
BORLAND

Turbo Debugger®

User's Guide

Version 1.0

Copyright@ 1988
All rights reserved

Borland International
1800 Green Hills Road

P.O. Box 660001
Scotts Valley, CA 9506&-0001

This manual was produced with
Sprint® The Professional Word Processor

All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks

or registered trademarks of their respective holders.
Copyright° 1988 Borland International.

Printed in the U.S.A.

109 8765

Table of Contents

Introduction 1
Hardware and Software Requirements . 1
A Note on Terminology . 2
What's in the Manual ... 2
Borland's No-Nonsense License Statement 4
How to Contact Borland . 5

Chapter 1 Getting Started 7
The Turbo Debugger Package . 7
The Distribution Disks . 7
The README File . 8
The HELPME!.OOC File . 9
Installing Turbo Debugger . 9

Install Turbo Debugger on a Hard Disk System . 9
Install Turbo Debugger on a Floppy Disk System 9
The TD.OVL File . 10
Unarchiving Example Files . 10
The INSTALL /B Command-Line Option . 11

Hardware Debugging .. 11
Where to Now? . 12

Programmers Leaming a Turbo Langauge . 12
Programmers Already Using a Turbo Language 12

Chapter 2 Debugging and Turbo Debugger 13
What Is Debugging? . 13

Is There a Bug? . 14
Where Is It? . 14
What Is It? . 14
Fixing It . 14

What Turbo Debugger Can Do for You . 15
What Turbo Debugger Won't Do 16
How Turbo Debugger Does It . 16

The Turbo Debugger Advantage . 17
Using the Main Menus . 17
Knowing Where It's At ... 18

Local Menus . 19
History Lessons . 21
Making Macros . 23
Window Shopping . 23

Windows from the View Menu . 23
Inspector Windows . 27
The Active Window . 27
Window Hopping ·. 28
Resizing and Saving Windows . 29

Getting Help . 30
Online Help . 31
The Bottom Line :. 31

Chapter 3 Getting Started: A Quick Example 33
The Sample Programs . 33
Using Turbo Debugger . 35

The Help Line . 35
The Windows . 35

Using the C Sample Program . 36
Setting Breakpoints in the C Demo Program . 38
Using Watches . 38
Examining Simple C Data Objects . 39
Examining Compound C Data Objects 41
Changing C Data Values 41

Using the Pascal Sample Program . 43
Setting Breakpoints in the Sample Pascal Program 44
Using Watches . 45
Examining Simple Pascal Data Objects 45
Examining Compound Data Objects in Pascal . 47
Changing Pascal Data Values . 47

Chapter 4 Starting Turbo Debugger 49
Preparing Programs for Debugging . 50

Preparing Turbo C Programs . 50
Preparing Turbo Pascal Programs . 50

· Preparing Turbo Assembler Programs . 51
Preparing Microsoft Programs . 51

Running Turbo Debugger . 51
Command-Line Options . 52

The -c Option . 52
The -d Options . 53

-do .. 53
-dp .. 53
-ds .. 53

The -h and-? Options . 53
The -i Option . 53
The -1 Option . 54
The -m Option . 54
The -c Option . 54

II

The -r Options . 54
-r ... 54
-rpN .. 55
-rs N .. 55

The -s Options . 55
-SC•.•..•.•...•........................••....• 55
-sd .. 55

The -v Options . 55
-vg .. 56
-vn .. 56
-vp .. 56

Configuration Files .. 56
The Options Menu . 56

Language Command . 57
Macros Command . 57

Create ... 57
Stop Recording . 58
Remove .. 58
Delete All . 58

Environment Command . 58
Integer Format . 58
Display Swapping . 59
Screen Size . 59
Tab Size .. 59

Path for Source Command 60
Arguments Command . 60
Save Options Command . 60
Restore Options Command 60

Running DOS While in Turbo Debugger 61
Returning to DOS ... 61

Chapter 5 Controlling Program Execution 63
Examining the Current Program State 64

The Variables Window ... 64
The Global Pane Local Menu . 66

Inspect ... 67
Change .. 67

The Static Pane Local Menu 67
Inspect ... 68
Change .. 68

The Stack Window . 68
The Stack Window Local Menu . 69
Inspect ... 70
Locals ... 70

The Origin Local Menu Command . 71

Iii

Viewing Execution Status: The Get Info Command 71
The Run Menu . 73

Run [F9] .. 73
Program Reset [Ctrl-F2] 7 4
Go to Cursor [F4] . 74
Trace Into [F7] . 74
Step Over [FB]•........................ 74
Execute To [Alt-F9] • • . • . 75
Until Return [Alt-FBJ 75
Animate [Alt-F4] . 75
Instruction Trace [Alt-Fl] • • 75

Interrupting Program Execution . 76
Ctrl-Break . 76

Terminating Your Program . 76
Restarting a Debug Session . 77

Reloading Your Program . 77
Keystroke Recording and Playback 77

Loading a New Program to Debug . 78
Changing the Program Arguments . 79

Chapter 6 Examining and Modifying Data 81
The Data Menu . 82

Inspect ... 82
Evaluate/Modify . 83

Note for C Programmers . 83
Watch .. 84
Function Return . 84

Pointing at Data Items in Source Files 84
The Watches Window . 85

The Watches Window Local Menu . 86
Watch .. 87
Edit ... 87
Remove .. 87
Delete All . 87
Inspect ... 88
Change .. 88

Inspector Windows . 88
C Data Inspector Windows . 89

Scalars ... 89
Pointers .. 90
Arrays ... 91
Structure and Union . 92
Function . 93

Pascal Data Inspector Windows . 94
Scalars ... 94

Iv

Pointers .. 96
Arrays ... 96
Records .. 97
Procedures and Functions . 98

Assembler Data Inspector Windows . 99
Scalars ... 99
Pointers ... 100
Arrays .. 101
Structure and Union . 102

The Inspector Window Local Menu . 103
Range .. 104
Change ... 104
Inspect . 105
Descend .. 105
New Expression .. 105

Chapter 7 Breakpoints 107
The Breakpoints Menu . 108

Toggle .. 109
At ... 109
Changed Memory Global... 109
Expression True Global.. 110
Delete All ... 110

Scope of Breakpoint Expressions . 110
The Breakpoints Window . 110

The Breakpoints Window Local Menu . 111
Set Action . 112

Break ... 113
Log ... 113
Execute . 113

Condition ... 114
Always ... 114
Changed Memory .. 114
Expression True . 115
Hardware . 115

Pass Count... 115
Enable/Disable . 115
Add ... 116
Global .. 116
Remove ... 116
Delete All . 117
Inspect . 117

The Log Window ... 117
The Log Window Local Menu . 119

Open Log File .. 119

v

Close Log File . 120
Logging . 120
Add Comment . 120
Erase Log . 120

Simple Breakpoints . 120
Conditional Breakpoints and Pass Counts . 121
Global Breakpoints . 121
Breaking for Changed Data Objects . 122
Logging Variable Values .. 123
Executing Expressions . 123

Chapter 8 Examining and Modifying Files 125
Examining Program Source Files . 125

The Module Window . 126
The Module Window Local Menu . 127

Inspect .. 128
Watch ... 128
Module ... 129
File ... 129
Previous .. 129
Line .. 129
Search .. 129
Next .. 130
Origin•............... ; 130
Goto .. 130
Edit .. 131

Examining Other Disk Files 131
The File Window ... 131
The File Window Local Menu . 132

Goto .. 133
Search .. 133
Next .. 134
Display As . 134
File ... 134
Edit .. 135

Chapter 9 Expressions 137
Choosing the Language for Expression Evaluation 138
Code Addresses, Data Addresses, and Line Numbers 138
Accessing Symbols outside the Current Scope . 138

Scope Override Syntax . 139
Implied Scope for Expression Evaluation . 140

Byte Lists . 141
C Expressions -. 141

C Symbols : 141

vi

C Register Pseudovariables . 142
C Constants and Number Formats . 143
C Character Strings and Escape Sequences 143
C Operators and Operator Precedence 144
Executing C Functions in Your Program 145
C Expressions with Side Effects . 146
C Keywords and Casting 146

Pascal Expressions ... 147
Pascal Symbols . 147
Pascal Constants and Number Formats . 147
Pascal Strings .. 148
Pascal Operators . 148
Calling Pascal Functions and Procedures 149

Assembler Expressions . 149
Assembler Symbols . 149
Assembler Constants . 150
Assembler Opera tors . 150

Format Control .. 151

Chapter 10 Assembler-Level Debugging 153
When Source Debugging Isn't Enough 153
The CPU Window .. 154
The Code Pane . 156

The Disassembler . 157
The Code Pane Local Menu 157

Goto .. 158
Origin .. 158
Follow .. 159
Caller ... 159
Previous .. 159
Search .. 159
Mixed .. 160
New CS:IP . 160
Assemble . 161
I/O ... 161

In Byte .. 162
Out Byte . 162
Read Word . 162
Write Word . 162

The Register Pane Local Menu 162
Increment . 163
Decrement .. 163
Zero .. 163
Change ... 163
Registers 32-bit . 164

vii

The Flags Pane Local Menu . 164
Toggle .. 165

The Data Pane ... 165
The Data Pane Local Menu 165

Goto .. 166
Search .. 166
Next .. 166
Change ... 167
Follow .. 167
Long Follow ... 167
Previous . 167
Display As . 167

Byte .. 168
Word ... 168
Long ... 168
Comp ... 168
Float .. 169
Real .. 169
Double .. 169
Extended .. 169

Block ... 169
Clear ... 170
Move ... 170
Set ... 170
Read ... 170
Write ... 171

The Stack Pane Local Menu 171
Goto .. 171
Origin .. 172
Follow .. 172
Previous . 172
Change ... 172

The Assembler . 172
Operand Address Size Overrides . 173

Memory and Immediate Operands 173
Operand Data Size Overrides 174
String Instructions .. 174

The Dump Window .. 174
The Registers Window .. 175
Turbo C Code Generation 175

Chapter 11 The 80x87 Coprocessor Chip and Emulator 177
The 80x87 Chip vs. Emulator 177
The Numeric Processor Window . 178

The 80-Bit Floating-Point Registers 179

viii

The Status Bits ... 179
The Control Bits .. 179
The Register Pane Local Menu . 180

Zero .. 180
Empty .. 180
Change ... 180

The Status Pane Local Menu . 181
Toggle .. 181

The Control Pane Local Menu . 182
Toggle .. 182

Chapter 12 Command Reference 183
Hot Keys . 183
Commands from the Main Menu Bar . 185

The File Menu . 185
The View Menu . 185
The Run Menu . 186
The Breakpoints Menu . 186
The Data Menu . 186
The Window Menu . 186
The Options Menu ... 187

The Local Menu Commands . 187
The Breakpoints Window Local Menu . 188
The CPU Window Menus . 189

The Code Pane Local Menu 189
The Data Pane Local Menu . 189
The Stack Pane Local Menu 190
The Register Pane Local Menu 190
The Flags Pane Local Menu . 191

The File Window Menu . 191
The Log Window Menu 191
The Module Window Menu . 191
The Numeric Processor Window Menus . 192

The Register Pane Local Menu . 192
The Status Pane Local Menu 192
The Control Pane Local Menu . 192

The Stack Window Menu . 193
The Variables Window Menus 193

The Global Symbol Pane Local Menu . 193
The Local Symbol Pane Local Menu 193

The Watches Window Menu . 193
The Inspector Window Local Menu 194

Text Panes ... 194
List Panes ... 195
Commands in Prompt Boxes . 196

Ix

• ' I

Window Movement Commands . 196
Wildcard Search Templates 197
File Lists . 197
Complete Menu Tree ... 198

Chapter 13 How to Debug a Program 203
When Things Don't Work 203
Debugging Style . 204

Run the Whole Thing . 204
Incremental Testing . 205

Types of Bugs . 205
C-Specific Bugs . 205

Using Uninitialized Auto-Variables 206
Confusing = and == . 206
Confusing Operator Precedence 206
Bad Pointer Arithmetic . 207
Unexpected Sign Extension . 207
Unexpected Truncation 207
Superfluous Semicolon . 208
Macros with Side Effects . 208
Repeated Auto-Variable Names 208
Misuse of Auto-Variables 209
Undefined Function Return Value 209
Misuse of Break Keyword . 209
Code Has No Effect . 210

General Bugs .. 210
Hidden Effects ... 210
Assuming Initialized Data . 211
Not Cleaning Up When Done . 211
Fence-Post Errors . 211

Pascal-Specific Bugs . 212
Uninitialized Variables 212
Dangling Pointers . 212
Scope Confusion . 213
Superfluous Semicolons 214
Undefined Function Return Value 215
Decrementing Word or Byte Variables 216
Ignoring Boundary or Special Cases 216
Range Errors .. 217

Assembler-Specific Bugs . '. 218
Forgetting to Return to DOS . 218
Forgetting a RET Instruction . 218
Generating the Wrong Type of Return 219
Reversing Operands .. 219
Forgetting the Stack or Reserving a Too-Small Stack 219

x

Calling a Subroutine That Wipes Out Needed Registers 220
Using the Wrong Sense for a Conditional Jump 220
Forgetting about REP String Overrun . 220
Relying on a Zero CX to Cover a Whole Segment 220
Using Incorrect Direction Flag Settings . 221
Using the Wrong Sense for a Repeated String Comparison 221
Forgetting about String Segment Defaults 221
Converting Incorrectly from Byte to Word Operations 221
Using Multiple Prefixes 222
Relying on the Operand(s) to a String Instruction 222
Wiping Out a Register with Multiplication . 222
Forgetting That String Instructions Alter Several Registers 222
Expecting Certain Instructions to Alter the Carry Flag 223
Waiting Too Long to Use Flags 223
Confusing Memory and Immediate Operands 223
Causing Segment Wraparound 223
Failing to Preserve Everything in an Interrupt Handler 223
Forgetting Group Overrides in Operands and Data Tables 224

Accuracy Testing . 224
Testing Boundary Conditions and Limiting Cases 224
Erroneous Data Input . 224
Empty Data Input . 225

Debugging as Part of Program Design . 225
The Sample Debugging Session . 225
C Debugging Session . 226

Looking for Errors . 226
Deciding Your Plan of Attack . 227
Starting Turbo Debugger . 227
Inspecting ... 228
Eureka! . 229

Pascal Debugging Session . 230
Looking for Errors . 230
Deciding Your Plan of Attack 231
Starting Turbo Debugger . 232
Inspecting ... 233
Watches . 235
Just One More Bug... 235

Chapter 14 Virtual Debugging on the 80386 Processor 237
Equipment Required for Virtual Debugging 237
Installing the Virtual Debugger Device Driver 238
Starting the Virtual Debugger . 238
Differences between Normal and Virtual Debugging 240
TD386 Error Messages . 240
TDH386.SYS Error Messages 241

xi

Appendix A Command-Line Options 243

Appendix B Turbo Debugger Utilities 245
CodeView to Turbo Debugger Symbol Table Converter 246

Running from DOS . 246
Error Messages . 246

Remote File Transfer Utility . 248
Starting TDRF from the DOS Command Line . 248

TDRF Command-Line Options . 249
TDRF Remote File Transfer Utility . 250
TDRF Commands . 250

TDRF Messages . 253
Symbol Table Stripping Utility 254

TDSTRIP Command Line 255
TDSTRIP Error Messages . 256

TDMAP Utility . 257
TDPACK Utility ... 257
TDUMP Utility .. 258

TDUMP Syntax . 258
TDUMP Options . 258

The -a and -a7 Options . 258
The -e, -el, and -er Options . 259
The -h Option . 259
The -1 Option . 259
The -o Option . 260
The -v Option . 260

The TDNMI Utility . 260

Appendix C Technical Notes 261
Changed Load Address and Free Memory . 261
Crashing the System . 262
Tracing through DOS and Process ID-Switching . 262
Using the 8087 /80287 Math Coprocessor and Emulator 262
Interrupts Used by Turbo Debugger . 262
Debugging Using INT 3 and INT 1 263
Display-Saving and Mode-Switching 263
Memory Consumption . 264
EMS Support . 264
Interrupt Vector Saving and Restoring 264

Appendix D Inline Assembler Keywords 267

Appendix E Customizing Turbo Debugger 271
Running TDINST . 272
Setting the Screen Colors . 272
Setting Turbo Debugger Display Parameters . 273

xii

-----------~

The Beginning Display Option . 274
The User Screen Updating Option 274
Display Swapping Option . 275
The Integer Format Option . 276
The Log List Length Option . 276
The Tab Column Width Option 276
The Maximum Tiled Watch Option . 276
The Screen Lines Option . 276
The Fast Screen Update Option 277
Permit 43-/50-Line Mode 277
Complete Graphics Save . 277

Setting the Turbo Debugger Options 277
The Editor Option . 278
The Source Directories Option . 278
The Turbo Directory Option . 278
The Keys Option . 279
The Prompting Options . 279
OS Shell Swap Size . 280
Remote Debugging . 280

Remote Debugging . 280
Port .. 280
Speed ... 280

Language . 281
The Ignore Case Option . 281
The Change Process ID Option . 281
The Use Expanded Memory Option 281
The NMI Intercept Option 281

Command-Line Options and Installation Equivalents 282
Quitting the Program 282

Appendix F Hardware Debugger Interface 285
80386 Hardware Device Driver 285
Setting Hardware Breakpoints . 286
Hardware Conditions Permitted with TDH386.SYS 286
Breakpoints Window Hardware Conditions Menu 287
Hardware Debugger Overview . 289
Device Driver Interface ... 290

INIT Command code = 0 . 290
READ Command code = 4 . 290
READNOWAIT Command code= 5 . 290
READSTATUS Command code = 6 . 290
READFLUSH Command code= 7 . 290
WRITE Command code = 8 291
WRITEVERIFY Command code= 9 . 291
WRITESTA TUS Command code= 10 . 291

xiii

WRITEFLUSH Command code = 11 . 291
Command Blocks Sent to Device Driver . 291

Install vectors (code 0)•................... 292
Set a hardware breakpoint (code 4) . 292
Clear a hardware breakpoint (code 5) 294
Set 1/0 board base address (code 9) 294

Status Blocks Returned by Device Driver . 294
Get hardware capabilities (code 1) 295
Set a hardware breakpoint (code 4) . 297
Recursive entry (code -2) . 297

Device Driver Call into Turbo Debugger . 297

Appendix G Remote Debugging 299
Setting Up a Remote Debugging System . 300
Remote Software Installation . 300

Starting the Remote Link . 300
Starting Turbo Debugger on the Remote Link . 301

About Loading the Program to the Remote System 301
TDREMOTE Command-Line Options . 302

Remote Debugging Sessions . 303
TDREMOTE Messages . 303

Getting It All to Work . 305

Appendix H Prompts and Error Messages 307
Prompts .. 307
Error Messages .. 313

Fatal Errors .. 314
Error Messages .. 315

Information Messages . 330

Appendix I Using Turbo Debugger with Different Languages 331
Turbo C Tips ; 331

Compiler Code Optimizing . 331
Accessing Pointer Data .. 331
Stepping Through Complex Expressions . 332

Turbo Assembler Tips . 333
Looking at Raw Hex Data . 333
Source-LevelDebugging 333
Examining and Changing Registers . 333

Turbo Pascal Tips . 334
Stepping through Initialization Code . 334
Stepping through Exit Procedures . 334
Constants . 334
String and Set Temporaries on the Stack . 335
Clever Typecasting . 335

xiv

CPU Window Tips for Pascal

Appendix J Glossary

Index

xv

336

337

341

List of Figures

Figure 2.1: Pull-Down vs. Pop-Up Menus 21
Figure 2.2: A History List in a Prompt Box 22
Figure 2.3: Can You Spot the Active Window? 28
Figure 2.4: The Normal Reference Line 31
Figure 2.5: The Reference Line with Alt Pressed 31
Figure 2.6: Typical Reference Line with Ctr/ Pressed 32
Figure 3.1: The Startup Screen Showing TCDEMO 34
Figure 3.2: The Program Stops after Returning from Function showargs .37
Figure 3.3: A Breakpoint at Line 43 38
Figure 3.4: A Variable in the Watches Window 39
Figure 3.5: An Inspector Window40
Figure 3.6: Inspecting a Structure 41
Figure 3.7: The Change Command Prompt 42
Figure 3.8: The Program Stops after Returning from a Procedure43
Figure 3.9: A Breakpoint at Line 12044
Figure 3.10: A Pascal Variable in the Watches Window45
Figure 3.11: An Inspector Window46
Figure 3.12: Inspecting a Structure47
Figure 3.13: The Change Command Prompt49
Figure 4.1: The Options Menu 57
Figure 5.1: The Variables Window 64
Figure 5.2: The Global Pane Local Menu 67
Figure5.3: The Static Pane Local Menu 67
Figure 5.4: The Stack Window 69
Figure 5.5: The Stack Window Local Menu 70
Figure 5.6: The File Get Info Command 71
Figure 5.7: The Run Menu ... 73
Figure 6.1: The Data Menu ... 82
Figure 6.2: The Watches Window 85
Figure 6.3: The Watches Window Local Menu 87
Figure 6.4: A Scalar Inspector Window 90
Figure 6.5: AC Pointer Inspector Window 91
Figure 6.6: A C Array Inspector Window 92
Figure 6.7: A C Structure or Union Inspector Window 93
Figure 6.8: A C Function Inspector Window 94
Figure 6.9: A Pascal Scalar Inspector Window 96
Figure 6.10: A Pascal Pointer Inspector Window 96
Figure 6.11: A Pascal Array Inspector Window 97
Figure 6.12: A Pascal Record Inspector Window 98

xvi

Figure 6.13: A Pascal Procedure Inspector Window 99
Figure 6.14: An Assembler Scalar Inspector Window 100
Figure 6.15: An Assembler Pointer Inspector Window 101
Figure 6.16: An Assembler Array Inspector Window 102
Figure 6.17: An Assembler Record Inspector Window 103
Figure 6.18: The Inspector Window Local Menu 104
Figure 7.1: The Breakpoints Menu 109
Figure 7.2: The Breakpoints Window 111
Figure 7.3: The Breakpoint Window Local Menu 112
Figure 7.4: The Set Action Menu 113
Figure 7.5: The Condition Menu 114
Figure 7.6: The Log Window 118
Figure 7.7: The Log Window Local Menu 119
Figure 8.1: The Module Window 126
Figure 8.2: The Module Window Local Menu 128
Figure 8.3: The File Window 131
Figure 8.4: The File Window Showing Hex Data 132
Figure 8.5: The File Window Local Menu 133
Figure 10.1: The CPU Window 154
Figure 10.2: The Code Pane Local Menu 158
Figure 10.3: The I/0 Menu 161
Figure 10.4: The Register Pane Local Menu 163
Figure 10.5: The Flags Pane Local Menu 164
Figure 10.6: The Data Pane Local Menu 166
Figure 10.7: The Display As Menu 168
Figure 10.8: The Block Menu 170
Figure 10.9: The Stack Pane Local Menu 171
Figure 11.1: The Numeric Processor Window 178
Figure 11.2: The Register Pane Local Menu 180
Figure 11.3: The Status Pane Local Menu 181
Figure 11.4: The Control Pane Local Menu 182
Figure 12.1: The File, View, and Run Menus 199
Figure 12.2: The Breakpoints, Data, and Window Menus 200
Figure 12.3: The Options Menu 201
Figure E.l: Customizing Window Colors 273
Figure E.2: Customizing Display Parameters 274
Figure E.3: Customizing the Options 278

xvii

List of Tables

Table 12.1: The Function Key and Hot Key Commands 184
Table A.l: Turbo Debugger Command-Line Options 243
Table D.l: 8086/80186/80286 Instruction Mnemonics 268
Table D.2: 8087 /80287 Numeric Processor Instruction Mnemonics 269
Table D.3: CPU Registers ... 269
Table D.4: Special Keywords 269
Table D.5: 80387 Registers .. 269
Table D.6: 80386 Instruction Mnemonics 270
Table D.7: 80387 Instruction Mnemonics 270

xviii

N T R 0 D u c T 0 N

Turbo Debugger is a state-of-the-art, source-level debugger designed for
Borland Turbo language programmers and programmers using other
compilers who want a more powerful debugging environment.

Multiple, overlapping windows and a combination of pull-down and pop­
up menus provide a fast, interactive user interface. An online context­
sensitive help system provides you with help during all phases of
operation.

Here are just some of its features:

•uses expanded memory specification (EMS) to debug large programs
•full C expression evaluation
•full Pascal expression evaluation
•full assembler expression evaluation
•reconfigurable screen layout
•assembler/CPU access when needed
• powerful breakpoint and logging facility
•keystroke recording (macros)
•uses remote system to debug huge programs
•supports 80386 and other vendor's debugging hardware

Hardware and Software Requirements

Turbo Debugger runs on the IBM PC family of computers, including the XT
and AT, the PS/2 series, and all true IBM compatibles. DOS 2.0 or higher is
required and at least 384K of RAM. It will run on any 80-column monitor,
either color or monochrome. We recommend a hard disk, although a two­
floppy disk drive will work fine as well.

Turbo Debugger does not require an 8087 math coprocessor chip.

To use Turbo Debugger with Borland products, you must be using Turbo
Pascal 5.0 or later, Turbo C 2.0 or later, or Turbo Assembler 1.0 or later. You
must have already compiled your source code into an executable (.EXE file)

Introduction

with full debugging information turned on before debugging with Turbo
Debugger.

Note that when you run Turbo Debugger, you'll need both the .EXE file and
the original source files available. Turbo Debugger searches for source files
first in the directory the compiler found them in when it compiled, second
in the directory specified in the Options/Path for Source command, third
in the current directory, and fourth in the directory the .EXE file is in.

A Note on Terminology

For convenience and brevity, we use a couple of terms in this manual in
slightly more generic ways than usual. These terms are module, function,
and argument.

A module in this manual refers to what is usually called a module in C and
in assembler, but also refers to what is called a unit in Pascal.

Similarly, a function in this manual refers to both a C function and to what
is known in Pascal as a subprogram (or routine), which encompasses both
functions and procedures. In C, a function can return a value (like a Pascal
function) or not (like a Pascal procedure). (When a C function doesn't
return a value, it's called a void function.) In the interest of brevity, we often
use function in a generic way to stand for both C functions and Pascal
functions and procedures-except, of course, in the language-specific areas
of the manual.

Finally, the term argument is used interchangeably with parameter in this
manual. This applies to references to command-line arguments (or
parameters), as well as to arguments (or parameters) passed to procedures
and functions.

What's in the Manual

Here is a brief synopsis of the chapters and appendixes in this manual:

Chapter 1: Getting Started describes the contents of the distribution disk
and tells you how to load Turbo Debugger files into your system. It also
gives you advice on which chapter to go to next, depending on your level
of expertise.

Chapter 2: Debugging and Turbo Debugger explains the Turbo Debugger
user interface, menus, and windows, and shows you how to respond to
prompts and error messages.

2 Turbo Debugger User's Guide

Chapter 3: Getting Started: A Quick Example leads you through a sample
session-using either a Pascal or C program-that demonstrates many of
the powerful capabilities of Turbo Debugger.

Chapter 4: Starting Turbo Debugger shows how to run the debugger from
the DOS prompt, when to use command-line options, and how to record
commonly used settings in configuration files.

Chapter 5: Controlling Program Execution demonstrates the various ways
of starting and stopping your program, as well as how to restart a session
or replay the last session.

Chapter 6: Examining and Modifying Program Data explains the unique
capabilities Turbo Debugger has for examining and changing data inside
your program.

Chapter 7: Breakpoints introduces the concept of actions, and how they
encompass the behavior of what are sometimes referred to as breakpoints,
watchpoints, and tracepoints. Both conditional and unconditional actions
are explained, as well as the various things that can happen when an action
is triggered.

Chapter 8: Examining and Modifying Source Files describes how to
examine and change program source files, as well as how to examine and
modify arbitrary disk files, either as text or binary data.

Chapter 9: Expressions describes the syntax of C, Pascal, and assembler
expressions accepted by the debugger, as well as the format control
characters used to modify how an expression's value is displayed.

Chapter 10: Assembler-Level Debugging explains how to view or change
memory as raw hex data, how to use the built-in assembler and dis­
assembler, and how to examine or modify the CPU registers and flags.

Chapter 11: The 8087/80287 Math Coprocessor Chip and Emulator
discusses how to examine and modify the contents of the floating-point
hardware or emulator.

Chapter 12: Command Reference is a complete listing of all main menu
commands and all local menu commands for each window type.

Chapter 13: How to Debug a Program is an introduction to strategies for
effective debugging of your programs.

Chapter 14: Virtual Debugging on the 80386 Processor describes how you
can take advantage of the extended memory and power of an 80386
computer by letting the program you're debugging use the full address
space below 640K, as if no debugger were loaded.

Introduction 3

Appendix A: Command-Line Options is a summary of all the command­
line options that are completely described in Chapter 4.

Appendix B: Turbo Debugger Utilities describes how to use the utilities
provided with the debugger. The utility programs include a program
allowing CodeView executables to be used with Turbo Debugger, and
several others that affect the debugging information appended to .EXE files.
There is also a utility called TDUMP that lets you display the component
parts of any file.

Appendix C: Technical Notes is for experienced programmers. It describes
implementation details of Turbo Debugger that explain how it interacts
with both your program and with DOS.

Appendix D: Inline Assembler Keywords lists all instruction mnemonics
and other special words used when entering inline 8086/80286 instructions.

Appendix E: Customizing Turbo Debugger explains how to use the
installation program (TDINST) to customize screen colors and change
default options.

Appendix F: Hardware Debugger Interface describes how to write device
drivers to work with Turbo Debugger.

Appendix H: Prompts and Error Messages lists all the prompts and error
messages that can occur, with suggestions on how to respond to them.

Appendix I: Using Turbo Debugger with Different Languages provides
several tips when you're debugging programs written in C, assembler, or
Pascal.

Appendix}: Glossary is an alphabetical list of commonly used terms in this
manual along with short definitions.

Borland's No-Nonsense License Statement

This software is protected by both United States copyright law and
international treaty provisions. Therefore, you must treat this software just
like a book with the following single exception: Borland International
authorizes you to make archival copies of Turbo Debugger for the sole
purpose of backing up your software and protecting your investment from
loss.

By saying, "just like a book," Borland means, for example, that this
software may be used by any number of people and may be freely moved
from one computer location to another so long as there is no possibility of
its being used at one location while it's being used at another. Just like a

4 Turbo Debugger User's Guide

book that can't be read by two different people in two different places at
the same time, neither can the software be used by two different people in
two different places at the same time. (Unless, of course, Borland's
copyright has been violated.)

How to Contact Borland

The best way to contact Borland is to log on to Borland's Forum on
CompuServe: Type GO BOR from the main CompuServe menu and choose
"Enter Language Products Forum" from the Borland main menu. Leave
your questions or comments there for the support staff to process.

If you prefer, write a letter with your comments and send it to:

Technical Support Department
Borland International
1800 Green Hills Road

P.O. Box 660001
Scotts Valley, CA 95066-0001, USA

You can also telephone our Technical Support department at (408) 438-5300.
Please have the following information handy before you call:

• product name and version number
•computer make and model number
•operating system and version number

Introduction 5

6 Turbo Debugger User's Guide

c H A p T E R

1

Getting Started

The Turbo Debugger Package

Your Turbo Debugger package consists of three distribution disks and the
Turbo Debugger User's Guide (this manual). The distribution disk contains all
the programs, files, and utilities needed to debug programs written in
Turbo C, Turbo Assembler, Turbo Pascal, and any program written with a
Microsoft compiler. The Turbo Debugger package also con ta ins
documentation on subjects not covered in this manual.

The User's Guide provides a subject-by-subject introduction of Turbo De­
bugger's capabilities and a complete command reference.

Before we get you started using Turbo Debugger, you should make a
complete working copy of the distribution disk, then store the original disk
in a safe place. Use the original distribution disk as your backup only and
run Turbo Debugger off of the copy you've just made-it's your only back­
up in case anything happens to your working files.

If you are not familiar with Borland's No-Nonsense License Statement,
now's the time to read the agreement in the introduction and mail your
filled-in product registration card. This enables you to be notified of
updates and new products as they become available.

The Distribution Disks

When you install Turbo Debugger on your system, you copy files from the
distribution disk to your working floppies or to your hard disk. The

Chapter 7, Geffing Started 7

distribution disk is not copy protected, and you do not need to run any
installation programs. The distribution disks are formatted for double­
sided, double-density disk drives and can be read by IBM PCs and close
compatibles.

The following files are on the distribution disks:

TD.EXE Turbo Debugger
TD.OVL The overlay file containing the menu system
TDINST.EXE Turbo Debugger installation program
TDHELP.TDH Turbo Debugger help file
README.COM Program to read the update file README
README Last-minute information
TDH386.SYS The 80386 hardware device driver
TD386.EXE The program you use for virtual debugging
TDNMl.COM A utility that enables the handler for Periscope I boards
TDRF.EXE The Remote File Transfer untility program
TDREMOTE.EXE The program you use for remote debugging
TDSTRIP The Symbol Table Stripping utility
TDUMP.EXE A generic module disassembler utility
TOCONVRT.EXE A utility to convert Code View programs to Turbo

TD MAP
TDPACK

TCDEMO.*
TCDEMOB.*
TPDEMO.*
TPDEMOB.*

format
A utility to append .MAP file information onto .EXE files
A utility to reduce the size of the debugging information
in .EXE files

The C demo program you use in the tutorial
The buggy C demo program discussed in Chapter 13
The Pascal demo program you use in the tutorial
The buggy Pascal demo program discussed in Chapter
13

The README File

It is very important that you take the time to look at the README file on
the Installation Disk before you do anything else with Turbo Debugger.
This file contains last-minute information that may not be in the manual. It
also lists every file on the distribution disks, with a brief description of
what each one contains.

To access the README file, insert the Installation Disk in Drive A, switch
to Drive A by typing A: and pressing Enter, then type README and press Enter
again. Once you are in README, use the Up and Down arrow keys to scroll
through the file. Press Esc to exit.

8 Turbo Debugger User's Gulde

The HELPME!.DOC File

Your Installation Disk also contains a file called HELPME!.DOC, which
contains answers to problems that users commonly run into. Consult it if
you find yourself having difficulties. Among other things, the
HELPME!.DOC file deals with:

•Screen output for graphics and text based programs.
•Executing other programs while you are still using the debugger.

• Breaking out of a program.

•The syntactic and parsing differences between Turbo Debugger and the
Turbo languages.

•Debugging multi-language programs with Turbo Debugger.

•Tandy IOOOA, IBM PC Convertible, pr NEC MultiSpeed, and the NMI.

Installing Turbo Debugger

The Installation Disk contains a program called INSTALL.EXE that will
assist you with the installation of Turbo Debugger 1.0. There are two
options for installation:

Install Turbo Debugger on a Hard Disk System

INSTALL will copy all Turbo Debugger files onto your hard disk and put
them into subdirectories. The default subdirectories are

Turbo Debugger Directory:
Example Subdirectory:

C:\TD
C:\TD

By default, all files from the distribution disks are placed in the Turbo
Debugger Directory. If you would rather separate the examples programs
into their own subdirectory as well, edit the default example files path
before selecting START INSTALLATION.

Install Turbo Debugger on a Floppy Disk System

This option builds a working set of four Turbo Debugger disks will work
on a two drive system. Be sure to have four formatted disks ready before
you start. INSTALL builds the following disks for you:

Chapter 1, Getting Started 9

Program Disk Turbo Debugger main program (TD.EXE), README
and README.COM, Turbo Debugger customization
program (TDINST.EXE), and the HELPME!.DOC and
MANUAL.DOC files.

Work Disk Turbo Debugger working overlay file (TD.OVL) and
help file (TDHELP.TDH).

Utilities Disk Turbo Debugger utilities (TDSTRIP, TDRF.EXE,
TDUMP.EXE, TDCONVRT.EXE, TDMAP, TDPACK).

Examples Disk Example programs for use with Turbo Debugger.

To start the installation, change your current drive to the one that has the
INSTALL program on it and type INSTALL. You will be given instructions in
a box at the bottom of the screen for each prompt. For example, if you will
be installing from drive A, you would enter

A:
INSTALL

You should read the README file to get further information about Turbo
Debugger after you do the installation.

Note: For a list of all the command-line options available for
INSTALL.EXE, enter the program name followed by -h:

INSTALL -h

The TD.OVL File

Turbo Debugger consists of an executable program, TD.EXE, and an
overlay file, TD.OVL, which contains the menu system and must be
available to TD whenever you use the menus. Both files are required. If you
are installing Turbo Debugger on a hard disk system, INSTALL will put
them in the same directory.

If you are installing on a two-floppy system, INSTALL will put the overlay
file (TD.OVL) and the help file (TDHELP.TDH) on one diskette and
TD.EXE on another diskette.

Unarchiving Example Files

The Turbo Debugger UTILITIES/EXAMPLES distribution disk contains
several files with an .ARC file extension: TDEXAMPL.ARC,
TAEXMPLl.ARC, and TAEXMPL2.ARC. These files contain several other

10 Turbo Debugger User's Guide

files that have been compressed and placed inside an archive. You can
dearchive them yourself by using the UNPACK.COM utility.

For example, entering

unpack tdexampl

unpacks all the files stored in the TDEXAMPL.ARC archive into the current
directory.

INSTALL gives you a choice of copying the .ARC files intact or dearchiving
and copying all of the individual files onto your hard disk during the
installation process. Note that INSTALL does not unpack the
TAEXAMPLl.ARC, TAEXAMPL2.ARC, or CHAPXMPL.ARC files from the
UTILITIES/EXAMPLES disk These files contain example programs for the
TURBO ASSEMBLER.

The INSTALL IB Command-Line Option

If you have difficulty reading the text displayed by the INSTALL program,
it accepts an optional /B command-line parameter that forces it to use black
and white (BW80) mode:

a: install /B

Specifying the /B parameter may be necessary if you are using an LCD
screen or a system that has a color graphics adapter and a monochrome or
composite monitor.

Hardware Debugging

If you are running on an 80386 system, you can install the TDH386.SYS
device driver supplied with Turbo Debugger. This device driver will vastly
speed up breakpoints that watch for changed memory areas.

Copy this file to the directory where you keep your device drivers and put
a line in your CONFIG.SYS file that loads the driver, such as

DEVICE = \SYS\TDH386.SYS

The next time you boot up your system, Turbo Debugger will be able to
find and use this device driver.

See Appendix F for complete information on this device driver interface.

Chapter 7, Getting Started 11

Note: If you have a hardware debugging board (such as Atron, Periscope,
and so on), you may be able to use the board with Turbo Debugger. Check
with the vendor of your board for its compatibility with Turbo Debugger.

Where to Now?

Now that you've loaded all the files, you can start learning about Turbo De­
bugger. Since this user's guide is written for two types of users, different
chapters of the manual may appeal to you. The following roadmap will
guide you.

Programmers Learning a Turbo Langauge

If you are just starting to learn one of the languages in the Turbo family,
you will want to be able to create small programs using it before you learn
about the debugger. What better way to learn how to use the debugger than
to have a real live problem of your own to track down! After you have
gained a working knowledge of the language, work your way through
Chapter 3, "Tutorial," for a quick tour of the major functions of Turbo De­
bugger. There you'll learn enough about the features you'll need to debug
your first program; we'll go into the debugger's more sophisticated
capabilities in a later chapter.

Programmers Already Using a Turbo Language

If you are an experienced Turbo family programmer, you can learn about
the exciting new features of the Turbo Debugger user interface by reading
Chapter 2. If it suits your style, you can then work through the tutorial or, if
you prefer, move straight on to Chapter 4, "Starting Turbo Debugger." For
a complete rundown of all commands, turn to Chapter 12, "Command
Reference."

12 Turbo Debugger User's Guide

c H A p T E R

2

Debugging and Turbo Debugger

There once was a man who believed he never made mistakes. But he was
wrong. And that's why we have debuggers.

The simple truth is that no one's perfect; we all make mistakes. Whether it's
while doing simple things like walking or complicated things like
programming, we all stumble sometimes.

When it comes to programming, stumbling can become a way of life. Very
few programmers can ever write an error-free program the first time out
the gate. That's nothing to be ashamed of or surprised at. But stumbling
also implies picking yourself up off the floor and trying again, and again,
and maybe again. In programming parlance, that's debugging.

What Is Debugging?

Debugging is the process of finding and then correcting errors ("bugs") in
your programs. It's not unusual to spend more time on finding and fixing
bugs in your program than writing the program in the first place.
Debugging is not an exact science; often the best debugging tool you have
is your own mind. Nonetheless, there is some advice that can be offered
(see Chapter 13), and the process can be broadly divided into four steps:

1. Realizing you have an error
2. Finding where the error is
3. Finding the cause of the error
4. Fixing the error

Chapter 2, Debugging and Turbo Debugger 13

Is There a Bug?

The first step can be really obvious. The computer freezes up (or "hangs")
whenever you run it. Or perhaps it "crashes" in a shower of meaningless
characters. Sometimes, however, realizing you have a problem is not so
obvious. The program might work fine until you enter a certain number
(like 0 or a negative number) or until you examine the output closely. Only
then might you notice that the result is off by a factor of .2 or that the
middle initials in a list of names are wrong.

Where Is It?

The second step is sometimes the hardest: isolating where the error occurs.
Let's face it, you simply can't keep the entire program in your head at one
time (unless it's a very small program indeed). You're best approach is to
divide and conquer-break up the program into parts and debug them
separately. Structured programming is perfect for this type of debugging.

What Is It?

The third step, finding the cause of the error, is probably the second­
hardest part of debugging. Once you've discovered where the bug is, it's
usually somewhat easier to find out why the program is misbehaving. For
example, if you've determined the error is in a procedure called
PrintNames, you have only to examine the lines of that procedure instead of
the entire program. Even so, the error can be elusive and may need a bit of
experimenting to track down.

Fixing It

The final step is fixing the error. Armed with your knowledge of the
program language and knowing where the error is, you squash the bug.
Now you run the program again, wait for the next error to show up, and
start the debugging process again.

Many times this four-step process is accomplished when you are writing
the program itself. Many errors of syntax, for example, prevent your
programs from compiling until they're corrected. The Borland language
products have built-in syntax-checkers that inform you of these types of
errors and allow you to fix them on the spot.

14 Turbo Debugger User's Guide

But other errors are more insidious and subtle. They lie in wait until you
enter a negative number, or they're so elusive you're stymied. That's where
Turbo Debugger comes in.

What Turbo Debugger Can Do for You

With the standalone Turbo Debugger, you have access to a much more
powerful debugger than exists in your language compiler. (Adding such a
feature-full debugger to the program itself would make it too big.)

You can use Turbo Debugger with any program written in C, Pascal, or
assembly language using the Borland Turbo products or those from other
language manufacturers. (You need to use a conversion utility that we
supply before you debug a program written in a Microsoft language,
however.) You can also debug any program created with another
manufacturer's language product, but you'll be restricted to debugging on
the assembly level-unless you use the TDMAP utility described in
Appendix B.

You can use Turbo Debugger to help with the two hardest parts of the
debugging process: finding where the error is, and finding the cause of the
error.

Turbo Debugger helps you overcome these debugging hurdles by virture of
its extensive abilities to slow down program execution and to examine the
state of the program at any given spot. You can even test new values of
variables to see how they affect your program. This ability translates
specifically into tracing, stepping, viewing, inspecting, changing, and
watching.

Tracing

Stepping

Viewing

Inspecting

You can execute your program one line at a time.

You can execute your program one line at a time but step
over any procedure or function calls. If you're sure your
procedures and functions are error-free, stepping over
them speeds up debugging.

You can have Turbo Debugger open a special window to
show you a dozen different things: variables, their
values, breakpoints, the contents of the stack, a log, a
data file, a source file, CPU code, memory, registers,
numeric processor info, or program output.

You can have Turbo Debugger delve deeper into the
workings of your program and come up with the
contents of complicated data structures like arrays.

Chapter 2, Debugging and Turbo Debugger 15

Changing

Watching

You can replace the current value of variable either
globally or locally with a value you specify.

You can isolate program variables and keep track of
their changing values as the program progresses.

You can use these powerful tools to dissect your program into discrete
chunks, confirming that one chunk works before moving to the next. In this
way, you can beaver through the program, no matter how large or
complicated, until you find where that bug is hiding. Maybe you'll find
there's a function that inadvertently reassigns a value to a variable, or
maybe the program gets stuck in an endless loop, or maybe it gets pulled
into an unfortunate recursion. Whatever, the problem, Turbo Debugger
significantly helps you find where it is and what's at fault.

What Turbo Debugger Won't Do

With all the features built into Turbo Debugger, you might be thinking that
it's got it all. In truth, Turbo Debugger has at least three things it won't do
for you:

•Turbo Debugger does not have a built-in editor to change your source
code. Most programmers have their favorite editor and are comfortable
with it; it would be a waste of memory to include one with Turbo
Debugger. You can, however, easily transfer control to your text editor by
choosing the local Edit command from a File window (more on local
commands in a minute). Turbo Debugger uses the editor you specified
with the TDINST installation program.

•Turbo Debugger cannot recompile your program for you. You need the
original program compiler (like Turbo Pascal or Turbo C) to do that.

• Turbo Debugger will not take the place of thinking. When debugging a
program, your greatest asset is simple thought. Turbo Debugger is a
powerful tool, but if you use it mindlessly, it's unlikely it will save you
time or effort.

How Turbo Debugger Does It

Here's the really good news: Turbo Debugger gives you all this power and
sophistication while also being easy-dare we say intuitive-to use.

Turbo Debugger accomplishes this artful blend of power and ease by
offering an exciting user interface (UI). The next section examines the
advantages of Turbo Debugger's revolutionary UI.

16 Turbo Debugger User's Guide

The Turbo Debugger Advantage

Once you start using Turbo Debugger, we think you'll be totally addicted
to it. Turbo Debugger has been especially designed to be as easy and
convenient as possible. To achieve this goal, Turbo Debugger sports these
powerful features:

•Convenient and logical pull-down menus.

•Context-sensitive pop-up menus throughout the product, which
practically do away with memorizing and typing commands.

•When you do need to type, Turbo Debugger keeps a list of the text
you've typed in similar situations. You can choose from these "history
lists," edit the text, or type in new text.

• Full macro control to speed up series of commands and keystrokes.
•Convenient, complete window management.

• Access to several types of online help.

The rest of this chapter discusses these six facets of the Turbo Debugger UL

Using the Main Menus

As with many Borland products, Turbo Debugger has a convenient system
of menus accessible from a menu bar running along the top of the screen.
The main menu bar is always available, no matter which window is
"active" (that is, which window has a cursor in it). There are pull-down
menus available for each item on the menu bar.

There are three ways to go to the menus on the main menu bar:

•Press F10 and then cursor to the desired menu and press Enter.

•Press F10 and then press the first letter of the menu name (F, V, R, B, D, W,
0).

• Press Alt plus the first letter of any main menu command (F, V, R, B, D, W,
0) to activate the specified command menu. For example, anywhere in
the system, Alt-F takes you to the File menu.

You press Esc to leave the menu bar without choosing a command.

To move around inside a menu off the main menu bar:

•Press Esc to exit a menu. As long as you aren't in a second-level menu,
you'll return to the previously active window.

•Press F10 from within any menu level to return to the previously active
window.

Chapter 2, Debugging and Turbo Debugger 17

•Use the Right and Left arrow keys to move from one pull-down menu to
another.

•Use the Home and End keys to go to the first and last menu items,
respectively.

Some commands in the main menus have shortcut key commands, also
known as hot keys. Where applicable, the appropriate hot key appears to the
right of the menu command.

Figures 12.1, 12.2, and 12.3 in Chapter 12 show the complete pull-down
menu tree for Turbo Debugger. Table 12.1 on page 184 lists all the hot keys.
For a summary of all the commands available in Turbo Debugger, refer to
Chapter 12.

Knowing Where It's At

In addition to the convenient system of Borland pull-down menus, the
Turbo Debugger advantage consists of a powerful feature that lessens
confusion and reduces the learning curve by actually reducing the number
of menus.

To understand this feature, you need to realize that first and foremost,
Turbo Debugger is a context-sensitive program. Turbo Debugger keeps
tabs on exactly what window you have open, what text is selected, and
which part of the window your cursor is in (that is, which "pane"). In other
words, it knows precisely what you're looking at and where the cursor is
when you choose a command. And it uses this information when it
responds to your command. Let's take an example to illustrate this
fundamental point.

Suppose your Pascal program has a line like this:

MyCounter[TheGrade] := MyCounter[TheGrade] + l;

As you'll discover when you work with Turbo Debugger, getting
information on data structures is easy; all you do is press Ctr/-/ (to Inspect
it). When the cursor is at myCounter, Turbo Debugger shows you
information on the contents of the entire array variable. But if you were to
select (that is, highlight) the whole array name plus the index and then
press Ctr/-/, the debugger would know that you wanted to inspect one
member and would show you only the member.

You can "tunnel" down to finer and finer program detail in this way.
Pressing Ctr/-/ while examining an array gives you a look at a particular
member.

18 Turbo Debugger User's Guide

This sort of context-sensitivity makes Turbo Debugger extremely easy to
use. It saves you the trouble of memorizing and typing complicated strings
of menu commands or arcane command-line switches. You simply move to
the item you want to examine (or select it using the Ins key) and then
invoke the command (Ctr/-/ for Inspect, for example). Turbo Debugger
always does its best on delivering the goods for the particular item.

This context-sensitivity, which makes life easy for the user, also makes the
task of documenting commands difficult. This is because Ctr/-/, for example,
in Turbo Debugger does not have a single result; instead, the outcome of a
command depends on where your cursor is or what text is selected.

Local Menus

Another aspect of Turbo Debugger's sensitivity to context is in its use of
pop-up menus specific to the occasion.

Pop-up menus in Turbo Debugger are called "local" to remind you that
they are tailored to the particular spot your cursor happens to be. It's
important not to confuse pop-up (local) menus with pull-down (global)
menus (which were discussed on page 17). Compare the following two
lists:

Chapter 2, Debugging and Turbo Debugger 19

Pull-Down (Global) Menus

•Pull-down menus are those that you access by pressing F10 and using the
arrow keys or typing the first letter of the menu name.

•The pull-down menus are always available and visible on the menu bar
at the top of the screen.

• Their contents never change.
•Some of the menu commands have hot key shortcuts that are available

from any part of Turbo Debugger.

Pop-Up (Local) Menus

•You call up a pop-up menu by pressing Alt-F10 or Ctrl-F10.
•The placement and contents of the menu depends on what text is

selected or where your cursor is.
•The contents of pop-up menus can change. (Even so, it's important to

realize that many of the local commands appear in almost all of the local
menus so that there's a predictable core of commands from one to the
other.) Even the results of like-named commands can be different,
depending on the context.

•Every command on a pop-up has a hot key shortcut consisting of
pressing Ctr/ plus the first letter of the command.
Because of this arrangement, a hot key, say Ctrl-S, might mean one thing
in one context but quite another in another. (As mentioned earlier,
though, there is still a consistency across the pop-up menus of a core of
commands. For example, the Goto command and the Search command
always do the same thing, even when they are invoked from different
panes.)

20 Turbo Debugger User's Guide

Here is a composite screen shot of both kinds of menus (when actually
working in Turbo Debugger, however, you could never have both types of
menus showing at the same time):

File l1l!C Run Breakpoints Data Window Options
ilil[!• mll 1

type ·~001·"""' Parm Stac <--a pull-down menu
Parm Log

Pa Watches a pop-up (local) menu
Ne Variables I

end; Module ••• Alt-F3 v
var File •••

Head CPU ; •J!~~fl .. I : Dump
s : Registers

begin Numeric processor Module
Head User screen Alt-F5 File •••
for
ber Another Previous

meter I Line •••
s :• ParamStr(I); Search •••
If MaxAvall < SizeOf(ParmRec) + Length(s)) Next oom on heap? I
begin Origin

lioto •••
atches r Edit 2

Fl-Help Esc-Abort

Figure 2.1: Pull-Down vs. Pop-Up Menus

From a user's standpoint, local menus are a great convenience. All possible
command choices relevant to the moment are laid out at a glance. This
prevents you from trying to choose inappropriate commands and keeps the
menus small and uncluttered.

History Lessons

Menus and context-sensitivity comprise just two aspects of the convenient
user interface of Turbo Debugger. Another habit-forming feature is the
"history list."

Conforming to the philosophy that the user shouldn't have to type more
than absolutely necessary, Turbo Debugger remembers whatever you enter
into prompt boxes and displays that text whenever you call up the box
again.

For example, if you search for the function called ReturnOnlnvestment, you
would typically have to type in all or part of that word. Then suppose you
needed to search for a variable called myPercentage. When you see the

Chapter 2, Debugging and Turbo Debugger 21

prompt box this time, you'll notice that the text ReturnOninvestment appears
in the box. When you search for another text string, both previously
entered strings appear in the box. The list keeps growing as you continue to
use the Search command.

The search prompt box might look like this:

1illmF101eBIWv~1e1w111m~DnllMIB~r!ea1kao11~nt~s==o=a=ta===w=1n=d=ow===Op~t=1o=n=s======~!!'!
setr g tco ;
setl eftcol ();

)
displayscreen(NOUPDATE);

break;
case HOMEKEY :
currow = curcol = leftcol = toprow = O;
setr1ghtco1 ();
setbottomrow();
displayscreen(NOUPDATE);
break;

case ENDKEY :
rightcol = curcol = lastcol;
currow = bottomrow = lastrow;
settoprow();
setleftcol ();
setrightcol ();
displayscreen(NOUPDATE);

latches

Fl-Help e-1-Select Esc-Abort

Enter search string

~1"~~·' ;:; ci ortab le
input
top row
cell

Figure 2.2: A History List in a Prompt Box

You can use this history list as a shortcut to typing by using the arrow keys
to select any previous text and then press Enter to start the search. If you use
an unaltered entry from the history list, the entry moves to the top of the
list. You can also edit text (use the arrow keys to insert the cursor into the
highlighted text then edit as normal using Del or Backspace). For example,
you can select myPercentage and change it to hisPercentage rather than
typing in the entire text. If you start to type a new item when an entry is
highlighted, you will overwrite the highlighted item. The first item in a
search list is always the word the cursor is on in the Module window.

The debugger lists the last ten responses unless you tell it otherwise. (You
can change its size using the TDINST program.)

Turbo Debugger keeps a separate history list for most prompt boxes. That
way, the text you enter for searching for text does not clutter up the box for,
say, going to a particular label or line number.

22 Turbo Debugger User's Guide

Making Macros

Macros are simply keystroke shortcuts that you define. You can define any
series of Turbo Debugger commands and keystrokes to a single key, for
"playback" whenever you want.

To create a macro, press F10 to activate the menu bar, press 0 to select the
Options menu, and choose Macros from the Options menu. At this point,
you have a choice of four commands: Create, Remove, Delete All, and Stop
Recording. Choose Create; Turbo Debugger prompts you for a key to save
the upcoming macro to. Press a little-used or easily remembered key (for
example, Shift-Ft for "rerunning a program"). Now go through all the steps
and commands you want to save to that key. To end the recording session,
press the newly defined macro key again (Shift-F1, for example), or press Alt-.

Whenever you find yourself repeating a series of steps, say to yourself,
"Couldn't I be using a macro for this?" For example, do you find yourself
resizing and moving windows a lot depending on whether a program has
many comments extending to the right margin? If so, create a macro that
makes the Module window half-wide (save it as Shift-F2, for half) and make
another macro that makes it full size (save it as Shift-F3, for full). Now you
can toggle easily from one to the other as needed.

Window Shopping

Lots of programs do windows nowadays, but Turbo Debugger does them
better. Turbo Debugger displays all information and data in menus (local
and global), prompt boxes (which you type into), and windows. There are
many types of windows depending on what sort of information that's in it.
You open and close all windows using menu commands (or hot key
shortcuts for those commands). Most of Turbo Debugger's windows come
from the pull-down View menu (there are 12 types of windows found
there). There is another class of window called the Inspect window, which
is opened by choosing Data/Inspect or by choosing Inspect from many of
the local pop-up menus.

Windows from the View Menu

Here is a list of the 12 types of windows you can open by choosing
commands from the View menu. You close these windows by pressing F3
or by choosing Window /Close. If you unintentionally close a window,
choose Window /Undo Close to reopen it (with its contents exactly as they

Chapter 2, Debugging and Turbo Debugger 23

were when you closed it). You can recover only the last-closed window in
this way.

Module window Displays the program code that you're debugging. You
can move around inside the module and examine data
and code by "pointing" at program variable names
with the cursor and issuing the appropriate local menu
command.

Watches window

Breakpoints
window

Stack window

Log window

24

You will probably spend more time in Module
windows than in any other type, so take the time to
learn about all the various local menu commands for
this type of window.

You can also press Alt-F3 to open the Module window.
(Chapter 8 details the Module window and its
commands.)

Displays variables and their changing values. You add
a variable to the window by pressing Ctrl-W when your
cursor is on the variable.

Displays the breakpoints you have set. A breakpoint
defines a location in your program where something is
meant to happen, such as your program stopping so
you can examine the state of the world. (Turbo De­
bugger's breakpoints encompass all the functionality of
what are usually referred to as breakpoints,
watchpoints, and tracepoints.)

You can use this window to modify, delete, or add
breakpoints. (See Chapter 7 for a complete description
of this type of window and how breakpoints work.)

Displays the current state of the stack. You can get
further information on any function or procedure
name in the stack by cursoring to it and "inspecting" it
by pressing Ctr/-/.

By placing the cursor at one of the functions or
procedures in the list, you can examine either its local
variables or the type of the arguments it was called
with. (Chapter 5 provides more information on the
Stack window.)

Displays the contents of the message log. The log
contains a scrolling list of messages and information
generated as you work in Turbo Debugger. The log
contains such things as why your program stopped,

Turbo Debugger User's Guide

the results of breakpoints, and the values of structures
you saved in the log.

This window lets you look back into the past and see
what led up to the current state of affairs. This can be
really handy after a frenzied run of looking here,
looking there, until finally you say, "How the dickens
did I get here?" (Chapter 7 tells you more about the
Log window.)

Variables window Displays all the variables accessible from that spot in
your program. The left pane has global variables; the
right pane shows local variables, if any.

File window

CPU window

This window can be helpful when you want to find a
function or variable that you know begins with, say,
"abc," but when you can't remember its exact name.
You can look in the global symbol pane and quickly
find what you want. (Chapter 5 describes the Variables
window in more detail.)

Displays the contents of a disk file. You can view the
file either as raw hex bytes or as ASCII text. You can
search for specific text or bytes sequences, as well as
directly patch any part of the file on disk. Press F2 to
open a File window.

This is handy if you are debugging a program that uses.
disk files, and you wish to alter the program's behavior
by changing the contents of one of its files. You can also
correct a mistake in the contents of a file, or examine a
file produced by a program to make sure the contents
are correct. (You can learn more about the File window
in Chapter 8.)

Displays the current state of the central processing
unit. This window has five panes: one that contains
disassembled machine instructions, one that shows hex
data bytes, another displays a raw stack of hex words,
another lists the contents of the CPU registers, and one
that indicates the state of the CPU flags.

The CPU window is useful when you want to watch
the exact sequence of instructions that make up a line
of source code or the bytes that comprise a data
structure. If you know assembler code, this can help
locate some types of subtle bugs. You do not need to
use this window to debug the majority of programs.

Chapter 2, Debugging and Turbo Debugger 25

(Chapter 10 discusses the CPU window and
assembler-level debugging.)

Dump window Displays a raw display of an area of memory. You can
view the data as characters, hex bytes, words, double
words, and all the floating-point formats. (This
window is the same as the Data pane of a CPU
window.) You can use it when you want to look at
some raw data but don't care about the rest of the CPU
state. The local menu has commands to let you modify
the displayed data, change the format in which you
view the data, and manipulate blocks of data.

See Chapter 10, which discusses assembler debugging,
for more information on how to use this window.

Registers window Displays the contents of the CPU registers and flags.
This window has two panes, which are the same as the
registers and flags panes of a CPU viewer. Use this
window when you want to look at the contents of the
registers but d~n't care about the rest of the CPU state.
You can change the value of any of the registers or flags
through commands in the local menu.

Chapter 10, which discusses assembler debugging, has
more information on how to use this window.

Numeric Displays the current state of the math coprocessor. This
Processor window window has three panes: one pane that shows the

contents of the floating-point registers, one that shows
the status flag values, and one that shows the control
flag values.

User Screen
window

26

This window can help you diagnose problems in pro­
grams that use floating-point numbers. You need to
have a fair understanding of the inner workings of the
math coprocessor in order to really reap the benefits of
this window. (See Chapter 11 for more information
about using the Numeric Processor window.)

Shows you your program's output screen. The screen
you see is exactly the same as the one you would see if
your program was running directly from DOS and not
under Turbo Debugger.

You can use this window to check that your program is
at the place in your code you expect it to be, as well as
to verify that it is displaying what you want on the

Turbo Debugger User's Guide

screen. Alt-FS is the shortcut. After viewing the User
Screen window, press any key to go to the debugger
screen.

You can also open duplicates of three types of windows-CPU, File, and
Module-by choosing View I Another. This allows you to keep track of
several disparate areas of assembly code, different files the program uses or
generates, or several distinct programs modules at once.

Don't be alarmed if Turbo Debugger opens one of these windows all by
itself. It will do this in some cases in response to a command. (For example,
if you choose to view your source file while you're in a Code pane, Turbo
Debugger automatically opens a CPU or Module window.)

Inspector Windows

An Inspector window displays the current value of a selected variable. This
type of window is never split into panes. Usually, you close this window by
pressing Esc. If you've opened more than one Inspector window in
succession, as often happens when you examine a complex data structure,
you can remove all the inspectors in one swoop by pressing F3 or using the
Window /Close command.

You can open an Inspector window to look at an array of items or at the
contents of a variable or expression.

An Inspector window adapts to the type of data being displayed. It can
display simple scalars (int, float, and so on), as well as pointers, arrays,
records, structures, and unions. Each type of data item is displayed in a
way that closely mimics the way you are used to seeing it in your pro­
gram's source code.

Note that unlike windows from the View menu, you can create additional
Inspector windows simply by choosing the Inspect command again. (You
can create additional Module, File, or CPU windows only by choosing
View I Another.)

The Active Window

Even though you can have many windows open in Turbo Debugger at the
same time, only one window can be active. You can spot the active window
by the following criteria:

•The active window has a double line around it, not a single line.

•The active window's title is highlighted.

Chapter 2, Debugging and Turbo Debugger 27

• The active window is the one with the cursor or highlight bar in it.
• If your windows are overlapping, the active window is the topmost one.

When you issue commands, enter text, or scroll, you affect only the active
window, not any other window that might be showing or open.

File View Run Breakpoints Data __ w_t_nc1_o_w_0p_t_io_n_s _____ IDDD
dule: MCPARSER File: MCPARSER.PAS 431 ==h

Counter : Nord;
begin

... Accepted :• False;

.,.. ToklnError :• False;
MathError :• False;
IsFormula := False;
Input :• UpperCase(S);
StackTop :• O PU 80286--­
FirstToken.St MCPAISER.431: ==========="""""-0
FtrstToken.va c1:0ED1•1111v byte ptr [OlA0],00 bx 395E z•l
Push(Firstrok MCPARSER.432: MathError :• False; ex 0000 s-0
TokenType :• cs:OEDE mov byte ptr [019F] ,00 dx 5CF9 o-0
repeat MCPARSER.433: IsFonnula :• False; si 3C9C p•l

case Stack[cs:OEE3 mov byte ptr [OlAl],00 di 3A7D a-0
0, 9, 12. MCPARSER.434: Input :• UpperCase(S); bp 3B7C i•l

if Toke cs:OEE8 lea di, [bp-0210] sp 396C d-0

atches:------------.,z~
Chuged
Ch
CheckBreak

Fal H : IOOLEAll
1 / 1 : CHAR
False : BOOLEAN

F2-Bkpt F3-Close F4-Here FS-ZOCID Fl-Next F7-Trace Fl-Step fl-Run FlO-Menu

Figure 2.3: Can You Spot the Active Window?

Window Hopping

You can make any of the first nine open windows the active one by pressing
Alt in combination with the number of the window, which appears in the
upper right corner of the window. (Usually, the Module window is
window 1 and the Watches window is window 2. Whatever window you
open after that will be window 3, and so on.) If you press Alt-2, for example,
to make the Watches window active, any commands you choose will affect
that window and any variables that might be in it.

To see a list of all open windows, press Alt-0. Turbo Debugger displays a
normal pop-up menu of the open windows for you to select one. Press Enter
and the selected windows becomes the active one.

