TURBO C++ -

—
|
=
oo
o
€2
§
-+
(@p)
rm
—
=
s
(@p)
wn
—1
I>
=
—
i
o

= STVIYOLNL = NOILVTIVLSNI =

BORLAND

GNVY13808

Turbo Ce++

Getting Started

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95066-0001

This manual was produced with Sprint®: The Professional Word Processor

Copyright ® 1990 by Borland International. All rights reserved. All
Borland products are frademarks or registered trademarks of

Borland International, Inc. Other brand and product names are
trademarks or registered frademarks of thelr respective holders.

PRINTED IN THE USA.
Rl : 10908765432

Introduction 1
Whatsin TurboC++ 1
Hardware and software requirements ... 2
The Turbo C++ implementation 3
The Turbo C++ package 3
Getting Started 3
The UsersGuide 4
The Programmer’s Guide 5
The Library Reference 6
Typefaces used in these books 6
How to contact Borland 7
Chapter 1 Installing Turbo C++ 9
Installing Turbo C++, 10
Laptopsystems 11
The READMEfile 11
The HELPME!L.DOCfile 12
TurboCalc ...ovvviiiii it 12
Chapter 2 Navigating the Turbo C++
manuals 13
Featuresiiiiiiiit, 13
Gt o 13
VROOMM (overlays) 14
Borland’s new integrated environment . 14
Using themanuals 14
New programmers or programmers
learningC ...l 15
Experienced C programmers 15
Chapter 3 Learning the new IDE 17
TheIDE ...oiiiiiiiiiiiiiiiiinnn, 18
Full Menus On/Off 19
Mouse, hot keys, and online help 20
Mouseoovvvviiniiiiiina, 20
Hotkeyscoovvviiiiiat, 20

Onlinehelpoolt 21

Lesson 1: Starting, loading, and editing . 21

Creatinganewfile 23
Selectingablock 24
Copying and pasting 24

Modifying your new file 24
Searching and replacing 25
Pasting from a Help window 26
Saving your changes 27

Lesson 2: Compiling and running 28

Closing an Edit window 29
Lesson 3: Exiting Turbo C++........... 29
Where to go for more information 29
Chapter 4 An introductionto C 31
A quick history lesson 31
Basic programming operations 32
Basic structure of a C program 34
Working with numbers 37

Numeric data types 37

Integers..............oooiiilt, 39

The long modifier 40
Signed and unsigned variables 40
Floating-point numbers 40
Double and long double 42
Variablesoociiiinl 43

Initializing variables 43

Assignment statements 43

Combination assignments 44

Naming names 45

Fielding an input value: sscanf 46

Displaying a variable’s value 49
Type conversion in printf 51
Formatting with escape\ sequences .51

Arithmetic operators 53

Arithmetic and type conversion 55
Typecasting 55

Combining arithmetic and assignment . 56

Increment and decrement 56
Working bitby bit 57
Expressions 59
Evaluating an expression............ 59
Assigning a value in an expression ... 61
Characters and strings 62
Input and output for single characters . 62
Displaying a character 63
Displaying character strings 64
Testing conditions and making choices . 65
Using relational operators 65
Using logical operators 66
Branching with if and if...else 67
Multiple choices with if...else 68
Multiple choice tests: switch 70
Repeating execution with loops 72
The whileloop 72
The do whileloop 73
Theforloopcoovvviiinnn, 75
Break and continue 77
The goto statement 78
Nested loopscoevvvvinen.... 79
Choosing appropriate loops 80
Program design with functions and
MACTOS o vvvvnnerennennnnnnnnnnnnnns 80
Defining your own functions 80
The function prototype 81
Function declarations under
Kernighan and Ritchie 81
The function definition 82
Processing within the function 82
The function return value 83
Using the return value 83
Multifunction programs 84
Function prototypes and global
declarations 86
Setting up the graphics display 87
Calculating the graphics
coordinates 87
Drawing the planets 88
Header files, functions, and libraries .. 89
Scope and duration of variables 91

Scope ..o 91

Durationooviiiiiiiinennn 93

Using constant values 94
Using macros to hide details 95
Building data structures 96
Declaring and initializing an array 97
Arrays with multiple dimensions 99
Arraysand strings 101
Defining string variables 102
Renaming types 103
Enumerated types................. 104
Combining data into structures 105
Using parts of a structure 105
Building proper declarators 106
Pointersoooiiiiiil 108
Declaring and using a pointer 109
Pointers and strings 111
Pointer arithmetic 112
Pointers, structures, and lists 112
Using pointers to return values from
functionsciiiiiiiiii, 115
Using system resources 117
Using files and streams 118
Opening a stream 120
Writing to thefile 120
Reading from the file 120
Chapter 5 A C++ primer 121
Encapsulationo0a 123
Inheritanceol 126
Polymorphism 128
Overloading 128

Modeling the real world with classes .. 129
Building classes: a graphics example . 129

Declaring objectsoootn. 131
Member functions 131
Calling a member function 132
Constructors and destructors 133
Code and data together 136
Member access control: private, public,
and protected, 136
The class: private by default 137
Running a C++ program 138
Inheritanceol 141
Rethinking the Point class 141

Inheritance and access control 143
Packaging classes into modules 144
Extending classes 148
Multiple inheritance 151

Virtual functions 156
Virtual functions in action 158
Defining virtual functions 159
Developing a complete graphics
module ...l 160

Reference types 161
Ordinary or virtual member
functions? ool 168

Dynamic objects 168
Destructors and delete 170
An example of dynamic object
allocationoiiiinn 170

More flexibility in C++............... 175
Inline functions outside class
definitionsol 175

Functions with default arguments ... 176
More about overloading functions ... 177
Overloading operators to provide new

meaningsi.a... 180
Friend functions 183
The C++ streams libraries 184
StandardI/O 185
Formatted output 187
Manipulators 188
put, write,and get 188
DiskI/O..ooviiiiiiii it 189
I/0 for user-defined data types 192
Wheretonow?covunnn 193
Conclusioncooviiivnn... 194
Chapter 6 Hands-on C++ 195
A better C: Making the transition from
C o 196
Program1 196
Program2 197
Program3 197
Program4ol 198
Object support, 199
Program5 200
Program6cooiinae 202

i

Program?7coiiuinn 205
Program8 206
Program9l 209
Summary ..., 211
Chapter 7 Debugging in the new
IDE 213
Debugging and program development . 214
Designing the example program:
PLOTEMP.Ct 216
Writing the prototype program 218
Using the integrated debugger 221
Tracing the flow of a program 222
Tracing high-level execution 222
Tracing into called functions 223
Continuing program development 223
Setting breakpoints 225
Instant breaking with Ctrl-Break 226
Inspecting yourdata 227
Inspector windows 227
Inspecting arrays and strings 228
Inspecting structs and unions 228
Inspecting pointers 228
Inspecting functions 229
When should you use inspectors? ... 229
Evaluating and changing variables 229
Specifying display format 230
Specifying the number of values 231
Copying from the cursor position ... 232
Specifying variables in other
functionsol 232
Changing values 232
Monitoring your program by setting
watchesol 235
Addingawatch 235
Watching your watches 236
Controlling the debugger windows .. 236
Editing and deleting watches 237
Finding a function definition 237
Finding out who called whom 238
Multiple sourcefiles 239
Preventive medicine................. 239
Design defensively 239
Writeclearly 240

Systematic software testing 240
Test modifications thoroughly 241
Areas to watch carefully 241

Finishing PLOTEMP.C 242
Finishing table_view 243
Implementing graph_view 244
save_temps and read_temps 245

Answers to debugging exercises 246
min_max and avg_temps 246
graph_viewol 247

save_tempseiaan, 247

read_tempscoiiiiiiiiian 248
Bibliography 249
Beginning to intermediate 249
Advancedcoiiiiiiiii... 250
Object-oriented programming 251
Other languagesand C 251
Referencecoiiiiiiiinnennnn. 251
Index 253

3.1: What goes in a dialogbox 19
32:Mousetalkl 20
3.3: Turbo C++hotkeys 21
3.4: Moving in an Edit window 23
41: Data types, sizes, and ranges 39
4.2: sscanf and printf format specifiers ...46
4.3: Character escape sequences 52
4.4: Type promotions for arithmetic 55

4.5: Bit manipulation operators 58

4.6: Precedence and associativity of

operators oottt 61
4.7: Relational operators 65
4.8: Logical operators 67
4.9: Declarators without typedefs 107
4.10: Declarators with typedefs 108
4.11: Preopened streams in Turbo C++ ..120
51:Class accessoovvvieineniinann, 143

3.1: Componentsof theIDE 18
3.2: Full Menus: Offand On 20
3.3: The Load a File dialog box 22
3.4: The Replace dialog 25
4.1: Interpreting memory locations as
numbers (in 1-byte increments) 38

4.2: How a string is stored in memory64
4.3: Information flow to and from the tax

functionoooiiiinl 83
4.4: Simple program structure (all in one) .89
4.5: Program built from several files 90
4.6: Program using custom libraries 91

4.7: Two ways to deal with sets of data .. .97

Vi

4.8: How pointers point (and what they
pointto)ol
4.9: Using pointers to access an array of
structures oLl
4.10: Using pointers in a function
5.1: Traditional C versus encapsulated
CHt o
5.2: A partial taxonomy chart of insects .
5.3: Multiple inheritance
5.4: Circles with messages
71: Program development flowchart
7.2: Graph view of temperature data
7.3: Inspecting the temps array
7.4: Inspecting the min_max function ...

Turbo C++ is for C++ and C programmers who want a fast, effi-
cient compiler; for Turbo Pascal programmers who want to learn
C++ or C with all the “Turbo” advantages; and for anyone just
learning C++ or C. Turbo C++ is also for anyone who wants both
AT&T’s C++ version 2.0 and ANSI C.

Turbo C++is highly C++ is an object-oriented programming (OOP) language. It's the
comp aanTe vt:lfhcex/sfgwg next step in the natural evolution of C. It is portable, so you can
umo & code. easily transfer application programs written in C++ from one
system to another. You can use C++ for almost any programming
task, anywhere.

What's in Turbo C++

Turbo C++ includes many of the latest features users ask for:

_Chapter Ttellsyouhowfo g C++: Turbo C++ offers you the full power of C++ programming

’nf;;zngL b 7% (vf/’;;;recr;/ gﬁ tce(; ﬁ (implementing C++ version 2.0 from AT&T). To help you get

find out more about each of started, we're also including C++ class libraries. ’}"o help you
these features. make the transition from C++ version 1.2, we’ve included

support for version 1.2 streams.

m ANSI C: Turbo C++ provides you with an up-to-date imple-
mentation of the latest ANSI C standard.

m Borland’s new Programmer’s Platform. The Programmer’s
Platform is a new generation user interface; it goes beyond the
old integrated environment to provide access to the full range
of programs and tools on your computer. It includes:

e mouse support
o multiple overlapping windows
o a multi-file editor

Introduction 1

¢ support for inline assembler code

and much more.

m VROOMM (Virtual Run-time Object-Oriented Memory
Manager): VROOMM lets you overlay your code without
complexity. You select the code segments for overlaying;
VROOMM takes care of the rest, doing the work needed to fit
your code into 640K.

m An online tour of the new programmer’s platform.

m Online hypertext help, with copy-and-paste program examples
for practically every function.

® Many indispensable library functions, including heap checking
functions and a complete set of complex and BCD math
functions.

