User’s Guide

Turbo Assembler

, User’s Guide

- Borland® |
Turbo Assemblers

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1988, 1996 Borland International. All rights reserved. All Borland product names are trademarks or -
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
‘trademarks of their respective holders.

_ Printed in the U.S.A.
LSM1350WW21774 1EOR0196
9697989900987 654
Hi1

The LENGTH unary operator 64
The SIZE unary operator 65
The WIDTH unary operator 65
MASK unary operator. 65
General arithmetic operators 66
Simple arithmetic operators 66
Logical arithmetic operators 66
Bitshiftoperators 67
Comparison operators. 67
Setting the address subtype of an
eXPression., 67
Obtaining the type of an expression. 68
Overriding the segment part of an
address expression. 69
Obtaining the segment and offset of an
address expression. 69
Creating an address expression using the .
locationcounter 70
Determining the characteristics of an
expression. 70
Referencing structure, union, and table
memberoffsets L. 71
Describing the contents of an address. 71
Implied addition. 72
Obtaining the high or low byte values
ofanexpression 72
Specifying a 16- or 32-bit expression 72
Chapter 6
Choosing processor directives
and symbols 75
iAPx86 processor directives. 76
Predefinedsymbols 77
8087 coprocessor directives 78
Coprocessor emulation directives 79
Chapter 7
Using program models and
segmentation 81
The MODEL directive 82
Symbols created by the MODEL directive . . . 84
The @Modelsymbol. 84
The @32Bitsymbol. 85
The @CodeSizesymbol 85
The @DataSizesymbol 85
The @Interfacesymbol 85
Simplified segment directives 86
Symbols created by the simplified segment
directives 87
~ The STARTUPCODE directive. 87
The @Startupsymbol 87
The EXITCODE directive. 87
Defining generic segments and groups 88

ii

The SEGMENT directive 88
Segment combination attribute. 88
Segment class attribute 89
Segment alignment attribute 89
Segment size attribute 90
Segment access attribute. 90

The ENDSdirective. 90

The GROUP directive. 91

The ASSUME directive. 91

Segmentordering 92

Changing a module’s segment ordering . . . 92
The .ALPHA directive 93
The .SEQ directive. 93

DOS ordering of segments: the DOSSEG
directive . 7. L 93
Changing the size of thestack 93

Chapter 8

Defining data types 95
Defining enumerated datatypes 95
Defining bit-fieldrecords 96
Defining structures and unions. 98

Opening a structure or union definition 98

Specifying structure and union members . . . 98
Defining structure member labels with

« LABEL........ 99
Aligning structure members 99

Closing a structure or union definition. 99

Nesting structures and unjons. 100

Including one named structure within

another.101
Using structure names in expressions 102
Definingtables. 102
Overriding tablemembers 104
Defining anamed type. 104
Defining a proceduretype. 105
Defininganobject. 105
The TBLPTR directive. 106
Symbols defined by the extended STRUC
directive. 107
Chapter 9
Setting and using the
location counter 109
The $ location counter symbol 109
Location counter directives 110

The ORG directive. 110

The EVEN and EVENDATA directives112

The ALIGN directive 112

Defininglabels. 113

The:operator. 113

Contents

Introduction 1
New features IR 2
Hardware and software reqmrements 2
- Aboutthemanuals. 2
Typographicconventions 3
Software registration and technical support . . .4
Chapter 1 ;
Getting started with Turbo Assembler 5
Installing Turbo Assembler. 5
The Turbo Assemblers.6-
Utility and example programs 6
OnlineHelp 7
Writing your first Turbo Assembler
Programt 7
Assembling your first program. 8
Linking your first program S 9
Recommended reading 9
Chapter 2
Using directives and switches 1
Starting Tutbo Assembler. 11
Command-lineoptions 13
‘Indirect command files. 26
The configurationfile 27
Chapter 3 :
General programming concepts 29
Turbo Assembler Ideal mode. e 29
Why use Idealmode? 30
Entering and leaving Ideal mode. 30
MASM and Ideal mode differences 31
Expressionsand operands 31
Operators P N 32
Suppressed fixups L 32
" Operand for BOUND instruction 32
Segments and groupsl 33
Accessing data in a segment belonging
toagroup L o 33
Commenting the program. 35
- Comments at theend of theline 35
The COMMENT directive. e 35
Extending theline. 36
Using INCLUDE files PP 37
Predefined symbols 37
Assigning values tosymbols 38

General module structure
The VERSION directive.
The NAME directive.

The ENDdirective

Displaying a message during assembly

Displaying warning messages
Multiple error-message reporting
Chapter4 ,
Creating object-oriented programs

Terminology I

What is an object? . .
A sample object
Declaring objects. PR

Declaring a base object. L
Declaring a derived object.

Declaring a method procedure e

The virtual method table. e
Initializing the virtual method table

Calling an object method.
Calling a static method
Calling a virtual method
Calling ancestor virtual methods
More on callingmethods.

Creating an instance of an object

Programming form for objects

Chapter 5
Using expressions and
symbol values ~

Constants. S
Numericconstants.
Changing the defaultradix
String constants ;. oL
Symbols. e e e P
" Symbol names
Symbol types. e
Simple addresssubtypes
Describing a complex address subtype.
Expressions.
Expression precision.
Constants in expressions
Symbolsinexpressions.
Registers. L

- Standard symbol values.
Simple symbol values

The LABEL directive. 113
sdirectives Lo 114
Chapter 10
Declaring procedures 115
Procedure definitionsyntax. 115
Declaring NEAR or FAR procedures 116
Declaring a procedure language 118
Specifying a language modifier. 119
Defining arguments and local variables. . . . 120
ARGand LOCALsyntax 121
The scope of ARG and LOCAL variable
NAMES. e 122
Preserving registers 123
Defining procedures using procedure
types. o 123
Nested procedures and scoperules 124
Declaring method procedures for objects. . . 125
Using procedure prototypes 126
Chapter 11
Controlling the scope of symbols 129
Redefinablesymbols. 129
Blockscoping 130
The LOCALS and NOLOCALS
directives. 130
MASMblockscoping 131
MASM-style locallabels. 131
Chapter 12
Allocating data 133
Simple data directives 134
Creating an instance of a structure or
UNEOIL & v v b e vt v e e 137
Initializing union or structure instances. . . . 137
Creating an instance ofarecord 140
Initializing record instances 140
Creating an instance of an enumerated
datatype L. 141
Initializing enumerated data type
instances. e 141
Creating an instance of atable 141
Initializing table instances. 142
Creating and initializing a named-type
instance. 142
Creating an instance of an object. 143
Creating an instance of an object’s virtual)
methodtable. 143

Chapter 13
Advanced coding mstructlons 145
Intelligent code generation: SMART and
NOSMART. 145
Extended j]umps 146
Additional 80386 LOOP instructions 147
Additional 80386 ENTER and LEAVE
instructions. L 147
Additional return instructions 147
Additional IRET instructions 148
Extended PUSH and POP instructions . . - . 148
Multiple PUSHand POPs 148
Pointer PUSHandPOPs 148
PUSHing constants on the 8086 processor . . .149
Additional PUSHA, POPA, PUSHF and
POPFinstructions. 149
The PUSHSTATE and POPSTATE
instructions. 149
Extended shifts 151
Forced segment overrides: SEGxx
instructions., 151
Additional smart flag instructions 151
Additional field value manipulation
instructions. 152
The SETHIELD instruction 152
The GETFIELD instruction. 153
Additional fast immediate multiply
instruction 154
Extensions to necessary insttuctions for the
80386 processor 154
Calling procedures with stack frames 155
Ca]]mT%procedures that contain
..................... 156
Calling procedures that have been
prototypedo 156
Calling method procedures for objects:
CALL.METHOD 157

Tail recursion for object methods.
JMP.METHOD. 158

Additional instruction for object-oriented

programming 158
Chapter 14
Using macros 159
Textmacros 159
Defining text macros with the EQU
directive. o o 159

String macro manipulation directives. 160

The CATSTR directive. 160
The SUBSTR directive. 160

The INSTR directive. 161 -

The SIZESTR directive 161
Text macro manipulation examples.161
Multilinemacros 161
The multiline macrobody. L 162
Using&inmacros. 162
Including comments in macro bodies. 163
Local dummy arguments. 163
The EXITM directive. 164
Tags and the GOTO directive 164
General multilinemacros . ., 165
Invoking a general multiline macro. 166
The < > literal string brackets 166
The ! character e 167
The % expression evaluation character . . 167
® Redefining a general multiline macro. 168

Deleting a general multiline macro:
TheP E directive 168
Defining nested and recursive macros168
The count repeatmacro 169
The WHILE directive. 170
Stringrepeatmacros 170
The % immediate macro directive 171
~ Including multiline macro expansions .

, inthelistfile. 172
Saving the current operating state 172
Chapter 15
Using conditional directives 175
General conditional directives syntax 175

IFxxx conditional assembly directives. 175
ELSEIFxxx conditional assembly
directives. L 177
ERRxxx error-generation directives 177
Specific directive descriptions 178
Unconditional error-generation directives . . 178
Expression-conditional directives 178
Symbol-definition conditional directives . . . 179
Text-string conditional directives 180
Assembler-pass conditionals 182
Including conditionals in the list file. 182
Chapter 16
Interfacing with the linker 183
Publishing symbols externally 183
Conventions for a particular language 183"
Declaring public symbols 184
Declaring library symbols. 184

Defining external symbols 185

Defining global symbols 185 .

Publishing a procedure prototype. 185

Defining communal variables 186
Including alibrary PO 187
The ALIAS directive 187
Chapter 17
Generating a listing 189
Listingformat 189
General list directives. e 190
Include file list directives. 191
‘Conditional list directives 191
Macro list directives. 192
Cross-reference list directives. 193
Changing list format parameters. 194

- Chapter 18

Interfacing Turbo Assembler with

Borland C++ 197
Calling Turbo Assembler functions from
Borland C++. 197
The framework. 198
Linking assembly language modules
withC+. . ..o .. .198
Using Extern “C” to simplify hnkage .. .200
Memory models and segments. 200
Simplified segment directives and
Borland C++. 200
Old-style segment directives and
Borland C++.0 ..., 202
- Segment defaults: When is it necessary
toload segments? 203
Publicsand externals. 205
Underscores and the C language 205
The significance of uppercase and
lowercase. 206
Labeltypes. 207
Farexternmals 208
Linker commandline 209
Parameterpassing. 209
Preserving registers 213
Returningvalues 214

Calling an assembler function from C++. . . .215
Writing C++ member functions in

assembly language. L...218
Pascal calling conventions 220
Calling Borland C++ from
TurboAssembler P 221
Link in the C++startupcode. 221

Thesegmentsetup. 221

Performing thecall e 222
Calling a Borland C++ function from
Turbo Assembler 223
Appendix A
Program blueprints 227
Simplified segmentation segment i
description. 227 ¢
DOSprograms 229
DOS EXE program blueprint 229
COM programblueprint- 230
Windows programs 231
Windows DLL blueprint L0231
Windows 16-bit application blueprint. 232
Windows 32-bit application blueprint. 232
OS/2programs 233
0S/2 flat-model program blueprint. 233
Appendix B
Turbo Assembler syntax summary 235
Lexical grammar 235
MASM mode expression grammar 237
Ideal mode expression grammar. 239
Keyword precedence. 241
Ideal mode precedence 241
MASM mode precedence 242
Keywords and predefined symbols 242
Directive keywords.242
Ap}s)endjx C .
MASM 6.1 compatibility 249
Basicdatatypes. 249
Signedtypes 250
Floating-point types250
New decision and looping directives 250
JF ELSE ELSEIF ENDIE. 250
Example. 251
WHILE ENDW 251
Example., 251

Example 252
BREAK.CONTINUE. 252
Example 252
Logicaloperators 253
Using flagsin conditions. 253
TextMacros 253
Macro repeat blocks with loop directives . . . 254
REPEATIoops 254
S Bxample ... 254
FORloops. 254
Example 254
FORCloops. 255
‘Example 255
New Directives 255
ECHOdirective 255
EXTERNDEF directive 255
OPT_[ON directive. 256
CASEMAP: NONE/NOTPUBLIC/ALL . . 256
DOTNAME/NODOTNAME 256
EMULATOR/NOEMULATOR 256
EXPRI6/EXPR32. 256
LJMP/NOLIMP ovoeeee . 256
NOKEYWORD: <keywordList>. 256
PROC: PRIVATE/PUBLIC/EXPORT. 257
SCOPED/NOSCOPED 257
SEGMENT: USE16/USE32/FLAT. 257
Visibility in procedure declarations 257
Distance in procedure declarations. 257
SIZE operatorin MASMmode 257
Compatibilityissues 258
One-pass versus two-pass assembly 258
Environment variables. 259
Microsoft binary floating-point format 259
Appendix D
Error messages 261
Informationmessages 261
Warning and error messages 262

Index

Tables

Turtbo Assemblers. 6

Object-oriented programming terminology . 43
Symbols defined for objects. 4
Radixes. e e 57
Characters determining radixes 58
Numericconstants 58
Symboltypes 59
Addresssubtypes. 60
Complex address subtypes 61
Distancesyntax 61
Simpleexpressions 62
Standard symbols. 63
Values of symbols used by themselves 63
LENGTH operator return values. 64
SIZEvaluesc.uuuueo.. 65
WIDTHvalues 65
MASKreturnvalues 66
Simple arithmetic operators. 66
Logical arithmetic operators 66
Bit shiftoperators. 67
Comparison operators. 67
Type override operators 67
TYPEvalues. 68
Bit fields from SYMTYPE and .TYPE 71
Processor directives. 76
8087 coprocessor directives 78
Standard memory models. 83
Model modifiers 84
Model modifiers 85
Simplified segment directives 86
Symbols from simplified segment 4
directives. L 87
Segment combination attribute. 88
Segment alignment attribute 89
Segment size attribute values. 90
Segmentaccess attribute. 90
Stack size modification directives". . 94
STRUC, UNION, and ENDS dJrectlves .. 100
Blockmembers 101
Available modifiers.-. 106
Symbols used or defined by STRUC R (174
‘Data size directives. 134
Intelligent code generation directives 145
Returninstructions. 147
Segment override instructions 151
Smart flag instructions. 152
Instructions for settmg and retnevmg '

values.o L 152

13.6
14.1
14.2
15.1
15.2
153
154

15.5
15.6

15.7

18.1

Al

A2

A3

vi

A4

A5

Instructions affected by SMALL and

LARGEo 154
Dummy argument types. 166
Uses for the ! character 167
Conditional assembly directives usmg
eXPressions 178
Error-generation directives using
expressions L. 179
Evaluation of defined and undefined
symbol..................,..,..179
Symbol-expression directives using
symbolexpr 179
Error-generation directives. 180
Conditional assembly directives using
textstrings oL 180
Error-generation directives using
textstrings 181
Register settings when Borland C++
entersassembler. 203
Default segments and types for TINY
memorymodel. 227
Default segments and types for SMALL
memorymodel. L. 227
Default segments and types for MEDIUM
memorymodel. L 228
Default segments and types for COMPACT
memorymodel. oL 228
Default segments and types for LARGE
or HUGE memory model 228
- Default segments and types for Borland C++
HUGE (TCHUGE) memory model. 229
Turbo Assembler v1.0 keywords 243
Turbo Assembler v2.0 new keywords 245
Turbo Assembler v2.5 new keywords 246
» Turbo Assembler v3.0 new keywords 246
Turbo Assembler v3.1 new keywords 246
Turbo Assembler v3.2 new keywords 246
Turbo Assembler v4.0 new keywords 246
Turbo Assembler v5.0 new keywords 247
Options supported by OPTION. 247
Turbo Assembler types and their .
equivalent directives 249
Signed integer data types. 250
- Floating-point data types.250
New Turbo Assembler logical operators. . . 253
Return value of SIZE in MASM mode 257

Introduction

Welcome to Borland’s Turbo Assembler,® a multi-pass assembler with forward-
reference resolution, assembly speeds of up to 48,000 lines per minute (on an IBM PS/2
model 60), Microsoft Macro Assembler (MASM) compatibility, and an optional Ideal
mode extended syntax. Whether you're a novice or an experienced programmer, you'll
appreciate these features and others we’ve provided to make programming in assembly
language easier. Here are the highlights—we’ll describe them in detail later:

Object-oriented programming capabilities

32-bit model and stack frame support

Full 386, 1486, and Pentium support

Simplified segmentation directives

Table support

Enumerations

Smart flag instructions

Fast immediate multiply operation

Multiline definition support

VERSION specification directive

Nested directives

Quirks mode to emulate MASM

Full source debugging output

Cross-reference utility (TCREF)

Configuration and command files

File converter utility (converts C .h files to TASM .ash files)
Procedure prototyping and argument checking capabilities
Alias support

Windows 95 flat thunking support

Turbo Assembler is a powerful command-line assembler that takes your source (.ASM)
files and produces object (.OBJ) modules. You then use TLINK.EXE, Borland’s high-
speed linker program, to link your object modules and create executable (.EXE) files.

Introduction 1

New features

Turbo Assembler version 5.0 incorporates the following new feature enhancements:

¢ Enhanced MASM compatibility, as described in “MASM 6.1 companb1l1ty’ on
page 249.

» Windows 95 flat thunking support with the -utthk command-line option. For more
- information on thunking, refer to the sample program and documentation contained -
in the subdirectory \EXAMPLES\THUNK5 off your main TASM directory.

Hardware and software requ1rements

Turbo Assembler generates instructions for the 8086, 80186, 80286, 80386, 1486, Pentlum ,
and Pentium Pro, and compatible processors. Essentially Turbo Assembler runs on all
Intel-processor based computers, including all true compatibles. Turbo Assembler

also generates floating-point instructions for the 8087, 80287, and 80387 numeric
coprocessors. (For more information about the instruction sets of the 80x86,/80x87
families, consult the Intel data books.)

About the manuals

Turbo Assembler comes with the Turbo Assembler User’s Guide (this book) and the Turbo
Assembler Quick Reference Guide. The User’s Guide provides basic instructions for using
Turbo Assembler, explores how to interface Turbo Assembler with other languages, and
describes in detail the operators, predefined symbols, and directives Turbo Assembler
uses. The Quick Reference Guide is a handy guide to directives and processor and
coprocessor instructions.

Here’s a more detailed look at what the User’s Guide contains.

Chapter 1, “Getting started with Turbo Assembler ” tells you how to install Turbo
Assembler on your system

Chapter 2, “Using directives and switches,” describes how you can control the way the
assembler runs when you use directives and switches.

Chapter 3, “General programming concepts,” discusses the differences between Ideal
and MASM modes, how to use predefined symbols, usmg comment characters, and so
- forth.

- Chapter4, ”Creatmg object-oriented programs,” descnbes how you can use ob]ect-
Q" oriented programming techniques in assembly language.
Q progr g q y languag

Chapter 5, ”Usmg expressions and symbol values,” talks about evaluatmg an
defining expressions and operators. ; :

Chapter 6, “Choosing processor directives and symbols, tells you how to generate
code for particular processors. ‘

2 Turbo Assembler User’s Guide

Chapter 7, “Using program models and segmentation,” talks about program models,
creating symbols, simplified segments, and ordering of segments.

Chapter 8, “Defining data types,” explains how to define structures, unions, tables,
bit-field records, and objects.

Chapter 9, “Setting and using the location counter,” describes how and why you'd
want to use the location counter, as well as how to define labels.

Chapter 10, “Declaring procedures,”examines how to use various types of procedures,
and how to define and use arguments and local variables.

Chapter 11, “Controlling the scope of symbols,” discusses how you can limit or
expand the area in which a symbol has a particular value.

Chapter 12, “Allocating data,”describes simple data directives, and how to create
instances of structures, unions, records, enumerated data types, tables, and objects.

Chapter 13, “Advanced coding instructions,” covers Turbo Assembler’s extended
instructions, including prototyping and calling language procedures.

Chapter 14, “Using macros,” tells you how to use macros in your code.

Chapter 15, “Using conditional directives,” talks about the directives that let you
execute your code conditionally.

Chapter 16, “Interfacing with the linker,” describes how you can include libraries and
publish symbols as you link your code.

Chapter 17, “Generating a listing,” talks about Turbo Assembler hstmg files and how
to use them.

Chapter 18, “Interfacing Turbo Assembler with Borland C++,” explains how to use
Borland’s line of C++ compilers with assembly language.

Appendix A, “Program blueprints,” contains example program structures for
Windows and DOS programs. '

Appendix B, “Turbo Assembler syntax summary,” illustrates Turbo Assembler
expressions (both MASM and Ideal modes) in modified Backus-Naur form (BNF).

Appendix C, “MASM 6.1 compatibility,” covers the differences between MASM and
Turbo Assembler MASM mode.

‘Appendix D, “Error messages,” describes all the error messages that can be generated
when using Turbo Assembler: information messages, fatal error messages, warning
‘messages, and error messages.

Typographic conventions

When we talk about IBM PCs or compatibles, we're referring to any computer that uses
the 8088, 8086, 80186, 80286, 80386, 1486, Pentium, and Pentium Pro processors (all of
these chips are commonly referred to as 80x86).

Introduction 3

The following typefaces are used in this book:

Ttalics In text, italics represeht labels, placeholders, variables, and arrays. In
syntax expressions, placeholders are set in italics to indicate they are
user-defined. ,

Boldface Boldface is used in text for directives, instructions, symbols, and

operators, as well as for command-line options.

CAPITALS In téxt, capital letters are used to represent instructions, directives,
registers, and operators.

Monospace Monospace type is used to display any sample code or text that
appears on your screen, and any text that you must actually type to
assemble, link, and run a program

Keycaps In text, keycaps indicate a key on your keyboard. It is often used when
describing a key you must press to perform a particular function; for
example, “Press Enter after typing your program name at the prompt.”

Software registration and technical support

The Borland® Assist program offers a range of technical support plans to fit the different
needs of individuals, consultants, large corporahons, and developers. To receive help
with this product, send in the registration card and select the Borland Assist plan that
best suits your needs. North American customers can register by phone 24 hours a day
by calling 1-800-845-0147.

For additional details on these and other Borland services, see the Borland Assist dnd
Services Guide included with this product.

4 Turbo Assembler User’'s Guide

Chapter

Getting started with Turbo Assembler

You might have heard that programming in assembly language is a black art suited only
to hackers and wizards. However, assembly language is nothing more than the human
form of the language of the computer. And, as you'd expect, the computer’s language is
highly logical. As you might also expect, assembly language is very powerful—in fact,
assembly language is the only way to tap the full power of the Intel 80x86 family, the
processors at the heart of the IBM PC family and compatibles.

You can write whole programs using nothing but assembly language or you can

mix assembly language with programs written in high-level languages such as
Borland® C++ and Borland® Pascal. Either way, assembly language lets you write small
and blindingly fast programs. In addition to the advantage of speed, assembly language
gives you the ability to control every aspect of your computer’s operation, all the way
down to the last tick of the computer’s system clock.

Installing Turbo Assembler

The Turbo Assembler package consists of a set of executable programs, utilities, and
example programs. In addition, the package includes a Quick Reference Guide and this
User’s Guide.

For instructions on installing Turbo Assembler, refer to the TSM_INST.TXT file on your
installation disk:

1 Insert the TASM Install disk in drive A of your computer.

2 User your text editor to open TSM_INST.TXT, or issue the following command at the
command line:

TYPE A:TSM_INST.TXT | MORE

Chapter 1, Getting started with Turbo Assembler 5

The Turbo Assemblers

The Turbo Assembler package comes complete with 3 different assemblers, as outlined
in Table 1.1:

Table 1.1 Turbo Assemblers

les g e 640K memor ry D
addressable by DOS. Produces only 16-bit debug information.

TASI\/D(.EXE Protected-mode assembler. Assembles 16- and 32-bit OBJs using memory above
640K. Produces only 16-bit debug information.
TASM32.EXE Protected-mode assembler. Assembles 16- and 32-bit OB]s using memory above

640K. Produces only 32-bit debug information.

All three assemblers are capable of producing both 16- and 32-bit object files, depending
on the directives contained in your assembler source files. If you produce a 16-bit object
file, then you must use the 16-bit linker (TLINK.EXE) to link your application. If you
produce a 32-bit object file, then you must use the 32-bit linker (TLINK32.EXE) to link
your application.

TASM.EXE is a real-mode assembler, meaning that it is capable of using only the lower
640K of memory addressable by DOS. If you're assembling larger applications, use
either TASMX.EXE or TASM32.EXE. Both of these assemblers use the DPMI server to

~ take advantage of extended memory.

The biggest difference between the three assemblers is the type of debug information
they produce when you assemble your source files with the /zi command-line option.
Both TASM.EXE and TASMX.EXE produce only 16-bit debug information.

- TASMB32.EXE produces only 32-bit debug information. If you plan-to use Turbo
Debugger to debug your assembler application, then you must assemble 16-bit files
with either TASM.EXE or TASMX.EXE. To produce 32-bit debug information, then you
must assemble your files with TASM32.EXE.

Utility and example programs

The Turbo Assembler package includes several utility programs to help you build
assembly programs. The utilities include the Turbo Linkers, the MAKE utility, the GREP
file search utility, and the resource compllers and linkers. These utility programs are
described in the online text files located in the \DOC subdirectory located off your main
TASM directory.

To get you started writing assembler programs, the Turbo Assembler package includes
various example programs that demonstrate different assembler programming
techniques. The example programs, located in the \EXAMPLES directory under the
main TASM directory, even include complete 16- and 32-bit Windows assembly

* programs. " ’

6 Turbo Assembler User's Guide

‘Online Help

You can get online Help for Turbo Assembler using the Wmdows Help facility. To
“access the online Help, do one of the following:

* From Windows, click the TASM Reference icon in the TASM program group
e From Windows, run the TASM.HLP file located in the \TASM\BIN subdirectory

You can run TASM.HLP from a DOS box in Windows. On the DOS command line,
enter the following command from the \TASM\BIN directory:

winhelp tasm.hlp

Writing your first Turbo Assembler program

If you have not yet written an assembly program, the DOS-based “Greetings, World!”
program is a good place to start. To begin writing this program, open your favorite
program editor and enter the following lines of code to create the HELLO.ASM

program:
.MODEL SMALL
.STACK 100h
.DATA
TimePrompt DB ‘Is it after 12 noon (Y/N)?2$’
GoodMorningMessage DB 13,10, 'Good morning, world!’,13,10,'S’
GoodAfternoonMessage DB 13,10, 'Good afternoon, world!’,13,10,'S’
DefaultMessage DB 13,10, 'Good day, world!’,10,13,'$’
.CODE
start:
mov ax, @data
mov ds,ax ;set DS to point to the data segment
mov dx, OFFSET TimePrompt ;point to the time prompt
mov ah, 9 ;DOS: print string
int 21h ;display the time prompt
mov ah,1 :D0S: get character
int 21h ;get a single-character response
or al,20h ;force character to lower case
cmp al,'y’ ;typed Y for afternoon?
je IsAfternoon
cmp al,'n’ ;typed N for morning?
je IsMorning
mov dx,OFFSET DefaultMessage ;default greeting

jmp DisplayGreeting

IsAfternoon:
mov dx, OFFSET GoodAfternoonMessage ;afternoon greeting
jmp . DisplayGreeting

—

Chapter 1, Getting started with Turbo Assembler 7

IsMorning:

mov dx, OFFSET. GoodMorningMessage ;before noon greeting
‘DisplayGreeting:

nov ah, 9 ;DOS: print string

int 21h ;display the appropriate greeting

mov ah,4ch ;DOS: terminate program

mov al,0 ;return code will be 0

int 21h. jterminate the program
END start

After you've entered the preceding program, save it to disk as HELLO.ASM. (For
convenience, HELLO.ASM is supplied in the \EXAMPLES\USRGUIDE dlrectory
located under your main TASM directory.)

If you're familiar with high-level languages (such as C, C++, or Pascal), you might think
that HELLO.ASM is a bit long for a “Greetings, World!” program. Indeed, assembler -
programs tend to be much longer than high-level language programs because each
high-level language statement actually breaks down to form many assembler
instructions. However, assembly language gives you complete freedom over the actual
instructions that are given to the computer’s CPU. With assembly language, you can

- write programs that tell the computer to do anything that it’s.capable of doing,.

Assembling your first program

Now that you've saved HELLO.ASM, you’ll want to run it. However, before you can
run it, you'll have to assemble it into an .OBJ file, and then link the file to form an
_ executable program.

The assembly step turns your source code into an intermediate form called an object
module, and the linking step combines one or more object modules into an executable
program. You can do your assembling and linking from the command line.

To assemble HELLO.ASM, type the following line at the command line:
TASM hello '

Unless you specify another file name, HELLO.ASM will be assembled to form the object
file HELLO.OB]. (Note that you don’t need to type in the file extension name; Turbo
Assembler assumes all source files end with .ASM.) If you entered the HELLO.ASM
program correctly, you'll see a listing similar to the following one displayed onscreen:

Turbo Agsembler Version 5.0 Copyright (c) 1988, 1996 by Borland Internationai, Inc.

Assembling file: HELLO.ASM
Error messages: ‘None .
Warning messages: None
Passes: 1
Remalnlng memory 439K

If you get warnings or errors, they are displayed with the program line numbers to ’
indicate where they occurred. If you do get errors, edit HELLO.ASM make sure it's

8 Turbo Assembler User’'s Guide

precisely the same as the program shown above. After editing the progrém, reassemble
it with the TASM hello command.

Linking your first program

After you've successfully assembled HELLO.ASM, you'll need to link the program
using TLINK. At the command line, type:

TLINK hello

If no errors or warnings are reported, an executable file is created, named HELLO.EXE. .
To run this program, enter the command HELLO from the command line.

Errors can occur during the linking process, although it’s unlikely with this example
program. If you do receive linker errors, modify your code to exactly match the code
shown here, then assemble and link again.

Recommended reading

Although HELLO.ASM is a good program for testing TASM.EXE and TLINK.EXE, the
example is of little use if you're trying to learn assembly language. However, many
books are available that teach both the fundamentals and the advanced features of
assembly language. To help you get started with assembly language, refer to one or
more of the following book titles:

* Hummel, Robert L. Programmers Technical Reference: Processor and coprocessor.
Emeryville, CA: Ziff Davis Press, 1992.

¢ Mischel, Jim. Macro Magic with Turbo Assembler. New York, NY: John Wiley & Sons,
1993.

e Swan, Tom. Mastering Turbo Assembler, Second Edition. Indianapolis, IN: Sams
Publishing, 1995.

* Yao, Paul. Borland C++ 4.0 Programming for Windows. New York, NT: Random House,
Inc., 1994. In particular, Part 6 of this book offers useful insights into programming
Windows prologue and epilogue code, along with code showing the Windows
callback mechanism.

In addition to these books, Intel Corporation offers fact sheets and reference manuals on
the workings of their processor products. Contact Intel at the following address:

Intel Literature Sales

P.O. Box 7641

Mount Prospect, IL 60056-7641
1 (800) 548-4725

Chapter 1, Getting started with Turbo Assembler 9

10 Turbo Assembler User’s Guide

Chapter

Using directives and switches

This chapter is dedicated to familiarizing you with Turbo Assembler’s command-line
options. We’ll describe each of the command-line options you can use to alter the
assembler’s behavior, and then show how and when to use command files. We'll also
describe the configuration file, and how you can control the display of warning and
error messages.

Starting Turbo Assembler

If you start Turbo Assembler from your operating system command line without giving
it any arguments, like this,

TASM

you'll get a screenful of help describing many of the command-line options, and the
syntax for specifying the files you want to assemble. Figure 2.1 shows you how this
looks. : :

Figure 2.1 Turbo Assembler command line

Turbo Assembler Version 4.1 Copyright (c) 1988, 1996 Borland International
Syntax: TASM [options] source [,object] [,listing] [,xref] '

la,/s Alphabetic or Source-code segment ordering

/c Generate cross-reference in listing

/ASYM[=VAL] Define symbol SYM = 0, or = value VAL

/e, /T Emulated or Real floating-point instructions

/h,/? Display this help screen

/1PATH Search PATE for include files :

/3CMD Jam in an assembler directive CMD (e.g. /JIDEAL)

/kh# Hash table capacity # symbols

/1, /1a Generate listing: l=normal listing, la=expanded listing
/ul, /mx, /mu Case sensitivity on symbols: ml=all, mx=globals, mu=none
[mv Set maximum valid length for symbols

/m# Allow # multiple passes to resolve forward references

Chapter 2, Using directives and switches 11

/n Suppress symbol tables in listing
/os,/o,/op,/ol Object code: standard, standard w/overlays, Phar Lap, -or IBM

/p Check for code segment overrides in protected mode

/q Suppress OBJ records not needed for linking

/t Suppress messages if successful assembly

JUXXXX Set version emulation, version xxxx

/w0, /wl, /w2 Set warning level: w0=none, wl=w2=warnings on
©JWXXK, [WHXXX Disable (-) or enable (+) warning xxx)

/% Include false conditionals in listing

/z Display source line with error message

/zi,/2d, /zn Debug info: zi=full, zd=1ife numbers only, zn=none

With the command-line options, you can specify the name of one or more files that you
want to assemble, as well as any options that control how the files get assembled.

The general form of the command line looks like this:
TASM fileset [; fileset]...

The semicolon (;) after the left bracket ([) lets you assemble multiple groups of files on
one command line by separating the file groups. If you prefer, you can set different
options for each set of files; for example,

TASM /e FILEl; /a FILE2

assembles FILEL. ASM with the /e command-line option and assembles file FILE2.ASM
with the /a command-line option.

In the general form of the command line, fileset can be

[option]...sourcefile [{+] sourcefile]...
i [, [objfile] [, [listfile] [, [xreffile]l]]

This syntax shows that a group of files can start off with any options you want to apply

‘to those files, followed by the files you want to assemble. A file name can be a single file
name, or it can use the normal wildcard characters * and ? to specify multiple files to
assemble. If your file name does not have an extension, Turbo Assembler adds the .ASM
extension. For example, to assemble all the -ASM files in the current directory, you
would type

TASM *

If you want to assemble mul‘aple files, you can separate their names with the plus sign
(+):
TASM MYFILEL + MYFILE2

You can follow the file name you want to assemble by an optional object file name,
listing file name, and a cross-reference file name. If you do not specify an object file or
listing file, Turbo Assembler creates an object file with the same name as the source file
and an extension of .OB]J.

A listing file is not generated unless you explicitly request one. To request one, place a

_ comma after the object file name, followed by a listing file name. If you don’t explicitly

~ provide a listing file name, Turbo Assembler creates a listing file with the same name as
the source file and the extension .LST. If you supply a listing file name without an
extension, .LST is appended to it.

12 Turbo Assembler User’s Guide

A cross-reference file is not generated unless you explicitly request one. To request one,
place a comma after the listing file name, followed by a cross-reference file name. If you
don't explicitly provide a cross-reference file name, Turbo Assembler creates a cross-
reference file with the same name as the source file and the extension .XRF. If you
supply a cross-reference file name without an extension, .XRF is appended to it.
(TCREF, a cross-reference utility, is described on disk.)

If you want to accept the default object file name and also request a listing file, you must
supply the comma that separates the object file name from the listing file name:

TASM FILEL, ,TEST
This assembles FILE1.ASM to FILE1. OB] and creates a listing file named TEST.LST.

If you want to accept the default object and listing file names and also request a cross-
reference file, you must supply the commas that separate the file names:

TASM MYFILE, , , MYXREF

This assembles file MYFILE.ASM to MYFILE.OBJ, with a listing in file MYFILE.LST and
a cross-reference in MYXREF.XRF.

If you use wildcards to specify the source files to assemble, you can also use wildcards
to indicate the object and listing file names. For example, if your current directory
contains XX1.ASM and XX2.ASM, the command line

TASM XX*,Yy*

assembles all the files that start with XX, generates object files that start with YY, and
derives the remainder of the name from the source file name. The resulting object files
are therefore called YY1.OBJ and YY2.0B]J.

If you don’t want an object file but you do want a listing file, or if you want a cross-
reference file but don’t want a listing file or object file, you can specify the null device
(NUL) as the file name. For example,

TASM FILEL, ,NUL,

assembles file FILE1.ASM to object file FILE1.OB], doesn t produce a listing file, and
creates a cross-reference file FILE1.XRF.

Command-line options

The command-line options let you control the behavior of the assembler, and how it
outputs information to the screen, listing, and object file. Turbo Assembler provides you
with some options that produce no action, but are accepted for compatibility with the
current and previous versions of MASM: .

/b Sets bulffer size

v Displays extra statistics
You can enter options using any combination of uppercase and lowercase letters. You
can also enter your options in any order except where you have multiple /i or /j options;

these are processed in sequence. When using the /d option, you must also be careful to
define symbols before using them in subsequent /d optlons

Chapter 2, Using directives and switches 13

/a

Note

/a

You can override command-line options by using confhctmg d1rect1ves in your source
code.

Figure 2. lon page 11 summarizes the Turbo Assembler command-line opt10ns here’s a
detailed description of each option.

Function
Syntax
Remarks

" Example

/b

Specifies alphabetical segment-ordering

The /a option tells Turbo Assembler to place segments in the object file in alphabetical
order. This is the same as using the .ALPHA directive in your source file.

You usually only have to use this option if you want to assemble a source file that was
written for very early versions of the IBM or Microsoft assemblers.

The /s option reverses the effect of this option by returning to the default sequential
segment-ordering.

If you specify sequential segment-ordering with the .SEQ directive in your source file, it

‘will override any /a you provide on the command line.

TASM /a TEST1

This command line creates an object file, TEST1.0B]J, that has its segments in
alphabetical order.

Syntax
Remarks

e

/b '

The /b option is mcluded for compatlblhty It performs no action and has no effect on

the assembly

Function
Syntax
Remarks

Example

Enables cross-reference in listing file
/c ‘

The /c option enables cross-reference information in the listing file. Turbo Assembler
adds the cross-reference information to the symbol table at the end of the listing file.
This means that, in order to see the cross-reference information, you must either
explicitly specify alisting file on the command line or use the /1 option to enable the
listing file.

For each symbol, the cross-reference shows the line on which-it is defined and all lines
that refer to it. | :

TASM /1 /c TESTI

14 Turbo Assembler User's Guide

d

/d

This code creates a listing file that also has cross-reference information in the symbol
table.

Function
Syntax
Remarks

Example

le

Defines a symbol
/dsymbol[=value or expression]

The /d option defines a symbol for your source file, exactly as if it were defined on the
first line of your file with the = directive. You can use this option as many times as you
want on the command line.

You can only define a symbol as being equal to another symbol or a constant value. You
can’t use an expression with operators to the right of the equal sign (=). For example,
1dX=9 and /dX=Y are allowed, but /dX=Y—4 is not.

TASM /dMAX=10 /dMIN=2 TESTI1

This command line defines two symbols, MAX and MIN, that other statements in the
source file TEST1.ASM can refer to.

Function
Syntax
Remarks

Example

Generates floating-point emulator instructions
/e

The /e option tells Turbo Assembler to generate floating-point instructions that will be
executed by a software floating-point emulator. Use this option if your program
contains a floating-point emulation library that mimics the functions of the 80x87
numeric coprocessor.

Normally, you would only use this option if your assembler module is part of a
program written in a high-level language that uses a floating-point emulation library.
(Borland’s line of C++ compilers, Borland Pascal, Turbo Basic, and Turbo Prolog all
support floating- point emulation.) You can’t just link an assembler program with the
emulation library, since the library expects to have been initialized by the compiler’s
startup code.

The It op’aon reverses the effect of this option by enabling the assembly of real floating-
point instructions that can only be executed by a numeric coprocessor.

If you use the NOEMUL directive in your source file, it will override the /e Opthl’l on the
command line.

The /e command-line option has the same effect as using the EMUL directive at the start
of your source file, and is also the same as using the JEMUL command-line option.

TASM /e SECANT
TCC ~f TRIG.C SECANT.OBJ

Chapter 2, Using directives and switches 15

- /hor [?

The first command line assembles a module with emulated floating-point instructions.

_ The second command line compiles a C source module with floating-point emulation -

and then links it with the object file from the assembler.

hor/?
Function - Displays a help screen
Syntax /h or /? ' ,
Remarks The /h option tells Turbo Assembler to display a help screen that describes the

Example

fi

command-line syntax. This includes a list of the options, as well as the various file
names you can supply. The /? option does the same thing.

TASM /h

Function
Syntax
Remarks

Example

Sets an include file path
/1PATH

The /i option lets you tell Turbo Assembler where to look for files that are included in
your source file by using the INCLUDE directive. You can place more than one /i option
on the command line (the number is only limited by RAM).

When Turbo Assembler encounters an INCLUDE directive, the location where it
searches for the include file is determined by whether the file name in the INCLUDE
directive has a directory path or is just a simple file name.

If you supply a directory path as part of the file name, that path is tried first, then Turbo
Assembler searches the directories specified by /i command-line options in the order
they appear on the command line. It then looks in any directories specified by /i options
in a configuration file.

If you don’t supply a directory path as part of the file name, Turbo Assembler searches
first in the directories specified by /i command-line options, then it looks in any
directories specified by /i options in a configuration file, and finally it looks in the
current directory.

TASM /i\INCLUDE /iD:\INCLUDE TEST1
If the source file contains the statement
“INCLUDE MYMACS.INC -

Tufbo Assembler will first look for \INCLUDE\MYMACS.INC, then it will look for
DAINCLUDEAMYMACS.INC. If it still hasn’t found the file, it will look for
MYMACS.INC in the current dlrectory If the statement in your source file had been

INCLUDE INCSMYMACS INC

16 Turbo Assembler User's Guide

i

/]

Turbo Assembler would first look for INCS\MYMACS.INC and then it would look
for \INCLUDE\AMYMACS.INC, and finally for D:\INCLUDEAMYMACS.INC.

Function
Syntax

Remarks

Example

/kh

Defines an assembler startup directive
/jdirective

The /j option lets you specify a directive that will be assembled before the first line of
the source file. directive can be any Turbo Assembler directive that does not take any
arguments, such as .286, IDEAL, %MACS, NOJUMPS, and so on.

You can put more than one /j option on the command line; they are processed from left
to right across the command line.

TASM /§.286 /jIDEAL TEST1

This code assembles the file TEST1.ASM with 80286 instructions enabled and Ideal
mode expression-parsing enabled.

Function
Syntax
Remarks

Example

n

Sets the maximum number of symbols allowed
/khnsymbols

The /kh option sets the maximum number of symbols that your program can contain.
If you don’t use this option, your program can only have a maximum of 8,192 symbols;
using this option increases the number of symbols to nsymbols, up to a maximum of
32,768.

Use this option if you get the Out of hash space message when assembling your

" program.

You can also use this option to reduce the total number of symbols below the default
8,192. This releases some memory that can be used when you are trying to assemble a
program but don’t have enough available memory.

TASM /kh100000 BIGFILE

This command tells Turbo Assembler to reserve space for 10,000 symbols when
assembling the file BIGFILE ‘

Function
Syntax

Generates a listing file
/1 '

Chapter 2, Using directives and switches 17.

/la.

Remarks

Example

fla

The /1 option indicates that you want a listing file, even if you did not explicitly spec1fy it
on the command line. The listing ﬁle will have the same name as the source ﬁle, with an
extension of .LST.

" TASM /1 TESTL

This command line requests a listing file that will be named TEST1.LST.

Shows high-level interface code in listing file

Function
Syntax /la ,
‘Remarks = The /la option tells Turbo Assembler to show all generated code in the listing file,
‘ including the code that gets generated as a result of the high-level language interface
.MODEL directive.
Example TASM /la FILEL
m
Function Sets the maximum number of assembly passes
Syntax /m[npasses]
Remarks Normally, Turbo Assembler functions as a single-pass assembler. The /m option lets
you specify the maximum number of passes the assembler should make during the
~ assembly process. TASM automatically decides whether it can perform less than the
- number of passes specified. If you select the /m option, but don’t spec1fy npasses, a
default of five is used. :
You might want to specify multiple passes either if you want Turbo Assembler to
remove NOP instructions added because of forward references or if you are assembling
a module containing instructions that require two passes. If multiple passes are not
enabled, suich a module will produce at least one “Pass-dependent construction
encountered” warning. If the /m option is enabled, Turbo Assembler assembles this
module correctly but will not optimize the code by removing NOPs, no matter how
many passes are allowed. The warning “Module is pass dependent—compatibility pass
was done” is displayed if this occurs.
Example TASH /M2 TESTL
This tells Turbo Assembler to use up to two passes when \assembling TEST1.
/ml
Function Treats symbols as case-sensitive
Syntax /ml

18- Turbo Assembler User’'s Guide

Remarks-

Example

/mu

/mu

The /ml option tells Turbo Assembler to treat all symbol names as case-sensitive.
Normally, uppercase and lowercase letters are considered equivalent so that the names
ABCxyz, abexyz, and ABCXYZ would all refer to the same symbol. If you specify the /ml
option, these three symbols will be treated as distinct. Even when you specify /ml, you
can still enter any assembler keyword in uppercase or lowercase. Keywords are the
symbols built into the assembler that have special meanings, such as instruction
mnemonics, directives, and operators.

TASM /ml TEST1
where TEST1.ASM contains the following statements:

abc DW 0
ABC DW 1 ;not a duplicate symbol
Mov Ax, [Bp] . ;mixed case OK in keywords

The /ml switch used together with /mx has a special meaning for Pascal symbols. See the
/mx section for further details.

Function
Syntax
Remarks

Example

Imvi#

Converts symbols to uppercase
/mu

The /mu option tells Turbo Assembler to ignore the case of all symbols. By defauit,
Turbo Assembler specifies that any lowercase letters in symbols will be converted to
uppercase unless you change it by using the /ml directive.

TASM /mu TEST1
makes sure that all symbols are converted to uppercase (which is the default):

EXTRN my func:NEAR
call myfunc ;don't know if declared as
; MYFUNC, Myfunc,...

Function ‘

Syntax

Remarks

/mx

Sets the maximum length of symbols.
/mv#

The /mv# option sets the maximum length of symbols that TASM will distinguish
between. For example, if you set /mv12, TASM will see ABCDEFGHIJKLM and
ABCDEFGHIJIKLL as the same symbol, but not ABCDEFGHIJKL. Note that the
minimum number you can have here is 12.

Function

Makes public and external symbols case-sensitive

Chapter 2, Using directives and switches 19

/n

Syntax
Remarks

Example

~ Note

/n

/mx.

The /mx option tells Turbo Assembler to treat only external and public symbols as case-
sensitive. All other symbols.used (within the source file) are treated as uppercase.

You should use this directive when you call routines in other modules that were
compiled or assembled so that case-sensitivity is preserved; for example, modules
compiled by one of Borland’s line of C++ compilers.

TASM /mx TESTI;
where TEST1.ASM contains the following source lines:

EXTRN Cfunc:NEAR
myproc PROC NEAR
call Cfunc

Using the /mx and /ml options together has a special meaning for symbols declared as
Pascal; if you use these symbols together, the symbols will be published as all uppercase
to the linker.

Function
Syntax

Remarks

Example

/o

Suppresses symbol table in listing file
/n :

The /n option indicates that you don’t want the usual symbol table at the end of the
listing file. Normally, a complete symbol table listing appears at the end of the file,
showing all symbols, their types, and their values.

You must specify a listing file, either exp11c1t1y on the command line or by using the /1
option; otherwise, /n has no effect.

TASM /1 /n TESTL

This code generates a listing file showing the generated code only, and not the value of
your symbols.

Function
Syntax '
Remarks

20 .Turbo

Generates overlay code for TLINK
/o

Specifying the /o switch on the command line causes overlay-compatible fixups to be
generated. When this switch is used, 386 references to USE32 segments should not be
made since they won't link properly.

Assembler User's Guide

/oi

/oi
Function ~Generates overlay code for the IBM linker
Syntax /o
Remarks Specifying the /oi switch on the command will generate overlay-compatible fixups for

lop_

the IBM linker. The resulting object file will not be compatible with TLINK, Borland’s
linker.

Function

Generates overlay code for the Phar Lap linker
Syntax /op
Remarks Specifying the /op switch on the command will generate overlay-compatible fixups for
the Phar Lap linker. The resulting object file will not be compatible with TLINK,
Borland'’s linker.
los
Function Outputs TLINK-compa’uble ob]ects without overlay support. This is the default
selection.
Syntax /os
Remarks Specifying the /os switch on the command will generate objects without overlay support

Ip

for use with TLINK.

Function
Syntax
Remarks

Example

Checks for impure code in protected mode

/D

The Ip option specifies that you want to be warned about any instructions that generate

“impure” code in protected mode. Instructions that move data into memory by using a
CS8: override in protected mode are considered impure because they might not work
correctly unless you take special measures.

You only need to use this option if you are writing a program that runs in protected
mode on the 80286, 386, or i486.

TASM /p TESTI ,
where TEST1.ASM contains the following statements:

Chapter 2, Using directives and switches 21

/q

9

.286P
. CODE SEGMENT
temp DW 2 ~ ‘
mov CS:temp, 0 ;impure in protected mode

Function
Syntax
Remarks

Ir

Suppresses .OBJ records not needed for linking

/q

The / q option removes the copyright and file dependency records from the resulting
.OBYJ files, making it smaller. Don't use this option if you are using MAKE or a similar

* program that relies on the dependency records.

Function
Syntax
Remarks

Example

/s

Generates real ﬂogﬁngﬁpoint mnstructions
/r

The /r option tells Turbo Assembler to generate real floating-point instructions (instead
of generating emulated floating-point instructions). Use this option if your programis
going to run on machines equipped with an 80x87 numeric coprocessor.

The /e option reverses the effect of this ophon in generating emulated floating-point
instructions. .

If you use the EMUL directive in your source file, it will override the /r option on the
command line.

The /r command-line option has the same effect as using the NOEMUL directive at the
start of your source file, and is also the same as using the fNOEMUL command-line
option.

TASM /r SECANT
TPC /$N+ /$E TRIG,PAS

The first command line assembles a module with real floating-point instructions. The
second compiles a Pascal source module with real floating-point instructions that links
in the object file from the assembler.

Function
Syntax
Remarks

Specifies sequential segment-orderingv
/s

The /s option tells Turbo Assembler to place segments in the object file in the order in
which they were encountered in the source file. By default, Turbo Assembler uses
segment-ordering, unless you change it by placing an /a option in the configuration file.

-

22 T‘urbo Assembler User’'s Guide -

Example

it

It
If you specify alphabetical segment-ordering in your source file with the ALPHA
directive, it will override /s on the command line.
TASM /s TEST1

This code creates an ob]ect file (TEST1.0B]J) that has its segments ordered exactly as they
were specified in the source file.

Function Suppresses messages on successful assembly
Syntax /t _
Remarks The /t option stops any display by Turbo Assembler unless warning or error messages
result from the assembly.
You can use this option when you are assembling many modules, and you only want
warning or error messages to be displayed onscreen.
Example TASM /t TEST1
u
Function = Sets version ID in command line
Syntax /u version ‘
Remarks The /u option lets you specify which version of Turbo Assembler or MASM you want to

Jutthk

use to run your modules. This is the command-line version of the VERSION directive.

Function Enables support for Windows 95 flat thunking.
Syntax /utthk ‘

Remarks The /futthk option tells Turbo Assembler to assemble code generated by the Microsoft
thunk compiler. For more information, see the thunking example and documentation
provided in the \EXAMPLES\THUNKY5 directory off your main TASM directory.

i
Syntax /v
Remarks The /v option is included for compatibility. It performs no action and has no effect on the

assembly.

Chapter 2, Using directives and switches 23

/w

/w'

Function Controls the generation of warning messages

Syntax /w
w~[warnclass)
w+[warnclass]

Remarks The /w optidn controls which warning messages are emitted by Turbo Assembler.

If you specify /w by itself, “mild” warnings are enabled. Mild warnings merely indicate
that you can improve some aspect of your code’s efficiency.

If you spvemfy fw- without warnclass, all warnings-are disabled. If you follow /w- with
warnclass, only that warning is disabled. Each warning message has a three-letter
identifier:

" ALN Segment alignment
ASS Assuming segment is 16-bit
BRK . Brackets needed
GTP Global type doesn’t match symbol type

ICG - Inefficient code generation
INT INT 3 generation
LCO Location counter overflow

MCP MASM compatibility pass
- OPI Open IF conditional
‘OPP - Open procedure
OPs Open segment
OVF Arithmetic overflow
PDC Pass-dependent construction

PQK Assuming constant for [const] warning

PRO - Write-to memory in protected mode needs CS override
RES Reserved word warning

TPI illegal warning

UNI For turning off uninitialized segment warning

If you specify /w+ without warnclass, all warnings are enabled. If you specify /w+ w1th
warnclass from the preceding list, only that warning will be enabled.

By default, Turbo Assembler first starts assembling your file with all warnings enabled
except the inefficient code-generation (ICG) and the write-to-memory in protected
mode (PRO) warnings.

You can use the WARN and NOWARN directives within your source file to control
whether a particular warning is allowed for a certain range of source lines. These
directives are described later in this chapter.

Example TASM /w TESTL

24 Turbo Assembler User's Guide

/X

The following statement in TEST1.ASM issues a warning message that would not have
appeared without the /w option:

mov bx,ABC ;inefficient code generation warning
ABC = 1
With the command line

TASM' /w-OVF TEST2
no warnings are generated if TEST2.ASM contains
dw 1000h * 20h

X
Function Includes false conditionals in listing
Syntax /x
Remarks If a conditional IF, IFNDEF, IFDEF, and so forth evaluates to False, the /x option causes
the statements inside the conditional block to appear in the listing file. This option also
causes the conditional directives themselves to be listed; normally they are not.
You must specify a listing file on the command line or use the /1 option, otherwise /x has
no effect.
You can use the LFCOND, .SFCOND, and .TFCOND directives to override the effects
of the /x option.
Example TASM /x TEST1
/z
Function Displays source lines along with error messages
Syntax /z '
Remarks The /z option tells Turbo Assembler to display the corresponding line from the source
file when an error message is generated. The line that caused the error is displayed
before the error message. With this option disabled, Turbo Assembler just displays a
message that describes the error..
Example TASM /z TESTI
/zd
Function Enables line-number information in object files
Syntax /zd ‘
Remarks The /zd option causes Turbo Assembler to place line-number information in the object

file. This lets the debugger display the current location in your source code, but does not

Chapter 2, Using directives and switches 25

/zi

put the mformahon in the object file that would allow the debugger to access your data
items.

If yourun out of memory when trying to debug your program, you can use /zd for some
modules and /zi for others.

Example TASM /zd TESTL
/zi
Function Enables debug information in object file
Syntax /zi .

Remarks ~ The /zi option tells Turbo Assembler to output complete debugging information to the

object file. This includes line-number records to synchronize source code display and
data type information to let you examine and modify your program’s data.
The /zi option lets you use all the features of the debugger to step through your progrdm
and examine or change your data items. You can use /zi on all your program’s modules,
or just on those you're interested in debugging. Since the /zi switch adds information to
the object and executable programs, you might not want to use it on all your modules if
you run out of memory when running a program under the debugger.

Example TASM .zi TEST1

/zn
Function Disables debug information in object file
Syntax /zn 7 4 .
Remarks The /zn option tells Turbo Assembler to disable the output of debugging information to -

the object file. It's useful for overriding any prevailing /zi switch in a configuration file.

Indirect command files

At any point when entering a command line, Turbo Assembler lets you specify an
indirect command file by preceding its name with an “at” sign (@). For example,

TASM /dTESTMODE @MYPROJ.TA

causes the contents of the file MYPROJ.TA to become part of the command lme, exactly
as if you had typed in its contents directly. :

This useful feature lets you put your most frequently used command lines and file lists

in a separate file. And you don’t have to place your entire command line in one indirect

file, since you can use more than one indirect file on the command line and can also mix
indirect command files with normal arguments. For example,

TASM @MYFILES @IOLIBS /dBUF=1024

26 Turbo Assembler User's Guide

/zn

This way you can keep long lists of standard files and options in files, so that you can
quickly and easily alter the behavior of an individual assembly run.

You can either put all your file names and options on a single line in the command file,
or you can split them across as many lines as you want.

The configuration file

Turbo Assembler also lets you put your most frequently used options into a
configuration file in the current directory. This way, when you run Turbo Assembler, it
looks for a file called TASM.CFG in your current directory. If Turbo Assembler finds the
file, it treats it as an indirect file and processes it before anything else on the command
line.

This is helpful when you have all the source files for a project in a single directory, and
you know that, for example, you always want to assemble with emulated floating-point
instructions (the /e option). You can place that option in the TASM.CFG file, so you
don’t have to specify that option each time you start Turbo Assembler.

The contents of the configuration file have exactly the same format as an indirect file.
The file can contain any valid command-line options, on as many lines as you want. The
options are treated as if they all appeared on one line.

The contents of the configuration file are processed before any arguments on the
command line. This lets you override any options set in the configuration file by simply
placing an option with the opposite effect on the command line. For example, if your *
configuration file contains

/a /e
and you invoke Turbo Assembler with
TASM /s /r MYFILE

MYFILE is your program file, and your file will be assembled with sequential segment-
ordering (/s) and real floating-point instructions (/r), even though the configuration file
contained the /a and /e options that specified alphabetical segment-ordering and
emulated floating-point instructions.

Chapter 2, Using -directives and switches 27

28 Turbo Assembler User’s Guide

Chapter

General programming concepts

This chapter introduces you to the basic concepts of Turbo Assembler. We’ll look at
Ideal mode versus MASM mode, commenting your programs and extending lines of
code, including files, using predefined symbols, and using several important directives
that produce module information. Although this is a lot of ground to cover, it will give
you a good idea of what assembly language is all about.

Turbo Assembler Ideal mode

For those of you struggling to make MASM do your bidding, this may be the most
important chapter in the manual. In addition to near-perfect compatibility with MASM
syntax, Turbo Assembler smooths the rough areas of assembly language programming
with a MASM derivative we call Ideal mode.

Among other things, Ideal mode lets you know solely by looking at the source text
exactly how an expression or instruction operand will behave. There’s no need to
memorize all of MASM’s many quirks and tricks. Instead, with Ideal mode, you write
clear, concise expressions that do exactly what you want. '

Ideal mode uses nearly all MASM’s same keywords, operators, and statement
constructions. This means you can explore Ideal mode’s features one at a time without
having to learn a large number of new rules or keywords.

Ideal mode adds strict type checking to expressions. Strict type checking helps reduce
errors caused by assigning values of wrong types to registers and variables, and by
using constructions that appear correct in the source text, but are assembled differently
than you expect. Instead of playing guessing games with values and expressions, you
can use Ideal mode to write code that makes logical and aesthetic sense.

‘With strict type checking, Ideal mode expressions are both easier to understand and less
prone to producing unexpected results. And, as a result, many of the MASM
idiosyncrasies we warn you about in other chapters disappear. ,

Chapter 3, General programming concepts 29

Ideal mode also has a number of features that make programming easier for novices and
experts alike. These features include the following:

duplicate member names among multiple structures
complex HIGH and LOW expressions

predictable EQU processing

correct handling of grouped data segments
improved consistency among directives

sensible bracketed expressions

Why use Iydeal’mode?"

There are many good reasons why you should use Turbo Assembler’s Ideal mode.

“If you are just learning assembly language, you can easily construct Ideal mode
expressions and statements that have the effects you desire. You don’t have to
experiment trying different things until you get an instruction that does what you want.
If you are an experienced assembly language programmer, you can use Ideal mode
features to.write complex programs usmg language extensions such as nestable
structures and unions. :

As a direct benefit of cleaner syntax, Ideal mode assembles files 30% faster than MASM -
mode. The larger your projects and files, the more savings in assembly time you'll gain
by switching to Ideal mode.

Strong type-checking rules, enforced by Ideal mode, let Turbo Assembler catch errors
that you would otherwise have to find at run time or by debugging your code. This is.
similar to the way high- -level language compﬂers point out questionable constructions
and mismatched data sizes.

Although Ideal mode uses a different syntax for some expressions, you can still write
programs that assemble equally well in both MASM and Ideal modes. You can also
switch between MASM and Ideal modes as often as necessary within the same source
file. This is especially helpful when you're experimenting with Ideal mode features, or
when you're converting existing programs written in the MASM syntax. You can switch
to Ideal mode for new code that you add to your source files and maintain full MASM
compatibility for other portions of your program.

Entering and leaving Ideal/ mode

Use the IDEAL and MASM directives to switch between Ideal and MASM modes.
Turbo Assembler always starts assembling a source file in MASM mode. To switch to

- Ideal mode, include the IDEAL directive in your source file before using any Ideal mode
capabilities. From then on, or until the next MASM directive, all statements behave as
described in this chapter. You can switch back and forth between MASM and Ideal
modes in a source file as many times as you wish and at any place. Here’s a sample:

DATA SEGMENT ;start in MASM mode
abc’ LABEL BYTE ;abc addresses xyz as a byte
xyz DW -0 ;define a word at label xyz
DATA ENDS ;end of data segment

30 Turbo Assembler User’s Gui‘de

IDEAL ;switch to Ideal mode

SEGMENT CODE segment keyword now comes first
PROC MyProc ;proc keyword comes first, too

; Ideal mode programming goes here

ENDP MyProc ;repeating MyProc label is optional

ENDS irepeating segment name not required
MASM ;switch back to MASM mode -

CODE SEGMENT ;name now required before segment keyword

Func2 PROC ;name now comes before proc keyword, too

;MASNM-mode programming goes here
TDEAL ;switch to Ideal mode again!