You can also press F6 to cycle through the windows in turn. This is handy if
an open window's number is covered so you don't know what shortcut key
to press to make it active.

28 Turbo Debugger User's Gulde

If a window has panes-areas of the window designated for distinct types
of data-you can move from one pane to another by pressing Tab or Shift­
Tab, or by choosing Window /Next Pane Cycle. The most pane-ful window
in Turbo Debugger is the CPU window, which has five panes.

As you hop from pane to pane, you'll notice that sometimes a blinking
cursor appears in the pane while other times a highlight bar appears
instead. If a cursor appears, you move around the text using standard
keypad commands. (PgUp, Ctrl-Home, and Ctrl-PgUp, for example move the
cursor up one screen, to the top of pane, or to the top of the libl,
respectively.) You can also use Wordstar-like shortcuts for moving around
in the pane. Refer to Table 12.1 and Table 12.1 in Chapter 12 for lists of
keystroke commands in panes.

If there's a highlight bar in a pane instead of a cursor, you can still use
standard keypad movement keys to get around, but a couple of special
keystrokes also apply. In alphabetical lists, for example, you can "select by
typing." As you type each letter, the highlight bar moves to the first item
starting with the letters you've just typed. The position of the cursor in the
highlighted item indicates how much of the name you have already typed.
Once the highlight bar is on the desired item, your search is complete. This
incremental searching or "select by typing" minimizes the number of
characters you must type in order to choose an item from a list.

Once an item is selected (highlighted) from a list, you can press Alt-F10 or
Ctrl-F10 to choose a local command relevant to it. In many lists, you can also
just press Enter once you have selected an item. This acts as a shortcut to one
of the commonly used local menu commands. The exact function of the
Enter key in these cases is described in the reference section starting on page
187.

Finally, a number of panes let you start typing a new value or search string
without choosing a command first. This usually applies to the most
frequently used command in a pane or window-like Goto in a Module
window, Search in a File window, or Change in a Registers window.

Resizing and Saving Windows

When Turbo Debugger makes a new window, it appears near the current
cursor location and has a default size suitable for the specified window.
You can use the Window /Move/Resize command to adjust the size or
location of the window. After choosing this command, your active window
border changes to a single-line border. You then use the arrow keys to
change the placement and size of the window on your screen. Press Enter

Chapter 2, Debugging and Turbo Debugger 29

when you're satisfied with its position. Pressing Scroll Lock is a shortcut for
the Move/Resize command.

If you want to quickly enlarge (or then reduce) a window, you can press F5
to "zoom" or "unzoom" it.

You can also use the Options/Save Options command to save a specific
window configuration once you have the screen arranged the way you like.
The screen will then appear that way each time you start Turbo Debugger
from DOS, if the configuration was saved to a file called TDCONFIG.TD.
This is the only configuration file that is loaded automatically when Turbo
Debugger is loaded. Other configurations (saved in other files) can be
loaded by using the Options/Restore Options command, if this
configuration was saved to TDCONFIG.TD.

Getting Help

As you've seen, Turbo Debugger goes out of its way to make debugging
easy for you. It requires a minimum of remembering obscure commands, it
keeps lists of what you do type in case you want to repeat them, it lets you
define macros, and it offers incredible control of windows. Even so, Turbo
Debugger is a sophisticated program with lots of features and commands.
To avoid potential confusion, Turbo Debugger offers the following help
features:

•A highlighted activity indicator in the upper right comer always displays
the current activity. For example, if your cursor is in a window, the
activity indicator read READY; if there's a menu visible, it reads MENU;
when at a prompt box, it reads PROMPT. If you ever get confused about
what's happening in Turbo Debugger, look at the activity indicator for
help. (Other possibilities for the activity indicator are MOVE/RESIZE,
MOVE, and ERROR.)

•Remember that the active window is always topmost and has a double
line around it.

•You can access an extensive context-sensitive help system by pressing Ft.

•The bottom line of the screen always offers a quick reference summary of
keystroke commands. The line changes as the context changes and as you
press Shift, Alt, or Ctr/.

For more information on the last two avenues for help, read the following
sections.

30 Turbo Debugger User's Guide

Online Help

Turbo Debugger, like other Borland products, gives context-sensitive
onscreen help at the touch of a single key. Help is available anytime you're
within a menu or window, as well as when an error message or prompt is
displayed.

Press Ft to bring up a Help window showing information pertinent to the
current context. Some help screens contain highlighted keywords that
allow you to get additional help on that highlighted item. Use the arrow
keys to move to any keyword and then press Enter to get to that item's
screen. You can use the Home and End keys to go to the first and last key­
words on the screen, respectively.

If you want to return to a previous Help screen, press Alt-Ft. From within
the Help system, use PgUp to scroll back through the last 20 help screens.
PgDn only works when you're in a group of context-related screens. To
access the Help Index, Press Ft from within the Help system. To exit from
Help, press Esc.

The Bottom Line

Wherever you're in Turbo Debugger, a quick reference help line appears at
the bottom of the screen. This line provides at-a-glance keystroke command
help for your current context.

The normal bottom (reference) line shows the commands performed by the
function keys, and looks like this:

F2-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 2.4: The Normal Reference Line

If you hold down the Alt key for a second or two, the commands performed
by the Alt function keys are displayed.

Alt: F2-Bkpt at F3-Mod F4-An1m FS-User F6-Undo F7-Instr F8-Rtn F9-To FlO-Local

Figure 2.5: The-Reference Line with Alt Pressed

Chapter 2, Debugging and Turbo Debugger 31

If you hold down the Ctr/ key for a second or two, the commands performed
by the Ctr/ letter keys are displayed. This help line changes depending on
the current window and current pane, and it shows the single-keystroke
equivalents for the current local menu. If there are more local menu
commands than can be described on the bottom line, only the first keys are
shown. You can view all the available commands on a local menu by
pressing Alt-F10 or Ctrl-F10 to pop up the entire menu.

Ctrl: I-Inspect W-Watch M-Module F·File P-Previous L-Line S-Search N-Next

Figure 2.6: Typical Reference Line with Cfll Pressed

32 Turbo Debugger User's Guide

c H A p T E R

------------------·----·-·

3

Getting Started: A Quick Example

If you are itching to use Turbo Debugger and aren't the sort of person to
work through the whole manual first, this chapter gives you enough
knowledge to debug your first program. Once you've learned the basic
concepts described here, the well-integrated, intuitive user interface and
context-sensitive help system allow you to learn as you go along.

This chapter leads you through all of Turbo Debugger's basic features.
After describing the sample programs-one in C and another in
Pascal-provided on the distribution disk, it shows you how to

• run and stop the program
•examine the contents of program variables
•look at complex data objects, like arrays and structures

•change the value of variables

The Sample Programs

The sample programs (TCDEMO.C for C, TPDEMO.PAS for Pascal),
introduce you to the two main things you need to know to debug a pro­
gram: how to stop and start your program, and how to examine your pro­
gram's variables and data structures. The programs themselves are not
meant to be terribly useful: Some of their code and data structures exist
solely to show you Turbo Debugger's capabilities. (For example, each
shows you how to access command-line parameters, even though they're
not really used for anything.)

Chapter 3, Getting Started: A Quick Example 33

Each demo program lets you type in some lines of text, then counts the
number of words and letters that you entered. At the end of the program,
each displays some statistics about the text, including the average number
of words per line and the frequency of each letter.

Make sure that your current directory contains the two files needed for the
tutorial. For the C example, you'll need TCDEMO.C and TCDEMO.EXE;
for the Pascal example, you need TPDEMO.PAS and TPDEMO.EXE.

To start the C program, enter

TD TCDEMO

To start the Pascal program, enter

TD TPDEMO

Turbo Debugger loads the demo program and positions the cursor at the
start of the program.

File Ylew Run Break olnts Data Window Options l3!i.1!il
rilml·~·lli1!·1I!~·~·.-imr:IJ!m·~·llli»=:'=="."""==::=:===~;...;.=============1

statlc vold showargs lnt argc, char *argv0);

/* program entry polnt
*/

~lnt maln(lnt argc, char **argv) {
unslgned lnt nltnes, nwords, wordcount;
unslgned long totalcharacters;

nllnes = O;
nwords = O;
totalcharacters = O;
showar~s(argc, a".9v);
whlle (readallne(} != O) {

wordcount = makelntowords(buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlines++;

latches]

F2-Bkpt F3-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step Fl-Run FlO-Menu

Figure 3.1: The startup Screen Showing TCDEMO

This screen consists of the main menu line, the Module and Watches
windows, and the help line.

To exit from the tutorial at any time and return to DOS, press Alt-X. If you
get hopelessly lost while following the tutorial, press Ctrl-F2 to reload the
program and start at the beginning. However, Ctrl-F2 doesn't clear
breakpoints or watches; you'll have to use Alt-FL to do that.

34 Turbo Debugger User's Guide

Press F1 whenever you need help about the current window, command,
prompt, or error message. You can learn a lot by working your way
through the menu system and pressing F1 at each command to get a
summary of what it does.

Using Turbo Debugger

The top line of the screen shows the main menu bar. To pull down a menu
off of it, press either the F10 key or the Alt key in combination with the first
letter of one of the menu names.

Press F10 now. Notice that the cursor disappears from the Module window,
and the File command on the main menu becomes highlighted. The bottom
line of the screen also changes to show you which keys you can use in the
File menu; in this case, only the F1 (Help) and Esc (Abort) keys appear.

Use the arrow keys to move around the menu system. Press Down arrow to
pull down the menu for the highlighted item on the main menu.

Press Esc to move back through the levels of the menu system. When just
one menu item on the main menu is highlighted, pressing Esc returns you
to the Module window, with the main menu no longer active.

The Help Line

The bottom line of the screen shows relevant function keys and what they
do. This line further changes depending on what you are entering (menu
commands, a response to a prompt, and so on). Hold Alt down for a second
or two, for example. Notice that the bottom line changes to show you the
function keys you can use with Alt.

Now press Ctr/ for a second. The commands shown on the bottom line are
the shortcuts to the local menu commands for the current pane (area of the
window). They change depending on which pane of which sort of window
you are currently in. More about these later.

The Windows

The window area takes up most of the screen. This is where you examine
different parts of your program by viewing it through different windows.

The display starts up with two windows: a Module window and the
Watches window. Until you open more windows or adjust these two, they

Chapter 3, Getting Started: A Quick Example 35

remain tiled. This means they fill the entire screen without overlapping.
New windows automatically overlap existing windows until you move
them.

Notice that the Module window has a double-line border and a highlighted
title. This means it is the active window. You use the cursor keys (the arrow
keys, Home, End, PgUp, and so on) to move around inside the active window.
Press F6 to switch to another window. Do that now. The Watches window
becomes active, with a double-line border and a highlighted title.

Use the View menu command from the main menu bar to create new
windows. Press Alt-V to pull down the View menu, then press S to open a
Stack window. The View menu disappears, and the Stack window pops up
on top of the Module window.

To remove the active window, press F3. Do that now. The Stack window
disappears.

Turbo Debugger stores the last-closed window so you can recover it if you
need to. If you accidentally close a window, press Alt-W to open the Window
menu. Press U to choose the Undo Close command. The Stack window
reappears. You can also press Alt-F6 to recover the last-closed window.

The Window menu contains the commands that let you adjust the
appearance of the windows you already have on the screen. You can both
move the window around the screen and change its size. (You can use Scroll
Lock to do this too.)

Press Alt-WM (to display the Window menu and then choose the Move/
Resize command) and use the arrow keys to reposition the active window
(the Stack window) on the screen. Hold Shift down and use the arrow keys
to adjust the size of the window. Press Enter when you have defined a new
size and position that you like.

Now, to prepare for the next section, remove the Stack window by pressing
F3. Depending on whether you've loaded the C or Pascal demo program,
you should continue with the next section (for the C sample) or move to the
Pascal section starting on page 43.

Using the C Sample Program

The filled arrow (>-) in the left column of the Module window shows where
Turbo Debugger stopped your program. Since you haven't run your pro­
gram yet, the arrow is on the first line of the program. Press Fl to trace a
single source line. The arrow and cursor are now on the next executable
line.

36 Turbo Debugger User's Guide

Look at the right margin of the Module window title. It shows the line that
the cursor is on. Move the cursor up and down with the arrow keys and
notice how the line number in the title changes.

As you can see from the Run menu, there are a number of ways to control
the execution of your program. Let's say you want to execute the program
until it reaches line 38. First, position the cursor on line 38, then press F4.
This will run the program up to (but not including) line 38. Now press Fl,
which executes one line of source code at a time; in this case, it executes line
38, a call to the function showargs. The cursor will immediately jump to
line 150, where the definition of showargs is found. Continuing to press Fl
will step you through the function showargs and then return you to the
line following the call-line 39. If you had pressed FB instead of Fl on line
38, the cursor would have gone directly to line 39 instead of to the function.
FB is similar to Flin that it executes functions, but it doesn't enter them.

~~Ft~laemliV~i~ew~IQiQl!lii~!Jl!llll/~D~a~ta~~W~i~nd~o~w~O~p~tt~o~ns~~~~~~';:::!!;l1•U li1I I I I I
uns gne nt n nes, nwords, wordcount;
unsigned long totalcharacters;

nlines = 0;
nwords = 0;
totalcharacters = O;
showarQs(argc, ai:llv);
while (readaltne() I= O) I

)

wordcount = maketntowords(buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nl1 nes++;

printstatisttcs(nlines, nwords, totalcharacters};
return(O);

/*make the buffer tnto a ltst of null-terminated words that end tn

latches 2]

Alt: F2-Bkpt at Fl-Mod F4-Anim F5-User F6-Undo F7-Instr F8-Rtn F9-To

Figure 3.2: The Program Stops after Returning from Function showargs

To execute the program until a specific place is reached, you can directly
name the function or line number, without moving the cursor to that line in
a source file and then running to that point. Press Alt-F9 to specify a label to
run to. A prompt box appears. Type readaline and press Enter. The program
runs, then stops at the beginning of function readaline (line 141).

Chapter 3, Getting Started: A Quick Example 37

Setting Breakpoints in the C Demo Program

Another way to control where your program stops running is with
breakpoints. The simplest way to set a breakpoint is with the F2 key. Move
the cursor to line 43 and press F2. Turbo Debugger highlights the line,
indicating there is a breakpoint set on it.

nlines • O;
nwords = O;
totalcharacters = O;
showar9s(argc, ar:11v);
while (readallne() I= O) I

I

wordcount s makelntowords(buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nltnes++;

printstat1st1cs(nl1nes, nwords, totalcharacters);
return(O);

/*make the buffer into a list of null-terminated words that end in

ratches

F2-Bkpt Fl-Close F4-Here FS-Zoom Fi-Next F7-Trace Fl-Step F9-Run FlO-Menu

Figure 3.3: A Breakpoint at Line 43

Now press F9 to execute your program without interruption. The screen
switches to the program's display. The demo program is now running and
waiting for you to enter a line of text. Type abc, a space, def, and then press
Enter. The display returns to the Turbo Debugger screen with the arrow on
line 43, where you set a breakpoint that has stopped the program.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

Using Watches

The Watches window at the bottom of the screen shows the value of
variables you specify. For example, to watch the value of the variable
nwords, move the cursor to the variable name on line 41 and press Ctr/-W.
This is the shortcut for the local menu command Alt-F10 W.

38 Turbo Debugger User's Guide

-'iJFm1D1e:llwv~1e!w~DRmunl',i'llle~re~a~klo~1n1t~s==oa,.;;.;.ta~~w~1n~d~ow~~o~p~t1~0~ns==========~ID~t111fl llUI'' * • I I ' I

nwords = O;
totalcharacters = O;
showar~s(argc, ai:lJv);

• wh1le (readal1ne(J != O) I

I

wordcount = makelntowords(buffer);
nwords += wordcount;
totalcharacters +• analyzewords(buffer):
nl1nes++;

pr1ntstat1stlcs(nllnes, nwords, totalcharacters):
return(O);

/*make the buffer 1nto a 11st of null-tennlnated words that end 1n
* 1n two nulls, squish out white space
*/

static Int makelntowords(char *bufp)
unsigned Int nwords;

r:atches
~rds unsigned int 2 (Ox2)

F2-Bkpt Fl-Close F4-Here FS-Zoom Fi-Next F7-Trace FB-Step F9-Run FlO-Menu

Figure 3.4: A Variable in the Watches Window

nwords now appears in the Watches window at the bottom of the screen,
along with its type (unsigned int) and value. As you execute the program,
Turbo Debugger updates this value to reflect the variable's current value.

Examining Simple C Data Objects

Once you have stopped your program, there are a number of ways of
looking at data using the Inspect command. This very powerful facility lets
you examine data structures in the same way that you visualize them when
writing a program.

The Inspect commands (in various local menus and in the Data menu) let
you examine any variable you specify. Suppose you want to look at the
value of the variable nlines. Move the cursor so it is under one of the letters
in nlines and press Ctr/-/. An Inspector window pops up.

Chapter 3, Getting Started: A Quick Example 39

File V1ew Run Breakpo1nts Data W1ndow Options !llB
dule: TCDEMO F1le: TCDEMO.C 41--------------1

nwords = O;
totalcharacters = O;
showar9s(argc, a1'.9v};
wh1le (readaline(} !• O} {

wordcount = make1ntowords(buffer};
nwords += wordcount;

~p'&:r•·m"*
I j~•·!e!4•11j1
pr1ntsta
return(O};

0 OxO
3fer};

ters};

/*make the buffer into a list of null-terminated words that end in
* 1n two nulls, squ1sh out white space
*/

static int makelntowords(char *bufp} {
unsigned int nwords;

rWatches
~rds unsigned 1nt O (OxO)

FZ-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 3.5: An Inspector Window

The first line tells you that the compiler has optimized this variable by
placing it in a CPU register. You need not worry about where the variable is
actually stored-Turbo Debugger takes care of everything, letting you refer
to all your data exactly as shown in your program. The second line shows
you what type of data is stored in nlines (it's a C unsigned int). To the right
is the current value of the variable.

Now, having examined the variable, press Esc to close the Inspector
window. You can also use F3 to remove the inspector, just like any other
window.

Let's review what you actually did here. By pressing Ctr/, you took a short­
cut to the local menu commands in the Module window. Pressing I
specified the Inspect command.

To examine a data item that is not conveniently displayed in the Module
window, press Alt-D I. A prompt box appears, asking you to enter the
variable to inspect. Type letterinfo and press Enter. An inspector appears,
showing the values of the letterinfo array elements. The title of the
inspector shows the name of the data you are inspecting. The first line
under the title is the address in main memory of the first element of the
array letterinfo. Use the arrow keys to scroll through the 26 elements that
make up the letterinfo array. The next section shows you how to examine
this compound data object.

40 Turbo Debugger User's Guide

Examining Compound C Data Objects

A compound data object, such as an array or structure, contains multiple
components. Move to the fourth element of the letterinfo array (the one
indicated by [3J). Press Alt-F10 to bring up the local menu for the Inspector
window, then press I to choose the Inspect command. A new inspector
appears, showing the contents of that element in the array. This inspector
shows the contents of a structure of type linfo.

F1le View
dule: TCDEl«l

Run Breakpoints Data Window Options llJJillrl
F1le: TCDEl«l.C 91-------------:=:r,

letterindex = toupper(*bufp) - 'A';/* 0-based index
if (first) {

letterinfo[letterindex].firstletter++;

[O] {l, l} ; /* count the
[l] {l,O}
[2] {1,0}
[3] {1,1}

Inspecting letterinfo--~
@5A51:08F4

} [4] {1,0)
wordcoun a word of this leng
bufp++;

}
return(charcount

struct linfo
/* display all the statl Ll!============i
*/

ratches 21

F2-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 3.6: Inspecting a structure

When you place the cursor over one of the member names, the data type of
that member appears in the bottom pane of the inspector. If one of these
members were in turn a compound data object, you could issue an inspect
command and dig down further into the data structure.

Press F3 to remove both Inspector windows and return to the Module
window. (F3 is a convenient way of removing several inspectors at once. If
you had pressed Esc, only the latest inspector would have been deleted.)

Changing C Data Values

So far, you've learned how to look at data in the program. Now, let's change
the value of data items.

Chapter 3, Geffing Started: A Quick Example 41

Use the arrow keys to go to line 37 in the source file. Place the cursor at the
variable totalcharacters and press Ctr/-/ to inspect its value. With the Inspector
window open, press Alt-F10 to bring up the Inspector's local menu. Press C
to choose the Change option. (You could also have done this directly by
pressing Ctrl-C.) A prompt appears, asking for the new value.

File View lllln Breakpoints Data Window Options ~
dule: TCDOO File: TCDEMO.C 37--------------1

nlines = O;
nwords • O;
totalcharacters = O;

'slf:W~f'GlilAifiii!A!if!Q=3~
~~ •• , , , , 1 • ds(buffer);

Range... s +• analyzewords(buffer); ••·am·r I Enler new value for unsigned lon
p total characters+4 characters); r'-------------' New expression •••

/* make the buffer into a list of null-tenninated words that end in
* in two nulls, squish out white space
*/

static int makeintowords(char *bufp) {

latches]

FZ-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step Fl-Run FlO-Menu

Figure 3.1: The Change Command Prompt

At this point, you can enter any C expression that evaluates to a number.
Type totalcharacters+4 and press Enter. The value in the inspector now
shows the new value, lOL (OxA).

To change a data item that isn't displayed in the Module window, press Alt­
o E. A prompt box appears, in which you enter the name of the variable to
change. Type argc and press Enter, then press Tab twice to move to the line
labeled New Value. Type 123 and press Enter. The integer result (second
line) will change to int 123 (0x7B).

That's a quick introduction to using the Turbo Debugger with a Turbo C
program. For a more extensive walk-through, take a look at Chapter 13's
sample debugging session-it uses a "buggy" version of this program.

42 Turbo Debugger User's Guide

Using the Pascal Sample Program

The filled arrow(>) in the left column of the Module window shows where
Turbo Debugger stopped your program. Since you haven't run your pro­
gram yet, the arrow is on the first line of the program. Press Fl to trace a
single source line. The arrow and cursor are now on the next line.

Look at the right margin of the Module window title. It shows the line that
the cursor is on. Move the cursor up and down with the arrow keys and
notice how the line number in the title changes.

To make the program execute until it reaches line 222, move the cursor to
that line and then press F4. TPDEMO will prompt you to enter a string.
Type a few keystrokes, then press Enter. Now, with the cursor still on line
222, press Fl to execute another single line of source code. Since the line
you executed is a call to a different procedure, the arrow now appears on
the first line of the function ProcessLine. Press Alt-FB to make the program
stop when ProcessLine returns. This command is very useful when you
want to jump past the end of a function or procedure.

latches

F2-Bkpt Fl-Close F4-Here F5-Zoom Fi-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 3.8: The Program stops after Returning from a Procedure

To execute the program until a specific place is reached, you can directly
name the function or line number, without moving the cursor to that line in
a source file and then running to that point. Press Alt-F9 to specify a label to

Chapter 3, Getting Started: A Quick Example 43

run to. A prompt box appears. Type GetLine and press Enter. The program
runs, then stops at the beginning of function GetLine.

Setting Breakpoints in the Sample Pascal Program

Another way to control where your program stops running is with
breakpoints. The simplest way to set a breakpoint is with the F2 key. Move
the cursor to line 120 and press F2. Turbo Debugger highlights the line,
indicating there is a breakpoint set on it.

~Fm1Ule~~Y~ie~w:!JllRiuUnDIBGr~ea~k~o~in~tls~Da=--==ta"'=~W~1n~do~w~~Op~t~io~n~s~~~~~lil::;:::ft!1m I~.. . . . I 'l • I.

: Integer;
Wordlen : Word;

begin { ProcessLine }
Inc (ll1nL 1nes);
j := l;
while l <= Length(S) do
be!jln

\ Skip non-letters I
while (1 <= Length(S)) and not Isletter(S[i]) do

Inc(i);

{ Find end of word, bump letter & word counters }
Wordlen := 0;
while (1 <= Length(S}) and Isletter(S[1]} do
begin

Inc(Numletters);
Inc(LetterTable[UpCase(S[i])].Count};

latches 2]
FZ-Bkpt Fl-Close F4-Here FS-Zoom F&-Next F7-Trace FB-Step F9-Run FlO-Menu

Figure 3.9: A Breakpoint at Line 120

Now press F9 to execute your program without interruption. The screen
switches to the program's display. The demo program is now running and
waiting for you to enter a line of text. Type abc, a space, def, and then press
Enter. The display returns to the Turbo Debugger screen with the arrow on
line 120, where you set a breakpoint that has stopped the program.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

44 Turbo Debugger User's Guide

Using Watches

The Watches window at the bottom of the screen shows the value of
variables you specify. For example, to watch the value of the variable
NumWJrds, move the cursor to the variable name on line 143 and press Ctrl­
W. This is the shortcut for the local menu command Alt-F10 W.

{ Bump word count info)
if WordLen > 0 then
begin

Inc (Nurrliilords);
if WordLen <= MaxWordLen then

Inc(WordLenTable [Word Len]);
end;

end; { while)
end; { Processline I

function GetLine : BufferStr;

~atches
I Numllords 2 ($2) : WORD

F2-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 3.10: A Pascal Variable in the Watches Window

NumWJrds now appears in the Watches window at the bottom of the screen,
along with its type (word) and value. As you execute the program, Turbo
Debugger updates this value to reflect the variable's current value.

Examining Simple Pascal Data Objects

Once you have stopped your program, there are a number of ways of
looking at data using the Inspect command. This very powerful facility lets
you examine data structures in the same way that you visualize them when
writing a program.

The Inspect commands (in various local menus and in the Data menu) let
you examine any variable you specify. Suppose you want to look at the
value of the variable NumLines. Move the cursor back to line 120 so it's

Chapter 3, Getting Started: A Quick Example 45

under one of the letters in NumLines and press Ctr/-/. An Inspector window
pops up.

F1le View Run Breakpoints _oa_ta __ w_in_d_ow __ op_t_io_n_s _____ lmiil
dule: TPDEMO File: TPDEMO.PAS 120 :::::::r-;­

i : Integer;
Word Len : Word:

.... begin I ProcessLine }

... Inc(N1nL1nes):
i :=
whll
begi

I
while (i <• Length(S)) and not Isletter(S[i]) do

Inc(l);

{ Find end of word, bwnp letter & ward counters I
wardlen :• O;
while (i <= Length(S)) and Isletter(S[i]) do
begin

Inc(Numletters);
Inc(LetterTable[UpCase(S[i])].Caunt);

~atches
I NumWards 2 ($2) : WORD

F2-Bkpt Fl-Clase F4-Here F5-Zaam F&-Next F7-Trace FB-Step F9-Run FlO-Menu

Figure 3. 11: An Inspector Window

J

The first line tells you the variable name; the second line shows its address
in memory. The third line tells you what type of data is stored in NumLines
(it's a Pascal word) and displays the current value of the variable.

Now, having examined the variable, press Esc to close the Inspector
window. You can also use F3 to remove the inspector, just like any other
window.

Let's review what you actually did here. By pressing Ctr/, you took a short­
cut to the local menu commands in the Module window. Pressing I
specified the Inspect command.

To examine a data item that is not conveniently displayed in the Module
window, press Alt-D I. A prompt box appears, asking you to enter the
variable to inspect. Type LetterTable and press Enter. An inspector appears,
showing the value of LetterTable. Use the arrow keys to scroll through the
26 elements that make up LetterTable. The title of the inspector shows the
name and type of the data you are inspecting, exactly as the declaration for
this data appears in the source file. The next section shows you how to
examine this compound data object.

46 Turbo Debugger User's Guide

Examining Compound Data Objects in Pascal

A compound data object, such as an array or structure, contains multiple
components. Move to the fourth element of the LetterTalk array (the one
indicated by ['D']). Press Alt-F10 to bring up the local menu for the Inspector
window, then choose the Inspect command. A new Inspector window
appears, showing the contents of that element in the array. This inspector
shows the contents of a record of type LinfoRec.

File View Run Breakpoints _Da_ta __ w_1n_d_ow __ o_pt_1o_n_s _____ [:lJ.Jill
dule: TPDEMO File: TPDEMO.PAS 120 =::::r;­

i : Integer;
WordLen : Word;

begin { ProcessLine)
.... Inc (N1nL 1nes);

I :z l;
while I <= Length(S) do
be!Jin

I Skip non-letters)
while (I <= Length(S)) and not

Inc(i);

{ Find end of word, bump letter record LINFOREC
WordLen := O;
while (i <= Length(S)) and Isletter(S[i]) do
begin

Inc(Numletters);
Inc(LetterTable[UpCase(S[i])].Count);

~ate hes
I NumWords 2 ($2) : WORD

1 ($1)

F2-Bkpt Fl-Close F4-Here FS-Zoom F&-Next F7-Trace Fl-Step F9-Run FlO-Menu

Figure 3. 12: Inspecting a Structure

When you place the cursor over one of the member names, the data type of
that member appears in the bottom pane of the inspector. If one of these
members were in tum a compound data object, you could issue an inspect
command and dig down further into the data structure.

Press F3 to remove both Inspector windows and return to the Module
window. (F3 is a convenient way of removing several inspectors at once. If
you had pressed Esc, only the topmost inspector would have been deleted.)

Changing Pascal Data Values

So far, you've learned how to look at data in the program. Now, let's change
the value of data items.

Chapter 3, Getting Started: A Quick Example 47

Use the arrow keys to go to line 102 in the source file. Place the cursor at the
variable called NumLetters and press Ctr/-/ to inspect its value. With the
Inspector window open, press Alt-F10 to bring up the Inspector's local
menu. Press C to choose the Change option. (You could also have done this
directly by pressing Ctrl-C.) A prompt appears, asking for the new value.

F11e View Run Breakpoints Data Window Options mil
dule: TPDOO F11e: TPDEMO.PAS 102-------------1

procedure In1t;
begin

Numllnes := 0; NumWords := 0; Numletters := 0;
FillChar(LetterTable, SizeOf(L~~·~· ~~·~~~~iiiiii~ FillChar(WordlenTable, SizeOf(· ' 1 ""
Wrlteln('Enter a string to pro

end; { In1t I ll•(l;'~~fi~~Pmi'. 1· ••••

procedure Processline(var S : Buf rEnter new value for Numletters : LONGINTl
Numletters+4

function Isletter{ch : Char} : Bo '---------------'
begin New expression •••

Isletter :~ UpCase(ch} In ['A'.'--------'
end; { Isletter }

var
I : Integer;

~atches
1NumWords 2 ($2} : WORD

Fl-Help ~-Select Esc-Abort

Figure 3.13: The Change Command Prompt

At this point, you can enter any Pascal expression that evaluates to a
number. Type NumLetters+4 and press Enter. The value in the Inspector
window now shows the new value, 10.

To change a data item that isn't displayed in the Module window, press Alt­
o E. A prompt box appears, in which you enter the name of the variable to
change. Type NumLines and press Enter. The result is displayed in the middle
pane. Press Tab twice, then type 123 and press Enter. This will set the vari­
able NumLines equal to 123.

Well, that wraps up our quick intro to using Turbo Debugger with a Turbo
Pascal program. Chapter 13 offers a more extensive debugging sample.

48 Turbo Debugger User's Guide

c H A p T E R

4

Starting Turbo Debugger

To debug a program with Turbo Debugger, you simply type TD and the
name of the program, and press Enter. Turbo Debugger then loads and runs
your program, displaying its source code so you can step through your
program statement by statement.

Note: The overlay file, TD.OVL, which contains the menu system, must be
available when you load TD. If it is not, an error message will appear,
warning you that it cannot be loaded.

Note: If you are running on a two-floppy system, INSTALL has put the
overlay file (TD.OVL) and the help file (TDHELP.TDH) on one diskette and
TD.EXE on another diskette. To start Turbo Debugger, you insert the disk
containing TD.EXE and type TD and your program name on the command
line. Turbo Debugger will prompt you to insert the diskette containing the
overlay file. Once you have inserted the overlay diskette, don't remove it
for the remainder of your debugging session.

If you've run your program from the DOS prompt and noticed a bug while
using it, you have to exit from your program and load it under the de­
bugger first.

This chapter tells you how to prepare programs for debugging. We show
you how to start Turbo Debugger from the DOS command line and tailor
its many command-line options to suit the program you are debugging. We
explain how to make these options permanent in a configuration file. You
also learn how to run a DOS command processor from within a Turbo De­
bugger session and, finally, how to return to DOS when you are done.

Chapter 4, Starting Turbo Debugger 49

Preparing Programs for Debugging

When you compile and link with one of Borland's Turbo languages, you
should tell the compiler to generate full debugging information. If you have
compiled your program's object modules without any debugging
information, you must recompile all its modules to have full source de­
bugging capabilities throughout your program. You can generate debug
information only for specific modules, but it can be annoying later to enter
a module that doesn't have any debug information available. We suggest
recompiling all modules-unless you're not using EMS, need memory
space, and are sure the code in certain modules works.

Preparing Turbo C Programs

If you're using the Turbo C integrated environment (TC), specify
Standalone in the Debug/Source Debugging option before you compile
your source modules.

If you're using the standalone compiler (TCC), specify the -v command­
line option.

If you're using TLINK as a standalone linker, you must use the /v option to
append debugging information at the end of the .EXE file.

You may also want to make sure optimizing is disabled. Either don't use
the -0 option or specify -0- to turn off the -0 in your TURBOC.CFG file.
This eliminates the few occasions when Turbo Debugger appears to skip
over lines of source code when you're stepping through a program.

Preparing Turbo Pascal Programs

First, be aware that you need version 5.0 or later of Turbo Pascal. Earlier
versions do not have the ability to bundle debugging information into the
.EXE file so that Turbo Debugger can use it.

If you're using the Integrated Environment (TURBO.EXE), you must go to
the Debug menu and change the Standalone Debugging setting to On. Turn
Options/Compiler/Debug Information on. If you want to be able to
reference local symbols (any declared within procedures and functions),
you must either set the Options/Compiler/Local Symbols selection to on,
or put the ($L+} directive at the start of your program. You can then
compile your program.

50 Turbo Debugger User's Guide

If you're using the command-line version (TPC.EXE), you must compile
using the /v command-line option. Debug information and local symbols
are, by default, generated. If you don't want them, you can use I$
command-line options to disable them.

Preparing Turbo Assembler Programs

When using Turbo Assembler, specify the -zi command-line option to get
full debugging information.

When linking your program with TLINK, use the /v option to append de­
bugging information at the end of the .EXE file.

Preparing Microsoft Programs

See Appendix B of this book for information about how to use the utility
program TDCONVRT.EXE, which converts CodeView executable pro­
grams to Turbo Debugger format.

Running Turbo Debugger

To run Turbo Debugger, type TD at the DOS prompt, followed by an
optional set of command-line arguments, and press Enter. Command-line
arguments can include the name of the program to debug and debugger
options.

If you simply type TD Enter, Turbo Debugger loads and uses its default
options.

Note: The overlay file TD.OVL must be available for TD to call upon for its
menus and help windows.

The generic command-line format is

TD [options] [progname [progargs] J

The items enclosed in brackets are optional; if you include any, type them
without the brackets. Progname is the name of the program to debug. You
can follow a program name with arguments. Here are some example
command lines:

Chapter 4, Starting Turbo Debugger 51

Command Action

td -sc progl a b Starts the debugger with -sc option and loads program
progl with two command-line arguments, a and b.

td prog2 -x Starts the debugger with default options and loads pro­
gram prog2 with one argument, -x.

To use Turbo Debugger with Borland products, you must be using Turbo
Pascal 5.0 or later, Turbo C 2.0 or later, or Turbo Assembler 1.0 or later. You
must have already compiled your source code into an executable (.EXE file)
with full debugging information turned on before debugging with Turbo
Debugger.

Note that when you run Turbo Debugger, you'll need both the .EXE file and
the original source files available. Turbo Debugger searches for source files
first in the directory the compiler found them in when it compiled, second
in the directory specified in the Options/Path for Source command, third
in the current directory, and fourth in the directory the .EXE file is in.

Command-Line Options

All command-line options start with a hyphen (-)and are separated from
the TD command and each other by at least one space. You can explicitly
turn a command-line option off by following the option with another
hyphen. For example, -vg- turns off a complete graphics save. You can do
this if an option has been permanently enabled in the configuration file.
You can modify the configuration file by using the TDINST configuration
program described in Appendix E.

The following describes all available command-line options; Appendix A
has an easy-to-use list of these command-line options.

The -c Option

This option loads the specified configuration file. A space cannot exist
between -c and the file name.

If the -c option isn't included, TDCONFIG.TD is loaded if it exists.

Here's an example:

TD -cMYCONF.TD TCDEMO

52 Turbo Debugger User's Guide

This loads the configuration file MYCONF.TD and the source code for
TCDEMO.

The -d Options

All-d options affect the way in which display updating will be performed.

-do
Runs the debugger on your secondary display. View your program's screen
on the primary display, and run the debugger on the secondary one.

-dp
The default option for color displays. Shows the debugger on one display
page, and the program being debugged on another, minimizing the time it
takes to swap between the two screens. You can only use this option on a
color display, since only these displays have multiple display pages. You
can't use this option if the program you are debugging uses multiple
display pages itself.

-ds
The default option for monochrome displays. Maintains a separate screen
image for the debugger and the program being debugged by loading the
entire screen from memory each time your program is run or the debugger
restarted. This is the most time-consuming method of displaying the two
screen images, but works on any display hardware and with programs that
do unusual things to the display.

The -h and -? Options

Display a screenful of help that describes Turbo Debugger's command-line
syntax and options.

The -i Option

Enables process ID switching. Don't use this option when debugging inside
DOS or when DOS system calls are active. See Appendix C for more
technical information on this feature. You needn't be concerned with this
option when debugging most programs.

Chapter 4. Starting Turbo Debugger 53

The -1 Option

Forces startup in assembler mode, showing CPU viewer. Doesn't execute
compiler startup code.

The -m Option

Sets the working heap ton Kbytes, where the syntax is

-mn

A space cannot exist between the -m option and the size of the heap. Here
is an example:

TD -m64 TCDEMO.EXE

The default size is 40K; the high boundary is 64K. Specifying a value larger
than 64K may cause unexpected results. If you need memory, use this
option to reduce the amount of heap Turbo Debugger uses. Use this option
also to increase the amount of heap when you debug small programs. This
option lets Turbo Debugger store transient information, such as command
history lists.

Note: If you specify a heap size of 0 with the -m command-line option (-mo),
Turbo Debugger will use the maximum that it's able to use, 64K.

The -c Option

The syntax is

-cfilename

Tells Turbo Debugger to use filename as the configuration file.

The -r Options

All -r options affect the remote debugging link.

-r
Enables debugging on a remote system over the serial link. Uses the default
serial port (COMl) and speed (115 Kbaud), unless you have changed them
with TDINST.

54 Turbo Debugger User's Guide

-rpN

Sets the remote link port to port N. N can be 1 or 2 to indicate COMl or
COM2, respectively.

-rsN
Sets the remote link speed. N can be 1 for 9600 baud, 2 for 40 Kbaud, or 3
for 115 Kbaud.

The -s Options

All -s options affect the way Turbo Debugger handles source code and pro­
gram symbols.

-SC

Ignores case when you enter symbol names, even if your program has been
linked with case sensitivity enabled.

Without the -sc option, Turbo Debugger will ignore case only if you've
linked your program with the "case ignore" option enabled.

Note: This option has no effect if you're debugging a Turbo Pascal program
(because Turbo Pascal is always case-insensitive).

-sd

Sets one or more source directories to scan for source files; the syntax is

-sddirname

To set multiple directories, use the -sd option repeatedly-only one
directory name can be specified with each -sd option. Directories are
searched in the order specified. dirname can be a relative or absolute path
and can include a disk letter. If the configuration file specifies any
directories, the ones specified by the -sd option are added to the end of that
list.

The -v Options

All -v options affect how Turbo Debugger handles the video hardware.

Chapter 4. starting Turbo Debugger 55

-vg
Saves complete graphics image on program screen. Requires an extra BK of
memory, but can debug programs that use certain graphics display modes.
Try this option if your program's graphics screen becomes corrupted when
running under Turbo Debugger.

-vn
43/50 line display not allowed. Specifying this option saves some memory.
Use this if you're running on an EGA or VGA and know you won't switch
into 43- or 50-line mode once Turbo Debugger is running.

-vp
Enables the EGA palette save.

Configuration Files

Turbo Debugger uses a configuration file to override built-in default values
for command-line options. You can use TDINST to set the default options
that will apply when there is no configuration file and to build the
configuration file.

Turbo Debugger looks for the configuration file TDCONFIG.TD first in the
current directory, next in the TURBO directory set up with the TDINST
installation program, and then in the directory that contains TD.EXE. If you
are running on DOS version 2, the debugger won't look for TDCONFIG.TD
in the TD.EXE directory.

If the debugger finds a configuration file, the settings in that file override its
built-in defaults. Any command-line options that you supply when starting
Turbo Debugger from DOS will override those default option values and
any values in TDCONFIG.TD.

Appendix E describes how to use the installation program to create
configuration files.

The Options Menu

This Options menu lets you set or adjust a number of parameters that
control the overall appearance and operation of Turbo Debugger. The

56 Turbo Debugger User's Guide

following sections describe each menu command, and where appropriate
refer you to other sections of the manual where you can find more details.

error • FALSE;
1sfonnu1 a • FALSE;
Input • copy;
strupr(strcpy(copy, s));
stacktop • -1:

II> f1rsttolutn.state • O;
flrsttoken.x.value • O;
push(•flrsttoken);
tokentype • nexttoken();
do
I
switch (stack[stacktop].state)

acros
Environment
Path for source •••
Arguments •••
Save options •••
Restore options •••

atches~-----------------------2
ftrsttoken.state
stacktop
fnput

Fl-Help Esc-Abort

char 'G' 71 (Ox47)
1nt -1 (OxFFFF)
char * ds:FF16 "123.45"

Figure 4. 1: The Options Menu

Language Command

Chapter 9 describes how to set the current expression language and how it
affects the way you enter expressions.

Macros Command

This command displays another menu that lets you define new keystroke
macros or delete ones that you have already assigned to a key. It has the
following commands:

Create

Starts recording keystrokes that will be assigned to a key (for example, Alt·
M). You are first prompted for the key to assign the keystrokes to. You then
type the keystrokes that you want to record. These keystrokes will be acted
upon by Turbo Debugger exactly as if you are not recording a macro. To

Chapter 4, starting Turbo Debugger 57

begin a recording session, select Option/Macro/Create. You will be
prompted for the key you want to assign the macro to. The message
Recording is displayed in the upper right-hand corner of the screen while
the recording session is in progress.

Once you have finished recording keystrokes, you must issue the F10/
Options/Macros/Stop Recording command or its shortcut, Alt-hyphen. You
may also press the key you assigned the macro to (Alt-M) once more.

While the macro is recording, the mesage Recording is displayed in the
upper right-hand corner of the screen.

Alt-= is a shortcut for starting to record a macro.

Stop Recording

Stops recording keystrokes that will be assigned to a key. Use this
command after issuing the F10/0ptions/Macros/Create command to
assign keystrokes to a key.

Alt-hyphen is a shortcut for ending a macro.

Remove

Removes a macro assigned to a single key. You will be prompted to press
the key whose macro you want to delete.

Delete All

Removes all keystroke macro definitions and restores all keys to have the
meaning that they originally had.

Environment Command

This command displays a menu that lets you set several options to control
the apperance of the Turbo Debugger display. It has the following options:

Integer Format

This option lets you cycle among three display formats for displaying
integers:

58 Turbo Debugger User's Guide

Decimal

Hex

Both

Shows integers as ordinary decimal numbers.

Shows integers as hexadecimal numbers, displayed in a
format appropriate to the current language.

Shows integers as both decimal numbers and as hex
numbers in parentheses after the decimal value.

Display Swapping

The Display Swapping option lets you cycle among three ways of
controlling how your program's and Turbo Debugger's screens get
swapped back and forth. The three setting are

None

Smart

Always

Screen Size

Don't swap between the two screens. Use this option if
you're debugging a program that does not do any
output to the display.

Only swap to the user screen when display output may
occur. Turbo Debugger will swap the screens any time
that you step over a routine, or if you execute and
instruction or source line that appears to read or write
video memory. This is the default option.

Swap to the user screen every time the user program
runs. Use this option if the Smart option is not catching
all the occurrences of your program writing to the
screen. If you select this option, the screen will flicker
every time you step your porgram, since Turbo De­
bugger's screen will be replaced for a short time with
your program's screen.

Use this option to determine whether Turbo Debugger's screen will use the
normal 25-line display or the 43 or 50-line display available on EGA and
VGA display adapters.

Tab Size

This option lets you set how many columns each tab stop will occupy. You
can reduce the tab column width to see more text in source files that have a

Chapter 4, Starting Turbo Debugger 59

lot of code indented with tabs. You can set the tab column width from 1 to
32.

Path for Source Command

Sets the directories that Turbo Debugger will search for your source files.
See Chapter 8 where the Module window is discussed for more
information on this option.

Arguments Command

Lets you set new command-line arguments for your program. This is
discussed more in Chapter 5.

Save Options Command

Saves your current options to a configuration file on disk. This saves:

• your macros
•the current window layout

•pane formats

• all settings made in the Options menu

Turbo debugger allows you to save your options in three ways:

All

Layout

Macros

Saves all settings made in the Options menu, including
windows and macros

Saves only the windowing layout

Saves only the currently defined macros

Restore Options Command

Restores your options from a disk file. You can have multiple configuration
files, containing different macros, window layouts, etc. You must specify an
option file that was created by the Save options command.

60 Turbo Debugger User's Guide

Running DOS While in Turbo Debugger

When debugging a program, you sometimes need to use another program
or utility. Do this via File/OS Shell.

When you start the DOS command processor, the program you are de­
bugging is swapped to disk if necessary. This allows you to perform DOS
commands even while debugging a program that takes all of available
memory. Of course, this means that there may be a few seconds of delay
while your program is being swapped to and from the disk.

When you have finished issuing commands to DOS, type EXIT to return to
your debugging session.

Returning to DOS

You can end your debugging session and return to DOS at any time by
pressing Alt-X. You can also choose File/Quit.

All the memory initially allocated to the program being debugged is freed.
If the program you are debugging allocates memory via the DOS block
memory allocation routines, that memory is also freed.

Chapter 4, Starting Turbo Debugger 61

62 Turbo Debugger User's Guide

c H A p T E R

5

Controlling Program Execution

When you debug a program, you usually execute portions of your program
and check that it behaves correctly at a stopping point. Turbo Debugger
gives you many ways to control your program's execution. You can

• execute single machine instructions or single source lines
• skip over calls to functions or procedures
• "animate" the debugger (perform continuous tracing)
•run until the current function or procedure returns to its caller
•run to a specified location
•continue until a breakpoint is reached

A debugging session consists of altema~ing periods when either your pro­
gram or the debugger is running. When the debugger is running, you can
cause your program to run by choosing one of the Run menu's command
options or pressing its hot key equivalent. When your program is running,
the debugger starts up again when either the specified section of your pro­
gram has been executed, you interrupt execution with a special key
sequence, or Turbo Debugger encounters a breakpoint.

This chapter shows you how to examine the state of your program
whenever the debugger is in control. We teach you various ways to execute
portions of your program and also show you how to interrupt your pro­
gram while it's running. Finally, we list the ways you can restart a de­
bugging session, both with the same program and with a different pro­
gram.

Chapter 5, Control/Ing Program Execution 63

Examining the Current Program State

The "state" of your program consists of the following elements:

• its DOS command-line arguments
•the stack of active functions or procedures
•the current location in the source code or machine code
• the reason the debugger stopped your program
• the value of your program data variables

See Chapter 6 for more information on how to examine and change the
values of your program data variables. The following sections explain the
Variables window, Stack window, the local menus of the Global and Static
panes, the Origin command, and the Get Info command.

The Variables Window

This window shows you all the variables (names and values) that are
accessible from the current location in your program. Use this to find
variables whose names you can't remember how to spell. You can then use
the local menu commands to further examine or change their values. You
can also use this window to examine the variables local to any function that
has been called.

64 Turbo Debugger User's Guide

File View Run Breakpoints Data Window Options B!Ii
dule: MCUTIL File: MCUTIL.C 36u---------------.l

deletecell(curcol, currow, UPDATE}:
value = parse(s, lattrlb};

ll> sw1tch(attrib}
I
ca movetext @534A:6B35 value
a -movmern @534A:6BD5 allocated
1 -name ds:044C "Turbo C MicroCalc attrib

-nexttoken @534A:0562 s
b -nocursor 8192 (Ox2000}

ca 1.PQniji.i#• I}
a ohtcursor 2828 (OxBOC}
b -open @534A:6C5F

ca -
allocated= allocfonnula(curcol, currow, s, value};
break;

} /* switch */

1nt 1 (Oxl)
char* ds:FF82 "123.45"

123.45
49 (Ox3l}

1 (Oxl}
ds:FFB2 "123.45"

FZ-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 5. l: The Variables Window

Note: When debugging a Turbo Pascal program, the right pane will display
the symbols of the current code segment and IP registers (CS:IP), which
always point to the current location in the program. Also, the variables
won't be arranged alphabetically.

You open a Variables window by choosing View /Variables at the main
menu; otherwise, from anywhere else you can either press F10 to get to the
main menu or A/t-V to get to View, then choose Variables from the View
menu. Variables windows have two panes. The Global pane (on the left)
shows all the global symbols in your program. The Static pane (on the
right) shows all the static symbols in the current module, which is the
module containing the current program location (CS:IP), and all the
symbols local to the current function. Both panes show the name of the
variable at the left margin and its value at the right margin. If Turbo De­
bugger can't find any data type information for the symbol, it displays four
question marks(????) as shown in Figure 5.1.

As with all local menus, press Alt-F10 to pop up the Global pane's local
menu. If Control key shortcuts are enabled, you can press Ctr/ with the first
letter of the desired command to access the command.

If your program contains functions that perform recursive calls, or you
wish to view the variables local to a function that has been called, you can
examine the value of a specific instance of a function's local data. First
create a Stack window with View /Stack, then move the highlight to the

Chapter 5, Controlling Program Execution 65

desired instance of the function call. Next, press Alt-F10 and choose Locals.
The Static pane of the Variables window then shows the values for that
specific instance of the function.

The Global Pane Local Menu

This local menu consists of two commands: Inspect and Change.

File View Run Breakpoints Data Window Options
dule: MCPARSER File: MCPARSER.PAS 437----------­

FirstToken : TokenRec;
Accepted : Boolean;
Counter : Word;

begin
Accep . • ·
Token ~~!!L.E~ISTS @595F:OD3A STACKTOP
MathE 1~VARS.LETTERS ['A' •• 'Z','a' •• ' TOKENTYPE
IsFor :=VARS.CELL ((nil,n11,nil,n11,n MATHERROR
Input 11·vARS.CURCELL nil TOKENERROR
Stack !~VARS.FORMAT (('B','B','B','B' ISFORMULA
First VARS.COLWIDTH (#10,#10,#10,#1 INPUT

..,. First · • 1 • • S
Push(~COL 1 lTIJ ATT
Token IUJ'1.IQil
repeat Change

case kTop] .State of
O, 9, 12 .• 16, 20 : begin

-~-

0 ($0)
9 ($9)
False
False
False

'123.45'
'123.45'

8224 ($2020)

-----------------------,2

Fl-Help Esc-Abort

'123.45' : strtng[79]
False : boolean

Figure 5.2: The Global Pane Local Menu

Inspect

Opens an Inspector window that shows you the contents of the currently
highlighted global symbol. See Chapter 6 for more information on how
inspector windows behave.

If the variable you want to inspect is a name of a routine, you will be shown
the source code for that function, or if there is no source file, a CPU
window will show you the disassembled code.

If the variable you inspect has a name that is superseded by a local variable
with the same name, you will see the actual value of the global variable, not
the local one. This behavior is slightly different than the usual behavior of
Inspector windows, which normally show you the value of a variable from
the point of view of your current program location. The different behavior

66 Turbo Debugger User's Guide

gives you a convenient way of looking at the value of global variables
whose names are also used as local variables.

Change

Changes the value of the currently selected (highlighted) global symbol to
the value you enter at the prompt. Turbo Debugger performs any necessary
data type conversion exactly as if the assignment operator for your current
language had been used to change the variable. See Chapter 9 for more
information on assignment and data type conversion.

You can also change the value of the currently highlighted symbol by
simply starting to type a new value. When you do this, the same prompt
box appears as if you had first specified the Change command.

The Static Pane Local Menu

Press the Alt-F10 key combination to pop up the Static pane's local menu; if
Control key shortcuts are enabled, use the Ctr/ key with the first letter of the
desired command to access the command.

The Static pane has these two local menu commands: Inspect and Change.

File View Run Breakpoints Data Window Options
dule: MCPARSER File: MCPARSER.PAS 437----------­

FirstToken : TokenRec;
Accepted : Boolean;
Counter : Word;

• ti!:• . -~-

MCVARS.SCREENROWS 120 20 ($14) POP @5779:0542
MCVARS.OLDMODE 7 ($7) GOTOSTATE @5779:0574
MCVARS.UMENUSTRI"'Recalc, Fonnul SHIFT @5779:0781
MCVARS.UCOMMANDSTRING 'RF' REDUCE @5779:07D2

begin
Accep
Token
MathE
Is For
Input
Stack
first

DOS.MSDOS @5A3C:OOOO STACK (('P',0,30036,25202,'urbo

..,. First
Push(
Token
repeat

DOS.INTR
DOS. FIND FIRST
DOS.FINDNEXT

@5A3C:OOOB CURTOKEN
@5A3C:006C .. 1f4H:JHl•
@5A3C:OOAA • ,,,IJ,.

case Stack[StackTop].State of
D, 9, 12 •• 16, 20 : begin

fl-Help Esc-Abort

'123.45' : STRIN6[79]
False : BOOLEAN

(#31,0,30036,25202,'ur

~·tm

Figure 5.3: The Static Pane Local Menu

Chapter 5, Controlling Program Execution 67

Inspect

Opens an Inspector window that displays the contents of the currently
highlighted module's local symbol. See Chapter 6 for more information on
how inspectors behave.

Change

Changes the value of the currently selected (highlighted) local symbol to
the value you enter at the prompt. Turbo Debugger performs any data type
conversion necessary, exactly as if the assignment operator for your current
language had been used to change the variable. See Chapter 9 for more
information on assignment and data type conversion.

You can also change the value of the currently highlighted symbol by
simply starting to type a new value. When you do this, the same prompt
box appears as if you had first specified the Change command.

The Stack Window

You create a Stack window with F10/View /Stack. The Stack window lists
all the active functions or procedures. The most recently called routine is
displayed first, followed by its caller and the previous caller, all the way
back to the first function or procedure in the program (the main program in
Pascal; in C programs, usually the function called main()). For each
procedure or function, you see the value of each parameter it was called
with.

68 Turbo Debugger User's Guide

File View Run Breakpoints Data Window Options !iI11iI,i
dule: MCPARSER F11e: MCPARSER.C 430-------------1
push(&curtoken);

I /* reduce */

double parse(char *s, int *att)
/* Parses the string s - retr;i,..,._,,1· Siiifimiiiiiiii•-•1-ring, and puts

the attribute in att: TEXiill' · · • : •
*/ actfds:FFB~l
I -getinput(49)
struct TOKENREC firsttoken; -run()
char accepted • FALSE; -main(l,ds:FFE8)
char copy [80] ; -

error = FALSE;
isfonnula = FALSE;
input = copy;

.... strupr(strcpy(copy, s));
stacktop ~ -1;
flrsttoken.state • O;

i==~~~~~~~~~dl

latches 2]
F2-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 5.4: The stack Window

Press Alt-F10 to pop up the Stack window local menu or press Ctr/ with the
first letter of the desired command to directly access the command.

The Stack Window Local Menu

This local menu has two commands: Inspect and Locals.

Chapter 5, Controlling Program Execution 69

F11e V1ew Run Breakpoints Data W1ndow Options
dule: MCPARSER File: MCPARSER.C 43u------------­
push(lcurtoken};

) /* reduce *I

double parse(char *s, 1nt *att
/*Parses the str1ng s - retrrlliiri· 13=========-4;ir1ng, and puts

the attribute 1n att: TEX _parse(ds:FF82,ds:FF72)
*/ act(ds:FFB2)
{ -getlnput(49)
struct TOKENREC firsttoken; -run()
char acce~ted = FALSE;
char copy(BO] 1

error • FALSE;
1sfonnula • FALSE;
Input = copy;

• strupr(strcpy(copy, s));
stacktop = -l 1
f1rsttoken.state • O;

ratches

main l,ds:FFE8

,,, .. ,
s

Alt: FZ-Bkpt at Fl-Mod F4-Anlm FS-User Fl-Undo F7-Instr Fl-Rtn Fl-To

Figure 5.5: The stack Window Local Menu

Inspect

Opens a Module window positioned at the active line in the currently
highlighted function. If the highlighted function is the top (most recently
called) function, the Module window shows the current program location
(CS:IP). If the highlighted function is one of the functions that called the
most recent function, the window is positioned on the line in the function
that will be executed after the called function returns.

You can also invoke this command by pressing Enter once you have the
highlight bar positioned over a function.

Locals

Opens a Variables window that shows the symbols local to the current
module, as well as the symbols local to the currently highlighted function.
If a function calls itself recursively, there are multiple instances of the
function in the Stack window. By positioning the highlight bar on one
function, this command lets you look at the local variables in that instance
of the function.

70 Turbo Debugger-User's Guide

The Origin Local Menu Command

The Module window and the Code pane of a CPU window both have an
Origin command on their local menu. The Origin command positions the
cursor at the current program location (CS:JP). This is very useful when you
have been looking at your code and want to get back to where your pro­
gram stopped.

Viewing Execution Status: The Get Info Command

lllll! View Run Breakpoints Data Window Options
iii tmli•J!M~lst:I

Load •••]
1
, char **argv) I

Ch-dlr ... Int nlines, nwords, wordcount;
•em " long totalcharacters;

Program: c:\tcdemo.exe
Status : Stopped at _main

- Memory - --EMS--
DOS 61Kb DOS OKb
Debugger : 249Kb Debugger : 32Kb s(buffer);
Symbols : lKb Program OKb
Program 84Kb Available: 992Kb zewords(buffer);
Available: 242Kb

User Interrupts: OOh 02h total characters);

DOS version : 3.10
Breakpoints : Software

!;;, 7-9-1988 12:45[;
a aa;+;uru• 2 r

Fl-Help Esc-Abort

Figure 5.6: The File Get Info Command

You can choose File/Get Info to look at memory usage and to determine
why the debugger gained control. This and other information appears in a
box that disappears with your next keystroke:

• The name of the program you're debugging
• A description of why your program stopped
•The amount of memory used by DOS, Turbo Debugger, and your pro­

gram
•If you have EMS memory, its usage appears to the right of main memory

usage

Chapter 5, Controlling Program Execution 71

• A list of interrupts intercepted by the program you are debugging
• The DOS version you're running
• Whether breakpoints are handled entirely in software or if they have

hardware assistance

Here are the messages you will see on the second line, describing why your
program stopped:

Stopped at_
Your program stopped as the result of a Run/Execute To, Run/Go to
Cursor, or Run/Until Return command completing. This status line also
displays when your program is first loaded, and the compiler startup code
in your program has been executed to put you at the start of your source
code.

No program loaded
You started Turbo Debugger without any program. You cannot execute any
code until you either load a program or assemble some instructions using
the Assemble local menu command in the Code pane of a CPU window.

Control Break
You interrupted execution of your program with Ctrl-Break after you
reconfigured the Break key to something else.

Trace
You executed a single source line or machine instruction with F7 or F10/
Run/Trace.

Breakpoint at_
Your program encountered a breakpoint that was set to stop your program.
The text after "at" is the address in your program where the breakpoint
occurred.

Terminated, exit code _
Your program has finished executing. The text after "code" is the numerical
exit code returned to DOS by your program. If your program does not
explicitly return a value, a garbage value may be displayed. You cannot run
your program until you reload it with F10/Run/Program Reset.

Loaded
You loaded Turbo Debugger and specified a program and the option that
prevents the compiler startup code from executing. No instructions have
been executed at this point, including those that set up your stack and
segment registers. This means that if you try to examine certain data in
your program, you may see incorrect values.

72 Turbo Debugger User's Gulde

Step
You executed a single source line or machine instruction, skipping function
calls, with FB or F10/Run/Step.

Interrupt
You pressed the interrupt key (usually Ctrl-Break) to regain control. Your pro­
gram is immediately interrupted and the debugger restarted.

The Run Menu

The Run menu has a number of options for executing different parts of
your program. Since you will use these options frequently, they are all
available on function keys.

File View 1iJ!1i1 Breakpoints Data Window Options

er
lf

cseg

... hello

Run F9
Ctr1-I'!

name I
page Program reset
title Go to cursor

Trace Into
equ Step over
equ Execute to •••

Until return
segme Animate

Instruction trace

F4
F7
F8

Alt-F9
Alt-FB
Alt-F4
Alt-F7

aSSWll'-----------'

proc
mov
mov
mov
mov
int
mov

far
dx,seg text
ds,dx
dx,offset text
ah,9
21h
ah,4ch

Fl-Help Esc-Abort

Figure 5. 7: The Run Menu

Run[F9]

l

Runs your program at full speed. Control returns to the debugger when
one of the following events occurs:

• your program terminates
•a breakpoint with a break action is encountered
•you interrupt execution with Ctrl-Break

Chapter 5, Controlling Program Execution 73

Program Reset [Ctr/-F2J

Reloads the program you're debugging from disk. Use this when you've
executed "too far," that is, passed the place where a bug occurred.

If you're in a Module or CPU window, the display won't return to the start
of the program. Instead, you'll stay exactly where you were when you
chose the Program Reset command. If you chose the Program Reset
command because you just executed one source statement more than you
intended, you can position the cursor up a few lines in you source file and
press F4 to run to that location.

Go to Cursor [F4]

Executes your program until the line that the cursor is on in the current
Module window or CPU window Code pane. If the current window is a
Module window, the cursor must be on a line of source code inside a
function.

Trace Into [F7]

Executes a single source line or machine instruction. Usually, a single
source line is executed. If the current line contains any procedure or
function calls, Turbo Debugger traces into that routine. However, if the
current window is a CPU window, only a single machine instruction is
executed.

Step Over [FB]

Executes a single source line or machine instruction, skipping over any
procedure or function call(s). This usually executes a single source line.
However, if the current window is a CPU window, only a single machine
instruction is executed.

If you step over a single source line, Turbo Debugger treats any function or
procedure call(s) in that line as part of the same line, so you don't end up at
the start of one of those functions. Instead, you end up at the next line in
the current routine or at the previous routine that called the current one.

If you step over a single machine instruction, Turbo Debugger treats certain
instructions as a single instruction, even when they cause multiple
instructions to be executed. Here is a complete list of the instructions Turbo
Debugger treats as single instructions:

74 Turbo Debugger User's Guide

CALL Subroutine call, near, and far
INT Interrupt call
LOOP Loop control with ex counter
LOOPZ Loop control with ex counter
LOOPNZ Loop control with ex counter

Also stepped over are REP, REPNZ, or REPZ followed by CMPS, CMPSB,
CMPSW, LODSB, LODSW, MOVS, MOVSB, MOVSW, SCAS, SCASB,
SCASW, STOS, STOSB, STOSW.

Execute To [Alt-F9]

Executes your program until the address you specify at the prompt is
reached. The address you specify may never be reached if a breakpoint
action is encountered first or you interrupt execution.

Until Return [Alt-FB]

Executes until the current function returns to its caller. This is useful in two
circumstances: when you have accidentally executed into a function or
procedure that you are not interested in with F10/Run/Trace instead of
F10/Run/_Step, or when you have determined that the current function
works to your satisfaction, and you don't want to slowly step through the
rest of it.

Animate [Alt-F4]

Performs a continuous series of Trace commands, updating the screen after
each one. This lets you watch the current location in your source code and
see the values of variables changing. You can interrupt this command by
pressing any key.

After activating Alt-F4, you will be prompted for a time delay between
successive traces. The time delay is measured in tenths of a second; the
default is three.

Instruction Trace [Alt-F7J

Executes a single instruction. Use this when you want to trace into an
interrupt, or when you're in a Module window and you want to trace into a

Chapter 5. Controlling Program Execution 75

procedure or function that's in a module with no debug information (for
example, a library routine).

Since you will no longer be at the start of a source line, this command
usually places you in a CPU window.

Interrupting Program Execution

With interactive programs, the quickest way to get to a specific place in
your program is sometimes to simply run it, interact with it until it gets to
the desired part of the code, and then interrupt execution. This is parti­
cularly true if the piece of code you want to examine is called several times
before the one time of particular interest to you.

