
• z .,.
)> .-
>
0
:z
•
c:
0 -~ .,.
•

m
0
:;111:1

J:li BORLAND
z
a

Turbo C®++

Getting Started

BORLAND INTERNATIONAL. INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001. SCOTTS VALLEY. CA 95066-0001

This manual was produced with Sprint®: The Professional Word Processor

Rl

Copyright © 1990 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland lnterna11onal, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2

c 0 N T

Introduction 1
What's in Turbo C++ 1
Hardware and software requirements ... 2
The Turbo C++ implementation 3
The Turbo C++ package 3

Getting Started 3
The User's Guide . 4
The Programmer's Guide 5
The Library Reference 6

Typefaces used in these books 6
How to contact Borland 7

Chapter 1 Installing Turbo C++ 9
Installing Turbo C++ 10

Laptop systems 11
The README file . 11
The HELPME!.DOC file 12
Turbo Cale . 12

Chapter 2 Navigating the Turbo C++
manuals 13

Features . 13
C++ 13
VROOMM (overlays) 14
Borland's new integrated environment . 14

Using the manuals 14
New programmers or programmers
learning C . 15
Experienced C programmers 15

Chapter 3 Learning the new IDE 17
The IDE 18

Full Menus On/Off 19
Mouse, hot keys, and online help 20

Mouse 20
Hot keys 20
Online help . 21

E N T s

Lesson 1: Starting, loading, and editing . 21
Creating a new file 23

Selecting a block 24
Copying and pasting 24

Modifying your new file 24
Searching and replacing 25
Pasting from a Help window 26
Saving your changes 27

Lesson 2: Compiling and running 28
Closing an Edit window 29

Lesson 3: Exiting Turbo C++ 29
Where to go for more information 29

Chapter 4 An introduction to C 31
A quick history lesson 31
Basic programming operations 32
Basic structure of a C program 34
Working with numbers 37

Numeric data types 37
Integers......... 39

The long modifier 40
Signed and unsigned variables 40
Floating-point numbers 40

Double and long double 42
Variables . 43

Initializing variables 43
Assignment statements 43
Combination assignments 44
Naming names 45
Fielding an input value: sscanf 46
Displaying a variable's value 49

Type conversion in print£ 51
Formatting with escape\ sequences . 51

Arithmetic operators 53
Arithmetic and type conversion 55

Typecasting . 55

Combining arithmetic and assignment . 56
Increment and decrement 56
Working bit by bit 57

Expressions . 59
Evaluating an expression 59
Assigning a value in an expression . . . 61

Characters and strings 62
Input and output for single characters . 62
Displaying a character 63
Displaying character strings 64

Testing conditions and making choices . 65
Using relational operators 65
Using logical operators 66
Branching with if and if ... else 67
Multiple choices with if ... else 68
Multiple choice tests: switch 70

Repeating execution with loops 72
The while loop . 72
The do while loop 73
The for loop . 75
Break and continue 77
The goto statement 78
Nested loops . 79
Choosing appropriate loops 80

Program design with functions and
macros 80

Defining your own functions 80
The function prototype 81

Function declarations under
Kernighan and Ritchie 81

The function definition 82
Processing within the function 82
The function return value 83
Using the return value 83

Multifunction programs 84
Function prototypes and global
declarations . 86
Setting up the graphics display 87
Calculating the graphics
coordinates . 87
Drawing the planets 88

Header files, functions, and libraries . . 89
Scope and duration of variables 91

Scope 91

ii

Duration . 93
Using constant values 94
Using macros to hide details 95

Building data structures 96
Declaring and initializing an array 97

Arrays with multiple dimensions 99
Arrays and strings 101
Defining string variables 102
Renaming types 103
Enumerated types 104
Combining data into structures 105
Using parts of a structure 105

Building proper declarators 106
Pointers . 108

Declaring and using a pointer 109
Pointers and strings 111
Pointer arithmetic 112
Pointers, structures, and lists 112
Using pointers to return values from
functions . 115

Using system resources 117
Using files and streams 118

Opening a stream 120
Writing to the file 120
Reading from the file 120

Chapter 5 A C++ primer 121
Encapsulation 123
Inheritance . 126
Polymorphism 128
Overloading . 128
Modeling the real world with classes . . 129

Building classes: a graphics example. 129
Declaring objects 131
Member functions 131
Calling a member function 132
Constructors and destructors 133
Code and data together 136
Member access control: private, public,
and protected . 136
The class: private by default 137
Running a C ++ program 138

Inheritance . 141
Rethinking the Point class 141

Inheritance and access control 143
Packaging classes into modules 144
Extending classes 148
Multiple inheritance 151

Virtual functions 156
Virtual functions in action 158
Defining virtual functions 159
Developing a complete graphics
module 160

Reference types 161
Ordinary or virtual member
functions? 168

Dynamic objects 168
Destructors and delete 170
An example of dynamic object
allocation . 170

More flexibility in C ++ 175
Inline functions outside class
definitions . 175
Functions with default arguments . . . 176
More about overloading functions . . . 177
Overloading operators to provide new
meanings 180
Friend functions 183
The C++ streams libraries 184

Standard 1/0 185
Formatted output 187

Manipulators 188
put, write, and get 188

Disk 1/0 . 189
I/0 for user-defined data types 192
Where to now? . 193
Conclusion 194

Chapter 6 Hands-on C++ 195
A better C: Making the transition from
c 196

Program 1 . 196
Program 2 . 197
Program 3 . 197
Program4 198

Object support 199
Program 5 . 200

Program 6 . 202

iii

Program 7 205
Program 8 . 206
Program 9 209

Summary 211

Chapter 7 Debugging in the new
IDE 213

Debugging and program development . 214
Designing the example program:
PLOTEMP.C 216
Writing the prototype program 218
Using the integrated debugger 221
Tracing the flow of a program 222

Tracing high-level execution 222
Tracing into called functions 223

Continuing program development 223
Setting breakpoints 225

Instant breaking with Ctrl-Break • • • • . . 226
Inspecting your data 227

Inspector windows 227
Inspecting arrays and strings 228
Inspecting structs and unions 228
Inspecting pointers 228
Inspecting functions 229
When should you use inspectors? . . . 229

Evaluating and changing variables 229
Specifying display format 230
Specifying the number of values 231
Copying from the cursor position . . . 232
Specifying variables in other
functions . 232
Changing values 232

Monitoring your program by setting
watches 235

Adding a watch 235
Watching your watches 236
Controlling the debugger windows . . 236
Editing and deleting watches 237
Finding a function definition 237
Finding out who called whom 238
Multiple source files 239

Preventive medicine 239
Design defensively 239
Write clearly 240

Systematic software testing 240
Test modifications thoroughly 241
Areas to watch carefully 241

Finishing PLOTEMP.C 242
Finishing table_ view 243
Implementing graph_ view 244
save_temps and read_temps 245

Answers to debugging exercises 246
min_max and avg_temps 246
graph_ view . 247

iv

save_temps
read_temps

Bibliography
Beginning to intermediate
Advanced
Object-oriented programming
Other languages and C
Reference

Index

247
248

249
249
250
251
251
251

253

T A B L E s

3.1: What goes in a dialog box 19 4.6: Precedence and associativity of
3.2: Mouse talk 20 operators 61
3.3: Turbo C++ hot keys 21 4.7: Relational operators 65
3.4: Moving in an Edit window 23 4.8: Logical operators 67
4.1: Data types, sizes, and ranges 39 4.9: Declarators without typedefs 107
4.2: sscanf and printf format specifiers ... 46 4.10: Declarators with typedefs 108
4.3: Character escape sequences 52 4.11: Preopened streams in Turbo C++ .. 120
4.4: Type promotions for arithmetic 55 5.1: Class access 143
4.5: Bit manipulation operators 58

v

F G u R E s

3.1: Components of the IDE 18 4.8: How pointers point (and what they
3.2: Full Menus: Off and On 20 point to) 111
3.3: The Load a File dialog box 22 4.9: Using pointers to access an array of
3.4: The Replace dialog 25 structures 114
4.1: Interpreting memory locations as 4.10: Using pointers in a function 117

numbers (in 1-byte increments) 38 5.1: Traditional C versus encapsulated
4.2: How a string is stored in memory 64 C++ 126
4.3: Information flow to and from the tax 5.2: A partial taxonomy chart of insects . 127

function 83 5.3: Multiple inheritance 152
4.4: Simple program structure (all in one) .89 5.4: Circles with messages 156
4.5: Program built from several files 90 7.1: Program development flowchart 216
4.6: Program using custom libraries 91 7.2: Graph view of temperature data 218
4.7: Two ways to deal with sets of data ... 97 7.3: Inspecting the temps array 228

7.4: Inspecting the min_max function ... 229

vi

N T R

Turbo C++ is highly
compatible with existing

Turbo C code.

0 D u c T 0 N

Turbo C++ is for C++ and C programmers who want a fast, effi­
cient compiler; for Turbo Pascal programmers who want to learn
C++ or C with all the "Turbo" advantages; and for anyone just
learning C++ or C. Turbo C++ is also for anyone who wants both
AT&T's C++ version 2.0 and ANSI C.

C++ is an object-oriented programming (OOP) language. It's the
next step in the natural evolution of C. It is portable, so you can
easily transfer application programs written in C++ from one
system to another. You can use C++ for almost any programming
task, anywhere.

What's in Turbo C++

Chapter 1 tells you how to
install Turbo C++. Chapter 2

tells you to where you can
find out more about each of

these features.

Introduction

Turbo C++ includes many of the latest features users ask for:

• C++: Turbo C++ offers you the full power of C++ programming
(implementing C++ version 2.0 from AT&T). To help you get
started, we're also including C++ class libraries. To help you
make the transition from C ++ version 1.2, we've included
support for version 1.2 streams.

•ANSI C: Turbo C++ provides you with an up-to-date imple­
mentation of the latest ANSI C standard.

• Borland's new Programmer's Platform. The Programmer's
Platform is a new generation user interface; it goes beyond the
old integrated environment to provide access to the full range
of programs and tools on your computer. It includes:

• mouse support
• multiple overlapping windows

• a multi-file editor

• support for inline assembler code

and much more.
• VROOMM (Virtual Run-time Object-Oriented Memory

Manager): VROOMM lets you overlay your code without
complexity. You select the code segments for overlaying;
VROOMM takes care of the rest, doing the work needed to fit
your code into 640K.

•An online tour of the new programmer's platform.
•Online hypertext help, with copy-and-paste program examples

for practically every function.

•Many indispensable library functions, including heap checking
functions and a complete set of complex and BCD math
functions.

Other features include:

• An enhancement to the -S option: Now your C source code is
added as comments to the resultant assembler code.

• Far objects and huge arrays.

• Several new pragmas and warnings: an ill-formed pragma
warning, an argsusecl pragma, and a start-up pragma.

•Alternate .CFG files. You can create several and use the one that
suits your needs at any given time.

•Response files for the command-line compiler.

Hardware and software requirements

2

Turbo C ++ runs on the IBM PC family of computers, including
the XT, AT, and PS/2, along with all true IBM compatibles. Turbo
C++ requires DOS 2.0 or higher and at least 640K; it runs on any
80-column monitor. The minimum requirement is a hard disk
drive and one floppy drive.

Turbo C++ includes floating-point routines that let your programs
make use of an 80x87 math coprocessor chip. It emulates the chip
if it is not available. Though it is not required to run Turbo C++,
the 80x87 chip can significantly enhance your programs'
performance.

Turbo C++ also supports a mouse. Though the mouse isn't re­
quired, if you have one, you must have one of the following for
full compatibility:

Turbo C++ Getting started

•Microsoft Mouse version 6.1 or later, or any mouse compatible
with this mouse

• Logitech Mouse version 3.4 or later
•Mouse Systems' PC Mouse version 6.22 or later
• IMSI mouse version 6.11 or later

The Turbo C++ implementation

Turbo C++ is a full implementation of the AT&T C++ version 2.0.
It is also American National Standards Institute (ANSI) C stan­
dard and fully supports the Kernighan and Ritchie definition. In
addition, Turbo C++ includes certain extensions for mixed­
language and mixed-model programming that let you exploit
your PC's capabilities. See Chapter 1, "The Turbo C++ language
standard," in the Programmer's Guide for a complete description of
TurboC++.

The Turbo C++ package

Getting started and the
User's Guide tell you how to

use this product: the Pro­
grammer's Guide and the

Library Reference focus on
programming in C.

Geffing Started

Introduction

Your Turbo C++ package consists of a set of distribution disks
and four manuals:

•Turbo C++ Getting Started (this manual)

•Turbo C++ User's Guide
•Turbo C++ Programmer's Guide
•Turbo C++ Library Reference

In addition to the four manuals, you'll find a convenient Quick
Reference booklet. The distribution disks contain all the programs,
files, and libraries you need to create, compile, link, and run your
Turbo C++ programs; they also contain sample programs, several
standalone utilities, a context-sensitive help file, an integrated
debugger, and additional C documentation not covered in these
guides.

This volume introduces you to Turbo C++ and shows you how to
create and run both C and C++ programs. It consists of informa­
tion you'll need to get up and running quickly: installation, tutori-

3

4

You might also want to try
the on/Ina tutor/a/, TCTOUR.

Chapters 5 and 6 work
together: one Is theory, the

other Is practice.

The User's Guide

als, primers, and a guide to the Turbo C++ documentation set.
These are the chapters in this manual:

Chapter 1: Installing Turbo C++ tells you how to install Turbo
C++ on your system.

Chapter 2: Navigating the Turbo C++ manuals introduces some of
Turbo C++ most interesting features; where appropriate, it tells
you where to find out more about them.

Chapter 3: Learning the new IDE walks you through the inte­
grated environment and introduces the new editor, mouse sup­
port, and other new or changed features. This is a light overview
of the Turbo C++ system. In-depth information can be found in
Chapter 1, "The IDE reference," in the User's Guide.

Chapter 4: An Introduction to C is an overview of the C language.
This chapter introduces you to the elements of C programs, data
and data types, operators, functions, arrays, structures, and other
aspects of the C language.

Chapter 5: A C++ primer is an introduction to the concepts of
object-oriented programming using C++.

Chapter 6: Hands-on C++ is a swift hands-on introduction to C++.

Chapter 7: Debugging In the new IDE introduces you to the Turbo
C++ integrated debugger and walks you through sample pro­
grams with built-in bugs to demonstrate various features of the
debugger.

The Bibliography contains a listing of books relating to generic C
and C++, and to Turbo C++ specifically.

The User's Guide provides reference chapters on the features of
Turbo C++: Borland's new integrated environment, including the
greatly enhanced editor and Project Manager, as well as details on
using Turbo C++'s utilities, command-line compiler, and customi­
zation program.

Chapter 1: The IDE reference provides a complete reference to the
integrated development environment.

Chapter 2: Managing multi-file projects tells how to use the
Project Manager to manage multi-file programming projects.

Turbo C++ Getting started

Chapter 3: The editor from A to Z provides a complete reference
to the editor.

Chapter 4: The command-line compiler tells how to use the
command-line compiler. It also explains configuration files.

Chapter 5: Utilities describes some of the utility programs that
come with Turbo C++.

Chapter 6: Customizing Turbo C++ tells how to use the TCINST
program to customize Turbo C++. You can adjust onscreen colors,
editor defaults, compiler and linker defaults, and many other
aspects of Turbo C++ with this program.

Appendix A: Turbo Editor macros describes the Turbo Editor
Macro Language, a powerful utility you can use to enhance or
change the Turbo C ++ editor.

The Programmer's

Introduction

Guide The Programmer's Guide provides useful material for the experi­
enced C user: a complete language reference for C and C++, a
cross-reference to the run-time library, C++ streams, memory
models, mixed-model programming, video functions, floating­
point issues, and overlays, plus error messages.

Chapter 1: The Turbo C++ language standard describes the Turbo
C++ language. Any extensions to the ANSI C standard are noted
here. This chapter is basically a language reference and syntax for
both the C and C++ aspects of Turbo C++.

Chapter 2: Run-time library cross-reference provides some infor­
mation on the source code for the run-time library, lists and de­
scribes the header files, and provides a cross-reference to the run­
time library, organized by subject. For example, if you want to
find out which functions relate to graphics, you would look in this
chapter under the topic "Graphics."

Chapter 3: C++ streams tells you how to use the C++ version 2.0
stream library. The earlier version stream library is documented
online.

Chapter 4: Memory models, floating point, and overlays covers
memory models, mixed-model programming, floating-point con­
cerns, and overlays.

Chapter 5: Video functions is devoted to handling text and
graphics in Turbo C++.

5

The Library

Chapter 6: Interfacing with assembly language tells how to write
assembly language programs so they work well when called from
Turbo C++ programs.

Chapter 7: Error messages lists and explains all run-time and
compiler-generated errors and warnings, and suggests possible
solutions.

Appendix A: ANSI implementation-specific standards describes
those aspects of the ANSI C standard that have been left loosely
defined or undefined by ANSI. These aspects will vary, then,
according to each implementation. This appendix tells how Turbo
C ++ operates in respect to each of these aspects.

Reference The Library Reference contains a detailed list and explanation of
Turbo C++'s extensive library functions and global variables.

Chapter 1: The run-time library is an alphabetically arranged
reference to all Turbo C++ library functions. Each entry gives
syntax, include files, an operative description, return values, and
portability information for the function, and a reference list of
related functions.

Chapter 2: Global variables defines and discusses Turbo C++'s
global variables. You can use these to save yourself a great deal of
programming time on commonly needed variables (such as dates,
time, error messages, stack size, and so on).

Typefaces used in these books

All typefaces used in this manual were produced by Borland's
Sprint: The Professional Word Processor, on a PostScript laser
printer. Their uses are as follows:

Monospace type This typeface represents text as it appears on­
screen or in a program. It is also used for any­
thing you must type (such as TC to start up
TurboC++).

ALL CAPS We use all capital letters for the names of
constants and files.

[J Square brackets in text or DOS command lines
enclose optional items that depend on your

6 Turbo C++ Getting Started

<>

Boldface

Italics

Keycaps

system. Text of this sort should not be typed
verbatim.

Angle brackets in the function reference section
enclose the names of include files.

Turbo C++ function names (such as prlntf) and
structure names are shown in boldface when
they appear in text (but not in program ex­
amples). This typeface is also used in text, but
not in program examples, for Turbo C++
reserved words (such as char, switch, near, and
cdecl), for format specifiers and escape
sequences (%d, \t), and for command-line
options (/A).

Italics indicate variable names (identifiers) that
appear in text. They can represent terms that
you can use as is, or that you can think up new
names for (your choice, usually). They are also
used to emphasize certain words, such as new
terms.

This typeface indicates a key on your keyboard.
It is often used to describe a particular key you
should press. (For example, "Press Esc to exit a
menu.")

This icon indicates keyboard actions.

This icon indicates mouse actions.

How to contact Borland

Introduction

The best way to contact Borland is to log on to Borland's Forum
on CompuServe: Type GO BOR from the main CompuServe menu
and choose "Borland Programming Forum B (Turbo Prolog &
Turbo C)'' from the Borland main menu. Leave your questions or
comments there for the support staff to process.

If you prefer, write a letter with your comments and send it to

Borland International
Technical Support Department-Turbo C++

7

See the README fife included
with your distribution disks for

details on how to report a
bug.

8

1800 Green Hills Road
P.O. Box 660001
Scotts Valley, CA 95066-0001, USA

You can also telephone our Technical Support department be­
tween 6 am and 5 pm Pacific time at (408) 438-5300. Please have
the following information handy before you call:

1. Product name and serial number on your original distribution
disk. Please have your serial number ready, or we won't be
able to process your call.

2. Product version number. The version number for Turbo C ++ is
displayed when you first load the program and before you
press any keys.

3. Computer brand, model, and the brands and model numbers
of any additional hardware.

4. Operating system and version number. (The version number
can be determined by typing VER at the MS-DOS prompt.)

5. Contents of your AUTOEXEC.BAT file.

6. Contents of your CONFIG.SYS file.

Turbo C++ Getting Started

c H

If you don't already know
how to use DOS commands,
refer to your DOS reference

manual before setting up
Turbo C++ on your system.

A p T E R

l

Installing Turbo C++

Your Turbo C++ package includes two different versions of the
Turbo C++ compiler: the integrated environment version and a
command-line version. You must use the INSTALL program to
install Turbo C++ on your system; it automatically copies files
from the distribution disks to your hard disk. There is no copy
protection. For reference, the README file on the installation
disk includes a list of the distribution files.

We assume you are already familiar with DOS commands. For
example, you'll need the DISKCOPY command to make backup
copies of your distribution disks. Make a complete working copy
of the distribution disks when you receive them, then store the
original disks away in a safe place.

If you are not familiar with Borland's No-Nonsense License State­
ment, read the agreement included with your Turbo C++
package. Be sure to mail us your filled-in product registration
card; this guarantees that you'll be among the first to hear about
the hottest new upgrades and versions of Turbo C++.

This chapter contains the following information:

•installing Turbo C++ on your system
•accessing the README file
•accessing the HELPME! file
•a pointer to more information on Turbo Cale

Once you have installed Turbo C++, you'll be ready to start
digging into Turbo C++. But certain chapters and manuals were

Chapter 7, Installing Turbo C++ 9

written with particular programming needs in mind. Chapter 2,
"Navigating the Turbo C++ manuals," tells where to find out
more about Turbo C++'s features in the manuals.

Installing Turbo C++

Turbo C++ has an automatic installation program called
INSTALL. You must use INSTALL. This program detects what
hardware you are using and configures Turbo C++ appropriately.
It also creates directories as needed and transfers files from your
distribution disks (the disks you bought) to your hard disk. Its
actions are self-explanatory; the following text tells you all you
need to know.

To install Turbo C++:

1. Insert the installation disk into drive A. Type the following
command, then press Enter.

2. A: INSTALL

3. Press Enter at the installation screen.
4. Follow the prompts.

Important! When it is finished, the INST ALL program reminds you to read
the latest about Turbo C++ in the README file, which contains
important, last-minute information about Turbo C++. The
HELPME!.DOC file also answers many common technical
support questions.

Also, once you have installed Turbo C++, you'll get a chance to
try out TCTOUR. TCTOUR is a guided tour of some of the
highlights of the new Turbo C++ integrated environment.
TCTOUR is in the TOUR subdirectory (off of your Turbo C++
directory).

To exitTurbo C++, press Alt-X. Once you have installed Turbo C ++ and tried out TCTOUR, and if
you're anxious to get up and running, change to the Turbo C++
directory and type TC. Press Enter. Otherwise, continue reading
this chapter and the next for important start-up information.

10

After you have tried out the Turbo C++ integrated environment,
you may want to permanently customize some of the options. The
TCINST program makes this easy to do. See Chapter 6, "Custom­
izing Turbo C++," in the User's Guide for instructions.

Turbo C++ Getting Started

Laptop systems

The README file

See Chapter 3, "Learning the
new /DE,· in this volume, and

Chapter 7, "The /DE refer­
ence· in the User's Guide, for

more details on using the
new integrated environment.

If you have a laptop computer (one with an LCD or plasma
display), in addition to carrying out the procedures given in the
previous sections, you need to set your screen parameters before
using Turbo C++. The Turbo C++ integrated development envi­
ronment version (TC.EXE) works best if you type MODE BW80 at the
DOS command line before running Turbo C++.

Although you could create a batch file to take care of this for you,
you can also easily install Turbo C++ for a black-and-white screen
with the Turbo C++ customization program, TCINST. See Chap­
ter 6, "Customizing Turbo C ++ ," in the User's Guide for instruc­
tions. With this customization program, choose "Black and
White" from the Screen Modes menu.

The README file contains last-minute information that may not
be in the manuals. It also lists every file on the distribution disks,
with a brief description of what each one contains.

To access the README file:

1. If you haven't installed Turbo C ++, insert your Turbo C ++
disk into drive A. If you have installed Turbo C ++, skip to step
3 or go on to the next paragraph.

2. Type A: and press Enter.

3. Type README and press Enter. Once you are in README, use the
i and J, keys to scroll through the file.

4. Press Esc to exit.

If you've already installed Turbo C++, you can open README
into an edit window, following these steps:

1. Start Turbo C ++ by typing TC on the command line. Press Enter.

2. Press F10. Choose File I Open. Type in README and press Enter.
Turbo C++ opens the README file in an edit window.

3. When you're done with the README file, choose File I Quit
(or continue playing with the new environment).

Chapter 1, Installing Turbo C++ 11

The HELPME!.DOC file

Turbo Cale

12

Your installation disk contains a file called HELPME!.DOC, which
contains answers to problems that users commonly run into.
Consult it if you find yourself having difficulties. You can use the
README program to look at HELPME!.DOC. Type this at the
command line:

README HELPME!.DOC

Your Turbo C ++ package includes the source code for a
spreadsheet program called Turbo Cale. Before you compile it,
read the online documentation (TCALC.DOC) for it.

Turbo C++ Getting Started

c

Features

H A p T E R

2

Navigating the Turbo C++ manuals

C++

This chapter accomplishes two things:

•It tells you briefly about Turbo C++'s hottest features: what they are,
the concepts behind them, how to use them.

•It tells you where in these manuals you can find out more about the
new features and other aspects of Turbo C++.

If you read the instructions on how to install Turbo C++ on page 10,
you also learned how to start Turbo C++ and how to exit from it. If not,
and if you want to just jump right in and start programming, refer back
to that page.

Turbo C++ has many powerful features, listed on page 1. This section
tells you a little more about some of these features, and points you to
where you can go for in-depth information on them.

With Turbo C++, you get two compilers in one. You get all the capabili­
ties of ANSI C, plus all the capabilities of C++. Chapters 5 and 6, "A
C ++ primer'' and "Hands-on C ++ ," provide the theory of C ++ pro­
gramming and a tutorial.

In addition to this, we've included a ready-made set of C++ class librar­
ies for you to use. These libraries use classes to perform a variety of

Chapter 2, Navigating the Turbo C++ manuals 13

VROOMM
(overlays)

Chapter 4, "Memory models,
floating point, and overlays,·

in the Programmer's Guide
covers overlays in depth.

Borland 's new
integrated

environment

functions for you. So some advantages of C++, such as extensibility and
reusability, are yours immediately.

Turbo C++'s VROOMM (Virtual Run-time Object-Oriented Memory
Manager) gives you intelligent overlays, unlike any overlay scheme
you may have used before. If you are already familiar with overlays in
another (non-Borland) product, you have some pleasant surprises
coming. First, VROOMM can determine how and when to overlay, thus
relieving you of that task. Second, since VROOMM is based on a set of
highly sophisticated algorithms, it is much faster and more efficient
than other overlay schemes.

Because Borland's integrated environment has been completely redone,
we recommend that you take the guided tour provided by TCTOUR
even if you are already familiar with other Borland products. First
change directories to the TOUR subdirectory (in your TC directory).
Then type TCTOUR and press Enter.

For more, read Chapter 3, "Leaming the new IDE." This chapter gives
hands-on experience with a range of features in the new integrated
environment, including mouse support, the help system, the clipboard,
new ways to handle windows, editing multiple files, transferring out to
other programs (and then back into Turbo C++), and so on. Chapter 1,
"The IDE reference," in the User's Guide is a reference to every aspect of
the new integrated environment.

Using the manuals

14

The manuals are arranged so that you can pick and choose among the
books and chapters to find exactly what you need to know at the time
you need to know it. Getting Started and the User's Guide provide infor­
mation on how to use Turbo C++ as a product; the Programmer's Guide
and the Library Reference provide material on programming issues in C
andC++.

Five chapters in this volume provide introductions to and tutorials on
subjects of interest:

•Chapter 3, "Learning the new IDE"
•Chapter 4, "An introduction to C"

Turbo C++ Getting Started

Refer to these chapters as
needed after you have

worked through the
appropriate introductions

and tutorials.

New
programmers or

programmers
learning C

The bibliography lists useful
sources for further
information on C.

Experienced C

•Chapter 5, "AC++ primer''
•Chapter 6, "Hands-on C++"
•Chapter 7, "Debugging in the new IDE"

As mentioned earlier, the integrated environment is brand new, so you
might want to browse through the first chapter on this list even if you
are familiar with Turbo C or Turbo Pascal.

The chapters of the User's Guide are for use as reference chapters to
using Turbo C++:

•Chapter 1, "The IDE reference"
•Chapter 2, "Managing multi-file projects"
•Chapter 3, "The editor from A to Z"
•Chapter 4, "The command-line compiler''
• Chapter 5, "Utilities"
•Chapter 6, "Customizing Turbo C++"
• Appendix A, "Turbo Editor macros"

If you are learning C, start with chapters 3 and 4, "Learning the new
IDE" and" An introduction to C," in this book. These chapters intro­
duce you to the Turbo C++ integrated environment and give you an
overview of programming in C. Chapters 5 and 6, "A C ++ primer" and
"Hands-on C++," give a brief introduction to programming in C++.
Depending on how much you want to be on the leading edge of tech­
nology and on how confident you feel about programming in C, you
may want to jump right into those chapters after reading Chapter 4.
Chapter 7, "Debugging in the new IDE," runs you through the Turbo
C++ integrated debugger. Later, you can use chapters 1through6 in the
User's Guide for reference.

Your next step is to start programming in C. For the most part, you will
be using the Library Reference. Or, you might prefer to use the online
help; it contains much of the same information as the Library Reference,
and includes programming examples for almost every function that
you can copy into your own program.

programmers If you are an experienced C programmer and you've already installed
Turbo C++, you'll probably want to jump immediately to the Program­
mer's Guide and to the Library Reference. If, however, you want to learn
more about the new Turbo C++ integrated environment, including the

Chapter 2, Navigating the Turbo C++ manuals 15

16

integrated debugger, read chapters 3 and 7 ("Learning the new IDE"
and "Debugging in the new IDE") in this book

If you are interested in C++, read chapters 5 and 6, "AC++ primer" and
"Hands-on C++.

The Programmer's Guide covers certain useful programming issues, such
as C++ streams, assembly language interface, memory models, video
functions, overlays, and far and huge pointers. In addition, the Program­
mer's Guide provides a cross-reference to the Library Reference by
functionality (Chapter 2, "Run-time library cross-reference"). So, for
example, if you want to know which C functions are associated with
graphics, you would turn to that chapter and look up the subject
"Graphics."

Turbo C++ Getting Started

c H

Note: Before you run this
tutorial, you must install Turbo

C++ with the default
subdirectories. See Chapter 1

for details.

A p T E R

3

Learning the new /DE

In this chapter, you'll get hands-on experience with Turbo C++'s
new version of the Borland integrated development environment
(IDE). Even if you're already familiar with other Borland pro­
ducts, we recommend that you work through this chapter. Turbo
C++ introduces the new IDE; this chapter gives you an overview
of some of the most important new features. This tutorial consists
of three lessons:

•Lesson 1 shows how to start Turbo C++ and how to load, edit,
and save files.

• Lesson 2 covers how to compile and run a program from
within the IDE.

•Lesson 3 exits you from Turbo C++.

If your fingers are itchy and you want to get up and running on
Turbo C++ right now, go to Chapter 1 on page 10. Otherwise, read
through this tutorial to learn the basics of using the IDE. It should
take you about 30 minutes to finish.

If you want in-depth information about specific items on the
menus or in the dialog boxes, refer to Chapter 1, "The IDE refer­
ence," in the User's Guide. If you'd like to step through an online,
interactive tour of the IDE, run TCTOUR.EXE (type tctour at the
DOS prompt while in the TOUR subdirectory of your TC
directory).

Chapter 7, "Debugging in the new IDE," gives you a long tutorial
on debugging.

Chapter 3, Learning the new /DE 17

The IDE

18

Figure 3.1
Components of the IDE

The Turbo C++ IDE contains windows, menus (pull-down and
pop-up), dialog boxes, and a status line. Here's a diagram of a
typical IDE screen's components:

wn Pull-do
me

Pop-up
menu

Dialog
box

nu

f"1U.L- Menu item

I~' Inactive Window -Corrmand "'

Corrmand •••

II In~ut box:

~y
nr11+1e1.i11w111u.1m4we14a~

~ ~ Check box off X Check box on -tlllilllllmlll•hlll4-
X Check box on

Check box off lliimillmm11m1
{ J Radio button off

ll Radio button on lllMfilihjMiJUUitjll
• Radio button off

[
Inactive window --

Status line

To get into the IDE menu system, press F10, then press the high­
lighted letter of any item on the menu bar. (You can also press Alt
and the highlighted letter; for example, Alt-F opens the File menu,
and so does F10 F.)

To get out of the menus, press Escuntil all menus are closed and
you're back at one of the windows.

The Turbo C ++ IDE uses dialog boxes to display options. A dialog
box contains one or more of the items listed in the following table.
(If you're itching to try Turbo C++ right now, read the first few
paragraphs on page 10.)

Turbo C++ Getting started

Table 3.1
What goes In a dialog box

Full Menus On/Off

Item What it looks like, what it does

Action Button Action buttons are "shadowed" text. If you choose a
button (press Enter or click), Turbo C++ carries out the
related action immediately.

Check box A check box is an On I Off toggle. Press Spacebar or click it
to turn the option on or off. When a check box option is
turned on, an x appears in the brackets: [x].

Radio button Radio buttons are toggles that come in sets of two or
more: You can only choose one radio button in a set at a
time. With the keyboard, you can move within a set of
buttons using the arrow keys. Once you've made your
selection, press Tab to leave that group with the new
button chosen. With the mouse, you can click anywhere
on a radio button to choose it. When a radio button is
chosen, a bullet appears between the parentheses: (•) .

Input box An input box prompts you to type in a string (the name
of a file, for example).

List box A list box contains a list of items from which you can
choose (for example, a list of possible files to open).

Dialog boxes appear when you choose a menu item that is follow­
ed by a dialog box icon (...), such as the File I Open menu item
shown in Figure 3.3.

Turbo C++ lets you choose between two menu systems, Full
Menus On and Full Menus Off. Full Menus Off provides you with
a condensed, easy-to-use environment by offering you the mini­
mal command set you'll need to build and debug Turbo C++
programs. Full Menus On provides you with the extra functional­
ity you'll need for more advanced programming tasks. In this
tutorial, we use Full Menus set to Off (the default setting).

Figure 3.2 compares the two menu states; as an example, it shows
the Compile menu with Full Menus Off and Full Menus On.

Chapter 3, Leaming the new /DE 19

Figure 3.2
Full Menus: Off and On

Mouse, hot keys,
and online help

Mouse
Refer to your mouse manual

If you haven't used your
mouse before.

Table 3.2
Mouse talk

Full Menus Off

Make EXE fi1 e
Build All

I Ful 1 Menus On

Compi 1 e to OBJ
Make EXE File
Link EXE File
Build All

Remove messages

Before you jump feet first into the IDE, you'll want to know the
basics of Turbo C++'s mouse support, hot keys, and online help.

The Turbo C++ IDE supports a mouse. Use the left mouse button
for the IDE. Turbo C++ also lets you redefine your other mouse
buttons: Refer to Chapter 1, "The IDE reference," in the User's
Guide for details. These terms describe mouse actions:

Action

Click
Double click
Drag
Click-drag

Choose

How you do it

Press the mouse button and release.
Click twice in quick succession.
Press the mouse button, move the mouse, release.
Press the mouse button and release, then press it again,
move, and release.
Click a menu item, such as a command or dialog-box
selector.

Hot keys Many menu and dialog box items have corresponding hot keys:
one- or two-key shortcuts that immediately activate that com­
mand or dialog box. (In a dialog box, unless you're in an input
box, you only need to press the highlighted letter to move from
one command to another.) The following table lists the most-used
Turbo C++ hot keys; see Chapter 1, "The IDE reference," in the
User's Guide for a more complete list.

20 Turbo C++ Getting started

Table 3.3
Turbo C++ hot keys

When you press one of these
keys, Turbo C++ carries out

that keyt function
everywhere. except in dialog

boxes.

Online help

You'll use the help system in
Lesson2.

Key Menu item Function

F1 Help Opens an online help screen.

F2 File I Save Saves the file that's in the active Edit
window.

F3 File I Open Brings up a dialog box so you can open
a file.

F4 Run I Go to Cursor Runs your program to the line where
the cursor is positioned.

F5 Window I Zoom Zooms and unzooms the active
window.

F6 Window I Next Cycles through all open windows.

Fl Run I Trace Into Runs your program in debug mode,
tracing into functions.

FB Run I Step Over Runs your program in debug mode,
stepping over function calls.

F9 Compile I Make Exe Makes the current source file an EXE
file.

F10 (none) Takes you to the menu bar.

The status line at the bottom of the IDE screen lists hot keys you
can use in the active window. If you have a mouse, you can click
the hot key in the status line instead of pressing the key.

Turbo C++, like other Borland products, gives you context-sensi­
tive online help at the touch of a hot key (or the click of a button).
You can get help regarding any item in the Turbo C++ IDE, plus
help about any Turbo C++ reserved word or library function. In
addition, you can copy example programs from the Help window
into your own programs.

Turbo C++ also provides a "mini help system" that is always
available at a glance. The status line at the bottom of the IDE
screen lists any hot keys or commands available in the current
window, menu, or dialog box, and provides a brief description of
what the current menu or dialog control item does.

Lesson 1: Starting, loading, and editing

This lesson should take you 20
minutes to complete.

Turbo C++'s IDE comes with its own built-in editor. From within
Turbo C++, you can open a file, edit, compile, run, debug, and

Chapter 3, Learning the new /DE 21

Figure 3.1
The Load a File dialog box

ff you have a mouse.just
double-click the file name In

the Files fist.

22

save it to disk again-all with the IDE's easy-to-use features. In
this lesson, you'll

•start Turbo C++ at the DOS prompt

• open a file in an Edit window

• copy the file to another Edit window

• use the editor to modify the copied file
•save the modified file to disk

To start Turbo C++, change to the EXAMPLES subdirectory (in
your TC directory) and type .. \TC at the DOS prompt. To load the
Turbo C ++ program BARCHART.C into the IDE, choose the File I
Open command or press F3. Either of these methods displays the
Load a File dialog box, which looks like this:

• INTR012.C
INTR013,C
INTR014.C
INTR015.C
INTR016.C
INTR017.C
INTR018.C
INTR019.C

Note that the Open button is the default in this dialog box. If you
choose Replace instead of Open, your file will replace any file
currently in the active Edit window, instead of placing it in a new
window. Leave the Open button selected for this lesson.

From this dialog box, there are two ways to select a file to open:

•You can enter the file name in the Name input box.

• Or, you can choose the file from the Files list.

This time you'll use the Files list.

1. Press Tab to activate the Files list.

2. Normally, you would use the arrow keys to highlight your
selected file. In this case, BARCHART.C is already highlighted
because it's the first file in the list.

3. Press Enter.

Turbo C++ Getting Started

Creating a new
file

To go directly to any Edit
window, press Alt and that

window's number.

Table 3.1
Moving in an Edit window

As soon as you choose the file (press Enter), BARCHART.C is
displayed in the Edit window. Note the window number in the
upper right border of the Edit window; this is window 1. The line
and column number information for the Edit window is in its
lower left comer.

One feature of the Turbo C++ IDE is multiwindowing-you can
have more than one Edit window open at a time. You can open a
different or the same file in each window, cut or copy and paste
between windows, and move easily from window to window.

Now that BARCHART.C is open in an Edit window, you're ready
to start editing the code. But, because you don't want to alter the
original program, open a new Edit window with File I New.

The new Edit window is NONAMEOO.C (window 2), which you'll
later name MYCHART.C. The double line around the new Edit
window tells you that it's the active window.

Now go back to the first Edit window (click it or press Alt-1). We
want you to copy all of BARCHART.C into NONAMEOO.C. (If
you're not familiar with moving around in an Edit window, take a
look at the following table or press F1 while you're in the editor.
For a full listing of the editor commands, refer to Chapter 3, "The
editor from A to Z," in the User's Guide.)

To move

A character or line
in any direction

To beginning or
end of a line

Up or down a screen

To beginning or end
of file

On the keyboard

Press i, ..!.,
---+,or~

Press Home or End

Press Pg Up or PgDn

Press Ctrl-PgUp or
Ctrl-PgDn

With the mouse

Click the arrow at
either end of scroll bar

Click at beginning
or end of line

Click and hold the
arrow at either end of
the scroll bar to scroll

Click-drag the thumb
tab (square icon) at
either end of the scroll
bar; move to top or
bottom of bar; release
mouse button

Chapter 3, Leaming the new /DE 23

Selecting a block When marking blocks, you can choose between the keyboard and
the mouse:

1!!111 •From the keyboard, place the cursor at the first or last character

24

Restore 1 i ne

Cut
Copy
Paste
Copy Example

Clear

Alt-Bksp

Shift-Del
Ctrl-lns

Shift-Ins

Ctrl-Del

of the block, then press Shift and an arrow key (or Home, End,
PgDn, or PgUp) to select the block. (You must press Shift while
you're using the arrow keys.)

• With the mouse, click the first character of the block, then drag
to the end of the block. To unselect a block, click anywhere.

A selected block of text displays in reverse video (highlighted).
Go ahead and select all the code in BARCHART.C.

Copying and pasting Now that you've selected the text in the BARCHART.C window,
choose Edit I Copy (or press Ctrl-lns). This copies the selected text to
a special holding place in memory called the Clipboard. Once text
is in the Clipboard, you can paste it into a new location-in the
same window or a different one.

Modifying your
new file

Move back to NONAMEOO.C: Press Alt and that window's number
(or click that Edit window with the mouse). (If you want to move
to a particular window but don't know its number, use Window I
List.)

To paste text from the Clipboard into the Edit window, choose
Edit I Paste (or press Shift-Ins). Next, unselect the pasted block; click
anywhere or press Ctrl-K H.

Now you're ready to make some changes to the text, and save and
name the NONAMEOO.C file.

BARCHART.C is a program that prompts for ten scores between 0
and 50, computes their percentages, then displays the percentages
in a bar chart and prints out the scores and percentages.

In this section, you're going to make some improvements to
BARCHART.C:

•change your version of BARCHART.C (NONAMEOO.C) so that
it prompts for five scores between 0 and 35

•use the editor's search-and-replace feature to change a variable
name

•copy and paste text from a Help window

Turbo C++ Getting Started

Look for the fine number at
the bottom of the Edit

window.

Searching and
replacing

Figure 3.2
The Replace dialog

Let's start off by editing the file to prompt for a different number
of scores within a different range. Here's what you do:

1. Use the cursor keys to move to the end of line 7.

2. Use Backspace to remove the number 50, and type in 35.

3. Move to the next line and change the number 10 to 5.

The variable name i isn't a very informative identifier, so go ahead
and change it to index, since that's what the variable is used for.
Changing a single-letter variable is a little trickier than it might
first appear. You want to change every instance of the variable i; if
you miss one, the program won't compile because you'll have an
undefined variable. But you don't want to change every letter i in
the program, just each instance of the variable i.

Fortunately, the Search menu includes an option for selective
search-and-replace opera dons. You'll be using the Replace dialog,
which looks like this:

The Replace dialog box contains two input boxes, three sets of
radio buttons, a set of check boxes, and four buttons. You're going
to change all instances of variable i in NONAMEOO to index, so go
to the beginning of the file (press Ctrl-PgUp or use the mouse).

1. Choose Search I Replace to open the Replace dialog box. When
you first open the dialog box, the Text to Find input box is
active.

2. Type i, the name of the variable you want to search for, then
press Tab to activate the New Text input box.

3. Type index, the name you want to substitute for i. Press Tab
again to move control to the Options check boxes.

Chapter 3, Learning the new /DE 25

To check Whole Words Only,
press -1. to move to it, then

press Spacebar. Or, click it.

Case Sensitive and Prompt to Replace are already checked.
That's exactly what you want. But you also need to check
Whole Words Only so that the search won't stop at every letter
i in the program. After you check that option, leave this group
as is and press Tab, or click, to go to the Direction radio
buttons.

4. You want the search direction to be forward, so just go ahead
and tab to Scope.

5. Global is already chosen in the Scope set of radio buttons,
which means the search will be through the entire document.
Now press Tab to go to Origin.

6. In Origin, press .J, to move to Entire Scope (or click it) to
choose it.

7. Tab to the Change All button and press Enterto initiate the
search-and-replace operation (or click the button with the
mouse).

At each instance of an i, you're prompted whether you want to
replace that occurrence. Press Y for Yes if the search finds the
variable i; otherwise press N for No.

Pasting from a Help Suppose you want to add this caption to your bar graph:
window

26

Percentages, Exam lA

The function that outputs text to the screen in graphics mode is
outtextxy; the help screens describing this function contain code
you can copy to the Clipboard and then paste into NONAMEOO.
Here's how to copy outtextxy's example code from the help screen
to your source:

1. Choose Index from the Help menu.

2. Type the word outtextxy to go to the entry for outtextxy. Then
press Enter to bring up its help screen.

3. The example is already preselected as a block, so choose Edit I
Copy Example to copy it into the Clipboard.

4. Press Escto close the Help window.

5. Go to the end of your file and position the cursor at the
beginning of the last line.

6. Choose Edit I Paste to paste the block of code into your file.

Turbo C++ Getting Started

You won't use the whole block as it stands. While parts are useful
just as they are, others must be modified to suit your purposes,
and some are no use to you in this example.

Once you've copied the example into your program, you can
modify the lines you want to keep, then discard the rest. For
example,

1. You can use the line

int midx, midy;

as is. Cut this line (from the example text you just added at the
end of your program), then paste it into the makegraph
function's variable declaration section (line 35).

2. Paste these two copied lines into makegraph just after the
closing brace of the for loop (line 49).

midx = getmaxx()/2;
midy = getmaxy()/2;

3. Modify them to read

midx = (getmaxx()/2) - (textwidth("Percentages, Exam lA")/2);
midy = getmaxy() - 10;

4. Paste this copied line into makegraph right after the modified
midy statement:

outextxy (midx, midy, "This is a test.")

5. Modify it to read

outtextxy (midx, midy, "Percentages, Exam lA");

You need to get rid of the mangled remains of the outtextxy
sample program at the end of your file. Fortunately, the Edit
menu provides you with a command for getting rid of blocks of
text with just a couple of quick keystrokes.

1. Select the block you want to delete: Start where you typed in
outtextxy, and stop at the end of the file.

2. Choose Edit I Clear (or press Ctrl-Del).

Saving your changes That's it. You've made quite a few changes to your program, so go
ahead and save the file to disk. Choose File I Save (or press F2),
which brings up the Save Editor File dialog box. At the input box,
type in MYCHART.C and press Enter.

Chapter 3, Learning the new /DE 27

Lesson 2: Compiling and running

This lesson takes 5 minutes. In this lesson, you'll

•compile MYCHART.C with the Compile I Make EXE command

•run MYCHART.EXE with the Run I Run command (so you can
see the output}

IH0!0 !0iifll You use the Compile menu to compile the program. (Because the

l•w!i!Ff!t•i.na111m•m1a111a 11 Full Menus option is set to Off for this tutorial, this Compile
. Bui Al .• menu shows only two items. To find out what all the Compile

menu options do, see Chapter 1, "The IDE reference," in the User's

Note: If you get error
messages stating that Turbo
C++ can't find your header
files, Turbo C++ probably is

not installed with the default
subdirectories. See Chapter I

for details.

I Run Ctr - 9 C~-F2B
F4
F7
FB

Program reset
Go to cursor
Trace into
Step over
Arguments •••

The User Screen displays both
text and graphics output.

28

Guide.)

1. Choose Compile I Make EXE File or press F9 to generate
MYCHART.EXE. The Compiling window appears; if there are
any errors in your program, it'll tell you here (if so, fix them
and recompile). When the program successfully compiles and
links, the window displays a flashing message:

Success: Press any key

2. Press any key to return to your program.

To run MYCHART, choose Run I Run or press Ctrl-F9. (The other
commands on the Run menu are for debugging.) Turbo C++
switches from the IDE to the User Screen, where MYCHART
prompts you for input.

Each time MYCHART prompts you for input (five times in all),
enter an integer between 0 and 35. As soon as you enter the last
number, MYCHART displays all five values and their
percentages.

Press Enter. Now MYCHART displays the percentages in the form
of a bar graph. Notice how nicely the caption is centered under
the bar graph. If you're curious about how that happened, check
out this line:

midx = (getmaxx () /2) - (textwidth ("Percentages, Exam lA") /2);

Press Ctrl-F1 while the cursor is positioned on the function
textwidth to get language-specific help (or look in Chapter 1, "The
run-time library," in the Library Reference).

Press Enter again to return to the IDE.

Turbo C++ Getting Started

Closing an Edit
Window Now you're finished with MYCHART.C. To close its Edit win­

dow, choose Window I Close (or press Alt-F3). Go ahead and close
BARCHART.C as well.

111.L If you have a mouse, you can click the close box ([•]) in the upper
left corner to close the Edit window.

Lesson 3: Exiting Turbo C++

When you finish working on a file, the last two things to do are

• save your changes to a file on disk
•exit the Turbo C++ IDE and return to DOS

You've already saved your file, so the last step is to quit Turbo
C ++and return to DOS.

•Choose File I Quit or press Alt-X.

Where to go for more information

This tutorial was just a quick introduction to the most commonly
used parts of the Turbo C++ IDE; many features were touched on
briefly or not at all. Remember, you can find in-depth information
on every part of the IDE in Chapter 1, "The IDE reference," in the
User's Guide.

Chapter 3, Learning the new /DE 29

30 Turbo C++ Getting Started

c H A p T E R

4

An introduction to C

If you've never programmed in C before (or if you have and
would just as soon forget the experience), this is the chapter for
you. It starts out with simple examples and moves to more com­
plex ones, showing you how to build them into programs. You'll
learn how to solve a variety of problems involving numbers,
words, and graphics. You are also introduced to some important
guidelines for designing and structuring programs. You'll find
code for the more complex programs in the EXAMPLES sub­
directory. We've included them this way so you can easily load,
compile, and run them; this is one of the best ways to learn C.

A quick history lesson

C was originally developed in the 1970s for use with the UNIX
operating system, and virtually grew up with it. When micro­
computers with sufficient power came on the market, C compilers
were implemented for them. In 1978, Brian W. Kernighan and
Dennis M. Ritchie provided the classic definition of C with the
first edition of their book The C Programming Language. Five years
later, the American National Standards Institute (ANSI) began to
develop a new standard for the C language. This standard
resolves ambiguities in the classic definition and provides new
features, including better control over function calls through the
use of prototypes. The second edition of Kernighan and Ritchie's
book discusses the ANSI standard implementation in detail.

Chapter 4, An introduction to C 31

Turbo C++ implements the latest ANSI standard for C. It is also a
full implementation of version 2.0 of AT&T's object-oriented
version of C called C++. The object-oriented features of C++ are
discussed in chapters 5 and 6, "AC++ primer'' and "Hands-on
C++."

Basic programming operations

You can follow along with
the examples in this chapter
by loading and running the

designated programs.

To try out this program, load
and run INTRO 1.C (File I

Open I INTRO I). Remember
that all these examples are in

the EXAMPLES subdirectory.

32

Computer programs vary greatly in purpose, style, and complexi­
ty. Nearly all programs, however, go through a process consisting
of three phases:

•describing, collecting, and storing information (data)

•processing the data to achieve the desired result

•displaying and/or storing the results

Any data used by a program has to be described so that Turbo
C++ knows how to store and retrieve it. Memory must be set
aside to hold the amount of data expected. The program must
then use some means to get the actual data into storage-this
could involve reading the characters from the keyboard,
retrieving data from a file on disk, receiving data over a telephone
line, or using some other kind of input device.

Once the data has been stored in numeric variables, character
strings, arrays, or more complicated data structures, it must be
processed. The processing varies with the purpose of the pro­
gram, of course: A spreadsheet program might apply a formula to
a set of data to calculate a result, while a word-processing
program might rearrange lines of text to fit new margins.

Once the data is processed, the results must be made available in
some way to the user. Lines of text can be rearranged on the
screen or sent to the printer, and the spreadsheet cells can be re­
displayed to show their new values. Most data must eventually be
stored on disk for later use.