Other features include:

® An enhancement to the —S option: Now your C source code is
added as comments to the resultant assembler code.

m Far objects and huge arrays.

m Several new pragmas and warnings: an ill-formed pragma
warning, an argsused pragma, and a start-up pragma.

m Alternate .CFG files. You can create several and use the one that
suits your needs at any given time.

m Response files for the command-line compiler.

Hardware and software requirements

Turbo C++ runs on the IBM PC family of computers, including
the XT, AT, and PS/2, along with all true IBM compatibles. Turbo
C++ requires DOS 2.0 or higher and at least 640K; it runs on any
80-column monitor. The minimum requirement is a hard disk
drive and one floppy drive.

Turbo C++ includes floating-point routines that let your programs
make use of an 80x87 math coprocessor chip. It emulates the chip
if it is not available. Though it is not required to run Turbo C++,
the 80x87 chip can significantly enhance your programs’
performance.

Turbo C++ also supports a mouse. Though the mouse isn’t re-
quired, if you have one, you must have one of the following for
full compatibility:

2 Turbo C++ Getting Started

m Microsoft Mouse version 6.1 or later, or any mouse compatible
with this mouse

m Logitech Mouse version 3.4 or later
m Mouse Systems’ PC Mouse version 6.22 or later
m IMSI mouse version 6.11 or later

The Turbo C++ implementation

Turbo C++ is a full implementation of the AT&T C++ version 2.0.
It is also American National Standards Institute (ANSI) C stan-
dard and fully supports the Kernighan and Ritchie definition. In
addition, Turbo C++ includes certain extensions for mixed-
language and mixed-model programming that let you exploit
your PC’s capabilities. See Chapter 1, “The Turbo C++ language
standard,” in the Programmer’s Guide for a complete description of
Turbo C++.

The Turbo C++ package

Getting Started and the
User’s Guide tell you how to
use this product; the Pro-
grammer’s Guide and the
Library Reference focus on
programming in C.

Getting Started

Introduction

Your Turbo C++ package consists of a set of distribution disks
and four manuals:

m Turbo C++ Getting Started (this manual)

m Turbo C++ User’s Guide

u Turbo C++ Programmer’s Guide

® Turbo C++ Library Reference

In addition to the four manuals, you'll find a convenient Quick
Reference booklet. The distribution disks contain all the programs,
files, and libraries you need to create, compile, link, and run your
Turbo C++ programs; they also contain sample programs, several

standalone utilities, a context-sensitive help file, an integrated
debugger, and additional C documentation not covered in these

guides.

This volume introduces you to Turbo C++ and shows you how to
create and run both C and C++ programs. It consists of informa-
tion you'll need to get up and running quickly: installation, tutori-

You might also want to fry
the online tutorial, TCTOUR.

Chapters 5 and 6 work
together: one is theory, the
other is practice.

The User’s Guide

als, primers, and a guide to the Turbo C++ documentation set.
These are the chapters in this manual:

Chapter 1: Installing Turbo C++ tells you how to install Turbo
C++ on your system.

Chapter 2: Navigating the Turbo C++ manuals introduces some of
Turbo C++ most interesting features; where appropriate, it tells
you where to find out more about them.

Chapter 3: Learning the new IDE walks you through the inte-
grated environment and introduces the new editor, mouse sup-
port, and other new or changed features. This is a light overview
of the Turbo C++ system. In-depth information can be found in
Chapter 1, “The IDE reference,” in the User’s Guide.

Chapter 4: An introduction to C is an overview of the C language.
This chapter introduces you to the elements of C programs, data
and data types, operators, functions, arrays, structures, and other
aspects of the C language.

Chapter 5: A C++ primer is an introduction to the concepts of
object-oriented programming using C++.

Chapter 6: Hands-on C++ is a swift hands-on introduction to C++.
Chapter 7: Debugging in the new IDE introduces you to the Turbo
C++ integrated debugger and walks you through sample pro-

grams with built-in bugs to demonstrate various features of the
debugger.

The Bibliography contains a listing of books relating to generic C
and C++, and to Turbo C++ specifically.

The User’s Guide provides reference chapters on the features of
Turbo C++: Borland’s new integrated environment, including the
greatly enhanced editor and Project Manager, as well as details on
using Turbo C++' utilities, command-line compiler, and customi-
zation program.

Chapter 1: The IDE reference provides a complete reference to the
integrated development environment.

Chapter 2: Managing multi-file projects tells how to use the
Project Manager to manage multi-file programming projects.

Turbo C++ Getting Started

The Programmer’s

Infroduction

Guide

Chapter 3: The editor from A to Z provides a complete reference
to the editor.

Chapter 4: The command-line compiler tells how to use the
command-line compiler. It also explains configuration files.

Chapter 5: Utilities describes some of the utility programs that
come with Turbo C++.

Chapter 6: Customizing Turbo C++ tells how to use the TCINST
program to customize Turbo C++. You can adjust onscreen colors,
editor defaults, compiler and linker defaults, and many other
aspects of Turbo C++ with this program.

Appendix A: Turbo Editor macros describes the Turbo Editor
Macro Language, a powerful utility you can use to enhance or
change the Turbo C++ editor.

The Programmer’s Guide provides useful material for the experi-
enced C user: a complete language reference for C and C++, a
cross-reference to the run-time library, C++ streams, memory
models, mixed-model programming, video functions, floating-
point issues, and overlays, plus error messages.

Chapter 1: The Turbo C++ language standard describes the Turbo
C++language. Any extensions to the ANSI C standard are noted
here. This chapter is basically a language reference and syntax for
both the C and C++ aspects of Turbo C++.

Chapter 2: Run-time library cross-reference provides some infor-
mation on the source code for the run-time library, lists and de-
scribes the header files, and provides a cross-reference to the run-
time library, organized by subject. For example, if you want to
find out which functions relate to graphics, you would look in this
chapter under the topic “Graphics.”

Chapter 3: C++ streams tells you how to use the C++ version 2.0
stream library. The earlier version stream library is documented
online.

Chapter 4: Memory models, floating point, and overlays covers
memory models, mixed-model programming, floating-point con-
cerns, and overlays.

Chapter 5: Video functions is devoted to handling text and
graphics in Turbo C++.

Chapter 6: Interfacing with assembly language tells how to write
assembly language programs so they work well when called from
Turbo C++ programs.

Chapter 7: Error messages lists and explains all run-time and
compiler-generated errors and warnings, and suggests possible
solutions.

Appendix A: ANSI implementation-specific standards describes
those aspects of the ANSI C standard that have been left loosely
defined or undefined by ANSI. These aspects will vary, then,
according to each implementation. This appendix tells how Turbo
C++ operates in respect to each of these aspects.

The Library

Reference The Library Reference contains a detailed list and explanation of
Turbo C++'s extensive library functions and global variables.

Chapter 1: The run-time library is an alphabetically arranged
reference to all Turbo C++ library functions. Each entry gives
syntax, include files, an operative description, return values, and
portability information for the function, and a reference list of
related functions.

Chapter 2: Global variables defines and discusses Turbo C++'s
global variables. You can use these to save yourself a great deal of
programming time on commonly needed variables (such as dates,
time, error messages, stack size, and so on).

Typefaces used in these books

All typefaces used in this manual were produced by Borland’s
Sprint: The Professional Word Processor, on a PostScript laser
printer. Their uses are as follows:

Monospace type This typeface represents text as it appears on-
screen or in a program. It is also used for any-
thing you must type (such as IC to start up
Turbo C++).

ALL CAPS We use all capital letters for the names of
constants and files.

[Square brackets in text or DOS command lines
enclose optional items that depend on your

6 Turbo C++ Getting Started

How to contact Borland

<>

Boldface

Italics

Keycaps

nle=

=t

system. Text of this sort should not be typed
verbatim.

Angle brackets in the function reference section
enclose the names of include files.

Turbo C++ function names (such as printf) and
structure names are shown in boldface when
they appear in text (but not in program ex-
amples). This typeface is also used in text, but
not in program examples, for Turbo C++
reserved words (such as char, switch, near, and
cdecl), for format specifiers and escape
sequences (%d, \t), and for command-line
options (/A).

Italics indicate variable names (identifiers) that
appear in text. They can represent terms that
you can use as is, or that you can think up new
names for (your choice, usually). They are also
used to emphasize certain words, such as new
terms.

This typeface indicates a key on your keyboard.
It is often used to describe a particular key you
should press. (For example, “Press Esc to exit a
menu.”)

This icon indicates keyboard actions.

This icon indicates mouse actions.

Infroduction

The best way to contact Borland is to log on to Borland’s Forum
on CompuServe: Type G0 BOR from the main CompuServe menu
and choose “Borland Programming Forum B (Turbo Prolog &
Turbo C)” from the Borland main menu. Leave your questions or
comments there for the support staff to process.

If you prefer, write a letter with your comments and send it to

Borland International
Technical Support Department—Turbo C++

1800 Green Hills Road
P.O. Box 660001
Scotts Valley, CA 95066-0001, USA

See the README file included You can also telephone our Technical Support department be-
with your distribution disks for - tyeen 6 am and 5 pm Pacific time at (408) 438-5300. Please have
details on how to report a L, X
bug. the following information handy before you call:

1. Product name and serial number on your original distribution
disk. Please have your serial number ready, or we won’t be
able to process your call.

2. Product version number. The version number for Turbo C++ is
displayed when you first load the program and before you
press any keys.

3. Computer brand, model, and the brands and model numbers
of any additional hardware.

4. Operating system and version number. (The version number-
can be determined by typing VER at the MS-DOS prompt.)

5. Contents of your AUTOEXEC.BAT file.
6. Contents of your CONFIG.SYS file.

8 Turbo C++ Gefting Started

Installing Turbo C++

Your Turbo C++ package includes two different versions of the
Turbo C++ compiler: the integrated environment version and a
command-line version. You must use the INSTALL program to
install Turbo C++ on your system; it automatically copies files
from the distribution disks to your hard disk. There is no copy
protection. For reference, the README file on the installation
disk includes a list of the distribution files.

Ifyou don't already know We assume you are already familiar with DOS commands. For
how fo use DOS commands, ayample, you’ll need the DISKCOPY command to make backup
refer fo your DOS reference
manual before setting up ~ €Opies of your distribution disks. Make a complete working copy
Turbo C++ on your system. of the distribution disks when you receive them, then store the

original disks away in a safe place.

If you are not familiar with Borland’s No-Nonsense License State-
ment, read the agreement included with your Turbo C++
package. Be sure to mail us your filled-in product registration
card; this guarantees that you'll be among the first to hear about
the hottest new upgrades and versions of Turbo C++.

This chapter contains the following information:

m installing Turbo C++ on your system

m accessing the README file

m accessing the HELPME! file

m a pointer to more information on Turbo Calc

Once you have installed Turbo C++, you'll be ready to start
digging into Turbo C++. But certain chapters and manuals were

Chapter 1, Installing Turbo C++ 9

written with particular programming needs in mind. Chapter 2,
“Navigating the Turbo C++ manuals,” tells where to find out
more about Turbo C++’s features in the manuals.

Installing Turbo C++

Important!

To exit Turbo C++, press Alt-X.

10

Turbo C++ has an automatic installation program called
INSTALL. You must use INSTALL. This program detects what
hardware you are using and configures Turbo C++ appropriately.
It also creates directories as needed and transfers files from your
distribution disks (the disks you bought) to your hard disk. Its
actions are self-explanatory; the following text tells you all you
need to know.