You may also want to interrupt program execution when, for some
unexpected reason, control does not return to the debugger. This can
happen when a piece of code contains an infinite loop: You expect a piece of
code to be executed, so you set a breakpoint action, but the code is never
reached.

Ctrl-Break

This key combination will almost always interrupt your program and
return control to the debugger. This key combination takes effect as soon as
the key is pressed, so you can sometimes appear to be in an unexpected
piece of code. This code could be the ROM keyboard BIOS if your program
is waiting for a keystroke, or at any instruction in the loop being executed.
Ctrl-Break is unable to override the following two conditions-if either of
these conditions occur, you will need to reboot your system:

• You are stuck in a loop with interrupts disabled.
• The system has crashed due to execution of erroneous code.

If you are debugging a program that needs to act upon the Ctrl-Break key
combination itself, you can change the interrupt key. Use the TDINST
installation program to change this key. You can set the interrupt key to be
any normal key pressed in combination with Ctr/.

Terminating Your Program

When your program terminates and exits back to DOS, the debugger
regains control. It displays a message showing the exit code that your pro-

76 Turbo Debugger User's Guide

gram returned to DOS. Once your program terminates, you cannot use any
of the Run menu options until you reload the program with Run/Program
Reset.

The segment registers and stack are usually not correct when your program
has terminated, so do not examine or modify any program variables after
termination.

Restarting a Debug Session

Turbo Debugger has several features that make restarting a debug session
as painless as possible. When debugging a program, it's easy to go just a
little too far, overshooting the real cause of the problem. What you want to
do then is restart debugging, but suspend execution before the last few
commands that caused you to miss the problem that you wanted to
observe.

Most debuggers force you to manually type in what could be a very long
sequence of commands to get back to the place where the error occurred.
Turbo Debugger has the powerful capability to record the keystrokes that
made up the last session and to replay them on demand.

It also lets you reload your last program from disk, with its previous DOS
command-line arguments.

Reloading Your Program

To reload the program you were debugging, press F10/Run/Program
Reset. Turbo Debugger reloads the program from disk, with any data you
may have added since you last saved to disk. This is the safest way to
restart a program. Restarting by executing at the start of the program can
be risky, since many programs expect certain data to be initialized from the
disk image of the program. Note that Program Reset leaves breakpoints
and watches intact.

Keystroke Recording and Playback

You can use the keystroke macro facility to record keystroke sequences that
you use frequently. When debugging, you often repeat the same sequence
of commands to get to a certain place in your program. This can be very
tedious.

Chapter 5, Controlling Program Execution 77

To get around this problem, you can define a keystroke macro that records
all the keys you press from when you first start the debugger up until you
have your program in the desired state. At that point, you can stop
recording keystrokes. If you have to get back to the same place in your pro­
gram, all you have to do is replay the keystroke macro.

You can't use this technique to record keystrokes that must be typed to
your program. You can only record Turbo Debugger command keystrokes.

To record your entire session, the first thing you must do after starting
Turbo Debugger from DOS is to define a keystroke macro. Choose
Options/Macros/Create to do this. You'll be prompted to press a key to
assign the keystroke macro to. Choose a key that hasn't been assigned to a
function yet, such as Shift and one of the Function keys, say Shift-Ft. Now
take your program to its point of crashing. At that point, stop recording the
keystroke macro by choosing Macros/Stop Recording. Now save the
macro to disk by choosing the Options/Save Options command. Continue
running your program. After your program crashes, and you have
reloaded it and Turbo Debugger, you can simply press Shift-Ft to restart the
program.

If your program requires you to type things to get to the next part of the
recorded command sequence, you still have to enter those keystrokes
manually. For programs that do not require you to enter anything, this
keystroke-recording mechanism can completely automate the restarting
procedure, saving many keystrokes.

Note: When a macro is saved to a configuration file, the configuration of
the total environment is saved, including opened view windows and
zoomed windows. Thus if you record a macro that opens a view window
and don't close the window before saving it, the next time you restore that
configuration file, the window will be automatically opened without
executing the macro.

Loading a New Program to Debug

You load a new program to debug with FtO/File/Load. You can use DOS­
style wildcards to get a list of file choices or type a specific file name to
load.

If you press Enter after the prompt appears, a list of all the .EXE files in the
current directory will be displayed. Move the highlight bar to the file you
want to load and press Enter.

78 Turbo Debugger User's Guide

If, instead, you type in the name of the file you want to load, the highlight
bar will move to the file that begins with the first letter(s) you typed. When
the bar is positioned on the file you want, press Enter.

You can supply arguments to the program to debug by placing them after
the program name, exactly as you would at the DOS prompt:

rnyprog a b c

This loads program MyProg with three command-line arguments, namely,
a, b, and c.

Changing the Program Arguments

If you forgot to supply some necessary arguments to your program when
you loaded it, you can use the F10/0ptions/ Arguments command to set or
change the arguments. Enter new arguments exactly as you would
following the name of your program on the DOS command line.

Once you have entered new arguments, Turbo Debugger asks you if you
want to reload your program from disk. You should usually answer Yes,
since for most programs, the new arguments will only take effect when you
first load the program.

Chapter 5, Controlling Program Execution 79

80 Turbo Debugger User's Guide

c H A p T E R

6

Examining and Modifying Data

Turbo Debugger provides a unique and intuitive way to peruse your pro­
gram's data. Inspectors let you examine your data as it appears in your
source file. You can "follow" pointers, scroll through arrays, and see
structures, records, and unions exactly as you wrote them. You can also put
variables and expressions into the Watches window, where you can watch
their values as your program executes.

This chapter presumes you understand the various data types that can be
used in the language you're using (C, Pascal, or assembler). If you are fairly
new to a language and have not yet explored all its data types, this chapter
can still give you valuable information about the basic data types (char, int,
integer, boolean, real, and so on). When you have delved into the more
involved data types (pointers, records, structs, unions, and so on), return to
this chapter to learn more about looking at them with Turbo Debugger.

This chapter shows you how to examine and modify variables in your pro­
gram. First, we explain the Data command and its options. We then discuss
how you can modify program data by evaluating expressions that have
side effects. Next, we show you how to point directly at data items in your
source modules. We introduce the Watches window and, finally, describe
the way that the basic data types of each language appear in inspectors.

If you want to examine or modify arbitrary blocks of memory as hex data
bytes, refer to Chapter 10, which covers assembler-level debugging.

Chapter 6, Examining and Modifying Data 81

The Data Menu

The Data menu lets you choose how to examine and change program data.
You can evaluate an expression, change the value of a variable, and open
inspectors to display the contents of your data.

F1le Y1ew Run Break o1nts !!Il!ll W1ndow Options
I 'I I · I 'I I ''

uses • Inspect. ..
Overlay, Crt, OvrDemol, OvrDemo Evaluate/modify ••• Ctrl-F4

Watch... Ctrl -F7
{$0 OvrDemol} Function return
{$0 OvrDemo2}

begin
TextAttr :=White;
Cl rScr;
Ovrln1t('OVRDEMO.OVR'); { init overlay system, reserve heap space
1f OvrResult <> O then
beg1n

Writeln('Overlay error: ', OvrResult);
Halt(l);

end;
repeat

Writel;
Wrlte2;

latches 2]

Fl-Help Esc-Abort

Figure 6. l : The Data Menu

Inspect

Prompts you for the variable that references the data you wish to inspect,
then opens an Inspector window that shows the contents of the program
variable or expression. You can enter a simple variable name or a complex
expression, as long as that expression references a memory location and
doesn't just evaluate to a constant.

If the cursor is in a Text pane when you issue this command, the prompt
automatically contains the variable at the cursor, if any. If you select an
expression (using Ins), the prompt contains the selected expression.

Inspector windows really come into their own when you want to examine a
complicated data structure, such as an array of structures or a linked list of
items. Since you can inspect items within an Inspector, you can "walk"
through your program's data structures as easily as you scroll through
your source code in a Module window.

82 Turbo Debugger User's Guide

(See the "Inspectors" section later in this chapter for a complete description
of how Inspector windows behave.)

Evaluate/Modify

Prompts you for the expression to evaluate, then evaluates it, exactly as the
compiler would. See Chapter 9 for a complete discussion of expressions.

If the cursor is in a Text pane when you issue this command, the prompt
automatically contains the variable at the cursor, if any. If you mark an
expression using Ins, the prompt is initialized to the marked expression.

Remember that you can add a format control string after the expression
that you want to watch. See Chapter 9 for a discussion of format control.
This is useful when you want to watch something but have it displayed in a
format other than Turbo Debugger's default display mode for the data
type.

The prompt box has three panes. You type the expression you want to
evaluate in the top pane. The pane has a history list, just like other input
prompts. The middle pane displays the result of evaluating your
expression. The bottom pane is an input area where you can enter a new
value for the expression. If the expression can't be modified, this pane reads
"Cannot be changed" and you can't move your cursor to that pane.

You move between the panes using the Tab and Shift-Tab keys, just as in
other windows that have panes. Your entry in the Evaluate or New entry
pane takes effect when you press Enter. Pressing Esc while inside any pane
removes the prompt box.

Turbo Debugger displays the result in a format suitable for the data type of
the result. To display the result in a different format, put a comma (,)
separator, then a format control string after the expression. Chapter 9
describes the format control string in more detail.

When you type the name of just one of your program variables, Turbo De­
bugger displays its value. If you want a quick look at the value, this is more
convenient than opening an inspector, looking at the value, and then
deleting the inspector. You can also use this command as a simple
calculator by using numbers as operands instead of program variables.

Note for C Programmers

The C language has a feature called expressions with side effects that can be
powerful and convenient, as well as a source of surprises and confusion.

Chapter 6, Examining and Modifying Data 83

An expression with side effects alters the value of one or more variables or
memory areas when it is evaluated. For example, the C increment(++) and
decrement (--)operators and the assignment operators (=, +=,and so on)
have this effect. If you execute functions in your program within a C
expression (for example, myfunc(2)), note that your function can have
unexpected side effects.

If you don't intend to modify the value of any variable but merely want to
evaluate an expression containing some of your program variables, don't
use any of the operators that have side effects. On the other hand, side
effects can be a quick and easy way to change the value of a variable or
memory area. For example, to add 1 to the value of your variable named
count, evaluate the C expression count++.

Watch

Prompts you for an expression to watch, then places the expression or pro­
gram variable on the list of variables displayed in the Watches window.

If the cursor is in a Text pane when you issue this command, the prompt
automatically contains the variable at the cursor, if any. If you select an
expression (using Ins), the prompt contains the selected expression.

Function Return

Shows you the value the current function is about to return. You can only
use this command when the function is about to return to its caller.

The return value is displayed in an Inspector window, so you can easily
examine return values that are pointers to compound data objects.

This command prevents you from having to switch to a CPU window to
examine the return value that is placed in the CPU registers.

Pointing at Data Items in Source Files

Turbo Debugger has a powerful mechanism to relieve you from always
typing in the names of program variables that you wish to inspect. From
within any Module window, you can place the cursor anywhere within a
variable name and use the local menu Inspect command to create an
inspector window showing the contents of that variable. You can also select
an expression to inspect by pressing Ins and using the cursor keys to

84 Turbo Debugger User's Guide

highlight it before choosing the Inspect command. See Chapter 8 for a full
discussion of using Module windows.

The Watches Window

The Watches window lets you list variables and expressions in your pro­
gram whose values you wish to track. You can watch the value of simple
variables, such as integers, and also watch the contents of complex data
items, such as arrays. In addition, you can watch the value of a calculated
expression that does not refer directly to a memory location, for example,
x *y +4.

File View Run Breakpoints Data Window Options llm1!D
dule: TCDEMO F1le: TCDEMO.C 35--------------1

unsigned long totalcharacters;

nl1nes = O;
nwords = O;
totalcharacters = O;
showar9s(argc, ai:gv);
while (readaline() != O) (

)

wordcount • makeintowords(buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nl1nes++;

prtntstllttsttcs(nltnes, nwords, totalcharacters):
retum(O); --- _.,, . ~·

1worcrcount unsigned int a (Ox8)
wordcounts unsigned int [10] {1,2,4,6,1,1,2,0,0,0)
letterinfo struct linfo [2~ {{4,2),{l,l),{O,O),{l,l),{7,0),{2,2),{2,0),{5,0)

t I I t

totaltllaracters uns 1 gned long 66L (Ox42)

F2-Bkpt Fl-Close F4-Here FS-Zoom Fi-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 6.2: The Watches Window

Choose View /Watches to create a Watches window. It shows a list of
variables or expressions whose values you want to watch. For each item,
the variable name or expression appears to the left and its data type and
value to the right. Compound values (like arrays and structures) appear
with their values between braces (()) for C programs, and between
parentheses for Pascal programs. If there isn't room to display the entire
name or expression, it is truncated and a bullet (•) indicates the omission.

When you enter an expression to be watched, feel free to use variable
names that are not yet valid because they are in a function that has not yet

Chapter 6, Examining and Modifying Data 85

been called. This lets you set up a watch expression before its scope
becomes active. (See Chapter 9 for a complete discussion of scopes and
when a variable or parameter is valid.) This is the only situation in Turbo
Debugger where you can enter an expression that cannot be immediately
evaluated.

This means that if you mistype the name of a variable, the mistake won't be
detected because Turbo Debugger assumes it is the name of a variable that
will become available as your program executes.

Unless you use the scope-overriding mechanism discussed in Chapter 9,
Turbo Debugger evaluates expressions in the Watches window in the scope
of the current location where your program is stopped. Hence, expressions
in the Watches window have the same value as if they appear in your pro­
gram at the place where it is stopped. If a watch expression contains a
variable name that is not accessible from the current scope-for example, if
it's private to another module-the value of the expression is undefined
and is displayed as four question marks(????).

The Watches Window Local Menu

As with all local menus, press Alt-F10 to pop up the Watches window local
menu. If you have Control key shortcuts enabled, press Ctr/ with the first
letter of the desired command to access the command.

86 Turbo Debugger User's Guide

File View Run Breakpoints Data Window Options
rModule: TCDEMO File: TCDEMO.C 35 1

unsigned long totalcharacters;

nlines = 0;
nwords = O;
totalcharacters = O;
showar~s(argc, a~v);
while readal ine(! • O) {

wordcount = makeintowords(buffer);
nwords +• wordcount;
totalcharacters += analyzewords(buffer);
nllnes++;

...)
pr1ntstat1st1cs(n11nes, nwords, totalcharacters);
return - -rJ:G• _.,_ 1t ...

iwiira'Coiin t Remove unsigned int 8 (Ox8)
wordcounts Delete all unsigned int [10] {l,2,4,6,1,1,2,0,0,0)
letterinfo stru {{4,2),{l,l),{0,0},{1,l},{7,0},{2,2},{2,0},{5,0}
mmd~·lil·f· Inspect . -. I to~ aracters Change unsigned long -66L (Ox42r

Fl-Help Esc-Abort

Figure 6.3: The Watches Window Local Menu

Watch

Prompts you for the variable name or expression to add to the list in the
Watches window. It is added to the beginning of the list.

Edit

Lets you edit the expression in the Watches window. You can change the
watch that's there or enter a new one.

You can also invoke this command by pressing Enter once you've positioned
the highlight bar over the watch you want to change.

Remove

Removes the currently selected item from the Watches window.

Delete All

Removes all the items from the Watches window. Use the Watch command
to view more variables. This command is useful if you move from one area

Chapter 6, Examining and Modifying Data 87

of your program to another, and the variables you were watching are no
longer relevant.

Inspect

Opens an Inspector window to show you the contents of the currently
highlighted item in the Watches window. If the item is a compound object
(array, record, or structure), this allows you to view all its elements, not just
the ones that fit in the Watches window. (The section "Inspectors" on page
88 explains all about Inspector windows.)

Change

Changes the value of the currently highlighted item in the Watches window
to the value you enter at the prompt. If the current language you are using
permits it, Turbo Debugger performs any necessary type conversion exactly
as if the appropriate assignment operator(= or:=) had been used to change
the variable. See Chapter 9 for more information on the assignment
operator and type conversion (casting).

Inspector Windows

An Inspector window displays your program data appropriately,
depending on the data type you're inspecting. Inspector windows behave
differently for scalars (for example, char or int), pointers (char "' in C, " in
Pascal), arrays (long x[4], array [l..10] of word), functions, structures,
records, unions, and sets.

The Inspector window lists the items that make up the data object being
perused. The title of the window shows the data type of the inspected data
and its name, if there is one.

The first item in an Inspector window is always the memory address of the
data item being inspected, expressed as a segment:offset pair, unless it has
been optimized to a register.

To examine the contents of an Inspector window as raw data bytes, select
the View/CPU command while you're in the Inspector window. The CPU
window will come up with the data pane positioned to the data displayed
in the Inspector window. You can return to the Inspector window by
closing the window with the Window/Close command (or F3).

88 Turbo Debugger User's Guide

The following section describes the different Inspector windows that can
appear for each of the languages supported by Turbo Debugger: C, Pascal,
and assembler. The language being used dictates the format of the
information displayed in Inspector windows. Data items and their values
always appear in a format similar to the way they were declared in the
source file.

Remember that you don't have to do anything special to cause the different
Inspector windows to appear. The right one appears automatically,
depending on the data you're inspecting.

C Data Inspector Windows

Scalars

Scalar Inspector windows show you the value of simple data items, such as

char x = 4;
unsigned long y = 1234561;

These Inspector windows only have a single line of information following
the top line that describes the address of the variable. To the left appears
the type of the scalar variable (char, unsigned long, and so forth), and to
the right appears its present value. The value can be displayed as decimal,
hex, or both. It's usually displayed first in decimal, with the hex values in
parentheses (using the standard C hex prefix of Ox). Use TDINST to change
how the value is displayed.

If the variable being displayed is of type char, the character equivalent is
also displayed. If the present value does not have a printing character
equivalent, use the backslash (\) followed by a hex value to display the
character value. This character value appears before the decimal or hex
values.

Chapter 6, Examining and Modifying Data 89

File Yi ew Run Breakpoints Data Iii ndow Options l3l1iil
dule: TCDEMO File: TCDEMO.C 'ltl----------------1
int main(int argc, char **argv) {

unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

nllnes • 0;
nwords " O;
totalcharacters " 0;
showa1'9s(argc, ai:gv);
while (readallne(J != O) {

wordcount = makeintowords(buffer); ,. .
}

(buffer);
!!!!!~· •!!·

printstatistics(nlines, nwords, totalcharacters);

atches 2
letter1nfo struct 11nfo [26] {{3,2},{0,0},{0,0},{1,1},{8,0},{3,3},{l,0},{4,1}
nwords unsigned Int 17 (Oxll)
nl1nes unsigned int 2 (Ox2)
totalcharacters unsigned long 62L (Ox3E)

FZ-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 6.4: A Scalar Inspector Window

Pointers

Pointer Inspector windows show you the value of data items that point to
other data items, such as

char *p = "abc";
int *ip = O;
int **ipp = &ip;

Pointer Inspector windows usually have a top line that contains the address
of the variable, followed by a single line of information .

To the left appears [O], indicating the first member of an array. To the right
appears the value of the item being pointed to. If the value is a complex
data item such as a structure or an array, as much of it as possible will be
displayed, with the values enclosed in braces ({ and }).

If the pointer is of type char and appears to be pointing to a null-terminated
character string, more information appears, showing the value of each item
in the character array. To the left in each line appears the array index ([1],
[2], and so on), and the value appears to the right as it would in a scalar
Inspector window. In this case, the entire string is also displayed on the top
line, along with the address of the pointer variable and the address of the
string that it points to.

90 Turbo Debugger User's Guide

Flle Y1ew Run Breakpo1nts __ Da_t_a_w_1_nd_o_w_o_p_t_1o_ns _____ liIIJll'l
dule: TCDEMO F1le: TCDEMO.C 85 ::::::r;­

charcount = 0;
while (*bufp I= O} {

char f1rst • l;
tnt wordlen ~ 0;
while (*buf != D)

char *

atches 2
letter1nfo struct linfo [Z6] {{3,Z),{O,O),{O,O),{l,l},{8,0},{3,3},{l,0},{4,l)
nwords ????
nlines ????
total characters ????

FZ-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace FB-Step F9-Run FlO-Menu

Figure 6.5: AC Pointer Inspector Window

Arrays

Array Inspector windows show you the value of arrays of data items, such
as

long threed[3] [4] [5];
char message[] = "eat these words";

There is a line for each member of the array. To the left on each line appears
the array index of the item. To the right appears the value of the item being
pointed to. If the value is a complex data item such as a structure or array,
as much of it as possible will be displayed, with the values enclosed in
braces ({ and }).

Chapter 6, Examining and Modifying Data 91

File View Run Breakpoints Data Window Options 1iJ!.i!iD
dule: TCDEMO File: TCDEMO.C 91---------------.l

first • O;
I
letterinfo[letterindex].count++;

4
[O] {3.21

I [l] 10.01

/* count the

wordcoun [2] (O.OI of this leng

bufp++; 11uca31•••••••11i11l,11J1•ll
~eturn(charcount 'cf.I t!W"

[6] {O,OI

/* display all the stati struct llnfo
*/ i====o==o==o==o==o==o==o==o==o==o==o~

atches-------------------------.1:,
letterinfo struct linfo [26] {{3,21,{0,0l,{O.Ol.{l,1},{13,1},{2,1},{0,0l.{6,l
letterindex unsigned int 5 (Ox5)
charcount unsigned long 7L (Ox7)
wordlen Int O (OxO)

FZ-Bkpt F3-Close F4-Here FS-Zoom Fl-Next F7-Trace Fl-Step F9-Run FlO-Menu

Figure 6.6: A C Array Inspector Window

Structure and Union

Structure and union Inspector windows show you the value of the
members in your structure and union data items, for example,

atruct date {
int year;
char month;
char day;

today;

union {
int small;
long large;

holder;

These Inspector windows have another pane below the one that shows the
values of the members. This additional pane shows the data type of the
member highlighted in the top pane.

92 Turbo Debugger User's Guide

Flle Ylew Run Breakpoints Data Window Options Eil'.i
dule: TCDEI() File: TCDEl().C 117 1

pri ntf~"Total number of lines = %d\n", nl i nes);
prlntf "Total word count = %d\n•, nwords);
printf "Average number of words per line = %g\n", averagelen
for (n = 0; n < LETTERSINALPHABET; n++) {

count ~ · · • count;
1f (count> o ~:!?l··ll~mmmmn==:~il

printf("'%c' @5A51:095C t
'A' + n, co count 3 (Ox3)

} firstletter 5 Ox5
for (n = 0; n < MAXWORDLENGT

count = wordcounts[n unsigned int
if (count> O) I ll=============i

1 f (count -= 1)
prlntf("There ls 1 word");

else
pri ntf('There are %d words", count);

atches~~~~~~~~~~~~~~~~~~~~~~~-;i:,

letterlnfo struct linfo [26] {{3,2},{1,1},{0,0},{1,l},{15,l},{3,1},{0,0},{7,l
charcount long 97L (Ox61)
n unsigned lnt 26 (OxlA)

FZ-Bkpt F3-Close F4-Here FS-Zoom Fi-Next F7-Trace FB-Step F9-Run FlO-Menu

Figure 6.7: AC structure or Union Inspector Window

Structures and unions appear the same in Inspector windows. The title of
the Inspector window tells you whether you are looking at a structure or a
union. These Inspector windows have as many items after the address as
there are members in the structure or union. Each item shows the name of
the member on the left and its value on the right, displayed in a format
appropriate to its C data type.

Function

Function Inspector windows show the return type of the function as part of
the title. Each parameter a function is called with appears after the memory
address at the top of the list.

Chapter 6, Examining and Modifying Data 93

F11e Y1 ew lun Breakpo1 nts __ Da_t_a _11_1 nc1_ow __ o_pt_1o_n_s _____ Dm1
dule: TCDEMO File: TCDEMO.C 77 ::::::r.;­

*wrl te11++ • O;
return(nwordsJ;

Int wordlen • O;
while (*bufp I• O} (

itches----------------------"""-"•
letter1nfo struct 11nfo [26] ((3,2),(1,1),(0,0),(1,l),{15,1),(3,1),{0,0),(7,1
charcount long 97L (Ox61}
n unsigned Int 26 (OxlA)

F2-Bkpt F3-Close F4-Here FS-Zoom Fl-Next F7-Trace Fl-Step Fl-Run FlO-Menu

Figure 6.8: A C Function Inspector Window

Function Inspector windows give you information about the calling
parameters, return data type, and calling conventions for a function, for
example,

static int near pascal readit(char *buf, int count) (
)

char *nexterror(int errnurn)
)

Pascal Data Inspector Windows

Scalars

Scalar Inspector windows show you the value of simple data items, such as

var
X : integer;
Y : longint;

These Inspector windows only have a single line of infonnation following
the top line that describes the address of the variable. To the left appears
the type of the scalar variable (byte, word, integer, longint, and so forth),
and to the right appears its present value. The value can be displayed as

94 Turbo Debugger User's Guide

decimal, hex, or both. It's usually displayed first in decimal, with the hex
values in parentheses (using the Turbo Pascal hex prefix of $). You can use
TDINST to change how the value is displayed.

If the variable being displayed is of type char, the character equivalent is
also displayed. If the present value does not have a printing character
eq~ivalent, use a # followed by a number to display the character value.
This character value appears before the decimal or hex values.

F1le View Run Breakpoints _Da_t_a_ll_in_d_ow __ o_pt_i_on_s _____ ~
dule: TPDEMO File: TPDEMO.PAS 134- ::::::::r.;-

{ Find end of word, bump letter l word counters }
Wordlen := 0;
while (i <= Length(S)) and Isletter(S[i]) do
begin

Inc(Numletters)'
Inc(LetterTableiupCase(S[i])].Count};
If Wordlen = O then { bump counter }

ej~~r=~ftit}%•:n::n 3rstletter} i

{ Bump word count info }
If Wordlen > O then

atches JZ S 'Here is another line to build up the statistics for the demo try' : STRING
Numletters 43 ($2B) : LONGINT
i B ($8} : INTEGER
Wordlen 2 ($2) : WORD

F2-Bkpt F3-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step F9-Ru11 FlO-Menu

-- -- --------iigaret>.Q:A?ascal-Scalar Inspector Window

Pointers

Pointer Inspector windows in a Pascal program show you the value of data
items that point to other data items, such as

var
IP : 'integer;
LP : "pointer;

Pointer Inspector windows usually only have a single line of information
following the top line that describes the address of the variable. To the left
appears [1], indicating the first member of an array. To the right appears the
value of the item being pointed to. If the value is a complex data item such
as a record or an array, as much of it as possible will be displayed, with the
values enclosed in parentheses.

Chapter 6. Examining and Modifying Data 95

You will also get multiple lines if you opened the Inspector window and
issued the Range local command and specified a count greater than 1.

File View Run Breakpoints Data Window Options ~ dule: TPDEMO File: TPDEMO.PAS 18
New(Temp); (another Parm record }
with Tern do
begin

.... Get A:3EF4 : SDSA:OOOO string + length byte I
Par ' .
Nex

end;
if He ING initialize list pointer I

Hea
else

Ta11A.Next :=Temp; (add to end I
Ta11 : = Temp; (update tall pointer I

end; (for I

(Dump list I

atches------------------------z,
s
Numletters
1
Word Len

'c:!td\tpdemo.exe' : STRING
89 $59) : LONGINT
0 (O) : INTEGER
????

FZ·Bkpt Fl-Close F4-Here FS-Zoom F&·Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 6.10: A Pascal Pointer Inspector Window

Arrays

Array Inspector windows in Pascal programs show you the value of arrays
of data items, such as

var
A: array[l .. 10,1 .. 20] of integer;
B : array[l .• 50] of boolean;

There is a line for each member of the array. To the left on each line appears
the array index of the item and to the right is its present value. If the value
is a complex data item such as a record or an array, as much of it as possible
will be displayed, with the values enclosed in parentheses.

You can use the Range command to examine a portion of an array. This is
useful if the array has a lot of elements and you want to look at something
in the middle of the array.

96 Turbo Debugger User's Guide

File View Run Breakpoints _Da_t_a_w_i_nd_o_w_O_p_t_io_ns _____ lflEil'l
dule: TPDEMO File: TPDEMO.PAS 217 ::::::::r.;­

end;
Writeln;

end; (ParmsOnHeap I

begin (program I
In1t;
Buffer :• Getline;
while Buffer<> 11 do
begin

ProcessL1ne(Buffer);
Buffer :• Getline;

end;
ShowResults;
ParmsOnHeap;

end.

iB1

[•c1l ['D' !'E'
'F'
'G'
'H'

['I']

array [1 A• •• • Z '] of record LI NFOREC

Watches------------------------.1:,
s
Nwnletters
1
Word Len

'c:~td\tpdemo.exe' : STRING
89 $59) : LONGINT
0 (O) : INTEGER
????

F2-Bkpt Fl-Close F4-Here FS-Zoom Fi-Next F7-Trace Fl-Step F9-Run FlO-Menu

Figure 6.11: A Pascal Array Inspector Window

Records

Record Inspector windows in Pascal programs show you the value of the
fields in your records, for example,

record
year : integer;
month ; 1. .12;
day : 1.. 31;

and

These Inspector windows have another pane below the one that shows the
values of the fields. This additional pane shows the data type of the field
highlighted in the top pane.

Chapter 6. Examining and Modifying Data 97

F1le View Run Breakpoints Data Window Options l3lm1
dule: TPDEMO File: TPDEMO.PAS 217---------------1

end;
Wrlteln;

end; { PannsOnHeap)

begin { program)
Inlt;
Buffer :• GetLlne;
while Buffer<> 11 do
begin

ProcessLine(Buffer):
Buffer := GetLlne;

end;
ShowResults;
PannsOnHeap;

end.

Inspecting LetterTabl!!------·:i-o
@5920:0058
[1A1]

record LINFOREC

atches------------------------_,2
s
Numletters

1 c:\td\tpdemo.exe 1 : STRING
89 ($59) : LONGINT

I 0 ($0) : INTEGER
Word Len ????

FZ-Bkpt Fl-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 6.12: A Pascal Record Inspector Window

Procedures and Functions

Procedure and Function Inspector windows in Pascal programs give you
information about the calling parameters and return data type for a
procedure or function, for example,

98

function tirnes2plus(a: integer, b: longint): longint
begin

tirnes2plus := a * 2 + b;
end;
procedure
swap(var a,b integer);
var

temp := a;
a := b;
b := a;

and;

Turbo Debugger User's Guide

F1le View Run Breakpol nts Data Ill ndow Options ll1!D
dule: TPDEMO F11e: TPDEMO.PAS 10111---------------l

procedure ProcessLlne(var S : BufferStr);
t• I ' I • "

function I 5
begin S : STRING 128

... IsLetter1f----------"""1
end; { lsl PROCEDURE

var
1 : Integer;
WordLen : Word;

begin { ProcessLlne I
Inc (NumLl nes);
I := 1;
while I <= Length(S) do
begin

{ Skip non-letters I

latches

F2-Bkpt F3-Close F4-Here FS-Zoom F&-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 6. 13: A Pascal Procedure Inspector Window

Assembler Data Inspector Windows

Scalars

Scalar Inspector windows in assembly language programs show you the
value of simple data items, such as

VARl DW 99
MAGIC DT 4.608
BIGNUM DD 123456

These Inspector windows only have a single line of information following
the top line that describes the address of the variable. To the left appears
the type of the scalar variable (byte, word, dword, qword, and so forth),
and to the right appears its present value. The value can be displayed as
decimal, hex, or both. It's usually displayed first in decimal, with the hex
values in parentheses (using the standard assembler hex postfix of h). You
can use TDINST to change how the value is displayed.

Chapter 6, Examining and Modifying Data 99

File Y1ew
dule: hello

mov
mov
1nt

hello endp

cseg ends

Run Breakpoints Data 111ndow Options lil!.t1!Ii
F11e: hello.asm 31--------------1

ah,4ch
al,OOh
2lh

dseg segment para 'DATA'

text db
db

textptr dw
count dd

latches

'Hello World',cr,lf
'$'
text
12h

FZ-Blcpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 6. 14: An Assembler Scalar Inspector Window

Pointers

Pointer Inspector windows in assembler programs show you the value of
data items that point to other data items, such as

X DW
XPTR DW X
FARPTR DD X

Pointer Inspector windows usually only have a single line of information
following the top line that describes the address of the variable. To the left
appears [O], indicating the first member of an array. To the right appears the
value of the item being pointed to. If the value is a complex data item such
as a struc or array, as much of it as possible will be displayed, with the
values enclosed in braces ({and}).

If the pointer is of type byte and appears to be pointing to a null-terminated
character string, more information appears, showing the value of each item
in the character array. To the left in each line appears the array index ([1],
[2], and so on), and the value appears to the right as it would in a scalar
Inspector window. In this case, the entire string is also displayed on the top
line, along with the address of the variable and the address of the string
that it points to.

100 Turbo Debugger User's Guide

You will also get multiple lines if you opened the Inspector window with a
Range local command and specified a count greater than 1.

File View Run Breakpoints Data Window Dpt ions
dule: hello File: hello.asm 1

hello proc far •
mov dx,seg text 0 'H' 72 48h
mov ds,dx [l] 'e I 101 (65h)

~
mov dx,offset text

m
'l' 108 th)

mov ah,9 'l' 108 6Ch)
int 2lh •o' 111 6Fh~
mov ah,4ch [5] I I 32 (20h
mov al ,ooh m 'W' 87 (57h)
int 2lh 'o' 111 f6Fh)

hello endp [8] 'r' 114 72h)
[9] 'l' 108 (6Ch)

i:seg ends [10] 'd I 100 ~64h)
[11] '\xOD' 13 ODh)
[12] '\xOA' 10 (OAh)

dseg segment para 'DATA'
byte ptr

text db 'Hello World',cr,lf

latches

F2-Bkpt F3-Close F4-Here FS-Zoom F&-Next F7-Trace Fl-Step Fl-Run FlO-Menu

Figure 6.15: An Assembler Pointer Inspector Window

Arrays

Array Inspector windows in assembler programs show you the value of
arrays of data items, such as

WARRAY DW 10 DUP (0)
MSG DB "Greetings", 0

There is a line for each member of the array. To the left on each line appears
the array index of the item and to the right is its present value. If the value
is a complex data item such as a struc, as much of it as possible will be
displayed, with the values enclosed in braces.

You can use the Range local command to examine a portion of an array.
This is useful if the array has a lot of elements and you want to look at
something in the middle of the array.

Chapter 6, Examining and Modifying Data 101

File Y1ew Run Breakpoints Data Window Options ~
dule: hello File: helto.asm 13 1
cseg segment para public 'CODE'

assume cs:cseg,ds:dseg,ss:stack

hello proc far
mov dx,seg text
mov ds,dx

... mov dx,offs ·
mov ah,9
1nt 21h
mov ah,4ch
mov al ,OOh
1nt 21h

hello endp byte [11]

cseg ends

latches

FZ-Bkpt Fl-Close F4-Here FS-Zoom F6-Next F7-Trace Fl-Step F9-Run FlO-Menu

Figure 6. 16: An Assembler Array Inspector Window

Structure and Union

Structure Inspector windows in assembler programs show you the value of
the fields in your strucs and unions, for example,

x STRUC
MEMl DB
MEM2 DD
x ENDS
ANX x <1,ANX>

y UNION
AS BYTES DB 10 DUP (?)
AS FLT DT ?
y ENDS
AY y <?,1.0>

These Inspector windows have another pane below the one that shows the
values of the fields. This additional pane shows the data type of the field
highlighted in the top pane.

102 Turbo Debugger User's Guide

File View lun Breakpoints Data Window Options lll!i1!II
dule: hello File: hello.asm 22--------------1

hello proc
mov
mov
mov
mov
Int
mov
mov
Int

hello endp

cseg ends

far
dx,seg text
ds,dx
dx,offset text
ah,9
2lh
ah,4ch
al,OOh
2lh

x
y
width
length

struc values

dseg segment para 'DATA'

byte ptr ds:OOOO [hello.text] "Hello World"
byte '\x09' 9 (09h)

F2-Bkpt F3-Close F4-Here FS-Zoom Fi-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 6. 17: An Assembler Record Inspector Window

The Inspector Window Local Menu

The commands in this menu give the Inspector window its real power. By
choosing the Inspect local menu command, for example, you create another
Inspector window that lets you go into your data structures. Other
commands in the menu let you inspect a range of values and inspect a new
variable.

Press Alt-F10 to pop up the Inspector window local menu. If you have
control key shortcuts enabled, press Ctr/ with the first letter of the desired
command to access the command.

Chapter 6, Examining and Modifying Data 103

File View Run Breakpoints Data Window Options
dule: hello File: hello.asm 22

hello

hello

cseg

dseg

proc far
mov dx,seg text ,. . -~-

mov ds,dx
mov dx,offset text

~0000

UW[i«c\11 ll!J
mov ah,9
int 21h
mov ah,4ch
mov al,OOh
int 21h
endp

ends

segment para 'DATA'

·~t''.J. 08 (6Ch) i ange ••• 08 (6Ch)

Inspect
Descend
New expression •••

byte ptr ds:OOOO [hello. text] "Hello World"
byte '\x09' 9 (09h)

fl-Help Esc-Abort

Figure 6.18: The Inspector Window Local Menu

Range

Sets the starting element and number of elements that you want to display.
Use this command when you are inspecting an array and you only want to
look at a certain subrange of all the members of the array.

If you have a long array, and want to look at a few members near the
middle, use this command to open the Inspector window at the array index
that you want to examine.

This command is particularly useful in C where you often declare a pointer
to a data item-like "char *p"-but what you really meant was that p
pointed to an array of characters, not just a single character.

Change

Changes the value of the currently highlighted item to the value you enter
at the prompt. If the current language permits it, Turbo Debugger performs
any necessary casting exactly as if the appropriate assignment operator had
been used to change the variable. See Chapter 9 for more information on
the assignment operator and casting.

104 Turbo Debugger User's Guide

Inspect

Opens a new Inspector window that shows you the contents of the
currently highlighted item. This is useful if an item in the Inspector
window contains more items itself (like a structure or array), and you wish
to see each of those items.

If the current Inspector window is inspecting a function, issuing the Inspect
command will show you the source code for that function.

You can also invoke this command by pressing Enter after highlighting the
item you wish to inspect.

You can return to the previous Inspector window by pressing Esc to close
the new Inspector window. If you are done inspecting a data structure and
want to remove all the Inspector windows, use the Window /Close
command or its shortcut, F3.

Descend

This command works like the Inspect local menu command except that
instead of opening a new Inspector window to show the contents of the
highlighted item, it puts the new item in the current Inspector window.
This is like a hybrid of the New Expression and Inspect commands.

Note: Once you have descended into a data structure like this, you can't go
back to the previous unexpanded data structure. Use this command when
you want to work your way through a complicated data structure or long
linked list, but you don't care about returning to a previous level of data.
This helps reduce the number of Inspector windows on the screen.

New Expression

Prompts you for a variable name or expression to inspect, without creating
another Inspector window. This lets you examine other data without
having to put more Inspector windows on the screen. Use this command if
you are no longer interested in the data in the current Inspector window.

Chapter 6, Examining and Modifying Data 105

106 Turbo Debugger User's Gulde

c H A p T E R

7

Breakpoints

Turbo Debugger uses the single concept of "breakpoint" to describe the de­
bugger functions usually referred to as breakpoints, watchpoints, and
tracepoints.

Traditionally, breakpoints, watchpoints, and tracepoints are defined like
this: A breakpoint is a place in your program where you wish execution to
stop so that you can examine program variables and data structures. A
watchpoint causes your program to be executed one instruction or source
line at a time, watching for the value of an expression to become true. A
tracepoint causes your program to be executed one instruction or source line
at a time, watching for the value of certain program variables or memory­
referencing expressions to change.

Turbo Depugger unifies these three concepts by defining a breakpoint in
three parts:

•the location in the program where the breakpoint occurs
•the condition under which the breakpoint is triggered
•what happens when the breakpoint is triggered

The ''location" can be either a single location in your program or it can be
global, where the breakpoint can occur at any source line or instruction in
your program.

The "condition" can be

•always
• when an expression is true
•when a data object changes value

Chapter 7, Breakpoints 107

A "pass count" can also be specified, which requires "condition" to be true
a certain number of times before the breakpoint can be triggered.

The "what happens" can be one of these:

• stop program execution (a breakpoint)
• log the value of an expression
• execute an expression (splice code)

In this chapter, we'll show you how Turbo Debugger breakpoints give you
more power and flexibility than traditional breakpoints, watchpoints, and
tracepoints. You'll learn about the Breakpoints window and the Log
window, about how to set simple breakpoints, conditional breakpoints, and
breakpoints that log the value of your program variables, and finally, how
to set breakpoints that watch for the exact moment when a program
variable, expression, or data object changes value.

Many times, you just want to set a few simple breakpoints, so that if your
program reaches any one of these locations, it stops. You can set or clear a
breakpoint at any location in your program by simply placing the cursor on
the source code line and pressing the F2 key. You can also set a breakpoint
on any line of machine code by pressing F2 when you are pointing at an
instruction in the Code pane of a CPU window. There is no limit to the
number of breakpoints you can set.

The Breakpoints Menu

You can access the global Breakpoints menu at any time by pressing the A/t-
8 hot key.

108 Turbo Debugger User's Guide

File View Run i·Mfa.i.Ul'll'I Data Window Options
ili<I'• 1

function WordToStri ~I- lit-~· var t •••
S : String[5]; Changed memory global •••

begin Expression true global •••
Str(Num:Len, S); Delete all
WordToString := S

end; { WordToString I

function RealToString;
var

s : String [BO];
begin

Str(Num:Len:Places, S);
RealToString := S;

end; I RealToString I

function AllocText;
var

latches

Fl-Help Esc-Abort

Figure 7.1: The Breakpoints Menu

Toggle

Sets or clears a breakpoint at the currently highlighted address in a Module
window or CPU window Code pane. The hot key is F2.

At ...

Sets a breakpoint at a specific location in your program. You will be
prompted for the address at which to set the breakpoint. Alt-F2 is the
shortcut.

Changed Memory Global. ..

Sets a breakpoint that's triggered when an area of memory changes value.
You will be prompted for the area of memory to watch. For more
information, see the Changed Memory command in "The Breakpoint
Window Local Menu" section later in this chapter.

Chapter 7, Breakpoints 109

Expression True Global ...

Sets a breakpoint that is triggered when the value of an expression you
supply becomes true. You will be prompted for the expression. For more
information, see the Condition Expression True command in "The Break­
point Window Local Menu" section later in this chapter.

Delete All

Removes all the breakpoints you have set.

Scope of Breakpoint Expressions

Both the action that a breakpoint performs and the condition under which
it is triggered can be controlled by an expression you supply. That
expression is evaluated using the scope of the address at which the break­
point is set, not at the scope of the current location the program is stopped
at. This means that your breakpoint expression can only use variable names
that are valid at the address in your program where you set the breakpoint,
unless you use scope overrides. See Chapter 9 for a complete discussion of
scopes. ·

If you use variables that are local to a routine as part of an expression, that
breakpoint will execute much more slowly than a breakpoint that uses only
global or module local variables.

The Breakpoints Window

You create a Breakpoints window by choosing the View /Breakpoints main
menu command. What this does is give you a way of looking at and
adjusting the conditions that trigger a breakpoint. You can use this window
to add new breakpoints, delete breakpoints, and adjust existing break­
points.

110 Turbo Debugger User's Guide

File View Run Breakpoints Data Window Options
rModule: MCALC File: MCALC.PAS 122 1

end; { Run)

IJJJ> begin
CheckBreak := False;
SetColor(TXTCOLOR);
Cl rScr; 137: W! .!WJ
SetColor(MSGHEA ". Breakpoint
Wri teXY(MSGHEAD ~.lZS- Data changed "CheckBreak" @5c95:c740
SetColor(PROMPT MCOMMAND.136 Enabled
WriteXY(MSGKEYP MCPARSER.330
GotoXY(BO, 25); MCDISPLY .115
Ch :• GetKey;
ClrScr;
In1tVars;
Changed := False;
RedrawScreen;
1 f (ParamCount > O) then

LoadSheet(ParamStr(l));

ratches 21

F2-Bkpt Fl-Close F4-Here F5-Zoom F6-Next F7-Trace FB-Step F9-Run FlO-Menu

Figure 7.2: The Breakpoints Window

Breakpoint windows have two panes. The left pane (breakpofot list) shows
a list of all the addresses at which breakpoints are set. The right pane
(breakpoint detail) shows the details of the currently highlighted break­
point in the left pane. Only the breakpoint list pane has a local menu, which
you can get to by pressing Alt-F10.

The Breakpoints Window Local Menu

The commands in this menu let you add new breakpoints, delete existing
breakpoints, or change how a breakpoint behaves.

Alt-F10 pops up the Breakpoint window local menu. If you have Control-key
shortcuts enabled, press Ctr/ with the first letter of the desired command to
access the command directly.

Chapter 7, Breakpoints 111

F1le View Run Breakpoints Data
dule: MCALC F1le: MCALC.PAS 122
end; { Run)

•begin

Window Options

CheckBreak :a False;
SetColor(TXTCOLOR ;
Cl rScr; [li~~llllF====r=:=:::=:=:;:::;=::::=:=;::========3;]
SetColor(MSGHEA Log "CheckBreak"
Wr1teXY(MSGHEAD Always
SetColor(PROMPT f:jijjiiiiiiJ Enabled
WrtteXY(MSGKEYP 1ai110·nt1+0inoh
GotoXY(80, ZS}; I: liiITT'
Ch :• GetKey; Pass count •••
ClrScr; Enable/disable
In1tVars;
Changed :• False Add •••
RedrawScreen; Global
1f (ParamCount > Remove

LoadSheet(Para Delete all
~------1 Inspect
latches

Fl-Help Esc-Abort

Figure 7.3: The Breakpoint Window Local Menu

Set Action

Allows you to define what happens when the breakpoint is triggered. This
command pops up the menu shown in Figure 7.4.

112 Turbo Debugger User's Guide

F1le View Run Breakpoints Data Window Options ~
rf'IOdule: MCALC F1le: MCALC.PAS 122.---------------1

end; I Run }

.. begin
CheckBreak := False;
SetColor(TXTCOLOR);
Cl rScr; ijQ:{Ql· l:Jll!11UiiE====r=:="::'.~~~========-'3i1~-
SetColor(MSGHEA Gl~l l Log "CheckBreak"
Wrl teXY (MSGHEADll~··~[!~J•e•Ot.l[iJ: ••• Al ways
setColor(PROMPT ~iimiiiii] Enabled
Wr1 teXY (MSliKEYP I HIUU•u
GotoXY(BO, 25); ~
Ch :a GetKey;
Cl rScr; g e
1n1tvars; •Wi'" ,___,
Changed := False
RedrawScreen; Global
If (ParamCount > Remove

LoadSheet(Para Delete all
~------1 Inspect
ratches-----'-------'--------------;2

Fl-Help Esc-Abort

Figure 7.4: The Set Action Menu

Break

Causes your program to stop when the breakpoint is triggered. The Turbo
Debugger screen will be redisplayed and you can enter commands to look
around at your program's data structures.

Log

Causes the value of an expression to be recorded in the Log window. You
are prompted for the expression whose value you wish to log. Be careful
that the expression doesn't have any unexpected side effects. See Chapter 9
for a description of expressions and side effects.

Execute

Causes an expression to be executed. You are prompted for the expression.
The expression should have some side effect, such as setting a variable to a
value. This option can act as a "code splice," letting you insert an
expression that will execute before the code in your program at the current
line number.

Chapter 7, Breakpoints 113

Condition

Allows you to control the conditions under which the breakpoint is
triggered. This command pops up the menu shown in Figure 7.5.

F1le View Run Breakpoints Data Window Options
rf'10dule: MCALC F11e: MCALC.PAS 122

end: { Run)

II> begin
CheckBreak := False:
SetColor(TXTCOLO~

-~-ClrScr: : ·. • •
SetColor(MSGHEA lrtll • •. Breakpoint
Wri teXY (MSGHEAD

J
Data changed "CheckBreak" @5c95:c740

SetColor(PROMPT Set action Enabled
llr1 teXY (MSGKEYP lmiDll•l1
GotoXY(BO, 25);
Ch := GetKey; l~!h1~&1q.,11!Qnrt1i' ClrScr:
In1tVars; Express on true •••
Changed := False Hardware
RedrawScreen:

J
1 f (ParamCount > Delete all

LoadSheet(Para Inspect

latches

Fl-Help Esc-Abort

Figure 7.5: The Condition Menu

Always

Indicates that no additional conditions need be true before the breakpoint is
triggered.

Changed Memory ...

Watches a memory variable or object and allows the breakpoint to be
triggered if the object changes. You are prompted for an expression
referencing the object you wish to watch, and the number of objects to
watch. The total number of bytes in the memory area is the size of the
object that the expression references times the number of objects. For
example, if you used C to enter

(long)a,4

the area watched for change would be 16 bytes long, since a long is 4 bytes
and you said to watch four of them.

114 Turbo Debugger User's Guide

If you attach this condition to a global breakpoint, your program will
execute much more slowly, since the memory area will have to be checked
for change after every source line has been executed. If you've installed a
hardware debugger device driver, changed memory breakpoints may
become much faster. If a changed memory breakpoint has hardware
assistance, an asterisk (*) will appear after the breakpoint name in the left
pane. You can expect then that the breakpoint will not slow down your pro­
gram's execution.

By setting this condition on a breakpoint at a specific address, you do not
incur the speed penalty of the global breakpoint, and you can still check the
variable each time a specific line of code is executed.

Expression True

Allows the breakpoint to be triggered when an expression becomes true
(nonzero). You are prompted for the expression to evaluate each time the
action is encountered.

Hardware

Causes the breakpoint to be triggered by the hardware-assisted device
driver. Use this menu either if you have a 386 system and are using the
TDH386.SYS device driver, or if you have a hardware debugger board
installed in your system and the board vendor supplies a Turbo Debugger
device driver.

Appendix F discusses the hardware debugger interface and the options
available under this menu.

Pass Count ...

Sets the number of times the action must be encountered before it is
triggered. The Pass Count command is decremented only when the
condition attached to the breakpoint is true. This means that if you set a
pass count as well as a condition, it causes the breakpoint to be triggered
the nth time that the condition is true.

Enable/Disable

Enables or disables the currently highlighted breakpoint. This command
acts as a toggle, switching between enabled and disabled each time you use

Chapter 7, Breakpoints 115

it. A disabled breakpoint is "invisible" until you enable it again; it behaves
as if it was deleted.

This command is useful if you have defined a complex breakpoint that you
don't want to use just now, but will want to use again later. This saves you
from having to delete the breakpoint, and then reenter it along with its
conditions and action.

Add ...

Adds a breakpoint to the list of breakpoints. You are prompted for the
address in your program where the breakpoint will occur. If you wish to set
a global action that occurs at every program line, use the Global command
from this menu.

You can also add a breakpoint by simply starting to type the address at
which you want to set it. A prompt box will appear just as if you had
invoked the Add command.

Once you've added the breakpoint, you can use the other local menu
commands to modify its behavior. When you first add a breakpoint, it has a
pass count of 1, its condition is set to always occur, and the action is to
break (stop) your program.

Global

Adds a global breakpoint to the list of breakpoints. A global action will
occur on every source line or instruction. Use a global breakpoint when you
want to find out exactly when a variable changes or when some condition
becomes true.

Global breakpoints slow down the execution of your program by a large
amount. However, they can be very convenient for finding where your pro­
gram is ''bashing" some data.

After adding the global breakpoint, you must set a condition that will
trigger the global breakpoint.

Remove

Removes the currently highlighted breakpoint.

116 Turbo Debugger User's Gulde

Delete All

Removes all breakpoints, both global and those set at specific addresses.
You will have to set more breakpoints if you want your program to stop
when encountering a breakpoint.

Inspect

Shows you the source code line or assembler instruction corresponding to
the currently highlighted breakpoint item. If the breakpoint is set at an
address that corresponds to a source line in your program, a Module
window will be opened and set to that line. Otherwise, a CPU window will
be opened, with the Code pane set to show the instruction at which the
breakpoint is set.

You can also invoke this command by pressing Enter once you have the
highlight bar positioned over a breakpoint.

The Log Window

You create a Log window by choosing the View /Log command. This
window lets you review a list of significant events that have taken place in
your debugging session.

Chapter 7, Breakpoints 117

File View Run Breakpoints ... Da_t_a_w_i_nd_o_w_o_p_ti_o_ns _____ llmil'l
dule: MCINPUT File: MCINPUT.PAS 6 ::::::r.;­
begin

Ins :• True; ~riii1'l'""1· ii•iiiJ;iiiiiiiiiiiiiiiiiii.l ChangeCursorql~ril. " · •
CPos : = Su cc (l~t lolUNPUT :rz-4 """"Cnangea = True : eooi:w
SetColor(Whit Breakpoint at MCALC.116
repeat Watches

GotoXY(l, S AH #2 2 ($02} : BYTE
Write(S, 11 Changed True: BOOLEAN
GotoXY(CPos ScreenRows + 5 25 ($19} : WORD
Ch := GetKe Currow 1 ($1} : WORD
case Ch of FormDisplay False : BOOLEAN

HOMEKEY : ; Check next run of program for value of CurCol
ENDKEY : ; This will show were a problem might exist
INSKEY : "======================="

atches------------------------2
AH
Changed
ScreenRows + 5
Currow
FormDi splay

#2 2 ($02} : BYTE
True : BOOLEAN
25 ($19} : WORD
1 ($1} : WORD
False : BOOLEAN

F2-Bkpt Fl-Close F4-Here FS-Zoom F&-Next F7-Trace F8-Step Fl-Run FlO-Menu

Figure 7.6: The Log Window

Log windows show a scrolling list of the lines output to the window. If
more than 50 lines have been written to the log, the oldest lines are lost
from the top of the scrolled list. To adjust the number of lines, use either a
command-line option at startup or permanently change the number using
the installation program (TDINST). You can preserve the entire log,
continuously writing it to a disk file, by using the Open Log File local menu
command.

Here's a list of what can cause lines to be written to the log:

•Your program stops at a location you specified. The location it stops at is
recorded in the log.

•You issue the Add Comment local menu command. You are prompted
for a comment to write to the log.

•A breakpoint is triggered that logs the value of an expression; this value
is put in the log.

•You use the Window /Dump Pane To Log command (from the main
menu bar) to record the current contents of a pane in a window.

118 Turbo Debugger User's Guide

The Log Window Local Menu

The commands in this menu let you control writing the log to a disk file,
stopping and starting logging, adding a comment to the log, and clearing
the log.

Alt-F10 pops up the Log window local menu. If you have Control-key
shortcuts enabled, pressing Ctr/ and the first letter of the desired command
accesses the command directly.

File View Run Breakpoints Data Window Options
dule: MCINPUT File: MCINPUT.PAS 6n------------­
begln

Ins := True; 1"5iiiiiiiiiiiiJiiiiiiiiiiiiiiiiiiiiiii] ChangeCursor <ii~ · . " . •
CPos := Succ(At MCINPUT.124 Changed= True : BOOLEAN
SetCo l or (Whl t Breakpol n .--------,
repeat Watches Open log file •••

GotoXY(l, S AH Close log file #2 2 ($02) : BYTE
Wrlte(S, 11 Changed i!ii!J!UU! 1 CJ11 True : BOOLEAN
GotoXY(CPos ScreenRow ~ co11111ent... 25 ($19) : WORD
Ch := GetKe Currow Erase 1 og 1 ($1) : WORD
case Ch of FormDispl False : BOOLEAN

HOMEKEY : ; Check next run of program for value of CurCol
ENDKEY : ; This will show were a problem might exist
INSKEY: il======================i

atches,-----------------------,2
AH
Changed
ScreenRows + 5
Currow
FormD1splay

Fl-Help Esc-Abort

#2 2 ($02) : BYTE
True : BOOLEAN
25 ($19) : WORD
1 ($1) : WORD
False : BOOLEAN

Figure 7.7: The Log Window Local Menu

Open Log File ...

Causes all lines written to the log to also be written to a disk file. You are
prompted for the name of the file to write the log to.

When you open a log file, all the lines already displayed in the log
window's scrolling list are written to the disk file. This lets you open a disk
log file after you see something interesting in the log that you want to
record to disk.

If you want to start a disk log that does not start with the lines already in
the log window, first choose the Erase Log File command before choosing
the Open Log File command.

Chapter 7, Breakpoints 119

Close Log File

Stops writing log lines to the file specified in the Open log file local menu
command, and the file is closed.

Logging

Enables or disables the log, controlling whether anything actually gets
written to the Log window.

Add Comment

Allows you to insert a comment into the log. You are prompted for a line of
text that may contain any characters you desire.

Erase Log

Clears the log list. The Log window will now be blank. This does not affect
writing the log to a disk file.

Simple Breakpoints

One of the most common things you'll want to do when debugging pro­
grams is to cause your program to stop if certain pieces of code are about to
be executed.

There are a number of ways to set a breakpoint action. Each one is
convenient in different circumstances.

•Move to the desired source line in a Module window and issue the
Breakpoints/Toggle command (or press F2). Issuing this command on a
line that already has a breakpoint set causes that breakpoint to be
deleted.

•Move to an instruction in the Code pane of a CPU window and issue the
Breakpoints/Toggle command (or press F2). Issuing this command on a
line that already has a breakpoint set causes that breakpoint to be
deleted.

•Issue the Breakpoints/ At command and enter a code address at which to
set a breakpoint.

120 Turbo Debugger User's Guide

• Issue the Add local menu command from the breakpoint list pane of the
Breakpoint window and enter a code address at which to set a break­
point.

Conditional Breakpoints and Pass Counts

There are many occasions where you do not want a breakpoint to be
triggered every time a certain source statement is executed, particularly if
that line of code is executed many times before the occurrence you are
interested in. Turbo Debugger gives you two ways to qualify when a break­
point is actually triggered: pass counts and conditions.

If you wish to stop your program on the tenth call to a function, you can set
a breakpoint at the start of the function and use the Pass Count local menu
command in the Breakpoint window to set the number of times you want
to skip the breakpoint before it is actually triggered.

If you wish to stop your program at a specific location but only when a
certain condition is true, you can specify an expression using the
Condition/Expression True local menu command. Each time the break­
point is encountered, the expression will be evaluated and if it is true
(nonzero), the breakpoint will be triggered. This can be used in
combination with the pass count to trigger a breakpoint only after the
expression has been true a certain number of times.

You can use the Condition/Changed Memory local menu command to
specify a breakpoint that only occurs after a data item changes value. This
can be a lot more efficient than specifying a global breakpoint that watches
for exactly when something changes. If you only watch for something to
change when a specific source statement is reached, it reduces the amount
of processing Turbo Debugger does in order to detect when the change
occurred.

Global Breakpoints

If you wish to have a breakpoint occur every time a source line or
instruction is encountered, you use global breakpoints. There are a number
of ways to create a global breakpoint, with each method best-suited for a
particular situation:

•Choose the Global local menu command from the action list pane of the
Breakpoint window. Use this method when you want to set a qualifying
condition and/or pass count, or when you want to do something other
than stop when the breakpoint is triggered.

Chapter 7, Breakpoints 121

•Choose the Breakpoints/Changed Memory Global command from the
main menu bar. Use this to stop when an area of memory changes.

•Choose the Breakpoints/Expression True Global command from the
main menu bar. Use this command to stop execution when an expression
becomes true.

When you set a global breakpoint, you usually use the local menu in the
Breakpoint window to modify the condition or the action; otherwise all you
end up with is a breakpoint action that occurs on every source line-just
like using the Run/Trace Into main menu command.

To test your global breakpoints each time a source line is about to be
executed, make sure your current window is not a CPU window when you
restart your program with one of the Run commands from the mainmenu
bar (or their Function key equivalents).

To test your global actions each time a single instruction is executed, make
sure your current window is a CPU window when you restart your pro­
gram.

Breaking for Changed Data Objects

When you want to find out where in your program a certain data object is
being changed, first, set a global breakpoint using one of the techniques
outlined in the previous section. Then you can use the Condition/Changed
Memory local menu command in the detail pane of the Action window.
Enter an expression that refers to the memory area you wish to keep track
of, along with an optional count of the number of objects to track.

Your program will execute slowly when you use this command. You may
want to localize the problem before using this technique to find the exact
location where a data item changes.

If you have installed a hardware device driver, Turbo Debugger will try to
set a hardware breakpoint to watch for a change in the data area. Different
hardware debuggers support different numbers and types of hardware
breakpoints. You can see if a breakpoint has used the hardware by opening
a Breakpoint window with the F10/View /Breakpoints command. Any
breakpoint that is hardware assisted will have an asterisk (*) beside it.
These breakpoints will be much faster than other global breakpoints that
are not hardware assisted.

122 Turbo Debugger User's Gulde

Logging Variable Values

Sometimes, you may find it useful to log the value of certain variables each
time you reach a certain place in your program. (Note: You can only set one
breakpoint per address.) You can log the value of any expression,
including, for example, the values of the parameters a function is called
with. By looking at the log for each time the function is called, you can
determine when it was called with erroneous parameters.

Issue the Set Action/Log command from the Breakpoints window local
menu. You are prompted for the expression whose value is to be logged
each time the breakpoint is triggered. If you wish to log the value of
multiple variables, you must set multiple breakpoints.

Executing Expressions

By executing an expression that has side effects each time a breakpoint is
triggered, you can effectively "splice in" new pieces of code before a given
source line. This is useful when you want to alter the behavior of a routine
to test a diagnosis or bug fix. This saves you from going through the
compile-and-link cycle just to test a minor change to a routine.

Of course, this technique is limited to the insertion of an expression before
an already existing line of code is executed; you can't use this technique to
modify existing source lines directly.

Chapter 7, Breakpoints 123

124 Turbo Debugger User's Gulde

c H A p T E R

8

Examining and Modifying Files

Turbo Debugger treats disk files as a natural extension of the program
you're debugging. You can examine and modify any file on the disk,
viewing it either as ASCII text or as hex data. You can also make changes to
text files using your favorite word processor or text editor, all from within
Turbo Debugger.

This chapter shows you how to examine and modify two sorts of disk files:
those that contain your program source code, and other disk files. First, we
show you how to examine and edit program source files, and then we show
you how to examine and modify other disk files.

Examining Program Source Files

Program source files are your source files that are compiled and that
generate an object module (an .EXE file). You usually examine them when
you wish to look at the behavior or design of a portion of your code. When
debugging, you often need to look at the source code for a function to
verify either. that its arguments are valid or that it is returning a correct
value.

As you step through your program, Turbo Debugger automatically
displays the source code for the current location in your program.

Files included in a source file by a compiler directive that generate line #'s
(like #include in C and INCLUDE in assembler) are also considered to be
program source files. You should always use a Module window to look at
your program source files, because this informs Turbo Debugger that the

Chapter 8, Examining and Modifying Files 125

file is a source module. It can then let you do things like set breakpoints or
examine program variables simply by moving to the appropriate place in
the file. These techniques and others are described in the following section.

The Module Window

You create a Module window by choosing the View /Module command
from the main menu bar (or press the shortcut All·F3).

switch (reduction)
{
case 1 :
tokenl • pop();
pop();
token2 • pop();

~ick a modu~

"!' M ISPLY .
MC INPUT
MCOMMAND
MCPARSER
MCUTIL

curtoken.x.value • tokenl.x.value + token2.x.value;
break;

case 2 :
tokenl " pop() ;
pop();
token2 = pop() ;

latches

Fl-Help ii-Move e-1-Select Letters-Match Esc-Abort

Figure 8. l: The Module Window

l

A list of modules will be displayed from which you can pick the module
you wish to view.

Turbo Debugger will then load the source file for the module that you
select. It searches for the source file in the following places:

1. in the directory where the compiler found the .EXE file
2. in the directories specified by the F10/0ptions/Path for Source

command or the -sd command-line option
3. in the current directory
4. in the directory that contains the program you're debugging

126 Turbo Debugger User's Guide

Module windows show the contents of the source file for the module
you've selected. The title of the Module window shows the name of the
module you're viewing, along with the source file name and the line
number the cursor is on. An arrow (>-) in the first column of the window
shows the current program location.

Note that when you run Turbo Debugger, you'll need both the .EXE file and
the original source file available. Turbo Debugger searches for source files
first in the directory the compiler found them in when it compiled, second
in the directory specified in the Options/Path for Source command, third
in the current directory, and fourth in the directory the .EXE file is in.

