
• •
.83

3:: "" 3:: C>
J> ...
z~
~a
!::: "" Zz
""< 8 :;a
3:: 0 z
;;::: ~
~z
"" . 2c:
or=
-~ "";:;; 3:: .,.
J> •
n ...
0 .,.
•

0

....

z
BORLAND

Turbo C®++

User's Guide

BORLAND INTERNATIONAL. INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001. scons VALLEY. CA 95066-0001

This manual was produced with Sprint®: The Professional Word Processor

Rl

Copyright © 1990 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2

c 0 N T

Introduction 1
Typefaces used in these books 2

Chapter 1 The IDE reference 5
Part 1: Starting up and exiting 5

Command-line options 6
The /b option . 6
The Im option . 6
The Id option . 7
The I e and Ix options 7
The I rx option . 7
The /1 option 8
The Ip option . 8

Exiting Turbo C++ 8
Part 2: The components 8

The menu bar and menus 9
Shortcuts . 10
Full Menus On and Off 13

Turbo C++ windows 14
Window management 16

The status line 17
Dialog boxes . 18

Check boxes and radio buttons 19
Input boxes and lists 19

Editing 20
Part 3: Menu reference 21

= (System) menu 21
About 21
Clear Desktop 21
Repaint Desktop 22
Transfer items 22

File menu . 22
Open 22
New 24
Save 24
Save As 24

E N T s

Save All 24
Change Dir . 25
Print 25
Get Info 26
DOS Shell . 26
Quit 27

Edit menu . 27
Restore Line . 28
Cut 28
Copy 28
Paste 28
Copy Example 28
Show Clipboard 29
Clear 29

Search menu . 29
Find 29
Replace 31
Search Again . 32
Go to Line Number 32
Previous Error 33
Next Error . 33
Locate Function 33

Run menu 33
Run 34
Program Reset 35
Go to Cursor . 35
Trace Into . 35
Step Over . 36
Arguments . 37

Compile menu . 37
Compile to OBJ 38
Make EXE File 38
Link EXE File . 38
Build All . 38
Remove Messages 38

Debug menu . 39

Inspect 39
Ordinal Inspector windows 40
Pointer Inspector windows 40
Array Inspector windows 41
Structure and Union Inspector
windows 41
Function Inspector windows 42
Class Inspector windows 42
Constant Inspector window 42
Type Inspector window 43

Evaluate/Modify 43
Call Stack 44
Watches 45

Add Watch . 46
Delete Watch 46
Edit Watch 46
Remove All Watches 47

Toggle Breakpoint 47
Breakpoints . 47

Project menu . 49
Open Project 49
Close Project . 50
Add Item 50
Delete Item . 50
Local Options 50
Include Files . 51

Options menu . 52
Full Menus . 52
Compiler . 52

Code Generation 53
C++ Code Generation 56
Optimizations 57
Source 59
Messages . 60
Names 63

Transfer . 64
Transfer macros 66
State macros 67
File name macros 68
Instruction macros 68
Transfer memory setting 69

Make 70
Linker 71
Debugger 72

ii

Directories . 7 4
Environment . 75
Save 79

Window menu . 79
Size/Move . 79
Zoom 79
Tile 80
Cascade 80
Next 80
Close 80
Message 80
Output 80
Watch 81
User Screen . 81
Register . 81
Project 81
Notes 81
List 81

Help menu . 82
Contents . 83
Index 83

Topic Search . 83
Previous Topic . 84
Help on Help . 84

Project and configuration files 84
Old-style files . 84
The new project file 84
The new configuration file 85
Loading projectfiles 85
The project directory 85
Desktop files . 86
Changing project files 86
Default files . 86

Chapter 2 Managing multi-file
projects 87

Using the project manager 88
Error tracking 91

Stopping a make 92
Syntax errors in multiple source files . 92
Saving or deleting messages 93

The power of the Project Manager 93
Autodependency checking 94

Using different file translators 94

Overriding libraries 97
More Project Manager features 97

Looking at files in a project 99
Notes for your project 100

Chapter 3 The editor from A to Z 101
The new and the old 101
Editor reference . 102

Jumping around 104
Block commands 104
Other editing commands 106
Search and replace 107

Searching and searching again 107
Search and replace 108

Pair matching . 108
Directional and nondirectional
matching 109

Nestable delimiters 110
Comment delimiters 110

Chapter 4 The command-line
compiler 113

Turning options on and off 116
Syntax and file names 116

Response files 117
Compiler options 117

Memory model 118
Macro definitions 119
Code generation options 119
Optimization options 123
Source code options 124
Error-reporting options 125

ANSI violations 125
Frequent errors 126
Portability warnings 126
C++ warnings 126

Segment-naming control 127
Compilation control options 128
EMS and extended memory options . 129

Linker options . 129
Environment options 130

Library files . 131
File-search algorithms 131

-Land -I and configuration files 132

iii

An example with notes 132
The TURBOC.CFG File 133

Using an alternate configuration file . 135
Converting configuration files 135

Chapter 5 Utilities
MAKE: The program manager

How MAKE works
Starting MAKE

The BUIL TINS.MAK file
Command-line options

A simple use of MAKE
Creating makefiles
Components of a makefile

Comments

137
138
138
139
140
141
141
144
144
145

Command lists 145
Prefixes . 146
Command body 146
Batching programs 147
Exec.uting DOS commands 149

Explicit rules 150
Special considerations 151
Examples . 151
Automatic dependency
checking . 152

Implicit rules 152
Macros 155

Defining macros 156
Using macros 156
Special considerations 156
Predefined macros 157
File name macros 158

Directives . 159
Dot directives 160

.PATH.extension 160
File-inclusion directive 161
Conditional exec.ution directives . . 162

Expressions allowed in conditional
directives . 163

Error directive 165
Macro undefinition directive 165

MAKE error messages 165
Fatal error messages 166
Errors 167

TLIB: The Turbo Librarian 169
Why use object module libraries? . . . 170
The TLIB command line ... ; 171

The operation list 172
File and module names 172
TUB operations 172

Using response files 173
Creating an extended dictionary: The /E
option 174
Setting the page size: The /P option . 174
Advanced operation: The /C option . 175
Examples 176

TLINK (linker) . 176
Invoking TLINK 177

Using response files 178
Using TLINK with Turbo C++
modules . 179

Startup code 180
Libraries . 180

Using TLINK with TCC 181
TLINK options 182

/x, /m, /s options 182
/1 (line numbers) 184
/i (uninitialized trailing segments) . 184
/n (ignore default libraries) 184
I c (case sensitivity) 184
Id (duplicate symbols) 184
/e (extended dictionary) 185
It (tiny model .COM file) 185
Iv (debugging information) 186
/3 (80386 32-bit code) 186
lo (overlays) 186
/y (expanded or extended
memory) . 187
Restrictions . 187

Error messages 188
Fatal errors . 189
Nonfatal errors 191
Warnings . 192

TOUCH 193

Chapter 6 Customizing Turbo C++ 195
Running TCINST 196

Using EGA with a CGA monitor . . 196

Iv

The TCINST Installation menu 196
The Search menu 197
The Run menu . 198
The Options menu 198

The Full Menus menu 198
The Compiler menu 198

Code Generation 198
C++ Options 199
Optimizations 200
Source 200
Messages . 200
Names 202

The Make menu 202
The Linker menu 202
The Debugger menu 203
The Directories menu 204

Include Directories -. 204
Library Directories 204
Output Directory 205

The Environment menu 205
The Preferences menu 205
The Editor menu 206
The Mouse menu 207

The Editor Commands menu 207
Allowed keystrokes 209

The Mode for Display menu 210
The Adjust Colors menu 212
The Save Configuration menu 213
The Quit menu 213

Appendix A Turbo Editor macros 215
Operation . 215
Editor macro language syntax 216
Example scripts 217

MakeFuncText 219
MakeStub . 220

Built-in commands 221
Functional index 221

Block macros 221
Deletion/insertion 221
Search macros 222
Hot key macros 222
Menu macros 222
Screen movement 222

Sys tern macros 223
Window macros 223

Alphabetical reference 223

v

Error messages . 230
Warning message 232

Index 233

T A B

1.1: Manipulating windows 16
1.2: Get Info settings 26
1.3: Format specifiers recognized in

debugger expressions 45
3.1: Full summary of editor commands .. 102
3.2: Block commands in depth 105

vi

L E s

3.3: Other editor commands in depth ... 106
3.4: Delimiter pairs• 110
4.1: Command-line options summary ... 114
5.1: MAKE directives 159
6.1: Editor key commands 208
6.2: Customizing keystrokes 208

F G u

1.1: A typical window 15
1.2: A typical status line 17
1.3: A typical dialog box 18
1.4: The Load a File dialog box 22
1.5: The Save File As dialog box 24
1.6: The Change Dir dialog box 25
1.7: The Get Info box 26
1.8: The Find dialog box 30
1.9: The Replace dialog box 32
1.10: The Go to Line Number dialog box .. 33
1.11: The Locate Function dialog box 33
1.12: The Arguments dialog box 37
1.13: The Evaluate/Modify dialog box .. .43
1.14: The Breakpoints dialog box47
1.15: The Breakpoint Modify /New dialog

box 48
1.16: The Project File dialog box49
1.17: The Add Item to Project List dialog

box 50
1.18: The Override Options dialog box ... 51
1.19: The Include Files dialog box 52
1.20: The Code Generation dialog box 53
1.21: The Advanced Code Generation dialog

box 55
1.22: The Optimizations Options dialog

box 58

vii

R E s

1.23: The Source Options dialog box 59
1.24: The Compiler Messages dialog box .60
1.25: The Portability dialog box 61
1.26: The ANSI Violations dialog box 61
1.27: The More ANSI Violations dialog

box 62
1.28: The C++ Warnings dialog box 62
1.29: The Frequent Errors dialog box 63
1.30: The More Frequent Errors dialog

box 63
1.31: The Segment Names dialog box 64
1.32: The Transfer dialog box 64
1.33: The Modify /New Transfer Item dialog

box 65
1.34: The Make dialog box 70
1.35: The Linker dialog box 71
1.36: The Debugger dialog box 72
1.37: The Directories dialog box 74
1.38: The Preferences dialog box 75
3.1: Search for match to square bracket or

parenthesis 110
3.2: Forward search I 111
3.3: Forward search II 111
3.4: Backward search 112
5.1: Detailed map of segments 183

II l
Ii ;~

I
i'
I:

11
1,
I':
I

N T R

Introduction

0 D u c T 0 N

If you haven't done so already, read the introduction, Chapter 1
("Installing Turbo C++"), and Chapter 2 (''Navigating the Turbo
C++ manuals") in Getting Started for information on the overall
organization of the Turbo C++ manuals. Those chapters tell you
about many of the highlights of Turbo C++, how to install Turbo
C++, and how to use the manuals most effectively.

This book, the User's Guide, contains reference-style information
on the integrated environment, the Project Manager, Turbo C++'s
editor, the command-line compiler, utilities, and customization.
The Programmer's Guide provides useful material for the experi
enced C user (a language reference, C++ streams, memory
models, mixed-model programming, video functions, floating
point issues, overlays, error messages, and so on). The Library
Reference contains a detailed list and explanation of Turbo C++'s
extensive library functions and global variables.

Here is a breakdown of the chapters in this book:

Chapter 1: The IDE reference provides a complete reference to the
menu system.

Chapter 2: Managing multi-file projects tells how to use the
Project Manager to manage multi-file projects.

Chapter 3: The editor from A to Z provides a complete reference
to the editor.

Chapter 4: The command-line compiler tells how to use the
command-line compiler. It also explains configuration files.

Chapter 5: Utilities describes some of the utility programs that
come with Turbo C++.

Chapter 6: Customizing Turbo C++ tells how to adjust onscreen
colors, editor defaults, compiler and linker defaults, and many
other aspects of Turbo C++ with TCINST.

Appendix A: Turbo Editor macros describes the Turbo Editor
Macro Language, a powerful utility you can use to enhance or
change the Turbo C++ editor.

Typefaces used in these books

All typefaces used in this manual were produced by Borland's
Sprint: The Professional Word Processor, on a PostScript laser
printer. Their uses are as follows:

Monospace type This typeface represents text as it appears
onscreen or in a program, or anything you must
type (such as TC to start up Turbo C++).

ALL CAPS We use all capital letters for the names of
constants and files, except for header files,
which are traditionally represented in all
lowercase letters.

[] Square brackets in text or DOS command lines
enclose optional input or data that depends on
your system. Text of this sort should not be typed
verbatim.

< > Angle brackets in the function reference section
enclose the names of include files.

Boldface Turbo C ++ function names (such as printf) and
structure names are shown in boldface when
they appear in text (but not in program
examples). This typeface is also used, in text but
not in program examples, for Turbo C++
reserved words (such as char, switch, near, and
cdecl), for format specifiers and escape
sequences (%d, \t), and for command-line
options (IA).

Italics Italics indicate variable names (identifiers) that
appear in text. They can represent terms that
you can use as-is, or that you can think up new
names for (your choice, usually). They are also
used to emphasize certain words (especially
new terms).

2 Turbo C++ User's Guide

Keycaps

Introduction

This typeface indicates a key on your keyboard.
It is often used to describe a particular key you
should press; for example, "Press Esc to exit a
menu."

This icon indicates keyboard actions.

This icon indicates mouse actions.

3

4 Turbo C++ User's Guide

c H A p T E R

l

The /DE reference

Turbo C++ makes it easy and efficient for you to program. Every
thing you need to write, edit, compile, link, and debug your
programs is at your fingertips when you start Turbo C++. That's
what an integrated development environment (IDE) is all about.

The Turbo C++ environment also furnishes these extras to make
program writing even smoother:

•multiple, movable, resizable windows

•mouse support

• dialog boxes
•cut-and-paste commands (with copying allowed from the Help

window and between Edit windows)

• quick transfer to other programs (like T ASM) and back again

• editor macro language

To smooth your introduction to the new IDE, we've divided this
chapter into three parts: Part 1 tells you how to enter and exit the
IDE; Part 2 discusses the generic components that comprise the
IDE; and Part 3 provides information on the individual menu
items, dialog boxes, buttons, and so on.

Part l: Starting up and exiting

Chapter 1, The /DE reference

Starting up Turbo C++ is simple. You just move to your Turbo
C++ directory and type TC at the DOS command line. If you like,

5

Command-line

you can use one or more options along with the TC command.
These options control automatic builds and makes and use of dual
monitors, expanded and extended memory, RAM disks, LCD
screens, and the EGA palette.

options The command-line options for Turbo C++'s IDE are: /e, Ix, lrx, lb, I
d, Im, II, and /p. These options use this syntax:

TC [sourcename I projectname] [option [option ...]]

where sourcename is any ASCII file, projectname is your project file
(it must have the .PRJ extension), and option can be one or more of
the options.

The /b option The /b option causes Turbo C++ to recompile and link all the files
in your project, print the compiler messages to the standard out
put device, and then return to DOS. This option allows you to
invoke Turbo C++ from a ba'tch file so you can automate builds of
projects. Before the build, Turbo C++ will load a default project
file or one given on the command line. Turbo C++ determines
what .EXE to build based on the project file or the file currently
loaded in the Editor if no project file is found.

Enter the tc command with either /b alone or the project file name
followed by /b.

tc /b

tc myproj.prj /b

Unless a project file is loaded, you can specify the name of a pro
gram to be compiled and linked on the command line. Type in the
program name after the tc command, followed by /b:

tc myprog /b

The /m option The /m option lets you do a make rather than a build (that is, only
outdated source files in your project are recompiled and linked).
Follow the instructions for the /b option, but use /m instead.

6 Turbo C++ User's Gulde

The /d option The /d option causes Turbo C++ to work in dual monitor mode if
it detects appropriate hardware (for example, a monochrome card
and a color card); otherwise, the /d option is ignored. Use dual
monitor mode when you run or debug a program, or shell to DOS
(File I DOS Shell).

If your system has two monitors, DOS treats one monitor as the
active monitor. Use the DOS MODE command to switch between
the two monitors (MODE COBO, for example, or MODE MONO). In dual
monitor mode, the normal Turbo C++ screen will appear on the
inactive monitor, and program output will go to the active
monitor. So when you type tc /d at the DOS prompt on one
monitor, TurbO C++ will come up on the other monitor. When you
want to test your program on a particular monitor, exit Turbo
C++, switch the active monitor to the one you want to test with,
and then issue the tc Id command again. Program output will
then go to the monitor where yo~ typed the tc command.

Keep the following in mind when using the /d option:

• Don't change the active monitor (by using the DOS MODE
command, for example) while you are in a DOS shell (File I DOS
Shell).

•User programs that directly access ports on the inactive
monitor's video card are not supported, and can cause
unpredictable results.

•When you run or debug programs that explicitly make use of
dual monitors, do not use the Turbo C++ dual monitor option
(/d).

The /e and /x options Normally, Turbo C swaps to a hard disk when allocating memory.
If you have expanded or extended memory, use the /e or /x
options respectively to improve performance.

The /rx option Use the /rx option if all your extended or expanded memory has
been allocated to a RAM disk. The x in /rxis the letter of the "fast"
swap drive.

Chapter 1, The /DE reference 7

The /I option Use the /I option if you're running Turbo C on an LCD screen.

The /p option Use the /p option, which controls palette swapping on EGA video
adapters, when your program modifies the EGA palette registers.
The EGA palette will be restored each time the screen is swapped.

Exiting Turbo C++

You retum to Turbo C++ only
after you exit the program

you transferred to.

In general, you don't need to use this option unless your program
modifies the EGA palette registers or unless your program uses
BGI to change the palette.

There are three ways to leave Turbo C++. The first method exits
Turbo C++ "permanently;" you have to type TC again to reenter
Turbo C++. The other two methods let you leave Turbo C++ to
either type commands on the DOS command line, or to transfer
temporarily to another program. Both of those methods then
return you to Turbo C++.

•To exit Turbo C++ "permanently," choose File I Quit (or press
Alt-)(). If you've made changes that you haven't saved, Turbo
C ++ gives you a prompt asking if you want to save your
programs before exiting.

•To leave Turbo C++ to enter commands at the DOS command
line, choose File I DOS Shell. Turbo C++ stays in memory, but
you're transferred to DOS. You can enter any normal DOS
commands, and you can even run other programs from the
command line. When you're ready to return to Turbo C++, type
EXIT at the command line and press Enter. Turbo C++ reappears
just as you left it.

• To temporarily transfer to another program without leaving
Turbo C++, choose a program from the = menu. If there are no
programs installed on this menu, you can add some with the
Options I Transfer command.

Part 2: The components

8

There are three visible components to the IDE: the menu bar at the
top, the window area in the middle, and the status line at the
bottom. Many menu items also offer dialog boxes. Before we

Turbo C++ User's Gulde

The menu bar

detail each menu item in the integrated environment, we'll
describe these more generic components.

and menus The menu bar is your primary access to all the menu commands.

To cancel an action,
press Esc.

The only time the menu bar is not visible is when you're viewing
your program's output or transferring to another program.

If a menu command is followed by an ellipsis mark(...), choosing
the command displays a dialog box. If the command is followed
by an arrow(,..), the command leads to another menu (a pop-up
menu). A command without either an ellipsis mark or an arrow
indicates that once you choose it, that action occurs.

Here is how you choose menu commands using just the
keyboard:

1. Press F10. This makt:!s the menu bar active, which means the
next thing you type pertains to it, and not to any other IDE
component.

You'll see a highlighted menu title when the menu bar is
active. The menu title that's highlighted is the currently selected
menu.

2. Use the arrow keys to select the menu you want to display.
Then press Enter.
As a shortcut for this step, you can just press the highlighted
letter of the menu title. For example, from the menu bar, press
E to quickly display the Edit menu. From anywhere, press Alt
and the highlighted letter to display the menu you want.

3. Use the arrow keys again to select the command you want.
Then press Enter.
Again, as a shortcut, you can just press the highlighted letter
of a command to choose it once the menu is displayed.

At. this point, Turbo C++ either carries out the command,
displays a dialog box, or displays another menu.

fa.&. You can also use a mouse to choose commands. The process is
this:

Chapter 7, The /DE reference 9

Turbo C++ uses only the left
mouse button. You can,

however, customize the right
button by choosing Options I

Mouse. You can also make
other mouse settings with this

command. (See page 75.)

1. Click the desired menu title to display the menu.
2. Click the desired command.

You can also drag straight from the menu title down to the menu
command. Release the mouse button on the command you want.
(If you change your mind, just drag off the menu; no command
will be chosen.)

Note that some menu commands are unavailable when it would
make no sense to choose them. You can, however, still select
(highlight) an unavailable command in order to get online help
about it.

Shortcuts Turbo C++ offers a number of quick ways to choose menu
commands. For example, mouse users can combine the two-step
process into one by dragging from the menu title down to the
menu commands and releasing the mouse button when the
command you want is selected.

10

From the keyboard, you can use a number of keyboard shortcuts
(or hot keys) to access the menu bar and choose commands.
Shortcuts for dialog boxes work just as they do in a menu. (When
moving from an input box to a group of buttons or boxes, you
need to hold down A/twhile pressing the highlighted letter.)
Here's a list of the shortcuts available:

Do this ...

Press Alt plus the highlighted
letter of the command (just
press the highlighted letter
in a dialog box). For the
= menu, press Alt-Spacebar.

Type the keystrokes next to a
menu command.

To accomplish this ...

Display the menu or carry out the
command.

Carry out the command.

For example, to cut selected text, you can press Alt-E T (for Edit I
Cut) or you can just press Shift-Del, the shortcut displayed next to
it.

Many menu items have corresponding hot keys; one- or two-key
shortcuts that immediately activate that command or dialog box.
The following table lists the most-used Turbo C++ hot keys.

Turbo C++ User's Guide

Chapter 7, The /DE reference

General hot keys

Key(s) Menu item

F1 Help
F2 File I Save

F3 File I Open

F4 Run I Go to Cursor

F5 Window I Zoom
F6 Window I Next

Fl Run I Trace Into

FB Run I Step Over

F9 Compile I Make EXE

F10 (none)

Menu hot keys

Key(s) Menu item

A/t-Spacebar =menu

A/t-C
A/t-D
A/t-E
A/t-F
A/t-H
A/t-0
A/t-P
Aft-R
A/t-S
A/t-W
Aft-X

Compile menu
Debug menu
Edit menu
File menu
Help menu
Options menu
Project menu
Run menu
Search menu
Window menu
File I Quit

Function

Displays a help screen.
Saves the file that's in the active
Edit window.
Brings up a dialog box so you
can open a file.
Runs your program to the line
where the cursor is positioned.
Zooms the active window.
Cycles through all open
windows.
Runs your program in debug
mode, tracing into functions.
Runs your program in debug
mode, stepping over function
calls.
Makes the current window or
project.
Takes you to the menu bar.

Function

Takes you to the= (System)
menu
Takes you to the Compile menu
Takes you to the Debug menu
Takes you to the Edit menu
Takes you to the File menu
Takes you to the Help menu
Takes you to the Options menu
Takes you to the Project menu
Takes you to the Run menu
Takes you to the Search menu
Takes you to the Window menu
Exits Turbo C++ to DOS

11

12

Editing hot keys

Key(s) Menu item

Ctrl-Del Edit I Clear

Ctrl-lns Edit I Copy
Shift-Del Edit I Cut

Shift-Ins Edit I Paste

Ctrl-L Search I Search Again

Alt-SR Search I Replace

Alt-SF Search I Find
F2 File I Save

F3 File I Open

Window management hot keys

Key(s) Menu item

Alt-#

Alt-0 Window I List
Alt-F3 Window I Close
Alt-F4 Debug I Inspect
Alt-F5 Window I User Screen
F5 Window I Zoom

F6 Window I Next
Ctrl-F5

Online Help hot keys

Key(s)

Ft

Ft Ft

Shift-Ft
Alt-Ft
Ctrl-Ft

Menu item

Help I Contents

Help I Index
Help I Previous Topic
Help I Topic Search

Function

Removes selected text from the
window and doesn't put it in the
Clipboard
Copies selected text to Clipboard
Places selected text in the
Clipboard, deletes selection
Pastes text from the Oipboard
into the active window
Repeats last Find or Replace
command
Opens Find and Replace dialog
box
Opens a Find dialog box
Saves the file in the active Edit
window
Lets you open a file

Function

Displays a window, where# is
the number of the window you
want to view
Displays a list of open windows
Closes the active window
Opens an Inspector window
Displays User Screen
Zooms/unzooms the active
window
Switches the active window
Changes size or position of
active window

Function

Opens a context-sensitive help
screen
Brings up Help on Help. Uust
press Ft when you're already in
the help system.)
Brings up Help index
Displays previous Help screen
Calls up language-specific help
in Editor only

Turbo C++ User's Gulde

Debugging/Running hot keys

Key(s)

Alt-F4
Alt-Fl
Alt-FB
Alt-F9
Ctrl-F2
Ctrl-F3
Ctrl-F4
Ctrl-Fl
Ctrl-FB

Ctrl-F9
F4
Fl
FB
F9

Menu item Function

Debug I Inspect Opens an Inspector window
Search I Previous Error Takes you to previous error
Search I Next Error Takes you to next error
Compile I Compile to OBJ Compiles to .OBJ
Run I Program Reset Resets running program
Debug I Call Stack Brings up call stack
Debug I Evaluate/Modify Evaluates an expression
Debug I Add Watch Adds a watch expression
Debug I Toggle Breakpoint Sets or clears conditional

Run I Run
Run I Go To Cursor
Run I Trace Into
Run I Step Over
Compile I Make EXE

breakpoint
Runs program
Runs program to cursor position
Executes tracing into functions
Executes skipping function calls
Makes (compiles/links) program

Full Menus On and Off There are two sets of menus in Turbo C++: a full set and a smaller
set. You can switch between the two sets by choosing the

Full menus only

To turn Full menus on or off,
choose Options I Full Menus.

Options I Full Menus command, which toggles between On and
Off. Full menus Off provides the minimum command set you'll
need for programming in Turbo C++.

When you run TCINST, you can choose which command set you
want as the default. If you're ready to roll up your sleeves and
take advantage of all the sophisticated features of Turbo C++, you
can tum Full menus On.

When you're working with Full menus On, you'll see additional
commands in most menus and additional options in many dialog
boxes. For example, here's the difference between the Compile
menu with Full menus off and on:

Full menus off:

!lllH &

Make EXE file
Build all

Full menus on:

Compile to OBJ
Make EXE file
Link EXE file
Build all

Remove messages

This manual describes all the menus and dialog box options
available in the Full menu set. Where there might be some

Chapter 7, The /DE reference 13

14

Turbo C++

confusion, we'll display this text in the margin to alert you that a
command is available only when Full menus are on.

windows Most of what you see and do in the Turbo C++ environment
happens in a window. A window is a screen area that you can
move, resize, zoom, tile, overlap, close, and open.

You can have any number of windows open in Turbo C++
(memory allowing), but only one window can be active at any
time. The active window is the one that you're currently working
in. Any command you choose or text you type generally applies
only to the active window. (If you have the same file open in
several windows, the action will apply to the file everywhere.)

Turbo C++ makes it easy to spot the active window by placing a
double-lined border around it. The active window always has a
close box, a zoom box, scroll bars, and a resize corner. If your
windows are overlapping, the active window is always the one on
top of all the others (the frontmost one).

There are several types of windows, but most of them have these
things in common:

•a title bar

•a close box

• scroll bars
• a resize comer
•azoombox
• a window number (1 to 9)

The Edit window also displays the current line and column
numbers in the lower left comer. If you've modified your file, a *
will appear to the left of the column and line numbers.

This is what a typical window looks like:

Turbo C++ User's Guide

Figure 1.1
A typical window

Shortcut: Alt-Spacebar invokes
the;menu.

Scroll bars let both mouse
and keyboard users see how
far into the file they've gone.

Chapter 7, The /DE reference

You click the
~to
~lose
the window.

The IUUfl!tilj contains
the name of the window.

The !E!lillm contains
an icon you click to
either enlarge or
shrink the window.

1 y 1
[•]=======Window Title ======: =[t]l

Each o~window
has a ~µ, ,,!1!11itm.
Use A 1 t and to open
a window.

You use the mii'JllQ
with a mouse to scroll the >--------...
contents of the window

--------------------------c:-------=---------------------------J -------------------------- --- -----------------------------------
You drag the 1i4"1H4!•i41t§; to
make the window larger or smaller

..

The title bar, the topmost horizontal bar of a window, contains the
name of the window and the window number. You can double
click the title bar to zoom the window. You can also drag the title
bar to move the window around.

The close box of a window is the box in the upper left corner. You
click this box to quickly close the window. (You can also choose
Window I Close or press Alt-F3.) The Inspector and Help windows
are considered temporary and can be closed by pressing Esc.

Scroll bars are horizontal or vertical bars that look like this:

~
111111u11u111cu11UJllllllllUlllllHlllHUIUHllllllllllll~
llllllllllUlllllHllHIHlllllllHlllllllllllllllllHlllll UllllllllllllllllllHtlllllllllllllllllllllllllUlllHllUIUIHllllUl .. llHllllUIHlllll
llllllllllllllllllllHlllllllHllHllllHllllHllllllllllll llHllllllllllllllllllllllllllllHlllllHHllllHlllllllllllllllllllllllllllllllllllHllllll

You use these bars with a mouse to scroll the contents of the
window. Click the arrow at either end to scroll one line at a time.
(Keep the mouse button pressed to scroll continuously.) You can
click the shaded area to either side of the scroll box to scroll a
page at a time. Finally, you can drag the scroll box to any spot on

15

Shortcut: Double-click the
title bar of a window to zoom

or restore it.

the bar to quickly move to a spot in the window relative to the
position of the scroll box.

The resize box is in the lower right corner of a window. You drag
any corner to make the window larger or smaller. You can spot
the resize comer by its single-line border instead of the
double-line border used in the rest of the window. To resize using
the keyboard, choose Size/Move from the Window menu, or
press Ctrl-F5.

The zoom box of a window appears in the upper right corner. If the
icon in that comer is an up arrow (t), you can click the arrow to
enlarge the window to the largest size possible. If the icon is a
doubleheaded arrow (t), the window is already at its maximum
size. If you click the t, the window will return to its previous size.
To zoom a window from the keyboard, choose Window I Zoom, or
press F5.

The first nine windows you open in Turbo C++ have a window
number in the upper right border. Alt-0 gives you a list of all win
dows you have open. You can make a window active (topmost)
by pressing A/tin combination with the window number. For
example, if the Help window is #5 but has gotten buried under
the other windows, you can press Alt-5 to quickly bring it to the
front.

Window management Table 1.1 gives you a quick rundown of how you handle windows
in Turbo C++. Note that you don't need a mouse to perform these
actions--a keyboard works just fine.

