
TURB
DEBU ER

BORLAND .

Turbo Debugge~
Version 2.0

User's Guide

BORlAND INTERNATIONAL. INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, scons VALLEY, CA 95066-0001

Rl

Copyright © 1988, 1990 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders.

PRINTED IN THE USA.
10 9 8

c o N T E N T s

Introduction 1 Local menus 22
Hardware and software requirements 1 His tory lessons . 23
A note on terminology 2 Automatic name completion 24
Wha t's in the manual 3 Incremental matching 25
How to contact Borland 5 Making macros ~ 25

Chapter 1 Getting started 7
Window shopping 25

Windows from the View menu 26
The distribution disks 8 Module window 26
The README file 8 Watches window 26
The HELPME!.DOC file 8
Turbo Debugger utilities 9

Breakpoints window 26
Stack window 27

Installing Turbo Debugger 10
Unzipping example files 10

Log window 27
Variables window 27

LCD and B /W monitors 11 File window 27
Hardware debugging 11 CPU window 28
Where to now? 11

Programmers learning a Turbo
language 12

Dump window 28
Registers window 28
Numeric Processor window 29

Programmers already using a Turbo
language 12

Execution History window 29
Hierarchy window 29

Chapter 2 Debugging and Turbo
Debugger 13

What is debugging? 13
Is there a bug? 14
Where is it? 14

Duplicate windows 30
User screen 30
Inspector windows 30
The active window 31
What's in a window 31

What is it? 14 Working with windows 33

Fixing it 14
What Turbo Debugger can do for you ... 15

What Turbo Debugger won't do 16
How Turbo Debugger does it 17

The Turbo Debugger advantage 17
Menus and dialog boxes 18

Using the menus 18
Dialog boxes 20

Knowing where you're at 21

Window hopping 33
Moving and resizing windows ... 34
Closing and recovering windows . 35
Saving your window layout 36

Getting help 36
Online help 37
The status line 38

In a window 38
In a menu or dialog box 39

Chapter 3 A quick example 41
The demo programs 41
Using Turbo Debugger 43

The menus 43
The status line 43
The windows 44

Using the C demo program 45
Setting breakpoints 47
Using watches 48
Examining simple C data objects 48
Examining compound C data objects .. 50
Changing C data values 50

Using the Pascal sample program 52
Setting breakpoints 53
Using watches 54
Examining simple Pascal data objects .. 55
Examining compound Pascal data
objects 57
Changing Pascal data values 57

Chapter 4 Starting Turbo
Debugger 61

Preparing programs for debugging 61
Preparing Turbo C programs 62
Preparing Turbo Pascal programs 62
Preparing Turbo Assembler programs . 63
Preparing Microsoft programs 63

Running Turbo Debugger 63
Command-line options 64

Loading the configura tion file (-c) 64
Display updating (-d) 65
Getting help (-hand -?) 65
Process ID switching (-i) 65
Keystroke recording (-k) 65
Assembler-mode startup (-1) 66
Setting heap size (-m) 66
Mouse support (-p) 66
Remote debugging (-r) 67
Source code handling (-s) 67
Video hardware (-v) 68
Overlay pool size (-y) 68

Configuration files 69
The Options menu 69

The Language command 69

ii

The Macros menu 70
Create 70
Stop Recording 70
Remove 70
Delete All 70

Display Options command 70
Display Swapping 71
Integer Format 72
Screen Lines 72
Tab Size 72

Pa th for Source command 72
Save Options command 72
Restore Options command 73

Running DOS in Turbo Debugger 73
Returning to DOS 74

Chapter 5 Controlling program
execution 75

Examining the current program state 76
The Variables window 76

The Global pane local menu 77
Inspect 77
Change 78

The Static pane local menu 78
Inspect 78
Change 78

The Stack window 79
The Stack window local menu 79

Inspect 79
Locals 79

The Origin local menu command 80
The Get Info command 80

The Run menu 82
Run 83
Go to Cursor 83
Trace In to 83
Step Over 83
Execute To 84
Until Return 84
Animate 85
Back Trace 85
Instruction Trace 85
Arguments... 85
Program Reset 86