If the word modified appears after the file name in the title, the file has been
changed since it was last compiled or linked to make the program you are
debugging. This means that the routines in the updated source file may no
longer have the same line numbers as those in the version used to build the
program you are debugging. This can cause the arrow that shows the
current program location to be displayed on the wrong line.

The Module Window Local Menu

The Module window local menu provides a number of commands that let
you move around in the displayed module, point at data items and
examine them, and set the window to display a new file or module. You
will probably use this menu more than any other menu in the debugger, so
you should become quite familiar with its various options.

Use the Alt-F10 key combination to pop up the Module window local menu
or, if you have Control-key shortcuts enabled, use the Ctr/ key with the first
letter of the desired command.

Chapter 8, Examining and Modifying Files 127

File View Run Break oints Data Window Options

do
(

... displaycell(curcol, currow, HIGHLIGHT
curcell • cell[curcol][currow];
showce 11 type() ;
Input • getkey();
switch(input)
{
case '/' :
mairmenu();
break;

case Fl :
recalc();
break;

case F2 :
editcell(curcell);
break;

Fl-Help Esc-Abort

Inspect
watch

'Wi' .. e .•.

Previous
Line •••
Search •••
Next
Origin
Goto •••
Edit

Figure 8.2: The Module Window Local Menu

Inspect

l

Opens an inspector to show you the contents of the program variable at the
current cursor position. Before issuing this command, you must place the
cursor at one of your program variables in the source file.

You can also use the Ins key to select (highlight) an expression to inspect.
This saves you from typing in an expression that is in plain view in the
source module.

Because this command saves you from having to type in each name you are
interested in, you'll end up using this command a lot to examine the
contents of your program variables.

Watch

Adds the variable at the current cursor position to the Watches window.
This is useful if you want to continuously monitor the value of a variable as
your program executes. Before issuing this command, you must place the
cursor at one of your program variables in the source file.

You can also use the Ins key to mark an expression to watch. This saves you
from typing in an expression that is in plain view in the source module.

128 Turbo Debugger User's Gulde

Module

Allows you to view a different module by picking the one you want from
the list of modules displayed. This command is useful when you are no
longer interested in the current module and you don't want to end up with
more Module windows on the screen.

If you wish to view more than one module simultaneously, use the View I
Another /Module command from the main menu bar to create another
Module window.

File

Allows you to switch to view one of the other source files that makes up the
module you are viewing. Pick the file that you wish to view from the list of
files presented. Most modules only have a single source file that contains
code. Other files included in a module usually only define constants and
data structures. Use this command if your module has source code in more
than one file.

If you wish to view more than one file simultaneously, either use the View I
Another /Module main menu command to create another Module window,
or use the View /File command to create a File window.

Previous

Returns you to the last source module location you were viewing. You can
also use this command to return to your previous location after you've
issued a command that changed your position in the current module.

Line

Positions you at a new line number in the file. Enter the new line number to
go to. If you enter a line number after the last line in the file, you will be
positioned at the last line in the file.

Search

Searches for a character string, starting at the current cursor position. Enter
the string to search for. If the cursor is positioned over something that looks
like a variable name, the search prompt will come up initialized to that

Chapter 8, Examining and Modifying Files 129

name. Also, if you have marked a block in the file using the Ins key, that
block will be used to initialize the search prompt. This saves you from
typing if what you want to search for is a string that is already in the file
you are viewing.

You can use simple wildcards, with ? indicating a match on any single
character, and* matching 0 or more characters. The search does not wrap
around from the end of the file to the beginning. To search the entire file, go
to the first line by pressing Ctr/-PgUp.

Next

Searches for the next instance of the character string you specified with the
Search command; you can only use this after issuing a Search command.

Sometimes, a search command matches an unexpected string before
reaching the one you really wanted to find. Next lets you repeat the search
without having to reenter what you want to search for.

Origin

Positions you at the module and line number that is the current program
location (CS:IP). If the module you are currently viewing is not the module
that contains the current program location, the Module window will be
switched to show that module. This command is useful after you have
looked around in your code and want to return to where your program is
currently stopped.

Goto

Positions you at any location within your program. Enter the address you
wish to examine; you can enter a line number, a function name, or a hex
address. See Chapter 9 for a complete description of the ways to enter an
address.

You can also invoke this command by simply starting to type the label to go
to. This brings up a prompt box exactly as if you had specified the Label
command. This is a handy shortcut for this frequently used command.

130 Turbo Debugger User's Guide

Edit

Starts up your choice of an editor so that you can make changes to the
source file for the module you are viewing. You can specify the command
that starts your editor from the installation program TDINST.

Examining Other Disk Files

You can examine or modify any file on your system by using a File
window. You can view the file either as ASCII text or as hex data bytes,
using the Ascii and Hex commands described in later sections of this
chapter.

The File Window

You create a File window by choosing the View /File command from the
main menu bar. You can use DOS-style wildcards to get a list of file choices,
or you can type a specific file name to load.

F11 e VI ew Run Breakpol nt_s _o_a_ta __ w_1_nd_o_w __ op_t_i _on_s _____ lilJilll'.l
dule: MCALC File: MCALC.C 161 ::::::y;­
vold rnaln(int alJ!..C, char *argv[])
{ _,,_

win char Cdecl peekb (unsigned segment, unsigned offset);
lnl void -Cdecl poke (unsigned segment, unsigned offset, Int v
lnl void -Cdecl pokeb (unsigned segment, unsigned offset, char
set Int -Cdecl randbrd (struct fcb *fcb, Int rent);
set Int -Cdecl randbwr (struct fcb *fcb, Int rent);
clr void -Cdecl segread (struct SREGS *segp);
wr1 Int -Cdecl setblock(unslgned segx, unsigned newslze);

Int -Cdecl setcbrk (Int cbrkvalue);
wrl void -cdecl setdate (struct date *datep);

got
get
set
clr
lnl

void -Cdecl setswltchar (char ch};
void -cdecl sett1me (struct time *tlmep};
void -Cdecl setvect (Int lnterruptno, void Interrupt (*lsr)
void -Cdecl setverlfy (int value);
void -Cdecl sleep (unsigned seconds);
void :cdecl sound (unsigned frequency);

mem"=="

ER)

latches 2]
F2-Bkpt Fl-Close F4-Here FS-Zoom Fi-Next F7-Trace F8-Step Fl-Run FlO-Menu

Figure 8.3: The File Window

Chapter 8, Examining and Modifying Files 131

File windows show the contents of the file you've selected. The name of the
file you are viewing is displayed at the top of the window, along with the
line number the cursor is on if the file is displayed as ASCII text.

When you first create a File winauw, the file will appear either as ASCII
text or as hex bytes, depending on whether the file contains what Turbo De­
bugger thinks is ASCII text or binary data. You can switch between ASCII
and hex display at any time using the Display As command described later.

F1le View Run Breakpoint_s _o_a_ta __ wi_n_do_w __ op_t_io_ns _____ ~
dule: MCALC File: MCALC.C 161 :::::::r;
void main(int argc, char *argv[]}
{ "
win 00000: 2f 2a 09 64 6f 73 2e 68
1ni 00008: Od Oa Od Oa 09 44 65 66
1ni 00010: 69 6e 65 73 20 73 74 72
set 00018: 75 63 74 73 2c 20 75 6e
set 00020: 69 6f 6e 73 2c 20 6d 61
clr 00028: 63 72 6f 73 2c 20 61 6e
wri 00030: 64 20 66 75 6e 63 74 69

00038: 6f 6e 73 20 66 6f 72 20
wri 00040: 64 65 61 6c 69 6e 67 Od

00048: Oa 09 77 69 74 68 20 4d
got 00050: 53 44 4f 53 20 61 6e 64
get 00058: 20 74 68 65 20 49 6e 74
set 00060: 65 6c 20 69 41 50 58 38
clr 00068: 36 20 6d 69 63 72 6f 70
1ni 00010: 12 6f 63 6s 13 13 6f 12

latches

/* dos.h
Def

i nes str
ucts, un
ions, ma
cros, an
d functi
ons for
dealing

with M
SOOS and
the Int

el iAPX8
6 microp
rocessor

F2-Bkpt Fl-Close F4-Here F5-Zoom F&-Next F7-Trace F8-Step F9-Run FlO-Menu

Figure 8.4: The File Window Showing Hex Data

ER)

The File Window Local Menu

The File window local menu has a number of commands for moving
around in a disk file, changing the way the contents of the file is displayed,
and making changes to the file.

Use the Alt-F10 key combination to pop up the File window local menu or, if
you have Control key shortcuts enabled, use the Ctr/ key with the first letter
of the desired command.

132 Turbo Debugger User's Guide

File View Run Breakpoints Data
dule: MCALC File: MCALC.C 161 .

Window Options

void main(int ar c, char *argv[])
1win . : ~~· 64 6f 73 2e 68
ini 00 65 66
ini 00 74 72
set 00 75 6e
set 00 6d 61
clr 00 61 6e
wri 00 74 5g

00 72 20
wri 00 67 Od

00 20 4d
got 00050: 53 44 4f 53 20 61 6e 64
get 00058: 20 74 68 65 20 49 6e 74
set 00060: 65 6c 20 69 41 50 58 38
clr 00068: 36 20 6d 69 63 72 6f 70
ini 00070: 72 6f 63 65 73 73 6f 72

Latches

Fl-Help Esc-Abort

I* dos.h
Def

ines str
ucts, un
ions, ma
cros, an
d functi
ons for
dealing

with M
SOOS and
the Int

el iAPX8
6 microp
rocessor

Figure 8.5: The File Window Local Menu

Goto

ER)

Positions you at a new line number or offset in the file. If you are viewing
the file as ASCII text, enter the new line number to go to. If you are viewing
the file as hex bytes, enter the offset from the start of the file at which to
start displaying. You can use the full expression parser when entering the
offset. If you enter a line number after the last line in the file or an offset
beyond the end of the file, you will be positioned at the end of the file.

Search

Searches for a character string, starting at the current cursor position. You
are prompted to enter the string to search for. If the cursor is positioned on
something that looks like a symbol name, the search prompt will come up
initialized to that name. Also, if you have marked a block in the file using
the Ins key, that block will be used to initialize the search prompt. This
saves you from typing if what you want to search for is a string that is
already in the file you are viewing. The format of the search string depends
on whether the file is displayed in ASCII or hex.

Chapter 8. Examining and Modifying Flies 133

If the file is displayed in ASCII you can use simple wildcards, with ?
indicating a match on any single character, and * matching 0 or more
characters.

If the file is diplayed in hex, you enter a byte list consisting of a series of
byte values or quoted character strings using the syntax of whatever
language you are using for expressions. See Chapter 9 for complete
information about byte lists.

The search does not wrap around from the end of the file to the beginning.
To search the entire file, go to the first line of the file by pressing Ctrl-PgUp.

You can also invoke this command by simply starting to type the string that
you want to search for. This brings up a prompt box exactly as if you had
specified the Search command.

Next

Searches for the next instance of the character string you specified with the
Search command; you can only use this command after first issuing a
Search command.

This is useful when your Search command didn't find the instance of the
string you wanted. You can keep issuing this command until you find what
you want.

Display As

Toggles between displaying the file as ASCII text or hex bytes. When you
select ASCII display, the file appears as you are used to seeing it on the
screen in an editor or word processor. If you select Hex display, each line
starts with the hex offset into the file of the bytes on the line. Either 8 or 16
bytes of data are displayed on a line, depending on how wide the pane is.
To the right of the hex display of the bytes, the display character for each
byte appears. The full display character set can be displayed, so byte values
less than 32 or greater than 127 appear as the corresponding display
symbol.

File

Allows you to switch to view a different file. You can use DOS-style
wildcards to get a list of file choices, or you can type a specific file name to
load. This lets you view a different file without putting a new File window

134 Turbo Debugger User's Gulde

on the screen. If you wish to view two different files or two parts of the
same file simultaneously, issue the View I Another /File command to make
another File window.

Edit

If you are viewing the file as ASCII text, this command lets you make
changes to the file you arc viewing by invoking the editor you specified
with the TDINST installation program.

If you are viewing the file as hex data bytes, the debugger does not start
your editor. Instead, you are prompted for the bytes to replace those at the
current cursor position. Enter a byte list, just as if you were entering a list of
bytes to search for; Chapter 9 has a complete description of byte lists.

Chapter 8, Examining and Modifying Flies 135

136 Turbo Debugger User's Gulde

c H A p T E R

9

Expressions

Expressions can be a. mixture of symbols from your program (that is,
variables and names of routines), and constants and operators from one of
the supported languages: C, Pascal, and assembler.

Turbo Debugger can evaluate expressions and tell you their value. You can
also use expressions to indicate a data item in memory whose value you
want to know. You can supply an expression in response to any prompt
that asks for a value or address in memory. (Note that each language
evaluates an expression differently.)

You use the Data/Evaluate/Modify command from the main menu bar to
find the value of an expression you type in. You can also use this command
as a simple calculator, as well as to examine the value of data objects in
your program.

In this chapter, you'll learn how Turbo Debugger chooses which language
to use when evaluating an expression, and how you can make it use a
specific language. We describe the components of expressions that are
common to all the languages, such as source-line numbers and accessing
the processor registers. We then describe the components that can make up
an expression in each language, including constants, program variables,
strings, and operators. For each language, we also list the operators that
Turbo Debugger supports and the syntax of expressions.

For a complete discussion of C, Pascal, and assembler expressions, refer to
your Turbo C Compiler User's Guide and Reference Guide, the Turbo Pascal
User's Guide and Reference Guide, or the Turbo Assembler Reference Guide.

Chapter 9. Expressions 137

Choosing the Language for Expression
Evaluation

Turbo Debugger normally determines which expression evaluator and
language to use based on the source file-name extension for the current
module. This is the module where your program is stopped. You can
override this by using the Options/Language command to choose C,
Pascal, or Assembler. If you choose the Source option, expressions are
evaluated according to the source-file language. (If Turbo Debugger can't
determine the source language, it uses C's expression rules.)

Usually, you let Turbo Debugger choose which language to use. Sometimes
you may find it useful to explicitly set the language, such as when de­
bugging an assembler module that is called from one of the other
languages. By explicitly setting expression evaluation to use a language,
you can access your data as you refer to it with that language, even though
your current module uses a different language.

Code Addresses, Data Addresses, and Line
Numbers

Normally, when you want to access a variable or name of a routine in your
program, you simply type its name. However, you can also type an expres­
sion that evalutes to a memory pointer, or specify code addresses as
source-line numbers by preceding the line number with a pound sign(#),
like #123. The next section describes how to access symbols outside the
current scope.

Accessing Symbols outside the Current Scope

Where the debugger looks for a symbol is known as the "scope" of that
symbol. accessing symbols outside of the current scope is an advanced
concept that you don't really need to understand in order to use Turbo De­
bugger in most situations.

Normally, Turbo Debugger looks for a symbol in an expression the same
way a compiler would.

For example, C first looks in the current function, then in the current
module for a static (local) symbol, then for a global symbol. Pascal first
looks in the current procedure or function, then in an "outer" subprogram

138 Turbo Debugger User's Gulde

(if the active scope is nested inside another), then in the implementation
section of the current unit (if the current scope resides in a unit), and then
for a global symbol.

If Turbo Debugger doesn't find a symbol using these techniques, it searches
through all the other modules to try and find a static symbol that matches.
This lets you reference identifiers in other modules without having to
explicitly mention the module name.

If you want to force Turbo Debugger to look elsewhere for a symbol, you
can exert total control over where to look for a symbol name by specifying
a module, a file within a module, and/ or a routine to look inside. You can
access any symbol in your program that has a defined value, even symbols
that are private to a function or procedure and have names that conflict
with other symbols.

Scope Override Syntax

No matter what language you're using, you use the same method to
override the scope of a symbol name.

Normally, you use a number sign (#) to separate the components of the
scope. If it's not ambiguous in the current language, you can also use a
period (.)instead of#, and omit the initial number sign.

The following syntax describes scope overriding (brackets [] indicate
optional items):

[#module[#filename]J#linenumber[#variablename]

or

[#module[#filename]] [#functionname]#variablename

If you don't specify a module, the current module is assumed. Here are
some examples of valid symbol expressions with scope overrides. There is
one example for each of the legal combinations of elements that you can
use to override a scope.

The first six examples show various ways of using line numbers to generate
addresses and override scopes:

#123

#123#myvarl

#mymodule#123

Chapter 9, Expressions

Line 123 in the current module.

Symbol myvar1 accessible from line 123 of
the current module.

Line 123 in module mymodule.

139

#mymodule#123#myvarl Symbol myvarl accessible from line 123 in
module mymodule.

#mymodule#file1#123 Line 123 in source file filel, which is part of
module mymodule.

#mymodule#file1#123#myvarl Symbol myvarl accessible from line 123 in
source file filel, which is part of mymodule.

The next six examples show various ways of overriding the scope of a
variable by using a module, file, or function name:

#myvar2 Sarne as myvar2 without the#.

#myfunc#myvar2

#mymodule#myvar2

#mymodule#myfunc#myvar2

#mymodule#file2#myvar2

Variable myvar2 accessible from routine
myfunc

Variable myvar2 accessible from module
mymodule

Variable myfunc2 accessible from routine
myfunc in module mymodule

Variable myvar2 accessible from file2 that is
included in mymodule

#mymodule#file2#myfunc#myvar2Variable myvar2 accessible from myfunc
defined in file file2 that is included in
mymodule

Turbo Debugger also supports Pascal's unit override syntax:

unitname.symbolname

Implied Scope for Expression Evaluation

Whenever an expression gets evaluated by Turbo Debugger, it must decide
where in your program the "current scope" is that is used for any symbol
names without an explicit scope override. This is important in many
languages because you can have symbols inside functions or procedures
with the same name as global symbols; Turbo Debugger must know which
instance of a symbol you mean.

Turbo Debugger usually uses the current cursor position as the context for
"deciding" about scope. For example, you can set the scope where an
expression will be evaluated by moving the cursor to a specific line in a
Module window.

This means that if you have moved the cursor off the current line where
your program is stopped, you may get unexpected results from evaluating

140 Turbo Debugger User's Guide

expressions. If you want to be sure that expressions are evaluated in your
program's current scope, use the Origin local command in the Module
window to return to the current location in the source code. You can also
set the expression scope by moving around inside the Code pane of a CPU
window, by cursoring to a routine in the Stack window, or by cursoring to a
routine name in a Variables window.

Byte Lists

Several commands ask you to enter a list of bytes. This includes the Search
and Change local commands in the Data pane of the CPU window, as well
as the Search and Change local commands of the File window displaying a
file in hex format.

A byte list can be any mixture of scalar (non-floating point) numbers and
strings, using the syntax of the current language determined by the
Options/Language command. Both strings and scalars use the same syntax
used in expressions. Scalars are converted into a corresponding byte
sequence; for example, a Pascal longint value of 123456 becomes a 4-byte
hex quantity 56 34 12 00.