Consider how the foregoing elements of program design are used
in this short example program:

/* INTROl.C--Example from Chapter 4 of Getting Started */

#include <stdio.h>

int main()
(

Turbo C++ Getting Started

int bushels;
float dollars, rate;
char inbuf [130];
printf("How many dollars did you get?");
gets (inbuf);
sscanf (inbuf, "%f", &dollars);
printf ("For how many bushels? ") ;
gets (inbuf);
sscanf (inbuf, "%d", &bushels);
rate = dollars I bushels;
printf("You got %f dollars for each bushel\n", rate);

return 0;

The first line of this program, main (), defines a function, or group
of related program instructions. Functions are the building blocks
of C programs, much as paragraphs are the building blocks of
stories. Every C program has a function called main. Most pro­
grams have several other functions with appropriate descriptive
names. The open brace ({) indicates the beginning of a group of
program instructions, or statements-in this case, the statements
that define what will happen when the function main is executed.
Each group of statements ends with a closing brace (}).

If functions are like paragraphs, statements are like sentences.
Notice that each statement ends in a semicolon(;). While C lets
you string several statements together on the same line, we don't
recommend this; it makes programs harder to read.

Describing The first three statements are

int bushels;
float dollars, rate;
char inbuf [130];

Recall that the first step in writing a program is "describing,
collecting, and storing information." In C, you must declare each
item of data before you can do anything else with it. To declare an
item of data, list what type of data it is, then give it a name. Here,
you have one item that has an int type (integer, or whole number),
and is named bushels. You have a second and third item that both
have a float type (a floating-point number or a number that has a
decimal fraction), namely dollars and rate. These data items are
also called variables, since their value can vary according to
circumstances. And you have a fourth item, a character array, that
lets you read and store your user's input. (Arrays are discussed on
page 97.)

Chapter 4, An introduction to C 33

Collecting and storing The next six statements obtain and store the data we've just de­
scribed. The printf statements prompt for the number of bushels
and the number of dollars received for those bushels, and the gets
and sscanf statements get these values and store them in the
variables named. Most of the actual work done in a Turbo C++
program is accomplished by calling upon functions provided in
the libraries included with Turbo C++. You call a function by
giving its name in a statement, along with any information the
function requires for processing, enclosed in parentheses. prlntf,
gets, and sscanf are all library functions. They are not actually
part of the C language itself. The specifiers %d and %f in the
sscanf statements indicate that these data items are to be stored
as an integer and a floating-point decimal, respectively. These are
called format specifiers; we explain and describe them on page 46.

Processing The next statement, rate = dollars/bushels, does the processing
part of the program, dividing the number of bushels by the
number of dollars to get the dollars per bushel.

Printing The final statement, again using the prlntf function, displays the
results of this calculation. Notice that the prlntf statement here
specifies a string (message) followed by a comma and the name of
the variable rate. The %f specifies that the value should be format­
ted as a floating-point value.

When you run the program, the output looks like this:

How many dollars did you get? 32
For how many bushels? 24
You got 1.333333 dollars for each bushel

Basic structure of a C program

Load and run SALESTAG.C.

34

This next example demonstrates functions, comments, and the
preprocessor directives #include and #define.

/* SALESTAG.C--Exarnple from Chapter 4 of Getting Started.
SALESTAG.C calculates a sales slip. */

tinclude <stdio.h>
#define RATE 0.065 /* Sales Tax Rate */

float tax (float amount);
float purchase, tax_arnt, total;

int main()

Turbo C++ Getting started

Another wav to specify
values that won't change is

to use the const keyword,
discussed on page 94.

char inbuf [130];
printf("Amount of purchase: ");
gets (inbuf);
sscanf(inbuf, "%f", &purchase);

tax_amt = tax(purchase);
total = purchase + tax_amt;

printf (11 \nPurchase is: %f", purchase);
printf("\n Tax: %f", tax_amt);
printf ("\n Total: %f", total);

return O;

float tax (float amount)
{

return(amount *RATE);

The first line of the program begins with the symbol/*, which
begins a comment. The symbol* I ends the comment. Turbo C++
ignores all characters between the beginning and end of a
comment. You use comments to describe the purpose of a
program, function, or statement. Appropriate comments make it
easier for you to remember just what a particular part of your
program does-and it helps other programmers who may be
called on to modify your program.

Lines that begin with the number or pound sign (#) are not C lan­
guage statements, but instructions to Turbo C++ itself. These are
called compiler directives (or preprocessor directives) because they
direct the operation of the compiler. The directive #include
<stdio.h> tells Turbo C++ to read in and compile the contents of
the file stdio.h, which is one of the many header files (also called
include files) that Turbo C++ installed for you. These files contain
descriptions of the library functions (such as printf, gets, and
sscanf), as well as other items that are part of the standard C
library. The compiler uses these descriptions to compile the
program code for the library functions, along with the code for
your program statements. For more information on each of these
header files, see Chapter 2, "Run-time library cross-reference," in
the Programmer's Guide.

The next line, #define RATE o. 065, defines a macro substitution: It
tells Turbo C++ that whenever it sees the word RATE in your pro­
gram code, it is to replace that word with the number 0.065. In a
longer program, the tax rate may be referred to many times. If the

Chapter 4, An introduction to C 35

36

tax rate changes, you need only change the definition and recom­
pile the program. All of the references will be changed automati­
cally. This is less time-consuming and more accurate than trying
to find and change all the references by hand.

The next statement describes a user-defined function tax, which is
defined later. The description (called a prototype; see page 81) says
that this function will accept a floating-point number (float) and
return a result that is also a floating-point number. Putting the
description here helps Turbo C++ make sure that your program
doesn't try to give the function the wrong kind of data (a char­
acter string, for example). The statement

float purchase, tax_amt, total;

describes three floating-point variables.

The prlntf, gets, and sscanf statements prompt for and obtain the
amount of the purchase. Now it's time for the actual computing.

tax_amt = tax(purchase);

calls the user-defined tax function. The value of purchase (the vari­
able in parentheses) is sent to this function. To find out what the
function does, skip down to the bottom of the program, where
you see its definition:

float tax (float amount)
(

return(amount *RATE);

This specifies that the tax function takes the value of amount that it
receives, multiplies it by the defined constant RA TE, and returns
the result. Thus, when the line

tax_amt = tax(purchase);

is executed, the tax on the amount of purchase is calculated and
returned by the tax function, then stored in the variable tax_amt
for later use. In the next line, in fact, this amount is added to
purchase to obtain total.

It may seem unnecessary to have a whole separate function just to
calculate the tax, and it is in this program. But it becomes useful
in more complicated situations, such as when there are several tax
rates to choose from according to the purchaser's county of resi­
dence. Perhaps you also have to check a product code to deter­
mine whether the item is taxable in the first place. In that case,
separating the mechanism for figuring tax makes the main part of

Turbo C++ Getting Started

The output value of purchase
doesn't match the input

value because of how float
works: see page 40.

the program easier to follow. If necessary, you can later change
how the tax is calculated without affecting the rest of the
program.

The final three lines of the main program print out the purchase
amount, tax, and total. A sample run looks like this:

Amount of purchase: 24.95

Purchase is: 24.950001
Tax: 1.621750

Total: 26.571751

Clearly some more work will be needed to format your output
neatly-dollar amounts should have only two decimal places, and
the amounts should be right-justified. That can wait until you
learn more about formatting and the printf function, however. (If
you're concerned about those fractional pennies, Chapter 4,
"Memory models, floating point, and overlays," in the Program­
mer's Guide has a brief discussion of using the bed class to get
more precise results.)

Working with numbers

Numeric data

Numbers are the fundamental data used by computers. As you
probably know, the actual contents of computer memory consists
of binary numbers. These are usually organized in groups of 8 bits
(1 byte) or 16 bits (2 bytes, or 1 word). Even those computing acti­
vities that involve words or graphics basically involve series of
numbers stored in memory.

types The same part of memory could be interpreted as several different
kinds of numbers, depending on how many bytes are grouped
together. The name of a variable, such as total, actually refers to
the contents of one or more bytes following a specific address in
memory-this address is assigned by Turbo C++ when you first
define (give a value to) the variable. But you and the compiler
must agree about what kind of number will be represented by a
given variable, and thus how many bytes will be stored and
fetched starting at the variable's address. You make this
agreement by specifying a data type when you declare the
variable. For example,

Chapter 4, An introduction to C 37

38

Figure 4.1
Interpreting memory

locations as numbers (In
1-byte Increments)

int total, count, step;
float cost, profit;

. Ehar[mt

float D
1001

double 1002

1003

1004

1005

1006

1007

Each data type represents a different kind of number. You must
choose an appropriate type for the kind of number you need. In
this variable declaration,

• The variable total is of type Int (integer). When you tell your
program to use the value of total in a statement, it fetches 2
bytes, starting at total's address.

• The variable cost is of type float (floating point). When your
program uses cost, it fetches 4 bytes, starting at cost's address.
(This is because a floating-point number needs the two extra
bytes to represent the significant digit of the number and the
magnitude of the number in terms of powers of two.)

Table 4.1 shows the basic Turbo C++ data types and their
variations. Notice the variety of numbers that can be
accommodated. This chapter shows you how to use many of these
types.

Turbo C++ Getting started

Table 4.1: Data types. sizes. and ranges

Type

unsigned char

char

en um

unsigned int

short int

int

unsigned long

long

float

double

long double

near pointer

far pointer

Size
(bits) Range Sample applications

8 0 to 255 Small numbers and full PC character set

8 -128to 127 Very small numbers and ASCII characters

16 -32,768 to 32,767 Ordered sets of values

16 0 to 65,535 Larger numbers and loops

16 -32,768 to 32,767 Counting, small numbers, loop control

16 -32,768 to 32,767 Counting, small numbers, loop control

32 0 to 4,294,967,295 Astronomical distances

32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

32 3.4 x 10-38 to 3.4 x lQ3B Scientific (7-digit precision)

64 1.7 x 10-308 to 1.7x10308 Scientific (15-digit precision)

80 3.4x10-4932to1.1x104932 Financial (19-digit precision)

16 Not applicable Manipulating memory addresses

32 Not applicable Manipulating addresses outside current
segment

Integers The basic integer type is int, which can express either negative or
positive numbers, but within a limited range (-32,768 to 32,767).

Here's an example program that performs some operations with
integers:

#include <stdio.h>

main()

int bags, pounds;
int total;
pounds = 50;
bags = 1000;
total = bags * pounds;
printf("There are %d lbs. in 1000 bags of beans\n", total);
return O;

The output from this program is a little surprising:

There are -15536 lbs. in 1000 bags of beans

Chapter 4, An introduction to C 39

The complier doesn't warn
you if you try to store a value

that doesn't fft into the
specified data type.

You'll also need to change
the o/od in the printf statement

to o/old. We explain why on
page51.

Signed and unsigned
variables

To decide which data type
to use, consider the possible

results of a calculation or
other operation.

Since the default for all
numeric data types Is signed,

you don't have to declare
signed inf or signed long.

40

The total of bags* pounds, 50,000, is too large for an ordinary int
(which you can verify from Table 4.1). When your program tried
to store 50,000 in a type that could only hold 32,767, the result
overflowed. How do you solve this problem? Use long int.

The long modifier

long int, which is usually abbreviated just as long, gives you a
larger integer range. You can solve the problem of the negative
beans by declaring:

long total;

This gives you room for more pounds of beans than you'd ever be
likely to see, because a long, which is stored in 32 bits instead of
the 16 used by an ordinary int, can accommodate a value between
-2,147,483,648 and 2,147,483,647. But what about pounds? This
variable should be fine as an int, since the weight of one bag is
unlikely to exceed 32,767 pounds. The variable bags, however,
might conceivably exceed 32,767, so make it a long also. Why not
use long instead of int variables for everything? A long takes up 4
bytes of memory, while an int takes only 2. If you have many
variables, you'll end up wasting a lot of memory.

int pounds;
long bags, total;

All the data types listed in Table 4.1 are signed by default-one of
the bits in the stored value is used to indicate whether the number
is positive or negative. (Those marked unsigned are, of course,
explicitly unsigned.) Some values encountered in your work can
be either positive or negative-for example, temperatures and
bank balances. Many other values, however, are never negative­
a business can't have a negative number of employees, for
example. By adding the word unsigned to any data type, you
restrict its range to positive numbers. Since a sign bit is no longer
needed, this doubles the maximum value stored by the type. For
example, while an ordinary (signed) int ranges from -32,768 to
32,767, an unsigned int ranges from 0 to 65,535. (An unsigned
long ranges between 0 and 4,294,967,295.) The preceding program
example would also have worked correctly if you had declared

unsigned int total;

though you'd be getting uncomfortably close to the limits of the
unsigned int type.

Turbo C++ Getting started

Floating-point numbers Many numbers involve a fractional part set off with a decimal
point, such as prices in dollars and cents. These are called
floating-point numbers (also often called real numbers). Most exact
measurements involve fractions: If you buy screws at the hard­
ware store, you'll probably have to specify the diameter in frac­
tions of an inch. The float data type covers such situations. Here's
an example:

To try out this program. load /* INTR02 .C--Example from Chapter 4 of Getting Started *I
and run INTR02.C.

#include <stdio.h>

int main()
{

char inbuf[130];
float num, denom;
float value;

/* numerator and denominator of fraction */
/* value of fraction as decimal */

printf("Convert a fraction to a decimal\n");
printf("Numerator: "I;
gets(inbuf);
sscanf(inbuf, "%f", &num);
printf ("Denominator: ");
gets(inbuf);
sscanf(inbuf, "%f", &denom);

value= num I denom; /* convert fraction to decimal */

printf("\n %f I %f = %f", num, denom, value);

return O;

The program prompts for the numerator and denominator of a
fraction, then converts them to a decimal value and prints the
result. For example,

Convert a fraction to a decimal
Numerator: 7
Denominator: 8

7.000000 I 8.000000 = 0.875000

Clearly value must be a float in order to hold a fraction, but you
may not realize that either num or denom has to be of the float type
if you wish to divide num/denom correctly. Try this example:

Chapter 4. An introduction to C 41

If you divide integers by
Integers, the result is rounded

down to the nearest whole
number before it is assigned

to the float variable.

42

#include<stdio.h>

int main()

int num = 3, denom = 4;
float value;
value = num I denom;
printf ("\n%f", value) ;
return 0;

The result is a big fat zero-or more precisely, 0.000000, not the
0.75 you'd expect.

Double and long double

The double and long double types are like float, only they
accommodate larger numbers with more precision. Precision is
important in both scientific and financial calculations. You might
want to use your system to print checks for large sums of money,
such as $125,375,750.75.

#include <stdio.h>

int main()
{

float amount= 125375750.75;
printf("\nPay the sum of %f dollars\n", amount);
return 0;

When the check is printed out, you'll see

Pay the sum of 125375752.000000

The result is an overpayment of $1.25. That may not seem like
much, but people expect computers to be 100% accurate,
particularly where money is involved. This error occurred
because the float type is limited to seven digits of precision, and
the value assigned to amount has eleven digits, ten nonzero.
Change amount to a double and run the program again; you'll find
that the amount is now correct.

Turbo C++ Getting Started

Variables

Initializing

As you have learned, every variable must be declared before it
can be used. A declaration consists of a data type followed by one
or more variable names. Declarations simply tell Turbo C++ that
you intend to use a particular variable, and what type of data it
will store.

int hours;
float total_pay, pay_rate;
long id_number;

variables You also need to initialize a variable-set it to a specific value,
such as 0. What do you think the following program will display?

Assignment
statements

#include <stdio.h>

int main()
{

int something;
printf ("%d", something);
return O;

The result will vary--0n our machine, it was-32,417. Did you
notice that the program did not assign any value to the variable
something before trying to print it out? With the exception of
global or static variables (discussed later), variables in C do not
have a default value. (Some languages, such as BASIC, typically
give numeric variables a default value of 0.) The value of some­
thing, therefore, is whatever number happens to be stored at the
address Turbo C++ assigned to the variable. This value is unpre­
dictable. In fact, if you compiled this program, you might have
noticed a warning in the Message window: ''Possible use of
'something' before definition in function main." When you get this
warning, you should check the variable named to make sure you
initialize it before you use it for anything.

You give a value to a variable with an assignment statement.
Assignment consists of a variable name followed by an equals
sign and the value to be assigned. Here are some examples:

Chapter 4, An introduction to C 43

44

Combination

count = O;
total = purchase + tax_amt;
tax_amt = tax(purchase);

In the first statement, an actual number, or numeric constant, is
assigned to the variable count. The second statement uses an
expression to assign the sum of purchase and tax_amt to the
variable total. An expression is any combination of values and
operators (such as + or*) that yield a single value. In C, you can
use an entire expression just about anywhere that you can use a
single numeric value. You can assign it to a variable, send it to a
function for processing, or print it with printf.

The third statement is slightly more complex: It first calls the
function tax, giving it the value of the variable purchase. The
function uses this value and other information to calculate the tax.
The function returns a value to the calling statement: In other
words, the function call tax(purchase) is replaced by an actual
value, such as 1.14. The assignment statement then assigns this
value to tax_amt. Assignment statements using function calls are
very common in C.

assignments c often lets you combine two or more distinct operations in a
single statement. You can declare a variable and assign it a value
in a single statement. Instead of

float total_expenses;
total_expenses = O;

most C programmers write

float total_expenses = O;

You can also assign several variables the same value in one state­
ment. A word processor might start processing text by setting

page = line = column = 1;

This works because an assignment statement not only assigns a
value, it also provides a value that can be used by other parts of a
statement in which it is embedded. That is, column = 1assigns1 to
column, and makes this value, 1, available. Moving right to left,
we get the equivalent of line = 1. In turn, that assignment passes
on the value 1, so the final assignment is page = 1.

Turbo C++ Getting Started

Naming names

But don't go overboard. It is often better to declare and initialize
one variable per statement, so you can include a comment
describing the purpose of each variable:

int lines = O;
int words = O;

int chars = O;

/* Lines of text, ending in new line char */
/* Words are groups of characters surrounded */
/* by space, tabs, or new lines */
/* Every character is counted */

Taking the time to do this might also alert you to potential prob­
lems. For example, is it really a good idea for chars to be an int?

It's time now to consider what names you can give to variables. C
is quite flexible in this regard. User-supplied names (called identi­
fiers) must follow these rules:

• All identifiers must start with a letter (a to z or A to Z) or an
underscore (_).

• The rest of the identifier can use letters, underscores, or digits (0
to 9). Other characters (such as punctuation marks or control
characters) cannot be used.

C++ identifiers are significant •The first 32 characters of an identifier are significant. This
to any length. means that

The_total_amount_of_money_in_my_checking_account
and

The_total_amount_of_money_in_my_charge_account
would be considered by Turbo C++ to be the same variable. Of
course it would be awkward to use such names, anyway.

•Identifiers are case-sensitive. This means that amount and
Amount are completely separate variables.

By these rules, deduction, tax_status, and amt_1099 are all legal
identifiers, while 1989_tax and stop! are not. (1989_tax begins with
a digit instead of a letter or underscore, and stop! contains an
exclamation point, which is not a letter, underscore, or digit.)

Besides following the rules, it is important to give some thought
to naming your variables. Here are some suggestions:

•The name should describe what the variable contains. a doesn't
tell you anything. amt is better, but taxable_amount is most clear
and specific.

Chapter 4, An introduction to C 45

Fielding an input
value: sscanf

Table 4.2
sscanf and printf format

specifiers

This table also sho\NS printf
format specifiers, discussed

on page 49. Note that case
Is important with most format

specifiers.

46

• Use capital letters or underscores to separate words in a long
identifier. PricePerlOO or price_per _100 are much easier to read
than priceper100.

• Use comments to describe the nature and purpose of a variable,
particularly if it is not obvious.

You have already seen examples of the use of the gets and sscanf
functions for obtaining data from the keyboard. You know that
sscanf stores data in specified variables, and you've seen it used
with different numeric data types (int and float, for example).
Since different data types are stored differently in memory, you
need a way to tell sscanf what kind of data you wish to store. So
let's look at the anatomy of sscanf more closely. Here is the
syntax of a call to sscanf:

sscanf(buffer, "format string", [address, address, ... })

Compare this to an actual sscanf statement you've seen before:

sscanf(inbuf, 11 %f11 , &nurn);

buffer is the input array where your data was temporarily stored
by gets. format string contains one or more format specifiers. Format
specifiers consist of a percent sign(%) followed by a letter indicat­
ing the type of data to be stored. The group of one or more format
specifiers is placed between double quotes. For example, %d
specifies an int value, %f, as in the example just given, expects a
float, and %s indicates a string of characters. The format string
%c %d asks for both a single character and an int value. The most
commonly used formats are shown in Table 4.2.

Function sscanf printf

Size of value (modifies data type):
Specify short integer o/ohd
Specify long integer o/old o/old
Specify double o/olf o/olf
Use with float to indicate a long double o/olf o/olf

Type of data to be read or displayed:
Single character o/oc o/oc
Signed integer o/od o/od
Signed double or float in exponential format o/oe o/oe
Signed double or float in decimal format o/of o/of
Character string o/os %s
Unsigned decimal integer o/ou o/ou

Turbo C++ Getting Started

To try out this code, load and
run INTR03.C.

To try out this code, load and
run INTR04.C. Note how we
precede calls to sscanf with

a call to prinff or puts that
describes the value wanted.

The other necessary part of an sscanf call is the address at which
the data is to be stored. Every variable in Chas a specific address
in memory. Most of the time you don't need to worry about
addresses-you just name the variable to get its value. For
example, count + 1 evaluates to the current value of the variable
count plus one. In the case of sscanf, however, you don't need the
value of the variable, you need its address. The address operator
& (the ampersand) is used with a value to get that address. This
program shows the difference between a variable's address and
the value stored there:

/* INTR03.C--Example from Chapter 4 of Getting Started */

#include <stdio.h>

int main()
{

char inbuf [130];
int number = 10;
printf{"Address of variable number= %ld\n", &number);
printf{"Value stored at variable number= %d\n", number);
printf {"Enter a new value for the variable: ");
gets{inbuf);
sscanf (inbuf, "%d", &number);
printf("New value stored at variable number= %d\n", number);

return O;

The output looks like this (the address may vary):

Address of variable number = 65498
Value stored at variable number = 10
Enter a new value for the variable: 33
New value stored at variable number = 33

The following program illustrates more variations on sscanf:

/* INTR04.C--Example from Chapter 4 of Getting Started */

#include <stdio.h>

int main()
{

char inbuf[130];
long transaction_number;
int cashier_number;
char transaction_code;
float purchase_amount;

printf ("Enter transaction number: ");
gets (inbuf) ;

Chapter 4, An Introduction to C 47

48

sscanf(inbuf, "%8ld", &transaction_number);

printf("\nEnter your cashier number: ");
gets(inbuf);
sscanf(inbuf, "%2d", &cashier_number);

printf("\nEnter transaction type code: ");
gets(inbuf);
sscanf(inbuf, "%c", &transaction_code);

printf("\nEnter amount of purchase: ");
gets(inbuf);
sscanf(inbuf, "%f", &purchase_amount);

return O;

The first sscanf statement will read a long (long Int) of not more
than eight digits, while the second sscanf statement will read an
int of not more than two digits. (In a real application, you would
have to perform further error checking. For one thing, if you type
in more digits than are specified, sscanf simply starts storing
them in the next variable specified, or ignores them if there are no
more variables, as in this example.)

You can ask for the values of more than one variable in the same
call to sscanf; for example,

gets(inbuf);
sscanf(inbuf, "%8ld %2d", &transaction_number, &cashier_number);

combines the first two sscanf calls in the preceding example.
Since only one call to gets is made, only one line of input is read.

By default, sscanf assumes the user will separate numeric vari­
ables with spaces. You can include other separator characters in
the format string; in which case, you must type in each value
exactly as entered:

#include <stdio.h>

int main()
(

char inbuf[130];
int hours, minutes, seconds;
printf("Enter new time in hh:mm:ss ");
gets(inbuf);
sscanf(inbuf, "%d:%d:%d", &hours, &minutes, &seconds);
return O;

Turbo C++ Getting started

Displaying a
variable's value

The number of digits Includes
the decimal point. %6.2f, for

example, prints five digits,
two of which are to the right

of the decimal point.

The counterpart to sscanf, which gets a value for a variable, is
printf, which displays the value of a variable onscreen. A call to
printf consists of the following:

printf("format string", item, item, ...)

format string can contain optional text to be displayed. If you're
displaying the values of one or more items (variables, expressions,
constants, and so on), you must include a conversion specification
for each item. These conversion specifications are analogs of the
format specifiers discussed with sscanf earlier, but there are addi­
tional features for formatting the output. The specifier consists of
a percent sign followed by a symbol for the type of data involved.

Earlier you used printf statements to display a purchase amount,
tax, and total:

printf("\nPurchase is: %f", purchase);
printf("\n Tax: %f", tax_amt);
printf("\n Total: %f", total);

The results were displayed like this:

Purchase is: 24.950001
Tax: 1. 621750

Total: 26.571751

How can you set up the conversion specifier to make Turbo C++
display these values properly aligned with only two decimal
places (which is appropriate for dollar amounts)? Here's one
solution: After the % sign, put a number to indicate total digits
you want displayed, followed by a period and the number of
decimal places you want.

printf("\nPurchase is: $%6.2f", purchase);
printf("\n Tax: $%6.2f", tax_amt);
printf("\n Total: $%6.2f", total);

This displays the values as

Purchase is: $ 24.95
Tax: $ 1. 62

Total: $ 26.57

The next example shows how printf can display several types of
numbers in different formats:

Chapter 4, An introduction to C 49

To try out this program. toad
and run INTROS.C.

50

/* INTR05.C--Example from Chapter 4 of Getting Started */

#include <stdio.h>

int main()
(

int int_num = 999;
float float_num = 99.99895;
long double big_num = 1250500750.75;

printf("12345678901234567890\n");
printf("%d\n", int_num);
printf ("%6d\n", int_num);
printf("%f\n", float_num);
printf("%6.3f\n", float_num);
printf("%e\n", big_num);
printf("%Le\n", big_num);

return O;

Here is the output:

12345678901234567890
999

999
99.998947
99.999
-3.55361e-207
1.250501e+09

The first prlntf statement prints 20 digits as a ruler to show how
the other numbers line up. It also illustrates that prlntf doesn't
have to print the value of a variable or expression-it can print
just a text string if you desire. The next statement prints the value
of int_num (999) as is. The third statement specifies a 6-digit field;
since the default is right-justification, the number 999 is displayed
three spaces over from the left. (If you specify a field width too
small for the number of whole digits in a number, the specifica­
tion will be overridden and the full number of digits displayed.
This is sensible: It means that 999 won't be displayed as 99 just
because you made an error and specified %2d.)

The next two statements display the value of fl.oat_num. In the first
statement, the value isn't exactly correct: 99.998947 is displayed,
rather than 99.99895. This is because the float type declared for
float_num guarantees seven digits of precision, but printf by de­
fault tries to print as many digits as it is given to the left of the
decimal point, plus six digits to the right of the decimal point,

Turbo C++ Getting started

Type conversion in
printf

Do not specify more digits
than the data type can

accurately hold.

Formatting with
escape\ sequences

even if some of the digits end up inaccurate. For many applica­
tions, this small difference may not matter, but it is important to
realize that when you have exceeded the precision for the data
type involved, having printf show more digits buys you no
accuracy and may even mislead the user.

To avoid the display of spurious digits, use a precision specifier to
specify how many digits you want after the decimal point. The
next statement specifies %6.3f, which includes a maximum field
width of six and a decimal precision of three places. When the
precision is less than the number of digits available, the last digit
is rounded up or down as appropriate.

printf uses the conversion specifier to try to convert the value to
whatever type is specified, regardless of the actual data type of
the value. For example, if you have a float variable dollars and use
the specifier o/od, the value 24.95 will end up as 0 or some seem­
ingly random number because printf will read 2 bytes (an Int)
rather than 4 (float) starting at the address of dollars. On the other
hand, if you declare a variable as an int, then try to display it with
o/of, you will also get a wrong result because printf will try to read
4 bytes from a 2-byte variable.

printf is a complicated function with a large amount of code for
handling the various formats. Turbo C++ links in the part of the
code that handles floating-point values only if you use floating
point in your program If your program never uses a floating­
point type, and you use the %f specifier with an int, you will get a
run-time error message telling you that the floating-point formats
were not linked. A more compact and readable alternative to
prlntf and sscanf is provided by the C++ streams library,
discussed in Chapter 5.

The preceding example uses the o/oe specifier to display big_num,
which was declared to be of type long double. Unfortunately, the
specifier tries to print this as an ordinary double, again producing
a nonsense value with a huge negative exponent. The last state­
ment uses the specifier %Lf, which correctly specifies long double.

There are a number of characters that control how text appears
onscreen; for example, the tab character advances the cursor to
the next tab position, the newline character moves the cursor to
the next line, and the formfeed starts a new screen or page of text.
printf lets you include any of these characters (and others) in the

Chapter 4, An introduction to C 51

text to be printed, simply by prefixing the symbol for the char­
acter with a backslash (\). The backslash is called an escape because
it tells Turbo C++ to interpret the following character not as a
literal n or for whatever, but as the symbol for a special character.

Indeed, you have already seen numerous examples using \n in a
string being displayed with printf. While the print statement in
languages such as BASIC automatically advances the cursor or
print head to the next line, there is no such default in C. This gives
you more flexibility, since you can use separate printf statements
to display text on the same line, and advance to the next line only
when you specifically wish to. The next table lists Turbo C++'s
escape sequences.