16

Table 1.1
Use one of these methods Manipulating windows To accomplish this:

~~~~~~~~~~~~~~~~~~~~~~~~-

Open an Edit window 

Open other windows 

Close a window 

Activate a window 

Choose File I Open to open a file and 
display it in a window, or press F3. 

Choose the desired window from the 
Window menu 

Choose Close from the Window menu (or 
press A/t-F3), or click the close box of the 
window. 

Click anywhere in the window, or 

Press Alt plus the window number (1to9, 
in the upper right border of the window), 
or 

Choose Window I List or press A/t-0 and 
select the window from the list, or 

Turbo C++ User's Gulde 



The status line 

Figure 1.2 
A typical status line 

Chapter I, The /DE reference 

Table l .l: Manipulating windows (continued) 

Move the active window 

Resize the active window 

Zoom the active window 

Choose Window I Next or F6 to make the 
next window active (next in the order you 
first opened them). 

Drag its title bar, or press Ctrl-FS 
(Window I Size/Move) and use the arrow 
keys to place the window where you want 
it, then press Enter. 

Drag the resize corner (or any other 
corner). Or choose Window I Size/Move 
and press Shift while you use the arrow 
keys to resize the window, then press Enter. 
The shortcut is to press Ctrl-FS and then use 
Shift and the arrow keys. 

Click the zoom box in the upper right 
corner of the window, or 

Double-click the window's title bar, or 

Choose Window I Zoom, or press FS. 

The status line appears at the bottom of the Turbo C++ screen. 
The status line functions like this: 

• It reminds you of basic keystrokes and shortcuts (or hot keys) 
applicable at that moment in the active window. 

• It lets you click the shortcuts to carry out the action instead of 
choosing the command from the menu or pressing the shortcut 
keystroke. 

•It tells you what the program is doing. For example, it displays 
"Saving filename ... " when an Edit file is being saved. 

• It offers one-line hints on any selected menu command and 
dialog box items. 

The status line changes as you switch windows or activities. One 
of the most common status lines is the one you see when you're 
actually writing and editing programs in an Edit window. Here is 
what it looks like: 

Fl Help F2 Save F3 Open F7 Trace FB Step F9 Make FlO Menu 

When you've selected a menu title or command, the status line 
changes to display a one-line summary of the function of the 
selected item. For example, if the Options menu title is selected 

17 



Dialog boxes 

Figure 1.3 
A typical dialog box 

If you have a color monitor, 
Turbo C++ will use different 

colors for various elements of 
the dialog box. 

You can select another 
button v.Ath Tab: press Enter to 

choose that button. 

18 

(highlighted), the status line reads "Set defaults for IDE, compiler, 
debugger; define transfer programs." Similarly, when the 
Edit I Cut command is selected, the status line reads "Remove the 
selected text and put it in the Clipboard." 

If a menu command has an ellipsis after it( ... ), the command 
opens a dialog box. A dialog box is a convenient way to view and 
set multiple options. 

When you're making settings in dialog boxes, you work with five 
basic types of onscreen controls: radio buttons, check boxes, 
action buttons, input boxes, and list boxes. Here's a typical dialog 
box that illustrates some of these items: 

[•] Typical Di a 1 og Box 

Inili ~0i D 
a 

1T oo ... 1T ..... ,, X Option 1 Option A 11+1.a;a•1 
Option 2 • Option B 

X Option 3 Option C 
Option 4 Option D 

X Option 5 llUlll·•I 

This dialog box has three standard buttons: OK, Cancel, and Help. 
If you choose OK, the choices in the dialog box are made in Turbo 
C++; if you choose Cancel, nothing changes and no action is 
made, but the dialog box is put away. Choose Help to open a 
Help window about this dialog box. Esc is always a keyboard 
shortcut for Cancel (even if no Cancel button appears). 

If you're using a mouse, you can just click the button you want. 
When you're using the keyboard, you can press Alt and the high
lighted letter of an item to activate it. For example, Alt-K selects the 
OK button. Press Tab or Shift-Tab to move from one item to another 
in a dialog box. Each element highlights when it becomes active. 

In this dialog box, OK is the default button, which means you need 
only press Enter to choose that button. (On monochrome systems, 
arrows indicate the default; on color monitors, default buttons are 
highlighted.) Be aware that tabbing to a button makes that button 
the default. 

Turbo C++ User's Guide 



Check boxes and 
radio buttons 

Radio buttons are so called 
because they act just like the 

group of buttons on a real
world car radio. There is 

always one-and only one
button pushed in at a time. 

Push one in, and the one 
that was in pops out. 

The dialog box also has check boxes. When you select a check box, 
an x appears in it to show you it's on. An empty box indicates it's 
off. You check a check box (set it to on) by clicking it or its text, by 
pressing Tab until the check box is highlighted and then pressing 
Spacebar, or by selecting Alt and the highlighted letter. You can 
have any number of check boxes checked at any time. 

If several check boxes apply to a topic, they appear as a group. In 
that case, tabbing moves to the group. Once the group is selected, 
use the arrow keys to select the item you want, and then press 
Spacebarto choose it. On monochrome monitors, Turbo C++ 
indicates the active check box or group of check boxes by placing 
a chevron symbol(») next to it. When you press Tab, the chevron 
moves to the next group of checkboxes or radio buttons. 

The dialog box also has radio buttons. Radio buttons differ from 
check boxes in that they present mutually exclusive choices. For 
this reason, radio buttons always come in groups, and exactly one 
(no more, no less) radio button can be on in any one group at any 
one time. To choose a radio button, click it or its text. From the 
keyboard, select Alt and the highlighted letter, or press Tab until 
the group is highlighted and then use the arrow keys to choose a 
particular radio button. Press Tab or Shift-Tab again to leave the 
group with the new radio button chosen. 

Here's what some check boxes and radio buttons look like on and 
off: 

[X] Standard stack frame 
[ ] Test stack overflow 

( ) None 
(•) Emulation 
( ) 8087 

Input boxes and lists Dialog boxes can also contain input boxes. These boxes allow you 
to type in text. Most basic text-editing keys work in the text box 
(for example, arrow keys, Home, End, and insert/ overwrite toggles 
by Ins). If you continue to type once you reach the end of the box, 
the contents automatically scroll. If there's more text than what 
shows in the box, arrowheads appear at the end("" and ... ). You 
can click the arrowheads to scroll or drag the text. If you need to 
enter control characters (such as AL or AM) in the input box, then 
prefix the character with a AP. So, for example, entering APAL 
enters a AL into the input box. This is useful for search strings. 

Chapter 7, The JOE reference 19 



Editing 

20 

If an input box has a down-arrow icon to its right, there is a 
history list associated with that input box. You press Enter to select 
an item from this list. In the list you'll find text you typed into this 
box the last few times you used this dialog box. The Find box, for 
example, has such a history list, which keeps track of the text you 
searched for previously. If you want to reenter text that you 
already entered, press Down arrow or click the+ icon. You can also 
edit an entry in the history list. Press Esc to exit from the history 
list without making a selection. 

Here is what a history list for the Find text box might look like if 
you had used it seven times previously: 

Text to find ••••••••D 
struct date 
pri ntf(" 
printf( 
char buf[7] 
/* 
return(abortit 
return (ABORTIT 

A final component of many dialog boxes is a list box. A list box 
lets you scroll through and select from variable-length lists 
without leaving a dialog box. If a blinking cursor appears in the 
list box and you know what you're looking for, you can type the 
word (or the first few letters of the word) and Turbo C++ will 
search for it. 

You make a list box active by clicking it or by choosing the 
highlighted letter of the list title (or press Tab until it's 
highlighted). Once a list box is displayed, you can use the scroll 
box to move through the list or press i or J, from the keyboard. 

If you' re a longtime user of Borland products, the following 
summary of new editing features should help you identify the 
areas that have changed. 

Turbo C++'s integrated editor now has 

• mouse support 

Turbo C++ User's Guide 



•support for large files (greater than 64K; limited to 8 megabytes 
for all editors combined) 

• Shift i .J, ~ f- for selecting text 

•Edit windows that you can move, resize, or overlap 

•multi-file capabilities, which let you open several files at once 

•multiple windows that let you have several views onto the 
same file or different files 

• a sophisticated macro language, so you can create your own 
editor commands 

• the ability to paste text or examples from the Help window 
•an editable Clipboard allowing for cutting, copying, and 

pasting in or between windows 

• a Transfer function that lets you run other programs and 
capture output to an editor without leaving Turbo C++ 

Part 3: Menu reference 

= (System) menu 

[][]I Spacebar I 

About 

Clear Desktop 

Chapter 7, The /DE reference 

This section contains a description of each menu command in 
Turbo C++. It is arranged by menus. If a command name has 
"Full menus" next to it, this command appears only when the 
Options I Full Menus command is on. 

The= menu appears on the far left of the menu bar. Alt-Spacebaris 
the fastest way to get there. When you pull down this menu, you 
see several general system-wide commands (About, Clear 
Desktop, Repaint Desktop) and the names of programs you've 
installed with the Options I Transfer command. 

The first command in the menu is About. When you choose this 
command, a dialog box appears that shows you copyright and 
version information for Turbo C++. Press Esc or click OK (or press 
Enter) to close the box. 

Choose = I Clear Desktop to close all windows and clear all history 
lists. This command is useful when you're starting a new project. 

21 



• I Repaint Desktop 

22 

Repaint Desktop Choose= I Repaint Desktop to have Turbo C++ redraw the screen. 
You may need to do this, for example, if a memory-resident 
program has left stray characters on the screen, or possibly if you 
have screen-swapping turned off (Options I Debug I Display 
swapping) and you're stepping through a program. 

Transfer items Any programs you've installed with the Transfer dialog box 
(Options I Transfer) appear here. To run one of these programs, 
choose its name from the= menu. To install programs that will 
then appear in this menu, choose Options I Transfer. 

File menu 

Open 

cm 
Figure 1.4 

The Load a File dialog box 

If you have more than one program installed with the same 
shortcut letter on this menu, the first program listed with that 
shortcut will be selected. You can select the second item by 
clicking it or by using the arrow keys to move to it and then press 
Enter. 

The File menu lets you open and create program files in Edit 
windows. The menu also lets you save your changes, perform 
other file functions, shell to DOS, and quit. 

The File I Open command displays a file-selection dialog box for 
you to select a program file to open in an Edit window. Here is 
what the box looks like: 

.. INTROll.C 
INTROlZ.C 
INTR013.C 
INTR014.C 
INTR015.C 
INTR016.C 
INTR017 .C 
INTR018.C 

The dialog box contains an input box, a file list, buttons labeled 
Open, Replace, Cancel, and Help, and an information panel that 
describes the selected file. Now you can do any of these actions: 

Turbo C++ User's Guide 



If you choose Replace 
instead of Open. the 

selected file replaces the file 
in the active Edit window 

instead of opening up a new 
window. 

Using the File list box 

You can also type a 
lowercase letter to search for 

a file name and an 
uppercase letter to search 

for a directory name. 

File I Open 

• Type in a full file name and choose Replace or Open. Open 
loads the file into a new Edit window. An Edit window must be 
active if you choose Replace; the contents of the window is 
replaced with the selected file. 

•Type in a file name with wildcards, which filters the file list to 
match your specifications. 

•Press J.. to choose a file specification from a history list of file 
specifications you've entered earlier. 

•View the contents of different directories by selecting a 
directory name in the file list. 

The input box lets you enter a file name explicitly or lets you enter 
a file name with standard DOS wildcards (* and ?) to filter the 
names appearing in the history list box. If you enter the entire 
name and press Enter, Turbo C ++ opens it. (If you enter a file 
name that Turbo C++ can't find, it automatically creates and 
opens a new file with that name.) 

If you press J.. when the cursor is blinking in the input box, a 
history list drops down below the box. This list displays the last 
eight file names you've entered. Choose a name from the list by 
double-clicking it or selecting it with the arrow keys and pressing 
Enter. 

Once you've typed in or selected the file you want, choose the 
Open button (choose Cancel if you change your mind). You can 
also just press Enter once the file is selected, or you can double
click the file name. 

The File list box displays all file names in the current directory 
that match the specifications in the input box, displays the parent 
directory, and displays all subdirectories. Click the list box or 
press Tab until the list box name is highlighted. You can now 
press J.. or i to select a file name, and then press Enter to open it. 
You can also double-dick any file name in the box to open it. You 
might have to scroll the box to see all the names. If you have more 
than one pane of names, you can also use ~ and ~ . 

The file information panel at the bottom of the Load a File dialog 
box displays path name, file name, date, time, and size of the file 
you've selected in the list box. (None of the items on this panel are 
selectable.) As you scroll through the list box, the panel is 
updated for each file. 

Chapter 7. The /DE reference 23 



File I New 

New 

Save 
[ill 

Save As 
Full menus only 

Figure 1.5 
The Save File As dialog box 

24 

Save All 
Full menus only 

The File I New command lets you open a new Edit window with 
the default name NONAMExx.C (the xx stands for a number from 
00 to 99). These NON AME files are used as a temporary edit 
buffer; Turbo C++ prompts you to name a NONAME file when 
you save it. 

The File I Save command saves the file in the active Edit window 
to disk. (This menu item is disabled if there's no active Edit 
window.) If the file has a default name (NONAMEOO.C, or the 
like), Turbo C++ opens the Save Editor File dialog box to let you 
rename and save it in a different directory or on a different drive. 
This dialog box is identical to the one opened for the Save As 
command, described next. 

The File I Save As command lets you save the file in the active 
Edit window under a different name, in a different directory, or 
on a different drive. When you choose this command, you see the 
Save File As dialog box: 

• INTROll.C 
INTR012.C 
INTR013.C 
INTR014.C 
INTR015.C 
INTR016.C 
INTR017.C 
INTR018.C 

Enter the new name, optionally with drive and directory, and 
click or choose OK. All windows containing this file are updated 
with the new name. 

The File I Save All command works just like the Save command 
except that it saves the contents of all modified files, not just the 
file in the active Edit window. This command is disabled if no 
Edit windows are open. 

Turbo C++ User's Guide 



Change Dir 
Full menus only 

Figure 1.6 
The Change Dir dialog box 

File I Change Dir 

The File I Change Dir command lets you specify a drive and a 
directory to make current. The current directory is the one Turbo 
C++ uses to save files and to look for files. (When using relative 
paths in Options I Directories, they are relative to this current 
directory only.) 

Here is what the Change Directory dialog box looks like: 

There are two ways to change directories: 

•Type in the path of the new directory in the input box and press 
Enter, or 

• Choose the directory you want in the Directory tree (if you're 
using the keyboard, press Enterto make it the current directory), 
then choose OK or press Esc to exit the dialog box. 

If choose the OK button, your changes will be made and the 
dialog box put away. If you choose the Chdir button, the 
Directory Tree list box changes to the selected directory and 
displays the subdirectories of the currently highlighted directory 
(pressing Enter or double-clicking on that entry gives you the same 
result). If you change your mind about the directory you've 
picked and you want to go back to the previous one (and you've 
yet to exit the dialog box), choose the Revert button. 

Print The File I Print command lets you print the contents of the active 
Edit window. Turbo C++ expands tabs (replaces tab characters 
with the appropriate number of spaces) and then sends it to the 
DOS print handler. This command is disabled if the active 
window cannot be printed. Use Ctrl-K P to print selected text only. 

Chapter 7, The /DE reference 25 



File I Get Info 

26 

Get Info The File I Get Info command displays a box with information on 
the current file. 

Figure 1.7 
The Get Info box 

The information here is for display only; you can't change any of 
the settings in this box. The following table tells you what each 
line in the Get Info box means and where you can go to change 
the settings if you want to: 

Table 1.2 
Get Info settings Setting Meaning 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Current directory The default directory
Current file File in the active window
Extended memory usage Amount of extended memory reserved by

Expanded memory usage

Lines compiled
Total warnings
Total errors
Total time
Program loaded
Program exit code

Available memory
Last step time

Turbo C++
Amount of expanded memory reserved by
TurboC++
Number of lines compiled
Number of warnings issued
Number of errors generated
Amount of time your program has run
Debugging status
DOS termination code of last terminated
program
Amount of free DOS (640K) memory
Amount of time spent in last debug step

After reviewing the information in this box, press Enterto put the
box away.

DOS Shell The File I DOS Shell command lets you temporarily exit Turbo
C++ to enter a DOS command or program. To return to Turbo
C++, type EXIT and press Enter.

You may find that when you're debugging, there's not enough
memory to execute this command. If that's the case, terminate the
debug session by choosing Run I Program Reset (Ctrl-F2).

Turbo C++ User's Guide

Quit
[@[Kl

Edit menu

File I DOS Shell

Warning: Don't install any TSR programs (like SideKick) if you've
shelled to DOS, because memory may get misallocated.

Note: In dual monitor mode, the DOS command line appears on
the Turbo C++ screen rather than the User Screen. This allows
you to switch to DOS without disturbing the output of your pro
gram. Since your program output is available on one monitor in
the system, Window I User Screen and Alt-FS are disabled.

You can also use the transfer items on the= (System) menu to
quickly switch to another program without leaving Turbo C++.

The File I Quit command exits Turbo C++, removes it from
memory, and returns you to the DOS command line. If you have
made any changes that you haven't saved, Turbo C++ asks you if
you want to save them before exiting.

The Edit menu lets you cut, copy, and paste text in Edit windows.
[@[[] You can also open a Clipboard window to view or edit its

contents.

New!

Before you can use most of the commands on this menu, you need
to know about selecting text (because most editor actions apply to
selected text). Selecting text means highlighting it. You can select
text either with keyboard commands or with a mouse; the
principle is the same even though the actions are different.

From the keyboard you can use any of these methods:

•Press Shift while pressing any arrow key.

• To select text from the keyboard, press Ctrl-K B to mark the start
of the block. Then move the cursor to the end of the text and
press Ctrl-K K.

•To select a single word, move the cursor to the word and press
Ctrl-K T.

•To select an entire line, press Ctrl-K L.

With a mouse:

M • To select text with a mouse, drag the mouse pointer over the
desired text. If you need to continue the selection past a
window's edge, just drag off the side and the window will
automatically scroll.

•To select a single line, double-click anywhere in the line.

Chapter 7, The /DE reference 27

File I Quit

28

Restore Line

Cut
I Shift l[Qill

Copy
@!]]~

Paste
I Shift I~

Copy Example

•To select text line-by-line, click-drag over the text (that is, click
once and then quickly press the mouse button again and begin
to drag).

•To extend or reduce the selection, Shift-click anywhere in the
document (that is, hold Shift and click).

Once you have selected text, the commands in the Edit menu
become available, and the Clipboard becomes useful.

The Clipboard is the magic behind cutting and pasting. It's a
special window in Turbo C++ that holds text that you have cut or
copied, so you can paste it elsewhere. The Clipboard works in
close concert with the commands in the Edit menu.

Here's an explanation of each command in the Edit menu.

The Edit I Restore Line command takes back the last editing
command you performed on a line. Restore Line works only on
the last modified or deleted line.

The Edit I Cut command removes the selected text from your
document and places the text in the Clipboard. You can then
paste that text into any other document (or somewhere else in the
same document) by choosing Paste. The text remains selected in
the Clipboard so that you can paste the same text many times.

The Edit I Copy command leaves the selected text intact but places
an exact copy of it in the Clipboard. You can then paste that text
into any other document by choosing Paste. You can also copy
text from a Help window: With the keyboard, use Shift and the
arrow keys; with the mouse, click and drag the text you want to
copy.

The Edit I Paste command inserts text from the Clipboard into the
current window at the cursor position. The text that is actually
pasted is the currently marked block in the Clipboard window.

The Edit I Copy Example command copies the preselected
example text in the current Help window to the Clipboard. The
examples are already predefined as pastable blocks, so you don't
need to bother with marking the example you want.

Turbo C++ User's Guide

Show Clipboard
Full menus only

Clear
@ill][@

Search menu

[][)@]
Find

[][)@][f]

Chapter 7, The /DE reference

Edit I Show Clipboard

The Edit I Show Clipboard command opens the Clipboard
window, which stores the text you cut and copy from other
windows. The text that's currently selected (highlighted) is the
text Turbo C++ uses when you choose Paste.

You can think of the Clipboard window as a history list of your
cuts and copies. And you can edit the Clipboard so that the text
you paste is precisely the text you want. Turbo C++ uses
whatever text is selected in the Clipboard when you choose Paste.

The Clipboard window is just like other Edit windows; you can
move it, resize it, and scroll and edit its contents. The only
difference you'll find in the Clipboard window is when you
choose to cut or copy text. When you select text in the Clipboard
window and choose Cut or Copy, the selected text immediately
appears at the bottom of the window. (Remember, any text that
you cut or copy is appended to the end of the Clipboard-so you
can paste it later.)

The Edit I Clear command removes the selected text but does not
put it into the Clipboard. This means you cannot paste the text as
you could if you had chosen Cut or Copy. The cleared text is not
retrievable.

The Search menu lets you search for text, function declarations,
and error locations in your files.

The Search I Find command displays the Find dialog box, which
lets you type in the text you want to search for and set options
that affect the search. (Ctrl-Q Fis another shortcut for this
command.)

29

Search I Find

30

Figure 1.8
The Find dialog box

I e] Case sensitive!

le] Whole words onlyl

le] Regular expression!

The Find dialog box contains several buttons and check boxes:

Check the Case Sensitive box if you do want Turbo C++ to
differentiate uppercase from lowercase.

Check the Whole Words Only box if you want Turbo C ++ to
search for words only (that is, the string must have punctuation
or space characters on both sides).

Check the Regular Expression box if you want Turbo C++ to
recognize GREP-like wildcards in the search string. The wildcards
are",$,.,*,+,[], and\. Here's what they mean:

"

$

*

+

[]

A circumflex at the start of the string matches the start of a
line.

A dollar sign at the end of the expression matches the end
of a line.

A period matches any character.

A character followed by an asterisk matches any number of
occurrences (including zero) of that character. For example,
bo* matches bot, b, boo, and also be.

A character followed by a plus sign matches any number of
occurrences (but not zero) of that character. For example,
bo+ matches bot and boo, but not be orb.

Characters in brackets match any one character that
appears in the brackets but no others. For example [bot]
matches b, o, or t.

A circumflex at the start of the string in brackets means not.
Hence, ["bot] matches any characters except b, o, or t.

Turbo C++ User's Guide

Direction
(•) Forward
() Backward

• Global scoJe
f Selected text

(• From Cursor oririn
(Ent i re Scope

Replace

[@[9)0

Chapter 7, The /DE reference

Search I Find

[-] A hyphen within the brackets signifies a range of
characters. For example, [b-o] matches any character from b
through o.

A backslash before a wildcard character tells Turbo C++ to
treat that character literally, not as a wildcard. For example,
\"matches" and does not look for the start of a line.

Enter the string in the input box and choose OK to begin the
search, or choose Cancel to forget it. If you want to enter a string
that you searched for previously, press ,J, to show a history list to
choose from.

You can also pick up the word that your cursor is currently on in
the Edit window and use it in the Find box by simply invoking
Find from the Search menu. You can take additional characters
from the text by pressing ~ .

Choose from the Direction radio buttons to decide which
direction you want Turbo C++ to search-starting from the origin
(settable with the Origin radio buttons).

Choose from the Scope buttons to determine how much of the file
to search in. You can search the entire file (Global) or only the
selected text.

Choose from the Origin buttons to determine where the search
begins. When Entire Scope is chose, the Direction radio buttons
determine whether the search starts at the beginning or the end of
the chosen scope. You choose the range of scope you want with
the Scope radio buttons.

The Search I Replace command displays a dialog box that lets you
type in the text you want to search for and text you want to
replace it with.

31

Search I Replace

32

Figure 1.9
The Replace dialog box

Search Again
@illITJ

Go to Line Number

The Replace dialog box contains several radio buttons and check
boxes-many of which are identical to the Find dialog box,
discussed previously. An additional checkbox, Prompt to Replace,
controls whether you're prompted for each change.

Enter the search string and the replacement string in the input
boxes and choose OK or Change All to begin the search, or choose
Cancel to forget it. If you want to enter a string you used
previously, press J.. to show a history list to choose from.

If Turbo C++ finds the specified text, it asks you if you want to
make the replacement. If you choose OK, it will find and replace
only the first instance of the search item. If you choose Change
All, it replaces all occurrences found, as defined by Direction,
Scope, and Origin.

Like in the Find dialog box, you can pick up the word your cursor
is currently on in the Edit window and use it in the Text to Find
input box by simply invoking Find or Replace from the Search
menu. And you can add more text from the Edit window by
pressing~.

The Search I Search Again command repeats the last Find or
Replace command. All settings you made in the last dialog box
used (Find or Replace) remain in effect when you choose Search
Again.

The Search I Go to Line Number command prompts you for the
line number you want to find.

Here is what the dialog box looks like:

Turbo C++ User's Guide

Figure 1.10
The Go to Line Number

dialog box

Previous Error

~cm

Next Error
~[ill

Locate Function

Figure 1.11
The Locate Function dialog

box

Run menu

Search I Go to Line Number

Turbo C++ displays the current line number and column number
in the lower left comer of every Edit window.

The Search I Previous Error command moves the cursor to the
location of the previous error or warning message. This command
is available only if there are messages in the Message window
that have associated line numbers. These messages are generated
by compile and transfer commands that use a Capture messages
filter.

The Search I Next Error command moves the cursor to the location
of the next error or warning message. This command is available
only if there are messages in the Message window that have
associated line numbers. These messages are generated by
compile and transfer commands that use a Capture messages
filter.

The Search I Locate Function command displays a dialog box for
you to enter the name of a function to search for. This command is
available only during a debugging session.

Enter the name of a function or press .J, to choose a name from the
history list. As opposed to the Find command, this command
finds the declaration of the function, not instances of its use.

The Run menu's commands run your program, and also start and
~ffi] end debugging sessions.

Chapter 1, The /DE reference 33

Run I Run

Run
@!![][ill

If you want to have all Turbo
C++~ features available,

keep Source Debugging set
to On.

34

The Run I Run command runs your program, using any
arguments you pass to it with the Run I Arguments command. If
the source code has been modified since the last compilation, it
will also invoke the Project Manager to recompile and link your
program. (The Project Manager is a program building tool
incorporated into the integrated environment; see Chapter 2,
"Managing multi-file projects," for more on this feature.)

If you don't want to debug your program, you can compile and
link it with the Source Debugging radio button set to None
(which makes your program compile and link faster) or to
Standalone (which gives the program more room to run) in the
Options I Debugger dialog box. If you compile your program with
this check box set to On, the resulting executable code will contain
debugging information that will affect the behavior of the Run I
Run command in the following ways:

If you have not modified your source code since the last
compilation,

• the Run I Run command causes your program to run to the next
breakpoint, or to the end if no breakpoints have been set.

If you have modified your source code since the last compilation,

•and if you're already stepping through your program using the
Run I Step Over or Run I Trace Into commands, Run I Run
prompts you whether you want to rebuild your program:

• If you answer yes, the Project Manager recompiles and links
your program, and sets it to run from the beginning.

• If you answer no, your program runs to the next breakpoint
or to the end if no breakpoints are set.

• and if you are not in an active debugging session, the Project
Manager recompiles your program and sets it to run from the
beginning.

Pressing Girl-Break causes TC to stop execution on the next source
line in your program. If TC is unable to find a source line, a
second Ctrl-Break will terminate the program and return you to the
IDE.

Turbo C++ User's Guide

Program Reset
@fil)[ill

Go to Cursor

cm

Trace Into
[ill

Chapter 1, The IDE reference

Run I Program Reset

The Run I Program Reset command stops the current debugging
session, releases memory your program has allocated, and closes
any open files that your program was using. Use this command
when you're debugging and there's not enough memory to run
transfer programs or invoke a DOS shell.

The Run I Go to Cursor command runs your program from the
run bar (the highlighted bar in your code) to the line the cursor is
on in the current Edit window. If the cursor is at a line that does
not contain an executable statement, the command displays a
warning. Run I Go to Cursor can also initiate a debug session.

Go to Cursor does not set a permanent breakpoint, but it does
allow the program to stop at a permanent breakpoint if it
encounters one before the line the cursor is on. If this occurs, you
must choose the Go to Cursor command again.

Use Go to Cursor to advance the run bar to the part of your pro
gram you want to debug. If you want your program to stop at a
certain statement every time it reaches that point, set a breakpoint
on that line.

Note that if you position the cursor on a line of code that is not
executed, your program will run to the next breakpoint or the end
if no breakpoints are encountered. You can always use Ctrl·Break to
stop a running program.

The Run I Trace Into command runs your program statement-by
statement. When it reaches a function call, it executes each
statement within the function, instead of executing the function as
a single step (see Run I Step Over). If a statement contains no calls
to functions accessible to the debugger, Trace Into stops at the
next executable statement.

Use the Trace Into command to move the run position into a
function called by the function you are now debugging. See the
next section for an illustration of the differences between the
Trace Into and Step Over commands.

If the statement contains a call to a function accessible to the
debugger, Trace Into halts at the beginning of the function's
definition. Subsequent Trace Into or Step Over commands run the
statements in the function's definition. When the debugger leaves

35

Run I Trace Into

Step Over
ill]

36

the function, it resumes evaluating the statement that contains the
call; for example,

if (funcl () && func2 ())
do-something() ;

With the run bar on the if statement, Fl will trace into func1;
when on the return in func1, Fl will trace into func2. FB will step
over func2 and stop on do-something.

Note: The Trace Into command recognizes only functions defined
in a source file compiled with two options set on:

•In the Code Generation dialog box (Options I Compiler), the
Debug Info in OBJs check box must be checked.

• The Source Debugging radio buttons must be set to On (in the
Options I Debugger dialog box).

The Run I Step Over command executes the next statement in the
current function. It does not trace into calls to lower-level
functions, even if they are accessible to the debugger.

Use Step Over to run the function you are now debugging, one
statement at a time without branching off into other functions.

Here is an example of the difference between Run I Trace Into and
Run I Step Over. These are the first 12 lines of a program loaded
into an Edit window:

int findit(void)
(

return (2);

void rnain(void)
(

int i, j;

I* Line 1 */

/* Line 6 */

i = findit(); /*Line 10 */
printf("%d\n", i); /*Line 11 */
j = 0; • . . /* Line 12 */

findit is a user-defined function in a module that has been
compiled with debugging information. Suppose the run bar is on
line 10 of your program. To position the run bar on line 10, place
the cursor on line 10 and either press F4 or select Run I Go to
Cursor.

Turbo C++ User's Guide

Run I Step Over

•If you now choose Run I Trace Into, the run bar will move to the
first line of the findit function (line 1 of your program), allowing
you to step through the function.

•If you choose Run I Step Over, the findit function will execute
and the return value will be assigned to i. Then the run bar will
move to line 11.

If the run bar had been on line 11 of your program, it would have
made no difference which command you chose; Run I Trace Into
and Run I Step Over both would have executed the prlntf function
and moved the run bar to line 12. This is because the printf
function does not contain debug information.

Arguments The Run I Arguments command allows you to give your running
programs command-line arguments exactly as if you had typed
them on the DOS command line. DOS redirection commands will
be ignored.

Figure 1.12
The Arguments dialog box

You only need to enter the
arguments here, not the

program name.

Compile menu

When you choose this command, a dialog box appears with a
single input box.

rr I ===== • '' ' , ' . ========11

if·. . 11
I -+Imk•J· ll!Elimll lDf:llJ I
b-=====================d

Arguments take affect only when your program is started. If you
are already debugging and wish to change the arguments, then
you can select Program Reset to start the program with the new
arguments.

Use the commands on the Compile menu to compile the program
in the active window or to make or build your project. To use the
Compile, Make, Build, and Link commands, you must have a file
open in an active Edit window or a project defined (for Make,
Build, and Link). For example, if you open a Message or Watch
window, those selections will be disabled.

Chapter 1, The /DE reference 37

Compile I Compile to OBJ

Compile to OBJ
@D[ill

Full menus onlv

Make EXE File

cm

The Compile I Compile to OBJ command compiles the active
editor file (a .C or .CPP file to an .OBJ file). The menu always
displays the name of the file to be created; for example,

!compile to OBJ C:EXAMPLE.OBJI

When Turbo C++ is compiling, a status box pops up to display
the compilation progress and results. When compiling/linking is
complete, press any key to remove this box. If any errors or
warnings occurred, the Message window becomes active and
displays and highlights the first error.

The Compile I Make EXE File command invokes the Project
Manager to make an .EXE file. The menu always displays the
name of the .EXE file to be created; for example,

!Make EXE File C:EXAMPLE.EXEI

The .EXE file name listed is derived from one of two names in the
following order:

For more information on the
Project Manager, see

Chapter 2, "Managing
multi-file projects. •

•the project file (.PRJ) specified with the Project I Open Project
command

• the name of the file in the active Edit window (if no project is
defined, you'll get the default project defined by the file
TCDEF.DPR)

38

Compile I Make EXE File rebuilds only the files that aren't current.

Link EXE File The Compile I Link EXE File command takes the current .OBJ and
Full menus ontv .LIB files (either the defaults or those defined in the current

project file) and links them without doing a make; this produces a
new .EXE file.

Build All The Compile I Build All command rebuilds all the files in your
project regardless of whether they're out of date.

This command is similar to Compile I Make EXE File except that it
is unconditional. The Build All command first sets the date and
time of all the project's .OBJ files to zero, then does a make. (Thus,
if you abort a Build All command by pressing Ctrl-Break or get
errors that stop the build, you can pick up where it left off simply
by choosing Compile I Make EXE File.)

Turbo C++ User's Guide

Remove Messages
Full menus only

Debug menu

Inspect
[fil)ffi)

Chapter 1, The /DE reference

Compile I Remove Messages

The Compile I Remove Messages command removes all messages
from the Message window.

The commands on the Debug menu control all the features of the
integrated debugger. You can change default settings for these
commands in the Options I Debugger dialog box.

The Debug I Inspect command opens an Inspector window that
lets you examine and modify values in a data element. The type of
element you're inspecting determines the type of information
presented in the window. In Turbo C++, you can inspect simple
(ordinal) data types like char or unsigned long, pointers, arrays,
structures, classes, types, unions, and functions.

There are two ways to open an Inspector window:

•You can position the cursor on the data element you want to
inspect, then choose Alt-F4.

•You can also choose Debug I Inspect to bring up the Inspector
dialog box, and then type in the variable or expression you
want to inspect. Alternatively, you can position the cursor on an
expression, select Debug I Inspect, and while in this dialog box,
press ~ to bring in more of the expression. Press Enter to
inspect it.

To close an Inspector window, make sure the window is active
(topmost) and press Esc or choose Window I Close.

Here are some additional inspection operations you can perform:

•Sub-inspecting: Once you're in an Inspector window, you can
inspect certain elements to isolate the view. When an inspector
item is inspectable, the status line displays the message ".J
Inspect." To sub-inspect an item, you move the inspect bar to
the desired item and press Enter.

• Modifying inspector items: When an inspector item can be
modified, the status line displays "Alt-M Modify Field." Move
the cursor to the desired item and press Alt-M; a dialog box will
prompt you for the new value.

•Range-inspect: When you are inspecting certain elements, you
can change the range of values that are displayed. For example,

39

Debug I Inspect

40

you can range-inspect pointer variables to tell Turbo C++ how
many elements the pointer points to. You can range-inspect an
inspector when the status line displays the message "Set index
range" and the command Aft-I.

The following sections briefly describe the eight types of Inspector
windows possible.

Ordinal Inspector windows

Ordinal Inspector windows show you the value of simple data
items, such as

char x = 4;
unsigned long y = 1234561;

These Inspector windows only have a single line of information
following the top line (which usually displays the address of the
variable, though it may display the word "constant" or have other
information in it, depending on what you're inspecting). To the
left appears the type of the scalar variable (char, unsigned long,
and so forth), and to the right appears its present value. The value
can be displayed as decimal, hex, or both. It's usually displayed
first in decimal, with the hex values in parentheses (using the
standard C hex prefix of Ox).

If the variable being displayed is of type char, the character
equivalent is also displayed. If the present value does not have a
printing character equivalent, the backslash(\) followed by a hex
value displays the character value. This character value appears
before the decimal or hex values.

Pointer Inspector windows

Pointer Inspector windows show you the value of data items that
point to other data items, such as

char *p = "abc";
int *ip = O;
int **ipp = &ip;

Pointer Inspector windows usually have a top line that contains
the address of the pointer variable and the address being pointed
to, followed by a single line of information.

Turbo C++ User's Guide

Chapter 7, The /DE reference

Debug I Inspect

To the left appears [O], indicating the first member of an array. To
the right appears the value of the item being pointed to. If the
value is a complex data item such as a structure or an array, as
much of it as possible is displayed, with the values enclosed in
braces ({and}).

If the pointer is of type char and appears to be pointing to a null
terminated character string, more information appears, showing
the value of each item in the character array. To the left in each
line appears the array index ([1], [2], and so on), and the value
appears to the right as it would in a scalar Inspector window. In
this case, the entire string is also displayed on the top line, along
with the address of the pointer variable and the address of the
string that it points to.

Array Inspector windows

Array Inspector windows show you the value of arrays of data
items, such as

long thread[3] [4] [5];
char message[] = "eat these words";

There is a line for each member of the array. To the left on each
line appears the array index of the item. To the right appears the
value of the item being pointed to. If the value is a complex data
item such as a structure or array, as much of it as possible is
displayed, with the values enclosed in braces ({and}).

Structure and Union Inspector windows

Structure and union Inspector windows show you the value of
the members in your structure and union data items. For
example,

struct date {
int year;
char month;
char day;

today;

union {
int small;
long large;

holder;

41

Debug I Inspect

42

Structures and unions appear the same in Inspector windows.
These Inspector windows have as many items after the address as
there are members in the structure or union. Each item shows the
name of the member on the left and its value on the right,
displayed in a format appropriate to its C data type.

FuncHon Inspector windows

Function Inspector windows show the return type of the function
as at the bottom of the inspector. Each parameter that a function is
called with appears after the memory address at the top of the list.

Function Inspector windows give you information about the
calling parameters, return data type, and calling conventions for a
function.

Class Inspector windows

The Class (or object) Inspector window lets you inspect the details
of a class variable. The window displays names and values for
members and methods defined by the class.

The window can be divided into two panes horizontally, with the
top pane listing the data fields or members of the class, and the
bottom pane listing the member function names and the function
addresses. Press Tab to move between the two panes of the Class
Inspector window.

If the highlighted data field is a class or a pointer to a class,
pressing Enter opens another Class Inspector window for the
highlighted type. In this way, you can quickly inspect complex
nested structures of classes with a minimum of keystrokes.

Constant Inspector window

Constant Inspector windows are much like Ordinal Inspector
windows, but they have no address and can never be modified.

Turbo C++ User's Gulde

Evaluate/Modify
[@ffi]

Figure 1.1
The Evaluate/Modify dialog

box

1he Evaluate button Is the
default button: when you

tab to the New Value field,
the Modify button becomes

the default.

Debug I Inspect

Type Inspector window

The Type Inspector window lets you examine a type. There is a
Type Inspector window for each kind of instance inspector
described here. The difference between them is that instance
inspectors display the value of a field and type inspectors display
the type of a field.

The Debug I Evaluate/Modify command evaluates a variable or
expression, displays its value, and, if appropriate, lets you modify
the value. The command opens a dialog box containing three
fields: the Expression field, the Result field, and the New Value
field. Here is what the dialog box looks like:

The Expression field shows a default expression consisting of the
word at the cursor in the Edit window. You can evaluate the
default expression by pressing Enter, or you can edit or replace it
first. You can also press~ to extend the default expression by
copying additional characters from the Edit window.

You can evaluate any valid C expression that doesn't contain

• function calls
• symbols or macros defined with #define

•local or static variables not in the scope of the function being
executed

If the debugger can evaluate the expression, it displays the value
in the Result field. If the expression refers to a variable or simple
data element, you can move the cursor to the New Value field and
enter an expression as the new value.

Press Esc to close the dialog box. If you've changed the contents of
the New Value field but do not select Modify, the debugger will
ignore the New Value field when you close the dialog box.

Chapter 7, The /DE reference 43

1

11.·

·l

'

I

Ii
11

Debug I Evaluate/Modify

Call Stack
@fil]ffi]

Compiling with Standard
stack Frame unchecked (0 I
CI Code Generation) causes
some functions to be omitted

from the call stack. Overlays
can have the same effect.

44

For more details, see
page53.

Use a repeat expression to display the values of consecutive data
elements. For example, for an array of integers named xarray,

• xarray [OJ, 5 displays five consecutive integers in decimal.
• xarray [OJ, 5x displays five consecutive integers in hexadecimal.

An expression used with a repeat count must represent a single
data element. The debugger views the data element as the first
element of an array if it isn't a pointer, or as a pointer to an array
if it is.

The Debug I Evaluate/Modify command displays each type of
value in an appropriate format. For example, it displays an int as
an integer in base 10 (decimal), and an array as a pointer in base
16 (hexadecimal). To get a different display format, precede the
expression with a comma followed by one of the format specifiers
shown in Table 1.3.

The Debug I Call Stack command opens a dialog box containing
the call stack. The Call Stack window shows the sequence of
functions your program called to reach the function now running.
At the bottom of the stack is main; at the top is the function that's
now running.

Each entry on the stack displays the name of the function called
and the values of the parameters passed to it.

Initially the entry at the top of the stack is highlighted. To display
the current line of any other function on the call stack, select that
function's name and press Enter. The cursor moves to the line
containing the call to the function next above it on the stack.

For example, suppose the call stack looked like this:

func2 ()
funcl ()
main()

This tells you that main called func1, and func1 called func2. If
you wanted to see the currently executing line of func1, you could
select func1 in the call stack and press Enter. The code for func1
would appear in the Edit window, with the cursor positioned on
the call to func2.

To return to the current line of the function now being run (that
is, to the run position), select the topmost function in the call stack
and press Enter.

Turbo C++ User's Guide

Debug I Call Stack

Table 1.3: Format specifiers recognized in debugger expressions

Character Function

C Character. Shows special display characters for control characters (ASCII 0 through 31);
by default, such characters are shown using the appropriate C escape sequences (\n, \t,
and so on). Affects characters and strings.

S String. Shows control characters (ASCII 0 through 31) as ASCII values using the
appropriate C escape sequences. Since this is the default character and string display
format, the S specifier is only useful in conjunction with the M specifier.

D Decimal. Shows all integer values in decimal. Affects simple integer expressions as well as
arrays and structures containing integers.

H or X Hexadecimal. Shows all integer values in hexadecimal with the Ox prefix. Affects simple
integer expressions as well as arrays and structures containing integers.

Fn Floating point. Shows n significant digits (n is an integer between 2 and 18). The default
value is 7. Affects only floating-point values.

M Memory dump. Displays a memory dump, starting with the address of the indicated
expression. The expression must be a construct that would be valid on the left side of an
assignment statement, i.e., a construct that denotes a memory address; otherwise, the M
specifier is ignored.

By default, each byte of the variable is shown as two hex digits. Adding a D specifier with
the M causes the bytes to be displayed in decimal. Adding an H or X specifier causes the
bytes to be displayed in hex. An S or a C specifier causes the variable to be displayed as a
string (with or without special characters). The default number of bytes displayed
corresponds to the size of the variable, but a repeat count can be used to specify an exact
number of bytes.

P Pointer. Displays pointers in seg:ofs format with additional information about the address
pointed to, rather than the default hardware-oriented seg:ofs format. Specifically, it tells
you the region of memory in which the segment is located, and the name of the variable at
the offset address, if appropriate. The memory regions are as follows:

R

Memory region

0000:0000-0000:03FF
0000:0400-0000:04FF
0000:0500-Turbo C++

Evaluate message

Interrupt vector table
BI OS data area
MS-DOS/TSR'.5

Turbo C++-User Program PSP Turbo C++
User Program PSP User Process PSP

User Program-top of RAM

AOOO:OOOO-AFFF:FFFF
BOOO:OOOO-B7FF:FFFF
B800:0000-BFFF:FFFF
COOO:OOOO-EFFF:FFFF
FOOO:OOOO-FFFF:FFFF

Name of a static user variable if its address falls inside the
variable's allocated memory; otherwise nothing

EGA/VGA Video RAM
Monochrome Display RAM
Color Display RAM
EMS Pages/ Adaptor BIOS ROM's
BIOSROM's

Structure/Union. Displays field names as well as values, such as (X:1, Y:10, Z:5). Affects
only structures and unions.

Chapter 7, The /DE reference 45

Debug I Watches

46

Watches The Debug I Watches command opens a pop-up menu of
commands that control the use of watchpoints. The following
sections describe the commands in this pop-up menu.

Add Watch

The Add Watch command inserts a watch expression into the
Watch window.

When you choose this command, the debugger opens a dialog
box and prompts you to enter a watch expression. The default
expression is the word at the cursor in the current Edit window.
There's also a history list available if you want to quickly enter an
expression you've used before.

When you type a valid expression and press Enter or click OK, the
debugger adds the expression and its current value to the Watch
window. If the Watch window is the active window, you can
insert a new watch expression by pressing Ins.

Delete Watch

The Delete Watch command deletes the current watch expression
from the Watch window.

The Watch window must be the active window in order to use
this command. The current watch expression is selected if the
Watch window is active. It's marked by a bullet in the left margin
if the Watch window is inactive and instead another window,
menu, or dialog box is active.

To delete the watch expression marked with the bullet, choose the
Delete Watch command. To delete a watch expression that is not
current (that is, one that is not selected or has no bullet), you must
make the Watch window active, select the desired watch
expression, and press either Del or Ctrl-Y.

Edit Watch

The Edit Watch command allows you to edit the current watch
expression in the Watch window. A history list is available to save
you time retyping.

Turbo C++ User's Gulde

Toggle Breakpoint
@fil]ill]

Breakpoints

Figure 1.14
The Breakpoints dialog box

Debug I Watches I Edit Watch

When you choose this command, the debugger opens a dialog
box containing a copy of the current watch expression. Edit the
expression and press Enter. The debugger replaces the original
version of the expression with the edited one.

You can also edit a watch expression from inside the Watch
window by selecting the expression and pressing Enter.

Remove All Watches

The Remove All Watches command deletes all watch expressions
from the Watch window.

The Debug I Toggle Breakpoint command lets you set or clear an
unconditional breakpoint on the line where the cursor is
positioned. When a breakpoint is set, it is marked by a breakpoint
highlight. See the following section for more information on
breakpoints.

The Debug I Breakpoints command opens a dialog box that lets
you control the use of breakpoints-both conditional and
unconditional ones. Here is what the dialog box looks like:

The dialog box shows you all set breakpoints, their line numbers,
and the conditions. The condition has a history list so you can
select a breakpoint condition that you've used before.

You can remove breakpoints from your program by choosing the
Delete button. You can also view the source where existing
breakpoints are set by choosing the View button. View moves the
cursor to the selected breakpoint. This command does not run
your code; it only positions the cursor at active breakpoints in the
Edit window.

Choose Edit to add the new one to the list. When you edit a
breakpoint, this dialog box appears over the first one:

Chapter 7, The /DE reference 47

Debug I Breakpoints

Figure 1.15
The Breakpoint Modify/New

dialog box

48

Again, line number and conditions are that of the breakpoints
you've set. Use Pass Count to set how many times the breakpoint
should be skipped before stopping. The At button lets you specify
a breakpoint at a particular function (you must be debugging to
access this).

This dialog box also has a New button, which lets you enter
breakpoint information for a new breakpoint, and a Modify
button, which accepts the settings of the box.

Your program stops wherever it encounters a breakpoint in the
course of running. When the program stops, the run bar is on the
line containing the breakpoint. (The breakpoint highlight is
obscured by the run bar; it reappears when the run bar moves on.)

When a source file is edited, each breakpoint "sticks" to the line
where it is set. Breakpoints are lost only when

•you leave the integrated environment
• you delete the source line a breakpoint is set on
• you clear a breakpoint with Toggle Breakpoint

Turbo C++ will attempt to track breakpoints in two cases:

• If you edit a file containing breakpoints and then don't save the
edited version of the file.

• If you edit a file containing breakpoints and then continue the
current debugging session without remaking the program.
(Turbo C++ displays the warning prompt "Source modified,
rebuild?")

Before you compile a source file, you can set a breakpoint on any
line, even a blank line or a comment. When you compile and run
the file, Turbo C++ validates any breakpoints that are set and
gives you a chance to remove, ignore, or change invalid
breakpoints. When you are debugging the file, Turbo C++ knows

Turbo C++ User's Guide

Project menu

Debug I Breakpoints

which lines contain executable statements, and will warn you if
you try to set invalid breakpoints.

You can set an unconditional breakpoint without going through
the dialog box by choosing the Debug I Toggle Breakpoint
command.

The Project menu contains all the project management commands
~~ to

•create a project

• add or delete files from your project
•specify which program your source file should be translated

with

• set options for a file in the project
•specify which command-line override options to use for the

translator program

•specify what the resulting object module is to be called, where it
should be placed, whether the module is an overlay, and
whether the module should contain debug information

• view included files for a specific file in the project

Open Project The Open Project command displays the Load Project File dialog
box, which allows you to select and load a project or create a new
project by typing in a name.

Figure l.16
The Project File dialog box

Chapter 1, The /DE reference

iles
•BARCHART .C

BUGCHART .C
CPASDEl«l.C
GAME.C
GETOPT .C
HELLO.C
lNTROl.C
lNTROlO.C

~ lNTROll.C
INTR012.C
lNTR013.C
lNTR014.C
lNTR015.C
!NTR016.C
lNTR017 .C
lNTR018.C

This dialog box lets you select a file name similar to the File I Open
dialog box, discussed on page 22. The file you select will be used
as a project file, which is a file that contains all the information
needed to build your project's executable. Turbo C++ uses the

49

Project I Close Project

project name when it creates the .EXE and .MAP files. A typical
project file has the extension .PRJ.

Close Project Choose Project I Close Project when you want to remove your
project and return to the default project (TCDEF.DPR).

Add Item Choose Project I Add Item when you want to add a file to the
project list. This brings up the Add Item to Project List dialog box,
which looks like this:

Figure 1.17
The Add Item to Project List

dialog box

This dialog box is set up much like the Load File dialog box (File I
Open). Choosing the Add button puts the currently highlighted
file in the Files list into the Project window. The chosen file is
added to the Project window File list immediately after the
highlight bar in the Project window. The highlight bar is
advanced each time a file is added. (When the Project Window is
active, you can press Ins to add a file.)

Delete Item Choose Project I Delete Item when you want to delete a file in the
Project window. When the Project window is active, you can
press Del to delete a file.

Local Options The Local Options command opens a dialog box, which looks like
this:

50 Turbo C++ User's Guide

Figure l.18
The Override Options dialog

box

These command-line options
are not supported: Q, y, E. M,

c, e, I, L, and/.

I[] Overlay this module I

I [] Exel ude debug i nfonnati on I

I[] Exclude from link

Project I Local Options

The Override Options dialog box lets you include command-line
override options for a particular project-file module. It also lets
you give a specific path and name for the object file and lets you
choose a translator for the module.

Any program you installed in the Transfer dialog box with the
Translator option checked appears in the list of Project File
Translators (see page 64 for information on the Transfer dialog
box).

Check the Overlay this Module option if you want the selected
module or library (or project item) to be overlaid. This item is
local to one file. It is disabled if the Overlay support checkbox is
not marked (in Options I Compile I Code Generation).

Check the Exclude Debug Information option to prevent debug
information included in the module you've selected from going
into the .EXE.

Use this switch on already debugged modules of large programs.
You can change which modules have debug information simply
by checking this box and then re-linking (no compiling is
required).

Check the Exclude from Link option if you don't want this
module linked in.

Include Files Choose Project I Include Files to display the Include Files dialog
box; do this when you want to see which files are included by the
file you chose from the Project window. When you're in the
Project Window, you can press Spacebarto display the Include

Chapter 7, The /DE reference 51

Project I Include Files

Figure 1.19
The Include Files dialog box

Options menu

Full Menus

Compiler

52

Files dialog box. This command is disabled if you've yet to build a
project.

The Include Files dialog box looks like this:

: • \INCLUDE

After a file has been compiled, information is collected about that
file (notice that the Project window has code size information). In
this state, the Project manager also knows which include file the
module references. You can view the active Edit window's include
files in the Include Files dialog box. From the Project Manager
window, press Spacebar to display the dialog box. From an Edit
window, go to the Project menu and choose Include Files. You can
scroll through the list of files displayed. The default action is to
view the selected file, so pressing Enter opens that include file into
an Edit window.

The Options menu contains commands that let you view and
change various default settings in Turbo C++. Most of the
commands in this menu lead to a dialog box.

The Options I Full Menus command lets you use a subset of the
complete set of menus in Turbo C++. Full Menus Off provides the
minimum command set in menus and dialog boxes. (Use
INSTALL to set up which command set you want to use as the
default.) For more information on this command, see page 13.

The Options I Compiler command displays a pop-up menu that
gives you several options to set that affect code compilation. The
following sections describe these commands.

Turbo C++ User's Guide

Figure l .20
The Code Generation dialog

box

Full menus only

Options
[J Overlay support
[] Word al igrrnent
[] Duplicate strings merged
[X] Unsigned characters
[X] Standard stack frame
[] Test stack overflow

Chapter 1, The /DE reference

Options I Compiler I Code Generation

Code Generation

The Code Generation command displays a dialog box. The
settings in this box tell the compiler to prepare the object code in
certain ways. The dialog box looks like this (if you have Full
Menus set to Off, some of the options in this box won't appear):

Here are what the various buttons and check boxes mean:

•Checking Overlay Support tells the compiler to generate
overlay safe code. You should check this (turn this on) when
you're running an overlaid application. This is a global option;
it controls whether Overlay this Module (in the Override
Options dialog box of Project I Local Options) and Overlay EXE
(Options I Linker) are enabled or disabled.

•Word Alignment (when checked) tells Turbo C++ to align
noncharacter data (structs and unions only) at even addresses.
When this option is off (unchecked), Turbo C++ uses byte
aligning, where data (structs and unions only) can be aligned at
either odd or even addresses, depending on which is the next
available address.

Word alignment increases the speed with which 8086 and 80286
processors fetch and store the data.

•Duplicate Strings Merged (when checked) tells Turbo C++ to
merge two strings when one matches another. This produces
smaller programs, but can introduce bugs if you modify one
string.

•Unsigned Characters (when checked) tells Turbo C++ to treat
all char declarations as if they were unsigned char type. It's
checked by default.

•Standard Stack Frame (when checked) generates a standard
stack frame (standard function entry and exit code). This is
helpful when debugging-it simplifies the process of tracing
back through the stack of called subroutines. The default is off
(unchecked).

53

Options I Compiler I Code Generation

54

Hodel
() Tiny
(•) Small
() Hedi~
() Compact
() Large
() Huge

Full menus only

loefines I

If a source file is compiled with this option off (unchecked), any
function that does not use local variables and has no
parameters is compiled with abbreviated entry and return code.
This makes the code shorter and faster, but prevents the
Debug I Call Stack command from "seeing" the function. Thus,
the option should always be checked when a source file is
compiled for debugging.

•Test Stack Overflow (when checked) generates code to check for
a stack overflow at run time. Even though this costs space and
time in a program, it can be a real lifesaver, since a stack
overflow bug can be difficult to track down. The default is off
(unchecked).

The Model buttons determine which memory model you want to
use. The memory model chosen determines the default method of
memory addressing. The default memory model is Small.

Refer to Chapter 4, "Memory models, floating point, and over
lays," in the Programmer's Guide for more information about
memory models.

Use the Defines input box to enter macro definitions to the
preprocessor. You can separate multiple defines with semicolons
(;); for example,

TESTCODE;PROGCONST=S

Values can be assigned optionally with an equal sign(=).

Leading and trailing spaces are stripped, but embedded spaces
are left intact. If you want to include a semicolon in a macro, you
must place a backslash (\) in front of it.

If you have Full Menus on when you select the Code Generation
command, the Code Generation dialog box has a button called
More that takes you to the Advanced Code Generation dialog
box. Here's what that dialog box looks like:

Turbo C++ User's Guide

Figure 1.21
The Advanced Code

Generation dialog box

Floating Point
() None
(o) Elrulation
() 8087

Full menus only

Instruction Set
(o) 8088/8086
() 80186
() 80286

Full menus only

Calling Convention
(.) c
() Pascal

Important!

Chapter 7, The /DE reference

Options I Compiler I Code Generation

The Floating Point buttons let you decide how you want Turbo
C++ to handle floating-point numbers.

Choose None if you're not using floating point. (If you choose
None and you use floating-point calculations in your program,
you get link errors.)

Choose Emulation if you want Turbo C++ to detect whether your
computer has an 80x87 coprocessor (and to use it if you do). If it is
not present, Turbo C++ emulates the 80x87.

Choose 8087 to generate direct 8087 inline code.

The Instruction Set radio buttons let you choose what CPU
instruction set to generate code for. The 8088/8086 radio button,
which works with all PCs, is the default.

The Calling Convention option causes the compiler to generate
either a C calling sequence or a Pascal (fast) calling sequence for
function calls. The differences between C and Pascal calling
conventions are in the way each handles stack cleanup, number
and order of parameters, case, and prefix (underbar) of external
identifiers.

Do not change this option unless you're an expert and have read
Chapter 6, "Interfacing with assembly language," in the Programmer's
Guide.

55

Options I Compiler I Code Generation

Full menus only

0(1tions
LX] Generate underbars
[X] Line numbers debug info
[X] Debug info in OBJs

fxl Treat enums as i nts
X Fast floating point

Assume SS not equal DS

56

•When checked, the Generate Underbars option tells Turbo C++
to automatically add an underbar, or underscore, character (_)
in front of every global identifier (that is, functions and global
variables). If you are linking with standard libraries, this box
must be checked.

•Line Numbers Debug Info (when checked) includes line
numbers in the object map file (for use by a symbolic
debugger). This increases the size of the object and map files
but does not affect the speed of the executable program. The
default is off (unchecked).

Since the compiler might group together common code from
multiple lines of source text during jump optimization, or
might reorder lines (which makes line-number tracking
difficult), you should make sure the Jump Optimization check
box is off (unchecked) when this option is checked.

•Debug Info in OBJs controls whether debugging information is
included in object (.OBJ) files. The default for this check box is
on (checked), which is needed for you to do both integrated
debugging and debugging with the standalone Turbo
Debugger.

• When checked, Treat enums as ints causes the compiler to
always allocate a whole word. This option is checked by
default. (The command-line equivalent is -b.)

•Fast Floating Point lets you optimize floating-point operations
without regard to explicit or implicit type conversions. This
option is checked by default. (You can use-ff to accomplish the
same thing on the command line.)

• When checked, Assume SS Not Equal DS option causes the
compiler to not assume the stack segment (SS) to be equal to the
data segment (DS). This option is unchecked by default. (The
command-line equivalent is -mm!.

C++ Code Generation

The C++ Code Generation command displays a dialog box that
contains settings that tell the compiler to prepare the object code
in certain ways when using C++.

Turbo C++ User's Guide

Full menus only

C++ Virtual Tables
() Smart
(•) Local
() External
() Public

Use C++ Compiler
(•) CPP extension only
() C++ always

Chapter 7, The /DE reference

Options I Compiler IC++ Code Generation

The C++ Virtual Tables radio buttons let you control C++ virtual
tables and the expansion of inline functions when debugging.

Choosing the Smart option generates C++ virtual tables (and
inline functions not expanded inline) so that only one instance of
a given virtual table (or inline function) will be included in the
program. This produces the smallest and most efficient
executables, but uses .OBJ (and .ASM) extensions only available
with TLINK 3.0 and T ASM 2.0 (or newer). (The command-line
equivalent is -V.)

Choosing the Local option generates local virtual tables (and
inline functions not expanded inline) such that each module gets
its own private copy of each virtual table (or inline function) it
uses; this option uses only standard .OBJ (and .ASM) constructs,
but produces larger executables. (The command-line equivalent is
-Vs.)

Choosing the External option generates external references to
virtual tables; one or more of the modules comprising the
program must be compiled with the Public option to supply the
definitions for the virtual tables. (The command-line equivalent is
-VO.)

Choosing the Public option generates public definitions for virtual
tables, so that these can be externally referenced in other modules
that have been compiled with the External option. (The
command-line equivalent is -V1 .)

The Use C++ Compiler radio buttons tell Turbo C++ whether to
always compile your programs as C++ code, or to always compile
your code as C code except when the file extension is .CPP.

You'll use the Out-of-Line Inline Functions when you want to step
through or set breakpoints on inline functions.

[]Out-of-line lnline Functions!

Optimizations

The Optimizations command displays a dialog box. The settings
in this box tell the compiler to prepare the object code in certain
ways to optimize the size or speed. The dialog box looks like this
(available only on Full menus):

57

Options I Compiler I Optimizations

58

Figure 1.22
The Optimizations Options

dialog box

02timization Options
L] Register optimization
[] Jump optimization

Important!

Register Variables
() None
() Register keyword
(•) Automatic

The check boxes in the Optimizations Options affect how
optimization of your code occurs.

•Register Optimization suppresses the reloading of registers by
remembering the contents of registers and reusing them as
often as possible.
Exercise caution when using this option because the compiler
cannot detect whether a value has been modified indirectly by a
pointer.

•Jump Optimization reduces the code size by eliminating
redundant jumps and reorganizing loops and switch
statements.
When this option is checked, the sequences of tracing and
stepping in the integrated debugger can be confusing, since
there might be multiple lines of source code associated with a
particular generated code sequence. For best stepping results,
turn this option off (uncheck it) while you are debugging.

The Register Variables radio buttons suppress or enable the use of
register variables.

With Automatic chosen, register variables are automatically
assigned for you. With None chosen, the compiler does not use
register variables even if you've used the register keyword. With
Register keyword chosen, the compiler uses register variables
only if you use the register keyword and a register is available.
(See Chapter 4, "Memory models, floating point, and overlays," in
the Programmer's Guide for more details.)

Generally, you can keep this option set to Automatic unless
you're interfacing with preexisting assembly code that does not
support register variables.

Turbo C++ User's Guide

Optimize For
(•) Size
() Speed

Options I Compiler I Optimizations

The Optimize For buttons let you change Turbo C ++'s code
generation strategy. Normally the compiler optimizes for size,
choosing the smallest code sequence possible. You can also have
the compiler optimize for speed, so that it chooses the fastest
sequence for a given task.

Source

Full menus only The Source command displays a dialog box. The settings in this
box tell the compiler to expect certain types of source code. The
dialog box looks like this:

Figure 1.23
The Source Options dialog

box

Source Options
[] Nested cornnents

Keywords
(•) Turbo C++
() ANSI
() UNIX V
() Kernighan and Ritchie

Chapter 1, The /DE reference

The Nested Comments checkbox allows you to nest comments in
Turbo C++ source files. Nested comments are not allowed in
standard C implementations, and they are not portable.

The Keyword radio buttons tell the compiler how to recognize
keywords in your programs.

•Choosing Turbo C++ tells the compiler to recognize the Turbo
C++ extension keywords, including near, far, huge, asm, cdecl,
pascal, interrupt, _es, _ds, _cs, _ss, and the register
pseudovariables (_AX, _BX, and so on). For a complete list,
refer to to Chapter 1, "The Turbo C++ language standard," in
the Programmer's Guide.

• Choosing ANSI tells the compiler to recognize only ANSI
keywords and treat any Turbo C++ extension keywords as
normal identifiers.

• Choosing UNIX V tells the compiler to recognize only UNIX V
keywords and treat any Turbo C++ extension keywords as
normal identifiers.

• Choosing Kernighan and Ritchie tells the compiler to recognize
only the K&R extension keywords and treat any Turbo C++
extension keywords as normal identifiers.

59

Options I Compiler I Source

60

!identifier length 321

Figure 1.24
The Compiler Messages

dialog box

Errors: stop after 25
Warnings: stop after 100

[X] Display warnings

Use the Identifier Length input box to specify the number (n) of
significant characters in an identifier. Except in C++, which
recognizes identifiers of unlimited length, all identifiers are
treated as distinct only if their first n characters are distinct. This
includes variables, preprocessor macro names, and structure
member names. The number can be from 1 to 32; the default is 32.

Messages

The Messages command displays a dialog box that lets you set
several options that affect compiler error messages in the
integrated environment.

If Full Menus is on, the dialog box also has four buttons that lead
to six separate dialog boxes. Each of the nested dialog boxes lets
you turn on or off individual types of error messages.

Here is what the full dialog box looks like:

•The Errors: Stop After option causes compilation to stop after a
specified number of errors have been detected. The default is
25, but you can enter any number from 0 to 255. (Entering 0
causes compilation to continue until the end of the file.)

•The Warnings: Stop After option causes compilation to stop
after a specified number of warnings have been detected. The
default is 100, but you can enter any number from 0 to 255.
(Entering 0 causes compilation to continue until the end of the
file or until the error limit has been reached, whichever comes
first.)

•The Display Warnings option (when checked) means that any
or all of the following warning types can be displayed if chosen:

•Portability warnings

Turbo C++ User's Guide

IPortab111ty ••• ,

Figure 1.25
The Portability dialog box

!ANSI v1olat1ons ••• ,

Figure 1.26
The ANSI Violations dialog

box

Chapter 7, The /DE reference

Options I Compiler I Messages

•ANSI violations

• C ++ warnings

•Frequent errors

When this option is off (unchecked), none of these warnings will
be displayed.

When you choose the Portability button in the Compiler Messages
dialog box, another dialog box appears that lets you make specific
settings in this category. Here is what this dialog box looks like:

Check the warnings you want to be notified of and uncheck the
ones you don't. Choose OK to return to the Compiler Messages
dialog box.

When you choose the ANSI Violations button in the Compiler
Messages dialog box, another dialog box appears that lets you
make specific settings in this category. Here is what this dialog
box looks like:

Check the warnings you want to be notified of and uncheck the
ones you don't. Choose OK to return to the Compiler Messages
dialog box.

When you choose the More ANSI Violations button in the ANSI
Violations dialog box, another dialog box appears with more
settings you can make in this category. Here is what this dialog
box looks like:

61

Options I Compiler I Messages

Figure 1.27
The More ANSI Violations

dialog box

le++ warnings ••• 1

Figure 1.28
The C++ Warnings dialog box

!Frequent errors ••• 1

62

se bypasses initialization of a local variable
oto bypasses initialization of a local variable

X Untyped bit field asswned signed int
x~ 'ident' declared as both external and static
X Declare 'ident' prior to use in prototype
X Division by zero
X Initializing 'ident' with 'ident'

This initialization is only partially bracketed
Bit fields must be signed or unsigned int
Declaration does not s ecif a ta or an identifier

Check or uncheck these warnings just like in the previous dialog
box's and choose OK to return to the ANSI Violations dialog box.

When you choose the C++ Warnings button in the Compiler
Messages dialog box, another dialog box appears that lets you
make specific settings in this category. Here is what this dialog
box looks like:

· ssignment to t 1s 1s obso ete
Base initialization without a class name
Functions containing 'ident' are not expanded inline
Function 'ident' should have a prototype
'ident' is both a structure tag and a name

~ Temporary used to initialize 'ident'
)(Temporary used for parameter 'ident'

The constant member 'ident' is not initialized

Ob so 1 ete syntax, use ' : : ' instead
Assigning 'ident' to 'ident'
'ident' hides virtual function 'ident' .
I This style of function definition is now obsolete

Use of 'overload' is now unnecessary and obsolete

Non-const function 'ident' called for const object

Check the warnings you want to be notified of and uncheck the
ones you don't. Choose OK to return to the Compiler Messages
dialog box.

When you choose the Frequent Errors button in the Compiler
Messages dialog box, another dialog box appears that lets you
make specific settings in this category. Here is what this dialog
box looks like:

Turbo C++ User's Guide

Figure 1.29
The Frequent Errors dialog

box

Figure 1.30
The More Frequent Errors

dialog box

Chapter 1. The /DE reference

Options I Compiler I Messages

Check the errors you want to be notified of and uncheck the ones
you don't. Choose OK to return to the Compiler Messages dialog
box.

Choosing the More button takes you to the More Frequent Errors
dialog box, which looks like this:

uper uous wit unction

J ident' declared but never used
Ambiguous operators need parentheses
Structure passed by value

~
No declaration for function 'ident'
ca 11 to function with no prototype
Restarting compile using assembly
Unknown assembler instruction
Function definition cannot be a typedef'ed declaration
Il 1-fomed ragma

Check or uncheck these errors like in the previous dialog box's
and choose OK to return to the Frequent Errors dialog box.

Names

The Names command brings up a dialog box that lets you change
the default segment, group, and class names for code, data, and
BSS sections. Don't change the settings in this command unless you are
an expert and have read Chapter 4, "Memory models, floating point, and
overlays," in the Programmer's Guide.

The dialog box looks like this:

63

Options I Compiler I Names

Figure 1.31
The Segment Names dialog

box

64

Transfer

Full menus only

Figure 1.32
The Transfer dialog box

The Options I Transfer command lets you add or delete programs
in the= menu. Then you can choose items from this menu to run
another program without actually leaving Turbo C++. You return
to Turbo C ++ only after you exit the program you transferred to.

The Transfer command displays a dialog box that looks like this:

The Transfer dialog box has two sections:

•the Program Titles list

• the Transfer buttons

The Program Titles section lists short descriptions of programs
that have been installed and are ready to execute. You might need
to scroll the list box to see all the programs available.

The Transfer buttons let you edit and delete the names of
programs you can transfer to, as well as cancel any changes
you've made to the transfer list. There's also a Help button to get
more information about using the transfer dialog box. Here's a
rundown of the buttons.

Turbo C++ User's Guide

Options I Transfer

The Edit button Choose Edit to add or change the Program Titles list that appears
in the= menu. The Edit button displays the New /Modify
Transfer Item dialog box.

Figure 1.33
The Modify/New Transfer

Item dialog box

For a fUll description of these
powerful macros, see the

following section, "Transfer
macros.·

This step is optional.

Chapter 7, The /DE reference

If you're positioned on a transfer item when you select Edit, the
input boxes in the Modify /New dialog box are automatically
filled in; otherwise they're blank.

Using the Modify /New dialog box, you take these steps to add a
new file to the Transfer dialog box:

1. Type a short description of the program you're adding on the
Program Title input box. (Note that when using a translator in
a project, it must match the transfer title exactly.)

Note that if you want your program to have a keyboard
shortcut (like the Sin the Save command or the tin the Cut
command), you should include a tilde(-) in the name. What
ever character follows the tilde appears in bold or in a special
color in the= menu, indicating that you can press that key to
choose the program from the menu.

2. Tab to Program Path and enter the program name and
optionally include the full path to the program. (If you don't
enter an explicit path, only programs in the current directory
or programs in your regular DOS path will be found.)

3. Tab to Command Line and type any parameters or macro
commands you want passed to the program. Macro
commands always start with a dollar sign ($) and are entered
in uppercase. For example, if you enter $CAP EDIT, all output
from the program will be redirected to a special Edit window
in Turbo C++.

4. If you want to assign a hot key, tab to the Hot Key options and
assign a shortcut to this program. Transfer shortcuts must be

65

Options I Transfer

I [] Translator I

The Delete button

66

Shift plus a function key. Keystrokes already assigned appear
in the list but are unavailable.

5. Now click or choose the New button to add this program to
the list.

To modify an existing transfer program, cursor to it in the
Program Titles list of the Transfer dialog box and then choose
Edit. After making the changes in the Modify /New Transfer
dialog box, choose the Modify button.

The Translator check box lets you put the Transfer program into
the Project File Translators list (the list you see when you choose
Project I Local Options). Check this option when you add a
transfer program that is used to build part of your project.

The Delete button removes the currently selected program from
the list and the = menu.

Transfer macros

The IDE recognizes certain macro names in the parameter string
of the Modify /New Transfer Item dialog box. There are three
kinds of macros:

•state
•filename

• instruction

Macros are expanded based on the state of the IDE. For example,
the macro $EDNAME refers to the file in the currently active
editor window; $EXENAME refers to the program that has been
or will be generated, as shown on the Compile menu.

The file name macros are actually functions that let you access
parts of file name specifications. For example, you may want a
macro that calls TDUMP and always dumps the object file of the
corresponding file in the editor, which requires stripping off the
path and extension and adding on the output path and the .OBJ
extension.

Instruction macros tell the integrated environment to perform
some action or make some setting.

Here's a look at what you can do with the macros available.

Turbo C++ User's Guide

TEML Is a Pascal-like
language that has many

built-In primitive editor
commands. See Appendix A

"Turbo Editor macros· for
more Information on it.

Chapter 1, The /DE reference

Options I Transfer

State macros

$COL: Column number of current editor. If the active window is
not an editor, then the string is set to 0.

$CONFIG: Complete file name of the current configuration file.
This is a null string if no configuration file is defined. This macro
is intended for use by programs that access or modify the
configuration file. Besides providing the name of the file, this
macro causes the current configuration to be saved (if modified)
and reloaded when control returns to the IDE.

Use this macro with the Turbo Editor Macro Language (TEML)
compiler. With it, you can edit the TEML script file in an editor
and then invoke the Turbo Editor Macro Compiler (TEMC) to
process the script. When the configuration file is reloaded, your
new or modified editor commands will be in effect. When
installing TEMC as a transfer item, use the following command
line:

$EDNAME $CONFIG

This assumes the current Edit window contains the TEML script
file to be processed.

$EDNAME: Complete file name of file in active editor. This is a
null string if the active window is not an editor.

$ERRCOL: Column number of current error in file $ERRNAME. If
there are no messages, then string is expanded to null string.

$EARLINE: Line number of current error in file $ERRNAME. If
there are no messages, then string is expanded to null string.

$ERRNAME: Complete file name of file referred to by the selected
messages in the Message window. This is a null string if there are
no messages or the currently selected message does not refer to a
file.

$EXENAME: Program's file name (including output path), based
on the project name or, if there is no project defined, then the
name of the .EXE that would be produced from the active editor
window.

$LINE: Line number of current editor. If the active window is not
an editor, then the string is set to 0.

$PRJNAME: The current project file. Null string if no project is
defined.

67

Options I Transfer

68

File name macros

These macros take file names as arguments and return various
parts of the file name. This allows you to build up new file name
specifications from existing file names. For example, you can pass
TDUMP a macro like this:

$DIR($EXENAME)$NAME($EDNAME) .OBJ

This macro gives you the output directory path, the file name
only in the active Edit window, and an explicit extension. If your
current directory is C: \WORK, your output directory is TEST,
and the active editor contains MYPROG.C, then TDUMP receives
the parameter

C:\WORK\TEST\MYPROG.OBJ

$DIR(): Directory of the file argument, full path with trailing
backslash; for example, \turboc\.

$DRIVE(): Drive of the file argument, in the form D:.

$EXT(): Extension of the file argument; this includes the dot (for
example, .CPP).

$NAME(): Name part of the file argument; does not include the
dot.

Instruction macros

$CAP EDIT: This macro tells the IDE to redirect program output
into a standard file. After the transfer program is completed, a
new editor window is created, and the captured output is
displayed. The captured output resides in a special Edit window
titled Transfer Output.

For $CAP EDIT to work correctly, the transfer program must write
to DOS standard output.

$CAP MSG(filter): Captures program output into the Message
window, using filter as a DOS filter for converting program output
into Message window format.

Two filters are provided: T ASM2MSG.EXE for Turbo Assembler
(TASM) and GREP2MSG.EXE for GREP. The source code to these
filters is also provided so you can write your own filters for other
transfer programs you install.

Any program that has line-oriented messages output (file and line
number) could be used with this macro.

Turbo C++ User's Gulde

Options I Transfer

$MEMO: This macro tells the IDE how much memory to try to
give the transfer program. The IDE gives up as much memory as
possible, to either the amount specified or the maximum
available, whichever is smaller. You'll get an error if no memory is
specified.

$NOSWAP: This macro tells the IDE not to swap to the User
Screen when running the program. It pops up a box that indicates
which transfer program is running. Use this macro in conjunction
with$CAP.

$PROMPT: This macro tells the IDE to display the expanded
parameter string before calling the transfer program. The
command line that will be passed is displayed in a dialog box.
This allows you to change or add to the string before it is
passed.The position of $PROMPT command in the command line
determines what is shown in the dialog prompt box. You can
place constant parameters in the command line by placing them
before $PROMPT. For example, the /c in

/c $PROMPT dir

is constant and doesn't show in the dialog box, but dir can be
edited before the command is run.

$SAVE ALL: This macro tells the IDE to save all modified files in
all Edit windows that have been modified, without prompting.

$SAVE CUR: This macro tells the IDE to save the file in the
current editor if it has been modified. This ensures that the
invoked program will use the latest version of the source file.

$SAVE PROMPT: This macro tells the IDE to prompt when there
are unsaved files in editor windows. You will be asked if you
want to save any unsaved files.

$T ASM: This macro is predefined for use with Turbo Assembler. It
uses the TASM2MSG filter to trap TASM messages. $TASM is
essentially shorthand for this:

$NOSWAP $EDNAME,$DRIVE($EXENAME)$DIR($EXENAME)\$NAME($EDNAME).OBJ
$CAP MSG(TASM2MSG)

Transfer memory setting

Different programs have different memory needs. For example,
GREP can run in very little memory, where many popular editors
require 200-300K to work well.

Chapter 7, The /DE reference 69

Options I Transfer

If you use the $MEMO macro, you can specify (on a program-by
program basis) how much memory the IDE should give to the
transfer programs. The less memory you devote to a transfer
program, the quicker the transfer to and from the program occurs.

There may be some cases where the IDE cannot give up as much
memory as you requested. When this happens, the IDE gives up
as much as it can. There are certain states in the IDE that require
more memory than others; for example, while debugging a
program, the IDE will tie up more resources than when not
debugging. Use Program Reset (Ctrl-F2) to free up debugging
memory.

In cases where you want the IDE to give up all its memory, you
simply give it a large number, like 640K. How much memory is
actually given up is dependent on how much you have when you
start Turbo C++.

Make The Options I Make command displays a dialog box that lets you
set conditions for project management. Here's what the dialog box
looks like:

Figure 1.34
The Make dialog box

Break Hake On
(J Warnings
• Errors f Fatal errors

(} Link

Use the Break Make On radio buttons to specify the condition that
will stop the making of a project. The default is to stop after
compiling a file with errors.

I [X] Check auto-dependenc1es I
When the Check Autodependencies option is checked, the Project
Manager automatically checks dependencies for every .OBJ file on
disk that has a corresponding .C source file in the project list.

70

The Project Manager opens the .OBJ file and looks for information
about files included in the source code. This information is always
placed in the .OBJ file by both Turbo C++ and the command-line
version of Turbo C++ when the source module is compiled. Then
every file that was used to build the .OBJ file is checked for time
and date against the time and date information in the .OBJ file.
The .C source file is recompiled if the dates are different. This is

Turbo C++ User's Guide

Options I Linker

called an autodependency check. If this option is off (unchecked), no
such file checking is done.

Linker The Options I Linker command lets you make several settings that
Full menus only affect linking. The Linker command opens a dialog box, which

Figure 1.35
The Linker dialog box

Hap File
(•) Off
(J Segments

Publ 1 cs
{ Detailed

I[] Initialize Segments!

I [] Default Libraries I

I [X] Graphics Library I

Chapter 1. The /DE reference

looks like this:

This dialog box has several check boxes and radio buttons. The
following sections contain short descriptions of what each does.

Use the Map File radio buttons to choose the type of map file to be
produced. For settings other than Off, the map file is placed in the
output directory defined in the Options I Directories dialog box.
The default setting for the map file is Off.

If checked, Initialize Segments tells the linker to initialize
uninitialized segments. (This is normally not needed and will
make your .EXE files larger.)

When you're linking with modules created by a compiler other
than Turbo C++, the other compiler may have placed a list of
default libraries in the object file.

If the Default Libraries option is checked, the linker tries to find
any undefined routines in these libraries as well as in the default
libraries supplied by Turbo C++. If this option is off (unchecked),
the linker searches only the default libraries supplied by Turbo
C++ and ignores any defaults in .OBJ files.

The Graphics Library option controls the automatic searching of
the BGI graphics library. When this option is checked (the
default), it's possible to build and run single-file graphics
programs without using a project file. Unchecking this option
speeds up the link step a bit because the linker doesn't have to
search in the BGI graphics library file.

71

Options I Linker

Note: You can uncheck this option and still build programs that
use BGI graphics, provided you add the name of the BGI graphics
library (GRAPIBCS.LIB) to your project list.

I [] Warn Duplicate Symbols I The Warn Duplicate Symbols option affects whether the linker
warns you of previously encountered symbols in .LIB files. The
default is off (unchecked).

72

I [] Stack Warning I

I [X] Case-sensitive Link!

I [] Overlay EXE I

The Stack Warning option affects whether the linker generates the
''No stack" message.

Note: It's normal for a program generated under the tiny model to
display this message if the message is not turned off.

The Case-Sensitive Link option affects whether the linker is case
sensitive. Normally, this option should be checked, since C is a
case-sensitive language.

When you check the Overlay EXE option, this tells the linker to
overlay the program. This lets you relink to switch between
overlaid and not overlaid. This is a global option. When it's
unchecked (turned off), Turbo C++ produces no overlays
regardless of the overlay setting in the Override Options dialog
box (Project I Local Options).

Debugger The Options I Debugger command lets you make several settings
Full menus only affecting the integrated debugger. This command opens a dialog

box, which looks like this:

Figure 1.36
The Debugger dialog box

Source Debugging (•i On (Standalone
(None

The following sections describe the contents of this box.

The Source Debugging radio buttons determine whether
debugging information is included in the executable file and how
the .EXE is run under Turbo C++.

Programs linked with this option set to On (the default) can be
debugged with either the integrated debugger or the standalone

Turbo C++ User's Gulde

(None
o;sl1ay swapping

(• Smart
() Always

Chapter 1, The /DE reference

Options I Debugger

Turbo Debugger. Switch this back to On when you want to debug
in the IDE.

If you set this option to Standalone, programs can be debugged
only with Turbo Debugger, although they can still be run in Turbo
C++.

If you set this option to None, programs cannot be debugged with
either debugger, because no debugging information has been
placed in the .EXE file.

The Display Swapping radio buttons let you set when the
integrated debugger will change display windows while running
a program.

If you set Display Swapping to None, the debugger does not swap
the screen at all. You should only use this setting for debugging
sections of code that you're certain do not output to the screen.

When you run your program in debug mode with the default
setting of Smart, the debugger looks at the code being executed to
see whether it will generate output to the screen. If the code does
output to the screen (or if it calls a function), the screen is
swapped from the IDE screen to the User Screen long enough for
output to be displayed, then is swapped back. Otherwise, no
swapping occurs.

Note: Be aware of the following with smart swapping:

•It swaps on any function call, even if the function does no
screen output.

•In some situations, the IDE screen might be modified without
being swapped; for example, if a timer interrupt routine writes
to the screen.

If you set Display Swapping to Always, the debugger swaps
screens every time a statement executes. You should choose this
setting any time the IDE screen is likely to be overwritten by your
running program.

Note: If you're debugging in dual monitor mode (that is, you used
the Turbo C++ command-line /d option), you can see your
program's output on one monitor and the Turbo C++ screen on
the other. In this case, Turbo C++ never swaps screens and the
Display Swapping setting has no effect.

73

Options I Debugger

74

InsJectors
[X Show inherited
[X Show methods

() Show decimal
() Show hex
(o) Show both

Program Heap Size
64 Kbytes

It's only meaningful to
increase heap size when
working with large data

models.

Directories

Figure 1.37
The Directories dialog box

In the Inspectors checkboxes, when Show Inherited is checked, it
tells the integrated debugger to display all member functions and
methods-whether they are defined within the inspected class or
inherited from a base class. When this option is not checked, only
those fields defined in the type of the inspected object are
displayed.

When checked, the Show Methods option tells the integrated
debugger to display member functions when you inspect a class.

Check the Show Decimal, Show Hex, or Show Both radio buttons
when you want to control how the values in inspectors are
displayed. Show both is on by default.

You can use the Program Heap Size input box to input how much
memory Turbo C++ should assign a program when you debug it.
The actual amount of memory that Turbo C++ tries to give to the
program is equal to the size of the executable image plus the
amount you specify here.

The default value for the program heap size is 64 Kbytes. You
may want to increase this value if your program uses dynamically
allocated objects.

The Options I Directories command lets you tell Turbo C++ where
to find the files it needs to compile, link, and output binary and
map files.

This command opens a dialog box containing three input boxes.
The dialog box looks like this:

Here is what each input box is for:

•The Include Directories input box specifies the directory that
contains your include files. Standard include files are those
given in angle brackets (<>) in an #include statement (for
example, #include <myfile.h>). These directories are also

Turbo C++ User's Guide

Options I Directories

searched for quoted Includes not found in the current directory.
Multiple directory names are allowed, separated by semicolons.

•The Library Directories input box specifies the directories that
contain your Turbo C++ startup object files (CO?.OBJ) and run
time library files (.LIB files) and any other libraries that your
project may use. Multiple directory names are allowed,
separated by semicolons.

•The Output Directory input box specifies the directory that
stores your .OBJ, .EXE, and .MAP files. Turbo C++ looks for
that directory when doing a make or run, and to check dates
and times of .OBJs and .EXEs. If the entry is blank, the files are
stored in the current directory.

Use the following guidelines when entering directories in these
input boxes:

•You must separate multiple directory path names (if allowed)
with a semicolon(;). You can use up to a maximum of 127
characters (including whitespace).

• Whitespace before and after the semicolon is allowed but not
required.

• Relative and absolute path names are allowed, including path
names relative to the logged position in drives other than the
current one. For example,

C:\C\LIB;C:\C\MYLIBS;A:TC\MATHLIBS;A: .. \VIDLIBS

Environment The Options I Environment command lets you make
environment-wide settings. This command opens a menu that lets
you choose settings from Preferences, Editor, and Mouse. (If you
have Full Menus off, you won't see all these options.)

Figure 1.38
The Preferences dialog box

Screen Size
(•) 25 lines
() 43/50 lines

Chapter 7, The /DE reference

Here's what the Preferences dialog box looks like:

The Screen Size radio buttons let you specify whether your inte
grated environment screen is displayed in 25 lines or 43/50 lines.

75

Options I Environment

76

Source Tracking
(} New window
(•} Current window

Auto Save
[] Editor Files
[X) Environment
[X] Desktop
[X] Project

[] Save 01 d Messages

One or both of these buttons will be available, depending on the
type of video adapter in your PC.

When set to 25 lines (the default), Turbo C++ uses 25 lines and 80
columns. This is the only screen size available to systems with a
monochrome display or Color Graphics Adapter (CGA).

If your PC has EGA or VGA, you can set this option to 43 /50
lines. The IDE is displayed in 43 lines by 80 columns if you have
an EGA, or 50 lines by 80 columns if you have a VGA.

When stepping source or viewing the source from the Message
window, the IDE opens a new window whenever it encounters a
file that is not already loaded. Selecting Current Window causes
the IDE to replace the contents of the topmost Edit window with
the new file instead of opening a new Edit window.

If Editor Files is checked in the Auto Save options, and if the file
has been modified since the last time you saved it, Turbo C++
automatically saves the source file in the Edit window whenever
you choose the Run I Run (or any debug/run command) or File I
OS Shell command.

When the Environment option is checked, all the settings you
made in this dialog box will be saved automatically when you exit
Turbo C++.

When Desktop is checked, Turbo C++ controls whether your
desktop is saved on exit and whether it's restored when you
return to Turbo C++.

When the Project option is checked, Turbo C++ saves all your
project, auto-dependency, and module settings on exit and
restores them when you return to Turbo C++.

When Save Old Messages is checked, Turbo C++ saves the error
messages currently in the Message window, appending any
messages from further compiles to the window. When a file is
compiled, any messages for that file are removed from the
Message window and new messages are added to the end. When
you uncheck this box, Turbo C++ automatically clears messages
before a compile, a make, or a transfer that uses the Message
window.

If you choose Editor from the Environment menu, these are the
options you can pick from:

Turbo C++ User's Guide

Editor Options
[X] Create backup files
[X] Insert mode
[X] Autoindent mode
[X] Use tab character
[X] Optimal fill
[X] Backspace unindents
[X] Cursor through tabs

lrab Size al

Options I Environment

The Editor Options dialog box has several check boxes that
control how Turbo C++ handles text in Edit windows.

•When Create Backup Files is checked (the default), Turbo C++
automatically creates a backup of the source file in the Edit
window when you choose File I Save and gives the backup file
the extension .BAK.

• When Insert Mode is not checked, any text you type into Edit
windows overwrites existing text. When the option is checked,
text you type is inserted (pushed to the right). Pressing Ins
toggles Insert mode when you're working in an Edit window.

•When Autoindent Mode is checked, pressing Enter in an Edit
window: positions the cursor under the first non blank character
in the preceding nonblank line. This can be a great aid in
keeping your program code more readable.

•When Use Tab Character is checked, Turbo C++ inserts a true
tab character (ASCII 9) when you press Tab. When this option is
not checked; Turbo C++ replaces tabs with spaces, the number
of which is determined by the Tab Size setting, discussed later.

•When you check Optimal Fill, Turbo C++ begins every
autoindented line with the minimum number of characters
possible, using tabs and spaces as necessary. This produces
lines with fewer characters than when Optimal Fill is not
checked.

•When Backspace Unindents is checked (which is the default)
and the cursor is on a blank line or the first non-blank character
of a line, the Backspace key aligns (outdents) the line to the
previous indentation level.

•When you check Cursor Through Tabs, the arrow keys will
move the cursor to the middle of tabs; otherwise the cursor
jumps several columns when cursoring over a tab.

If you check Use Tab Character in this dialog box and press Tab,
Turbo C++ inserts a tab character in the file and the cursor moves
to the next tab stop. The Tab Size input box allows you to dictate
how many characters to move for each tab stop. Legal values are 2
through 16; the default is 8.

To change the way tabs are displayed in a file, just change the tab
size value to the size you prefer. Turbo C++ redisplays all tabs in
that file in the size you chose. You can save this new tab size in
your configuration file by choosing Options I Save Options.

Chapter 7, The /DE reference 77

Options I Environment

78

!Default Extension C I

Right Mouse Button !) Nothing ·i Topic search Go to cursor
Breakpoint

(Inspect
(Evaluate
() Add watch

House Double Click
Fast Test Slow
1m1nrr-irrrr•,•1

[] Reverse House Buttons I

The Default Extension input box lets you tell Turbo C++ which
extension to use as the default when compiling and loading your
source code.

When you choose Mouse from the Environment menu, the Mouse
Options dialog box is displayed, which contains all the settings
for your mouse. These are the options available to you:

The Right Mouse Button radio buttons determine the effect of
pressing the right button of the mouse (or the left button, if the
reverse mouse buttons option is checked). Topic Search is the
default.

Here's a list of what the right button would do if you choose
something other than Nothing:

Topic Search Same as Help I Topic Search
Go to Cursor Same as Run I Go To Cursor
Breakpoint Same as Debug I Toggle Breakpoint
Inspect Same as Debug I Inspect
Evaluate Same as Debug I Evaluate
Add Watch Same as Debug I Watches I Add

Watch

In the Mouse Double Click box, you can change the slider control
bar to adjust the double-dick speed of your mouse by using the
arrow keys.

Moving the scroll box closer to Fast means Turbo C++ requires a
shorter time between clicks to recognize a double click. Moving
the scroll box closer to Slow means Turbo C++ will still recognize
a double click even if you wait longer between clicks.

If you want to experiment with different settings, you can
double-dick the Test button above the scroll bar. The bar
highlights when you successfully double-click it.

When Reverse Mouse Buttons is checked, the active button on
your mouse is the rightmost one instead of the leftmost. Note,
however, that the buttons won't actually be switched until you
choose the OK button.

Depending on how you hold your mouse and whether you're
right- or left-handed, the right mouse button might be more
comfortable to use than the left.

Turbo C++ User's Guide

Options I Save

Save The Options I Save command brings up a dialog box that lets you
save settings that you've made in both the Find and Replace
dialog boxes (off the Search menu) and in the Options menu
(which includes all the dialog boxes that are part of those
commands) for Environment, Desktop, and Project items. Options
are stored in three files, which represent each of these categories.

Window menu

Size/Move
@fil)[ill

Zoom
[ill

Chapter 1, The /DE reference

If it doesn't find the files, Turbo C++ looks in the Executable
directory (where TC.EXE is run from) for the same file.

The Window menu contains window management commands.
Most of the windows you open from this menu have all the
standard window elements like scroll bars, a close box, and zoom
boxes. Refer to page 14 for information on these elements and
how to use them.

At the bottom of the Window menu, the Window I List command
appears. Choose this command for a list of all open windows as
well as recently closed ones. (A recently closed window appears
with closed before it; choose it to reopen it.)

Choose Window I Size/Move to change the size or position of the
active window.

When you choose this command, the active window moves in
response to the arrow keys. When the window is where you want
it, press Enter. You can also move a window by dragging its title
bar.

If you press Shift while you use the arrow keys, you can change
the size of the window. When it's the size you want it, press Enter.
If a window has a resize corner, you can drag that corner or any
other comer to resize it.

Choose Window I Zoom to resize the active window to the
maximum size. If the window is already zoomed to the max, you
can choose this command again to restore it to its previous size.
You can also double-dick anywhere on the top line (except where
an icon appears) of a window to zoom or unzoom it.

79

Window I Tile

80

Tile

·cascade

Next
[ff]

Close
~[ill

Message

Choose Window I Tile to tile all your open windows.

Choose Window I Cascade to stack all open windows.

Choose Window I Next to make the next window active, which
makes it the topmost open window.

Choose Window I Close to close the active window. You can also
click the close box in the upper left comer to close a window.

Choose Window I Message to open the Message window and
make it active. The Message window displays error and warning
messages, which you can use for reference, or you can select them
and have the corresponding location be highlighted in the Edit
window. When a message refers to a file that is not currently
loaded, you can press the Spacebarto load that file. You can also
display transfer program output in this window.

When an error is selected in the Message window, press Enter to
show the location of the error in the Edit window and make the
Edit window active at the point of error.

To close the window, click its close box or choose Window I Close.

Output Choose Window I Output to open the Output window and make it
active. The Output window displays text from any DOS
command-line text and any text generated from your program (no
graphics).

The Output window is handy while debugging because you can
view your source code, variables, and output all at once. This is
especially useful when you've set the Options I Environment
dialog box to a 43/50 line display and you are running a standard
25-line mode program. In that case, you can see almost all of the
program output and still have plenty of lines to view your source
code and variables.

If you would rather see your program's text on the full screen-or
if your program generates graphics-choose the Window I User
Screen command instead.

To close the window, click its close box or choose Window I Close.

Turbo C++ User's Gulde

Window I Watch

Watch Choose Window I Watch to open the Watch window and make it
active. The Watch window displays expressions and their
changing values so you can keep an eye on how your program
evaluates key values.

User Screen

Register

Full menus only

You use the commands in the Debug I Watches pop-up menu to
add or remove watches from this window. Refer to the section on
this menu for information on how to use the Watch window (page
45).

To close the window, click its close box or choose Window I Close.

Choose Window I User Screen to view your program's full-screen
output. If you would rather see your program output in a Turbo
C ++ window, choose the Window I Output command instead.
Clicking or pressing any key returns you to the integrated
environment.

Choose Window I Register to open the Register window and make
it active.

The Register window displays CPU registers and is used when
debugging inline ASM and T ASM modules in your project.

To close the window, click its close box or choose Window I Close.

Project Choose Window I Project to open the Project window, which lets
you view files that you're using to create your program.

Notes Choose Window I Notes to write down any details, make to-do
lists, or list any other information about your project files.

List Choose Window I List to get a list of all the windows you've
opened. The list contains the names of all files that are currently
open as well as any of the last eight files you've opened in an Edit
window but have since closed. A recently closed file appears in
the list prefixed with the word closed.

Chapter 1, The /DE reference

When you choose an already open file from the list, Turbo C++
brings the window to the front and makes it active. When you
choose a closed file from the list, Turbo C++ reopens the file in an
Edit window the same size and location as when the window was
closed. The cursor is positioned at its last location.

81

Window I List

Help menu

When getting help in a
dialog box or menu, you

cannot resize the window or
copy to the clipboard. In this

instance, Tab takes you to
dialog box controls, not the

next keyword.

82

Press Alt-0 to pop up a complete list of all open windows and all
Edit windows you've closed. For a full rundown of how to
manage windows, see page 16.

The Help menu gives you access to online help in a special
window. There is help information on virtually all aspects of the
integrated environment and Turbo C++. (Also, one-line menu and
dialog box hints appear on the status line whenever you select a
command.)

To open the Help window, do one of these actions:

• Press Ft at any time (including from any dialog box or when
any menu command is selected).

• When an Edit window is active and you're positioned on a
word, press Ctrl-Ft to get language help.

•Click Help whenever it appears on the status line or in a dialog
box.

To close the Help window, press Esc, click the close box, or choose
Window I Close. You can keep the Help window onscreen while
you work in another window unless you opened the Help
window from a dialog box or pressed Ft when a menu command
was selected. (If you press F6 or click on another window while
you're in Help, the Help window remains onscreen.)

Help screens often contain keywords (highlighted text) that you
can choose to get more information. Press Tab to move to any
keyword; press Enterto get more detailed help. (As an alternative,
move the cursor to the highlighted keyword and press Enter. With
a mouse, you can double-click any keyword to open the help text
for that item.

You can also cursor around the Help screen and press Ctrl-Ft on
any word to get help. If the word is not found, an incremental
search is done in the index and the closest match displayed.

When the Help window is active, you can copy from the window
and paste that text into an Edit window. You do this just the same
as you would in an Edit window: Select the text first (using
Shift--7, Left arrow, Up arrow, Down arrow), choose Edit I Copy,
move to an Edit window, then choose Edit I Paste.

Turbo C++ User's Guide

Contents

Index

You can also tab to a
keyword to select it.

Topic Search

@fil]ITIJ

Chapter 7, The /DE reference

Window I List

To select text in the Help window, drag across the desired text or,
when positioned at the start of the block, press Shift~,~. i, J, to
mark a block.

You can also copy preselected program examples from help
screens by choosing the Edit I Copy Example command.

The Help I Contents command opens the Help window with the
main table of contents displayed. From this window, you can
branch to any other part of the help system.

You can get help on Help by pressing F1 when the Help window
is active. You can also reach this screen by clicking on the status
line.

The Help I Index command opens a dialog box displaying a full list
of help keywords (the special highlighted text in help screens that
let you quickly move to a related screen).

You can scroll the list or you can incrementally search it by
pressing letters from the keyboard. For example, to see what's
available under "printing," you can type p r i. When you type p,
the cursor jumps to the first keyword that starts with p. When you
then typer, the cursor then moves to the first keyword that starts
with pr. When you then type i, the cursor moves to the first
keyword that starts with pri, and so on.

When you find a keyword that interests you, choose it by
cursoring to it and pressing Enter. (You can also double-click it.)

The Help I Topic Search command displays language help on the
currently selected item.

To get language help, position the cursor on an item in an Edit
window and choose Topic Search. You can get help on things like
function names (printf, for example), header files, reserved words,
and so on. If an item is not in the help system, the help index
displays the closest match.

83

Help I Previous Topic

Previous Topic

[][][ITJ

Help on Help

The Help I Previous Topic command opens the Help window and
redisplays the text you last viewed.

Turbo C++ lets you back up through 20 previous help screens.
You can also click on the status line to view the last help screen
displayed.

The Help I Help on Help command opens up a text screen that
explains how to use the Turbo C++ help system. If you're already
in help, you can bring up this screen by pressing F1.

Project and configuration files

Old-style files

The new project .

The integrated environment for Turbo C++ handles configuration
files differently than Turbo C. The focus of the IDE has changed
from configuration-based to project-based. This means that
instead of loading a configuration (.TC) file that defines your
project, you load a project file that contains everything needed to
build your program.

In Turbo C, all options (compiler, environment, and so on) are
stored in the .TC file. The project file consists of an ASCII list of
file names that comprise the project. Thus, the information
needed to build the program that the project represents is spread
across two files: the project file and the .TC file.

file In Turbo C++, the IDE places all information needed to build a
program into a binary project file. This includes compiler and
linker options, directory paths, project specific settings (for
example, program heap size, autodependencies used, and so on),
and special translators (such as T ASM). In addition, the project
file contains other general information on the project, such as
compilation statistics (shown in the project window), and cached
auto-dependency information.

84 Turbo C++ User's Gulde

The new
configuration file

You might need only one
copy of the . TC tile on your
hard disk. When kept with

the TC.EXE tile, the
TCCONFIG. TC tile Is loaded,
unless there Is another copy

In the current directory.

Loading project
files

The project
directory

Chapter 7, The /DE reference

In Turbo C++'s IDE, the TCCONFIG.TC file contains only
environmental information. The .TC file is no longer required to
build programs defined by a project. The information stored in
the . TC file includes

• editor key binding and macros
•editor mode setting (such as autoindent, use tabs, etc.)
•color tables
• Full menus on/off setting
• 25 I 43 line setting
• mouse preferences
•auto-save flags

Project files are loaded in three ways:

1. When invoking Turbo C++, give the project name with the
.PRJ extension after the TC command; for example,

TC myproj .PRJ

You must use the .PRJ extension in order to differentiate it
from source files.

2. If there is only one .PRJ file in the current directory, the IDE
assumes that this directory is dedicated to this project and
automatically loads it. Thus, typing TC alone while the current
directory contains one project file causes that project file to be
loaded.

3. From within the IDE, you load a project file using the Project I
Open Project command.

When a project file is loaded from a directory other than the
current directory, the current DOS directory is set to where the
project is loaded from. This allows your project to be defined in
terms of relative paths in the Options I Directories dialog box and
also allows projects to move from one drive to another or from
one directory branch to another. Note, however, that changing
directories after loading a project may make the relative paths

85

Desktop files

Changing project
files

Default files

86

incorrect and your project unbuildable. If this happens, change
the current directory back to where the project was loaded from.

Each project file has an associated desktop file (prjname.DSK). This
file contains state information about the associated project. While
none of the information it contains is needed to build the project,
all of the information is directly related to the project.

The desktop file includes

•the context information for each file in the project (that is, the
position in the file, the location of the window on the screen,
etc.)

•the history lists for various input boxes (for example, search
strings, file masks, etc.)

• layout of the windows on the desktop

Because each project file has its own desktop file, changing to
another project file causes the current desktop to be written out
and the newly loaded project's desktop to be used. Thus changing
from one existing project to another existing project can change
your entire window layout. When you create a new project (by
using Project I Open Project and typing in a new .PRJ file), the new
project's desktop inherits the previous desktop. When you select
Project I Close Project, the default project is loaded and you get the
default desktop.

When no project file is loaded, there are two default files that
serve as global place holders for project- and state-related
information: TCDEF.DPR and TCDEF.DSK files, collectively
referred to as the default project.

These files are usually stored in the same directory as TC.EXE,
and are created if they are not found. When you run the IDE from
a directory without loading a project file, you get the desktop and
settings from these files. These files are updated when you change
any project-related options (for example, compiler options) or
when your desktop changes (for example, the window layout).

Turbo C++ User's Guide

c H A p T E R

2

Managing multi-file projects

Since most programs consist of more than one file, having a way
to automatically identify those that need to be recompiled and
linked would be ideal. Turbo C++'s built-in Project Manager does
just that and more.

The Project Manager allows you to specify the files belonging to
the project. Whenever you rebuild your project, the Project
Manager automatically updates the information kept in the
project file. This project file, which includes

• all the files in the project
•where to find them on the disk

•which files depend on which other files being compiled first
(auto-dependency issues)

•which compilers and command-line options need to be used
when creating each part of the program

•where to put the resulting program

•code size, data size, and number of lines from the last compile

Using the Project Manager is easy. To build a project,

• pick a name for the project file (from Project I Open Project)

• add source files using the Project I Add Item dialog box

•tell Turbo C++ to Compile I Make EXE File

Then, with the project-management commands available on the
Project menu, you can

Chapter 2, Managing multi-fife projects 87

• add or delete files from your project

• set options for a file in the project

• view included files for a specific file in the project

All the files In this chapter are Let's take a look at an example of how the Project Manager works.
In the Examples directory.

Using the project manager

If you have project files from
Turbo C, use the utility

PRJCNVT.EXE to convert
them: for details, see

UT/L.DOC on disk.

88

Suppose you have a program that consists of a main source file,
MYMAIN.C, a support file, MYFUNCS.C, that contains functions
and data referenced from the main file, and MYFUNCS.H.
MYMAIN.C looks like this:

#include <stdio.h>
#include "myfuncs.h"

main (int argc, char *argv[])
(

char *s;

if (argc > 1)
s = argv [1];

else
s = "the universe";

printf("%s %s.\n",GetString(),s);

MYFUNCS.C looks like this:

char ss[J ="The restaurant at the end of";

char *GetString(void)
(

return ss;

And MYFUNCS.H looks like this:

extern char *GetString(void);

These files make up the program that we'll now describe to the
Project Manager.

Turbo C++ User's Guide

These names can be the The first step is to tell Turbo C++ the name of the project file that
si~°::J~ :i:f~t: ~':;;~~~~:~; you're going to use: Call it MYPROG.PRJ. Notice that the name of

be. The name of your the project file is not the same as the name of the main file
executable file (and any (MYMAIN .C). And in this case, the executable file will be

map file produced by the MYPROG.EXE (and if you choose to generate it, the map file will
linker) Is based on the project be MYPROG.MAP).

file's name.

If the project file you load is
in another directory, the

current directory will be set
to where the project file is

loaded.

You can change the file
name specification to

whatever you want with the
Name input box: ·.c Is the

default.

Press Alt-P to go to the Project menu and choose Open Project. This
brings up the Load Project File dialog box, which contains a list of
all the files in the current directory with the extension .PRJ, and
date, time, and size information about the first project file. Since
you're starting a new file, type in the name MYPROG in the Load
Project File input box.

Notice that once a project is opened, the Add Item, Delete Item,
Local Options, and Include Files options are enabled on the
Project menu.

You can keep your project file in any directory; to put it
somewhere other than the current directory, just specify the path
as part of the file name. (You must also specify the path for source
files if they're in different directories.) Note that all files and
corresponding paths are relative to the directory where the project
file is loaded from. After you enter the project file name, you'll see
a Project window.

The Project window contains the current project file name
(MYPROG) and information about the files you've selected to be
part of your current project. For each file, the name and path
(location) are shown. Once the file is compiled, it also shows the
number of lines in the file and the amount of code and data in
bytes generated by the compiler.

The status line at the bottom of the screen shows which actions
can be performed at this point: F1 gives you help, Ins adds files to
the Project, Del deletes a file from the Project, Ctrl-0 lets you select
options for a file, Spacebar lets you view information about the
include files required by a file in the Project, and F10 takes you to
the main menu. Press Ins now to add a file to the project list.

The Add Item to Project List dialog box appears; this dialog lets
you select and add source files to your project. The Files list box
shows all files with the .C extension in the current directory.
(MYMAIN.C and MYFUNCS.C both appear in this list.) Three
action buttons are available: Add, Cancel, and Help.

Chapter 2, Managing multi-file projects 89

If you copy the wrong file to
the Project window, press Esc

to return to the Project
window, then Del to remove

the current file (marked with
a •) from the list.

90

Note that the Add button
commits your change:

pressing Esc when you're in
the dialog box just puts the

dialog box away.

You can also view your
output by choosing

Window I Output.

Since the Add button is the default, you can place a file in the
Project window by typing its name in the Name input box and
pressing Enter or by choosing it in the Files list box. You can also
search for a file in the Files list box by typing the first few letters
of the one you want. In this case, typing my should take you right
to MYFUNCS.C; press Enter. You'll see that MYFUNCS gets added
to the Project window and then you're returned to the Add Item
dialog box to add another file. Go ahead and add MYMAIN.C.
Turbo C++ will compile files in the exact order they appear in the
project.

Press Esc to dose the dialog box and return to the Project window.
Notice that the Lines, Code, and Data fields in the Project window
shown/a. This means the information is not available until the
modules are actually compiled.

I • File Edit Search Project Options Window Help
~~~~~~~~1---, 

