Quick Reference

Turho
Assembler

e s
L :g?xﬁ‘i.“:i
Smg s t‘%;m
e G j
3 i

s
SRR
mgz?xigz*f"??ag
.

s\;!x'x‘is j‘gjﬁggiﬂé

e
i’ G ‘f’""‘;»w
. -

o

mu(‘i e s
x,a,gmgm ﬁgm »«,ﬁg,‘) L%m,, o Sy
W ﬁ““ivhuﬂ;”“?x e
e m;@u . L
- - »5%‘; . «is s
. - %%Mﬁpﬁ? . .
. 5@ . L m;;wﬁ‘%w
efv‘ggj{ N@ L& *;*g; .- %gfg ..
‘Kgmm - ,,mg«?ﬁ‘;m - www, g;a - gmgégs«ism@%x x‘ws» .
Hhane e .
. . .
C S i ,mz;,mm»nw‘sw

e
o

. e
e
.

xsiaz?ﬂ

e
o

i 5
o
e

«;;igz;

Borland® ‘
Turbo Assemblere

Borland International, Inc., 100 Borland Way
+P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

Copyright © 1988, 1995 by Borland International. Al rights reserved. All Borland products are
trademarks or registered trademarks of Borland International, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

The material in Chapter 3 and Chapter 4is reprinted with permission of Intel Corporation,
copyright © Intel Corporation 1987, 1995.

Printed in the U.S.A

LSM1350WW21772 5EQ0R1295
9596979899-98765 4
H1

v

Contents

Chapter 1
Predefined symbols

@code
@CPU\t

@data

??date

@FileName
??filename.

@Table_<objectname>.
@TableAddr_<objectname> . .
??time
??version
@WordSize

Chapter 2
Operators
Ideal mode operator

precedence

MASM mode operator
precedence

Operators

............

BYTE PTR
CODEPIR.

DATAPTR. 8
DUP................ 8
DWORD. 8
DWORDPTR 8
EQ....... 8
FAR 8
FARPIR 8
FWORD.............. 8
FWORDPIR 8
GE 9
GT 9
HGH 9
HGH 9
LARGE 9
LE 9
IENGTH 9
LOW. 9
LOW.o oo 9
LT oo . 10
MASK.............. 10
MOD............... 10
NE................ 10
NEAR 10
NEARPIR 10
NOT............... 10
OFFSET 10
OR................ 10
PROC 11
PROCPIR 11
PIR 11
PWORD............. 11
PWORDPIR.......... 11
QWORD. 11
QWORDPIR 11
SEG 11
SHL 11
SHORT 12
SHR 12
SIZE 12
SMALL 12
SYMIYPE. 12
TBYTE. 12
TBYTEPIR 12
THIS. 12
JYPE oo 13
TYPE. 13
TYPE 13
UNKNOWN 13
WIDTH 13
WORD 13

XOR...............13 %BIN . . o oo 20
Macro operators 14 -BREAK [T 20
T 14 BYTE 21
ARSI 14 CALL 21
L 14 CATSTR 21
%. e 14 CODE e 21
L 14 CODESEG 21
. ‘ COMM 21
Rufzh'm'e'o‘p‘e’fa_t‘?r?. SO ﬁ COMMENT 2
’= 14 %CONDS Yo o o 4. 22
S 1 CONST . . . oot 2
SO 15 CONST . ..o 2
SRR 1 CONTINUE 2
S 1 CREF 2
Ll 15 %CREF 22
et T2 %CREFALL 2
e e 1 %CREFREF 23
LT 1 %CREFUREF 23
CARRY? T 1= %CTLS . . oo oo r .. 23
OVERFLOW. 1 DATA ... 23
PARTTY? T ORET DATASEG 23
SIGN? . oo oo 16 i’;é’*TA? ------------ gg
’?
ZERO? ..o 16 DB =
Chapter 3 %DEPTH 24
DirecI:)tives 17 1) ST 24
DISPLAY 24
A86 . 17 DOSSEG 24
286 e 17 1) 24
286C .o 17 DQ. oo 25
286P ... 17 DT .o oeeee 25
287 17 DW oo 25
386 . 17 DWORD 25
386C .. 18 ECHO 25
386P 18 BISE. 25
387 18 ELSE . ..o 26
486 . 18 ELSEIF 2
486C . 18 EMUL . .o oo 26
486P .. 18 END . .o oo 26
487 18 ENDIF. 26
586 . e 18 ENDIE 27
586C . e 19 ENDM 27
586P 19 ENDP 27
587 19 ENDS 27
8086 . . . 19 ENDW 27
8087 . . oo 19 ENUM 27
................. 19 EQU . ..o oo 27
T, 19 ERR . ..o 28
ALIGN . ..o, 19 ERR © . o oooeee 28
ALPHA 19 ERRL ... ooooonnnn .. 28
ALIAS. . .o oo, 20 ERR2 . oo ooeen . 28
ARG . . o oo 20

ERRDEF 28 IENB. 37
ERRDIF 28 IENDEF 37
ERRDIFI 28 %INCL 38
ERRE 29 INCLUDE 38
ERRIDN 29 INCLUDELIB 38
ERRIDNI. 29 INSTR. 38
ERRIF 29 INVOKE 38
ERRIF1 29 IRP. 39
ERRIF2 29 IRPC......... 39
ERRIFB 29 IMP . ..o 39
ERRIFDEF 29 JUMPS 39
ERRIFDIF. 30 LABEL 39
ERRIFDIFI 30 LALL . ..o oo 39
ERRIFE 30 LARGESTACK. 39
ERRIFIDN 30 LFCOND. 40
ERRIFIDNI 30 %LINUM 40
ERRIFNB 30 %BLIST oo o 40
ERRIFNDEF 30 LIST. oo oo oo 40
ERRNB.............. 30 JISTALL .. oo oL 40
ERRNDEF 31 LISTIE o oo oo 40
ERRNZ 31 LISTMACRO 40
EVEN 31 .LISTMACROAILL 40
EVENDATA 31 LOCAL 41
EXIT ... oo o 31 LOCALS 41
EXITCODE L0031 MACRO 41
EXITM 31 BMACSo 41
EXTERN 31 MASKFLAG 4l
EXTERNDEF. 31 MASM 41
EXTRN 32 MASM51 41
FARDATA 32 MODEL 41
FARDATA 32 MODEL R)
FARDATA? 32 MULTERRS 42
FASTIMUL 32 NAME 42
FLIPFLAG 32 %NEWPAGE 42
FORo .. 33 %NOCONDS. 42
FORC 33 %NOCREF 42
FWORD 33 %NOCTLS 42
GETFIELD 33 NOEMUL. R)
GLOBAL 33 %NOINCL 43
GOTO............... 34 NOJUMPS 43
GROUP 34 %NOLIST 43
IDEAL 34 NOLIST 43
IF 34 NOLISTIF 43
B 34 NOLISTMACRO 43
IFL. ... oo 35 NOLOCALS 43
IF2.......... e 35 %NOMACS 44
IFB. 35 NOMASM51 44
IFDEF 35 NOMULTERRS 44
IFDIEF 35 NOSMART 44
IFDIFL. 36 %NOSYMS 44
IFE. 36 %NOTRUNC 44
IFIDN 36 NOWARN 44

iii

ORG.....ivviiii . 45 SDWORD 52
%OUT . . o oo 45 SEGMENT 52
P186 . . o v v oo 45 SEQ ... 52
P286 . . oo 45 SETFIELD 53
P286N . . oo 45 SETFLAGo .. 53
P286P 45 SFCOND 53
P287 . o o 45 SIZESTR oo .. 53
P386 . . oo 45 SMALLSTACK 53
P386N . . . oo 45 SMART vvoven.. 53
P386P 46 STACKo 53
P387 . . oo 46 STACK 53
PA86 i 46 STARTUP 54
PASGN oo 46 STARTUPCODE 54
PAS7 . . o 46 STRUC 54
P586 . oo oo e 46 STRUCTo 54
P586N . . o oo 46 SUBSTR . . . oo oo 54
P587 . e 46 SUBTITLE 54
PSOS6 . . o v oo 47 SUBTTL 55
P8OS7 . oo 47 %SUBTTL oo oo n .. 55
PAGE 47 SWORD 55
%PAGESIZE 47 %SYMS . . 55
%PCNT oot 47 TABLE 55
PNO87cvuu... 47 %TABSIZEot .. 55
%POPLCTL 47 TBLINIT 55
POPSTATE 47 TBLINST 55
PROC 48 TBLPTR o oo v ... 56
PROCDESC 48 TBYTE. . . oo oot 56
PROCTYPE. 48 TESTFLAG 56
PROTO 49 %TEXT » oo oo 56
PUBLIC............. 49 TEXTEQU 56
PUBLICDLL 49 TJFCOND+«.... 56
PURGE 49 TITLE . . o oo 56
%PUSHLCTL 49 %TITLE oo in . 56
PUSHSTATE 49 %TRUNC oo ovn .. 56
QUIRKS50 TYPEDEF 57
QWORD 50 UDATASEG 57
RADIXo oi i 50 UFARDATA 57
RADIX R 50 UNION 57
REAL4A 50 UNTIL 57
REALS 50 UNTILCXZ . . .o oo 57
REALIO oo v vt .. 50 USES 58
RECORD 50 VERSION 58
REPEAT 51 WARN 58
REPEAT 51 WHILE 58
REPT 51 WHILE 58
RETCODE 51 WORD 58
RETF 51 XALL . ..o oo 58
RETIN . .o oie . 51 XCREF 59
SALL . . oo 52 XLIST . oo oo oo 59

iv

Chapter 4
Processor instructions 61

Operand-size and address-size

attributes

Default segment attribute . . .61
erand-size and address-size

instruction prefixes 62
Address-size attribute for

stack. 62

Instruction format 62

ModR/M and SIB bytes63
How to read the instruction

setpages 7
Instructionname 67
Flags67
Opcode 68
Instruction 68
Clocks. 70
AAA ... o 71
AAD 71
AAM ... 71
AAS. ... 72
ADC 72
ADD 73
AND 73
ARPL 74
BOUND 75
BSE 75
BSR 75
BSWAP................ 76
BT, 76
BTC 76
BTR 77
BTS 77
CALL 77
CBW 79
CDQ ... i 80
CLC. v 80
CLD......... 80
CLI 80
CLTS i, 81
CMC 81
CMP e 81
CMPS, CMPSB, CMPSW,
CMPSD............... 82
CMPXCHG 83
CHPXCHGSB 84
CPUID 85
CWD 85

CWDE 86
DAA 86
DAS. 86
DEC................. 86
DIV 87
ENTER 87
HLT 88
IDIV. 88
IMUL, 89
IN 90
INC ..., 90
INS, INSB, INSW,INSD 91
INT,INTO 91
INVD 92
INVLPG 93
IRET, IRETD, IRETW 93
Jee o oo 94
JMP o 97
LAHF 98
LAR. 98
LEA 99
LEAVE 99
ILGDT/LIDT 100
LGS, LSS, LFS,LDS,LES 100
LIDT 101
IMSW 101
LOCK................ 102
LODS, LODSB, LODSW,

LODSD 103
LOOP,LOOPcond 103
LSL 104
LTR i 104
MOV 105
MOV, 106
MOVS, MOVSB, MOVSW,

MOVSD. 107
MOVSX. 107
MOVZX 108
MUL 108
NEG 108
NOP 109
NOT 109
OR 109
OUT................. 110
OUTS, OUTSB, OUTSW,

OUTSD 110
POP 111

POPA, POPAD, POPAW 112

POPF, POPED, POPEW 113

PUSH................ 113
PUSHA, PUSHAD, '

PUSHAW 114
PUSHF, PUSHFD, PUSHFW . .114
RCL,RCR,ROL,ROR 115
RDMSR. 117
RDTSC 118
REP, REPE, REPZ, REPNE,

REPNZ 118
RET 120
RSM 121
SAHF 122
SAL,SAR,SHL,SHR 122
SBB 124
SCAS, SCASB, SCASW,

SCASD 125
SETcc 125
SGDT,SIDT 126
SHLD................ 127
SHRD................ 127
SIDT 128
SMSW 128
STC 128
STD 128
STI R 129
STOS, STOSB, STOSW,

STOSD 129
STR oo oo 130
SUB................. 130
TEST 131
VERR,VERW 131
WAIT 132
WBINVD 132
WRMSR 132
XADD 133
XCHG 134
XLAT,XLATB 134
XOR. 135
Chapter 5
Coprocessor instructions 137
F2XM1 138
EABS 138
FADD 138
FADDP 138
FBLD 138
FBSTP 139
FCHS 139

vi

FCLEX, FNCLEX 139
FECOM 139
FCOMP............... 139
FCOMPP 140
FCOS . oo oo i i, 140
FDECSTP. 140
FDISL,FNDISI 140
EDIVo 140
FDIVP 141
FDIVR 141
FDIVRP. 141
FENLFNENI 141
FFREE 142
FIADD 142
FICOM 142
FICOMP 142
FIDIV 143
FIDIVR 143
FILD 143
FIMUL 143
FINCSTP 144
FINIT,ENINIT. 144
FIST 144
FISTP 144
FISUB.o.o..... 145
FISUBR 145
FID 145
FLDCW 145
FLDENV 146
FLDLG2 146
FLDLN2 146
FIDL2E.o oo 146
FIDL2T 146
FLDPI................ 147
FLDZ . .. oo o oo 147
FLD1 147
FMUL. 147
FMULP 148
ENOP 148
FPATAN 148
FPREM 148
FPREM1 148
FPTAN 149
FRNDINT 149
FRSTOR 149
FSAVE,ENSAVE 149
FSCALE 150
FSETPM 150

FSIN 150 FSUBRP 152

ESINCOS. 150" FIST 153
FSQRT 150 FUCOM 153
FST 151 FUCOMP.............. 153
FSTCW,ENSTCW 151 FUCOMPP............. 153
FSTENV, FNSTENV 151 FWAIT 153
FSTP 151 EXAM................ 154
FSTSW,ENSTSW 151 EXCH................ 154
FSTSW AX, FNSTSW AX152 EXTRACT 154
FSUB 152 FYL2X 154
FSUBP 152 FYL2XP1 154
FSUBR 152 F2XM1 155

Chapter

Predefined symbols

All the predefined symbols can be used in both MASM and Ideal mode.

$

Represents the current location counter within the current segment.

@32Bit

Numeric equate indicating whether segments in the current model are declared
as 16 bit or 32 bit.

@code
Alias equate for .CODE segment name.

@CodeSize

Numeric equate that indicates code memory model (O=near, 1=far).

@CPU

Numeric equate that returns information about current processor directive.

@curseg

Alias equate for current segment.

@data

Alias equate for near data groﬁp name.

Chapter 1, Predefined symbols 1

@DataSize

Numeric equate that indicates the data memory model (0=near, 1=far, 2=huge).

- 2date

String equate for today’s date.

@fardata

Alias equate for initialized far data segment name.

@fardata?

Alias equate for uninitialized far data segment name.

@FileName

Alias equate for current assembly file name.

?2?filename

String equate for current assembly file name.

@Interface

Numeric equate indicating the language and operating system selected by |
MODEL.

@Model

Numeric equate representing the model currently in effect.

@Object

Text macro containing the name of the current object.
= Alias equate for stack segment.

@Stack

Alias equate for stack segment.

@Startup

Label that marks the beginning of startup code.

@Table_<objectname>

Data type containing the object’s method table.

2 Turbo Assembler Quick Reference

@TableAddr_<ovjectname>

Label describing the address of the instance of the object’s virtual method table.

?ime
String equate for the current time.

??version

Numeric equate for current Turbo Assembler version number.

@WordSize

Numeric equate that indicates 16- or 32-bit segments (2=16-bit, 4=32-bit).

Chapter 1, Predefined symbols 3

4 Turbo Assembler Quick Reference

Chapter

Operators

This chapter covers the operators Turbo Assembler provides and their
precedence. The two tables that follow detail operator precedence for Ideal and
MASM modes.

Ideal mode operator precedence

The following table lists the operators in order of priority (highest is first, lowest
is last):

¢ (), [, LENGTH, MASK, OFFSET, SEG, SIZE, WIDTH
e HIGH, LOW

* +,—(unary)

e * /[, MOD, SHL, SHR

* - (bmary)

* EQ, GE, GT, LE LT, NE

¢ NOT

e AND

¢ OR,XOR

® :(segment override)

e ., (structure member selector)

e HIGH (before pointer), LARGE, LOW (before pointer), PTR, SHORT,
SMALL, SYMTYPE

MASM mode operator precedence

¢ < (,[l, LENGTH, MASK, SIZE, WIDTH
e ., (structure member selector)
e HIGH, LOW

Chapter 2, Operators 5

* +, —(unary)

* :(segment override)

¢ OFFSET, PTR, SEG, THIS, TYPE
* */,MOD, SHL, SHR

* +,—(binary)

¢ EQ, GE, GT,LE, LT, NE

* NOT

* AND

* OR, XOR

* LARGE, SHORT, SMALL, .TYPE

Operators

() Ideal, MASM

(expression) .
Marks expression for priority evaluation.

* Ideal, MASM

expression1 * expression2

Multiplies two integer expressions. Also used with 80386 addressing modes
where one expression is a register.

+ (binary) Ideal, MASM
expression1 + expression2
Adds two expressions.
+ (unary) Ideal, MASM

+ expression
Indicates that expression is positive.

~ (binary) ' Ideal, MASM
expression1 — expression2

Subtracts two expreséions.

- (unary) Ideal, MASM
— expression ‘

Changes the sign of expression.

6 Turbo Assembler Quick Reference

. Ideal, MASM

memptr.fieldname
Selects a structure member.

/ Ideal, MASM
expressiont | expression2

Divides two integer expressions.

Ideal, MASM
segorgroup : expression
Generates segment or group override.
2 Ideal, MASM

Dx?

Initializes with indeterminate data (where Dx is DB, DD, DF, DP, DQ, DT, or
DW).

[] Ideal, MASM

expressiont{expressionZ]
[expressionT][expressionZ]

MASM mode: The [] operator can be used to specify addition or register
indirect memory operands. Ideal mode: The [] operator specifies a memory
reference.

AND Ideal, MASM

expression1 AND expression2
Performs a bit-by-bit logical AND of two expressions.

BYTE o Ideal

BYTE expression
Forces address expression to be byte size.

BYTE PTR Ideal, MASM
BYTE PTR expression

Forces address expression to be byte size.

CODEPTR _ Ideal, MASM

CODEPTR expression
Returns the default procedure address size.

Chapter 2, Operators 7

DATAPTR

Ideal

DATAPTR expression
Forces address expression to model-dependent size.

DUP

Ideal, MASM

count DUP (expression [,expression]...)
Repeats a data allocation operation count times.

DWORD

Ideal

DWORD expression
Forces address expression to be doubleword size.

DWORD PTR

ideal, MASM

DWORD PTR expression ;
. Forces address expression to be doubleword size.

EQ

Ideal, MASM

expressiont EQ expression2
Returns true if expressions are equal.

FAR

Ideal

FAR expression
Forces an address expression to be a far code pointer.

FARPTR

Ideal, MASM

FAR PTR expression
Forces an address expression to be a far code pointer.

FWORD

Ideal

FWORD expression

Forces address expression to be 32-bit far pointer size.

FWORD PTR

Ideal, MASM

FWORD PTR expression

Forces address expression to be 32-bit far pointer size.

8 Turbo Assembler Quick Reference

GE

Ideal, MASM

expression1 GE expression2

Returns true if one expression is greater than or equal to the other.

GT

Ideal, MASM

expression1 GT expression2
Returns true if one expression is greater than the other.

HIGH

Ideal, MASM

HIGH expression
Returns the high part (8 bits or type size) of expression.

HIGH

Ideal

type HIGH expression
Returns the high part (8 bits or type size) of expression.

LARGE

Ideal, MASM

LARGE expression

Sets expression’s offset size to 32 bits. In Ideal mode, this operation is legal only if

386 code generation is enabled.

LE

Ideal, MASM

expression1 LE expression2
Returns true if one expression is less than or equal to the other.

LENGTH

Ideal, MASM

LENGTH name
Returns number of data elements allocated as part of name.

LOwW

Ideal, MASM

LOW expression
Returns the low part (8 bits or type size) of expression.

LOW

Ideal

type LOW expression
Returns the Jow part (8 bits or type size) of expression.

Chapter 2, Operators 9

LT

expression1 LT expression2
Returns true if one expression is less than the other.

MASK

Ideal, MASM

Ideal, MASM

MASK recordfieldname
MASK record

Returns a bit mask for a record field or an entire record.

MOD

Ideal, MASM

expression MOD expression2

Returns remainder (modulus) from dividing two expressions.

NE

Ideal, MASM

expression1 NE expression2
Returns true if expressions are not equal.

NEAR

Ideal

NEAR expression :
Forces an address expression to be a near code pointer.

NEAR PTR

Ideal, MASM

NEAR PTR expression
Forces an address expression to be a near code pointer.

NOT

Ideal, MASM

NOT expression
Performs a bit-by-bit complement (invert) of expression.

OFFSET

Ideal, MASM

OFFSET expression

Returns the offset of expression within the current segment (or the group‘ that the
segment belongs to, if using simplified segmentation directives or Ideal mode).

OR

Ideal, MASM

expressiont OR expression2
Performs a bit-by-bit logical OR of two expressions.

10 Turbo Assembler Quick Reference

PROC

Ideal

PROC expression

Forces an address expression to be a near or far code pointer.

PROC PTR

Ideal, MASM

PROC PTR expression

Forces an address expression to be a near or far code pointer.

PTR

Ideal, MASM

type PTR expression
Forces address expression to have type size.

PWORD

Ideal

PWORD expréssion

Forces address expression to be 32-bit far pointer size. -

PWORD PTR

Ideal, MASM

PWORD PTR expression

Forces address expression to be 32-bit far pointer size.

QWORD

Ideal

QWORD expression

Forces address expression to be quadword size.

QWORD PTR

ldeal, MASM

QWORD PTR expression
Forces address expression to be quadword size.

SEG

Ideal, MASM

SEG expression

Returns the segment address of an expression that references memory.

SHL

Ideal, MASM

expression SHL count

Shifts the value of expression to the left count bits. A negative count causes the

data to be shifted the opposite way.

Chapter 2, Operators 11

SHORT Ideal, MASM

SHORT expression

Forces expression to be a short code pointer (within 128 to +127 bytes of the
current code location).

SHR deal, MASM

expression SHR count

Shifts the value of expression to the right count bits. A negative count causes the
data to be shifted the opposite way.

SIZE Ideal, MASM

SIZE name

Returns size of data item allocated with name. In MASM mode, SIZE returns
the value of LENGTH name multlphed by TYPE name. In Ideal mode, SIZE
returns the byte count within name’s DUP.

SMALL . | Ideal, MASM

SMALL expression

Sets expression’s offset size to 16 bits. In Ideal mode, this operatlon is legal only if
386 code generation is enabled.

SYMTYPE | Ideal
SYMTYPE

Returns a byte describing expression. 7
TBYTE Ideal

TBYTE expression

Forces address expression to be 10-byte size.

TBYTE PTR Ideal, MASM |

TBYTE PTR expression

Forces address expression to be 10-byte size.

THIS Ideal, MASM
THIS type

Creates an operand whose address is the current segment and location counter.
type describes the size of the operand and whether it refers to code or data.

12 Turbo Assembler Quick Reference

.TYPE | MASM

.TYPE expression
Returns a byte describing the mode and scope of expression.

TYPE IDEAL

TYPE name! name2

Applies the type of an existing variable or structure member to another variable
or structure member.

TYPE MASM

TYPE expression
Returns a number indicating the size or type of expression.

UNKNOWN Ideal

UNKNOWN expression
Removes type information from address expression.

WIDTH ideal, MASM
WIDTH recordfieldname

WIDTH record

Returns the width in bits of a field in a record, or of an entire record.

WORD ‘ Ideal

WORD expression
Forces address expression to be word size.

WORD PTR Ideal, MASM

WORD PTR expression
Forces address expression to be word size.

XOR Ideal, MASM

expression1 XOR expression2

Performs bit-by-bit logical exclusive OR of two expressions. Unconditional
page break inserted for print formatting

Chapter 2, Operators 13 .

Macro operators

& Ideal, MASM
&name

Substitutes actual value of macro parameter name.

<> Ideal, MASM

Treats text literally, regardless of any special characters it might contain.

! Ideal, MASM
Icharacter

Treats character literally, regardless of any special meaning it might otherwise
have.

% Ideal, MASM
Ylext

Treats fext as an expression, computes its value and replaces text with the result.
text may be either a numeric expression or a text equate.

” ‘ ~Ideal, MASM
;;comment ‘
Suppresses storage of a comment in a macro definition.

Run-time operators
The following operators are evaluated at run time, and can only be used inside

JF, .REPEAT, and .WHILE loops. These operators are valid only in MASM
mode.

== ‘ MASM

expressionl == expression2

Returns true when expression1 is equal to expression2.

I= MASM

expressionl != expression2

Returns true when expression1 is not equal to expression2.

> , MASM

expressionl > expression2
Returns true when expressionl is greater than expression2.

14 Turbo Assembler Quick Reference

>=

MASM

expression1 >= expression2

Returns true when expression1 is greater than or equal to expression2.

<

MASM

expressionl < expression2
Returns true when expression1 is less than expression2.

<=

MASM

expression] <= expression2

Returns true when expression1 is less than or equal to expression2.

MASM

expressionl | | expression2
Returns the logical ORed value of expressionl and expression2.

&&

MASM

expressionl && expression2
Returns the logical ANDed value of expressionl and expression2.

&

MASM

expressionl & expression2
Returns the bitwise ANDed value of expressionl and expression2.

MASM

lexpression
Returns the logical negation of expression.

CARRY?

MASM

Returns the status of the carry flag.

OVERFLOW?

MASM

Returns the status of the overflow flag.

PARITY?

MASM

Returns the status of the parity flag.

Chapter 2, Operators 15

SIGN? MASM
Returns the status of the sign flag.

ZERO? | : MASM

Returns the status of the zero flag.

16 Turbo Assembler Quick Reference

Chapter

Directives

186 MASM

.186
Enables assembly of 80186 processor instructions.

.286 MASM

.286

Enables assembly of non-privileged (real mode) 80286 processor instructions
and 80287 numeric coprocessor instructions.

.286C | MASM
286¢ ’ ' ‘

Enables assembly of non-privileged (real mode) 80286 processor instructions
and 80287 numeric coprocessor instructions.

.286P MASM

.286P

Enables assembly of all 80286 (including protected mode) processor
instructions and 80287 numeric coprocessor instructions.

287 : MASM

287
Enables assembly of 80287 numeric coprocessor instructions.

Chapter 3, Directives 17

.386 MASM

.386

Enables assembly of non-privileged (real mode) 80386 processor instructions
and 80387 numeric coprocessor instructions.

386C MASM

.386C

Enables assembly of non-privileged (real mode) 80386 processor instructions
and 80387 humeric coprocessor instructions.

386P | MASH

.386P

Enables assembly of all 80386 (including protected mode) processor
instructions and 80387 numeric coprocessor instructions.

387 ~ Masm
387 .

Enables assembly of 80387 numeric coprocessor instructions.

486 MASM
486

Enables assembly of non-privileged (real mode) instructions for the 1486
processor.

.486C MASM

486C

Enables assembly of non—privileged (real mode) instructions for the 1486
processor.

486P : MASM

.486P
Enables assembly of protected mode instructions for the i486 processor.

487 MASM

487
Enables assembly of 80487 numeric processor instructions.

18 Turbo Assembler Quick Reference

586 MASM

586

Enables assembly of non-privileged (real mode) instructions for the
Pentium processor.

.586C MASM

.586C

Enables assembly of non-privileged (real mode) instructions for the
Pentium processor.

.586P MASM
.586P

Enables assembly of protected mode instructions for the Pentium processor.
587 MASM
587

Enables assembly of Pentium numeric processor instructions.

-.8086 MASM
.8086

Enables assembly of 8086 processor instructions only. This is the default
Pprocessor instruction mode used by Turbo Assembler.

.8087 MASM

.8087

Enables assembly of 8087 numeric coprocessor instructions only. This is the
default coprocessor instruction mode used by Turbo Assembler.

. Ideal, MASM

name.

Defines a near code label called name.

= Ideal, MASM
name = expression

Defines or redefines a numeric equate.

ALIGN ' | Ideal, MASM

ALIGN boundary
Rounds up the location counter to a power-of-two address boundary (2,4, 8, ...).

~ Chapter 3, Directives 19

.ALPHA MASM

ALPHA

Sets alphanumeric segment-ordering. The /a command-line option performs
the same function.

ALIAS Ideal, MASM

ALIAS <alias_name>=<target_name>

Allows the association of an alias name with a particular target name. When the
linker encounters an alias name, it resolves the alias by referring to the target
name.

Note: The syntax for ALIAS is identical in both Ideal and MASM modes.

ARG Ideal, MASM
ARG argument [,argument] ... [=symbol]
[RETURNS argument [,argument]] .

Sets up arguments on the stack for procedures. Each argument is assigned a
positive offset from the BP register, presuming that both the return address of
the procedure call and the caller’s BP have been pushed onto the stack already.
Each argument has the following syntax (boldface items are literal):

argname [[count1]] [:[debug_size] [type] [-count2]]
The optional debug_size has this syntax:
[type] PTR

ASSUME : | Ideal, MASM

ASSUME segmentreg:name [,segmentreg:name]...
ASSUME segmentreg:NOTHING
ASSUME NOTHING

Specifies the segment register (segmentreg) that will be used to calculate the
effective addresses for all labels and variables defined under a given segment or
group name (name). The NOTHING keyword cancels the association between
the designated segment register and segment or group name. The ASSUME
NOTHING statement removes all associations between segment registers and
segment or group names. .

In addition, MASM mode supports the following syntax, which uses ASSUME
to assign a data type to a data register:

ASSUME datareg:type [,datareg:type]

%BIN ' Ideal, MASM

%BIN size
Sets the width of the object code field in the listing file to size columns.

20 Turbo Assembler Quick Reference

.BREAK MASM

.BREAK [.IF expression}

This directive generates code that terminates a .WHILE or . REPEAT block if the
expression evaluates true.

BYTE MASM

[name] BYTE expression [,expression)...
Allocates and initializes a byte of storage. Synonymous with DB.

CALL Ideal, MASM

CALL<instance_ptr-METHOD{object_name>}
<method_name>{USES{segreg:}offsregl{<extended_call_parameters>}

Calls a method procedure.

CATSTR Ideal, MASM51

name CATSTR string [,string]...
Concatenates several strings to form a single string narme.

.CODE MASM
.CODE [name]

Synonymous with CODESEG. MASM mode only.

CODESEG Ideal, MASM
CODESEG [namé] B

Defines the start of a code segment when used with the MODEL directive. If

ou have specified the medium or large memory model, you can follow the
.CODE (or CODESEG) directive with an optional name that indicates the name
of the segment.

COMM Ideal, MASM

COMM definition [,definition)...

Defines a communal variable. Each definition describes a symbol and has the
following format (boldface items are literal):

[distance] [language] symbolname][[count1] |:fype [:count?]

distance can be either NEAR or FAR and defaults to the size of the default data
memory model if not specified. language is either C, PASCAL, BASIC,
FORTRAN, PROLOG, or NOLANGUAGE and defines any language-specific
conventions to be applied to symbolname. symbolname is the communal symbol
(or symbols, separated by commas). If distance is NEAR, the linker uses countl
to calculate the total size of the array. If distance is FAR, the linker uses count2 to
indicate how many elements there are of size count1 times the basic element size

Chapter 3, Directives 21

(determined by type). type can be one of the following: BYTE, WORD,
DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, or a
structure name. count2 specifies how many items this communal symbol
defines. Both countl and count2 default to 1.

COMMENT ‘ MASM

COMMENT delimiter [texf]

[text]

[texf] delimiter [tex{]
Starts a multiline comment. delimiter is the first non-blank character following
COMMENT.

%CONDS Ideal, MASM
%CONDS

Shows all statements in conditional blocks in the listing.

.CONST , MASM
.CONST

Defines the start of the constant data segment. Synonymoﬁé with CONST.
MASM mode only.

CONST - Ideal, MASM
CONST

Defines the start of the constant data segment.

.CONTINUE s
.CONTINUE [.IF expression] —

This directive generates code that jumps to the top of a .WHILE or .REPEAT
block if the expression evaluates true.

.CREF MASM
.CREF

Synonymous with %CREF. MASM mode only.

%CREF : Ideal, MASM
%CREF

Allows cross-reference information to be accumulated for all symbols
encountered from this point forward in the source file. .CREF reverses the effect
of any %XCREF or .XCREF directives that inhibited the information collection.

22 Turbo Assembler Quick Reference

%CREFALL Ideal, MASM

%CREFALL

Causes all subsequent symbols in the source file to appear in the cross-reference
listing. This is the default mode for Turbo Assembler. %CREFALL reverses the
effect of any previous % CREFREF or %CREFUREF directives that disabled the
listing of unreferenced or referenced symbols.

%CREFREF Ideal, MASM
%CREFREF

Disables listing of unreferenced symbols in cross-reference.

%CREFUREF Ideal, MASM
%CREFUREF

Lists only the unreferenced symbols in cross-reference.

%CTLS , Ideal, MASM

%CTLS

Causes listing control directives (such as %LIST, %INCL, and so on) to be
placed in the listing file.

.DATA MASM
DATA

Synonymous with DATASE6. MASM mode only.

DATASEG Ideal
DATASEG

Defines the start of the initialized data segment in your module. You must first
have used the MODEL directive to specify a memory model. The data segment
is putin a group called DGROUP, which also contains the segments defined
with the .STACK, .CONST, and .DATA? directives.

.DATA? MASM

.DATA?

Defines the start of the uninitialized data segment in your module. You must
first have used the .MODEL directive to specify a memory model. The data
segment is put in a group called DGROUP, which also contains the segments
defined with the .STACK, .CONST, and .DATA directives.

Chapter 3, Directives 23

DB ~ Ideal, MASM

[name] DB expression [,expression)...

Allocates and initializes a byte of storage. name is the symbol you'll :
subsequently use to refer to the data. expression can be a constant expression, a
question mark, a character string, or a DUPlicated expression.