To install Turbo C++:

1. Insert the installation disk into drive A. Type the following
command, then press Enter.

2. A:INSTALL
3. Press Enfer at the installation screen.
4. Follow the prompts.

When it is finished, the INSTALL program reminds you to read
the latest about Turbo C++ in the README file, which contains
important, last-minute information about Turbo C++. The
HELPME!DOC file also answers many common technical
support questions.

Also, once you have installed Turbo C++, you'll get a chance to
try out TCTOUR. TCTOUR is a guided tour of some of the
highlights of the new Turbo C++ integrated environment.
TCTOUR is in the TOUR subdirectory (off of your Turbo C++
directory). ‘

Once you have installed Turbo C++ and tried out TCTOUR, and if
you’re anxious to get up and running, change to the Turbo C++
directory and type TC. Press Enter. Otherwise, continue reading
this chapter and the next for important start-up information.

After you have tried out the Turbo C++ integrated environment,
you may want to permanently customize some of the options. The
TCINST program makes this easy to do. See Chapter 6, “Custom-
izing Turbo C++,” in the User’s Guide for instructions.

Turbo C++ Getting Started

Laptop systems

The README file

If you have a laptop computer (one with an LCD or plasma
display), in addition to carrying out the procedures given in the
previous sections, you need to set your screen parameters before
using Turbo C-++. The Turbo C++ integrated development envi-
ronment version (TC.EXE) works best if you type MODE BW80 at the
DOS command line before running Turbo C++.

Although you could create a batch file to take care of this for you,
you can also easily install Turbo C++ for a black-and-white screen
with the Turbo C++ customization program, TCINST. See Chap-
ter 6, “Customizing Turbo C++,” in the User’s Guide for instruc-
tions. With this customization program, choose “Black and
White” from the Screen Modes menu.

See Chapter 3, "Learning the
new IDE,” in this volume, and
Chapter 1, "The IDE refer-
ence” in the User's Guide, for
more details on using the
new infegrated environment.

The README file contains last-minute information that may not
be in the manuals. It also lists every file on the distribution disks,
with a brief description of what each one contains.

To access the README file:

1. If you haven’t installed Turbo C++, insert your Turbo C++
disk into drive A. If you have installed Turbo C++, skip to step
3 or go on to the next paragraph.

2. Type A: and press Enter.

3. Type README and press Enter. Once you are in README, use the
Tand | keys to scroll through the file.

4. Press Esc to exit.

If you've already installed Turbo C++, you can open README
into an edit window, following these steps:

1. Start Turbo C++ by typing 1¢ on the command line. Press Enter.

2. Press F10. Choose File | Open. Type in README and press Enter.
Turbo C++ opens the README file in an edit window.

3. When you're done with the README file, choose File | Quit
(or continue playing with the new environment).

Chapter 1, Installing Turbo C++ 11

The HELPME!.DOC file

Your installation disk contains a file called HELPME!L.DOC, which
contains answers to problems that users commonly run into.
Consult it if you find yourself having difficulties. You can use the
README program to look at HELPME!.DOC. Type this at the
command line:

README HELPME!.DOC

Turbo Calc

Your Turbo C++ package includes the source code for a
spreadsheet program called Turbo Calc. Before you compile it,
read the online documentation (TCALC.DOC) for it.

12 Turbo C++ Getting Started

Features

Navigating the Turbo C++ manuals

This chapter accomplishes two things:

m It tells you briefly about Turbo C++'s hottest features: what they are,
the concepts behind them, how to use them.

m It tells you where in these manuals you can find out more about the
new features and other aspects of Turbo C++.

If you read the instructions on how to install Turbo C++ on page 10,
you also learned how to start Turbo C++ and how to exit from it. If not,
and if you want to just jump right in and start programming, refer back
to that page.

Chapter 2, Navigating the Turbo C++ manuals

C++

Turbo C++ has many powerful features, listed on page 1. This section
tells you a little more about some of these features, and points you to
where you can go for in-depth information on them.

With Turbo C++, you get two compilers in one. You get all the capabili-
ties of ANSI C, plus all the capabilities of C++. Chapters 5 and 6, “A
C++ primer” and “Hands-on C++,” provide the theory of C++ pro-
gramming and a tutorial.

In addition to this, we've included a ready-made set of C++ class librar-
ies for you to use. These libraries use classes to perform a variety of

13

VROOMM
(overlays)

Chapter 4, "Memory models,
floating point, and overlays,”

in the Programmer’s Guide
covers overlays in depth.

Borland’s new
infegrated
environment

functions for you. So some advantages of C++, such as extensibility and
reusability, are yours immediately.

Turbo C++s VROOMM (Virtual Run-time Object-Oriented Memory
Manager) gives you intelligent overlays, unlike any overlay scheme
you may have used before. If you are already familiar with overlays in
another (non-Borland) product, you have some pleasant surprises
coming. First, VROOMM can determine how and when to overlay, thus
relieving you of that task. Second, since VROOMM is based on a set of
highly sophisticated algorithmes, it is much faster and more efficient
than other overlay schemes.

Because Borland’s integrated environment has been completely redone,
we recommend that you take the guided tour provided by TCTOUR
even if you are already familiar with other Borland products. First
change directories to the TOUR subdirectory (in your TC directory).
Then type TCTOUR and press Enter.

For more, read Chapter 3, “Learning the new IDE.” This chapter gives
hands-on experience with a range of features in the new integrated
environment, including mouse support, the help system, the clipboard,
new ways to handle windows, editing multiple files, transferring out to
other programs (and then back into Turbo C++), and so on. Chapter 1,
“The IDE reference,” in the User’s Guide is a reference to every aspect of
the new integrated environment.

Using the manuals

14

The manuals are arranged so that you can pick and choose among the

books and chapters to find exactly what you need to know at the time

you need to know it. Getting Started and the User’s Guide provide infor-
mation on how to use Turbo C++ as a product; the Programmer’s Guide
and the Library Reference provide material on programming issues in C
and C++.

Five chapters in this volume provide introductions to and tutorials on
subjects of interest:

m Chapter 3, “Learning the new IDE”
m Chapter 4, “An introduction to C”

Turbo C++ Gefting Started

u Chapter 5, “A C++ primer”
m Chapter 6, “Hands-on C++”
m Chapter 7, “Debugging in the new IDE”

As mentioned earlier, the integrated environment is brand new, so you
might want to browse through the first chapter on this list even if you
are familiar with Turbo C or Turbo Pascal.

The chapters of the User’s Guide are for use as reference chapters to
using Turbo C-++:

Refer Tg fZeSG;r chaptirs as mChapter 1, “The IDE reference”
neeqed afrer you have “ . e : ”
worked through the ™ Chapter 2, ”Manag}ng multi-file pr’(’)]ects
appropriate introductions ™ Chapter 3, “The editor from A to Z
and tutorials. w Chapter 4, “The command-line compiler”
m Chapter 5, “Utilities”
m Chapter 6, “Customizing Turbo C++”

m Appendix A, “Turbo Editor macros”

New

programmers oOr If you are learning C, start with chapters 3 and 4, “Learning the new
IDE” and “An introduction to C,” in this book. These chapters intro-
progrommers duce you to the Turbo C++ integrated environment and give you an
learning C overview of programming in C. Chapters 5 and 6, “A C++ primer” and
“Hands-on C++,” give a brief introduction to programming in C++.
The bibliography lists useful Depending on how much you want to be on the leading edge of tech-
sources for further nology and on how confident you feel about programming in C, you
informationon C. may want to jump right into those chapters after reading Chapter 4.
Chapter 7, “Debugging in the new IDE,” runs you through the Turbo
C++ integrated debugger. Later, you can use chapters 1 through 6 in the
User’s Guide for reference.

Your next step is to start programming in C. For the most part, you will
be using the Library Reference. Or, you might prefer to use the online
help; it contains much of the same information as the Library Reference,
and includes programming examples for almost every function that
you can copy into your own program.

Experienced C
programmers If you are an experienced C programmer and you've already installed
Turbo C++, you'll probably want to jump immediately to the Program-
mer’s Guide and to the Library Reference. If, however, you want to learn
more about the new Turbo C++ integrated environment, including the

Chapter 2, Navigating the Turbo C++ manuals 15

16

integrated debugger, read chapters 3 and 7 (“Learning the new IDE”
and “Debugging in the new IDE”) in this book.

If you are interested in C++, read chapters 5 and 6, “A C++ primer”and
“Hands-on C++.

The Programmer’s Guide covers certain useful programming issues, such
as C++ streams, assembly language interface, memory models, video
functions, overlays, and far and huge pointers. In addition, the Program-
mer’s Guide provides a cross-reference to the Library Reference by
functionality (Chapter 2, “Run-time library cross-reference”). So, for
example, if you want to know which C functions are associated with
graphics, you would turn to that chapter and look up the subject
“Graphics.”

Turbo C++ Getting Starfed

Note: Before you run this
tutorial, you must install Turbo
C++ with the default
subdirectories. See Chapter 1
for details.

Learning the new IDE

In this chapter, you'll get hands-on experience with Turbo C++s
new version of the Borland integrated development environment
(IDE). Even if you're already familiar with other Borland pro-
ducts, we recommend that you work through this chapter. Turbo
C++ introduces the new IDE; this chapter gives you an overview
of some of the most important new features. This tutorial consists
of three lessons:

m Lesson 1 shows how to start Turbo C++ and how to load, edit,
and save files.

m Lesson 2 covers how to compile and run a program from
within the IDE.

m Lesson 3 exits you from Turbo C++.

If your fingers are itchy and you want to get up and running on
Turbo C++ right now, go to Chapter 1 on page 10. Otherwise, read
through this tutorial to learn the basics of using the IDE. It should
take you about 30 minutes to finish.

If you want in-depth information about specific items on the
menus or in the dialog boxes, refer to Chapter 1, “The IDE refer-
ence,” in the User’s Guide. If you'd like to step through an online,
interactive tour of the IDE, run TCTOUR.EXE (type tctour at the
DOS prompt while in the TOUR subdirectory of your TC
directory).

Chapter 7, “Debugging in the new IDE,” gives you a long tutorial
on debugging.

Chapter 3. Learning the new IDE 17

The IDE

18

Figure 3.1
Components of the IDE

The Turbo C++ IDE contains windows, menus (pull-down and
pop-up), dialog boxes, and a status line. Here’s a diagram of a
typical IDE screen’s components:

L — .
= ctive window ==

nactive naow —
Pull-down Command... | l”'

menu d

Pop-up " Input box:
menu > Your input string goes here

l_ Check box off
Check box on

Check box on

Check box off
Dialog

box > Radio button off
| Radio button on
. g

Radio button off
— Inactive window ——|

Status line

To get into the IDE menu system, press F10, then press the high-
lighted letter of any item on the menu bar. (You can also press Alt
and the highlighted letter; for example, Alt-F opens the File menu,
and so does F10F.)

To get out of the menus, press Esc until all menus are closed and
you're back at one of the windows.

The Turbo C++ IDE uses dialog boxes to display options. A dialog
box contains one or more of the items listed in the following table.
(If you're itching to try Turbo C++ right now, read the first few
paragraphs on page 10.)