After all compiler options and directories have been set, Turbo 
C++ will know everything it needs to know about how to build 
the program called MYPROG.EXE using the source code in 
MYMAIN.C, MYFUNCS.C, and MYFUNCS.H. Now you'll 
actually build the project. 

Press F10 to go to the main menu. Now make MYPROG.EXE by 
pressing F9 (or choose Compile I Make EXE File). Then run your 
program by pressing Ctrl-F9 (or choose Run I Run). To view your 
output, choose Window I User Screen (or press Alt-FS), then press 
any key to return to the integrated environment. 

Turbo C++ User's Guide 



For more information on .PRJ 
and .OSK files, refer to the 

section. "Project and 
configuration files,· in 

Chapter 1. 

You can specify a project to 
load on the DOS command 
line like this: TC myprog.prj. 

Error tracking 

Changing these files makes 
them out of date with their 

object files, so doing a make 
will recompile them. 

When you leave the IDE, the project file you've been working on 
is automatically saved on disk; you can disable this by uncheck
ing Project in the Preferences dialog box (Options I Environment). 

The saved project consists of two files: the project file (.PRJ) and 
the desktop file (.DSK). The project file contains the information 
required to build the project's related executable (.EXE). The build 
information consists of compiler options, INCLUDE/LIB/ 
OUTPUT paths, linker options, make options, and transfer items. 
The desktop file contains the state of all windows at the last time 
you were using the project. 

The next time you use Turbo C++, you can jump right into your 
project by reloading the project file. Turbo C++ automatically 
loads a project file if it is the only .PRJ file in the current directory; 
otherwise the default project and desktop (TCDEF.*) are loaded. 
Since your program files and their corresponding paths are 
relative to the project file's directory, you can work on any project 
by moving to the project file's directory and bringing up Turbo 
C++. The correct file will be loaded for you automatically. If no 
project file is found in the current directory, the default project file 
is loaded. 

As with single-file programs, syntax errors that generate compiler 
warning and error messages in multifile programs can be selected 
and viewed from the Message window. 

To see this, let's introduce some syntax errors into the two files, 
MYMAIN.C and MYFUNCS.C. From MYMAIN .C, remove the 
first angle bracket in the first line and remove the c in char from 
the fifth line. These changes will generate five errors and two 
warnings in MYMAIN. 

In MYFUNCS.C, remove the first r from return in the fifth line. 
This change will produce two errors and one warning. 

Since you want to see the effect of tracking in multiple files, you 
need to modify the criterion Turbo C++ uses to decide when to 
stop the make process. This is done by setting a radio button in 
the Make dialog box (Options I Make). 

Chapter 2, Managing multi-file projects 91 



Stopping a make 

92 

Syntax errors in 
multiple source 

files 

You can choose the type of message you want the make to stop on 
by setting one of the Break Make On options in the Make dialog 
box (Options I Make). The default is Errors, which is normally the 
setting you'd want to use. However, you can have a make stop 
after compiling a file with warnings, with errors, or with fatal 
errors, or have it stop before it tries to link. 

The usefulness of each of these modes is really determined by the 
way you like to fix errors and warnings. If you like to fix errors 
and warnings as soon as you see them, you should set Break 
Make On to Warnings or maybe to Errors. If you prefer to get an 
entire list of errors in all the source files before fixing them up, 
you should set the radio button to Fatal Errors or to Link. To de
monstrate errors in multiple files, choose Fatal Errors in the Make 
dialog box. 

Since you've already introduced syntax errors into MYMAIN.C 
and MYFUNCS.C, go ahead and press F9 (Make) to "make the 
project." The Compiling window shows the files being compiled 
and the number of errors and warnings in each file and the total 
for the make. Press any key when the Errors: Press any key 
message flashes. 

Your cursor is now positioned on the first error or warning in the 
Message window. If the file that the message refers to is in the 
editor, the highlight bar in the Edit window shows you where the 
compiler detected a problem. You can scroll up and down in the 
Message window to view the different messages. 

Note that there is a "Compiling" message for each source file that 
was compiled. These messages serve as file boundaries, separat
ing the various messages generated by each module and its in
clude files. When you scroll to a message generated in a different 
source file, the Edit window will only track in files that are 
currently loaded. 

Thus, moving to a message that refers to a file that is not loaded 
causes the Edit window's highlight bar to turn off. Press Spacebar 
to load that file and continue tracking; the highlight bar will re
appear. If you choose one of these messages (that is, press Enter 
when positioned on it), Turbo C++ loads the file it references into 

Turbo C++ User's Guide 



Saving or deleting 

an Edit window and places the cursor on the error. If you then 
return to the Message window (press Alt-WM), tracking resumes in 
that file. 

The Source Tracking options in the Preferences dialog box 
(Options I Environment) help you determine which window a file 
is loaded into. You can use these settings when you're message 
tracking and debug stepping. 

Note that Previous message and Next message (Alt-Fl and Alt-FB) 
are affected by the Source Tracking setting. These commands will 
always find the next or previous error and will load the file using 
the method specified by the Source Tracking setting. 

messages Normally, whenever you start to make a project, the Message 
window is cleared out to make room for new messages. Some
times, however, it is desirable to keep messages around between 
makes. 

Consider the following example: You have a project that has 
many source files and your program is set to stop on Errors. In 
this case, after compiling many files with warnings, one error in 
one file stops the make. You fix that error and want to find out if 
the compiler will accept the fix. But if you do a make or compile 
again, you lose your earlier warning messages. To avoid this, 
check Save Old Messages in the Preferences dialog box (Options I 
Environment). This way the only messages removed are the ones 
that result from the files you recompile. Thus, the old messages 
for a given file are replaced with any new messages that the com
piler may generate. 

You can always get rid of all your messages by choosing 
Compile I Remove Messages, which zaps all the current messages. 
Unchecking Save Old Messages and running another make will 
also get rid of any old messages. 

The power of the Project Manager 

When you made your previous project, you dealt with the most 
basic situation: a list of C source file names. The Project Manager 
provides you with a lot of power to go beyond this simple 
situation. 

Chapter 2, Managing multi-file projects 93 



Autodependency 
checking The Project Manager collects autodependency information at 

compile time and caches these so that only files compiled outside 
the IDE need to be processed. The Project Manager can automat
ically check dependencies between source files in the project list 
(including files they themselves include) and their corresponding 
object files. This is useful when a particular C source file depends 
on other files. It is common for a C source to include several 
header files (.h files) that define the interface to external routines. 
If the interface to those routines changes, you'll want the file that 
uses those routines to be recompiled. 

If you've check the Auto-Dependencies option (Options I Make), 
Make obtains time-date stamps for all .C files and the files in
cluded by these. Then make compares the date/time information 
of all these files with their date/time at last compile. If any date/ 
time is different, the source file is recompiled. 

If the Auto-Dependencies option is unchecked, the .C files are 
checked against .OBJ files. If earlier .C files exist, the source file is 
recompiled. 

When a file is compiled, the Turbo C++ integrated environment 
compiler (TC.EXE) and the Turbo C++ command-line compiler 
(TCC.EXE) put dependency information into the .OBJ files. The 
Project Manager uses this to verify that every file that was used to 
build the .OBJ file is checked for time and date against the time 
and date information in the .OBJ file. The .C source file is 
recompiled if the dates are different. 

That's all there is to dependencies. You get the power of more 
traditional makes while avoiding long dependency lists. 

Using different file translators 

94 

So far you've built projects that use Turbo C++ as the only 
language translator. Many projects consist of both C code and 
assembler code, and possibly code written in other languages. It 
would be nice to have some way to tell Turbo C++ how to build 
such modules using the same dependency checks that we've just 
described. With the Project Manager, you don't need to worry 
about forgetting to rebuild those files when you change some of 

Turbo C++ User's Guide 



the source code, or about whether you've put them in the right 
directory, and so on. 

For every source file that you have included in the list in the 
Project window, you can specify 

• which program (Turbo C ++, T ASM, and so on) is to be used to 
make its target file 

•which command-line options to give that program 

•whether the module is to be an overlay 

•what the resulting module is called and where it will be placed 
(this information is used by the project manager to locate files 
needed for linking) 

•whether the module should contain debug information 

•whether the module should be included in the link 

By default, the Turbo C++ integrated environment compiler 
(TC.EXE) is chosen as the translator for each module, using no 
command-line override options, using the Output directory for 
output, assuming that the module is not an overlay, and assuming 
that debug information is not to be excluded. 

Let's look at a simple example. Go to the Project window and 
move to the file MYFUNCS.C. Now press Ctr/-0 to bring up the 
Override Options dialog box for this file: 

Chapter 2, Managing multi-file projects 95 



96 

Except for Turbo C++, each of the names in the Project File 
Translators list box is a reference to a program defined in the 
Transfer dialog box (Options I Transfer). 

Press Esc, then F10 to return to the main menu, then choose 
Options I Transfer. The Transfer dialog box that appears contains a 
list of all the transfer programs currently defined. Use the arrow 
keys to select Turbo Assembler and press Enter. (Since the Edit 
button is the default, pressing Enter brings up the Modify /New 
Transfer Item dialog box.) Here you see that Turbo Assembler is 
defined as the program T ASM in the current path. Notice that the 
Translator check box is marked with an X; this translator item is 
then displayed in the Override Options dialog box. Press Esc to 
return to the Transfer dialog box. 

Suppose you want to compile the MYFUNCS module using the 
Turbo C++ command-line compiler (TCC.EXE) instead of 
TC.EXE, the integrated environment compiler. To do so, you 
would perform the following steps: 

1. First, you need to define TCC as one of the Project File 
Translators in the Transfer dialog box. Cursor past the last 
entry in the Program Titles list, then press Enterto bring up the 
Modify /New Transfer Item dialog box. In the Program Title 
input box, type Turbo C++ Command-Line Compiler; in the 
Program Path input box, type TCC; and in the command line, 
type $EDNAME. 

2. Then check Translator by pressing Spacebar and press Enter 
(New is the default action button). Back at the Transfer dialog 
box, you see that Turbo C++ command-line (compiler doesn't 
show) is now in the Program Titles list box. Tab to OK and 
press Enter. 

3. Back in the Project window, press Ctrl-0 to go to the Override 
Options dialog box again. Notice that Turbo C++ Command
Line Compiler is now a choice on the Project File Translators list 
for MYFUNCS.C (as well as for all of your other files). 
Tab to the Project File Translators list box and highlight Turbo 
C++ Command-Line Compiler (at this point, pressing Enter or 
tabbing to another group will choose this entry). Use the 
Command-Line Options input box to add any command-line 
options you want to give TCC when compiling MYFUNCS. 

MYFUNCS.C now compiles using TCC.EXE, while all of your 
other source modules compile with TC.EXE. The Project Manager 

Turbo C++ User's Guide 



will apply the same criteria to MYFUNCS.C when deciding 
whether to recompile the module during a make as it will to all 
the modules that are compiled with TC.EXE. 

Overriding libraries 

In some cases, it's necessary to override the standard startup files 
or libraries. You override the startup file by placing a file called 
Cox.OBJ as the first name in your project file, where x stands for 
any DOS name (for example, COMINE.OBJ). It's critical that the 
name start with CO, that it is the first file in your project, and that 
it have an explicit .OBJ extension. 

To override the standard library, all you need to do is place a 
special library name anywhere in the list of names in the Project 
window. The name of the library must start with a C, followed by 
a letter representing the model (such as S for the small model); the 
remaining characters, up to six, can be anything you want for a 
file name. You must use an explicit .LIB extension (for example, 
CSMYFILE.LIB or CSNEW.LIB). 

When the standard library is overridden, MAKE will not try to 
link in the math libraries (based on the Floating Point setting in 
the Advanced Code Generation dialog box of the Options I 
Compiler menu). If you want these libraries linked in when you 
override the standard library, you must explicitly include them in 
the Project. 

More Project Manager features 

Let's take a look at some of the other features the Project Manager 
has to offer. When you're working on a project that involves many 
source files, you want to be able to easily view portions of those 
files, and be able to record notes about what you're doing as 
you're working. You'll also want to be able to quickly access files 
that are included by others. The Project Manager provides these 
features and more. 

For example, expand MYMAIN .C to include a call to a function 
named GetMyTime: 

#include <stdio.h> 
#include "myfuncs.h" 

Chapter 2, Managing multi-file projects 97 



98 

linclude "mytime.h" 

main (int argc, char *argv[]) 
( 

char *s; 

if (argc > 1) 
s = argv [1]; 

else 
s = "the universe"; 

printf ("%s %s opens at %d. \n", GetString (), s, GetMyTime (HOUR)); 

This code adds two include files to MYMAIN: myfuncs.h and 
mytime.h. These files contain the prototypes that define the 
GetString and GetMyTime functions, which are called from 
MYMAIN. myfuncs.h contains 

extern char *GetString(void); 

mytime.h contains 

#define HOUR 1 
#define MINUTE 2 
#define SECOND 3 
extern int GetMyTime(int); 

Go ahead and put the actual code for GetMyTime into a new 
source file called MYTIME.C: 

#include <time.h> 
#include "mytime.h" 

int GetMyTime(int which) 
( 

struct tm 
time t 

*timeptr; 
secsnow; 

time(&secsnow); 
timeptr = localtime(&secsnow); 
switch (which) ( 

case HOUR: 
return (timeptr -> tm_hour); 

case MINUTE: 
return {timeptr -> tm_min); 

case SECOND: 
return (timeptr -> tm_sec); 

MYTIME includes the standard header file time.h, which contains 
the prototype of the time and localtime functions, and the 

Turbo C++ User's Guide 



Looking at files in 

definition of tm and time_t, among other things. It also includes 
mytime.h in order to define HOUR, MINUTE, and SECOND. 

Create these new files, then use Project I Open Project to open 
MYPROG.PRJ. The files MYMAIN.C and MYFUNCS.C are still in 
the Project window. Now to build your expanded project, you 
add the file name MYTIME.C to the Project window. Press Ins (or 
choose Project I Add Item) to bring up the Add Item dialog box. If 
you placed MYTIME.C in the current directory, use the Files list 
box to choose it now. If MYTIME.C is in a different directory, tab 
to the Name input box and type in MYTIME.C and its path. Once 
you've used either of these methods, press Enter to actually add 
the file. The Add radio button is the default action button. 

Now press F9 to make the project. MYMAIN.C will be recompiled 
because you've made changes to it since you last compiled it. 
MYFUNCS.C won't be recompiled, because you haven't made 
any changes to it since the make in the earlier example. 
MYTIME.C will be compiled for the first time. 

In the MYPROG project window, move to MYMAIN.C, and press 
Spacebar (or Project I Include Files) to display the Include Files 
dialog box. This dialog box contains the name of the selected file, 
several buttons, and a list of include files and locations (paths). 
The first file in the Include Files list box is highlighted; the list box 
lists all the files that were included by the file MYMAIN.C. If any 
of the include files is located outside of the current directory, the 
path to the file is shown in the Location field of the list box. 

As each source file is compiled, the information about which 
include files are included by which source files is stored in the 
source file's .OBJ file. If you access the Include Files dialog box 
before you perform a make, it might contain no files or it might 
have files left over from a previous compile (which may be out of 
date). To load one of the include files into an Edit window, 
highlight the file you want and press Enter(or click on View). 

a project Let's take a look at MYMAIN.C, one of the files in the Project. 
Simply choose the file using the arrow keys or the mouse, then 
press Enter. This brings up an edit window with MYMAIN.C 
loaded. Now you can make changes to the file, scroll through it, 
search for text, or whatever else you need to do. When you are 

Chapter 2, Managing multi-file projects 99 



100 

Notes for your 

finished with the file, save your changes if any (F2), then press Alt
F3 to close the Edit window. 

Suppose that after browsing around in MYMAIN.C, you realize 
that what you really wanted to do was look at mytime.h, one of 
the files that MYMAIN.C includes. Highlight MYMAIN.C in the 
Project window, then press Spacebarto bring up the Include Files 
dialog box for MYMAIN. (Alternatively, while MYMAIN.C is the 
active Edit window, select Project I Include Items or Alt-P /.) Now 
choose mytime.h in the Include Files box and press the View 
button. This brings up an Edit window with MYTIME.H loaded. 
When you're done, press Alt-F3 to dose the mytime.h Edit 
window. 

project Now that you've had a chance to see the code in MYMAIN.C and 
mytime.h, you've decided you'll optimize it as soon as you can. 
Choose Window I Project Notes. This brings up a new Edit 
window that is kept as part of your project file. Type in the 
following: 

Change History: 

Chuck G. 

Added check for out of memory in DBADDFIELD. 

Harry B. 

Fixed bug 0183. 

Each project maintains its own notes file, so that you can keep 
notes that go with the project you're currently working on; they're 
at the touch of a button as soon as you select the project file. Press 
Alt-F3 now to close the Project Notes Edit window. 

Turbo C++ User's Guide 



c H 

You should read this chapter 
even if you are familiar with 

the editor in other Turbo 
products. Turbo C++s new 

JOE includes improvements to 
the editor. Context-sensitive 

help is always just a keystroke 
away(F1). 

A p T E R 

3 

The editor from A to Z 

This chapter is a reference to Turbo C++'s full range of editing 
commands. Table 3.1 contains a list of all of the editor commands; 
the tables and text that follow it cover those aspects of the editor 
that need further explanation. 

Remember, this chapter is concerned just with the editor. For a 
tutorial about the editor and the IDE, refer to Chapter 3 in Getting 
Started; for an in-depth discussion of the whole Turbo C++ 
integrated environment, refer to Chapter 1. 

The new and the old 

The Turbo C++ integrated environment still lets you use Borland's 
familiar hot key combinations to move around your file, insert, 
copy, and delete text, and search and replace. However, it also 
provides you with two brand-new menus on the menu bar, the 
Edit menu and the Search menu. In addition, Turbo C++ comes 
with mouse support for many of the cursor movement and block
marking key commands. 

The Edit menu contains commands for cutting, copying, and 
pasting in a file, copying examples from Help to an Edit Window, 
and viewing the Clipboard. When you first start Turbo C++ now, 
an Edit window is already active. To open other Edit windows, go 
to the File menu and choose Open. From an Edit window, you still 
press F10 to get to the menu bar; to return to the Edit window, 

Chapter 3, The editor from A to Z 101 



keep pressing Esc until you are out of the menus. If you have a 
mouse, you can also just click anywhere in the Edit window. 

¥ As always, you enter text pretty much as if you were using a type
writer. To end a line, press Enter. When you've entered enough 
lines to fill the screen, the top line scrolls off the screen. Don't 
worry, it isn't lost, and you can move back and forth in your text 
with the scrolling commands that are described later. 

Editor reference 

Table 3.7 summarizes all 
editor commands. 

Table 3.1 
Full summary of editor 

commands 

A word is defined as a 
sequence of characters 
separated by one of the 
following: space < > , : 
.()()/\'*+-/$ 

#_=/-?!"%&': 
@ ( J \, and all control and 

graphic characters. 

102 

The editor has a restore facility that lets you take back changes to 
the last line modified. This command (Edit I Restore Line) is 
described on page 106 in the section titled "Miscellaneous editing 
commands." 

The editor is much more powerful than the quick tutorial can 
show. In addition to the menu choices, it uses approximately 50 
commands to move the cursor around, page through text, find 
and replace strings, and so on. These commands can be grouped 
into four main categories: 

• Cursor movement 
•Insert and delete operations 
•Block operations 
•Miscellaneous editing operations 

Most of these commands need no explanation. Those that do are 
described in the text following Table 3.1. 

Movement 

Cursor movement commands 

Basic cursor movement 
Character left 
Character right 
Word left 
Word right 
Lineup 
Line down 
Scroll up one line 
Scroll down one line 
Page up 
Page down 

Command 

~ 

~ 

Ctr/~ 
Ctr/~ 
i 
.!. 
Ctrl-W 
Ctrl-Z 
Pg Up 
PgDn 

Turbo C++ User's Guide 



Table 3.1: Full summary of editor commands (continued) 

M Manyofthe 
commands in this table can 
also be performed v.Ath the 

mouse. See Chapter 1. 

Movement 

Long distance 
Beginning of line 
End of line 
Top of window 
Bottom of window 
Beginning of file 
End of file 
Beginning of block 
End of block 
Last cursor position 

Insert and delete commands 

Insert mode on/off 

Delete character left of cursor 
Delete character at cursor 
Delete word right 
Insert line 
Delete line 
Delete to end of line 

Block commands 

Mark block 
Mark single word 
Copy block 

Move block 

Delete block 
Read block from disk 
Write block to disk 
Hide/display block 
Print block 
Indent block 
Unindent block 

Other editing commands 

Autoindent on/off 
Control character prefix** 
Find place marker 
Go to menu bar 
New file 
Open file 
Optimal fill mode on/off 
Pair matching 
Print file 
Quit IDE 
Repeat last search 
Restore error message 

Chapter 3, The editor from A to Z 

Command 

Home 
End 
Ctr/Home 
Ctr/ End 
Ctr/ PgUp 
Ctr/ PgDn 
Ctrl-Q B 
Ctrl-QK 
Ctr/-0 P 

Options I Environment I Editor or 
Ins 
Backspace 
Del 
Ctrf-T 
Ctrl-N 
Ctrl-Y 
Ctrf-Q Y 

Shift J,, i, ---), '----, Ctrl-K B, Ctrl-K K 
Ctrl-K T 
Edit I Copy, Edit I Paste or 

Ctrf-lns, Shift-Ins 
Edit I Cut, Edit I Paste or 

Shift-De/, Shift-Ins 
Edit I Clear or Ctrl-De/ 
Ctrl-K R 
Ctrl-K W 
Ctrl-K H 
File I Print or Ctrf-K P 
Ctr/-K I 
Ctrl-K U 

Options I Environment I Editor* 
Ctrl-P 
Ctr/-0 n*** 
F10 
File I New 
File I Open (F3'J 
Options I Environment I Editor* 
Ctrf-Q [and Ctr/-0] 
File I Print 
File I Quit (Alt-)() 
Search I Search Again or Ctrl-L 
Ctrf-Q W 

103 



Jumping around 

Block commands 

104 

Table 3.1: Full summary of editor commands (continued) 

Movement 

Restore line 
Return to editor from menus 
Save 
Search 
Search and replace 
Set place marker 
Tab 
Tab mode 
Unindent mode 

Command 

Edit I Restore Line or Ctrl-0 l 
Esc 
File1Save(f2) 
Search I Find or Ctrl-0 F 
Search I Replace or Ctrl-Q A 
Ctrl-Kn*...,. 
Tab 
Options I Environment I Editor* 
Options I Environment I Editor* 

'°This command opens the Environment Options dialog box, in which you can set 
the appropriate check box or radio buttons. 

,.,.Enter control characters by first pressing Ctrl-P, then pressing the desired control 
character. Depending on your screen setup, control characters appear as low
intensity or inverse capital letters. 

,.,..n represents a number from 0 to 9. 

There are three cursor movement commands that need further 
explanation: 

Ctrl-Q Band Ctrl-Q K move the cursor to the block-begin or block
end marker. Both these commands work even if the block is not 
displayed (see "Hide/ display block" in Table 3.2). Ctrl-Q B works 
even if the block-end marker is not set, and Ctrl-Q K works even if 
the block-begin marker is not set. 

Beginning of block Ctrl-Q B 
End of block Ctrl-Q K 
Last cursor position Ctrl-Q P 

Ctrl-Q P moves to the last position of the cursor before the last 
command. This command is particularly useful after a search or 
search-and-replace operation has been executed, and you'd like to 
return to where you were at before you ran the search. 

A block of text is any amount of text, from a single character to 
hundreds of lines, that has been surrounded with special block
marker characters. There can be only one block in a window at a 
time. A block is marked by placing a block-begin marker on the 
first character and a block-end marker after the last character of 

Turbo C++ User's Gulde 



the desired portion of the text. Once marked, the block can be 
copied, moved, deleted, printed, or written to a file. 