DD ‘ Ideal, MASM

[name] DD [type PTR] expression [,expression]...

Allocates and initializes 4 bytes (a doubleword) of storage. name is the symbol
you'll subsequently use to refer to the data. type followed by PTR adds debug
information to the symbol being defined, so that Turbo Debugger can display
its contents properly. type is one of the following: BYTE, WORD, DATAPTR,
CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, SHORT, NEAR,
FAR or a structure name. expression can be a constant expression, a 32-bit
floating-point number, a question mark, an address expressmn ora
DUPlicated expression.

%DEPTH Ideal, MASM

%DEPTH width
Sets size of depth field in listing file to width columns. The default is 1 column.

DF Ideal, MASM

[name] DF [type PTR] expression [,expression...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is the
symbol you'll subsequently use to refer to the data. fype followed by PTR adds
debug information to the symbol being defined, so that Turbo Debugger can
display its contents properly. type is one of the following: BYTE, WORD,
DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE,
SHORT, NEAR, FAR or a structure name. expression can be a constant
expression, a question mark, an address expression, or a DUPlicated
expression.

DISPLAY ' Ideal, MASM

DISPLAY "text" ’
Outputs a quoted string (fext) to the screen.

DOSSEG ' Ideal, MASM

DOSSEG

Enables DOS segment-ordering at link time. DOSSEG is included for
backward compatibility only.

24 Turbo Assembler Quick Reference

DP Ideal, MASM

[name] DP [type PTR] expression [,expression...

Allocates and initializes 6 bytes (a far 48-bit pointer) of storage. name is the
symbol you'll subsequently use to refer to the data. type followed by PTR adds
debug information to the symbol being defined, so that Turbo Debugger can
display its contents properly. type is one of the following: BYTE, WORD,
DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE,
SHORT, NEAR, FAR or a structure name. expression can be a constant
expression, a question mark, an address expression, or a DUPlicated
expression.

DQ Ideal, MASM

[name] DQ expression {,expression...

Allocates and initializes 8 bytes (a quadword) of storage. name is the symbol
you'll subsequently use to refer to the data. expression can be a constant
expression, a 64-bit floating-point number, a question mark, or a DUPlicated
expression.

DT Ideal, MASM

[name] DT expression [,expression)...

Allocates and initializes 10 bytes of storage. narme is the symbol you'll
subsequently use to refer to the data. expression can be a constant expression, a
packed decimal constant expression, a question mark, an 80-bit floating-point
number, or a DUPlicated expression.

DW ideal, MASM

[name] DW [type PTR] expression [,expression)...

Allocates and initializes 2 bytes (a word) of storage. name is the symbol you'll
subsequently use to refer to the data. type followed by PTR adds debug
information to the symbol being defined, so that Turbo Debugger can display
its contents properly. type is one of the following: BYTE, WORD, DATAPTR,
CODEPTR, DWORD, FWORD, PWORD, QWORD, TBYTE, SHORT, NEAR,
FAR or a structure name. expression can be a constant expression, a question
mark, an address expression, or a DUPlicated expression.

DWORD MASM

[name] DWORD {type PTR] exp}ession [.expression]...

Allocates and initializes a doubleword (4 bytes) of storage. Synonymous with
DD.

ECHO © MASM

ECHO text

Displays the message text to the standard output device (the screen, by default).
Synonymous with %OUT and DISPLAY.

Chapter 3, Directives 25

ELSE Ideal, MASM

IF condition
statements1
[ELSE
statementsZ]
ENDIF

Starts an alternative IF conditional assembly block. The statements introduced
by ELSE (statements2) are assembled if condition evaluates to false.

.ELSE | MASM

IF-condition
statements1
[[ELSE
statements2]
.ENDIF

Starts an alternative .IF conditional assembly block. The statements introduced
by .ELSE (statements2) are executed if condition evaluates to false.

ELSEIF \ Ideal, MASM

IF condition1
statements1
[ELSEIF condition2
StatementsZ]

ENDIF

Starts nested conditional assembly block if condition2 is true. Several other
forms of ELSEIF are supported: ELSEIF1, ELSEIF2, ELSEIFB, ELSEIFDEF,
ELSEIFDIF, ELSEIFDIFI, ELSEIFE, ELSEIFIDN, ELSEIFIDNI, ELSEIFNB,
and ELSEIFNDEF.

EMUL ‘ - Ideal, MASM
EMUL

Causes all subsequent numeric coprocessor instructions to be generated as
emulated instructions, instead of real instructions. When your program is
executed, you must have a software floating-point emulation package installed
or these instructions will not work properly.

END ; Ideél, MASM

END [startaddress]

‘Marks the end of a source file. startaddress is a symbol or expression that
specifies the address in your program where you want execution to begin.
Turbo Assembler ignores any text that appears after the END directive.

26 Turbo Assembler Quick Reference

ENDIF Ideal, MASM

IFx condition
statements
ENDIF

Marks the end of a conditional assembly block started with one of the IF
directives.

.ENDIF MASM

AF condition
statements
.ENDIF

Marks the end of a conditional assembly block started with the .IF directive.

ENDM Ideal, MASM

ENDM
Marks the end of a repeat block or a macro definition.

ENDP Ideal, MASM

ENDP [procname]
[procname] ENDP

Marks the end of a procedure. If procname is supplied, it must match the
procedure name specified with the PROC directive that started the procedure
definition.

ENDS Ideal, MASM

ENDS [segmentname | strucnamel
[segmentname | strucname] ENDS

Marks end of current segment, structure or union. If you supply the optional
name, it must match the name specified with the corresponding SEGMENT,
STRUC, or UNION directive.

.ENDW MASM

WHILE expression
statements
.ENDW

Marks the end of a conditional assembly block started with the WHILE
directive.

Chapter‘ 3, Directives 27

ENUM ~ Ideal, MASM

ENUM namelenum_var{,enum var...]]
name ENUM [enum_var,enum_var...]]

Declares an enumerated data type.

EQU bldeal, MASM ‘

name EQU expression

Defines name to be a string, alias, or numeric equate contammg the result of
evaluatmg expression.

.ERR , MASM
ERR <string>

Synonymous with ERR. MASM mode only.

ERR : ~ Ideal, MASM
ERR <string>

Forces an error to occur at the line that this directive is encountered on in the
source file. The optional string will display as part of the error message.

.ERR1 | | MASM

.ERR1 <string>"

 Forces an error to occur on pass 1 of assembly. The optional strmg will display
as part of the error message.

.ERR2 ' o MASM

.ERR2 <string>

Forces an error to occur on pass 2 of assembly if multiple-pass mode (controlled
by /m command-line option) is enabled. The optional string will display as part
of the error message.

.ERRB MASM

.ERRB argument <string>

Forces an error to occur if argument is blank (empty). The optional string will
appear as part of the error message.

.ERRDEF ‘ MASM

.ERRDEF symbol <string>

Forces an error to occur if symbol is defined. The optional string will appear as
part of the error message.

i

28 Turbo Assembler Quick Reference

.ERRDIF MASM

.ERRDIF argument1,argument2 <string>

Forces an error to occur if arguments are different. The comparison is case
sensitive. The optional string will appear as part of the error message.

.ERRDIFI : MASM

.ERRDIFI argument1,argument2 <string>

Forces an error to occur if arguments are different. The comparison is not case
sensitive. The optional string will appear as part of the error message.

.ERRE MASM

.ERRE expression <string>

Forces an error to occur if expression is false (0). The optional string will appear
as part of the error message.

.ERRIDN MASM

.ERRIDN argument1,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is case
sensitive. The optional string will appear as part of the error message.

.ERRIDNI MASM

.ERRIDNI argument1,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is not case
sensitive. The optional string will appear as part of the error message.

ERRIF' ideal, MASM

ERRIF expression <string>

Forces an error to occur if expression is true (nonzero). The optional string will .
appear as part of the error message.

ERRIF1 Ideal, MASM

ERRIF1 <string>

Forces an error to occur on pass 1 of assembly. The optional string will appear
as part of the error message.

ERRIF2 Ideal, MASM

ERRIF2 <string>

Forces an error to occur on pass 2 of assembly if mul’;llple pass mode (controlled
by /m command-line option) is enabled The optional string will appear as part
of the error message.

Chapter 3, Directives 29

ERRIFB ‘ Ideal, MASM

ERRIFB argument <string>

Forces an error to occur if argument is blank (empty). The optional string will .
appear as part of the error message.

ERRIFDEF Ideal, MASM

ERRIFDEF symbol <string>

Forces an error if symbol is defined. The optional string will appear as part of the
error message.

ERRIFDIF " Ideal, MASM _

ERRIFDIF argument1,argument2 <string>

Forces an error to occur if arguments are different. The comparison is case
sensitive. The optional string will appear as part of the error message.

ERRIFDIFI Ideal, MASM

. ERRIFDIFI| argument1,argument? <string>

Forces an error to occur if arguments are different. The comparison is not case
sensitive. The optional string will appear as part of the error message.

ERRIFE Ideal, MASM

ERRIFE expression <string>

Forces an error if expression is false (0). The optional string w1]l appear as part of
the error message.

ERRIFIDN Ideal, MASM

ERRIFIDN argument1,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is case
sensitive. The optional string will appear as part of the error message.

ERRIFIDNI Ideal, MASM
ERRIFIDNI argumenti,argument2 <string>

Forces an error to occur if arguments are identical. The comparison is not case
sensitive. The optional string will appear as part of the error message.

ERRIFNB ' Ideal, MASM

ERRIFNB argument <string>

Forces an error to occur if argument is not blank. The optional string will appear
as part of the error message.

30 Turbo Assembler Quick Reference

ERRIFNDEF Ideal, MASM

ERRIFNDEF symbol <string>

Forces an error to occur if symbol is not defined. The optional string will appear
as part of the error message.

.ERRNB . MASM
.ERRNB argument <string>

Forces an error to occur if argument is not blank. The optional string will appear
as part of the error message.

.ERRNDEF MASM

.ERRNDEF symbol <string>

Forces an error to occur if symbol is not defined. The optional string will appear
as part of the error message.

.ERRNZ MASM

.ERRNZ expression <string>

Forces an error to occur if expression is true (nonzero). The optional string will
appear as part of the error message.

EVEN Ideal, MASM
EVEN ‘

Rounds up the location counter to the next even address.

'EVENDATA : Ideal, MASM
EVENDATA

Rounds up the location counter to the next even address in a data segment.
EXIT ' MASM

EXIT [return_value_expA
Produces termination code. MASM mode only. Synonymous with EXITCODE.

EXITCODE Ideal, MASM

EXITCODE [return_value_expA

Produces termination code. You can use it for each desired exit point.
return_value_expr is a number to be returned to the operating system. If you
don’t specify return_value_expr, the value in AX is returned.

Chapter 3, Directives 31

EXITM ’ Ideal, MASM

EXITM

Terminates macro- or block-repeat expansion and returns control to the next
statement following the macro or repeat-block call.

EXTERN , MASM

EXTREN definition [,definition)...
Synonymous with EXTRN. MASM mode only.

EXTERNDEF MASM

EXTERNDEF [language] name:type [|[language] name:type...

This directive defines one or more external variables, labels, or symbols called
name, of type type. name is treated as PUBLIC if it is defined in the current
module; it is treated as EXTERN if it is referenced in the module. name is
ignored if it is not referenced in the module. If fype is ABS, name can be
imported as a constant. This directive is normally used in include files.

EXTRN Ideal, MASM

EXTRN definition [, definition]...

Indicates that a symbol is defined in another module definition describes a
symbol and has the following format:
[language] name[count1]:type [:count2)]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, ASSEMBLER, or PROLOG are to be applied to symbol name.
name is the symbol that is defined in another module and can optionally be
followed by countl, an array element multiplier that defaults to 1. type must

-match the type of the symbol where it’s defined and must be one of the
following: NEAR, FAR, PROC, BYTE, WORD, DWORD, DATAPTR,
CODEPTR, FWORD, PWORD, QWORD, TBYTE, ABS, or a structure name.
count?2 specifies how many items this external symbol defines and defaults to 1
if not specified.

.FARDATA MASM

.FARDATA [segmeniname]
Synonymous with FARDATA. MASM mode only.

FARDATA Ideal

FARDATA [segmentname]

Defines the start of a far initialized data segment. segmentname, if present,
overrides the default segment name.

32 Turbo Assembler Quick Reference

.FARDATA? MASM

.FARDATA? [segmentname]

Defines the start of a far uninitialized data segment. segmentname, if present,
overrides the default segment name.

FASTIMUL Ideal, MASM

FASTIMUL<dest _reg>,<source_r/m>,<value>

Generates code that multiplies source register or memory address by value, and
puts it into destination register.

FLIPFLAG | Ideal, MASM

flagreg FLIPFLAG flagreg]

Optimized form of XOR that complements bits with shortest possible
instruction. Use only if the resulting contents of the flags registers are
unimportant.

FOR MASM

FOR parameter,arg1],arg2]...
Statements
ENDM

Synonymous with IRP. MASM mode only.

FORC | MASM

FORC parameter,string
statements
ENDM

Synonymous with IRPC. MASM mode only.

FWORD MASM

[name] FWORD [type PTRY] expression [,expression)...

Allocates and initializes a 6 bytes (a far 48-bit pointer) of storage. Synonymous
with DF. MASM mode only.

GETFIELD Ideal, MASM

GETFIELD<field_name><destination_reg>,<source_r/m>

Generates code that retrieves the value of a field found in the same source
register or memory address, and sets the destination to that value.

Chapter 3, Directives 33

GLOBAL ‘ ‘ Ideal, MASM

GLOBAL definition [,definition]...

Acts as a combination of the EXTRN and PUBLIC directives to define a global
symbol. definition describes the symbol and has the following format (boldface
items are literal):

[language] name [[count1]] :type [:count2]

language specifies that the naming conventions of C, PASCAL, BASIC,
FORTRAN, NOLANGUAGE, or PROLOG are to be applied to symbol name.
If name is defined in the current source file, it is made public exactly as if used in
a PUBLIC directive. If not, it is declared as an external symbol of type type, as if
the EXTRN directive had been used. name can be followed by an optional array
count multiplier, count1, which defaults to 1. type must match the type of the
symbol in the module where it is defined and must be one of the following:
NEAR, FAR, PROC, BYTE, WORD, DATAPTR, CODEPTR, DWORD,
FWORD, PWORD, QWORD, TBYTE, ABS, or a structure name. count2
specifies how many items this symbol defines (1 is the default).

GOTO , Ideal, MASM
GOTO tag_symbol

Tells Turbo Assembler to resume execution at the specified macro tag
(tag_symbol). GOTO terminates any conditional block that it is found in.

GROUP ‘ Ideal, MASM

GROUP groupname segmentname [,segmentnamel...
groupname GROUP segmentname [,segmentname]...

Associates groupname with one or'more segments, so that all labels and
variables defined in those segments have their offsets computed relative to the
beginning of group groupname. segmentname can be either a segment name
defined previously with SEGMENT or an expression starting with SEG. In
MASM mode, you must use a group override whenever you access a symbol in

~ a segment that is part of a group. In Ideal mode, Turbo Assembler
automatically generates group overrides for such symbols.

IDEAL Ideal, MASM

IDEAL

Enters Ideal assembly mode. Ideal mode will stay in effect until it is overridden
by a MASM or QUIRKS directive.

|F ‘ Ideal, MASM

IF expression
statements1
[ELSE

34 Turbo Assembler Quick Reference

statementsZ]
ENDIF

Initiates a conditional block, causing the assembly of staterments1 up to the
optional ELSE directive, provided that expression is true (nonzero). If expression
is falso (zero), statements2 are assembled.

JF MASM

AF expression
statements1
[.ELSE
statements2)
.ENDIF

This directive generates code that executes statements1 if the expression evaluates
true. If an .ELSE follows the .IF, statements2 are executed if the expression
evaluates false. Because the expression is evaluated at run time, it can
incorporate the run-time relational operators. MASM mode only.

IF1 ideal, MASM

IF1
statements1
[ELSE
statements2]
ENDIF

Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided directive, provided that multiple-pass mode
(controlled by the /m command-line option) is enabled and that the current
assembly pass is pass one.

IF2 Ideal, MASM

IF2
statements1
[ELSE
statements2)
ENDIF

Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided that multiple-pass mode (controlled by the
/m command-line option) is enabled and the current assembly pass is pass two.

IFB Ideal, MASM

IFB argument
statements1
[ELSE

Chapter 3, Directives. 35

statementsZ]
ENDIF

Initiates a' conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided that argument is blank (empty). If urgument is
is not blank, statements2 are assembled.

IFDEF Ideal, MASM

IFDEF symbol
statements1
[ELSE
statementsZ)
ENDIF

Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided that symbol is defined. If symbol is undefined,
statements?2 are assembled.

IFDIF Ideal, MASM

IFDIF argument1,argument2
statements1

[ELSE
statements2)

ENDIF

* Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided that the arguments are different. If the
arguments are the same, statements2 are assembled. The comparison is case

- sensitive.

IFDIFI , deal, MASM

IFDIFI argument1,argument2
statements1

[ELSE
statements2]

ENDIF

Initiates a condlhonal block, causing the assembly of truestatements up to the
optional ELSE directive, provided that the arguments are different. If the
arguments are the same, statements2 are assembled. The comparison is not case
sensitive.

IFE ‘ : Ideal, MASM

IFE expression
statementst
[ELSE

36 Turbo Assembler Quick Reference

statements2)
ENDIF

Initiates a conditional block, causing the assembly of statements up to the
optional ELSE directive, provided that expression is false. If expression is true,
statements2 are assembled.

IFIDN | Ideal, MASM

IFIDN argument!1,argument2
statements1

[ELSE
statements2)

ENDIF

Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided that the arguments are identical. If the
arguments are not identical, statements?2 are assembled. The comparison is case
sensitive.

IFIDNI Ideal, MASM

IFIDNI argument1,argument2
statements1

[ELSE
statements2)

ENDIF

Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided that the arguments are identical. If the
arguments are not identical, statements2 are assembled. The comparison is not
case sensitive.

IFNB Ideal, MASM

IFNB argument
statements1
[ELSE
statements2)
ENDIF

Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided that argument is nonblank. If argument is
blank, statements2 are assembled.

IFNDEF Ideal, MASM

IFNDEF symbol
statements1
[ELSE

Chapter 3, Directives 37

statementsZ2)
ENDIF

Initiates a conditional block, causing the assembly of statements1 up to the
optional ELSE directive, provided that symbol is not defined. If symbol is not
defined, statements2 are assembled.

%INCL) Ideal, MASM
%INCL
Enables listing of include files. This is the default INCLUDE file listing mode.

INCLUDE MASM, ideal

INCLUDE filename or INCLUDE "filename"

Includes source code from file filename at the current position in the module
being assembled. If no extension is specified, .ASM is assumed..

INCLUDELIB MASM, Ideal

INCLUDELIB filename or INCLUDELIB "filename"

Causes the linker to include library filename at link time. If no extension is
_specified, .LIB is assumed.

INSTR , Ideal, MASM

name INSTR [start|string1,string2

name is assigned the position of the first instance of string2 in stringl. Searching
begins at position start (position one if start not specified). If string2 does not
appear anywhere within string1, name is set to zero.

IRP Ideal, MASM

IRP parameter,arg1],arg2)...
statements
- ENDM

Repeats a block of statements with string substitution. statements are assembled
once for each argument present. The arguments may be any text, such as

symbols, strings, numbers, and so on. Each time the block is assembled, the next
argument in the list is substituted for any instance of parameter in the statements.

38 Turbo Assembler Quick Reference

IRPC Ideal, MASM

IRPC parameter,string
statements
ENDM

Repeats a block of statements with character substitution. statements are
assembled once for each character in string. Each time the block is assembled,
the next character in the string is substituted for any instances of parameter in
statements.

JMP Ideal, MASM

JMP<instance_ptr>sMETHOD{<object_name>}
<method_name>{USES{segreg:}offsreg}

Functions exactly like CALL.METHOD except that it generates a JMP instead
of a CALL and it cleans up the stack if there are LOCAL or USES variables on
the stack. Use primarily for tail recursion.

JUMPS Ideal, MASM

JUMPS

Causes Turbo Assembler to look at the destination address of a conditional
jump instruction, and if it is too far away to reach with the short displacement
that these instructions use, it generates a conditional jump of the opposite sense
around an ordinary jump instruction to the desired target address. This
directive has the same effect as using the /[JUMPS command-line option.

LABEL MASM, Ideal

name LABEL type
LABEL name type

Defines a symbol nate to be of type type. name must not have been defined
previously in the source file. type must be one of the following: NEAR, FAR,
PROC, BYTE, WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD,
QWORD, TBYTE, or a structure name.

LALL MASM
LALL

Enables listing of macro expansions.

LARGESTACK Ideal, MASM
LARGESTACK

Indicates that the stack is 32-bit.

Chapter 3, Directives 39

.LFCOND ' MASM

.LFCOND
Shows all statements in conditional blocks in the listing.

%LINUM ' ‘ Ideal, MASM

%LINUM size

Sets the width of the line-number field in listing file to size columns. The default
is four columns.

%LIST - Ideal, MASM

%LIST ‘
Shows source lines in the listing. This is the default listing mode.

LIST - ' MASM

LIST
Synonymous with %LIST. MASM mode only.

LISTALL | MASH

LISTALL

Begins the listing of all statements. Combines the directives .LIST, .LISTIF, and
.LISTMACROALL.

LISTIF | | MASH

.LISTIF

Lists all statements in conditional blocks, whether true or false. Synonymous
with LFCOND. MASM mode only.

LLISTMACRO MASM

.LISTMACRO

Enables the listing of macro expansions that generate code or data.
Synonymous with XALL. MASM mode only.

.LISTMACROALL - MASM

.LISTMACROALL

Enables the listing of macro all macro expansions. Synonymous with .LALL.
MASM mode only.

40 Turbo Assembler Quick Reference

LOCAL Ideal, MASM

In macros:

LOCAL symbol [,symbol...

In procedures:

LOCAL element [,element]... [=symbol]

Defines local variables for macros and procedures. Within a macro definition,
LOCAL defines temporary symbol names that are replaced by new unique
symbol names each time the macro is expanded. LOCAL must appear before
any other statements in the macro definition.

Within a procedure, LOCAL defines names that access stack locations as
negative offsets relative to the BP register. If you end the argument list with an
equal sign (=) and a symbol, that symbol will be equated to the total size of the
local symbol block in bytes. Each element has the following syntax (boldface
brackets are literal):

symname [[countT]] [:{[debug_size] [:type] [:count2])

type is the data type of the argument. It can be one of the following: BYTE,
WORD, DATAPTR, CODEPTR, DWORD, FWORD, PWORD, QWORD,
TBYTE, NEAR, FAR, PROC, or a structure name. If you don't specify a type,
WORD size is assumed.

count2 specifies how many items of type the symbol defines. The default for
count? is 1 if it is not specified.

countl is an array element size multiplier. The total space allocated for the
symbol is count2 times the length specified by the type field times countl. The
default for countl is 1 if it is not specified.

The optional debug_size has this syntax:
[type] PTR

LOCALS Ideal, MASM

LOCALS [prefix]

Enables local symbols, whose names will begin with two at-signs (@@) or the
two-character prefix if it is specified. Local symbols are automatically enabled in
Ideal mode.

MACRO ' Ideal, MASM

MACRO name [parameter [,parameter...]
name MACRO [parameter [,parameter}...]

Defines a macro to be expanded later when name is encountered. parameter is a
placeholder that you use in the the body of the macro definition wherever you
want to substitute one of the actual arguments the macro is called with.

%MACS | Ideal, MASM

&MACS
Enables listing of macro expansions.

Chapter 3, Directives 41

MASKFLAG Ideal, MASM

flagsrég MASKFLAG flagsreg

Optimized form of AND that clears bits with the shortest possible instruction.
Use only if the resulting contents of the flags registers are unimportant.

MASM ' , Ideal, MASM

MASM

Enters MASM assembly mode. This is the default assembly mode for Turbo
Assembler.

MASM51 , Ideal, MASM
MASM51

Enables assembly of some MASM 5.1 enhancements.

MODEL Ideal, MASM

MODEL [model modifier ‘memwymode/ [module name]
[,[language modifien] language | [,model modifier]

Sets the memory model for simplified segmentation directives. model modifier
can come before memorymodel or at the end of the statement and must be either
NEARSTACK or FARSTACK if present. memorymodel is TINY, SMALL,
MEDIUM, COMPACT, LARGE, HUGE or TCHUGE. module name is used in
the large models to declare the name of the code segment. language modifier is

. WINDOWS, ODDNEAR, ODDFAR, or NORMAL and specifies generation of
MS-Windows procedure entry and exit code. language specifies which language
you will be calling from to access the procedures in this module: C, PASCAL,
BASIC, FORTRAN, PROLOG, or NOLANGUAGE. Turbo Assembler
automatically generates the appropriate procedure entry and exit code when
you use the PROC and ENDP directives. language also tells Turbo Assembler
which naming conventions to use for public and external symbols, and in what
order procedure arguments were pushed onto the stack by the calling module.
Also, the appropriate form of the RET instruction is generated to remove the
arguments from the stack before returning if required.

.MODEL : MASM
MODEL

Synonymous with MODEL. MASM mode only.

MULTERRS , Ideal, MASM
MULTERRS

Allows multiple errors to be reported on a single source line.

42 Turbo Assembler Quick Reference

NAME Ideal, MASM

NAME modulename

Sets the object file’s module name. This directive has no effect in MASM mode;
it only works in Ideal mode.

%NEWPAGE Ideal, MASM
%NEWPAGE

Starts a new page in the listing file.

%NOCONDS Ideal, MASM
%NOCONDS ‘

Disables the placement of statements in conditional blocks in the listing file.
%NOCREF Ideal, MASM

%NOCREF [symbo], ...]

Disables cross-reference listing (CREF) information accumulation. If you
supply one or more symbol names, cross-referencing is disabled only for those
symbols.

%NOCTLS ‘ Ideal, MASM

%NOCTLS

Disables placement of listing-control directives in the listing file. This is the
default listing-control mode for Turbo Assembler.

NOEMUL Ideal, MASM

NOEMUL

Causes all subsequent numeric coprocessor instructions to be generated as real
instructions, instead of emulated instructions. When your program is executed,
you must have an 80x87 coprocessor installed or these instructions will not
work properly. This is the default floating-point assembly mode for Turbo
Assembler.

%NOINCL Ideal, MASM
%NOINCL

Disables listing of source lines from INCLUDE files.

NOJUMPS Ideal, MASM
NOJUMPS

Disables stretching of conditional jumps enabled with JUMPS. This is the
default mode for Turbo Assembler.

Chapter 3, Directives 43

%NOLIST ; : : Ideal, MASM

%NOLIST
Disables output to the listing file.

NOLIST | MASM

.NOLIST
Disables output to the list file. Synonymous with XLIST. MASM mode only.

.NOLISTIF ~ , MASM

NOLISTIF

Prevents statements in false conditional blocks from appearing in the listing file.
Synonymous with .SFCOND. MASM mode only.

.NOLISTMACRO ' © MASM

.NOLISTMACRO

Suppresses the listing of all statements in macro expansions . Synonymous with
SALL. MASM mode only.

NOLOCALS ideal, MASM

.NOLOCALS
Disables local symbols enabled with LOCALS. This is the default for Turbo

Assembler’'s MASM mode
%NOMACS ‘ Ideal, MASM

%NOMACS

Lists only macro expansions that generate code. This is the default macro listing
mode for Turbo Assembler.

NOMASM51 Ideal, MASM

NOMASM51

Disables assembly of certain MASM 5.1 enhancements enabled with MASMS51.
This is the default mode for Turbo Assembler.

NOMULTERRS deal, MASH

NOMULTERRS

Allows only a single error to be reported on a source line. This is the default
error-reporting mode for Turbo Assembler.

44 Turbo Assembler Quick Reference

NOSMART , ~ Ideal, MASM

NOSMART
Disables code optimizations that generate different code than MASM.

%NOSYMS Ideal, MASM

%NOSYMS
Disables placement of the symbol table in the listing file.

%NOTRUNC Ideal, MASM

%NOTRUNC
Prevents truncation of fields whose contents are longer than the corresponding
field widths in the listing file.

NOWARN Ideal, MASM

NOWARN [warnclass]

Disables warning messages with warning identifier warnclass, or all warning
messages if warnclass is not specified.

OPTION MASM

OPTION option

TASM supports the following MASM options: CASEMAP, DOTNAME,
EMULATOR, EXPR16, EXPR32, LJ]MP, NOEMULATOR, NOKEYWORD,
NOLJMP, NODOTNAME, NOSCOPED, PROC, SEGMENT, and SCOPED.

Note that all other MASM options are recognized, but are ignored, by TASM.

ORG , Ideal, MASM

ORG expression

Sets the location counter in the current segment to the address specified by
expression.

%0UT MASM
%OUT text

Displays text on screen.

P186 | Ideal, MASM
P186

Enables assembly of 80186 processor instructions.

Chapter 3, Directives 45

P286 Ideal, MASM

P286

Enables assembly of all 80286 (including protected mode) processor
instructions and 80287 numeric coprocessor instructions. .

- P286N Ideal, MASM

P286N

Enables assembly of non-privileged (real mode) 80286 processor instructions
and 80287 numeric coprocessor instructions.

P286P Ideal, MASM

P286P

Enables assembly of all 80286 (including protected mode) processor
instructions and 80287 numeric coprocessor instructions.

P287 , Ideal, MASM

P287
Enables assembly of 80287 numeric coprocessor instructions.

P386 Ideal, MASM

P386

Enables assembly of all 80386 (including protected mode) processor
instructions and 80387 numeric coprocessor instructions.

P386N - ldeal, MASM

P386N

Enables assembly of non-privileged (real mode) 80386 processor instructions
~ and 80387 numeric coprocessor instructions.

P386P ‘ , Ideal, MASM

P386P

Enables assembly of all 80386 (inchiding protected mode) processor
instructions and 80387 numeric coprocessor instructions.

P387) Ideal, MASM

P387
Enables assembly of 80387 numeric coprocessor instructions.

46 Turbo Assemblier Quick Reference

Ideal, MASM

all 1486 (including protected mode) processor instructions.

Ideal, MASM

on-privileged (real mode) i486 processor instructions.

Ideal, MASM

87 numeric processor instructions.

Ideal, MASM

Pentium (including protected mode) proces‘sor

Ideal, MASM
rprivileged (real mode) Pentium processor
Ideal, MASM
ium numeric processor instructions.

Ideal, MASM

-orocessor instructions only. This is the default
e for Turbo Assembler.

Ideal, MASM

umeric coprocessor instructions only. This is the
tion mode for Turbo Assembler.

MASM

SIZE. MASM mode only.

Chapter 3, Directives 47

%PAGESIZE dal

%PAGESIZE [rows] [cols] ‘

Sets the listing page height and width, starts new pages. rows specifies 3\}'
number of lines that will appear on each listing page (10..255). cols speci
number of columns wide the page will be (59..255). Omitting rows or cols
the current setting unchanged. If you follow %PAGESIZE with a plus s"w
anew page starts, the section number is incremented, and the page nun'
restarts at 1. %PAGESIZE with no arguments forces the listing to resumr
new page, with no change in section number. -

%PCNT Idet

%PCNT width

Sets segment:offset field width in listing file to width columns. The defai
for 16-bit segments and 8 for 32-bit segments.

PNO87 | Ide
PNO87 L] ‘ : }
Prevents the assembling of numeric coprocessor instructions (real or en
%POPLCTL | | e
%POPLCTL

Resets the listing controls to the way they were when the last %PUSHI
directive was issued.

POPSTATE i3
POPSTATE o

Returns to last saved state from Turbo Assembler’s internal state stack
PROC Id

PROC name [language modifier] [language] [distance]
[USES items,] [argument [,argument]...]
[RETURNS argument [,argument]...]

statements
name ENDP

name PROC [language modifier] [language] [distance]
[USES items,] [argument [,argument]...]
[RETURNS argument [,argument...]
statements .
name ENDP

Defines the start of procedure name. language modifier is either WIND
NOWINDOWS, to specify generation of MS-Windows entry/exit co
_ language specifies which language you will be calling from to access t

procedure: C, PASCAL, BASIC, FORTRAN, NOLANGUAGE, or P

|
48 Turbo Assembler Quick Reference I

This determines symbol naming conventions, the order of any arguments on
the stack, and whether the arguments will be left on the stack when the
procedure returns. distance is NEAR or FAR and determines the type of RET
instruction that will be assembled at the end of the procedure. items is a list of
registers and /or single-token data items to be pushed on entry and popped on
exit from the procedure. argument describes an argument the procedure is
called with. Each argument has the following syntax:

argnamel[countT]] [[:distance] [PTR] type] [:count2]

argname is the name you'll use to refer to this argument throughout the
procedure. distance is NEAR or FAR to indicate that the argument is a pointer of
the indicated size. type is the data type of the argument and can be BYTE,
WORD, DWORD, FWORD, PWORD, QWORD, TBYTE, or a structure name.
WORD is assumed if none is specified. countl and count2 are the number of
elements of type. PTR tells Turbo Assembler to emit debug information to let
Turbo Debugger know that the argument is a pointer to a data item. Using PTR
without distance causes the pointer size to be based on the current memory
model and segment address size. RETURNS introduces one or more
arguments that won't be popped from the stack when the procedure returns.

PROCDESC Ideal, MASM

PROCDESC name [language] [language modifier] [distance] [arguments]
name PRODESC [[/language_modifiel] language] [distance] [arguments)

Declares a procedure prototype, which lets Turbo Assembler check the types
and number of parameters to procedure calls and declarations, and specifies
language and distance. Also serves to PUBLIC or EXTRN the procedure name.

PROCTYPE Ideal, MASM

PROCTYPE name [procedure_description]

name PROCTYPE [procedure_description]

procedure_description has the following syntax:
[[language_modifiedlanguagel[distancellargument lisf]

argument_list has the following syntax:
argument,argument...

where each argument has the following syntax:
[argnamel[count1_expressions]|:complex_lype|:count2_expression|

Declares a procedure type. Describes a procedure but does not create a
prototype for it. Can be used in place of the language specifier in a call to allow
argument type checking during compilation.