. ;do some programming in Ideal mode
MASM ;back to MASM mode. Getting dizzy?

Func2 ENDP : ;name again required before keyword
CODE ENDS ;name again required here

In Ideal mode, directive keywords such as PROC and SEGMENT appear before the
identifying symbol names, which is the reverse of MASM’s order. You also have the
option of repeating a segment or procedure name after the ENDP and ENDS directives.
Adding the name can help clarify the program by identifying the segment or procedure
that is ending. This is a good idea, especially in programs that nest multiple segments
and procedures. You don't have to include the symbol name after ENDP and ENDS,
however.

MASM and Ideal mode differences

This section describes the main differences between Ideal and MASM modes: If you
know MASM, you might want to experiment with.individual features by converting
small sections of your ex1s’ung programs to Ideal mode. Further details of these
differences are in Chapter 5, “Using expressions and symbol values.”

Expressions and operands

The biggest difference between Ideal and MASM mode expressions is the way square
brackets function. In Ideal mode, square brackets always refer to the contents of the
enclosed quantity. Brackets never cause implied additions to occur. Many standard
MASM constructions, therefore, are not permitted by Ideal mode.

In Ideal mode, square brackets must be used in order to get the contents of an item. For
example,

mov ax,wordptr

displays a warning message. You're trying to load a pointer (wordptr) into a register
(AX). The correct form is

mov - ax, [wordptr]

Using Ideal mode, it's clear you are loading the contents of the locahon addressed by
wordptr (in the current data segment at DS) into AX.

Chapter 3, General programming concepts 31

If yeu wish to refer to the offset of a symbol within a segment, you must explicitly use
the OFFSET operator, as in this example:

mov ax,OFFSET wordptr

Operators

The changes made to the expression operators in Ideal mode increase the power and
flexibility of some operators while leaving unchanged the overall behavior of
expressions. The precedence levels of some operators have been changed to facilitate
common operator combinations.

The period (.) structure member operator is far more strict in Ideal mode when
accurately specifying the structure members you're referring to. The expression to the .
left of a period must be a structure pointer. The expression. to the right must be a member
name in that structure. Here’s an example of loadmg registers with the values of specific
structure members:

;Declare variables usmg the structure types
S_Stuff SomeStuff <>
0_Stuff OtherStuff <>

mov ax, [S_Stuff.Amount] ;load word value
mov bl, [0_Stuff.Amount] ;load byte value
Suppressed fixups

Turbo Assembler in Ideal mode does not generate segment -relative fixups for private
segments that are page- or paragraph-aligned. Because the linker does not require such
fixups, assembling programs in Ideal mode can result in smaller object files that also link
more quickly than object files generated by MASM mode. The following demonstrates
how superfluous fixups occur in MASM but not in Ideal mode:

' SEGMENT DATA PRIVATE PARA

VARL DB 0
VAR2 DW -~ 0
" ENDS

SEGMENT CODE

ASSUME ds:DATA

mov ax, VAR2 4 ;ino fixup needed
ENDS ’

Note This difference has no effect on code that you write. The documentation here is simply
for your ‘mformation : ,

Operand for BOUND mstructlon

The BOUND instruction expects a WORD operand not a DWORD. This lets you
define the lower and upper bounds as two constant words, eliminating the need to
convert the operand to a DWORD with an explicit DWORD PTR. In MASM mode,

_you must write ,
BOUNDS oW 1,4 ;lower ‘and upper bounds

BOUND AX, DWORD PTR BOUNDS ;required for MASM mode

but in Ideal mode, you need only write

32. Turbo Assembler User’s Guide

BOUNDS oW 1,4 ;lower and upper bounds
BOUND AX, [BOUNDS] ;legal in Ideal mode

Segments and groups

The way Turbo Assembler handles segments and groups in Ideal mode can make a
difference in getting a program up and running. If you're like most people, you
probably shudder at the thought of dealing with a bug that has anything to do with the
interaction of segments and groups.

Much of the difficulty in this process stems from the arbitrary way that MASM and,
therefore, Turbo Assembler's MASM mode, makes assumptions about references to
data or code within a group. Fortunately, Ideal mode alleviates some of the more
nagging problems caused by MASM segment and group directives, as you'll see in the
information that follows.

Accessing data in a segment belonging to a group

In Ideal mode, any data item in a segment that is part of a group is considered to be
principally a member of the group, not of the segment. An explicit segment override
must be used for Turbo Assembler to recognize the data item as a member of the
segment.

MASM mode handles this differently; sometimes a symbol is considered to be part of
the segment instead of the group. In particular, MASM mode treats a symbol as part of a
segment when the symbol is used with the OFFSET operator, but as part of a group
when the symbol is used as a pointer in a data allocation. This can be confusing because
when you directly access the data without OFFSET, MASM incorrectly generates the
reference relative to the segment instead of the group.

Here’s an example of how easily you can get into trouble with MASM’s addressing
quirks. Consider the following incomplete MASM program, which declares three data -
segments:

dsegl SEGMENT PARA PUBLIC 'data’

vl DB 0

dsegl ENDS

dseg?2 SEGMENT PARA PUBLIC 'data’
v2 DB 0

dseg2 ENDS

dseg3 SEGMENT PARA PUBLIC 'data’
v3 . DB 0

dseg3 ENDS

DGROUP GROUP dsegl,dseg2,dseq3
cseq SEGMENT PARA PUBLIC 'code’

~ ASSUME cs:cseg,ds :DGROUP

start:

Chapter 3, General programming concepts 33

mov ax,OFFSET vl

mov © bx,OFFSET v2

mov ¢x,OFFSET v3
cseg ENDS

END start

The three segments, dseg1, dseg2, and dseg3, are grouped under one name, DGROUP. As
a result, all the variables in the individual segments are stored together in memory. In
the program source text, each of the individual segments declares a BYTE variable,
labeled v1, v2, and v3.

In the code portion of this MASM program the offset addresses of the three variables
are loaded into registers AX, BX, and CX. Because of the earlier ASSUME directive and
because the data segments were grouped together, you might think that MASM would

- calculate the offsets to the variables relative to the entire group in which the variables
are eventually stored in memory:

But this is not what happens. Despite your intentions, MASM calculates the offsets of
the variables relative to the individual segments, dseg1, dseg2, and dseg3. It does this even
though the three segments are combined into one data segment in memory, addressed
here by register DS. It makes no sense to take the offsets of variables relative to
individual segments in the program text when those segments are combined into a -
single segment in memory. The only way to address such variables is to refer to their
offsets relative to the entire group.

To fix the problem in MASM, you must spec1fy the group name along with the OFFSET
keyword:

mov . ax,OFFSET DGROUP:vl
mov bx,OFFSET DGROUP:v2
mov cx,OFFSET DGROUP:v3

Although this now assembles correctly and loads the offsets of v1, v2, and v3 relative to .
- DGROUP (which collects the individual segments), you might easily forget to specify
- the DGROUP qualifier. If you make this mistake, the offset values will not correctly
locate the variables in memory and you'll receive no indication from MASM that
anything is amiss. In Ideal mode, there’s no need to go to all this trouble:

IDEAL -

SEGMENT dsegl PARA PUBLIC 'data’
vl DB 0

ENDS , N

SEGMENT dseg2 PARA PUBLIC 'data’
v2 DB 0

ENDS

SECMENT dseg3 PARA PUBLIC 'data’
vi DB 0

ENDS

GROUP DGROUP dsegl,dseg2,dseg3
SEGMENT cseg PARA PUBLIC 'code'

ASSUME cs:cseg, ds:DGROUP

34' Turbo Assembler~UseVs Guide

start:

mov ax,OFFSET vl
mov ax, OFFSET v2
mov ax,OFFSET v3

ENDS
END start

The offsets to v1, v2, and v3 are correctly calculated relative to the group that collects the
individual segments to which the variables belong. Ideal mode does not require the
DGROUP qualifier to refer to variables in grouped segments. MASM mode does
require the qualifier and, even worse, gives no warning of a serious problem should
you forget to specify the group name in every single reference. :

Commenting the program

Note

Commenting your code is a great way to help you (or anyone who has to maintain your
code in the future) quickly understand how it functions. Using comments is good

“programming practice in any language. They can describe the semantic as opposed to

syntactic function of your code. We recommend that you use comments liberally in your
Turbo Assembler code, and this section describes how you can do so.

Comments at the end of the line

There are several ways to comment assembler code. One approach is to add a comment
at the end of a line using the semicolon (;), such as

mov [bx],al ’ ;store the modified character

Another way to comment assembler code is to use the line continuation character (\) as
a comment character. See the section called “Extending the line” for an example of how
this is done.

The COMMENT directive

The COMMENT directive lets you comment blocks of code. COMMENT i ignores all
text from the first delimiter character and the line containing the next occurrence of the
delimiter. The following example uses * as a delimiter character:

COMMENT *

Work long and late to get free pizza
*

COMMENT only works in MASM mode.

Chapter 3, General programming concépts 35

Extending the line

‘For lines of code that are longer than 80 characters, Turbo Assembler provides the \ line
continuation character. Use this character at the end of your line, because Turbo
Assembler ignores any characters that follow it on the same line.

The maximum line length is 1024 when you use \; however, tables, records, and enums
might have definitions that are longer than 1024 characters. An alternative that does not
have the 1024 character limitation is the multiline definition syntax. Here’s an example
of the syntax (for an enum definition):

foo enum { :Multiline version

fl
2
3
f4
5
f6
£7
8
}

A more compact version of the same definition: ~

foo enum f1,£2,{ . ; Compact multiline version
f3,£4
£5,f6
£7,£8}

When using multiline definitions, remember these rules:

o The left brace that starts the definition must be the last token on the starting line. It
does not, however, have to precede the first element in the list.

* You cannot include any directives such as IF or INCLUDE inside the multiline
definition.

MASM-mode line continuation is available if you select VERSION M510, M520. Strmgs
and other tokens can be extended across multiple lines if the “\” character is the last
character on the lme For example,

VERSION M510
DB .‘Hello out there \
you guys’

You can place standard Turbo Assembler mode line continuation anywhere in a line,
and it is always available. It functions as a comment as well. For example,

ARG al:word, \first argument
a2:word, . \second argument
a3:word ;final argument

36 Turbo Assembler User’s Guidev

Using INCLUDE files

Note

Include files let you use the same block of code in several places in your program, insert
the block in several source modules, or reduce the size of your source program without
having to create several linkable modules. Using the INCLUDE directive tells Turbo
Assembler to find the specified files on disk and assemble them as if they were a part of
the source program.

The Ideal mode syntax:
INCLUDE "filename"
The MASM mode syntax:
INCLUDE filename
You can nest INCLUDE directives as deep as you want.

filename can specify any drive, directory, or extension. If filename does not include a
directory or drive name, Turbo Assembler first searches for the file in any directories
you specify with the /I command-line option, and then in the current directory.

Predefined symbols

Note

Turbo Assembler provides a number of predefined symbols that you can use in your
programs. These symbols can have different values at different places in your source
file, and are similar to equated symbols you define using the EQU directive. When
Turbo Assembler encounters one of these symbols in your source file, it replaces it with
the current value of that predefined symbol.

Some of these symbols are text (string) equates, some are numeric equates, and others
are aliases. The string values can be used anywhere that you would use a character
string, for example, to initialize a series of data bytes using the DB directive:

NOW DB ??time
Numeric predefined values can be used anywhere that you would use a number:
IF ?%version GT 100h ' '

Alias values make the predefined symbol into a synonym for the value it represents,
allowing you to use the predefined symbol name anywhere you would use an ordinary
symbol name: ‘

ASSUME cs:@code
All the predefined symbols can be used in both MASM and Ideal mode.

If you use the /ml command-line option when assembling, you must use the predefined
symbol names exactly as they are described on the following pages. A

The following rule applies to predefined symbols starting with an at-sign (@): The ﬁ}st
letter of each word that makes up part of the symbol name is an uppercase letter (except for
segment names); the rest of the word is lowercase. As an example,

@FileName

Chapter 3, General programming concepts 37

Notice that @FileName performs an alias ’eqtlate‘ for the current assembly line.

The exception is redefined symbols, which refer to segments Segment names begin
w1th an at-sign (@) and are a]l lowercase. For example,

@curseg
@fardata

For symbols that start with two questlon marks (77) the letters are all lowercase. For
example,

??date
??version

Note that the ??date symbol defines a text equate that represents today’s date. The exact
format of the date string is determined by the country code. The ??version symbol lets
you'write source files that can take advantage of features in particular versions of Turbo
Assembler. This equate also lets your source files know whether they are being
assembled by MASM or Turbo Assembler, since ??version is not defined by MASM.

‘Similarly, ??filename defines an eight-character string that represents the file name
being assembled. The file name is padded with spaces if it contains fewer than eight
characters. The ??time symbol defines a text equate that represents the current time. The
exact format of the time string is determined by the country code.

Assigning values to symbols

Turbo Assembler provides two directives that let you ass1gh values to symbols: EQU
and =. The EQU directive defines a smng, alias, or numeric equate. To use it, specify the
following syntax,

name EQU expressmn

where name is assigned the result of evaluating expression. name must be a new symbol
name that you haven’t previously defined in a different manner. In MASM mode, you
can only redefine a symbol that you defined using the EQU directive if you first define it
as a string equate. In MASM mode, EQU can generate any one of three kinds of equates
alias, expression, or string. "

The = directive defines only a numeric equate. To use it, specify
name = expression

where name is assigned the result of evaluating expression, which must evaluate to either
_a constant or an address within a segment. name can either be a new symbol name, or a
symbol that you previously defined with =. Since the = directive has far more
predictable behavior than the EQU directive in MASM mode, use = instead of EQU
wherever you can.

General module structure

Turbo Assembler provides several directives to help you work with modules of code.
The remainder of this chapter describes these directives.

38 Turbo Assembler User’'s Guide

Note

The VERSION directive

Using the VERSION directive lets you specify which version of Turbo Assembler or
MASM you've written particular modules for. This is helpful for upward and
downward compatibility of various versions of TASM and MASM. The VERSION
directive also puts you into the operating mode for the specified version.

You can specify the VERSION directive as either a command-line switch or within
program source code.

Within code, the syntax is

VERSION <version_ID>

You can specify the following legal version IDs:

M400 MASM 4.0

M500 MASM 5.0

M510 MASM 5.1

M520 MASM 5.2 (Quick ASM)
100 Turbo Assembler 1.0
T101 Turbo Assembler 1.01
T200 Turbo Assembler 2.0
T250 Turbo Assembler 2.5
T300 Turbo Assembler 3.0
T310 Turbo Assembler 3.1
T320 Turbo Assembler 3.2
T400 Turbo Assembler 4.0
T410 Turbo Assembler 4.1
T500 Turbo Assembler 5.0

The command-line syntax is:

[U<version_ID>

As an example, if you wanted to assemble a program written for MASM 5.0, you could
leave the source for the program intact and use the switch /fuM510.

Here are the general rules:

1

The VERSION directive always selects MASM mode by default, because that is the
starting mode of operation for both MASM and Turbo Assembler.

The VERSION directive limits the high-priority keywords available to those in the
specified compiler and version. As a result, some features that were added to later
versions are unavailable to you.

From Ideal mode, the VERSION directive is unavailable if you select a version prior
to T300. To use the VERSION directive in this case, you must switch to MASM mode
first. '

No attempt is made to limit access to low priority keywords, since these will not
affect compatibility. :

Chapter 3, General programming concepts 39

Previous versions of Turbo Assembler controlled MASM compatibility with directives
such as MASM51, NOMASM51, QUIRKS, SMART, and NOSMART. The VERSION
directive supersedes these older directives. See Appendix B for a complete list of
keywords available with each prior version of Turbo Assembler.

The NAME directive
Use the NAME directive to set the object file’s module name. Here is the syntax for it:

NAME modulename

Turbo Assembler usﬁally uses the source file name with any drive, directofy, or.
extension as the module name. Use NAME if you wish to change this default name;
modulename will be the new name of the module. For example,

- NAME loader ’
Note ' The NAME directive only works in Ideal mode. -

The END directive
Use the END directive to mark the end of your source file. The syntax looks hke this:

END [startaddress]

startaddress is an optional symbol or expression that specifies the address in your
program where you want execution to begin. If your program is linked from multiple
source files, only one file can specify a startaddress. startaddress can be an address within
the module; it can also be an external symbol defined in another module, declared Wlth
the EXTRN directive.

Turbo Assembler ignores any text after the END directive in the source file.

Example .MODEL small
" .CODE
START: \
;Body of program goes here : .
END START - iprogram entry point is “START”
THIS LINE IS IGNORED
SO IS THIS ONE

Displaying a message during assembly

Turbo Assembler provides two directives that let you display a string on the console
during assembly: DISPLAY and %OUT. You can use these directives to report on the
progress of an assembly, either to let you know how far the assembly has progressed, or
to let you know that a certain part of the code has been reached.

The two directives are essentially the same except that DISPLAY displays a quoted |
string onscreen, and %OUT displays a nonquoted strmg onscreen.

In both Ideal and MASM modes, the syntax for DISPLAY is
DISPLAY "text"

40 Turbo Assembler User’s Guide

where text is any message you want to display.
The syntax for %OUT in both Ideal and MASM modes is
" %0UT text

where, again, text is the message that you want displayed.

Displaying warning messages

Turbo Assembler lets you choose what (if any) warning messages you'll receive when
you assemble different parts of your code. Each warning message contains a three-letter
identifier, which you can specify ahead of time to let the assembler know whether or not
you want to see warnings of that kind. You can use the WARN directive to enable
warning messages, and the NOWARN directive to disable them.

The syntax of the WARN directive is
WARN [warnclass]

where warnclass is the three-letter identifier that represents a particular type of warning
message. The available warnclasses are:

ALN Segment alignment

BRK Brackets needed

GTP Global type doesn’t match symbol type
ICG ' Inefficient code generation l
INT INT 3 generation

LCO Location counter overflow

MCP MASM compatibility pass

Or1 Open IF conditional

OPP Open procedure

OPS ~ Open segment

OVF Arithmetic overflow

PDC Pass-dependent construction

PRO Write-to-memory in protected mode using CS.
PQK Assuming constant for [const] warning
RES . Reserved word warning -

TPI illegal warning

Note WARN without a warnclass enables all warnings. WARN followed by an identifier
only enables that particular warning.

. Notice that the identifiers used by WARN are the same as those used by the /W
command-line option.

Here’s an example using WARN:

WARN OVF ' ;enables arithmetic overflow warning
DW 1000h * 1234h ;overflow warning will occur

Chapter 3, General programmivng concepts 41

Use the NOWARN directive to disable specific (or all) warning messages. NOWARN
uses the same identifiers described earlier under WARN. Here’s an example that uses

NOWARN
NOWARN OVF~ ;disable arithmetic overflow warnlngs
DW 1000h * 1234h ;doesn't warn now

Note NOWARN without a warnclass disables all warnings. NOWARN with an identifier
disables only that particular warning.

Multlple error-message reportmg

By default, Turbo Assembler only allows one error message to be reported for each line
of source code. If a source line contains multiple errors, Turbo Assembler reports the
most-significant error first. You can control the number of error messages you get for
each source line by using the MULTERRS and NOMULTERRS directives.

The MULTERRS directive allows the assembler to report more than one error message
for each source line. This is sometimes helpful in locating the cause of a subtle error or
when the source line contains more than one error.

Note that sometimes additional error messages can be a “chain reaction” caused by the
first error condition; these “chain” error messages may disappear once you correct the

first error.

Here’s an example of the MULTERRS directive:
MULTERRS
mov ax, [bp+abc ;produces two errors:

;1) Undefined symbol: abc
;2) Need right square bracket’

Note The NOMULTERRS directive only lets one error or warning message (the most
significant message) appear for each source line. When you correct this error, the other
error messages may disappear as well. To avoid this problem, use the MULTERRS
dlrechve to see all of the error messages. :

Here is an example of using the NOMULTERRS directive:

NOMULTERRS .
mov ax, [bp+abc ;one error:
\ ;1) Undefined symbol: abc

42 Turbo Assembler User's Guide

Chapter

Creating object-oriented programs

Object-oriented programming is an approach to software design that is based on objects
rather than procedures. This approach maximizes modularity and information hiding.
The underlying premise behind object-oriented programming is the binding or
encapsulation of a data structure with procedures for mampulatmg the data in the
structure into a unit.

Object-oriented design provides many advantages. For example, every object
encapsulates its data structure with the procedures used to manipulate instances of the
data structure. This removes interdependencies in code that can quickly make
maintenance difficult. Objects can also inherit a data structure and other characteristics
from a parent object, which saves work and lets you transparently use a single chunk of -
code for many purposes.

If you're not an experienced Turbo Assembler user, you might want to skim through
this chapter now, but come back to it later after reading the other chapters of this

- manual. We've put it here to make you aware of these features, but object-oriented
programming in Turbo Assembler is really an advanced topic. It will make more sense
after going through the rest of the manual.

Terminology

Assembler, C++, and Pascal use different terms for various entities in object-oriented
programming. The following table outlines the differences among these languages.

Table 41 Object-oriented programming termindlogy

,member function method
method procedure .
object ' class object
base object base class base object

Chapter 4, Creating object-oriented programs 43

Table 4 1 Object onented programming termmology (contlnued)

e

% .
parent object o parent class : . parent object
derived object derived class ' derived object
field data member field

Why use objects in Turbo Assembler?

Most people think of assembly language as a low-level language. Turbo Assembler,
however, provides many of the features of a high-level language (such asabstract data
types, and easy interfacing to other languages). The addition of object-oriented data
structures gives Turbo Assembler the power to create object-oriented programs as easily
as high-level languages while retaining the speed and flexibility of assembly language.

What is an object?

Note

An object consists of a data structure and associated procedures (called methods) that
manage data stored in instances of the data structure.

An object can inherit characteristics from a parent object. This means that the new
object’s data structure includes the parent object’s data structure, as well as any new -
data. Also, the new object can call all the method procedures of the parent object, as well
as any new method procedures it declares.

We strongly recommend that you use Ideal mode for object-oriented programming in
Turbo Assembler because symbol scoping is global in MASM, which means you can’t
dlstmgmsh the different positions of shown methods.

An object having no inheritance is called a base object; an object that inherits another is a
derived object.

Turbo Assembler defines several symbols you can use when declaring objects. The
following table lists these symbols.

Table4.2 Symbols defined for objects

@Object A text macro contammg the name of the current object (the object last
. declared). v
<objectname> A STRUC data type that descnbes the ob]ect’s data structure.
@Table_<objectname> ‘A TABLE data type containing the object’s method table, which is not
the same as an instance of the virtual method table.
@TableAddr_<objectname> A label describing the address of the instance of the object’s virtual

method table, if there is one.

44 Turbo Assembler User's Guide

'A sample object

As an example of where you can use dbjects, consider any program that uses linked lists.
Think of a linked list as an object consisting of the linked list data and the operations
(methods) that you can perform on it.

The linked list data consists of pointers to the head and tail of the linked list (this
example contains a doubly linked list because of its flexibility). Each element of the
linked list is a separate object instance.

The following operations provide the power needed to use a linked list:

Creating the linked list (allocating memory for it).

Destroying the linked list (deallocating memory for it).

Initializing the linked list.

Deinitializing the linked list.

Inserting an item into the middle of the linked list before an ex1st|ng item.
Appending an item to the end of the linked list.

Deleting an item from the linked list.

Returning the first item in the linked list.

Returning the last item in the linked list.

Keep in mind that create and initialize, as well as destroy and deinitialize methods are not
synonymous. create and destroy methods allocate and deallocate memory for the linked
list object, while the initialize and deinitialize methods only initialize and deinitialize
previously allocated instances of the object. If you don’t combine initialization with
creation, it's possible to statically allocate linked list objects.

You can see how the linked list object can be inherited by a queue or stack object, since a
queue or a stack can be implemented as a linked list with limited operations. For
example, you can implement a queue as a linked list where items can be added to the
start and taken off the end. If you implement a queue in this way, you must disable the
inherited linked list methods that are illegal on a queue (such as inserting into the
middle of the list).

Declaring objects

Declaring an object consists of declaring the data structure for the object, and declaring
the method procedures that you can call for the object. Declaring an object does not
involve creating an instance of the object. You'll learn how to do this later.

Declaring a base object

When you declare an object, Turbo Assembler creates a STRUC that declares the data
for the object, and a TABLE that declares the methods for the object. The object’s data
declaration is a structure with the same name as the object. The object’s method
declarations are stored in a TABLE data type, named @Table_<objectname>.

Chapter 4, Creating object-oriented programs 45

For example, for the list ob]ect two data types are declared:

list) A STRUC declarmg the following members
list_head dword pointer to head of list
list_tail - dword pointer to tajl of list
@Table_list A TABLE declaring the following methods:
- construct dword pointer to the procedure list_ construct
~ destroy dword pointer to the procedure list_destroy
and so on...

STRUC declares the data for the object that is created whenever you create an instance
of the object. TABLE declares the table of default method procedures for the declaration.
Turbo Assembler maintains this data type; it does not create an instance of the table
anywhere in your program memory. However, you'll see later that you must include an
instance of the table for any object that uses virtual methods.

Here’s an example of an object declaration for a linked list (for more on STRUC as it
applies to declarmg objects, see Chapter 8):

list STRUC GLOBAL METHOD {
construct:dword = list_construct ;1list constructor procedure

destroy:dword = list_destroy " ;1list destructor procedure
init:dword = list_init ;1list initializer procedure
deinit:dword = list_deinit ;list deinitializer procedure

virtual insert:word = list_insert ;list node insert procedure
virtual append:word = list_append ;list node append procedure
virtual remove:word = list_delete ;list node remove procedure -

virtual first:word = list_first ;list first node procedure
virtual last:word = list_last ;1ist last node procedure
} .
list_head dd ? - © o list head.pointer
list_tail -dd ? ;list tail pointer

ENDS

In this examp]e, the METHOD keyword shows that you're usmg an extended form of
STRUC, and are defining an object called list.

Each entry consists of a method name, a colon, and the size of a pointer to the method
procedure (WORD for near procedures, DWORD for far procedures). This is followed
by an equal sign, and the name of the procedure to call for that method.

Let’s look at this example to see what’s happening.

METHOD indicates an object method call and is followed by a list of the method
procedure declarations for the object. These declarations are enclosed in braces ({ })
because the list of methods requires more than one line.

Each method declaration tells Turbo Assembler which procedure it should use to
manipulate the object when invoking that method name. For example, the first method
procedure declarahon

construct:dword = list_construct

46. Turbo Assembler User’'s Guide

declares a method named construct that is a far procedure (because a DWORD stores the
pointer to it). The actual procedure name of the method is list_construct, which should
be defined elsewhere in the source code.

Turbo Assembler considers a method to be virtual if it's preceded by the keyword
VIRTUAL. When you call such a method, Turbo Assembler will locate the method’s
procedure address by looking it up from a table present in memory at run time.
Otherwise, the method is a static method, meaning that Turbo Assembler can determine
its address at compile time. For example, the method construct is a static method, while
the method insert is declared as a virtual method. Later in this chapter, we’ll explain
why you might want to choose virtual or static methods.

The data structure for the method immediately follows the method procedure
declaration section. This definition uses the syntax for the standard STRUC directive.
This example contains declarations for the linked list’s head and tail pointers.

The method declaration portion of the object declaration doesn't place any data in the
object’s data structure unless you’ve used virtual methods. Instead, these declarations
cause Turbo Assembler to build a separate table data structure that contains the
specified method procedure addresses as default values. You should have an instance of
this table for every object, and you must explicitly place the table. We'll explain how to
do this later in this chapter.

Since the object declaration must exist in the module containing the method procedures
for the object (as well as included in any source code that uses the object), you should -
declare the object itself in a separate file that can be INCLUDEG into the source code.
We recommend using a file name in the form objectname.ASO (ASsembly Object). This
file should consist of only the object declaration. The object methods should be in
another source file so that you can include the object declaration wherever you need it.
For example, the linked list object declaration in the previous example would be placed
in the file LIST.ASO. The file LIST.ASM could be used to define the object’s method
procedures. Any program making use of the objects would include LIST.ASO, but not .
LIST.ASM.

The keyword GLOBAL in the object declaration causes Turbo Assembler to publish
information that lets you use the object in a module other than the one it’s defined in.
The object declaration must also be included in all modules that use the object.

Declaring a derived object

An ob]ect that inherits another object’s methods and data is called a derived object. You
can’t override the members of the parent data structure, but you can override the

* individual methods by respecifying them in the new object method list.

An object can inherit any other single object, whether that other object is a base or
derived object itself. The inherited object is called the parent object. The derived object
inherits the data and methods of the parent object, so you should only use inheritance
when these methods and data are useful to the new object.

For example, you can define a queue object that inherits the linked list object because
you can implement a queue as a linked list. Here’s an example of such a derived object:

Chapter 4, Creating object-oriented programs 47

queue STRUC GLOBAL list METHOD {
‘init :DWORD=queue_init

virtual insert:word = queue_insert ; (queue node insert
, ' ; procedure)
virtual remove:word = queue_delete ; (queue node delete
‘) - ; procedure)
virtual first:word = queue_first ; (queue first node procedure)
virtual last:word = queue_last ; (queue end nodé procedure)
virtual -enqueue:word = list_append ;queue enqueue procedure

virtual dequeue:word = queue_dequeue . ;queue dequeue procedure
}
ENDS

Placmg the object name list before the METHOD keywords tells Turbo Assembler that
the new object queue inherits the methods and data of the object, list. Any object name
placed in this location will be inherited by the object being declared. You can use only
one name (only single inheritance is supported). :

The new queue object inherits all the data and methods from the list object, unless you
override it. Note that queue needs its own init to install the pointer to the virtual method
table for queues.

The inherited insert, remove, first, and last method declarations for the queue are
respecified in the declaration, so these methods are replaced with the indicated
procedures.

Two new methods have been declared for the queue: enqueue and dequeue. Notice that
the method procedure for engueue is the same as for appending to a linked list.
However, we need a new procedure to dequeue from the queue, and this we call
queue_dequeiie.

The queue object has no additional data declared other than what it inherits from list.
It inherits the linked list’s head and tail pointers, which are still needed for the queue
because of the linked list methods used to manage the queue.

Declaring a method procedure |

Method procedures manipulate instances of the object. They are much like library
routines in that they should have a well-defined call and a return value interface, but
knowledge of how the method procedures work internally is not necessary.

The method procedures for an object should provide comprehensive management of
the objects; that is, they should be the only procedures allowed direct access to the
objects. Furthermore, you should use the concepts of data abstraction when you design
the methods: You should be able to call the method procedures without having any
knowledge of the inner workings of the method procedures.

In all other respects you can write method procedures for any language or interface you
want, although usually C++ or Pascal calling conventions are used. Any arguments to
the procedures are up to you as well. One argument that is usually required is a pointer
- to an object instance. Some method procedures might require additional parameters.
For example, the initialization method for the list object requires just the pointer to the

48 Turbo Assembler User’s Guide

list object, while the list insert method requires a poihter to the list, a pointer to the new
node to insert, and a pointer to the node it’s inserted after.

Note There are advantages and disadvantages to using both static and virtual methods. Static
methods are resolved at compile time, and result in direct calls to the method procedure.
This makes the call faster, and does not require you to use intermediate registers (as in
virtual method calls). However, since these calls are resolved at compile time, static
method calls don't have the flexibility of virtual method calls.

Virtual method calls are made indirectly through an instance of the virtual method table
for the object. The fact that the call is indirect gives virtual methods the disadvantage of
requiring you to use intermediate registers when you make the call (which could
complicate your code). A big advantage, however, is that virtual method calls are
resolved at run time. Thus, you can make virtual method calls for a derived object by
calling a common ancestor object’s method without having to know exactly what sort of .
descendant object you're dealing with.

Note Declare static and virtual method procedures exactly the same way as any other
procedure, with the following exception: if you omit the procedure name for virtual
methods, you'll cause an empty uninitialized location in the virtual method table and
Turbo Assembler won’t warn you if you do this. Omitting the procedure name is an
error if the method is not virtual, since virtual methods don’t go into the table.

Here’s an example of a method procedure:

;Construct a Linked-List object.
;This is the method "construct".
;This must be a static method.
;Returns DX:AX pointing to linked-list object, null if none.
;Object is allocated but not yet initialized.
list_construct PROC PASCAL FAR
USES ds
;-- Allocate the Linked-List object --
;i1<<do the allocation here>>
. ret
ENDP

The virtual method table

The virtual method table (VMT) is a table of addresses of the procedures that perform
virtual methods. Usually this table is placed in the program’s data segment. Any object
having virtual methods requires an instance of the VMT somewhere in the program.

Use the TBLINST directive to create the instance of the VMT for an object. Since this
directive creates a table for the most recently declared object, you should place this
directive immediately after the object declaration, as in the following:

INCLUDE 1ist.aso
DATASEG
TBLINST

Chapter 4, Creating object-oriented programs 49

Initializing the virtual method table

Simply creating the instance of the VMT is not enough to let you make calls to virtual
methods. Every object with virtual methods includes a pointer to the VMT in its data
structure. You must initialize this pointer whenever you create an instance of an ob]ect
and can use TBLINIT to do so.

Initialize the VMT pointer in the init method for the ob]ect as follows:

,Inltlallze a Linked List object.

;This is the method "init".

;iThis must be a static method!

list_init PROC PASCAL FAR

ARG @@list:dword

USES ds, bx
1ds bx,@@list
;-- Initialize any virtual method table for the object at ds:bx
TBLINIT ds:bx
;-- Initialize the object's data --
i;<<initialize any data for the object here...>>
ret ‘

ENDP

Notice that the init method must be static because you can’t call a virtual method for an
object instance until after you initialize the virtual table pointer.

Calling an object method

Use the CALL instruction to invoke object methods.Turbo Assembler provides an
extension to the standard CALL instruction, CALL..METHOD, for calling method
procedures. :

‘Notice that the syntax for CALL is similar for calling both static or virtual methods

Calling a static method

When making a call to a method procedure, you should write the CALL.METHOD
instruction as if you were making a call to a virtual method, even if you know that
you're calling a static method. Doing so will have no ill effects on static method calls,
and gives you the flexibility of changing methods from static to virtual or back again

- without having to change all the calls to the method. For the same reasons, you should
specify a reasonable selection for the intermediate calling registers, even if you know
that the method you're calling is static.

Calls to static methods are resolved at compile time to direct calls to the desired method
procedure for the object. However, when making the call, you should not make a direct
- call to the method procedure; instead, use the extended CALL.METHOD instruction.

The following example shows a sample call to the static init method for the linked list
object. \

50 Turbo Assembler User’'s Guide

CALL foolist METHOD list:init pascal,ds offset foolist
CALL es:di METHOD list:init pascal,es di

The call address itself is the address of an instance of the ob]ect This address is used for
syntactic reasons only; the actual call generated is a direct call to the method procedure.

In this example, the first call is to the init method for the object list. Since this is a static
method, you make a direct call to the method procedure list_init. Turbo Assembler
ignores the object instance, foolist (except that it's passed as an argument to the method
procedure).

The method name is followed by the usual extended call 1anguage and parameter list.
The language and parameters depend on the method you're calling, and one of the
parameters is generally a pointer to the instance of the object. In this example, the
method accepts a single parameter, which is a pointer to the instance of the object.

Calling a virtual method

Any call to a virtual method requires an indirect call to the method procedure. You can
use the extended CALL.METHOD instruction to let this happen. Turbo Assembler
generates the following instructions to perform the call:

1 Load intermediate registers from the object instance with a pointer to the VMT.
2 Make an indirect call to the appropriate table member.

Therefore, when you specify
CALL <instance> METHOD <object>:<method> USES <seg>:<reg> <calling_stuff>
the generated instructions are as follows:

MOV <reg>, (<instance>.<virtual_method_table_pointers]
CALL [(<seg>:<reg>).<method>] <calling_stuff>

The first instruction loads the selected register <reg> with the address of the table from
the VMT pointer field of the object structure. The second instruction makes an indirect
call to the appropriate method in the table.

For example, a call of the form
CALL es:di method list:insert uses ds:bx pascal,es di,es dx,es cx
generates a sequence like

mov bx,[es:di.@Mptr_list]
CALL [ds:bx.insert] pascal,\
es di,es dx,es ¢cx

Note that for objects declared with NEAR tables, only the offset register will be loaded
by the CALL..METHOD instruction. The segment register should already contain the
correct value. The following example shows how to make sure that the segment register
is properly set up.

;Append a node at the end of a Linked-List object.
;This is the virtual method 'listfappend".
list_append PROC PASCAL NEAR

Chapter 4, Creating object-oriented programs 51

ARG - @@list:dword,\
@@new: dword
USES ds,bx,es,di
mov ax,@Data
mov ds,ax
les di,@@list
sub ax,ax
CALL es:di method list:insert uses ds:bx pascal,\
es di,@@new,ax ax
ret
ENDP.

Note You can’t call any virtual methods until after you initialize the VMT pointer in the
object’s data. This is because the pointer loads the address of the VMT (from which
 the address of the desired virtual method procedure is retrieved). Thus, if you haven’t
initialized the pointer to the VMT, any virtual method call will result in a call to some
random address.

As another example consider the base object node, which you can include in any object
placed in a linked list or a queue.

node STRUC GLOBAL METHOD {

construct :dword = node_construct ;node constructor routine
destroy:dword = node_destroy ;node destructor routine
init:dword = node_init ;node initialization routine
deinit:dword = node_deinit ;node deinitialization routine
virtual next:word = node_adv ;next node routine

 virtual prev:word = node_back ;previous node routine
virtual print:word = node_print ;print contents of node
}
node_next dad ? ;next node pointer
node_prev. - dd ? : ;prev node pointer

ends

You can define any number of other objects inheriting the node ob]ect toletitusea
linked list or queue. Here are two examples: :

mlabel STRUC GLOBAL node METHOD {
virtual print:word = label print
[

label _name db 80 dup (?)
label_addr db 80*2 dup (?)
label _city db 80 dup (?)
label _state -db 2 dup (?
label.zip db 10 dup (?)

ENDS .

book STRUC GLOBAL n¢de METHOD {

virtual print:word = book_print

} o

book_title ‘db 80 dup (?)
book_author db 80 dup (?)

ENDS

‘52 Turbo Assembler User’s Guide

In the next example, we’re making calls to methods by calling printit for both label and
book objects. It doesn’t matter what object gets passed to printit, as long as node is an
ancestor. Because the print method is a virtual method, the call is made indirectly
through the VMT for the object. For the first call to printit, the method procedure
label_print is called, because we're passing an instance of a label object. For the second
call to printit, the method procedure book_print is called, because we’re passing an
instance of a book object. Note that if the method print were static, then the call in printit
would always call the node_print procedure (which is not desirable).

call printit pascal,<<instance address of label object>>
call printit pascal,<<instance address of book object>>

printit proc pascal near
arg @@obj:dword
uses ds,si,es, bx
mov ax,@data
mov es,ax
1ds si,@@obj
call ds:si method node:print uses es:bx pascal,ds si
ret
endp

Calling ancestor virtual methods

Using ancestor virtual methods can help you write methods for derived classes since
you can reuse some of the code. For example, queues can use the same listing method as
a list, as long as you specify whether the item is a queue or a list. Within the list class,
you can have

virtual show:word = list_show
and within the queue class,
virtual show:word = queue_show

The list_show routine might print LIST SHOW:, followed by a listing of the individual
items in the list. However, if the derived class queue_show uses the listing routine, it
should print its own title, QUEUE SHOW: and use list_show only for the mechanics of
sequentially going through the list and printing individual elements. list_show can
determine the kind of structure passed to it, and whether it should print the list title. If
the routine for list_show looks at the pointer to the virtual method table (VMT) of the
structure passed to it, it can determine whether the pointer matches the one installed for
lists in the list_init routine (or if it differs) If the VMT pointer in the structure does not
point to the VMT for lists, the structure is probably a derived type list_show can do this
checking with the following statements:

cmp [([es:di]).@mptr_list];offset @TableAddr_LIST
jne @@not_a_list ; Skip over printing the list title

Chapter 4, Creating objec't-orie‘ntéd programs 53

; If we come here, it is a list, and the list title
; should be printed.

@@not_a_ llst
. Now show the individual list elements.

So how do we call the list class show method from within a queue_show routine? If you
were to directly call list_show, you could have a problem if the name of the routine used
for the show method of the list class ever changes. (You might not remember to change
what queue_show calls.) If you put the following statement in queue_show,

call (es:di) method list:show

you’d have an infinite loop because even though list is specified as the class for which
show should be called, the VMT will be used because show is a virtual method. Since
the VMT for the structure would have been pointing to queue show, you ’d end up back
in the same routine.

The best way to call the list class show method would be
call +@table_list | show

- Turbo Assembler automatically translates this statement to a direct call to list_show,
since list_show was specified as the value for the show element of the @table_list when
the list class was declared. Note that even though list declares show to be virtual,
specifying the call causes Turbo Assembler to make a direct call without the VMT
lookup.

Note Virtual routines are usually called through an indirect lookup to a VMT.

In the event that you need to use the VMT for the list class (for example, some
initialization routine might change the show element of the table to point to different
routines depending on what output device to use for the show command of all list class
elements), the following statements use the list class VMT:

mov bx,offset @TABLEADDR_LIST
call [{@table_list ptr es:bx).SHOW]

This is very similar to the sequence of instructions that Turbo Assembler uses to make
the indirect call using the VMT. '

Motre on calling methods

Often, you might find it necessary to call a parent object’s method from inside a derived
method procedure. You can also use the CALL.METHOD statement to do this.

~ You can use the JMP instruction with the METHOD extension in the same way you use
the CALL.METHOD instruction. This instruction provides optimal tail recursion. See
Chapter 12 for more information about the CALL.METHOD and JMP.METHOD
instructions.

54 Turbo Assembler User's Guide

Creating an instance of an object

To create an instance of an object, you can call an object’s constructor method (which
allocates memory for an object instance) or allocate an instance of the object in a
predefined (static) data segment.

You can create an instance of the object exactly the same way ydu create an instance of a
structure. For example, examine the following instances of objects:

foolist 1list {} ;instance of a list
fooqueue label queue B
queue {} ;instance of a queue

queue {list_head=mynode,list_tail=mynode}
;instance of a queue

When you create an instance of an object, you can override any of the object’s default
data values as defined in the object declaration by specifying the overriding values
inside the braces. You can’t, however, override the methods for an object when you
create an instance of an object.

Programmmg form for objects

It's a good idea to keep method procedures in a separate file from the method
declaration, and from the code that uses the object. We recommend placing method
procedures in a file with the name of the object and an extension of .ASM. For example,
the method procedures for the linked-list object would go into the file LIST.ASM. The
method procedure file must INCLUDE the method declaration from the .ASO file.

An example of the method procedures for the list object is described at the end of this
chapter. This excerpt from the LIST.ASM file (on the example disks) shows the general
structure of this file.

MODEL SMALL
LOCALS

;** Define Linked-List object **

INCLUDE node.aso

;** Create instance of Linked-List virtual method table **
DATASEG

TBLINST

;*¥* Linked-List methods **

CODESEG

;i<<include all method procedures here>>

Chapter 4, Creating object-oriented programs 55

In general, you should use the following form for ob]ect-orlented programming in

Turbo Assembler
i : . A L - -
<ob]ect>ASO INCLUDEs <parent object>.ASQ, if any; contains GLOBAL object declaratlon and a
GLOBAL directive for each method procedure.
<object>. ASM INCLUDEs <object>.ASO; contains TBLINST directive and method procedure

_declarations; has an init method with a TBLINIT somewhere inside.

Note that you can use the TBLINST and TBLINIT directives even when there are
currently no virtual methods in the object; in that case, no action is taken. '

We therefore recommend using the TBLINST and TBLINIT directives regardless of
whether virtual methods are currently pregent in an object: Place the TBLINST directive
in an appropriate data segment and the TBLINIT directive in the object’s initialization
method (which must be a static method). You must call this method before using any
other methods for the object.

56 Turbo Assembler User's Guide

Chapter

Using expressions and
symbol values

Expressions and symbols are fundamental components of an assembly language
program. Use expressions to calculate values and memory addresses. Symbols
represent different kinds of values. This chapter describes the different types of these
language components, and how you can use them.

Constants /

Constants are numbers or strings that Turbo Assembler interprets as a fixed numeric
value. You can use a variety of different numeric formats, including decimal,
hexadecimal, binary, and octal.

Numeric constants

A numeric constant in Turbo Assembler always starts with a digit (0-9), and consists of
an arbitrary number of alphanumeric characters. The actual value of the constant
depends on the radix you select to interpret it. Radixes available in Turbo Assembler are
binary, octal, decimal, and hexadecimal, as shown in Table 5.1: '

Table 5.1 Radixes

Binary 01
Octal 01234567

Decimal 0123456789
Hexadecimal 0123456789 ABCDEF

Note that for hexadecimal constants, you can use both upper- and lowercase letters.

Chapter 5, Using expressions and symbol values 57

_ Turbo Assembler determines the radix of a numeric constant by first checking the LAST
character of the constant. The characters in the followmg table determine the radix used
to interpret the numeric constant. '

Table52 Characters determmmg radixes

Taden

%@»‘E

Decimal
Hexadecimal

You can use both uppercase and lowercase characters to specify the radix of a number.
If the last character of the numieric constant is not one of these values, Turbo Assembler
will use the current default radix to interpret the constant. The following table lists the
available numeric constants and their values.

Table 53 Numerlc constants

77h 77 hexadecimal

fffth- Illegal; doesn’t start with a digit

Offffh ; FFFF hexadecimal

88 I.hterpretaﬁon depends on current default radix

Changing the default radix
You can use the RADIX or .RADIX directives to change the current default radix. Use
the following syntax for Ideal mode:

RADIX expression
Here’s the MASM mode syntax:
.RADIX expression

expression must have a value of either 2 (binary), 8 (octal) 10 (decunal) orl6
(hexadecimal). Turbo Assembler assumes that the current default radix is decimal whlle
it processes the RADIX directive. -

String constants

String constants always begin with a single or double quote, and end with a matching
single or double quote. Turbo Assembler converts the characters between the quotes to
ASCTI values. ~

Sometimes, you might want to include a quote within a strihg constant "To do this, use
a pair of matching quotes as a single matching quote character within the strmg For
. example,

58 Turbo Assembler User’s Guide

'It''s' represents It's

Symbols

A symbol represents a value, which can be a variable, address label, or an operand to an
assembly instruction and directive.

Symbol names

Symbol names are combinations of letters (both uppercase and lowercase), digits, and
special characters. Symbol names can't start with a digit. Turbo Assembler treats
symbols as either case sensitive or case insensitive. The command line switches /ML,
/MU, and /MX control the case sensitivity of symbols. For more information about these
command-line switches, see Chapter 2.

Symbols names can be up to 255 characters in length. By default, symbol names are
significant up to 32 characters. You can use the /MV command-line switch to change the
number of characters of significance in symbols.

The underscore (_), question mark (?), dollar sign ($), and at-sign (@) can all be used as
part of a symbol name. In MASM mode only, you can use a dot (.) as the first character
of a symbol name. However, since it’s easy to confuse a dot at the start of a symbol with
the dot operator (which performs a structure member operation), it’s better not to use it
in symbol names.

Symbol types

Each symbol has a type that describes the characteristics and information associated
with it. The way you define a symbol determines its type. For example, you can declare
a symbol to represent a numeric expression, a text string, a procedure name, or a data
variable. Table 5.4 hsts the types of symbols that Turbo Assembler supports

Table 5.4 Symbol types

address. Data sul es are
or FWORD, QWORD, TBYTE, and an address ofa named struct'u.re or table.
Code subtypes are SHORT, NEAR, and FAR

text_macro A text string

alias , An equivalent symbol

numerical_expr The value of a numerical expression.
‘multiline_macro Multiple text lines with dummy arguments
strucfunion : A structure or union data type

table A table data type

struc/table_member A structure or table member

record A record data type

record_field A record field

enum An enumerated data type

Chapter 5, Using expressions and symbol values 59

Table 5.4

segment

group
type.
proctype

Symbol types (continued) '

o
B i

ﬁé&%ﬁﬁ%?@ -

e

A segment

A group

A named type
A procedure description type

Simple address subtypes

Symbols subtypes describe whether the syinbol represents the address of a byte, a word,
and so forth. Table 5.5 shows the simple address subtypes that Turbo Assembler

provides.

Table 5 5

PWORD or FWORD
QWORD
TBYTE
SHORT
NEAR
FAR
PROC

DATAPTR
CODEPTR

struc/union_name
table_name
record_name

enum_name

type_name
TYPE expression

_ proctype_name

o Unknown or undeterrmned address subtype.

Address subtypes

i g%

«umﬂ“& o

- %@%ﬁ@”“ -

Address describes a byte.

Address describes a word.

Address describes a 4-byte quantity.

Address describes a 6-byte quantity. '

Address describes an 8-byte quantity.

Address describes a 10-byte quantity.

Address describes a short label /procedure address. .
Address describes a near label/procedure address.
Address describes a far label/ procedure address.

Address describes either a near or far label/procedure address, dependmg on
the currently selected programming model.

Address describes either a word, dword, or pword quantity, depending on the
cutrently selected programming model.

Address describes either a word, dword, or pword quantity, depend.mg on the
currently selected programming model.

Address describes an instance of the named structure or union.
Address describes an instance of the named table.

Address describes an instance of the named record; either a byte, word, or
dword quantity. :

Address describes an instance of the named enumerated data type; either a
byte, word, or dword quantity.

Address describes an instance of the named type

Address describes an item whose subtype is the address subtype of the
expression; Ideal mode only.

Address describes procedure of proctype.

60 Turbo Assembler User's Guide

Describing a complex address subtype‘

Several directives let you declare and use complex address subtypes. These type
expressions are similar to C in that they can represent multiple levels of pointer
indirection, for example, the complex type expression

PTR WORD

represents a pointer to a word. (The size of the pointer depends on the segmentation
model you selected with MODEL.)

Table 5.6 shows a syntax summary of complex address subtypes:

Table5.6 Complex address subtypes

e specified address subtype

[dlst]PI’R[complex address_subtype] a pointer to the specified complex address subtype, the size of
which is determined by the current MODEL or by the specified
distance, if present

You can describe the optional distance parameter in the following ways:

Table 5.7 | Distance syntax

NEAR use a near pointer;.can be either 16 or 32 bits, depending on the current model

FAR use a far pointer; can be either 32 or 48 bits, depending on current model
SMALL NEAR use a 16-bit pointer; 80386 and 80486 only

LARGE NEAR use a 32-bit near pointer; 80386 and 80486 only

SMALL FAR use a 32-bit far pointer; 80386 and 80486 only

LARGE FAR use a 48-bit far pointer; 80386 and 80486 only

The type of the object being pointed to is not strictly required in complex pointer types;
Turbo Assembler only needs to know the size of the type. Therefore, forward references
are permitted in complex pointer types (but not in simple types).

/

Expressions

Using expressions lets you produce modular code, because you can represent program
values symbolically. Turbo Assembler performs any recalculations required because of
changes (rather than requiring you to do them).

Turbo Assembler uses standard infix notation for equations. Expressions can contain
operands and unary or binary operators. Unary operators are placed before a single

Chapter 5, Using expressions and symbol values 61

operand; bmary operators are placed between two operands. Table 5.8 shows examples
of simple expressions.

Table 5.8 = Simple expressions

5 constant 5
5 constant -5
4+3 constant 7
43 constant 12
4f3+2*1, constant 14
4*(3+2)*1 constant 21

Appendix B contains the full Backus-Naur form (BNF) grammar that Turbo Assembler
uses for expression parsing in both MASM and Ideal modes. This grammar inherently
describes the valid syntax of Turbo Assembler expressions, as well as operator
precedence. : ‘

Expression precision

Turbo Assembler always uses 32-bit arithmetic in Ideal mode. In MASM mode, Turbo
Assembler uses either 16- or 32-bit arithmetic, depending on whether you select the
80386 processor. Therefore, some expressions might produce different results
depending on which processor you've selected. For example,

(1000h 1000h) / 1000h

evaluates to 1000h if you select the 80386 processor, or to 0 if you select the 8086, 80186,
or 80286 processors.

 Constants in expressions

You can use constants as operands in any express1on For example,

mov ax,5 ;"5" is a constant operand

Symbols in expressions

When you use a symbol in an expression, the returned value depends on the type of
symbol. You can use a symbol by itself or in conjunction with certain unary operators
that are designed to extract other information from the entlty represented by the

symbol.

Registers |
Register names represent 8086-family processor registers, and are set aside as part of the
expression value. For example, :

5+ax+7

62 Turbo Assembler User’s Guide

This expression has a final value of ax+12, because AX is a register symbol that Turbo

Assembler sets aside.

The following list contains register symbols:

8086 AX,BX,CX,DX,SI,DLBP,CS,DS,ES,SS

80186,80286 Same as 8086

80386 8086 registers, plus EAX, EBX, ECX, EDX, ESI, EDI, EBP, FS, GS, CRO0,
CR2, CR3, DRO, DR1, DR2, DR3, DR6, DR7

80486 80386 registers, plus: TR3, TR4, TR5

Standard symbol values

Some symbols always represent specific values and don’t have to be defined for you to
use them. The following table lists these symbols and their values.

Table59 Standard symbols

TBYTE

FAR

PROC

CODEPTR
. DATAPTR

Current program counter
0
0
0
1
2
4
6
6
8

10

Offffh

Offfeh

Either Offffh or Offfeh, depending on current model

Either 2 or 4, depending on current model
Either 2 or 4, depending on current model

Simple symbol values:
Turbo Assembler returns the following values for symbols used by themselves:

Table 5.10 Values of symbols used by themselves

address_name
numerical_expr_name

Returns the address.
Returns the value of the numerical expression. . .

table_name | table_member_name Returns the default value for the table member speCJﬁed in the definition

struc/table_member_name

of the table.

Returns the offset of the member w1thm the table or structure (MASM
mode only).

Chapter 5, Using expressions and symbol values 63

N

Table 5.10 Values of symbols used by themselves (continued)

record_name Returns a mask where the bits reserved to represent bit fields in the

record definition are 1, the rest are 0.

record_name <...> Returns the initial value a record instance would have if it were declared

_ with the same text enclosed in angle brackets (see Chapter 12 for details).

record_name {...} Similar to record_name <...>.

record_field_name Returns the number of bits the field is displaced from the low order bit of
the record (also known as the shift value).

enum_name’ Returns a mask where the bits required to represent the maximum value
present in the enum definition are 1, the rest are 0.

segment_name Returns the segment value.

group_name Retuirns the group value.

struc/union_name Returns the size in bytes of the structure or union, but only if itis 1, 2, or

4; all other sizes return a value of 0.

e_name If the type is defined as a synonym for a structure or union, the value
typ typ ynonym
returned is.the same as for a structure or union. Otherwise, the size of the
ty]pe is returned (with Offffh for short and near labels, and Offfeh for far
labels).

7 ‘proctype_name : Returns OFFFFh if the proctype describes a near procedure, or O0FFFEh
for a far procedure

All other symbols types return the value 0.

Note that when you use a text macro name in an expression, Turbo Assembler
substitutes the string value of the text macro for the text macro symbol. Similarly, when
you use an alias name, Turbo Assembler substitutes the symbol value that the alias
represents for the alias symbol

The LENGTH unary operator

The LENGTH operator returns information about the count or number of entities
represented by a symbol. The actual value returned depends on the type of the symbol,
as shown in the following table.

Table 5.11 . LENGTH operator return values

e

LENGTH address_name : Returns the count of items allocated when the address name was
‘ defined.
LENGTH struc/table_member_name Returns the count of items allocated when the member was defmed
(MASM mode only).

The length operator (when applied to all other symbol types) returns the value 1. Here
are some examples using the LENGTH operator:

MSG DB "Hello"™
array DW 10 DUP (4 DUP (1),0)
numbrs DD 1,2,3,4

Imsg = LENGTH msg ;=1, no DUP
larray = LENGTH array ;=10, DUP repeat count

Inumbrs = LENGTH numbrs ;=1, o DUP

64 Turbo Assemblier User's Guide

The SIZE unary operator
The SIZE operator returns size information about the allocated data item. The value

returned depends on the type of the symbol you've specified. The following table lists
the available values for SIZE.

Table 5.12 ~ SIZE values

address_name eal mode, returns the actual number of bytes allocated to the data
variable. In MASM mode, returns the size of the subtype of
address_name (UNKNOWN=0, BYTE=1, WORD=2, DWORD=4,
PWORD=FWORD=6, QWORD=8, TBYTE=10, SHORT=NEAR=0ffith,
FAR=0fffeh, structure address=size of structure) multiplied by the value

of LENGTH address_name.
SIZE struc/union_name Returns the number of bytes required to represent the structure or union.
SIZE table_name Returns the number of bytes required to represent the table.

SIZE struc/ table_member_name Returns the quantity TYPE struc/table_member_name * LENGTH struc/
table_member_name (MASM mode only).

SIZE record_name Returns the number of bytes required to represent the total number of bits
i reserved in the record definition; either 1, 2, or 4.

SIZE enum_name ' Returns the number of bytes required to represent the maximum value
present in the enum definition; either 1, 2, or 4.

SIZE segment_name Returns the size of the segment in bytes.

SIZE type_name Returns the number of bytes required to represent the named type, with

short and near labels returning Offffh, and far labels returning Offfeh.

The SIZE operator returns the value 0 when used on all other symbol types.

The WIDTH unary operator

The WIDTH operator returns the width in bits of a field in a record. The value depends
on the type of symbol. The following table shows these types of symbols. You can’t use
WIDTH for any other symbol types.

Table 513 WIDTH values

WIDTH record_name Returns the total number of bits reserved in the record definition.

WIDTH record_field_name Returns the number of bits reserved for the field in the record definition.

WIDTH enum_name Returns the number of bits required to represent the maximum value in the
enum definition. .

MASK unary operator

The MASK operator creates a mask from a bit field, where bits are set to 1 in the
returned value and correspond to bits in a field that a symbol represents. The value

Chapter 5, Using expressions and symbol values 65

returned depends on the type of symbol,yals shoWn in the following table. Note that you
can’t use MASK on any other symbols.

Table 5.14 MASK return values

MASK record_narme Returns a mask where tlle b1ts reserved to represent bit ﬁelds in the record
definition are 1, the rest 0.

MASK record_field_name ' Returns a mask where the bits reserved for the field in the record definition are
a ’ 1, the rest 0.

MAGSK enum_name Returns a mask where the bits required to represent up to the maximum value
present in the enum definition are 1, the rest 0.

‘General arithmetic operators

General ar1thmet1c operators manipulate constants, symbol values, and the values of
other general arithmetic operations. Common operators are addition, subtraction,
multiplication, and division. Others operators are more specifically tailored for
assembly language programming. We'll discuss a little about all of these in the next-few
sections.

Simple arithmetic operators
Turbo Assembler supports the simple arithmetic operators shown in the following
table.

Table 5.15 Simple arithmetic operators

+ expression Expression.

— expression Negative of expression.

expr] + expr2 exprl plus expr2.

exprl —expr2 exprl minus expr2.

exprl * expr2 exprl mulhphed by expr2.

exprl / expr2 expr] divided by expr2 using signed mteger division; note that exprz cannot be 0 or
greater than 16 bits in extent.

exprl MOD expr2 Remainder of expr] divided by expr2; same rules apply as for division.

Logical arithmetic operators

Logical operators let you perform Boolean algebra. Each of these operators performs in
- a bitwise manner; that is, the logical operation is performed one bit at a time. The

following table shows the logical operators. :

Table 5.16 Logical arithmetic operators

o

oT 'exp:elsszon : expresszon bll;w1se complemented
exprl AND expr2 expr1 bitwise ANDed with expr2
exprl OR exprZ expr] bitwise ORed with expr2
 exprl XOR expr2 expr] bitwise XORed with expr2

66 Turbo Assembler User’s Guide.

Bit shift operators

Shift operators move values left or right by a fixed number of bits. You can use them to
do quick multiplication or division, or to access the value of a bitfield within a value.
The following table lists the bit shift operators.

Table 5.17 Bit shift operators

expr]l SHL expr2 expr] shifted left by expr2 bits (shifted right if expr2 is negative).
expr1 SHR expr2 expr] shifted right by expr2 bits (shifted left if expr2 is negative).

Note that the SHL and SHR operators shift in Os from the right or left to fill the vacated
bits.

Comparison operators

Comparison operators compare two expressions to see if they’re equal or unequal, or if
one is greater than or less than the other. The operators return a value of -1 if the
condition is true, or a value of 0 if the condition is not true. The following table shows -
how you can use these operators.