The Execution History window 86 Pascal data Inspector windows 106
The Instructions pane 86 Scalars 106

The Instructions pane local menu ... 87 Pointers 106
Inspect 87 Arrays 107
Reverse Execute 87 Records 107
Full History 88 Procedures and functions 108

The Keystroke Recording pane 88 Assembler data Inspector windows .. 108
The Keystroke Recording pane local Scalars 108
menu 88 Pointers 109

Inspect 88 Arrays 109
Keystroke Restore 89 Structures and unions 110

Interrupting program execution 89 The Inspector window local menu 111
Ctrl-Break 89 Range 111

Program termination 90 Change 111
Restarting a debugging session 90 Inspect 111

Reloading your program 90 Descend . 112
Keystroke macro recording and New Expression 112
playback 91 Type Cast. 112

Opening a new program to debug 92
Changing the program argumen ts 93 Chapter 7 Breakpoints 115

The Breakpoints menu 116
Chapter 6 Examining and modifying Toggle 117

data 95 At 117
The Data menu 96 Changed Memory Global. 117

Inspect 96 Expression True Global... 117
Evaluate/Modify... 96 Hardware Breakpoint 117
Add Watch... 99 Delete All 117
Function Return 99 Scope of breakpoint expressions 118

Pointing at data objects in source files ... 99 The Breakpoints window 118
The Watches window 100 The Breakpoints window local menu . 118

The Watches window local menu 101 Set Options.. 119
Watch 101 Hardware Options 121
Edit 101 Add 121
Remove l01 Remove 122
Delete All 101 Delete All 122
Inspect 101 Inspect 122
Change 101 The Log window 122

Inspector windows 102 The Log window local menu 123
C data Inspector windows 103 Open Log File 123

Scalars 103 Close Log File 123
Pointers 103 Logging 123
Arrays l04 Add Comment 124
Structures and unions 105 Erase Log 124
Functions . 105 Simple breakpoints 124

iii

Conditional breakpoints and pass
counts 124
Global breakpoints 125
Breaking for changed data objects 126
Logging variable values 127
Executing expressions 127

Chapter 8 Examining and modifying
files 129

Examining program source files 129
The Module window 130
The Module window local menu 131

Inspect 131
Watch 132
Module 132
File 132
Previous 132
Line 132
Search 132
Next 133
Origin 133
Goto 133
Edit 133

Examining other disk files 134
The File window 134
The File window local menu 134

Goto 135
Search 135
Next 136
Display As 136
File 136
Edit 136

Chapter 9 Expressions 137
Choosing the language for expression
evaluation 138
Code addresses, data addresses, and line
numbers 139
Accessing symbols outside the current
scope 139

Scope override syntax 140
Implied scope for expression
evalua tion 142

Byte lists 143

iv

C expressions 143
C symbols 143
C register pseudovariables 144
C constants and number formats 145
Esca pe sequences 145
C opera tors precedence 146
Executing C functions in your pro-
gram 147
C expressions with side effects 148
C reserved words and type
conversion 148

Pascal expressions 149
Pascal symbols 149
Pascal constants and number formats. 149
Pascal strings 150
Pascal opera tors and opera tor
precedence 150
Calling Pascal functions and
procedures 151

Assembler expressions 151
Assembler symbols 151
Assembler constants 152
Assembler operators 152

Format control 153

Chapter 10 C++ and object-oriented
Pascal debugging 155

The Hierarchy window 155
The Object Type List pane 156

The Object Type/Class List pane local
menu 156

Inspect 156
Tree 157

The Hierarchy Tree pane 157
The Hierarchy Tree pane local
menu(s) 157
The Parent Tree pane local menu .. 158

Object type / class Inspector windows .. 158
The object type/class Inspector window
local menus 159

