Jump if condition is met
o D ITS ZAP C

JArel8

JAErel8

JBrel8

JBErel8

JC rel8

JCXZrelS

JECXZrel8
JE relS

JZrelS

JGrelS

JGErelS

JL relS
JLErelS

JNArelS

JNAErelS

JNBreIS­

JNBErelS

JNCrelS

JNErelS

JNGrelS

JNGErelS

JNLrelS

486 386

3/1 7+m,3

286 86

7,3 16,4 Jump short if above (CF=O and

3/1 7+m+,3 7,3

3/1 7+m,3 7,3
3/1 7+m,3 7,3

3/1 7+m,3 7,3
3/1 9+m,5 S,4

3/1 9+m,5

3/1 7+m,3 7,3
3/1 7+m,3 7,3

3/1 7+m,3 7,3

ZF=D)

16,4 Jump short if above or equal
(CF=O)

16,4 Jump short if below (CF=l)

16,4 Jump short if below or equal (CF=1
orZF=l)

16,4 Jump short if carry (CF=1)

1S,6 Jump short if CX register is 0

Jump short if ECX register is 0

16,4 Jump short if equal (ZF=1)
16,4 Jump short if 0 (ZF=l)

16,4 Jump short if greater (ZF=O and
SF=OF)

3/1 7+m,3 7,3 16,4 Jump short if greater or equal
(SF=OF)

3/1 7+m,3 7,3 16,4 Jump short ifless (SF<>OF)

3/1 7+m,3 7,3 16,4 Jump short if less or equal (ZF=l
andSF<>OF)

3/1 7+m,3 7,3 16,4 Jump short if not above (CF=1 or

3/1 7+m,3 7,3

3/1 7+m,3 7,3
3/1 7+m,3 7,3

3/1 7+m,3 7,3

3/1 7+m,3 7,3
3/1 7+m,3 7,3

3/1 7+m,3 7,3

3/1 7+m,3 7,3

ZF=l)

16,4 Jump short if not above or equal
(CF=1)

16,4 Jump short if not below (CF=O)
16,4 Jump short if not below or equal

(CF=O and ZF=O)

16,4 Jump short if not carry (CF=O)

16,4 Jump short if not equal (ZF=O)

16,4 Jump short if not greater (ZF=1 or
SF<>OF)

16,4 Jump short if not greater or equal
(SF<>OF)

16,4 Jump short if not less (SF=OF)

94 Turbo Assembler Quick Reference

;;Il\Sf:Nctlott /;Oncks
486 386 286 86

7Fcb JNLErel8 3/1 7+m,3 7,3 16,4 Jump short if not less or equal
(ZF=O and SF=OF)

71cb JNOrel8 3/1 7+m,3 7,3 16,4 Jump short if not overflow (OF=O)
7Bcb JNPrel8 3/1 7+m,3 7,3 16,4 Jump short if not parity (PF=O)

79cb JNSrel8 3/1 7+m,3 7,3 16,4 Jump short if not sign (SF=O)
75cb JNZrel8 3/1 7+m,3 7,3 16,4 Jump short if not zero (ZF=O)
70cb JO rel8 3/1 7+m,3 7,3 16,4 Jump short if overflow (OF=l)
7Acb JPrel8 3/1 7+m,3 7,3 16,4 Jump short if parity (PF=l)

7Acb JPE rel8 3/1 7+m,3 7,3 16,4 Jump short if parity even (PF=l)
7Bcb JPOrel8 3/1 7+m,3 7,3 16,4 Jump short if parity odd (PF=O)
78cb JSrel8 3/1 7+m,3 7,3 16,4 Jump short if sign (SF=l)
74cb JZ rel8 3/1 7+m,3 7,3 16,4 Jump short of zero (ZF=l)

OF 87 cw/cd JA re116/32 3/1 7+m,3 Jumg near if above (CF=O and
ZF=)

OF 83 cw/cd JAE re116/32 3/1 7+m,3 Jump near if above or equal (CF=O)

OF 82cw/cd JB re116/32 3/1 7+m,3 Jump near if below (CF=l)

OF 86cw/cd JBE re116/32 3/1 7+m,3 Jump near if below or equal
(CF=lor ZF=l)

OF 82cw/cd JC re116/32 3/1 7+m,3 Jump near if carry (CF=l)

OF 84cw/cd JE re116/32 3/1 7+m,3 Jump near if equal (ZF=l)

OF 84cw/cd JZ re116/32 3/1 7+m,3 Jump near if 0 (ZF=l)

OF 8F cw/cd JG re116/32 3/1 7+m,3 Jumg near if greater (ZF=O and
SF= F)

OF 8Dcw/cd JGE re116/32 3/1 7+m,3 JumJ> near if greater or equal
(SF=OF)

OF 8C cw/cd JL re116/32 3/1 7+m,3 Jump near if less (SF<>OF)

OF 8E cw/cd JLE re116/32 3/1 7+m,3 Jum~ near if less or equal(ZF=l
and F<>OF)

OF 86cw/cd JNA re116/32 3/1 7+m,3 Jumr near if not above (CF=l or
ZF=)

OF 82cw/cd JNAE re116/32 3/1 7+m,3 Jump near if not above or equal
(CF=l)

OF 83cw/cd JNB re116/32 3/1 7+m,3 Jump near if not below (CF=O)

OF 87 cw/cd JNBE re116/32 3/1 7+m,3 Jump near if not below or equal
(CF=O and ZF=O

OF83cw/cd JNC re116/32 3/1 7+m,3 Jump near if not carry and ZF=O)

OF 85 cw/cd JNE re116/32 3/1 7+m,3 Jump near if not equal (ZF=O)

OF 8E cw/cd JNG re116/32 3/1 7+m,3 Jump near if not greater (ZF=l or
SF<>OF)

OF8Ccw/cd JNGE re116/32 3/1 7+m,3 Jump near if not greater or equal
(SF<>OF)

OF8Dcw/cd JNL re116/32 3/1 7+m,3 Jump near if not less (SF=OF)

OF 8F cw/cd JNLE re116/32 3/1 7+m,3 Jump near if not less or equal
(ZF=O and SF=OF)

OF 81 cw/cd JNO re116/32 3/1 7+m,3 Jump near if not overflow (OF=O)

OF 8B cw/cd JNP re116/32 3/1 7+m,3 Jump near if not parity (PF=O)

OF 89 cw/cd JNS re116/32 3/1 7+m,3 Jump near if not sign (SF=O)
OF 85 cw/cd JNZ re116/32 3/1 7+m,3 Jump near if not zero (ZF=O)

OF 80 cw/cd JOre116/32 3/1 7+m,3 Jump near if overflow (OF=l)

OF 8Acw/cd . JP re116/32 3/1 7+m,3 Jump near if parity (PF=l)

OF8Acw/cd JPE re116/32 3/1 7+m,3 Jump near if parity even (PF=l)

Chapter 4, Processor instructions 95

OF 8B cw/cd

OF 88 cw/cd

OF 84 cw/cd

JPO re116/32

JSre116/32

JZre116/32

486

3/1

3/1

3/1

386

7+m,3

7+m,3

7+m,3

286 86

Jump near if parity odd (PF=O)

Jump near if sign (SF=l)

Jump near if zero (ZF=l)

*When a jump is taken, add one clock for every byte of the next instruction executed (80286
only).

Note: The first clock count is for the true condition (branch taken); the second
clock count is for the false condition (branch not taken). re116/32 indicates that
these instructions map to two; one with a 16-bit relative displacement, the other
with a 32-bit relative displacement, depending on the operand-size attribute of
the instruction.

Conditional jumps (except JCXZ/JECXZ) test the flags which have been set by a
previous instruction. The conditions for each mnemonic are given in
parentheses after each description above. The terms "less" and "greater" are
used for comparisons of signed integers; "above" and "below" are used for
unsigned integers.

If the given condition is true, a jump is made to the location provided as the
operand. Instruction coding is most efficient when the target for the conditional
jump is in the current code segment and within -128 to + 127 bytes of the next
instruction's first byte. The jump can also target -32768 through +32767
(segment size attribute 16) or -2 to the 31st power +2 to the 31st power -1
(segment size attribute 32) relative to the next instruction's first byte. When the
target for the conditional jump is in a different segment, use the opposite case of
the jump instruction (that is, JE and JNE), and then access the target with an
unconditional far jump to the other segment. For example, you cannot code

JZ FARLABELi

You must instead code

JNZ BEYONDi
JMP FARLABELi

BEYOND:

Because there can be several ways to interpret a particular state of the flags,
TASM provides more than one mnemonic for mostof the conditional jump
opcodes. For example, if you compared two characters in AX and want to jump
if they are equal, use JE; or, if you ANDed AX with a bit field mask and only
want to jump if the result is 0, use JZ, a synonym for JE.

JCXZ/JECXZ differs from other conditional jumps because it tests the contents
of the CX or ECX register for 0, not the flags. JCXZ/JECXZ is useful at the
beginning of a conditional loop that terminates with a conditional loop
instruction (such as LOOPNE TARGET LABEL). The JCXZ/JECXZ prevents
entering the loop with ex or ECX equal to zero, which would cause the loop to
execute 64K or 32G times instead of zero times.

96 Turbo Assembler Quick Reference

JMP Jump
0 D I T S Z A P C

All if a task switch takes place; none if no task switch occurs.

486 386 286 86

EBcb JMPre18 3 7+m 7 15 Jump short
E9cw JMPre116 3 7+m 7 15 Jump near

FF /4 JMPr/ml6 5/5 7+m/l0+m 7/11 1l/18+EA Jump near
indiiect

EAcd JMP ptr16:16 17pm=19 12+m, pm=27+m ll,pm=23 15 Jump
intersegment,
4-bte munediate
ad ress

EAcd JMP ptr16:16 32 pm=45+m 38 Jump to call gate,
same privilege

EAcd JMP ptr16:16 42+ts ts 175 Jump via task
state segment

EAcd JMP ptr16:16 43+ts ts 180 24+EA Jump via task gate

FF /5 JMPm16:16 13,pm=18 43+m,pm=31 +m 15,pm=26 Jump r/mI6:16
indiiect and
intersegment

FF /5 JMPm16:16 31 pm=49+m 41 Jump to call gate,
same privilege

FF /5 JMPm16:16 41+ts 5+ts 178 Jump via task
state segment

FF /5 JMPm16:16 42+ts 5+ts 183 Jump via task gate
E9cd JMPre132 3 7+m Jump near
FF /4 JMPr/m32 5/5 7+m,10+m Jump near
EAcp JMP ptr16:32 13,pm=18 12+m, pm=27+m Jump

intersegment,
6-b£e munediate
ad ess '

EAcp JMP ptr16:32 31 pm=45+m Jump to call gate,
same privilege

EAcp JMP ptr16:32 42+ts ts Jump via task
state segment

EAcp JMP ptr16:32 43+ts ts Jump via task gate

FF /5 JMPm16:32 13,pm=18 43+m, pm=31 +m Jump
intersegment
address at r / m
dword

FF /5 JMPm16:32 31 pm=49+m Jump to call gate,
same privilege

FF /5 JMPm16:32 41+tsl0 5+ts Jump via task
state segment

FF /5 JMPm16:32 42+ts 5+ts Jump via task gate

*Add one clock for every byte of the next instruction executed (80286 only).

The JMP instruction transfers control to a different point in the instruction
stream without recording return information.

The action of the various forms ofthe instruction are shown below.

Jumps with destinations of type r/m16, r/m32, re116, and rel32 are near jumps
and do not involve changing the segment register value.

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 97

The JMP re116 and JMP rel32 forms oithe instruction add an offset to the
address of the instruction following the JMP to determine the destination. The
re116 form is used when the instruction's operand-size attribute is 16 bits
(segment size attribute 16 only); rel32 is used when the operand-size attribute is
32 bits (segment size attribute 32 only). The result is stored in the 32-bit EIP
register. With re116, the upper 16 bits of EIP are cleared, which results in an
offset whose value does not exceed 16 bits.

JMP r I m16 and JMP r I m32 specifies a register or memory location from which
the absolute offset from the procedure is fetched. Theoffset fetched from rim is
32 bits for an operand-size attribute of 32 bits (r Im32), or 16 bits for an operand­
size attribute of 16 bits (r/m16).

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or six­
byte operand as a long pointer to the destination. The JMP m16:16 and m16:32
forms fetch the long pointer from the memory location specified (indirection).
In real address mode or virtual 8086 mode, the long pointer provides 16 bits for
the CS register and 16 or 32 bits for the EIP register (depending on the operand­
size attribute). In protected mode, both long pointer forms consultthe access
rights (AR) byte in the descriptor indexed by the selector part of the long
pointer. Depending on the value of the AR byte, the jump will perform one of
the following types of control transfers:

• a jump to a code segment at the same privilege level
• a task switch

LAHF Loads flags into AH register
o D ITS ZAP C

486 386 286 86

9F LAHF 3 2 2 4 Load: AH = flags SF ZF xx AF xx PF xx CF

LAHF transfers the low byte of the flags word to AH. The bits, from MSB to
LSB, are sign, zero, indeterminate, auxiliary carry, indeterminate, parity,
indeterminate, and carry.

LAR Load access rights byte
80286 and greater protected mode only
o D ITS ZAP C

486 386 286

OF 02/r LAR r16,r/m16 11/11 pm=15/16 14/16 r16f-r/m16 masked by FFOO
OF 02 /r LAR r32,r/m32 11/11 pm=15/16 r32f-r/m32 masked by OOFxFFOO

The LAR instruction stores a marked form of the second doubleword of the
descriptor for the source selector if the selector is visible at the CPL (modified
by the selector's RPL) and is a valid descriptor type. The destination Tegister is
loaded with the high-order doubleword of the descriptor masked by OOFxFFOO,
and ZF is set to 1. The x indicates that the four bits corresponding to the upper
four bits of the limit are undefined in the value loaded by LAR. If the selector is
invisible or of the wrong type, ZF is cleared.

98 T u r boA sse m b I e r Qui c k Ref ere nee

If the 32-bit operand size is specified, the entire 32-bit value is loaded into the
32-bit destination register. If the 16-bit operand size is specified, the lower 16-
bits of this value are stored in the 16-bit destination register.

All code and data segment descriptors are valid for LAR. (See your Intel
manual for valid segment and gate descriptor types for LAR.)

LEA Load effective address offset
o D ITS ZAP C

()pc~~~;:ltisij!u.ctiQn '

486

8D/r LEAr16,m 1

8D / r LEA r32,m 1

8D/r LEAr16,m 1

8D / r LEA r32,m 1

386 286

2 3
2
2

2

86

2+EA Store effective address for m in register r16

Store effective address for m in register r32

Store effective address for m in register r16

Store effective address for m in register r32

LEA calculates the effective address (offset part) and stores it in the specified
register. The operand-size attribute of the instruction is determined by the
chosen register. The address-size attribute is determined by the USE attribute of
the segment containing the second operand. The address-size and operand-size
attributes affect the action performed by LEA, as follows:

Operand size
16

16

32

32

LEAVE

C9 LEAVE

C9 LEAVE

Address size
16

32

16

32

Action performed
16-bit effective address is calculated and
stored in requested 16-bit register
destination.
32-bit effective address is calculated. The
lower 16 bits of the address are stored in the
requested 16-bit register destination.
16-bit effective address is calculated. The
16-bit address is zero-extended and stored in
the requested 32-bit register destination.
32-bit effective address is calculated and
stored in the requested 32-bit register
destination.