Language Byte List
~~~~~--~~~-

c 
Pascal 
Assembler 

C Expressions 

"ab" Ox04 "c" 

'ab'#4'c' 

1234 "AB" 

Hex Data 

61620463 

61620463 

3412 4142 

Turbo Debugger supports the complete C expression syntax. An expression 
consists of a mixture of symbols, operators, strings, variables, and 
constants. Each of these components is described in one of the following 
sections. 

C Symbols 

A symbol is a name for a data item or routine in your program. A symbol 
name starts with a letter or underscore (_). Subsequent characters in the 
symbol may contain the digits 0 through 9, as well as these characters. You 
can omit the beginning underscore from symbol names. If you enter a 
symbol name without an underscore and that name cannot be found, it is 

Chapter 9. Expressions 141 



searched for again with an underscore at the beginning . .Since the compiler 
normally puts an underscore at the start of your symbol names, this saves 
you having to remember to add it. 

C Register Pseudovariables 

Turbo Debugger lets you access the processor registers using the same 
technique used by the Turbo C compiler, namely pseudovariables. A 
pseudovariable is a variable name that corresponds to a given processor 
register. 

Pseudovariable Type Register 

- AX unsigned int AX 
- AL unsigned char AL 
- AH unsigned char AH 

BX unsigned int BX 
:::BL unsigned char BL 
- BH unsigned char BH 
ex unsigned int ex 

-CL unsigned char CL 
:::cH unsigned char CH 

- DX unsigned int DX 
DL unsigned char DL -DH unsigned char DH -

- cs unsigned int cs 
DS unsigned char DS 

-SS unsigned char SS 
:::Es unsigned char ES 

SP unsigned int SP 
-BP unsigned char BP -
DI unsigned char DI 

:::sI unsigned char SI 
_IP unsigned int instruction pointer 

The following pseudovariables let you access the 80386 processor registers: 

142 Turbo Debugger User's Guide 



Pseudovariable Type Register 

- EAX unsigned long EAX 
- EBX unsigned long EBX 
- ECX unsigned long ECX 

EDX unsigned long EDX 

- ESP unsigned long ESP 
EBP unsigned long EBP 

- EDI unsigned long EDI 
ESI unsigned long ESI 

- FS unsigned int FS 
- GS unsigned int GS 

C Constants and Number Formats 

Constants can be either floating point or integer constants. 

An integer constant is specified in decimal unless one of the C conventions 
for overriding this is used: 

Format Radix 

digits Decimal 

Odigits Octal 

OXdigits Hexadecimal 

Oxdigits Hexadecimal 

Constants are normally of type int (16 bits). If you wish to define a long 
(32-bit) constant, you must add an l or L at the end of the number. For 
example, 123456L. 

A floating-point constant contains a decimal point and may use decimal or 
scientific notation, for example, 

1.234 4.5e+ll 

C Character Strings and Escape Sequences 

Strings are a sequence of characters enclosed in quote characters ('"'). You 
can also use the standard C convention of backslash (\) as an escape 
character. 

Chapter 9, Expressions 143 



Sequence Value Character 

\\ Backslash 
\a OX07 Bell 
\b OXOB Backsfeace 
\f oxoc Form eed 
\n OXOA Newline 
\r OXOD Carriage return 
\t OX09 Horizontal tab 
\v OXOB Vertical tab 
\xnn nn Hex b~e value 
\nnn nnn Octal yte value 

If you follow the backslash with any other character than those listed here, 
that character is inserted into the string unchanged. 

C Operators and Operator Precedence 

Turbo Debugger uses the same operators as C, with the same precedence. 
The debugger has one new operator that is not part of the C language set of 
operators: the double colon (::). This operator has a higher priority than any 
of the C operators and is used to make a constant far address out of the 
expression that precedes it and the expression that follows it. For example, 

OX1234::0X1000 ES:: BX 

The primary expression operators 

() [ J • -> sizeof 

have the highest priority, from left to right. The unary operators 

* & - ! ~ ++ --

are of a lower priority than the primary operators but greater than the 
binary operators, grouped from right to left. The binary operators have 

144 Turbo Debugger User's Guide 



decreasing priority as indicated next; operators on the same line have the 
same priority: 

highest *I% 
+­
>> << 
< > <= >= 
==!= 
& 
A 

I 
&& 

lowest I I 

The single ternary operator, ?:, has a priority less than any of the binary 
operators. 

The assignment operators are all of equal priority below the ternary 
operator and group from right to left: 

= += -= *= /= %= >>= <<= &= ~= I= 

Executing C Functions in Your Program 

You can call functions from a C expression exactly as you do in your source 
code. Turbo Debugger actually executes your program code with the 
function arguments that you supply. This can be a very useful way of 
quickly testing the behavior of a function you've written. You can 
repeatedly call it with different arguments and then check that the returned 
value is correct each time. 

If your program contains the following function that raises one number to a 
power (xY), 

long power (int x, int y) { 

long temp = 1; 
while (y--) 

temp *= x; 
return (temp); 

then the following table shows the result of evaluating calls to this function 
with different function arguments: 

Chapter 9, Expressions 145 



C Expression Result 

18 

390650 

power(3,2) • 2 

25 + power(S,8) 
power(2) Error (missing argument) 

C Expressions with Side Effects 

A side effect occurs when you evaluate a C expression that changes the 
value of a data item in the process of being evaluated. In some cases you 
may want a side effect, using it to intentionally modify the value of a pro­
gram variable. At other times, you want to be careful to avoid them, so it's 
important to understand when a side effect can occur. 

The assignment operators(=,+=, and so on) change the value of the data 
item described on the left side of the operator. The increment and 
decrement (++and-) operators change the value of the data item that 
they precede or follow, depending on whether they are used as prefix or 
postfix operators. 

A more subtle type of side effect can occur if you execute a function that's 
part of your program. For example, if you evaluate the C expression 

myfunc(l,2,3) + 7 

your program may misbehave later if myfunc changed the value of other 
variables in your program. 

C Keywords and Casting 

Turbo Debugger lets you cast pointers exactly as you would do in a C pro­
gram. A cast consists of a C data-type declaration between parentheses. It 
must come before an expression that evaluates to a memory pointer. 

Casts are useful if you wish to examine the contents of a memory location 
pointed to by a far address you generated using the double colon (::) 
operator. For example, 

(long far *)0x3456::0 

(char far *)_ES::_BX 

You can use a cast to access a program variable for which there is no type 
information, which happens when you compile a module without 

146 Turbo Debugger User's Gulde 



generating debugging-type information. Rather than recompiling and 
relinking, if you know the data type of a variable, you can simply put that 
in a cast before the name of the variable. 

For example, if your variable iptr is a pointer to an integer, you can examine 
the integer that it points to by evaluating the C expression 

*(int *) iptr 

You can use the following C keywords when forming casts for Turbo De­
bugger: 

char float near 
double huge short 
enum int struct 
far long union 

unsigned 

Pascal Expressions 

Turbo Debugger supports the Pascal expression syntax, with the exception 
of string concatenation and set operators. An expression consists of a 
mixture of operators, strings, variables, and constants. The following 
sections describe each of the components that make up an expresion. 

Pascal Symbols 

Symbols in Pascal are user-defined names for data items or routines in your 
program. A Pascal symbol name can start with a letter (a-z, A-Z) or an 
underscore (_). Subsequent characters in the name can contain the digits 
(0-9) and the underscore, as well as letters. 

Normally, a symbol obeys the Pascal scoping rules, with "nested" local 
symbols overriding other symbols of the same name. You can override this 
scoping if you wish to access symbols in other scopes. For more details, see 
the section "Accessing Symbols outside the Current Scope" on page 138. 

Pascal Constants and Number Formats 

Constants can be either real (floating point) or integer constants. Negative 
constants start with a minus sign(-). If the number contains a decimal point 
or an e that introduces an exponent, it is a real number. For example, 

123.4 456e34 123.45e-5 

Chapter 9, Expressions 147 



Integer-type constants are normally decimal, unless they start with a dollar 
sign ($) to indicate hexadecimal. Decimal integer constants must be 
between -2,137,483,648 and 2,147,483,647. Hexadecimal constants must be 
between $00000000 and $FFFFFFFF. 

Pascal Strings 

A string is simply a group of characters surrounded by single quotes, for 
example, 

'abc' 

You can embed control characters in a string by preceding the decimal 
control character value with a #, for example, 

'def'#7'xyz' 

Pascal Operators 

Turbo Debugger supports all the Pascal expression operators. 

The unary operators are of the highest precedence and are of equal priority. 

@ 
/\ 

not 
typeid 
+ 

Takes address of an identifier 
Contents of pointer 
Bitwise complement 
Typecast 
Unary plus, positive 
Unary minus, negative 

The binary operators are of a lower precedence than the unary operators 
and are listed here in decreasing priority: 

* I div mod and shl shr 

in + - or xor 

< <= > >= = <> 

The := assignment operator has the lowest precedence; for your 
convenience, this returns a value, as in C. 

148 Turbo Debugger User's Guide 



Calling Pascal Functions and Procedures 

You can reference Pascal functions and procedures in expressions. For 
example, assume you have declared a function called HalfFunc that divides 
an integer by 2: 

function HalfFunc(i:integer) real; 

You can then choose the Data/Evaluate/Modify command and call 
HalfFunc as follows: 

HalfFunc(3) 
HalfFunc(lO)=HalfFunc(lO div 2) 

You can also call procedures, although not in an expression, of course. 
When you enter a procedure or function name by itself, Turbo Debugger 
reports its address and declaration. To call a function or procedure that has 
no parameter, place a set of empty parentheses after the symbol name. For 
example, 

MyP roe() 
MyProc 
MyFunc=S 
My Fune () =5 

call MyProc 
reports MyProc's address, etc. 
compares address of MyFunc to 5 
calls MyFunc and compares returned value to 5 

Assembler Expressions 

Turbo Debugger supports the complete Assembler expression syntax. An 
expression consists of a mixture of operators, strings, variables, and 
constants. Each of these components is described in this section. 

Assembler Symbols 

Symbols are user-defined names for data items and routines in your pro­
gram. An assembler symbol name starts with a letter (a-z, A-Z) or one of 
these symbols: @ ? _ $. Subsequent characters in the symbol can contain the 
digits 0-9, as well as these characters. The period(.) can also be used as the 
first character of a symbol name, but not within the name. 

The special symbol$ refers to your current program location as indicated 
by the CS:IP register pair. 

Chapter 9, Expressions 149 



Assembler Constants 

Constants can be either floating point or integer constants. A floating-point 
constant contains a decimal point and may use decimal or scientific 
notation; for example, 

1.234 4.Se+ll 

Integer constants are hexadecimal unless you use one of the assembler 
conventions for overriding the radix: 

Format Radix 

digits Hexadecimal 

digitsO Octal 

digitsQ Octal 

digitsD Decimal 

digitsB Binary 

You must always start a hexadecimal number with one of the digits 0-9. If 
you want to enter a number that starts with one of the letters A-F, you must 
first precede it with a zero (0). 

Assembler Operators 

Turbo Debugger supports most of the assembler operators, listed here in 
order of priority: 

xxx PTR (BYTE PTR .. . ) 
. (structure member selector) 
: (segment override) 
OR XOR 
AND 
NOT 
EQ NE LT LE GT GE 
+-
.. I MOD SHR SHL 
Unary + Unary­
OFFSET SEG 
() [] 

Variables can be changed using the =assignment operator, for example, 

a = [BYTE PTR DS:4) 

150 Turbo Debugger User's Guide 



Format Control 

When you supply an expression to be displayed, Turbo Debugger displays 
it in a format based on the type of data it is. If you wish to change the 
default display format for an expression, place a comma at the end of the 
expression, and supply an optional repeat count followed by an optional 
format letter. You can only supply a repeat count for pointers or arrays. 
Note that if you use a format control on the wrong data type, it has no 
effect. 

Character 

c 

d 

f[#) 

m 

md 

p 

s 

xorh 

Format 

Displays a character or string expression as raw characters. 
Normally, nonprinting character values are displayed as some type 
of escape or numeric format. This option forces the characters to be 
displayed using the full IBM display character set. 

Displays an integer as a decimal number. 

Displays as floating-point format with the specified number of 
digits. If you don't supply a number of digits, as many as necessary 
are used. 

Displays a memory-referencing expression as hex bytes. 

Displays a memory-referencing expression as decimal bytes. 

Displays a raw pointer value, showing segment as a register name 
if applicable. Afso shows the object pointed to. This is the default if 
no rormat control is specified. 

Displays an array or pointer to array of characters as a quoted 
character string. The string is terminated with a null. 

Displays an integer as a hex number. 

Chapter 9, Expressions 151 



152 Turbo Debugger User's Guide 



c H A p T E R 

10 

Assembler-Level Debugging 

This chapter is for programmers who are familiar with programming the 
80x86 processor family in assembler. You don't need to use the capabilities 
described in this chapter to debug your programs-but there are certain 
problems that may be easier to find using techniques discussed in this 
chapter. 

We'll explain when you might want to use assembler-level debugging. 
Then we describe the CPU viewer with its built-in disassembler and 
assembler. You then learn how to examine and modify raw hex data bytes, 
how to peruse the function calling stack, how to examine and modify the 
CPU registers, and finally how to examine and modify the CPU flags. 

When Source Debugging Isn't Enough 

Most of the time when you are debugging a program, you refer to data and 
code in your program at the source level; you refer to symbol names 
exactly as you typed them in your source code, and you proceed through 
your program by executing pieces of source code. 

Sometimes, however, you can gain insight into a problem by looking at the 
exact instructions that the compiler generated, the contents of the CPU 
registers, and the contents of the stack. To do this, you need to be familiar 
with both the 80x86 family of processors and with how the compiler turns 
your source code into machine instructions. Since there are many excellent 
books available on the internal workings of the CPU, we won't go into that 
in detail here. You can quickly learn how the compiler turns your source 

Chapter 70, Assembler-Level Debugging 153 



code into machine instructions by looking at the instructions generated for 
each line of source code. 

C, for example, lets you write lines of source code that perform many 
actions at once. Since the debugger lets you step one source line at a time, 
not one C expression at a time, you sometimes want to know the result of 
executing a small piece of one source line. By stepping through your pro­
gram one machine instruction at a time, you can examine intermediate 
results, although it does require some effort to figure out how the compiler 
translated your source statements into machine code. 

The CPU Window 

The CPU window shows you the entire state of the CPU. You can examine 
and change the bits and bytes that make up your program's code and data. 
You can use the built-in assembler in the Code pane to temporarily patch 
your program by entering instructions exactly as you would type assembler 
source statements. You can also access the underlying bytes of any data 
structure, display them in a number of formats, and change them. 

File View Run Breakpoints Data Window Options Gm1iil 
rModule: TPDEMO File: TPDEMO.PAS 137-------------
... ~n~!N~Llnes): 

l 

-~-;111:.11•:~. ss:3EF2 = S48A;=====;==::S" 
TPDEM0.120: Inc(NumLines); ax 0004 c=O 

cs:04C4"FF063COO Inc word ptr [TPDEMO.NUM 
TPDEM0.121: i : = 1; 

bx 3EEE z=O 
ex 0000 s=O 

MfllEJl!;lllilttd•JUh .mgpna•EMq;mDE® 
TPDEMO.f2~: wtlfie 1 <= Length(SJ do 

cs:04CD C47E04 les dl,[bp+-04] 
cs:04DO 268AOS mov al,es:[dl] 

dx S920 o=O 
sl 3CEC p=O 
di ooco a=O 
bp 3EF4 I =l 

cs:04D3 30E4 xor ah,ah 
cs :04D5 3B46FE cmp ax, [bp-02] 
cs:04DB 7003 jnl TPDEM0.12S (04DD) 

sp 3EFO d=O 
ds S920 
es S920 

cs:04DA E9BAOO jmp TPDEM0.148 SS S9SA 
TPDEM0.12S: while (i <= Length(S)) and not IsLetter cs S48A 

lp 04CB 

ss:3EF2 S48A 
ds:OOOO 00 00 00 00 00 00 00 00 
ds:OOOB SA SD SA SD SA SD 00 00 

'----- ds:OOlO 00 00 00 00 00 00 SA SD ss :3EF~04Cl I---' 
ss:3EEE 0246 ratc"==d=s=:O=O=l8=00=0=0=S=A=S=D=0=0=0=0=0=0=9=0======="======"' -2 

F2-Bkpt Fl-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step Fl-Run FlO-Menu 

Figure l 0. l: The CPU Window 

You create a CPU window by choosing the View /CPU command from the 
main menu bar. Depending on what you are viewing in the current 

154 Turbo Debugger User's Guide 



window, the new CPU window will come up positioned at the appropriate 
code, data, or stack location. This provides a convenient method for taking 
a "low-level" look at the code, data, or stack location your cursor is 
currently on. The following table shows where your cursor will be 
positioned when you choose the CPU command: 

Current Window 

Stack window 
Module window 
Action window 
Variable window 
Inspector 
Breakpoint (if not a Global) 

CPU Window Pane 

Stack 
Code 
Code 
Data* 
Data 
Code 

*Code pane, if item in window is a routine. 

Positioned At 

Current SS:SP 
Current CS:IP 
Action address 
Address of item 
Address of item 
Breakpoint address 

The line at the top of the CPU window shows what processor type you 
have (8086, 80186, 80286 or 80386). CPU windows have five panes. To go 
from one pane to the next, press Tab or Shift-Tab. The top left pane (Code 
pane) shows the disassembled program code intermixed with the source 
lines. The second top pane (Register pane) shows the contents of the CPU 
registers. The right pane is the Flags pane, showing the state of the eight 
CPU flags. The bottom left pane (Data pane) shows a raw hex dump of any 
area of memory you choose. The bottom right pane (Stack pane) shows the 
contents of the stack. 

In the Code pane, an arrow <•> shows the current program location 
(CS:JP). In the Stack pane, an arrow <•) shows the current stack pointer 
(SS:SP). You can also directly type over values in the Stack pane. 

If the highlighted instruction in the Code pane references a memory 
location, the memory address and its current contents are displayed on the 
top line of the CPU window. This lets you see both where an instruction 
operand points in memory and the value that is about to be read or written 
over. 

The Flags pane shows the value of each of the CPU flags. The following 
table lists the different flags and how they are shown in the Flags pane: 

Chapter 70, Assembler-Level Debugging 155 



Letter in Pane 

c 
z 
s 
0 

p 
a 
i 
d 

Flag Name 

Carry 
Zero 
Sign 
Overflow 
Parity 
Auxiliary carry 
Interrupt enaole 
Direction 

As with all local menus, pressing Alt-F10 pops up the Code pane local menu 
or, if Control-key shortcuts are enabled, the Ctr/ key with the first letter of 
the desired command gets you to the desired command. 

In the Code, Data, and Stack panes you can press Ctrl-Left arrow and Ctrl-Right 
arrow to shift the starting display address of the pane by 1 byte up or down. 
This is easier than using the Goto command if you just want to slightly 
adjust the display. 

The Code Pane 

This pane shows the disassembled instructions at an address that you 
choose. The Mixed local command toggles between the three ways of 
displaying disassembled instructions and source code: 

No 

Yes 

Both 

No source code is displayed, only disassembled 
instructions. 

Source code lines appear before the first disassembled 
instruction for that source line. The pane is set to this 
display mode if your current module is a high-level 
language source module. 

Source code lines replace disassembled lines for those 
lines that h~ve corresponding source code; otherwise the 
disassembled instruction appears. Use this mode when 
you're debugging an assembler module and you want to 
see the original source code line, instead of the 
corresponding disassembled instruction. The pane is set 
to this display mode if your current module is an 
assembler source module. 

The left part of each disassembled line shows the address of the instruction. 
The address is displayed either as a hex segment and offset, or with the 

156 Turbo Debugger User's Guide 



segment value replaced with the CS register name if the segment value is 
the same as the current CS register. If the window is wide enough (zoomed 
or resized), the bytes that make up the instruction are displayed. The the 
disassembled instruction appears to the right. 

The Disassembler 

The Code pane automatically disassembles and displays your program 
instructions. If an address corresponds to either a global symbol, static 
symbol, or a line number, the line before the disassembled instruction 
displays the symbol if the Mixed display mode is set to Yes. Also, if there is 
a line of source code that corresponds to the symbol address, it is displayed 
after the symbol. 

Global symbols appear simply as the symbol name. Static symbols appear 
as the module name, followed by a # or a period (.), followed by the static 
symbol name. Line numbers appear as the module name, followed by a # 
or a period(.), followed by the decimal line number. 

When an immediate operand is displayed, you can infer its size from the 
number of digits: A byte immediate has 2 digits, a word immediate has 4 
digits. 

Turbo Debugger can detect the 8087 /80287 /80386/80387 numeric 
coprocessor and disassemble those instructions if a floating-point chip or 
emulator is present. 

The instruction mnemonic RETF indicates that this is a far return 
instruction. The normal RET mnemonic indicates a near return. 

Where possible, the target of JMP and CALL instructions is displayed 
symbolically. If CS:IP is a JMP or conditional jump instruction, an arrow (i 
or J,) that shows jump direction will be displayed only if the executing 
instruction will cause the jump to occur. Also, memory addresses used by 
MOV, ADD, and other instructions display symbolic addresses. 

The Code Pane Local Menu 

If you don't come up in the Code pane, use Tab or Shift-Tab to get there. Then 
press Alt-F10 to bring up the local menu. 

Chapter 10, Assembler-Level Debugging 157 



File View Run Breakpoints Data Window Options 
rModule: TPDEMO File: TPDEMO.PAS 137 1 

Inc (NwnL!nes); .. i := 1; 
(il":,11~. ss:3EF2 = 548A -~-

'TPDEf«]'.!~D: Inc(NumL!nes); ax 0004 c=O 
cs:04C4°FF063COO inc word ptr [TPDEMO.NUM bx 3EEE z=O 

TPDEMO .121: i := 1; ex 0000 s=O 
lll·~lll~i!•H•I• "c.r th(Sr·f~EIMIDiBm dx 5920 o=O 
TPDE .z sl 3CEC p=O 

cs:04CD 

~·· 
di. [bp+04] di ooco a=O 

cs:04DO ilgtn al,es:[dl] bp 3EF4 i =1 
cs:04D3 Follow ah,ah sp 3EFO d=O 
cs:0405 Caller ax, [bp-02) ds 5920 
cs:04D8 Previous TPDEM0.125 (0400) es 5920 
cs:040A Search TPOEM0.148 SS 595A 

TPOEM0.125 View source gth(S)) and not IsLetter cs 548A 
Mixed Yes Ip 04C8 

ds:OOOO 00 00 
ds:OOOB New cs:ip 00 00 ss :3EFZ 548A 

'--I ds:OOlO Assemble ••• 5A 50 ss :3EFOllo4Cl 1-
ate r ds:0018 I/0 00 90 ss :3EEE 0246 -z 

Fl-Help Esc-Abort 

Figure 10.2: The Code Pane Local Menu 

Goto 

After choosing this command, you're prompted for the new address to go 
to. You can enter addresses that are outside of your program, which lets 
you examine code in the BIOS ROM, inside DOS, and in resident utilities. 
See Chapter 9 for complete information on entering addresses. 

The Previous command restores the Code pane to the position it had before 
the Goto command was issued. 

Origin 

Positions you at the current program location as indicated by the CS:IP 
register pair. This command is useful when you want to return to where 
you started. 

The Previous command restores the Code pane to the position it had before 
the Origin command was issued. 

158 Turbo Debugger User's Guide 



Follow 

Positions you at the destination address of the currently highlighted 
instruction. The Code pane is repositioned to display the code at the 
address indicated by where the currently highlighted instruction will 
transfer control to. For conditional jumps, the address is shown as if the 
jump occurred. 

This command can be used with the CALL, JMP, conditional jump (JZ, JNE, 
LOOP, JCXZ, and so forth) and INT instructions. 

The Previous command restores the Code pane to the position it had before 
the Follow command was selected. 

Caller 

Positions you at the instruction that called the current interrupt or 
subroutine. 

This command won't always work. If the interrupt routine or subroutine 
has pushed data items onto the stack, sometimes Turbo Debugger can't 
figure out where the routine was called from. 

The Previous command restores the Code pane to the position it had before 
the Caller command was selected. 

Previous 

Restores the Code pane position to the address before the last command 
that explicitly changed the display address. Using the arrow keys and the 
PgUp and PgDn keys does not cause the position to be remembered. 

When you choose Previous, the Code pane position is remembered so that 
repeated use of the Previous command causes the code pane to switch back 
and forth between two addresses. 

Search 

Lets you enter an instruction or byte list that you want to search for. Enter 
an instruction exactly as you would when using the Assemble command. 

Be careful which instructions you try to search for; you should only search 
for instructions that don't change the bytes they assemble to depending on 

Chapter 70, Assembler-Level Debugging 159 



where they are assembled in memory. For example, searching for the 
following instructions is no problem: 

PUSH DX 
POP [DI+4] 
ADD AX, 100 

but trying to search for the following instructions can cause unpredictable 
results: 

JE 123 
CALL MYFUNC 
LOOP $-10 

You can also enter a byte list instead of an instruction. See Chapter 9 for 
more information on entering byte lists. 

Mixed 

Toggles between the three ways of displaying disassembled instructions 
and source code: 

No 

Yes 

Both 

New CS:IP 

No source code is displayed, only disassembled 
instructions. 

Source code lines appear before the first disassembled 
instruction for that source line. The pane is set to this 
display mode if your current module is a high-level 
language source module. 

Source code lines replace disassembled lines for those 
lines that have corresponding source code; otherwise the 
disassembled instruction appears. 

Use this mode when you are debugging an assembler 
module, and you want to see the original source code 
line, instead of the corresponding disassembled 
instruction. The pane is set to this display mode if your 
current module is an assembler source module. 

Sets the program location counter (CS:IP registers) to the currently 
highlighted address. When you rerun your program, execution will start at 
this address. This is useful when you want to skip over a piece of code 
without executing it. 

160 Turbo Debugger User's Guide 



Use this command with extreme care. If you adjust the CS:IP to a location 
where the stack is in a different state than at the current CS:IP, you will 
almost certainly crash your program. Do not use this command to set the 
CS:IP to an address outside of the current routine. 

Assemble 

Assembles an instruction, replacing the one at the currently highlighted 
location. You are prompted for the instruction to assemble. See the section 
in this chapter called "The Assembler" (page 172) for more details. 

You can also invoke this command by simply starting to type the statement 
you want to assemble. When you do this, a prompt box will appear exactly 
as if you had specified the Assemble command. 

1/0 

Reads or writes a value in the CPU's I/0 space and lets you examine the 
contents of I/0 registers on cards and write things to them. It pops up the 
menu shown in Figure 10.3. 

File V1ew Run Breakpoints Data Window Options 
,.Module: TPDEMO File: TPDEMO.PAS 137 

Inc (NumL1 nes); 
~ I := 1; 

,111:.11•: )N; • SS :3EF2 = 54°' -~-

TPDEMO.f20 ax 0004 c=O 
cs:04C4• Goto word ptr [TPDEMO.NUM bx 3EEE z=O 

TPDEM0.121 Origin ex 0000 s=O 

~·~1 Follow thm1·1~mwr;mwm dx 5920 o=O 
PDE • 2 Caller sl 3CEC p=O 
cs:04CD Previous di. [bp+04] d1 ooco a=O 
cs:0400 Search al,es:[di] bp 3EF4 I =l 
cs:0403 View source ah,ah sp 3EFO d=O 
cs:0405 Mixed Yes ax, [bp-02] ds 5920 
cs:0408 TPDEM0.125 (0400} es 5920 
cs:04DA New cs:1p TPDEM0.148 SS 595A 

TPDEM0.125 Assemble •.• gth(S}} and not lsLetter cs 548A 
lffi• 1p 04C8 

ds:OOOO .-oo 00 
ds:0008 5 la~I- 50 00 00 ss:3EF2 548A .____ ds:OOlO 0 Outyte 00 5A 50 ss:3EF~4Cl I--' 

late ds:0018 O Read word 00 00 90 SS :3EEE 0246 -2] Write word 

Fl-Help Esc-Abort 

Figure 10.3: The 1/0 Menu 

Chapter 7 0, Assembler-Level Debugging 161 



In Byte 

Reads a byte from an 1/0 port. You will be prompted for the 1/0 port 
whose value you wish to examine. Use the Read Word option to read from 
a word-sized 1/0 port. 

Out Byte 

Writes a byte to an 1/0 port. You will be prompted for the 1/0 port to write 
to and the value you want to write. Use the Write Word option to write to a 
word-sized 1/0 port. 

Read Word 

Reads a word from an 1/0 port. You will be prompted for the 1/0 port 
whose value you wish to examine. Use the In Byte option to read from a 
byte-sized 1/0 port. 

Write Word 

Writes a word to an 1/0 port. You will be prompted for the 1/0 port to 
write to and the value you want to write. Use the Out Byte option to write 
to a byte-sized 1/0 port. 

IN and OUT instructions access the 1/0 space where peripheral device 
controllers such as serial cards, disk controllers, and video adapters reside. 

Be careful when you use these commands: Some 1/0 devices consider 
reading their ports to be a significant event that causes the device to 
perform some action, such as resetting status bits or loading a new data 
byte into the port. You may disrupt the normal operation of the program 
you are debugging or the device with indiscriminant use of these 
commands. 

The Register Pane Local Menu 

Press Alt-F10 to pop up the Register pane local menu. Or, if Control-key 
shortcuts are enabled, use the Ctr/ key with the first letter of the desired 
command to access the command. 

162 Turbo Debugger User's Guide 



File View Run Breakpoints Data 
dule: TPOEMO File: TPDEMO.PAS 137 

Inc(Numlines); 
.... i := l; 

Window Options 

E . O: Inc(NumLlnes); 
cs:04C4 FF063COO Inc 

BIJl1 
ss:3EF2 • S48A-==~=~=3r jw1a1nucwl c=011 

word ptr [TPDEMO. ~~~~~~~~ 
TPOEM0.121: 1 :• l; 

cs:04C8°C746FE0100 mov word ptr [bp-02], 
TPOEM0.122: while i <• Length(S) do 

cs: 04CO C47 E04 1 es di , [bp+-04] 
cs :0400 268AOS mov al ,es: [di] 
cs:04D3 30E4 xor ah,ah 

Increment 
Decrement 
Zero 
Change 
Registers 32-bit No 

cs :040S 3B46FE cmp ax, [bp-02] ds S920 J 
cs:04D8 7003 jnl TPOEM0.12S (0400) es S920 
cs:040A E9BAOO jmp TPOEM0.148 SS S9SA 

POEM0.12S: while (i <• Length(S)) and not IsLetter cs S48A 
ip 04C8 

dS :0000 00 00 00 00 00 00 00 00 >-----~--<I 
ds:OOOB SA SO SA SO SA SD 00 00 ss:3EF2 S48A 
ds:OOlO 00 00 00 00 00 00 SA SO ss:3EFOlllJ4Cl 

~ate ds:0018 00 00 SA SO 00 00 00 90 ss:3EEE 0246 -21 
Fl-Help Esc-Abort 

Figure 10.4: The Register Pane Local Menu 

Increment 

Adds one to the value in the currently highlighted register. This is an easy 
way to make small adjustments in the value of a register to compensate for 
"off-by-one" bugs. 

Decrement 

Subtracts one from the value in the currently highlighted register. 

Zero 

Sets the value of the currently highlighted register to zero. 

Change 

Changes the value of the currently highlighted register. You are prompted 
for the new value. You can make full use of the expression evaluator when 
entering a new value. 

Chapter 7 0, Assembler-Level Debugging 163 



You can also invoke this command by simply starting to type the new value 
for the register. When you do this, a prompt box will appear exactly as if 
you had specified the Change command. 

Registers 32-bit 

Toggles between displaying the CPU registers as 16-bit or 32-bit values. If 
you are running on an 80386 processor, you will usually see 32-bit registers, 
unless you use this command to set the display to 16-bit registers. You only 
really need to see 32-bit registers if you're debugging a program that uses 
the 32-bit addressing capabilities of the 386 chip. If you are debugging an 
ordinary program that only uses the normal 16-bit addressing, you can 
select 16-bit register display. 

The Flags Pane Local Menu 

Press Alt-F10 to pop up the Flags pane local menu or, if Control-key 
shortcuts are enabled, use the Ctr/ key with the first letter of the desired 
command to access the command. 

File View Run Breakpoints Data Window Options 
rf10dule: TCOEMO File: TCOEMO.C 41 

'1 
while (readaline() != O) { 

.... wordcount = makeintowords(buffer); 
;{lf:11•mH:.· ss:FFCO = 578" ~l fCOEMOl4l: nwords += wordcount; ax 0001 

cs :0227 037EFA add di, [bp-06] bx OA4B limmal TCOEM0#42: totalcharacters += analyzewords(buffer); ex 0874 
cs:022A 887408 mov ax,0874 dx OA24 
cs:0220 50 push ax si 0000 p=O 
cs:022E E87400 call TCOEMO#analyzewords di 0000 a=O 
cs:0231 59 pop ex bp FFC6 i=l 
cs :0232 0146FC add [bp-04] ,ax sp FFBC d=O 
cs :0235 1156FE adc [bp-02] ,dx ds 5A51 

TCOEM0#43: nlines++; es 5A51 
cs:0238 46 inc si SS 5A51 

TCOEM0#39: while (readaline() != O) { cs 554A 
i p 021C 

ds 0000 00 00 00 00 54 75 72 62 Turb 
ds 0008 6F 20 43 20 20 20 43 6F o-C - Co ss:FFBE 0051 

'- ds 0010 70 79 72 69 67 68 74 20 pyright ss:FFBCll(J9B8 l___J 
ds 0018 28 63 29 20 31 39 38 37 (c) 1987 ss:FFBA 0246 -2 r 

Fl-Help Esc-Abort 

Figure 10.5: The Flags Pane Local Menu 

164 Turbo Debugger User's Guide 



Toggle 

Sets the value of the flag to 0 if it was 1, and to 1 if it was 0. The value 0 
corresponds to "clear," and 1 indicates "set." You can also press Enter to 
toggle the value of the currently highlighted flag. 

The Data Pane 

This pane shows a raw display of an area of memory you've selected. The 
leftmost part of each line shows the address of the data displayed in that 
line. The address is displayed either as a hex segment and offset or with the 
segment value replaced with the DS register name if the segment value is 
the same as the current DS register. 

Next, the raw display of one or more data items is displayed. The format of 
this area depends on the display mode selected with the Display As local 
menu command. If you choose one of the floating-point display formats 
(Comp, Float, Real, Double, Extended), a single floating-point number is 
displayed on each line. Byte format displays 8 bytes per line, Word format 
displays 4 words per line, and Long format displays 2 long words per line. 

The rightmost part of each line shows the display characters that 
correspond to the data bytes displayed. Turbo Debugger displays all byte 
values as their display equivalents, so don't be surprised if you see funny 
symbols displayed to the right of the hex dump area-these are just the 
display equivalents of the hex byte values. 

The number of bytes displayed on each line varies with the format set with 
the Display As command. 

Note: If you use the Data pane to examine the contents of the display 
memory, the ROM BIOS data area, or the vectors in low memory, you will 
see the values that are there when the program being debugged runs, not 
the actual values in memory when Turbo Debugger is running. These are 
not the same values that are in these memory areas at the time you look at 
them. Turbo Debugger detects when you're accessing areas of memory that 
it uses as well, and it gets the correct data value from where it stores the 
user program's copy of these data areas. 

The Data Pane Local Menu 

Once positioned in the Data pane, press Alt·F10 to pop up the local menu or, 
if Control-key shortcuts are enabled, use the Ctr/ key with the first letter of 
the desired command to access the command. 

Chapter 10, Assembler-Leve/ Debugging 165 



F11e Ytew Run lreakpo1nts Data W1ndow Options 
rf!odule: TCDEMO F11e: TCDEMO.C 41 1 

wh11e (readaltne() I• O) { 
"' wordcount • maket ntowords (buffer); ... _ .. 
llllla:~ s:FFCO • 578 

c.:O TCDEMQ!!!= nwords +• wordcount1 ax 0001 
cs :0227 037EFA add dt, [bp-06] bx OA4B z=O 

TCDEM0#42: totalcharacters +• analyzewords(buffer)1 ex 0874 s•O 
cs:022A 887408 mov ax,0874 dx OA24 o•O 
cs:022D 50 push ax st 0000 p=O 
cs:022E £87400 call TCDEMO#analyzewords dt 0000 a•O 
cs:0231 59 pop ex bp FFC6 t=l 
cs:0232 add [bp-04],ax sp FFBC d•O 
cs:0235 

'!'!;ch 
adc [bp-02],dx ds 5A51 

TCDEM0#43: es 5A51 
cs:0238 Next inc st SS 5A51 

TCDEM0#39: Change ine() I• 0) { cs 554A 
Follow i p 021C 

ds:FFFB Long follow 00 EB 00 ames • ds:OOOO Previous 75 72 62 Turb ss:FFBE 0051 
L- ds:OOOB 20 43 6F o-C - Co ss:FFBC~9B8 

,_ 
r ds:OOlO Display as 68 74 20 pyrtght ss:FFBA 0246 -2] Block 

Fl-Help Esc-Abort 

Figure l 0.6: The Data Pane Local Menu 

Goto 

Positions you at an address in your data. Enter the new address you wish 
to go to. You can enter addresses inside DOS, in resident utilities, or outside 
of your program, which lets you examine data in the BIOS data area. See 
Chapter 9 for a complete discussion of how to enter addresses. 

Search 

Searches for a character string, starting at the current memory address as 
indicated by the cursor position. Enter the byte list to search for. The search 
does not wrap around from the end of the segment to the beginning. 

See Chapter 9 for a complete discussion of byte lists. 

Next 

Searches for the next instance of the byte list you previously specified with 
the Search command. 

166 Turbo Debugger User's Guide 



Change 

Allows you to change the bytes at the current cursor location. If you're over 
an ASCII display or the format is byte, you're prompted for a byte list. 
Otherwise, you're prompted for an item of the current display type. See 
Chapter 9 for a discussion of byte lists. 

You can also invoke this command by simply starting to type the new value 
or values. This brings up a prompt box exactly as if you had chosen the 
Change command. 

Follow 

Allows you to follow word (near, offset only) pointer chains. The Data pane 
is set to the offset specified by the word in memory at the current cursor 
location. 

Long Follow 

Allows you to follow long (far, segment and offset) pointer chains. The 
Data pane is set to the offset specified by the two words in memory at the 
current cursor location. 

Previous 

Restores the Data pane address to the address before the last command that 
explicitly changed the display address. Using the arrow keys and the PgUp 
and PgDn does not cause the position to be remembered. 

Turbo Debugger maintains a stack of the last five addresses, so you can 
backtrack through multiple uses of the Follow, Long Follow, or Goto 
commands. 

Display As 

Lets you choose how data appears in the Data pane. You can choose 
between all the data formats used by C, Pascal, and assembler. You can 
choose one of the options from the menu shown in Figure 10.7. 

Chapter 10, Assembler-Level Debugging 167 



File View Run Breakpoints Data Window Options 
rf!odule: TCDEI«> File: TCDEMO.C 41 
..,. ~ wordcount • makeintowords(buffer); 

-"'-• :rwi;. 
: wordcount • makeintowords(buffer); ax 0001 c=O 

cs :021Cllfl87408 mov ax,0874 bx OA4B z=O 
cs:021F 50 ax ex 0874 s=O 
cs : 0220 E833 Goto TCDEl«>lmakeintowords dx OA24 osO 
cs:0223 59 Search ex Si 0000 P'"O 
cs : 0224 8946 Next [bp-06],ax di 0000 a•O 

TCDEM0#41: nw Change nt; bp FFC6 i •1 
cs:0227 037E Follow di. [bp-06] sp FFBC d•O 

TCDEM0#42: to Long follow • analyzewords(buffer); ds 5A51 
cs :022A B874 Previous ax,0874 es 5A51 
cs:022D 50 SS 5A51 
cs:022E E874 l.,,.!MLW -'lk lyzewords cs 554A 

I oc ip 021C 
ds:OOOO 00 0 2 Long 
ds:0008 6F 2D 43 20 2D 20 43 Comp SS: FFBE 0051 
ds:OOlO 70 79 72 69 67 68 74 Float ss:FF~9B8 

Real _.,_ 
itches Double 

Extended 
~1 

Fl-Help Esc-Abort 

Figure 10.7: The Display As Menu 

Byte 

Sets the Data pane to display as hexadecimal bytes. 

This corresponds to the C char data type and the Pascal byte type. 

Word 

Sets the Data pane to display as word hexadecimal numbers. The 2-byte 
hex value is shown. 

This corresponds to the C int data type and the Pascal word type. 

Long 
Sets the Data pane to display as long hexadecimal integers. The 4-byte hex 
value is shown. 

This corresponds to the C long data type and the Pascal longint type. 

Comp 

Sets the Data pane to display 8-byte integers. The decimal value of the 
integer is shown. 

168 Turbo Debugger User's Guide 



This is the Pascal comp (IEEE) data type. 

Float 

Sets the Data pane to display as short floating-point numbers. The scientific 
notation floating-point value is shown. 

This is the same as the C float data type and the Pascal (IEEE) single type. 

Real 

Sets the Data pane to display Pascal's 6-byte floating-point numbers. The 
scientific notation floating-point value is shown. 

This is the Pascal real type. 

Double 

Sets the data pane to display 8-byte floating point numbers. The scientific 
notation floating-point value is shown. 

This is the same as the C long double data type and the assembler TBYTE 
type. 

Extended 

Sets the data pane to display 10-byte floating-point numbers. The scientific 
notation floating-point value is shown. 

This is the internal format used by the 80x87 coprocessor. It also 
corresponds to the C long double data type and the Pascal (IEEE) extended 
type. 

Block 

Lets you manipulate blocks of memory. You can move, clear and set 
memory blocks, and read and write memory blocks to and from disk files. 
Block brings up the pop-up menu shown in Figure 10.8. 

Chapter 10, Assembler-Level Debugging 169 



File View Run Breakpoints Data Window Options 
~dule: TCDEMO Flle: TCDEMO.C 41 1 ... wordcount = makeintowords(buffer); 

:~. -'-
TCDEM~~: wordcount = makeintowords(buffer); ax 0001 c=O 

cs:o21c•ea7408 mov ax,0874 bx OA4B z=O 
cs:021F 50 ax ex 0874 s=O 
cs : 0220 E833 Goto TCDEMO#makeintowords dx OA24 o=O 
cs:0223 59 Search ex sl 0000 p=O 
cs:0224 8946 Next [bp-06].ax di 0000 a=O 

TCDEM0#41: nw Change nt; bp FFC6 1=1 
cs:0227 037E Follow di. [bp-06] sp FFBC d=O 

TCDEM0#42: to Long follow = analyzewords(buffer); ds 5A51 
cs :022A 8874 Previous ax,0874 es 5A51 
cs:022D 50 ax SS 5A51 
cs :022E E874 .~.jm~ay as TCDEMO#analyzewords cs 554A 

ip 021C 
ds :0000 00 0 1-262 Turb 
ds:0008 6F 20 mm 20 43 6F o-C - Co ss:FFBE 0051 
ds:OOlO 70 79 Move 68 74 20 pyright SS: FFBCllJo9B8 

Set 
_?_ [Watches Read 

Write 
~ 

Fl-Help Esc-Abort 

Figure 10.8: The Block Menu 

Clear 

Sets a contiguous block of memory to zero (0). You will be prompted for the 
address and the number of bytes to clear. 

Move 

Copies a block of memory from one address to another. You will be 
prompted for the source address, the destination address, and how many 
bytes to copy. 

Set 

Sets a contiguous block of memory to a specific byte value. You will be 
prompted for the address of the block, how many bytes to set, and the 
value to set them to. 

Read 

Reads all or a portion of a file into a block of memory. You will be 
prompted first for the file name to read from, then for the address to read it 
into, and how many bytes to read. 

170 Turbo Debugger User's Guide 



Write 
Writes a block of memory to a file. You will be prompted first for the file 
name to write to, then for the address of the block to write and how many 
bytes to write. 

The Stack Pane Local Menu 

At the Stack pane, press Alt-F10 to pop up the local menu or, if Control-key 
shortcuts are enabled, use the Ctr/ key with the first letter of the desired 
command to access the command. 

File View Run Breakpoints Data Window Options 
~dule: hello File: hello.asm 39 

mov dx,offset text 
-~-: »'4! • 

lhello'.~~:~v dx,offset text ax 0000 c=O 
cs:0005 v dx,0000 bx 0000 z=O 

hello.23: mov ah,9 ex 0000 s•O 
cs:OOOS mov ah,09 dx 53CC o=O 

hello hello.24: int 2lh si 0000 p=O 
cs:OOOA int 21 di 0000 a=O 

cseg hello.25: mov ah,4ch bp 0000 Jal 
cs:OOOC mov ah,4C sp 007E d=O 

hello.26: mov al,OOh ds 53CC 
dseg cs:OOOE mov al ,00 es 53BA 

hello.27: int 21h SS 53CE 
text cs:OOlO int 21 cs 53CA 

cs:0012 add [bx+sl] ,al !p 0005 
textptr 
count ds:OOOO 4B 65 6C 6C 6F 20 57 6F ss:OOSO 52FB ~·tot-stats ds:OOOS 72 6C 64 OD OA 24 00 00 WJfiiWtfillt• rlg1n 

ds:OOlO 12 00 00 00 25 20 17 04 Follow 1-ss:oo6262 
jtches- ds:0018 86 Dl 07 00 00 00 00 DO ss:007~3CA Previous 

~ Change 

Fl-Help Esc-Abort 

Figure 10.9: The stack Pane Local Menu 

Goto 

Positions you at an address in the stack. Enter the new stack address. If you 
wish, you can enter addresses outside your program's stack, although you 
would usually use the Data pane to examine arbitrary data outside your 
program. See Chapter 9 for information about how to enter addresses. 

The Previous command restores the Stack pane to the position it had before 
the Goto command was issued. 

Chapter 70, Assembler-Level Debugging 171 



Origin 

Positions you at the current stack location as indicated by the SS:SP register 
pair. This command is useful when you want to return to where you 
started. 

The Previous command restores the Stack pane to the position it had before 
the Origin command was issued. 

Follow 

Positions you at the word in the stack pointed to by the currently 
highlighted word. This is useful for following stack-frame threads back to a 
calling function. 

The Previous command restores the Stack pane to the position it had before 
the Follow command was issued. 

Previous 

Restores the Stack pane position to the address before the last command 
that explicitly changed the display address. Using the arrow keys and the 
PgUp and PgDn keys does not cause the position to be remembered. 

Repeated use of the Previous command causes the Stack pane to switch 
back and forth between two addresses. 

Change 

Lets you enter a new word value for the currently highlighted stack word. 

You can also invoke this command by simply starting to type the new value 
for the highlighted stack item. When you do this, a prompt box will appear 
exactly as if you had specified the Change command. 

The Assembler 

Turbo Debugger lets you assemble instructions for the 8086, 80186, and 
80286 processor and also for the 8087, 80287, and 80387 numeric 
coprocessors. 

172 Turbo Debugger User's Guide 



When you use Turbo Debugger's built-in assembler to modify your pro­
gram, the changes you make are not permanent. If you reload your pro­
gram using the Run/Program Reset command, or if you load another pro­
gram using the File/Load command, you'll lose any changes you've 
made. 

Normally you use the assembler to test an idea for fixing your program. 
Once you've verified that the change works, you must go and change your 
source code and recompile and link your program. 

The following section describes the differences between the built-in 
assembler and the syntax accepted by Turbo Assembler. 

Operand Address Size Overrides 

For the call (CALL), jump (JMP), and conditional jump (JNE, JL, etc.) 
instructions, the assembler automatically generates the smallest instruction 
that can reach the destination address. You can use the NEAR and FAR 
overrides before the destination address to assemble the instruction with a 
specific size; for example, 

CALL FAR XYZ 
jmp NEAR Al 

Memory and Immediate Operands 

When you use a symbol from your program as an instruction operand, you 
must tell the built-in assembler whether you mean the contents of the 
symbol or the address of the symbol. If you just use the symbol name, the 
assembler treats it as an address, exactly as if you had used the assembler 
OFFSET operator before it. If you put the symbol inside brackets ([ ]), it 
becomes a memory reference. If your program contained the data definition 

A DW 4 

When you assemble an instruction or evaluate an assembler expression to 
refer to the contents of a variable, use the name of the variable alone or 
between brackets: 

mov dx,a 
mov ax, [a] 

To refer to the address of the variable, use the OFFSET operator: 

mov ax,offset a 

Chapter 7 0, Assembler-Level Debugging 173 



Operand Data Size Overrides 

For some instructions, you must specify the operand size using one of the 
following expressions before the operand: 

BYTE PTR 
WORD PTR 

Here are examples of instructions using these overrides: 

add BYTE PTR[si],10 
mov WORD PTR[bptl0],99 

In addition to these size overrides, you may use the following overrides 
when assembling 8087 /80287 numeric processor instructions: 

DWORD PTR 
QWORD PTR 
TBYTE PTR 

Here are some examples using these overrides: 

fild QWORD PTR[bx] 
stp TBYTE PTR[bp+4] 

String Instructions 

When you assemble a string instruction, you must include the size (byte or 
word) as part of the instruction mnemonic. The assembler does not accept 
the form of the string instructions that uses a sizeless mnemonic with an 
operand that specifies the size. For example, use STOSW rather than STOS 
WORD PTR[DI). 

The Dump Window 

The Dump window shows you raw data dump of any area of memory. It 
works exactly like the Data pane in the CPU window. 

See "The Data Pane Local Menu" section earlier in this chapter (page 165) 
for a description of the contents and local menu for this window. 

Typically, you'd use this window when you're debugging an assembler 
program at the source level, and you want to take a low-level look at some 
data areas. You can use the View /Dump command to make a Dump 
window. 

174 Turbo Debugger User's Guide 



You can also use this window if you're in an Inspector window, and you 
want to look at the raw bytes that make up the object you are inspecting. 
Use View /Dump to get a Dump window that's positioned to that data in 
the Inspector window. 

The Registers Window 

The Registers window shows you the contents of the CPU registers and 
flags. It works like a combination of the Registers and Flags panes in the 
CPU window. 

See "The Register Pane Local Menu" (page 162) and "The Flags Pane Local 
Menu" (page 164) sections earlier in this chapter for a description of the 
contents and local menus for this window. 

Use this window when you're debugging an assembler program at the 
source level and want to look at the register values. You can shrink the size 
of your Module window and put up a Registers window alongside it. 

Turbo C Code Generation 

The Turbo C compiler does a number of predictable things when 
generating machine code. Once you get familiar with the compiler, you'll 
quickly see exactly how the machine instructions correspond to your 
source code. 

Function return values are placed in the following registers: 

Return Type 

int 
long 
float 
double 
long double 
near* 
far* 

Register(s) 

AX 
DX:AX 
ST(O) 
ST(O) 
ST(O) 
AX 
DX:AX 

The compiler places heavily used int and near pointers into registers, first 
using the SI register, then using the DI register. 

Your auto-variables and function-calling parameters are accessed from 
SS:BP. 

Chapter 70, Assembler-Level Debugging 175 



The AX, BX, CX, and DX registers are not necessarily preserved across 
function calls. 

Registers are always used as word registers, not as byte registers, even if 
you use char data types. 

Switch statements can be compiled into one of three forms, depending on 
which will produce the most efficient code: 

•conditional jumps as if the switch were an if ... else chain 
• a jump table of code addresses 
•a jump table of switch values and code addresses 

176 Turbo Debugger User's Guide 



c H A p T E 

The 80x87 Coprocessor Chip and 
Emulator 

R 

11 

If your program uses floating-point numbers, Turbo Debugger allows you 
to examine and change the state of the math coprocessor or software 
emulator. This chapter is for programmers who are familiar with the 
operation of the 80x87 math coprocessor. You don't need to use the 
capabilities described in this chapter to debug programs that use floating­
point numbers, although some very subtle bugs may be easier to find. 

In this chapter, we'll discuss the differences between the 80x87 chip and the 
software emulator. We'll also describe the Numeric Processor window and 
teach you how to examine and modify the floating-point registers, the 
status bits, and the control bits. 

The 80x87 Chip vs. Emulator 

Turbo Debugger automatically detects whether your program is using the 
math chip or the emulator and adjusts its behavior accordingly. 

Note that most programs use either the emulator or the math chip, not both 
within the same program. If you have written special assembler code that 
uses both, Turbo Debugger won't be able to show you the status of the 
math chip; it will report on the emulator only. 

Chapter 11, The 80x87 Coprocessor Chip and Emulator 177 



The Numeric Processor Window 

You create a Numeric Processor window by choosing the View /Numeric 
Processor command from the main menu bar. The line at the top of the 
window shows the current instruction pointer, data pointer, and instruction 
opcode. The data pointer and instructions pointer are both shown as 20-bit 
physical addresses. You can convert these addresses to a segment and offset 
form by using the first four digits as the segment value, and the last digit as 
the offset value. 

For example, if the top line shows IPTR=5A669, you can treat this as the 
address 5a66:9 if you wish to examine the current data and instruction in a 
CPU window. This window has three panes: The left pane (Register pane) 
shows the contents of the floating-point registers, the middle pane (Control 
pane) shows the control flags, and the right pane (Status pane) shows the 
status flags. 

F1le View Run Breakpoints Data Window Options ~ 
dule: TPDE~ File: TPDE~.PAS 711--------------l 

AvgWords := NumWords I NumL1nes 
else 

AvgWords := O; 
Writeln; 
Wrlteln(Nu . • 1 • 

Nu Valid ST 1 5 
Nu Empty ST 2) 

Writeln('A Empty ST 3) 
Wrlteln; Empty ST(4) 

Empty ST(5} 
{ Dump wor Empty ST(6) 
Write('Wor Empty ST(7) 
for I : = 1 

Wri te(i: 

lm=O 
dm=O 
zm=O 
om=O 
um=l 
pm=l 

iemcQ 
pc=3 
rc=O 
ic•l 

1e=O 
de=O 
ze=O 
oe=O 
ue=O 
pe=O 
ir=O 
cc=9 
st=2 

Writeln: il==============='-===!:.===i 

Write ('Frequency: •); 
for 1 := 1 to MaxWordLen do 

ratches 

F2-Bkpt Fl-Close F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run FlO-Menu 

Figure 11. l: The Numeric Processor Window 

The top line shows you information about the last floating-point operation 
that was executed. The IPTR shows the 20-bit physical address from which 
the last floating-point instruction was fetched. The OPCODE shows the 
instruction type that was fetched. The OPTR shows the 20-bit physical 
address of the memory address that the instruction referenced, if any. 

178 Turbo Debugger User's Guide 



The 80-Bit Floating-Point Registers 

The Register pane shows each of the floating-point registers (ST(O) to ST(7)) 
along with its status (valid/zero/special/empty). The contents are shown 
as an 80-bit floating-point number. 

If you've zoomed the Numeric Processor window (by pressing F5) or made 
it wider by using Window /Move/Resize, you will also see the floating­
point registers displayed as raw hex bytes. 

The Status Bits 

The following table lists the different status flags and how they appear in 
the Status pane: 

Name in Pane 

ie 
de 
ze 
oe 
ue 
pe 
tr 
cc 
st 

The Control Bits 

Flag Description 

Invalid operation 
Denormalized operand 
Zero divide 
Overflow 
Underflow 
Precision 
Interrupt request 
Condition code 
Stack top pointer 

The following table lists the different control flags and how they appear in 
the Control pane: 

Name in Pane 

im 
dm 
zm 
om 
um 
pm 
iem 
pc 
re 
ic 

Flag Description 

Invalid operation mask 
Denormalized operand mask 
Zero divide mask 
Overflow mask 
Underflow mask 
Precision mask 
Interrupt enable mask (8087 only) 
Precision control 
Rounding control 
Infinity control 

Chapter 11, The 80x87 Coprocessor Chip and Emulator 179 



The Register Pane Local Menu 

To bring up the Register pane local menu, press Alt-F10, or use the Ctr/ key 
with the first letter of the desired command to directly access the 
command. 

File View Run Breakpoints Data Window Options 
dule: TPDEMO File: TPDEMO.PAS 7 

AvgWords := NumWords I NumLines 
else 

AvgWords := O: 
Wrlteln: 
Wrlteln(Nu 

Nu 
Nu 

Writeln('A 
Wr1teln: 

{ Dump wor 
Wrlte('Wor 
for l := 1 

Wr1te(1: 
Writeln: 

Emulator IPTR=OOOOO OPCODE=OOO OPTR=OOOOO 
Valid ST(O) 41 

I~ s GDm 
Empty l Change 

Empty ST(6) 
Empty ST(7} 

Write('Frequency: '): 
for 1 := l to MaxWordLen do 

latches 

Fl-Help Esc-Abort 

im=O 
dm=O 
zm=O 
om=O 
um=l 
pm=l 

1em=O 
pc=3 
rc=O 
1c=l 

Figure l l .2: The Register Pane Local Menu 

Zero 

Sets the value of the currently highlighted register to zero. 

Empty 

1e=O 
de=O 
ze=O 
oe=O 
ue=O 
pe=O 
1r=O 
cc=9 
st=2 

Sets the value of the currently highlighted register to empty. This is a 
special status that indicates that the register no longer contains valid data. 

Change 

Loads a new value into the currently highlighted register. You are 
prompted for the value to load. You can enter an integer or floating-point 
value, using the full C expression parser. The value you enter will 

180 Turbo Debugger User's Guide 



automatically be converted to the 80-bit temporary real format used by the 
numeric processor. 

You can also invoke this command by simply starting to type the new value 
for the floating-point register. When you do this, a prompt box will appear 
exactly as if you had specified the Change command. 

The Status Pane Local Menu 

Press Tab to move to the Status pane, then press Alt-F10 to pop up the local 
menu. (You can also use the Ctr/ key with the first letter of the desired 
command to directly access the command.) 

File V1ew Run Breakpo1nts Data W1ndow Options 
dule: TPDEl«l File: TPDEJ«l.PAS 7'1-------------­

AvgWords := NumWords I NumL1nes 
else 

AvgWords := O; 
Write l n; ~llilJ~~itJJ![!Im;W[i!!ll!llilE!JW&!Dlill~:==";:'=r";'=~l 
Wr1teln(Nu Va T 4 im=O ie=O 

Nu Val Id ST(l) 5 dm=O de=O 
Nu Empty ST(2) zm=O ze=O 

Wr1teln('A Empty ST(3) om=O oe=O 
Writeln; Empty ST(4) um=l ue=O 

Empty ST(5) ~ pe=O 
{ Dump wor Empty ST(6)=0 
Wr1te('Wor Empty ST(7) 1~1_=_92 for 1 : = l · · 

Wr1te(1: 1c=l 
Wr1teln; ll======================'I 

Write (' Frequency: ') ; 
for 1 := 1 to MaxWordLen do 

ratches 

Fl-Help Esc-Abort 

Figure 11.3: The status Pane Local Menu 

Toggle 

Cycles through the values that the currently highlighted status flag can be 
set to. Most flags can only be set or cleared (0 or 1), so this command just 
toggles the flag to the other value. Some other flags have more than two 
values; for those flags this command increments the flag value until the 
maximum value is reached, and then it sets it back to zero. 

You can also toggle the status flag values by pressing Enter. 

Chapter 7 7, The 80x87 Coprocessor Chip and Emulator 181 



The Control Pane Local Menu 

Again, press Shift-Tab to go to the Control pane, then press Alt-F10 to pop up 
the local menu. (Alternatively, you can use the Ctr/ key with the first letter of 
the desired command to directly access the command.) 

File View Run Breakpoints Data Window Options 
dule: TPDEMO File: TPDEMO.PAS 74-------------­

AvgWords :• NumWords I Numlines 
else 

AvgWords := O; 
Write 1 n; ~!IJ!i1!11J~~m!l!lmtl:mlill~lili1D!I!m!1if='.:-==::'.'T'=:=~~ Writeln(Nu Va id T 4 im=O ie=O 

Nu Valid ST(l) 5 dm=O de=O 
Nu Valid ST(2) l.2e+50 zrn=O ze=O 

Writeln('A Valid ST(3) 1.234560912 om=O oe=O 
Writeln; Zero ST(4) 0 um=l l!rllliJ 

Empty ST(5) pm=l 
{ Dump wor Empty ST(6) iem=O !Bmllll 
Write('Wor Empty ST(7) pc=3 
for 1 : • 1 rc=O st=2 

Write(!: ic=l 
Wrlteln; 1!==============~=======11 

Wrlte('Frequency: '); 
for 1 := 1 to MaxWordLen do 

[Watches 

Fl-Help Esc-Abort 

Figure 11.4: The Control Pane Local Menu 

Toggle 

Cycles through the values that the currently highlighted control flag can be 
set to. Most flags can only be set or cleared (0 or 1), so this command just 
toggles the flag to the other value. Some other flags have more than two 
values; for those flags this command increments the flag value until the 
maximum value is reached, and then it sets it back to zero. 

You can also toggle the control flag values by pressing Enter. 

182 Turbo Debugger User's Guid€' 



c H A p T E R 

12 

Command Reference 

Now that you've read about all the commands, here's a quick summary. 
We'll list and describe 

•all the single-keystroke commands available on the function and other 
keys 

• all the main menu commands and the commands for the local menu of 
each window type 

•keystrokes used in the two types of panes, when responding to a prompt 
for text, and when responding to a prompt for a new window size and 
position 

Hot Keys 

A hot key is a key that performs its action no matter where you are in the 
Turbo Debugger environment. Table 12.1 on page 184 lists all the hot keys. 

Chapter 12, Command Reference 183 



Table 12.l: The Function Key and Hot Key Commands 

Key 

F1 
F2 
F3 
F4 
FS 
F6 
F7 
FB 

F9 
F10 

Alt-Ft 
Alt-F2 
Alt-F3 
Alt-F4 
Alt-FS 
Alt-F6 
Alt-Fl 
Alt-FB 
Alt-F9 
Alt-F10 
Alt-0 
Alt-1-9 
Alt-F 
Alt-V 
Alt-R 
Alt-8 
Alt-D 
Alt-W 
Alt-0 
Alt-X 

Alt-= 
Alt--

Ctrl-F2 

Ctrl-F4 
Ctrl-F7 
Ctrl-FB 
Ctrl-F9 

Menu Command 

Breakpoints/Toggle 
Window I Close 
Run/Go to Cursor 

Window /Next 
Run/Trace Into 
Run/ Step Over 

Run/Run 

Breakpoints/ At 
View/ Module 
Run/ Animate 
View /User Screen 
Window /Undo Close 
Run/Instruction Trace 
Run/Until Return 
Run/Run To 

Window /Window Pick 

Options/Macros/Create 
Options I Macros I Stop 

Recording 
Run/Program Reset 

Data/Evaluate 
Data/Watch 
Breakpoints/Toggle 
Run/Run 

Ctrl-F10 
Ctr/-Right arrow 

Ctrl-Left arrow 

Ctrl-S 
Ctrl-D 
Ctrl-E 
Ctrl-X 
Ctrl-R 
Ctr/-C 
Ctrl-F 

184 

Function 

Brings up co~text-sensitive h~~P 
Sets breal<pomt at cursor position 
Closes current window 
Runs to cursor position 
Zooms/unzooms current window 
Goes to next window 
Executes single source line or instruction 
Executes single source line or instruction, 
skipping calfs 
Runs program 
Invokes tne main menu bar, takes you out of 
menus 
Brings up last help screen 
Sets breal<point at an address 
Module pick list 
Steps continuously urdating display 
Shows your program s screen 
Reopens the last-closed window 
Executes a single instruction 
Runs until return from function 
Runs to a specified address 
Invokes the window local menu 
Displays a list of all open windows 
Switch to numbered window 
Takes you to the File menu 
Takes you to the View menu 
Takes you to the Run menu 
Takes you to the Breakpoints menu 
Takes you to the Data menu 
Takes you to the Window menu 
Takes you to the Options menu 
Quits Turbo Debugger and returns you to 
DOS 
Defines a keystroke macro 
Ends a macro recording 

Stops debug session and resets the program 
to start agam 
Evaluates an expression 
Adds a variable to the Watches window 
Toggles a breakpoint at cursor 
Runs a program 
Invokes the window's local menu 
Shifts the starting address in a Code, Data, or 
Stack pane in a CPU window 1 byte up 
Shifts the starting address in a Code, Data, or 
Stack pane in a CPU window 1 byte down 
Moves left one column 
Moves right one column 
Moves up one line 
Moves down one line 
Scrolls up one screen 
Scrolls down one screen 
Moves to next word 

Turbo Debugger User's Guide 



Table 12.l: The Function Key and Hot Key Commands (continued) 

Ctrl-A 
Esc 

Moves to previous word 
Closes an lnspector window, takes you out 
of menus 

Ins 

Scroll-Lock Window /Move/Resize 
Tab 
Shift-Tab 
Shift-Arrow key 

Starts text block selection (highlight); use 
Left arrow and Right arrow to hignlignt 
Moves and resizes windows 
Moves cursor to next window pane 
Moves cursor to previous window pane 
Moves cursor between the panes in a 
window. The pane in the direction of the 
arrow becomes the active pane. 

Commands from the Main Menu Bar 

You invoke the main menu bar by pressing the F10 key; you can also go 
directly to one of the individual menus by cursoring to the menu title and 
pressing Enter or by pressing the first letter of the menu title. You can also 
open a menu directly (without first moving to the menu bar) by pressing Alt 
in combination with the first letter of the menu name you desire. 

The File Menu 

Load 
Change Dir 
Get Info 
OS Shell 
Quit 

The View Menu 

Breakpoints 
Stack 
Log 
Watches 
Variables 
Module 
File 
CPU 
Dump 
Registers 
Numeric Processor 

Loads a new program to debug 
Changes to new disk and I or directory 
Displays program info 
Starts a DOS command processor 
Returns to DOS 

View breakpoints 
View function-calling stack 
View log of events and data 
View variables being watched 
View global and local variables 
View program source module 
View disk file as ASCII or hex 
View CPU instructions, data, stack 
View raw data dump 
View CPU registers and flags 
View coprocessor or emulator 

Chapter 12, Command Reference 185 



User Screen 
Another 

Module 
Dump 
File 

The Run Menu 

Run 
Program Reset 
Go To Cursor 
Trace Into 
Step Over 
Execute To 
Until Return 
Animate 
Instruction Trace 

View your program screen 

Makes another Module window 
Makes another Dump window 
Makes another File window 

Runs your program without stopping 
Reloads current program 
Runs to current cursor location 
Executes one source line or instruction 
Traces, skipping calls 
Runs to specified address 
Runs until function returns 
Continuously steps your program 
Executes a single instruction 

The Breakpoints Menu 

Toggle 
At 
Changed Memory Global 
Expression True Global 
Delete All 

The Data Menu 

Inspect 
Evaluate/Modify 
Watch 
Function Return 

The Window Menu 

Window Pick 
Next Pane 
Move/Resize 
Close 
Undo Close 

186 

Toggles breakpoint at cursor 
Sets breakpoint at specified address 
Sets global breakpoint on memory area 
Sets global breakpoint on expression 
Removes all breakpoints 

Inspects a data object 
Evaluates an expression 
Adds variable to Watches window 
Inspects current routine's return value 

Pick window from list of open windows 
Goes to next pane in window 
Moves or changes current window size 
Erases current window 
Undoes last erase command 

Turbo Debugger User's Guide 



Dump Pane to Log 
Restore Standard 
Screen Repaint 

The Options Menu 

Language 
Source Module 
c 
Pascal 
Assembler 

Macros 
Create 
Stop Recording 
Remove 
Delete All 

Environment 
Integer Format 
Display Swapping 

Screen Size 
Tab Size 

Path for Source 
Arguments 
Save Options 
Restore Options 

Writes current pane to Log window 
Standard window layout 
Redisplays entire screen 

Sets expression language from source module 
Uses C for expressions 
Uses Pascal for expressions 
Uses assembler for expressions 

Defines a keystroke macro 
Ends the recording session 
Removes a keystroke macro 
Removes all keystroke macros 

Hex/Decimal/Both: Number display format 
None/Smart/ Always: User screen swapping 
mode 
25 line/43/50 line: Debugger screen size 
Tab width when displaying text files 
Directory list for source files 
Sets program command-line arguments 
Saves options, macros, windows to disk 
Restores options from disk 

The Local Menu Commands 

You can invoke the pop-up, or "local," menu for the current window by 
pressing Alt-F10. If Control-key shortcuts are enabled, you can go directly to 
one of the individual menu items by pressing the Ctr/ key in combination 
with the first letter of the item you desire. (You can use the installation pro­
gram TDINST to enable Control-key shortcuts.) 

Each type of window (Breakpoint, Module, etc.) and each pane within a window 
has a different local menu. The following sections describe the local menu for 
each window and pane. 

Some panes have shortcuts to commonly used commands on their local 
menu. In the following section, these special keys are listed before the 
menu commands for the pane to which they apply. In many panes, the Enter 
key is a shortcut to examining or changing the currently highlighted item. 

Chapter 12, Command Reference 187 



The Del key often invokes the local menu command that deletes the 
highlighted item. Some panes let you start typing letters or numbers 
without first invoking a local menu command. In these cases, the prompt 
box for one of the local menu items pops up to accept your input. 

The Breakpoints Window Local Menu 

The Breakpoints window has two panes, the List pane on the left, and the 
Detail pane on the right. Only the List pane has a local menu. 

Set Action 
Break 
Log 
Execute 

Condition 
Always 
Changed Memory 
Expression True 

Hardware 
Cycle Type 

Read Memory 
Write Memory 
Access Memory 
Inputl/O 
Outputl/0 
Both 1/0 
Fetch Instruction 

Address 

Data 

188 

Above 
Below 
Range 
Not Range 
Less or Equal 
Greater or Equal 
Equal 
Unequal 
Match All 

Above 
Below 
Range 
Not Range 
Less or Equal 
Greater or Equal 

Sets breakpoint to stop program 
Sets breakpoint to log an expression 
Sets breakpoint to execute an expression 

Unconditional breakpoint 
When memory area changes 
When an expression is true 

Match memory reads 
Match memory writes 
Match memory read or write 
Match 1/0 input 
Match 1/0 Output 
Match 1/0 input or output 
Match instruction fetch 

Match above an address 
Match below an address 
Match within address range 
Match outside address range 
Match below or equal to address 
Match above or equal to address 
Match a single address 
Match all but a single address 
Match any address 

Match above a value 
Match below a value 
Match within a range of values 
Match outside a range of values 
Match below or equal to value 
Match above or equal to value 

Turbo Debugger User's Guide 



Equal 
Unequal 
Match All 

Pass Count 
Enable/Disable 
Add 
Global 
Remove 
Delete All 
Inspect 

Match a single value 
Match all but a single value 
Match all values 
Number of times to skip breakpoint 
Toggles breakpoint enabled 
Adds a new breakpoint 
Adds a new global breakpoint 
Removes highlighted breakpoint 
Deletes all breakpoints 
Looks at code where this breakpoint is set 

The CPU Window Menus 

The CPU window has five panes, each with a local menu: the Code pane, 
the Data pane, the Stack pane, the Register pane, and the Flags pane. 

The Code Pane Local Menu 

Goto Displays code at new address 
Displays code at cs:ip 
Displays code at }MP or CALL target 
Displays code at calling function 
Displays code at last address 
searches for instruction or bytes 
Switches to Module window 

Origin 
Follow 
Caller 
Previous 
Search 
View Source 
Mixed No/Yes/Both: Mixes source code with dis­

assembly 
NewCS:IP 
Assemble 
I/O 

In Byte 
Out Byte 
Read Word 
Write Word 

Sets CS:IP to execute at new address 
Assembles instruction at cursor 

Reads a byte from an I/0 location 
Writes a byte to an I/0 location 
Reads a word from an l/0 location 
Writes a word to an I/0 location 

Typing any character is a shortcut for the Remove local menu command in 
this pane. 

The Data Pane Local Menu 

Goto 
Search 
Next 

Displays data at new address 
Searches for string or data bytes 
Searches again for next occurrence 

Chapter 72. Command Reference 189 



Change 
Follow 
Long Follow 
Previous 
Display As 

Byte 
Word 
Long 
Comp 
Float 

Real 

Double 
Extended 

Block 
Clear 
Move 
Set 
Read 
Write 

Changes data bytes at cursor address 
Follows near pointer chain 
Follows far pointer chain 
Displays data at last address 

Displays hex bytes 
Displays hex words 
Displays hex 32-bit long words 
Displays 8-byte Pascal comp integers 
Displays short (4-byte) floating numbers (Pascal 
singles) 
Displays 6-byte floating-point numbers (Pascal 
reals) 
Displays 8-byte floating-point numbers 
Displays 10-byte floating-point numbers (C long 
double) 

Sets memory block to zero 
Moves memory block 
Sets memory block to value 
Reads from file to memory 
Writes from memory to file 

Typing any character is a shortcut for the Change local menu command in 
this pane. 

The Stack Pane Local Menu 

Goto 
Origin 
Follow 
Previous 
Change 

Displays stack at new address 
Displays data at SS:SP 
Displays code pointed to by current item 
Restores display to last address 
Allows you to edit information 

Typing any character is a shortcut for the Change local menu command in 
this pane. 

The Register Pane Local Menu 

Increment 
Decrement 
Zero 
Change 
Registers 32-bit 

190 

Adds one to highlighted register 
Subtracts one from highlighted register 
Clears highlighted register 
Sets highlighted register to new value 
No/Yes: Toggles 32-bit register display 

Turbo Debugger User's Guide 



Typing any character is a shortcut for the Change local menu command in 
this pane. 

The Flags Pane Local Menu 

Toggle Sets or clears highlighted flag 

Pressing Enter is a shortcut for the local menu command in this pane. 

The File Window Menu 

The File window shows the contents of the disk file as hex bytes or as a disk 
file. 

Goto 
Search 
Next 
Display As 
File 
Edit 

Displays line number or hex offset 
Searches for string or data bytes 
Searches again for next occurrence 
Ascii/Hex: Set file display mode 
Switches to view new file 
Edits file or changed bytes at cursor 

Typing any character is a shortcut for the Search local menu command. 

The Log Window Menu 

The Log window shows messages sent to the log. 

Open Log File Starts logging to a file 
Close Log File Stops logging to a file 
Logging No/Yes: Toggles logging 
Add Comment Writes user comment to log 
Erase Log Clears all log messages 

Typing any character is a shortcut for the Add Comment local menu 
command. 

The Module Window Menu 

The Module window shows the source file for the program module. 

Inspect Shows contents of variable under cursor 
Watch Adds variable under cursor to watch list 
Module Changes to display different module 
File Changes to display different file 

Chapter 12, Command Reference 191 



Previous 
Line 
Search 
Next 
Origin 
Goto 
Edit 

Displays last module and position 
Displays line number in module 
Searches for text string 
Searches for next occurrence of string 
Displays current program location 
Shows source or instructions at address 
Starts editor to edit source file 

Typing any character is a shortcut for the Goto local menu command. 

The Numeric Processor Window Menus 

The Numeric Processor window has three panes: The Register pane, the 
Status pane and the Control pane. 

The Regi.ster Pane Local Menu 

The following keys are shortcuts to local menu commands in this pane: 

Zero Clears the highlighted register 
Empty Sets the highlighted register to empty 
Change Sets the highlighted register to a value 

Typing any character is a shortcut for the Change local menu command in 
this pane 

The Status Pane Local Menu 

The following keys are shortcuts to local menu commands in this pane: 

Toggle Cycles through valid flag values 

Pressing Enter is a shortcut for the local menu command in this pane. 

The Control Pane Local Menu 

Toggle Cycles through valid flag values 

Pressing Enter is a shortcut for the local menu command in this pane. 

192 Turbo Debugger User's Gulde 



The Stack Window Menu 

The Stack window shows the currently active functions. 

Inspect 
Locals 

Shows source code for highlighted function 
Shows argument types for function 

Pressing Enter is a shortcut for the Inspect local menu command. 

The Variables Window Menus 

The Variables window has two panes, each with a local menu: The Global 
Symbol pane and the Local Symbol pane. 

The Global Symbol Pane Local Menu 

Inspect 
Change 

Shows contents of highlighted symbol 
Changes value of highlighted symbol 

Pressing Enter is a shortcut for the Inspect local menu command in this 
pane. 

The Local Symbol Pane Local Menu 

Inspect 
Change 

Shows contents of highlighted symbol 
Changes value of highlighted symbol 

Pressing Enter is a shortcut for the Inspect local menu command in this 
pane. 

The Watches Window Menu 

The Watches window has a single pane that shows the names and values of 
the variables you're watching. 

Watch Adds a variable to watch 
Edit Lets you edit a variable 
Remove Deletes highlighted variable 
Delete All Deletes all watch variables 
Inspect 
Change 

Shows contents of highlighted variable 
Changes contents of highlighted variable 

The following keys are shortcuts to local menu commands in this window: 

Chapter 12, Command Reference 193 



any character 
Enter 

Watch 
Watch 

The Inspector Window Local Menu 

An Inspector window shows the contents of a data item. 

Range 
Change 
Inspect 
Descend 

Selects array members to inspect 

New Expression 

Changes the value of highlighted item 
Opens new Inspector for highlighted item 
Expands highlighted item into this Inspector 
Inspects a new expression in this Inspector 

Text Panes 

This is the generic name for a pane that displays the contents of a text file. 
The blinking cursor shows your current position in the file. The following 
table lists all the commands. 

Key 

Ins 
Uparrow 
Down arrow 
Right arrow 
Left arrow 
Ctrl-Right arrow 
Ctr/-Lett arrow 
Home 
End 
Pg Up 
PgDn 
Ctrl-Home 
Ctrl-End 
Ctrl-PgUp 
Ctrl-PgDn 

Function 

Marks text block 
Moves up one line 
Moves down one line 
Moves right one column 
Moves leit one column 
Moves to next word 
Moves to previous word 
Goes to start of line 
Goes to last character on line 
Scrolls up one screen 
Scrolls down one screen 
Goes to top line of pane 
Goes to bottom line of pane 
Goes to first line of file 
Goes to last line of file 

If you are not using the Control-key shortcuts, you can also use the 
WordStar-style Control keys for moving around a Text pane: 

194 Turbo Debugger User's Guide 



Key 

Ctrl-S 
Ctrl-0 
Ctrl-E 
Ctrl-X 
Ctrl-R 
Ctrl-C 
Ctrl-F 
Ctrl-A 

List Panes 

Function 

Moves left one column 
Moves right one column 
Moves up one line 
Moves down one line 
Scrolls up one screen 
Scrolls down one screen 
Moves to next word 
Moves to previous word 

This is the generic name for a pane that lists information you can scroll 
through. A highlight bar shows your current position in the list. Here's a 
list of all the commands available to you. 

Key 

Uparrow 
Down arrow 
Home 
End 
Pg Up 
Pg On 
Ctrl-Home 
Ctrl-End 
Ctrl-PgUp 
Ctrl-PgDn 
Backspace 
Letter 

Function 

Moves up one item 
Moves down one item 
Goes to start of line 
Goes to last character on line 
Scrolls up one screen 
Scrolls down one screen 
Goes to top line of list pane 
Goes to bottom line oflist pane 
Goes to first item in list 
Goes to last item in list 
Backs up one character in incremental match 
Incremental search (select by typing) 

You can also use the WordStar-style Control keys for moving around a List 
pane: 

Key Function 

Ctrl-E Moves up one line 
Ctrl-X Moves down one line 
Ctrl-R Scrolls up one screen 
Ctrl-C Scrolls down one screen 

Chapter 12, Command Reference 195 



Commands in Prompt Boxes 

The following table shows the commands available when you're inside a 
prompt box. 

196 

Key 

Uparrow 
Down arrow 
Right arrow 
Left arrow 
Ctrl-Right arrow 
Ctrl-Left arrow 
Home 
End 
Pg Up 
PgDn 
Ctrl-Home 
Ctrl-End 
Ctrl-PgUp 
Ctrl-PgDn 
Backspace 
Enter 
Del 
Esc 

Function 

Moves up one history item 
Moves down one history item 
Moves right one character 
Moves leit one character 
Moves to next word 
Moves to previous word 
Goes to start of line 
Goes to last character on line 
Scrolls up one screen 
Scrolls down one screen 
Goes to top line of list pane 
Goes to bottom line of1ist pane 
Goes to first item in list 
Goes to last item in list 
Deletes the character before the cursor 
Accepts your input and proceed 
Deletes the character after the cursor 
Cancels the prompt and returns to menu 

Turbo Debugger User's Guide 



Window Movement Commands 

Key 

Scroll Lock 
Uparrow 
Down arrow 
Right arrow 
Left arrow 
Shift-Up arrow 
Shift-Down arrow 
Shift-Right arrow 

Shift-Left arrow 

Home 
End 
Pg Up 
Pg On 
Enter 
Esc 

Function 

Toggles window-positioning mode 
Moves window up one line 
Moves window down one line 
Moves window right one column 
Moves window left one column 
Resizes window; moves bottom up 
Resizes window; moves bottom down 
Resizes window; moves right side 
toward left 
Resizes window; moves left side toward 
ri ht 
rfoves to left side of screen 
Moves to right side of screen 
Moves to top line of screen 
Moves to bottom line of screen 
Accepts current position 
Cancels window-positioning command 

Wildcard Search Templates 

You can use wildcard search templates in two circumstances: 

• when entering a file name to load or examine 
• when entering a text search expression in a text pane 

The ? (question mark) matches any single character in the search ex­
pression. The * (asterisk) matches 0 or more characters in the search 
expression. 

File Lists 

When you are prompted for a file name and you supply one of the 
following responses, you will get a file list to pick from: 

•a file name containing the *or ? wildcard characters 

•a disk drive letter, like c: 
•a directory name, like /MYDIR 

The list of files has two panes. On the left appears a list of the files in the 
directory you specified. On the right appears a list of the directories in the 

Chapter 12, Command Reference 197 



directory you specified, along with the special entry" .. \" indicating the 
parent directory. You can use Tab and Shift-Tab to switch between the two 
panes, just as with other multi-paned windows. 

By pressing Enter while the highlight is on a directory in the right pane, you 
switch to that directory. The matching files in that directory then appear in 
the left pane. 

If you want to enter a new directory or wildcard file name, you can press 
Ins and edit or replace the current directory and wildcard mask. 

Remember that a file list is like any other list, meaning that you can 
incrementally match on a file name by starting to type the name of the file 
that you want. When the highlight is over the correct file name, press Enter 
to accept the file name. 

Complete Menu Tree 

Figures 12.1, 12.2, and 12.3 show the complete structure of Turbo De­
bugger's pull-down menus. 

198 Turbo Debugger User's Guide 



File 

Load ... 
Change dir ... 
Get info --+-­
OS shell 
Quit Alt-X 

Program: c:\debug\test 
Status : Loaded 

---- Memory -----
DOS : 150Kb 
Debugger : 228Kb 
Symbols : 4Kb 

Program : 256Kb 
Available: OKb 

User Interrupts: 

DOS version : 3.10 
Breakpoints : Software 
8-15-1988 11 32am 

Prass any key 

View 

Breakpoints 
Stack 
Log 
Watches 
Variables 
Module ... 
File ... 
CPU 
Dump 
Registers 

Alt-F3 

Numeric processor 
Oser screen Alt-F5 

Another -

Run 