Inspect ~ 159
Hierarchy 159
Show Inherited 159
Inspect 160

Hierarchy 160 The Flags pane local menu 174
Show Inherited 160 Toggle 174

Object instance Inspector windows 160 The Data pane 174
The object/ class instance Inspector The Data pane local menu 175
window local menus 161 Goto 175

Range 161 Search 175
Change 161 Next 176
Methocls 161 Change 176
Show Inherited 162 Follow 176
Inspect 162 Near Code 176
Descend 162 Far Code 176
New Expression... 162 Offset to Data 176
Type Cast... 162 Segrnent:Offset to Data 177
Hierarchy 162 Base Segrnent:O to Data 177

The middle and bottom panes 162 Previous 177

Chapter 11 Assembler-level
debugging 165

When source debugging isn't enough .. 165
The CPU window 166
The Code pane 168

The disassembler 168
The Code pane local menu 169

Goto 169
Origin 169
Follow 169
Caller 170
Previous . 170
Search 170
Mixed 171
New CS:IP 171
Assemble 171
I/O 172

In Byte 172
Out Byte 172
Read Word 172
Write Word 172

The Register and Flags panes 173
The Register pane local menu 173

Increment 173
Decrement 173
Zero 173
Change 173
Registers 32-bit 174

Display As . 177
Byte 177
Word 177
Long 177
Comp 178
Float 178
Real 178
Double 178
Extended 178

Block 178
Clear 178
Move 179
Set 179
Read 179
Write 179

The Stack pane . 179
The Stack pane local menu 179

Goto 180
Origin 180
Follow 180
Previous 180
Change 180

The assembler 180
Operand address size overrides 181

Memory and immediate operands .181
Operand data size overrides 182
String instructions 182

The Dump window 182
The Registers window 183

v

Turbo C code generation 183 Module window 200

Chapter 12 The 80x87 coprocessor
chip and emulator 185

The 80x87 chip vs. the emulator 185
The Numeric Processor window 186

The Register pane 186
The 80-bit floating-point registers .. 186
The Register pane local menu 187

Zero 187
Empty 187
Change 187

The Control pane 187
The control bits 187
The Control pane local menu 187

Numeric Processor window 201
Register pane 201
Status pane 201
Control pane 201

Hierarchy window 202
Object Type/Class List pane 202
Hierarchy Tree pane 202
Parent Tree pane 202

Registers window menu 202
Stack window 202
Variables window 202

GlobalSymbolpane 203
LocaISymbolpane 203

Watches window 203
Toggle 188

The Status pane 188
The status bits 188

Inspector window 204
Object Type/Class Inspector
window 204

The Status pane local menu 188
Toggle 188

Object/ class instance Inspector
window 204

Chapter 13 Command reference 191
Hot keys 191
Commands from the menu bar 194

Text panes 205
List panes 206
Commands in input and history list

The == (System) menu 194
The File menu : 194

boxes 206
Window movement commands 207

The View menu 194 Wildcard search templates 208

The Run menu 195 Complete menu tree 208

The Breakpoints menu 195
The Data menu 195
The Options menu 196
The Window menu 196
The Help Menu 196

The local menu commands 197
Breakpoints window 197
The CPU window menus 197

Code pane 198

Chapter 14 How to debug a
program 211

When things don't work 211
Debugging style 212

Run the whole thing 213
Incremental testing 213

Types of bugs 213
General bugs 214

Hidden effects 214
Data pane 198
Flags pane . 199
Register pane 199
Stack pane . 199

Dump window 200
File window 200
Log window menu 200

Assuming initialized data 214
Not cleaning up 214
Fencepost errors 215

C-specific bugs 215
Using uninitialized auto variables .. 215
Confusing = and == 216
Confusing operator precedence 216

vi

Bad pointer arithmetic 216
Unexpected sign extension 217
Unexpected truncation 217
Misplaced semicolons 217
Macros with side effects 218
Repeated auto variable names 218
Misuse of auto variables 218
Undefined function return value ... 218
Misuse of break keyword 219
Code has no effect 219

