
I

I
f

. --

TURBO C®
User's Guide

This manual was produced in its entirety with
Sprint: The Professional Word Processor,®

available from Borland.

Borland International, Inc,
4585 Scotts Volley Drive

Scotts Valley, California 95066

Copyright ©1987
All Rights Reserved. First Printing, 1987

Printed in U,S,A,

10 9 8

Table of Contents

Introduction .. 1

The TurboC Package ... 1
Requirements ... 2
The Turbo C Implementation 2
Volume I: The User's Guide 2
Volume II: The Reference Guide 3
Recommended Reading .. 4
Typographic Conventions .. 5
Borland's No-Nonsense License Statement 5
Acknowledgments ... 6
How to Contact Borland .. 6

Chapter 1. Getting Started 9

In This Chapter 9
Summary of 5-1/4/1 Distribution Disks 10

Disk 1: The Integrated Environment 10
Disk 2: Command-Line Version & Utilities 10
Disk 3: Include Files & Libs I 11
Disk 4: Libs II .. 13

Installing Turbo C on Your System 14
Read This Before Setting Up Turbo C 14
Setting Up Turbo C on a Floppy Disk
System .. 15

Using Turbo C with One Floppy 15
Your Program Disk .. 15
Your Work Disk , 15

Using Turbo C with Two Floppies 16
To Run the TC Version 16
To Run the TCC Version 17

Setting Up Turbo C on a Hard Disk 17
Setting Up Turbo C on a Laptop System 18
If You Don't Want to Use Subdirectories 18

On a Hard Disk System 18

TC On a Floppy Disk System 18
TCC On a Floppy Disk System 19

Writing the Configuration File 19
How to Use MicroCalc 20

Where to Now? .. 20
Programmers Learning C 20
Experienced C Programmers 20
Turbo Pascal Programmers. .. 21
Turbo Prolog Programmers 21

Chapter 2. The Turbo C Integrated Development Environment 23

In This Chapter 23
What You Should Read .. 24
How To Get Help .. 24

Part I: Using the Menu System 25
Menu Structure .. 29

Menu-Naming Conventions 32
The Main Menu .. 32
The Quick-Ref Lines .. 33
The Edit Window .. 33

Quick Guide to Editor Commands .. 35
How to Work with Source Files in the Edit Window 35

Creating a New Source File 36
Loading an Existing Source File 36
Saving a Source File .. 37
Writing an Output File 37

The Message Window 37
Part II: The Menu Commands 39

The File Menu .. 39
The Edit Command .. 41
The Run Command .. 41
The Compile Menu .. 42
The Project Menu .. 44
The Options Menu .. 46

Compiler .. 47
Linker .. 57
Environment .. 58
Args .. 60
Retrieve options .. 60
Store options .. 60

The Debug Menu .. 61

Chapter 3. Putting It All Together-Compiling and Running 63

In This Chapter... 63
Compiling and Linking from the Integrated Environment 64
Building a Single-Source Program 64

Step 1: Load Turbo C .. 65
Step 2: Select the example program 65
Step 3: Set up your working environment .. 65
Step 4: Load the example into the editor 66
Step 5: Build the executable file 67
Step 6: Run the program 67

Debugging .. 67
The Message Window .. 68
Correcting a Syntax Error 68

Using Multiple Source Files 70
Building a Multi-Source File Program 71
Error Tracking Revisited .. 72

Stopping a Make .. 72
Syntax Errors in Multiple Source Files 73
Keeping and Getting Rid of Messages 74

The Power of Project Making .. 74
Explicit Dependencies .. 75

What? More Make Features? .. 76
External Object and Library Files 76
Overriding the Standard Files 77

Compiling and Linking from a Command Line .. 77
The TCC Command Line 78

Options on the Command Line 78
File Names on the Command Line .. 78
The Executable File .. 79
Some Example Command Lines .. 79

The TURBOC.CFG File .. 80
The MAKE Utility 81

Running Turbo C Programs from the DOS Command Line 81
All Together Now: Get a Move On with Turbo C 82

Chapter 4. Programming in Turbo C .. 83

In This Chapter 83
Creating Your First Turbo C Program 84

Compiling It .. 84
Running It 85
What Happened? ~ 86

Modifying Your First Turbo C Program 86

iii

Sending Your Output to a Printer 87
Writing Your Second Turbo C Program 88

Writing to Disk .. 89
Running SUM.C .. 89

The Seven Basic Elements of Programming 90
Output .. 91

The printf Function .. 91
The Format String .. 91

Other Output Functions: puts and putchar 92
Data Types " 93

Float Type .. 93
The Three ints .. 94
Unsigned '. .. 94
Defining a String .. 95

Using a Character Array 95
Using a Character Pointer 96

Identifiers .. 97
Opera tions ... '. 97

Assignment Operator .. 97
Unary and Binary Operators 98
Increment (++) and Decrement (- -) Operators 98
Bitwise Operators .. 99
Combined Operators .. 99
Address Operators ... 100

Input ... 101
The scanf Function .. 101

Whitespace ... 101
Passing an Address to scanf 101

Using gets and getch for Input 102
Conditional Statements 103

Relational Operators ... 103
LogicalOperators ... 104
More About Expressions 105

Assignment Statements 105
The Comma Operator 105

The if Statement ... 106
L90ps ... 107

The while Loop ... 107
The for Loop ... 109
The do ... while Loop ... 110

Functions ... 111
Breaking the Program Down 112

The get_parms Function 113

iv

The get_ratio Function 113
The put_ratio Function 113

Global Declarations ... 114
Function Declarations 114
Function Definitions ... 115
Comments ... 116

Summary ... 116

Chapter 5. More Programming in Turbo C 117

In This Chapter. .. 117
A Survey of Data Structures 118

Pointers ... 118
Dynamic Allocation ... 120
Pointers and Functions .. 121
Pointer Arithmetic. .. 122

Arrays ... 124
Arrays and Pointers ... 124
Arrays and Strings ... 125
Multi-Dimensional Arrays 125
Arrays and Functions 126

Structures ... 128
Structures and Pointers 129

The switch Statement ... 130
Control Flow Commands 132

The return Statement ... 133
The break Statement 134
The continue Statement 134
The go to Statement ... 135
The Conditional Expression (?:) : 135

Style in C Programming: Modern vs. Classic 136
Using Function Prototypes and Full Function Definitions. 137
Using enum Definitions 138
Using typedef ... 138
Declaring void functions 139
Make Use of Extensions 139

String Literals .. 140
Hexadecimal Character Constants 140
signed Types ... 140

Pitfalls in C Programming .. 141
Path Names with C Strings. .. 141
Using and Misusing Pointers 141

Using an Uninitialized Pointer 141

v

Strings. .. 142
Confusing Assignment (=) with Equality (==) 144
Forgetting the break in Switch Statements 144
Array Indexing ... 145
Failure to Pass-by-Address 145

Sailing Away ... 146

Chapter 6. Notes for Turbo Pascal Programmers 149

In This Chapter... 149
Program Structure ... 150

An Example ... 151
A Comparison of the Elements of Programming 152

Output ... 152
Data Types ... 153
Operations .. 154
Input ... 156
Block Statement 157
Conditional Execution ... 157
Iteration 160

The while Loop ... 160
The do .. while Loop ... 160
The for Loop ... 161

Subroutines ... 162
Function Prototypes .. 164

A Major Example ... 165
A Survey of Data Structures " 168

Pointers ... 168
Arrays ... 169
Strings 170
Structures ... 174
Unions ... 175

Programming Issues ... 176
Case Sensitivity ... 177
Type Casting .. 177
Constants, Variable Storage, Initialization 178

Constant Types ... 178
Variable Initialization 178
Variable Storage. .. 179

Dynamic Memory Allocation 180
Command-Line Arguments 181
File I/O ... 182

Common Pitfalls of Pascal Programmers Using C 184

vi

PITFALL #1: Assignment vs. Comparison 184
PITFALL #2: Forgetting to Pass Addresses
(Especially When Using scan£) 185
PITFALL #3: Omitting Parentheses on Function Calls 185
PITFALL #4: Warning Messages 186
PITFALL #5: Indexing Multi-Dimensional Arrays 186
PITFALL #6: Forgetting the Difference Between
Character Arrays and Character Pointers 187
PITFALL #7: Forgetting That C is Case Sensitive 187
PITFALL #8: Leaving Semicolons Off the Last
Statement in a Block ... 187

Chapter 7. Interfacing Turbo C with Turbo Prolog 189

In This Chapter... . .. 190
Linking Turbo C and Turbo Prolog: An Overview 190
Example 1: Adding Two Integers .. 192

Turbo C Source File: CSUM.C 192
Compiling CSUM.C to CSUM.OBJ .. 193

Turbo Prolog Source File: PROSUM.PRO .. 193
Compiling PROSUM.PRO to PROSUM.OBJ .. 193

Linking CSUM.OBJ and PROSUM.OBJ .. 194
Example 2: Using the Math Library 195

Turbo C Source File: CSUMl.C 195
Turbo C Source File: FACTRL.C 196

Compiling CSUMl.C and FACTRL.C to .OBJ 196
Turbo Prolog Source File: FACTSUM.PRO 196

Compiling FACTSUM.PRO to FACTSUM.OBJ 198
Linking CSUM1.0BJ, FACTRL.OBJ and FACTSUM.OBJ 198

Example 3: Flow Patterns and Memory Allocation 198
Turbo C Source File: DUBLIST.C 199

Lists and Functors .. 201
Compiling DUBLIST.C .. 203

Example 4: Drawing a 3-D Bar Chart 203
Turbo C Source File: BAR.C 203

Compiling BAR.C ... 203
Turbo Prolog Program: PBAR.PRO 204

Compiling PBAR.PRO to PBAR.OBJ 204
Linking PBAR.OBJ with the Module BAR.OBJ 204

Tha t' s All There Is to It ... 205

vii

Chapter 8. Turbo C Language Reference 207

In This Chapter. 207
Comments (K&R 2.1) ... 208
Identifier (K&R 2.2) ... 208
Keywords (K&R 2.3) .. 209
Constants (K&R 2.4) .. 209

Integer Constants (K&R 2.4.1) 210
Character Constants (K&R 2.4.3) .. 211
Floating Constants (K&R 2.4.4) 212

Strings (K&R 2.5) ... 212
Hardware Specifics (K&R 2.6) 213

Conversions (K&R 6) ... 213
char, int, and enum (K&R 6.1) 213
Pointers (K&R 6.4) ... 214
Arithmetic Conversions (K&R 6.6) 214

Operators (K&R Section 7.2) 215
Type Specifiers and Modifiers (K&R 8.2) 215

The enum Type ... 216
The void Type ... 216
The signed Modifier ... 217
The const Modifier ... 217
The volatile Modifier ... 218
The cdecl and pascal Modifiers ' ... 219

pascal ... 219
cdecl ... 219

The near, far, and huge Modifiers 220
Structures and Unions (K&R Section 8.5) 221

Word Alignment ... 221
Bitfields ... 221

Statements (K&R 9) ... 222
External Function Definitions (K&R 10.1) ' 222

Function Type Modifiers (K&R 10.1.1) 223
The pascal Function Modifier 223
The cdecl Function Modifier 224
The interrupt Function Modifier .. 224
Function Prototypes (K&R 10.1.2) 225

Scope Rules (K&R 11) .. 229
Compiler Control Lines (K&R 12) 229

Token Replacement (K&R 12.1) 230
File Inclusion (K&R 12.2) 231
Conditional Compilation (K&R 12.3) 231
Line Control (K&R 12.4) 232

viii

Error Directive (ANSI C 3.8.5) 232
Pragma Directive (ANSI C 3.8.6) 233

#pragma inline 233
#pragma warn ... 234

Null Directive (ANSI C 3.7) 234
Predefined Macro Names (ANSI C 3.8.8) 234
Turbo C Predefined Macros 235

Anachronisms (K&R 17) .. 236

Chapter 9. Advanced Programming in Turbo C 237

Memory Models ... 237
The 8086 Registers 238

General Purpose Registers 239
Segment Registers 239
Special Purpose Registers. .. 239

Memory Segmentation 240
Address Calculation ... 240

Near, Far, and Huge Pointers 241
Near Pointers ... 242
Far Pointers 242
Huge Pointers .. 243

Turbo C's Six Memory Models 244
Mixed-Model Programming: Addressing Modifiers 249

Declaring Functions to Be Near or Far 250
Declaring Pointers to Be N ear, Far, or
Huge ... 251

Pointing to a Given Segment:Offset
Address 252

Building Proper Declarators 252
Using Library Files ... 254
Linking Mixed Modules 256

Mixed-Language Programming 257
Parameter-Passing Sequences: C and
Pascal ... 257

C Parameter-Passing Sequence 257
Pascal Parameter-Passing Sequence 259

Assembly-Language Interface 261
Setting Up to Call.ASM from Turbo C 261

Defining Data Constants and Variables 262
Defining Global and External Identifiers 263

Setting Up to Call Turbo C from .ASM 264
Referencing Functions 264

ix

Referencing Data .. 264
Defining Assembly-Language Routines 265

Passing Parameters .. 266
Handling Return Values 266

Register Conventions 269
Calling C Functions from .ASM Routines 270

Low-Level Programming: Pseudo-Variables, In-Line Assembly, and
Interrupt Functions ... 271

Pseudo-Variables ... 272
Using In-Line Assembly Language 274

Opcodes ... 277
String Instructions ... 278
Repeat Prefixes ... 278
Jump Instructions ... 278
Assembly Directives 279

In-Line Assembly References to Data and Functions 279
In-Line Assembly and Register Variables 279
In-Line Assembly, Offsets, and Size Overrides 280

Using C Structure Members 280
Using Jump Instructions and Labels 281

Interrupt Functions ... 281
Using Low-Level Practices 283

Using Floating-Point Libraries 284
Emulating the 8087/80287 Chip 285
Using the 8087/80287 Math Coprocessor Chip 286
If You Don't Use Floating Point 287
The 87 Environment Variable 288
Registers and the 8087 .. 290
Using matherr with Floating Point 290

Caveats and Tips .. 290
Turbo C's Use of RAM .. 290
Should You Use Pascal Conventions? 291

Summary ... 291

x

N T R o D u c T o N

Turbo C is for C programmers who want a fast, efficient compiler; for
Turbo Pascal programmers who want to learn C with all the "Turbo"
advantages; and for anyone just learning C who wants to start with a fast,
easy-to-use implementation.

The C language is the structured, modular, compiled, general-purpose
language traditionally used for systems programming. It is portable-you
can easily transfer application programs written in C between different
computers. You can use C for almost any programming task, anywhere.
But while traditional C compilers plod along, Turbo C flies through
compilation (7000 lines per minute) and gives you more time to test and
perfect your programs.

The Turbo C Package

Your Turbo C package consists of four distribution disks and the two­
volume documentation set-the Turbo C User's Guide (this book) and the
Turbo C Reference Guide. The distribution disks contain all the programs,
files, and libraries you need to create, compile, link, and run your Turbo C
programs; they also contain sample programs, a stand-alone MAKE utility,
a context-sensitive help file, and additional C documentation not covered
in these guides.

The user's guide is designed as a handbook and guide for the novice (and a
useful refresher course for the pro). The reference guide is first and
foremost a detailed list and explanation of Turbo C's extensive library
routines. It also contains information on utilities (CPP, MAKE and TLINK),
the Turbo C editor, error messages, command-line options, Turbo C syntax,
and customization. Unless you are already a pro, you will probably want to

begin with the user's guide before wading into the thicker waters of the
reference guide.

Requirements

Turbo C runs on the IBM PC family of computers, including the XT and
AT, along with all true IBM compatibles. Turbo C requires DOS 2.0 or
higher and at least 384K of RAM; it will run on any 80-column monitor.
One floppy disk drive is all that's required, although we recommend two
floppy drives or a hard disk with one floppy drive.

It includes floating-point routines that let your programs make use of an
8087 (or 80287) math coprocessor chip, or will emulate the chip if it is not
available. The 8087 (or 80287) can significantly enhance performance of
your programs, but is not required.

The Turbo C Implementation

Turbo C supports the Draft-Proposed American National Standards
Institute (ANSI) C standard, fully supports the Kernighan and Ritchie
definition, and includes certain optional extensions for mixed-language and
mixed-model programming that allow you to exploit your PC's
ca pabilities.

Volume I: The User's Guide

Volume I introduces you to Turbo C, shows you how to create and run
programs, and includes background information on topics such as
compiling, linking, error-tracking, and project making. Here is a
breakdown of the chapters in the user's guide:

Chapter 1: Getting Started describes the contents of the four distribution
disks and tells you how to load the Turbo C files and libraries into your
system. It also suggests how you should go about using the rest of the
user's guide.

2 Turbo C User's Guide

Chapter 2: The Turbo C Integrated Development Environment explains
Turbo C's menus and text editor and shows you how to use the editor to
create and modify C source files.

Chapter 3: Putting It All Together-Compiling and Running shows how
to use the Turbo C Run command, and explains how to "make" (rebuild) a
program's constituent files, plus guides you through running your first
program.

Chapter 4: Programming in Turbo C introduces you to some of the basic
steps involved in creating and running Turbo C programs and takes you
through a set of short, progressive sample programs.

Chapter 5: More About Programming in Turbo C provides summary
explanations of additional C programming elements including arrays,
pointers, structures, and statements.

Chapter 6: Notes for Turbo Pascal Programmers uses program examples
to compare Turbo Pascal to Turbo C, describes and summarizes the
significant differences between the two languages, and gives some tips on
avoiding programming pitfalls.

Chapter 7: Interfacing Turbo C with Turbo Prolog shows how to interface
modules written in Turbo C with Turbo Prolog programs and provides
several examples that demonstrate the process.

Chapter 8: Turbo C Language Reference lists all aspects and features of
this implementation that differ from Kernighan and Ritchie's definition of
the language, and details the Turbo C extensions not given in the current
draft of the ANSI C standard.

Chapter 9: Advanced Programming in Turbo C provides details about the
start-up code, memory organization in the different memory models,
pointer arithmetic, assembly-language interface, and using floating-point.

Volume II: The Reference Guide

Volume II, the Turbo C Reference Guide, is written for experienced C
programmers; it provides implementation-specific details about the
language and the run-time environment. In addition, it describes each of
the Turbo C functions, listed in alphabetical order. These are the chapters
and appendixes in the programmer's reference guide.

Chapter 1: Using Turbo C Library Routines summarizes Turbo C's
input/ output (I/O) support, and lists and describes the #include (.h) files.

3

Chapter 2: The Turbo C Library is an alphabetical reference of all Turbo C
library functions. Each definition gives syntax, include files, related
functions, an operative description, return values, and portability
information for the function. ,

/
Appendix A: The Turbo"C Interactive Editor gives a more thorough
explanation of the editor commands-for those who need more
information than that given in Chapter 2.

Appendix B: Compiler Error Messages lists and explains each of the error
messages and summarizes the possible or probable causes of the problem
that generated the message.

Appendix C: Command-Line Options lists the command-line entry for
each of the user-selectable TCC (command-line compiler) options.

Appendix D: Turbo C Utilities discusses three utilities included in the
Turbo C package; CPP-the preprocessor, MAKE-the program builder,
and TLINK-the Turbo Link utility. The section on CPP summarizes how
the C preprocessor functions. The section on MAKE documents how to use
MAKE for rebuilding program files. The section on TLINK summarizes
how to use the command-line version of Turbo C's built-in Turbo Linker.

Appendix E: Language Syntax Summary uses modified Backus-Naur
Forms to detail the syntax of all Turbo C constructs.

Appendix F: Customizing Turbo C takes you on a walk through the
installation program (TCINST), which lets you customize your keyboard,
modify default values, change your screen colors, etc.

Recommended Reading

You will find these documents useful additions to your Turbo C manuals:

• The most widely known description of C is found in The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie (New Jersey:
Prentice-Hall, 1978).

• The ANSI Subcommittee X3Jll on Standardization of C is presently
creating a formal standard for the language, and Turbo C supports this
upcoming ANSI C standard.

• Using Turbo C and Advanced Turbo C by Herbert Schildt (Berkeley:

4

Osborne/McGraw Hill) are both good tutorials for learning to use
Turbo C to its fullest extent.

Turbo C User's Guide

If you are learning C for the first time, we recommend that you use Turbo C
to work through the exercises in Kernighan and Ritchie. If you are
experienced with C, you should have little difficulty using Turbo C.

Typographic Conventions

All typefaces used in this manual were produced by Borland's Sprint: The
Professional Word Processor, on an Apple LaserWriter Plus. Their uses are
as follows:

Monospace type This typeface represents text as it appears on the screen
(or in your program) and anything you must type (such
as command-line options).

< > Angle brackets in text or DOS command lines enclose
optional input or data that depends on your system,
which should not be typed verbatim. Angle brackets in
the function reference section enclose the names of
include files.

Boldface Turbo C function names (such as printf) are shown in
boldface when mentioned within text (but not in
program examples).

Italics Italics indicate variable names (identifiers) within
sections of text and emphasize certain words (especially
new terms).

Bold monospace This typeface represents Turbo C keywords (such as
char, switch, near, and cdecl).

Keycaps This special typeface indicates a key on your keyboard.
It is often used when describing a particular key you
should type, e.g., "Press Esc to exit a menu."

Borland's No-Nonsense License Statement

This software is protected by both United States Copyright Law and
International Treaty provisions. Therefore, you must treat this software just
like a book with the following single exception: Borland International
authorizes you to make archival copies of Turbo C for the sole purpose of
backing up your software and protecting your investment from loss.

5

By saying, "just like a book," Borland means, for example, that this
software may be used by any number of people and may be freely moved
from one computer location to another so long as there is no possibility of
its being used at one location while it's being used at another. Just like a
book that can't be read by two different people in two different places at
the same time, neither can the software be used by two different people in
two different places at the same time. (Unless, of course, Borland's
copyright has been violated.)

Acknowledgments

In this manual, we refer to several products:

• Turbo Pascal, Turbo Prolog and Sprint: The Professional Word
Processor are registered trademarks of Borland International Inc.

• WordStar is a trademark of MicroPro Inc.

• IBM PC, XT, and AT are trademarks of International Business Machines
Inc.

• MS-DOS is a registered trademark of Microsoft Corporation.

• UNIX is a registered trademark of ATT.

How to Contact Borland

The best way to contact Borland is to log on to Borland's Forum on
CompuServe: Type GO BOR from the main CompuServe menu and select
"Enter Language Products Forum" from the Borland main menu. Leave
your questions or comments there for the support staff to process.

If you prefer, write a letter detailing your comments and send it to:

Technical Support Department
Borland International

4585 Scotts Valley Drive
Scotts Valley, CA

95066, USA

As a last resort, if you cannot write to us for some reason, you can
telephone our Technical Support department. Please have the following
information handy before you call:

6 Turbo C User's Guide

IJ product name and version number
IJ computer make and model number
m operating system and version number

7

8 Turbo C User's Guide

c H A p T E R

1

Getting Started

Your Turbo e package actually includes two different versions of the e
compiler: the Integrated Environment version and a separate, stand-alone
command-line version. When you install Turbo e on your system, you
copy files from the distribution disks to your working floppies or to your
hard disk. There is no copy protection, and you do not need to run any
installation programs. The distribution disks are formatted for double­
sided, double-density disk drives and can be read by IBM pes and close
compatibles. For reference, we include a list of the distribution files in this
chapter.

As we explained in the "In trod uction," you should make a complete
working copy of the distribution disks when you receive them, then store
the original disks away in a safe place. Do not run Turbo e from the
distribution disks; they are your original (and only) back-ups in case
anything happens to your working files.

If you are not familiar with Borland's No-Nonsense License Statement, now
is the time to read the agreement in the "Introduction" (it's also at the front
of this book) and mail us your filled-in product registration card.

In This Chapter ...

We start this chapter with a complete list of the files on the Turbo e 5-1/4"
distribution disks. Then we give instructions for loading Turbo e on

Getting Started 9

systems with 5-1/4" floppy disk drives or hard disk drives. We end this
chapter with some recommendations on which chapters you will want to
read next, based on your programming language experience.

Summary of 5-1/4/1 Distribution Disks

The Turbo C package comes with four 5-1/4" distribution disks. The files
on these disks are organized in such a way that you can set up Turbo Con
your system with a minimum of disk-swapping (floppy-flipping).

Disk 1: The Integrated Environment

This disk contains the core files for Turbo C: the integrated-environment
version of Turbo C, the Turbo C help files, and up-to-the-minute notes and
errata on the package. These are the files on Distribution Disk #1:

TC.EXE
TCHELP.TCH
README
README.COM
TCINST.COM
HELLO.C

Turbo C integrated environment
The Turbo C help file
A last-minute update file for your information
Program to read the README file
The Turbo C customization program
The classic "Hello, World" source code

Disk 2: Command-Line Version & Utilities

This disk contains the command-line version of Turbo C and the other
utilities that command-line afficionados will want to use. Refer to
Appendixes C and D in the Turbo C Reference Guide for information about
using these programs.

TCC.EXE
TLINK.EXE
CPP.EXE
MAKE.EXE
TOUCH.COM
CNVTCFG.EXE

10

The command-line version of Turbo C
The Turbo Linker program
The C preprocessor as a separate executable program
The Turbo C MAKE utility
The Turbo C file re-dating utility
A program to convert configuration files

Turbo C User's Guide

Files for building start-up:

BUILD-CO. BAT
CO.ASM
RULES.ASI
SETENVP.ASM
SETARGV.ASM

Miscellaneous files:

MAIN.C

Batch file for building the start-up code modules
Assembler source for start-up code
Assembler include file for start-up code
Assembler source code for preparing the environment
Assembler source code for parsing the command line

An alternate main file.

Disk 3: Include Files & Libs I

This disk contains the floating-point libraries, the header files, and the run­
time libraries for the tiny, small, and large memory models.

Floating-point files:

87.LIB
EMU.LIB

Floating point coprocessor (8087/80287) library
Floating point emulation library

Include (header) files:

ALLOC.H
ASSERT.H
BIOS.H
CONIO.H
CTYPE.H
DIR.H

DOS.H
ERRNO.H
FCNTL.H
FLOAT.H
10.H
LIMITS.H
MATH.H
MEM.H
PROCESS.H
SETJMP.H
SHARE.H

Getting Staried

Memory management functions
Debugging macro header file
BIOS header file
Direct DOS console I/O
The character classification macros
Structures, macros, and functions for directories and
path names
Interfacing with DOS and the 8086
System call error number mnemonic file
File control information file
Floating-point parameters file
Input/Output structures and declarations
Environmental parameters file
Declarations of various math functions
Memory manipulation functions
Process management structures and declarations
Declarations for setjmp and longjmp
File sharing file

11

SIGNAL.H
STDARG.H
STDDEF.H
STDIO.H
STDLIB.H
STRING.H
TIME.H
VALUES.H
SYS\STAT.H

Signal definitions file
Variable arguments header file
Commonly used types and macros file
The standard I/O header file
Declarations for some "standard" routines
String manipulation routines file
Time of day function header file
Symbolic names for machine-dependent constants
Subdirectory containing STAT.H-an auxiliary I/O
header file

Run-time libraries for the tiny, small, and large memory models:

COT.OBI Tiny-model start-up object
COS.OBI Small-model start-up code
CS.LIB Small- and tiny-model library routines
MATHS.LIB Small- and tiny-model math routines
COL.OBI Large-model start-up code
CL.LIB Large-model library routines
MATHL.LIB Large-model math routines

MicroCa1c Files:

MCALC.DOC
MCALC.C
MCALC.H
MCALC.PRI
MCOMMAND.C
MCDISPLY.C
MCINPUT.C
MCPARSER.C
MCUTIL.C
MCMVSMEM.C
MCMVSMEM.OBI

MicroCa1c documentation
MicroCa1c main program source code
MicroCa1c header file
MicroCa1c project file
MicroCa1c commands source code
MicroCa1c screen display source code
MicroCa1c input routines source code
MicroCa1c input parser source code
MicroCa1c utilities source code
MicroCa1c direct screen memory write source code
Compiled version of MCMVSMEM-will link with
any memory model

Note: Instructions for compiling and running MicroCa1c are given in
Appendix G in the Turbo C Reference Guide.

12 Turbo C User's Guide

Disk 4: Libs II

This disk contains the run-time libraries for the compact, medium, and
huge memory models, and some miscellaneous files.

Run-time libraries for the compact, medium, and huge memory models:

COC.OBI Compact-model start-up code
CC.LIB Compact-model library routines
MATHC.LIB Compact-model math routines

COM.OBI Medium-model start-up code
CM.LIB Medium-model library routines
MATHM.LIB Medium-model math routines

COH.OBI
CH.LIB
MATHH.LIB

Miscellaneous Files:

CPINIT.OBI

MATHERR.C
FILECOMP.C
GETOPT.C

BAR.C
PBAR.PRO

Getting Started

Huge-model start-up code
Huge-model library routines
Huge-model math routines

Initialization code for linking Turbo C and Turbo
Prolog.
Source file for alternate matherr function
Example Turbo C program to compare files
Source code for routine that parses options in
command line
Example function to be used with PBAR.PRO
Example Turbo Prolog program to be used with
BAR.C

13

Installing Turbo C on Your System

Your Turbo C package includes all the files and programs necessary to run
both the integrated-environment and command-line versions of the
compiler, along with start-up code and library support for six memory
models and 8087 coprocessor emulation. Which files you copy depends on
which version and which memory model you will be using for your
application.

Note: We assume that you are already familiar with DOS, particularly the
copy, rnkdir, and chdir commands, which you need for setting up Turbo C
on your system.

If you do not already know how to use these DOS commands, refer to
your DOS Reference Manual before starting to set up Turbo C on your
system.

Read This Before Setting Up Turbo C

You are not required to set up Turbo C the way we explain in this chapter,
but the method we give is logical and easy to use because it takes
advantage of DOS's subdirectory capabilities.

For hard-disk systems, the method we give has you place the Turbo C files
as follows:

1. the Turbo C program files in a directory called TURBOC
2. the include files (header files) in a subdirectory called

TURBOC\INCLUDE
3. the library files in a another subdirectory called TURBOC\LIB.

For floppy-disk systems, the method we give has you place the Turbo C
files as follows:

1. the Turbo C program files directly on the floppy disk

2. the include files (header files) in a floppy-disk subdirectory called
\INCLUDE

3. the library files in a another floppy-disk subdirectory called \LIB.

14 Turbo C User's Guide

When you use subdirectories to organize your files, it is easiest to use
Turbo C with a configuration file. You will use either TCCONFIG.CFG (if
you're using TC-the Integrated Environment version of Turbo C), or
TURBOC.CFG (if you're using TCC-command-line Turbo C). The
configuration file tells Turbo C where to look to find the INCLUDE and LIB
subdirectories. You will find information about the configuration files in
the section ""Writing the Configuration File" in this chapter.

If you don't want to use subdirectories when you set up Turbo C on your
system, refer to the section "If You Don't Want to Use Subdirectories" in
this chapter.

Setting Up Turbo C on a Floppy Disk System

How you set up Turbo C to run from floppies depends on whether your
computer system has one or two floppy disk drives. Obviously, having two
drives makes life easier, but using Turbo C with just one drive is perfectly
possible. Here's how to go about it

Using Turbo C with One Floppy

If your computer system has only one floppy drive, you should just use the
Turbo C Integrated Environment (the menu-driven version called TC.EXE
on your distribution disk). Even though you have only one disk drive, you
will have to create two separate floppies-a program disk and a work disk.

Your Program Disk

Onto one floppy, copy the following files:

E:I TC.EXE
13 TCHELP.TCH

If you're not familiar with DOS, refer to your DOS manual for information
about the copy command.

Your Work Disk

Your work disk, of course, will contain your program source, and object
and executable files. We also recommend (though it's not necessary) setting
up two separate subdirectories on this floppy: \INCLUDE for your include
files and \ LIB for your library files. (Your DOS manual has more

Geffing Staried 15

information on setting up subdirectories with the mkdir and chdir

commands).

Note: If you choose to set up these two subdirectories and you use TCC,
you must specify the include directory with the - I option and the library
directory with the -L option (see Appendix C for more on command-line
options). If you're using TC, you must set up the include and library
directories from within the Options/Environment menu.

Into the \INCLUDE subdirectory copy the include files from distribution
disk 3 (*.H and SYS\STAT.H).

Into the \LIB subdirectory copy the following library files:

• COx.OBI
• EMU.LIB
• FP87.LIB
• MATHx.LIB
• Cx.LIB

Note that the x in these files stands for the first letter of the particular
memory model you're using. In other words, if you're using the large
memory model, you would substitute an L for the x's. In that case, you
would copy COL.OBI, MATHL.LIB, and CL.LIB into the \LIB subdirectory.

To run Turbo C from a single floppy drive, first insert the program disk
into the disk drive and type tc. Once the program has loaded into memory,
remove the program disk and insert your work disk. If you need on-line
help, though, re-insert the program disk before pressing Ft.

Using Turbo C with Two Floppies

If your computer system has two floppy disk drives, you have the choice of
running the Turbo C Integrated Environment or the Turbo C command-line
version. You will need two different sets of floppies to run each of these
versions.

To Run the TC Version

To run the Integrated Environment version of Turbo C (the menu-driven
version called TC.EXE), you should follow the preceding steps for setting
up a program disk and a work disk for a single disk system. But instead of
swapping one disk for the other, you can insert the program disk in drive A
and the work disk in drive B.

16 Turbo C User's Guide

To Run the Tee Version

To run the command-line version of Turbo C (called TCC.EXE), you need
to create two new disks-one for drive A, one for drive B.

On the disk for drive A, copy the following:

1:1 TCC.EXE
El TLINK.EXE
1:1 a subdirectory called \ LIB
1::1 a subdirectory called \INCLUDE

Into the \LIB subdirectory on this disk, copy the following files:

c COx.OB]
c EMU. LIB
c FP87.LIB
IJ MATHx.LIB
c Cx.LIB

Note that the x in these files stands for the first letter of the particular
memory model you're using. In other words, if you're using the Large
memory model, you would substitute an L for the x's. In that case, you
would put COL.OB], MATHL.LIB, and CL.LIB into the \LIB subdirectory.

Into the \INCLUDE subdirectory on this disk, copy all the include files (the
.H files as found on distribution disk 3).

On the disk for drive B (your work disk), copy all the .C, .OB], and .EXE
files that you create with the command-line version of Turbo C.

Setting Up Turbo C on a Hard Disk

U sing Turbo C on a hard disk allows you to switch easily from the
Integrated Environment version (TC.EXE) to the command-line version
(TCC.EXE).

You should first create a subdirectory off your root directory and call it
\ TURBOC. Into this subdirectory go all the program files, all your own
files, and any .C files that you create with Turbo C.

Then off of the \ TURBOC subdirectory, create two further subdirectories:
\LIB and \INCLUDE.

Into the \LIB subdirectory go all the library and start-up files (that is, all
the .LIB and COx.OB] files).

Getting Staried 17

Into the \INCLUDE subdirectory go all the header files (.H files) as found
on distribution disk 3.

When using TC, remember that you must set up the include and library
directories from within TC's Options/Environment menu. For TCC, specify
the include directory with the - I command line option, and the library
directory with the - L option.

Setting Up Turbo C on a Laptop System

If you have a laptop computer (one with an LCD or plasma display), in
addition to following the procedures given in the previous sections, you
should set your screen parameters before using Turbo C. The Turbo C
Integrated Development Environment version (TC.EXE) works best if you
enter MODE BW80 at the DOS command line before running Turbo C.

Alternatively, you can install TC for a black and white screen using the
Turbo C installation program, TCINST. (Refer to Appendix F in the Turbo C
Reference Guide.) With this installation program, you should select "Black
and White" from the Screen Modes menu.

If You Don't Want to Use Subdirectories

Using Turbo C with subdirectories is optional, so if you don't want to use
them to organize your Turbo C files, you can put all the files in one
directory on the appropriate disk.

On a Hard Disk System

We recommend that you create a directory called TURBOC on your hard
disk, then copy all the Turbo C files to that directory. If you don't know
how to make a directory, refer to the mkdir command in your DOS manual.

TC On a Floppy Disk System

If you're using the Integrated Environment version of Turbo C (TC.EXE)
with only floppy-disk drives, but choose not to use subdirectories, you will
still need to create two disks (your program disk and you work disk).

18 Turbo C User's Guide

We describe how to do this in "Setting Up Turbo C on a Floppy Disk
System" in this chapter. The difference is that, without subdirectories, you
will copy the files you need (as listed in that section) directly to the work
disk, without setting up \INCLUDE or \LIB on that disk.

TCC On a Floppy Disk System

If you don't want to use subdirectories, have two floppy-disk drives, and
are using command-line Turbo C (TCC.EXE), follow the directions in "To
Run the TCC Version" in this chapter, with the following exceptions:

c instead of setting up \INCLUDE on the disk for drive A, just copy the
include (header) files directly to the disk

IJ instead of setting up \LIB on the disk for drive A, just copy the specified
library files directly to the disk

Writing the Configuration File

The Integrated Development Environment version of Turbo C includes a
built-in configuration file named TCCONFIG.TC. When you save compiler
options, Turbo C automatically writes those options into TCCONFIG.TC,
the configuration file.

If you choose to create your own configuration file for use with the
command-line version of Turbo C (TCC), you need to follow this
procedure:

1. With an ASCII editor, create a file called TURBOC.CFG that contains
the following line:

-LC:\TURBOC\LIB -IC:\TURBOC\INCLUDE

(This assumes that your library directory is C:\ TURBOC\LIB and
your include files directory is C: \ TURBOC\INCLUDE.)

2. Decide where to store TURBOC.CFG, taking the following information
into consideration. When TCC starts, it looks for TURBOC.CFG in the
current directory. If it doesn't find it there and if you're running DOS
3.x, it then looks in the start directory (where TCC.EXE resides). Note
that this configuration file is not the same as TCCONFIG.TC, which is
the default Integrated Environment version of a configuration file.

Getting Started 19

How to Use MicroCalc

When you want to compile and run MicroCalc (a spreadsheet program
given in several files on distribution disk 3), refer to Appendix G in the
Turbo C Reference Guide.

Where to Now?

Now that you have loaded the Turbo C files and libraries onto the
appropriate floppy disks or hard disk directories, you are ready to start
digging into this guide and using Turbo C. But, since this user's guide is
written for three different types of users, certain chapters are written with
your particular Turbo C programming needs in mind. Take a few moments
to read the following, then take off and fly with Turbo C speed!

Programmers Learning C

If you are just now learning the C language, you will want to read Chapters
4 and 5. These are written in tutorial fashion and take you through the
process of creating and compiling your first C programs. If you are not sure
how to use the Integrated Development Environment, you will need to
read Chapter 2. When you are ready to run programs, Chapter 3 shows you
how.

Experienced C Programmers

If you are an experienced C programmer, you should have little difficulty
porting your programs to this implementation. You will want to read
Chapter 8, "Advanced Programming in Turbo C," next for a summary of
how Turbo C compares to Kernighan and Ritchie and to the draft ANSI C
standard. When you are ready to port or create C programs with Turbo C,
you will need to read Chapter 3, "Putting It All Together-Compiling and
Running," and Chapter 9, "Advanced Programming in Turbo C."

20 Turbo C User's Guide

Turbo Pascal Programmers

Chapter 6, "Notes for Turbo Pascal Programmers," is written specifically
for you; in it, we provide some examples that compare Turbo Pascal
programs with equivalent Turbo C programs, and we elaborate on some of
the significant differences between the two languages.

If you have programmed with Turbo Pascal, you are familiar with the
seven basic elements of programming. To get up to speed with Turbo C,
you will want to read Chapters 2, 4, and 5. (If you have used another
menu-driven Borland product, such as SideKick or Turbo Basic, you will
only need to skim Chapter 2.)

Turbo Prolog Programmers

If you have used Turbo Prolog and would like to know how to interface
your modules with Turbo C, you should read Chapter 7.

Getting Started 21

22 Turbo C User's Guide

c H A p T

The Turbo C Integrated
Development Environment

E R

2

Turbo C is much more than just a fast C compiler; it is a fast, efficient C
compiler with an easy-to-Iearn and easy-to-use Integrated Development
Environment. With Turbo C, you don't need to use a separate editor,
compiler, linker, and Make software in order to create and run your C
programs. All these features are built right into Turbo C, and they are all
accessible from one clear and simple display-the Turbo C main screen.

In This Chapter ...

This chapter is divided into two sections: Part I, "Using the Menu System,"
and Part II, "The Menu Commands."

In Part I, "Using the Menu System," we

1::1 describe the components of the Turbo C main screen
II explain how to use the Turbo C main menu selections
EI demonstrate how to get into the Edit window and use the editor (editor

commands are covered in Appendix A, "The Turbo C Interactive
Editor"

The Turbo C Integrated Development Environment 23

In Part II, "The Menu Commands," we

• examine and explain each menu item's function
• summarize the compile-time options

What You Should Read

If you are not familiar with using menu-driven software, you will want to
read Part I first. If you are well-versed in working with menu-driven
products, such as SideKick or Turbo Prolog, you may want to skip Part I
and turn directly to Part II.

How To Get Help

Turbo C, like other Borland products, gives context-sensitive on-screen
help at the touch of a single key. You can get help at any point within any
Turbo C menu.

To call up Help, press Ft. The Help window details the functions of the
item on which you're currently positioned. Any Help screen may contain a
keyword (a highlighted item) on which you can get more information. Use
the arrow keys to move to any keyword and press Enter to get more detailed
Help on the selected item. You can use the Home and End keys to go to the
first and last keywords on the screen, respectively.

If you want to return to a previous Help screen while either in or out of the
Help system, press Aft-Ft. (You can back up through 20 previous Help
screens.) To get to the Help Index, press Ft again once you're in the Help
system. To exit from Help and return to your menu selection, press Esc (or
any of the hot keys described in the next section).

24 Turbo C User's Guide

Part I: Using the Menu System

When you load Turbo C (type tc and press Enter at the DOS prompt), the
start-up screen includes the main screen and product version information
(pressing Alt-F10 any time will bring up this version information). When you
press any key, the version information disappears but the main screen
remains (see Figure 2.1). Look closely at the main screen; it consists of four
parts: the main menu, the Edit window, the Message window, and the
Quick Reference (Quick-Ref) Line.

Pi Ie Ed i t lu n COilP i I ~Project Opt ions

Line 1
!!.ain()

Coil Insert Inde~ C:t:XAMPLE1.C

{

printf("Hello. world"n");
printf(''WelcOile to the C cOIIIpi ler\n");
printf("everyone has heen waiting For\n");

Jebug

1---------- Nessage ----------1

Fl-Help 1'5-20011 Flj-Nessage I"J-Nake Fl8-Main lIenu

Figure 2.1: Turbo C's Main Screen

To gain familiarity with the Turbo C system, here are some navigating
basics:

From within a menu:

EI Use the highlighted capital letter to select a menu item, or use the arrow
keys to move to the option and press Enter.

I!i1 Press Esc to exit a menu.

II Press Esc when in the main menu to go to the previously active window.
(When active, the window will have a double bar at its top and its name
will be highlighted.)

E!I Press F6 to get from any menu level to the previously active window.

The Turbo C Integrated Development Environment 25

• Use the Right and Left arrow keys to move from one pull-down menu to
another.

From anywhere in Turbo C:

• Press F1 to get information about your current position (help on
running, compiling, etc.).

• Press F10 to invoke the main menu.
I!!I Press Alt plus the first letter of any main menu command (F, E, R, C, P, 0,

D) to invoke the specified command. For example, from anywhere in
the system pressing Alt-E will take you to the Edit window; AIt-F takes
you to the File menu.

From within the Edit or Message window:

• Press F5to zoom/unzoom.

• Press F6 to switch windows.

Note: To exit Turbo C and return to DOS, go to the File menu and select
Quit (press Q or move the selection bar to Quit and press Enter). If you select
Quit without saving your current work file, the editor will query whether
you want to save it or not.

Before we describe the various menu options available to you, there are a
number of hot keys (short cuts) you should be aware of. Hot keys are keys
set up to perform a certain function. For example, as discussed previously,
pressing Alt and the first letter of a main menu command will take you to
the specified option's menu or perform an action (see Figure 2.2 for a
graphic example). The only other Alt! first-letter command is Alt-X, which is
really just a short cut for File/Quit.

26 Turbo C User's Guide

A1t-E to go
from any

menu level to
Edit window

The Active Window (Active window is either Edit or Message
window; when active, it has a double bar

above it)

Edit Window Message Window

E
I

F10from
either

window

~
Main Menu Bar (F10takesyouhere

from anywhere)

Pull-down Menus
and Submenus

Press Esc
to exita

menu

ESC

Figure 2.2: A Sample Use of Hot Keys

F10

The Turbo C Integrated Development Environment

F6 to go from any
menu level to

previo~sly active
Window

27

Table 2.1 lists all of the hot keys you can use while in Turbo C. Remember
that when these keys are pressed, their specific function is carried out no
matter where you are in the Turbo C environment.

28

Key(s)

F1

F2

F3

F5

F6

F7

FB
F9

F10

Alt-F1

Alt-F3

Alt-F9

Alt-F10

AIt-C

A/t-O

A/t-E

A/t-F

A/t-O

A/t-P

Alt-R

A/t-X

Table 2.1: Turbo C's hot keys

Function

Brings up a Help window with info about your current
position

Saves the file currently in the Editor

Lets you load a file (an input box will appear)

Zooms and unzooms the active window

Switches to the active window

Takes you to the previous error

Takes you to the next error

Performs a "make"

Invokes the main menu

Brings up the last Help screen you referenced

Lets you pick a file to load

Compiles to .OBJ (the file loaded in the Editor)

Displays the version screen

Takes you to the Compile menu

Takes you to the Debug menu

Puts you in the Editor

Takes you to the File menu

Takes you to the Options menu

Takes you to the Project menu

Runs your program

Quits Turbo C and takes you to DOS

Turbo C User's Guide

Menu Structure

Figure 2.3 shows the complete structure of Turbo C's main menu and its
successive pull-down menus. There are three general types of items on the
Turbo C menus: commands, toggles and settings.

Commands

Toggles

Settings

perform a task (running, compiling, storing options, and
so on).

switch a Turbo C feature on or off (Link map, Test stack
overflow, and so on) or cycle through and select one of
several options by repeatedly pressing the Enter key till
you reach the item desired (such as Instruction set or
Calling convention).

allow you to specify certain compile-time and run-time
information to the compiler, such as directory locations,
names of files, macro definitions, etc.

The Turbo C Integrated Development Environment 29

File Edit Run Compile Project

,

("R" runs current program.)

'v

(
"E" activates the Editor;
F10 returns to menu bar.

Load F3 Compile to OBJ C:HELLO.OBJ
Make EXE file C:HELLO.EXE
Link EXE

Pick Alt-F3-~
Ne w
Save F2 Build all
Write to
Directory
Change dir

Primary C file: C:HELLO.C

OS shell
Quit Alt-X

30

Project name J r-------+ Break make on Errors
Clear project

'" ,..... Recent files -

C \TURBOC\HELLO.C
C \TURBOC\MYFIRST.C
C \TURBOC\TEST.C
C \TURBOC\ALGEBRA.C
C \TURBOC\CALCULUS.C
C \TURBOC\RATIO.C
C \TURBOC\SUM.C
C \TURBOC\RATI02.C

-- load file --

From within a menu:

Warnings I
Errors
Fatal errors
Link

Navigating In Turbo C

• The initial (highlighted) letter always selects the menu item.
• Use Esc to exit a menu. (From the main menu, use Esc to return

to the previously active window.)
• F6 goes from any menu level to the previously active window

(either the Edit or Message window).
From anywhere in Turbo C:

·Alt plus the first letter of any main menu command (F, E, R, C,
P, 0, D) invokes that command. E.g, Alt-E goes from anywhere
into the Edit window; Alt-F pulls down the File menu.

• F1 calls up context-sensitive help information.
• F10 takes you to the main menu.
• Alt-X quits Turbo C.

Figure 2.3: Turbo e's Menu Structure

Turbo C User's Guide

Options Debug
r r

r- Compiler Track messages Current mel Linker

I
Clear messages

E nv ironmen t Keep mess ages No
Args Available Memory 248K
Retrieve options
Store options

V J,
Model Small Include directories: r- Map file Off
Defines Output directory: I nitialize segments Off
Code generation Library directory: Default libraries Off
Optimization Turbo C directory: Warn duplicate symbols On
Source Auto save edit Off S tack warning On
Errors Backup source files On Case sensitive link On
Names - Zoomed windows Off

Ti n y .I Off I Small '1 Segments
Medium Publics

Compact Detailed

Large
Huge

Calling convention C
Instruction set 8088/8086
Floating point Emulation
Default char type Signed

,. Alignment Byte
Generate underbars On
Merge duplicate strings Off
Standard stack frame Off
Test stack overflow Off
Line numbers Off

V

Optimize for Size

I Use register variables On
Register optimization Off
Jump optimization Off

"
Code names I I Identifier length 32 I
Data names Nested comments Off
BSS names ANSI keywords only Off

A: Non-portable pointer conversion On
B: Non-portable pointer assigru;tent On
C: Non-portable pointer comparl.son On
D: Constant out of range in comparison On ,
E: Constant is long Off
F: Conversion may lose significant digits Off
G: Mixipg pointers to signed and unsigned char Off

v
Errors : stop after 25 A: 'ident' not part of structure On

Warnings: stop after 100 B: Zero length structure On

Display warnings On C: Void functions may not return a value On
D: Both return and return of a value used On Portability warnings E: Suspicious pointer conversion On ANSI violations

Common errors
,. F: Undefined structure 'ident' On

less common errors - - G: Redefinition of . ident' is not identical On

A: Function should return a value On
B: Unreachable code On

~ C: Code has no effect On
D: Possible use of 'ident' before definition On
E: 'ident' is assigned a value which is never used On
F: Parameter 'ident' is never used On
G: Possibly incorrect assignment On

A: Superfluous & with function or array Off , B: 'ident' declared but never used Off
C: Ambiguous operators need parentheses Off
D: Structure passed by value Off
E: No declaration for function ' ident Off
F: Call to function with no prototype Off

Figure 2.4: Turbo C's Menu Structure, continued

The Turbo C Integrated Development Environment 31

Menu-Naming Conventions

In this book, we will refer to all menu items by an abbreviated name. The
abbreviated name for a given menu item is represented by the sequence of
letters you type to get to that item from the main menu. For example:

• At the main menu, the menu offering compile-time options related to
error messages is Options/Compiler/Errors; we'll tell you to select
O/C/Errors (press 0 C E, in that order) .

• At the main menu, the menu for specifying the name of the Include
directories is the Options/Environment/Include directories; we'll tell
you to select OlE/Include (press 0 E I, in that order).

The Main Menu

File Edit Run Compile Project Options Debug

Figure 2.5: Turbo C's Main Menu Bar

At the top of the main screen is the Turbo C main menu bar (see Figure 2.5),
which offers seven selections:

32

File

Edit

Run

Compile

Project

Options

Debug

Handle files (loading, saving, picking, creating, writing
to disk), mani pula tes directories (listing, changing),
quitting the program, and invokes DOS.

Lets you create and edit source files.

Automatically compiles, links, and runs your program.

Compiles and makes your programs into object and
executable files.

Allows you to specify what files are in your program
and manage your project.

Allows you to select compiler options (such as memory
model, compile-time options, diagnostics, and linker
options) and define macros. Also records the Include,
Output, and Library file directories, saves compiler
options, and loads options from the configuration file.

Allows you to track your errors or manage error
messages.

Turbo C User's Guide

Note that two main menu items have only one option: Edit simply invokes
the editor; Run simply runs your programs. Several of the other menu
items, however, lead to pull-down menus with many options and/or
subsequent menus.

The Quick-Ref Lines

Whether you're in one of the windows or one of the menus, a default
Quick-Ref line appears at the bottom of the screen. This line provides at-a­
glance function-key help for your current position.

To see a summary of what other key combinations do in a different setting,
hold down the Alt key for a few seconds. The Quick-Ref line changes to
describe what function will be performed when you combine other keys
with this key.

When you're in the main menu, the default Quick-Ref line looks like this:

Fl-Help F5-Zoom F6-Edit F9-Make FlO-Main Menu

When you hold down the Alt key, a summary of Alt key combinations is
displayed. It looks like this:

Alt-Fl-Last help Alt-F3-Pick Alt-F9-Compile Alt-X-Exit

The Edit Window

In this section, we describe the components of the Turbo C Edit window
and explain how to work in the window.

First, to get into the Edit window, go to the Edit option on the main menu
and press Enter (or press E from anywhere on the main menu). To get into
the Edit window from anywhere in the system, including from the Message
window, just press Aft-E. (Remember, Aft-E is just a short cut for F10 E.) Once
you're in the Edit window, notice that there are double lines at the top of it
and its name is highlighted-that means it's the active window.