Table 3.2: Block commands In depth 

Movement 

Mark block 

Mark single 

Copy block 

Move block 

Delete block 

Write block 
to disk 

Command(s) 

Shift J,, i, ~, 
~ 

Ctrl-K T 

Edit I Copy, Ctrl-lns 
Edit I Paste, Shift-Ins 

Edit I Cut, Shift-Del 

Edit I Paste, Shift-Ins 

Edit I Clear, Ctrl-Del 
Ctrl-K Y 

Ctrl-KW 

Read block Ctrl-K R 
from disk 

Hide/ display Ctrl-K H 
block 

Print block Ctrl-K P 

Chapter 3. The editor from A to Z 

Function 

Marks (highlights) a block as the cursor is moved. Marked text 
is displayed in a different intensity. 

Marks a single word as a block, replacing the block-begin/block
end sequence, which is a bit clumsy for marking a single word. If 
the cursor is placed within a word, that word will be marked. If it 
is not within a word, then the word to the left of the cursor will be 
marked. 

Copies a previously marked block to the Clipboard and pastes it 
to the current cursor position. The original block is unchanged, 
and the block markers are placed around the new copy of the 
block. If no block is marked or the cursor is within the marked 
block, nothing happens. 

Moves a previously marked block from its original position to the 
Clipboard and pastes it to the cursor position. The block dis
appears from its original position and the markers remain around 
the block at its new position. If no block is marked, nothing 
happens. 

Deletes a previously marked block. No provision exists to 
restore a deleted block, so be careful with this command. 

Writes a previously marked block to a file. The block is left 
unchanged, and the markers remain in place. When you give this 
command, you are prompted for the name of the file to write to. 
The file can be given any legal name (the default extension is .C). 
If you prefer to use a file name without an extension, append a 
period to the end of its name. 

Note: You can use wildcards to select a file to overwrite; a 
directory is displayed. If the file specified already exists, a warn
ing is issued before the existing file is overwritten. If no block is 
marked, nothing happens. 

Reads a disk file into the current text at the cursor position, 
exactly as if it were a block. The text read is then marked as a 
block. When this command is issued, you are prompted for the 
name of the file to read. You can use wildcards to select a file to 
read; a directory is displayed. The file specified can be any legal 
file name. 

Causes the visual marking of a block to be alternately switched off 
and on. The block manipulation commands (copy, move, delete, 
print, and write to a file) work only when the block is displayed. 
Block-related cursor movements (jump to beginning/end of 
block) work whether the block is hidden or displayed. 
Sends the marked block in the active Edit window to the printer. 

105 



Table 3.2: Block commands in depth (continued) 

Print File I Print 

Other editing 
commands 

Sends the entire file in the active Edit window to the printer. 

The next table describes certain editing commands in more detail. 
The table is arranged alphabetically by the name of the command. 

Table 3.3: Other editor commands In depth 

Movement 

Autoindent 

Find place 
marker 

New file 

Open file 

Quit edit 

Restore line 

Save file 

Set place 

Tab 

Tab mode 

106 

Command(s) 

Options I 
Environment I 
Editor 

Ctrl-Qn 

File I New 

File I Open (F3) 

File I Quit (Alt-X) 

Edit I 
Restore Line 

File1Save(F2) 

Ctrl-K n 

Tab 

Options I 
Environment I 

Editor 

Function 

Opens the Editor Options dialog box, in which you can toggle the 
Autoindent Mode check box. Provides automatic indenting of 
successive lines. When Autoindent is active, the indentation of the 
current line is repeated on each following line; that is, when you press 
Enter, the cursor does not return to column one but to the starting 
column of the preceding non-empty line. When you want to change the 
indentation, use the Spacebar and ~ key to select the new column. 
Autoindent is on by default. 

Finds up to ten place markers (n can be any number in the range 0 to 9) 
in text. Move the cursor to any previously set marker by pressing Ctrl-Q 
and the marker number. 

Opens a new window. 

Lets you load an existing file into an Edit window. 

Quits Turbo C++. You are asked whether you want to save the file to 
disk. 

Lets you undo changes made to the last line worked on. The line is 
restored to its original state regardless of any changes you have made. 
This works only on the last modified or deleted line. 

Saves the file and returns to the editor. 

Mark up to ten places in text by pressing Ctrl-K, followed by a single 
marker digit (0 to 9). After marking your location, you can work 
elsewhere in the file and then easily return to your marked location by 
using the Ctrl-Q N command (being sure to use the same marker 
number). You can have ten places marked in each window. 

Tabs default to eight columns apart in the Turbo C++ editor. 

Opens the Editor Options dialog box, in which you can set the Use Tab 
Character check box. When the option is on, you can insert tab 
characters (ASCII character 8); when it's off, the tab is automatically 
inserted as the correct number of spaces. 

Turbo C++ User's Guide 



Search and 
replace The Search I Find and Search I Replace commands let you 

search for (and optionally replace) strings of up to 30 charac
ters. 

The search string is also The search string can contain any characters, including 
called the target string. control characters. You can enter control characters with the 

Ctrf-P prefix. For example, enter a Ctrl-T by holding down the 
Ctr/ key as you press P and then T. You can include a line 
break in a search string by specifying Ctrf-M (carriage return). 
(For searching regular expressions, take a look at the text file 
about GREP.) 

Searching and 
searching again 

The following sections list the steps for performing these 
operations. 

1. Choose Search I Find. This opens the Find dialog box. 
2. Type the string you are looking for (up to 30 letters) into 

the Text to Find input box. 

3. You can also set various search options: 

•The Direction radio buttons control whether you do a 
forward or backward search. 

•The Scope radio buttons control how much of the file 
you search. 

•The Origin radio buttons control where the search 
begins. 

•The Options check boxes determine whether the 
search will be case sensitive for whole words only, and 
for regular expressions. 

Use Tab or your mouse to cycle through the options. Use 
i and .!. to set the radio buttons and Space to toggle the 
check boxes. 

4. Finally, choose the OK button to carry out the search or 
the Cancel button to cancel. Turbo C++ performs the 
operation. 

5. If you want to search for the same item repeatedly, use 
Search I Search Again. 

Chapter 3, The editor from A to Z 107 



108 

Search and replace 1. Choose Search I Replace. This opens the Replace dialog 
box. 

Pair matching 

2. Type the string you are looking for (up to 30 letters) into 
the Text to Find input box. 

3. Press Tab or use your mouse to move to the New Text 
input box. Type in the replacement string. 

4. You can then set the same search options as in the Find 
dialog box. 

5. Finally, choose OK or Change All to begin the search, or 
choose Cancel to cancel. Turbo C++ performs the 
operation. Choosing Change All will replace every 
occurrence found. 

6. If you want to stop the operation, press Esc at any point 
when the search has paused. 

There you are, debugging your source file that is full of 
functions, parenthesized expressions, nested comments, and 
a whole slew of other constructs that use delimiter pairs. In 
fact, your file is riddled with 

• braces: { and } 

• angle brackets: < and > 

• parentheses: ( and ) 
• brackets: [ and J 
•comment markers: /* and *I 
• double quotes: " 
• single quotes: ' 

Finding the match to a particular paired construct can be 
tricky. Suppose you have a complicated expression with a 
number of nested expressions, and you want to make sure 
all the parentheses are properly balanced. Or say you're at 
the beginning of a function that stretches over several 
screens, and you want to jump to the end of that function. 
With Turbo C++'s handy pair-matching commands, the 
solution is at your fingertips. Here's what you do: 

Turbo C++ User's Guide 



Directional and 
nondirectional 

matching 

Opening braces and 
brackets and closing braces 

and parentheses are 
directional: the editor knows 
which way to search for the 

mate, so it doesn't matter 
which match pair command 

you give. 

1. Place the cursor on the delimiter in question (for 
example, the opening brace of some function that 
stretches for a couple of screens). 

2. To locate the mate to this selected delimiter, simply press 
Ctrl-0 {. (In the example given, the mate should be at the 
end of the function.) 

3. The editor immediately moves the cursor to the delimiter 
that matches the one you selected. If it moves to the one 
you had intended to be the mate, you know that the 
intervening code contains no unmatched delimiters of 
that type. If it moves to the wrong delimiter, you know 
there's trouble in River City; now all you need to do is 
track down the source of the problem. 

We've told you the basics of Turbo C++'s "Match Pair" com
mands; now you need some details about what you can and 
can't do with these commands, and notes about a few 
subtleties to keep in mind. This section covers the following 
points: 

•There are actually two match pair editing commands: one 
for forward matching ( Ctrl-Q D and the other for backward 
matching (Ctrl-0 ]). 

•The way the editor searches for comment delimiters (/* 
and * /) is slightly different from the way it performs the 
other searches. 

•If there is no mate for the delimiter you've selected, the 
editor doesn't move the cursor. 

Two match pair commands are necessary because some 
delimiters are nondirectional. 

For example, suppose you tell the editor to find the match 
for an opening brace ( ( ) or an opening square bracket ( [ ). 
The editor knows the matching delimiter can't be located 
before the one you've selected, so it searches forward for a 
match. If you tell the editor to find the mate to a closing 
brace ( } ) or a closing parenthesis ( ) ), it knows that the 
mate can't be located after the selected delimiter, so it auto
matically searches backward for a match. 

However, if you tell the editor to find the match for a double 
quote (")or a single quote ('),it doesn't know automat
ically which way to go. You must specify the search 

Chapter 3, The editor from A to Z 109 



Double and single quotes 
are not directional. You must 

specify the correct match 
pair command. 

Table3.4 
Delimiter pairs 

Nestable delimiters are 
explained after this table. 

Figure 3.1 
Search for match to square 

bracket or parenthesis 

110 

direction by giving the correct match pair command. If you 
give the command Ctrl-Q Ctr/-{, the editor searches forward for 
the match; if you give the command Ctrl-Q Ctr/-}, it searches 
backward for the match. 

The following table summarizes the delimiter pairs, whether 
they imply search direction, and whether they are nestable: 

Delimiter pair 

{ } 
( ) 
[ ] 
< > 

I* *I 
11 11 

Nestable delimiters 

Direction implied? 

Yes 
Yes 
Yes 
Yes 
Yes 
No 
No 

Are they nestable? 

Yes 
Yes 
Yes 
Yes 
Yes and No 
No 
No 

Nestable means that, when the editor is searching for the 
mate to a directional delimiter, it keeps track of how many 
delimiter levels it enters and exits during the search. 

This is best illustrated with some examples: 

matched pair matched pair matched pair . 
....................... . . . . . . . . . . . . 

r····~ ...... j r .... : ....... ~ 
arrl [arr2 [x) J (X > 0) && (y < 0) 

iTJ 
matched pair matched pair 

Comment delimiters 

Because comment delimiters are two-character delimiters, 
you must take care when you highlight one for a match pair 
search. In either case, the editor recognizes only the first of 
the two characters: the slash (/) part of a /* comment 
delimiter, or the asterisk (*) part of a *I delimiter. If you 

Turbo C++ User's Guide 



1he search will be affected if 
unmatched delimiters of the 

same type in comments, 
quotes, or conditional 

compilation sections fall 
between the matched pair. 

place the cursor on the second character in either of these 
delimiters, the editor won't know what you're looking for, 
so it won't do any searching at all. 

Also, as shown in Table 3.4, comment delimiters are 
sometimes nestable, sometimes not ("Yes and No"). This is 
not a vagary or an inability to decide: It is a test dependent 
on multiple conditions. ANSI-compatible C programs 
cannot contain nested comments, but Turbo C++ provides 
an optional nested comments feature that you can set to on 
or off. This feature affects the nestability of comment 
delimiters when it comes to pair matching. 

•If Nested Comments is checked, the editor treats 
comment delimiters as nestable and keeps track of the 
delimiter levels it enters and exits in the search for a 
match. 

•If Nested Comments is unchecked, the editor won't treat 
comment delimiters as nestable; when a /*pair is 
selected, the first* I pair the editor finds is the match (and 
vice versa). 

To set Nested Comments, choose Options I Compiler I 
Source. This opens the Source Options dialog box; use 
Spacebarto set the Nested Comments check box, then choose 
the OK button to confirm the setting. 

Here are some examples to illustrate these differences. In the 
first two examples, the search is performed with Ctrl-Q {. In 
Figure 3.2, Nested Comments is checked. In Figure 3.3, 
Nested Comments is unchecked. In the third example, a 
backward search is performed using Ctrl-0] with Nested 
Comments still unchecked. 

Figure 3·2 /* /* /* /* Here are some nested comments. *I *I *I *( Forward search I 
........_ ___ match level match level ___ .......... 

selected found 

Note A backward search from the found *I will yield the selected 
/*when Nested Comments is checked. 

Figure3.3 /*I* I* I* Here are some nested comments. */*I *I *I 
Forward search 11 ! match level match level j 

selected found 

Chapter 3, The editor from A to Z 111 



112 

Figure 3.4 
Backward search I* /* I* /* Here are some nested comments. */ *I *I *I 

I match level match level J 
selected found 

Turbo C++ User's Gulde 



c H 

The Turbo C++ command
line compiler (TCC.EXE) lets 
you invoke all the functions 
of the Turbo C++ compiler 

from the DOS command line. 

A p T E R 

4 

The command-line compiler 

In addition to using the integrated development environment, 
you can compile and run your Turbo C ++ programs with the 
command-line interface. While the integrated environment 
usually is best for developing and running your programs, you 
may sometimes prefer to use the command line; in some 
advanced programs, the command-line interface may be the only 
way to do something intricate. (For instance, MAKE can batch 
files, while the Project Manager can't.) 

TCC compiles C and C++ source files and links them together into 
an executable file. It works similarly to the UNIX CC command. 
TCC will also invoke TASM to assemble .ASM source files. Note 
that to compile only you have to use the -c option at the command 
line. 

To invoke Turbo C++ from the command line, type TCC at the DOS 
prompt and follow it with a set of command-line arguments. 
Command-line arguments include compiler and linker options 
and file names. The generic command-line format is 

tee [option [option ... ]] filename [filename ... ] 

With two exceptions, each command-line option is preceded by a 
hyphen(-) and separated from the TCC command, other options, 
and following file names by at least one space. You can also use a 
configuration file. See page 133 for details. 

This chapter lists each of Turbo C++'s command-line compiler 
options in alphabetical order under option type, and describes 

Chapter 4, The command-line compiler 113 



114 

Compiler options is further 
divided into nine groups. 

Table4.l 
Command-line options 

summary 

what each option does. The options are divided into three general 
types. 

• compiler options 
• linker options 
• environment options 

To see an onscreen list of the major command-line compiler 
options, type 

tee 

at the DOS prompt (when you're in the TURBOC directory or 
when TCC is in your DOS path), then press Enter. 

Option 

@filename 
+filename 
-A 
-A-or-AT 
-AK 
-AU 
-a 
-a-
-B 

-b 
-C 
-c 
-Dname 

-Dname=string 
--d 
--d-
-Efilename 
--efilename 
-f 
-f-
-ff 
-ff-
-f87 
-f287 
-G 
-G-
-gn 
-!pathname 
-in 
-jn-
-K 
-K-
-k 

Function 

Response files 
Tell TCC to use the alternate configuration file filename 
Use only ANSI keywords 
Use Turbo C++ keywords (default) 
Use only Kernighan and Ritchie keywords 
Use only UNIX keywords 
Align word 
Align byte (default) 
Compile and call the assembler to process inline 

assembly code 
Make enums word-sized (default) 
Nested comments on 
Compile to .OBJ but do not link 
Define name to the string consisting of the null 

character 
Defines name to string 
Merge duplicate strings on 
Merge duplicate strings off (default) 
Use filename as the assembler to use 
Link to produce filename.EXE 
Emulate floating point (default) 
Don't do floating point 
Fast floating point (default) 
Strict ANSI floating point 
Use 8087 hardware instructions 
Use 80287 hardware instructions 
Optimize for speed 
Optimize for size 
Warnings: stop after n messages 
Directories for include files 
Make significant identifier length to be n 
Errors: stop after n messages 
Default character type unsigned 
Default character type signed (default) 
Standard stack frame on (default) 

Turbo C++ User's Guide 



Table 4.1: Command-line options summary (continued) 

For details about memory 
models. see Chapter 4 in the 

Programmers Guide. 

Option 

-Lpathname 
-Ix 
-I-x 
-M 
-me 
-mh 
-ml 
-mm 
-mm! 
-ms 
-ms! 
-mt 
-mt! 
-N 
-npathname 
-0 
-0-
-ofilename 
-P 

-p 
-p-
-Qe 

-Qe-
-Qx 

-Qx=nnnn 

-Qx-
-r 
-r-
-rd 

-S 
-Tstring 

-T-
-Uname 
-u 
-v 
-vi 
-w 
-w-
-wxxx 
-w-xxx 
-X 

Chapter 4, The command-line compiler 

Function 

Directories for libraries 
Pass option x to the linker (can use more than one x) 
Suppress option x for the linker 
Instruct the linker to create a map file 
Compile using compact memory model 
Compile using huge memory model 
Compile using large memory model 
Compile using medium memory model 
Compile using medium model; assume DS !=SS 
Compile using small memory model (default) 
Compile using small model; assume DS !=SS 
Compile using tiny memory model 
Compile using tiny model; assume DS !=SS 
Check for stack overflow 
Output directory 
Optimize jumps 
No optimization (default) 
Compile source file to filename.obj 
Perform a C++ compile regardless of source file 

extension 
Use Pascal calling convention 
Use C calling convention (default) 
Instructs the compiler to use all available EMS memory 

(default) 
Instructs the compiler to not use any EMS memory 
Instructs the compiler to use all available extended 

memory (default) 
Instructs the compiler to reserve nnnn Kbytes of 

extended memory for other programs, and to use 
the rest itself 

Instructs the compiler to not use any extended memory 
Use register variables on (default) 
Suppresses the use of register variables. 
Only allow declared register variables to be kept in 

registers 
Produce .ASM output file 
Pass string as an option to T ASM or assembler specified 

with-E 
Remove all previous assembler options 
Undefine any previous definitions of name 
Generate underbars on (default) 
Source debugging on 
Controls expansion of inline functions 
Display warnings on 
Display warnings off 
Enable xxx warning message 
Disable xxx warning message 
Disable compiler autodependency output 

115 



Table 4.1: Command-line options summary (continued) 

Option Function 

-Y 
-Yo 
-y 
-Z 
-zAname 
-zBname 
-zCname 
-zDname 
-zEname 
-zFname 
-zGname 
-zHname 
-zPname 
-zRname 
-zSname 
-zTname 
-zX 
-1 
-1-

-2 

Enable overlay code generation 
Overlay the compiled files 
Line numbers on 
Enable register usage optimization 
Code class 
BSS class 
Code segment 
BSSsegment 
Far segment 
Far class 
BSSgroup 
Far group 
Code group 
Data segment 
Data group 
Data class 
Use default name for X. (default) 
Generate 80186 instructions 
Generate 8088/8086 instructions and 80286 

real-mode instructions (default) 
Generate 80286 protected-mode compatible 

instructions 

Turning options on and off 

Use this feature to override 
settings In configuration files. 

You select command-line options by entering a hyphen(-) imme
diately followed by the option letter (for example, -1). To turn an 
option off, add a second hyphen after the option letter. This is true 
for all toggle options (those that tum an option on or off): a 
hyphen(-) turns the option off, and a plus sign(+) or nothing 
turns it on. So, for example, -C and -C+ both turn nested com
ments on, while -C- turns nested comments off. 

Syntax and file names 

C++ files have the extension Turbo C++ compiles files according to the following set of rules: 
.CPP. 

filename. asm Invoke T ASM to assemble to .OBJ 
filename .obj Include as object at link time 
filename. lib Include as library at link time 
filename Compile FILENAME.C 

116 Turbo C++ User's Guide 



Response files 

filename.c 
f ilenarne. cpp 
f ilenarne. xyz 

Compile FILENAME.C 
Compile FILENAME.CPP 
Compile FILENAME.XYZ 

For example, given the following command line 

tee -a -f -C -0 -z -emyexe oldfilel.e oldfile2 nextfile.e 

TCC compiles OLDFILEl.C, OLDFILE2.C, and NEXTFILE.C to 
.OBJ, and linking produces an executable program file named 
MYEXE.EXE with word alignment (-a), floating-point emulation 
(-f), nested comments (-C), optimization (-0), and optimistic 
aliasing (-Z) selected. 

TCC invokes TASM if you give it an .ASM file on the command 
line or if a .C file contains inline assembly. The options TCC gives 
to TASM are 

ID MODEL __ ID __ lang _ _ /ml /fp 

where MODEL is either TINY, SMALL, MEDIUM, COMPACT, 
LARGE, or HUGE. The /ml switch tells T ASM to assemble with 
case sensitivity on. lang is CDECL or PASCAL; fp is r when you've 
specified -f87; e otherwise. 

If you need to specify many options and/or files on the command 
line, you can place them in an ASCII text file. You can then tell 
TCC to read its command line from this file by including the ap
propriate file name prefixed with @on the TCC command line. 
You can specify any number of such files, and you can mix them 
freely with other options and/or file names. 

For example, suppose the file SMALL.RSP contains CLOUDS.C 
and RAIN.C. The following TCC command will compile the files 
STARS.C, CLOUDS.C, RAIN.C, and MOON.C: 

TCC STARS @SMALL.RSP MOON 

Compiler options 

Turbo C++'s command-line compiler options fall into nine groups. 
These groups are as follows: 

Chapter 4, The command-line compiler 117 



Memory model 

118 

1. Memory model options let you specify which memory model 
Turbo C++ will compile your program under. (The models are 
tiny, small, medium, compact, large, and huge.) 

2. Macro definitions let you define macros (also known as 
manifest or symbolic constants) on the command line. The de
fault definition is the null string. These options also let you 
undefine previously defined macros. 

3. Code generation options govern characteristics of the gen
erated code, such as the floating-point option, calling con
vention, character type, or CPU instructions. 

4. Optimization options let you specify how the object code is to 
be optimized; for size or speed, with or without the use of 
register variables, and with or without assumptions about 
aliases. 

5. Source code options cause the compiler to recognize (or 
ignore) certain features of the source code; implementation
specific (non-ANSI, non-Kernighan and Ritchie, and non
UNIX) keywords, nested comments, and identifier lengths. 

6. Error-reporting options let you tailor which warning messages 
the compiler will report, and the maximum number of warn
ings and errors that can occur before the compilation stops. 

7. Segment-naming control options allows you to rename seg
ments and to reassign their groups and classes. 

8. Compilation control options let you direct the compiler to 

•compile to assembly code (rather than to an object module) 
•compile a source file that contains inline assembly (there are 

other ways though: use #pragma inline or just ignore it) 

•compile without linking 

9. EMS and extended memory options let you control how much 
expanded and extended memory Turbo C++ uses. 

-me 
-mh 
-ml 
-mm 
-mm! 
-ms 
-ms! 

Compile using compact memory model 
Compile using huge memory model 
Compile using large memory model 
Compile using medium memory model 
Compile using medium model; DS != SS 
Compile using small memory model (the default) 
Compile using small model; DS != SS 

Turbo C++ User's Guide 



Macro definitions 

-mt Compile using tiny memory model 
-mt! Compile using tiny model; DS !== SS 

The net effect of the new-mt!, -ms!, and -mm! options is actually 
very small. If you take the address of a stack variable (auto or pa
rameter), the default (when DS ====SS) is to make the resulting 
pointer a near (DS relative) pointer. In this way one can simply 
assign the address to a default sized pointer in those models with
out problems. When DS !==SS, the pointer type created when you 
take the address of a stack variable is an _ss pointer. This means 
that the pointer can be freely assigned or passed to a far pointer or 
to a _ss pointer. But for the memory models affected, assigning 
the address to a near or default-sized pointer will produce a "Sus
picious pointer conversion" warning. Such warnings are usually 
errors, and the warning defaults to on. You should regard this 
kind of warning as a likely error. 

-Dname Defines the named identifier name to the empty 
string. 

-Dname:string Defines the named identifier name to the string 
string after the equal sign. string cannot contain 
any spaces or tabs. 

-Uname Undefines any previous definitions of the 
named identifier name. 

Turbo C++ lets you make multiple #define entries on the 
command line in any of the following ways: 

•You can include multiple entries after a single -D option, sepa
rating entries with a semicolon (this is known as "ganging" 
options): 

tee -Dxxx;yyy=l;zzz=NO myfile.e 

• You can place more than one -D option on the command line: 
tee -Dxxx -Dyyy=l -Dzzz=NO myfile.e 

•You can mix ganged and multiple -D listings: 
tee -Dxxx -Dyyy=l;zzz=NO myfile.e 

Code generation 
options -1 Causes Turbo C++ to generate extended 80186 instruc

tions. This option also generates 80286 programs 

Chapter 4, The command-line compiler 119 



120 

running in real mode, such as with the IBM PC/ AT 
underOOS. 

-2 Causes Turbo C++ to generate 80286 protected-mode 
compatible instructions. 

-a Forces integer size and larger items to be aligned on a 
machine-word boundary. Extra bytes are inserted in a 
structure to ensure member alignment. Automatic and 
global variables are aligned properly. char and un
signed char variables and fields can be placed at any 
address; all others will be placed at an even-numbered 
address (off by default, allowing bytewise alignment). 

-b Causes the compiler to always allocate a whole word 
for enum types. (That is also the way TC 2.0 treated 
enumerations.) 

Normally, the compiler just allocates an unsigned or 
signed byte if the minimum and maximum values of 
the enumeration are both within 0 to 255 or-128to127, 
respectively. 

-cl Merges literal strings when one string matches 
another; this produces smaller programs (off by 
default). 

-f Emulates 8087 calls at run time if the run-time system 
does not have an 8087; if it does have one, calls the 
8087 for floating-point calculations (the default). 

-f- Specifies that the program contains no floating-point 
calculations, so no floating-point libraries will be 
linked at the link step. 

-ff Fast floating point. Compiler optimizes floating-point 
operations without regard to explicit or implicit type 
conversions. Answers can be faster than under ANSI 
operating mode. See Chapter 4, "Memory models, 
floating point, and overlays," in the Programmer's Guide 
for details. 

-ff- Turns off the fast floating-point option. The compiler 
follows strict ANSI rules regarding floating-point 
conversions. 

-f87 Generates floating-point operations using inline 80x87 
instructions rather than using calls to 80x87 emulation 
library routines. Specifies that a math coprocessor will 

Turbo C++ User's Gulde 



Unless you are an expert, 
don't use -u-. See Chapter 

6, "Interfacing with assembly 
language,· in the Program

mer's Guide for details about 
underscores. 

-f287 

-K 

-k 

-N 

-p 

-u 

Chapter 4, The command-line compiler 

be available at run time; programs compiled with this 
option will not run on a machine that does not have a 
ma th coprocessor. 

Similar to -f87, but uses instructions that are only 
available with an 80287 (or higher) chip. 

Causes the compiler to treat all char declarations as if 
they were unsigned char type. This allows for compati
bility with other compilers that treat char declarations 
as unsigned. By default, char declarations are signed. 

Generates a standard stack frame, which is useful 
when using a debugger to trace back through the stack 
of called subroutines. The default is on. 

Generates stack overflow logic at the entry of each 
function, which causes a stack overflow message to 
appear when a stack overflow is detected. This is costly 
in both program size and speed but is provided as an 
option because stack overflows can be very difficult to 
detect. If an overflow is detected, the message "Stack 
overflow!" is printed and the program exits with an 
exit code of 1. 

Forces the compiler to generate all subroutine calls and 
all functions using the Pascal parameter-passing se
quence. The resulting function calls are smaller and 
faster. Functions must pass the correct number and 
type of arguments, unlike normal C usage, which per
mits a variable number of function arguments. You can 
use the cdecl statement to override this option and 
specifically declare functions to be C-type. 

With -u selected, when you declare an identifier, Turbo 
C++ automatically puts an underscore (_)in front 
before saving that identifier in the object module. 

Turbo C++ treats Pascal-type identifiers (those 
modified by the pascal keyword) differently-they are 
uppercase and are not prefixed with an underscore. 

Underscores for C identifiers are optional, but on by 
default. You can turn them off with -u-. However, if 
you are using the standard Turbo C++ libraries, you 
will encounter problems unless you rebuild the 
libraries. (To do this, you will need the Turbo C++ 

121 



-X 

-Y 

-Yo 

-y 

run-time library source code; contact Borland for more 
information.) 

Disables generation of autodependency information in 
the output file. Modules compiled with this option 
enabled will not be able to use the autodependency 
feature of MAKE or of the integrated environment. 
Normally this option is only used for files that are to be 
put into .LIB files (to save disk space). 

Generates overlay-compatible code. Every file in an 
overlaid program must be compiled with this option; 
see Chapter 4, "Memory models, floating point, and 
overlays," in the Programmer's Guide for details on 
overlays. 

Overlays the compiled file(s); see Chapter 4 in the Pro
grammer's Guide for details. 

Includes line numbers in the object file for use by a 
symbolic debugger, such as Turbo Debugger. This in-
creases the size of the object file but doesn't affect size 
or speed of the executable program. This option is 
useful only in concert with a symbolic debugger that 
can use the information. In general, -v is more useful 
than -y with Turbo Debugger. 

Turbo Debugger is both a -v 
source level (symbolic) and 

assembly level debugger. 

Tells the compiler to include debugging information in 
the .OBJ file so that the file(s) being compiled can be 
debugged with either Turbo C++'s integrated debugger 
or the standalone Turbo Debugger. The compiler also 
passes this switch on to the linker so it can include the 
debugging information in the .EXE file. 

122 

To facilitate debugging, this switch also causes C++ in
line functions to be treated as normal functions. If you 
want to avoid that, use -vi. 

-vi C ++ inline functions will be expanded inline. 

~ In order to control the expansion of inline functions, the operation 
of the -v option is slightly different for C++. When inline function 
expansion is not enabled, the function will be generated and 
called like any other function. Debugging in the presence of inline 
expansion can be extremely difficult, so we provide the following 
options: 

-v Turns debugging on and inline expansion off 

Turbo C++ User's Guide 



-v- Turns debugging off and inline expansion on 

-vi Turns inline expansion on 

-vi- Turns inline expansion off 

So, for example, if you want to turn both debugging and inline 
expansion on, you must use two switches: 

-v-vi 

Optimization 
options -G Causes the compiler to bias its optimization in favor of 

speed over size. 

-0 Turns optimizations on. This optimization eliminates 
redundant jumps (such as jumps to jumps) and multiple 
copies of identical code that jump to the same location 
(tail merging). 

It also suppresses redundant register loads. When -Z is 
not on, this will not change the behavior of your program 
(except, of course, that the code becomes more efficient). 

-0- No optimization. Compiles the fastest, produces the 
poorest code. 

Unless you are an expert. -r
don 't use -r-. 

Suppresses the use of register variables. 

-r 

-rd 

Exercise caution when using -Z 
this option. The compiler 

cannot detect if a register 
has been invalidated 

indirectly by a pointer. 

When you are using the -r- option, the compiler won't 
use register variables, and it won't preserve and respect 
register variables (SI,DI) from any caller. For that reason, 
you should not have code that uses register variables call 
code which has been compiled with -r-. 

On the other hand, if you are interfacing with existing 
assembly-language code that does not preserve SI,DI, the 
-r- option allows you to call that code from Turbo C++. 

Enables the use of register variables (the default). 

Only allows declared register variables to be kept in 
registers. 

This option allows the compiler to assume that variables 
are not accessed both directly and via a pointer in the 
same function. It only has an effect when used with -0. 

The compiler keeps a table that reflects the current 
contents of registers. If a variable had to be loaded from 

Chapter 4, The command-line compiler 123 



memory into a register, the compiler remembers that the 
register now contains a copy of the variable. If the 
variable is used again, the compiler uses the copy in the 
register rather than the value in memory. 

The -Z option determines how the compiler handles 
indirect assignments (that is, assignments via pointers, or 
assignments via reference in C++). Normally it assumes 
that this assignment could potentially change any 
variable. Therefore it has to forget about all copies of 
variables in registers (i.e., erase the table). -Z tells the 
compiler that indirect assignments will not change 
variables, and that it is therefore safe to retain the copies. 

The bottom line is that if you access a variable both 
directly and via a pointer within the same function, 
setting-Z can generate wrong code and is therefore 
unsafe to use. On the other hand, it will produce slightly 
faster code. 

Source code 
options -A Compiles ANSI-compatible code: Any of the Turbo C++ 

extension keywords are ignored and can be used as 
normal identifiers. These keywords include: 

See Chapter 1, "The Turbo 
C++ language standard.· Jn 
the Programmer's Guide for 
a complete list of the Turbo 

C++ keywords. 

_cs 
_ds 
_es 

_ss 
asm 
cdecl 

far 
huge 
Interrupt 

near 
pascal 

and the register pseudovariables, such as _AX, _BX, _SI, 
and so on. 

-A- Use Turbo C++ keywords. 

-AK Use only Kernighan and Ritchie keywords. 

-AU Use only UNIX keywords. 

-C Allows nesting of comments. Comments may not 
normally be nested. 

-in Causes the compiler to recognize only the first n charac
ters of identifiers. All identifiers, whether variables, pre
processor macro names, or structure member names, are 
treated as distinct only if their first n characters are 
distinct. 

124 Turbo C++ User's Guide 



Error-reporting 

By default, Turbo C++ uses 32 characters per identifier. 
Other systems, including UNIX, ignore characters beyond 
the first eight. If you are porting to these other environ
ments, you may wish to compile your code with a smaller 
number of significant characters. Compiling in this man
ner will help you see if there are any name conflicts in 
long identifiers when they are truncated to a shorter 
significant length. 

-P Compile as a C++ program, regardless of source file ex
tension link with C++ libraries. If the command line 
doesn't have any .CPP files, you'll need this option to link 
in the C++ libraries. 

options The asterisk(*) indicates that the option is on by default. All 
others are off by default. 

-gn Stops compiling after n messages (warning and error 
messages combined). 

-Jn Stops compiling after n error messages. 

For more Information on -wxxx 
these warnings, see Chapter 

Enables the warning message indicated by xxx. The 
option -w-xxx suppresses the warning message 
indicated by xxx. See Chapter 7, "Error messages," of 
the Programmer's Guide for a detailed explanation of 
these warning messages. The possible options for 
-wxxx are listed here and divided into four categories: 

7, "Error messages,· In the 
Programmer's Gulde. 

ANSI violations, frequent errors, portability warnings, 
and C++ warnings. You can also use the pragma warn 
in your source code to control these options. See the 
section on preprocessor directives in Chapter 1, "The 
Turbo C++ language standard," in the Programmer's 
Guide. 

ANSI violations 

-wbbf 
-wbei* 
-wbfs* 
-wbig* 
-wdcl* 
-wdpu* 

Chapter 4, The command-line compiler 

Bit fields must be signed or unsigned int. 
Initialization with inappropriate type. 
Untyped bit field assumed signed Int. 
Hexadecimal value contains more than three digits. 
Declaration does not specify a tag or an identifier. 
Declare function prior to use in prototype. 

125 



126 

-wdup* 
-weas 
-wext* 
-will 
-wpin 
-wret* 
-wstr* 
-wstu* 
-wsus* 
-wvoi* 
-wzdi* 
-wzst* 

Redefinition of macro is not identical. 
Assigning integer _val to enumeration. 
Identifier is declared as both external and static. 
Ill-formed pragma. 
This initialization is only partially bracketed. 
Both return and return with a value used. 
Functions may not be part of a struct or union. 
Undefined structure structure. 
Suspicious pointer conversion. 
Void functions may not return a value. 
Division by zero. 
Zero length structure. 

Frequent errors 

-waus* 
-wdef* 
-weft* 
-wpar* 
-wpia* 
-wrch* 
-wrvl 
-wamb 
-wamp 
-wnod 
-wpro 
-wstv 
-wuse 

Identifier is assigned a value that is never used. 
Possible use of identifier before definition. 
Code has no effect. 
Parameter parameter is never used. 
Possibly incorrect assignment. 
Unreachable code. 
Function should return a value. 
Ambiguous operators need parentheses. 
Superfluous & with function or array. 
No declaration for function function. 
Call to function with no prototype. 
Structure passed by value. 
Identifier declared but never used. 

Portability warnings 

-wapt* 
-wcln 
-wept* 
-wrng* 
-wrpt* 
-wsig 
-wucp 

Nonportable pointer assignment. 
Constant is long. 
Nonportable pointer comparison. 
Constant out of range in comparison. 
Nonportable return type conversion. 
Conversion may lose significant digits. 
Mixing pointers to signed and unsigned char. 

C++ warnings 

-watt Assignment to this is obsolete; use X::operator new 
instead. 

Turbo C++ User's Guide 



-wflo* 
-whid 
-Wini* 
-wlin* 
-wive* 
-wncf 
-wnci* 
-wobi* 

-wofp* 
-womf* 
-wovl* 
-wscp 

Segment-naming 

Program flow can skip this initialization, try using { }. 
Function1 hides virtual function function2. 
Functions containing identifier are not expanded inline. 
Temporary used to initialize identifier. 
Temporary used for parameter in call to identifier. 
Non-const function function called const object. 
The constant member identifier is not initialized. 
Base initialization without a class name is now 
obsolete. 
This style of function definition is now obsolete. 
Obsolete syntax, use :: instead. 
Use of overload is now unnecessary and obsolete. 
Identifier is both a structure tag and a name, now 
obsolete. 

control -zAname Changes the name of the code segment class to 
name. By default, the code segment is assigned to 

Don't use these options class CODE. 
unless you have a good 

understanding of segmen- -zBname 
tat/on on the 8086 processor. 

Changes the name of the uninitialized data segment 
class to name. By default, the uninitialized data seg
ments are assigned to class BSS. Under normal circumstances, 

you will not need to specify 
segment names. -zCname Changes the name of the code segment to name. By 

default, the code segment is named _TEXT, except 
for the medium, large and huge models, where the 
name is filename_TEXT. (filename here is the source 
file name.) 

-zDname Changes the name of the uninitialized data segment 
to name. By default, the uninitialized data segment is 
named _BSS, except in the huge model, where no 
uninitialized data segment is generated. 

-zEname Changes the name of the segment where far objects 
are put to name. By default, the segment name is the 
name of the far object followed by _FAR. 

-zFname Changes the name of the class for far objects to name. 
By default, the name is FAR_DATA. 

-zGname Changes the name of the uninitialized data segment 
group to name. By default, the data group is named 
DGROUP, except in the huge model, where there is 
no data group. 

Chapter 4, The command-line compiler 127 



128 

-zHname Causes far objects to be put into group name. By 
default, far objects are not put into a group. 

-zPname Causes any output files to be generated with a code 
group for the code segment named name. 

-zRname Sets the name of the initialized data segment to 
name. By default, the initialized data segment is 
named _DATA, except in the huge model, where the 
segment is namedfilename_DATA. 

-zSname Changes the name of the initialized data segment 
group to name. By default, the data group is named 
DGROUP, except in the huge model, where there is 
no data group. 

-zTname Sets the name of the initialized data segment class to 
name. By default the initialized data segment class is 
named DATA. 

-zX* Uses the default name for X. For example, -zA* 
assigns the default class name CODE to the code 
segment. 

Compilation 
control options -B 

-c 

-Ena me 

Compiles and calls the assembler to process inline 
assembly code. 

Compiles and assembles the named .C, .CPP, and 
.ASM files, but does not execute a link command. 

Uses name as the name of the assembler to use. By 
default, TASM is used. 

-ofilename Compiles the named file to the specified filename.obj. 

-P 

-S 

Compiles the source file as a C ++ program 
regardless of its extension. 

Compiles the named source files and produces 
assembly language output files (.ASM), but does not 
assemble. When you use this option, Turbo C++ will 
include the C source lines as comments in the 
produced .ASM file. 

This option is not available in the integrated 
environment. 

Turbo C++ User's Guide 



-Tstring 

-T-

EMS and 
extended -ae 

memory options 

-Qe-

If you are in doubt about -Ox 
your systems' overall use of 

extended memory, don't use 
this option. 

-Qx:nnnn 

-Ox-

Linker options 

Parses string as an option to T ASM (or as an option 
to the assembler defined with -E). 

Removes all previously defined assembler options. 

Instructs the compiler to use all EMS memory it can 
find. This is on by default. This option speeds up 
your compilations, especially for large source files. 

Instructs the compiler not to use any EMS memory. 

Instructs the compiler to use all extended memory it 
can find. Like -Qe, this speeds up compilations of 
large source files. However, unlike -Oe, this option 
has to be used with care, because another program 
might be already using extended memory and not 
be recognized. 

For example, using the VDISK ram disk driver with 
this option is safe, while some disk caches are not. 

Instructs the compiler to reserve nnnn Kbytes 
extended memory for other programs and use the 
rest for itself. To figure out how much memory to 
reserve, you have to add up the memory that is used 
at the bottom of extended memory by resident 
programs like RAM disks or disk caches. 

For example, if you use a disk cache, you might set 
it up so that it uses the first 512 Kbytes of extended 
memory. To tell the compiler to use the rest, you 
would specify -Qx=512. 

If you aren't sure how much extended memory is 
used by resident utilities like RAM disks or disk 
caches, it is better not to use this option. 

Instructs the compiler not to use any extended 
memory. This is the default. 

See the section on TL/NK in 
Chapter 5 for a list of linker 

options. 

-efi/ename Derives the executable program's name from 
filename by adding the file extension .EXE (the 

Chapter 4, The command-line compiler 129 



program name will then be filename.EXE). filename 
must immediately follow the -e, with no 
intervening whitespace. Without this option, the 
linker derives the .EXE file's name from the name of 
the first source or object file in the file name list. 

-M Forces the linker to produce a full link map. The 
default is to produce no link map. 

-Ix Passes option x to the linker. The switch -1-x 
suppresses option x. More than one option can 
appear after the -I. 

Environment options 

130 

-!directory Searches directory, the drive specifier or path name 
of a subdirectory, for include files (in addition to 
searching the standard places). A drive specifier is a 
single letter, either uppercase or lowercase, followed 
by a colon (:). A directory is any valid directory or 
directory path. You can use more than one-I 
directory option. 

-Ldirectory Forces the linker to get the Cox.OBJ start-up object 
file and the Turbo C++ library files (Cx.LIB, 
CPx.LIB, MATHx.LIB, EMU.LIB, and FP87.LIB) 
from the named directory. By default, the linker 
looks for them in the current directory. 

-nxxx Places any .OBJ or .ASM files created by the com
piler in the directory or drive named by the path 
xxx. 

Turbo C++ can search multiple directories for include and library 
files. This means that the syntax for the library directories (-l) 
and include directories (-1} command-line options, like that of the 
#define option (-D), allows multiple listings of a given option. 

Here is the syntax for these options: 

Library directories: -Ldirname [; dirname; .. . 
Include directories: - Idirname [; dirname; .. . 

The parameter dirname used with -L and -1 can be any directory 
or directory path. 

Turbo C++ User's Guide 



You can enter these multiple directories on the command line in 
the following ways: 

•You can "gang" multiple entries with a single-Lor-I option, 
separating ganged entries with a semicolon, like this: 

tee -Ldirnamel;dirname2;dirname3 -linel;ine2;ine3 myfile.e 

•You can place more than one of each option on the command 
line, like this: 

tee -Ldirnamel -Ldirname2 -Ldirname3 -linel -line2 -line] myfile.e 

•You can mix ganged and multiple listings, like this: 

tee -Ldirnamel;dirname2 -Ldirname3 -linel;ine2 -line] myfile.e 

If you list multiple-Lor -1 options on the command line, the 
result is cumulative: The compiler searches all the directories 
listed, or defines the specified constants, in order from left to 
right. 

Note The integrated environment (TC.EXE) also supports multiple 
library directories, using the "ganged entry" syntax. 

Library files 
Turbo C++ recognizes two types of library files: implicit and user
specified (also known as explicit library files). 

•Implicit library files are the ones Turbo C++ automatically links 
in. These are the Cx.LIB files, CPx.LIB, EMU.LIB or FP87.LIB, 
MATHx.LIB, and the start-up object files (Cox.OBJ). 

•User-specified library files are the ones you list on the com-
mand line or in a project file; these are file names with an .LIB 
extension. 

File-search algorithms 

The Turbo C++ include file search algorithms search for the 
#include files listed in your source code in the following way: 

•If you put an #include <somefile. h> statement in your source 
code, Turbo C++ searches for somefile.h only in the specified 
include directories. 

•If, on the other hand, you put an #include "some file. h" state
ment in your code, Turbo C++ searches for somefile.h first in 
the current directory; if it does not find the header file there, it 

Chapter 4, The command-line compiler 131 



Your code written under any 
version of Turbo C will work 
without problems in Turbo 

C++. 

-Land-I and 

then searches in the include directories specified in the 
command line. 

The library file search algorithms are similar to those for include 
files: 

•Implicit libraries: Turbo C++ searches for implicit libraries only 
in the specified library directories; this is similar to the search 
algorithm for #include <somefile.h>. 

•Explicit libraries: Where Turbo C++ searches for explicit (user
specified) libraries depends in part on how you list the library 
file name. 

• If you list an explicit library file name with no drive or direc
tory (like this: my lib. lib), Turbo C++ searches for that library 
in the current directory first. Then (if the first search was 
unsuccessful), it looks in the specified library directories. This 
is similar to the search algorithm for #include "somefile.h". 

• If you list a user-specified library with drive and/or directory 
information (like this: c :mystuff\mylibl. lib), Turbo C++ 
searches only in the location you explicitly listed as part of the 
library path name and not in the specified library directories. 

configuration files The-Land -1 options you list on the command line take priority 
over those in your configuration files. 

An example with notes 

132 

Here is an example of using a TCC command line that 
incorporates multiple library directories (-L) and include 
directories (-1) options. 

1. Your current drive is C:, and your current directory is 
C:\ TURBOC, where TCC.EXE resides. Your A drive's current 
position is A:\ASTROLIB. 

2. Your include files (.Hor "header" files) are located in 
C:\ TURBOC\INCLUDE. 

3. Your startup files (COT.OBJ, COS.OBJ, ... , COH.OBJ) are in 
C:\TURBOC. 

Turbo C++ User's Guide 



4. Your standard Turbo C++ library files (CS.LIB, CM.LIB, ... , 
MATHS.LIB, MATHM.LIB, ... , EMU.LIB, FP87.LIB, and so 
forth) are in C: \ TURBOC\ LIB. 

5. Your custom library files for star systems (which you created 
and manage with TUB) are in C: \ TURBOC\ST ARLIB. One of 
these libraries is P ARX.LIB. 

6. Your third-party-generated library files for quasars are in the 
A drive in \ASTROLIB. One of these libraries is WARP.LIB. 

Under this configuration, you enter the following TCC command 
line: 

tee -mm -Llib;starlib -Iinelude orion umaj parx.lib a:\astrolib\warp.lib 

TCC compiles ORION.C and UMAJ.C to .OBJ files. 

The compiler searches C:\ TURBOC\INCLUDE for the include 
files in your source code, then links them with the medium model 
start-up code (COM.OBJ), the medium model libraries (CM.LIB, 
MATHM.LIB), the standard floating-point emulation library 
(EMU.LIB), and the user-specified libraries (PARX.LIB and 
WARP.LIB), producing an executable file named ORION.EXE. 

It searches for the startup code in C: \TUR BOC (then stops 
because they're there); it searches for the standard libraries in 
C: \ TURBOC\LIB (search ends because they're there). 

When it searches for the user-specified library P ARX. LIB, the 
compiler first looks in the current directory, C:\ TURBOC. Not 
finding the library there, the compiler then searches the library 
directories in order: first C: \ TURBOC\LIB, then C: \ TURBOC\ 
STARLIB (where it locates PARX.LIB). 

Since an explicit path is given for the library WARP.LIB (A:\ 
ASTROLIB\ WARP.LIB), the compiler only looks there. 

The TURBOC.CFG File 

You can set up a list of options in a configuration file called 
TURBOC.CFG, which can be used in addition to options entered 
on the command line. This configuration file contains options as 
they would be entered on the command line. 

If you've listed your commonly used options in TURBOC.CFG, 
you won't need to enter them on the command line when you use 

Chapter 4, The command-line compiler 133 



134 

TCC.EXE. If you don't want to use certain options that are listed 
in TURBOC.CFG, you can override them with switches on the 
command line. 

You can create the TURBOC.CFG file using any standard ASCII 
editor or word processor (such as Turbo C++'s integrated editor). 
You can list options (separated by spaces) on the same line or list 
them on separate lines. Then, when you compile your program 
from the command line, Turbo C++ uses the options supplied in 
TURBOC.CFG, in addition to the ones given on the command 
line. 

When you run TCC, it looks for TURBOC.CFG in the current 
directory. If it doesn't find it there and if you're running DOS 3.x 
or higher, Turbo C++ then looks in the start directory (where 
TCC.EXE resides). Note that TURBOC.CFG is not the same as 
TCCONFIG.TC, which is the default integrated environment 
version of a configuration file. 

Options given on the command line override the same options 
specified in TURBOC.CFG. This ability to override configuration 
file options with command-line options is an important one. If, for 
example, your configuration file contains several options, includ
ing the -a option (which you want to tum ojf), you can still use 
the configuration file but override the -a option by listing -a- in 
the command line. 

How are command-line options and TURBOC.CFG options com
bined and overridden? There are two kinds of TURBOC.CFG 
options: 

• the -1 and -l options 

• all other options in the file 

Under any circumstances, command-line options are evaluated 
from left to right, and the following rules apply: 

•For any option that is not an -1 or -l option, a duplication on 
the right overrides the same option on the left. (Thus an off 
switch on the right cancels an on switch to the left.) 

• The -1 and -l options on the left, however, take precedence 
over those on the right. 

When the options from the configuration file are combined with 
the command-line options, the-I and -l options from 
TURBOC.CFG are appended to the right of the command-line 
options, and the remaining TURBOC.CFG options are inserted on 

Turbo C++ User's Guide 



Using an 
alternate 

configuration file 

Converting 
configuration files 

the left of the command line's list of options, immediately after the 
TCC command. 

Thus, because of the way the command line and TURBOC.CFG 
are combined, the TURBOC.CFG -1 and -L options are on the 
extreme right, so the include and library directories specified in 
the command line are the first ones that Turbo C++ searches for 
the include and library files. This gives the -I and -L directories 
on the command line priority over those in the configuration file. 
All other options from the TURBOC.CFG file are inserted to the 
left of the command-line options, which again, correctly, gives the 
command-line options priority over them. 

You can tell TCC to read options from a file other than the default 
TURBOC.CFG. To specify the alternate configuration file name, 
include its file name, prefixed with+, anywhere on the TCC 
command line. 

For example, to read the option settings from the file D:\ 
ALT.CFC, you could use the following command line: 

TCC +D:\ALT.CFG .....• 

TCCNVT.EXE takes a configuration file created by one envi
ronment (the integrated environment or the command-line 
compiler) and converts it for use by the other. 

The conversion command is 

TCCNVT SourceFile [DestinationFile] 

TCCNVT automatically determines the direction of the 
conversion: It examines the source file to see whether it is an inte
grated environment configuration file or a command-line 
compiler configuration file. 

The destination file name is optional. If you don't specify a file 
name, TCCNVT uses the default name TCCNVT.TC or 
TURBOC.CFG, depending on the conversion direction. You can 
give any file name. 

When it creates the TCCNVT.TC file, TCCNVT uses default 
values for any items not specified by the command-line compiler 
configuration file (TURBOC.CFG). Going in the other direction, it 

Chapter 4, The command-line compiler 135 



136 

includes in TURBOC.CFG only the options in TCCNVT. TC that 
differ from the default values. 

TCCNVT returns you to the DOS prompt when the conversion is 
done. 

Turbo C++ User's Guide 



c H A p T E R 

5 

Utilities 

Your Turbo C++ package supplies much more than just two 
versions of the fastest C compiler available. It also provides 
eleven powerful standalone utilities that you can use with your 
Turbo C++ files or your other modules. Most of these utilities are 
documented in a text file included with your distribution disks. 

These highly useful adjuncts to Turbo C++ are 

• BGIOBJ (a conversion utility for graphics drivers and fonts) 

• CINSTXFR (an integrated environment transfer utility) 

• CPP (the preprocessor) 

• GREP (a file-search utility) 
Documented herein. •MAKE (the standalone program manager) 

• OBJXREF (an object module cross-referencer) 

• PRJCVT (converts Turbo C project files to the Turbo C++ 
format) 

• PRJ2MAK (converts Turbo C++ project files to MAKE files) 

• THELP (the Turbo Help utility) 
Documented herein. • TLIB (the Turbo Librarian) 

Documented herein. • TLINK (the Turbo Linker) 

Documented herein. •TOUCH (the file date and time changer) 

• TRIGRAPH (a character-conversion utility) 

Chapter 5, Utilities 137 



MAKE 

This chapter explains what MAKE, TUB, TLINK, and TOUCH do, 
and illustrates, with code and command-line examples, how to 
use them. 

MAKE: The program manager 

How MAKE works 

138 

Borland's command-line MAKE, derived from the UNIX program 
of the same name, helps you keep the executable versions of your 
programs current. Many programs consist of many source files, 
each of which may need to pass through preprocessors, 
assemblers, compilers, and other utilities before being combined 
with the rest of the program. Forgetting to recompile a module 
that has been changed-or that depends on something you've 
changed-can lead to frustrating bugs. On the other hand, recom
piling everything just to be safe can be a tremendous waste of time. 

MAKE solves this problem. You provide MAKE with a descrip
tion of how the source and object files of your program are pro
cessed to produce the finished product. MAKE looks at that 
description and at the date stamps on your files, then does what's 
necessary to create an up-to-date version. During this process, 
MAKE may invoke many different compilers, assemblers, linkers, 
and utilities, but it never does more than is necessary to update 
the finished program. 

MAKE's usefulness extends beyond programming applications. 
You can use MAKE to control any process that involves selecting 
files by name and processing them to produce a finished product. 
Some common uses include text processing, automatic backups, 
sorting files by extension into other directories, and cleaning 
temporary files out of your directory. 

MAKE keeps your program up-to-date by performing the 
following tasks: 

•Reads a special file (called a makefile) that you have created. 
This file tells MAKE which .OBJ and library files have to be 
linked in order to create your executable file, and which source 
and header files have to be compiled to create each .OBJ file. 

•Checks the time and date of each .OBJ file against the time and 
date of the source and header files it depends on. If any of these 

Turbo C++ User's Guide 



MAKE 

is later than the .OBJ file, MAKE knows that the file has been 
modified and that the source file must be recompiled. 

• Calls the compiler to recompile the source file. 

•Once all the .OBJ file dependencies have been checked, checks 
the date and time of each of the .OBJ files against the date and 
time of your executable file. 

•If any of the .OBJ files is later than the .EXE file, calls the linker 
to recreate the .EXE file. 