PROTO MASM

name PROTO [(language_modifier] language] [distance] [arguments]

Prototypes the function name. Synonymous with PROCDESC. MASM mode
only. ‘

Chapter 3, Directives 49

PUBLIC Ideal, MASM

PUBLIC [language] symbol [,{language] symbol]...

Declares symbol to be accessible from other modules. If language is specified
(C, PASCAL, BASIC, FORTRAN, ASSEMBLER, or PROLOG), symbol is
made public after having the naming conventions of the specified language
applied to it.

PUBLICDLL | Ideal, MASM

PUBLICDLL [language] symbol [,[language] symbol]...

Declares symbols to be accessible as dynamic link entry points from other
modules. symbol (a PROC or program label, data variable name, or numeric
constant defined with EQU) becomes accessible to other programs under
Windows. If language is specified (C, PASCAL, BASIC, FORTRAN, PROLOG,
or NOLANGUAGE), symbol is made public after having the naming
conventions of the specified language applied to it.

PURGE Ideal, MASM

PURGE macroname [,macronamel...
Removes macro definition macroname.

%PUSHLCTL Ideal, MASM
%PUSHLCTL

Saves current listing controls on a 16-level stack.

PUSHSTATE Ideal, MASM
PUSHSTATE ‘

Saves current operating state on an internal stack that is 16 levels deep. ‘
QUIRKS Ideal, MASM
QUIRKS ‘

Allows you to assemble a source file that makes use of one of the true MASM
bugs. , ‘

QWORD | MASM

[name] QWORD expression [,expression...

Allocates and initializes 8 bytes (a quadword) of storage. Synonymous with
DQ. MASM mode only.

.RADIX ' MASM

.RADIX radix
Synonymous with RADIX. MASM mode only.

50 Turbo Assembler Quick Reference

RADIX Ideal, MASM

RADIX radix
Sets the default radix for integer constants in expressions to 2, 8, 10, or 16.

REAL4 MASM

REAL4
Allocates a short (32 bit) real number. MASM mode only.

REALS MASM

REAL8
Allocates a long (64 bit) real number. MASM mode only.

REAL10 MASM

REAL10
Allocates a 10-byte (80 bit) real or BCD number. MASM mode only.

RECORD MASM, Ideal

name RECORD field [, field)...
RECORD name field [, field...

Defines record name that contains bit fields. Each field describes a group of bits
in the record and has the following format (boldface items are literal):

fieldname:width[=expression)

fieldname is the name of a field in the record. width (1..16) specifies the number of
bits in the field. If the total number of bits in all fields is 8 or less, the record will
occupy 1 byte; 9..16 bits will occupy 2 bytes; otherwise, it will occupy 4 bytes.
expression provides a default value for the field.

REPEAT MASM

REPEAT expression
statements
ENDM

Synonymous with REPT. MASM mode only.

Chapter 3, Directives 51

.REPEAT \ MASM

.REPEAT
statements
.UNTIL expression

.REPEAT
statements
UNTILCXZ [expression]

This directive generates code that repeats the execution of the block of
statements until the expression evaluates true. The directive UNTILCXZ, which
evaluates true when the register CX is zero, can be used with or without the
conditional expression. Because the expression is evaluated at run time, it can
incorporate the run-time relational operators. MASM mode only.

REPT ' Ideal, MASM

REPT expression
statements
ENDM

Repeats the statement block until expression evluates true.

RETCODE Ideal, MASM

RETCODE

Generates either a near return (2-byte displacement) or a far return (4-byte
displacement) depending on the size of the memory model declared in the
MODULE directive. A tiny, small, or compact memory model results in a near
return, while a medium, large, or huge memory model results in a far return.
See the RET processor instruction in Chapter 4 for more information.

RETF : Ideal, MASM

RETF

Generates a far return (4-byte displacement) from a procedure. See the RET
processor instruction in Chapter 4 for more information.

RETN ' . Ideal, MASM

RETN

Generates a near return (2-byte displacement) from a procedure. See the RET
processor instruction in Chapter 4 for more information.

SALL ' MASM

.SALL
Suppresses the listing of all statements in macro expansions. MASM mode only.

52 Turbo Assembler Quick Reference

SBYTE : MASM

[name] SBYTE expression [,expression...

Allocates and initializes a signed byte of storage. name is the symbol you'll
subsequently use to refer to the data. expression can be a constant expression, a
question mark, a character string, or a DUPlicated expression.

SDWORD MASM

[name] SDWORD expression [,expression)...

Allocates and initializes a signed doubleword (4 bytes) of storage. name is the
symbol you'll subsequently use to refer to the data. expression can be a constant
expression, a question mark, a character string, or a DUPlicated expression.

SEGMENT MASM, Ideal

SEGMENT name [align] [combine] [usg] [class]
name SEGMENT [align] [combine] [use] ['class]

Defines segment name with full attribute control. If you have already defined a
segment with the same name, this segment is treated as a continuation of the
previous one. align specifies the type of memory boundary where the segment
must start: BYTE, WORD, DWORD, PARA (default), or PAGE. combine
specifies how segments from different modules but with the same name will be
combined at link time: AT expression (locates segment at absolute paragraph
address expression), COMMON (locates this segment and all other segments
with the same name at the same address), MEMORY (concatenates all
segments with the same name to form a single contiguous segment), PRIVATE
(does not combine this segment with any other segments; this is the default
used if none specified), PUBLIC (same as MEMORY above), STACK
(concatenates all segments with the same name to form a single contiguous
segment, then initializes SS to the beginning of the segment and SP to the length
of the segment) or VIRTUAL (defines a special kind of segment that will be
treated as a common area and attached to another segment at link time). use
specifies the default word size for the segment if 386 code generation is enabled,
and can be either USE16 or USE32. class controls the ordering of segments at
link time: segments with the same class name are loaded into memory together,
regardless of the order in which they appear in the source file.

SEQ ' MASM

SEQ

Sets sequential segment-ordering. This is the default ordering mode for Turbo
Assembler. .SEQ has the same function as the /s command-line option.

SETFIELD ' Ideal, MASM

SETFIELD<field_name><destination_r/m>,<source_reg>

Generates code that sets a value in a record field. Sets the field in the destination
register or memory address with the contents of a source register.

Chapter 3, Directives 53

SETFLAG © Ideal, MASM

flagreg SETFLAG flagreg

Optimized form of OR that sets bits with shortest possible instruction. Use only
if the resulting contents of the flags register is unimportant.

.SFCOND _ MASM
.SFCOND

Prevents statements in false conditional blocks from appearing in the listing file.
SIZESTR Ideal, MASM
name SIZESTR string

Assigns the number of characters in string to name. A null string has a length of
Zero.

SMALLSTACK , Ideal, MASM

SMALLSTACK
Indicates that the stack is 16-bit.

SMART | Ideal, MASM
SMART

Enables all code optimizations.

STACK : MASM

STACK [size]
Synonymous with STACK. MASM mode only.

STACK l‘ Ideal, MASM

STACK [size]

Defines the start of the stack segment, allocating size bytes. 1024 bytes are
allocated if size is not specified.

STARTUP MASM

STARTUP

Provides initialization code. MASM mode only. Equivalent to
STARTUPCODE. MASM mode only.

STARTUPCODE Ideal, MASM

STARTUPCODE
Provides initialization code and marks the beginning of the program.

54 Tiurbo Assembler Quick Reference

STRUC deal, MASM

[name] STRUC{<modifiers>}{<parent_ name>}{METHOD<method_Iist>}
<structure_data>
ENDS [name]

STRUC [namel{<modifiers>}{<parent_name>}{METHOD<method_list>}
<structure_data>
ENDS [name]

parent_name is the name of the parent object’s data structure. method_list is like
that of TABLE. structure_data is any (additional) data present in an instance of
the object. modifiers can be GLOBAL, NEAR, or FAR.

STRUCT MASM

{name] STRUCT{<modifiers>}{<parent_name>}{METHOD<method fist>}
<structure_data>
ENDS [name]

STRUCT [namel{<modifiers>}{<parent_name>}METHOD<method_list>}
<structure_data>
ENDS [name]

Synonymous with STRUC. MASM mode only.

SUBSTR Ideal, MASM51

name SUBSTR string,position],size]

Defines a new string name consisting of characters from string starting at
position, with a length of size. All the remaining characters in string, starting
from position, are assigned to name if size is not specified.

SUBTITLE MASM

SUBTITLE text

Sets the subtitle in the listing file to text. Synonymous with %SUBTTL and
.SFCOND. MASM mode only.

SUBTTL MASM

SUBTTL "fexf"
Synonymous with %SUBTTL. MASM mode only.

%SUBTTL Ideal, MASM

%SUBTTL "fext'
Sets subtitle in listing file to text.

~

Chapter 3, Directives 55

SWORD : MASM

[name] SWORD expression [,expression...

Allocates and initializes a signed word (2 bytes) of storage. name is the symbol
you'll subsequently use to refer to the data. expression can be a constant
expression, a question mark, a character string, or a DUPlicated expression.

%SYMS Ideal, MASM

%SYMS

Enables symbol table placement in listing file. This is the default symbol listing
mode for Turbo Assembler.

TABLE Ideal, MASM

TABLE name [table_ member [,table_member...]]
Constructs a table structure used to contaiin method pointers for objects.

%TABSIZE A " Ideal, MASM

%TABSIZE width

Sets the number of columns between tabs in the listing file to width. The default
is 8 columns.

TBLINIT Ideal, MASM
TBLINIT '

Initializes pointer in an object to the virtual method table.

TBLINST Ideal, MASM
TBLINST

Creates an instance of the virtual table for the current object and defines
@TableAddr_<object>. Must be used after every object definition that includes
virtual methods, so that the virtual table is allocated. You should use this
directive in only one module of your program.

TBLPTR o Ideal, MASM

TBLPTR

Places a virtual table pointer within the object data. Defines a structure member
of the name @Mptr_<object>. This can only be used inside an object definition.

TBYTE MASM

[name] TBYTE expression [,expression]...

Allocates and initializes 10 bytes of storage. Synonymous with DT.

56 Turbo Assembler Quick Reference

TESTFLAG ‘ Ideal, MASM

flagreg TESTFLAG flagreg

Optimized form of TEST that tests bits with the shortest possible instruction.
%TEXT Ideal, MASM
%TEXT width

Sets width of source field in listing file to width columns.

TEXTEQU MASM

name TEXTEQU [item)

Assigns item to name. The item can be either a literal string, a string returned by
a macro function, or a string constant (must be preceded by a %).

.TFCOND : MASM

TFCOND ’
Toggles conditional block-listing mode. MASM mode only.

TITLE MASM

TITLE "text'
Synonymous with %TITLE. MASM mode only.

%TITLE Ideal, MASM

%TITLE "text' -
Sets title in listing file to text.

%TRUNC Ideal, MASM

%TRUNC
Truncates listing fields that are too long,

TYPEDEF , Ideal, MASM

TYPEDEF type_name complex_type
type_name TYPEDEF complex_type
Defines named types.

UDATASEG Ideal, MASM

UDATASEG
Defines the start of an uninitialized data segment.

Chapter 3, Directives 57

UFARDATA Ideal, MASM

UFARDATA
" Defines the start of an uninitialized far data segment.

UNION ‘ Ideal, MASM (disabled by QUIRKS)

UNION name
fields
ENDS [name]

name UNION
~ fields
[name] ENDS

Defines a union called narme. A union is just like a STRUC except that all its
members have an offset of zero from the start of the union. This results in a set
of fields that are overlayed, allowing you to refer to the memory area defined
by the union with different names and different data sizes. The length of a
union is the length of its largest member, not the sum of the lengths of its
members as in a STRUC. fields define the fields that comprise the union. Each
field uses the normal data allocation directives (DB, DW, and so on) to define
its size.

.UNTIL , : MASM

.REPEAT
statements
.UNTIL expression

Termination directive to a REPEAT loop. When expression evaluates true, the
loop started with the REPEAT directive terminates.

{UNTILCXZ MASM

.REPEAT
statements
UNTILCXZ [expression]

Termination directive to a .REPEAT loop. The directive .UNTILCXZ, which
evaluates true when the register CXis zero, can be used with or without the
conditional expression.

USES Ideal, MASM

USES item [,item)...

Indicates which registers or single-token data items you want to have pushed at
the beginning of the enclosing procedure and which ones you want popped just
before the procedure returns. You must use this directive before the first
instruction that actually generates code in your procedure.

58 Turbo Assembler Quick’Reference

" VERSION MASM, Ideal

VERSION <version_ID>

Places Turbo Assembler in the equivalent operating mode for the specified
version.

WARN Ideal, MASM

WARN [warnclass]

Enables the type of warning message specified with warnclass, or all warnings if
warnclass is not specified. warnclass may be one of: ALN, ASS, BRK, ICG, LCO,
OPI, OPP, OPS, OVF, PDC, PRO, PQK, RES, or TPI.

WHILE Ideal, MASM

WHILE while_expression
macro body
ENDM

Repeats a macro body until while_expression evaluates to 0 (false).

WHILE 4 MASM

WHILE expression
statements
.ENDW

This directive generates code that executes the block of statements while the
expression evaluates true. Because the expression is evaluated at run time, it can
incorporate the run-time relational operators. MASM mode only.

WORD | | MASM
[name] WORD [type PRT] expression [,expression]...

Allocates and initializes 2 bytes (a word) of storage. Synonymous with DW.
XALL MASM

XALL
Causes only macro expansions that generate code or data to be listed.

XCREF MASM

XCREF
Disables cross-reference listing (CREF) information accumulation.

XLIST ‘ MASM

XLIST
Disables subsequent output to listing file. MASM mode only.

Chapter 3, Directives 59

60 Turbo Assembler Quick Reference

Chapter

Processor instructions

This chapter presents instructions for the 80x86 processor set in alphabetical
order. For each instruction, the forms are given for each operand combination,
including object code produced, operands required, execution time, and a
description. For each instruction, there is an operational description and a
summary of exceptions generated.

Operand-size and address-size attributes

When executing instructions in a 16-bit application, 80x86 processors address
memory using either 16- or 32-bit addresses. Consequently, each instruction
that uses memory addresses has associated with it an address-size attribute of
either 16 or 32 bits. Sixteen-bit addresses imply both the use of a 16-bit
displacement in the instruction and the generation of a 16-bit address offset
(segment relative address) as the result of the effective address calculation.
Thirty-two-bit addresses imply the use of a 32-bit displacement and the
generation of a 32-bit address offset. Similarly, an instruction that accesses
words (16 bits) or doublewords (32 bits) has an operand-size attribute of either
16 or 32 bits.

The attributes are determined by a combination of defaults, instruction prefixes,
and (for programs executing in protected mode) size-specification bits in
segment descriptors.

Default segment attribute

For programs executed in protected mode, the D-bit in executable-segment
descriptors determines the default attribute for both address size and operand
size. These default attributes apply to the execution of all instructions in the
segment. A value of zero in the D-bit sets the default address size and operand
- size to 16 bits; a value of one, to 32 bits.

Programs that execute in real mode or virtual-8086 mode have 16-bit addresses
and operands by default.

Chapter 4, Processor instructions 61

Operand-size and address-size instruction prefixes

The internal encoding of an instruction can include two byte-long prefixes: the
address-size prefix, 67H, and the operand-size prefix, 66H. (A later section,
“Instruction format,” shows the position of the prefixes in an instruction’s
encoding.) These prefixes override the default segment attributes for the
instruction that follows. Table 4.1 shows the effect of each possible combination
of defaults and overrides.

Table 4.1 Effective size attributes

Segment default D= ... 0 0 0 0 1 1 1 1

Operand-size prefix 66h N N Y Y N N Y Y
Address-size prefix 67h N Y N Y N Y N Y
Effective operand size 16 16 32 32 32 32 16 16
Effective address size 16 32 16 32 32 16 32 16

- Y=Yes, th1s instruction prefix is present.
N = No, this instruction prefix is ot present.

Address-size attribute for stack

Instructions that use the stack implicitly (for example, POP EAX) also have a
stack address-size attribute of either 16 or 32 bits. Instructions with a stack
address-size attribute of 16 use the 16-bit SP stack pointer register; instructions
with a stack address-size attribute of 32 bits use the 32-bit ESP register to form
the address of the top of the stack.)

The stack address-size attribute is controlled by the B-bit of the data-segment
- descriptor in the SS register. A value of zero in the B-bit selects a stack address-
size attribute of 16; a value of one selects a stack address-size attribute of 32.

Instruction format

All instruction encodings are subsets of the general instruction format shown in
Figure 4.1. Instructions consist of optional instruction prefixes, one or two
primary opcode bytes, possibly an address specifier consisting of the ModR/M
byte and the SIB (scale index base) byte, a displacement, if required, and an
immediate data field, if required.

Smaller encoding fields can be defined within the primary opcode or opcodes.
These fields define the direction of the operation, the size of the displacements,
the register encoding, or sign extension; encoding fields vary depending on the
class of operation.

Most instructions that can refer to a operand in memory have an addressing
form byte following the primary opcode byte(s). This byte, called the ModR/M
byte, specifies the address form to be used. Certain encodings of the ModR /M
byte indicate a second addressing byte, the SIB byte, which follows the ModR/
M byte and is required to fully specify the addressing form.

62 Turbo Assembler Quick Reference

Figure 4.1 80386 instruction format

Instruction | Address- Operand- | Segment
prefix size prefix | size prefix | override

Oori 0or1 0or1 Oori

Number of bytes

Opcode|Modr/M| SIB | Displacement| Immediate

tor2 Oor1 Oort1 0,1,20r4 0,12 0r4

Number of bytes

Addressing forms can include a displacement immediately following either the
ModR/M or SIB byte. If a displacement is present, it can be 8, 16, or 32 bits.

If the instruction specifies an immediate operand, the immediate operand
always follows any displacement bytes. The immediate operand, if specified, is
always the last field of the instruction.

The following are the allowable instruction prefix codes:

¢ F3h: REP prefix (used only with string instructions)

¢ FE3h: REPE/REPZ prefix (used only with string instructions)

¢ F2h: REPNE/REPNZ prefix (used only with string instructions)
e FOh: LOCK prefix

The following are the segment override prefixes:

2Eh: CS segment override prefix

36h: SS segment override prefix

3Eh: DS segment override prefix

26h: ES segment override prefix

64h: ¥S segment override prefix (386 processors and greater)
65h: GS segment override prefix (386 processors and greater)
66h: Operand-size override

67h: Address-size operand

ModR/M and SIB bytes

The ModR /M and SIB bytes follow the opcode byte(s) in many of the 80x86
instructions. They contain the following information: the indexing type or
register number to be used in the instruction; the register to be used, or more
information to select the instruction; and the base, index, and scale information.

The ModR /M byte contains three fields of information:

¢ The mod field, which occupies the two most significant bits of the byte,
combines with the r/m field to form 32 possible values: 8 registers and 24
indexing modes.

¢ The reg field, which occupies the next three bits following the mod field,
specifies either a register number or three more bits of opcode information.

Chapter 4, Processor instructions 63

The meaning of the reg field is determined by the first (opcode) byte of the
- instruction.

e The r/m field, which occupies the three least-significant bits of the byte, can
specify a register as the location of an operand, or can form part of the
addressing-mode encoding in combination with the mod field as described
earlier.

¢ The based indexed and scaled indexed forms of 32-bit addressing require
the SIB byte. The presence of the SIB byte is indicated by certain encodings of
the ModR/M byte. The SIB byte then includes the following fields:

e The ss field, which occupies the 2 most-significant bits of the byte,
specifies the scale factor.

. The index field, which occupies the next 3 bits following the ss field
specifies the register number of the index register.

® The base field, which occupies the 3 least-significant bits of the byte,
specifies the register number of the base register.

Figure 4.2 shows the format of the ModR/M and SIB bytes.
Figure 4.2 ModR/M and SIB byte formats

Modr/M Byte
7 [5 4 3 2 1 0
| Mod l Reg/Opcode ‘ R/M ‘

SIB (Scale Index Base) Byte
7 6 5 4 3 2 1 0

| ss ' Index] Base]

The values and corresponding addressmg forms of the ModR/M and SIB bytes
are shown in Tables 4.2, 4.3, and 4.4.

Table 4.2 16-bit addressing forms with ModR/M byte

8(/1) AL CL DL BL AH CH DH BH
r16(/1) ‘ AX X DX BX SP BP SI DI
32(/1) : EAX ECX EDX EBX ESP EBP ESI EDI
/digit (opcode) 0 1 2 3 4 5 6 7

[BX + DI] 001 39
[BP+SI - 010 3A
[BP + DI 00 011 3B
[s - ' 100 3C
[D1] 101 3D
disp16 110 3E
[BX] 111 3F
[BX + SI] + disp8 000 78
[BX + DI] + disp8 001 79
[BP +SI] +disp8 =~ 010 7A
[BP + DI] + disp8 01 011 7B
[SI] + disp8 100 7C
[DI] + disp8 101 7D

64 Turbo Assembler Quick Reference

16-bit addressing forms with ModR/M byte (continued)

o

s
[BP) + disp8 10 4 4E 56 5E 66 6E 76 7E
[BX] + disp8 111 47 4F 57 5F 6/ 6F 77 TF
[BX + SI] + disp16 000 8 8 9 9 A0 A8 BO B8
[BX + DI] + disp16 00l 8 8 91 99 Al A9 Bl B9
{BP + SI] + disp16 010 8 8A 92 9A A2 AA B2 BA
{BP + DI] + disp16 10 011 8 8 9 9B A3 AB B3 BB
[S1] + disp16 00 8 8C 9 9C A4 AC B4 BC
[DI] + disp16 01 8 8D 9 9D A5 AD B5 BD
[BP] + disp16 110 8 8E 9% 9E A6 AE B6 BE
[BX] + disp16 111 8 8 9 9F A7 AF B/ BF
EAX/AX/AL (386) 00 CO C8 D0 D8 EO E8 Fo F8
ECX/CX/CL (386) 0oL Ci € DI D9 El E Fl F
EDX/DX/DL (386) 00 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL (386) 11 011 C CB D3 DB E3 EB F3 FB
ESP/SP/AH (386) 10 C4 CC Di DC E4 EC F4 FC
EBP/BP/CH (386) 1 €5 CD D5 DD E5 ED F5 FD
ESI/SI/DH (386) 110 C CE Dé DE E6 EE F6 FE
EDI/DI/BH (386) 1M ¢ CF D7 DF E/ EF ¥/ FF

disp8 denotes an 8-bit displacement following the ModR /M byte, to be sign-extended and
added to the index. disp16 denotes a 16-bit displacement following the ModR/M byte, to be
added to the index. Default segment register is SS for the effective addresses containing a BP
index, DS for other effective addresses.

Table 43 32-bit addressing forms with ModR/M byte (80386 only)

r8(/1) AL CL DL BL AH CH DH BH
r16(/1) CAX X DX BX SP BP SI DI
132(/1) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(opcode) 0 1 2 3 4 5 6 7

REG = 000 001 010 011 100 101 110 111

lEn

?@; g
h%géﬁ &

10 18 8
09 11 19 21 29 39
0A 12 1A 2 2A 3A
0B 13 1B 23 2B 3B
o0C 14 1C 24 2C 3C
oD 15 1D 25 2D 3D
OE 16 1E 2 2E 3E
OF 17 1F 27 2F 3F
disp8[EAX] 000 40 48 50 58 60 68 78
disp8[ECX] 001 41 49 51 5 61 69 79
disp8[EDX] 010 42 4A 52 5A 6 6A 7A
disp8[EPX}; 01 011 43 4B 53 5B 63 6B 7B
disp8[- -] [--] 100 4 4C 54 5C 64 6C 7C
disp8[EBP] 100 45 4D 55 5D 65 6D 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 7E
disp8[EDI] 111 47 4F 57 5F 67 6F 7F
disp32[EAX] 000 80 88 BS

90 98 A0 A8

Chapter 4, Processor instructions 65

Table 4.3 ~ 32-bit addressing forms with ModR/M byte (80386 only) (continued)

v cagem

disp32[ECX] 001 8 8 91 9 Al A9 Bl B9

disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 10 011 83 8B 93 9B A3 AB B3 BB
disp32[- -] [- -]) 100 84 8C 94 9C A4 AC B4 BC
disp32[EBP] 101 85 8D 95 9D A5 AD B5 - BD
disp32[ESI] 110 86 8E 9% 9E A6 AE . B6 BE
disp32[EDI] 111 87 8F 97 9F A7 AF 'B7 BF
EAX/AX/AL 000 co C8 D0 D8 EO E8 FO F8
ECX/CX/CL 001 ct € DI D9 El B9 F Fo
EDX/DX/DL 010 C2 CA D2 DA E2 EA R FA
EBX/BX/BL 11 011 C3 CB D3 DB "E3 EB E3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 101 ¢G5 Cb D5 DD E5 ED F5 FD
ESI/S1/DH ' 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 11 cCz CF ‘D7 DF E7 EF F/ FF

[- -] [- -] means a SIB follows #ie ModR/M byte. disp8 denotes an 8-bit displacement
following the SIB byte, to be sign-extended and added to the index. disp32 denotes a 32-bit
displacement following the ModR/M byte, to be added to the index.

Table 4.4 32-bit addressing forms with SIB byte (80386 only)

132 EAX ECX EDX EBX ESP [*] ESI EDI

Base = o 1 2 3 4 5 6 7

Base = 000 001 010 01 100 101 110 111
s s Sesneian

-
000 00 01

001 08 09 0A 0B 0C OE .OF
010 10 11 12 13 14 6 17
011 18 19 1A 1B 1IC 1IE 1IF
100 20 21 2 23 A 26 27
101 28 29 2A 2B 2C 2E 2F
110 30 31 2 3B M 36 37
11 38 39 3A 3B I 3E ° 3F
[EAX*2] 000 40 4 2 4 M 6 47
[ECX*2] 001 48 49 4A 4B 4C 4E 4F
[EDX*2] 010 50 51 52 55 54 56 57
[EBX*2] 01 011 58 5 5A 5B 5C 5E 5F
none 100 60 61 62 63 6 66 67
[EBP*2] 101 68 69 6A 6B 6C 6E 6F
[ESI*2] 100 70 71 72 73 74 7% 77
[EDI*2] 111 78 79 7A 7B 7C 7E 7F
[EAX*4] _ 000 8 81 2 83 8 8 87
[ECX*4] 001 88 89 8A 8B 8C 8E 8F
[EDX*4] 010 9% 91 2 93 9% % 97
[EBX*4] 10 011 98 89 9A -~ 9B = 9C 9E 9F
none 100 A0 Al A2 A3 A4 A6 A7
[EBP*4] 01 A8 A9 AA AB AC AE AF
[ESI*4] 110 B0 Bl B2 B3 B4 B6 B7

66 Turbo Assembler Quick Reference

Table 4.4 32-bit addressing forms with SIB byte (80386 only) (continued)

[EDI*4] 111 B8 B9 BA BB BC BD BE BF
[EAX*8] 000 Co C1 Cc2 c3 C4 C5 Cé c7
[ECX*8] 001 C8 c9 CA CB CcC CD CE CF
[EDX*8] 010 DO D1 D2 D3 D4 D5 Dé D7
[EBX*8] 11 011 D8 D9 DA DB DC DD DE DE
none 100 EO El E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 Fo FA FB FC FD FE FF

[*] means a disp32 with no base if MOD is 00; otherwise, [ESP]. This provides the following
addressing modes:

disp32[index](MOD=00)

disp8[EBP][index}(MOD=01)

disp32[EBP][index](MOD=10)

How to read the instruction set pages

Here’s a sample of the format of this chapter:

Instruction What the instruction name means
name What processor the instruction works on
0 D I T s Z A P (o]

Flag information goes here

386 286* 86
This table contains clock information

*Because the 80186 processor is effectively a 80286 without protected mode instructions, the
80186 timings are identical to the timings listed for the 80286.

Flags

Each entry in this section includes information on which flags in the 80x86's flag
register are changed and how. Each flag has a one-letter tag for its name.

O = Overflow flag Z = Zero flag

D = Direction flag A = Auxiliary flag
I = Interrupt flag P = Parity flag

T = Trap flag C = Carry flag

S = Sign flag

The following symbols indicate how the flag register has changed:

? = Undefined after the operation

* = Changed to reflect the results of the instruction.
0 = Always cleared

1= Always set

Chapter 4, Processor instructions 67

Opcode

The “Opcode” column gives the complete object code produced for each form
of the instruction. When possible, the codes are given as hexadecimal bytes, in
the same order in which they appear in memory. Definitions of entries other
than hexadecimal bytes are as follows:

/digit

(digit is between 0 and 7.) Indicates that the ModR/M byte of the instruction
uses only the r/m (register or memory) operand. The reg field contains the digit
that provides an extension to the instruction’s opcode.

/r

Indicates that the ModR /M byte of the instruction contains both a register
operand and an #/m operand.

cb, ew, cd, cp

A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the opcode
that is used to specify a code offset and possibly a new value for the code
segment register.)

ib, iw, id

A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, ModR /M bytes, or scale-indexing bytes. The opcode
determines if the operand is a signed value. All words and doublewords are
given with the low-order byte first.

+rb, +rw, +rd

A register code, from 0 through 7, added to the hexadecimal byte given at the
left of the plus sign to form a single opcode byte. The codes are

e -
%@%«%@h R e %
AL=0
CL=1
DL=2
BL=3
AH=4
"AH=4
CH=5 v
DH=6
BH=7

Instruction

The “Instruction” column gives the syntax of the instruction statement as it ’
would appear in a TASM 80386 program. The following is a list of the symbols
used to represent operands in the instruction statements:

rel8

A relative address in the ranéghe from 128 bytes before the end of the instruction
to 127 bytes after the end of the instruction.

rel16, rel32

A relative address within the same code segment as the instruction assembled.
rel16 applies to instructions with an operand-size attribute of 16 bits; rel32 -
applies to instructions with an operand-size attribute of 32 bits (386 only).

68 Turbo Assembler Quick Reference

ptrl6:16, ptrl6:32

A far pointer, typically in a code segment different from that of the instruction.
The notation 16:16 indicates that the value of the pointer has two parts. The
value to the right of the colon is a 16-bit selector or value destined for the code
segment register. The value to the left corresponds to the offset within the
destination segment. ptr16:16 is used when the instruction’s operand-size
attribute is 16 bits; ptr16:32 is used with the 32-bit attribute (80386 only).

18
One of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH.

r16
One of the word registers AX, CX, DX, BX, SP, BP, SI, or DI

r32 (386)
One of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI.

imms38

An immediate byte value. immS8 is a signed number between —128 and +127
inclusive. For instructions in which immS8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or
doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

imm16

An immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between -32,768 and +32,767 inclusive.

imm32 (386)

An immediate doubleword value used for instructions whose operand-size
attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
—2,147,483,648.

r/m8
A 1-byte operand that is either the contents of a byte register (AL, BL, CL, DL,
AH, BH, CH, DH), or a byte from memory.

r/m16

A word register or memory operand used for instructions whose operand-size
attribute is 16 bits. The word registers are AX, BX, CX, DX, SP, BP, S, DI. The
contents of memory are found at the address provided by the effective address
computation.

t/m32

A doubleword register or memory operand used for instructions whose
operand-size attribute is 32 bits. The doubleword registers are EAX, EBX, ECX,
EDX, ESP, EBP, ES, EDI. The contents of memory are found at the address
provided by the effective address computation.

m8
A memory byte addressed by DS:SI or ES:DI (used only by string instructions
on the 80386).

" mlé

A memory word addressed by DS:SI or ES:DI (used only by string instructions).

m32
A memory doubleword addressed by DS:SI or ES:DI (used only by string
instructions). ,

m16:16, m16:32 (80386)
A memory operand containing a far pointer composed of two numbers. The

Chapter 4, Processor instructions 69

number to the left of the colon corresponds to the pointer’s segment selector.
The number to the right corresponds to its offset.

m16 & 32, m16 & 16 (80186/80286/80386), m32 & 32 (80386)

A memory operand consisting of data item pairs whose sizes are indicated on
the left and the right side of the ampersand. All memory addressing modes are
allowed. m16 & 16 and m32 & 32 operands are used by the BOUND instruction
to provide an operand containing an upper and lower bounds for array indices.
m16 & 32 is used by LIDT and LGDT to provide a word with which to load the
limit field, and a doubleword with which to load the base field of the
corresponding Global and Interrupt Descriptor Table Registers.

moffs8, moffs16, moffs32 (memory offset; 80386 only)

A simple memory variable of type BYTE, WORD, or DWORD (80386) used by
some variants of the MOV instruction. The actual address is given by a simple
offset relative to the segment base. No ModR /M byte is used in the instruction.
The number shown with moffs indicates its size, which is determined by the
address-size attribute of the instruction.

Sreg
A segment register. The segment register bit assignments are ES =0, CS =1,
S5 =2,DS =3, FS =4 (80386), and GS = 5 (80386).

Clocks

The “Clocks” column gives the number of clock cycles the instruction takes to
execute. The clock count calculations make the following assumptions:

* The instruction has been prefetched and decoded and is ready for execution.
* Bus cycles do not require wait states.

¢ There are no local bus HOLD requests delaying processor access to the bus.
¢ No exceptions are detected during instruction execution.

¢ Memory operands are aligned.

Clock counts for instructions that have an r/m (register or memory) operand are
separated by a slash. The count to the left is used for a register operand; the
count to the right is used for a memory operand.

The following symbols are used in the clock count specifications:
* n, which represents a number of repetitions.

¢ m, which represents the number of components in the next instruction
executed, where the entire displacement (if any) counts as one component,
the entire immediate data (if any) counts as one component, and every other
byte of the instruction and prefix(es) each counts as one component.

* pm=, a clock count that applies when the instruction executes in protected
mode. pm= is not given when the clock counts are the same for protected
and real address modes.

When an exception occurs during the execution of an instruction and the
exception handler is in another task, the instruction exception time is increased
by the number of clocks to effect a task switch. This parameter depends on
several factors:

e The type of TSS used to represent the current task (386 TSS or 286 TSS).
¢ The type of TSS used to represent the new task.

¢ Whether the current task is in V86 mode.
¢ Whether the new task is in V86 que.