Besides the body of the Edit window, where you can see and edit several
lines of your source file, the Turbo C Edit screen has two information lines
you should note: an Edit status line and the Quick-Ref line.

The Turbo C Integrated Development Environment 33

The Edit status line at the top of the Edit window gives information about
the file you are editing, where in the file the cursor is located, and which
editing modes are activated:

Line Col Insert Indent Tab C:FILENAME.EXT

Line n Cursor is on file line number n.

Col n Cursor is on file column number n.

Insert Insert mode is on; toggle Insert mode on and off with
Insert or Ctr/-V. See Appendix A for an explanation of
Insert and Overwrite mode.

Indent Autoindent is on. Toggle it off and on with Ctrl-O I. See
Appendix A for an explanation of autoindent.

Tab Tab mode is on. Toggle it on and off with Ctrl-O T.

C:FILENAME.EXT The drive (C:), name (FILENAME), and extension
(.EXT) of the file you are editing.

The Quick-Ref line at the bottom of the screen displays which hot keys
perform what action:

Fl-Help FS-Zoom F6-Message F9-Make FlO-Main menu

To select one of these functions, press the listed key:

Fl-Help Opens a Help window that provides information
about the Turbo C editor commands.

FS-Zoom

F6-Message

F9-Make

FlO-Main menu

Makes the active window full screen. Toggle F5 to
get back to the split-screen environment.

In this case, F6 takes you to the Message window; in
general, F6 switches between windows. Press it once
more to make the Edit window active again.

Makes your .EXE file.

Invokes the main menu.

The editor uses a command structure similar to that of SideKick's Notepad
and Turbo Pascal's editor; if you're unfamiliar with the editor these
products use, Appendix A describes the editor commands in detail. Page 35
lists some of the most commonly used commands.

If you're entering code in the editor while you're in Insert mode, you can
press Enter to end a line (the editor has no word-wrap). The maximum line
width is 248 characters; the Edit window is 77 columns wide. If you type

34 Turbo C User's Guide

past column 77, the window scrolls as you type. The Edit window's status
line gives the cursor's location in the file by line and column.

After you've enter~d your code into the Edit window, press F10 to invoke
the main menu. Your file will remain onscreen; you need only press E (for
Edit) at the main menu to return to it.

Quick Guide to Editor Commands

Here is a summary of the editor commands you will use most often:

• Scroll the cursor through your text with the Upj Down, Left/ Right, and
PgUpj PgDn keys.

III Delete a line with Gtrl-Y.
II Delete a word with Gtrl-T.
II Mark a block with Gtrl-K B (beginning) and Gtrl-K K (end).
a Move a block with Gtrl-K V.
II Copy a block with Gtrl-K G.
1:1 Delete a block with Gtrl-K Y.

See Appendix A for a more detailed explanation of the editor commands.

How to Work with Source Files in the Edit
Window

When you invoke the Edit window before loading a particular file, the
Turbo C editor automatically names the file NONAME.C. At this point you
have all the features of the editor at your fingertips. You can

EiI create a new source file either as NONAME.C or another file name

• load and edit an existing file
EI pick a file from a list of edit files, and then load it into the Edit window

a save the file seen in the Edit window

• write the file in the editor to a new file name
II alternate between the Edit window and the Message window for

finding and correcting compile-time errors

While you are creating or editing a source file, but before you have
compiled it, you do not need the Message window. So you can press F5 to
zoom the Edit window to full screen. Press F5 again to unzoom the Edit
window (return to split-screen mode).

The Turbo C Integrated Development Environment 35

Creating a New Source File

To create a new file, select either of the following methods:

• At the main menu, select File/New, then press Enter. This opens the Edit
window with a file named NONAME.C.

• At the main menu, select File/Load. The Load File Name prompt box
opens; type in the name of your new source file. (Pressing the shortcut
F3 from within the Edit window will accomplish the same thing.)

Loading an Existing Source File

To load and edit an existing file, you can select two options: File/Load or
File/Pick.

If you select File/Load at the main menu, you can

• Type in the name of the file you want to edit; paths are accepted-for
example, c: \ TURBOC\ TESTFILE. c.

• Enter a mask in the Load File Name prompt box (using the DOS
wildcards * and ?), and press Enter. Entering *.* will display all of the
files in the current directory as well as any other directories. Directory
names are followed by a backslash (\). Selecting a directory displays the
files in that directory. Entering C: \ *.C, for example, will bring up only
the files with that extension in the root directory.

Press the Up/ Down and Left/ Right arrow keys to highlight the file name
you want to select. Then press Enter to load the selected file; you are
placed in the Edit window.

• At the main menu, invoke the editor by pressing E. This opens the Edit
window with the current edit file (or with the default file name
NONAME.C if no other edit file has been loaded).

If you select File/Pick (see the discussion of the Pick option later in this
chapter), you can

• Press AIt-F then P to bring up your pick list (or press the short cut Alt-F3).

• Use the Up and Down arrow keys to move the selection bar to the file of
your choice.

Pick lets you quickly pick the name of a previously loaded file.

36 Turbo C User's Guide

Saving a Source File

iii From anywhere in the system, press F2.
g From the main menu, select File/Save.

Writing an Output File

You can write the file in the Editor to a new file or overwrite an existing
file. You can write to the current (default) directory or specify a different
drive and directory.

At the main menu, select File/Write to. Then, in the New Name prompt
box, enter the full path name of the new file name:

C:\DIR\SUBDIR\FILENAME.EXT

and press Enter.

c c: (optional) is the drive.

C \DIR\SUBDIR\ represent optional directories.

IJ FILENAME. EXT is the name of the output file and its extension (the
extension .C is assumed; append a period (.) at the end of your file name
if you don't want an extension name).

Press Esc once to return to the main menu, twice to go back to the active
window (the editor). You can also press F6 or Alt-E.

If FILENAME. EXT already exists, the editor will verify that you want to
overwrite the existing file before proceeding.

The Message Window

You will use the Message window to view diagnostic messages when you
compile and debug your source files. Turbo C's unique error-tracking
feature lists each compiled file's warnings and error messages in the
Message window and simultaneously highlights the corresponding
position of the appropriate source file in the Edit window (depending upon
the settings in the Debug menu). Turbo C's error-tracking feature is more
fully discussed in Appendix C, "Command-line Options."

The Turbo C Integrated Development Environment 37

When the cursor is in the Message window, the Quick-Ref line looks like
this:

Fl-Help FS-Zoom F6-Edit F9-Make FlO-Main menu

To use one of these features, press the desired key:

38

Fl-Help

FS-Zoom

F6-Edit

F9-Make

Opens a Help window that summarizes the Turbo C
error-tracking feature.

Expands the Message window to full screen.

Makes the Edit window active.

Makes the .EXE file.

FlO-Main menu Invokes the main menu.

Turbo C User's Guide

Part II: The Menu Commands

The main menu contains the major selections you'll use to load, edit,
compile, link, debug, and run Turbo C programs. The seven selections
include File, Edit, Run, Compile, Project, Options, and Debug, each of
which will be described here. A few of the options within the main menu
pull-downs are actually for use in advanced programming; they are
described in more detail in Chapter 3.

Note: The references to "make" in this chapter refer to Project-Make, not to
the stand-alone MAKE utility. Project-Make is a program building tool
similar to MAKE; refer to Chapter 3 for more on Project-Make. The MAKE
utility is described in Appendix D in the Turbo C Reference Guide.

The File Menu

The File pull-down menu offers various choices for loading existing files,
creating new files, and saving files. When you load a file, it is automatically
placed in the editor. When you finish with a file, you can save it to any
directory or file name. In addition, from this pull-down you can change to
another directory, temporarily go to the DOS shell, or exit Turbo C.

m Ed it lIun COIlP i Ie Project Options lehug

~ 11m, If II I 1 Insert Indent Tab C:HELLO.C
lIoi Pick Alt-F3
{ New

Save F2 orld"n");
Write to to the C conpiler\n");
Directory has been waiting for\n");
Change dir
OS shell
Quit Alt-X

1---------- Message --------~

Fi-Help FS-ZOOII FC,-Edit F'J-Make F18-Main Menu

Figure 2.6: The File Menu

The Turbo C Integrated Development Environment 39

Load

Loads a file. You can use DOS-style masks to get a listing of file choices,
or you can load a specific file. Simply type in the name of the file you
want to load. Note: If you enter an incorrect drive or directory, you'll get
an error box onscreen. You'll get a verify box if you have an unsaved,
modified file in the editor while you're trying to load another file. In
either case, the hot keys are disabled until you press the key specified in
the error or verify box.

Pick

Lets you pick a file from a list of the previous eight files loaded into the
Edit window. The file selected is then loaded into the Editor and the
cursor is positioned at the location where you last edited that file. If you
select the "--load file--" item from the pick list, you'll get a Load File
Name prompt box exactly as if you had selected File/Load or F3. Alt-F3 is
a short cut to get this list.

You can toggle on the Load/save pick list option from within Turbo C's
installation program (TCINST) to have Turbo C automatically save the
current pick list when you exit Turbo C and then reload that file upon
reentering the program. If this option is toggled off when you exit Turbo
C, your pick list will not be saved.

New

Specifies that the file is to be a new one. You are placed in the editor; by
default, this file is called NONAME.C. (You can change this name later
when you save the file.)

Save

Saves the file in the Editor to disk. If your file is named NONAME.C
and you go to save it, the editor will ask if you want to rename it. From
anywhere in the system, pressing F2 will accomplish the same thing.

Write to

Writes the file to a new name or overwrites an existing file.

Directory

40

Displays the directory and file set you want (to get the current directory,
just press Enter). F4 allows you to change the wildcard mask.

Turbo C User's Guide

Change dir

Displays the current directory and allows you to change to a specified
drive and directory.

OS shell

Leaves Turbo C temporarily and takes you to the DOS prompt. To return
to Turbo C, type exit. This is useful when you want to run a DOS
command without quitting Turbo C.

Quit

Quits Turbo C and returns you to the DOS prompt.

The Edit Command

The Edit command invokes the built-in screen editor.

You can invoke the main menu from the editor by pressing F10 (or Alt and
the first letter of the main menu command you desire) . Your source text
remains displayed on the screen; you need only press Esc or E at the main
menu to return to it (or press Alt-E from anywhere).

The Run Command

Run invokes Project-Make, then runs your program using the arguments
given in Options/ Args. (Project-Make is a program building tool similar to
the stand-alone MAKE utility; see Chapter 3.) After your program has
finished running, you'll get a Press any key message; at that point you
can press Alt-V to get the value returned by the main function.

Note: You can run your executable Turbo C programs from DOS by simply
typing the file name (no extension is necessary) at the DOS prompt.

The Turbo C Integrated Development Environment 41

The Compile Menu

You will use the items on the Compile menu to Compile to an .OBJ file, to
Make an EXE file, to Link EXE, to Build all, or to set a Primary C file.

File Edit Run ~ Project Options lebug

J. i ne I Co I I I nse COMP i I e to OBJ c: HELLO. OBJ
lIake EXE file C:HELLO.EXE
Link EXE file
lui Id all I." fi4".",.."H! •.•

-------- Message ----------/

Fl Help FS ZOOIl Fr.~Edit F9-Make F18~Main Menu

Figure 2.7: The Compile Menu

Compile to OBI

This menu item is a command. It always displays the name of the file to
be produced; for example, C: EXAMPLE. OBJ. When selected, it compiles
the file. The .OBJ file name listed is derived from one of two names, in
the following order:

• the Primary C file name, or if none is specified
• the name of the last file you loaded into the Edit window.

Make EXE file

42

This menu item is a command that invokes Project-Make. This item
always displays the name of the .EXE file to be produced; for example,
c: EXAMPLE. EXE. When selected, it makes the file.

Turbo C User's Guide

The .EXE file name listed is derived from one of three names, in the
following order:

c the project file (.PRJ) specified in the Project/Project name menu item,
or if none is specified

c the Primary C file name, or if none is specified
c the name of the last file you loaded into the Edit window.

Link EXE

Takes the current .OBJ and .LIB files and links them without doing a
make; this produces a new .EXE file.

Build all

Rebuilds all of the files in your project regardless of whether they are out
of date or not. This option is similar to make except that it is
unconditional; make rebuilds only the files that aren't current.

Primary C file:

Use this option to specify which .C file will be compiled to .OBJ (or .EXE
if no project name is defined) when you enter the Compile/Compile to
OBJ command (Alt-F9). (If no project is defined, use the Compile/Make
EXE option, F9; see the earlier discussion of this option.)

The Primary .C file option is useful (but not required) when you're
compiling a single .C file that includes multiple header (.H) files. If an
error is found during compilation, the file containing the error (which
might be a .C file or a .H file) is automatically loaded into the editor so
that you can correct it. (Note that the .H file is only automatically loaded
if you have changed the default debug settings to Debug/Track
messages ... All files; using the default settings will not cause an autoload
to occur.) The primary .C file is then recompiled when you press Alt-F9,
even if it is not in the Editor.

When Turbo C is compiling, a window pops up to display the compilation
results. When compiling/making is complete, press any key to remove this
compiling window. If any errors occurred, you are automatically placed in
the Message window at the first error (which is highlighted). This Compile
command and its options are explained in more detail in Chapter 3.

The Turbo C Integrated Development Environment 43

The Project Menu

The selections in this pull-down menu allow you to combine multiple
source and object files to create finished programs. For more information
on Project, refer to Chapter 3.

Fi Ie Edit Run COIIPil~ m.mJ Opt ions lehug

Line t Col I Insert Indent Ta LAJiJ;.,€, 'w-:+:101j'a''j1t ••

I
lreak Make on Errors I
C lear project

1---------- Message -----------1

FI-Help FS-ZOOII Fr.-Edit r.J-Make Fl8-Main Menu

Figure 2.8: The Project Menu

Project Name

Selects a project file containing the names of the files to be compiled
and/or linked. The project name is given to the .EXE and .MAP files
when they are created.

Break make on

44

Permits you to specify whether the make should stop after compiling a
file that has Warnings, Errors, Fatal errors, or before Linking.

Turbo C User's Guide

File Edit Run COllpi Ie Opt ions Jehug

Line 1 Co I 1 losert I nde:tr.1 Project naae C: EXftlPLEl. PRJ
1:m10 'a",+844·'7 I C lear project

'M'A!"",t
Errors
Fatal errors
Link

f----------- Message ------------

FI-Help FS-ZOOII Fr.-Edit F9-Make Fi8-Main Menu

Figure 2.9: The Project/Break Make On Menu

Clear project

Clears the project name and resets the Message window.

The Turbo C Integrated Development Environment 45

The Options Menu

The Options menu contains settings that determine how the Integrated
Environment works. The settings affect things like compiler and linker
options, library and include directories, program run-time arguments, and
so on. The items on this menu, described in this section, are three
commands that call up more menus, one setting, and two commands that
perform managerial tasks, as follows:

[] Compiler (calls up more menus)

[] Linker (calls up more menus)

[] Environment (calls up more menus)

[] Args (setting)

[] Retrieve options (performs task)

[] Save options (performs task)

Fi Ie Edit lun COllP i Ie Project

Line 7 Call ~ I nsert I ndent Tab c: HELLO. C
lIa inC)
{

printf("Hello ... orld!'n");
printf("Welcolle to the C cOMpiler'n");
printf("everyone has been waiting for'n");

mr:lmI Jebug

lIttitffiI,emdl' __
Linker
Env irol'fllent
Args
Retrieve options
Store opt ions

1---------- Message -----------1

F1-Help F'S-ZOOIl Fr.-Edit l'9-Make Fill-Main Menu

Figure 2.10: The Options Menu

46 Turbo C User's Guide

Compiler

These options allow you to specify particular hardware configurations,
memory models, debug techniques, code optimizations, diagnostic
message control, and macro definitions. The items in this menu, described
in the next several pages, are as follows:

CI Model

1:1 Defines

~ Code generation

c Optimization

c Source

r:J Errors

r:J Names

File Edit .un Co.pil:r....-Project ~ lebug

Line 7 Coil Insert Inde~ C:HELLO.C IQlDfthIffl1'N'Me'''111
.ain()

{ IIiGt"-"i'AiA %*10"
printf("Hello. world!\n"); lef ines
printf("Welca.e to the C c~piler'n"); Code generation
printf("everyone has been waiting for'n"); Opli.ization

Source
Errors
"a.es

1---------- Message ----------j

PI-Help F5-Z00l1 Fr.-Edit r.J--I1ake PIli-Main Menu

Figure 2.11: The Options/Compiler Menu

The Model Menu

These selections are the different memory model switches available in·
Turbo C. The memory model chosen determines the default method of
memory addressing. If you select Compiler/Model, the options Tiny,
Small, Compact, Medium, Large, and Huge appear in a menu. The default
memory model is Small, so normally the word "Small" appears to the right
of the menu choice Model. Refer to Chapter 9 for more information about
these memory models.

The Turbo C Integrated Development Environment 47

File Edit .un COMpile Project t!lIImm lebug

Line 7 CoIl Insert Inde~ C:HELLO.C 1fi!1t1M!J
.. inO
{

prinU("Hello. world!\n");
prinU("WelcOIIe to the C cOIIpiler\n");
prinU("everyone has been waiting For\n");

'irma M'.
leFines -
Code generation ~
Optililization ~
Source MediuIII
Errors COIIpact
"allies Large

'------1 Huge
'-----

f----------- Message ------------1

rt-Help r.;-ZOOll rr.-Edit r.J--t1ake rUH1ain Menu

Figure 2.12: The Ole/Model Menu

The Defines Menu Item

Selecting Defines opens up a macro definition box in which you can pass
macro definitions to the preprocessor. Multiple "defines" can be separated
by semicolons (;). Values can be optionally assigned with an equal sign (=).

Leading and trailing spaces are stripped, but embedded spaces are left
intact. If you want to include a semicolon in a macro, you must place a
backslash (\) in front of it.

Here's a macro that defines the symbol BETA_TEST, sets ONE to 1, and
COMPILER equal to the string TURBOC:

BETA_TEST; ONE = 1; COMPILER = TURBOC

48 Turbo C User's Guide

The Code Generation Menu

These options tell the compiler to prepare the object code in various ways.

Fi Ie

uin()
{

Line 7

Edit lun Co.pil!....-Project ~ lebug

Coil Insert lnde::tT'::i: C:HELLO.C ImiltH.tl;

S •• II I ttodel
printf("Hello. world!\n"); lefines

printf(,-Welco.e to the C Cc.Piler'n·fo)~; ~ri;ij~I~'Ittt~t t~~\'~ttIi~@~g~Mi~~~ printf("everyone has been waiting F
luN"1ttti ;;.1 , dJ"'yttt, ·It

I nstruct ion set BBBB/BBBG
F loal i ng po i nt EIlU I. t ion
DeFault char type Signed
II Ii gment Byte
Generate underbars On
"erge dup I ica le slr i ngs On
Standard stack FraMe orr

t---------- Mes Test slack overf low orr
Line nUilbers orr

FI-Help FS-ZOOII F6-Edil F9--/1ake Fill-Main Menu

Figure 2.13: The O/C/Code Generation Menu

Calling convention:

Causes the compiler to generate either a C calling sequence or a Pascal
(fast) calling sequence for function calls. The differences between C and
Pascal calling conventions are in the way each handles stack cleanup,
number and order of parameters, case and prefix (underbar) of external
identifiers.

Do not change this option unless you're an expert and have read Chapter 9 on
advanced programming techniques.

Instruction set:

Permits you to specify a different target CPU; this is a toggle between an
8088/8086 instruction and an 80186/80286 instruction. The default
generates 8088/8086 code. Turbo C can generate extended 80186
instructions. You will also use this option when generating 80286
programs running in the unprotected mode, such as with the IBM PC AT
under MS-DOS 3.x.

The Turbo C Integrated Development Environment 49

Floating point:

Allows for three options:

8087/80287, which generates direct 8087 in-line code

Emulation, which detects whether you have an 8087 and uses it if you
do-otherwise, it emulates the 8087 just as accurately but at a slower
pace

None, which assumes you're not using floating point. (If None is
selected and you use floating-point calculations in your program, you
will get link errors.)

Default char type:

Toggles between Signed and Unsigned char declarations. If you select
Signed, the compiler will treat all char declarations as if they were
signed char type; and vice versa for selecting Unsigned. The default
value is Signed.

Merge duplicate strings:

This optimization merges strings when one string matches another; this
produces smaller programs.

Alignment:

This allows you to toggle between word-aligning and byte-aligning.
When word-aligning, non-character data aligns at even addresses. When
byte-aligning, data can be aligned at either odd or even addresses,
depending on which is the next available address. Word-alignment
increases the speed with which 8086 and 80286 processors fetch and
store the data.

Standard stack frame:

Generates a standard stack frame (standard function entry and exit
code). Helpful when you use a debugger-simplifies the process of
tracing back through the stack of called subroutines.

Test stack overflow:

50

Generates code to check for a stack overflow at run time. Although this
costs space and time in a program, it can be a real life saver; a stack
overflow can be a difficult bug to track down.

Turbo C User's Guide

Generate underbars:

By default, this option is toggled on.

Don't change this unless you're an expert and have read Chapter 9 on advanced
programming techniques.

Line numbers:

Includes line numbers in the object file (for use by a symbolic debugger).
This increases the size of the object file but will not affect size or speed of
the executable program.

Since the compiler may group common code from multiple lines of
source text together during jump optimization or reorder lines (which
makes line-number tracking difficult), we recommend turning off Jump
optimization when using this option.

The Optimization Menu

These options allow you to optimize your code to your own programming
needs.

File Idit .un COMpil!..-Project t!D.II!Im Jebug

Line 7 Co I 1 I nsert Inde~ C: HELLO. C IIttifflMP
Ma I nO { I Nodel SMail

printf("Hello. world"n"); Defines
printf('\leicoMe to the C cOMpi ler\n"); Code generation
printf(ueverlJone has heen waiting for'n"); mi. "1"'.11

'Mi; I,aa,., ,aw
Use register variables On
.egister optiMization Off
JUMp optiMization Off

I----------Message ----------1

Ft-Help FS-ZOOM Fr.-Edit r.H1ake Ft8-Main Menu

Figure 2.14: The Ole/Optimization Option

Optimize for:

Changes Turbo C's code generation strategy. Normally the compiler
uses Optimize for ... Size, choosing the smallest code sequence possible.
With this item toggled to Optimize for ... Speed, the compiler will choose
the fastest sequence for a given task.

The Turbo C Integrated Development Environment 51

Use register variables:

Suppresses or enables the use of register variables. With this option on,
register variables are automatically assigned for you. With this option
off, the compiler does not use register variables even if you have used the
register keyword (see Appendix C in the Turbo C Reference Guide for
more details).

Generally, you can keep this option on unless you are interfacing to
preexisting assembly code that does not support register variables.

Register optimization:

Suppresses redundant load operations by remembering the contents of
registers and reusing them as often as possible.

Note: You should exercise caution when using this option because the
compiler cannot detect if a register has been modified indirectly by a
pointer. Refer to Appendix C in the Turbo C Reference Guide for a detailed
explanation of this limitation.

Jump optimization:

52

Reduces the code size by eliminating redundant jumps and reorganizing
loops and switch statements. The loop reorganizations can speed up
tight inner loops.

Turbo C User's Guide

The Source Menu

The items on this menu govern how the compiler treats your source code
during the initial phases of the compilation.

File Edit lun COIIpil!.-'roject mmm lebug

Line 7 Coil Insert 1nde~ C: HELLO.C 1IIlI!1ij!M§jIi .1
nin()
(Model Sao a I I

printf("Hello. world"n");
printf("WelcOIIe to the C clJlpi ler\n");
printf("everyone has been waiting for'n");

lef ines
Code generation
Optl.lzatlon

iQlhh;

ei!F-MR MWNi~J

I
"ested c~ents orr
AHSI keywords only orr

1---------- Message ---------~

FI-Help FS-ZOOIO Fli-Edit r.H1ake Fl8-Main Menu

Figure 2.15: The Ole/Source Menu

Identifier length:

Specifies the number of significant characters in an identifier. All
identifiers are treated as distinct only if their first N characters are
distinct. This includes variables, preprocessor macro names, and
structure member names. The number given can be any value from 1 to
32; the default is 32.

Nested comments:

Allows you to nest comments in Turbo C source files. Nested comments
are not normally allowed in C implementations, and they are not
portable.

ANSI Keywords Only:

Toggle to on when you want the compiler to recognize only ANSI
keywords and treat any Turbo C extension keywords as normal
identifiers. These keywords include near, far, huge, asm, cdecl,
pascal, interrupt, _es, _ds, _cs, _ss, and the register
pseudovariables <_AX, _BX,). This option also defines the symbol
STDC during compiles.

The Turbo C Integrated Development Environment 53

The Errors Menu

With the selections from this menu, you govern how the Turbo C compiler
deals with and responds to diagnostic messages.

File Edit lun Co.pil~Project ~ lebug

Line 7 Coil Insert Inde;;t"'T.b C:HELLO.C 1 ... 14
Main()
(

printf("Hello, world!'n");
printr(''Welco.e to the C cOIIIpiler\n");
printH"ever'lone has been waiting for'n");

Plodel ::]Mall Def i nes
Code generation
OptiMization
Source

'44; .. *
1344"I"Jt,.'i§Wf~
lIarnings: stop after 188
lispla~ warnings On
Portah i i il'l warn i ngs
AIISI violations

1----------- Message - Co..on errors
Less COMMon errors

FI-Heip FS-ZOOM Ff,-Edit l"}-Make Fl8-Main Menu

Figure 2,16: The Ole/Errors Menu

Errors: stop after:

This causes compilation to stop after 25 errors have been detected.
However, 25 is only the default; you can enter any number from 0 to 255.
Entering 0 will cause compilation to continue indefinitely.

Warnings: stop after:

54

Selecting this option causes the compilation to stop after 100 warnings
have been detected. However, 100 is only the default; the legal range is 0
to 255, where entering 0 will cause compilation to continue indefinitely
or until the error limit has been reached. .

Turbo C User's Guide

Display warnings:

By default, this is set to on, which means that any or all of the following
warning types can be displayed if selected:

Portability warnings

ANSI violations

Common errors

Less common errors

When this item is off, none of the warnings will be displayed. These
warning messages are discussed in more detail in Appendices Band C in
the Turbo C Reference Guide.

Fi Ie Edit lun COMpil~rroject mmIl'l Jebug

Line 7 Col t Insert Inde;t'hl C:HELLO.C IlijtI1t1Mfflj.rnWiMdl
Main()
(

printH"Hello, world!\o");
printf("WelcoMe to the C cOIIpiler'n");
printH"everyone has been waiting for'o");

lIode I
Def ines
Code genera 1 ion
OptiMization
Source

SMail

tI&44·'11ifiWiMS;·&';',d i "'B~t'

I
Errors : stop after
lIarnings: slop after
.isplA~ warnin,s
Portab iii ty warn i ngs

'·WMI,,·ilijm tm'·'4 i'Wi":i
.: Unreachab Ie code
C: Code has no effeel
I: Possible use of 'ideot' before definition
E: 'ident' is assigned a value which is never used
F: Paralleter 'ident' is never used
G: Possibly incorreel assignllent

Ft-Help FS-ZOOII Ff.-Edit F9-I1ake Ftll-llain Menu

Figure 2,17: Displaying the Common Errors

The Turbo C Integrated Development Environment

25
lee
On

-.
On
On
On
On
On
On

I

55

The Names Menu

With the items in this menu, you can change the default segment, group,
and class names for Code, Data, and BSS sections.

File Edit lun COMpil~Project m:mm lebug

Line 7 Co I 1 I nsert I nde:;'i"'T."b C: HELLO. C Ill!ifflIMi4
.ain()
{

printfC"Hello. world!\n");
printr(''WelcoMe to the C CDMpi ler'n");
prlntr("everyone has been waiting For'n");

Kodel
leF ines
Code generation
OptiMization
Source
Errors

';6' ,-
,it!$iWI6' ,i;i

I
D.ta nAlles-1
ISS nAlles 1

S •• II

--

\----------- Message -------------l

Fl-Help FS-ZOoM Fr.-Edit F'H1ake FIB-Main Menu

Figure 2,18: The O/C/Names Option

When you select one of these items, the asterisk (*) on the next menu that
appears tells the compiler to use the default names.

Don't change this option unless you are an expert and have read Chapter 9 on
advanced programming techniques.

56 Turbo C User's Guide

Linker

The items in this menu deal with setting options for the linker. Refer to
Appendix D in the Turbo C Reference Guide for more information about
these settings.

Map file

Fi Ie Edit lun CotIpil!..-'roject mmm Jebug

uln()
(

Line 5 Co I 1 I nsert 1nde~ C: HELLO. C I Cc:~ i I er
'PHQ

printf("Hello. world!\n");
pr i ntH "Ue ICOMe to the C Cotlp I ler'n");
printH "everyone has been wa It i ng For'n

IGtbIUi- mNIfIW
Initialize seg.ents orr
Jerau I t I I brar les orr
lIorn duplicate s'I"'bols On
Stock worn I ng On
Case-sens I t Ive link On

1----------- Message -------------i

FI-Help r.J-Zoo. FC.-Edlt t'9--t1ake Fill-Main Menu

Figure 2.19: The Options/Linker Menu

Selects the type of map file to be produced. For values other than Off, the
map file is placed in the output directory defined in OlE/Output
directory. By default, this is set to the Off option; your other choices are
Segments, Publics, and Detailed.

Initialize segments

Tells the linker to initialize uninitialized segments. (This is normally not
needed.)

Default libraries

When you're linking with modules that have been created by a compiler
other than Turbo C, the other compiler may have placed a list of default
libraries in the object file.

If this option is on, the linker will try to find any undefined routines in
these libraries as well as the default libraries supplied by Turbo C.

If this option is off, only the default libraries supplied by Turbo C will be
searched; any defaults in .OBJ files will be ignored.

The Turbo C Integrated Development Environment 57

Warn duplicate symbols

Turns on and off the Linker warning for duplicate symbols in object and
library files. The default is off.

Stack warning

Disables the No stack specified message generated by the linker.

Case-sensitive link

Turns on and off case sensitivity during linking. Normally, this option will
be on, since C is a case-sensitive language.

Environment

This menu's entries tell Turbo C where to find the files it needs to compile,
link, and provide Help. Some miscellaneous options permit you to tailor
the Turbo C working environment to suit your programming needs.

File Edit Run COllpile Project ~ lebu~

Line 1 Coil Insert Inde;;'i""Tab C:EXAMPLEll COIIpiler
I Linker
';'@'4.11liJI'

lIain()
{

printf("llello. world"n");
printF(''Welcorle to the C cmlpi IMrmMlJtfili.iI.¥_4tIffiIftfj,
printf("everyone has been wait Output directory:

Library directory: c:\lib
Turbo C directory:
Au to save ed it Off
Backup source riles On
ZOOMed windows orr

I

t----------Messa~e ----------j

Fl-Help FS-ZOOII F6-Edit "-Make Fill-Main Menu

Figure 2.20: The Options/Environment Menu

Include directories

Specifies the directories that contain your standard include files. Standard
include files are those given in angle brackets «», such as #include

<myfile.h>. Multiple directories are separated by semicolons (;). See Chapter
3 for more information about this option.

58 Turbo C User's Guide

Output directory

Your .OBJ, .EXE, and .MAP files are stored here; Turbo C looks for them
here when doing a Make or Run. lithe entry is blank, this implies that the
files are stored in the current directory. (If they aren't, you'll get errors
when you try to do a Run or Make.)

Library directory

Specifies the directory that contains your Turbo C start-up object files
(CO?OBJ) and run-time library routines (.LIB files).

Turbo C directory

This is used by the Turbo C system to find the configuration file (.TC) and
the help file (TCHELP.TCH). For Turbo C to find your default
configuration file (TCCONFIG.TC) at startup (if it's not in your current
directory), you must install this path with TCINST, the external installation
program.

Auto save edit

Helps prevent loss of your source file by automatically saving your edit file
(if it's been modified) when you use Run or OS shell.

Backup source files

By default, Turbo C automatically creates a backup of your source file
when you do a Save. It saves the backup copy using the same file name and
a .BAK extension. This activity can be turned off and on with this option.

Zoomed windows

Zoomed on expands the Edit and Message windows to full screen. You can
still switch between them, but only one window at a time will be visible.
Zoomed off returns to the split-screen environment containing both the Edit
and Message windows.

The Turbo C Integrated Development EnvIronment 59

Args

This setting allows you to give your running programs command-line
arguments exactly as if you had typed them on the DOS command line
(redirection is not supported). It is only necessary to give the arguments
here; the program name is omitted.

Retrieve options

Loads the configuration file previously saved with the Store options
command.

Store options

Saves all your selected Compiler, Linker, Environment, Debug, and Project
options in a configuration file (the default file is TCCONFIG.TC). On start­
up, Turbo C looks in the current directory for TCCONFIG.TC; if the file's
not found, then Turbo C looks in the Turbo directory for the same file.

60 turbo C User's Guide

The Debug Menu

The selections in this menu allow you to tailor your compilation for
debugging. The information presented here is just an overview; refer to
Chapter 3 for more details about error tracking and these selections.

File Edit lun Co.pil!-:......-Project Options ~

Line 5 ColI Insert Inde~ C 1M' .4*'LII4WM3!144§1'WUQI
lIain() I Clear .essages
{ Jeep .essages "0

printr("Hello, world"n"); I Avai lable Me.or~ 2iBK
printr("Welcolle to the C clllpiler'n");
printf("everyone has been waiting far'n");

1------------ Message ------------i

Fl-Help FS-ZOOM F6-£dit F9--t1ake FlII-Main Menu

Figure 2.21: The Debug Menu

Track messages

Turbo C will track errors in the editor when you scroll through the Message
window. This three-way toggle tells Turbo C which files to track in.

The default (Track. .. Current file) will only track errors in the file currently
in the editor. Track ... All files will load and track in every file for which
there is a message. You can also turn tracking off.

Clear messages

Clears the error messages from the Message window.

The Turbo C Integrated Development Environment 61

Keep messages

This is a toggle; when it is on, Turbo C saves the error messages currently in
the Message window, appending any messages from further compiles to
the window. When a file is compiled, any messages for that file are
removed from the Message window and new messages are added to the
end. When this toggle is off, messages are automatically cleared before a
compile or make.

Available memory

This item is provided for your information only; it is not selectable. It
indicates the amount of memory you have left for compilation.

62 Turbo C User's Guide

c H A p T E R

3

Putting It All Together-Compiling
and Running

Turbo C provides a flexible environment for C program development; it
comes with default option settings to get you started, but you can easily
change these defaults to best meet your programming needs. Turbo C also
provides various support tools to perform the routine chores associated
with program development, such as error tracking and file-system
management.

If you are not familiar with Borland's easy-to-use Integrated Environment,
you should look over Chapter 2 before compiling and running your
programs through Turbo C's menu system. It is a logical and easy system
to learn, and it won't take long to understand.

In This Chapter ...

Because you can compile and run your Turbo C programs either from the
Integrated Environment or from a standard DOS command line, we discuss
both processes in this chapter. However, because the Integrated
Environment is a complete package, powerful and easy to use, we think
you will want to know about it first.

We begin this chapter with a discussion of how you compile and link Turbo
C source files through the Integrated Environment to produce executable

Putting It All Together-Compiling and Running 63

programs. Turbo C's interactive error-tracking feature assists you in
debugging and perfecting your programs; we demonstrate it in the
discussion of compiling and linking.

After we show you how to compile and remove errors from your source
files, we provide additional information on how to set the compiler and
linker options to fit your program.

Then we demonstrate how to run your programs from the Integrated
Environment; we also introduce Turbo C's built-in Project facility, Project­
Make, and demonstrate how to use it.

After showing you how to run programs within the Integrated
Environment, we explain how to use command lines for compiling, linking,
making (rebuilding), and running your Turbo C programs. In addition to
the Integrated Environment version of Turbo C, your package includes
stand-alone compiler, linker, and MAKE utilities. Specific details on these
stand-alone programs are given in Appendices C and D.

Compiling and Linking from the Integrated
Environment

Building a new program in the Turbo C Integrated Development
Environment usually entails going through the following steps.

1. Set environment options so the compiler and linker know where to
find and store things.

2. Load the program you want to build into the editor. (Note: If the
program consists of more than one module, you need to create a
project file that lists the names of your modules.)

3. Build the executable program file.

The exact content of these general steps differs depending on whether
you're working with one file or several files as your source.

Building a Single-Source Program

For the moment let's assume you're building the single source file program
provided on disk (HELLO.C). Later we will explain how to build programs

64 Turbo C User's Guide

from more than one module. There are six steps necessary-from starting
Turbo C to running the program.

Step 1: Load Turbo C

Load Turbo C by typing te on the DOS command line.

There are several ways you can tell DOS where to find the Turbo C
program:

• TC.EXE can be in the current directory
• TC.EXE can be in another directory and that directory is in the DOS

path (see PATH in your DOS manual).
• TC.EXE can be in another directory and, in 3.x versions of DOS, you can

type the path name to TC.EXE directly on the command line; for
example, \ TURBOC\ TC.

The Integrated Environment will accept two command-line arguments: a
file name of the file to be loaded into the editor, and a Ic switch immediately
followed by another file name. These two arguments can be in any order.
Thus,

tc hello /cmyconfig

will place HELLO.C in the editor and will load the configuration file
MYCONFIG.TC. (Note that there is no space between the Ie switch and the
file name and that the default extension .C is assumed for the edit file and
the default extension .TC is assumed for the configuration file.)

Step 2: Select the example program

Select the drive and directory that contain the example program. Do this by
going to the pull-down file menu by pressing AIt-F (or one of the other
methods described in Chapter 2). Then select Change dir and type in the
name of the directory that contains the example program. This directory
becomes the current directory.

(Note: When the New Directory prompt box comes up, it lists the current
directory. You can use this to check what directory you are in; simply press
Esc to get back to the menus without changing the current directory.)

Step 3: Set up your working environment

Set up and save your working environment by pressing Alt-O to quickly
invoke the Options command from the main menu bar. Select Environment

Puffing It All Together-Compiling and Running 65

to call up a pop-up submenu. You will need two of the items on this
submenu: Include directories, Library directory.

Select Include directories, then type the name of the drive and directory
that contains the Turbo C standard include files (.H files) and press Enter.

Now select Library directory, and type in the name of the drive and
directory that contains the Turbo C library and start-up files.

(If you wish, you may set the Output directory in the same submenu in the
same way. If you do select an output directory, all compiler and linker
output will be written to that directory instead of to the current directory.
In our example case, this is not necessary.)

For most simple cases, this is all the setup necessary for building C
programs.

You can save these settings in a configuration file that can be automatically
loaded when you start Turbo C. When starting, Turbo C looks in the
current directory for a file called TCCONFIG.TC, which it loads if found.
Thus, when working on a particular program it is useful to have a default
configuration file in the same directory as the program and to start Turbo C
from that directory. However, if the configuration file is not found in the
current directory Turbo C looks in the Turbo C directory. So you can keep
one general purpose configuration file in the Turbo C directory and specify
ones in the source directories that use different settings. Note: You must
use the TCINST installation program to set the Turbo directory.

Press Esc to get back to the Options menu. Select Store options to write the
current options to disk. The default file, TCCONFIG.TC, will be written to
the current directory. If you wish, you can give the configuration file
another name by typing in the new name and pressing Enter. If you do this,
however, you will need to explicitly load this configuration file, either on
the TC command line with the / c switch, or by using the Options menu
item Retrieve options.

Step 4: Load the example into the editor

Press F3 (load file) to read in the example program. You can explicitly type
in the name of the program, or you can use a wildcard (*.C) to get a list of
file names, use the cursor keys to move to the file you want, and then press
Enter to read it. After the file is loaded, the Edit window is active and you
can edit the source file (editing the source file isn't necessary in this
example, however).

66 Turbo C User's Guide

The file should look like this:

#include <stdio.h>

main ()
(

printf("Hello world\n");

Step 5: Build the executable file

The Compile menu tells you the name of the file that will be compiled and
the name of the EXE that will be built. When no project name is defined,
Turbo C assumes it can build an executable file with the information you
have already given it. It looks first at the Primary C file and then at the last
file you loaded in the editor to determine what the executable file name is.
It then proceeds as if you had defined a project file with only that one name
in it (more on project files later).

In this simple case of a single-file program, you can compile, link, and run
the program without building a project file. To build an executable file, you
must compile the source and link the object file with the standard start-up
and libraries. Though there are other approaches, the easiest way to do this
is to press F9 (Make) or select the Compile menu and press Enter on the
Make EXE file option.

Step 6: Run the program

At this point, you should have an executable program. To run it, press Alt-R
or select Run on the main menu. (Note: You can run your executable
program from the DOS command line by simply typing the file name,
minus its extension.)

Debugging

Tracking and fixing errors in programs is always one of the more
frustrating aspects of programming. One of the best reasons to use the
Turbo C Integrated Environment, however, is to fix syntax errors and
evaluate any warnings the compiler gives you. Turbo C collects compiler
and linker messages in a buffer and then displays them in the Message
window. This lets you look at the messages all at once while still giving you
direct access to your source.

Putting It All Together-Compiling and Running 67

To try this out, add some syntax errors to the example program. Remove
the # from the include statement on the first line. Next take out the trailing
quotation mark in the printf string on the fifth line. The now-buggy file
should look like this:

include <stdio.h>

main ()
{

printf("Hello world\n);

Now compile the file again by pressing Alt-F9 (Compile). The Compiling
window will tell you how many errors and warnings you have introduced
(there should be three errors and no warnings).

The Message Window

When you see the message Press any key in the Compiling window,
just press the space bar. You will be taken to the Message window where a
highlight bar is placed on the first error or warning. Since the first error
occurred in the file that is currently in the editor, you will also see a
highlighted line in the Edit window. This marks the place in your source
code where the compiler generated the error or warning.

At this point you can use the cursor keys to move the Message window's
highlight bar up and down to view other messages. Notice how the
highlight bar in the Edit window tracks where the compiler thinks each
error occurred in your source. When you place the highlight bar on the
"compiling" message, the editor shows you the last place you were in that
file.

If the text in the Message window is too long to see, you can use the left
and right arrow keys to scroll the message horizontally. To view more
messages at once, you can zoom the Message window by pressing F5
(Zoom). When the Message window is zoomed, you cannot see the Edit
window, so no tracking occurs. For now, leave the windows in split-screen
mode.

Correcting a Syntax Error

To correct an error, place the Message window highlight bar on the first
error message and then press Enter. Your cursor shifts to the Edit window

68 Turbo C User's Guide

and is placed at the spot that generated the error message. Notice that the
status line of the editor shows the message you selected (this is useful when
you work in zoomed mode). You can now correct the error that generated
the message. (You'll have to put back the # in the first line that you took
out earlier.)

Since there is more than one error message, there are two ways to proceed
to fix the next error.

The first method is to return to the Message window by pressing F6
(Message) and selecting the next message you want to fix, as previously
described.

However, you do not need to return to the Message window to get to the
next error. Instead, you can simply press FB (Next error) and the editor will
place the cursor at the location of the error listed next in the message
window. Note that the message shown in the status line and the
highlighted line in the Message window change as you move from one
error to the next. You can also move backward by pressing F7 (Previous
error).

There are certain advantages to both these methods, and usually
circumstances dictate which method is preferable. Sometimes one silly
mistake in the source can confuse the compiler, producing many messages.
In this case, selecting and fixing the first message makes the next few error
messages moot. When this happens, it is more convenient to use method
one-to return to the Message window after fixing the first error, to scroll
down to the next meaningful message, then to select it. In other cases,
however, you may wish to check each message in sequence; pressing FB
(Next error) in this case is more effective.

Remember that F7 and FB (Previous error and Next error) are hot keys, i.e.,
they work from anywhere within Turbo C. Thus if you are in the Message
window and you press FB (Next error), you don't get the message that is
currently highlighted but the one after it. (If you want to select the current
message, press Enter.) If there are no further compiler messages, FB (Next
error) has no effect. Note: Linker messages are not selectable and will not
track in your source.

In the course of fixing syntax errors, it is often necessary to add and delete
text. The editor keeps track of this: When you proceed to the next error, it
correctly positions the cursor on the error. You don't need to remember line
numbers or to keep track of added or deleted lines of text.

Puffing It All Together-Compiling and Running 69

Using Multiple Source Files

One of the great things about Turbo C is its ability to handle separate
compilation of multiple source files. And Turbo C's Project-Make facility
makes it even nicer.

In the earlier example, there was only one source file so that you could use
the Compile/Make ~ption to make an executable file without having to
define a project file. When building a program from multiple C source files,
however, it is necessary to tell Turbo C exactly which files are involved; i.e.,
to create a project file.

Don't panic. Creating a project file is as simple as listing the names of your
C source files. Even though you will see that you can pack a lot of power
into making a project, for now, let's start simple-with a two-file program.

A basic case is to have a main program file and a support file that defines
functions or data that is referenced from the main file. For example, the
main file called MYMAIN.C might look like this:

#include <stdio.h>
main (int argc, char *argv[])
(

char *s;

if (argc > 1)
s = argv[1];

else
s = "the universe";

printf("%s %s.\n",GetString(),s);

And the support file called MYFUNCS.C might look like this:

char ss [] = "The restaurant at the end of";

char *GetString(void)
(

return ss;

These two files now give you something to work with to build a project file.
As you can probably guess, the project file simply contains two lines
naming the files to be compiled and linked. Call the project file
MYPROG.PR]. It looks like this:

70

mymain
myfuncs

Turbo C User's Guide

That's all. Turbo C assumes any file without an extension is a .C file
(though you may add the .C if you want to). Also, the order is not
important except that it determines the order in which files are compiled.
The following project file would have the same end result:

myfuncs
mymain

Notice that the name of the project file (MYPROG.PRJ) is not the same as
the name of the main file (MYMAIN.C). The two names could have been
the same (but not the extensions), but they do not have to be. The important
thing to remember is that the name of your executable file (and any map
file produced by the linker) will be based on the project file's name. In this
case the executable file will be MYPROG.EXE (and possibly a map file
called MYPROG.MAP).

Also note that you can specify complete path names for any of the files
listed in the project file. In this way, you can build a program without
having all the source files in the same directory.

Go ahead and type in the three files described previously, MYMAIN.C,
MYFUNCS.C, and MYPROG.PRJ.

Building a Multi-Source File Program

Now that you have a project file, all you need to do is tell Turbo C what
project you want to make. This is done by entering the name of the project
file on the project menu. Press Alt-P to get to the Project menu and select
Project name. You can explicitly type in the name of your project file or you
can use wildcards to find it in a list of file names from a directory. (But
remember, if you haven't saved the file, it won't be on disk.) Once your
project name is entered, you can simply press F9 (Make) to make the
executable file. To run this program, press Alt-R (Run).

Note that running a program includes doing a "make." This means that
pressing AIt-R can initiate a compile and link cycle if the files in the project
need to be recompiled. This means you could have omitted the explicit
make (F9).

Putting It All Together-Compiling and Running 71

Error Tracking Revisited

In the example of a single-file source, you saw that syntax errors that
generate compiler warning and error messages can be viewed and selected
from the Message window. Likewise, the Message window also handles
errors from multiple-file compilations (or "makes").

To see this, introduce some syntax errors into the two files, MYMAIN.C
and MYFUNCS.C. From MYMAIN.C, remove the first angle bracket in the
first line and remove the c in char from the fifth line. These changes should
generate three errors and three warnings in MYMAIN.

Now load MYFUNCS.C and remove the first r from "return" in the fifth
line. This change will produce two errors and two warnings.

Editing these files makes them out of date with respect to their object files,
so doing a make will recompile them. Since you want to see the effect of
tracking in multiple files, you need to modify the criterion that Project­
Make uses to decide when to stop. This is done by setting a toggle on in the
Project menu.

Stopping a Make

There are several reasons why the make cycle stops in Turbo C. Obviously,
Project-Make stops once an executable file has been produced. But Project­
Make will also stop to report some type of error.

For example, Project-Make will always stop if it can't find one of the source
files (or one of the dependency files-to be discussed later) listed in the
project file. Also, you can force Project-Make to stop by pressing err/-Break.

A make can also stop when the compiler generates messages. You can
choose the type of message you want it to stop on by setting the toggle
option in the Project menu called Break make on. This toggle defaults to
Break make on ... Errors-which is normally the setting you'll want to use.
However, you can have a make stop after compiling a file with warnings,
or with errors, or with fatal errors, or have it stop before it tries to link.

The usefulness of each of these modes is really determined by the way you
like to fix errors and warnings. If you like to fix errors and warnings as
soon as you see them, you should set the Break make on toggle to
Warnings or maybe to Errors. If you prefer to get an entire list of errors in
all of the source files before fixing them up, you should set the toggle to
Fatal errors or to Link.

72 Turbo C User's Guide

Syntax Errors in Multiple Source Files

To demonstrate errors in multiple files, set the Break make on toggle to
Fatal errors. To do this, press Alt-P to get to the Project menu, and select
Break make on. Now select Fatal errors from the submenu.

At this point, you should have introduced syntax errors into MYMAIN.C
and MYFUNCS.C. Press F9 (Make) to "make the project." The Compiling
window will show the files being compiled and the number of errors and
warnings in each file and the total for the make. When the Press any key

message flashes, press the space bar.

Your cursor should now be positioned on the first error or warning in the
Message window. And if the file that message refers to is in the editor,
there will be a highlight bar in the Edit window showing you where the
compiler detected a problem. Again, you can scroll up and down in the
Message window to view the different messages. Note that there is a
"Compiling" message for each source file that was compiled. These
messages are not errors or warnings but serve to separate as "file
boundaries," separating the various messages generated by each file.

When you scroll down past a file boundary, the Edit window mayor may
not track in the next file, depending on the setting of the Track messages
toggle in the Debug menu. The default value is to track only in the current
file.

Thus, moving to a message that refers to a file other than the one in the
editor causes the Edit window's highlight bar to turn off. If you select one
of these messages (that is, press Enter on it), the file it refers to will be loaded
into the editor and you will be placed in the editor with the cursor on the
error. If you then return to the Message window by pressing F6 (Message),
tracking will resume in that file.

But by setting the Track messages toggle to All files, you can track
messages across file boundaries. This means that when you scroll through
the Message window, Turbo C will automatically load the file into the
editor so you can see where each message refers. Try it.

You can also turn tracking off completely, by setting the Track messages
toggle to Off. In this case, you simply select the message you wish to work
on and then press Enter. The file the message refers to will then be loaded
into the editor with the cursor placed on the error.

Note that F7 and FB (Previous error and Next error) are not affected by the
setting of the Track messages toggle. These hot keys will always find the
next or previous error and will load the file if necessary.

Putting It All Together-Compiling and Running 73

Keeping and Getting Rid of Messages

Normally, whenever you start to make a project, the Message window is
cleared out to make room for new messages. Sometimes, however, it is
desirable to keep messages around between makes.

Consider the following example: You might have a project that has many
source files and you have Break make on set to stop on Errors. In this case,
you may get several warning messages in several files, but then one file
contains an error so that the make stops. You fix that error and want to find
out if the compiler will accept the fix. But if you just do a make or compile
again, you will lose your earlier warning messages, which you may yet
want to look at. How can you avoid this? All you have to do is to turn on
the Keep messages toggle in the Debug menu.

When the Keep messages toggle is on, messages are not cleared out when
you start up a make. The only messages removed are the ones that result
from the files you recompile. Thus, the old messages for a given file are
replaced with any new messages that the compiler may generate.

If at some point you are done with the messages, you can get rid of them by
selecting Clear messages on the Debug menu. This zaps all the current
messages. Turning off Keep messages and running another make will also
get rid of any old messages.

It's a good idea to get into the habit of clearing the messages when you
change projects. To facilitate this, there is a short cut in the Project menu,
called Clear project, that clears both the project name and the current
messages. After selecting Clear project, you can define a new project or
compile and run single-file programs by simply loading them into the
editor or defining the Primary C file name.

The Power of Project Making

In the last description of making a project, you dealt with the most basic
situation: just a list of C source file names. Project-Make provides a lot of
power to go beyond this simple situation. To see this you need to
understand how a make works .

. Make works by comparing the date of the source file with the date of the
object file generated by the compiler. This comparison of creation dates
defines several implicit dependencies in a simple project list.