Table 5.18 Comparison operators

exprl EQ expr2 ~1if exprl is equal to expr2; otherwise, 0.

exprl NE expr2 -1 if exprl is not equal to expr2; otherwise, 0.

exprl GT expr2 ‘ —1if expr] is greater than expr2; otherwise, 0.

exprl GE expr2 -1 if exprl is greater than or equal expr2; otherwise, 0.
exprl LT expr2 : —1 if expr1 is less than expr2; otherwise, 0.

exprl LE expr2 —1 if expr1 is less than or equal expr2; otherwise, 0.

EQ and NE treat expressions as unsigned numbers. For example, -1 EQ offffh has a
value of -1 (unless you've selected the 80386 processor or used Ideal mode; then, -1 EQ
offffffffth has a value of -1).

GT, GE, LT, and LE treat expressions as signed numbers. For example, 1 GE -1 has a
value of -1, but 1 GE 0ffffh has a value of 0.

Setting the address subtype of an expression
Turbo Assembler provides operators that let you override or change the type of an
expression. The following table lists these operators.

Table 5.19 Type override operators

Converts expr2 to the type determined by exprl, where 0=UNKNOWN, 1=BYTE, .
2=WORD, 4=DWORD, 6=PWORD, 8=QWORD, 10=TBYTE, Offffh=NEAR,

: Offfeh=FAR, all otherss=UNKNOWN; MASM mode only.

type PTR expression ' Converts expression to the specified address subtype; Ideal mode only.

or type expression

Chapter 5, Using expressions and symbol values 67

Table 5.19 Type override operators (continued)
. v i ; ;

type LOW expression Converts expresszon to the spec1ﬁed address subtype ype described must be
-~ smaller in size than the type of the expression; Ideal mode only.
type HIGH expression Converts expression to the specified address subtype. Type described must be
_ smaller in size than the type of the expression; the resulting address is adjusted to
point to the high part of the ob]ect described by the address expression; Ideal
mode only.

Here are some examples:

IDEAL
. big DD 12345678h
MOV ax, [WORD big] ;ax=5678h"
MOV al, [BYTE PTR big] - ;al=78h
MOV - ax, [WORD HIGH big] ;ax=1234h
MOV ax, [WORD LOW big] o ;ax=5678h
MOV al, [BYTE LOW WORD HIGH big] ;al = 3rd byte of big = 34¢h
MASM . : ' :
MOV ax,2 PTR big ;ax=5678h
MOV ax,WORD .PTR big ;ax=5678h (WORD has value 2)

Obtaining the type of an expression

In MASM mode, you can obtain the numeric value of the type ofan expression by using
the TYPE operator. (You can’t do this in Ideal mode, because types can never be
described numerically). The syntax of the TYPE operator is

TYPE expression

The TYPE operator returns the size of the object described by the address expression, as
follows:

Table 5 .20 TYPE values

short Offffh

near Offffh

far. Offfeh ‘)

struct/union Size of a structure or union instance

table Size of a table instance :

proctype Returns OFFFFh if the proctype descrlbes a near procedure, or OFFFEh for a far procedure

Here’s an example:

68 Turbo Assembler User’s Guide

avar = 5
bvar db 1.

darray dd 10 dup (1)

X struc

dw ?

at ?

ends
fp label far
tavar = TYPE avar
tbvar = TYPE bvar
tdarray = TYPE darray
tx = TYPE x
tfp = TYPE fp

0

1

4

=12

= (FFFEh

Overriding the segment part of an address expression

Address expressions have values consisting of a segment and an offset. You can specify
the segment explicitly as a segment register, or as a segment or group value. (If you
specify it as a group value, Turbo Assembler determines which segment register to use
based on the values that the segment registers are ASSUMEA to be.) Use the following
syntax to change the segment part of an address expression:

exprl : expr2

This operation returns an address expression using the offset of expr2, and exprl as a
segment or group value. For example,

VarPtr dd dgroup:memvar ;dgroup is a group
mov cl,es: [si+d] ;segment override ES

Obtaining the segment and offset of an address expression

You can use the SEG and OFFSET operators to get the segment and offset of an
expression. The SEG operator returns the segment value of the address expression.
Here’s its syntax:

SEG expression
Here is a code example: !

DATASEG
temp DW 0
CODESEG

mov ax,SEG temp
mov ds,ax
ASSUME ds:SEG temp

The OFFSET operator returns the offset of the address expression. Its syntax follows:
OFFSET expression

Note that when you use the offset operator, be sure that the expression refers to the
correct segment. For example, if you are using MASM mode and not using the
simplified segmentation directives, the expression

Chapter’s,‘Using expressions and symbol values 69

OFFSET BUFFER ;buffer is a memory address
is not the same as '

OFFSET DGROUP:BUFFER - ;Dgroup is the group containing the segment that contalns BUFFER
unless the segment that contains BUFFER happens to the first segment in DGROUP.

In Ideal mode, addresses are automatically calculated relative to any group that a
segment belongs to unless you override them with the : operator. In MASM mode, the
same is true if you use the simplified segment directives. Otherwise, addresses are
calculated relative to the segment an object is in, rather than any group.

Creating an address expression using the location counter.

You can use the THIS operator to create an address expression that points to the current
segment and location counter, and has a specific address subtype. You can use the
following syntax in Ideal mode:

THIS type

The Ideal mode syntax lets you build an address expression from the current segment 4'
and location counter of the specified type.

You can use the next syntax in MASM mode:
THIS expression

The MASM mode syntax functions like the syntax in Ideal mode, but uses the numerical
value of the expression to determine the type. These values are: 0=UNKNOWN,
1=BYTE, 2=WORD, 4=DWORD, 6=PWORD, 8=QWORD, 10=TBYTE, 0ffffh=NEAR,
Offfeh=FAR. For example,

ptrl LABEL WORD :
ptr2 EQU THIS WORD ;similar to ptrl

Determining the characteristics of an expression

Sometimes, it’s useful to determine (within a macro) whether an expression has specific
characteristics. The SYMTYPE and .TYPE operators let this happen. .

The Ideal mode syntax:
SYMTYPE expression
The MASM mode syntax:

.TYPE expression

~ Note The SYMTYPE and .TYPE operators are exactly equivalent; howéver, TYPE is available
: only in MASM mode, and you can use SYMTYPE only in Ideal mode.

70 Turbo Assembler User’'s Guide

SYMTYPE and .TYPE both return a constant value that describes the expression. This
value is broken down into the bit fields shown in the following table.

Table 5.21 Bit fields from SYMTYPE and .TYPE

Expression is a data relative memory pointer.
Expression is a constant value.

Expression uses direct addressing mode.
Expression contains a register.
_Symbol is defined.

Expression contains an externally defined symbol.

N U 0N =

The expression uses register indirection ([BX]) if bits 2 and 3 are both zero.

If Turbo Assembler can't evaluate the expression, SYMTYPE returns appropriate errors.
.TYPE, however, will return a value in these situations (usually 0).

Referencing structure, union, and table member offsets

Structure, union, and table members are global variables whose values are the offset of
the member within the structure, union, or table in MASM mode. In Ideal mode,
however, members of these data types are considered local to the data type. The dot (.)
operator lets you obtain the offsets of members. Here’s the Ideal mode syntax:

expression . symbol

~ expression must represent an address of a structure, union, or table instance. symbol must
be a member of the structure, union, or table. The dot operator returns the offset of the
member within the structure.

MASM mode also contains a version of the dot operator. However, its function is
similar to the + operator, and has the following syntax:

exprl . expr?

Describing the contents of an address
Many instructions require you to distinguish between an address and the contents of an
address. You can do this by using square brackets ({]). For example,

MOV AX,BX ;move BX into AX.
MOV AX, [BX] ;move contents of address BX into AX

Here’s the general syntax for using square brackets:
[expression | '

In MASM mode, the brackets are optional for expressions that are addresses. Complete
addresses can’t be used as an operand for any 80x86 instruction; rather, only the
segment (obtained with the SEG operator) or the offset (obtained with the OFFSET
operator) is used.

Chapter 5, Using expressions and symbol values 71

In Ideal mode, a warning is given when an expressmn is clearly an address, but no
brackets are present. You can disable this warning (see Chapter 12 for further
information). However, it’s good programming practice to include these brackets.

Implied addition

In MASM mode, you can add expressions in several ways: usmg the addition operator
(+), using the dot operator (.), or by implied addition (wWhen expressions are separated
by brackets or parentheses). For example,

MOV AX,5[BX] ;contents of»addfess BX+5
MOV AX,5(XYZ) - ;contents of address XYZ+5

Here’s the general syntax for implicit addition:
exprl [expr2]
or

exprl (expr2)

Obtaining the high or low byte values of an expression

You can use the HIGH and LOW operators on an expression to return its high and low
byte values. This information can be useful in circumstances where, for example, only
the high 8 bits of an address offset is required.

Here’s the syntax of the HIGH and LOW operators:

HIGH ekpression
LOW expression

For example,
magic equ 1234h
mov C¢1,HIGH magic ;cl=12h
mov cl,LOW magic ;cl=34h

Specifying a 16- or 32-bit expression

When the currently selected processor is the 80386 or higher, Turbo Assembler provides
two operators that let you control whether an expression is interpreted as a 16-bit value
or as a 32-bit value: the SMALL and LARGE operators. Here are their syntaxes

SMALL expresszon
LARGE expression

The SMALL operator flags the expression as representing a 16-bit value. LARGE ﬂags it -
as representing a 32-bit value. These operators are particularly important when you
program for an environment in which some segments are 32-bit and others are 16-bit.
For example, the instruction

JMP [DWORD PTR ABC]

represents an indirect jump to the contents of the memory variable ABC.If you have
enabled the 80386 processor, this instruction could be interpreted as either a far jump
with a segment and 16-bit offset, or a near jump to a 32-bit offset You can use SMALL or
LARGE to remove the amblgulty, as follows .

72 Turbo Assembler User’s Guide

JMP SMALL [DWORD PTR ABC]

This instruction causes Turbo Assembler to assemble the jump instruction so that the
value read from ABC is interpreted as a 16-bit segment and 16-bit offset. Turbo
Assembler then performs an indirect FAR jump.

When you use SMALL or LARGE within the address portion of an expression, the
operators indicate that the address is a 32-bit address. For example,

JMP SMALL [LARGE DWORD PTR ABC]

indicates that a large 32-bit address describes the memory variable ABC, but its contents
are interpreted as a 16-bit segment and 16-bit offset.

Chapter 5, Using expressions and symbol values 73

74 Turbo Assembler User’s Guide

Chapter

Choosing processor directives
and symbols

The 8086 processor is actually only one of a family of processors known as the iAPx86
family. Members of this family include

The 8088 (which contains an 8-bit data bus), the 8086 (containing a 16-bit data bus)

The 80186 and 80188 (like the 8086 and 8088 but contain additional instructions and
run faster than their predecessors)

The 80286 (which contains instructions for protected rnode)
The 80386 (whlch can process 16- and 32-bit data)
The 80486 (an enhanced version of 80386 that runs even faster).

The Pentium (an even faster version of the 80486).

Math coprocessors such as the 8087, 80287, and 80387 work with the iAPx86 family so
that you can perform floating-point operations.

Turbo Assembler provides directives and predefined synibols that let you use the
instructions included for particular processors. This chapter describes these directives
- and symbols.

Chapter 6, Choosing processor directives and symbols 75 -

iAPx86 processor directives

The iAPx86 family provides a variety of directives for you to use. In the following
directives, note that those beginning with . are only available in MASM mode.

Table 6.1 Processor directives

P8086 = Enables assemblngf 86%6 instructions only.
.8086 Enables assembly of the 8086 instructions and disables all instructions available only on the

80186, 80286, and 386 processors. It also enables the 8087 coprocessor mstructlons exactly as
if the .8087 or 8087 had been issued.

P186 Enables assembly of 80186 instructions.
.186 - Enables assembly of 80186 instructions.
P286 Enables assembly of all 80286 instructions.
-P286N Enables assembly of nonpriviléged 80286 instructions.
P286P Enables assembly of privileged 80286 instructions. ’
.286 Enables assembly of nonprivileged 80286 instructions. It also enables the 80287 numeric
processor instructions exactly as if the .286 or P287 directive had been issued.
.286C . Enables assembly of nonprivileged 80286 instructions.
.286P Enables assembly of all the additional instructions supported by the 80286 processor,

including the privileged mode instructions. It also enables the 80287 numeric processor
instructions exactly as if the .287 or P287 directive had been issued.

P386 Enables assembly of all 386 instructions.

P386N Enables assembly of all nonprivileged 386 instructions.

P386P Enables assembly of privileged 386 instructions.

386 Enables assembly of the additional instructions supported by the 386 processor in

nonprivileged mode. It also enables the 80387 numeric processor. instructions exactly as if the
.387 or P387 directive had been issued.

.386C Enables assembly of 386 instructions.

.386P Enables assembly of all the additional instructions supported by the 386 processor, including
the privileged mode instructions. It also enables the 80387 numeric processor instructions
exactly as if the .387 or P387 directive had been issued.

P486 Enables assembly of all i486 instructions.
P486N Enables assembly of nonprivileged i486 instructions.
486 Enables assembly of the additional instructions supported by the 1486 processor in

nonprivileged mode. It also enables the 387 numeric processor instructions exactly as if the
.387 or P387 directive had been issued. :

.486C Enables assembly of all 486 instructions.

486P Enables assembly of all the additional instructions supported by the i486 Processor,

including the privileged mode instructions. It also enables the 80387 numeric processor
instructions exactly as if the .387 or P387 directive had been issued.

487 Enables assembly of 487 numeric processor instructions. This instruction works only in
MASM mode.

Pas7 Enables assembly of 487 numeric processor msfruchons This instruction works in both
MASM and Ideal modes.

- P586 Enables assembly of all Pentium instructions.
P586N Enables assembly of nonprivileged Pentium instructions.
586 - Enables assembly of the additional instructions supported by the Pentium processor in
: nonprivileged mode. .

76 Turbo Assembler User’s Guide’

@Cpu

Table 6.1 Processor directives (continued)

.586C Enables assembly of all Pentium instructions.

.586P Enables assembly of all the additional instructions supported by the Pentium processor,
including the privileged mode instructions.

587 Enables assembly of Pentium numeric processor instructions. This instruction works only in
MASM mode.

P587 Enables assembly of Pentium numeric processor instructions. This instruction works in both
MASM and Ideal modes.

Note The Quick Reference Guide contains details on the assembly instructions supported by
each processor. For additional information, refer to the books listed in Chapter 1.
Predefined symbols

@Cpu

Two predefined symbols, @Cpu and @WordSize, can give you information about the
type of processor you're using, or the size of the current segment. Here are descriptions
of these symbols:

Function
Remarks

Numeric equate that returns information about current processor

The value returned by @Cpu encodes the processor type in a number of single-bit fields:

led

1 80186 instructions enabled

2 80286 instructions enabled

3 386 instructions enabled

4 486 instructions enabled

5 586 instructions enabled

7 “Privileged instructions enabled (80286, 386, 436)
8 8087 numeric processor instructions
10 . 80287 numeric processor instructions
11 387 numeric processor instructions

The bits not defined here are reserved for future use. Mask them off when using @Cpu
so that your programs will remain compatible with future versions of Turbo Assembler.

Since the 8086 processor family is upward compatible, when you enable a processor
type with a directive like .286, the lower processor types (8086, 80186) are automatically
enabled as well.

Chapter 6, Choosing prbcessor directives and symbols 77

@’WordSize

Example

This equate oﬁly provides information about the processor you've selected at assembly

- time using the .286 and related directives. The processor type and the CPU your

program is executing on at run time are not indicated.

- IPUSH = @Cpu AND 2 ;allew immediate push on 186 and above
"IF IPUSH

PUSH 1234

ELSE

, mov ax,1234 . : .
push ax

ENDIF

@WordSize |

Function
Remarks

Example

Numeric equate that indicates 16~ or 32-bit segments

@WordSize returns 2 if the current segment isa 16 bit segment, or 4 if the segment is a
32-bit segment.

IF @WordSize EQ 4
mov esp,0100h
ELSE
mov sp,0100h
ENDIF

8087 coprocesSor directives

The following table contains the available math coprocessor directives. Again, directives
beginning with a dot (.) work only in MASM mode.Turbo Assembler User’s Guide

Table 6.2 8087 coprocessor directives

287 Enables assembly o: all the 80287 numerlc coprocessor mstructlons Use thJs directive if you
know you'll never run programs using an 8087 coprocessor. This directive causes ﬂoahng—
point instructions to be optimized in a manner incompatible with the 8087, so don’t use it if
you want your programs to run using an 8087.

387 Enables assembly of all the 80387 numeric coprocessor instructions. Use this directive if you
* know you'll never run programs using an 8087 coprocessor. This directive causes floating-
point instructions to be optimized in a manner mcompatlble with the 8087, so don’t use it if
you want your programs to run using an 8087.

487 Enables assembly of all 80486 numeric instructions.

587 Enables assembly of all Pentium numeric instructions.

.8087 . Enablesall the 8087 coprocessor instructions, and disables all those coprocessor instructions
available only on the 80287 and 80387 (the default)

P287 _ Enables assembly of 80287 coprocessor instructions.

P387 . Enables assembly of 80387 coprocessor instructions:

pP4s7 Enables assembly of all 80486 numeric instructions.

78 Turbo Assembler User's Guide

@W.ordSize

. Table 6.2 8087 coprocessor directives (continued)

P587 Enables assembly of all Pentium numeric instructions.

P8087 Enables assembly of 8087 coprocessor instructions.

Coprocessor emulation directives

If you need to use real floating-point instructions, you must use an 80x87 coprocessor. If
your program has installed a software floating-point emulation package, you can use
the EMUL directive to use it. (EMUL functions like /e.)

For example,

Finit . ;real 80x87 coprocessor instruction

EMUL
Fsave BUF ;emulated instruction]

Note Both EMUL and NOEMUL work in MASM and Ideal modes.

If you're using an 80x87 coprocessor, you can either emulate floating-point instructions
using EMUL, or force the generation of real floating-point instructions with the
NOEMUL directive. Note that you can use EMUL and NOEMUL when you want to
generate real floating-point instructions in one portion of a file, and emulated
instructions in another.

Here’s an example using NOEMUL:

NOEMUL ;assemble real FP instructions
finit)
EMUL ;back to emulation

Chapter 6, Choosing processor directives and symbols 79

80 Turbo Assembler User's Guide

Chapter

Using program models and
segmentation

Each processor in the 80x86 family has at least four segment registers: CS, DS, ES, and
SS. These registers contain a segment value that describes a physical block of memory
up to 64K in length (or up to 4 gigabytes on the 80386 and above). All addresses are
calculated using one of these segment registers as a base value.

The meaning of the value stored in a segment register differs depending on whether the
processor is using real mode (the ONLY mode available for the 8086 and 80186), where
the segment value is actually a paragraph number, or protected mode, where a segment
register contains a selector (which has no numerical significance).

The operating system or platform for a program determines whether the program
operates in real mode or protected mode. If you use protected mode on the 80386 or
80486, the operating system also determines whether large (4 gigabyte) segments are
permitted. Turbo Assembler supports all of these environments equally well.

In the general 80x86 model, programs are composed of one or more segments, where
each segment is a physically distinct piece of code or data (or both) designed to be
accessed by using a segment register. From this general scheme, many arbitrary
organizations are possible. To apply some order to the chaos, some standard memory
models have been devised. Since many high-level languages adhere to these
conventions, your assembly language programs should also. '

One obvious way to break up a program is to separate the program instructions from .
program data. You can classify each piece of program data as initialized (containing an
initial value, such as text messages), or uninitialized (having no starting value). Turbo
Assembler usually assigns uninitialized data to a separate segment so that it can be
placed at the end of the program, reducing the size of the executable program file.

The stack is usually a fairly large portion of the uninitialized data. It’s also special
because the SS and SP registers are usually initialized automatically to the stack area

Chapter 7, Using program models and segmentation 81

when you execute a program. Thus, the standard memory models treat the stack as a
separate segment.

You can also combine segments into groups. The advantage of using groups is that you
can use the same segment value for all the segments in the group. For example,
initialized data, uninitialized data, and stack segments are often combined into a group
so that the same segment value can be used for all of the program data.

This chapter describes how to use models and segments in your code and the directives
- that make this possible.

The MODEL directive

The MODEL directive lets you specify one of several standard segmentation models for
your program. You can also use it to spec1fy a language for the procedures in your
program. , ,

Here’s the syntax for the MODEL directive:

MODEL [model_modlfler} memory_model [code_segment_name]
[, [language_modifier] language]
[, model _modifier]

In MASM mode, you can use the same syntax, but with the MODEL directive.

memory_model and model_modifier specify the segmentation memory model to use for the
program.

The standard memory models available in Turbo Assembler have specific segments
available for:

code

initialized data
uninitialized data
far initialized data
far uninitialized data
constants

stack

The code segment usually contains a module’s code (but it can also contain data if
necessary). Initialized data and constants are treated separately for compatibility with

- some high level languages. They contain data such as messages where the initial value is
important. Uninitialized data and stack contain data whose initial value is unimportant.
Far initialized data is initialized data that is not part of the standard data segment, and
can be reached only by changing the value of a segment register. A module can have
more than one far initialized data segment. Far uninitialized data is similar, except that
it contains uninitialized data instead of initialized data.

The specific memory model determines how these segments are referenced with
segment registers, and how they are combined into groups (if at all). When writing a
program, you should keep these segments separate, regardless of the program’s size.

82 Turbo Assembler User's Guide

Then, you can select the proper model to group the segments together. If you keep these
segments separate and your program grows, you can choose a larger model.

The memory model is the only required parameter of the MODEL directive. Table 7.1
describes each of the standard memory models.

The model_modifier field lets you change certain aspects of the model. You can specify
more than one model modifier, if you wish. Table 7.2 shows the available model
modifiers.

Note that you can specify the model modifier in two places, for compatibility with
MASM 5.2. If you don’t use a model specifier, Turbo Assembler assumes the
NEARSTACK modifier, and USE32 (if the 80386 or 80486 processor is selected) Unless
otherwise specified, DOS is the platform.

Use the optional code_segment_name field in the large code models to override the
default name of the code segment. Normally, this is the module name with TEXT
appended to it.

Table7.1 Standard memdry models

TINY near near cs=dgroup All code and data combined into a single group called

ds=ss=dgroup DGROUP. This model is used for COM assembly programs.
Some languages don’t support this model.

SMALL near near cs=_text Code is in a single segment. All data is combined into a

ds=ss=dgroup group calied DGROUP. This is the most common model for
stand-alone assembly programs.

MEDIUM far near cs=<module>_text Code uses multiple segments, one per module. Dataisina
ds=ss=dgroup group called DGROUP.

COMPACT near far cs=_text Code is in a single segment. All near data is in a group called

, ds=ss=dgroup DGROUP. Far pointers are used to reference data.

LARGE far far cs=<module>_text Code uses multiple segments, one per module. All near data

ds=ss=dgroup is in a group called DGROUP. Far pointers are used to
’ reference data.
HUGE far far cs=<module>_text Same as LARGE model, as far as Turbo Assembler is
" ds=ss=dgroup concerned.

TCHUGE far far cs=<module>_text This is the same as the LARGE model but with different
ds=nothing segment register assumptions.
ss=nothing

TPASCAL near far cs=code This is a model to support early versions of Borland Pascal.
ds=data It's not required for later versions.
ss=nothing ‘ . :

FLAT near near cs=_text This is the same as the SMALL model, but tailored for use
ds=ss=flat under 32-bit flat memory models (Win32 and OS/2).

Chapter 7, Using program models and segmentation 83

Table7.2 Model modlflers

&m
: * present), and SS should point to DGROUP.
FARSTACK Specifies that the stack segment should never be included in DGROUP and SS

. should point to nothing.
USEl6 Specifies (when the 80386 or 80486 processor is selected) that 16-bit segments should
' be used for all segments in the selected model.
USE32 Indicates (when the 80386 or 80486 processor is selected) that 32-bit segments should

, be used for all segments in the selected model.
DOS, OS_DOS Specifies that the application platform is DOS. .
NT,OS_ NT ' Specifies that the application platform is Win32 (Windows NT or Windows 95).
052, 0S_08s2 Specifies that the application platform is OS/2.

language and language_modifier together specify the default-procedure calling

- conventions, and the default style of the prolog and epilog code present in each
procedure. They also control how to publish symbols externally for the linker t use.
Turbo Assembler will automatically generate the procedure entry and exit code that is
proper for procedures using any of the following interfacing conventions: PASCAL, C,
CPP (C++), SYSCALL, STDCALL, BASIC, FORTRAN, PROLOG, and NOLANGUAGE.
If you don’t specify a language, Turbo Assembler assumes the default language to be
NOLANGUAGE. :

Use language_modifier to specify additional prolog and epilog code when you write
procedures for Windows, or for the Borland Overlay loader. These options are:
NORMAL, WINDOWS, ODDNEAR and ODDFAR. If you don’t spec1fy an option,
Turbo Assembler assumes the default to be NORMAL.

Also note that you can override the default language and language modifier when you
define a procedure. See Chapter 10 for further details.

You can additionally override the default language when you publish a symbol.

Symbols created by the MODEL directive

When you use the MODEL directive, Turbo Assembler creates and initializes certain
variables to reflect the details of the selected model. These variables can help you write -
code that’s model independent, through the use of conditional assembly statements. See
Chapter 15 for information about how you can use variables to alter the assembly
process.

The @Model symbol

The @Model symbol contains a representation of the model currently in effect. It is
defined as a text macro with any of the following values:

1 = tiny model is in effect
2 = small or flat

3 = compact

4 = medium

5 =-large

84 Turbo Assembler User’s Guide

6 = huge

mon

7 = tchuge
0 = tpascal
The @32Bit symbol

The @32Bit symbol contains an indication of whether segments in the currently
specified model are declared as 16 bit or 32 bit. The symbol has a value of 0 if you
specified 16-bit segments in the MODEL directive, or 1 if you indicated 32-bit segments.

' The @CodeSize symbol

The @CodeSize text macro symbol indicates the default size of a code pointer in the
current memory model. It’s set to 0 for the memory models that use NEAR code
pointers (TINY, SMALL, FLAT, COMPACT, TPASCAL), and 1 for memory models
that use FAR code pointers (all others).

The @DataSize symbol

The @DataSize text macro symbol indicates the default size of a data pointer in the
current memory model. It’s set to 0 for the memory models using NEAR data pointers
(TINY, SMALL, FLAT, MEDIUM), 1 for memory models that use FAR data pointers
(COMPACT, LARGE, TPASCAL), and 2 for models using huge data pointers (HUGE
and TCHUGE).

The @Interface symbol

The @Interface symbol provides information about the language and operating system
selected by the MODEL statement. This text macro contains a number whose bits
represent the following values:

Table 7.3~ Model modifiers

C
SYSCALL
STDCALL
PASCAL
FORTRAN
BASIC
PROLOG
cpPp

P N N U =W

Bit 7 can have a value of 0 for DOS/Windows, or 1 for 32-bit ﬂat models (Windows 95,
Windows NT, or OS/2).

- For example, the value 01h for @Interface shows that you selected the DOS operating
system and the C language.

Chapter 7, Using program models and segmentation 85

Simplified segment directives

Once you select a memory model, you can use simplified segment directives to begin
the individual segments. You can only use these segmentation directives after a
MODEL directive specifies the memory model for the module. Place as many
segmentation directives as you want in a module; Turbo Assembler combines all the
pieces with the same name to produce one segment (exactly as if you had entered all the
pieces at once after a single segmentation directive). Table 7.4 contains a list of these

directives.

Table7.4 . Simplified ségment directives

CODESEG [name]

.CODE [name]
DATASEG
DATA
CONST

.CONST
UDATASEG

DATA? .
STACK [size]

STACK [size]
FARDATA [rame]

- [FARDATA [name)
UFARDATA [name]

FARDATA? [name]

Begins or continues the module’s code segment. For models whose code is FAR,
you can specify a name that is the actual name of the segment. Note that you can
generate more than one code segment per module in this way.

Same as CODESEG. MASM mode only.
Begins or continues the module’s NEAR or default initialized data segment.

- Same as DATASEG. MASM mode only.

Begins or continues a module’s constant data segment. Constant data is always
NEAR and is equivalent to initialized data.

Same as CONST. MASM mode only.

Begins or continues a module’s NEAR or default uninitialized data segment. Be
careful to include only uninitialized data in this segment or the resulting
executable program will be larger than necessary. See Chapter 12 for a‘description
of how to a]}iocate uninitialized data.

Same as UDATASEG. MASM mode only.

Begins or continues a module’s stack segment. The bphonal size parameter
specifies the amount of stack to reserve, in words. If you don’t specify a size, Turbo
Assembler assumes 200h words (1Kbytes).

In MASM mode, any labels, code, or data following the STACK statement will not
be considered part of the stack segment. Ideal mode, however, reserves the
specified space, and leaves the stack segment open so that you can add labels or
other uninitialized data.

You usually only need to use the stack directive if you are writing a stand-alone
assembly language program; most high-level languages will create a stack for you.

Same as STACK. MASM mode only.
Begins or continues a FAR initialized data segment of the spemﬁed name. If you

- don’t specify a name, Turbo Assembler uses the segment name FAR_DATA. You

can have more than one FAR initialized data segment per module.
Same as FARDATA. MASM miode only.
Begins or continues a FAR uninitialized data segment of the specified name. If you

-don’t specify a name, Turbo Assembler uses segment name FAR_BSS. You can

have more than one FAR uninitialized data segment per module.
Same as UFARDATA. MASM mode only.

Note See Appendix A if you need to know the actual names, class names, and ahgnments of
the segments created with the simplified segment directives.

- 86 Turbo Assembler User's Guide

Symbols created by the simplified segment directives
When you use the simplified segment directives, they create variables that reflect the
details of the selected segment, just as the MODEL directive does. See Chapter 15 for
further information. The following table lists these symbols.

Table7.5 Symbols from simplified segment directives

@code the segment or group that CS is assumed to be
@data the segment or group that DS is assumed to be
@fardata the current FARDATA seégment name
‘@fardata? the current UFARDATA segment name
@curseg the current segment name

@stack the segment or group that SS is assumed to be

The STARTUPCODE directive

The STARTUPCODE directive provides initialization code appropriate for the current
model and operating system It also marks the beginning of the program. Here’s its
syntax: :

~ STARTUPCODE
or
.STARTUP; (MASM mode only)

STARTUPCODE initializes the DS, SS, and SP registers. For the SMALL, MEDIUM,
COMPACT, LARGE, HUGE, and TPASCAL models, Turbo Assembler sets DS and SS
to @data, and SP to the end of the stack. For TINY and TCHUGE models, the
STARTUPCODE directive doesn’t change the segment registers.

The @Startup symbol
The @Startup symbol is placed at the begm.mng of the startup code that the
STARTUPCODE directive generates It is a near label marking the start of the program.

The EXITCODE directive

You can use the EXITCODE directive to produce termination code appropriate for the
current operating system. You can use it more than once in a module, for each desired
exit point. Here's its syntax:

EXITCODE [return_value_expr]
. You can use the following syntax only in MASM mode:
JEXIT [return_value_expr]

The optional return_value_expr describes the number to be returned to the operating
system. If you don’t specify a return value, Turbo Assembler assumes the value in the
AXregister. -

_Chapter 7, Using program models and segmentation 87

Defining generic segments and gfoups

Most applications can use segments created using the standard models. These standard
models, however, are limited in their flexibility. Some applications require full control
over all aspects of segment generation; generic segment directives provide this
flexibility.

The SEGMENT directive

The SEGMENT directive opens a segment. All code or data following it will be included
in the segment, until a corresponding ENDS directive closes the segment.

The Ideal mode syntax for the SEGMENT directive is:
.SEGMENT- name [attributes]

You can use the following syntax for MASM mode:
name SEGMENT [attributes]

name is the name of the segment. You should name segments according to their usages.
See Appendix B for examples of segment names.

You can open and close a segment of the same name many times in a single module. In
this case, Turbo Assembler concatenates together the sections of the segment in the
order it finds them. You only need to specify the attributes for the segment the first time
you open the segment.

attributes includes any and all desired segment attribute values, for each of the
following:

segment combination attribute
segment class attribute
segment alignment attribute
segment size attribute
segment access attribute

Note Turbo Assembler prOcesses attribute values from left to right.

Segment combination attribute

The segment combination attribute tells the linker how to combine segments from
different modules that have the same name. The following table lists the legal values of
the segment combination attribute. Note that if you don’t specify the combine type,
Turbo Assembler assumes PRIVATE.

Table 7.6 Segment combmatlon attribute

T T

PRIVATE Segment will not be combined with any other segments of the same name outside of
this module. ‘
PUBLIC = Segment will be concatenated with other segments of the same name outside of this

module to form a single contiguous segment.

v

88 Turbo Assembler User's Guide

Table7.6 Segment combination attribute (continued)

MEMORY Same as PUBLIC. Segment will be concatenated with other segments of the same
name outside this module to form a single contiéuous segment, used as the default
stack. The linker initializes values for the initial S5 and SP registers so that they point
to the end of these segments.

COMMON Locates this segment and all other segments with the same name at the same address.

All segments of this name overlap shared memory. The length of the resulting
common segment is the length of the longest segment from a single module.

VIRTUAL Defines a special kind of segment that must be declared inside an enclosing segment.
The linker treats it as a common area and attaches it to the enclosing segment. The
virtual segment inherits its attributes from the enclosing segment. The assume
directive considers a virtual segment to be a part of its parent segment; in all other
ways, a virtual segment is a common area that is combined across modules. This
permits the sharing of static data that comes into many modules from included files.

AT xxx Locates the segment at the absolute paragraph address that the expression xxx
specifies. The linker doesn’t emit any data or code for AT segments. Use AT to allow
symbolic access to fixed memory locations, such as the display screen or ROM areas.

UNINIT Produces a warning message to let you know that you have inadvertently written
initialized data to uninitialized data segments. For example, you can specify the
following to produce a warning message: BSS SEGMENT PUBLIC WORD UNINIT 'BSS'.

To disable this warning message, use the NOWARN UNI directive. You can reenable
the message by using the WARN UNI directive.

Segment class attribute

The segment class attribute is a quoted string that helps the linker determine the proper
ordering of segments when it puts together a program from modules. The linker groups
together all segments with the same class name in memory. A typical use of the class
name is to group all the code segments of a program together (usually the class CODE is
used for this). Data and uninitialized data are also grouped using the class mechanism.

Segment alignment attribute

The segment alignment attribute tells the linker to ensure that a segment begins on a
specified boundary. This is important because data can be loaded faster on the 80x86
processors if it’s properly aligned. The following table lists legal values for this attribute.

Table7.7 Segment alignment attribute
BYTE No special alignment; start segment on the next available byte.

s

WORD Start segment on the next word-aligned address.

DWORD Start segment on the next doubleword-aligned address.
PARA Start segment on the next paragraph (16-byte aligned) address.
PAGE Start segment on the next page (256-byte aligned) address.
MEMPAGE Start segment on the next memory page (4Kb aligned) address.

Turbo Assembler assumes the PARA alignment if you don’t specify the alignment type.

Chapter 7, Using program models and segmentation 89

Segment size attrlbute

If the currently selected processor is the 80386, segments can be ither 16 bit or 32 bit.
The segment size attribute tells the linker which of these you want for a specific
segment. The following table contains the legal attribute values.

‘Table7.8 Segment size attribute values

"USE16 Segment is 16 b1t A l6-bit segment can contain up to 64K of code and / ordata. .

USE32 Segment is 32 bit. A 32-bit segment can contain up to 4 gigabytes of code and/or data.

Turbo Assembler assumes the USE32 value if you selected the 80386 processor in
MASM mode. In Ideal mode, Turbo Assembler assumes USE16 by default.

Segment access attribute

For any segment in protected mode, you can control access so that certain kinds of
memory operations are not permitted. (Note that this feature is currently supported
only by the Phar Lap linker. You must generate object code compatible with it using the
/op switch if you want to be able to use the segment access attribute.) The segment
access attribute tells the linker to apply specific access restrictions to a segment.

The following table lists the légal’ values for this attribute.

Table7.9 Segment abcess attribute

cutableonly
the segment is readable and executable

" the segment is

the segment is readable only
READWRITE the segment is readable and writable

The Phar Lap linker assumes that the segment is meant to run in protected mode if you
select any of these attributes, or if you select the USE32 attribute. Turbo Assembler
assumes the READONLY attribute if you selected the USE32 attribute but did not
specify any of these four attrlbutes

The ENDS directive

You can use the ENDS directive to close a segment so that no further data is emitted
into it. You should use the ENDS directive to close any segments opened with the
SEGMENT directive. Segments opened using the simplified segment directives don’t
require the ENDS directive.

Here's the syntax of the ENDS d1rect1ve
~ ENDS [name]

For MASM mode only, you can use the followmg syntax

name ENDS

90 Turbo Assembler User's Guide . k

name specifies the name of the segment to be closed. Turbo Assembler will report an
error message if name doesn’t agree with the segment currently open. If you don’t
specify a name, Turbo Assembler assumes the currently-open segment.

- The GROUP directive

You can use the GROUP directive to assign segments to groups. A group lets you
specify a single segment value to access data in all segments in the group.

Here’s the Ideal mode syntax for the GROUP directive:
GROUP name segment_name [, Segment_name...]
You can use the following syntax for MASM mode:

name GROUP segment_name [, segment_name...)

~ name is the name of the group. segment_name is the name of a segment you want to

assign to that group.

The ASSUME directive

Note

A segment register must be loaded with the correct segment value for you to access data
in a segment. Often, you must do this yourself. For example, you could use the -
following code to load the address of the current far data segment into DS:

MOV AX,@fardata
MOV DS, AX

When a program loads a segment value into a segment register, you use that segment
register to access data in the segment. It rapidly becomes tiring (and is also poor
programming practice) to specify a specific segment register every time you process
data in memory.

Use the ASSUME directive to tell Turbo Assembler to associate a segment register with
a segment or group name. This allows Turbo Assembler to be “smart enough” to use the
correct segment registers when data is accessed.

In fact, Turbo Assembler uses the information about the association between the
segment registers and group or segment names for another purpose as well: in MASM
mode, the value that the CS register is ASSUMEG to be is used to determine the
segment or group a label belongs to. Thus, the CS register must be correctly specified in
an ASSUME directive, or Turbo Assembler will report errors every time you define a
label or procedure

Here's the syntax of the ASSUME directive:
ASSUME segreg : expression [,segreg . expression]

or ‘
ASSUME NOTHING

segreg is one of CS, DS, ES or SS registers. If you specify the 80386 or 80486 processor,
you can also use the FS and GS segment registers. expression can be any expression that

Chapter 7, Using program models and segmentation 91

evaluates to a group or segment name. Alternatively, it can be the keyword NOTHING.
The NOTHING keyword cancels the association between the des1gnated segment
register and any segment or group name.

ASSUME NOTHING removes assoc1at10ns between all segment registers and segment
or group names.

You can use the ASSUME directive whenever you modify a segment register, or at the
start of a procedure to specify the assumptions at that point. In practice, ASSUMEs are
usually used at the beginning of a module and occasionally within it. If you use the
MODEL statement, Turbo Assembler automatically sets up the initial ASSUMEs for
you.

If you don't specify a segment in an ASSUME directive, itst ASSUMEd value is not
changed.

For example, the following code shows how you can load the current initialized far data
segment into the DS register, access memory in that segment, and restore the DS register
to the data segment value. ‘

MOV AX, @fardata

MOV DS, AX

ASSUME DS:@fardata

MOV BX,<far_data_variable>
MOV AX,@data

MOV DS, AX

ASSUME DS:@data

Segment ordering

The linker arranges and locates all segments defined in a program’s modules. Generally,
the linker starts with the order in which it encounters the segments in a program'’s :
modules. You can alter this order using mechanisms such as segment combination and
segment classing.

There are other ways to affect the way the linker arranges segments in the final
program. For example, the order in which segments appear in a module’s source canbe
changed. There are also directives that affect segment ordering. Descriptions of these
follow

Changing a module’s segment ordering
The order of segments in each module determines the starting point for the linker’s

- location of segments in the program. In MASM 1.0, 2.0, and 3.0, segments were passed
to the linker in alphabetical order. Turbo Assembler provides directives (in MASM
mode only) that let you reproduce this behavior.

Note that these directives have the same function as the /A and s command line
switches. See Chapter 2 for further details.

92 Turbo Assembler User’s Guide

Note

The .ALPHA directive

The .ALPHA directive specifies alphabetic segment ordering. This directive tells Turbo
Assembler to place segments in the object file in alphabetical order (according to the
segment name). Its syntax is

.ALPHA

The .SEQ directive

The .SEQ directive specifies sequential segment ordering, and tells Turbo Assembler to
place segments in the object file in the order in which they were encountered in the
source file. Since this is the default behavior of the assembler, you should usually use
the .SEQ directive only to override a previous .ALPHA or a command line switch.
Here’s the syntax of .SEQ:

.SEQ

DOS ordering of segments: the DOSSEG directive

Normally, the linker arranges segments in the sequential order it encounters them -
during the generation of the program. When you include a DOSSEG directive in any
module in a program, it instructs the linker to use standard DOS segment ordering
instead. The linker defines this convention to mean the following arrangement of
segments in the final program:

¢ segments having the class name CODE (typically code segments)
* segments that do not have class name CODE and are not part of DGROUP
* segments that are part of DGROUP in the following order:

1 segments not of class BSS or STACK (typically initialized data)

2 segments of class BSS (typically uninitialized data)

3 segments of class STACK (stack space)

The segments within DGROUP are located in the order in Wthh they were defmed in
the source modules.

DOSSEG is included in TASM for backward compatibility only. It is recommended that
you do not use the DOSSEG directive in new assembly programs. In addition, do not
use the DOSSEG directive if you're interfacing assembly programs with C programs.

Changing the size of the stack

A procedure’s prolog and epilog code manipulates registers that point into the stack. On
the 80386 or 80486 processor, the stack segment can be either 16 bits or 32 bits. Turbo
Assembler therefore must know the correct size of the stack before it can generate
correct prolog and epilog code for a procedure.

The stack size is automanca]ly selected if you selected a standard model using the
MODEL statement.

Chapter 7, Using program models and segmentation 93

Turbo Assembler provides directives that can set or override the default stack size for
procedure prolog and epilog generation. The following table lists these directives.

Table 7.10 Stack size modification directives

s é?;ﬁ‘% i s sy

SMALLSTACK Indicates that the stack is 16 bit
LARGESTACK Indicates that the stack is 32 bit

s

94 Turbo Assembler User’s Guide

Chapter

Defining data types

Defining data types symbolically helps you write modular code. You can easily change
or extend data structures without having to rewrite code by separating the definition of
a data type from the code that uses it, and allowing symbolic access to the data type and
its components.

Turbo Assembler supports as many or more symbolic data types than most high-level
languages. This chapter describes how to define various kinds of data types.

Defining enumerated data types

Warning!

An enumerated data type represents a collection of values that can be stored in a certain
number of bits. The maximum value stored determines the actual number of bits
required.

Here is the Ideal mode syntax for declaring an enumerated data type:
ENUM name [enum_var [,enun_var...]]
You can use the following syntax in MASM mode:
name ENUM (enum_var [,enum_var...]]
The syntax of each enum_var is:
. var_name [=value]

Turbo Assembler will assign a value equal to that of the last variable in the list plus one
if value isn’t present when you assign the specified value to the variable var_name.

" Values can’t be relative or forward referenced. Variables that ENUM created are

redefinable numeric variables of global scope.

If you use the same variable name in two enumerated data types, the first value of the
variable will be lost, and errors could result.

Chapter 8, Defining data types 95

name is the name of the ENUM data type. You can use it later in the module to obtain a
variety of information about the values assigned to the variables detailed. See Chapter 5
for information about using enumeration data type names in Turbo Assembler
expressions.

Note You can also use enumerated data type names to create variables and allocate memory:
See Chapter 12 for details.

Enumerated data types are redefinable. You can define the same name as an
enumerated data type more than once in a module.

Turbo Assembler provides a multiline syntax for enumerated data type definitions
requiring a large number of variables. The symbol { starts the multiline definition, and
the symbol } stops it. .

- The Ideal mode syntax follows:

ENUM name [enum_var [,enum_var...]] {
[enum_var [, enum_var]...]
[enum var [,enum Var] N

You can use the following syntax in MASM mode:
name ENUM [enum_var [,enum_var...]] {
[enum_var [,enum_var]...]
}enum_var [,enum_var]...] }

For example, all of the following enumerated data type definitions are equivalent:
foo ENUM f1,f2,£3,f4 ;Original version

foo ENUM { ;Multiline version
f1
£2
3
f4
}

foo ENUM f1,f2,{ , iMore compact multiliﬁe version
£3,£4})

Note Turbo Assembler doesn’t recognize any pseudo ops inside the multiline enumerated
* data type definition.

Defining bit-field records

A record data type represents a collection of bit fields. Each bit field has a specific width
(in bits) and an initial value. The record data type width is the sum of the widths of all
the fields.

- You can use record data types to compress data into a form that’s as compact as
possible. For example, you can represent a group of 16 flags (which can be either ON or

96 Turbo Assembler User's Guide

OFF) as 16 individual bytes, 16 individual words, or as a record containing 16 1-bit fields
(the efficient method).

Here’s the Ideal mode syntax for declaring a record data type:
RECORD name [rec_field [,rec_field...]]

The MASM mode syntax is:
name RECORD [rec_field [,rec_field...]]

Each rec_field has the following syntax:
field_name : width_expression [=value]

field_name is the name of a record field. Turbo Assembler will allocate a bit field of the
width width_expression for it. value describes the initial value of the field (the default
value used when an instance of the record is created). Values and width expressions
can’t be relative or forward referenced. Record field names are global in scope and can’t
be redefined.

name is the name of the record data type. You can use it later in the module to obtain a
variety of information about the record data type. You can also use the names of
individual record fields to obtain information. See Chapter 5 for details about how to
obtain information from record data type names and record field names using Turbo
Assembler expressions.

You can redefine record data types, and define the same name as a record data type
more than once in a module.

“Note You can also use record data type names to create variables and allocate memory. See
Chapter 12 for details.

Turbo Assembler provides special support for record fields that represent flags and
enumerated data types. Additional and extended instructions provide efficient access to
record fields. Chapter 13 describes this concept further.

For record data type definitions requiring a large number of fields, Turbo Assembler
provides a multiline syntax similar to that for enumerated data types.

For example, all of the following record data type definitions are equivalent:
foo RECORD f£1:1,f2:2,£3:3,f4:4 ;0riginal version

foo RECORD { ;Multiline version
f1:1
£2:2
£3:3
f4:4
}

foo RECORD £1:1,£2:2,{ ;More compact multiline version
£3:3,£4:4}

Note Turbo Assembler does not recognize any pseudo ops m51de the multiline record data
type definition.

Chapter 8, Defining data types 97

Deﬂmng structures and unions

Structures and unions let you mix and match various types. A structure in Turbo
Assembler is a data type that contains one or more data elements called members.

Structures differ from records because structure members are always an integral

number of bytes, while records describe the breakdown of bit fields within bytes.
‘The size of a structure is the combined size of all data elements within it.

Unions are similar to structures, except that all of the members in a union occupy the
same memory. The size of a union is the size of its largest member. Unions are useful
when a block of memory must represent one of several distinct possibilities, each W1th
different data storage requirements.

Turbo Assembler lets you fully nest structures and unions within one another but this
can become complicated. For example, you could have a structure member that is really
a union. A union could also have a full structure as each member. -

Opening a structure or union definition

Use the following Ideal mode syntaxes to open a structure or unidn data type definition:
~ STRUC name » or UNION name
You can use the following MASM mode syntaxes to do the same thing:
name STRUC or name UNION
name is the name of the structure or union data type.

Turbo Assembler considers all data or code emitted between the time a structure or
union data type definition is opened and the time a corresponding ENDS directive is
encountered to be part of that structure or union data type.

Turbo Assembler treats structure and union data type names as global but redefinable.
" You can define the same name as a structure or union data type more than oncein a
module. '

Specifying structure and union members

Turbo Assembler includes data one line at a time in structures or unions. To allocate
data and create members in a structure or union definition, use the same directives as
those for allocating data and creating labels in an open segment. For example,

memberl DW 1

is equally validina segment or in a structure definition. Ina segment, this statement
means “reserve a word of value 1, whose name is member1.” In a structure or union
definition, this statement means “reserve a word of initial value 1, whose member name
is member1.” ‘ ’

You can use the initial value for a structure member if an instance of the structure or
union is allocated in a segment or a structure. If you don’t intend to allocate structure

98 Turbo Assemblier User’s Guide

instances this way, the initial value of the structure member is not important. You can
use the data value ? (the uninitialized data symbol) to indicate this.

Turbo Assembler allows all methods of allocating data with a structure definition,
including instances of other structures, unions, records, enumerated data types, tables,
and objects. For more information on how to allocate data, see Chapter 12.

MASM and Ideal modes treat structure member names differently. In MASM mode,
structure member names are global and can’t be redefined. In Ideal mode, structure
member names are considered local to a structure or union data type.

Defining structure member labels with LABEL

The LABEL directive lets you create structure members without allocating data.

- Normally, the LABEL directive establishes a named label or marker at the point it’s
encountered in a segment. LABEL directives found inside structure definitions define
members of the structure. Here’s the syntax of the LABEL directive:

LABEL name complex_type
In MASM mode only, you can use the following syntax:
name LABEL complex_type

name is the name of the structure member. type is the desired type for the structure
member. It can be any legal type name. See Chapter 5 for a description of the avaﬂable
type specifiers.

Aligning structure members
You can use the ALIGN directive within structure definitions to align structures
members on appropriate boundaries. For example,

ALIGN 4 ;DWORD alignment
member dd ? ;member will be DWORD aligned

- Closing a structure or union definition

You must close the structure or union definition after you define all structure or union
members. Use the ENDS directive to do this.

ENDS has the following syntax in Ideal mode:

ENDS [name]
In MASM mode, you can use the following syntax:
name ENDS

name, if present, is the name of the currently open structure or union data type
definition. If name is not present, the currently open structure or union will be closed.

You can also use the ENDS directive to close segments. This is not a conflict, because
you can’t open a segment inside a structure or union definition.

Chapter 8, Defining data types 99

Nesting structures and unions

Turbo Assembler lets you nest the STRUC, UNION, and ENDS directives inside open
structure and union data type definitions to control the offsets ass1gned to structure
members.

In a structure, each data element begins where the previous one ended. In a union, each
data element begins at the same offset as the previous data element. Allowing a single
data element to consist of an entire union or structure provides enormous flexibility and
power. The following table contains descriptions of STRUC, UNION, and ENDS.

Table 8.1 STRUC UNION, and ENDS dlrectlves

- STRUC Used inside an open structure or union, this directive begins a block of elements that
the enclosing structure or union considers a single member. The members in the block
are assigned offsets in ascending order. The size of the block is the' sum of the sizes of
all of the members in it.

UNION * Used inside an open structure or union, this begins a block of members that the
enclosing structure or union considers a single unit. The members in the block are all
assigned the same offset. The size of the block is the'size of the largest member in it.

ENDS Terminates a block of members started with a previous STRUC or UNION directive.

For example, the composite has five members in the following structure/union data

definition:
CUNION "~ STRUC
CTYPE DB ?
UNION ;Start of union
;If CTYPE=0, use this...
.) STRUC
CTOPARL . DW 1
CTOPAR2 DB 2
ENDS
;If CTYPE=1, use this...
STRUC
CT1PAR1 DB 3
CT1PAR2 _ DD 4
ENDS
ENDS ;End of union
- ENDS ;End of structure data type

The following table lists these members.

100 Turbo Assembler User's Guide

Table8.2 Block members

yte
CTOPAR1 Word 1 1
CTOPAR2 Byte 3 2
CT1PAR1 Byte 1 3
CT1IPAR2 Dword 2 4

The length of this structure /union is 6 bytes.

Including one named structure within another

Turbo Assembler provides a way of incorporating an entire existing structure or union
data type, including member names, into an open structure definition to assist in the
inheritance of objects. It treats the incorporated structure or union as if it were nested
inside the open structure or union definition at that point. In this way, incorporating a
structure or union into another is intrinsically different from including an instance of a
structure or union in another; an instance includes only initialized or uninitialized data,
while incorporation includes data, structure, and member names.

" Here’s the Ideal mode syntax:
STRUC struc_name fill_parameters
You can use the following syntax in MASM mode:
struc_name STRUC fill_parameters

Use a statement of this form only inside a structure or union definition. struc_name is the
name of the previously defined structure or union that is to be included. fill_parameters
represents the changes you want to make to the initial (default) values of the included
structure’s members. A ? keyword indicates that all of the incorporated structure’s
members should be considered uninitialized. Otherwise, the syntax for the
fill_parameters field is:

{ [member_name [=expression] [,member_name [=expression] ...1] }

member_name is the name of any member of the included structure whose initial value
should be changed when it’s included. expression is the value you want to change it to. If
you have expression, then the initial value for that member of the structure will be
unchanged when it is included. If you specify a ? keyword for the expression field, that
member’s initial value will be recorded as uninitialized when it’s included.

Since structure member names are global in MASM mode, they are not redefined when
you copy a structure. Thus, including a structure within another is most useful in
MASM mode when you do it at the beginning of the structure or union you're defining.

Usually, when you create an instance of a union, you would have to make sure that only

- one of the union’s members contains initialized data. (See Chapter 12 for details.) Since
incorporating a structure in another does not involve creating an instance, this
restriction does not apply. More than one member of an included union can contain
initialized data. For example,

Chapter 8, Defining data types - 101

FOO STRUC

ABC DW 1
DEF ~ DW2
UNION
Al . DB '123'
A2 ~ DW ?
ENDS
ENDS
FO02 STRUC

FOO STRUC {Al=2} - ;Incofporates struc FOO into struc FO02, with override
;Note that both Al and A2 are initialized by
;default in FOO2!

GHI DB 3
ENDS

The definition of structure FOO2 in the prev1ous example is equ1valent to the followmg
‘nested structure/union:

FO02 STRUC
STRUC ;Beginning of nested structure...
ABC DW 1
DEF DW 2 .
UNION ;Beginning of doubly nested union...
. Al DB '123'
A2 DW 2)
ENDS ;End of doubly nested union:..
ENDS ;End of nested structure...
GHI DB 3
‘ ENDS

Note that when an instance of the structure FOO2 is made, be sure that only one value

. in the union is initialized.

Using structure names in expressions

Once you define a structure or union, information about the structure or union is
available in many ways. You can use both the structure or union data type name and a
structure member name to obtain information using Turbo Assembler expressions. See
Chapter 5 for further information. '

Defining tables

A table data type represents a collection of table members. Each member has a specific
size (in bytes) and an initial value. A table member can be either virfual or static. A virtual
member of a table is assigned an offset within the table data type; space is reserved for it
in any instance of the table. A static member does not have an offset; space isn't reserved
for it in an instance of the table.

The size of the table data type as a whole is the sum of the sizes of all of the virtual
‘members.

102 Turbo Assembler User’s Guide

Note

Table data types represent method tables, used in object-oriented programming. An
object usually has a number of methods associated with it, which are pointers to
procedures that manipulate instances of the object. Method procedures can either be
called directly (static methods) or indirectly, using a table of method procedure pointers
(virtual methods).

You can use the following Ideal mode syntax for declaring a table data type:
TABLE name [table_member [,table_member...]]

The following syntax works only in MASM mode:
name TABLE [table_member [,table_member...]]

Here’s the syntax of each table_member field:
table_name

or

[VIRTUAL] member_name [[countl_expression]]
[: complex_type [:count2_expression]] [= expression]

table_name is the name of an existing table data type whose members are incorporated
entirely in the table you define. Use this syntax wherever you want inheritance to occur.

member_name is the name of the table member. The optional VIRTUAL keyword
indicates that the member is virtual and should be assigned to a table offset.

complex_type can be any legal complex type expression. See Chapter 5 for a detailed
description of the valid type expressions.

If you don't specify a complex_type field, Turbo Assembler assumes it to be WORD
(DWORD is assumed if the currently selected model is a 32-bit model).

count2_expression specifies how many items of this type the table member defines. A
table member definition of

foo TABLE VIRTUAL tmp:DWORD:4
defines a table member called tmp, consisting of four doublewords.

The default value for count2_expression is 1 if you don’t specify it. count_expression

is an array element size multiplier. The total space reserved for the member is
count2_expression times the length specified by the memtype field, times
count1_expression. The default value for count1_expression is also 1 if you don’t specify
one. count1._expression multiplied by count2_expression specifies the total count of the
table member.

Table member names are local to a table in Ideal mode, but are global in scope in MASM
mode.

name is the name of the table data type. You can use it later in the module to get a variety
of information about the table data type. You can also use the names of individual table
members to obtain information. See Chapter 5 for further information.

Table data types are redefinable. You can define the same name as a table data type
more than once in a module. » :

Chapter 8, Defining data. types 103

You can also use table data type names to create variables and allocate memory. See
Chapter 12 for details.

Alternatively, Turbo Assembler provides a multiline syntax for table data type
definitions requiring a large number of members. This syntax is sumlar to that of
enumerated data type definitions. Here’s an example:

foo TABLE tl:WORD,tZ:WORD,t3:WORD,t4:WORD ;Orlglnal version

foo TABLE { . ;Multiline version
t1:WORD
t2 :WORD
£3:WORD
t4 :WORD
}

foo TABLE t1:WORD,t2:WORD, { ;More compact multiline version
t3:WORD, t4:WORD} ’

Overriding table members

If you declare two or more members of the same name as part of the same table data
type, Turbo Assembler will check to be sure that their types and sizes agree. If they
don't, it will generate an error. Turbo Assembler will use the last initial value occurring
in the table definition for the member. In this way, you can override the initial value of a
table after it is incorporated into another. For example,

FOO ~ TABLE VIRTUAL MEM1:WORD=MEM1PROC, VIRTUAL MEMZ:WORD:MEM2PROC
FO02 TABLE FOO, VIRTUAL MEM1 : WORD=MEM3 PROC ;Overrides inherited ;MEML

Defining a named type

Named types represent sunple or complex types. You can use the TYPEDEEF directive to
define named types. Here's the Ideal mode syntax:

) TYPEDEF type_name complex_type
The MASM mode syntax is:
type_name TYPEDEF -complex_type

complex_type describes any type or multiple levels of pointer indirection. See Chapter 5
for further information about complex types. type_name is the name of the specified

type.

. When you use a named type in an expression, it functions as if it werea simple type of
the appropriate size. For example,

MOV ‘ax,word ptr [bx] ;Simple statement;
foo TYPEDEF near ptr byte ;P00 is basically a word
MOV ax, foo ptr [bx] ;80 this works too

104 Turbo Assembler User’s Guide

Defining a procedure type

Note

For Turbo Assembler version 3.2 or higher, you can use a user-defined data type (called
a procedure type) to describe the arguments and calling conventions of a procedure.
Turbo Assembler treats procedure types like any other types; you can use it wherever

~ types are allowed. Note that since procedure types don't allocate data, you can't create

an instance of a procedure type.

Use the PROCTYPE directive to create a procedure type. Here is the Ideal mode syntax:
PROCTYPE name [procedure_description]

The MASM mode syntax is:
name PROCTYPE [procedure_description]

procedure_description is similar to the language and argument specification for the PROC
directive. Its syntax is:

[[language_modifier] language] [distance] [argument_list]

specify language_modifier, language, and distance exactly the same way you would for the
corresponding fields in the PROC directive. For more information about the PROC
directive, see Chapter 10.

Use the following form for argument_list:
argument [,argument] ...
An individual argument has the following syntax:
[argname] [[countl_expression]]:complex_type {:count2_expression]

complex_type is the data type of the argument. It can be either a simple type or a pointer
expression.

See Chapter 5 for a discussion of the syntax of complex types.

count2_expression speéifies how many items of this type the argument defines. Its default
value is 1, except for BYTE arguments. Those arguments have a default count of 2, since
you can’t PUSH a byte value onto the 80x86 stack.

In procedure types whose calling convention permits variable-length arguments (like
C), count2_expression (for the last argument) can be the special keyword ?, which
indicates that the procedure caller will determine the size of the array. The type
UNKNOWN also indicates a variable-length parameter.

The name of each argument is optional, but complex_type is required because procedure
types are used mainly for type checking purposes. The names of the arguments don't
have to agree, but the types must.

Deflmng an object

X
@@

An object consists of both a data structure and a list of methods that correspond to the
object. Turbo Assembler uses a structure data type to represent the data structure

Chapter 8, Defining data types 105

assoc1ated with an object, and a table data type to represent the list of methods
associated with an object.

An extension to the STRUC dlrectlve lets you define ob]ects The Ideal mode syntax
follows: :

STRUC name [modifiers] [parent_name] [METHOD
 [table_member [table_member...]]]

structure_members ‘

ENDS [name]

You can use the following syntax in MASM mode:

name STRUC [modifiers] [parent_name] [METHOD
(table_member -1 [,table_member...]]]

structure_members

[name] ENDS”

name is the name of the object. parent_name is the optional name of the parent object.
(Turbo Assembler explicitly supports only single inheritance.) The parent object’s
structure data will automatically be included in the new object’s structure data, and the
parent object’s table of methods will be included in the new object’s table of methods as
well.