Table 4.3
Character escape Sequence Name Meaning

~~~~~~~~~~~~~~~~~~~~~~~~~ 

sequences \a Alert Sounds a beep 
\b Backspace Backs up one character 

The octal and hexadecimal \f Formfeed Starts a new screen or page 
escape sequences are \n Newline Moves to beginning of next line 

different from Turbo C 2.0. \r Carriage return Moves to beginning of current line 
See Chapter 1. "The Turbo \ t Horizontal tab Moves to next tab position 

C++ language standard.· in \ v Vertical tab Moves down a fixed amount 
the Programmer's Guide for \ \ Backslash Displays an actual backslash 

details. \' Single quote Displays an actual single quote 

52 

\ /1 Double quote Displays an actual double quote 
\? Question mark Displays an actual question mark 
\000 Displays a character whose ASCII code 

is an octal value (one to three digits) 
\xHHH Displays a character whose ASCII code 

is a hexadecimal value (one or more 
digits) 

•"Newline" on MS-DOS systems is equivalent to a carriage 
return (CR) plus a linefeed (LF). This is not true of some other 
systems. 

• A backslash in front of the single and double quotes is needed 
only when Turbo C++ would otherwise interpret these 
characters as having a special meaning. For example, 11 

normally delimits a string. To print a string in quotes, use "\"a 
string in quotes\"". 

• The octal or hexadecimal values are often used to send special 
graphics characters or printer control characters. For example, 
printf ( "\xDB") on the IBM PC displays a solid square character. 

After \n, the most commonly used escape sequence is probably \t, 
the tab character. It is useful for aligning tables of numbers. For 
example, this code 

Turbo C++ Getting started 



To try this out, toad and run 
INTR06.C. 

Arithmetic 
operators 

/* INTR06.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 
{ 

int i = 101, j = 59, k = O; 
int m = 70, n = 85, p = 5; 
int q = 39, r = 110, s = 11; 

printf("\tWon\tLost\tTied\n\n"l; 
printf("Eagles\t%3d\t%3d\t%3d\n", i, j, k); 
printf("Lions\t%3d\t%3d\t%3d\n", m, n, p); 
printf ("Wombats \t%3d\t%3d\t%3d\n", q, r, s); 

return 0; 

produces the following neatly formatted table: 

Won 

Eagles 101 
Lions 70 
Wombats 39 

Lost Tied 

59 0 
85 5 

110 11 

Now that you know how to get and display values for different 
kinds of variables, let's look more closely at the variety of 
operators provided by Turbo C++. You have already seen several 
operators: the assignment operator(=) and four arithmetic 
operators(+,-,*, and/, for addition, subtraction, multiplication, 
and division, respectively). 

These operators work pretty much the way you would expect 
them to, though with some differences: For example, dividing two 
Int values gives you an int result, with any fraction dropped. 
There is also a specific order, called precedence, in which operators 
take effect. For arithmetic operators, multiplication and division 
come before addition and subtraction. Try to guess the four num­
bers that will be displayed by this program (to try it out, load and 
run INTR07.C): 

Chapter 4, An introduction to C 53 



It doesn't hurt to use 
parentheses, even if they 

aren't strictly needed. They 
can make expressions easier 

to read. 

/* INTR07.C--Example from Chapter 4 of Getting Started*/ 

#include <stdio.h> 

int main() 
{ 

float result; 
result = 1.0 + 2.0 * 3.0 I 4.0; 
printf("%f\n", result); 
result = 1.0 I 2.0 + 3.0; 
printf("%f\n", result); 
result = (1.0 + 2.0) I 3.0; 
printf("%f\n", result); 
result = (1.0 + 2.0 I 3.0) + 4.0; 
printf("%f\n", result); 

return O; 

Here they are. How did you do? 

2.500000 
3.500000 
1. 000000 
5.666667 

In the first expression, the multiplication 2.0 * 3.0 is done first, 
y.ielding 6. Next, 6 / 4.0 gives 1.5, which is finally added to 1.0 to 
get the final result, 2.5. Notice that when operators have equal 
precedence(* and I have equal precedence, as do+ and-), 
operations are done from left to right. 

In the second expression, the division is done first, then the 
addition, so the result is 0.5 + 3, or 3.5. 

In the third expression, (1.0 + 2.0) is in parentheses, so it is 
performed first: The result, 3.0, is then divided by 3 to get 1. 

Finally, the last expression places 1.0 + 2.0 / 3.0 within paren­
theses. Within the parentheses, the usual rules are followed: 2 is 
divided by 3, and then added to 1. The result, 1.666667, is then 
added to 4 to get 5.666667. 

modulus(%) The modulus operator(%) divides two numbers and keeps only 
the remainder. For example, the expression 5 % 2 gives a result of 
1, while 18 % 3 gives 0, since 3 divides evenly into 18. 

54 Turbo C++ Getting started 



Arithmetic and 
type conversion 

Table4.4 
Type promotions for 

arithmetic 

Some types In this table have 
not been discussed yet. 

What happens if you add an Int to a float? You would want the 
result to be a float so that any fractional part is retained, and that 
is what happens. Turbo C++ promotes smaller types to larger ones 
according to a set of rules (see the next table). From the table, you 
can see that when an Int and a float are added, the Int is promoted 
to a float. The two numbers are then added, resulting in a float. 

Type Converts to 

These types are converted automatically: 

char 
unsigned char 
signed char 
short 
unsigned short 
en um 
float 

int 
int 
int 
int1 

unsigned int1 

int 
double 

Then these rules are applied, until both operands have the same type: 

If either operand is... The other is converted to ... 

long double long double 
double double 
float float 
unsigned long unsigned long 
long long 
unsigned unsigned 

1This is an ANSI requirement. However, short and Int are the same size for all C 
compilers on the PC, so no conversion is done. 

Typecasting It is sometimes useful or necessary to explicitly convert a data 
item to a specified type. For example, if you have 

Chapter 4, An Introduction to C 

#include <stdio.h> 

int main() 
{ 

int a = 5, b = 2; 
printf("%d", a I bl; 
return O; 

55 



Combining 
arithmetic and 

assignment 

Increment and 

you'll get a result of 2, since integer division drops any fractional 
part. If, however, you do it this way: 

*include <stdio.h> 

int main() 
{ 

int a = 5, b = 2; 
printf("%f", (float) a I (float) b); 
return O; 

the values a and b will be converted to the type enclosed in 
parentheses (float in this case) before the division, so the value of 
the expression will be 2.5. This forced conversion is called a type 
cast, or just a cast. 

A common operation in programming involves adding a fixed 
amount to a variable (incrementing it). For example, if a program is 
counting words, when it finds a word, it will do something like 
total_words = total_words + 1. Later, you will also see how loops 
usually involve repeatedly adding or subtracting a number until a 
variable reaches a specified limit. 

A shorthand way of doing things in C is to perform arithmetic 
and assignment in one step. You can combine any binary arith­
metic operator with the assignment operator. The preceding 
statement can also be written as total words += 1. Read this as 
"add 1 to the current value of total_words and assign this quantity 
as the new value of total_words." Similarly, a checkbook-balancing 
program might execute the statement balance -= check_ amt (sub­
tract the amount of the check from the balance and make that the 
new value of balance). The somewhat less common combinations 
*=and I= work in the same way. 

decrement Adding and subtracting exactly one is so common an operation 
that two special operators, increment(++) and decrement (- -), 
are provided for the purpose. Thus ++total_ words does exactly the 
same thing as total_ words += 1. A program that does a countdown 
for the space shuttle might use count-- in a loop until zero is 
reached. 

56 Turbo C++ Getting Started 



Working bit by bit 

The increment and decrement operators can come either before or 
after the affected variable. When the operator comes before the 
variable it is applied to the variable first, and then the result is 
used in the expression as a whole. When the operator comes after 
the variable, the value of the variable is used first, and then the 
operator is applied to the variable. For example, 

#include <stdio.h> 

int main() 
{ 

int val = 1; 

printf ("val is %d and then post-incremented\n 11 , val++) ; 
printf("val is now %d\n", val); 
printf("val is pre-incremented to %d\n", ++val); 
return O; 

which gives the results 

val is 1 and then post-incremented 
val is now 2 
val is pre-incremented to 3 

In the first printf statement, val is still 1 when it is printed, but 
becomes 2 afterward, as shown in the second printf. In the third 
statement, val is incremented first, so it is 3 by the time it is dis­
played by printf. 

Sometimes you'll find that you have to manipulate the actual bits 
that make up each byte in memory. C provides a set of bitwise 
operators, shown in the next table. 

Chapter 4, An introduction to C 57 



58 

Table4.5 
Bit manipulation operators Operator Meaning 

Operators that take two operands: 

& AND; if both bits are 1, result is 1. 
I OR; if either bit is 1, result is 1. 
" Exclusive OR; if only 1 bit is 1, result is 1. 
» For a signed int, shift bits right the number of times 

specified by following number; fill in ls at left if the 
number is negative, Os if positive. For an unsigned int, 
fill in Os to left. 

« Shift bits left the number of times specified by following 
number; fill in zeros at right. 

Operator that has a single operand (unary operator): 

l's complement; reverse all bit values. 

The following program illustrates the use of these operators: 

#include <stdio.h> 

int main() 
( 

printf("l & 1 is %d\n", 1 & ll; 
printf ("l I 1 is %d\n", 1 I 1); 
printf("l A 1 is %d\n", 1 A 1); 
printf("255 « 2 is %d\n", 255 « 2); 
printf("255 » 2 is %d\n", 255 » 2); 
printf("-255 is %u\n", -255); 
return O; 

Remember that the integer 1 is stored in 2 bytes as 00000000 
00000001, while 255 is 00000000 11111111. Here is the output: 

1 & 1 is 1 
1 I 1 is 1 
1 A 1 is 0 
255 « 2 is 1020 
255 » 2 is 63 
-255 is 65280 

Notice that the & operator gives 1 only if the corresponding bits 
are both 1. This makes it useful for masking off selected bits of a 
value by using a bit pattern that has zeros in the positions you 
wish to tum off. The I operator turns on a bit if either or both 
values have a 1 in that position. If you want to guarantee that a 
certain bit is on, "OR" that value with a value that has a 1 in that 
position. 

Turbo C++ Getting started 



Expressions 

Evaluating an 

The fourth statement left-shifts the value 255 twice (00000000 
1111111 becomes 0000001111111100). Since each place in a binary 
number is two times the preceding place, this is equivalent to 
multiplying 255 * 2 * 2, or 1020. In the next statement, 255 is 
right-shifted twice, so 00000000 1111111becomes00000000 
00111111, or 63. Finally, the last statement turns 00000000 
11111111into1111111100000000. This is equivalent to 65,535-
255, or 65,280. 

You have now seen a variety of statements that use expressions, 
so this is a good time to review how expressions work in general. 
Remember that an expression is any combination of variables, 
defined constants, or literal numbers which together with one or 
more operators yield a single value and possibly produce one or 
more side effects. Thus 

purchase * TAX_RATE 
dollars I bushels 
count++ 
STATUS & SWITCH ON 

are all examples of expressions. An expression can be assigned to 
a variable with the assignment operator (=). It can be displayed by 
prlntf in the same way as a single variable. The preceding 
program, for example, used statements such as 

printf("255 << 2 is %d\n", 255 << 2); 

expression Turbo C++ evaluates expressions by applying the operators invol­
ved in order of their precedence, starting first with any parts of 
the expression that are enclosed in parentheses. Table 4.6 lists all 
of the C operators in order of their precedence and associativity. 
Associativity is the direction in which the compiler evaluates the 
operators and operands. For example, the various assignment 
operators (=, +=, *=, and so on) associate from right to left 
(assigning the expression on the right to the variable on the left), 
while the arithmetic operators(*,/,+,-, and%) associate from left 
to right. 

Chapter 4, An introduction to C 59 



60 

Precedence is the order in which evaluations are done. For 
example, multiplication is done before addition, so that the 
statement 

count = 5 + 3 * 4 

results in 17, not 32. 

The best way to become familiar with these rules is to use an 
expression with a prlntf statement so you can see the result, then 
check the table to see how that result was arrived at. (As an alter­
native, Chapter 7, "Debugging in the new IDE," shows how you 
can use the built-in Turbo C++ debugger to evaluate many kinds 
of expressions.) 

The rules of precedence and associativity are as follows: 

•Unary operators (operators with only one operand, such as ++) 
have a higher order of precedence than binary operators (such 
as/). 

•Arithmetic operators come ahead of comparison operators. 
•Greater than and less than come ahead of equals and not­

equals. 

•Comparison operators come ahead of bit manipulation 
operators (except for left and right shifts). 

•Bit manipulation operators come ahead of logical operators. 
•Logical AND(&&) comes ahead of logical OR <II). 
• Everything except for the comma operator comes before 

assignment operators. 

Turbo C++ Getting started 



Table4.6 
Precedence and 

associativity of operators 

Operators, precedence, and 
associativity are explained in 

full in Chapter I, "The Turbo 
C++ language standard,· in 

the Programmer's Guide. 

Assigning a value 

Operators 

()[]-> .. 
I - + - ++ - - & * (typecast) sizeof new delete 
.* ->* 
* I % 
+ -
<< >> 
< <= > >= 
-- I= 
& 

I 
&& 
II 
?: (conditional expression) 
= *= /: o/o: += -= &: II: I= <<= >>= 

Associativity 

Left to right 
Right to left 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Left to right 
Right to left 
Right to left 
Left to right 

in an expression You have been seeing examples of the assignment operator used 
in a complete statement, such as the initialization of a variable, 
total = O. Assignment statements like total = count = line = 0 
remind us that every assignment is also an expression. What do 
you think this program will display? 

#include <stdio.h> 

int main() 
( 

int val; 
printf("%d\n", val= 7); 
return O; 

If you guessed 7, you're right. The value of an assignment state­
ment as an expression is the value assigned. 

You have also seen that a call to a function that returns a value 
has that value. For example, total += tax (total) is equivalent to 

tax_amt = tax(total); 
total = total + tax_amt; 

The first form eliminates the extra variable at the cost of being a 
bit more cryptic. 

Chapter 4, An introduction to C 61 



Characters and strings 

Input and output 
for single 

characters 

62 

There's more to life than numbers. It's time to look at characters 
and character strings. As you probably know, a character­
whether an uppercase or lowercase letter of the alphabet, a 
numeral, a punctuation symbol, a carriage return, or Ctrl-C-is 
stored as a single byte (8 bits). The values for characters are 
~ssigned by the ASCII (American Standards Committee for Infor­
mation Interchange) code. The first 128 values are pretty much the 
same throughout the industry, but IBM PC-compatible machines 
use the second 128 values (128 to 255) for special graphics and 
line-drawing characters. In C, you use the type char (which 
means the same as signed char) to access the values from 0 to 127, 
with room for negative values for special purposes (such as 
indicating an error or the end of a file). If you want to access the 
full character set of the PC, use the type unsigned char. 

Here is one way to get a character from the keyboard and store it 
in a variable (to try it out, load and run INTR08.C): 

/* INTR08.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 
( 

char inbuf[130]; 
char one_char; 
printf("Enter a character: "); 
gets(inbuf); 
sscanf(inbuf, 11 %c 11 , &one_char); 
printf ("The character you entered was %c\n 11 , one_ char); 
printf("Its ASCII value is %d\n", one_char); 

return O; 

A sample run looks like this: 

Enter a character: A 
The character you entered was A 
Its ASCII value is 65 

Turbo C++ Getting Started 



Remember that you need 
the address of one_ char, so 

you must prefix one_ char 
with the & (address of) 

operator. 

This one Is INTR09.C: load 
and run It to see how It works. 

Displaying a 
character 

one_char is a variable of type char. The sscanf statement uses the 
specifier %c to indicate a single character, and stores the entered 
value in one_char. The next statement displays the value of 
one_char (notice the %c conversion specifier for printf). The next 
prlntf statement prints the ASCII code for the entered character. It 
does this by using the %d conversion specifier. This converts the 
character value to its ASCII code. A character is an integer, but 
certain facilities in C (such as the %c specifier) display the value 
as a character rather than as an integer. 

An alternate way to get a character from the keyboard is to use 
library functions getch or getche. The previous program could be 
rewritten as follows: 

/* INTR09.C--Example from Chapter 4 of Getting Started */ 

tinclude <stdio.h> 
#include <conio.h> 

int main() 
{ 

int one_ char; 
printf("Enter a character: "); 
one_char = getch(); 
printf ( "\nThe character you entered was %c\n 11 , one _char); 
printf("Its ASCII value is %d\n", one_char); 

return O; 

With this version of the program, the character you type won't be 
displayed onscreen. If you want the entered character to be 
visible, use getche instead. gets reads in an entire line of text 
before letting the program continue, while getch and getche read 
one character, then continue. 

This example also shows one way to display a character onscreen. 
The %c conversion specifier is used with printf to display a single 
character. Another way to display a single character is with the 
library function putch, which is defined in the header file conio.h. 
putch('>') displays the specified literal character>. If one_char is a 
variable of type char (or, in some cases, of type Int), putch(c) 
displays the value of one_char as a character. 

Chapter 4, An introduction to C 63 



Displaying 
character strings A string is a series of characters. You have already seen strings 

used in printf statements. For example, 

64 

Figure4.2 
How a string is stored in 

memory 

printf("Enter a character: 11 ); 

calls printf and tells it to display a string of characters beginning 
with an E and ending with a space. The double quotes tell Turbo 
C++ to treat the group of characters as a string. Each character is 
stored in a consecutive byte of memory, and printf receives the 
address of the first character. How does printf know when it has 
reached the end of the string? Whenever you define such a literal 
string, Turbo C++ invisibly tacks a null character on the end. This 
character has an ASCII value of 0, and is represented symbolically 
as \0. The next figure shows how a string is stored in memory. 

rstarti!'JQ address null character l 
J of string 

lrlhlilsl lilsl ltlhlel lvlalilulel loltl lmlslghnl\ol I I I I I 
[_

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Position 

char message[30]; 
strcpy(message, "This is the value of msgW); 

Important! message is actually a pointer to a location for the string. Therefore, 
the code 

message= "This is the value of msg\n"; 

makes message point to where that string is. It does not copy the 
literal string into the storage area of message. This is why you 
must use strcpy to copy the characters of the string to the 
variable. 

For convenience, Turbo C++ also provides the library function 
puts. This function writes a string to the standard output, 
normally the screen. Thus puts ("Enter a character: ") works 
almost the same as the printf statement just described, with one 
exception: puts automatically puts a new line (\n) at the end of the 
string, advancing the cursor to the next line. If your program 
doesn't need the advanced formatting capabilities of printf, you 

Turbo C++ Getting Started 



can save considerable program space by using the simpler puts to 
display strings. 

There is an important difference between double quotes and 
single quotes for specifying strings and characters. 

• "a" is a string consisting of one character, a, and the invisible 
null character 

•'a' is the single character a. 

Since strings and characters are different data types, specifiers or 
functions that work with strings do not work with characters, and 
vice versa. To display "a", use printf with %s or puts; for 'a', use 
printf with %c or putch. 

Testing conditions and making choices 

Using relational 

You have now learned many elements of the C language. So far, 
all programs have run straight through from beginning to end. 
Often, however, programs must make choices based on certain 
values. For example, consider this code fragment: 

if (bill > credit_limit) 
puts ("Consult with the manager"); 

If the amount of the bill is greater than the amount of the credit 
limit, the code displays the message about consulting with the 

. manager. 

operators The> (greater than) operator in the preceding statement is a 
relational operator. It expresses a relationship between two 
values-in this case, whether bill is greater than credit_limit. 
Computers use a simple two-valued logic: If a relationship is true, 
it has a value of 1; if it is false, it has a value of 0. The relational 
operators are listed in the next table. 

Table 4.7 
Relational operators Operator Meaning Example 

> Greater than 5>4 
>= Greater than or equal to 5>=X 
< Less than 4<5 
<= Less than or equal to X<=5 
-- Equal to 5 ==5 
I= Not equal to 5 !=4 

Chapter 4, An Introduction to C 65 



To try out this program, load 
and run INTRO 10.C. 

66 

Using logical 
operators 

This simple program shows you how relational operators can be 
used: 

/* INTROlO.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 
{ 

char inbuf[l30]; 
int first, second; 
printf ("Input two numbers \n" l ; 
gets(inbuf); 
sscanf (inbuf, "%d %d", &first, &second); 
printf ("first > second has the value %d\n", first > second); 
printf ("first < second has the value %d\n", first < second); 
printf("first == second has the value %d\n", first == second); 

return O; 

Here's a sample run, using the values 3 and 5 (be sure to type a 
space between the 3 and the 5): 

Input two numbers: 
first > second has the value 0 
first < second has the value 1 
first == second has the value 0 

Notice that a relational test is an expression, since it gives a value. 
Thus, it can be displayed by printf, and you can assign it to a vari­
able with a statement like hot = (temperature > 90). Be careful not 
to confuse == (the relational equals operator) with = (the assign­
ment operator). Try editing the last statement in the example so 
that it reads 

printf ("first == second has the value %d\n", first = second) 

The expression first= second evaluates to the value of second, or 5 
in the sample run. The if, for, and other statements that test condi­
tions consider any nonzero condition to be true. You can see that 
using = where you meant == will cause inappropriate program 
behavior (such as being stuck in an endless loop). 

You can combine more than one condition in a test. To do so, use 
one of the three logical operators shown in the next table. 

Turbo C++ Getting started 



Table4.8 
Logical operators 

Branching with if 
and if ... else 

To try out this code, load and 
run INTRO 11.C. 

Operator Meaning 

&& 
II 
I 

AND (both conditions must be true) 
OR (at least one condition must be true) 
NOT (reverse the truth value of a condition) 

For example, the conditional expression 

(employee_type == temporary) && (wage > 6.00) 

is true only if the employee is a temporary and his or her wage is 
over $6.00 an hour. C is efficient at handling these operators: If the 
first condition (employee_type == temporary) is found to be false, the 
second condition isn't tested, since an AND expression is false if 
either condition is false. 

The expression 

(employee_type == temporary) I I (employee_type == hourly) 

is true if either of the two conditions is true. Thus if the first 
condition is found to be true, there's no need to test the second. 

Now that you've surveyed relational and logical operators, it's 
time to put them to work. The simple if statement takes the form 

if (conditional expression) 
statement or group of statements; 

The condition can be a single relational expression or a combina­
tion of expressions joined by logical operators. It must be enclosed 
in parentheses. The If statement acts according to the true or false 
value from the conditional expression. If the expression is true, 
the statement or group of statements that follow is executed. If 
you want a group of statements to be executed, enclose them in 
braces. The following program uses two if statements to tell you 
whether the number you entered is odd or even: 

I* INTROll.C--Example from Chapter 4 of Getting Started */ 

tinclude <stdio.h> 

int main() 
( 

char inbuf[130); 
int your_number; 
printf("Enter a whole number: "); 
gets(inbuf); 

Chapter 4, An Introduction to C 67 



Multiple choices 
with if ... else 

To try out this program, load 
and run INTRO 12.C. 

68 

sscanf(inbuf, 11 %d 11 , &your_number); 

if (your_number % 2 == 0) 
printf("Your number is even\n"); 

if (your_number % 2 != OJ I 
printf("Your number is odd, \n"l; 
printf("Are you odd, too?\n"J; 

printf("That's all, folks!\n"); 

return O; 

After prompting for and storing your _number, the program uses 
an if statement to test whether the number is even, using the 
modulus (%) operator. (Since all even numbers are evenly divi­
sible by 2, any even number mod 2 gives a result of 0.) If the num­
ber is even, the first prlntf statement is executed. The second If 
statement tests whether your _number is odd, that is, if it has a 
nonzero remainder when it's divided by 2. If the number is odd, 
you see the following: 

Your number is odd. 
Are you odd, too? 

Both prlntf statements are executed, since they are grouped 
together with a set of braces. Finally, the message "That's all, 
folks!" is displayed. Since it isn't part of an if statement, it is 
executed regardless of whether your _number is even or odd. 

The previous example probably looked awkward to you. If a 
number is even, it can't be odd, so why make two separate tests? 
This example can be rewritten much more compactly by adding 
an else branch to the if. The if ... else statement has this form: 

If (conditional expression) 
statement or group of statements; 

else 
alternative statement or group of statements; 

Applying this to the previous example, you get 

/* INTR012.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 
I 

Turbo C++ Getting started 



char inbuf[130]; 
int your_nurnber; 
printf("Enter a whole number: "); 
gets (inbuf); 
sscanf(inbuf, "%d", &your_number); 

if (your_number % 2 == 0) 
printf("Your number is even\n"); 

else { 
printf("Your number is odd.\n"); 
printf ("Are you odd, too2\n "); 

printf("That's all, folks!\n"); 

return O; 

You can nest if and else clauses as deeply as you wish, although 
after a few dozen nested If statements the compiler is likely to run 
out of memory. Suppose you had to write a program that allo­
cated computers to employees, subject to the following 
conditions. 

•If your employees are programmers and have been working at 
least two years, give them an 80386 PC. 

•If your employees are programmers and have been working less 
than two years, give them an 80286 PC. 

•If your employees have been working at least two years, but 
aren't programmers, give them an 8088 PC. 

• Finally, if your employees don't meet any of these conditions, 
give them a Macintosh. 

Try to map out how you could specify these conditions with if 
and else statements. Here's one way: 

if (employee_type == PROGRAMMER) 
if (years_worked >= 2) 

give_employee(PC386); 
else 

give_employee(PC286); 

else if (years_worked >= 2) 
give_employee(PC88); 

else 
give_employee(Mac); 

Notice how we used indentation to show which conditions 
depend on other conditions. First the program determines 

Chapter 4, An introduction to C 69 



Multiple choice 
tests: switch 

To try out this code, load and 
run INTRO 13.C. 

70 

whether the employee is a programmer. If so, it checks the num­
ber of years worked, and awards the appropriate computer. If the 
employee isn't a programmer, the outer if ••• else statement checks 
the number of years worked, and awards the machines assigned 
to nonprogrammers of varying seniority. 

A long series of if and else if statements is tedious to write, con­
fusing, and prone to error. Consider the next program, which has 
to decide how to graph a set of data based on the character the 
user has entered in response to a menu. Here's one way to do it: 

/* INTR013.C--Example from Chapter 4 of Getting Started */ 

#include <conio.h> 
#include <stdio.h> 
#include <ctype.h> 

int main() 
{ 

char cmd; 

printf("Chart desired: Pie Bar Scatter Line Three-D"); 
printf("\nPress first letter of the chart you want: "); 
cmd = toupper(getch()); 
printf ( "\n") ; 

if (cmd == 'P') 
printf ("Doing pie chart \n") ; 

else if (cmd == 'B') 
printf("Doing bar chart\n"); 

else if (cmd == 'S') 
printf ("Doing scatter chart \n") ; 

else if (cmd == 'L') 
printf ("Doing line chart\n"); 

else if (cmd == 'T') 
printf ("Doing 3-D chart \n 11 ) ; 

else printf("Invalid choice. \n"); 

return O; 

The program displays a menu line, then gets a value for cmd via 
the getch function. Along the way, the value is passed to the 
toupper function. This ensures that you only need to deal with 
uppercase characters. The series of if and else if branches then test 
for each valid value and execute the corresponding function. The 
last else serves as the default case, handling invalid values. 

Turbo C++ Getting Started 



The ... means that you can 
have as many case clauses 

as you want. 

To try out this program, load 
and run INTRO 14.C. 

The switch statement makes these multipath branches easier to 
code. It uses the form 

switch( value) 
{ 

case value : statement or group of statements 

default : statement or group of statements 

The value is tested against the value for the first case. If they are 
the same, the program code given after the colon for the first case 
is executed until the end of the switch statement or until the 
special statement break is reached. If they are different, the value 
for the next case is tested, and so on. If none of the values are the 
same as the switch value, the statement or group of statements 
following default is executed. The default is optional. If you don't 
supply one, and no condition is met, then no statements within 
the switch are executed. 

The preceding program example can be rewritten using a switch 
as follows: 

/* INTR014.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 
( 

char cmd; 

printf ("Chart desired: Pie Bar Scatter Line Three-D"); 
printf{"\nPress first letter of the chart you want: "); 
cmd = toupper{getch{)); 
printf {"\n"); 

switch (cmd) 
( 

case 'P': printf{"Doing pie chart\n"); break; 
case 'B' : printf {"Doing bar chart \n ") ; break; 
case 'S': printf{"Doing scatter chart\n"); break; 
case 'L': printf {"Doing line chart\n"); break; 
case 'T': printf{"Doing 3-D chart\n"); break; 
default : printf ("Invalid choice. \n"); 

return O; 

The break statement at the end of each case is very important. It 
causes execution to jump past the end of the switch statement. 

Chapter 4, An introduction to C 71 



You usually want to include a break statement as the last state­
ment for each case. For example, remove the break at the end of 
the statement for case 'L' and run the program again. If you 
select L, you'll see 

Doing line chart 
Doing 3-D chart 

The statements for both the Land T cases are executed. In other 
words, if you leave out the break, execution continues until it 
finds a break or the end of the switch statement. 

Sometimes this behavior can be useful. Suppose that you want the 
user of your program to be able to use either D (for delete) or E 
(for erase) to remove the current file. You could then code 

switch (cmd) 
{ 

case 'I': insert_file(); break; 
case 'F': format_file(current_file); break; 
case 'D': 
case 'E': erase_file(current_file); 

Since there is no break statement for case 'D', erase_file will be 
executed for this case as well as for case 'E'. 

Repeating execution with loops 

The while loop 

72 

The most significant characteristic of the if, else, and switch state­
ments is that they perform their test only once, and execute what­
ever statements are specified only once. But many computer tasks 
involve repetition; they involve instructions such as "use the same 
process on each item in this file until you get to the end of the file" 
or "use the same process on each item in this set of data." For this 
kind of task, you'll want to use a loop. Loops cause a statement or 
series of statements to be executed repeatedly, monitoring a 
specified condition in order to determine when to stop. C 
provides three kinds of loops: while, do, and for. 

The while loop executes one or more statements as long as a 
specified condition is true. The syntax is 

while (condition) 

Turbo C++ Getting Started 



To try out this example, load 
and run INTRO 15.C. 

The do while loop 

statement or group of statements; 

The following program lets you enter numbers from the key­
board. It keeps a running total. When you enter a 0, it gives you 
the total and average of the numbers entered. 

/* INTR015.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 
{ 

char inbuf[l30]; 
int number; 
int total = O; 
int count = l; 

/* Number entered by user */ 
/* Total of numbers entered so far */ 
/* Count of numbers entered */ 

printf("Enter 0 to quit\n"l; 
/* Priming statement puts a value into number */ 
gets(inbuf); 
sscanf (inbuf, "%d", &number); 

while (number != 0) 
{ 

total += number; 
gets ( inbuf) ; 
sscanf (inbuf, "%d", &number); 
if(number == 0) 

printf("Thank you. Ending routine. \n"); 
else count++; 

printf("Total is %d\n", total); 
printf("Average is %d\n", total I count); 

return O; 

Once the first number is entered, it is tested by the while. As long 
as the number isn't 0, three things are done: 

•The number just entered is added to total. 
• A new number is obtained with sscanf. 

•That number is tested. If it isn't 0, the count of numbers is 
incremented by one. 

The do while loop is very similar to the while loop. It takes the 
form 

do statement or group of statements 

Chapter 4, An introduction to C 73 



while (condition is true) 

Important! What's the difference between a do while and a while loop? 

To try out this example, load 
and run INTRO 16.C. 

74 

• The while loop performs the test first and executes the enclosed 
statements only if the result of the test is true. 

• The do while loop executes the enclosed statements and then 
performs the test. This means that the enclosed statements are 
performed at least once, even if the test turns out to be false. 

A good situation for using the do while loop is processing a menu. 
The earlier menu examples had the drawback that they only 
executed once, and then unceremoniously dumped the user out of 
the program. Here is the menu program rewritten to use a do 
while statement: 

/* INTR016.C--Example from Chapter 4 of Getting Started */ 

#include <conio.h> 
#include <ctype.h> 
#include <stdio.h> 

int main() 
{ 

char cmd; 

do { 
printf("Chart desired: Pie Bar Scatter Line Three-D 

Exit"); 
printf("\nPress first letter of the chart you want: "); 
cmd = toupper(getch()); 
printf("\n"); 

switch ( cmd) 
{ 

case 'P': printf("Doing pie chart\n"); break; 
case 'B': printf("Doing bar chart\n"); break; 
case 'S': printf("Doing scatter chart\n"); break; 
case 'L': printf("Doing line chart\n"); break; 
case 'T': printf("Doing 3-D chart\n"); break; 
case 'E': break; 
default : printf("Invalid choice. Try again\n"); 

while (cmd != 'E'); 

return 0; 

What has changed? The active part of the program, including the 
statements that display the menu and get a character as well as 
the switch statement, have been enclosed in a do while loop. An 

Turbo C++ Getting Started 



The for loop 

additional menu case, E, allows the user to exit the program. This 
case simply has a break associated with it. If any other character 
(including an invalid character) had been typed, the while condi­
tion causes the menu to be redisplayed. But if E {ore) is typed, the 
condition cmd ! = 'E' is false, and control drops out of the bottom 
of the do while loop. The program then terminates. 

The for loop steps through a series of values, performing the 
specified actions once for each value. The form for this statement 
is 

for (starting values; condition; changes) 
{ 

statement or group of statements; 

The following for loop displays the visible characters from the 
PC's character set {load and run INTR017.C): 

/* INTR017.C--Example from Chapter 4 of Getting Started*/ 

*include <stdio.h> 

int main() 
( 

int ascii _val; 

for (ascii_val = 32; ascii_val < 256; ascii_val++) 
{ 

printf("\t%c", ascii_val); 
if (ascii_val % 9 == 0) 

printf ( "\n"); 

return O; 

The variable ascii_val is the counter variable for the for loop. The 
initialization (starting) value is ascii _val = 32. The condition 
ascii _val < 256 is the limit for the loop. The change that is made in 
the counter variable is ascii _val++ (in other words, it is incre­
mented by one each time through the loop.) 

The printf and if statements are enclosed by braces and make up 
the body of the loop. The printf statement displays the character 
corresponding to the current value of ascii_val, using a tab char­
acter (\t) for spacing. The if statement begins a new line whenever 

Chapter 4, An Introduction to C 75 



Some programmers put the 
semicolon on a separate 

fine, so it will stand out. 

76 

To try this out, load and run 
INTR079.C. 

ascii_val is evenly divisible by 9-in other words, it ensures that 
each row will have 9 characters. 

There are many variations on the theme of for loops. The body of 
the loop can have only one statement, in which case the braces are 
optional but recommended for clarity. A for loop can have no 
body at all, with all of the work being done in the change part of 
the control statement. For example, this loop totals up the num­
bers from 1 through 10 (load and run INTR018.C): 

/* INTR018.C--Example from Chapter 4 of Getting Started */ 

*include <stdio.h> 

int main() 
{ 

int number, total; 
for (number = 1, total = O; number < 11; total += number, 

number++); 
printf("Total of numbers from 1 to 10 is %d\n", total); 

return O; 

This example also shows that the starting and change parts of the 
loop specification can have multiple expressions, separated by 
commas. The loop initializes two variables, number and total. Each 
time the loop runs, it adds number to total and then increments 
number. 

The semicolon following the closing parenthesis represents the 
empty body of the loop. If it is omitted, the loop will grab the 
printf statement and execute it repeatedly, treating it as the body. 
A for loop could be written instead as a while loop. The previous 
example could be rendered as 

/* INTR019.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 
{ 

int number = 1, total = O; 
while {number < 11) { 

total += number; 
number++; 

printf("Total of numbers from 1 to 10 is %d\n", total); 

return O; 

Turbo C++ Getting started 



Break and 

The while loop performs its initialization before the loop begins, 
and updates the counter variable within the body of the loop. The 
for loop performs both of these operations within the loop specifi­
cation itself. The for loop is more compact, but it can be harder to 
read if you cram too many expressions between the parentheses. 

continue Sometimes it's necessary to bail out of the statements in a loop 
even before you test the condition again. The break statement has 
two different uses: to break out of a switch statement after state­
ments provided for a particular case have been executed, and to 
exit a while, do while, or for loop immediately, without perform­
ing the rest of the statements enclosed in the loop. For example, 
suppose you didn't want to launch a space shuttle if any warning 
lights were on: 

To try out this program, load /* INTR020.C--Example from Chapter 4 of Getting Started *I 
and run INTR020.C. 

iinclude <stdio.h> 

idefine WARNING -1 

int get_status(void) 
( 

return WARNING; 

int main() 
{ 

int count = 10; 
while (count-- > 1) 

if (get_status() ==WARNING) 
break; 

printf("%d\n", count); 

if (count == 0) 
printf ("Shuttle launched\n"); 

else 

printf("Warning received\n"); 
printf ("Count down held at t - %d", count); 

return O; 

A while loop runs the countdown, each time checking the func­
tion get_status to see if it returns a value of-1 (which you have 

Chapter 4, An introduction to C 77 



To try out this program, load 
and run INTR021.C. 

The goto 

defined as WARNING). This function would presumably be 
reading the warning system in real time. If get_status returns-1 
at any time during the countdown, break stops the countdown. 
Following the while statement, the if statement checks to see if 
count reached zero. If it did, then no warning occurred. If count is 
greater than 0, however, the countdown must have been inter­
rupted, and the shuttle is not launched. 

The continue statement, like break, causes all remaining state­
ments in the loop to be skipped. But while break completely exits 
the loop, continue simply skips to the loop's test condition. 
INTR021.C displays the even numbers up through 10: 

/* INTR021.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 
{ 

int num = O; 
while (num++ <= 10) 
{ 

if (num % 2 != 0) 
continue; 

printf("%d\n", num); 

return O; 

If the number is odd, the continue statement causes the prlntf 
statement to be skipped. 

continue isn't used very often. You have to think the problem 
through to see when a continue or a break is appropriate. The use 
of continue inside the while loop in the space shuttle program 
would not be a good idea, since not only would the countdown 
not be displayed (the printf statement in the loop would be 
skipped), but also count would continue down to 0, since the 
decrement is part of the condition (count-- > 1). The shuttle 
would be launched even if a warning had been received. 

statement Veteran BASIC or FORTRAN programmers are familiar with the 
goto statement. C has this statement, too. It has the form 

goto label 

78 Turbo C++ Getting Started 



Nested loops 

To try out this code, toad and 
run INTR022.C. 

where label is an identifier that is associated with a particular 
statement. When goto is executed, control jumps to the labeled 
statement. In early BASIC, goto was a necessity because there was 
no other way to code a loop. With C's three kinds of loops, and 
the use of break and continue to skip parts of loops when neces­
sary, there is little need for a goto statement. Modern program­
mers avoid goto because it makes a program hard to read and 
modify. It is too easy to forget why the jump to a particular 
statement was made. Besides, no language has ever provided a 
wherefrom statement. 

One of the statements in the body of a loop can be another loop-­
this is called nesting. In this example, a while loop accepts strings 
that you enter, and the for loop prints hyphens under the string in 
order to underline it. 

/* INTR022.C--Example from Chapter 4 of Getting Started */ 

*include <stdio.h> 
*include <string.h> 
*include <conio.h> 

int main() 
{ 

int pos; 
char text [ 40]; 

printf{"Type 'end' to quit\n"); 

while {strcmp {gets (text), "end") != 0) { 
for (pos = 1; pos <= strlen{text); post+) 

putch (' -') ; 
printf {"\n"); 

return O; 

This is an example of the powerful but compact style of veteran C 
programmers. To figure out how the while loop is controlled, read 
from the inside out. gets(text) gets the input string and stores it in 
the character array text. This function also returns the string it has 
fetched to the calling statement, so that that string can now be 
compared to the string "end" by the strcmp function, which com­
pares two strings. If the comparison yields a 0, the strings are 
identical, the user had typed end, and the loop exits. Otherwise, 
the body of the while loop is executed. The first statement of the 

Chapter 4, An introduction to C 79 



Choosing 

body is a for loop that prints a number of hyphens equal to the 
length of the string that was originally entered, using the strlen 
function to find out how long it was. The printf statement, which 
ends the body of the while loop, positions the cursor for entry of 
the next line. 

appropriate loops You have now seen three different ways to code loops (while, do 
while, and for). Use whichever form of statement expresses the 
idea of the program most clearly, keeping in mind the following 
guidelines: 

•If you don't want the body of the loop to be executed at all if 
the condition is false, use a while loop. 

•If you want the body of the loop to always be executed at least 
once, use a do while loop. 

• If the number of times the loop is to be executed is determined 
by the value of a variable or constant, it is usually best to use a 
for loop. 

• If the loop is to be executed as long as some externally deter­
mined condition is true (for example, as long as there is data 
left in the file), use a while loop. 

Program design with functions and macros 

Defining your own 

Now that you know how to control the execution of a program, 
you can do some useful work in C. We encourage you to modify 
and elaborate upon the example programs. Small, simple pro­
grams such as the ones we've covered so far don't need a lot of 
structure. However, as your programs grow larger and more 
complex, you need to break them down into smaller, more 
manageable logical pieces, or functions. 

functions The programs you have already seen perform divisions of labor. 
When you call gets, puts, or strcmp, you don't have to worry 
about how the innards of these functions work. These and about 
400 other functions are already defined and compiled for you in 
the Turbo C++ library. To use them, you need only include the 
appropriate header file in your program and check the online help 

80 Turbo C++ Getting started 



or Chapter 1, "The run-time library," in the Library Reference to 
make sure you understand how to call the function, and what 
value (if any) it returns. 

But you'll need to write your own functions. To do so, you need 
to break your code into discrete sections (functions) that each 
perform a single, understandable task for your program. Once 
you have declared and defined your own functions, you can call 
them throughout your program in the same way that you call 
Turbo C++ library functions. 

The function prototype Function prototypes are a key feature of the new ANSI standard 
for the C language. A function prototype is a declaration that takes 
this form: 

Note that main, as a function 
itself, must also conform to 
the ANSI recommendation 
that all functions be given 

prototypes. 

We recommend that you use 
prototypes in your code. 

return_type function_name (parameter _type parameter _name ... ); 

Here are some examples: 

int main (void) 
float tax(float purchase); 
char get_employee_type(int employee_num); 
char get_choice(void); 
int getch(void); 
void show_menu(void); 

By looking at the prototype, you can tell exactly what type of 
information the function expects, and what type it returns. 

Let's look at tax. When you call it, you need to give it a floating­
point number. The result will also be floating point. The prototype 
informs Turbo C++ about all this. 

Some of the other example prototypes shown earlier use the key­
word void. void means empty, or none. When the word void ap­
pears in the parentheses in place of the parameter list, this indi­
cates that the function has no parameters. Thus if you tried to use 
the statement show_menu(lO), you would be informed that 
show_menu doesn't take any parameters. When void appears as 
the function's return type, it means that the function does not 
return a value-so you shouldn't try to assign the function call's 
result to a variable. 

Function declarations under Kernighan and Ritchie 

In the old Kernighan and Ritchie style, the return type of a 
function was given only if it wasn't int. Similarly, function 

Chapter 4, An introduction to C 81 



parameters were declared within the body of the function 
definition, rather than in the parameter list. The 
get_employee_type function would be declared in this old style 
as 

char get_employee_type(); 

And the function's actual code (its definition) would look like this 

char get_employee_type(employee_num) 
int employee_num; 
( 

/* body of function code *I 

Old-style functions compile correctly under Turbo C++. However, 
they have less information about the function's parameters, so 
errors involving the wrong type of parameters in function calls 
won't be caught automatically. This is one of the many good 
reasons why this older style is being discarded by ANSI. 

The function definition The function definition contains the actual executable code for the 
function. The preferred form for the function header starts out 
exactly the same as the function declaration, except that it doesn't 
end in a semicolon. It is followed by local variable declarations 
and the code to be executed, enclosed in braces. 

82 

Processing within the 
function 

float tax(float purchase) 
( 

float tax_rate = 0.065; 
return(purchase * tax_rate); 

The function sees its parameters as though they had been de­
clared as variables of the indicated types. The tax function thus 
has access to two values: its float parameter, purchase, and its own 
float variable, tax_rate. If you make the function call tax (amount), it 
is a copy of the value of amount that the function tax receives 
through its parameter purchase. The function refers to this value 
under the name purchase and can change the value of purchase. 
This doesn't change the value of the original variable amount, 
however. We'll show you later how a function can use pointers to 
change the values of variables used to call it. 

Turbo C++ Getting started 



The function return 
value 

Figure 4.3 
Information flow to and from 

the tax function 

A function doesn't have to return a value-in that case, you 
should declare its return type to be void. To return a value to the 
caller, a function uses the return statement (as in the function tax, 
where the value returned is purchase* tax_rate). The next figure 
summarizes how information flows to the tax function and then 
flows back again. 

The value of amount is 
assigned to corresponding 
parameter purchase 

The value is now available 
within function tax under thP 
name purchase -

The return statement sends the 
calculated value back to the calling 
statement, where it replaces the 
function call tax(amount) 

In calling statement, returned value 
is assigned to the variable tax_amt 

rfunction declaration*/ 
float tax(float purchase) 

rcalling statement*/ 
tax_amt = tax(amount); 

return(purchase * tax_rate); 

tax_amt = tax(amount); 

tax_amt = (value returned) 

Using the return value The returned value of a function can be treated like any other 
value in an expression. It can be combined with other variables 
and arithmetic operators in an expression; it can be part of the 
condition for an if statement or loop; it can be assigned to a 
variable, and so on. Here are some examples of the use of function 
return values that you have already seen: 

tax_amt = tax(purchase); 
if (get_status() ==WARNING) 
while (strcrnp (gets (text), "end") != 0) 

In the first example, the value returned by the tax function is 
assigned to the variable tax_amt. In the second example, the value 
returned by the call to get_status is compared with the defined 

Chapter 4, An introduction to C 83 



Multifunction 
programs 

Be sure to set your path 
argument in calls to initgraph 

to the directory where your 
.BG/ files are. 

After reading through the 
discussion of this program, 

feel free to modify it. study 
the graphics library. Try differ­

ent colors and fill styles. 
Experiment with various 

scaling values for distances 
and radii. 

84 

value WARNING; the result determines the true value of the if 
statement. In the last example, the value returned by gets is 
passed to the strcmp function (along with the string "end"), and 
the result of the call to strcmp in turn is compared with zero. That 
result becomes the value of the while statement test. 

The following program draws a graphic representation of part of 
the solar system. It illustrates the use of several user-defined 
functions as well some features of Turbo C++'s graphics library. 
(For more on how to use Turbo C++ graphics, see Chapter 5, "Vi­
deo functions," in the Programmer's Guide.) 

As written, the program requires EGA or VGA graphics 
hardware, but because it scales itself to the capabilities of the 
adapter, you could run a cruder version in CGA if you change the 
color constants used. The output is shown in the next figure. 

The program listing has function prototypes, global declarations, 
the definition for main, and then the definitions of the various 
other functions. This program is included on your disk as 
PLANETS.C. 

/* PLANETS.C--Example from chapters 4 and 7 of Getting Started */ 

#include <graphics.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <conio.h> 

int set_graph(void); 
void calc_coords(void); 
void draw_planets(void); 

/* Draw one planet circle */ 

/* For graphics library functions */ 
/*For exit() */ 

/* Initialize graphics */ 
/* Scale distances onscreen */ 
/* Draw and fill planet circles */ 

void draw_planet(float x_pos, float radius, 
int color, int fill_style); 

void get_key(void); /*Display text on graphics screen, */ 
/* wait for key */ 

/* Global variables -- set by calc_coords() */ 
int max_x, max_y; /* Maximum x- and y-coordinates */ 
int y_org; /* Y-coordinate for all drawings */ 
int aul; /* One astronomical unit in pixels 

(inner planets) */ 
int au2; /* One astronomical unit in pixels 

(outer planets) */ 
int erad; /* One earth radius in pixels */ 

int main() 

Turbo C++ Getting Started 



/* Exit if not EGA or VGA */ 
/* Find out if they have what it takes */ 
if (set _graph () ! = 1) { 

printf{"This program requires EGA or VGA graphics\n"); 
exit{O); 

/* Scale to graphics resolution in use */ calc _ coords {); 
draw_planets(); 
get_key(); 
closegraph () ; 

/* Sun through Uranus (no room for others) */ 
/* Display message and wait for key press */ 
/* Close graphics system */ 

return O; 

int set_graph(void) 

int graphdriver = DETECT, graphmode, error_code; 

/* Initialize graphics system; must be EGA or VGA */ 
initgraph (&graphdriver, &graphmode, " .. \ \bgi "); 
error_code = graphresult(); 
if (error_code != grOk) 

return(-1); /*No graphics hardware found*/ 
if ((graphdriver !=EGA) && (graphdriver !=VGA)) 
( 

closegraph(); 
return O; 

return (1); 

void calc_coords(void) 

/* Graphics OK, so return "true" */ 

/* Set global variables for drawing */ 
max_x = getmaxx(); /*Returns maximum x-coordinate */ 
max_y = getmaxy(); /*Returns maximum y-coordinate */ 
y_org = max_y I 2; /* Set Y coord for all objects */ 
erad = max x I 200; /* One earth radius in pixels */ 
aul = erad * 20; /* Scale for inner planets */ 
au2 = erad * 10; /* scale for outer planets */ 

void draw_planets() 
{ 

/* Each call specifies x-coordinate in au, radius, and color */ 
/* arc of Sun */ 
draw_planet(-90 1 100, EGA_YELLOW, EMPTY_FILL); 
/*Mercury */ 

Chapter 4, An introduction to C 

draw_planet(0.4 * aul, 0.4 * erad, EGA_BROWN, LTBKSLASH_FILL); 
/*Venus */ 

85 



86 

Function prototypes 
and global 

declarations 

draw_planet(0.7 * aul, 1.0 * erad, EGA_WHITE, SOLID_FILL); 
/* Earth */ 
draw_planet(l.O * aul, 1.0 * erad, EGA_LIGHTBLUE, SOLID_FILL); 
I* Mars */ 
draw_planet(l.5 * aul, 0.4 * erad, EGA_LIGHTRED, CLOSE_DOT_FILL); 
/* Jupiter *I 
draw_planet(S.2 * au2, 11.2 * erad, EGA_WHITE, LINE_FILL); 
/* Saturn */ 
draw_planet(9.5 * au2, 9.4 * erad, EGA_LIGHTGREEN, LINE_FILL); 
I* Uranus */ 
draw_planet(19.2 * au2, 4.2 * erad, EGA_GREEN, LINE_FILL); 

void draw_planet(float x_pos, float radius, int color, int 
fill_style) 
( 

setcolor (color); /*This becomes drawing color*/ 
circle(x_pos, y_org, radius); /*Draw the circle*/ 
setfillstyle(fill_style, color);/* Set pattern to fill interior 

*/ 
floodfill(x_pos, y_org, color); /*Fill the circle*/ 

void get_key(void) 
( 

outtextxy(SO, max_y - 20, "Press any key to exit"); 
qetch(); 

This program calls five programmer-defined functions. Their 
declarations appear right after the #include statements. These 
declarations could appear elsewhere, but then there wouldn't be 
any type checking until the prototypes are reached. It is easiest to 
have them right at the start. The prototypes of void and non-int 
functions must appear before the first call to those functions. 

The global variables hold information needed for drawing the 
planets. Their values are calculated by the calc_coords function, 
and these values are used by draw_planets. Making these 
variables global (rather than declaring them inside a function) 
makes them accessible to both functions that need them. Later, 
we'll show an alternate way to share variables between two 
functions. 

Turbo C++ Getting Started 



Setting up the graphics 
display 

Calculating the 
graphics coordinates 

main's first call is to set_graph, which "packages" a number of 
operations involving the Turbo C++ graphics library. set_graph 
uses the library function initgraph with the DETECT mode to 
automatically determine what kind of graphics hardware is 
present. Notice the multiple return statements-a function can 
have as many return statements as needed. The first If determines 
whether there was an error initializing the graphics system (the 
code returned isn't equal to grOk ("graphics OK")-the function 
exits and returns an error code in that case. The second test 
returns an error code if neither EGA nor VGA capability is present. 
The second test is made only if the first was successful. The use of 
multiple return statements avoids the need for else statements. 

The identifiers DETECT and grOk appear not to have been 
declared anywhere. In fact, these are defined constants that are 
part of the graphics.h header file. In addition to function 
prototypes, header files frequently make useful definitions 
available to your programs. We recommend that you browse 
through graphics.h and other header files that you frequently use 
in your programs, so that you become familiar with their 
contents. All of the colors and pattern fill styles you'll encounter 
later are also defined in graphics.h. Each identifier has an integer 
value associated with it, but the use of symbolic names makes it 
much easier to see what is going on. (BLACK is much more 
meaningful than 0.) 

main checks the value returned by set_graph. If anything other 
than 1 was returned, the program displays a message and exits. 

If everything checks out, calc_coords is called next. Many begin­
ning programmers are used to thinking of the x-y dimensions of 
the graphics screen as being fixed by those provided by the 
graphics adapter they use-for example, 640x350 for EGA. The 
temptation is to hard-code these exact dimensions into your 
program. But this leads to trouble when the program is run on a 
machine that has a different graphics resolution and set of 
available colors. As discussed further in Chapter 5, "Video func­
tions" of the Programmer's Guide, the graphics library helps you 
write programs that run on a wide range of graphics adapters. 

To help make this possible, the library functions getmaxx and 
getmaxy functions return the highest x- and y-coordinates, 

Chapter 4. An introduction to C 87 



88 

respectively, for the graphics mode currently set. (This in turn was 
set by initgraph.) The remaining statements 

• set the center for the planetary circles by taking half of the 
maximum y value. 

•scale the Earth's planetary radius (which is the unit used to 
express the radii of the other planets) to 1 /200th of the width of 
the screen (the maximum x value). 

• set two distance measurements for placing the centers of the 
circles on the x-axis. Because distances in the solar system 
increase rapidly once past Mars, different scales are used for the 
inner and outer planets. As a result, the drawing won't be accu­
rate in distances, though it will accurately show the relative 
sizes of the planets. (Due to the limited size of the screen, you 
can't have both.) For the same reason, Neptune and Pluto had 
to be omitted. 

Drawing the planets The function draw_planets gathers together a series of calls to the 
function draw_planet, which does the actual work. draw_planet 
takes four parameters: x_pos, radius, color, and fill_style. 

• x_pos is the x-coordinate for the center of the planetary circle. It 
is obtained by multiplying the distance unit (au1 or au2) by the 
mean distance of the planet's orbit from the sun, expressed in 
astronomical units. (An astronomical unit is the distance of the 
Earth from the Sun, approximately 93 million miles.) 

• radius is the radius for the planetary circle. This is obtained by 
multiplying the actual planet's radius in terms of Earth's radius 
(about 4,000 miles) by erad, the number of pixels per Earth 
radius. 

•color is a constant from graphics.h that gives the color to be 
used for drawing the circle (and for filling it in) from the default 
EGA palette (which also works for VGA). 

• fill_style is a constant from graphics.h that gives the style to be 
used for filling in the circle. 

draw_planet takes these parameters and calls Turbo C++ graphics 
library routines to draw the circle and fill it in. Notice that the 
y-coordinate needed by circle and floodfill didn't have to be 
supplied as a parameter. Since it is fixed, the quantity y_org 
previously calculated by calc_coords is used. 

Turbo C++ Getting Started 



Header files, 
functions, and 

libraries 

Figure 4.4 
Simple program structure (all 

in one) 

Header files usually only 
contain function 

declarations so they can be 
included in many different 

source or module files. 