74 Turbo C User's Guide

Given the earlier example using MYPROG.PRJ, you have the following
dependencies:

MYMAIN.OBJ is dependent on MYMAIN.C
MYFUNCS.OBJ is dependent on MYFUNCS.C
MYPROG.EXE is dependent on MYMAIN.OBJ, MYFUNCS.OBJ, and

MYPROG.PRJ

This means the object file MYMAIN.OBJ is out-of-date if MYMAIN.C is
newer than MYMAIN.OBJ; thus MYMAIN.C will be recompiled. Notice the
executable file is always dependent on all object files in the project and on
the project file itself. This latter fact means that if any of the objects or if the
project file MYPROG.PRJ itself has a newer date than MYPROG.EXE, the
make function will relink MYPROG.EXE. These implicit dependencies arise
from the simple list of file names of the C files in your project.

Explicit Dependencies

However, bigger projects require a more sophisticated make facility that
allows you to specify explicit dependencies. This is useful when a
particular C source file depends on other files. It is common for a C source
to include several header files (.H files) that define the interface to external
routines. If the interface to those routines changes, you would like the file
that uses those routines to be recompiled. This is done with explicit
dependencies.

For example, say you have a main program file, MYMAIN.C, that includes
a header file MYFUNCS.H. Make will recompile MYMAIN.C and
MYFUNCS.C if MYFUNCS.H changes-if you specify the following
dependencies in your project file:

MYMAIN.C (MYFUNCS.H)
MYFUNCS (MYFUNCS.H)

Notice that this project file makes the MYFUNCS.C file dependent on the
MYFUNCS.H file. This is a good consistency check for your files. So now
you have the same implicit dependencies as well as some explicit
dependencies, like so:

MYMAIN.OBJ is dependent on MYMAIN.C, and MYFUNCS.H
MYFUNCS.OBJ is dependent on MYFUNCS.C, and MYFUNCS.H
MYPROG.EXE is dependent on MYMAIN.OBJ, MYFUNCS.OBJ, and

MYPROG.PRJ

Any C file listed in a project file can have as many explicit dependencies as
it needs. Simply place the files you want the C source to be dependent on in
parentheses, separated by blanks, commas, or semicolons.

Putting It All Together-Compiling and Running 75

For example if you want MYMAIN.C to be dependent on MYFUNCS.H,
YOURS.H, and OTHER.H, you would type

MYMAIN.C (MYFUNCS.H, YOURS.H, OTHER.H)

That is all there is to dependencies. This method gives you the power of
more traditional makes without all the hassle of a complicated make
syntax.

What? More Make Features?

There are two other features that add to the power of the make function.
The first lets you specify external object and library files to be linked into
your project, and the second lets you override the standard start-up and
libraries.

External Object and Library Files

From time to time, you might want to use some routines that came from
another source, such as assembly language or from another compiler. Or
maybe you have some library files that perform special functions not
provided in the standard libraries. In these cases, you can include the name
of the object or library files in your project with an explicit extension. Like
so (note that the order when listing files is not important):

MYMAIN (MYFUNCS.H)
MYFUNCS (MYFUNCS.H)
SPECIAL.OBJ
OTHER. LIB

When Project-Make sees a file with an explicit .OB} extension, it simply
includes that file in the list of files to be linked together. It does not try to
compile it or find its source. Similarly, a name in your project file with a
.LIB extension gets put into the list of libraries that the linker searches when
trying to resolve external references. Again, it does not try to compile or
build the library.

Note that these types of files cannot have explicit dependency lists (they
will be ignored if they do). However, feel free to include these names in
your C source dependency list like any other file you want your source to
depend on.

76 Turbo C User's Guide

For example:

MYMAIN (MYFUNCS.H, SPECIAL.OBJ)
MYFUNCS (MYFUNCS.H, OTHER. LIB)
SPECIAL.OBJ
OTHER. LIB

What this means is that if for some reason these .OB} or .LIB files become
updated, the C source will be recompiled.

Overriding the Standard Files

In some cases, it is necessary to override the standard start-up or libraries.
This is usually reserved for the heavy hackers, and is not a common
practice for beginners. But if you ever feel the need, here is how to do it.

To override the start-up file, you must place a file called CO*.OB} as the first
name in your project file-where the asterisk (*) can be filled out to any
DOS name (for example COMINE.OBJ). The critical parts are that the name
start with CO, that it is the first file in your project, and that it have an
explicit .OB} extension.

To override the standard library, all you need to do is to place a special
library name anywhere in the list of names in your project file. The name of
the library must start with a C, be two characters in length, and have an
explicit .LIB extension. For example, CX.LIB or Cl.LIB.

When the standard library is overridden, Make does not try to link in the
math libraries as based on the Floating point toggle in the O/C/Code
generation menu. If you wish to have these libraries linked in when you
override the standard library, you must explicitly include them in your
project file.

Compiling and Linking from a Command
Line

In addition to using the Integrated Environment, you can run your Turbo C
programs with the old-fashioned type of command-line interface. While the
Integrated Environment mode is best for developing and running your
programs, you may sometimes prefer to use the command line; in some
advanced programs, the command-line interface may be the only way to do
something intricate. For example, if your Turbo C programs include in-line

Putting It All Together-Compiling and Running 77

assembly code, you will need to use the command-line version of Turbo C
(TCC) rather than TC, the Integrated Environment version.

TCC compiles C source files and links them together into an executable file.
It works similarly to the UNIX CC command. TCC will also invoke MASM
to assemble .ASM source files. Note that to compile only you have to use the
-e option at the command line.

The TCC Command Line

To invoke Turbo C from the command line, enter tee at the DOS prompt
and follow it with a set of command-line arguments. Command-line
arguments include compiler and linker options, and file names. The generic
command-line format is

tee [option option option ... J filename filename

Options on the Command Line

Each command-line option is preceded by a dash (-), and separated from
the tee command, other options, and following file names by at least one
space. You can explicitly turn a command-line option off by following the
option with a dash. (For example, -K- explicitly turns the unsigned chars

option off.) Turbo C's command-line options are described in Appendix C.

File Names on the Command Line

After the list of options, type file names on the command line. The compiler
compiles files according to the following set of rules:

filename

filename.c

filename.xyz

filename.obj

filename. lib

filename.asm

compile filename. c

compile filename. c
compile filename. xyz

include as object at link time
include as library at link time
invoke MASM to assemble to .OB]

The compiler will then invoke the linker and supply the linker with the
names of the appropriate C start-up file and standard C libraries.

78 Turbo C User's Guide

The Executable File

Normally, the compiler derives the name of the executable file from the
first source or object file name supplied on the command line. The
executable program is given that first file name with the .EXE extension.

If you want to specify a different name for the executable file, use the -e
option. After the t cc command and before any file names, enter -e
immediately followed by the name you want to give the executable file (no
white space between the e and the file name).

Some Example Command Lines

The following example illustrates proper syntax for invoking Turbo C with
a DOS command line:

tee -IB:\inelude -LB:\lib -etest start.e body.obj end

For this example command line, the command tcc invokes Turbo C at the
DOS prompt. Turbo C then interprets the command-line options as
meaning

c The include directory is B:\INCLUDE (-IB: \include).

CI The libraries are in the B: \ LIB directory (-LB : \ 1 ib).

t'I The executable result should be placed in a file called TEST.EXE
(-etest).

Turbo C interprets the listed files to mean that this program consists of

c a source file called START.C to be compiled

c an object file called BODY. OBI to be included at link time

c another source file called END.C to be compiled

Here is another example of a Turbo C compile-time command line:

tee -IB:\inelude -LB:\lib2 -rnm -c -K s1 s2.e z.asm mylib.lib

This compile-time command line directs Turbo C to

c look for the include files in the B: \ INCLUDE directory (- IB : \ inc 1 ude)

13 look for the libraries in the B:\LIB2 directory (-LB: \lib2)

c use the Medium memory model (-rnrn)

t'I allow nested comments (-c)

c make chars unsigned (-K)

Turbo C interprets the list of file names to mean that

Puffing It All Together-Compiling and Running 79

• The source files called Sl.C and S2.C are to be compiled.

• The file Z.ASM is to be assembled (using MASM).

• The executable file will be named Sl.EXE.

• The library file MYLIB.LIB is to be linked in at link time.

The TURBOC.CFG File

You can set up a list of options in a configuration file called TURBOC.CFG,
which can be used in addition to options entered on the command line.
This configuration file contains options as they would be entered on the
command line.

You create the TURBOC.CFG file using any standard ASCII editor or word
processor (such as the Turbo Editor in the Integrated Environment version).
You can list options (separated by spaces) on the same line or list them on
separate lines. Then, when you compile your program from the command
line, Turbo C uses the options supplied in TURBOC.CFG, in addition to the
ones given on the command line.

When TCC starts, it looks for TURBOC.CFG in the current directory. If it
doesn't find it there and if you're running DOS 3.x, it then looks in the start
directory (where TCC.EXE resides). Note that this configuration file is not
the same as TCCONFIG.TC, which is the default Integrated Environment
version of a configuration file.

Options given on the command line override the same options specified in
TURBOC.CFG. This ability to override configuration file options with
command-line options is an important one. If, for example, your
configuration file contains several options, including the -a option (which
you want to turn off), you can still use the configuration file but override
the -a option by listing -a- in the command line.

How are command-line options and TURBOC.CFG options combined and
overridden? Conceptually, the TURBOC.CFG file's list of options is split
into two parts: the - I options, and all the other options in the file. The - I

options are then appended to the right of the command-line options, and
the remaining TURBOC.CFG options are inserted on the left of the
command line's list of options (immediately after the tee command).

Command-line options are evaluated from left to right; any option
duplication on the right overrides the same option on the left. Because of
the way the command line and TURBOC.CFG are combined, with the
TURBOC.CFG - I options on the extreme right, the include directories

80 Turbo C User's Guide

specified in the command line are the first ones that Turbo C searches for in
the include files. This gives the - I directories on the command line priority
over those in the configuration file-which is what you want.

The MAKE Utility

Turbo C's stand-alone MAKE utility, a more powerful version of Project­
Make, permits you to describe source and object file dependencies; it is
based on the UNIX MAKE utility. The MAKE utility evaluates those
dependencies to ensure that the files are correctly compiled and linked.

What is the advantage to using a MAKE utility? As with Project-Make, you
do not have to keep track of which program components have changed
since you last compiled them. Stand-alone MAKE is more powerful than
Project-Make, however, because it is a general-purpose program builder.
Before linking your complex program's object files, MAKE recompiles any
files that need to be updated. Then it simply incorporates the newly
compiled files with those that did not need to be recompiled and creates a
new, executable program file.

You should read Appendix D (in the Turbo C Reference Guide) for more
information on MAKE. That appendix contains a detailed explanation of
the stand-alone MAKE utility.

Running Turbo C Programs from the DOS
Command Line

To run executable Turbo C programs from the DOS command line, simply
type the executable file name at the DOS prompt. It is not necessary to
include the .EXE extension. For example, to execute the program TEST.EXE,
you would just type test at the DOS prompt and press Enter. The TEST
program would then run (execute).

Putting It All Together-Compiling and Running 81

All Together Now: Get a Move On with
Turbo C

Now that you have seen how to compile,link, run, and make your Turbo C
programs, both with the Integrated Environment and through standard
command lines, you are ready to put Turbo C through its paces. As you
expand your knowledge about the language and about this imple­
mentation, you will want to refer to the second volume of this handbook,
the Turbo C Reference Guide, for information about the run-time
environment, the library files, advanced programming techniques, and
Turbo C's implementation of the C language.

If you know Turbo Pascal or Turbo Prolog, you will also want to read
Chapters 6 and 76 and 7, respectively, for some tips on how to use either of
these languages with this fast, powerful C programming package.

82 Turbo C User's Guide

c H A p T E R

4

Programming in Turbo C

Have you ever programmed in C before? You may have heard various
stories about how C is a difficult language to learn. Nonsense. It is true that
some C programmers delight in writing obscure programs that are difficult
to read and debug, but there's nothing that says you have to do the same.
The basic elements of the C programming language are easy to understand
and use.

In This Chapter ...

We will teach you the basic elements of the C language in this chapter, and
show you how to use them in your programs. The next chapter, "More
About Programming in Turbo C," teaches more about C, while Chapter 9,
"Advanced Programming in Turbo C," tells all about memory models,
interrupts, assembly-language programming, and other advanced topics.

Of course, we can't teach you everything about programming in C in one
or two chapters; there are entire books about that. Two very good new
books are on the market for programmers learning C: Using Turbo C and
Advanced Turbo C, both by Herbert Schildt (published by Osborne-McGraw
Hill).

Before you work through this chapter, you should read Chapter 2, "The
Turbo C Integrated Development Environment," and learn how to use the
menus and text editor in Turbo C. You should also have installed Turbo C

Programming in Turbo C 83

(made working copies of your Turbo C disks or copied the files onto your
hard disk) as described in Chapter 1. Also, be sure that you've created the
file TCCONFIG.TC as described in that same chapter; otherwise, Turbo C
won't know where the library (\LIB) and include (\INCLUDE) files are.

Once you've done all that, then sit down, turn on your computer (if it isn't
already on), and get ready to learn about programming in Turbo C.

Creating Your First Turbo C Program

Tradition has it that your first C program should always be the Hello, world
program found in the classic work, The C Programming Language by
Kernighan and Ritchie. Start by typing (from the DOS prompt) the
command:

tc hello.c

This gets you into the Integrated Development Environment version of
Turbo C, creates a file named HELLO.C (if it doesn't already exist), and
puts you into the Turbo C editor. Now, type in the following program:

main ()
{

printf("Hello, world\n");

Having entered this program, you should save it to disk before going any
further; after all, if you should crash your computer system, you'd hate to
lose all this work. To save your first Turbo C program to the disk, you can
press F2 or you can select Save from the File menu by pressing F10 F S.

Compiling It

Having saved this program, you must do two things before you can run it:
compile it and then link it.

To compile your file, you press AIt-F9 (hold down the Alt and F9 keys at the
same time). A second way to compile your file is to explicitly return to the
main menu (press F10), select C to get to the Compile menu, and then press
C again (for Compile to OBJ).

When compilation is done (which should only take a second or two), a
flashing message on-screen will say Success: Press any key_ When you
press a key, the window will disappear, and your menu bar will be active.

84 Turbo C User's Guide

If you've had any warnings or errors, they'll appear in the Message
window at the bottom of the screen. You shouldn't get any; so if you do,
check to be sure that you've typed the program in exactly as given, then
compile it again.

Running It

Once you've compiled without any errors, you're ready to run your
program. Since the menus are active, you can just press R (for Run). If
you've gone back into the editor, you can press Alt-R; or you can bring up
the menus again (press F10), then press R to select the Run command. A
new linking window will come up, showing you that Turbo C is now
linking in whatever library routines it needs.

Did you get any errors? If you did, it's probably because you haven't told
Turbo C where the library files are. If you're still seeing the Linking
window, make it go away (press any key), press F10 then 0 to bring up the
Options menu (or use the Alt-O short-cut).

Press E to select the Environment command, then press L to choose the
Library directory command. When the Library directory window comes
up, type in the complete path name of the subdirectory where you've
stored your library files-it's probably A:\ TURBOC\LIB or
C: \ TURBO \ LIB-and press Enter.

Press Esc to make the Environment menu go away, then press S (for Store
options). A Config File prompt box will come up, with the name
TCCONFIG.TC in it. Just press Enter; if Turbo C asks if you want to
overwrite TCCONFIG.TC, type Y.

Finally, press Esc to make the Options menu go away, and press R to run
again.

At this point, Turbo C should successfully link your program. This means
that for your program to run Turbo C copies in the necessary subroutines
from the run-time libraries. The default memory model is Small (see
Chapter 9 for more details on memory models), so Turbo C will link in the
library routines from CS.LIB.

Having linked your program, Turbo C then runs it. The screen clears, the
message Hello, world appears at the top of the screen, and the message
Press any key to return to Turbo c ... appears at the bottom. Press
any key, and the Turbo C display reappears. Congratulations-you've just
created your first Turbo C program!

Programming in Turbo C 85

What Happened?

Now get out of Turbo C and look at what you've created. Select the Quit
command from the File menu.

At the DOS prompt, type dir hello. * and press Enter. You'll get a list of
files that looks something like this:

HELLO.C 42 1-01-80 9:2Sp
HELLO.OBJ 221 1-01-80 9:26p
HELLO.EXE 4486 1-01-80 9:26p

The first file, HELLO.C, contains the text (the source code) of your program.
You can display it on the screen; just enter (at the DOS prompt) the
command type hello. c. As you can see, it isn't very big-only 42 bytes
long.

The second file, HELLO.OB], contains the binary machine instructions (the
object code) produced by the Turbo C compiler. If you use the DOS type

command to display this file on the screen, you'll get mostly gibberish.

The last file, HELLO.EXE, is the actual executable program produced by the
Turbo Linker. It not only contains the code in HELLO.OB], but also has all
the necessary support routines (such as printf) that the linker copied in
from the library file. To run any executable file, you just type its name at
the DOS prompt, without the .EXE extension.

At the DOS prompt, type hello and press Enter. The message
Hello, world will appear on the screen, and the DOS prompt will come
back again. You've now written a working Turbo C program that you can
give away to all your friends (who are undoubtedly dying for such a
program).

Modifying Your First Turbo C Program

Get back into Turbo C by typing tc hello. c at the DOS prompt. You'll
find yourself back in the Turbo C editor, with your program already loaded
in.

86 Turbo C User's Guide

Now you'll modify it so that you can interact with it a little. Edit your
program so that it now looks like this:

main()
{

char name[30];

printf ("What's your name? ") ;
scanf("%s",name);
printf("Hello, %s\n",name);

You've added three lines to your program. The first line (char name [30] ;)

declares a variable named name, which can hold a string of up to 29
characters (letter, digit, punctuation, etc.). The second added line calls
printf to write out the message What's your name? The third added line
calls scanf to read your name into the variable name.

Save your modified program by pressing F2 or F10 F S. Press F10 to invoke
the main menu, then press R (for Run). Note that Turbo C is smart enough
to know that you have modified your program, so it recompiles the
program before running it.

This time, when your program runs three things happen: the screen clears,
the message What's your name? appears at the top, and the cursor sits
waiting after the question mark. Type in your name and press Enter. The
program now says Hello, <your_name>. Note that it only read the first
name you typed in; you'll learn why later in this chapter. For now, press
any key on the keyboard to return to Turbo C.

As you write programs, you might make errors or receive warnings. An
error is a mistake in your program that prevents Turbo C from creating
object code. A warning is just that: a message to point out a possible
problem. Errors and warnings are listed in the Message window. There are
many different errors and warnings; they are covered in more detail in
AppendixC.

Sending Your Output to a Printer

Are you wondering how to send your "Hello, World" program to a printer
instead of to the screen? We'll show you how here, but we won't go into
the details of how this works yet; you have plenty to learn for now, and we
want to save some of the fun for later.

Programming in Turbo C 87

Modify your program to look like this:

#include <stdio.h>

main ()
{

1*

FILE *printer;

printer = fopen ("PRN", "W") ;
fprintf(printer,"Hellu, World\n");
fclose (printer) ;

Note: If your system uses LPTl or LPT2, you can replace
PRN with either of those to specify your printer.

*1

Note that this time we've used the £printf function instead of printf, and
we've prefaced the program with an #include directive. As you gain more
expertise with Turbo C and venture into the Turbo C Reference Guide, you'll
learn more about these elements we've added.

Writing Your Second Turbo C Program

Now modify your program to create a new one. Get into the Edit window
(press F10 E or Alt-E) and change your program so that it looks like this:

main ()
{

int a,b,sum;

printf("Enter two numbers: ");
scanf("%d %d",&a,&b);
sum = a + b;
printf("The sum is %d \n",sum);

You have made five changes to the original program. You have

• replaced the line defining name with one defining other variables (a, b,
and sum, all integers)

• changed the message in the printf statement

• changed the format string and variable list in the scanf statement

• added the assignment statement sum = a + b;

• changed the format string and argument list in the final printf statement

88 Turbo C User's Guide

Don't let the percent signs (%), ampersands (&), and backslashes (\)
confuse you; we'll explain what they mean soon.

Writing to Disk

Now, do not press the F2 function key. If you do, this program will be saved
as HELLO.C (you are going to save it under a different name).

Instead, press FlO to get to the main menu. Press F, then W to bring up the
File/Write to command. Turbo C will ask you to type in the new name for
this program; type sum. c and press Enter. Your second program has now
been saved on disk as SUM.C. Press FlO to invoke the main menu again.

Running SUM.C

Press R to select the Run command. Turbo C will compile your program. If
there are any errors, go back into the editor and be sure that what you've
typed in matches exactly what is given in the example.

Once there are no errors, Turbo C will link in the appropriate library
routines and then run your program. The screen will clear and this message
will appear at the top:

Enter two values:

Your program is waiting for you to enter two integer values, separated by
blanks and/or tabs and/or carriage returns. Be sure to press Enter after
typing the second value. Your program now prints the sum of those two
values, then waits for you to press any key before returning to Turbo C.

Congratulations! You've now written two completely different Turbo C
programs using several of the basic elements of programming. Wondering
what those elements are? You can find out by reading the next section of
this chapter before going on to Chapter 5.

Programming in Turbo C 89

The Seven Basic Elements of Programming

The purpose of most programs is to solve a problem. Programs solve
problems by manipulating information or data. You've got to:

• get the information into the program

• have someplace to keep it

• give the instructions to manipulate it

• get it back out of the program to the user (you, usually)

You can organize your instructions so that:

• some are executed only when a specific condition (or set of conditions)
is true

• others are repeated a number of times
• others are broken off into chunks that can be executed at different

locations in your program

We've just described the seven basic elements of programming: input, data
types, operations, output, conditional execution, loops, and subroutines. This list
is not comprehensive, but it does describe those elements that programs
usually have in common.

Most programming languages have all these; many, including C, have
additional features as well. But when you want to learn a new language
quickly, you can find out how that language implements these seven
elements, then build from there. Here's a brief description of each element:

Output means writing information to the screen, to a disk, or to an I/O
port.

Data Types are constants, variables, and structures that contain numbers
(integer and reaD, text (characters and strings), or addresses (of variables
and structures).

Operations assign one value to another, combine values (add, divide, etc.),
and compare values (equal, not equal, etc.).

Input means reading values in from the keyboard, from a disk, or from an
I/O port.

Conditional Execution refers to executing a set of instructions if a specified
condition is true (and skipping them if it is false).

90 Turbo C User's Guide

Loops execute a set of instructions some fixed number of times or while
some condition is true.

Subroutines are separately named sets of instructions that can be executed
anywhere in the program just by a reference to the name.

Now we'll take a look at how to use these elements in Turbo C.

Output

It may seem funny to talk about output first, but a program that does not
somehow output information isn't of much use. That output usually takes
the form of information written to the screen (words and pictures), to a
storage device (floppy or hard disk), or to an I/O port (serial port, printer
port).

The printf Function

You've already used the most common output function in C: the printf
routine. The purpose of printf is to write information to the screen. Its
format is both simple and flexible:

printf«format string>, <item>, <item>, ...);

The Format String

The format string is just a string that begins and ends with double quotes
("like this"); printf's purpose is to write that string to the screen. First,
though, printf substitutes any additional items listed into the string,
according to the format commands found in the string itself. For example,
your last program had the following printf statement:

printf("The sum is %d \n",sum);

The %d in the format string is a format specification. All format specifications
start with a percent sign (%) and are (usually) followed by a single letter,
indicating the type of data and how the data is to be formatted.

You should have exactly one item listed for each format specification. If the
item is of a data type that doesn't directly correspond to the format
specification, then Turbo C will attempt to make an appropriate
conversion. The items themselves can be variables, constants, expressions,
function calls. In short, they can be anything that yields a value appropriate
to the corresponding format specification.

Programming in Turbo C 91

The %d used in this specification says that it expects an integer. Here are
some other commonly used format specifications:

• %u (unsigned integer)
• %p (pointer value)
• %f (floating point)
• %e (floating point in exponential format)
• %c (character)
• %s (string)
• %x or %X (integer in hexadecimal format)

You can set the field width by placing it between the % and the letter; for
example, a decimal field of width 4 would be %4d. The value will then be
printed out right-justified (with leading blanks), so that the total field width
is 4.

If you need to print a percent sign, just insert %%.

The \n in the string isn't a format specification. It is known (for historical
reasons) as an escape sequence, and it represents a special character being
inserted into the string. In this case, the \n inserts a newline character, so
that after the string is written out, the cursor moves to the start of a new
line.

A complete list of all escape sequences can be found in Chapter 8, but a few
of the more commonly used ones include:

• \f (formfeed or clear screen)

• \t (tab)
• \b (backspace)
• \xhhh (insert the character represented by ASCII code hhh, where hhh =

1 to 3 hexadecimal digits)

And if you need to print a backslash, just insert \ \. If you want more detail
on how printf works, turn to the printf entry in the Turbo C Reference Guide.

Other Output Functions: puts and putchar

There are two other output functions that you might be interested in: puts
and putchar. The function puts writes a string to the screen followed by-a
newline character.

92 Turbo C User's Guide

For example, you could rewrite HELLO.C as

main ()
{

puts ("Hello, world");

Note that we dropped the \n at the end of the string; it isn't needed, since
puts adds one.

On the other hand, the function putchar writes a single character to the
screen and does not add a \n. The statement putchar (ch) is equivalent to
printf ("%c", ch).

Why might you want to use puts and/ or putchar instead of printf? One
good reason is that the routine that implements printf is rather large;
unless you need it (for numeric output or special formatting), you can make
your program both smaller and quicker by using puts and putchar instead.
For example, the .EXE file created by compiling the version of HELLO.C
that uses puts is much smaller than the .EXE file for the version that uses
printf.

Data Types

When you write a program, you're working with some kind of information,
most of which falls into one of four basic types: integers, floating-point
numbers, text, and pointers.

Integers are the numbers you learned to count with (1, 5, -21, and 752, for
example).

Floating-point numbers have fractional portions (3.14159) and exponents
(2.579x1024

). These are also sometimes known as real numbers.

Text is made up of characters (a, Z, !, 3) and strings ("This is only a test.").

Pointers don't hold information; instead, each one contains the address of
some location in the computer's memory that does hold information.

Float Type

C supports these four basic data types in various forms. You've already
used two of them: integers (int) and characters (char). Now you will
modify your last program to use a third type: floating point (float).

Programming in Turbo C 93

Get into the Turbo C editor and change your program to look like this:

main ()
(

int a,b;
float ratio;

printf("Enter two numbers: ");
scanf("%d %d",&a,&b);
ratio = a / b;
printf("The ratio is %f \n",ratio);

Save this as RATIO.C by bringing up the menus and selecting the
File/Write to command. Then press R to compile and run the program.
Enter two values (such as 10 and 3) and note the result (3.000000).

You were probably expecting an answer of 3.333333; why was the answer
just 3? Because a and b are both of type int, so the result of alb was of type
into That was converted to type float when you assigned it to ratio, but
the conversion took place after the division, not before.

Go back and change the type of a and b to float; also change the format
string "%d %d" in scanf to "%f %f". Save the code (press F2), then compile
and run. The result is now 3.333333, as you expected.

There's also a large version of type float, known as double. As you might
have guessed, variables of type double are twice as large as variables of
type float. This means that they have more significant digits and a larger
range of exponents. The specific sizes and ranges of values for these types
in Turbo C can be found in Chapter 8.

The Three ints

In addition to the type int, C supports short int and long int, usually
abbreviated as short and long. The actual sizes of short, int, and long
depend upon the implementation; all that C guarantees is that a variable of
type short will not be larger (that is, will not take up more bytes) than one
of type long. In Turbo C, these types occupy 16 bits (Short), 16 bits (int),
and 32 bits (long).

Unsigned

C allows you to declare certain types (char, short, int, long) to be
unsigned. This means that instead of having negative values, those types
only contain non-negative values (greater than or equal to zero).

94 Turbo C User's Guide

Variables of those types can then hold larger values than signed types. For
example, in Turbo C a variable of type int can contain values from -32768
to 32767; one of type unsigned int can contain values from 0 to 65535.
Both take up exactly the same amount of space (16 bits, in this case); they
just use it differently. Again, see Chapter 8 for specific details.

Defining a String

C does not support a separate string data type, but it does provide two
slightly different approaches to defining strings. One is to use a character
array; the other is to use a character pointer.

Using a Character Array

Select the Load command from the File menu and bring your edited
version of HELLO.C back in. Now edit it to appear as follows:

main ()
{

char msg[30];

strcpy(msg,"Hello, world");
puts (msg);

The [30] after msg tells the compiler to set aside space for up to 29
characters, that is, an array of 29 char variables. (The 30th space will be
filled by a null character-a \O-often referred to in this user's guide as a
null terminator.) The variable msg itself doesn't contain a character value; it
holds the address (some location in memory) of the first of those 29 char
variables.

When the compiler finds the statement strcpy (msg, "Hello, world"); it
does two things:

Il It creates the string "Hello, world", followed by a null (\0) character
(ASCII code 0) somewhere within the object code file.

D It calls a subroutine named strcpy, which copies the characters from that
string, one at a time, into the memory location pointed to by msg.1t does
this until it copies the null character at the end of the "Hello, world"

string.

When you call puts (msg), you pass the value in msg-the address of the
first letter it points to-to puts. Then puts checks to see if the character at
that address is the null character. If it is, then puts is finished; otherwise,

Programming in Turbo C 95

puts prints that character, adds one (1) to the address, and checks for the
null character again.

Because of this dependency on a null character, strings in C are known as
being null terminated: a sequence of characters followed by the null
character. This approach removes any arbitrary limit on the length of
strings; instead, a string can be any length, as long as there is enough
memory to hold it.

Using a Character Pointer

The second method you can use to define strings is a character pointer. Edit
your program to look like this:

main ()
{

char *msg;

msg = "Hello, world";
puts(msg);

The asterisk (*) in front of msg tells the compiler that msg is a pointer to a
character; in other words, msg can hold the address of some character.
However, the compiler sets aside no space to store characters and does not
initialize msg to any particular value.

When the compiler finds the statement rnsg = "Hello, world\n"; it does
two things:

• As before, it creates the string "Hello, world\n", followed by a null
character somewhere within the object code file.

• It assigns to the starting address of that string-the address of the
character H-to msg.

The command puts (rnsg) works just as it did before, printing characters
until it encounters the null character.

There are some subtle differences between the array and pointer methods
for defining strings, which we'll talk about in the next chapter.

96 Turbo C User's Guide

Identifiers

Up until now, we've cheerfully given names to variables without worrying
about whatever restrictions there might be. Let's talk about those
restrictions now.

The names you give to constants, data types, variables, and functions are
known as identifiers. Some of the identifiers used so far include:

char, int, float predefined data types
main main function of program
name, a, b, sum, msg, ratio user-defined variables
scanf, printf, puts predeclared functions

Turbo C has a few rules about identifiers; here's a quick summary:

II All identifiers must start with a letter (a ... z or A ... Z) or an underscore
(-).

II The rest of an identifier can consist of letters, underscores, and/ or digits
(0 ... 9). No other characters are allowed .

• Identifiers are case-sensitive. This means that lowercase letters (a .. . z) are
not the same as uppercase letters (A ... Z). For example; the identifiers
indx, Indx, and INDX are different and distinct from one another.

• The first 32 characters of an identifier are significant.

Operations

Once you get that data into the program (and into your variables), what are
you going to do with it? Probably manipulate it somehow, using the
operators available. And C has got lots and lots of operators.

Assignment Operator

The most basic operation is assignment, as in rat i 0 == a / b or
ch == getch () . In C, assignment is a single equal sign (=); the value on the
right of the equal sign is assigned to the variable on the left.

You can stack up assignments, such as sum == a == b. In a case like this, the
order of evaluation is right to left, so that b would be assigned to a, which
in turn would be assigned to sum, giving all three variables the same value
(namely, b's original value).

Programming in Turbo C 97

Unary and Binary Operators

C supports the usual set of binary arithmetic operators:

• multiplication (*)

• division U)
• modulus (%)

• addition (+)
• subtraction (-)

Turbo C supports unary minus (a + (-b», which performs an arithmetic
negation; as an ANSI extension, Turbo C also supports unary plus
(a + (+b».

Increment (++) and Decrement (- -) Operators

C has some special unary and binary operators as well. The most well
known unary operators are increment (++) and decrement (--). These allow
you to use a single operator that adds 1 to or subtracts 1 from any value; the
addition or subtraction can be done in the middle of an expression, and you
can even decide whether you want it done before or after the expression is
evaluated. Consider the following lines of code:

sum = a + b++;
sum = a + Hb;

The first says, "Add a and b together, assign the result to sum, and
increment b by one." The second says, "Increment b by one, add a and b
together, and assign the result to sum."

These are very powerful operators, but you have to be sure you understand
them correctly before using them. Modify SUM.C as follows, then try to
guess what its output will be before you run it.

main()
(

int a,b,sum;
char *format;

format = "a = %d b = %d sum = %d \n";
a = b = 5;
sum = a + b; printf(format,a,b,sum);
sum = a++ + b; printf(format,a,b,sum);
sum = ++a + bi printf(format,a,b,sum);
sum = --a + bi printf(format,a,b,sum);
sum = a-- + bi printf(format,a,b,sum);
sum = a + bi printf(format,a,b,sum);

98 Turbo C User's Guide

Bitwise Operators

For bit-level operations, C has the following operators:

13 shift left «<)
II shift right (»)

1:1 AND (&)
III OR(I)
IJ XOR (1\)

m NOT (,...)

These allow you to perform very low-level operations on values. To see the
effect of these operators, type in and run this program:

main ()
{

int a,b,c;
char *formatl,*format2;

formatl = " %04X %5 %04X = %04X\n";
format2 = " %c%04X = %04X\n";
a = OxOFFO; b = OxFFOO;
c = a «4; printf(formatl,a,"«",4,c);
c = a »4; printf(formatl,a,"»",4,c);
c = a & b; printf(formatl,a,"& ",b,c);
c = a I b; printf(formatl,a," I ",b,c);
c = a A b; printf(formatl,a,"A ",b,c);
c = -a; printf(format2,'-' ,a,c);
c = -a; printf(format2,'-' ,a,c);

Again, see if you can guess the output of this program before running it.
Note that field-width specifiers have been used to nicely align the output;
the %04X specifier says that we want the output to use leading zeros, to be
four digits wide, and to be in hexadecimal (base 16). .

Combined Operators

C allows you to use a little shorthand when writing expressions that
contain multiple operators. You can combine the assignment operator (=)
with the operators discussed so far (unary, binary, increment, decrement,
and bitwise).

Just about any expression of the form

<variable> = <variable> <operator> <exp>;

can be replaced with

<variable> <operator>= <exp>;

Programming in Turbo C 99

Here are some examples of such expressions and how they can be
condensed:

a=a + b' , is condensed to a += b' ,
a=a b; is condensed to a -= b' ,
a=a * b' is condensed to a *= b' , ,
a=a / b· , is condensed to a /= b' ,
a=a % b; is condensed to a %= b;
a=a « b; is condensed to a«= b;
a=a » b; is condensed to a»= b;
a=a & b; is condensed to a &= b;
a=a 1 b' , is condensed to a 1= b' ,
a=a 1\ b; is condensed to a 1\= b' ,

Address Operators

C supports two special address operators: the address-of operator (&) and
the indirection operator (*).

The & operator returns the address of a given variable; if sum is a variable
of type int, then &sum is the address (memory location) of that variable.
Likewise, if msg is a pointer to type char, then *msg is the character to
which msg points.

Type in the following program and see what you get.

main ()
{

int sum;
char *msg;

sum = 5 + 3;
msg = "Hello, there\n";
printf(" sum = %d &sum = %p \n",sum,&sum);
printf("*msg = %c msg = %p \n",*msg,msg);

The first line prints out two values: the value of sum (8) and the address of
sum (assigned by the compiler). The second line also prints out two values:
the character to which msg points (H) and the value of msg, which is the
address of that character (also assigned by the compiler).

100 Turbo C User's Guide

Input

C has several input functions; some take input from a file or an input
stream, others from the keyboard. When you need detailed information
about the Turbo C input functions, refer to ... scanf, read, and Chapter 8.

The scanf Function

For interactive input, you'll probably use scanf most of the time. scanf is
the input equivalent of printf; its format is

scanf«format string>, <addr>, <addr>, ...)

scanf uses many of the same %<letter> formats that printf does: %d for
integers, % f for floating-point values, % s for strings, and so on.

However, there is one important difference with scanf: The items following
the format string must be addresses, not values. The program SUM.C
contains the following call:

scanf("%d %d",&a,&b);

This call tells the program that it expects you to type in two decimal
(integer) values separated by a space; the first will be assigned to a and the
second to b. Note that it uses the address-of (&) operator to pass the
addresses of a and b to scanf.

Whitespace

The space between the two %d format commands actually means more than
just a space. It means that you can have any amount of whitespace between
the values. What is whitespace? Any combination of blanks, tabs, and
newlines. C compilers and programs typically ignore whitespace in most
circumstances.

But what if you wanted to separate the numbers with a comma instead of a
blank? Then you could change the line to read:

scanf("%d,%d",&a,&b);

This allows you to enter the values with a comma between them.

Passing an Address to scant

What if you want to input a string? Type in and run the following program:

main()

Programming in Turbo C 101

char name[30];

printf("What is your name: ");
scanf("%s",name);
printf("Hello, %s\n",name);

Since name is an array of characters, the value of name is the address of the
array itself. Because of that, you don't use the & operator in front of name;
you simply say scanf ("%s", name).

Note that we used the array approach (char name [30] ;) rather than the
pointer approach (char *name;). Why? Because the array declaration
actually sets aside memory to hold the string, while the pointer declaration
does not. If we wanted to use char *name, then we'd have to explicitly
allocate memory for *name.

Using gets and getch for Input

Using scanf to input strings introduces another problem, though. Run your
program again, but this time type in your full name. Note that the program
only uses your first name in its reply. Why? Because, to scanf, the blank
you typed after your first name signalled the end of the string you were
entering.

There are two possible solutions to this. Here's the first:

main()
{

char first[20],middle[20],last[20];

printf("What is your name: ");
scanf("%s %s %s",first,middle,last);
printf("Hello, Dr. %s, or should I say %s?\n",last,first);

This, of course, assumes that you have some middle name; in this example,
scanf won't continue until you've actually typed in three strings. But what
if you want to read in the entire name as a single string, blanks and all?

Here's the second solution:

main()
{

102

char name[60];

printf ("What is your name: ") ;
gets(name);
printf("Hello, %s\n",name);

Turbo C User's Guide

The function gets reads in everything you type until you press Enter. It does
not store the Enter in the line; but it does stick a null character (\0) at the
end.

Finally, there's the function getch. It reads a single character from the
keyboard without echoing it to the screen (unlike scanf and gets). Note that
it doesn't take ch as a parameter; instead getch is a function of type char,
and its value can be assigned directly to ch.

Conditional Statements

There are some operators we haven't talked about yet: relational and logical
operators. Also, there are some complexities about expressions that we
saved for this discussion of conditional (true or false) statements.

Relational Operators

Relational operators allow you to compare two values, yielding a result
based on whether the comparison is true or false. If the comparison is false,
then the resulting value is 0; if true, then the value is 1. Here's a list of the
relational operators in C:

> greater than
>= greater than or equal to
< less than
<= less than or equal to
-- equal to
!= not equal to

Why would you care if something were true or false? Load and run the
program RATIO.C and see what happens when you enter 0 for the second
value. Your program prints a Divide by zero error message and halts.

Programming in Turbo C 103

N ow make the following changes to your program and run it again.

main()
{

float a,b,ratio;

printf("Enter two numbers: ");
scanf("%f %f",&a,&b);
if (b == 0.0)

printf("The ratio is undefined\n");
else {

ratio = a / b;
printf("The ratio is %f \n",ratio);

The statement on the two lines after the call to scanf is known as an if
statement. You can read it as: "If the value of the expression (b == 0.0) is
true, immediately call printf. If the value of the expression is false, assign
alb to ratio, then call printf."

N ow if you enter 0 as the second value, your program prints the message

The ratio is undefined

waits for you to press any key, then returns to Turbo C. If the second value
is non-zero, the program calculates and prints out the ratio, then waits for
you to press a key-all through the magic of the if statement.

Logical Operators

There are also three logical operators: AND (&&), OR (I I), and NOT (!).
These are not to be confused with the bitwise operators (&, I, -) previously
described. These logical operators work with logical values (true and false),
allowing you to combine relational expressions.

How do they differ from the corresponding bitwise operators?

II These logical operators always produce a result of either 0 (false) or 1
(true), while the bitwise operators do ~rue bit-by-bit operations .

• The logical operators && and I I will short circuit. Suppose you have the
expression expl && exp2. If expl is false, then the entire expression is
false, so exp2 will never be evaluated. Likewise, given the expression
expl I I exp2, exp2 will never be evaluated if expl is true.

104 Turbo C User's Guide

More About Expressions

Before we go on to loops, we have a few more comments about
expressions. Things like (b == O. 0) and (a <= q* r) are pretty straight­
forward. However, C allows you to make things more complicated than
that. Much more complicated. We won't show you how complicated, but
we'll give you a few hints.

Assignment Statements

Any assignment statement enclosed in parentheses is an expression that
has the same value as that which was being assigned.

For example, the expression (sum = 5+3) has the value 8, so that the
expression ((sum = 5+3) <= 10) would always yield a value of true
(since 8 <= 10).

More exotic is this example:

if ((ch=getch()) == 'q')
puts ("Quitting, huh?\n");

else
puts ("Good move; we'll have another go at it\n");

Can you figure out what this does? When your program hits the expression
((ch=getch ()) == 'q'), it stops until you press a character, assigns that
character to ch, then compares that same character to the letter q. If the
character you pressed equals q, then the message "Quitting, huh?" is
printed on the screen; otherwise, the other message ("Good move ... II) is
printed.

The Comma Operator

You can use the comma operator (,) to put multiple expressions inside a
set of parentheses. The expressions are evaluated left to right, and the
entire expression assumes the value of the last one evaluated. For example,
if oldch and ch are both of type char, then the expression

(oldch = ch, ch = getch())

assigns ch to oldch, gets a character from the keyboard and assigns it to ch,
and then assumes the (assigned) value of ch.

Programming in Turbo C 105

For example:
ch = , a';
if((oldch = ch, ch = 'b') == 'a')

puts ("aye");
else

puts("bee");

The if Statement

Look again at the if statement in the previous examples. The if statement
takes the following generic format:

if (value)
statement! ;

else
statement2;

where value is any expression that resolves to (or can be converted to) an
integer value. If value is non-zero (true), then statementl is executed; other­
wise, statement2 is executed.

We must explain two important points about if-else statements in
general.

First, the else staternent2 portion is optional; in other words, this is a
valid if statement:

if (value)
statementl;

In this case, statementl is executed if and only if value is non-zero. If value is
zero, then statementl is skipped, and the program continues.

Second, what if you want to execute more than one statement if a particular
expression is true (or false)? Answer: Use a compound statement. A
compound statement consists of

• a left brace ({)

.. some number of statements, each ending with a semicolon (;)

• a right brace (})

The ratio example uses a single statement for the if clause

if (b == 0.0)
printf("The ratio is undefined\n");

and a compound statement for the else clause

else {
ratio = a / b;
printf("The ratio is %f \n",ratio);

106 Turbo C User's Guide

You might also notice that the body of your program (the function main) is
simply a compound statement.

Loops

Just as there are statements (or groups of statements) that you want to
execute conditionally, there are other statements that you may want to
execute repeatedly. This kind of construct is known as a loop.

There are three basic lands of loops (though two are just special cases of the
other one): the whil.e loop, the for loop, and the do ... whil.e loop. We'll
cover them in that order.

The while Loop

The whil.e loop is the most general loop and can be used to replace the
other two; in other words, a whil.e loop is all you need, and the others are
just there for your convenience. Load up HELLO.C and modify it as
follows:

*include <stdio.h>
main ()
(

int len;

len = 0;
puts("Type in a sentence, then press <Enter>");
while (getchar() != '\n')

len++;

printf("\nYour sentence was %d characters long\n",len);

This program lets you type in a sentence, counting the number of
keystrokes, until you press Enter (\n). It then tells you how many characters
(not counting the Enter) you typed.

The format of the whil.e statement is:

while (expression)
statement

where expression resolves to a zero or nonzero value, and statement is either
a single or a compound statement.

Programming in Turbo C 107

The while loop evaluates expression. If it's true, then statement is executed,
and expression is evaluated again. If statement isn't true, the while loop is
finished and the program continues on.

Take a look at another example of the while loop, based on HELLO.C:

main()
{

char *msg;
int indx;

msg = "Hello, world";
indx = 1;
while (indx <= 10) {

printf("time #%2d: %s\n",indx,msg);
indx+t;

When you compile and run this program, it prints out the following lines:

time # 1: Hello, world
time # 2: Hello, world
time # 3: Hello, world

and so on, down to

time #10: Hello, world

The printf statement was executed exactly ten times, with indx going from
1 to 10 during those ten executions.

If you think about it, you may see a way to write that loop a little tighter:

indx = 0;
while (indx++ < 10)

printf ("time #%2d: %s\n", indx,msg);

Study this second while loop until you understand why it functions exactly
the same way as the first version. Then go on and learn about the for loop.

108 Turbo C User's Guide

The for Loop

The for loop is the one found in most major programming languages,
including C. However, the C version of the for loop is very flexible and
very powerful, as you'll see.

The basic idea is that you execute a set of statements some fixed number of
times while a variable (known as the index variable) steps through a range of
values.

For example, modify the previous program to read as follows:

main ()
{

char *msg;
int indx;

msg = "Hello, world";
for (indx = 1; indx <= 10; indx++)

printf("time #%2d: %s\n",indx,msg);

As you can see when you run it, this does the same thing as both while
loops already shown and, in fact, is precisely equivalent to the first one.
Here's the generic format of the for loop statement:

for (exp1; exp2; exp3)
statement

As with while, the for statement executes just one statement, but that
statement can be a compound statement ({ ... D.

Note what's inside the parentheses following the word for; there are three
sections separated by semicolons.

• expl is usually an assignment to the index variable.

• exp2 is a test for loop continuation.

• exp3 is usually some modification of the index variable.

The generic for loop is equivalent to the following code:

exp1;
while (exp2) {

statement;
exp3;

You can leave out any or all of the expressions, though the semicolons must
remain. If you leave out exp2, it is assumed to have a value of 1 (true), so the
loop never terminates (this is known as an infinite loop).

Programming in Turbo C 109

On the other hand, you can use the comma operator to put in multiple
expressions for each expression.

For example, try these modifications on HELLO.C:

main()
{

char *msg;
int up, down;

msg = "Hello, world";
for (up = I, down = 9; up <= 10; up++, down--)

printf("%s: %2d down, %2d to go\n",msg,up,down);

Note that the first and last expressions in this for loop have two
expressions each, initializing and modifying the variables up and down. You
can make these expressions arbitrarily complex. (Perhaps you have heard
the legends of C hackers who crammed most of their programs into the
three expressions of a for statement, leaving only a few statements for the
loop to execute.)

The do ... while Loop

The final loop is the do . .. while loop. Modify RA TIO.C as follows:

main ()
{

float a,b,ratio;
char Chi

do {
printf("Enter two numbers: ");
scanf("%f %f",&a,&b);
if (b == 0.0)

printf (liThe ratio is undefined\n");
else {

ratio = a / b;
printf("The ratio is %f \n",ratio);

)
printf("Press 'q' to quit, any other key to continue");

) while ((ch = getch ()) ! = ' q') ;

This program calculates a ratio, then asks you to press a key. If you press q,
the expression at the bottom is false and the loop ends. If you press some
key other than q, the expression is true and the loop repeats.

Here's the generic format for the do . .. while loop:

do statement while (exp);

110 Turbo C User's Guide

The main difference between the while loop and the do ... while loop is
that the statements in the do ... while loop always execute at least once.
This is similar to the repeat ... until loop in Pascal, with one major
difference: The repeat loop executes until its condition is true; do ... while

executes while its condition is true.

Functions

You've learned how to execute code conditionally and iteratively. Now, what
if you want to perform the same set of instructions on different sets of data
or at different locations in your program? Answer: You put those
statements into a subroutine, which you then call as needed.

In C, all subroutines are known as functions. In theory, every function
returns some value. In practice, the values returned by many functions are
ignored, and more recent definitions of C (including the draft ANSI C
standard and Turbo C) allow you to declare functions of type void, which
means they don't return values at all. Never.

In C, you can both declare and define a function. When you declare a
function, you let the rest of your program know about it so that other
functions (including main) can call it. When you define a function, you give
the actual code for the function itself. For example, consider this rewrite of
RATIO.C:

/* Function declarations */

void get parms(float *pl, float *p2);
float get-ratio(float dividend, float divisor);
void put=ratio(float quotient);

const float INFINITY = 3.4E+38;

/* Main function: starting point for program */

main ()
{

float a,b,ratio;
do {

get parms(&a,&b);
ratIo = get ratio(a,b);
put ratio(ratio);
printf ("Press q to quit,

while (getch () != 'q');

/* Get parameters */
/* Calculate ratio */

/* Print answer out */
any other key to continue ");

}
/* End of main */

/* Function definitions */

Programming in Turbo C 111

void get parms(float *pl,float *p2)
(-

printf("\nEnter two numbers: ");
scanf("%f %f",pl,p2);

float get ratio(float dividend, float divisor)
{ -

if (divisor == 0.0)
return (INFINITY);

else
return (dividend / divisor);

void put ratio(float ratio)
{ -

if (ratio == INFINITY)
printf("The ratio is undefined\n");

else
printf("The ratio is %f\n",ratio);

Breaking the Program Down

The first three lines of the program are the function declarations; their
purpose is to declare the function type as well as the type and number of
the parameters for error-checking purposes.

The next line defines a floating-point constant called INFINITY (it is a C
convention to name constants in uppercase). This constant has a very high
positive value-about the highest you can have with type float-and is
used to flag a divide-by-zero. Note that since it is declared here, it is
"visible" inside all of the functions (including main).

Next comes the function main, which is the main body of your program.
Every C program has a function called main; when your program starts
executing, main gets called, and everything proceeds from there. Once
main is through executing, your program is finished, and you return to
Turbo C (or, if you executed from a DOS prompt, to DOS).

The function main can be placed anywhere in the program; often it's the
first function, following any prototypes or other global declarations. That
makes it easy to find and helps to document the function of the entire
program.

After main come the actual definitions of the three functions declared in
the prototypes: get_parms, get_ratio, and puCratio. We'll now take a look
at each of these definitions.

112 Turbo C User's Guide

The get ...,parms Function

The geCparms function doesn't return a value of a given type, so we've
declared it to be of type void. However, its purpose is to read in two values
and store them somewhere. Where? We have to pass two parameters to
get_parms; these parameters are the addresses where the values should be
stored. Look carefully: The two parameters are not of type float but are
pointers to type float. In other words, they are supposed to be addresses
of fl.oat variables.

That's exactly what we pass: When we call get_parms in main, the
parameters are &a,&b instead of just a,b. Notice also that when scanf is
called inside of geCparms, there are no address-of operators in front of pi
and p2. Why? Because pl and p2 are addresses already; they're the
addresses of a and b.

The get_ratio Function

The geCratio function does return a value (of type float) calculated from
the two fl.oat values passed to it (dividend and divisor). The value returned
depends upon whether or not divisor is O. If it is, get_ratio returns
INFINITY. If divisor is not 0, geCratio returns the actual ratio. Note the
format of the return statement.

The put _ratio Function

The pucratio function doesn't return a value, so it is of type void. It just
has a single parameter-ratio-which is used to determine what to print to
the screen. If ratio equals INFINITY, then it is considered undefined;
otherwise, ratio is printed out.

Global Declarations

Constants, data types, and variables declared outside of any function
(including main) are considered to be global from that point on. This means
that they can be used by any function in the entire program following their
declaration. If you were to move the declaration of INFINITY to the end of
the program, you would get two compiler errors, one in get_ratio and one
in put_ratio, for using an undeclared identifier.

Programming in Turbo C 113

Function Declarations

You can use two different styles in declaring functions: the "classic" style
and the "modern" style. The classic style, found in many C texts and
programs, takes this form:

type funcname();

This specifies the function's name (funcname) and the type of data value it
returns (type). It does not give any parameter information, so no error
checking or type coercion can be done. If you rewrote the function
declarations in RATIO.C using this style, they would look like this:

void get parms();
float get-ratio();
void put=ratio();

The modern style uses a construct from the ANSI extensions known as a
function prototype. This declaration adds parameter information:

type funcname(pinfo,pinfo,etc.);

where pinto takes one of the following formats:

type
type pname

In other words, for each formal parameter you can specify just the data
type, or you can give it a name as well. If the function takes a variable
number of parameters, then you can use the ellipsis (. ..) for the last
parameter.