Each table_member field describes a method name and method procedure associated
with the object. The syntax of a table_member field is exactly the same as in a table
definition.

 structure_members describe any additional structure members you want within the
object’s data structure. These are formatted exactly the same as in an open structure
definition.

- The optional modifiers field can be one or more of the following keywords:

Table 8.3 Available modifiers

-
Causes the address of the virtual me tab e (any) to e pubhshed globa]ly

Forces the virtual table pointer (if any) to be an offset quantity, either 16 or 32 bits,
depending on whether the current model is USE16 or USE32.

'FAR Forces the virtual table pointer (if any) to be a segment and offset quantity, either 32 or
48 bits, depending on whether the current model is USE16 or USE32.

The size of the virtual table pointer (if any) depends on whether data in the current
model is addressed as NEAR or FAR if you don’t specify a modifier.

The TBLPTR directive

Inherent in the idea of objects is the concept of the virtual method table. An instance of

this table exists once for any object having virtual methods. The data structure for any

object having virtual methods also must contain a pointer to the virtual method table for
_ that object. Turbo Assembler automatically provides a virtual method table pointer in

106 Turbo Assembler User's Guide

an object’s data structure (if required) and if you don’t specify it explicitly using the
TBLPTR directive.

You should use the TBLPTR directive within an object data structure definition.
TBLPTR lets you explicitly locate the virtual table pointer wherever you want. Here’s
its syntax:

TBLPTR

The size of the pointer that TBLPTR reserves is determined by whether the current
model is USE16 or USE32, and what modifiers you used in the object definition.

Symbols defined by the extended STRUC directive

The extended STRUC directive defines or uses several symbols, which reflect the object
being defined. The following table shows these symbols.

Table8.4 Symbols used or defined b STRUC

@Object A text macro containing the name of the current object
@Table_<object_name> A table data type containing the object’s method table
@Tableaddr_<object_name> A label describing the address of the object’s virtual method table

Chapter 8, Defining data types 107

108 Turbo Assemblier User’s Guide

Chapter

Setting and using the
location counter

The location counter keeps track of the current address as your source files assemble.
This lets you know where you are at any time during assembly of your program. Turbo
Assembler supplies directives that let you manipulate the location counter to move it to
a desired address. :

Labels are the names used for refefring to addresses within a program. Labels are
assigned the value of the location counter at the time they are defined. Labels let you
give names to memory variables and the locations of particular instructions.

This chapter discusses the available directives for manipulating the location counter,
and declaring labels at the current location counter.

The $ location counter symbol

The predefined symbol $ represents the current location counter. The location counter
consists of two parts: a segment, and an offset. The location counter is the current offset
within the current segment during assembly.

The location counter is an address that is incremented to reflect the current address as
each statement in the source file is assembled. As an example,

helpMessage DB 'This is help for the program.'
helpLength = $ - helpMessage

Once these two lines are assembled, the symbol helpLength will equal the length of the
help message. ‘ '

Chapter 9, Setting and using the location counter 109

Location counter directives

Turbo Assembler pfovides several directives for setﬁng the location counter. The next -
few sections describe these directives. Note that all of these directives work in both
- MASM and Ideal modes. '

The ORG directive

You can use the ORG directive to set the location counter in the current segment. ORG
has the following syntax: :

ORG expression

expression can’t contain any forward-referenced symbol names. It can either be a .
constant or an offset from a symbol in the current segment or from the current location
counter.

You can back up the location counter before data or code that has already been emitted
into a segment. You can use this to go back and fill in table entries whose values weren’t
‘known at the time the table was defined. Be careful when using this technique; you
might accidentally overwrite something you didn’t intend to.

You can use the ORG directive to connect a label with a specific absolute address. The
ORG directive can also set the starting location for .COM files. Here’s an example of
how to use ORG:

. ThlS program shows how to create a. structure and macro for

; declaring instances of the structure, that allows additional
elements to be added to.the linked list without regard to
other structures already declared in the list. If the macro
is invoked in a section of code that is between two other
instances of the structure, the new structure will automatically
be inserted in the linked list at that point without your
needing to know the names of the previous or next -
structure variables. Similarly, using the macro
at the end of the program easily adds new structures to the
; linked list without regard for the name of the previous
; element.
; The macro also maintains varlables that point to the flrst
; and last elements of the linked list.

ideal

p386

model OS_NT flat
codeseg

struc a-
prev dd 0
next dd 0
- info db 100 dup (0)
ends - a

__last_a_name equ <>

110 ‘Turbo‘Assemblér User's Guide

; Maintain the offsets of the head and tail of the list.
__list_a head dd 0
__list_a_tail dd 0

macro makea name:reg,args
ifidni __last_a_name,<>

; There is no‘previous item of this type.
name a <0,0,args>

; Setup the head and tail pointers

org __list_a_head
dd name
org __list_a_tail
dd name

; Return to the offset after the structure element
org name+size a

__last_a_name equ name

else
; Declare it, with previous pointing to previous
; item of structure a.

name a <__last_a_name, 0,args>

; Make the next pointer of the previous structure
; point to this structure. "

org __last_a_name.next

dd name

; Setup the tail pointer for the new member
org __list_a_tail
dd name

; Go back to location after the current structure
org name+size a

; Set up an equate to remember the name of the
; structure just declared

__last_a_name equ name

endif

endm

“ makea first

; Miscellaneous other data
db 5 dup (0)

makea second

; More miscellaneous data
db 56 dup (0)

; Give a string to put in the info element of this structure
makea third,<'Hello'>

end

Chapter 9, Setting and using the location counter

111

The EVEN and EVENDATA directives

_ You can use the EVEN directive to round up the location counter to the next even
address. EVEN lets you align code for efficient access by processors that use a 16-bit
data bus. It does not improve performance for processors that have an 8-bit data bus.

EVENDATA aligns evenly by advancing the location counter without emitting data,
which is useful for uninitialized segments. Both EVEN and EVENDATA will cause
Turbo Assembler to generate a warning message if the current segment’s alignment
isn’t strict enough.

If the location counter is odd when an EVEN directive appears, Turbo Assembler places
a single byte of a NOP instruction in the segment to make the location counter even. By
padding with a NOP, EVEN can be used in code segments without causing erroneous
instructions to be executed at run time. This directive has no effect if the location is
already even. '

Note In code segments, NOPs are emitted. In data segments, zeros are emitted.

Similarly, if the location counter is odd when an EVENDATA directive appears, Turbo
Assembler emits an uninitialized byte. '

An example of using the EVEN directive follows:

EVEN
@@A: lodsb
Xor bl,al ;align for efficient access
loop @ep
Here’s an example of using the EVENDATA directive:
EVENDATA ’ : .
VAR1 DWW 0 ;align for efficient 8086 access

The ALIGN directive

You'll use the ALIGN directive to round up the location counter to a power-of-two
address. ALIGN has the following syntax:

ALIGN boundary
boundary must be a power of two.

Turbo Assembler inserts NOP instructions into the segment to bring the location
counter up to the desired address if the location counter is not already at an offset that is
a multiple of boundary. This directive has no effect if the location counter is already at a
multiple of boundary. \

You can't reliably ahgn toa boundary that’s more strict than the segment alignment in
which ALIGN appears. The segment’s ahgnment is specified when the segment is first
started with the SEGMENT directive.

For example, if you've defined a segment with
CODE SEGMENT PARA PUBLIC

112 Turbo Assembler User’'s Guide

you can then say ALIGN 16 (same as PARA) but not ALIGN 32, since that’s more strict
than the alignment that PARA indicated in the SEGMENT directive. ALIGN generates
a warning if the segment alignment isn’t strict enough.

The following example shows how you can use the ALIGN directive:

ALIGN 4 ;align to DWORD boundary for 386
BigNum DD 12345678

Defining labels

Labels let you assign values to symbols. There are three ways of defining labels:

® using the : operator
¢ using the LABEL directive
¢ using the :: operator (from MASM 5.1)

The : operator
The : operator defines a near code label, and has the syntax

name:

where name is a symbol that you haven't previously defined in the source file. You can
place anear code label on a line by itself or at the start of a line before an instruction. You
usually would use a near code label as the destination of a JMP or CALL instruction
from within the same segment.

The code label will only be accessible from within the current source file unless you use
the PUBLIC directive to make it accessible from other source files.

This directive functions the same as using the LABEL directive to define a NEAR label;
for example, A: is the same as A LABEL NEAR. For example,

A:
is the same as
A LABEL NEAR

Here’s an example of using the : operator.

jne A ;skip following function
inc si
A: ;jne goes here

The LABEL directive

You'll use the LABEL directive to define a symbol with a specified type. Note that the
syntax is different for Ideal and MASM modes. In Ideal mode, specify

LABEL name complex_type
In MASM mode, use the following:

Chapter 9, Setting and using the location counter 113

name LABEL complex_type

name is a symbol that you haven’t previously defined in the source file. complex_type
describes the size of the symbol and whether it refers to code or data. See Chapter 5 for
further information about complex types.

The label is only accessible from within the current source fﬂe, unless you use PUBLIC
to make it accessible from other source files.

You can use LABEL to access different-sized items than those in the data structure; the
following example illustrates this concept.

WORDS LABEL WORD ;access "BYTES" as WORDS
BYTES DB 64 DUP (0)
mov WORDS[2],1 ;write WORD of 1

The :: directive

The :: directive lets you define labels with a scope beyond the procedure you're in. This
differs from the : directive in that labels defined with : have a scope of only within the
current procedure. Note that :: is different from : only when you specify a language in
the MODEL statement.

Note ~The :: directive only works when ybu’re using MASM 51.

114" Turbo Assembler User's ‘Guide

Chapter

Declaring procedures

. Turbo Assembler lets you declare procedures in many ways. This chapter discusses
NEAR and FAR procedures, declaring procedure languages using arguments and
variables in procedures, preserving registers, nesting procedures, declaring method
procedures for objects, and declaring procedure prototypes. You can find more
information about how to call language procedures in Chapter 13.

Procedure definition syntax

You can use the PROC directive to declare procedures. Here’s its Ideal mode syntax:

PROC name [[language modifier] language] [distance]
[ARG argument_list] [RETURNS item_list]

[LOCAL argument_list] ‘

[USES item_list]

ENDE‘> [name] ’
Use the following syntax in MASM mode:

name PROC [[language modifier] language] [distance]
[ARG .argument_list]. [RETURNS item_list]

[LOCAL argument_list]

[USES item Iist]

[name] ENDP

Turbo Assembler also accepts MASM syntax for defining procedures. For more -
information on MASM syntax, see Chapter 3.

It you're using Turbo Assembler version T310 or earlier, use the following Ideal mode
syntax:

Chapter 10, Declaring pro'cedures 115

" PROC [[language modifier] language] name [distance]
[ARG argument_list] [RETURNS item_list]
[LOCAL argument_list] \
[USES item_list]

ENDP

Note Unless you specify version T310 or earlier, the Ideal mode syntax is no longer allowed in
MASM mode.

Note that the only difference between the older versions of Turbo Assembler and the
later versions is that language and language_modifier have been moved to follow the’
procedure name to facilitate consistent functlon prototyping..

Declaring NEAR or FAR procedures

NEAR procedures are called with a near call, and contain a near return; you must call
them only from within the same segment in which they’re defined. A near call pushes
the return address onto the stack, and sets the instruction pointer (IP) to the offset of the
procedure. Since the code segment (CS) is not changed, the procedure must be in the
same segment as the caller. When the processor encounters a near return, it pops the
return address from the stack and sets IP to it; again, the code segment is not changed.

FAR procedures are called with a far call and contain far returns. You can call FAR
procedures from outside the segment in which they’re defined. A far call pushes the
return address onto the stack as a segment and offset, and then sets CS:IP to the address
of the procedure. When the processor encounters a far return, it pops the segment and
offset of the return address from the stack and sets CS:IP to it.

The currently selected model determines the default distance of a procedure. For tiny,
small, and compact models, the default procedure distance is NEAR. For all other
models, FAR is the default. If you don’t use the simplified segmentation directives, the
default procedure distance is always NEAR. Note that you can specify NEAR or FAR as
an argument to the MODEL statement. See Chapter 7 for more information.

You can override the default distance of a procedure by specifying the desired distance
in the procedure definition. To do this, use the NEAR or FAR keywords. These
keywords override the default procedure distance, but only for the current procedure.
For example,

MODEL TINY ;default distance near

;testl is a far procedure
testl PROC. FAR

;body of procedure

RET ;this will be a far return
ENDP

116 Turbo Assembler User's Guide

;test2 is by default a near procedure

test2 PROC
1body of procedure
RET ;this will be a near return

ENDP

The same RET mnemonic is used in both NEAR and FAR procedures; Turbo Assembler
uses the distance of the procedure to determine whether a near or far return is required.
Similarly, Turbo Assembler uses the procedure distance to determine whether a near or
far call is required to reference the procedure:

CALL testl;this is a far call
CALL test2;this is a near call

When you make a call to a forward referenced procedure, Turbo Assembler might have
to make multiple passes to determine the distance of the procedure. For example,

testl PROC NEAR
MOV ax, 10
CALL test2
RET

testl ENDP

test2 PROC FAR
ADD ax,ax

© RET

test2 ENDP

When Turbo Assembler reaches the “call test2” instruction during the first pass, it has
not yet encountered test2, and therefore doesn’t know the distance. It assumes a
distance of NEAR, and presumes it can use a near call.

When it discovers that test2 is in fact a FAR procedure, Turbo Assembler determines
that it needs a second pass to correctly generate the call. If you enable multiple passes
(with the /m command-line switch), a second pass will be made. If you don’t enable
multiple passes, Turbo Assembler will report a “forward reference needs override”
error.

You can specify the distance of forward referenced procedures as NEAR PTR or FAR
PTR in the call to avoid this situation (and to reduce the number of passes).

testl PROC NEAR
MOV ax, 10 .
CALL FAR PTR test2 '
RET

testl ENDP

The previous example tells Turbo Assembler to use a far call, so that multiple assembler
passes aren’t necessary.

Chapter 10, Declaring procedures 117

Declaring a procedure language

~ You can easily define procedures that use high-level language interfacing conventions
in Turbo Assembler. Interfacing conventions are supported for the NOLANGUAGE
(Assembler), BASIC, FORTRAN, PROLOG C, CPP (C++), SYSCALL, STDCALL, and
PASCAL languages.

Turbo Assembler does all the work of generatmg the correct prolog (procedure entry)
‘and epilog (procedure exit) code necessary to adhere to the specified language
convention.

You can spec1fy a default language as a parameter of the MODEL directive. See
" Chapter 7 for further details. If a default language is present, all procedures that don’t
otherwise spec1fy a language use the conventions of the default language.

To override the default language for an individual procedure, include the language
name in the procedure definition. You can specify a procedure language by including a
language identifier keyword in its declaration. For example, a definition in MASM
mode for-a PASCAL procedure would be ,

pascalproc PROC PASCAL FAR
~ jprocedure body ‘
pascalproc ENDP

Turbo Assembler uses the language of the procedure to determine what prolog and
epilog code is automatically included in the procedure’s body. The prolog code sets up
the stack frame for passed arguments and local variables in the procedure; the epilog
code restores the stack frame before returning from the procedure.

Turbo Assembler automatically inserts prolog code into the procedure before the first
instruction of the procedure, or before the first “label:” tag.

Prolog code does the following:

* Saves the current BP on the stack.

e Sets BP to the current stack pointer.

* Adjusts the stack pointer to allocate local variables.
* Saves the registers spec1f1ed by USES on the stack.

Turbo Assembler automatically inserts epilog code into the procedure at each RET
instruction in the procedure (if there are multiple RETSs, the epilog code will be inserted

. multiple times). Turbo Assembler also inserts epllog code before any object-oriented
method jump (see Chapter 4).

Epilog code reverses the effects of prolog code in the fo]lowmg ways:
* Pops the registers specified by USES off the stack.

. Adjusts the stack pointer to discard local arguments.

* Pops the stored BP off the stack.

* Adjusts the stack to dlscard passed arguments (if the language requires it) and
returns. :

118 Turbo Assembler User's Guide

Note

The last part of the epilog code, discarding passed arguments, is performed only for
those languages requiring the procedure to discard arguments (for example, BASIC,
FORTRAN, PASCAL). The convention for other languages (C, C++, PROLOG) is to
leave the arguments on the stack and let the caller discard them. SYSCALL behaves like
C++. For the STDCALL language specification, C++ calling conventions are used if the
procedure has variable arguments. Otherwise, PASCAL calling conventions are used.

Turbo Assembler always implements the prolog and epilog code using the most

- efficient instructions for the language and the current processor selected.

Turbo Assembler doesn’t generate prolog or epilog code for NOLANGUAGE
procedures. If such procedures expect arguments on the stack, you must spec1ﬁcally
include the prolog and epilog code yourself.

In general, the language of a procedure affects the procedure in the manner shown in
the following figure.

Figure 10.1 How language affects procedures

Language: | None | Basic |Fortran | Pascal C CPP | Prolog
Argument L-R L-R L-R L-R R-L R-L R-L
ordering
(left-to-right,
right-to-left)

Who cleansf PROC | PROC | PROC | PROC |CALLER|CALLER|CALLER
up stack
(caller,

procedure)

You can use the /la command-line switch to include prbcedure prolog and epilog code
in your listing file. This lets you see the differences between the languages. See
Chapter 13 for further information.

Specifying a language modifier

Language modifiers tell Turbo Assembler to include special prolog and epilog code in
procedures that interface with Windows or the VROOM overlay manager. To use them,
specify one before the procedure language in the model directive, or in the procedure
header. Valid modifiers are NORMAL, WINDOWS, ODDNEAR, and ODDFAR.

Additionally, you can specify a default language modifier as a parameter of the
MODEL directive. If a default language modifier exists, all procedures that don’t
otherwise specify a language modifier will use the conventions of the default. See
Chapter 7 for more information.

Include the modifier in the procedure definition to specify the language modifier for an
individual procedure. For example,

sample PROC WINDOWS PASCAL FAR
;procedure body
ENDP

Chapter 10, Declaring procedures 119

Note If you don’t specify a language modifier, Turbo Assembler uses the language modifier
. specified in the MODEL statement. Turbo Assembler will generate the standard prolog
or epilog code for the procedure if there isn't a MODEL statement, or if NORMAL is
specified.

If you've selected the WINDOWS language rnod1f1er Turbo Assembler generates
prolog and epilog code that lets you call the procedure from Windows. Turbo
Assembler generates special prolog and epilog code only for FAR Windows procedures.
You can’t call NEAR procedures from Windows, so they don’t need special prolog or
epilog code. Procedures called by Wmdows typlcally use PASCAL calling conventions.
For example,

winproc PROC:WINDOWS PASCAL FAR

ARG @@hwnd:WORD, @émess:WORD, @@wparam WORD, @@1param: DWORD
;body of procedure

ENDP

Note Refer to your Windows documentation for more information on Windows procedures.

The ODDNEAR and ODDFAR language modifiers are used in connection with the

- VROOM overlay manager. VROOM has two modes of operation: oddnear and oddfar.
You can use the /la switch option on the Turbo Assembler command line to see the
prolog and epilog code that these language modifiers produce.

- Defining arguments and local variables

Turbo Assembler passes arguments to higher-level language procedures in stack frames

by pushing the arguments onto the stack before the procedure is called. A language ‘
procedure reads the arguments off the stack when it needs them. When the procedure
returns, it either removes the arguments from the stack at that point (the Pascal calling
convention), or relies on the caller to remove the arguments (the C calling convention).

The ARG directive specifies, in the procedure declaration, the stack frame arguments
passed to procedures. Arguments are defined internally as positive offsets from the BP -
or EBP registers. :

The procedure’s language convention determines whether or not the arguments w111 be
assigned in reverse order on the stack. You should always list arguments in the ARG
statement in the same order they would appear in a h1gh -level declaration of the
procedure.

The LOCAL d1rect1ve specifies, in the procedure declaration, the stack frame variables
local to procedures. Arguments are defined internally as negative offsets from the BP or
~ EBPregister. -

Allocate space for local stack frame variables on the stack frame by including procedure
prolog code, which adjusts the stack pointer downward by the amount of space
required. The procedure’s epilog code must discard this extra space by restoring the
stack pointer. (Turbo Assembler automatically generates this prolog code when the
procedure obeys any language convention other than NOLANGUAGE.)

120 Turbo Assembler User’'s Guide

Remember that Turbo Assembler assumes that any procedure using stack frame
arguments will include proper prolog code in it to set up the BP or EBP register. (Turbo
Assembler automatically generates prolog code when the procedure obeys any
language convention other than NOLANGUAGE). Define arguments and local
variables with the ARG and LOCAL directives even if the language interfacing
convention for the procedure is NOLANGUAGE. No prolog or epllog code will
automatically be generated, however, in this case.

ARG and LOCAL syntax
'Here’s the syntax for defining the arguments passed to the procedure:

_ BRG argument [,argument] ... [=symbol]
[RETURNS argument [,argument]]

To define the local variables for the procedure, use the following:
LOCAL argument [,argument] ... [=symbol]

An individual argument has the following syntax:
argname [[countl_expression]] [: complex_type [:count2_expression]]

complex_type is the data type of the argument. It can be either a simple type, or a complex
pointer expression. See Chapter 5 for more information about the syntax of complex

types.
If you don’t specify a complex_ type field, Turbo Assembler assumes WORD. It assumes
DWORD if the selected model is a 32-bit model.

count?_expression specifies how many items of this type the argument defines. An
argument definition of . .

ARG tmp:DWORD:4
defines an argument called tmp, consisting of 4 double words.

The default value for count2_expression is 1, except for arguments of type BYTE. Since
you can’t push a byte value, BYTE arguments have a default count of 2 to make them
word-sized on the stack. This corresponds with the way high-level languages treat
character variables passed as parameters. If you really want to specify an argument as a
single byte on the stack, you must explicitly supply a count2_expression field of 1, such as

ARG realbyte:BYTE:1

countl_expresszon is an array elernent size multiplier. The total space reserved for the
argument on the stack is count2_expression times the length specified by the argtype field,
times count1_expression. The default value for count1_expression is 1 if it is not specified.
countl_expression times count2_expression specifies the total count of the argument.

For Turbo Assembler versions 3.2 or later, you can specify count2_expression ﬁsing the ?
keyword to indicate that a variable number of arguments are passed to the procedure.
For example, an argument definition of

ARG tmp:WORD:?

defines an argument called tmp, consisting of a variable number of words.

Chapter 10, Declaring procedures 121

? must be used as the last item in the argument list. Also, you can use ? only in
procedures that support variable-length arguments (such as procedures that use the C
calling convenhons)

If you end the argument list with an equal sign (=) and a s'ymbol' Turbo Assembler will
equate that symbol to the total size of the argument block in bytes. If you are not using
Turbo Assembler’s automatic handling of high level language interfacing conventions,
you can use this value at the end of the procedure as an argument to the RET
instruction. Notice that this causes a stack cleanup of any pushed arguments before
returnmg (this is the Pascal calling convention). =~ -

The arguments and variables are defined within the procedure as BP-relative memory
operands. Passed arguments defined with ARG are positive offset from BP; local
variables defined with LOCAL are negative offset from BP. For example,

funcl PROC NEAR _
ARG a:WORD, b:DWORD: 4, c:BYTE=d
LOCAL X:DWORD, y:WORD:2=2

defines a as [bp+4], b as [bp+6], c as [bp+14], and d as 20; x is [bp-2], y is [bp-6], and
zis 8.

The scope of ARG and LOCAL variable names -

All argument names speciﬁed in the procedure header, whether ARGs (passed
arguments), RETURNS (return arguments), or LOCALS (local variables), are global in
scope unless you give them names prepended with the local symbol prefix.

The LOCALS directive enables locally scoped symbols. For example,

LOCALS
testl PROC PASCAL FAR
ARG @@a:WORD, @@b:DWORD, €@c:BYTE
LOCAL @@x:WORD, @@y :DWORD
MOV ax, @€a
MOV @ex,ax g
LES di,eeb : “
MOV WORD ptr @@y,di
MOV WORD ptr @Qy+2,es
MOV @€c,'a’
RET
ENDP

test2 PROC PASCAL FAR
ARG @@a:DWORD, @@b:BYTE
LOCAL @@x:WORD

LES di,@ea

MOV ax, es: [di]

MOV @ex,ax

CMP al, @@b

122 Turbo Assembler User’'s Guide

jz @@dn
MOV @ex,0
@@dn: MOV ax,@ex
RET
ENDP

Since this example uses locally scoped variables, the names exist only within the body
of the procedure. Thus, test2 can reuse the argument names @@a, @@b, and @@x. See
Chapter 11 for more information about controlling the scope of symbols.

Preserving registers

Most higher-level languages require that called procedures preserve certain registers.
You can do this by pushing them at the start of the procedure, and popping them again
at the end of it.

Turbo Assembler can automatically generate code to save and restore these registers as
part of a procedure’s prolog and epilog code. You can specify these registers with the
USES statement. Here’s its syntax:

USES item [,item] ...

item can be any register or single-token data item that can legally be pushed or popped.
There is a limit of eight items per procedure. For example,

myproc PROC PASCAL NEAR
ARG @@source:DWORD, @@dest : DWORD, @@count : WORD
USES cx,si,di, foo
MOV cx, @@count
MOV foo, @€count
LES di,@@dest
LDS si,@@source
REP MOVSB
RE
ENDP

See Chapter 18 for information about what registers are normally preserved.

USES is only available when used with procedures that have a language interfacing
convention other than NOLANGUAGE.

Defining procedures using procedure types
You can use a procedure type (defined with PROCTYPE) as a template for the
procedure declaration itself. For example,

Chapter 10, Declafing procedures 123

footype PROCTYPE pascal near :word, :dword,:word

foo PROC footype ;pascal near procedure
‘arg al:word,a2:dword,a3:word - ;an error would occur if
' jarguments did not match
' ;those of footype

When you declare a procedure using a named procedure description, the number and -
types of the arguments declared for PROC are checked against those declared by
PROCTYPE. The procedure description supplies the language and distance of the
procedure declaration.

Nested procedures and scope rules

All procedures have global scope, even if yoﬁ nest them within another procedure. For
example, - ;

testl PROC FAR

;some code here

CALL test2

;some more code here
 RET
test2 PROC NEAR

;some code here

RET ;near return
test2 ENDP \
testl ENDP

In this example, it’s legal to call test1 or test2 from outside the outer procedure.

- If you want to have localized subprocedures, use a locally scoped name. For example,

LOCALS . :
testl PROC FAR ;some code here
© RET
@@test2 PROC NEAR ;some code here
RET
@@test2 ENDP
. testl ENDP

v

In this case, you can only access the procedure @@test2 from within the procedure test1.
In fact, there can be multiple procedures named @@test2 as long as no two are within
the same procedure. For example, the following is legal:

LOCALS

testl PROC FAR
MOV si,OFFSET Buffer
CALL @Qtest2

124 Turbo Assembler User’s Guide

Note

RET
@@test2 PROC NEAR ;some code here
RET :
@@test2 ENDP
testl ENDP

test2 PROC FAR
MOV si,OFFSET Buffer2
CALL @@test2
RET
@@test2 PROC NEAR ;some code here
RET
@@test2 ENDP
test2 ENDP

The following code is not legal:

LOCALS

testl PROC FAR
MOV si,OFFSET Buffer
CALL -@Q@test2 -
RET

testl ENDP

@@test2 PROC NEAR
;some code here
RET

@@testz ENDP

since the CALL to @@test2 specifies a symbol local to the procedure testl, and no such
symbol exists.

The LOCALS directive enables locally scoped symbols. See Chapter 11 for further
information.

Declaring method procedures for objects

Q
@@

Some special considerations apply when you create method procedures for objects.
Object method procedures must be able to access the object that they are operating on,
and thus require a pointer to that object as a parameter to the procedure.

Turbo Assembler’s treatment of objects is flexible enough to allow a wide range of
conventions for passing arguments to method procedures. The conventions are

_ constrained only by the need to interface with objects created by a high-level language.

If yéu are writing a native assembly-language object method procedure, you might
want to use register argument passing conventions. In this case, you should write a
method procedure to expect a pointer to the object in a register or register pair (such as
ES:DI).

Chapter 10, Declaring procedures 125

If you are writing a method procedure that uses high-level language interfacing
conventions, your procedure should expect the object pointer to be one of the
arguments passed to the procedure. The object pointer passed from high-level OOP
languages like C++ is an implicit argument usually placed at the start of the list of
arguments. A method procedure written in assembly language must include the object
pointer explicitly in its list of arguments, or unexpected results will occur. Remember
that the object pointer can be either a WORD or DWORD quantity, dependmg on
whether the object is NEAR or FAR

Other complexities arise when you write constructor or destructor procedures in
assembly language. C++ uses other implicit arguments (under some circumstances) to
indicate to the constructor or destructor that certain actions must be taken.

Constructors written for an application using native assembly language do not
necessarily need a pointer to the object passed to them. If an object is never statically
allocated, the object’s constructor will always allocate the object from the heap.

Note You can find information about the calling conventions of Borland C++ in Chapter 18.

Usmg procedure prototypes

For versions 3.2 and later, Turbo Assembler lets you declare procedure prototypes
much like procedure prototypes in C. To do so, use the PROCDESC directive.

The Ideal mode syntax of PROCDESC is:
PROCDESC name [prOcedure_description]

Use the following syntax in MASM(mode:
name PROCDESC [procedure description]

procedure_y descrlptzon is similar to the language and argument specification used in the
PROC directive. Its syntax is:

[[language_modifier] language] [distance] [argument_list]

language_modifier, language, and distance have the same syntax as in the PROC directive.
argument_list has the form: .

argument [,argument] ...
For more information about PROC, see the beginning of this chapter.
An individual argument has the following syntax:

[argname] [[countl_expression]]:complex_type [:count2_expression]

complex_type is the data type of the argument, and can be either a simple type or a
pointer expression. count2_expression specifies how many items of this type the
argument defines. The default value of count2_expression is 1, except for arguments of
BYTE, which have a default count of 2 (since you can’t PUSH a byte value onto the

- 80x86 stack). See Chapter 5 for further information about the syntax of compl\ex types.

126 Turbo Assembler User’s Guide

For the last argument, in procedure types whose calling convention allows variable-
length arguments (like C), count2_expression can be ?, to indicate that the procedure
caller will determine the size of the array.

Note that the name of each argument (argname) is optional, but complex_type is required
for each argument because procedure types are used mainly for type checking
purposes. The names of the arguments do not have to agree, but the types must.

Here’s an example:
test PROCDESC pascal near a:word,b:dword,c:word

This example defines a prototype for the procedure test as a PASCAL procedure taking
three arguments (WORD, DWORD, WORD). Argument names are ignored, and you
can omit them in the PROCDESC directive, as follows:

test PROCDESC pascal near :word,:dword, :word

The procedure prototype is used to check calls to the procedure, and to check the PROC
declaration against the language, number of arguments, and argument types in the
prototype. For example,

test PROC pascal near
ARG al:word,a2:dword,a3:word ;matches PROCDESC for test

PROCDESC also globally publishes the name of the procedure. Procedures that are not
defined in a module are published as externals, while procedures that are defined are
published as public. Be sure that PROCDESC precedes the PROC declarauon, and any
use of the procedure name.

Procedure prototypes can also use procedure types (defined with PROCTYPE). For
example,

footype PROCTYPE pascal near :word,:dword, word
foo PROCDESC footype

Chapter 10, Declaring procedures 127

128 Turbo Assembler Use}’s Guide

Chapter

Controlling the scope of symbols

In Turbo Assembler and most other programming languages, a symbol can have more
than one meaning dependmg on where it’s located in a module. For example, some
symbols have the same meaning across a whole module, while others are defined only
within a specific procedure.

Symbol scope refers to the range of lines over which a symbol has a specific meaning.
Proper scoping of symbols is very important for modular program development. By
controlling the scope of a symbol, you can control its use. Also, properly selecting the
scope of a symbol can eliminate problems that occur when you try to define more than
one symbol of the same name.

Redefinable symbols

Some symbol types that Turbo Assembler supports are considered redefinable. This
means that you can redefine a symbol of this type to be another symbol of the same type
at any point in the module. For example, numeric symbols have this property:

foor =1
mov ax,foo ;Moves 1 into AX.
foo =2

mov ax,foo ;Moves 2 into AX.

Generally, the scope of a given redefinable symbol starts at the point of its definition,
and proceeds to the point where it's redefined. The scope of the last definition of the
symbol is extended to include the beginning of the module up through the first
definition of the symbol. For example,

mov ax,foo ;Moves 2 into AX!

foo =1)
- mov ax,foo ;Moves 1 into AX.
foo =2 ;This definition is carried around to the start

;of the module...
mov ax,foo ;Moves 2 ‘into AX.

Chapter 11, Controlling the scope of symbols 129

The following list contains the redefinable symbol types.

text_macro
numerical_expr
multiline_macro
struc/union
table

record

enum

See Chapter 5 for more information about these redefinable symbols.

Block scopmg

Block scoping makes a symbol have a scope that corresponds to a procedure in a
module. Turbo Assembler supports two varieties of block scoping: MASM-style,
and native Turbo Assembler style. By default, block—scoped symbols are disabled in
Turbo Assembler.

The LOCALS and NOLOCALS directives

Turbo Assembler uses a two-character code prepended to symbols, which determines
whether a symbol in a procedure has block scope. This local-symbol prefix is denoted
with “@@.” You can use the LOCALS directive to both enable block-scoped symbols,
and to set the local symbol prefix. Its syntax looks like this:

LOCALS [prefix_symbol]

The optional pnﬁx_sym‘boi field contains the symbol (of two character length) that Turbo
Assembler will use as the local-symbol prefix. For example,

LOCALS ;@@ is assumed to be the prefix by default.

foo prock : ‘
-@ea: jmp @@a ;This @€a symbol belongs to procedure FOO.
foo endp ‘ :

bar proc. :
@ea: jmp @@a ;This @@a symbol belongs to procedure BAR.
bar endp

If you want to disable block-scoped symbols, you can use the NOLOCALS directive. Its
- syntax follows:

NOLOCALS

Note that you can also use block-scoped symbols outside procedufes. In this case, the
scope of a symbol is determined by the labels defined with the colon directive (:), which
are not block-scoped symbols. For example,

foo: ;Start of scope.
@ea: ;Belongs to scope starting at FOO:

@@ =1 ;Belongs to scope starting at FOO:

130 Turbo Assembler User’'s Guide

bar: ;Start of scope.
@la = 2 ;Belongs to scope starting at BAR:

MASM block scoping

In MASM versions 5.1 and 5.2, NEAR labels defined with the colon directive (:) are

. considered block-scoped if they are located inside a procedure, and you've selected a
language interfacing convention with the MODEL statement. However, these symbols
are not truly block-scoped; they can’t be defined as anything other than a near label
elsewhere in the program. For example,

version m510
model small,c’

codeseg

foo proc
. a: jmp a ;Belongs to procedure FOO
foo endp

bar proc
a: jmp a ;Belongs to procedure BAR
bar endp

a = 1;Illegal!

- MASM-style local labels

MASM 5.1 and 5.2 provide special symbols that you can use to control the scope of near
‘labels within a small range of lines. These symbols are: @@, @F, and @B.

When you declare @@ as a NEAR label using the colon (:) directive, you're defining a

unique symbol of the form @@xxxx (Where xxxx is a hexadecimal number). @B refers to .
-the last symbol defined in this way. @F refers to the next symbol with this kind of

definition. For example, ‘

version m510
Qe:
jmp @B ;Goes to the previous @@.
Jjmp @F ;Goes to the next @e.
ee:
jmp @B ;Goes to the previous €@.
jmp @F ;Error: no next @@.

Chapter 11, Controlling the scope of symbols™ 131

132 Turbo Assemblier User's Guide

Chapter

Allocating data

Data allocation directives are used for allocating bytes in a segment. You can also use
them for filling those bytes with initial data, and for defining data variables.

‘All data allocation directives have some features in common. First, they can generate
initialized data and set aside room for uninitialized data. Initialized data is defined with
some initial value; uninitialized data is defined without specifying an initial value (its
initial value is said to be indeterminate). Data allocation directives indicate an
uninitialized data value with a ?. Anything else should represent an initialized data
value. Chapter 7 explains why you should distinguish between initialized and
uninitialized data. -

Another feature common to all data allocation directives is the use of the DUP keyword
to indicate a repeated block of data. Here’s the general syntax of all data allocation
directives:

[name] directive dup_expr [,dup_expr...]

Turbo Assembler initializes name to point to the space that the directive reserves. The
variable will have a type depending on the actual directive used.

The syntax of each dup_expr can be one of the following;:
® ?

® value

® count_expression DUP (dup_expr(,dup_expr...])-

count_expression represents the number of times the data block will be repeated.
" count expresszon cannot be relative or forward referenced.

Use the ? symbol if you want uninitialized data. The amount of space reserved for the
uninitialized data depends on the actual directive used.

value stands for the particular description of an individual data element that is
appropriate for each directive. For some directives, the value field can be very complex
and contain many components; others may only require a simple expression. The
following example uses the DW directive, which allocates WORDS:

Chapter 12, Allocating data 133

© DW 2 DUP (3 DUP'(1,3),5) i ;Seme as DW 1,3,1,3,1,3,5,1,3,1,3,1,3,5

Slmple data directives

You can define data with the DB, DW, DD, DQ, DF, DP, or DT d]rectlves These
directives define different sizes of simple data, as shown in the following table.

Table 121 Data size directives

DW Define word-size data.
. DD Define doubleword-size data.
DQ Define quadword-size data.
DF Define 48-bit 80386 far-pointer-size (6 byte) data.
DP ' Define 48-bit 80386 far-pointer-size (6 byte) data.
DT .- Define tenbyte (10-byte) size data.

Note Datais always stored in memory low value before high value.

The syntax of the value field for each of these directive differs, based on the capability of
each data size to represent certain quantities. (For example, it's never appropriate to
interpret byte data as a floating-point number.)

DB (byte) values can be

* A constant expression that has a value between -128 and 255 (31gned bytes range
from —128 to +127; unsigned byte values are from 0 to 255).

* An 8-bit relative expression using the HIGH or LOW operators.

¢ A character string of one or more characters, using standard quoted string format. In
this case, multiple bytes are defined, one for each character in the string.

DW (word) values can be

* A constant expression that has a value between -32,768 and 65,535 (signed words
range from -32,768 to 32,767; unsigned word values are from 0 to 65,535).

¢ A relative expression that requires 16 bits or fewer, (mcludmg an offset in a 16-bit
segment, or a segment or group value).

* A one or two-byte string in standard quoted string format.
DD (doubleword) values can be

'* A constant expression that has a value between —2,147,483,648 and 4,294,967,295
(when the 80386 is selected) or-32,768 and 65,535 otherwise.

* A relative expression or address that requires 32 bits or fewer (when the 80386 is
selected), 16 bits or fewer for any other processor.

* A relative address expression consisting of a 16-bit segment and a 16-bit offset.

134 Turbo Assembler User’s Guide

¢ A string of up to four bytes in length, using standard quoted string format.
* A short (32-bit) floating-point number.
DQ (quadword) values can be

* A constant expression that has a value between —2,147,483,648 and 4, 294 967,295
(when the 80386 is selected), or 32,768 and 65,535 otherwise.

* A relative expression or address that requires 32 bits or fewer (when the 80386 is
selected), or 16 bits or fewer for any other processor.

* A positive or negative constant that has a value between -2 and 2%-1 (signed
quadwords range in value from -2% to 2%-1; unsigned quadwords have values from
0 to 2%-1).

¢ A string of up to 8 bytes in length, using standard quoted string format.
* Along (64-bit) floating-point number.
DF, DP (80386 48-bit far pointer) values can be

* A constant expression that has a value between —2,147,483,648 and 4,294,967,295
(when the 80386 is selected), or —32,768 and 65,535 otherwise.

¢ A relative expression or address that requires 32 bits or fewer (wWhen the 80386 is
selected), or 16 bits or fewer for any other processor.

¢ A relative address expression consisting of a 16-bit segment and a 32-bit offset.

* A positive or negative constant that has a value between —2¥ and 2%-1 (signed 6-byte
values range in value from -2 to 2%-1; unsigned 6-byte values have values from 0 to
2%8-1).

¢ A string of up to 6 bytes in length, in standard quoted string format.
DT values can be

¢ A constant expression that has a value between —2,147,483,648 and 4,294,967,295
(when the 80386 is selected), or 32,768 and 65,535 otherwise.

* A relative expression or address that requires 32 bits or fewer (when the 80386 is
selected), or 16 bits or fewer for any other processor.

* A positive or negative constant that has a value between 27 and 2%-1 (signed
tenbytes range in value from —27 to 27°-1; unsigned tenbytes have values from 0 to
280_1),

¢ A 10-byte temporary real formatted floating-point number.
* A string of up to 10 bytes in length, in standard quoted string format.
* A packed decimal constantthat has a value between 0 and 99,999,999,999,999,999,999.

Numerical and string constants for the simple data allocation directives differ in some
cases from those found in standard Turbo Assembler expressions. For example, the DB,
DP, DQ, and DT directives accept quoted strings that are longer than those accepted
within an expression.

Chapter 12, Allocating data 135

Quoted strings are delimited either by single quotes(’) or double quotes (”). Inside of a
string, two delimiters together indicate that the delimiter character should be part of the
string. For example, :

'what''s up doc?' :
represents the following characters:
. what's up doc? ‘

You can have floating-point numbers as the value field for the DD, DQ, and DT
directives. Here are some examples of floating-point numbers:

1.0E30 ;Stands for 1.0 x 10°°
2.56E-21 ;Stands for 2.56 x 107%
1.28E+5 ;Stands for 1.28 x 10°
0.025 ;Stands for .025

Turbo Assembler recognizes these floating-point numbers because they contain a *
after a leading digit. These rules are relaxed somewhat in MASM mode. For example,

DD 1E30 ;Legal MASM mode floating point value!
DD .123 ;Legal in MASM mode only.

Note For clarity, we recommend using the form with the leading digit and the decimal point.

'Turbo Assembler also allows encoded real numbers for the DD, DQ, and DT directives.
An encoded real number is a hexadecimal number of exactly a certain length. A suffix of
R indicates that the number will be interpreted as an encoded real number. The length
of the number must fill the required field (plus one digit if the leadmg digit is a zero); for
example, -

DD 12345678r ;Legal number
DD 012345678r ;Legal number
DD 1234567r ;I1legal number (too short)

The other suffix values (D, H, O, Q, and B) function similarly to those found on numbers
in normal expressions.

~ Some of the simple data allocation directives treat other numerical constant values
specially. For example, if you don’t specify radix for a value in the DT directive, Turbo
Assembler uses binary coded decimal (BCD) encoding. The other directives assume a
decimal value, as follows ,

DD 1234. ,Dec1mal
DT 1234 ;BCD

The default radix (that the RADIX directive specifies) is not applied for the DD, DQ,
and DT directives if a value is a simple positive or negative constant. For example,

. RADIX 16
DW 1234 ;1234 hexidecimal
DD 1234 ;1234 decimal

Chapter 5 details numerical constants and the RADIX directive.

136 Turbo Assembler User's Guide

Creating an instance of a structure or union

To create an instance of a structure or a union data type, use the structure or union name
as a data allocation directive. For example, assume you've defined the following:

ASTRUC STRUC
B DB "xyz"
C Wil

D DD 2
ASTRUC ENDS

BUNION UNION
X DW?

Y DD ?

Z DB ?
BUNION ends

Then the statements

ATEST ASTRUC ?
BTEST BUNION ?

would create instances of the structure astruc (defining the variable atest) and the union
bunion (defining the variable btest). Since the example contained the ? uninitialized data
value, no initial data will be emitted to the current segment.

Initializing union or structure instances

Initialized structure instances are more complex than uninitialized instances. When you
define a structure, you have to specify an initial default value for each of the structure
members. (You can use the ? keyword as the initial value, which indicates that no
specific initial value should be saved.) When you create an instance of the structure,
you can create it using the default values or overriding values. The simplest initialized
instance of a structure contains just the initial data specified in the definition. For

~ example,

ASTRUC {}
is equivalent to

DB “XYZ "
DW 1
DD 2

The braces ({ }) represent a null initializer value for the structure. The initializer value
determines what members (if any) have initial values that should be overridden, and by
what new values, as you allocate data for the structure instance. The syntax of the brace
initializer follows: '

{ [member_name = value [,member_name = value...]] }

member_name is the name of a member of the structure or union. value is the value that
you want the member to have in this instance. Specify a null value to tell Turbo
Assembler to use the initial value of the member from the structure or union definition.
A ?value indicates that the member should be uninitialized. Turbo Assembler sets any

Chapter 12, Allocating data 137

* member that doesn’t appear in the initializer to the initial value of the member from the ‘
structure or union definition. For example, : ’

ASTRUC {C=2,D=?}
is equivalent to

DB "XyZ“
DW 2 ‘
DD ?

You can use the brace initializer to specify the value of any structure or union member,
even in a nested structure or union.

Unions differ from structures because elements in a union overlap one another. Be
careful when you initialize a union instance since if several union members overlap,
Turbo Assembler only lets one of those members have an initialized value in an
instance. For example,

BUNION {}

is valid because all three members of the union are uninitialized in the union definition.
- This statement is equivalent to

DB 4 DUP (?)

In this example, four bytes are reserved because the size of the union is the size of its
largest member (in this case a DWORD). If the initialized member of the union is not the
largest member of the union, Turbo Assembler makes up the difference by reserving
space but not emitting data. For example,

BUNTON {Z=1}
is equivalent to

DB 1
DB 3 DUP (?)

Finally, multiple initialized members in a union produce an error. For example, this is
illegal:

BUNION {X=1,Z=2}

Note that if two or more fields of the union have initial values in the hnion definition,
then using the simple brace initializer ({ }) will also produce an error. The initializer
must set all but one value to ? for a legal instance to be generated.

An alternative method of initializing structure and union instances is to use the bracket
(< >) initializer. The values in the initializer are unnamed but are laid out in the same
order as the corresponding members in the structure or union definition. Use this syntax
for the bracket initializer:

< [value [,value...]] >

value represents the desired value of the corresponding member in the structure or
union definition. A blank value indicates that you'll use the initial value of the member’
from the structure or union definition. A ? keyword indicates that the member should
be ummtlahzed For example,

138 Turbo Assembler User’s Guide

ASTRUC <"abc",,?>
is equivalent to

‘DB "abc"
DW 1
DD ?

If you specify fewer values than there are members, Turbo Assembler finishes the
instance by using the initial values from the structure or union definition for the
remaining members.

ASTRUC <"abc"> ;Same as ASTRUC <"abc",,>

When you use the bracket initializer, give special consideration to nested structures and
unions. The bracket initializer expects an additional matching pair of angle brackets for
every level of nesting, so that Turbo Assembler will treat the nested structure or union
initializer as a single entity (to match the value in the instance). Alternatively, you can
skip an entire level of nesting by leaving the corresponding entry blank (for the default
value of the nested structure or union), or by specifying the ? keyword (for an
uninitialized nested structure or union). For example, examine the following nested
structure and union:

CUNION STRUC
CTYPE DB ?
UNION ;Start of union
;If CTYPE=0, use this...
STRUC
CTOPARL DW 1
CTOPAR2 DB 2
ENDS
;If CTYPE=1, use this...
STRUC
CT1PAR1 DB 3
CTiPAR2 DD 4
ENDS
ENDS ;End of union
ENDS ;End of structure data type

The bracket initializer for this complex structure/union has two levels of nesting.
This nesting must appear as matched angle brackets within the initializer, like

CUNION <0,<<2,>,?7>>
This directive is equivalent to

DB 0
DW 2
DB 2
DB 2 DUP (?)

®

Chapter 12, Allocating data 139

Creating an instance of a record

To create an instance of a record data type, use the name of the record data type as a
data allocation directive. For example, assume you've defined the following:

MYREC RECORD VAL:3=4,MODE:2,SZE:4=15
Then, the statement
MTEST MYREC: ?

would create an instance of the record myrec (defining the variable mtest) No initial data
is emitted to the current segment in this example because the ? uninitialized data value
was specified.

Record instances are always either abyte, a word or a doubleword, depending on the-
-number of bits a]located in the record definition.

Initializing record instances

You must specify an initial value for some or all of the record ﬁelds when you define a
record. (Turbo Assembler assumes that any unspecified initial values are 0.) The
simplest initialized instance of a record contains just the initial field data specified in the
definition. For example,

MYREC {}
is equivalent to

DW (4 SHL 6) + (0 SHL 4) + (15 SHL 0)
;SHL is the shift left operator for expressions

The braces ({ }) represent a null initializer value for the record. The initializer value
determines what initial values should be overridden, and by what new values (as you
allocate data for the record instance). :

* Use this syntax of the brace initializer for records: .
{ [field_name = expression [,field name = expression...]] }

field_name is the name of a field in the record. expression is the value that you want the
field to have in this instance. A blank value indicates that you'll use the initial value of
the field from the record definition. A ? value is equivalent to zero. Turbo Assembler

sets any field that doesn’t appear in the initializer to the initial value of the field from the
record definition. For example,

MIREC (VAL-2, 8ZE=2}
is equ1valent to
W (2 SHL 6) + (0 SHL 4) + (0 SHL 0)

An alternative method of initializing record instances is to use the bracket (< >)
initializer. In this case, brackets delineate the initializer. The values in the initializer are
unnamed but are laid out in the same order as the corresponding fields in the record
definition. The syntax of the bracket initializer follows:

< [expression [,expression...]] >

140 Turbo Assembler User's Guide

expression represents the desired value of the corresponding field in the record
definition. A blank value indicates that you'll use the initial value of the field from the
record definition. A ? keyword indicates that the field should be zero. For example,

MYREC <,2,?>
is equivalent to
DW (4 SHL 6) + (2 SHL 4) + (0 SHL 0)

If you specify feWer values than there are fields, Turbo Assembler finishes the instance
by using the initial values from the record definition for the remaining fields.

MYREC <1>;same as MYREC <1,,>

Creating an instance of an enumerated data type

You can create an instance of an enumerated data type by using the name of the
enumerated data type as a data allocation directive. For example, assume you have
defined the following:

ETYPE ENUM FEE,FIE,FCO,FUM

Then the statement
ETEST ETYPE ?

would create an instance of the enumerated data type etype (defining the variable etest).
In this example, no initial data is emitted to the current segment because the ?
uninitialized data value is specified.

Enumerated data type instances are always either a byte, a word, or a doubleword,
depending on the maximum value present in the enumerated data type definition.

Initializing enumerated data type instances
You can use any expression that evaluates to a number that will fit within the
enumerated data type instance; for example,

ETYPE ? ;uninitialized instance
ETYPE FOO ;initialized instance, value FOO
ETYPE 255 ;a number outside the ENUM that also fits

Creating an instance of a table

To create an instance of a table data type, use the table name as a data allocation
directive. For example, assume you have defined the following table:

TTYPE TABLE VIRTUAL DoneProc:WORD=DoneRtn, \
' VIRTUAL MsgProc:DWORD-MsgRtn, \
VIRTUAL DoneProc:WORD-DoneRtn

Then, the statement

TTEST TTYPE ?

Chapter 12, Allocating data 141

would create an instance of the table ttype (defining the variable ttest)v No initial data
will be emitted to the current segment in this example because the ? uninitialized data
value was specified.

| Inltlallzlng table instances

When you define a table you must specify an initial value for all table members. The
simplest initialized instance of a table contains just the initial data specified in the
definition. For example, .

TIVPE ()
is equivalent to

DW MoveRtn
DD MsgRtn
DW DoneRtn

The braces ({ }) represent a null initializer value for the structure. The initializer value
determines what members (if any) have initial values that should be overridden, and by
what new values, as you allocate data for the table instance.

Here’s the syntax of the brace initializer:
{ [membef name = value [,member_name = = value.. 110}

member name is the name of a member of the table. value is the value that you want the
member to have in this instance. A blank value indicates that you'll use the initial value
of the member from the table definition. A ? value indicates that the member should be
uninitialized. Turbo Assembler sets any member that doesn’t appear in the initializer to
the initial value of the member from the table definition. For example,

TTYPE {MoveProc=MoveRtn2,DoneProc=?}
is equivalent to

DW MoveRtn2
DD MsgRtn
oW ?

Creating and initializing a named-type instanyce

You can create an instance of a named type by using the type name as a data allocation
directive. For example, if you define the following type:

NTTYPE TYPEDEF PTR BYTE
the statement
NTTEST NTTYPE ?

creates an instance of the named type nttype (defining the variable nttest). No initial data
is emitted to the ctirrent segment in this example because you spec1f1ed the ?
uninitialized data value.

142 Turbo Assembler User's Guide

The way that you initialize a named-type instance depends on the type that the named
type represents. For example, NTTYPE in the previous example is a word, so it will be
initialized as if you had used the DW directive, as follows:

NTTYPE 1,2,3 ;Represents pointer values 1,2,3.
DW 1,2,3 ;Same as NTTYPE 1,2,3.

However, if the named type represents a structure or table, it must be initialized the
same way as structures and tables are. For example,

foo STRUC
f1 DB ?
ENDS
bar TYPEDEF foo
bar {fil=1} ;Must use structure initializer.

Creating an instance of an object

Q
o

Creating an instance of an object in an initialized or uninitialized data segment is exactly
the same as creating an instance of a structure. In fact, objects in Turbo Assembler are
structures, with some extensions. One of these extensions is the @Mptr_<object_name>
structure member.

An object data type with virtual methods is a structure having one member that points
to a table of virtual method pointers. The name of this member is @Mptr_<object _name>.
Usually, you would initialize an instance of an object using a constructor method.
However, you could have objects designed to be static and have no constructor, but are
instead initialized with an initializer in a data segment.

If you use the @Mptr_<object_name> member’s default value, Turbo Assembler will
correctly initialize the object instance.

Another difference between structures and objects is that objects can inherit members
from previous object definitions. When this inheritance occurs, Turbo Assembler
handles it as a nested structure. Because of this, we do not recommend using bracket
(< >) initializers for object data.

Creating an instance of an object’s virtual method table

Every object that has virtual methods requires an instance of a table of virtual methods
to be available somewhere. A number of factors determine the proper placement of this
table, including what program model you're using, whether you want near or far tables,
and so forth. Turbo Assembler requires you to place this table. You can create an
instance for the most recently defined object by using the TBLINST pseudo-op, with
this syntax:

TBLINST

TBLINST defines €TableAddr_<object_name> as the address of the virtual table for the
object. It is equivalent to

@TableAddr_<object_name> @Table_<object_name> {}

Chapter 12, Allocating data 143

144 Turbo Assembler User’s G\uide

Chapter

Advanced coding instructions

Turbo Assembler recognizes all standard Intel instruction mnemonics applicable to the
currently selected processor(s). You can find a detailed summary of these instructions in
the quick reference guide. This chapter describes Turbo Assembler’s extensions to the

instruction set, such as the extended CALL instruction for calling language procedures.

Intelligent code generation: SMART and NOSMART

Intelligent code generation means that Turbo Assembler can determine when you could
have used different instructions more efficiently than those you supplied. For example,
there are times when you could have replaced an LEA instruction by a shorter and
faster MOV instruction, as follows:

LEA AX, lval
can be replaced with
MOV AX,OFFSET lval

Turbo Assembler supplies directives that let you use intelligent code generation. The
following table lists these directives.

Table 13.1 ‘lnteIIigentcodegeneration directives

SMART Enables smart code generation.
NOSMART Disables smart code generation.

By default, smart code generation is enabled. However, smart code generation is
affected not only by the SMART and NOSMART d1rect1ves, but also by the VERSION
directive (see Chapter 3 for details on VERSION).

Smart code generation affects the following code generation situations:

Chapter 13, Advanced coding instructions 145

‘. Replacement of LEA mstruchons with MOV instructions 1f the operand of the LEA
instruction is a s1mple address.

* Generation of signed Boolean instructions, where possible. For example, AND
AX,+02 vs. AND AX,0002. :

* Replacement of CALL FAR xxxx with a combination of PUSH CS, CALL NEAR
xxxx, when the target xxxx shares the same CS register.

Using smart instructions make it easier to write efficient code. Some standard Intel
instructions have also been extended to increase their power and ease of use. These are
discussed in the next few sections.

Extended jumps

Conditional jumps such as JC or JE on the , 80186, and 80286 processors are only
allowed to be near (within a single segment) and have a maximum extent of —128 bytes
to 127 bytes, relative to the current location counter. The same is true of the loop
_conditional instructions such as JCXZ or LOOP on all the Intel processors.

Turbo Assembler can generate complementary jump sequences where necessary and
remove th1s restriction. For example Turbo Assembler might convert

JC xxx
to

JNC temptag
JMP xxx

Note You can enable this complementary jump sequences with the JUMPS directive, and
disable it with the NOJUMPS directive. By default, Turbo Assembler doesn’t generate
this feature.

When you enable JUMPS, Turbo Assembler reserves enough space for all forward-
referenced conditional jumps for a complementary jump sequence. When the actual
distance of the forward jump is determined, you might not need a complementary
sequence. When this happens, Turbo Assembler generates NOP instructions to fill the
extra space.

To avoid generatmg extra NOPs, you can

* You can use an overnde for conditional jumps that you know are in range; for
example, :

JC SHORT abc
ADD ax,ax
abec:

* Specify the /m command-line switch. See Cl\aptef 2 for more about this switch.

146 Turbo Assembler User’'s Guide

Additional 80386 LOOP instructions

The loop instructions for the 80386 processor can either use CX or ECX as the counting
register. The standard LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ mnemonics
from Intel select the counting register based on whether the current code segment is a
32-bit segment (when using ECX) or a 16-bit segment (when using CX).

Turbo Assembler has special instructions that increase the flexibility of the LOOP
feature. The LOOPW, LOOPWE, LOOPWZ, LOOPWNE, and LOOPWNTZ instructions
use CX as the counting register, regardless of the size of the current segment. Similarly,
the LOOPD, LOOPDE, LOOPDZ, LOOPDNE, and LOOPDNZ instructions use ECX
as the counting register.

Additional 80386 ENTER and LEAVE instructions

Use the ENTER and LEAVE instructions for setting up and removing a procedure’s
frame on the stack. Depending on whether the current code segment is a 32-bit segment
or a 16-bit segment, the standard ENTER and LEAVE instructions will modify either
the EBP and ESP 32-bit registers, or the BP and SP 16-bit registers. These instructions
might be inappropriate if the stack segment is a 32-bit segment and the code segment is
a 16-bit segment, or the reverse.

Turbo Assembler provides four additional instructions that always select a particular
stack frame size regardless of the code segment size. The ENTERW and LEAVEW
instructions always use BP and SP as the stack frame registers, while the ENTERD and
the LEAVED instructions always use EBP and ESP.

Additional return instructions

The standard RET instruction generates code that terminates the current procedure
appropriately. This includes generating epilog code for a procedure that uses a high-
level language interfacing convention. Even for a procedure with NOLANGUAGE as its
calling convention, the RET instruction will generate different code if you declare the
procedure NEAR or FAR. For a NEAR procedure, Turbo Assembler generates a near
return instruction. For a FAR procedure, Turbo Assembler generates a far return
instruction. (Outside of a procedure, a near return is always generated.)

Turbo Assembler contains additional instructions to allow specific return instructions to
be generated (without epilog sequences). The following table lists them. ‘

Table 13.2 Return instructions

RETN
RETF Always generates a far return,
RETCODE Generates a return appropriate for the currently selected model. Generates a near

return for models TINY, SMALL, COMPACT, and TPASCAL. Generates a far return
for models MEDIUM, LARGE, HUGE, and TCHUGE.

Chapter 13, Advanc’ed coding instructions 147

Additional IRET instructions

For Turbo Assembler version 3.2 or later, you can use an expanded form of the IRET
instruction. IRET will pop flags from the stack DWORD-style if the current code
segment is 32-bit. Otherwise, a WORD-style POP is used. The IRETW instruction
always pops WORD-style. Note that you can use these enhancements only if you select
version T320. Otherwise, IRET will pop flags WORD-style, and IRETW is unavailable.

Extended PUSH and POP instructions

Turbo Assembler supports several extensions to the PUSH and POP instructions. These
extensions greatly reduce the quantity of typing required to specify an extensive series
of PUSH or POPs.

Multiple PUSH and POPs

You can specify more than one basic PUSH or POP instruction per line. For example,

PUSH ax
PUSH bx
PUSH cx
POP cx
POP bx
POP ax

can be written as

PUSH ax bx cx
POP ¢x bx ax

For Turbo Assembler to recognize there are multiple operands present, make sure that
any operand cannot conceivably be considered part of an adjacent operand. For
example, : :

PUSH foo [bx]

might produce unintended results because foo, [bx], and foo[bx] are all legal
expressions. You can use brackets or parentheses to clarify the instruction, as follows:

PUSH [foo] [bx]

Pointer PUSH and POPs

The standard PUSH and POP instructions can’t push far pointers, which require 4 bytes
- on the 8086, 80186, and 80286 processors, and up to 6 bytes on the 80386 processor.