Pascal-specific bugs 219
Uninitialized variables 220
Dangling pointers 220
Scope confusion 221
Superfluous semicolons 222
Undefined function return value ... 223
Decrementing Word or Byte
variables 224
Ignoring boundary or special cases . 224
Range errors 225

Assembler-specific bugs 226
Forgetting to return to DOS 226
Forgetting a RET instruction 226
Generating the wrong type of
return 227
Reversing operands 227
Forgetting the stack or reserving a too-
small stack 227
Calling a subroutine that wipes out
registers 227
Using the wrong sense for a conditional
jump 228
Forgetting about REP string
overrun 228
Relying on a zero CX to cover a whole
segment 228
U sing incorrect direction flag
settings . 228
U sing the wrong sense for a repea ted
string comparison 229
Forgetting about string segment
defaults 229

vii

Converting incorrectly from byte to
word operations 229
Using multiple prefixes 229
Relying on the operand(s) to a string
instruction . 229
Wiping out a register with
multiplication 229
Forgetting that string instructions alter
several registers 230
Expecting certain instructions to alter
the carry flag 230
Waiting too long to use flags 230
Confusing memory and immediate
operands 230
Causing segment wraparound 230
Failing to preserve everything in an
interrupt handler 230
Forgetting group overrides in operands
and data tables 231

Accuracy testing 231
Testing boundary conditions 231
Invalid data input 231
Empty data input 232

Debugging as part of program design .. 232
The sample debugging session 232
C debugging session 233

Looking for errors 233
Deciding your plan of attack 234
Starting Turbo Debugger 234
Inspecting 235
Breakpoin ts 235
The Watches window 236
The Evaluate/Modify dialog box 236
Eureka! 236

Pascal debugging session 238
Looking for errors 238
Deciding your plan of attack 239
Starting Turbo Debugger 240
Moving through the program 240
The Evaluate/Modify dialog box 241
Inspecting 242
Wa tches 243
Just one more bug... 244

Chapter 15 Virtual debugging on the
80386 processor 247

Equipment required for virtual
debugging 248
Installing the virtual debugger device
driver 248
Starting the virtual debugger 248
Differences between normal and virtual
debugging 250
TD386 error messages 251
TDH386.SYS error messages 252

Chapter 16 Protected-mode debugging
with TD286 253

Equipment required for the protected-mode
debugger 253
Installing the protected-mode
debugger 254
Starting the protected-mode debugger .. 254
Differences between Turbo Debugger and
protected-mode 254
Running TD286 on different machines .. 255

Chapter 17 Debugging TSRs and
device drivers 257

What's a TSR? 257
Debugging a TSR 258

Wha t's a device driver? 261
Debugging a device driver 263

Terminating the debugging session 265

Appendix A Summary of command-
line options 267

Appendix B Technical notes 269
Changed load address and free
memory 269
Crashing the system 270
Tracing through DOS and process ID
switching 270
Using the 8087/80287 math coprocessor and
emulator 270
Interrupts used by Turbo Debugger 271
Debugging using !NT 3 and !NT 1 271
Display-saving and mode-switching ... 272

Memory consumption 272
EMS support 272
Interrupt vector saving and restoring ... 273

Appendix C InUne assembler
keywords 275

Appendix D Customizing Turbo
De bugger 279

Running TDINST 280
Setting the screen colors 280

Customizing screen colors 280
Windows 280
Dialog boxes 281
Menus 282
Screen 282

The default colors 282
Setting Turbo Debugger display
parameters 283

Display Swapping 283
Integer Format 284
Beginning Display 284
Screen Lines 284
Tab Size 284
Maximum Tiled Watch 284
Fast Screen Update 285
Permit 43/50 Lines 285
Full Graphics Saving 285
User Screen Updating 285
Log List Length 286

Turbo Debugger options 286
Directories 286
Input and Prompting 287

History List Length 287
Interrupt Key 287
Set Key 287
Mouse Enabled 287
Beep on Error 287
Keystroke Recording 288
Control Key Shortcuts 288