This is the preferred approach, since it allows the compiler to check the
numbers and types of the parameters in actual calls to the function. This
approach also allows the compiler to perform proper conversions when
possible. The function declarations found in the previous version of
RATIO.C are function prototypes. More information about function
prototypes can be found in Chapters 8 and 9.

Function Definitions

As with function declarations, there are two styles of function definitions:
classic and modern.

The classic format of a function definition is like this:

type funcname(pnames)
parm definitions;
{

114 Turbo C User's Guide

local declarations;
statements;

The modern format moves the parameter definitions into the parentheses
following funcname:

type funcname(pinfo,pinfo,etc.)

In this example, however, the term pinfo represents all the information
about a given parameter; its type modifiers and identifier name. This makes
the first line of the function definition look just like the corresponding
function prototype, with one important exception: There is no semicolon (;)
following the definition, whereas a function prototype is always ended by a
semicolon. For example, the function geCparms in the classic style looks
like this:

void get parms(pI, p2)
float *pl; float *p2;
{ ... }

and in the modern style it looks like this:

void get parms (float * pI, float *p2)
{ ... } -

Note that any declarations (constants, data types, variables) made within a
given function (including main) are visible (that is, can be used and
referenced) only within that function. Also note that C does not allow
nested functions; you can't declare one function inside of another.

Functions can also be placed in any order in the program and are
considered global throughout the entire program, including within
functions declared prior to those being used. Be careful using a function
before it's defined or declared: When the compiler encounters a function it
hasn't seen before, it assumes the function returns an into If you later
define it to return something else, say a char*, you'll get an error.

Comments

Sometimes, you want to insert notes in your program to remind you (or
inform someone else) of what certain variables mean, what certain
functions or statements do, and so on. These notes are known as comments.
C, like most other programming languages, allows you to insert comments
into your program.

Programming in Turbo C 115

To start a comment, you put in the slash-star character sequence (; *). From
then on, the compiler will ignore everything until after it sees another * /
sequence.

Comments can even extend across multiple lines, like this:

/* This is a long
comment, extending
over several lines. */

Look in the expanded version of RATIO.C for additional examples of
comments.

Summary

We have started you off by creating, compiling, and running several Turbo
C programs, and we have touched upon the seven basic elements of
programming, showing how you use each of them in Turbo C.

There's plenty more we could say about each of the basic elements, and we
will expound on them in Chapter 5.

116 Turbo C User's Guide

c H A p T E R

5

More Programming in Turbo C

Glad to see you made it here. In the last chapter we gave you a taste of
working with Turbo C; just enough to whet your appetite. Now you're
ready to dig into some of the more subtle and esoteric issues of C
programming, and we're here to serve you.

In This Chapter ...

In this chapter, we cover the following:

• data structures, including pointers, arrays, and structures

• the switch statement
• control flow commands, including return, break, continue, qoto, and

the conditional expression operator (? :)

• programming style in C, especially with regards to some of the new C
extensions

• some common pitfalls for C programmers

More Programming in Turbo C 117

A Survey of Data Structures

We covered basic data types in the last chapter-things such as integers,
floating-point numbers, characters, and their variants. We'll talk about how
to use these elements to build data structures-collections of data elements.
But first, we'll explore an important concept in C-pointers.

Pointers

Most variables you've looked at so far hold data, that is, the actual
information your program is manipulating. But sometimes you want to
keep track of where some data is rather than just its value. For that, you
probably need pointers.

If you feel shaky about the concepts of addresses and memory, here's a
quick review. Your computer holds your program and the associated data
in its memory (often called RAM, meaning Random Access Memory). At its
lowest level, your computer's memory is composed of bits, microscopic
electronic circuits that can "remember" (while the computer's power is on)
one of two values, which are usually interpreted as being 0 and 1.

Eight bits are grouped together into one byte. Large groups of bits are often
given names as well; commonly, two bytes are considered a word; four
bytes are considered a longword; and on the IBM PC, sixteen bytes is
considered a paragraph.

Each byte in your computer's memory has a unique address, much as does
each house on a given street. But unlike most streets, consecutive bytes
have consecutive addresses; if a given byte has an address of N, then the
preceding byte has an address of N-1, and the following byte has an
address of N + 1.

A pointer is a variable that holds an address of some data, rather than the
data itself. Why is this useful? First, you can use a pointer to point to
different data and different data structures. By changing the address the
pointer contains, you can manipulate (assign, retrieve, change) information
in various locations. This allows you, for example, to traverse a linked list
of structures with only one pointer.

Second, using pointers allow you to create new variables while your
program is executing. C lets your program ask for some amount of memory
(in bytes), returning an address that you can store in a pointer. This is

118 Turbo C User's Guide

known as dynamic allocation; using it, your program can adapt to how much
(or little) memory is available on a given computer.

Third, you can use a pointer to access different locations in a data structure,
such as an array, a string, or a structure. A pointer really points to just one
location in memory (a segment:offset); by indexing the pointer, you can
access any succeeding byte(s).

You're undoubtedly convinced now that pointers are handy. So how do
you use them in C? First, you have to declare them. Consider the following
program:

main()
(

int ivar,*iptr;

iptr = &ivar;
ivar = 421;
printf("location of ivar: %p\n",&ivar);
printf("contents of ivar: %d\n", ivar);
printf("contents of iptr: %p\n", iptr);
printf("value pointed to: %d\n",*iptr);

This main has declared two variables: ivar and iptr. The first, ivar, is an
integer variable; that is, it holds a value of type into The second, iptr, is a
pointer to an integer variable; that is, it holds an address of a value of type
into You can tell that iptr is a pointer because it has an asterisk (*) in front
of it when it is declared. In C, this * is known as the indirection operator.

In main, these assignments are as follows:

• the address of ivar is assigned to iptr
• the integer value 421 is then assigned to ivar

The address-of operator (&) mentioned in the previous chapter gets the
address of ivar.

Type in and run the preceding program; you'll get output that looks like
this:

location of ivar: 166E
contents of ivar: 421
contents of iptr: 166E
value pointed to: 421

The first two lines show the address and contents of ivar. The third shows
the address that iptr contains. As you can see, it's the address of the
variable ivar, that is, the location in memory where your program decided
to create ivar. The last value printed is the data stored at that address, the
same data already assigned to ivar.

More Programming in Turbo C 119

Note that the third call to printf used the expression iptr to get its contents,
the address of ivar. Then the last printf call used the expression *iptr to
fetch the data stored at that address.

Here's a slight variation on the previous program.

main()
{

int ivar,*iptr;

iptr = &ivar;
*iptr = 421;
printf("loeation of ivar: %p\n",&ivar);
printf("eontents of ivar: %d\n", ivar);
printf("eontents of iptr: %p\n", iptr);
printf("value pointed to: %d\n",*iptr);

This still assigns the address of ivar to iptr, but instead of assigning 421 to
ivar, main assigns it to * iptr. The results? Exactly the same as the previous
program. Why? Because the statement *iptr = 421 is the same as the
statement ivar = 421. And why is that so? Because ivar and *iptr refer to
the same memory location-so both statements assign the value 421 to that
location.

Dynamic Allocation

Here's another variation of the program:

#inelude <alloe.h>
main ()
{

int *iptr;

iptr = (int *) malloe(sizeof(int));
*iptr = 421;
printf("eontents of iptr: %p\n", iptr);
printf("value pointed to: %d\n",*iptr);

This version dropped the declaration of ivar altogether. Instead, it's
assigning to iptr the value returned by some function named malloc, which
is declared in ALLOC.H (hence the #include directive at the start). It then
assigns the value 421 to * iptr, which is the address iptr points to. If you
run this program, you'll get a different value for iptr than you did before,
but * iptr will still be 421.

120 Turbo C User's Guide

What does the statement iptr = (int *) malloc (sizeof (int)) do?
We'll break it down one part at a time .

• The expression sizeof (int) returns the number of bytes that a variable
of type int requires; using Turbo C on the IBM PC, the value it yields is
2 .

• The function malloc(num) grabs num consecutive bytes of the available
(unused) memory in your computer. It then returns the starting address
of those bytes.

I! The expression (int *) means you will consider that starting address
to be a pointer to type into This is known as type casting. In this case,
Turbo C doesn't require it. But because many other C compilers do
require it, if you leave it off, you will get the error message
Non-portable pointer assignment.

II Finally, this address is stored in iptr. This means you have dynamically
created an integer variable, which you can refer to as * iptr.

Given all this, the entire statement can be described as: "allocate from the
computer's memory enough space for a variable of type int, then assign
the starting address of that memory to iptr, which is a pointer to type int."

Was all this necessary? Yes. Why? Because without it you would have no
guarantee that iptr was pointing to an unused area of memory. iptr would
have some value in it, and that is the address it would use, but you
wouldn't know if that section of memory was being used for other reasons.
The rule for using pointers is simple: always assign an address to a pointer
before using it. Rather, don't assign an integer value to * iptr without first
assigning an address to iptr.

Pointers and Functions

Last chapter, we explained how you declare parameters for functions.
Perhaps now you understand why you use pointers for formal parameters
whose values you wish to change. For example, consider the following
function:

void swap(int *a, int *b)
{

int tempi
temp = *ai *a = *bi *b = tempi

This function, swap, has declared the two formal parameters, a and b, to be
pointers to into This means they expect an address of an integer variable
(rather than its value) to be passed. Any changes made are made to the data
at the addresses passed in.

More Programming in Turbo C 121

Here's a main function that calls swap:

main ()
{

int i, j;

i = 421;
j = 53;
printf("before: i = %4d j = %4d\n",i,j);
swap(&i,&j);
printf("after: i = %4d j = %4d\n",i,j);

You'll notice that this program does indeed swap the values of i and j. You
can think of this program as being the equivalent of:

main()
{

int i, j;
int *a,*b,tempi

i = 421;
j = 53;
printf("before: i = %4d j = %4d\n",i,j)i
a = &i;
b = &j;
temp = *a; *a = *b; *b = temp;
printf("after: i = %4d j = %4d\n",i,j)i

This program, of course, produces the same results: The call swap (& i, & j)

assigns the values of the two actual parameters (&i and &j) to the two
formal parameters (a and b), then executes the statements in swap.

Pointer Arithmetic

What if you wanted to modify the program so that iptr points to three
integers instead of just one?

Here's one possible solution:

#inelude <alloe.h>
main()
{

122

#define NUMINTS 3
int *list, i;

list = (int *) ealloe(NUMINTS,sizeof(int));
*list = 421;
* (list+1) = 53;
* (listt2) = 1806;

Turbo C User's Guide

/* continued from previous page */

printf("list of addresses: H);
for (i = 0; i<NUMINTS; itt)

printf("%4p ", (list+i));

printf("\nlist of values : H);
for (i = 0; i<NUMINTS; itt)

printf("%4d ",*(listti));

printf("\n");

Instead of using malloc, this routine uses calloc, which takes two
parameters: how many items to allocate space for, and the size of each item
in bytes. So now list points to a chunk of memory six (3 * 2) bytes long, big
enough to hold three variables of type into

Note very carefully the three statements that follow. The first statement is
familiar: *list = 421. It simply says, "store 421 in the int variable located
at the address in list."

The next one-* (list+1) =53-is important to understand. At first glance,
you might interpret this as "store 53 in the int variable located one byte
beyond the address in list." If so, you're probably concerned, since this
would be right in the middle of the previous int variable (which is two
bytes long). This, of course, would mess up the value that you previously
stored.

Don't worry; your C compiler is more intelligent than that. It knows that
list is a pointer to type int, and so the expression list + 1 refers to the
byte address of list + (1 * sizeof (int)), so that the value 53 does not
clobber the value 421 at all.

Likewise, (list+2) refers to the byte address of list +
(2*sizeof (int)), and 1806 gets stored without affecting the previous two
values.

In general, ptr + i denotes the memory address ptr + (i * sizeof(int).

Type in and run the preceding program; the output will look something
like this:

list of addresses: 06AA 06AC 06AE
list of values: 421 53 1806

Note that the addresses are two bytes apart, not just one, and that the three
values have been kept separate.

To sum up all of this: If you use ptr, a pointer to type, then the expression
(ptr + i) denotes the memory address (ptr + (i * sizeof (type)),

More Programming in Turbo C 123

where sizeof (type) returns the number of bytes that a variable of type
requires.

Arrays

Most high-level languages-including C-allow you to define arrays, that
is, indexed lists of a given data type. For example, you can rewrite the last
program to look like this:

main()
(

#define NUMINTS 3
int list[NUMINTS),i;

list (0) = 421;
list(1) = 53;
list (2) = 1806;
printf("list of addresses: H);
for (i = 0; i < NUMINTS; itt)

printf("%p ",&list[i));
printf("\nlist of values : H);
for (i = 0; i < NUMINTS; itt)

printf ("%4d ", list [ill;
printf("\n") ;

The expression int list [NUMINTS] declares list to be an array of ints,
with space set aside for exactly three (3) int variables. The first variable is
referred to as list[O], the second as list[l], and the third as list[2].

The general declaration for any array is

type name[size);

where type is some data type, name is the name you give the array, and size
is the number of elements of type that name contains. The first element in
the array is name[O], while the last is namefsize-ll; the total size of the array
in bytes is size * (sizeof(type».

Arrays and Pointers

You may have already figured out that there is a close relationship between
arrays and pointers. In fact, if you run the previous program, your output
will look very familiar:

list of addresses: 163A 163C 163E
list of values: 421 53 1806

124 Turbo C User's Guide

The starting address is different, but that is the only change. The truth is,
you can use the name of an array as if it were a pointer; likewise, you can
index a pointer as if it were an array.

Consider the following important identities:

(list + i) == & (list [i])
*(list + i) == list[i]

In both cases, the expression on the left is equivalent to the expression on
the right; you can use one in place of the other, regardless of whether you
declared list as a pointer or as an array.

The only difference between declaring list as a pointer vs. as an array is in
allocation. If you declare list as an array, your program automatically sets
aside the requested amount of space. If you declare list as a pointer, you
must explicitly create space for it using calloc or a similar function call, or
you must assign to it the address of some space that has already been
allocated.

Arrays and Strings

We talked about strings in the previous chapter and referred to declaring a
string in two slightly different ways: as a pointer to characters and as an
array of characters. Now you can better understand that difference.

If you declare a string as an array of char, the space for that string is
allocated. If you declare a string as a pointer to char, no space is allocated;
you must either allocate it yourself (using malloc or something similar) or
assign to it the address of an existing string. An example of this is given in
the section "Pitfalls in C Programming" later in this chapter.

Multi-Dimensional Arrays

Yes, you can have multi-dimensional arrays, and they are declared just as
you might think:

type name[size1] [size2] ... [sizeN];

Consider the following program, which initializes a couple of two­
dimensional arrays, then performs matrix multiplication on them:

main()
{

int a[3] [4] = { {5, 3, -21, 42},
{ 44, 15, 0, 6},
{97, 6, 81, 2} };

More Programming in Turbo C 125

/* continued from previous page */

int b[4] [2] = { {22, 7},
{ 97, -53},
{45, O},
{72, 1}};

int c[3] [2],i,j,k;

for (i = 0; i < 3; itt) {
for (j = 0; j < 2; jtt)

c[i] [j] = 0;
for (k = 0; k < 4; ktt)

c [i] [j] t= a [i] [k] * b [k] [j] ;

for (i = 0; i < 3; itt)
for (j=O; j<2; jtt)

printf("c[%d] [%d] = %d ",i,j,c[i] [j]);
printf("\n");

Take note of two things in the preceding program: The syntax for
initializing a two-dimensional array consists of nested { ... } lists separated
by commas, and square brackets ([]) are used around each index variable.

Some languages use the syntax [i, j]; that is legal syntax in C, but is the
same as saying just [j], since the comma is interpreted as the comma
operator ("evaluate i, then evaluate j, then let the entire expression assume
the value of j"). Be sure to put square brackets around each and every index
variable.

Multi-dimensional arrays are stored in what is known as row-column order.
This means that the last index varies the most rapidly. In other words,
given the array arr[3][2], the elements in arr are stored in the following
order:

arr[O] [0]
arr [0] [1]
arr [1] [0]
arr[1] [1]
arr[2] [0]
arr [2] [1]

The same principle holds true for arrays of three, four, or more dimensions.

Arrays and Functions

What happens when you want to pass an array to a function?

126 Turbo C User's Guide

Look at this function, which returns the index of the lowest value in an
array of int:

int 1min(int 1ist[l,int size)
{

int i, minindx, min;

minindx = 0;
min = 1ist[minindxl;

for (i = 1; i < size; itt)
if (list[il < min) {

min = list [il;
minindx = i;

}
return (minindx) ;

Here you see one of the great strengths of C: You don't need to know how
large list[J is at compile time. Why? Because the compiler is content to
consider list[] to be the starting address of the array, and it doesn't really
care where it ends. A call to the function lmin might look like this:

main()
{

#define VSIZE 22
int i,vector[VSIZE1;

for (i = 0; i < VSIZE; itt) {
vector[il = rand();
printf("vector[%2dl = %6d\n",i,vector[il);

i = 1min(vector,VSIZE);
printf("minimum: vector[%2dl = %6d\n",i,vector[il);

Question: What exactly is passed to lmin? Answer: The starting address of
vector. This means that if you were to make changes to list within lmin,
those changes would be made to vector as well. For example, you could
write the following function:

void setrand(int 1ist[l,int size);
{

int i;
for (i = 0; i < size; itt) 1ist[il = rand();

Then you could make the call setrand(vector,VSIZE) in·main to
initialize vector.

How about multi-dimensional arrays passed to functions? Do you have the
same flexibility? Suppose you wanted to modify setrand to work on a two­
dimensional array.

More Programming in Turbo C 127

You'd have to do something like this:

void setrand(int rnatrix[) [CSIZE),int rsize)
{

int i, j;
for (i = 0; i < rsize; itt) {

for (j = 0; j < CSIZE; j++)
rnatrix[i) [j) = rand();

CSIZE is a global constant fixing the size of the second dimension of the
array. In other words, any array you passed to selrand would have to have
a second dimension of CSIZE.

There is another solution, however. Suppose you have an array
matrix[15J[7] that you want to pass to selrand. If you use the original
declaration of setrand (int list [] ,int size), you can call it as follows:

setrand(rnatrix,15*7);

The array matrix will then look to setrand like a one-dimensional array of
size 105 (which is 15*7), and everything will work just fine.

Structures

Arrays and pointers allow you to build lists of items of the same data type.
What if you want to construct something out of different data types?
Declare a structure.

A structure is a conglomerate data structure, a lumping together of different
data types. For example, suppose you wanted to keep track of information
about a star: name, spectral class, coordinates, and so on. You might declare
the following:

typedef struct (
char narne[25);
char class;
short subclass;
float decl,RA,dist;
star ;

This defines the struct type star.

128 Turbo C User's Guide

Having declared it-that is, having placed the previous definition at the
start of your program file-you could use it as follows:

main()
{

star mystar;

strcpy (mystar. name, "Epsilon Eridani");
mystar.class = 'K';
mystar.subclass = 2;
mystar.decl = 3.5167;
mystar.RA = -9.633;
mystar.dist = 0.303;

1* Rest of function main() *1

You refer to each member of a structure variable by preceding it with the
variable's name followed by a period (.). The construct varname.memname is
considered equivalent to the name of a variable of the the same type as
memname, and you can perform all the same operations.

Structures and Pointers

You can declare pointers to structures, just as you can declare pointers to
other data types. This ability is essential for creating linked lists and other
dynamic data structures. In fact, pointers to structures are used so often in
C that there is a special symbol for referring to the member of a structure
pointed to by a pointer.

Consider the following rewrite of the previous program.

#include <alloc.h>
main ()
{

star *mystar;

mystar = (star *) malloc(sizeof(star));
strcpy(mystar -> name, "Epsilon Eridani");
mystar -> class = 'K';
mystar -> subclass = 2;
mystar -> decl = 3.5167;
mystar -> RA = -9.633;
mystar -> dist = 0.303;

1* Rest of function main() *1

This rewrite declares mystar to be a pointer to type star, rather than to be a
variable of type star. It allocates space for mystar via the call to malloc.Now
when you refer to the members of mystar, you use ptrname->memname. The

More Programming in Turbo C 129

symbol-> means "member of the structure pointed to by"; it is a shorthand
notation for (*ptrname).memname.

The switch Statement

You may find yourself building long if .. else if .. else if .. constructs.
Look at the following function:

#include <ctype.h>
do main menu(short *done)
{- -

char cmd;

*done = 0;
do {

cmd = toupper(getch());
if (cmd == 'F') do file menu(done);
else if (cmd == 'R') run program();
else if (cmd == 'C') do compile();
else if (cmd == 'M') do-make();
else if (cmd == 'P') do~roject_menu();
else if (cmd == '0') do option menu();
else if (cmd == 'E') do-error menu();
else handle others(cmd,-done);

while (! *done) ;

This is so common in programming that C has a special control structure
for it: the switch statement. Here's that same function, but rewritten using
the switch statement:

#include <ctype.h>
do main menu (short *done)
{- -

130

char cmd;

*done = 0;
do {

cmd = toupper(getch());
switch (cmd) {

case 'F': do file menu(done); break;
case 'R': run program(); break;
case 'C': do compile(); break;
case 'M': do-make(); break;
case 'P': do-project menu(); break;
case '0': do-option menu(); break;
case 'E': do-error menu(); break;
default: handle others(cmd,done);

while (!*done); -

Turbo C User's Guide

This function enters a loop that reads in a character, converts it to
uppercase, and stores it in cmd. It then executes the switch statement based
on the value of cmd. The loop continues until the variable done gets
assigned zero (presumably in the functions do_file_menu or
handle_others).

The switch statement takes the value of cmd and compares it against each
of the case labels. If there is a match, execution starts at that label and
continues until either you encounter a break statement or you reach the
end of the switch statement. If there is no match and you've included the
label default label (default) in your switch statement, then execution
starts there; if there is no default, then the entire switch statement is
skipped.

In the switch statement, value must be integer compatible. In other words, it
has to be easily converted to an integer; it can be a char, any enum type, and
(of course) an int with all its variants. You cannot use reals (such as float
and double), pointers, strings, or other data structures (though you can use
integer-compatible elements of a data structure).

Although (value) can be any expression (constant, variable, function call, or
any combination thereof), the case labels themselves have to be constants.
What's more, you can only list one value per case keyword.

If do_main_menu hadn't used the function toupper to convert cmd to
uppercase, then the switch statement might have looked like this:

switch (cmd)
case 'f':
case 'F': do_file_menu(done);

break;
case'r' :
case'R' : run_program();

break;

This statement executes the function do_file_menu if cmd is either a lower­
or uppercase F, and so on for the rest of the options.

Remember, you must use the break statement when you're finished with a
given case. Otherwise, the remaining statements will be executed (until, of
course, you encounter a break statement). If you had left off the break
statement following the call to do_file_menu, typing the letter F would
result in a call to do_file_menu, followed by a call to run_program.

More Programming in Turbo C 131

There are times when you want to do that, though; consider this code:

typdef enum { sun, mon, tues, wed, thur, fri, sat } days;

main()
{

days today;

switch (today)
case mon:
case tues:
case wed:
case thur:
case fri: puts ("go work!"); break;
case sat: printf("clean the yard and H);
case sun: puts("relax!");

With this switch statement, the values mon through fri all end up executing
the same puts statement, after which the break statement causes you to
leave the switch. However, if today equals sat, then the printf is executed,
following which the puts ("relax!") statement is executed; if today equals
sun, then only that last puts is executed.

Control Flow Commands

There are additional commands for use within control structures or to
simulate other control structures. The return statement lets you exit
functions early. The break and continue statements are designed to be
used within loops and help you skip over statements. The goto statement
allows you to jump around in your code. And the conditional expression
(?:) lets you compress certain if ... else statements onto just one line.

A word of advice: Think twice before using these (except, of course, for
return). There are situations where they represent the best solution, but
more often than not you can solve your problem clearly without resorting
to them. Especially avoid the use of the goto statement; given the return,
break, and continue statements, there shouldn't be that much need for it.

132 Turbo C User's Guide

The return Statement

There are two major uses of the return statement. First, if a function
returns a value, you must use it in order to pass that value back to the
calling routine.

For example,

int imax(int a, int b);
{

if (a > b)
return (a);

else
return (b);

Here, the routine uses the return statement to pass back the maximum of
the two values accepted.

The second major use of the return statement is to exit a function at some
point other than its end. For example, a function might detect a condition
early on that requires that it terminate. Rather than put the rest of the
function inside of an if statement, you can just call return to exit. If the
function is of type void, you can just use return with no value passed back
at all.

Consider this modification of the lmin function given earlier:

int lmin(int list[], int size)
{

int i, minindx, min;

if (size <= 0)
return (-1) ;

In this case, if the parameter size is less than or equal to zero, then there is
nothing in list; therefore, return is called right off the bat, to get out of the
function. Note that an error value of -1 is returned. Since -1 is never a valid
index into an array, the calling routine knows that it did something wrong.

The break Statement

Sometimes you want to quickly and easily exit a loop before you reach its
end.

More Programming in Turbo C 133

Consider the following program:

#define LIMIT 100
#define MAX 10
main ()
{

int i,j,k,score;
int scores [LIMIT] [MAX];

for (i = 0; i < LIMIT; itt)
j = 0;
while (j < MAX-I) {

)

printf("please enter score #%d: ",j);
scanf("%d",score);
if (score < 0)

break;
scores[i] [++j] = score;

scores [i] [0] = j;

Note the statement if (score < 0) break;. This says that if the user
enters a negative value for the score, the while loop is terminated. The
variable j is used both to index into scores and to keep track of the total
number of scores in each row; that count is then stored in the first element
of the row.

You may recall the break statement from its use in the switch statement
last chapter. In that case, it caused the program to exit the switch
statement; here, it causes the program to exit the loop and proceed with the
program. The break statement can be used with all three loops (for, while,
and do ... while), as well as in the switch statement; however, it cannot be
used in an if ... else statement or just in the main body of a function.

The continue Statement

Sometimes, you don't want to get out of the loop completely; you just want
to skip the rest of the loop and start at the top again. In those situations,
you can use the continue statement, which does just that.

134 Turbo C User's Guide

Look at this program:

#define LIMIT 100
#define MAX 10
main ()
{

int i,j,k,score;
int scores [LIMIT] [MAX];

for (i = 0; i < LIMIT; itt)
j = 0;
while (j < MAX-1) {

}

printf("p1ease enter score #%d: ",j);
scanf("%d",score);
if (score < 0)

continue;
scores[ij [ttj] = score;

scores til [0] = j;

When the continue statement is executed, the program skips over the rest
of the loop and does the loop test again. As a result, this program works
differently from the one before. Instead of exiting the inner loop when the
user enters a score of -I, it assumes that an error has been made and goes
to the top of the while loop again. Since j has not been incremented, it asks
for the same score again.

The goto Statement

Yes, there is a goto statement in C. The format is simple: goto label, where
label is some identifier, associated with a given statement. However, most
intelligent uses of the goto statement are taken care of by the three
previous statements, so consider carefully whether you really need to use
it.

The Conditional Expression (?:)

You might on occasion want to select between two expressions (and the
resulting values), based on some condition:

More Programming in Turbo C 135

This is usually accomplished with an if .. else statement, such as:

int imin(int a, int b)
{

if (a < b)
return(a);

else
return (b);

This happens often enough that there is a special construct to perform this
type of selection. Its format is

exprl ? expr2 : expr3

This is interpreted as follows: "If exprl is true, then evaluate expr2 and let
the entire expression assume its value; otherwise, evaluate expr3 and
assume its value." Using this construct, you can rewrite the function imin
as follows:

int imin(int a, int b)
{

return ((a < b) ? a : b);

Better yet, you can rewrite imin as an in-line macro:

#define imin(a,b) ((a < b) ? a: b)

Now whenever your program sees the expression imin (el, e2), it replaces
it with ((el<e2) ? el : e2) and continues compilation. This is actually a
more general solution, since a and b are no longer limited to being int; they
can be any type which allows the < relationship.

Style in C Programming: Modern vs. Classic

In C programming, there are a number of current trends to embrace certain
techniques that make C easier to use. Many of these trends counteract
classic traditions or methods of C programming. Most have been made
possible by language extensions defined by the ANSI C Standards
Committee. This section should give you a feeling for how things have
been done in the past and how the new standards can help you write better
C programs.

Turbo C, of course, supports both the classic programming style and the
modern style.

136 Turbo C User's Guide

Using Function Prototypes and Full Function
Definitions

In the classic style of C programming, you declare functions merely by
specifying the name and type returned.

For example, you would define the function swap as:

int swap();

No parameter information is give, either as to number or type. The classic­
style definition of the function looks like this:

int swap(a,b)
int *a,*b;
{

/* Body of function */

This style results in very little error checking, which in turn can result in
some very subtle and hard -to-trace bugs. Avoid it.

The modern style involves the use of function prototypes (for function
declarations) and parameter lists (for function definitions).

Redeclare swap using a function prototype:

int swap(int *a, int *b);

Now when your program compiles, it has all the information it needs to do
complete error checking on any call to swap. And you can use a similar
format when you define the function:

int swap(int *a, int *b)
{

/* Body of function */

The modern style increases the error checking performed even if you don't
use function prototypes; if you do use prototypes, this will cause the
compiler to ensure that the d~clarations and definitions agree.

More Programming in Turbo C 137

Using enum Definitions

In classic C, lists of values are defined using the #define directive, like this:

#define sun 0
#define mon 1
#define tues 2
#define wed 3
#define thur 4
#define fri 5
#define sat 6

Nowadays, however, you can declare enumerated data types using the
keyword enum, as shown here:

typedef enum {sun, mon, tues, wed, thur, fri, sat} days;

This has the same effect as the classic method, right down to setting sun = 0
and sat = 6; however, the modern method does more information hiding
and abstraction than the long list of #define directives. And you can
declare variables to be of type days.

Using typedet

In classic-style C, user-defined data types were seldom named, with the
exception of structures and unions-and even with them you had to
precede any declaration with the keyword struct or union.

In modern-style C, another level of information hiding is used when using
the typedef directive. This allows you to associate a given data type
(including structs and enums) with a name, then declare variables of that
type.

138 Turbo C User's Guide

Here are some sample type definitions with variable declarations:

typedef int *intptr;
typedef char namestr[30];
typedef enum {male, female, unknown } sex;
typedef struct {

namestr last, first;
char ssn[9];
sex gender;
short age;
float gpa;

} student;
typedef student class[lOO];

class
student
intptr

histl04,psl02;
valedictorian;
iptr;

Using typede£s makes the program more readable; it also allows you to
change a single location-where a type is actually defined-and have that
change propagated through the entire program.

Declaring void functions

In the original definition of C, every function returned a value of some
type; if no type was declared, the function was assumed to be of type into
In a similar fashion, functions that returned "generic" (untyped) pointers
were usually declared to return a pointer to char, just because they had to
return something.

Now there is a standard type void, which can be thought of as a kind of
"null" type. Any function that does not explicitly return a value should be
declared as being of type void. Note that many of the run-time memory
allocation routines (such as malloc) are declared to be of type void *. This
means they return an untyped pointer, which you can then (in Turbo C)
assign to a pointer of any type without casting (though you should cast
anyway, to preserve portability).

Make Use of Extensions

There are a number of minor extensions to the C language that aid program
readability, replace some anachronisms, and allow you to move forward.
Here's a brief listing.

More Programming in Turbo C 139

String Literals

In classic C, you had to use continuation characters or some kind of
concatenation in order to have large string literals in your program.

In modern-style C, you can easily spread a large literal across several lines,
like this:

main ()
{

char *msg;

msg = "Four score and seven years ago, our fathers"
" brought forth upon\nthis continent a new"
" nation, dedicated to the ideal that all"
" men\nare created equal";

printf("%s",msg);

Hexadecimal Character Constants

In classic C, escape sequences specifying particular ASCII codes were all
done in octal (base 8). This was because C had been originally developed
on machines where binary numbers were usually represented in octal form.

Nowadays, most computers use hexadecimal (base 16) to represent binary
numbers. Because of this, modern C allows you to declare character
constants in hex notation. The general format is '\xDD', where DD
represents one or two hexademical digits (0 .. 9, A .. F). These escape
sequences can be directly assigned to char variables, or they can be
embedded in strings, for example, ch = '\ x2 0' .

signed Types

Classic C assumed that all integer-based types were signed, and so
included the type modifier unsigned so that you could specify otherwise.
By default, variables of type char were considered signed, which meant
that the underlying range of values was -128 to 127.

On microcomputers today, however, the char type is often thought of as
being unsigned, and Turbo C has a compiler option to allow you to make
that the default. In such a case, though, you may still want to be able to
declare a signed char. In modern C, you can do so, since signed is
recognized as a valid modifier.

140 Turbo C User's Guide

Pitfalls in C
Programming

There are a number of common errors that programmers make when they
first start coding in C. Here's a list of some of them, along with suggestions
how to avoid them.

Path Names with C Strings

Everyone knows that the backslash (\) in MS-DOS indicates a directory
name. However, in C, the backslash is the escape character in a string. This
conflict causes a bit of a problem if you give a path name with a C string.

For example, if you had the statement

file = fopen("c:\new\tools.dat", "I");

you'd expect to open the file TOOLS.DAT in the NEW directory on drive C.
You won't. Instead, the \n gets you the escape sequence for the newline
character (LF) and the \ t gets you the tab character.

The result is your file name will have embedded in it the newline and tab
characters. DOS would reject the string as an improper file name, as file
names may not have newline or tab in them. The proper string is

"c:\\new\\tools.dat"

Using and Misusing Pointers

Pointers may well be the single most confusing issue to novice C
programmers. When do you use pointers, and when don't you? When do
you use the indirection operator (*)? When do you use the address-of
operator (&)? And how can you avoid really messing up the operating
system while running?

Using an Uninitialized Pointer

One serious danger is to assign a value to the address contained by a
pointer without having assigned an address to that pointer.

More Programming in Turbo C 141

For example,
main ()
{

int *iptr;

*iptr ::: 421;
printf("*iptr::: %d\n",*iptr);

What makes this pitfall so dangerous is that you can often get away with it.
In the previous example, the pointer iptr has some random address in it;
that's where the value 421 is stored. This program is small enough that
there is very little chance of anything being clobbered. In a larger program,
though, there is an increasing chance of just that, since you may well have
other information stored at the address that iptr happens to contain. And if
you're using the tiny memory model, where the code and data segments
occupy the same space, you run the risk of corrupting the machine code
itself.

Strings

You may recall that you can declare strings as pointers to char or as arrays
of char. You may also recall that these are the same with one very
important difference: If you use a pointer to char, no space for the string is
allocated; if you use an array, space is allocated, and the array variable
holds the address of that space.

Failure to understand this difference can lead to two types of errors.
Consider the following program:

main ()
{

char *name;
char msg[10);

printf("What is your name? H);
scanf("%s",name);
msg ::: "Hello, ";
printf("%s%s",msg,name);

At first glance, this might appear to be perfectly fine; a little clumsy, but
still allowable.

But this has introduced two separate errors.

142 Turbo C User's Guide

The first error has to do with the statement

scanf("%s",name)

The statement itself is legal and correct. Since name is a pointer to char, you
don't need to use the address-of (&) operator in front of it.

However, the program has not allocated any memory for name; the name
you type in will be stored at whatever random address that name happens
to have. You will get a warning on this (Possible use of 'name' before

definition), but no error.

The second problem will cause an error. The problem lies in the statement
msg = "Hello, ". The compiler thinks you are trying to change msg to the
address of the constant string "Hello, ". You can't do that, because array
names are constants that cannot be modified (just like 7 is a constant, and
you can't say 1/7 = i"). The compiler will give you an error message Lvalue

required.

What are the solutions to these errors? The simplest approach is to switch
the ways in which name and msg have been declared:

main ()
{

char name[lO);
char *msg;

printf("What is your name? ");
scanf("%s",name);
msg = "Hello, ";
printf("%s%s",msg,name);

This works perfectly well. The variable name has space set aside to hold
your name as you type it in, while msg lets you assign to it the address of
the constant string "Hello, ".

If, however, you are bound and determined to keep the declarations the
way they were, then you'll need to make the following changes to the code:

#include <alloc.h>
main ()
{

char *name;
char msg[lO);

name = (char *) malloc(lO);
printf("What is your name? ");
scanf("%s",name);
strcpy(msg,"Hello, ");
printf("%s%s",msg,name);

More Programming in Turbo C 143

The call to malloe sets aside ten bytes of memory and assigns the address
of that memory to name, taking care of our first problem. The function
strepy does a character-by-character copy from the constant string
"Hello, " to the array msg.

Confusing Assignment (=) with Equality (==)

In the languages Pascal and BASIC, a comparison for equality is made with
the expression if (a = b). In C, that is a valid construct, but it has quite a
different meaning.

Look at this code fragment:

if (a = b)
puts("Equal");

else
puts("Not equal");

If you're a Pascal or BASIC programmer, then you might expect this to
print Equal if a and b have the same value, and Not equal otherwise.
That's not what happens. In C, the expression a = b means "assign the
value of b to a," and the entire expression takes on the value of b. So, the
previous fragment will assign the value of b to a, then print Equal if b has a
nonzero value, otherwise it will print Not equal.

What you really want is the following:

if (a == b)
puts("Equal);

else
puts("Not equal");

Forgetting the break in Switch Statements

You may remember that the break statement is used in a switch statement
to end a particular case. Please continue to remember that. If you forget to
put a break statement in for a given case, the case(s) after it are executed as
well.

144 Turbo C User's Guide

Array Indexing

Don't forget that arrays start at [0], not at [1]. A common error is to write
code like this:

main ()
{

int list [100], i;

for (i = 1; i <= 100; itt)
list [i] = i*i;

This program leaves the first location in list-namely list[oJ-uninitialized,
and it stores a value in a nonexistent location of list-list[100J-possibly
overwriting other data in the process.

The correct code should be written like this:

main()
{

int list[100],i;

for (i = 0; i < 100; itt)
list [iJ = i*i;

Failure to Pass-by-Address

Look at the following program and figure out what's wrong with it:

main()
{

int a,b,sum;

printf("Enter two values: H);
scanf("%d %d",a,b);
sum = a t b;
printf("The sum is %d\n",sum);

Give up? The error is in the statement scanf ("%d %d", a, b). Remember
that scanf requires you to pass addresses instead of values? The same is true
of any function whose formal parameters are pointers. The previous
program will compile and run, since scanf will take whatever random
values are in a and b and use them as addresses in which to store the values
you enter.

More Programming in Turbo C 145

The correct statement should read scanf("%d %d",&a,&b); that way, the
addresses of a and b are passed to scanf, and the values you enter are
correctly stored in those variables. This same pitfall can happen with your
own functions. Remember the function swap defined back in the section on
pointers?

What would happen if you called it like this:

main ()
{

int i,j;

i = 421;
j = 53;
printf("before: i = %4d j = %4d\n",i,j);
swap(i,j);
printf("after: i = %4d j = %4d\n",i,j);

The variables i and j would have the same values before and after the call to
swap; however, the values at data addresses 421 and 53 would have their
values swapped, which could cause some subtle and hard-to-trace
problems.

How do you avoid this?

Use function prototypes and full function definitions.

Actually, you would have gotten a compiler error in the previous version
of main if swap were defined as it was earlier in this chapter.

If, however, you defined it in the following manner, the program would
compile just fine:

void swap(a,b)
int *a,*b;
{

Moving the definitions of a and b out of the parentheses disables the error
checking that would go on otherwise, which is the best reason for not using
the classic style of function definition.

Sailing Away

As we said at the start of the previous chapter, we can't give you a
complete tutorial on C in just two chapters. But we have given it our best

146 Turbo C User's Guide

shot. What you should now do-what you should have been doing all
along-is key in these example programs, compile them, run them, and
(most importantly) modify them to see what happens when you change
things around. Best of luck, and bon voyage.

More Programming in Turbo C 147

148 Turbo C User's Guide

c H A p T E R

6

Notes for Turbo Pascal Programmers

Now, before you go any farther, go back to Chapters 5 and 3 and at least
skim through them. Learn how C implements the basic elements of pro­
gramming. We will cover some of the same ground in this chapter, but
there are many details in those two chapters that you won't find here.

In a nutshell, Pascal is a fairly disciplined and structured language,
whereas C is rather free-wheeling and flexible. But C is also caveat
programmer; it gives you plenty of rope to swing with-or hang yourself.
Pascal takes care of you better than C does, and thus is more suited as a
language to learn the fundamentals of programming.

Turbo C and Turbo Pascal are moving toward the center of this C-Pascal
language spectrum: Turbo C adds some structure to C, and Turbo Pascal
adds some flexibility to Pascal.

In This Chapter ...

This chapter is not meant to be a comprehensive discussion of C and its
many fine features; its goal is to help you, as a Turbo Pascal programmer,
learn enough about Turbo C to start writing programs quickly. Expertise
and insight will come only with time, practice, and the hundreds of lines of
code that you will write.

Notes for Turbo Pascal Programmers 149

We'll show you, in this chapter, the similarities and differences between
Pascal and Turbo C programming. We start off with the basics: program
structure and the elements of programming. After that, we use a major
example to illustrate our discussion of data structures. The end of this
chapter is devoted to a discussion of programming issues that you need to
be aware of, and an overview of common pitfalls that trap Pascal
programmerslearningC.

Throughout this chapter, we use examples of program code to illustrate the
points we're making. Each example consists of a Turbo Pascal program or
fragment on the left, and its equivalent in Turbo C on the right.

Program Structure

As you know, program structure in Turbo Pascal takes the following form:

program ProgName;
< declarations:

const
type
var

freely mixed

procedures and functions >
begin { Main body of prog ProgName

< statements >
end. { End of prog ProgName }

The main body of the program is executed; if it calls additional procedures
and functions, they are executed as well. All identifiers-constants, types,
variables, procedures, and functions-must be declared before they are
used. Procedures and functions are organized in a nearly identical manner.

Program structure in C is a little more flexible:

< preprocessor commands >
< type definitions >
< function prototypes >
< variables >
< functions >

freely mixed

Functions, in turn, have the following structure:

<type> FuncName«parm declarations»
{

<local declarations>
<statements>

Of all the functions you declare, one must be named main; that is the main
body of your program. In other words, when your Turbo C program starts

150 Turbo C User's Guide

execution, main is called, and it can in turn call other functions. A C
program consists entirely of functions. However, some functions are of
type void, meaning that they return no values; so they are like Pascal
procedures. Also (unlike Pascal) you are free to ignore any values that a
function returns.

An Example

Here are two programs, one written in Turbo Pascal, the other written in
Turbo C, which illustrate some of the similarities and differences between
the two in program structure:

Turbo Pascal Turbo C

program MyProg;
var

I,J,K : Integer;

function Max(A,B : Integer) Integer;
begin

if A > B
then Max := A

else Max := B

end;
{ End of fune Max

procedure Swap(var A,B Integer);
var

Temp : Integer;
begin

Temp := A; A := B; B := Temp
end;
{ End of proe Swap }

begin { Main body of MyProg

I := 10; J := 15;
K := Max(I,J);
Swap (I, K) ;
Write('I = ',1:2,' J = ',J:2);
Writeln(' K = ' ,K:2)

end.
{ End of program MyProg }

Notes for Turbo Pascal Programmers

int i,j,k;

int max(int a, int b)

}

if (a > b)
return(a);

else
return (b) ;

/* End of max() */

void swap(int *a, int *b)

int temp;
temp = *a; *a = *b; *b = temp;

}
/* End of swap() */

main()
{

}

i = 10; j = 15;
k = max(i,j);
swap(&i,&k);
printf("i = %2d j = %2d",i,j);
printf(" k = %2d\n",k);

/* End of main */

151

If we had chosen to, we could have declared i, j, and k inside of main,
instead of as global variables. In many cases, that's better programming
practice, since it eliminates the chance (and temptation) of directly
modifying global variables within functions, while still creating variables
that exist throughout the course of the program.

If the C program on the right looks bizarre to you, just wait (you ain't seen
nothin' yet!). By the time you finish this chapter, you'll be right at home
with it; in fact, you'll probably be writing things that look even more
bizarre.

A Comparison of the Elements of
Programming

Back in Chapter 5, we talked about the seven basic elements of program­
ming-output, data types, operations, input, conditional execution,
iterative execution, and subroutines. Let's look at those again, seeing how
Pascal and C both resemble and differ from each other.

Output

The main output commands in Turbo Pascal are Write and Writeln. Turbo
C, on the other hand, has a variety of commands, based just exactly on
what you want to do. The most commonly used, and the one that requires
the most overhead, is printf, which takes the format:

printf«format string>, <item>, <item>, ...);

where <format string> is a string literal or a string variable (remember, C uses
double quotes) and the <item>s are optional variables, expressions, etc.,
that match up with format commands in the format string; see Chapter 5
for more details. To get a newline (= Writeln) in C, insert the escape
sequence \n (newline) at the end of the format string.

152 Turbo C User's Guide

Here are some example routines in Turbo Pascal with equivalent (or near
equivalent) C routines:

var
A,B,C
Amt
Name
Ans

Turbo Pascal

Integer;
Real;
string[20] ;
Char;

Writeln('Hello, world.');
Write('What"s your name? ');
WriteLn('"Hello," said John');

Writeln(A,' + ',B,' = ',C);
Writeln('You owe us $' ,Amt:6:2);

Writeln('Your name is ',Name,'?');
Writeln('The answer is ',Ans);

Write(' A = , ,A:4);
Writeln (' A*A = " (A*A) : 6) ;

Turbo C

int a,b,c;
float amt;
char name [21]; (or *name)
char anSi

printf("Hello, world.\n");
printf ("What's your name? ");
printf("\"Hello,\" said John\n");

printf("%d + %d = %d\n",a,b,c);
printf("You owe us $%6.2f\n",arnt);

printf("Your name is %s?\n",narne)
printf("The answer is %c\n",ans);

printf(" a = %4d",a);
printf(" a*a = %6d\n",a*a);

Two other C output routines you'll probably want to be aware of are puts
and putchar. puts takes a single string as its argument and writes it out,
automatically adding a new line. putchar is even simpler: It writes a single
character. So, for example, the following commands are equivalent:

Writeln(Name); puts (Name) ;
Writeln('Hi, there!'); Writeln; puts("Hi, there!\n");

Write(Ch); put char (ch) ;

Data Types

Most Turbo Pascal data types have equivalents in Turbo C. C actually has a
greater variety of data types, with different sizes of integers and floating­
point values, as well as the modifiers signed and unsigned.

Notes for Turbo Pascal Programmers 153

Here's a table giving rough equivalents between Pascal and C data types.

Turbo Pascal Turbo C

char (1 byte) chr(O - 255) char (1 byte) -128 - 127
byte (1 byte) o - 255 unsigned char (1 byte) o - 255
integer (2 bytes) -32768 - 32767 short (2 bytes) -32768 - 32767

int (2 bytes) -32768 - 32767
unsigned int (2 bytes) o - 65535
long (4 bytes) _2 31 - (231 _1)

unsigned long (4 bytes) o - (2 32 _1)
real (6 bytes) 1E-38 - 1E+38 float (4 bytes) ± 3.4 E ±38

double (8 bytes) ± 1. 7 E ±308
boolean (1 byte) false, true o = false, non-zero = true

Note that there is no boolean data type in C; expressions that require a
Boolean value interpret a value of zero as being false and any other value as
being true.

In addition to the data types listed, Turbo C supports enumerated data
types; however, unlike Pascal, these are effectively just pre-assigned integer
constants and are completely compatible with all integral types.

Turbo Pascal Turbo C

type
Days = (Sun,Mon,Tues,Wed,

Thurs,Fri,Sat);
var

Today : Days;

Operations

enum days = { Sun,Mon,Tues,Wed,
Thurs,Fri,Sat }:

enum days today:

Turbo C has all the operators of Turbo Pascal, and then some.

One of the more basic differences between the two languages is how
assignment is handled. In Pascal, assignment (:=) is a statement. In C,
assignment (=) is an operator that may be used in an expression.

154 Turbo C User's Guide

Table 6.1 shows a side-by-side comparison of operators in Turbo Pascal and
Turbo C. They are listed in order of precedence, with operations grouped
together having the same precedence.

unary minus
unary plus
logical not
bitwise complement
address
pointer reference
size of
increment
decrement

multiplication
integer division
floating division
modulus

addition
subtraction

shift right
shift left

greater than
greater or equal
less than
less or equal

equal
not equal
bitwise AND

bitwise OR

bitwise XOR

logical AND

logical OR

assignment

Table 6.1: Pascal and C Operators

A := -Bi
A := +Bi
not Flag
A := not Bi
A := Addr(B)i
A := Intptr"i
A := SizeOf(B)i
A := Succ (A) i
A := Pred(A) i

A := B * Ci
A := B div Ci
X := B / Ci
A := B mod Ci

A := B + Ci
A := B - Ci

A := B shr Ci
A := B shl Ci

A > B
A >= B
A < B
A <= B

A = B
A <> B
A := Band Ci

A := B or Ci

A := B xor Ci

Flagl and Flag2

Flagl or Flag2

A := Bi
A := A <op> Bi

a = -bi
a = +bi
!flag
a = ~bi
a = &bi
a = *intptri
a = sizeof(b)i
a++ and ++a
a - - and - - a

a = b * Ci
a = b / Ci
x = b / Ci
a = b % Ci

a = b + Ci
a = b - Ci

a = b » Ci
a = b « Ci

a > b
a >= b
a < b
a <= b

a == b
a != b
a = b & Ci

a = b I Ci

a = b " Ci

flagl && flag2

flagl I I flag2

a = bi
a <op> = bi

There are some important differences in C operators and operator
precedence.

First, the increment (++) and decrement (--) operators can be placed before or
after the variable name. If the operator is placed before the variable, then
the variable is incremented (or decremented) before the rest of the

Notes for Turbo Pascal Programmers 155

expression is evaluated; if after, the expression is evaluated first, then the
variable is incremented (or decremented).

Second, the logical operators in C (&&, I I) are short-circuit operators. This
means that if the first item determines the truth of the expression, then the
second is never evaluated. So, unlike Pascal, C lets you safely write this:

while (i <= limit && list [iJ != 0) ... ;

where limit is the largest allowable index into the list array.

If the first item (i <= limit) is false, then C knows that the entire
expression must be false, and it doesn't evaluate the second item (list [i]

! = 0), which would be an index range error.

Third, C allows you to take the general expression

A = A <op> B

where <op> is any binary operator (except for && and I I) and replace it
with

A <op>= B

So, for example, instead of A A * B, you could write A *= B, and so on.

Input

Again, in Turbo Pascal, you have one basic input command, Read(), with a
few variations (Readln(), Read(f,), etc.). In Turbo C, the main function used
for keyboard input is scanf, which takes the format:

scanf«format string>, <addrl>, <addr2>, ...);

where <format string> is a string with format indicators (as in printf), and
each <addr> is an address into which scanf stores the incoming data. This
means that you will often need to use the address-of operator (&). There are
other commonly used commands as well: gets, which reads in an entire
string until you press Enter; and getch, which reads a character straight
from the keyboard with no echo.

156 Turbo C User's Guide

Here are some Pascal input commands with corresponding C commands:

Turbo Pascal

Readln (A, B) ;
Readln(Name);

Readln (X, A) ;
Readln (Ch) ;
Read (Kbd, ChI ;

Turbo C

scanf("%d %d",&a,&b);
scanf("%s",name);
/* or gets(name); */
scanf("%f %d",&x,&a);
scanf("%c",ch);
ch = getch () ;

Be aware of one important distinction between these two ways of reading
in a string (scanf and gets). scanf reads in all characters until whitespace
(blanks, tabs, newline) is encountered. By contrast, gets will read everything
in (including blanks and tabs) until you press Enter.

Block Statement

Both Pascal and C have the concept of a block statement (a collection of
statements that can be put in anywhere a single statement can). In Pascal,
the block statement takes the form

begin <statement>; <statement>; ... <statement> end;

In C, it takes this form:

{ <statement>; <statement>; ... <statement>; }

While the form is very similar, there are two important differences:

• In Pascal you don't have to put a semicolon after the last <statement> in
a block; in C, you do.

• In C you never put a semicolon after the closing brace (}) of a block; in
Pascal, you might have to.

Conditional Execution

Both Pascal and C support two conditional execution constructs: the if/then/else
statement and the case statement.

The if/then/else is very similar for both of them:

if <bool expr>
then <statement>
else <statement>

if «expr»
<statement>;

else
<statement>;

Notes for Turbo Pascal Programmers 157

In both Pascal and C, the else clause is optional, and <statement> can be
replaced with a block statement (as already described). There are a few
important differences, though.

• In C, the <expr> doesn't have to be Boolean; it just has to somehow
resolve to a zero or nonzero value, where zero is considered false, and
nonzero is considered true.

• In C, the <expr> must be in parentheses.