Turbo Assembler permits PUSH and POP instructions to accept DWORD-sized pointer
operands for the 8086, 80186, and 80286 processors, and PWORD and QWORD-sized
pointer operands for the 80386 processor. When such a PUSH or POP is encountered,
Turbo Assembler will generate code to PUSH or POP the operand into two pieces.

148‘ Turbo Assembler User’s Guide

PUSHing constants on the 8086 processor

While the 80186, 80286, and 80386 processors have basic instructions available for -
directly PUSHing a constant value, the 8086 does not.

Turbo Assembler permits constants to be PUSHed on the 8086, and generates a
sequence of instructions that has the exact same result as the PUSH of a constant on the
80186 and higher processors.

Note You can only do this if you've turned smart code generation on.

The sequence of instructions Turbo Assembler uses to perform the PUSH of a constant
is about ten bytes long. There are shorter and faster ways of performing the same
function, but they all involve the destruction of the contents of a register; for example,

MOV ax, constant
PUSH ax

This sequence is only four bytes long, but the contents of the AX register is destroyed in
the process.

Additional PUSHA, POPA, PUSHF and POPF instructions

For Turbo Assembler versions 3.2 or later, you can use an expanded form of the
PUSHA, POPA, PUSHF and POPF instructions. If the current code segment is 32-bit,
the PUSHA instruction will push registers in DWORD-style, and POPA will pop
registers in DWORD-style. Otherwise, Turbo Assembler uses WORD-style PUSH and
POP. Similarly, PUSHF and POPF will push and pop flags DWORD-style for a 32-bit
code segment, or WORD-style otherwise. '

The PUSHAW, POPAW, PUSHFW, and POPFW instructions always push and pop
WORD-style. Remember that you can use these enhancements only if you're using
version T320 or later; otherwise, the pushes and pops will be done WORD-style.

The PUSHSTATE and POPSTATE mstructlons

~ The PUSHSTATE directive saves the current operating state on an internal stack that is
16 levels deep. PUSHSTATE is particularly useful if you have code inside a macro that
functions independently of the current operating state, but does not affect the current
operating mode.

The state information that Turbo Assembler saves consists of:

Current emulation version (for example T310)

Mode selection (for example IDEAL, MASM, QUIRKS, MASM51)
EMUL or NOEMUL switches

Current processor or coprocessor selection

MULTERRS or NOMULTERRS switches

SMART or NOSMART sw1tches

The current radix

Chapter 13, Advanced coding instructions 149

¢ JUMPS or NOJUMPS switches
¢ LOCALS or NOLOCALS switches
¢ The current local symbol prefix

Use the POPSTATE directive to return to the last saved state from the stack.
; PUSHSTATE and POPSTATE example '

.386

ideal
model small
dataseg

pass_string db 'passed',13,10,36
fail_string db 'failed',13,10,36

codeseg
. Jumps

XOr
pushstat

nojumps
radix
0286,

mov
cmp
jne

mov
nextl:)
’ popstate

cmp
je
mov
jmp
passl:
nov
fini:
mov
mov
mov
int
mov
int
end

; Show changing processor selection, number radix, and JUMPS mode

Zero out eax. Can use EAX in 386 mode

eax,eax ;

e ; Preserve state of processor, radix and JUMPS
2 v Set to binary radix

ax, 1 7 Only AX available now. EAX would give errors.
ax, 1) ‘)

nextl~ ; No extra NOPS after this

i Assemble with /la and check in .1lst file.
ax, 100 ; Now 100 means binary 100 or 4 decimal.

; Restores JUMPS and 386 mode and default radix.
eax, 4 ; EAX available again. Back in decimal mode.
passl ; Extra NOPS to handle JUMPS. Check in .lst file
dx,OFFSET fail_string ; Load the fail string
fini
dx, OFFSET pass_string ; Load the pasg string.
ax,@data ; Print the string out
ds,ax
ah, %
21h
ah, 4ch ; Return to DOS
21h

150 Turbo Assembler User’s Guide

Extended shifts

On the 8086 processor, the shift instructions RCL, RCR, ROL, ROR, SHL, SHR, SAL,
and SAR cannot accept a constant rotation count other than 1. The 80186, 80286, and
80386 processors accept constant rotation counts up to 255.

When Turbo Assembler encounters a shift instruction with a constant rotation count
greater than 1 (with the 8086 processor selected), it generates an appropriate number of
shift instructions with a rotation count of 1. For example,

.8086
SHL ax, 4

generates

SHL ax, 1
SHL ax,1
SHL ax, 1
SHL ax, 1

Forced segment overrides: SEGxx instructions

Turbo Assembler provides six instructions that cause the generation of segment
overrides. The following table lists these instructions.

Table 13.3 Segment override instructions

SEGCS Generates a CS override prefix byte.
SEGSS Generates an SS override prefix byte.
SEGDS Generates a DS override prefix byte.
SEGES Generates an ES override prefix byte.
SEGFS Generates an FS override prefix byte.
SEGGS Generates a GS override prefix byte.

You can use these instructions in conjunction with instructions such as XLATB, which
do not require arguments, but can use a segment override. For example: '

SEGCS XLATB

Note that most such instructions have an alternative form, where you can provide a
dummy argument to indicate that an override is required. For example,

XLAT BYTE PTR cs: [bx]

These two examples generate exactly the same code.

Additional smart flag instructions

Often, you can simplify an instruction that manipulates bits in a flag to improve both
code size and efficiency. For example,

Chapter 13, Advanced coding instructions 151

OR ax,1000h
might be simplified to
OR ah,10h

if the only result desired was to set a specific bit in AX, and the processor flags that the
instruction affects are unimportant. Turbo Assembler provides four additional
instructions that have this functionality, as shown in the following table:

Table 13.4 Smart flag instructions

'SETFLAG Set flag bit(s) OR

MASKFLAG Mask off flag bit(s) AND
TESTFLAG : Test flag bit(s) - TEST
FLIPFLAG Complement flag bit(s) ~ XOR

Use these instructions to enhance the modularity of records; for example,
FOO RECORD R0:1,R1:4,R2:3,R3:1

TESTFLAG AX, MASK R0

In this example, TESTFLAG will generate the most efficient instruction regardless of
. where RO exists in the record. :

Additional field value manipulation instructions

Turbo Assembler can generate specific code sequences for setting and retrieving values
from bit fields specified with the RECORD statement. This lets you write code that is
independent of the actual location of a field within a record. Used in conjunction with
the ENUM statement, records can thus achieve an unprecedented level of modularity in
assembly language. The following table lists these instructions:

Table 13.5 Instructions fbr setting and retrieving values

e

SET'IEIiEiD Setsa v;iue in a record
GETFIELD - Retrieves a value from a record field.

The SETFIELD instruction

SETFIELD generates code that sets a value in a record field. Its syntax follows:

SETFIELD field name destination r/m-, source_reg

field_name is the name of a record member field. destination_r/m for SETFIELD is a
register or memory address of type BYTE or WORD (or DWORD for the 80386). -
source_reg must be a register of the same size or smaller. If the source is smaller than the
destination, the source register must be the least significant part of another register that
is the same size as the destination. This full-size register is called the operating register.

152 Turbo Assembler User’s Guide

Note

Note

Use this register to shift the value in the source register so that it’s aligned with the
destination. For example,

FOO RECORD R0O:1,R1:4,R2:3,R3:1
SETFIELD Rl AX,BL ;operating register is BX
SETFIELD R1 AX,BH ;illegal!

SETFIELD shifts the source register efficiently to align it with the field in the
destination, and ORs the result into the destination register. Otherwise, SETFIELD
modifies only the operating register and the processor flags.

Using SETFIELD will destroy the contents of the operating register.

To perform its function, SETFIELD generates an efficient but extended series of the
following instructions: XOR, XCHG, ROL, ROR, OR, and MOVZX.

If you're using SETFIELD when your source and target registers are the same, the
instruction does not OR the source value to itself. Instead, SETFIELD ensures that the
fields of the target register not being set will be zero.

SETFIELD does not attempt to clear the target field before ORing the new value. If this
is necessary, you must explicitly clear the field using the MASKFLAG instruction.

The GETFIELD instruction

GETFIELD retrieves data from a record field. It functions as the logical reverse of the
SETFIELD instruction. Its syntax follows:

GETFIELD field_name destination_reg , source_r/m

field_name and destination_reg function as they do for SETFIELD. You can use source_r/m
as you would for source_reg (for SETFIELD). For example,

FOO RECORD R0:1,R1:4,R2:3,R3:1
GETFIELD R1 BL,AX ;operating register is BX
GETFIELD R1 BH,AX ;illegal!
Note that GETFIELD destroys the entire contents of the operating register.

GETFIELD retrieves the value of a field found in the source register or memory
address, and sets the pertinent portion of the destination register to that value. This
instruction affects no other registers than the operating register and the processor flags.

To accomplish its funcﬁon,'GETFIELD generates an efficient but extended series of the
following instructions: MOV, XCHG, ROL, and ROR.

If you're using the GETFIELD instruction when your source and target registers are the
same, the instruction will not generate the nonfunctional MOV target, source instruction.

Chapter 13, Advanced coding instructions 153

Additional fast immediate multiply instruction

Turbo Assembler provides a special immediate multiply operation for efficient array
indexing. FASTIMUL addresses a typical problem that occurs when you create an array
of structures. There is no immediate multiply operation available for the 8086 processor.
Even for the more advanced processors, multiplication using shifts and adds is
significantly faster in some circumstances than using the standard immediate IMUL
instruction. Based on the currently specified processor, Turbo Assembler’s FASTIMUL
instruction chooses between the most efficient sequence of shifts and adds available,
and the current processor’s immediate IMUL operation (if any). FASTIMUL has the
following syntax:

FASTIMUL dest_reg, source r/m, value

This instruction is much like the trinary IMUL operation available on the 80186, 80286,
and 80386 processors. The dest_reg destination register is a WORD register (or it can be -
DWORD on the 80386). source_r/m is a register or memory address that must match the
size of the destination. value is a fixed, signed constant multiplicand.

FASTIMUL uses a combination of IMUL, MOV, NEG, SHL, ADD, and SUB
instructions to perform its function. This function destroys the source register or
memory address, and leaves the processor flags in an indeterminate state.

Extensions to necessary instructions for the 80386 processor

The 80386 processor has the ability to operate in both 16-bit and 32-bit mode. Many of
the standard instructions have different meanings in these two modes. In Turbo
Assembler, you can control the operating size of the instruction using the SMALL and
LARGE overrides in expressions.

In general, when you use SMALL or LARGE as part of an address expression, the
‘operator controls the generation of the address portion of the instruction, determining
whether it should be 16- or,32-bit.

When SMALL or LARGE appears outside of the address portion of an expression, it
can control whether a 16-bit instruction or a 32-bit instruction is performed. In cases
where you can determine the size of the instruction from the type of the operand, Turbo
Assembler selects the size of the instruction. The following table shows the instructions
that SMALL and LARGE affect

Table 13 6 Instructlons affected by SMALL and LARGE

PUSH [SMALL/ LARGE] segreg ; Selects whether 16-bit or 32-bit form of segment register is PUSHed.

POP [SMALL/LARGE] segreg Selects whether 16-bit or 32-bit form of segment register is POPped.
FSAVE [SMALL/LARGE] memptr Selects whether small or large version of floating-point state is saved.

FRSTOR [SMALL/LARGE] memptr Selects whether small or large version of floating-point state is restored. ‘
FSTENV [SMALL/LARGE] memptr Selects whether small or large version of floating-point state is stored.
FLDENV [SMALL/LARGE] memptr - Selects whether small or large version of floating-point state is loaded.
LGDT [SMALL/LARGE] memptr Selects whether small or large version of global descriptor table is loaded.

154 Turbo Assembler User’'s Guide

Table 13.6 Instructions affected by SMALL and LARGE (continued)
SGDT [SMALL/LARGE] memptr Selects whether small or large version of global descriptor table is saved.
LIDT [SMALL/LARGE] memptr . Selects whether small or large version of interrupt descriptor table is loaded.
SIDT [SMALL/LARGE] memptr Selects whether small or large version of interrupt descriptor table is saved.
JMP [SMALL/LARGE] memptr For DWORD-sized memory addresses, selects between FAR 16-bit JMP and
NEAR 32-bit JMP.
CALL [SMALL/LARGE] memptr For DWORD-sized memory addresses, selects between FAR 16-bit CALL
: and NEAR 32-bit CALL
Note Turbo Assembler selects the size of the instruction using SMALL and LARGE only

when no other information is available. For further information about overriding
address sizes with the SMALL and LARGE operators, see Chapter 5.

Calling procedures with stack frames

Turbo Assembler supports an extended form of the CALL instruction that lets you
directly call procedures that use high-level language interfacing conventions.

Arguments to procedures that use high-level language interfacing conventions are
passed on the stack in a stack frame. The caller must push these arguments onto the stack
before calling the procedure.

The interfacing convention of the procedure determines the order arguments should be
pushed into the stack frame. For BASIC, FORTRAN, and PASCAL procedures,
arguments are pushed onto the stack in the order they are encountered; for.C and CPP
(C++), the arguments are pushed in the reverse order.

- The interfacing convention of a procedure also determines whether the procedure or the

caller of the procedure must remove the arguments from the stack once the procedure is
called. C and C++ require the caller to clean up the stack. In all other languages, the
procedure itself must remove the arguments from the stack before returning.

Turbo Assembler handles both the proper argument ordering and stack cleanup for you
with the extended CALL instruction. The syntax for calling a procedure with
parameters follows:

CALL expression [language] [,argument_list]

expression is the target of the CALL instruction. language specifies the interfacing
convention to use for the call. If you don’t specify a language, Turbo Assembler uses the
default language set by MODEL (see Chapter 7 for further information about using
MODEL).

Arguments, if any, follow the language identifier. The syntax of each argument in the
argument list is the same as for the extended PUSH and POP instructions. You can

separate these arguments with commas; for example,

CALL test PASCAL,ax,es OFFSET buffer,blen

PASCAL, the language in the example, causes Turbo Assembler to push the arguments
in the same order that it encounters them. This example call is equivalent to

Chapter 13, Advanced coding instructions 155

PUSH ax-

PUSH es OFFSET buffer
PUSH word PTR blen
CALL test

A call to a C procedure requires that the arguments be pushed onto the stack in the
reverse order. Turbo Assembler automatically does this so that a call of the form

CALL test C,ax,es OFFSET buffer,word PTR blen
results in the following code:

PUSH word PTR blen
PUSH es OFFSET buffer
PUSH ax

- CALL test
SUB sp,8

When calling a procedﬁre with arguments, you should always list the arguments in the
same order they were listed in the procedure header. Turbo Assembler reverses them if
necessary.

Note = Remember to separate arguments with commas and components of arguments with
spaces. Turbo Assembler, depending on the interfacing convention, can push -
arguments in reverse order on the stack, but it won't alter the ordering of argument
components.

If the interfacing convention for the call is NOLANGUAGE, Turbo Assembler reports
an error if any arguments are present. Although you can define arguments to a
NOLANGUAGE procedure with the ARG directive, you must explicitly push the
arguments when you make a call to a NOLANGUAGE procedure.

Calling procedurés that contain RETURNS

Procedures that define some of their arguments with the RETURNS keyword must be
considered specially. These arguments are used to return values to the caller; therefore,
the caller always pops them. There is no special extension to the CALL instruction in
Turbo Assembler to help pass those arguments specified in a procedure declaration
after the RETURNS directive. You must explicitly PUSH these arguments before the
CALL, and POP them afterward.

Calling procedures that have been prototyped

If you've defined the procedure prior to the call or used PROCDESC to prototype the
procedure (see Chapter 10), Turbo Assembler will type check any language and
arguments specified in the call and generate a warning if the language, number of

' parameters, or types of parameters don’t match.

For example,

156 Turbo Assenibler User's Guide

test PROCDESC pascal far :word, :dword, :word

call test pascal ax,ds bx,cx ;works fine

call test ¢, ax,dx, bx,cx ;wrong language!

call test pascal, eax, ebx, ecx ;wrong parameter types!
call test pascal, ax,ds bx ;too few parameters!

Since the language of the procedure has been specified, you don’t have to include it in
the call. If you omit it, however, make sure to include the comma that would normally
follow it:

call test,ax,ds bx,cx ;works fine

You can also use procedure types (declared with PROCTYPE) to supply a distance and
language, and force type-checking to occur. For example,

footype proctype pascal near :word, :dword, :word

call footype ptr(bx],ax,ds bx,cs ;no error!

Calling method procedures for objects: CALL.METHOD

The CALL instruction is extended to support the calling of object methods. A call to an
object method can generate either a direct call (for static methods) or an indirect call (for

‘virtual methods).

Because you can use an indirect call, the instructions that perform the call can destroy
the contents of some registers. Therefore, Turbo Assembler lets you select the proper
registers if you're using a virtual method call.

" Here’s the syntax of the CALL..METHOD extension:

CALL instance_ptr METHOD [object_name:]lmethod_name [USES [segreg:]loffsreg]
[language_and_args]

instance_ptr must describe an instance of an object. In MASM mode, it’s often impossible
to determine the name of the object associated with an instance. Therefore, Turbo
Assembler allows the object_name field, so that you can specify the instance’s object
name.

method_name contains the name of the method to be called for the specified object
instance. ' »

See Chapter 8 for further information about how to specify a method as virtual or static.

If the method is virtual and an indirect call is required, the CALL.METHOD instruction
normally calls indirectly through ES:BX (or ES:EBX for USE32 models on the 80386
processor). If you want to use other registers, you can override them with the USES
clause. segreg is the optional segment register to use, and offsreg is the offset register to
use for the call.

For objects declared with near tables, CALL..METHOD only loads the offset register.
Turbo Assembler assumes that the segment register is already set up to the correct
value. '

Chapter 13, Advanced coding instructions 157

Note It’s good programming practice to specify an appropnate selection for mdlrect calling
‘registers, even if you know that the method you're calling is static. As objects are
modified, methods can change from being static to virtual.

The language_and_args field of the CALL.METHOD instruction contains the optional
language and argument specifications, which are identical in form to that listed
previously under “Calling procedures with stack frames.”

Calling method procedures for C++ or Pascal usually requires that the instance of the
object be passed as an argument on the stack. See Chapter 18 for further mformatlon

Tail recursion for object methods: JMP..METHOD

Turbo Assembler provides a JMP.METHOD instruction that corresponds to the
CALL.METHOD inistruction. Here's its syntax:

- Jup instance_ptr METHOD [object:name:]method_name [USES [segreg:]offsrég]'
JMP.METHOD functions exactly like CALL.METHOD except that
Q * It generates a JMP instead of a CALL instruction.

» It generates procedure epilog code to clean up the stack before the JMP instruction is
generated.

The JMP.METHOD instruction makes it possible to write efﬁc1ent tail recursion code.
It’s intended to replace the common situation where a CALL.METHOD instruction is
1ssued to the current method, followed by a RET instruction.

Additional instruction for object-oriented programming |

@ When an object instance is constructed, you must initialize the instance’s virtual table
@© pointer (if any) to point to the correct virtual method table. The TBLINIT instruction lets
you do this automatically. The syntax of the TBLINIT instruction is

TBLINIT object_instance pointer

The object_instance_pointer field is the address of the object whose virtual table pointer is
to be initialized. The TBLINIT instruction assumes that the object instance should be of
the current object type (in other words, the immediately preceding object definition
determines the object type that TBLINIT initializes). For example,

TBLINIT DS:ST ,
would initialize the virtual table pointer of the object at DS:S, if it has one.

158 Turbo Assembler User’s Guide

Chapter

Using macros

Macros let you give a symbolic name to a text string or a block of code that will be used
frequently throughout your program. Macros go beyond this simple substitution,
however. Turbo Assembler has macro operators that provide great flexibility in
designing macros. Combined with the ability to use multiline macros with arguments,
this makes Turbo Assembler’s macro facility a very powerful tool. This chapter
discusses how to use text and multiline macros in your program.

Text macros

Note

A text macro is a symbol that represents a string of text characters. When Turbo
Assembler encounters the symbol in expressions (and other situations), it substitutes the
text characters for the symbol. For example, if DoneMsg is a text macro whose value is
“Returning to the OS”, the following statement

GoodBye DB DoneMsg
results in-

GoodBye DB 'Returning to the 0S'

Defining text macros with the EQU directive

You can use the EQU directive to define simple text macros. Here's the syntax for
defining a text macro: ,

néme EQU text_string

text_string associates with the text macro name name. You should enclose text_string in
brackets (< >) to delineate the text; for example,

DoneMsg EQU <'Returning to the 0S'>

If you omit the brackets in MASM mode, Turbo Assembler will try to evaluate
text_string to an expression, and an error may result. Only if it can’t evaluate text_string

Chapter 14, Using macros 159

will Turbo Assembler treat it as a text macro (to remain compatible with MASM). In
Ideal mode, EQU always defines a text macro. If you don’t enclose text_string in
brackets and it’s the name of another text macro, Turbo Assembler will use that macro’s
contents. Otherwise, the macro will be defined to the text.

You should always enclose text macro strings in angle brackets to make sure they’'re
- properly defined. Consider the following mistake that can occur when you don’t:

IDEAL

Farth EQU dirt’ ;Earth = "dirt"

Planet EQU Earth ;Planet = "dirt" (wrong!)
Planet EQU <Earth> ;Planet = "Earth" (correct!)

In Ideal mode, the EQU statement alWays defines a text macro.”

Text macros are redefinable; you can redefine a text macro name in the same module to
another text string.

String macro manipulation directives

Turbo Assembler provides directives that can manipulate string macros. These
directives are available in Ideal mode, and for versions M510, M520, and T300 or later
(as specified by the VERSION directive).

~ A string argument for any of these directives can be any of the followmg
* 'a text string enclosed in brackets; for instance, <abc>
* thename of a previously defined text macro

* an expression preceded by a % character, whose value is converted to the equivalent
numerical string representation appropriate for the current radix ‘

The CATSTR directive
The CATSTR directive defines a new text macro by concatenating strings together.
CATSTR has the following syntax:

name CATSTR stringl[,string]...

CATSTR concatenates from left to right. Turbo Assembler creates a new text macro of
the name name.

The SUBSTR directive |
The SUBSTR directive defines a new text macro to be a substring of a string. Here's its
syntax:
name SUBSTR string,position_expression|,size_expression]
The new text macro, name consists of the portion of string that starts at the ;
+ position_expression character, and is size_expression characters in length. If you don’t ;
supply size_expression, the new text macro consists of the rest of string from the character

at position_expression. Turbo Assembler considers the flrst character of string to be at
position 1.

160 Turbo Assembler User's Guide

The INSTR directive
The INSTR directive returns the position of one string inside another string. INSTR has
the following syntax:

name INSTR [start_expression,]stringl,string2

Turbo Assembler assigns name a numeric value that is the position of the first instance of
string2 in string1. The first character in string1 has a position of 1. If string2 does not
appear anywhere within stringl, Turbo Assembler returns a value of 0. If you include
start_expression, the search begins at the start_expression character. The first character of a
string is 1.

The SIZESTR directive
The SIZESTR directive returns the length of a text macro (the number of characters in
the string). Here’s its syntax: ‘

name SIZESTR string

name is set to the numeric value of the length of the string. A null string < > has a length
of zero.

Text macro manipulation examples
The following examples show how these operators work:

VERSION T300

IDEAL

ABC EQU <abc> ;ABC = "abc"

ABC2 EQU ABC +ABC2 = "abc"

ABC EQU <def> ;ABC = "def" (redefined)

ABRC3 CATSTR ABC2,<,>,ABC,<,>,ABC2 ;ABC3 = "abc,def,abc" -

ABCLEN SIZESTR ABC ; +ABCLEN = 3

ABC3LEN SIZESTR ABC3 JABC3LEN = 11

COMMAL INSTR ABC3,<,> ;COMMAL = 4

COMMA2 INSTR COMMAl+1,ABC3,<,> ;COMMA2 = 8

ABC4 SUBSTR ABC3,5 ;ABC4 = "def,abc"

ABCS SUBSTR ABC3,5,3 ;ABCS = "def"

ABC6 EQU 34241 ;ABC6 = 6 (numeric equate)

ABC7 EQU %342+1 : ;ABCT = "6" (text macro)

ABCS8 EQU SCOMMAL ;ABC8 = "4
Multiline macros

The multiline macro facility lets you define a body of instructions, directives, or other
macros that you'll include in your source code whenever the macro is invoked. You can
supply arguments to the macro that Turbo Assembler will substitute into the macro
body when you include the macro in the module.

“There are several types of multiline macros. One version substitutes each element of a
string, one after the other, as an argument to the macro. Another version repeats the
macro body a certain number of times. Finally, you can define still another version in

Chapter 14, Using macros 161

one place, and invoke it many times. All versions have the definition of a macro body in
common. ’ o

The multiline macro body

Regardless of its actual content, Turbo Assembler’s macro processing facility treats a
multiline macro body as merely a number of lines of fext. Turbo Assembler lets you
replace symbols within the macro body with text specified at the time a macro is
_invoked. This feature is called argument substitution. The symbols in the macro body that
will be replaced are called dummy arguments. For example, suppose the symbol foo is a
dummy argument in the following macro body:

PUSH f00
© MOV foo,l

If you assign foo with the text string AX when you invoke this macro the actual text
included in the module will be

PUSH AX
MOV AX,1

The rules Turbo Assembler uses for recognizing a dummy argument are fairly complex.
Examine the fo]lowmg macro body lines where the dummy argument foo would not be
recognized:

symfoo:
DB 'It is foo time'

In general, Turbo Assembler will not recognize a dummy argument without spec1a1
help in the followmg situations:

¢ whenitis part of another symbol
¢ when itis inside of quotation marks (' or ")
¢ in Ideal mode, when it appears after a semicolon not inside of quotes

Using & in macros

- The & character has a special meaning when used with the macro parameters. In
general, & separates a dummy argument name from surrounding text, so Turbo
Assembler can recognize it for substitution. For example, given the followmg Ideal
mode macro:

macro macl foo
sym&foo:

DB 'It is &foo time' /
endm ‘

- if you assign foo the text string party when this macro is invoked, the actual text mcluded ‘
in the module will be :

symparty: °
DB 'It is party time'

Another example might be
foo&sym:

162 Turbo Assembler User’s Guide

Note

Note

DB 'We are in O&foo&o’

If you assign foo the text string hi when this macro is invoked, the text included in the
module will be :

hisym:
DB 'We are in Ohio!

Here are the rules for the & character:
¢ Outside quoted strings, the & serves only as a general separator.

* Inside quoted strings and after a semicolon that’s not in a quoted string in Ideal
" mode, & must precede a dummy argument for it to be recognized.

¢ Turbo Assembler removes one & from any group of &s during a macro expansion.

The last point makes it possible to place macro definitions requiring & characters inside
other macro definitions. Turbo Assembler will remove only one & from any group.

Including comments in macro hodies

For particularly complicated macros, you might want to include (in the macro body
text) comments that won’t be included when the macro is invoked. This also reduces the
memory required for Turbo Assembler to process macros. To do this, use the double
semicolon comment at the beginning of a line. For example, the following macro body

;:Wow, this is a nasty macro!
DB ‘Nasty macro'

will only include the followmg text when it is invoked:
DB 'Nasty macro'

Comments preceded by single semicolons are always included in a macro expansion.

Local dummy arguments

At the beginning of any macro body, you can include one or more LOCAL directives.
LOCAL declares special dummy arguments that, each time the macro expands, will be
assigned a unique symbol name.

The syntax for the LOCAL directive in macro bodies looks like this:
LOCAL dummy_argumentl [,dummy_argument2]...

When using this syntax, note that the LOCAL-directive must come before any other
statements in a macro body.

If the dummy_argument name used in the LOCAL directive does not have a local symbol
prefix the unique symbol name assigned to it will be in the form ??xxxx, where xxxx
represents a hexadecimal number. Otherwise, the unique symbol name will be <local
prefixs>xxxx. For details on how to enable local symbols and set the local symbol prefix,
see Chapter 11.

You can use LOCAL dummy arguments to deﬁne labels within the macro body. For
example,

" Chapter 14, Using macros 163

LOCAL @@agn,@€zero
XOR dx,dx

MOV c¢x,exp

MOV ax, 1

JCXZ @@zero

MOV bx, factor
@@agn: MUL bx

LOOP @@agn
@@zero:

Note Inmacros, you don’t have to use @@ since local labels in macros are turned into
consecutive numbers, like ??0001. Their names are not easily accessible outside macros.

The EXITM directive

You can use the EXITM directive within a macro body to prematurely terminate the
assembly of an included macro body. Its syntax follows:

EXITM

When Turbo Assembler encounters EXITM in a macro body that has been included in
the module source code, assembly of the expanded macro body stops immediately.
Instead, Turbo Assembler will continue assembling the module at the end of the macro.

You can use the EXITM statement with a conditional assembly directive to terminate a
macro expansion when certain conditions are met.

Tags and the GOTO directive

Using macro tags and the GOTO directive lets you control the sequence in n which lines
within the macro body expand. You can place a macro tag at any place within the macro
body. The tag occupies an entire line in the macro, with the following syntax:

:tag_symbol
When the macro expands, all macro tags are discarded.

The GOTO directive tells the assembler to go to a specified pomt in your code, namely
the tag_symbol. GOTO has the following syntax:

GOTO tag_symbol

GOTO also terminates any conditional block that contains another GOTO. This lets you
place GOTO inside condltlonal assembly blocks. For example,

IF foo
GOTO tagl
ENDIF
DISPLAY "foo was false!"
:tagl
;resume macro here,..
;works the same whether foo was false or true

~ Note Be careful not to create infinite macro loops when you use the GOTO directive. Infinite
) loops can cause Turbo Assembler to run out of memory, or even appear to stop
functioning.

164 Turbo Assembler User’'s Gdide

Note

See Chapter 15 for further information about conditional assembly directives.

General multiline macros

Turbo Assembler associates a general multiline macro’s body of directives, instructions,
and other macros with a symbolic macro name. Turbo Assembler inserts the body of

, statements into your program wherever you use the macro name as a directive. In this
- way, you can use a general multiline macro more than once.

You can invoke a macro before you define it only when you use the /m command-line
switch as explained in Chapter 2. However, this is considered to be poor programming
practice.

Here’s the Ideal mode syntax for defining a general multiline macro:

MACRO name parameter_list
macro_body
ENDM

Here’s the MASM mode syntax for defining a general multiline macro:

name MACRO parameter_list
macro_body
ENDM

name is the name of the multiline macro you're defining. macro_body contains the
statements that make up the body of the macro expansion. You can place any valid
(and any number of) Turbo Assembler statements within a macro. The ENDM keyword
terminates the macro body.

This example defines a macro named PUSHALL that, when invoked, includes the
macro body consisting of three PUSH instructions into your program.

PUSHALL MACRO
PUSH AX BX CX DX
PUSH DS SI
PUSH ES DI

ENDM

parameter_list is a list of dummy argument symbois for the macro. Here’s its syntax:
[dummy_argument [,dummy_argument ...])

You can use any number of dummy arguments with a macro, as long as they fit on one
line, or you use the line continuation character () to continue them to the next line. For
example, '

ADDUP MACRO dest,\ ;dest is 1st dummy argument

sl,s2 . ;81,82 are 2nd and 3rd dummy arguments
MOV dest, sl '
ADD dest,s2

ENDM

Each dummy argument has the following syntax:

dummy_name [: dummy _type]

Chapter 14, Using macros 165

dummy_name is a symbolic name used as a place holder for the actual argument passed
to the macro when it’s invoked. The optional dummy_type specifies something about the
form the actual argument must take when you invoke the macro. The following types
are supported

Table 14.1 Dummy argument types .

L

REQ « Argument cannot be null or spaces.

=<text_string> Bracketed text string is the default value for the dummy argument when the‘actual
argument is null or contains spaces.

VARARG + " Actual argument consists of the rest of the macro invocation, interpreted as a list of
arguments. Commas and angle brackets are added to ensure this interpretation.

REST Actual argument consists of the rest of the macro invocation, mterpreted as raw text.

Invoking a general multiline macro

To invoke a general multiline macro, use the name of the macro as a directive in your
program. Turbo Assembler inserts the macro body (after all the dummy arguments are
substituted) at that point in the module. The syntax for invoking a general multiline
macro is as follows:

macro_name [argument [{, Jargument]...]

macro_name is the symbolic name of a macro. If you invoke a macro with arguments, the
arguments are listed following the macro name. You can specify any number of
arguments, but they must all fit on one line. Separate multiple arguments with commas
or spaces. When the macro expands, Turbo Assembler replaces the first dummy
argument in the macro definition with the first argument passed, the second dummy
argument with the second argument, and so forth.

Each argument represents a text strmg You can specify this text strlng in the following
ways: :

* asa contiguous group of characters, not contammg any whitespace, commas, or
semicolons

* asa group of characters delineated by angle brackets (<>), which can contain spaces,
commas, and semicolons

* asasingle character preceded by a ! character, which is equlvalent to enclosing the
character in angle brackets

* as an expression preceded by a % character, which represents the text value of the -
- expression appropriate for the currently selected radix

The < > literal strmg brackets
Use angle brackets to delineate a literal string that contains the Characters between them.
You should use them like this: '

’<text$

166 Turbo Assembler User's Guide

text is treated as a single string parameter, even it if contains commas, spaces, or tabs
that usually separate each parameter. Use this operator when you want to pass an
argument that contains any of these separator characters.

You can also use this operator to force Turbo Assembler to treat a character literally,
without giving it any special meaning. For example, if you want to pass a semicolon (;)
as a parameter to a macro invocation, you have to enclose it in angle brackets (<;>) to
prevent it from being treated as the beginning of a comment. Turbo Assembler removes
only one level of angle brackets when it converts a bracketed string to a text argument.
This makes it possible to invoke a macro requiring angle brackets from inside another
macro body.

The ! character

The ! character lets you invoke macros with arguments that contain special characters.
Using this character prior to another is similar to enclosing the second character in angle
brackets. For example, !; functions the same as <;>. Some common uses are shown in the
following table.

Table 14.2 - Uses for the | character

The % expression evaluation character

The % character causes Turbo Assembler to evaluate an expression. The assembler
converts the result of the expression to an ASCII number in the current radix, which is
the text that the % character produces. Use this character when you want to pass the
string representing a calculated result, rather than the expression itself, as a macro
argument. The syntax follows:

%expr

expr can be either an expression (using any legal operands and operators), or it can be
the name of a text macro. If it is an expression, the text that is produced is the result of
the expression, represented as a numerical string in the current radix. If expr is a text
macro name, the text that's produced is the string that the text macro represents. See
Chapter 5 for more information about Turbo Assembler expressions.

For example, this code

DEFSYM MACRO NUM
TMP_&NUM:
ENDM

TNAME EQU <JUNK> ;defining a text macro
DEFSYM $5+4
DEFSYM $TNAME

Chapter 14, Using macros 167

results in the following code macro expansions:

~TMP_9:
TMP_JUNK:

- Redefining a general multiline macro
You can redefine general multiline macros. The new definition automatically replaces
the old definition. All preceding places where the macro had already been invoked will
not change. All invocations of the macro following the redefinition use the new
definition.

Deleting a general multiline macro: The PURGE dlrectlve
You can use the PURGE directive to delete a macro. PURGE has the followmg syntax:

PURGE. macroname [, macroname]

PURGE deletes the general multiline macro definition assoc1ated with macroname. After
you PURGE a macro, Turbo Assembler no longer treats the symbol macroname as if it
were a macro; for example,

ADD MACRO al;a2
SUB al,a2
ENDM
ADD ax,bx ;This invocation will produce SUB ax,bx
PURGE ADD) :
ADD ax,bx - ;This is no longer a macro, so ADD ax,bx is produced

You can purge several macros at a time by separating their names with commas. Note,
however, that you can’t redefine a purged macro symbol as anything other than another
macro. :

Defining nested and recursive macros
The statements in a macro body can include statements that invoke or deﬁne other
macros. If you take this example,

MCREATE MACRO opname,opl,op2,0p3,op4, op5 op6, op7
IFNB opname
DO&opname ‘MACRO op, count
IF count LE 4
REPT count
opname op, 1
ENDM
ELSE
MOV CL, count
opname op,CL

ENDIF .

ENDM ;end of DOopname macro
MCREATE opl,op2,0p3,op4, op5 opb,op7 . ;recurse! :
ENDIF - ;end of if

ENDM :) send of_MCREATE macro

168 Turbo Assembler User's Guide .

Note

and invoke it with
MCREATE ror,rol,rcl,rcr,shl,shr,sal,sar

it will create the additional macros DOror, DOrol, and so forth, which you can then use
like this:

DOshr ax,5

DOrcr bx,3

You can call recursive macros with a list of parameters, and set them up so that the
macro will work with anywhere from zero to a maximum number of parameters. To do
this, have the macro body use the first parameter to do its expansion, then call itself with
the remaining parameters. Every time it recurses, there will be one fewer parameter.
Eventually, it will recurse with no parameters.

When you call the macro recursively, it-always needs some way to test for the end of the
recursion. Usually, an IFNB conditional statement will do this for only the macro body
if the passed parameter is present. Here is a simpler example of a recursive macro:

PUSHM MACRO rl,r2,r3,r4,r5,r6,r7,18
IFNB ri

push rl

PUSHM r2,r3,r4,r5,r6,v7,r8
ENDIF
ENDM

See Chapter 15 for more information about the IFNB directive.

The count repeat macro.

You can use the REPT repeating macro directive to repeat a macro body a specific
number of times, using this syntax:

© REPT expression
macro_body
ENDM

expression tells Turbo Assembler how many times to repeat the macro body specified
between the REPT and END directives. expression must evaluate to a constant and can’t
contain any forward-referenced symbol names. Use ENDM to mark the end of the
repeat block. For example, this code

REPT 4
SHL -ax, 1 -
ENDM

produces the following:

SHL ax, 1
SHL ax, 1
SHL ax,1
SHL ax,1

Another example shows how to use REPT in a macro to generaté numbers that are the
various powers of two:

Chapter 14, Using macros 169

count =0

defname macro num .
Bit&num dd (1 SHL (&num))
endm

rept 32
defname %count
count’ = count + 1
endm

The WHILE directive

You can use the WHILE macro directive to repeat a macro body until a certain
expression evaluates to 0 (false). WHILE has the followmg syntax:

WHILE while_expression
macro_body
ENDM

Turbo Assembler evaluates while _expression before each iteration of the macro body. Be
careful to avoid infinite loops, which can cause Turbo Assembler to run out of memory
or appear to stop functioning. Here’s an example using WHILE:

WHILE 1
IF some_condition
EXITM
ENDIF
:: Do nothing
ENDM ’
; We never make it this far unless some_condition is true

The EXITM directive can be used to break out of a WHILE loop.

\

String repeat macros

You can use the IRP and IRPC string repeéf macro directives to repeat a macro body
once for each element in a list or each character in a string. Each of these directives
requires you to specify a single dummy argument. Here’s the IRP syntax:

IRP dummy_argument, argument_list
macro_body :
ENDM

IRPC has the following syntax:

IRPC dummy_argument, string
macro_body
ENDM

In both cases, dummy argument is the dummy argument used in the macro body.
ENDM marks the end of the macro body.

. For IRP, argument list consists of a list of arguments separated by commas. The
- arguments can be any text, such as symbols, strings, numbers, and so on. The form of

170 Turbo Assembler User’s Guide

Note

each argument in the list is similar to that described for general multiline macro
invocations, described earlier in this chapter. You must always surround the argument
list with angle brackets (< >).

For IRPC, the argument consists of a single string. The string can contain as many
characters as you want.

For each argument or character in a string, Turbo Assembler will include the macro
body in the module, substituting the argument or character for the dummy argument
wherever it finds it. For example,

IRP reg,<ax,bx, cx,dx>
PUSH reg
ENDM

produces the following:

PUSH ax
PUSH bx
PUSH cx
PUSH dx

and the directive IRPC

IRPC LUCKY, 1379
DB LUCKY
ENDM

produces this: -

DB 1
DB 3
DB 7
DB 9

Be careful when using IRPC because Turbo Assembler places each character in the
string “as is” in the expanded macro, so that a string repeat macro such as

IRPC CHAR,HELLO
DB CHAR
ENDM

might not produce DB ‘'H’, ‘E’, 'L’, 'L, ‘0, but instead would produce DBH, E, L, L, O
(where each Jetter is treated as a symbol name).

The % immediate macro directive

 The % immediate macro directive treats a line of text as if it’s a macro body. The dummy

argument names used for the macro body include all of the text macros defined at that
time. Here's its syntax: :

% macro_body_line

macro_body_line represents the macro body to use for the immediate macro expansion;
for example

Chapter 14, Using macros 171

SEGSIZE EQU <TINY>
LANGUAGE EQU <WINDOWS PASCAL>

% MODEL SEGSIZE, LANGUAGE ;Produces MODEL TINY,WINDOWS PASCAL

Including multiline macro expansions in the list file

Multiline rhacro expansions are not normally included in the listing file. However,
Turbo Assembler provides the following directives that let you list macro expansions:

.LALL
SALL
XALL
%MACS
%NOMACS

Refer to Chapter 17 for more details on-these directives.

Saving the current operating state

The PUSHSTATE directive saves the current operating state on an internal stack that is
16 levels deep. PUSHSTATE is particularly useful if you have code inside a macro that
functions independently of the current operatmg state, but does not affect the current
operating mode.

Note that you can use PUSHSTATE outside of macros. This can be useful for include
files.

The state information that Turbo Assembler saves consists of:

current emulation version (for example, T310)
mode selection (for example, IDEAL, MASM, QUIRKS, MASM51)
EMUL or NOEMUL switches
" current processor or coprocessor selection
MULTERRS or NOMULTERRS switches
SMART or NOSMART switches
the current radix
JUMPS or NOJUMPS switches
LOCALS or NOLOCALS switches
the current local symbol prefix

Use the POPSTATE directive to return to the last saved state from the stack.
Here’s an example of how to use PUSHSTATE and POPSTATE.
; PUSHSTATE and POPSTATE examples

ideal
model small
codeseg

172 Turbo Assembler User’s Guide

jumps

locals

Qe

; Show changing processor selection, number radix, and JUMPS mode

nextl:

pushstate

nojumps :

radix 2 ; Set to binary radix

p386

jl nextl ; No extra NOPS after this

nov eax, 100 ; Now 100 means binary 100 or 4 de01ma1

popstate ; Restores JUMPS and non 386 mode.

; Back to jumps directive, no 386, and decimal radix

next2:

@ea:

next3:

@e@a:

nextd:

@eb:

next5:

@eb:

jl next2 ; Three extra NOPS to handle JUMPS
Xor eax, eax ; Not in 386 mode anymore!

nov cx,100 ; Now 100 means decimal 100

pushstate
MULTERRS
nov ax, [bp+abc
popstate

mov ax, [bp+abc
; Show disabling local scoping of symbols
locals

loop @Ga

loop @@a ; Allowed because of scoping of NEXT2: and NEXT3:

pushstate
nolocals

loop @@b

loop @@b ; This will conflict because of nolocals
popstate

; Show changing local symbol prefix and MASM/IDEAL mode
pushstate

masm

locals @$

testproc proc ; MASM mode for procedure declaration

@$end:
@@end:

jmp @$end

nop
ret

testproc endp

testproc2 proc

@$end:

@@end:

jmp @Send

nop ; This doesn't conflict with label in
; TESTPROC

ret ; This label does conflict

Qhapter 14, Using macros

173

testproc2 endp

popstate , '
; Now back to @@ as a local label prefix, and IDEAL mode
testproc2b proc ; This won't work since we are back in
' ; IDEAL mode! '
ret
testproc2b endp ; And this will give an error also.
proc testproc3
jmp @$end?
@Send2: nop
@@end2: ret
endp testproc3
proc testprocd
jmp @$end2
@Send2: nop- ; This label does conflict
@Qend2: ret ; This label doesn't conflict with
; label in TESTPROC3
endp testprocd
end

174 Turbo Assembler User's Guide

Chapter

Using conditional directives

There are two classes of conditional directives: conditional assembly directives and
conditional error-generation directives. With conditional assembly directives, you can
control which code gets assembled in your program under certain conditions.

Conditional error-generation directives let you generate an assembly-time error
message if certain conditions occur. Turbo Assembler displays the error message on the
screen and in the listing file, and it acts like any other error message in that it prevents
the emission of an object file. This chapter describes how you can use the available
conditional directives. ‘

~ General conditional directives syntax

The three types of conditional assembly directives are IFxxx directives, ELSEIFxxx
directives, and ERRxxx directives. Use these directives as you would conditional
statements in high-level languages.

IFxxx conditional assembly directives

You can use IFxxx conditional assembly directives to define blocks of code that are
included in the object file if certain conditions are met (such as whether a symbol is
defined or set to a particular value). Here’s the syntax of a conditional assembly
statement:

IFxxx
true_conditional_body
ENDIF

or

- IFXxX
true_conditional_body
ELSE

Chapter 15, Using conditional directives 175

false_conditional_body
ENDIF

Here, IFxxx represents any of the following conditional assembly directives:

o IF ' e IFNB
e IF1 ' s IFIDN
o JF2 ¢ IFIDNI
e IFDEF ' o IFDIF
¢ IFNDEF IFDIFI
e IFB

«

- Each IFxxx conditional assembly directive specifies a specific condition that evaluates
to either true or false. If the condition is true, the block of assembly code in
true_conditional_body is assembled into the output object file. If the condition evaluates
to false, Turbo Assembler skips over true_conditional_body and does not include it in the
object file. If there is an ELSE directive, the false_conditional_body is assembled into the
object file if the condition is false; it’s ignored if the condition is true. All conditionals are
terminated with an ENDIF directive. :

Note Except for the special cases of IF1 and IF2 (whjch are discussed later), the two bodies of
code are mutually exclusive: Either true_conditional_body will be included in the object
file or false_conditional_body, but never both. Also, if you use the IFxxx...ELSE...ENDIE
form, one of the two bodies will be included in the generated object file. If only the
IFxxx...ENDIF form is used, true_conditional body may or may not be included,
dependmg on the condition.

When you nest IFs and ELSEs, ELSE always pairs with the nearest preceding IF
directive.

In this example, test is a symbol that flags the inclusion of test code (if the symbol is
defined, then test code is generated). color is a symbol set to nonzero if the display is
color, or 0 for a monochrome display.

The actual code generated depends on these Values

IFDEF test ;T if test defined

;test code 1 ; 1f test defined
IF color ;T if color <> 0
_;color code ¢ if color <> 0
ELSE H
;mono code ; if color = 0
ENDIF H
;test code 2 ; 1f test defined
ELSE ;
;non-test code ; if test not defined
ENDIF ‘

176 Turbo Assembler User’s Guide

Note

code: testcode1 test code 1 non-test code . non-test code

mono code color code
test code 2 test code 2

If test is undefined, neither the color nor monochrome debug code based on the value of
color is assembled, as this lies entirely within the conditional assembly for a defined test.

ELSEIFxxx conditional assembly directives

You can use the ELSEIFxxx as a shortcut where multiple IFs are required. ELSEIFxxx is
equivalent to an ELSE followed by a nested IFxxx, but provides more compact code. For
example,

IF mode EQ 0
;mode 0 code
ELSEIF mode LT 5
;mode 1-4 code
ELSE '
;mode 5+ code
ENDIF ‘

compares to

IF mode EQ 0
;mode 0 code
ELSE
IF mode LT 5
;mode 1-4 code
ELSE ,
" imode 5+ code
ENDIF
ENDIF

You can’t use the ELSEIFxxx directives outside of an IFxxx statement.

ERRXxxx error-generation directives

ERRxxx directives generate user errors when certain conditions are met. These
conditions are the same as for the IFxxx conditional assembly directives.

Here’s the general syntax:

ERRxxx [arguments] [messdge]

Chapter 15, Using conditional directives 177

In this case, ERRxxx represents any of the conditional error—generatmg directives (such
as ERRIFB, .ERRB, and so on).

arguments represents arguments that the directive might require to evaluate its
condition. Some directives require an expression, some require a symbol expression,
and some require one or two text expressions. Other directives require no arguments
atall.

If message is included, it represents an optlonal message that’s displayed along with the
error. The message must be enclosed in single (') or double (") quotation marks.

The error-generating directives generate a user error that is displayed onscreen and
included in the listing file (if there is one) at the location of the directive in your code. If
the directive specifies a message, it displays on the same line immediately following the
error. For example, the directive

ERRIFNDEF foo "foonot defined!"
generates the error
 User error: "foo not defined!"

if the symbol foo is not defined when the directive is encountered. No error would be
generated in this case if foo were already defined.

Specific directive descriptions

Unconditional error-generation directives

The unconditional error-genéraﬁon directives are ERR and .ERR. These directives
always generate an error and require no arguments, although they can have an optional
message. You can only use .ERR in MASM mode.

Expressmn-condltlonal directives

These directives provide conditional assembly or error generation based on the results

_ of evaluating a Turbo Assembler expression. For all of these directives, the expression
must evaluate to a constant and can’t contain any forward references. If it evaluates to 0,
Turbo Assembler considers the expression to be false; otherwise, it considers the
expression to be true.

The following table shows conditional assembly directives that use expressions. -

‘Table 15.1 Conditional assembly directives using expressions

%@‘%»z@@%‘{@”w»sﬁ S

Ao Sl
e fg\,z%@%m

PR

S
-

IF expression : . Expression evaluates to true.
IFE Zexpression Expression evaluates to false.
, ELSEIF expfession ‘ * Expression evaluates to true.
ELSEIFE expression Expressiori evaluates to false.

178 Turbo Assembler User’'s Guide .

The following table shows the error-generation directives that use expressions.

Table 15.2 Error-generation directives using expressions

ERRIF expression Expression evaluates to true.
ERRNZ expression Expression evaluates to true (MASM mode only).
ERRIFE expression Expression evaluates to false.
ERRE expression Expression evaluates to false (MASM mode only).

Symbol-definition conditional directives

These directives provide conditional assembly or error generation based on whether
one or more symbols are defined. These symbols are organized into a symbol_expression.

A symbol_expression is an expression made up of symbol names, the Boolean operators
AND, OR, and NOT, and parentheses. In a symbol_expression, each symbol name is
treated as a Boolean value that evaluates to true if the symbol currently exists, or false if
the symbol does not exist (even if it's defined later in the module). Turbo Assembler
combines these values using the Boolean operators to produce a final true or false result.
In its simplest form, a symbol expression consists of a single symbol name and evaluates
to true if the symbol is defined. The parsing and syntax rules for symbol_expression are
similar to those for other Turbo Assembler expressions.

For example, if the symbol foo is defined but the symbol bar is not, the following symbol—
expression evaluations are returned:

Table 15.3 Evaluation of defined and undefined symbol

foo ' True
bar False
not foo -False
not bar ‘ True
foo OR bar True
foo AND bar False
NOT (foo AND bar) True
NOT foo OR NOT bar True (same as “(NOT foo) OR (NOT bar)”)

The directives that control assembly and use symbol_expressions are shown in the
following table.

Table 154 Symbol-expression directives using symbbl_expr

5

IFDEF symbol_expr) symbol_expr evaluates to true.
IFNDEF symbol_expr symbol_expr evaluates to false.
ELSEIFDEF symbol_expr symbol_expr evaluates to true.
ELSEIFNDEEF symbol._expr symbol_expr evaluates to false.

Chapter 15, Using conditional directives 179

The error-generation directives that use symbol_expressions are shown in the following
table.

Table 15.5 Error-generation directives

o

ERRIFDEF symbol_expr symbol_expr eva

.ERRDEF symbol_expr symbol_expr evaluates to true (MASM mode only).
ERRIFNDEF symbol_expr symbol_expr evaluates to false.

ERRNDEF symbol_expr - symbol_expr evaluates to false (MASM mode only).

For example, the following error-generating conditionals are equivalent, and would
generate an error only if both foo and bar are currently defined:

ERRIFDEF foo AND bar .
ERRIFNDEF NOT (foo AND bar)
ERRIFNDEF NOT foo OR NOT bar

Text-string conditional directives

These directives provide conditional assembly or error generation based on the contents
of text_string. A text_string can be either a string constant delineated by brackets (< >) or
a text macro name preceded by a percent sign (%). For example,

<ABC> ; text string ABC
%foo ' ; the contents of text macro foo

Note See Chapter 14 for information about how to define and manipulate text macros.

The conditional assembly directives that use text_string are shown in the following table:

Table 15.6 Conditional assembly directives using text_strings

IFNB txt_str txt. str is not blank.

IFB txt_str txt_str is blank (empty).

IFIDN ¢xt_strl, txt_str2 txt_strl and txt_str2 are identical text strings.

TFIDNI txt_strl, txt_str2 txt_str1 and txt_str2 are identical text strings, ignoring case distinctions.
IFDIF txt_strl, txt_str2 txt_strl'and txt_str2 are different text strings. .

IEDIFI ¢xt_str], txt_str2 txt_strl and txt_str2 are different text strings, ignoring case distinctions.
ELSEIFNB txt_str' txt_str is not blank. '

ELSEIFB txt_str txt_str is blank (empty).

ELSEIFIDN i#xt_strl, txt_str2 txt_strl and txt_str2 are identical text strings.
ELSEIFIDNI ¢xt_strl, txt_str2 txt_str] and txt_str2 are identical text strings, ignoring case distinctions.
ELSEIFDIF fxt_strl, txt_str2 txt_strl and txt_str2 are different text strings.
ELSEIFDIFI txt_strl, txt_stt2 txt_str]l and txt_str2 are different text strings, ignoring case distinctions.

180 Turbo Assembler User's Guide

The error-generation directives that use text_string are shown in Table 15.7:

Table 15.7 Error-generation directives using text_strings

ERRIFNB txt_str txt_str is not blank.

.ERRNB txt_str txt_str is not blank (MASM mode only).

ERRIFB txt_str txt_str is blank (null).

JERRB txt_sir txt_str is blank (MASM mode only).

ERRIFIDN fxf_str1, txt_str2 “txt_str]l and txt_str2 are identical text strings.

.ERRIDN fxt_strl, txt_str2 txt_str]l and txt_str2 are identical text strings (MASM mode only).

ERRIFIDNI txt_strl, txt_str2 txt_str]l and txt_str2 are identical text strings, ignoring case distinctions.

ERRIDNI ¢xt_strl, txt_str2 txt_str]l and txt_str2 are identical text strings, ignoring case distinctions
(MASM mode only).

ERRIFDIF txt_strl, txt_str2 txt_str] and txt_str2 are different text strings.

.ERRDIF txt_strly, txt_str2 txt_str]l and txt_str2 are different text strings (MASM mode only).

ERRIFDIH txt_strl, txt_str2 txt_strl and txt_str2 are different text strings, ignoring case distinctions.

.ERRDIFI txt_strl, txt_str2 txt_strl and txt_str2 are different text strings, ignoring case distinctions
(MASM mode only).

Use these directives to check the arguments passed to macros. (Note that they are not
restricted to use within macros.)

When used within a macro definition, IFB and IFNB can determine whether you've
supplied the proper number of arguments to the macro. When invoking a macro, Turbo
Assembler does not generate an error message if you've supplied too few arguments;
instead, the unspecified arguments are blank. In this way, you can define a macro that
may take arguments. For example, '

load MACRO addr, reg
IFNB <reg>
MOV reg,addr
ELSE
MOV ax,addr
ENDIF
ENDM

You could invoke this example with load test,cx, which would generate amov cx, test
instruction (or invoke simply load test, which will generate a mov ax, test instruction
because the second parameter is blank). Alternately, you could use ERRIFB to generate
an error for a macro invocation with a missing critical argument. Thus,

load MACRO addr
ERRIFB <addr>
MOV ax,addr
ENDM

Chapter 15, Using conditional directives 181

generates an error when invoked with Load, but would not when invoked with load
test.

Assembler-pass conditionals

" These directives provide conditional assembly or error generation based on the current
assembly pass:

o Assembler pass 1
IF2 Assembler pass 2

ERRIF1 - . Assembling pass 1
.ERR1 Assembling pass 1 (MASM mode only)
ERRIF2 Assembling pass 2
ERR2 . Assembling pass 2 (MASM mode only)

Normally, Turbo Assembler acts as a single-pass assembler. If you use Turbo
Assembler’s multi-pass capability (invoked with the /m command-line switch),
multiple passes are used if necessary.

Since there is always at least one pass through the assembler, the IF1 conditional
assembly directive will always assemble the code in its conditional block, and the .ERR1
and ERRIF1 directives will always generate an error (but only during the first assembly

pass).

If you use any of these directives and have not enabled multiple passes, Turbo
Assembler will generate Pass dependent. construction warnings for all of these directives
to alert you to a potentially hazardous code omission. If you enable multiple passes,
Turbo Assembler will perform exactly two passes, and will generate the warning

Maximum compatibility pass was done

Includmg condltlonals in the list file

Normally, false conditional assembly code is not mcluded in a listing file. You can
override this through the use of assembler directives and command-line switches.

Note. See Chapter 2 and Chapter 17 for further information on this subject.

182 Turbo Assembler User's Guide

Chapter

Interfacing with the linker

Modular programs are typically constructed from several independent sections of code,
called modules. The compiler processes each of these modules independently, and the
linker (TLINK) puts the resulting pieces together to create an executable file. The
READMEE file explains where you can find information about how to use TLINK, but it’s
also important to know how to define and include all the files and libraries you might
want prior to linking. This chapter déscribes how to do these things.

Publishing symbols externally

You may find that you'll need to use some variables and procedures in all of your
program modules. Turbo Assembler provides several directives that let you define
symbols and libraries so that you can use them globally, as well as use communal
variables (which the linker allocates space for). You'll also have to be careful about how
you name your symbols, since different languages have particular requirements. The
next few sections discuss these directives and naming requirements.

Conventions for a particular language

When you name symbols that you plan to use externally, remember to use the language
specifier for your particular language. These requirements for variable names are:

® Pascal uppercase characters

o C/C++ name must start with _.
Rest of name should be in lowercase characters (_name).

When you specify a language in the MODEL directive or in the PROC declaration, or
declare the language in a symbol’s PUBLIC declaration, Turbo Assembler will
automatically use the proper naming conventlons for that language, as follows:

Chapter 16, Interfacing with the linker 183

¢ C,CPP, and PROLOG use the C/C++ naming conventions.

* BASIC, PASCAL, FORTRAN, and NOLANGUAGE languages use the Pascal
' naming conventions.

* SYSCALL specifies C calling conventions, but without prepending underscores to
symbol names (like Pascal naming conventions).

¢ STDCALL uses C calhhg conventions for procedures with variable arguments, and
Pascal calling conventions for procedures with fixed arguments. It always uses the C
naming convention.

The /ml switch (described in Chapter 2) tells Turbo Assembler to treat all symbol names
as case sensitive. The /mx switch (also described in Chapter 2) tells the assembler to treat
only external and public symbols as case sensitive, and that all other symbols within the
source file are uppercase. When you use these two switches together, they have a special
meaning for symbols declared as Pascal: These switches cause the symbols in question
to be published as all uppercase to the linker.

Declaring public symbols

When you declare a public symbol, you intend it to be accessible from other modules.
The following types of symbols can be public:

* data variable names
e program labels
* numeric constants defined with EQU

You can use the PUBLIC directive to define public symbols. Its syntax follows:
PUBLIC [language] symbol [, [language] symbol

Notice that in order to use public symbols outside the module where they’re defined,
you must use the EXTRN directive.

language is either C, CPP, PASCAL, BASIC, FORTRAN, PROLOG, or N OLANGUAGE,

and defines any language-specific conventions to be applied to the symbol name. Using

a language in the PUBLIC directive temporarily overrides the current language setting’
- (the default, NOLANGUAGE, or one that you've established with . MODEL).

Turbo Assembler publishes symbol in the object file so that other modules can access it. If
you don’t make a symbol public, you can access it only from the current source file; for
example: :

PUBLIC XYPROC) ;make procedure public
XYPROC PROC NEAR

Declaring library symbols

~ You can also use symbols as dynamic link entry points for a dynamic link library. Use
- the PUBLICDLL directive to declare symbols to be accessible this way. Here's its
syntax: .

PUBLICDLL [language] symbol [, [language] symbol] ...

184 Turbo Assembler User’'s Guide ,

Turbo Assembler publishes symbol in the object file as a dynamic link entry point (using
EXPDEF and IMPDEF records) so that it can be accessed by other programs. language
causes any language-specific conventions to be applied to the symbol name. Valid
language specifiers are C, PASCAL, BASIC, FORTRAN, PROLOG, and
NOLANGUAGE.

Here’s an example of code using PUBLICDLL:

PUBLICDLL XYPROC ;make procedure XYPROC
XYPROC PROC NEAR ;accessible as dynamic link entry point

Defining external symbols

External symbols are symbols that are defined outside a module, that you can use
within the module. These symbols must have been declared using the PUBLIC
directive. EXTRN has the following syntax:

EXTRN definition [,definition] ...
definition describes a symbol and has the following format:

[language] name [[countl]] :complex_type [:count2]

- Defining global symbols

Global symbols function like public symbols, without your having to specify a PUBLIC
or an EXTRN. If the variable is defined in the module, it functions like PUBLIC. If not, it
functions like EXTRN. You can use the GLOBAL directive to define global symbols.
GLOBAL has the same syntax as PUBLIC and EXTRN (see the previous few sections
for syntax descriptions.)