High-level procedure exit
80186 processors and greater
0 D I T S Z A P C

486 386 286

5 4 5 SetSPto BP

5 4 Set ESP to EBP

LEAVE reverses the actions of the ENTER instruction. By copying the frame
pointer to the stack pointer, LEAVE releases the stack space used by a
procedure for its local variables. The old frame pointer is popped into BP or
EBP, restoring the caller's frame. A subsequent RET nn instruction removes any
arguments pushed onto the stack of the exiting procedure.

Chapter 4, Processor instructions 99

LGOT/LIOT Load globallinterrupt descriptor table register
80286 and greater protected mode only
o D ITS ZAP C

486

OF 01 /2 LGDT m16&32 11
OF 01 /3 LIDT m16&32 11

386 286

11 11
11 12

Load m into global descriptor table register

Load m into interrupt descriptor table register

The LCDT and LIDT instructions load a linear base address and limit value
from a six-byte data operand in memory into the CDTR or IDTR, respectively.
If a 16-bit operand is used with LCDT or LIDT, the register is loaded with a 16-
bit limit and a 24-bit base, and the high-order 8 bits of the 6-byte data operand
are not used. If a 32-bit operand is used, a 16-bit limit and a 32-bit base is
loaded; the high-order 8 bits of the 6-byte operand are used as high-order base
address bits.

The SCDT and SIDT instructions always store into all 48 bits of the 6-byte data
operand. With the 80286, the upper 8 bits are undefined after SCDT or SIDT is
executed. With the 386, the upper 8 bits are written with the high-order 8
address bits, for both a 16-bit operand and a 32-bit operand. If LCDT or LIDT is
used with a 16-bit operand to load the register stored by SCDT or SIDT, the
upper 8 bits are stored as zeros.

LCDT and LIDT appear in operating system software; they are not used in
application programs. They are the only instructions that directly load a linear
address (i.e., not a segment relative address) in 386 protected mode.

LGS Load full pOinter
LSS LGS/LSS/LFS 386 processors and greater
LFS 0 D I T S Z A P C

LOS
LES

486 386 286 86

C5/r LDS r16,m16:16 6/12 7,pm=22 7,pm=21 16+EA Load DS:r16 with pointer
from memory

C5/r LOS r32,m16:32 6/12 7,pm=22 Load DS:r32 with pointer
from memory

OFB2/r LSS r16,m16:16 6/12 7,pm=22 Load SS:r16 with pointer from
memory

OF B2 /r LSS r32,m16:32 6/12 7,pm=22 Load SS:r32 with pointer from
memory

C4/r LES r16,m16:16 6/12 7,pm=22 7,pm=21 16+EA Load ES:r16 with pointer
from memory

C4/r LES r32,m16:32 6/12 7,pm=22 Load ES:r32 with pointer
from memory

OFB4 /r LFS r16,m16:16 6/12 7,pm=25 Load FS:r16 with pointer
from memory

OFB4 /r LFS r32,m16:32 6/12 7,pm=25 Load FS:r32 with pointer
. frommemory

100 Turbo Assembler Quick Reference

486 386 286 86

OFB5/r LGS r16,m16:16 6/12 7,pm=25 Load GS:r16 with pointer
from memory

OF B5 /r LGS r32,m16:32 6/12 7,pm=25 Load GS:r32 with pointer
from memory

These instructions read a full pointer from memory and store it in the selected
segment register: register pair. The full pointer loads 16 bits into the segment
register 55, D5, E5, F5, or G5. The other register loads 32 bits if the operand-size
attribute is 32 bits, or loads 16 bits if the operand-size attribute is 16 bits. The
other 16- or 32-bit register to be loaded is determined by the r16 or r32 register
operand specified.

When an assignment is made to one of the segment registers, the descriptor is
also loaded into the segment register. The data for the register is obtained from
the descriptor table entry for the selector given.

A null selector (values 0000-0003) can be loaded into D5, E5, F5, or G5 registers
without causing a protection exception. (Any subsequent reference to a
segment whose corresponding segment register is loaded with a null selector to
address memory causes a #GP(O) exception. No memory reference to the
segment occurs.)

LLDT Load local descriptor table register
80286 and greater protected mode only
o D ITS ZAP C

486 386 286

OF 00/2 LLDT r/m 16 11/11 20 17/19 Load selector r/m16 into LDTR

LLDT loads the local descriptor table register (LDTR). The word operand
(memory or register) to LLDT should contain a selector to the global descriptor
table (GDT). The GDT entry should be a local descriptor table. If so, then the
LDTR is loaded from the entry. The descriptor registers D5, E5, 55, F5, G5, and
C5 are not affected. The LDT field in the task state segment does not change.

The selector operand can be 0; if so, the LDTR is marked invalid. All descriptor
references (except by the LAR, VERR, VERW or L5L instructions) cause a #GP
fault.

LLDT is used in operating system software; it is not used in application
programs.

LMSW Load machine status word
80286 and greater protected mode only
o D ITS ZAP C

486 386 286

OF 01/6 LMSW r/m 16 13/13 10/13 3/6 Load r/m 16 into machine status word

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 101

LMSW loads the machine status word (part of CRO) from the source operand.
This instruction can be used to switch to protected mode; if so, it must be
followed by an intrasegment jump to flush the instruction queue. LMSW will
not switch back to real address mode.

LMSW is used only in operating system software. It is not used in application
programs.

LOCK Assert LOCK# signal prefix
o D ITS ZAP C

486 386 286 86

FO LOCK 1 0 o 2 Assert LOCK# signal for the next instruction

The LOCK prefix causes the LOCK# signal of the CPU to be asserted during
execution of the instruction that follows it. In a multiprocessor environment,
this signal can be used to ensure that the CPU has exclusive use of any shared
memory while LOCK# is asserted. The read-modify-write sequence typically
used to implement test-and-set on the 386 is the BTS instruction.

On the 386 and i486, the LOCK prefix functions only with the following
instructions:

BT, BTS, BTR, BTC
XCHG
XCHG
ADD, OR, ADC, SBB,
AND, SUB, XOR
NOT, NEG, INC, DEC

mem, reg/imm
reg,mem
mem,reg
mem, reg/imm

mem

An undefined opcode trap will be generated if a LOCK prefix is used with any
instruction not listed above.

XCHG always asserts LOCK # regardless of the presence or absence of the
LOCK prefix.

The integrity of the LOCK is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Locked access is not assured if another CPU processor is executing an
instruction concurrently that has one of the following characteristics:

• Is not preceded by a LOCK prefix.

• Is not one of the instructions in the preceding list.

• Specifies a memory operand that does not exactly overlap the destination
operand. Locking is not guaranteed for partial overlap, even if one memory
operand is wholly contained within another.

102 T u r boA sse m b I e r Qui c k Ref ere nee

LOOS Load string operand
LOOSe LODSD 386 processors and greater
LOOSW 0 D T Z A P C

LOOSO
Ql'c~~le Instruction Clocks Description

386; 286 86

AC LODSm18 5 5 5 12 Load byte [(E)SI] into AL

AD LODSm16 5 5 5 12 Load word [(E)SI] into AX

AD LODSm32 5 5 Load dword [(E)SI] into EAX

AC LODSB 5 5 5 12 Load byte DS:[(E)SI] into AL

AD LODSW 5 5 5 12 Load word DS:[(E)SI] into AX

AD LODSD5 5 Load dword DS:[(E)SI] into EAX

LaDS loads the AL, AX, or EAX register with the memory byte, word, or
doubleword at the location pointed to by the source-index register. After the
transfer is made, the source-index register is automatically advanced. If the
direction flag is 0 (CLD was executed), the source index increments; if the
direction flag is 1 (STD was executed), it decrements. The increment or
decrement is 1 if a byte is loaded, 2 if a word is loaded, or 4 if a doubleword is
loaded.

If the address-size attribute for this instruction is 16 bits, 51 is used for the
source-index register; otherwise the address-size attribute is 32 bits, and the ESl
register is used. The address of the source data is determined solely by the
contents of ES1/S1. Load the correct index value into 51 before executing the
LaDS instruction. LODSB, LODSW, LODSD are synonyms for the byte, word,
and doubleword LaDS instructions.

LaDS can be preceded by the REP prefix; however, LaDS is used more
typically within a LOOP construct, because further processing of the data
moved into EAX, AX, or AL is usually necessary.

LOOP Loop control with CX counter
LOOPcond Loop control with CXlECX counter

386 processors and greater
0 D T S Z A P C

486 386 286 86

E2cb LOOPre18 2,6 ll+m 8,noj=4 17,noj=5 DEC Count; jump short if
Count a

El cb LOOPEre18 9,6 ll+m 8,noj=4 18,noj=6 DEC Count jump short if
Count a an ZF=l

E1 cb LOOPZre18 9,6 ll+m 8,noj=4 18,noj=6 DEC Count jump short if
Count a an ZF=l

Eacb LOOPNEre18 9,6 ll+m 8,noj=4 19,noj=5 DEC Count jump short if
Count a an ZF=a

Ea'cb LOOPNZre18 9,6 ll+m 8,noj=4 19,noj=5 DEC Count jump short if
Count a an ZF=a

LOOP decrements the count register without changing any of the flags.
Conditions are then checked for the form of LOOP being used. If the conditions
are met, a short iumpis made to the label given by the operand to LOOP. If the

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 103

address-size attribute is 16 bits, the CX register is used as the count register;
otherwise the ECX register is used (386 only). The operand of LOOP must be in
the range from 128 (decimal) bytes before the instruction to 127 bytes phead of
the instruction.

The LOOP instructions provide iteration control and combine loop index
management with conditional branching. Use the LOOP instruction by10ading
an unsigned iteration count into the count register, then code the LOOP at the
end of a series of instructions to be iterated. The destination of LOOP is a label
that points to the beginning of the iteration.

LSL Load segment limit
80286 and greater protected mode only
o D ITS ZAP C

486 386 286

OF 03 /r LSL r16,r/m16 10/tO pm=20/21 14/16 Load: r16~segment limit, selector
r/m16 (byte granular)

OF 03 /r LSL r32,r / m32 10/tO pm=20/21 Load: r32~segment limit, segment
limit, selector r/m32 (byte granular)

OF 03 /r LSL r16,r/m16 10/tO pm=25/26 14/16 Load: r16~segment limit, segment
limit, selector r/m16 (page granular)

OF 03 /r LSL r32,r/m32 10/tO pm=26/26 Load: r32~segment limit selector
r/m32 (page granular)

The LSL instruction loads a register with an unscrambled segment limit, and
sets ZF to l, provided that the source selector is visible at the CPL weakened by
RPL, and that the descriptor is a type accepted by LSL. Otherwise, ZF is cleared
to 0, and the destination register is unchanged. The segment limit is loaded as a
byte granular value. If the descriptor has a page granular segment limit, LSL
will translate it to a byte limit before loading it in the destination register (shift
left 12 the 20-bit "raw" limit from descriptor, then OR with OOOOOFFFH).

The 32-bit forms of this instruction store the 32-bit byte granular limit in the
16-bit destination register.

Code and data segment descriptors are valid for LSL.

LTR Load task register
80286 and greater protected mode only
o D ITS ZAP C

486 386 286

OF 00 /3 LTRr/m16 20/20 pm=23/27 17/19 Load EA word into task register

LTR loads the task register from the source register or memory location
specified by the operand. The loaded task state segment is marked busy. A task
switch does not occur.

LTR is used only in operating system software; it is not used in application
programs.

104 Turbo Assembler Quick Reference

MOV Move data
0 D I T S Z A P C

486 386 286 86

BB /r MOVr/mB,rB 2/2 2/3 2/9+EA Move byte
n/~ster into
r mbyte

B9/r MOV r/m16,r16 2/2 2/3 2/9+EA Move word
rrrrster into
r mword

B9/r MOV r/m32,r32 2/2 Movedword
register to rim
dword

BA /r MOVrB,r/mB 1 2/4 2/5 2/B+EA Mover/m
byte into byte
register

BB /r MOV r16,r/m16 1 2/4 2/5 2/B+EA Mover/m
word into
word register

BB /r MOV r32,r /m32 1 2/4 Mover/m
dwordinto
dword register

BC /r MOV r/m16,Sreg 3/3 2/2 2/3 2/9+EA Move segment
register to r / m
register

BD /r MOV Sreg,r /m16 3/9 2/5,pm=18/19 2/5,pm=17/19 2/B+EA Mover/m
word to
segment
register

AO MOV AL,moffsB 1 4 5 10 Move byte at
~:offset) to

Al MOV AX,moffs16 4 5 10 Move word at
~:offset) to

Al MOV 4 Movedword
EAX,moffs32 at (seg:offset) to

EAX
A2 MOV moffsB,AL 4 3 10 Move ALto

(seg:offset)

A3 MOV moffs16,AX 2 3 10 Move AX to
(seg:offset)

A3 MOV 2 MoveEAXto
moffs32,EAX (seg:offset)

BO+rb MOV regB,immB 2 2 4 Move
immediate byte
to register

B8+rw MOV 1 2 2 4 Move
regI6,imm16 immediate

word to
register

B8+rd MOV 2 Move
reg32,imm32 immediate

dwordto
register

C6 MOV r/m8,imm8 1 2/2 2/3 4/10+EA Move
immediate byte
tor/mbyte

Chapter 4, Processor instructions 105

486

C7 MOVrl 1
m16,imm16

C7 MOVrl
m32,imm32

386 286

2/2 2/3

2/2

86

4/l0+EA Move
immediate
word to rim
word

Move
immediate
dword to rim
dword

MOV copies the second operand to the first operand.

If the destination operand is a segment register (DS, ES, SS, etc.), then data from
a descriptor is also loaded into the register. The data for the register is obtained
from the descriptor table entry for the selector given. A null selector (values
0000-0003) can be loaded into DS and ES registers without causing an
exception; however, use of DS or ES causes a #GP(O), and no memory reference
occurs.

A MOV into SS inhibits all interrupts until after the execution of the next
instruction (which is presumably a MOV into eSP).

MOV Move to/from special registers
386 processors and greater
a D T S Z A P C

486 386

OF 22 Ir MOV,CRO,r32 16 Move (register) to (control register)

OF 20 /r MOV r32,CROICR2/CR3/CR4 4 6 Move (control register) to (register)

OF 22 Ir MOV CRO/CR2/CR3/CR4,r32 4 1014/5
OF 21 Ir MOV r32,DRO - 3 10 22 Move (debug register) to (register)

OF 21 Ir MOV r32,DR6/DR7 ' 10 14 Move (debug register) to (register)

OF 23 Ir MOV DRO -3,r32 11 22 Move (register) to (debug register)

OF 23 Ir MOV DR6/DR7,r32 11 16 Move (register) to (debug register)

OF 24 Ir MOV r32,TR6/TR7 4 12 Move (test register) to (register)

OF 26 Ir MOV TR6/TR7,r32 4 12 Move (register) to (test register)

OF 24 Ir MOVr32,TR3 3 Move (registers) to (test register3)

These forms of MOV store or load the following special registers in or from a
general-purpose register:

• Control Registers CRO, CR2, CR3, and CR4 (CR4 only on Pentium)
• Debug Registers DRO, DR1, DR2, DR3, DR6, and DR7
• Test Registers TR3, TR4, TR5, TR6, and TR7 (not valid on Pentium)

32-bit operands are always used with these instructions, regardless of the
operand-size attribute.