• In C, there is no then.
• In C, semicolons are always required after the statements-unless, of

course, you have a block statement there instead.

Here are a few examples in Pascal and C:

Turbo Pascal

if B = 0
then Writeln('C is undefined')

else begin
C ;= A div B;
Writeln('C = , ,C)

end;

C ;= A * B;
if C < > 0

thenC ;= C t B;
else C ;= A

Turbo C

if (B == 0)
puts("c is undefined");

else {
c = a / b;
printf("c = %d\n",c)~

if ((c = a * b) != 0)
c t= b;

else
c = a;

The case statement is also implemented in both Pascal and C (in which it's
known as the switch statement), but with some important differences.

Here's the general format for Pascal and C:

Turbo Pascal Turbo C

case <expr> of switch «expr»
<list> <statement>; case <item> <statements>
<list> ; <statement>; case <item> <statements>

<list> ; <statement>; case <item> <statements>
else <statements> default <statements>

end;

Besides the cosmetic changes, there are critical distinctions as well.

First, in Pascal, <list> can be a list of values; in Turbo Pascal, it can include
ranges (A ... Z) as well. In C, <item> is exactly one value. In both languages,

158 Turbo C User's Guide

you're limited to ordinal and constant values: integers, characters, and
enumerated data types.

Second (and this is very important), in Pascal, <statement> is either a single
statement or a block statement; once it is executed, the rest of the case
statement is skipped over. In C, <statements> consists of zero or more
statements, each ending with a semicolon. However, once they are
executed, control does not pass to the end of the switch statement; instead,
it continues down the list of <statements> until and unless it hits a break
statement. Then, and only then, is the rest of the switch statement skipped.
It may help to think of each case <item> : as a label, with the
switch«expr» statement determining which one to jump to.

Here are a few examples:

Turbo Pascal

case Ch of
, C' : DoCompile;
'R' : begin

if not Compiled
then DoCompile
RunProgram;

end;
, S' : SaveFile;
, E' : EditFile;
, Q' : begin

if not Saved
then SaveFile

end;
end;

case Today of
Mon .. Fri : Writeln('go work!');
Sat, Sun : begin

end;

if Today = Sat then begin
Write ('clean the yard');
Write (' and')
end;

Writeln('relax!')
end

Turbo C

switch (ch) {
case ' C' : DoCompile (); break;
case 'R' :

if (! compiled)
DoCompile () ;

RunProgram () ;
break;

case'S' : SaveFile(); break;
case 'E' : EditFile(); break;
case 'Q' :

if (! saved)
SaveFile () ;

break;

switch (today)
case Mon
case Tue :
case Wed :
case Thur:
case Fri puts ("go work!"); break;
case Sat printf("%s", "clean the"

"yard and ");
case Sun puts("relax!");

N ate the second set of examples. The case <item> parts of the switch
statement label each case you want to handle; in the case of Mon through
Thur, the <statements> sections are empty, and control falls downward until
it finds the statements labelled by case Fri :. The break statement then

Notes for Turbo Pascal Programmers 159

causes control to skip to the end of the switch statement. However, the
program takes advantage of the same feature with the weekend; the label
case Sat : causes the printf statement to execute, after which control falls
to the following puts statement.

Iteration

C, like Pascal, has three types of loops: while, do .. while, and for, which
correspond closely to Pascal's three loops (while, repeat..until, and for).
We'll present them in that order.

The while Loop

Of the three loops, the while loop is most similar in both languages. Here
are the formats:

while <bool expr> do
<statement>;

while «expr»
<statement>;

In both languages, you use a block statement to put more than one
statement in the loop. The only real difference, again, is C's greater
flexibility in what it accepts for <expr>. For example, compare the following
two loops:

Read(Kbd,Ch);
while Ch <> 'q' do begin

Write(Ch); Read(Kbd,Ch)
end;

The do .. while Loop

while ((ch = getch()) != 'q')
putchar(ch);

The do .. while loop is similar to Pascal's repeat .. until loop; here are the
formats:

Turbo Pascal

repeat
<statements>

until <bool expr>;

Turbo C

do
<statement>;

while «expr»;

But, there are two important differences between these two loops:

• The do .. while loop executes while <expr> is true, whereas the
repeat..until executes until <bool expr> is true.

160 Turbo C User's Guide

• The repeat .. until statement doesn't require a block statement for
multiple statements, while the do .. while does.

Here's an example of each:

Turbo Pascal

repeat
Write('Enter a value: ');
Readln(A)

until (Low <= A) and (A <= High);

Turbo C

do {
printf("Enter a value: ");
scanf("%d",&a);

} while (a < low I I a > high);

Note another important difference between C and Pascal: In C, relational
operators (>, <, etc.) have a higher precedence than logical operators
(&&, I I). This means that you don't have to surround each relational
expression with parentheses, as you often do in Pascal.

The for Loop

The for loop shows the greatest differences between Pascal and C. In
Pascal, the for loop is rather fixed and inflexible; in C, it is almost too
flexible, allowing some constructs that tend to lose all resemblance to a for

loop.

Here are the formats of both:

Turbo Pascal

for <indx> := <start> to <finish> do
<statement>;

Turbo C

for «exprl>; <expr2>; <expr3»
<statement>;

In C (as it really is in Pascal), the for statement is simply a special case of
the while statement. The given format is equivalent to

<exprl>;
while «expr2»

<statement>;
<expr3>;

<exprl> is used for initialization, <expr2> for testing the end of the loop,
and <expr3> to increment or otherwise modify the loop variableCs).

Notes for Turbo Pascal Programmers 161

Here are a few examples, some of which use the while loop in Pascal:

Turbo Pascal Turbo C

for I := 1 to 10 do begin
Write('I = ' ,1:2);
Write (' 1*1 = ',(1*1): 4);
Writeln (' 1**3 = " (1*1*1) : 6)

end;

I := 17; K := I;
while (I > -450) do begin

K := K t I;
Writeln('K = , ,K,' I = ' ,I);
I := I - 15

end;

X := 0/2.0;
while (Abs(X*X-O) > 0.01) do

X := (X t 0/X)/2.0;

for (i = 1; i <= 10; itt)
printf("i = %2d ",i);
printf("i*i = %4d ",i*i);
printf("i**3 = %6d\n",i*i*i);

for (i = 17, k = i; i >- 450; i -= 15)
k t= i,
printf("k = %d i = %d\n",k,i);

for (x = d/2; fabs(x*x-d) > 0.01;
x = (xtd/x)/2)

/* Empty statement */

Notice that these loops are doing more and more inside the for section,
until the last one actually has no statement to execute; all the work is done
within the header of the loop itself.

Subroutines

Both Pascal and C have subroutines; Pascal has procedures and functions,
while C has just functions. However, you can declare functions to be of
type void, which means that they return no value at all; if you want to, you
can also ignore the value that a function does return.

Here are the formats for functions in both languages:

Turbo Pascal

function FName«parm decls» <type>;
<local declarations>

begin
<statements>

end;

162

Turbo C

<type> FName«parm decls»

<local declarations>
<statements>

Turbo C User's Guide

In Pascal, <parm dec1s> takes the form <pnames> : <type>; for each set of
parameters, while in C it's <type> <pnames>,.

There are other important differences as well, but they're best shown by
example. Here are a few:

Turbo Pascal Turbo C

function Max(A,B : Integer) Integer;
begin

if A > B

end;

then Max := A
else Max := B

int max(int a, int b)
(

if (a > b)
return (a);

else
return (b);

Note that in C the return statement is used to return a value through the
function, while Pascal has you assign a value to the function name.

Turbo Pascal Turbo C

procedure Swap(var X,Y : Real);
var

Temp
begin

: Real;

Temp := X;
X := Y;
Y := Temp

end;

void swap(float *x, float *y)

float temp;
temp = *a;
*a = *b;
*b = temp;

In Pascal, you have two types of parameters: var (pass by address) and
value (pass by value). In C, you only have pass by value. If you want a
pass-by-address parameter, then that's what you have to do: Pass the
address, and define the formal parameter as a pointer. That's what was
done for swap.

Here's sample code calling these routines:

Q := 7.5;
R := 9.2;

Turbo Pascal

Writeln('Q = ',Q:5:1,' R = ',R:5:1);
Swap (Q, R);
Writeln('Q = , ,Q:5:1,' R = ' ,R:5:1);

q = 7.5;
r = 9.2;

Turbo C

printf("q = %5.1f r = %5.1f\n",q,r);
swap(&q,&r);
printf("q = %5.1f r = %5.1f\n",q,r);

Note the use of the address-of operator (&) in the C code when passing q
and r to swap.

Notes for Turbo Pascal Programmers 163

Function Prototypes

There is an important difference between Pascal and C concerning
functions: Pascal always does error checking to make sure that the number
and types of parameters declared in the function match those used when
the function is called.

In other words, suppose you define the Pascal function

function Max(I,J : Integer) : Integer;

and then try to call it with real values (A : = Max (B, 3.52) ;).

What will happen? You'll get a compiler error telling you that there is a
type mismatch, since 3.52 is not an acceptable substitute for an integer.

Not so in C. By default, C does no error checking on function calls: It does
not check the number of parameters, parameter types, or even the type
returned by the function. This allows you a certain amount of flexibility,
since you can call a function before it is ever defined. But it can also get you
into deep trouble; see "Pitfall #2" later in this chapter. So, how do you
avoid this?

Turbo C supports function prototypes. You can think of these as being
somewhat analogous to forward declarations in Pascal. You typically place
function prototypes near the start of your file, before you make any calls to
those functions. The key point to remember is that the function
prototype-which is a kind of declaration-must precede the actual call to
the function.

A function prototype takes the format:

<type> FNarne«type> <pnarne>, <type> <pnarne>, etc.);

This is very similar to how Pascal declares functions, but with a few
differences. Commas (not semicolons) are used to separate the definition of
each parameter; also, you can't list multiple <pname>s for a single <type>.

Here are some sample prototypes, based on the routines already given, as
well as on the routines in "A Major Example" (following):

int rnax(int a, int b);
void swap(float *x, float *y);
void swapitern(listitern *i, listitern *j);
void sortlist(list 1, int c);
void durnplist(list 1, int c);

Unlike the Pascal forward statement, the C function prototype does not
force you to do anything different when you actually define your function;
in other words, you define your function just as you would otherwise (or

164 Turbo C User's Guide

you can define it using modern C style). In fact, if your function definition
doesn't match the prototype, Turbo C will give you a compiler error.

Turbo C supports both the classic and modern styles, although-since C is
migrating toward using the modern style-we recommend that you use
function prototypes and prototype-style function definitions.

Using function prototypes can prevent a slew of problems, especially when
you start compiling libraries of C routines. You should create a separate file
and put in it function headers for all the routines in a given library. When
you want to use any routines in that library, you include the header file
into your program (with the directive #include). That way, error checking
can take place at compile time, possibly saving you a fair amount of grief.

A Major Example

Now here's a long example, a complete program using most of what you've
learned up until now, and then some. It defines an array myList, whose
length is defined by the constant LMax and whose base type is defined as
ListItem (which here is just Integer). It initializes that array to a set of
numbers in descending order, displays them using the DumpList routine,
sorts them in ascending order with SortList, then displays them again.

Note that the C version of this program is not necessarily the best C
version. It has been written to correspond as much as possible to the Pascal
version; the few places where it doesn't correspond are designed to
demonstrate certain differences between C and Pascal.

Notes for Turbo Pascal Programmers 165

Turbo Pascal

program DoSort;
const

LMax = 100;
type

Item = Integer;
List = array[l .. LMax] of Item;

var
myList
Count, I
Ch

List;
Integer;
Char;

procedure SortList(var L List;
C : Integer);

var
Top,Min,K : Integer;

procedure SwapItem(var I,J Item);
var

Temp : Item;
begin

Temp := I; I := J; J := Temp
end; { of proc SwapItem }

begin (Main body of Sort List

for Top := 1 to C-1 do begin
Min := Top;
for K := Top t 1 to C do

if L[K] < L[Min]
then Min := K;

SwapItem(L[Top],L[Min])
end

end; { of proe Sort List }

procedure DumpList(L
C

var
: Integer;

begin

List;
Integer);

for I := 1 to C do
Write1n('L[',I:3,'] = ',L[I]:4)

end; { End of proe DumpList }

166

Turbo C

#define LMAX 100

typedef int item;
typedef item list[LMAX];

list myList;
int count, i;

void swapitem(item *i,item *j)

item temp;
temp = *i; *i = *j; *j = temp

/* swapitem */

void sortlist(list 1, int e)
{

int top,min,k;
for (top = 0; top < c-1; toptt) {

min = top;
for (k = top t 1; k <= c; ktt)

if (1 [k] < 1 [min])
min = k;

swapitem(&I[top],&I[min]);

/*end of sortlist */

void dumplist(list l,int c)

int i;
for (i = 0; i <= e; itt)

printf("l[%3d] = %4d\n",i,l[i]);
/* dumplist() */

Turbo C User's Guide

begin { Main body of DoSort }
for I := 1 to LMax do

myList [I] := Random(1000) i

Count := LMaxi
DumpList(myList,Count)i
Read (Kbd, Ch) i

SortList(myList,Count)i
DumpList(myList,Count)i
Read (Kbd,Ch)

end. { of DoSort }

main ()
{

for (i = Oi i < LMAXi itt)
myList[i] = rand() % 1000i

count = LMAXi
dumplist(myList,count)i
getch()i
sortlist(myList,count)i
dumplist(myList,count)i
getch () i

/* main */

There are some important things to note here .

• In the Pascal version, we nested the procedure SwapItem inside of the
procedure SortList; in C, you can't nest functions, so we had to move
swapitem outside of sortlist.

II In C, arrays always start at location 0 and go up through size-i. For
example, the first location in myList is myList[O], while the last is
myList[LMAX-i]. That's why the various for loops are set up the way
theyare.

a We didn't have to use the address-of and pointer operators when we
passed myList[] to sortlist. Why? Because C always passes the address of
arrays used as parameters, rather than the array itself, since it can't pass
all the values in the array without causing serious problems. Likewise,
when we declare the formal parameter list 1; in dumplist and
sortlist, C knows to create that array at the address passed to it, so we
don't have to mess with pointer operators .

• We didn't need function prototypes in this example because each
function is defined before it is used. If we wanted to, we could place
them in the program anywhere after defining the data types item and list,
and they would have looked like this:

void swapitem(item *i, item *j)i
void sortlist(list 1, int C)i
void dumplist(list 1, int C)i

Again, note that using the function prototype does not change how you
define the function.

Notes for Turbo Pascal Programmers 167

A Survey of Data Structures

In this section we'll give you an overview of how data structures in C do
(and don't) resemble Turbo Pascal data structures. The elements we'll talk
about are pointers, arrays, strings, structures, and unions.

Pointers

It's possible to program for a long time in Pascal and never use pointers;
not so in C. Why? Because, as mentioned before, C only uses pass-by-value
parameters for its functions. If you want to modify a formal parameter and
have that change the actual parameter, you have to pass the address
yourself, then declare the formal parameter to be a pointer to the actual
data type. Furthermore, strings are implemented in C as pointers to char,
so any string manipulation will need pointers as well.

Here's a quick comparison of pointer declarations and use in Pascal and C,
with a few examples of each:

Turbo Pascal

declaration: <pnarne>
IntPtr
Buffl
Buff2
PHead
Head

"<type>;
"Integer;
"Intarray;
array[O .. N) of IntPtr;
"Node;
Node;

use: <pnarne>" := <value>;
Intptr" := 22;
Buffer" (152) := 0;
PHead".Next := nil;

<type>
int
int
int
node
node

Turbo C

*<pnarne>;
*intptr;
buffl [);
*buff2 [);
*phead;
head;

*<pnarne> = <value>;
*intptr = 22;
buffl(152) = 0;
(*phead) .next = NULL;
/* or phead->next = NULL; */

Note the use of parentheses for the last example (phead) in C, as well as the
special symbol (-» in the second version for phead. Here are some more
examples:

1. Buffl" [152] := 0; buffl (152) = 0;
2. Buff2(152)" := 0; *buff2(152) = 0;
3. Head.Data" := 0; *head.data = 0;
4. Head.Next := nil; head. next = NULL;
5. PHead".Next := nil; (*phead) .next = NULL;

/*or phead -> next = NULL; */

168 Turbo C User's Guide

The first example presumes that buffl points to an array of integers.

The second example indicates that buff2 is an array of pointers to integers,
so it is indexed before it is referenced.

The third assumes that head is a record (a struct in C) with a field next,
which is a pointer to an integer.

The fourth assumes that head also has a field next, which is a pointer to
something (it's unclear what).

The last example shows that phead is a pointer to a record (also a struct),
and that record has a field next, which is a pointer.

The symbol-> is used as shorthand notation; that is, the expression

pname->fname = value;

says that pname is a pointer to some type of record, fname is the name of
some field in that record, and that value is going to be assigned to the fname
field in the record to which pname points.

Arrays

Arrays are fairly simple creatures in C, compared to Pascal. Arrays in C
can have integer, character, or enumerated-type indices, while Pascal
allows you to use any ordinal type. All array index ranges in C start at a
and go to n-l (where n is the size of the array). This is very unlike Pascal,
which lets you start and end the index ranges wherever you choose.

In C, array indexing is like pointer arithmetic, and the same identity holds
true: The Pascal a[i] is equivalent to both a[i] and *(a + i) in C.

The general format for arrays in the two languages follows:

Turbo Pascal Turbo C

<name> : array[<low> .. <high» of <type>; <type> <name>[<size»;

where <size> is equal to (1 + <high> - <low».

Multi-dimensional arrays in C are declared much like in Pascal: Either
<type> is itself an array of some sort, or you add additional sizes on the
end, like this:

<type> <name> [<sizel» [<size2» [<size3»;

Notes for Turbo Pascal Programmers 169

Note that, unlike Pascal, you can not write arr [x] [y] as arr [x, y]

(see "Pitfall #5" following).

In C, a block of memory large enough for <size> instances of <type> is set
aside, and <name> is a constant pointer to the beginning of that block.

This aids passing arrays to functions; more importantly, it means that
(unlike Pascal) the function does not have to know how big the array is at
compile time.

The result: You can pass arrays of different sizes (but the same type) to a
given function.

Consider, for example, the following function, which receives an array of
type int and returns the lowest value in the array:

int amin(int all, int n);
{

int min, i;

min = a[O];

for (i = 1; i < n; itt)
if (a[i] < min)

min = ali];
return (min) ;

1* Function declaration *1

You can pass an integer array of any size to this function; it will find the
lowest value of the first n elements. Losing this flexibility is one of the
biggest complaints C programmers have when using Pascal.

Strings

Standard Pascal doesn't define strings as a separate data type; Turbo Pascal
does, and supplies a number of procedures and functions for working with
them.

e (including Turbo C) does not define a separate string data type; instead, a
string is defined as either an array of char or a pointer to char, which (as
you've seen) are almost the same things.

170 Turbo C User's Guide

Here are some comparative declarations:

Turbo Pascal Turbo C

<name> : string[<size>]; char <name>[<size>];
type

BigStr = string[255]; typedef char bigstr[256];
StrPtr = "BigStr; typedef char *strptr;

var
Line string[80] ; char line [81];
Buffer BigStr; bigstr buffer;
Word string [35] ; char word[36];
Ptr StrPtr; strptr ptr;

The key differences between strings in Turbo Pascal and strings in Turbo C
are closely tied to the differences between arrays in the two languages.

In Turbo Pascal, the declaration

S : string[N]

is equivalent to

S : array of [O •• N] of char

The string has a maximum length of N characters; the current length is
stored in 5[0], while the actual string itself starts in location 5[1]. You can
directly assign string literals and constants to a string variable; Pascal will
do the byte-by-byte transfer and correctly adjust the length.

In Turbo C, you can declare a string as

char strarr [N]

or as

char *strptr

The first declaration sets aside N memory for holding a string, then stores
the address of those bytes in strarr. The second declaration only sets aside
bytes for the pointer strptr, which points to char types.

In C, a string's length is not stored separately; instead, a string terminator is
used to mark the end of the string. This terminator is the null character
(ASCII 0), which requires an extra byte at the end of the string; the string
itself starts in strarr[O].

Because of this, the string strarr can only hold N-l "real" characters, since
one byte will have to be reserved for the null-terminator. That's why the C

Notes for Turbo Pascal Programmers 171

declarations in the comparison table all have lengths one greater than their
corresponding Pascal declarations.

Furthermore, since strarr is not the actual collection of bytes, you cannot
directly assign string literals. Instead, you must use the routine strcpy (or
one of its derivatives) to do a byte-by-byte transfer from one string to
another: strcpy (strarr, "Hello, world!");. However, you can directly
read into strarr using scanf or gets.

The other method of string declaration, char * strptr, requires you to use
more care. In this case, strptr is just a pointer to char; no space for any
string has been allocated, just the few bytes for the pointer itself.

You can assign string literals directly to strptr; since those literals are
created as part of the object code itself, you merely assign their addresses to
strptr. If you assign strarr to strptr, then both strarr and strptr now point to
the same string; the same thing occurs if you assign another string pointer
to strptr.

So, how do you get strptr to point to its own private string instead of
somewhere else? By allocating space to it:

strptr = (char *) malloc(N);

This will set aside N bytes of available memory, using the malloc routine
and assign to strptr the address of that string. You can then use strcpy to
copy strings (literals and variables) into those allocated bytes.

The Pascal equivalents for this (StrPtr, Ptr) are only very rough equivalents.
Instead of being "Char, StrPtr is defined as "BigStr. This is so that Turbo
Pascal will recognize Ptr as being a string; it also helps to avoid any range­
checking problems. Note in the following example that only the amount of
space requested is actually allocated to Ptr.

Here is a list of roughly comparable statements; refer to the Turbo C
Reference Guide for a complete list of Turbo C's strings (str ...) functions.
These statements presume the type declarations given in the previous
comparison:

var
Line,Name
First,Temp
Ptr
I,Len,Err

172

Turbo Pascal

BigStr;
string[80] ;
StrPtr;
Integer;

Turbo C

main ()

bigstr line, name;
char first[81],temp[81];
char *ptr;
int i,len;
extern char *strchr(char *s,char ch);

Turbo C User's Guide

Turbo Pascal

begin
Write('Enter name: 'I;
Readln(Name);
I := Pos (' , ,Name);
if I = 0 then

First := Name
else

First := Copy(Name,I,I-l);
Len := Length(First);
Writeln('Len = ',Len);
Temp := Coneat('Hi, , ,Name);

Writeln (Temp);
if Name <> First

then Name := First;
I := 823; Str(I,Temp);
Val (Temp, I, Err);
GetMem(Ptr,81);
ptrA := 'This is a test.';
Writeln('Ptr = , ,PtrA);
FreeMem(Ptr,81);

end.

Turbo C

printf("Enter name: H);
gets(name);
ptr = strehr (name,' .') ;
if (ptr == NULL)

strepy(first,name);
else

strnepy(first,name, ptr-name-l);
len = strlen(first);
printf("len = %d\n",len);
strepy(temp,"Hi, H);
streat(temp,name);
puts (temp) ;
if (stremp(name,first))

strepy(name,first);
i = 823; sprintf(temp,"%d",i);
i = atoi (temp);
ptr = (ehar *) malloe(81);
strepy(ptr,"This is a test.");
printf("ptr = %s\n",ptr);
free(ptr);

The use of Ptr in the Pascal source code is something of a kludge; it's
included here only to give you a feeling for what the equivalent C code
does.

One last point: The function prototypes for the C routines called in this
example are listed in header (.H) files; so, for proper error checking, you
should place the following #include statements at the start of the Turbo C
program.

#inelude <stdio.h>
#inelude <string.h>
#inelude <stdlib.h>
#inelude <alloe.h>

Notes for Turbo Pascal Programmers 173

Structures

Both Pascal and C allow you to define aggregate, heterogeneous data
structures. In Pascal, they're called records; in C, structures. Here's the
forma t for both:

Turbo Pascal Turbo C

type typedef struct {
<rname> = record <type> <fnames>;
<fnames> <type>; <type> <fnames>;
<fnames> <type>;

<type> <fnames>;
<fnames> <type> <rname>;

end;

var
<vnames> : <rname>; <rname> <vnames>;

There's also a more concise format in C for directly declaring structure
variables in C, much as there is in Pascal:

Turbo Pascal

var
<vnames> record
<fnames> <type>;

<fnames> <type>
end;

Turbo C

struct <rname> {
<type> <fnames>;

<type> <fnames>;
<vnames>;

In this case, <rname> of the structure is optional; you should put it there if
you plan to declare other variables to be of type <rname>. Beyond that,
records in Pascal and structures in C are pretty much the same. Here's an
example:

Turbo Pascal

type
Student = record
Last,First : string[20];
SSN string[ll];
Age Integer;
Tests array[1 .. 5] of Integer;
GPA Real

end;

var
Current Student;

174

Turbo C

struct student {
char last[20],first[20];
char ssn[ll];
int age;
int tests[5];
float gpa;

current

main ()
{

Turbo C User's Guide

begin
Current.Last = 'Smith';
Current.Age = 21;
Current.Tests[l] = 97;
Current.GPA = 3.94;

end.

strcpy(current.last = "Smith");
current.age = 21;
current. tests [0] = 97;
current.gpa = 3.94;

The only major difference between Pascal and C here is that Pascal has the
with statement and C doesn't. We could rewrite the Pascal previous code to
say with Current do and then refer to the fields without the Current in
front of them. In C, you always have to have the current. in front. C also
has the member access operator (-», which is used when the identifier on the
left of the operator is a pointer to a structure rather a structure itself. For
example, if pstudent is a pointer to a struct, then

pstudent -> last = "Jones";

assigns the string Jones to the last name.

Unions

Again, Pascal and C support similar concepts. In Pascal, it is called a free
union variant record; in C, it's just called a union. Here are the definitions of
each, along with an example:

Turbo Pascal Turbo C

type
<uname> = record
<fieldlist>

case <type> of
<vlist> «fieldlist»;
<vlist> «fieldlist»;

<vlist> «fieldlist»
end;

union <uname> {
<type> <fnames>;
<type> <fnames>;

<type> <fnames>;

In the Pascal version, <fieldlist> is the usual record sequence of </names> :
<type>;, repeated as needed.

There are two major differences between Pascal and C on this one:

First, Pascal makes you put the union at the end of a regular record,
whereas C does not. However, you can declare the union first, then declare
a field in a structure to be of that union type.

Notes for Turbo Pascal Programmers 175

Second, Pascal allows you to have multiple types for each variant in the
union. C does let you have multiple fields (hence <jnames», but all must be
of the same type.

Here's a sample to study, written to make the Pascal and C versions as
close to each other as possible (although, admittedly, they are not fully
equivalent):

Turbo Pascal

type
trick word = record

case integer of
o : (w : integer);
1 : (lob,hib: byte);

end;
var xp:trick_word;

Turbo C

typedef union {
int w;
struct {

char lob;
char hib;

}b;
} trick word;
trick_word xc;

Note that neither the C nor the Pascal definition of trick_word is portable.
They both depend on the byte-order of the 8086.

In C unions, as with structures, you can insert a <vnames> field between the
closing brace and the semicolon to directly declare variables of that type. In
that case, you can leave off <uname> if you're not going to declare any more
such variables. Field references in Pascal are xp.w, xp.hib, and xp.lob; in C,
they are xc.w, xc.b.hib, and xc.b.lob.

Programming Issues

As a Pascal programmer, you shouldn't have a difficult time getting up to
speed with Turbo C. But there are a few areas of programming that are
implemented somewhat differently in the two languages. We'll discuss
each of these programming issues in this section.

Case Sensitivity

Pascal is not case sensitive; C is. This means that the identifiers indx, Indx,
and INDX all refer to the same variable in Pascal but would refer to three
different variables in C.

176 Turbo C User's Guide

Note: Since function calls are not resolved until the C program is linked,
differences due to case may not show up until then. For your own good, be
careful with case in C.

Type Casting

Pascal, as a rule, allows only limited type casting (converting data from one
type to another). The function Ord() will cast from any ordinal type to
Integer; Chr() will cast from Integer (or a related type) to Char. Turbo Pascal
allows some additional type casting (called retyping) between all ordinal
types (Integer, Char, Boolean, and enumerated data type). C is much freer,
allowing you to attempt to cast from any type to any type, with results that
are not always favorable.

Here's the standard format for each, with a few examples:

Turbo Pascal Turbo C

<var> := <type>«expr»;
var Ch : Char;

I := Integer(Ch);
Ch := Char(Today);
Today := Days(3);

<var> = «type»<expr>;
char ch;

i = (int) ch;
ch = (char) today;
today = (days) 3;

In addition, Turbo C will do a lot of automatic type casting, mostly between
types that are integer compatible (types whose underlying representation is
an integer value). Because of that, all three previous statements could have
left out the explicit cast: You could have written

i = ch; ch = today; today = 3;

Constants, Variable Storage, Initialization

Turbo Pascal does not initialize variables that you declare. Neither does it
preserve the value of variables declared within procedures (and functions)
between calls to those subroutines. The major exception to this is that typed
constants are initialized, and they will hold their values between calls to a
subroutine in which they are defined (including any value you might
assign to them during execution). In C, All global variables are initialized
to 0 by default unless you explicitly initialize them to a different value.

Notes for Turbo Pascal Programmers 177

Turbo C gives you two types of constants, allows you to pre-initialize any
variables, and lets you declare variables within a function as being static.

Constant Types

The two types of constants take the format:

#define <cname> <value>
canst <type> <cname> = <value>;

The first type (#define ...) more closely matches Pascal's const definition,
in that <value> is directly substituted wherever <cname> is found.

The second type (canst ...) is more like Turbo Pascal's typed constant,
except that you really can't change <cname>; any attempt to modify or
assign a new value to it will result in a compiler error.

Bear in mind that C allows constant expressions, for example, char s [S I ZE
+ 1]. A const variable won't do here. A manifest constant will, but it's
substituted as if by a word processor with sometimes surprising results:

#define MAX SIZE 80 + 1
char s[MAX_SIZE * 2]; 1* 82, not 162! *1

A more careful definition would be

#define MAX SIZE (80 + 1)

In other words, to be safe, it's always wise to parenthesize expressions in a
#define.

Variable Initialization

Turbo C lets you initialize any variable in a manner that does match Turbo
Pascal's typed constant. The format is as follows:

<type> <vname> = <value>;

Items requiring more than one value (arrays, structures) should have the
values enclosed in braces and separated by commas ({ "like_this",
"and_this", "and _this_too" }).

int x = 1, Y = 2;
char name[] = "Frank";
char answer = 'Y';
char key = 3;
char list[2] [10] = {"First", "Second"};

178 Turbo C User's Guide

Variable Storage

C defines several storage classes for variables; the two most important are
external and automatic (local). Global variables (those declared outside of
any function, including main) are by default external. This means that they
are initialized to 0 at the start of program execution-unless, of course, you
initialize them yourself.

Variables declared within functions (including within main) are, by
default, automatic. They are not initialized to anything, unless you do it,
and they lose their values between calls to that function. However, you can
declare such variables to be static; that way, they will be initialized to 0
(once, at the start of program execution) and they will retain their values
between calls to the function.

In the following example

init test(void)
{

int i;
static int count;

the variable i resides on the stack and must be initialized by function test
each time the function is called. The static variable count, on the other hand,
resides in the global data area and is initialized to zero when the program
is first executed. Count retains its previous value each time function test is
invoked.

Dynamic Memory Allocation

In Turbo Pascal, there are several different methods for managing the heap.
Given these Turbo Pascal declarations

type
ItemType = Integer;
ItemPtr = AItemType;

var
p : ItemPtr;

here are three different methods of allocating and deallocating dynamic
memory:

/* New and Dispose */

Notes for Turbo Pascal Programmers 179

New(p); { Automatically allocates required amount of storage }

Dispose(p); (Automatically deal locates amount of storage allocated

/* New, Mark, and Release */

New(p) ;

Mark (p);
Release (p) ;

(Automatically allocates required amount of storage

Deallocates all dynamic memory from pA to end of heap

/* Freemem and Getmem */

GetMem(p, SizeOf(ItemType)); (Must specify amount of storage to allocate

FreeMem(p, SizeOf(ItemType)); Must specify amount of storage to deallocate

In Turbo C, allocating and deallocating dynamic memory is done using
routines that are quite similar to Turbo Pascal's GetMem and Dispose:

<type> *<ptr>;

<ptr> = «type>*) calloc«num>,<size»;
/* or <ptr> = «type>*) malloc«total size»; */
/* or <ptr> = «type>*) realloc«op>,<nusz»; */
free«ptr»;

typedef int ItemType;
ItemType *p;

p = (ItemType*) malloc(sizeof(ItemType));

free (p) ;

All three of the C routines (eaUoe, maUoe, and reaUoe) return a generic
pointer, which can be cast to the appropriate type. All three also return
NULL if there is not enough memory available on the heap .

• The function eaUoe expects you to pass it the number of items to create
and the size (in bytes) of one item; it creates the items, sets them all to 0,
and returns a pointer to the entire block. This is very handy for dynamic
creation of arrays.

a maUoe is told how many bytes to allocate .

• free just frees up the memory pointed to by <ptr>.

180 Turbo C User's Guide

Command-Line Arguments

When you create a .COM file using Turbo Pascal, your program can read in
any arguments that you might type on the line, using the ParamCount and
ParamStr functions. For example, if you were to create a program called
DUMPIT.COM and execute it as follows:

A>dumpit myfile.txt other.txt 72

ParamCount would return a value of 3, and ParamStr would return the
following values:

ParamStr(l)
ParamStr(2)
ParamStr(3)

myfile.txt
other.txt
72

Likewise, Turbo C (following standard C conventions) allows you to
declare the identifiers argc, argv, and env as parameters to main as follows:

main(int argc, char *argv[], char *env[]);
{

... body of main ...

where argc is the number of arguments, and argv[] is an array of strings
holding the parameters. With the same example, argc would yield 4, and
argv[] would point to the following:

argv [0]
argv[l]
argv [2]
argv[3]
argv[4]

A: \OUMPIT .EXE
myfile.txt
other.txt
72
(null)

In C, under 3.x versions of MS-DOS, argv[O] is defined (whereas ParamStr(O)
is not) and contains the name of the program being executed. For MS-DOS
2.x, argv[O] points to the null string (""). Also note that argv[4] actually
contains NULL.

The third argument, env[], is an array of strings, each holding a string of the
form

envvar = value

where envvar is the name of an environment variable and value is the string
value to which envvar is set.

Notes for Turbo Pascal Programmers 181

File I/O

In standard Pascal, you have two types of files: text (declared as text) and
data (declared as file of <type». The sequence for opening, modifying, and
closing the file is almost identical for both types. Turbo Pascal also provides
a third file type (untyped files) that is quite similar to the binary file
operations used in Turbo C.

C files are usually treated as streams of bytes; text vs. data distinctions are
largely up to you, though the t (text) and b (binary) modifiers on fopen can
be significant.

Here are some rough equivalencies between the two languages:

Table 6.2: File I/O Similarities

var
I
X
Ch
Line
rnyRec
buffer

Turbo Pascal

Integer;
Real;
Char;
string[80] ;
RecType;
array[1 .. 1024] of char

Fl text;
F2 file of RecType;
F3 file;
Assign«fvar>,<fnarne»;
Reset«fvar»;
Reset «untyped fvar>, <blocksize»;

Assign«fvar>,<fnarne»;
Rewrite«fvar»;
Rewrite«untyped fvar>, <blocksize»;

Assign«fvar>,<fnarne»;
Append«text fvar»;

Read(Fl,Ch) ;
Readln(Fl,Line);
Readln(Fl,I,X);

Read(F2,MyRec);
BlockRead(F3,buffer,SizeOf(buffer));

Write (Fl,Ch);

Write(Fl,Line);

182

Turbo C

int i;
float x;
char Chi
char line [80];
struct rectype rnyrec;
char buffer [1024]

FILE *fl;
FILE *f2;
FILE *f3;
<fvar> = fopen«fnarne>,"r");
/* or <fvar> = fopen«fnarne>,"r+"); */
/* or f1 = fopen«fnarne>,"r+t"); */
/* or f2 = fopen«fnarne>,"r+b"); */

<fvar> = fopen«fnarne>,"w");
/* or <fvar> = fopen«fnarne>,"w+"); */
/* or f1 = fopen«fnarne>,"w+t"); */
/* or f2 = fopen«fnarne>,"w+b"); */

<fvar> = fopen«fnarne>,"a+");
/* or <fvar> = fopen«fnarne>,"aH"); */
/* or <fvar> = fopen«fnarne>,"a+b"); */
ch = getc (fl);
fgets(line, 80, f1);
fgets(line, 80, f1);sscanf(line,"%d
%f", &i, &x) ;
fread(&rnyrec,sizeof(rnyrec),1,f2);
fread(buffer,1,sizeof(buffer),f3);

fputc (ch, fl) ;
/* or fprintf(f1,"%c",ch); */
fputs (line, fl);

Turbo C User's Guide

Write (Fl, I, X) i
Writeln (Fl, I,X) i
Write(F2,MyRec)i

Seek(F2,<reC#»i
Flush«fvar»i
Close«fvar»i
BlockWrite(F3,buffer,SizeOf(buffer))i

1* or fprintf(fl,"%s",line)i *1
fprintf(fl,"%d %f",i,x)i
fprintf(fl,"%d %f\n",i,x)i
fwrite(&myrec,sizeof(myrec),1,f2)i

fseek(f2,<rec#>*sizeof(rectype) ,O)i
fflush«fvar»i
fclose«fvar»i
fwrite(buffer,1,sizeof(buffer),f3)i

You should refer to the Turbo C Reference Guide for more details on how
each of these Turbo C I/O routines work.

Here's a short example of a program that dumps a text file (whose name is
given on the command line) to the screen:

Turbo Pascal

program Dump It i
var

F : Texti
Ch : Chari

begin
Assign(F,ParamStr(l))i
{$I-} Reset(F)i {$It}
if IOResult <> ° then begin

WriteLn('Cannot open' ,ParamStr(l))i
Halt(l)i

endi
while not EOF(F) do begin

Read(F,Ch)i
Write (Ch)

endi
Close(F)

end.

Turbo C

#include <stdio.h>
main(int argc, char *argv[])
{

FILE *fi
int Chi

f = fopen(argv[l],"r") i
if (f == NULL) {

printf("Cannot open %s\n",argv[l])i
return (1) i

while ((ch = getc(f)) != EOF)
putchar(ch)i

fclose(f)i}

Common Pitfalls of Pascal Programmers
Using C

There are enough similarities between Pascal and C so as to make certain
mistakes very common. Here are some of the pitfalls to avoid. There is a
rough order to this list, based on a combination of how likely they are to
occur, how difficult they would be for a Pascal programmer to see, and

Notes for Turbo Pascal Programmers 183

whether or not the compiler might catch them. (Chapter 3 also discusses
some common pitfalls.)

PITFALL #1: Assignment vs. Comparison

In Pascal, A = B is the Boolean expression A equals B and returns true or
false. In C, A = B is the assignment A gets the value of B; however (and this is
critical to understand), this expression also returns a value, namely the
value of B (which has just been assigned to A). The single most pernicious
bug for Pascal programmers is the statement:

if (A = B) <statement>;

This is perfectly legal in C, and is evaluated as follows:

• the value of B is assigned to A

• the expression A = B takes on the value of B

III if its value is nonzero (which, in C, is true), <statement> is executed.

What you really want to write is

if (A == B) <statement>;

which does what you think it should: If A and B are equal, then <statement>
is executed.

Remember: In C, the is equal to comparator is double equal signs (==), not a
single equal sign (=). The single equal sign in C is the assignment operator.

PITFALL #2: Forgetting to Pass Addresses
(Especially When Using scan!)

As we've explained, C only lets you pass parameters to a function by value;
if you want to pass a parameter by address, you need to explicitly pass the
address yourself. Suppose you've written the function swap as shown
earlier in the chapter. You might make the mistake of calling it like this:
swap (q, r) ;, when q and r are of type float. In that case, swap will take
the values of q and r, interpret them as addresses, then cheerfully swap the
values at those addresses.

How do you avoid this pitfall? The best way is to use function prototypes;
that way, Turbo C can do the appropriate error checking when you

184 Turbo C User's Guide

compile. For swap, you would put the following prototype somewhere
near the start of your source file:

void swap(float *x, float *y);

Now, if you compile your program with the statement swap (q, r) ; you'll
get an error telling you that you have a type mismatch in parameter x in a
call to swap.

PITFALL #3: Omitting Parentheses on Function Calls

In Pascal, a procedure that takes no parameters is called merely by using
the procedure name:

AnyProcedure;
i := AnyFunction;

In C, a call to a function-even one that has no parameters-must always
include a left (open) and right (close) parenthesis. It's easy to do this

AnyFunction;
i = AnyFunction;

when you really want this

AnyFunction();
i = AnyFunction();

/* Code has no effect */
/* Stores the address of AnyFunction in i */

/* Calls AnyFunction */
/* Calls AnyFunction, stores result in i */

PITFALL #4: Warning Messages

In addition to generating error messages, Turbo C also reports non-fatal
warnings. Using the incorrect function calls from the previous example,
these are the warnings that Turbo C would report:

Warning test.c 5: Code has no effect in function main
Warning test.c 6: Non-portable pointer assignment in function main

Both statements are actually legal and, since no errors occurred, an .OBJ file
would be created. Beware! These types of warnings would always be fatal
errors in Turbo Pascal. Don't get in the habit of taking Turbo C warning
messages lightly.

Notes for Turbo Pascal Programmers 185

PITFALL #5: Indexing Multi-Dimensional Arrays

Suppose you have a two-dimensional array named matrix, and you want to
reference location (i,j). As a Pascal programmer, you might be inclined to
write something like this:

x = matrix[i, j];

That will compile perfectly well in C; however, it won't do what you think.

In C, it is legal to have a series of expressions separated by commas; in such
a case, the entire expression takes on the value of the last expression, so the
preceding statement is equivalent to

x = matrix[j];

It's definitely not what you wanted, but that is still a legal statement in C.
All you'll get is a warning, since C thinks you are trying to assign the
address of matrix[j]-that is, the jth row of matrix[]-to x.

In C, you must explicitly surround each array index with brackets; so what
you really wanted to write was

x = matrix[i] [j];

Remember: For multi-dimensional arrays, you must put each index in its
own set of brackets.

PITFALL #6: Forgetting the Difference Between
Character Arrays and Character Pointers

Suppose that you have the following statements:

char *strl,str2[30];
strl = "This is a test";
str2 = "This is another test";

The first assignment is acceptable; the second isn't. Why? strl is a pointer to
a string; when the compiler sees that assignment statement, it creates the
string This is a test somewhere in your object file and assigns its
address to strl.

By contrast, str2 is a constant pointer to a block of 30 bytes somewhere; you
can't change the address it contains. What you want to write instead is

strcpy(str2,"This is another test");

186 Turbo C User's Guide

A byte-by-byte copy is done from the constant string This is another

test to the address pointed to by str2.

PITFALL #7: Forgetting That C is Case Sensitive

In Pascal, the identifiers indx, Indx, and INDX are all the same; uppercase
and lowercase letters are treated identically. In C, they are not.

So if you declare

int Indx;

then later try to write

for (indx=l; indx<10; indx++) <statement>;

the compiler will give you an error, saying that it doesn't recognize indx.

PITFALL ,#8: Leaving Semicolons Off the Last
Statement in a Block

If you're a Pascal purist who only puts semicolons where they are required
(as opposed to where they are allowed), you'll have problems with this for
a while. Luckily, the compiler will catch it and flag it pretty clearly. Just
remember that every C statement, with two major exceptions, must have a
semicolon after it.

One major exception is the function definition

<type> FuncName«parm names»

which should not have a semicolon after it.

This is not to be confused with the function prototype

<type> FuncName«type> <pname>,<type> <pname>, ...);

which is used to declare the function but not to actually define it; somewhat
like a forward declaration in Pascal.

The other major exception is the set of preprocessor commands (#<cmd»,
such as

#include <stdio.h>
#define LMAX 100

Notes for Turbo Pascal Programmers 187

If you forget and enter #define LMAX 100;, then the preprocessor will
substitute 100; every place it finds LMAX, semicolon and all.

Remember in C, it's caveat programmer. You simply have to be more
careful; it's not the forgiving language Pascal is.

188 Turbo C User's Guide

c H A p T E

Interfacing Turbo C with Turbo
Prolog

R

7

With the introduction of Turbo C, you can now merge two powerful
languages currently available for a PC. By linking Turbo C modules with
Turbo Prolog modules, you can incorporate artificial intelligence (AI) into
your Turbo C applications. If you are an experienced C programmer, you
are already aware of Turbo C's several advantages over other C
implementations. If you are just learning C, now is a good time to see how
Turbo C and Turbo Prolog enhance one another.

Turbo C is a procedural language, and Turbo Prolog is a language based
upon logic programming. Linking your Turbo C application with Turbo
Prolog can provide the following artificial intelligence (AI) advantages:

II rule-based control structure

1::1 easy integration of natural language

Linking with Turbo Prolog also provides added AI power to your Turbo C
application, so that you can solve advanced problems by simply describing
the problem and letting Turbo Prolog's inference engine do the work. In
many Turbo C applications, linking in Turbo Prolog programs will
significantly reduce software development time, and increase code clarity
and program flexibility.

Interfacing Turbo C with Turbo Prolog 189

In This Chapter ...
,

In this chapter we explain the steps to compile and link Turbo C and Turbo
Prolog programs, and provide four examples that demonstrate the process.
The first example is a simple program that demonstrates compilation and
linking. The second goes a little further and shows how to link in added C
libraries. The third demonstrates allocating memory. The last example
describes a practical graphics program that shows some of the power you
gain by combining the two languages.

Linking Turbo C and Turbo Prolog: An
Overview

Compiling and linking your Turbo C modules with Turbo Prolog modules
and programs is straightforward. You only need to keep in mind the
following points:

Compiling your program modules:

• Your C functions must have the _0 suffix to be called by Turbo Prolog.
(See the first C example program, CSUM.C, in this chapter.)

• Your Turbo Prolog main module (the one containing a goaD replaces
your C main module.

• The Turbo Prolog main module must have your C functions declared as
global predicates. (See the first Prolog example program,
PROSUM.PRO, in this chapter.)

• All program modules must compile to Large memory (which is the only
memory size Turbo Prolog compiles in).

I! If your program calls the Turbo Prolog library for version 1.1, you must
compile your modules with register allocation turned off (-r-).

• Generate underbars should be set to off (-u-).

Linking your program modules:

• INIT.OBJ must be the first object file linked. (This is Turbo Prolog's
initialization module and is found on the Turbo Prolog library disk.)

• CPINIT.OBJ must be the second object file linked and the first call in the
Turbo Prolog main module. (This is a special initialization module to set
memory-allocation compatibility between Turbo C and Turbo Prolog.
CPINIT.OBJ can be found on your Turbo C Disks.)

190 Turbo C User's Guide

III If you need Turbo C library routines, use CL.LIB, and if using real
arithmetic, EMU.LIB and MATHL.LIB.

The Link Command line must have the form

tlink init cpinit <T Prolog Main> Other files <T Prolog Main.sym>,
[exename], [your_libs] prolog [emulib mathl] cl - -

(This should be on a single command line.)

In addition to the preceding points, you should keep in mind the following:

CI Turbo Prolog functions may call functions written in Turbo C similar to
other built-in Turbo Prolog predicates (functions). However, Turbo C
cannot currently call Turbo Prolog modules.

c All calls to Turbo C library functions must be prefixed by an underbar
C). Note: All Turbo C library function are prefixed by underbars.
Because underbar generation is turned off, calls to library functions
must have the underbars explicitly added. User-defined functions do
not need the underbars.

c malloc, calloc, free, and other memory allocation functions are replaced
by palloc, malloc_heap, and release_heap. palloc, malloc_heap, and
release_heap are available in CPINIT.OBJ for memory allocation within
your Turbo C functions.

palloc allocates memory on the global stack and is called as

char *palloc(int size)

malloc_heap allocates memory on the Prolog heap and is called as

char *malloc_heap(int size)

release_heap releases memory allocated on the Prolog heap and is
called by

release_heap(char *ptr,int size)

When palloc is used, the memory will automatically be freed when a
fail happens, causing Turbo Prolog to backtrack across the memory
allocation.

II printf, putc, and related screen output functions are not functional
when linking Turbo C and Turbo Prolog. However, wrch can write a
character to a Prolog window and zwf has the same functionality as
writef in Turbo Prolog. zwf is similar to a limited printf:

zwf(FormatString,Argl,Arg2, ...)

FormatString is a printf-type format string. Refer to the Turbo Prolog
Reference Manual to see which conversion specifications are supported.

Interfacing Turbo C with Turbo Prolog 191

zwf and wrch are in PROLOG.LIB.

C functions called by Turbo Prolog should not have return values and
should be defined as void. The flow patterns for the arguments are
specified by the Turbo Prolog global predicate declaration. For example:

factorial (integer,real) - (i,o) language c

lets Turbo Prolog know that factorial is a function that has two
arguments-the first an integer, the second a real (floating point). The
(i, 0) means that the first argument (the integer) is passed in, and the
second argument is a pointer to a floating point that will be assigned
within factorial. The c lets Turbo Prolog know that the function uses C
calling conventions. (See the third example program in this chapter
DUBLIST.C and PLIST.PRO.)

Notice that values are returned by reference. For more information on
flow patterns, see the discussion of alternate flow patterns in example 3.

Example 1: Adding Two Integers

The following example combines a Turbo C function (one that adds two
integer numbers) with a Turbo Prolog module that writes the C function
result in the current window.

Turbo C Source File: CSUM.C

/*
The output routine zwf works nearly like the C output
routine printf. It prints the output in the current window.
*/

extern void zwf(char *format, ...);

void sum O(int parml,int parm2, int *res p)
{ - -

zwf("This is the sum function: parml=%d, parm2=%d" ,parml,parm2);
*res_p = parml + parm2;

)
/* End of sum_O */

192 Turbo C User's Guide

Compiling CSUM.C to CSUM.OBJ

After you have edited and saved CSUM.C, you need to select the compile­
time options. Turbo C provides you with two methods for doing this:

1. Select the following compile-time options from the Turbo C menus:

O/C/Model/Large (-ml)
O/C/Optimization/Jump Optimization ... On (-0)
O/C/Code generation/Generate underbars ... Off (-u-)
O/C/Optimization/Use register variables ... Off (-r-)

Once you have selected these options, choose Options/Store options
from the Turbo C main menu; when the setup parameters are saved,
select Compile. Turbo C will compile CSUM.C with the selected
options, producing the object module CSUM.OBJ.

2. If you prefer to compile CSUM.C with a standard DOS command line
instead of using Turbo C's menus, enter the following at the DOS
prompt:

tcc -ml -0 -c -u- -r- csum

Note: Turbo Prolog only compiles to the large memory model; so for Turbo
C to link with Turbo Prolog, you must use the -ml (Large memory model)
compile option.

Turbo Prolog Source File: PROSUM.PRO

global predicates
cpinit language c /* cpinit needs to be declared as global in your

Turbo Prolog Main module */
sum(integer,integer,integer) - (i,i,o) language c

/* the flow pattern of sum is defined as (i,i,o)
specifying that the third argument is the
returned value and the first two are inputs. */

goal cpinit, sum(7, 6,X) ,write ("Sum=" ,X) .
/* cpinit must be called before your first C

function is called */

Compiling PROSUM.PRO to PROSUM.OBJ

After you have edited and saved PROSUM.PRO, you need to compile it to
an object COBJ) file so it will link with the Turbo C object module. To do
this, select Options/Obj from the Turbo Prolog main menu, then select

Interfacing Turbo C with Turbo Prolog 193

Compile. When Turbo Prolog finishes compiling the source file to an obje,ct
file, you can link and run this example.

Linking CSUM.OBJ and PROSUM.OBJ

To link Turbo Prolog modules with Turbo C modules, you can use Turbo
C's Integrated Environment, Turbo Link (the stand-alone linker included
with your Turbo C package), or a compatible linker (such as Microsoft
linker 2.2 or later). Beyond the tlink or link command, the link
command-line arguments consist of Turbo Prolog main modules, assorted
other modules, output files, and libraries; except where noted, these must
appear in the following order:

Turbo Prolog Initialization:

• INIT.OBJ (Turbo Prolog initialization module)

Turbo C Initialization:

• CPINIT.OBJ (Turbo C initialization; compatible with Turbo Prolog)

Turbo Prolog Main Module:

• a main Turbo Prolog module that contains a goal

Assorted Modules:

(These modules do not need to appear in any particular order')

• assembler .OBJ modules
• Turbo C .OBJ modules
• Turbo Prolog .OBJ modules

Symbol Table Module:

• Turbo Prolog main symbol table name (this is required and must appear
last in the list of modules)

Output File Names:

• the name of the executable file to be generated

Libraries:

• list all libraries containing routines needed by the assorted modules.
Order is important: first, user-defined libraries; next, PROLOG.LIB; then
if needed, EMU.LIB and MATHL.LIB; and last, CL.LIB.