70 Turbo Assembler Quick Reference

Note: Users should read Intel’s documentation for more information about
protected mode and task switching.

AAA ASCll adjust after addition
0 b I T S Z A P C

486 386 6 86
3 4 3 8 ASCII adjust after addition

37 AAA

Execute AAA only following an ADD instruction that leaves a byte result in the
AL register. The lower nibbles of the operands of the ADD instruction should
be in the range 0 through 9 (BCD digits). In this case, AAA adjusts AL to
contain the correct decimal digit result. If the addition produced a decimal
carry, the AH register is incremented, and the carry and auxiliary carry flags are
set to 1. If there was no decimal carry, the carry and auxiliary flags are set to 0
and AH is unchanged. In either case, AL is left with its top nibble set to 0. To
convert AL to an ASCII result, follow the AAA instruction with OR AL, 30H.

AAD ASCli adjust before division
0o p I T § Z A P C

486 386 286 86

D50A AAD 14 19 14 60 ASCII adjust before division

AAD is used to prepare two unpacked BCD digits (the least-significant digit in
AL, the most-significant digit in AH) for a division operation that will yield an
unpacked result. This is accomplished by setting AL to AL + (10 * AH), and
then setting AH to 0. AX is then equal to the binary equivalent of the original
unpacked two-digit number.

AAM ASCII adjust AX after multiply
0O p I T S Z A P C

486 386 286 86

D40A - AAM 15 17 16 83 ASCII adjust AX after multiply

Execute AAM only after executing a MUL instruction between two unpacked
BCD digits that leaves the result in the AX register. Because the result is less
than 100, it is contained entirely in the AL register. AAM unpacks the AL result
by dividing AL by 10, leaving the quotient (most-significant digit) in AH and
the remainder (least-significant digit) in AL.

Chapter 4, Processor instructions 71

AAS ASCH adjust AL after subtraction

0 D I T 8§ Z A P C

486 386 286
3F AAS 3 4 3 8 ASCI adjust AL after subtraction

Execute AAS only after a SUB instruction that leaves the byte result in the AL
register. The lower nibbles of the operands of the SUB instruction must have
been in the range 0 through 9 (BCD digits). In this case, AAS adjusts AL so it
contains the correct decimal digit result. If the subtraction produced a decimal
carry, the AH register is decremented, and the carry and auxiliary carry flags
are set to 1. If no decimal carry occurred, the carry and auxiliary carry flags are
‘set to 0, and AH is unchanged. In either case, AL is left with its top nibble set to
0. To convert AL to an ASCII result, follow the AAS with OR AL, 30H.

ADC Add with carry
0O b I T S Z A P C

.
-

i
S &&«m&\vi@%%%%

-

o
He w%";j“\%
-
286 86

10 /r ADC 1r/m8,18 1/3 2/7 2/7 3/16+EA Add with carry byte register to
r/mbyte '
11 /r ADC r/m16,x16 1/3 2/7 2/7 3/16+EA Add with carry word register to
r/mword
11 /r ADC r/m32,r32 1/3 2/7 Add with CF dword register to
: r/m word '
12 /r ADC 18,;r/m8 1/2 2/6 2/7 3/9+EA Add with carry r/m byte to byte
register
13 /r ADC r16,r/mi16 1/2 2/6 2/7 3/9+EA Add with carry r/m word to
word register
13 /r ADC 132,r/m32 1/2 2/6 Add with CF r/m dword to
dword register -
14ib ADC AL,imm8 1 2 3 4 Agdd with carry immediate byte to
L
15iw ADC AX,imm16 1 2 3 4 A%SX with carry immediate word
. . to
15id ADC EAX,imm32 1 2 © Addwith carry immediate dword
. to EAX
80/2ib ADCr/m8imm8 1/3 2/7 3/7 4/17+EA A)dd gvith carry immediate byte to
r/mbyte '
. 81/2iw ADCr/ml6immlé6 1/3 2/7 3/7 4/17+EA Add with carry immediate word
tor/mword
81/2id ADCr/m32,imm32 1/3 2/7 Add with CF immediate dword
B tor/m dword

83/2ib ADCr/ml6,mm8 1/3 2/7 3/7 4/17+EA Add with CF sign-extended
immediate byte to r/m word

83/2ib ADCr/m32imm8 1/3 2/7 Add with CF sign-extended
immediate byte into r/m dword

ADC performs an integer addition of the two operands DEST and SRC and the
carry flag, CF. The result of the addition is assigned to the first operand (DEST),
and the flags are set accordingly. ADC is usually executed as part of a ‘

72 Turbo Assembler Quick Reference

multi-byte or multi-word addition operation. When an immediate byte value is
added to a word or doubleword operand, the immediate value is first sign-
extended to the size of the word or doubleword operand.

ADD Add

04ib ADD AL,imm8 1 2 3 4 Add immediate byte to AL

05 iw ADD AX,imm16 1 2 3 4 Add immediate word to AX

05id ADD EAX,imm32 1 2 Add immediate dword to EAX

80/0ib ADDr/m8imm8 1/3 2/7 3/7 4/17+EA ﬁxdd immediate byte to r/m

yte .

81 /0iw ADDr/ml6,immlé 1/3 2/7 3/7 4/17+EA Adddlmmediate word tor/m
wor

81/0id ADDr/m32,imm32 1/3 2/7 é&dd iémnediate dword tor/m

wor

83/0ib ADDr/ml6,imm8 1/3 2/7 3/7 4/17+EA Add sign-extended immediate
byte to r/m word

83/0ib ADDr/m32imm8 1/3 2/7. Add sign-extended immediate
byte to r/m dword

00 /r ADD r/m8r8 1/3 2/7 2/7 3/16+EA Add byte register to r/mbyte

01 /x ADDr/m16,16 1/3 2/7 2/7 3/16+EA Adddword register tor/m
WOTH

01 /r ADD r/m32,r32 1/3 2/7 Add dword register to r/m
dword

02 /r ADD 18,r/m8 1/2 2/6 2/7 3/9+EA Addr/mbyte tobyte register

03 /r ADD1r16,r/ml6 1/2 2/6 2/7 3/9+EA Addr/mword to word
register

03 /x ADD r32,r/m32 1/2 2/6 Add r/m dword to dword

. register

ADD performs an integer addition of the two operands (DEST and SRC). The
result of the addition is assigned to the first operand (DEST), and the flags are
set accordingly.

When an immediate byte is added to a word or doubleword operand, the
immediate value is sign-extended to the size of the word or doubleword
operand.

AND Logical AND
0 D I T § Z A P C
0 LI R R A |

g
-
i

«%w
X,x ‘&
486 386 286 86

20 /r AND r/m8,r8 1/3 2/7 2/7 3/16+EA l")XN'Dbyteregisterin’co r/m
yte
21 /r AND r/ml6,r16 1/3- 2/7 2/7 3/16+EA Ang word register intor/m
WO
21 /r AND r/m32,r32 1/3 2/7 AND dword register tor/m
dword

Chapter 4, Processor instructions 73

486 386 . 2;86 . 86

22 /r AND1r8;r/m8 172 2/6 2/7 3/9+EA ANDr/mbyte to byte
register
23 /r ANDr16,r/mi6 1/2 2/6 2/7 3/9+EA AND r/m word to word
) register
23 /r AND r32,r/m32 /2 2/6 AND r/m dword to dword
register
24ib AND AL,imm8 1 2 3 4 AND immediate byte to AL
25iw AND AX;imml6 1 2 3 4 AND immediate word to AX
25id AND EAX,imm32 1 2 AND immediate dword to
. . EAX
80 /4ib ANDr/m8imm38 1/3 2/7 3/7 4/17+EA AND immediate byte for/m
: byte
81 /4iw ANDr/ml6,immlé6- 1/3 2/7 3/7 4/17+EA° AND immediate word to
. ‘ r/m word
81 /4id ANDr/m32imm32 1/3 2/7 AND immediate dword to
r/m word
83 /4ib AND r/m16,imm38 1/3 2/7 3/7 4/17+EA AND 31gn-extended
immediate byte with r/m
word
83 /4ib AND r/m32,imm8 1/3 2/7 AND sign-extended
. axuneglate byte with r/m
Wor

Each bit of the result of the AND instruction is a 1 if both corresponding bits of
the operands are 1; otherwise, it becomes a 0.

The optimized form of AND is MASKFLAG (see Chapter 3).

ARPL Adijust RPL field of selector
80286 and greater protected mode only
© D I T § %z A P C

486 386 - 586 h
63 /r ARPL 7/ 9/9 pm=20/21 pm=10/11 Ad{ust RPL of /m16 to not less than

m16,r16 of r16

The ARPL instruction has two operands. The first operand is a 16-bit memory
variable or word register that contains the value of a selector. The second
operand is a word register. If the RPL field (“requested privilege level”—
bottom two bits) of the first operand is less than the RPL field of the second
operand, the zero flag is set to 1 and the RPL field of the first operand is
increased to match the second operand. Otherwise, the zero flag is set to 0 and
no change is made to the first operand.

ARPL appears in operating system software, not in application programs. It is
used to guarantee that a selector parameter to a subroutine does not request
more privilege than the caller is allowed. The second operand of ARPL is
normally a register that contains the CS selector value of the caller. p

74 Turbo Assembler Quick Reference

BOUND Check array index against bounds
80186 processors and greater

O D I T 8§ Z A P C

386 286

62 /r BOUND<rl16,7 7 10 13 Check if r16 is within m16&16 bounds
(passes test)
62/t BOUND«32,7 7 10 Check if r32 is within m32&32 bounds

(passes test)

BOUND ensures that a signed array index is within the limits specified by a
block of memory consisting of an upper and a lower bound. Each bound uses
one word for an operand-size attribute of 16 bits and a doubleword for an
operand-size attribute of 32 bits. The first operand (a register) must be greater
than or equal to the first bound in memory (lower bound), and less than or
equal to the second bound in memory (upper bound). If the register is not
within bounds, an Interrupt 5 occurs; the return EIP points to the BOUND
instruction.

The bounds limit data structure is usually placed just before the array itself,
making the limits addressable via a constant offset from the beginning of the
array.

BSF Bit scan forward
386 processors and greater

0o D I T S Z A P C
*

486 386
OF BC BSFrl6,r/mlé 6-42/7-43 10+3n Bit scan forward on r/m word
OF BC BSF r32,r/m32 10+3n Bit scan forward on r/m dword

BSF scans the bits in the second word or doubleword operand starting with bit
0. The ZF flag is cleared if the bits are all 0; otherwise, the ZF flag is set and the
destination register is loaded with the bit index of the first set bit.

BSR Bit scan reverse
386 processors and greater

0o p I T 8§ Z A P C
*

: . 486 386
OF BD BSR 116,r/m16 6-103/7-104 10+3n Bit scan reverse on r/m word
OF BD BSR132r/m32 6-103/7-104 10+3n Bit scan reverse on r/m dword

BSR scans the bits in the second word or doubleword operand from the most
significant bit to the least significant bit. The ZF flag is cleared if the bits are
all 0; otherwise, ZF is set and the destination register is loaded with the bit
index of the first set bit found when scanning in the reverse direction.

Chapter 4, Processor instructions 75

BSWAP ‘Byte Swap
i486 processors and greater
0 D I T 8§ Z A P C

OFC8/r BSWAP r32 1 Swap bytes to convert little/big endian data in a 32-
bit register to big/little endian form.

- BSWAP reverses the byte order of a 32-bit register, converting a value in little/
big endian form to big/little endian form. When BSWAP is used with a 16-bit
operand size, the result left in the destination register is undefined.

BT Bit test
‘ 386 processors and greater

o p I T 8§ Z A P C
*

386
OF A3 BT'r/m16,r16 3/8 3/12 Savebitin carry flag
OF A3 BT r/m32,1r32 3/8 3/12 Savebit in carry flag
OFBA /4ib BTr/ml6imm8 3/3 3/6 Savebitin carry flag’
OFBA /4ib BT r/m32,imm8 3/3 3/6 Savebitin carry flag

BT saves the value of the bit indicated by the base (first operand) and the bit
offset (second operand) into the carry flag. :

BTC Bit test and complement
386 processors and greater

0 p I T S z2 A P C
*

486 386

OF BB BIC r/m16,x16 6/13 6/13 Savebitin carry flag and complement -
OF BB BTC r/m32,r32 6/13 6/13 Save bit in carry flag and complement

OFBA /7ib BTCr/m16,imm8 6/8 6/8 Savebitin carry flag and complement
OFBA /7ib BTCr/m32imm8 6/8 6/8 Savebitin carry flag and complement

BTC saves the value of the bit indicated by the base (first operand) and the bit
offset (second operand) into the carry flag and then complements the bit.

76 Turbo Assembler Quick Reference

BTR Bit test and reset
386 processors and greater

0 p I T § Z A P C
*

486 386
OF B3 BTRr/ml6,r16 6/13 6/13 Savebitin carry flag and reset
OF B3 BIRr/m32132 6/13 6/13 Save bit in carry flag and reset

OFBA /6ib BTRr/ml6,imm8 6/8 6/8 Savebitin carry flag and reset
OFBA /6ib BTRr/m32imm8 6/8 6/8 Savebitin carry flag and reset

BTR saves the value of the bit indicated by the base (first operand) and the bit
offset (second operand) into the carry flag and then stores 0 in the bit.

BTS Bit test and set
386 processors and greater

0O p I T 8§ Z A P C
*

486 386
OF AB BTSr/ml6x16 6/13 6/13 Savebitin carry flag and set
OF AB BTS r/m32,132 6/13 6/13 Savebit in carry flag and set

OFBA /5ib BTSr/ml6imm8 6/8 6/8 Savebitin carry flag and set
0OFBA /5ib BTSr/m32imm8 6/8 6/8 Save bit in carry flag and set

BTS saves the value of the bit indicated by the base (first operand) and the bit
offset (second operand) into the carry flag and then stores 1 in the bit.

CALL Call Procedure
0O D I T § Z A P C

All flags are affected if a task switch occurs; no flags are affected if a task switch
does not occur.

486 386 286* 86

E8 cw CALL rell6 3 - 7+m 7 19 Call near,
‘ displacement
relative
to next
instruction
FF /2 CALL<r/ml6 5/5 7+m/10+m 7/11 16/21+EA Call near,
register
indirect/
memory
indirect
9A cd CALL ptr1i616 18,pm=20 17+m, 13, 28 Call
pm=34=m pm=26 intersegment,
: to full pointer
given
9A cd CALL ptrl6:16 pm=35 pm=52+m 41 Call gate,
same privilege

Chapter 4, Processor instructions 77

9A cd
9A od
9A cd
FF /3

FF /3

FF /3
FF /3
FF /3
E8 cd

FF /2

9A cp

9A cp

9A cp
9A cp

9A cp
FF /3

FF /3

FF /3

CALL ptrl6:16
CALL ptrl6:16
CALL ptr16:16
CALL m16:16

CALL m16:16

CALL m16:16
CALL ml16:16
CALL m16:16
CALL rel32

CALLr/m32

CALL ptrl6:32

CALL ptr16:32

CALL ptr16:32
CALL ptr32:32

CALL ptr16:32
CALL m16:32

CALL m16:32

CALL m16:32

i

486
pm=69

pm=77+4x

pm=37+ts

17, pm=20

pm=35

pm=69

pm=77+4x

pm=37+ts

5/5

18,pm=20

pm=35

pm=69

pm=77+4x

pm=37+ts
17,pm=20

pm=35

pm=69

386

pm=86+m

pm=94+4x+m

22+m,pm38+m

pm=56+m

pm=90+m
pm=98+4x+m
5+ts

7+m

7+m/10+m

17+m,pm=
34+m

pm=52+m
pm=86+m

pm=94+4x+m

ts E
22+m,pm=38+
m

pm=56+m

pm=90+m

78 Turbo Assembler Quick Reference

286*
82

86+4x

177/182

16/29

83

90+4x+m

180/185

86

37+EA

Call gate,
more
privilege, no
parameters
Call gate,
more
privilege, x
parameters
Call to task
(via task state

" segment/task

gate for 286

Call
intersegment,
address at
r/m dword

Call gate,
same privilege
Call gate,
more
privilege, no
parameters
Call gate,
more
privilege, x
parameters
Call to task
(via task /stati
segment/tas
ga%g}or 286)

Call near,
displacement
relative tonext
instruction
Call near,
indirect

Call
intersegment,
to full pointer
given

Call gate,
same privilege
Call gate,
more
privilege, no
parameters
Call gate,
more
privilege, x
parameters
Call to task

Call
intersegment,
addres%?t
r/m dword
Call gate,
same privilege
Call gate,
more
privilege, no
parameters

486 386 286* 86

FF /3 CALLm16:32 pm=77+4x pm=98+4x+m Call gate,
more
privilege, x
parameters

FE /3 CALLm16:32 pm=37+ts 5+ts Call to task

*Add one clock for each byte in the next instruction executed (80286 only).

The CALL instruction causes the procedure named in the operand to be
executed. When the procedure is complete (a return instruction is executed
within the procedure), execution continues at the instruction that follows the
CALL instruction.

The action of the different forms of the instruction are described next.

Near calls are those with destinations of type r/m16, r/m32, rel16, rel32;
changing or saving the segment register value is not necessary. The CALL rel16
and CALL rel32 forms add a signed offset to the address of the instruction
following CALL to determine the destination. The rel16 form is used when the
instruction’s operand-size attribute is 16 bits; rel32 is used when the operand-
size attribute is 32 bits. The result is stored in the 32-bit EIP register. With rel 16,
the upper 16 bits of EIP are cleared, resulting in an offset whose value does not
exceed 16 bits. CALL r/m16 and CALL r/m32 specify a register or memory
location from which the absolute segment offset is fetched. The offset fetched
from r/m is 32 bits for an operand-size attribute of 32 (r/m32), or 16 bits for an
operand-size of 16 (r/m16). The offset of the instruction following CALL is
pushed onto the stack. It will be popped by a near RET instruction within the
procedure. The CS register is not changed by this form of CALL.

The far calls, CALL ptr16:16 and CALL ptrl6:32, use a 4-byte or 6-byte operand
as a long pointer to the procedure called. The CALL m16:16 and m16:32 forms
fetch the long pointer from the memory location specified (indirection). In real
address mode or virtual 8086 mode, the long pointer provides 16 bits for the CS
register and 16 or 32 bits for the EIP register (depending on the operand-size
attribute). These forms of the instruction push both CS and IP or EIP as a return
address.

In protected mode, both long pointer forms consult the AR byte in the
descriptor indexed by the selector part of the long pointer. Depending on the
value of the AR byte, the call will perform one of the following types of control
transfers:

* afar call to the same protection level

¢ an inter-protection level far call

* atask switch

Note: Turbo Assember extends the syntax of the CALL instruction to facilitate
parameter passing to high-level language routines. See Chapter 7 of the Turbo
Assember User’s Guide for more details.

CBwW Convert byte to word

¢ D I T 8 Z A P C

486 386 286 86

98 CBW 3 3 2 2 AXsign-extend of AL

Chapter 4, Processor instructions 79

CBW converts the signed byte in AL to a signed word in AX by extending the
most significant bit of AL (the sign bit) into all of the bits of AH.

CDQ Convert doubleword to quadword
386 processors and greater
0O p I T S Z A P C

o e
St

!
s Sha

386
99 CDQ 3 2 EDX:EAX [(sign-extend of EAX)

CDQ converts the signed doubleword in EAX to a signed 64-bit integer in the
register pair EDX:EAX by extending the most significant bit of EAX (the sign
bit) into all the bits of EDX.

CLC Clear carry flag

0 D I T § Z A P C

s

.
.
e

.

o

F8 CLC 2 2 2 2

CLC sets the carry flag to zero. It does not affect other flags or registers.

CLD Clear direction flag
0 D I T 8 Z A P C
°n

i
o
chane
iheinnen

L

486 38 286 86
C CLD 2 2 2 2 Clear direction flag

CLD clears the direction flag. No other flags or registers are affected. After CLD
is executed, string operations will increment the index registers (SI or DI) that
they use.

CLI Clear interrupt flag
0O b I T § Z A P C
0

SERASTE IR
o
.

.
-

FA CLI 5 .3 3 2

CLI clears the interrupt flag if the current privilege level is at least as privileged
as IOPL. No other flags are affected. External interrupts are not recognized at
the end of the CLI instruction or from that point on until the interrupt flag is set.

80 Turbo Assembler Quick Reference.

CLTS Clear task switched flag
80286 and greater protected mode only

0 D I T 8§ Z A P C

TS = 0 (TS is in CRO, not the flag register)

486 386 286
OF 06 CLTS 7 5 2

CLTS clears the task-switched (TS) flag in register CRO, This flag is set by the
386 every time a task switch occurs. The TS flag is used to manage processor
extensions as follows:

¢ Every execution of an ESC instruction is trapped if the TS flag if set.

¢ Execution of a WAIT instruction is trapped if the MP flag and the TS flag are
both set.

Thus, if a task switch was made after an ESC instruction was begun, the
processor extension’s context may need to be saved before a new ESC
instruction can be issued. The fault handler saves the context and resets the TS
flag.

CLTS appears in operating system software, not in application programs. It is a
privileged instruction that can only be executed at privilege level 0.

CcmMmC Complement carry flag

0o b I T s§ Z A P C

F5 CMC 2 2 2 2 Complement carry flag

CMC reverses the setting of the carry flag: No other flags are affected.

CMP Compare two operands
0O D I T S Z A P C
* * * * * *

SR me
486 386 286 86

3Cib CMP AL,imm38 1 2 3 4 Compare immediate byte to AL

3Diw CMP AX,imm16 1 2 3 4 gg(mpare immediate word from

3Did CMPEAXimm32 1 2 gg)r(lpare immediate dword to

80/7ib CMPr/m8imm8 1/2 2/5 3/6 4/10+EA](’Z;rhpare immediate byte to r/m

te

81 /7iw CMPr/ml6immié6 1/2 2/5 3/6 4/10+EA Comcf)are immediate word to r/m
wor

81/7id CMPr/m32,imm32 1/2 2/5 Compare immediate dword to
r/mdword

Chapter 4, Processor instructions 81

48 38 286 86
83/7ib CMPr/ml6imm8 1/2 2/5 3/6 4/10+4EA Comparesignextendedimmediate

. byte to r/m word .

83/7ib CMPr/m32imm8 1/2 2/5 Compare sign extended immediate
byte to r/m dword

38/r CMPr/m8:8 1/2 2/5 2/7 3/9+EA Compare byte register to r/m byte

39 /r CMP r/ml6,r16 1/2 2/5 2/7 3/9+EA Com‘fare word register tor/m
wor :

39/r CMPr/m32,32 1/2 2/5 Compare dword register to r/m
dword

3A/r CMPr8r/m8 1/2 2/6 2/6 3/9+EA Compare r/mbyte to byte register

3B/r CMPrl6r/m8 1/2 2/6 2/6 3/9+EA Compare r/m word to word

. register

3B /r CMP r32,r/m32 1/2 2/6 Compare r/m dword to dword

register

CMP subtracts the second operand from the first but, unlike the SUB
instruction, does not store the result; only the flags are changed. CMP is
typically used in conjunction with conditional jumps and the SETcc instruction.
If an operand greater than one byte is compared: to an immediate byte, the byte
value is first sign-extended.

CMPS Compare string operands

CMPSB CMPSD 386 processors and greater

CMPSW 0o D I T 8§ z A P C ‘
CMPSD ’ rerrt

486 386 286 86

A6 CMPS m8,m8 8 10 8 22 Compare bytes ES:[(E)DI] (second operand)
with [(E)SIJ (first operand)

A7 CMPSml6,m16 8 10 8 22 Compare words ES:[(E)DI] (second
operand) with [(E)SI] (first operand)

A7 CMPSm32,m32 8 10 Compare dwords ES:[(E)DI] (second
operand) with [(E)SI] (first operand)

Ab CMPSB 8 10 8 22 Compare bytes ES:[(E)DI] with DS:[SI]

A7 CMPSW 8- 10 8 22 Compare words ES:[(E)DI] with DS:[SI]

A7 CMPSD 8 10 Compare dwords ES:[(E)DI] with DS:[SI]

CMPS compares the byte, word, or doubleword pointed to by the source-index
register with the byte, word, or doubleword pointed to by the destination-index
register.

If the address-size attribute of this instruction is 16 bits, SI and DI will be used
for source- and destination-index registers; otherwise ESI and EDI will be used.
Load the correct index values into SI and DI (or ESI and EDI) before executing
CMPS.

The comparison is done by subtracting the operand indexed by the destination-
index register from the operand indexed by the source-index register.

Note that the direction of subtraction for CMPS is [SI] — [DI] or [ESI] - [EDI].
The left operand (SI or ESI) is the source and the right operand (DI or EDI) is the
destination. This is the reverse of the usual Intel convention in which the left
operand is the destination and the right operand is the source.

82 Turbo Assembler Quick Reference

The result of the subtraction is not stored; only the flags reflect the change. The
types of the operands determine whether bytes, words, or doublewords are
compared. For the first operand (SI or ESI), the DS register is used, unless a
segment override byte is present. The second operand (DI or EDI) must be
addressable from the ES register; no segment override is possible.

After the comparison is made, both the source-index register and destination-
index register are automatically advanced. If the direction flag is 0 (CLD was
executed), the registers increment; if the direction flag is 1 (STD was executed),
the registers decrement. The registers increment or decrement by 1 if a byte is
compared, by 2 if a word is compared, or by 4 if a doubleword is compared.
CMPSB, CMPSW and CMPSD are synonyms for the byte, word, and
doubleword CMPS instructions, respectively.

CMPS can be preceded by the REPE or REPNE prefix for block comparison of
CX or ECX bytes, words, or doublewords. Refer to the description of the REP
instruction for more information on this operation.

CMPXCHG Compare and Exchange
i486 processors and greater

0 D I T S Z A P C
* % k% %

486

OFBO/r CMPXCHGr/m8x8 6/7if comparison Compare AL with r/m byte. If equal, set
issuccessful;6/10if ZF and load byte reg into r/m byte. Else,
comparison fails clear ZF and load r/m byte into AL.

0FBl/r CMPXCHGr/ml16,r16 6/7if comparison Compare AX withr/m word. If equal, set
. issuccessful;6/10if ZF and load word reg into r/m word.
comparison fails Else, clear ZF and load r/m word into AX.

0FBl/r CMPXCHGr/m32,r32 6/7 if comparison ComEare EAX with r/m dword. If equal,
is successful; 6/10if set ZF and load dword reg into r/m
comparison fails dword. Else, clear ZF and Ioad r/m dword
into EAX.

Note: The A-stepping of the 486 used the opcodes OF A6 and OF A7.

The CMPXCHG instruction compares the accumulator (AL, AX, or EAX
register) with DEST. If they are equal, SRC is loaded into DEST. Otherwise,
DEST is loaded into the accumulator.

DEST is the destination operand; SRC is the source operand.

Protected mode exceptions: #GP(0) if the result is in a nonwritable segment;
#GP(0) for an illegal memory operand effective address in the CS, DS, ES, S, or
GS segments; #55(0) for an illegal address in the SS segment; #PF (fault code) for
a page fault; #AC for an unaligned memory reference if the current privilege
level is 3.

Real mode exception: interrupt 13 if any part of the operand would lie outside
the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: interrupt 13, as in real mode; #PF and #AC, as in
protected mode.

Note: This instruction can be used with a LOCK prefix. In order to simplify
interface to the processor’s bus, the destination operand receives a write cycle
without regard to the result of the comparison. DEST is written back if the

Chapter 4, Processor instructions 83

comparison fails, and SRC is written into the destination otherwise. (The
processor never produces a locked read without producing a locked write.)

CHPXCHG8B Compare and Exchange 8 bytes
Pentium processors and greater

0O b I T 8§ Z A P C

0FC7 CMPXCHG64 r/m64 10 ﬁ:are EDX:EAX with r/m qword. If equal,
and load ECX:EBX into r/m gword.
Else, clear ZF and load r/m into EDX:EAX.

The CMPXCHGSB instruction compares the 64-bit value in EDX:EAX with
DEST. EDX contains the high-order 32 bits and EAX contains the low-order 32
bits of the 64-bit value. If they are equal, the 64-bit value in ECX:EBX is stored
into DEST. ECX contains the high-order 32 bits and EBX contains the low-order
32 bits. Otherwise, DEST is loaded into EDX:EAX. :

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise
it is cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Protected mode exceptions: #GP(0) if the result is in.a nonwritable segment;
#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #35(0) for an illegal address in the SS segment; #PF(fault code) for
a page fault; #AC for unaligned memory reference if the current privilege level
is 3.

The destination operand must be a memory operand, not a register. If the
CMPXCHGSB instruction is executed with a modr/m byte representing a
register as the destination operand, #UD occurs.

Real mode exception: interrupt 13 if any part of the operand would lie outside
the effective address space from 0 to OFFFFh.

Virtual 8086 mode exceptions: same exceptions as in real mode, plus #PF(fault
code) for a page fault; #AC for unaligned memory reference if the current
privilege level is 3. #UD if the modr /m byte represents a register as the
destination.

Notes: This instruction can be used with a LOCK prefix. In order to simplify
interface to the processor’s bus, the destination operand receives a write cycle
without regard to the result of the comparison. DEST is written back if the
comparison fails, and SRC is written into the destination otherwise. (The
processor never produces a locked read without also producing a locked write.)

The “r/mé4” syntax had previously been used only in the context of floating
point operations. It indicates a 64-bit value, in memory at an address
determined by the modr/m byte.

84 Turbo Assembler Quick Reference

CPUID CPU identification ‘
Pentium processors and greater
0o D I T 8§ Z A P C

Pentium

OF A2 CPUID 14 EAX <- CP0OU identification info.

The CPUID instruction provides information to software about the vendor,
family, model, and stepping of microprocessor on which it is executing. An
input value loaded into the EAX register for this instruction indicates what
information should be returned by the CPUID instruction.

Following execution of the CPUID instruction with a zero in EAX, the EAX
register contains the highest input value understood by the CPUID instruction.
For the Pentium processor, the value in EAX will be one. Also returned is a
vender identification string contained in the EBX, EDX, and ECX registers. EBX
contains the first four characters. For Intel processors, the vender identification
string is “Genuinelntel” as follows:

EBX—756e6547h (* “Genu”, with ‘G’ in the low nibble of BL *)
EDX—49656e6%h (* “inel”, with ‘i’ in the low nibble of DL *)
ECX—6c65746¢eh (* “ntel”, with ‘n’ in the low nibble of CL *)

Following execution of the CPUID instruction with an input value of one
loaded into the EAX register, bits 0-3 in EAX contain the stepping id of the
microprocessor, bits 4-7 of EAX contain the model (the first model will be
indicated by a 0001b in these bits) and bits 8-11 of EAX contain the family (5 for
the Pentium processor family). Bits 12-31 of EAX are reserved, as well as EBX,
and ECX. The Pentium processor sets the feature register, EDX, to 1bfh,
indicating which features the Pentium processor supports. A feature flag set to
one indicates that the corresponding feature is supported. The feature set is
defined as follows:

EDX (bit 0) FPU on chip

EDX (bits 1-6) Nonessential, proprietary information (contact Intel for
more informahogg)

EDX (bit 7) Machine Check Exception

EDX (bit 8) CMPXCHGS8B Instruction

EDX (bits 9-31) Reserved

Software should determine the vender identification in order to properly
interpret the feature register flag bits.

This function does not affect the CPU flags.

CWD . Convert word to doubleword
386 processors and greater

0o D I T § Z A P C

486 38 286 8
29 CWD 3 2 2 5 DX:AX « sign-extend of AX

CWD converts the signed word in AX to a signed doubleword in DX:AX by
extending the most significant bit of AX into all the bits of DX. Note that CWD
is different from CWDE. CWDE uses EAX as a destination, instead of DX:AX.

Chapter 4, Processor instructions 85

CWDE Convert word to doubleword
386 processors and greater

0 D I T 8 2 A P C

—
=
a&%il%;@i

=

98 ' CWDE 3 3 EAX ¢ sign-extend of AX

CWDE converts the signed word in AX to a doubleword in EAX by extending
the most significant bit of AX into the two most significant bytes of EAX. Note
that CWDE is different from CWD. CWD uses DX:AX rather than EAX asa
destination. ~

DAA Decimal adjust AL after addition
' 0 p I T § Zz A P C

486 386 286 86

27 DAA 2 4 3 4 Decimal adjust AL after addition

Execute DAA only after executing an ADD instruction that leaves a two-BCD-
digit byte result in the AL register. The ADD operands should consist of two
packed BCD digits. The DAA instruction ad]usts AL to contain the correct two-
digit packed decimal result.

DAS Decimal adjust AL after subtraction
0 D I T § Z A P C

- nE
G _ : R SimRalh

486 386 286 86 o
2F DAS 2 4 3 4 Decimal adjust AL after subtraction

35‘55

Execute DAS only after a subtraction instruction that leaves a two-BCD-digit
byte result in the AL register. The operands should consist of two packed BCD
digits. DAS adjusts AL to contain the correct packed two-digit decimal result.

DEC Decrement by 1
0O D I T § Z A P C

FE /1 DECr/m8

3/15+EA Decrement r/m byte by 1
FF /1 DEC r/m16 3/15+EA Decrementr/m word by 1
DECr/m32 Decrement r/m dword by 1
48+rw DECr16 3 Decrement word register by 1
48+rw DEC 132 1 2 Decrement dword register by 1

8 Turbo Assembler Quick Reference

DEC subtracts 1 from the operand. DEC does not change the carry flag. To
affect the carry flag, use the SUB instruction with an immediate operand of 1.