Caution! MAKE relies completely upon the timestamp DOS places on each 
file. This means that, in order for MAKE to do its job, your 
system's time and date must be set correctly. If you own an AT or 
a PS/2, make sure that the battery is in good repair. Weak 
batteries can cause your system's clock to lose track of the date 
and time, and MAKE will no longer work as it should. 

Starting MAKE 

MAKE stops if any command 
it has executed is aborted 

via a Control-Break. Thus, a 
Control-Break stops the 

currently executing com
mand and MAKE as well. 

Chapter 5, Utilities 

The original IBM PC and most compatibles didn't come with a 
built-in clock or calendar. If your system falls into this category, 
and you haven't added a clock, be sure to set the system time and 
date correctly (using the DOS DATE and TIME commands) each 
time you start your machine. 

To use MAKE, type make at the DOS prompt. MAKE then looks for 
a file specifically named MAKEFILE. If MAKE can't find 
MAKEFILE, it looks for MAKEFILE.MAK; if it can't find that or 
BUILTINS.MAK (described later), it halts with an error message. 

What if you want to use a file with a name other than MAKEFILE 
or MAKEFILE.MAK? You give MAKE the file (-f) option, like this: 

make -fmyfile.mak 

The general syntax for MAKE is 

make [option [option]] [target [target ... ]] 

where option is a MAKE option (discussed later), and target is the 
name of a target file to make. 

Here are the MAKE syntax rules: 

•The word make is followed by a space, then a list of make 
options. 

•Each make option must be separated from its adjacent options 
by a space. Options can be placed in any order, and any number 

139 



MAKE 

of these options can be entered (as long as there is room in the 
command line). All options that do not specify a string (-s or -a, 
for example) can have an optional - or+ after them. This 
specifies whether you wish to turn the option off(-) or on(+). 

• The list of MAKE options is followed by a space, then an 
optional list of targets. 

•Each target must also be separated from its adjacent targets by a 
space. MAKE evaluates the target files in the order listed, re
compiling their constituents as necessary. 

If the command line does not include any target names, MAKE 
uses the first target file mentioned in an explicit rule. If one or 
more targets are mentioned on the command line, they will be 
built as necessary. 

The BUil TiNS.MAK file You will often find that there are MAKE macros and rules that 
you use again and again. There are three ways of handling them. 

140 

•First, you can put them in every makefile you create. 

•Second, you can put them all in one file and use the !include 
directive in each makefile you create. (See page 159 for more on 
directives.) 

• Third, you can put them all in a BUIL TINS.MAK file. 

Each time you run MAKE, it looks for a BUIL TINS.MAK file; 
however, there is no requirement that any BUIL TINS.MAK file 
exist. If MAKE finds a BUIL TINS.MAK file, it interprets that file 
first. If MAKE cannot find a BUIL TINS.MAK file, it proceeds 
directly to interpreting MAKEFILE (or whatever makefile you 
specify). 

The first place MAKE searches for BUIL TINS.MAK is the current 
directory. If it's not there, and if you're running under DOS 3.0 or 
higher, MAKE then searches the directory from which 
MAKE.EXE was invoked. You should place the BUILTINS.MAK 
file in the same directory as the MAKE.EXE file. 

MAKE always searches for the makefile in the current directory 
only. This file contains the rules for the particular executable 
program file being built. Both BUIL TINS.MAK and the makefile 
files have identical syntax rules. 

MAKE also searches for any !include files (see page 161 for more 
on this MAKE directive) in the current directory. If you use the -I 

Turbo C++ User's Guide 



MAKE 

(include) option, it will also search in the directory specified with 
the -1 option. 

Command-line options Here's a complete list of MAKE's command-line options. Note that 
case (upper or lower) is significant; the option -d is not a valid 
substitution for -D. 

Option 

-?or-h 

-a 

-B 
-Didentifier 

-Diden:string 

-ftilename 

-i 

-I directory 

-K 

-n 

-s 

-S 

-Uidentifier 

-W 

What it does 

Prints a help message. The default options are displayed with plus signs following. 
(This makes them default.) 

Causes an automatic dependency check on .OBJ files. 

Builds all targets regardless of file dates. 

Defines the named identifier to the string consisting of the single character 1 (one). 

Defines the named identifier iden to the string after the equal sign. The string cannot 
contain any spaces or tabs. 

Uses filename as the MAKE file. H filename does not exist and no extension is given, tries 
FILENAME.MAK. 

Does not check (ignores) the exit status of all programs run. Continues regardless of 
exit status. This is equivalent to putting'-' in front of all commands in the MAKEFILE 
(described below). 

Searches for include files in the indicated directory (as well as in the current directory). 

Keeps (does not erase) temporary files created by MAKE. All temporary files have the 
form MAKEnnnn.$$$, where nnnn ranges from 0000 to 9999. See page 146 for more on 
temporary files. 

Prints the commands but does not actually perform them. This is useful for debugging 
a makefile. 

Does not print commands before executing. Normally, MAKE prints each command as 
it is about to be executed. 

Swaps MAKE out of memory while executing commands. This significantly reduces 
the memory overhead of MAKE, allowing it to compile very large modules. 

Undefines any previous definitions of the named identifier. 

Writes the current specified non-string options (like -s and -a) to MAKE.EXE. 

A simple use of 
MAKE For our first example, let's look at a simple use of MAKE that 

doesn't involve programming. Suppose you're writing a book, 
and decide to keep each chapter of the manuscript in a separate 
file. (Let's assume, for the purposes of this example, that your 

Chapter 5, utilities 141 



MAKE 

MAKE can also backup tiles, book is quite short: It has three chapters, in the files CHAPl.MSS, 
s~u:Jir~~~ir1':s~~~i:Je;::~ CHAP2.MSS, and CHAP3.MSS.) To produce a current draft of the 

automatically run your book, you run each chapter through a formatting program, called 
programs should the data FORM.EXE, then use the DOS COPY command to concatenate the 
tiles they use be modified. outputs to make a single file containing the draft, like this: 

142 

Chap1.MSS ~ Chapt1.TXr ... _ .. 

Chap2.MSS ~ Chapt2.TXT 

Chap3.MSS ~ Chap3.TXT 

Book.TXT 

Like programming, writing a book requires a lot of concentration. 
As you write, you may modify one or more of the manuscript 
files, but you don't want to break your concentration by noting 
which ones you've changed. On the other hand, you don't want to 
forget to pass any of the files you've changed through the 
formatter before combining it with the others, or you won't have a 
fully updated draft of your book! 

One inelegant and time-consuming way to solve this problem is 
to create a batch file that reformats every one of the manuscript 
files. It might contain the following commands: 

FORM CHAPl.MSS 
FORM CHAP2 .MSS 
FORM CHAP3.MSS 
COPY /A CHAP1.TXT+CHAP2.TXT+CHAP3.TXT BOOK.TXT 

Running this batch file would always produce an updated version 
of your book. However, suppose that, over time, your book got 
bigger and one day contained 15 chapters. The process of refor
matting the entire book might become intolerably long. 

MAKE can come to the rescue in this sort of situation. All you 
need to do is create a file, usually named MAKEFILE, which tells 
MAKE what files BOOK.TXT depends on and how to process 
them. This file will contain rules that explain how to rebuild 
BOOK.TXT when some of the files it depends on have been 
changed. 

In this example, the first rule in your makefile might be 

Turbo C++ User's Guide 



Chapter 5, Utilities 

MAKE 

book.txt: chapl.txt chap2.txt chap3.txt 
copy /a chapl.txt+chap2.txt+chap3.txt book.txt 

What does this mean? The first line (the one that begins with 
book. txt:) says that BOOK.TXT depends on the formatted text of 
each of the three chapters. If any of the files that BOOK.TXT 
depends on are newer than BOOK.TXT itself, MAKE must rebuild 
BOOK.TXT by executing the COPY command on the subsequent 
line. 

This one rule doesn't tell the whole story, though. Each of the 
chapter files depends on a manuscript (.MSS) file. If any of the 
CHAP?.TXT files is newer than the corresponding .MSS file, the 
.MSS file must be recreated. Thus, you need to add more rules to 
the makefile as follows: 

chapl.txt: chapl.mss 
form chapl .mss 

chap2.txt: chap2.mss 
form chap2.mss 

chap3.txt: chap3.mss 
form chap3 .mss 

Each of these rules shows how to format one of the chapters, if 
necessary, from the original manuscript file. 

MAKE understands that it must update the files that another file 
depends on before it attempts to update that file. Thus, if you 
change CHAP3.MSS, MAKE is smart enough to reformat Chapter 
3 before combining the .TXT files to create BOOK.TXT. 

We can add one more refinement to this simple example. The 
three rules look very much the same-in fact, they're identical 
except for the last character of each file name. And, it's pretty easy 
to forget to add a new rule each time you start a new chapter. To 
solve these problems, MAKE allows you to create something 
called an implicit rule, which shows how to make one type of file 
from another, based on the files' extensions. In this case, you can 
replace the three rules for the chapters with one implicit rule: 

.mss. txt: 
form $* .mss 

This rule says, in effect, "If you need to make a file out of an .MSS 
file to make things current, here's how to do it." (You'll still have 
to update the first rule-the one that makes BOOK.TXT, so that 
MAKE knows to concatenate the new chapters into the output 

143 



MAKE 

Creating 

file. This rule, and others following, make use of a macro. See page 
155 for an in-depth discussion of macros.) 

Once you have the makefile in place, all you need to do to create 
an up-to-date draft of the book is type a single command at the 
DOS prompt: MAKE. 

makefiles Creating a program from an assortment of program files, include 
files, header files, object files, and so on, is very similar to the 
text-processing example you just looked at. The main difference is 
that the commands you'll use at each step of the process will 
invoke preprocessors, compilers, assemblers, and linkers instead 
of a text formatter and the DOS COPY command. Let's explore 
how to create makefiles-the files that tell MAKE how to do these 
things-in greater depth. 

A makefile contains the definitions and relationships needed to 
help MAKE keep your program(s) up-to-date. You can create as 
many makefiles as you want and name them whatever you want; 
MAKEFILE is just the default name that MAKE looks for if you 
don't specify a makefile when you run MAKE. 

You create a makefile with any ASCII text editor, such as Turbo 
C++'s built-in editor, Sprint, MicroStar, or SideKick. All rules, defi
nitions, and directives end at the end of a line. If a line is too long, 
you can continue it to the next line by placing a backslash (\) as 
the last character on the line. 

Use whitespace (blanks and tabs) to separate adjacent identifiers 
(such as dependencies) and to indent commands within a rule. 

Components of a 

144 

makefile Creating a makefile is basically like writing a program, with defi
nitions, commands, and directives. These are the constructs 
allowed in a makefile: 

•comments 

• explicit rules 

• implicit rules 
• macro definitions 

•directives: 

•file inclusion directives 

Turbo C++ User's Gulde 



MAKE 

• conditional execution directives 
• error detection directives 
• macro undefinition directives 

Let's look at each of these in more detail. 

Comments Comments begin with a pound sign (#) character; the rest of the 
line following the# is ignored by MAKE. Comments can be 
placed anywhere; they don't have to start in a particular column. 

Explicit and implicit rules are 
discussed following the 
section on commands. 

Command lists 

Chapter 5, Utilities 

A backslash will not continue a comment onto the next line; 
instead, you must use a #on each line. In fact, you cannot use a 
backslash as a continuation character in a line that has a comment. 
If the backslash precedes the#, it is no longer the last character on 
the line; if it follows the#, then it is part of the comment itself. 

Here are some examples of comments in a makefile: 

# Makefile for my book 

# This file updates the file BOOK.TXT each time I 
# change one of the .MSS files 

# Explicit rule to make BOOK.TXT from six chapters. Note the 
# continuation lines. 

book.txt: chapl.txt chap2.txt chap3.txt\ 
chap4.txt chapS.txt chap6.txt 
copy /a chapl.txt+chap2.txt+chap3.txt+chap4.txt+\ 

chap5.txt+chap6.txt book.txt 

# Implicit rule to format individual chapters 
.mss. txt: 

form $*.mss 

Both explicit and implicit rules (discussed later) can have lists of 
commands. This section describes how these commands are pro
cessed by MAKE. 

Commands in a command list take the form 

[prefix ... ] command_body 

Each command line in a command list consists of an (optional) list 
of prefixes, followed by a single command body. 

145 



MAKE 

Prefixes 

The prefixes allowed in a command modify the treatment of these 
commands by MAKE. The prefix is either the at-sign (@) or a 
hyphen(-) followed immediately by a number. 

Prefix 

@ 

What it does 

Prevents MAKE from displaying the command before 
executing it. The display is hidden even if the -s option is not 
given on the MAKE command line. This prefix applies only 
to the command on which it appears. 

Exit codes are those returned -num 
by the executed commands 

Affects how MAKE treats exit codes. If a number (num) is 
provided, then MAKE aborts processing only if the exit status 
exceeds the number given. In this example, MAKE aborts 
only if the exit status exceeds 4: 

(within the program). 

146 

-4 myprog sample.x 

If no -num prefix is given and the status is nonzero, MAKE 
stops and deletes the current target file. 

With a hyphen but no number, MAKE will not check the exit 
status at all. Regardless of the exit status, MAKE continues. 

Command body 

The command body is treated exactly as if it were entered as a 
line to COMMAND.COM, with the exception that pipes (I) are not 
supported. 

In addition to the <, >, and >> redirection operators, MAKE adds 
the « and && operators. These operators create a file on the fly 
for input to a command. The« operator creates a temporary file 
and redirects the command's standard input so that it comes from 
the created file. If you have a program that accepted input from 
stdin, the command 

myprog «! 
This is a test 

would create a temporary file containing the string "This is a 
test \n", redirecting it to be the sole input to myprog. The excla
mation point(!) is a delimiter in this example; you can use any 
character except # or \ as a delimiter for the file. The first line 
containing the delimiter character as its first character ends the 
file. The rest of the line following the delimiter character (in this 

Turbo C++ User's Guide 



MAKE 

case, an exclamation point) is considered part of the preceding 
command. 

The && operator is similar to<<. It creates a temporary file, but 
instead of making the file the standard input to the command, the 
&& operator is replaced with the temporary file's name. This is 
useful when you want MAKE to create a file that's going to be 
used as input to a program. The following example creates a 
"response file" for TLINK: 

Macros are covered starting 
onpage 155. 

MYPROG.EXE: $(MYOBJS) 
tlink /c @&& ! 

Chapter 5, Utilities 

COS $ (MYOBJS) 
$* 
$* 
$(MYLIBS) EMU.LIB MATHS.LIB CS.LIB 

Note that macros (indicated by$ signs) are expanded when the 
file is created. The$* is replaced with the name of the file being 
built, without the extension, and $(MYOBJS) and $(MYLIBS) are 
replaced with the values of the macros MYOBJS and MYLIBS. 
Thus, TLINK might see a file that looks like this: 

COS a.obj b.obj c.obj ct.obj 
MYPROG 
MYPROG 
w.lib x.lib y.lib z.lib EMU.LIB MATHS.LIB CS.LIB 

1111.. All temporary files are deleted unless you use the -K command
line option. Use the -K option to "debug" your temporary files if 
they don't appear to be working correctly. 

Batching programs 

MAKE allows utilities that can operate on a list of files to be 
batched. Suppose, for example, that MAKE needs to submit 
several C files to Turbo C++ for processing. MAKE could run 
TCC.EXE once for each file, but it's much more efficient to invoke 
TCC.EXE with a list of all the files to be compiled on the com
mand line. This saves the overhead of reloading Turbo C++ each 
time. 

MAKE's batching feature lets you accumulate the names of files to 
be processed by a command, combine them into a list, and invoke 
that command only once for the whole list. 

147 



MAKE 

148 

To cause MAKE to batch commands, you use braces in the 
command line: 

command {batch-item} ... rest-of-command 

This command syntax delays the execution of the command until 
MAKE determines what command (if any) it has to invoke next. If 
the next command is identical except for what's in the braces, the 
two commands will be combined by appending the parts of the 
commands that appeared inside the braces. 

Here's an example that shows how batching works. Suppose 
MAKE decides to invoke the following three commands in 
succession: 

TCC { filel. c } 
TCC { file2 .c } 
TCC {file3.c } 

Rather than invoking Turbo C++ three times, MAKE issues the 
single command 

TCC filel.c file2.c file3.c 

Note that the spaces at the ends of the file names in braces are 
essential to keep them apart, since the contents of the braces in 
each command are concatenated exactly as-is. 

Here's an example that uses an implicit rule. Suppose your 
makefile had an implicit rule to compile C programs to .OBJ files: 

.c.obj: 
TCC -c {$< } 

As MAKE uses the implicit rule on each C file, it expands the 
macro $< into the actual name of the file and adds that name to 
the list of files to compile. (Again, note the space inside the braces 
to keep the names separate.) The list grows until one of three 
things happens: 

•MAKE discovers that it has to run a program other than TCC 

• there are no more commands to process 

• MAKE runs out of room on the command line 

If MAKE runs out of room on the command line, it puts as much 
as it can on one command line, then puts the rest on the next 
command line. When the list is done, MAKE invokes TCC (with 
the-c option) on the whole list of files at once. 

Turbo C++ User's Guide 



Chapter 5, Utilities 

MAKE 

Executing DOS commands 

MAKE executes the DOS "internal" commands listed here by 
invoking a copy of COMMAND.COM to perform them: 

break del pa th set 
cd dir prompt time 
chdir echo rd type 
els 
copy 
ctty 
date 

erase 
for 
md 
mkdir 

rem 
ren 
rename 
rmdir 

ver 
verify 
vol 

MAKE searches for any other command name using the DOS 
search algorithm: 

1. MAKE first searches for the file in the current directory, then 
searches each directory in the path. 

2. In each directory, MAKE first searches for a file of the specified 
name with the extension .COM. If it doesn't find it, it searches 
for the same file name with an .EXE extension. Failing that, 
MAKE searches for a file by the specified name with a .BAT 
extension. 

3. If MAKE finds a .BAT file, it invokes a copy of COM
MAND.COM to execute the batch file. 

If you supply a file-name extension in the command line, MAKE 
searches only for that extension. Here are some examples: 

•This command causes COMMAND.COM to change the current 
directory to C: \include: 

cd c:\include 

• MAKE uses the full search algorithm in searching for the 
appropriate files to perform this command: 

tlink lib\cOs x y,z,z,lib\cs 

• MAKE searches for this file using only the .COM extension: 

myprog.com geo.xyz 

• MAKE executes this command using the explicit file name 
provided: 

c:\myprogs\fil.exe -r 

149 



MAKE 

150 

Explicit rules The first rule in the example on page 145 is an explicit rule-a rule 
that specifies complete file names explicitly. Explicit rules take the 
form 

target [target] ... : [source source ... ] 
[command] 
[command] 

where target is the file to be updated, source is a file on which 
target depends, and command is any valid DOS command 
(including invocation of .BAT files and execution of .COM and 
.EXE files). 

Explicit rules define one or more target names, zero or more 
source files, and an optional list of commands to be performed. 
Target and source file names listed in explicit rules can contain 
normal DOS drive and directory specifications; they can also 
contain wildcards. 

- Syntax here is important. 

•target must be at the start of a line (in column 1). 

•The source file(s) must be preceded by at least one space or tab, 
after the colon. 

•Each command must be indented, (must be preceded by at least 
one blank or tab). As mentioned before, the backslash can be 
used as a continuation character if the list of source files or a 
given command is too long for one line. 

Both the source files and the commands are optional; it is possible 
to have an explicit rule consisting only of target [target .. .] 
followed by a colon. 

The idea behind an explicit rule is that the command or com
mands listed will create or update target, usually using the source 
files. When MAKE encounters an explicit rule, it first checks to see 
if any of the source files are themselves target files elsewhere in the 
makefile. If so, MAKE evaluates that rule first. 

Once all the source files have been created or updated based on 
other rules, MAKE checks to see if target exists. If not, each com
mand is invoked in the order given. If target does exist, its time 
and date of last modification are compared against the time and 
date for each source. If any source has been modified more recently 
than target, the list of commands is executed. 

Turbo C++ User's Guide 



Chapter 5, Utilities 

MAKE 

A given file name can occur on the left side of an explicit rule only 
once in a given execution of MAKE. 

Each command line in an explicit rule begins with whitespace. 
MAKE considers all lines following an explicit rule to be part of 
the command list for that rule, up to the next line that begins in 
column 1 (without any preceding whitespace) or to the end of the 
file. Blank lines are ignored. 

I 

Special considerations 

An explicit rule with no command lines following it is treated a 
little differently than an explicit rule with command lines. 

•If an explicit rule includes commands, the only files that the 
target depends on are the ones listed in the explicit rule. 

•If an explicit rule has no commands, the targets depend on two 
sets of files: the files given in the explicit rule, and any file that 
matches an implicit rule for the target(s). This lets you specify a 
dependency to be handled by an implicit rule. For example, 

.e.obj 
tee -e $< 

prog.obj: 

prog.obj depends on prog.c; it will execute the command line 

TCC -e prog.e 

if out of date. 

Examples 

Here are some examples of explicit rules: 

1. prog.exe: myprog.obj prog2.obj 
tee myprog.obj prog2.obj 

2. myprog.obj: myprog.e inelude\stdio.h 
tee -e myprog.e 

3. prog2.obj: prog2.e inelude\stdio.h 
tee -e -K prog2.e 

The three examples are from the same makefile. Only the modules 
affected by a change are rebuilt. If PROG2.C is changed, it's the 
only one recompiled; the same holds true for MYPROG.C. But if 
the include file stdio.h is changed, both are recompiled. (The link 

151 



MAKE 

step is done if any of the .OBJ files in the dependency list have 
changed, which will happen when a recompile results from a 
change to a source file.) 

Automatic dependency checking 

Turbo C++ works with MAKE to provide automatic dependency 
checking for include files. TCC and TC produce .OBJ files that tell 
MAKE what include files were used to create those .OBJ files. 
MAKE's -a command-line option checks this information and 
makes sure that everything is up-to-date. 

When MAKE does an automatic dependency check, it reads the 
include files' names, times, and dates from the .OBJ file. If any 
include files have been modified, MAKE causes the .OBJ file to be 
recompiled. For example, consider the following explicit rule: 

rnyprog.obj: rnyprog.c include\stdio.h 
tee -c rnyprog.c 

Now assume that the following source file, called MYPROG.C, 
has been compiled with TCC (version 2.0 or later): 

#include <stdio.h> 
Hnclude "dcl.h" 

void rnyprog () ( J 

If you then invoke MAKE with the following command line 

make -a rnyprog.obj 

it checks the time and date of MYPROG.C, and also of stdio.h and 
dcl.h. 

Implicit rules MAKE allows you to define implicit rules as well as explicit ones. 
Implicit rules are generalizations of explicit rules; they apply to all 
files that have certain identifying extensions. 

Here's an example that illustrates the relationship between the 
two rules. Consider this explicit rule from the preceding example. 
The rule is typical because it follows a general principle: An .OBJ 
file is dependent on the .C file with the same file name and is 
created by executing TCC. In fact, you might have a makefile 
where you have several (or even several dozen) explicit rules 
following this same format. 

152 Turbo C++ User's Guide 



Chapter 5, Utilities 

MAKE 

By rewriting the explicit rule as an implicit rule, you can eliminate 
all the explicit rules of the same form. As an implicit rule, it 
would look like this: 

.e.obj: 
tee -e $< 

This rule means "Any file with the extension .C can be translated 
to a file of the same name with the extension .OBJ using this 
sequence of commands." The .OBJ file is created with the second 
line of the rule, where $< represents the file's name with the source 
(.C) extension. (The symbol $< is a special macro. Macros are 
discussed starting on page 155. The $< macro will be replaced by 
the full name of the appropriate .C source file each time the com
mand executes.) 

Here's the syntax for an implicit rule: 

.source_ extension. target _extension: 
[command] 
[command] 

As before, the commands are optional and must be indented. 

source_extension (which must begin with its period in column 1) is 
the extension of the source file; that is, it applies to any file having 
the format 

/name.source _extension 

Likewise, the target_extension refers to the file 

/name.target _extension 

where fname is the same for both files. In other words, this implicit 
rule replaces all explicit rules having the format 

/name.target _extension: /name.source _extension 
[command] 
[command] 

for any fname. 

Note MAKE uses implicit rules if it can't find any explicit rules for a 
given target, or if an explicit rule with no commands exists for the 
target. 

The extension of the file name in question is used to determine 
which implicit rule to use. The implicit rule is applied if a file is 

153 



MAKE 

154 

found with the same name as the target, but with the mentioned 
source extension. 

For example, suppose you had a makefile (named MAKEFILE) 
whose contents were 

.e.obj: 
tee -e $< 

If you had a C program named RA TIO.C that you wanted to 
compile to RA TIO.OBJ, you could use the command 

make ratio.obj 

MAKE would take RA TIO.OBJ to be the target. Since there is no 
explicit rule for creating RA TIO.OBJ, MAKE applies the implicit 
rule and generates the command 

tee -e ratio.e 

which, of course, does the compile step necessary to create 
RATIO.OBJ. 

MAKE also uses implicit rules if you give it an explicit rule with 
no commands. Suppose you had the following implicit rule at the 
start of your makefile: 

.e.obj: 
tee -e $< 

You could then remove the command from the rule: 

myprog.obj: myprog.e inelude\stdio.h 
tee -e myprog.e 

and it would execute exactly as before. 

If you're using Turbo C++ and you enable automatic dependency 
checking in MAKE, you can remove all explicit dependencies that 
have .OBJ files as targets. With automatic dependency checking 
enabled and implicit rules, the three-rule C example shown in the 
section on explicit rules becomes 

.e.obj: 
tee -e $< 

prog.exe: myprog.obj prog2.obj 
tlink lib\eOs myprog prog2, prog, , lib\es 

You can write several implicit rules with the same target exten
sion. If more than one implicit rule exists for a given target exten
sion, the rules are checked in the order in which they appear in 

Turbo C++ User's Guide 



Chapter 5, Utilities 

MAKE 

the makefile, until a match is found for the source extension, or 
until MAKE has checked all applicable rules. 

MAKE uses the first implicit rule that involves a file with the 
source extension. Even if the commands of that rule fail, no more 
implicit rules are checked. 

All lines following an implicit rule, up to the next line that begins 
without whitespace or to the end of the file, are considered to be 
part of the command list for the rule. 

Macros Often, you'll find yourself using certain commands, file names, or 
options again and again in your makefile. For instance, if you're 
writing a C program that uses the medium memory model, all 
your TCC commands will use the switch -mm, which means to 
compile to the medium memory model. But suppose you wanted 
to switch to the large memory model. You could go through and 
change all the -mm options to -ml. Or, you could define a macro. 

A macro is a name that represents some string of characters. A 
macro definition gives a macro name and the expansion text; 
thereafter, when MAKE encounters the macro name, it replaces 
the name with the expansion text. 

Suppose you defined the following macro at the start of your 
makefile: 

MODEL = m 

This line defines the macro MODEL, which is now equivalent to the 
string m. Using this macro, you could write each command to 
invoke the C compiler to look something like this: 

tee -e -m${MODEL) myprog.c 

When you run MAKE, each macro (in this case, $(MODEL)) is 
replaced with its expansion text (here, m). The command that's 
actually executed would be 

tee -e -mm myprog.c 

Now, changing memory models is easy. If you change the first 
line to 

MODEL = 1 

you've changed all the commands to use the large memory model. 
In fact, if you leave out the first line altogether, you can specify 
which memory model you want each time you run MAKE, using 
the -D (define) command-line option: 

155 



MAKE 

156 

make -DMODEL = 1 

This tells MAKE to treat MODEL as a macro with the expansion 
text l. 

Defining macros 

Macro definitions take the form 

macro _name = expansion text 

where macro_name is the name of the macro. macro_name should 
be a string of letters and digits with no whitespace in it, although 
you can have whitespace between macro_name and the equal sign 
(=).The expansion text is any arbitrary string containing letters, 
digits, whitespace, and punctuation; it is ended by newline. 

If macro _name has previously been defined, either by a macro 
definition in the makefile or by the -D option on the MAKE com
mand line, the new definition replaces the old. 

Case is significant in macros; that is, the macro names model, 
Model, and MODEL are all different. 

Using macros 

You invoke macros in your makefile using this format 

$(macro _name) 

You need the parentheses for all invocations, even if the macro 
name is just one character long (with the exception of the pre
defined macros). This construct-$ (macro_ name)-is known as a 
macro invocation. 

When MAKE encounters a macro invocation, it replaces the 
invocation with the macro's expansion text. If the macro is not 
defined, MAKE replaces it with the null string. 

Special considerations 

Macros in macros: Macros cannot be invoked on the left side 
(macro_name) of a macro definition. They can be used on the right 
side (expansion text), but they are not expanded until the macro 
being defined is invoked. In other words, when a macro 
invocation is expanded, any macros embedded in its expansion 
text are also expanded. 

Turbo C++ User's Guide 



See page 159 for Information 
on directives. 

Chapter 5, Utilities 

MAKE 

Macros In rules: Macro invocations are expanded immediately in 
rule lines. 

Macros in directives: Macro invocations are expanded imme
diately in !If and lelif directives. If the macro being invoked in an 
!If or lelif directive is not currently defined, it is expanded to the 
value 0 (FALSE). 

Macros In commands: Macro invocations in commands are 
expanded when the command is executed. 

Predefined macros 

MAKE comes with several special macros built in: $d, $*, $<, $:, 
$.,and$&. The first is a test to see if a macro name is defined; it's 
used in the conditional directives !if and !elif. The others are file 
name macros, used in explicit and implicit rules. In addition, the 
current DOS environment strings (the strings you can view and 
set using the DOS SET command) are automatically loaded as 
macros. Finally, MAKE defines two macros: __ MSDOS _ _J 

defined to be 1 (one); and __ MAKE _ _J defined to be MAKE's 
version in hexadecimal (for this version, Ox0300). 

Macro 

$d 
$* 
$< 
$: 
$. 
$& 

What it does 

Defined test macro 
Base file name macro with path 
Full file name macro with path 
Path only macro 
Full file name macro, no path 
Base file name macro, no path 

Defined Test Macro ($d): The defined test macro ($d) expands to 1 
if the given macro name is defined, or to 0 if it is not. The content 
of the macro's expansion text does not matter. This special macro 
is allowed only in !if and !elif directives. 

For example, suppose you want to modify your makefile so that if 
you don't specify a memory model, it'll use the medium one. You 
could put this at the start of your makefile: 

!if !$d(MODEL) i if MODEL is not defined 
MODEL=m t define it to m (MEDIUM) 
!endif 

If you then invoke MAKE with the command line 

make -DMODEL=l 

157 



MAKE 

158 

then MODEL is defined as 1. If, however, you just invoke MAKE 
by itself, 

make 

then MODEL is defined as m, your "default" memory model. 

Fiie name macros 

The various file name macros work in similar ways, expanding to 
some variation of the full path name of the file being built. 

Base file name macro ($*): The base file name macro is allowed in 
the commands for an explicit or an implicit rule. This macro ($*) 
expands to the file name being built, excluding any extension, like 
this: 

File name is A:\P\TESTFILE.C 
$* expands to A:\P\TESTFILE 

For example, you could modify this explicit rule 

prog.exe: myprog.obj prog2.obj 
tlink lib\cOs myprog prog2, prog, / lib\cs 

to look like this: 

prog.exe: myprog.obj prog2.obj 
tlink lib\cOs myprog prog2, $*, , lib\cs 

When the command in this rule is executed, the macro $* is 
replaced by the target file name without an extension and with a 
path. For implicit rules, this macro is very useful. 

For example, an implicit rule might look like this: 

.c.obj: 
tee -c $* 

Full file name macro ($<): The full file name macro ($<) is also 
used in the commands for an explicit or implicit rule. In an 
explicit rule, $< expands to the full target file name (including 
extension), like this: 

File name is A:\P\TESTFILE.C 
$< expands to A:\P\TESTFILE.C 

For example, the rule 

mylib.obj: mylib.c 
copy $< \oldobjs 
tee -c $* 

Turbo C++ User's Gulde 



Directives 

MAKE 

copies MYLIB.OBJ to the directory \OLDOBJS before compiling 
MYLIB.C. 

In an implicit rule, $< takes on the file name plus the source exten
sion. For example, the implicit rule 

.e.obj: 
tee -e $*.e 

produces exactly the same result as 

.e.obj: 
tee -e $< 

because the extension of the target file name must be .C. 

File-name path macro($:): This macro expands to the path name 
(without the file name), like this: 

File name is A:\P\TESTFILE.C 
$: expands to A:\P\ 

File-name and extension macro ($.): This macro expands to the 
file name, with an extension but without the path name, like this: 

File name is A:\P\TESTFILE.C 
$. expands to TESTFILE.C 

File name only macro ($&): This macro expands to the file name 
only, without path or extension, like this: 

File name is A:\P\TESTFILE.C 
$& expands to TESTFILE 

Borland's MAKE allows something that other versions of MAKE 
don't: directives similar to those allowed in C, assembler, and 
Turbo Pascal. You can use these directives to perform a variety of 
useful and powerful actions. Some directives in a makefile begin 
with an exclamation point(!) as the first character of the line. 
Others begin with a period. Here is the complete list of MAKE 
directives: 

Table 5.1 
MAKE directives .autodepend 

!elif 
Turns on autodependency checking. 
Conditional execution. 

!else 
!end if 
!error 
!if 
.ignore 

Chapter 5, Utilities 

Conditional execution. 
Conditional execution. 
Causes MAKE to stop and print an error message. 
Conditional execution. 
Tells MAKE to ignore return value of a command . 

159 



MAKE 

160 

Table 5.1: MAKE directives (continued) 

!include 
. noautodepend 
. noignore 
.nosilent 

. noswap 

.path.ext 

.silent 

. swap 
!undef 

Specifies a file to include in the makefile. 
Turns off autodependency checking . 
Turns off .ignore . 
Tells MAKE to print commands before executing 
them. 
Tells MAKE to not swap itself in and out of memory . 
Gives MAKE a path to search for files with extension 
.EXT. 
Tells MAKE to not print commands before executing 
them. 
Tells MAKE to swap itself in and out of memory . 
Causes the definition for a specified macro to be 
forgotten. 

Dot directives Each of the following directives has a corresponding command
line option, but takes precedence over that option. For example, if 
you invoke MAKE like this: 

make -a 

but the makefile has a .NOAUTODEPEND directive, then 
autodependency checking will be off . 

. AUTODEPEND and .NOAUTODEPEND turn on or off 
autodependency checking. They correspond to the -a command
line option . 

.IGNORE and .NOIGNORE tell MAKE to ignore the return value 
of a command, much like placing the prefix - in front of it 
(described earlier). They correspond to the -i command-line 
option . 

. SILENT and .NOSILENT tell MAKE whether or not to print 
commands before executing them. They correspond to the -s 
command-line option . 

. SWAP and .NOSWAP tell MAKE to swap itself out of memory. 
They correspond to the -S option . 

. PATH.extension 

This directive, placed in a makefile, tells MAKE where to look for 
files of the given extension. For example, if the following is in a 
makefile: 

.PATH.c = C:\CSOURCE 

.c.obj: 

Turbo C++ User's Guide 



tee -e $* 

tmp.exe: tmp.obj 
tee tmp.obj 

MAKE 

MAKE will look for TMP.C, the implied source file for TMP.OBJ, 
in C: \CSOURCE instead of the current directory. 

The .PA TH is also a macro that has the value of the pa th. The 
following is an example of the use of.PA TH. The source files are 
contained in one directory, the .OBJ files in another, and all the 
.EXE files in the current directory . 

. PATH.e = C:\CSOURCE 

.PATH.obj = C:\OBJS 

.e.obj: 
tee -e -0$(.PATH.obj)\$& $< 

.obj.exe: 
tee -e$&.exe $< 

tmp.exe: tmp.obj 

File-inclusion directive A file-inclusion directive (!include) specifies a file to be included 
into the makefile for interpretation at the point of the directive. It 
takes the following form: 

Chapter 5, Utilities 

!include "filename" 

You can nest these directives to any depth. If an include directive 
attempts to include a file that has already been included in some 
outer level of nesting (so that a nesting loop is about to start), the 
inner include directive is rejected as an error. 

How do you use this directive? Suppose you created the file 
MODEL.MAC that contained the following: 

! if ! $d (MODEL) 
MODEL=m 
!endif 

You could use this conditional macro definition in any makefile 
by including the directive 

!include "MODEL.MAC" 

When MAKE encounters !include, it opens the specified file and 
reads the contents as if they were in the makefile itself. 

161 



MAKE 

Conditional execution 
directives 

Conditional execution directives (!If, !ellf, !else, and !endlf) give 
you a measure of flexibility in constructing makefiles. Rules and 
macros can be made conditional, so that a command-line macro 
definition (using the -D option) can enable or disable sections of 
the makefile. 

The format of these directives parallels those in C, assembly 
language, and Turbo Pascal: 

!if expression 
[ lines ] 
!endif 

!if expression 
[ lines J 

!else 
[ lines J 

!endif 

!if expression 
[ lines ] 
!elif expression 
[ lines ] 
!endif 

Note [lines] can be any of the following statement types: 

162 

• macro_definition 
• explicit_rule 
• implicit_rule 
• include_directive 
•if_group 
• error_directive 
• undef_directive 

The conditional directives form a group, with at least an !if 
directive beginning the group and an !endif directive closing the 
group. 

•One !else directive can appear in the group. 

• lelif directives can appear between the !if and any !else 
directives. 

•Rules, macros, and other directives can appear between the 
various conditional directives in any number. Note that 
complete rules, with their commands, cannot be split across 
conditional directives. 

• Conditional directive groups can be nested to any depth. 

Turbo C++ User's Guide 



Chapter 5, Utilities 

MAKE 

Any rules, commands, or directives must be complete within a 
single source file. 

All !if directives must have matching !endlf directives within the 
same source file. Thus the following include file is illegal, 
regardless of what's in any file that might include it, because it 
doesn't have a matching lendif directive: 

!if $(FILE_COUNT) > 5 
some rules 

!else 
other rules 

<end-of-file> 

Expressions allowed In conditional directives 

Expressions are allowed in an !if or an !elif directive; they use a 
C-like syntax. The expression is evaluated as a simple 32-bit 
signed integer. 

You can enter numbers as decimal, octal, or hexadecimal 
constants. If you know the C language, you already know how to 
write constants in MAKE; the formats are exactly the same. If you 
program in assembly language or Turbo Pascal, be sure to look 
closely at the examples that follow. These are legal constants in a 
MAKE expression: 

4536 t decimal constant 
0677 t octal constant (distinguished by leading 0) 
Ox23aF i hexadecimal constant (distinguished by leading Ox) 

An expression can use any of the following operators: 

Operator Operation 

Unary operators 

Negation (unary minus) 
Bit complement (inverts all bits) 
Logical NOT (yields 0 if operand is nonzero, 1 otherwise) 

Binary operators 

+ Addition 

* 

% 

>> 
<< 

Subtraction 
Multiplication 
Division 
Remainder 

Right shift 
Left shift 

163 



MAKE 

164 

& Bitwise AND 
I Bitwise OR 
II Bitwise exclusive OR (XOR) 

&& Logical AND 
II Logical OR 

> Greater than 
< Less than 
>= Greater than or equal 
<= Less than or equal 
-- Equality 
I= Inequality 

Ternary operator 

? : The operand before the ? is treated as a test. 

If the value of the first operand is nonzero, then the second 
operand (the part between the ? and :) is the result. 

If the value of the first operand is zero, the value of the 
result is the value of the third operand (the part after the :). 

Parentheses can be used to group operands in an expression. In 
the absence of parentheses, all the unary operators take 
precedence over binary operators. The binary operators have the 
same precedences as they do in the C language, and are listed 
here in order of decreasing precedence. 

* % Multiplicative operators 
+ Additive operators 
« » Bitwise shift operators 
<= >= Relational operators 
< > Relational operators 
-- = I= Relational operators 
& Bitwise AND 
II 

I 
&& 
II 

Bitwise exclusive OR 
Bitwise OR 
Logical AND 
Logical OR 

Operators of equal precedence are executed from left to 
right, except for nested ternary operators(?:), which are 
executed right to left. 

Since this many layers of operator precedence can be 
confusing even to C experts, we recommend that you use 
parentheses liberally in your expressions. 

Turbo C++ User's Guide 



You can invoke macros within an expression; the special 
macro $d() is recognized. After all macros have been 
expanded, the expression must have proper syntax. 

MAKE 

Error directive The error directive (!error) causes MAKE to stop and print a 
fatal diagnostic containing the text after !error. It takes the 
format 

Macro undefinition 
directive 

MAKE error 

!error any_text 

This directive is designed to be included in conditional 
directives to allow a user-defined error condition to abort 
MAKE. For example, you could insert the following code in 
front of the first explicit rule: 

! if ! $d (MODEL) 
# if MODEL is not defined 
!error MODEL not defined 
!endif 

If you reach this spot without having defined MODEL, then 
MAKE stops with this error message: 

Fatal makefile 4: Error directive: MODEL not defined 

The macro "undefinition" directive (!undef) causes any 
definition for the named macro to be forgotten. If the macro 
is currently undefined, this directive has no effect. The 
syntax is 

!undef macro_name 

messages MAKE diagnostic messages fall into two classes: errors and fatal 
errors. 

Chapter 5, Utilities 

•When a fatal error occurs, compilation immediately stops. You 
must take appropriate action and then restart the compilation. 

•Errors indicate some sort of syntax or semantic error in the 
source makefile. 

The following generic names and values appear in the error 
messages listed in this section. When you get an error message, 
the appropriate name or value is substituted. 

165 



MAKE 

166 

In manual 

argument(s) 
expression 
filename 
line number 
message 

What you'll see onscreen 

The command-line or other argument 
An expression 
A file name (with or without extension) 
A line number 
A message string 

The error messages are listed in ASCII alphabetic order; 
messages beginning with symbols come first. Since 
messages that begin with one of the variables just listed 
cannot be alphabetized by what you will actually see when 
you receive such a message, all such messages have been 
placed at the beginning of each error message list. 

For example, if you have tried to link a file named 
NOEXIT.C, you might receive the following actual message: 

noexit does not exist--don't know how to make it 

In order to look this error message up, you would need to 
find 

filename does not exist-don't know how to make it 

at the beginning of the list of error messages. 

If the variable occurs later in the text of the error message 
(for example, "Illegal character in constant expression: 
expression"), you can find the explanation of the message in 
correct alphabetical order; in this case, under I. 

Fatal error messages filename does not exist - don't know how to make it 
There's a nonexistent file name in the build sequence, and 
no rule exists that would allow the file name to be built. 

Circular dependency exists in makefile 
The makefile indicates that a file needs to be up-to-date 
BEFORE it can be built. Take, for example, the explicit 
rules: 

filea: fileb 
fileb: filec 
filec: filea 

This implies that filea depends on fileb, which depends on 
filec, and filec depends on filea. This is illegal, since a file 
cannot depend on itself, indirectly or directly. 

Turbo C++ User's Guide 



Chapter 5, Utilities 

MAKE 

Error directive: message 
MAKE has processed an #error directive in the source 
file, and the text of the directive is displayed in the 
message. 

Incorrect command-line argument: argument 
You've used incorrect command-line arguments. 

No terminator specified for In-line file operator 
The makefile contains either the && or « command-line 
operators to start an in-line file, but the file is not 
terminated. 

Not enough memory 
All your working storage has been exhausted. You 
should perform your make on a machine with more 
memory. If you already have 640K in your machine, you 
may have to simplify the source file, or unload some 
memory-resident programs. 

Unable to execute command 
A command failed to execute; this may be because the 
command file could not be found, or because it was 
misspelled, or (less likely) because the command itself 
exists but has been corrupted. 

Unable to open makefile 
The current directory does not contain a file named 
MAKEFILE, and there is no MAKEFILE.MAK. 

Unable to redirect input or output 
Make was unable to open the temporary files necessary to 
redirect input or output. If you are on a network, make 
sure you have rights to the current directory. 

Errors Bad file name format in include statement 
Include file names must be surrounded by quotes or 
angle brackets. The file name was missing the opening 
quote or angle bracket. 

Bad undef statement syntax 
An !undef statement must contain a single identifier and 
nothing else as the body of the statement. 

Character constant too long 
Character constants can be only one or two characters 
long. 

167 



MAKE 

168 

Command arguments too long 
The arguments to a command were more than the 127-
character limit imposed by OOS. 

Command syntax error 
This message occurs if 

• The first rule line of the makefile contained any 
leading whitespace. 

•An implicit rule did not consist of .ext.ext:. 
• An explicit rule did not contain a name before the : 

character. 

• A macro definition did not contain a name before 
the = character. 

Command too long 
The length of a command has exceeded 128 characters. 
You might wish to use a response file. 

Division by zero 
A divide or remainder in an !If statement has a zero 
divisor. 

Expression syntax error In !if statement 
The expression in an !if statement is badly formed-it 
contains a mismatched parenthesis, an extra or missing 
operator, or a missing or extra constant. 

File name too long 
The file name in an !Include directive is too long for the 
compiler to process. File names in DOS can be no longer 
than 64 characters. 

If statement too long 
An If statement has exceeded 4,096 characters. 

Illegal character In constant expression <expression> 
MAKE encountered some character not allowed in a 
constant expression. If the character is a letter, this 
probably indicates a misspelled identifier. 

Illegal octal digit 
An octal constant was found containing a digit of 8 or 9. 

Macro expansion too long 
A macro cannot expand to more than 4,096 characters. 
This error often occurs if a macro recursively expands 
itself. A macro cannot legally expand to itself. 

Turbo C++ User's Gulde 



Misplaced elif statement 
An !elif directive is missing a matching !if directive. 

Misplaced else statement 
There's an !else directive without any matching !if 
directive. 

Misplaced endif statement 
There's an lendif directive without any matching !if 
directive. 

No file name ending 
The file name in an include statement is missing the 
correct closing quote or angle bracket. 

Redefinition of target filename 
The named file occurs on the left side of more than one 
explicit rule. 

Rule line too long 
An implicit or explicit rule was longer than 4,096 
characters. 

Unable to open include file filename 
The named file cannot be found. This can also be caused 
if an include file included itself. Check whether the 
named file exists. 

Unexpected end of file in conditional started on line 
line number 

The source file ended before MAKE encountered an 
!endif. The !endif was either missing or misspelled. 

Unknown preprocessor statement 
A! character was encountered at the beginning of a line, 
and the statement name following was not error, undef, 
if, elif, include, else, or endif. 

TUB: The Turbo Librarian 

Chapter 5, Utilities 

TUB is a utility that manages libraries of individual .OBJ 
(object module) files. A library is a convenient tool for 
dealing with a collection of object modules as a single unit. 

The libraries included with Turbo C++ were built with TLIB. 
You can use TUB to build your own libraries, or to modify 
the Turbo C++ libraries, your own libraries, libraries 

MAKE 

169 



TLIB 

Why use object 
module libraries? 

170 

furnished by other programmers, or commercial libraries 
you have purchased. You can use TUB to 

•create a new library from a group of object modules 
•add object modules or other libraries to an existing library 

• remove object modules from an existing library 
•replace object modules from an existing library 

•extract object modules from an existing library 

• list the contents of a new or existing library 

When it modifies an existing library, TUB always creates a 
copy of the original library with a .BAK extension. 

TUB can also create (and include in the library file) an 
Extended Dictionary, which may be used to speed up 
linking. See the section on the /E option (page 174) for 
details. 

Although TUB is not essential to creating executable pro
grams with Turbo C++, it is a useful programmer's produc
tivity tool. You will find TUB indispensable for large 
development projects. If you work with object module li
braries developed by others, you can use TUB to maintain 
those libraries when necessary. 

When you program in C, you often create a collection of 
useful C functions, like the functions in the C run-time 
library. Because of C's modularity, you are likely to split 
those functions into many separately compiled source files. 
You use only a subset of functions from the entire collection 
in any particular program. It can become quite tedious, 
however, to figure out exactly which files you are using. If 
you always include all the source files, on the other hand, 
your program becomes extremely large and unwieldy. 

An object module library solves the problem of managing a 
collection of C functions. When you link your program with 
a library, the linker scans the library and automatically 
selects only those modules needed for the current program. 
In addition, a library consumes less disk space than a collec
tion of object module files, especially if each of the object 
files is small. A library also speeds up the action of the 

Turbo C++ User's Guide 



The TUB 

linker, because it only opens a single file, instead of one file 
for each object module. 

TLIB 

CO mm and line Run TUB by typing a TUB command line at the DOS 
prompt. To get a summary of TUB's usage, just type TLIB 

and press Enter. 

Component 

tlib 

libname 

IC 

/E 

IP size 

operations 

listfile 

Description 

The TUB command line takes the following general form, 
where items listed in square brackets ([like this]) are 
optional: 

tlib libname [IC] [/E] [/Psize] [operations] [, listfile] 

This section summarizes each of these command-line com
ponents; the following sections provide details about using 
TUB. For examples of how to use TUB, refer to the 
"Examples" section on page 176. 

The command name that invokes TLIB. 

The DOS path name of the library you want to create or manage. Every TLIB command 
must be given a libname. Wildcards are not allowed. TLIB assumes an extension of .LIB if 
none is given. We recommend that you do not use an extension other than .LIB, since 
both TCC and TC's project-make facility require the .LIB extension in order to recognize 
library files. Note: If the named library does not exist and there are add operations, TLIB 
creates the library. 

The case-sensitive flag. This option is not normally used; see page 175 for a detailed 
explanation. 

Create Extended Dictionary; see page 174 for a detailed explanation. 

Set the library page size to size; see page 174 for a detailed explanation. 

The list of operations TLIB performs. Operations may appear in any order. If you only 
want to examine the contents of the library, don't give any operations. 

The name of the file listing library contents. The listfile name (if given) must be preceded 
by a comma. If you do not give a file name, no listing is produced. The listing is an 
alphabetical list of each module. The entry for each module contains an alphabetical list 
of each public symbol defined in that module. The default extension for the listfile is 
.LST. 

You can direct the listing to the screen by using the listfile name CON, or to the printer 
by using the name PRN. 

Chapter 5, Utilities 171 



TUB 

172 

The operation list The operation list describes what actions you want TLIB to do. It 
consists of a sequence of operations given one after the other. 
Each operation consists of a one- or two-character action symbol 
followed by a file or module name. You can put whitespace 
around either the action symbol or the file or module name, but 
not in the middle of a two-character action or in a name. 

You can put as many operations as you like on the command line, 
up to the DOS-imposed line-length limit of 127 characters. The 
order of the operations is not important. TLIB always applies the 
operations in a specific order: 

1. All extract operations are done first. 

2. All remove operations are done next. 

3. All add operations are done last. 

You can replace a module by first removing it, then adding the 
replacement module. 

File and module names 

TUB finds the name of a module by taking the given file name 
and stripping any drive, path, and extension information from it. 
(Typically, drive, path, and extension are not given.) 

Note that TUB always assumes reasonable defaults. For example, 
to add a module that has an .OBJ extension from the current 
directory, you only need to supply the module name, not the path 
and .OBJ extension. 

Wildcards are never allowed in file or module names. 

TLIB operations 

TUB recognizes three action symbols(-,+,*), which you can use 
singly or combined in pairs for a total of five distinct operations. 
For operations that use a pair of characters, the order of the 
characters is not important. The action symbols and what they do 
are listed here: 

Turbo C++ User's Guide 



To create a library, add 
modules to a library that 

does not yet exist. 

You can't directly rename 
modules in a library. To 

rename a module, extract 
and remove it, rename the 
file just created, then add it 

back into the library. 

Using response 
files 

Chapter 5, Utilities 

TLIB 

Action 
symbol Name Description 

+ Add TUB adds the named file to the library. If the 
file has no extension given, TUB assumes an 
extension of .OBJ. If the file is itself a library 
(with a .LIB extension), then the operation adds 
all of the modules in the named library to the 
target library. 

If a module being added already exists, TLIB 
displays a message and does not add the new 
module. 

Remove TUB removes the named module from the 
library. If the module does not exist in the 
library, TLIB displays a message. 

A remove operation only needs a module name. 
TUB allows you to enter a full path name with 
drive and extension included, but ignores 
everything except the module name. 

* Extract TUB creates the named file by copying the cor-
responding module from the library to the file. 
If the module does not exist, TLIB displays a 
message and does not create a file. If the named 
file already exists, it is overwritten. 

-* Extract & TUB copies the named module to the 
*- Remove corresponding file name and then removes it 

from the library. This is just a shorthand for an 
extract followed by a remove operation. 

-+ Replace TUB replaces the named module with the cor-
+- responding file. This is just a shorthand for a 

remove followed by an add operation. 

When you are dealing with a large number of operations, or if 
you find yourself repeating certain sets of operations over and 
over, you will probably want to start using response files. A 
response file is simply an ASCII text file (which can be created 
with the Turbo C++ editor) that contains all or part of a TLIB com
mand. Using response files, you can build TLIB commands larger 
than would fit on one DOS command line. 

To use a response file pathname, specify @pathname at any position 
on the TLIB command line. 

173 



TLIB 

Creating an 
extended 

dictionary: The /E 
option 

Setting the page 
size: The /P option 

174 

•More than one line of text can make up a response file; you use 
the "and" character(&) at the end of a line to indicate that 
another line follows. 

•You don't need to put the entire TUB command in the response 
file; the file can provide a portion of the TUB command line, 
and you can type in the rest. 

•You can use more than one response file in a single TUB 
command line. 

See "Examples" for a sample response file and a TUB command 
line incorporating it. 

To speed up linking with large library files (such as the standard 
ex.LIB library), you can direct TLIB to create an extended dictionary 
and append it to the library file. This dictionary contains, in a very 
compact form, information that is not included in the standard 
library dictionary. This information enables TLINK to process 
library files faster, especially when they are located on a floppy 
disk or a slow hard disk. All the libraries on your distribution 
disks contain the extended dictionary. 

To create an extended dictionary for a library that is being modi
fied, use the /E option when you invoke TLIB to add, remove, or 
replace modules in the library. To create an extended dictionary 
for an e~sting library that you don't want to modify, use the /E 
option and ask TLIB to remove a nonexistent module from the 
library. TUB will display a warning that the specified module was 
not found in the library, but it will also create an extended 
dictionary for the specified library. For example, enter 

tlib /E mylib -bogus 

Every DOS library file contains a dictionary (which appears at the 
end of the .LIB file, following all of the object modules). For each 
module in the library, this dictionary contains a 16-bit address of 
that particular module within the .LIB file; this address is given in 
terms of the library page size (it defaults to 16 bytes). 