GLOBAL lets you have an INCLUDE file included by all source files; the INCLUDE file
contains all shared data defined as global symbols. When you reference these data items
in each module, the GLOBAL definition acts as an EXTRN directive, describing how
the data is defined in another module.

You must define a symbol as GLOBAL before you first use it elsewhere in your source
file. Also note that each argument of GLOBAL accepts the same syntax as an argument
of EXTRN. :

Here’s an example:

GLOBAL X:WORD, Y:BYTE
X DW 0 ;made public for other module
mov al, Y ;Y is defined as external -

Publishing a procedure prototype

If you're using version T320 or later and you use PROCDESC to describe a procedure
prototype, Turbo Assembler treats the procedure name as if it were a GLOBAL symbol.
- If you've defined the procedure within the module, it is treated as PUBLIC Otherwise,
Turbo Assembler assumes it to be EXTRN.

Chapter 16, Interfacing with the linker 185

You can place PROCDESC directives in an include file. When you reference the
procedure name in the module, PROCDESC acts as an EXTRN directive, describing
how the procedure is defined in another module. If the procedure is defined in the
module, PROCDESC acts as a PUBLIC directive to publish the procedure.

Defining communal variables

Communal variables function like external variables, with a major difference: ,
communal variables are allocated by the linker. Communal variables are actually like
global variables, but you can’t assign them initial values. These uninitialized variables
can be referenced from multiple modules.

One drawback to using communal variables is that there’s no guarantee they’ll appear
© in consecutive memory locations. If this is an issue for you, use global variables instead.

You can use the COMM directive to define a communal variable. Here's its syntax:
comM definition [,definition].

Each definition describes a symbol and has the following format:
[distance] [language] symbolname[[countl]]:complex_type [:count2]

distance is optional and can be either NEAR or FAR. If you don’t specify a distance, it will
default to the size of the default data memory model. If you're not using the simplified
segmentation directives, the default size is NEAR. With the tiny, small, and medlum
models, the default size is also NEAR; all other models are FAR.

language is either C, PASCAL, BASIC, FORTRAN, PROLOG, or NOLANGUAGE.
Using a language in the COMM directive temporarily overrides the current language
setting (default or one established with MODEL). Note that you don’t need to have a
.MODEL directive in effect to use this feature.

symbolname is the symbol that is to be communal and have storage allocated at link time.
symbolname can also specify an array element size multiplier count1 to be included in the
total space computation. If distance is NEAR, the linker uses count1 to calculate the total
size of the array. If distance is FAR, the linker uses count2 to indicate how many
elements there are of size count1 times the basic element size (determmed by type).
count] defaults to a value of 1.

complex_type is the data type of the argument. It can be cithera simple type, or a complex
pointer expression. See Chapter 5 for more information about the syntax of complex

types.

The optional count? specifies how many items this communal symbol defines. If youdo
not specify a count2, a value of 1 is assumed. The total space allocated for the communal
variable is count2 times the length specified by the type field times count1.

In MASM mode, communal symbols declared outside of any segment are presumed to
be reachable using the DS register, which may not always be a valid assumption. Make
sure that you either place the correct segment value in DS or use an explicit segment
override when referring to these variables. In Ideal mode, Turbo Assembler correctly
checks for whether the communal variable is addressable, using any of the current
segment registers as described with the ASSUME directive.

186 Turbo Assembler User’'s Guide

Here’s an example using the COMM directive.

COMM buffer:BYTE:512 ;512 bytes allocated at link time
COMM abc[41]:WORD:10 ;1820 bytes (10 items of 41 words
;each) allocated at link time
COMM FAR abc[41]:WORD:10 ;10 elements of 82 bytes (2 bytes
-~ ;times 41 elements) allocated at
;link time

Including a Iibrary

For the times when you know that your source file will always need to use routines in a
specified library, you can use the INCLUDELIB directive. Using INCLUDELIB also
prevents you from having to remember to specify the library name in the linker
commands; INCLUDELIB tells the linker to include a partlcular hbrary The
appropriate syntaxes for this directive are:

Ideal mode:

INCLUDELIB "filename" ;note the quotes!
MASM mode:

INCLUDELIB filename

filename is the name of the library you want the linker to include at link time. If you don’t
supply an extension with filename, the linker assumes .LIB.

Here’s an example:

INCLUDELIB "diskio" ;includes DISKIO.LIB

The ALIAS directive

Turbo Assembler supports ALIAS to allow the association of an alias name with a
substitute name. When the linker encounters an alias name, it resolves the alias by
referring to the substitute name.

Chapter 16, Interfacing with the linker 187

188 Turbo Assembler User’'s Guide

Chapter

Generating a listing

A listing file is useful if you want to see exactly what Turbo Assembler generates when
each instruction or directive is assembled. The file is basically the source file annotated
with a variety of information about the results of the assembly. Turbo Assembler lists
the actual machine code for each instruction, along with the offset in the current
segment of the machine code for each line. What's more, Turbo Assembler provides
tables of information about the labels and segments used in the program, including the
value and type of each label, and the attributes of each segment. For additional
information on creating listings, refer to the /1 and /la command-line switches

- documented in Chapter 2.

Turbo Assembler can also, on demand, generate a cross-reference table for all labels
used in a source file, showing you where each label was defined and where it was
referenced. See the /c command-line option in Chapter 2 for more information on
generating cross-reference tables.

Listing format

The tdp of each page of the listing file displays a header consisting of the version of
Turbo Assembler that assembled the file, the date and time of assembly, and the page
number within the listing. :

There are two parts to the listing file: the annotated source code listing and the symbol
tables. The original assembly code is displayed first, with a header containing the name
of the file where the source code resides. The assembler source code is annotated with
information about the machine code Turbo Assembler assembled from it. Any errors or
warnings encountered during assembly are inserted immediately following the line
they occurred on.

The code lines in the listing file follow this format:
<depth> <line number> <offset> <machine code> <source> -

<depth> mdlcates the level of nesting of Include files and macros w1thm your listing file.

Chapter 17, Generating a listing 189

<line number> is the number of the line in the listing file (not including header and title
lines). Line numbers are particularly useful when the cross-reference feature of Turbo
Assembler, which refers to lines by line number, is used. Be aware that the line numbers
in <line number> are not the source module line numbers. For example, if a macro is

- expanded or a file is included, the line-number field will continue to advance, even
‘though the current line in the source module stays the same. To translate a line number
(for example, one that the cross-referencer produced) back to the source file, you must
look up the line number in the listing ﬁle and then find that same line (by eye, not by
number) in the source file.

<offset> is the offset in the current segment of the start of the machine code generated by -

the associated assembler source line. °

<machine code> is the actual sequence of hexadecimal byte and word values thatis
assembled from the associated assembler source line.

- <source> is simply the original assembler line, comments and all. Some assembler lines,
suchas those that contain only comments, don’t generate any machine code; these lines
have no <offset> or <machine code> fields, but do have a line number.

General list directives

There are a variety of list directives that let you control what you want in your listing
file. The general list directives follow:

.LIST ;MASM mode only

XLIST ;MASM mode only

%LIST :

%NOLIST

%CTLS ,

%NOCTLS ‘ \ ’

%SYMS

%NOSYMS

The %LIST directive shows all of the source lines in your listing. This is the default

condition when you create a listing file. To turn off the display of all the source lines, use
the %NOLIST directive. Here’s an example: -

SNOLIST sturn off listing
INCLUDE MORE .INC
$LIST - ;turn on listing

The .LIST and .XLIST directives function the same way as %LIST and %NOLIST.
Here’s an example:

LLIST

jnp xyz : ;this line always listed
JXLIST . '
add dx,ByteVar ;not in listing

You can use the %CTLS and %NOCTLS directives to control the listing directives.
%CTLS causes listing control d]rectlves (such as %LIST, %INCL, and so on) to be

190 Turbo Assembler User's Guide

placed in the listing file; normally, they are not listed. It takes effect on all subsequent
lines, so the %CTLS directive itself will not appear in the listing file. %NOCTLS
reverses the effect of a previous %CTLS directive. After issuing %NOCTLS, all
subsequent listing-control directives will not appear in the listing file. (%NOCTLS is the
default listing-control mode that Turbo Assembler uses when it starts assembling a
source file.); for example,

3CTLS ,
$NOLIST this will be in listing file
%NOCTLS

$LIST ;this will not appear in listing

You can use the %SYMS and %NOSYMS directives to cause the symbol table to either
appear or not to appear in your listing file (the default is for it to appear). The symbol
table will appear at the end of the listing file. :

Here’s the syntax for %SYMS:
3SYMS

Here’s the syntax for %NOSYMS:
NOSYMS

Include file list directives

In the event that you might want to list the include files in your listing file, you can turn
this capability on and off using the %INCL and %NOINCL directives. By default,
INCLUDE files are normally contained in the listing file. % NOINCL stops all
subsequent INCLUDE files source lines from appearing in the listing until a %INCL is
enabled. This is useful if you have a large INCLUDE file that contains things such asa
lot of EQU definitions that never change

Here’s an example:

$INCL

INCLUDE DEFS.INC ;contents appear in listing
SNOINCL

INCLUDE DEF1.INC ;contents don't appear

Conditional list directives

When you have conditional blocks of code in your source files, you might not want all of
that information to appear in the listing file. Showing conditional blocks can be very
helpful in some instances when you want to see exactly how your code is behaving.
Turbo Assembler provides the following conditional hst directives:

¢ .LFCOND ;MASM mode only
* .SFCOND ;MASM mode only
¢ .TFCOND ;MASM mode only
* %CONDS ’

* %NOCONDS

Chapter 17, Generating“a listing” 191

Turbo Assembler does not usually list conditional blocks.

The %CONDS directive displays all statements in conditional blocks in the listing file.
This includes the listing of false conditional blocks in assembly listings. The .LFCOND
directive functions the same as %CONDS. %NOCONDS prevents statements in false
conditional blocks from appearing in the listing file. The SFCONDS directive functions
exactly the same as %NOCOND. If you want to toggle conditional block-listing mode,
use the TFCOND directive.

The first TFECOND that Turbo Assembler encounters enables a listing of condltlonal
blocks. If you use the /X command-line option, conditional blocks start off being listed,
and the first TFCOND encountered disables listing them. Each time . TFCOND appears
in the source fﬂe the state of false conditional listings is reversed.

~ Toinvoke any of these directives, place it by itself on a'line in your code. They will affect
the cond1t10na1 blocks that immediately follow them.

Macro list directives

Macro expansions are not normally included in listing files. Having this information in
listing files can be very helpful when you want to see what your code is doing. Turbo
Assembler prov1des several directives that let turn this feature on and off. They are: '

e .LALL MASM mode only
s SALL ;MASM mode only
e XALL ;MASM mode only
* %MACS

* %NOMACS

The %MACS directive enables the listing of macro expansions. The .LALL directive
does the same thing, but only works in MASM mode. You can use these macros to
toggle macro expansion in listings on.

%MACS has the followmg syntax:
MACS
You can specify .LALL as follows:
IALL ‘

If you want to suppress the listing of all statements in macro expansions, use either the
%NOMACS or .SALL directives. Note that you can use these directives to toggle macro
expansion in listings off.

%NOMACS has the following syntax:
$NOMACS

You can specify .SALL as follows:
.SALL '

The XALL directive, which is only available in MASM mode, lets you list only the
macro expansions that generate code or data. XALL has the syntax .XALL.

192 Turbo Assembler User’'s Guide

Cross-reference list directives

The symbol table portion of the listing file normally tells you a great deal about labels,
groups, and segments, but there are two things it doesn’t tell you: where labels, groups,
and segments are defined, and where they’'re used. Cross-referenced symbol
information makes it easier to find labels and follow program execution when
debugging a program.

There are several ways of enabling cross-referencing information in your listing file. You
can use /c to produce cross-referencing information for an entire file (see Chapter 2 for
details), or you can include directives in your code that let you enable and disable
cross-referencing in selected portions of your listings. These directives are:

.CREF ;MASM mode only
XCREF ;MASM mode only
%CREF

%NOCREF

%CREFALL

%CREFREF

%CREFUREF

Turbo Assembler includes cross referencing information in the listing file. In addition,
you can specify a .XRF file in your Turbo Assembler command to get a separate .XRF
file.

The %CREF and .CREF directives let you accumulate cross-reference information for all
symbols encountered from that point forward in the source file. %CREF and .CREF
reverse the effects of any %NOCREF or .XCREF directives, which inhibit the collection
of cross-reference information.

%CREF and .CREF have the following syntaxes:
$CREF

or
.CREF

%NOCREF and .XCREF have the following syntaxes:
%NOCREF [symbol, ...]

or
.XCREF [symbol, ...]

If you use %NOCREF or .XCREF alone without specifying any symbols, cross-
referencing is disabled completely. If you supply one or more symbol names, cross-
referencing is disabled only for those symbols.

The %CREFALL directive lists all symbols in the cross reference. % CREFALL reverses
the effect of any previous %CREFREF (which disables listing of unreferenced symbols
in the cross reference), or % CREFUREF (which lists only the unreferenced symbols in
the cross reference). After issuing %CREFALL, all subsequent symbols in the source file

'

Chapter 17, Generating a listing 193

will appear in the cross—reference listing. This is the default mode that Turbo Assembler
uses when assembling your source file.

The syntax for % CREFALL, %CREFREF, and %CREFUREF follows:

%CREFALL
%CREFREF
%CREFUREF

Changing list format parameters

\

The listing format control directives alter the format of the listing file. You can use these
directives to tailor the appearance of the listing file to your tastes and needs. -

The PAGE directive sets the listing page height and width, and starts new pages. PAGE
only works in MASM mode. PAGE has the following syntax:

PAGE [rows] [,cols]
PAGE + ;

rows specifies the number of lines that will appear on each listing page. The minimum is
10 and the maximum is 255. cols specifies the number of columns wide the page will be.
The minimum width is 59; the maximum is 255. If you omit either rows or cols, the
current setting for that parameter will remain unchanged. To change only the number of
columns, precede the column width with a comma; otherwise, you'll end up changing
the number of rows instead.

If you follow the PAGE directive with a plus sign (+), a new pége starts, the section
number is incremented, and the page number restarts at 1. If you use PAGE with no
arguments, the listing resumes on a new page, with no change in section number.

The %PAGESIZE directive functions exactly like the PAGE directive, except that it
doesn’t start a new page and that it works in both MASM and Ideal modes.
%PAGESIZE has the followmg syntax

%PAGESIZE [rows] [,cols]

%NEWPAGE functions like PAGE, with no arguments. Source lines appearing after
%NEWPAGE will begin at the start of a new page in the listing file. % NEWPAGE has
the following syntax:

/NEWPAGE

The %BIN directive sets the width of the object code f1eld in the listing file. %BIN has
the followmg syntax

oBIN size

size is a constant. If you don’t use this directive, the mstructlon opcode field takes up 20
columns in the listing file. For example,

J%BIN 12 ;set listing width to 12 columis

194 Turbo Assembler User's Guide

%DEPTH sets the size of the depth field in the listing file. %DEPTH has the following
syntax:

%DEPTH width
width specifies how many columns to reserve for the nesting depth field in the listing
file. The depth field indicates the nesting level for INCLUDE files and macro
expansions. If you specify a width of 0, this field does not appear in the listing file.

Usually, you won't need to specify a width of more than 2, since that would display a
depth of up to 99 without truncation. The default width for this field is 1 column.

~ %LINUM sets the width of the line-number field in the listing file. %LINUM has the
following syntax:

$LINUM size

%LINUM lets you set how many columns the line numbers take up in the listing file.
size must be a constant. If you want to make your listing as narrow as possible, you can
reduce the width of this field. Also, if your source file contains more than 9,999 lines,
you can increase the width of this field so that the line numbers are not truncated. The
default width for this field is 4 columns.

%TRUNC truncates listing fields that are too long %TRUNC has the following syntax:
$TRUNC

The object code field of the listing file has enough room to show the code emitted for
most instructions and data allocations. You can adjust the width of this field with %BIN.
If a single source line emits more code than can be displayed on a single line, the rest is
normally truncated and therefore not visible. When you want to see all the code
generated, use %NOTRUNC (which word-wraps too-long fields in the listing file).
Otherwise, use %TRUNC. You can use these directives to toggle truncation on and off.

%NOTRUNC has the following syntax:
g Syn
$NOTRUNC

%PCNT sets the segment:offset field width in the listing file. % PCNT has the followmg
syntax:

%PCNT width

where width is the number of columns you want to reserve for the offset within the
current segment being assembled. Turbo Assembler sets the width to 4 for ordinary 16-
bit segments and sets it to 8 for 32-bit segments used by the 386 processor. %PCNT
overrides these defaults.

The TITLE directive, which you can use only in MASM mode, sets the title in the listing
file. TITLE has the following syntax

TITLE text

The title fext appears at the top of each page, after the name of the source file and before
any subtitle set with the SUBTTL directive. You can use TITLE as many times as you
want.

‘Chapter 17, Generating a listing 195

%TITLE functions like TITLE, but you can use it for either MASM or Ideal mode.
, %TITLE has the following syntax:

ﬁTITLE "text"

SUBTTL, which only Works in MASM mode, sets the subtitle in the hstmg file. SUBTTL
has the following syntax:

SUBTTL text

The subtitle appears at the top of each page, after the name of the source file, and after
any title set with TITLE.

You can place as many SUBTTL directives in your program as you wish. Each directive -
changes the subtitle that will appear at the top of the next listing page.

~ %SUBTTL functions like SUBTTL, but it works in both MASM and Ideal modes.
%SUBTTL has the following syntax:

$SUBTTL "text"
%TABSIZE sets the tab column width in the listing file. % TABSIZE has the followmg
syntax:

$TABSIZE width

width is the number of columns between tabs in the listing file. The default tab column
width is 8 columns.

You can use the %TEXT directive to set the width of the source field in the listing file.
It has the following syntax:

$TEXT width

width is the number of columns to use for source lines in the listing file. If the source line
is longer than this field, it will either be truncated or wrapped to the following line,
depending on whether you've used %TRUNC or %NOTRUNC.

You can use the %PUSHLCTL directive to save the listing controls on a 16-level stack.
It only saves the listing controls that can be enabled or disabled (%INCL, %NOINCL,
and so on). The listing field widths are not saved. This directive is particularly useful in
macros, where you can invoke special listing modes that disappear once the macro
expansion terminates.

%PUSHLCTL has the fo]lowmg syntax: -
$PUSHLCTL

Conversely, the %POPLCTL directive reca]ls listing controls from the stack. Here’s its
syntax: ,
$POPLCTL

%POPLCTL resets the listing controls to the way they were when the last
%PUSHLCTL directive was issued. None of the listing controls that set field width are
restored (such as %DEPTH, %PCNT). ‘

196 Turbo Assembler User’s Guide

Chapter

Interfacing Turbo Assembler with
Borland C++

While many programmers can—and do—develop entire programs in assembly
language, many others prefer to do the bulk of their programming in a high-level -
language, dipping into assembly language only when low-level control or very high-
performance code is required. Still others prefer to program primarily in assembler,
taking occasional advantage of high-level language libraries and constructs.

Borland C++ lends itself particularly well to supporting mixed C++ and assembler code
on an as-needed basis, providing not one but three mechanisms for integrating
assembler and C++ code. The inline assembly feature of Borland C++ provides a quick
and simple way to put assembler code directly into a C++ function. You can assemble
the inline code with Turbo Assembler or use Borland C++’s built-in assembler. For
further information about using in-line assembly in Borland C++ or the built-in
assembler, see the Borland C++ Programmer’s Guide. For those who prefer to do their
assembler programming in separate modules written entirely in assembly language,
Turbo Assembler modules can be assembled separately and linked to Borland C++
code.

First, we'll discuss the details of linking separately assembled Turbo Assembler
modules to Borland C++, and explore the process of calling Turbo Assembler functions
from Borland C++ code. Then, we'll cover calling Borland C++ functions from Turbo
Assembler code.

Calllng Turbo Assembler functions from Borland C++

C++ and assembler have traditionally been mixed by writing separate modules entirely
in C++ or assembler, compiling the C++ modules and assembling the assembler
modules, and then linking the separately compiled modules together. Borland C++
modules can readily be linked with Turbo Assembler modules in this fashion.

Chapter 18, Interfacing Turbo Assembler with Borland C++ . 197

The executable file is produced from mixed C++ and assembler source files. You start
this cycle with

bee filenaml.cpp filenam2.asm

This instructs Borland C++ to first corhpile FILENAM1.CPP to FILENAM1.0BJ, then
invoke Turbo Assembler to assemble FILENAM2.ASM to FILENAM2.0B]J, and finally
invoke TLINK to link FILENAM1.0B]J and FILENAM2.0BJ into FILENAM1.EXE.

Separate compilation is very useful for programs that have sizable amounts of
assembler code, since it makes the full power of Turbo Assembler available and allows
you to do your assembly language programming in a pure assembler environment,
without the asm keywords, extra compilation time, and C++-related overhead of inline
assembly. :

There is a price to be paid for separate compilation: The assembler programmer must
attend to all the details of interfacing C++ and assembler code. Where Borland C++
handles segment specification, parameter-passing, reference to C++ variables, register
variable preservation, and the like for inline assembly, separately compiled assembler
functions must explicitly do all that and more.

There are two major aspects to interfacing Borland C++ and Turbo Assembler. First, the
various parts of the C++ and assembler code must be linked together properly, and
functions and variables in each part of the code must be made available to the rest of the
code as needed. Second, the assembler code must properly handle C-style function calls.
This includes accessing passed parameters, returning values, and following the register
preservation rules required of C++ functions.

Let’s start by examining the rules for linking together Borland C++ and Turbo
Assembler code. :

The framework

In order to link Borland C++ and Turbo Assembler modules together, three things must
happen:

* The Turbo Assembler modules must use a Borland C++-compatible segment-naming
scheme.

* The Borland C++ and Turbo Assembler modules must share appropriate function
and variable names in a form acceptable to Borland C++.

¢ TLINK must be used to combine the modules into an executable program.

This says nothing about what the Turbo Assembler modules actually do; at this point,
we’re only concerned with creating a framework within which C++-compatible Turbo
Assembler functions can be written. : :

Linking assembly language modules with C++

Type-safe linkage is an important concept in C++. The compiler and linker must work
together to ensure function calls between modules use the correct argument types.

A process called name-mangling provides the necessary argument type information.

~198 Turbo Assembler User’'s Guide

Name-mangling modifies the name of the function to indicate what arguments the
function takes.

When you build a program entirely in C++, name-mangling occurs automatically and
transparently. However, when you write a module in assembly language to be linked
into a C++ program, you must be sure the assembler module contains mangled names.
You can do this easily by writing a dummy function in C++ and compiling it to
assembler. The .ASM file that Borland C++ generates will have the proper mangled
names. You use these names when you write the real assembler module.

For example, the following code fragment defines four different versions of the function
named test: '

void test()
{
}

void test(int)
{
}

void test(int, int
{
}

void test(float,.double)
{
}

If the code is compiled using the -S option, the compiler produces an assembly language
output file ((ASM). This is how the output looks (edited to remove extraneous details):

; void test()
Qtest$qv proc near
push bp
mov bp, sp
pop bp
ret
@test$qv endp
; void test(int)
@test$qi proc near
push bp
mov bp, sp
pop bp
ret
‘Btest$qi endp -
; void test(int, int)
@testSqii- proc near
’ push bp
mov bp, sp
pop bp
ret
@test$qii endp
; void test(float, double)

Chapter 18, Interfacing Turbo Assembler with Borland C++

199

@test$qfd " proc near

push bp
mov . . bp,sp
pop bp
ret

@test$qgfd endp

Using Extern “C” to simplify linkage

If you prefer, you can use unmangled names for your assembler functions, instead of
trying to figure out what the mangled names would be. Using unmangled names will
protect your assembler functions from possible future changes in the name-mangling
algorithm. Borland C++ allows you to define standard C function names in your C++
programs. ‘ ‘

Look at this example:

extern "C" {
int add(int *a,int b);
¥

Any functions declared within the braces will be given C style names. Here is the
matching assembler procedure definition.

public _add
_add proc

Declaring an assembler function with an extern “C” block can save you the trouble of
determining what the mangled names will be. Your code will be more readable, also.

Memory models and segments

For a given assembler function to be callable from C++, that function must use the same
memory model as the C++ program and must use a C++-compatible code segment.
Likewise, in order for data defined in an assembler module to be accessed by C++ code
(or for C++ data to be accessed by assembler code), the assembler code must follow C++
data segment-naming conventions.

Memory models and segment handling can be quite complex to implement in
assembler. Fortunately, Turbo Assembler does virtually all the work of implementing
Borland C++-compatible memory models and segments for you in the form of the
simplified segment directives. :

Simplified segment directives and Borland C++ v

The .MODEL directive tells Turbo Assembler that segments created with the simplified
segment directives should be compatible with the selected memory model (tiny, small,
compact, medium, large, huge, or tchuge), and controls the default type (near or far) of
procedures created with the PROC directive. Memory models defined with the
.MODEL directive are compatible with the equivalently named Borland C++ models
except that you should use Turbo Assembler’s tchuge memory model when you want
to support Borland C++’s huge memory model. (The huge memory model is more
appropriate for compatibility with other C compilers.) You should use the FARSTACK
modifier with the MODEL directive for large model, so the stack does not become a
part of DGROUP.

200 Turbo Assembler User’s Guide

Finally, the .CODE, .DATA, .DATA?, FARDATA, and .FARDATA? simplified
segment directives generate Borland C++-compatible segments. (Don’t use .DATA?
or FARDATA? in huge model as they do not exist in Borland C++.)

For example, consider the following Turbo Assembler module, named
DOTOTAL.ASM:

; select Intel-convention segment ordering
.MODEL small ;select small model (near code and data)

.DATA ;TC-compatible initialized data segment

EXTRN _Repetitions:WORD ;externally defined

PUBLIC _StartingValue ;available to other modules
_StartingValue DW 0

.DATA? ;TC-compatible uninitialized data segment
RunningTotal DW ? '

.CODE ;TC-compatible code segment

PUBLIC _DoTotal)
_DoTotal PROC ;function (near-callable in small model)

nov cx, [_Repetitions] +# of counts to do

mov ax, [_StartingValuel

mov [RunningTotal] ,ax ;set initial value
TotalLoop:)

inc [RunningTotal] ;RunningTotal++

loop TotalLoop

nov ax, [RunningTotal] ;return final total

ret
_DoTotal ENDP

END

The assembler procedure _DoTotal is readily callable from a small-model Borland C++
program with the statement

DoTotal();

Note that _DoTotal expects some other part of the program to define the external
variable Repetitions. Similarly, the variable StartingValue is made public, so other
portions of the program can access it. The following Borland C++ module,
SHOWTOT.CPP, accesses public data in DOTOTAL.ASM and provides external data
to DOTOTAL.ASM:

#include <stdio.h>

extern "C" int DoTotal (void);
extern int StartingValue;

int Repetitions;
int main{)

{
© Repetitions = 10;
StartingValue = 2;

printf("%d\n", DoTotal());
return 0;

Chapter 18, interfacing Turbo Assembler with Borland C++ 201

StartingValue doesn’t have to go in the Extern “C” block because variable names are not
mangled.

To create the executable program SHOWTOT.EXE from SHOWTOT.CPP and
DOTOTAL.ASM, enter the command line

bee showtot.cpp dototal.asm

If you wanted to link _DoTotal to a compact-model C++ progrem, you would simply
change the MODEL directive to .MODEL COMPACT. If you wanted to use a far
segment in DOTOTAL.ASM, you could use the FARDATA directive.

In short, generating the correct segment ordering, memory model, and segment names
for linking with Borland C++ is easy with the simplified segment directives.

Old-style segment directives and Borland C++

Simply put, it’s a nuisance interfacing Turbo Assembler code to C++ code using the old-
style segment directives. For example, if you replace the simplified segment directives
in DOTOTAL.ASM with old-style segment directives, you get

DGROUP ~ GROUP _DATA, _BSS
_DATA SEGMENT WORD PUBLIC 'DATA'
EXTRN _Repetitions:WORD ;externally defined-

PUBLIC _StartingValue ;available to other modules
_Startingvalue DW 0 o o
_DATA ENDS)
_BSS SEGMENT WORD PUBLIC 'BSS' :
RunningTotal ~ DW ?
_BSS ENDS

_TEXT SEGMENT BYTE PUBLIC 'CODE')
ASSUME cs:_TEXT,ds:DGROUP, ss: DGROUP
PUBLIC _DoTotal

_DoTotal PROC ;function (near-callable.
; in small model)
-mov . ¢x, [_Repetitions] ;# of counts to do.
. mov - ax, [_StartingValue]
mov [RunningTotal],ax ;set initial value
TotalLoop: ,))
inc [RunningTotall] ‘;RunningTotal++
loop TotalLoop \
mov - ax, [RunningTotal] ;return final total
‘ret
_DoTotal ENDP
_TEXT ENDS
) END

The version with old-style segment directives is not only longer, but also much harder
to read and harder to change to match a different C++ memory model. When you're
interfacing to Borland C++, there’s generally no advantage to using the old-style
segment directives. If you still want to use the old-style segment directives when
interfacing to Borland C++, you'll have to identify the correct segments for the memory
model your C++ code uses.

202 Turbo Assemblier User’s Guide

Note

The easy way to determine the appropriate old-style segment directives for linking with
a given Borland C++ program is to compile the main module of the Borland C++
program in the desired memory model with the -S option. This causes Borland C++ to
generate an assembler version of the C++ code. In that C++ code, you'll find all the old-
style segment directives used by Borland C++; just copy them into your assembler code.

You can also find out what the appropriate old-style directives are by compiling as you
normally would (without the -S option) and then using TDUMP, a utility that comes
with Turbo Assembler, to display all the segment definition records. Use this command
line:

tdump -0Isegdef module.obj

Segment defaults: When is it necessary to load segments?

Under some circumstances, your C++-callable assembler functions might have to load
DS and/or ES in order to access data. It’s also useful to know the relationships between
the settings of the segment registers on a call from Borland C++, since sometimes
assembler code can take advantage of the equivalence of two segment registers. Let’s
take a moment to examine the settings of the segment registers when an assembler
function is called from Borland C++, the relationships between the segment registers,
and the cases in Wthh an assembler function might need to load one or more segment
registers. '

On entry to an assembler function from Borland C++, the CS and DS registers have the
following settings, depending on the memory model in use (SS is always used for the
stack segment, and ES is always used as a scratch segment register):

Table 18.1 Register settings when Borland C++ enters assembler

Tiny _TEXT DGROUP
Small _TEXT DGROUP
Compact _TEXT DGROUP
Medium filename_TEXT DGROUP
Large filename_TEXT DGROUP
Huge filename_TEXT calling_filename_DATA

filename is the name e of the assembler module, and calling_filename is the name of the
module calling the assembler module.

In the tiny model, _TEXT and DGROUP are the same, so CS equals DS on entry to
functions. Also in the tmy, small, and medium models, SS equals DS on entry to
functions.

So, when is it necessary to load a segment register in a C++-callable assembler function?
First, you should never have to (or want to) directly load the CS or SS registers. CS is
automatically set as needed on far calls, jumps, and returns, and can’t be tampered with
otherwise. SS always points to the stack segment, which should never change during
the course of a program (unless you're writing code that switches stacks, in which case
-you bad best know exactly what you're doing).

Chapter 18, Interfacing Turbo Assembler with Borland C++ 203

ES is always available for you to use as you wish. You can use ES to point at far data, or
you can load ES with the destination segment for a string instruction.

That leaves the DS register; in all Borland C++ models other than the huge model, DS
points to the static data segment (DGROUP) on entry to functions, and that’s generally
where you'll want to leave it. You can always use ES to access far data, although you
may find it desirable to instead temporarily point DS to far data that you're going to .
access intensively, thereby saving many segment override instructions in your code. For
example, you could access a far segment in either of the following ways:

. FARDATA . . o

Counter DW 0
.CODE
PUBLIC _AsmFunction
_AsmFunction PROC
mov ax,@fardata
mov es,ax ;point ES to far data segment
' inc es: [Counter] ;increment counter variable
_AsmFunction ENDP
or
.FARDATA
Counter DW 0
.CODE .
PUBLIC _AsmFunction
_AsmFunction PROC
ASSUME ds:@fardata
mov ax,@fardata)
mov ds, ax ;point DS to far data segment
inc [Counter] ;increment counter variable
ASSUME ds:@data
mov ax,@data
mov ds,ax ;point DS back to DGROUP
_AsmFunction ENDP

The second version has the advantage of not requiring an ES: override on each memory
access to the far data segment. If you do load DS to point to a far segment, be sure to -
restore it like in the preceding example before attempting to access any variables in
-DGROUP. Even if you don’t access DGROUP in a given assembler function, be sure
. to restore DS before exiting since Borland C++ 2 assumes that functlons leave DS
unchanged.

204 Turbo ASSembler‘Usefs Guide

Handling DS in C+-+-callable huge model functions is a bit different. In the huge model,
Borland C++ doesn’t use DGROUP at all. Instead, each module has its own data
segment, which is a far segment relative to all the other modules in the program; there is
‘no commonly shared near data segment. On entry to a function in the huge model, DS
should be set to point to that module’s far segment and left there for the remainder of
the function, as follows:

. FARDATA

.CODE

PUBLIC_AsmFunction
_AsmFunction PROC

push ds

mov ax,@fardata

mov ds,ax

pop ds
ret
_AsmFunction ENDP

Note that the original state of DS is preserved with a PUSH on entry to AsmFunction and
restored with a POP before exiting; even in the huge model, Borland C++ requires all
functions to preserve DS.

Publics and externals

Turbo Assembler code can call C++ functions and reference external C++ variables.
Borland C++ code can likewise call public Turbo Assembler functions and reference
public Turbo Assembler variables. Once Borland C++-compatible segments are set up in
Turbo Assembler, as described in the preceding sections, only the following few simple
rules are necessary to share functions and variables between Borland C++ and

Turbo Assembler.

Underscores and the C language

If you are programming in C or C++, all external labels should start with an underscore
character (_). The C and C++ compilers automatically prefix an underscore to all
function and external variable names when they’re used in C/C++ code, so you only
need to attend to underscores in your assembler code. You must be sure that all
assembler references to C and C++ functions and variables begin with underscores, and
you must begin all assembler functions and variables that are made public and
referenced by C/C++ code with underscores.

For example, the following C code (link2asm.cpp),

int ToggleFlag();

int Flag;
" main()

{
ToggleFlag();
}

Chapter 18, Interfacing Turbo Assembier with Borland C++ ‘205

lmks properly with the following assembler program (CASML]NK ASM):

.MODEL small

.DATA)

EXTRN _Flag:WORD

.CODE '

PUBLIC _ToggleFlag
_ToggleFlag PROC

cmp, {_Flag],0 ;is the flag reset?
jz SetTheFlag . ;yes, set it
mov [_Flag],0 .~ ;no, reset it

jmp short EndToggleFlag . ;done

SetTheFlag:
) mov - [_Flag],l ;set flag
EndToggleFlag:
: ret .
_ToggleFlag ENDP
END

Note Labels not referenced by C code, such as SetTheFlag, don’t need leading underscores.

When you use the C language specifier in your EXTRN and PUBLIC directives, as in
the following program (CSPEC.ASM),

.MODEL small

.DATA

EXTRN C Flag:word

.CODE

PUBLIC C ToggleFlag
ToggleFlag PROC

cmp [Flag],0
jz SetTheFlag
mov [Flag],0
jmp short EndToggleFlag
~ SetTheFlag: ‘
mov [Flag],1
EndToggleFlag:
ret 4
© _ ToggleFlag -~ ' ENDP
END

Turbo Assembler causes the underscores to be prefixed automatically when Plug and
ToggleFlag are published in the object module.

The S|gn|f|cance of uppercase and lowercase
Turbo Assembler is normally insensitive to case when handling symbohc names,
making no distinction between uppercase and lowercase letters. Since C++ is case-

sensitive, it’s desirable to have Turbo Assembler be case-sensitive, at least for those
symbols that are shared between assembler and C++: /ml and /mx make this possible.

The /ml command-line switch causes Turbo Assembler to become case-sensitive for all
symbols. The /mx command-line switch causes Turbo Assembler to become case-
sensitive for public (PUBLIC), external (EXTRN), global (GLOBAL), and communal

206 Turbo Assembler User's Guide

(COMM) symbols only. When Borland C++ calls Turbo Assembler, it uses the /ml
switch. Most of the time you should use /ml also.

Label types '

While assembler programs are free to access any variable as data of any size (8 bit, 16 bit,
32 bit, and so on), it is generally a good idea to access variables in their native size. For
instance, it usually causes problems if you write a word to a byte variable:

SmallCount DB 0

mov WORD PTR [SmallCount],0ffffh

Consequently, it’s important that your assembler EXTRN statements that declare
external C++ variables specify the right size for those variables, since Turbo Assembler
has only your declaration to go by when deciding what size access to generate to a C++
variable. Given the statement

* char ¢

in a C++ program, the assembler code
EXTRN ¢ :WORD
inc ic]
could lead to problems, since every 256th time the assembler code incremented ¢, ¢

would turn over. And, since ¢ is erroneously declared as a word variable, the byte at
OFFSET c + 1is incorrectly incremented, and with unpredictable results.

Correspondence between C++ and assembler data types is as follows:

gr
char byte
enum word
unsigned short . word
short - word
unsigned int word
int word
unsigned long dword
long ‘ dword
float dword
double qword
long double tbyte |
near * word
far * dword

Chapter 18, Interfacing Turbo -Assembler with Borland C++ 207

Far externals ,

If you're using the simplified segment directives, EXTRN declarations of symbols in
far segments must not be placed within any segment, since Turbo Assembler considers
symbols declared within a given segment to be associated with that segment. This has
its drawbacks: Turbo Assembler cannot check the addressability of symbols declared
EXTRN outside any segment, and so can neither generate segment overrides as needed
‘nor inform you when you attempt to access that variable when the correct segment is
notloaded. Turbo Assembler still assembles the correct code for references to such
external symbols, but can no longer provide the normal degree of segment
addressability checking.

You can use the old-style segment directives to explicitly declare the segment each
external symbol is in, and then place the EXTRN directive for that symbol inside the
segment declaration. This is a lot of work, however; if you make sure that the correct
segment is loaded when you access far data, it’s easiest to just put EXTRN declarations
of far symbols outside all segments. For example, suppose that FILE1.ASM contains

.FARDATA
Filelvariable DB 0

Then if FILE1.ASM is linked to FILE2.ASM, which contains

.DATA
EXTRN FilelVariable:BYTE
.CODE
Start PROC ,
~ mov ax, SEG FilelVariable
nov ds,ax

SEG FilelVariable will not return the correct segment. The EXTRN directive is placed
within the scope of the DATA directive of FILE2.ASM, so Turbo Assembler considers
File1Variable to be in the near DATA segment of FILE2. ASM rather than in the
FARDATA segment.

The following code for FILE2.ASM allows SEG FilelVariable to return the correct
segment:

.DATA
@curseg ENDS
EXTRN FilelVariable:BYTE

.CODE

Start PROC
mov ax,SEG FilelVariable
mov ds; ax

Here, the @curseg ENDS dlrectlve ends the DATA segment so no segment dlrectlve is
.in effect when Filel Varzable is declared external.

208 Turbo Assembler User’'s Guide

Linker command line

The simplest way to link Borland C++ modules with Turbo Assembler modules isto
enter a single Borland C++ command line and let Borland C++ do all the work. Given
the proper command line, Borland C++ will compile the C++ code, invoke Turbo
Assembler to do the assembling, and invoke TLINK to link the object files into an
executable file. Suppose, for example, that you have a program consisting of the C++
files MAIN.CPP and STAT.CPP and the assembler files SUMM.ASM and
DISPLAY.ASM. The command line

bce main. cpp stat.cpp summ.asm display.asm

compiles MAIN.CPP and STAT.CPP, assembles SUMM.ASM and DISPLAY.ASM, and
links all four object files, along with the C++ start-up code and any required library
functions, into MAIN.EXE. You only need remember the .ASM extensions when typing
your assembler file names.

If you use TLINK in stand-alone mode, the object files generated by Turbo Assembler
are standard object modules and are treated just like C++ object modules. See
Appendix C for more information about using TLINK in stand-alone mode.

Parameter passing

Borland C++ passes parameters to functions on the stack. Before calling a function,
Borland C++ first pushes the parameters to that function onto the stack, starting with
the right-most parameter and ending with the left-most parameter. The C++ function
call

Test(i, j, 1);

compiles to

mov ax,l

push ax

push WORD PTR DGROUP:_j
push WORD PTR DGROUP:_i
call NEAR PTR _Test
add sp,6

in which you can clearly see the right-most parameter, 1, being pushed first, then j, and
finally i.

Upon return from a function, the parameters that were pushed on the stack are still
there, but are no longer useful. Consequently, immediately following each function
call, Borland C++ adjusts the stack pointer back to the value it contained before the
parameters were pushed, thereby discarding the parameters. In the previous example,
the three parameters of 2 bytes each take up 6 bytes of stack space altogether, so Borland
C++ adds 6 to the stack pointer to discard the parameters after the call to Test. The
important point here is that under the default C/C++ calling conventions, the calling
code is responsible for discarding the parameters from the stack.

Chapter 18, Interfacing Turbo Assembler with Borland C++ 209

Assembler functions can access parameters passed on the stack relative to the BP
register. For example, suppose the function Test in the previous example is the following
assembler function, called PRMSTACK.ASM:

.MODEL small

.CODE
PUBLIC _Test

_Test PROC

‘ push bp
mov bp, sp
‘mov ax, [bp+4] * ;get parameter 1
add ax, [bp+6] ;add parameter 2 to parameter 1
sub ax; [bp+8] ;subtract parameter 3 from sum
pop bp
- ret

_Test ENDP

END .

You can see that Test is getting the parameters passed by the C++ code from the stack,
relative to BP. (Remember that BP addresses the stack segment) But just how are you to
know where to find the parameters relative to BP?

1= 25;
i=4
Test{i, j, 1);

‘The parameters to Test are at fixed locations relative to SP, starting at the stack location
2 bytes higher than the location of the return address that was pushed by the call. After
loading BP with SP, you can access the parameters relative to BP. However, you must
first preserve BP, since the calling C++ code expects you to return with BP unchanged.
Pushmg BP changes all the offsets on the stack.

push bp
‘mov bp,sp

This is the standard C++ stack frame, the organization of a function’s parameters and
automatic variables on the stack. As you can see, no matter how many parametersa
C++ program might have, the left-most parameter is always stored at the stack address
immediately above the pushed return address, the next parameter to the right is stored
just above the left-most parameter, and so on. As long as you know the order and type
of the passed parameters, you always know where to find them on the stack.

Space for automatic variables can be reserved by subtracting the required number of
bytes from SP. For example, room for a 100- byte automatic array could be reserved by
starting Test with

push bp

mov ‘bp,sp
sub - sp,100

210 Turbo Assemblér User's Guide

Since the portion of the stack holding automatic variables is at a lower address than BP,
negative offsets from BP are used to address automatic variables. For example,

mov BYTE PTR [bp-100],0

would set the first byte of the 100-byte array you reserved earlier to zero. Passed
parameters, on the other hand, are always addressed at positive offsets from BP.

While you can, if you wish, allocate space for automatic variables as shown previously,
Turbo Assembler provides a special version of the LOCAL directive that makes
allocation and naming of automatic variables a snap. When LOCAL is encountered
within a procedure, it is assumed to define automatic variables for that procedure. For
example, '

LOCAL LocalArray:BYTE:100,LocalCount:WORD = AUTO_SIZE

defines the automatic variables LocalArray and LocalCount. Local Array is actually a label
equated to [BP-100], and LocalCount is actually a label equated to [BP-102], but you can
use them as variable names without ever needing to know their values. AUTO_SIZE is
the total number of bytes of automatic storage required; you must subtract this value
from SP in order to allocate space for the automatic variables.

Here’s how you might use LOCAL:

_TestSub PROC

LOCAL LocalArray:BYTE:100, LocalCount : WORD=AUTO_SIZE)
push bp ;preserve caller's stack frame pointer
mov . bp, sp ;set up our own stack frame pointer
sub sp,AUTO_SIZE ;allocate room for automatic variables
mov [LocalCount], 10 ;set local count variable to 10

; (LocalCount is actually [BP-102])

mov cx, [LocalCount] ;get count from local variable

mov al,'A’ ;we'll fill with character "A"

lea Dbx,[LocalArray] = ;point to local array

: ; (LocalArray is actually [BP-100]
FillLoop: '

mov [bx],al ;111 next byte

inc bx ;point to following byte

loop FillLoop ;do next byte, if any

mov sp,bp ;deallocate storage for automatic
; variables (add sp,AUTO_SIZE would
; also have worked)

pop bp jrestore caller's stack frame pointer

ret

_TestSub ENDP

In this example, note that the first field after the definition of a given automatic variable
is the data type of the variable: BYTE, WORD, DWORD, NEAR, and so on. The second
field after the definition of a given automatic variable is the number of elements of that
variable’s type to reserve for that variable. This field is optional and defines an
automatic array if used; if it is omitted, one element of the specified type is reserved.

Chapter 18, Interfacing Turbo Assembler with Borland C++ 211

Consequently, Local Array consists of 100 byte-sized elements, while LocalCount consists
of 1 word-sized element.

Also note that the LOCAL line in the preceding example ends with =AUTO_SIZE. This
field, beginning with an equal sign, is optional; if present, it sets the label following the
equal sign to the number of bytes of automatic storage required. You must then use that
label to allocate and deallocate storage for automatic variables, since the LOCAL
directive only generates labels, and doesn’t actually generate any code or data storage.
To put this another way: LOCAL doesn’t allocate automatic variables, but simply
generates labels that you can readily use to both allocate storage for and access
automatic variables.

As you can see, LOCAL makes it much easier to define and use automatic variables.
Note that the LOCAL directive has a completely different meaning when used in
macros.

By the way, Borland C++ handles stack frames in just the way we've described here.
You might find it instructive to compile a few Borland C++ modules with the -S option,
and then look at the assembler code Borland C++ generates to see how Borland C++
creates and uses stack frames.

This looks good so far, but there are further complications. First of all, this business of
accessing parameters at constant offsets from BP is a nuisance; not only is it easy to
make mistakes, but if you add another parameter, all the other stack frame offsets in the
function must be changed. For example, suppose you change Test to accept four
parameters:

Test (Flag, 1, j, 1);

Suddenly i is at offset 6, not offset 4, j is at offset 8, not offset 6, and so on. You can use
equates for the parameter offsets:

Flag . EQU

4
AddParml EQU 6
AddParm? EQU 8
SubParml EQU 10

mov ax, [bp+AddParml]
add ax, [bp+AddParm2])
sub ax, [bp+SubParml]

but it’s still a nuisance to calculate the offsets and maintain them. There’s a more serious
problem, too: The size of the pushed return address grows by 2 bytes in far code models,
as do the sizes of passed code pointers and data pointer in far code and far data models,
respectively. Writing a function that can be easily assembled to access the stack frame
properly in any memory model would thus seem to be a difficult task.

Turbo Assembler, however, providés you with the ARG directive, which makes it easy
to handle passed parameters in your assembler routines.

212 Turbo Assembler User’s Guide

The ARG directive automatically generates the correct stack offsets for the variables you
specify. For example,

arg FillArray:WORD,Count :WORD,FillValue:BYTE

specifies three parameters: FillArray, a word-sized parameter; Count, a word-sized
parameter, and FillValue, a byte-sized parameter. ARG actually sets the label FillArray to
[BP+4] (assuming the example code resides in a near procedure), the label Count to
[BP+6], and the label FillValue to [BP+8]. However, ARG is valuable precisely because
you can use ARG-defined labels without ever knowing the values they’re set to.

For example, suppose you've got a function FillSub, called from C++ as follows:

extern "C" {
void FillSub(
char *FillArray,
int Count,
char FillValue);
}

main()
{
const int ARRAY_LENGTH=100;
char TestArray[ARRAY_LENGTH];

Fil1Sub(TestArray, ARRAY_LENGTH,'*');
} .

You could use ARG in FillSub to handle the parameters as follows:

_Fillsub PROC NEAR
ARG FillArray:WORD,Count:WORD,FillValue:BYTE

push bp ;preserve caller's stack frame
mov bp,sp ;set our own stack frame
mov bx, [FillArray] ;get pointer to array to fill
mov cx, [Count] ;get length to fill
mov al, [Fillvalue] iget value to fill with

FillLoop:

' mov [bx],al ;fill a character

inc bx ;point to next character
loop FillLoop ;do next character
pop bp ;restore caller's stack frame
ret

_FillSub ENDP

That'’s really all it takes to handle passed parameters with ARG. Better yet, ARG
automatically accounts for the different sizes of near and far returns.

Preserving registers

As far as Borland C++ is concerned, C++-callable assembler functions can do anything
as long as they preserve the following registers: BP, SP, CS, DS, and SS. While these
registers can be altered during the course of an assembler function, when the calling
code is returned, they must be exactly as they were when the assembler function was
called. AX, BX, CX, DX, ES, and the flags can be changed in any way. -

Chapter 18, Interfacing Turbo Assembler with Borland C++ 213

SI and DI are special cases, since they’re used by Borland C++ as register variables. If

register variables are enabled in the C++ module calling your assembler function, you

must preserve SI and DI; but if register variables are not enabled, SI and DIneed not be
“preserved.

It's good practice to always preserve SI and DI in your C++—callable assembler
functions, regardless of whether register variables are enabled. You never know when
you might link a given assembler module to a different C++ module, or recompile your
C++ code with register variables enabled, without remembering that your assembler
code needs to be changed as well.

Returning values
A C++-callable assembler function can return a value, just like a C++ function. Function
values are returned as follows:

gn
char AX
enum AX
unsigned short AX
short AX
unsigned int AX
int AX
unsigned long - DX:AX
long - DXAX
float : ' 8087 top-of-stack (TOS) register (ST(0))
double ' 8087 top-of-stack (TOS) register (ST(0))
long double - 8087 top-of-stack (TOS) register (ST(0))
near * AX)
far* DX:AX

- In general, 8- and 16-bit values are returned in AX, and 32-bit values are returned in
DX:AX, with the high 16 bits of the value in DX. Floating-point values are returned in
ST(0), which is the 8087’s top-of-stack (TOS) register, or in the 8087 emulator’s TOS
register if the floating-point emulator is being used.

Structures are a bit more complex. Structures that are 1 or 2 bytes in length are returned
in AX, and structures that are 4 bytes in length are returned in DX:AX. When a function
that returns a three-byte structure or a structure larger than 4 bytes is called, the caller
must allocate space for the return value (usually on the stack), and pass the address of
this space to the function as an additional “hidden” parameter. The function assigns
the return value through this pointer argument, and returns that pointer as its result. As
with all pointers, near pointers to structures are returned in AX, and far pointers to
structures are returned in DX:AX. : ,

214 Turbo Assembler User’s Guide

k Let’s look at a small model C++-callable assembler function, FindLastChar, that returns a
near pointer to the last character of a passed string. The C++ prototype for this function
would be

extern char * FindLastChar (char * StringToScan);

where StringToScan is the non-empty string for which a pointer to the last character is to
be returned.

Here’s FindLastChar, from FINDCHAR.ASM:

MODEL small

.CODE
_ PUBLIC _FindLastChar
_FindLastChar PROC

ARG StringToScan:WORD
push bp
mov bp, sp., .
cld ;we need string instructions to count up
mov ax,ds
nov es,ax ;set ES to point to the near data segment
nov di, [StringToScan] ;point ES:DI to start of
;passed string
mov al,0 ;search for the null that ends the string
e gx,Offffh ;search up to 64K-1 bytes
repnz scasb ;look for the null
dec di ;point back to the null
dec di- ;point back to the last character
mov ax, di ;return the near pointer in AX
pop bp
ret
_FindLastChar ENDP
END

The final result, the near pointer to the last character in the passed string, is returned
in AX.

Calling an assembler function from C++

Now look at an example of Borland C++ code calling a Turbo Assembler function. The
following Turbo Assembler module, COUNT.ASM, contains the function LineCount,
which returns counts of the number of lines and characters in a passed string:

; Small model C++-callable assembler function to count the number
: of‘lines and characters in a zero-terminated string.

; Function prototype: .

; extern unsigned int LineCount(char * near StringToCount,
: unsigned int near * CharacterCountPtr);

; Input:

; char near * StringToCount: pointer to the string on which
; a line count is to be performed

Chapter 18, Interfacing Turbo Assembler with Borland C++ 215

: unsigned int near * CharacterCountPtr: pointer to the
; int variable in which the character count is

; to be stored
NEWLINE EQU 0ah

.MODEL small

.CODE

PUBLIC ~ _LineCount
_LineCount PROC

push bp

mov bp, sp

push si

mov si, [bp+4]

sub CX, CX

mov dx, cx
LineCountLoop:

lodsb

and al,al

jz. EndLineCount

inc cx

cmp al, NEWLINE

jnz LineCountLoop

inc dx .

jmp LineCountLoop
EndLineCount:

inc ©odx

mov bx, {bp+6]

‘mov [bx], cx

mov ax, dx

pop si

pop bp

ret
_LineCount ENDP

END

;the linefeed character is C's
; newline pharacter

;preserve calling program's
; register variable, if any
;point SI to the string
;set- character count to 0
;set line count to 0

;get the next character

;is it null, to end the string?
;yes, we're done ‘
;no, count another character
;is it a newline?

}no, check the next character

iyes, count another line

;count the line that ends with the

; null character

;point to the location at which to

; return the character count

;set the character count variable
;return line count as function value
;restore calling program's register
; variable, if any

The following C++ module, CALLCT CPP isa sample invocation of the LineCount

function: -

#include <stdio.h>

char * TestString="Line 1\nline 2\nline3";

extern "C" unsigned int LineCount (char * StringToCount,

int main()

A
unsigned int LCount;
unsigned int CCount;
LCount =

216 Turbo Assembler User's Guide

unsigned int * CharacterCountPtr)

LlneCount(TestStrlng, &CCount)

printf("Lines:

return 0;

}

%d\nCharacters: %d\n", LCount, CCount};

The two modules are compiled and linked fogether with the command line

bee -ms callct.cpp count.asm

As shown here, LineCount will work only when linked to small-model C++ programs

since pointer sizes and locations on the stack frame change in other models. Here’s a

version of LineCount, COUNTLG.ASM, that will work with large-model C++ programs
(but not small-model ones, unless far pointers are passed, and LineCount is declared far):

; Large model C++-callable assembler function to count the number
; of lines and characters in a zero-terminated string.

1

; Function prototype:
; extern unsigned int LineCount (char * far StringToCount,
unsigned int * far CharacterCountPtr);

; char far * StringToCount: pointer to the string on which

NEWLINE EQU

.MODEL
.CODE
PUBLIC
_LineCount
: push
mov
push

push
1ds
< sub
mov
LineCountLoop:
lodsb
and -
jz
inc
cnp
jnz
inc
jmp
EndLineCount:
inc

‘les

a line count is to be performed

; unsigned int far * CharacterCountPtr: pointer to the

int variable in which the character count

is to be stored

0ah ;the linefeed character is C's newline .
; character
large
_LineCount
PROC
bp
bp, sp
si ;preserve calling program's
; register variable, if any
ds spreserve C's standard data seg
si, [bp+6] ;point DS:SI to the string
CX, CX ~;set character count to 0
dx, cx ;set line count to 0
;get the next character
al,al ;1s it null, to end the string?
EndLineCount ;yes, we're done
[00'¢ ;no, count another character
al,NEWLINE ;is it a newline?
LineCountLoop ;no, check the next character
dx ;ves, count another line
LineCountLoop
dx ;count line ending with null
; character
;point ES:BX to the location at

bx, [bp+10]

; which to return char count

Chapter 18, tnterfacing Turbo Assemblérwnh Bortand C++

217

218

Note

mov es: [bx], cx ;set the char count variable

mov ax,dx ;return the line count as
; the function value
pop ds ‘ ,restore C's standard data seg
pop si ;restore calling program's
: register variable, if any
pop bp
ret
_LineCount ENDP
END :

COUNTLG.ASM can be linked to CALLCT.CPP with the following command line:

bce -ml callct.cpp countlg.asm

Writing C++ member functions in assembly Ianguage/

While you can write a member function of a C++ class completely in assembly
language, it is not easy. For example, all member functions of C++ classes are name-
mangled to provide the type-safe linkage that makes things like overridden functions
available, and your assembler function would have to know exactly what name C++
would be expecting for the member function. To access the member variables you must
prepare a STRUC definition in your assembler code that defines all the member
variables with exactly the same sizes and locations. If your class is a derived class, there
may be other member variables derived from a base class. Even if your class is not a
descendant of another class, the location of member variables in memory changes if the
class includes any virtual functions.

If you write your function using inline assembler, Borland C++ can take care of these
issues for you. But if you must write your function in assembly language, (perhaps
because you are reusing some existing assembler code), there are some special
techniques you can use to make things easier.

Create a dummy stub C++ function definition for the assembler function. This stub

will satisfy the linker because it will have a properly mangled name for the member
function. The dummy stub then calls your assembler function and passes to it the
member variables and other parameters. Since your assembler code has all the
parameters it needs passed as arguments, you don’t have to worry about changes in the
class definition. Your assembler function can be declared in the C++ code as an extern
“C” function, just as we have shown you in other examples.

For an example of how to write assembly functions using mangled names, see the
example on page 199.

Here's an example, called COUNTER.CPP:
#include <stdio.h>

class counter {
// Private member variables:
int count; " // The ongoing count
public:
counter (void) { count=0; }
int get_count (void) {return count;}

Turbo Assembler User’'s Guide

// Two functions that will actually be written

/!

void increment (void);

in assembler:

void add(int what_to_add=-1);

// Note that the default value only
// affects calls to add, it does not
// affect the code for add.

}i

extern "C" {

// To create some unique, meaningful names for the

// assembler routines, prepend the name of the class

// to the assembler routine. Unlike some assemblers,

// Turbo Assembler has no problem with long names.

void counter_increment (int *count); // We will pass a

// pointer to the
// count variable.
// Assembler will
// do the incrementing.

void counter_add(int *count,int what_to_add);

}

void counter::increment (void) {
counter_increment (&count) ;

}

void counter::add(int what_to_add) {
counter_add (&count, what_to_add);

}

int main(

) A

counter Counter;

printf("Before count: %d\n", Counter.get_count(});
Counter.increment () ;
Counter.add(5);

printf("After count: %d\n", Counter.get_count());
return 0;

}

Your assembler module that defines the count_add_increment and count_add_add

routines could look like this example, called COUNTADD.ASM:

.MODEL small

.CODE

PUBLIC _counter_increment

_counter_increment = PROC
ARG count _offset:word

push
mov
nov
inc
pop
ret
_counter_inc

bp

bp, sp

bx, [count _offset]
word ptr [bx]

bp

rement ENDP

; Select small model (near code and data)

~

Address of the member variable
Preserve caller’s stack frame
Set our own stack frame

- Load pointer
Increment member variable

Restore callers stack frame

Chapter18,lnténacmg Turbo Assembler with Borland C++

219

. PUBLIC _counter_add
) _counter_add PROC
ARG count_offset:word,what_to_add:word

push bp

mov bp,sp

mov bx, [count_offset] ; Load pointer
mov ax, [what_to_add]

add [bx],ax

pop bp

ret

_counter_add ENDP
end

Using this method, you don’t have to worry about changes in your class definition.
‘Even if you add or delete member variables, make this class a derived class, or add
virtual functions, you won’t have to change your assembler module. You need to
reassemble your module only if you change the structure of the count member variable,
or if you make a large model version of this class. You need to reassemble because you
have to deal with a segment and an offset when referring to the count member variable.

Pascal calling conventions

So far, you've seen how C++ normally passes parameters to functions by having the
calling code push parameters right to left, call the function, and discard the parameters
from the stack after the call. Borland C++ is also capable of following the conventions
used by Pascal programs in which parameters are passed from left to right, and the
called function discards the parameters from the stack. In Borland C++, Pascal
conventions are enabled with the -p command-line option or the pascal keyword.

The following example, ASMPSCL.ASM, shows an assembler function that uses Pascal
conventions:

; Called as: TEST_PROC(i, j, k);

i equ 8 ;leftmost parameter
j equ 6
k ~equ 4 ;rightmost parameter

.MODEL ~ small

.CODE . .

PUBLIC TEST_PROC
TEST_PROC ~ PROC

push bp

nov bp, sp

mov ax, [bp+i] ;get i

add " ax,[bp+]j] ;add j to 1

sub . ax, [bptk] ;subtract k from the sum

pop bp , '

ret 6 ;return, discarding 6 parameter bytes
TEST_PROC ENDP

© END

220 Turbo Assembler User’s Guide

Note that RET 6 is used by the called function to clear the passed parameters from the
stack.