106 T u r boA sse m b I e r Qui c k Ref ere nee

MOVS Move data from string to string
MOVSB MOVSD 386 processors and greater
MOVSW 0 D T S Z A P c

MOVSD
Opcode Instruction Clocks Description

486 386 286 86

A4 MOVSm8,m8 7 7 5 18 Move byte [(E)SI] to ES:[(E)DI]
A5 MOVS m16,m16 7 7 5 18 Move word [(E)SI] to ES:[(E)DI]

A5 MOVm32,m32 7 7 Move dword [(E)SI] to ES:[(E)DI]

A4 MOVSB 7 7 5 18 Move byte DS:[(E)SI] to ES:[(E)DI]

A5 MOVSW 7 7 5 18 Move word DS:[(E)SI] to ES:[(E)DI]

A5 MOVSD 7 7 Move dword DS:[(E)SI] to ES:[(E)DI]

MOVS copies the byte or word at [(E)SI] to the byte or word at ES; [(E)DI]. The
destination operand must be addressable from the ES register; no segment
override is possible for the destination. A segment override can be used for the
source operand; the default is DS.

The addresses of the source and destination are determined solely by the
contents of (E)SI and (E)DI. Load the correct index values into (E)SI and (E)DI
before executing the MOVS instruction. MOVSB, MOVSW, and MOVSD are
synonyms for the byte, word, and doubleword MOVS instructions.

After the data is moved, both (E)SI and (E)DI are advanced automatically. If the
direction flag is a (CLD was executed), the registers are incremented; if the
direction flag is 1 (STD was executed), the registers are decremented. The
registers are incremented or decremented by 1 if a byte was moved, 2 if a word
was moved, or 4 if a doubleword was moved.

MOVS can be preceded by the REP prefix for block movement of CX bytes or
words. Refer to the REP instruction for details of this operation.

MOVSX

OF BE Ir
OF BE Ir

Move with sign-extend
386 processors and greater
o D ITS ZAP C

486 386

MOVSXrI6,r/m8 3/3 3/6

MOVSX r32,r/m8 3/3 3/6

Move byte to word with sign extend

Move byte to dword

OF BE Ir MOVSX r32,r/mI6 3/3 3/6 Move word to dword

MOVSX reads the contents of the effective address or register as a byte or a
word, sign-extends the value to the operand-size attribute of the instruction
(16 or 32 bits), and stores the result in the destination register.

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 107

MOVZX Move with zero-extend

OF B6 /r

OFB6/r
OFB7/r

386 processors and greater
o D ITS ZAP C

486 386

MOVZX r16,r/m8 3/3 3/6
MOVZX r32,r/m8 3/3 3/6
MOVZX r32,r/m16 3/3 3/6

Move byte to word with zero extend
Move byte to dword

Move word to dword

MOVZX reads the contents of the effective address or register as a byte or a
word, zero extends the value to the operand-size attribute of the instruction
(16 or 32 bits), and stores the result in the destination register.

MUL Unsigned multiplication of AL or AX
0 D I T S Z A P C

*

486 386 286 86

F6/4 MULr/m8 13/18, 9-14/12-17 13/16 70-77/76-83+EA unsiffPed multiply
13/18 (AX (AL8r/m

byte)

F7/4 MUL,r/m16 13/26, 9-22/12-25 21/24 118-113/124-139+EA (DX:AX[AX
13/26 *r/m word)

F7/4 MULr/m32 13/42, 9-38/12-41 Uns~edm~ly
13/42 (ED :EAX[E

*r/mdword)

MDL performs unsigned multiplication. Its actions depend on the size of its
operand, as follows:

• A byte operand is multiplied by AL; the result is left in AX. The carry and
overflow flags are set to a if AH is 0; otherwise, they are set to 1.

• A word operand is multiplied by AX; the result is left in DX: AX. DX
contains the high-order 16 bits of the product. The carry and overflow flags
are set to a if DX is 0; otherwise, they are set to 1.

• A doubleword operand is multiplied by EAX and the result is left in
EDX:EAX. EDX contains the high-order 32 bits of the product. The carry and
overflow flags are set to a if EDX is 0; otherwise, they are set to 1 (386 only).

NEG

F6/3
F7/3

Two's complement negation
o D ITS ZAP C

486

NEGr/m8 1/3
NEG r/m16 1/3

386 286 86

2/6 2/7 3/16+EA Two'scomplementnegater/mbyte
2/6 2/7 3/16+EA Two'scomplementnegater/mword

F7/3 NEG r/m32 1/3 2/6 Two's complement negate rim dword

108 T u r boA sse m b I e r Qui c k Ref ere nee

NEG replaces the value of a register or memory operand with its two's
complement. The operand is subtracted from zero, and the result is placed in
the operand.

The carry flag is set to I, unless the operand is zero, in which case the carry flag
is cleared to O.

NOP No operation
0 D I T S Z A P c

Ol'cod.~ . IrtSttuctiotr . Clocks Description

486 386 286 86

90 NOP 1 3 3 3 No operation

Nap performs no operation. Nap is a one-byte instruction that takes up space
but affects none of the machine context except (E)IP.

Nap is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

NOT One's complement negation
0 D I T S Z A P C

486 386 286 86

F6/2 NOTr/m8 1/3 2/6 2/7 3/16+EA Reverse each bit of r / m byte
F7/2 NOTr/m16 1/3 2/6 2/7 3/16+EA Reverse each bit of r / m word
F7/2 NOTr/m32 1/3 2/6 2/7 Reverse each bit of r / m dword

NOT inverts the operand; every 1 becomes a 0, and vice versa.

OR Logical inclusive OR
o D T S ZAP C
o 0

486 386 286 86

OCib ORAL,imm8 1 2 3 4 OR immediate byte to AL
ODiw ORAX,immI6 1 2 I 3 4 OR immediate word to AX
ODid OR EAX,imm32 1 2 OR immediate dword to EAX

80/1 ib OR r/m8,imm8 1/3 2/7 3/7 4/17+EA OR immediate byte to r / m byte
81/1 iw OR r/m16,immI6 1/3 2/7 3/7 4/17+EA OR immediate word to r / m word

. 81/lid OR r/m32,imm32 1/3 2/7 OR immediate dword to rim
dword

83/1 ib OR r/m16,imm8 1/3 2/7 OR sign-extended immediate byte
with rim word

83/1 ib OR r/rn32,imm8 1/3 2/7 OR sign-extended immediate byte
with rim dword

08/r ORr/m8,r8 1/3 2/6 2/7 3/16+EA OR byte register to r / m byte
09/r OR r/m16,rI6 1/3 2/6 2/7 3/16+EA OR word register to r / m word

09/r ORr/m32,r32 1/3 2/6 OR dword register to r / m dword

OA/r ORr8,r/m8 1/2 2/7 2/7 3/9+EA OR byte register to r / m byte

Chapter 4, Processor instructions 109

486 386 286 86

OB /r
OB /r

OR r16,r/m16

OR r32,r/m32

1/2 2/7 2/7 3/9+EA OR word register to r/m word

1/2 2/7 ORdword register to r/mword

OR computes the inclusive OR of its two operands and places the result in the
first operand. Each bit of the result is 0 if both corresponding bits of the
operands are 0; otherwise, each bit is l.

The optimized form of OR is SETFLAG (see Chapter 3).

OUT Output to port
0 D I T S Z A P C

486 386 286 86

OUT 16,pm=11 * /31 **, 1O,pm==4* /24** 3 10 Output byte AL to
imm8,AL vm==29 immediate port

number

E6ib

OUT 16,pm==11 * /31 **, 10,pm==4* /24** 3 10 Output word AX to
imm8,AX vm==29 immediate port

number

E7ib

OUT 16,pm==11 * /31 **, 1O,pm==4* /25** Output dword EAX
imm8,EAX vm=29 to immediate port

number

E7ib

OUT DX,AL 16,pm==11 * /31 **, 11,pm==5* /25** 3 8 Output b~e AL to
vm==29 port num er in OX

EE

OUT DX,AX 16,pm==11 * /31**, 11,pm==5* /25** 3 8 Output word AX to
vm==29 port number in OX

EF

OUT DX,EAX 16,pm==11 * /31 **, 11,pm==5* /25** Output dword EAX
vm==29 to port number in OX

EF

*I£ CPL ~ lOPL.
**I£ CPL > lOPL or if in virtual 8086 mode.

OUT transfers a data byte or data word from the register (AL, AX, or EAX)
given as the second operand to the output port numbered by the first operand.
Output to any port from 0 to 65535 is performed by placing the port number in
the DX register and then using an OUT instruction with DX as the first operand.
If the instruction contains an eight-bit port ID, that value is zero-extended to
16 bits.

OUTS
OUTSe
OUTSW
OUTSO

Output string to port
OUTS/OUTSB/OUTSW 80186 and greater
OUTSO 386 processors and greater
o D ITS ZAP C

486 386 286

6E OUTS DX,r/m8 17,pm=10* /32**,
vm==30

14,pm==8* /28** 5

6F OUTS DX,r/m16 17,pm==10* /32**, 14,pm==8* /28** 5
vm==30

6F OUTS DX,r/m32 17,pm==10* /32**, 14,pm==8* /28**
vm==30

110 Turbo Assembler Quick Reference

Output byte [(E)5I]
to port in OX

Output word [(E)51]
to port in OX

Ou~utdword
[(E) I] to port in DX

Op¢Qg~ ;; ,lnstritction' Clocks' ' D(!sctlption

486 386 286

6E OUTSB 17,pm=1O* /32**, 14,pm=S* /2S** 5 Ouwutbte
vm=30 os: (E)SI to port

in OX

6F OUTSW 17,pm=10* /32**, 14,pm=S* /2S** 5 Ouwutword
vm=30 OS: (E)SI] to ~ort

numberinO

6F OUTSO 17,pm=10* /32**, 14,pm=S* /2S** Ouwutdword
vm=30 OS: (E)SI] to port

in OX

OUTS transfers data from the memory byte, word, or doubleword at the
source-index register to the output port addressed by the DX register. If the
address-size attribute for this instruction is 16 bits, SI is used for the source­
index register; otherwise, the address-size attribute is 32 bits, and ESI is used for
the source-index register.

OUTS does not allow specification of the port number as an immediate value.
The port must be addressed through the DX register value. Load the correct
value into DX before executing the OUTS instruction.

The address of the source data is determined by the contents of source-index
register. Load the correct index value into SI or ESI before executing the OUTS
instruction.

After the transfer, source-index register is advanced automatically. If the
direction flag is 0 (CLD was executed), the source-index register is incremented;
if the direction flag is 1 (STD was executed), it is decremented. The amount of
the increment or decrement is 1 if a byte is output, 2 if a word is output, or 4 if a
doubleword is output.

OUTSB, OUTSW, and OUTSD are synonyms for the byte, word, and
doubleword OUTS instructions. OUTS can be preceded by the REP prefix for
block output of CX bytes or words. Refer to the REP instruction for details on
this operation.

POP POp a word from the stack
0 D I T S Z A P C

486 386 286 86

SF /0 POPm16 6 5 5 17+EA Pop top of stack into memory
word

SF /0 POPm32 6 5 Pop tJ' of stack into memory
dwor

5S+rw POPr16 4 4 5 S Pop top of stack into word
register

5S+rd POPr32 4 4 Pop top of stack into dword
register

IF POP OS 3 7,pm=21 5,pm=20 S Pop top of stack into OS

07 POPES 3 7,pm=21 5,pm=20 S Pop top of stack into ES

17 POPSS 3 7,pm=21 5,pm=20 S Pop top of stack into SS
OF Al POPFS 3 7,pm=21 Pop top of stack into FS

OFA9 POPGS 3 7,pm=21 Pop top of stack into GS

Chapter 4, Processor instructions 111

POP replaces the previous contents of the memory, the register, or the segment
register operand with the word on the top of the stack, addressed by SS:SP
(address-size attribute of 16 bits) or SS:ESP (address-size attribute of 32 bits).
The stack pointer SP is incremented by 2 for an operand-size of 16 bits or by
4 for an operand-size of 32 bits. It then points to the new top of stack.

POP CS is not an instruction. Popping from the stack into the CS register is
accomplished with a RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the value
popped must be a selector. In protected mode, loading the selector initiates
automatic loading of the descriptor information associated with that selector
into the hidden part of the segment register; loading also initiates validation of
both the selector and the descriptor information.

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register
without causing a protection exception. An attempt to reference a segment
whose corresponding segment register is loaded with a null value causes a
general protection fault. No memory reference occurs. The saved value of the
segment register is null.

A POP SS instruction inhibits all interrupts, including NMI, until after
execution of the next instruction. This allows sequential execution of POP S5
and POP ESP instructions without danger of having an invalid stack during an
interrupt. However, use of the LSS instruction is the preferred method of
loading the SS and ESP registers.

Note: Turbo Assember extends the syntax of the POP instruction to facilitate
popping multiple items in sequence. The items popped can include any legal
POP value, including registers, immediate values, and memory locations. This
feature does not actually affect the code generated.

POPA
POPAD
PO PAW

61 POPA

61 POPAO

61 POPAW

Pop all general registers
POPA 80186 processors and greater
POPAD 386 processors and greater
o D T S ZAP C

486 386 286

9 24 19 Pop DI/ 51, BP, BX, OX, CX, AX

9 24 Pop EOI, ESI, EBP, EBX, EOX, ECX, EAX

9 24 19 Pop DI, 51, BP, BX, OX, CX, AX

POP A pops the yight 16- or 32-bit general registers depending on the segment
size. However, the SP value is discarded instead of loaded into SP. paPA
reverses a previous PUSHA, restoring the general registers to their values
before PUSHA was executed. The first register popped is DI.

POP AD pops the eight 32-bit general registers. The ESP value is discarded
instead of loaded into ESP. POP AD reverses the previous PUSHAD, restoring
the general registers to their values before PUSHAD was executed. The first
register popped is ED!.

paPAW pops WORD-sized registers. (Can only be used for VERSION T320 or
higher.)

112 T u r boA sse m b I e r Qui c k Ref ere nee

POPF Pop from stack into FLAGS or EFLAGS register
POPFD POPFD 386 processors and greater
POPFW 0 D I T S Z A P C

*

486 386 286 86

90 POPF 9,pm=6 5 5 8 Pop top of stack into FLAGS

90 POPFD 9,pm=6 5 Pop top of stack into EFLAGS

90 POPFW 9,pm=6 5 5 8 Pop top of stack into FLAGS

POPF /POPFD pOpS the word or doubleword on the top of the stack and stores
the value in the flags register. If the operand-size attribute of the instruction is
16 bits, then a word is popped and the value is stored in FLAGS. If the operand­
size attribute is 32 bits, then a doubleword is popped and the value is stored in
EFLAGS.

Note that bits 16 and 17 of EFLAGS, called VM and RF, respectively, are not
affected by POPF or POPFD.

The I/O privilege level is altered only when executing at privilege level O. The
interrupt flag is altered only when executing at a level at least as privileged as
the I/O privilege level. (Real-address mode is equivalent to privilege level 0.) If
a POPF instruction is executed with insufficient privilege, an exception does not
occur, but the privileged bits do not change.

POPFW always pops into FLAGS WORD-style. (Can only be used for
VERSION T320 or higher.)