The library page size determines the maximum combined size of 
all object modules in the library-it cannot exceed 65,536 pages. 
The default (and minimum) page size of 16 bytes allows a library 

Turbo C++ User's Gulde 



Advanced 
operation: The JC 

option 

If you want to use the library 
with other linkers (or allow 

other people to use the 
library with other linkers), for 

your own protection you 
should not use the /C option. 

Chapter 5, Utilities 

TUB 

of about 1 MB in size. To create a larger library, the page size must 
be increased using the /P option; the page size must be a power of 
2, and it may not be smaller than 16 or larger than 32,768. 

All modules in the library must start on a page boundary. For 
example, in a library with a page size of 32 (the lowest possible 
page size higher than the default 16), on the average 16 bytes will 
be lost per object module in padding. If you attempt to create a 
library that is too large for the given page size, TUB will issue an 
error message and suggest that you use /P with the next available 
higher page size. 

When you add a module to a library, TUB maintains a dictionary 
of all public symbols defined in the modules of the library. All 
symbols in the library must be distinct. If you try to add to the 
library a module that would cause a duplicate symbol, TUB 
displays a message and won't add the module. 

Normally, when TUB checks for duplicate symbols in the library, 
uppercase and lowercase letters are not considered as distinct. For 
example, the symbols lookup and LOOKUP are treated as dupli
cates. Since C does treat uppercase and lowercase letters as 
distinct, use the /C option to add a module to a library that 
includes a symbol differing only in case from one already in the 
library. The IC option tells TUB to accept a module with symbols 
in it that differ only in case from symbols already in the library. 

It may seem odd that, without the /C option, TUB rejects symbols 
that differ only in case, especially since C is a case-sensitive 
language. The reason is that some linkers fail to distinguish 
between symbols in a library that differ only in case. Such linkers, 
for example, will treat stars, Stars, and STARS as the same identi
fier. TLINK, on the other hand, has no problem distinguishing 
uppercase and lowercase symbols, and it will properly accept a 
library containing symbols that differ only in case. In this 
example, then, Turbo C++ would treat stars, Stars, and STARS as 
three separate identifiers. As long as you use the library only with 
TUNK, you can use the TLIB /C option without any problems. 

175 



TUB 

Examples 

TLINK (linker) 

The new version of TLINK has 
more features, handles much 

larger programs, and is still 
quite fast. 

176 

Here are some simple examples demonstrating the different 
things you can do with TLIB. 

1. To create a library named MYLIB.LIB with modules X.OBJ, 
Y.OBJ, and Z.OBJ, type 

tlib mylib +x +y +z 

2. To create a library as in #1 and get a listing in MYLIB.LST too, 
type 

tlib mylib +x +y +z, mylib.lst 

3. To get a listing in CS.LST of an existing library CS.LIB, type 

tlib cs, cs.1st 

4. To replace module X.OBJ with a new copy, add A.OBJ and 
delete Z.OBJ from MYLIB.LIB, type 

tlib mylib -+x +a -z 

5. To extract module Y.OBJ from MYLIB.LIB and get a listing in 
MYLIB.LST, type 

tlib mylib *y, mylib.lst 

6. To create a new library named ALPHA, with modules A.OBJ, 
B.OBJ, ... , G.OBJ using a response file: 

First create a text file, ALPHA.RSP, with 

+a.obj +b.obj +c.obj & 
+ct.obj +e.obj +f.obj & 
+g.obj 

Then use the TLIB command, which produces a listing file 
named ALPHA.LST: 

tlib alpha @alpha.rsp, alpha.1st 

The IDE has its own built-in linker. For the command-line version 
of Turbo C++, the linker, TLINK, is invoked automatically (unless 
you suppress the linking stage). If you suppress the linking stage, 
you must invoke TLINK manually. This section describes how to 
use TLINK as a standalone linker. 

Turbo C++ User's Guide 



Invoking TLINK 

In addition to the slash, you 
can also use a hyphen to 

precede TLINK's commands. 
So, for example, /m and -m 

are equivalent. 

Chapter 5, Utilities 

TLINK 

By default, TCC calls TLINK when compilation is successful; 
TLINK then combines object modules and library files to produce 
the executable file. 

You can invoke TLINK at the DOS command line by typing tlink 
with or without parameters. 

When it is invoked without parameters, TLINK displays a 
summary of parameters and options that looks like this: 

Turbo Link Version 3.0 Copyright (c) 1987, 1990 Borland International 
Syntax: TLINK objfiles, exefile, mapfile, libfiles 
f!xxxx indicates use response file xxxx 
Options: /m •map file with publics 

/x • no map file at all 
/i • initialize all segments 
/1 • include source 1 ine numbers 
/s • detailed map of segments 
/n • no default libraries 
/d • warn if duplicate symbols in libraries 
le • lower case significant in symbols 
/3 •enable 32-bit processing 
Iv • include full symbolic debug infomation 
le • ignore Extended Dictionary 
It • generate COM file 
lo • overlay switch 
/ye • expanded memory swapping 
/yx • extended memory swapping 

In TLINK's summary display, the line 

Syntax: TLINK objfiles, exefile, mapfile, libfiles 

specifies that you supply file names in the given order, separating 
the file types with commas. 

For example, if you supply the command line 

tlink /c mainline wd ln tx,fin,mfin,lib\comm lib\support 

TLINK will interpret it to mean that 

•Case is significant during linking (le). 

•The .OBJ files to be linked are MAINLINE.OBJ, WO.OBJ, 
LN.OBJ, and TX.OBJ. 

•The executable program name will be FIN.EXE. 

•The map file is MFIN.MAP. 
•The library files to be linked in are COMM.LIB and 

SUPPORT.LIB, both of which are in subdirectory LIB. 

TLINK appends extensions to file names that have none: 

177 



TLINK 

• .OBJ for object files 

•.EXE for executable files 

• .MAP for map files 

• .LIB for library files 

If no .EXE file name is specified, TLINK derives the name of the 
executable file by appending .EXE to the first object file name 
listed. If, for example, you had not specified FIN as the .EXE file 
name in the previous example, TLINK would have created 
MAINLINE.EXE as your executable file. 

When you use the /t option, the executable file extension defaults 
to .COM rather than .EXE. 

TLINK always generates a map file, unless you explicitly direct it 
not to by including the /x option on the command line. 

•If you give the /m option, the map file will include a list of 
public symbols. 

•If you give the /s option, the map file will include a detailed 
segment map. 

These are the rules TLINK follows when determining the name of 
the map file. 

• If you don't specify any .MAP files, TLINK derives the map file 
name by adding a .MAP extension to the .EXE file name. (You 
can give the .EXE file name on the command line or in the 
response file; if no .EXE name is given, TLINK will derive it 
from the name of the first .OBJ file.) 

•If you specify a map file name in the command line (or in the 
response file), TLINK adds the .MAP extension to the given 
name. 

Even if you specify a map file name, if you use the /x option, 
TLINK won't create any map files at all. 

Using response files TLINK lets you supply the various parameters on the command 
line, in a response file, or in any combination of the two. 

A response file is just a text file that contains the options and/or 
file names that you would usually type in after the name TLINK 
on your command line. 

Unlike the command line, however, a response file can be 
continued onto several lines of text. You can break a long list of 

178 Turbo C++ User's Guide 



Using TLINK with Turbo 
C++ modules 

Chapter 5, Utilities 

TLINK 

object or library files into several lines by ending one line with a 
plus character(+) and continuing the list on the next line. 

You can also start each of the four components on separate lines: 
object files, executable file, map file, libraries. When you do this, 
you must leave out the comma used to separate components. 

To illustrate these features, suppose that you rewrote the previous 
command-line example as a response file, FINRESP, like this: 

/c mainline wd+ 
ln tx,fin 
mfin 
lib\comm lib\support 

You would then enter your TLINK command as 

tlink @finresp 

Note that you must precede the file name with an "at" character 
(@)to indicate that the next name is a response file. 

Alternately, you may break your link command into multiple 
response files. For example, you can break the previous command 
line into the following two response files: 

File name 

LISTOBJS 

LISTLIBS 

Contents 

mainline+ 
wd+ 
ln tx 
lib\comm+ 
lib\support 

You would then enter the TLINK command as 

tlink /c @listobjs,fin,mfin,@listlibs 

Turbo C++ supports six different memory models: tiny, small, 
compact, medium, large, and huge. When you create an 
executable Turbo C++ file using TLINK, you must include the 
initialization module and libraries for the memory model being 
used. 

The general format for linking Turbo C++ programs with TLINK 
is (be sure to include a path for the startup code and libraries) 

tlink COx myobjs, exe,[map],[mylibs] [overlay] [emu I fp87 mathx] Cx 

where these file names represent the following: 

179 



TLINK 

If you are using the tiny 
model and you want TLINK to 

produce a .COM file, you 
must also specify the /f 

option. 

myobjs 
exe 
[map] 
[mylibsJ 

= the .OBJ files you want linked 
= the name to be given the executable file 

the name to be given the map file (optional) 
= the library files you want included at link time 

(optional) 

The other file names on this general TLINK command line 
represent Turbo C++ files, as follows: 

cox 

emulfp87 
mathx 
Cx 
overlay 

Startup code 

= 

= 
= 
= 

initialization module for memory model t, s, c, m, 
l, or h 
the floating-point libraries (choose one) 
math library for memory models, c, m, l, or h 
run-time library for memory models, c, m, l, or h 
overlay manager library; needed only for 
overlaid programs 

The initialization modules have the name Cox.OBJ, where xis a 
single letter corresponding to the model: t, s, c, m, l, h. Failure to 
link in the appropriate initialization module usually results in a 
long list of error messages telling you that certain identifiers are 
unresolved and/or that no stack has been created. 

The initialization module must also appear as the first object file 
in the list. The initialization module arranges the order of the 
various segments of the program. If it is not first, the program 
segments may not be placed in memory properly, causing some 
frustrating program bugs. 

Be sure that you give an explicit .EXE file name on the TLINK 
command line. Otherwise, your program name will be COx.EXE
probably not what you wanted! 

Libraries 

- The order of objects and libraries is very important. You must 
always put the C start-up module (Cox.OBJ) first in the list of 
objects. Then, the library list should contain, in this specific order: 

180 

•your own libraries (if any) 
• FP87.LIB or EMU.LIB, followed by MATHx.LIB (only necessary 

if you are using floating point) 
• Cx.LIB (standard Turbo C++ run-time library file) 

Turbo C++ User's Guide 



You'll also need FP87.LIB or 
EMU.LIB. 

Chapter 5, Utilities 

TLINK 

If you are using any Turbo C++ graphics functions, you must link 
in GRAPHICS.LIB. The graphics library is independent of 
memory models. 

If you want to overlay your program, you must include 
OVERLAY.LIB; this library must precede the Cx.LIB library. 

If your program uses any floating-point, you must include a 
floating-point library (EMU.LIB or FP87.LIB) plus a math library 
(MATHx.LIB) in the link command. Turbo C++'s two floating
point libraries are independent of the program's memory model. 

•If you want to include floating-point emulation logic so that the 
program will work on machines whether they have a math 
coprocessor (80x87) chip or not, you must use EMU.LIB. 

• If you know that the program will always be run on a machine 
with a math coprocessor chip, the FP87.LIB library will produce 
a smaller and faster executable program. 

The math libraries have the name MATHx.LIB, where xis a single 
letter corresponding to the model: s, c, m, l, h (the tiny and small 
models share the library MATHS.LIB). 

You can always include the emulator and math libraries in a link 
command line. If you do so, and if your program does no 
floating-point work, nothing from those libraries will be added to 
your executable program file. However, if you know there is no 
floating-point work in your program, you can save some time in 
your links by excluding those libraries from the command line. 

You must always include the C run-time library for the program's 
memory model. The C run-time libraries have the name ex.LIB, 
where xis a single letter corresponding to the model, as before. 

If you aren't going to use all six memory models, and your hard 
disk space is limited, you may want to keep only the files for the 
model(s) you are using. Here's a list of the library files needed for 
each memory model: 

Tiny COT.OBJ, MATHS.LIB, CS.LIB 
Small COS.OBJ, MATHS.LIB, CS.LIB 
Compact COC.OBJ, MATHC.LIB, CC.LIB 
Medium COM.OBJ, MATHM.LIB, CM.LIB 
Large COL.OBJ, MATHL.LIB, CL.LIB 
Huge COH.OBJ, MATHH.LIB, CH.LIB 

Note that the tiny and small models use the same libraries, but have 
different startup files (COT.OBJ vs. COS.OBJ). 

181 



TLINK 

Using TLINK with TCC 

See Chapter 4, "The 
command-line compiler,· for 

more on TCC. 

TLINK options 

You can also use TCC, the standalone Turbo C++ compiler, as a "front 
end" to TLINK that will invoke TLINK with the correct startup file, 
libraries, and executable program name. 

To do this, you give file names on the TCC command line with explicit 
.OBJ and .LIB extensions. For example, given the following TCC com
mand line, 

tee -mx mainfile.obj subl.obj mylib.lib 

TCC will invoke TLINK with the files Cox.OBJ, EMU.LIB, MA THx.LIB 
and ex.LIB (initialization module, default 8087 emulation library, math 
library and run-time library for memory model x). TLINK will link 
these along with your own modules MAINLINE.OBJ and SUBl.OBJ, 
and your own library MYLIB.LIB. 

When TCC invokes TLINK, it uses the /c (case-sensitive link) option by 
default. You can override this default with -1-c). 

TLINK options can occur anywhere on the command line. The options 
consist of a slash(/), a hyphen(-), or the DOS switch character, 
followed by the option-specifying character (m, x, i, l, s, n, d, c, 3, v, e, o, 
t, ye, or yx). (The DOS switch character is I by default. You can change 
it by using an INT 21H call.) 

If you have more than one option, spaces are not significant (/m/c is the 
same as /m /c), and you can have them appear in different places on the 
command line. The following sections describe each of the options. 

/x, /m, /s options By default, TLINK always creates a map of the executable file. This 
default map includes only the list of the segments in the program, the 
program start address, and any warning or error messages produced 
during the link. 

182 

If you want to create a more complete map, the /m option will add a list 
of public symbols to the map file, sorted alphabetically as well as in 
increasing address order. This kind of map file is useful in debugging. 
Many debuggers can use the list of public symbols to allow you to refer 
to symbolic addresses when you are debugging. 

The /s option creates a map file with segments, public symbols and the 
program start address just like the /m option did, but also adds a 

Turbo C++ User's Guide 



Figure 5.1 
Detailed map of segments 

Chapter 5, Utilities 

TLINK 

detailed segment map. The following is an example of a detailed 
segment map: 

Address Length Cl ass Segment Name Group 
(Bytes) 

0000:0000 OE5B C•CODE 
OOE5:000B 2735 C•CODE 
0359:0000 0028 C•CODE 
0358: OOOB 003A C-CODE 
035F:0005 0083 C•CODE 
0367:0008 0058 C•CODE 
0360:0003 0025 C-CODE 
036F:0008 05CE C•COOE 
03CC: 0006 066 F C•CODE 
0433:0006 0008 C•OATA 
0433:0012 0003 C•OATA 
0433:00E6 OOOE C•OATA 
0442: 0004 0004 C•BSS 
0442:0008 0002 C•BSS 
0442: OOOA OOOE C•BSS 

S•SYMB TEXT 
S•QUACTEXT 
S•SCOPY TEXT 
S•LRSH TEXT 
S•PADA-TEXT 
S•PADOIEXT 
S•PSBPIEXT 
S•BRK TEXT 
S•FLOll'T TEXT 
S• DATA
S•llATA 
S•IJATA 
s--ess 
S·-BSS 
s·:ess 

G• none 
G• none 
G• none 
G· none 
G• none 
G· none 
G• none 
G•(none 
G•(none 
G•OGROUP 
G•OGROUP 
G•OGROUP 
G•OGROUP 
G•OGROUP 
G•OGROUP 

Modu 1 e Alignment/ 
Combining 

M•SYMB.C 
M•QUAL.C 
M•SCOPY 
M•LRSH 
M•PADA 
M•PADD 
M•PSBP 
M•BRK 
M•FLOAT 
M•SYMB.C 
M•QUAL.C 
M•BRK 
M•SYMB.C 
M•QUAL.C 
M•BRK 

ACBP•28 
ACBP•28 
ACBP•28 
ACBP•20 
ACBP•20 
ACBP•20 
ACBP•20 
ACBP•28 
ACBP•20 
ACBP•48 
ACBP•48 
ACBP•48 
ACBP•48 
ACBP•48 
ACBP•48 

For each segment in each module, this map includes the address, 
length in bytes, class, segment name, group, module, and ACBP 
information. 

If the same segment appears in more than one module, each 
module will appear as a separate line (for example, SYMB.C). 
Except for the ACBP field, the information in the detailed segment 
map is self-explanatory. 

The ACBP field encodes the A (alignment), C (combination), and B 
(big) attributes into a set of four bit fields, as defined by Intel. 
TLINK uses only three of the fields, the A, C, and B fields. The 
ACBP value in the map is printed in hexadecimal: The following 
values of the fields must be OR'ed together to arrive at the ACBP 
value printed. 

Field Value Description 

The A field 00 An absolute segment. 
(alignment) 20 A byte-aligned segment. 

40 A word-aligned segment. 
60 A paragraph-aligned segment. 
80 A page-aligned segment. 
AO An unnamed absolute portion of storage. 

The C field 00 May not be combined. 
(combination) 08 A public combining segment. 

The B field 00 Segment less than 64K. 
(big) 02 Segment exactly 64K. 

183 



TLINK 

/I (line numbers) 

/i (uninitialized trailing 
segments) 

/n (ignore default 
libraries) 

/c (case sensitivity) 

/d (duplicate symbols) 

184 

When a detailed map is requested through use of the /s switch, 
the list of public symbols (if it appears) has public symbols 
flagged with "idle" if there are no references to that symbol. For 
example, this fragment from the public symbol section of a map 
file indicates that symbols Symbol1 and Symbol3 are not referenced 
by the image being linked: 

OC7F:031E idle Symbol1 
0000:3EA2 Symbol2 
OC7F:0320 idle Symbol3 

The /I option creates a section in the .MAP file for source code line 
numbers. To use it, you must have created the .OBJ files by com
piling with the -y (Line numbers ... On) or-v (Debug information) 
option. If you tell TLINK to create no map at all (using the Ix 
option), this option will have no effect. 

The II option causes uninitialized trailing segments to be output 
into the executable file even if the segments do not contain data 
records. This option is not normally necessary. 

The In option causes the linker to ignore default libraries specified 
by some compilers. You'll need this option if the default libraries 
are in another directory, because TLINK does not support 
searching for libraries. You may want to use this option when 
linking modules written in another language. 

The le option forces the case to be significant in public and 
external symbols. For example, by default, TLINK regards cloud, 
Cloud, and CLOUD as equal; the le option makes them different. 

Normally, TLINK will not warn you if a symbol appears in more 
than one library file. If the symbol must be included in the 
program, TLINK will use the copy of that symbol in the first file 
on the command line in which it is found. Since this is a 
commonly used feature, TLINK does not normally warn about 
the duplicate symbols. The following hypothetical situation 
illustrates how you might want to use this feature. 

Suppose you have two libraries: one called SUPPORT.LIB, and a 
supplemental one called DEBUGSUP.LIB. Suppose also that 
DEBUGSUP.LIB contains duplicates of some of the routines in 
SUPPORT.LIB (but the duplicate routines in DEBUGSUP.LIB 

Turbo C++ User's Guide 



/e (extended 
dictionary) 

/t (tiny model 
.COM file) 

Chapter 5, Utilities 

TLINK 

include slightly different functionality, such as debugging 
versions of the routines). If you include DEBUGSUP.LIB first in 
the link command, you will get the debugging routines and not 
the routines in SUPPORT.LIB. 

If you are not using this feature or are not sure which routines are 
duplicated, you may include the Id option. TLINK will list all 
symbols duplicated in libraries, even if those symbols are not 
going to be used in the program. 

Given this option, TLINK will also warn about symbols that 
appear both in an .OBJ and a .LIB file. In this case, since the 
symbol that appears in the first (left-most) file listed on the com
mand line is the one linked in, the symbol in the .OBJ file is the 
one that will be used. 

With Turbo C++, the distributed libraries you would use in any 
given link command do not contain any duplicated symbols. So 
while EMU.LIB and FP87.LIB (or CS.LIB and CL.LIB) obviously 
have duplicate symbols, they would never rightfully be used 
together in a single link. There are no symbols duplicated 
between EMU.LIB, MATHS.LIB, and CS.LIB, for example. 

The library files that are shipped with Turbo C++ all contain an 
extended dictionary with information that enables TLINK to link 
faster with those libraries. This extended dictionary can also be 
added to any other library file using the IE option with TUB (see 
the section on TUB starting on page 169). The le option disables 
the use of this dictionary. 

Although linking with libraries that contain an extended 
dictionary is faster, you might want to use the le switch if you 
have a program that needs slightly more memory to link when an 
extended dictionary is used. 

Unless you use le, TLINK will ignore any debugging information 
contained in a library that has an extended dictionary. 

If you compile your file in the tiny memory model and link it with 
this option toggled on, TLINK will generate a .COM file instead of 
the usual .EXE file. Also, when you use It, the default extension 
for the executable file is .COM. 

Note: .COM files may not exceed 64K in size, cannot have any 
segment-relative fixups, cannot define a stack segment, and must 
have a starting address equal to O:lOOH. When an extension other 

185 



TLINK 

/v (debugging 
information) 

than .COM is used for the executable file (.BIN, for example), the 
starting address may be either 0:0 or O:lOOH. 

The Iv option directs TLINK to include debugging information in 
the executable file. If this option is found anywhere on the 
command line, debugging information will be included for all 
modules that contain debugging information. You can use the Iv+ 
and Iv- options to selectively enable or disable inclusion of 
debugging information on a module-by-module basis. For 
example, this command 

tlink modl /v+ mod2 mod3 /v- mod4 

includes debugging information for modules mod2 and mod3, but 
not for mod1 and mod4. 

/3 (80386 32-bit code) The 13 option should be used when one or more of the object 
modules linked has been produced by T ASM or a compatible 
assembler, and contains 32-bit code for the 80386 processor. This 
option increases the memory requirements of TLINK and slows 
down linking, so it should be used only when necessary. 

186 

Jo (overlays) The lo option causes the code in all modules or libraries specified 
after the option to be overlaid. It remains in effect until the next 
comma (explicit or implicit) orb- in the command stream. b
tums off overlaying. (Chapter 4, "Memory models, floating point, 
and overlays," in the Programmer's Guide covers overlays in more 
detail.) 

The lo option can be optionally followed by a segment class name; 
this will cause all segments of that class to be overlayed. When no 
such name is specified, all segments of classes ending with CODE 
will be overlayed. Multiple lo options can be given, thus over
laying segments of several classes; all lo options remain in effect 
until the next comma or b- is encountered. 

The syntax /o#xx, where xx is a two-digit hexadecimal number, 
overrides the overlay interrupt number, which by default is 3FH. 

Here are some examples of lo options: 

Option 

lo 

lo-

Result 

Overlay all code segments until next comma or lo-. 

Stop overlaying. 

Turbo C++ User's Guide 



/y (expanded or 
extended memory) 

TLINK 

/oOVV Overlay segments of class OVY until the next 
comma or lo-. 

/oCODE /oOVL Y 

/o#FO 

Overlay segments of class CODE or class OVL Y 
until next comma or lo-. 

Use interrupt vector OFOH for overlays. 

You can use the lo option in response files. If you use the lo option 
in a response file, it will be turned off automatically before the 
libraries are processed. If you want to overlay a library, you must 
use another lo right before all the libraries or right before the 
library you want to overlay. 

This switch controls TLINK's use of expanded or extended 
memory for 1/0 buffering. If, while reading object files or while 
writing the executable file, TLINK needs more memory for active 
data structures, it will either purge buffers or swap them to 
expanded or extended meory. 

In the case of input file buffering, purging simply means throwing 
away the input buffer so that its space can be used for other data 
structures. In the case of output file buffering, purging means 
writing the buffer to its correct place in the executable file. In 
either case, you can substantially increase the speed of a link by 
allowing these buffers to be swapped to expanded or extended 
memory. 

TLINK's capacity is not increased by swapping; only its 
performance is improved. By default, swapping to expanded 
memory is enabled, while swapping to extended memory is 
disabled. If swapping is enabled and no appropriate memory 
exists in which to swap, then swapping does not occur. 

This switch has several forms, shown below 

/ye enable expanded memory swapping (default) 
/ye- disable expanded memory swapping 
/yx enable extended memory swapping 
/yx- disable extended memory swapping (default) 

Restrictions There is only one serious restriction to TLINK; TLINK does not 
generate Windows or 05/2 .EXE files. 

Previous restrictions that no longer apply: 

•Common variables are now supported. 

Chapter 5, Utilities 187 



TLINK 

Error messages 

188 

•Segments that are of the same name and class that are 
uncombinable are now accepted. They aren't combined, and 
they appear separately in the map file. 

• Any Microsoft code can now be linked with TLINK. 

TLINK can of course be used with Turbo C++ (both the integrated 
environment and command-line versions), TASM, Turbo Prolog, 
and other compilers. 

TLINK has three types of errors: fatal errors, nonfatal errors, and 
warnings. 

•A fatal error causes TLINK to stop immediately; the .EXE file is 
deleted. 

•A nonfatal error does not delete .EXE or .MAP files, but you 
shouldn't try to execute the .EXE file. 

•Warnings are just that: warnings of conditions that you 
probably want to fix. When warnings occur, .EXE and .MAP 
files are still created. 

The following generic names and values appear in the error 
messages listed in this section. When you get an error message, 
the appropriate name or value is substituted. 

In manual 

filename 
group 
module 
segment 
symbol 
XXXXh 

What you'll see on screen 

A file name (with or without extension) 
A group name 
A module name 
A segment name 
A symbol name 
A 4-digit hexadecimal number, followed by h 

The error messages are listed in ASCII alphabetic order; messages 
beginning with symbols come first. Since messages that begin 
with one of the variables just listed cannot be alphabetized by 
what you will actually see when you receive such a message, all 
such messages have been placed at the beginning of each error 
message list. 

If the variable occurs later in the text of the error message (for 
example, "Invalid segment definition in module module"), you can 
find the message in correct alphabetical order; in this case, under 
I. 

Turbo C++ User's Guide 



TLINK 

Fatal errors When fatal errors happen, TLINK stops and deletes the .EXE file. 

Chapter 5, Utilities 

symbol In module modu/e1 conflicts with module modu/e2 
This error message can result from a conflict between two sym
bols (either public or communal). This usually means that a 
symbol with different attributes is defined in two modules. 
This is the same error message as the IDE message that reads: 
"symbol conflicts with module module1 in module module2". 

Bad character In parameters 
One of the following characters was encountered in the com
mand line or in a response file: 

"*<=>?[] 

or any control character other than horizontal tab, line feed, 
carriage return, or Ctrl-Z. 

Bad object file filename 
An ill-formed object file was encountered. This is most 
commonly caused by naming a source file or by naming an 
object file that was not completely built. This can occur if the 
machine was rebooted during a compile, or if a compiler did 
not delete its output object file when a Ctrl-Brk was pressed. 

Cannot generate COM file : data below Initial CS:IP defined 
This error results from trying to generate data or code below 
the starting address (usually 100) of a .COM file. Be sure that 
the starting address is set to 100 by using the (ORG lOOH) in
struction. This error message should not occur for programs 
written in a high-level language. If it does, ensure that the 
correct startup (CO) object modules are being linked in. 

Cannot generate COM file : invalid initial entry point address 
You used the /t option, but the program starting address is not 
equal to lOOH, which is required with .COM files. 

Cannot generate COM file : program exceeds 64K 
You used the /t option, but the total program size exceeds the 
.COM file limit. 

Cannot generate COM file : segment-relocatable items present 
You used the /t option, but the program contains segment
relative fixups, which are not allowed with .COM files. 

189 



TLINK 

190 

Cannot generate COM file : stack segment present 
You used the /t option, but the program declares a stack 
segment, which is not allowed with .COM files. 

DOS error, ax = decimal number 
This occurs if a DOS call returned an unexpected error. Tht? ax 
value printed is the resulting error code. This could indicate a 
TLINK internal error or a DOS error. The only DOS calls 
TLINK makes where this error could occur are read, write, 
seek, and close. 

Group group exceeds 64K 
This message will occur if a group exceeds 64K bytes when the 
segments of the group are combined. 

Invalid entry point offset 
This message occurs only when modules with 32-bit records 
are linked. It means that the initial program entry point offset 
exceeds the DOS limit of 64K. 

Invalid group definition: group in module module 
This error can occur if an attempt was made to assign a 
segment to more than one group. It can also result from a 
malformed GRPDEF record in an .OBJ file. This latter case 
could result from custom-built .OBJ files or a bug in the 
translator used to generate the .OBJ file. 

Invalid initial stack offset 
This message occurs only when modules with 32-bit records 
are linked. It means that the initial stack pointer value exceeds 
the DOS limit of 64K. 

Invalid segment definition in module module 
This message will generally occur only if a compiler produced 
a flawed object file. If this occurs in a file created by Turbo C++, 
recompile the file. If the problem persists, contact Borland. 

Not enough memory 
There was not enough memory to complete the link process. 
Try removing any terminate-and-stay-resident applications 
currently loaded, or reduce the size of any RAM disk currently 
active. Then run TLINK again. 

Relocation offset overflow in module module 
This error only occurs for 32-bit object modules and indicates a 
relocation (segment fixup) offset greater than the DOS limit of 
64K. 

Turbo C++ User's Guide 



TLINK 

Relocation table full 
The file being linked contains more base fixups than the stan
dard DOS relocation table can hold (base fixups are created 
mostly by calls to far functions). (This error only occurs for 32 
bit object modules.) 

Segment segment exceeds 64K 
This message will occur if too much data was defined for a 
given data or code segment, when segments of the same name 
in different source files are combined. 

Table limit exceeded 
This message results from one of linker's internal tables 
overflowing. This usually means that the programs being 
linked have exceeded the linker's capacity for public or external 
symbols. 

32-bit record encountered in module module : use "/3" option 
This message occurs when an object file that contains 80386 32-
bit records is encountered, and the /3 option has not been used. 
Simply restart TLINK with the /3 option. 

Unable to open file filename 
This occurs if the named file does not exist or is misspelled. 

Unknown option 
A forward slash character(/), hyphen(-), or DOS switch 
character was encountered on the command line or in a 
response file without being followed by one of the allowed 
options. 

Write failed, disk full? 
This occurs if TLINK could not write all of the data it 
attempted to write. This is almost certainly caused by the disk 
being full. 

Nonfatal errors TLINK has three nonfatal errors. As mentioned, when a nonfatal 
error occurs, the .EXE and .MAP files are not deleted. These errors 
are treated as fatal errors under the integrated environment. 

Chapter 5, Utilities 

Fixup overflow in module module, at segname:xxxxh, target 
= segment or symbol:xxxh 

This indicates an incorrect data or code reference in an object 
file that TLINK must fix up at link time. 

This message is most often caused by a mismatch of memory 
models. A near call to a function in a different code segment is 

191 



TLINK 

192 

the most likely cause. This error can also result if you generate 
a near call to a data variable or a data reference to a function. In 
either.case the symbol named as the target in the error message 
is the referenced variable or function. The reference is in the 
named module, so look in the source file of that module for the 
offending reference. 

If this technique does not identify the cause of the failure, or if 
you are programming in assembly language or a high-level 
language besides Turbo C++, there may be other possible 
causes for this message. Even in Turbo C++, this message could 
be generated if you are using different segment or group 
names than the default values for a given memory model. (In 
the IDE, this message reads: "Fixup overflow in segment 
segment in module module''.) 

Out of memory 
This error is a catchall for running into a TLINK limit on 
memory usage. This usually means that too many modules, 
externals, groups, or segments have been defined by the object 
files being linked together. 

Undefined symbol symbol in module module 
The named symbol is referenced in the given module but is not 
defined anywhere in the set of object files and libraries 
included in the link. Check to make sure the symbol is spelled 
correctly. You will usually see this error from TLINK for Turbo 
C++ symbols if you did not properly match a symbol's 
declarations of pascal and cdecl type in different source files, 
or if you have omitted the name of an .OBJ file your program 
needs. 

Warnings TLINK has seven warning messages. 

Warning: symbol defined in module module1 is duplicated in 
module module2 

The named symbol is defined in each of the named modules. 
This could happen if a given object file is named twice in the 
command line. 

Warning: Group group1 overlaps group group2 in module 
module 

This means that TLINK has encountered nested groups. This 
warning only occurs when overlaps are used. (In the IDE, this 
message reads: "Segment segment is in two groups".) 

Turbo C++ User's Gulde 



If a Turbo C++ program 
produces this message for 

any but the tiny memory 
model, make sure you are 

using the correct cox startup 
object files. 

TOUCH 

You can use the DOS 
wildcards •and ? with 

TOUCH. 

Chapter 5, Utilities 

nlNK 

Warning: No stack 
This warning is issued if no stack segment is defined in any of 
the object files or in any of the libraries included in the link. 
This is a normal message for the tiny memory model in Turbo 
C++, or for any application program that will be converted to a 
.COM file. For other programs, this indicates an error. 

Warning: No stub for fixup at segment:xxxxh in module 
This error occurs when the target for a fi:xup is in an overlay 
segment, but no stub segment is found for the segment. This is 
usually the result of not making public a symbol in an overlay 
that is referenced from the same module. (In the IDE, this 
message reads: "No stub for fixup at segment:xxx.xh in module 
module".) 

Warning: Overlays generated and no overlay manager included 
This warning is issued if overlays are created but the symbol 
__ OVR1RAP __ is not defined in any of the object modules or 
libraries linked in. The standard overlay library 
(OVERLAY.LIB) defines this symbol. 

Warning: Program entry point may not reside in an overlay 
This message usually results from specifying the lo option 
before the startup module (COx). COx contains the initial 
program entry point, which must not be overlaid. To fix this, 
simply specify the lo option following the startup module. 

Warning: Segment segment ls in two groups: group1 and group2 
The linker found conflicting claims by the two named groups. 

There are times when you want to force a particular target file to 
be recompiled or rebuilt, even though no changes have been 
made to its sources. One way to do this is to use the TOUCH 
utility. TOUCH changes the date and time of one or more files to 
the current date and time, making it "newer" than the files that 
depend on it. 

You can force MAKE to rebuild a target file by touching one of the 
files that target depends on. To touch a file (or files), type 

touch filename [filename ... ] 

193 



TOUCH 

at the DOS prompt. TOUCH will then update the file's creation 
date(s). Once you do this, you can invoke MAKE to rebuild the 
touched target file(s). 

Important/ Before you use the TOUCH utility, it's vitally important to set 
your system's internal clock to the proper date and time. If you're 
using an IBM PC, XT, or compatible that doesn't have a battery
powered clock, don't forget to set the time and date using the 
DOS "time" and "date" commands. Failing to do this will keep 
both TOUCH and MAKE from working properly. 

194 Turbo C++ User's Guide 



c H 

Turbo C++ comes ready to 
run: You don't need to run 

TCINST if you don't want to. 
However, if you do want to 

change the defaults already 
set in TC.EXE, TCINST provides 

you with an easy way to do 
it. Just run TCINST, then 

choose items from the TCINST 
menu system. 

For detailed information on 
the integrated environment's 

features, see Chapter 1. 

A p T E R 

6 

Customizing Turbo C++ 

Use TCINST to customize the integrated environment version of 
Turbo C++. Through TCINST, you can change various default 
settings in the integrated environment, such as the screen size, 
editing modes, menu colors, and default directories. In addition 
to letting you customize TC.EXE, TCINST also lets you specify 
and directly modify filename.EXE and .PRJ files. If you don't 
specify a file, TCINST assumes TC.EXE. If TCINST doesn't find 
the file you specified, it reports an error. 

With TCINST, you can do any of the following: 

• modify compiler option in a .PRJ file 
•set up paths to the directories where your include, library, and 

output files are located 
•choose default settings for the integrated debugger 

• set defaults for the compiler and linker 

• customize the editor command keys 
• set up the editor defaults 
• set up the default video display mode 

• change screen colors 

To make life easier for you, TCINST's menus are quite similar to 
the menus in the integrated environment. Any option that you 
install with TCINST that also appears as a menu option in TC.EXE 
will be overridden whenever you load a configuration file that 
contains a different setting for that option, or when you change 
the setting via the menu system of the integrated environment. So 

Chapter 6, Customizing Turbo C++ 195 



changes made to TC.EXE are only realized when no configuration 
files are loaded. For this reason, TCINST allows you to directly 
modify .PRJ files and the TCCONFIG.TC file. 

Running TCINST 

The syntax for TCINST is 

TCINST [option] [exepath [exename] I [configpathJ 
TCCONFIG.TC I [prjpathJprjname.PRJJ 

If you don't give a path and/or file name, TCINST looks for 
TC.EXE in the current directory. Otherwise, it uses the given path 
and file name. 

option lets you specify whether you want to run TCINST in color 
(type I c) or in black and white (type /b). Normally, TCINST comes 
up in color if it detects a color adapter in a color mode. You can 
override this default if, for instance, you are using a composite 
monitor with a color adapter, by using the /b option. 

Note You can use TCINST to modify local copies ofTCCONFIG.TC 
and .PRJ files. In this way, you can customize different copies of 
Turbo C++ on your system to use different editor command keys, 
different menu colors, and so on, by having different configura
tion files in your various project directories. 

Using EGA with a CGA If you are running Turbo C ++ on a system with an EGA display 
monitor card and a CGA monitor, you must use TCINST to set Turbo C++ 

or it will not run properly. See page 210 for step-by-step instruc
tions on how to do this. 

The TCINST Installation menu 

196 

This chapter shows all possible customizable items. However, 
when you're installing a configuration file (.PRJ or .TC), only the 
menu items representing values in the configuration files are 
displayed. So when you're using TCINST to modify the 
TCCONFIG.TC file, compiler options are not available; when 
you're installing a .PRJ file, color customization is not available. 

The first menu to appear on the screen is the TCINST Installation 
menu. 

Turbo C++ User's Guide 



Installation Menu 

Search 
Run 
Options 
Editor comnands 
Mode for display 
Adjust colors 
Save configuration 
Quit 

The Search menu 

Search 

Direction 
Scope 
Origin 
Case sensitive 
Whole words only 
Regular expression 
Prompt on replace 

•The Search option gives you access to the search defaults. 
•The Run option allows you to set default command-line 

arguments that will be passed to your running programs, 
exactly as if you had typed them on the DOS command line 
(redirection is not supported). It is only necessary to give the 
arguments here; the program name is omitted. 

•The Options command gives you access to default settings for a 
great many features, including memory model, degree of opti
mization, display of error messages, linker and environment 
settings, and path names to the directories holding header and 
library files. 

•You can use the Editor Commands option to customize the 
interactive editor's keystroke commands. 

•With Mode for Display, you can specify the video display mode 
that Turbo C++ will operate in, and whether yours is a "snowy" 
video adapter. 

•You can customize the colors of almost every part of the 
integrated environment through the Adjust Colors menu. 

•The Save Configuration option allows you a choice between 
saving and not saving changes to the TC.EXE file. 

•The Quit option asks if you want to quit without saving the 
changes you have made to the integrated development 
environment. 

To choose a menu item, just press the key for the highlighted 
capital letter of the given option. For instance, press A to choose 
the Adjust Colors option. Or use the i and ,J, keys to move the 
highlight bar to your choice, then press Enter. 

Pressing Esc (more than once if necessary) returns you to the main 
installation menu. 

The Search menu has the following options: 

• Direction: Set to either Forward or Backward. 

• Scope: Set to either Global or Selected text. 
•Origin: Set to either From cursor or Entire scope. 

• Case Sensitive: Set On or Off 
• Whole Words Only: Set On or Off 

Chapter 6, Customizing Turbo C++ 197 



The Run menu 

r==.~:+~ 
c:__J 

The Options 

• Regular Expression: Set On or Off 
• Prompt on Replace: Set On or Off 

The Run menu option is Arguments. When you press Enter, a 
prompt box appears that allows you to set default command-line 
arguments that will be passed to your running programs, exactly 
as if you had typed them on the DOS command line (redirection 
is not supported). It is only necessary to give the arguments here; 
the program name is omitted. 

menu In the Options menu you can set defaults for various features that 
determine how the integrated environment works. 

Options 
Full menus Off 
Compiler 
Make 
Linker 
Debugger 
Directories 
Environment 

The Full Menus menu The Options I Full Menus command lets you use a subset of the 
complete set of menus in Turbo C++. Set Full menus Off to have 
the minimum command set appear in menus and dialog boxes. 

198 

The Compiler menu 
Compiler 

Code generation 
C++ options 
Optimizations 
Source 
Messages 
Names 

Turbo C++ comes preset with Full menus Off, so that you initially 
see only the smaller set of menus. For more information on this 
command, see page 13. 

The options in the Compiler menu allow you to set defaults for 
particular hardware configurations, memory models, code opti
mizations, diagnostic message control, and macro definitions. 

Code Generation 

The items in this menu let you set defaults for how the compiler 
will compile your source code. Each of these items can be set to 
On or Off, or to specific settings. 

•Overlay Support 

•Word Alignment 

Turbo C++ User's Guide 



•Duplicate Strings Merged 

• Unsigned Characters 
•Standard Stack Frame. If you plan to use the integrated 

debugger, turn this option On. 
•Test Stack Overflow 
• Model lets you choose the default memory model (method of 

memory addressing) that Turbo C++ will use. The options are 
Tiny, Small, Medium, Compact, Large, and Huge. Refer to 
Chapter 4 ("Memory models, floating point, and overlays") in 
the Programmer's Guide for more information about these 
memory models. 

• When you choose Defines, a prompt box appears in which you 
can enter macro definitions that will be available by default to 
TurboC++. 

•The More options, each of which can be set to On or Off or to 
specific settings, are 

• Generate Underbars 

• Line Numbers Debug Info 

• Debug Info in OBJs 
• Assume SS not equal DS 
• Treat enums as ints 

• Fast Floating Point 
• Floating Point: Set to either None, Emulation, 8087, or 80287. 

• Instruction Set: Set to either 8088/8086, 80186, or 80286. 

• Calling Convention: Set to either C or Pascal calling 
sequence. 

C++ Options 

The C++ Options are 

• C++ Virtual Tables: Set to either Smart, Local, External, or 
Public. 

•Use C++ Compiler: Set to either CPP extensions only or C++ 
always. 

•Out-of-line Inline Functions: Set to either On or Off. 

Chapter 6, Customizing Turbo C++ 199 



200 

Optimizations 

The options in the Optimizations menu let you set defaults for 
code optimization when your code is compiled. 

•Register Optimization: Set On or Off. 
•Jump Optimization: Set On or Off. If you plan to use the 

integrated debugger, tum this option Off. 
•Register Variables: Set to either None, Register keyword, or 

Automatic. 

• Optimize for: Set to Size or Speed. 

Source 

The Source menu options are 

•Nested Comments: Set to On or Off. 
•Keywords: Set to either Turbo C++, ANSI, UNIX V, or 

Kernighan and Ritchie. 

•Identifier Length: Specify new identifier size (1 to 32). 

Messages 

The Message options are 

• Errors : stop after: Specify new error size (0 to 255). 
•Warnings : stop after: Specify new warning size (0 to 255). 

•Display Warnings: Set to On or Off. 
•The Portability options can each be set to On and Off. Your 

choices are 

• Non-Portable pointer conversion 

• Non-Portable pointer comparison 

• Constant out of range in comparison 

• Constant is long 
• Conversion may lose significant digits 

• Mixing pointers to signed and unsigned char 

•The ANSI Violations options can each be set to On and Off. 
Your choices are 

• Void functions may not return a value 

• Both return and return of a value used 

Turbo C++ User's Guide 



• Suspicious pointer conversion 

• Undefined structure 'ident' 
• Redefinition of 'ident' is not identical 

• Hexadecimal value more than three digits 

• The More options can each be set to On and Off. Your choices 
are 

• Case bypasses initialization of a local variable 
• Goto bypasses initialization of a local variable 

• Untyped bit field assumed signed int 
• 'ident' declared both external and static 

• Declare 'ident' prior to use in prototype 

• Division by zero 
• Initialization 'ident' with 'ident' 

• This initialization is only partially bracketed 

• Bit field must be signed or unsigned int 

• Declaration does not specify a tag or an identifier 

• The C++ Warnings can each be set to On and Off. Your choices 
are 

• Assignment to 'this' is obsolete 

• Base initialization without a class name 

• Functions containing 'ident' are not expanded inline 

• Function 'ident' should have a prototype 

• 'ident' is both a structure tag and a name 

• Temporary used to initialize 'ident' 

• Temporary used for parameter 'ident' 

• The constant member 'ident' is not initialized 

•This style of function definition is now obsolete 

• Use of 'overload' is now unnecessary and obsolete 

• Obsolete syntax, use'::' instead 

• Assigning 'ident' to 'ident' 

• 'ident' hides virtual function 'ident' 

• Non-canst function 'ident' called for const object 

•The Frequent errors options can each be set to On and Off. Your 
choices are 

• Function should return a value 

Chapter 6, Customizing Turbo C++ 201 



lmporlantl Don't change this 
option unless you are an 

expert and have read 
Chapter 6 ("Interfacing with 
assembly language") in the 

Programmer's Guide. 

202 

The Make menu 

The Linker menu 
~-- Linker--~ 

Map ffle 
Initialize segments 
Default libraries 
Graphics library 
Nam duplicate symbols 
Stack warning 
Case-sensitive link 
Dverlay EXE 

• Unreachable code 
• Code has no effect 
• Possible use of 'ident' before definition 

• 'ldent' is assigned a value which is never used 

• Parameter 'ident' is never used 

• Possibly incorrect assignme~t 
• The More options can each be set to On and Off. Your choices 

are 

• Superfluous & with function or array 

• 'ident' declared but never used 
• Ambiguous operators need parentheses 

• Structure passed by value 
• No declaration for function 'ident' 

• Call to function with no prototype 

• Restarting compile using assembly 

• Unknown assembler instruction 

•Function definition cannot be a typedefed declaration 

• Ill formed pragma 

Names 

With the items in the Names menu, you can set the default 
segment, group, and class names for Code, Data, and BSS 
sections. When you choose one of these items, the asterisk (*) on 
the next menu that appears tells the compiler to use the default 
names. 

Break Make On lets you specify the default condition for stopping 
a make: if the file has Warnings, Errors, Fatal Errors, or Link. 

Check Auto-dependencies lets you set the default to On or Off. 

The Linker menu lets you set defaults for how your program will 
be linked to various library routines. Refer to the information on 
TLINK in Chapter 5, "Utilities," for more information about these 
settings. 

Map File determines the default type for the map file. The choices 
are Off, Segments, Publics, or Detailed. 

Turbo C++ User's Guide 



The Debugger menu 
Debugger 

Source debugging 
Display swapping 
Program heap size 
Inspector options 

Set Initialize Segments On or Off. If this toggle is set to On, the 
linker initializes uninitialized segments. 

Set Default Libraries On or Off. When you're linking with 
modules that have been created by a compiler other than Turbo 
C++, the other compiler may have placed a list of default libraries 
in the object file. If this option is on, the linker tries to find any 
undefined routines in these libraries, as well as in the default li
braries supplied by Turbo C++. If this option is set to Off, the 
linker will only search the default libraries supplied by Turbo 
C++; any defaults in .OBJ files will be ignored. 

Graphics Library controls whether the linker links in BGI graphics 
library functions. This item defaults to On; set it Off to prevent the 
linker from searching GRAPHICS.LIB. 

Warn Duplicate Symbols sets On or Off the linker warning for 
duplicate symbols in object and library files. 

Stack Warning sets On or Off the ''No stack specified" message 
generated by the linker. 

Case-sensitive Link sets On or Off case sensitivity during linking. 
The usual setting is On, since C is a case-sensitive language. 

Overlay EXE sets On or Off. 

The items in the Debugger menu let you set certain default 
settings for the Turbo C++ integrated debugger. 

When you compile your program with Source debugging set On, 
you can debug it using either the integrated debugger or with a 
standalone debugger, such as Borland's Turbo Debugger. When it 
is set to Standalone, only the standalone debugger can be used. 
When it is set to None, no debugging information is placed in the 
.EXE file. 

Display Swapping allows you to set the default level to None, 
Smart, or Always. When you run your program with the default 
setting Smart, the Debugger looks at the code being executed to 
see whether the code will affect the screen (that is, output to the 
screen). If the code outputs to the screen (or if it calls a function), 
the screen is swapped from the Editor screen to the Execution 
screen long enough for output to take place, then is swapped 
back. Otherwise, no swapping occurs. The Always setting causes 
the screen to be swapped every time a statement executes. The 
None setting causes the debugger not to swap the screen at all. 

Chapter 6, Customizing Turbo C++ 203 



The Directories menu 

204 

Directories 

Include directories 
Library directories 
Output directory 

Program Heap Size specifies the new program heap size in K 
bytes from 4 through 640. 

You have several choices for Inspector Options: Show Inherited 
(On or Off>, Show Methods (On or Off>, and/or Show Integers As. 
Show Integers As gives you the choice between Decimal, Hex, or 
Both. 

With Directories, you can specify a path to each of the integrated 
environment default directories. These are the directories Turbo 
C++ searches when looking for the include and library files, and 
the directory where it will place your program output. 

When you choose Directories, TCINST brings up another menu. 
Select the item you wish to specify and enter the new path 
information into the input box. Enter the names for each of these 
just as you do for the corresponding menu items in the integrated 
environment. If you are not certain of each item's syntax, refer to 
Chapter 1, "The IDE reference." 

After typing a path name (or names) for any of the directories 
menu items, press Enter to accept. When you exit the program, 
TCINST prompts you on whether you want to save the changes. 

Include Directories 

This option lets you specify default directories in which the Turbo 
C++ standard include (header) files and any project-specific 
header files are stored. A prompt box appears in which you can 
enter the directory names. 

You can enter multiple directories in Include Directories. You 
must separate the directory path names with a semicolon (; ), and 
you can enter a maximum of 127 characters with either menu 
item. You can enter absolute or relative path names; for example, 

c:\turboc\lib; c:\turboc\mylibs; a:newturbo\mathlibs; a: •. \vidlibs 

Library Directories 

Use the Library Directories option to specify default directories 
for the Turbo C++ start-up object files (Cox.OBJ) and run-time 
library files (.LIB) and any project-specific libraries. A prompt box 
appears in which you can enter the directory names. 

Turbo C++ User's Gulde 



The Environment menu 

Environment 

Preferences 
Editor 
Mouse 

Preferences 

Screen size 
Save old messages 
Source tracking 
Auto save 

As with Include Directories, you can enter multiple directories in 
Library Directories. You must separate the directory path names 
with a semicolon (; ), and you can enter a maximum of 127 
characters with either menu item. You can enter absolute or 
relative path names. 

Output Directory 

Use this option to name the default directory where the compiler 
will store the .OBJ, .EXE, and .MAP files it creates. 

The Output Directory menu item takes one directory path name; 
it accepts a maximum of 64 characters. 

With the items in the Environment menu, you can set defaults for 
various features of the Turbo C++ working environment. 

Look at the Quick-Ref line for directions on how to choose these 
options. You can change the operating environment defaults to 
suit your preferences (and your monitor), then save them as part 
of Turbo C++. Of course, you'll still be able to change these 
settings from inside Turbo C++'s editor (or from the Options I 
Environment menu). 

The Preferences menu 

The Preference menu options are 

The Screen Size menu allows you to specify whether your default 
integrated environment screen is to display 25 lines or 43/50 
lines. 

• 25 Lines. This is the standard PC display: 25 lines by 80 
columns. This is the only screen size available to systems with a 
Monochrome Display Adapter (MDA) or Color/Graphics 
Adapter (CGA). 

• 43/50 Lines. If your PC is equipped with an EGA or VGA, 
choose 43/50 lines to make your screen display 43 lines by 80 
columns (for an EGA) or 50 lines by 80 columns (for a VGA). 

Set Save Old Messages On or Off. This option determines whether 
error messages from earlier compiles are saved in the Message 
window or deleted. 

Source Tracking determines whether a new window is opened or 
if an existing window is used when loading files during message 

Chapter 6, Customizing Turbo C++ 205 



206 

~-- Editor --~ 

Create backup files 
Insert mode 
Autoindent mode 
Use Tab character 
Optimal fill 
Backspace unindents 
Cursor through tabs 
Tab size 
Default extension 

tracking and debugging. Set it to either New window or Current 
window. 

Auto Save options are Editor files, Environment, Desktop, or 
Project. You can set them to On or Off. 

The Editor menu 

Use this menu to set defaults for various features of the integrated 
environment's editor. 

• Create Backup Files: Toggle On or Off. 
• Insert Mode: Toggle On or Off. With Insert mode On, the editor 

inserts anything you enter from the keyboard at the cursor 
position, and pushes existing text to the right of the cursor even 
further right. Toggling Insert mode Off allows you to overwrite 
text at the cursor. 

• Autoindent Mode: Toggle On or Off. With Autoindent mode set 
to On, the cursor returns to the starting column of the previous 
line when you press Enter. When Autoindent mode is toggled 
Off, the cursor always returns to column one. 

• Use Tab Character: Toggle On or Off. With Use tab character set 
to On, when you press the Tab key, the editor places a tab 
character (Ctr/-/) in the text, using the tab size specified with Tab 
Size. With Use tab character Off, when you press the Tab key, the 
editor inserts enough space characters to align the cursor with 
the first letter of each word in the previous line. 

• Optimal Fill: Toggle On or Off. Optimal fill mode has no effect 
unless Use Tab Character is also set to On. When both these 
modes are enabled, the beginning of every autoindented and 
unindented line is filled optimally with tabs and spaces. This 
produces lines with a minimum number of characters. 

• Backspace Unindents: Toggle On or Off. When it is set to On, 
this feature outdents the cursor; that is, it aligns the cursor with 
the first nonblank character in the first outdented line above the 
current or immediately preceding nonblank line. 