Module ... 
Dump 
File ... 

Program reset 
Go to cursor 
Trace into 
Step over 
Execute to ... 
Until return 
Animate 
Instruction trace 

Figure 12.1: The File, View. and Run Menus 

Chapter 12. Command Reference 

Run 

F9 
Ctrl-F2 

F4 
F7 
F8 

Alt-F9 
Alt-F8 
Alt-F4 
Alt-F7 

199 



Breakpoints Data Window J 

Inspect ... 
Evaluate/modify ... Ctrl-F4 
Watch ... Ctrl-F7 
Function return 

Toggle F2 Window pick Alt-0 
At ... Alt-F2 Next Pane Tab 
Changed memory global. .. Move/Resize ... ScrLk 
Expression true global... Close F3 
Delete all Ondo close Alt-F6 

Dump pane to log 
Restore standard 
Screen repaint 

Figure 12.2: The Breakpoints. Data. and Window Menus 

200 Turbo Debugger User's Guide 



l Options J 

Language Source Source module 
Macros 
Environment c 
Path for source ... Pascal 
Arguments ... Assembler 
Save options ... 
Restore options ... 

All 
Create Alt = 

Macros 
Stop recording Alt -

Layout 
Remove 
Delete all 

Integer format Both 
Display swapping t--Smart-
Screen size 25 
Tab size ... 8 

None Decimal 
Smart Hex 
Always Both 

Figure 12.3: The Options Menu 

Chapter 73, How to Debug a Program 201 



202 Turbo Debugger User's Guide 



c H A p T E R 

13 

How to Debug a Program 

Debugging is like the other phases of designing and implementing a pro­
gram-part science and part art. There are specific procedures that you can 
use to track down a problem, while at the same time, a little intuition goes a 
long way toward making a long job shorter. 

The more programs you debug, the better you will get at rapidly locating 
the source of problems in your code. You will learn techniques that suit you 
well, plus learn to correct methods that may cause you problems time and 
time again. 

Let's begin by looking at where to start when you have a program that 
doesn't work correctly. 

In this chapter, we'll discuss some different approaches to debugging, talk 
over the different types of bugs you may find in your programs, and 
suggest some ways to test your program to make sure that it works-and 
keeps on working. 

When Things Don't Work 

First and foremost, don't panic! Seldom does even the most expert pro­
grammer write a program that works the first time. 

To avoid wasting a lot of time on fruitless searches, try to resist the 
temptation to randomly guess where a bug might be. A better technique is 
to use a universally tried-and-true technique: divide and conquer. 

Chapter 13, How to Debug a Program 203 



Make a series of assumptions, testing each one in turn. For example, you 
can say, "The bug must be occurring before function xyz is called," and 
then test your assumption by stopping your program at the call to xyz to 
see if there's a problem. If you do discover a problem at this point, you can 
make a new assumption that the problem occurs even earlier in your pro­
gram. 

If, on the other hand, everything looks fine at function xyz, your initial 
assumption was wrong. You must now modify that assumption to "The 
bug is occurring sometime after function xyz is called." By performing a 
series of tests like this, you can soon find the area of code that is causing the 
problem. 

That's all very well, you say, but how do I determine whether my program 
is behaving correctly when I stop it to take a look? One of the best ways of 
checking your program's behavior is to examine the values of program 
variables and data objects. For example, if you have a routine that clears an 
array, you can check its operation by stopping the program after the 
function has executed, and then examining each member of the array to 
make sure that it is cleared. 

Debugging Style 

Everyone has their own style of writing a program, and everyone develops 
their own style of debugging. The debugging suggestions we give here are 
just starting points that you can build on to mold your own personal 
approach. 

Many times, the intended use of a program influences the approach you 
take when debugging it. Some programs are for your own use, or will only 
be used once or twice to perform a specific task. For these programs, a full 
scale testing of all the components is probably a waste of time, particularly 
if you can determine the program is working correctly by inspecting its 
output. For a program that will be distributed to other people, or that 
performs a task whose accuracy is hard to determine by inspection, you 
will want your testing program to be far more rigorous. 

Run the Whole Thing 

For simple or throw-away programs, the best approach is often just to run 
it and "see what happens." If your test case has problems, you can then 
step back and run the program with the simplest possible input and then 
check the output. You can then move on to testing more complicated input 

204 Turbo Debugger User's Guide 



cases until the output is wrong. This will give you a good feeling for just 
how much or how little of the program is working. 

Incremental Testing 

When you want to be very sure that a program is healthy, you must test the 
individual routines as well as check that it works as expected for some test 
input data. You can do this in a couple of ways: You can test each routine as 
you write it by making it part of a test program that calls it with test data, 
or you can use the debugger to step through the execution of each routine 
when the whole program is finished. 

Types of Bugs 

Bugs in your program will fall into two broad categories: those peculiar to 
the language you're working in (C, Pascal, or assembler), and those that are 
common to any programming language or environment. 

By making mental notes as you debug your programs, you will learn both 
the language-specific constructs you have trouble with, and also the more 
general programming errors you make. You can then use this knowledge to 
try to avoid making the same mistakes in the future, and to give you a good 
starting point when looking for bugs in future programs that you write. 

The key point here is to try to understand how each bug is an instance of a 
general family of bugs or misunderstandings, and thereby to improve your 
ability to write errorless code. After all, it's better to write bug-free code 
than to be really good at finding bugs. 

C-Specific Bugs 

The Turbo C User's Guide has a section on pitfalls in C programming, but 
what better place to reiterate and expand on those pitfalls than in a lesson 
on how to debug. 

The Turbo C compiler is very good at finding a number of C-specific bugs 
that other compilers do not warn you about. You can save yourself some 
debugging time by turning on all the warnings that the compiler is capable 
of generating. (See the Turbo C User's Guide for information on setting these 
warnings.) 

The following is by no means an exhaustive list of some ways to get in 
trouble with C. For some of these errors, the Turbo C compiler issues a 

Chapter 13, How to Debug a Program 205 



warning message. Remember to examine the cause of any warning 
messages because they may be telling you of a bug in the making. 

Using Uninitialized Auto-Variables 

In C, an auto-variable declared inside a function has an undefined value 
until you load it with something: 

do_ ten_ times() 
( 

int n; 
while (n < 10) 

( 

n++; 

This function will execute the while loop an unpredictable number of times 
since n is not initialized to zero before being used as a counter. 

Confusing = and == 
Callows you to both assign a value(=) and test for equality(==) within an 
expression; for example, 

if (x = y) 

This inadvertently loads y into x and performs the statements in the if 
expression if the value of y is not zero. You almost certainly meant to say 

if (x == y) 

Confusing Operator Precedence 

Chas so many operators that it is sometimes easy to mix up which ones get 
applied first when an expression contains many different ones. One of the 
most common combinations to cause grief is the mixture of shift operators 
with addition or subtraction. For example, 

x=3«1+1 

evaluates to 12, not the 7 you might expect if<< took place before the+. 

206 Turbo Debugger User's Guide 



Bad Pointer Arithmetic 

When you start getting fancy with pointers and use them to step through 
arrays, be careful of addition and subtraction on pointers. For example, 

int *intp; 
intp += sizeof(int); 

does not do the hoped-for thing: Increment intp to point to the next element 
of an integer array. In fact, intp is advanced by two array elements. When 
adding to or subtracting from a pointer, C takes into account the size of the 
item the pointer is pointing to, so all you have to do to move the pointer to 
the next element is say 

intp++ 

Unexpected Sign Extension 

You must be careful when assigning between integers of different sizes: 

int i = OXFFFE; 
long l; 
1 = i; 
if (1 & OXBOOOOOOO) I 

/* this DOES get executed */ 

One of C's strong points can cause you trouble if you are not aware of its 
consequences. C lets you assign freely between scalar values (char, int, and 
so on). When you copy an integer scalar into a larger one, the sign (positive 
or negative) is preserved in the larger scalar by propagating the sign 
(highest) bit throughout the high portion of the larger scalar. For example, 
an int value of-2 (Oxfffe) becomes a long value of -2 (Oxfffffffe). 

Unexpected Truncation 

This example is sort of the opposite of the previous one: 

int i; 
long 1 = OXlOOOO; 
i = l; 
while (i > 0) 

/* this does not get executed */ 

Here, the assignment of 1 to i resulted in the top 16 bits of 1 being truncated, 
leaving a value of zero in i. 

Chapter 13, How to Debug a Program 207 



Superfluous Semicolon 

The following code fragment may appear to be fine at first glance: 

for (x = O; x < 10; x++); 
{ 

/* only executed once*/ 

Why does the code between the braces execute only once? Closer 
inspection reveals a semicolon (;) at the end of the for expression. This 
hard-to-find bug causes the loop to execute ten times, but not do anything. 
The subsequent block is then executed once. This is a nasty problem 
because you can't find it with the usual technique of examining the 
formatting and indenting of code blocks in your program. 

Macros with Side Effects 

The following problem is enough to make you swear off #define macros for 
life: 

#define toupper(c) 'a'<= {c)&&(c)<='z' ? (c)-'a'-'A' : (c) 
char c, *p; 
c = toupper(*p++); 

Here, p is incremented two or three times, depending on whether the 
character is uppercase. This type of problem is very hard to find since the 
side effect is hidden within the macro definition. 

Repeated Auto-Variable Names 

Another hard one to find: 

myfunc () 
( 

208 

int n; 
for (n = 5; n >= O; n--) 
( 

int n = 10; 

if {n == 0) 
{ 

/* never gets executed */ 

Turbo Debugger User's Guide 



Here, the auto-variable name n is reused in an inner block, hiding access to 
the one declared in the outer block. You must be careful when re-using 
variable names in this manner. You can get into this type of trouble easier 
than you might think, since most programmers use a limited number of 
variable names for local loop counters (for example, i, n, and so forth). 

Misuse of Auto-Variables 

int *divide_by_3(int n) 
( 

int i; 
i = n I 3; 
return (&i); 

This function means to return a pointer to the result. The trouble is that by 
the time the function returns, the auto-variable is no longer valid and is 
likely to have been overwritten by other stack data. 

Undefined Function Return Value 

If you don't end a function with the return keyword followed by an 
expression, an indeterminate value will be returned. For example, 

char *first_capital_letter(char *p) 
( 

while (*pl 

if ('A'<= *p && *p <= 'Z') 
return (p); 

pt+; 

/* oops--nothing returned here */ 

If there are no capital letters in the string, a garbage value is returned. You 
should put a return(O) as the last line of this function. 

Misuse of Break Keyword 

The break keyword only exits from a single level of do, for, switch, or 
while: 

Chapter 73, How to Debug a Program 209 



for ( ... ) 
{ 

while ( ... ) 
{ 

if ( ... ) 
break; /* we want to exit from for loop */ 

Here, the break only exits from the while loop. This is one of the few cases 
where it is vaguely excusable to use the goto statement. 

Code Has No Effect 

Sometimes a typo results in perfectly compilable source code that doesn't 
do what you want: 

a + b; 

Here, the intended line of code was a += b. 

General Bugs 

The following examples barely scratch the surface of the kinds of problems 
you can have in your programs. 

Hidden Effects 

Sometimes, a call to a function can leave things in an unexpected way: 

char workbuf[20]; 
strcpy(workbuf,"all done\n"); 
convert("xyz"); 
printf(workbuf); 

convert(char *p) 
strcpy(workbuf, p); 
while (*p) 

Here, the correct thing to do would be to have the function use its own 
private work buffer. 

210 Turbo Debugger User's Guide 



Assuming Initialized Data 

Sometimes, you presume that another routine has already set something up 
for you: 

char *workbuf; 
addworkstring(char *s) 
I 

strcpy(workbuf, s); /* oops */ 

You could code this routine defensively by adding the statement: 

if (workbuf == 0) workbuf = (char *)mailoc(20); 

Not Cleaning Up When Done 

This sort of bug can take a long time to finally crash your program by 
running out of heap space: 

crunch_string(char *p) 
( 

char *work= (char *)malloc(strlen(p) ); 
strcpy (work, p); 

return (pl; 

Fence-Post Errors 

/* whoops--work still allocated */ 

These bugs are named after the old brain teaser that goes "If I want to put 
up a 100-foot fence with posts every 10 feet, how many fence posts do I 
need?" A quick but wrong answer is ten (what about the final post at the 
far end?). Here's a simple example from the world of C programming: 

for (n = l; n < 10; n++) 
{ 

/* oops--only 9 times */ 

Here you can easily see the numbers 1 and 10, and you think that your loop 
will go from one to ten. You'd better make that < into a <= for it to work. 

Chapter 7 3, How to Debug a Program 211 



Pascal-Specific Bugs 

Because of the strong type- and error-checking features of Pascal, there are 
few bugs specific to the language itself. However, since Turbo Pascal gives 
you the power to turn off much of that error checking, you can introduce 
errors that you might not have otherwise. Andeven with Pascal, there are 
still ways of getting into trouble. 

Uninitialized Variables 

Turbo Pascal does not initialize variables for you; you must do it yourself, 
either through assignment statements, or by declaring them as typed 
constants. Consider the following program: 

program Test; 
var 

I,J,Count : integer; 
begin 

for I := 1 to Count do begin 
J := I*I; 
Writeln(I:2,' ',J:4) 

end 
end. 

Count has whatever random value occupied its location in memory when it 
was created, so you have no idea how many times this loop is going to 
execute. 

Furthermore, variables declared within a procedure or function are created 
each time you enter that routine and destroyed when you exit; you cannot 
count on those variables retaining their values between calls to that routine. 

Dangling Pointers 

Three common errors occur with pointers. First, as mentioned above, don't 
use them before assigning them a value (nil or otherwise). Just like any 
other variable or data structure, a pointer is not automatically initialized 
just by being declared. It should be explicitly set to an initial value (by 
passing it to New or assigning it nil) as soon as possible. 

Second, don't reference a nil pointer, that is, don't try to access the data 
type or structure that the pointer points to if the pointer itself is nil. For 
example, suppose you have a linear linked list of records and you want to 
search it for a record with a given value. Your code might look like this: 

212 Turbo Debugger User's Guide 



function FindNode(Head : NodePtr; Val integer); 
vu 

Temp : NodePtr; 
begin 

Temp := Head; 
while (TempA.Key <> Va}l and (Temp<> nil) do 

Temp := TempA.Next; 
FindNode := Temp 

end; { of function FindNode ) 

If Val isn't equal to the Key field in any of the nodes in the linked list, this 
code will try to evaluate TempA .Key when Temp is nil, resulting in 
unpredictable behavior. Solution? Rewrite the expression to read: 

while (Temp<> nil) and (TempA.Key <>Val) 

and enable short-circuit Boolean evaluation, using the Turbo Pascal {$B-} 
option or the Options/Compiler/Boolean command. That way, if Temp 
does equal nil, the second term is never evaluated. 

Finally, don't assume that a pointer is set to nil just because you've passed 
it to Dispose or FreeMem. The pointer still has its original value; however, 
the memory it points to is now free to be used for other dynamic variables. 
You should explicitly set a pointer to nil after disposing of its data 
structure. 

Scope Confusion 

Pascal lets you nest procedures and function very deep, and each of those 
procedures and functions can have its own declarations. Consider the 
following program: 

program. Confused; 
vu 

A, B : integer; 

procedure Swap(var A,B integer); 
vu 

T : integer; 
begin 

Writeln('2: A,B,T = ',A:3,B:3,' ',T); 
T :=A; 
A := B; 
B := T; 
Writeln('3: A,B,T = ',A:3,B:3,' ',T) 

end; { of procedure Swap ) 

begin { main body of Confused 
A := 10; B := 20; T := 30; 

Chapter 13, How to Debug a Program 213 



Writel~('l: A,B,T = ',A:3,B:3,' ',T); 
Swap(B,A); 
,Writeln('4: A,B,T = ',A:3,B:3,' ',T); 

end. ( of program Confused l 

What's the output of this program? It'll look something like this: 

1: A,B,T = 10 20 30 
2: A,B,T = 20 10 22161 
3: A,B,T = 10 20 20 
4: A,B,T = 20 10 30 

What's happening here is that you have two versions each of A, B, and T. 
The global versions are used in the main body of the program, while Swap 
has versions local to itself-its formal parameters A and B, and its local 
variable T. To further confuse things, we made the call Swap(B,A), which 
means that the formal parameter A is actually the global variable B and vice 
versa. And, of course, there is no correlation between the local and global 
versions of T. 

There was no real "bug" here, but problems can arise when you think that 
you're modifying something which you aren't. For example, the variable T 
in the main body didn't get changed, even though you thought it might 
have. This is the opposite of the "hidden effects" bug mentioned on page 
210. 

If you also had the following record declaration, things could get even 
more confusing: 

type 
RecType = record 

A,B : integer; 
end; 

var 
A, B : integer; 
Rec : RecType; 

Inside a with statement, a reference to A or B would reference the fields, not 
the variables. 

Superfluous Semicolons 

Like C, Pascal allows a "null" statement (one consisting only of a 
semicolon). Placed at the wrong spot, this can create all kinds of problems. 
Consider the following program: 

214 Turbo Debugger User's Guide 



program Test; 
var 

I,J : integer; 
bag in 

for I := 1 to 20 do; 
begin 

J := I * I; 
Writeln(I:2,' ',J:4l 

and; 
Writeln ('All done!' l 

and. 

The output of this program is not a list of the first 20 integers and their 
squares; it's simply 

20 400 
All done! 

That's because the statement for I := 1 to 20 do; ends with a semicolon. 
This means it executes the null statement 20 times. After that, the 
statements in the begin .. end block are executed, the final Writeln statement. 
To fix this, just eliminate the semicolon following the do keyword. 

Undefined Function Return Value 

If you write a function, you must be sure that the function name has some 
value assigned to it before you exit the function. Consider the following 
section of code: 

CODSt 

NLMax = 100; 
type 

NumList = array[l .. NLMax] of integer; 

function FindMax(List : NumList; Count : integer) integer; 
var 

I,Max : integer; 
bag in 

Max := List [1]; 
for I := 2 to Count do 

if List[I] >Max than 
begin 

Max := List[I]; 
FindMax := Max 

and 
and; ( of function FindMax J 

Chapter 13, How to Debug a Program 215 



This function works fine-as long as the highest value in List isn't in List[1]. 
In that case, FindMax never gets assigned a value. A correct version of the 
function would use this: 

begin 
Max := List[l]; 
for I := 2 to Count do 

if List[IJ >Max then 
Max := List[IJ; 

FindMax := Max 
end; { of function FindMax 

Decrementing Word or Byte Variables 

Be careful not to decrement an unsigned scalar (byte or word) while testing 
for >=0. The following code produces an infinite loop: 

var 
w : word; 

begin 
w := 5; 
while w >= a do 

w := w - 1; 
end. 

After the fifth iteration, w equals O. The next time through, it's decremented 
to 65535 (because words range from 0 to 65535), which is still >=0. You 
should use an integer or longint in such cases. 

Ignoring Boundary or Special Cases 

Note that both versions of the function FindMax in the previous section 
assume that Count>= 1. However, there may be times when Count= 0, that 
is, the list is empty. If you call FindMax in that situation, it'll return 
whatever happens to be in List[1]. Likewise, if Count > NLMax, you'll end 
up either with a runtime error (if range checking is enabled) or searching 
through memory locations not contained in List for the maximum value. 

There are two possible solutions to this. One, of course, is to never call 
FindMax unless Count is in the range 1..NLMax. This isn't a flip comment; a 
serious part of good software design is to define the requirements for 
calling a given routine, then ensuring they are met each time that routine is 
called. 

216 Turbo Debugger User's Guide 



The other solution is to test Count and return some predetermined value if 
it isn't in the range 1..NLMax. For example, you might rewrite the body of 
FindMax to look like this: 

begin 
if (Count < 1) or (Count > NLMax) then 

Max := -32768 
else 
beqin 

Max:= List Ill; 
for I :~ 2 to Count do 

if List[I] >Max then 
Max := List[I] 

and; 
FindMax := Max 

end; { of function FindMax 

This leads to the next type of Pascal pitfall: range errors. 

Range Errors 

Turbo Pascal has range-checking turned off by default. This produces 
faster, more compact code, but it also lets you commit certain types of 
errors, such as assigning to variables values outside of their allowed range, 
or indexing non-existent elements in arrays, as shown in the example 
above. 

The first step in finding such errors is to tum range checking back on by 
inserting the {$R+} compiler option into your program, compiling the pro­
gram, and running it again. If you know (or suspect) where the error is, you 
can put this directive above that section and a corresponding {$R-} directive 
afterwards, thus enabling range-checking for that section only. If a range 
error does occur, your program will stop with a runtime error, and Turbo 
Pascal will show you where the error occurred. 

One common type of range error happens when you are indexing through 
an array using a while or repeat loop. For example, suppose you are 
looking for an array element containing a certain value. You want to stop 
when you've found it or when you reach the end of the array. If you've 
found it, you want to return the index of the element; otherwise, you want 
to return 0. Your first effort might look like this: 

function FindVal(List : NurnList; Count,Val : integer) : integer; 
var 

I : integer; 
begin 

FindVal := 0; 

Chapter 73, How to Debug a Program 217 



I := 1; 
while (I<= Count) and (List[I] <>Val) do 

Inc(IJ; 
if I <= Count than 

FindVal := I 
and; ( of function FindVal 

This is all very nice, but it could result in a runtime error if Val isn't in List 
and you're using normal Boolean evaluation. Why? Because the last time 
the test is made at the top of the while loop, I will equal Count+ 1. If Count = 
NLMax, you're beyond the limits for List. 

Assembler-Specific Bugs 

Here are some of the common pitfalls of assembly-language programming. 
You should refer to the Turbo Assembler User's Guide for a fuller explanation 
on these oft-encountered errors-and tips on how to avoid them. 

Forgetting to Return to DOS 

In Pascal, C, and other languages, a program ends automatically and 
returns to DOS when there is no more code to execute, even if no explicit 
termination command was written into the program. Not so in assembly 
language, where only those actions that you explicitly request are 
performed. When you run a program that has no command to return to 
DOS, execution simply continues right past the end of the program's code 
and into whatever code happens to be in the adjacent memory. 

Forgetting a RET Instruction 

The proper invocation of a subroutine consists of a call to the subroutine 
from another section of code, execution of the subroutine, and a return 
from the subroutine to the calling code. Remember to insert a RET 
instruction in each subroutine, so that the RETurn to the calling code 
occurs. When typing a program, it's easy to skip a RET and end up with an 
error. 

218 Turbo Debugger User's Guide 



Generating the Wrong Type of Return 

The PROC directive has two effects. First, it defines a name by which a 
procedure can be called. Second, it controls whether the procedure is a near 
or far procedure. 

the RET instructions in a procedure should match the type of the 
procedure, shouldn't they? 

Yes and no. The problem is that it's possible and often desirable to group 
several subroutines in the same procedure; since these subroutines lack an 
associated PROC directive, their RET instructions take on the type of the 
overall procedure, which is not necessarily the correct type for the 
individual subroutines. 

Reversing Operands 

To many people, the order of instruction operands in 8086 assembly 
language seems backward (and there is certainly some justification for this 
viewpoint). If the line 

mov ax,bx 

meant "move AX to BX," the line would scan smoothly from left to right, 
and this is exactly the way in which many microprocessor manufacturers 
have designed their assembly languages. However, Intel took a different 
approach with 8086 assembly language; for us the line means "move BX to 
AX," and that can sometimes cause confusion. 

Forgetting the Stack or Reserving a Too-Small Stack 

In most cases, you are treading on thin ice if you don't explicitly allocate 
space for a stack. Programs without an allocated stack will sometimes run, 
but there is no assurance that these programs will run under all 
circumstances. Most programs should have a .STACK directive to reserve 
space for the stack, and for each program that directive should reserve 
more than enough space for the deepest stack you can conceive of the pro­
gram using. 

Chapter 13, How to Debug a Program 219 



Calling a Subroutine That Wipes Out Needed 
Registers 

When writing assembler code, it's easy to think of the registers as local 
variables, dedicated to the use of the procedure you're working on at the 
moment. In particular, there's a tendency to assume that registers are 
unchanged by calls to other procedures. It just isn't so-the registers are 
global variables, and each procedure can preserve or destroy any or all 
registers. 

Using the Wrong Sense for a Conditional Jump 

The profusion of conditional jumps in assembly language (JE, JNE, JC, 
JNC, JA, JB, JG, and so on) allows tremendous flexibility in writing 
code-and also makes it easy to select the wrong jump for a given purpose. 
Moreover, since condition-handling in assembly language requires at least 
two separate lines, one for the comparison and one for the conditional jump 
(and many more lines for complex conditions), assembly language 
condition-handling is less intuitive and more prone to errors than 
condition-handling in C and Pascal. 

Forgetting about REP String Overrun 

String instructions have a curious property: After they're executed, the 
pointers they use wind up pointing to an address 1 byte away (or 2 bytes if 
a word instruction) from the last address processed. This can cause some 
confusion with repeated string instructions, especially REP SCAS and REP 
CMPS. 

Relying on a Zero CX to Cover a Whole Segment 

Any repeated string instruction executed with CX equal to zero will do 
nothing. Period. This can be convenient in that there's no need to check for 
the zero case before executing a repeated string instruction; on the other 
hand, there's no way to access every byte in a segment with a byte-sized 
string instruction. 

220 Turbo Debugger User's Guide 



Using Incorrect Direction Flag Settings 

When a string instruction is executed, its associated pointer or pointers-SI 
or DI or both-increment. Or decrement. It all depends on the state of the 
direction flag. 

The direction flag can be cleared with CLD to cause string instructions to 
increment (count up) and can be set with STD to cause string instructions 
to decrement (count down). Once cleared or set, the direction flag stays in 
the same state until either another CLD or STD is executed or the flags are 
popped from the stack with POPF or IRET. While it's handy to be able to 
program the direction flag once and then execute a series of string 
instructions that all operate in the same direction, the direction flag can also 
be responsible for intermittent and hard-to-find bugs by causing string 
instructions to behave differently, depending on code that executed much 
earlier. 

Using the Wrong Sense for a Repeated String 
Comparison 

The CMPS instruction compares two areas of memory, while the SCAS 
instruction compares the accumulator to an area of memory. When prefixed 
by REPE, either of these instructions can perform a comparison until either 
ex becomes zero or a not-equal comparison occurs. When prefixed by 
REPNE, either instruction can perform a comparison until either ex 
becomes zero or an equal comparison occurs. Unfortunately, it's easy to 
become confused about which of the REP prefixes does what. 

Forgetting about String Segment Defaults 

Each of the string instructions defaults to using a source segment (if any) of 
DS, and a destination segment (if any) of ES. It's easy to forget this and try 
to perform, say, a STOSB to the data segment, since that's where all the 
data you're processing with nonstring instructions normally resides. 

Converting Incorrectly from Byte to Word 
Operations 

In general, it's desirable to use the largest possible data size (usually word, 
but dword on an 80386) for a string instruction, since string instructions 
with larger data sizes often run faster. 

Chapter 13, How to Debug a Program 221 



There are a couple of potential pitfalls here, though. First, the conversion 
from a byte count to a word count by a simple 

shr cx,1 

loses a byte if CX is odd, since the least-significant bit is shifted out. 

Second, make sure you remember SHR divides the byte count by two. 
Using, say, STOSW with a byte rather than a word count can wipe out 
other data and cause problems of all sorts. 

Using Multiple Prefixes 

String instructions with multiple prefixes do not work reliably and should 
generally be avoided. 

Relying on the Operand(s) to a String Instruction 

The optional operand or operands to a string instruction are used for data 
sizing and segment overrides only, and do not guarantee that the memory 
location referenced will actually be accessed. 

Wiping Out a Register with Multiplication 

Multiplication-whether it be 8 bit by 8 bit, 16 bit by 16 bit, or 32 bit by 32 
bit-always destroys the contents of at least one register other than the 
portion of the accumulator used as a source operand. 

Forgetting That String Instructions Alter Several 
Registers 

The string instructions, MOVS, STOS, LODS, CMPS, and SCAS, can 
affect several of the flags and as many as three registers during execution of 
a single instruction. When you use string instructions, remember that either 
SI or DI or both either increment or decrement (depending on the state of 
the direction flag) on each execution of a string instruction. CX is also 
decremented at least once and possibly as far as zero each time a string 
instruction with a REP prefix is used. 

222 Turbo Debugger User's Guide 



Expecting Certain Instructions to Alter the Carry 
Flag 

While some instructions affect registers or flags unexpectedly, other 
instructions don't even affect all the flags you might expect them to. 

Waiting Too Long to Use Flags 

Flags last only until the next instruction that alters them, which is usually 
not very long. It's a good practice to act on flags as soon as possible after 
they're set, thereby avoiding all sorts of potential bugs. 

Confusing Memory and Immediate Operands 

An assembler program may refer either to the offset of a memory variable 
or to the value stored in that memory variable. Unfortunately, assembly 
language is neither strict nor intuitive about the ways in which these two 
types of references can be made, and as a result, offset and value references 
to a memory variable are often confused. 

Causing Segment Wraparound 

One of the most difficult aspects of programming the 8086 is that memory 
isn't accessible as one long array of bytes, but is rather made available in 
chunks of 64K relative to segment registers. Segments can introduce subtle 
bugs, since if a program attempts to access an address past the end of a 
segment, it actually ends up wrapping back to access the start of that 
segment instead. 

Failing to Preserve Everything in an Interrupt 
Handfer 

Every interrupt handler should explicitly preserve the contents of all 
registers. While it is valid to explicitly preserve only those registers that the 
handler modifies, it's good insurance to just push all registers on entry to 
an interrupt handler and pop all registers on exit. 

Chapter 13, How to Debug a Program 223 



Forgetting Group Overrides in Operands and Data 
Tables 

Segment groups allow you to logically partition data into a number of areas 
without having to load a segment register every time you want to switch 
from one of those logical data areas to another. 

Unfortunately, there are a few problems with the way the Microsoft Macro 
Assembler (MASM) handles segment groups, so until Turbo Assembler 
came along, segment groups were quite a nuisance in assembler. They 
were, however, an unavoidable nuisance, for they are required in order to 
link assembler code to high-level languages such as C. 

In MASM Quirks mode, Turbo Assembler emulates MASM, warts and all. 
This means that in MASM Quirks mode, Turbo Assembler has the same 
problems with segment groups that MASM has. If you're not planning to 
use MASM Quirks mode, read no more, but if you are going to use MASM 
Quirks mode, you should refer to the Turbo Assembler User's Guide for more 
information. 

Accuracy Testing 

Making a program work with valid input is only part of the job of testing. 
The following sections discuss some important test cases that any program 
or routine should be subjected to before being given a clean bill of health. 

Testing Boundary Conditions and Limiting Cases 

Once you think a routine works with a range of data values, you should 
subject it to data at the limits of the range of valid input. For example, if 
you have a routine to display a list from 1 to 20 items long, you should 
make sure that it behaves correctly both when there is exactly 1 item and 
exactly 20 items in the list. This can flush out the one-too-few and one-too­
many "fence-post" errors (described on page 211). 

Erroneous Data Input 

Once you are sure that a routine works with a full range of valid input, you 
should check that it behaves correctly when given invalid input. You 
should check that erroneous input is rejected, even when it's very close to 

224 Turbo Debugger User's Guide 



valid data. For example, the previous routine that accepted values from 1 to 
20 should make sure that 0 and 21 are rejected. 

Empty Data Input 

This is a frequently overlooked area, both when testing and when 
designing a program. If you write a program to have reasonable default 
behavior when some input is omitted, you greatly enhance its ease of use. 

Debugging as Part of Program Design 

When you first start designing your program, you can plan for the de­
bugging phase. One of the most basic tradeoffs in program design involves 
the degree to which the different parts of your program check that they are 
getting valid input and that their output is reasonable. 

If you do a lot of checking, you end up with a very resilient program that 
can often inform you of an error condition but continue to run after 
performing some reasonable recovery. You also end up with a larger and 
slower program. This type of program can be fairly easy to debug, because 
the routines themselves inform you of invalid data before the dangers can 
be propagated. 

You can also implement a program whose routines do little or no validation 
of input or output data. Your program will be smaller and faster, but bad 
input data or a small bug can bring things to a grinding halt. This type of 
program can be the most difficult to debug, since a small problem can end 
up manifesting itself much later during execution. This makes it hard to 
track down the point of the original error. 

Most programs end up being a mixture of these two techniques. Often, you 
treat input from external sources (such as the user or a disk file) with 
greater suspicion than data from one internal routine calling another. 

The Sample Debugging Session 

This sample session uses some of the techniques we talked about in the 
previous sections. The program you will be debugging is a version of the 
demonstration program used in Chapter 3 (TCDEMO.C or TPDEMO.PAS), 
except this one has some deliberate bugs in it. 

Chapter 7 3, How to Debug a Program 225 



Make sure that your current directory contains the two files needed for the 
debugging demonstration. If you're debugging a Turbo Pascal program, 
you'll need TPDEMOB.PAS and TPDEMOB.EXE. If you're a C 
programmer, you'll need TCDEMOB.C and TCDEMOB.EXE. (The B in 
these file names stands for "buggy.") 

Go ahead and compile the source code program to generate your .EXE file. 
(If you are compiling TCDEMOB.C, open it in the integrated development 
environment and set the Options/Compiler/Optimization/Use Register 
Variables switch to Off, before you compile.) 

C Debugging Session 

This section uses a Turbo C program as its example. If you're a Pascal 
programmer, refer to page 230 for a sample debugging session using a 
Turbo Pascal program. 

Looking for Errors 

Before we start the debugging session, let's run the buggy demo program 
to see what's wrong with it. To start the program, type 

TCDEMOB 

You will be prompted for lines of text. Enter two lines of text 

one two three 
four five six 

A final empty line ends your input. TCDEMOB then prints out its analysis 
of your input: 

Arguments: 
Enter a line {empty line to end) : one two three 
Enter a line {empty line to end) : four five six 
Enter a line {empty line to end) : 
Total number of letters = 7 
Total number of lines = 6 
Total word count = 2 
Average number of words per line = 0.3333333 
IE' occurs 1 times, 0 times at start of a word 
IF' occurs 1 times, 1 times at start of a word 
'N' occurs 1 time·s, 0 times at start of a word 
'O' occurs 2 times, 1 times at start of a word 
'R' occurs 1 times, 0 times at start of a word 

226 Turbo Debugger User's Guide 



'U' occurs 1 times, 0 times at start of a word 
There is 1 word 3 characters long 
There is 1 word 4 characters long 

Notice there are erroneous numbers for the total number of words, letters 
and word count. Later on, the letter and word frequency tables seem to be 
based on an erroneous letter and word count. This is an all-too-typical 
situation-the program must have more than one thing wrong. This 
happens frequently in the early stages of debugging a program. 

Deciding Your Plan of Attack 

Your first task is to decide which problem to attack first. A good rule of 
thumb is to start with the problem that appears to be happening "first." In 
this program, each input line is broken down into words, and then it is 
analyzed, and finally after all the lines have been entered, the tables are 
displayed. Since the word and letter counts are off as well as the tables, it is 
a good bet that something is wrong during the initial breaking down and 
counting phase. 

Now is the time to start debugging, after you have thought about the 
problem for a moment and decided on a rough plan of attack. Here, the 
strategy is to examine the routine makeintowords to see if it is correctly 
chopping the line into null-terminated words and then to see if 
analyzewords is correctly counting the analyzed line. 

Starting Turbo Debugger 

To start the debugging sample session, type 

TD TCDEMOB 

Turbo Debugger will load the buggy demo program and then display its 
startup screen. If you wish to exit from the tutorial session and return to 
DOS, you can press Alt-X at any time. If you get hopelessly lost, you can 
reload the demonstration program at any time and start at the beginning by 
pressing Ctrl-F2. (Note that this doesn't clear breakpoints or watches.) 

Since the first thing you want to do is to check that makeintowords is 
working correctly, run the program up to that routine and then check 
things. There are two approaches you can use: You can either step through 

Chapter 13, How to Debug a Program 227 



makeintowords as it executes, making sure that it does the right thing, or you 
can stop the program after makeintowords has done its stuff and see if it did 
the right thing. 

Since makeintowords has a clearly defined task and it's easy to determine 
whether it's working correctly merely by inspecting the output buffer it 
produces, let's opt for the second approach. To do this, move down to line 
41 and press F4 to run to this line. The program screen will appear and you 
should type 

one two three 

followed by pressing the Enter key. 

Inspecting 

You are now stopped at the source line after makeintowords was called. Look 
at the contents of buffer to see if the right thing happened. Move the cursor 
up a line and place it under the word buffer and press Alt-F10 I (for Inspector) 
to open an Inspector window to show the contents of buffer. Use the arrow 
keys to scroll through the elements in the array. Notice that makeintowords 
has indeed put a single null (0) at the end of each word as it is meant to. 
This means that you should execute some more of the program and see if 
analyzewords is doing the right thing. First, remove the inspector by 
pressing Esc. Then, press F7 twice to execute to the start of analyzewords. 

Check that analyzewords has been called with the correct pointer to the 
buffer by moving the cursor under bufp and pressing Alt-F10 I. You can see 
that bufp indeed points to the null-terminated string 'one.' Press Esc to 
remove the inspector. Since there seems to be a problem with counting 
characters and words, let's put a breakpoint at the places that a character 
and a word are counted. Move to line 92 and press F2 to set a breakpoint. 
Move to line 96 and set another breakpoint. Finally, set a breakpoint on line 
98 so you can look at the character count this function will return. Setting 
multiple breakpoints like this is a typical way to learn about whether things 
are happening in the right order in a program, and to allow you to check on 
important data values each time the program stops at a breakpoint. 

Run the program by pressing F9. The program stops when it reaches the 
breakpoint on line 92. Now you want to look at the value of charcount. Since 
you'll want to check it each time you hit a breakpoint, this is an ideal time 
to use the Watch command to place it in the Watches window. Move the 
cursor under charcount and press Alt-F10 W. The Watches window at the 
bottom of the screen now displays the current value of 0. To make sure that 
the character is being counted properly, execute a single line by pressing F7. 
The Watches window now indeed shows that charcount is 1. 

228 Turbo Debugger User's Guide 



Run the program again by pressing F9. You are now back at line 92 for 
another character. Press F9 again twice to read the last letter on the word 
and the terminating null. charcount now correctly shows 3 and the 
wordcounts array is about to be updated to count a word. Everything is fine 
so far. Press F9 again to start processing the next word in the buffer. AHA! 
Something is wrong. 

You expected the program to stop again on line 92 as it processed the next 
word, but it didn't. It went straight to the statement that returns from the 
function. The only way to end up on line 98 is if the while loop that started 
on line 82 no longer has a true test value. This means that *bufp != 0 must 
evaluate to false. To check this, move back to line 82 and mark the entire 
expression *bufp != 0 by putting the cursor under the*, pressing Ins and 
moving the cursor to the final 'O' before the ')'. Now evaluate this 
expression by typing Alt-D E and pressing Enter to accept the marked 
expression. The value is indeed 0. Press Esc twice to return to the Module 
window. 

Eureka! 

Now here comes the analytical leap that causes you to "solve" the bug. The 
reason bufp points to a 0 is because that is where the inner while loop 
starting on line 85 left it at the end of a word. To continue to the next word, 
you must increment bufp past the 0 that ended the previous word. To do 
this, you need to add a "bufp++" statement before line 96. You could 
recompile your program with this statement added, but Turbo Debugger 
lets you "splice" in expressions by using a fancy sort of breakpoint. 

To do this, first reload the program by pressing Ctrl-F2 so you can test with a 
clean slate. Now remove all the breakpoints you set in the previous session 
by typing Alt-8 D. Go back to line 96 and set a breakpoint again by pressing 
F2. Now, open a Breakpoints window by pressing Alt-VB. Set this breakpoint 
to execute the expression bufp++ each time it is encountered by pressing 
Alt-F10/S/E and then entering bufp++ at the prompt. Now run the program by 
pressing F9. Enter the usual two input lines 

one two three 
four five six 

You'll notice that things have improved considerably. The total number of 
words and lines seem to be wrong, but the tables are correct. Stop at the 
beginning of the printstatistics routine and see if it is given the correct 
values to print. First reload the program by pressing Ctrl-F2 to retest anew. 
Then, go to line 103 and press F4 to execute to there. Move the cursor to the 
nlines argument and press Alt-F10 I to look at its value. It says 6 where it 

Chapter 73. How to Debug a Program 229 



should say 2. Now go back to where it is called from in main and look at 
the value of nlines there. Move the cursor to line 35 and place it under nlines 
and press Alt-F10 I to look at the value. The value of nlines in main is 2, 
which is correct! If you go down to line 45, you will notice that the two 
arguments nwords and nlines have been reversed. There is no way that the 
compiler could have known that you meant to have them the other way 
around. 

If you correct these two bugs, the program will then run correctly. File 
TCDEMO.EXE is a corrected version that you may run if you are curious. 

Pascal Debugging Session 

The rest of this chapter is devoted to a sample debugging session using a 
Turbo Pascal program. If you're a C programmer, you should look at the 
preceding sections, which take you through a session using a Turbo C 
program. 

Looking for Errors 

Before we start the Pascal debugging session, let's run the buggy Pascal 
demo program to see what's wrong with it. the program is already 
compiled and on your distribution disk. If you want to recompile it, you 
can use the command-line compiler, TPC.EXE, and enter this: 

TPC /v TPDEMOB 

If you're using the integrated environment (TURBO.EXE), make sure the 
Debug/Standalone Debugging command is set to On and that the 
Compile/Destination command is set to Disk. 

To start the program, enter the program name and pass it three command­
line arguments: 

TPDEMOB first second third 

You'll be prompted for lines of text. Enter two lines of text exactly as 
follows: 

ABC DEF GHI 
abc def ghi 

A final empty line ends your input. TPDEMOB then prints out its analysis 
of your input: 

9 letter(s) in 3 word(s) in 2 line(s) 

230 Turbo Debugger User's Guide 



Average of 0.67 words per line 

Word length: 1 2 7 8 9 10 
Frequency: o o 3 0 o o 0 o o o 
Letter: M 
Frequency: 1 1 1 1 1 1 1 1 o o o o 
Word starts: o o o o o o o o o o 
Letter: z 
Frequency: o o o o o o o o o o o o o 
Word starts: o o o 0 o o 0 o o o o o o 
Program name: C:\td\tpdemob.ex~ 
Command line parameters: firs7t seconf-+ third 

There are five separate problems with this output: 

1. The number of words is wrong (3 instead of 6). 

2. The number of words per line is wrong (0.67 instead of 3.00). 

3. The column headings for the second and third tables display only one 
letter each (instead of A .. M and N .. Z). 

4. You typed two lines, each containing a letter from A .. I, but the letter 
frequency tables show only a count of one each for those letters. 

5. The last character of each command-line parameter entered was lost 
and random characters are being displayed (although the last parameter 
is okay). 

Deciding Your Plan of Attack 

Your first task is to decide which problem to attack first. A good rule of 
thumb is to start with the problem that appears to be happening "first." In 
this program, after procedure !nit is called to initialize data, keyboard input 
is read by function GetLine and then processed by procedure ProcessLine 
until the user enters an empty string. ProcessLine scans each input string 
and updates the global counters. Then, the results are displayed by 
procedure ShowResults. Finally, in a completely independent subprogram, 
procedure ParmsOnHeap builds a linked list of command-line parameters 
on the heap and then traverses and displays that list at the end of the 
program. 

The average number of words per line is computed by ShowResults using 
the number of lines and words. Since the word count seems to be off, you 
should probably take a look at ProcessLine to see how NumWords is 
updated. Even though Num Words is wrong, the 0.67 words per line figure 

Chapter 13, How to Debug a Program 231 



doesn't make sense. There's probably an error in the ShowResults 
calculation, which will need your attention as well. 

The column titles for all the tables are drawn at the request of ShowResults. 
You should wait until the main loop terminates before tracking down the 
second and third bugs. Since the letter and word counts are wrong, it's a 
good bet that something is amiss inside ProcessLine, and that's where you 
should start looking for the first and fourth bugs. 

Finally, once you're done scrutinizing the word and letter counting parts of 
the program, take a look at ParmsOnHeap to find and fix the last (fifth) bug. 

Now is the time to actually start debugging-after you have thought about 
the problem for a moment and decided on a rough plan of attack. 

Starting Turbo Debugger 

To start the debugging sample session, load the debugger and give it the 
same command-line parameters you gave it earlier: 

TD TPDEMOB first second third 

Turbo Debugger will load the buggy demo program and then display the 
startup screen, menus, etc. If you wish to exit from the tutorial session and 
return to DOS, you can press Alt·X at any time. If you get hopelessly lost, 
you can always reload the demonstration program and start from the 
beginning again by pressing Ctrl-F2. (Note that this doesn't clear breakpoints 
or watches.) 

There are two approaches to debugging a routine like ProcessLine: You can 
either step through it line-by-line as it executes and make sure it does the 
right thing, or you can stop the program immediately after ProcessLine has 
done its stuff and then see if it did the right thing. Since both the letter and 
word counts are wrong, you probably ought to look inside ProcessLine 
carefully and see how characters are processed. 

Okay, so now you're going to run the program and step inside the call to 
ProcessLine. There are many ways to do that. You can press FB four times (to 
step over procedure and function calls), then press F7 once (to trace into the 
call to ProcessLine). You can also move the cursor down to line 230, press F4 
(Go to Cursor command) and then press F7 once to step into ProcessLine. 

Believe it or not, the list is even longer, but try this one: Press Alt-F9 and a 
box will pop up prompting you to enter a code address to run to. Type 
processline, and press Enter. The program will now run until ProcessLine 
gains control. Enter the same data as before when you are prompted to 
enter a string (that is, ABC DEF GHI). 

232 Turbo Debugger User's Guide 



There are several loops here. An outer one scans the entire string. Inside 
that loop, there's one to skip over non-letters, and a second one to process 
words and letters. Move the cursor to the while loop on line 132 and press 
F4 (Go to Cursor). 

This loop keeps scanning until it reaches the end of the string or until it 
finds a letter. The latter condition is checked via a call to a boolean function, 
IsLetter. Press Fl to trace into IsLetter. IsLetter is a nested function that takes 
a character value and returns True if it's a letter, otherwise it returns a 
value of False. A not-very-close look reveals that it checks only for 
uppercase letters. It should either check for characters in the range 'A' .. 'Z' 
and 'a' .. 'z,' or it should convert the character to uppercase before 
performing the test. 

A quick look at both lines of input that you originally entered provides a 
further clue to the source of the bug (hindsight is 20/20). You entered both 
upper- and lowercase letters from 'A' to 'I,' but only half of the letters 
entered were displayed in the totals. Now you can see why. 

Get back to the line that called IsLetter by using another navigation 
technique: press Alt-FB, which runs past the end statement of the current 
procedure or function. Since the second line of input you originally 
entered, abc def ghi, contained only lowercase letters, each character was 
treated as whitespace and skipped. This throws off both the letter counts 
and the word count, and solves the mysteries of bugs #1 and #4. 

By the way, there's another powerful way, to verify IsLetter's misbehavior. 
Display the evaluate window by pressing Alt-DE and enter the following 
expression: 

IsLetter('a') = IsLetter('A') 

They're both letters, but the function result of False confirms that they're 
not treated the same by IsLetter. (You can use the evaluate and watch 
windows to evaluate expressions, perform assignments, or, as you did here, 
call procedures and functions. For more information, refer to Chapter 6.) 

Inspecting 

Two bugs down, three to go. Bug #2 is much easier to find than the 
previous ones. Press Alt-FB to exit ProcessLine, then move the cursor to line 
233 and press F4 to run to the cursor position. 

TPDEMOB will prompt you for a string. Type abc def ghi and press Enter 
the first time, then press Enter the second time the prompt appears. Now 
press Fl to step into ShowResults. 

Chapter 13, How to Debug a Program 233 



Remember, you're trying to find out why the average number of words per 
line is incorrect. The first line in ShowResults calculates the number of lines 
per word instead of words per line. Clearly, those two terms should be 
reversed. 

As long as you're here, you might as well make sure that NumLines and 
NumWords have the values you'd expect. NumLines should equal 2, 
and-because of the lsLetter bug you've uncovered but haven't 
fixed-NumV\lords should equal 3. Move the cursor to NumLines and press 
Alt-F10 I to inspect a variable. The Inspector window shows you NumLines' 
address, type, and current value in both decimal and hexadecimal. The 
value is indeed equal to 2, so you can move on and have a look a 
Num V\lords. Press Esc to close the Inspector window, then move the cursor 
forward to Num Words and press Alt-F10 I again (you can also use the 
shortcut, Ctr/-{). Thankfully, NumWords has the expected (incorrect) value of 
3, so you can move on. 

Or can you? There's another problem with this calculation, and it's not 
even on our list. There is no check to see whether the second term is 0 
before performing the division. If you run the program from the beginning 
and enter no data at all (just press Enter when prompted), the program will 
crash (even after you reverse the divisor and the dividend). 

To confirm this, press Esc to close the Inspector, type Alt-R P to end the 
current debug session, press F9 to run the program from the beginning, and 
press Enter at TPDEMOB's string prompt. The program will terminate and 
an error box will display a runtime error. You should modify this statement 
to read: 

if NumLines <> 0 then 
AvgWords := NumWords I NumLines 

else 
AvgWords := O; 

So much for bugs #2 and #2b. As long as you're tinkering with the 
Inspector window, try using the it to "walk" through a data structure. 
Move the cursor up to the declaration of LetterTable on line 49. Place the 
cursor on the word, LetterTable, and press Alt-F10 I. You can see it's an array 
of records, 26 elements long. Use the cursor keys to scroll through each 
element of the array, and press Enter to step into one of the array elements. 
This is a very powerful way of examining your data structures and will be 
especially handy when you traverse ParmsOnHeap's linked list later on. 

234 Turbo Debugger User's Guide 



Watches 

Anyway, you've still got to squash that column title bug (#3) in 
ShowResults. Since you already terminated the program when you tracked 
the divide-by-zero error, prepare for another session by pressing Alt-RP (to 
reset the program). Then press Alt-F9, type showresults, and press Enter. Now 
type the all-too-familiar data ABC DEF GHI and press Enter again. Finally, type 
abc def ghi and press Enter twice. Turbo Debugger should now be stopped 
at ShowResults. 

ShowResults uses a nested procedure, ShowLetterlnfo, to display the letter 
tables. Move the cursor down to line 102, press F4, then press Fl to step into 
Show Letter Info. · 

There are three for loops. The first one displays the column titles, and the 
second and third display frequency counts. Use Fl to step to the first loop 
on line 62. Position the cursor over FromLet and ToLet and use Alt-F10 I to 
check their values. They look okay (the first equals 'A' and the second 
equals 'M'). Press Alt-F5 to view the user screen and see where things stand. 
Press any key to return to the Module window. 

When stepping through a loop like this, the Watch window is very handy; 
position the cursor over ch and press Ctrl-W. Now use Fl to step through the 
for loop. As expected, it steps down to the Write statement on line 63. If you 
look at the Watch window, though, you'll see thatch's value is already 'M.' 
(It already executed the entire loop!) There's an extra semicolon right after 
the keyword do, making the for loop do absolutely nothing 13 times. When 
control falls through to the Write statement on line 63, the current value of 
ch, 'M,' is output and the program moves on. Removing that extra 
semicolon will eliminate bug #3. 

Just One More Bug ... 

It's time to track down that strange bug with the command-line 
parameters. To refresh your memory, the last character of all but the last 
command-line parameter was garbage. Perhaps the string length byte was 
wrong, or perhaps the string data was overwritten by some later 
assignment. 

Use the Watch window to find out. Press Alt-F9, type parmsonheap and press 
Enter. The for statement loops through all the command-line parameters, 
constructing a linked list and copying each string onto the heap as it goes. 
One pointer, Head, points to the beginning of the list; Tail points to the last 
node in the list; and Temp is used as temporary storage to allocate and 

Chapter 13, How to Debug a Program 235 



initialize a new node. Since the string data is corrupted, press Ctrl-Fl and 
add the following expression to the Watch window: 

This keeps track of the string data stored in the last node in the list. Of 
course, this value will be garbage until Tail is initialized on line 206. 

Rather than step through line-by-line, just keep an eye on the Watch 
window at the end of each iteration. Move the cursor to line 207 and press 
F2 to set a breakpoint there. Now press F9 to run to that breakpoint. If 
you're using DOS 3.x, you'll see the full path to TPDEMOB.EXE in the 
Watch window (if you're using DOS 2.x, you'll see an empty string; in that 
case, just press F9 again and then go on). The string data looks just fine. 

Press F9 to execute the loop another time. Again, the data looks okay. Now 
you know that the string is being copied onto the heap correctly. You can 
use the Inspector window to find out whether it's been corrupted yet. Move 
the cursor over Head on line 202 and press Alt-F10 I. 

Look at the value referenced by Parm by pressing Enter. You're looking at 
the first node in the list, and its string data is already corrupted. If you 
press Esc, Down arrow, and then press Enter again, you'll open an Inspector 
window onto the second node in the list. Press Enter to inspect its string 
data. It's intact, and, in fact, is the same node referenced by the Tail pointer. 
Something is definitely clobbering the tail end of the string data. 

Keep your eye on the Watch window while you use Fl to step through the 
loop. The call to GetMem on line 198 is the culprit; before that call, 
Tail".Parm" is equal to first. Immediately after the call to GetMem, the last 
character in Tail" Parm" is trashed. 

What's happening? For each command-line parameter, the for loop 
allocates first a record, then the string data, then the next record, and so on. 
The GetMem call on line 198 should allocate enough for the length of the 
string plus the length byte, but you can see it does not add 1 to Length(s). 
Though the string assignment on line 199 succeeds in doing the copy, it 
actually uses 1 more byte than was allocated to it. Thus, the last character of 
the string is overlapped by the first byte of the next record allocated when a 
call is made to New(Temp). The last parameter escapes unscathed because 
it's not followed by another ParmRec. 

Whew. That's all the (known) bugs in this program. Perhaps you'll find 
some more as you step through the code. You can fix the bugs and then 
recompile (they are marked with two asterisks (**) for your convenience), 
or you can run TPDEMO.PAS, the bug-free version of this program that is 
discussed in Chapter 3. 

236 Turbo Debugger User's Guide 



c H A p T E 

Virtual Debugging on the 80386 
Processor 

R 

14 

Turbo Debugger lets you use the full power of systems that have the 80386 
processor. Virtual debugging lets the program you're debugging use the 
full address space below 640K, just as if no debugger were loaded. (Turbo 
Debugger is loaded into extended memory above the lMb address point.) 

You debug exactly as you would normally use Turbo Debugger, except that 
your program loads and runs at exactly the same address that it does when 
not being debugged. This is extremely useful both for debugging programs 
that are large, and for finding bugs that go away if the program is loaded 
higher in memory, as it is when being debugged normally. 

Virtual debugging also lets you watch for reads or writes to arbitrary 
memory or 1/0 locations, all at full or nearly full processor speed. This 
gives you all the power of a hardware debugger at no additional cost. 

Equipment Required for Virtual Debugging 

You must have a computer based on the 80386 processor in order to use the 
virtual debugger. You must also have 700K of available extended memory. 
If you have used up your extended memory for RAM disks, caches, etc., 
you may want to make a special CONFIG.SYS or AUTOEXEC.BAT file that 
removes some of these programs when you want to use virtual debugging. 

Chapter 74, Virtual Debugging on the 80386 Processor 237 



Installing the Virtual Debugger Device 
Driver 

Before starting the virtual debugger, you must make sure that you have 
installed its device driver in your CONFIG.SYS file. Do this by including a 
line similar to the following in CONFIG.SYS: 

DEVICE = TDH386.SYS 

If you have placed the TDH386.SYS device driver somewhere other than in 
the root directory, make sure that you include that directory path as part of 
the device driver file name. 

Normally, the virtual debugger lets you have up to 256 bytes of DOS 
environment strings. If this is not enough, or if you don't need that much 
and would like to conserve as much memory as possible, use the -e option 
in CONFIG.SYS to set the number of bytes of environment. For example, 

DEVICE = TDH386.SYS -e2000 

reserves 2000 bytes for your DOS environment variables. 

Starting the Virtual Debugger 

You start the virtual debugger much as you would normally start Turbo 
Debugger, with a command line like this: 

TD386 [options] program [programoptions] 

In other words, you simply enter TD386 instead of TD. TD386 then takes care 
of finding the Turbo Debugger executable program and loading it into 
extended memory. 

If you have other programs or device drivers that use extended memory, 
such as RAM disks, caches, or whatever, you must tell TD386 how much 
extended memory to set aside for these other programs. Do this by using 
the -e command line option. Follow the -e with the number of K of 
extended memory used by other programs, for example: 

TD386 -e512 myprog 

This command line informs TD386 that you want to reserve the first 512K 
of extended memory for other programs. 

Since you probably always reserve the same amount of extended memory 
for other programs, TD386 gives you a way to permanently set the amount 
of extended memory to reserve. Use the -w option along with the -e option 

238 Turbo Debugger User's Guide 



to specify that you want the -e value to be permanently set in the TD386 
executable program file. 

You will then be prompted for the name of the executable program. If you 
are running on DOS 3.0 or later, the prompt will indicate the path and file 
name that you executed TD386 from. You can accept this name by pressing 
Enter, or you can enter a new executable file name. The new name must 
already exist and be a copy of the TD386 program that you have already 
made. 

If you are running on version 2.x of DOS, you will have to supply the full 
path and file name of the TD386 executable program. 

Here is a complete list of command-line options for TD386.EXE: 

-e#### 

-£#### 

-£-

-w 

Specifies the number of K of extended memory being 
used by other programs. 

Enables EMS emulation through paging (in extended 
memory) and sets the page frame segment to #### (in 
hex). The last three digits must be 000 (like COOO or 
EOOO). Note that this option only applies to Turbo 
Debugger's EMS calls. 

Disables EMS emulation (presumably to override a 
previous command-line option). 

Modifies TD386.EXE with the new default value of -e or 
-£. You can enter a new executable file name that does 
not already exist and TD386 will create the new 
executable file. 

Note that TD386.EXE options must appear first in the command line, before 
any Turbo Debugger options or the program name. For example, 

TD386 -el024 -fDOOO -w 

reserves 1024K of extended memory, enables EMS enulation with a page 
fram or DODO, and modifies TD386.EXE with these values. 

For a list of all the command-line options available for TD386.EXE, just type 
the program name '1'0386 and press Enter. 

Note: If you have an 80386-based machine and want to read the command­
line options for TD386.EXE, TDH386.SYS must be loaded. 

Chapter 14, Virtual Debugging on the 80386 Processor 239 



Differences between Normal and Virtual 
Debugging 

Most things work exactly the same whether you are debugging normally, 
or whether you are using the 80386 virtual debugging capability. The 
following items behave differently: 

•When you use the F10/File/OS Shell command to run a DOS command, 
the program you're debugging is never swapped to disk. This means you 
may not always have enough memory to run other programs from the 
DOS prompt. 

•Your program can use nearly all of the 80386 instructions, with the 
exception of the privileged protected-mode instructions: CLTS, LMSW, 
LTR, LGDT, LIDT, LLDT. 

• Even though you can use all the 80386 extended addressing modes and 
32-bit registers while doing virtual debugging, you can't access memory 
above the lMb point. If you try to do so, an exception interrupt will be 
generated and Turbo Debugger will regain control. 

•You can't use virtual debugging if you're already running a program or 
device driver that uses the virtual and protected modes of the 80386 
processor. This includes programs such as: 

• DesqView operating environment 

• Windows-386 operating environment 
• CEMM.SYS Compaq EMS simulator 
• 386AMAX 

If you normally use one of these or similar programs, you will have to 
stop them or unload them before using TD386. 

TD386 Error Messages 

TD386 generates one of the following messages when it can't start, and then 
returns to the DOS prompt. You must correct the condition before you will 
be able to start TD386 successfully. 

TD386 error: 80386 device driver missing or wrong version 
You must install the TDH386.SYS device driver in your CONFIG.SYS file 
before you invoke TD386 from the DOS command line. 

TD386 error: Can't enable the A20 address line 
TD386 can't access the memory above 1 megabyte. This may happen if 
you're running on a system that is not exactly IBM compatible. 

240 Turbo Debugger User's Guide 



TD386 error: Can't find TD.EXE 
TD386 could not find TD.EXE. 

TD386 error: Couldn't execute TD.EXE 
TD386 could not run TD.EXE. 

TD386 error: Environment too long; use -e#### switch with IDH386.SYS 
You need to change the -e option, as described on page 238. 

TD386 error: Not enough Extended Memory available 
TD386 ran out of memory. You need to get more memory for your machine 
or free up memory (by reducing a RAM disk, for example). 

TD386 error: Wrong CPU type (not an 80386) 
You are not running on a system with an 80386 processor. 

The following errors might occur if you're trying to modify TD386 with the 
-w option: 

TD386 error: Cannot open program file 

TD386 error: Cannot read program file 

TD386 error: Cannot write program file 

TD386 error: Program file currupted or wrong version 

TDH386.SYS Error Messages 

There are only two possible error messages associated with the 
TDH386.SYS driver: 

Wrong CPU type: IDH386 driver not installed 

Invalid command line: TDH386 driver not installed 

Chapter 14, Virtual Debugging on the 80386 Processor 241 



242 Turbo Debugger User's Guide 



A p p E N D x 

A 

Command-Line Options 

When you start up Turbo Debugger from the DOS command line, you can 
at the same time configure it using certain options. Here's the general form 
to use: 

td [options] [program_name [program_args] ] 

Items enclosed in brackets are optional. Following an option with a hyphen 
disables that option if it was already enabled in the configuration file. 

Appendix A Command-Une Options 243 



Option 

-c<filename> 

-do 
-dp 
-ds 
-h 
-? 

-i 

-1 

-m<#> 

-r 
-rp<#> 
-rs<#> 

-sd<dir> 
-SC 

-vn 
-vg 

244 

Table A.1: Turbo Debugger Command-Line Options 

Function 

Startup configuration file 

Other display 
Page flipping 
Swap user screen contents 

Display help screen 
List alI the command-line options 

Process ID switching 

Assembler startup 

Heap size (Kb) 

Debug on remote system, COM1, slow 
COM port for remote link 
Link speed: l=slow, 2=med, 3=fast 

Source file directory 
No case-checking 

43/50 line display not allowed 
Complete graphics save 

Turbo Debugger User's Guide 



A p p E N D x 

----------------. --··-·----· 

B 

Turbo Debugger Utilities 

Your Turbo Debugger package comes with several utility programs. One 
utility lets you debug programs developed with Microsoft compilers. This 
is the Code View to Turbo Debugger utility, TDCONVRT.EXE. 

Another utility works in conjunction with remote debugging and lets you 
issue basic file-maintenance commands to a remote system. This is the 
Remote File Transfer utility, TORP.EXE. 

A third program lets you strip the debugging information (the "symbol 
table") from your programs without relinking. This is the Symbol Table 
Stripping utility, TDSTRIP.EXE. 

There is also a utility that let you pack the debugging information and one 
that lets you append it from a .MAP file: TDPACK.EXE and TDMAP.EXE. 

Finally, we provide a generic object module disassembler program called 
TDUMP.EXE. 

Additionally, we give you a small TSR program, TDNMI.COM that resets 
the breakout-switch latch if you are using a Periscope I board. 

Note: For a list of all the command-line options available for 
TDCONVRT.EXE, TORP.EXE, TDSTRIP.EXE, TDPACK.EXE, TDMAP.EXE, 
and TDUMP.EXE, just type the program name and press Enter. For example, 
to see the command-line options for TDMAP.EXE, you would enter 

TD MAP 

Appendix 8, Turbo Debugger Utilities 245 



Code View to Turbo Debugger Symbol Table 
Converter 

The TOCONVRT.EXE utility program converts your programs linked with 
Microsoft Link into a format suitable for use with Turbo Debugger. Before 
you use this utility, you must prepare your program for debugging exactly 
as if you were going to use Code View. 

Running from DOS 

After you have compiled and linked your program, convert it to Turbo De­
bugger format by typing at the DOS prompt: 

TDCONVRT oldname [newname] 

where oldname is the name of the executable program you made with 
Microsoft Link. You can specify a newname for the Turbo Debugger 
executable program by supplying that name after oldname. If you don't 
specify a new name, the oldname file is converted to Turbo Debugger 
format. 

The utility automatically detects whether your program is in CodeView 
version 1 or version 2 format and adjusts its behavior accordingly. 

Error Messages 

The conversion utility sometimes encounters a problem that prevents it 
from converting your program to Turbo Debugger format. If that happens, 
you will see one of the following error messages. 

Can't convert Code View version 1 symbol tables 
You have attempted to convert a program that has a symbol table that can 
only be used with CodeView version 1. You must recompile and link your 
program with later versions of Microsoft tools that produce CodeView 
version 2 symbol tables. 

Can't create file: 
TDCONVRT couldn't create the indicated file. You probably don't have 
enough room on your disk. Delete a few files that you don't need and try 
again. 

Can't translate a packed symbol table 
You are attempting to convert a symbol table that has been processed by 
the CVPACK utility. TDCONVRT can only work on symbol tables that 

246 Turbo Debugger User's Guide 



have not been packed. You will have to relink your program and not run 
the packing utility, and then use TDCONVRT. 

Error reading from file: _ 
An error occurred while reading from the indicated file. This usually means 
that the file was written on a bad disk sector. Try relinking the program you 
want to convert so that it gets written to disk again. 

Error writing to file: _ 
An error occurred while writing to the indicated file. This usually means 
your disk has filled up. You will have to delete a few files and try the 
conversion again. 

File not found: 
TDCONVRT couldn't find the file you want to convert. If you don't supply 
an extension to the file name you want to convert, TDCONVRT assumes 
that you meant it to be .EXE. 

Not enough memory to perform conversion 
TDCONVRT has run out of memory while translating the symbol table to 
Turbo Debugger format. You can try unloading any resident utilities that 
you have loaded and try the conversion again. If you still don't have 
enough memory, you can try reducing the amount of debug information in 
your program. Do this by compiling or assembling only some of its 
modules with debugging information included. 

Program does not have a valid symbol table 
You have attempted to convert a program that does not have a symbol table 
created by MS-LINK. TDCONVRT can only convert symbol tables 
generated by MS-LINK. 

Symbol table contains untranslatable fields 
The program you're trying to convert has a symbol table that contains 
fields that TDCONVRT can't translate. TDCONVRT works with all 
Microsoft C and assembler programs, but it may have trouble with symbol 
tables from Microsoft BASIC or Pascal. 

Symbol table has invalid format 
Your program's symbol table is not formatted correctly. It may have 
become corrupted or have been generated by an old version of MS-LINK. 
Make sure that you are using the latest MS-LINK and then try relinking to 
create a new .EXE file and symbol table on disk. 

Appendix 8, Turbo Debugger Utilities 247 



Remote File Transfer Utility 

The Remote File Transfer utility (TDRF) works in conjunction with 
TDREMOTE running on another system. With TDRF you can perform most 
DOS file maintenance operations on the remote system. You can: 

•copy files to the remote system 
• copy files from the remote system 
• make directories 
• remove directories 
•display directories 
• change directories 
• rename files 
• delete files 

(See Appendix G, "Remote Debugging," for information on how to start 
TDREMOTE on a remote system, and for a discussion of remote de­
bugging.) 

Once you have started TDREMOTE on the remote system, you can use 
TDRF at any time. You can start it directly from the DOS prompt, or you 
can access DOS from inside Turbo Debugger by using the F10/File/OS 
Shell command, and then start TDRF, even while debugging a program on 
the remote system. This can be useful if you've forgotten to put some files 
on the remote system that are required by the program you're debugging. 

When describing TDRF in the following sections, we refer to the system 
you are typing at as the "local system" and any files there as "local files," 
and the other system connected by a cable as the "remote system" and any 
files there as "remote files." 

Starting TDRF from the DOS Command Line 

The general form of the command line for TDRF is: 

TDRF [options] command [arguments] 

The options control the speed of the remote link and which port it runs on. 
The options are described in more detail in the next section. 

Command indicates the operation you wish to perform. The command can 
either be typed the way you are used to doing it with DOS--like COPY, 
DEL, MD, and so on-or it can be a single-letter abbreviation. 

For example, to get a directory display of all files starting with ABC in the 
current directory on the remote system, you could type: 

248 Turbo Debugger User's Guide 



TDRF DIR ABC* 

All the commands are described fully after the next section. 

TDRF Command-Line Options 

You must start an option with either a hyphen(-) or a slash(/). Here are the 
possible command-line options for the Remote File Transfer utility: 

-rsN 

-rpN 

-w 

Sets the remote link speed. 

The -rs option sets the speed at which the remote link 
operates. You must make sure you use the same speed 
with TDRF that you specified when you started 
TDREMOTE on the remote system. N can be 1, 2, or 3, 
where 1 signifies a speed of 9600 baud, 2 signifies 40,000 
baud, and 3 signifies 115,000 baud. 

In other words, the higher the number, the faster the 
data transfer rate across the link. Normally, TDRF 
defaults to -rs3 (the highest speed). 

Sets the remote link port. 

The -rp options specifies which port to use for the 
remote link. N can be either 1 or 2, where 1 stands for 
COMl and 2 stands for COM2. 

Writes options to the executable program file. 

You can make the TDRF command-line options 
permanent by writing them back into the TDRF 
executable program image on disk. Do this by specifying 
the -w command line option along with the other 
options you wish to make permanent. You will then be 
prompted for the name of the executable program. 

If you're running on DOS 3.0 or later, the prompt will 
indicate the path and file name that you executed TDRF 
from. You can accept this name by pressing Enter, or you 
can enter a new executable file name. The new name 
must already exist and be a copy of the TDRF program 
that you have already made. 

If you are running on DOS 2.x, you will have to supply 
the full path and file name of the executable program. 

Appendix 8, Turbo Debugger Utilities 249 



TDRF Remote File Transfer Utility 

You can enter a new executable file name that does not have to already 
exist. TDRF will create the new executable file. 

TDRF Commands 

Here are the command names you can use with the Remote File Transfer 
utility. The wildcards * and ? can be used with the COPY, COPYFROM, 
DEL, and DIR commands that follow: 

COPY 

COPYFROM 

250 

Copies files from the local system to the remote system. 
You can also type COPYTO instead of COPY. The single 
letter abbreviation for this command is T. 

If you supply a single file name after the COPY 
command, that file name will be copied to the current 
directory on the remote system. If you supply a second 
file name after the name of the file on the local system, 
the local file will be copied to that destination on the 
remote system. You can specify either a new file name, a 
directory name, or a drive name on the remote system. 
For example, 

TDRF COPY TESTl \MYDIR 

copies file TESTl from the local system to file \MYDIR\ 
TESTl on the remote system. 

Copies files from the remote system to the local system. 
The single letter abbreviation for this command is F. 

If you supply a single file name after the COPYFROM 
command, that file name will be copied from the current 
directory on the remote system to the current directory 
on the local system. If you supply a second file name 
after the name of the file on the remote system, the 
remote file will be copied to that destination on the local 
system. You can specify either a new file name, a 
directory name, or a drive name on the local system. For 
example, 

TDRF COPYFROM MYFILE .. 

copies file MYFILE from the remote system to the parent 
directory of the current directory on the local system. 

Turbo Debugger User's Guide 



DEL 

DIR 

REN 

TDRF FTC*.* A:\TCDEMO 

copies all files beginning with TC on the current 
directory of the remote system to the local system's 
drive A, subdirectory TCDEMO. 

Erases a single file from the remote system. The single 
letter abbreviation for this command is E. 

If you just give a file name with no directory or drive, 
the file is deleted from the current directory on the 
remote system. For example, 

TDRF DEL \XYZ 

removes file XYZ from the root directory of the remote 
system. 

Displays a listing of the files in a directory on the remote 
system. The single letter abbreviation for this command 
is D. 

This command behaves very similarly to the equivalent 
DOS command. If you don't specify a wildcard mask, it 
shows all the files in the directory; if you do specify a 
mask, only those files will be listed. You can interrupt 
the directory display at any time by pressing Ctrl-Break. 

The directory listing is displayed in exactly the same 