Turbo C++ Getting Started

Table 3.1 - N -
What goes in a dialog box ~ Item What it looks like, what it does

Action Button Action buttons are "shadowed" text. If you choose a
button (press Enter or click), Turbo C++ carries out the
related action immediately.

Check box A check box is an On/Off toggle. Press Spacebar or click it
to turn the option on or off. When a check box option is
turned on, an x appears in the brackets: [x].

Radio button Radio buttons are toggles that come in sets of two or
more: You can only choose one radio button in a set at a
time. With the keyboard, you can move within a set of
buttons using the arrow keys. Once you've made your
selection, press Tab to leave that group with the new
button chosen. With the mouse, you can click anywhere
on a radio button to choose it. When a radio button is
chosen, a bullet appears between the parentheses: (e).

Input box An input box prompts you to type in a string (the name
of a file, for example).

List box A list box contains a list of items from which you can
choose (for example, a list of possible files to open).

Dialog boxes appear when you choose a menu item that is follow-
ed by a dialog box icon (...), such as the File | Open menu item
shown in Figure 3.3.

Full Menus On/Off

Turbo C++ lets you choose between two menu systems, Full
Menus On and Full Menus Off. Full Menus Off provides you with
a condensed, easy-to-use environment by offering you the mini-
mal command set you'll need to build and debug Turbo C++
programs. Full Menus On provides you with the extra functional-
ity you'll need for more advanced programming tasks. In this
tutorial, we use Full Menus set to Off (the default setting).

Figure 3.2 compares the two menu states; as an example, it shows
the Compile menu with Full Menus Off and Full Menus On.

Chapter 3. Learning the new IDE 19

Figure 3.2
Full Menus: Off and On

Mouse. hot keys,
and online help

Mouse
Refer fo your mouse manual

if you haven't used your
mouse before.

Table 3.2
Mouse talk

=

Hot keys

20

[Pt Menus orr | [Fut) vemus on |

Make EXE file Compile to 0BJ

Build A1l Make EXE File
Link EXE File
Build A1l

Remove messages

Before you jump feet first into the IDE, you'll want to know the
basics of Turbo C++’s mouse support, hot keys, and online help.

The Turbo C++ IDE supports a mouse. Use the left mouse button
for the IDE. Turbo C++ also lets you redefine your other mouse
buttons: Refer to Chapter 1, "The IDE reference,” in the User’s
Guide for details. These terms describe mouse actions:

Action How you do it

Click Press the mouse button and release.

Double click Click twice in quick succession.

Drag Press the mouse button, move the mouse, release.

Click-drag Press the mouse button and release, then press it again,
move, and release.

Choose Click a menu item, such as a command or dialog-box
selector.

Many menu and dialog box items have corresponding hot keys:

one- or two-key shortcuts that immediately activate that com-
mand or dialog box. (In a dialog box, unless you're in an input
box, you only need to press the highlighted letter to move from
one command to another.) The following table lists the most-used
Turbo C++ hot keys; see Chapter 1, "The IDE reference,” in the
User’s Guide for a more complete list.

Turbo C++ Getting Started

Table 3.3
Turbo C++ hot keys

When you press one of these
keys, Turbo C++ carries out
that key's function
everywhere, except in dialog
boxes.

&

Online help

You'll use the help system in
Lesson 2.

Key Menu item Function

F1 Help Opens an online help screen.

F2 File| Save Saves the file that’s in the active Edit
window.

F3 File| Open Brings up a dialog box so you can open
a file.

F4 Run|Go to Cursor Runs your program to the line where
the cursor is positioned.

F5 Window | Zoom Zooms and unzooms the active
window.

F6 Window | Next Cycles through all open windows.

F7 Run | Trace Into Runs your program in debug mode,

tracing into functions.

F8 Run | Step Over Runs your program in debug mode,
stepping over function calls.

Fa Compile | Make Exe Makes the current source file an EXE
file.

F10 (none) Takes you to the menu bar.

The status line at the bottom of the IDE screen lists hot keys you
can use in the active window. If you have a mouse, you can click
the hot key in the status line instead of pressing the key.

Turbo C++4, like other Borland products, gives you context-sensi-
tive online help at the touch of a hot key (or the click of a button).
You can get help regarding any item in the Turbo C++ IDE, plus
help about any Turbo C++ reserved word or library function. In
addition, you can copy example programs from the Help window
into your own programs.

Turbo C++ also provides a "mini help system" that is always
available at a glance. The status line at the bottom of the IDE
screen lists any hot keys or commands available in the current
window, menu, or dialog box, and provides a brief description of
what the current menu or dialog control item does.

Lesson 1: Starting, loading, and editing

This lesson should take you 20
minufes fo complete.

Turbo C++’s IDE comes with its own built-in editor. From within
Turbo C++, you can open a file, edit, compile, run, debug, and

Chapter 3, Learning the new IDE 21

Figure 3.1
The Load a File dialog box

If you have a mouse, just

double-click the file name in

22

the Files list.

save it to disk again—all with the IDE’s easy-to-use features. In
this lesson, you’ll

m start Turbo C++ at the DOS prompt

mopen a file in an Edit window

m copy the file to another Edit window

m use the editor to modify the copied file

m save the modified file to disk

To start Turbo C++, change to the EXAMPLES subdirectory (in
your TC directory) and type ..\1C at the DOS prompt. To load the
Turbo C++ program BARCHART.C into the IDE, choose the File|

Open command or press F3. Either of these methods displays the
Load a File dialog box, which looks like this:

CPASDEMO.C INTRO13.C
GAME.C INTRO14.C
GETOPT.C INTRO15.C

HELLO.C INTR016.C
INTROL.C INTRO017.C [[Cancel]
INTRO10.C INTRO18.C
INTROL1.C INTR019.C

Note that the Open button is the default in this dialog box. If you
choose Replace instead of Open, your file will replace any file
currently in the active Edit window, instead of placing it in a new
window. Leave the Open button selected for this lesson.

From this dialog box, there are two ways to select a file to open:

m You can enter the file name in the Name input box.
m Or, you can choose the file from the Files list.

This time you'll use the Files list.

il

. Press Tab to activate the Files list.

2. Normally, you would use the arrow keys to highlight your
selected file. In this case, BARCHART.C is already highlighted
because it’s the first file in the list.

3. Press Enter. _

Turbo C++ Getting Started

Creating a new
file

To go directly to any Edit
window, press Alt and that
window's number.

Table 3.1
Moving in an Edit window

As soon as you choose the file (press Enter), BARCHART.C is
displayed in the Edit window. Note the window number in the
upper right border of the Edit window; this is window 1. The line
and column number information for the Edit window is in its
lower left corner.

One feature of the Turbo C++ IDE is multiwindowing—you can
have more than one Edit window open at a time. You can open a
different or the same file in each window, cut or copy and paste
between windows, and move easily from window to window.

Now that BARCHART.C is open in an Edit window, you're ready
to start editing the code. But, because you don’t want to alter the
original program, open a new Edit window with File | New.

The new Edit window is NONAMEQ0.C (window 2), which you'll
later name MYCHART.C. The double line around the new Edit
window tells you that it’s the active window.

Now go back to the first Edit window (click it or press Alt-1). We
want you to copy all of BARCHART.C into NONAMEQO.C. (If
you’re not familiar with moving around in an Edit window, take a
look at the following table or press F1 while you're in the editor.
For a full listing of the editor commands, refer to Chapter 3, “The
editor from A to Z,” in the User’s Guide.)

To move On the keyboard With the mouse
A character or line Press T, , Click the arrow at
in any direction —, Of & either end of scroll bar

To beginning or Press Home or End Click at beginning

end of a line or end of line

Up or down a screen Press Pglpor PgDn Click and hold the
arrow at either end of
the scroll bar to scroll

To beginning or end Press Ctrl-PgUp or Click-drag the thumb

of file Ctrl-PgDn tab (square icon) at

either end of the scroll
bar; move to top or
bottom of bar; release
mouse button

Chapter 3, Learning the new IDE 23

Selecting a block

Restore line Alt-Bksp
Cut Shift-Del
Copy Ctri-Ins
Paste Shift-Ins
Copy Example

Clear Ctrl-Del

Copying and pasting

24

Modifying your
new file

When marking blocks, you can choose between the keyboard and
the mouse:

m From the keyboard, place the cursor at the first or last character
of the block, then press Shiffand an arrow key (or Home, End,
PgDn, or PgUp) to select the block. (You must press Shift while
you're using the arrow keys.)

m With the mouse, click the first character of the block, then drag
to the end of the block. To unselect a block, click anywhere.

A selected block of text displays in reverse video (highlighted).
Go ahead and select all the code in BARCHART.C.

Now that you've selected the text in the BARCHART.C window,
choose Edit | Copy (or press Ctrl-Ins). This copies the selected text to
a special holding place in memory called the Clipboard. Once text
is in the Clipboard, you can paste it into a new location—in the
same window or a different one.

Move back to NONAMEQO.C: Press Alf and that window’s number
(or click that Edit window with the mouse). (If you want to move
to a particular window but don’t know its number, use Window |
List.)

To paste text from the Clipboard into the Edit window, choose
Edit | Paste (or press Shift-Ins). Next, unselect the pasted block; click
anywhere or press Ctrl-K H.

Now you're ready to make some changes to the text, and save and
name the NONAMEQO.C file.

BARCHART.C is a program that prompts for ten scores between 0
and 50, computes their percentages, then displays the percentages
in a bar chart and prints out the scores and percentages.

In this section, you're going to make some improvements to
BARCHART.C:

m change your version of BARCHART.C (NONAME00.C) so that
it prompts for five scores between 0 and 35

m use the editor’s search-and-replace feature to change a variable
name

m copy and paste text from a Help window

Turbo C++ Gefting Starfed

Look for the line number at
the bottom of the Edit
window.

Searching and
replacing

Figure 3.2
The Replace dialog

Let’s start off by editing the file to prompt for a different number
of scores within a different range. Here’s what you do:

1. Use the cursor keys to move to the end of line 7.
2. Use Backspace to remove the number 50, and type in 35.
3. Move to the next line and change the number 10 to 5.

The variable name i isn’t a very informative identifier, so go ahead
and change it to index, since that’s what the variable is used for.
Changing a single-letter variable is a little trickier than it might
first appear. You want to change every instance of the variable i; if
you miss one, the program won’t compile because you’ll have an
undefined variable. But you don’t want to change every letteri in
the program, just each instance of the variable i.

Fortunately, the Search menu includes an option for selective
search-and-replace operaiions. You'll be using the Replace dialog,
which looks like this:

pllext to Findg |
[Jew Textf |
Options Direction

X] Case sensitive () Forward
Whole words only Backward

Regular expression
X] Prompt on replace

cope Origin
(-5 Global (-? From cursor
Selected text Entire scope

gL Ol IigChange LT 1IN Cance | IR Help |

The Replace dialog box contains two input boxes, three sets of
radio buttons, a set of check boxes, and four buttons. You're going
to change all instances of variable i in NONAMEQO to index, so go
to the beginning of the file (press Ctr-PgUp or use the mouse).

1. Choose Search | Replace to open the Replace dialog box. When
you first open the dialog box, the Text to Find input box is
active.

2. Type i, the name of the variable you want to search for, then
press Tab to activate the New Text input box.

3. Type index, the name you want to substitute for i. Press Tab
again to move control to the Options check boxes.

Chapter 3, Learning the new IDE 25

To check Whole Words Only,

26

press | to move to if, then
press Spacebar. Or, click it.