194 Turbo C User's Guide

In this example, we use Turbo Link (note the tlink command) and give it
the following arguments:

a the Turbo Prolog programs, INIT.OBJ, CPINIT.OBJ, and PROSUM.OBJ

II the Turbo C object module CSUM.OBJ

II the symbol table PROSUM.SYM and the executable file TEST.EXE

II the libraries PROLOG.LIB and CL.LIB (use EMU.LIB and MATHL.LIB
to do floating point)

Note: PROSUM.5YM is a file that contains the symbol table of the name
and type of variables in the program PROSUM.OBJ.

This is the link command line for our first example:

tlink init cpinit prosum csum prosum.sym,test.exe"prolog+cl

Example 2: Using the Math Library

The second example is similar to the first; it shows how to write two Turbo
C functions and how to combine these functions with a Turbo Prolog
program. We present each of the Turbo C functions in its own separate
source file; CSUMl.C adds two real numbers together and returns the sum,
and FACTRL.C calculates the factorial of an integer. The Turbo Prolog
program, FACTSUM.PRO, writes the program results in two Prolog
windows. This example uses the Turbo C large memory-model math
library, MATHL.LIB.

Turbo C Source File: CSUM1.C

extern void zwf(char *format, ...);
void sum o (double parmI, double parm2, double *res_p)
{ -

*res p=parml+parm2;
zwf(~This is the sum function: parml=%d, parm2=%d, result=%f",

parml,parm2,*res_p);

Interfacing Turbo C with Turbo Prolog 195

Turbo C Source File: FACTRL.C

void factorial O(int top, double *result) /* Product of factorial series */
{ -

}

double x;
int i;
if (top<l)

*result = 0.0;
return;

for (x = 2.0,*result = 1.0; top>l; top--, x = x +1.0)
*result = *result*x;

/* End of factorial_O */

Compiling CSUMl.C and FACTRL.C to .OB]

As in the first example, you must compile the two Turbo C modules to
object (.OBD files before linking them with the other modules and with the
Turbo Prolog main program. You can select and save compile-time options
from the Turbo C main menu, then select the Compile command for each of
the .C source files. Or you can opt to compile both .C source files from a
standard C command line, using the tee command. In either case, you
must select at least the following compile-time options:

0/ C/Model/Large (-ml)
O/C/Optimization/Jump optimization ... On (-0)
0/ C/ Code generation/ Generate underbars ... Off (-u -)
O/C/Optimization/Use register variables ... Off (-r-)

Turbo Prolog Source File: FACTSUM.PRO

FACTSUM.PRO is the main Turbo Prolog program, which makes two
windows: one displays the output from your Turbo C modules, and the
other displays the Turbo Prolog program output. This is the order in which
the modules and program interact:

1. FACTSUM.PRO prompts the user to input an integer Int, which the
Turbo Prolog program then passes to FACTRL.C.

2. The Turbo C function factorial in FACTRL.C returns Result, the
factorial of Int, to FACTSUM.PRO.

3. FACTSUM.PRO writes Result in a window and again prompts the user
for a number (this time, a real).

196 Turbo C User's Guide

4. FACTSUM.PRO passes this second input number, Real, and the
previously calculated factorial, Result, to the module CSUMl.C.

5. The Turbo C function sum in CSUMl.C adds Real and Result, then
returns the answer, Sum, to FACTSUM.PRO.

6. FACTSUM.PRO writes Sum in a window, and the program is finished.

Here is the Turbo Prolog program FACTSUM.PRO:

/*

*/

Declaration of the Turbo C module must be located after the Turbo Prolog
domains and database declarations (if any are present). All global modules
are called from Turbo Prolog as global predicates, and must be followed by
the flow pattern and language specification.

global predicates

/*

*/

sum(real, real, real) - (i,i,o) language c
factorial (integer, real) - (i,o) language c
cpinit language c /* calls Turbo C initialization */

This is a very simple example that has only external clauses (Turbo C
modules), so only a goal section is needed. However, in any real application,
a clauses section would also be needed.

goal cpinit,
makewindow(1,49,31,

" A Turbo Prolog window to the Turbo C program ",0,0,15,80),
makewindow(2,47,3,

" A Turbo Prolog window to the Turbo Prolog program ",15,0,10,80),

/* Prompt user for first input */
write("Enter an integer; Turbo C will calculate the factorial: "),
readint(Int),nl,
shiftwindow(l), /* Change output window to Turbo C window */

/* Call Turbo C factrl module and calculate the factorial */
factorial(Int,Result),
shiftwindow(2), /* Change output window to Turbo Prolog window */

/* Prompt user for second input */
write("Enter a real number to add to the factorial "),
readreal(Real),nl,
shiftwindow(l), /* Change output window to Turbo C window */

/* Call Turbo C csum1 module and calculate the sum */
sum(Result,Real,Sum),
shiftwindow(2), /* Change output window to Turbo Prolog window */

/* Write result of first calculation in window */
write("The factorial of ",Int," is ",Result),nl,

/* Write result of second calculation in window */
write("The result: ",Result," + ",Real," = ",Sum),nl.

Interfacing Turbo C with Turbo Prolog 197

Compiling FACTSUM.PRO to FACTSUM.OBJ

As in the first example, you must compile the Turbo Prolog program source
file to an object (.OBD file before linking it with the modules. Select
Options/Obj from the Turbo Prolog main menu, as before, then compile
the program.

Linking CSUM1.0BJ, FACTRL.OBJ and
FACTSUM.OBJ

In the link command used in this example,

• the Turbo Prolog object modules are INIT.OBJ and FACTSUM.OBJ
13 the Turbo C object modules are CSUM1.0BJ, FACTRL.OBJ, and

CPINIT.OBJ
• the output file names are FACTSUM.SYM (symbol table) and SUM.EXE

(executable file)

• the libraries needed are PROLOG.LIB, EMU.LIB, MATHL.LIB, and
CL.LIB

This is the command linking the modules:

tlink in it cpinit factsum factrl csuml factsum.sym,sum"prolog+emu+mathl+cl

Example 3: Flow Patterns and Memory
Allocation

The following program presents the code for creating a Turbo Prolog
functor and list in Turbo C and returning these new structures to Turbo
Prolog. This example also demonstrates how memory can be allocated in
Turbo Prolog's global stack. Lists are recursive structures of three elements
and functors are C structures of two elements (these are described more
fully after this example).

• A Turbo C module DUBLIST.C contains three functions. The first two
can take an integer list and return a structure with the first integer in it,
or can take a structure with an integer and return a list with that integer.
The third function takes' an integer n and generates a list of two integers;
the first being n and the second 2n.

198 Turbo C User's Guide

1:1 It is important to notice that there can be alternate flow patterns for each
Turbo Prolog global predicate, and that each flow pattern requires an
alternate Turbo C function. For the following example, clist_O must
correspond to the first flow pattern (i,o), and clist_1 to the second flow
pa ttern (0 ,i).

global predicates
clist (ilist, ifunc) - (i, 0) (0, i) language c

IJ The (i, 0) specifies that ilist is to be passed into your Turbo C function
disCO, and ifunc is a pointer to a structure that will be defined within
the Turbo C function dist_O. The (0, i) specifies that ifunc is passed into
clist_I, and ilist is a pointer to a list structure that will be defined within
disCI.

L1 If an additional flow pattern was specified in your Turbo Prolog global
domains, a clist_2 would be needed to handle the additional flow
pattern.

Turbo C Source File: DUBLIST.C

struct ilist {
char functor;

int val;
struct ilist *next;

};

struct ifunc {
char type;
int value;

};

Interfacing Turbo C with Turbo Prolog

/* Type of the list element */
/* 1 = a list element */

/* 2 = end of list */
/* The actual element */

/* Pointer to the next node */

/* Type of functor */
/* Value of the functor */

199

void clist O(struct ilist *in, struct ifunc **out)
{ -

if (in->functor != 1)
fail cc(); /* Fail if empty list */

*out = (struct ifunc *) palloc(sizeof(struct ifunc));

(*out)->value = in->val;
(*out)->type = 1;

/* This sets out to f(X) */
/* Set the functor type */

void clist 1 (struct ilist **out, struct ifunc *in)
{ -

int temp = 0;
struct ilist *endlist

endlist->functor = 2;
temp = in->value;
temp t= temp;
*out = (struct ilist *)
(*out)->val = temp;
(*out)->functor = 1;

(*out)->next = endlist;

(struct ilist *) palloc(sizeof(char));

palloc(sizeof(struct ilist));
/* This returns [2*X] as a list */

/* Set the list type. If this is not */
/* done, no meaningful value will be */

/* returned. */

void dublist O(int n, struct ilist **out) {
/* -

*/

200

This function creates the list [n,ntn]

struct ilist *temp;
struct ilist *endlist = (struct ilist *) palloc(sizeof(char));

endlist->functor = 2;
temp = (struct ilist *)
temp->val = n;
temp->functor = 1;
*out = temp;

palloc(sizeof(struct ilist));
/* This sets the first element of the */

/* list to n */

/* Now we have to allocate a second list element */

temp = (struct ilist *) palloc(sizeof(struct ilist));

temp->val = n t n;
temp->functor = 1;
temp->next = endlist;

(*out)->next = temp;

/* This assigns the value n t n to */
/* The second element */

/* Set the node after the second to an */
/* end of list node */

/* after the first element */

Turbo C User's Guide

Lists and Functors

Turbo Prolog lists and functors are structures in Turbo C (see DUBLIST.C).

Lists are recursive structures that have three elements. The first element is
the type; the value may be 1 if it is a list element, and 2 if it is an end of the
list. The second element is the actual value; it must be the same type as the
element in Turbo Prolog.

For example, a list of reals would be

struct alist {
char funct;
double elem; /* the list elements are real */
struct alist *next;

The third element is a pointer to the next node. Each node is a structure
that may be type 1 for the next element of the list or type 2 signifying the
end of list or empty list.

Turbo Prolog functors are C structures that have two elements. The first
element corresponds to the Turbo Prolog domain declaration. (Refer to
your Turbo Prolog Owner's Handbook for more information on domain
declarations in Turbo Prolog.) For example:

domains
func = i(integer); s(string)

predicates
call (func)

goal
call (X)

The Turbo Prolog functor func has two types: the first is an integer and the
second is a string. So in this example the type element of the Turbo C
structure may be 1 or 2; 1 corresponding to the first type, and 2 to the
second type.

Interfacing Turbo C with Turbo Prolog 201

The second element of the Turbo C structure is the actual value of this
element of the functor and is defined as the union of the possible types of
the argument.

union val {

};

int ivaI;
char *svar;

struct func {
char type; /* type may be 1 or 2 corresponding to

the Turbo Prolog domain declarations */
union val value; /* the value of the functor element */

Note: The functions palloc, malloc_heap, and release_heap must be used
for memory management (these are found in CPINIT.OBJ). These functions
are needed to

1. allocate memory for Turbo C structures stored in the Turbo Prolog
heap or stack, and

2. release memory in Turbo Prolog's heap.

When palloc is used, the memory will automatically be released when a fail
occurs, causing Turbo Prolog to backtrack across the memory allocation.

Here is the Turbo C syntax for each:

char *palloc(size) /* Allocates storage in stack */

char *malloc_heap(size) /* Allocates storage in heap */

release_heap (ptr,size) /* Releases heap space */

Here is the Turbo Prolog main module, PLIST.PRO, that calls the functions
in DUBLIST.C and prints the results.

domains
ilist = integer*
ifunc = f(integer)

global predicates
cpinit language c
clist (ilist, Hunc) - (i,o) (0, i) language c
dublist(integer,ilist) - (i,o) language c

202 Turbo C User's Guide

goal
clearwindow,
clist ([3] ,X),
write("X = ",X),nl,
clist (Y, X) ,
write("Y = ",Y),nl,
dublist (6, Z),
write(Z),nl.

/* Binds X to f(3) */

/* Binds Y to [6] */

/* Binds Z to [6,12] */

Compiling DUBLIST.C

As in the first two examples, you must compile the Turbo C module
DUBLIST.C to an object (.OB}) file before linking it with the Turbo Prolog
main module PLIST.PRO.

This is the link command:

tlink init cpinit plist dublist plist.sym, dublist, ,prolog+emu+mathl+cl

Example 4: Drawing a 3-D Bar Chart

In this example, we show you how to compile and link the C and Prolog
modules to create a unified, mixed-language program that combines AI
flexibility with C graphics-handling capability. Specifically, the code
provided includes the following:

• a Turbo C module BAR.C that draws bar charts using input from
another file

• a Turbo Prolog main module PBAR.PRO that requests input from the
user.

Turbo C Source File: BAR.C

The source code for this program is the file BAR.C on your disk. (Refer to
Chapter 1 for a list of the files on the distribution disks.)

Compiling BAR.C

As in the first three examples, you must compile the Turbo C module
BAR.C to an object (.OB}) file before linking it with the Turbo Prolog main
module PBAR.PRO.

Interfacing Turbo C with Turbo Prolog 203

Turbo Prolog Program: PBAR.PRO

The source code for this program is the file PBAR.PRO on your disk. PBAR
is a Turbo Prolog program that prompts the end-user to make, save, load,
or draw a bar chart.

If the end-user wishes to make a bar chart, this program will accept input
specifications for the chart, position each bar in a window and call your C
module to draw the bar. After each bar is drawn, it is asserted (a Prolog
term for inserted) into the database.

The end-user may opt to save the bar chart; PBAR will save a description of
the current bar chart into a file for later use.

If the end-user selects the load option, PBAR will delete the current bar
chart description and load a user-specified bar chart description from a file.

Given the final option, draw, PBAR will use the description in the database
in a recursive call to the Turbo C BAR module, which will then draw a bar
chart to the specifications currently in the database.

Compiling PBAR.PRO to PBAR.OBJ

As in example 1, you must compile the Turbo Prolog main module source
file to an object (.OBJ) file before linking it with the Turbo C modules.

Linking PBAR.OBJ with the Module BAR.OBT

In the following link command, PBAR.OBJ is linked with the previously
compiled Turbo C module, BAR.OBJ. The components of this link
command are

• the Turbo Prolog object modules, INIT.OBJ and PBAR.OBJ

• the Turbo C object module BAR.OBJ

• the symbol table PBAR.SYM, and the output file BARCHART.EXE
(executable file)

• the libraries, PROLOG.LIB and CL.LIB

This is the link command:

tlink init cpinit pbar bar pbar.sym,barchart"prolog+cl

204 Turbo C User's Guide

That's All There Is to It

With these four examples, we have shown you how to link Turbo Prolog
modules with your Turbo C programs. If you are an experienced Turbo
Prolog programmer but would like to know more about programming in
C, we recommend reading Chapters 5 and 3 in this manual. If you are an
experienced C programmer and would like to find out more about Turbo
Prolog, we recommend consulting a Turbo Prolog tutorial, such as Using
Turbo Prolog by P. Robinson (McGraw-Hill).

Interfacing Turbo C with Turbo Prolog 205

206 Turbo C User's Guide

c H A p T E R

8

Turbo C Language Reference

The traditional reference for C is The C Programming Language, by Brian W.
Kernighan and Dennis M. Ritchie (which we will refer to as "K&R" from
now on). Their book doesn't define a complete standard for C; that task has
been left to the American National Standards Institute (ANSI). Instead,
K&R presents a minimum standard so that a program using only those
aspects of C found in K&R can be compiled by any C implementation that
supports the K&R definition.

Turbo C not only supports the K&R definition, it also implements most of
the ANSI extensions. In doing so, Turbo C seeks to improve and extend the
C language by adding new features and increasing the power and
flexibility of old ones. We don't have space to reprint K&R or the ANSI
standard here; instead we'll tell you about the additions to the K&R
definition that Turbo C provides, noting which come from the ANSI
standard and which are our own improvements.

In This Chapter ...

To make cross-referencing easier for you, in this chapter we follow (more or
less) the outline of Appendix A in K&R, which is titled "c Reference
Manual." Not all sections of that appendix are referenced here; for any
section we passed over, you may assume that there are no significant
differences between Turbo C and the K&R definition. Also, to more easily

Turbo C Language Reference 207

accommodate some of the ANSI and Turbo C extensions, we have
presented some information in the same order as given in the ANSI C
standard rather than adhere to the K&R organization.

Comments (K&R 2.1)

The K&R definition of C does not allow comments to be nested. For
example, the construct

/* Attempt to comment out myfunc() */

/*

*/

myfunc ()
{

printf("This is my function\n"); /* The only line */

would be interpreted as a single comment ending right after the phrase The

only line; the dangling brace and end-of-comment would then trigger a
syntax error. By default, Turbo C does not allow comment nesting;
however, you can correctly compile a program (such as that shown) with
nested comments by using the -c compiler option (Nested comments ... ON
in the Ole/Source menu). A more portable approach, though, is to bracket
the code to be commented out with #if 0 and #endif.

Comments are replaced with a single-space character after macro
expansion. In other implementations, comments are removed completely
and are sometimes used for token pasting. See "Token Replacement" in this
chapter.

Identifier (K&R 2.2)

An identifier is just the name you give to a variable, function, data type, or
other user-defined object. In C, an identifier can contain letters (A .. . Z, a ... z)
and digits (0 ... 9) as well as the underscore character (_). Turbo C also
allows you to use the dollar sign character ($). However, an identifier can
only start with a letter or an underscore.

Case is significant; in other words, the identifiers indx and Indx are
different. In Turbo C, the first 32 characters of an identifier are significant
within a program; however, you can modify this with the - i # compiler

208 Turbo C User's Guide

option, where # is the number of significant characters. (This is the menu
option O/S/Identifier length.)

Likewise, the first 32 characters are significant for global identifiers
imported from other modules. However, you can decide whether or not
case is significant for those identifiers by using the Case-sensitive link. .. On
option from the Options/Linker submenu or the Ie option on a TLINK
command line. Note, however, that identifiers of type pascal are never
case sensitive at link time.

Keywords (K&R 2.3)

Table 8.1 shows the keywords reserved by Turbo C; these cannot be used as
identifier names. Those preceded by "AN" are ANSI extensions to K&R;
those preceded by "TC" are Turbo C extensions. The keywords entry and
fortran, mentioned in K&R, are neither used nor reserved by Turbo C.

Table 8.1: Keywords Reserved by Turbo C

TC asm extern return TC cs TC DH
auto TC far short TC -ds TC - DL - -break float AN signed TC es TC DX

for sizeof TC - TC -BP case ss
TC cdecl goto static TC -AH TC - DI

char TC huge struct TC -AL TC - 8I
AN const if switch TC -AX TC

-
8P -continue int typedef TC BH -default TC interrupt union TC BL

do long unsigned TC -BX
-double TC near AN void TC CH
-

else TC pascal AN volatile TC CL -AN enum register while TC CX -

Constants (K&R 2.4)

Turbo C supports all the constant types defined by K&R with a few
enhancements.

Turbo C Language Reference 209

Integer Constants (K&R 2.4.1)

Constants from 0 to 4294967295 (base 10) are allowed. (Negative constants
are simply unsigned constants with the unary minus operator.) Both octal
(base 8) and hexadecimal (base 16) representations are accepted.

The suffix L (or 1) attached to any constant forces it to be represented as a
long. Similarly, the suffix U (or u) forces it to be unsigned, and it will be
unsigned long if the value of the number itself is greater than 65535,
regardless of which base is used. Note: you may use both Land U suffixes
on the same constant.

Table 8.2 summaries the representations of constants in all three bases.

Table 8.2: Turbo C Integer Constants Without L or U

--------Decimal Constants--------

o - 32767
32767 - 2147483647

2147483648 - 4294967295

> 4294967295

int
long
unsigned long

Will overflow without warning; the
resulting constant will be the
low-order bits of the actual value.

--------Octal Constants--------

00 - 077777
0100000 - 0177777

01000000 - 017777777777
0100000000000 - 0377777777777

> 0377777777777

int
unsigned int
long
unsigned long

will overflow (as previously described)

--------Hexadecimal Constants--------

OxOOOO - Ox7FFF
Ox8000 - OxFFFF

Ox10000 - Ox7FFFFFFF
Ox80000000 - OxFFFFFFFF

> OxFFFFFFFF

210

int
unsigned int
long
unsigned long

Will overflow (as previously described)

Turbo C User's Guide

Character Constants (K&R 2.4.3)

Turbo C supports two-character constants, for example, 'An', '\n \t', and
'\007\007'. These constants are represented as 16-bit int values with the
first character in the low-order byte and the second character in the high­
order byte. Note that these constants are not portable to other C compilers.

One-character constants, such as 'A', '\ t', and '\007', are also represented
as 16-bit int values. In this case, the low-order byte is sign extended into the
high byte; that is, if the value is greater than 127[base 10], the upper byte is
set to -1 [=OxFF]. This can be disabled by declaring that the default char

type is unsigned (use the -K compiler option or select Default char
type ... Unsigned in the Options/Compiler/Source submenu), which forces
the high byte to be zero regardless of the value of the low byte.

Turbo C supports the ANSI extension of allowing hexadecimal repre­
sentation of character codes, such as '\xlF', '\x82', and so on. Either x or X
is allowed, and you may have one to three digits.

Turbo C also supports the other ANSI extensions to the list of allowed
escape sequences. Escape sequences are values inserted into character and
string constants, preceded by a backslash (\). Table 8.3 lists all allowed
sequences; those marked with an asterisk (*) are extensions to K&R.

Table 8.3: Turbo C Escape Sequences

Sequence Value Char What It Does

*\a Ox07 BEL Audible bell
\b Ox08 BS Backsreace
\f OxOC FF Form eed
\n OxOA LF Newline (linefeed)
\r OxOD CR Carriage return
\t Ox09 HT Tab (horizonaD

*\v OxOB VT Vertical tab
\\ Ox5c \ Backslash
\' Ox2c Single quote (apostrophe)

*\/1 Ox22 Double quote
*\? Ox3F ? Question mark
\000 any DOD = 1 to 3 digit octal value

*\xHHH OxHHH any HHH = 1 to 3 digit hex value

* ANSI extensions to K&R

Turbo C Language Reference 211

Note: Since Turbo C allows two-character constants, ambiguities may arise
if an octal escape sequence of less than three digits is followed by a digit. In
such cases, Turbo C will presume that the following character is part of the
escape sequence, unless the character is not allowed for that type of
number. For example, because the digits 8 and 9 in an octal value are not
allowed, the constant \258 would be interpreted as a two-character
constant made up of the characters \25 and 8.

Floating Constants (K&R 2.4.4)

All floating constants are by definition of type double as specified in K&R.
However, you can coerce a floating constant to be of type float by adding
an F suffix to the constant.

Strings (K&R 2.5)

According to K&R, a string constant consists of exactly one string unit,
containing double quotes, text, double quotes ("like this"). You must use
the backslash (\) as a continuation character in order to extend a string
constant across line boundaries.

Turbo C allows you to use multiple string units in a string constant; it will
then do the concatenation for you. For example, you could do the
following:

main()
{

char *p;

p = "This is an example of how Turbo C"
" will automatically\ndo the concatenation for"
" you on very long strings,\nresulting in nicer"
" looking programs.";

printf (p);

The output of the program is:

This is an example of how Turbo C will automatically
do the concatenation for you on very long strings,
resulting in nicer looking programs.

212 Turbo C User's Guide

Hardware Specifics (K&R 2.6)

K&R recognizes that the size and numeric range of the basic data types
(and their various permutations) are very implementation specific and
usually derive from the architecture of the host computer. This is true for
Turbo C, just as it is for all other C compilers. Table 8.4 lists the sizes and
resulting ranges of the different data types for Turbo C. Note that the type
long double is accepted but is treated the same as double.

Table 8.4: Turbo C Data Types, Sizes, and Ranges

Type Size (bits) Range

unsigned char 8 0-255
char 8 -128 -127
enum 16 -32768 - 32767
unsigned short 16 0- 65535
short 16 -32768 - 32767
unsigned int 16 0- 65535
int 16 -32768 - 32767
unsigned long 32 o - 4294967295

long 32 -2147483648 - 2147483647

float 32 3.4E-38 - 3.4E+38
double 64 1.7E-308 -1.7E+308
long double 64 1.7E-308 -1.7E+308

pointer 16 (near, _cs, _ds, _es, _ss fointers)
pointer 32 (far, huge pointers

Conversions (K&R 6)

Turbo C supports the standard mechanisms for automatically converting
from one data type to another. The following sections indicate additions to
K&R or implementation-specific information.

char, int, and enum (K&R 6.1)

Assigning a character constant to an integer object results in a full 16-bit
assignment, since both one- and two-character constants are represented as
16-bit values (see K&R 2.4.3). Assigning a character object (such as a

Turbo C Language Reference 213

variable) to an integral object will result in automatic sign extension, unless
you've made the default char type unsigned (with the -K compiler option).
Objects of type signed char always use sign extension; objects of type
unsigned char always set the high byte to zero when converted to into

Values of type enum convert straight to int with no modifications; likewise,
int values can be converted straight to an enumerated type. enum values
and characters convert exactly as do int values and characters.

Pointers (K&R 6.4)

In Turbo C, different pointers in your program may be of different sizes,
depending upon the memory model or pointer type modifers you use. For
example, when you compile your program in a particular memory model,
the addressing modifiers (near, far, huge, _cs, _ds, _es, _ss) in your
source code can override the pointer size given by that memory model.

A pointer must be declared as pointing to some particular type, even if that
type is void (which really means pointer to anything). However, having
been declared, that pointer can point to an object of any other type. Turbo C
allows you to reassign pointers like this, but the compiler will warn you
when pointer reassignment happens-unless the pointer was originally
declared to be of type pointer to void. However, pointers to data types
cannot be converted to pointers to functions, and vice versa.

Arithmetic Conversions (K&R 6.6)

K&R refers to the usual arithmetic conversions, which specify what happens
when any values are used in an arithmetic expression (operand, operator,
operand). Here are the steps used by Turbo C to convert the operands in an
arithmetic expression:

1. Any noninteger or nondouble types are converted as shown in Table
8.5. After this, any two values associated with an operator are either
int (including the long and unsigned modifiers) or double.

2. If either operand is of type double, the other operand is converted to
double.

3. Otherwise, if either operand is of type unsigned long, the other
operand is converted to unsigned long.

214 Turbo C User's Guide

4. Otherwise, if either operand is of type long, then the other operand is
converted to long.

5. Otherwise, if either operand is of type unsigned, then the other
operand is converted to unsigned.

6. Otherwise, both operands are of type into

The result of the expression is the same type as that of the two operands.

Table 8.5: Methods Used in Usual Arithmetic Conversions

Type

char
unsigned char
signed char
short
enum
float

Converts to

int
int
int
int
int
double

Method

sign-extended
zero-filled high byte (always)
sign-extendea (always)
if unsigned, then unsigned int
same value
pads mantissa with 0' s

Operators (K&R Section 7.2)

Turbo C supports the unary + operator, while K&R does not. Normally,
Turbo C will regroup expressions, rearranging commutative operators
(such as * and binary +) in an effort to create an efficiently compiled
expression. However, Turbo C will not reorganize expressions around a
unary +. This means that you can control a floating-point expression that is
sensitive to precision errors or overflow by means of a unary + operator,
without having to split it up into separate expressions involving
assignments to temporaries. For example, if a, b, c, and f are all of type
float, then the expression

f = a + +(b + c);

forces the expression (b + c) to be evaluated before adding the result to a.

Type Specifiers and Modifiers (K&R 8.2)

Turbo C supports the following basic types not found in K&R:

CI unsigned char
Ell unsigned short

Turbo C Language Reference 215

• unsigned long
• long double
• enumeration
I!! void

The first three basic types in this list are self-explanatory; the fourth is
equivalent to the type double. The types int and short are equivalent in
Turbo C, both being 16 bits. See "Hardware Specifics" for more details on
how different types are implemented.

The enum Type

Turbo C implements enumerated types as found in the ANSI standard. An
enumerated data type is used to describe a discrete set of integer values.
For example, you could declare the following:

enum days { sun, mon, tues, wed, thur, fri, sat };

The names listed in days are integer constants with the first (sun) being
automatically set to zero and each succeeding name being one more than
the preceding one (man = 1, tues = 2, and so on). However, you can set a
name to a specific value; following names without specified values will
then increase by one, as before. For example,

enum coins { penny = 1, nickle = 5, dime = 10, quarter = 25};

A variable of -an enumerated type can be assigned any value of type
int-no type checking beyond that is enforced.

The void Type

In K&R, every function returns a value; if no type is declared, then the
function is of type into Turbo C supports the type void as defined in the
ANSI standard. This is used to explicitly document a function that does not
return a value. Likewise, an empty parameter list can be documented with
the reserved word void. For example,

216 Turbo C User's Guide

void putmsg(void)
{

printf("Hello, world\n");

main ()
{

putmsg ();

As a special construct, you may cast an expression to void in order to
explicitly indicate that you're ignoring the value returned by a function. For
example, if you want to pause until the user presses a key but ignore what
is typed, you might write this:

(void) getch () ;

Finally, you can declare a pointer to void. This doesn't create a pointer to
nothing; it creates a pointer to any kind of data object, the type of which is
not necessarily known. You can assign any pointer to a void pointer (and
vice versa) without a cast. However, you cannot use the indirection
operator (*) with a void pointer, since the underlying type is undefined.

The signed Modifier

In addition to the three type adjectives defined by K&R-long, short, and
unsigned-Turbo C supports three more: signed, const, and volatile
(all of which are defined in the ANSI standard).

The signed modifier is the opposite of unsigned and explicitly says that
the value is stored as a signed (two's complement) value. This is done
primarily for documentation and completeness. However, if you compile
with the default char type unsigned (instead of signed), you must use the
signed modifier in order to define a variable or function of type signed
char. The modifier signed used by itself signifies signed int, just as
unsigned by itself means unsigned into

The const Modifier

The const modifier, as defined in the ANSI standard, prevents any
assignments to the object or any other side effects, such as increment or
decrement. A const pointer cannot be modified, though the object to which
it points can be. Note: The modifier const used by itself is equivalent to
const into Consider the following examples:

Turbo C Language Reference 217

const float pi = 3.1415926;
const maxint = 32767;
char *const str = "Hello, world";
char const *str2 = "Hello, world";

1* A constant pointer *1
1* A pointer to a constant string *1

Given these, the following statements are illegal:

pi = 3.0;
i = maxint--;
str = "Hi, there!";

1* Assigns a value to a const *1
1* Increments a canst *1

1* Points str to something else *1

Note, however, that the function call strcpy (str, "Hi, there!") is legal,
since it does a character-by-character copy from the string literal "Hi,

there! " into the memory locations pointed to by str.

The volatile Modifier

The volatile modifier, also defined by the ANSI standard, is almost the
opposite of const. It indicates that the object may be modified; not only by
you, but also by something outside of your program, such as an interrupt
routine or an I/O port. Declaring an object to be volatile warns the
compiler not to make assumptions concerning the value of the object while
evaluating expressions containing it, since the value could (in theory)
change at any moment. It also prevents the compiler from making the
variable a register variable.

volatile int ticks;
interrupt timer()
{

ticks++;

wait(int interval)
{

ticks = 0;
while (ticks < interval);

1* Do nothing *1

These routines (assuming timer has been properly associated with a
hardware clock interrupt) will implement a timed wait of ticks specified by
the argument interval. Note that a highly optimizing compiler might not
load the value of ticks inside the while loop, since the loop doesn't change
the value of ticks.

218 Turbo C User's Guide

The cdecl and pascal Modifiers

Turbo C allows your programs to easily call routines written in other
languages, and vice versa. When you mix languages like this, you have to
deal with two important issues: identifiers and parameter passing.

When you compile a program in Turbo C, all the global identifiers in the
program-that is, the names of functions and global variables-are saved
in the resulting object code file for linking purposes. By default, those
identifiers are saved in their original case (lower, upper, or mixed). Also, an
underscore (_) is prep ended to the front of the identifer, unless you have
selected the -u- (Generate underbars ... Off) option.

Likewise, any external identifiers you declare in your program are
presumed to have the same format. Linking is (by default) case sensitive, so
identifiers used in different source files must match exactly in both spelling
and case.

pascal

In certain situations, such as referencing code written in other languages,
this default method of saving names can be a problem.

So Turbo C gives you a way around the problem. You can declare any
identifier to be of type pascal. This means that the identifier is converted
to uppercase and that no underscore is stuck on the front. (If the identifier
is a function, this also affects the parameter-passing sequence used; see
"Function Type Modifiers" for more details.) It no longer matters what case
is used in the source code; for linking purposes, it's considered uppercase
only.

cdecl

You can make all the global identifiers in a source file of type pascal by
compiling with the -p (Calling convention ... Pascal) option. However, you
may then want to ensure that certain identifiers have their case preserved
and keep the underscore on the front, especially if they're C identifiers
from another file.

You can do so by declaring those identifiers to be cdecl (which also has an
effect on parameter passing for functions).

Turbo C Language Reference 219

You'll notice, for example, that all the functions in the header files
(STDIO.H, etc.) are of type cdecl. This ensures that you can link with the
library routines, even if you compile using -po

See K&R Section 10.1.1 in this chapter, as well as Chapter 9, for more
details.

The near, far, and huge Modifiers

Turbo C has three modifiers that affect the indirection operator (*); that is,
they modify pointers to data. These are near, far, and huge. The meaning
of these keywords is explained in greater detail in Chapter 9, but here's a
brief overview.

Turbo C allows you to compile using one of several memory models. The
model you use determines (among other things) the internal format of
pointers to data. If you use a small data model (tiny, small, medium), all
data pointers are only 16 bits long and give the offset from the Data
Segment (DS) register. If you use a large data model (compact, large, huge),
all pointers to data are 32 bits long and give both a segment address and an
offset.

Sometimes, when using one size of data model, you want to declare a
pointer to be of a different size or format than the current default. You do
so using the modifiers near, far, and huge.

A near pointer is only 16 bits long; it uses the current contents of the Data
Segment (DS) register for its segment address. This is the default for small
data models. Using near pointers limits your data to the current 64K data
segment.

A far pointer is 32 bits long, and contains both a segment address and an
offset. This is the default for large data models. Using far pointers allows
you to refer to data anywhere in the 1-MB address space of the Intel
8088/8086 processors.

A huge pointer is also 32 bits long, again containing both a segment address
and an offset. However, unlike far pointers, a huge pointer is always kept
normalized. The details of this are given in Chapter 9, but here are the
implications:

• Relational operators (==, !=, <, >, <=, >=) all work correctly and
predictably with huge pointers; they do not with far pointers.

220 Turbo C User's Guide

c Any arithmetic operations on a huge pointer affect both the segment
address and the offset because of normalization; on a far pointer, only
the offset is affected.

c A given huge pointer can be incremented through the entire 1 MB
address space; a far pointer will eventually wrap around to the start of
its 64 K segment.

c Using huge pointers requires additional time because the normalization
routines have to be called after any arithmetic operations on the
pointers.

Structures and Unions (K&R Section 8.5)

Turbo C follows the K&R implementation of structures and unions and
provides the following additional features.

Word Alignment

If you use the -a compiler option (Alignment ... Word), Turbo C will pad
the structure (or union) with bytes as needed for word alignment. This
ensures three things:

c The structure will start on a word boundary (even address).

c Any non-char member will have an even offset from the beginning of
the structure.

c A byte will be added (if necessary) at the end to ensure that the entire
structure contains an even number of bytes.

Bitfields

In Turbo C, a bitfield may be either a signed or unsigned int and may
occupy from 1 to 16 bits. Bitfields are allocated from low-order to high­
order bits within a word.

Turbo C Language Reference 221

For example,

struct mystruct
int i 2;
unsigned 5;
int 4;
int k 1;
unsigned m : 4;

) a,b,c;

produces the following layout:

15 14 I3 12 II IO 9 8 7 6 5 4 3 2 I a
x x x x x x x x x x x x x x x x

.... ~ -c-~ .--------.. ~ .-----~

m k (unused) j i

Integer fields are stored in two's complement form with the left-most bit
being the sign bit. For example, a signed int bitfield 1 bit wide (such as
a.k) can only hold the values -1 and 0, since any non-zero value will be
interpreted as -1.

Statements (K&R 9)

Turbo C implements all the statements described in K&R without exception
and without modification.

External Function Definitions (K&R 10.1)

In Turbo C, extern declarations given inside a function obey proper block
scope; they will not be recognized beyond the scope of the block in which
they are defined. However, Turbo C will remember the declarations in
order to compare them with later declarations of the same object.

Turbo C implements most of the ANSI enhancements to the K&R definition
of functions. This includes additional function modifers, as well as function
prototypes. Turbo C also has a few enhancements of its own, such as
functions of type interrupt.

222 Turbo C User's Guide

Function Type Modifiers (K&R 10.1.1)

In addition to extern and static, Turbo C has a number of type modifiers
specific to function definitions: pascal, cdecl, interrupt, near, far, and
huge.

The pascal Function Modifier

The pascal modifier is specific to Turbo C and is intended for functions
(and pointers to functions) that use the Pascal parameter passing sequence.
This allows you to write C functions that can be called from programs
written in other languages; likewise, it will allow your C programs to call
external routines written in languages other than C. The function name is
converted to all uppercase for linking purposes.

Note: Using the -p compiler option (Calling convention ... Pascal) will cause
all functions (and pointers to those functions) to be treated as if they were
of type pascal. Also, functions declared to be of type pascal can still be
called from C routines, so long as the C routine sees that the function is of
type pascal. For example, if you have declared and compiled the following
function:

pascal putnums(int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",i,j,k);

another C program could then link it in and call it, given the following
declarations:

pascal putnums(int i, int j, int k);

main()
{

putnums(1,4,9);

Functions of type pascal cannot take a variable number of arguments,
unlike functions such as printf. For this reason, you cannot use an ellipsis
Coo) in a pascal function definition. (See "Function Prototypes" for an
explanation of using the ellipsis to define a function with a variable number
of arguments.)

Turbo C Language Reference 223

The cdecl Function Modifier

The cdecl modifier is also specific to Turbo C. Like the pascal modifier, it
is used with functions and pointers to functions. Its purpose is to override
the -p compiler directive and allow a function to be called as a regular C
function. For example, if you were to compile the previous program with
the -p option set, but wanted to use printf, you might do something like
this:

extern cdecl printf();
putnums(int i, int j, int k);

cdecl main ()
{

putnums(1,4,9);

putnums(int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",i,j,k);

If a program is compiled with the -p option, all functions used from the
run-time library will need to have cdecl declarations. If you'll look at the
header files (such as STOIO.H), you'll see that every function is explicitly
defined as cdecl in anticipation of this. Note that main must also be
declared as cdecl; this is because the C start-up code always tries to call
main with the C calling convention.

The interrupt Function Modifier

The interrupt modifier is another one specific to Turbo C. interrupt
functions are designed to be used with the 8086/8088 interrupt vectors.
Turbo C will compile an interrupt function with extra function entry and
exit code so that registers AX, BX, CX, OX, SI, 01, ES, and OS are preserved.
The other registers of BP, SP, SS, CS, and IP are preserved as part of the C­
calling sequence or as part of the interrupt handling itself. Here is an
example of a typical interrupt definition:

void interrupt myhandler()
{

You should declare interrupt functions to be of type void. Interrupt
functions may be declared in any memory model. For all memory models
except huge, OS is set to the program data segment. For the huge model,
OS is set to the module's data segment.

224 Turbo C User's Guide

Function Prototypes (K&R 10.1.2)

When you are declaring a function, K&R only allows a function declarator
consisting of the function name, its type, and an empty set of parentheses.
The parameters (if any) are declared only when you actually define the
function itself.

The ANSI standard-and Turbo C-allow you to use function prototypes
to declare a function. These are declarators that include information about
the function parameters. The compiler uses that information to check
function calls for validity. The compiler also uses that information to coerce
arguments to the proper type. Suppose you have the following code
fragment:

long lmax(long vI, long v2);

main ()
{

int limit = 32;
char ch = 'A';
long mval;

mval = lmax(limit,ch);

Given the function prototype for lmax, this program will convert limit and
ch to long using the standard rules of assignment before they are placed on
the stack for the call to lmax. Without the function prototype, limit and ch
would have been placed on the stack as an integer and a character,
respectively; in that case, the stack passed to lmax would not match in size
or content what lmax was expecting, leading to problems. Since K&R C
does not do any checking of parameter type or number, using function
prototypes aids greatly in tracking down bugs and other programming
errors.

Function prototypes also aid in documenting code. For example, the
function strcpy takes two parameters: a source string and a destination
string. The question is, which is which? The function prototype

char *strcpy(char *dest, char *source);

makes it clear. If a header file contains function prototypes, then you can
print that file to get most of the information you need for writing programs
that call those functions.

A function declarator with parentheses containing the single word void

indicates a function that takes no arguments at all:

f (void)

Turbo C Language Reference 225

Otherwise, the parentheses contain a list of declarators separated by
commas. The declarator may be in the form of a cast, as in

func(int *, long);

or it may include an identifier, as in
func(int * count, long total);

In the two lists of declarators just mentioned, the function func accepts two
parameters: a pointer to int named count and a long (integer) named total.
If an identifier is included, it has no effect except to be used in the
diagnostic message, if and when a parameter-type mismatch occurs.

A function prototype normally defines a function as accepting a fixed
number of parameters. For C functions that accept a variable number of
parameters (such as printf), a function prototype may end with an ellipsis
(.. .), like this:

f(int *count, long total, ...)

With this form of prototype, the fixed parameters are checked at compile
time, and the variable parameters are passed as if no prototype were
present.

Here are some more examples of function declarators and prototypes.

int f () i

int f (void) ;

int p(int,long);

int pascal q(void);

1* A function returning an int with no
information about parameters. This is the
K&R "classic style." *1

1* A function returning an int that takes
no parameters. *1

1* A function returning an int that
accepts two parameters, the first an int
and the second a long. *1

1* A pascal function returning an int
that takes no parameters at all. *1

char far * s(char *source, int kind); 1* A function returning a far pointer to
a char and accepting two parameters: the
first, a pointer to a char; the second,
an into *1

int printf(char *format, ...);

int (*fp) (int) ;

226

1* A function returning an int and
accepting a pointer to a char fixed
parameter and any number of additional
parameters of unknown type. *1

1* A pointer to a function returning an
int and accepting a single int parameter.
*1

Turbo C User's Guide

Here is a summary of the rules governing how Turbo C deals with
language modifiers and formal parameters in function calls, both with and
without prototypes.

Rule #1: The language modifiers for a function definition must match the
modifiers used in the declaration of the function at all calls to the function.

Rule #2: A function may modify the values of its formal parameters, but
this has no effect on the actual arguments in the calling routine, except for
interrupt functions. See "Interrupt Functions" in Chapter 9 for more
informa tion.

When a function prototype has not been previously declared, Turbo C
converts integral arguments to a function call according to the integral
widening (expansion) rules described in "Arithmetic Conversions." When a
function prototype is in scope, Turbo C converts the given argument to the
type of the declared parameter as if by assignment.

When a function prototype includes an ellipsis C ..), Turbo C converts all
given function arguments as in any other prototype (up to the ellipsis). The
compiler will widen any arguments given beyond the fixed parameters,
according to the normal rules for function arguments without prototypes.

If a prototype is present, the number of arguments must match (unless an
ellipsis is present in the prototype). The types must be compatible only to
the extent that an assignment can legally convert them. You can always use
an explicit cast to convert an argument to a type that is acceptable to a
function prototype.

The following example should clarify these points:

int strcmp(char *s1, char *s2);
char *strcpy () ;
int samp1 (float, int, ...);

samp2 ()
{

char *sx, *cp;
double Z;
long a;
float q;

if (strcmp (sx, cp))
strcpy(sx, cp, 44);

samp1 (3, a, q);
strcpy (cp) ;
samp1(2);

Turbo C Language Reference

/* Full prototype */
/* No prototype */

/* Full prototype */

/* 1. Correct */
/* 2. OK in Turbo C but not portable */

/* 3. Correct */
/* 4. Run-time error */
/* 5. Compile error */

227

The five calls (numbered by comment) in this example illustrate different
points about function calls and prototypes.

In call #1, the use of stremp exactly matches the prototype and everything
is proper.

In call #2, the call to strepy has an extra argument (strepy is defined for two
arguments, not three). In this case, Turbo C will waste a little time and code
pushing an extra argument. However, there is no syntax error because the
compiler has not been told about the arguments to strepy. This call is not
portable.

In call #3, the prototype directs that the first argument to sampl be
converted to float and the second argument to into The compiler will
warn about possible loss of significant digits because a conversion from
long to int chops the upper bits. (You can eliminate this warning with an
explicit cast to int). The third argument, q, lines up with the ellipsis in the
prototype, so it is converted to double according to the usual arithmetic
conversions; the whole call is correct.

In call #4, strepy is again called, but now with too few arguments. This will
cause an execution error and it may crash the program. The compiler will
say nothing (even though the number of parameters differs from that in a
previous call to the same function!), since there is no function prototype for
strepy.

In call #5, sampl is called with too few arguments. Since sampl requires a
minimum of two arguments, this statement is an error. The compiler will
give a message about too few arguments in a call.

Important Note: If your function prototype does not match the actual
function definition, Turbo C will detect this if and only if that definition is in
the same file as the prototype. If you create a library of routines with a
corresponding header file of prototypes, you might consider including that
header file when you compile the library, so that any discrepancies
between the prototypes and the actual definitions will be caught.

Scope Rules (K&R 11)

Turbo C is more liberal in allowing non-unique identifiers than K&R
specifies a compiler need be. There are four distinct classes of identifiers in
this implementation:

228 Turbo C User's Guide

Variables, typedefs, and enumeration members must be unique within the
block in which they are defined. Externally declared identifiers must be
unique among externally declared variables.

Structure, union, and enumeration tags must be unique within the block in
which they are defined. Tags declared outside of any function must be
unique within all tags defined externally.

Structure and union member names must be unique within the structure
or union in which they are defined. There is no restriction on the type or
offset of members with the same member name in different structures.

Goto labels must be unique within the function in which they are declared.

Compiler Control Lines (K&R 12)

Turbo C supports all the control commands found in K&R. These
preprocessor directives are source lines with an initial #, which may be
preceded or followed by whitespace.

Token Replacement (K&R 12.1)

Turbo C implements the K&R definition of #define and #undef with the
following additions.

[J The following identifiers may not appear in a #define or #undef

directive:

_STDC _
_ FILE _
_ LINE _
_ DATE _
_ TIME_

[J Two tokens may be pasted together in a macro definition by separating
them with ## (plus optional whitespace on either side). The prepro­
cessor removes the whitespace and the ##, combining the separate
tokens. This can be used to construct identifiers; for example, given the
construct

#define VAR(i,j) (i ## j)

then VAR (x, 6) would expand to x6. This replaces the sometimes-used
(but non-portable) method of using (i / * * / j) .

Turbo C Language Reference 229

• Nested macros mentioned in a macro definition string are expanded
only when the macro itself is expanded, not when the macro is defined.
This mostly affects the interaction of #unde f with nested macros .

• The # symbol can be placed in front of a macro argument in order to
stringize the argument, (convert it to a string). When the macro is
expanded, #<formal arg> is replace with "<actual arg>". So, given the
following macro definition:

#define TRACE (flag) printf (#flag "=%d\n", flag)

then the code fragment

highva1 = 1024;
TRACE(highva1);

becomes

highva1 = 1024;
printf("highva1" "= %d\n", highva1);

which, in turn, becomes
highva1 = 1024;
printf("highva1=%d\n", highva1);

.. Unlike other implementations, Turbo C does not expand macro
arguments inside strings and character constants.

File Inclusion (K&R 12.2)

Turbo C implements the #include directive as found in K&R but has the
following additional feature: If the preprocessor can't find the include file
in the default directory, assuming that you used the form

hnc1ude "filename"

then it searches the directories specified with the compiler option -I.

If you used the form #include <filename>, then only those directories
specified with - I are searched. (Directories listed under the menu option
a /Environment/lnclude directories are equivalent to those given with the
- Ipa thname command-line option.)

You may construct the #include path name, including delimiters, using
macro expansion. If the next line after the keyword begins with an
identifier, the preprocessor scans the text for macros. However, if a string is
enclosed in quotes or angle brackets, Turbo C will not examine it for
embedded macros.

230 Turbo C User's Guide

So, if you have the following:

#define myinclude "c:\tc\include\mystuff.h"
#include myinclude
#include "myinclude.h"

then the first # incl ude statement will cause the preprocessor to look for
C: \ TC\INCLUDE\MSTUFF.H, while the second will cause it to look for
MYINCLUDE.H in the default directory.

Also, you may not use string literal concatenation and token pasting in
macros that are used in an #include statement. The macro expansion must
produce text that reads like a normal # incl ude directive.

Conditional Compilation (K&R 12.3)

Turbo C supports the K&R definition of conditional compilation by
replacing the appropriate lines with a line containing only whitespace. The
lines thus ignored are those beginning with #if, #ifdef, #ifndef, #else,

#elif, and #endif directives as well as any lines that are not to be
compiled as a result of the directives. All conditional compilation directives
must be completed in the source or include file in which they are begun.

Turbo C also supports the ANSI operator defined (symbol). This will
evaluate to 1 (true) if the symbol has been previously defined (using
#define) and has not been subsequently undefined (using #undef);

otherwise, it evaluates to a (false). So the directive

#if defined (mysym)

is the same as

#ifdef mysym

The advantage is that you can use defined repeatedly in a complex
expression following the # i f directive, such as

#if defined (mysym) I I defined (yoursym)

Finally, Turbo C (unlike ANSI) allows you to use the sizeof operator in a
preprocessor expression. Thus, you can write the following

#if (sizeof(void *) == 2)
#define SDATA
#else
#define LDATA
#endif

Turbo C Language Reference 231

Line Control (K&R 12.4)

Turbo C supports the K&R definition of #line. Macros are expanded in
#line as they are in the #include directive.

Error Directive (ANSI C 3.8.5)

Turbo C supports the #error directive, which is mentioned (but not
explicitly defined) in the ANSI standard. The format is:

#error errmsg

and the message issued is

Fatal: filename line# Error directive: errmsg

Typically, programmers include this directive in a preprocessor conditional
that catches some undesired compile-time condition. In the normal case,
that condition won't be true. In the event that the condition is true, you
want the compiler to print an error message and stop the compile. You do
this by putting an #error directive within a conditional that is true for the
indesired case.

For example, suppose you #define MYVAL, which must be either 0 or 1.
You could then include the following conditional in your source code to
test for an incorrect value of MYV AL:

#if (MYVAL != 0 && MYVAL != 1)
#error MYVAL must de defined to either 0 or 1
#endif

The preprocessor scans the text to remove comments but displays any
. remaining text without looking for embedded macros.

Pragma Directive (ANSI C 3.8.6)

Turbo C supports the #pragma directive, which (like #error) is vaguely
defined in the ANSI standard: Its purpose is to permit implementation­
specific directives of the form:

#pragma <directive name>

232 Turbo C User's Guide

With #pragma, Turbo C can define whatever directives it desires without
interfering with other compilers that support #pragma. Why? Because, by
definition, if the compiler doesn't recognize the directive name, it ignores
the #pragma directive.

#pragma inline

Turbo C recognizes two #pragma directives. The first is

#pragma inline

This directive is equivalent to the -B compiler option. It tells the compiler
that there is in-line assembly language code in your program (see Chapter
9). This is best placed at the top of the file, since the compiler restarts itself
with the -B option when #pragma inline is encountered. Actually, you
can leave off both the -B option and the #pragma inline directive, and the
compiler will restart itself anyway as soon as it encounters asm statements;
the purpose of the option and the directive is to save some compile time.

#pragmawarn

The other #pragma directive is

#pragma warn

This directive allows you to override specific -wxxx command-line options
(or specific Display warnings ... On options).

For example, if your source code contains the directives

#pragma warn +xxx
#pragma warn -yyy
#pragma warn .zzz

the xxx warning will be turned on (even if on the Ole/Errors submenu it
was toggled to off>, the yyy warning will be turned off, and the zzz warning
will be restored to the value it had when compilation of the file began.

A complete list of the three-letter abbreviations and the warnings to which
they apply is given in Appendix C in the Turbo C Reference Guide.

Turbo C Language Reference 233

Null Directive (ANSI C 3.7)

For the sake of completeness, the ANSI standard and Turbo C recognize the
null directive, which simply consists of a line containing the character #.
This directive is always ignored.