PUSH Push operand onto the stack
o D ITS ZAP C

486 386 286 86

FF 16 PUSHm16 4 5 5 16+EA Push memory word

FF 16 PUSHm32 4 5 Push memory dword

50+ Ir PUSHr16 1 2 3 11 Push register word

50+ Ir PUSHr32 1 2 Push register dword

6A PUSHimm8 1 2 3 Push immediate byte

68 PUSHimm16 1 2 3 Push immediate word

68 PUSHimm32 1 2 Push immediate dword

DE PUSHCS 3 2 3 10 PushCS

16 PUSHSS 3 2 3 10 PushSS

1E PUSH OS 3 2 3 10 PushDS

06 PUSHES 3 2 10 PushES

OF AD PUSHFS 3 2 PushFS

OFA8 PUSHGS 3 2 PushGS

PUSH decrements the stack pointer by 2 if the operand-size attribute of the
instruction is 16 bits; otherwise, it decrements the stack pointer by 4. PUSH then
places the operand on the new top of stack, which is pointed to by the stack
pointer.

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 113

The 386 PUSH ESP instruction pushes the value of the ESP as it existed before
the instruction. The 80286 PUSH SP instruction also pushes the value of SP as it
existed before the instruction. This differs from the 8086, where PUSH SP
pushes the new value (decremented by 2).

Note: Turbo Assember extends the syntax of the PUSH instruction to facilitate
pushing multiple items in sequence. The items pushed can include any legal
PUSH value, including registers, immediate values, and memory locations.
This feature does not actually affect the code generated. In addition, the PUSH
instruction allows constant arguments even when generating code for the 8086
processor. Such instructions are replaced in the object code by a lO-byte
sequence that simulates the 80186/286/386 PUSH immediate value instruction.

PUSHA
PUSHAD
PUSHAW

60

60

60

PUSHA

PUSHAD

PUSHAW

Push all general registers
PUSHA 80186 processors and greater
PUSHAD 386 processors and greater
o D ITS ZAP C

486 386 286

11
11

11

18
18
18

17

17

Push AX,CX,DX,BX,original SP,BP,SI

Push EAX,ECX,EDX,EBX

Push AX,CX,DX,BX,original SP,BP,SI

PUSHA and PUSHAD save the 16-bit or 32-bit general registers, respectively,
on the stack depending on the segment size. PUSHA decrements the stack
pointer (SP) by 16 to hold the eight word values. PUSHAD decrements the
stack pointer (ESP) by 32 to hold the eight doubleword values. Because the
registers are pushed onto the stack in the order in which they were given, they
appear in the 16 or 32 new stack bytes in reverse order. The last register pushed
is DI or ED!.

PUS HAW always pushes WORD-style. (Can only be used for VERSION T320
or higher.)

PUSHF Push flags register onto the stack
PUSHFD PUSHFD 386 processors and greater
PUSHFW 0 D T S Z A P C

486 386 286 86

9C PUSHF 4,pm=3. 4 3 10 Push FLAGS

9C PUSHFD 4,pm=3 4 PushEFLAGS

9C PUSHFW 4,pm=3 4 3 10 Push FLAGS

PUSHF decrements the stack pointer by 2 and copies the FLAGS register to the
new top of stack; PUSHFD decrements the stack pointer by 4, and the 386
EFLAGS register is copied to the new top of stack which is pointed to by
SS:ESP.

PUSHFW always pops WORD-sized registers. (Can only be used for VERSION
T320 or higher.)

114 T u r bo Ass e m b I e r Qui c k Ref ere nee

RCL Rotate
RCR 0 D T S Z A P c
ROL
ROR
Opcode • "Insttltclion (nlod<s Description

486 386 286 86

00/2 RCLr/m8,1 3/4 9/10 2/7 2/15+EA Rotate 9 bits
(CF,r/m byte)
left once

02/2 RCLr/m8,CL 8-30/9-31 9/10 5/8 8+4 Eer bit/ (20+4 Rotate 9 bits
per it)+EA (CF,r/m byte)

left CL times

CO /2 ib RCL r/m8,imm8 8-30/9-31 9/10 5/8 Rotate 9 bits
(CF,r/m byte)
left imm8 times

01/2 RCLr/m16,1 3/4 9/10 2/7 2/15+EA Rotate 17 bits
(CF,r/m word)
left once

03/2 RCLr/m16,CL 8-30/9-31 9/10 5/8 8+4 Eer bit/ (20+4 Rotate 17bits (CF,
per it)+EA r / m word) left CL

times

C1 /2 ib RCL r /m16, imm8 8-30/9-31 9/10 5/8 Rotate 17bits
(CF,r/m word))
left imm8 times

01/2 RCLr/m32,1 3/4 9/10 Rotate 33 bits
(CF,r/m dword)
left once

03/2 RCL r /m32,CL 8-30/9-31 9/10 Rotate 33 bits
(CF,r/m dword)
left CL times

C1 /2 ib RCL r /m32, imm8 8-30/9-31 9/10 Rotate 33 bits
(CF,r/m dword)
left, imm8 times

DO/3 RCRr/m8,1 3/4 9/10 2/7 2/15+EA Rotate 9 bits
(CF,r/m byte)
right once

D2/3 RCRr/m8,CL 8-30/9-31 9/10 5/8 8+4 Eer bit/ (20+4 Rotate 9 bits
per it)+EA (CF,r/m byte)

right CL times

CO /3ib RCR r /m8,imm8 8-30/9-31 9/10 5/8 Rotate 9 bits
(CF,r/m bte)
right imm times

D1/3 RCRr/m16,1 3/4 9/10 2/7 2/15+EA Rotate 17 bits
(CF,r/m word)
right once

D3/3 RCRr/m16,CL 8-30/9-31 9/10 5/8 8+4 Eer bit/ (20+4 Rotate 17 bits
per it)+EA (CF,r/m word)

right CL times

C1/3ib RCRr/m16,imm8 8-30/9-31 9/10 5/8 Rotate 17 bits
(CF,r/m word)
right imm8 times

D1/3 RCRr/m32,1 3/4 9/10 Rotate 33 bits
(CF,r/m dword)
right once

D3/3 RCR r /m32,CL 8-30/9-31 9/10 Rotate 33 bits
(CF,r/mdword)
right CL times

C hap t e r 4, Pro c e 5 5 0 r ins t rue t ion 5 115

486 386 286 86

C1 /3 ib RCR r /m32, imm8 8-30/9-31 9/10 Rotate 33 bits
(CF,r/m dWOl:d)
right imm8 times

00/0 ROLr/m8,1 3/4 3/7 2/7 2/15+EA Rotate 8 bits r / m
byte left once

02/0 ROLr/m8,CL 3/4 3/7 5/8 8+4lJer bit/ (20+4 Rotate 8 bits r / m
per it)+EA byte left CL times

CO /Oib ROLr/m8,imm8 2/4 3/7 5/8 Rotate 8 bits r / m
byte left imm8
times

01/0 ROLr/m16,1 3/4 3/7 2/7 2/15+EA Rotate 16 bits
r / m word left
once

03/0 ROL r/m16,CL 3/4 3/7 5/8 8+4lJer bit/ (20+4 Rotate 16 bits
per it)+EA r / m word left CL

times

C1/0ib ROL r/m16, imm8 2/4 3/7 5/8 Rotate 16 bit rim
word left imm8
times

01/0 ROLr/m32,1 3/4 3/7 Rotate 32 bits
r / m dword left
once

03/0 ROL r /m32,CL 3/4 3/7 Rotate 32 bits
r / m dword left
CLtimes

C1/0ib ROL r/m32, imm8 2/4 3/7 Rotate 32 bits
r / m dword left
imm8times

DO /1 RORr/m8,1 3/4 3/7 2/7 2/15+EA Rotate 8 bits rim
byte right once

02/1 RORr/m8,CL 3/4 3/7 5/8 8+4lJer bit/ (20+4 Rotate 8 bits rim
per it)+EA byte right CL

times

CO /1 ib RORr/m8,imm8 2/4 3/7 5/8 Rotate 8 bits rim
word right imm8
times

01/1 RORr/m16,1 3/4 3/7 2/7 2/15+EA Rotate 16 bits
r /m word right
once

03/1 RORr/m16,CL 3/4 3/7 5/8 8+4lJer bit/ (20+4 Rotate 16 bits
per it)+EA r /m word right

CLtimes
C1 /1 ib ROR r/m16, imm8 2/4 3/7 5/8 Rotate 16 bit rim

word right imm8
times '

01/1 RORr/m32,1 3/4 3/7 Rotate 32 bits
r /m dword right
once

03/1 ROR r/m32,CL 3/4 3/7 Rotate 32 bits
rim dword right
CLtimes

C1 /1 ib ROR r/m32, imm8 2/4 3/7 Rotate 32 bits
r/mdwordright
imm8times

Add 1 clock to the times shown for each rotate made (80286 only).

Each rotate instruction shifts the bits of the register or memory operand given.
The left rotate instructions shift all the bits upward, except for the top bit, which

116 Turbo Assembler Quick Reference

is returned to the bottom. The right rotate instructions do the reverse: The bits
shift downward until the bottom bit arrives at the top.

For the RCL and RCR instructions, the carry flag is part of the rotated quantity.
RCL shifts the carry flag into the bottom bit and shifts the top bit into the carry
flag; RCR shifts the carry flag into the top bit and shifts the bottom bit into the
carry flag. For the ROL and ROR instructions, the original value of the carry
flag is not a part of the result, but the carry flag receives a copy of the bit that
was shifted from one end to the other.

The rotate is repeated the number of times indicated by the second operand,
which is either an immediate number or the contents of the CL register. To
reduce the maximum instruction execution time, the 80286/386 does not allow
rotation counts greater than 31. If a rotation count greater than 31 is attempted,
only the bottom five bits of the rotation are "Used. The 8086 does not mask
rotation counts. The 386 in virtual 8086 mode does mask rotation counts.

The overflow flag is defined only for the single-rotate forms of the instructions
(second operand = 1). It is undefined in all other cases. For left shifts/rotates,
the CF bit after the shift is XORed with the high order result bit. For right
shifts/rotates, the high-order two bits of the result are XORed to get OF.

RDMSR

OF 32 RDMSR

Read from Model Specific Register
Pentium processors and greater
o D ITS ZAP C

Pentium

20-24 Read Model Specific Register indicated by ECX into
EDX:EAX

The value in ECX specifies one of the 64-bit Model Specific Registers of the
Pentium processor. The content of that Model Specific Register is copied into
EDX:EAX. EDX is loaded with the high-order 32 bits, and EAX is loaded with
the low-order 32 bits.

The following values are used to select model specific registers on the Pentium
processor:

OOh Machine Check Address

Oth Machine Check Type

Stores address of cycle causing
the exception.

Stores cycle type of cycle
causing the exception.

Other values used to preform cache, TLB and BTB testing and performance
monitoring, are available under a non-disclosure agreement from Intel.

Protected mode exceptions: #GP(O) if either the current privilege level is not 0 or
the value in ECX does not specify a Model-Specific Register'that is
implemented in the Pentium processor.

Real mode exceptions: #GP if the value in ECX does not specify a Model­
Specific Register that is implemented in the Pentium processor.

Virtual 8086 mode exceptions: #GP(O) if instruction execution is attempted.

Notes: This instruction must be executed at privilege level 0 or in real-address
mode; otherwise a protection exception will be generated.

Chapter 4, Processor instructions 117

If less than 64 bits are implemented in a model specific register, the value
returned to EDX:EAX, inthe locations corresponding to the unimplemented
bits, is unpredictable.

RDMSR is used to read the content of Model-Specific Registers that control
functions for testability, execution tracing, performance monitoring and
machine check errors. Refer to the Pentium Processor Data Book for more
information or contact Intel.

The values 3h, OFh, and vailles above 13h are reserved. Do not execute RDMSR
with reserved values in ECX.

RDTSC

REP
REPE
REPZ
REPNE
REPNZ

F36C REP INS
r/mS,DX

F36D REP INS
r/mI6,DX

F36D REP INS
r/m32,DX

F3A4 REP MOVS
mS,mS

F3A5 REP MOVS
m16,m16

F3A5 REP MOVS
m32,m32

F36E REP OUTS
DX,r/mS

F36F REP OUTS
DX,r/mI6

F36F REP OUTS
DX,r/m32

(Proprietary instruction. Contact Intel for more information.)
Pentium processors and greater

Repeat following string operation
o D ITS ZAP C

486 386 286 86

I6+S(E)CX, I3+6*(E)CX, 5+4*CX Input (E)CX
~m=10+S(Eicx*1 / ~m=7 +6*(E)CX/ bytes from

O+S(E)CX* ,VM== 7+6*h(E)CX*2 EortDXinto
29+8(E)CX S:[(E)DI]

I6+S(E)CX, 13+6*(E)CX, 5+4*CX Input (E)CX
~m=lO+S(EiCx*l / ~m=7+6*(E)CX/ words from

O+S(E)CX* ,VM= 7+6*h(E)CX*2 EortDXinto
29+S(E)CX S:[(E)DI]

I6+S(E)CX, 13+6*(E)CX, Input (E)CX
~m=lO+S(EiCx*l / ~m=7+6*(E)CX/ dwordsfrom

O+S(E)CX* ,VM= 7 +6*1*(E)CX*2 EortDXinto
29+S(E)CX S:[(E)DI]

5..3,13wi,12+3(E) 5+4*(E)CX 5+4*CX 9+I7*CX Move (E)CX
CX;.s b&:esfrom

[)SI] to
ES:[(E)DI]

5..3,13wi,12+3(E) 5+4*(E)CX 5+4*CX 9+I7*CX Move (E)CX
CX*5 words from

[(E)SI] to
ES:[(E)DI]

5..3,13wi,12+3(E)
CX*5

5+4*(E)CX Move (E)CX
dwordsfrom
[(E)SI] to
ES:[(E)DI]

I7+5(E)CX, 5+ I2*(E)CX, 5+4*CX Output (E)CX
pm=l1 +5(EiCX*1 / tm =6+5*(£) b&tesfrom
3I+5(E)CX* X/26+5* *(E) [)SI] to port

CX*2 DX

I7+5(E)CX, 5+ I2*(E)CX, 5+4*CX Ouqmt (E)CX
~m=l1 +5(EiCX*1 / tm =6+5*(£) worasfrom
1+5(E)CX* X/26+5* *(E) [(E)SI] to port

CX*2 DX

I7+5(E)CX, 5+ I2*(E)CX, Output(E)CX
~m=l1 +5(EiCX*1 / tm =6+5*(£) dwordsfrom
1+5(E)CX* . X/26+5* *(E) [(E)SI] to port

CX*2 DX

118 Turbo Assembler Quick Reference

486 386 286 86

F2AC REP LODS 5..3,7+4(E)CX..6 Load (E)CX
m8 b&:tes from

[)S1] toAL

F2AD REP LODS 5..3,7 +4(E)CX*6 Load (E)CX
m16 words from

[(E)S1] to AX

F2AD REP LODS 5..3,7 +4(E)CX*6 Load (E)CX
m32 dwordsfrom

[(E)S1] to EAX

F3AA REPSTOS 5..3,7 +4(E)CX*6 5+5*(E)CX 4+3*CX 9+ lO*CX Fill (E)CX
m8 ~esat

:[(E)DI]
withAL

F3AB REPSTOS 5..3,7 +4(E)CX*6 5+5*(E)CX 4+3*CX 9+ lO*CX Fill (E)CX
m16 words at

ES:[(E)DI]
with AX

F3AB REPSTOS 5..3,7 +4(E)CX*6 5+5*(E)CX Fill (E)CX
m32 dwordsat

ES:[(E)DI]
withEAX

F3A6 REPE 5..3,7+7(E)CX*6 5+9*N 5+9*N 9+22*N Find
CMPS nonmatching
m8,mB ~tesin

S:[(E)DI] and
[(E)S1]

F3A7 REPE 5..3,7+7(E)CX*6 5+9*N 5+9*N 9+22*N Find
CMPS nonmatching
m16,m16 words in

ES:[(ElDI] and
[(E)S1

F3A7 REPE 5..3,7+7(E)CX*6 5+9*N Find
CMPS nonmatching
m32,m32 dwordsin

ES:[(ElDI] and
[(E)S1

F3AE REPE 5..3,7 +5(E)CX..6 5+B*N 5+8*N 9+15*N Findnon-AL
SCASmB ~te starting at

S:[(E)DI]

F3AF EPESCAS 5..3,7+5(E)CX*6 5+B*N 5+B*N 9+15*N Find non-AX
m16 word starting

at ES:[(E)DI]

F3AF REPE 5..3,7 +5(E)CX*6 5+B*N Find non-
5CA5m32 EAXdword

startin[,at
E5:[(E) I]

F2A6 REPNE 5..3,7+ 7(E)CX*6 5+9*N 5+9*N 9+22*N Find
CMPS matching
mB,mB ~tesin

:[(ElDI] and
[(E)51

F2A7 REPNE 5..3,7+7(E)CX*6 5+9*N 5+9*N 9+22*N Find
CMPS matching
m16,m16 words in

E5:[(E)D1] and
[(E)51]

F2A7 REPNE 5..3,7+7(E)CX..6 5+9*N Find
CMP5 matchin~
m.32,m32 dwordsm

E5:[(ElDI] and
[(E)51

F2AE REPNE 5..3,7 +5(E)CX*6 5+B*N 5+B*N 9+15*N FindAL
5CASm8

Chapter 4, Processor instructions 119

486 286 86

F2 AF REPNE 50+3,7+5(E)CX*6
SCASrn16

386

5+8*N 5+8*N 9+15*N Find AX

F2 AF REPNE 50+3,7+5(E)CX~
SCASrn32

*1 If CPL ::; IOPL
*2 If CPL > IOPL
*3If(E)CX=O
*4 If (E) CX = 1
*5 If (E) CX 1
*6If(E)CXO

5+8*N FindEAX

REP, REPE (repeat while equal), and REPNE (repeat while not equal) are
prefixes that are applied to string operations. Each prefix causes the string
instruction that follows to be repeated the number of times indicated in the
count register or (for REPE and REPNE) until the indicated condition in the
zero flag is no longer met.