Pascal calling conventions also require all external and public symbols to be in
uppercase, with no leading underscores. Why would you want to use Pascal calling
conventions in a C++ program? Code that uses Pascal conventions tends to be
somewhat smaller and faster than normal C++ code since there’s no need to execute an
ADD SP n instruction to discard the parameters after each call.

Calling Borland C++ from Turbo Assémbler

Note

Note

Although it's most common to call assembler functions from C++ to perform
specialized tasks, you might occasionally want to call C++ functions from assembler. As
it turns out, it’s actually easier to call a Borland C++ function from a Turbo Assembler
function than the reverse since no stack-frame handling on the part of the assembler
code is required. Let’s take a quick look at the requirements for calling Borland C++
functions from assembler. ‘

Link in thé C++ startup code

As a general rule, you should only call Borland C++ library functions from assembler
code in programs that link in the C++ startup module as the first module linked.

Generally, you should not call Borland C++ library functions from programs that don’t
link in the C++ startup module since some Borland C++ library functions willnot -
operate properly if the startup code is not linked in. If you really want to call Borland
C++ library functions from such programs, we suggest you look at the startup source
code (the file C0.ASM on the Borland C++ distribution disks) and purchase the C++
library source code from Borland. This way, you can be sure to provide the proper
initialization for the library functions you need. ‘

Calling user-defined C++ functions that in turn call C++ library functions falls into the
same category as calling library functions directly; lack of the C++ startup can
potentially cause problems for any assembler program that calls C++ library functions,
directly or indirectly.

The segment setup

As we learned earlier, you must make sure that Borland C++ and Turbo Assembler are
using the same memory model and that the segments you use in Turbo Assembler

match those used by Borland C++. Turbo Assembler has a tchuge memory model that
supports Borland C++'s huge memory model. Refer to the previous section if you need
a refresher on matching memory models and segments. Also, remember to put EXTRN
directives for far symbols either outside all segments or inside the correct segment.

Chapter 18, Interfacing Turbo Assembler with Borland C++ 221

Performing the call

All you need to do when passing parameters to a Borland C++ function is push the
right-most parameter first, then the next right-most parameter, and so on, until the left-
most parameter has been pushed. Then just call the function. For example, when
programming in Borland C++, to call the Borland C++ library function strepy to copy
SourceString to DestString, you would type

strcpy(DestStrlng, SourceStrrng)

To perform the same call in assembler, you would use

lea ax,SourceString ;rightmost parameter
lea bx,DestString ;leftmost parameter
push ax ;push rightmost first
push bx- : ipush leftmost next
call _strcpy) ;copy the string

add sp,4 - ;discard the parameters

Don’t forget to discard the parameters by adjusting SP after the call.

You can simplify your code and make it language independent at the same time by
taking advantage of Turbo Assembler’s CALL mstructlon extension:

call destination [language [, argl] .L.]

where language is C, CPP, PASCAL, BASIC, FORTRAN, PROLOG or NOLANGUAGE,
and arg is any valid argument to the routine that can be directly pushed onto the
processor stack.

Using this feature, the preceding code can be reduced to

lea ax,SourceString
lea bx,DestString
call strcpy c,bx,ax - ; -

Turbo Assembler automatically inserts instructions to push the arguments in the correct
order for C++ (AX first, then BX), performs the call to _strcpy (Turbo Assembler
automatically inserts an underscore in front of the name for C++) and cleans up the -
stack after the call.

If you're callmg a C++ function that uses Pascal calling conventions, you have to push
the parameters left to right and not adjust SP afterward:

lea bx,DestString ;leftmost parameter
lea ax,SourceString ;rightmost parameter
push bx ;push leftmost first
push ax ‘ ;push rightmost next
"call STRCPY ;copy the string

";leave the stack alone

Again, you can use Turbo Assembler s CALL instruction extension to simplify your
code: :

lea bx, DestString ;leftmost,parameter
lea ax,SourceString -;rightmost parameter
call strcpy pascal,bx,ax

222 Turbo Assembler User’s Guide

Turbo Assembler automatically inserts instructions to push the arguments in the correct
order for Pascal (BX first, then AX) and performs the call to STRCPY (converting the
name to all uppercase, as is the Pascal convention).

The last example assumes that you’ve recompiled strcpy with the -p switch, since the
standard library version of strcpy uses C++ rather than Pascal calling conventions.

Rely on C++ functions to preserve the following registers and only the following
registers: SI, DI, BP, DS, S5, SP, and CS. Registers AX, BX, CX, DX, ES, and the flags may
be changed arbitrarily.

Calling a Borland C++ function from Turbo Assembler

One case in which you may wish to call a Borland C++ function from Turbo Assembler
is when you need to perform complex calculations. This is especially true when mixed
integer and floating-point calculations are involved; while it’s certainly possible to
perform such operations in assembler, it’s simpler to let C++ handle the details of type
conversion and floating-point arithmetic. ‘

Let’s look at an example of assembler code that calls a Borland C++ function in order to
get a floating-point calculation performed. In fact, let’s look at an example in which a
Borland C++ function passes a series of integer numbers to a Turbo Assembler function,
which sums the numbers and in turn calls another Borland C++ function to perform the
floating-point calculation of the average value of the series.

The C++ portion of the program in CALCAVG.CPP is

#include <stdio.h>
extern "C" float Average(int far * ValuePtr, int NumberOfvalues);

#define NUMBER_OF_TEST_VALUES 10
~int TestValues[NUMBER_OF_TEST_VALUES] = {
1, 2,3, 4,5,6,7,8,9, 10
}i

int main()
{ .
printf("The average value is: %f\n",

Average (TestValues, NUMBER_OF_TEST_VALUES));
return 0;

}

extern "C" : .
float IntDivide(int Dividend, int Divisor)
{
return((float) Dividend / (float) Divisor);
}

and the assembler portion of the program in AVERAGE.ASM is

; Borland C++-callable small-model function that returns the average
; of a set of integer values. Calls the Borland C++ function
; IntDivide() to perform the final division.

Chapter 18, Interfacing Turbo Assemb|éerh'BoHand C++ 4223‘

; Function prototype:
; extern float Average(int far * ValuePtr, int NumberOfValues);

; Input: ‘ :
; int far * ValuePtr: ;the array of values to average
; int NumberOfValues: ;the number of values to average
JMODEL ~ small
EXTRN _IntDivide:PROC
.CODE
PUBLIC - _Average
_Average PROC
push bp
mov - bp,sp
les bx, [bp+4] ;point ES:BX to array of values
mov cx, [bp+8] ;# of values to average
nov ax, 0 ;clear the running total
AverageLoop: .
add ax, es: [bx] ;add the current value
add bx, 2 ;point to the next value
~ loop - AverageLoop
push WORD PTR [bp+8] ;get back the number of values
’ ; passed to IntDivide as the
; rightmost parameter
3 push ax ;pass the total as the leftmost parameter
i call _IntDivide . ;calculate the floating-point average
add sp,4 ;discard the parameters
pop bp
ret ;average is in 8087's TOS register
_Average ENDP
END

The C++ main function passes a pointer to the array of integers TestValues and the
length of the array to the assembler function Average. Average sums the integers, then
passes the sum and the number of values to the C++ function IntDivide. IntDivide casts
the sum and number of values to floating-point numbers and calculates the average
value, doing in a single line of C++ code what would have taken several assembler lines.
IntDivide returns the average to Average in the 8087 TOS reglster and Avemge just leaves
the average in the TOS register and returns to main.

CALCAVG.CPP and AVERAGE.ASM could be compiled and lmked into the executable
program CALCAVG.EXE with the command

bce calcavg.cpp average.ash

Note that Average will handle both small and large data models without the need for
any code change since a far pointer is passed in all models. All that would be needed to
support large code models (huge, large, and medium) would be use of the approprlate
.MODEL d1rect1ve

Taking full advantage of Turbo Assembler’s language-independent extensions, the
assembly code in the previous example could be written more concisely as shown here
in CONCISE.ASM:

224 Turbo Assembler User’'s Guide

.MODEL small,C
EXTRN C IntDivide:PROC
.CODE
PUBLIC C Average
Average PROC € ValuePtr:DWORD,NumberOfValues:WORD

les bx, ValuePtr
nov cx, NumberOfValues
mov ax, 0
Averageloop:
add ax, es: [bx]
add bx, 2 ;point to the next value
loop AverageLoop
call IntDivide C,ax,NumberOfvValues
ret
Average ENDP
END

Chapter 18, Interfacing Turbo Assembler with Borland C++ 225

226 - Turbo Assembler User's Guide

Appendix

Program blueprints

This appendix describes basic program construction information depending on specific
memory models and executable object formats.

Simplified segmentation segment description

The following tables show the default segment attributes for each memory model.

Table A1 Default segments and types for TINY memory model

g o

. XT Wi

.FARDATA FAR_DATA PARA private ‘FAR_DATA’

JFARDATA? FAR_BSS PARA private ‘FAR_BSS’

DATA _DATA WORD PUBLIC ‘DATA’ DGROUP

.CONST CONST WORD PUBLIC ‘CONST’ DGROUP

.DATA? _BSS WORD PUBLIC ‘BSS’ DGROUP
" STACK! STACK PARA STACK ‘STACK’ ~ DGROUP

1. STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

Table A2 Default segments and types for SMALL memory model

.CODE _TEXT ' WORD PUBLIC

FARDATA FAR _DATA PARA private ‘FAR_DATA’

.FARDATA? FAR_BSS PARA private ‘FAR_BSS' .

DATA -DATA WORD PUBLIC ‘DATA’ DGROUP
.CONST CONST . WORD . PUBLIC ‘CONST’ ‘DGROUP

Appendix A, Program blueprints 227

Table A2 Default segments and typés for SMALL memory model

.DATA? _BSS WORD
STACK! STACK PARA - STACK ‘STACK’ DGROUP

1. STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

Table A.3

‘CODE name TEXT ~ WORD PUBLIC ~ ‘CODE’

FARDATA FAR_DATA PARA private “ “FAR_DATA’

FARDATA? FAR_BSS PARA private ‘FAR_BSS'

DATA -~ _DATA WORD - PUBLIC ‘DATA’ DGROUP
CONST CONST WORD PUBLIC ‘CONST” DGROUP
DATA? BSS WORD PUBLIC BSY DGROUP
STACK! STACK PARA STACK ‘STACK’ DGROUP

1. STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

Table A4 Default segments and types for COMPACT memory model
, - s o .
= i e

e
o

.CODE _TEXT WORD PUBLIC ‘CODE’

FARDATA FAR DATA PARA private ‘FAR_DATA’

FARDATA? FAR BSS PARA private - ‘FAR_BSS'

DATA _DATA ' WORD PUBLIC ‘DATA’ DGROUP
.CONST CONST WORD PUBLIC ‘CONST ~ DGROUP
DATA? _BSS WORD PUBLIC o BSS’ DGROUP
STACK! STACK PARA STACK ~ ‘STACK’ DGROUP

1. STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

" Table A5 Default segments and types for LARGE or HUGE memory model A

e ; 'PUBLIC
FARDATA FAR_DATA private ‘FAR_DATA’
FARDATA? FAR_BSS private ‘FAR_BSS’
DATA _DATA PUBLIC ‘DATA’ DGROUP
CONST CONST ‘ PUBLIC ‘CONST DGROUP
DATA? _BSS WORD PUBLIC ‘BSS’ DGROUP
STACK! STACK PARA STACK ‘STACK’ DGROUP

1. STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

228 Turbo Assembler User's Guide

Table A.6

Default segments and types for Borland C++ HUGE (TCHUGE) memory model

CODE
FARDATA
FARDATA?
DATA
STACK!

name__TEXT WORD PUBLIC 'CODE
FAR_DATA PARA private ‘FAR_DATA’
FAR _BSS PARA private ‘FAR_BSS’
name_DATA PARA private ‘DATA’
STACK PARA STACK ‘STACK’

1. STACK is automatically FAR.

DOS programs

Programs designed to be executed under DOS are stored in two formats:

e EXE format (for EXEcutable)
* COM format (for COre iMage)

EXE format permits the most general program segmentation under DOS. A program
can have multiple segments, and can reference segment and group names symbolically.
EXE programs are thus permitted to exceed 64K in size.

COM format is essentially a throwback to a simpler era. Programs using COM format
can’t contain symbolic references to group and segment names. Thus, COM programs
are written using the TINY model, and are limited to 64K of code and data.

To build DOS programs, you need to use a DOS linker (like TLINK) and a program
construction utility (like MAKE).

DOS EXE program blueprint

When you load an EXE program, the operating system sets up the registers as follows:

DS, ES Contains the paragraph address of the program segment prefix (PSP) for the program. The
PSP contains arguments passed to the program from the command line, and a pointer to the
environment string for the program.

CsiIP Contains the starting address specified by END in one of the program’s modules, or the
address of the STARTUPCODE directive.
SS:SP Contains the address of the last word that the stack segment specified in the program.

You can define EXE programs with any memory model. You should use the simplest
memory model possible because it makes programming simpler and faster. For
example, if you never expect your program to use more than 64K of code, data, and
stack space, the TINY model would be the appropriate model to use.

The STARTUPCODE directive in a module emits instructions that automatically
initialize all necessary registers to conform with the selected model. However, it
preserves the paragraph address of the PSP in ES for the program’s use.

Appendix A, Program blueprints 229

When you load an EXE program, the operating system allocates all remaining memory
to it until the program exits. For programs that don’t use a heap, or programs that build
their own heaps in this memory, this behavior is fine. Other programs can allocate
memory from DOS. In this case, the memory must be freed back to DOS before you can
request it from DOS.

To exit from an EXE program, use the EXITCODE directive.
Note EXEPROG.ASM, on your example Turbo Assembler disks, illustrates these topics.

Use the MAKE utility to build the EXE program. The file MAKEFILE should include all
modules link with the program, as follows: .

EXEPROG.EXE: EXEPROG.OBJ
TLINK EXEPROG;)

EXEPROG.0OBJ: EXEPROG.ASM
TASM EXEPROG

COM program blueprint

‘COM programs are restricted versions of EXE programs. You can represent every COM
program as an EXE program, but not every EXE program as a COM program The
following restrictions apply:

* ‘A COM program should be written using the TINY memory model.
- * You can’t have a predefined stack segment for COM programs.

¢ A COM program can’t contain any direct segment or group address references. This
means that the program can’t contain any direct far calls, nor can it reference any
segments by name. All procedures in a COM program must be declared NEAR.

* Execution must begin at offset 100h in the code segment. To let this happen, make the
first instruction in the code segment the STARTUPCODE directive.

Turbo Assembler loads a COM program starting at offset 100h of the program segment
prefix (PSP). The STARTUPCODE directive for the TINY model automatically places
an ORG 100h in the program to compensate for this action.

When you load a COM program, the followmg registers are set:

.
CS,DS,ES,SS Contains the paragraph address of the PSP and the program.
P Set to 100h.
SP Set to OFFFEh (the last word in the program segment).

If you don’t want to place the stack at the end of the program segment, you must set up
anew stack. Use the uninitialized data segment (UDATASEG) for this stack.

Even though COM programs must be defined with the TINY memory model, you
should still separate code, data, and uninitialized data using CODESEG, DATASEG,
and UDATASEG.

- 230 Turbo Assembler User’s Guide

Note Use the EXITCODE directive exit from a COM program the same way you exit from an
EXE program.

As with EXE programs, when you load a COM program, Turbo Assembler allocates all
remaining memory to it until it exits. If memory is freed back to DOS, make sure that no
uninitialized data is unintentionally freed.

Note COMPROG.ASM, on your example Turbo Assembler disks, illustrates these points.

Use the MAKE utility to build the COM program. The file MAKEFILE should include
all modules link with the program, as follows:

COMPROG.COM: COMPROG.OBJ
TLINK /t COMPROG;

COMPROG.OBJ: COMPROG.ASM
TASM COMPROG

Windows programs

Turbo Assembler can also be used to create Windows applications. Windows can

run in either real mode (on all 8086 processors) or protected mode (on 80286 and higher
processors). Thus, programs written for Windows can run in protected mode. You
should carefully separate code and data using the CODESEG, DATASEG, and
UDATASEG directives, and use the WARN PRO directive to flag any access problems
that could occur at assembly time. Finally, protected mode programs should not
attempt to set segment registers to calculated paragraph segment values. Segment
values in protected mode are not paragraph addresses, but rather descriptors that have
no meaning to an application program.

Although all the tools you need to write Windows programs are contained in your
Turbo Assembler package, you might find it useful to use other language tools (such as
Borland C++ or Borland Delphi) to help you effectively create Windows applications.

This appendix provides the simplest of blueprints for Windows applications and
Dynamic Link Libraries (DLLs). For a more complete description of Windows
-applications, refer to your.compiler manuals, or the appropriate Microsoft
documentation.

Windows DLL blueprint.

- A Dynamic Link Library (DLL) is a group of procedures that you can call from any
Windows application. DLLs extend the Windows application interface.

DLLs perform many functions; for example, you can convert non-interactive DOS
programs to DLLs. Support can be added for new sorts of screen entities by writing a
DLL.

You can find an example program called DLLWIN.ASM that illustrates how to write a
DLL in assembler. This assembler project is located in the EXAMPLES\USRGUIDE\
DLLWIN directory off the main TASM subdirectory.

Appendix A, Program blueprints 231

You can use the MAKE utility to build the DLL. DLLWIN.MAK is provided in the
DLLWIN subdirectory: ,

dllwin.exe: dllwin.obj dllwin.def
TLINK /v /Twd /s dllwin, dllwin, dllwin,,dllwin

dllwin.obj: dllwina. ésm
TASM /Zi dllwin,,

This build process requires the following linker definitions file, DLLWIN. DEF:

LIBRARY , DLLWIN
DESCRIPTION ‘Simple Assembly Windows DLL’
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE SINGLE
EXETYPE WINDOWS
HEAPSIZE 4096
. ;Define imported functions. (Not necessary if you link with an
,1mport library like IMPORT.LIB or LIBW.LIB.)

IMPORTS GDI.GETWINDOWEXTEX

Windows 16-bit application blueprint

A Windows application is very much like a DLL, except that only a single procedure is
called: WinMain. Windows calls WinMain to start the procedure. The application usually
has a standard structure, which lets it communicate with the Windows graphical
environment.)

ASMWIN.ASM, located in the EXAMPLES\USRGUIDE\ ASMWIN directory off the
- main TASM subdirectory, shows an assembly-based Windows program.

Use the MAKE utility to build the Windows application. The file ASMWIN.MAK
includes all modules to be linked in with the application:

asmwin.exe: asmwin.obj asmwin.def :
TLINK /v /Twe /s ASMWIN, ASMWIN, ASMWIN, ,ASMWIN

asmwin.obj: asmwin.asm
TASM /Zi ASMWIN,,)

This build process requires the linker definitions file ASMWIN.DEF, which is very
similar to the .DEF module used in the preceding example that generates a Windows
DLL using assembly code.

A complete 16-bit Windows program is supplied in the \EXAMPLES\WAP
subdirectory off your main TASM directory.

Windows 32-bit application blueprint

" In high-level languages‘h'ke C, C++, and Pascal, Windows 32-bit programs are almost
identical to their 16-bit counterparts because the compiler handles most of the

232 Turbo Assembler User’s Guide

differences. However, you must deal directly with those differences at the assembly
language level. In particular, you must pay attention to the following details:

e All values pushed on the stack must be 32 bits.
¢ The parameters to WndProc must all be 32 bits.
¢ The EBX, ESI and EDI registers must be preserved in a Win32 callback function.

¢ Many of the Win32 constants are now 32 bits wide as opposed to Windows 16-bit
wide constants.

* Because of Unicode support, there are both ANSI and WIDE CHAR versions of all
the API functions that use strings. The ANSI version of these functions end with a
capital ‘A" and the WIDE CHAR versions end with a capital “W’; no versions of these
functions exist that don’t end with either an ‘A’ or “W.” Because of this, you must use
either TextOutA or TextOutW to get the functionality of TextOut.

- Use the following assembler and linker commands to compile a 32-bit Windows
program:

TASM32 /zi /ml filenane.asm
TLINK32 /v filename.obj, filename.exe, filename.map, import32.lib, filename.def

The .DEF file for the project should resemble the following:

NAME MODNAME

DESCRIPTION 'Description of this module’
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
EXETYPE WINDOWS :

STACKSIZE 8192

EXPORTS WndProc

A complete 32-bit Windows program is supplied in the \EXAMPLES\WAP32
subdirectory off your main TASM directory.

0S/2 programs

Programs designed to be executed under the OS/2 operating system can use one of
several formats, depending on the capabilities you want. OS/2 can execute programs
designed for DOS program formats, as well as programs and DLLs written for
Windows. However, the most powerful format available under OS/2 is the linear
executable format, in which a program no longer has to manipulate segment registers,
and 512 megabytes of virtual memory is available. This format is also known as flat
model.

0S/2 flat-model program blueprint

Turbo Assembler assumes that all 32-bit segments in a flat-model program belong to a
supergroup called FLAT, and share the same segment selector. (Segments that are 16-bit
are allowed, but are of little use.)

Appendix A, Program blueprints 233

When you execute a ﬂat-model program, Turbo Assembler initializes the reglsters as
follows:

B /’:‘»
Contains the s C§me
registers should never have to be changed
CS:EIP Contains the address of the STARTUPCODE directive.
SS:ESP Contains the address of the last word of the stack segment, which the STACK
directive specifies.

"FSGS Contain special values that the application should not modify.

You must define linear-executable programs with the FLAT model. This instructs
Turbo Assembler to consider all 32-bit segments and groups to be a member of FLAT
supergroup. You can also optionally specify the OS/2 operating system, which allows
the STARTUPCODE and EXITCODE directives to function correctly (for example,
MODEL 0S2 FLAT).

. The STARTUPCODE directive produces instructions that automatically initialize all
necessary registers to conform to FLAT model. Similarly, the EXITCODE directive
produces instructions that automatically return control to the operating system, while
letting you specify an optional return value.

234 Turbo Assemblier User’s Guide

Appendix

Turbo Assembler syntax summary

This appendix describes the syntax of Turbo Assembler expressions in a modified
Backus-Naur form (BNF). The symbol ::= describes a syntactical production. Ellipses
(...) indicate that an element is repeated as many times as it is found. This appendix also
discusses keywords and their precedences.

Lexical grammar

valid_line =
white_space valid_line
punctuation valid_line
number_string valid_line
id_string valid_line

null

white_space ::=

space_char white_space

space_char

space_char ==

All control characters, character > 128, "’
id_string ==

id_char id_strng2

id_strng2 ::=

id_chr2 id_strng2

null

id_char =
Any of $, %, _, ?, or any alphabetic characters

N

Appendix B, Turbo Assembler syntax summary 235

- id_chr2 ==
id_chars plus numerics

number_string ::=
num_string
str_string

num_string ::=

digits alphanums

digits *.’ digits exp

digits exp ;Only MASM mode DD, DQ, or DT

digits =
digit digits
digit

digit ==
0 through 9

alphanums =
digit alphanum
* alpha alphanum
null
alpha ==
alphabetic characters
exp u=
E + digits
E - digits
E digits
null
str_string =
Quoted string, quote enterable by two quotes in a row
punctuation ::=
Everything that is not a space_char, id_char, *“’,” " ”, or digits

The period (.) character is handled differently in MASM mode and Ideal mode. This
character is not required in floating-point numbers in MASM mode and also can’t be
part of a symbol name in Ideal mode. In MASM mode, it is sometimes the start of a
symbol name and sometimes a punctuation character used as the structure member
selector.

Here are the rules for the period (.) character
1 InIdeal mode, it’s always treated as punctuatlon

-2 In MASM mode, it’s treated as the first character of an ID in the followmg cases:

¢ When it is the first character on the line, or in other special cases like EXTRN and
PUBLIC symbols, it gets attached to the following symbol if the character that
follows it is an id_chr2, as defined in the previous rules.

236 Turbo Assembler User’s Guide\

¢ If it appears other than as the first character on the line, or if the resulting symbol
would make a defined symbol, the period gets appended to the start of the symbol
following it.

MASM mode expression grammar

Expression parsing starts at MASM_expr.

MASM_expr =
mexprl

mexprl =

SHORT mexprl

.TYPE mexprl

SMALL mexprl ;1£ 386
LARGE mexpr1 ;1f 386
expr2

expr2 =

expr3 OR expr3 ...

expr3 XOR expr3 ...
expr3

expr3 u= ‘
expr4 AND exprd ...
exprd

exprd ==

NOT expr4

exprd

expr5 =

expr6 EQ expr6 ...
expr6 NE expr6 ...
expr6 LT expro6 ...
expr6 LE expr6 ...
expr6 GT expr6 ...
expr6 GE expr6 ...

expré
expr6 ="
expr’/ + expr7 ...

expr7 —expr7 ...
expr7 '

Appendix B, Turbo Assembler syntax summary 237

expr7 ==
- mexprl0 * mexprl0 ...
mexpr10 / mexpr10 ...
mexpr10 MOD mexpr10 ...
“mexpr10 SHR mexpr10 ...
mexpr10 SHL mexpr10 ...
mexpr10

expr8 =
+ expr8
—expr8
exprl2

exprl0 ::=
OFFSET pointer
SEG pointer
SIZE symbol
LENGTH symbol
WIDTH symbol
MASK symbol
THIS itype
symbol

(pointer)

[pointer]

mexprl0 =
mexprll PTR mexpr10
mexprll

TYPE mexpr10
HIGH mexpr10
LOW mexpr10
OFFSET mexpr10
SEG mexpr10
THIS mexpr10

mexprll ==

expr8 :expr§ ...

mexprl2 = , '

mexpr13 [mexprl3 ... ;Implied addition if bracket
mexpr13 (mexprl3 ... ;Implied addition if parenthesis
mexprl3 " mexprl0 ' ’

238 Turbo Assembler User’s Guyid'e o

mexprl3 =
LENGTH symbol
SIZE symbol
WIDTH symbol
MASK symbol

(mexprl)

[mexprl]
exprl0

Ideal mode expression grammar

Expression parsing starts at ideal_expr.

ideal_expr =
pointer

itype ==
UNKNOWN
BYTE
WORD
DWORD
"PWORD
FWORD
QWORD
TBYTE
SHORT
NEAR

FAR

PROC
DATAPTR
CODEPTR
structure_name
table_name
enum_namer
record_name
TYPE pointer

pointer ::= ‘
SMALL pointer ;I 386
LARGE pointer £ 386
itype PTR pointer

itype LOW pointer

itype HIGH pointer

itype pointer

pointer2

Appendix B, Turbo Assembier syntax summary 239

pointer2 ::=
pointer3 . symbol ...
pointer3

pointer3 =
expr : pointer3
. expr

expr =
SYMTYPE expr
expr2

expr2 =

expr3 OR expr3 ...
expr3 XOR expr3 ...

expr3

expr3 u= .
expr4 AND exprd ...
expr4

exprd =

NOT expr4

exprb

expr5 =

expré EQ expr6 ...

expr6 NE expr6 ...

expr6 LT expr6 ...

expr6 LE expr6 ...

expr6 GT expr6

expr6 GE expr6 ...

expro

expr6 =

expr7 +expt7 ...

expr7 —expr7 ...

expr7

expr7 u=

expr8 *expr8 ...
expr8/expr§ ...

expr8 MOD expr§ ...

expr8 SHR expr$...

expr8 SHL expr§ ...

expr8

expr8 i:=

+ expr8

—expr8
expr9

240 Turbo Assembier User's Guide

expr9 =
HIGH expr9
LOW expr9
expr10

exprl0 =
OFFSET pointer
SEG pointer
SIZE symbol
LENGTH symbol
WIDTH symbol
MASK symbol
THIS itype
symbol

(pointer)

[pointer |

Keyword precedence

It’s important to understand how Turbo Assembler parses source lines so that you can
avoid writing code that produces unexpected results. For example, examine the
following program fragment:

NAME SEGMENT

If you had written this line hoping to open a segment called NAME, you would be
disappointed. Turbo Assembler recognizes the NAME directive before the SEGMENT
directive, thus naming your code SEGMENT.

In general Turbo Assembler determines the meaning of a line based on the first two
symbols on the line. The left-most symbol is in the first position, while the symbol to its
right is in the second position.

Ideal mode precedence

The following precedence rules for parsing lines apply to Ideal mode:

1 All keywords in the first position of the line have the hlghest priority (priority 1) and
are checked first.

2 The keywords in the second position have priority 2 and are checked second.

Appendix B, Turbo Assembler syntax summary 241

MASM mode precedence

The precedence rules for parsing lines in MASM mode are much more complicated than
in Ideal mode. There are three levels of priority instead of two, as follows:

1 The highest priority (priority 1) is assigned to certain keywords found in the first
position, such as NAME or %OUT.

2 The next highest prlonty (priority 2) belongs toall symbols found in the second
position.

3 All other keywords found in first position have the lowest priority (prlonty 3).

. Note Turbo Assembler treats priority 1 keywords like priority 3 keywords inside structure
‘definitions. In this case, priority 2 keywords have the highest priority.

For example, in the code fragment
NAME SEGMENT

NAME is a priority 1 keyword, while SEGMENT is a priority 2 keyword. Therefore,
Turbo Assembler will interpret this line as a NAME directive rather than a SEGMENT
directive. In another example,

MOV INSTR,1

MOV is a priority 3 keyword, while INSTR is a pr1or1ty 2 keyword. Thus, Turbo
Assembler interprets this line as an INSTR directive, not a MOV instruction (Wthh you
might have wanted).

‘Keywords and predefined symbols

This section contains a complete listing of all Turbo Assembler keywords.

The values in parentheses next to keywords indicate the priority of the keyword (1 or 2)
in MASM mode. Keywords are labeled with a priority only if they have priority 1 or 2.
All others are assumed to be priority 3. Turbo Assembler recognizes the keyword only if
it finds them. In MASM mode, priority 1 or 3 keywords always are located in the first
position, while priority 2 keywords occur in the second position.

An M next to a keyword indicates that you can use a keyword only in MASM mode,
and an I indicates a keyword that is available only in Ideal mode. If there is no letter, the
keyword works in either mode. A number next to the keyword indicates its priority.

Directive keywords

The following list contains all Turbo Assembler directive keywords. The keywords are
grouped by the version of Turbo Assembler in which they were introduced.

242 Turbo Assembler User’s Guide

Table B.1

% (1)
186 (M)
286 (M)
.286¢ (M)
286p (M)
.386 (M)
386¢ (M)
386p (M)
.387 (M)
.8086 (M)
.8087 (M)
12

=)
AAA
AAD
AAM
AAS
ADC
ADD
ALIGN
ALPHA (M)
AND
ARG
ARPL
ASSUME
%BIN
BOUND
BSF

BSR

BT

BTC
BTR

BTS
CALL
CATSTR (2)
CBW
CDQ
CLC
CLD

CLI
CLTS
CMC
CMP
CMPBW
CMPS
CMPSB

CMPSD
CODE (M)
CODESEG
COMM (1)
COMMENT (1)
%CONDS
CONST
.CONST (M)
%CREF
CREF (M)
%CREFALL
%CREFREF
%CREFUREF
%CTLS
CWD

CWDE

DAA

DAS

DATA (M)
DATA? (M)
DATASEG

DB (2)

DD (2)

DEC
%DEPTH

DF (2)
DISPLAY
DIV
DOSSEG

DP (2)

DQ(2)

DT (2)

DW (2)

ELSE (1)
ELSEIF (1)
ELSEIF1 (1)
ELSEIF2 (1)
ELSEIFB (1)
ELSEIFDEF (1)
ELSEIFDIF (1)
ELSEIFDIFI (1)
ELSEIFE (1)
ELSEIFIDN (1)
ELSEIFIDNI (1)
ELSEIFNB (1)
ELSEIFNDEF (1)

These keywords were introduced in Turbo Assembler 1.0.

Turbo Assembler v1.0 (VERSION T100) keyWords '

EMUL
END
ENDIF (1)
ENDM
ENDP (2)
ENDS (2)
ENTER
EQU ()
ERR (1)(M)
ERR

ERRI (1)(M)
ERR2 (1)(M)
ERRB (1)(M)

" ERRDEF (1)(M)

ERRDIF (1)(M)
ERRDIFI (1)(M)
.ERRE (1)(M)
ERRIDN (1)(M)
ERRIDNI (1)(M)
ERRIF

ERRIF1

ERRIF2
ERRIFB
ERRIFDEF
ERRIFDIF
ERRIFDIFI
ERRIFE
ERRIFIDN
ERRIFIDNI
ERRIFNB
ERRIFNDEF
ERRNB (1)(M)
ERRNDEF (1)(M)
ERRNZ (1)(M)
ESC

EVEN
EVENDATA
EXITM
EXTRN (1)
F2XM1

FABS

FADD

FADDP.
FARDATA
FARDATA (M)
FARDATA? (M)

FBLD
FBSTP
FCHS
FCLEX
FCOM
FCOMP
FCOMPP
FDECSTP -
FDISI

FLDCW
FLDENV
FLDIL2E
FLDL2T
FLDLG2
FLDLN2
FLDPI
FLDZ
FMUL
FMULP
FNCLEX
FNDIST
FNENI
FNINIT
FNOP
FNSAVE

Appéndix B, Turbo Assembler syntax summary

243

Table B.1 Turbo Assembler v1.0 (VERSION T100) keywords (continued)

FNSTCW
FNSTENV
FNSTSW
FPATAN
FPREM
FPTAN
FRNDINT
FRSTOR
FSAVE
FSCALE
FSQRT
FST

" FSTCW
FSTENV
FSTP
FSTSW
FSUB
FSUBP
FSUBR
FSUBRP
FIST
FWAIT
FXAM
FXCH
FXTRACT
FYL2X
FYL2xP1
FSETPM
FPCOS
FPREM1
FPSIN
FPSINCOS
FUCOM
FUCOMP
FUCOMPP
GLOBAL (1)
GROUP (2)

_HLT

IDEAL

DIV

IF (1)

IF1 (1)

IF2 (1)

IFb (1)

~ IFDEF (1)

IFDIF (1)
IFDIFI (1)
IFE (1)

IFIDN (1)
TFIDNI (1)
IFNB (1)
IFNDEF (1)
JECXZ
IMUL
IN

INC
%INCL
INCLUDE (1)
INCLUDELIB (1)
INS
INSB
INSD
INSTR (2)
INSW-
INT
INTO
IRET
IRETD
IRP (1)
IRPC (1)
JA

JAE

JB

JBE

IC

jcxz

JE

@

JGE

L

JLE

JNA
INAE
JNB
JNBE
INC
INE
ING
JNGE
NG
INLE
JNO
NP
NS
INZ

JO

244 Turbo Assembler User’'s Guide

P
JPE

JPO

7S

JUMP
JUMPS

JZ

LABEL (2)
LAHF -
LALL (M)
LAR

LDS

LEA
LEAVE

LES .

LFCOND (M)
LFS

LGDT

LGS

LIDT
%LINUM
%LIST
LIST (M)
LLDT
LMSW
LOCAL
LOCALS -
LOCK
LODS,
LODSB
LODSD
LODSW
LOOP
LOOPD
LOOPDE
LOOPDNE
LOOPDNZ
LOOPDZ
LOOPE
LOOPNE
LOOPNZ
LOOPW
LOOPWE

. LOOPWNE

LOOPWNZ
LOOPWZ
LOOPZ
LSLLSS

LTR
%MACS
MACRO (2)
MASM
MODEL

' MODEL (M)

MOV
MOVMOVS
MOVSB
MOVSD
MOVSW

" MOVSX
- MOVZX

MUL
MULTERRS
NAME (1)
NEG
%NEWPAGE
%NOCONDS
%NOCREF
%NOCTLS
NOEMUL -
%NOINCL
NOJUMPS
%NOLIST
NOLOCALS
NOMASMS51
%NOMACS
NOMULTERRS
NOP
NOSMART
%NOSYMS
NOT
%NOTRUNC
NOWARN
OR '
ORG

ouT

%OUT (1)
ouTs
OUTSB
OUTSD
OUTSW
P186 -

P286

P286N

P287

P386 -

Table B.1 Turbo Assembler v1.0 (VERSION T100) keywords (continued)

P386N
P387

P8086

P8087
PAGE
%PAGESIZE
%PCNT
PN087

POP

POPA
POPAD
POPFD
%POPLCTL
PPF

PROC (2)
PUSH
PUSHA
PUSHAD
PUSHF
PUSHFD
%PUSHLCTL
PUBLIC (1)
PURGE
%PAGESIZE
%PCNT
PNO087
%POPLCTL
PROC (2)
%PUSHLCTL
PUBLIC (1)
PURGE
QUIRKS
RADIX
RADIX (M)
RCL

RCR
RECORD (2)

REPT (1)
REP
REPE
REPNE
REPNZ
REPZ
RET
RETF
RETIN
ROL
ROR
SAHF
SAL
SALL (M)
SAR
SBB
SCAS
SCASB
SCASD
SCASW
SEGMENT (2)
SEQ (M)
SETA
SETAE
SETB
SETBE
SETC
SETE
SETG
SETGE
SETL
SETLE
SETNA
SETNAE
SETNB
SETNBE
SETNC

SETNE
SEING
SETNGE
SETNL
SETNLE
SETNO
SETNP
SETNS
SETNZ
SETO

SETP
SETPE
SETPO
SETS

SETZ
SFCOND (M)
SGDT

SHL

SHLD

SHR

SHRD
SIDT
SIZESTR (2)
SLDT
SMART
SMSW
SOR
STACK
STACK (M)
STARTUP (M)
STC

SID

STI

STOS
STOSB
STOSD
STOSW

STR
STRUC (2)
SUB
SUBSIR (2)
SUBTTL (1)
%SUBTTL
%SYMS
%TABSIZE
TEST
%TEXT
TECOND (M)
TITLE (1)
%TITLE
%TRUNC

- UDATASEG
UFARDATA
UNION (2)
USES
VERR

- VERW
WAIT
WARN
XALL (M)
XCHG
XCREF (M)
XLAT
XLATB
XLIST (M)
USECS
USEDS
USEES
USEFS
USEGS
USESS

Turbo Assembler version 2.0 supports all version 1.0 keywords, with the following
additions: :

Table B.2

Turbo Assembler v2.0 (VERSION T200) new keywords

BSWAP
CMPXCHG
INVD

- XADD

P486
P486N
P487
INVLPG

STARTUPCODE

- WBINVD

PUBLICDLL (J)
RETCODE

Appendix B, Turbo Assembler syntax summary 245

‘Turbo Assembler version 2.5 supports all version 2.0 keywords, plus the followmg

' ‘ keyword additions:
Table B.3 Turbo Assembler v2.5 (VERSION T250) new keywords
ENTERD ; LEAVED
ENTERW - LEAVEW

Turbo Assembler version 3.0 supports keywords from all prev10us versions, with the

following additions:

Table B4 Turbo Assembler v3.0 (VERSION T300) new keywords

CLRFLAG ‘ GOTO (1) TBLINIT

ENUM(2) . LARGESTACK TBLINST
EXITCODE SETFIELD : TYPEDEF
FASTIMUL SETFLAG TBLINIT

FLIPFLAG ~ SMALLSTACK TBLINST
GETFIELD TABLE (2) VERSION

WHILE (1)

Turbo Assembler version 3.1 supports keywords from all previous versions, with the
following additions: »

Table B.5 Turbo Assembler v3.1 (VERSION T310) new keywords

PUSHSTATE POPSTATE .

Turbo Assembler version 3.2 supports keywords from all prev1ous versions, with the

following additions: ‘ ;

TableB.6 Turbo Assembler v3.2 (VERSION T320) new keywérds

IRETW POPFW PROCTYPE(2)
POPAW PROCDESC(2) PUSHAW
PUSHFW ‘

Turbo Assembler version 4.0 supports keywords from all previous versions, with the -

following additions:

Table B.7 Turbo Assembler v4.0 (VERSION T400) new keywords

ALIAS P586N] - RSM
CMPXCHGSB ‘ P587 WRMSR
CPUID ' RDMSR ‘

P586 - . -RDTSC

246 Turbo Assembler User's Guide

Turbo Assembler version 5.0 supports keywords from all previous versions, with the |

following additions:

Table B.8 Turbo Assembler v5.0 (VERSION T500) new keywords

BREAK
ELSEIF

IF
LISTMACRO
NOLISTIF
JUNTIL
CARRY?
EXTERN
FAR32
NEAR16
OVERFLOW?
PROTO
REAL4
SBYTE
STRUCT
ZERO?

.CONTINUE
ENDIF

LISTALL
LISTMACROALL
NOLISTMACRO
UNTILCXZ
ECHO
EXTERNDEF
FOR

NEAR32
PARITY?
PUBLIC

REALS
SDWORD
SUBTITLE

ELSE
ENDW

NOLIST
REPEAT
WHILE

EXPORT

'FAR16

FORC
OPTION
PRIVATE
REAL10
REPEAT
SIGN?
SWORD

The following options are supported with the OPTION keyword:

Table B.9 Options supported by OPTION

CASEMAP
EMULATOR
EXPR16
LjMP
NOMS510
OFFSET
'OLDSTRUCTS
PROLOGUE
SCOPED
SETIF2

DOTNAME
NOEMULATOR
EXPR32

NOLJMP
NOKEYWORD
OLDMACROS
NOOLDSTRUCTS
READONLY
NOSCOPED

NODOTNAME
EPILOGUE
LANGUAGE
M510
NOSIGNEXTEND
NOOLDMACROS
PROC
NOREADONLY
SEGMENT

Appendix B, Turbo Assembler syntax summary

247

248 Turbo Assembler User's Guide

Appendix

MASM 6.1 compatibility

Turbo Assembler 5.0 (TASM32) supports most of the features of Microsoft MASM
version 6.1. This Appendix documents the new features added to Turbo Assembler
specifically to provide compatibility with MASM 6.0/6.1.

Basic data types

Turbo Assembler now supports the use of type names as directives when defining
variables. For example, the line:
var DB 10

can now be written as:
var BYTE 10

Table C.1 shows the type names and their equivalent directives.

Table C.1 Turbo Assembler types and their equivalent directives

Appendix C, MASM 6.1 compatibility 249

Signed types
* Table C.2 list the specifications of the new signed mteger types.

Table C.2 S|gned integer data types
.

1 C _128t0+127

SBYTE ’
SWORD 2 32,768 to +32,767

SDWORD- 4 2,147 483,648 to +2,147,483,647
Floatmg point types

Table C.3 lists the specifications for the new ﬂoatmg point types.

Table C.3 Floating-point data types

w$%«§%

REAL4 Shortreal 2 67 118x 1080 340 x 10°
REALS Longreal 64 15-16 1223 x1073%8 10.1.79 x 10308
REALI0 10-bytereal 80 19 . 337 x 102 t0 1.18 x 10432

Floating point constants can be designated as decimal constants or encoded
hexadecimal constants, as shown in the following examples:

; Real decimal numbers

dshort REAL4 34.56 ;IEEE format

ddouble REALS 3.456E1 ;IEEE format

dtenbyte REALI10 3456.0E-2 -;10-byte real format

; Hexadecimals, note the required trailing “r” and leading decimal digit
hexshort REAL4 4E700000r +IEEE short

hexdouble REALS 4E70000000000000r ;IEEE long

hextenbyte REALLQ 4E776000000000000000r;10-byte real

New decision and looping directives

Turbo Assembler now supports several high level directives to permit program

_ structures similar to those in higher level languages, such as C++ and Object Pascal.
These directives generate code for loops and decisions, which are executed depending
on the status of a conditional statement. The conditions are tested at run-time, and can
use the new run-time operators ==, =, >=, <=, >, <, &&, | |,and !.

JIF .ELSE .ELSEIF .ENDIF

The directives .IF, .ELSE, .ENDIF generate conditional j jumps. If the expression

following .IF evaluates to true, then the statements following the .IF are executed until

an .ELSE (if any), .ELSEIF (if any), or .ENDIF directive is encountered. If the .IF

expression evaluates to false, the statements following the .ELSE (if any) are executed

until an .ENDIF directive is encountered. Use .ELSEIF to cause a secondary expression -
- to be evaluated if the .IF expression evaluates to false.

250 Turbo Assembler User’s Guide

The syntax for the .IF directives is:

JF expressionl
statements
[.ELSEIF expression2
statements]

[.ELSE

statements)

.ENDIF

Example :
JIF bx == 16 ; if the value in bx equals 16
mov ax,20
. .ELSE ; 1f the value in bx does not equal 16
mov ax,30
.ENDIF

WHILE .ENDW

The .WHILE directive executes the statements between the WHILE and the .ENDW as
long as the expression following .WHILE evaluates to true, or until a .BREAK directive
is encountered. Because the expression is evaluated at the beginning of the loop, the
statements within the loop will not execute at all if the expression initially evaluates to
false. If a . CONTINUE directive is encountered within the body of the loop, control is
passed immediately back to the .WHILE where the expression is re-evaluated. If
.BREAK is encountered, control is immediately passed to the statement following the
.ENDW directive.

The syntax for the WHILE directives is: .

.WHILE expression
statements
.ENDW

Example
mov ax, 0 ; initialize ax to 0
JWHILE ax < 128 while ax is less than 128

mov dx, CX ; put the value of ¢x in dx
JIF dx == bx ; if dx and bx are equal
mov ax, dx ; put the value of dx in ax
. CONTINUE ; re-evaluate .WHILE expression
JELSETF ax == dx ; 1f ax equals dx
.BREAK ; break out of the .WHILE loop
.ENDIF) \
inc ax ; increment ax by 1
; end of .WHILE loop

. ENDW

Appendix C, MASM 6.1 compatibility 251

.REPEAT .UNTIL .UNTILCXZ

The .REPEAT directive executes the statements between the .REPEAT and the .UNTIL
as long as the expression following the .UNTIL (or .UNTILCXZ) evaluates to true, or
until a .BREAK directive is encountered. Because the expression is evaluated at the end
of the loop, the statements within the loop will execute at least once, even if the
expression initially evaluates to false. If a .CONTINUE directive is encountered within
the body of the loop, control is passed immediately to the .UNTIL where the expression
is re-evaluated. If . BREAK is encountered, control is immediately passed to the
statement following the .UNTIL (or .UNTILCXZ) directive. The .UNTIL directive

- generates conditional jumps. The .UNTILCXZ directive generates a LOOP instruction.

The syntax for the REPEAT diréctives is:

REPEAT
statements
UNTIL expression

Example
mov ax, 0 ; initialize ax to 0
~ .REPEAT ; while ax is less than 128)
inc ax ; increment ax by 1
LUNTIL ax >= 128 ; end of .REPEAT loop

.BREAK .CONTINUE

Asnoted above, .BREAK and .CONTINUE can be used to alter the program flow
within a loop. .CONTINUE causes the loop to immediately re-evaluate its expression,
bypassing any remaining statements in the loop. .BREAK terminates the loop and
passes control to the statement following the end of the loop. :

Both .BREAK and .CONTINUE can be combined with an optional .IF directive. If the
JF expression evaluates to true, the BREAK or .CONTINUE are carried out, otherwise
they are ignored.

Example
‘ mov ax, bx
WHILE ax = ¢x
JBREAK .IF ax == dx
.CONTINUE .IF ax > dx
inc ax
. ENDW

252 Turbo Assembler User’'s Guide

Logical operators

Turbo Assembler now supports several C-like logical operatofs, as shown in Table C 4.

Table C.4 New Turbo Assembler logical operators

q

= is not equal to
>= is greater than or equal to
<= is less than or equal to
> is greater than
< is less than
&& and
bl or
! not
& bit test

Using flags in conditions

Turbo Assembler permits the use flag value in conditions. The supported flag names are
ZERO?, CARRY?, OVERFLOW?, SIGN?, and PARITY?. For example, to use the value
of the CARRY flag in a loop expression, use:

.WHILE (CARRY?) ; if the CARRY flag is set..
statements
.ENDW

Text Macros

A string of characters can be given a symbolic name, and have that name used in the
source code rather than the string itself. The named text is referred to as a text macro. Use
the TEXTEQU directive to define a text macro.

‘To assign a literal string to a text macro, enclose the string in angle brackets (<>). For
example:

myString TEXTEQU <This is my string>

To assign one macro to another text macro, assign the macro name as in the example
below: :

myString TEXTEQU <This is my string>
myNewString TEXTEQU myString ;value of myString now in myNewString as well

To assign a text representation of a constant expression to a text macro, precede the
expression with a percent sign (%). For example:

value TEXTEQU %(1 + num);assigns text representation of resolved expression to value

Appendix C, MASM 6.1 compatibility 253

Text macros are useful for naming strmgs of text that do not evaluate to integers. For

example:
pi TEXTEQU <3.14159> ; floating point constant
WPT TEXTEQU <WORD PTR> ; keywords
arg TEXTEQU < [bp+4]> ; expression

Macro repeat blocks with loop directives

Turbo Assembler supports “repeat blocks”, or unnamed macros within a loop directive. -
- The loop directive generates the statements inside the repeat block a spec1f1ed number
of times.

REPEAT loops

Use REPEAT to specify the number of times to generate the statements inside the macro.

The syntax is: .
REPEAT constant .
statements
ENDM
Example ,
- number LABEL BYTE ; name the generated data
counter = 0 ; initialize counter

REPEAT 128 ; repeat 128 times
BYTE counter ; allocate a new number
counter = counter + 1; increment counter
ENDM

FOR loops

Use the FOR loop to iterate through a list of arguments, using the first argument the first
time through, the second argument the second time through, and so on. The syntax is:

FOR parameter, <argumentList>
statements
ENDM

The parameter represents the name of each argument inside the FOR block. The
argumentList is comma separated and enclosed in angle brackets.

Example
powers LABEL BYTE
FOR arg, <1,2,4,8,16,32,64,128>
BYTE arg DUP (arg)
ENDM

254 Turbo Assembler User’s Guide

The first iteration through the FOR loop sets arg to 1. The second iteration sets arg to 2.
The third sets arg to 4, and so on.

Text macros may be used in place of literal strings of values. The VARARG directive
can be used in the argumentList to create a variable number of arguments.

FORC loops

FORC loops are almost identical to FOR loops, except that the arqumentList is given a a
string, rather than as a comma separated list. The loop reads the string, character by
character (including spaces), and uses one character per iteration. The syntax is:

FORC parameter, <text>
. statements
ENDM

The parameter represents the name of each argument inside the FOR block. The textis a
character string and enclosed in angle brackets.

Example
alphabet LABEL BYTE)
FORC arg, <ABCDEFGHIJKLMNOPQRSTUVWXYZ>
BYTE ‘&arg’ ; allocate letter
ENDM

New Directives

For MASM compatibility, Turbo Assembler now supports the directive STRUCT,
EXTERN, and PROTO. These directives are synonyms for the STRUC, EXTRN, and
PROCDESC directives, respectively.

- ECHO directive

The ECHO directive displays its argument to the standard output device during
assembly. It is useful for debugging purposes. The syntax is:

ECHO argument

EXTERNDEF directive

Turbo Assembler treats EXTERNDEEF as a PUBLIC declaration in the defining module,
and as an external declaration in the referencing module(s). Use EXTERNDEF to make
a variable or procedure common to two or more modules. If an EXTERNDEF variable
or procedure is defined but not referenced in a given module, the EXTERNDEF is
ignored; you need not create a symbol as you would using EXTERN. The syntax of the
EXTERNDEF statement is: '

EXTERNDEF [lomgType] name : type

Appendix C, MASM 6.1 compatibility: 255

OPTION directive

The OPTION directive lets you make global changes to the behavior of the assembler.
The basic syntax of the directive is: .

OPTION argument

For example, to make the expression word size 16 bits, use the statement:
OPTION EXPRI6

To make the expression word size 32 bits, use the statement:
OPTION EXPR32 ‘ ‘

The available options are listed below:

CASEMAP: NONE/NOTPUBLIC/ALL

NONE causes internal symbol recogmuoh to be case sensitive, and causes the case of
identifiers in the .OBJ file to be the same as specified in the EXTERNDEF, PUBLIC, or
COMM statement.

NOTPUBLIC (default) causes case insensitivity for internal symbol recognition, and has
the same behavior as NONE for identifiers in .OBJ files.

ALL specifies universal case insensitivity and converts all identifiers to uppercase.

DOTNAME/NODOTNAME

Enables or disables the use of the dot (.) as the Ieadmg character in variable, macro,
structure, union, and member names. The default is disabled.

EMULATOR/NOEMULATOR
NOEMULATOR (default) tells the assembler to generate floating point math
coprocessor instructions directly.

EMULATOR generates floating point math instructions with special fixups for linking
with a coprocessor emulator library.

EXPR16/EXPR32 '
Sets the expression word size to 16 or 32 bits. The default is 32 bits.

LJMP/NOLJMP
Enables or disables automatic conditional-j]ump lengthemng The default is enabled.

NOKEYWORD: <keywordList>
Disables the keywords listed in keywordList. For example:

~ OPTTON NOKEYWORD:<MASK EXPORT NAME>

256 Turbo Assembler User's Guide

PROC: PRIVATE/PUBLIC/EXPORT

Allows you to set the default PROC visibility as PRIVATE, PUBLIC, or EXPORT. The
default is PUBLIC.

SCOPED/NOSCOPED
SCOPED (the default) guarantees that all labels inside procedures are local to the
procedure.

SEGMENT: USE16/USE32/FLAT

Sets the global default segment size and the default address size for external symbols
defined outside any segment.

Visibility in procedure declarations

Turbo Assembler supports three visibility modes in procedure (PROC) declarations;
PRIVATE, PUBLIC, and EXPORT. The visibility indicates whether the procedure is
available to other modules. PUBLIC procedures are available to other modules. All
procedures are PUBLIC by default. PRIVATE procedures are available only within the
module in which they are declared. Code in other modules cannot call PRIVATE
procedures. If the visibility is EXPORT, the linker places the procedure’s name in the
export table for segmented executables. EXPORT also enables PUBLIC visibility.

Distance in procedure declarations
In addition to the ability to specify NEAR or FAR distance in procedure (PROC)
declarations, Turbo Assembler now supports the modifiers NEAR16, NEAR32, FAR16,

and FAR32 when programming for the 80386, and up, and using both 16 and 32-bit
segments.

| SIZE operator in MASM mode

In MASM mode the size operator returns the values in table C.5 for the given labels.

Table C.5 Return value of SIZE in MASM mode

NEAR16 OFF02h
NEAR32 . OFF04h
FARIl6 OFF05h
FAR32 OFF06h

Appendix C, MASM'6.1 compatibility 257

Compatibility issues

Turbo Assembler in MASM mode is very compatible with MASM version 6.1.
“However, 100% compatibility is an ideal that can only be approached, since there is no

formal specification for the language and different versions of MASM are not even
‘compatible with each other.

For most programs, you will have no problem using Turbo Assembler as a direct
replacement for MASM. Occasionally, Turbo Assembler will issue warnings or errors
where MASM would not, which usually means that MASM has not detected an
erroneous statement. For example, MASM accepts

abc EQU [BP+2]
PUBLIC abc

and generates a nonsense object file. Turbo Assembler correctly detects this and many
other questionable constructs. :

If you are having trouble assembhng a program with Turbo Assembler, you rmght try
using the QUIRKS directive (which enables potentially troublesome features of
MASM). For example,

TASM /JQUIRKS MYFILE

might make your program assemble properly. If it does, add QUIRKS to the top of your
source file. Even better, review Chapter 3 and determine which statement in your source
file needs the QUIRKS directive. Then you can rewrite the line(s) of code so that you
don’t even have to use QUIRKS.

For maximum compatibility with MASM, you should use the N OSMART directive
along with QUIRKS mode.

One-pass versus two-pass assembly

Normally, Turbo Assembler performs only one pass when assembling code, while
MASM performs two. This feature gives Turbo Assembler a speed advantage, but can
introduce minor incompatibilities when forward references and pass-dependent ,
constructions are involved. The command-line option /m specifies the number of passes
desired. For maximum compatibility with MASM, two passes (/m2) should be used.
(See Chapter 2 for a complete discussion of this option.) The /m2 command-line switch

- will generate a MASM-style compatibility when the followmg constructs are present

IF1 and IF2 directives

ERR1 and ERR2 directives

ESLEIF1 and ELSEIF2 directives)

Forward references with IFDEF or IFNDEF
Forward references with the .TYPE operator
Recursively defined numbers, such as NMBR=NMBR+1

258 Tu»rbo Assembler User’'s Guide

» Forward-referenced or recursively defined text macros, such as
LNAME CATSTR LNAME,<1> '

¢ Forward-referenced macros

Environment variables

Turbo Assembler doesn’t use environment variables to control default options.
However, you can place default options in a configuration file and then set up different
- configuration files for different projects.

If you use INCLUDE or MASM environment variables to configure MASM, you'll have
to make a configuration file for Turbo Assembler. Any options that you have specified
using the MASM variable can simply be placed in the configuration file. Any directories
that you have specified using the INCLUDE variable should be placed in the
configuration file using the /I command-line option.

Microsoft binary floating-point format

By default, older versions of MASM generated floating-point numbers in a format
incompatible with the IEEE standard floating-point format. MASM version 6.1
generates IEEE floating-point data by default and has the MSFLOAT directive to
specify that the older format be used.

Turbo Assembler does not support the old floating-point format, and therefore does not
let you use MSFLOAT.

Appendix C, MASM 6.1 compatibility 259

260 Turbo Assembler User’s Guide

Appendix

Error messages

This chapter describes all the messages that Turbo Assembler generates. Messages usually appear
on the screen, but you can redirect them to a file or printer using the standard OS/2 redirection
mechanism of putting the device or file name on the command line, preceded by the greater than
(>) symbol. For example, :

TASM. MYFILE >ERRORS
Turbo Assembler generates several types of messages:

Information messages
Warning messages
Error messages

Fatal error messages

Information messages

Turbo Assembler displays two information messages: one when it starts assembling your source
file(s) and another when it has finished assembling each file. Here’s a sample startup display:

Turbo Assembler Version 4.0 Copyright (C) 1988, 1993 Borland International
Assembling file: TEST.ASM

When Turbo Assembler finishes assembling your source file, it displays a message that summarizes
the assembly process; the message looks like this:

Error messages: None
Warning messages: None
Passes: 1 .
Remaining memory: 279k

You can suppress all information messages by using the /T command-line option. This only
suppresses the information messages if no errors occur during assembly. If there are any errors, the
/T option has no effect and the normal startup and ending messages appear.

Appendix D, Error messages 261

Warning and error messages

Warning messages let you know that something undesirable may have happened while assembling
a source statement. This might be something such as the Turbo Assembler making an assumption
that is usually valid, but might not always be correct. You should always examine the cause of
warning messages to see if the generated code is what you wanted. Warning messages wor 't stop
Turbo Assembler from generating an object file. These messages are displayed using the following
format: :

Warning filename(line) message

If the warning occurs while expanding a macro or repeat block, the warning message contains
additional information, naming the macro and the line within it where the warning occurred:

Warning filename(line) macroname (macroline) message

Error messages, on the other hend, will prohibit Turbo Assembler from generating an o‘bject file, but
assembly will continue to the end of the file. Here’s a typical error message format:

Error filename{line) message

If the error occurs while expanding a macro or repeat block, the error message contains additional
information, naming the macro and the line within it where the error occurred:

Error filename(line) macroname(macroline) message

Fatal error messages cause Turbo Assembler to immediately stop assembling your file. Whatever
caused the error prohibited the assembler from being able to continue.

The followmg list arranges Turbo Assembler’s messages in alphabetical order:

32-bit segments not allowed without .386
Has been extended to work with the new ability to specify USE32 in the MODEL statement and the LARGESTACK
command. Formerly was “USE32 not allowed without .386.”

Argument mismatch
Argument sizes did not agree. For example,

foo proctype pascal :word, :dword
fooproc proc foo al:word, a2:dword

endp
call fooproc,ax,bx ;Argument mismatch.
Argument needs type override

The expression needs to have a spec1f1c size or type supplied, since its size can’t be determined from the context. For
example,

mov [bx],1
You can usually correct this error by using the PTR operator to set the size of the operand
mov WORD PTR [bx] 1 :
Argument to operatlon or instruction has illegal size ‘
An operation was attempted on something that could not support the required operation. For example,

Q LABEL QWORD
QNOT = not Q ;can't negate a qword

262 Turbo Assembler,User;s Guide - -

Arithmetic overflow
A loss of arithmetic precision occurred somewhere in the expression. For example,

X = 20000h * 20000h joverflows 32 bits
All calculations are performed using 32-bit arithmetic.

ASSUME must be segment register
You have used something other than a segment register in an ASSUME statement. For example,

ASSUME ax:CODE
You can only use segment registers with the ASSUME directive.

Bad keyword in SEGMENT statement
One of the align/combine/use arguments to the SEGMENT directive is invalid. For example,

DATA SEGMENT PAFA PUBLIC ;PAFA should be PARA

Bad switch __
You have used an invalid command-line option. See Chapter 2 for a'description of the command-line options.