Pasting from a Help
window

Case Sensitive and Prompt to Replace are already checked.
That’s exactly what you want. But you also need to check
Whole Words Only so that the search won’t stop at every letter
i in the program. After you check that option, leave this group
as is and press Tab, or click, to go to the Direction radio
buttons.

. You want the search direction to be forward, so just go ahead

and tab to Scope.

. Global is already chosen in the Scope set of radio buttons,

which means the search will be through the entire document.
Now press Tab to go to Origin.

In Origin, press | to move to Entire Scope (or click it) to
choose it.

Tab to the Change All button and press Enfer to initiate the

search-and-replace operation (or click the button with the
mouse).

At each instance of an i, you're prompted whether you want to
replace that occurrence. Press Y for Yes if the search finds the
variable i; otherwise press N for No.

Suppose you want to add this caption to your bar graph:

Percentages, Exam 1A

The function that outputs text to the screen in graphics mode is
outtextxy; the help screens describing this function contain code
you can copy to the Clipboard and then paste into NONAMEOO.
Here’s how to copy outtextxy’s example code from the help screen
to your source:

1.

Choose Index from the Help menu.

2. Type the word outtextxy to go to the entry for outtextxy. Then

press Enter to bring up its help screen.

. The example is already preselected as a block, so choose Edit |

Copy Example to copy it into the Clipboard.

. Press Esc to close the Help window.
. Go to the end of your file and position the cursor at the

beginning of the last line.

. Choose Edit | Paste to paste the block of code into your file.

Turbo C++ Getting Started

You won’t use the whole block as it stands. While parts are useful
just as they are, others must be modified to suit your purposes,
and some are no use to you in this example.

Once you've copied the example into your program, you can
modify the lines you want to keep, then discard the rest. For
example,

1. You can use the line
int midx, midy;
as is. Cut this line (from the example text you just added at the
end of your program), then paste it into the makegraph
function’s variable declaration section (line 35).
2. Paste these two copied lines into makegraph just after the
closing brace of the for loop (line 49).
midx = getmaxx()/2;
midy = getmaxy()/2;
3. Modify them to read

midx = (getmaxx()/2) - (textwidth("Percentages, Exam 1A")/2);
midy = getmaxy() - 10;
4. Paste this copied line into makegraph right after the modified
midy statement:

outextxy (midx, midy, "This is a test.")
5. Modify it to read

outtextxy(midx, midy, "Percentages, Exam 1A");

You need to get rid of the mangled remains of the outtextxy
sample program at the end of your file. Fortunately, the Edit
menu provides you with a command for getting rid of blocks of
text with just a couple of quick keystrokes.

1. Select the block you want to delete: Start where you typed in
outtextxy, and stop at the end of the file.

2. Choose Edit | Clear (or press Ctrl-Del).

Saving your changes That'’s it. You've made quite a few changes to your program, so go
ahead and save the file to disk. Choose File | Save (or press F2),
which brings up the Save Editor File dialog box. At the input box,
type in MYCHART.C and press Enter.

Chapter 3, Learning the new IDE 27

Lesson 2: Compiling and running

This lesson takes 5 minutes.

Make EXE file C:MYCHART.EXE
Build A

Note: If you gef error
messages stating that Turbo
C++can't find your header
files, Turbo C++ probably is
not installed with the default
subdirectories. See Chapfter 1
for defais.

Run

Program reset Ctr i -F2

Go to cursor F4
Trace inte F7
Step over F8
Arguments...

The User Screen displays both
text and graphics outpuf.

28

In this lesson, you’ll

m compile MYCHART.C with the Compile | Make EXE command

m run MYCHART.EXE with the Run | Run command (so you can
see the output)

You use the Compile menu to compile the program. (Because the
Full Menus option is set to Off for this tutorial, this Compile
menu shows only two items. To find out what all the Compile
menu options do, see Chapter 1, “The IDE reference,” in the User’s
Guide.)

1. Choose Compile | Make EXE File or press F9 to generate
MYCHART.EXE. The Compiling window appears; if there are
any errors in your program, it'll tell you here (if so, fix them
and recompile). When the program successfully compiles and
links, the window displays a flashing message:

Success: Press any key

2. Press any key to return to your program.

To run MYCHART, choose Run | Run or press Ctr-F9. (The other
commands on the Run menu are for debugging.) Turbo C++
switches from the IDE to the User Screen, where MYCHART
prompts you for input.

Each time MYCHART prompts you for input (five times in all),
enter an integer between 0 and 35. As soon as you enter the last
number, MYCHART displays all five values and their

percentages.

Press Enter. Now MYCHART displays the percentages in the form
of a bar graph. Notice how nicely the caption is centered under
the bar graph. If you're curious about how that happened, check
out this line:

midx = (getmaxx()/2) - (textwidth("Percentages, Exam 1A")/2);

Press Cirl-F1 while the cursor is positioned on the function
textwidth to get language-specific help (or look in Chapter 1, “The
run-time library,” in the Library Reference).

Press Enter again to return to the IDE.

Turbo C++ Getting Started

Closing an Edit

WINAOW Now you're finished with MYCHART.C. To close its Edit win-
dow, choose Window | Close (or press Alt-F3). Go ahead and close
BARCHART.C as well.

@2 [fyouhave a mouse, you can click the close box ([=]) in the upper
left corner to close the Edit window.

Lesson 3: Exiting Turbo C++

When you finish working on a file, the last two things to do are

m save your changes to a file on disk
m exit the Turbo C++ IDE and return to DOS

You've already saved your file, so the last step is to quit Turbo
C++ and return to DOS.

m Choose File | Quit or press Alf-X.

Where to go for more information

This tutorial was just a quick introduction to the most commonly

used parts of the Turbo C++ IDE; many features were touched on
briefly or not at all. Remember, you can find in-depth information
on every part of the IDE in Chapter 1, “The IDE reference,” in the
User’s Guide.

Chapter 3, Learning the new IDE 29

30

Turbo C++ Getting Started

An introduction to C

If you've never programmed in C before (or if you have and
would just as soon forget the experience), this is the chapter for
you. It starts out with simple examples and moves to more com-
plex ones, showing you how to build them into programs. You'll
learn how to solve a variety of problems involving numbers,
words, and graphics. You are also introduced to some important
guidelines for designing and structuring programs. You’ll find
code for the more complex programs in the EXAMPLES sub-
directory. We've included them this way so you can easily load,
compile, and run them; this is one of the best ways to learn C.

A quick history lesson

C was originally developed in the 1970s for use with the UNIX
operating system, and virtually grew up with it. When micro-
computers with sufficient power came on the market, C compilers
were implemented for them. In 1978, Brian W. Kernighan and
Dennis M. Ritchie provided the classic definition of C with the
first edition of their book The C Programming Language. Five years
later, the American National Standards Institute (ANSI) began to
develop a new standard for the C language. This standard
resolves ambiguities in the classic definition and provides new
features, including better control over function calls through the
use of prototypes. The second edition of Kernighan and Ritchie’s
book discusses the ANSI standard implementation in detail.

Chapter 4, An introduction fo C 31

Turbo C++ implements the latest ANSI standard for C. It is also a
full implementation of version 2.0 of AT&T's object-oriented
version of C called C++. The object-oriented features of C++ are
discussed in chapters 5 and 6, “A C++ primer” and “Hands-on
C++"

Basic programming operations

You can follow along with
the examples in this chapter
by loading and running the
designated programs.

To fry out this program, load
and run INTRO1.C (File |
Open|INTRO1). Remember
that all these examples are in
the EXAMPLES subdirectory.

32

Computer programs vary greatly in purpose, style, and complexi-
ty. Nearly all programs, however, go through a process consisting
of three phases:

m describing, collecting, and storing information (data)
m processing the data to achieve the desired result
m displaying and /or storing the results

Any data used by a program has to be described so that Turbo
C++ knows how to store and retrieve it. Memory must be set
aside to hold the amount of data expected. The program must
then use some means to get the actual data into storage—this
could involve reading the characters from the keyboard,
retrieving data from a file on disk, receiving data over a telephone
line, or using some other kind of input device.

Once the data has been stored in numeric variables, character
strings, arrays, or more complicated data structures, it must be
processed. The processing varies with the purpose of the pro-
gram, of course: A spreadsheet program might apply a formula to
a set of data to calculate a result, while a word-processing
program might rearrange lines of text to fit new margins.

Once the data is processed, the results must be made available in
some way to the user. Lines of text can be rearranged on the
screen or sent to the printer, and the spreadsheet cells can be re-
displayed to show their new values. Most data must eventually be
stored on disk for later use.

Consider how the foregoing elements of program design are used
in this short example program:

/* INTRO1.C--Example from Chapter 4 of Getting Started */
#include <stdio.h>

int main{()

Turbo C++ Getting Started

Describing

int bushels;

float dollars, rate;

char inbuf [130];

printf("How many dollars did you get? “);
gets{inbuf);

sscanf (inbuf, "$f", &dollars);
printf("For how many bushels? “);
gets(inbuf);

sscanf (inbuf, "%d“, &bushels);

rate = dollars / bushels;

printf("You got $f dollars for each bushel\n", rate);

return 0;

}

The first line of this program, main(), defines a function, or group
of related program instructions. Functions are the building blocks
of C programs, much as paragraphs are the building blocks of
stories. Every C program has a function called main. Most pro-
grams have several other functions with appropriate descriptive
names. The open brace ({) indicates the beginning of a group of
program instructions, or statements—in this case, the statements
that define what will happen when the function main is executed.
Each group of statements ends with a closing brace (}).

If functions are like paragraphs, statements are like sentences.
Notice that each statement ends in a semicolon (;). While C lets
you string several statements together on the same line, we don’t
recommend this; it makes programs harder to read.

The first three statements are

int bushels;
float dollars, rate;
char inbuf [130];

Recall that the first step in writing a program is “describing,
collecting, and storing information.” In C, you must declare each
item of data before you can do anything else with it. To declare an
item of data, list what type of data it is, then give it a name. Here,
you have one item that has an int type (integer, or whole number),
and is named bushels. You have a second and third item that both
have a float type (a floating-point number or a number that has a
decimal fraction), namely dollars and rate. These data items are
also called variables, since their value can vary according to
circumstances. And you have a fourth item, a character array, that
lets you read and store your user’s input. (Arrays are discussed on
page 97.)

Chapter 4, An introduction to C 33

Collecting and storing

Processing

Printing

The next six statements obtain and store the data we’ve just de-
scribed. The printf statements prompt for the number of bushels
and the number of dollars received for those bushels, and the gets
and sscanf statements get these values and store them in the
variables named. Most of the actual work done in a Turbo C++
program is accomplished by calling upon functions provided in
the libraries included with Turbo C++. You call a function by
giving its name in a statement, along with any information the
function requires for processing, enclosed in parentheses. printf,
gets, and sscanf are all library functions. They are not actually
part of the C language itself. The specifiers %d and %f in the
sscanf statements indicate that these data items are to be stored
as an integer and a floating-point decimal, respectively. These are
called format specifiers; we explain and describe them on page 46.

The next statement, rate = dollars/bushels, does the processing
part of the program, dividing the number of bushels by the
number of dollars to get the dollars per bushel.

The final statement, again using the printf function, displays the
results of this calculation. Notice that the printf statement here
specifies a string (message) followed by a comma and the name of
the variable rate. The %f specifies that the value should be format-
ted as a floating-point value.