• Cursor Through Tabs: Toggle On or Off. 
•Tab Size: When you choose this option, a prompt box appears 

in which you can enter the number of spaces you want to tab 
over at each tab command. You can specify a Tab Size from 2 to 
16. 

Turbo C++ User's Guide 



.....--- Mouse ---. 

Mouse double click 
Right mouse button 
Reverse mouse 

The Editor 

• Default Extension: When you choose this option, a prompt box 
appears in which you can enter the file-name extension. The 
Default extension is .C. 

The Mouse menu 

Use this menu to set default for various mouse features . 

• Mouse Double Click: Set to either Fast, Medium, or Slow. 

•Right Mouse Button: Set to either Nothing, Topic search, Go To 
Cursor, Breakpoint, Inspect, Evaluate, or Add Watch. 

• Reverse Mouse: Set On or Off. 

Commands Turbo C++'s interactive editor provides many editing functions, 
menu including commands for 

Secondary keystrokes always 
take precedence over 

primary keystrokes. 

•cursor movement 

• text insertion and deletion 

•block and file manipulation 
•string search (plus search-and-replace) 

These editing commands are assigned to certain keys (or key com
binations); they are explained in detail in Chapter 3, "The editor 
from A to Z." 

When you choose Editor Commands from TCINST's main instal
lation menu, the Install Editor screen comes up, displaying three 
columns of text. 

•The first column (on the left) describes all the commands 
available in the interactive editor. 

•The second column lists the Primary keystrokes: what keys or 
special key combinations you press to invoke a particular editor 
command. 

•The third column lists the Secondary keystrokes: These are 
optional alternate keystrokes you can also press to invoke the 
same editor command. 

The bottom lines of text in the Install Editor screen summarize the 
keys you use to choose entries in the Primary and Secondary 
columns. 

Chapter 6, Customizing Turbo C++ 207 



Table6.1 
Editor key commands 

Table 6.2 
Customizing keystrokes 

To enter the keys F2, F3, or F4 
as part of an editor com
mand key sequence, first 

press the backquote key(?. 
then the appropriate 

function key. 

208 

Key Legend What it does 

+-,~, Select Selects the editor command you 
i and J. want to rekey. 

PgUp/ Page Scrolls up or down one full 
PgDn screen page. 

Enter Modify Enters the keystroke-modifying 
mode. 

R Restore Resets all editor commands to the 
factory defaults factory default keystrokes. 

Esc Exit Leaves the Install Editor screen and 
returns to the main TCINST 
installation menu. 

F4 Key modes Tog~les between the three keystroke 
com inations: WordStar-like, Ignore 
case, and Verbatim. 

After you press Enter to enter the modify mode, a pop-up window 
lists the current defined keystrokes for the chosen command, and 
the bottom lines of text in the Install Editor screen summarize the 
keys you use to change those keystrokes. 

Key 

Backspace 

Enter 

Esc 

F2 

F3 

Legend 

Backspace 

Accept 

Abandon 
changes 

Restore 

Clear 

What It does 

Deletes keystroke to left of 
cursor. 

Accepts newly defined key
strokes for the chosen editor 
command. 

Abandons changes to the current 
choice, restoring the command's 
original keystrokes, and returns 
to the Install Editor screen (ready 
to choose another editor 
command). 

Abandons changes to current 
choice, restoring the command's 
original keystrokes, but keeps 
the current command chosen for 
redefinition. 

Clears current choice's keystroke 
definition, but keeps the current 
command chosen for 
redefinition. 

Turbo C++ User's Guide 



Table 6.2: Customizing keystrokes (continued) 

F4 Key modes Toggles between the three 
keystroke combinations: 
WordStar-like, Ignore case, and 
Verbatim. 

There are three different keystroke combinations: WordStar-like, 
Ignore case, and Verbatim. These are listed on the bottom line of 
the screen; the highlighted one is the current choice. In all cases, 
the first character of the combination must be a special key or a 
control character. The active combination governs how the 
subsequent characters are handled. 

• WordStar-like: In this mode, if you type a letter or one of 
the following characters: 

[] \ /\ -

it is automatically entered as a control-character combi
nation. For example, 

Pressing [ yields Ctr/-{ 
Pressing a or A or Ctr/ A yields Ctrl-A 
Pressing y or Y or Ctr/ Y yields Ctr/-Y 

Thus, if you customize an editor command to be Ctrl-A 
Ctrl-B in WordStar-like mode, you can type any of the 
following in Turbo C++'s editor to activate that command: 

Ctrl-A Ctrl-B 
Ctrl-A B 
Ctrl-A b 

•Ignore case: In this mode, all alphabetic (letter) keys you 
enter are converted to their uppercase equivalents. When 
you type a letter in this mode, it is not automatically 
entered as a control-character combination; if a keystroke 
is to be a control-letter combination, you must hold down 
the Ctr/ key while typing the letter. For example, in this 
mode, Ctrl-A 8 is not the same as Ctrl-A Ctrl-B. 

•Verbatim: If you type a letter in this mode, it is entered 
exactly as you type it. So, for example, Ctrl-A Ctrl-8, Ctrl-A 8, 
and Ctrl-A bare all distinct. 

Allowed keystrokes Although TCINST provides you with almost boundless 
flexibility in customizing the editor commands to your own 
tastes, there are a few rules governing the keystroke 
sequences you can define. Some of the rules apply to any 

Chapter 6, Customizing Turbo C++ 209 



Chapter 1, "The /DE refer
ence,· contains a complete 
fist of Turbo C++'spredefined 

hot keys. 

210 

The Mode for 
Display menu 

Mode for Display 

Default 
Color 
Black and white 
LCD or composite 
Monochrome 

keystroke definition, while others come into effect only in 
certain keystroke modes. 

1. You can enter a maximum of six keystrokes for any 
given editor command. Certain key combinations are 
equivalent to two keystrokes: These include Alt (any valid 
key); the cursor-movement keys (i , J.., PgDn, Del, and so 
on); and all function keys and their combinations (F4, 
Shift-Fl, Alt-F8, and so on). 

2. The first keystroke must be a character that is neither al
phanumeric nor punctuation: that is, it must be a control 
key or a special key. 

3. To enter the Esc key as a command keystroke, type Ctr/-{. 
4. To enter the Backspace key as a command keystroke, type 

Ctrl-H. 

5. To enter the Enter key as a command keystroke, type Ctrl
M. 

6. The Turbo C++ predefined Help function keys (Ft and 
Alt-Ft) can't be reassigned as editor command keys. How
ever, any other function key can. If you enter a Turbo 
C++ hot key as part of an editor command key sequence, 
TCINST issues a warning that you are overriding a hot 
key in the editor and verifies that you want to override 
that key. 

Normally, Turbo C++ correctly detects your system's video 
mode. You should only change the Mode for Display menu 
if one of the following holds true: 

•You want to choose a mode other than the current video 
mode. 

•You have a Color/Graphics Adapter that doesn't "snow." 

•You think Turbo C++ is incorrectly detecting your 
hardware. 

•You have a laptop or a system with a composite screen 
(which acts like a CGA with only one color). For this 
situation, choose Black and White. 

If you choose Default, Turbo C++ always operates in the 
mode that is active when you load it. 

Turbo C++ User's Gulde 



If you choose Color, Turbo C++ uses 80-column color mode 
if a color adapter is detected, no matter what mode is active 
when you load TC.EXE, and switches back to the previously 
active mode when you exit. 

If you choose Black and White, Turbo C ++ uses 80-column 
black-and-white mode if a color adapter is detected, no 
matter what mode is active, and switches back to the 
previously active mode when you exit. Use this with laptops 
and composite monitors. 

If you choose LCD or Composite, Turbo C ++ uses 80-
column black-and-white mode if a color adapter is detected, 
no matter what mode is active, and switches back to the 
previously active mode when you exit. Use this with laptops 
and composite monitors. 

And if you choose Monochrome, Turbo C ++ uses 
monochrome mode if a monochrome adapter is detected, no 
matter what mode is active. 

When you choose one of the first four options, the program 
conducts a video test on your screen; refer to the Quick-Ref 
line for instructions on what to do. When you choose one of 
the options, the status line queries 

Conducting video test. Is your screen "snowy" now? Press any 
key to answer. 

When you press any key, you can choose 

•Yes, the screen was "snowy" 

• No, always turn off snow checking 

• Maybe, always check the hardware 

Look at the Quick-Ref line for more about Maybe. Press Esc 
to return to the main installation menu. 

Chapter 6, Customizing Turbo C++ 211 



The Adjust Colors 
menu 

212 

Customize colors 

Main menu 
Pull-down menu 
Pop-up menus 
Status 11ne 
Edit window 
Output window 
Message window 
Watch window 
Help 
Modal help 
Dialog box 

•Main Menu: Choose between Normal text, First letter, 
Selection bar, or Selected letter. 

• Pull-down Menu: Choose between Border, Normal text, 
First letter, Selection bar, Selected letter, Disabled entry, or 
Disabled selected. 

• Pop-up Menus: Choose between Title, Border, Normal 
text, First letter, Selected bar, Selected letter, or Disabled 
entry. 

• Status Line: Choose between Normal text or First letter. 
• Edit Window: Choose between Active border, Inactive 

border, or Text. 

• Output Window: Choose between Active border or 
Inactive border. 

• Message Window: Choose between Active border, 
Inactive border, or Text. 

•Watch Window: Choose between Active border, Inactive 
border, or Text. 

• Help: Choose between Active border, Inactive border, or 
Text. 

•Modal Help: Choose between Border or Text. 

• The Dialog Box options are 

• Frame: Choose between Border, Title, or Background. 

• Type ins: Choose between Destruct or Normal. 

• Groups: Choose between Selected, Active border, 
Disabled, or First letters. From the First letters option, 
you can choose Selected or Active border. 

•Messages: Choose between Information, Notification, 
Warning, or Errors. 

• Buttons: Choose between Selected, Default, Active 
border, Disabled, or First letters. From the First letters 
options, you can choose Selected, Default, or Active 
border. 

•Lists: Choose between Active border, Default, Selected, 
Disabled, Scroll bars, Arrow head, or Thumb tabs. 

Turbo C++ User's Gulde 



The Save 
Configuration 

menu 

The Quit menu 

• Check boxes: Choose between Selected, Active border, 
Disabled, or First letters. From the First letters options, 
you can choose Selected or Active border. 

• Labels: Choose between Selected, Active border, 
Disabled, Normal text, or First letters. From the First 
letters options, you can choose Selected or Active 
border. 

Once you have made all desired changes, choose Save 
Configuration at the main installation menu. The message 

Save changes to TC.EXE? (Y/N): 

appears at the bottom of the screen. When modifying 
TCCONFIG.TC or .PRJ files, no prompting is done. 

•If you press Y (for Yes), all the changes you have made are 
permanently installed into the file you're modifying. (You 
can always run TCINST again if you want to change 
them.) 

•If you press N (for No), your changes are ignored and you 
are returned to the main menu without Turbo C++'s 
defaults or startup appearance being changed. 

You can restore the Editor Commands by choosing the E 
option at the TCINST main menu, then press R (for Restore 
factory defaults) and Esc. 

When you choose Quit at the main installation menu, the 
message 

Quit without saving? (Y/N): 

appears at the bottom of the screen. 

•If you press Y (for Yes), your changes are ignored and you 
are returned to the operating system prompt. 

•If you press N (for No), you are returned to the Installation 
menu. 

Chapter 6, Customizing Turbo C++ 213 



214 Turbo C++ User's Guide 



A p p 

Operation 

E N D x 

A 

Turbo Editor macros 

The Turbo Editor Macro Language (TEML) is a powerful utility 
that you can use to enhance or change the Turbo C++ editor. 
Using the 140-odd built-in macros, you can define new ones that 
perform sophisticated editing tasks and that can bind keystrokes 
to these tasks. 

In order to use TEML, you first write a macro script in a text 
editor. You then compile the script using the Turbo Editor Macro 
Compiler (TEMC). The compiled file is used as a configuration file 
in Turbo C++. 

The Turbo Editor Macro Compiler expects as input an ASCII file 
containing definitions and binding conforming to the TEML 
specification. The output is placed in a configuration file that can 
be used by the IDE. The changes from TEMC are incremental; this 
means that if you just change the definition of one key, only that 
key will be changed in the configuration file. Everything else will 
stay as it was. 

Here is the syntax for the TEMC utility: 

TEMC scriptfile outputconfigfile 

You can use any text editor (including Turbo C++'s) to create the 
ASCII scriptfile. You use the outputconfigfile by naming it 

Appendix A Turbo Editor macros 215 



TCCONFIG.TC and placing it in the directory you will be in when 
starting TC.EXE. 

Editor macro language syntax 

TEML has a simple syntax based on Pascal and C. Here are the 
basic syntax rules of the macro language: 

•Statements in a script file are separated with a semicolon. 

• Reserved words in TEML are: 

ALT 
CTRL 
MACRO 
SHIFT 

BEGIN 
END 
SCRIPT 

•Comments are designated in the C style between /*and *I 
marks. 

• In strings, the user can place any legal C backslash (\) 
sequence; for example, "\xD". 

The rest of this section describes how each possible component of 
the syntax fits into the overall scheme. In this list, the symbol ::= 
means that the object on the left side is composed of the objects on 
the right side. If the list of objects on the right side of the ::= 
begins with the I symbol, then the object on the left can be 
composed of nothing or one of the listed items. 

Script ::= ScriptName Scriptltems 

ScriptName ::= I 
SCRIPTldentifier ; 

Scriptltems ::= I 
Scriptltems Scriptltem 

Scriptltem ::= KeyAssignment I MacroDefinition 

Key Assignment ::= KeySequence: Command; 

KeySequence ::= KeySpecifier I KeySequence + KeySpecifier I 
KeySequence · + A KeySpecifier 

KeySpecifier ::= Key I KeyModifier Key 

Key ::= Number I Identifier I END 

KeyModifier .. - I CTRL - I ALT - I SHIFT -

216 Turbo C++ User's Guide 



Example scripts 

Command 

Command List 

::= BEGIN CommandList OptSemicolon END I 
MacroCommand 

::=Command I 
CommandList; Command 

MacroCommand ::= CommandName I 
CommandName (ParamList) 

CommandName ::= Identifier 

ParamList ::= Param I 
ParamList, Param 

Param ::= Number I String 

MacroDefinition ::= MACRO CommandName CommandList 
OptSemicolon END ; 

OptSemicolon ::= I ; 

Number ::= Digit I Number Digit 

Digit ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 

Identifier ::= Letter I Identifier LetterDigit 

Letter ::= A to Z I a to z I 

LetterDigit ::= Letter I Digit 

String ::= /1 AnyCharacterNotQuote /1 

This example sets up a host of WordStar-like keyboard shortcuts. 

Script WordStar; 

Macro NewLine 
RightOfLine; 
InsertText("\xD"); 

End; 

/* Key Assignments */ 
Ctrl-A : WordLeft; 
Ctrl-C 
Ctrl-D 
Ctrl-E 
Ctrl-F 
Ctrl-G 

PageDown; 
CursorCharRight; 
CursorUp; 
WordRight; 

: DeleteChar; 

Appendix A Turbo Editor macros 217 



218 

Ctrl-H 
Ctrl-J 
Ctrl-K+"B 
Ctrl-K+"C 
Ctrl-K+"H 
Ctrl-K+"K 
Ctrl-K+"Q 
Ctrl-K+"R 
Ctrl-K+"V 
Ctrl-K+"l'I 
Ctrl-K+"Y 
Ctrl-K+l 
Ctrl-K+2 
Ctrl-K+3 
Ctrl-1 
Ctrl-N 
Ctrl-0 
Ctrl-P 
Ctrl-Q+"A 
Ctrl-Q+"B 
Ctrl-Qt"C 
Ctrl-Q+"D 
Ctrl-Q+"E 
Ctrl-Qt"F 
Ctrl-Q+"K 
Ctrl-Q+"P 
Ctrl-Q+"R 
Ctrl-Qt"S 
Ctrl-Q+"X 
Ctrl-Q+"Y 
Ctrl-Q+l 

Ctrl-Q+2 

Ctrl-Q+3 

Ctrl-R 
Ctrl-S 
Ctrl-T 
Ctrl-V 
Ctrl-1'1 
Ctrl-X 

BackSpaceDelete; 
CursorDown; 
SetBlockBeg; 
CopyBlock; 
ToggleHideBlock; 
SetBlockEnd; 
Exit; 
ReadBlock; 
MoveBlock; 
l'lriteBlock; 
DeleteBlock; 
SetMar k ( 1) ; 

SetMark(2); 
SetMark(3); 
Repeat Search; 
BreakLine; 
NewLine; /* This is not a l'lordStar keystroke */ 
Literal Char; 
Replace; 
MoveToBlockBeg; 
EndCursor; 
RightOfLine; 
TopOfScreen; 
GetFindString; 
MoveToBlockEnd; 
MoveToPrevPos; 
HomeCursor; 
LeftOfLine; 
BottomOfScreen; 
DeleteToEol; 
begin 

MoveToMark(l); 
CenterFixScreenPos; 

end; 

begin 
MoveToMark(2); 
CenterFixScreenPos; 

end; 
begin 

MoveToMark(3); 
CenterFixScreenPos; 

end; 
PageUp; 
CursorCharLeft; 
Deletel'lord; 
Toggle!nsert; 
ScrollDown; 
CursorDown; 

Turbo C++ User's Guide 



MakeFuncText 

Ctrl-Y DeleteLine; 
Ctrl-Z Scroll Up; 
Home LeftOfLine; 
UpAr CursorUp; 
Pg Up PageUp; 
LfAr CursorCharLeft; 
RgAr CursorCharRight; 
End RightOfLine; 
DnAr CursorDown; 
PgDn PageDown; 
Ins Toggleinsert; 
Ctrl-End BottomOfScreen; 
Ctrl-PgDn EndCursor; 
Ctrl-Home TopOfScreen; 
Ctrl-PgUp HomeCursor; 

MakeFuncText creates a commented area for descriptive text assoc
iated with a function, assumes the cursor is positioned immedi
ately after the name, and the name is at the left of the screen. 

Script util; 

macro MakeFuncText 
InsertText("\n\n"); 
CursorUp; 
CursorUp; 
LeftOfLine; 

SetBlockBeg; 
WordRight; 
SetBlockEnd; 
LeftOfLine; 
CursorDown; 
CopyBlockRaw; 
CursorUp; 
LeftOfLine; 
InsertText("\nFunction "); 
RightOfLine; 
InsertText(":"); 
CursorUp; 
LeftOfLine; 
InsertText("/*********"); 
InsertText("*********"); 
CursorDown; 
RightOfLine; 

/* add some whitespace */ 

/* go before beginning of 
intended function name */ 

/* mark function name */ 

/* copy for prototyping */ 

/* add "Function" to comment area *I 

/* .. and colon at end*/ 
/* put in comment lines fore and aft */ 

/* add comment divider lines */ 

InsertText("\n"); 
InsertText("\tDescription:\n"); 

Appendix A Turbo Editor macros 219 



MakeStub 

220 

end; 

InsertText("**********"); 
InsertText("*********/\n"J; 
CursorDown; 
RightOfLine; 

/* go back to end of name */ 

/* MakeFuncText */ 

Alt-T MakeFuncText; 

MakeStub creates a stub, based on a user-entered function name; it 
assumes the cursor is positioned immediately after the name, and 
the name is at the left of the screen. 

macro MakeStub 
LeftOfLine; 

Insert Text ("void "); 
RightOfLine; 

/* go before beginning of intended 
function name */ 

I* put in void return type and param *I 

InsertText("( void )\n{\n"); 
Insert Text ("\t"); 
InsertText("printf(\"This is "); /* start printf statement */ 
CursorUp; /* go back to function name */ 

end; 

CursorUp; 
LeftofLine; 
WordRight; 
SetBlockBeg; 
WordRight; 
CursorLeft; 
CursorLeft; 
SetBlockEnd; 
CursorDown; 
CursorDown; 
RightofLine; 
InsertText(" "); 
CopyBlockRaw; 
SetBlockBeg; 
SetBlockEnd; 
RightofLine; 
Insert Text ( "\ \n\ "); "); 
Insert Text {"\n)"); 

Alt-S : MakeStub; 

/* mark function name */ 

I* go back to printf statement */ 

/* put it in printf statement */ 

/* clear marked block */ 

/* add newline and closing brace */ 
/* MakeStub */ 

/* This one doesn't conflict with default assignlll'ents */ 



Built-in commands 

Functional index 

The names of the built-in commands describe their actions. 
Commands with the word screen in them generally only affect the 
screen. 

Commands that have the word raw in them perform fewer 
housekeeping tasks than their "raw-less" counterparts. For 
example, in a long macro, using raw commands saves time in that 
they don't constantly update the screen display to reflect each 
change in cursor position. However, you would only use the raw 
macros as intermediate steps in combination with other macros. 

Macro names are not case-sensitive. A few macros require 
parameters in parentheses, as discussed in the descriptions. 

Remember, you can use these primitive macros to build more 
complicated ones. 

This section lists the built-in macros by function. The following 
section is a straight alphabetical list. 

Block macros These macros affect blocks of text. 

You should use SetPrevPos or 
FixScreenPos. or both. at the 

end of the raw macros for 
housekeeping purposes. 

Copy Block 
Delete Block 
DeleteBlockRaw 
HighlightBlock 
Move Block 
MoveToBlockBeg 
MoveToBlockBegRaw 

MoveToBlockEnd 
MoveToBlockEndRaw 
Read Block 
SetBlockBeg 
SetBlockEnd 
ToggleHideBlock 
WriteBlock 

Deletion/insertion These macros delete, undelete, and insert text. 

BackspaceDelete 
ClipClear 
ClipCopy 
ClipCut 
Clip Paste 
ClipShow 
Delete Block 
DeleteBlockRaw 

Appendix A, Turbo Editor macros 

DeleteChar 
Delete Line 
DeleteToEOL 
Delete Word 
EditMenu 
InsertText 
Literal Char 
RestoreLine 

221 



222 

SetlnsertMode 

Search macros These macros deal with searching. 

GetFindString 
MatchPairForward 
MatchPairBackward 

Toggleinsert 

RepeatSearch 
Replace 
SearchMenu 

Hot key macros These macros duplicate the hot keys in the IDE. 

Add Watch 
Close Window 
CompileFile 
Help 
Help Line 
Inspect 
LastHelp 
Make Project 
Menu 
Modify 
NextError 
Next Window 

OpenFile 
PrevError 
ResetProgram 
RunProgram 
RunToHere 
SaveFile 
Set Breakpoint 
Step 
Trace 
ViewCallStack 
ViewUserScreen 
Zoom Window 

Menu macros These macros pull down the various menus in the IDE. 

CompileMenu 
DebugMenu 
EditMenu 
File Menu 
HelpMenu 

OptionsMenu 
RunMenu 
SearchMenu 
SystemMenu 
WindowsMenu 

Screen movement These macros control cursor movement and screen movement. 

BottomOfScreen 
BottomOfScreenRaw 
CenterFixScreenPos 
CursorCharLeft 
CursorCharRight 
Cursor Down 
CursorLeft 
Cursor Right 
Cursor Up 
End Cursor 
EndCursorRaw 

FixCursorPos 
FixScreenPos 
HomeCursor 
HomeCursorRaw 
LeftOfLlne 
MoveToMark 
MoveToPrevPos 
PageDown 
Page Up 
PageScreenDown 
PageScreenUp 

Turbo C++ User's Gulde 



RightOfLine 
ScrollDown 
Scroll Up 
ScrollScreenDown 
ScrollScreenUp 
SetMark 

SetPrevPos 
SwapPrevPos 
TopOfScreen 
TopOfScreenRaw 
Word Left 
WordRight 

System macros These macros affect certain system functions. 

Exit 
FullPaintScreen 
PaintScreen 

Quit 
SmartRefreshScreen 

Window macros These macros affect windows in the IDE. 

Alphabetical 

Close Window 
Goto Windowl 
GotoWindow2 
GotoWindow3 
GotoWindow4 
Goto Windows 
GotoWindow6 

GotoWindow7 
GotoWindow8 
GotoWindow9 
Swap Windows 
Window List 
WindowsMenu 
Zoom Window 

reference This section is an alphabetical list of all the built-in macros. If you 
need to see how the macros are grouped by function, refer to the 
preceding section. 

AddWatch This macro is the same as pressing Ctrl-Fl or Debug I Watches I Add 
Watch. 

BackspaceDelete Moves the cursor back one character and deletes it (typically 
defined to be Backspace). 

BottomOfScreen Moves the cursor position to the lower left comer of the screen. 
This macro automatically sets the starting cursor position so that 
you can go back there with the MoveToPrevPos macro. 

BottomOfScreenRaw Moves the cursor to the lower left comer of the screen. As 
opposed to the BottomOfScreen macro, this command does not 
change the "previous cursor'' location, which you access with the 
SwapPrevPos and MoveToPrevPos macros. 

Appendix A Turbo Editor macros 223 



224 

CenterfixScreenPos Corrects the screen image position relative to the cursor. This 
command moves the screen image so that the cursor is in the 
middle of it. 

ClipClear Removes the selected text but does not change the Clipboard. This 
macro is the same as pressing Ctrl-Del or choosing Edit I Clear. 

CllpCopy Copies the selected text so you can paste a copy of it elsewhere. 
This macro is the same as pressing Ctrl-lns or choosing Edit I Copy. 

CllpCut Cuts the selected text. This macro is the same as pressing Shift-Del 
or choosing Edit I Cut. 

CllpPaste Pastes the last-cut or last-copied text. This macro is the same as 
pressing Shift-Ins or choosing Edit I Paste. 

ClipShow Opens the Clipboard window. 

CloseWindow Closes the current window. This macro is the same as pressing 
AH-F2 or choosing the Window I Close command. 

Compilefile Compiles the current file. This macro is the same as pressing Alt-F9 
or choosing the Compile I Compile to OBJ command. 

CompileMenu Pulls down the Compile menu. 

CopyBlock Inserts a copy of the current block at the cursor position. Unlike 
the CopyBlockRaw macro, this macro highlights the new block. 

CursorCharleft Moves the cursor one character to the left. (If the cursor is at the 
beginning of a line, this command makes it wrap to the previous 
printing character.) 

CursorCharRight Moves the cursor one character to the right. (If the cursor is at the 
end of a line, this command makes it wrap to the next printing 
character.) · 

CursorDown Moves the cursor one line down, keeping it in the same column. 

Cursorleft Moves the cursor one column to the left. 

CursorRlght Moves the cursor one column to the right (even if there are no 
characters there). If the cursor is at the edge of the screen, this 
command moves the cursor off the visible screen. 

CursorUp Moves the cursor one line up, keeping it in the same column. 

DebugMenu Pulls down the Debug menu. 

Turbo C++ User's Guide 



DeletelKockRaw 

DeleteChar 

Delete Line 

DeleteToEOl 

Delete Word 

E41tMenu 

EndCursor 

EndCursorRaw 

Exit 

FileMenu 

fixCursorPos 

FixScreenPos 

FutlPaintScreen 

GetFindString 

GotoWindow1, 
GotoWindow2, ... , 

GotoWlndow9 

Deletes the current block. Unlike the DeleteBlockRaw macro, 
DeleteBlock leaves the cursor fixed in one spot on the screen (it 
doesn't move when the block is deleted). 

Deletes the current block. Unlike the DeleteBlock macro, this 
"raw" macro doesn't fix the cursor in one spot on the screen (it 
can move when the block is deleted). 

Deletes the character at the cursor position. 

Deletes the line the cursor is on. 

Deletes from the cursor position to the end of the line. 

Deletes the word the cursor is on plus the space characters after it. 

Pulls down the Edit menu. 

Moves the cursor to the end of the file. This macro automatically 
sets the previous cursor position so that you can go back there 
with the MoveToPrevPos macro. 

Moves the cursor to the end of the file. As opposed to the 
EndCursor macro, this command does not reset the "previous 
cursor" location, which you access with the SwapPrevPos and 
MoveToPrevPos macros. 

Exits from the editor. 

Pulls down the File menu. 

Corrects the cursor position in respect to the screen. This 
command moves the cursor to the visible screen by making the 
least amount of movement possible, the result being that the 
cursor appears at the start or the end of the screen. 

Corrects the screen position in respect to the cursor. This 
command moves the screen image to the cursor by making the 
least amount of movement possible, the result being that the 
screen appears above or below the cursor position. 

Forces a full refresh of the screen. This paints out to the edge of 
the screen; it is slower than PaintScreen. 

Opens the Find dialog box so you can search for a text string. The 
search begins at the current cursor position. 

Makes the specified window active (the window number is in the 
upper right corner). These macros are the same as pressing Alt-1, 
Alt-2, and so on. 

~ix A, Turbo Editor macros 225 



Help 

HelpMenu 

Highlight Block 

HomeCursor 

HomeCursorRaw 

lnsertText( "string') 

Inspect 

Last Help 

Left Of Line 

Literal Char 

MakeProject 

MatchPairBackward 

MatchPairForward 

Menu 

Opens the Help window, just like the Help I Table of Contents 
command. This macro is the same as pressing Ft. 

Pulls down the Help menu. 

Highlights the current marked block. 

Moves the cursor position to the beginning of the file. This macro 
automatically sets the starting cursor position so that you can go 
back there with the MoveToPrevPos macro. 

Moves the cursor to the beginning of the file. As opposed to the 
HomeCursor macro, this command does not change the 
"previous cursor" location, which you access with the 
SwapPrevPos and MoveToPrevPos macros. 

Inserts string at the current cursor position. The double quotes are 
required around string; string can be up to 4,096 characters long. 

This macro is the same as pressing Alt-F4 or Debug I Inspect. 

Opens the Help window that was last viewed, just like the Help I 
Previous Topic command. This macro is the same as pressing 
Alt-Ft. 

Moves the cursor to the beginning of the line (typically defined to 
be Home). 

Inserts the next key pressed verbatim into the file (such as Ctrl-P). 

This macro is the same as pressing F9. 

Finds the matching delimiter character that complements the one 
at the current cursor position. Searches backward (to the 
beginning) in the file. See page 110 for a complete list of 
delimiters. 

Finds the matching delimiter character that complements the one 
at the current cursor position. Searches forward (to the end) in the 
file. See page 110 for a complete list of delimiters. 

Makes the menu bar active. This macro is the same as pressing 
FtO. 

Modify This macro is the same as pressing Ctr/-F4 or Debug I Evaluate/ 
Modify. 

MoveBlock Moves the current block to the cursor position. Unlike the 
MoveBlockRaw macro, this macro highlights the new block. 

226 Turbo C++ User's Guide 



MoveToBlockBeg Moves the cursor to the beginning of the current block. Unlike the 
MoveToBlockBegRaw macro, this macro updates the cursor on the 
screen and changes the "previous cursor'' location, which you 
access with the SwapPrevPos and MoveToPrevPos macros. 

MoveToBlockBegRaw Moves the cursor to the beginning of the current block. Unlike the 
MoveToBlockBeg macro, this "raw" macro doesn't update the 
cursor onscreen and doesn't change the "previous cursor" 
location, which you access with the SwapPrevPos and 
MoveToPrevPos macros. 

MoveToBlockEnd Moves the cursor to the end of the current block. Unlike the 
MoveToBlockEndRaw macro, this macro updates the cursor 
onscreen and changes the "previous cursor'' location, which you 
access with the SwapPrevPos and MoveToPrevPos macros. 

MoveToBlockEndRaw Moves the cursor to the end of the current block. Unlike the 
MoveToBlockEnd macro, this "raw" macro doesn't update the 
cursor onscreen and doesn't change the "previous cursor" 
location, which you access with the SwapPrevPos and 
MoveToPrevPos macros. 

MoveToMark(numbet) Moves the cursor to the location designated by the 
SetMark(number) macro. You can set 10 marks by passing SetMark 
a parameter of 0 to 9. You move the cursor to any of the 10 marks 
by passing the corresponding number (0-9) to the 
MoveToMark(number) macro. 

MoveToPrevPos Moves the cursor to the position designated by the SetPrevPos 
macro. 

NextError Moves to the next error position. This macro is the same as 
pressing Alt-FB or choosing the Search I Next Error command. 

NextWindow Makes the next window active, just like the Window I Next 
command. This macro is the same as pressing F6. 

OpenFile Displays the Open dialog box. This macro is the same as pressing 
F3. 

OptionsMenu Pulls down the Options menu. 

PageDown Scrolls both the screen and cursor down one page. 

PageScreenDown Moves the screen down one screenful, possibly moving the cursor 
out of view (typically defined to be PgDn). 

PageScreenUp Moves the screen up one screenful, possibly moving the cursor 
out of view (typically defined to be PgUp). 

Appendix A Turbo Editor macros 227 



PageUp Scrolls both the screen and cursor up one page. (Typically defined 
to be PgUp.) 

PalntScreen Forces a full refresh of the screen. PaintScreen only paints lines 
from the buffer; it assumes it knows how to blank end-of-lines. It's 
faster than FullPaintScreen. 

PrevError Moves to the previous error position. This macro is the same as 
pressing Alt-Fl or choosing the Search I Previous Error command. 

Quit Exits from the integrated environment. If you've made changes 
you haven't saved, you'll be given a chance to save them before 
quitting. This macro is the same as pressing Alt-X. 

ReadBlock Lets you open a text file and insert it at the cursor position. The 
ReadBlock macro automatically opens the Open dialog box so you 
can choose a file to open. 

RepeatSearch Searchs for the text string that was last entered in the find dialog 
box using the GetFindString macro. 

Replace Opens the Replace dialog box so you can search for and replace 
text. 

ResetProgram Reset the current program. This macro is the same as pressing 
Ctrl-F2 or choosing Run I Program Reset. 

Restoreline Inserts the line deleted with the DeleteLine macro. If the cursor 
has moved to another line since the DeleteLine macro, this macro 
does nothing. 

RightOfline Moves the cursor to the end of the line (typically defined to be 
End). 

RunMenu Pulls down the Run menu. 

RunProgram Runs the current program. This macro is the same as pressing Ctrl
F9 or choosing the Run I Run command. 

RunToHere Runs a program up to the line containing the cursor. This macro is 
the same as pressing F4 or choosing Run I Go to Cursor. 

SaveFile Saves the file in the current window. This macro is the same as 
pressing F2 or choosing the File I Save command. 

ScrollDown Scrolls the screen down one line. This macro will not allow the 
cursor to scroll out of view. 

228 Turbo C++ User's Guide 



ScrollScreenDown Moves the screen down one line, leaving the cursor at the same 
relative position in the file. This command will allow the cursor to 
scroll out of view. 

ScrollScreenUp Moves the screen up one line, leaving the cursor at the same 
relative position in the file. This command will allow the cursor to 
scroll out of view. 

ScrollUp Scrolls the screen up one line. This command will not allow the 
cursor to scroll out of view. 

SearchMenu Pulls down the Search menu. 

SetBlockBeg Marks the current cursor position as the beginning of a block. 
Unlike the SetBlockBegRaw macro, this macro highlights the new 
block. 

SetBlockEnd Marks the current cursor position as the end of a block. Unlike the 
SetBlockEndRaw macro, this macro highlights the new block. 

SetBreakpoint Sets a breakboint at the cursor position. This macro is the same as 
pressing Ctrl-FB or choosing Debug I Toggle Breakpoint. 

SetlnsertMode Turns insert mode on. To turn it off, type 

BEGIN SetinsertMode; Toggle Insert END; 

SetMark(numbery Sets the current cursor position so that you can return to it using 
the MoveToMark(number) macro. You can set number to any 
number from 0 to 9. You move the cursor to any of the 10 marks 
by passing the corresponding number (0-9) to the 
MoveToMark(number) macro. 

SetPrevPos Marks the current cursor position as the place to return to when 
you use the SwapPrevPos or MoveToPrevPos macros. Many 
macros implicitly set the "previous position" (the notable 
exceptions are "raw'' macros). 

SmartRefreshScreen Refreshes only the parts of the screen that have changed. 

Step Runs a program one statement at a time but stepping over 
subroutines. This macro is the same as pressing FB or choosing 
Run I Step Over. 

SwapPrevPos Switches the current cursor position with the spot designated by 
the SetPrevPos macro. 

SystemMenu Pulls down the System menu. 

ToggleHideBlock Highlights or hides the current marked block. 

Appendix A Turbo Editor macros 229 



Togglelnsert Switches insert modes, from Insert to Overwrite or from 
Overwrite to Insert. 

TopOfScreen Moves the cursor to the upper left comer of the screen. This 
macro automatically sets the previous cursor position so that you 
can go back to it with the MoveToPrevPos macro. 

TopOfScreenRaw Moves the cursor to the upper left comer of the screen. As 
opposed to the TopOfScreen macro, this command does not 
change the "previous cursor'' location, which you access with the 
SwapPrevPos and MoveToPrevPos macros. 

Trace Runs a program one statement at a time, moving into subroutines 
as necessary. This macro is the same as pressing Fl or choosing 
Run I Trace Into. 

ViewCallStack This macro is the same as pressing Ctrl-F3 or Debug I Call Stack. 

ViewFullOutput Switches views to the User Screen. This macro is the same as 
pressing Alt-FS or choosing the Window I User Screen command. 

Windowlist Displays a list of all open windows. This macro is the same as 
pressing Alt-0. 

WindowsMenu Pulls down the Windows menu. 

Wordleft Moves the cursor one word to the left, placing it on the first 
character of that word. 

WordRight Moves the cursor one word to the right, placing it on the first 
character of that word. 

WriteBlock Lets you save the current block to a file. The WriteBlock macro 
automatically opens the Write Block to File dialog box so you can 
enter a file name. 

ZoomWindow Resizes the current window to be as large as possible, or-if the 
window is already zoomed-to be its original size. This macro is 
the same as pressing FS. 

Error messages 

230 

While coding your macros, you may encounter certain errors. 
Knowing the compiler capacity may help you avoid some of those 
errors, which are given after this list of memory requirements. 

•each macro invocation takes 1 byte 
•each integer parameter takes 2 bytes 

Turbo C++ User's Guide 



•each character parameter takes (number _of_characters_in_string + 
1) byte 

•each macro requires 1 byte for end 

Cannot allocate memory for file. 
Not enough memory is available to process the file. TEMC 
needs about lOOK of available space to compile a file. 

Expected item. 
The line indicated is most likely missing the specified item. 

File filename could not be created. 
The file specified for output cannot be created. Either the disk 
is full or you do not have rights to the current network drive or 
the name specified is not legal. 

File filename is empty. 
The file passed to TEMC to compile has nothing in it. 

File filename larger than 64K. 
The script file is larger than the maximum 64K in size. 

File filename not found. 
The file specified does not exist. 

Invalid key. 
Key specified is not valid. 

Invalid symbol symbol. 
The symbol specified is not a valid TEMC symbol. 

Out of memory. 
Not enough memory is available to process the file. TEMC 
needs about lOOK of available space to compile a file. 

Read error on file filename. 
TEMC could not read the file source file. 

Redefinition of key. 
This key is defined elsewhere in the file. 

Redefinition of macro macro. 
This macro is defined elsewhere in the file. 

Parameters to a macro call illegal. 
Macros cannot have parameters. Trying to pass a parameter to 
a macro is, therefore, illegal. 

Script too complex. 
One or more of the following conditions need to be corrected: 

Appendix A Turbo Editor macros 231 



• Too many keys defined 
•String parameter is too long (the maximum string length is 256 

characters) 
• Too many parameters 
•Macro size may be too large (the maximum size allowed is 

1,024 bytes) 

Undefined symbol symbol. 
The symbol specified has not yet been defined. 

Unexpected item. 
The indicated line most likely would be correct if the item 
specified was deleted or changed. 

Unexpected end of file. 
The last macro or BEGIN /END pair was not terminated. 

Warning message 

232 

Redefinition of environment hot key. 
The key being defined is a hot key in the environment. 
Redefining a hot key in the script will change its meaning in 
the editor only. 

Turbo C++ User's Guide 



N 

43/50-line display 75, 205 
8088 processor 

instruction set 199 
- + and+ - (TLIB action symbols) 173 
<>(angle brackets) in #include directive 74 
$*(base file name macro) 158 
»(chevron) in dialog boxes 19 
$.(file name and extension macro) 159 
$&(file name only macro) 159 
$:(file name path macro) 159 
$<(full file name macro) 158 
-? MAKE help option 141 
-1 option (extended 80186 instructions) 119, 

See also 80186 processor, generating extended 
instructions 

/3 TLINK option (32-bit code) 186 
-*and *- (TLIB action symbols) 173 
32-bit code 186 
- (hyphen) MAKE command (ignore exit status) 

146 
25-line display 75, 205 
#(MAKE comment character) 145 
&& operator 

MAKE 146, 147 
<<operator 

MAKE 146 
>>operator 

MAKE 146 
; (semicolons) in directory path names 75 
= (System) menu 8 
- (tilde) in transfer program names 65 
* (TLIB action symbol) 173 
+ (TLIB action symbol) 173 
- (TLIB action symbol) 173 
$editor macros See individual names of 

macros; transfer macros 
@MAKE command 146 
80x87 math coprocessors See numeric 

coprocessors 

Index 

D 

80x86 processor 
32-bit code 186 

E 

extended instructions 119 
instruction set 55, 199 

= (System) menu 8, 21 
-+ (arrows) in dialog boxes 18 

A 

x 

-a MAKE option (autodependency check) 141 
152 I 

-a rec option (align integers) 120 
-A TCC option (ANSI keywords) 124 
About command 21 
ACBP field 183 
action symbols See TLIB (librarian) 
activating 

menu bar 9 
active window See windows, active 
add <TLIB action symbol) 173 
Add button 50 
Add Item command 50, 89 
Add Item to Project List dialog box 50 
Add Watch command 46 

hot key 13 
macro 223 

Add Watch editor macro 223 
Adjust Colors menu, TCINST 197, 212 
Advanced Code Generation dialog box 55 
alignment 

attribute 183 
integers 120 
word53 

TCINST and 198 
allowed keystrokes 209 
American National Standards Institute See 

ANSI 
angle brackets(<>) in #include directive 74 

233 



ANSI 
compatible code 124 
floating point conversion rules 120 
keywords 200 

option 124 
using only 59 

Turbo C++ keywords and 124 
violations 125 

ANSI Violations 61 
ANSI Violations options, TCINST 200 
applications 

transferring to and from Turbo C++ 64 
Arguments 

command 37 
dialog box 37 

arguments 
command-line compiler 113 
variable list 121 

Arguments option, TCINST 198 
arrays, inspecting values 41 
arrows ( ~) in dialog boxes 18 
.ASM files See assembly language 
assembly language 

assembling 113 
compiling 128 
default assembler 128 
directory 130 
inline routines 128 

assembling 113 
output files 128 
projects and 94 

assembly level debugger See Turbo Debugger 
Assume SS not equal DS option 56 
Assume SS not equal DS option, TCINST 199 
attributes 

ACBP 183 
alignment 183 
big 183 
combining 183 

-AU option (UNIX keywords) 124 
Auto Save option 76 
Auto Save option, TCINST 206 
auto variables See variables, automatic 
.AUTODEPEND MAKE directive 160 
autoindent mode 

changing default 206 
Autoindent Mode option 77 

234 

Autoindent Mode option, TCINST 206 
automatic dependencies 70 

checking 94 
MAKE (program manager) 141, 152 
TCINSf option 202 

MAKE option 160 
automatic variables See variables, automatic 

B 
/b IDE option (build) 6 
-B MAKE option (build all) 141 
-b options (allocate whole word for enums) 56 
-b TCC option (allocate whole word for enums) 

120 
-B TCC option (process inline assembler code) 

128 
backspace macro 223 
Backspace Unindents option 77 
Backspace Unindents option, TCINST 206 
BackSpaceDelete editor macro 223 
backup files (.BAK) 77 
backward 

pair matching 109 
searching 31 

.BAK files 77 
bar, title 15 
base file name macro (MAKE) 158 
batch files, MAKE 147, 148 
BBS segment See also segments 

class 202 
group 202 
renaming 202 

BGI See Borland Graphics Interface 
big attribute 183 
Black and White option, TCINST 211 
block operations (editor) See editing, block 

operations 
Borland Graphics Interface (BGI) See also 

graphics 
EGA palettes and 8 
library 71 

BottomOfScreen editor macro 223 
BottomOfScreenRaw editor macro 223 
boxes See check boxes; dialog boxes; list boxes; 

text, boxes 
Break Make On 

menu 92 

Turbo C++ User's Guide 



option 70 
Break Make On menu, TCINST 202 
Breakpoints 

command 47 
dialog box 47 

breakpoints See also debugging 
clearing 48 
controlling 47 
deleting 47 
editing 47 
inline functions and 57 
losing 48 
setting 47 

macro 229 
viewing 47 

BSSnames 63 
bugs See debugging 
Build All command 38 
build IDE option 6 
BUIL TINS.MAK 140 
buttons 

Change 108 
Change All 32, 108 
choosing 18 
in dialog boxes 18 
mouse 78 
radio 19 

c 
C++ 57, See also C language; Turbo C++ 

compiling 57 
functions 

inline 
command-line option (-vi) 122 
debugging and 57, 122 

help 83 
virtual tables 57, 199 
warnings 62, 126, 201 

C++ Code Generation 
command56 

C++ Options menu, TCINST 199 
C++ Virtual Tables option, TCINST 199 
C++ Warnings 

dialog box 62 
C++ Warnings options, TCINST 201 
-c TCC option (compile but don't link) 128 
-C TCC option (nested comments) 124 

Index 

/C TUB option (case sensitivity) 171, 175 
/ c TLINK option (case sensitivity) 184 
C language See also C++ 

calling sequence 199 
help 83 
Turbo C++ and 121 

cox.OBJ 180 
Cox.OBJ start-up object file 130 
call stack 

viewing 
macro 230 

Call Stack command 44 
hot key 13 

calling 
conventions 55 
sequences 199 

Calling Convention option, TCINST 199 
Cancel button 18 
$CAP EDIT macro 65 
$CAP EDIT transfer macro 68 
$CAP MSG transfer macro 68 
Cascade command BO 
Case-sensitive Link option, TCINST 203 
Case Sensitive option, TCINST 197 
case sensitivity 

in searches 30 
linking with 72 
TLIB option 171, 175 
TLINK and 184 

cdecl statement 121 
CenterFixScreenPos editor macro 224 
.CFG files See configuration files 
Change All button 32, 108 
Change button 108 
Change Dir command 25 
Change Directory dialog box 25 
char treated as type unsigned 121 
characters 

control 
IDE and 19 

data type char See data types, char 
literal 

macro 226 
tab 

printing 25 
Check Auto-dependencies option, TCINST 202 
Check Autodependencies 70 

235 



check boxes 19 
chevron symbol(») 19 
Class Inspector window 42 
classes 

debugging 42 
names 63 

Clear command 29, 105 
hot key 12 
macro 224 

Clear Desktop command 21 
click speed (mouse) 78 
Clipboard 28 

editing text in 29 
opening 

macro 224 
showing29 

ClipClear editor macro 224 
ClipCopy editor macro 224 
ClipCut editor macro 224 
ClipPaste editor macro 224 
ClipShow editor macro 224 
close boxes 15 
Close command 80 

hot key 12 
macro 224 

Close Project 
command50 

CloseWindow editor macro 224 
Code Generation 

command 53 
dialog box 53, 55 

code generation 
command-line compiler options 118, 119 

Code Generation menu, TCINST 198 
code segment 

class 202 
group 128, 202 
names 63 
naming and renaming 127, 202 

default 128 
$COL transfer macro 67 
Color/Graphics Adapter (CGA) 

EGA card and 196 
snow and 210 

Color option, TCINST 210 
columns 

numbers 14, 67 

236 

.COM files 
generating 178, 180 

TLINK 185 
limitations 185 
size 185 

combining attribute 183 
command line 

arguments 113 
TCINST and 198 

options See command-line compiler, options; 
integrated environment, command-line 
options 

Turbo C++ See command-line compiler 
viewing from IDE 80, 81 

command-line compiler 113-136 
command format 113 
compiling and linking with 113 
configuration files See configuration files, 
rec 
MAKEand 160 
options 114, 117 

-1(extended80186 instructions) 119 
-a (align integers) 120 
-AK (Kernighan and Ritchie keywords) 
124 
allocate whole word for enum (-b) 56, 120 
ANSI 

compatible code 124 
keywords (-A) 124 
violations 125 

assembler code 128 
assembler to use (-E) 128 
-AU (UNIX keywords) 124 
-b (allocate whole word for enums) 56, 
120 
-B (process inline assembler) 128 
C++ inline functions (-vi) 122 
-c (compile and assemble) 128 
-C (nested comments) 124 
code generation 118, 119 
code segment 

class name 127 
group 128 
name 128 

comments, nesting ( -C) 124 
compilation control 118, 128 
compile and assemble (-c) 128 

Turbo C++ User's Guide 



configuration files and 116 
-D (macro definitions) 119 
-d (merge literal strings) 120 
data segment 

class name 128 
group 127, 128 
name 127, 128 

debugging information ( -v) 57, 122, 184 
#defines 119 

ganging 119 
-E (assembler to use) 128 
--e (EXE program name) 129 
emulate 80x87 (-f} 120 
environment 130 
error reporting 118, 125 
.EXE file names 129 
expanded and extended memory (-Q) 129 
extended 80186 instructions (-1) 119 
-f87 (inline 80x87 code) 120 
-f (emulate 80x87) 120 
fast floating point (-ff} 56, 120 
frequent errors 126 
functions, void 125 
-G (speed optimization) 123 
generate underscores (-u) 121 
gn (stop on n errors) 125 
identifiers, length (-i} 124 
include files 131 

directory (-1} 130, 132 
inline 80x87 code (-f87) 120 
integer alignment (-a) 120 
-jn stop on n messages) 125 
-k (standard stack frame) 121 
-K (unsigned characters) 121 
Kernighan and Ritchie keywords (-AK) 
124 
-1 (linker options) 130 
-L (object code and library directory) 130, 
132, 134 
libraries 131 

directory (-L} 130, 132 
line numbers (-y) 122 
link map (-M) 130 
linker (-1) 129, 130 
-M Oink map) 130 
macrodefinitions(-D) 118, 119 
memory model (-mx) 117, 118 

Index 

merge literal strings (--d) 120 
-n (.OBJ and .ASM directory) 130 
-N (stack overflow logic) 121 
nested comments (-C) 124 
object code and library directory (-L} 130, 
132, 134 
object files (-o) 128 
optimization (-0) 118, 123 
order of evaluation 134 
Pascal 

conventions (-p) 121 
identifiers 121 

pointer conversion, suspicious 125 
portability warnings 126 
precedence 134 
process inline assembler (-B) 128 
produce .ASM but don't assemble (-S) 128 
project files and 51 
-Q TCC option (expanded and extended 
memory) 129 
-r (register variables) 123 
-rd (register variables) 123 
redundant load operations 123 
register variables 123 
-S (produce .ASM but don't assemble) 128 
segment-naming control 118, 127 
source code 118 
speed optimization (-G) 123 
stack overflow error message (-N} 121 
standard stack frame (-k) 121 
stop on n errors (-gn) 125 
stop on n messages (-jn) 125 
structures and 125 
symbolic debugger 122 
syntax 116 
toggling 116 
Turbo C++ keywords (-A-) 124 
underscores (-u) 121 
UNIX keywords (-AU) 124 
undefine (-U) 119 
-v (debugging information) 57, 122, 184 
-vi (C++ inline functions) 122 
warnings (-wxxx) 125-127 
-y (line numbers) 122 
-Z (aliasing) 123 
-zX (code and data segments) 127 
-zX (code and data segments) 127, 128 

237 



response files 117 
TLINK and 181 
Turbo Assembler and 117 

commands See also command-line compiler, 
options; individual command names 
choosing 

with a mouse 9 
with keyboard 9 

editor 102-108 
block operations 103, 104-106 
cursor movement 102, 104 
insert and delete 103 

printing 
MAKE option 160 

comments 
delimiters 109 

pair matching 110, 111 
in makefiles 145 
nested 59, 124 

TCINST option 200 
comparisons 

pointers 
non-portable 200 

compilation 118 
command-linecompileroptions 118, 128 
rules governing 116 

Compile 
command 

macro224 
menu37 

macro224 
Compile to OBJ command 38 

hot key 13 
CompileFile editor macro 224 
CompileMenu editor macro 224 
Compiler 

command52 
compiler 

Turbo editor macro 215 
Compiler menu, TCINST 198 
Compiler Messages dialog box 60 
compilers See also compiling 

C++57 
code optimization 58 
command line See command-line compiler 
configuration files See configuration files 
customizing 198 

238 

memory models See memory models 
optimizations 

for speed or size 58 
stopping after errors and warnings 60 
Turbo editor macro 67 

compiling See also compilers 
current file 

macro224 
to .EXE file 38 
to .OBJ file 38 

composite screens 
customizing Turbo C++ for 210 

conditional breakpoints See breakpoints, 
conditional 

conditional execution directives (MAKE) 144, 
162 
expressions in 163 

$CONFIG transfer macro 67 
configuration files 67, See also TCCONFIG.TC 

current, saved automatically 206 
IDE 84-86 

modifying 196 
projects and 84 
TCCONFIG.TC 85 

saving 79 
TCC 132, 133 

converting 135 
creating 134 
multiple 135 
overriding 116, 134 

TCINST overridden by 195 
constants 

debugging 42 
hexadecimal 

TCINSf option 201 
too large 125 

long 200 
manifest See macros 
octal 

too large 125 
out of range 200 
symbolic See macros 

Contents command 83 
hot key 12 

control characters 
entering in IDE 19 
format specifier 45 

Turbo C++ User's Guide 



conventions, typographic 2 
conversions 

floating point 
ANSI rules 120 

pointer 
suspicious 200 

pointers 
non-portable 200 
suspicious 125 

significant digits and 200 
specifications See format specifiers 

coprocessors See numeric coprocessors 
Copy command 28, 105 

hot key 12 
macro 224 

Copy Example command 28, 83 
CopyBlock editor macro 224 
copying, and pasting See editing, copy and 

paste 
copyright information 21 
.CPP files See C++ 
CPU registers 81 
CPx.LIB 130 
Create Backup Files option 77 
Create Backup Files option, TCINST 206 
creating new files See files, new 
Ctrl-Break 33, 34 
Current window option 76 
cursor See also editor, cursor movement 

running programs to 
macro 228 

Cursor Through Tabs option 77 
Cursor Through Tabs option, TCINST 206 
CursorCharLeft editor macro 224 
CursorCharRight editor macro 224 
CursorDown editor macro 224 
CursorLeft editor macro 224 
CursorRight editor macro 224 
CursorUp editor macro 224 
Customize colors menu, TCINST 212 
customizing See also TCINST 

code generation 198 
compiler 198 
editing commands 207 
EGA 196 
IDE 75 
keystroke commands 197 