Finally, get_key uses the outtext library function to display a 
message, then calls getch, which waits for a key to be pressed to 
exit the program. 

In a small program, you will probably declare and define your 
functions in the same file, together with your main function that 
ties everything together. Such a structure is shown in the next 
figure. 

As programs get larger, however, it becomes desirable to group 
related function definitions in a separate file. For example, the 
functions dealing with the user interface might go into one file, 
the functions dealing with data processing in another, and the 
functions dealing with presentation graphics in yet a third file. 
Turbo C++ can compile all three files together to create the final 
executable program. This kind of structure is shown in the next 
figure. 

Chapter 4, An introduction to C 89 



90 

Figure4.5 
Program built from several 

files 

You could substitute an 
#include "header. h" 

command for the function 
declarations. 

#include 
#define 

int main(void) 
{ 
rMain program logic* I 

Main program 

Subtasks 
(files compiled separately) 

/ ! "' Menu Graphics Calculations 
Module 1 Module 2 Module 3 

rmenu.c*/ 
rF unction declarations*/ 
void menu(void); 

/'Function definitions*/ 
void menu(void); 
{ 

rgraphics.c*/ 
rFunction declarations*/ 
void bar_graph(inU; 

!'Function definitions*/ 
void bar_graph(inU 
{ 

rcalcs.c*/ 
rFunction declarations'/ 
float rate_ot_return_; 

!'Function definitions*/ 
float rate of return { --

Once parts of your program are stable, you can compile groups of 
functions into libraries. The declarations for the functions in each 
library can be put into a header file like those you use to access 
Turbo C++'s own libraries. Your main program includes the 
header files, thus inserting the function declarations into your 
program text. After compilation, the linker links the libraries into 
your program's object code. This process is shown in the next 
figure. 

Turbo C++ Getting started 



Flgure4.6 
Program using custom 

libraries 

Scope and 
duration of 

variables 

Scope 

Header files 
menu.h 
r declarations.,~ 

calcs.h r declarations • 

graphix.lib 

-/ s 

Main program 

#include -­
#include -----­
#include menu.h 
#include graphix.h 
#include calcs.h 

int main(void) 
{ 

~ --­
l 

compiled code 
of main function 

I 

\ 

As programs get more complicated, the question of access to 
variables used in other parts of the program arises. Every variable 
has two characteristics: scope and duration. Scope (sometimes 
called visibility) defines what parts of a program can access the 
variable. Duration specifies how long the variable remains 
accessible. 

Scope is determined by where you declare the variable. A variable 
defined within a function definition is by default local-it can only 
be accessed by code within the same function. For example, in this 
program, 

Chapter 4, An introduction to C 91 



92 

You can load and run this 
program: INTR023.C. 

/* INTR023.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

void showval(void); 

int main() 
( 

int mainvar = 100; 
showval (); 
printf( 11%d\n 11 1 funcvar); 

return O; 

void showval(void) 
( 

int funcvar = 10; 
printf (11%d\n 11 1 funcvar); 
printf( 11%d\n 11 , mainvar); 

the function showval first uses a prlntf statement to display the 
value of funcvar. This is fine, since funcvar is declared and defined 
within the showval function. The next statement, which attempts 
to display the value of mainvar, causes the compiler to complain 
(by way of an error message) that mainvar is undefined. This is 
because mainvar is defined within another function, namely main. 
It cannot be accessed from within showval. 

Even if you fix this, upon return from the call to showval, the 
main function tries to display the value of the variable funcvar. 
This, too, will cause an error because funcvar is defined within 
showval. 

To make a variable visible from within any function in the current 
source file, define itoutside any function definition. It will be 
visible after the position in the source file where it is declared, so 
the usual place to define such global variables is before the start of 
the definition of main. If the preceding example starts out like 
this, 

void showval(void); 
int mainvar, funcvar; 

and if you remove the int declaration from 

int mainvar = 100 and 
int funcvar = 10, 

Turbo C++ Geffing Started 



there will be no complaint. Remember, however, that a variable 
that is accessible from anywhere is also changeable from 
anywhere, which can lead to bugs that are hard to track down. 
Changes in value caused this way are sometimes called side effects. 

By default, global variables are accessible from any file. 
(Although, without extern references in other files, a global 
variable has file scope.) If you have a program that uses more 
than one source file, and you need to make a variable visible in a 
different source file, declare it in the current file by adding the 
keyword extern ("external"). Thus, if the file main.c defines 
int xscale, you can "see" this variable from within another file 
(such as stars.c) by declaring 

extern int xscale; 

there. The variable is assigned its memory address when it is 
originally defined. The extern declarations merely inform the 
compiler that an external variable will be referenced. 

Duration It would be inefficient to reserve memory permanently for all of 
the variables in a large program. After all, a particular function 
may only be called once. By default, variables declared within a 
function definition are auto (automatic) variables. Their memory 
is allocated when their function begins to execute. When the 
function returns to its caller, the memory is freed up for use by 
other variables. 

To try out this code, load and 
run INTR024.C. 

Occasionally you may wish to override this default behavior and 
have a variable stored permanently, even when the function it is 
declared in isn't running. The keyword static accomplishes this. 
For example, a function could count how many times it was 
called: 

/* INTR024.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 
#include <conio.h> 

void tally(void); 

int main() 
{ 

while ( get ch() ! = 'q') 
tally(); 

return O; 

Chapter 4, An introduction to C 93 



94 

Using constant 

void tally(void) 
{ 

static int called = O; 
called++; 
printf {"Function tally called %d times \n" 1 called); 

Each time the while loop in main receives a character other than q 
from getch, it calls tally. tally increments the static variable called 
on each call. C initializes static numeric variables to 0 when they 
are declared. 

Another declaration keyword that is occasionally used is register. 
When it is added to a variable declaration, register asks the com­
piler to generate code that uses one of the microprocessor's fast 
internal registers to hold the value, rather than using the slower 
random access memory. register can only profitably be used with 
data types small enough to fit in a register, such as char or int. 

Since modern compilers such as Turbo C++ optimize so that they 
take advantage of machine resources efficiently, only experienced 
programmers know when to take advantage of this feature. Using 
it inappropriately can slow down your program. It is usually best 
to let the compiler figure out whether to use a machine register 
for a variable. Also, using the keyword register doesn't guarantee 
that the variable will be saved in a register. It is only a suggestion 
to the compiler that it attempt to do so. 

values A constant is a value that is fixed-it doesn't change during the 
execution of your program. There are two ways to define 
constants: the const keyword and the #define directive. 

1. One way to create constants is to use the keyword const in a 
declaration. For example, if you declare 

const float crn_per_inch = 2.54 

you are telling the compiler that this value will never change. 
If you attempt to assign a new value to it anywhere in your 
program (including by incrementing or decrementing it with 
++or - -), you will receive an error message. Using this key­
word therefore helps Turbo C++ to catch programming slips. 

2. Another way to include constant values in a program is by 
using the #define directive. You have already seen a few 
examples, such as 

Turbo C++ Getting started 



Using macros to 

fdefine RATE 0.065 

This is not a declaration, but an instruction to the preproces­
sor, a part of Turbo C++ that will make requested changes to 
your source code before it is compiled. Here, the change is 
equivalent to using a word processor to find all instances of 
RATE and replace them with the characters 0.065. 
There are times when either const or #define is more appro­
priate. In both cases, you can change the value by simply 
changing the definition and recompiling. const gives the 
important advantage that Turbo C++ knows what data type 
the value should have (for example, const Int). On the other 
hand, a #define can appear in multiple modules without 
problems, but const float can't. 
The advantage of using constants is that when the value 
changes, you need change only this one statement. You don't 
have to search for every instance of a particular number-a 
process which, besides being tedious, is prone to error. 

hide details #define can do more than simplify substitution. You can design 
macros that take parameters (much in the same way as functions) 
and embed them in a template of text. For example, 

You can load and run this 
program: INTR025.C. 

Programmers usually use the 
1 : expression for macros. 

The extra parentheses 
around value In the macro 

definition allow for 
expressions. 

/* INTR025.C--Example from Chapter 4 of Getting Started */ 

iinclude <stdio.h> 

fdefine EVEN(value) (((value) % 2 == 0) ? (value) : ((value) + 1)) 

int main() 
( 

char inbuf[l30]; 
int num; 
printf("Enter a number: "); 
gets ( inbuf) ; 
sscanf (inbuf, "%d", &num); 
printf("\n%d", EVEN(num)); 

return O; 

In the statement printf ( "\n%d", EVEN (num)), the definition causes 
the expression EVEN(num) to be replaced in the program text by 
the following: ( (num) % 2 == 0) ? (num) : ( (num) + 1). In other 
words, whatever term is used in parentheses replaces the name 
value each place that it occurs within the template. The resulting 

Chapter 4, An Introduction to C 95 



The tradeoff between 
functions and macros is 

speed versus space. 
Functions are usually smaller 

but slower than macros. 

If you use a macro, make 
sure the value being 

substituted is of the 
appropriate type. 

expression evaluates to num if it is evenly divisible by 2 ( (num) % 2 
== 0 J; otherwise, it is odd and is replaced by (num) + 1, making it 
even. 

The EVEN macro could be written as a function, of course: 

int even (int num) 
{ 

return (num % 2 ==a ? (num) : (num + 1)); 

While the macro and the function are called in the same way, the 
way they work is actually quite different. For a macro, the 
template with the inserted value replaces the call to the macro in 
the actual source code before compilation. With a function, the 
code for the function is compiled, and the function call is 
compiled into code that passes the appropriate value(s) on the 
stack and then jumps to the function's code. The code for the 
function itself is compiled only once, no matter how many times 
the function is called. With the macro, new source code is inserted 
into the file each time the macro is called. 

Macros make the source code more readable by replacing a com­
plicated expression with an easy to recognize name. A number of 
"functions" in the run-time library are really macros; for example, 
the character classification routine isalpha which checks to see 
whether a character is part of the alphabet as opposed to being a 
digit, punctuation mark, and so on. You can study this and a 
number of other macro definitions by looking at the header file 
ctype.h. 

Building data structures 

96 

Data tends to come in bunches rather than single pieces. For 
example, you may need to keep track of the number of hours an 
employee has worked each week during the current year. Here 
you have a set of related data items of the same type (total hours, 
probably a float to allow for fractional hours). C allows you to 
declare an array to store such a set of homogeneous data. But your 
business also has to keep track of a variety of information about 
each employee, such as name, years worked, salary, department, 
and so on. These items are certainly related (they all refer to an 
employee), but they are of different types. Names are character 
strings (arrays of characters), years worked can be an int or a float 

Turbo C++ Getting started 



Figure 4.7 
Two ways to deal with sets of 

data 

Note that the different 
members of a structure may 
not always be contiguous in 

memory. 

depending on whether fractions are allowed, the salary is pro­
bably a double (to allow for well-paid employees), and the 
department can be a numeric code or a character string. 

An array 

A structure 

name[40] 

0 ... 
Memory addresses (relative) 

float hours[52]; 

.. ~ 
208 

(relative) 

typedef struct { 
char name[40]; 
int dept_no; 
float rate; 
float hours; 

employee; 

dept_no hours 
rate 

... 39 42 46 49 

In addition to organizing your data, you need a way that you can 
easily find the particular item you want to work with. Since all 
this data is actually stored in blocks of memory addresses (some­
thing like house addresses on a street), you can point to the data 
you want by using addresses. In this section, you'll learn how to 
use pointers to access data structures. 

Declaring and initializing an array 

An array is a chunk of memory that is used to hold a group of 
data items of the same type. For example, an array of int will hold 
the specified number of integers in consecutive memory locations. 
You specify an array by giving the type of data to be stored, the 
array name, and the number of items to be stored; put brackets 
around the number of items to be stored. 

Chapter 4, An introduction to C 97 



Arrays start at index 0 and 
end at a position one less 

than their assigned size. 

To try this one out, load and 
run INTR026.C. 

98 

type name[size]; 

Here is how you might declare an array that will hold the total 
hours worked per week for an employee for one year: 

float hours [ 52]; 

This can be read as "hours, an array of 52 float values." 

A particular item, called an element, of the array can be referred to 
by giving the array name followed by the position of the item, in 
brackets. The first item is stored at the address pointed to by the 
array name itself. This can also be referred to as position 0. Thus 
the total for the first week in the hours array can be referred to as 
hours[OJ. The total for the tenth week would be hours[9], and the 
total for the 52nd week would be hours[51J. 

The following program initializes the array hours to 0, assigns 
values for the first four positions, and then prints the value out, 
showing how they are accessed: 

/* INTR026.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main (l 
{ 

float hours[52]; 
int week; 

/* Initialize the array */ 
for (week = O; week < 52; week++) 

hours[week] = O; 

/* Store four values in array */ 
hours[O] = 32.5; 
hours[l] = 44.0; 
hours[2] = 40.5; 
hours[3] = 38.0; 

/* Retrieve values and show their addresses */ 
printf ("Elements\t\tValue\tAddress\n"l; 
for (week = O; week < 4; week++) 

print£ ("hours [ %d] \t \t%3. lf\t%p\n", week, hours [week], 
&hours[week]); 

return 0; 

The output will look like this: 

Turbo C++ Getting started 



The addresses will vary from 
one time to the next, and 

from one machine to 
another. 

Arrays with 
multiple 

dimensions 

Element Value Address 
hours[O] 32.5 FFOE 
hours[l] 44.0 FF12 
hours[2] 40.5 FF16 
hours[3] 38.0 FFlA 

Notice that the elements are stored in consecutive addresses, 4 
bytes apart (which is, after all, the size of a single float). The 
address operator & retrieves the address of the element 
referenced. The prlntf specifier %p (for pointer) displays the 
address as a hexadecimal number. The for statement is quite 
convenient for stepping through the elements of an array. 

You can also explicitly initialize an array at the time it is declared. 
To do so, place the values you want to assign between braces, 
separating them with commas. For example, 

int quarters[4] = {3, 10, 7, 14); 

might hold the amount of points scored by a team in each quarter 
of a football game. (Of course data like this would probably come 
from being entered at the keyboard or being read from a file. But 
you can use explicit assignments to an array to provide data for 
testing your program.) 

When you assign character constants, put each character in single 
quotes: 

char grades [ 5] = { / A' / 1 B' 1 / C' / 1 D', 'F' ) ; 

If you specify fewer values than the size of the array will accom­
modate, and the array is global or static, Turbo C++ sets the 
remaining elements to 0 (if the array is of the numeric type) or to 
null characters (in the case of an array of characters). If you 
specify more values than specified in the size of the array, you will 
receive the error message, "Too many initializers." 

Arrays can be more complex than this (for example, you can omit 
the array size, or initialize a character array with a string). How­
ever, such topics are beyond the scope of this chapter. 

Sometimes it is useful to have a set of sets of values-for example, 
if you want to store the total hours worked by 12 employees 
during 52 weeks, you can declare 

float hours[l2] [52]; 

Chapter 4, An introduction to C 99 



Load and run GAME. C. 

100 

Read this as "an array containing 12 arrays of 52 values each, of 
type float." You can think of this layout as being like a spread­
sheet with 12 columns and 52 rows. 

This next game generates a fictitious baseball score, by using an 
array called scoreboardl2J[9] representing two teams and their 
respective scores for nine innings. 

/* GAME.C--Example from Chapter 4 of Getting Started */ 

#include <stdlib.h> 
#include <stdio.h> 
#include <conio.h> 

#define DODGERS 0 
#define GIANTS 1 

void main(void) 
( 

int scoreboard [2] [9]; 
int team, inning; 

/* An array two rows by nine columns */ 

int score, total; 

randomize() ; /* Initialize random number generator */ 

/* Generate the scores */ 
for (team = DODGERS; team <= GIANTS; team++) 

for (inning = 0; inning < 9; inning++) { 
score= random(3); 
if (score == 2) /* 1/3 chance to score at least a run */ 

score = random(3) + l; /* 1 to 3 runs */ 
if (score == 3) 

score = random(7) + l; /* Simulates chance of a big 
inning of 1 to 7 runs */ 

scoreboard[team] [inning] = score; 

/* Print the scores */ 
printf("\ninning\tl 2 3 4 5 
printf ("Dodgers \t"); 
total = O; 
for (inning = O; inning <= B; inning++) 

score= scoreboard[DCDGERS] [inning]; 
total += score; 
printf ( "%d ", score); 

printf (" %d", total); 

printf ("\nGiants\t "l; 
total = O; 
for (inning = O; inning < 9; inning++) ( 

7 B 9 Total \n"l; 

Turbo C++ Getting started 



Arrays and strings 

Remember that string arrays 
need an extra element for 
the ending null character. 

score = scoreboard[GIANTS] [inning]; 
total += score; 
printf("%d ", score); 

print£(" %d\n", total); 

Not surprisingly, when two array dimensions are involved, two 
nested for loops are often used to access the array elements. The 
inner loop, using inning as the counter variable, steps through the 
nine innings, while the outer switches from team 0 (Dodgers) to 
team 1 (Giants). 

Within the body of the loop, the random function (defined in the 
header file stdlib.h) generates the score. When random is first 
called as random ( 3), there is a 1 /3 chance of score getting the value 
2. (random returns a value between 0 and one less than its 
parameter). If score has the value 2, it is recalculated as a random 
number between 1 and 3 runs. Finally, if score now is 3, a final 
random score of 1 to 7 runs is generated. The series of If state­
ments thus attempts to simulate the occasional big inning. 

Two for loops then print out the scores, totaling them as they go. 
Each one prints out one team's scores by using the team name as a 
constant value for the first dimension of the array, and varying 
the inning. Here's a sample run: 

Inning 1 2 
Dodgers 0 1 
Giants 1 1 

4 5 6 
a 1 a 1 
a 2 a a 

8 Total 
1 2 a 6 
4 1 a 9 

Strings and arrays are very similar. In fact, a string is simply an 
array of char values with a null character stuck on the end. The 
following program declares a character array (string), then lets 
you store a value in it and extract a "substring" from the full 
string (load and run INTR027.C): 

/* INTR027.C--Example from Chapter 4 of Getting Started*/ 

#include <stdio.h> 

int main() 
{ 

char string[80]; 
char number[lO]; 
int pos, num_chars; 

/* Has 79 usable elements */ 

Chapter 4, An introduction to C 101 



102 

Defining string 
variables 

printf("Enter a string for the character array: "); 
gets(string); 
printf("How many characters do you want to extract? "); 
gets(number); 
sscanf(number, 11 %d 11 , &num_chars); 

for (pos = O; pos < num_chars; post+) 
printf( 11 %c 11 , string[pos]); 

printf("\n"); 

return O; 

Here's a sample run: 

Enter a value for the character array: The quick brown fox 
How many characters do you want to extract? 9 
The quick 

It is usually more convenient to use the library routines that 
manipulate strings (such as strcat or strtok) to deal with strings 
because they automatically take care of putting a null character at 
the end of the string. If you create a string with an array 
declaration and want to use these routines with it, you must 
supply the null character yourself. (The array must be large 
enough to hold the desired string plus the null character, which 
you must put at the end of the string.) 

You can define a variable of type char to hold a single character. 
Can you define a variable of type string to hold a string? No, 
because C does not treat strings as a separate data type. Remem­
ber that a string is defined as a series of characters. One way to 
define a string variable is to declare an array of characters. Here's 
an example of how this works. 

#include <stdio.h> 
#include <string.h> 

int main() 
{ 

char message[30]; 
strcpy{message, "This is the value of msg\n"); 
puts (message) ; 
return O; 

The line char message [ 3 0] declares an array of characters (a string) 
that can hold up to 30 characters. You can only use 29 characters, 

Turbo C++ Getting started 



You can load and run this 
code, INTR028.C. 

Renaming types 

though, because there must also be room for the null character at 
the end. This chunk of 30 bytes has a starting address, which is 
stored in message. In the strepy call, the literal string 

This is the value of msg\n 

is first compiled and stored, and a null character is added at the 
end. 

When strepy runs, it copies the characters from this string, one at 
a time, into memory, starting at message's address. 

The Turbo C++ library has a variety of functions that do useful 
things with strings-you can read about them in Chapter 2, 
"Run-time library cross-reference," in the Programmer's Guide. An 
example is streat, which combines (concatenates) strings: 

/* INTR028.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 
#include <string.h> 

int main() 
( 

char name [ 60]; 
strcpy (name, "Bilbo "); 
strcat (name, "Bagg ins"); 
puts (name); 

return O; 

Here, a character array is declared, large enough to hold all 
strings you want. The strepy function stores the first string, and 
then the streat function adds (concatenates) the last name onto 
the first. (Notice that the first value of name ended with a space, so 
the names would be separated.) 

As you get into more complex data structures, it is helpful to be 
able to assign a meaningful name to them. You can do so using 
the typedef keyword. typedef gives a name to some combination 
of the standard C data types. Here are some examples: 

#include <stdio.h> 

int main() 
( 

typedef unsigned char uchar; 
uchar greek_alpha = 224, greek_beta = 225; 

Chapter 4, An introduction to C 103 



104 

Enumerated 
types 

printf ( "%c %c", greek _alpha, greek _beta); 
return O; 

The typedef declaration gives the new name uchar to the type 
unsigned char. (This is a character type that can hold all 256 
characters of the extended PC character set). The second 
statement declares greek_alpha and greek_beta to be variables of 
type uchar, and the printf statement displays their values. 

typedef doesn't actually create new data types. It just makes it 
easier to remember what kind of data you are dealing with later 
in your program. As you will see, it is particularly useful for 
giving names to more complex data types, such as enumerations 
and structures. 

Data sometimes fits logically into an ordered series where one 
item follows another-for example, the days of the week. It is 
convenient to use a loop to step through such values. 

for (day = mon; day <= fri; day++) 
/* add hours worked that day to total for week */ 

Since a loop steps through numeric values, you need to give mon 
an integer value, tues the next integer, and so on. You could do 
this with #define statements: 

#define mon O 
#define tues 1 
#define wed 2 
#define thurs 3 
foefine fri 4 

However, the enum (enumerated) type offers a more compact 
way to do this, as shown in this example (load and run 
INTR029.C): 

/* INTR029.C--Example from Chapter 4 of Getting Started */ 

tinclude <stdio.h> 

int main() 
{ 

enum workday {mon, tues, wed, thurs, fri}; 
int day; 

for (day = mon; day <= fri; day++) 
printf ( 11 %d\n11 , day) ; 

Turbo C++ Getting started 



Combining data 
into structures 

Using parts of a 
structure 

return O; 

The first declaration automatically assigns the value 0 to mon, 1 to 
tues, 2 to wed, and so on. These names can now be used to specify 
the starting value and limit for a for loop, as shown. 

Note that the numbers used in an enumeration don't have to be 
consecutive-you can override the default order by assigning 
values as follows: 

enum scores {touchdown = 6, field_goal = 3, safety= 2, point_after = l}; 

The statement 

printf ( "%d\n", touchdown + point _after + field _goal) 

displays the result 10. 

Arrays and enumerations give two powerful ways to handle sets 
of data values of the same type. A structure bundles together a set 
of data values of different types (or at least values that have 
different meanings). For example, information about an employee 
could be stored in the following structure: 

struct employee { 
char last_name[30]; 
char first_name[20]; 
char initial; 
double employee_no; 
double SS_no; 
char dept_code[3]; 
float annual_salary; 

You have now defined a new data type employee and specified 
the list of data items (members) that a variable of employee type 
will have. As you can see, a variety of data types can be used-in 
this example, character arrays, single characters, doubles, and 
floats. 

The next example bundles together the information that the 
earlier program PLANETS.C needed to draw a planet. We'll use it 
later to illustrate how parts of a structure can be initialized and 
accessed. Here they are displayed (load and run INTR030.C): 

Chapter 4. An introduction to C 105 



A field of a structure is 
referred to by using the 

structure name followed by a 
period and the member 

name. Thus mars. distance is 
the member containing the 

distance of Mars from the 
Sun in astronomical units. 

/* INTR030.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 
#include <string.h> 

typedef struct { 
char name [ 10]; 
float distance; 
float radius; 

planet; 

planet mars; 

int main() 
{ 

strcpy(mars.name,"Mars"); 
mars.distance = 1.5; 
mars.radius = 0.4; 

printf("Planetary statistics:\n"); 
printf("Name: %s\n", mars.name); 
printf("Distance from Sun in AU: %4.2f\n", mars.distance); 
printf("Radius in Earth radii: %4.2f\n", mars.radius); 

return O; 

The typedef keyword gives the name planet to a struct (structure) 
consisting of three members, or fields: The planet name is an 
array of characters, while the distance and radius are floating­
point values. The declaration struct planet mars creates a variable 
mars whose type is planet (in other words, it makes a copy of the 
structure defined earlier). In main, values are assigned to these 
three members. 

As shown here, the library function strcpy is handy for copying a 
string value into structure fields that hold arrays of characters. 
The numeric values are simply assigned as usual. 

The printf statements at the end of the program use the 
name.member notation to reference and print out the values that 
were just assigned. 

Building proper declarators 

106 

A declarator is a statement in C that you use to declare functions, 
variables, pointers, and data types. And C allows you to build 
very complex declarators. This section gives you some examples 

Turbo C++ Getting Started 



of declarators so that you can get some practice at designing (and 
reading) them; it'll also show you some pitfalls to avoid. 

Traditional C programming has you build your complete 
declarator in place, nesting definitions as needed. Unfortunately, 
this can make for programs that are difficult to read (and write). 

Consider, for example, the declarators in the next table, assuming 
that you are compiling under the small memory model (small 
code, small data). 

Table 4.9: Declarators without typedefs 

int fl(); 
int *pl; 
int *f2 () ; 
int far *p2; 
int far *f3 (); 

int * far f4 (); 

int (*fpl) (int); 

int (*fp2) (int *ip); 

int (far *fp3) (int far *ip) 

int (far *list[5]) (int far *ip); 

Function returning int 
Pointer to int 
Function returning pointer to int 
Far pointer to int 
Near function returning far pointer to int 

Far function returning near pointer to int 

Pointer to function returning int and accepting int parameter 

Pointer to function returning int and accepting pointer to int 

Far pointer to function returning int and accepting far pointer 
to int 

Array of five far pointers to functions returning int and 
accepting far pointers to int 

int (far *gopher (int (far * fp [5)) \ Nearfunction accepting array of five far pointers to functions 
(int far *ip))) (int far *ip); Returning int and accepting far pointers to int, and returning 

one such pointer (the backslash allows for line continuation) 

These are all valid declarators; they just get increasingly hard to 
understand. However, with judicious use of typedef, you can 
improve the legibility of these declarators. 

Here are the same declarators, rewritten with the help of typedef 
statements: 

Chapter 4, An introduction to C 107 



Table 4.10: Declarators with typedefs 

int fl{); 

typedef int *intptr; 
intptr pl; 
intptr f2(); 

typedef int far *farptr; 
farptr p2; 
farptr f3 {); 
intptr far f4(); 

Function returning int 

Pointer to int 
Function returning pointer to int 

Far pointer to int 
Near function returning far pointer to int 
Far function returning near pointer to int 

typedef int (*fncptrl) (int); 
fncptrl fpl; Pointer to function returning int and accepting int parameter 

typedef int (*fncptr2) (intptr); 
fncptr2 fp2; Pointer to function returning int and accepting pointer to int 

typedef int (far *ffptr) (farptr); 
ffptr fp3; Far pointer to function returning int and accepting far pointer 

to int 

typedef ffptr ffplist[SJ; 
ffplist list; Array of five far pointers to functions returning int and 

accepting far pointers to int 

ffptr gopher(ffplist); 

Pointers 

108 

Near function accepting array of five far pointers to functions 
returning int and accepting far pointers to int, and returning 
one such pointer 

As you can see, there's a big difference in legibility and clarity 
between this typedef declaration of gopher and the previous one. If 
you'll use typedef statements and function prototypes wisely, 
you'll find your programs easier to write, debug, and maintain. 

Every variable has a unique memory address that indicates the 
beginning of the memory area occupied by its value. The amount 
of memory used depends on the type of data involved. In the case 
of an int, this area is 2 bytes, while a float uses 4 bytes. For an 
array, the area occupied is equal to the number of elements times 
the size needed for one value of the declared data type. For a 
structure, the area used is equal to the sum of the areas needed for 
the structure's members, plus some padding if needed and if you 
use the -a option. Because in all cases data is stored in an orderly, 
predictable way, it is possible to access data by manipulating a 

Turbo C++ Getting Started 



Memory a/location Is 
discussed further in Chapter 

4 of the Programmer's Guide, 
"Memory models, floating 

point, and overlays.· 

Declaring and 
using a pointer 

Most programmers use 
names that include an 

abbreviation of the word 
pointer: for example, intptr. 

Load and run 1NTR03 7 .C. 

variable that contains the relevant address. Such a variable is 
called a pointer. 

Why are pointers useful? First, they allow you to access and ma­
nipulate structured data easily, without having to move the data 
itself around in memory. For example, by being set to the addres­
ses of consecutive elements in an array, a pointer can be used to 
initialize the array or to retrieve data from it. By adding to or 
subtracting from the pointer, you point to different data items. 

Pointers can also be used to allow a function to receive and 
change the value of a variable. This can avoid the need for de­
claring global variables. 

Also, pointers are needed for allocating memory while your pro­
gram is running: In essence, you ask for a chunk of free memory 
(via a function such as malloc), and get back a pointer to the first 
available address. 

A pointer declaration takes this form: 

type *name 

where type is any data type. Here are some example pointer 
declarations: 

int *intptr; 
float *fltptr; 
char *string; 

/* Points to an integer */ 
/* Points to a floating-point value */ 
/* Points to a character value */ 

You can declare a pointer to any object in memory, including 
arrays, structures, functions, and even other pointers. 

To access the value pointed to by a pointer, precede the pointer 
name with an asterisk. For example, *intptr yields the value stored 
at the address stored in the pointer intptr. Because this value is 
reached indirectly (rather than the case of a regular variable, 
where the value is stored at the variable's own address), this pro­
cess is called indirection or dereferencing. 

The following program declares a pointer and uses it to retrieve 
the value of a variable: 

/* INTR031.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 

Chapter 4, An introduction to C 109 



The values of the addresses 
may vary. 

110 

int intvar = 10; 
int *intptr; 
intptr = &intvar; 

printf("Location of intvar: %p\n", &intvar); 
printf("Contents of intvar: %d\n" 1 intvar); 
printf("Location of intptr: %p\n", &intptr); 
printf("Contents of intptr: %p\n11 1 intptr); 
printf("The value that intptr points to: %d\n", *intptr); 

return 0; 

Here's the output: 

Location of intvar: FFDC 
Contents of intvar: 10 
Location of intptr: FFDE 
Contents of intptr: FFDC 
The value that intptr points to: 10 

First, the int variable intvar is declared and assigned a value of 10. 
The next declaration declares an int* variable called intptr. (Read 
this declaration as "intptr, a pointer to an integer value.") The 
next statement assigns intptr the address of the variable intvar 
(notice the &, or address-of operator). A pointer must always be 
assigned the address of the object it is intended to point to. If you 
neglect this, the pointer will contain a garbage address. If you try 
to store something at such an address by means of the pointer, 
you risk destroying part of your program or data, or even halting 
the system. 

As you can see from the output of the printf statements, intvar and 
intptr are stored at different addresses, since they are different 
variables. (Since they were declared consecutively, their addresses 
happen to be close together, but that has nothing to do with how 
pointers work.) As you can see, intptr contains the address of 
intvar (which had been assigned to it previously). The last printf 
statement prints the value pointed to by intptr; in other words, the 
contents of the address stored there. Since that address is that of 
intvar, the value pointed to is the contents of intvar. The next fig­
ure may help you visualize all this. 

Turbo C++ Getting Started 



Flgure4.8 
How pointers point (and 

what they point to) 

Pointers and 
strings 

This example is based on the 
earlier example of a string as 

a character array, but has 
been rewritten to use a 

pointer. To try it out, load and 
run INTR032.C. 

Address Contents Code 

l=iF® •·••• 1P • !~-1 p~ rBli6i~~i~~t 
•·••••}/•····••/ ••••••••••••••••••••••• ITTJ·liii~l#IP!t'·}/ > M~•,'*'1~HMilii!CW~M· 

i~~ ••••••••·~~·• ill i~-; i1111r~••~), 

You've seen that you can access individual characters from a 
string by using indexing. For example, if you declare a string char 
name[20] and store the string "Madonna" in it, the value of 
name[2] is the character d (remembering that the count starts at 0: 
name[OJ is M). An alternative way to handle strings is to declare a 
pointer to character and use it to manipulate the string. 

/* INTR032.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 

int main() 
{ 

char name[40]; 
char number[lO]; 
char *str_ptr = name; 
int pos, num_chars; 

printf{"Enter a string for the character array: "); 
gets (name); 
printf("How many characters do you want to extract?"); 
gets(number); 
sscanf(number, "%d", &num_chars); 

for (pos = O; pos < num_chars; post+) 
printf ("%c", *str _ptr++); 

printf ( "\n") ; 

return 0; 

Chapter 4, An introduction to C 111 



Pointer arithmetic 

112 

Pointers, 
structures, and 

lists 

Notice that str _ptr is declared to be a pointer to character, and 
then assigned the address of the character array name. This could 
have been written in two separate statements: 

char *str _ptr; 
strptr = name; 

but by now you know that C programmers seldom use two state­
ments when one will do. Also notice that the address assigned is 
name, not &name. Referring to the name of an array (or structure) 
gets you the first address used to store the array's values. This is 
equivalent to saying &name [ 0 J (the address of the first element of 
the array name); you will sometimes see the latter notation. 

The rest of the program works in the same way as before, until 
you get to the for loop that extracts the requested substring. In the 
old version, the character being retrieved each time the loop exe­
cutes was indexed from the array by using the expression 
name[posJ. Here, however, the pointer is used, so the reference is 
to the value currently being pointed at: *str _ptr++. (The pointer is 
incremented each time so that it points to the next value.) 

Noncharacter arrays are handled with p0inters in the same way 
as strings are. You increment the pointer to point to the next 
element in the array; you decrement it to point to the previous 
item. You have to check, of course, to make sure that you aren't 
pointing to a location outside the bounds of the array. You 
usually do this by setting the appropriate limit for the loop 
statement used. 

It is important to remember that wh& the pointer ptr is incre­
mented, it does not necessarily point to the next address-in fact, 
it usually doesn't. The distance between addresses pointed to is 
equal to the size of the data type to which the pointer points. An 
Int pointer points two addresses ahead when it's incremented; a 
double pointer points eight addresses ahead. C handles this 
automatically. 

You may remember that you get the value of a member field of a 
structure by using the notation structure_name.member _name, so 
that the salary field in the employee structure named jim would 
be jim.salary. How do you access structures and parts of structures 

Turbo C++ Getting started 



Figure 4. 9 illustrates how this 
program works. 

The ->notation Is explained 
onpage 114. 

with a pointer? The following example shows how (load and run 
SOLAR.C): 

/* SOLAR.C--EKample from Chapter 4 of Getting Started */ 

#include <graphics.h> 
#include <stdio.h> 
#include <string.h> 

typedef struct { 
char name[lO]; 
float distance; 
float radius; 
int color; 
int fill_type; 

planet; 

planet solar_system[9]; 
planet *planet_ptr; 
int planet_num; 

int main{) 
{ 

strcpy(solar_system[O].name,"Mercury"); 
solar_system[O].distance = 0.4; 
solar_system[O].radius = 0.4; 
solar_system[O].color = EGA_YELLOW; 
solar_system[O].fill_type = EMPTY_FILL; 

planet_ptr = solar_system; 
planet_ptr++; /* Point to second planet structure */ 
strcpy (planet_ptr->name,"Venus"); 

planet_ptr->distance = 0.7; 
planet_ptr->radius = 1.0; 
planet_ptr->color = EGA_BROWN; 
planet_ptr->fill_type = SOLID_FILL; 

planet_ptr = solar_system; /* Reset to first element */ 
for (planet_num = O; planet_num < 2; planet_num++, planet_ptr++) 

printf("\nPlanetary statistics:\n"); 
printf("Name: %s\n", planet_ptr->name); 
printf("Distance from Sun in AU: %4.2f\n", 

planet_ptr->distance); 
printf ("Radius in Earth radii: %4.2f\n", planet _ptr->radius); 
printf("Color constant value %d\n", planet_ptr->color); 
printf("Fill pattern constant value %d\n", 

planet_ptr->fill_type); 

return O; 

Chapter 4, An Introduction to C 113 



Figure 4.9 
Using pointers to access an 

array of structures 

Since planet_ptr was 
declared as a pointer to 

structure type planet, the 
bu/It-In pointer arithmetic 
takes care of moving the 

pointed-to address enough 
bytes to reach the next 

element of so/ar_system. 

114 

The following figure illustrates how the previous code might 
"look" during the first few steps through its for loop: 

Increment 
planet_ptr, ... 

increment 
it again .... 

planet solar_system[9] 
Array of nine planet structures 

The planet structure is an expanded version of the one shown 
earlier, with members added for the color and fill type. The next 
declarations 

planet solar_system[9]; 
planet *planet_ptr; 

specify an array, solar _system, whose nine members are copies of 
the planet structure and planet_ptr, a pointer to a planet structure. 

The first group of statements in main initialize the members of the 
first planet structure, using array and structure notation. To refer 
to a member of a structure in an array of structures, use the form 

array_name[index] .member_ name 

Thus the distance of the fourth planet in solar _system can be 
referred to as solar_system[3] .distance. 

The second block of statements initialize a planet structure using 
pointers. Before you can use a pointer, you must assign it a valid 
address. The statement planet _ptr = solar_ system sets planet_ptr to 
point to the first element of the array solar _system. This is the 
element that has just been initialized, containing information for 
the planet Mercury. Therefore, the statement planet_ptr++ points 
to the next (second) element. 

With the pointer properly pointed, information about the second 
planet (Venus) is assigned to the second element of solar _system. 

Turbo C++ Getting Started 



Using pointers to 
return values from 

functions 

Here, however, rather than array index notation, you see the use 
of the pointer planet_ptr to access the members of the planet 
structure. This takes the form 

pointer_name->member_name 

so that, for example, the distance member for the planet structure 
currently being pointed to is planet_ptr->distance. 

The rest of the program displays the two planet structures that 
have been initialized. First, planet_ptr is set back to the first ele­
ment by being assigned the address solar _system. The for loop 
increments planet_ptr and obtains the structure's member values 
using the notation just discussed. Notice that the reference 
planet _ptr->distance is a bit less cumbersome than 

solar_system(index] .distance 

where index is the current element number. 

In fact, for any array, the index of an array is actually a pointer to 
the address of the array plus the index value, which internal 
pointer arithmetic converts to the array address plus 

index * sizeof(type) 

where type is the declared type of the array, and sizeof is a C 
operator that returns the number of bytes used by a type or 
variable. 

Pointers also allow you to change the actual value of the variable 
or variables used in calling a function. So far, functions have been 
called only with constant values or the names of variables. When 
you make a call such as draw (x _ cor, y_cor, size, color), you are 
passing the values of the specified variables to the function draw. 
The function actually gets copies of these values and can refer to 
them by name and manipulate them, but this has no effect on the 
actual variables used by the caller. 

Sometimes it is useful to be able to call a function using variable 
names and have the function actually change the values of the 
variables themselves. This function is an example: 

void swap(int *a, int *bl 

swap swaps the values of the two variables with which the 
function is called. In order for the function to access the variables 
themselves, however, it must have not their values but their 

Chapter 4, An introduction to C 115 



116 

addresses, so it can write the new values back to their location in 
memory. Therefore, the parameters are pointers to the appro­
priate variables, not the variables themselves. Since a pointer 
refers to an address, you would call this function to swap the 
variables x and y using the statement swap ( &x, &y). 

Here is the definition for the swap program, together with a main 
function that tests it (load and run INTR033.C). 

/* INTR033.C--Example from Chapter 4 of Getting Started */ 

~include <stdio.h> 

void swap(int *, int*); /*This is swap's prototype*/ 

int main() 
{ 

int x = 5, y = 7; 
swap{&x, &y); 
printf ( "x is now %d and y is now %d\n 11 , x, y) ; 

return O; 

void swap(int *a, int *b) 
{ 

int temp; 
temp = *a; 
*a = *b; 
*b = temp; 

/* swap is actually defined here */ 

Notice that the swap function uses indirection (the* notation) to 
refer to the values contained in the variables x and y. The value of 
x is first stored in a temporary variable, then the value of y is 
stored in x. The former value of x is then obtained from the 
temporary variable and stored in y. 

Turbo C++ Getting Started 



Flgure4.10 
Using pointers in a function Initialize variables: 

I int x = 5. y = 7; 1 

call the flllction: 

swap(&x, &y); 

Results: 
void swap(int *a, int *b) 
!. 

mt temp; ~ 
temp = *a; "'-./' 
*a = *b; 
*b =temp; 

} 

When you use pointers, a function is not limited to just returning 
one value via a return statement. A function can change the 
values of any variables it is given access to. While this could also 
be achieved (in this example) by making a and b global variables 
(declaring them outside of a function definition), it is easy to 
accidentally change a global variable. Pointers keep the trans­
action private. 

Using system resources 

Thus far, the example programs have operated nearly in a 
vacuum. Some programs read data that you typed at the key­
board, and every program displayed something on the screen. 
None of the data was stored in permanent form-if you want the 
data back, you must run the program again. In real applications, 
programs usually have to read in the bulk of their data from the 
disk drive, a communications port, or some other source. When 

Chapter 4, An introduction to C 117 



118 

Using files and 

the data has been processed, the program may need to send it to 
the printer or write it to a disk file for later use. This is true of 
word processors, spreadsheets, and databases, for example. 

This section shows you how you can use Turbo C++ to read data 
from or write data to a disk file. Conceptually, Turbo C++ sets up 
something called a stream through which the data moves. There 
are lower-level ways to work with MS-DOS files, and library 
functions for dealing with them, but the stream features are 
recommended for portability. They allow you to use files without 
worrying about the target machine's operating system. 

A stream represents a file on the disk or some other device from 
which data can be read or to which it could be sent. (Many 
devices are used for input or output but not both-you can't 
usually read data from a printer, and data sent to a keyboard 
won't accomplish much.) In your program, you don't manipulate 
the stream directly. Instead, the library defines a variable of the 
struct type FILE (which is defined in stdio.h). Since this structure 
manages a memory buffer for the file contents, you then declare a 
pointer to your FILE variable and use it to manipulate the file. 

To open a stream, you use a function (usually fopen) from the 
run-time library. You specify whether you want to read from the 
stream, write to the stream, or both. You also indicate whether 
you will treat the stream as text or binary data. 

Text streams are used for normal DOS files. The standard stream 
I/0 assumes that text files consist of lines of text that each end 
with a single newline character (the ASCII linefeed character). 
DOS, however, stores files with both a carriage return and a new­
line character following each line. When you declare a text stream, 
Turbo C++ translates CR/LF to a single linefeed on input, but 
translates the single linefeed to CR/LF when storing files on disk, 
maintaining compatibility with DOS. 

streams The basic steps involved in using a disk file with your Turbo C++ 
program are as follows 

1. Use #include <stdio.h> to include the necessary declarations 
for using files. 

2. Declare a pointer to the type FILE (defined in stdio.h). 

Turbo C++ Getting started 



Load and run INTROJ4.C. 

3. Declare the data object(s) that will be used to receive infor­
mation from the file. For example, a character array to hold a 
line of text, an array of some numeric type, or an array of 
structures. 

4. Open the file using fopen, including the file name and the type 
of access you will need (read only, writing, appending, and so 
on. See Chapter 2, "Run-time library cross-reference," in the 
Programmer's Guide for more about file access functions). 

5. Make sure the file was opened by checking the value returned 
byfopen. 

6. Use the appropriate library function(s) to write or read the 
data. For text data, fprlntf and fscanf work the same as their 
screen-oriented counterparts prlntf and sscanf. fputc and fgetc 
deal with single characters. For reading structured blocks of 
data of known size, fwrlte and tread may be more suitable. 

7. When you're done, close the file by using fclose. 

The following program opens a file, saves three lines of text in it, 
then reads them back out: 

/* INTR034.C--Example from Chapter 4 of Getting Started */ 

#include <stdio.h> 
#include <stdlib.h> 

FILE *textfile; 
char line [Bl]; 

/* Pointer to file being used */ 
/* Char array to hold lines read from file */ 

int main() 
( 

/* Open file, testing for success */ 
if ((text file : fopen ("intro34. txt 11 1 "w")) :: NULL) 

printf("Error opening text file for writing\n"); 
exit(O); 

I* Write some text to the file */ 
fprintf (text file, "%s\n", "one"); 
fprintf (textfile, "%s \n 11 1 "two"); 
fprintf(textfile, "%s\n", "three"); 

/* Close the file */ 
fclose(textfile); 

/* Open file again */ 
if ((textfile: fopen("intro34.txt", "r")) :: NULL) 

printf ("Error opening text file for reading\n"); 
exit(O); 

Chapter 4, An Introduction to C 119 



/* Read file contents */ 
while ( (fscanf(textfile, 11 %s 11 , line) != EOF)) 

printf("%s\n", line); 

/* Close file *I 
fclose(textfile); 

return O; 

Opening a stream You have actually been using files all along. Every C program has 
automatic access to five streams, as shown in the next table. 

Table 4.11 
Preopened streams in Turbo 

C++ 

Name Function Connected to 

stdin Standard input Keyboard 
std out Standard output Screen 
std err Standard error Screen 
stdaux Standard auxiliary Serial port 
std pm Standard print Printer port 

The first two default streams can be redirected in various ways. 
Due to their default connections, your Turbo C++ programs 
expect to get input from the keyboard and send their output to 
the screen. When you open a file with a pointer to the FILE type, 
you are opening an additional stream. 

In the example program, a pointer textfile to a stream is declared. 
The fopen statement associates this pointer with the disk file 
named text, which is opened with the access mode w (for write 
access). The if statement checks for the return value NULL, which 
is a predefined pointer indicating failure to open the file. 

Writing to the file fprintf writes the three lines of text to the file. fprintf works just 
like the familiar printf except that it gives the name of the stream 
pointer first, then the format specifier, and then the data to be 
written. Notice that a new line (\n) must be used to separate the 
lines of text so that they can be read later with fscanf. After the 
data is written, the file is closed with fclose. 

Reading from the file To read the text back from the file, the file is opened again with 
fopen, this time in read mode. fscanf reads each line into the 
character array line. A regular printf statement displays the line on 
the screen. The whole thing goes into a while loop that checks for 
fscanf to return the predefined value EOF (end of file). 

120 Turbo C++ Getting Started 



c H 

This chapter covers the basic 
Ideas of C++; Chapter 6, 

"Hands-on C++, ·takes you 
on a rapid romp through 

several C++ program 
examples. 

Chapter 5, A C++ primer 

A p T E R 

5 

AC++ primer 

This chapter gives you the feel and flavor of the C++ language. 
We demystify some of the jargon and combine a little theory with 
simple, illustrative programs. The source code for these examples 
is provided on your distribution diskettes so you can study, edit, 
compile, and run them. (The graphics examples, of course, will 
run only if you have a graphics adapter and monitor. Any CGA, 
EGA, VGA, or Hercules setup will do.) 

Turbo C++ provides all the features of AT&T's C++ version 2.0. 
C++ is an extension of the popular C language, adding special 
features for object-oriented programming (OOP). 

OOP is a method of programming that seeks to mimic the way we 
form models of the world. To cope with the complexities of life, 
we have evolved a wonderful capacity to generalize, classify, and 
generate abstractions. Almost every noun in our vocabulary re­
presents a class of objects sharing some set of attributes or beha­
vioral traits. From a world full of individual dogs, we distill an 
abstract class called dog. This allows us to develop and process 
ideas about canines without being distracted by the details con­
cerning any particular dog. The OOP extensions in C++ exploit 
this natural tendency we have to classify and abstract things-in 
fact, C++ was originally called "C with Classes." 

Three main properties characterize an OOP language: 

• Encapsulation: Combining a data structure with the functions 
(actions or methods) dedicated to manioulating the data. 

121 



122 

Encapsulation is achieved by means of a new structuring and 
data-typing mechanism-the class. 

•Inheritance: Building new, derived classes that inherit the data 
and functions from one or more previously-defined base classes, 
while possibly redefining or adding new data and actions. This 
creates a hierarchy of classes. 

•Polymorphism: Giving an action one name or symbol that is 
shared up and down a class hierarchy, with each class in the 
hierarchy implementing the action in a way appropriate to 
itself. 

Borland's C++ gives you the full power of object-oriented pro­
gramming: 

•more control over your program's structure and modularity 

•the ability to create new data types with their own specialized 
operators 

•and the tools to help you create reusable code 

All these features add up to code that can be more structured, 
extensible, and easier to maintain than that produced with non­
object-oriented languages. 

To achieve these important benefits of C++, you may need to 
modify ways of thinking about programming that have been 
considered standard for many years. Once you do that, however, 
C++ is a simple, straightforward, and superior tool for solving 
many of the problems that plague traditional software. 

Your background may affect the way you look at C++: . 

If you are new to C and C++. You may at first have some difficulty 
with the new concepts discussed in this chapter, but working 
through (and experimenting with) the examples will help make 
the ideas concrete. Before you begin, you should make sure you 
understand the basic elements of the C language (you may wish 
to review Chapter 4 before continuing here). As a beginner, you 
have one very real advantage: You probably have fewer old pro­
gramming habits to unlearn. 

It you are an experienced C programmer. C++ builds upon the 
existing syntax and capabilities of C. This makes the learning 
curve much gentler than if you had to learn a whole new lan­
guage. It also allows you to port existing C programs to C++ with 
a minimum of recoding. You aren't losing C's power and effi-

Turbo C++ Getting Started 



Encapsulation 

Chapter 5. A C++ primer 

ciency: You're adding the representational power of classes and 
the security of controlling access to internal data. 

If you program In Turbo Pascal 5.5. Turbo Pascal 5.5 embodies 
many of the same object-oriented features found in C++. While 
you will have to deal with basic syntax differences between the 
two languages, you will find that Turbo Pascal 5.5 objects and 
Turbo C++ classes are structured similarly. You will recognize 
C++ member functions as being like Turbo Pascal 5.S's methods, and 
may note many other similarities. The main difference you will 
observe is that C++ has tighter control over data access. 

If you are experienced in another object-oriented programming 
language. You will find some differences in C++: 

•First, the syntax of C++ is that of a traditional, procedural 
language. 

•Second, the way C++ and Smalltalk actually deal with objects 
during compilation is different. Smalltalk's binding is done 
completely at run time (late binding); C++ allows both compile­
time (early) binding and late binding. 

In this chapter, we begin by describing the three key OOP ideas­
encapsulation, inheritance, and polymorphism-in more detail. 
The first listings show fragments of code to illustrate each topic. 
Later, we present complete, compilable programs. The main ex­
ample develops object-oriented representations useful for 
graphics, but occasional side tours show how C++ works with 
strings and other data structures. 

How does C++ change the way you work with code and data? 
One important way is encapsulation: the welding of code and data 
together into a single class-type object. For example, you might 
have developed a data structure, such as an array holding the 
information needed to draw a character font on the screen, and 
code (functions) for displaying, scaling and rotating, highlighting, 
and coloring your font characters. 

In traditional C, the usual solution is to put the data structures 
and related functions into a single separately compiled source file 
in an attempt to treat code and data as a single module. While this 
is a step in the right direction, it isn't good enough. There is no ex-

123 



In these manuals, we use 
bold type to distinguish the 

keyword class from the 
generic word "class.· 

plicit relationship between the data and the code, and you or 
another programmer can still access the data directly without 
using the functions provided. This can lead to problems. For ex­
ample, suppose that you decide to replace the array of font 
information with a linked list? Another programmer working on 
the same project may decide that she has a better way to access 
the character data, so she writes some functions of her own that 
manipulate the array directly. The problem is that the array isn't 
there any more! 

C ++ comes to the rescue by extending the power of C's struct and 
union keywords, and by adding a keyword not found in C: class. 
All three keywords are used in C++ to define classes. 

In C++, a single class entity (defined with struct, union, or class) 
combines functions (known as member functions) and data (known 
as data members). You usually give a class a useful name, such as 
Font. This name becomes a new type identifier that you can use to 
declare instances or objects of that class type: 

class Font { 
II here you declare your members: both data and functions; 
II don't worry how for the moment. 

) i 
Font Tiffany; II declares Tiffany to be of type class 

11 Font. 

Note that in Turbo C++ you can now use two slashes(//) to 
introduce a single-line comment in both C and C++. You can still 
use the /* *I comment characters if you prefer them; in fact, they 
are especially useful for long comments. 

Warning! Use of the II comments is not usually portable to other C 
compilers. However, it is portable to other C++ compilers. 

124 

The variable Tiffany is an instance (sometimes called an 
instantiation) of the class Font. You can use the class name Font 
very much like a normal C data type. For example, you can 
declare arrays and pointers: 

Font Times[lO); II declare an array of 10 Fonts 
Font* font_ptr; II declare a pointer to Font 

A major difference between C ++ classes and C structures 
concerns the accessibility of members. The members of a C 
structure are freely available to any expression or function within 
their scope. With C++, you can control access to struct and class 
members (code and data) by declaring individual members as 

Turbo C++ Getting started 



C++ structs and unions are 
not quite the same as the C 

versions. 

Chapter 5, A C++ primer 

public, private, or protected. (AC++ union is more like a C union, 
with all members public.) We'll explain these three access levels in 
more detail later on. 

C ++ structures and unions offer more than their C counterparts: 
they can hold function declarations and definitions as well as data 
members. In C++, the keywords struct, union, and class can all 
be used to define classes. 

• A class defined with struct is simply a class in which all the 
members are public by default (but you can vary this 
arrangement if you wish). 
A class defined with union has all its members public (this 
access level cannot be changed). 

• In a class defined with class, the members are private by 
default (but there are ways of changing their access levels). 