DIV ~ Unsigned divide
0O b I T S Z A P C
? ? 2 2 2

486 386 286 86

F6/6 DIVr/m8 16/16 14/17 14/17 80/86+EA Unsigned divide AX by r/mbyte
(AL=QUO, AH=REM})

F7 /6 DIVr/ml6 24/24 22/25 22/25 144/154+EA Unsigned divide DX:AX by r/m
wor(fl(lAX:QUO, DX=REM)

F7/6 DIVr/m32 40/40 38/41 Unsigned divide EDX:EAX by r/m
dword (EAX=QUO, EDX=REM)

DIV performs an unsigned division. The dividend is implicit; only the divisor is
given as an operand. The remainder is always less than the divisor. The type of
the divisor determines which registers to use as follows:

byte AX r/m8 AL AH
word DX:AX r/mlé AX DX
dword EDX:EAX r/m32 EAX EDX (386 only)
ENTER Make stack frame for procedure parameters

80186 processors and greater

¢ p I T § Z A P C

486 386 286
C8iw 00 Enter inm16,0 14 10 11 Make procedure stack frame
C8iw 01 Enterimm16,1 17 12 15 Make stack frame for procedure
. parameters
C8iwib Enter imml6,imm8 17+3n 15+4(n-1) 12+4(n-1) Make stack frame for procedure
parameters

ENTER creates the stack frame required by most block-structured high-level
languages. The first operand specifies the number of bytes of dynamic storage
allocated on the stack for the routine being entered. The second operand gives
the lexical nesting level (0 to 31) of the routine within the high-level language
source code. It determines the number of stack frame pointers copied into the
new stack frame from the preceding frame. BP (or EBP, if the operand-size
attribute is 32 bits) is the current stack frame pointer.

If the operand-size attribute is 16 bits, the processor uses BP as the frame
pointer and SP as the stack pointer. If the operand-size attribute is 32 bits, the
processor uses EBP for the frame pointer and ESP for the stack pointer.

If the second operand is 0, ENTER pushes the frame pointer (BP or EBP) onto
the stack; ENTER then subtracts the first operand from the stack pointer and
sets the frame pointer to the current stack-pointer value.

For example, a procedure with 12 bytes of local variables would have an
ENTER 12,0 instruction at its entry point and a LEAVE instruction before every

Chapter 4, Processor instructions 87

RET. The 12 local bytes would be addressed as negative offsets from the frame
pointer.

HT Han

486 386 286 86

F4 HLT 4 5 2 2 Halt

HLT stops instruction execution and places the x86 in a HALT state. An enabled
interrupt, NMI, or a reset will resume execution. If an interrupt (including
NMI) is used to resume execution after HLT, the saved CS:IP (or CS:EIP on an
386) value points to the instruction following HLT.

IDIV Signed divide
0o D I T S Z A P

386 286

F6 /7 IDIVr/m8 19/20 19 17/20 101-112/107-118+EA . Sl ed divide AX 187
%x]lste SAL =QUI

¥7/7 IDIVr/ml6 27/28 27 25/28 165-184/171-190+EA S1gned divide DX:AX
IE;I EA word (AX=QUO,

F7/7 IDIVr/m32 43/44 43 Signed lelde
EDX:EAX by DWORD
byte (EAX=6UO,

X=REM)

IDIV performs a signed division. The dividend, quotient, and remainder are
implicitly allocated to fixed registers. Only the divisor is given as an explicit r/
m operand. The type of the divisor determines which registers to use as follows:

5 "%?ﬁﬁ?ﬂ‘i sl w
_ @"% §§§§” zam%;

AL
r/mlé AX DX DX:AX
r/m32 EAX EDX EDX:EAX (386 only)

If the resulting quotient is too large to fit in the destination, or if the division

is 0, an Interrupt 0 is generated. Non-integral quotients are truncated toward 0.
The remainder has the same sign as the dividend and the absolute value of the
remainder is always less than the absolute value of the divisor.

88 Turbo Assembler. Quick Reference

IMUL Signed multiply
0o p I T § 2 A P C

F6/5 IMULr/m8
F7 /5 IMUL r/m16
F7/5 IMULr/m32

OF AF /r IMUL r16,
r/mlé

OF AF /r IMUL 132,
r/m32

6B /rib IMULrl6,
r/ml6,imm8

6B /rib IMUL 32,

r/ m32,imm8

6B /rib IMUL
116,imm8

6B /rib IMUL
r32,imm8

69 /riw IMULrl16,
r/ml6,imm16

IMUL 32,
' r/m32,imm32

69 /rid

69 /riw IMUL
r16,imm16

69 /rid IMUL
r32,imm32

486

386

13-18/13-18 9-14/12-17 13/16 §0—98/ 86~

13-26/13-26 9-22/12-25 21/24 128-154/134~
1

12-42/13-42 9-38/12-41
13-26/13-26 9-22/12-25

13-42/13-42 9-38/12-41

13-26/13-26 9-14/12-17

1342 9-14/12-17
13-26 9-14/12-17
1342 9-14/12-17

13-26/13-26 9-22/12-25
13-42/13-42 9-38/12-41
13-26/13-26 9-22/12-25

1342/
1342

9-38/12-41

286

21/24

21/24

21/24

86

04+EA

60+EA

AX <AL *r/mbyte

DX:AX «AX*r/m
word

EDX:EAX «EAX*r/m
dword

word register «word
register *r/m word

dword register
«dword register * r/m
dword

word register <-r/m16
* sign-extended
immediate byte

dword register «r/
m32 * sign-extended
immediate byte

word re§ister «word
register si%n-extended
immediate byte

dword register
«dword register * sign-
extended immediate
byte

word register <-r/ml6
immediate word

dword register r/m32 *
immediate dword

word register «r/m16
* immediate word

dword register
«r/m32 ¥ immediate
dword

IMUL performs signed multiplication. Some forms of the instruction use
implicit register operands. The operand combinations for all forms of the

instruction are shown in the “Description” column above.

IMUL clears the overflow and carry flags under the following conditions:

Instruction form Condition for clearing CF and OF

r/m8 AL = sign-extend of AL to 16 bits

r/milé AX = sign-extend of AX to 32 bits

r/m32 EDX:EAX = sign-extend of EAX to 32 bits
rl6,r/mlé6 Result exactly fits within r16.

r32,r/m32 Result exactly fits within 32
rl6,r/m16,immié Result exactly fits within r16
r32,r/m32,imm32 Result exactly fits within r32

Chapter 4, Processor instructions

89

IN Input from port
0O b I T 8§ Z A P C

Edib INALimm8 14,pm=8*/28**,vm=27 12,pm=6*/26"* 5 10 Inputbyte from
immediate port
into AL

E5ib IN AX,imm8 1f1,pm=8*/ 28", vm=27 12pm=6*/26** 5 10 Input word from

immediate port
‘ into AX

E5ib IN EAX,imm8 14,pm=8*/28**,ym=27 12,pm=6*/26** Input dword from
immediate port
into EAX

EC IN AL,DX 14,pm=8*/28"*,ym=27 13, pm=7*/27** 5 8 Input byte from
port DX into AL

ED INAX,DX - 14,pm=8*/28",vm=27 13,pm=7*/27** 5 8 Input word from
port DX into AX

ED IN EAX,DX 14,pm=8*/28",vm=27 13,pm=7*/27** Input dword from
port DX into EAX

*If CPL <IOPL
**Tf CPL > IOPL or if in virtual 8086 mode

IN transfers a data byte or data word from the port numbered by the second
operand into the register (AL, AX, or EAX) specified by the first operand.
Access any port from 0 to 65535 by placing the port number in the DX register
and using an IN instruction with DX as the second parameter. These 1/0O
instructions can be shortened by using an 8-bit port I/O in the instruction. The
upper eight bits of the port address will be 0 when 8-bit port I/O is used.

INC Increment by 1
0O D I T S Z A P C
* * * * *

48 386 = 286 86

FE/0 INCr/m8 1/3 2/6 2/7 3/15+EA Incrementr/m byte by 1
FF /0 INCr/ml6 - 1/3 2/6 2/7 3/15+EA Increment r/m word by 1

FF/6 .INCr/m32 1/3 Increment r/m dword by 1
40+rw INCrl6 1 2 2 3 Increment word register by 1
40+rd INC132 1 Increment dword register by 1

INC adds 1 to the operand. It does not change the carry flag. To affect the carry
flag, use the ADD instruction with a second operand of 1.

90 Turbo Assembler Quick Reference

INS Input from port to string

INSB 80186 processors and greater
INSW 0 DI T S Z A P C
486 386 286)
6C INSr/m8DX 17,pm=10*/32**vm=30 15pm=9*/29* 5 In;zut byte from f)ort
DX into ES:(E)D!
6D INSr/ml16,DX 17,pm=10%/32**,vym=30 15,pm=9*/29** 5 In;zut word from port
DX into ES:(E)DI
6D INS1/m32,DX 17,pm=10*/32*,vm=30 15,pm=9*/29** In;ut dword from port
» DX into ES:(E)DI
6C INSB 17,pm=10%/32**,vym=30 15,pm=9*/29* 5 InEut byte from Fort
DX into ES:(E)D!
6D INSW 17,pm=10%/32**,ym=30 15,pm=9*/29* 5]n§ut word from port
DX into ES:(E)DI
6D INSD 17,pm=10*/32**,ym=30 15,pm=9"*/29** In;éut dword from port
DX into ES:(E)DI

*If CPL <IOPL .
*1f CPL > IOPL or if in virtual 8086 mode

INS transfers data from the input port numbered by the DX register to the
memory byte or word at ES:dest-index. The memory operand must be
addressable from ES; no segment override is possible. The destination register
is DI if the address-size attribute of the instruction is 16 bits, or EDI if the
address-size attribute is 32 bits.

INS does not allow the specification of the port number as an immediate value.
The port must be addressed through the DX register value. Load the correct
value into DX before executing the INS instruction.

The destination address is determined by the contents of the destination index
register. Load the correct index into the destination index register before
executing INS.

After the transfer is made, DI or EDI advances automatically. If the direction
flag is 0 (CLD was executed), DI or EDI increments; if the direction flag is 1
(STD was executed), DI or EDI decrements. DI increments or decrernents by 1 if
a byte is input, by 2 if a word is input, or by 4 if a doubleword is input.

INSB, INSW and INSD are synonyms of the byte, word, and doubleword INS
instructions. INS can be preceded by the REP prefix for block input of CX bytes
or words. Refer to the REP instruction for details of this operation.

INT Call to interrupt procedure
INTO 0o p I T § Z A P C
0 0

cC INT3 26 33 23 52 Interrupt 3—trap to debugger
CcC INT3 44 pm=59 40 Interrupt 3—protected mode
CcC INT3 71 pm=99 78 Interrupt 3—protected mode

Chapter 4, Processor instructions 91

- CcC INT3 82 pm=119 Interrupt 3—from V86 mode to

PLO
CcC INT3 37+ts s 167 Interrupt 3—protected mode
CDib INTimm8 30 37 23 51 Interrupt numbered by
. immediate byte
CDib INTimm8. 44 pm=59 40 I.nterrupt—protected mode
CDib INTimm8 77 pm=99 78 Interrupt—protected mode
CDib INTimm8 86 pm=119 Interrupt—from V86 mode to PLO
CDib INTimm8 37+ts ts 167 Interrupt—protected mode
CE INTO Pass:28, Fail:3, Fail:3, . Fail:4, Interrupt4—if overflow flagis 1
Fail:3 m=3; Pass:i24 Pass:53
2ss:35
CE INTO 46 pm=59 41 Interrupt 4—Protected mode
CE INTO 73 pm=99 79 Interrupt 4—Protected mode
CE INTO 84 pm=119 11;1fgrrupt 4—from V86 mode to
CE INTO 39+ts s 168 Interrupt 4—Protected mode

*Add one clock for each byte of the next instruction executed (80286 only).

The INT n instruction generates via software a call to an interrupt handler. The
immediate operand, from 0 to 255, gives the index number into the interrupt
descriptor table (IDT) of the interrupt routine to be called. In protected mode,
the IDT consists of an array of eight-byte descriptors; the descriptor for the
interrupt invoked must indicate an interrupt, trap, or task gate. In real address
mode, the IDT is an array of four byte-long pointers. In protected and real
address modes, the base linear address of the IDT is defined by the contents of
the IDTR.

The INTO conditional software instruction is identical to the INT n interrupt
instruction except that the interrupt number is implicitly 4, and the interrupt is
made if the 86, 286, or 386 overflow flag is set.

The first 32 interrupts are reserved by Intel for system use. Some of these
interrupts are use for internally generated exceptions.

INT n generally behaves like a far call except that the flags register is pushed
onto the stack before the return address. Interrupt procedures return via the
IRET instruction, which pops the flags and return address from the stack.

In real address mode, INT n pushes the flags, CS and the return IP onto the
stack, in that order, then jumps to the long pointer indexed by the interrupt
number.

INVD . Invalidate cache
i486 processors and greater
0O D I T 8 Z A P ¢C

OF 08 INVD 4 Invalidate entire cache

92 Turbo Assembler Quick Reference

The internal cache is flushed, and a special-function bus cycle is issued which
indicates that external caches should also be flushed. Data held in write-back
external caches is discarded.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors.

It is the responsibility of hardware to respond to the external cache flush
indication.

INVLPG Invalidate TLB entry
i486 processors and greater
0o p I T S8 7z A P C

186
0F01/7 INVLPGm 12forhit Invalidate TLB entry

The INVLPG instruction is used to invalidate a single entry in the TLB, the
cache used for table entries. If the TLB contains a valid entry that maps the
address of the memory operand, that TLB entry is marked invalid.

In both protected mode and virtual 8086 mode, an invalid opcode is generated
when used with a register operand.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors.

IRET Interrupt return
IRETD IRETD 386 processors and greater
IRETW 0 D I T S z A P C

The flags register is popped from stack.

486 386 286 86
CF IRETW 15 22,pm=38 17pm=31 32 glter;'upt return (far return and pop
ags

CF IRETW 36 pm=82 55 Interrupt return

CF IRETW ts+32 ts 169 Interrupt return

CF IRETD 15 22,pm=38 ﬂInter;'upt return (far return and pop
: ags

CF IRETD 36 pm=82 Interrupt return to lesser privilege

CF IRETD 15 pm=60 Interrupt return to V86 mode

CF IRETD 5+32 ts Interrupt return

CF IRET Selects IRETW or IRETD depen%mnf
. on segment size of 16 or 32 bits.

works for VERSION T320 or higher.

*Add one clock, for each byte in the next instruction executed (80286 only).

In real address mode, IRET pops the instruction pointer, CS, and the flags
register from the stack and resumes the interrupted routine.

Chapter 4, Processor instructions 93

In protected mode, the action of IRET depends on the setting of the nested task
flag (NT) bit in the flag register. When popping the new flag image from the
stack, the IOPL bits in the flag register are changed only when CPL equals 0.

If NT equals 0, IRET returns from an interrupt procedure without a task switch.
The code returned to must be equally or less privileged than the interrupt
routine (as indicated by the RPL bits of the CS selector popped from the stack).
If the destination code is less privileged, IRET also pops the stack pointer and
SS from the stack.

If NT equals 1, IRET reverses the operation of a CALL or INT that caused a task
switch. The updated state of the task executing IRET is saved in its task state
segment. If the task is re-entered later, the code that follows IRET is executed.

IRETW pops WORD-style (if you use VERSION T320 or higher). If you're using
VERSION T310 or less, use IRET; IRETW replaces old functionality of IRET.

Jee Jump if condition is met
o D I T S Z A P C

486 386 286 86

77 cb JA rel8 3/1 7+m3 73 164]ZuFmB)short if above (CF=0 and

73 cb JAE rel8 3/1 7+m+3 73 164 {%tl?PO?hort if above or equal

72 cb JBrel8 3/1 7+m3 73 164 Jump short if below (CF=1)

76 cb " JBErel8 3/1 7+m,3 73 164 Jumy sit)ort if below or equal (CF=1

: or ZF=

72 cb JC rel8 3/1 7+m3 73 16,4 Jump shortif carry (CF=1)

E3 cb JCXZ rel8 3/1 9+m5 84 18,6 Jump shortif CXregisteris0

E3 cb JECXZ rel8 3/1 9+mpb Jump short if ECX register is 0

74 cb JE rel8 3/1 7+m3 73 164 Jump short if equal (ZF=1)

74 cb JZ rel8 3/1 7+m3 73 164 Jump shortif 0 (ZF=1)

7F cb JG rel8 3/1 7+m3 73 164 18111:1{18 FS;IOl‘t if greater (ZF=0 and

7D b JGE rel8 3/1 7+m3 73 164 Jump short if greater or equal
(SF=OF)

7C cb JL rel8 3/1 7+m3 73 16,4 Jump short if less (SF<>OF)

7E cb JLE rel8 3/1 7+m3 73 164]umg short if less or equal (ZF=1
and SF<>OF)

76 cb JNA rel8 3/1 7+m3 73 164]ZlFun%short if not above (CF=1 or

72 cb JNAE rel8 3/1 7+m3 73 164 {g};pﬁhort if not above or equal

73 cb JINB rel8: 3/1 7+m,3 73 164 Jump shortif notbelow (CF=0)

77 cb JNBE rel8 3/1 7+m,3 73 164 Jump shortif not below or equal
(CF=0 and ZF=0)

73 cb JNC rel8 3/1 7+m,3 73 164 Jump shortif not carry (CF=0)

75 cb) JNE rel8 3/1 7+m3 73 164 Jump shortif notequal (ZF=0)

7E cb JNG rel8 3/1 7+m3 73 164 Jump shortif not greater (ZF=1 or
SE<>OF)

7C cb JNGE rel8 3/1 7+m3 73 164 Jump short if not greater or equal
(SF<>OF)

7D cb JNL rel8 3/1 7+m3 73 164 Jump shortif notless (SF=OF)

94 Turbo Assembler Quick Reference

7F cb

71 cb
7B cb
79 cb
75 cb
70 cb
7A b
7A cb
7B cb
78 cb
74 cb
OF 87 cw/cd

OF 83 cw/cd
OF 82 cw/cd
OF 86 cw /cd

O0F82cw/cd
OF 84 cw/cd
OF 84 cw/cd
OF 8F cw/cd

OF 8D cw/cd

O0F 8C cw/cd
OF 8E cw/cd

OF 86cw/cd
OF 82 cw/cd

OF 83 cw/cd
OF 87 cw/cd

OF 83 cw/cd
OF 85 cw/cd
OF 8E cw/cd

0F8C cw/cd

OF 8D cw/cd
OF 8F cw/cd

0F 81 cw/cd
OF 8B cw/cd
0F 89 cw/cd
OF 85 cw/cd
OF 80 cw/cd

0F8A cw/cd -

OF 8A cw/cd

JNLE rel8

JNO rel8
JNP rel8
JNS rel8
JNZ rel8
JOrel8
JP rel8
JPE rel8
JPOrel8
JSrel8
JZ rel8
JA rell6/32

JAE rel16/32
JB rel16/32
JBE rel16/32

JCrell6/32
JE rel16/32
JZ rel16/32
1G rel16/32

JGE rel16/32

JL rel16/32
JLE rel16/32

JNA rell6/32
JNAE rell16/32

JNB rel16/32
JNBE rel16/32

JNC reli6/32
JNE rel16/32
NG rel16/32

JNGE rell6/32

JNL rel16/32
JNLE rel16/32

INO rel16/32
NP rel16/32
JNS rel16/32
JNZ rel16/32
JOrell6/32
JP rel16/32
JPE rel16/32

486
3/1

3/1
3/1
3/1
3/1
3/1
3/1
3/1
3/1
3/1
3/1
3/1

3/1
3/1
3/1

3/1
3/1
3/1
3/1

3/1

3/1
3/1

3/1
3/1

3/1
3/1

3/1
3/1
3/1

3/1

3/1
3/1

3/1
3/1
3/1
3/1
3/1
3/1
3/1

386
7+m,3

7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

7+m,3
7+m,3
7+m,3

7+m,3
7+m,3
7+m,3
7+m,3

7+m,3

7+m,3
7+m,3

7+m,3
7+m,3

7+m,3
7+m,3

7+m,3
7+m,3
7+m,3

7+m,3

7+m,3
7+m,3

7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

286
73

73
7,3
7,3
73
7,3
7,3
7,3
7,3
73
73

Jump short if not less or equal
(ZF=0 and SF=OF)

Jump short if not overflow (OF=0)
Jump short if not parity (PF=0)
Jump short if not sign (SF=0)
Jump short if not zero (ZF=0)
Jump short if overflow (OF=1)
Jump short if parity (PF=1)
Jump short if parity even (PF=1)
Jump short if parity odd (PF=0)
Jump short if sign (SF=1)

Jump short of zero (ZF=1)

]umg near if above (CF=0 and
ZF=0)

Jump near if above or equal (CF=0)
Jump near if below (CF=1)

Jump near if below or equal
(CF=lor ZF=1)

Jump near if carry (CF=1)
Jump near if equal (ZF=1)
Jump near if 0 (ZF=1)

Jump near if greater (ZF=0 and
SF=8F) &

Jump near if greater or equal
-%F) & q

Jump near if less (SF<>OF)

Jump near if less or equal(ZF=1
and SF<>OF)

]umg near if not above (CF=1 or
ZF=1)
Jump near if not above or equal
CF=1)

Jump near if not below (CF=0)

Jump near if not below or equal
(CF=0 and ZF=0

Jump near if not carry and ZE=0)
Jump near if not equal (ZF=0)

Jump near if not greater (ZF=1 or
SF<>OF)

Jump near if not greater or é ual
(SF<p>OF) & B

Jump near if not less (SF=OF)

Jump near if not less or equal
(ZF=0 and SF=OF)

Jump near if not overflow (OF=0)
Jump near if not parity (PF=0)
Jump near if not sign (SF=0)
Jump near if not zero (ZF=0)
Jump near if overflow (OF=1)
Jump near if parity (PF=1)

Jump near if parity even (PF=1)

Chapter 4, Processor instructions 95

Ll

B

486 386 286 86

OF 8B cw/cd JPO rell6/32 3/1 7+m,3 Jump near if parity odd (PF=0)
OF88cw/cd = JSrell6/32 3/1 7+m3 Jump near if sign (SF=1)
OF 84 cw/cd JZ rell6/32 3/1 7+m,3 ‘ ~ Jump near if zero (ZF=1)

*When a jump is taken, add one clock for every byte of the next instruction executed (80286
only).)

Note: The first clock count is for the true condition (branch taken); the second
clock count is for the false condition (branch not taken). rel16/32 indicates that
these instructions map to two; one with a 16-bit relative displacement, the other
with a 32-bit relative displacement, depending on the operand-size attribute of
the instruction.

Conditional jumps (except JCXZ/JECXZ) test the flags which have been setby a
previous instruction. The conditions for each mnemonic are given in
parentheses after each description above. The terms “less” and “greater” are
used for comparisons of signed integers; “above” and “below” are used for
unsigned integers.

If the given condition is true, a jump is made to the location provided as the
operand. Instruction coding is most efficient when the target for the conditional
jump is in the current code segment and within —128 to + 127 bytes of the next
instruction’s first byte. The jump can also target 32768 through +32767
(segment size attribute 16) or -2 to the 31st power +2 to the 31st power -1
(segment size attribute 32) relative to the next instruction’s first byte. When the
target for the conditional jump is in a different segment, use the opposite case of
the jump instruction (that is, JE and JNE), and then access the target with an
unconditional far jump to the other segment. For example, you cannot code

JZ FARLABEL;
You must instead code

. JNZ BEYOND;
JMP FARLABEL;
BEYOND:

Because there can be several ways to interpret a particular state of the flags,
TASM provides more than one mnemonic for most-of the conditional jump
opcodes. For example, if you compared two characters in AX and want to jump
if they are equal, use JE; or, if you ANDed AX with a bit field mask and only
want to jump if the result is 0, use JZ, a synonym for JE.

JCXZ/JECXZ differs from other conditional jumps because it tests the contents
of the CX or ECX register for 0, not the flags. JCXZ/JECXZ is useful at the
beginning of a conditional loop that terminates with a conditional loop
instruction (such as LOOPNE TARGET LABEL). The JCXZ/JECXZ prevents
entering the loop with CX or ECX equal to zero, which would cause the loop to
execute 64K or 32G times instead of zero times.

96 Turbo Assembler Quick Reference

JMP

Jump

0

D I

T § Z A P C

All if a task switch takes place; none if no task switch occurs.

EB cb
E9 cw
FF /4

EA cd

EA cd
EAcd
EAcd
FF /5
FF /5
FF /5

FF /5
E9cd
FF /4
EAcp

EAcp
EAcp

EAcp
FF /5

FF /5

FF /5

JMP rel8
JMP rell6
JMP r/m16

JMP ptrl6:16

JMP ptr16:16
JMP ptrl6:16
JMP ptr16:16
JMP m16:16
JMP m16:16
JMP m16:16

JMP m16:16
JMP rel32
JMP r/m32
JMP ptr16:32

JMP ptr16:32
TMP pirl6:32

JMP ptr16:32
JMP m16:32

JMP m16:32
JMP m16:32

JMP m16:32

32

42+ts
43+ts
13,pm=18
31

41+ts

42+ts

5/5
13,pm=18

31
42+ts

43+ts
13,pm=18

31
41+ts10

42+ts

386 286 86

7+m 7 15 Jump short

7+m 7 15 Jump near

7+m/10+m 7/11 11/18+EA Jump near
indirect

12+m, pm=27+m 11,pm=23 15 Jump
intersegment,

pm=45+m 38
ts 175
ts 180 24+EA

43+m,pm=31+m 15,pm=26

pm=49+m 41
5+ts 178
5+ts 183
7+m

7+m,10+m

12+m, pm=27+m

pm=45+m
ts

ts
43+m, pm=31+m

pm=49+m
5+ts

S5+1ts

4-byte immediate
address

Jump to call gate,
same privilege
Jump via task
state segment

‘Jump via task gate

Jump r/m16:16
indirect and
intersegment
Jump to call gate,
same privilege
Jump via task
state segment
Jump via task gate
Jump near

Jump near

Jump
intersegment,
6-byte immediate
address '

Jump to call gate,
same privilege
Jump via task
state segment
Jump via task gate

e egment
intersegment
addresgr:t r/m
dword

Jump to call gate,
same privilege

Jump via task
state segment

Jump via task gate

FF /5

*Add one clock for every byte of the next instruction executed (80286 only).

The JMP instruction transfers control to a different point in the instruction
stream without recording return information.

The action of the various forms of the instruction are shown below.

Jumps with destinations of type r/m16, r/m32, rell6, and rel32 are near jumps
and do not involve changing the segment register value.

Chapter 4, Processor instructions 97

The JMP rell6 and JMP rel32 forms of the instruction add an offset to the
address of the instruction following the JMP to determine the destination. The
rel16 form is used when the instruction’s operand-size attribute is 16 bits
(segment size attribute 16 only); rel32 is used when the operand-size attribute is
32 bits (segment size attribute 32 only). The result is stored in the 32-bit EIP
register. With rel16, the upper 16 bits of EIP are cleared, which results in an
offset whose value does not exceed 16 bits.

JMP r/m16 and JMP r/m32 specifies a register or memory location from which
the absolute offset from the procedure is fetched. The offset fetched from r/m is
32 bits for an operand-size attribute of 32 bits (r/m32), or 16 bits for an operand-
size attribute of 16 bits (r/m16).

The JMP ptr16:16 and ptr16:32 forms of the instruction use a four-byte or six-
byte operand as a long pointer to the destination. The JMP m16:16 and m16:32
forms fetch the long pointer from the memory location specified (indirection).
In real address mode or virtual 8086 mode, the long pointer provides 16 bits for
the CS register and 16 or 32 bits for the EIP register (depending on the operand-
size attribute). In protected mode, both long pointer forms consult the access
rights (AR) byte in the descriptor indexed by the selector part of the long
pointer. Depending on the value of the AR byte, the jump will perform one of
the following types of control transfers:

* ajump to a code segment at the same privilege level
* atask switch

LAHF Loads flégs into AH register

0O p I T S§ Z A P C

9F LAHF 3 2 2 4 Load: AH = flags SF ZF xx AF xx PF xx CF

LAHEF transfers the low byte of the flags word to AH. The bits, from MSB to
LSB, are sign, zero, indeterminate, auxiliary carry, indeterminate, parity,
indeterminate, and carry.

LAR Load access rights byte
80286 and greater protected mode only

o p I T S8 Z A P C

486 386 286
0F02/r LARrl6r/mil6 11/11 pm=15/16 14/16 rl6<r/ml6 masked by FF00
OF02 /r LARr32,r/m32 11/11 pm=15/16 r32¢—r/m32 masked by 00FxFF00

The LAR instruction stores a marked form of the second doubleword of the
descriptor for the source selector if the selector is visible at the CPL (modified
by the selector’s RPL) and is a valid descriptor type. The destination register is
loaded with the high-order doubleword of the descriptor masked by 00FxFF00,
and ZF is set to 1. The x indicates that the four bits corresponding to the upper
four bits of the limit are undefined in the value loaded by LAR. If the selector is
invisible or of the wrong type, ZF is cleared.

98 Turbo Assembler Quick Reference

If the 32-bit operand size is specified, the entire 32-bit value is loaded into the
32-bit destination register. If the 16-bit operand size is specified, the lower 16-
bits of this value are stored in the 16-bit destination register.

All code and data segment descriptors are valid for LAR. (See your Intel
manual for valid segment and gate descriptor types for LAR.)

LEA Load effective address offset
O D I T § Z A P C

486 386 286 86

8D/r LEArlem 1 2 3 2+EA Store effective address for m in register r16
8D/r LEAr32m 1 2 Store effective address for m in register r32
8D/r LEArl6m 1 2 Store effective address for m in register r16
8D/r LEAr32m 1 2 Store effective address for m in register 132

LEA calculates the effective address (offset part) and stores it in the specified
register. The operand-size attribute of the instruction is determined by the
chosen register. The address-size attribute is determined by the USE attribute of
the segment containing the second operand. The address-size and operand-size
attributes affect the action performed by LEA, as follows:

Operand size Address size Action performed

16 16 16-bit effective address is calculated and
stored in requested 16-bit register
. destination.
16 32 32-bit effective address is calculated. The

lower 16 bits of the address are stored in the
requested 16-bit register destination.

32 16 16-bit effective address is calculated. The
16-bit address is zero-extended and stored in
the requested 32-bit register destination.

32 32 32-bit effective address is calculated and
stored in the requested 32-bit register
destination.

LEAVE High-level procedure exit

80186 processors and greater
0 D I T S§ Z A P C

486 386 286

9 LEAVE "5 4 5 Set SP to BP
9 LEAVE 5 4 _ Set ESP to EBP

LEAVE reverses the actions of the ENTER instruction. By copying the frame
pointer to the stack pointer, LEAVE releases the stack space used by a
procedure for its local variables. The old frame pointer is popped into BP or
EBP, restoring the caller’s frame. A subsequent RET nn instruction removes any
arguments pushed onto the stack of the exiting procedure.

Chapter 4, Processor instructions 99

LGDT/LIDT Load global/interrupt descriptor table register
80286 and greater protected mode only

0 DI T S Z a P C

%ﬁ%%?ﬁ‘%ﬁg}‘%‘%ﬁ%ﬁt 5
e
486 386 286

OF01 /2 LGDTml6&32 11 1 1 Load m into global descriptor table register
0F01/3 . LIDTml6&32 11 11 12 Load minfo interrupt descriptor table register

The LGDT and LIDT instructions load a linear base address and limit value
from a six-byte data operand in memory into the GDTR or IDTR, respectively.
If a 16-bit operand is used with LGDT or LIDT, the register is loaded with a 16-
bit limit and a 24-bit base, and the high-order 8 bits of the 6-byte data operand
are not used. If a 32-bit operand is used, a 16-bit limit and a 32-bit base is
loaded; the high-order 8 bits of the 6-byte operand are used as high-order base
address bits.

The SGDT and SIDT instructions always store into all 48 bits of the 6-byte data
operand. With the 80286, the upper 8 bits are undefined after SGDT or SIDT is
executed. With the 386, the upper 8 bits are written with the high-order 8
address bits, for both a 16-bit operand and a 32-bit operand. If LGDT or LIDT is
used with a 16-bit operand to load the register stored by SGDT or SIDT, the
upper 8 bits are stored as zeros.

S SR

LGDT and LIDT appear in operating system software; they are not used in
application programs. They are the only instructions that directly load a linear
address (i.e., not a segment relative address) in 386 protected mode.

LGS Load full pointer

LSS LGS/LSS/LFS 386 processors and greater
LFS 0 D I T 8§ Z & P C

LDS ~

LES

C5 /r LDSrl6ml6:16 6/12 7pm=22 7,pm=21 16+EA Load DS:r16 with pointer

from memory
C5 /r LDSr32,m1632 6/12 7,pm=22 Load DS:r32 with pointer
- from memory
OFB2/r LSSrl6mlél6 6/12 7,pm=22 Load SS:r16 with pointer from
memory
OFB2/r 1SSr32m16:32 6/12 7,pm=22 Load SS:r32 with pointer from
memory
C4/r LESr16ml16:16 6/12 7pm=22 7pm=21 16+EA Load ES:r16 with pointer
from memory
C4/r LES132,m16:32 6/12 7,pm=22 Load ES:r32 with pointer
from memory
OFB4 /r LFSrilemlé:l6 6/12 7pm=25 Load FSir16 with pointer
from memory
OFB4 /r LFSr32,ml6:32 6/12 7,pm=25 Load FS:x32 with pointer
) . from memory

100 Turbo Assemblier Quick Reference

, 486 386 286
OFB5/t LGSrl6ml6élé 6/12 7pm=25 Load GS:116 with pointer

from memory
OFB5 /r LGSr32,ml6:32 6/12 7,pm=25 Load GS:r32 with pointer
from memory

These instructions read a full pointer from memory and store it in the selected
segment register: register pair. The full pointer loads 16 bits into the segment
register SS, DS, ES, FS, or GS. The other register loads 32 bits if the operand-size
attribute is 32 bits, or loads 16 bits if the operand-size attribute is 16 bits. The
other 16- or 32-bit register to be loaded is determined by the r16 or r32 register
operand specified.

When an assignment is made to one of the segment registers, the descriptor is
also loaded into the segment register. The data for the register is obtained from
the descriptor table entry for the selector given.

A null selector (values 0000-0003) can be loaded into DS, ES, FS, or GS registers
without causing a protection exception. (Any subsequent reference to a
segment whose corresponding segment register is loaded with a null selector to
address memory causes a #GP(0) exception. No memory reference to the
segment occurs.)