Synonymous forms of REPE and REPNE are REPZ and REPNZ, respectively.

The REP prefixes apply only to one string instruction at a time. To repeat a
block of instructions, use the LOOP instruction or another looping construct.

The precise action for each iteration is as follows:

1 If the address-size attribute is 16 bits, use CX for the count register; if the
address-size attribute is 32 bits, use ECX for the count register.

2 Check ex. If it is zero, exit the iteration, and move to the next instruction.

3 Acknowledge any pending interrupts.

4 Perform the string operation once.

5 Decrement CX or ECX by one; no flags are modified.

6 Check the zero flag if the string operation is SCAS or CMPS. If the repeat
condition does not hold, exit the iteration and move to the next instruction.
Exit the iteration if the prefix is REPE and ZF is 0 (the last comparison was
not equal), or if the prefix is REPNE and ZF is one (the last comparison was
equal).

7 Return to step 1 for the next iteration.

Repeated CMPS and SCAS instructions can be exited if the count is exhausted
or if the zero flag fails the repeat condition. These two cases can be
distinguished by using either the JCXZ instruction, or by using the conditional
jumps that test the zero flag aZ, JNZ~ and JNE).

RET Return from procedure
0 D I T S Z A P C

486 386 286 86
C3 RET 5 lO+rn 11 16 Return (near) to

caller

13,prn=18 18+rn,prn=32+rn 15,prn=25 26 Return (far) to caller,
same privilege

CB RET

CB RET 13,prn=33 prn=68 55 Return (far)

120 T u r boA sse m b I e r Qui c k Ref ere nee

486 386 286 86

C2 iw RET imm16 5 10+m 11 20 Return (near)

CA iw RET imm16 14,pm=17 18+m,pm=32+m 15,pm=25 25 Return (far) pop
imm16bytes

CA iw RET imm16 14,pm=33 pm=68 55 Return (far)

RET transfers control to a return address located on the stack. The address is
usually placed on the stack by a CALL instruction, and the return is made to the
instruction that follows the CALL.

The optional numeric parameter to RET gives the number of stack bytes
(OperandMode = 16) or words (OperandMode = 32) to be released after the
return address is popped. These items are typically used as input parameters to
the procedure called.

For the intrasegment (near) return, the address on the stack is a segment offset,
which is popped into the instruction pointer. The CS register is unchanged. For
theintersegment (far) return, the address on the stack is a long pointer. The
offset is popped first, followed by the selector.

In real mode, CS and IP are loaded directly. In protected mode, an intersegment
return causes the processor to check the descriptor addressed by the return
selector. The AR byte of the descriptor must indicate a code segment of equal or
lesser privilege (or greater or equal numeric value) than the current privilege
level. Returns to a lesser privilege level cause the stack to be reloaded from the
value saved beyond the parameter block. '

The DS, ES, FS, and GS segment registers can be set to 0 by the RET instruction
during an inter-level transfer. If these registers refer to segments that cannot be
used by the new privilege level, they are set to 0 to prevent unauthorized access
from the new privilege level.

RSM

OFAA RSM

Resume from System Management Mode
Pentium processors and greater
o D T S ZAP C

*

Pentium

83

* *

Resume. operation of interrupted program.

Resume operation of a program by a System Management Mode (SMM)
interrupt. The processor state is restored from the dump created upon entrance
to SMM. Note, however, that the contents of the model-specific registers are not
affected. The processor leaves SMM and returns control to the interrupted
application or operating system. If the processor detects any invalid state
information, it enters the shutdown state. This happens in any of the following
situations:

• The value stored in the State Dump Base field is not a 32 Kbyte aligned
address.

• Any reserved bit in CR4 is set to 1.

• Any combination of bits in CRO is illegal; namely, (PG=l and PE=O) or
(NW=l andCD=O).

C hap t e r 4, Pro c e S S 0 r ins t rue t ion s 121

Protected mode, Real mode, and Virtual 8086 mode exception: #UD if an
attempt is made to execute this instruction when the processor is not in SMM.

Notes: for more information about SMM and the behavior of the RSM
instruction, see the Pentium Processor User's Manual (available from Intel).

SAHF Store AH into Flags
o D T S ZAP C

* *

9E SAHF

486 386 286 86

232 4 Store AH flags SF ZF xx AF xx PF xx CF

SAHF loads the flags listed above with values from the AH register, from bits 7,
6,4, 2 and 0, respectively.

SAL
SAR
SHL
SHR

DO/4
D2/4

CO /4ib

Dl/4

D3/4

Cl /4 ib

Dl/4

D3/4
Cl/4ib

DO/7

D2/7

CO /7ib

Dl/7

D3/7

Cl/7ib

Dl/7

Shift instructions
o D ITS ZAP C

* *

486 386 286 86

SALr/m8,1

SALr/m8,CL
3/4 3/7 2/7 2/15+EA
3/4 3/7 5/8 8+4 per bit/(20+4 per

bit)+nA

SALr/m8,imm82/4 3/7 5/8

SALr/m16,l 3/4 3/7 2/7 2/15+EA
SALr/m16,CL 3/4 3/7 5/8 8+4 per bit (20+4 per

bit)+nA

SALr/ 2/4 3/7 5/8
m16,imm8

SALr/m32,l 3/4 3/7

SALr/m32,CL 3/4 3/7

SALr/ 2/4 3/7
m32,imm8

SARr/m8,l 3/4 3/7 2/7 2/15+EA

SARr/m8,CL 3/4 3/7 5/8 8+4per,bit(20+4per
bit)+nA

SARr/ 2/4 3/7 5/8
m8,imm8

SARr/m16,l 3/4. 3/7 2/7 2/15+EA

SARr/m16,CL 3/4 3/7 5/8 8+4 per bit (20+4 per
bit)+nA

SARr/ 2/4 3/7 5/8
m16,imm8

SARr/m32,l 3/4 3/7

122 T u r boA sse m b I e r Qui c k Ref ere nee

Multiply rim byte by 2
Multiplyr/m byte by 2,
CLtimes

Multiply rim byte by 2

Multiply r /m word by 2

Multiply r /m word by 2,
CLtimes

Multiply r /m word by 2

Multiply rim dword by 2

Multiply r /m dword by 2

Multiply r /m dword by 2

Signed divide** rim byte
by2

Signed divide** rim byte
by2

Signed divide** rim byte
by2
Signed divide** r / m word
by2
Signed divide** r /m word
by2
Signed divide** r /m word
by2
Signed divide** r / m
dwordby2 ,

486 386 286 86

D3/7 SAR r / m32,CL 3/4 3/7 Signed divide** rim
dword by 2,
CLtimes

Cl/7 SARr/ 2/4 3/7 Signed divide** rim
m32,imm8 dwordby2

DO/4 SHLr/m8,1 3/4 3/7 2/7 2/15+EA Multiply r / m byte by 2

D2/4 SHLr/m8,CL 3/4 3/7 5/8 8+4 !1:r bit (20+4 per Multiply rim byte by 2,
bit)+ A CLtimes

CO /4 ib SHLr/ 2/4 3/7 5/8 Multiply r / m byte by 2
m8,imm8

Dl/4 SHLr/m16,1 3/4 3/7 2/7 2/15+EA Multiply r / m word by 2

D3/4 SHLr/m16,CL 3/4 3/7 5/8 8+4 !1:r bit (20+4 per Multiply rim word by 2,
bit)+ A CLtimes

Cl /4 ib SHLr/ 2/4 3/7 5/8 Multiply r / m word by 2
m16,imm8

Dl/4 SHLr/m32,1 3/4 3/7 Multiply rim dword by 2

D3/4 SHL r /m32,CL 3/4 3/7 Multiply rim dword by 2

Cl /4 ib SHLr/ 2/4 3/7 Multiply rim dword by 2
m32,imm8

DO/5 SHRr/m8,1 3/4 3/7 2/7 2/15+EA Unsigned divide r / m byte
by2

D2/5 SHRr/m8,CL 3/4 3/7 5/8 8+4 !1:r bit (20+4 per Unsigned divide r / m byte
bit)+ A by2

CO /5 ib SHRr/ 2/4 3/7 5/8 Unsigned divide r / m byte
m8,imm8 by2

Dl/5 SHRr/m16J 3/4 3/7 2/7 2/15+EA Uns~ed divide r /m
wor by2

D3/5 SHRr/m16,CL 3/4 3/7 5/8 8+4 ~ bit (20+4 per Uns~ed divide r /m
bit)+ wor by2

Cl/5ib SHRr/ 2/4 3/7 5/8 Uns~ed divide rim
m16,imm8 wor by2

Dl/5 SHRr/m32,1 3/4 3/7 Unsis:!led divide rim
dwordby2

D3/5 SHR r /m32,CL 3/4 3/7 Unsis:!led divide r /m
dwordby2

C1 /5 ib SHRr/ 2/4 3/7 Unsis:!led divide r / m
m32,imm8 dwordby2

**Not the same division as IDIV; rounding is toward negative infinity.

SAL (or its synonym, SHL) shifts the bits of the operand upward. The high-
order bit is shifted into the carry flag, and the low-order bit is set to O.

SAR and SHR shift the bits of the operand downward. The low-order bit is
shifted into the carry flag. The effect is to divide the operand by 2. SAR
performs a signed divide with rounding toward negative infinity (not the same
as IDIV); the high-order bit remains the same. SHR performs an unsigned
divide; the high-order bit is set to O.

The shift is repeated the number of times indicated by the second operand,
which is either an immediate number or the contents of the CL register. To
reduce the maximum execution time, the 80286/386 does not allow shift counts
greater than 31.1£ a shift count greater than 31 is attempted, only the bottom
five bits of the shift count are used. (The 8086 uses all eight bits of the shift
count.)

C hap t e r 4, Pro c e S S 0 r ins t rue t ion s 123

The overflow flag is set only if the single-shift forms of the instructions are
used. For left shifts, OF is set to 0 if the high bit of the answer is the same as the
result of the carry flag (that is, the top two bits of the original operand were the
same); OF is set to 1 if they are different. For SAR, OF is set to 0 for all single
shifts. For SHR, OF is set to the high-order bit of the original operand.

see Integer subtraction with borrow
o D ITS ZAP C

*

486 386 286 86

Ie ib SSB AL,imm8 1 234

10 iw SSB AX,imm16 2 3 4

10 id SSB EAX,imm32 2

Subtract with borrow immediate
bytefromAL
Subtract with borrow immediate
word from AX

Subtract with borrow immediate
, dword from EAX

80/3 ib SEB r/m8,imm8 1/3 2/7 3/7 4/17+EA Subtract with borrow immediate
byte from r / m byte

81 /3 iw SEB r/ml6,imml6 1/3 2/7 3/7 4/17+EA Subtract with borrow immediate
word from r/m word

81 /3 id SEB r/m32,imm32 1/3 2/7 Subtract with borrow immediate
dword from r /m dword

83/3 ib SBB r/ml6,imm8 1/3 2/7 3/7 4/17+EA Subtract with borrow sign-extended
immediate byte from rim word

83/3 ib SBB r/m32,imm8 1/3 2/7 Subtract with borrow sign-extended
immediate byte from rim dword

18/r SBB r/m8,r8 1/3 2/6 2/7 3/16+EA Subtract with borrow byte register
from r / m byte

19 /r SBB r/mI6,r16

19 Ir SBB r/m32,r32

lA Ir SBBr8,r/m8

IB /r SBB r16,r/mI6

18 Ir SBB r32,r/m32

1/3 2/6 2/7 3/16+EA Subtract with borrow word register
from rim word

1/3 2/6 Subtract with borrow dword register
from rim dword

1/2 2/7 2/7 3/9+ EA Subtract with borrow byte register
from rim byte

1/2 2/7 2/7 3/9+EA Subtract with borrow word register
from rim word

1/2 2/7 Subtract with borrow dword register
from rim dword

SBB adds the second operand (DEST) to the.carry flag (CF) and subtracts the
result from the first operand (SRC). The result of the subtraction is assigned to
the first operand (DEST), and the flags are set accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended.

124 T u r boA sse m b I e r Qui c k Ref ere nee

SCAS Compare string data
SCASe SCASD 386 processors and greater
SCASW 0 D T S Z A P c

SCASD

486 386 286 86

AE SCASm8 6 7 7 15 Compare bytes AL - ES:[OI]

AF SCASm16 6 7 7 15 Compare words AX - ES: [01]

AF SCASm32 6 7 Compare dwords EAX - ES: [01]

AE SCASB 6 7 7 15 Compare bytes AL - ES:[OI]

AF SCASW 6 7 7 15 Compare words AX - ES: [01]

AF SCASD 6 7 Compare dwords EAX - ES: [01]

SCAS subtracts the memory byte or word at the destination register from the
AL, AX or EAX register. The result is discarded; only the flags are set. The
operand must be addressable from the ES segment; no segment override is
possible.

If the address-size attribute for this instruction is 16 bits, DI is used as the
destination register; otherwise, the address-size attribute is 32 bits and EDI is
used.

The address of the memory data being compared is determined solely by the
contents of the destination register, not by the operand to SCAS. The operand
validates ES segment addressability and determines the data type. Load the
correct index value into DI or EDI before executing SCAS.