When you run the program, the output looks like this:

How many dollars did you get? 32
For how many bushels? 24
You got 1.333333 dollars for each bushel

Basic structure of a C program

34

Load and run SALESTAG.C.

This next example demonstrates functions, comments, and the
preprocessor directives #include and #define.

/* SALESTAG.C--Example from Chapter 4 of Getting Started.
SALESTAG.C calculates a sales slip. */

#include <stdio.h>
#define RATE 0.065 /* Sales Tax Rate */

float tax (float amount);
float purchase, tax_amt, total;

int main()

Turbo C++ Getting Started

char inbuf [130];
printf("Amount of purchase: "“);
gets (inbuf);

sscanf (inbuf, "“%$f", &purchase);

tax amt = tax(purchase);
total = purchase + tax_amt;

printf("\nPurchase is: $%f", purchase);

printf("\n Tax: %f", tax amt);
printf("\n Total: %f", total);
return 0;

}

float tax (float amount)

{
return(amount * RATE);

}

The first line of the program begins with the symbol /*, which
begins a comment. The symbol */ ends the comment. Turbo C++
ignores all characters between the beginning and end of a
comment. You use comments to describe the purpose of a
program, function, or statement. Appropriate comments make it
easier for you to remember just what a particular part of your
program does—and it helps other programmers who may be
called on to modify your program.

Lines that begin with the number or pound sign (#) are not C lan-
guage statements, but instructions to Turbo C++ itself. These are
called compiler directives (or preprocessor directives) because they
direct the operation of the compiler. The directive #include
<stdio.h> tells Turbo C++ to read in and compile the contents of
the file stdio.h, which is one of the many header files (also called
include files) that Turbo C++ installed for you. These files contain
descriptions of the library functions (such as printf, gets, and
sscanf), as well as other items that are part of the standard C
library. The compiler uses these descriptions to compile the
program code for the library functions, along with the code for
your program statements. For more information on each of these
header files, see Chapter 2, “Run-time library cross-reference,” in
the Programmer’s Guide.

Another way fo specify The next line, #define RATE 0.065, defines a macro substitution: It
V";gissgh#fe"‘;%"” sftck’;%go? ., tells Turbo C++ that whenever it sees the word RATE in your pro-
discussed on page 94, gram code, it is to replace that word with the number 0.065. In a

longer program, the tax rate may be referred to many times. If the

Chapter 4, An infroduction to C 35

36

tax rate changes, you need only change the definition and recom-
pile the program. All of the references will be changed automati-
cally. This is less time-consuming and more accurate than trying

to find and change all the references by hand.

The next statement describes a user-defined function tax, which is
defined later. The description (called a prototype; see page 81) says
that this function will accept a floating-point number (float) and
return a result that is also a floating-point number. Putting the
description here helps Turbo C++ make sure that your program
doesn'’t try to give the function the wrong kind of data (a char-
acter string, for example). The statement

float purchase, tax amt, total;
describes three floating-point variables.

The printf, gets, and sscanf statements prompt for and obtain the
amount of the purchase. Now it’s time for the actual computing.

tax amt = tax(purchase);

calls the user-defined tax function. The value of purchase (the vari-
able in parentheses) is sent to this function. To find out what the
function does, skip down to the bottom of the program, where
you see its definition:

float tax (float amount)
{

return(amount * RATE);

}

This specifies that the tax function takes the value of amount that it
receives, multiplies it by the defined constant RATE, and returns
the result. Thus, when the line

tax amt = tax(purchase);

is executed, the tax on the amount of purchase is calculated and
returned by the tax function, then stored in the variable tax_amt
for later use. In the next line, in fact, this amount is added to
purchase to obtain total.

It may seem unnecessary to have a whole separate function just to
calculate the tax, and it is in this program. But it becomes useful
in more complicated situations, such as when there are several tax
rates to choose from according to the purchaser’s county of resi-
dence. Perhaps you also have to check a product code to deter-
mine whether the item is taxable in the first place. In that case,
separating the mechanism for figuring tax makes the main part of

Turbo C++ Getting Started

The output value of purchase
doesn’t match the input
value because of how float
works; see page 40.

the program easier to follow. If necessary, you can later change
how the tax is calculated without affecting the rest of the

program.

The final three lines of the main program print out the purchase
amount, tax, and total. A sample run looks like this:

Rmount of purchase: 24.95

Purchase is: 24.950001
Tax: 1.621750
Total: 26.571751

Clearly some more work will be needed to format your output
neatly—dollar amounts should have only two decimal places, and
the amounts should be right-justified. That can wait until you
learn more about formatting and the printf function, however. (If
you're concerned about those fractional pennies, Chapter 4,
“Memory models, floating point, and overlays,” in the Program-
mer’s Guide has a brief discussion of using the bed class to get
more precise results.)

Working with numbers

Numeric data
types

Numbers are the fundamental data used by computers. As you
probably know, the actual contents of computer memory consists
of binary numbers. These are usually organized in groups of 8 bits
(1 byte) or 16 bits (2 bytes, or 1 word). Even those computing acti-
vities that involve words or graphics basically involve series of
numbers stored in memory.

The same part of memory could be interpreted as several different
kinds of numbers, depending on how many bytes are grouped
together. The name of a variable, such as total, actually refers to
the contents of one or more bytes following a specific address in
memory—this address is assigned by Turbo C++ when you first
define (give a value to) the variable. But you and the compiler
must agree about what kind of number will be represented by a
given variable, and thus how many bytes will be stored and
fetched starting at the variable’s address. You make this
agreement by specifying a data type when you declare the
variable. For example,

Chapter 4, An introduction to C 37

int total, count, step;
float cost, profit;

Figure 4.1 — [
Interpreting memory char

locations as numbers (in int

1-byte increments) 1000 U
float

1001
double ' 1002
1003
1004
1005
1006

1007

Each data type represents a different kind of number. You must
choose an appropriate type for the kind of number you need. In
this variable declaration,

m The variable fotal is of type int (integer). When you tell your
program to use the value of total in a statement, it fetches 2
bytes, starting at tofal’s address.

m The variable cost is of type float (floating point). When your
program uses cost, it fetches 4 bytes, starting at cost’s address.
(This is because a floating-point number needs the two extra
bytes to represent the significant digit of the number and the
magnitude of the number in terms of powers of two.)

Table 4.1 shows the basic Turbo C++ data types and their
variations. Notice the variety of numbers that can be
accommodated. This chapter shows you how to use many of these

types.

Turbo C++ Getting Started

Table 4.1: Data types, sizes, and ranges

Sample applications

Size
Type (bits) Range
unsigned char 8 0 to 255
char 8 -128 to 127
enum 16 -32,768 to 32,767
unsigned int 16 0 to 65,535
short int 16 -32,768 to 32,767
int 16 -32,768 to 32,767
unsigned long 32 0 to 4,294,967,295
long 32 -2,147,483,648 to 2,147,483,647
float 32 3.4x1038t03.4 x 1038
double 64 1.7x10%08t0 1.7 x 10%8

long double 80 3.4 x10%32 0 1.1 x 104932

near pointer 16 Not applicable
far pointer 32 Not applicable

Small numbers and full PC character set
Very small numbers and ASCII characters
Ordered sets of values

Larger numbers and loops

Counting, small numbers, loop control
Counting, small numbers, loop control
Astronomical distances

Large numbers, populations

Scientific (7-digit precision)

Scientific (15-digit precision)

Financial (19-digit precision)
Manipulating memory addresses

Manipulating addresses outside current
segment

Infegers The basic integer type is int, which can express either negative or
positive numbers, but within a limited range (-32,768 to 32,767).

Here’s an example program that performs some operations with

integers:

#include <stdio.h>

main()

{

int bags, pounds;

int total;

pounds = 50;

bags = 1000;

total = bags * pounds;

printf("There are %d lbs. in 1000 bags of beans\n", total);

return 0;

}

The output from this program is a little surprising:

There are -15536 lbs. in 1000 bags of beans

Chapter 4, An infroduction to C

39

The compiler doesn’t warn
you if you try to store a value
that doesn't fit info the
specified data type.

You'll also need fo change
the %d in the prinif statement
fo %Id. We explain why on
page 51.

Signed and unsigned
variables

To decide which data type
to use, consider the possible
resulfs of a calculation or
other operation.

Since the default for all
numeric data fypes is signed,
you don‘t have to declare
signed inf or signed long.

40

The total of bags * pounds, 50,000, is too large for an ordinary int
(which you can verify from Table 4.1). When your program tried
to store 50,000 in a type that could only hold 32,767, the result
overflowed. How do you solve this problem? Use long int.

The long modifier

long int, which is usually abbreviated just as long, gives you a
larger integer range. You can solve the problem of the negative
beans by declaring:

long total;

This gives you room for more pounds of beans than you’d ever be
likely to see, because a long, which is stored in 32 bits instead of
the 16 used by an ordinary int, can accommodate a value between
-2,147,483,648 and 2,147 483,647. But what about pounds? This
variable should be fine as an int, since the weight of one bag is
unlikely to exceed 32,767 pounds. The variable bags, however,
might conceivably exceed 32,767, so make it a long also. Why not
use long instead of int variables for everything? A long takes up 4
bytes of memory, while an int takes only 2. If you have many
variables, you’ll end up wasting a lot of memory.

int pounds;
long bags, total;

All the data types listed in Table 4.1 are signed by default—one of
the bits in the stored value is used to indicate whether the number
is positive or negative. (Those marked unsigned are, of course,
explicitly unsigned.) Some values encountered in your work can
be either positive or negative—for example, temperatures and
bank balances. Many other values, however, are never negative—
a business can’t have a negative number of employees, for
example. By adding the word unsigned to any data type, you
restrict its range to positive numbers. Since a sign bit is no longer
needed, this doubles the maximum value stored by the type. For
example, while an ordinary (signed) int ranges from -32,768 to
32,767, an unsigned int ranges from 0 to 65,535. (An unsigned
long ranges between 0 and 4,294,967,295.) The preceding program
example would also have worked correctly if you had declared

unsigned int total;

though you’d be getting uncomfortably close to the limits of the
unsigned int type.

Turbo C++ Getting Started

Floating-point numbers Many numbers involve a fractional part set off with a decimal
point, such as prices in dollars and cents. These are called
floating-point numbers (also often called real numbers). Most exact
measurements involve fractions: If you buy screws at the hard-
ware store, you'll probably have to specify the diameter in frac-
tions of an inch. The float data type covers such situations. Here’s
an example:

To try out this program, load /* INTRO2.C--Example from Chapter 4 of Getting Started */
and run INTRO2.C.

#include <stdio.h>

int main()

{
char inbuf[130];
float num, denom; /* numerator and denominator of fraction */
float value; /* value of fraction as decimal */

printf("Convert a fraction to a decimal\n");
printf ("Numerator: ");

gets(inbuf);

sscanf (inbuf, “%f", &num);
printf("Denominator: ");

gets (inbuf);

sscanf (inbuf, "%f", &denom);

value = num / denom; /* convert fraction to decimal */
printf("\n %f / %f = %f", num, denom, value);

return 0;

}

The program prompts for the numerator and denominator of a
fraction, then converts them to a decimal value and prints the
result. For example,

Convert a fraction to a decimal
Numerator: 7
Denominator: 8

7.000000 / 8.000000 = 0.875000

Clearly value must be a float in order to hold a fraction, but you
may not realize that either num or denom has to be of the float type
if you wish to divide num/denom correctly. Try this example:

Chapter 4, An introduction fo C 41

If you divide integers by

integers, the result Is rounded
down fo the nearest whole
number before it is assigned

42

to the float variable.