LLDT ~ Load local descriptor table register
80286 and greater protected mode only
0O D I T § Z A P C

486 386 286
0F00/2 LLDTr/m16 11/11 20 . 17/19 Load selector r/m16 into LDTR

LLDT loads the local descriptor table register (LDTR). The word operand
{(memory or register) to LLDT should contain a selector to the global descriptor
table (GDT). The GDT entry should be a local descriptor table. If so, then the
LDTR is loaded from the entry. The descriptor registers DS, ES, SS, FS, GS, and
CS are not affected. The LDT field in the task state segment does not change.

The selector operand can be 0; if so, the LDTR is marked invalid. All descriptor
references (except by the LAR, VERR, VERW or LSL instructions) cause a #GP
fault.

LLDT is used in operating system software; it is not used in application
programs.

LMSW Load machine status word
80286 and greater protected mode only

0 b I T § Z A P C

w
=
o
8
| =
E

386 286
0F01 /6 LMSWr/m16 13/13 10/13 3/6 Load r/m 16 into machine status word

Chapter 4, Processor instructions 101

LMSW loads the machine status word (part of CR0) from the source operand.
This instruction can be used to switch to protected mode; if so, it must be
followed by an intrasegment jump to flush the instruction queue. LMSW will
not switch back to real address mode.

LMSW is used only in operating system software. It is not used in application
programs. ‘

LOCK Assert LOCK# signal prefix

0 b I T § 2 A P C

486 386 286 86
Fo LOCK 1 0 0 2 Assert LOCK#signal for the next instruction

The LOCK prefix causes the LOCK# signal of the CPU to be asserted during
execution of the instruction that follows it. In a multiprocessor environment,
this signal can be used to ensure that the CPU has exclusive use of any shared
memory while LOCK# is asserted. The read-modify-write sequence typically
used to implement test-and-set on the 386 is the BTS instruction.

On the 386 and i486, the LOCK prefix functions only with the following
instructions:

BT, BTS, BIR, BTC ~ mem, reg/imm
XCHG reg, mem
XCHG mem, reg
ADD, OR, ADC, SBB, mem, reg/imm
AND, SUB, XOR :

NOT, NEG, INC, DEC mem

An undefined opcode trap will be generated if a LOCK prefix is used with any
instruction not listed above.

XCHG always asserts LOCK # regardless of the presence or absence of the
LOCK prefix.

The integrity of the LOCK is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Locked access is not assured if another CPU processor is executing an
instruction concurrently that has one of the following characteristics:

¢ Isnot preceded by a LOCK prefix.
¢ Isnot one of the instructions in the preceding list.

* Specifies a memory operand that does not exactly overlap the destination
operand. Locking is not guaranteed for partial overlap, even if one memory
operand is wholly contained within another.

102 Turbo Assembler Quick Reference

LODS Load string operand

LODSB LODSD 386 processors and greater
LODSW 0 D I T S8 2z A P C
LODSD

AC LODS m18
AD LODS m16
AD LODS m32
AC LODSB
AD LODSW
AD LODSD5

5 12 Load byte [(E)SI] into AL

5 12 Load word [(E)SI] into AX
Load dword [(E)SI] into EAX

5 12 Load byte DS:[(E)SI] into AL

5 12 Load word DS:[(E)SI] into AX
Load dword DS:[(E)SI] into EAX

(S IG) NG IS)

5
5
5
5
5
5

LODS loads the AL, AX, or EAX register with the memory byte, word, or
doubleword at the location pointed to by the source-index register. After the
transfer is made, the source-index register is automatically advanced. If the
direction flag is 0 (CLD was executed), the source index increments; if the
direction flag is 1 (STD was executed), it decrements. The increment or
decrement is 1 if a byte is loaded, 2 if a word is loaded, or 4 if a doubleword is
loaded.

If the address-size attribute for this instruction is 16 bits, SI is used for the
source-index register; otherwise the address-size attribute is 32 bits, and the ESI
register is used. The address of the source data is determined solely by the
contents of ESI/SI Load the correct index value into SI before executing the
LODS instruction. LODSB, LODSW, LODSD are synonyms for the byte, word,
and doubleword LODS instructions.

LODS can be preceded by the REP prefix; however, LODS is used more
typically within a LOOP construct, because further processing of the data
moved mto EAX, AX, or AL is usually necessary.

LOOP Loop control with CX counter
LOOPcond Loop control with CX/ECX counter
386 processors and greater

0 p I T 8§ Z A P C

86 286 86
E2 cb LOOP rel8 26 1l+m 8noj=4 17n0j=5 DEC Count;jump short if
Count 0
El cb LOOPE rel8 96 1l+m 8noj=4 18noj=6 DEC Count;jump short if
Count 0 and] ZF=1
Elcb LOOPZ rel8 96 1l+m 8noj=4 18noj=6 DEC Countéijump short if
Count 0 and ZF=1

EO0 cb LOOPNErel8 96 11+m 8noj=4 19n0j=5 DEC Count; jump short if
’ Count 0and ZF=0

EOcb LOOPNZrel8 96 1l+m 8noj=4 19ncj=5 DEC Countéjump short if
Count 0 and ZF=0

LOOP decrements the count register without changing any of the flags.
Conditions are then checked for the form of LOOP being used. If the conditions
are met, a short jump-is made to the label given by the operand to LOOP. If the

Chapter 4, Processor instructions 103

addpress-size attribute is 16 bits, the CX register is used as the count register;
otherwise the ECX register is used (386 only). The operand of LOOP must be in
the range from 128 (decimal) bytes before the instruction to 127 bytes ahead of
the instruction. ‘

The LOOP instructions provide iteration control and combine loop index
management with conditional branching. Use the LOOP instruction byloading
an unsigned iteration count into the count register, then code the LOOP at the
end of a series of instructions to be iterated. The destination of LOOP is a label
that points to the beginning of the iteration.

LSL Load segment limit
~ 80286 and greater protected mode only

0 b I T S Z A P C

48 386 286
OF03 /r LSLrl6r/ml16 10/10 pm=20/21 14/16 Load: rl6¢<segment limit, selector
r/m16 (byte granular)
0F03 /r LSL132r/m32 10/10 pm=20/21 Load: r32¢-segment limit, segment

limit, selector r/m32 (byte granular)
OF03 /r LSLrl6r/ml6 10/10 pm=25/26 14/16 Load: rl6¢<—segment limit, segment
limit, selector r/m16 (page granular)

0F03 /r LSLr32r/m32 10/10 pm=26/26 Load: 132¢segment limit selector
r/m32 (page granular)

The LSL instruction loads a register with an unscrambled segment limit, and
sets ZF to 1, provided that the source selector is visible at the CPL weakened by
RPL, and that the descriptor is a type accepted by LSL. Otherwise, ZF is cleared
to 0, and the destination register is unchanged. The segment limit is loaded as a
byte granular value. If the descriptor has a page granular segment limit, LSL
will translate it to a byte limit before loading it in the destination register (shift
left 12 the 20-bit “raw” limit from descriptor, then OR with 00000FFFH).

The 32-bit forms of this instruction store the 32-bit byte granular limit in the
16-bit destination register.

Code and data segment descriptors are valid for LSL.

LTR Load task register
80286 and greater protected mode only

0O p I T § Z A P C

e
-
486

0F00/3 LTRr/ml6 20/20 pm=23/27 17/19 Load EA word into task register

LTR loads the task register from the source register or memory location
specified by the operand. The loaded task state segment is marked busy. A task
switch does not occur.

LTR is used only in operating system software; it is not used in application
programs.

104 Turbo Assembler Quick Reference

MOV

Move data

0

I

88 /r

89 /r

89 /r

8A /r

8B /r

8B /r

8C /r

8D /r

A0

Al

Al

A2
A3
A3

BO+rb

B8+ rw

B8+rd

Cé

MOV r/m8x8
MOV r/m16,r16
MOV r/m32,x32
MOV 18,r/m8
MOV rlﬁ,r /ml6
MOV 132,r/m32
MOV r/m16,5reg

MOV Sreg,r/m16

MOV AL moffs8
MOV AX,moffsl6
MOV
EAX,moffs32

MOV moffs8,AL

MOV moffs16,AX

MOV
moffs32,EAX
MOV reg8,imm8

MOV
regl6,immil6

MOV
reg32,imm32

MOV r/m8,imm8

3/3

.3/9

1

1

2/2

2/4

2/4

2/4

2/2

2/5,pm=18/19

2/2

Chapter 4, Processor instructions

286
2/3

2/3

2/5

2/5

2/3

2/5,pm=17/19

2/3

86
2/9+EA

2/9+EA

2/8+EA

2/8+EA

2/9+EA

2/8+EA

10

10

10

10

4/10+EA

Move byte
re ister into
m byte
Move word
register into
/gl word

Move dword
reglster tor/m
dword

Mover/m
byte into byte
register

Mover/m
word into
word register

Move r/m
dword into
dword register
Move segment
register tor/m
register
Mover/m
word to
segment
register

Move byte at

l:gg offset) to

Move word at

S;e(g:offset) to

Move dword
at(seg:offset) to
EAX

Move AL to
(seg:offset)
Move AX to
(seg:offset)
Move EAX to
(seg:offset)
Move

immediatebyte
to register

dword to
register

Move
immediatebyte
tor/mbyte

105

s
L
286) 86
Cc7 MOV 1t/ 1 2/2 2/3 © 4/10+EA Move
m16,imm1l6 immediate
word tor/m
word
Cc7 MOVzry/ 1 2/2 Move
m32,imnm32) immediate
‘dword tor/m
dword

MOV copies the second operand to the first operand.

If the destination operand is a segment register (DS, ES, SS, etc.), then data from
a descriptor is also loaded into the register. The data for the register is obtained
from the descriptor table entry for the selector given. A null selector (values
0000-0003) can be loaded into DS and ES registers without causing an
exception; however, use of DS or ES causes a #GP(0), and no memory reference
occurs.

A MOV into SS inhibits all interrupts until after the execution of the next
instruction (which is presumably a MOV into eSP).

MOV Move to/from special registers
386 processors and greater

0 D I T 8§ Z A P C

B S
486 386

0F22 /r MOV,CR0,r32 16 Move (register) to (control register)
0F20 /r MOV1r32,CRO/CR2/CR3/CR4 4 6 Move (control register) to (register)
0F22 /r MOV CRO/CR2/CR3/CR4,r32 4 10/4/5
0F21 /r MOVr32,DR0O~3 10 22 Move (debug register) to (register)
0F21 /r MOV r32,DR6/DR7 + 10 14 Move (debug register) to (register)
0F23 /r MOV DRO-3r32 11 22 Move (register) to (debug register)
0F23/r MOV DR6/DR7,r32 11 16 Move (register) to (debug register)
0F24 /r MOV 32, TR6/TR7 4 12 Move (test register) to (register)
0F26 /r MOV TR6/TR7,t32 4 12 Move (register) to (test register)
0F24 /r MOV r32,TR3 3 Move (registers) to (test register3)

These forms of MOV store or load the following special registers in or from a
general-purpose register:

* Control Registers CRO, CR2, CR3, and CR4 (CR4 only on Pentium)

* Debug Registers DRO, DR1, DR2, DR3, DR6, and DR7

¢ Test Registers TR3, TR4, TR5, TR6, and TR7 (not valid on Pentium)

32-bit operands are always used with these instructions, regardless of the
operand-size attribute.

106 Turbo Assembler Quick Reference

MOVS Move data from string to string

MOVSB MOVSD 386 processors and greater
MOVSW 0 D I T S 2 A P C
MOVSD

486 386 286 86

A4 MOVS m8,m8 7 7 5 18 Move byte [(E)SI] to ES:[(E)DI]

A5 MOVSmi6mle 7 7 5 18 Move word [(E)S]] to ES:[(E)DI]

A5 MOVm32,m32 7 7 Move dword [(E)SI] to ES:[(E)DI]

A4 MOVSB 7 7 5 18 Move byte DS:[(E)SI] to ES:[(E)DI]
A5 MOVSW 7 7 5 18 Move word DS:[(E)SI] to ES:[(E)DI]
A5 MOVSD 7 7 Move dword DS:[(E)SI] to ES:[(E)DI]

MOVS copies the byte or word at [(E)SI] to the byte or word at ES: [(E)DI]. The
destination operand must be addressable from the ES register; no segment
override is possible for the destination. A segment override can be used for the
source operand; the default is DS.

The addresses of the source and destination are determined solely by the
contents of (E)SI and (E)DL Load the correct index values into (E)SI and (E)DI
before executing the MOVS instruction. MOVSB, MOVSW, and MOVSD are
synonyms for the byte, word, and doubleword MOVS instructions.

After the data is moved, both (E)SI and (E)DI are advanced automatically. If the
direction flag is 0 (CLD was executed), the registers are incremented; if the
direction flag is 1 (STD was executed), the registers are decremented. The
registers are incremented or decremented by 1 if a byte was moved, 2 if a word
was moved, or 4 if a doubleword was moved.

MOVS can be preceded by the REP prefix for block movement of CX bytes or
words. Refer to the REP instruction for details of this operation.

MOVSX Move with sign-extend
386 processors and greater
0 bp I T 8§ Z A P C

486 386

OF BE /r MOVSXrl6r/m8 3/3 3/6 Move byte to word with sign extend
OF BE /r MOVSXr32r/m8 3/3 3/6 Movebyte to dword
OF BE /r MOVSXr32x/ml6 3/3 3/6 Move word to dword

MOVSX reads the contents of the effective address or register as a byte or a
word, sign-extends the value to the operand-size attribute of the instruction
(16 or 32 bits), and stores the result in the destination register.

i

Chapter 4, Processor instructions 107

MovzX Move with zero-extend
386 processors and greater
O D I T § Z A P C

486 386

OFB6 /r MOVZX r16,x/m8 3/3 3/6 Move byte to word with zero extend
O0FB6 /r MOVZXr32r/m8 3/3 3/6 Movebytetodword
OFB7 /r MOVZXr32r/ml6 3/3 3/6 Move word to dword

MOVZX reads the contents of the effective address or register as a byte or a
word, zero extends the value to the operand-size attribute of the instruction
(16 or 32 bits), and stores the result in the destination register.

MUL Unsigned multiplication of AL or AX
o p I T 8§ Z A P C

486 386 286 86
F6 /4 MULr/m8 13/18, 9-14/12-17 13/16 70-77/76-83+EA Unsigned multiply
13/18 (AX[(AL81r/m
byte)
F7 /4 MULr/mlé 13/26, 9-22/12-25 21/24 118-113/124-139+EA (DX:AX[AX
13/26 * r/m word)
F7 /4 MULr/m32 13/42, 9-38/12-41 ed mu[lvg
13/42
* r/ m dword

MUL performs unsigned multiplication. Its actions depend on the size of its
operand, as follows:

* A byte operand is multiplied by AL; the result is left in AX. The carry and
overflow flags are set to 0 if AH is 0; otherwise, they are set to 1.
¢ A word operand is multiplied by AX; the result is left in DX: AX. DX

contains the high-order 16 bits of the product The carry and overflow flags
are set to 0 if DX is 0; otherwise, they are set to 1.

¢ A doubleword operand is multiplied by EAX and the result is left in
EDX:EAX. EDX contains the high-order 32 bits of the product. The carry and
overflow flags are set to 0 if EDX is 0; otherwise, they are set to 1 (386 only).

NEG Two’s complement negation
0o p I T S Z A P C
* * * * * *

486 ‘ 336 286 .86

F6/3 NEGr/m8 1/3 2/6 2/7 3/16+EA Two’s complement negate r/m byte
F7/3 NEGr/ml6 1/3 2/6 2/7 3/16+4EA Two's complement negate r/m word
F7 /3 NEGr/m32 1/3 2/6 Two’s complement negate r/m dword

108 Turbo Assembkler Quick Reference

NEG replaces the value of a register or memory operand with its two’s
complement. The operand is subtracted from zero, and the result is placed in
the operand.

The carry flag is set to 1, unless the operand is zero, in which case the carry flag
is cleared to 0. :

NOP No operation

0O b I T S Z A P C

486 386 286 86

90 NOP 1 3 . 3 3 No operation

NOP performs no operation. NOP is a one-byte instruction that takes up space
but affects none of the machine context except (E)IP.

NOP is an alias mnemonic for the XCHG (E)AX, (E) AX instruction.

NOT One’s complement negation

0O D I T § Z A P C

486 386 28 86
F6/2 NOTr/m8 1/3 2/6 2/7 3/16+EA Reverse each bit of r/mbyte
¥7 /2 NOTr/ml6 1/3 2/6 2/7 3/16+EA Reverse each bit of r/m word
F7/2 NOTr/m32 1/3 2/6 2/7 Reverse each bit of r/m dword

NOT inverts the operand; every 1 becomes a 0, and vice versa.

OR Logical inclusive OR
0O D I T S Z A P C
0 * & 3 %

486 386 286 86

0Cib OR AL,imm8 1 2 3 4 OR immediate byte to AL
0D iw OR AX,imm16 1 2 3 4 OR immediate word to AX
0Did OREAX;imm32 1 2 OR immediate dword to EAX

80/1ib ORr/m8imm8 1/3 2/7 3/7 4/17+EA ORimmediate byte to r/mbyte
81 /1iw ORr/ml6,imml6 1/3 2/7 3/7 4/17+EA OR immediate word to r/m word

.81 /1id ORr/m32imm32 1/3 2/7 OR immediate dword to r/m

dword

83/1ib ORr/mil6imm8 1/3 2/7 OR sign-extended immediate byte
with r/m word

83/1ib ORr/m32imm8 1/3 2/7 ORssign-extended immediate byte

. with r/m dword

08 /r OR r/m8,r8 1/3 2/6 2/7 3/16+EA ORbyte register tor/mbyte

09 /r ORr/ml6,r16 1/3 2/6 2/7 3/16+EA OR word register to r/m word

09 /r OR r/m32,r32 1/3 2/6 OR dword register to r/m dword

0A /r ORr8,r/m8 /2 2/7 2/7 3/9+EA ORbyteregister tor/mbyte

Chapter 4, Processor instructions 109

486 386 286 86

0B /r OR r16,r/m16 1/2 2/7 2/7 3/9+EA- ORword register to r/m word
0B /r OR 132,r/m32 1/2 2/7 OR dword register to r/m word

OR computes the inclusive OR of its two operands and places the result in the
first operand. Each bit of the result is 0 if both corresponding bits of the
operands are 0; otherwise, each bit is 1.

The optimized form of OR is SETFLAG (see Chapter 3).

ouT Output to port

0o b I T 8§ Z A P C

486 386 286. 86
E6 ib ouT 16,pm=11*/31**, 10,pm=4*/24* 3 10 Outputbyte AL to
imm8,AL vm=29 immediate port
number
E7ib OouT 16,pm=11*/31**, 10,pm=4*/24"* 3 10 Output word AX to
imm8,AX vm=29 immediate port
number v
E7ib ouT 16,pm=11*/31**, 10,pm=4*/25* Output dword EAX
. imm8EAX vm=29 to immediate port
number
EE OUT DX, AL 16,pm=11*/31*, 11,pm=5*/25* 3 8 Output b{te AL to
: vm=29 port number in DX
EF . OUTDXAX 16pm=11*/31**, 11,pm=5*/25* 3 8 Output word AXto
vm=29 port number in DX
EF OUT DX,EAX 16,pm=11*/31*, 11,pm=5*/25* Output dword EAX
vm=29 ’ to port number in DX

*If CPL<IOPL.
**1f CPL > IOPL or if in virtual 8086 mode.

OUT transfers a data byte or data word from the register (AL, AX, or EAX)
given as the second operand to the output port numbered by the first operand. -
Output to any port from 0 to 65535 is performed by placing the port number in
the DX register and then using an OUT instruction with DX as the first operand.
If the instruction contains an eight-bit port ID, that value is zero-extended to

16 bits.

OuTS Outpdt string to port
OUTSB OUTS/OUTSB/OUTSW 80186 and greater
OuUTSW OUTSD 386 processors and greater

OUTSD 0o bp I T § Z A P C

486 386 286

6E OUTSDX,r/m8 17,pm=10%/32*, 14pm=8/28* 5 Output byte [(E)SI]
vm=30 to port in DX

6F OUTS DX,r/m16 17,pm=10%/32**, 14,pm=8*/28"* 5 Output word [(E)SI]
vm=30 to port in DX

6F OUTS DXx/m32 17,pm=10*/32**, 14,pm=8*/28** Ou?ut dword
vm=30 _ [(E)ST] to port in DX

110 Turbo Assembler Quick Reference

486 386 286

6E OUTSB 17,pm=10%/32*, 14,pm=8*/28** 5 ut byte
vm=30 E)SI to port

6F OUTSW 17,pm=10*/32*, 14,pm=8*/28* 5 ut word
vm=30)SI] to port
er in D
6F OUTSD 17,pm=10*/32*, 14,pm=8*/28** Ou ut dword
vm=30 DSD g{:)SI] to port
in

OUTS transfers data from the memory byte, word, or doubleword at the
source-index register to the output port addressed by the DX register. If the
address-size attribute for this instruction is 16 bits, SI is used for the source-
index register; otherwise, the address-size attribute is 32 bits, and ESI is used for
the source-index register.

OUTS does not allow specification of the port number as an immediate value.
The port must be addressed through the DX register value. Load the correct
value into DX before executing the OUTS instruction.

The address of the source data is determined by the contents of source-index
register. Load the correct index value into SI or ESI before executing the OUTS
instruction.

After the transfer, source-index register is advanced automatically. If the
direction flag is 0 (CLD was executed), the source-index register is incremented;
if the direction flag is 1 (STD was executed), it is decremented. The amount of
the increment or decrement is 1 if a byte is output, 2 if a word is output, or 4 if a
doubleword is output.

OUTSB, OUTSW, and OUTSD are synonyms for the byte, word, and
doubleword OUTS instructions. OUTS can be preceded by the REP prefix for
block output of CX bytes or words. Refer to the REP instruction for details on
this operation.

POP Pop a word from the stack

O b I T S Z A P C

8F /0 POP m16 6 5 5 17+EA Pop éop of stack into memory
wor
8F/0 POPm32 - 6 5 Pop top of stack into memory
wordp
58+rw POPrl6 4 4 5 8 Pop top of stack into word
register
58+rd POP 132 4 4 Pop top of stack into dword
) register
1F POP DS 3 7pm=21 5pm=20 8§ Pop top of stack into DS
07 POP ES 3 7pm=21 5pm=20 8 Pop top of stack into ES
17 POP SS 3 7pm=21 5pm=20 8 Pop top of stack into SS
OFA1 POPFS 3 7pm=21 Pop top of stack into FS
OFA9 POPGS 3 7pm=21 Pop top of stack into GS |

Chapter 4, Processor instructions 111

POP replaces the previous contents of the memory, the register, or the segment
register operand with the word on the top of the stack, addressed by SS:SP
(address-size attribute of 16 bits) or SS:ESP (address-size attribute of 32 bits).
The stack pointer SP is incremented by 2 for an operand-size of 16 bits or by

4 for an operand-size of 32 bits. It then points to the new top of stack.

POP CS is not an instruction. Popping from the stack into the CS register is
accomplished with a RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the value
popped must be a selector. In protected mode, loading the selector initiates
automatic loading of the descriptor information associated with that selector

" into the hidden part of the segment register; loading also initiates validation of
both the selector and the descriptor information.

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register
without causing a protection exception. An attempt to reference a segment
whose corresponding segment register is loaded with a null value causes a
general protection fault. No memory reference occurs. The saved value of the
segment register is null.

A POP SS instruction inhibits all interrupts, including NMI, until after
execution of the next instruction. This allows sequential execution of POP SS
and POP ESP instructions without danger of having an invalid stack during an
interrupt. However, use of the LSS instruction is the preferred method of
loading the SS and ESP registers. -

Note: Turbo Assember extends the syntax of the POP instruction to facilitate
popping multiple items in sequence. The items popped can include any legal
POP value, including registers, immediate values, and memory locations. This
feature does not actually affect the code generated.

POPA Pop all general registers
POPAD POPA 80186 processors and greater
POPAW POPAD 386 processors and greater

0 b I T § Zz A P C

486 386 286

61 POPA 9 24 19 Pop DI, SI, BP, BX, DX, CX, AX
61 POPAD 9 24 Pop ED], ESI, EBP, EBX, EDX, ECX, EAX
61 POPAW 9 24 19 Pop DI, SI, BP, BX, DX, CX, AX

POPA pops the eight 16- or 32-bit general registers depending on the segment
size. However, the SP value is discarded instead of loaded into SP. POPA
reverses a previous PUSHA, restoring the general registers to their values
before PUSHA was executed. The first register popped is DL

POPAD pops the eight 32-bit general registers. The ESP value is discarded
instead of loaded into ESP. POPAD reverses the previous PUSHAD, restoring
the general registers to their values before PUSHAD was executed. The first
register popped is EDIL

POPAW pops WORD—s1zed registers. (Can only be used for VERSION T320 or
higher.)

112 Turbo Assembler Quick Reference

POPF Pop from stack into FLAGS or EFLAGS register
POPFD POPFD 386 processors and greater

POPFW 6 b I T S Z A P C

* * * * * * * *

9D POPF 9,pm=6 5 5 8 Pop top of stack into FLAGS
9D POPFD 9,pm=6 5 Pop top of stack into EFLAGS
9D POPFW 9pm=6 5 5 8 Pop top of stack into FLAGS

POPF/POPFD pops the word or doubleword on the top of the stack and stores
the value in the flags register. If the operand-size attribute of the instruction is
16 bits, then a word is popped and the value is stored in FLAGS. If the operand-
size attribute is 32 bits, then a doubleword is popped and the value is stored in
EFLAGS.

Note that bits 16 and 17 of EFLAGS, called VM and RF, respectively, are not
affected by POPF or POPFD.

The I/O privilege level is altered only when executing at privilege level 0. The
interrupt flag is altered only when executing at a level at least as privileged as
the I/O privilege level. (Real-address mode is equivalent to privilege level 0.) If
a POPF instruction is executed with insufficient privilege, an exception does not
occur, but the privileged bits do not change.

POPFW always pops into FLAGS WORD-style. (Can only be used for
VERSION T320 or higher.)

PUSH Push operand onto the stack

0o p I T 8§ Z A P C

486 386 286 86

FF /6 PUSH m16 4 5 5 16+EA Push memory word
FF /6 PUSH m32 4 5 Push memory dword
50+ /r PUSH r16 1 2 3 1 Push register word
50+ /r PUSH r32 1 2 Push register dword
6A PUSHimm8 1 2 3 Push immediate byte
68 PUSH imm16 1 2 3 Push immediate word
68 PUSHimm32 1 2 Push immediate dword
OE PUSH CS 3 2 3 10 Push CS

16 PUSH SS 3 2 3 10 Push SS

1E PUSH DS 3 2 3 10 Push DS

06 PUSH ES 3 2 10 Push ES

OF A0 PUSH FS 3 2 Push FS

OF A8 PUSH GS 3 2 Push GS

PUSH decrements the stack pointer by 2 if the operand-size attribute of the
instruction is 16 bits; otherwise, it decrements the stack pointer by 4. PUSH then
places the operand on the new top of stack, which is pointed to by the stack
pointer. -

Chapter 4, Processor instructions 113

The 386 PUSH ESP instruction pushes the value of the ESP as it existed before
the instruction. The 80286 PUSH SP instruction also pushes the value of SP as it

* existed before the instruction. This differs from the 8086, where PUSH SP
pushes the new value (decremented by 2).

Note: Turbo Assember extends the syntax of the PUSH instruction to facilitate
pushing multiple items in sequence. The items pushed can include any legal
PUSH value, including registers, immediate values, and memory locations.
This feature does not actually affect the code generated. In addition, the PUSH
instruction allows constant arguments even when generating code for the 8086
processor. Such instructions are replaced in the object code by a 10-byte
sequence that simulates the 80186/286/386 PUSH immediate value instruction.

PUSHA Push all general registers
PUSHAD PUSHA 80186 processors and greater
PUSHAW PUSHAD 386 processors and greater

0O b I T S Z A P C

486 386 286

60 PUSHA 11 18 17 Push AX,CX,DX,BXoriginal SP,BP,SI
60 PUSHAD (11 18 Push EAX,ECX,EDX,EBX
60 PUSHAW 11 18 17 Push AX,CX,DX,BX,original SP,BP,SI

PUSHA and PUSHAD save the 16-bit or 32-bit general registers, respectively,
on the stack depending on the segment size. PUSHA decrements the stack
pointer (SP) by 16 to hold the eight word values. PUSHAD decrements the
stack pointer (ESP) by 32 to hold the eight doubleword values. Because the
registers are pushed onto the stack in the order in which they were given, they
appear in the 16 or 32 new stack bytes in reverse order. The last register pushed
is DI or EDIL.

PUSHAW always pushes WORD-style (Can only be used for VERSION T320
or higher.)

PUSHF Push flags register onto the stack
PUSHFD PUSHFD 386 processors and greater

PUSHFW 0 D I T 8§ Z A P C

486 386 286 86

9C PUSHF 4pm=3 4 3 10 Push FLAGS
9C PUSHFD 4pm=3 4 Push EFLAGS
9C PUSHFW 4pm=3 4 3 10 Push FLAGS

PUSHF decrements the stack pointer by 2 and copies the FLAGS register to the
new top of stack; PUSHFD decrements the stack pointer by 4, and the 386
EFLAGS register is copied to the new top of stack which is pointed to by
SS:ESP.

PUSHFW always pops WORD-sized registers. (Can only be used for VERSION
T320 or higher.)

114 Turbo Assembler Quick Reference

RCL
RCR
ROL
ROR

Rotate

0 D

D2 /2

Co/2ib

D1 /2

D3 /2

Cl1/2ib

D1 /2

D3 /2

Cl/2ib

Do /3

D2/3

C0/3ib

D1/3

D3 /3

C1/3ib

D1/3

D3 /3

RCL r/m§,1
RCLr/m8,CL
I;CL r/m8,imm8
RCLr/m1l6,1

RCL r/m16,CL
RCL r/m16, imm8
RCLr/m32,1

RCL r/m32,CL
RCL r/m32, imm8
RCRr/m8,1
RCRr/m8,CL
RéR r/m8,imm8
RCR r/m16,1
RCRr/m16,CL
RCR r/mi6, imm8
RCR r/m32,1

RCRr/m32,CL

486
3/4

8-30/9-31

8-30/9-31

3/4

8-30/9-31

8-30/9-31

3/4

8-30/9-31

8-30/9-31

3/4

8-30/9-31

8-30/9-31

3/4

8-30/9-31

8-30/9-31

3/4

8-30/9-31

386
9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

9/10

Chapter 4, Processor instructions

286
2/7

5/8

5/8

2/7

5/8

5/8

2/7

5/8

5/8

2/7

5/8

5/8

86
2/15+EA

lE)e:r bit/(20+4
per it)}+EA
2/15+EA

8+4 per bit/(20+4
per bit)+EA

2/15+EA

8+4 per bit/(20+4
per bit)+EA
2/15+EA

8+4 per bit/(20+4
per bit)+EA

Rotate 9 bits
(CE,r/mbyte)
left once

Rotate 9 bits
(CFr/m byte)
left CL times
Rotate 9 bits
(CF,r/mbyte)
left imm8 times
Rotate 17 bits
(CEx/m word)
left once

Rotate 17 bits (CF,
r/mword) leftCL
times

Rotate 17 bits
(CF,x/m word))
left imm8 times

Rotate 33 bits
(CF,r/m dword)
left once

Rotate 33 bits
(CF,r/m dword)
left CL times

Rotate 33 bits
(CE,r/m dword)
left, imm8 times

Rotate 9 bits
(CF,r/mbyte)
right once

Rotate 9 bits
(CFr/mbyte)
right CL times
Rotate 9 bits
(CF,r/mbyte)
right imm§ times
Rotate 17 bits
(CF,r/m word)
right once
Rotate 17 bits
(CF,r/m word)
right CL times
Rotate 17 bits
(CF,r/m word)
right imm8 times
Rotate 33 bits
(CF,x/m dword)
right once
Rotate 33 bits
(CEr/m dword)
right CL times

115

C1/3ib RCRr/m32,imm8. 8-30/9-31

D0 /0
D2 /0

€0 /0ib
D1/0
D3 /0
C1/0ib
D1 /0
D3 /0
C1/0ib

D0 /1

D2 /1
Co /1ib
D1 /1
D3 /1
C1/1ib
Di/1
D3 /1

Cl/1ib

ROLr/m8,1
ROLr/m8CL

ROL r/m8, imm8
ROL r/m16,1

ROL r/m16,CL
ROL r/m16, imm8
ROL r/m32,1

ROL r/m32,CL
ROL r/m32, imm8

ROR r/m8,1

RORr/m8,CL
ROR r/m8, imm8 ‘
RORr/m16,1
ROR r/m16,CL
ROR1/! m16, imm38
ROR r/m32,1
ROR r/m32,CL

ROR r/m32,imm38

A
486

3/4
3/4

2/4
3/4
3/4
2/4
3/4
3/4
2/4

3/4

3/4
2/4
3/4
3/4
2/4
3/4
3/4

2/4

9/10

3/7

3/7

3/7
3/7
3/ 7\
3/7
3/7
3/7
3/7
3/7
3/7
3/7
3/7
3/7
3/7
3/7
3/7

3/7

286

2/7
5/8

5/8

2/7

5/8

5/8

2/7

- 5/8

5/8

2/7

5/8

5/8

86

2/15+EA

8+4 per bit/(20+4
per bit}+EA

2/15+EA

8+4 per bit/(20+4
per bit}+EA

2/ 15+EA

8+4 ger blt/ (20+4
it+EA
2/15+EA

8+4 per bit/(20+4
perbit}+EA

Rotate 33 bits
(CE,r/m dword)
right imma8 times
Rotate 8 bitsr/m
byte left once

Rotate 8 bitsr/m
byte left CL times

Rotate 8 bitsr/m
byte left imm8
times

Rotate 16 bits
r/m word left
once

Rotate 16 bits :
r/m word left CL.
times

Rotate 16 bitr / m
word left imm8
times

Rotate 32 bits
r/m dword left
once

Rotate 32 bits
r/m dword left
CL times

Rotate 32 bits
r/m dword left
imms8 times

Rotate 8 bits r/m
byte right once

Rotate 8 bits r/m
byte right CL
times

Rotate 8 bits r/m
word right imm8
times

Rotate 16 bits
r/m word right
once

Rotate 16 bits
r/m word right
CL times

Rotate 16 bit r/m
word right imm8
times

Rotate 32 bits
r/m dword right
once

Rotate 32 bits
r/m dword right
CL times

Rotate 32 bits
r/m dword right
imms8 times

Add 1 dlock to the times shown for each rotate made (80286 only).