format as that used by the DOS DIR command. For 
example, 

TDRF DIR \SYS\*.SYS 

results in a display like: 

Directory of C:\SYS 

<DIR> 6-08-88 8:01a 
<DIR> 6-08-88 8:01a 

ANSI SYS 1678 3-17-87 12:00a 
VD I SK SYS 3455 3-17-87 12:00a 

Renames a single file on the remote system. The single 
letter abbreviation for this command is R. 

You must supply two file names with this command: the 
original file name and the new file name. The new name 
can specify a different directory as part of the name, but 
not a different drive. For example, 

Appendix B, Turbo Debugger Utilities 251 



MD 

RD 

CD 

252 

TDRF REN TESTl \TEST2 

renames file TESTl in the current directory in the remote 
to TEST2 in the root directory. This effectively "moves" 
the file from one directory to another. You can also use 
this command to simply rename a file within a directory, 
without moving it to another directory. 

Makes a new directory on the remote system. The single 
letter abbreviation for this command is M. 

You must supply the name of the directory to be created. 
If you don't supply a directory path as part of the new 
directory name, the new directory will be created in the 
current directory on the remote system. For example, 

TDRF MD TEST 

creates a directory named TEST in the current directory 
on the remote system. 

Removes an existing directory on the remote system. 
The single letter abbreviation for this command is K. 

You must supply the name of the directory to be 
removed. If you don't supply a directory path as part of 
the new directory name, the directory will be removed 
from the current directory on the remote system. For 
example, 

TDRF RD MYDIR 

removes a directory named MYDIR from the current 
directory on the remote system. 

Changes to a new directory on the remote system. The 
single letter abbreviation for this command is C. 

You must supply the name of the directory to change to. 
You can also supply a new drive to switch to, or even 
supply a new drive and directory all at once. For 
example, 

TDRF CD A:ABC 

makes drive A the current drive on the remote system, 
and switches to directory ABC as well. 

Turbo Debugger User's Guide 



TDRF Messages 

Here is a list of the messages you might encounter when working with the 
Remote File Transfer utility: 

Can't create file on local system: _ 
When copying a file from the remote system using the COPYFROM 
command, the file could not be created on the local system. This will 
happen if the disk is full on the local system, or if the file name on the 
remote system is the same as a directory name on the local system. 

Can't modify exe file 
The file name you specified to modify is not a valid copy of the TDRF 
utility. You can only modify a copy of the TDRF utility with the -w option. 

Can't open exe file to modify 
The file name you specified to be modified can't be opened. You have 
probably entered an invalid or nonexistent file name. 

Error opening file: _ 
The file you wanted to transfer to the remote system could not be opened. 
You probably specified a nonexistent or invalid file name. 

Error writing file: _ 
An error occurred while writing to a file on the local system. This usually 
happens when there is no more room on your disk. You will have to delete 
some files to make room for the file that you want to copy from the remote 
system. 

Error writing file_ on remote system 
An error occurred while writing a file to the disk on the remote system. 
This usually happens if the remote disk is full. You must delete a few files 
to make room for the file that you want to transfer. 

File name is a directory on remote 
You have tried to copy a file from the local to the remote system, but the 
local file name exists as a directory on the remote system You will have to 
rename the file by giving a second argument to the COPY command. 

Interrupted 
You have pressed Ctrl-Break while waiting for communications to be 
established with the remote system. 

Invalid command: 
You have entered a command that TDRF does not recognize. For each 
command, you can use the DOS-style command word or the single letter 
abbreviation: 

Appendix 8, Turbo Debugger Utilities 253 



Invalid command line option: _ 
You have given an invalid command-line option when starting TDRF from 
the DOS command line. 

Invalid destination disk drive 
You have specified a nonexistent disk drive letter in your command. 
Remember that the remote system might have a different number of disk 
drives than the local system. 

No matching files on remote 
You have done a directory command but either there are no files in the 
directory on the remote system, or no files match the wildcard specification 
that you gave as an argument to the DIR command. 

No remote command specified 
You have not specified any command on the DOS command line; TDRF has 
nothing to do. 

Too few arguments 
You have not supplied enough arguments for the command that you 
requested. Some commands require an argument, like DEL, MD, CD, RD, 
and soon. 

Too many arguments 
You have specified too many arguments for the command that you 
requested. No command requires more than two arguments, and some 
require only one. 

Wrong version of TDREMOTE 
You are using an incompatible version of TDRF and TDREMOTE. Make 
sure that you are using the latest version of each utility. 

Symbol Table Stripping Utility 

The Symbol Table Stripping utility lets you remove the symbol table from 
an executable program generated by TLINK with the /v option. This is a 
faster way of removing the symbol table than relinking without the /v 
option. 

You can also use this utility to remove the symbol table and put it in a 
separate file. This is useful when you want to convert the .EXE format pro­
gram to a .COM file, and still retain the debugging symbol table. This 
utility puts the symbol table in a file with the extension .IDS. Turbo De­
bugger will look for this file when it loads a program to debug that does 
not have a symbol table. 

254 Turbo Debugger User's Guide 



TDSTRIP Command Line 

Here is the general form of the DOS command line used to start the Symbol 
Table Stripping utility, TDSTRIP: 

TDSTRIP [-s] [-cl exename [outputname] 

If you don't specify the -s option, the symbol table is removed from the 
.EXE file exename. If you specify an outputname, the original .EXE file is left 
unchanged and a version with no symbol table is created as outputname. 

If you do specify the -s option, the symbol table will be put in a file with 
the same name as exename but with the extension .TDS. If you specify an 
output file, the symbol table will be put in outputname. 

If you specify the -c option, the input .EXE file is converted into a .COM 
file. If you use -c in conjunction with -s, you can convert an .EXE file with 
symbols into a .COM file with a separate .TDS symbol file. This lets you 
debug .COM files with Turbo Debugger while retaining full debugging 
inforrna tion. 

You can only convert certain .EXE files into .COM files. The same 
restrictions apply to the -c option of TDSTRIP as to the /t option of TLINK: 
Your program must start at location 100 hex, and it can't contain any 
segment fixups. 

If you don't supply an extension with exename, .EXE is presumed. If you 
don't supply an extension with outputname, .EXE is added when you don't 
use -s, and .TDS is added when you do use -s. 

Here are some sample TDSTRIP command lines: 

TDSTRIP MYPROG 
removes the symbol table from MYPROC.EXE. 

TDSTRIP -s MYPROG.OLD 
removes the symbol table from MYPROG.OLD and places it in 
MYPROG.TDS. 

TDSTRIP MYPROG MYPROG.NEW 
leaves MYPROG.EXE unchanged but creates another copy of it named 
MYPROG.NEW without a symbol table. 

TDSTRIP -s MYPROG MYSYMS 
removes the symbol table from MYPROG.EXE and places it in 
MYSYMS.TDS 

Appendix 8, Turbo Debugger Utilities 255 



TDSTRIP Error Messages 

Here is a list of the possible error messages you might encounter when 
working with the Symbol Table Stripping utility: 

Can't create file: 
TDSTRIP could not create the output symbol or .EXE file. Either there is no 
more room on your disk, or you specified an invalid output file name. 

Can't open file:_ 
TDSTRIP could not locate the .EXE file that you wish to remove the symbol 
table from. 

Error reading from input exe file 
An error occurred while reading from the input executable program file. 
Your disk may be unreadable. Try the operation again. 

Error writing to output file: __; disk may be full 
TDSTRIP could not write to the output symbol or executable file. This 
usually happens when there is no more room on your disk. You will have 
to delete some files to make room for the file created by TDSTRIP. 

Input file is not an .exe file 
You have specified an input file name that is not a valid executable pro­
gram. You can strip symbols only from .EXE programs, since these are the 
only ones that TLINK can put a symbol table on. Programs in .COM file 
format do not have symbol tables and cannot be processed by TDSTRIP. 

Invalid command line option:_ 
You have given an invalid command line option when starting TDSTRIP 
from the DOS command line. 

Invalid exe file format 
The input file appears to be an .EXE format program file, but something is 
wrong with it. You should relink the program with TLINK. 

Not enough memory 
Your system does not have enough free memory for TDSTRIP to load and 
process the .EXE file. This only happens in extreme circumstances 
(TDSTRIP has very modest memory requirements). You should probably 
try rebooting your system and trying again. You may have previously run a 
program that allocated some memory that won't be freed until you reboot. 

Program does not have a symbol table 
You have specified an input file that is a valid exe file, but it does not have a 
symbol table. 

256 Turbo Debugger User's Guide 



Program does not have a valid symbol table 
The symbol table at the end of the .EXE file is not a valid TLINK symbol 
table. This can happen if you try and use TDSTRIP on a program created by 
a linker other than TLINK. 

Too many arguments 
You can supply a maximum of two arguments to TDSTRIP, the first being 
the name of the executable program, and the second being the name of the 
output file for symbols or the executable program. 

You must supply an exe file name 
You have started TDSTRIP without giving it the name of an EXE program 
file whose symbol table you want to strip. 

TDMAP Utility 

The TDMAP utility takes a .MAP file-an ASCII file created by the linker 
containing all public symbols of a program-and appends it to the .EXE file 
in Turbo Debugger format. This allows you to debug an executable pro­
gram that you compiled with a non-Borland compiler and linker. 

The syntax for using TDMAP is 

TDMAP filename [/sourceextension] 

TDMAP reads filename.MAP and adds debugging information to 
filename.EXE. For example, if you want to append debugging records to a 
program called HELLO.PAS, you could enter 

TDMAP hello /Epas 

Note that the extension, which is preceded with /E, is optional. 

TDP ACK Utility 

The TDPACK utility compresses the debugging information that's 
appended to an .E~E file, making the executable file smaller. It does this by 
eliminating duplicate information, such as strings or data type information. 

The syntax for using TOP ACK is 

TDPACK filename 

If no extension is specified, TDPACK assumes the extension is .EXE. If it 
cannot find filename.EXE, TDPACK looks for filename.COM and 
filename.TDS (a .TDS file contains Turbo Debugger symbols for use with a 
.COM file). 

Appendix 8, Turbo Debugger Utilities 257 



TDUMP Utility 

The TDUMP utility program is a generic module disassembler you can use 
to examine the structure of any file. 

TDUMP attempts to break apart a file as intelligently as possible. To do 
this, it first looks to the file's extension, and if it recognizes it, it displays the 
the file's components according to the type. TDUMP recognizes .EXE, .OBJ, 
and .LIB files. Any file type other than these results in a straight hex dump 
of the file. 

You can use TDUMP to peek into the inner structure of any file. This not 
only shows you what's in a file, but also teaches you how files are 
constructed. Moreover, because TDUMP verifies that a file's structure 
matches its extension, you can also use TDUMP to test file integrity. 

TDUMP Syntax 

The syntax for TDUMP is 

TDUMP [options] inputfile [outputfile] 

Inputfile is the file whose structure you want to display (or "dump"). 
Outputfile is an optional file name to send the display to (you can also use 
the standard DOS redirection command ">"). Options stands for any of the 
TDUMP options discussed in the next section. 

TDUMP Options 

You can use several optional "switches" with TDUMP, all of which start 
with a hyphen (or you can use a slash instead). The following two examples 
are equivalent: 

TDUMP -el -v demo.exe 

TDUMP /el /v demo.exe 

The -a and -a7 Options 

TDUMP automatically adjusts its output display according to the file type 
(it shows an unrecognized file type in hex display). You can, however, force 
the display to be in ASCII by including the -a or -a7 option. 

258 Turbo Debugger User's Guide 



An ASCII file display shows the offset and the contents in displayable 
ASCII. If a character is not displayable (like any Control character), it 
appears as a period. 

The -a7 option works just like the -a except that it converts any high-ASCII 
characters to their low-ASCII equivalents. This is handy if the file you're 
dumping sets high-ASCII characters as flags (as WordStar files do). 

The -e, -el, and -er Options 

All three of these options force TDUMP to display the file as if it were an 
executable (.EXE) file. 

An .EXE file display consists of lists of file statistics at the top of the display, 
followed by the global symbol table and the module table. 

The -el option works just like -e option except that it suppresses line 
numbers in the display. 

The -er option works just like -e option except that it prevents the the 
relocation table from displaying. 

You can suppress both line numbers and the relocaion table by using-elr as 
an option. 

The -h Option 

The -h option forces TDUMP to display the file in hexadecimal format. The 
hex format consists of a column of offset numbers, columns of hex 
numbers, and then ASCII equivalents (with periods appearing where there 
are no displayable ASCII characters). 

If TDUMP does not recognize the file extension of the input file, it defaults 
to displaying the file in hex format (unless an option forces it to show it in 
another format). 

The -1 Option 

The -1 option forces TDUMP to display the file as if it were a library (.LIB) 
file. A library file is a collection of object files (see the following section for 
more on object files). A library file dump shows first some library-specific 
information, then each of the object files, then each record in each object 
file. 

Appendix 8, Turbo Debugger Utilities 259 



The -o Option 

The -o option forces TDUMP to display the file as if it were an object (.OBJ) 
file. An object file contains descriptions of the command records that pass 
commands and data to the linker, telling it how to create an .EXE file. The 
display format shows each record and its associated data, on a record-by­
record basis. 

The -v Option 

The -v option affects all file formats equally by suppressing any 
descriptions TDUMP ordinarily inserts into the dump to improve 
readability. If you use the -v option, the display is a verbatim dump of the 
file's components-as terse as possible. You need to be an advanced 
programmer to interpret a verbatim display. 

The TDNMI Utility 

Use TDNMI if you have a Periscope I board and wish to use its breakout 
switch with Turbo Debugger. TDNMI is a small TSR program that 
periodically resets the breakout-switch latch on the Periscope board. Use 
the /p command-line option to set the board's base address if it is different 
from the default address of 300. 

If you are using a PC clone that disables the NMI interrupt (such as some 
PC's Limited systems), you can install the TDNMI resident utility to clear 
the NMI every half second. You will need to do this if you are using a 
breakout switch on such a system. 

For a list of all the command-line options available for DINST.EXE, 
TDREMOTE.EXE, INSTALL.EXE, and TDNMI.COM, enter the program 
name followed by -h: 

TDNMI -h 

260 Turbo Debugger User's Guide 



A p p E N D x 

c 
Technical Notes 

This appendix is for advanced users who wish to understand some of the 
technical details that underly the operation of Turbo Debugger. Don't be 
put off if this chapter appears to have been written in Greek; you don't 
have to understand the issues presented here in order to become a 
productive and successful debugger user. 

Some of the information in this chapter will allow you to understand how 
the debugger interacts with DOS, the hardware, and with your program. 
This can help you understand how your program's behavior might differ 
while running under the debugger. 

You will also learn why you can crash the system without too much effort, 
and, even better, how to avoid it. 

Changed Load Address and Free Memory 

When Turbo Debugger loads your program, it is placed after the debugger 
in memory. This has two important results: Your program loads at a higher 
segment address, and it has less free memory available. By loading at a 
different address, some bugs may appear or disappear that are the result of 
accessing memory outside your program. By changing the amount of free 
memory, bugs in your memory allocation or usage may be hard to 
duplicate. 

If you're using a 386-based computer, you can use the TD386 virtual de­
bugging program to eliminate those problems. See Chapter 14 for 
information on virtual debugging. 

Appendix C, Technical Notes 261 



Crashing the System 

Since the debugger can read and write memory at any address in your 
system, you can inadvertently cause a crash by modifying certain memory 
locations outside your program, such as some inside DOS, or the interrupt 
table starting at memory address location zero. 

As an example, changing the hardware clock interrupt vector at location 
0000:0040 is almost certain to cause a problem. 

Tracing through DOS and Process ID­
Switching 

Turbo Debugger keeps track of the process that is running (either itself or 
your program) so that it can open and close files without interfering with 
your program's file handles. This switching is done by using a DOS 
function call. The switch occurs each time your program is started from the 
debugger and each time the debugger is reentered from your program. 
Since DOS is not reentrant, you can get into trouble by setting breakpoints 
or tracing inside DOS. 

You should use the -i- command line option to disable process ID-switching 
if you wish to poke around inside DOS. However, your program will then 
share Turbo Debugger's file handles, which may cause either your program 
or the debugger to run out of them. 

Using the 8087 /80287 Math Coprocessor and 
Emulator 

The debugger uses neither the math coprocessor nor the software emulator, 
leaving them both free to be used by your program. You shouldn't 
experience any difference between using a standalone floating-point pro­
gram and running it under the debugger. 

Interrupts Used by Turbo Debugger 

The debugger intercepts several interrupt vectors in order to debug your 
program. The following descriptions let you determine if there may be 
interactions between your program and Turbo Debugger. 

262 Turbo Debugger User's Guide 



Interrupt 1/Interrupt 3 
The debugger uses these interrupts to process breakpoints and instruction 
single-stepping. If these interrupts are modified by your program, the de­
bugger may not be able to regain control at the next breakpoint. Normal 
applications never use these interrupts, since they are reserved for pro­
grams such as debuggers that must control the execution of other pro­
grams. 

Interrupt 2 
Many hardware debuggers use this interrupt to signal that a match 
condition has occurred. If your program takes over this interrupt, these 
boards and their supporting device drivers may not work properly. If you 
must take over this interrupt, chain on to the previous owner of it if you do 
not want to service the interrupt. 

Interrupt 9 
This is the keyboard hardware interrupt, which is used for tracking key­
press and release codes. The debugger chains into this interrupt when the 
user program is running, so that it can regain control of a program stuck in 
a loop. The debugger re-installs this vector each time your program is 
restarted, thereby allowing a program that modifies this interrupt to keep 
working correctly. 

Debugging Using INT 3 and INT 1 

If you want to debug a program that uses these interrupts, the version of 
the program you are debugging should only load these interrupt vectors 
when it absolutely must, and restore the old contents as soon as it is done 
using them. This technique minimizes the amount of code that cannot be 
debugged. While your program has these vectors loaded, you cannot use 
the debugger to step through your code. 

Display-Saving and Mode-Switching 

The debugger usually attempts to save and restore your program's display 
mode whenever it runs a piece of your program. If you only use the 
standard ROM BIOS calls to change the display mode, all will be well. If 
you directly manipulate the display controller registers, the debugger may 
disturb those settings. 

Appendix C, Technical Notes 263 



Memory Consumption 

When you first start the debugger, DOS loads it into the first free memory 
above DOS and any resident programs. Then, the debugger allocates a 
working stack and heap above its program code. Your program's symbol 
table comes next in memory, followed by the actual program that you want 
to debug. 

When you exit back to DOS, the debugger frees the memory used by the 
symbol table and the program being debugged. If your program has 
allocated any memory blocks with the DOS memory allocate function (48), 
Turbo Debugger frees that memory as well. 

EMS Support 

If your system has an expanded memory specification (EMS) board, Turbo 
Debugger will use it to store the symbol table for your program being de­
bugged. This leaves more main memory free for your program. The de­
bugger saves and restores the state of the EMS driver, allowing you to de­
bug programs that use EMS memory. 

If your program must use all of EMS memory, or if you experience 
interaction problems between your program and Turbo Debugger with 
both using EMS memory, you can disable EMS use by the debugger. Use 
the TDINST installation utility to do this. 

Interrupt Vector Saving and Restoring 

Turbo Debugger maintains three separate copies of the first 48 interrupt 
vectors in low memory (00 through 2F). 

When Turbo Debugger first starts from the DOS command line, a copy is 
made of the vectors. These vectors are restored when you return back to 
DOS by using the F10/File/Quit (or Alt-)() command. These vectors are also 
restored if you use the F10/File/OS Shell command to enter a DOS 
command while debugging a program. 

The second set of vectors are Turbo Debuggers vectors. These are in effect 
whenever Turbo Debugger is running and on the screen. They are restored 
every time Turbo Debugger regains control after running your program. 

The third set of vectors are for the program you're debugging. These 
vectors are restored every time you run or step your program, and are 
saved every time your program stops and Turbo Debugger regains control. 

264 Turbo Debugger User's Guide 



This lets you debug programs that change interrupt vectors, while at the 
same time allowing Turbo Debugger to use its own version of those same 
interrupts. 

Appendix D, ln/ineAssembler Keywords 265 



266 Turbo Debugger User's Gulde 



A p p E N D x 

D 

Inline Assembler Keywords 

This appendix lists the instruction mnemonics and other special symbols 
that you use when entering instructions with the inline assembler. The 
keywords presented here are the same as those used by Turbo Assembler 
andMASM. 

Appendix D, lnline Assembler Keywords 267 



Table D.l: 8086/80186/80286 Instruction Mnemonics 

AAA INC LIDT** REPNZ 
AAD INSB* LLDT** REPZ 
AAM INSW* LMSW** RET 
AAS INT LOCK REFT 
ADC INTO LODSB ROL 
ADD IRET LODSW ROR 
AND JB LOOP SAHF 
ARPL** JBE LOOPNZ SAR 
BOUND* JCXZ LOOPZ SBB 
CALL JE LSL** SCASB 
CLC JL LTR** SCASW 
CLD JLE MOV SGDT** 
CLI JMP MOVSB SHL 
CLTS** JNB MOVSW SHR 
CMC JNBE MUL SLDT** 
CMP JNE NEG SMSW** 
CMPSB JNLE NOP STC 
CMPSW JNO NOT STD 
CWD JNP OR STI 
DAA JO OUT STOSB 
DAS JP OUTSB* STOSW 
DEC JS OUTSW* STR** 
DIV LAHF POP SUB 
ENTER* LAR** POPA* TEST 
ESC LDS POPF WAIT 
HLT LEA PUSH VERR** 
IDIV LEAVE* PUSHA* VERW** 
IMUL LES PUSHF XCHG 
IN LGDT** RCL XLAT 

XOR 

Available only when running on the 186 and 286 processor 

•• Available only when running on the 286 processor 

268 Turbo Debugger User's Guide 



Table D.2: 8087 /80287 Numeric Processor Instruction Mnemonics 

FABS 
FADD 
FADDP 
FBLD 
FBSTP 
FCHS 
FCLEX 
FCOM 
FCOMP 
FCOMPP 
FDECSTP 
FD IS I 
FDIV 
FDIVP 
FDIVR 
FDIVRP 
FENI 
FFREE 

FIADD 
FI COM 
FICO MP 
FIDIV 
FIDIVR 
FILO 
FIMUL 
FINCSTP 
FI NIT 
FIST 
FISTP 
FI SUB 
FISUBR 
FLO 
FLO CW 
FLDENV 
FLDLG2 
FLDLN2 

FLDL2E 
FLDL2T 
FLOP! 
FLDZ 
FLD1 
FMUL 
FMULP 
FNOP 
FNSTS** 
FPATAN 
FPREM 
FPTAN 
FRNDINT 
FRSTOR 
FSA VE 
FSCALE 
FSETPM* 
FSQRT 

Available only when running on the 287 numeric processor 

FST 
FSTCW 
FSTENV 
FSTP 
FSTSW* 
FSUB 
FSUBP 
FSUBR 
FSUBRP 
FTST 
FWAIT 
FXAM 
FXCH 
FXTRACT 
FYL2X 
FYL2XP1 
F2XM1 

•• On the 80287, the fstsw and fnstsw instructions can use the AX register as an 
operand, as well as the normal memory operand. 

Table D.3: CPU Registers 

Byte registers ah, al, bh, bl, ch, cl, dh, cl 

Word registers ax, bx, ex, dx, si, di, sp, bp 

Segment registers cs, ds, es, ss 

Floating registers st, st(O), st(l), st(2), st(3), st(4), st(S), st(6), st(7) 

Table D.4: Special Keywords 

WORDPTR 
BYTEPTR 
DWORDPTR 
QWORDPTR 

TBYTEPTR 
NEAR 
FAR 
SHORT 

Turbo Debugger supports all 80386 and 80387 instruction mnemonics and 
registers: 

Table D.5: 80387 Registers 

EAX ESI 
EBX EDI 
ECX EBP 
EDX ESP 

Appendix D, ln/lne Assembler Keywords 269 



BSF 
BSR 
BT 
BTC 
BTR 
BTS 
CDQ 
CWDE 
IR ETD 
LFS 
LGS 

270 

Table D.6: 80386 Instruction Mnemonics 

LSS 
MOVSX 
MOVZX 
POP AD 
POPFD 
PU SHAD 
PUSHFD 
SETA 
SETB 
SETBE 
SETE 

SETG 
SETL 
SETLE 
SETNB 
SETNE 
SETNL 
SETNO 
SETNP 
SETNS 
SETO 
SETP 

Table D.7: 80387 Instruction Mnemonics 

FCOS 
FSIN 
FPREMl 
FSINCOS 

FU COM 
FU COMP 
FUCOMPP 

SETS 
SHLD 
SHRD 
CMPSD 
STOSD 
LODSD 
MOVSD 
SCASD 
INSD 
OUT SD 
JECXZ 

Turbo Debugger User's Guide 



A p p E N D x 

---------- ----------------------------------------

E 

Customizing Turbo Debugger 

Turbo Debugger is ready to run as soon as you make working copies of the 
files on the distribution disk. However, you can change many of the default 
options by running the installation program called TDINST.EXE. You also 
can change some of the options using command-line options when you 
start Turbo Debugger from DOS. If you find yourself frequently specifying 
the same command-line options over and over, you can make those options 
permanent by running the installation program. 

The installation program lets you set the following items: 

• Window colors 

•Display parameters: Beginning display, screen swapping mode, integer 
display format, log list length, tab column width, maximum tiled 
Watches size, snow control, 43-/50-line mode, and graphics saving 

•Your editor startup command 
• Directories to search for source files 

•Keyboard parameters: program interrupt key and control-key shortcuts 

•Prompting parameters: beep on error, Esc required to clear error and 
history list length 

• Lowercase symbols 
• DOS process ID-switching 

•expanded memory specification (EMS) for symbol table 

Appendix f, Customizing Turbo Debugger 271 



Running TDINST 

To run the installation program, enter TDINST at the DOS prompt. You can 
either press the highlighted first letter of a menu option or use the Up and 
Down arrow keys to move to the item you want and then press Enter; for 
instance, press D to change the display settings. Use this same technique for 
choosing from the other menus in the installation utility. To return to a 
previous menu, press Esc. You may have to press Esc several times to get 
back to the main menu. 

Setting the Screen Colors 

Press C in the main menu to bring up the color selection menu. You are then 
given four choices of the colors to choose: Customize, 1 default color set, 2 
default color set, and 3 default color set. Since there are so many screen 
items that can be given different colors, you will probably want to choose 
one of the default color sets by pressing 1, 2, or 3. If you do not like any of 
the default color sets, you can design your own screen colors by pressing C 
to customize the colors. 

You can also choose one of the default color sets and modify portions of it. 
To do this, press 1, 2, or 3 to select a color set, and then press C so you can 
modify it. 

If you choose to customize the colors, a new menu will be displayed with 
these options: 

Windows 

User Input 

Screen 

Lets you change the color of the different windows 
Turbo Debugger uses to display information about your 
program. 

Allows you to choose the color of the different boxes 
that prompt you for information, including menus, error 
messages, help, and history lists. 

Lets you choose the pattern and color for the screen 
background, as well as choose the colors for the help 
line. 

Each of these options leads to another menu from which you can pick the 
window or box whose colors you wish to change. If you are running on a 
color display, the full range of 16 foreground and 8 background colors 
appears in the form of a color palette. On a black-and-white display, the 
various attribute combinations of underlined, reverse video, and highlight 
appear. 

272 Turbo Debugger User's Guide 



Colors 

Figure E. l: Customizing Window Colors 

Once you've selected the item you wish to change, the palette box will pop 
up over the menu. You can use the arrow keys to move around in the 
palette box. To the right of the menu area and the palette, you will see all 
the windows or boxes in the category that you are changing. As you move 
the menu highlight through the various color choices, the window whose 
colors you are changing will be updated to show how your selection 
appears. When you find the colors you like, press Enter to accept that 
selection. 

Note: Turbo Debugger maintains three color tables: one for color, one for 
black-and-white, and one for monochrome. You can only change one set of 
colors at a time, based on your current video mode and display hardware. 
So, if you are running on a color display and wish to adjust the black and 
white table, you would first set your video mode to black and white by 
typing MODE BW80 at the DOS prompt, and then run TDINST. 

Setting Turbo Debugger Display Parameters. 

Press D from the main menu to bring up the Display menu. These options 
include some you can set from the DOS command line when you start up 
Turbo Debugger, as well as some you can set only using TDINST. 

Appendix E, Customizing Turbo Debugger 273 



Colors 
ltlftl&! 

'6!U"~2~f~'Sinv 
Display swapping 
Integer fonnat 
Log list length ••• 
Tab column width ••• 
Maximum tiled watch ••• 
Screen 11 nes 
Fast screen update 
Pennlt 43/50 line mode 
Complete graphics save 

Alt: X-exlt 

Figure E.2: Customizing Display Parameters 

The Beginning Display Option 

For Beginning Display, press Bat the Display menu to set how the display 
appears when Turbo Debugger starts. Choosing Beginning Display toggles 
between the following settings: 

Assembler 

Source 

Assembler Beginning: None of your program is 
executed, and a CPU viewer shows the first 
instruction in your program. 

Source startup: Your program's compiler Beginning 
code runs and you start in a Module viewer where 
your source code begins. 

The User Screen Updating Option 

Choose User Screen Updating from the Display menu to set how the 
display gets updated when it switches between your program's screen and 
the Turbo Debugger screen. Choosing this item toggles between the 
following options: 

274 Turbo Debugger User's Guide 



Flip Pages 

Swap 

Other Display 

Puts Turbo Debugger's screen on a separate display 
page. This option only works if your display adapter 
has multiple display pages, like a CGA, EGA, or 
VGA. You can't use this option on a monochrome 
display. This option works for the majority of de­
bugging situations; it is fast, and will only disturb the 
operation of programs that use multiple display 
pages-and these are few and far between. 

Uses a single display adapter and display page, and 
swaps the contents of the user and Turbo Debugger 
screen in software. This is the slowest method of 
display swapping, but it is the most protective and 
least disruptive. If you are debugging a program that 
uses multiple display pages, use this option. Also use 
the Swap option if you Shell out to DOS and run 
other utilities or if you are using a TSR (such as 
SideKick Plus) and want to keep the current Turbo 
Debugger screen as well. 

Runs Turbo Debugger on the other display in your 
system. If you have both a color and monochrome 
display adapter, this option lets you view your pro­
gram's screen on one display and Turbo Debuggers 
on the other. 

Display Swapping Option 

Choose Display Swapping from the Display menu when you want Turbo 
Debugger to switch between its own display and the display of the pro­
gram you're debugging. Choosing this command toggles between the 
following settings: 

None 

Smart 

Always 

Don't swap between the two screens. Use this option 
if you're debugging a program that does not do any 
output to the display. 

Only swap to the user screen when display output 
may occur. Turbo Debugger will swap the screens any 
time that you step over a routine, or if you execute 
any instruction or source line that appears to read or 
write video memory. This is the default option. 

Swap to the user screen every time the user program 
runs. Use this option if the Smart option is not 
catching all the occurrences of your program's 

Appendix E, Customizing Turbo Debugger 275 



writing to the screen. If you choose this option, the 
screen will flicker every time you step your program, 
since Turbo Debugger's screen will be replaced for a 
short time with your program's screen. 

The Integer Format Option 

Choose Integer from the TDINST Display menu to set how integers are 
displayed. You can toggle between the following options: 

Hex 

Decimal 

Both 

Chooses hex number display. 

Chooses decimal number display. 

Displays both hex and decimal. 

The Log List Length Option 

Choose Log List Length from the TDINST Display menu to set how many 
previous responses are saved for each prompt. You will be prompted for 
the number of responses to save. (The maximum is 200; the minimum is 4.) 

The Tab Column Width Option 

Choose Tab Column Width from the TDINST Display menu to set the 
number of columns between tab stops when displaying a text or source file. 
You will be prompted for the number of columns (a number from 1to32). 

The Maximum Tiled Watch Option 

Choose Maximum Tiled Watch from the TDINST Display menu to set the 
number of lines that the Watches window can expand to when in tiled 
mode. You will be prompted for the number of lines (a number from 1 to 
20). 

The Screen Lines Option 

Press S to toggle whether Turbo Debugger should start up with a big 
display screen of 43 or 50 lines; only the EGA and VGA can display more 
than the usual 25 lines. 

276 Turbo Debugger User's Guide 



The Fast Screen Update Option 

Press F to toggle whether color displays will be updated quickly. Toggle 
this option off if you get "snow" on your display with fast updating 
enabled. You only need to disable this option if the "snow" annoys you. 
(Some people prefer the snowy screen because it gets updated more 
quickly.) 

Permit 43-150-Line Mode 

Press P to toggle whether Turbo Debugger allows big display modes. If you 
disable this option, you will save approximately 8K since the large screen 
modes need more window buffer space in the debugger. This may be 
helpful if you are debugging a very large program that needs as much 
memory as possible to execute in. When disabled, you will not be able to 
switch the display into 43-/50-line mode even if your system is capable of 
handling it. 

Complete Graphics Save 

Press C to toggle whether the entire graphics display buffer gets saved 
when switching between your program's screen and the Turbo Debugger 
screen. If you turn this option off, you will save approximately 12K of 
memory. This may be helpful if you are debugging a very large program 
that needs as much memory as possible to execute in. Generally the only 
price you pay for disabling this option is a small number of corrupted 
locations on your program's screen that don't usually interfere with de­
bugging. 

Setting the Turbo Debugger Options 

Press 0 to display the TDINST Options menu. (You can set some of these 
options from the Turbo Debugger command line, but most of them can be 
set only using TDINST.) 

Appendix E, Customizing Turbo Debugger 277 



Colors 
Display 

lffi1flU,~ 

Editor ... 
Source directories ••• 
Turbo directory ••• 
Keys 
Prompting 
Remote debugging 
OS Shell Swap Size ••• 128k 
Language Source 
Ignore case No 
Change process ID Yes 
Use expanded memory Yes 
NMI intercept No 

Figure E.3: Customizing the Options 

The Editor Option 

Choose Editor from the Options menu to specify the DOS command that 
starts your editor. This allows Turbo Debugger to start up your favorite 
editor when you are debugging and wish to change something in a file. 

Turbo Debugger will add to the end of this command the name of the file 
that it wants to edit, separated by a space. 

The Source Directories Option 

Choose Source Directories from the Options menu to change the list of 
directories Turbo Debugger searches for source files. 

The Turbo Directory Option 

Choose Turbo Directory from the Options menu to set the directory that 
Turbo Debugger will look in for its help file and configuration file. 

278 Turbo Debugger User's Guide 



The Keys Option 

Selecting Keys from the Options menu lets you choose how Turbo De­
bugger interprets certain keys. Here are the options you can choose from: 

Key for Interrupt Lets you specify which key to press with the Ctr/ 
key to interrupt your program. You can choose 
between the Break, Esc, or NumLock keys, or you 
can enter a scan code number to choose any of 
the keys on the standard IBM or compatible 
keyboard. Make sure that you choose a key 
combination that does not conflict with any that 
your program currently uses. You choose the 
key for interrupt by directly pressing the key 
combination that you wish to use. You can use 
any combination of the Shift-Left arrow, Shift-Right 
arrow, Alt, and Ctrl keys, along with a normal 
keyboard character like a letter, function key, 
etc. For example, 

Control-Key Shortcuts 

Shift-Alt-Ft 

Left arrow Shift-Right arrow Shift-Space 

Extended 101-key keyboards, Turbo Debugger 
does not distinguish between the left and right 
Alt keys or the left and right Ctrl keys. The left 
and right shift keys are still treated distinctly. 

Toggles between enabling and disabling 
control-key shortcuts. When Control-key short­
cuts are enabled, you can invoke any local menu 
command directly by pressing the Ctr/ key in 
combination with the first letter of the menu 
item. However, you then can't use those Control 
keys as WordStar-style cursor movement com­
mands. 

The Prompting Options 

Choose Prompting from the Options menu to adjust how you are 
prompted for information and how you must respond. Press the first letter 
of the menu item you wish to change: 

Appendix E, Customizing Turbo Debugger 279 



Beep on Error Toggles between beeps enabled and disabled. 
With beeps enabled, error messages and invalid 
key presses make a beep. 

Error Message Clearing Forces you to press Esc to clear error messages. 
Selecting Next Key Clears removes error 
messages automatically when you press a key to 
issue a new command. 

History List Lets you specify how many old input lines to 
keep for each prompt. 

OS Shell Swap Size 

Choose OS Shell from the TDINST Options menu to specify the amount of 
room Turbo Debugger will make sure is available when you want to enter a 
DOS command from within Turbo Debugger. 

Remote Debugging 

Choosing Remote Debugging from the TDINST Options menu lets you 
choose how Turbo Debugger communicates with the remote system. Press 
the first letter of the menu item you wish to change: 

Remote Debugging 

Toggles between enabling and disabling the remote link. You usually won't 
want to set this to Yes, since that will mean that Turbo Debugger will start 
up every time using the remote link. 

Port 

Toggles between using the COMl or COM2 serial port for the remote link. 

Speed 

Toggles between the three speeds that are available for the remote link: 
9600 baud, 40,000 baud, or 115,000 baud. 

280 Turbo Debugger User's Gulde 



Language 

Choosing Language lets you specify what language Turbo Debugger will 
use for evaluating expressions. You can choose between: 

Source Module Choose what language to use based on the 
languages of the current source module. 

c 

Pascal 

Assembler 

Always use C expressions, no matter what 
language the current module was written in. 

Always use Pascal expressions, no matter 
language the current module was written in. 

Always use assembler expressions, no matter 
what language the current module was written 
in. 

The Ignore Case Option 

Pressing I toggles between treating lowercase differently from uppercase, 
and treating uppercase and lowercase the same. 

The Change Process ID Option 

Press C to control whether Turbo Debugger uses process ID-switching. Do 
not disable this unless you are tracing through DOS and have a good 
understanding of the technical issues discussed in Appendix C. 

The Use Expanded Memory Option 

Press U to toggle whether Turbo Debugger uses EMS memory for symbol 
tables. You can enable this option even if your program uses EMS as well. 

The NMI Intercept Option 

If your computer is a Tandy lOOOA, IBM PC Convertible, or NEC 
MultiSpeed, or if Turbo Debugger hangs loading your system, run TDINST 
and change the default setting for NMI Intercept to No. Some computers 
use the NMI (Non-Maskable Interrupt) in ways that conflict with Turbo 

Appendix E, Customizing Turbo Debugger 281 



Debugger, so you must disable Turbo Debugger's use of this interrupt in 
order to run the program. 

Command-Line Options and Installation 
Equivalents 

Some of the options described in the previous section can be overridden 
when you start Turbo Debugger from DOS. The following table shows the 
correspondence between the debugger command-line options and the 
installation program command that permanently sets that option. 

Command-Line Option 

--do 
--dp 
--ds 
-i 
-i-
-1 
-1-
-vn 
-vn-
-vg 
-vg-
-r 

-r-

-rp# 
-rs# 
-sd 
-SC 
-SC-

TDINST Menu Selection 

Display /User Screen Updating/Other 
Display /User Screen Updating/Flip 
Display /User Screen Updating/Swap 
Options/Change Process ID/Yes 
Options/Change Process ID/No 
Display /Beginning Display I Assembler 
Display /Beginning Display /Source 
Display /Permit 43/50 Line Mode/No 
Display /Permit 43/50 Line Mode/Yes 
Display /Complete Graphics Save/Yes 
Display /Complete Graphics Save/No 
Options/Remote Debugging/Remote De­
bugging/Yes 
Options/Remote Debugging/Remote De­
bugging/No 
Options/Remote Debugging/Port/# 
Options/Remote Debugging/Speed/# 
Options I Source Directories 
Options/Ignore Case/Yes 
Options/Ignore Case/No 

Note: For a list of all the command-line options available for TDINST.EXE, 
enter the program name followed by-h: 

TDINST -h 

Quitting the Program 

When you have finished making changes to the configuration, return to the 
main menu by pressing Esc as many times as needed to return to the main 
menu. Then choose Quit. 

282 Turbo Debugger User's Guide 



If you have made any changes to the configuration, you will be prompted 
for whether you want to save them into the Turbo Debugger executable 
program file TD.EXE. If you want to install the changes, press Y. If you 
don't want to change the configuration options, press N. You will then be 
returned to the DOS prompt. 

TCINST also has separate Save command on the main menu. If you select 
Save, a menu appears that lets you choose between saving the 
configuration directly to the Turbo Debugger executable program file 
TD.EXE, or to a configuration file. 

If you choose to save to a configuration file, a prompt appears initialized to 
the default configuration file IDCONFIG.TD. You can accept this name by 
pressing Enter or you can type a new configuration file name. If you specify 
a different file name, you can load that configuration by using the -c 
command-line option when you start Turbo Debugger, for example, 

td -cmycf g myprog 

You can also use the Options/Restore Configuration command to load a 
configuration once you have started Turbo Debugger. 

If at any time, you want to return to the standard configuration that Turbo 
Debugger is shipped with, copy TD.EXE from your master disk onto your 
working system disk. 

Appendix f, Customizing Turbo Debugger 283 



284 Turbo Debugger User's Guide 



A p p E N D x 

F 

Hardware Debugger Interface 

Hardware debugging boards greatly speed up certain types of breakpoints, 
in particular those that watch for an area of memory or a program variable 
to change. Turbo Debugger has a general interface for accessing these 
boards. 

This appendix describes how to install the device driver supplied with 
Turbo Debugger and how to write a device driver that Turbo Debugger can 
communicate with in order to make use of the capabilities of a particular 
hardware debugger. 

80386 Hardware Device Driver 

This information is intended for vendors of hardware debuggers who want 
to let Turbo Debugger make use of their boards. (Note that you must know 
the general architecture of DOS device drivers. Refer to the DOS Technical 
Reference for more information on how to write device drivers.) 

The Turbo Debugger distribution disk contains the file TDH386.SYS, which 
is a hardware device driver that lets Turbo Debugger use the debug 
registers on the 80386 processor. You can use this driver by copying it to 
your DOS disk and putting the following line in your CONFIG.SYS file: 

DEVICE = TDH386.SYS 

Turbo Debugger will then use the hardware assistance of the 80386 
whenever it can to speed up breakpoint processing. 

Appendix F, Hardware Debugger Interface 285 



This means, of course, that you can only use this device driver if your 
system uses the 80386 processor. 

Setting Hardware Breakpoints 

There are three ways of setting a hardware-assisted breakpoint: 

•Use the F10/Breakpoints/Changed Memory Global command 
•Use the Condition/Changed Memory command in the Breakpoints 

window local menu 
•Use the Condition/Hardware command in the Breakpoints window local 

menu 

When you set a breakpoint using one of the Changed Memory commands, 
Turbo Debugger automatically determines whether that breakpoint can 
make use of the available hardware. If it can, Turbo Debugger sets a 
hardware breakpoint for you, and indicates that the breakpoint is set in 
hardware by putting an asterisk(*) after the global breakpoint number in 
the left pane of the Breakpoints window. 

The following two sections describe how to set generalized hard ware 
breakpoints. First, we'll tell you the types of breakpoints you can set with 
the TDH386.SYS device driver, and then we'll tell you about all the 
hardware breakpoint options that may work with other hardware de­
bugger device drivers. Consult the vendor's documentation for more 
information about your particular device driver. 

Hardware Conditions Permitted with 
TDH386.SYS 

When you are using TDH386.SYS with the ordinary version of Turbo De­
bugger, you can set the following types of hardware breakpoints from the 
Condition/Hardware command in the Breakpoints window local menu: 

•instruction fetch 
• read from memory 
• read/ write memory 

You can't set any type of data matching when you use TDH386.SYS; you 
must always set the data match option to All. You can also only match a 
single memory address or a range of memory addresses. A range can 
encompass from 1 to 16 bytes, depending on how many other hardware 
breakpoints you have set and the address of the beginning of the range. 

286 Turbo Debugger User's Guide 



You can use data watching with breakpoints that are not longer than 4 
bytes. 

The other options on the Hard ware menu in the Breakpoints window are 
for other hardware debuggers and device drivers that might support more 
matching modes. 

You can also use TDH386.SYS with Turbo Debugger (TD) and with the 
virtual debugger (TD386). In this case, you can use many more types of 
hardware breakpoints, including matching on any size ranges of memory 
or I/0 access. 

See Chapter 14 for more information on using the virtual debugger. 

Breakpoints Window Hardware Conditions 
Menu 

This section describes the Hardware menu that can be selected from the 
Condition option in the Breakpoints window. Remember that your 
hardware most likely doesn't support all combinations of matching that 
you can specify from this menu. The previous section describes the 
combinations that are allowed for the TDH386.SYS device driver supplied 
with Turbo Debugger. 

The Hardware menu lets you set the three matching criteria that make up a 
hardware breakpoint: 

• the bus cycle type that will be matched 
•the range of addresses that will be matched 
•the range of data values that will be matched 

For example, a hardware breakpoint might say "Watch for an 1/0 write 
anywhere from address 3F8 to 3FF as long as the data value is equal to 1." 
This breakpoint will then be triggered any time a byte of 1 is written to any 
of the 1/0 locations that control the COMl serial port. 

Usually, you set far more simple hardware breakpoints than this, such as 
"Watch for 1/0 to address 200." 

The Cycle Type command of the Hardware menu has the following 
settings: 

Read Memory 
Write Memory 
Access Memory 
Input I/O 
Outputl/0 

Match memory reads 
Match memory writes 
Match memory read or write 
Match I/0 input 
Match I/0 Output 

Appendix F, Hardware Debugger Interface 287 



Both I/O 
Fetch Instruction 

Match I/0 input or output 
Match instruction fetch 

The Access Memory option is a combination of the Read Memory and 
Write Memory options-it matches either memory reads or writes. 
Likewise, the Both I/0 option matches I/0 reads or writes. 

Some hardware debuggers are capable of distinguishing between simple 
data reads from memory and instruction fetches. In this case, if you set a 
breakpoint to match on read memory, an instruction fetch from that 
location will not trigger the hardware breakpoint. Instruction cycles include 
all the bytes that the processor reads in order to determine the instruction 
operation to perform, including prefix bytes, operand addresses, and 
immediate values. The actual data read or written to memory referenced by 
an operand's address is not considered to be part of the instruction fetch. 
For example: 

MOV AX, [ 1234 J 

fetches 3 instruction bytes from memory, and reads 2 data bytes. If you use 
instruction fetch matching, remember that the 80x86 processor family 
prefetches instructions to be executed, so you may get false matches, 
depending on whether your hardware debugger can sort out prefetched 
instructions from ones that are really executed. 

The Address option of the Hardware menu has the following settings: 

Above Match above an address 
Below Match below an address 
Range Match within address range 
Not Range Match outside address range 
Less or Equal Match below or equal to address 
Greater or Equal Match above or equal to address 
Equal Match a single address 
Unequal Match all but a single address 
Match All Match any address 

The Data command of the Hardware menu has the following settings: 

Above Match above a value 
Below Match below a value 
Range Match within value range 
Not Range Match outside value range 
Less or Equal Match below or equal to value 
Greater or Equal Match above or equal to value 
Equal Match a single value 
Unequal Match all but a single value 
Match All Match any value 

288 Turbo Debugger User's Guide 



If you choose a Data or Address option that involves any less-than or 
greater-than condition, a single address match range either starts at zero 
and extends to the value you specified, or starts at the value you specified 
and extends to the highest allowed value for addresses or data. 

Hardware Debugger Overview 

The device driver interface provides device-independent access to the 
capabilities of different hardware debuggers. To accomplish this, the 
common features of several hardware debuggers have been combined into 
one generic hardware debugger. Turbo Debugger then uses this abstract 
model when making requests to the device driver. Depending on the 
capabilities of a particular board, it may not be able to support all the 
operations specified by the abstract interface. In this case, the device driver 
can inform Turbo Debugger that a requested operation cannot be 
performed. A hardware board may also offer more capabilities than the 
abstract interface defines. In this case, Turbo Debugger can't make use of 
the added features of the board. 

Since we expect the device driver interface to encompass new features in 
future releases, we have defined an "implementation level" status field that 
the device driver returns when requested. This lets Turbo Debugger know 
what the device driver is capable of doing, and provides compatiblity with 
older drivers, while allowing new drivers to take advantage of capabilities 
in future releases of the interface. 

The hardware debugger interface breaks the capabilities of debugger 
boards into three main areas of functionality: 

1. Memory and 1/0 access breakpoints 
2. Instruction trace-back memory 
3. Extra onboard memory for symbol tables 

This version of the interface supports only the first category. Future releases 
will define an interface that accesses the other features. When you write a 
device driver, keep in mind that these other capabilities will be supported 
at a later date. 

Appendix F. Hardware Debugger Interface 289 



Device Driver Interface 

The device driver is an ordinary character-type device driver named 
TDH386.SYS. You must put the following statement in your CONFIG.SYS 
file in order for the driver to be loaded when you boot the system: 

DEVICE = drvrname.ext 

where drvrname.ext is the name of the device driver file you have created. 

The device driver must support the following function calls. 

INIT Command code = 0 

Called once when the device driver is first loaded. Your code for this 
function must make sure that the hardware board is disabled and in a 
quiescent state. 

READ Command code = 4 

Called by Turbo Debugger to read the status block from the last command 
sent to the device driver. You should keep the last status in a data area 
inside the driver, and return as many bytes as requested. Each time a read 
is issued, you must start sending from the beginning of the status block, 
even if the previous read request was not long enough to send the entire 
block. 

The next section describes the various status blocks the device driver can 
return in response to different command blocks. 

READNOWAIT Command code = 5 

Returns the first byte of the status block. The busy bit should always be set 
to 0, indicating that data is available at all times. 

READSTATUS Command code = 6 

Always sets the busy bit to 0, indicating that a subsequent read request 
would complete immediately. 

READFLUSH Command code= 7 

Simply sets the done bit in the return status. 

290 Turbo Debugger User's Gulde 



WRITE Command code = 8 

Called by Turbo Debugger to send a command to the device driver. The 
command will have a variable length, depending on the command type. 
You can either copy the data into a work area inside the device driver, or 
you can access it directly using the data pointer that is part of the device 
driver request. 

The next section describes the various command blocks Turbo Debugger 
can send to the device driver. 

WRITEVERIFY Command code = 9 

Does the same thing as WRITE (command code 8). 

WRITESTATUS Command code = 10 

Simply sets the done bit in the return status. 

WRITEFLUSH Command code = 11 

Simply sets the done bit in the return status. 

All other function calls should set the error bit (bit 15) in the return status 
word, and put an "Unknow!'). command" error code (3) in the low byte of 
the status word. 

Command Blocks Sent to Device Driver 

All command blocks sent to the device driver by the WRITE function call 
start with a byte that describes the operation to perform. The subsequent 
bytes provide additional information for the particular command. 

When setting a hardware breakpoint, it is the device driver's responsibility 
to check that it has been handed an acceptable parameter block. It can't just 
ignore fields that request an operation it can't perform. You must check 
each field to make sure that the hardware can support the requested 
operation, and if it can't, you must set the appropriate return code. 

The first byte can contain one of the following command codes: 

Appendix F, Hardware Debugger Interface 291 



• ~Installs vectors 
• 1-Gets hardware capabilities 
• 2-Enables the hardware breakpoints 
• 3-Disables the hardware breakpoints 
• 4-Sets a hardware breakpoint 
• 5-Clears a hardware break.point 
• 6-Sets 1/0 base address, resets hardware 
• 7-Removes vectors 

The following commands send additional data after the command code. 

Install vectors (code 0) 

4 bytes Far pointer to vector routine 

This is a 32-bit pointer, the first word being the offset, and the 
second being the segment. You must save this address so that the 
device driver can jump to it when a hardware breakpoint occurs. 
This routine shoulct also install any interrupt vectors that the 
device driver needs. Turbo Debugger calls this routine once 
when it first starts up. The Remove Vectors (code 10) function is 
called once by Turbo Debugger when it no longer needs to use 
the hardware debugger device driver. At this time, you should 
replace any vectors that you took over when function 0 was 
called and make sure the hardware is disabled. 

Set a hardware breakpoint (code 4) 

1 byte Breakpoint type 

0 Memory read 
1 Memory write 
2 Memory read or write 
3 l/Oread 
4 1/0 write 
5 1/0 read or write 
6 Instruction fetch 

1 byte Address matching mode 

292 

0 
1 
2 
3 
4 
5 

Match any address, don't care 
Equal to test value 
Not equal to test value 
Above test value 
Below test value 
Below or equal to test value 

Turbo Debugger User's Gulde 



4 bytes 

4 bytes 

2 bytes 

1 byte 

1 byte 

6 Above or equal to test value 
7 Within inclusive range 
8 Outside range 

Low address 

A memory address, in 32-bit linear form. If the address­
matching mode requires one or more addresses to test against, 
the only or low value comes here. 

High address 

A memory address, in 32-bit linear form. If the address matching 
mode requires two addresses to test against a range, the second 
and higher value comes here. 

Pass count 

Data-matching size, 1 = byte, 2 = word, 4 = doubleword 

Source of matched bus cycle: 

1 CPU 
2 OMA 
3 Either CPU or OMA 

1 byte Data-matching mode 

4 bytes 

4 bytes 

4 bytes 

0 Match any data, don't care 
1 Equal to test value 
2 Not equal to test value 
3 Above test value 
4 Below test value 
5 Below or equal to test value 
6 Above or equal to test value 
7 Within inclusive range 
8 Outside range 

Low data value 

If the data-matching mode requires one or more data values, this 
field supplies the first or only value. The data-matching size 
determines how many bytes of this field are significant. 

High data value 

If the data-matching mode requires two data values, this field 
supplies the second value. The data-matching size determines 
how many bytes of this field are significant. 

Data mask 

Appendix F, Hardware Debugger Interface 293 



If the hardware supports it, this field controls which bits in the 
data are examined for the match condition. 

Clear a hardware breakpoint (code 5) 

1 byte The handle of the breakpoint to clear. The handle was given to 
Turbo Debugger by the Set Hardware Breakpoint command 
(code 4). 

Set 110 board base address (code 9) 

2 bytes The base address of the hardware debugger board. 

Status Blocks Returned by Device Driver 

The READ function call returns the status block from the device driver. 
Different commands written to the device driver result in various status 
blocks being built to report on what happened. All the status blocks start 
with a single byte that describes the overall result of the requested 
operation. The subsequent bytes return additional information particular to 
the command that generated the status block. The following status codes 
can be returned in the first byte: 

0 Command was successful. 

1 Invalid handle supplied. 

2 Full, can't set any more breakpoints. 

3 Breakpoint was too complex for the hardware. The breakpoint 
could never be set; the hardware is not capable of supporting the 
combination of bus cycle, address, and data-matching that Turbo 
Debugger requested. 

4 Command can't be performed due to restrictions imposed by a 
previous command. The command could have been performed if it 
weren't for some previous operation preventing it. This could 
happen, for example, if the hardware only permits a single data 
match value, but Turbo Debugger tries to set a second hardware 
breakpoint with a different data match value than the first 
breakpoint. 

5 The device driver can't find the hardware board. 

6 A hardware failure has occurred. 

294 Turbo Debugger User's Guide 



7 An invalid command code was sent to the driver. 

8 The driver has not been initialized with function code 0, so 
nothing can be done yet. 

The following commands return additional status information after the 
status code byte: 

Get hardware capabilities (code 1) 

2 bytes 

2 bytes 

1 byte 

1 byte 

1 byte 

2 bytes 

Device driver interface (this specification) version number. The 
current version is 1, subsequent versions will increase this 
number. 

Device driver software version number. For each released version of 
your device driver that behaves differently, this field should 
contain a different number. This lets Turbo Debugger take 
special measures if necessary, based on this field. 

Maximum number of hardware breakpoints that this driver/board 
combination can support. 

Configuration bits 

Bit Function 
0 1 for can distinguish between CPU and DMA accesses. 
1 1 for can detect DMA transfers 
2 1 for has data mask 
3 1 for breakpoints have hardware pass counter 
4 1 for can match on data as well as address 

Breakpoint types supported (bit mask) 

Bit Function 

0 Memory read 
1 Memory write 
2 Memory read or write 
3 1/0 read 
4 1/0 write 
5 1/0 read or write 
6 Instruction fetch 

Addressing match modes supported (bit mask) 

Appendix F, Hardware Debugger Interface 295 



2 bytes 

Bit Function 

0 Match any address, don't care 
1 Equal to test value 
2 Not equal to test value 
3 Above test value 
4 Below test value 
5 Below or equal to test value 
6 Above or equal to test value 
7 Within inclusive range 
8 Outside range 

Data match modes supported (bit mask) 

Bit Function 

0 Match any data, don't care 
1 Equal to test value 
2 Not equal to test value 
3 Above test value 
4 Below test value 
5 Below or equal to test value 
6 Above or equal to test value 
7 Within inclusive range 
8 Outside range 

1 byte Maximum data match length 

2 bytes 

296 

Set to 1, 2, or 4 depending on the widest data match or mask that 
the hardware can perform. 

2 bytes Size of onboard memory in Kbytes. 

2 bytes Maximum number of trace-back events that can be 
recalled. 

Address of hardware breakpoint enable byte 

Specifies the segment address where Turbo Debugger must 
write a byte with a value of 1 to enable hardware breakpoints. 
The field must contain 0 if the device driver does not or cannot 
support this capability. If it is supported, this byte allows Turbo 
Debugger to inform the device driver that it has finished writing 
things to the address space of the program being debugged, and 
that subsequent accesses can cause hardware breakpoints. 

Turbo Debugger User's Gulde 



Set a hardware breakpoint (code 4) 

1 byte A handle that Turbo Debugger will use to refer to this break­
point in the future. The device driver also uses this handle when 
calling back into Turbo Debugger after a hardware breakpoint 
has occurred. The handle must be greater than or equal to zero 
(0). Negative values (top bit on) indicate a special condition 
when the device driver calls Turbo Debugger with a hardware 
breakpoint. 

Recursive entry (code -2) 

1 byte The special value FE (hex) can be returned by the hard ware 
device driver if it has been recursively entered while processing 
a hardware breakpoint. This can happen if a hardware 
breakpoint has been set in the 6 bytes below the current top of 
stack in the program being debugged. If Turbo Debugger 
receives this entry code, it displays a message that the device 
driver can't proceed because of a breakpoint being set near the 
top of the stack. 

Device Driver Call into Turbo Debugger 

When the hardware board and the device driver software have determined 
that a hardware breakpoint has occurred, control must be transferred to the 
address inside Turbo Debugger that was specified with command code 0 
(Set hardware breakpoint vector). 

The vector address must be jumped to with the CPU state exactly as it was 
when the hardware breakpoint occurred, but with the program's AX 
register pushed on the stack, and an entry code now in the AH register. The 
entry code can be 

>= 0 The handle of the triggered breakpoint 

-1 (FF) The breakpoint button was pressed 

Turbo Debugger will never return to the device driver once it is jumped 
into from a hardware breakpoint. 

Appendix F. Hardware Debugger Interface 297 



298 Turbo Debugger User's Guide 



A p p E N D x 

G 

Remote Debugging 

Turbo Debugger's remote capability is not like that offered by other de­
buggers. With other debuggers, you merely control the debugger from the 
remote system; the debugger and the program being debugged are both 
still on the same system. This can cause problems if the program you are 
debugging requires more memory than that left after the debugger is 
loaded. The TDREMOTE program supplied as part of the Turbo Debugger 
package solves this problem by letting you run Turbo Debugger on one 
system and the program you are debugging on another system. 

In this appendix, we'll look at how to debug very large programs by using 
a second PC connected to your main PC. 

Of course, you're probably wondering why use remote debugging. As an 
example, if the program you want to debug won't load under Turbo De­
bugger, you're a candidate for remote debugging. If you get the message 
"Not enough memory to load symbol table," or the message ''Not enough 
memory" when you attempt to load a program to debug, you may want to 
consider remote debugging. 

If you're experiencing memory problems debugging a program and your 
system has EMS memory, make sure you're using it for symbol tables. 
Usually, Turbo Debugger will use any EMS memory it finds for symbol 
tables. You can use the installation utility (TDINST) to control whether 
Turbo Debugger uses EMS for symbol tables. 

Sometimes, your program will load properly under Turbo Debugger, but 
there may not be enough memory left for it to operate properly. This is 
another situation where you may want to use remote debugging. 

Appendix G, Remote Debugging 299 



Setting Up a Remote Debugging System 

In order to use the remote debugging facility you'll need the following 
equipment: 

• a development system with a serial port 
• another PC with a serial port and enough memory and disk space to hold 

the program you want to debug 
•a "null modem" or "printer" cable to connect the two systems 

Make sure that the cable you use to connect the two systems is set up 
properly. You can't use a "straight through" extension-type cable. The cable 
must, at the very least, swap the transmit and receive data lines. (A good 
computer store should be able to sell you what you need.) 

Once you have procured a suitable cable, use it to connect the two serial 
ports. This completes the hardware setup required for the remote link. 

Remote Software Installation 

Copy the remote debugging driver TDREMOTE.EXE onto the remote 
system. You must also put on the remote system any files required by the 
program you are debugging. This includes data input files, configuration 
files, help files, and so on. 

You can put files on the remote system by using floppy disks, or you can 
use the TDRF Remote File Transfer Utility described in Appendix B. 

You can, if you wish, put a copy of the program you want to debug onto the 
remote system. This is not essential, since Turbo Debugger will send it over 
the remote link if necessary. 

Starting the Remote Link 

When you start the TDREMOTE driver program on the remote system, 
make sure that your current directory is set where you want it. This is 
important because TDREMOTE puts the program you are going to debug 
into the current directory at the time TDREMOTE was started. 

Before starting TDREMOTE, determine whether your serial port on the 
remote system is set up as COMl or COM2. If your serial port is set up as 
COMl, start up TDREMOTE by typing 

TDREMOTE -rpl -rs3 

300 Turbo Debugger User's Guide 



If your serial port is set up as COM2, start up TDREMOTE by typing 

TDREMOTE -rp2 -rs3 

Both of these commands start the link at its maximum speed (115 Kbaud). 
This will work with most PCs and cable setups. Later, we'll tell you how to 
start the link at a slower speed if you experience communication 
difficulties. 

TDREMOTE will sign on with a copyright message and indicate that it is 
waiting for you to start Turbo Debugger on the other end of the link. lf you 
wish to stop and return to DOS, just press Ctrl-Break. 

Starting Turbo Debugger on the Remote Link 

To start Turbo Debugger using the remote link, add the following options 
to the command line you use to start TD from DOS: 

•For serial port COMl: -rs3 

•For serial port COM2: -rp2 -rs3 

When the link is successfully started, the message "Turbo Debugger 
online" will appear on the remote system, and the message "TDREMOTE 
online" will appear on the Turbo Debugger screen. This will be quickly 
replaced with Turbo Debugger's normal window display. 

Notice that both TD and TDREMOTE use the same command-line options 
to set the speed and serial port. Both TD and TDREMOTE must be set to 
the same speed (-rs option) to work properly. 

Turbo Debugger also has the -r command-line option, which indicates to 
start the remote link using the default speed and serial port. Unless you've 
changed the defaults using TDINST, -r specifies COMl at 115,000 baud (the 
fastest baud speed.) 

Here's a typical Turbo Debugger command line to start the remote link: 

td -rs3 myprog 

This begins the link on the default serial port (usually COMl) at the highest 
link speed (115 Kbaud), and loads the program myprog into the remote 
system if it's not already there. 

About Loading the Program to the Remote System 

Turbo Debugger is smart about loading the program onto the remote disk. 
It looks at the date and time of the copy of the program on the local system 

Appendix G, Remote Debugging 301 



and the remote system. If the local copy is later than the remote copy, it 
presumes you've recompiled and/or linked the program and sends it over 
the link. At the highest link speed, this happens at a rate of about 1 lK/ 
second. This means a typical 60K program will take about 6 seconds to 
transfer, so don't be alarmed if there's a delay when you want to load a 
new program. 

To indicate that something's happening, the screen on the remote system 
counts up the bytes of the file as they are transferred. 

TDREMOTE Command-Line Options 

Here is a complete list of all the command-line options supported by 
TDREMOTE. You can start an option with either a hyphen(-) or a slash(/). 

-? 

-h 

-rsl 

-rs2 

-rs3 

-rpl 

-rp2 

-w 

Display a help screen 

Display a help screen 

Slow speed, 9600 baud 

Medium speed, 40,000 baud 

High speed, 115,000 baud (default) 

Port 1, (COMl) (default) 

Port 2, (COM2) 

Write options to executable program file 

If you start TDREMOTE with no command line options, it uses the default 
port and speed built into the executable program file, COMl and 115,000 
baud, unless you have changed them by using the-w option. 

You can make the TDREMOTE command-line options permanent by 
writing them back into the TDREMOTE executable program image on disk. 
Do this by specifying the -w command-line option along with the other 
options that you wish to make permanent. You will then be prompted for 
the name of the executable program. You can enter a new executable file 
name that does not already exist. TDREMOTE will create the new 
executable file. 

Note: For a list of all the command-line options available for 
TDREMOTE.EXE, enter the program name followed by -h: 

TDREMOTE -h 

302 Turbo Debugger User's Guide 



If you are running on DOS 3.0 or later, the prompt will indicate the path 
and file name that you executed TDREMOTE from. You can accept this 
name by pressing Enter, or you can enter a new executable file name. The 
new name must already exist and be a copy of the TDREMOTE program 
that you have already made. 

If you are running on a version 2 of DOS, you will have to supply the full 
path and file name of the executable program. 

Remote Debugging Sessions 

Once you've started TDREMOTE and TD in remote mode, you debug your 
program much as if you were doing it on a single system. Turbo Debugger 
commands work exactly as you are used to; there is nothing new to learn. 

Remember that since the program you are debugging is actually running 
on the remote system, any screen output or keyboard input to the program 
happens on the remote system. The F10/View /User Screen command has 
no effect when you are running on the remote link. 

The CPU type of the remote system appears as part of the CPU window 
title, with the word "REMOTE" before it. 

If you wish to send files over to the remote system while you are running 
Turbo Debugger, you can go to DOS using the F10/File/OS Shell command 
and then use the TDRF utility to perform file maintenance activities on the 
remote system. You can then return to Turbo Debugger by typing exit at 
the DOS prompt and continue debugging your program. TDRF operation is 
described in Appendix B. 

TDREMOTE Messages 

Here is a list of the messages you might receive when you're working with 
TD REMOTE. 

nn bytes downloaded 
A file is being sent to the remote system. This message shows the progress 
of the file transfer. At the highest link speed (115,000 baud), transfer speed 
is about lOK per second. 

Can't create file 
TDREMOTE can't create a file that needs to be sent to it. This can happen 
either if the disk is full, or the file name already exists as a directory. 

Appendix G, Remote Debugging 303 



Can't modify exe file 
The file name you specified to modify is not a valid copy of the 
TDREMOTE utility. You can only modify a copy of the TDREMOTE utility 
with the -w option. 

Can't open exe file to modify 
The file name you specified to be modified can't be opened. You have 
probably entered an invalid or nonexistent file name. 

Download complete 
A file has been succesfully sent to TDREMOTE. 

Download failed, write error on disk 
TDREMOTE can't write part of a received file to disk. This usually happens 
when the disk fills up. You will have to delete some files before the file can 
be successfully downloaded. 

Enter program file name to modify 
If you are running on DOS 3.0 or later, the prompt will indicate the path 
and file name that you executed TDREMOTE from. You can accept this 
name by pressing enter, or you can enter a new executable file name. The 
new name must already exist and be a copy of the TDREMOTE program 
that you have already made. 

If you're running version 2 of DOS, you will have to supply the full path 
and file name of the executable program. 

Interrupted 
You have pressed Ctr/-Break while waiting for communications to be 
established with the other system. 

Invalid command line option 
You have given an invalid command line option when starting TDRF from 
the DOS command line. 

Link broken 
The program communicating with TDREMOTE has stopped and returned 
to DOS. 

Link established 
A program on the other system has just started to commmmunicate with 
TD REMOTE. 

Loading program "name" from disk 
Turbo Debugger has told TDREMOTE to load a program from disk into 
memory in preparation for debugging it. 

Program load failed, EXEC failure 
DOS could not load the program into memory. This can happen in the pro­
gram has become corrupted or truncated. You should delete the program 

304 Turbo Debugger User's Guide 



file from disk. This will force Turbo Debugger to send a new copy over the 
link. If this message happens again after deleting the file, you should relink 
it on the other system and try again. 

Program load failed; not enough memory 
The remote system does not have enough free memory to load the program 
that you want to debug. This won't happen except with very large pro­
grams since TDREMOTE takes only about lSK of memory. 

Program load failed; program not found 
TDREMOTE could not find the program on its disk. This should never 
happen since Turbo Debugger downloads the program to the remote 
system if it can't find it. 

Program load successful 
TDREMOTE has finished loading the program Turbo Debugger wants to 
debug. 

Reading file "name" from Turbo Debugger 
A file is being sent to Turbo Debugger. 

Unknown requE:st: message 
TDREMOTE has receivedan invalid request from the other system. This 
message should never occur if the link is working properly. If you get this 
message, check that the link cable is in good working order, and if you still 
keep getting this error, try reducing the link speed by using the -rs 
command-line option. 

Waiting for handshake (press Ctrl-Break to quit) 
TDREMOTE has been started and is waiting for a program on the other 
system to start talking to it. If you want to return to DOS before the other 
system initiates communication, press the Ctrl-Break key combination. 

Getting It All to Work 

Since the remote debugging setup involves two different computers and a 
cable going between them, there's a chance you'll run into some difficulty 
getting everything to work together. 

If you do experience any problems, first check your cable hookups. Next, 
try running the link at the slowest speed by using the -rsl command-line 
option when starting up both TDREMOTE and TD. If it works okay using 
-rsl, try -rs2 (the middle speed). Some hardware and cable combinations 
don't always work properly at the highest speed, so if you can only get it to 
work at a lower speed, you might want to try a different cable or different 
computers. 

Appendix G, Remote Debugging 305 



306 Turbo Debugger User's Guide 



A p p E N D x 

H 

Prompts and Error Messages 

Turbo Debugger displays error messages and prompts at the current cursor 
location. 

You can alter how you respond to error messages with a command-line 
option. You can also set the option permanently by using the TDINST 
configuration program described in Appendix E. 

You can alter some aspects of error messages (for example, whether they 
cause an audible beep) either for one debugging session or permanently. To 
alter the error messages for one session, use the command-line options; to 
alter the error messages permanently, use TDINST. 

This chapter describes the prompts and error and information messages 
Turbo Debugger generates. 

We'll tell you how to respond to both prompts and error messages. All the 
prompts and error messages (including the startup fatal error messages) are 
listed in alphabetical order, with a description provided for each one. 

Prompts 

Turbo Debugger displays a prompt when you must supply additional 
information to complete a command. The title of the prompt describes the 
information that's needed. The contents may show a history list (previous 
responses) that you have given to this prompt. 

Appendix H, Prompts and Error Messages 307 



You can respond to a prompt in one of two ways: 

• Enter a response and accept it by pressing Enter. 

•Press Esc to cancel the prompt and return to the command menu that 
preceded the prompt. 

Some prompts only present a choice between two items (like yes/no). You 
can use the arrow keys to select the choice you want and then press Enter or 
press Y or N directly; cancel the command by pressing Esc. 

For a more complete discussion of the keystroke commands to use when a 
prompt is active, refer to Chapter 2. 

Here's a listing of all the prompts in alphabetical order. 

Already recording, do you want to abort? 
You are already recording a keystroke macro. You can't start recording 
another keystroke macro until you finish the current one. Press Y to stop 
recording the macro; N to continue recording the macro. 

Device error - Retry? 
An error has occurred while writing to a character device such as the 
printer. This could be caused by the printer being unplugged, offline, or out 
of paper. Correct the condition and then press Y to retry or N to cancel the 
operation. 

Disk error on drive_ -Retry? 
A hard error has occurred while accessing the indicated drive. This may 
mean you don't have a floppy disk in the drive or, in the case of a hard 
disk, it may indicate an unreadable or unwritable portion of the disk. You 
can press Y to see if a retry will help; otherwise, press N to cancel the 
operation. 

Edit watch expression 
Modify or replace the watch expression. The prompt is initialized to the 
currently highlighted watch expression. 

Enter address, count, byte value 
Enter the address of the block of memory you wish to set to a particular 
byte value, then the number of bytes you wish to set, followed by the value 
to fill the block with. 

Enter animate delay (lOths of sec) 
Specify how fast you want the Animate command to proceed. The higher 
the number, the longer between sucessive steps during animation. 

Enter breakpoint pass count 
Enter the number of times you want the breakpoint to be passed over 
before finally being triggered. If you don't enter a pass count, a default 

308 Turbo Debugger User's Guide 



value of 1 is used, which triggers the breakpoint the first time it is encoun­
tered. 

Enter command-line arguments 