Can’t add relative quantltles
You have s 1pec1f1ed an expression that attempts to add together two addresses, which is a meaningless operahon
For examp
ABC ?
DEF = ABC + ABC ;error, can't add two relatives
You can subtract two relative addresses, or yoﬁ can add a constant to a relative address, as in:
XY7Z DB 5 DUP (0)
XYZEND EQU $
XYZLEN = SYZEND - XYZ iperfectly legal
XY72 = XYZ + 2 ilegal also

Can’t address with currently ASSUMEd segment registers
An expression contains a reference to a variable for which you have not specified the segment register needed to
reach it. For example,
DSEG SEGMENT
ASSUME ds:DSEG
mov si,MPTR : ;N0 segment register to reach XSEG
DSEG ENDS ‘
XSEG - SEGMENT
MPTR DW ?
XSEG ENDS

Can’t convert to pointer
Part of the expression could not be converted to a memory pointer, for example, by using the PTR operator,

mov cl, [BYTE PTR al] ;can't make AL into pointer

Can’t emulate 8087 instruction
The Turbo Assembler is set to generate emulated floating-point instructions, either via the /E command-line option
or by using the EMUL directive, but the current instruction can’t be emulated. For example,

EMUL ,

FNSAVE [WPTR] jcan't emulate this

The following instructions are not supported by floating-point emulators: FNSAVE, FNSTCW FNSTENYV, and
FNSTSW.

Can't find @file

You have specified an indirect command file name that does not exist. Make sure that you supply the complete file
name. Turbo Assembler does not presume any default extension for the file name. You've probably run out of space
on the disk where you asked the cross-reference file to be written.

Appendix D, Error messages 263

Can’t generate instance of type
You attempted to generate an instance of a named type that does not have an instance. For example,
foo typedef near :
foo ? - ;NEARs have no instance.

Can’t locate file
You have specified a file name with the INCLUDE directive that can’t be found.

An INCLUDE file could not be located. Make sure that the name contains any necessary disk letter or d1rectory
path.

Can’t make variable public

The variable is already declared in such a way that it can’t be made pubhc For example,
EXTRN ABC:NEAR . ‘
PUBLIC ABC ;error, already EXTRN

Can’t override ES segment
The current statement specifies an override that can’t be used with that instruction. For example,

stos DS:BYTE PTR[di]
Here, the STOS instruction can only use the ES reglster to access the destination address.

Can’t subtract dissimilar relative quantlhes
An expression subtracts two addresses that can’t be subtracted from each other, such as when they are each in a
different segment:

SEGL SEGMENT-

A:

SEGL ENDS

SEG2 SEGMENT

B:

mov ax,B-A ;illegal, A and B in different segments
SEG2 ENDS

Can’t use macro name in expression
A macro name was encountered as part of an expression. For example,
MyMac MACRO
ENDM
mov ax,MyMac = ;wrong!
Can’t use this outside macro

You have used a directive outside a macro deflmtlon that can only be used inside a macro deﬁmﬁon This mcludes
directives like ENDM and EXITM. For example,

, DATA SEGMENT
ENDM ;error, not inside macro

Code or data emission to undeclared segment
A statement that generated code or data is outside of any segment declared with the SEGMENT directive. For
example,
;First line of file v
inc bx ;error, no segment
END

You can only emit code or data from within a segment.

Constant assumed to mean immediate constant
This warning appears if you use an expression such as [0], which under MASM is interpreted as sunply 0. For
example,

mov ax, [0] ;means mov ax, (0 NOT mov ax,DS: [0]

)

264 Turbo Assembler User’s Guide

Constant too large :

You have entered a constant value that is properly formatted, but is too large. For example, you can only use
numbers larger than Offffh when you have enabled 80386 or 1486 instructions with the .386/.386P or .486/.486P
directives.

CS not correctly assumed
A near CALL or JMP instruction can’t have as its target an address in a different segment. For example,
SEGL SEGMENT
LABl LABEL NEAR
SEGL ENDS
SEG2 SEGMENT ‘
jmp LABL ;error, wrong segment
SEG2 ENDS
This error only occurs in MASM mode. Ideal mode correctly handles this situation.

' CS override in protected mode
The current instruction requires a CS override, and you are assembling instructions for the 80286, 80386, or 1486 in
. protected mode (P286P, P386P, or P486 directives). For example,

P286P
.CODE
CVAL DW ? -
mov CVAL,1 ;generates CS override

The /P command-line option enables this warning. When running in protected mode, instructions with CS
overrides won’t work without you taking special measures.

CS unreachable from current segment
When defining a code label using colon (:), LABEL or PROC, the CS register is not assumed to either the current
code segment or to a group that contains the current code segment. For example,

PROG1 SEGMENT
ASSUME cs:PROG2
START: . jerror, bad CS assume
This error only occurs in MASM mode. Ideal mode correctly handles this situation.

Data or code written to uninitialized segment
You have inadvertently written initialized code or data to an uninitialized segment. For example,

.data?
nsg db 'Hello',0 ; error, uninitialized segment

Declaration needs name
You have used a directive that needs a symbol name, but none has been supplied. For example,
PROC ;error, PROC needs a name
ret
ENDP

You must always supply a name as part of a SEGMENT, PROC, or STRUC declaration. In MASM mode, the name

precedes the directive; in Ideal mode, the name comes after the directive. >
N </

Appendix D, Error messages. 265

Directive not allowed inside structure definition
You have used a directive inside a STRUC definition block that can’t be used there. For example,
X STRU
MEML DB ?
ORG $+4 jerror, can't use ORG inside STRU
MEM2 DW ? :
ENDS .
Also, when declaring nested structures, you cannot give a name to any that are nested. For example,
FOO STRU ‘
F002 STRUC ;can't name inside
ENDS
ENDS

If you want to use a named structure inside another structure, you must first define the structure and then use that
structure name inside the second structure.

Duplicate dummy argument: _
A macro defined with the MACRO directive has more than one dummy parameter with the same name. For
example,

XYZ MACRO A,A : ;error, duplicate dummy name
DB A)
ENDM
Each dummy parameter in a macro definition must have a different name.
ELSE or ENDIF without IF

An ELSE or ENDIF directive has no match.mg IF dlrectrve to start a conditional assembly block. For example,

BUF DB 10 DUP (?)
ENDIF ;error, no matching IFxxx

Error writing to listing file
You've probably run out of space on the disk where you asked the listing file to be written.

Error writing to object file
You've probably run out of space on the disk where you asked the object file to be written.

Expecting METHOD keyword
The extended structure statement for defining objects expects the keyword METHOD after the parent object.

Expecting offset quantity '
An expression expected an operand that referred to an offset within a segment, but did not encounter the rlght sort
of operand. For example, .
“CODE SEGMENT
mov ax,LOW CODE
CODE ENDS

Expecting offset or pointer quantity
An expression expected an operand that referred to an offset within a specific segment, but did not encounter the
right sort of operand. For example, ,
CODE SEGMENT
mov ax,SEG CODE ;error, code is a segment not
) "; a location within a segment .

CODE ENDS -
Expecting pointer type
The current instruction expected an operand that referenced memory. For example,

les di 4) ;no good, 4 is a constant

266 Turbo Assembler User’s Guide -

Expecting record field name
~ You used a SETFIELD or GETFIELD instruction without a field name following it.

Expecting register ID
The USES part of the CALL..METHOD expects register name(s).
Expecting scalar type :
An instruction operand or operator expects a constant value. For example,
BB DB ¢
rol - ax,BB ;iROL needs constant

Expecting segment or group quantity
A statement required a segment or group name, but did not find one. For example,

DATA SEGMENT

ASSUME ds:F00 ;error, FOO is not group or segment
;name
FOO DW 0
DATA ENDS

Extra characters on line
A valid expression was encountered, but there are still characters left on the line. For example,

ABC = 4 shl 33 ;missing operator between 3 and 3

This error often happens in conjunction with another error that caused the expression parser to lose track of what

you intended to do.

File not found

The source file name you specified on the command line does not exist. Make sure you typed the name correctly,

and that you included any necessary drive or path information if the file is not in the current directory.

File was changed or deleted while assembly in progress

Another program, such as a pop-up utility, has changed or deleted the file after Turbo Assembler opened it. Turbo

Assembler can’t reopen a file that was previously opened successfully.

Forward reference needs override
An expression containing a forward-referenced variable resulted in more code being required than Turbo

Assembler anticipated. This can happen either when the variable is unexpectedly a far address for a JMP or CALL or

when the variable requires a segment override in order to access it. For example,
ASSUME cs:DATA

call A ;presume near call
A PROC FAR ;o0ps, it's far

mov ax,MEMVAR ;doesn't know it needs override
DATA . SEGMENT
MEMVAR DW °? ;00ps, needs override

Correct this by explicitly supplying the segment override or FAR override.
Global type doesn’t match symbol type

This warning is given when a symbol is declared using the GLOBAL statement and is also defined in the same
module, but the type specified in the GLOBAL and the actual type of the symbol don’t agree.

Appendix D, Error messages

267

ID not member of structure
In Ideal mode, you have specified a symbol that is not a structure member name after the period (.) structure
member operator. For example, :

IDEAL
STRUC DEMO
DB ?
ENDS
COUNT oW 0 ; :
mov ax, [(DEMO bx).COUNT] ;COUNT not part of structure
You must follow the period with the name of a member that belongs to the structure name that precedes the period.

This error often happens in conjunction with another error that caused the expression parser to lose track of what .
you intended to do. :

Illegal forward reference
A symbol has been referred to that has not yet been defined, and a directive or operator requires that its argument
not be forward-referenced. For example,

CIF MYSYM - serror, MYSYM not defined yet

H

ENDIF

MYSYM EQU 1
Forward references may not be used in the argument to any of the IFxxx directives, nor as the count in a DUP
expression.

Illegal immediate
An instruction has an immediate (constant) operand where one is not allowed. For example,

mov 4,al

Illegal indexing mode :
An instruction has an operand that specifies an illegal combination of registers. For example,

mov al, [si+ax]

On all processors except the 80386, the only valid combinations of index reglsters are: BX, BP, SI, DI, BX+SI, BX+D],
BP+SI, BP+DI

-Illegal instruction
A source line starts with a symbol that is neither one of the known directives nor a valid instruction mnemonic.

move ax,4 ;should be "MOV"

Illegal mstructlon for currently selected processor(s)
A source line specifies an instruction that can’t be assembled for the current processor. For example,

.8086 ‘ :
push 1234h ;no immediate push on 8086

When Turbo Assembler first starts assembling a source file, it generates instructions for the 8086 processor, unless
told to do otherwise.

If you wish to use the extended instruction mnemonics available on the 186/286/386 processors, you must use one
of the directives that enables those instructions (P186, P286, P386).

Illegal local argument
The LOCAL directive inside a macro definition has an argument that is not a valid symbol name. For example,
X MACRO
LOCAL 123 ;not a symbol
ENDM

268 Turbo Assembier User's Guide

Illegal local symbol prefix

The argument to the LOCALS directive specifies an invalid start for local symbols. For example,
LOCALS XYZ jerror, not 2 characters
The local symbol prefix must be exactly two characters that themselves are a valid symbol name, such as __, @@,
and so on (the default is @@). .
Illegal macro argument
A macro defined with the MACRO directive has a dummy argument that is not a valid symbol name. For example,
X MACRO 123 ;invalid dummy argument
ENDM

Illegal memory reference
An instruction has an operand that refers to a memory location, but a memory location is not allowed for that
operand. For example,

mov [bx],BYTE PTR A jerror, can't move from MEM to MEM
Here, both operands refer to a memory location, which is not a legal form of the MOV instruction. On the 80x86
family of processors, only one of the operands to an instruction can refer to a memory location.

Illegal number
A number contains one or more characters that are not valid for that type of number. For example,

7 = 0ABCGh
Here, G is not a valid letter in a hexadecimal number.
Illegal origin address

You have entered an invalid address o set the current segment location ($). You can enter either a constant or an
expression using the location counter ($), or a symbol in the current segment.

Illegal override in structure
You have attempted to initialize a structure member that was defined using the DUP operator. You can only
initialize structure members that were declared without DUP.

Illegal override register
A register other than a segment register (CS, DS, ES, SS, and on the 80386, FS and GS) was used as a segment
override, preceding the colon (:) operator. For example,

mov dx:XYZ,1 ;DX not a segment register
Illega.l radix
The number supplied to the RADIX directive that sets the default number radix is invalid. For example,
.RADIX 7 ;no good
The radix can only be set to one of 2, 8, 10, or 16. The number is interpreted as decimal no matter what the current
default radix is.

Illegal register for instruction
An illegal register was used as the source of a SETFIELD instruction or the destination of a GETFIELD instruction.

~ Illegal register multiplier
You have attempted to multiply a register by a value, which is not a legal operatlon, for example,
mov ax*3,1 ‘ ‘
The only context where you can multiply a register by a constant expression is when specifying a scaled index
operand on the 80386 processor.
Illegal segment address
This error appears if an address greater than 65,535 is specified as a constant segment address; for example,
FOO SEGMENT AT 12345h
Illegal use of constant
A constant appears as part of an expression where constants can’t be used. For example,
mov bx+4,5

Appendix D, Error messages 269

Illegal use of register
A register name appeared in an expression where it can’t be used. For example, -

X = 4 shl ax ;can't use register with SHL operator

Illegal use of segment register
A segment register name appears as part of an instruction or expression where segment registers cannot be used.
For example,

add "ss, 4 ;ADD can't use segment regs
Illegal USES register

You have entered an invalid register to push and pop as part of entering and leaving a procedure The valid
registers follow:

AX BX cx DI
DS DX ' ES s

If you have enabled the 80386 processor with the .386 or .386P directive, you can use the 32-bit equivalents for these
registers. . .

Illegal version ID
Occurs when an illegal version ID was selected in the VERSION statement or /U switch.

Illegal warning ID
You have entered an invalid three-character warning identifier. See the options dlscussed in Chapter 2 for a
complete list of the allowed warning identifiers.

Instruction can be compacted with override
The code generated contains NOP padding, due to some forward-referenced symbol. You can either remove the
forward reference or explicitly provide the type information as part of the expression. For example,

jmp X ;warning here

jmp SHORT X - .;N0 warning
X: :
Insufficient memory to process command line

You have specified a command line that is either longer than 64K or can’t be expanded in the avaﬂable memory.
Either simplify the command line or run Turbo Assembler with more memory free.

Internal error
This message should never happen during normal operation of Turbo Assembler Save the f11e(s) that caused the
error and report it to Borland s Technical Support department.

Invalid command line -
The command line that you used to start Turbo Assembler is badly formed. For example,
TASM ,MYFILE

does not specify a source file to assemble See Chapter 2 for a complete description of the Turbo Assembler
command line.

" Invalid model type
The model directive has an invalid memory model keyword For example,
.MODEL GIGANTIC
Valid memory models are tiny, small, compact, medium, large, and huge:
Invalid number after

You have specified a valid command-line sw1tch (option), but have not supplied a valid numeric argument
following the switch. See Chapter 2 for a discussion of the command-line options.

Invalid operand(s) to instruction
The instruction has a combination of operands that are not pernutted For example,

fadd sT(2),87(3) :
Here, FADD can only refer to one stack register by name; the other must be the stack top.

1

- 270 Turbo Assembler User’s Guide

Labels can’t start with numeric characters
You have entered a symbol that is neither a valid number nor a valid symbol name, such as 123XYZ.

Language differs from procedure type
You attempted to use a different language than what was contained in the procedure type declaration. For example,
foo proctype windows pascal :word
fooproc proc foo al:word
endp .
call fooproc c,ax ;Language doesn't match.

Language doesn’t support variable-length arguments
You specified a variable-length stack frame with a language that doesn’t support it. For example,
foo proctype pascal :word, :unknown ;Pascal can't have
;variable arguments.

Line too long—truncating
The current line in the source file is longer than 255 characters. The excess characters will be ignored.

Location counter overflow
The current segment has filled up, and subsequent code or data will overwrite the begmmng of the segment. For
example,

ORG 0FFF0h
ARRAY DW 20 DUP (0)) ;overflow

Method CALL requires object name
The CALL.METHOD statement cannot obtain the object type from this instance pointer. You must specify the
object name.

Missing argument list
An IRP or IRPC repeat block directive does not have an argument to substitute for the dummy parameter. For
example,
IRP X ;no argument list
DB X
ENDM

IRP and IRPC must always have both a dummy parameter and an argument list.

Missiifg argument or <

You forgot the angle brackets or the entire expression in an expression that requires them. For example,
ifb ineeds an argument in <>s

Missing argument size variable
An ARG or LOCAL directive does not have a symbol name fo]lowmg the optional = at the end of the statement. For
example,

ARG A:WORD, B:DWORD= jerror, no name after =

LOCAL X:TBYTE= ;same error here

ARG and LOCAL must always have a symbol name if you have used the optional equal sign (=) to indicate that you
want to define a size variable.

Missing COMM ID
A COMM directive does not have a symbol name before the type specifier. For example,
COMM NEAR ;error, no symbol name before "NEAR"

COMM must always have a symbol name before the type specifier, followed by a colon (:) and then the type
specifier.

A

Appendix D, Error messages 271

Missing dummy argument
An IRP or IRPC repeat block directive does not have a dummy parameter. For example,

RP ;no dummy parameter
DB X N

ENDM
IRP and IRPC must always have both a dummy parameter and an argument list.
Missing end quote
A string or character constant did not end with a quote character. For example,

DB "abc ;missing * at end of AB

mov al, 'X - ;missing ' after X

You should always end a character or string constant with a quote character matching the one that started it.

Missing macro ID
A macro defined with the MACRO directive has not been given a name. For example,
MACRO ;€rror, no name
DB A
ENDM

Macros must always be given a name when they are defined.

Missing module name
You have used the NAME directive but you haven’t supplied a module name after the directive. Remember that the
NAME directive only has an effect in Ideal mode.

Missing or illegal language ID
You have entered something other than one of the allowed language identifiers after the . MODEL directive. See
Chapter 7 for a complete description of the MODEL directive.

Missing or illegal type specifier
A statement that needed a type specifier (like BYTE, WORD, and so on) did not find one where expected. For
example, - ,

RED LABEL XXX : ;error, "XXX" is not a type spec1f1er

Missing table member ID ,
A CALL.METHOD statement was mlssmg the method name after the METHOD keyword.

Missing term in list
In Ideal mode, a directive that can accept multiple arguments (EXTRN, PUBLIC, and s0 on) separated by commas
does not have an argument after one of the commas in the list. For example,

EXTRN XXX:BYTE,,YYY:WORD

In Ideal mode, all argument lists must have their elements separated by precisely one comma, with no comma at the
end of the list.

" Missing text macro
You have not supplied a text macro argument to a directive that requires one. For example,

NEWSTR SUBSTR ;ERROR - SUBSTR NEEDS ARGUMENTS
Model must be specified first
You used one of the simplified segmentation directives without first specifying a memory model. For example,
.CODE ;error, no .MODEL first

You must always specify a memory model using the . MODEL directive before using any of the other simplified
segmentation directives. .

272 Turbo Assembler User’s G‘uide

Module is pass-dependent—compatibility pass was done
This warning occurs if a pass-dependent construction was encountered and the /m command-line switch was
specified. A MASM-compatible pass was done.

You put a symbol name after a directive, and the symbol name should come first. For example,
STRUC ABC ‘ jerror, ABC must come before STRUC

Since Ideal mode expects the name to come after the directive, you will encounter this error if you try to assemble
Ideal mode programs in MASM mode.

Near jump or call to different CS
This error occurs if the user attempts to perform a NEAR CALL or JMP to a symbol that’s defined in an area where
CS is assumed to a different segment.

Need address or register
An instruction does not have a second operand supplied, even though there is a comma present to separate two
operands; for example,

mov ax, ino second operand

Need angle brackets for structure fill

A statement that allocates storage for a structure does not specify an initializer list. For example,
STR1 STRU

ML DW ?
M2 DD ?
ENDS
STR1 ;no initializer list
Need colon

An EXTRN, GLOBAL, ARG, or LOCAL statement is missing the colon after the type specifier (BYTE, WORD), and
so on). For example,

EXTRN X BYTE,Y:WORD ;X has no colon

Need expression

An expression has an operator that is missing an operand. For example,
X=44+ %6

Need file name after INCLUDE

An INCLUDE directive did not have a file name after it. For example,
INCLUDE ;include what?.

In Ideal mode, the file name must be enclosed in quotes.

Need left parenthesis

A left parenthesis was omitted that is required in the expression syntax. For example,
DB 4 DUP 7

You must always enclose the expression after the DUP operator in parentheses.

Need method name
The CALL..METHOD statement requires a method name after the METHOD keyword.

Need pointer expression
This error only occurs in Ideal mode and indicates that the expressmn between brackets ([]) does not evaluate to a
memory pointer. For example,

mov ax, [WORD PTR]
In Ideal mode, you must always supply a memory-referencing expression between the brackets.

Appendix D, Error messages 273

Need quoted string
You have entered something other than a string of characters between quotes where it is required. In Ideal mode,
several directives require their argument to be a quoted string. For example,

IDEAL ' '

DISPIAY "ALL DONE"

\

Need register in expression
You have entered an expression that does not contain a register name where one is required.

Need right angle bracket
An expression that initializes a structure, union, or record does not end with a > to match the < that started the
initializer list. For example,

MYSTRUC . STRUCNAME <1,2,3

Need right curly bracket
Occurs during a named structure, table, or record fill when a ‘)" is expected but not found

Need right parenthesis
An expression contains a left parenthesis, but no matching right parenthesis. For example,
X=5%*(4+3
~ You must always use left and right parentheses in matching pairs.

Need right square bracket
An expression that references a memory location does not end with a] to match the [that started the expression. For
example,

mov ax, [si ;error, no closing] after SI
~ You must always use square brackets in matching pairs.

Need stack argument
A floating-point instruction does not have a second operand supphed even though there is a comma present to
separate two operands. For example,

fadd ST,

Need structure member name
In Ideal mode, the period (.) structure member operator was followed by something that was not a structure
member name. For example, :
IDEAL
STRUC DEMO
DB ?
ENDS
COUNT Dw 0
mov . ax, [(DEMO bx).]

You must always follow the period operator with the name of a member in the structure to its left.
Not expecting group or segment quantity ’
. You have used a group or segment name where it can’t be used. For example,
CODE SEGMENT
rol ax,CODE ;error, can't use segment name here
One non-null field allowed per union expansion
When initializing a union defined with the UNION directive, more than one value was supphed For example,
U UNION

w2
DD - ?
ENDS , :
UINST-U <1,2> ;error, should be <?,2> or <1,7>

A union can only be initialized to one value.

274 Turbo Assembler User’s Guide

Only one startup sequence allowed
This error appears if you have more than one .STARTUP or STARTUPCODE statement in a module.

Open conditional
- The end of the source file has been reached as defined with the END directive, but a conditional assembly block
started with one of the IFxxx directives has not been ended with the ENDIF directive. For example,
IF BIGBUF , '
END ;no ENDIF before END

This usually happens when you type END instead of ENDIF to end a conditional block.

Open procedure
The end of the source file has been reached as defined with the END directive, but a procedure block started with
the PROC directive has not been ended with the ENDP directive. For example,
MYFUNC PRO :
END ;no ENDIF before ENDP

This usually happens when you type END instead of ENDP to end a procedure block.

Open segment
The end of the source file has been reached as defined with the END directive, but a segment started with the
SEGMENT directive has not been ended with the ENDS directive. For example,
DATA SEGMENT
END ;ino ENDS before END

This usually happens when you type END instead of ENDS to end a segment.
Open structure definition '

The end of the source file has been reached as defined with the END directive, but a structure started with the
STRUC directive has not been ended with the ENDS directive. For example,

X STRU
VALL DW ?
END ;no ENDS before it

This usually happens when you type END instead of ENDS to end a structure definition.
Operand types do not match

The size of an instruction operand does not match either the other operand or one valid for the instruction; for
example,

ABC DB 5

mov ax,ABC
Operation illegal with procedure type
You used the structure member operator on an expression whose type is a procedure. For example,
foo proctype pascal :word

mov ax, [foo ptr [bx]).member ;Things of type FOO
shave no members

Operation illegal with static table member
A"’ operator was used to obtain the address of a static table member. This is illegal.

Out of hash space

The hash space has one entry for each symbol you define in your program. It starts out allowing 16,384 symbols to
be defined, as long as Turbo Assembler is running with enough free memory. If your program has more than this
many symbols, use the /KH command-line option to set the number of symbol entries you need in the hash table.

Appendix D, Error messages 275

Out of memory
You don’t have enough free memory for Turbo Assembler to assemble your file.

If you have any TSR (RAM-resident) programs installed, you can try removing them from memory and try
assembling your file again. You may have to reboot your system in order for memory to be properly freed.

Another solution is to split the source file into two or more source files, or rewrite }éortlons of it so that it requires
less memory to-assemble. You can also use shorter symbol names, reduce the number of comments in macros, and
reduce the number of forward references in your program.

Out of string space
You don’t have enough free memory for symbol names, file names, forward-reference tracking information, and
macro text. A maximum of 512K is allowed, and your module has exceeded this maximum.

Pass-dependent construction encountered
The statement may not behave as you expect, due to the one-pass nature of Turbo Assembler. For example,

IFl

;Happens on assembly pass
ENDIF
IF2

;Happens on listing pass
ENDIF.

'Most constructs that generate this error can be re-coded to avoid it, often by removing forward references.

Pointer expresswn needs brackets
In Ideal mode, the operand contained a memory-referencmg symbol that was not surrounded by brackets to -
indicate that it references a memory location. For example,

B DB. 0 .
mov al,B : ;warning, Ideal mode needs [B]
Since MASM mode does not require the brackets, this is only a warning.

Positive count expected
A DUP expression has a repeat count less than zero. For example,

BUF -1 DUP (?) jerror; count < 0
The count preceding a DUP must always be 1 or greater.

Procedure has too many arguments
A procedure was declared with too many arguments. For example,

footype PROCTYPE pascal :word, :dword

foo proc footype
arg al:word,a2:dword, a3 :word
nop ;too many arguments were declared for
;for this proc
endp

Procedure needs more arguments
A procedure was declared with too few arguments. For example

footype PROCTYPE pascal .word , :dword

foo proc footype

arg al:word :

nop :Needs a DWORD argument somewhere too.
ret k ' '

endp

Record field too large
When you defined a record, the sum total of all the field widths exceeded 32 bits. For example,

AREC RECORD RANGE:12,TOP:12,BOTTOM:12

276 Turbo Assemblyer User’s Guide

v

Record member not found ‘
A record member was specified in a named record fill that was not part of the specified record.

Recursive definition not allowed for EQU
An EQU definition contained the same name that you are defining within the definition itself. For example,

ABC EQU TWOTIMES ABC

Register must be AL or AX
An instruction which requires one operand to be the AL or AX register has been given an invalid operand. For
example, .

IN CL,dx jerror, "IN' must be to AL or AX

Register must be DX

An instruction which requires one operand to be the DX register has been given an invalid operand. For example,
IN AL, cx jerror, must be DX register instead of CX

Relative jump out of range by __ bytes

A conditional jump tried to reference an address that was greater than 128 bytes before or 127 bytes after the current
location. If this is in a USE32 segment, the conditional jump can reference between 32,768 bytes before and 32,767
bytes after the current location.

Relative quantity illegal
An instruction or directive has an operand that refers to a memory address in a way that can't be known at assembly
time, and this is not allowed. For example,
DATA SEGMENT PUBLI
X DB 0
IF OFFSET X GT 127 inot known at assemble time

Reserved word used as symbol
You have created a symbol name in your program that Turbo Assembler reserves for its own use. Your program
will assemble properly, but it is good practice not to use reserved words for your own symbol names.

Rotate count must be constant or CL

A shift or rotate instruction has been given an operand that is neither a constant nor the CL register. For example,
rol ax,DL jerror, can't use DL as count

You can only use a constant value or the CL register as the second operand to a rotate or shift instruction.

Rotate count out of range

A shift or rotate instruction has been given a second operand that is too large. For example,
.8086

shl DL,3 ;error, 8086 can only shift by 1
.286
ror ax,40 ;error, max shift is 31

The 8086 processor only allows a shift count of 1, but the other processors allow a shift count up to 31.

Segment alignment not strict enough
The align boundary value supplied is invalid. Either it is not a power of 2, or it spec1f1es an alignment stricter than
that of the align type in the SEGMENT directive. For example, :

DATA SEGMENT PARA
ALIGN 32 ;error, PARA is only 16
ALIGN 3 ;error, not power of 2

Appendix D, Error messages 277

Segment attributes illegally redefined
A SEGMENT directive reopen a segment that has been previously defined, and tr1es to give it different attributes.
For example,

DATA SEGMENT BYTE PUBLI

DATA ENDS

DATA SEGMENT PARA ;error, previously had byte alignment

DATA ENDS

If you reopen a segment the attributes you supply must either match exactly or be omitted entirely. If you don’t
supply any attributes when reopening a segment, the old attrlbutes will be used.

Segment name is superfluous ! '
This warning appears with a .CODE xxx statement where the model specified doesn’t allow more than code

segment.

String too long ' K
You have built a quoted string that is longer than the maximum allowed length of 255.

Style differs from procedure type

You attempted to use a different language style than the declaration of the procedure type contained. For example,
foo proctype windows pascal :word
fooproc proc foo al:word

s

enelp
call fooproc normal pascal,ax ;Style doesn't match.

Symbol already defined: i

The indicated symbol has prev1ously been declared with the same type. For example,
BB DB 1,2,3 '
BB DB ? ;error, BB already defined

Symbol already different kind
The indicated symbol has already been declared before with a different type. For example,
BB DB 1,2,3 o
- BB DW ? ;error, BB already a byte
Symbol has no width or mask
The operand of a WIDTH or MASK operator is not the name of a record or record f1eld For example,

B DB 0
mov ax,MASK B ;B 1s not a record field

~ Symbol is not a segment or already part ofa group

The symbol has either already been placed in a group or it is not a segment name. For example,
. DATA SEGMENT

DATA ENDS
DGROUP GROUP DATA

"DGROUP2 GROUP DATA ;error, DATA already belongs to
: ’ ; DGROUP

Text macro expansion exceeds maximum line length
This error occurs when expansion of a text macro causes the maximum allowable line length to be exceeded.

278 Turbo Assembler User’'s Guide

Too few arguments to procedure
You called a procedure using too few arguments. For example,

foo proctype pascal :word, :dword
fooproc proc foo al:word, a2:dword

endp
call fooproc,ax ’ ;Too few arguments.

Too few operands to instruction ‘

The instruction statement requires more operands than were supplied. For example,
add ax ;missing second arg

Too many arguments to procedure ,

You called a procedure using too many arguments. For example,
foo proctype pascal :word, :dword
fooproc proc foo al:word, a2:dword

endp
call fooproc,ax,bx cx,dx ;Too many arguments.

Too many errors found

Turbo Assembler has stopped assembling your file because it contained so many errors. You may have made a few

errors that have snowballed. For example, failing to define a symbol that you use on many lines is really a single
error (failing to define the symbol), but you will get an error message for each line that referred to the symbol.

Turbo Assembler will stop assembling your file if it encounters a total of 100 errors or warnings.

Too many errors or warnings

No more error messages will be displayed. The maximum number of errors that will be displayed is 100; this
number has been exceeded. Turbo Assembler continues to assemble and prints warnings rather than error
messages.

Too many initial values
You have supplied too many values in a structure or union initialization. For example,
XYz STRU
Al DB ?
A2 DD ?
XYZ ENDS
ANXYZ XYZ <1,2,3> jerror, only 2 members in XYZ
You can supply fewer initializers than there are members in a structure or union, but never more.
Too many register multipliers in expression
An 80386 scaled index operand had a scale factor on more than one register. For example,
mov EAX, [2*EBX+4*EDX] ;too many scales
Too many registers in expression '
The expression has more than one index and one base register. For example,
mov ax, [BP+SI+DI] ;jcan't have SI and DI

Too many USES registers
You specified more than 8 USES régisters for the current procedure.

Trailing null value assumed
A data statement like DB, DW, and so on, ends with a comma. TASM treats this as a null value. For example,

db 'hello',13,10, ;same as ...,13,10,?

Undefined symbol
The statement contains a symbol that wasn’t defined anywhere in the source file.

Appendix D, Error messages'

279

Unexpected end of file (no END directive)
The source file does not have an END directive as its last statement. All source files must have an END statement.

Unknown character
The current source line contains a character that is not part of the set of characters that make up Turbo Assembler
symbol names or expressions. For example,

add ax,!1 serror, exclamation is illegal character

Unmatched ENDP: __ '
The ENDP directive has a name that does not match the PROC directive that opened the procedure block. For
example, . ‘

ABC PRO :

XYZ ENDP : jerror, XYZ should be ABC

Unmatched ENDS: _
The ENDS directive has a name that does not match either the SEGMENT directive that opened a segment or the
STRUC or UNION directive that started a structure or union definition. For example,

ABC STRU
XYZ ENDS ;error, XYZ should be AB
DATA SEGMENT

CODE ENDS ;error, code should be DATA

User-generated error

An error has been forced by one of the directives, which then forces an error. For example,
.ERR . ;shouldn't get here

USES has no effect without langﬁage
This warning appears if you specify a USES statement when no language is in effect. .

Value out of range
The constant is a valid number, but it is too large to be used where it appears. For example,
DB 400 :

Variable length parameter must be last parameter
If a variable-length parameter is present, it must be the last parameter. For example,

foo proctype pascal :word, :unknown, :word ;Not allowed.

280 Turbo Assembler User’s Guide

Symbols

! character 167
$ symbol 109
% expression evaluation
character 167
% immediate macro
directive 171
& character
in macros 162
+ addition operator 72
. (period) character
Ideal mode 32
.186 directive 76
286 directive 76
.286C directive 76
. .286P directive 76
287 directive 79
.386 directive 76
386 processor
protected mode 21
.386C directive 76
.386P directive 76
.387 directive 79 -
486 directive 76
A486C directive 76
A86P directive 76
487 directive 76
80186 processor
© 186 directive 76
P186 directive 76
80286 processor
286 directive 76
.286C directive 76
.286P directive 76
protected mode 21
80287 coprocessor
.287 directive 79
P287 directive 79
80386 processor :
.386 directive 76
.386C directive 76
.386P directive 76

loop instructions for 147

P386 directive 76
P386N directive 76
P386P directive 76
protected mode 21
~ 80387 coprocessor
387 directive 79
P387 directive 79
80486 processor

Index

486 directive 76
486C directive 76
A86P directive 76
P486 directive 76
P486N directive 76
protected mode 21
80487 processor
487 directive 76
P487 directive 76
.8086 directive 76
8086 processor
.8086 directive 76
8086 directive 76
PUSHing constants 149
segments and 81
8087 coprocessor 15,79
.8087 directive 79
Borland C++ and 214
P8087 directive 79
.8087 directive 79
:: directive 114
< > (bracket) initializer 138
nested structures/unions
and 139, 143
records and 140
< > (brackets)
literal string 166
macros and 159
= (equals) directive 38
= directive 15
= sign, argument lists and 122
? keyword 101, 121
as initial value 137
? symbol 133
@@ symbol 131 '
@32Bit symbol 85
@-sign 26
[] (square brackets)
describing address
contents 71
Ideal mode 31
- MASM mode 31

\ line continuation character 165

{} (brace) initializer 137, 142
records and 140

A

/aoption 14, 22
address expressions See
expressions
address subtypes
complex 61

setting 67
address subtypes of symbols
distance parameter and 61
addresses, calculating 70
ALIAS 187
alias values 37
ALIGN directive 99, 112
ALPHA directive 14, 23
.ALPHA directive 93
ancestor virtual methods 53
ARG directive 120, 121
Borland C++ and 212
arguments
BYTE 121
names (scope of) 122
substitution (defined) 162
arithmetic operators 66, 72
ASM files 1,12
assemblin,
multiplge passes 117
number of passes 18
ASSUME directive 91
at-sign 26
attribute values of segments 88
attributes
segment
access 90
alignment 89
class 89
combination 88
size 90 .
values of segments 88

/b option 13
@B symbol 131
Backus-Naur form (BNF)
grammar 62
%BIN directive 194, 195
binary coded decimal (BCD)
encodin
DT directive and 136
bit-field records
defining 96 :
bit shift operators 67
block scoping of symbols,
defined 130
books
assembly language 9
Boolean algebra and
operators 66

Index 281

symbol expressions and 179

Borland :
contacting 4

Borland C++
ARG directive and 212
assembler modules in 15
case sensitivity 19, 206
code segment 200
data types 207
external symbols 208

_ floating-point emulation 15
linking to 221
LOCAL directive and 211
memory models 200
parameter passing 209
Pascal calling
conventions 220

public functions and 205
register preservation 213
returning values 214
segment directives and 200
structures 214

BOUND instruction
Ideal mode 32

buffers, size of 13

BYTE arguments 121

byte values 134

C

/coption 14, 193
calculating addresses 70
CALL instruction
See also CALL.METHOD
155
extended 155
CALL.METHOD
instruction 50, 51, 54
near tables and 157
case sensitivity
assembler routines and 19
Borland C++ 206
CATSTR directive 160
code-checking 21
.CODE directive 86
code generation, intelligent .
(directives for) 145
code segments 82
Borland C++ 200
@code symbol 87
CODESEG directive 86
@CodeSize symbol 85
: (colon) operator 70
: operator 113
COMM directive 186
. command files, indirect 26
command-line options 11

command-line syntax 12
help screen 16 '
comment character 35
COMMENT directive 35
comments
; (semicolon) comment
character 35
;; comment character 163
\ comment character 35
COMMENT directive 35
end of line 35
" including in macros 163
communal variables 186
MASM mode and 186
comparison operators 67
compatibility, MASM vs. Ideal
mode 258
complementary jumps 146
complex types 103, 104
compressing data, record data
typesand 96

- conditional blocks (terminating)

See GOTO directive

conditional directives

assembly pass 182

defining blocks of code 175

expression 178

nesting 176

symbol-definition 179

text string 180

when to use 175
conditional list directives 191
%CONDS directive 192
CONST directive 86

"~ .CONST directive 86

constants
defined 57
in expressions 62
numeric 57 -
rotation counts and shift
instructions 151
string 58
constructor and destructor
procedures
writing 126
coprocessor directives 79
@Cpu symbol 77
%CREF directive 193
.CREF directive 193 '
%CREFALL directive 193
%CREFREF directive 193

' %CREFUREF directive 193

cross-reference
. generating 13
in listing files 14 .
symbol information 193

282 Turbo Assembier User’'s Guide

-CS override 21

%CTLS directive 190
@curseg symbol 87
customer assistance 4

D

/d option 15
data
allocating 133
constants and 135
WORDS 133
defining 134
initialized (defined) 133
repeated blocks 133
storage in memory 134
uninitialized
defined 133
specifying 133
.DATA directive 86
.DATA? directive 86
@data symbol 87
data types
Borland C++ 207
creating named 142
creating record 140 -
declaring record 97
enumerated 95
creating instances of 141
initializing instances
of 141
multiline syntax 96
pseudo ops and 96
objects and 45
record, multiline syntax
for 97
table 102
multiline syntax 104
with virtual methods 143
DATASEG directive 86
@DataSize symbol 85
?2date symbol 38
DB directive 134
DD directive 134, 136
debugging information 26
%DEPTH directive 195
derived objects 47
DF directive 134
directives
conditional 175
assembly pass 182
symbol-definition 179
conditional expression 178
coprocessor 79
displaying assembly
messages 40
error-generation 177

using symbol
expressions 179
include files 37
module names 40
processor 76
program termination 40
startup 17
. symbols 17
DISPLAY directive 40
distance parameter
complex subtypes and 61
DLL
defined 231
DOS programs 229
COM blueprint 230
EXE blueprint 229
DOSSEG directive 93
:: directive 114
doubleword values 134
DP directive 134
DQ directive 134, 136
DT directive 134, 136
dummy arguments
defined 162
in macros 165
local 163
recognizing 162 .
types of 166
DUP keyword 133
DW directive 133, 134

E

/e option 15,79
ELSEIF directive 178
ELSEIFB directive 181
ELSEIFDEF directive 179
ELSEIFDIF directive 181
ELSEIFDIFI directive 181
ELSEIFE directive 178
ELSEIFIDN directive 181
ELSEIFIDNI directive 181
ELSEIFNB directive 181
ELSEIFNDEEF directive 179
ELSEIFxxx directives 177
EMUL directive 15,79
encoded real numbers 136
END directive 40
‘ENDM keyword 165
ENDS directive 90, 99, 100
ENTER instruction 147
ENTERD instruction 147
ENTERW instruction 147
" ENUM directive 95
enumerated data types
creating instances of 141

defined 95
initializing instances of 141
multiline syntax for 96
pseudo ops and 96
environment variables, MASM
mode 259
epilog code
defined 118
how it works 118
languages and 118
NOLANGUAGE procedures
and 119
register preservation and 123
specifying default style 84
EQU directive 37, 38, 159
Ideal vs. MASM mode 30
equal (=) directive 15
equate substitutions 37
ERR directive 178
ERR directive 178
ERRI1 directive 182
ERR2 directive 182
.ERRB directive 180
.ERRDEEF directive 179
ERRDIFI directive 180
ERRE directive 179
ERRIDN directive 180
.ERRIDNI directive 180
ERRIF directive 178
ERRIF1 directive 182
ERRIF2 directive 182
ERRIFB directive 180
ERRIFDEF directive 179
ERRIFDIF directive 180
ERRIFDIFI directive 180
ERRIFE directive 178
ERRIFIDN directive 180
ERRIFIDNI directive 180
ERRIFNB directive 180
ERRIFNDEF directive 179
.ERRNB directive 180
ERRNDEEF directive 180
ERRNZ directive 178
error-generation directives 177
error messages 261-280
fatal 262
reporting 42
source file line display 25
warning 262
ERRxxx directives 177
EVEN directive 112
EVENDATA directive 112
EXE files 1
EXIT directive 87 ’
EXITCODE directive 87, 230
EXITM directive 164

expressions
16-bit vs. 32-bit 72
BNF grammar and 62
byte values 72
constants in 62
contents of 61
determining
characteristics 70
evaluation character 167
Ideal mode 31
obtaining type of 68
precision of 62
register names and 62
segment overrides of 69
setting address subtypes 67
structure names in 102
symbols in 62
syntax of 235
text macro names and 64
why to use 57
extended CALL instruction See
CALL.METHOD instruction
extern "C" 200
EXTRN directive 185
Borland C++ and 208

F

@F symbol 131
far data
initialized 82
uninjtialized 82
far pointer values 135
FAR procedures 116
far returns, instructions for 148
FARDATA directive 86
FARDATA directive 86 .
@fardata symbol 87
@fardata? symbol 87
EFARDATA? directive 86
fast immediate multiply
instruction See FASTIMUL
instruction -
FASTIMUL instruction 154
fatal error messages 262
field value manipulation
instructions 152
file names 38
object-oriented programming
format 56
??filename symbol 38
@FileName symbol 38
files
ASM 12
assembly 38
indirect 26
flag instructions, smart 152

Index 283

FLDENV instruction 155
FLIPFLAG instruction 152
floating-point
emulation 15
Ideal vs. MASM mode 259
instructions 2 .
floating-point instructions See
coprocessor emulation
directives
floating-point numbers 136
FRSTOR instruction 155
FSAVE instruction 155
FSTENYV instruction 155

G

GETFIELD instruction 153
GLOBAL directive 185
in .ASO files 56
objects and 47
global symbols, include files
and 185
GOTO directive 164
GROUP directive 91
Ideal vs. MASM mode 33
groups
assigning segments to 91
segment registers and 91
segments in Ideal mode 33

H

/hoption 16
hardware and software
requirements 2
HELLO.ASM 8
help
displaying screen 16
online 7
HIGH operator 72

/ioption 16

486 processor
protected mode 21

IDEAL directive 30

Ideal mode 1 .
BOUND instruction 32
expressions 31
features 30
include files 37
operands 31
operators 32
predefined symbols 37
segment groups 33
speed 30

why to use 29, 30
IF directive 176,178
IF1 directive 176, 182
[F2 directive 176,182 =
IFB directive 176, 181
IFDEF directive 176, 179
IFDIF directive 176, 181
[FDIFI directive 176, 181
IFE directive 178
TFIDN directive 176, 181
TFIDNI directive 176, 181
IFNB directive 169, 176, 181
IFNDEEF directive 176, 179
IExxx directives 175
immediate macro d1rect1ve
(%) 171
implied addition 72
%INCL directive 191
INCLUDE directive 16, 37
include files
Ideal mode 37
setting path 16
INCLUDELIB directive 187
indirect command files 26
information
technical support 4
inheritance
defined 47
example of 53
objects and 106
previous object
definitions 143
structure definitions and 101
initialization code 87
installation instructions 5
instances
creating object 55
creating structure or
union 137
creating table 141
initializing instances 138
initializing table 142
initializing union or
structure 137
named-type, creating 142
of objects 143
of records 140
virtual method table 53, 143
virtual method table
(VMT) 49
INSTR directive 161
intelligent code generation
directives for 145 -
@Interface symbol
MODEL directive and 85
IRET instruction

284 Turbo Assembler User’s Guide

expanded 148 -
IRETW instruction 148
IRP directive 170
IRPC directive 170 -

J

/j option 17)
jEMUL option 15

~ JMP instruction 155

JMP.METHOD instruction 54, -
158
jumps
complementary 146
conditional 146

~ JUMPS directive 146

K

keyword precedence 241
Ideal mode 241
MASM mode 242

keywords 19
list of available 242

/kh option 17

L

/loption 14, 17,20
/la option 18,119
language modifiers and 120

" LABEL directive 99,113

labels
defining 113
external 205
local in MASM' 131
.LALL directive 192
language modifiers
WINDOWS procedures
and 120
languages
MODEL and 118
modifiers and Windows
procedures 119
overriding default for
procedures 118
preserving registers and 123
procedures and
arguments 120
_setting in CALL
statement 222
LARGE operator 72,154
instructions it affects 155
LARGESTACK directive 94

" LEAVE instruction 147

LEAVED instruction 147
LEAVEW instruction 147

length of symbols 19
LENGTH unary operator 64
LECOND directive 25
.LECOND directive 192
LGDT instruction 155
LIDT instruction 155
line continuation character (\
) 165
line number information 25
linker ’
Borland C++ 209, 221
Phar Lap 90
segment ordering and 92
%LINUM directive 195
%LIST directive 190
.LIST directive 190
listing files 12
/X command-line option
and 192
- conditional listing
directives 191
cross-reference
information 14
cross-reference table and 189
directives for 190
false conditionals in 25
format of 189
format parameters 194
generating 17
high-level code in 18
including files in 191
including multiline
macros 172
macro expansions in 192
symbol table and 191
symbol table in 193
symbol tables
. suppressing 20
~ why to use 189
literal string brackets 166
LOCAL directive 120, 121
Borland C++and 211
in macros 163
local labels
in MASM 131
LOCALS directive 125, 130
location counter
creating address
expressions 70
defined 109
directives for 110
location counter symbol 109
LOOP instruction 147
loop instructions for 80386
processor 147
LOOPD instruction 147
LOOPDE instruction 147

LOOPDNE instruction 147
LOOPDNZ instruction 147
LOOPDZ instruction 147
LOOPE instruction 147
LOOPNE instruction 147
LOOPWE instruction 147
LOOPWNE instruction 147
LOOPWNZ instruction 147
LOOPWZ instruction 147
LOOPZ instruction 147
LOW operator 72 '
LST files 12

/m option 18, 117, 258
macros
& character in 162
body of 162
controlling expansion 164
defining new text 160
defining substring 160
deleting multiline 168
dummy arguments
within 165
expansions in listing files 192
including comments in 163
invoking arguments with
special.characters 167
invoking general
multiline 166
length of text 161
_manipulating string 160
multiline 161
defining general 165
multiline expansions in listing
file 172
names in expressions 64
nested and recursive 168
redefining general
multiline 168
repeating 169, 170
- returning positions of
strings 161
string repeat 170
terminating assembly of 164
terminating body of 165
fext -
defined 159
examples of
manipulation 161
how to define 159
why to use 159
%MACS directive 192
MASK unary operator 65
MASKFLAG instruction 152
MASM compatibility 258

environment variables 259
expressions 31
floating-point format 259
NOSMART directive 258
predefined symbols 37
Quirks mode 258
segment groups 33
two-pass asssembly 258
MASM directive 30
member functions 218
memory models
available segments 82
Borland C++ 200
FAR code pointers 85
modifiers of 83
NEAR code pointers 85
segment attributes for 227
specifying values 84
standard 84
messages
reporting error 42
suppressing 23
warning 41
METHOD keyword 46, 48
method procedures
creating 125
defined 48
example of 49
structure of 55
methods
calling ancestor virtual 54
calling static 50
calling virtual 51, 52
defined 44
static versus virtual
advantages of 49
tables and 103
virtual 157
/ML command-line switch 59
/ml option 18, 37, 184
MODEL directive 82, 84
language modifiers and 119
MODEL directive 82
@Model symbol 84
models, determining procedure
distance 116 ‘
modifiers, language 119
modular programming, module
names 40
modules, defined 183
@Mptr member 143

. /MU command-line switch 59

/mu option 19

MULTERRS directive 42

multiline definition syntax 36

multiline macros 161
defining general 165

Index 285

deleting general 168
including in listing file 172
invoking general 166
redefining general 168
multiline syntax
enumerated data types
and 96
record data types and 97
table data type defmmons A
. and 104
multiple assembly passes 18,117
/MYV command-line switch 59
/mv# option 19
/MX command-line switch 59
/mx option 19, 184

N

. /noption 20
NAME directive 40
name-mangling 198
named structures, including 101
naming conventions of
symbols 183
NEAR procedures 116
near returns, instructions for 148
near tables, objects and 51
NEARSTACK modifier 83
nested procedures 124
%NEWPAGE directive 194
%NOCONDS directive 192
%NOCREF directive 193
%NOCTLS directive 190
NOEMUL directive 15, 79
%NOINCL directive 191
NOJUMPS directive 146 .
NOLANGUAGE interfacing
~convention 156
NOLANGUAGE procedures
prolog and epilog code
and 119
%NOLIST directive 190
NOLOCALS directive 130
%NOMACS directive 192
. NOMULTERRS directive 42
NOPs, avoiding generation
of 146)
NOSMART directive 145
MASM compatibility 258
%NOSYMS directive 191
NOTHING keyword 91
%NOTRUNC directive 195
NOWARN directive 41
NUL device 13
null string, length of 161
numbers

encoded real 136

floating-point 136
numeric constants 57
numeric coprocessor 15

0

/o option 20
.OB]J files 1
‘suppressing 22
object files
debugging information in .26
line number information
in 25
module name 40
segment ordering 14, 22
object methods
calling 157
tail recursion for 158
object modules, defined 8
@Object symbol 107
object-oriented programming
advantages of using 43, 44
defined 43
filename format 56
table data types and 103
objects
creating instances of 55,143
data types and 45
declaring 45, 47
defined 44
defining symbols 107
* derived 47, 48
differences between
structures and 143
GLOBAL directive and 47
how to define 106
initializing instance’s VMT
pointer 158 - -
linked list example 45
method procedures and 106,
125
near tables and 51
structures and 106
TLINK compatable without
overlay code 21
virtual method table
instances 143
what they consist of 105
OFFSET operator 32, 69
MASM vs. Ideal mode 33
offsets, getting segments and 69
/oioption 21
online help 7
/op option 21,90
operands, Ideal mode 31
operators

286 Turbo Assembler User’'s Guide

bit shift 67
Boolean algebra and 66
comments 36
comparison 67
general arithmetic 66
Ideal vs. MASM mode 32
ORG directive 110
/os option 21
0S/2 programs
flat model format and 233
%OUT directive 40
overlay code
generating 20
IBM linker 21
Phar Lap linker 21

P

/p option 21

" P186 directive 76

P287 directive 79
P386 directive 76
P386N directive 76
P386P directive 76
387 directive 79
P486 directive 76
P486N directive 76
P487 directive 76
P8086 directive 76
P8087 directive 79
PAGE directive 194
%PAGESIZE directive 194
parameter passing
Borland C++ 209
%PCNT directive 195
. (period) charactor
MASM vs. Ideal mode 236
. (period) operator 71 ,
period, Ideal mode structures 32
Phar Lap linker 90

- plus sign 12

pointers
virtual method table 50, 51,
52,53
POP instruction 155
multiple 148
pointers and 148
POPA instruction
expanded 149
POPAW instruction 149
POPFW instruction 149
%POPLCTL directive 196
POPSTATE instruction 149
precedence
keyword 241
Ideal mode 241

MASM mode 242
PROC directive 115
PROC keyword, Ideal mode 31
PROCDESC directive 126, 156
procedure prototypes 126
procedure types, defining 123
procedures -
calling and having
RETURNS 156
calling with arguments 156
declaring 115
defining types 105
determining distance of 117
FAR 116
interfacing conventions
of 155
languages for
arguments and 120
MODEL and 118
overriding default 118
method 55
creating 125
models and distance
of 116
NEAR 116
nesting and scope rules 124
NOLANGUAGE 119
prototyping 156
publishing prototypes 185
specifying languages for 118
stack frames and 121, 147,
155
writing constructor and
destructor 126
processor directives 76
processor type, determining 77
PROCTYPE directive 105, 123
program termination, END
directive and 40

prolog code
de%’ned 118

languages and 118
NOLANGUAGE procedures
and 119 v
register preservation and 123
specifying default style 84
what it does 118
protected mode 21
segment registers and. 81
prototypes
procedure 126
procedure types and 127
publishing procedure 185
prototyping procedures 156
PUBLIC directive 184
public functions, Borland C++
and 205

PUBLICDLL directive 184
PURGE directive 168
PUSH instruction 155
multiple 148
pointers and 148
PUSHA instruction
expanded 149
PUSHAW instruction 149
PUSHEF instruction '
expanded 149
PUSHFW instruction 149
PUSHing constants 149
%PUSHLCTL directive 196
PUSHSTATE instruction 149

Q

/qoption 22
quadword values 135
question mark
symbols using 38
QUIRKS directive 258

R

/roption 15,22
RADIX directive 58
RADIX directive 58, 136
radixes
available 57
changing default 58
characters determining 58
default 136
real mode, segment registers
and 81
record data types
multiline syntax for 97
RECORD directive 97
records
<>and 140
{}and 140
- creating instances of 140
defining 140
initializing instances 140
retrieving data from 153
setting values in 152
reference books 9
registers
names of and expressions 62
preserving 123 ‘
preserving (Borland
C++) 213
segment 81
registration (product)
by phone 4
REPT directive 169

RET instruction, NEAR or FAR
and 147
RETCODE instruction 148

RETF instruction 148

RETN instruction 148
return instructions 147
RETURNS directive 156

S

/s option 14,22
SALL directive 192
scope of symbols
defined 129
scope rules for nested
procedures 124
SEG operator 69
SEGCS instruction 151
SEGDS instruction 151
SEGES instruction 151
SEGFS instruction 151
SEGGS instruction 151
SEGMENT directive 88
SEGMENT keyword, Ideal -
mode 31
segments
8086 processor and 81
assigning to groups 91
attributes
access 90
alignment 89
class 89
combination 88
size 90
Borland C++ and 200
closing 90, 99
code 82 ‘
default attributes 227
directives (Borland C++
and) 200
forced overrides 151
generic -88-
getting offsets and 69
groups
Ideal mode and 30, 33
MASM mode 33
groups and 82
how the stack is treated 81
memory models and 82
opening 88
ordering 14, 92
?}Fhabeﬁc 93
anging 92
DOSggC})g
sequential 93
overrides of expressions. 69
registers 81

Index 287

, reglsters and 91
sequential order 14,22
simplified directives 86
size 78
symbols and. 87
. writing to uninitialized 89
SEGSS instruction 151
semicolon 12

within macros 36
SEQ directive 14
SEQ directive 93
SETFIELD instruction 152
SETFLAG instruction 152
SFCOND directive 25 :
SFCONDS directive 192
SGDT instruction 155

shift instructions, rotation counts

and 151
SHL operator 67
SHR operator 67
SIDT instruction 155
simplified segment directives
See also individual listings
symbols and 87
size of instructions,
controlling 154
SIZE unary operator 65
SIZESTR directive: 161
SMALL operator 72, 154
instructions it affects 155
SMALLSTACK directive 94
SMART directive 145
MASM compatibility 258
smart flag instructions, why
they’re useful 151
software and hardware
requirements 2
source files
include files 16
symbols 15
square brackets.
Ideal mode 31
MASM mode 31
stack
changing size of 93

MODEL directive and 93

. segments and 81

STACK directive 86
STACK directive 86
stack frame

defined 155

specifying arguments, 120
@stack symbol 87
STARTUP directive 87
@Startup symbol 87

STARTUPCODE directive 87,
229

static methods

calling 50

versus virtual (advantages
. of) 49
statistics, displaying 13.
string constants 58
strings, quoted 136

STRUC directive 45,98,100, 106,

107
structures
aligning members 99
Borland C++ 214
bracket initializer and
nested 139
closing 99
creating instances of 137.
creating members 99
defined 98

differences between objects

and 143
including named 101
- initializing instances 137

member names and 99, 101

members and 98

names in expressions 102

nested 102

nesting 100

objects and 106

opening a definition 98
SUBSTR directive 160
%SUBTTL directive 196
SUBTTL directive 195
support, technical 4
symbol tables

listing files and cross-

referencing 14

suppressing 20
symbols

address subtypes

complex 61
simple 60
aliases 37
block-scoped 130

block-scoped (disabling) 130
case sensitivity of 18, 19, 59

@Cpu 77
??date 38
defined 59
defining 15

dynamic link entry
points 184 -

enabling locally scoped 125

external 19, 185
Borland C++ and 208
??filename - 38

288 Turbo Assembler User’s Guide

@FileName 38

global 185

in expressions 62

Jength of 19

location counter 109

MASM block scoping 131

names of 59

naming conventions for -

languages 183
overriding language
setting 184

public 19,184

publishing external 184

redefinable 129, 130

restrictions 15

scope of (defined) 129

standard values 63

??time 38

types of 59

uppercase 19

values used by themselves 63
. why touse 57

@WordSize 78
%SYMS directive 191
SYMTYPE operator 70

T

/toption 23
TABLE directive 45
@Table symbol 107
@TableAddr member 143
@Tableaddr symbol 107
tables
creating instances of 141
data types 102
initializing instances of 142
overriding members 104
static members 102
virtual members 102
%TABSIZE directive 196
tags, macro 164 ‘
tail recursion code, instruction -
for 158
TASM.CFG 27
TBLINIT directive 50
in .ASM files 56
TBLINIT instruction 158
TBLINST directive 49
in .ASM files 56
TBLINST pseudo-op 143
TBLPTR directive' 106
TCREEF utility 13
Technical Support
contacting 4
termination code 87

termination, END directive
and 40 .
TESTFLAG instruction 152
%TEXT directive 196
text macro names
in expressions 64
TFCOND directive 25
.TECOND directive 192
THIS operator 70
time 38
??time symbol 38
%TITLE directive 196
TITLE directive 195
TLINK utility 209, 221
example of 9
%TRUNC directive 195
two-pass assembly -
MASM compatibility 258
type checking, Ideal mode 29
.TYPE operator 70
TYPE operator 68
type override operators 67
type-safe linkage 198
TYPEDEF directive 104
typefaces in this manual 3
types
complex 103, 104
defining named 104
defining procedure 105
of expressions 68
procedure 123
symbol 59

V

/u command-line switch 39
/uoption 23

UDATASEG directive 86
UFARDATA directive 86

underscore, and the C
language 205
UNINIT 89
UNION directive 98, 100
unions
bracket initializer and
nested 139
closing 99
creating instances of 137
defined 98
initialized data 101
initializing instances 137, 138
members and 98
multiple initialized
members 138
nested 102
nesting 100
opening-a definition 98
uppercase, converting symbols
to 19
USE32 modifier 83
USES directive 123

v

/v option 13,23
variables, communal 186
VERSION directive 39
line continuation and 36
MASM compatability and 40
VIRTUAL keyword 47, 103
virtual method table
initializing 50
initializing pointer to 158
instances of 49, 53, 143
modifiers and. 106
objects and 106
pointers 52
pointers to 50, 51, 53, 106

virtual methods
ancestor 53
calling 51, 52
object data types and 143
versus statict:y(ngantages

of) 49

virtual table pointers
determining size of 107
modifiers and 106

w

/w option 24
WARN directive 41
warning messages 41, 262
"mild" 24
generating 24
WHILE directive 170
WIDTH unary operator 65
Windows programs 231
16-bit blueprint 232
32-bit blueprint 232
DLL blueprint 231
word values 134
@WordSize symbol 78

X

/x option 25

XALL directive 192
XCREF directive 193
XLIST directive 190
XREF files 13

V4

/z option 25

/zd option 25
/zioption 26
/zn option 26

Iindex 289

290 Turbo Aéseinbler User’'s Guide

Copyright © 1996 Borland International, Inc. All rights reserved. All Borland product names are trademarks of Borland International,
Inc. Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Internet: http://www.borland.com
CompuServe: GO BORLAND. Offices in: Australia, Canada, France, Germany, Hong Kong, Japan, Latin America, Mexico,

The Netherlands, Taiwan, and United Kingdom » Part # LSM1350WW21774 « BOR 8907

0 * U
LU,

Y -8,

&0

%y

Tianaw?

prelid