So, when we talk about classes in C++, we include structures and 
unions, as well as types defined with the keyword class. 

Typically, you restrict member-data access to member functions: 
you usually make the member data private and the member 
functions public. 

Returning to the problem of handling fonts, how does the C++ 
class concept help? 

By creating a suitable Font class, you can ensure that the private 
font data can be accessed and manipulated only through the 
public Font member functions that you have created for that 
purpose. You are now free at any time to change the font data 
structure from an array to a linked list, or whatever. You would, 
of course, need to recode the member functions to handle the new 
font data structure, but if the function names and arguments are 
unchanged, programs (and programmers) in other parts of your 
system will be unaffected by your improvements! 

The next figure compares the ways C and C++ provide access to a 
font. 

125 



Figure 5.1 
Traditional C versus 
encapsulated C++ 

Inheritance 

126 

A C STRUC"TURE 
AND CODE 

r Code that does something •1 
r with the data: ·1 

{ 
inlt( ... ); 
get( ... ); 
sort( .•. ); 
print( ... ); 

} 

AC++ CLASS 

r Member functions •t 

O constructor( ... ) 

eget( ... ) 

osort( ... ) 

e print( ... ) 

} 

Thus the technique of encapsulation in classes helps provide the 
very real benefit of modularity, as found in languages such as Ada 
and Modula-2. The C++ class establishes a well-defined interface 
that helps you design, implement, maintain, and reuse programs. 
Debugging a C ++ program is often s~pler since many errors can 
be quickly traced to one particular class. 

The class concept leads to the idea of data abstraction. Our font 
data structure is no longer tied to any particular physical imple­
mentation; rather, it is defined in terms of the operations (member 
functions) allowed on it At the same time, the traditional C 
philosophy that views a program as a collection of fu.nctions, with 
data as second-class citizens, has also shifted. The C++ class weds 
data and function as equal, interdependent partners. 

The descriptive branches of science (required before the 
explanatory and predictive aims of scien.ce can bear fruit) spend 
much time classifying objects according to certain traits. It often 
helps to organize your classification as a family tree with a single 
overall category at the root, with subcategories branching out into 
subsubcategories, and so on. 

Turbo C++ Geff/ng started 



Figure 5.2 
A partial taxonomy chart of 

Insects 

Chapter 5, A C++ primer 

Entomologists, for example, classify insects as shown in Figure 
5.2. Within the phylum insect there are two divisions: winged and 
wingless. Under winged insects is a larger number of categories: 
moths, butterflies, flies, and so on. 

This classification process is called taxonomy. It's a good starting 
metaphor for OOP's inheritance mechanism. 

The questions we ask in trying to classify some new animal or 
object are these: How is it similar to the others of its general class? 
How is it different? Each different class has a set of behaviors and 
characteristics that define it. We begin at the top of a specimen's 
family tree and start descending the branches, asking those 
questions along the way. The highest levels are the most general, 
and the questions the simplest: Wings or no wings? Each level is 
more specific than the one before it, and less general. 

Once a characteristic is defined, all the categories beneath that defi­
nition include that characteristic. So once you identify an insect as 
a member of the order diptera (flies), you needn't make the point 
that a fly has one pair of wings. The species fly inherits that 
characteristic from its order. 

OOP is the process of building class hierarchies. One of the im­
portant things C++ adds to C is a mechanism by which class types 
can inherit characteristics from simpler, more general types. This 
mechanism is called inheritance. Inheritance provides for common­
alty of function while allowing as much specialization as needed. 
If a class D inherits from class B, we say that D is the derived class 
and B is the base class. 

127 



Polymorphism 

Overloading 

128 

It is by no means a trivial task, though, to establish the ideal class 
hierarchy for a particular application. The insect taxonomy took 
hundreds of years to develop, and is still subject to change and 
acrimonious debate. Before you write a line of C++ code, you 
must think hard about which classes are needed at which level. 
As the application develops, you may find that new classes are 
required that fundamentally alter the whole class hierarchy. The 
bibliography lists many books on this subject. Remember also that 
a growing number of vendors are supplying Turbo C ++ 
compatible libraries of classes. So don't reinvent too many wheels. 

Occasionally, you encounter a class that combines the properties 
of more than one previously established class. C ++ version 2.0 
offers a mechanism (not found in earlier C++ versions) known as 
multiple inheritance whereby a derived class can inherit from two 
or more base classes. You'll see later how this is achieved as a 
logical extension of the single inheritance mechanism. 

The word polymorphism comes from the Greek: "having many 
shapes." Polymorphism in C++ is accomplished with virtual func­
tions. Virtual functions let you use many versions of the same 
function throughout a class hierarchy, with the particular version 
to be executed being determined at run time (this is called late 
binding). 

In C, you can only have one function with a given name. For 
example, if you declare and define the function 

int cube (int number); 

you can now get the cube of an integer. But suppose you want to 
cube a float or a double? You can of course declare functions for 
these purposes, but they can't use the name cube: 

float fcube (float float_number); 
double dcube (double double_number); 

Turbo C++ Getting Started 



In C++, however, you can overload functions. This means that you 
can have several functions that have the same name but work 
with different types of data. Thus you can declare: 

int cube (int number); 
float cube (float float_number); 
double cube (double double_number); 

As long as the argument lists are all different, C++ takes care of 
calling the correct function for the argument given. If you have 
the call cube(lO); the int version of cube is called, while if you call 
cube(2.5); the double version will be called. If you call cube(2.5F), 
then you are passing a floating-point literal rather than a double, 
and the float version will be called. Even operators such as + can 
be overloaded and redefined so they work not only with 
numbers, but with graphic objects, strings, or whatever is 
appropriate for a given class. 

Modeling the real world with classes 

Building classes: a 
graphics example 

Chapter 5, A C++ primer 

The C++ class provides a natural way of building computer 
models of real-world systems-indeed, Bjame Stroustrup devised 
the language at AT&T Bell Labs in order to model a large 
telephone switching system. 

There have been many C++ applications in the motor industry. 
When modeling vehicles, for instance, you would be interested in 
both the physical description (the number of tires, engine power, 
weight, and so on) and the behavior (acceleration, breaking, 
steering, fuel consumption). A Car class could encapsulate the 
physical parameters (data) and their behavior (functions) in a 
very general way. Using inheritance, you might then derive 
specialized Sports_car and Station_wagon classes, adding new 
data types and functions, as well as modifying (overriding) some 
of the functions of the base class. Much of the coding you have 
done for the base class(es) is reused or at least recycled. 

In a graphics environment, a reasonable place to start would be a 
class that models the physical pixels on a screen with the abstract 
points of plane geometry. A first try might be a struct class called 
Point that brings together the X and Y coordinates as data 
members: 

129 



When you define a class. you 
add a new data type to 

C++. 7he language treats 
your new data type In the 

same way that ft treats buftt­
ln data types. 

The terms object and class 
Instance are used 

Interchangeably In C++. 

The Boolean type \Nill be 
familiar to Turbo Pascal pro­

grammers. 

130 

struct Point 
int X; 
int Y; 

}; 

II defines a struct class called Point 
II struct member data are public by default 

You can now declare several particular variables of type struct 
Point (for brevity, we often loosely refer to such variables as being 
of type Point). In C, you would use declarations such as 

struct Point Origin, Center, Cur_Pos, AnyPoint; 

but in C++, all you need is 

~oint Origin, Center, Cur_Pos, AnyPoint; 

A variable of type Point (such as Origin) is one of many possible 
instances of type Point. Note carefully that you assign values (par­
ticular coordinates) to instances of the class Point, not to Point 
itself. Beginners often confuse the data type Point with the 
instance variables of type Point. You can write Center = Origin 
(assign Origin's coordinates to Center), but Point = Origin is 
meaningless. 

When you need to think of the X and Y coordinates separately, 
you can think of them as independent members (fields) X and Y 
of the structure. On the other hand, when you need to think of the 
X and Y coordinates working together to fix a place on the screen, 
you can think of them collectively as Point. 

Suppose you want to display a point of light at a position de­
scribed on the screen. In addition to the X and Y location mem­
bers you have already seen, you'll want to add a member that 
specifies whether there is an illuminated pixel at that location. 
Here's a new struct type that includes all three members: 

enum Boolean {false, true}; II false= O; true= 1 

struct Point { 
int X; 
int Y; 
Boolean Visible; 

}; 

This code uses an enumerated type (enum) to create a true/false 
test. Since the values of enumerated types start at 0, Boolean can 
have one of two values: 0 or 1 (false or true). 

Turbo C++ Getting started 



Declaring objects 

Member 
functions 

Data members are what the 
class knows: /Is member 

functions are what the class 
does. 

lnline functions are discussed 
in more detail on pages 139 

and 175. 

Chapter 5, A C++ primer 

As with other data types, you can have pointers to classes and 
arrays of classes: 

Point Origin; //declare object Origin of type Point 
Point Row[80]; //declare an array of 80 objects of type Point 
Point *point_ptr; //declare a 'pointer to type Point' 
point_ptr =&Origin; // point it to the object Origin 
point_ptr =Row; // then point it to Row[O] 

As you saw earlier, C++ classes can contain functions as well as 
data members. A member function is a function declared within the 
class definition and tightly bonded to that class type. (Member 
functions are known as methods in other object-oriented lan­
guages, such as Turbo Pascal and Smalltalk.) 

Let's add a simple member function, GetX, to the class Point. 
There are two ways of adding a member function to a class: 

• Define the function inside the class 

• Declare it inside the class, then define it outside the class 

The two methods have different syntaxes and technical 
implications. 

The first method looks like this: 

struct Point { 

} ; 

int X, Y; 
Boolean Visible; 
int GetX() { return X;} // inline member function defined 

This form of definition makes GetX an inline function by default. 
Briefly, inline functions are functions "small" enough to be use­
fully compiled in situ, rather like a macro, avoiding the overhead 
of normal function calls. 

Note that the inline member function definition follows the usual 
C syntax for a function definition: the function GetX returns an Int 
and takes no arguments. The body of the function, between { and 
}, contains the statements defining the function-in our case, the 
single statement, return X;. 

131 



The :: Is known as the scope 
resolution operator: it tells the 
compiler where the function 

belongs. 

Chapter I, "The Turbo C++ 
language standard,· in the 

Programmer's Guide explains 
class scope in more detail. 

Calling a member 
function 

132 

In the second method, you simply declare the member function 
within struct Point, (using normal C function declaration syntax), 
then provide its full definition (complete with the body statements) 
elsewhere, outside the body of the class definition. 

struct Point ( 

} ; 

int X, Y; 
Boolean Visible; 
int GetX(); II member function declared 

int Point::GetX() II member function defined 
return X; II outside the class 

Member functions defined outside the class definition still can be 
made inline (if certain conditions are met), but you have to re­
quest this explicitly with the keyword inline. 

Note carefully the use of the scope resolution operator in 
Point::GetX in the function definition. The class name Point is 
needed to tell the compiler which class GetX belongs to (there 
may be other versions of GetX around belonging to other classes). 
The inside definition did not need the Point:: modifier, of course, 
since that GetX dearly belongs to Point. 

The Point:: in front of GetX also serves another purpose. Its 
influence extends into the function definition, so that the X in 
return X; is taken as a reference to the X member of the class 
Point. Note also that the body of Point:.;GetX is within the scope 
of Point regardless of its physical location. 

Whichever defining method we use, the important point is that 
we now have a member function GetX tied to the class Point. 
Since it is a member function, it can access all the data variables 
that belong to Point. In our simple case, GetX just accesses X, and 
returns its value. 

Now member functions represent operations on objects of their 
class, so when we call GetX we must somehow indicate which 
Point object is being operated on. If GetX were a normal C func­
tion (or a C++ nonmember function), this problem would not 
arise-you would simply invoke the function with the expression, 
GetX(). With member functions, you must supply the name of the 
target object. The syntax used is a natural extension of that used 

Turbo C++ Getting Started 



Constructors and 

in C to reference structure members. Just as you would refer to 
Origin.X for the X component of the object Origin, or to Endpoint. Y 
for the Y component of the object Endpoint, you can invoke GetX 
with Origin.GetX() or Endpoint.GetX(). The"." operator serves as 
the class component selector for both data and function members. 
The general calling syntax is 

class-object-name.member-function-name(argument-list) 

In the same way, if you had a pointer to a Point object, you would 
use the pointer member selector,"->": Point_pointer->GetX(). 
You'll see many examples of such member function calls in the 
examples in this chapter. 

destructors There are two special types of member functions, constructors and 
destructors, that play a key role in C++. To appreciate their impor­
tance, a short detour is needed. A common problem with 
traditional languages is initialization: Before using a data structure, 
it must be allocated memory and initialized. Consider the task of 
initializing the structure defined earlier: 

Chapter 5, A C++ primer 

struct Point 
int X; 
int Y; 
Boolean Visible; 

} ; 

Inexperienced programmers might try to assign initial values to 
the X, Y, and Visible members in the following way: 

Point ThisPoint; 
ThisPoint.X = 17; 
ThisPoint.Y = 42; 
ThisPoint.Visible = false; 

This works, but it's tightly bound to one specific object, ThisPoint. 
If more than one Point object needs to be initialized, you'll need 
more assignment statements that do essentially the same thing. 
The natural next step is to build an initialization function that 
generalizes the assignment statements to handle any Point object 
passed as an argument: 

void InitPoint(Point *Target, Int NewX, Int NewY) 
{ 

Target->X = NewX; 
Target->Y = NewY; 

133 



134 

Target->Visible = false; 

This function takes a pointer to a Point object and uses it to assign 
the given values to its members (note again the-> operator when 
using pointers to refer to class members). You've correctly de­
signed the function lnltPolnt specifically to serve the structure 
Point. Why, then, must you keep specifying the class type and the 
particular object that lnitPolnt acts upon? The answer is that 
lnitPolnt is not a member function. What we really need for true 
object-oriented bliss is a member function that will initialize any 
Point object. This is one of the roles of the constructor. 

C++ aims to make user-defined data types as integral to the lan­
guage (and as easy to use) as built-in types. Therefore, C++ pro­
vides a special type of member function called a constructor. A 
constructor specifies how a new object of a class type will be 
created, i.e., allocated memory and initialized. Its definition can 
include code for memory allocation, assignment of values to 
members, conversion from one type to another, and anything else 
that might be useful. Constructors can be user-defined, or C++ 
can generate default constructors. Constructors can either be 
called explicitly or implicitly. The C++ compiler automatically 
calls the appropriate constructor whenever you define a new 
object of the class. This can happen in a data declaration, when 
copying an object, or through the dynamic allocation of a new 
object using the operator new. 

Destructors, as the name indicates, destroy the class objects previ­
ously created by a constructor by clearing values and deallocating 
memory. As with constructors, destructors can be called explicitly 
(using the C++ operator delete) or implicitly (when an object goes 
out of scope, for example). If you don't define a destructor for a 
given class, C++ generates a default version for you. Later on, 
we'll be looking at the syntax for defining destructors. First, 
though, let's see how constructors are made. 

The following version of Point adds a constructor: 

struct Point 
int X; 
int Y; 
Boolean Visible; 
int GetX() {return X;} 
Point(int NewX, int NewY}; //constructor declaration 

} ; 

Turbo C++ Getting Started 



Point:: Point Indicates that we 
are defining a constructor for 

the class Point. 

Chapter 5, A C++ primer 

Point::Point(int NewX, int NewY) II constructor definition 
{ 

) i 

X = NewX; 
Y = NewY; 

Visible = false; 

The constructor definition here is made outside the class definition. 
Constructors can also be legally defined inside the class, as inline 
functions. Or they can be defined outside the class definition and 
made inline with the keyword inline. However, some care is 
needed: the amount of code generated by a constructor is not 
always proportional to the visible source code in its definition. 

Notice that the name of a constructor is the same as the name of 
the class: Point. That's how the compiler knows that it is dealing 
with a constructor. Also note that a constructor can have argu­
ments as with any other kind of function. Here the arguments are 
NewX and NewY. The constructor body is built just like the body 
of any member function, so a constructor can call any member 
functions of its class or access any member data. A constructor, 
though, never has a return type-not even void. 

Now you can declare a new Point object like this: 

Point Origin(l,1); 

This declaration invokes the previously defined Point constructor 
for you. As you'll see later, you can have more that one 
constructor for a class-and, as with other C++ overloaded func­
tions, the appropriate version will be automatically invoked 
according to the argument lists involved. You'll also see that if 
you do not define a constructor, C ++ generates a default 
constructor with no arguments. 

Another useful trick in C++ is that you can have default values for 
function arguments: 

Point::Point(int NewX=O, int NewY=O) II revised constructor 
definition 

II as before 
) 

The declaration, 

Point Origin(5); 

would initialize X to 5 and Y to 0 by default. 

135 



Code and data 
together 

Member access 
control: private, 

public, and 
protected 

136 

One of the most important tenets of object-oriented programming 
is that the programmer should think of code and data together 
during program design. Neither code nor data exist in a vacuum. 
Data directs the flow of code, and code manipulates the shape and 
values of data. 

When your data and code are separate entities, there's always the 
danger of calling the right function with the wrong data or the 
wrong function with the right data. Matching the two is the pro­
grammer's job, and while ANSI C, unlike traditional C, provides 
good type-checking, at best it can only say what doesn't go 
together. 

By bundling code and data declarations together, C++ classes help 
keep them in sync. Typically, to get the value of one of a class's 
data members, you call a member function belonging to that class 
which returns the value of the desired member. To set the value of 
a field, you call a member function that assigns a new value to 
that field. 

While the enhanced struct in C ++allows bundling of data and 
functions, it is not as encapsulated or modular as it could be. As 
we mentioned earlier, access to all data members and member 
functions of a struct is public by default-that is, any statement 
within the same scope can read or change the internal data of a 
struct class. As noted earlier, this isn't desirable and can lead to 
serious problems. Good C++ design practices data hiding or infor­
mation hiding-keeping member data private or protected, and 
providing an authorized interface for accessing it. The general 
rule is to make all data private so that it can be accessed only 
through public member functions. There are only a few situations 
where public rather than private or protected data members are 
needed. Also, some member functions involved only in internal 
operations can be made private or protected rather than public. 

Three keywords provide access control to structure or class mem­
bers. The appropriate keyword (with a colon) is placed before the 
member declarations to be affected: 

Turbo C++ Getting Started 



The class: private 
by default 

Chapter 5, A C++ primer 

private: Members following this keyword can be accessed 
only by member functions declared within the same 
class. 

protected: Members following this keyword can be accessed by 
member functions within the same class, and by 
member functions of classes that are derived from 
this class (see the discussion on page 141). 

public: Members following this keyword can be accessed 
from anywhere within the same scope as the class 
definition. 

For example, here is how to redefine the Point structure so that 
the data members are private and the member functions are 
public: 

struct Point 
private: 

int X; 
int Y; 

public: 
int GetX (); 
Point(int NewX, int NewY); 

l ; 

A struct class is public by default, so you have to use private: to 
specify the private part, and then public: for the part to be made 
available for general access. Since good C++ practice makes things 
private by default and carefully specifies what should be public, 
C++ programmers generally favor the class over the struct. The 
only difference between a class and a struct is this matter of 
default privacy. 

Point redefined as a class looks like this: 

class Point 
int X; II private by default 
int Y; 

public: II needed to override the private default 
int GetX () ; 
Point(int NewX, int NewY); 

l; 

No private modifier is needed for the data members-they're 
private by default. The member functions, however, must be de-

137 



Data members are usually 
private, while member func­

tions are usually public. Allow 
public access only where it is 

138 

truly needed. 

Running a C++ 
program 

dared public so that they can be used outside of the class to 
initialize and retrieve values of Point objects. 

You can repeat access control specifications as often as needed: 

enum Boolean {false, true); 

class Employee { 
double salary; 
Boolean permanent; 
Boolean professional; 

public: 
char name[SO]; 
char dept_code[3]; 

private: 
int Error_check{void); 

public: 

II private by default 

Employee{double salary, Boolean permanent, Boolean professional, 
char *name, char *dept_code); 

); 

Here the data members salary, permanent, and professional are 
private by default; the data members name and dept_code are de­
clared to be public; the member function Error_check is declared 
to be private (intended for internal use); and the constructor 
Employee is declared to be public. 

It's time to put everything you've learned so far together into a 
complete compilable program. To compile a C++ program in the 
integrated environment, enter or load your text into the editor as 
usual. You can run C ++ programs from the IDE in either of two 
ways. First, by default, any file with the .CPP extension will be 
compiled assuming C++ syntax, and any files with the .C exten­
sion will be compiled assuming C syntax. However, you can 
select the C++ Always button in the Source Options dialog box to 
have all files treated as C++ source files, regardless of extension. 

To compile a C++ program with the command-line compiler, just 
give your file the extension .CPP. Or you can use the command­
line option -P, in which case Turbo C++ will assume that the file 
has an extension of .CPP. If the file has a different extension, you 
must give the extension along with the file name. Life will be 
easier for you (and your next-of-kin) if you give all C++ programs 
a .CPP extension and all C programs a .C extension. 

Turbo C++ Getting Started 



This code Is available to load 
and run: POINT.CPP. 

Chapter 5, A C++ primer 

The program POINT.CPP defines the Point class and manipulates 
its data values: 

I* POINT.CPP illustrates a simple Point class *I 
#include <iostream.h> II needed for C++ IIO 

II define Point class class Point 
int X; II X and Y are private by default 
int Y; 

public: 

}; 

Point (int InitX, int InitY) {X = InitX; Y = InitY;} 
int GetX() {return X;} II public member functions 
int GetY () {return Y; l 

int main() 
{ 

int YourX, YourY; 

cout « "Set X coordinate: "; I I screen prompt 
cin >> YourX; II keyboard input to YourX 

cout « "Set Y coordinate: "; 11 another prompt 
cin >> YourY; II key value for YourY 

Point YourPoint(YourX, YourY); II declaration calls constructor 

cout « "X is " « YourPoint.GetX(); 11 call member function 
cout << '\n'; II newline 
cout « "Y is " « YourPoint.GetY (); 11 call member function 
cout « '\n'; 
return O; 

The class Point now contains a new member functions, GetY. This 
function works just like the GetX defined earlier, but accesses the 
private data member Y rather than X. Both are "short" functions 
and good candidates for the inline form of definition within the 
class body. 

As with a macro using the #define directive, the code for an inline 
function is substituted directly into your file each time the func­
tion is used, thereby avoiding the function call overhead at the 
expense of code size. This is the classic "space versus time" 
dilemma found in many programming situations. As a general 
rule you should only use inline definitions for "short" functions, 
say one to three statements. Note that, unlike a macro, an inline 
function doesn't sacrifice the type checking that helps prevent 
errors in function calls. The number of arguments in a function is 
also relevant to your decision whether to "inline" or not, since the 

139 



The iostreams library Is 
discussed in detail on page 

184 and also in Chapter 3, 
·c++ streams,· In the Pro­

grammer's Gulde. 

140 

argument structure affects the function call overhead. The case for 
inlining is strongest when the total code for the function body is 
smaller than the code it takes to call the function out of line. You 
may need to try both methods and examine the assembly code 
output before deciding which approach is best for your needs. 

Whether to inline a constructor or not can depend on whether 
base constructors are involved. A derived class constructor, 
especially where there are virtual functions (see page 156) in the 
hierarchy, can generate a lot of "hidden" code. 

In the above example, the Point constructor has been defined as 
out-of-line, following the end of the class declaration. While you 
can put definitions in any order (and even put them elsewhere in 
the current file), it makes sense with smaller, single-file programs 
to put those definitions that aren't inline right after the class 
definition, in the order in which they were declared. 

As your code gets larger, you'll probably have your class declara­
tions in header files, and your class function definitions 
(implementation code) in separately compiled C++ source files. 
Inline function definitions, however, should always be in the 
header file. 

This program also introduces the C++ iostreams library (note the 
statement #include <iostream.h> at the beginning of the program). 

cout represents the standard output stream (by default, the screen). 
Data (variable values and strings, for example) are sent to it using 
the "put to" or insertion operator, <<. 

cin represents the standard input stream (normally the keyboard). 
Values typed at the keyboard are stored in variables using the » 
("get from" or extraction) operator. The use of the shift operators, 
»and«, for stream I/0 is a typical example of operator 
overloading in C++. 

The streams functions save you having to deal directly with the 
kinds of formatting details that printf and scant require; they also 
allow I/0 to be tailored to particular classes. 

Once the X and Y values have been received from the keyboard, 
the Point object Your Point is declared with the received values as 
arguments. Recall that this declaration automatically invokes the 
constructor for the Point class, which creates and initializes 
Your Point. 

Try running the program. The result should look like this: 

Turbo C++ Getting Started 



Inheritance 

Rethinking the 
Point class 

Chapter 5, A C++ primer 

Set X coordinate: 50 
Set Y coordinate: 100 
X is 50 
Y is 100 

Classes don't usually exist in a vacuum. A program often has to 
work with several different but related data structures. For exam­
ple, you might have a simple memory buffer in which you can 
store and from which you can retrieve data. Later, you may need 
to create more specialized buffers: A file buffer that holds data 
being moved to and from a file, and perhaps a buffer to hold data 
for a printer, and another to hold data coming from or going to a 
modem. These specialized buffers clearly have many character­
istics in common, but each has some differences caused by the fact 
that disk files, printers, and modems involve devices that work 
differently. 

The C++ solution to this "similar but different'' situation is to al­
low classes to inherit characteristics and behavior from one or 
more base classes. This is an intuitive leap; inheritance is perhaps 
the single biggest difference between C++ and C. Classes that 
inherit from base classes are called derived classes. And a derived 
class may itself be the base class from which other classes are 
derived (recall the insect family tree). 

The fundamental unit of graphics is the single point on the screen 
(one pixel). So far we've devised several variants of a Point class 
that define a point by its X and Y locations, a constructor that 
creates and initializes a point's location, and other member func­
tions that can return the point's current X and Y coordinates. 
Before you can draw anything, however, you have to distinguish 
between pixels that are "on" (drawn in some visible color) and 
pixels that are "off" (have the background color). Later, of course, 
you may want to define which of many colors a given point 
should have, and perhaps other attributes (such as blinking). 
Pretty soon you can end up with a complicated class that has 
many data members. 

141 



142 

This code is available as 
polnt.h. 

Let's rethink our strategy. What are the two fundamental kinds of 
information about points? One kind of information describes 
where the point is Gocation) and the other kind of information 
describes how the point is (the point's state of being: You can 
either see it, or you can't, and if you can see it, it is in some color). 
Of the two, the location is most fundamental: Without a location, 
you can't have a point at all. 

Because all points must contain a location, you can make the class 
Point a derived class of a more fundamental base class, Location, 
which contains the information about X and Y coordinates. Point 
inherits everything that Location has, and adds whatever is new 
about Point to make Point what it must be. 

These two related classes can be defined this way: 

I* point.h--Example from Chapter 5 of Getting Started *I 
II point.h contains two classes: 
II class Location describes screen locations in X and Y coordinates 
II class Point describes whether a point is hidden or visible 

enum Boolean {false, true}; 

class Location 
protected: 

int X; 
int Y; 

II allows derived class to access private data 

public: II these functions can be accessed from outside 
Location(int InitX, int InitY); 
int GetX(); 
int GetY (); 

} ; 

class Point : public Location II derived from class Location 
II public derivation means that X and Y are protected within Point 

protected: 
Boolean Visible; II classes derived from Point will need access 

public: 

); 

Point(int InitX, int InitY); 
void Show () ; 
void Hide() ; 
Boolean IsVisible(); 
void MoveTo(int NewX, int NewY); 

II constructor 

Here, Location is the base class, and Point is the derived class. 
The process can continue indefinitely: You can define other 
classes derived from Location, other classes derived from Point, 

Turbo C++ Gaffing started 



Inheritance and 
access control 

Table5.l 
Class access 

In a derived class. access to 
the elements of its base class 

can be made more 
restrictive but never less 

restrictive. 

Chapter 5, A C++ primer 

yet more classes derived from Point's derived class, and so on. 
You can even have a class derived from more than one base class: 
This is called multiple inheritance, and will be discussed later. A 
large part of designing a C++ application lies in building this class 
hierarchy and expressing the family tree of the classes in the 
application. 

Before we discuss the various member functions point.h, let's 
review the inheritance and access control mechanisms of C++. 

The data members of the Location class are declared to be 
protected-recall that this means that member functions in both 
the Location class and the derived class Point will be able to ac­
cess them, but the "public at large" won't be able to do so. 

You declare a derived class as follows: 

class D : access_modifier B { //default is private 

or 

struct D : access_modifier B { //default is public 

Dis the name of the derived class, access_modifier is optional 
(either public or private), and B is the name of the base class. 

With class, the default access_modifier is private; with struct, the 
default is public. (Note that unions can be neither base nor 
derived classes.) 

The access_modifier is used to modify the accessibility of inherited 
members, as shown in the following table: 

Access in base class 

public 
private 
protected 

public 
private 
protected 

Access modifier 

public 
public 
public 

private 
private 
private 

Inherited access in base 

public 
not accessible 
protected 

private 
not accessible 
private 

When writing new classes that rely on existing classes, make sure 
you understand the relationship between base and derived 

143 



See Chapter 1, "The Turbo 
C++ language standard,· In 
the Programmer's Guide for 
more advanced technical 

details. 

Base class members that you 
want to use in a derived 

class must be either 
protected or public. private 

base class members can't 
be accessed except by their 

own member functions or 
through friend functions. 

144 

Packaging 
classes into 

modules 

classes. A vital part of this is understanding the access levels con­
ferred by the specifiers private, protected, and public. Access 
rights must be passed on carefully (or withheld) from parents to 
children to grandchildren. C++ lets you do this without "ex­
posing" your data to non-family and non-friends. The access level 
of a base class member, as viewed by the base class, need not be 
the same as its access level as viewed by its derived class. In other 
words, when members are inherited, you have some control over 
how their access levels are inherited. 

A class can be derived privately or publicly from its base class. 
private derivation (the default for class type classes) converts 
public and protected members in the base class into private 
members of the derived class, while private members remain 
private. (Although private derivation is the default for classes, it is 
by no means the most commonly used method of derivation-so 
we have a rare situation where the default is not the norm). 

A public derivation leaves the access level unchanged. 

A derived class inherits all members of its base class, but can only 
use the protected and public members of its base class. private 
members of the base class are not directly available through the 
members of the derived class. 

The particular definitions of Location and Point adopted here will 
allow us later on to derive further classes from Point for more 
complex graphics applications. 

If you use public derivation, protected members of the base class 
remain protected in the derived class, and thus won't be available 
from outside except to other publicly derived classes and friends. 
It's a good idea to always specify public or private, whatever the 
default, to avoid confusion. Good comments, too, will improve 
your source code legibility. 

Classes such as Location and Point can be packaged together for 
use in further program development. With its built-in data, mem­
ber functions, and access control, a class is inherently modular. In 
developing a program, it often makes sense to put the declara­
tions for each class or group of related classes in a separate header 
file, and the definitions for its non-inline member functions in a 
separate source file. (See Chapter 2, "Managing multi-file pro­
jects," in the User's Guide for details on how to use the Project 

Turbo C++ Getting started 



This code Is oval/able as 
POINT2.CPP. 

Chapter 5. A C++ primer 

Manager to manage programs that consist of multiple source 
files.) 

You can also combine several class object files into a library using 
TUB. (See Chapter 5, "Utilities," in the User's Guide to learn how 
to create libraries.) 

There are further advantages to modularizing classes: You can 
distribute your classes in object form to other programmers. The 
other programmers can derive new, specialized classes from the 
ones you made available, without needing access to your source 
code. Even though C++ version 2.0 is quite new, third-party class 
libraries are already appearing, and you can expect that your 
fellow C++ programmers will be offering many more goodies that 
you can use to get a head start in your programming projects. 

We can now develop a separately compiled "module" containing 
the Location and Point classes. First, the declarations for the two 
classes (including their member functions) as listed on page 142 
are put in the file point.h (on your distribution diskettes). 

Note again how the class Point is derived from the class Location: 

class Point : public Location { ••• 

The keyword public is needed before Location to ensure that the 
member functions of the derived class, Point, can access the 
protected members X and Yin the base class, Location. In 
addition to the X and Y location members, Point inherits the 
member functions GetX and GetY from Location. The class Point 
also adds the protected data member Visible (of the enumerated 
type Boolean), and five public member functions, including the 
constructor Point::Point. Note again that we have used protected 
rather than private access for certain elements so that point.h can 
be used in later examples that have further classes derived from 
Location and Point. 

The file POINT2.CPP contains the definitions for all of the mem­
ber functions of these two classes: 

I* POINT2.CPP--Example from Chapter 5 of Getting Started *I 

II POINT2.CPP contains the definitions for the Point and Location 
II classes that are declared in the file point.h 

#include "point. h 11 

iinclude <graphics.h> 

II member functions for the Location class 
Location: :Location (int InitX, int InitY) { 

145 



A base constructor Is Invoked 
before the body of the 

derived class constructor. 

146 

}; 

X = InitX; 
Y = InitY; 

int Location::GetX(void) 
return X; 

}; 

int Location::GetY(void) 
return Y; 

} ; 

II member functions for the Point class: These assume 
II the main program has initialized the graphics system 

Point::Point(int InitX, int InitYJ : Location(InitX,InitY) { 
Visible= false; II make invisible by default 

} ; 

void Point::Show(void) 
Visible = true; 
putpixel{X, Y, getcolor()); 

}; 

void Point::Hide(void) { 
Visible = false; 

II uses default color 

putpixel(X, Y, getbkcolor()); II uses background color to erase 
} ; 

Boolean Point::IsVisible(void) 
return Visible; 

I; 

void Point::MoveTo{int NewX, int NewY) { 

}; 

Hide(); II make current point invisible 
X = NewX; II change X and Y coordinates to new location 
Y. = NewY.; 
Show(}; II show point at new location 

This example introduces the important concept of base-class con­
structors. When a Point object is defined, we want to make use of 
the fact that its base class, Location, already has its own user­
defined constructor. The definition of the constructor Polnt:;Polnt 
begins with a colon and a reference to the base constructor 
Location(InitX,InitY). This specifies that the Point constructor will 
first call the Location constructor with the arguments InitX and 
InitY, thereby creating and initializing data members X and Y. 
Then the Point constructor body is invoked, creating and initial­
izing the data member Visible. By explicitly specifying a base 
constructor, we have saved ourselves some coding (in larger 
examples, of course, the savings may be more significant). 

Turbo C++ Getting started 



You'll need to compile and 
link POINT2. CPP. PIXEL. CPP. 

and GRAPHICS.LIB. using the 
PIXEL.PRJ project file supp/led 
on your distribution diskettes. 

(Read Chapter 2, "Manag-
ing multi-file projects,· in the 

User's Guide if you don't 
know how to use project 

files.) 

Chapter 5, A C++ primer 

In fact, derived-class constructors always call a constructor of the 
base class first to ensure that inherited data members are correctly 
created and initialized. If the base class is itself derived, the pro­
cess of calling base constructors continues down the hierarchy. If 
you don't define a constructor for a particular class X, C++ will 
generate a default constructor of the form X::X(); that is, a 
constructor with no arguments. 

If the derived-class constructor does not explicitly invoke one of 
its base-class constructors, or if you have not defined a base-class 
constructor, the default base class constructor (with no argu­
ments) will be invoked. (There's more on base class constructors 
in Chapter 1, "The Turbo C++ language standard," in the Pro­
grammer's Guide.) 

Notice that the reference to the base class constructor, 
Location(InitX,InitY) appears in the definition, not the declaration, 
of the derived class constructor. 

Here's a main program (available on your distribution diskettes as 
PIXEL.CPP) that demonstrates the capabilities of the Point and 
Location classes. 

I* PIXEL.CPP--Example from Chapter 5 of Getting Started *I 
II PIXEL.CPP demonstrates the Point and Location classes 
II compile with POINT2.CPP and link with GRAPHICS.LIB 

#include <graphics.h> 
#include <conio.h> 
#include "point. h" 
classes 

int main() 
( 

II declarations for graphics library 
II for getch() function 
II declarations for Point and Location 

II initialize the graphics system 
int graphdriver = DETECT, graphmode; 
initgraph(&graphdriver, &graphmode, "c: .• \\bgi"); 

II move a point across the screen 
Point APoint(lOO, 50); II Initial X, Y at 100, 50 
APoint.Show(); II APoint turns itself on 
getch(); II Wait for keypress 
APoint.MoveTo(300, 150); II APoint moves to 300,150 
getch(); II Wait for keypress 
APoint.Hide(); II APoint turns itself off 
getch () ; 
closegraph () ; 
return O; 

II Wait for keypress 
II Restore original screen 

147 



Extending classes 

This code is on vour disks: 
CIRCLE.CPP. 

148 

One of the beauties of classes is the way that new objects can be 
accommodated and given appropriate functionality. The next ex­
ample takes the already defined Location and Point classes and 
derives a new class, Circle, along with functions to show, hide, 
expand, move, and contract circles. 

I* CIRCLE.CPP--Example from Chapter 5 of Getting Started *I 
II CIRCLE.CPP A Circle class derived from Point 

#include <graphics.h> 
tinclude "point.h" 
#include <conio.h> 

II graphics library declarations 
II Location and Point class declarations 
II for getch() function 

II link with point2.obj and graphics.lib 

class Circle : Point II derived privately from class Point 
II and ultimately from 

class Location 
int Radius; II private by default 

public: 
Circle(int InitX, int InitY, int InitRadius); 
void Show(void); 
void Hide(void); 
void Expand(int ExpandBy); 
void MoveTo(int NewX, int NewY); 
void Contract(int ContractBy); 

) ; 

Circle::Circle(int InitX, int InitY, int InitRadius) 
Point(InitX,InitY) 
{ 

Radius = InitRadius; 
) ; 

void Circle::Show(void) 
{ 

Visible = true; 
circle(X, Y, Radius); 

void Circle::Hide(void) 
{ 

unsigned int TempColor; 
TempColor = getcolor(); 
setcolor(getbkcolor()); 
Visible = false; 
circle(X, Y, Radius); 

II draw the circle 

II to save curren~ color 
II set to current color 
II set drawing color to background 

II draw in background color to erase 

Turbo C++ Getting started 



Chapter 5. A C++ primer 

setcolor(TempColor); II set color back to current color 
) ; 

void Circle::Expand(int ExpandBy) 
( 

) ; 

Hide(); 
Radius += ExpandBy; 
if (Radius < 0) 

Radius = O; 
Show(); 

II erase old circle 
II expand radius 
II avoid negative radius 

II draw new circle 

void Circle::Contract(int ContractBy) 
{ 

Expand(-ContractBy); II redraws with (Radius - ContractBy) 
); 

void Circle::MoveTo(int NewX, int NewY) 
{ 

Hide(); 
X = NewX; 
Y = NewY; 
Show(); 

); 

main() 
{ 

II erase old circle 
II set new location 

II draw in new location 

II test the functions 

II initialize the graphics system 
int graphdriver = DETECT, graphmode; 
initgraph(&graphdriver, &graphmode, "c: •. \\bgi"); 

Circle MyCircle(lOO, 200, 50); 
MyCircle.Show(); 
getch (); 
MyCircle.MoveTo(200, 250); 

get ch(); 
MyCircle.Expand(50); 
getch (); 
MyCircle.Contract(75); 
getch (); 
closegraph(); 
return O; 

II declare a circle object 
II show it 
II wait for keypress 
II move the circle (tests hide 
II and show also) 

II make it bigger 

II make it smaller 

To see how this works for the Circle class, you need to examine 
the member functions in the listing CIRCLE.CPP and refresh 
yourself on the class declarations in point.h. 

Note first that the member functions of Circle need to access 
various data members in the classes Circle, Point, and Location. 

149 



150 

Consider Circle::Expand. It needs access to Int Radius. No 
problem. Radius is defined as private (by default) in Circle itself. 
So, Radius is accessible to Clrcle::Expand-indeed, it is accessible 
only to member functions of Circle. (Later, you'll see that the 
private members of a class can also be accessed by functions that 
have been specially defined as friends of that class.) 

Next, look at the member function Circle::Hide. This needs to 
access Boolean Visible from its base class Point. Now Visible is 
protected in Point, and Circle is derived privately (by default) 
from Point. So, from the rules outlined above, Visible is private 
within Circle, and is accessible just like Radius. Note that if Visible 
had been defined as private in Point, it would have been inaccess­
ible to the member functions of Circle. So, you might be tempted 
to make Visible publlc. However, this is overkill: Visible would 
become accessible to non-member functions. You might say that 
protected is private with a dash of public for derived classes: 
member functions of a derived class can access a protected 
member without exposing that member to public abuse. 

Finally, consider Circle::Show. Circle::Show needs to access 
Location's members X and Yin order to draw the circle. How is 
this achieved? Circle is not directly derived from Location, so the 
access rights are not immediately obvious. Circle derives from 
Point which derives from Location. Let's trace the access 
declarations. 

1. Members X and Y are declared protected in Location. 

2. Point specifies public derivation from Location, so Point also 
inherits the X and Y members as protected. 

3. Circle is derived from Point using the default private 
derivation. 

4. Circle therefore inherits X and Y as private. Circle::Show can 
access X and Y. Note that X and Y are still protected within 
Location. 

Having digested this chain of access rights, you might want to 
consider the situation if a derived class of Circle, such as PleChart 
or Arc, was needed. Yes, you would need to change the derivation 
of Clrcle from Point-it would need to be a public derivation and 
Radius would need to become protected. 

It should now be pretty easy to see what is going on in 
CIRCLE.CPP. A circle, in a sense, is a fat point: It has everything a 
point has (an X,Ylocation and a visible/invisible state) plus a 

Turbo C++ Gaffing started 



Multiple 
inheritance 

Chapter 5, A C++ primer 

radius. Class Circle appears to have only the single member 
Radius, but don't forget about all the members that Circle inherits 
by being a derived class of Point. Circle has X, Y, and Visible as 
well, even if you don't see them in the class definition for Circle. 

Compile and link CIRCLE.CPP, POINT2.CPP, and 
GRAPHICS.LIB. The project file CIRCLE.PRJ on your distribution 
diskettes will help you do this. As you press a key, you should see 
a circle. Press a key again and the circle moves. Again, and the 
circle expands, and again and the circle contracts. 

As we mentioned earlier, a class can inherit from more than one 
base class. This multiple inheritance mechanism was one of the 
main features added to C++ release 2.0. To see a practical 
example, the next program lets you display text inside a circle. 

Your first thought might be to simply add a string data member 
to the Circle class and then add code to Clrcle::Show so that it 
displays the text with the circle drawn around it. But text and 
circles are really quite different things: When you think of text 
you think of fonts, character size, and possibly other attributes, 
none of which really has anything to do with circles. You could, of 
course, derive a new class directly from Circle and give it text 
capabilities. When dealing with fundamentally different function­
alities, however, it is often better to create new "fundamental" 
base classes, and then derive specialized classes that combine the 
appropriate features. The next listing, MCIRCLE.CPP, illustrates 
this approach. 

We'll define a new class called GMessage that displays a string on 
the screen starting at specified X and Y coordinates. This class will 
be MCircle's other parent. MCircle will inherit GMessage::Show 
and use it to draw the text. The relationships of all of the classes 
involved is shown in the next figure. 

151 



Figure 5.3 
Multiple Inheritance 

This code is available on your 
disks: MCIRCLE.CPP. You 

need to run It using 
MCIRCLE.PRJ. 

152 

class Locatton: { 
Int X; 
Int Y; 

}" 

l 
_f 1-

class Point : Locatton { class GMessage : Locatton { 
Int Visible; char •msg; 

}" 
Int Font; 
Int Field; 
) 

l 
class Circle : Point { 
Int Radius; 

i" 

L 
_i 

class MClrcle : Circle. GMessage { 

) 

I* MCIRCLE.CPP--Example for Chapter 5 of Getting Started *I 
11 MCIRCLE.CPP 

#include <graphics.h> 
#include "point.h" 
#include <string.h> 
#include <conio.h> 

Illustrates multiple inheritance 

II Graphics library declarations 
II Location and Point class declarations 
II for string functions 
II for console IIO 

II link with point2.obj and graphics.lib 

II The class hierarchy: 
II Location->Point->Circle 
II (Circle and CMessage)->MCircle 

class Circle : public Point { II Derived from class Point and 
ultimately 

Location 
protected: 

int Radius; 
public: 

} ; 

Circle(int InitX, int InitY, int InitRadius); 
void Show(void); 

I I from class 

Turbo C++ Getting Started 



Chapter 5, A C++ primer 

class GMessage : public Location I 
II display a message on graphics screen 

char *msg; II message to be displayed 
int Font; // BGI font to use 
int Field; II size of field for text scaling 

public: 

); 

II Initialize message 
GMessage(int msgX, int msgY, int MsgFont, int FieldSize, 

char *text) ; 
void Show(void); II show message 

class MCircle : Circle, GMessage I // inherits from both classes 
public: 

l; 

MCircle(int mcircX, int mcircY, int mcircRadius, int Font, 
char *msg); 

void Show(void); //show circle with message 

II Member functions for Circle class 

//Circle constructor 
Circle: :Circle(int InitX, int InitY, int InitRadius) : 

Point (InitX, InitY) // initialize inherited members 
//also invokes Location constructor 
I 

Radius = InitRadius; 
}; 

void Circle::Show(void) 
( 

Visible = true; 
circle(X, Y, Radius); //draw the circle 

II Member functions for GMessage class 

l/GMessage constructor 
GMessage::GMessage(int msgX, int msgY, int MsgFont, 

int FieldSize, char *text) 
Location(msgX, msgY) 

//X and Y coordinates for centering message 
( 

Font= MsgFont; // standard fonts defined in graph.h 
Field= FieldSize; //width of area in which to fit text 
msg =text; II point at message 

}; 

void GMessage::Show(void) 
( 

153 



Jhe :: operator is used to 
specify a function from 

another scope rather than 
(by default) using the func­

tion of that name In the 
current scope. 

154 

int size= Field I (8 * strlen(msg)); // 8 pixels per char. 
settextjustify(CENTER_TEXT, CENTER_TEXT); //centers in circle 
settextstyle(Font, HORIZ_DIR, size); //if size> 1, 

magnifies 
outtextxy(X, Y, msg); 

//Merrilier functions for MCircle class 

//MCircle constructor 

II display the text 

MCircle::MCircle(int mcircX, int mcircY, int mcircRadius, int Font, 
char *msg) : Circle (mcircX, mcircY, 

mcircRadius), 

void MCircle::Show(void) 
{ 

Circle: : Show() ; 
GMessage::Show(); 

GMessage(mcircX,mcircY,Font,2*mcircRadius,msg) 

main() 
{ 

//draws some circles with text 

int graphdriver = DETECT, graphmode; 
initgraph (&graphdriver, &graphmode, "c: .. \\bgi 11 ); 

MCircle Small(250, 100; 25, SANS_SERIF_FONT, "You"); 
Sma 11. Show () ; 
MCircle Medium(250, 150, 100, TRIPLEX_FONT, "World"); 
Medium. Show(); 
MCircle Large(250, 250, 225, GOTHIC_FONT, "Universe"); 
Large. Show () ; 
get ch(); 
closegraph () ; 
return O; 

As you read the listing, check the class declarations and note 
which data members and member functions are inherited by each 
class. You may also want to look at point.h again, since the 
Location and Point classes are defined there. Notice that both 
MCircle and GMessage have Location as their ultimate base class: 
MCircle by way of Point and Circle, and GMessage directly. 

In the body of the definition of MCircle::Show, you will see the 
two function calls Clrcle::Show(); and GMessage::Show();. This 
syntax shows another common use of:: (the scope resolution 
operator). When you want to call an inherited function, such as 
Show, the compiler may need some help: which Show is re-

Turbo C++ Getting Started 



You'll find a more detalled 
account of how C++ handles 

scope In Chapter 1. "The 
Turbo C++ language stan­

dard,· in the Programmer's 
Gulde. 

See Chapter 1, "The Turbo 
C++ language standard,· in 
the Programmer's Gulde for 

details on constructor calling 
sequences. 

Chapter 5, A C++ primer 

quired? Without the scope resolution "override," Show() would 
refer to the Show() in the current scope, namely MCircle::Show(). 
To call the Show() of another scope (assuming, of course, that you 
have access permission), you must supply the appropriate class 
name followed by :: and the function name (with arguments, if 
any). What if there happened to be a nonmember function called 
Show that you wanted to call? You would use : :Show() with no 
preceding class name. 

A member function of a given name in the derived class averrides 
the member function of the same name in the base class, but you 
can still get at the latter by using::. The scoping rules for C++ are 
slightly ,different from those for C. 

Before leaving MCIRCLE.CPP, a brief word about the constructor 
for MCircle. You saw earlier how the Point constructor explicitly 
invoked its base constructor in Location. Since MClrcle inherits 
from both Circle and GMessage, the MClrcle constructor can con­
veniently initialize by calling both base constructors: 

MCircle::MCircle 
(int mcircX, int mcircY, int mcircRadius, int font, char *msg) 
Circle(mcircX, mcircY, mcircRadius), 
GMessage(mcircX, mcircY, 2*mcircRadius,msg) ( 

The constructor body is empty here because all the necessary 
work is accomplished in the member initialization list (after the : 
you enter a list of initializing expressions separated by commas. 
You met a simpler version of this syntax in the single base class 
constructors used in the Point and Circle class definitions). When 
the MCircle constructor is invoked (by declaring an MClrcle 
object, for example), quite a spate of activity is triggered behind 
the scenes. 

First, the Circle constructor is called. This constructor then calls 
the Point constructor, which in turn calls the Location constructor. 
Finally, the GMessage constructor is called, which calls the 
Location constructor for its own copy of its base class X and Y. 
The arguments given in the MCircle constructor are passed on to 
initialize the appropriate data members of the base classes. 

When destructors are called (when an object goes out of scope, for 
example), the deallocation sequence is the reverse of that used 
during construction. (Virtual base class constructors and destruc­
tors have some sequencing quirks beyond the scope of this 
chapter). 

155 



Figure 5.4 
Circles with messages 

Virtual functions 

156 

In passing, recall the point made earlier: if you don't supply your 
own constructors or destructors, C ++ will generate and invoke 
default versions behind the scenes. 

Figure 5.4 shows the output of MCIRCLE: 

cg 
World 

Each class type in our graphics hierarchy represents a different 
type of figure onscreen: a point or a circle. It certainly makes sense 
to say that you can show a point on the screen, or show a circle. 
Later on, if you were to define classes to represent other figures 
such as lines, squares, arcs, and so on, you could write a member 
function for each that would display that object onscreen. In the 
new way of object-oriented thinking, you could say that all these 
graphic figure types had the ability to show themselves on the 
screen. 

What is different for each object type is the way it must show itself 
onscreen. A point is drawn with a point-plotting routine that 
needs only an X,Y location and perhaps a color value. A circle 
needs a more complex graphics routine to display itself, taking 
into account not only X and Y, but a radius as well. Still further, 
an arc needs a start angle and an end angle, and a different 

Turbo C++ Getting started 



Chapter 5. A C++ primer 

drawing algorithm. The same situation, of course, applies to 
hiding, dragging, and other basic shape manipulations. 

The ordinary member functions you have seen so far certainly 
allow us to define a Show function for each shape class. But they 
lack an essential ingredient. Graphics modules based on our 
existing classes and member functions would need source code 
changes and recompilations each time a new shape class was 
introduced with its own member function Show. The reason is 
that the C++ mechanisms revealed so far allow essentially only 
three ways to resolve the question: which Show is being 
referenced?: 

1. There's the distinction by argument signature-Show(int,char) 
is not the same function as Show(char*,float), for example. 

2. There's the use of the scope resolution operator, whereby 
Circle::Show is distinguished from Point::Show and ::Show. 

3. There's the resolution by class object: ACircle.Show invokes 
Circle::Show, while Apoint.Show invokes Point::Show. 
Similarly with pointers to objects: APoint_pointer->Show 
invokes Polnt::Show. 

All these function resolutions, so far, have been made at compile 
time-a mechanism which is referred to as early or static binding. 

A typical graphics toolbox would provide the user with class defi­
nitions in .H source files together with the precompiled .OBJ or 
.LIB code for the member functions. With the early binding re­
strictions, the user cannot easily add new class shapes, and even 
the developer faces extra chores in extending the package. C++ 
offers a flexible mechanism to solve these problems: late (or dy­
namic) binding by means of special member functions called 
virtual functions. 

The key concept is that virtual function calls are resolved at run 
time (hence the term, late binding). In practical terms, it means 
that the decision as to which Show function is called can be de­
ferred until the object type involved is known during execution. A 
virtual function Show, "hidden" in a class B in the precompiled 
toolbox library, is not bound to the objects of B in the way that 
ordinary member functions of Bare. You are free to create a class 
D derived from B for your own favorite shape, and write 
appropriate functions (putting on your Show, as it were). You 
then compile and link your OBJ or LIB code to that of the toolbox. 
Calls made on Show, whether from existing member functions of 

157 



Virtual functions in 

B or from the new functions you have written for D, will 
automatically reference the correct Show. This resolution is made 
entirely on the object type involved in the call. Let's look at virtual 
functions in action. We have a potential candidate in the earlier 
code given for CIRCLE.CPP 