#include<stdio.h>
int main()

{
int num = 3, denom = 4;
float value;
value = num / denom;
printf("\n%f", value);
return 0;

}

The result is a big fat zero—or more precisely, 0.000000, not the
0.75 you'd expect.

Double and long double

The double and long double types are like float, only they
accommodate larger numbers with more precision. Precision is
important in both scientific and financial calculations. You might
want to use your system to print checks for large sums of money,
such as $125,375,750.75.

#include <stdio.h>

int main()

{
float amount = 125375750.75;

printf("\nPay the sum of %f dollars\n", amount);
return 0;

}
When the check is printed out, you'll see

Pay the sum of 125375752.000000

The result is an overpayment of $1.25. That may not seem like
much, but people expect computers to be 100% accurate,
particularly where money is involved. This error occurred
because the float type is limited to seven digits of precision, and
the value assigned to amount has eleven digits, ten nonzero.
Change amount to a double and run the program again; you'll find
that the amount is now correct.

Turbo C++ Getting Started

Variables

Initializing
variables

Assignment
statements

As you have learned, every variable must be declared before it
can be used. A declaration consists of a data type followed by one
or more variable names. Declarations simply tell Turbo C++ that
you intend to use a particular variable, and what type of data it
will store.

int hours;
float total pay, pay_rate;
long id number;

You also need to initialize a variable—set it to a specific value,
such as 0. What do you think the following program will display?

#include <stdio.h>

int main()

{
int something;
printf("$d", something);
return 0;

}

The result will vary—on our machine, it was -32,417. Did you
notice that the program did not assign any value to the variable
something before trying to print it out? With the exception of
global or static variables (discussed later), variables in C do not
have a default value. (Some languages, such as BASIC, typically
give numeric variables a default value of 0.) The value of some-
thing, therefore, is whatever number happens to be stored at the
address Turbo C++ assigned to the variable. This value is unpre-
dictable. In fact, if you compiled this program, you might have
noticed a warning in the Message window: “Possible use of
'something’ before definition in function main.” When you get this
warning, you should check the variable named to make sure you
initialize it before you use it for anything.

You give a value to a variable with an assignment statement.
Assignment consists of a variable name followed by an equals
sign and the value to be assigned. Here are some examples:

Chapter 4, An introduction fo C 43

44

Combination
assignments

count = 0;
total = purchase + tax amt;
tax_amt = tax({purchase);

In the first statement, an actual number, or numeric constant, is
assigned to the variable count. The second statement uses an
expression to assign the sum of purchase and tax_amt to the
variable total. An expression is any combination of values and
operators (such as + or *) that yield a single value. In C, you can
use an entire expression just about anywhere that you can use a
single numeric value. You can assign it to a variable, send it to a
function for processing, or print it with printf.

The third statement is slightly more complex: It first calls the
function tax, giving it the value of the variable purchase. The
function uses this value and other information to calculate the tax.
The function returns a value to the calling statement: In other
words, the function call tax(purchase) is replaced by an actual
value, such as 1.14. The assignment statement then assigns this
value to tax_amt. Assignment statements using function calls are
very common in C.

C often lets you combine two or more distinct operations in a
single statement. You can declare a variable and assign it a value
in a single statement. Instead of

float total expenses;
total _expenses = 0;

most C programmers write
float total expenses = 0;

You can also assign several variables the same value in one state-
ment. A word processor might start processing text by setting

page = line = column = 1;

This works because an assignment statement not only assigns a
value, it also provides a value that can be used by other parts of a
statement in which it is embedded. That is, column = 1 assigns 1 to
column, and makes this value, 1, available. Moving right to left,
we get the equivalent of line = 1.In turn, that assignment passes
on the value 1, so the final assignhment is page = 1.

Turbo C++ Getting Started

But don’t go overboard. It is often better to declare and initialize
one variable per statement, so you can include a comment
describing the purpose of each variable:

int lines = 0; /* Lines of text, ending in new line char */

int words = 0; /* Words are groups of characters surrounded */
/* by space, tabs, or new lines */

int chars = 0; /* Every character is counted */

Taking the time to do this might also alert you to potential prob-
lems. For example, is it really a good idea for chars to be an int?

Naming names

It’s time now to consider what names you can give to variables. C
is quite flexible in this regard. User-supplied names (called identi-
fiers) must follow these rules:

m All identifiers must start with a letter (a to z or A to Z) or an
underscore ().

m The rest of the identifier can use letters, underscores, or digits (0
to 9). Other characters (such as punctuation marks or control
characters) cannot be used.

C++ identifiers are significant m The first 32 characters of an identifier are significant. This
to any length. means that

The_total_amount_of _money_in_my_checking_account
and
The_total_amount_of_money_in_my_charge_account
would be considered by Turbo C++ to be the same variable. Of
course it would be awkward to use such names, anyway.
m Identifiers are case-sensitive. This means that amount and
Amount are completely separate variables.

By these rules, deduction, tax_status, and amt_1099 are all legal
identifiers, while 1989_tax and stop! are not. (1989_tax begins with
a digit instead of a letter or underscore, and stop! contains an
exclamation point, which is not a letter, underscore, or digit.)

Besides following the rules, it is important to give some thought
to naming your variables. Here are some suggestions:

® The name should describe what the variable contains. a doesn’t
tell you anything. amt is better, but taxable_amount is most clear
and specific.

Chapter 4, An introduction fo C 45

Fielding an input
value: sscanf

Table 4.2
sscanf and printf format
specifiers

This table also shows printf
format specifiers, discussed

on page 49. Note that case
is important with most format

46

specifiers.

m Use capital letters or underscores to separate words in a long
identifier. PricePer100 or price_per_100 are much easier to read
than priceper100.

m Use comments to describe the nature and purpose of a variable,
particularly if it is not obvious.

You have already seen examples of the use of the gets and sscanf
functions for obtaining data from the keyboard. You know that
sscanf stores data in specified variables, and you've seen it used
with different numeric data types (int and float, for example).
Since different data types are stored differently in memory, you
need a way to tell sscanf what kind of data you wish to store. So
let’s look at the anatomy of sscanf more closely. Here is the
syntax of a call to sscanf:

sscanf(buffer, “format string”, laddress, address, ...])
Compare this to an actual sscanf statement you've seen before:
sscanf (inbuf, “%f", &num);

buffer is the input array where your data was temporarily stored
by gets. format string contains one or more format specifiers. Format
specifiers consist of a percent sign (%) followed by a letter indicat-
ing the type of data to be stored. The group of one or more format
specifiers is placed between double quotes. For example, %d
specifies an int value, %f, as in the example just given, expects a
float, and %s indicates a string of characters. The format string
%C¢ %d asks for both a single character and an int value. The most
commonly used formats are shown in Table 4.2.

Function sscanf printf
Size of value (modifies data type):
Specify short integer %hd
Specify long integer %ld %ld
Specify double %lf %lf
Use with float to indicate a long double %Lf %Lt
Type of data to be read or displayed:
Single character %C %C
Signed integer %d %d
Signed double or float in exponential format %e %e
Signed double or float in decimal format %f %f
Character string %S %s
Unsigned decimal integer %u %u

Turbo C++ Getting Started

The other necessary part of an sscanf call is the address at which
the data is to be stored. Every variable in C has a specific address
in memory. Most of the time you don’t need to worry about
addresses—you just name the variable to get its value. For
example, count + 1 evaluates to the current value of the variable
count plus one. In the case of sscanf, however, you don’t need the
value of the variable, you need its address. The address operator
& (the ampersand) is used with a value to get that address. This
program shows the difference between a variable’s address and
the value stored there:

To try out this code, load and /* INTRO3.C--Example from Chapter 4 of Getting Started */
run INTRO3.C.

#include <stdio.h>

int main()
{
char inbuf([130];
int number = 10;
printf("Address of variable number = %1d\n", &number);
printf("Value stored at variable number = %d\n", number);
printf("Enter a new value for the variable: “);
gets(inbuf);
sscanf (inbuf, "%d", &number);
printf("New value stored at variable number = %d\n", number);

return 0;

}
The output looks like this (the address may vary):

Address of variable number = 65498

Value stored at variable number = 10
Enter a new value for the variable: 33
New value stored at variable number = 33

The following program illustrates more variations on sscanf:

To fry out this code, load and /* INTRO4.C--Example from Chapter 4 of Getting Started */
run INTROA4.C. Note how we
precede calis to sscanf with #include <stdio.h>
a call to prinif or puts that \ .
describes the value wanted. int main()

{
char inbuf(130];
long transaction number;
int cashier number;
char transaction_code;
float purchase_amount;

printf("Enter transaction number: “);
gets(inbuf);

Chapter 4, An introduction fo C 47

48

sscanf (inbuf, "%81d", &transaction_number);

printf("\nEnter your cashier number: “);
gets (inbuf);
sscanf (inbuf, "%2d", &cashier number);

printf("\nEnter transaction type code: ");
gets (inbuf);
sscanf(inbuf, "%c", &transaction _code);

printf("\nEnter amount of purchase: ");
gets{inbuf);
sscanf (inbuf, “$f", &purchase_amount);

return 0;

}

The first sscanf statement will read a long (long int) of not more
than eight digits, while the second sscanf statement will read an
int of not more than two digits. (In a real application, you would
have to perform further error checking. For one thing, if you type
in more digits than are specified, sscanf simply starts storing
them in the next variable specified, or ignores them if there are no
more variables, as in this example.)

You can ask for the values of more than one variable in the same
call to sscanf; for example,

gets(inbuf);
sscanf(inbuf, "%81d %2d", &transaction number, &cashier number);

combines the first two sscanf calls in the preceding example.
Since only one call to gets is made, only one line of input is read.

By default, sscanf assumes the user will separate numeric vari-
ables with spaces. You can include other separator characters in
the format string; in which case, you must type in each value
exactly as entered:

#include <stdio.h>

int main()
{
char inbuf(130];
int hours, minutes, seconds;
printf("Enter new time in hh:mm:ss “);
gets (inbuf);
sscanf (inbuf, "%d:%d:%d", &hours, &minutes, &seconds);
return 0;

Turbo C++ Getting Started

Displaying a
variable’s value

The number of digits includes
the decimal point. %6.2f, for
example, prints five digits,
two of which are to the right
of the decimal point.

Chapter 4, An introduction fo C

The counterpart to sscanf, which gets a value for a variable, is
printf, which displays the value of a variable onscreen. A call to
printf consists of the following:

printf(“format string” , item, item, ...)

format string can contain optional text to be displayed. If you're
displaying the values of one or more items (variables, expressions,
constants, and so on), you must include a conversion specification
for each item. These conversion specifications are analogs of the
format specifiers discussed with sscanf earlier, but there are addi-
tional features for formatting the output. The specifier consists of
a percent sign followed by a symbol for the type of data involved.