After the comparison is made~ the destination register is automatically updated.
If the direction flag is 0 (CLD was executed), the destination register is .
incremented; if the direction flag is 1 (SID was executed), it is decremented.
The increments or decrements are by 1 if bytes are compared, by 2 if words are
compared, or by 4 if doublewords are compared.

SCASB, SCASW, and SCASD are synonyms for the byte, word and doubleword
SCAS instructions that don't require operands. They are simpler to code, but
provide no type or segment checking.

SCAS can be preceded by the REPE or REPNE prefix for a block search of CX or
ECX bytes or words. Refer to the REP instruction for further details.

SETcc Byte set on condition
386 processors and greater
0 D I T S Z A P C

486 386

OF 97 SETAr/m8 4/3 4/5 Set byte if above (CF=O and ZF=O)

OF 93 SETAEr/m8 4/3 4/5 Set byte if above or equal (CF=O)

OF 92 SETBr/m8 4/3 4/5 Set byte if below (CF=l)

OF 96 SETBEr/ro8 4/3 4/5 Set byte if below or equal (CF=l or ZF=l)

OF 92 SETCr/m8 4/3 4/5 Set if carry (CF=l)

OF 94 SETEr/m8 4/3 4/5 Set byte if equal (ZF=l)

OF9F SETGr/ro8 4/3 4/5 Set byte if greater (ZF=O or SF=OF) .

Chapter 4, Processor instructions 125

486 386

OF9D SETGEr/mB 4/3 4/5 Set byte if greater or equal (SF=OF)
OF9C SETLr/mB 4/3 4/5 Set byte if less (SF<>OF)

OF9E SETLEr/mB 4/3 4/5 Set byte if less or equal (ZF=1 and SF<>OF)

OF 96 SETNAr/mB 4/3 4/5 Set byte if not above (CF=I)

OF 92 SETNAEr/mB 4/3 4/5 Set byte if not above or equal (CF=I)

OF 93 SETNBr/mB 4/3 4/5 Set byte if not below (CF=O)

OF 97 SETNBE r/mB 4/3 4/5 Set byte if not below or equal (CF=O and ZF=O)

OF 93 SETNC r/mB 4/3 4/5 Set byte if not carry (CF=O)

OF 95 SElNEr/mB 4/3 4/5 Set byte if not equal (ZF=O)

OF 9E SETNG r/mB 4/3 4/5 Set byte if not greater (ZF=1 or SF<>OF)

OF 9C SETNGE r/mB 4/3 4/5 Set byte if not greater or equal (SF<>OF)

OF 9D SETNL r/m8 4/3 4/5 . Set byte if not less (SF=OF)

OF 9F SETNLE r/mB 4/3 4/5 Set byte if not less or equal (ZF=1 and SF<>OF)

OF 91 SETNO r/m8 4/3 4/5 Set byte if not overflow (OF=O)

OF 9B SETNP r/mB 4/3 4/5 Set byte if not parity (PF=O)

OF 99 SETNS r/m8 4/3 4/5 Set byte if not sign (SF=O)

OF 95 SETNZr/m8 4/3 4/5 Set byte if not zero (ZF=O)

OF 90 SETOr/mB 4/3 4/5 Set byte if overflow (OF=I)

OF9A SETPr/mB 4/3 4/5 Set byte if parity (PF=I)

OF 9A SETPE r/mB 4/3 4/5 Set byte if parity even (PF=I)

OF 9B SETPO r/mB 4/3 4/5 Set byte if parity odd (PF=O)

OF 98 SETSr/mB 4/3 4/5 Set byte if sign (SF=I)

OF 94 SETZ r/m8 4/3 4/5 Set byte if zero (ZF=I)

SETcc stores a byte containing 1 at the destination specified by the effective
address or register if the condition is met, or a 0 byte if the condition is not met.

SGDT Store global/interrupt descriptor table
SlOT 80286 and greater protected mode only

0 D T S Z A P C

486 386 286

OF 01 10 SGDTm 10 9 11 Store GUTR to m

OF 01 II SIDTm 10 9 12 Store IDTR to m

SGDT /SIDT copies the contents of the descriptor table register to the six bytes
of memory indicated by the operand. The LIMIT field of the register is assigned
to the first word at the effective address. If the operand-size attribute is 16 bits,
the next three bytes are assigned the BASE field of the register, and the fourth
byte is written with zero. The last byte is undefined. Otherwise, if the operand­
size attribute is 32 bits, the next four bytes are assigned the 32-bit BASE field of
the register .

.sGDT and SIDT are used only in operating system software; they are not used
in application programs.

126 T u r boA sse m b I e r Qui c k Ref ere nee

SHLD

OFA4

OFA4

OFA5

OFA5

Double precision shift left
386 processors and greater
o D ITS Z A ¥ C

486 386

SHLD r /m16,r16,imm8 2/3 3/7 r / m16 gets SHL of r / m16 concatenated
withrl

SHLD r /m32,r32,imm8 2/3 3/7 r / m32 ~ets SHL of r / m32 concatenated
withr3

SHLD r / m16,r16,CL 2/3 3/7 r/m16 gets SHL 6f r/m16 concatenated
withrl

SHLD r /m32,r32,CL 2/3 3/7 r / m32 ~ets SHL of r / m32 co~catenated
withr3

SHLD shifts the first operand provided by the rim field to the left as many bits
as specified by the count operand. The second operand (r16 or r32) provides the
bits to shift in from the right (starting with bit 0). The result is stored back into
the rim operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the contents of
the CL register. These operands are taken MODULO 32 to provide a number
between 0 and 31 by which to shift. Because the bits to shift are provided by the
specified registers, the operation is useful for multiprecision shifts (64 bits or
more). The SF, ZF and PF flags are set according to the value of the result. CF is
set to the value of the last bit shifted out. OF and AF are left undefined.

SHRD Double precision shift right
386 processors and greater
0 D T S Z A P C

*

486 386

OFAC SHRD r /m16,r16,imm8 2/3 3/7 r / m16 gets SHR of r / m16 concatenated
withrl

OFAC SHRD r /m32,r32,imm8 2/3 3/7 r / m32 ~ets SHR of r / m32 concatenated
withr3

OF AD SHRD r/m16,r16,CL 3/4 3/7 r / m16 gets SHR of r / m16 concatenated
withrl

OF AD SHRD r /m32,r32,CL 3/4 3/7 r/m32 ~ets SHRofr/m32 concatenated
withr3

SHRD shifts the first operand provided by the rim field to the right as many
bits as specified by the count operand. The second operand (r16 or r32)
provides the bits to shift in from the left (starting with bit 31). The result is
stored back into the rim operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the contents of
the CL register. These operands are taken MODULO 32 to provide a number
between 0 and 31 by which to shift. Because the bits to shift are provided by the
specified register, the operation is useful for multi-precision shifts (64 bits or
more). The SF, ZF and PF flags are set according to the value of the result. CF is
set to the value of the last bit shifted out. OF and AF are left undefined.

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 127

i SLOT Store local descriptor table register
80286 and greater protected mode only
o D ITS ZAP C

486

OFOO/O SLDTr/m16 2/3

386 286

pm=2/2 2/3 Store LDTR to EA word

SLDT stores the Local Descriptor Table Register (LDTR) in the two-byte register
or memory location indicated by the effective address operand. This register is
a selector that points into the global descriptor table.

SLDT is used only in operating system software. It is not used in application
programs.

SMSW Store machine status word
80286 and greater protected mode only
0 D I T S Z A P C

486 386 286

OF 01 /4 SMSWr/m16 2/3 2/3,pm=2/2 2/3 Store machine status word to EA
word

SMSW stores the machine status word (part of CRO) in the two-byte register or
memory location indicated by the effective address operand.

STC Set carry flag
0 D I T S Z A P C

1

486 386 286 86

F9 STC 2 2 2 2 Set carry flag

STC sets the carry flag to 1.

STO Set direction flag
0 D I T S Z A P C

1

486 386 286 86

2 2 2 2 Set direction flag so (E)SI or (E)OI
decrement

PO SID

SID sets the direction flag to I, causing all subsequent string operations to
decrement the index registers, (E)Sland/ or (E)DI, on which they operate.

128 T u r boA sse m b I e r Qui c k Ref ere nee

STI Set interrupt enable flag
0 D I T S Z A P C

1

486 386 286 86

FB STI 5 3 2 2 Set interrupt flag

STI sets the interrupt flag to 1. The CPU then responds to external interrupts
after execlJ.ting the next instruction if the next instruction allows the interrupt
flag to remain enabled. If external interrupts are disabled and you code STI,
RET (such as at the end of a subroutine), the RET is allowed to execute before
external interrupts are recognized. Also, if external interrupts are disabled and
you code STI, CLI, then external interrupts are not recognized because the CLI
instruction clears the interrupt flag during its execution.

Store string data
STOSD 386 processors and greater
o D ITS ZAP C

486 386 286 86

AA STOSm8 5 4 3 11 Store AL in byte ES:[(E)DI]

AB STOSm16 5 4 3 11 Store AX in word ES:[(E)DI]

AB STOSm32 5 4 Store EAX in dword ES:[(E)DI]

AA STOSB 5 4 3 11 Store AL in byte ES:[(E)DI]

AB STOSW 5 4 3 11 Store AX in word ES:[(E)DI]

AB STOSD 5 4 Store EAX in dword ES:[(E)DI]

STOS transfers the contents of the AL, AX, or EAX register to the memory byte,
word, or doubleword given by the destination register relative to the ES
segment. The destination register is DI for an address-size attribute of 16 bits or
EDI for an address-size attribute of 32 bits.

The destination operand must be addressable from the ES register. A segment
override is not possible.

The address of the destination is determined by the contents of the destination
register, not by the explicit operand of STOS. This operand is used only to
validate ES segment address ability and to determine the data type. Load the
correct index value into the destination register before executing STOS.

After the transfer is made, DI is automatically updated. If the direction flag is 0
(CLD was executed), DI is incremented; if the direction flag is.1 (SID was
executed), DI is decremented. DI is incremented or decremented by 1 if a byte is
stored, by 2 if a word is stored, or by 4 if a doubleword is stored.

STOSB, STOSW, and STOSD are synonyms for the byte, word, and double­
word STOS instructions, that do not requir~ an operand. They are simpler to
use, but provide no type or segment checking.

STOS can be preceded by the REP prefix for a block fill of CX or ECX bytes,
words, or doublewords. Refer to the REP instruction for further details.

C hap t e r 4, Pro c e S S 0 r ins t rue ti 0 n S 129

STR Store task register
80286 and greater protected mode only
o D T S ZAP C

486 386 286

OF 00 II STRr/m16 2/3 pm=23/272/3 LoadEA word into task register

The contents of the task register are copied to the two-byte register or memory
location indicated by the effective address operand.

STR is used only in operating system software. It is not used in application
programs.

SUB Integer Subtraction
o D ITS ZAP C

486 386 286 86

2Cib SUBAL,imm8 1 2 3 4 Subtract immediate byte
fromAL

2Diw SUB AX,imm16 1 2 3 4 Subtract immediate word
from AX

2Did SUB EAX,imm32 2 Subtract immediate dword
fromEAX

80/5ib SUB r/m8,imm8 1/3 2/7 3/7 4/17+EA Subtract immediate byte
from rim byte

81/5iw SUB r/ml6,imml6 1/3 2/7 3/7 4/17+EA Subtract immediate word
from rim word

8115 id SUB r Im32,imm32 1/3 2/7 Subtract immediate dword
from rim dword

83/5ib SUB r/m16,imm8 1/3 2/7 3/7 4/17+EA Subtract si~-extended
immediate yte from r / m
word

83/5ib SUB r Im32,imm8 1/3 2/7 Subtract si~-extended
immediate yte from rim
dword

28/r SUBr/m8,r8 1/3 2/6 2/7 3/16+EA Subtract byte register from
rim byte

29/r SUB r/m16,r16 1/3 2/6 2/7 3/16+EA Subtract word register from
rim word

29/r SUB r I m32,r32 1/3 2/6 Subtract dword register from
r/mdword

2A/r SUBr8,r/m8 1/2 2/7 2/7 3/9+EA Subtract EA byte from byte
register

2B Ir SUB r16,r/m32 1/2 2/7 2/7 3/9+EA Subtract EA word from word
register

2B Ir SUB r32,r I m32 1/2 2/7 Subtract EA dword from
dword register

SUB subtracts the second operand (SRC) from the first operand (DEST). The
first operand is assigned the result of the subtraction, and the flags are set
accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended to the size of the destination operand.

130 Turbo Assembler Quick Reference

TEST

A8ib

A9iw

A9id

Logical compare
o D ITS ZAP C
o * 0

486 386 286 86

TEST AL,imm8 1 2 3 4

TEST AX,imm16 1 2 3 4

TEST EAX,imm32 1 2

And immediate byte with
AL

And immediate word with
AX

And immediate dword
withEAX

F6 /0 ib TEST r/m8,imm8 1/2 2/5 3/6 5/11+EA And immediate byte with
r/mbyte

F7 /0 iw TEST r/m16,imm16

F7 /0 id TEST r/m32,imm32

84 /r TESTr/m8,r8

85 /r TEST r/m16,r16

85/r TEST r/m32,r32

1/2 2/5 3/6 5/11+EA And immediate word with
r/mword

1/2 2/5 Andimmediatedword
with r / m dword

1/2 2/5 2/6 3/9+EA Andbyteregisterwithr/m
byte

1/2 2/5 2/6 3/9+EA Andwordregisterwith
r/mword

1/2 2/5 And dword register with
r/mdword

TEST computes the bit-wise logical AND of its two operands. Each bit of the
result is 1 if both of the corresponding bits of the operands are 1; otherwise,
each bit is O. The result of the operation is discarded and only the flags are
modified.

The optimized form of TEST is TESTFLAG (see Chapter 3).

VERR
VERW

Verify a segment for reading or writing
80286 and greater protected mode only
o D ITS ZAP C

486 386 286

OFOO/4 VERRr/m16 11/11 pm=10/11 14/16 SetZF=lifsegmentcanberead

OFOO/5 VERWr/m16 11/11 pm=15/16 14/16 SetZF=lifsegmentcanbewritten

The two-byte register or memory operand of VERR and VERW contains the
value of a selector. VERR and VERW determine whether the segment denoted
by the selector is reachable front the current privilege level and whether the
segment is readable (VERR) or writable (VERW). If the segment is accessible,
the zero flag is set to 1; if the segment is not accessible, the zero flag is set to O.
To set ZF, the following conditions must be met:

• The selector must denote a descriptor within the bounds of the table (GDT or
LDT); the selector must be "defined."

• The selector must denote the descriptor of a code or data segment (not that
of a task state segment, LDT, or a gate).

• For VERR, the segment must be readable. For VERW, the segment must be a
writable data segment.

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 131

• If the code segment is readable and conforming, the descriptor privilege
level (DPL) can be any value for VERR. Otherwise, the DPL must be greater
than or equal to (have less or the same privilege as) both the current
privilege level and the selector's RPL.

The validation performed is the same as if the segment were loaded into DS, ES,
FS, or GS, and the indicated access (read or write) were performed. The zero
flag receives the result of the validation. The selector's value cannot result in a
protection exception, enabling the software to anticipate possible segment
access problems.

WAIT Wait until BUSY# pin is inactive (HIGH)
o D ITS ZAP C

486 386 286 86

9B WAIT 1-3 6 3 4+5n Wait until BUSY pin is inactive (I-llGH)

WAIT suspends execution of CPU instructions until the BUSY# pin is inactive
(high). The BUSY# pin is driven by the 80x87 numeric processor extension.