action Consider the member function Circle::MoveTo in ORCLE.CPP: 

158 

void Circle::MoveTo(int NewX, int NewY) 
{ 

Boolean vis = Visible; 
if (vis) Hide(); II hide only if visible 
X = NewX; Y = NewY; II set new location 
if (vis) Show(); II draw at new location if previously 

II visible 

Notice how similar this definition is to Polnt::MoveTo found in 
the Circle's base class Point. In fact, the return value, function 
name, number and types of formal arguments (known as the 
function signature), and even the function body itself, all appear to 
be identical! If C++ encounters two function calls using the same 
function name but differing in signatures, we have already seen 
that the C++ compiler is smart enough to resolve the potential 
ambiguities caused by function-name overloading. (Recall that C, 
unlike C++, demands unique function names.) In C++, member 
functions with different signatures are really different functions, 
even if they share the same name. 

But, our two MoveTos do not, at first sight, offer any distinguish­
ing clues to the compiler-so will it know which one you in­
tended to call? The answer, as you've seen, with ordinary member 
functions is that the compiler determines the target function from 
the class type of the object involved in the call. 

So, why not let Clrcle inherit Point's MoveTo, just as Circle inher­
its Point's GetX and GetY (via Location)? The reason, of course, is 
that the Hide and Show called in Clrcle::MoveTo are not the same 
Hide and Show called in Point::MoveTo. Only the names and 
signatures are the same. Inheriting MoveTo from Point would 
lead to the wrong Hide and Show being called when trying to 
move a circle. Why? Because Point's versions of these two func­
tions would be bound to Point's (and hence also to Circle's) 
MoveTo at compile time (early binding). As you may have 

Turbo C++ Getting started 



Defining virtual 

guessed already, the answer is to declare Hide and Show as 
virtual functions. This will delay the binding so that the correct 
versions Hide and Show can be invoked when MoveTo is actually 
called to move a point or a circle (or whatever). 

Note again that if we wanted to precompile our class definitions 
and member functions for Location, Point, and Circle in a neat 
standalone library (with the implementation source locked up 
with our other trade secrets), we certainly could not know in 
advance the objects that MoveTo may be asked to move. Virtual 
functions not only provide this technical advantage; they also 
provide a conceptual gain that lies at the heart of OOP. We can 
concentrate on developing reusable classes and methods with less 
anxiety about name clashes. 

While it is true that add-on library extensions are available for 
most languages, the use of virtual functions and multiple inheri­
tance in C++ makes extensibility more natural. You inherit 
everything that all your base classes have, and then you add the 
new capabilities you need to make new objects work in familiar 
ways. The classes you define and their versions of the virtual 
functions become a true extension of an orderly hierarchy of 
capabilities. Because this is part of the language design rather 
than an afterthought, there is very little penalty in performance. 

Having sold you on the merits of virtual functions, let's see how 
you can implement them, and some of the rules you have to 
follow. 

functions The syntax is straightforward: add the qualifier virtual in the 
member function's first declaration: 

virtual void Show(); 
virtual void Hide(); 

... Important! Only member functions can be declared as virtual. 
Once a function is declared virtual, it must not be redeclared in 
any derived class with the same formal argument signature but 
with a different return type. If you redeclare Show with the same 
formal argument signature and same return type, the new Show 
automatically becomes virtual, whether you use the virtual 
qualifier or not. This new, virtual Show is said to override the 
Show in its base class. 

Chapter 5, A C++ primer 159 



Developing a 
complete 

graphics module 

160 

You are free to redeclare Show with a different formal argument 
signature (whether you change the return type or not)-but the 
virtual mechanism is inoperable for this version of Show. 
Beginners should avoid rash overloading-there are situations 
where a non-virtual function can hide a virtual function declared 
in its base. 

The particular Show called will depend only on the class of the 
object for which Show is invoked, even if the call is invoked via a 
pointer (or reference) to the base class. For example, 

Circle ACircle; 
Point* APoint_pointer = &ACircle; II pointer to Circle assigned to 

II pointer to base class, Point 
APoint_pointer->Show(); II calls Circle::Show! 

vpoint.h and VCIRC.CPP (available on your distribution 
diskettes) are versions of point.h and CIRCLE.CPP with Show 
and Hide made virtual. Compile VCIRC.CPP with POINT2.CPP 
using VCIRC.PRJ. It will run exactly like CIRCLE.CPP. We don't 
list the virtual versions in full here since the differences can be 
summed up simply as follows: 

•In vpoint.h, Point's Show and Hide have been declared with the 
keyword virtual. The Show and Hide in the VCIRC's derived 
class Circle have the same argument signature and return 
values as the base versions in Point; this implies that they are 
also virtual, even though the keyword virtual is not used in 
their declarations. 

•In VCIRC.CPP, Circle no longer has its own MoveTo member 
function. 

• We now derive Circle publicly from Point to allow access to 
Move To 

To recap the significance of these changes: 

Circle objects can now safely call the MoveTo inherited from 
Point. The Show and Hide called by MoveTo will be bound at run 
time to Circle's own Show and Hide. Any Point objects calling 
MoveTo will invoke the Point versions. 

As a more complete and realistic example of virtual functions, let's 
create a module that defines some shape classes and a generalized 
means of dragging them around the screen. This module, 

Turbo C++ Getting started 



figures.h and FIGURES.CPP (on your distribution diskettes), is a 
simple implementation of the graphics toolbox discussed earlier. 

A major goal in designing the FIGURES module is to allow users 
of the module to extend the classes defined in the module-and 
still make use of all the module's features. It is an interesting chal­
lenge to create some means of dragging an arbitrary graphics fig­
ure around the screen in response to user input. 

As a first approach, we might consider a function that takes an 
object as an argument, and then drags that object around the 
screen: 

void Drag(Point& AnyFigure, int DragBy) 
( 

); 

int DeltaX,DeltaY; 
int FigureX,FigureY; 
AnyFigure.Show(); 
FigureX = AnyFigure.GetX(); 
FigureY = AnyFigure.GetY(); 

II This is the drag loop 

II Display figure to be dragged 
II Get the initial X,Y of figure 

while (GetDelta(DeltaX, DeltaY)) 
{ 

) i 

II Apply delta to figure X,Y 
FigureX = FigureX + (DeltaX * DragBy); 
FigureY = FigureY + (DeltaY * DragBy); 
II And tell the figure to move 
AnyFigure.MoveTo(FigureX, FigureY); 

Reference types Notice that AnyFigure is declared to be of type Point&. This means 
"a reference to an object of type Point" and is a new feature of 
C++. As you know, C ordinarily passes arguments by value, not 
by reference. In C, if you want to act directly on a variable being 
passed to a function, you have to pass a pointer to the variable, 
which can lead to awkward syntax, since you have to remember 
to dereference the pointer. C ++ lets you pass and modify the 
actual variable by using a reference. To declare a reference, simply 
follow the data type with an ampersand (&) in the variable 
declaration. 

Chapter 5, A C++ primer 

Drag calls an auxiliary function not shown here, GetDelta, that 
obtains some sort of change in X and Y from the user. It could be 
from the keyboard, or from a mouse, or a joystick. (For simplic-

161 



162 

ity's sake, our example obtains input from the arrow keys on the 
keyboard.) 

An important point to notice about Drag is that any object of type 
Point, or any type derived from Point, can be passed in the 
AnyFigure reference argument. Objects of Point or Circle type, or 
any type defined in the future that inherits from Point or Clrcle, 
can be passed without complication in AnyFigure. 

Adding a new member function to an existing class hierarchy 
involves a little thought. How far up the hierarchy should the 
member function be placed? Think about the utility provided by 
the function and decide how broadly applicable that utility is. 
Dragging a figure involves changing the location of the figure in 
response to input from the user. In terms of inheritability, it sits 
right beside MoveTo-any object to which MoveTo is appropriate 
should also inherit Drag. Therefore Drag should be a member of 
Point, so that all of Point's derived types can share it. 

Having resolved the place of Drag in the hierarchy, we can take a 
closer look at its definition. As a member function of the base 
class Point, there is no need for the explicit reference to the Point& 
AnyFigure argument. We can rewrite Drag so that the functions it 
calls, such as GetX, Show, MoveTo, and Hide, will correctly 
reference the versions appropriate to the type of the object being 
dragged. As we saw earlier, the functions Show and Hide that 
require special shape-related code can be made virtual. We can 
then redefine them for any future classes without disturbing the 
FIGURES module. This also takes care of MoveTo, since MoveTo 
calls the correct Show and Hide (you'll recall that that was our 
original motivation for making Show and Hide virtual). GetX and 
GetY present no problem: as ordinary member functions inherited 
from Point via Location, they simply return the X and Y data 
members of the calling object of any derived class, present or 
future. Remember, though, that X and Y are protected in 
Location, so we must use public derivation as shown. 

The next design decision is whether to make Drag virtual. The 
litmus test for making any function virtual is whether its function­
ality is expected to change somewhere down the hierarchy. There 
is no golden rule here, but later on we'll discuss the various 
tradeoffs: extensibility versus performance overhead (virtual 
functions require slightly more memory and a few more 
memory-access cycles). We have taken the view that some future 
class in, say, a CAD (Computer Aided Design) application might 
conceivably need a special dragging action. Perhaps dragging an 

Turbo C++ Getting started 



Remember to recompile 
everything that uses this 

header file. 

This code is on your disks: 
figures.h. 

Chapter 5, A C++ primer 

isometric drawing will require some scaling actions, and so on. In 
our new Point class definition in figures.h, we have therefore 
made Drag virtual. 

class Point : public Location 
protected: 

Boolean Visible; 
public: 

} ; 

Point(int InitX, int InitY); 
virtual void Show(); //Show and Hide are virtual 
virtual void Hide(); 
Boolean IsVisible () (return Visible;} 
void MoveTo(int NewX, int NewY); 
virtual void Drag(int DragBy}; 

Here is the header file figures.h containing the class declarations 
for the FIGURES module. This is the only part of the package that 
needs to be distributed in source code form: 

II figures.h contains three classes. 
II 
ii Class Location describes screen locations in X and Y 
II coordinates. 
II 
II Class Point describes whether a point is hidden or visible. 
II 
II Class Circle describes the radius of a circle around a point. 
II 
II To use this module, put *include <figures.h> in your main 
II source file and compile the source file FIGURES.CPP together 
II with your main source file. 

enum Boolean {false, true}; 

class Location 
protected: 

int X; 
int Y; 

public: 

} ; 

Location(int InitX, int InitY} {X = InitX; Y = InitY;} 
int GetX() {return X;} 
int GetY() {return Y;) 

class Point : public Location 
protected: 

Boolean Visible; 
public: 

Point(int InitX, int InitY); 

163 



This code Is on your disks: 
FIGURES.CPP. You should 

compile this code and link It 
to GRAPHICS.LIB to get 

FIGURES.OBJ. You'll need 
FIGURES.OBJ for the next 

exercise. 

164 

virtual void Show(); II Show and Hide are virtual 
virtual void Hide(); 
virtual void Drag(int DragBy); II new virtual drag function 
Boolean IsVisible() (return Visible;} 
void MoveTo(int NewX, int NewY); 

) i 

class Circle : public Point II Derived from class Point and 
II ultimately from class Location 

protected: 
int Radius; 

public: 
Circle(int InitX, int InitY, int InitRadius); 
void Show() ; 

) i 

void Hide() ; 
void Expand(int ExpandBy); 
void Contract(int ContractBy); 

II prototype of general-purpose, non-member function 
II defined in FIGURES.CPP 

Boolean GetDelta(int& DeltaX, int& DeltaY); 

Here is the file FIGURES.CPP containing the member function 
definitions. This is what would be distributed in object or library 
form commercially. Note that we have defined the Circle con­
structor outside the class since it invokes base constructors. You 
may wish to experiment by making it an inline function (see the 
discussion on page 175). The nonmember function GetDelta will 
repay some study if you are new to C. Note the use of reference 
arguments, which is a C++ touch; the rest of the code is 
traditional. 

II FIGURES.CPP: This file contains the definitions for the Point 
II class (declared in figures.h). Member functions for the 
II Location class appear as inline functions in figures.h. 

finclude "figures. h" 
finclude <graphics.h> 
#include <conio.h> 

II member functions for the Point class 

I I constructor 
Point::Point(int InitX, int InitY) : Location (InitX, InitY) 
{ 

Visible = false; 

void Point::Show() 
{ 

II make invisible by default 

Turbo C++ Gaffing started 



Chapter 5, A C++ primer 

Visible = true; 
putpixel(X, Y, getcolor()); //uses default color 

void Point::Hide() 
{ 

Visible = false; 
putpixel{X, Y, getbkcolor()); II uses background color to erase 

void Point::MoveTo(int NewX, int NewY) 
{ 

Hide() ; 
X = NewX; 
Y = NewY; 
Show() ; 

II make current point invisible 
II change X and Y coordinates to new location 

II show point at new location 

II a general-purpose function for getting keyboard 
II cursor movement keys (not a member function) 

Boolean GetDelta(int& DeltaX, int& DeltaY) 
{ 

char KeyChar; 
Boolean Quit; 
DeltaX = O; 
DeltaY = O; 

do 

KeyChar = getch(); 
if (KeyChar == 13) 

return (false); 
if (KeyChar == 0) 

II read the keystroke 
II carriage return 

II an extended keycode 
( 

Quit= true; II assume it is usable 
KeyChar = getch(); II get rest of keycode 

switch (KeyChar) ( 
case 72: DeltaY = -1; break; II down arrow 
case 80: DeltaY = 1; break; II up arrow 
case 75: DeltaX = -1; break; II left arrow 
case 77: DeltaX = 1; break; II right arrow 
default: Quit= false; II bad key 
) ; 

} ; 

while (!Quit); 
return(true); 

void Point::Drag(int DragBy) 
( 

int DeltaX, DeltaY; 

165 



166 

int FigureX, FigureY; 

Show();// display figure to be dragged 
FigureX = GetX(); II get initial position of figure 

FigureY = GetY(); 

II This is the drag loop 
while {GetDelta{DeltaX, DeltaY)) 

II Apply delta to figure at X, Y 
FigureX += (DeltaX * DragBy); 
FigureY += {DeltaY * DragBy); 
MoveTo{FigureX, FigureY); //tell figure to move 
l; 

II Member functions for the Circle class 

//constructor 
Circle::Circle{int InitX, int InitY, int InitRadius) Point {InitX, 
InitY) 
{ 

Radius = InitRadius; 

void Circle::Show() 
( 

Visible = true; 
circle(X, Y, Radius); 

void Circle::Hide{) 
( 

unsigned int TempColor; 
TempColor = getcolor{); 
setcolor{getbkcolor{)); 
Visible = false; 
circle{X, Y, Radius); 
setcolor(TempColor); 

II draw the circle 

II to save current color 
II set to current color 
II set drawing color to background 

II draw in background color to 
II set color back to current color 

void Circle::Expand{int ExpandByl 
{ 

Hide(); 
Radius += ExpandBy; 
if {Radius < 0) 

Radius = O; 
Show{); 

II erase old circle 
II expand radius 
II avoid negative radius 

II draw new circle 

void Circle::Contract(int ContractBy) 
( 

Expand{-ContractBy); II redraws with (Radius-ContractBy) 

Turbo C++ Getting started 



1his code is on your disks as 
FIGDEMO.CPP. You need to 

compile it and link it to 
FIGURES. OBJ. 

Chapter 5, A C++ primer 

We are now ready to test FIGURES by exposing it to a new shape 
class called Arc that is defined in FIGDEMO.CPP. Arc is 
(naturally) derived publicly from Circle. Recall that Drag is about 
to drag a shape it has never seen before! 

II FIGDEMO.CPP -- Exercise for Chapter 5 

II demonstrates the Figures toolbox by extending it with 
II a new type Arc. 

II Link with FIGURES.OBJ and GRAPHICS.LIB 

#include "figures.h" 
#include <graphics.h> 
#include <conio.h> 

class Arc : public Circle 
int StartAng le; 
int EndAngle; 

public: 
II constructor 

Arc(int InitX, int InitY, int InitRadius, int InitStartAngle, int 
InitEndAngle) : Circle (InitX, InitY, InitRadius) ! 
StartAngle = InitStartAngle; EndAngle = InitEndAngle;) 

void Show(); II these functions are virtual in Point 
void Hide() ; 

) ; 

II Member functions for Arc 

void Arc::Show() 
{ 

Visible = true; 
arc(X, Y, StartAngle, EndAngle, Radius); 

void Arc::Hide() 
! 

int TempColor; 
TempColor = getcolor(); 
setcolor (getbkcolor()); 
Visible = false; 
II draw arc in background color to hide it 
arc(X, Y, StartAngle, EndAngle, Radius); 
setcolor(TempColor); 

int main() II test the new Arc class 
{ 

int graphdriver = DETECT, graphmode; 
initgraph(&graphdriver, &graphmode, "c: .. \\bgi"l; 

167 



Ordinary or virtual 
member 

functions? 

Circle ACircle(l51, 82, 50); 
Arc AnArc(151, 82, 25, O, 190); 

II you first drag an arc using arrow keys (5 pixels per key) 
II press Enter when tired of this! 
II Now drag a circle (10 pixels per arrow key) 
II Press Enter to end FIGDEMO. 

AnArc.Drag(S); II drag increment is 5 pixels 
AnArc. Hide() ; 
ACircle.Drag{lO); //now each drag is 10 pixels 
closegraph () ; 
return O; 

In general, because calling a non-virtual member function is a 
little faster than calling a virtual one, we recommend that you use 
ordinary member functions when extensibility is not a 
consideration, but performance is. Use virtual functions 
otherwise. 

To recap our earlier discussion, let's say you are declaring a class 
named Base, and within Base you are declaring a member func­
tion named Action. How do you decide whether Action should be 
virtual or ordinary? Here's the rule of thumb: Make Action virtual 
if there is a possibility that some future class derived from Base 
will override Action, and you want that future code to be accessi­
ble to Base. Make Action ordinary if it is evident that for derived 
types, Action will perform the same steps (even if this involves 
invoking other, virtual, functions); or the derived types will not 
make use of Action. 

Dynamic objects 

168 

All the examples shown so far, except for the message array allo­
cation in MCIRCLE.CPP, have had static or automatic objects of 
class types that were declared as usual with their memory being 
allocated by the compiler at compile time. In this section we look 
at objects that are created at run time, with their memory 
allocated from the system's free memory store. The creation of dyna­
mic objects is an important technique for many programming 
applications where the amount of data to be stored in memory 
cannot be known before the program is run. An example is a 

Turbo C++ Getting started 



To allocate an object from 
free store, declare a pointer 

to the object's type and 
assign the result of the 

expression new object_ type 
to the pointer. You can now 

use the pointer to refer to the 
newly created object. 

You can find this on your 
disks: DYNPOINT.CPP. Or use 

DYNPOINT.PRJ. 

Chapter 5, A C++ primer 

free-form database program that holds data records of various 
sizes in memory for rapid access. 

C++ can use the dynamic memory allocation functions of C such 
as malloc. However, C++ includes some powerful extensions that 
make dynamic allocation and deallocation of objects easier and 
more reliable. More importantly, it ensures that constructors and 
destructors are called. For example, 

Circle *ACircle =new Circle(l51,82,50); 

Here ACircle, a pointer to type Circle, is given the address of a 
block of memory large enough to hold one object of type Circle. In 
other words, ACircle now points to a Circle object allocated from 
free store. A Circle constructor is then called to initialize the object 
according to the arguments supplied. 

If you are allocating an array rather than a standard-length data 
type, use the optional syntax 

new object [size] 

For example, to dynamically allocate an array of 50 integers called 
counts, use 

counts= new int [50]; 

If you wanted to create a dynamic Point class object, you might 
do it like this: 

II DPOINT.CPP -- exercise in Chapter 5, Getting Started 

#include <iostream.h> 
#include <graphics.h> 
#include <conio.h> 
linclude "figures.h" 

int main() 
{ 

II Assign pointer to dynamically allocated object; call constructor 
Point *APoint =new Point(50, 100); 

II initialize the graphics system 
int graphdriver = DETECT, graphmode; 
initgraph{&graphdriver, &graphmode, " .. \ \bgi"); 

II Demonstrate the new object 
APoint->Show(); 
cout « "Note pixel at (50, 100) . Now, hit any key •.• "; 
getch (); 
delete APoint; 
closegraph (); 

169 



Destructors and 
delete 

You can find more on 
destructor syntax In Chapter 
L "The Turbo C++ language 
standard,· In the Program­

mer's Guide. 

An example of 
dynamic object 

allocation 

170 

return(O); 
) 

Just as you can define a constructor that will be called whenever a 
new object of a class is created, you can define a destructor that 
will be called when it is time to destroy an object, that is to say, 
clear its value and deallocate its memory. 

Space for static objects is allocated by the compiler; the 
constructor is called before main and the destructor is called after 
main. In the case of auto objects, deallocation occurs when the 
declaration goes out of scope (when the enclosing block 
terminates). Any destructor you define is called at the time the 
static or auto objects is destroyed. (If you haven't defined a 
destructor, C++ uses an implicit, or built-in one.) 

If you create a dynamic object using the new operator, however, 
you are responsible for deallocating it, since C++ has no way of 
"knowing" when the object is no longer needed. You use the 
delete operator to deallocate the memory. Any destructor you 
have defined is called when delete is executed. 

The delete operator has the syntax 

delete pointer; 

where pointer is the pointer that was used with new to allocate the 
memory. 

You have seen that a constructor for the class Xis identified by 
having the same name, viz X::X(). The name of a destructor for 
class Xis X::-X(). In addition to deallocating memory, destructors 
can also perform other appropriate actions, such as writing mem­
ber field data to disk, closing files, and so on. 

The next example program provides some practice in the use of 
objects allocated dynamically from free store, including the use of 
destructors for object deallocation. The program shows how a 
linked list of graphics objects might be created in memory and 
cleaned up using delete calls when the objects are no longer 
required. 

Turbo C++ Getting Started 



See the next listing for the 
declarations of List and 

Node. 

This code Is on your disks as 
LISTDEMO.CPP. 

Chapter 5, A C++ primer 

Building a linked list of objects requires that each object contain a 
pointer to the next object in the list. Type Point contains no such 
pointer. The easy way out would be to add a pointer to Point, and 
in doing so ensure that all Point's derived types also inherit the 
pointer. However, adding anything to Point requires that you 
have the source code for Point, and as noted earlier, one advan­
tage of C ++is the ability to extend existing objects without 
necessarily being able to recompile them. So for this example 
we'll pretend that we don't have the source code to Point and 
show how you can extend the graphics tool kit anyway. 

One of the many solutions that requires no changes to Point is to 
create a new class not derived from Point. Type List is a very 
simple class whose purpose is to head up a list of Point objects. 
Because Point contains no pointer to the next object in the list, a 
simple struct, Node, provides that service. Node is even simpler 
than List, in that it has no member functions and contains no data 
except a pointer to type Point and a pointer to the next node in the 
list. 

List has a member function that allows it to add new figures to its 
linked list of Node records by inserting a new Node object imme­
diately after itself, as a referent to its Nodes pointer member. The 
Add member function takes a pointer to a Point object, rather than 
a Point object itself. Remember that rules for the class hierarchy in 
C++ allows pointers to any type publicly derived from Point to be 
passed in the Item argument to List::Add. 

Program ListDemo declares a static variable, AList, of type List, 
and builds a linked list with three nodes. Each node points to a 
different graphics figure that is either a Point or one of its derived 
classes. The number of bytes of free storage space is reported be­
fore any of the dynamic objects are created, and then again after 
all have been created. Finally, the whole structure, including the 
three Node records and the three Point objects, is cleaned up and 
removed from memory, thanks to the destructor for the List class 
called automatically for its object AList. 

!* LISTDEMO.CPP--Example from Chapter 5 of Getting Started *I 

I! LISTDEMO.CPP Demonstrates dynamic objects 

II Link with FIGURES.OBJ and GRAPHICS.LIB 

#include <conio.h> 
#include <alloc.h> 
#include <stdlib.h> 
#include <string.h> 

I I for getch () 
II for coreleft() 
I I for itoa () 
I I for strcpy () 

171 



172 

#include <graphics.h> 
Hncl ude 11 figures.h 11 

class Arc : public Circle 
int StartAngle, EndAngle; 

public: 
II constructor 
Arc(int InitX, int InitY, int InitRadius, int InitStartAngle, 

l; 

int InitEndAngle); 
II virtual functions 
void Show() ; 
void Hide(); 

I I the list item struct Node { 
Point *Item; 
Node *Next; 

II can be Point or any class derived from Point 
II point to next Node object 

) ; 

class List { 
Node *Nodes; 

II the list of objects pointed to by nodes 
II points to a node 

public: 

) ; 

I I constructor 
List(); 
II destructor 
~List(); 

II add an item to list 
void Add(Point *Newitem); 
II list the items 
void Report(); 

11 definitions for standalone functions 

void OutTextLn(char *TheText) 
{ 

outtext(TheText); 
moveto(O, gety() + 12); II move to equivalent of next line 

void MemStatus(char *StatusMessage) 
{ 

unsigned long MemLeft; II to match type returned by 
I I coreleft () 

char CharString[12]; II temp string to send to outtext() 
outtext(StatusMessage); 
MemLeft =long (coreleft()); 

II convert result to string with ltoa then copy into 
II temporary string 
ltoa(MemLeft, CharString, 10); 
OutTextLn(CharString); 

Turbo C++ Getting Started 



Chapter 5, A C++ primer 

II member functions for Arc class 

Arc::Arc(int InitX, int InitY, int InitRadius, int InitStartAngle, 
int InitEndAngle) : Circle (InitX, InitY, InitRadius) 

I I calls Circle 
II constructor 

StartAngle InitStartAngle; 
EndAngle = InitEndAngle; 

void Arc:: Show() 
{ 

Visible = true; 
arc(X, Y, StartAngle, EndAngle, Radius); 

void Arc:: Hide() 
{ 

unsigned TempColor; 
TempColor = getcolor(); 
setcolor(getbkcolor()); 
Visible = false; 
arc(X, Y, StartAngle, EndAngle, Radius); 
setcolor(TempColor); 

) 

II member functions for List class 

List: :List {) ( 
Node *N; 
N = new Node; 
N->Item = NULL; 
N->Next = NULL; 
Nodes = NULL; 

List: :-List() 
{ 

while (Nodes != NULL) 
Node *N = Nodes; 
delete(N->Item); 
Nodes = N->Next; 

delete N; 
) ; 

II sets node pointer to "empty" 
II because nothing in list yet 

I I destructor 

II until end of list 
II get node pointed to 
II delete item's memory 
II point to next node 
II delete pointer's memory 

void List::Add(Point *Newitem) 
{ 

Node *N; II N is pointer to a node 

173 



174 

N = new Node; 
N->Item = Newitem; 
N->Next = Nodes; 
Nodes = N; 

II create a new node 
II store pointer to object in node 
II next item points to curent list pos 
II last item in list now points 
II to this node 

void List:: Report() 
{ 

char TempString[12]; 
Node *Current = Nodes; 
while (Current != NULL) 
{ 

) ; 

II get X value of item in current node and convert to string 
itoa(Current->Item->GetX(), TempString, 10); 
outtext ("X = "); 

OutTextLn(TempString); 
II do the same thing for the Y value 
itoa(Current->Item->GetY(), TempString, 10); 
outtext("Y = "); 

OutTextLn(TempString); 
II point to the next node 
Current = Current->Next; 

void setlist(void); 

II Main program 
main() 
{ 

int graphdriver = DETECT, graphmode; 
initgraph(&graphdriver, &graphmode, "c: .. \ \bgi"); 

MemStatus ("Free memory before list is allocated: "); 
setlist () ; 
MemStatus ("Free memory after List destructor: "); 
getch(); 
closegraph () ; 

void setlist () { 

II declare a list (calls List constructor) 
List AList; 

II create and add several figures to the list 
Arc *Arel= new Arc(151, 82, 25, 200 1 330); 
AList.Add(Arcl); 
MemStatus ("Free memory after adding arcl: "); 
Circle *Circlel =new Circle(200, 80, 40); 
AList.Add(Circlel); 

Turbo C++ Getting Started 



MemStatus ("Free memory after adding circlel: "); 
Circle *Circle2 =new Circle(305, 136, 35); 
AList.Add(Circle2); 
MemStatus("Free memory after adding circle2: "); 
II traverse list and display X, Y of the list's figures 
AList. Report() ; 
II The 3 Alist nodes and the Arc and Circle objects will be 
II deallocated automatically by their destructors when they 
II go out of scope in main(). Arc and Circle use implicit 
II destructors in contrast to the explicit -List destructor. 
II However, you could delete explicitly here if you wish: 
II delete Arel; delete Circlel; delete Circle2; 
getch(); II wait for a keypress 
return; 

Once you have mastered LISTDEMO.CPP, you might wish to 
develop a more satisfying solution based on the following idea: 
define a new class called Polntllst by multiple inheritance from 
classes Point and List. 

More flexibility in C++ 

None of these features are 
essential to understanding 

C++, but they can add to its 
flexibility and power. 

lnline functions 
outside class 

definitions 

Chapter 5, A C++ primer 

Although it will take you some time to master the nuances of this 
new style of programming, you have now learned the essential 
elements of C++. There are a number of additional features that 
we touch on briefly here so that you will know what they are and 
how to use them. 

• Inline functions outside class definitions 

• Default function arguments 

• Overloading functions and multiple constructors 

• Friend functions-another way of providing access to a class 

•Overloading operators to provide new meanings 

•More about C++ I/0 and the streams library 

You have already seen that you can include an inline definition of 
a member function within the class declaration as shown here 
with the Point class: 

class Point: 
int X; 

II define Point class 
II these are private by default 

175 



Remember that inline code Is 
enclosed In braces. 

Functions with 
default 

arguments 
If you plan to use certain 

values often for a function, 
use those values as default 
arguments for the function. 

176 

Default values must be 
specified the first time the 

function name Is given. 

int Y; 
public: //public member functions 

Point (int InitX, int InitYJ {X = InitX, Y = InitY; I 
int GetX(void) {return X;J 
int GetY(void) {return Y;J 

} ; 

All three member functions of the Point class are defined inline, 
so no separate definition is necessary. For functions with only a 
line or so of code, this provides a more compact, easier to read de­
scription of the class. 

Functions can also be declared as inline. The only difference is that 
you have to start the function declaration with the keyword 
inllne. For example, in LISTDEMO.CPP, there is an operation that 
simply moves the output location for text in graphics mode down 
one line (it is used in the function OutTextLn). If this function 
were to be used in many other places in the code, it would be 
more efficient to declare it as a separate inline function: 

inline void graphLn() ( moveto(O, gety() + 12); ) 

If you wish, you can format your inline definitions to look more 
like a regular function definition: 

inline void graphLn() 
{ 

moveto(O, gety() + 12); 

Another advantage to using the lnline keyword is that you can 
avoid revealing your implementation code in the distributed 
header files. 

You can define functions that you can call with fewer arguments 
than defined. The arguments that you don't supply are given de­
fault values. If you are going to be using these default values most 
of the time, such an "abbreviated" call saves typing. You don't 
lose flexibility, because when you want to override the defaults, 
you simply specify the values you want. 

For example, the following version of the constructor for the Circle 
class gives a default circle of radius 50 pixels centered at (X = 200, 
Y = 200). A more portable program, of course, would have to 
determine the graphics hardware available and adjust these 
values accordingly. 

Turbo C++ Getting started 



As with ANSI C, C++ allows 
functions to have a variable 
number of arguments, such 

as float average (int 
number, ... ) , which can 
take one or more integer 

values. See Chapter 7, "1he 
Turbo C++ language stan­

dard.· in the Programmer's 
Gulde for details. 

More about 
overloading 

functions 

Chapter 5, A C++ primer 

class Circle : public Point 

protected: 
int Radius; 

public: 

II Derived from class Point and 
II ultimately from class Location 

Circle(int InitX = 200, int InitY = 200 1 int InitRadius = 50); 
void Show(void); 

); 

void Hide(void); 
void Expand(int ExpandBy); 
void Contract(int ContractBy); 

Now the declaration 

Circle ACircle; 

gives you a circle with the default center at (200,200) and radius 
50. The declaration 

Circle ACircle(50, 100); 

gives a circle with center at 50, 100, with the default radius of 50. 

The declaration 

Circle ACircle(300) 

gives a circle at X = 300, with default Y = 200 and radius = 50. 

Any default arguments must be in consecutive rightmost posi­
tions in the argument list. For example, you couldn't declare 

void func(int a = 10, int b, int c) 

because the compiler wouldn't know which values are being 
supplied. 

Overloading is an important and pervasive concept in C++. When 
several different functions (whether member functions or 
ordinary) are defined with the same name within the same scope, 
they are said to be overloaded. You have met several such cases; 
for example, the three functions called cube on page 128. (Earlier 
versions of C++ required that such declarations be preceded by 
the keyword overload, but this is now obsolete.) 

The basic idea is that overloaded function calls are distinguished 
by comparing the types of the actual arguments in the call and the 
formal argument signatures in the function definitions. The actual 

177 



You can load and run 
STRING.CPP from the /DE. 

After running It. you'll have to 
activate the User Screen to 
see the output. Use the hot 

key Alt-FS or the Window I User 
Screen menu Item. 

178 

rules for disambiguation are beyond the scope of a primer and 
should rarely affect the beginner (who is hereby cautioned against 
the rash replication of function names). Among the possible 
complications are functions called with default actual arguments, 
or with a variable numbers of arguments; also, there are the nor­
mal C conversions of argument type to be considered, together 
with additional type conversions peculiar to C++. When faced 
with a call to a heavily overloaded function, the compiler tries to 
find a best match. If there is no best match, a compiler error results. 

One of the most common cases is overloading a constructor so as 
to provide several different ways to create a new object of a class. 
To illustrate this, we will define a very simple String class. (For 
some fully functional string classes, refer to the books in the 
bibliography.) 

llSTRING.CPP--Example from Chapter 5 of Getting Started *I 
#include <iostream.h> 
#include <string.h> 

class String { 
char *char_ptr; II pointer to string contents 
int length; II length of string in characters 

public: 

}; 

II three different constructors 
String{char *text); II constructor using existing string 
String{int size= 80); II creates default empty string 
String{String& Other_String); II for assignment from another 

~String{) {delete char_ptr;}; 
int Get_len {void); 
void Show {void); 

II object of this class 

String::String {char *text) 
{ 

}; 

length= strlen{text); II get length of text 
char_ptr =new char[length + 1]; 
strcpy{char_ptr, text); 

String::String {int size) 
{ 

} ; 

length = size; 
char_ptr =new char[length+l]; 
*char_ptr = '\0'; 

String::String {String& Other_String) 

Turbo C++ Gaffing started 



When cal/Ing a constructor 
with no arguments (or when 
accepting all default argu­

ments), don't put empty 
parentheses after the name 
of the object. For example, 
declare String BString;, 

not String BString ();. 

Chapter 5, A C++ primer 

); 

length= Other_String.length; // length of other string 
char_ptr =new char [length+ 1]; //allocate the memory 
strcpy (char_ptr, Other_String.char_ptr); // copy the text 

int String::Get_len(void) 
I 

return (length); 
I; 

void String::Show(void) 
( 

cout « char_ptr « 11 \n"; 
} ; 

main () 
I 

II test the functions 

String AString ("Allocated from a constant string •11 ); 

AString .Show() ; 

String BString; // uses default length 
cout « 11 \n" « BString.Get_len() « 11 \n" ; //display length 
BString = "This is BString"; 

String CString(BString); 
CString. Show() ; 

II invokes the third constructor 
II note its contents 

The class String has three different constructors. The first takes an 
ordinary string constant such as "This is a string" and initializes a 
string with these contents. The second constructor uses a default 
length of 80, and allocates the string without storing any charac­
ters in it (this might be used to create a temporary buffer). Note 
that you,can override the default simply by calling the constructor 
with a different length: Instead of declaring String AString, you 
could declare, for example, String AString (40). 

The third constructor takes a reference to another object of type 
String (recall that the ampersand after a type means a reference to 
that type, and is used to pass the address of a variable rather than 
a copy of its contents.) With this constructor you can now write 
statements such as these: 

String AString("This is the first string"); // create and initialize 
String BString = Astring; // create then assign BString from AString 

Note that constructors are involved in three related but separate 
aspects of an object's life story: creation, initialization, and 
assignment. The use of the = operator for class assignments leads 
us nicely to our next topic, operator overloading. Unless you 

179 



Overloading 
operators to 
provide new 

meanings 

Whitespace Is okay between 
the keyword operator and 

the operator symbol. 

180 

define a special =operator for a class, C++ defaults to a member­
by-member assignment. 

C++ has a special feature found in few other languages: existing 
operators such as + can be given new definitions to make them 
work in an appropriate, user-defined manner with your own class 
objects. Operators are a very concise way of doing business. If you 
didn't have them, an expression such as line * width + pos would 
have to be written something like this: add (mult (line, width), pos). 
Fortunately, the arithmetic operators in C (and C++) already 
know how to work with all of the numeric data types-the same + 
that works with int values also works with float, for example. The 
same operator is used, but the code generated is clearly different, 
since integers and floating-point numbers are represented 
differently in memory. In other words, operators such as +are 
already overloaded, even in regular C. C++ simply extends this 
idea to allow user-defined versions of the existing operators. 

To define an operator, you define a function that has as its name 
the keyword operator followed by the operator symbol. (So, for 
example, operator+ names a new version of the + operator.) All op­
erator functions are by definition overloaded: They use an opera­
tor that already has a meaning in C, but they redefine it for use 
with a new data type. The +operator, for example, already has the 
capability to add two values of any of the standard numeric types 
(Int, float, double, and so on.) 

Now we can add a +operator to the String class. This operator 
will concatenate two string objects (as in BASIC) returning the 
result as a string object with the appropriate length and contents. 
Since concatenating is "adding together," the + symbol is the ap­
propriate one to use. The BASIC lobby often criticizes C for not 
having such natural string operations. With C++, you can go far 
beyond the built-in BASIC string facilities. 

The file XS1RING.CPP, available on your distribution disks, has 
the following additions to 51RING.CPP to provide a simple 
operator+. 

//XSTRING.CPP--Example from Chapter 5 of Getting Started*/ 
II version of STRING.CPP with overloaded operator+ 

#include <iostream.h> 
#include <string.h> 

Turbo C++ Getting started 



Chapter 5, A C++ primer 

class String { 
char *char_ptr; II pointer to string contents 
int length; // length of string in characters 

public: 
II three different constructors 
String{char *text); II constructor using existing string 

}; 

String{int size= 80); II creates default empty string 
String(String& Other_String); II for assignment from another 

II object of this class 
~String() {delete char _ptr;}; II inline destructor 
int Get_len (void}; 
String& operator+ (String& Arg); 
void Show (void); 

String::String (char *text) 
( 

} ; 

length= strlen(text); II get length of text 
char_ptr =new char[length + 1]; 
strcpy(char__ptr, text); 

String: :String (int size) 
{ 

} ; 

length = size; 
char_ptr =new char[length+l]; 
*char_ptr = '\0'; 

String::String (String& Other_String) 
{ 

} ; 

length= Other_String.length; II length of other string 
char_ptr =new char [length+ 1]; II allocate the memory 
strcpy (char_ptr, Other_String.char_ptr); II copy the text 

String& String::operatort (String& Arg) 
I 

length+= Arg.length; 
char * NewText = new char[length+l]; 
strcpy(NewText, char__ptr); 
strcat(NewText, Arg.char_ptr); 
delete char_ptr; 
char_ptr = NewText; 
return *this; 

int String::Get_len(void) 
( 

return (length); 
}; 

181 



To see this display from the 
/DE, press Alt-F5 or Window I 

User. 

this is discussed in greater 
detail in the Programmer's 

Guide. 

182 

void String::Show(void) 
{ 

cout « char _ptr « "\n"; 
} ; 

main () 
{ 

II test the functions 

String AString ("The Quick Brown fox"); 
AString. Show() ; 

String BString(" jumps over Bill"); 
String CString; 
CString = AString + BString; 
CString. Show() ; 

When you run the program, CString is assigned the concatenation 
of the two strings AString and BString. So CString.Show() displays 

The Quick Brown Fox jumps over Bill 

The overloaded + takes only one explicit argument, so you may 
wonder how it manages to concatenate two strings. Well, the 
compiler treats the expression AString + BString as 

AString. (operator +(BString)) 

so the+ operator does access two string objects. The first is the 
String object currently being referenced, and the other is a second 
string object. The operator function adds the lengths of the two 
strings together, then uses the strcat library function to combine 
the contents of the two strings, which is then returned. This re­
markable trick makes use of a "hidden" pointer known as this. 
What is this? 

Every call by a member function sets up a pointer to the object 
upon which the call is acting. This pointer can be referred via the 
keyword this (also known as "self" or rather "pointer-to-self" in 
OOP parlance), allowing functions to access the actual object. 
Now this is of type "pointer to String", so the return value must 
be *this, the actual current object, is exactly what is needed. Note, 
too, that individual members of the object involved in a function 
call can be referenced via the expression this->member. A further 
point to watch: this is available only to member functions, not to 
friend functions. 

There are some restrictions when overloading operators: 

• C++ can't distinguish between the prefix and postfix versions of 
++and--. 

Turbo C++ Getting started 



Friend functions 

The position of the decla­
ration doesn't matter. 

Chapter 5, A C++ primer 

•The operator you wish to define must already exist in the 
language. For example, you can't define the operator#. 

•You can't overload the following operators: 
• .* :: ?: 

• Overloaded operators keep their original precedence. 

•If@ stands for any unary operator, the expressions @x and x@ 
may be interpreted as either x.operator@(} or as operator@(x). 
If both forms have been declared, the compiler will try to 
resolve the ambiguity by matching the arguments. Similarly, 
with an overloaded binary operator,@, x@y could mean either 
x.operator@(y) or operator@(x,y), and the compiler needs to 
look at the arguments if both forms have been defined. You saw 
an example of a binary operator in the string version of+, 
where AString + BString was interpreted as AString. (operator 
t (BString) ) . 

Normally, access to the private members of a class is restricted to 
member functions of that class. Occasionally it may be necessary 
to give outside functions access to the class's private data. The 
friend declaration within a class declaration lets you specify 
outside functions (or even outside classes) that will be granted ac­
cess to the declared class's private members. You'll sometimes see 
an overloaded operator declared as a friend, but generally speak­
ing friend functions are to be used sparingly-if their need 
persists in your project, it is often a sign that your class hierarchy 
needs revamping. 

But, suppose that there is a fancy formatted printing function 
called Fancy_Print that you want to have access to the contents of 
your objects of class String. You can add the following line to the 
list of member function declarations: 

class String { 

friend void Fancy~Print(String& AString); 

In this admittedly artificial example, the Fancy_Print function can 
access the members char _ptr and length of objects of the String 
class. That is, if AString is a string object, Fancy_Print can access 
AString. char _Ptr and AString. length. 

183 



The C++ streams 
libraries 

This section is Intended 
merely to whet your appetite 

and point you In the right 
direction. We encourage you 

to study the examples in 
Chapter 3, ·c++ streams,· in 
the Programmer's Guide and 

experiment on your own. 

If the Fancy_Print function is a member of another class (for ex­
ample, the class Format), use the scope resolution operator in the 
friend declaration: 

friend void Format::Fancy_Print(String& AString); 

You can also make a whole class the friend of the declared class, 
by using the word class in the declaration: 

friend class Format; 

Now any member function of the Format class can access the 
private members of the String class. Note that in C++, as in life, 
friendship is not transitive: if Xis a friend of Y, and Y is a friend of 
Z, it does not follow that X is a friend of Z. 

The friend declaration should be used only when it is really neces­
sary; when without it you would have to have a convoluted class 
hierarchy. By its nature, the friend declaration diminishes 
encapsulation and modularity. In particular, if you find yourself 
wanting to make a whole class the friend of another class, 
consider instead the possibility of deriving a common derived 
class and using it to access the needed members. 

While all the stdio library 1/0 functions (such as prlntf and scanf) 
are still available, C++ also provides a group of classes and func­
tions for 1/0 defined in the iostreams library. To access these 
your program must have the directive #include <iostream. h>, as 
you may have noticed in some of our examples. 

There are many advantages in using iostreams rather than stdio. 
The syntax is simpler, more elegant, and more intuitive. The C++ 
stream mechanism is also more efficient and flexible. Formatting 
output, for example, is simplified by extensive use of overloading. 
The same operator can be used to output both predefined and 
user-defined data types, avoiding the complexities of the printf 
argument list. 

Starting with the stream as an abstraction for modeling any flow 
of data from a source (or producer) to a sink (or consumer), 
iostream provides a rich hierarchy of classes for handling 
buffered and unbuffered 1/0 for files and devices. 

.. Turbo C++ also supports the older (version 1.x) C++ stream 
library to assist programmers during the transition to the new 
iostream library of C++ release 2.0. If you have any C++ code that 

184 Turbo C++ Getting started 



uses the obsolete stream classes, you can still maintain and run it 
with Turbo C++. However, given a choice, you should convert to 
the more efficient iostream and avoid stream when writing new 
code. Chapter 3, "C++ streams," in the Programmer's Guide 
explains the differences between the stream and iostream 
libraries, and provides some hints on conversion. See also 
OLDSTR.DOC on your distribution disks. 

In this section we cover only the simpler classes in iostream. For a 
more detailed account, you should read Chapter 3, "C++ 
streams," in the Programmer's Guide. You can also browse through 
iostream.h on your distribution disks to see the many classes 
defined there and how they are derived using both single and 
multiple inheritance. 

Standard 1/0 C++ provides four predefined stream objects defined as follows: 

Chapter 5, A C++ primer 

•cin 

•cout 

•cerr 

•clog 

standard input, usually the keyboard, corre­
sponding to stdin in C 
standard output, usually the screen, correspond­
ing to stdout in C 
standard error output, usually the screen, corre­
sponding to stderr in C 

a fully-buffered version of cerr (no C equivalent) 

You can redirect these standard streams from and to other devices 
and files. (In C, you can redirect only stdin and stdout.) You have 
already seen the most common of these, cin and cout, in some of 
the examples in this chapter. 

A simplified view of the iostream hierarchy, from primitive to 
specialized, is as follows: 

• streambuf provides methods for memory buffers 

•ios 

• istream 

mostream 

• iostream 

handles stream state variables and 
errors 

handles formatted and unformatted 
character conversions from a streambuf 

handles formatted and unformatted 
character conversions to a streambuf 

combines istream and ostream to 
handle bidirectional operations on a 
single stream 

185 



« used with streams is called 
the insertion or put to 

operator, while »is called 
the extraction or get 'from 

operator. 

This program simply stores 
each Input character In the 

variable ch and then outputs 
the value of ch to the 

screen. 

186 

• istream_withassign provides constructors and assignment 
operators for the cin stream. 

• ostream_wlthasslgn provides constructors and assignment 
operators for the cout, cerr and clog 
streams. 

The istream class includes overloaded definitions for the » oper­
ator for the standard types [Int, long, double, float, char, and 
char* (string)]. Thus the statement cin » x; calls the appropriate 
» operator function for the istream cin defined in iostream.h and 
uses it to direct this input stream into the memory location repre­
sented by the variable x. Similarly, the ostream class has over­
loaded definitions for the« operator, which allows the statement 
cout « x; to send the value of x to ostrearn cout for output. 

These operator functions return a reference to the appropriate 
stream class type (e.g., ostream&) in addition to moving the data. 
This allows you to chain several of these operators together to 
output or input sequences of characters: 

int i=O, x=243; double d=O; 
cout « "The value of x is " « x « '\n'; 
cin >> i >> d; II key an int, space, then a double 

The second line would display "The value of xis 243" followed by 
a new line. The next statement would ignore whitespace, read and 
convert the keyed characters to an integer and place it in i, ignore 
following whitespace, read and convert the next keyed characters 
to a double and place it ind. 

The following program simply copies cin to cout. In the absence 
of redirection, it copies your keyboard input to the screen: 

II COPYKBD.CPP Copies keyboard input to screen 

#include <iostream.h> 

main() 
{ 

char ch; 
while (cin >> ch) 

cout « ch; 

Note how you can test (cin >>ch) as a normal Boolean expression. 
This useful trick is made possible by definitions in the class ios. 
Briefly, an expression such as (cout) or (cin >>ch) is cast as a 
pointer, the value of which depends on the error state of the 
stream. A null pointer (tested as false) indicates an error in the 

Turbo C++ Getting Started 



stream, while a non-null pointer (tested as true) means no errors. 
You can also reverse the test using I, so that (!cout) is true for an 
error in the cout stream and false if all is well: 

if ( ! cout) errmsg ("Output error!"); 

Formatted output Simple 1/0 in C++ is efficient because only minimal conversion is 
done according to the data type involved. For integers, conversion 
is the same as the default for printf. The statements 

Chapter 5. A C++ primer 

int i=5; cout << i; 

and 

int i=S; printf("%d",i); 

give the same result. 

Formatting is determined by a set of format state flags enumera­
ted in ios. These determine, for each active stream, the conversion 
base (decimal, octal, and hexadecimal), padding left or right, the 
floating-point format (scientific or fixed), and whether whitespace 
is to be skipped on input. Other parameters you can vary include 
field width (for output) and the character used for padding. These 
flags can be tested, set, and cleared by various member functions. 
The following snippet shows how the functions los::wldth and 
ios::fill work: 

int previous_width, i = 87; 
previous_width = cout.width(7); II set field width to 7 

II and save previous width 
cout.fill('*'); II set fill character to* 
cout << i << '\n'; II display *****87 <newline> 
II after<< the width is cleared to 0 
II previous width may have been set without a subsequent<< 
II so you may want to restore it with the following line. 
cout.width(previous_width); 

Setting width to zero (the default) means that the display will take 
as many screen positions as needed. If the given width is insuffic­
ient for the correct representation, a width of zero is assumed 
(that is, there is no truncation). Default padding gives right 
justification (left padding) for all types. 

setf and unsetf are two general functions for setting and clearing 
format flags: 

cout.setf(ios::left, ios::adjustfield); 

187 



188 

This sets left padding. The first argument uses enumerated mne­
monics for the various bit positions (possibly combined using & 
and I) and the second argument is the target field in the format 
state. unsetf works the same way but clears the selected bits. 
(More on these in Chapter 3, "C++ streams," in the Programmer's 
Guide.) 

Manipulators 

A rather more elegant way of setting the format flags (and per­
forming other stream chores) uses special mechanisms known as 
manipulators. Like the « and » operators, manipulators can be 
embedded in a chain of stream operations: 

cout << setw(7) << dee << i << setw(6) << oct << j; 

Without manipulators, this would take six separate statements. 

The parameterized manipulator setw takes a single Int argument to 
set the field width. 

The non-parameterized manipulators, such as dee, oct, and hex, 
set the conversion base to decimal, octal, and hexadecimal. In the 
above example, int i would display in decimal on a field of width 
7; int j would display in octal on a field of width 6. 

Other simple parameterized manipulators include setbase, setfill, 
setprecislon, setlosflags, and resetiosflags. To use any of the 
parameterized manipulators, your program must have include 
both of these header files: iomanip.h and iostream.h. Non­
parameterized manipulators do not require iomanip.h. 

Useful non-parameterized manipulators include: 

ws (whitespace extractor): istream » ws; will discard any 
whitespace in istream. 

endl (endline and flush): ostream « endl; will insert a newline in 
ostream, then flush the ostream. 

ends (end string with null): ostream « ends; will append a null to 
ostream. 

flush (flush output stream): ostream « flush; flushes the ostream. 

put, write, and get 

Two general output functions are worthy of mention: put and 
write, declared in ostream as follows: 

Turbo C++ Getting started 



ostream& ostream::put(char ch); 
II send ch to ostream 

ostream& ostream::write(const char* buff, int n); 
II send n characters from buff to ostream; watch the size of n! 

put and write let you output unformatted binary data to an 
ostream object. put outputs a single character, while write can 
send any number of characters from the indicated buffer. write is 
useful when fOU want to output raw data that may include nulls. 
(Note that writing binary data requires that the file be opened in 
binary mode.) The normal string extractor would not work since 
it terminates on a null. 

The input version of put is called get: 

char ch; 
cin.get(ch); 
II grab next char from cin whether whitespace or not 

Another version of get lets you grab any number of raw, binary 
characters from an !stream, up to a designated maximum, and 
place them in a designated buffer (as with write, files must be 
opened in binary mode): 

istream& istream::get(char *buf, int max, int term='\n'l; 
II read up to max chars from istream, and place them in buf. Stop if 
II term char is read. 

You can set term to a specific terminating character (the default is 
the newline character), at which get will stop if reached before 
max characters have been transferred to buf. 

Disk 1/0 The iostream library includes many classes derived from 
streambuf, ostream, and istream, thereby allowing a wide choice 
of file I/0 methods. The filebuf class, for example, supports I/0 
through file descriptors with member functions for opening, 
closing, and seeking. Contrast this with the class stdlobuf that 
supports 1/0 via stdio FILE structures, allowing some 
compatibility when you need to mix C and C++ code. 

This code Is available as 
DCOPY.CPP. 

Chapter 5, A C++ primer 

The most generally useful classes for the beginner are ifstream 
(derived from istream), ofstream (derived from ostream), and 
fstream (derived from iostream). These all support formatted file 
1/0 using filebuf objects. Here's a simple example that copies an 
existing disk file to another specified file: 

I* DCOPY.CPP -- Example from Chapter 5 of Getting Started *I 

189 



190 

/* DCOPY source-file destination-file * 
* copies existing source-file to destination-file * 
* If latter exists, it is overwritten; if it does not * 
* exist, DCOPY will create it if possible * 
*/ 

#include <iostream.h> 
#include <process.h> 
#include <fstream.h> 

11 for exit() 
II for ifstream, ofstream 

main(int argc, char* argv[J) //access command-line arguments 
I 

char ch; 
if large != 3) 
I 

II test number of arguments 

cerr « "USAGE: dcopy filel file2\n"; 
exit(-1); 

ifstream source; 
ofstream dest; 

II declare input and output streams 

source.open{argv[l],ios::nocreate); II source file must be there 
if (!source) 
I 

cerr « "Cannot open source file " « argv[l) « 
" for input \n"; 

exit{-1); 

dest.open(argv[2J); // dest file will be created if not found 
II or cleared/overwritten if found 

if (!dest) 
I 

cerr « "Cannot open destination file " « argv[2) « 
" for output\n"; 

exit(-1); 

while (dest && source.get(ch)) dest.put(ch); 

cout « "DCOPY completed\n"; 

source. close() ; 
dest. close() ; 

II close both streams 

Note first that #include <fstream> also pulls in iostream.h. DCOPY 
uses the standard method of accessing command-line arguments 
to check whether the user specified the two files involved. When 
this argument list is used with the main function, the argument 

Turbo C++ Getting Started 



Chapter 5, A C++ primer 

argc contains the number of command-line arguments (including 
the name of the program itself), and the strings argv[1J and argv[2] 
contain the two file names entered. A typical command-line 
invocation of this program would be 

dcopy letter.spr letter.bak 

To see how DCOPY works, examine the following lines: 

ifstream source; II declare an input stream (ifstream object) 

open.source(argv[l],ios::nocreate); II source file must be there 

The declaration invokes a constructor of lfstream (the class for 
handling input file streams) to create a stream object called source. 
Before we can make use of source, we must create a file buffer and 
associate the stream and buffer with a real, physical file. Both 
tasks are performed by the member function open in lfstream. 
The open function needs a file name string and, optionally, one or 
two other arguments to specify the mode and protection rights. 
The file name here is given as argv[1], namely, the source file 
supplied in the command line. 

A neater alternative to the above declaration is: 

ifstream source(argv[l],ios::nocreate); II source file must be there 
II this creates source and opens the file as well 

The mode argument los::nocreate tells open not to create a file if 
the named file is not found. For DCOPY, we clearly want open to 
fail if the named source file is not on the disk. Later, you'll see the 
other mode arguments available. If the file argv[1] cannot be 
opened for any reason (usually because the file is not found), the 
value of source is effectively set to zero (false), so that (!source) 
tests true, giving us an error message, then exiting. 

In fact, we could determine the possible reason for the failure to 
open the source file by examining the error bits set in the stream 
state. The member functions eof, fall, and bad test various error 