Predefined Macro Names (ANSI C 3.8.8)

The ANSI standard requires five predefined macros to be made available
. by the implementation. Turbo C implements all five. Note that each of

these starts and ends with two underscore characters ().

LINE

234

The number of the current source-file line being
processed-a decimal constant. The first line of a source
file is defined to be 1.

The name of the current source file being processed-a
string literal.

This macro changes whenever the compiler processes an
#include directive or a #line directive, or when the
include file is complete.

The date the preprocessor began processing the current
source file-a string literal.

Each inclusion of _DATE_ in a given file is guaranteed to
contain the same value, regardless of how long the
processing takes. The date appears in the format mmm dd
yyyy, where mmm equals the month (Jan, Feb, etc.), dd
equals the day (1 ... 31, with the first character of dd a blank
if the value is less than 10), and yyyy equals the year (1986,
1987, etc.).

The time the preprocessor began processing the current
source file-a string literal.

Each inclusion of _TIME_ is guaranteed to contain the
same value, regardless of how long the processing takes. It
takes the format hh:mm:55, where hh equals the hour
(00 ... 23), mm equals minutes (00 ... 59), and 55 equals
seconds (00 ... 59).

Turbo C User's Guide

The constant I, if you compile with the ANSI compatibility
(-A) flag (ANSI keywords only ... ON); otherwise, the macro
is undefined.

Turbo C Predefined Macros

The Turbo C preprocessor defines several additional macros for your use.
As with the ANSI-prescribed macros, each starts and ends with two
underscore characters.

TURBOC Gives the current Turbo C version number-a hexadecimal
constant. Version 1.0 is OxOl00; version 1.2 is Ox0102; and so
on.

P ASCAL Signals -p flag; set to the integer constant 1 if -p flag is
used; undefined otherwise.

MSDOS The integer constant 1 for all compiles.

CDECL Signals that the -p flag was not used (Calling
convention ... C): set to the integer constant 1 if -p was not
used; undefined otherwise.

The following six symbols are defined based on the memory model chosen
at compile time. Only one is defined for any given compilation; the others,
by definition, are undefined. For example, if you compile with the small
model, _SMALL_ is defined and the rest are not, so that the directive # i f

defined (_SMALL_) will be true, while #if defined (_HUGE_) (or any
of the others) will be false. The actual value for any of these defined macros
is 1.

TINY

SMALL

MEDIUM

COMPACT

LARGE

HUGE

The tiny memory model selection options

The small memory model selection options

The medium memory model selection options

The compact memory model selection options

The large memory model selection options

The huge memory model selection options

Turbo C Language Reference 235

Anachronisms (K&R 17)

None of the anachronisms mentioned in K&R exist in Turbo C.

236 Turbo C User's Guide

c H A p T E R

9

Advanced Programming in Turbo C

We knew you'd get around to this chapter sooner or later. You've
undoubtedly worked through the earlier chapters at an alarming rate,
absorbing knowledge like a sponge absorbs water. And now you want to
explore new and more rarified realms. Glad to have you here.

We'll cover three major topics in this chapter. First, we'll talk about
memory models, from tiny to huge. We'll tell you what they are, how to
choose one, and why you would (or would not) want to use a particular
memory model. Next, we'll discuss the issues in mixed-language
programming. You've seen that some already in Chapter 7, which talked
about mixing Turbo C and Turbo Prolog. Here, we'll be talking about how
to mix with other languages, including Pascal and assembly language.
After that, we'll look at three aspects of low-level programming in Turbo C:
in-line assembly code, pseudo-variables, and interrupt-handling. Finally,
we'll look at floating-point issues. So let's get started.

Memory Models

What are memory models, and why do you have to worry about them? To
answer that question, we have to take a look at the computer system you're
working on. Its central processing unit (CPU) is a microprocessor belonging
to the Intel iAPx86 family; probably an 8088, though possibly an 8086, an
80186, or a 80286. For now, we'll just refer to it as an 8086.

Advanced Programming in Turbo C 237

The 8086 Registers

General Purpose Registers

AX AH AL accumulator (math operations)

BX BH BL base (indexing)

ex CH CL count (loops, etc.)

DX DH DL data (holding data)

Segment Address Registers

CS code segment pointer

DS data segment pointer

SS stack segment pointer

ES extra segment pointer

Special Purpose Registers

SP stack pointer

BP base pointer

SI source index

DI destination index

Figure 9.1: 8086 Registers

238 Turbo C User's Guide

Figure 9.1 shows the registers found in the 8086 processor, with a brief
description of what each is used for. There are two more registers-IP
(instruction pointer) and the flag register-but Turbo e can't access them,
so they aren't shown here.

General Purpose Registers

The general purpose registers are the ones used most often to hold and
manipulate data. Each has some special functions that only it can do. For
example,

o Many math operations can only be done using AX.

e BX can be used to hold the offset portion of a far pointer.

e ex is used by some of the 8086' s LOOP instructions.

[] DX is used by certain instructions to hold data.

But there are many operations that all these registers can do; in many cases,
you can freely exchange one for another.

Segment Registers

The segment registers hold the starting address of each of the four
segments. As described in the next section, the 16-bit value in a segment
register is shifted left 4 bits (multiplied by 16) to get the true 20-bit address
of that segment.

Special Purpose Registers

The 8086 also has some special purpose registers.

[] The 51 and DI registers can do many of the things the general purpose
registers can, plus they are used as index registers. They're also used by
Turbo e for register variables.

[] The 5P register points to the current top-of-stack and is an offset into the
stack segment.

e The BP register is a secondary stack pointer, usually used to index into
the stack in order to retrieve parameters.

The base pointer (BP) register is used in e functions as a base address for
arguments and automatic variables. Parameters have positive offsets from
BP, which vary depending on the memory model and the number of
registers saved on function entry. BP always points to the saved previous

Advanced Programming in Turbo C 239

BP value. Functions that have no parameters and declare no arguments will
not use or save BP at all.

Automatic variables are given negative offsets from BP, with the first
automatic variables having the largest magnitude negative offset.

Memory Segmentation

The Intel 8086 microprocessor has a segmented memory architecture. It has a
total address space of 1 megabyte, but it is designed to directly address
only 64K of memory at a time. A 64K chunk of memory is known as a
segment; hence the phrase, "segmented memory architecture."

Now, how many different segments are there, where are they located, and
how does the 8086 know where they're located?

II The 8086 keeps track of four different segments: code, data, stack, and
extra. The code segment is where the machine instructions are; the data
segment, where information is; the stack is, of course, the stack; and the
extra segment is used (usually) for extra data .

• The 8086 has four 16-bit segment registers (one for each segment)
named CS, DS, SS, and ES; these point to the code, data, stack, and extra
segments, respectively .

• A segment can be located anywhere in memory-at least, almost
anywhere. For reasons that will become clear as you read on, a segment
must start on an address that's evenly divisible by 16 (in base 10).

Address Calculation

Okay, so how does the 8086 use these segment registers to calculate an
address? A complete address on the 8086 is composed from two 16-bit
values: the segment address and the offset. Suppose the data segment
address-the value in the DS register-is 2F84 (base 16), and you want to
calculate the actual address of some data that has an offset of 0532 (base 16)
from the start of the data segment; how is that done?

Address calculation is done as follows: shift the value of the segment
register four (4) bits to the left (equivalent to one hex digit), then add in the
offset.

240 Turbo C User's Guide

The resulting 20-bit value is the actual address of the data, as illustrated
here:

os register (shifted): 0010 1111 1000 0100 0000 2F840
Offset: 0000 0101 0011 0010 00532

Address: 0010 1111 1101 0111 0010 = 2F072

The starting address of a segment is always a 20-bit number, but a segment
register only holds 16 bits-so the bottom four bits are always assumed to
be all zeros. This means-as we said-that segments can only start every 16
bytes through memory, at an address where the last 4 bits (or last hex digit)
are zero.

So, if the DS register is holding a value of 2F84, then the data segment
actually starts at address 2F840. By the way, a chunk of 16 bytes is known
as a paragraph, so you could say that a segment always starts on a
paragraph boundary.

The standard notation for an address takes the form segment:offset; for
example, the previous address would be written as 2F84:0532. Note that
since offsets can overlap, a given segment:offset pair is not unique; the
following addresses all refer to the same memory location:

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

One last note: Segments can (but do not have to) overlap. For example, all
four segments could start at the same address, which means that your
entire program would take up no more than 64K-but that's all the space
you would have for your code, your data, and your stack.

Near, Far, and Huge Pointers

What do pointers have to do with memory models and Turbo C? A lot. The
type of memory model you choose will determine the default type of
pointers used for code and data. However, you can explicitly declare a
pointer (or a function) to be of a specific type, regardless of the model being
used. Pointers come in three flavors: near (16 bits), far (32 bits) and huge
(also 32 bits); let's look ateach.

Advanced Programming in Turbo C 241

Near Pointers

A 16-bit (near) pointer relies upon one of the segment registers to finish
calculating its address; for example, a pointer to a function would add its
16-bit value to the left-shifted contents of the code segment (CS) register. In
a similar fashion, a near data pointer contains an offset to the data segment
(DS) register. Near pointers are easy to manipulate, since any arithmetic
(such as addition) can be done without worrying about the segment.

Far Pointers

A far (32-bit) pointer contains not only the offset within the segment, but
also (as another 16-bit value) the segment address, which is then left-shifted
and added to the offset. By using far pointers, you can have multiple code
segments; that, in turn, allows you to have programs larger than 64K.
Likewise, with far data pointers you can address more than 64K worth of
data.

When you use far pointers for data, you need to be aware of some potential
problems in pointer manipulation. As explained in the section on address
calculation, you can have many different segment:offset pairs refer to the
same address. For example, the far pointers 0000:0120, 0010:0020, and
0012:0000 all resolve to the same 20-bit address. However, if you had three
different far pointer variables-a, b, and c-containing those three values
respectively, then all the following expressions would be false:

if (a == b)
if (b == c) •••
if (a == c) .•.

A related problem occurs when you want to compare far pointers using the
>, >=, <, and <= operators. In those cases, only the offset (as an unsigned)
is used for comparison purposes; given that a, b, and c still have the values
previously listed, the following expressions would all be true:

if (a > b)
if (b > c) •.•
if (a > c) •.•

The equals (==) and not-equals (!=) operators use the 32-bit value as an
unsigned long (not as the full memory address). The comparison
operators «=, >=, <, and » use just the offset.

The == and != operators need all 32 bits, so the computer can compare to
the NULL pointer (0000:0000). If you used only the offset value for equality
checking, any pointer with 0000 offset would be equal to the NULL pointer,
which is not what you want.

242 Turbo C User's Guide

One more thing you should be aware of: If you add values to a far pointer,
only the offset is changed. If you add enough to cause the offset to exceed
FFFF (its maximum possible value), the pointer just wraps around back to
the beginning of the segment. For example, if you add 1 to 5031:FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you subtract 1 from
5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, then it's safest to use either near
pointers-which all use the same segment address-or huge pointers,
described next.

Huge Pointers

Huge pointers are also 32 bits long and, like far pointers, contain both a
segment address and an offset. Unlike far pointers, however, they are
normalized, to avoid the problems described in "Far Pointers."

What is a normalized pointer? It is a 32-bit pointer which has as much of its
value in the segment address as possible. Since a segment can start every 16
(10 in base 16) bytes, this means that the offset will only have a value from
o to 15 (0 to F in base 16).

How do you normalize a pointer? Simple: convert it to its 20-bit address,
then use the right 4 bits for your offset and the left 16 bits for your segment
address. For example, given the pointer 2F84:0532, we convert that to the
absolute address 2FD72, which we then normalize to 2FD7:0002. Here are a
few more pointers with their normalized equivalents:

0000:0123
0040:0056
5000:9407
7418:D03F

0012:0003
0045:0006
594D:0007
811B: OOOF

Now you know that huge pointers are always kept normalized. Why is this
important? Because it means that for any given memory address, there is
only one possible huge address-segment:offset pair-for it. And that
means that the == and != operators return correct answers for any huge
pointers.

In addition to that, the >, >=, <, and <= operators are all used on the full
32-bit value for huge pointers. Normalization guarantees that the results
there will be correct also.

Finally, because of normalization, the offset in a huge pointer automatically
wraps around every 16 values, but-unlike far pointers-the segment is
adjusted as well. For example, if you were to increment 811B:000F, the
result would be 811C:0000; likewise, if you decrement 811C:0000, you get

Advanced Programming in Turbo C 243

811 B:OOOF. It is this aspect of huge pointers that allows you to manipulate
data structures greater than 64K in size.

There is a price for using huge pointers: additional overhead. Huge pointer
arithmetic is done with calls to special subroutines. Because of this, huge
pointer arithmetic is significantly slower than that of far or near pointers.

Turbo C's Six Memory Models

Avoiding overhead-except when you want it-is just what Turbo C
allows you to do. There are six different memory models you can choose
from: tiny, small, medium, compact, large, and huge. Which one you pick
depends upon what your requirements are. Here's a brief summary of
each:

Tiny:

Small:

Medium:

Compact:

Large:

Huge:

244

As you might guess, this is the smallest of the memory
models. All four segment registers (C5, 05, 55, E5) are set
to the same address, so you have a total of 64K for all of
your code, data, and arrays. Near pointers are always used.
Use this when memory is an absolute premium. Tiny
model programs can be converted to .COM format.

The code and data segments are different and don't
overlap, so you have 64K of code and 64K of static data.
The stack and extra segments start at the same address as
the data segment. Near pointers are always used. This is a
good size for average applications.

Far pointers are used for code, but not for data. As a result,
static data is limited to 64K, but code can occupy up to 1
MB. Best for large programs that don't keep much data in
memory.

The inverse of medium: far pointers are used for data, but
not for code. Code is then limited to 64K, while data has a
I-MB range. Best if your code is small but you need to
address a lot of data.

Far pointers are used for both code and data, giving both a
I-MB range. Only needed for very large applications.

Far pointers are used for both code and data. Turbo C
normally limits the size of all static data to 64K; the huge
memory model sets aside that limit, allowing static data to
occupy more than 64K.

Turbo C User's Guide

The following illustrations (Figures 9.2 through 9.7) show how memory in
the 8086 is apportioned for the six Turbo C memory models.

Segment
Registers

CS,DS,ES,SS -

SP-

DGROUP

_TEXT class 'CODE'
code

~ATA class 'DATA'
initialized data

~SS class 'BSS'
uninitialized data

Heap

Stack

Segment
Size

up to 64K bytes

Figure 9.2: Tiny Model Memory Segmentation

Segment
Registers

CS -

DS,ES,SS -

SP--

f--

f--

_TEXT class 'CODE'
code

DGROUP:

_DATA class 'DATA'
initialized data

~SS class 'BSS'
uninitialized data

Heap

Stack

Fa~ Heap

Segment
Size

up to 64K bytes

up to 64K bytes

up to rest
of memory

Figure 9.3: Small Model Memory Segmentation

Advanced Programming in Turbo C 245

246

Segment
Registers

CS -

DS,ES,SS -

SP--

r---

f-

sfile_ TEXT class 'CODE'
code

DGROUP:

_DATA class 'DATA'
initialized data

_BSS class 'BSS'
uninitialized data

Heap

Stack

Far Heap

Segment
Size

each sfile up to
64K bytes

up to 64K bytes

up to rest
of memory

Figure 9.4: Medium Model Memory Segmentation

Segment
Registers

CS

OS

SS
SP

-

-

-
-

f-

f-

f-

r---

_TEXT class 'CODE'
code

DGROUP:

_DATA class 'DATA'
initialized data

BSS class 'BSS'
uninitialized data

Stack

Heap

Segment
Size

up to 64K bytes

up to 64K bytes

up to 64K bytes

up to rest
of memory

Figure 9.5: Compact Model Memory Segmentation

Turbo C User's Guide

Segment
Registers

CS

DS

SS
SP

-

-

-
-

r-

r-

-
-

sfile_TEXT class 'CODE'
code

DGROUP:

_DATA class 'DATA'
initialized data

~SS class 'BSS'
uninitialized data

Stack

Heap

Segment
Size

each sfile up to
64K bytes

up to 64K bytes

up to 64K bytes

up to rest
of memory

Figure 9.6: Large Model Memory Segmentation

Segment
Registers

CS

DS

SS
SP

-

-

-
-

f--

f--

r-
f--

sfile_TEXT class 'CODE'
code

sfile_DATA class 'DATA'
data

Stack

Heap

Segment
Size

each stile up to
64k bytes

each stile up to
64K bytes

up to 64K Bytes

up to rest
of memory

Figure 9.7: Huge Model Memory Segmentation

Advanced Programming in Turbo C 247

Table 9.1 summarizes the different models and how they compare to one
another. The models are often grouped according to whether their code or
data models are small (64K) or large (1 MB); these groups correspond to the
rows and columns in Table 9.1. So, for example, the models tiny, small, and
compact are known as small code models because, by default, code pointers
are near; likewise, compact, large, and huge are known as large data models
because, by default, data pointers are far. Note that this is also true for the
huge model-the default data pointers are far, not huge. If you want huge
data pointers, you must declare them explicitly as huge.

Data Size

64K

1MB

Table 9.1: Memory Models

Code Size

64K

Tiny
(data, code overlap;

total size = 64K)

Small
(no overlap;

total size = 128K)

Compact
(big data,

small code)

1MB

Medium
(small data,
big code)

Large
(big data,

code)

Huge
(same as large
but static data

> 64K)

Important Note: When you compile a module (a given source file with
some number of routines in it), the resulting code for that module cannot
be greater than 64K, since it must all fit inside of one code segment. This is
true even if you're using a large code model (medium, large, huge). If your
module is too big to fit into one (64K) code segment, you must break it up
into different source code files, compile each file separately, then link them

248 Turbo C User's Guide

together. Similarly, even though the huge model permits static data to total
more than 64K, in each module it still must be less than 64K.

Mixed-Model Programming: Addressing
Modifiers

Turbo C introduces seven new keywords not found in standard (Kernighan
and Ritchie or ANSI) C: near, far, huge, _cs, _ds, _es, _ss. These can be
used as modifiers to pointers (and in some cases, to functions), with certain
limitations and warnings.

In Turbo C, you can modify functions and pointers with the keywords
near, far, or huge. We explained near, far, and huge data pointers earlier
in this chapter. near functions are invoked with near calls and exit with
near returns. Similarly, far functions are called far and do far returns. huge
functions are like far functions, except that huge functions can set DS to a
new value, while far functions cannot.

There are also four special near data pointers: _cs, _ds, _ss, and _es.
These are 16-bit pointers that are specifically associated with the
corresponding segment register. For example, if you were to declare a
pointer to be

char _ss *Pi

then p would contain a 16-bit offset into the stack segment.

Functions and pointers within a given program will default to near or far,
depending on the memory model you select. If the function or pointer is
near, then it is automatically associated with either the CS or the DS
register.

Table 9.2 shows just how this works. Note that the size of the pointer
corresponds to whether it is working within a 64K memory limit (near,
within a segment) or inside the general 1 MB memory space (far, has its
own segment address).

Advanced Programming in Turbo C 249

Memory Model

Tiny
Small
Medium
Compact
Large
Huge

Table 9.2: Pointer Results

Function Pointers

near, _cs
near, _cs
far
near, _cs
far
far

Declaring Functions to Be Near or Far

Data Pointers

near, _ds
near, _ds
near, _ds
far
far
far

On occasion, you'll want (or need) to override the default function type of
your memory model shown in Table 9.1.

For example, suppose you're using the large memory model, but you've
got a recursive (self-calling) function in your program, like this:

double power(double x,int exp)
{

if (exp <= 0)
return(O);

else
return(x*power(x,exp-l));

Every time power calls itself, it has to do a far call, which uses more stack
space and clock cycles. By declaring power as near, you eliminate some of
the overhead by forcing all calls to that function to be near:

double near power(double x,int exp)

This guarantees that power is callable only within the code segment in
which it was compiled, and that all calls to it are near calls.

This means that if you are using a large code model (medium, large, or
huge), you can only call power from within the module it is defined. Other
modules have their own code segment and thus cannot call near functions
in different modules. Furthermore, a near function must be either defined
or declared before the first time it is used or the compiler won't know it
needs to generate a near call.

Conversely, declaring a function to be far means that a far return is
generated. In the small code models, the far function must be declared or
defined before its first use to ensure it is invoked with a far call.

250 Turbo C User's Guide

Look back at the power example. It is wise to also declare power as static,
since it should only be called from within the current module. That way,
being a static, its name will not be available to any functions outside the
module. Since power always takes a fixed number of arguments, you could
optimize further by declaring it pascal, like this:

static double near pascal power(double x, int exp)

Declaring Pointers to Be Near, Far, or Huge

You've seen why you might want to declare functions to be of a different
model than the rest of the program. Why might you want to do the same
thing for pointers? For the same reasons given in the preceding section::
either to avoid unnecessary overhead (declaring near when the default
would be far) or to reference something outside of the default segment
(declaring far or huge when the default would be near).

There are, of course, potential pitfalls in declaring functions and pointers to
be of non-default types. For example, say you have the following small
model program:

void myputs (s)
char *s;
{

int i;
for (i=O; s [iJ != 0; itt) putc (s [iJ);

main ()
{

char near *mystr;

mystr = "Hello, world\n";
myputs (mystr) ;

This program works fine, and, in fact, the near declaration on mystr is
redundant, since all pointers, both code and data, will be near.

But what if you recompile this program using the compact (or large or
huge) memory model? The pointer mystr in main is still near (it's still a 16-
bit pointer). However, the pointer s in myputs is now far, since that's the
default. This means that myputs will pull two words out of the stack in an
effort to create a far pointer, and the address it ends up with will certainly
not be that of mystr.

Advanced Programming in Turbo C 251

How do you avoid this problem? The solution is to define myputs in
modern C style, like this:

void myputs(char *s);
{

/*body of myputs*/

Now when Turbo C compiles your program, it knows that myputs expects
a pointer to char; and since you're compiling under the large model, it
knows that the pointer must be far. Because of that, Turbo C will push the
data segment (DS) register onto the stack along with the 16-bit value of
mystr, forming a far pointer.

How about the reverse case: parameters to myputs declared as far and
compiling with a small data model? Again, without the function prototype,
you will have problems, since main will push both the offset and the
segment address onto the stack, but myputs will only expect the offset.
With the prototype-style function definitions, though, main will only push
the offset onto the stack.

Moral: If you're going to explicitly declare pointers to be of type far or
near, then be sure to use function prototypes for any functions that might
use them.

Pointing to a Given Segment:Offset Address

How do you make a far pointer point to a given memory location (a specific
segment:offset address)? You can use the built-in library routine MK_FP,
which takes a segment and an offset and returns a far pointer. For example:

MK_FP(segment_value, offset_value)

Given a far pointer, fp, you can get the segment component with
FP _SEG(fp) and the offset component with FP _OFF(fp). For more
information about these three Turbo C library routines, refer to the Turbo C
Reference Guide.

Building Proper Declarators

A declarator is a statement in C that you use to declare functions, variables,
pointers, and data types. And C allows you to build very complex
declarators. This section gives you some examples of declarators so that
you can get some practice at designing (and reading) them; it'll also show
you some pitfalls to avoid.

252 Turbo C User's Guide

Traditional C programming has you build your complete declarator in
place, nesting definitions as needed. Unfortunately, this can make for
programs that are difficult to read (and write).

Consider, for example, the following dec1arators, assuming that you are
compiling under the small memory model (small code, small data).

Table 9.3: Declarators without Typedefs

int f1 ();

int *pl;

int *f2 () ;

int far *p2;

int far *f3 () ;

int * far f4 () ;

int (*fpl) (int);

int (*fp2) (int *ip);

int (far *fp3) (int far tip)

function returning int

pointer to int

function returning pointer to int

far pointer to int

, near function returning far pointer to int

far function returning near pointer to int

pointer to function returning int and accepting
int parameter

--. - ,/':'

pointer to:;function returning int and accepting
pointer to int

far pointer to function returning int and
accepting far pointer to int

int (far *list[S]) (int far tip); array of five far pointers to functions
returning int and accepting far pointers to int

int (far *gopher(int (far * fp[S]) (int far tip))) (int far tip);
near function accepting array of five far
pointers to functions returning int and
accepting far pointers to int, and returning
one such pointer

These are all valid dec1arators; they just get increasingly hard to
understand. However, with judicious use of typede£, you can improve the
legibility of these dec1arators.

Advanced Programming in Turbo C 253

Here are the same declarators, rewritten with the help of typede£
statements:

Table 9.4: Declarators with Typedefs

int f1 ();

typedef int *intptr;
intptr pl;
intptr f2 () ;

typedef int far *farptr;
farptr p2;
farptr f3 () ;
intptr far f4();

typedef int (*fncptrl) (int);
fncptrl fpl;

typedef int (*fncptr2) (intptr);
fncptr2 fp2;

function returning int

pointer to int
function returning pointer to int

far pointer to int
near function returning far pointer to int
far function returning near pointer to int

pointer to function returning int and accepting
int parameter

pointer to function returning int and accepting
pointer to int

typedef int (far *ffptr) (farptr) ;
ffptr fp3; far pointer to function returning int and

accepting far pointer to int

typedef ffptr ffplist[S];
ffplist list;

ffptr gopher(ffplist);

array of five far pointers to functions
returning int and accepting far pointers to int

near function accepting array of five far
pointers to functions returning int and
accepting far pointers to int, and returning
one such pointer

As you can see, there's a big difference in legibility and clarity between this
typede£ declaration of gopher and the previous one. If you'll use typede£
statements and function prototypes wisely, you'll find your programs
easier to write, debug, and maintain.

Using Library Files

Turbo C offers a version of the standard library routines for each of the six
memory models. Running in the Integrated Environment (TC), Turbo C is
smart enough to link in the appropriate libraries in the proper order,
depending upon which model you've selected. Likewise, running as a

254 Turbo C User's Guide

stand-alone compiler (TCC), Turbo C is smart enough when you tell it to
automatically link.

If, however, you're using TLINK (the Turbo C linker) directly (as a stand­
alone linker), you need to specify which libraries to use. If you're not going
to use all six memory models, then you only need to copy (to your working
disk or your hard disk) the files for the model(s) you are using. Here's a list
of the library files needed for each memory model:

Tiny

Small

Compact

Medium

Large

Huge

COT.OBJ, MATHS.LIB, CS.LIB

COS.OBJ, MATHS.LIB, CS.LIB

COC.OBJ, MATHC.LIB, CC.LIB

COM.OBJ, MATHM.LIB, CM.LIB

COL.OBJ, MATHL.LIB, CL.LIB

COH.OBJ, MATHH.LIB, CH.LIB

Note that the tiny and small models use the same libraries, but have
different startup files (COT.OBJ vs. COS.OB}). Also, if your system has an
8087 math coprocessor, then you'll need the file FP87.LIB; if instead you
want to emulate the 8087, you'll need the file EMU.LIB.

Here are some example TLINK command lines:

tlink cOm abc, prog, mprog, fp87 mathm em
tlink eOe d e f, plan, mplan, emu mathe ee

The first will produce an executable program called PROG.EXE, with the
medium-model libraries and the 8087 support library linked in. The second
command line will yield PLAN.EXE, compiled as a compact-model
program that emulates the 8087 floating-point routines if a coprocessor is
not available at run time.

Note: The order of objects and libraries is very important. You must always
put the C start-up module (COx.OB}) first in the list of objects. The library
list should contain, in this specific order:

EJ your own libraries (if any)

I:l FP87.LIB or EMU. LIB, followed by MATHx.LIB (only necessary if you
are using floating point)

EJ Cx.LIB (standard Turbo C run-time library file)

(The x in COx, MATHx, and Cx refers to the letter specifying the memory
model: t, s, m, c, I, or h.)

Advanced Programming in Turbo C 255

Linking Mixed Modules

What if you compiled one module using the small memory model, and
another module using the large model, then wanted to link them together?
What would happen?

The files would link together fine, but the problems you would encounter
would be similar to those described in "Declaring Functions to Be Near or
Far." If a function in the small module called a function in the large
module, it would do so with a near call, which would probably be
disastrous. Furthermore, you could face the same problems with pointers
as described in "Declaring Pointers to Be Near, Far, or Huge," since a
function in the small module would expect to pass and receive near
pointers, while a function in the large module would expect far pointers.

The solution, again, is to use function prototypes. Suppose that you put
myputs into its own module and compile it with the large memory model.
You should then create a header file called MYPUTS.H (or some other
name with an .H extension), which would have the following function
prototype in it:

void far myputs(char far *s);

Now, if you put main into its own module (called MYMAIN.C), you
should set things up like this:

#include <stdio.h>
#include "myputs.h"
main()
{

char near *mystr;

mystr = "Hello, world\n";
myputs (mystr) ;

When you compile this program, Turbo C reads in the function prototype
from MYPUTS.H and sees that it is a far function that expects a far
pointer. Because of that, it will generate the proper calling code, even it it's
compiled using the small memory model.

What if, on top of all this, you need to link in library routines? Your best bet
is to use one of the large model libraries and declare everything to be far.
To do this, make a copy of each header file you would normally include
(such as STOIO.H), and rename the copy to something appropriate (such as
FSTOIO.H).

256 Turbo C User's Guide

Then edit each function prototype in the copy so that it is explicitly far,
like this:

int far cdecl printf(char far * format, ...);

That way, not only will far calls be made to the routines, but the pointers
passed will be far pointers as well. Modify your program so that it
includes the new header file:

#include <fstdio.h>
main ()
(

char near *mystr;
mystr = "Hello, world\n";
printf(mystr);

Compile your program with TCC, then link it with TLINK, specifying a
large model library, such as CL.LIB. Mixing models is tricky, but it can be
done; just be prepared for some difficult bugs if you do things wrong.

Mixed-Language Programming

Turbo C eases the way for your C programs to call routines written in other
languages and, in return, for programs written in other languages to call
your C routines. In this section, we make it clear how easy interfacing
Turbo C to other languages can be; we also provide support information
for such interface.

We will talk first about the two major sequences for passing parameters,
and then get on with showing you how to write your own assembly­
language module.

Parameter-Passing Sequences: C and Pascal

Turbo C supports two methods of passing parameters to a function. One is
the standard C method, which we will explain first; the other is the Pascal
method.

C Parameter-Passing Sequence

Suppose you have declared the following function prototype:

void funca(int pI, int p2, int p3);

Advanced Programming in Turbo C 257

By default, Turbo C uses the C parameter-passing sequence, also called the
C calling convention. When this function (funca) is called, the parameters
are pushed on the stack in right-to-Ieft order (p3, p2, pI), following which
the return address is pushed on the stack. So, if you make the call

main()
{

int i,j;
long k;

i = 5; j = 7; k = Ox1407AA;
funca(i,j,k);

the stack will look like this (just before the return address is pushed):

SP + 06: 0014
SP + 04: 07AA k = p3
SP + 02: 0007 j = p2
SP: 0005 i = pI

. (Remember that, on the 8086, the stack grows from high memory to low
memory, so that i is currently at the top of the stack.) The routine being
called doesn't need to know (and, for that matter, can't know) exactly how
many parameters have been pushed onto the stack. All it assumes is that
the parameters it expects are there.

Also-and this is very important-the routine being called should not pop
parameters off the stack. Why? Because the calling routine will. For
example, the assembly language that the compiler produces from the C
source code for this main function looks something like this:

mov word ptr [bp-8],5
mov word ptr [bp-6],7
mov word ptr [bp-2],0014h
mov word ptr [bp-4],07AAh
push word ptr [bp-2]
push word ptr [bp-4]
push word ptr [bp-6]
push word ptr [bp-8]
call near ptr funca
add sp,8

; Set i = 5
; Set j = 7

Set k = Ox1407AA

Push high word of k
; Push low word of k

; Push j
; Push i

Call funca (push addr)
; Adjust stack

Note carefully that last instruction: add sp, 8. The compiler knows at that
point exactly how many parameters have been pushed onto the stack; it
also knows that the return address was pushed by the call to funca and was
already popped off by the ret instruction at the end of funca.

258 Turbo C User's Guide

Pascal Parameter-Passing Sequence

The other approach is the standard Pascal method for passing parameters
(also known as the Pascal calling convention). Note that this does not mean
you can call Turbo Pascal functions from Turbo C: you can't. This sequence
pushes the parameters on left-to-right, so that if funca is declared as

void pascal funca(int pI, int p2, int p3);

then, when this function is called, the parameters are pushed on the stack
in left-to-right order (pI, p2, p3), following which the return address is
pushed on the stack. So, if you make the call

main ()
{

int i, j;
long k;

i = 5; j = 7; k = Ox1407AA;
funca(i,j,k);

the stack will look like this (just before the return address is pushed):

SP + 06:
SP + 04:
SP + 02:
SP:

0005 i = pI
0007 j = p2
0014
07AA k = p3

So, what's the big difference? Well, besides switching the order in which
the parameters are pushed, the Pascal parameter-passing sequence assumes
that the routine being called (funca) knows how many parameters are
being passed to it and adjusts the stack accordingly. In other words, the
assembly language for the call to funca now looks like this:

push word ptr [bp-8]
push word ptr [bp-6]
push word ptr [bp-2]
push word ptr [bp-4]
call near ptr funca

; Push i
; Push j

Push high word of k
; Push low word of k

; Call funca (push addr)

Note that there is no add sp,8 instruction after the call. Instead, funca uses
the instruction ret 8 at termination to clean up the stack before returning
to main.

By default, all functions you write in Turbo C use the C method of
parameter passing. The only exception is when you use the -p compiler
option (Calling convention ... Pascal), in which case all functions use the
Pascal method. In that situation, you can force a given function to use the C
method of parameter passing by using the modifier cdecl, as in

Advanced Programming in Turbo C 259

void cdecl funca(int pl, int p2, int p3);

That overrides the -p compiler directive.

Now, why would you want to use the Pascal calling convention at all?
There are three major reasons.

• You may be calling existing assembly-language routines that use that
calling convention.

• You may be calling routines written in another language.
• The calling code produced is slightly smaller, since it doesn't have to

clean up the stack afterwards.

What problems might arise from using the Pascal calling convention?

First, it's not as robust as the C calling convention. You cannot pass a
variable number of parameters (as you can with the C convention), since
the routine being called has to know how many parameters are being
passed and clean up the stack accordingly. Passing either too few or too
many parameters will almost certainly lead to serious problems, whereas
doing so to a C-convention routine usually has no ill effects (beyond,
possibly, wrong answers).

Second, if you use the -p compiler option, then you must be sure to include
any header files for standard C functions that you call. Why? Because if you
don't, Turbo C will use the Pascal calling convention to call each of those
functions-and your program will surely crash because (1) the parameters
will be in the wrong order, and (2) nobody will clean up the stack.

The header files declare each of those functions as cdecl, so if you
#include them, the compiler will see that and use the C calling convention
instead. However, because cdecl identifiers are underscored while pascal
identifiers are not, you will get lots of link errors-unless you selected
Generate underbars ... Off and linked with no case-sensitivity. Then you're
in big trouble.

The upshot is this: If you're going to use the Pascal calling convention in a
Turbo C program, be sure to use function prototypes as much as possible,
with each function explicitly declared as cdecl or pascal. It's useful in this
case to enable the "prototype required" warning option to ensure that
every function called has a prototype.

260 Turbo C User's Guide

Assembly-Language Interface

Now you know how each of the calling conventions work, which tells you
what the Turbo C compiler does. What do you do in the routine being
called? Take a look now at how to write assembly-language routines that
you can call from Turbo C.

Note: In this section, we assume that you know how to write 8086
assembly-language routines and how to define segments, data constants,
etc. If you are unfamiliar with these concepts, read the Microsoft Macro
Assembler Reference Manual for more information.

Setting Up to Call .ASM from Turbo C

You should write assembly-language routines as modules to be linked into
your C programs. However, there are certain conventions that you must
follow to (1) ensure that the linker can get the necessary information, and
(2) ensure that the file format jibes with the memory model used for your C
program. The general layout is as follows:

Identifier

< text>

< text>

< dseg >
< data>

< data>

_BSS

_BSS

Name File Name

SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS: < text>, DS: < dseg >
< code segment >
ENDS

GROUP _DATA, _BSS
SEGMENT WORD PUBLIC 'DATA'
< initialized data segment >
ENDS

SEGMENT WORD PUBLIC 'BSS'
< uninitialized data segment >
ENDS

END

The identifiers <text>, <data>, and <dseg> in this layout have specific
replacements, depending upon the memory model being used; Table 9.5
shows what you should use for each model. filename in Table 9.5 is the
name of the module; it should be used consistently in the NAME directive
and in the identifier replacements (following).

Advanced Programming in Turbo C 261

Note that with the huge memory model, there is no _BSS segment, and the
GROUP definition is dropped completely. In general, _BSS is optional; you
only define it if you will be using it.

The best way to create an assembly-language template is to compile an
empty program to .ASM (using the TCC option -s) and look at the
generated assembly code.

Table 9.5: Identifier Replacements and Memory Models

Model Identifier Replacements Code and Data Pointers

Tiny, Small <code> = TEXT Code: DW TEXT:xxx
<data> = -DATA Data: DW DCROUP:xxx
<dseg> = DGROUP

Compact <code> = TEXT Code: DW TEXT:xxx
<data> = -DATA Data: DD DGROUP:xxx
<dseg> = DGROUP

Medium <code> = filename_TEXT Code: DD xxx
<data> = DATA Data: DW DGROUP:xxx
<dseg> = DGROUP

Large <code> = filename_TEXT Code: DD xxx
<data> = DATA Data: DD DGROUP:xxx
<dseg> = DGROUP

Huge <code> = filename TEXT Code: DD xxx
<data> = filename -DATA Data: DD xxx
<dseg> = filename-=:'DATA

Defining Data Constants and Variables

Memory models also affect how you define any data constants that are
pointers to code, data, or both. Table 9.5 shows what those pointers should
look like, where xxx is the address being pointed to.

Note carefully that some definitions use DW (Define Word), while others
use DD (Define Doubleword), indicating the size of the resulting pointer.
Numeric and text constants are defined normally.

Variables are, of course, defined just the same as constants. If you want
variables that are not initialized to specific values you can declare them in
the _BSS segment, entering a question mark (?) where you would normally
put a value.

262 Turbo C User's Guide

Defining Global and External Identifiers

Now you have created a module, but that isn't going to do you much good
unless your Turbo C program knows what functions it can call and what
variables it can reference. Likewise, you may want to be able to call your
Turbo C functions from within your assembly-language routines, or you
may want to be able to reference variables declared within your Turbo C
program.

When making these calls, you need to understand something about the
Turbo C compiler and linker. When you declare an external identifier, the
compiler automatically sticks an underscore (_) on the front before saving
that identifier in the object module. This means that you should put an
underscore on the front of any identifiers in your assembly language
module that you want to reference from your C program. Pascal identifiers
are treated differently than C identifiers-they are uppercased and are not
prefixed with an underscore character.

Underscores (_) for C identifiers are optional, but on by default. They can
be turned off with the -u - command-line option. However, if you are using
the standard Turbo C libraries, you will encounter problems unless you
rebuild the libraries. (To do this, you will need another Turbo C
product-the source code to the run-time libraries; contact Borland
International for more information.)

If any asm code in your source file references any C identifiers (data or
functions), those identifiers must begin with underscore characters.

The Microsoft Assembler (MASM) is not case sensitive; in other words,
when you assemble a program, all identifiers are saved as uppercase only.
The / rnx switch to MASM makes it case sensitive for externals. The Turbo C
linker does the same thing with extern identifiers, so things should match
up fine. You'll notice that in our examples, we put keywords and directives
in uppercase, and all other identifiers and op codes in lowercase; this
matches the style found in the MASM reference manual. You are free to use
all uppercase (or all lowercase), or any mixture thereof, as you please.

To make the identifiers (names of routines and variables) visible outside of
your assembly-language module, you need to declare them as being
PUBLIC.

Advanced Programming in Turbo C 263

So, for example, if you were to write a module that had the integer
functions max and min, and the integer variables MAXI NT, lastmax and
lastmin, you would put the statement

PUBLIC _max,_min

in your code segment, and the statements

PUBLIC MAXINT, lastmax, lastmin
MAXINT DW 32767 -
lastmin DW 0

-lastmax DW 0

in your data segment.

Setting Up to Call Turbo C from .ASM

In a fashion similar to what we mentioned in the previous section, you use
the EXTRN statement to let your assembly-language module reference
functions and variables that are declared in your Turbo C program.

Referencing Functions

To be able to call a C function from an assembly-language routine, you
must declare it in your module with the statement

EXTRN <fname> : <fdist>

where <jname> is the name of the function and <fdist> is either near or far,
depending upon whether the C function is near or far. If <fdist> is near,
then the EXTRN statement must appear within the code segment of your
module; if it's far, then the EXTRN statement should appear outside of any
segment. So you could have the following in your code segment:

EXTRN _myCfuncl:near, _myCfunc2:far

allowing you to call myCfuncl and myCfunc2 from within your
assembly-language routines.

Referencing Data

To reference variables, you should place the appropriate EXTRN state­
ment(s) inside of your data segment, using the format

EXTRN <vname> : <size>

where <vname> is the name of the variable and <size> indicates the size of
the variable.

264 Turbo C User's Guide

The possible values for <size> are as follows:

m BYTE (1 byte)
• WORD (2 bytes)
.. DWORD (4 bytes)
• QWORD (8 bytes)
II TBYTE (10 bytes)

Arrays must use the size of the array elements for <size>. Structures should
be declared with the most frequently used size in the structure substituted
for <size>.

So, if your C program had the following global variables:

int i,jarray[lO];
char ch;
long result;

you could make them visible within your module with the following
statement:

EXTRN_i:WORD,_jarray:WORD,_ch:BYTE,_result:DWORD

Last Important Note: If you're using the huge memory model, the EXTRN
statements must appear outside of any segments. This applies to both
procedures and variables.

Defining Assembly-Language Routines

Now that you know how to set everything up, it's a good time to look at
how to actually write a function in assembly language. There are some
important things to consider: parameter passing, returning values, and
register conventions.

Suppose you want to write the function min, which you can assume has the
following'function prototype in C:

int extern min(int vl, int v2);

You want min to return the minimum of the two values passed to it. The
overall format of min is going to be

PUBLIC min
min PROC near

min ENDP

This assumes, of course, that min is going to be a near function; if it were a
far function, you would substitute far for near. Note that we've added the

Advanced Programming in Turbo C 265

underscore to the start of min, so that the Turbo C linker can correctly
resolve the references.

Passing Parameters

Your first decision is which parameter-passing convention to use; barring
an adequate reason to use it, you'll avoid the Pascal convention and go
with the C method instead. This means that when min gets called, the stack
is going to look like this:

SP + 04: v2
SP + 02: vI
SP: return addr

You want to get to the parameters without popping anything off the stack,
so you'll save the base pointer (BP), move the stack pointer (SP) into the
base pointer, then use that to index directly into the stack to get your
values. Note that when you push BP onto the stack, the relative offsets of
the parameters will increase by two, since there will now be two more bytes
on the stack.

Handling Return Values

Your function returns an integer value; where do you put that? For 16-bit (2
byte) values (char, short, int, enum, and near pointers), you use the AX
register; for 32-bit (4 byte) values (including far and huge pointers), you
use the DX register as well, with the high-order word (segment address for
pointers) in DX and the low-order word in AX.

float and double values are returned in the 8087 top-of-stack (TOS)
register, ST(O); if the 8087 emulator is being used, then the value is returned
in the emulator TOS register.

Structure values are returned by placing the value in a static data location,
then returning a pointer to that location (AX in the small data models,
DX:AX in the large data models).

The calling function must then copy that value to wherever it's needed.
Structures that are 1 or 2 bytes long are returned in AX (like any normal
int), while 4-byte structures are returned in AX and DX.

For the min example, all you're dealing with is a 16-bit value, so you can
just place the answer in AX.

266 Turbo C User's Guide

Here's what your code looks like now:

min

exit:

min

PUBLIC
PROC
push
mov
mov
cmp
jle
mov
pop
ret
ENDP

min
near
bp
bp,sp
ax, [bp+4]
ax, [bp+6]
exit
ax, [bp+6]
bp

Save bp on stack
Copy sp into bp
Move vl into ax
Compare with v2

; If vl > v2
Then load ax with v2

; Restore bp
; And return to C

What if you declare min as a far function-how will that change things?
The major difference is that the stack on entry will now look like this:

SP + 06: v2
SP + 04: vl
SP + 02: return segment
SP: return offset

This means that the offsets into the stack have increased by two, since two
extra bytes (for the return segment) had to be pushed onto the stack. Your
far version of min would look like this:

PUBLIC min
min PROC far

push bp ; Save bp on stack
rnov bp, sp ; Copy sp into bp
rnov ax, [bp+6] ; Move vl into ax
crnp ax, [bp+8] ; Compare with v2
jle exit ; If vl > v2
rnov ax, [bp+6] Then load ax with v2

exit: pop bp ; Restore bp
ret ; And return to C

min ENDP

Note that all the offsets for vi and v2 increased by two, to reflect the
additional bytes on the stack.

Now, what if (for whatever reason) you declare min as a pascal function;
that is, you decide to use the Pascal parameter-passing sequences.

Your stack on entry will now look like this (assuming min is back to being
a near function):

SP + 04: vl
SP + 02: v2
SP: return addr

In addition, you will need to follow pascal conventions for the identifier
min: uppercase and no underscore.

Advanced Programming in Turbo C 267

Besides having swapped the locations of vI and v2, this convention also
requires min to clean up the stack when it leaves, by specifying in the RET

instruction how many bytes to pop off the stack. In this case, you have to
pop off four additional bytes for vI and v2 (the return address is popped off
automatically by RET).

Here's what the modified routine looks like:

PUBLIC MIN
MIN PROC near

push bp
mov bp,sp
mov ax, [bp+6]
cmp ax, [bp+4]
jle exit
mov ax, [bp+4]

exit: pop bp
ret 4

MIN ENDP

i Pascal version
Save bp on stack

; Copy sp into bp
; Move vl into a'x
; Compare with v2

; If vl > v2
Then load ax with v2

; Restore bp
Clear stack and return

Here's one last example to show you why you might want to use the C
parameter-passing sequence. Suppose you redefined min as follows:

int extern min(int count, int vl, int v2, ...);

min can now accept any number of integers and will return the minimum
value of them all. However, since min has no way of automatically
knowing how many values are being passed, make the first parameter a
count value, indicating how many values follow it.

For example, you might use it as follows:

i = min(5, j, limit, indx, lcount, 0);

assuming i, j, limit, indx, and lcount are all of type int (or a compatible
type). The stack upon entry will look like this:

SP + 08: (etc.)
SP + 06: v2
SP + 04: vl
SP + 02: count
SP: return addr

268 Turbo C User's Guide

The modified version of min now looks like this:

PUBLIC min
min PROC near

push bp
mov bp,sp
mov ax,O
mov cx, [bp+4]
cmp cx,ax
jle exit
mov ax, [bp+4]
jmp ltest

compare: cmp ax, [bp+6]
jle ltest
mov ax, [bp+6]

ltest: add bp,2
loop compare

exit: pop bp
ret

min ENDP

; Save bp on stack
; Copy sp into bp

; Set ax = 0
; Move count into cx

; Compare with 0
; If <= 0, then exit

; Move first value into ax
; And test loop

; Compare with next value
; If next value is lower

Then load ax with next value
; Move to new value

; Then loop back
; Restore bp

; And return to C

Note that this version correctly handles all possible values of count .

• If count <= 0, min returns O.

III If count = 1, min returns the first value in the list.
• If count >= 2, min makes successive com parisians to find the lowest

value in the parameter list.

Register Conventions

You used several registers (BP, 5P, AX, BX, eX) in min; were you able to do
so safely? What about any registers that your Turbo e program might be
using?

As it turns out, you wrote this function correctly. Of those you used, the
only register that you had to worry about was BP, and you saved that on
the stack on entry, then restored it from the stack on exit.

The other two registers that you have to worry about are 51 and D1; these
are the registers Turbo e uses for any register variables. If you use them at
all within an assembly-language routine, then you should save them
(probably on the stack) on entering the routine, and restore them on
leaving. However, if you compile your Turbo e program with the -r­
option (Use register variables ... Off), then you don't have to worry about
saving 51 and Dr.

Note: You must use caution if you use the -r- option. Refer to Appendix e
in the Turbo C Reference Guide for details about this register variables
option.

Advanced Programming in Turbo C 269

The registers CS, OS, 55, and ES may have corresponding values
depending upon the memory model being used. Here are the relationships:

Tiny CS = OS = 55; ES = scratch
Small, Medium CS!= OS, OS = 55; ES = scratch
Compact, Large CS!= OS!= 55; ES = scratch (one CS per module)
Huge CS != OS != 55; ES = scratch

(one CS and one OS per module)

Calling C Functions from .ASM Routines

Yes, you can go the other way: You can call your C routines from within
your assembly-language modules. First, though, you have to make the C
function visible to your assembly-language module. We've already
discussed briefly how to do this: Oeclare it as EXTRN, with either a near or
a far modifier. For example, say you've written the following C function:

long docalc(int *factl, int fact2, int fact3);

For simplicity, assume docalc is a C function (as opposed to Pascal).
Assuming you're using the tiny, small, or compact memory model, you'd
declare it as this in your assembly module:

EXTRN docalc:near

Likewise, if you were using the medium, large, or huge memory models,
you'd declare it as _docalc: far.

docalc is to be called with three parameters:

c the address of a location named xval
c the value stored in a location named imax
c a third constant value of 421 (base 10)

You should also assume that you want to save the result in a 32-bit location
named ans. The equivalent call in C would then be

ans = docalc(&xval,imax,421);

You'll need to push 421 on the stack first, then imax, then the address of
xval, and then call docalc. When it returns, you'll need to clean up the stack,
which will have six extra bytes on it, and then move the answer into ans
and ans+2.

270 Turbo C User's Guide

Here's what your code will look like:

mov ax,421
push ax
push imax
lea ax,xval
push ax
call docalc
add sp,6
mov ans,ax
mov ans+2,dx

; Get 421, push onto stack

; Get imax, push onto stack
; Get &xval, push onto stack

; Call docalc
; Clean up stack

Move 32-bit result into ans
; Including high-order word

What if docalc used the Pascal parameter-passing sequence instead? Then
you would have to reverse the order of the parameters, and you wouldn't
have to worry about cleaning up the stack upon return, since the routine
would (should) have done that for you. Also, you would need to spell
docalc in the assembly source using Pascal conventions (uppercase and no
underscore).

The EXTRN statement is then

EXTRN DOCALC:near

and the code to call docalc is

lea ax,xval
push ax
push imax
mov ax,421
push ax
call DOCALC
mov ans,ax
mov ans+2,dx

; Get &xval, push onto stack

; Get imax, push onto stack
; Get 421, push onto stack

; Call docalc
Move 32-bit result into ans
i Including high-order word

That's all you need to know to get started interfacing other languages with
TurboC.

Low-Level Programming: Pseudo-Variables,
In-Line Assembly, and Interrupt Functions

What if you want to do some low-level work, but don't want to go to all the
trouble of setting up a separate assembly-language module? Turbo estill
has the answer for you-three answers, in fact: pseudo-variables, in-line
assembly, and interrupt functions. Take a look at the rest of this chapter to
see how each of these can help you get the job done.

Advanced Programming in Turbo C 271

Pseudo-Variables

The CPU in your system (the 8088/8086/80186/80286 processor) has a
number of registers, or special storage areas, which it uses to manipulate
values. Each register is 16 bits (2 bytes) long; most of them have some
special purpose, though several can be used for general purposes as well.
See, "Memory Models" at the beginning of this chapter for specific details
on these CPU registers.

Sometimes in low-level programming, you may want to directly access
these registers from your C program .

• You might want to load values into them before calling a system
routine.

• You might want to see what values they currently hold.

Turbo C makes it very easy for you to access these registers through
pseudo-variables. A pseudo-variable is simply an identifier that corresponds
to a given register: You can use it as if it were a variable of type unsigned
int or unsigned char.

Table 9.6 shows a complete list of the pseudo-variables you can use, their
types, the registers they correspond to, and what those registers are usually
used for.

272 Turbo C User's Guide

Table 9.6: Turbo C Pseudo-Variables

Pseudo-
variable Type Register Usual Purpose

AX unsigned int AX General/ accumulator
:=AL unsigned char AL Lower byte of AX
_AH unsigned char AH Upper byte of AX

- BX unsigned int BX General/ indexir;e
BL unsigned char BL Lower byte of B

-BH unsigned char BH Upper byte of BX -

- CX unsigned int CX General/ counti~ and loops
- CL unsigned char CL Lower byte of C
- CH unsigned char CH Upper byte of CX

_DX unsigned int DX General/holdin&: data
DL unsigned char DL Lower byte of D

-DH unsigned char DH Upper byte of DX -
_C5 unsigned int C5 Code segment address
- D5 unsigned int D5 Data segment address

55 unsigned int 55 5tack segment address
-E5 unsigned int E5 Extra segment address -

- 5P unsigned int 5P 5tack pointer (offset to 55)
- BP unsigned int BP Base pointer (offset to 55)

D1 unsigned int D1 Used for register variables
:=51 unsigned int 51 Used for register variables

Why would you even want to directly access these variables from Turbo C?