Index 

multiple versions of Turbo C++ 196 
optimization 200 
order of precedence of commands 196 
quitting 213 

Cut command 28, 105 
hot key 12 
macro 224 

Cx.LIB 130, 180 

D 
/d IDE option (dual monitors) 7 
$d MAKE macro (defined test) 157 

expressions and 164 
-D MAKE option (define identifier) 141, 155 
-D TCC option (macro definitions) 119 
-d TCC option (merge literal strings) 120 
/d TLINK option (duplicate symbols) 184 
data 

aligning 53 
data members See C++, data members 
data segment 

class 202 
group 127, 128, 202 
names 63 
naming and renaming 127, 128 
renaming 202 

data structures See also arrays; structures 
data types 

char 
default 53 

characters 
unsigned 

TCINST and 199 
converting See conversion 
floating point See floating point 
integers See integers 

Debug Info in OBJs option 56 
Trace into command and 36 

Debug Info in OBJs option, TCINST 199 
Debug menu 39 

macro 224 
debugger, integrated See integrated debugger 
Debugger command 72 
Debugger menu, TCINST 203 
Debugger Options dialog box 72 
debugging See also integrated debugger 

arrays 41 

239 



breakpoints See breakpoints 
call stack 44 
classes 42 
constants 42 
Debug Info in OBJs 56 
dialog box choices 72 
display swapping 73 

dual monitors and 73 
excluding information 51 
expressions 43 
format specifiers 44 
functions 42 
heap size 74 
hot keys 13 
information 34, 72, 184 

command-line compiler option 122 
in .EXE or OBJ files 122 
in .EXE or .OBJ files 199 
storing56 

inspecting values 39 
line numbers information 56 
MAKE 141 
map files 182 
pointers 40 
screen swapping 203 
stack overflow 54 
starting a session 33 
Step Over command 36 

macro229 
structures and unions 41 
subroutines 53 
TLINI< and 186 
Trace Into command 35 

macro230 
types 43 
variables 43 
watchpoints 

adding46 
macro223 

controlling 45 
deleting 46, 47 
editing46 
watch window 81 

DebugMenu editor macro 224 
default assembler 128 
default buttons 18 
Default Extension option 77 

240 

Default Extension option, TCINST 206 
Default Libraries option 71 
Default Libraries option, TCINST 203 
Default option, TCINST 210 
#define directive 

command-line compiler options 118, 119 
ganging 119 

defined test macro (MAKE) 157 
Defines option 54 
Defines option, TCINST 199 
Delete Item 

command50 
Delete Item command 89 
Delete Watch command 46 
DeleteBlock editor macro 225 
DeleteBlockRaw editor macro 225 
DeleteChar editor macro 225 
DeleteLine editor macro 225 
DeleteToEOL editor macro 225 
DeleteWord editor macro 225 
deleting line 

undoing28 
delimiters 

directional 109 
nesting 110 
nondirectional 109 
unmatched 111 

dependencies 70 
checking 

MAKE (program manager) 152 
desktop 

clearing 21 
desktop files (.DSK) 

default 86 
projects and 86 

Desktop option 76 
Dialog Box options 

TCINST 212 
dialog boxes 

Add Item to Project List 50 
Advanced Code Generation 55 
ANSI Violations 61 
Arguments 37 
arrows in 18 
Breakpoints 47 
buttons See buttons 
C++ Warnings 62 

Turbo C++ User's Guide 



Change Directory 25 
check boxes See check boxes 
Code Generation 53 
Compiler Messages 60 
Debugger Options 72 
defined 18 
Directories 74 
entering text 19 
Environment Options 103, 106 
Find 30, 107 
Frequent Errors 63 
Get Info 26 
Go to Line Number 33 
Include Files 52 
Linker 71 
list boxes See list boxes 
Load a File 22, 106 
Locate Function 33 
More ANSI Violations 62 
More Frequent Errors 63 
Optimizations Options 58 
Override Options 51 
Portability 61 
Preferences 75 
Project File 49 
radio buttons See radio buttons 
Replace 32, 108 
Save File As 24 
Segment Names 64 
Source Options 59, 111 
Transfer 64 

$DIR transfer macro 68 
Direction option, TCINST 197 
directional delimiters See delimiters 
directional pair matching 109 
directives 144 

MAKE See MAKE (program manager), 
directives 

Directories 
command 74 
dialog box 74 

directories 
changing 25 
defining 74 
header files 204 
include files 130, 132, 204 

example 132 

Index 

MAKE 141 
libraries 131, 204 

command-line option 130, 132 
example 132 

output 75, 205 
pick file 204 
project files 85 
projects 91 
semicolons in paths 75 
transfer macro 68 

Directories menu, TCINST 204 
disk caches 

expanded and extended memory and 129 
display 

formats 
debugger 44 

repainting 22 
swapping 73 

dual monitors and 73 
Display Swapping option, TCINST 203 
Display Warnings option 60 
Display Warnings option, TCINST 200 
DOS 

commands 
MAKEand 149 

environment strings 
macros and 157 

MODE command 7 
output 

viewing from IDE 80, 81 
paths 

MAKE 160 
redirection 198 
wildcards 23 

DOS Shell command 8, 26 
double-click speed (mouse) 78 
$DRIVE transfer macro 68 
OS register (data segment pointer) 56 
.OSK files 

default 86 
projects and 86 

dual monitor mode 7 
dual monitors 7 

display swapping and 73 
DOS command line and 27 

duplicate, strings, merging 53 
Duplicate Strings Merged option 53 

241 



Duplicate Strings Merged option, TCINST 198 
duplicate symbols 72 

E 

.LIB and .OBJ files and 185 
TLINK and 184 
warning 

toggle203 

/e IDE option (extended memory) 7 
-E TCC option (assembler to use) 128 
--e TCC option (EXE program name) 129 
/E TLIB option (extended dictionary) 171, 174 
I e TLINK option 185 
Edit 

command (Turbo C 2.0) 101 
menu27 

macro225 
windows 

loading files into 93 
Edit Watch command 46 
Edit window 

TCINST option 212 
Edit windows 

activating 101 
cursor 

moving 102, 104 
option settings 76 

editing 20, See also editor; text 
autoindent mode 106 

setting default 206 
block operations 103, 104-106 

deleting 105 

242 

deleting text 
macro225 

hiding/unhiding 105 
macro 226, 229 

macros 221-230 
marking 

macro 229 
moving 

macros226 
printing 105 
reading and writing 105 
reading file in 

macro228 
save (write) block to file 

macro 230 

selecting blocks 27, 105 
breakpoints 47 
clear command 

macro224 
Clipboard text 29 
commands 102-108 

cursor movement 102, 104 
customizing 207 
insert and delete 103 

copy and paste 105, See also Clipboard 
hot key 12 
macro224 

create backup files 
setting default 206 

cut and paste 28, 105 
macros 222, 224. 

deleting text 
macro 225 

entering text 102 
extension 

setting default 206 
fill 

setting default 206 
hot keys 12, 102-108 
insert mode 

macro229 
overwrite mode vs. 77 
setting default 206 

insertion and deletion 
macros221 

macros 215-230 
error messages 230 
memory requirements 230 
modifying 226 

matching pairs See pair matching 
miscellaneous commands 106 
overwrite mode 

macro 229 
pair matching See pair matching 
pasting See editing, copy and paste 
place marker 106 
print file 105 
quitting 106 

macro 228 
restore line 106 

macro228 

Turbo C++ User's Guide 



search and replace 107-108 
macros 222, 225, 228 
options 107 

selecting text 27 
strings 

inserting 226 
tab mode toggle 106 
tabs 106 

setting default 206 
undelete 106 

macro 228 
undoing line edits 28 
unindent 

setting default 206 
watchpoints 46 

EditMenu editor macro 225 
editor See also editing 

allowed keystrokes 209 
cursor movement macros 

beginning or end of block 227 
beginning or end of file 225, 226 
beginning or end of line 226, 228 
character left or right 224 
column left or right 224 
line up or down 224 
to marker 227 
previous position 229 
word left or right 230 

cursor position macros 
beginning or end of file 226 
marking 229 
screen 223, 224, 225 
setting 229 

customizing 207 
defaults 206 
features 20 
inspecting 

macro 226 
macro language (TEML) 215-230 

alphabetical list 223-230 
built-in macros 221 

Index 

blocks of text 221 
editing and searching 222 
functional list 221 
hot keys 222 
insertion and deletion 221 
menus222 

screen movement 222 
system functions 223 
window management 223 

combining macros 221 
error messages 230 
example scripts 217 
memory requirements 230 
modifying 226 
syntax 216 
using 67, 215 

macros See also MAKE (program manager), 
macros 

quitting 
macro 225, 228 

setting defaults 206 
tabs in 77 
TCINST and 197 

Editor Commands option, TCINST 207 
Editor Files option 76 
Editor menu, TCINST 206 
Editor Options 76 
$EDNAME transfer macro 67 
EGA See Enhanced Graphics Adapter 
!elif MAKE directive 162 

defined test macro and 157 
macros and 157 

ellipsis mark(. .. ) 9, 18 
!else MAKE directive 162 
EMS memory 26 
EMU.LIB 130, 180, 181 
emulation, 80x87 120 

floating point 55 
EndCursor editor macro 225 
EndCursorRaw editor macro 225 
!endif MAKE directive 162 
Enhanced Graphics Adapter (EGA) 76 

CGA monitor and 196 
screen size 205 

Enhanced Graphics Adapters (EGA) 
palette 

IDE option 8 
enumerations 

assigning integers to 125 
treating as integers 199 

enumerations (enum) 
command-line option 120 

243 



Environment 
command 75 

environment, DOS See also integrated 
environment 
macros and 157 

Environment menu, TCINST 205 
Environment option 

Auto Save 76 
Environment Options dialog box 103, 106 
$ERRCOL transfer macro 67 
$ERRLINE transfer macro 67 
$ERRNAME transfer macro 67 
!error MAKE directive 165 
errors See also warnings 

ANSI 125 
Frequent 62 
frequent 126 
MAKE (list) 166-169 
messages 

compile time 91, 92 
keeping 205 
removing 93 
saving 93 
searching 33 
setting 60 

next 
hotkey 13, 93 
macro 227 

previous 
hot key 13, 93 
macro 228 

reporting 
command-line compiler options 118, 125 

stopping on n 60 
setting n 200 

syntax 
project files 91, 92 
tracking 205 

TLINK (list) 188 
tracking 

project files 91, 92 
Turbo Editor Macro Language 230 

Errors : Stop After option, TCINST 200 
Esc shortcut 18 
Evaluate command 

format specifiers and 44 
Evaluate/Modify command 43 

244 

hot key 13 
evaluation order 

command-line compiler options 134 
examples 

copying from Help 28, 83 
library and include directories 132 
MAKE (program manager) 141 

batch files 148 
Turbo Editor macros 217 

.EXE files 
creating 38 
debugging information 186 
directory 75 
file name transfer macro 67 
linking 38 
naming 38 
overlaying 203 
user-selected name for 129 

executable files See .EXE files 
$EXENAME transfer macro 67 
exit codes 

MAKEand 146 
Exit editor macro 225 
exiting Turbo C++ 8 
expanded and extended memory 

controlling use of 129 
disk caches and RAM disks and 129 
TLINK and 187 

explicit 
library files 131 
rules (MAKE) 144, 150 

expressions 
debugging 43 
evaluating 

restrictions on 43 
MAKE and 163, 164 
nested 

pair matching 108 
values 

displaying 43 
$EXT transfer macro 68 
extended 80186 instructions 119 
extended and expanded memory 7 

RAM disk and 7 
extended dictionary 

TLIBand 171, 174 

Turbo C++ User's Guide 



extended memory See expanded and extended 
memory 

extension keywords 
ANSI and 124 

extensions, file, supplied by TLINK 177 
External option 

C++ Virtual tables 57 
extract and remove (TLIB action) 173 

F 
-f87 option (inline 80x87 code) 120 
-f MAKE option (MAKE file name) 139, 141 
-f TCC option (emulate 80x87) 120 
Fast Floating Point option 56 
Fast Floating Point option, TCINST 199 
fatal errors See errors 
features 

editor 20 
integrated environment 5 

-ff option (fast floating point) 56, 120 
file-inclusion directive (!include) 161 
Filemenu22 

macro225 
file-name macros (MAKE) 159 
FileMenu editor macro 225 
files See also individual file-name extensions 

assembly language See assembly language 
backup (.BAK) 77 
batch See batch files 
C++ SeeC++ 
closed 

reopening 81 
.COM 178, 180 
compiling 

macro 224 
configuration See configuration files 
.CPP SeeC++ 
desktop (.DSK) 

default 86 
projects and 86 

editing See editing 
executable See .EXE files 
extensions 68, 177 
include See include files 
information in dependency checks 94 
information on 26 

Index 

library See libraries, files 
loading into editor 93 
make See MAKE (program manager) 
map See map files 
multiple See projects 
names 

extensions (meanings) 177 
macros 68 

transfer 66 
new 24, 106 
NONAME24 
open 

choosing from List window 81 
opening 22, 106 

hot key 11 
macro 227 

out of date, recompiled 94 
path 

macros 68 
printing 25 
project (.PRJ) See projects 
response See response files 
saving 24, 106 

all 24, 69 
automatically 76 
hot key 11 
macro 228 
with new name or path 24 

source 
.ASM 113 

.TC See configuration files, IDE 
updating 138 

filling lines with tabs and spaces 77 
filters 68 

GREP and TASM 68 
Find command 29, 10 7, See also searching 

hot key 12 
Find dialog box 30, 107 

macro 225 
FixCursorPos editor macro 225 
FixScreenPos editor macro 225 
floating point See also integers; numbers; 

numeric coprocessors 
ANSI conversion rules 120 
code generation 55 
emulation 199 
fast 56, 120 

245 



TCINST option 199 
format specifier 45 
inline 80x87 operations 120 
libraries 120 

TLINK and 181 
math coprocessor and 121 

Floating Point option, TCINST 199 
format specifiers 

debugging and 44 
table 45 

43/50-line display 75, 205 
forward 

forward searching 31 
pair matching 109 

FP87.LIB 130, 180, 181 
Frequent Errors 

warnings 62 
frequent errors 62, 126 
Frequent Errors dialog box 63 
Frequent Errors options, TCINST 201 
full file name macro (MAKE) 158 
full link map 130 
Full Menus command 13, 52 
Full Menus menu, TCINST 198 
FullPaintScreen editor macro 225 
functions See also scope 

C-type 121 
call stack and 44 
calling conventions 55 
help 83 
inline 

out of line 199 
inspecting 42 
locating 33 
parameters See arguments 
searching for 33 
stepping over 36 
tracing into 35 
void 

G 

returning a value 125 
TCINST option 200 

-G TCC option (speed optimization) 123 
-g TCC option (stop on n errors) 125 

246 

ganging 
command-line compiler options 

#define 119 
macro definition 119 

defined 119, 131 
integrated environment 131 
library and include files 131 

Generate Underbars option 56 
Generate Underbars option, TCINST 199 
Get Info 

command26 
dialog box 26 

GetFindString editor macro 225 
global menus See menus 
global variables 

word-aligning 120 
Go Cursor command 35 
Go To Cursor command 

macro 228 
Go to Cursor command 

hot key 11, 13 
Go to Line Number 

command 32 
dialog box 33 

GoToWindowN editor macro 225 
graphics 

library 
TLINK and 180 

palette 
EGA8 

Graphics Library option 71 
Graphics Library option, TCINST 203 
GREP (file searcher) 

capturing messages 68 
wildcards in Turbo C++ 30 

GREP2MSG.EXE 68 
group names 63 

H 
-h MAKE option (help) 141 
header files See also include files 

directory 204 
help 83 
searching for 131 

heap 
size 74 

Turbo C++ User's Guide 



Help 
button 18 
editor macro 226 
menu82 

macro 226 
TCINSToption 212 
windows 

help 

closing 82 
copying from 28, 83 
keywords in 82 
macro 226 
opening 82 
selecting text in 82 

accessing 82 
CandC++ 83 
help on help 84 
hot keys 11, 12 
index 83 
keywords 82 
language 83 
MAKE 141 
previous topic 84 

macro 226 
status line 17 
table of contents 83 

Help on Help command 84 
HelpMenu editor macro 226 
hexadecimal numbers See numbers 

hexadecimal ' 
HighlightBlock editor macro 226 
history lists 19 

closing 21 
wildcards and 23 

HomeCursor editor macro 226 
HomeCursorRaw editor macro 226 
hot keys 

debugging 13 
editing 12 
editor 101, 102-108 
help 11, 12 
macros 222 
make project 92 
menus 10, 11 
next error 93 
previous error 93 
redefining 210 

Index 

transfer macros 65 
transfer program names 65 
using 10 

hyphen (-) MAKE command (ignore exit 
status) 146 

-i MAKE option (ignore exit status) 141 
-I MAKE option (include files directory) 140, 

141 
-i TCC option (identifier length) 124 
-I TCC option (include files directory) 130, 132 

134 I 

/i TLINK option (uninitialized trailing 
segments) 184 

icons 
full menus 13 

IDE See integrated environment 
Identifier Length option, TCINST 200 
identifiers 

defining 155 
duplicate 72 

warning 203 
length 59 

setting 200 
Pascal-type 121 
significant length of 119, 124 
Turbo C++ keywords as 59, 124 
undefining 119 
underscore for 121 

!if MAKE directive 162 
defined test macro and 157 
macros and 157 

Ignore Case option, TCINST 209 
ignore exit status (MAKE command) 146 
.IGNORE MAKE directive 160 
implicit 

library files 131 
rule (MAKE) 144 

#include directive See al.so include files 
angled brackets and 131 
directories 74 
quotes and 131 

!include directive (MAKE) 140, 161 
Include Directories 

input box 74 
Include Directories option, TCINST 204 

247 



Include Files 
command 51 

include files See also header files 
automatic dependency checking (MAKE) 152 
command-line compiler options 131 
directories 130, 132, 204 

multiple 132 
help 83 
MAKE 140, 161 

directories 141 
projects 89 
searching for 131 
user-specified 130, 132 

Include Files command 89 
Include Files dialog box 52 
incremental search 20 
indenting automatically 77 
Index command 

hot key 12 
Index command (help) 83 
indexes See arrays 
initialization modules 

used with TLINK 180 
initialization modules, used with TLINK 179 
Initialize Segments option, TCINST 202 
initialized data segment See data segment 
inline assembly code 128 
inline code See assembly language, inline 

routines; 80x87 math coprocessor 
input boxes 19 
Insert Mode option 77 
Insert Mode option, TCINST 206 
InsertText editor macro 226 
Inspect 

command39 
editor macro 226 

Inspect command 
hot key 12, 13 

Inspector Options option, TCINST 204 
Inspector windows 39 

arrays 41 
class 42 
constant 42 
function 42 
ordinal 40 
pointers 40 
structures and unions 41 

248 

Type 43 
Install Editor screen 207, 208 
Installation menu, TCINST 196 
Instruction Set, TCINST 199 
Instruction Set radio buttons 55 
integers See also floating point; numbers 

aligned on word boundary 120 
assigning to enumeration 125 

integrated debugger 199, 203, See also 
debugging 
breakpoints See breakpoints 
debugging information for 122 

integrated environment 5 
command-line arguments and 37 
command-line options 6 

build (/b) 6 
dual monitors (/d) 7 
EGA palette (/p) 8 
expanded memory (/x) 7 
extended memory (/ e) 7 
laptops (/1) 8 
make(/m) 6 
Ip (EGA palette) 8 
RAM disk (fr) 7 
syntax 6 
/x expanded memory) 7 

configuration files See configuration files, 
IDE 

control characters and 19 
customizing 75, 195, 205 
debugging See debugging 
editing See editing 
features 5 
ganging 131 
makes 93 
memory needs 70 
menus See menus 
monitor 

default 210 
multiple library directories 131 

invoking 
TCINST 196 

J 
-j rec option (stop on n messages) 125 
Jump Optimization 

option 58 

Turbo C++ User's Guide 



Jump Optimization option, TCINST 200 

K 
-K MAKE option (keep temporary files) 141, 

147 
-k TCC option (standard stack frame) 121 
-K TCC option (unsigned characters) 121 
K&R See Kernighan and Ritchie 
Keep Messages command 

toggle 93 
Kernighan and Ritchie 

keywords 59, 124, 200 
keyboard 

choosing buttons with 18 
choosing commands with 9 
selecting text with 27 

keys, hot See hot keys 
keystrokes 

allowed (in customizing) 209 
commands 

customizing 197, 207, 208 
Ignore case 209 
types of 209 
Verbatim 209 
WordStar-like 209 

keywords 
ANSI200 

command 124 
help 83 
Help windows 82 
Kernighan and Ritchie 200 

using 124 
options 59 
register 

Register Variables option and 58 
Turbo C++ 59, 200 

using, as identifiers 124 
UNIX 

using 124 
UNIXV 200 

Keywords option, TCINST 200 

L 
/l IDE option (LCD screen) 8 
-1 TCC option (linker options) 130 

Index 

-L TCC option (object code and library 
directory) 130, 132, 134 

/l TLINK option (line numbers) 184 
language help 83 
laptop computers 

customizing Turbo C++ for 210 
laptops 

integrated environment option (/l) 8 
LastHelp editor macro 226 
LCD or Composite option, TCINST 211 
left-handed 

mouse support for 78 
LeftOfLine editor macro 226 
.LIB files See libraries 
libname (TUB option) 171 
librarian See TLIB 
libraries 

command-line compiler options 131 
creating 171 
default 71, 203 
directories 75, 130, 204 

command-line option 130, 132 
multiple 132 

duplicate symbols in 185 
explicit and implicit 131 
files 75, 130, 132 

user-specified 130 
floating point 120 

TLINK and 181 
graphics 71, 203 

TLINK and 180 
linking 38 
math 

project library overrides and 97 
memorymodels 181 
memory models and 180-181 
numeric coprocessor 181 
object files 169, 170 

creating 173 
order of use 180 
overiding in projects 97 
page size 174 
rebuilding 122 
routines 

80x87 floating-point emulation 120 
run time 

TLINK and 181 

249 



searching for 131, 132 
TLINK and 179, 180 

ignoring 184 
user-specified 131 
utility See TLIB 

Library Directories 
input box 75 

Library Directories option, TCINST 204 
library files See libraries 
$LINE transfer macro 67 
line numbers See lines, numbering 
Line Numbers Debug Info option 56 
Line Numbers Debug Info option, TCINST 199 
lines 

filling with tabs and spaces 77 
moving cursor to 32 
numbering 14, 67, 199 

in object files 122 
information for debugging 56 
TLINK and 184 

restoring (in editor) 28 
Link EXE File command 38 
link map, full 130 
Linker 

command 71 
dialog box 71 

linker See also TLINK 
case sensitive linking 72 
command-line compiler options 129, 130 
link map 

creating 130 
linking from command line 113 
options 

from command-line compiler 130 
Linker menu, TCINST 202 
linking 

excluding from 51 
list boxes 20 

file names 23 
searching incrementally 83 

List command 
hotkey 12 

List window 79, 81 
listfile (TUB option) 171 
literal strings See strings, literal 
LiteralChar editor macro 226 
Load a File dialog box 22, 106 

250 

load operations 
redundant, suppressing 123 

local menus See menus 
Local option 

C++ Virtual tables 57 
Local Options 

command50 
Local Options command 89 
Locate Function 

command 33 
dialog box 33 

.LST files See files; listfile (TUB option) 

M 
/m IDE option (make) 6 
-M TCC option (link map) 130 
/m TUNK option (publics in map file) 178 
macros See also editor, macros; MAKE 

(program manager), macros 
command-line compiler 118, 119 
definitions 

default 199 
DOS 

environment strings and 157 
path (MAKE) 160 

editor 67 
ganging 119 
invocation 

defined 156 
MAKE See MAKE (program manager), 

macros 
preprocessor 54 
transfer See transfer macros 
Turbo editor See editor, macro language 

(TEML) 
Main Menu option, TCINST 212 
__ MAKE __ macro 157 
MAKE (Program Manager) 

IDE makes and 93 
stopping makes 92 

MAKE (program manager) 138-169 
automatic dependency checking 141, 152 
batching files and 147 
BUILTINS.MAK file 140 
clocks and 139 
commands 

@(hide commands) 146 

Turbo C++ User's Guide 



hiding (@) 146 
hyphen(-) (ignore exit status) 146 
-num (stop on exit status num) 146 

debugging 141 
default conditions for stopping 202 
directives 

.NOAUTODEPEND 160 

.AUTODEPEND 160 
command-line compiler options and 160 
conditional execution 162 

expressions in 163 
defined 159 
!elif 162 

macros and 157 
!else 162 
!endif 162 
!error 165 
file inclusion 161 
!if 162 

macros and 157 
.IGNORE 160 
!include 161 
.NOIGNORE 160 
.NOSILENT 160 
.NOSWAP 160 
.SILENT 160 
.SWAP 160 
!undef 165 

DOS commands and 149 
errors (list) 166-169 
example 141 
exit codes and 146 
explicit rules See MAKE (program manager), 

rules 
functionality 138 
hide commands 146 
implicit rules See MAKE (program manager), 

rules 
!include directive 140 
macros 153, 155, 157 

base file name($*) 158 
defined test 157 
!elif directive and 157 
example 153 
file name and extension ($.) 159 
file name only($&) 159 
file name path($:) 159 

Index 

full file name($<) 158 
!if directive and 157 
in expressions $d 164 
__ MAKE __ 157 
predefined 157 
undefining 165 
version number 157 

makefiles 
comments in 145 
creating 144 
defined 142 
naming 144 
parts of 144 

modifying 193 
operators 163 
options 141 

-? (help) 141 
automatic dependency checking (-a) 152 
build all (-B) 141 
default (-w) 141 
define identifier (-D) 141 

conditional execution 162 
don't print commands (-s) 141 
file name (-f) 139, 141 
help(-? and -h) 141 
ignore exit status (-i) 141 
include files directory (-1) 140, 141 
keep files (-K) 141, 147 
-n (print commands but don't execute) 141 
saving (-w) 141 
swap MAKE out of memory (-S) 141 
undefine (-U) 141 
using 139 
-W (save options) 141 

.PATH directive 160 
printing commands 160 
redirection operators 146 
rules 

explicit 
considerations 151 
defined 150 
example 145, 151 

implicit 143 
discussion 152 
example 145 

implicit rules 
explicit rules and 152 

251 



stopping makes 70 
swapping in memory 160 
syntax 139 
wildcards and 150 

Make command 70 
Make EXE command 

hotkey 11, 13 
Make EXE File command 38 
makefiles See MAKE (program manager) 
MakeProject editor macro 226 
makes 

IDE option 6 
manifest constants See macros 
Map File 

TCINST 202 
map files 130 

debugging 182 
directory 75 
generated by TLINK 178, 182 
options 71 

Match Pair command 108-112 
MatchPairBackward editor macro 226 
MatchPairForward editor macro 226 
math coprocessors See numeric coprocessors 
MATHx.LIB 130, 180 
maximize See Zoom command 
$MEM transfer macro 68, 69 
memory 

addressing 199 
available 26 
dump 

format specifier 45 
EMS26 
expanded and extended 129 

controlling 129 
disk caches and RAM diska and 129 
TLINK option 187 

extended and expanded 7 
RAM disk and 7 

heap size 74 
requirements 

IDE70 
swapping MAKE in 160 
transfer programs 68, 69 
Turbo Editor Macro Language requirements 

230 

252 

memory models 
changing54 
command-line options 56, 117, 118 
default 

changing 199 
initialization modules 180 
libraries 181, 180-181 
startup modules 181 
tiny 

library 181 
TLINK and 179, 180 

Menu 
editor macro 226 

menu bar See menus 
menus See al.so individual menu names 

accessing 9 
bar 

macro226 
Break Make On 92 
commands See individual command names 
editor macros for 222 
Full 13, 52 

how indicated in manual 13 
TCINSf and 198 

hot keys 10, 11 
items 

choosing 197 
opening 9, 101 
Optimization 123 
TCINST and 195 
with arrows(~) 9 
with ellipsis marks(. .. ) 9, 18 

Message Tracking 
toggle 92 

Message window 80, 93 
capturing output into 68 
removing messages 38 
TCINSToption 212 

messages See also errors; warnings 
appending 76 
capturing from programs 68 
column number 67 
file name 67 
line number 67 
removing38 

Messages command 60 
Messages menu, TCINSf 200 

Turbo C++ User's Guide 



Modal Help 
TCINST option 212 

MODE command (DOS) 7 
Mode for Display menu, TCINST 197, 210 
Model option, TCINST 199 
models, memory See memory models 
Modify editor macro 226 
module names, TLIB 172 
monitors See screens 

dual 7, 27, 73 
number of lines 75 
setting default 210 

Monochrome option, TCINST 211 
More ANSI Violations dialog box 62 
More Frequent Errors dialog box 63 
More options, TCINST 201 
mouse 

buttons 
switching 78 

choosing commands with 9, 18 
double click 207 
double-dick speed 78 
left-handed 

support for 78 
reverse 207 
reversing buttons 78 
right button 207 
right button action 78 
selecting text with 27 
support for 5 

Mouse Double Click option 78 
Mouse Double Click option, TCINST 207 
Mouse menu, TCINST 207 
MoveBlock editor macro 226 
MoveToBlockBeg editor macro 227 
MoveToBlockBegRaw editor macro 227 
MoveToBlockEnd editor macro 227 
MoveToBlockEndRaw editor macro 227 
MoveToMark editor macro 227 
MoveToPrevPos editor macro 227 
moving text See editing, block operations 
multi-source programs See projects 
multiple files See projects 
multiple listings 

command-line compiler options 
#define 119 
include and library 131 

Index 

macro definition 119 
-mx options (memory models) 118 

N 
-n MAKE option (print commands but don't 

execute) 141 
-n TCC option (.OBJ and .ASM directory) 130 
-N TCC option (stack overflow logic) 121 
/n TLINK option (ignore default libraries) 184 
$NAME transfer macro 68 
Names 

command 63 
names See identifiers 
Names menu, TCINST 202 
nested 

comments 124 
toggle 200 

delimiters See delimiters 
Nested Comments option 59, 111 
New command 24, 106 
New Value field 43 
New Window option 76 
Next command 80 

hot key 11, 12 
macro 227 

Next Error command 33 
hot key 13 
macro 227 

NextError editor macro 227 
Next Window editor macro 227 
.NOAUTODEPEND MAKE directive 160 
.NOi GNORE MAKE directive 160 
NONAME file name 24 
nondirectional delimiters See delimiters 
nondirectional pair matching 109 
nonfatal errors See errors 
.NOSILENT MAKE directive 160 
.NOSW AP MAKE directive 160 
$NOSW AP transfer macro 69 
Notes command 81 
null character See characters, null 
-num MAKE command 146 
numbers See also floating point; integers 

column 67 
decimal 74 

format specifier 45 
hexadecimal 7 4 

253 



constants 
too large 125, 201 

format specifier 45 
line 67 
octal 

constants 
too large 125 

real See floating point 
numeric coprocessors See also floating point 

emulating 120 
generating code for 120, 121 
inline instructions 55, 120 
libraries 

TLINK and 181 
Turbo C++ options 199 
using 199 

0 
-o TCC option (object files) 128 
-0 TCC option (optimization) 123 
/o TLINK option (overlays) 186 
.OBJ files 

compiling 128 
creating 38 
debugging information 56 

TCINST and 199 
dependencies 70 
directories 75, 130 
duplicate symbols in 185 
libraries 

advantages of using 170 
creating 173 
TLIBand 169 

line numbers in 122 
object files See .OBJ files 
object-oriented programming See C++ 
objects See C++ 
octal numbers See numbers, octal 
OK button 18 
online help See help 
OOP SeeC++ 
Open command 22, 106 

hot key 11, 12 
Open Project 

command 49 
OpenFile editor macro 227 
operations (TLIB option) 171 

254 

operators 
MAKE 146, 163 

precedence 164 
precedence See precedence 

Optimal Fill option 77 
Optimal Fill option, TCINST 206 
optimization 58 

command-line compiler options 118, 123 
fast floating point 56 
for speed or size 58 
jump200 
register 200 
selecting 200 

Optimization menu 123 
Optimizations 

command 57 
dialog box 58 

Optimizations menu, TCINST 200 
Optimize For option, TCINST 200 
op~ions See command-line compiler, options; 

integrated environment, command-line 
options; MAKE (program manager), options; 
TLIB (librarian), options; TLINK (linker), 
options 

Options menu 52 
command-line compiler and 114 
macro 227 

Options menu, TCINST 197, 198 
OptionsMenu editor macro 227 
ordinals, inspecting 40 
Origin option, TCINST 197 
Out-Line Inline Functions option 57 
Out-of-line Inline Functions option, TCINST 

199 
output 

capturing 68 
directory 205 
to DOS 

viewing from IDE BO, 81 
User Screen 81 

Output command 80 
Output Directory 

input box 75 
Output Directory option, TCINST 205 
Output window 

TCINST option 212 
Overlay EXE option, TCINST 203 

Turbo C++ User's Guide 



Overlay Support option, TCINST 198 
overlays 

default support 198 
.EXE files 203 
projects and 51 
supporting 53 
TLINK and 186 
toggling 72 

Override Options dialog box 51 
Overwrite Mode 77 

p 
Ip IDE option (EGA palette) 8 
-p TCC option (Pascal conventions) 121 
/P TLIB option (page size) 174 
page size (libraries) 17 4 
PageDown editor macro 227 
PageScreenDown editor macro 227 
PageScreenUp editor macro 227 
PageUp editor macro 227 
PaintScreen editor macro 228 
pair matching 108-112 

angle brackets 108 
backward 109 
braces 108 
brackets 108 
commands 108 
comment delimiters 108, 110, 111 
directional 109 
double quotes 108 
examples 111 
forward 109 
nested expressions 108 
nondirectional 109 
parentheses 108 
rules 109 
single quotes 108 

parameter-passing sequence, Pascal 121 
parameters See arguments 
Pascal 

calling convention 55 
Calling Sequence 199 
identifiers of type 121 
parameter-passing sequence 121 

Paste command 28, 105 
hot key 12 
macro 224 

Index 

pasting See edit, copy and paste 
path names in Directories dialog box 75 
.PATH directive (MAKE) 160 
place markers (editor) 106 
pointers 

comparisons 
non-portable 200 

conversion 
non-portable 200 
suspicious 200 

format specifier 45 
inspecting values 40 
memory regions 45 
mixing 200 
suspicious conversion 125 

polymorphism See C++ 
pop-up menus 9, See al.so menus 
Pop-Up Menus option, TCINST 212 
Portability 

dialog box 61 
Portability options, TCINST 200 
portability warnings 61, 126 
precedence 

command-line compiler options 134 
MAKE operators 164 
TLIB commands 172 

Preferences 
dialog box 75 

Preferences dialog box 75 
Preferences options, TCINST 205 
PrevError editor macro 228 
Previous Error command 33 

hot key 13 
macro 228 

Previous Topic command 84 
hotkey 12 
macro 226 

Print Block command 105 
Print command 25 
Print File command 105 
.PRJ files See projects 
$PRJNAME transfer macro 67 
prjoects 

notes 100 
procedures See functions 
Program Heap Size option, TCINST 203 
program manager (MAKE) See MAKE 

255 



Program Reset command 35 
hot key 13 

programs 
C++ SeeC++ 
capturing output 68 
ending 33 
file name 67 
heap size 74 
memory assignments 69 
multi-source See projects 
rebuilding 34, 38 
resetting 35 

macro 228 
running 34 

arguments for 37 
macro 228 
to cursor 35 
Trace Into 35 

transfer 
list 96 

transferring to external from Turbo C++ 64 
Project 

command 81 
menu49 

project 
excluding from 51 

Project File 
dialog box 49 

Project-Make 
macro226 

Project Manager 34, 87-100, See also projects 
closing projects 50 
Include files and 51 

Project Name 
command 66 

Project Notes window 100 
Project option 76 
projects 87-100, See also Project Manager 

autodependency checking 70 
automatic dependency checking and 94 
building 87 
changing 86 
closing 50 
default 86 
desktop files and 86, 84-86 
directories 91 
directory 85 

256 

error tracking 91, 92 
.EXE file names and 38 
files 

adding 89 
command-line options and 51 
deleting 89, 90 
file name transfer macro 67 
include 89 
information 95 
list 89 
modifying 196 
options 89 
out of date 94 
viewing 99 

IDE configuration files and 84 
include files 89 
information in 87 
libraries and 

overriding 97 
math libraries and 97 

loading 85 
makes and 93 
making 

hot key for 92 
managing 81 
meaning of 50 
naming 88 
new89 
notes 81 
overlays and 51 
saving 90 
translator option 51 
translators See also Transfer 

default 95 
example 96 
multiple 94 
specifying 95 

Prompt on Replace option, TCINST 198 
$PROMPT transfer macro 69 
pseudovariables, register 

using as identifiers 124 
Public option 

C++ Virtual tables 57 
Pull-down Menu option, TCINST 212 
pull-down menus See menus 

Turbo C++ User's Guide 



Q 
-Q TCC option (expanded and extended 

memory) 129 
Quit 

command 8, 27, 106 
editor macro 228 

Quit option, TCINST 197, 213 

R 
-r TCC option (register variables) 123 
I rx IDE option (RAM disk) 7 
radio buttons 19 
RAM disk 

integrated environment and 7 
RAM disks 

expanded and extended memory and 129 
-rd option (register variables) 123 
ReadBlock editor macro 228 
real numbers See floating point 
rebuilding libraries 122 
redirecting program output 68 
redirection 

DOS 198 
operators 

MAKE 146 
register (keyword) 

Register Variables option and 58 
Register command 81 
Register Optimization option 58 
Register Optimization option, TCINST 200 
Register Variables option 58 
Register Variables option, TCINST 200 
registers 

DS (data segment pointer) 56 
pseudovariables 

using as identifiers 124 
reusing 58 
SS (stack segment pointer) 56 
variables 123 

suppressed 123 
toggle 123, 200 

windows 81 
Regular Expression option, TCINST 197 
remove (TLIB action) 173 
Remove All Watches command 47 
Remove Messages command 38, 93 

Index 

Repaint Desktop command 22 
RepeatSearch editor macro 228 
Replace 

command 31, 108 
dialog box 32, 108 
editor macro 228 

replace (TLIB action) 173 
Replace command 

hot key 12 
ResetProgram editor macro 228 
resetting programs 35 
resident utilities 

expanded and extended memory and 129 
resize corner 15 
resize corners 16 
Resize Windows option, TCINST 197 
response files 

defined 117, 178 
TLIB 173 
TLINK and 178 

Restore Line command 28, 102, 106 
RestoreLine editor macro 228 
restrictions, TLINK 187 
Result field 43 
Reverse Mouse Buttons option 78 
Reverse Mouse option, TCINST 207 
Right Mouse Button option 78 
Right Mouse Button option, TCINST 207 
RightOfLine editor macro 228 
Ritchie, Dennis See Kernighan and Ritchie 
Run 

command 34 
menu33 

macro 228 
Run command 

hot key 13 
Run menu, TCINST 197, 198 
RunMenu editor macro 228 
running programs 34 
RunProgram editor macro 228 
RunTohere editor macro 228 

s 
-s MAKE option (don't print commands) 141 
-S MAKE option (swap MAKE out of memory) 

141 

257 



-S TCC option (produce .ASM but don't 
assemble) 128 

Is TLINK option (detailed segment map file) 
178 

sample programs 
copying from Help window 28 

$SA VE ALL transfer macro 69 
Save All command 24 
Save As 

command24 
$SA VE CUR transfer macro 69 
Save command 24, 79, 106 

hot key 11, 12 
Save Configuration menu, TCINST 213 
Save File As dialog box 24 
Save Old Messages option 76 
Save Old Messages option, TCINST 205 
$SA VE PROMPT transfer macro 69 
SaveFile editor macro 228 
Scope option, TCINST 197 
screen 

Color 210 
Screen Size 

option 75 
Screen Size menu, TCINST 205 
screens 

43/50-Line Display 205 
25-Line Display 205 
Black and White 211 
composite 

customizing Turbo C++ for 210 
Default 210 
editor macros 

cursor position 223, 224 
movement 222 
painting 225, 228 
position relative to cursor 225 
refreshing 229 
scrolling 222, 227, 228, 229 

LCD 
iuntegrated environment option 8 

LCD or Composite 211 
Monochrome 211 
number of lines 75 
painting 

macros for 223 
repainting 22 

258 

size 
setting default 205 

swapping 203 
top of 

macro 230 
two 

using 7 
scroll bars 15 
ScrollDown editor macro 228 
scrolling windows 15 
ScrollScreenDown editor macro 229 
ScrollScreenUp editor macro 229 
ScrollUp editor macro 229 
Search Again command 32, 107 

hot key 12 
search and replace 107-108, See also searching 
Search menu 29, 107-108 

macro 229 
Search menu, TCINST 196, 197 
searching 

and replacing text 107, 107-108 
direction 31 
error and warning messages 33 
functions 33 
in list boxes 83 
include files 131 
libraries 131, 132 
origin 31 
regular expressions 30 
repeating 32 
and replacing text 31 
scope of 31 
search and replace 31 

searching and replacing text 107-108 
SearchMenu editor macro 229 
Segment Names dialog box 64 
segment-naming control 

command-line compiler options 118, 127 
segments 

controlling 127 
initializing 71 

toggle 202 
map of 

ACBP field and 183 
TLINK and 182 

names 63 

Turbo C++ User's Guide 



uninitialized 
TUNK and 184 

semicolons (;) in directory path names 75 
SetBlockBeg editor macro 229 
SetBlockEnd editor macro 229 
SetBreakpoint editor macro 229 
SetlnsertMode editor macro 229 
SetMark editor macro 229 
SetPrevPos editor macro 229 
shortcuts See hot keys 
Show Clipboard command 29 
.SILENT MAKE directive 160 
Size/Move command 79 
Smart option 

C++ Virtual tables 57 
smart screen swapping 203 
SmartRefreshScreen editor macro 229 
snow 210 
software See programs 
Source 

command 59, 111 
Source Debugging command 34 

and Trace Into command 36 
source files 

.ASM 113 
command-line compiler options 118 
multiple See projects 
separately compiled 170 

source-level debugger See Turbo Debugger 
Source menu, TCINST 200 
Source Options dialog box 59, 111 
Source Tracking option 76 
Source Tracking option, TCINST 205 
Source Tracking options 93 
spaces vs. tabs 77 
spreadsheets See Turbo Cale 
SS register (stack segment pointer) 56 
stack 

Call Stack command 44 
overflow 54, 121 

testing 199 
standard frame 

generating 121 
TCINST and 199 

warnings 72 
toggle 203 

Stack Warning option, TCINST 203 

Index 

standalone debugging information 72 
standalone utilities 137, See also MAKE 

(program manager); TUB (librarian); TUNK 
(linker); TOUCH 
configuration file converter 135 

standard library files See libraries 
standard stack frame 

generating 121 
Standard Stack Frame option 44, 53 
Standard Stack Frame option, TCINST 199 
startup code (TUNK) 180 
startup modules for memory models 181 
status line 17 
Status Line option, TCINST 212 
Step editor macro 229 
Step Over command 36 

hot key 11, 13 
macro 229 

strings 
duplicate 

merging 53, 198 
format specifier 45 
inserting 

macro 226 
literal 

merging 120 
structures 

ANSI violations 125 
format specifier 45 
inspecting 41 
undefined 125 
zero length 125 

suppressing load operations 123 
.SW AP MAKE directive 160 
swapping 

displays 73 
to User Screen 69 

SwapPrevPos editor macro 229 
switches See command-line compiler, options; 

integrated environment, options 
symbolic 

constants See macros 
debugger See Turbo Debugger 

symbols 
action See TUB 
duplicate 72 

warning 203 

259 



warning (l'LINK) 184 
syntax 

errors 
project files 91, 92 
tracking 205 

IDE command line 6 
MAKE 139 
TLIB 171 
TLINK 177 

system 
editor macros for 223 

System menu 
macro229 

System menu = 8 
SystemMenu editor macro 229 

T 
/t TLINK option (default to .COM) 185 
It TLINK option (generate .COM file) 178 180 
Tab Size option 77 ' 
Tab Size option, TCINST 206 
Table of Contents command 

macro226 
tables 

virtual 199 
tabs 

characters 
printing 25 

size of 77 
spaces vs. 77 
using in the editor 77 

T ASM See Turbo Assembler 
TASM2MSG.EXE 68 
$T ASM transfer macro 69 
TC.EXE See integrated environment 
TCC.EXE See command-line compiler 
TCCNVT.EXE 

configuration files and 135 
TCCNVT.TC 

converting to TURBOC.CFG 135 
TCCONFIG.TC See configuration files, IDE 
TCCONFIG.TC. modifying 196 
TCDEF.DPR files 86 
TCDEF.DSK files 86 
TCINST 195-213, See also TCINST menu and 

command names 
black-and-white option 196 

260 

colors 
changing 196, 212 

default command set 13 
editor commands 207 
exiting 213 
invoking 196 
menus 195 

choosing items 197 
exiting 197 

mouse customization 207 
overriding 195, 196 
starting 196 

TEML See editor, macro language (TEML) 
Test Stack Overflow option 54 
Test Stack Overflow option, TCINST 199 
text See also editing 

blocks See editing, block operations 
copy and paste 28 
cutting 28 
deleting 29 

macro 225 
entering 102 

in dialog boxes 19 
inserting vs. overwriting 77 
pasting 28 
screen display of 75 
screen mode See screens, operating modes 
selecting 27 

Help window 82 
32-bit code 186 
/3 TLINK option (80386 32-bit code) 186 
tilde(-) in transfer program names 65 
Tile command 80 
title bars 15 
TLIB (librarian) 169-176 

action symbols 172-173 
capabilities 170 
examples 176 
libraries 

creating 171 
module names 172 
operations 172 

precedence 172 
options 

case sensitivity (Jc) 171, 175 
/E 171, 174 
extended dictionary (/e) 171, 174 

Turbo C++ User's Guide 



libname 171 
listfile 171 
operations 171 
page size (/P) 174 
tlib 171 
using 171 

response files 
using 173 

syntax 171 
TLINK (linker) 176-193 

ACBP field and 183 
assembler code and 186 
.COM files and 185 
command-line compiler and 181 
debugging information 186 
errors 188-192 
executable file map generated by 182 
floating-point libraries 181 
graphics library and 180 
initialization modules 180 
invoking 177 
libraries 180 
memory models and 179 
numeric coprocessor libraries 181 
options 182 

case sensitivity (/ c) 184 
.COMfiles(/t) 178, 180, 185 
debugging information (/v) 186 
duplicate symbols warning (/d) 184 
expanded and extended memory (/y) 187 
extended dictionary (/ e) 185 
file extension 178, 180 
/i (uninitialized trailing segments) 184 
/1 (source code line numbers) 184 
libraries, ignoring (/n) 184 
line numbers (/1) 184 
map files (/m) 178 

debugging 182 
public symbols in 182 
segments in 182 

/n (ignore default libraries) 184 
overlays (/o) 186 
/s (map files) 178, 182 
source code line numbers (/1) 184 
32-bit assembler code and (/3) 186 
tinymodel.COMfiles(/t) 178, 180, 185 
uninitialized trailing segments (/i) 184 

Index 

/v (debugging information) 186 
/x(mapfiles) 178, 182 
/y (expanded and extended memory) 187 

response files 178 
example 179 

restrictions 187 
segment limit 192 
starting 177 
startup code 180 
syntax 177 
warnings 

defined 188 
list 192 

Toggle Breakpoint command 47 
hot key 13 

ToggleHideBlock editor macro 229 
Togglelnsert editor macro 229 
Topic Search command 83 

hot key 12 
TopOfScreen editor macro 230 
TopOfScreenRaw editor macro 230 
TOUCH 193 
Trace editor macro 230 
Trace Into command 35 

Debug Info in OBJs option and 36 
hot key 11, 13 
macro 230 
Source Debugging command and 36 

trailing segments, uninitialized 184 
Transfer See also projects, translators 

command 8, 64 
dialog box 64 

projects and 96 
programs 22 

editing 64 
transfer macros 65 

$CAP EDIT 68 
$CAP MSG 68 
$COL 67 
$CONFIG 67 
$DIR 68 
$DRIVE 68 
$EDNAME 67 
$ERRCOL 67 
$ERRLINE 67 
$ERRNAME 67 
$EXENAME 67 

261 



$EXT 68 
file names 66, 68 
glossary of 67 
hot keys for 65 
how expanded 66 
instruction 66 
$LINE 67 
$MEM68 
$NAME68 
$NOSWAP69 
$PRJNAME 67 
$PROMPI'69 
$SAVEALL69 
$SAVECUR69 
$SAVE PROMPT 69 
$TASM 69 

transfer programs 
list 96 

Translator option 51, 66 
translators See projects, translators 
Treat enums as ints option 56 
Treat enums as ints option, TCINST 199 
Turbo Assembler 

capturing messages 68 
default 128 
invoking 116 
$T ASM macro 69 
TLINK and 186 
Turbo C++ and 113 
Turbo C++ command-line compiler and 117 

Turbo C++ See also C++; C language; keywords 
Cand 121 
calling convention 55 
keywords 200 

as identifiers 59, 124 
project files and 94 
quitting 8, 27 
starting up 5 
transferring from 64 

Turbo Debugger 
described 122 

Turbo Editor Macro Language compiler See 
editor, macro language (TEML) 

TURBOC.CFG 133 
converting to TCCNVT.TC 135 

25-line display 75, 205 
typefaces used in these books 2 

262 

types 
debugging 43 

u 
-U MAKE option (undefine) 141 
-U TCC option (undefine) 119 
-u TCC option (underscores) 121 
unconditional breakpoints See breakpoints 
!undefMAKE directive 165 
underbars See underscores 
underscores 121 

generating automatically 56, 121, 199 
unindent mode 

default 206 
u~nitialized data segment See data segment 
umons 

format specifier 45 
inspecting 41 

UNIX 
keywords59 

using 124 
porting Turbo C++ files to 124 

UNIXV 
keywords 200 

unmatched delimiters 111 
Unsigned Characters option 53 
Unsigned Characters option, TCINST 199 
Use C++ Compiler option, TCINST 199 
Use Tab Character option 77 
Use Tab Character option, TCINST 206 
User Screen 69 

hot key 12 
viewing 

macro230 
User Screen command 81 
user-specified library files 131 
utilities 

resident 
expanded and extended memory and 129 

v 
-v option (debugging information) 184 
-vTCC option (debugging information) 122 
/v TLINK option (debugging information) 186 
variable argument list 121 

Turbo C++ User's Guide 



variables See also scope 
automatic 

word-aligning 120 
debugging 43 
inspecting values of 39 
register 58, 123 

Verbatim option, TCINsr 209 
version number information 21 
-vi option (C++ inline functions) 122 
Video Graphics Array Adapter (VGA) 76 

screen size 205 
ViewCallStack editor macro 230 
ViewFullOutput editor macro 230 
virtual tables 57, 199 
void functions 

TCINST option 200 

w 
-W MAKE option (save options) 141 
-wxxx TCC options (warnings) 125 
Warn Duplicate Symbols option, TCINST 203 
warnings See also errors 

ANSI Violations 61 
C++ 62, 126, 201 
command-line options 125-127 
displaying 200 
duplicate symbols 203 
enabling and disabling 125 
frequent errors 62, 126 
options 125-127 
portability 61, 126 
stack 203 
stopping on n 60 

setting n 200 
TLINK 

defined 188 
list 192 

types of 60 
Warnings : Stop After option, TCINST 200 
Watch window 

TCINSToption 212 
Watches command 45 
watchpoints See debugging 
whole-word searching 30 
Whole Words Only option, TCINST 197 
wildcards 30 

DOS23 

Index 

GREP30 
MAKEand 150 
TOUCH and 193 

Window menu 79 
window number See windows, window 

number 
WindowList editor macro 230 
windows 

active 16 
defined 14 

cascading 80 
Clipboard 29 
closed 81 
closing 15, 16, 21, 80 

current 
macro 224 

Edit See Edit, window 
elements of 14 
Help See Help, windows 
Inspector 39 
jumping to 

macro 225 
List 81 
macros 223 

list of open 230 
menu 79 
Message 38, 80 
moving 17, 79 
next 80 

macro 227 
Notes 81 
open 81 
opening 16, 79 
Output 80 
position 

hot key 12 
Project 81 
Register 81 
reopening 79 
resizing 16, 17, 79 
scrolling 15 
size 

hot key 12 
source tracking 76 
swapping in debug mode 73 

dual monitors and 73 
tiling 80 

263 



title bar 15 
User Screen 81 
Watch 81 
window number 16 
zooming 15, 16, 17, 79 

macro 230 
Windows menu 

macro 230 
WindowsMenu editor macro 230 
word aligning 

integers 120 
Word Alignment option 53 
Word Alignment option, TCINST 198 
WordLeft editor macro 230 
WordRight editor macro 230 
Wordstar-like option, TCINST 209 
WriteBlock editor macro 230 
-wxxxTCC options (warnings) 125-127 

264 

x 
/x IDE option (expanded memory) 7 
/x TLINK option (map files) 178 

y 
-y TCC option (line numbers) 122 
/yTLINK option (expanded and extended 

memory) 187 

z 
-Z TCC option (aliasing) 123 
zoom box 15, 16 
Zoom command 79 

hot key 11, 12 
Zoom Window editor macro 230 
-zX options (code and data segments) 127, 128 

Turbo C++ User's Guide 



B 0 R L A N D 

1800 GREEN HILLS ROAD. PO. BOX 660001 , scans VALLEY, CA 95067-0001 , (408) 438-5300 • PART" 14MN-CPP01-10 • BOR 1481 
UNIT 8 PAVILIONS, RUSCOMBE BUSINESS PARK. TWYFORD, BERKSHIRE RG10 9NN, ENGLAND 
43 AVENUE OE L'EUROPE-BP 6. 78141 VELIZY VILLACOUBLAY CEOEX FRANCE 