bits and return true if they are set. Alternatively, rdstate returns 
the error state in an Int, and you can then test which bits are set. 
The eof (end of file) is not really an error per se, but it needs to be 
tested and acted upon since a stream cannot be usefully accessed 
beyond its final character. Note that once a stream is in an error 
state (including eof), no further I/O is permitted. The function 
clear is provided for clearing some or all error bits, allowing you 
to resume after clearing a nonfatal situation. 

191 



When C tests (x && y), ft will 
not bother to test y If x proves 

false. Since dest is less likely 
to "fair than source.get( ch), 
you might consider reversing 

the entries. 

Back in OCOPY.CPP, if all is well with the source file, we then try 
to open the destination file with the ofstream object, dest. With 
output files, the default situation is that a file will be created if it 
does not exist; if it exists it will be cleared and recreated as an 
empty file. You can modify this behavior by adding a second 
argument, mode, to the declaration of dest. For example: 

ofstream dest(argv[2],ios::applios::nocreate); 

will try to open dest in append mode, failing if dest is not found. In 
append mode, the data in the source file would be added to the 
end of dest, leaving the previous contents undisturbed. Other 
mode flags enumerated in class los (note the scope operator in 
ios::app), are ate (seek to end of file); in (open for input, used 
with fstreams, since they can be opened for both input and 
output); out (open for output, also used with fstreams); trunc 
(discard contents if file exists); noreplace (fail if file exists). 

Once both files have been opened, the actual copying is achieved 
in typically condensed C fashion. Consider the Boolean expres­
sion tested by the while loop: 

(dest && source.get(ch)) 

We have seen that dest will test true until an error occurs. 
Similarly the call source.get( ch) will test true until either a reading 
error occurs or until the end of the file is reached. In the absence 
of "hard" errors, then, the loop gets characters from source and 
puts them in dest until an end of file situation makes source false. 

There are many more file I/0 features in the iostream library. 
And lostream can also help you with in-memory formatting, 
where your streams are in RAM. Special classes, such as 
strstreambuf, are provided for in-memory stream manipulation. 

1/0 for user-defined data types 

192 

A real benefit with C++ streams is the ease with which you can 
overload >> and << to handle I/O for your own personal data 
types. Consider a simple data structure that you may have 
declared: 

struct emp ( 
char *name; 
int dept; 
long sales; 

Turbo C++ Getting started 



Where to now? 

Chapter 5, A C++ primer 

} ; 

To overload « to output objects of type emp, you need the 
following definition: 

ostream& operator << (ostream& str, emp& e) 
I 
str « setw (25) « e, name « 11 : Department 11 « setw { 6) « e. dept « 
<<tab<< 11 Sales $11 << e.sales << '\n'; 
return str; 

Note that the operator-function<< must return ostream&, a 
reference to ostream, so that you can chain your new << just like 
the predefined insertion operator. You can now output objects of 
type emp as follows: 

iinclude <iostream.h> 
#include <iomanip.h> II don't forget this! 

emp jones = {"S. Jones", 25, 1000}; 
cout « jones; 

giving the display 

S. Jones: Department 25 Sales $1000 

Did you spot the manipulator tab in the« definition? This is not 
a standard manipulator-but a user-defined one: 

ostream& tab(ostream& str) 
return str << '\t'; 

This, of course, is trivial, but nevertheless makes for more legible 
code. 

An input routine for emp can be similarly devised by overloading 
». This is left as an exercise for the reader. 

A suggestion for your first C++ project is to take the FIGURES 
module shown on page 163 (you have it on disk) and extend it. 
Points, circles, and arcs are by no means enough. Create objects 
for lines, rectangles, and squares. When you're feeling more 
ambitious, create a pie-chart object using a linked list of indivi­
dual pie-slice figures. 

193 



Conclusion 

194 

One more subtle challenge is to implement classes to handle 
relative position. A relative position is an offset from some base 
point, expressed as a positive or negative difference. A point at 
relative coordinates -17,42 is 17 pixels to the left of the base point, 
and 42 pixels down from that base point. Relative positions are 
necessary to combine figures effectively into single larger figures, 
since multiple-figure combinations cannot always be tied together 
at each figure's anchor point. Better to define an RX and RY field 
in addition to anchor point X, Y, and have the final position of the 
object onscreen be the sum of its anchor point and relative 
coordinates. 

Once you feel comfortable with C++, start building its concepts 
into your everyday programming chores. Take some of your more 
useful existing utilities and rethink them in C++ terms. Try to see 
the classes in your hodgepodge of function libraries-then rewrite 
the functions in class form. You'll find that libraries of classes are 
much easier to reuse in future projects. Very little of your initial 
investment in programming effort will ever be wasted. You will 
rarely have to rewrite a class from scratch. If it will serve as is, use 
it. If it lacks something, extend it. But if it works well, there's no 
reason to throw away any of what's there. 

C++ is a direct response to the complexity of modern applications, 
complexity that has often made many programmers throw up 
their hands in despair. Inheritance and encapsulation are extreme­
ly effective means for managing complexity. C++ imposes a 
rational order on software structures that, like a taxonomy chart, 
imposes order without imposing limits. 

Add to that the promise of the extensibility and reusability of 
existing code, and you not only have a toolkit-you have tools to 
build new tools! 

Turbo C++ Getting Started 



c H 

This chapter is a concise, 
hands-on tutorial for C++. 

Important! 

Chapter 6, Hands-on C++ 

A p T E R 

6 

Hands-on C++ 

In order to give you a sense of how C++ looks and how to ac­
complish tasks in C++, this chapter moves quickly through a large 
number of concepts with a minimum of verbiage. It is intended to 
be used as you work at your computer; you can load and run each 
of these programs (which are in your EXAMPLES subdirectory, 
along with any header and other files that you'll need). If you 
want a more in-depth treatment of C++, especially of the concepts 
underlying object-oriented programming, read Chapter 5, "AC++ 
primer." You might also want to refer to Chapter 1, "The Turbo 
C++ language standard," in the Programmer's Guide for precise 
details about the syntax and use of C++. 

In this chapter, we assume that you are familiar with the Clan­
guage, and that you know how to compile, link, and execute a 
source program with Turbo C++. We start with simple examples 
that grow in complexity so that new concepts will stand out. It is 
reasonable that such examples will not be bulletproof (in other 
words, they don't check for memory failure and so on). This 
chapter is not a treatise on data structures or professional pro­
gramming techniques; instead, it is a gentle introduction to a 
complicated language. 

This chapter is divided into two sections. The first section pro­
vides C++ alternatives to C programming knowledge and habits 
you might have. The second section provides a swift introduction 
to the kernel of C++: Object-oriented programming using classes 
and inheritance. 

195 



A better C: Making the transition from C 

196 

When referring to line 
numbers, we Ve counted 

blank lines. 

Program 1 
Source 

Output 

Although knowing C is helpful to learning C++, sometimes that 
knowledge can get in the way, particularly in the areas that aren't 
specifically object-oriented programming, yet where C++ does 
things differently from C. For that reason, this section shows how 
to accomplish in C++ many of the same kinds of actions you 
would perform in C: writing text to the screen, commenting your 
code, creating and using constants, working with stream I/O and 
inline functions, and so on. 

II exl.cpp: A First Glance 
II from Chapter 6 of Getting Started 
#include <iostream.h> 

main() 
{ 

cout « "Frankly, my dear. .. \n"; 
cout « "C++ is a better C. \n"; 

Frankly, my dear ..• 
Ct+ is a better C. 

Note the new comment syntax in the first line of this program. All 
characters from the first occurrence of double slashes to the end of 
a line are considered a comment, although you can still use the 
traditional/* ... */ style. File names which have a .CPP extension are 
assumed to be C++ files (or you could use the command-line com­
piler option -P). 

The third line includes the standard header file iostream.h, which 
replaces much of the functionality of stdio.h. cout is an output 
stream, and is used to send characters to standard output (as 
stdout does in C). The « operator (pronounced "put to") sends 
the data on its right to the stream on its left. The context of the « 
operator here distinguishes it from the arithmetic shift-left opera­
tor, which uses the same symbol. (Such multiple use of operators 
and functions is quite common in C ++ and is called overloading.) 

Turbo C++ Getting started 



Program 2 
Source 

Sample execution 

Program 3 
Source 

In an Important change from 
C. declarations can appear 
anywhere a statement can. 

Chapter 6. Hands-on C++ 

JI ex2.cpp: An interactive example 
JI from Chapter 6 of Getting Started 
#include <iostream.h> 

main() 
( 

char name[16]; 
int age; 

cout « "Enter your name: "; 
cin » name; 
cout « "Enter your age: "; 
cin » age; 

if (age < 21) 
cout « "You young whippersnapper, "«name« "!\n"; 

else if (age < 40) 
cout « name « 11 1 you're still in your prime!\n"; 

else if (age < 60) 
cout « "You're over the hill, " «name « "!\n"; 

else if (age < 80) 
cout « "I bow to your wisdom, " «name « "!\n"; 

else 
cout « "Are you really " «age « 11 1 " «name « "?\n"; 

Enter your name: Don 
Enter your age: 40 
You're over the hill, Don! 

cln is an input stream connected to standard input. It can correct­
ly process all the standard data types. You may have noticed in C 
that printing a prompt without a newline character to stdout re­
quired a call to fflush(stdout) in order for the prompt to appear. In 
C++, whenever cin is used it flushes, cout automatically (you can 
turn this automatic flushing off if it's on by default). 

JI ex3.cpp: Inline Functions 
JI from Chapter 6 of Getting Started 
#include <iostream.h> 

const float Pi = 3.1415926; 

inline float area (const float r) (return Pi * r * r;) 

main() 

197 



Sample execution 

Program 4 
Source 

It's good programming style 
to make null loop bodies 

stand out. 

198 

float radius; 

cout « "Enter the radius of a circle: "; 
cin » radius; 
cout « "The area is " « area(radiusl « 11 \n"; 

Enter the radius of a circle: 3 
The area is 28.274334 

A constant identifier behaves like a normal variable (that is, its 
scope is the block that defined it, and it is subject to type check­
ing) except that it cannot appear on the left-hand side of an as­
signment statement (or anywhere an !value is required). Using 
#define is almost obsolete in C++. 

The keyword lnllne tells the compiler to insert code directly 
whenever possible, in order to avoid the overhead of a function 
call. In all other ways (scope, etc.) an inline function behaves like 
a normal function. Its use is recommended over #defined macros 
(except, of course, where you depend on the macro-substitution 
tricks of the preprocessor). This feature is intended for simple, 
one-line functions. 

II ex4.cpp: Default arguments and Pass-by-reference 
II from Chapter 6 of Getting Started 
#include <iostream.h> 
#include <ctype.h> 

int get_word(char *, int&, int start= Ol; 

main (l 
{ 

int word_len; 
char *s = " These words will be printed one-per-line "; 

int word_idx = get_word(s,word_len); 
while (word_len > 0) 
{ 

cout.write(stword_idx, word_len); 
cout << 11 \n"; 

11 line 13 

llcout « form("%.*s\n",word_len,s+word_idx); 
word_idx = get_word(s,word_len,word_idx+word_len); 

int get_word(char *s, int& size, int start) 

Turbo C++ Getting started 



II Skip initial whitespace 
for (inti= start; isspace(s[i]); +ti); 
int start_of_word = i; 

II Traverse word 
while (s[i] != '\0' && !isspace(s[i])) 

++i; 
size = i - start_of_word; 
return start_of_word; 

Output These 

One exciting feature of C++ 
is the default argument. 

Object support 

Chapter 6, Hands-on C++ 

words 
will 
be 
printed 
one-per-line 

The prototype for the function get_word in the sixth line has two 
special features. The second argument is declared to be a reference 
parameter. This means that the value of that argument will be 
modified in the calling program (this is equivalent to var parame­
ters in Pascal, and is accomplished through pointers in C). By this 
means, the variable word_len is updated in main, and yet we can 
still return another useful value with the function get_word. 

The third argument is a default argument. This means that it can 
be omitted (as in line 13), in which case the value of 0 is passed 
automatically. Note that the default value need only be specified 
in the first mention of the function. Only the trailing arguments of 
a function can supply default values. 

The world is made up of things that both possess attributes and 
exhibit behavior. C++ provides a model for this by extending the 
notion of a structure to contain functions as well as data members. 
This way an object's complete identity is expressed through a 
single language construct. The notion of object-oriented support 
then is more than a notational convenience-it is a tool of 
thought. 

199 



Program 5 

You'll need to compile 
DEF.CPP to an OBJ fife, then 

link it in with either EX6. CPP or 
EX7.CPP (or load EX5.PRJ). 

You might also want to 
compile It with Debug Info 
checked so you can step 

through and watch the 
program flow. 

In other object-oriented 
languages, classes are often 
called objects, and member 

functions are called 
methods. 

200 

Suppose we want to have an online dictionary. A dictionary is 
made up of definitions for words. We will first model the notion 
of a definition. 

II def.h: A word definition class 
II from Chapter 6 of Getting Started 
#include <string.h> 

const int Maxmeans = 5; 

class Definition 

char *word; II Word being defined 
char *meanings[Maxmeans); 
int nmeanings; 

public: 
void put_word(char *); 

II Various meanings of this word 

char *get_word(char *s) {return strcpy(s,word);J; //line 15 
void add_meaning(char *); 
char *get_meaning(int, char*); 

) ; 

In traditional C style, we put definitions in an include file. The 
keyword class introduces the object description. By default, 
members of a class are private (though you can explicitly use the 
keyword priyate), so in this case the fields in lines 9 through 11 
can only be accessed by functions of the class. (In C++, class 
functions are called member functions.) To make these functions 
available as a user interface, they are preceded by the keyword 
public. Note that the inline keyword is not required inside class 
definitions (line 15). 

The implementation is usually kept in a separate file: 

11 def.cpp: Implementation of the Definition class 
II from Chapter 6 of Getting Started 
#include <string.h> 
#include "def.h" 

void Definition::put_word(char *s) 
{ 

word= new char[strlen(s)tl]; 
strcpy(word,s); 
nmeanings = 0; 

void Definition::add_meaning(char *s) 

Turbo C++ Getting Started 



Source 

Output 

Chapter 6, Hands-on C++ 

if (nmeanings < Maxmeans) 
{ 

meanings[nmeanings] =new char[strlen(s)+l); 
strcpy{meanings[nmeanings++],s); 

char* Definition::get_meaning(int level, char *s) 
{ 

if {0 <= level && level < nmeanings) 
return strcpy(s,meanings[level]); 

else 
return O; I I line 27 

The scope resolution operator(::) informs the compiler that we are 
defining member functions for the Definition class (it's good 
practice to capitalize the first letter of a class to avoid name 
conflicts with library functions). The keyword new in line 8 is a 
replacement for the dynamic memory allocation function malloc. 
In C++, by convention, zero is used instead of NULL for pointers 
(line 27). Although we didn't do so here, it is advisable to verify 
that new returns a non-zero value. 

II ex5.cpp: Using the Definition class 
II from Chapter 6 of Getting Started 
#include <iostream.h> 
#include "def .h" 

main() 
{ 

Definition d; 
char s[81]; 

II Assign the meanings 
d.put_word("class"); 

II Declare a Definition object 

d.add _meaning ("a body of students meeting together to \ 
study the same subject"); 

d.add_meaning("a group sharing the same economic status"); 
d.add_meaning("a group, set or kind sharing the same attributes"); 

II Print them 
cout « d.get_word(s) « 11 :\n\n"; 
for (inti= O; d.get_meaning(i,s) != O; ++i) 

cout << i+l << ": " << s << 11 \n"; 

class: 

1: a body of students meeting together to study the same subject 

201 



Program 6 

From the command fine. 
build DICTION. OBJ and 

DEF.OBJ with EX6.CPP. From 
the /DE. use the EX6.PRJ 

project file. 

202 

2: a group sharing the same economic status 
3: a group, set, or kind sharing the same attributes 

We can now define a dictionary as a collection of definitions. 

II diction.h: The Dictionary class 
II from Chapter 6 of Getting Started 
#include "def.h" 

const int Maxwords = 100; 

class Dictionary 
{ 

Definition *words; 
int nwords; 

II An array of definitions; line 9 

int find_word(char *); II line 12 

public: 
II The constructor is on the next line 
Dictionary(int n = Maxwords) 

{nwords = O; words= new Definition[n];); 
~Dictionary() {delete words;); 
void add_def(char *s, char **def); II The destructor; line 17 
int get_def(char *, char**); 

); 

The function find_word on line 12 is for internal use only by the 
Dictionary class and so is kept private. A function with the same 
name as the class is called a constructor (line 16). It is called once 
whenever an object is declared. It is used to perform initializa­
tions; here we are dynamically allocating space for an array of 
definitions. A destructor (line 17) is called whenever an object goes 
out of scope (in this case, the delete operator will free the memory 
previously allocated by the constructor). In order to have an array 
of member objects (line 9), the included class must either have a 
constructor with no arguments or no constructor at all (the 
Definition class has none). 

II diction.cpp: Implementation of the Dictionary class 
II from Chapter 6 of Getting Started 
#include "diction.h" 

int Dictionary::find_word(char *s) 
{ 

char word[81]; 
for (int i = O; i < nwords; ++i) 

Turbo C++ Getting Started 



Source 

Chapter 6, Hands-on C++ 

if (stricmp(words[i].get_word(word),s) == 0) 
return i; 

return -1; 

void Dictionary::add_def(char *word, char **def) 
( 

if (nwords < Maxwords) 
{ 

words[nwords] .put_word(word); 
while (*def != 0) 

words[nwords].add_meaning(*def++); 
++nwords; 

int Dictionary::get_def(char *word, char **def) 
{ 

char meaning[81]; 
int nw = O; 
int word_idx = find_word(word); 
if (word_idx >= 0) 
{ 

while (words[word_idx] .get_meaning(nw,meaning) != 0) 
{ 

def[nw] =new char[strlen(meaning)+l]; 
strcpy(def[nw++],meaning); 

def [nw] = O; 

return nw; 

We can now use the Dictionary class without any reference to the 
Definition class (the output is the same as in the previous 
example). 

II ex6.cpp: Using the Dictionary class 
II from Chapter 6 of Getting Started 
#include <iostream.h> 
#include "diction.h" 

main() 
( 

Dictionary d(5); 
char *word = "class"; 
char *indef[4) = 

{"a body of students meeting together to study the same", 
"subject a group sharing the same economic status", 

203 

I 

II 
I 
I' j 



Build LIST.OBJ with EXl.CPP 

204 

"a group, set or kind sharing the same attributes", 
0} i 

char *outdef[4]; 

d.add_def{word,indef); 
cout «word « ":\n\n"; 
int ndef = d.get_def{word,outdef); 
for {int i = O; i < ndef; ++i) 

cout « i+l « ": " « outdef[i] « "\n"; 

In the Dictionary implementation, we specifically called the Defi­
nition member functions. Sometimes it is desirable to allow 
certain functions or even an entire class to have access to the pri­
vate members of another. We could declare the Dictionary class to 
be a friend to the Definition class (line 18): 

II def2.h: A word definition class 
II from Chapter 6 of Getting Started 
#include <string.h> 

const int Maxmeans = 5; 

class Definition 

char *word; II Word being defined 
char *meanings[Maxmeans]; 
int nmeanings; 

II Various meanings of this word 

public: 

} ; 

void put_word(char *); 
char *get_word(char *s) {return strcpy{s,word);}; 
void add_meaning{char *); 
char *get_meaning(int, char*); 
friend class Dictionary; II line 18 

The implementation of find_word could then access Definition 
members directly (line 5 in the following code): 

int Dictionary::find_word(char *s) 
{ 

char word[81J; 
for (int i = 0; i < nwords; +ti} 

if {stricmp{words[i].word),s) == 0) 
return i; 

return -1; 

Turbo C++ Getting Started 



Program 7 

To try these out, bu/Id 
LIST. OBJ and EX7. CPP, or use 

EX7.PRJ. 

Chapter 6, Hands-on C++ 

One of the key features of object-oriented programming is inheri­
tance. A new class can inherit the data and member functions of 
an existing ("base") class (the new class is said to be derived from 
the base class). In this program, we define List, a base class for 
processing a list of integers, then derive Stack, a class to handle a 
stack (which is a special kind of list). First, we create the header 
file: 

JI list.h: A Integer List Class 
JI from Chapter 6 of Getting Started 
const int Max_elem = 10; 

class List 

int *list; 
int nmax; 
int nelem; 

public: 

II An array of integers 
II The dimension of the array 
II The number of elements 

List(int n = Max_elem) {list= new int[n]; nmax = n; nelem = 0;); 
·List() {delete list;); 

) ; 

int put_elem(int, int); 
int get_elem(int&, int); 
void setn(int n) {nelem = n;); 
int getn () {return nelem; ) ; 
void incn() {if {nelem < nmax) ++nelem;); 
int getmax() {return nmax;); 
void pr int () ; 

Then we create the source code: 

II list.cpp: Implementation of the List Class 
II from Chapter 6 of Getting Started 
I include <iostream. h> 
linclude "list.h" 

int List::put_elem(int elem, int pos) 
{ 

if (0 <= pos && pos < nmax) 
( 

list[pos] = elem; 
return O; 

else 
return -1; 

II Put an element into the list 

II Non-zero means error 

205 



int List::get_elem(int& elem, int pos) 
{ 

if (0 <= pos && pos < nmax) 
{ 

elem= list[pos]; 
return 0; 

else 
return -1; 

void List::print() 
( 

II Retrieve a list element 

II non-zero means error 

for (int i = O; i < nelem; ++i) 
cout << list[i] << "\n"; 

And finally we use the new class: 

II ex7.cpp: Using the List class 
II from Chapter 6 of Getting Started 
#include "list.h" 

main() 
( 

List 1 (5); 
int i = O; 

II Insert the nwnbers 1 through 5 
while (l.put_elem(i+l,i) == 0) 

++i; 
l.setn (i); 

I.print(); 

Output 1 

Program 8 
Build STACK.OBJ and LIST.OBJ 
with EX8.CPP, or use EX8.PRJ. 

206 

2 
3 
4 
5 

II stack2.h: A Stack class derived from the List class 
II from Chapter 6 of Getting Started 
linclude "list2.h" 

class Stack : public List 
( 

int top; 

II line 5 

Turbo C++ Getting Started 



Chapter 6, Hands-on C++ 

public: 

} ; 

Stack() (top = O;}; 
Stack(int n) : List(n) (top= 0;); 
int push(int elem); 
int pop(int& elem); 
void pr int() ; 

I I line 11 

To define a derived class, the base class definition must be avail­
able, so we include its header file (line 3). Line 5 informs the com­
piler that the Stack class is derived from the List class. The key­
word public states that the public members of List should be con­
sidered public in Stack also (this is what is usually needed). Since 
the List class has a constructor that takes an argument, the Stack 
constructor invokes the List constructor directly (line 11). Base 
class constructors are executed before those of a derived class. 

II stack.cpp: Implementation of the Stack class 
II from Chapter 6 of Getting Started 
#include <iostream.h> 
linclude "stack.h" 

int Stack::push(int elem) 
( 

int m = getmax(); 
if (top < ml 
( 

put_elem(elem,top++); 
return O; 

else 
return -1; 

int Stack::pop(int& elem) 
( 

if (top > 0) 
( 

get_elem(elem,--top); 
return O; 

else 
return -1; 

void Stack::print() 
( 

int elem; 

for (int i = top-1; i >= O; --i) 

207 



II Print in LIFO order 
get_elem(elem,i); 
cout <<elem<< "\n"; 

Note that the public member functions of the List class can be 
used directly, because a Stack is a List. However, the private 
members of the List portion of a Stack object cannot be referenced 
directly. 

II ex8.cpp: Using the Stack Class 
II from Chapter 6 of Getting Started 
#include "stack.h" 

main() 
{ 

Stack s (5); 
int i = O; 

II Insert the numbers 1 through 5 
while (s.push(i+l) == 0) 

++i; 

s .print(); 

Output 5 

Program 9 

Build EX9.CPP. LIST2.0BJ. 
STACK2.0BJ. or use EX9.PRJ 

208 

4 
3 

2 
1 

Sometimes it is convenient to allow a derived class to have direct 
access to some of the private data members of a base class. Such 
data members are said to be protected. 

II list2.h: A Integer List Class 
II from Chapter 6 of Getting Started 
const int Max_elem = 10; 

class List 

protected: 

int *list; 
int nmax; 
int nelem; 

II The protected keyword gives subclasses 
II direct access to inherited members 

II An array of integers 
II The dimension of the array 
II The number of elements 

Turbo C++ Getting Started 



Chapter 6, Hands-on C++ 

public: 
List(int n = Max_elem) {list= new int[n]; nmax = n; nelem = 0;}; 
·List{) {delete list;}; 

l ; 

int put_elem(int, int); 
int get_elem(int&, int}; 
void setn (int n} { nelem = n;}; 
int getn () {return nelem; l; 
void incn () {if (nelem < nmax) ++nelem; l; 
int getmax(} {return nmax;}; 
virtual void print(}; II line 22 

We can now replace calls to List's member functions with direct 
references to List's data in the Stack implementation. 

II stack.cpp: Implementation of the Stack class 
II from Chapter 6 of Getting Started 
linclude <iostream.h> 
linclude "stack.h" 

int Stack::push(int elem} 
{ 

int m = getmax(}; 
if {top < ml 
{ 

put_elem(elem,top++}; 
return O; 

else 
return -1; 

int Stack::pop{int& elem} 

if (top > 0} 
{ 

get_elem(elern,--top}; 
return O; 

else 
return -1; 

void Stack::print(} 
{ 

int elem; 

for (int i = top-1; i >= 0; --il 
( II Print in LIFO order 

get_elem(elem,i); 
cout « elem « "\n"; 

209 



210 

And then we can try it out: 

II ex9.cpp: Using the print() virtual function 
II from Chapter 6 of Getting Started 
#include <iostream.h> 
Hncl ude 11 stack2 • h 11 

main() 
{ 

Stack s (5); 
List 1, *lp; 
int i = 0; 

II Insert the numbers 1 through 5 into the stack 
while (s.push(i+l) == OJ 

++i; 

II Put a couple of numbers into the list 
l.put_elem(l,O); 
l.put_elem{2,1); 
l.setn (2); 

cout « 11 Stack:\n11 ; 

lp = &s; II line 22 
lp->print(); II Invoke the Stack print() method; line 23 

cout « 11 \nList:\n 11 ; 

lp = &l; 
lp->print(); II Invoke the List print() method; line 27 

()ufput Stack: 
5 
4 
3 
2 
1 

List: 
1 
2 

The above example illustrates polymorphism (also known as ''late 
binding" or "dynamic binding," which in C++ is accomplished 
using virtual functions). This means that an object's type is not 
identified until run time. By defining the print member function to 
be virtual (see line 22 of "list2.h"), we can invoke the different 
print member functions through a pointer to the base class. In line 
22 above, lp points to a Stack object (remember: a Stack is a List), 

Turbo C++ Gaffing Started 



Summary 

Chapter 6, Hands-on C++ 

so the Stack print method is invoked in line 23. Likewise, the List 
print member function is executed in line 27. 

There is much more to C++ than this chapter covers (multiple in­
heritance, for example). As stated at the beginning, this chapter is 
intended give you a sense of the ''look and feel'' of C++, to show 
how it differs from C, and to demonstrate how to use most of the 
basic features of C++. For more information on the basic concepts 
of C++, read or review Chapter 5, "AC++ primer;" Chapter 1, 
"The Turbo C++ language standard," in the Programmer's Guide 
gives more advanced material on C++. And check the 
bibliography; it provides a list of books on C++, including books 
specific to Turbo C++. 

211 



212 Turbo C++ Getting Started 



c H A p T E R 

7 

Debugging in the new /DE 

In Chapter 4, you learned the major elements of C. Through a 
variety of examples, you learned how these elements are put 
together to create working programs. With that knowledge, 
you've probably already written your own short programs. If not, 
now is a good time to begin, because there is nothing like writing 
your own code to test and extend your understanding of the 
concepts we have been discussing. 

Of course, writing programs means dealing with your mistakes. 
Most experienced programmers agree that tracking down logical 
problems, commonly called bugs, in programs is a major part of 
program development. Debugging, or finding and fixing bugs, 
can often take longer than writing the program itself. 

Turbo C++ comes with an integrated, source-level debugger that 
provides many capabilities of a standalone debugger, while 
giving you the convenience and speed of remaining within the 
integrated environment. 

Source level means that you can trace through your actual program 
code-including, if you wish, every function that your code calls. 
By setting breakpoints, you can control how much of your pro­
gram is run before you examine its condition. You can find out 
the current value of any variable by selecting it with the cursor or 
typing its name in the Evaluate field. You can set watches that 
monitor one or more variables and display their changing values 
as the program runs. All of this is done without your having to 
stop thinking in C (or C++), since you use the same variables, 

Chapter 7, Debugging in the new /DE 213 



expressions, and operators you have been using to write your 
program. 

Type TC to start Turbo C++ (if it isn't already running), and take a 
few minutes to examine the Debug menu. Highlight each item on 
the menu in turn, pressing F1 each time to view the associated 
help text. These menu options are the debugging tools that you'll 
learn to use while developing this chapter's example program. 

[•]= Data Inspect =====;i 
Inspect ••• --~---;1 

Inspect D 

ISll3l.I U!Dtm.I llDDI 

[•] 

¥Wt11U!" 1.1.1 .. 1 .. 1111111 ••••••o +1rmm;m1<-.. 
!Gfl1jllJW! 

Evaluate ... --~--11 .,il't'lll'r.!11111· -------D Kiilil!'D.I 
Call stack .. . 

imat 

Watches ---~-1 Add watch Ctrl·F7 
Delete watch 
Edit watch 

Toggle Breakpoints Remove all watches 

[•] 
Breakpoints ---=--1• 

: · ... 
•Breakpoint List Line# Condition Pass . . 

Debugging and program development 

214 

While this chapter focuses on debugging, it's important not to 
treat debugging as something separate from designing and 
writing a program. Turbo C++'s integrated debugger makes the 
mechanics of finding and fixing bugs as easy as possible, but the 
way you design your program can help make debugging easier, 
too. 

Turbo C++ Getting started 



Consider the old tube televisions. They were hard to repair 
because all their parts were wired into one big mass of tubes, 
resistors, capacitors, and so on. This often made it hard to find out 
which part or parts were not working. When you found the part 
that needed to be replaced, it was hard to get at that one part in 
the mass of wires. 

After transistors and integrated circuits came into use, people 
started designing TVs differently. Each circuit came on its own 
slide-in module, which could slide out for easy access and testing. 
To replace a defective module, you simply slid in a replacement. 

The C equivalent of these plug-in modules is the function. You'll 
design, implement, and test the example program in this chapter, 
one function at a time. It is often tempting to write a whole pro­
gram, particularly if it is a small one, and only then start debug­
ging. Like the old TV, though, this makes things unnecessarily 
difficult. To see why, suppose main calls a function b, which in 
turn calls functions c and d. If you don't test each of these 
functions as you develop them, it will be hard to tell whether a 
possible problem in function d is due to a coding error there, or to 
one in b or c. Of course, there is often more than just one bug. 
Meanwhile, a seemingly unconnected function a may have 
modified global data that b needs to pass to c. You can see that 
incremental program development-developing and testing one 
part of your program at a time-can save you considerable time 
and frustration. 

Chapter 7. Debugging in the new /DE 215 



Figure 7.1: Program development flowchart 

l 

malnO 
( 
get_ temp; 
save_f!tmp; 
} 

ret_tempQ 

rntf(WJ"his Is get_tempi; 

l 
.. _tempO 

rntf("Thls Is read_tempi: 

r1e_view 
mln_max; 
avg_ max; 
} 

mln_maxO 

frrntr\This Is min_maxi; 

l 
f raphics_viewO 

rrlntf("1hls Is graphlcs_vlewi; 

avg_tempO 
{ , +f/WTh, , av'I\ 
)""' 111IS IS avg_m..,. ,; 

Designing the example program: PLOTEMP.C 

216 

The example program for this chapter collects temperature read­
ings and displays them using either a table or graph view. It 
illustrates a diverse assortment of Turbo C++ capabilities: console 
and file I/O, passing an array to a function, and some graphics 
charting functions. Later, if you want, you can modify 
PLOTEMP.C to work with other kinds of data, and to provide 
different kinds of reports and charts. 

Turbo C++ Getting Started 



One of the best ways to design a program is to prototype it by 
showing how it interacts with the user-how it requests informa­
tion, responds to commands, and displays information. Before 
looking at the program code, let's see what the program will look 
like from the user's point of view. 

When you run PLOTEMP.C, it displays this menu: 
Temperature Plotting Program Menu 

E - Enter temperatures for scratchpad 
S - Store scratchpad to disk 
R - Read disk file to scratchpad 
T - Table view of current data 
G - Graph view of current data 
X - Exit the program 

Press one of the above keys: 

If you press f, you are prompted for a set of temperature read­
ings. The program is set up to handle a set of eight readings, but 
you can change this simply by changing the line 

#define READIUGS 8 

near the beginning of the program code. 

Data entry will look something like this: 
Enter temperatures, one at a time. 
Enter reading I 1: 52 
Enter reading I 2: 55 
Enter reading I 3: 62 
Enter reading # 4: 65 
Enter reading # 5: 73 
Enter reading # 6: 76 
Enter reading I 7: 68 
Enter reading I 8: 61 

After this or any other menu selection except X (for Exit), the 
menu is redisplayed. 

Choosing S saves the data set currently in memory to a disk file 
(you are prompted for the file name). Choosing R reads a data set 
from the disk file you specify to the program's "scratchpad" data 
array. 

Once you have data in the scratchpad (either by entering it from 
the keyboard or reading it from disk), you can display a summary 
table of the data by choosing T (for Table view): 

Reading Temperature (F) 
l 52 
2 55 
3 62 
4 65 
5 73 
6 76 
7 68 
8 61 
Minimum temperature: 52 
Maximum temperature: 76 
Average temperature: 64.000000 

Chapter 7, Debugging In the new /DE 217 



Figure 7.2 
Graph view of temperature 

data 

As an alternative, you can select a graph view of the current data 
by choosing G, as shown in the following figure: 

-••11111 

Plot of T8"Deratura R•adintaa 

55 73 88 81 

There's one problem: The program you'll be putting together 
won't run entirely as expected. You'll have to use the debugger to 
find and fix the bugs. 

Writing the prototype program 

You can load this file right 
now: File I Open I PLOTEMPl. 

As you load and run these 
successive pieces of code, 

remember that we've 
deliberately sprinkled them 

with bugs. 

218 

Having decided what the program should do, you can determine 
what global data and other definitions the program will need, and 
write the main function: 

/* PLOTEMPl.C--Example from Chapter 7 of Getting Started */ 

I* This program creates a table and a bar chart plot from a 
set of temperature readings */ 

#include <conio.h> 
#include <ctype.h> 
#include <stdio.h> 
#include <stdlib.h> 

/* Prototypes */ 

void get_temps(void); 
void table_view(void); 

Turbo C++ Getting started 



void min_max(void); 
void avg_temp(void); 
void graph_view(void); 
void save_temps(void); 
void read_temps(void); 

/* Global defines */ 

#define TRUE 
#define READINGS 8 

/* Global data structures */ 

int temps[READINGS]; 

int main(void) 
( 

while (TRUE) 
{ 

printf( 11 \nTemperature Plotting Program Menu\n"); 
printf( 11 \tE - Enter temperatures for scratchpad\n"); 
printf( 11 \tS - Store scratchpad to disk\n"); 
printf( 11 \tR - Read disk file to scratchpad\n"); 
printf{ 11 \tT - Table view of current data\n"); 
printf("\tG - Graph view of current data\n 11 ); 

printf("\tX - Exit the program\n 11 ); 

print£ ( 11 \nPress one of the above keys: 11 ) 

switch (toupper(getche())) 

case 'E': get_temps (); 
case IS': save_temps(); 
case 'R': read_temps(); 
case 'T': table_ view () ; 
case 'G': graph _view(); 
case 'X': exit(O); 

/* Function definitions */ 

void get_temps(void) 
{ 

break; 
break; 
break; 
break; 

printf ( 11 \nExecuting get_ temps() . \n 11 ) ; 

void table_view(void) 
{ 

printf{"\nExecuting table_view().\n 11 ); 

void min_max(void) 
{ 

Chapter 7, Debugging In the new /DE 219 



220 

printf("\nExecuting min_max(). \n"); 

void avg_temp(void) 
( 

printf ( "\nExecuting avg_ temp() • \n") ; 

void graph_view(void) 
{ 

printf("\nExecuting graph_view(). \n"); 

void save_temps(void) 
( 

printf("\nExecuting save_temps (). \n"); 

void read_ temps (void) 
( 

printf ( "\nExecuting read_ temps() • \n"); 

Notice the following important features of this prototype 
program: 

•Global #defines and data structures (the array temps). 

• The function main provides the top-level menu. 

• Other functions are declared with void return and argument 
type. 

•Each function contains only a prlntf statement that identifies it 
when it is executing. 

•The program is already complete enough to execute. 

Why are functions given void declarations? They let you run the 
program and check the flow of execution at the top level. If you 
gave the functions full ANSI prototypes with arguments of 
various data types, you would have to start implementing the 
function definitions and writing code to use the values passed to 
the functions. Otherwise, you would receive compiler warnings 
about unused parameters. A good rule of program development 
is "do one step at a time, test one step at a time." At this point, 
you want to verify that the top-level structure of the program is 
sound. 

Turbo C++ Gefflng started 



Using the integrated debugger 

Compile PLOTEMPl.C by choosing Compile I Build All. The 
compiler halts after displaying the error message: 

Error C:\TC\EXAMPLES\PLOTEMPl.C 43: 
Statement missing ; in function main 

Turbo C++ has found a syntax error. You will usually have to 
wade through a flock of syntax errors before you can actually run 
your program, let alone debug it. Fortunately, syntax errors are 
usually easy to fix. Press the space bar: Here, the error bar high­
lighted the first line of the switch statement that displays the 
menu. A reference to a missing semicolon usually refers to the 
preceding statement (in this case, the last in the preceding group 
of printf statements). As you probably recall, you can press Enter 
or F6 to switch to the Edit window and make your correction. If 
you have more than one syntax error to deal with, press F6 to 
switch back to the Message window, and then use Alt-FB (or the .J, 
key) to move to the next error listed. 

Now that you've fixed the syntax error, compile the program 
again. This time the compiler and linker run without error 
messages, which means the program is now free of syntax errors. 

Now choose Run I Run to run PLOTEMPl.EXE. You'll see the 
program's menu. Try pressing each of the keys listed in the 
menu-exercise the program. Try both uppercase and lowercase 
letters. Try letters that aren't given on the menu at all. What 
happens in each case? Did everything work as it should? 

You probably noticed that with each selection made from the 
menu, a line describing the function was displayed. (Remember 
those printf statements in the stub functions in the listing?) 
Usually, the menu was then redisplayed. If you press X (or x), the 
program exits, and you are returned to Turbo C++. What happens 
when you press G (or g), though? You are also returned to Turbo 
C++. That's not right-you should get the menu again. There's a 
bug lurking somewhere. 

Chapter 7, Debugging in the new /DE 221 

I ·~ 
~ 

I.• 
1i 
ij 



Tracing the flow of a program 

Tracing high-level 
execution 

222 

By using options on the Run menu and observing the run bar, you 
can observe the order of execution of your program's statements 
and control how detailed the tracing will be. 

Choose Run I Trace Into (or press F7). The debugger scrolls the 
beginning of function main into the Edit window and highlights 
it. This highlight is called the run bar and marks the execution 
position, indicating the next statement to be executed. 

To trace the high-level flow of your program, choose Run I Step 
Over (or press FB), and the next line containing code is executed 
(comment lines are skipped over). As you continue pressing FB, 
the run bar moves through the series of printf statements that 
display the menu. The screen appears to flicker. This is because 
each time the debugger executes a statement that displays infor­
mation onscreen or executes a function call, it momentarily 
switches to the User screen. This is the screen display your pro­
gram would generate if you weren't executing it within Turbo 
C++'s integrated environment (but the screen switching happens 
too fast for you to see the output). To look at the User screen, 
choose Window I User Screen, or press Alt-F5. Depending on how 
far you've gotten in executing the printf statements, you'll see part 
or all of PLOTEMP's menu. Press any key to switch back to the 
debugger. 

Continue pressing FB until you reach the first line of the switch 
statement. This line contains a call to the getche function, which 
requires the user to input a character. Any time user input is re­
quested by the program, Turbo C++ switches to the User screen. 
Since you want to observe what happens when the graph view 
(G) option is selected, press FB again, then press G. After you 
supply the requested input, the display switches back to the 
debugger, and the run bar moves to the following statement: 

case 'G': graph_view(); 

So far, so good. The next time you step, however, the following 
statement is exit, and you will be back in the editor the next time 
you step. Press FB to verify that the program finishes. By now, 
you've probably noticed that a break statement is needed on the 
preceding line. Correct the line so that it reads: 

Turbo C++ Getting started 



Tracing into 

case 'G': graph_view(); break; 

Now let's see if the fix worked. You could start the program and 
step one line at a time all the way from the beginning, but that 
would be tedious. Instead, choose Run I Go to Cursor (or press F4; 
make sure the cursor is on the correct line). Rebuild the program 
(say yes to the "OK to rebuild" prompt); its lines execute until 
user input is needed. Press Gin response to PLOTEMP's menu; 
execution continues up to the line you just fixed. Continue 
stepping. Notice that this time the break statement is executed, 
and the execution position then goes back to the top of the whlle 
loop. PLOTEMP's menu now appears to be operating correctly. 

COiied functions When you use Run I Step Over, only the highest level of your pro­
gram is stepped through. As you saw, the run bar stayed within 
the main function, stepping through the printf statements and the 
various cases within the switch statement. Often, however, you 
need to trace into the functions called by your main function, and 
sometimes the functions called by the functions. To trace through 
function calls, choose Run I Trace Into, or press F7. 

Try this now: Trace through the program, and press Eat the 
PLOTEMP menu. This time, the run bar goes to the appropriate 
case in the switch statement, and then goes into the definition of 
the get_temps function. After stepping through the function 
(right now, there's just a prlntf statement there), execution falls to 
the bottom of the big while loop in main, then returns to the top 
where the menu is redisplayed. 

Continuing program development 

Through the rest of this chapter, you will be adding one function 
at a time to PLOTEMP and then testing it by running the program 
again. Instead of making you do all the work of typing in code, 
we've provided incremental versions of PLOTEMP that you can 
load to complete each step. If you were debugging one of your 
own programs, you would follow these steps: 

1. If necessary, replace the function prototype with the complete 
one. 

Chapter 7, Debugging in the new /DE 223 



For code that includes these 
changes, then load 

PLOTEMP2.C. 

224 

2. Replace the stub function definition with the actual code 
needed to perform the task. 

3. Test the new function by running the program again, making 
the appropriate choice from its menu. 

4. Fix any bugs that crop up, testing until there are no more 
bugs. 

5. Implement the next function in the same way, until the 
fleshed-out program is complete. 

For best and fastest results, write, compile, run, and debug each 
function separately. Don't start developing the next function until 
you have a working program that has no apparent errors. This 
strategy won't eliminate all bugs, because "hidden" bugs some­
times continue to lurk, waiting for some unforeseen combination 
of circumstances. But this incremental approach minimizes the 
chance of unexpected crashes. 

Start with the get_temps function, which gets a set of temperature 
readings from the keyboard. Since it doesn't take any arguments, 
and doesn't return anything directly, the current prototype 
declaration, 

void get_temps(void) 

doesn't need to be changed. (A full production version of this 
program would probably have this and every function return a 
value, so any errors could be signaled. We omit this here in the 
interest of keeping the size and complexity of the program 
manageable.) 

Find the existing definition of get_temps. Right now, it's a stub 
definition that just prints a message when it executes. Replace the 
existing code with the following: 

void get_temps(void) 
( 

char inbuf[l30]; 
int reading; 

printf ("\nEnter temperatures, one at a time. \n"); 
for (reading = O; reading < READINGS; reading++) 
( 

printf ("\nEnter reading # %d: ", reading + 1); 
gets (inbuf); 
sscanf (inbuf, "%d", temps [reading]); 

/* Show what was read */ 
printf ( "\nRead temps [%d] = %d", reading, temps [reading]) ; 

Turbo C++ Getting Started 



Setting breakpoints 

Remember that arrays in C 
begin with element 0: The first 
reading goes Into element O, 

the second Into element 1, 
and so on. 

A breakpoint is a place in 
your program where you 
want execution to run to, 

then stop at. 

If get_temps works correctly, the for loop will prompt for each 
reading, then will use gets to get the reading as a string. Next, it 
uses sscanf to store it in the corresponding element of the temps 
array, and use another printf statement to display the value stored 
in the array. This second printf statement is just a temporary 
expedient: It lets you see how your inputs are being stored. After 
this function is debugged, you can remove it. 

Run PLOTEMP2 and press Eat the PLOTEMP menu so that 
get_temps executes. As you enter the data, something like this 
happens: 

Enter reading # 1: 40 

Read temps [O] • O 
Enter reading # 2: 50 

Read temps [ l] • O 
Enter reading I 3: 55 

Read temps [2] • O 
Enter reading # 4: 57 

Read temps [3] • O 
Enter reading # 5: 61 

Read temps [ 4] • 0 
Enter reading I 6: 64 

Read temps [5] • 0 
Enter reading I 7: 65 

Read temps [ 6] • O 
Enter reading I 8: 60 

Read temps [7] • O 

What's happening here? Regardless of what data you enter, the 
corresponding element of the temps array remains set to 0. Some­
how the data being entered isn't finding its way into the array. 

Clearly, this code needs closer examination. To run the program 
until a particular area of interest is reached, set a breakpoint. 
Move the cursor to the beginning of the loop in the get_temps 
function: 

for (reading = O; reading < READINGS; reading++) 

Chapter 7, Debugging in the new /DE 225 



If you choose Toggle 
Breakpoint for a fine that 

already has a breakpoint, it 
removes that breakpoint. 

Now choose Debug I Toggle Breakpoint (or press Ctrl-FB) to set a 
breakpoint at this line. The line with for is highlighted. Any time 
the flow of execution reaches a line at which you have set a break­
point, the program is interrupted, and you're returned to the 
debugger. As you'll soon see, this lets you use other debugger 
commands to examine and change variables and other data 
structures. When you have several breakpoints in a program, you 
can choose Debug I Breakpoints and select the View button in the 
dialog box to see the next breakpoint. 

Breakpoints stay set until you do one of the following: 

•Leave the integrated environment. 
• Toggle the breakpoint off with Ctrl-FB. 
• Delete the breakpoint using Debug I Breakpoints I Delete. 
•Delete the line(s) on which the breakpoints are set. 

• Edit a file containing breakpoints and abandon the file without 
saving it. 

Any time you correct a bug or otherwise edit the current file, and 
resume using debugger commands, Turbo C++ asks, "Source 
modified, rebuild?" Normally you'd press Yat this prompt, so the 
program can be rebuilt into a version that reflects your changes. If 
you press N, both breakpoints and the run bar will appear in the 
wrong places because the source file no longer matches the 
executable program. 

Instant breaking 

226 

with Ctrl-Break You probably know that pressing Ctrl-Break allows you to ''break 
ouf' of many running programs. And so it is with Turbo C++ and 
the integrated debugger. However, the debugger doesn't always 
stop the program instantly. The debugger waits until the machine 
code corresponding to one of your lines of source code is being 
executed. It then stops the program at the machine instruction 
that corresponds to the beginning of the next source code line. 
The run bar appears on the line following the last line executed. 

If you really want an instant break, press Ctrl-Break twice. When 
the second keypress is detected, the debugger terminates the pro­
gram immediately, without flushing any output or calling any exit 
functions. (This is similar to using the _exit function.) This 
"double break" is usually undesirable, since the contents of data 
files become unpredictable, and the debugger no longer knows 

Turbo C++ Getting started 



what line will be executed next. You'll probably only want to use 
a second Ctrl-Break when your program is "hung" or stuck in an 
infinite loop. 

Run the program again; the PLOTEMP menu is displayed. Press 
E. The program runs into the get_temps function until the 
breakpoint is reached. Step with FB until the run bar has moved 
through the statements in the body of the for loop and returned to 
the first line of the loop. Now it's time to look at the key variables 
to learn more about the bug. 

Inspecting your data 

Inspector 
windows 

You can inspect any legal c 
or C++ expression, provided 

it doesn't contain symbols 
that were created with 

#define or function calls. 

Complex programs usually use a variety of data structures­
arrays, structures, unions, lists, and so on. To understand what is 
going on in a particular part of your program, you often need to 
know the actual contents of these data structures. Turbo C++ pro­
vides a new facility called inspectors. Inspectors let you raise the 
hood at any part of your program and examine the inner 
workings. 

To open an Inspector window for an item, move the cursor to the 
item in the Edit window and press Alt-F4. (You can also choose 
Debug I Inspect.) Try inspecting the variable reading from your 
current version of PLOTEMP2.C (which should currently be in 
the Edit window). Choose Run I Trace Into, then Debug I Inspect. 

All Inspector windows begin with the name of the item. For 
variables, the line below contains the address of the variable, 
expressed as segment:offset. (Variables that have been declared to 
be of register type, or that have been optimized by Turbo C++ 
and thus placed in registers, don't have an address, since they are 
being stored in the CPU rather than in RAM. Instead, you'll see 
the word register.) The next line describes the item's data type (for 
example, unsigned int). 

The actual value of the item is displayed to the right of the data 
type. Turbo C++ automatically selects the appropriate formats for 
displaying the type of data involved. For nonprinting characters, 
a backslash (\) followed by the hexadecimal character value is 
used in place of the character value. An int variable, on the other 
hand, would have decimal and hexadecimal values but no char-

Chapter 7, Debugging in the new IDE 227 



acter representation. The other numeric types are handled 
similarly. 

Inspecting arrays 
and strings For an array, a separate line is shown in the window for each 

element-if there are more elements than will fit in the window, 
use the arrow keys to scroll through them. For a string, a 
character representation for the string as a whole is also shown. 
The next figure shows the array temps from PLOTEMP.C after it 
has been filled with data via the get_temps function. 

Figure 7.3 
Inspecting the temps array 

C•1illfLl•MY''"·Wd=2=Ct1 
8E8F:12 
[O] 55 (Ox0037} 
[ 1] 58 ( Ox003A} 

~2~ 61 ~Ox003D~ 3 64 Ox.0040 
4 69 Ox0045 

[5 72 Ox0048 

The display for strings is similar to that for arrays (they are, after 
all, the same data structure). With strings, however, the character 
representation of the string is shown in addition to the individual 
elements. 

Inspecting structs 

228 

and unions For structures and unions, the values of the individual members 
are shown. To see how this works, load SOLAR.C (which you saw 
in Chapter 4, "An introduction to C") and inspect the array 

Inspecting 

solar _system. Since this is an array whose elements are structures 
of type planet, you can browse through the array elements and 
view the data stored in the members of each planet structure. 

pointers For a pointer, the Inspector window shows the address of the 
pointer, the address the pointer points to, and the data found at 
that address (which can be a simple variable, an array, a structure, 
and so on). Indexes ([O], [1], and so on) are shown to make it easy 
for you identify the position of each piece of data. This program 
defines a character pointer ptr: 

main() 

I 
char * ptr = "This is a string\n"; 

Turbo C++ Getting Started 



Inspecting 
functions 

Figure 7.4 
Inspecting the min_max 

function 

When should you 
use inspectors? 

The Inspector window for a function shows its return type and 
address, as well as all of the function's parameters. The Inspector 
window for the function min_max from the complete version of 
PLOTEMP.C is shown in the next figure. 
F[•]~.t4;41n.Muli1l11fi£i=l=[t]= 
8458:03 
int num vals 
int *vaTs 
int *lllin val 
int *lllall-val 

vi>Ta_Q 

You can use function inspectors to review a function's return type 
and parameters without having to go back to the function 
declaration. 

Using inspectors may seem like overkill when dealing with 
simple variables and even arrays, since the Debug I Evaluate 
option (discussed later) also shows the values of variables. The 
real advantage of inspectors comes when dealing with more 
complex data structures (structures, unions, and arrays of these 
data types). In general, inspectors are most useful for studying 
your data in depth, while the Debug I Evaluate facility is best for 
taking a quick look at simple data. 

Evaluating and changing variables 

Load PLOTEMP2.C, compile it, and step to the last printf in the 
function get_temps. Select E and enter one reading. You should 
now have executed the contents of the for loop once, and input, 
formatted, and stored one reading (via the gets and sscanf 
functions). Now choose Debug I Evaluate, which pops up a 
window containing three fields: 

•the Expression field, which contains the expression you are 
interested in 

• the Result field, which displays the value of the expression in 
the Evaluate field 

Chapter 7, Debugging in the new /DE 229 



Specifying display 

•the New Value field, where you can enter a new value for the 
selected expression 

By default, the "word" (C variable, keyword, function call, and so 
on) at the cursor is displayed in the Evaluate field. You're 
interested in two variables: reading, which is the loop's counter 
variable, and the array temps, which is supposed to contain the 
input data. 

Type reading and press Enter. The debugger now displays 0 in the 
Result field. If you step through the statements in the loop and 
evaluate reading again, you'll find its value is now 1. 

You can also examine the values of more complex data structures, 
such as arrays, strings, and structures. Here, you want to know 
more about what's happening to the array temps. Go ahead and 
type temps in the Evaluate field. The following is displayed: 

{O, O, O, O, O, O, O, 0) 

This shows the integer values currently stored in the array temps. 
You can get a single value by using an index: Specifying temps [ O] 
would get you the first integer, for example. Or you could open 
an Inspector window. 

Notice that we have been referring to expressions, not just values 
(such as variables) by themselves. Recall that an expression is a 
combination of variables, constants, and operators that yields a 
single value; for example, valsl [index] + vals2 [index] + 1. You 
can display the value of any expression, provided that 

•It doesn't involve a function call (so an expression such as 
sqrt (a) + 1 can't be used). 

•It doesn't use a #define value, such as READINGS in the 
current program. 

For practice, get the values of the following expressions by typing 
them into the Evaluate field: 

reading + 2 
temps[reading + 1] 

format Optionally, you can add a comma and a format specifier to the 
value you want displayed. For example, type reading, h to see the 
current value of reading in hexadecimal (you could also type 

230 Turbo C++ Getting started 



Specifying the 
number of values 

reading, x). By default, integers are displayed as decimal, and 
character arrays are displayed as strings. 

The specifier m is useful when dealing with arrays: It displays a 
memory dump starting at the specified address. For example, 
temps,m gets you a memory dump starting at the location specified 
(since temps is an array, its name points to the starting address of 
stored data): 

00 00 00 00 00 00 00 

This shows that all the elements of the array temps are currently 
set to 0. The number of elements displayed depends on the size of 
the array. You can combine m with other specifiers: 

temps,mh 

displays a memory dump in hexadecimal format. 

Another useful specification is p, which displays the selected 
variable as a pointer, giving information about the area of 
memory being pointed to (for example, the Interrupt Vector 
Table, the BIOS data area, or the user program's program segment 
prefix [PSP]). If the memory pointed to is within the program's 
own allocated memory, the name of the variable (if any) at the 
address of the segment offset is also displayed. (Chapter 4, "Mem­
ory models, floating point, and overlays," in the Programmer's 
Guide has more information about the regions of memory 
involved.) 

When dealing with an array, you can specify how many values 
you want to display: temps, 5 specifies the first five elements of the 
array temps. You can combine this repeat count with format speci­
fiers. For example, temps [2 J, 3h specifies that the three elements 
following the third element of the temps array should be dis­
played in hexadecimal format. 

Other format specifiers and more details of the debugger com­
mands are given in the User's Guide, Chapter 1, "The IDE refer­
ence" (a reference chapter for the integrated environment). After 
you practice using the debugger in this chapter, we recommend 
reading the pertinent portions of that chapter. 

Chapter 7, Debugging in the new /DE 231 



Copying from the 
cursor position 

Specifying 
variables in other 

functions 

Changing values 

232 

As noted earlier, the Evaluate field contains whatever word was 
at the cursor position when you chose Debug I Evaluate. You can 
take advantage of this to save typing. For example, if you move 
the cursor to the beginning of the expression 

temps[reading] 

temps appears in the Evaluate field. As you press~, the 
characters following the word temps appear. You can thus copy 
the complete expression temps [reading] into the Evaluate field, 
then press Enter as usual to display the value. 

Right now, you're looking at the variables reading and temps in the 
function get_temps. You can also ask the debugger for the values 
of static variables in other functions because static variables retain 
their values even when the function that uses them isn't being 
executed. You can also look at variables in the functions that 
called the one you're executing. You can't look at ordinary auto­
matic variables declared in other functions because they no longer 
have a value when their function exits. The context in which 
expressions are evaluated is given by the current cursor position 
in the Edit window. 

To specify a variable outside of the current function, you can 
move the cursor into the body of the function, or you can give the 
name of the function, a period, and the name of the variable. 

If the variable you want to inspect is in another program module, 
you must specify the module name first; for example, 

module2.getvals.count 

Now you know how to look at different kinds of variables and 
expressions, and how to see their values in different formats. 
Practice stepping through the for loop in get_ temps and examine 
the values of reading and temps[reading]. The latter insists on 