Each rotate instruction shifts the bits of the register or memory operand given.
The left rotate instructions shift all the bits upward, except for the top bit, which

116 Turbo Assembler Quick Reference

is returned to the bottom. The right rotate instructions do the reverse: The bits
shift downward until the bottom bit arrives at the top.

For the RCL and RCR instructions, the carry flag is part of the rotated quantity.
RCL shifts the carry flag into the bottom bit and shifts the top bit into the carry
flag; RCR shifts the carry flag into the top bit and shifts the bottom bit into the
carry flag. For the ROL and ROR instructions, the original value of the c

flag is not a part of the result, but the carry flag receives a copy of the bit that
was shifted from one end to the other.

The rotate is repeated the number of times indicated by the second operand,
which is either an immediate number or the contents of the CL register. To
reduce the maximum instruction execution time, the 80286/386 does not allow
rotation counts greater than 31. If a rotation count greater than 31 is attempted,
only the bottom five bits of the rotation are used. The 8086 does not mask
rotation counts. The 386 in virtual 8086 mode does mask rotation counts.

The overflow flag is defined only for the single-rotate forms of the instructions
(second operand = 1). It is undefined in all other cases. For left shifts /rotates,
the CF bit after the shift is XORed with the high order result bit. For right
shifts/rotates, the high-order two bits of the result are XORed to get OF.

RDMSR Read from Model Specific Register
Pentium processors and greater
0O D I T 8 Z A P C

Pentium

OF 32 RDMSR 20-24 Read Model Specific Register indicated by ECX into
EDX:EAX

The value in ECX specifies one of the 64-bit Model Specific Registers of the
Pentium processor. The content of that Model Specific Register is copied into
EDX:EAX. EDX is loaded with the high-order 32 bits, and EAX is loaded with
the low-order 32 bits.

The following values are used to select model specific registers on the Pentium
processor:

the exception.

O1h Machine Check Type Stores cycle type of cycle
) causing the exception.

Other values used to preform cache, TLB and BTB testing and performance
monitoring, are available under a non-disclosure agreement from Intel.

Protected mode exceptions: #GP(0) if either the current privilege level isnot 0 or
the value in ECX does not specify a Model-Specific Register that is
. implemented in the Pentium processor.

Real mode exceptions: #GP if the value in ECX does not specify a Model—
Specific Register that is implemented in the Pentium processor.

Virtual 8086 mode exceptions: #GP(0) if instruction execution is attempted.

Notes: This instruction must be executed at privilege level 0 or in real-address
mode; otherwise a protectlon exception will be generated.

Chapter 4, Processor instructions 117

If less than 64 bits are implemented in a model specific register, the value
returned to EDX:EAX, in the locations corresponding to the unimplemented
bits, is unpredictable.

RDMSR is used to read the content of Model-Specific Registers that control
functions for testability, execution tracing, performance monitoring and
machine check errors. Refer to the Pentium Processor Data Book for more
information or contact Intel.

The values 3h, OFh, and values above 13h are reserved. Do not execute RDMSR
with reserved values in ECX.

RDTSC (Proprietary instruction. Contact Intel for more information.)
Pentium processors and greater
REP Repeat following string operation
REPE 0 D I T S Z A P C
REPZ '
REPNE
REPNZ
486 386 286 86
F36C REPINS 16+8(E)CX, 13+6*(B)CX, 5+4*CX Input (B)CX
, r/m8,DX =10-8(E) E)Cx+ / gm—7+6*(E)CX/ ytes from
0+8(E)CX* 7+6%1 *E)CX* Eort DX into
29+8(E)CX S:[(E)DI]
F36D REPINS 16+8(E)CX, 13+6*(E)CX, 5+4*CX Input (E)CX
r/m16,DX m—10+8(E cx*1 / m=7+6*E)CX/ words from
+8(E)CX* 746+ HE)CX*2 ort DX into
0rsEeK Esi®Dn
F36D REPINS 16+8(E)CX, 13+6*(E)CX, Input (E)CX
r/m32,DX m-10+8(E2CX"1 / Em—7+6*(E)CX/ dwords from
gO+8(E)CX* 6*1+E)CX*2 : Eort DX into
29+8(E)CX S[(E)DI]
F3A4 REPMOVS 59134 1243(E) 5+4*E)CX 5+4*CX 9+17CX Move (E)CX
m8,m8 CX* bytes from
[(E)SI] to
ES:{(E)DI}
F3A5 REPMOVS 5913*1243(F) 5+4*E)CX 5+4*CX 9+17*CX Move (E)CX
mlemle CX*® words from
[(E)SI] to
ES:[(E)DI]
F3A5 = REPMOVS 5%,13*1243(E) 5+4*(E)CX Move (E)CX
m32,m32 CX®) dwords from
[(E)SI] to
ES:[(E)DI]
E3 6E REP OUTS 17+5(E)CX 5+12*(E)CX, 5+4*CX Output (E)CX
DX,r/m8 =11+5(E ch*l/ m=6+5*(E) bytes from
S145E)CX >>§ /26+5*() (%)51] to port
F36F REPOUTS 17+5(E)CX 5+12*(E)CX, 5+4*CX Output E)CX
DX,r/m16 gm—11+5(ch*l / pm=6+5*(F) words from
1+5(E)CX* C§*/226+5* E) [(E)SI] to port
F36F REPOUTS 17+5(E)CX, 5+12*(E)CX . Output(E)CX
DX,r/m32 m_11+5(152)c><*1 / E m=6+5*(E dwords from
1+5(E)CX* X/ 26+5* *(E) {_Sl)i()SI] to port

118 Turbo Assembler Quick Reference

F2 AD

F3 AA
F3 AB
F3 AB

F3 A6

F3 A7

F3 A7

F3 AE
F3 AF
F3 AF
F2 A6

F2 A7

F2 A7

REP LODS
m8

REP LODS
mi6é

REP L.ODS
m32

REP STOS
m8

REP STOS
mlé6

REP STOS
m32

REPE
CMPS
m8,m8

REPE
CMPS
ml6,m16

REPE
CMPS
m32,m32

REPE
SCASm8

EPE SCAS
mlé

REPE
SCAS m32

REPNE
CMPS
m8,m8

REPNE
CMPS
mlé,mlé

REPNE
CMPS
m32,m32

REPNE
SCASm8

5%, 74+4(E)CX*

53 7.+4(E)CX*6
5% 7.+ 4(E)CX*6

54 744(E)CX*®
5% 744(E)CX*0
5% 7.+4(E)CX*6

5% 747(E)CX*6
5% 747(B)CX*
5% 7.47(B)CX*6

5% 7+5(E)CX*6
5% 745(E)CX*

593 7+5(E)CX*6

5% 747(E)CX*6
53 747(E)CX*6
583 74 7(E)CX*6

5% 745(E)CX*

5+54E)CX

5+54(E)CX

5+5HE)CX

5+9*N

- 5+9*N

5+9*N

5+8"N

5+8*N

5+8*N

5+9*N

5+9*N

5+9*N

5+8"N

Chapter 4, Processor instructions

4+3*CX

4+3*CX

5+9*N

5+9*N

5+8*N

5+8*N

5+9*N

5+49*N

5+8*N

9+10*CX

9+10*CX

9+22*N

9+22*N

9+15*N

9+15*N

9+22*N

9+22*'N

9+15*N

Load E)CX
bytes from
[)SI] to AL

Load (E)CX
words from
[(E)SI] to AX
Load (E)CX
dwords from
[(BE)SI] to EAX
Fﬂl (E)CX

es at

DI]

F111 (E)CX
words at
ES:[(E)DI]
with AX

Fill (B)CX
dwords at
ES:[(E)DI]
with EAX
Find
nonmatchmg

E>S’ :[(fDI] and

Fmd
nonmatching
words in

ES: [(EfDI] and
[(B)ST

Find
nonmatching
dwords in

G

Fmd non-AL
te starting at
B
Find non-AX
word starting
at ES:[(E)D]]
Find non-
EAX dword
startin
ES:[(E)%)
Find
matching
bytes in
[(EfDI] and
(E)SI

Find
matching
words in
ES:[(E)DI] and
(Bst

Find
matching
dwords in
ES:[(EfDI] and
[(E)SL

Find AL

119

486 386 286 86

F2 AF REPNE 543 715(E)CX* 5+8*N ‘ 5+8*N 9+415*N Find AX
SCASm16

F2AF REPNE 5% 745(E)CX* 5+8*N Find EAX
SCAS m32

*1 If CPL <IOPL

*2 If CPL > IOPL

*31f (E) CX =0

*41f () CX =1

*5 If (E) CX 1

*6 If (E) CX 0

REP, REPE (repeat while equal), and REPNE (repeat while not equal) are
prefixes that are applied to string operations. Each prefix causes the string
instruction that follows to be repeated the number of times indicated in the
count register or (for REPE and REPNE) until the indicated condition in the
zero flag is no longer met.

Synonymous forms of REPE and REPNE are REPZ and REPNZ, respectlvely

The REP prefixes apply only to one string instruction at a time. To repeat a
block of instructions, use the LOOP instruction or another looping construct.

The precise action for each iteration is as follows:

1 If the address-size attribute is 16 bits, use CX for the count register; if the
address-size attribute is 32 bits, use ECX for the count register.

Check CX. If it is zero, exit the iteration, and move to the next instruction.
Acknowledge any pending interrupts.

Perform the string operation once.

Decrement CX or ECX by one; no flags are modified.

Check the zero flag if the string operation is SCAS or CMPS. If the repeat
condition does not hold, exit the iteration and move to the next instruction.
Exit the iteration if the prefix is REPE and ZF is 0 (the last comparison was
not equal), or if the prefix is REPNE and ZF is one (the last comparison was
equal).

7 Return to step 1 for the next iteration.

Repeated CMPS and SCAS instructions can be ex1ted if the count is exhausted
or if the zero flag fails the repeat condition. These two cases can be
dlstmgulshed by using either the JCXZ instruction, or by using the conditional
jumps that test the zero flag (JZ, JNZ, and JNE).

D oW

RET Return from procedure

0o p I T S Z A P C

386
C3 ' RET 5 10+m 11 16 Return (near) to
caller
CB RET 13,pm=18 18+mpm=32+m 15pm=25 26 Return (far) to caller,
same privilege
CB RET 13,pm=33 pm=68 55 Return (far)

120 Turbo Assembler Quick Reference

C2iw RETimmlé 5 10+m 11 20 Return (near)
CAiw RETimml6 14,pm=17 18+mpm=32+m 15pm=25 25 Return (far) pop
imm16 bytes

CAiw RETimml6 14pm=33 pm=68 55 Return (far)

RET transfers control to a return address located on the stack. The address is
usually placed on the stack by a CALL instruction, and the return is made to the
instruction that follows the CALL.

The optional numeric parameter to RET gives the number of stack bytes
(OperandMode 16) or words (OperandMode = 32) to be released after the
return address is popped. These items are typically used as input parameters to
the procedure called.

For the intrasegment (near) return, the address on the stack is a segment offset,
which is popped into the instruction pointer. The CS register is unchanged. For
the intersegment (far) return, the address on the stack is a long pointer. The
offset is popped first, followed by the selector.

In real mode, CS and IP are loaded directly. In protected mode, an intersegment
return causes the processor to check the descriptor addressed by the return
selector. The AR byte of the descriptor must indicate a code segment of equal or
lesser privilege (or greater or equal numeric value) than the current privilege
level. Returns to a lesser privilege level cause the stack to be reloaded from the:
value saved beyond the parameter block. *

The DS, ES, FS, and GS segment registers can be set to 0 by the RET instruction
during an inter-level transfer. If these registers refer to segments that cannot be
used by the new privilege level, they are set to 0 to prevent unauthorized access
from the new privilege level.

RSM Resume from System Management Mode
Pentium processors and greater

0 D I T § Z A P C
2 T T T T T T

OF AA RSM 83 Resume operation of interrupted program.

Resume operation of a program by a System Management Mode (SMM)
interrupt. The processor state is restored from the dump created upon entrance
to SMM. Note, however, that the contents of the model-specific registers are not
affected. The processor leaves SMM and returns control to the interrupted
application or operating system. If the processor detects any invalid state
information, it enters the shutdown state. This happens in any of the following
situations:

¢ The value stored in the State Dump Base field is not a 32 Kbyte aligned
address.

® Any reserved bit in CR4 is set to 1.

* Any combination of bits in CRO is illegal; namely, (PG=1 and PE=0) or
(NW=1 and CD=0).

Chapter 4, Processor instructions 121

Protected mode, Real mode, and Virtual 8086 mode exception: #UD if an
attempt is made to execute this instruction when the processor is not in SMM.

Notes: for more information about SMM and the behavior of the RSM
instruction, see the Pentium Processor User’s Manual (available from Intel).

SAHF Store AH into Flags

¢ b I T S Z A P C
L

%@%sﬁ

9E SAHF 2 3 2 4 Store AH flags SF ZF xx AF xx PF xx CF

SAHF loads the flags listed above with values from the AH reglster, from bits 7,
6, 4,2 and 0, respectively.

R

SAL Shift instructions

SAR 0o D I T 8 2z & P C
SHL) * * * ? * *
SHR o

486 386 286 86

D0/4 SALr/m81 3/4 3/7 2/7 2/15+EA Multiply r/m byte by 2
D2/4 SALr/m8CL 3/4 3/7 5/8 8+ ;&blt/ (20+4 per Multiply r/m byte by 2,
bit)+ CL times
C0/4ib SALr/m8imm8 2/4 3/7 5/8 Multiply r/m byte by 2
D1 /4 SALr/ml6,1 3/4 3/7 2/7 2/15+EA Multiply r/m word by 2
D3 /4 SALr/ml6,CL 3/4 3/7 5/8 8+4perbit(20+4per Multiply r/m word by 2,
. bit)+EA CL times
Cl/4ib SALr/ 2/4 3/7 5/8 Multiply r/m word by 2
m16,imm8 i
D1 /4 SALr/m32,1 3/4 3/7 Multiply r/m dword by 2
D3 /4 SALr/m32,CL 3/4 3/7 Multiply r/m dword by 2
Cl/4ib SALr/ 2/4 3/7 Multiply r/m dword by 2
m32,imm8
Do /7 SARr/m8,1 3/4 3/7 2/7 2/15+EA %igrzwd divide** r/m byte
y
D2 /7 SARr/m8CL 3/4 3/7 5/8 8+4perbit(20+4per Signed divide** r/m byte
bit)+EA by 2
C0/7ib SARr/ 2/4 3/7 5/8 ‘ Signed divide** r/m byte
m8imm8 by2
D1/7 SARr/m1l6,1 3/4. 3/7 2/7 2/15+EA %igned divide** r/m word
y 2
D3/7 SARr/ml16CL 3/4 3/7 5/8 %er bit (20+4 per Signed divide** r/m word
b1t + by2
Cl1/7ib SARr/ 2/4 3/7 5/8 : Signed divide** r/m word
ml6imm8 by 2
D1 /7 SARr/m32,1 3/4 3/7 Signed d.1v1de** r / m
dword by 2

122 Turbo Assembler Quick Reference

486 386 286 86

D3 /7 SARr/m32,CL 3/4 3/7 Signed divide*™* r/m
dword by 2,
CL times
C1/7 SAR 1/ 2/4 3/7 Signed divide* r/m
m32,imm38 dword by 2
DO /4 SHL r/m8,1 3/4 3/7 2/7 2/15+EA Multiply r/m byte by 2
D2 /4 SHLr/m8CL 3/4 3/7 5/8 8+4perbit(20+4per Multiply r/m byteby2,
bit)+PEA CL times
C0/4ib SHLr/ 2/4 3/7 5/8 Multiply r/m byte by 2
m8,imm8
D1 /4 SHL r/m16,1 3/4 3/7 2/7 2/15+EA Muitiply r/m word by 2
D3 /4 SHLr/m16,CL 3/4 3/7 5/8 8+4perbit(20+4per Multiply r/m word by 2,
bit)+EA CL times
Cl/4ib SHLr/ 2/4 3/7 5/8 Multiply r/m word by 2
ml6,imm8
Dl/4 SHLr/m321 3/4 3/7 Multiply r/m dword by 2
D3 /4 SHLr/m32,CL 3/4 3/7 Multiply r/m dword by 2
Cl/4ib SHLr/ 2/4 3/7 Multiply r/m dword by 2
m32,imm8
DO /5 SHR r/m8,1 3/4 3/7 2/7 2/15+EA En;igned divider/mbyte
Y
D2 /5 SHRr/m8CL 3/4 3/7 5/8 8+4perbit(20+4per Unsigned divider/mbyte
bit)+EA by 2
C0/5ib SHRr/ 2/4 3/7 5/8 Unsigned divider/mbyte
m8,imm8 by 2
D1 /5 SHR r/m16,1 3/4 3/7 2/7 2/15+EA Uns?ned divide r/m
word by 2
D3 /5 SHRr/ml16CL 3/4 3/7 5/8 8+4 ﬁbit (20+4 per Unszfned divide r/m
bit)+ word by 2
C1/5ib SHRr/ 2/4 3/7 5/8 Unsi?ned divide r/m
ml6,imm8 word by 2
D1/5 SHRr/m32,1 3/4 3/7 Unsigned divider/m
dword by 2
D3 /5 SHRr/m32,CL 3/4 3/7 Unsigned divide r/m
dword by 2
C1/5ib SHRr/ 2/4 3/7 Unsigned divide r/m
m32,imm8 v dword by 2

**Not the same division as IDIV; rounding is toward negative infinity.

SAL (or its synonym, SHL) shifts the bits of the operand upward. The high-
order bit is shifted into the carry flag, and the low-order bit is set to 0.

SAR and SHR shift the bits of the operand downward. The low-order bit is
shifted into the carry flag. The effect is to divide the operand by 2. SAR
performs a signed divide with rounding toward negative infinity (not the same
as IDIV); the high-order bit remains the same. SHR performs an unsigned
divide; the high-order bit is set to 0.

The shift is repeated the number of times indicated by the second operand,
which is either an immediate number or the contents of the CL register. To
reduce the maximum execution time, the 80286/386 does not allow shift counts
eater than 31. If a shift count greater than 31 is attempted, only the bottom
ive bits of the shift count are used. (The 8086 uses all eight bits of the shift
count.)

Chapter 4, Processor instructions 123

The overflow flag is set only if the single-shift forms of the instructions are
used. For left shifts, OF is set to 0 if the high bit of the answer is the same as the
result of the carry flag (that is, the top two bits of the original operand were the
same); OF is set to 1 if they are different. For SAR, OF is set to 0 for all single
shifts. For SHR, OF is set to the high-order bit of the original operand.

SBB Integer subtraction with borrow
0 D I T § Z A P C
* * * * * *

S
Giidnai

R

1Cib SBB AL,imm8 1 2 3 4 Subtract with borrow ﬁrunediate

byte from AL

1Diw SBB AX,immlé6 1 2 3 4 Subtract with borrow immediate
word from AX

1Did SBBEAX,imm32 1 2 Subtract with borrow immediate

- dword from EAX

80 /3ib SBBr/m8imm8 1/3 2/7 3/7 4/17+EA Subtract with borrow immediate
byte from r/m byte

81 /3iw SBBr/ml6,imml16 1/3 2/7 3/7 4/17+EA Subtract with borrow immediate
word from r/m word

81 /3id SBBr/m32imm32 1/3 2/7 Subtract with borrow immediate
dword from r/m dword

83 /3ib SBBr/ml6,imm8 1/3 2/7 3/7 4/17+EA Subtract with borrow sign-extended
immediate byte from r/m word

83 /3ib SBBr/m32,imm8 1/3 2/7 Subtract with borrow sign-extended
immediate byte from r/m dword

18 /r SBB r/m8,18 1/3 2/6 2/7 3/16+EA Subtract with borrow byte register
from r/m byte

19 /r SBBr/mlé,r16 1/3 2/6 2/7 3/16+EA Subtract with borrow word register)
from r/m word

19 /r . SBBr/m32,32 1/3 . 2/6 Subtract with borrow dword register
from r/m dword

1A /r SBBr8r/m8 1/2 2/7 2/7 3/9+EA Subtract with borrow byte register
from r/m byte

1B/r SBBrl6r/ml6 172 2/7 2/7 3/9+EA Subtract with borrow word register

s« from r/m word

1B/r SBB132,r/m32 172 2/7 Subtract with borrow dword register

from r/m dword

SBB adds the seéond operand (DEST) to the carry flag (CF) and subtracts the
result from the first operand (SRC). The result of the subtraction is assigned to
the first operand (DEST), and the flags are set accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended.

124 Turbo Assembler Quick Reference

SCAS Compare string data
SCASB SCASD 386 processors and greater

SCASW 0 D I T 8§ 2 A P C
SCASD '

* * * * *

486 386 286 86

AE SCASm8 6 7 7 15 Compare bytes AL - ES:[DI]

AF SCASml6 6 7 7 15 Compare words AX - ES: [DI]
AF SCASm32 6 7 Compare dwords EAX — ES: [DI]
AE SCASB 6 7 7 15 Compare bytes AL - ES:[DI]

AF SCASW 6 7 7 15 Compare words AX —ES: [DI]
AF SCASD 6 7 Compare dwords EAX — ES: [DI}

SCAS subtracts the memory byte or word at the destination register from the
AL, AX or EAX register. The result is discarded; only the flags are set. The
operand must be addressable from the ES segment; no segment override is
possible.

If the address-size attribute for this instruction is 16 bits, DI is used as the
destination register; otherwise, the address-size attribute is 32 bits and EDI is
used.

The address of the memory data being compared is determined solely by the
contents of the destination register, not by the operand to SCAS. The operand
validates ES segment addressability and determines the data type. Load the
correct index value into DI or EDI before executing SCAS.

After the comparison is made, the destination register is automatically updated.
If the direction flag is 0 (CLD was executed), the destination register is
incremented; if the direction flag is 1 (STD was executed), it is decremented.
The increments or decrements are by 1 if bytes are compared, by 2 if words are
compared, or by 4 if doublewords are compared.

SCASB, SCASW, and SCASD are synonyms for the byte, word and doubleword
SCAS instructions that don’t require operands. They are simpler to code, but
provide no type or segment checking.

SCAS can be preceded by the REPE or REPNE prefix for a block search of CX or
ECX bytes or words. Refer to the REP instruction for further details.

SETcc Byte set on condition
386 processors and greater

¢ D I T S§ Z A P C

486 386
0F 97 SETA r/m8 4/3 4/5 Setbyteif above (CF=0 and ZF=0)
0F 93 SETAE r/m8 4/3 4/5 Set byte if above or equal (CF=0)
0F 92 SETB r/m8 4/3 4/5 Set byte if below (CF=1)
0F 96 SETBE r/m8 4/3 4/5 Set byte if below or equal (CF=1 or ZF=1)
0F 92 SETC r/m8 4/3 4/5 Setif carry (CF=1) '
OF 94 SETEr/m8 4/3 4/5 Setbyteif equal (ZF=1)
OF9F . SETGr/m8 4/3 4/5 Setbyteif greater (ZF=0 or SF=OF)"

Chapter 4, Processor instructions 125

e R
e R
486 386
0F9D SETGE r/m8 4/3 .4/5 Setbyte if greater or equal (SF=OF)
0F9C SETL r/m8 4/3 4/5 Setbyte if less (SF<>OF)

0F9E SETLE r/m8 4/3 4/5 Setbyte if less or equal (ZF=1 and SF<>OF)
OF 96 SETNA r/m8 4/3 4/5 Set byte if not above (CF=1)
0F 92 SETNAE r/m8 4/3 4/5 Set byte if not above or equal (CF=1)
0F 93 SETNB r/m8 4/3 4/5 Set byte if not below (CF=0)
OF 97 SETNBE r/m8 4/3 4/5 Set byte if not below or equal (CF=0 and ZF=0)
0F 93 SETNC r/m8 4/3 4/5 Setbyteif not carry (CF=0)
0F95 SETNEr/m$ 4/3 4/5 Setbyteif not equal (ZF=0)
OF 9E SEING r/m8 4/3 4/5 - Setbyte if not greater (ZF=1 or SF<>OF)
0F 9C SEINGEr/m8 4/3 4/5 Setbyte if not greater or equal (SF<>OF)
OF 9D SETNL r/m8 4/3 4/5 Setbyte if not less (SF=OF)
OF 9F SETNLE r/m8 4/3 4/5 Setbyte if not less or equal (ZF=1 and SF<>OF)
0F 91 SETNO r/m8 4/3 4/5 Set byte if not overflow (OF=0)
OF9B SETNPr/m8 4/3 4/5 Setbyte if not parity (PF=0)
0F 99 SETNS r/m8 4/3 4/5 Setbyte if not sign (SF=0)
0F 95 SETNZ r/m8 4/3 4/5 Setbyte if not zero (ZF=0)
0F 90 SETOr/m8 4/3 4/5 Set byte if overflow (OF=1)
- OF9A SETPr/ms8 4/3 4/5 Setbyte if parity (PF=1)
0F9A SETPE r/m8 4/3 4/5 Setbyte if parity even (PF=1)
OF9B SETPOr/m8 4/3 4/5 Setbyte if parity odd (PF=0)
OF 98 SETSr/m8 4/3 4/5 Setbyte if sign (SF=1)
OF 94 SETZ r/m8 4/3 4/5 Setbyte if zero (ZF=1)

SETcc stores a byte containing 1 at the destination specified by the effective
address or register if the condition is met, or a 0 byte if the condition is not met.

SGDT Store global/interrupt descriptor table
SIDT 80286 and greater protected mode only

0 p I T S Z A P C

0F01 /0 SGDTm 10 9 11 Store GDTR to m
0F01 /1 SIDTm 10 9 12 Store IDTR tom

SGDT/SIDT copies the contents of the descriptor table register to the six bytes
of memory indicated by the operand. The LIMIT field of the register is assigned
to the first word at the effective address. If the operand-size attribute is 16 bits,
the next three bytes are assigned the BASE field of the register, and the fourth
byte is written with zero. The last byte is undefined. Otherwise, if the operand-
size attribute is 32 bits, the next four bytes are assigned the 32-bit BASE field of
the register. :

SGDT and SIDT are used only in operating system software; they are not used
in application programs. '

126 Turbo Assembier Quick Reference

SHLD Double precision shift left
386 processors and greater

0O b I T S 2 A P C
? 2NN T T

_ 486 386
OF A4 SHLDr/ml6,x16imm8 2/3 3/7 r/; ml6 gets SHL of r/m16 concatenated
with

OF A4 SHLD r/m32,32,imm8 2/3 3/7 1/ 1&1132 §ets SHL of r/m32 concatenated
with r3]

OF A5 SHLD r/m16,:16,CL 2/3 3/7 r/ m16 gets SHL of r/m16 concatenated

OF A5 SHLD r/m32,r32,CL 2/3 3/7 r/ It‘ll':l‘.32 ets SHL of r/m32 concatenated
with r3!

SHLD shifts the first operand provided by the r/m field to the left as many bits
as specified by the count operand. The second operand (r16 or 132) provides the
bits to shift in from the right (starting with bit 0). The result is stored back into
the r/m operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the contents of
the CL register. These operands are taken MODULO 32 to provide a number
between 0 and 31 by which to shift. Because the bits to shift are provided by the
specified registers, the operation is useful for multiprecision shifts (64 bits or
more). The SF, ZF and PF flags are set according to the value of the result. CF is
set to the value of the last bit shifted out. OF and AF are left undefined.

SHRD Double precision shift right
386 processors and greater

0 b I T § Z A P C
? [

486 386
OF AC SHRD r/m16,r16,jmm8 2/3 3/7 r/ m16 gets SHR of r/m16 concatenated

OF AC SHRD r/m32,r32imm8 2/3 3/7 r / m32 gets SHR of r/m32 concatenated
OF AD SHRD r/m16,r16,CL 3/4 3/7 r/ m16 gets SHR of r/m16 concatenated

OF AD SHRD r/m32,:32,CL 3/4 3/7 r / m32 gets SHR of r/m32 concatenated

SHRD shifts the first operand provided by the r/m field to the right as many
bits as specified by the count operand. The second operand (r16 or r32)
provides the bits to shift in from the left (starting with bit 31). The result is
stored back into the r/m operand. The register remains unaltered.

The count operand is provided by either an immediate byte or the contents of
the CL register. These operands are taken MODULO 32 to provide a number
between 0 and 31 by which to shift. Because the bits to shift are provided by the
specified register, the operation is useful for multi-precision shifts (64 bits or
more). The SF, ZF and PF flags are set according to the value of the result. CF is
- set to the value of the last bit shifted out. OF and AF are left undefined.

Chapter 4, Processor instructions 127

. SLDT Store local descriptor table register
, 80286 and greater protected mode only

¢ p I T S§ Z A P C

486 386 286
0F00 /0 SLDTr/ml6 2/3 pm=2/2 2/3 Store LDTR to EA word

SLDT stores the Local Descriptor Table Register (LDTR) in the two-byte register
or memory location indicated by the effective address operand. This reglster is
a selector that points into the global descriptor table.

SLDT is used only in operating system software. It is not used in application
programs.

SMSW Store machine status word
80286 and greater protected mode only

0o p I T 8§ ZzZ A P C

486 386 286

0F01 /4 SMSWr/ml6 2/3 2/3,pm=2/2 2/3 Sto;:a1 machine status word to EA
wor

SMSW stores the machine status word (part of CR0) in the two-byte register or
memory location indicated by the effective address operand.

STC Set carry flag

0 b I T 8§ Z A P C

9 sTC 2 2 2 2 Setcamyflag
STC sets the carry flag to 1.
STD Set direction flag

0 b I T S§ Z A P C

FD STD 2 2 2 2 Set direction flag so (E)SI or (E)DI
decrement

.STD sets the direction flag to 1, causing all subsequent string operations to
decrement the index registers, (E)SLand/or (E)DI, on which they operate.

128‘ Turbo Assembler Quick Reference

STI Set interrupt enable flag

0O D I T § Z A P C
1

486 386 286 86

FB STIL 5 3 2 2 Set interrupt flag

STI sets the interrupt flag to 1. The CPU then responds to external interrupts
after execyting the next instruction if the next instruction allows the interrupt
flag to remain enabled. If external interrupts are disabled and you code STI,
RET (such as at the end of a subroutine), the RET is allowed to execute before
external interrupts are recognized. Also, if external interrupts are disabled and
you code STI, CLI, then external interrupts are not recognized because the CLI
instruction clears the interrupt flag during its execution.

STOS Store string data
STOSB STOSD 386 processors and greater

STOSW 0 D I T 8§ Z A P C

486 386 286 ‘ 86

AA STOS m8 5 4 3 1 Store AL in byte ES:[(E)DI}

AB STOS m16 5 4 3 11 Store AX in word ES:[(E)DI]
AB STOS m32 5 4 Store EAX in dword ES:[(E)DI]
AA STOSB 5 4 3 11 Store AL in byte ES:{(E)DI]

AB STOSW 5 4 3 11 Store AX in word ES:{(E)DI]
AB STOSD 5 4 Store EAX in dword ES:[(E)DI]

STOS transfers the contents of the AL, AX, or EAX register to the memory byte,
word, or doubleword given by the destination register relative to the ES
segment. The destination register is DI for an address-size attribute of 16 bits or
EDI for an address-size attribute of 32 bits.

The destination operand must be addressable from the ES register. A segment
override is not possible.

The address of the destination is determined by the contents of the destination
register, not by the explicit operand of STOS. This operand is used only to
validate ES segment addressability and to determine the data type. Load the
correct index value into the destination register before executing STOS.

After the transfer is made, DI is automatically updated. If the direction flag is 0
(CLD was executed), DI is incremented; if thie direction flag is.1 (STD was
executed), DI is decremented. DI is incremented or decremented by lifabyteis
stored, by 2 if a word is stored, or by 4 if a doubleword is stored.

STOSB, STOSW, and STOSD are synonyms for the byte, word, and double-
word STOS instructions, that do not require an operand. They are simpler to
use, but provide no type or segment checking.

STOS can be preceded by the REP prefix for a block fill of CX or ECX bytes,
words, or doublewords. Refer to the REP instruction for further details.

Chapter 4, Processor instructions 129

STR Store task register -
80286 and greater protected mode only
0o bp I T S8 Z A P C

s
AR
486 386 286
0F00/1 STRr/ml6 2/3 pm=23/27 2/3 Load EA word into task register

e

The contents of the task register are copied to the two-byte register or memory
location indicated by the effective address operand.

STR is used only in operating system software. It is not used in application
programs.

SUB Integer Subtraction
0O b I T S Z A P C

2Cib SUB AL,imm8 1 2 3 4 Subtract immediate byte
from AL

2D iw SUB AX,imm16 1 2 3 4 Subtract immediate word
from AX

2Did SUB EAX,imm32 1 2 Subtract immediate dword
from EAX

80/5ib SUBr/m8imm8 1/3 2/7 3/7 4/17+EA Subtractimmediate byte

. from r/m byte
81 /5iw SUBr/ml6,immlé 1/3 2/7 3/7 4/17+EA Subftract immediate word
) from r/m word
81 /5id ~ SUBr/m32imm32 1/3 2/7 Subtract immediate dword
: from r/m dword

83 /5ib SUBr/ml6imms8 1/3 2/7 3/7 4/17+EA Subtract sign-extended
immediate byte from r/m
word

83/5ib SUBr/m32imm8 1/3 2/7 Subtract sigél-extended
immediate byte from r/m

) dword

28 /r SUBr/m8,:18 1/3 2/6 2/7 3/16+EA Subtract byte register from
r/mbyte

29 /r SUB r/m16,r16 1/3 2/6 2/7 3/16+EA Subtract word register from
r/m word

29 /r SUBr/m32:32 1/3 2/6 Subtract dword register from
) r/m dword
2A /r SUB18,r/m8 1/2 2/7 2/7 3/94EA Subtract EA byte from byte
- R register :

2B /r SUB 116,r/m32 1/2 2/7 2/7 3/9+EA Subtract EA word from word
register

2B /r SUB r32,r/m32 /2 2/7 Subtract EA dword from
dword register

SUB subtracts the second operand (SRC) from the first operand (DEST). The
first operand is assigned the result of the subtraction, and the flags are set
accordingly.