WBINVD

OF 09 WBINVD

Write-back and Invalidate cache
i486 processors and greater
o D ITS ZAP C

486

5 Write-back and invalidate entire cache

The internal cache is flushed, and a special-function bus cycle is issued which
indicates that the external cache should write-back its contents to main
memory. Another special-function bus cycle follows, directing the external
cache to flush itself.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors. It is the responsibility of the
hardware to respond to the external cache write-back and flush indications.

WRMSR

OF 30 WRMSR

Write to Model Specific Register
Pentium processors and greater
o D ITS ZAP C

Pentium

30-45 Write the value in EDX:EAX to Model Specific
Register indicated by ECX.

The value in ECX specifies one of the 64-bit Model Specific Registers of the
Pentium processor. The contents of EDX:EAX is copied into that Model Specific
Register. The high-order 32 bits are copied from EDX and the low-order 32 bits
are copied from EAX. '

132 T u r boA sse m b I e r Qui c k Ref ere nee

The following values are used to select model specific registers on the Pentium
processor:

OOh

Olh

Machine Check Address

Machine Check Type
Stores address of cycle causing the exception.
Stores cycle type of cycle causing the exception.

Other values used to preform cache, TLB and BTB testing and performance
monitoring, are available under a non-disclosure agreement from Intel.

Protected mode exceptions: #GP(O) if either the current privilege level is not 0 or
the value in ECX does not specify a Model-Specific Register that is
implemented in the Pentium processor.

Real mode exceptions: #GP if the value in ECX does not specify a Model­
Specific Register that is implemented in the Pentium processor.

Virtual 8086 mode exceptions: #GP(O) if instruction execution is attempted.

Notes: This instruction must be executed at privilege level 0 or in real-address
mode; otherwise a protection exception will be generated.

Always set undefined or reserved bits to the value previously read.

WRMSR is used to write the content of Model-Specific Registers that control
functions for testability, execution tracing, performance monitoring and
machine check errors. Refer to the Pentium Processor Data Book for more
information or contact Intel.

The values 3h, OFh, and values above 13h are reserved. Do not execute WRMSR
with reserved values in ECX.

XADD Exchange and add
i486 processors and greater
o D ITS ZAP C

486

OFCO/r XADDr/m8,r8 3/4

OFCl/r XADDr/ml6,rl68 3/4

OFCl/r XADDr/m32,r32 3/4

* * *

Exchange byte register and rim byte; load sum
into rim byte.
Exchange word register and rim word; load sum
into rim word.
Exchange dword register and rim dword; load
sum into rim dwora.

The XADD instruction loads DEST into SRC, and then loads the sum of DEST
and the original value of SRC into DEST.

DEST is the destination operand; SRC is the source operand.

Protected mode exceptions: #GP(O) if the result is in a nonwritable segment;
#GP(O) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #5S(O) for an illegal address in the SS segment; #PF (fault code) for
a page fault; #NM if either EM or TS in CRO is set; #AC for an unaligned
memory reference if the current privilege level is 3.

Real address mode exceptions: interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to OFFFFh.

C hap t e r 4, Pro c e S S 0 r ins t rue t ions 133

Virtual 8086 mode exceptions: same exception as in real-address mode; same
#PI! and #AC exceptions as in protected mode.

XCHG Exchange memory/register with register
0 D T S Z A P C

486 . 386 286 86

86/r XCHG r/m8,r8 3/5 3/5 3/5 4/17+EA Exchange byte register with EA byte

86/r XCHG r8,r/m8 3/5 3/5 3/5 4/17+EA Exchange byte with EA byte register
87/r XCHG r/m16,r16 3/5 3/5 3/5 4/17+EA Exchange word register with EA

word

87/r XCHG r16,r/m16 3/5 3/5 3/5 4/17+EA Exchange word register with EA
word

87/r XCHG r/m32,r32 3/5 3/5 Exchange dword register with EA
dword

87/r XCHGr32,r/m32 3/5 3/5 Exchange dword register with EA
dword

90+r XCHGAX,r16 3 3 3 3 Exchange word register with AX
90+r XCHGr16,AX 3 3 3 3 Exchange word register with AX
90+r XCHG EAX,r32 3 3 Exchange dword register with EAX
90+r XCHG r32,EAX 3 3 Exchange dword register with EAX

XCHG exchanges two operands. The operands can be in either order. If a
memory operand is involved, BUS LOCK is asserted for the duration of the
exchange,regardless of the presence or absence of the LOCK prefix or of the
value of the IOPL.

XLAT Table look-up translation
XLATB 0 D I T S Z A P C

486 386 286 86

07 XLATm8 4 5 5 11 Set AL to memory byte OS:[(E)BX + unsigned
AL]

07 XLATB 4 5 5 11 Set AL to memory byte OS:[(E)BX + unsigned
AL]

XLAT changes the AL register from the table index to the table entry. AL
should be the unsigned index into a table addressed by DS:BX (for an address­
size attribute of 16 bits) or DS:EBX (for an address-size attribute of 32 bits).

The operand to XLAT allows for the possibility of a segment override. XLAT
uses the contents of BX even if they differ from the offset of the operand. The
offset of the operand should have been moved into BXjEBX with a previous
instruction.

The no-operand form, XLATB, can be used if the BXjEBX table will always
reside in the DS segment.

134 T u r boA sse m b I e r Qui c k Ref ere nee

XOR Logical exclusive OR
o D T S ZAP C
o 0

486 386 286 86

34ib XORAL,imm8 1 2 3 4

35iw XOR AX,imm16 1 2 3 4

35id XOR EAX,imm32 1 2

80/6ib XORr/m8,imm8 1/3 2/7 3/7 4/17+EA

8116 iw XORr/m16,imm16 1/3 2/7 3/7 4/17+EA

81/6id XORr/m32,imm32 1/3 2/7

Exclusive-OR immediate byte
toAL

Exclusive-OR immediate word
to AX

Exclusive-OR immediate
dword toEAX

Exclusive-OR immediate byte
to rim byte

Exclusive-OR immediate word
to rim word

Exclusive-OR immediate
dword tor/mdword

8316 ib XOR r/m16,imm8 1/3 2/7 XOR sign-extended immediate
byte to rim word

83/6ib XORr/m32,imm8 1/3 2/7 XORsign-extendedimmediate
byte to rim dword

30/r XOR r/m,r8 1/3 2/6 2/7 3/16+EA Exclusive-OR byte register to
rim byte

31/r XORr/m16,r16 1/3 2/6 2/7 3/16+EA Exclusive-OR word register into
rim word

31/r XORr/m32,r32 1/3 2/6 Exclusive-ORdword register to
r/mdword

32/r XORr8,r/m8 1/2 2/7 2/7 3/9+EA Exclusive-OR rim byte to byte
register

33/r XOR r16,r/m16 1/2 2/7 2/7 3/9+EA Exclusive-OR rim word to
word register

33/r XOR r32,r/m32 1/2 2/7 Exclusive-OR to rim dword to
dword register

XOR computes the exclusive OR of the two operands. Each bit of the result is
1 if the corresponding bits of the operands are different; each bit is 0 if the
corresponding bits are the same. The answer replaces the first operand.

The optimized form of XOR is FLIPFLAG (see Chapter 3).

C hap t e r 4, Pro c e S S 0 r ins t rue t ion S 135

136 T u r boA sse m b I e r Qui c k Ref ere nee

Coprocessor instructions
This chapter lists the 80x87 instructions in alphabetical order.

There is one entry for each combination of operand types that can be coded
with the mnemonic. The following table explains the operand identifiers used
in this section:

ST

ST(l)

m32real

m64real

m80real

m80dec

m16int

m32int

m64int

mxxbyte

Stack tOPi the register currently at the top of the stack.

A register in the stack i (0 ::; i ::; 7) stack elements from the top. ST(I) is the
next-on-stack register, ST(2) is below ST(l), etc,

A short real (32 bits) number in memory. '

A long real (64 bits) number in memory.

A temporary real (80 bits) number in memory.

A packed decimal integer (18 digits, 10 bytes) in memory.

A word binary integer (16 bits) in memory.

A short binary integer (32 bits) in memory.

A long binary integer (64 bits) in memory.

A memory area xx bytes long.

Here is a summary of the possible exceptions each instruction can cause:

• IS = invalid operand due to stack overflow /underflow
• I = invalid operand due to other cause
• D = denormal operand
• Z = zero-divide
• a = Overflow
• U = Underflow
• P = Inexact result (precision)

C hap t e r 5, Cop roc e S S 0 r ins t rue t ion S 137

F2XM1 Compute 2x ~ 1
Exceptions: p, U, 0, I, IS
F2XM1 (no operands)

87 287

211-476

387 486 586

D9FO F2XM1 211-476 242(140-279) 13-57

FABS Absolute value
Exceptions: IS
FABS (no operands)

87 287 387 486

No operands 10-17 10-17 22 3 2

FADD

ST,ST(i)
ST(i),ST

short real

long real

FADDP

87

70-100

Add real
Exceptions: I, 0, 0, U, P, IS
FADD destination, source

287 387 486

70-100 23-34 10(8-20)

90-120+EA 90-120 24-32 10(8-20)

95--125+EA 95-125 29-37 10(8-20)

Add real and pop
Exceptions: I, 0, 0, U, P, IS
FADDP destination, source

87 287 387 486

ST(i),ST 75-105 75-105 23-34 10(8-20) 2

FBLD Packed decimal (BCD) load
Exceptions: I
FBLDsource

87 287 387 486

2

2-4

2-4

Packed decimal 290-310 290-310 5 75(70-103) 2-4

138 T u r boA sse m b I e r Qui c k Ref ere nee

FABS

FADDST,5T(4)

FADDST(2),ST

FADD AIR_TEMP[SI]

FADD [BX].MEAN

FADDP ST(2),ST

FBLD YTD _SALES

FBSTP Packed decimal (BCD) store and pop
Exceptions: I
FBSTP destination

87 287 387 486

Packed 520-540+EA 520-540+EA 512-534 175(172-176) 2-4 FBSTP
[BX].FORECAST decimal

FCHS Change sign
Exceptions: I
FCHS (no operands)

87 287 387 486

No operands 10-17. 10-17 24-25 6 2

FCLEX
FNCLEX

Clear exceptions
Exceptions: None
FCLEX/FNCLEX (no operands)

87 287 387 486

No operands 2--8 2--8 11 7

FCOM

/ /ST(i)
short real
long real

FCOMP

/ /St(i)
short real

long real

87

40-50

Compare real
Exceptions: I, D
FCOM / / source

287 387

40-50 24

60-70+EA 60-70 26
65-75+EA 65-75 31

486

4

4

4

Compare real and pop
Exceptions: I, D
FCOMP / / source

87 287 387 486

42-52 45-52 26 4

63-73+EA 63-73 26 4
67-77+EA 67-77 31 4

2-4

2-4

2

2-4

2-4

FCHS

FNCLEX

FCOMST(l)

FCOM [BP].UPPER_LIMIT

. FCOM WAVELENGTH

FCOMPST(2)

FCOMP [BP+2].N_READINGS

FCOMP DENSITY

Chapter 5, Coprocessor instructions 139

FCOMPP Compare real and pop twice
Exceptions: I, D
FCOMPP (no operands)

87 287 387 486

No operands 45-55 45-55 26 5 2

FCOS

87

No operands

Cosine of 51(0)
80387 and greater
Exceptions: IS, I, 0, U, P
FCOS

287 387 486

123-772* 241(193-279) 2

FCOMPP

FCOS

*These timings hold for operands in the range I x I /4. For operands not in this range, up to 76
additional clocks may be needed to reduce the operand.

FDECSTP Decrement stack pointer
Exceptions: None
FDECSTP (no operands)

87 287 387 486

No operands 6-12 6-12 22 3 2

FDISI
FNDISI

No operands

FDIV

I/ST(i),ST

short real

Disable interrupts
8087 only
Exceptions: None
FDISI (no operands)

Typical Range

5 2-8 0

Divide real
Exceptions: I, D, Z, 0, U, P
FDIV / /source/destination, source

87 287 387 486

193-203 193-203 88-91 73 2

215-225 215-225 89 73 2-4

140 T u r boA sse m b I e r Qui c k Ref ere nee

FDECSTP

2 FDISI

FDIV

FDIV DISTANCE

long real

IIST,ST(i)

FDIVP

IIST(i),ST

FDIVR

II
ST,ST(i)I
ST(i),ST

short real

long real

FDIVRP

ST(i),ST

FENI
FNENI

87 287 387 486

220-230 220-230 94 73 2-4 FDIV ARqDI]

73

Divide real and pop
Exceptions: I, 0, Z, 0, U, P
FDIVP destination, source

87 287 387 486

197-207 198-209 88-91 73 2

Divide real reversed
Exceptions: I, 0, Z, 0, U, P

FDIVP ST(4),ST

FDIVR / / source/ destination, source -

87 287 387 486

194-204 198-208 88-91 73 2 FDIVR ST(2),ST

73
216-226+EA 215-225 89 73 2-4 FDIVR [BX].PULSE_RATE

221-231+EA 220-230 94 73 2-4 FDIVR RECORDER FREQUENCY

Divide real reversed and pop
Exceptions: I, 0, Z, 0, U, P
FDIVRP destination, source

87 287 387 486

198-208 198-208 88-91 73 2 FDIVRP ST(1),ST

Enable interrupts
8087 only
Exceptions: None
FEN! (no operands)

(no operands)

87

5(2-8) 2 FNENI

Chapter 5, Coprocessor instructions 141

FFREE

ST(i)

FIADD

word
integer

short
integer

FICOM

word
integer
short
integer

FICOMP

word
integer

short
integer

Free register
Exceptions: None
FFREE destination

87 287 387 486

9-16 9-16 18 3 2 FFREEST(I)

Integer add
Exceptions: I, 0,0, P
FlADD source

87 287 387 486

102-137+EA 102-137 71-85 22.5(19-32) 2-4 FIADD
DISTANCE_TRAVELLED

108-143+EA 108-143 57-72 24(20-35) 2-4 FIADD PULSE_COUNT [SI]

Integer compare
Exceptions: I, 0
FlCOM source

87 287 387

72-86+EA 72-86 71-75

486

18(16-20) 2-4

78-91+EA 78-91 56-63 16.5(15-17) 2-4

Integer compare and pop
Exceptions: I, 0
FICOMP source

87 287 387

74-88+EA 74-88 71-75

80-93+EA 80-93 56-63

486

18(16-20)

16.5(15-17)

FICOM TOOL.N] ASSES

FICOM [BP+4].PARM_COUNT

2-4 FICOMP [BP].LIMIT [SI]

2-4 FICOMP N_SAMPLES

142 Turbo Assembler Quick Reference

FIDIV

word
integer

short
integer

FIDIVR

Integer divide
Exceptions: I, D, Z, 0, U, P
FIDIV source

;:<X<::i>de.· .;•.... <
<Pyte!!J •.. l~xample

87 287 387 486

224-238+EA 224-238 136-140 73 2-4 FIDIV SURVEY.OBSERVATIONS

230-243+EA 230-243 120-127 73 2-4 FIDIV RELATIVE_ANGLE [DI]

Integer divide reversed
Exceptions: I, D, Z, 0, U, P
FIDIVR source

87 287 387 486

word integer 225-239+EA 224-238 135-141

short integer 231-245+EA 230-243 121-128

73 2-4
73 2-4

FIDIVR [BP].x_COORD

FIDIVR FREQUENCY

FILD

word
integer

short
integer

long
integer

FIMUL

87

Integer load
Exceptions: 1
FILD source

287 387

46-54+EA 46-54 61--65

52--60+EA 52--60 45-52

60--68+EA 60--68 56--67

Integer multiply

486

11.5(9-12)