always being 0. 

Try evaluating the expression temps [reading) as you step a few 
times through the loop. The debugger displays its value as 0, 

Turbo C++ Getting Started 



regardless of the value of reading. But what should this expression 
represent? Since it is specifying the storage destination for the 
sscanf function, it needs to be an address. This means that all of 
the values entered are being stored at address O! You can confirm 
this by using the pointer format temps [reading J , p and finding that 
that value is still 0. 

You need to use the address operator & to make this expression 
refer to the address of the temps array. Evaluate &temps [reading], p. 
The result will look something like this: DS: 1278 temps+ 1. The 
actual values displayed will depend on your system configuration 
and the current value of reading, but you can see that 
&temps[readingJ points to a bona fide address in the data segment, 
with an offset from the address pointed to by the variable temps. 

Change the expression temps [reading] in the sscanf statement to 
&temps [reading J. If you now continue stepping through the pro­
gram, you will be asked whether to rebuild the program; press Y 
for Yes. Now, if you step through the for loop again and evaluate 
temps [reading], you'll find that the values you are entering are 
stored correctly in the array. 

This is a good time to practice changing values with the debugger: 
Evaluate the current value of temps [reading]. 

Use the Tab key to move among the three fields (Evaluate, Result, 
and New Value). Once the input cursor is in the New Value field, 
type a value such as 66, and press Enter. Now, if you type 
temps [reading] in the Evaluate field, its new value, 66, is shown in 
the Result field. You can change the value of any expression that 
represents a single data element, such as a simple variable, a 
pointer, or an array element. 

Changing values interactively with the debugger is useful for 
temporarily fixing a bug and continuing program execution a 
little further, looking for the next bug. Here, for example, you 
could put new values in temps[O] through temps[7], set reading to 8 
to break out of the for loop, and return to the program's main 
menu. You can also force a function to return a specific value, or 
to pass that value to another function. This lets you test unusual 
conditions that might lead to bugs, without having to put 
temporary assignment statements in your code. 

The get_temps function should now be working correctly. Next, 
implement the table_view function, so you can view the entered 
data. Replace the stub code for table_view with the following: 

Chapter 7, Debugging in the new /DE 233 



Load in PLOTEMP3.C. 

234 

void table view (void) 

int reading; 

clrscr(); /*clear the screen*/ 
printf("Reading\t\tTemperature (FJ\n"J; 

for (reading = O; reading <= READINGS; reading++) 
printf ("%d\t\t \t%d\n", reading + 1, temps [reading]); 

min_ max(); 
printf("Minimum temperature: \n"); 
printf("Maximum temperature: \n"); 
avg_ temp() ; 
printf ("Average temperature: \n"); 

This function prints the table headings and then uses a for loop to 
obtain and print the values stored in the temps array. Eventually, it 
will also print the minimum, maximum, and average tempera­
tures. These functions haven't been implemented yet, so they'll 
just print out a message saying that they are being executed. 

Notice that including the called functions before they are imple­
mented lets you test the program flow, and reminds you of the 
program structure. This kind of design is often called top-down 
because the program is designed at the top level first (the main 
function). You are in the process of designing the functions called 
directly by main, such as table_view here. When the top level of 
table_view is working, you'll then implement the functions it 
calls-min_max and avg_temp. 

Now build and run PLOTEMP3.C, choose E, and enter test data 
(we entered 10, 20, 30, 40, 50, 60, 70, and 80). When you are back 
at the menu, choose T (Table view), and you'll see something like 
this: 

Reading 
1 

Temperature (F) 
10 

2 
3 
4 
5 
6 
7 
8 
9 

Executing min max(). 
Minimum temperature: 
Maximum temperature: 

Executing avg temp(). 
Average temperature: 

zo 
30 
40 
50 
60 
70 
80 
0 

Turbo C++ Getting Started 



Monitoring your program by setting watches 

Adding a watch 

Well, you entered eight readings and got back nine! The last one 
had a value of 0. You probably suspect the infamous "one off" 
bug-getting one less or one more iteration of a loop than you 
had expected. 

First localize the problem by setting a breakpoint at the first line 
of the for loop in table_view. To do this, move the cursor to that 
line and choose Debug I Toggle Breakpoint (or press Ctrl-FB). 

Now run the program again, enter the test data, and choose Table 
view. The program stops at the breakpoint in table_ view; now 
you can see what's going on in this for loop. 

So far, you have obtained the values of variables by stepping 
through the program and using Debug I Evaluate to inspect their 
values. This is fine when you just need to inspect the values once, 
but when you're dealing with loops or repeated function calls, 
you also want to see how the values change. It would be very 
tedious to evaluate the variables by hand repeatedly. The debug­
ger lets you monitor these changing values automatically by set­
ting watches. A watch is an expression whose value is updated 
each time it is encountered in the running program. 

You are interested in two variables in this case: reading, which is 
incremented repeatedly by the for loop, and temps[reading], which 
holds the value being printed each time through the loop. Since 
the cursor is already nearby, the easiest way to set these watches 
is to move the cursor to the name of the variable you want to 
watch, and then choose Debug I Watches I Add Watch (or press 
Ctrl-Fl). Move the cursor to reading and try this; you'll see the 
pop-up window. As with Debug I Evaluate, the default name 
shown is the one at the cursor; simply press Enter. Use the same 
procedure to set a watch for temps[reading]. The pop-up window 
shows temps, but as with Debug I Evaluate, you can use ~ to copy 
the rest of the expression into the window, and then press Enter to 
set the watch. 

Chapter 7, Debugging in the new /DE 235 



236 

Watching your 
watches 

Controlling the 
debugger 

windows 

Now that you have set two watches, the variable name and value 
for each watch is shown in the Watch window: 

reading: 177 
temps[reading]: 92 

Since the loop hasn't been run yet, the values shown (which may 
be different on your system) are meaningless, representing what­
ever happens to be at the respective memory locations. 

Now start stepping through the loop (with FB). As you step, notice 
how the values change. After the first time through the loop, the 
values are 

reading: O 
temps[reading]: 10 

assuming you entered your test data starting with 10 as described 
earlier. The next time through the loop, the watches display 

reading: 1 
temps[reading]: 20 

The last time the loop is executed, the values are 

reading: 8 
temps[reading]: 0 

This suggests that the loop exits only after reading reaches 8. 
When should it exit? Since there are eight readings entered, and 
reading starts at 0, the last value it should have during the loop is 
7, not 8. Now take a look at the loop exit condition: 

reading <= READINGS 

Checking your #defines at the beginning of the program, you see 
that READINGS is 8. Do you see the problem? To exit when 
reading is 7 (after processing eight readings), the condition should 
read reading < READINGS. Fix this, and rerun the program to see if it 
works correctly. 

If you have set more than a few watches, there won't be room to 
see them all at once. You can scroll the Watch window using the 

Turbo C++ Getting Started 



PgUp and PgDn keys, or move one line at a time with the i and J, 
keys. 

This also works within the lf a particular watch expression is too long to fit in the window, 
Debug I Evaluate window. you can see its beginning and end by scrolling it with the Home, 

End, ~, and ~ keys. 

Editing and 
deleting watches 

You can't change the value 
of the expression, only the 

expression itself. To change 
the value, use Debug I 

Evaluate. 

Finding a function 
definition 

Another way to see more is to zoom a window. See Chapter 1, 
"The IDE reference," in the User's Guide for how to handle the new 
environment's windows. 

Remember that you can look at an entire screen of the program 
output at any time by pressing Alt-F5. Press any key to return to 
the environment. 

Now is a good time to practice using these features. 

It's easy to edit, add, or delete watches. When the Watch window 
is active, the currently active expression is highlighted. To select a 
different expression, use the Home, End, i, or J, keys. 

To edit (change) the currently highlighted watch, you can choose 
Debug I Watches I Edit Watch. Even easier, as shown on the bottom 
line of the screen, you can press Enter. The debugger opens a pop­
up window with the selected expression, and you can edit it. 
Practice by changing the watch for temps [reading] to 
temps[reading+l]. 

You already know how to add watches, but once the Watch 
window is active, there's an easier way: Press Ins. A pop-up 
window appears. You can type in the watch expression, add to it 
with the~ key, or accept the default that was copied from the 
cursor position. 

To delete the current watch, choose Debug I Watches I Delete 
Watch, or simply press Del. Practice by deleting the watch for 
reading. You can delete all of the watches by choosing Debug I 
Watches I Remove All Watches. 

Now that PLOTEMP.C is starting to flesh out, it's harder to find 
the function you want to examine. The debugger provides a way 
to scroll the Edit window to a specified function definition. 
Choose Search I Locate Function, and Turbo C++ opens a dialog 

Chapter 7. Debugging in the new /DE 237 



Finding out who 
called whom 

You can always scroll back 
to the current execution 

position by choosing the first 
function In the Call stack 

window-in this case, 
min_ max. 

238 

box. Practice by typing get_ temps (don't type the parentheses after 
the function name, or the debugger won't find your function). The 
definition of get_temps is now displayed in the Edit window. 
This is useful for reviewing the definition of a function, as well as 
for finding locations to set breakpoints and watches. 

Note that Search I Locate Function works only with functions that 
have source code in a file that has been compiled with debug 
information. Library functions such as printf can't be found with 
Search I Locate Function, since their source code isn't available in 
the integrated environment. 

In a complex program, there may be several levels of function 
calls, and you may find it hard to remember the order in which 
functions were called as the program executed to a particular 
breakpoint. The debugger can help you out here, too. Set a 
breakpoint that will halt the program at the place where you want 
to see the call sequence. For practice, set a breakpoint at the printf 
in min_max. 

Run the program and choose Table View. This will cause the 
program to stop at the breakpoint. Now choose Debug I Call Stack. 
A pop-up window lists all the functions that are waiting to finish 
execution at this point. The call stack has the most recently called 
function at the top, which in this case is min_max. It was called by 
table_view, which in turn was called by main. 

You can use the i and .J.. keys to highlight a particular function in 
the Call Stack window. If you press Enter, the Edit window scrolls 
to show the last line executed in that function. Right now, 

•the last line executed in min_max is the first line of its defini­
tion, since that's where you placed the breakpoint. 

•the last line executed in table_vlew was the line containing the 
call to min_max. 

•the last line executed in main is the line that executed 
table_view; namely, case 'T': table_ view; break;. 

In other words, min_ max is currently being executed, and 
table_view and main are pending completion. 

Turbo C++ Getting started 



Multiple source 
files As you work with longer programs, you'll find the features we've 

been discussing to be especially useful. Many substantial pro­
gramming projects consist of several source files. The debugger 
automatically loads the file needed to fulfill your request into the 
Edit window. For example, if you use Search I Locate Function to 
find a function that is declared in a source file other than the one 
in the Edit window, the debugger loads the appropriate source file 
into the editor. If you've made any changes to the current file, you 
are first asked if you want to save the changed file to disk. The 
same thing happens when you use Debug I Call Stack to examine 
the last executed line of a function whose definition is in a 
different source file. 

Although the debugger makes it easy to work with multiple 
source files, it is good practice to debug only one or two source 
files at a time. Always test a given "bug fix" before moving on 
because there is always a chance that your fix did not work, or 
possibly even introduced new bugs. 

Preventive medicine 

Design 

You'll soon resume the development and testing of PLOTEMP.C. 
To aid in this and future debugging efforts, take a look at some 
ways to minimize bugs, and look at some common ''buggy" 
situations. 

defensively Just as you can avoid accidents by driving your car defensively, 
you can avoid bugs by designing your program defensively. As 
you've seen, the design of PLOTEMP.C represents an approach to 
defensive design through top-down programming. 

Try to build up your program from functions whose purposes are 
simple and well-defined. This makes it easier to set up test cases 
and analyze their results. It also makes your program easier to 
read and modify. For example, if PLOTEMP.C combined both 
table and graph views in the same function, the code could easily 
become unwieldy. 

Chapter 7, Debugging in the new /DE 239 



Write clearly 

Try to minimize the number of data elements each function 
requires and the number of elements it changes. This too makes it 
easier to set up test cases and analyze their results, and to read 
and modify your program. It also tends to limit the amount of 
havoc a misbehaving function can cause, letting you run the 
function several times in a single debugging session. A program 
designed this way is said to be loosely coupled. 

Write your code cleanly, with consistent indentation, liberal com­
ments, and descriptive variable names. 

Keep your code simple. Express complicated operations in many 
simple statements rather than a few complex ones that show off 
your knowledge of C's more obscure features. Turbo C++'s code 
optimization makes your code reasonably efficient, and it will be 
much easier to debug, read, and modify. 

Don't try to squeeze the last bit of efficiency out of your program 
when you write it. When you try to make code as efficient as it 
can be, it also tends to become hard to read and debug. If your 
program turns out to be too slow when it's done, that's the time to 
decide which parts are worth speeding up, and how best to do it. 
(Turbo Profiler is the best tool for that task, anyway.) 

Be alert for opportunities to write functions that can be used more 
than one way in your program, or can be reused in other pro­
grams. Writing and debugging one generalized function is 
usually easier than writing two or more specialized ones. 

Systematic software testing 

240 

Before a jet liner takes off, the crew goes through a systematic 
checklist to ensure that everything is working properly. Following 
a specific routine reduces reliance on fallible human memory. In 
the same way, you should work toward a standard approach to 
software testing: A checklist of steps that your experience shows 
will lead you to a reliable program. 

There is no one "right" way to test a program; your checklist will 
depend on the types of programs you write, your strengths and 
weaknesses as a programmer, and your personal style. The fol-

Turbo C++ Getting started 



Test modifications 

lowing checklist can serve as a starting point, since it reflects 
widespread experience. 

•Feed the program some input that is simple but not trivial. Try the 
unusual-for example, have you tried entering negative 
temperatures into PLOTEMP? Trace into the code using 
Debug I Evaluate and watch expressions liberally to check the 
values of data items. Correct the bugs you find, one or a few at 
a time. 

• Feed the program other sets of data that let you exercise the parts you 
couldn't test in the preceding step. If possible, have someone who 
is unfamiliar with your program interact with it at the key­
board. Common experience shows that programmers have 
difficulty exercising their own programs properly because they 
know which values are appropriate and which aren't. If your 
program is designed to be used by accountants, try to find an 
accountant. 

•Test every statement in your program. You may find bugs where 
you didn't suspect they could exist. 

• Put aside the debugger and test the entire program for correct 
behavior. If the program will be used by other people who will 
expect it to be well-behaved, test its response to every type of 
error it could possibly encounter. A program that handles most 
types of errors well is said to be robust. 

thoroughly When you modify a program, retest the affected parts thoroughly. 

Areas to watch 
carefully 

You may have to retest parts that haven't changed but are affected 
by the changes. 

If the program is complex, keep a record of the tests you have 
performed. When you modify the program, this record helps you 
repeat all the tests whose results could possibly be affected by the 
change. If the tests involve particular input files, save the files. 

As you continue to learn C and to develop programs, keep a list 
of common bugs and coding errors, and check it as part of your 
debugging session. Here are some areas where many program­
mers run into trouble: 

Chapter 7, Debugging in the new /DE 241 



•making out-of-bounds errors 

•confusing addresses versus values at those addresses 

•placing the increment and decrement operators incorrectly 

• not testing statements thoroughly 

•using Pascal syntax instead of C 

Each of these is discussed next. 

Give special attention to boundary conditions-conditions that make a 
program escape from a loop, fill an array, and so on. Bugs are 
especially likely to be manifested as failures to handle boundary 
conditions correctly. You've already seen how the condition 
reading <= READINGS caused one too many values to be displayed. 
Other problems could be caused by starting at 1 instead of 0. 

Always be careful about whether you are specifying an address or a 
value at that address. For example, don't confuse the value 
temps[reading] with the address &temps[reading]. 

Be careful with the increment and decrement operators ++ and - -. Is 
the value being incremented before or after it is used? 

Be alert for individual statements or expressions that must be tested 
more than one way, like these: 

switch ( strcmp (a,b) ) .. , 

strcmp can return three values: 0 (a equals b), -1 (a is less than b), 
or +1 (a is greater than b). This suggests that you should test the 
statement with three sets of input values to verify that strcmp 
makes it do the right thing in each case. 

x = (x>O) ? func(x) : O ; 

This statement contains an "implicit if'' that can produce two 
different results. 

Finishing PLOTEMP.C 

242 

You've installed and tested the prototype PLOTEMP.C and have 
implemented, tested, and debugged the get_temps and 
table_view functions. You've learned how to use all of the 
debugger features. The completion of PLOTEMP.C involves a 
series of exercises where you 

Turbo C++ Getting started 



Finishing 
table_view 

Load PLOTEMP4.C. 
Remember that we have 

included deliberate bugs in 
the PLOTEMP programs so 

you can practice your 
debugging ski/ls. 

1his change is included in 
PLOTEMP4.C. 

• Replace the stub code for a particular function with the code 
given in the listing. We've made this easy for you by providing 
code for each step that has the corrections made to that point. 
All you need do is load the next version. 

•Change the function prototype (if necessary). 
•Test the function implementation using appropriate debugger 

facilities. 
• Find and fix the bugs. 
• Move on to the next function. 

The answers are given at the end of this chapter. 

To finish this function, you need to implement the following two 
functions: 

void min_max (int num_vals, int vals[], int *min_val, int *max_val) 
( 

int reading; 

*min_val = *max_val = vals[O]; 

for (reading = 1; reading < num_vals; reading++) 
{ 

if (vals[reading] < *min_val) 
*min_val = &vals[reading]; 

else if (vals[reading] > *max_val) 
*max_val = &vals[reading]; 

float avg_temp(int num_vals, int vals[]) 
I 

int reading, total = 1; 

for (reading = O; reading < num_vals; reading++) 
total+= vals[reading]; 

return (float) total/reading; /* reading equals total vals */ 

Since these functions have parameters and return values, change 
their prototypes to 

void min_max (int num_vals, int vals[], int *min_val, int *max_val) 

float avg_temp(int num_vals, int vals[]) 

Chapter 7, Debugging In the new /DE 243 



244 

This change Is Included In 
PLOTEMP4.C 

Implementing 
graph_ view 

Load PLOTEMP5.C. 

Finally, change table_vlew so that the return values from the 
functions are used properly. The revised table_vlew should read 
as follows: 

void table_view (void) 
{ 

int reading, min, max; 

clrscr(); /* clear the screen */ 
printf("Reading\t\tTemperature(F)\n"); 

for (reading = O; reading < READINGS; reading++) 
printf ("%d\t\t\t%d\n", reading + 1, temps [read.ing]); 

min_max(READINGS, temps, &min, &max); 
printf ("Minimum temperature: %d\n", min) ; 
printf ("Maximum temperature: %d\n", max); 
printf ("Average temperature: %f\n", avg_ temp (READINGS, temps)); 

Now for some debugging on your own. Check normal operations: 

• Are the loops working properly? 
•Are the arithmetic operations appropriate? 
• What do the comparisons compare? 

Recall that the graph_view function creates the chart shown in 
Figure 7.2. To implement this function, replace its definition with 
the following (and be sure to add Hnclude <graphics. h> at the 
beginning of your code): 

void graph_view(void) 
{ 

int graphdriver = DETECT, graphmode; 
int reading, value; 
int maxx, maxy, left, top, right, bottom, width; 
int base; /* zero x-axis for graph */ 
int vscale = 1.5; /* value to scale vertical bar size */ 
int space = 10; /* spacing between bars */ 

char fprint[20]; /* formatted text for sprintf */ 

initgraph(&graphdriver, &graphmode, ""); 
if (graphresult() < 0) /*make sure initialized OK*/ 

return; 

maxx = getmaxx(); /*farthest right you can go*/ 
width= maxx I (READINGS+ 1); /*scale and allow for spacing*/ 
maxy = getmaxy() - 100; /* leave room for text */ 

Turbo C++ Getting started 



save_temps and 
read_ temps 

Load PLOTEMP5.C. 

left = 25; 
right = width; 
base = maxy I 2; /* allow for neg values below */ 

for (reading = O; reading <= READINGS; reading++) 
{ 

value= (temps[READINGS]) * vscale; 
if (value > 0) 
{ 

top = base - value; /* toward top of screen */ 
bottom = base; 
setfillstyle(HATCH_FILL, l); 

else 

top = base; 
bottom= base - value; /* toward bottom of screen */ 
setfillstyle(WIDE_DOT_FILL, 2); 

bar(left, top, right, bottom); 
left += (width+ space); /*space over for next bar*/ 
right+= (width+ space); /*right edge of next bar*/ 

outtextxy (0 1 base, "0 -"); 
outtextxy (10, maxy + 20, "Plot of Temperature Readings"); 
for (reading = O; reading < READINGS; reading++) 
{ 

sprintf(fprint, 11 %d 11 1 temps[reading]); 
outtextxy((reading *(width+ space)) + 25, maxy + 40, fprint); 

outtextxy(50, maxy+80, "Press any key to continue"); 

getch(); 

closegraph (); 

/* wait for a key press */ 

The function save_temps saves the current "scratchpad" (the 
contents of the array temps) to a disk file. By now, you should be 
familiar with the logic involved in accessing elements of this 
array. 

Replace the stub definition for the save_temps function with the 
following: 

void save_temps(void) 

Chapter 7, Debugging in the new /DE 245 



This change Is also included 
in PLOTEMP5.C. 

FILE * outfile; 
char file_name[40]; 

printf("\nSave to what filename? "); 
while (kbhit ()); /* •eat" any char already in keyboard buffer */ 
gets (file_name); 
if ((outfile = fopen(file_name,"wb")) ==NULL) 

perror ("\nOpen failed! "); 
return; 

fwrite(temps, sizeof(int), READINGS, outfile); 
fclose (outfile); 

The function read_temps is the counterpart to save_temps; it 
reads values from a disk file into the temps array. Implement 
read_temps by replacing its stub definition with the following: 

void read_temps(void) 
{ 

FILE * infile; 
char file_ name [ 40] = "test•; 

printf("\nRead from which file? 11 ); 

gets(file_name); 

while (kbhit()); /*"eat" any char already in keyboard buffer*/ 

if((infile == fopen(file_name,"rb")) ==NULL) 

perror("\nOpen failed! "); 

fread(temps, sizeof(int), READINGS, infile); 
fclose (infile); 

After you're finished with read_temps, you should have a 
complete, working version of PLOTEMP.C. (PLOTEMP6.C is a 
bug-free version of this program.) 

Answers to debugging exercises 

246 

min_maxand 
avg_ temps 

Here are the bugs in the remaining functions of PLOTEMPS.C. 

In mln_max, the If statements assign the value &vals[reading] 
(which is an address) to the min or max, rather than the correct 
value vals[reading]. Also, in avg_temp, the variable total should be 

Turbo C++ Gefflng started 



graph_ view 

save_temps 

0. Having it start as 1 adds 1 to the total of the readings, thereby 
giving an incorrect average. 

By the way, note that this function receives and passes pointers to 
the calling function table_ view-not the actual values of the 
variables. For more on this, review the material on pointers in 
Chapter4. 

There are two sneaky bugs in this function. They are in the for 
loop: 

for (reading = O; reading <= READINGS; reading++) 
( 

value= temps[READINGS] * vscale; 

The value being read is temps[READINGS]-the constant 
READINGS instead of the variable reading. The result is that the 
only value that will be graphed is the nonexistent element 
temps[B]. In the second bug, the condition<= READINGS should be 
< READINGS to read the correct number of values. Notice how the 
first bug masks the second-often you can't detect a given bug 
until you've fixed another bug, since the first bug prevents proper 
execution of the code containing the second bug. 

Here, the problem is not in the first line of the for loop, but rather 
in the body: 

if ( (outfile = fopen (file _name, "wb")) == NULL) 
perror ("\nOpen failed! "); 
return; 

Braces are needed to place both the perror statement and the 
return statement under the jurisdiction of the If. Thus the function 
always returns at this point, even if the file was opened correctly. 

The compiler warning ''Unreachable code in function 
save_temps" means that the line following the return statement 
can never be executed. Without the braces, the return is always 
executed. 

Chapter 7, Debugging In the new /DE 247 



read_ temps 

248 

When you compiled this, you should have seen the compiler 
warnings "Possible use of infile before definition". Consider the 
following code: 

if ((infile == fopen(file_name,"rb")) ==NULL) 

When you open a file, the file handle infile should be getting a 
value from fopen; the value is tested to see if it is NULL, 
indicating that the file opening failed. Why isn't infile being 
defined (getting a value) as it is first used? The reason is that==, 
rather than =, follows infile. Since ==indicates a comparison rather 
than an assignment, infile isn't getting a value. 

Turbo C++ Getting started 



Bibliography 

Many leading book publishers support Borland products with a 
wide range of excellent books, serving everyone from beginning 
programmers to advanced users. Of course, since Turbo C++ is a 
new product, most of the Turbo C books in this bibliography are 
specific to Turbo C 2.0. They are, nonetheless, useful, and there 
are four books specific to Turbo C++. 

Beginning to intermediate 

Bibliography 

Burnap, Steve. COMPUTE's Turbo C for Beginners. Radnor, PA: 
COMPUTE! Publications, 1988. 

Derman, Bonnie (editor) and Strawberry Software. Complete Turbo 
C. Glennview, IL: Scott, Foresman & Co, 1989. 

Edmead, Mark. Illustrated Turbo C. Plano, TX: Wordware Pub­
lishing, 1989. 

Goldstein, Larry and Larry Gritz. Hands On Turbo C. New York, 
NY: Brady Books, 1989. 

Hergert, Douglas. The ABCs of Turbo C 2.0. Alameda, CA: Sybex, 
Inc, 1989. 

Jamsa, Kris. Turbo C Programmers Library. Berkeley, CA: Osborne/ 
McGraw-Hill, 1988. 

Kelly-Bootle, Stan. Mastering Turbo C, 2nd edition. Alameda, CA: 
Sybex, Inc, 1989. 

LaFore, Robert. The Waite Groups Turbo C Programming for the PC, 
revised edition. Indianapolis, IA: Howard W. Sams & Co, 
1989. 

Miller, Larry and Alex Quilici. The Official Borland Turbo C Survival 
Guide. New York, NY: John Wiley & Sons, 1989. 

Pohl, Ira and Al Kelley. A Book on C. Menlo Park, CA: Benjamin/ 
Cummings, 1984. 

Pohl, Ira and Al Kelly. Turbo C by Dissection. Menlo Park, CA: 
Benjamin/Cummings, 1987. 

249 



Advanced 

250 

Pohl, Ira and Al Kelly. Turbo C, The Essentials of Programming. 
Menlo Park, CA: Benjamin/Cummings, 1988. 

Schildt, Herbert. Using Turbo C++. Berkeley, CA: Osborne/ 
Mc.Craw-Hill, 1990. 

Voss, Greg and Paul Chui. Turbo C++ DiskTutor. Berkeley, CA: 
Osborne/Mc.Craw-Hill, 1990. 

Wiener, Richard. Turbo Cat Any Speed. New York, NY: John Wiley 
& Sons, 1988. 

Zimmerman, S. Scott and Beverly Zimmerman. Programming with 
Turbo C. Glennview, IL: Scott, Foresman & Co, 1989. 

Alonso, Robert. Turbo C DOS Utilities. New York, NY: John Wiley 
and Sons, 1988. 

Burnap, Steve. COMPUTE's Advanced Turbo C Programming. 
Radnor, PA: COMPUTE! Publications, 1988. 

Davis, Stephen R. Turbo C: The Art of Advanced Program Design, Op­
timization and Debugging. Redwood City, CA: M & T Books, 
1987. 

Ezzel, Ben. Graphics Programming in Turbo C. Reading, MA: 
Addison-Wesley, 1989. 

Goldentahl, Nathan. Turbo C Programmer's Guide. Chesterland, OH: 
Weber Systems, Inc, 1988. 

Hunt, William. The C Toolbox. Reading, MA: Addison-Wesley, 
1985. 

Johnsonbaugh, Richard and Martin Kalin. Applications Program­
ming in Turbo C. New York, NY: Macmillan Publishing Co, 
1989. 

Mosich, Donna, Namir Shammas, and Bryan Flamig. Advanced 
Turbo C Programmer's Guide. New York, NY: John Wiley & 
Sons, 1988. 

Murray, Bill and Chris Pappas. Turbo C++ Professional Handbook. 
Berkeley, CA: Osborne/McGraw-Hill, 1990. 

Porter, Kent. Stretching Turbo C. New York, NY: Brady Books, 
1989. 

Turbo C++ Getting started 



Schildt, Herbert. Advanced Turbo C, 2nd edition. Berkeley, CA: Os­
borne/McGraw-Hill, 1989. 

Stevens, Al. Turbo C: Memory Resident Utilities, Screen I/0 and 
Programming Techniques. Portland, OR: MIS: Press, 1987. 

Weiskamp, Keith. Advanced Turbo C Programming. Boston, MA: 
Academic Press, 1988. 

Young, Michael. Systems Programming in Turbo C. Alameda, CA: 
Sybex, Inc, 1988. 

Object-oriented programming 

Dewhurst, Stephen C. and Kathy T. Stark. Programming in C++. 
Englewood Cliffs, NJ: Prentice Hall, 1989. 

Eckel, Bruce. Using C++. Berkeley, CA: Osborne/Mcgraw-Hill, 
1990. 

Lippman, Stanley B. C++ Primer. Reading, MA: Addison-Wesley, 
1989. 

Pohl, Ira. C++ For C Programmers. Menlo Park, CA: Benjamin/ 
Cummings, 1989. 

Stroustrup, Bjame. The C++ Programming Language. Reading, MA: 
Addison-Wesley, 1987. 

Weiner, Richard S. and Lewis J. Pinson. An Introduction to Object­
Oriented Programming and C++. Reading, MA: Addison­
Wesley, 1988. 

Other languages and C 

Bibliography 

Brown, Douglas L. From Pascal to C. Belmont, CA: Wadsworth 
Publisher, 1985. 

Traister, Robert. AI Programming in Turbo C. Blue Ridge Summit, 
PA: Tab Books, Inc, 1989. 

251 



Reference 

252 

American National Standard for Information Systems (ANSI). 
Programming Language C. Draft. Document number X3J11/ 
88-159. Washington, DC: Computer & Business Equipment 
Manufacturers Association, 1988. 

Barkakati, Naba. The Waite Group's Essential Guide to Turbo C. Indi­
anapolis, IA: Howard W. Sams & Co, 1989. 

Barkakati, Naba. The Waite Group's Turbo C Bible. Indianapolis, IA: 
Howard W. Sams & Co, 1989. 

Bloom, Eric and Jeremy Soybel. Turbo C Trilogy: A Complete Library 
for Turbo C Programs. Blue Ridge Summit, PA: Tab Books, Inc, 
1988. 

Harbison, Samuel P. and Guy L. Steele. C: A Reference Manual. 
Englewood Cliffs, NJ: Prentice-Hall, 1987. 

Holtz, Frederick. Turbo C Programmer's Resource Book. Blue Ridge 
Summit, PA: Tab Books, Inc., 1987. 

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming 
Language, 2nd edition, Englewood Cliffs, NJ: Prentice-Hall, 
1988. 

O'Brien, Stephen. Turbo C: The Complete Reference. Berkeley, CA: 
Osborne/McGraw-Hill, 1988. 

Purdum, Jack and Tim Leslie. C Standard Library. Carmel, IN: Que 
Corporation, 1987. 

Rought, Edward R. and Thomas D. Hoops. Turbo C Developer's 
Library. Indianapolis, IA: Howard W. Sams & Co, 1988. 

Schildt, Herbert. Turbo C: The Pocket Reference. Berkeley, CA: Os­
borne/McGraw-Hill, 1988. 

Schildt, Herbert. Turbo C/Turbo C++: The Complete Reference. 
Berkeley, CA: Osborne/McGraw-Hill, 1990. 

Turbo C++ Getting started 



N 

I I (comments) 124, 196 
\ \ (display backslash) 52 
\" (display double quote) 52 
\? (display question mark) 52 
\' (display single quote) 52 
== (equal to operator) 65 
>= (greater than or equal to operator) 65 
++ (increment operator) 56 
<= (less than or equal to operator) 65 
&& (logical AND operator) 67 
I I (logical OR operator) 67 
!= (not equal to operator) 65 
:: (scope resolution operator) 132, 134, 154, 201 
= (assignment operator) 56 
\(escape sequence character) 51 
A (exclusive OR operator) 58 
; (for empty loops) 77, 198 
>(greater than operator) 65 
< (less than operator) 65 
% (modulus) 54 
! (NOT operator) 67 
<<operator 

overloading See see overloaded operators 
shift bits left 58 

>>operator 
overloading See see overloaded operators 
shift bits right 58 

I (OR operator) 58 
- - (decrement operator) 56 
& operator 

address 46 
AND58 

+operator 
overloading See overloaded operators, 
addition(+) 

-operator 
l's complement 58 
destructors 170 

l's complement See operators, l's complement 

Index 

D E x 

#symbol (directives) 35 

A 
\a (audible bell) 52 
access 

class members 200 
classes 124 

structures vs. 137 
data members 136, 183 
data members and member functions 124 
functions and variables 109, 134 
information hiding and 136 
inheritance and 143 
member functions 136 
modes 118, 120 
structures 

classes vs. 137 
address, Borland 7 
address operator (&) 46 
addresses, memory See memory, addresses 
alert character (\a) 52 
American National Standards Institute See 

ANSI 
ancestors See classes, base 
AND operator (&) 58 
ANSI 

C standard 3 
arguments 

constructors 135 
default 135, 176 

C++ 199 
constructors and 179 

mode 191 
passing in C++ 161 

arithmetic 
operations 53 

combining with assignment operator 56 
pointers 112 

253 



arrays 
declaring and initializing 97, 99 
elements 98 
evaluating 230 

number of values 231 
indexes 115 
inspecting 228 
multidimensional 99 
new operator and 169 
passing to functions 216 
range errors 99 
strings and 101 

ASCII codes 
characters 62 

assignments 
combination 44 
defined 43 
multiple 44 
operator ( =) 

combining with other operators 56 
associativity 

rules 60 
table 61 

audible bell (\a) 52 
auto variables See variables, automatic 

B 
\b (backspace character) 52 
backslash character 

printing52 
backspace character (\b) 52 
bad (member function) 191 
bar 

execution See run bar 
run See run bar 

BARCHART.C 
loading 22 
modifying 24 

base classes See classes, base 
beep 52 
bell (\a) 52 
.BGI files 

calling 84 
bibliography 249-252 
binary files 

opening 118 
binary numbers 37 

254 

binding See C++, binding 
bits 

manipulating 58 
blocks, text See editing, block operations 
Boolean data type 130 
Borland 

address 7 
CompuServe Forum 7 
technical support 7 

Borland Graphics Interface (BG!) 
using 84 

boundary conditions 242 
branching See if statements; switch statements 
break statements 

exiting loops and 77 
buffers 

file 191 
bugs 213, See also debugging 

reporting to Borland 8 

c 
C++ 121-194, 195-211 

argument 
passing 161 

arguments 176, 199 
binding 

earlyvs. late 157 
late 128, 156, 210, See also member 
functions, virtual 

early vs. 157 
example 160 

classes See classes 
comments 124, 196 
compiling 138 
constants 198 
constructors 207, See constructors 
data members See data members 
declarations 197 
#define and 198 
destructors See destructors 

defined 202 
dynamic objects See also objects 
encapsulation 123 

defined 121 
examples 

dictionary 200 
file buffers 191 

Turbo C++ Getting started 



formatting See formatting 
friend functions 

declaring 204 
functions See also member functions 

default arguments for 176 
friend 183, 184 
inherited 154 
inline 139, 175, 198 

classes and 200 
header files and 140 

one line 198 
overloading See overloaded functions 
virtual 210 
virtual keyword and 159 

graphics classes 129 
header files 144, 196 
hierarchies See classes 
1/0 185 

flushing cout 197 
formatting 189 
performing 196 

inheritance See inheritance 
initialization 202 
inline functions See C++, functions, inline 
1/0 

disk 189 
formatting 187 
put and write functions and 188 

member functions See member functions 
members 

initialization list 155 
objects 

declaring 131 
operators See operators, C++; overloaded 

operators 
polymorphism 128, See polymorphism 
primer 121-194 
programs 

com piling 138 
Smalltalk vs. 123 
streams See streams, C++ 

cin, cout, and cerr 185 
cout 

flushing 197 
defined 140 

strings 
concatenating 180 

Index 

structures See structures 
Turbo C++ implementation 3 
tutorial 195-211 
types 

reference See reference types 
variables 

declaring anywhere 198 
C language 31-120, See also C++ 

history 31 
overview 31-120 

Call Stack window 238 
calling sequence, functions 238 
carriage return character (\r) 52 
case sensitivity 45 
case statements See switch statements 
cerr (C++ stream) 185 
characters 

ASCII 62 
carriage return (\r) 52 
char data type See data types, char 
displaying 46, 63 
escape sequence 51 
format specifiers 46 
form.feed (\f) 52 
getch function and 63 
getche function and 63 
header file 96 
newline (\n) 52 
non printing 

Inspector window and 228 
null 

defined 64 
strings and 101 

printable 52 
putchand 63 
reading 

and formatting 46 
from keyboard 62 

separator 48 
set of 62 
special, displaying 52 
storage 62 
strings and 65 
tab (\t) 52 
unsigned char data type 

range39 
charts See graphics, charts 

255 



check boxes 19 
cin (C++ stream) 140, 185 

using 197 
class (keyword) 200 
classes See also structures 

access 204 
structures vs. 137 

base 141, 205 
defined 127 

class keyword 200 
constructors 133 

arguments 135 
defining 135 
inline 135 
naming 135 

defined 124 
derived 141, 205 

creating 143, 20 7 
defined 127 

deriving 148 
destructors 134 
friend functions and 184, 204 
graphics 129 
hierarchies 

common attributes in 162 
initializing automatically 133 
inline keyword and 200 
instantiation and 124 
istream, ostream, and iostream 185 
libraries 145 
members 

access 200 
private 

accessing 204 
overloaded operators and 186 
projects and 145 
relative position 193 
streambuf 185 
structures vs. 124 
TLIBand 145 

clear (function) 
C++ stream errors and 191 

clog ( C ++ stream) 185 
colors See graphics, colors 
combination assignments 44 

256 

command-line compiler 
directives See directives 
options 

compile C++ (-P) 138 
-P (compile C++) 138 

using28 
commands See individual command names 
comments 35 

II 124 
C++ U I) 196 

compatibility 
mice3 

Compile 
command28 
menu 

Full Menus On and Off 19 
using 28 

compiler directives See directives 
#define 

constants and 94 
CompuServe Forum, Borland 7 
conditions, boundary 242 
console 

110 
example program 216 

const (keyword) 94 
constants 94 

C++ 198 
manifest or symbolic See macros 

constructors 133, See C++, constructors 
accepting default arguments 179 
arguments 135 
calling with no arguments 179 
classes 

base 146 
derived 146 

default 147 
defining 135 
inline 135, 140 
naming 135 
new operator and 134 
order of calling 

example 155 
continue statements 77 
conventions 

typographic 6 
conversion specifications See format specifiers 

Turbo C++ Geffing started 



conversions 
printfand 51 
rules 55 
table 55 

copy and paste See editing, copy and paste 
coupling 

loose 240 
cout (C++ stream) 140, 185 

flushing 197 
.CPP files See C++ 

D 
data 

declaring 33 
inspecting 227 
structures See also arrays; structures 

naming 103 
pointers and 109 

data hiding See access 
data members 

access 124, 125, 136 
accessing 136 

private 183 
defined 124 
member functions and 134 
scope 143 

data types See also data 
Boolean 130 
char 

range39 
strings and 65 

choosing appropriate 40 
converting See conversions 
enumerations 

range39 
using 104 

floating point See floating point 
integers See integers 
new 105 
numeric 37 
promotion 55 
ranges 39 
renaming 103 
table of 39 
typedef and 103 
unsigned char 

range39 

Index 

Debug menu 214 
debugging 

breakpoints See breakpoints 
Call Stack window 238 
data 

changing values 232 
inspecting 227 

defined 213 
designing programs for minimum 239 
Evaluate field and 229 
exercises 243 

answers246 
expressions 

changing values 232 
functions 223 
inspectors and 227 
locating a function 237 
multiple files 239 
multiple variables 232 
PLOTEMP.C 216 
Step Over command 222 
syntax errors 221 
Trace Into command 223 
tutorials 213-248 
User screen and 222 
values 

changing 232 
windows236 

dee (manipulator) 188 
declarations 

data See data, declaring 
global 86 
improving legibility 106 
location 

C++ 197 
objects 131 

declarators 107 
designing 106 
with typedefs 108 
without typedefs 107 

decrement operator(--) 56 
default arguments See arguments, default 
#define (directive) 35 

constants and 94 
delete (operator) 

destructors and 134, 170 
syntax 170 

257 



derived classes See classes, derived 
descendants See classes, derived 
designing programs 80 
destructors 

auto objects and 170 
deallocating memory and 170 
delete operator and 134, 170 
dynamic objects and 170 
implicit 170 
static objects and 170 

dialog boxes See also buttons; check boxes; list 
boxes; radio buttons 
find and replace 25 

dictionary example 200 
directives 

#define 35 
C++and 198 
constants and 94 

defined 35 
#include35 

disks 
distribution 

defined 10 
displays See screens 
distribution disks 3 

backing up 9 
distributions disks, defined 10 
division See floating point, division; integers, 

division 
do while loops See loops, do while 
double (floating point) See floating point, 

double 
double quote character 

displaying 52 
strings and 65 

duration 91 
dynamic binding See C++, binding, late 
dynamic objects See objects, dynamic 

E 
early binding See C++, binding 
Edit See also editing 

menu24 
windows 

closing 29 
multiple23 
new23 

258 

scroll bars 23 
editing See also Edit 

block operations 
copying26 
deleting 27 
selecting 24 

copy and paste 24 
cursor movements 23 
find and replace 

dialog boxes 25 
loading files 21 
mouse23 
pasting See editing, copy and paste 
search and replace 25 
selecting text 24 
text blocks 

selecting 24 
tutorials 21 

elements of arrays 98 
else clauses See if statements 
empty loops 77, 198 
encapsulation 121, See also C++ 
endl (manipulator) 188 
ends (manipulator) 188 
enumerations 104 

range39 
environment See integrated environment 
eof (member function) 191 
equal to operator(==) 65 
errors 

array size 99 
C++streams 

clearing 191 
messages 

which book to look in for 5 
escape sequences 51 
Evaluate command 

inspectors vs. 229 
Evaluate field 

arrays 230, 231 
copying into 232 
debugging and 229 
display format 230 
expressions in 

rules governing 230 
format specifiers and 230 
memory dump and 231 

Turbo C++ Getting started 



pointers and 231 
variables 230 

examples 
relational operators 66 

exclusive OR operator ( ") 58 
.EXE files 

generating 28 
execution 

bar See run bar 
line-by-line 223 
stepping over functions 222 

expressions 
assigning values in 61 
conditional 67 
debugging 

changing values of 232 
defined 44, 59 
displaying value of 230 
evaluating 59 
watch See Watch, expressions 

extensibility See also C++ 
extern (keyword) 

using 93 
extraction operator(>>) See overloaded 

operators 

F 
\f (formfeed character) 52 
fail (member function) 191 
features of Turbo C++ 1, 13 
field width, C++ 188 
files See also individual file-name extensions 

access modes 118, 120 
binary 118 
buffers, C++ 191 
C++ SeeC++ 
.CCP SeeC++ 
copying 23 
disk 

copying using C++ 189 
reading 118 
writing 118 

editing See editing 
header See header files 
HELPME!.DOC 10, 12 
I/0 

example program 216 

Index 

include See include files 
library (.LIB) See libraries 
modifying 25 
new23 
opening 22 
pointers to 118 
reading 120 
README 11 
READ ME.DOC 10 
saving 24, 27 
using 118 

example program 119 
writing to 120 

Find command See Search menu 
flags 

format state See formatting, C++, format 
state flags 

floating point See also integers; numbers 
defined 40 
displaying 46, 50 
division 41 
double 

defined 42 
long See floating point, long double 
range 39 

format specifiers 46 
long double 

defined 42 
range 39 

ranges 39 
reading and formatting 46 

flush (manipulator) 188 
fopen (function) 

files and 120 
streams and 118 

for loops See loops, for 
format specifiers 46, See also formatting 

characters and strings and 65 
Evaluate field and 230 
memory dump 231 
pointers and 231 
precision 51 

format state flags See formatting, C++, format 
state flags 

formatting See also format specifiers 
C++ 

field width 188 

259 



format state flags 187 
put and write functions and 188 

C++ I/0 187, 189 
escape sequences and 51 

formfeed character (\f) 52 
fprintf (function) 

stream pointers and 120 
friend (keyword) 

classes and 184 
friend functions See C++, friend functions 
Full Menus command 

described 19 
function signature 158 
functions See also individual function names· 

member functions; scope ' 
accessing variables and 109 
calling 34, 238 
debugging 222, 223 
declarations 

global 86 
declaring under Kernighan and Ritchie 81 
defined 33 
defining 82 
finding 237 
friend See C++, functions, friend 
header 82 
inline 

C++ 175 
syntax 176 

inline, C++ 198 
classes and 200 

inspecting 229 
library 

defined 34 
macros and 96 
member See member functions 
multiple 84 
one line 198 
ordinary member See member functions 

ordinary ' 
overloaded See overloaded functions 
parameters See parameters 
passing arrays to C++ 216 
pointers and 109, 115 
prototypes 81 
return values 83 
signature 158 

260 

stepping over 222 
tracing through 223 
usefulness of 36 
user-defined 80 
virtual See member functions, virtual 

syntax 159 
writing your own 80 

G 
get (function) 189 
get from (>>) See overloaded operators 
getch (function) 

characters and 63 
getche (function) 

characters and 63 
getmaxx (function) 

example 87 
getmaxy (function) 

example 87 
global declarations See declarations, global 
global variables 

scope and 93 
goto statement 78 
graphics See also graphics drivers 

charts 216 
classes 129 
colors 

header file 87 
symbolic names 87 

coordinates 87 
fill patterns 

header file 87 
header file 87 

graphics drivers See also graphics 
testing for presence 87 

graphics.h (header file) 87 
greater than operator (>) 65 
greater than or equal to operator (>=) 65 

H 
hardware 

requirements 
mouse2 

requirements to run Turbo C++ 2 
header files See also include files 

C++ 144 

Turbo C++ Getting Started 



characters 96 
ctype.h 96 
defined 35, 89 
graphics.h 87 
inline C++ functions and 140 
stdio.h 118 
stream.h vs. stdio.h 196 
using 90 

help 21 
Help window 

copying from 26 
HELPME!.DOC file 10, 12 
hex (manipulator) 188 
hexadecimal numbers See numbers, 

hexadecimal 
hierarchies See classes 
history of C 31 
horizontal tab character (\t) 52 
hot keys 

defined 20 

IDE See integrated environment 
identifiers 45 

data structures 103 
variables 45 

if statements 67 
else 68 
nesting 69 

IMSI mouse compatibility 3 
include files See also header files 

defined 35 
#include directive 

defined 35 
increment operator ( ++) 56 
indexes See arrays 
indirection 116 
information hiding See access 
inheritance 126, 141 

access and 143 
base and derived classes and 141 
defined 122 
example 205 
functions and 154 
multiple 128, 151 

defined 142 
rules 143 

Index 

initgraph (function) path argument and 84 
initialization See specific type of initialization 

constructors and destructors and 133 
initializing 

arrays 97, 99 
variables 43 

inline (keyword) 198 
classes and 200 
constructors and 135 
member functions and 132 

inline functions, C++ See C++, functions, inline 
input boxes 19 
insertion operator(<<) See overloaded 

operators 
inspectors 

abilities of 227 
arrays 228 
data 227 
Evaluate command vs. 229 
functions 229 
strings 228 
structures 228 
unions 228 

installation 10-11 
on a laptop system 11 

instances See classes, instantiation and 
instantiation See classes, instantiation and 
integers See also floating point; numbers 

displaying 46, 50 
division 41 
format specifiers 46 
long 

range 39 
using 40 

range 39 
reading and formatting 46 
unsigned 

range 39 
using 39 

integrated debugger See debugging 
integrated development environment See 

integrated environment 
integrated environment 

debugging See debugging 
editing See editing 
exiting 29 
getting the best out of 14 

261 



menus See menus 
quitting 29 
tutorial 17-29 

I/O 
disk 189 

I/O, C++ See C++, I/0 
iomanip.h (header file) 188 
isalpha (function) 96 
istream 185 

K 
Kernighan and Ritchie (K&R) 

function declarations 81 
significance of 31 

keyboard 
reading characters from 62 
stream 120 

keys, hot See hot keys 
keywords 

L 

auto 93 
class 200 
const 94 
extern 93 
inline 198 

classes and 200 
new 

malloc and 201 
operator 180 
register 94 
static 93 
typedef 103, 107, 108 
void 81 

laptop computers 
installing Turbo C++ onto 11 

late binding See C++, binding 
LCD displays 

installing Turbo C++ for 11 
less than operator ( <) 65 
less than or equal to operator(<=) 65 
libraries 

class 145 
streams 184 
using 90 

license statement 9 

262 

list boxes 
defined 19 
using 22 

Locate Function command 237 
logical AND operator (&&) 67 
logical OR operator (I I) 67 
Logitech Mouse compatibility 3 
long double (floating point) See floating point, 

long double 
long integers See integers, long 
loops 

choosing 80 
defined 72 
do while 73 

exiting 77 
empty 77, 198 
exiting 77 
for 75 

while loop and 77 
nested 79 
while 72 

exiting 77 
for loop and 77 

loose coupling 240 

M 
macros 35, 80 

functions and 96 
isalpha 96 
random 101 
using 95 

main (function) 33 
prototype 81 

Make EXE command 28 
malloc (function) 

new and 201 
manifest constants See macros 
manipulators 188, See also formatting, C++; 

individual manipulator names 
header file for 188 
parameterized 188 
user-defined 193 

manuals 
using 14 

maximize See zooming 
member functions 131, See also C++, functions; 

data members 

Turbo C++ Getting Started 



access 124, 136, 200 
access to variables 134 
adding 131 
calling 132 
choosing type 168 
data 

access 125 
defined 124 
defined outside the class 132 
example 134 
inline 131, 132 
open and close 189 
ordinary 

problems with inherited 157 
virtual vs. 157, 163, 168 

overriding 155 
positioning in hierarchy 162 
signature 158 
stream state 191 
virtual 156, 157, 159, See also C++, binding, 

late 
ordinary vs. 163, 168 
pros and cons 162 

members 
data See data members 
functions See member functions 

memory 
addresses 

sscanf and 46 
deallocating 

destructors and 170 
dump 

Evaluate field and 231 
freeing 

automatically 93 
strings and 64 

menus See also individual menu names 
closing 18 
exiting 18 
opening 18 

messages See errors; warnings 
methods See member functions 
mice See mouse 
Microsoft Mouse compatibility 2 
mode arguments 191 

Index 

modes 
access 

using 118, 120 
modularity See encapsulation 
modulus operator(%) 54 
mouse 

compatibility 2 
using 20 

Mouse Systems mouse compatibility 3 
moving text See editing, moving text 
multidimensional arrays 99 
multiple assignments 44 
multiple inheritance See inheritance 
multiwindowing 23 

N 
\n (newline character) 52 
names See identifiers 
nestin5 

if statements 69 
loops 79 

new (keyword) 
recommended return value 201 

new (operator) 
arrays and 169 
constructors and 134 
dynamic objects and 169 
malloc function and 201 
syntax 169 

newlines 
creating in output 52 

newline character (\n) 52 
not equal to operator(!=) 65 
NOT operator (!) 67 
null character See characters, null 
numbers See also floating point; integers 

binary 37 
hexadecimal 

displaying 52 
octal 

displaying 52 
random 

generating 101 
real See floating point 
typecasting 55 

263 



0 
object-oriented programming See C++ 
objects See also C++ 

auto 
destructors and 170 

dynamic 168 
allocating and deallocating 170 
destructors and 170 
new operator and 169 

static 
destructors and 170 

oct (manipulator) 188 
octal numbers See numbers, octal 
one-line functions 

C++ 198 
one's complement See operators, l's 

complement 
online help See help 
OOP SeeC++ 
open (function) 191 

C ++ formatting and 189 
operator (keyword) 180 
operators 

l's complement 58 
address(&) 46 
AND(&) 58 
arithmetic 53 
assignment(=) 56 
associativity See associativity 
bit manipulation 

using 58 
C++ See also overloaded operators 

delete See delete (operator) 
get from(>>) See overloaded operators 
new 201, See new (operator) 
new (operator) 169 
put to ( <<) See overloaded operators 
scope resolution(::) 132, 134, 154 

combining 56 
decrement (- -) 56 
equal to(==) 65 
exclusive OR operator (A) 58 
greater than (>) 65 
greater than or equal to (>=) 65 
increment(++) 56 
less than(<) 65 
less than or equal to(<=) 65 

264 

logical AND (&&) 67 
logical OR ( I I ) 67 
modulus (%) 54 
NOT(!) 67 
not equal to (!=) 65 
one's complement See operators, l's 

complement 
OR (I) 58 
overloading See overloaded operators 
precedence 

defined 53 
rules 60 
table 61 

relational 65 
remainder(%) 54 
scope resolution(::) 201 
shift bits ( « and ») 58 
sizeof 115 
unary58 

options See integrated environment 
OR operator ( I ) 58 
ordinary member functions See member 

functions, ordinary 
overlays 

getting the best out of 14 
overloaded functions 128, 177 
overloaded operators 180 

p 

» (get from) 140, 192 
«(put to) 140, 192, 196 
addition(+) 180 
class for 186 
defined 196 
restrictions 182 

-PTCC option (compile C++) 138 
parameterized manipulators 188 
parameters 

functions and 82 
reference 199 

pasting See editing, copy and paste 
paths 

.BGI files 84 
PC Mouse compatibility 3 
PLANETS.C (sample program) 84 
plasma displays 

installing Turbo C++ for 11 

Turbo C++ Getting Started 



PLOTEMP.C (sample program) 216 
pointers 109 

arithmetic 112 
declaring 1 09 
to files 118 
format specifiers and 231 
functions and 115 
range 39 
to self See this (keyword) 
to streams 

fprintf and 120 
strings and 111 
structures and 112 

polymorphism 
defined 122 
example 210 
virtual functions and 128, 210 

pop-up menus See also menus 
precedence 

defined 53 
rules 60 
table 61 

preprocessor directives See directives 
primer 

C++ 121 
printable characters 52 
printbase characters 52 
printers 

streams 120 
printf (function) 

conversion specifications 49 
format specifiers 46, 49 
introduced 33 
using 49 

private (keyword) 136 
classes and 137 

procedures See functions 
programmer's platform See integrated 

environment 
programming 

with classes See C++ 
programs 

basic operations 32 
C++ SeeC++ 
designing 80, 239 
multifunction 84 

Index 

multiple 
debugging 239 

prototypes and 216, 218 
robust (definition) 241 
solar system 84 
swap 116 
testing 240 

projects 
classes and 145 

protected (keyword) 137, 209 
prototypes 81 

main function 81 
public (keyword) 137, 207 
pull-down menus See menus 
put (function) 188 
put to (<<) See overloaded operators 
put to operator ( <<) See overloaded operators 
putch (function) 

characters and 63 
puts (function) 

strings and 64 

Q 
question mark 

displaying 52 
Quit command 29 
quotes 

displaying 52 

R 
\r (carriage return character) 52 
radio buttons 

defined 19 
random (macro) 101 
random numbers See numbers, random 
range errors, arrays 99 
rdstate (member function) 191 
README 11 
README.DOC 10 
real numbers See floating point 
reference parameters 199 
reference types 161 
referencing and dereferencing 199 
register (keyword) 

using 94 
relational operators See operators, relational 

265 



relative position 
C++and 193 

remainder operator(%) 54 
resetiosflags (manipulator) 188 
return 

statements 
maximum number 87 

values 
functions 83 

Ritchie, Dennis See Kernighan and Ritchie 
robust programs (definition) 241 
run bar222 
Run command 28 

s 
SALEST AG.C (sample program) 34 
sample programs 

PLANETS.C 84 
PLOTEMP.C 216 
SALESTAG.C 34 

scope 91, See also variables 
C++ 

data members 143 
functions 132 

extern keyword and 93 
function variables 82 
global declarations and 86 
global variables and 93 
resolution operator(::) 132, 134, 154, 201 
side effects and 93 

screens 
LCD 

installing Turbo C++ for 11 
plasma 

installing Turbo C++ for 11 
streams 120 

scroll bars 23 
Search menu 25 
self See this (keyword) 
semicolon (for empty loops) 77 
separator characters 48 
setbase (manipulator) 188 
setfill (manipulator) 188 
setiosflags (manipulator) 188 
setprecision (manipulator) 188 
setw (manipulator) 188 

266 

shift bits operators (<< and >>) 58 
shortcuts See hot keys 
side effects 93 
sign 

defined 40 
signature, function 158 
single quote character 

characters and 65 
displaying 52 

sizeof (operator) 115 
Smalltalk 

C++vs. 123 
software See programs 
software license agreement 9 
software requirements to run Turbo C++ 2 
solar system 

program 84 
sounds 

beep 52 
sscanf (function) 

address operator and 46 
format specifiers 46 
introduced 33 
separator characters 48 
using 46 

statements See also break statements; if 
statements; switch statements 
defined 33 

static (keyword) 93 
static binding See C++, binding, early 
status line 21 
staux, functions of 120, See also streams 
stdin, functions of 120, See also streams 
stdio.h (header file) 35, 118 

stream.h vs. 196 
stdout, functions of 120, See also streams 
Step Over command 

debugging and 222 
sterr, functions of 120, See also streams 
stpm, functions of 120, See also streams 
strcat (function) 102, 103 
strcmp (function) 

example 79 
strcpy (function) 103 
stream.h 

stdio.h vs. 196 
streambuf 185 

Turbo C++ Getting Started 



streams 
binary 

opening 118 
C++ 184-192 

file buffers 191 
library 184 
manipulators and See manipulators 
open function and 191 

default 120 
defined 118 
functions of 120 
keyboards 120 
opening 118, 120 
pointers 

fprintf and 120 
preopened 120 
printers 120 
screens 120 
standard 

table 120 
text 

opening 118 
using 118 

example program 119 
strings 

arrays and 101 
characters and 65 
combining 103 
concatenating 103, 180 
creating 103 
defined 64 
displaying 46, 64 
format specifiers 46 
inspecting 228 
literal 64 
memory and 64 
null character and 101 
pointers and 111 
puts and 64 
reading and formatting 46 
strcat and 102 
strtok and 102 
variables 

defining 102 
strlen (function) 

example 79 

Index 

strtok (function) 102 
structures 

access 
classes vs. 137 

C++ See also classes 
classes vs. 124 
defined 105 
inspecting 228 
members 

defined 105 
pointers and 112 

swap (example) 115 
switch statements 70-72 

break See break statements 
symbolic 

constants See macros 
syntax 

delete operator 170 
inline functions 176 
new operator 169 

system 
requirements 2 
resources 117 

T 
\t (horizontal tab character) 52 
tab (manipulator) 193 
tab characters 52 
taxonomy 

defined 127 
TC and TCC See command-line compiler; 

integrated environment; Turbo C++ 
technical support 7 
temperature-plotting program 216 
testing software 240 
text 

blocks See editing, block operations 
screen mode See screens 

text files See also editing 
opening 118 

this (keyword) 182 
TUB (librarian) 

classes and 145 
Trace Into command 

debugging and 223 

I 

11 

267 



Turbo C++ See also C++; integrated 
environment 
bugs 

reporting 8 
exiting 10, 29 
implementation data 3 
installing 10-11 

on laptops 11 
quitting 29 
starting 10 

tutorials 
BARCHART.C 22 
C++ 195-211 
compiling and running 28 
debugging 213-248 
editing 21 
files, modifying 25 
graphics chart display 22 
loading files 21 
searching and replacing 25 
summary 14 

typecasting 
defined 55 

typedef (keyword) 103 
declarators and 107, 108 

typefaces used in these books 6 
types See data types 
typographic conventions 6 

u 
unary operators See operators, unary 
unconditional breakpoints See breakpoints 
unions 

inspecting 228 
User Screen 

using 28 
User screen 

command222 
debugging and 222 

v 
\ v (vertical tab character) 52 
variables See also scope 

address operator and 46 
assignment statements 43 

268 

automatic 93 
declaring 43 
declaring anywhere (C++) 198 
default values 43 
evaluating 230 
initializing 43 
instances and objects and 130 
local 91 
naming 45, 240 
pointers and 103, 109 
sharing 86 
signed and unsigned 40 
static 93 
string 102 
watching 235 

vertical tab character (\ v) 52 
virtual (keyword) 159 
virtual access See also C++ 
virtual functions See member functions, virtual 
visibility See scope 
void (keyword) 

defined 81 

w 
warning beep 52 
warnings 

messages 
which book to look in for 5 

Watch 
expressions 235 

Watch menu 235 
watches 

deleting 237 
editing237 
setting 235 

while loop See loops, while 
window number 22 
windows 

Call Stack 238 
debugging 236 
Edit See Edit, window 
Inspector 227 
multiple23 

write (function) 188 
ws (manipulator) 188 

Turbo C++ Gaffing Started 



B 0 R L A N D 

1800 GREEN HILLS ROAO, P.O. BOX 660001 , scans VALLEY, CA 95067-0001 . 1408) 438-5300 • PART# 14MN-CPP02-10 • BOR 1508 
UNIT 8 PAVILIONS, RUSCOMBE BUSINESS PARK. TWYFORD. BERKSHIRE RG10 9NN , ENGLAND 
43 AVENUE DE L'EUROPE-BP 6, 78141 VELIZY VILLACOUBLAY CEOEX FRANCE 