When an immediate byte value is subtracted from a word operand, the
immediate value is first sign-extended to the size of the destination operand.

130 Turbo Assembler Quick Reference

TEST Logical compare

0o p I T S Z A P C
0 LR TR

A8ib TEST ALimm8 1 2 3 4 ﬁ?‘d immediate byte with

A9iw TEST AX,imm16 1 2 3 4 ﬁnxd immediate word with

A9id TEST EAX,imm32 1 2 And immediate dword
with EAX

F6 /0ib TEST r/m8,imm8 1/2 2/5 3/6 5/11+EA A/nd il)mmediate byte with
r/mbyte

F7 /0iw TEST r/m16,imml6 1/2 2/5 3/6 5/11+EA And immediate word with
r/m word

F7 /0id TEST r/m32,imm32 1/2 2/5 And immediate dword
with r/m dword

84 /r TEST r/m8,r8 1/2 2/5 2/6 3/9+EA ﬁmd byte register withr/m

yte

85 /r TEST r/m16,r16 172 2/5 2/6 3/9+EA Andword register with
r/m word

85 /r TEST r/m32,r32 1/2 2/5 And dword register with
r/m dword

TEST computes the bit-wise logical AND of its two operands. Each bit of the
result is 1 if both of the corresponding bits of the operands are 1; otherwise,

each bit is 0. The result of the operation is discarded and only the flags are
modified.

The optimized form of TEST is TESTFLAG (see Chapter 3).

VERR Verify a segment for reading or writing
VERW 80286 and greater protected mode only

0 b I T s z A P C

0F00/4 VERRr/ml6 11/11 pm=10/11 14/16 Set ZF=1 if segment can be read
0F00/5 VERWr/mlé6 11/11 pm=15/16 14/16 Set ZF=1 if segment can be written

The two-byte register or memory operand of VERR and VERW contains the
value of a selector. VERR and VERW determine whether the segment denoted
by the selector is reachable from the current privilege level and whether the
segment is readable (VERR) or writable (VERW). If the segment is accessible,
the zero flag is set to 1; if the segment is not accessible, the zero flag is set to 0.
To set ZF, the following conditions must be met:

¢ The selector must denote a descriptor within the bounds of the table (GDT or
LDT); the selector must be “defined.”

¢ The selector must denote the descriptor of a code or data segment (not that
of a task state segment, LDT, or a gate).

¢ For VERR, the segment must be readable. For VERW, the segment must be a
writable data segment. '

Chapter 4, Processor instructions 131

o If the code segment is readable and conforming, the descriptor privilege
level (DPL) can be any value for VERR. Otherwise, the DPL must be greater
than or equal to (have less or the same privilege as) both the current
privilege level and the selector’s RPL.

The validation performed is the same as if the segment were loaded into DS, ES,
FS, or GS, and the indicated access (read or write) were performed. The zero
flag receives the result of the validation. The selector’s value cannot result in a
protection exception, enabling the software to anticipate possible segment
access problems.

WAIT Wait until BUSY# pin is inactive (HIGH)

0 p I T § Z A P C

o s
= .
48 386 286 86

9B WAIT 13 6 3 4+5n Wait until BUSY pin is inactive (HIGH)

WAIT suspends execution of CPU instructions until the BUSY# pin is inactive
(high). The BUSY# pin is driven by the 80x87 numeric processor extension.

WBINVD Write-back and Invalidate cache
i486 processors and greater
0 D I T S Z A P C

- ,\iﬁ%ﬁsi

0F 09 WBINVD 5 Write-back and invalidate entire cache

The internal cache is flushed, and a special-function bus cycle is issued which
indicates that the external cache should write-back its contents to main
memory. Another special-function bus cycle follows, directing the external
cache to flush itself.

Note: This instruction is implementation-dependent; its function might be
implemented differently on future Intel processors. It is the responsibility of the
hardware to respond to the external cache write-back and flush indications.

WRMSR Write to Model Specific Register
Pentium processors and greater
0O D I T S§ Z A P C

OF 30 WRMSR 30-45 Wrrite the value in EDX:EAX to Model Specific
Register indicated by ECX.

. The value in ECX specifies one of the 64-bit Model Specific Registers of the
Pentium processor. The contents of EDX:EAX is copied into that Model Specific
Register. The high-order 32 bits are copied from EDX and the low-order 32 bits
are copied from EAX. - ‘

132 Turbo Assemblier Quick Reference

The following values are used to select model specific registers on the Pentium
Pprocessor:

0th Machine Check Type Stores cycle type of cycle causing the exception.

Other values used to preform cache, TLB and BTB testing and performance
monitoring, are available under a non-disclosure agreement from Intel.

Protected mode exceptions: #GP(0) if either the current privilege level is not 0 or
the value in ECX does not specify a Model-Specific Register that is
implemented in the Pentium processor. :

Real mode exceptions: #GP if the value in ECX does not specify a Model-
Specific Register that is implemented in the Pentium processor.

Virtual 8086 mode exceptions: #GP(0) if instruction execution is attempted.
Notes: This instruction must be executed at privilege level 0 or in real-address
mode; otherwise a protection exception will be generated.

Always set undefined or reserved bits to the value previously read.

WRMSR is used to write the content of Model-Specific Registers that control
functions for testability, execution tracing, performance monitoring and
machine check errors. Refer to the Pentium Processor Data Book for more
information or contact Intel. ‘

The values 3h, OFh, and values above 13h are reserved. Db not execute WRMSR
* with reserved values in ECX.)

XADD Exchange and add
i486 processors and greater

0 p I T 8§ Z A P C
* T T T

i

0FCO0/r XADDr/m8,r8 3/4 Exchange byte register and r/m byte; load sum
into r/m byte. .

0FCl/r XADDr/ml16,r168 3/4 Exchange word register and r/m word; load sum
into r/m word.

0FCl/r XADDr/m32:32 3/4 Exchange dword re;giister and r/m dword; load
sum into r/m dword.

The XADD instruction loads DEST into SRC, and then loads the sum of DEST
and the original value of SRC into DEST.

DEST is the destination operand; SRC is the source operand.

Protected mode exceptions: #GP(0) if the result is in a nonwritable segment;
#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #55(0) for an illegal address in the SS segment; #PF (fault code) for
a page fault; #INM if either EM or TS in CRO is set; #AC for an unaligned
memory reference if the current privilege level is 3.

Real address mode exceptions: interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to OFFFFh.

Chapter 4, Processor instructions 133

Virtual 8086 mode exceptions: same exception as in real-address mode; same
#PF and #AC exceptions as in protected mode.

XCHG Exchange memory/register with register
0 D I T § Z A P C

486 - 386 286 86

86/r XCHGr/m8x8 3/5 3/5 3/5 4/17+EA Exchange byte register with EA byte
86 /r XCHGr8x/m8 3/5 3/5 3/5 4/17+EA Exchange byte with EA byte register
87 /r XCHGr/mlérlé 3/5 3/5 3/5 4/17+EA Excrl;uiange word register with EA

87 /r XCHGrl6,x/m16 3/5 3/5 3/5 4/17+EA Exchange word register with EA
word

87 /r XCHGr/m32x32 3/5 3/5 Exchange dword register with EA
dword
87/t XCHGr32r/m32 3/5 3/5 gxdmaélge dword register with EA
wor

90+r XCHGAXrl6 3 3 3 3 Exchange word register with AX
90+r XCHGrl6AX 3 3 3 3 Exchange word register with AX
90+r XCHGEAX:32 3 3 Exchange dword register with EAX
90+r XCHGr32EAX 3 3 Exchange dword register with EAX

XCHG exchanges two operands. The operands can be in either order. If a
memory operand is involved, BUS LOCK is asserted for the duration of the
exchange, regardless of the presence or absence of the LOCK prefix or of the
value of the IOPL.

XLAT - Table look-up translation

XLATB 0O D I T S Z2 A P C

i 2@

A
486 386 286 86
D7 XLAT m8 4 5 5 11 Zeﬁ]AL to memory byte DS:[(E)BX + unsigned

D7 XLATB 4 5 5 11 ief]AL to memory byte DS:[(E)BX + unsigned

XLAT changes the AL register from the table index to the table entry. AL
should be the unsigned index into a table addressed by DS:BX (for an address-
size attribute of 16 bits) or DS:EBX (for an address-size attribute of 32 bits).

The operand to XLAT allows for the possibility of a segment override. XLAT
uses the contents of BX even if they differ from the offset of the operand. The
offset of the operand should have been moved into BX/EBX wﬂh a previous
instruction.

The no-operand form, XLATB, can be used if the BX/EBX table will always
‘reside in the DS segment.

134 Turbo Assembler Quick Reference

XOR Logical exclusive OR

6o p I T 8 2 A P C
0 x x 2 x

)

34ib XOR AL,imm8 1 2 3 4 Echhﬁsive—OR immediate byte

to
- 35iw XOR AX,imm16 1 2 3 4 Exclusive-OR immediate word

to

35id XOR EAX,imm32 1 2 Exclusive-OR immediate
dword to EAX

80/6ib XORr/m8imms8 1/3 2/7 3/7 4/17+EA Exclusive-OR immediate byte
to r/mbyte

81 /6iw XORr/ml6,immlé6 1/3 2/7 3/7 4/17+EA Exclusive-OR immediate word
to r/m word

81/6id XORr/m32imm32 1/3 2/7 Exclusive-OR immediate
dword to r/m dword

83/6ib XORr/ml6imm8 1/3 2/7 XOR sign-extended immediate
byte tor/m word

83 /6ib XORr/m32imm8 1/3 2/7 XOR sign-extended immediate
byte to r/m dword

30 /r XOR r/m,r8 1/3 2/6 2/7 3/16+EA Exclusive-OR byte register to
r/mbyte

31/r XORr/ml6,16 1/3 2/6 2/7 3/16+EA Exclusive-OR word register into
r/m word

31 /r XOR r/m32,x32 1/3 2/6 Exclusive-OR dword register to

Co r/m dword
32 /r XOR 18,r/m8 1/2 2/7 2/7 3/9+EA Exclusive-OR r/m byte to byte
. register
33 /r XOR r16,r/m16 1/2 2/7 2/7 3/9+EA Exclusive-OR r/m word to
. : word register

33 /r XOR 132,r/m32 1/2 2/7 Exclusive-OR to r/m dword to

dword register

XOR computes the exclusive OR of the two operands. Each bit of the result is
1 if the corresponding bits of the operands are different; each bit is 0 if the
corresponding bits are the same. The answer replaces the first operand.

The optimized form of XOR is FLIPFLAG (see Chapter 3).

Chapter 4, Processor instructions 135

136 Turbo Assembler Quick Reference

Chapter

Coprocessor instructions

This chapter lists the 80x87 instructions in alphabetical order.

There is one entry for each combination of operand types that can be coded
with the mnemonic. The following table explains the operand identifiers used
in this section:

A register in the stack i (0 < i < 7) stack elements from the top. ST(1) is the
next-on-stack register, ST(2) is below ST(1), etc,

m32real A short real (32 bits) number in memory.

mé4real A long real (64 bits) number in memory.

m80real A temporary real (80 bits) number in memory.

m80dec A packed decimal integer (18 digits, 10 bytes) in memory.
mlé6int A word binary integer (16 bits) in memory.

m32int A short binary integer (32 bits) in memory.

mé4int A long binary integer (64 bits) in memory.

mxxbyte A memory area xx bytes long.

Here is a summary of the possible exceptions each instruction can cause:

IS = invalid operand due to stack overflow /underflow
I = invalid operand due to other cause

D = denormal operand

Z = zero-divide

O = Overflow

U = Underflow

P = Inexact result (precision)

Chapter 5, Coprocessor instructions 137

F2XM1 Compute 2%~ 1
Exceptions: P, U, D, |, IS
F2XM1 (no operands)

586

87 287 387 486
D9 FO F2XM1 211-476 211476 242(140-279) 13-57
FABS Absolute value
Exceptions: IS
FABS (no operands)
87 287 387 486
Nooperands 10-17 10-17 22 3 2 FABS
FADD Add real
Exceptions: I, D, O, U, P, IS
FADD destination, source

87 . 287 387 486

ST,ST() 70-100 70-100 '23-34 10(8-20) 2 FADD ST ST(4)
ST(i),ST FADD ST(2),ST
shortreal ~ 90-120+EA 90-120 24-32 10(8-20) 2—4 FADD AIR_TEMP[SI]
longreal ~ 95-125+EA 95-125 29-37 10(8-20) 24 FADD [BX].MEAN
FADDP Add real and pop

Exceptions: I, D, 0, U, P, IS

FADDRP destination, source

87 287 387 . 486
STG)ST 75-105 75-105 23-34 108-20) 2 FADDP ST(2),ST
FBLD Packed decimal (BCD) load
Exceptions: |
FBLD source

87 287 387 486

Packed decimal 290-310 290-310 5 75(70-103) 24 FBLD YTD_SALES

138 Turbo Assembler Quick Reference

FBSTP Packed decimal (BCD) store and pop

Exceptions: |
FBSTP destination

87 287 387 486
Packed ~ 520-540+EA 520-540+EA 512-534 175(172-176) 2-4 FBSTP
decimal [BX].FORECAST
FCHS Change sign
' Exceptions: |
FCHS (no operands)
87 287 387 486
Nooperands 10-17 . 10-17 24-25 6 2 FCHS
FCLEX Clear exceptions

FNCLEX Exceptions: None
-FCLEX/FNCLEX (no operands)

No operands 2-8 2-8 11 7 FNCLEX
FCOM Compare real

Exceptions: |, D

FCOM / /source

L
o

.
oy

//STG) 40-50 050 24 4 FCOM ST(1)
shortreal 60-70+EA 60-70 26 4 24 FCOM [BP.UPPER_LIMIT
longreal ~ 65-75+EA 6575 31 4 24 FCOM WAVELENGTH
FCOMP Compare real and pop

Exceptions: |, D

FCOMP //source

o
.
e

87
//ST() 42-52 4552 26 4 2 FCOMP ST(2)
shortreal 63-73+EA 63-73 26 4 2-4 FCOMP [BP+2].N_READINGS
long real 67-77+EA 67-77 31 - 4 2-4 FCOMP DENSITY

Chapter 5, Coprocessor instructions 139

FCOMPP Compare real and pop twice
Exceptions: I, D
FCOMPP (no operands)

87 287 387 486
Nooperands 4555 45-55 26 5 2 FCOMPP

FCOS Cosine of ST(0)
80387 and greater
Exceptions: IS,1,D, U, P
FCOS

: 87 287 387 486
No operands 123-772* 241(193-279) 2 FCOS

*These timings hold for operands in therange x| /4. For operands not in this range, up to 76
additional clocks may be needed to reduce the operand.

FDECSTP Decrement stack pointer

Exceptions: None

FDECSTP (no operands)
87 287 387 486
Nooperands 6-12 612 22 3 2 FDECSTP
FDISI Disable interrupts
FNDISI 8087 only
Exceptions: None
FDISI (no operands)

Typical Range
No operands 5 2-8 0 2 FDISI
FDIV Divide real

Exceptions: 1,D,Z,0,U,P
FDIV / /source/destination, source

87 287 387 486
//ST([®),ST 193203 193203 8891 73 2 FDIV
shortreal ~ 215225 215-225 89 73 24 FDIV DISTANCE

140 Turbo Assembler Quick Reference

long real 220-230 220-230 94 73 2-4 FDIV ARC[DI]

IST,STG) 73

FDIVP Divide real and pop
Exceptions: I, D, Z, 0, U, P
FDIVP destination, source

/ /ST(i)ST 197-207 198-209 8891 73 2 FDIVP ST(4),ST

FDIVR Divide real reversed
Exceptions: 1,D,Z,0, U,P
FDIVR / /source/destination, source

87 287 387 486
/1 194-204 198208 88-91 73 2 FDIVR ST(2),ST
ST, ST()/
ST(),ST ' 73

shortreal 216-226+EA 215225 89 73 24 FDIVR [BX].PULSE_RATE
longreal = 221-231+EA 220-230 94 73 24 FDIVR RECORDER.FREQUENCY

FDIVRP Divide real reversed and pop

Exceptions: I,D,2Z,0, U, P
FDIVRP destination, source

s
e %5?;; 1:%25
87 287 387 486
ST(i),ST 198-208 198208 8891 73 2 FDIVRP ST(1),ST
FENI Enable interrupts
FNENI 8087 only
Exceptions: None
FENI (no operands)

(no operands) 50-8) 2 FNENI

Chapter 5, Coprocessor instructions 141

FFREE Free register

Exceptions: None
FFREE destination

-
Saiune ey

387 486

ST() 916 916 18 3 2 FFREE ST(1)

s

L

FIADD Integer add
Exceptions: I, D, O, P
FIADD source

T — e

;:m‘) e %;gﬁ,%%ﬁ c
ﬁaitg e -
287 387
word 102-137+EA 102-137° 71-85 22.5(19-32) 24 FIADD
integer DISTANCE_TRAVELLED

short 108-143+EA 108-143 57-72 24(20-35) 24 FIADD PULSE_COUNT [SI]
integer .

FICOM Integer compare

Exceptions: |, D
FICOM source

wpE
e
.
.

T

SR R R B R

word 72-86+EA 72-86 71-75 18(16-20) 24 FICOM TOOL.N_PASSES
integer

short - 7891+EA 7891 5663 16.5(15-17) 24 FICOM [BP-+4] PARM_COUNT
integer

FICOMP Integer compare and pop
Exceptions: I, D
FICOMP source

s e
L -
87 287 387
word 74-88+EA 7488 71-75 18(16-20) 24 FICOMP [BP].LIMIT [SI]
integer
§}1tort 80-93+EA 80-93 56-63 16.5(15-17) 24 FICOMP N_SAMPLES
integer

142 Turbo Assembler Quick Reference

FIDIV Integer divide

Exceptions: ,D,Z,0,U, P
FIDIV source

87 287 387 486
word 224-238+EA 224238 136-140 73 2-4 FIDIVSURVEY.OBSERVATIONS
integer
short 230-243+EA 230-243 120-127 73 24 FIDIV RELATIVE_ANGLE [DI]
integer
FIDIVR Integer divide reversed

Exceptions: I,D,Z,0,U, P
FIDIVR source

87 287 387 486

word integer 225-239+EA 224238 135-141 73 24 FIDIVR [BP].X_COORD
shortinteger 231-245+EA 230243 121-128 73 2-4 FIDIVR FREQUENCY

FILD Integer load

Exceptions: |
FILD source

87 287 387 486

word 46-54+EA 4654 6165 11.5(9-12) 24 FILD [BX].SEQUENCE
integer
short 52-60+EA 52-60 45-52 14.5(13-16) 24 FILD STANDOFF [DI]
integer
long 60-68+EA 60-68 5667 16.8(10-18) 24 FILD RESPONSE.COUNT
integer
FIMUL Integer multiply

Exceptions: 1, D, O, P

FIMUL source

word integer 124-138+EA 124-138 7687 8 2-4 FIMUL BEARING
shortinteger 130-144+EA 130-144 61-82 8 24 FIMUL POSITION.Z_AXIS

Chapter 5, Coprocessor instructions 143

FINCSTP Increment stack pointer
Exceptions: None
FINCSTP (no operands)

87 287 387 486

Nooperands 6-12 612 21 3 2 - FINCSTP
FINIT Initialize processor
FNINIT “Exceptions: None
: FINIT/ENINIT (no operands)
87 287 387 486
Nooperands 2-8 2-8 33 17 2 FINIT
FIST Integer store
Exceptions: [, P
FIST destination

87 287 387 486

‘word 80-90+EA 8090 82-95 334(29-34) 24 FIST OBS.COUNT [SI]
integer

short 82-92+EA 82-92 79-93 324(28-34) 2-4 FIST [BP;]FACTORED_PULSES
integer
FISTP Integer store and pop

Exceptions: |, P

FISTP destination

87 287 387 486
word 82-92+EA 8292 82-95 334(29-34) 24 FISTP [BX].
integer : ALPHA_COUNT [SI]
short 84-94+EA 8494 79-93 334(29-34) 24 FISTP CORRECTED_TIME
integer
long 94-105+EA 94-105 80-97 334(29-34) 24 FISTP PANEL. N_READINGS
integer

144 Turbo Assembler Quick Reference

FISUB Integer subtract

Exceptions: 1, D, O, P
FISUB source

87 287 387 486

word 102-137+EA 102-137 71-83 225(19-32) 24 FISUB BASE_FREQUENCY
integer
short 108-143+EA 108-143 57-82 24(20-35) 24 FISUB TRAIN_SIZE [D]]
integer
FISUBR Integer subtract reversed

Exceptions: |, D, O, P

FISUBR source

87 287 387 486

word 103-139+EA 102-137 72-84 22.5(19-32) 24 FISUBR FLOOR [BX][SI]
integer

short 109-144+EA 108-143 58-83 24(20-35) 24 FISUBR BALANCE
integer

FLD Load real

Exceptions: I, D
FLD source

i SRS ”&Qg;??ﬁggg"ﬁt&?mmg%
.

287 387 486

ST() 17-22 17-22 14 4 2 FLD ST(0)
shortreal 38-56+EA 3856 20 3 24 FLD READING [SI].PRESSURE
longreal 40-60+EA 4060 25 -3 24 FLD [BP]. TEMPERATURE
Tempreal 53-65+EA 5365 44 6 24 FLD SAVEREADING
FLDCW Load control word

Exceptions: None

FLDCW source

87 287 387 486

2bytes 7-14+EA 714 19 4 2-4 FLDCW CONTROL_WORD

Chapter 5, Coprocessor instructions 145

FLDENV Load environment

Exceptions: None
FLDENYV source

% s W;%%%?‘%g
]

-

. % e

.
*gégm"‘%g“ agé%

87 287 387 486

14bytes . 35-45+EA 3545 71 44 real or virtual 34 24 FLDENV [BP+6]
protected

FLDLG2 Load log;2

Exceptions: |
FLDLG2 (no operands)

e
87 287 387 486

Nooperands 1824 1824 41 8 2 FLDLG2
FLDLN2 Load log,2
Exceptions: |

Nooperands 17-23 17-23 41 8 2 FLDLN2
FLDL2E Load log,e

Exceptions: |

FLDL2E (no operands)

87 287 387 486

Nooperands 15-21 15-21 40 8 2 FLDL2E
FLDL2T Load log,10

Exceptions: |

FLDL2T (no operands)

87 287 387 486

Nooperands 1622 - 1622 40 8 2 FLDL2T

146 Turbo Assembler Quick Reference

FLDPI Load P (pi)

Exceptions: |
FLDPI (no operands)

Nooperands 1622 1622 40 8 2 FLDPI
FLDZ Load +0.0

Exceptions: |

FLDZ (no operands)

87 287 387 486

No operands 11-17 11-17 20 4 2 FLDZ
FLD1 - Load +1.0

Exceptions: |

FLD1 (no operands)

i
e

4 ‘i‘g‘gﬁ“&“l%:; p
L %"5é%§‘
LR é

486
Nooperands 15-21 15-21 24 4 2 FLD1

FMUL Multiply real
Exceptions:1,D, 0, U, P
FMUL / /source/destination, source

fo R O R — —
Bl g B
@féﬁﬁﬁ‘;ﬂg . . = ‘ xsgﬁ‘%ﬁ
e mé%?;é . . . o
denndeian 4 ; e . i s

87 287 387
//ST()ST/ST, 90-105 90-145 - 29-57 16 2 FMUL ST,ST(3)
90-105,ST(1)*

//ST()ST/ST, 130-145 90-145 2957 16 2 FMUL ST,ST(3)
ST,ST(1)

short real 110-125+EA 110-125 2735 11 24 FMULSPEED_FACTOR
long real* 112-126+EA ~ 112-168 32-57 24 FMUL [BP.HEIGHT
long real 154-168+EA 112-168 32-57 14 24 FMUL [BP)HEIGHT

*Qccurs when one or both operands is “short”—it has 40 trailing zeros in its fraction (for
example, it was loaded from a short-real memory operand).

Chapter 5, Coprocessor instructions 147

FMULP Multiply real and pop

Exceptions: I, D, O, U, P
FMULP destination, source

87 287 387 486 .
ST(@),ST* 94-108 198-208 29-57 2 FMULP ST(1),ST
ST@),ST 134-148 198-208 29-57 16 2 FMULP ST(1),ST

*Occurs when one or both operands is “short”—it has 40 trailing zeros in its fraction (for
example, it was loaded from a short-real memory operand).

FNOP No operation
Exceptions: None
FNOP (no operands)

S

87 287 387 486

Nooperands 10-16 10-16 12 3 2 FNOP
FPATAN Partial arctangent

Exceptions: U, P (operands not checked)

FPATAN (no operands)

87 287 387 486

Nooperands ~ 250-800 250-800 314-487 5(2-17) 2 FPATAN
FPREM Partial remainder

Exceptions: |, D, U

FPREM (no operands)

387 486
No operands 15-190 15-190 74-155 2(2-8) 2 FPREM

FPREM1 Partial remainder
80387 and greater
Exceptions: |, D,U
FPREM (no operands)

No operands 95-185 945(72-167) 2 » FPREM1

148 Turbo Assembler Quick Reference

FPTAN Partial tangent

Exceptions: |, P (operands not checked)

FPTAN (no operands)
iSEta
87 287 387 486
Nooperands 30-540 30-540 191-573 244(200-273) 2 . FPTAN

FRNDINT Round to integer
Exceptions: I, P
FRNDINT (no operands)

G Rs

87 287

Nooperands 16-50 16-50 66-80 29.1(21-30) 2 FRNDINT

FRSTOR Restore saved state

Exceptions: None

FRSTOR source
-
. 87 287 387 486)
94 bytes 197-207+EA 205-215 308 131realorvirtual120 2-4 FRSTOR
protected [BP]

Note: The 80287 execution clock count for this instruction is not meaningful in determining
overall instruction execution time. For typical frequency ratios of the 80286 and 80287 clocks,
80287 execution occurs in parallel with the operand transfers. The operand transfers
determine the overall execution time of the instructions. For 80286:80287 clock frequency
ratios of 4:8, 1:1, and 8:5, the overall execution clock count for this instruction is estimated at
490, 302, and 227 80287 clocks, respectively.

FSAVE Save state
FNSAVE Exceptions: None
FSAVE/FNSAVE destination
87 27 387 486
94bytes 197-207+4EA 205-215 375-376 24 FSAVE [BP]

Note: The 80287 execution clock count for this instruction is not meaningful in determining
overall instruction execution time. For typical frequency ratios of the 80286 and 80287 clocks,
80287 execution occurs in parallel with the operand transfers. The operand transfers
determine the overall execution time of the instruction. For 80286:80287 clock frequency
ratios of 4:8, 1:1, and 8:5, the overall execution clock count for this instruction is estlmated at
376, 233, and 174 80287 clocks, respectively.

Chapter 5, Coprocessor instructions 149

FSCALE Scale

Exceptions: |, O, U

FSCALE (no operands)
87 287 387 486
Nooperands 32-38 32-38 67-86 31(30-32) 2 -FSCALE

FSETPM Set protected mode

Exceptions: None

FSETPM (no operands)
i
287
No operands 2-8 2 FSETPM
FSIN Sine of ST(0)
80387 and greater
Exceptions: IS, I, D, U, P
FSIN

387 486

Nooperands ~ 122-771* 241(193-279) 2 FSIN

*These timings hold for operands in the range |x| /4. For operands not in this range, up to 76
additional clocks may be needed to reduce the operand.

FSINCOS Sine and cosine of ST(0)
80387 and greater

Exceptions: IS, 1,D, U, P
FSINCOS

o ! 486 -
No operands . 194-809* 291(243-329) 2 FSINCOS

*These timings hold for operands in the range | x| /4. For operands not in this range, up to76
additional clocks may be needed to reduce the operand.

FSQRT Square root
Exceptions: I, D, P
FSQRT (no operands)
87 287 387 486 -
Nooperands 180186 180-186 122-129 85.5(83-87) 2 FSQRT

150 Turbo Assembler Quick Reference

FST Store real

Exceptions: 1,0, U, P
FST destination

87 287 387 486
ST() 15-22 52 11 3 2 FST ST(3)
short real 84 90+EA 8490 4 7 ‘244 FSTCORRELATION [DI]
long real 96-104+4EA 96-104 45 8 24 FSTMEAN_READING
FSTCW Store control word
FNSTCW Exceptions: None
FSTCW destination

87 287 387 486
2bytes 12-18+EA 12-18 15 24 FSTCW SAVE_CONTROL
FSTENV Store environment
FNSTENV Exceptions: None

FSTENYV destination

87 287 387 486
14 bytes 40-50+EA 40-50 103-104 24 FSTENV [BP]
FSTP Store real and pop
Exceptions: |, O, U, P
FSTP destination

87 287 387 486

ST() 1724 1724 12 3 2 FSTP ST(2)
short real 86-92+EA 86-92 44 7 2-4 FSTP [BX].)
ADJUSTED_RPM
longreal 98-106+EA 98106 45 8 24 FSTP TOTAL_DOSAGE
Tempreal 52-58+BEA 5258 53 6 24 FSTP REG_SAVE [SI]
FSTSW Store status word
FNSTSW Exceptions: None
FSTSW /FNSTSW destination
. Bl
87 287 387 486
2bytes 1218¢EA 1218 15 3 24 FSTSW SAVE_STATUS

Chapter 5, Coprocessor instructions 151

FSTSW AX Store status word to AX
FNSTSWAX Exceptions: None

FSTSW destination

10-16 13 3 2 FSTSW AX

FSUB Subtract real

Exceptions: 1, D, 0, U, P
FSUB / /source/destination, source

87 287 387 486

é lé(S;FS%:I‘/ G/ 70-100 70-100 2637 7(-17) 2 FSUB ST,ST(2)
1), . .
short real 90-120+EA 90-120 2432 7(5-17) 2-4 FSUBBASE_VALUE
long real 95-125+EA 95-125 2836 7(5-17) 24 FSUBCOORDINATE.X
FSUBP Subtract real and pop
Exceptions: I, D, O, U, P
FSUBP destination, source

287 387

ST(),ST 75-105 75-105 26-37 7(5-17) 2 FSUBP ST(2),ST
FSUBR Subtract real reversed

Exceptions: 1, D, 0, U, P
FSUBR / /source/destination, source

87 287 387 486
//STSTGH)/ 70-100 70-100 2637 7(-17) 2 FSUBR ST,ST(1)
ST(i), ST
short real 90-120+EA 90-120 25-33 7(-17) 24 FSUBRVECTOR [S]
long real 95-125+EA 95-125 29-37 7(-17) .24 FSUBR[BX]INDEX

FSUBRP Subtract real reversed and pop
Exceptions:1,D,0,U,P '
FSUBRP destination, source

87 287 387 486
ST(i),ST 75-105 75-105 2637 7(5-17) 2 FSUBRP ST(1),ST

152 Turbo Assembler Quick Reference

FTST Test stack top against +0.0
Exceptions: |, D
FIST (no operands)

87 287 387 486
No operands 38-48 38-48 28 4 2 FIST

FUCOM Unordered compare
80387 and greater
Exceptions: IS, I, D

//ST() 24 4 2 FUCOM ST(1)

FUCOMP Unordered compare
80387 and greater

Exceptions: IS, I, D

//ST() 26 4 2 FUCOMP ST(2)

FUCOMPP Unordered compare
80387 and greater
Exceptions: IS, I, D

s

Sl A o "
g SepEme . . .
e e e
L - & = = === @

No operands 26 5 2 FUCOMPP
FWAIT Wait
Exceptions: None (CPU instruction)
FWAIT (no operands)

2a S =
= ‘ﬁgi;?%@ u%%%%%%z@" . , mﬁéﬁégﬁéw
387 486
No operands ~ 3+5n* 1-3 1 FWAIT

*n = number of time CPU examines BUSY line before 80287 completes execution of previous
instruction. '

Chapter 5, Coprocessor instructions 153

FXAM Examine stack top

Exceptions: None
FXAM (no operands)

B
387

. 486
Nooperands 12-23 12-23 30-38 8 2 FXAM
FXCH Exchange registers

Exceptions: |
FXCH //destination

Eﬁi%’ia
87 287 387 486
//ST() 10-15 10-15 18 4 2 FXCH ST(2)

FXTRACT Extract exponent and significant
Exceptions: |
FXTRACT (no operands) ’

S
e e
87 287 387 486
Nooperands 27-55 27-55 70-76 19(16-20) 2 FEXTRACT
FYL2X Y+ logX
Exceptions: P (operands not checked)
FYL2X (no operands)
e

No operands 900-1100 -900-1100 120-538 311(196-329) 2 FYL2X

FYL2XP1 Y+logy(X + 1)

Exceptions: P (operands not checked)
FYL2XP1 (no operands)

iy

& 287 387 486
Nooperands 700-1000 700-1000 257-547 313(171-326) 2 FYL2XP1

154 Turbo Assembler Quick Reference

F2XM1 2¥-1

Exceptions: U, P (operands not checked)

F2XM1 (no operands) -
87 287 387 486
No operands 310630 310-630 211476 242(140-279) 2 F2XM1

Chapter 5, Coprocessor instructions 155

156 Turbo Assembler Quick Reference

Borland

Copyright © 1996 Borland International, Inc. All rights reserved. All Borland product names are
trademarks of Borland International, Inc. Corporate Headquarters: 100 Borland Way, Scotts Valley,
CA 95066-3249, (408) 431-1000. Internet: http://www.borland.com CompuServe: GO BORLAND.
Offices in: Australia, Canada, France, Germany, Hong Kong, Japan, Latin America, Mexico,

The Netherlands, Taiwan, and United Kingdom e« Part # LSM1350WW21772 « BOR 8908

WO * U,
g 6&4

oOaso,
gl

73 e