Enter the command line parameters for the program you're debugging. 

Enter comment to add to end of log 
Enter an arbitrary line of text to add to the messages displayed by the Log 
viewer. You can enter any text you want; it will be placed in the log exactly 
as you type it. 

Enter expression for conditional breakpoint 
Enter an expression that must be true (nonzero) in order for the breakpoint 
to be triggered. This expression will be evaluated each time the breakpoint 
is encountered as your program executes. Be careful about any side effects 
it may have. 

Enter expression to evaluate 
Enter an expression whose value you wish to know. The value and type of 
the result will be displayed in an error-type window, which disappears 
once the next keystroke is pressed. 

Enter expression to execute 
Enter an expression that will be executed each time the breakpoint is 
triggered. In order to be useful, the expression should have some type of 
side effect, such as executing a procedure or function in your program or 
changing the value of a variable. 

Enter expression to log 
Enter an expression whose value will be logged in the Log viewer each 
time the breakpoint is triggered. 

Enter go to label or address 
Enter the address you wish to view in your program. You can enter a 
function name, a line number, an absolute address, or a memory pointer 
expression. 

Enter go to line number 
Enter the line number you wish to see in the current module. If you enter a 
line number that is past the end of the file, you will see the last line in the 
file. Line numbers start at 1 for the first line in the file. The current line 
number that the cursor is on is shown as the first line of the Module viewer. 

Enter go to offset 
You are viewing a disk file as hex data bytes. Enter the offset from the start 
of the file where you wish to view the data bytes. The file will be positioned 
at the line that contains the offset you specified. 

Appendix H, Prompts and Error Messages 309 



Enter inspect start index, range 
Enter the index of the first item in the array you wish to view, followed by 
the number of items you wish to view. Separate the two scalars by a space 
or a comma (,). 

Enter instruction to assemble 
Enter an assembler instruction to replace the one at the current address in 
the Code pane. Appendix D has a condensed listing of all assembler 
keywords and Chapter 10 discusses the assembler language in more detail. 

Enter log file 
Enter the name of the file you wish to write the log to. Until you issue a 
Close log file command, all lines sent to the log will be written to the file as 
well as displayed in the window. The default file name has the extension 
.LOG and is the same file name as the program you are debugging. You can 
accept this name by pressing Enter or type a new name instead. 

Enter memory address 
Enter a single memory address. You can use a symbol name or a complete 
expression. 

Enter name of configuration file 
Enter the name of a configuration file to read or write. If you are reading 
from a configuration file, you can enter a wildcard mask and get a list of 
matching files. 

Enter name of file to view 
You can use DOS-style wildcards to get a list of file choices, or you can type 
a specific file name to load. 

Enter new bytes 
Enter a byte list that will replace the bytes at the position in the file marked 
by the cursor. See Chapter 9 for a complete description of byte lists. 

Enter new coprocessor register value 
Enter a new value for the currently highlighted numeric processor register. 
You can enter a full expression to generate the new value. The expression 
will be converted to the correct floating point format before being loaded 
into the register. 

Enter new data bytes 
Enter a byte list to replace the bytes at the position in the segment marked 
by the cursor. See Chapter 9 for a complete description of byte lists. 

Enter new directory 
Enter the new drive and/or directory name that you want to become the 
current drive and directory. 

310 Turbo Debugger User's Guide 



Enter new file mask 
Enter a DOS-style wildcard file specification that matches the files you wish 
to see in the file list. You can enter a new disk letter or directory path as 
part of the specification. 

Enter new value 
Enter a new value for the currently highlighted CPU register. You can enter 
a full expression to form the new value. 

Enter port number 
Enter the I/O port number you wish to read from; valid port numbers are 
from 0 to 65535. 

Enter port number, value to output 
Enter the I/O port number you wish to write to, and the value to write; 
separate the two expressions with a comma. Valid port numbers are from 0 
to 65535. 

Enter position address 
Enter an address in your program where you wish to view the code or data. 
See Chapter 9 for more information on entering addresses. 

Enter program name to load 
Enter the name of a program to debug. You can use DOS-style wildcards to 
get a list of file choices, or you can type a specific file name to load. If you 
do not supply an extension to the file name, .EXE will be appended. 

Enter read file name 
Enter a file name or a wildcard specification for the file you want to read 
from into memory. If you supply a wildcard specification or accept the 
default*.*, a list of matching files will be displayed for you to select from. 

Enter run to code address 
Enter the address in your program where you wish execution to stop. See 
Chapter 9 for more information on entering addresses. 

Enter search bytes 
Enter a byte list to search for starting at the position in memory marked by 
the cursor. See Chapter 9 for a complete description of byte lists. 

Enter search expression 
Enter a character string to search for. You can use a simple wildcard 
matching facility to specify an inexact search string; for example, use * to 
match 0 or more of any character, and ? to match any single character. 

Enter search instruction or bytes 
Enter an instruction, as you would for the Assemble local menu command, 
or enter a byte list as you would for a Search command in a data pane. 

Appendix H, Prompts and Error Messages 311 



Enter set breakpoint at code address 
Enter the address in your program where you wish to set a breakpoint. See 
Chapter 9 for more information on entering addresses. 

Enter source address, destination, count 
Enter the address of the block you wish to move, the number of bytes to 
move, and the address you want to move them to. Separate the three 
expressions with commas. 

Enter source directory list 
Enter a list of directories, separated by spaces or semicolons (;). These 
directories will be searched, in the order that they appear in this list, for 
your source files. 

Enter tab column spacing 
Enter a number between 1 and 32 that specifies how far apart tab columns 
will be when Turbo Debugger displays files in a File window or Module 
window. 

Enter variable to inspect 
Enter the name of a variable or expression whose contents you wish to 
examine. If the prompt is initialized from a text pane, you can accept the 
entry by pressing Enter or change it and enter something else entirely. 

Enter variable to range inspect 
Enter the name of a variable or expression whose contents you wish to 
examine as an array. If the prompt is initialized from a text pane, you can 
accept the entry by pressing Enter or change it and enter something else 
entirely. 

Enter watch expression 
Enter a variable name or expression whose value you wish to watch in the 
Watches viewer. If you wish, you can enter an expression that does not refer 
to a memory location, such as x * y + 4. If the prompt is initialized from a 
Text pane, you can accept the entry by pressing Enter or change it and enter 
something else entirely. 

Enter write file name 
Enter the name of the file you wish to write the block of memory to. 

Overwrite existing macro on selected key? 
You have pressed a key to record a macro, and that key already has a macro 
assigned to it. If you wish to overrwrite the existing macro, press Y; 
otherwise, press N to cancel the command. 

Pick a module 
Select a module name to view in the Module viewer. You are presented 
with a list of all the modules in your program. If you wish to view a file 
that is not a program module, use the View /File menu command. 

312 Turbo Debugger User's Guide 



Pick a source file 
Select a source file from the list displayed; only the source files that make 
up the current module are shown. 

Press key for macro assign 
Press the key that you want to assign the macro to. Then, press the keys to 
do the command sequence that you wish to assign to the macro key. The 
command sequence will actually be performed as you type it. To end the 
macro recording sequence, press the key you assigned the macro to; this 
macro will be recorded on disk along with any other keystroke macros. 

Press key for macro delete 
Press the key for the macro that you wish to delete. The key will then be 
returned to its original pre-macro function. 

Program already terminated; reload? 
You have attempted to run or step your program after it has already 
terminated. If you reply Y, your program will be reloaded. If you reply N, 
your program will not be reloaded and your run or step command will not 
be executed. 

Program out of date on remote; send over link? 
You are running Turbo Debugger over the remote link, and the program 
you wish to debug is either not on the remote system, or it is older than the 
version on the main system. If you respond Y, the new program will be sent 
over the remote link. If you respond N, the load command will be aborted. 
If you are running at the slowest remote speed, you may want to copy the 
program to the remote system manually by using a floppy disk. At the 
highest link speed, the data transfer rate is at least as fast as using a floppy 
disk. 

Reload program so arguments take effect? 
You have just changed the command line arguments for the program 
you're debugging. If you answer yes, your program will be reloaded and 
set back to the start. You usually want to do this after changing the 
arguments, because programs written in many Borland languages only 
look at their arguments once-just as the program is loaded. Any 
subsequent changes to the program arguments won't be noticed until the 
program is restarted. 

Error Messages 

Turbo Debugger uses error messages to tell you about things you haven't 
quite expected. Sometimes the command you have issued cannot be 

Appendix H, Prompts and Error Messages 313 



processed, other times the message warns that things didn't go exactly as 
you wanted. 

Error messages are normally accompanied by a beep. You can turn off the 
beep both from the DOS command line when you start Turbo Debugger or 
from the installation program (TDINST). 

When an error message is displayed, the next key that's pressed will clear 
the error from the screen. However, the key you press is also taken as the 
next command, so the message simply goes away when you do something 
next. You can configure the debugger so that pressing Esc clears the error. 
You can do this from the DOS command line, or set it permanently from 
within the installation program (TDINST). 

Fatal Errors 

All fatal errors cause Turbo Debugger to quit and return to DOS. Some fatal 
errors are the result of trying to start the debugger from DOS. A few others 
occur if something unrecoverable happens while you are using the de­
bugger. In either case after having solved the problem, your only remedy is 
to restart the debugger from the DOS prompt. 

Bad configuration file 
The configuration file is either corrupted, not a Turbo Debugger 
configuration file, or is an out-of-date configuration file for a different 
version of the debugger. 

Could not create dummy PSP segment 
When starting the TD386 virtual debugger with no program to load, the 
dummy program could not be created. Try starting TD386 with a program 
to debug. 

Fatal EMS Error 
The EMS memory driver returned an unrecoverable error indication. Either 
your EMS memory hardware is malfunctioning or the software driver has 
become corrupted. 

Reboot your system and try again. If the problem persists, it's probably a 
problem with your EMS hardware. 

Invalid switch: 
You supplied an invalid option switch on the DOS command line. 
Appendix A has an abbreviated list of all command-line switches, and 
Chapter 4 discusses each one in detail. 

314 Turbo Debugger User's Gulde 



Not enough memory 
Turbo Debugger ran out of working memory while processing your 
command. 

Remote link timeout 
The connection to the remote system has been disrupted. Try rebooting 
both systems and starting again. If the problem persists, refer to Appendix 
G, where debugging on a remote system is discussed. 

Unsupported video adapter 
Turbo Debugger can't determine what display adapter you are using; 
MDA, CGA, EGA, VGA, MCGA, Hercules, Compaq composite, AT&T, and 
close compatibles are supported. 

Wrong version of TDREMOTE 
You have an incompatible version of TDREMOTE running on the remote 
system. You must use the same release of TD and TDREMOTE together. 

Error Messages 

')' expected 
While evaluating an expression, a right parenthesis was found to be 
missing. This happens if a correctly formed expression starts with a left 
parenthesis and does not end with a matching right one. 

For example, 

3 * (7 + 4 

should have been 

3 * (7 + 4) 

':' expected 
While evaluating a C expression, a question mark (?) separating the first 
two expressions of the ternary ?: operator was encountered; however, no 
matching: to separate the second and third expressions was found. 

For example, 

x < 0 ? 4 6 

should have been 

x < 0 ? 4 : 6 

']' expected 
While evaluating an expression, a left bracket ([) starting an array index 
expression was encountered without a matching right bracket(]) to end the 
index expression. 

Appendix H, Prompts and Error Messages 315 



For example, 

table[4 

should have been 

table [ 4 J 

This error can also occur when entering an assembler instruction using the 
built-in assembler. In this case, a left bracket was encountered that 
introduced a base or index register memory access and there was no 
corresponding right bracket. 

For example, 

mov ax,4[si 

should have been 

mov ax,4[si] 

Already logging to a file 
You issued an Open log file command after having already issued the same 
command without an intervening Close log file command. If you wish to 
log to a different file, first close the current log by issuing the Close log file 
command. 

Assignment out of range 
When doing a Pascal assignment, you have attempted to assign a value to a 
variable that is beyond the range of legal values for the variable. 

Can't change that symbol 
You tried to change a symbol that can't be changed. The only symbols that 
can be changed directly are scalars (int, long, etc. in C; byte, integer, 
longint, etc. in Pascal) and pointers. If you wish to change a structure or 
array, you must change individual elements one at a time. 

Can't execute DOS command processor 
Either there was not enough memory to execute the DOS command 
processor, or the command processor could not be found. Make sure that 
the COMSPEC environment variable correctly specifies where to find the 
DOS command processor. 

Can't have more than one segment override 
You attempted to assemble an instruction where both operands have a 
segment override. Only one operand can have a segment override. 

For example, 

moves: [bx],ds:ax 

should have been 

316 Turbo Debugger User's Guide 



moves: [bx],ax 

Can't set a breakpoint at this address 
You tried to set a breakpoint in ROM, non-existent memory, or in segment 
0. The only way to view a program executing in ROM is to use the Run/ 
Trace command to watch it one instruction at a time. 

Can't set any more hardware breakpoints 
You can't set another hardware breakpoint without first deleting one you 
have already set. Different hardware debuggers support different numbers 
and types of hardware breakpoints. 

Can't set that sort of hardware breakpoint 
The hardware device driver that you have installed in your CONFIG.SYS 
file can't do a hardware breakpoint with the combination of cycle type, 
address match, and data match that you have specified. 

Can't swap user program to disk 
You issued a command that required the program being debugged to be 
written to disk, but there is no room on your current disk to write it. You 
will have to make some space on your disk before issuing any commands 
that require the program to be swapped. The File/OS Shell menu 
command and the Edit command in Text panes both require the program to 
be swapped. 

Can't use same register twice 
You attempted to assemble an instruction that used a base or index register 
twice in the same memory operand. You can only use a register once in any 
operand. 

For example, 

mov ax, [bx+bx] 

should have been 

mov ax, [bx+si] 

Cannot access an inactive scope 
You entered an expression or pointed to a variable in a Module viewer that 
is not in an active function. Variables in inactive functions do not have a 
defined value, so you can't use them in expressions or look at their values. 

Destination too far away 
You attempted to assemble a conditional jump instruction where the target 
address is too far from the current address. The target for a conditional 
jump instruction must be within -128 and + 127 bytes of the instruction 
itself. 

Appendix H. Prompts and Error Messages 317 



Divide by zero 
You entered an expression using the divide(/, div) or modulus operators 
(mod, %) that had on its right side an expression that evaluated to zero. 
Since the divide and modulus operators do not have defined values in this 
case, an error message is issued. 

Edit program not specified 
You tried to use the Edit local menu command from a Module or Disk File 
viewer, but you did not specify an editor startup command by using the 
installation program. 

Error loading program 
DOS was not able to load the program you specified. This could mean the 
file you specified is not a valid .EXE file, or that the .EXE file has been 
corrupted. 

Error opening file _ 
Turbo Debugger couldn't open the file that you want to look at in the File 
window. 

Error opening log file_ 
The file name you supplied for the Log To File local menu command can't 
be opened. Either there is not enough room to create the file, or the disk, 
directory path, or file name you specified is invalid. Either make room for 
the file by deleting some files from your disk, or supply a correct disk, path, 
and file name. 

Error reading block into memory 
The block you specified could not be read from the file into memory. You 
probably specified a byte count that exceeded the number of bytes in the 
file. 

Error recording keystroke macros 
An error occurred while writing the recorded macro keystrokes to the 
configuration file. The macro was probably not recorded to disk. 

Error saving configuration 
Turbo Debugger could not write your configuration to disk. Make sure that 
there is some free space on your disk. 

Error swapping in user progam, press key to reload 
After swapping your program to disk to execute another program that you 
specified, Turbo Debugger is unable to reload your program. This most 
likely means that you accidentally deleted the disk file that your program 
was swapped to (SWAP.$$$). The only thing that the debugger can do is to 
reload your program exactly as if you had issued the File/Load menu 
command. 

318 Turbo Debugger User's Guide 



Error writing block to disk 
The block that you specified could not be written to the file that you 
specified. You probably specified a count that exceeded the amount of free 
file space available on the disk. 

Error writing to file 
Turbo Debugger could not write your changes back to the file. The file may 
be marked as read-only, or a hard error may have occurred while writing to 
disk. 

Expression accesses more than one scope 
In conjunction with a breakpoint, you entered an expression that contains 
references to variables from too many scopes. In Pascal, you can reference 
local variables and parameters, globals, and locals from an outer 
subprogram (if the breakpoint is in a nested procedure or function). In C, 
you can reference function autos, module statics, and program globals, but 
not autos from more than one function. 

Expression too complex 
The expression you supplied is too complicated; you must supply an 
expression that has fewer operators and operands. You can have up to 64 
operators and operands in an expression. Examples of operands are 
constants and variable names. Examples of operators are plus (+), 
assignment(= or:=), structure member selection(->), and set membership 
(in). 

Expression with side effects not permitted 
You have entered an expression that modifies a memory location when it 
gets evaluated. You can't enter this sort of an expression whenever Turbo 
Debugger might need to repeatedly evaluate an expression, such as when it 
is in an Inspector or Watches window. 

Extra input after expression 
You entered an expression that was valid, but there was more text after the 
valid expression. This sometimes indicates that you omitted an operator in 
your expression. 

For example, 

3*4+52 

should have been 

3*4+5/2 

Another example, 

add ax,4 5 

Appendix H, Prompts and Error Messages 319 



should be 

add ax,45 

Help file _ not found 
You asked for help but the disk file that contains the help screens could not 
be found. Make sure that the help file is in the same directory as the de­
bugger program. 

Im.mediate operand out of range 
You entered an instruction that had a byte-sized operand combined with an 
immediate operand that is too large to fit in a byte. 

For example, 

add BYTE PTR[bx],300 

should have been 

add WORD PTR[bx],300 

Initialization not complete 
You have attempted to access a variable in your program before the data 
segment has been set up properly by the compiler's initialization code. You 
must let the compiler initialization code execute to the start of your source 
code before you can access most program variables. 

Invalid argument list 
The expression you entered contains a procedure or function call that does 
not have a correctly formed argument list. An argument list starts with a 
left parenthesis, has zero or more comma-separated expressions for 
arguments and ends with a right parenthesis. Note that Turbo Debugger 
requires empty parentheses to call a parameterless Pascal function or 
procedure. 

For example, 

myfunc(l,2 3) 

should have been 

myfunc (1, 2, 3) 

or 

myfunc() 

Invalid cast syntax 
You entered a expression that contained an incorrectly formed typecast. A 
correct C cast starts with a left parenthesis, contains a possibly complex 
data type declaration (excluding the variable name), and ends with a right 
parenthesis. 

320 Turbo Debugger User's Guide 



For example, 

(x *) p 

should have been 

(struct x *)p 

A correct Pascal typecast starts with a known data type, then a left 
parenthesis, then an expression, then ends with a right parenthesis. For 
exampl<', 

longint(p) 

or 

word (p') 

Invalid character constant 
The expression you entered contains a badly formed character constant. A 
character constant consists of a single quote character (') followed by a 
single character, ending with another single quote character. 

For example, 

'A = 'a' 

should have been 

'A' = 'a' 

Invalid far address 
When entering an instruction to assemble, you supplied a badly formed far 
address for the target of a JMP or CALL instruction. A far address consists 
of a pair of hex numbers separated by a colon. 

For example, 

JMP 1234:XYZ 

should have been 

JMP 1234:1000 

Invalid format string 
You have entered a format string after an expression, but it is not a valid 
format string. See Chapter 9 for a description of format strings. 

Invalid function parameter 
You have attempted to call a function in an expression, but you have not 
supplied the proper parameters to the function call. 

Appendix H, Prompts and Error Messages 321 



Invalid instruction 
You entered an instruction to assemble that had a valid instruction 
mnemonic, but the operand you supplied is not allowed. This usually 
happens if you attempt to assemble a POP CS instruction. 

Invalid instruction mnemonic 
When entering an instruction to be assembled, you failed to supply an 
instruction mnemonic. An instruction consists of an instruction mnemonic 
followed by optional arguments. 

For example, 

AX,123 

should have been 

MOV ax,123 

Invalid operand separator 
You entered an instruction to assemble but didn't separate the operands 
with a comma. If an instruction has more than one operand, you must 
always use a command between the operands. 

For example, 

ADD ax 12 

should have been 

ADD ax,12 

Invalid operand(s) 
The instruction you are trying to assemble has one or more operands that 
are not allowed. For example, a MOV instruction cannot have two 
operands that reference memory, and some instructions only work on 
word-sized operands. 

For example, 

POP al 

should have been 

POP ax 

Invalid operator/data combination 
You have entered an expression where an operator has been given an 
operand that can't have the selected operation performed on it; for 
example, attempting to multiply a constant by the address of a function in 
your program. 

322 Turbo Debugger User's Guide 



Invalid pass count entered 
You have entered a breakpoint pass count that is not between 1 and 65,535. 
You can't set a pass count of 0. While your code is running, a pass count of 
1 means that the breakpoint is eligible to be triggered the first time it is 
encountered. 

Invalid register 
You entered an invalid floating-point register as part of an instruction being 
assembled. A floating-point register consists of the letters ST, optionally 
followed by a number between 0 and 7 within parentheses; for example, ST, 
ST(4). 

Invalid register combination in address expression 
When entering an instruction to assemble, you supplied an operand that 
did not contain one of the permitted combinations of base and index 
registers. An address expression can contain a base register, an index 
register, or one of each. The base registers are BX and BP, and the index 
registers are SI and DI. Here are the valid address register combinations: 

BX BX+SI 
BP BP+SI 
DI BX+DI 
SI BP+DI 

Invalid register in address expression 
You entered an instruction to assemble that tried to use an invalid register 
as part of a memory address expression between brackets([]). You can only 
use the BX, BP, SI, and DI registers in address expressions. 

Invalid symbol in operand 
When entering an instruction to assemble, you started an operand with a 
character that can never be used to start an operand; for example, the colon 
(:). 

Invalid value entered 
When prompted to enter a memory address, you supplied a floating-point 
value instead of an integer value. 

Keyword not a symbol 
(C and assembler only) The C expression you entered contains a keyword 
where a variable name was expected. You can only use keywords as part of 
typecast operations, with the exception of the sizeof special operator. 

For example, 

floatval = char charval 

should have been 

floatval = (char)charval 

Appendix H, Prompts and Error Messages 323 



Left side not a structure or union 
You entered an expression that used one of the C structure member 
selectors (. or ->) or the Pascal record field qualifier (.). This symbol, 
however, was not preceded by a record or structure name, nor was it 
preceded by a pointer to a record or structure. 

No coprocessor or emulator installed 
You tried to create a Numeric processor viewer using the View /Numeric 
Processor command from the main menu bar, but there is no numeric 
processor chip installed on your system, nor does the program you're de­
bugging use the software emulator. 

No hardware debugging available 
You have tried to set a breakpoint that requires hardware debugging 
support, but you don't have a hardware debugging device driver installed. 
You can also get this error if your hardware debugging device driver does 
not find the hardware it needs. 

No help for this context 
You pressed the F1 key to get help, but Turbo Debugger could not find a 
relevant help screen. Please report this to Borland technical support. 

No modules with line number information 
You have used the View /Module command, but Turbo Debugger can't 
find any modules with enough debug information in them to allow you to 
look at any source modules. This message usually happens when you're 
debugging a program without a symbol table. See the "Program has no 
symbol table" error message entry on page 327 for more information on 
symbol tables. 

No previous search expression 
You attempted to perform a Next command from the local menu of a Text 
pane, but you had not previously issued a Search command to specify 
what to search for. You can only use Next after issuing a Search command 
in a pane. 

No program loaded 
You attempted to issue a command that requires a program to be loaded. 
There are many commands that can only be issued when a program is 
loaded. For example, none of the commands in the Run main menu can be 
performed without having a program loaded. Use the File/Load command 
to load a program before issuing these commands. 

No source file for module 
No source file can be found for the module you wish to view. If the source 
file is not in the current directory, you can use the Options/Code 
Directories command to specify which directory your source file(s) are in. 

324 Turbo Debugger User's Guide 



No type information for this symbol 
You have entered an expression that contains a program variable name 
without debug information attached to it. This can happen when the 
variable is in a module compiled without the correct debug information 
being generated. You can supply type information by preceding the 
variable name with a typecast expression to indicate its data type. 

Not a function name 
You have entered an expression that contains a function call, but the name 
preceding the left parenthesis introducing the function call is not a function 
name. Any time a parenthesis immediately follows a name, the expression 
parser presumes that you intend it to be a function call. 

Not a memory referencing expression 
You entered an expression that does not refer to a memory location. There 
are many cases where the expression must reference a memory location, 
not just return a value. For example, the Expression/Inspect command 
from the main menu bar requires that the data item you inspect be a 
memory area, not just an expression with a result. 

For example, 

3 * 4 < (9 - 1) 

does not reference memory, but 

myarray[4] 

does reference a memory location. 

Not a structure member 
You entered an expression that used one of the C structure member 
selectors (. or ->) or the Pascal record field qualifier (.). This symbol, 
however, was not preceded by a record or structure name, nor was it 
preceded by a pointer to a record or structure. 

Not enough memory for selected operation 
You issued a command that needed to create a window, but there is not 
enough memory left for the new window. You must first remove or reduce 
the size of some of your windows before you can reissue the command. 

Not enough memory to load program 
Your program's symbol table has been successfully loaded into memory, 
but there is not enough memory left to load your program. If your system 
has EMS memory, make sure that the debugger is set to use it for the 
symbol table. You can use the -se command-line option to do this or set it 
permanently using TD INST. 

If you don't have EMS or your program doesn't load even with EMS, you 
can hook two systems together and run Turbo Debugger on one system 

Appendix H, Prompts and ErrorMessages 325 



and the program you're debugging on the other. See Appendix G for more 
information on how to do this. 

Not enough memory to load symbol table 
There is not enough room to load your program's symbol table into 
memory. The symbol table contains the information that Turbo Debugger 
uses when showing you your source code and program variables. If you 
have any resident utilities consuming memory, you may wish to remove 
them and then restart the debugger. You can also try making the symbol 
table smaller by having the compiler only generate debug information for 
those modules you are interested in debugging. 

When this message is issued, your program itself has not even been loaded. 
This means you must free enough memory for the symbol table and your 
program. 

Only one operand size allowed 
You entered an instruction to assemble that had more than one size 
indicator. Once you have set the size of an operand, you can't change it. 

For example, 

mov WORD PTR BYTE PTR[bx],l 

should have been 

mov BYTE PTR[bx],l 

Operand must be memory location 
You entered an expression that contained a subexpression that should have 
referenced a memory location but did not. Some things that must reference 
memory include the assignment operators (=, +=, and so on), and the 
increment and decrement(++ and - -) operators. 

Operand size unknown 
You entered an instruction to assemble, but did not specify the size of the 
operand. Some instructions that can act on bytes or words require you to 
specify which to use if it cannot be deduced from the operands. 

For example, 

add [bx],l 

should have been 

add BYTE PTR[bx],l 

Overlay not loaded 
(Pascal only) You've tried to set a pane in the CPU viewer to a location in 
your program that is not presently loaded into memory. You can use a 
Module viewer to examine source code that has not yet been loaded into 

326 Turbo Debugger User's Guide 



memory, but you can't look at the underlying instructions since they 
haven't yet been loaded into memory. 

Path not found 
You entered a drive and directory combination that does not exist. Check 
that you have specified the correct drive and that the directory path is 
spelled correctly. 

Path or file not found 
You specified a non-existent or invalid file name or path when prompted 
for a file name to load. If you do not know the exact name of the file you 
want to load, you can pick the file name from a list by pressing Enter when 
the prompt first appears. The names in the list that end with a backslash(\) 
are directories, allowing you to move up and down the directory tree 
through the lists. 

Press Esc 
This message appears as part of any error message when you have chosen 
to reply to errors by explicitly pressing a key. Pressing the fsc key causes 
the error message to disappear. 

Program has invalid symbol table 
The symbol table attached to the end of your program has become 
corrupted. Re-create an .EXE file and reload it. 

Program has no symbol table 
The program you want to debug has been successfully loaded, but it does 
not contain any debug symbol information. 

You'll still be able to step through the program using a CPU viewer and 
examining raw data, but you will not be able to refer to any code or data by 
name. 

To create a symbol table in Turbo Pascal (5.0 or later), turn on Debug/ 
Standalone Debugging (or use the /v command-line option with TPC.EXE). 
If you're using Turbo C or Turbo Assembler, you must link your program 
with TLINK, using the /v option, in order to get debug symbol information. 

Program linked with wrong linker version 
You are attempting to debug a program with out-of-date debug 
information. Relink your program using the latest version of the linker or 
recompile it with the latest version of Turbo Pascal. 

Program not found 
The program name you specified does not exist. Either supply the correct 
name or pick the program name from the file list. 

Appendix H, Prompts and Error Messages 327 



Register cannot be used as negative address 
You have entered an instruction to assemble that attempts to use a base or 
index register as a negative displacement. You can only use base and index 
registers as positive offsets. 

For example, 

INC WORD PTR[12-BX] 

should have been 

INC WORD PTR[l2+BX] 

Register or displacement expected 
You have entered an instruction to assemble that has a badly formed 
expression between brackets ([ ]). You can only put register names or 
constant displacement values between the brackets that form a base­
indexed operand. 

Repeat count not allowed 
You have entered a format control string that has a repeat count, but the 
expression that you are applying it to can't have a repeat count. 

Run out of space for keystroke macros 
The macro you are recording has run out of space. You can record up to 256 
keystrokes for all macros. 

Search expression not found 
The text or bytes that you specified could not be found. The search starts at 
the current location in the file, as indicated by the cursor, and proceeds 
forward. If you wish to search the entire file, press the Ctrl-PgUp key 
combination before issuing the search command. 

Source file _ not found 
Turbo Debugger can't find the source file for the module you want to 
examine. Before issuing this message, it has looked in several places: 

• where the compiler found it 
•in the directories specified by the -sd command-line option and the 

Options/Path for Source command 
•in the current directory 
•in the directory where Turbo Debugger found the program you're de­

bugging 

You should add the directory that contains the source file to the directory 
search list by using the Options/Path for Source command. 

328 Turbo Debugger User's Gulde 



Symbol not found 
You entered an expression that contains an invalid variable name. You may 
have mistyped the variable name, or it may be in some procedure or 
function other than the active one, or out of scope in a different module. 

Syntax error 
You entered an expression in the wrong format. This is a general error 
message when a more specific message is not applicable. 

Too many files match wildcard mask 
You specified a wildcard file mask that included more than 100 files. Only 
the first 100 file names will be displayed. 

Type EXIT to return to Turbo Debugger 
You have issued the File/OS Shell command. This message informs you 
that when you are done running DOS commands, you must type EXIT to 
return to your debugging session. 

Unexpected end of line 
While evaluating an expression, the end of your expression was 
encountered before a valid expression was recognized. 

For example, 

99 - 22 * 
should have been 

99 - 22 * 4 

And this example, 

SUB AX, 

should have been 

SUB AX, 4 

Unknown character 
You have entered an expression that contains a character that can never be 
used in an expression, such as reverse single quote(') in C. 

Unknown record or structure name 
You have entered an expression that contains a typecast with an unknown 
record, structure, union, or enum name. (Note that C and assembler 
structures have their own name space different from variables.) 

Unknown symbol 
You entered an expression that contained an invalid local variable name. 
Either the module name is invalid, or the local symbol name or line number 
is incorrect. 

Appendix H, Prompts and Error Messages 329 



Unterminated string 
You entered a string that did not end with a closing quote (" in C, ' in 
Pascal) If you want to enter a string that contains quote characters in Pascal, 
they must contain additional quote characters (' ). To enter a C string with 
quote characters, you must precede the quote with a backslash (\) 
character. 

Value must be between 1and32 
You have entered an invalid value for the tab width. Tab columns must be 
at least 1 column wide, but no more than 32 columns. 

Video mode not available 
You have attempted to switch to 43-/50-line mode, but your display 
adapter does not support this mode; you can only use 43-/50-line mode on 
an EGA or VGA. 

Information Messages 

Turbo Debugger generates some information messages that appear before 
the normal windowed display starts up. Here's a description of them. 

TDREMOTE online 
Turbo Debugger has succeeded in establishing communications with the 
TDREMOTE remote debug driver program on the remote system. If you 
specified a program name to load on the DOS command line, that file will 
now be loaded into the remote system. 

Waiting for handshake from TDREMOTE (Ctrl-Break to quit) 
You have told Turbo Debugger to debug your program on the remote 
system connected via the serial port (-r, -rs, and -rp command-line 
options). The debugger is now waiting for the remote system to inform it 
that it is running. 

You can interrupt Turbo Debugger and return to the DOS prompt by 
pressing the Ctrl-Break key combination. 

330 Turbo Debugger User's Guide 



A p p E N D 

Using Turbo Debugger with 
Different Languages 

x 

I 

In this appendix, we have gathered together some tips on how to most 
effectively use Turbo Debugger with different languages. 

Turbo C Tips 

Compiler Code Optimizing 

If you have used the -0 command-line option with TCC or the Options/ 
Compiler /Optimization command with the Turbo C integrated 
development environment to specify optimized code generation, you may 
have difficulty stepping through certain source code areas. In particular, if 
you have multiple or nested if/else statements, it may be difficult to stop as 
each else clause is encountered. A "for'' loop is also rearranged in a manner 
which makes tracing through it a little odd in some situations. 

To get around these (infrequent) problems, you can either switch to 
assembler-level debugging by opening a CPU window, or you can disable 
optimizing in the compiler while you are debugging. 

Appendix/, Using Turbo Debugger with Different Languages 331 



Accessing Pointer Data 

Many times in C you use pointers to refer to arrays of data items. Normally, 
Turbo Debugger will show you the single pointed-to item when you 
inspect a pointer variable. To access a pointer as an array, you can first 
inspect the data item with one of the usual techniques, such as placing the 
cursor over the variable in a Module window and pressing Ctr/-/, and then 
set a range of items to look at by using the Range command on the 
Inspector local menu. For example, if your program contained 

char *p, buf[80]; 
for (p = buf; p < buf + sizeof(buf); p++) 

you can examine p as an array of characters by choosing the Range 
command in the Inspector window's local menu artd entering a starting 
index of 0 and a count of 80. 

Stepping Through Complex Expressions 

If you have a complex expression, such as 

if (isvalid(x) && !useless (x)) ( 

you may want to see the result of each subexpression that makes up the 
conditional expression. If there are function calls in the expression, you can 
do this by pressing Fl to trace into a function, then put the cursor on the 
closing} at the end of the function and press F4 to run to that point. Then, 
choose the F10/Data/Function Return command to look at the value about 
to be returned. If there are other function calls in the conditional 
expression, you can then press F7 to stop on the first line of the next 
function in the conditional expression. You can then repeat this procedure 
to examine its return value. 

If you have a complex expression that does not contain function calls, for 
example 

if ( x <= 5 & & y [ z l > 8) ! 

and you want to see the result of evaluating each subexpression, you will 
have to open a CPU window and do assembler-level stepping and watch 
the subexpression results being put in CPU registers. 

332 Turbo Debugger User's Guide 



Turbo Assembler Tips 

Looking at Raw Hex Data 

You can use the F10/Data/Watch and F10/Data/Evaluate commands with 
a format modifier to look at raw data dumps, for example: 

[ES:DI],20m 

specifies that you want to look at a raw hex memory dump of the 20 bytes 
pointed to by the ES:DI register pair. 

Source-Level Debugging 

You can step through your assembler code using a Module window just as 
with any of the high-level languages. If you want to see the register values, 
you can put a Registers window to the right of the Module window. 

Sometimes, you may want to see use a CPU window and see your source 
code as well. To do this, open a CPU window, and then choose the Code 
pane's Mixed command until it reads "both." That way you can see both 
your source code and machine code bytes. Remember to zoom the CPU 
window (by pressing F5) if you want to see the machine code bytes. 

Examining and Changing Registers 

The obvious way to change registers is to highlight a register in either a 
CPU window or Registers window. A quick way to change a register is to 
use the F10/Data/Evaluate/Modify command. You can enter an 
assignment expression that directly modifies a register's contents, for 
example: 

SI=99 

will load the SI register with 99. 

Likewise, you can examine registers using the same technique, for example: 

Alt-D E AX 

will show you the value of the AX register. 

Appendix I, Using Turbo Debugger with Different Languages 333 



Turbo Pascal Tips 

Stepping through Initialization Code 

When you first load your program into the Turbo Debugger, the right­
pointing filled arrow points to the begin keyword of the main program. 
The begin actually corresponds to a series of calls to the initialization 
sections of all the units that your program uses (assuming they have 
initialization code). All programs begin with a call to the initialization code 
of the System unit. 

At this point, if you press Fl (the shortcut for the Run/Trace Into 
command), you'll trace into the the first unit that has initialization code 
with debug information enabled. If you use Fl to step past the end of the 
first unit's initialization code, you'll trace into the next unit; eventually 
you'll return to the main program, ready to execute the first statement. 

If, on the other hand, you press FB (the shortcut for the Run/Step Over 
command) at the beginning of the program, you will skip over all 
initialization code and begin stepping through the body of the main pro­
gram. 

Stepping through Exit Procedures 

When you program terminates, control is passed down a chain of exit 
procedures (refer to the chapter titled "Inside Turbo Pascal" in the Turbo 
Pascal Owner's Handbook). When you step past the end of the main program, 
the Turbo Debugger does not trace into the exit procedures. In order to step 
through this chain, place a breakpoint in each exit of the procedures you 
wish to debug. 

Constants 

Constant identifiers are only recognized for scalar and typed constants. For 
example: 

334 Turbo Debugger User's Guide 



program Test; 
con st 

A = 5; 
B = Pi; 
Message= 'Testing'; 
Caps = I' A' .. ' Z' ] ; 
Digits : string[lO] = '0123456789'; 

bag in 
Writeln(A); 
Writeln(R); 
Writeln(Message); 
Wri teln ('A' in Caps); 
Writeln(Digits); 

end. 

In this program, you can inspect A (a scalar constant) and Digits (a typed 
constant), but you can't inspect B (a floating point constant), or Message or 
Caps (string and set constants). 

String and Set Temporaries on the Stack 

If you're using the CPU window, be advised that Turbo Pascal 
automatically allocates string and set temporaries on the stack in the 
following way: 

The plus(+) operator, when used with strings, and all string functions will 
reserve stack space for results of these operations. This stack space is 
reserved in the caller's stack frame. Likewise, the +, -, and * set operators 
will also reserve stack space for intermediate results. 

Clever Typecasting 

The Dos unit defines the internal data format for all the predefined file 
types. You can use these declarations to examine the data of any file 
variable. Try entering this program: 

program Typecast; 
uses Dos; 
var 

TextFile : Text; 
IntFile : file of Integer; 

begin 
Assign(TextFile, 'TEXT.DTA'); 
Rewrite(TextFile); 
Assign (IntFile, 'INT .DTA'); 

Appendix/, Using Turbo Debugger with Different Languages 335 



Rewrite(IntFile); 
Close(TextFile); 
Close (IntFile); 

end. 

Now add these four watch expressions: 

IntFile 
TextFile 
FileRec(IntFile),r 
TextRec(TextFileJ,r 

The first two will display the file status (CLOSED, OPEN, INPUT, 
OUTPUT) and disk file name, while the second two use typecasting to 
reveal internal field names and values for the file variables. 

CPU Window Tips for Pascal 

•Routines in the System unit are unnamed. When watching a call 
instruction in the CPU window, you will see a call to an absolute address 
instead of a symbolic name. 

•A number of 1/0 routines, for example ReadLn and WriteLn, often 
generate multiple assembler language calls. 

•Range-checking, stack-checking, and 1/0-checking generate calls to 
library routines to perform their respective functions. 

•A number of operators (longint multiplication, string concatenation, etc.) 
are implemented via calls to library routines. 

•The literal constants (string, set, and floating point) of a procedure are 
placed in the code segment, just before the procedure's entry point. 

336 Turbo Debugger User's Guide 



A p p E N D x 

J 
Glossary 

The terms listed here are used frequently in this manual. Some of them are 
general terms about software and computers, and others are specific to the 
Turbo Debugger environment. 

action: What gets done when a breakpoint gets triggered. Actions can stop 
your program, log the value of an expression, or execute an expression. 

active pane: The pane in the active window that is accepting user input. All 
cursor motion and local menu commands act upon this pane. 

active window: The window on the display that the user is interacting 
with. Only one window can be the top window, with the title in reverse 
video, and a double-line rather than a single-line border. 

array: A data item composed of one or more items of the same data type. 

ASCII: The native character set of the IBM PC and many other computers. 

assembler: The human-readable form of machine instructions. The Code 
pane of a CPU window allows you to assemble instructions directly into 
memory. 

auto-variable: In the C language, this is a variable in a program that is local 
to an instance of a called function. These variables are stored on the stack, 
and their scope is that of the enclosing block (in C, source lines between a 
pair of { }). 

block scope: The region of the program in which a specific data item is 
"visible." For example, some variables have global scope, meaning they are 
accessible anywhere in your program; other variables may be local to a 
module or procedure. 

Appendix J, Glossary 337 



breakpoint An address in the program you are debugging where some 
action is to be performed. See also action. 

casting: Converting an expression from one data type to another. For 
example, converting from an integer to a floating-point number. In C, a cast 
consists of a data type enclosed in parentheses, like (int). In Pascal, a 
typecast consists of a type, followed by an expression surrounded by 
parentheses, like word(5). (Also called typecasting and type conversion.) 

C expression: An expression using the C language syntax. Turbo Debugger 
lets you evaluate any C expression, including those that assign values to 
memory locations. 

CPU: The central processing unit; refers to the 80x86 processor in your 
system. The CPU has a number of flags and registers. The CPU window 
shows the current CPU state. 

CPU flag: One of the control bits in the CPU that either affects subsequent 
instructions or is set to reflect the results of an operation. 

CPU register: A fast storage location inside the CPU chip. The register 
names are AX, BX, CX, DX, SI, DI, BP, SP, CS, DE, ES, SS. 

configuration file: A file in either the current directory or in the path that 
sets Turbo Debugger default parameters. 

CS:IP: The current program location, as specified by the Code Segment 
(CS) CPU register, and the Instruction Pointer (IP) register. 

default: A value automatically supplied when none is specified by the user. 

disassembler: A program that converts machine code into assembler code 
that you can read. The Code pane in a CPU window automatically 
disassembles instructions in one of its panes. 

EMS: Expanded memory specification. Turbo Debugger can put your pro­
gram's symbol table in EMS to conserve main memory. 

expression: A combination of operators and operands conforming to the 
syntax of one of the languages supported by Turbo Debugger: C, Pascal, 
and assembler. 

global breakpoint: A breakpoint that can occur on every instruction or 
source line. 

history list: A list of previous user input lines maintained for each prompt 
a window can issue. This allows you to select a previous entry from a 
history list. 

inspector: A window used to examine or change the values in a data 
element, array, or structure. 

338 Turbo Debugger User's Guide 



local menu: See pop-up menu. 

menu bar: The bar at the top of the screen from which pull-down menus 
come. The commands on these menus are always available regardless of 
what you're doing in Turbo Debugger. Press the A/tkey in combination with 
the first letter of a main menu item to access these menus. 

operand: The data item that an operator acts on; for example, in 3 * 4, both 
3 and 4 are operands. 

operator: An action that is performed on one or more operands, such as 
addition(+) or multiplication(*). 

pane: A section of a window that contains logically related information. 
Panes can be scrolled independently of each other. When the size of a 
window is changed, its panes are adjusted to make the best use of the new 
window size. Each pane has a local (pop-up) menu of commands. 

PATH: The DOS environment variable that indicates where to search for 
executable programs. Turbo Debugger searches the PATH for a 
configuration file. 

pop-up menu: The menu of commands that apply only to a particular pane 
in a window. Press Alt-F10 to pop up the local menu for the current pane. 
Also called "local menu." 

postfix: An operator that comes after its operand, like x++ in C. 

prefix: An operator that comes before its operand, like - -x in C. 

pull-down menu: The menu of commands that apply to all windows. Also 
known as "global menus." 

record: See structure. 

scalar: A basic data type consisting of ordered components such as byte, 
integer, char, and boolean in Pascal or char, int, and float in C. Scalars can 
be the individual elements of larger data items, such as arrays or structures. 

scope: See block scope. 

set An unordered group of elements, all of the same scalar type. 

stack: The region of memory that stores procedure and function return 
addresses, parameters, and other data related to an instance of a called 
procedure or function. 

side effect: An expression that alters the value of a variable or memory 
location; for example, an assignment statement or one that calls a function 
in your program that modifies some data. 

Appendix J, Glossary 339 



step: To execute the program being debugged one instruction or source line 
at a time, while treating procedure or function calls as a single instruction. 
This allows you to skip over calls to routines that you don't want to 
examine one line at a time. 

structure: A data item composed of one or more elements of possibly 
dissimilar types. 

symbol: A name of any variable, constant, procedure, or function. 

trace: To execute a program one instruction or source line at a time. 

tracepoint: A global breakpoint that watches for a variable or memory area 
to change. 

triggered: A breakpoint is triggered when all the things controlling it 
become true: Your program must have reached the specified address, the 
pass count must have been reached, and the condition must have been 
satisfied. 

type: Data items in your program have different types indicating their 
purpose. For example, your program can contain pointers, floating-point 
numbers, arrays, and so on. 

watchpoint: A global breakpoint that watches for an expression to become 
true. 

wildcards: The characters * and ?, used in file matching expressions. ? 
matches any single character and * matches zero or more characters. For 
example, 

abc*.1 matches abc99.1 and abcdef.1 but not xyz99.1 

window: A rectangular area of the screen containing information that can 
be viewed independently of the contents of other windows. In Turbo De­
bugger, windows can partially or completely obscure one another. See also 
active window. 

340 Turbo Debugger User's Guide 



Index 

Index 341 



80386 processor 11, 285 
breakpoints and 115 
command-line options 239 
instructions 240 
registers 142, 164 
virtual debugging 237-241 

80x87 coprocessors 157, 177 
80x86 processors 153 
8087coprocessor1, 157, 262 
:: (double colon) operator 144, 146 
,. (asterisk) 

in breakpoints 115 
search wildcard 130, 134, 197 

, (comma separator) 83 
# (number sign) in scope overriding 

139 
. (period) in scope overriding 139 
? (search wildcard) 130, 134, 197 
; (semicolons) 

C208 
Pascal 214 

_(underscore) in C symbols 141 
==vs.= in C 206 
/B option 11 
-c option 52, 54 
--do option 53 
--dp option 53 
--ds option 53 
-e option 238 
- (hyphen) in command-line options 

52 
-h option 53, 282, 302 
-h option-h option 10 
-i option 53 
-1option54 
-m option54 
$R (Pascal compiler option) 217 
-r option 54, 301 
-rp (TDRF option) 249 
-rp option 55 
-rs (TDRF option) 249 
-rs option 55 
-s (Symbol Table Stripping utility 

option) 255 
-sc option 55 
-sd option 55 
-v (TCC option) 50 
/v (TLINK option) 50, 254 

342 

-vg option 56 
-vn option 56 
-vp option 56 
-w (TDRF option) 249 
-w option 239 
-? option 53 
-zi (Turbo Assembler option) 51 

A 
action, defined 337 
active pane, defined 337 
active window, defined 337 
activity indicator 30 
Add (Breakpoints window local 

command) 116, 121 
Add Comment (Log window local 

command) 120 
ADD instruction 157 
Address (Breakpoints window/ 

Condition local command) 288 
address, mailing, Borland 5 
addresses 171 
Always (Breakpoints/Condition 

local command) 114 
Animate (Run menu command) 75 
Another (View menu command) 129 
arguments, defined 2 
Arguments (Options menu 

command) 60, 79 
arrays 337 

inspecting 41, 47, 91, 96, 101 
subranges 104 

ASCII 337 
Data pane display 165 

ASCII files 132, 258 
Assemble (Code pane local 

command) 161 
assembler (built-in) 172 
assembler language 337 
assembler programming 99-103, See 

also CPU; Turbo Assembler 
ADD157 
CALL 157, 173 
carry flag 223 
constants 150 
converting bytes to words 221 
ex register 220 

Turbo Debugger User's Guide 



direction flags 221 
005218 
expressions 138, 149 
FAR 173 
flags 223 
hex data 333 
inline instructions 267 
interrupt handler 223 
JMP 157, 173 
jumps 220 
memory variables 223 
MOV157 
multiple prefixes 222 
multiplication 222 
NEAR 173 
OFFSET 173 
operands 174, 219, 222 
operators 150 
PROC 219 
registers 222, 333 
RET 157, 218 
RETF157 
segment groups 224 
segment wraparound 223 
source-level debugging 333 
stack space 219 
string comparisons 221 
string instructions 220, 221 
string segment defaults 221 
strings 174 
subroutines 220 
symbols 149 

asterisk (*) 

in breakpoints 115 
search wildcard 130, 134, 197 

At (Breakpoints menu command) 
109, 120 

Atron 12 
auto-variables in C 206, 208, 337 

B 
/B option 11 
Beep on Error command 280 
beeps 314 
Block (Data pane local command) 169 
Boolean 

breakpoints 110 

Index 

Borland 
CompuServe Forum 5 
license statement 4 
mailing address 5 
technical support 5 

bottom line See help, reference line 
Break (Set Action command) 113 
Breakpoint At (Get Info message) 72 
breakpoints 24, 107-123 

adding 116 
conditional 121 
defined 107, 338 
disabling 115 
global 116, 121, 338 
hardware 122, 286, 291 

enabling 296 
recursive entry 297 

inspecting 117 
pass counts 121 
removing 110, 116 
scope 110 
setting 38, 44, 108, 109, 120 
speeding up 285 
triggering 340 

Breakpoints menu 108, 186 
Breakpoints window 24, 110 

local menu 111, 188 
bugs See debugging 
Byte (Data pane/Display As local 

command) 168 
byte lists 141, 160, 166 

c 
--<: option 52, 54 
C programming language See also 

Turbo C 
==vs.= 206 
arrays 91 
auto-variables 206, 208 
break keyword 209 
bugs205 
constants 143, 144 
expressions 

complex 332 
expresssions 138 
functions 2, 93, 145, 209 
operators 206 

343 



pointers 90, 207, 331 
scalars 89 
semicolons 208 
side effects 83, 146, 208 
signing 207 
strings 143 
structures and unions 92 
symbols 141 
truncation 207 
type conversion 146 
typos210 

calculating 83, 137 
CALL instruction 157, 173 
Caller (Code pane local command) 

159 
case-sensitivity 281 
casting See type conversion 
CD (TDRF command) 252 
central processing unit See CPU 
CGA275 
Change commands 

(Data pane local menu) 167 
(Global pane menu) 67 
(Inspector window local menu) 42, 
48, 104 
(Register pane local menu) 163 
(Register pane/Numeric Processor 
window local menu) 180 
(Stack pane local menu) 172 
(Static pane menu) 68 
(Watches window local menu) 88 

Changed Memory (Breakpoints/ 
Condition local command) 114, 
121, 122 

Changed Memory Global (Break­
points menu command) 109, 122 

Clear (Data pane/Block local 
command) 170 

Close Log File (Log window local 
command) 120 

Code pane 155, 156 
disassembler 157 
local menu 157, 189 

CodeView 51, 246 
CodeView to Turbo Debugger 

converter utility 246 
colors 

customization 272 

344 

snow 277 
COM files 254, 256, 257 
comma (,) separator 83 
command blocks 291 
command-line option 

-r 301 
command-line options 51, 52, 

243-244, 271 
-? 53 
/B 11 
-c 52, 54 
-do53 
-dp53 
-ds53 
-€ 238 
-h 10, 53, 282, 302 
-i 53 
-154 
-m54 
-r54 
-rp55 
-rs 55 
-SC 55 
-sd 55 
-vg56 
-vn56 
-vp56 
-w239 
and the 80386 processor 239 
display updating 53 
help 53, 282 
installation equivalents 282 
loading configuration file 52 
Remote File Transfer utility 249 
symbols55 
TD386.EXE 239 
TDINST282 
TDREMOTE 302 
video hardware 55 

Comp (Data pane/Display As local 
command) 168 

compiler directives 125 
Complete Graphics Save (TDINST 

command) 277 
CompuServe Forum, Borland 5 
Condition (Breakpoints window local 

command) 114 
CONFlG.SYS 238 

Turbo Debugger User's Guide 



configuration See installation 
configuration file 

command-line option 54 
loading 52 

configuration files 56, 338 
saving macros to 78 
saving options to 60 

constants 
assembler 150 
Cl43 
Pascal 147, 334 

context-sensitive help 31 
Control Break (Get Info message) 72 
Control pane (Numeric Processor 

window) 179 
local menu 192 
local pane 182 

coprocessors See 8087 coprocessor; 
80x87 corprocessors 

COPY (TDRF command) 250 
COPYFROM (TDRF command) 250 
copyright law 4 
CPU 25, 26, See also assembler 

programming 
defined 338 
flags 155, 338 
registers 26, 65, 153, 175, 338 

CPU (View menu command) 88, 154 
CPU window 25, 154 

Code pane 156 
disassembler 338 
dissambler 157 
local menu 157 

Data pane 165 
local menu 165 

Flags pane 
local menu 164 

panes 155, 189 
Pascal tips 336 
Register pane 

local menu 162 
stack pane 

local menu 171 
crashes 262 
Create (Macros menu command) 57, 

78 
CS:IP 65, 70, 71, 130, 149, 155, 338 

new 160 

Index 

Ctrl-Break (interrupt key) 76 
customization See also installation 

colors 272 
display 273 
interger display 276 
keys 279 
language 281 
log files 276 
number of lines 276 
OS shell 280 
remote debugging 280 

CVPACK246 
ex register 220 
Cycle Type (Breakpoints window I 

Condition local command) 287 

D 
data 81 

evaluating 83 
inspecting 82 
modifying 83 
type conversion 88 
watching BS 

Data (Breakpoints window I 
Condition local command) 288 

Data menu 82, 186 
Data pane 165 

local menu 165, 189 
data pointer 178 
data types 340, See also arrays; 

pointers; records; scalars; 
structures; unions 

debugging 
80386 processor 237-241 
assembler-level 153 
assembler-specific bugs 218 
defined 13 
empty input 225 
erroneousinput224 
fence-post errors 211 
functions 215 
hard ware 285 
heap space allocation 211 
hidden effects 210 
interrupts 263 
large programs 299 
multiple bugs 227 

345 



nested routines 213 
Pascal null statements 214 
Pascal pointers 212 
programs in non-Turbo languages 
15 
range-checking 217 
remote 299, 303 

customization 280 
options54 

sample sessions 225-236 
scope confusion 214 
special cases 216, 224 
steps 13 
strategies 227, 231 
style 204 
symbol table 254 
techniques 203, 225 
testing programs 224 
tracing 15 
Turbo products 15 
types of bugs 205 
uninitialized data 211 
uninitialized variables 212 
virtual 237-241, 261 

vs. normal 240 
Decrement (Register pane local 

command) 163 
DEL (TDRF command) 251 
Delete All (Macros menu command) 

58 
Delete All commands 

(Breakpoints menu) 110 
(Breakpoints window local menu) 
117 
(Watches window local menu) 87 

demo program 33, 225 
Descend (Inspector window local 

command) 105 
device driver interface 289 

command blocks 291 
function calls 290 
status blocks 294 
virtualdebugger238 

device drivers 285 
DIR (TDRF command) 251 
directories 248 

help and config files 278 

346 

source 55, 60, 126, 127, 278 
disassembler See CPU window, code 

pane 
display 

modes263 
parameters 273 
swapping 275 
updating53 

Display As (Data pane local 
command) 165, 167 

Display As (File window local 
command) 134 

Display Swapping (Environment 
menu command) 59 

distribution disk 7 
distribution disks 

backing up4 
-do option 53 
DOS262 

returning to 218 
within Turbo Debugger 61 

Double (Data pane/Display As local 
command) 169 

double colon(::) operator 144, 146 
-dp option 53 
-ds option 53 
Dump (View menu command) 174 
Dump window 26, 174 

E 
-e option 238 
Edit commands 

(File window local menu) 16, 135 
(Module window local menu) 131 
(Watches window local menu) 87 

editor customization 278 
EGA 56, 275, 276 
Empty commands 

(Register pane/Numeric Processor 
window local menu) 180 

EMS 50, 71, 264, 281, 299, 338 
emulation 177 
Enable/Disable (Breakpoints 

window local command) 115 
Enter key29 
Environment (Options menu 

command)58 

Turbo Debugger User's Guide 



Erase Log (Log window local 
command) 120 

error messages 307 
beep 314 
clearing 280 
fatal 314 
informational 330 
memory299 
Remote File Transfer utility 253 
Symbol Table Stripping utility 256 
TDCONVRT 246 
TDH386.SYS 241 
TDREMOTE 303 
virtual debugger (TD386) 240 

Esc key 27, 314 
Evaluate/Modify (Data menu 

command) 83, 137, 333 
evaluating expressions See 

expressions, evaluating 
EXE files 2, 52, 78, 255 

converting to COM 255 
dumping 259 
packing 257 

Execute (Set Action command) 113 
Execute To (Run menu command) 37, 

43, 75 
exiting 34, 61 
expanded memory specification See 

EMS 
Expression True (Breakpoints/ 

Condition local command) 115, 
121 

Expression True Global (Breakpoints 
menu command) 110, 122 

expressions 137 
assembler 149 
C syntax 141, 338 
defined 338 
display format 83, 151 
evaluating 137 

scope 140 
inspecting 105 
Pascal syntax 147 
side effects 146 

Extended (Data pane/Display As 
local command) 169 

Index 

F 
FAR instruction 173 
Fast Screen Update command 277 
fatal errors 314 
File (File window local command) 

134 
File (Module window local 

command) 129 
File menu 185 
File window 25, 131, 191 

local menu 132 
files 25 

ASCII 132, 134, 258 
COM 254, 256, 257 
configuration 56 

command line option for 54 
saving macros to 78 
saving options to 60 

DOS commands 248 
dumping258 
editing 131, 135 
examining 125-135 
EXE 2, 52, 78, 255 

converting to COM 255 
dumping 259 
packing 257 

HELPME!.DOC 9 
hex 132, 134 

dumping 259 
inspecting 128 
LIB 259 
lists 197 
MAP257 
OBJ 260 
README8 
remote 248 
searching 129, 133 
source 125 

extensions 138 
switching 129, 134 
TDS 255, 257 
unarchiving 10 
unpacking 10 
watching 128 

flags (Numeric Processor window) 
179 

347 



Flags pane 155 
local menu 164, 191 

Float (Data pane/Display As local 
command) 169 

floating-point numbers 177 
floating-point registers 179 
Follow commands 

(Code pane local menu) 159 
(Data pane local menu) 167 
(Stack pane local menu) 172 

formatting 
expressions 83, 151 
integers 58 

Function Return commands 
(Data menu) 84 

functions 
c 145 
defined 2 
device driver interface 290 
inspecting 93, 98 

G 
Get Info command 71 
Global (Breakpoints window local 

command) 116, 121 
global menus See menus, pull-down 
Global pane 65 

local commands 66 
Global Symbol pane 

local menu 193 
glossary 337-340 
Go to Cursor (Run menu command) 

37, 43, 74 
Goto commands 

(Code pane local menu) 158 
(Data pane local menu) 166 
(File window local menu) 133 
(Module window local menu) 130 
(Stack pane local menu) 171 

graphics display buffer 277 
graphics image 56 

H 
-h option 53, 282, 302 
hardware 

debugger 285 

348 

debuggers 
virtual debugging 287 

Hardware (Breakpoints/Condition 
local command) 115 

hardware, video 55 
hardware breakpoint 

recursive entry 297 
hardware breakpoints 

enabling 296 
Hardware menu (Breakpoints 

window /Condition local 
command) 287 

hardware requirements 1 
heap size 54 
help 30, 35 

command-line options 53, 282 
context-sensitive 31 
directories 278 
INSTALL 10 
reference line 31, 35 
TD386 239 
TDREMOTE 302 
Turbo Debugger utilities 245 

Help window 31 
HELPME!.DOC file 9 
hex data 333 
hex files 132 

dumping 259 
hex integers 59 
history lists 21, 280, 307, 338 
hot keys 18, 183 

enabling 279 
Enter key 29 

hyphens in command-line options 52 

I 
-i option53 
IBM PC Convertible and NMI See 

HELPME!.DOC 
ID-switching 53, 262, 281 
In Byte (Code pane I/O local 

command) 162 
Increment (Register pane local 

command) 163 
initialization code 334 
Inspect commands 18 

Turbo Debugger User's Guide 



(Breakpoints window local menu) 
117 
(Data menu) 39, 45, 82 
(Global pane menu) 67 
(Inspector window local menu) 
105 

and arrays 41, 47 
(Module window local menu) 84, 

128 
(Stack window local menu) 70 
(Static pane menu) 68 
(Watches window local menu) 88 

inspecting 15 
Inspector windows 27, 88, 338 

arrays 91, 96, 101 
assembler 99, 100, 101, 102 
c 89, 90, 91, 92, 93 
function 93, 98 
local commands 103 
Pascal 94-98 
pointers 90, 96, 100 
record 97 
scalar 89, 94, 99 
strucs and unions 102 
structures and unions 92 

installation 9, 271-283 
saving 282 

instruction mnemonics 
inline assembler 267 

instruction opcode 178 
instruction pointer 178 
Instruction Trace (Run menu 

command) 75 
instructions 

80386 240 
ADD157 
CALL 157, 173 
displaying 160 
FAR 173 
fetching 288 
inline 267 
JMP 157, 173 
MOV157 
NEAR 173 
operands 174 
RET 157, 218 
RETF157 
stepping over 7 4 

Index 

strings 174 
Integer Format (Environment menu 

command)58 
integers 

displaying 276 
Interrupt (Get Info message) 73 
interrupt key 76, 279 
interrupts 262 

NMI 260 
vectors 264 

I/0 (Code pane local command) 161 
IPTR See instruction pointer 

J 
JMP instruction 157, 173 
jumps in assembly code 220 

K 
Keys command 279 
keystroke recording See macros 

L 
-1option54 
Language (Options menu command) 

57, 138 
LIB files 259 
library files 259 
license statement, Borland 4 
Line (Module window local 

command) 129 
line numbers in overriding scopes 

139 
List pane (Breakpoints window) local 

menu 188 
list panes 195 
Load command 78 
Loaded (Get Info message) 72 
local menus See menus, pop-up 
Local Symbol pane 

local menu 193 
local system and files 248 
Locals (Stack window local 

command) 70 
Log commands 

(Breakpoints/Set Action local 
menu) 123 

349 



(Set Action local menu) 113 
log files 119-120 

length 276 
variables 123 

Log window 24, 117, 191 
Log window local menu 119 
Logging (Log window local 

command) 120 
Long (Data pane/Display As local 

command) 168 
Long Follow (Data pane local 

command) 167 
lowercase vs. uppercase 55, 281 

M 
-m option 54 
macros 23, 77 

saving60 
saving to a configuration file 78 

Macros menu 57 
MAP files 257 
MASM 224, 267 
Maximum Tiled Watch command 276 
MD CTDRF command) 252 
memory 

address 155 
assembler 173 
breakpoints 109, 114, 121, 122 
consumption 264 
displaying 26 
EMS 50, 71, 264, 281, 338 
error messages 299 
high 237 
loading programs 261 
reserving 238 
saving 277 
variables 

223 
virtual debugging 237 

menus 
local See menus, pop-up 
menu bar339 
menu tree 198 
pop-up 19, 187, 339 
pull-down 17, 35, 339 
pull-down vs. pop-up 19 

messages See error messages 

350 

Microsoft 7, 51, 246 
Microsoft Macro Assembler 224 
Mixed (Code pane local command) 

156, 160, 333 
mnemonics See instructions 
module, defined 2 
Module (Module window local 

command) 129 
Module window 24, 126, 191 

local menu 127 
MOY instruction 157 
Move (Data pane/Block local 

command) 170 
Move/Resize command 29 
moving windows See windows, 

moving and resizing 
MS-LINK247 
multi-language programs 

debugging with Turbo Debugger 
See HELPME!.DOC 

N 
NEAR instruction 173 
NEC MultiSpeed and NMI See 

HELPME!.DOC 
New CS:IP (Code pane local 

command) 160 
New Expression (Inspector window 

local command) 105 
Next commands 

(Data pane local menu) 166 
(File window local menu) 134 
(Module window local menu) 130 

Next Pane Cycle command 29 
NMI281 
No Program Loaded (Get Info 

message) 72 
null modem cable 300 
number sign(#) in scope overriding 

139 
Numeric Processor (View menu 

command) 178 
Numeric Processor window 26, 178, 

192 

0 
OBJ files 260 

Turbo Debugger User's Guide 



object files 260 
OFFSET operator 173 
Open Log File (Log window local 

command) 119 
operands 

defined 339 
order of 219 

operators 
assembler 150 
c 144, 206 
defined 339 
immediate operands 157 
OFFSET173 
Pascal 148 
postfix and prefix 339 

optimization of code 331 
options See command-line options 
Options menu 56, 187 
Origin commands 

(Code pane local menu) 158 
(Module window local menu) 71, 
130, 141 
(Stack pane local menu) 172 

OS Shell command 61, 240 
Out Byte (Code pane 1/0 local 

command) 162 
output 26 

p 
panes See windows, panes 
parameters, defined 2 
parsing 

Turbo Debugger versus Turbo 
languages See HELPME!.DOC 

Pascal See also Turbo Pascal 
arrays 96 
boundary errors 216 
constants 147, 334 
CPU window 336 
exit procedures 334 
expressions 138, 147 

calling routines 149 
functions 2, 98, 215 

calling 149 
initialization code 334 
nested routines 213 
null statements 214 

Index 

operators 148 
pointers 96, 212 
procedures 2, 149 
range-checking 217 
records 97 
scalars 94 
scope 214 
stack335 
string and set temporaries 335 
strings 148 
subprograms 2 
symbols 147 
type conversion 335 
unit overriding 140 
units 2 

Pass Count (Breakpoints window 
local command) 115, 121 

PATH (DOS command) 339 
Path for Source (Options menu 

command) 60, 127 
period (.) in scope overriding 139 
Periscope 12 
Periscope I board 260 
pointers 

in C 207 
inspecting 90, 96, 100 
Pascal 212 

pop-up menus See menus, pop-up 
Previous commands 

(Code pane local menu) 159 
(Data pane local menu) 167 
(Module window local menu) 129 
(Stack pane local menu) 172 

PROC directive 219 
processors See 80386 processor; 

80x86 processors; CPU 
program output 26 
Program Reset (Run menu 

command) 7 4, 77 
programs 

breaking out of See 
HELPME!.DOC 
controlling execution 63 
current location 155 
current state 64 
data modifying 81 
designing 225 
executing 36, 43 

351 



executing in Turbo Debugger See 
HELPME!.DOC 
interrupting 76 
loading in memory 261 
modifying 173 
multi-language 

debugging See HELPME!.DOC 
patching 154 
preparing for Turbo Debugger 50 
reloading 34, 77 

using macros 78 
running 73 
stack pointer 155 
terminating 76 
testing 224 
why stopped 72 

prompt boxes 21, 196, 307 
Prompting (fDINST command) 279 
pseudovariables 142 
pull-down menus See menus, pull­

down 

Q 
question mark (?) search wildcard 

130, 134, 197 
Quit command 61, See also exiting 

R 
$R (Pascal compiler option) 217 
-r option 54, 301 
Range (Inspect window local 

command)96 
Range (Inspector window local 

command) 104 
range-checking bugs 217 
RD (TDRF command) 252 
Read (Data pane/Block local 

command) 170 
Read Word (Code pane 1/0 local 

command) 162 
README.COM 8 
README file 8 
Real (Data pane/Display As local 

command) 169 
records 

inspecting 97 
recursion 65, 70 

352 

reference line 31 
Register pane (CPU window) 

local menu 162, 190, 192 
Register pane (Numeric Processor 

window) 179 
local menu 180 

registers 142 
80386/80387 269 
16-bit vs. 32-bit 164 
altering 222, 333 
CS157 
DS165 
floating-point 179 
1/0161 
multiplication 222 
preserving 220 
Turbo C code 175 

Registers 32-bit (Register pane local 
command) 164 

Registers window 26, 175 
reloading programs 34, 77 
remote debugging See.debugging, 

remote 
Remote File Transfer utility 248 

CD command 252 
command-line options 249 
COPY command 250 
COPYFROM command 250 
DEL command 251 
DIR command 251 
MD command 252 
messages 253 
RD command 252 
REN command 251 

remote system and files 248 
Remove (Macros menu command) 58 
Remove commands 

(Breakpoints window local menu) 
116 
(Watches window local menu) 87 

REN (TDRF command) 251 
resizing windows See windows, 

moving and resizing 
Restore Configuration command 

(Options menu) 283 
Restore Options (Options menu 

command)60 
RET instruction 157, 218, 219 

Turbo Debugger User's Guide 



RETF instruction 157 
-rp (TDRF option) 249 
-rp option 55 
-rs (TDRF option) 249 
-rs option 55 
Run (Run menu command) 73 
Run menu 73, 186 

s 
-s (Symbol Table Stripping utility 

option) 255 
Save menu 283 
Save Options (Options menu 

command) 30, 60, 78 
saving 

layouts 30 
windows30 

-sc option 55 
scalars 

byte lists 141 
defined 339 
inspecting 89, 94, 99 

scope 86, 110 
defined 337 
implied 140 
overriding 139, 147 
Pascal 214 
symbols 138 

screen output 
graphics and text-based programs 
See HELPME!.DOC 

Screen Size (Environment menu 
command)59 

screens 
number of lines 276 
snowy277 

-sd option 55 
Search commands 

(Code pane local menu) 159 
(Data pane local menu) 166 
(File window local menu) 133 
(Module window local menu) 22, 
129 

searching 
incremental 29 
wildcards 130, 134, 197 

select by typing 29 

Index 

semicolons (;) 
in C 208 
superfluous 214 

Set (Data pane/Block local 
command) 170 

Set Action (Breakpoints window 
local command) 112 

shortcuts See hot keys 
side effect 

defined 339 
side effects 83, 123, 146, 208 
snowy screens 277 
software requirements 1, 52 
Source (Language menu command) 

138 
Source Debugging (Turbo C 

command)50 
Source Directories (TDINST 

command) 278 
source files 2, 52 

examining 125 
extensions 138 

SS:BP 175 
SS:SP 155, 172 
stack 

defined 339 
Pascal 335 

stack allocating 219 
STACK directive 219 
Stack pane 

local menu 171, 190 
Stack window 24, 68, 193 
starting Turbo Debugger 49 
startup customization 274 
Static pane 65 

local commands 67 
status blocks 294 
Status pane (Numeric Processor 

window) 179 
local menu 181, 192 

Step (Get Info message) 73 
Step Over (Run menu command) 74 
stepping 15, 340 
Stop Recording (Macros menu 

command)58 
Stopped At (Get Info message) 72 
strings 

C143 

353 



Pascal 148 
strings in byte lists 141 
structures 340 
structures and unions 

inspecting 92, 102 
swapping displays 275 
switches See command-line options 
Symbol Table Stripping utility 254 

error messages 256 
options 255 

symbols See also variables 
accessing 138 
assembler 149 
c 141 
command-line options 55 
defined 340 
disassembled 157 
Pascal 147 
scope 138 

syntax 
Turbo Debugger versus Turbo 
languages See HELPME!.DOC 

system crashes 262 

T 
tab column width 276 
Tab Size (Environment menu 

command)59 
Tandy lOOOA and NMI See 

HELPME!.DOC 
TCDEMO.C33 
TD386.EXE 238 
TD.EXES 
TD.OVL8 
TDCONFIG.TD 56 
TDCONVRT.EXE 51, 246 
TDH386.SYS 11, 115, 238, 239, 241, 

285,290 
TDHELP.TDH 8 
TDINST.EXE 271 
TDMAP.EXE 257 
TDNMl.EXE 260 
TDP ACK.EXE 257 
TDREMOTE 248, 299 

messages 303 
starting 300 

TDREMOTE.EXE 300 

354 

TDRF See Remote File Transfer 
utility 

TDS files 255, 257 
TDSTRIP See Symbol Table Stripping 

utility 
technical support, Borland 5 
Terminated (Get Info message) 72 
terminating programs 76 
text panes 194 
TLINK 50, 254 
Toggle commands 

(Breakpoints menu) 109, 120 
(Control pane/Numeric Processor 
window local menu) 182 
(Flags pane local menu) 165 
(Status pane/Numeric Processor 
window local menu) 181 

TPC.EXE 230 
TPDEMO.P AS 33 
Trace (Get Info message) 72 
Trace Into (Run menu command) 37, 

43, 74 
tracepoints 107, 340, See also 

breakpoints 
tracing 15, 36, 43, 340 
Turbo Assembler 1, 52, 267, See also 

assembler programming 
debugging preparation 51 
Quirks mode 224 
vs. Turbo Debugger assembler 173 

Turbo C 1, 52, 142, 205, See also C 
programming language 
code generation 175 
code optimizing 331 
debugging preparation 50 
linking to 224 

Turbo Directory command 278 
TURBO.EXE 230 
Turbo Pascal 1, 52, 65, 217, See also 

Pascal 
compiling 230 
debugging preparation 50, 230 
tutorial 230 
uninitialized variables 212 

tutorial 33 
type conversion 88, 104, 338 

C146 

Turbo Debugger User's Guide 



Pascal 335 
typecasting See type conversion 

u 
unarchiving files 10 
underscore U in C symbols 141 
Undo Close command 36 
unions See structures and unions 
units in Pascal 2 
unpacking files 10 
Until Return (Run menu command) 

37, 43, 75 
updating 

user screen 274 
uppercase vs. lowercase 55, 281 
user interface 16 

context sensitivity 18 
getting help 30-32 
global menus 17 
history lists 21 
local menus 19 
macros 23 
windows 23, 23-30 

user screen updating 274 
User Screen window 26, 303 
utilities 

help 245 
TDCONVRT 246 
TDMAP257 
TDPACK257 
TDRF 248, 303 
TDSTRIP254 
TDUMP258 

v 
-v (TCC option) 50 
/v (TLINK option) 50, 254 
variables 25, 64, See also symbols 

C auto-variables 206, 208, 337 
changing 16, 42, 48, 67 
decrementing 216 
inspecting 39, 45 
logging values 123 
modifying 81 
pointing at 84 
tracing 75 
uninitialized 212 

Index 

watching 16, 85 
Variables window 25, 64, 193 
vectors 264 
-vg option 56 
VGA 56, 275, 276 
video displays 55 
View menu 185 
viewing15 
virtual debugging See debugging, 

virtual 
-vn option 56 
void functions 2 
-vp option 56 

w 
-w (TDRF option) 249 
-w option 239 
Watch commands 

(Data menu) 84 
(Module window local menu) 128 
(Watches window local menu) 87 

Watches window 24, 38, 45, 85, 193 
changing values 88 
customizing 276 
editing 87 
inspecting 88 
removing expressions 87 

watching 16 
watchpoints 107, 340, See also 

breakpoints 
wildcards 340 

in searches 130, 197 
Window menu 186 
windows 35, 340 

active 27, 36, 337 
Breakpoint 24 
CPU25 
cycling through 28 
Dump26 
duplicates 27 
File 25 
Help31 
Inspector 27, 39, 46 
Log24 
Module24 
movement commands 196 
moving and resizing 29, 36 

355 



Numeric Processor 26 
pane 337, 339 
panes29 

lists 29, 195 
text 194 

Registers 26 
resizing See windows, moving 

and resizing 
saving 30 
Stack 24, 68 
User Screen 26 
Variables 25, 64 
View menu 23 
Watches 24 
zooming 30 

356 

Word (Data pane/Display As local 
command) 168 

WordStar 194, 195, 259, 279 
Write (Data pane/Block local 

command) 171 
Write Word (Code pane 1/0 local 

command) 162 

z 
Zero commands 

(Register pane local menu) 163 
(Register pane/Numeric Processor 
window local menu) 180 

-zi (Turbo Assembler option) 51 
zooming windows 30 

Turbo Debugger User's Guide 



BORLAND 

BORLAND INTERNATIONAL, INC , 1800 GREEN HILLS ROAD, P.O. BOX 660001 , scons VALLEY, CA 95066-0001 PART# 15MN-AS003-10 BOR 0847 