14.5(13-16)

16.8(10-18)

Exceptions: I, D, 0, P
FIMUL source

87 287 387 486

word integer 124-138+EA

short integer 130-144+ EA

124-138 76-87 8

130-144 61-82 8

2-4

2-4

2-4

2-4

2-4

FILD [BX].SEQUENCE

FILD STANDOFF [DI]

FILD RESPONSE.COUNT

FIMUL BEARING

FIMUL POSmON.Z_AXIS

C hap t e r 5, Cop roc e S S 0 r i ns t rue t ion s 143

FINCSTP Increment stack pOinter
Exceptions: None
FINCSTP (no operands)

87 287 387 486

No operands 6-12 6-12 21 3

FINIT
FNINIT

Initialize processor
. Exceptions: None

2

FINIT /FNINIT (no operands)

87

No operands 2-8

FIST

287

2-8

387 486

33 17 2

Integer store
Exceptions: I, P
FIST destination

87 287 387 486

FINCSTP

FINIT

word 80-90+EA 80-90 82-95 33.4(29-34) 2-4 FIST OBS.COUNT [51]
integer
short 82-92+EA 82-92 79-93 32.4(28--34) 2-4 FIST [BP;].FACTORED]ULSES
integer

FISTP

word
integer
short
integer
long
integer

Integer store and pop
Exceptions: I, P
FISTP destination

87 287 387 486

82-92+EA 82-92 82-95 33.4(29-34)

84-94+EA 84-94 79-93 33.4(29-34)

94-105+EA 94-105 80-97 33.4(29-34)

144 Turbo Assembler Quick Reference

2-4 FISTP[BX].
ALPHA_COUNT [51]

2-4 FISTP CORRECTED_TIME

2-4 FISTP PANEL. N_READINGS

FISUB Integer subtract
Exceptions: \, D, 0, P
FISUB source

87 287 387 486

word 102-137+EA 102-137 71--83 22.5(19-32) 2-4 FISUB BASE_FREQUENCY
integer

short 108-143+EA 108-143 57--82 24(20-35) 2-4 FISUB TRAIN_SIZE [OI]
integer

FISUBR

word
integer

short
integer

FLO

ST(i)

short real
long real

Temp real

FLOCW

2 bytes

Integer subtract reversed
Exceptions: I, D, 0, P
FISUBR source

87 287 387

103-139+EA 102-137 72--84

109-144+EA 108-143 58-83

Load real
Exceptions: \, D
FLDsource

87 287 387 486

17-22 17-22 14 4

38-56+EA 38-56 20 3
40--60+EA 40--60 25 3
53-65+EA 53-65 44 6

Load control word
Exceptions: None
FLDCW source

486

22.5(19-32)

24(20-35)

2

2-4
2-4

2-4

87 287 387 486

7-14+EA 7-14 19 4 2-4

2-4 FISUBR FLOOR [BX][SI]

2-4 FISUBR BALANCE

FLDST(O)

FLO READING [SI].PRESSURE
FLO [BP].TEMPERATURE

FLO SA VEREADING

FLDCW CONTROL_WORD

Chapter 5, Coprocessor instructions 145

FLDENV

14 bytes

FLDLG2

No operands

FLDLN2

No operands

FLDL2E

No operands

FLDL2T

No operands

87

Load environment
Exceptions: None
FLDENV source

287 387 486

35-45+EA 35-45 71 44 real or virtual 34
protected

Load 109102
Exceptions: I
FLDLG2 (no operands)

87 287 387 486

18--24 18--24 41 8 2

Load 109e2
Exceptions: I
FLDLN2 (no operands)

87 287 387 486

17-23 17-23 41 8 2

Loadl092e
Exceptions: I
FLDL2E (no operands)

87 287 387 486

15-21 15-21 40 8 2

Load 109210
Exceptions: I
FLDL2T (no operands)

87 287 387 486

16-22 16-22 40 8 2

146 Turbo Assembler Quick Reference

2-4 FLDENV [BP+6]

FLDLG2

FLDLN2

FLDL2E

FLDL2T

FLOPI Load P (pi)
Exceptions: I
FLDPI (no operands)

87 287 387 486

No operands 16-22 16-22 40 8 2 FLDPI

FLOZ Load +0.0
Exceptions: I
FLDZ (no operands)

87 287 387 486

No operands 11-17 11-17 20 4 2 FLDZ

FL01 Load +1.0
Exceptions: I
FLD1 (no operands)

87 287 387 486

No operands 15-21 15-21 24 4 2 FLD1

FMUL Multiply real
Exceptions: I, 0, 0, U, P
FMUL / / source/ destination, source

87 287 387 486

I IST(i),ST 1ST, 90-105 90-145 . 29-57 16 2 FMUL ST,ST(3)
90-105,ST(1)*

I IST(i),ST 1ST,
ST,ST(l)

130-145 90-145 29-57 16 2 FMUL ST,ST(3)

short real 110-125+EA 110-125 27-35 11 2-4 FMUL SPEED_FACTOR

long real* 112-126+EA 112-168 32-57 2-4 FMUL [BP].HEIGHT

long real 154-168+EA 112-168 32-57 14 2-4 FMUL [BP].HEIGHT

*Occurs when one or both operands is "short" -it has 40 trailing zeros in its fraction (for
example, it was loaded from a short-real memory operand).

C hap t e r 5, Cop roc e S S 0 r ins t rue t ion S 147

FMULP Multiply real and pop
Exceptions: I, 0, 0, u, P
FMULP destination, source

87 287 387 486

ST(i),ST* 94-108 198-208 29-57 2 FMULP ST(l),ST
ST(i),ST 134-148 198-208 29-57 16 2 FMULP ST(l),ST

*Occurs when one or both operands is "short" -it has 40 trailing zeros in its fraction (for
example, it was loaded from a short-real memory operand).

FNOP

87

No operands 10-16

FPATAN

No operation
Exceptions: None
FNOP (no operands)

287

10-16

387

12

Partial arctangent

486

3 2

Exceptions: U, P (operands not checked)
FPATAN (no operands)

No operands

FPREM

87

250-800

287

250-800

387

314-487

87

Partial remainder
Exceptions: I, 0, U
FPREM (no operands)

486

5(2-17)

No operands 15-190

287

15-190

387

74-155

486

2(2-8)

FPREM1

87

No operands

Partial remainder
80387 and greater
Exceptions: I, 0, U
FPREM (no operands)

287 387

95-185

486

94.5(72-167) 2

148 Turbo Assembler Quick Reference

2

2

FNOP

FPATAN

FPREM

FPREM1

FPTAN Partial tangent
Exceptions: I, P (operands not checked)
FPTAN (no operands)

87 287

No operands 30-540 30-540

387

191-573

486

244(200-273) 2

FRNDINT Round to integer
Exceptions: I, P
FRNDINT (no operands)

87 287 387 486

No operands 16-50 16-50 66-80 29.1(21-30) 2

FRSTOR Restore saved state
Exceptions: None
FRSTOR source

. 87 287 387

94 bytes 197-207+EA 205-215 308

486

131 real or virtual 120 2-4
protected

FPTAN

FRNDINT

FRSTOR
[BP]

Note: The 80287 execution clock count for this instruction is not meaningful in determining
overall instruction execution time. For typical frequency ratios of the 80286 and 80287 clocks,
80287 execution occurs in parallel with the operand transfers. The operand transfers
determine the overall execution time of the instructions. For 80286:80287 clock frequency
ratios of 4:8, 1:1, and 8:5, the overall execution clock count for this instruction is estimated at
490,302, and 227 80287 clocks, respectively.

FSAVE
FNSAVE

87

Save state
Exceptions: None
FSAVE/FNSAVE destination

287 387 486

94 bytes 197-207+EA 205-215 375-376 2-4 FSAVE [BP]

Note: The 80287 execution clock count for this instruction is not meaningful in determining
overall instruction execution time. For typical frequency ratios of the 80286 and 80287 clocks,
80287 execution occurs in parallel with the operand transfers. The operand transfers
determine the overall execution time of the instruction. For 80286:80287 clock frequency
ratios of 4:8, 1:1, and 8:5, the overall execution clock count for this instruction is estimated at
376,233, and 17480287 clocks, respectively.

C hap t e r 5, Cop roc e S S 0 r ins t rue ti 0 n s 149

FSCALE Scale
Exceptions: I, 0, U
FSCALE (no operands)

87 287 387 486

No operands 32-38 32-38 67-86 31(30-32) 2 FSCALE

FSETPM Set protected mode
Exceptions: None
FSETPM (no operands)

287

No operands 2-8 2 FSETPM

FSIN Sine of S1(0)
80387 and greater
Exceptions: IS, I, 0, U, P
FSIN

387 486

No operands 122-771* 241(193-279) 2 FSIN

*These timings hold for operands in the range I x I /4. For operands not in this range, up to 76
additional clocks may be needed to reduce the operand.

FSINCOS Sine and cosine of S1(0)
80387 and greater
Exceptions: IS, I, 0, U, P
FSINCOS

387 486

No operands 194-809* 291(243-329) 2 FSINCOS

*These timings hold for operands in the range I x I /4. For operands not in this range, up to 76
additional clocks may be needed to reduce the operand.

FSQRT Square root
Exceptions: I, 0, P
FSQRT (no operands)

87 287 387 486

No operands 180-186 180-186 122-129 85.5(83-87) 2

150 T u r boA sse m b I e r Qui c k Ref ere nee

FSQRT

FST

ST(i)

short real

long real

FSTCW
FNSTCW

9~#it4$'"

2 bytes

FSTENV
FNSTENV

14 bytes

FSTP

ST(i)

short real

long real

Temp real

FSTSW
FNSTSW

2 bytes

87

15-22

Store real
Exceptions: I, 0, U, P
FST destination

287 387

15-22 11
84-90+EA 84-90 44

96-104+EA 96-104 45

Store control word
Exceptions: None
FSTCW destination

87 287 387

12-18+EA 12-18 15

Store environment
Exceptions: None
FSTENV destination

87 287 387

486

3 2

7 2-4

8 2-4

486

2-4

486

40-50+EA 40-50 103-104 2-4

Store real and pop
Exceptions: I, 0, U, P
FSTP destination

87 287 387 486

17-24 17-24 12 3 2

86-92+EA 86-92 44 7 2-4

98-106+EA 98-106 45 8 2-4

52-58+EA 52-58 53 6 2-4

Store status word
Exceptions: None
FSTSW /FNSTSW destination

87 287 387 486

12-18+EA 12-18 15 3 2-4

FSTST(3)

FST CORRELA nON [OI]

FST MEAN_READING

FSTCW SA VB_CONTROL

FSTENV[BP]

FSTPST(2)

FSTP [BX].
ADJUSTED_RPM

FSTP TOTAL_DOSAGE

FSTP REG_SA VB [SI]

FSTSW SAVE_STATUS

Chapter 5, Coprocessor instructions 151

FSTSW AX
FNSTSWAX

87

AX

FSUB

Store status word to AX
Exceptions: None
FSTSW destination

287 387 486

10-16 13 3 2

Subtract real
Exceptions: I, 0, 0, U, P
FSUB / /source/destination, source

87 287 387 486

I 15T,5TI (i) I 70-100 70-100
ST(i),5T

26-37 7(5-17) 2

short real 90-120+EA 90-120 24-32 7(5-17) 2-4
long real 95-125+EA 95-125 28-36 7(5-17) 2-4

FSUBP Subtract real and pop
Exceptions: I, 0, 0, U, P
FSUBP destination, source

87 287 387 486

ST(i),5T 75-105 75-105 26-37 7(5-17) 2

FSUBR Subtract real reversed
Exceptions: I, 0, 0, U, P
FSUBR / / source/ destination, source

87 287 387 486

I 15T,ST(i) I 70-100 70-100 26-37 7(5-17) 2
ST(i),5T

short real 90-120+EA 90-120 25-33 7(5-17) 2-4
long real 95-125+EA 95-125 29-37 7(5-17) .2-4

FSUBRP Subtract real reversed and pop
Exceptions: I, 0, 0, U, P
FSUBRP destination, source

87 287 387 486

ST(i),5T 75-105 75-105 26-37 7(5-17) 2

152 T u r boA sse m b I e r Qui c k Ref ere nee

F5T5W AX

F5UB 5T,5T(2)

F5UB BA5E_ VALUE

F5UB COORDINATE.X

F5UBP 5T(2),5T

F5UBR 5T,ST(1)

F5UBR VECTOR [51]
F5UBR [BX].INDEX

F5UBRP ST(1),5T

FTST Test stack top against +0.0
Exceptions: I, 0
FIST (no operands)

87 287 387 486

No operands 38-48 38-48 28 4 2 FTST

FUCOM Unordered compare
80387 and greater
Exceptions: IS, I, 0

387 486

/ /ST(i) 24 4 2 FUCOMST(l)

FUCOMP Unordered compare
80387 and greater
Exceptions: IS, I, 0

387 486

/ /ST(i) 26 4 2 FUCOMP ST(2)

FUCOMPP Unordered compare
80387 and greater
Exceptions: IS, I, 0

387 486

No operands 26 5 2 FUCOMPP

FWAIT Wait
Exceptions: None (CPU instruction)
FWAIT (no operands)

'387 486

No operands 3+5n* 1-3 FWAIT

*n = number of time CPU examines BUSY line before 80287 completes execution of previous
instruction. .

C hap t e r 5, Cop roc e 5 5 0 r ins t rue t ion 5 153

FXAM Examine stack top
Exceptions: None
FXAM (no operands)

87 287 387 486

No operands 12-23 12-23 30-38 8 2 FXAM

FXCH Exchange registers
Exceptions: I
FXCH / / destination

87 287 387 486

/ /ST(i) 10-15 10-15 18 4 2 FXCHST(2)

FXTRACT Extract exponent and significant
Exceptions: I
FXTRACT (no operands)

87 287 387 486

No operands 27"'-55 27-55 70-76 19(16-20) 2 FXTRACT

FYL2X Y* IOg2X
Exceptions: P (operands not checked)
FYL2X (no operands)

87 287 387 486

No operands 900-1100 900-1100 120-538 311(196-329) 2 FYL2X

FYL2XP1 Y * IOg2(X + 1)
Exceptions: P (operands not checked)
FYL2XP1 (no operands)

87 287 387 486

No operands 700-1000 700-1000 257-547 313(171-326) 2 FYL2XP1

154 T u r boA sse m b I e r Qui c k Ref ere nee

F2XM1 2x-1
--
Exceptions: U, P (operands not checked)
F2XMl (no operands)

87 287 387 486

No operands 310-630 310-630 211--476 242(140-279) 2 F2XM1

C hap t e r 5, Cop roc e 5 5 0 r ins t rue t ion 5 155

156 T u r boA sse m b I e r Qui c k Ref ere nee

Borland
Copyright © 1996 Borland International , Inc. All rights reserved. All Borland product names are
trademarks of Borland International, Inc. Corporate Headquarters: 100 Borland Way, Scotts Valley,
CA 95066-3249, (408) 431-1000. Internet: http://www.borland.com CompuServe: GO BORLAND.
Offices in: Australia, Canada, France, Germany, Hong Kong, Japan, Latin America, Mexico,
The Netherlands, Taiwan, and United Kingdom • Part # LSM 1350WW21772 • BaR 8908