You might need to set registers to certain values before calling low-level
system routines. For example, you can call certain routines in your
computer's ROM by executing the INT (interrupt) instruction, but first
you have to put the necessary information into certain registers,like this:

void readchar(unsigned char page, unsigned char *ch, unsigned char *attr);
{

AH = 8;
-BH = page;
geninterrupt(OxlO)
*ch = AL;
*attr ~ _AH;

/* Service code: read char, attribute */
/* Specify which display page */

/* Call INT lOh services */
/* Get ASCII code of character read */
/* Get attribute of character read */

As you can see, the service code and the display page number are both
being passed to the INT lOh routine; the values returned are copied over
into ch and attr.

The pseudo-variables can be treated just as if they were regular global
variables of the appropriate type (unsigned int, unsigned char).

Advanced Programming in Turbo C 273

However, since they refer to the CPU's registers, rather than some arbitrary
location in memory, there are some restrictions and concerns you must be
aware of.

• You cannot use the address-of operator (&) with a pseudo-variable,
since a pseudo-variable has no address.

• 5ince the compiler is constantly generating code that uses the registers
(after all, that's what most of the 8086's instructions do), you have
absolutely no guarantee that values you place in pseudo-variables will
be preserved for any length of time.

This means you must assign values right before using them and read
values right after obtaining them, as in readchar (previous example).
This is especially true of the general purpose registers (AX, AH, AL,
etc.), since the compiler freely uses these for temporary storage. On top
of that, the CPU changes them in ways you might not expect, using (for
example) CX when it sets up a loop or does a shift operation, or using
OX to hold the upper word of a 16-bit multiply.

EI You can't rely on their values remaining the same across a function call.
As an example of this, take the following code fragment:

cx = 18;
myFunc();
i = _cx;

Not all registers are saved during a function call, so you have no
guarantee that i will get assigned a value of 18. The only registers that
you can count on having the same values before and after a function call
are _ C5, _BP, _51, and _01.

• You need to be very careful modifying certain registers, since this could
have unexpected and untoward effects. For example, directly storing
values to _ C5, _55, _5P, or _BP can (and almost certainly will) cause
your program to behave erratically, since the machine code produced by
the Turbo C compiler uses those registers in various ways.

Using In-Line Assembly Language

You've already seen how to write separate assembly-language routines and
link them in to your Turbo C program. But Turbo C also lets you write
assembly-language code right inside your C program. This is known as in­
line assembly.

To use in-line assembly in your C program, you can use the -B compiler
option. If you don't, and the compiler encounters in-line assembly, it (the

274 Turbo C User's Guide

compiler) will issue a warning and restart itself with the -B option. You can
avoid this with the #pragma inline statement in your source, which in
effect enables the - B option for you when the compiler encounters it.

You must have a copy of the Microsoft Macro Assembler (MASM), version
4.0 or later. The compiler first generates an assembly file, and then invokes
MASM on that file to produce the .OBJ file.

Of course, you also need to be familiar with the 8086 instruction set and
architecture. While you're not writing complete assembly-language
routines, you still need to know how the instructions you're using work,
how to use them, and how not to use them. .

Having done all that, you need only use the keyword asm to introduce an
in-line assembly-language instruction. The format is

asm <opcode> <operands> <; or newline>

where

Ell <opcode> is a valid 8086 instruction (several tables of allowable opcodes
will follow).

c <operands> contains the operand(s) acceptable to the <opcode>, and can
reference C constants, variables, and labels.

c < ; or newline> is a semicolon or a newline, either of which signals the
end of the asm statement.

A new asm statement may be placed on the same line, following a
semicolon, but no asm statement can continue to the next line.

Semicolons may not be used to start comments (as they may in MASM).
When commenting asm statements, use C style comments, like this:

asm mov ax,ds;
asm pop ax; asm pop ds; asm iret;
asm push ds

/* This comment is OK */
/* This is legal too */

;THIS COMMENT IS INVALID!!

Note that the last line will generate an error, since (as it declares) the
comment there is invalid.

The <opcode> <operand> pair is copied straight to the output, embedded in
the assembly language that Turbo C is generating from your C instructions.
Any C symbols are replaced with appropriate assembly-language
equivalents.

The in-line assembly facility is not a complete assembler, so many errors
will not be immediately detected. MASM (the Microsoft assembler) will
catch whatever errors there might be. However, MASM might not identify
the location of errors, particularly since the original C source line number is
lost.

Advanced Programming in Turbo C 275

Each asm statement counts as a C statement. For example,

myfunc ()
{

int ii
int Xi

if (i > 0)
asm mov x,4

else
i = 7i

This construct is a valid C if statement. Note that no semicolon was
needed after the mov x, 4 instruction. asm statements are the only
statements in C which depend upon the occurrence of a newline. OK, so
this is not in keeping with the rest of the C language, but this is the
convention adopted by several UNIX-based compilers.

An assembly statement may be used as an executable statement inside a
function, or as an external declaration outside of a function. Assembly
statements located outside any function are placed in the DATA segment,
and assembly statements located inside functions are placed in the CODE
segment.

Here is an in-line assembly version of the function min (introduced in
"Handling Return Values" earlier in this chapter).

int min (int VI, int V2)
{

asm mov ax,Vl
asm cmp ax,V2
asm jle minexit
asm mov ax,V2
minexit:
return CAX)i

This example demonstrates why using in-line assembly with Turbo C is
more versatile and powerful than calling .ASM routines. This one in-line
assembly example works for modules compiled with large code, small
code, Pascal calling convention, or C calling convention.

The .ASM equivalent always must be changed, depending on the memory
model and the calling convention (C or Pascal). In the .ASM equivalent of
min, you must always account for parameter offsets and the spelling of the
identifier Cmin or MIN); not so with this in-line assembly version.

Any of the 8086 instruction opcodes may be included as in-line assembly
statements. There are four classes of instructions allowed by the Turbo C
Compiler:

276 Turbo C User's Guide

• normal instructions-the regular 8086 opcode set
• string instructions-special string-handling codes
• jump instructions-various jump opcodes
• assembly directives-data allocation and definition

Note that all operands are allowed by the compiler, even if they are
erroneous or disallowed by the assembler. The exact format of the operands
is not enforced by the compiler.

Opcodes

The following is a summary list of the opcode mnemonics that may be used
as normal instructions:

Table 9.7: Opcode Mnemonics

aaa feom fld12t fsub or
aad feomp fldlg2 fsubp out
aam feompp fldln2 fsubr pop
aas fdeestp** fldpi fsubrp popa
ade fdisi fldz ftst popf
add fdiv fmul fwait push
and fdivp fmulp fxam pusha
bound fdivr fnelex fxeh pushf
call fdivrp fndisi fxtraet rel
ebw feni fneni fy12x rer
ele ffree** fninit fy12xpl ret
eld fiadd fnop hlt rol
eli fieom fnsave idiv ror
erne fieomp fnstew imul sahf
emp fidiv fnstenv in sal
ewd fidivr fnstsw inc sar
daa fild fpatan int sbb
das fimul fprem into shl
dec finestp** fptan iret shr
div finit frndint lahf ste
enter fist frstor lds std
f2xml fistp fsave lea sti
fabs fisub fseale leave sub
fadd fisubr fsqrt les test
faddp fld fst mov wait
fbld fldl fstew mul xehg
fbstp fldew fstenv neg xlat
fehs fldenv fstp not xor
felex fld12e fstsw

Note: When using 80186 instruction mnemonics in your in-line assembly
statements, you must include the -1 command-line option. This forces
appropriate statements into the assembly-language compiler output so that

Advanced Programming in Turbo C 277

the Microsoft 4.0 Assembler will expect the mnemonics. Also, if you are
using an older assembler, these mnemonics may not be supported at all.

Another Note: If you are using in-line assembly in routines that use
floating point emulation (the TCC option -f), the opcodes marked with "**"
are not supported.

String Instructions

In addition to the listed opcodes, string instructions given in the following
table may be used alone or with repeat prefixes.

Table 9.8: String Instructions

emps insw movsb outsb seasw
empsb lods movsw outsw stos
empsw lodsb msb seas stosb
ins lodsw outs seasb stosw
insb movs

Repeat Prefixes

The following repeat prefixes may be used:

rep repe repne repnz repz

Jump Instructions

Jump instructions are treated specially. Since a label cannot be included on
the instruction itself, jumps must go to C labels (discussed in "Using Jump
Instructions and Labels"). The allowed jump instructions are given here:

Table 9.9: Jump Instructions

ja jge jne jnp js
jae jl jne jns jz
jb jle jng jnz loop
jbe jmp jnge jo loope
je jna jnl jp loopne
jexz jnae jnle jpe loopnz
je jnb jno jpo loopz
jg jnbe

278 Turbo C User's Guide

Assembly Directives

The following assembly directives are allowed in Turbo C in-line assembly
statements:

db dd dw extrn

In-Line Assembly References to Data and Functions

You can use C symbols in your asm statements; Turbo C will automatically
convert them to appropriate assembly-language operands and will tack
underscores onto identifier names. Any symbol can be used, including
automatic (local) variables, register variables, and function parameters.

In general, a C symbol can be used in any position where an address
operand would be legal. Of course, a register variable can be used
wherever a register would be a legal operand.

If the assembler encounters an identifier while parsing the operands of an
in-line assembly instruction, it searches for the identifier in the C symbol
table. The names of the 8086 registers are excluded from this search. Either
uppercase or lowercase forms of the register names may be used.

In-Line Assembly and Register Variables

The two most frequently used register declarations in a function are treated
as register variables, and all other register declarations are treated as
automatic (local) variables. If the keyword register occurs in a declaration
which cannot be a register, the keyword is ignored.

Only short, int (or the corresponding unsigned types), or 2-byte pointer
variables may be placed in a register. 51 and 01 are the 8086 registers used
for register variables. In-line assembly code may freely use SI or 01 as
scratch registers if no register declarations are given in the function. The C
function entry and exit code automatically saves and restores the caller's 51
and 01.

If there is a register declaration in a function, in-line assembly may use or
change the value of the register variable by using 51 or 01, but the preferred
method is to use the C symbol in case the internal implementation of
register variables ever changes.

Advanced Programming in Turbo C 279

In-Line Assembly, Offsets, and Size Overrides

When programming, you don't need to be concerned with the exact offsets
of local variables. Simply using the name will include the correct offsets.

However, it may be necessary to include appropriate WORD PTR, BYTE
PTR, or other size overrides on assembly instruction. A DWORD PTR
override is needed on LES or indirect far call instructions.

Using C Structure Members

You can, of course, reference structure members in an in-line assembly
statement in the usual fashion, that is, <variable>.<member>. In such a case,
you are dealing with a variable, and you can store or retrieve values.
However, you can also· directly reference the member name (without the
variable name) as a form of numeric constant. In this situation, the constant
equals the offset (in bytes) from the start of the structure containing that
member. Consider the following program fragment:

struct myStruct {
int a a;
int (b;
int a_c;

) my A ;

myfunc ()
{

asm mav ax,myA.a b
asm mav bx, [di] .a_c

We've declared a structure type named myStruct with three members, a_a,
a_b, and a_c; we've also declared a variable my A of type myStruct. The first
in-line assembly statement moves the value contained in myA.a_b into the
register AX. The second moves the value at the address [DI]+offset(a_c)
into the register BX (it takes the address stored in DI and adds to it the
offset of a_c from the start of myStruct). In this sequence, these assembler
statements produce the following code:

mav ax ,DGROUP:myA+2
mav bx, [di+4]

Why would you even want to do this? If you load a register (such as DI)
with the address of a structure of type myStruct, then you can use the
member names to directly reference the members. The member name
actually may be used in any position where a numeric constant is allowed
in an assembly statement operand.

280 Turbo C User's Guide

The structure member must be preceded by a dot (.) to signal that a
member name, rather than a normal C symbol, is being used. Member
names are replaced in the assembly output by the numeric offset of the
structure member (the numeric offset of a_c is 4), but no type information is
retained. Thus members may be used as compile-time constants in
assembly statements.

However, there is one restriction. No two structures that you are using in
in-line assembly can have the same member name-each member name
must be unique. This restriction will be resolved in a later version of Turbo
C.

Using Jump Instructions and Labels

You may use any of the conditional and unconditional jump instructions,
plus the loop instructions, in in-line assembly. They are only valid inside a
function. Since no labels can be given in the asm statements, jump
instructions must use C goto labels as the object of the jump. Direct far
jumps cannot be generated.

Indirect jumps are also allowed. To use an indirect jump, you can use a
register name as the operand of the jump instruction. In the following code,
the jump goes to the C goto label a.

int x ()
{
a: 1* This is the goto label "a" *1

asm jmp a 1* Goes to label "a" *1

Interrupt Functions

The 8086 reserves the first 1024 bytes of memory for a set of 256 far
pointers-known as interrupt vectors-to special system routines known as
interrupt handlers. These routines are called by executing the 8086
instruction

int <int#>

where <int#> goes from Oh to FFh. When this happens, the computer saves
the code segment (CS), instruction pointer (IP), and status flags, disables
the interrupts, then does a far jump to the location pointed to by the

Advanced Programming in Turbo C 281

corresponding interrupt vector. For example, one interrupt call you're
likely to see is

int 21h

which calls most DOS routines. But many of the interrupt vectors are
unused, which means, of course, that you can write your own interrupt
handler and stick a far pointer to it into one of the unused interrupt
vectors.

To write an interrupt handler in Turbo C requires that you define the
function to be of type interrupt; more specifically, it should look like this:

void interrupt rnyhandler(bp, di, si, ds, es, dx,
ex, bx, ax, ip, es, flags, ...);

As you can see, all the registers are passed as parameters, so you can use
and modify them in your code without using the pseudo-variables
discussed earlier in this chapter. Also note that you can have additional
parameters (flags, ...) passed to the handler; those should be defined
appropria tely.

A function of type interrupt will automatically save (in addition to 51, DI,
and BP) the registers AX through DX, ES, and DS. These same registers are
restored on exit from the interrupt handler.

Interrupt handlers may use floating-point arithmetic in all memory models.
Any interrupt handler code that uses an 8087 must save the state of the chip
and restore it on exit from the handler.

An interrupt function may modify its parameters. Changing the declared
parameters will modify the corresponding register when the interrupt
handler returns. This may be useful when you are using an interrupt
handler to act as a user service, much like the DOS INT 21 services. Also,
note that an interrupt function exits with a IRET (return from interrupt)
instruction.

So, why would you want to write your own interrupt handler? For one
thing, that's how most memory-resident routines work. They install
themselves as interrupt handlers. That way, whenever some special or
periodic action takes place (clock tick, keyboard press, and so on), these
routines can intercept the call to that routine handling the interrupt and see
what action needs to take place. Having done that, they can then pass
control on to the routine that was there.

282 Turbo C User's Guide

Using Low-Level Practices

You've already seen a few examples of how to use these different low-level
practices in your code; now's the time to look at a few more. For starters,
you will write an actual interrupt handler that does something harmless yet
visible (or, in this case, audible): It will beep whenever it's called.

First, you need to write the function itself. Here's what it would look like:

#include <dos.h>

void interrupt mybeep(unsigned bp, unsigned di, unsigned si,
unsigned ds, unsigned es, unsigned dx,
unsigned cx, unsigned bx, unsigned ax)

int i, j;
char originalbits, bits;
unsigned char bcount = ax » 8;

/* Get the current control port setting */
bits = originalbits = inportb(Ox61);

for (i = 0; i <= bcount; itt) (

/* Turn off the speaker for awhile */
outportb(Ox61, bits & Oxfc);
for (j = 0; j <= 100; j++)

; /* empty statement */

/* Now turn it on for some more time */
outportb(Ox6l, bits I 2);
for (j = 0; j <= 100; j++)

; /* another empty statement */

/* Restore the control port setting */
outportb(Ox6l, originalbits);

Next, you need to write a function to install your interrupt handler. You
will pass it the address of the function and its interrupt number (0 ... 255 or
OxOO ... OxFF). The function must do three things:

iii disable interrupts so that nothing funny happens while it is updating
the vector table

.. store the function address passed into the appropriate location

• enable interrupts so that everything is working fine again

Advanced Programming in Turbo C 283

Here's what your installation routine looks like:

void install (void interrupt (*faddr) (), int inurn)
{

setvect(inum, faddr);

Finally, you will want to call your beep routine to test it out. Here's a
function to do just that:

void testbeep(unsigned char bcount, int inurn)
{

AH = bcount;
geninterrupt(inum);

Having written all these, your main function looks like this:

main()
{

char ch;

install(mybeep,lO);
testbeep(3,lO);
ch = getch () ;

Using Floating-Point Libraries

There are two types of numbers you work with in C: integer (int, short,
long, etc.) and floating point (float, double). Your computer's processor is
set up to easily handle integer values, but it takes more time and effort to
handle floating point values.

However, the iAPx86 family of processors has a corresponding family of
math coprocessors, the 8087 and the 80287.

The 8087 and 80287 (both of which we refer to here as "the 8087" or "the
coprocessor") are special hardware numeric processors that can be installed
in your PC. They execute floating-point instructions very quickly. If you
use floating point a lot, you'll probably want a coprocessor. The CPU in
your computer interfaces to the 8087 via special interrupts.

Turbo C is designed to help you adapt your program to your computer and
to your needs.

284 Turbo C User's Guide

e If you don't need to use floating-point values at all, you can tell the
compiler that.

e If you do need to use floating-point values but your computer doesn't
have a math coprocessor (8087/80287), you can tell Turbo C to link in
special routines to make it look as though you do have one. In that case,
if your program is run on a system with a coprocessor, the chip is
automatically used (and your program runs much faster).

e If you're writing programs only for systems that have a math
coprocessor, you can instruct the Turbo C compiler to produce code that
always uses the 8087/80287 chip.

The following examples assume you've set up your working disks
according to the instructions in Chapter 1; in particular, the TCC and
TLINK examples assume that the file TURBOC.CFG exists, with the correct
- Land - I paths set, and that the library and start-up object files are stored
in a subdirectory named \ LIB.

Emulating the 8087/80287 Chip

What if you want to use floating point, but your computer doesn't have a
math coprocessor? Or what if you have to write a program for computers
that might or might not have one? Relax; Turbo C handles that situation
well.

With the emulation option, the compiler will generate code as if the 8087
were present, but will link in the emulation library (EMU.LIB). When the
program runs, it will use the 8087 if it is present; if no coprocessor is
present at run time, the program will use special software that emulates the
8087.

The emulation library works like this:

e When your program starts to run, the C start-up code will determine if
an 8087 is present or not.

e If the coprocessor is there, the program will allow the special interrupts
for the 8087 to be passed straight through to the 8087 chip.

e If the coprocessor is not there, the program causes the interrupts to be
intercepted and diverted to the emulation routines.

Advanced Programming in Turbo C 285

Suppose you modify RA TIO.C to look like this:

main ()
{

float a,b,ratio;

printf("Enter two values: ");
seanf("%f %f",&a,&b);
ratio = alb;
printf("The ratio is %O.2f\n",ratio);

If you are using TC (the user-interface version), you need to go to the
Options menu, select Compiler, select Code generation, then select the
Floating-point item until the field following it reads Emulation. When you
compile and link your program, Turbo C will automatically select the
proper options and libraries for you.

If you're using TCC (the stand-alone compiler), your command line should
look like this:

tee -rnX ratio

If you link the resulting code manually,you must specify both the
appropriate math library (depending on the model size) and the EMU.LIB
file. The emulation option (-f) is on by default, so you don't need to give it
unless your TURBOC.CFG file contains one of the other floating-point
switches (-f- or -f87).

Your invocation of TLINK should look like this:

tlink lib\cOX ratio, ratio, ratio, lib\emu.lib
lib\mathX.lib lib\cX.lib

where X is a letter indicating the proper model library.

Note: The tlink command is given all on one line.

Also remember that the order of the libraries is very important.

Using the 8087/80287 Math Coprocessor Chip

If you are absolutely sure your program will be run only on systems that
have an 8087 or 80287 chip, you can create programs that will take
advantage of that chip. At the same time, your resulting .EXE files will be
smaller, since Turbo C won't have to include the 8087 emulation routines
(EMU.LIB).

286 Turbo CUser's Guide

If you are using TC (the user-interface version), you need to go to the
Options menu, select Compiler, select Code generation, then select the
Floating point item until the field following it says 8087/80287. When you
compile and link your program, Turbo C will automatically select the
proper options and libraries for you.

If you're using TCC (the stand-alone compiler), you need to use the -f87

option on your command line, like this:
tee -f87 -mX ratio

This tells Turbo C to generate in-line calls to the 8087/80287 chip. When
TLINK is invoked, the files FP87.LIB and MATHx.LIB are linked in.

If you manually link the resulting code, you must specify both the
appropriate math library (depending on the model size) and the FP87
library, like this:

tlink lib\eOX ratio, ratio, ratio, lib\fp87.lib
lib\mathX.lib lib\eX.lib

where, as always, X is a letter indicating the proper model library.

If You Don't Use Floating Point ...

If your program doesn't use any floating-point routines, the linker will not
link in any of the floating-point libraries (EMU.LIB or FP87.LIB, along with
MATHx.LIB) at link time, even if you listed them on the command line.
You can optimize the link step by omitting these libraries from the linker
command line (if, as we said, your program uses no floating point).

Suppose you want to compile and link the following program (saved as
RATIO.C):

main ()
{

int a,b,ratio;

printf("Enter two values: H);
seanf("%d %d",&a,&b);
ratio = alb;
printf("The ratio is %d\n",ratio);

Since this program uses no floating-point routines, you can choose to
compile it with floating-point emulation on, or with no floating point at all.

If you are using TC (the user-interface version) and choose to compile with
emulation on, just select Compile to OBJ from the Compile menu.

Advanced Programming in Turbo C 287

(Emulation On is the default.) The linker will include the floating-point
libraries at the link step, but none will actually be linked.

If you want to speed up the linking process, you can specify "no floating
point." Go to the Options menu, select Compiler, select Code generation,
then select the Floating point item.

Repeatedly pressing Enter at this command cycles you through three
options: None, Emulation, and 8087/80287. You want the None option.
You can then press Esc three times to get back to the menu bar (or just press
FlO).

When you compile and link this program with Floating point set to None,
Turbo C does not attempt to link in any floating-point math routines.

If you're using TCC (the stand-alone compiler), you need to use the -f­
option on your command line, like this:

tee -f- -rnX ratio.e

This tells Turbo C that you have no floating-point instructions in your
program at all. It also says that you used the x memory model, where x is a
letter indicating the desired model (t = tiny, s = small, c = compact, m =
medium, 1 = large, h = huge).

Since RA TIO.C is a stand-alone program, TCC will automatically invoke
TLINK, linking in COx.OB} and Cx.LIB, and producing RATIO.EXE.

If you used the "compile only" (-c) option on the TCC command line, you
need to manually link the resulting code.

In that case, you don't need to (and shouldn't) specify any math library;
your invocation of TLINK should look like this:

tlink lib\eOx ratio, ratio, ratio, lib\ex.lib

This links together COx.OB} and RATIO.OB}, uses the library Cx.LIB, and
produces the files RATIO.EXE and RATIO.MAP.

The 87 Environment Variable

If you build your program with 8087 emulation (in other words, you select
Floating point ... Emulation from the menus or you include the -f option on
the TCC command line), the COx.OB} start-up module will use 8087 auto­
detection logic when you run the program. This means that the start-up
code will automatically check to see if an 8087 is available.

If the 8087 is available, then the program will use it; if it is not there, the
program will use the emulation routines.

288 Turbo C User's Guide

There are some instances in which you might want to override this default
auto-detection behavior. For example, your own run-time system might
have an 8087, but you need to verify that your program will work as
intended on systems without a coprocessor. Or your program may need to
run on a PC-compatible system, but that particular system returns incorrect
information to the auto-detection logic (saying that a non-existent 8087 is
available, or vice versa).

Turbo C provides an option for overriding the start-up code's default auto­
detection logic; this option is the 87 environment variable.

You set the 87 environment variable at the DOS prompt with the SET
command, like this:

C> SET 87=N

or
C> SET 87=Y

Setting the 87 environment variable to N (for No) tells the start-up code
that you do not want to use the 8087 (even though it might be present in
the system).

Conversely, setting the 87 environment variable to Y (for Yes) means that
the coprocessor is there, and you want the program to use it. Caveat
Programmer!! If you set 87 = Y when, in fact, there is no 8087 available on
that system, your program will crash and burn in a logical inferno.

The 87 environment variable is able to override the default auto-detection
logic because, when you start to run your program, the start-up code first
checks to see if the 87 variable has been defined.

[l If the 87 variable has been defined, the start-up code looks no further,
and your program runs in the prescribed mode.

[l If the 87 variable has not been defined, the start-up code goes through
its auto-detection logic to see if an 8087 chip is available, and the
program runs accordingly.

If the 87 environment variable has been defined (to any value) but you
want to undefine it, enter the following at the DOS prompt:

C> SET 87=

(This means press Enter immediately after typing the equal sign.)

Advanced Programming in Turbo C 289

Registers and the 8087

There are a couple of points relating to registers that you should be aware
of when using floating point.

First, in 8087 emulation mode, register wrap-around is not supported.

Second, if you are mixing floating point with in-line assembly, you may
need to take special care when using registers. This is because the 8087
register set is emptied before Turbo C calls a function. You might need to
pop and save the 8087 registers before calling functions which use the
coprocessor, unless you are sure that enough free registers exist.

Using matherr with Floating Point

When an error is detected in one of the floating-point routines during
execution of a program, that routine automatically calls _matherr with
several arguments. _matherr then stuffs an exception structure (defined in
math.h) with its arguments and calls matherr with a pointer to that
structure.

The matherr routine is a hook that you can use to write your own error­
resolution routine. By default, matherr does nothing but return O.
However, you can modify matherr to deal with floating-point routine
errors in any way you desire. Such a modified matherr then returns non­
zero if the error was resolved, or 0 if it was not.

For more information about matherr and _matherr refer to the math err
description in the lookup section of the Turbo C Programmer's Reference
Guide.

Caveats and Tips

Turbo C's Use of RAM

Turbo C does not generate any intermediate data structures to disk when it
is compiling (Turbo C writes only .obj files to disk); instead it uses RAM for
intermediate data structures between passes. Because of this, you might

290 Turbo C User's Guide

encounter the message OUT OF MEMORY ••• if there is not enough memory
available for the compiler.

The solution to this problem is to make your functions smaller or to split up
the file that has large functions. You might also delete any RAM-resident
programs you have installed to free up more memory for Turbo C to use.

Should You Use Pascal Conventions?

No-not unless you have read and really understood this chapter.
Remember, if you are compiling your main file with pascal calling
conventions, make sure to declare main as a C function:

cdecl main(int argc, char * argv[], char * envp[]l

Summary

You've seen how to use all three aspects of low-level programming in
Turbo C (pseudo-variables, in-line assembly, interrupt functions); you've
learned about interfacing with other languages, including assembly; you've
been introduced to some of the details of using floating-point routines; and
you've discovered how the different memory models on the 8086 interact.
N ow it's up to you to use these techniques to gain complete control of your
computer; best of luck.

Advanced Programming in Turbo C 291

292 Turbo C User's Guide

Index

Index 293

#pragma inline 275
8086 instruction opcodes 276
8086 registers 238
87.LIB 11
_cs(keyword)249
_ds (keyword) 249
_es (keyword) 249
_ss (keyword) 249

A
Active window 33
Address

calculation 240
operators 100
passing to scanf 101

Address-of operator 100, 156, 164,
274

Advanced programming 237
Advanced Turbo C 4, 83
Alignment

in structures 221
Alignment toggle 50
ALLOC.H II, 120
Alt key 26,28
AND 104
ANSI

e standard 2, 207
keywords only 53
violations 55

argc 181
Args 60
Arguments

command-line 65, 181
argv 181
Arithmetic

conversions 214
with pointers 122

Arrays
functions and 126
pointers and 124
strings and 125
character 95, 187
e vs. Pascal 169
declaration 127
discussion of 124

294

multi-dimensional 125, 169, 186
Artificial intelligence 189
asm (keyword) 275,276, 281
.ASM

calling from Turbo e 261
calling Turbo e from 264

Assembler
MicroSoft 261,275

Assembly directives 279
Assembly (in-line)

referencing data from 279
referencing functions from 279
with structures 280

Assembly language
directives 279
in-line 274
interface 261
opcodes 277
routines 261, 265
template 262

ASSERT.H 11
Assignment

operator 97, 144, 154, 184
statement 105

Auto-detection 288
Automatic

local variables 240, 279
storage class 179
type casting 177
variables 240

Auto save edit toggle 59
Available memory 62

B
-B compiler option 275
Backup source files toggle 59
Bar chart (example program) 203
BAR.e 13
Base

address 239
pointer 239

Basic
data types 93
elements of programming 90, 152

Binary arithmetic operators 98

Turbo C User's Guide

BIOS.H 11
Bitfields 221
Bits 118
Bitwise operators 99
Block statement 157, 160
Boolean data type 154
break (keyword) 131,132,144,159
Break make on menu 45
Break statement 134, 144, 159
BUILD-CO.BAT 11
Build all command 43
Building programs

multi-source 71
single-source 64

Byte 118

c
CO.ASM 11
COeOBJ 13
COH.OBJ 13
COL.OBJ 12
COM.OBJ 13
COS.OBJ 12
COT.OBJ 12
Calling C functions from .ASM

routines 270
Calling convention

C 219,257
Pascal 219, 259,291
toggle 49

calloc 125, 191
case (keyword) 131, 158
Case-sensitive link toggle 58
Case-sensitivity 177,208
Case statement 158
Caveats 141, 184,290
CeLIB 13
CDECL235
cdecl(keyword) 219,223,259,291
CH.LIB 13
Change dir command 41
char (keyword) 95, 168,213
Character

array 195
constants 140, 211

Index

pointer 96
CL.LIB 12
Class C style 114
Clear messages command 61, 74
Clear project command 45, 74
CM.LIB 13
CNVTCFG.EXE 10
Code generation menu 49
Combined operators 99
Command -line

arguments 60, 65, 78, 181
compiler 10, 17,77
file names on 78
format 78
interface 77
option 78
running programs from 81

Commands
Build all 43
Change dir 41
Clear messages 61
Clear project 45
Compile to OBJ 42
Control Flow 132
Directory 40
Edit 41
Keep messages 62
LinkEXE 43
Load 40
Make EXE command 42
New 40
OS shell 41
Pick 40
Quit 41
Retrieve options 60
Run 41
Save 40
Store options 60
Write to 40

Comma operator 105, 110
Comments

inASM 275
in programs 116
nested 53, 208

Comparison operator 184
Compile

295

from command line (TCC) 78
from the Integrated Env. 64,84
main menu item 32
menu item 42
to OBI 42

Compiler options 47
Compile to OBI command 42
Compound statement 106
Conditional

execution 90, 157
expression 135
statements 103

Configuration file 10, 19,59,65,66,80
Conglomerate data structure 128
CONIO.H 11
canst (keyword) 217
Constant

character 140, 211
C vs. Pascal 178
floating-point 112, 212
integer 210
pointer 186
types 178

Context-sensitive help 24
continue (keyword) 132, 134
Continue statement 134
Control flow commands 132
Conventions

calling 49
menu-naming 32
notational 5
register 269
typographic 5

Conversion
arithmetic 214
char 213
enum213
int 213
pointer 214

Coprocessor 2,255,282,284,286
Correcting syntax errors 68
Count value 268
C parameter-passing sequence 257

268 '
CPINIT.OBI 13,202
CPP.EXE 10
C Programming Language, The 84

296

CPU 237,272
C Reference Manual 207
CS.LlB 12
CTYPE.H 11

D
Data

constant definition 262
enumerated 138
range 213
referencing from assembler 264
signed 140
size (bits) 213
structures 118, 174,290
types 90, 93, 153,213

DATE 235
Debugging 32, 67
Debug menu 61
Declarations

arrays 124
C vs. Pascal 168
function 111, 114, 137
global variables 114
near and far functions 250
pointers 251
void functions 139

Declarators 252
Decrement operator 98, 155
default (keyword) 130
Default char type toggle 50
Default libraries toggle 57
Defines setting 48
Definitions

assembly-language routines 265
data constants and variables 262
enumerated data 138
external identifiers 263
function 137, 222
global identifiers 263
strings 95

Diagnostic messages 4, 37
DIR.H 11
Directives

assembly (in-line) 279

Turbo C User's Guide

conditional 231
define 230
elif231
else 231
endif 231
error 232
file inclusion 231
if 231
ifdef 231
ifndef 231
include 231
line 232
null 234
pragma 233
preprocessor 229
undef 230

Directory
Change (command) 41
command 40
settings 58

Disk
archival 5
backup 9
distribution, 9
floppy 15
hard 17
program 15
work 15

Display warnings toggle 55
distribution disks 1
do (keyword) 110, 160
do .. while loop 160
DOS, exit to 26
DOS.H 11
double (keyword) 94, 212
Duplicate

strings merge 50
symbols warning 58

Dynamic allocation 119, 120, 179, 191
Dynamic data structures 129

E
Editor

auto save 59
commands 35, 41

Index

main menu 32
modes 34
Quick-Ref line 33
status line 34
window 33, 35

Elements of programming 90, 152
else (keyword) 130, 158
EMU. LIB 11,255,287
enum(keyword) 138,213,216
Enumerated data types 154, 216
env 181
Environment

menu 58
working 65
variable 182, 288

ERRNO.H 11
Errors

checking 164, 186
common 55
handling, floating point 290
less common 55
menu 54
next 69
previous 69
stop after setting 54
syntax 69
tracking 64, 72

Escape sequence 92, 141, 211
EXE

Link command 43
Make command 42

Executable
file 79
program 86
statement 276

Execution-conditional 157
Expressions

conditional 135
general 97
more about 105

Extensions to C 139
extern (keyword) 222
External

identifier definition 263
storage class 179

External declaration 276

297

F
False 103
far (keyword) 220, 241
Far pointers 242
FCNTL.H 11
Field

references 176
width 92
-width specifiers 99

File
dependencies 81
executable 78
inclusion 231
I/O 182
main menu 32
names on command line 78

FILECOMP.C 13
Flag register 239
float (keyword) 93, 112,212
FLOAT.H 11
Floating-point

arithmetic 282
constant 112, 212
emulation 285
error handling 290
expression 215
libraries 284
numbers 93
option toggle 50

Flow
control 132
patterns 198

fopen 182
for (keyword) 109, 161
For loop 109, 161
Format

commands 91,152
specifications 91
string 91, 152

Forward declarations 164
FP87.LIB 11,255,287
Frame standard stack 50
free 191
Free union variant record 175
Function

298

allocation 144, 191
arrays and 126
cdecl type 224
C vs. Pascal 162
declaration 111, 114, 137, 162
declarator 225
definitions 113, 114, 137, 188
entry and exit code 279
input 101, 113
interrupt type 224
main 112
output 91, 152
pascal type 223
pointers and 121
prototypes 114, 137, 164, 188, 225,
252,256
recursive 250
referencing from .ASM 2M
return values 163,266
type modifiers 223
user-written 113

G
General purpose registers 239, 274
Generate underbars 51, 190,219,260
Generation code 49
getch 102, 156
GETOPT.C 13
gets 102, 156
Global

declarations 114
definition 263
identifier 263
stack 198
variables 152, 179

goto (keyword) 132, 135,281
Goto statement 135

H
Hardware specifics 213
Header files 11, 165, 173,256,260
Hello world 64, 84
HELLO.C 10, 64, 84

Turbo C User's Guide

Help
getting 24, 34
hot key 34

Hexadecimal character constants 140
Hot keys 26, 69
huge (keyvvord) 220,241
Huge pointers 243

I
Identifier

case 208, 219
global 219
length 208
length setting 53
naming restrictions 97
non-unique 229
Pascal-type vs. C-type 219

if (keyvvord) 106, 158
If statement 104, 106
Illustration menu system 30
In-line assembly 271, 274
Include directories setting 58
Include Files 11, 173
Increment operator 98, 155
Index

range error 156
registers 239
variable 109

Indirection operator 100, 119, 220
Indirect jumps 281
Infinite loop 110
Initializa tion

module 190
of variables 178

Initialize segments toggle 57
Input

C vs. Pascal 156
functions 101

Installation
floppy disk 15
hard disk 17

Instruction
pointer 239
set toggle 49

Instructions

Index

jump 278, 281
string 278

int (keyvvord) 94,213
Integer

compatible value 131,177
constants 210

Integers 93
Integrated Environment 10, 16, 17,23
Interactive input 101
Interfacing

to other languages 257
vvith assembly 261

Intermediate data structures 290
interrupt (keyvvord) 222, 224, 282
Interrupt

functions 271, 281
handlers 281, 283
routines 273
vectors 224, 281

IO.H 11
Iterative execution 107, 160

J
Jump

instructions 278, 281
optimization toggle 52

K
Keep messages command 62
Kernighan and Ritchie 2, 4, 84, 207
Keyboard input 156
Keyvvords, ANSI only 53

L
Labels, goto 281
Large data models 248
Legends 110
Less common errors 55
Libraries

default 57
files 254

299

order on command-line 194
run-time 12, 13

Library directory setting 59
License statement 5
LIMITS.H 11
Line control directive 232
Line numbers toggle 51
Link, case-sensitive 58
Link EXE command 43
Linked lists 129
Linker

Menu 57
stand-alone 255

Linking
from command line (TCC) 78
mixed modules 256
Turbo C and Turbo Prolog 189

Load command 40
Loading Turbo C 65
Logical operators 103, 104, 156, 161
long (keyword) 94
Longword 118
Loop instructions 281
Loops 91, 107, 160
Low-level

operations 99
practices 283
programming 271
system routines 273

M
Macros, predefined 234
MAIN.C 11
Main

function 112, 181
menu 25,32
screen 25

Make 34, 70
MAKE.EXE 10
Make EXE file command 42
MAKE utility 81
malloc 121, 144, 191
Map file menu 57
MASM275
MATH.H 11

300

MATHC.LIB 13
math err 290
MATHERRC 13
MATHH.LIB 13
MATHL.LIB 12, 195
Math library 195
MATHM.LIB 13
MATHS.LIB 12
MCALC.C 12
MCALC.DOC 12
MCALC.H 12
MCALC.PRJ 12
MCDISPL Y.C 12
MCINPUT.C 12
MCMVSMEM.C 12
MCMVSMEM.OBJ 12
MCOMMAND.C 12
MCPARSERC 12
MCUTIL.C 12
MEM.H11
Member access operator 175
Memory

addressing 47
allocation functions 191
available 62
model menu 47
resident routines 282
segmentation 240

Memory models
and Turbo Prolog 193
discussion of 237
illustrations 245
switches 47

Menu
ANSI violations 55
Break make on 44
Code generation 49
commands 29
Compile 32, 42
Compiler 47
Debug 32, 61
Edit 32
Environment 58
Errors 54, 55
File 32, 39
illustration 30

Turbo C User's Guide

Linker 57
main 32
Map file 57
Model 47
Names 56
naming conventions 32

! Optimization 51
Options 32, 46
Portability warnings 55
Project 32, 44
Run 32
settings 29
Source 53
structure 29
toggles 29

Merge duplicate strings 50
Messages

Clear 61, 74
Keep 62, 74
Track 61
tracking 72
warning 186

Message window 34, 37, 68
MicroCalc 12
Microsoft Macro Assembler 261, 275
Mixed

language programming 257
model programming 249
mod ules linking 256

Modern C style 114,252
Modes

editing 34
Modifiers

addressing 249
cdecl219,224
const 217
far 220
function type 223
huge 220
interrupt 224
near 220
pascal 219, 223
pointer 220
signed 217
volatile 218

Modifying programs 86
MSDOS235

Index

Multi-dimensional arrays 125, 169,
186

Multiple
expressions 105
fields 176
operators 99
source files 73
statements 161
string units 212
types 175

N
N arne project 44
Names Menu 56
Naming conventions, menus 32
near (keyword) 220,241
Near pointers 242
Negative offsets 240
Nested

comments 53, 208
functions 115

New command 40
Newline 141, 152,275
Next error 69
NONAME.C35
Normal instructions 277
Normalized pointer 220,243
NOT 104
Null 139, 181, 182
Null

string 182
terminated 96

o
OBI Compile to 42
Object code 86
Offsets

address 240
of variables 280

Opcodes 275, 277
Operating System 26, 41
Operations 90, 97, 99, 154
Operator

301

address 100, 156, 164,274
assignment 97, 144, 154, 184
binary 98
bitwise 99
combined 99
comma 105
comparison 184
conditional (?:) 135
C vs. Pascal 155
decrement 98, 155
increment 98, 155
indirection 119, 200
logical 104, 156, 161
member access 175
multiple 99
order of precedence 155
relational 103, 161
short circuit 156
ternary (?:) 135
Turbo C 97, 215
unary 98
unary plus 215

Optimization menu 51
Optimize for toggle 51
Option duplication 80
Options

-116, 19,80
-L 16, 19
Icconfig 65
Args 60
command-line 78
Compiler 47
Environment 58
Linker 57
main menu 32
overriding 80
Retrieve 60
Store 60

Options menu 46
OR 104
Order of precedence 155
Ordinal values 159
OS shell command 41
Output

directory setting 59
functions 91, 152
to printer 87

302

Overflow
floating point 215
stack 50

Overhead 244
Override

configuration file 80
size 280
standard libraries 77
start-up 77

p

palloc 191
Paragraph 118,241
Parameter-passing sequence

C 219,257
Pascal219,259,291
with assembly 266

Parentheses with functions 185
PASCAL 235
Pascal, Turbo 21, 149
pascal (keyword) 219,223
Pass

by address 101, 163, 185
by value 163, 185

PBARPRO 13
Pick 36
Pick command 40
Pitfalls

arrays 145, 186
assignment (=) 144, 184
backslash 141
blocks 187
break 144
case-sensitivity 187
comparison 144, 184
equality (==) 144, 184
for Pascal programmers 184
function calls 185
ignoring warnings 186
indexing 145, 186
in C programming 141
input functions 145, 185
pass by address 145, 185
path names 141
pointers 141, 187

Turbo C User's Guide

scanf 145, 185
semicolons 187
statements 187
strings 141, 142
switch statements 144

Pointer
arithmetic 122
arrays and 124
as data type 93
character 96
comparisons 243
conversion 214
C vs. Pascal 168
data and 249
declarations 168
discussion of 118
far 220,242,251
functions and 121
huge 220, 243
near 220, 242, 251
normalized 220, 243
structures and 129
uninitialized 141
using and misusing 141

Portability 1
warnings 55

Positive offsets 239
Pragma

directive 233
inline 233
warn 234

Pre-assigned integer constants 154
Precision errors 215
Predefined macros 235
Prefixes, repeat 278
Preprocessor

macros 235
commands 188
directives 229

Previous error 69
Primary C file setting 43
Printer output 87
printf 88,91, 108, 152, 191
Procedures (C vs. Pascal) 167
PROCESS.H 11
Program Disk 15
Programming

Index

basic elements 90, 152
comparison (C vs. Pascal) 150
in Turbo C 83
issues (C vs. Pascal) 176
mixed-language 257
mixed-model 249
structure (C vs. Pascal) 150

Project
Clear 45
main menu 32, 44
name setting 44

Project-Make 44, 70, 72, 74
Prolog, Turbo 13, 189
Prototypes

advantages of 146
function 114, 137, 164,184, 188,225,
252,256
using 146

Pseudo-variables 272
putc 191
putchar 153
puts 153

Q
Quick-Ref line 33, 34, 38
Quit command 41
Quitting Turbo C 26, 41

R
RAM 118,290
README 10
README.COM 10
Records (Pascal) 174
Recursive

function 250
structures 201

Redirection 60
Referencing data

from .ASM 264
from in-line assembly 279

Referencing functions
from .ASM 264
from in-line assembly 279

303

register (keyword) 52, 279
Register optimization toggle 52
Registers

8087 and 290
conventions 269
declarations 279
general purpose 239, 274
illustrations 238
index 239
in the CPU (8086) 238,272
optimization 52
pseudo-variables and 272
scratch 279
segment 239
special purpose 239
using 51
variables 51, 218, 239, 279

Relational operators 103, 161
Repeat prefixes 278
repeat ... until loop 111
Requirements, system 2
Restrictions on identifiers 97
Retrieve options command 60
return (keyword) 133, 163
Return

statement 133, 163
values 163, 266

Retyping 177
Routines

.ASM270
assembly-language 261
interrupt 273

Row-column order 126
RULES.ASI 11
Run

command 41
main menu 32
program 67, 85, 89

Run-time libraries 12, 13

s
Save

command 40
edit, auto 59

scanf87, 101, 113, 145, 156, 185

304

Schildt, Herbert 4, 83
Scope rules 229
Scratch registers 279
Screen, main 25
Secondary stack pointer 239
Segment

Initialize 57
names 56
register 239

Segment:offset 119, 241
Segmented memory architecture 240
Semicolons 187,275
SETARGV.ASM 11
SETENVP.ASM 11
SETJMP.H 11
Settings

Args 60
Defines 48
Errors 54
Identifier length 53
Include directories 58
Library directory 59
Output directory 58
Primary C file 43
Project name 44
Turbo C directory 59
Warnings 54

Setting up Turbo C
on a hard disk 17
on floppies 15

SHARE.H 11
short (keyword) 94
Short circuit 104
Short-circuit operators 156
Shortcuts 26
SIGNAL.H 11
signed (keyword) 140,217
Sign extension 214
sizeof (keyword) 121, 123
Size overrides 280
Small code models 248
Source code 86
Source files

Backup 59
creating 36
in Edit window 35

Turbo C User's Guide

loading 36
multiple 70
saving 37
single 64
writing 37

Source line number 275
Source menu 53
Special purpose registers 239
Stack

frame, standard 50
global (Prolog) 198
offsets into 267
overflow 50
pointer, secondary 239
warning toggle 58

Stack segment 249
Stand-alone

linker 255
MAKE utility 81

Standard
library routines 254
stack frame toggle 50

Start-up
code 11, 77, 289
module 255

Statements
assignment 105
block 157, 160
break 134, 144, 159
case 158
compound 106
conditional 103
continue 134
goto 132, 135, 281
if 104, 106
return 133, 163
switch 130, 158

Static data location 266
Status line 34
STDARG.H 12
STDC 235
STDDEF.H 12
STDIO.H 12
STDLIB.H 12
Stopping a make 72
Storage classes 179
Store options command 60

Index

strcpy 95, 144, 225
STRING.H 12
Strings

arrays and 125
as array of char 142
as pointer to char 142
concatenation 212
C vs. Pascal 170
declaring 142
defining 95
in arrays 95
instructions 278
literal 152
merge duplicate 50
multiple 212
Turbo C 212
variable 152

struct (keyword) 128, 174
Structure

additions to K&R alignment 221
and pointers 129
bitfields 221
C vs. Pascal records 174
data 128, 168, 174
member access operator 129
of menu system 30
using with in-line asssembly 280
variables 174

Style in C programming 137, 165
Styles

classic 114
modern 114

subdirectories 15
INCLUDE directory 15
LIB directory 15

Subroutines 91, 111, 162
switch (keyword) 130, 159
Switch statement 130, 158
Symbols, warn duplicate 58
Syntax on command-line 79
Syntax error 69
SYS\STAT.H 12
System

of menus 30
requirements 2

Systems programming 1

305

T
TCEXE 10, 15, 16
TCCEXE 10, 17
TCCONFIG.TC 15, 19, 60, 66
TCHELP.TCH 10
TCINST.COM 10
TCINST installation program 66
Technical Support 6
Template assembly-language 262
Ternary operator 135
Test stack overflow toggle 50
Text

as data type 93
files 182

The C Programming Language 4
TIME 234
TIME.H 12
TLINK.EXE 10
Toggles

Alignment 50
ANSI keywords only 53
Auto save edit 59
Backu p source files 59
Calling convention 49
Case-sensitive link 58
Default char type 50
Default libraries 57
Display warning 55
Floating-point 50
Generate underbars 51
Initialize segments 57
Instruction set 49
Jump optimization 52
Keep messages 62
Line numbers 51
Merge duplicate strings 50
Nested comments 53
Optimize for 51
Register optimization 52
Stack warning 58
Standard stack frame 50
Test stack overflow 50
Track messages 61

306

Use register variables 51
Warn duplicate symbols 58
Zoomed windows 59

Token pasting 208
Token replacement 230
TOUCH.COM 10
Tracking errors 72
Track messages toggle 61
True 103
TURBOC235
TURBOCCFG 19, 80, 285
Turbo C directory setting 59
Turbo Pascal 149
Turbo Prolog 189
Tutorial 83
Type

casting 121, 177
const 217
enum216
mismatch 164, 185
modifiers 215
signed 217
specifiers 215
void 151,216
volatile 218

Typed constants 177
typedef(keyword) 128, 138,253

u
Unary minus 98
Unary plus 98
Undeclared identifier 114
Underscore 190, 219, 260
Union 175
union (keyword) 176
unsigned (keyword) 94
Unsigned type 94
Use register variables toggle 51
User service 282
User-written functions 113
Utilities

MAKE 81
TLINK255

Turbo C User's Guide

v
VALUES.H12
Variables

automatic (local) 279
definition 262
global 152
index 109
initialization 178
referencing 264
storage 179
string 152

Violations, ANSI 55
void (keyword) 111, 139, 162, 216,

226
volatile (keyword) 218

w
Warn duplicate symbols toggle 58
Warnings

definition of 87
Display 55
Portability 55

Index

Stack 58
stop after setting 55

while (keyword) 107, 110, 160
While loop 107, 160
Whites pace 101
Window

active 33
Edit 25,33
Message 25, 34, 68
switching 34
zoomed 59, 68

Word 118
Working environment 65
wrch 191
Write to command 40
Writing

programs 88
to disk 40, 89

z
Zoom 34, 68
Zoomed windows toggle 59
zwf 191

307

. ith Turbo C, you can expect what only Borland delivers:
Quality, Speed, Power and Price. And with its compilation
speed 01 more than 7000* lines a minute, Turbo C makes
everything else look like an exercise in slow motion.

{'

If you're just beginning and you've
."kinda wanted to learn C," now's your
chance to do it the easy way. Turbo
G's got everything to get you going.

If you're already programming in C,
switching to Turbo C will considerably
increase your productivity and help
make your programs both smaller
and faster.

Includes free
C Ic'" spreadsheet

Micro a d
with source co e

Like Turbo Pascal<!'! and Turbo
Prolog,<!'! Turbo C comes with an
interactive editor that will show you
syntax errors right in your source
code. Developing, debugging, and
running a Turbo C program is a snap!

Compile time

Compile and link time

Execution time

Objectcrxie size

Execution size

Price

/,,: 'C

"t,

::'

Compiler: One-pass compiler generating
native in-line code, linkable object
modules and assembler. The object
module format is compatible with the PC­
DOS linker. Supports tiny, small, medium,
compact. large, and huge memory model
libraries. Can mix models with near and far
pOinters. Includes floating point emulator
(utilizes 8087/80287 if installed).
Interactive Editor: The system includes a
powerful, interactive full-screen text editor.
If the compiler detects an error, the editor
automatically positions the cursor
appropriately in the source code.
Development Environment: A powerful
"Make" is included so that managing
Turbo C program development is easy.
Borland's fast "Turbo Linket" is also
included. Also includes pull-down menus
and windows. Can run from the environ­
ment or generate an executable file.
Links with relocatable object modules
created using Borland's Turbo Prolog
into a single program.
ANSI C compatible.

. Start-up routine source code included.

. Both command line and integrated
environment versions included.

MicrosoffS C
22.41

29.49

10,11

249

7136

$450,00

'Benchmark run on a 6 MHz IBM AT using Turbo C version 1,0 and the Turbo Linker version 1.0; Microsoft C version 4,0 and
the MS overlay linker version 3.51,

Minimum system requirements: IBM PC, XT, AT, PS/2 and true compatibles. PC-DOS (MS-DOS) 2.0
or later. One floppy drive. 384K.

Turbo C, Turbo Pascal and Turbo Prolog are registered trademarks and MicroCalc and Turbo Linker are trademarks of
Borland International, Inc. Other brand and product names are trademarks or registered trademarks of their respective
holders. Copyright 1987 Borland International BOR 0242A