Earlier you used printf statements to display a purchase amount,
tax, and total:

printf("\nPurchase is: %f", purchase);
printf("\n Tax: %f", tax_amt);
printf("\n Total: %f", total);

The results were displayed like this:

Purchase is: 24.950001
Tax: 1.621750
Total: 26.571751

How can you set up the conversion specifier to make Turbo C++
display these values properly aligned with only two decimal
places (which is appropriate for dollar amounts)? Here’s one
solution: After the % sign, put a number to indicate total digits
you want displayed, followed by a period and the number of
decimal places you want.

printf("\nPurchase is: $%6.2f", purchase);
printf("\n Tax: $%6.2f", tax_amt);
printf("\n Total: $%6.2f", total);

This displays the values as

Purchase is: § 24.95
Tax: $ 1.62
Total: $ 26.57

The next example shows how printf can display several types of
numbers in different formats:

49

To try out this program, load
and run INTROS.C.

50

/* INTRO5.C--Example from Chapter 4 of Getting Started */
#include <stdio.h>

int main{()
{
int int _num = 999;
float float num = 99.99895;
long double big num = 1250500750.75;

printf("12345678901234567890\n");
printf("$d\n", int num);
printf("$6d\n", int_num);
printf("$f\n", float num);
printf("%6.3f\n", float num);
printf("$e\n", big_num);
printf("$Le\n", big_num);

return 0;

}
Here is the output:

12345678901234567890
999

999
99.998947
99.999
-3.55361e-207
1.250501e+09

The first printf statement prints 20 digits as a ruler to show how
the other numbers line up. It also illustrates that printf doesn’t
have to print the value of a variable or expression—it can print
just a text string if you desire. The next statement prints the value
of int_num (999) as is. The third statement specifies a 6-digit field;
since the default is right-justification, the number 999 is displayed
three spaces over from the left. (If you specify a field width too
small for the number of whole digits in a number, the specifica-
tion will be overridden and the full number of digits displayed.
This is sensible: It means that 999 won’t be displayed as 99 just
because you made an error and specified %2d.)

The next two statements display the value of float_num. In the first
statement, the value isn’t exactly correct: 99.998947 is displayed,
rather than 99.99895. This is because the float type declared for
float_num guarantees seven digits of precision, but printf by de-
fault tries to print as many digits as it is given to the left of the
decimal point, plus six digits to the right of the decimal point,

Turbo C++ Getting Started

even if some of the digits end up inaccurate. For many applica-
tions, this small difference may not matter, but it is important to
realize that when you have exceeded the precision for the data
type involved, having printf show more digits buys you no
accuracy and may even mislead the user.

To avoid the display of spurious digits, use a precision specifier to
specify how many digits you want after the decimal point. The
next statement specifies %6.3f, which includes a maximum field
width of six and a decimal precision of three places. When the
precision is less than the number of digits available, the last digit
is rounded up or down as appropriate.

Type conversion in printf uses the conversion specifier to try to convert the value to
printf whatever type is specified, regardless of the actual data type of
the value. For example, if you have a float variable dollars and use
Do not specify more digits the specifier %d, the value 24.95 will end up as 0 or some seem-
than the datfa fype can ingly random number because printf will read 2 bytes (an int)
accurately hold. - rather than 4 (float) starting at the address of dollars. On the other
hand, if you declare a variable as an int, then try to display it with
%f, you will also get a wrong result because printf will try to read
4 bytes from a 2-byte variable.

printf is a complicated function with a large amount of code for
handling the various formats. Turbo C++ links in the part of the
code that handles floating-point values only if you use floating
point in your program. If your program never uses a floating-
point type, and you use the %f specifier with an int, you will get a
run-time error message telling you that the floating-point formats
were not linked. A more compact and readable alternative to
printf and sscanf is provided by the C++ streams library,
discussed in Chapter 5.

The preceding example uses the %e specifier to display big_num,
which was declared to be of type long double. Unfortunately, the
specifier tries to print this as an ordinary double, again producing
a nonsense value with a huge negative exponent. The last state-
ment uses the specifier %Lf, which correctly specifies long double.

Formatting with There are a number of characters that control how text appears
escape\ sequences onscreen; for example, the tab character advances the cursor to
the next tab position, the newline character moves the cursor to
the next line, and the formfeed starts a new screen or page of text.
printf lets you include any of these characters (and others) in the

Chapter 4. An introduction to C 51

text to be printed, simply by prefixing the symbol for the char-
acter with a backslash (\). The backslash is called an escape because
it tells Turbo C++ to interpret the following character not as a
literal n or f or whatever, but as the symbol for a special character.

Indeed, you have already seen numerous examples using \nin a
string being displayed with printf. While the print statement in
languages such as BASIC automatically advances the cursor or
print head to the next line, there is no such default in C. This gives
you more flexibility, since you can use separate printf statements
to display text on the same line, and advance to the next line only
when you specifically wish to. The next table lists Turbo C++'s

escape sequences.
Table 4.3 :
Character escape Sequence Name Meaning
sequences \ Alert Sounds a beep
\b Backspace Backs up one character
The octal and hexadecimal \f Formfeed Starts a new screen or page
escape sequences are \n Newline Moves to beginning of next line
different from Turbo C 2.0. \r Carriage return ~ Moves to beginning of current line
See Chapter 1. "The Turbo \t Horizontal tab ~ Moves to next tab position
C++language standard,”in - \y Vertical tab Moves down a fixed amount
the Programmers Guide for - \\ Backslash Displays an actual backslash
defais. \ Single quote Displays an actual single quote
\ Double quote Displays an actual double quote
\? Questionmark Displays an actual question mark
\OOO Displays a character whose ASCII code
is an octal value (one to three digits)
\xHHH Displays a character whose ASCII code
is a hexadecimal value (one or more
digits)

m “Newline” on MS-DOS systems is equivalent to a carriage
return (CR) plus a linefeed (LF). This is not true of some other
systems.

m A backslash in front of the single and double quotes is needed
only when Turbo C++ would otherwise interpret these
characters as having a special meaning. For example, "
normally delimits a string. To print a string in quotes, use "\"a
string in quotes\"".

m The octal or hexadecimal values are often used to send special

graphics characters or printer control characters. For example,
printf ("\xDB") on the IBM PC displays a solid square character.

After\n, the most commonly used escape sequence is probably \t,
the tab character. It is useful for aligning tables of numbers. For
example, this code

52 Turbo C++ Getting Starfed

To fry this out. load and run /* INTRO6.C--Example from Chapter 4 of Getting Started */
INTROG6.C.

$include <stdio.h>

int main()

{

0;
5;
11;

int 1
int m
int g

101, j =59, k
70, n =285 p
39, r = 110, s

o
non

printf("\tWon\tLost\tTied\n\n"};
printf("Eagles\t%3d\t%3d\t%3d\n", i, j, k);
printf("Lions\t%3d\t%3d\t%3d\n", m, n, p);
printf("Wombats\t%3d\t%3d\t%3d\n", q, r, s);

return 0;

}
produces the following neatly formatted table:

Won Lost Tied

Fagles 101 59 0
Lions 70 85 5
Wombats 39 110 11

Arithmetic

operators Now that you know how to get and display values for different
kinds of variables, let’s look more closely at the variety of
operators provided by Turbo C++. You have already seen several
operators: the assignment operator (=) and four arithmetic
operators (+, —, *, and /, for addition, subtraction, multiplication,
and division, respectively).

These operators work pretty much the way you would expect
them to, though with some differences: For example, dividing two
int values gives you an int result, with any fraction dropped.
There is also a specific order, called precedence, in which operators
take effect. For arithmetic operators, multiplication and division
come before addition and subtraction. Try to guess the four num-
bers that will be displayed by this program (to try it out, load and
run INTRO7.C):

Chapter 4, An infroduction to C 53

It doesn’t hurt to use
parentheses, even if they
aren’t strictly needed. They
can make expressions easier
fo read.

modulus (%)

54

/* INTRO7.C--Example from Chapter 4 of Getting Started */
$include <stdio.h>

int main()

{
float result;
result = 1.0 + 2.0 * 3.0 / 4.0;
printf("$f\n", result);
result = 1.0 / 2.0 + 3.0;
printf("$f\n", result);
result = (1.0 + 2.0) / 3.0;
printf("$f\n", result);
result = (1.0 + 2.0 / 3.0) + 4.0;
printf("$f\n", result);

return 0;

}
Here they are. How did you do?

2.500000
3.500000
1.000000
5.666667

In the first expression, the multiplication 2.0 * 3.0 is done first,
yielding 6. Next, 6 / 4.0 gives 1.5, which is finally added to 1.0 to
get the final result, 2.5. Notice that when operators have equal
precedence (* and / have equal precedence, as do + and -),
operations are done from left to right.

In the second expression, the division is done first, then the
addition, so the result is 0.5 + 3, or 3.5.

In the third expression, (1.0 + 2.0) is in parentheses, so it is
performed first: The result, 3.0, is then divided by 3 to get 1.

Finally, the last expression places 1.0 + 2.0 / 3.0 within paren-
theses. Within the parentheses, the usual rules are followed: 2 is
divided by 3, and then added to 1. The result, 1.666667, is then
added to 4 to get 5.666667.

The modulus operator (%) divides two numbers and keeps only
the remainder. For example, the expression 5 % 2 gives a result of
1, while 18 % 3 gives 0, since 3 divides evenly into 18.

Turbo C++ Getting Started

Arithmetic and

type conversion What happens if you add an int to a float? You would want the
result to be a float so that any fractional part is retained, and that
is what happens. Turbo C++ promotes smaller types to larger ones
according to a set of rules (see the next table). From the table, you
can see that when an Int and a float are added, the Int is promoted
to a float. The two numbers are then added, resulting in a float.

Table 4.4
Type promotions for

Type

Converts to

arithmetic

These types are converted automatically:

char

unsigned char
signed char
short
unsigned short
enum

float

Some types in this table have
not been discussed yet.

int

int

int

int!

unsigned int!
int

double

Then these rules are applied, until both operands have the same type:

If either operand is...

long double
double

float
unsigned long
long

unsigned

The other is converted to...

long double
double

float
unsigned long
long
unsigned

IThis is an ANSI requirement. However, short and int are the same size for all C
compilers on the PC, so no conversion is done.

Typecasting It is sometimes useful or necessary to explicitly convert a data
item to a specified type. For example, if you have

Chapter 4, An introduction fo C

#include <stdio.h>

inta=5 b=2;
printf("sd", a / b);

55

Combining
arithmetic and
assignment

Increment and
decrement

you'll get a result of 2, since integer division drops any fractional
part. If, however, you do it this way:

$include <stdio.h>

int main{()

{
int a=5 b=2;
printf("$f", (float) a / (float) b);
return 0;

}

the values 4 and b will be converted to the type enclosed in
parentheses (float in this case) before the division, so the value of
the expression will be 2.5. This forced conversion is called a type
cast, or just a cast.

A common operation in programming involves adding a fixed
amount to a variable (incrementing it). For example, if a program is
counting words, when it finds a word, it will do something like
total_words = total_words + 1. Later, you will also see how loops
usually involve repeatedly adding or subtracting a number until a
variable reaches a specified limit.

A shorthand way of doing things in C is to perform arithmetic
and assignment in one step. You can combine any binary arith-
metic operator with the assignment operator. The preceding
statement can also be written as total words += 1. Read this as
“add 1 to the current value of fofal_words and assign this quantity
as the new value of fotal_words.” Similarly, a checkbook-balancing
program might execute the statement balance -= check_amt (sub-
tract the amount of the check from the balance and make that the
new value of balance). The somewhat less common combinations
*= and /= work in the same way<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>