Source Debugging 288
Language 288
Ignore Symbol Case 289

Miscellaneous Options 289

viii

NMI Intercept 289
Use Expanded Memory 289
Change Process ID 289
DOS Shell Swap Size 290
Spare Symbol Memory 290
Remote Debugging 290
Remote Link Port 290
Link Speed 290

Setting the mode for display 290
Default 290
Color 290
Black and White 291
Monochrome 291
LCD 291

Command-line options and installation
equivalents 291
When you're through... 293

Saving changes 293
Save Configuration File 293
Modify TD.EXE 293

Exiting TDINST 294

Appendix E Remote debugging 295
Setting up a remote debugging system . 296
Remote software installation 296

Starting the remote link 297
Starting Turbo Debugger on the remote
link 297

About loading the program to the
remote system 298

TDREMOTE command-line options .. 298
Remote debugging sessions 299

TDREMOTE messages 300

ix

Getting it all to work 302

Appendix F Dialog boxes and error
messages 303

Dialog boxes 303
Error messages 310

Fatal errors 310
Other error messages 311

Information messages 328

Appendix G Using Turbo Debugger
with different
languages 329

Turbo C tips 329
Compiler code optimizing 329
Accessing pointer data 330
Stepping through complex
expressions 330

Turbo Assembler tips 331
Looking at raw hex data 331
Source-level debugging 331
Examining and changing registers ... 331

Turbo Pascal tips 332
Stepping through initialization code .332
Stepping through exit procedures 332
Constants 332
String and set temporaries on the
stack 333
Clever typecasting 333
CPU window tips for Pascal 334

Glossary 335

Index 341

T A B L E s

2.1: What goes in a dialog box 20 C.2: 80386 instruction mnemonics 276
13.1: The function key and hot key C.3: 80486 instruction mnemonics 277

commands 192 C.4: 80386 registers 277
13.2: Text pane key commands 206 C.S: CPU registers 277
13.3: List pane key commands 206 C.6: Special keywords 277
13.4: Dialog box key commands 207 C.7: 8087/80287 numeric coprocessor
13.5: Window movement key instruction mnemonics 278

commands 208 C.8: 80387 instruction mnemonics 278
A.1: Turbo Debugger command-line D.1: Turbo Debugger command-line

options 268 options 291
C.1: 8086/80186/80286 instruction

mnemonics 276

x

F G u

2.1: Global vs.local menus 22
2.2: A history list in an input box 24
2.3: Can you spot the active window? ... 31
2.4: A typical window 32
2.5: The normal status line 38
2.6: The status line with Altpressed 38
2.7: The status line with elr/pressed 39
3.1: The startup screen showing

TCDEMO 42
3.2: The menu bar 43
3.3: The status line 43
3.4: The Module and Watches windows,

tiled 44
3.5: Program stops on return from function

showargs 46
3.6: A breakpoint at line 44 47
3.7: A C variable in the Watches window .48
3.8: An Inspector window 49
3.9: Inspecting a structure 50
3.10: The Change dialog box 51
3.11: The Evaluate/Modify dialog box ... 52
3.12: The program stops after returning from

a procedure 53
3.13: A breakpoint at line 121 54
3.14: A Pascal variable in the Watches

window 55
3.15: An Inspector window 56
3.16: Inspecting a record 57
3.17: The Change dialog box 58
3.18: The Evaluate/Modify dialog box ... 59
4.1: The Display Options dialog box 71
4.2: The Save Options dialog box 73
5.1: The Variables window 76
5.2: The Stack window 79
5.3: The Get Info text box 81
5.4: The Execution History window 86

xl

R E s

5.5: The Load Program dialog box 92
6.1: The Evaluate/Modify dialog box 97
6.2: The Watches window 100
6.3: A C scalar Inspector window 103
6.4: A C pointer Inspector window 104
6.5: A C array Inspector window 105
6.6: A C structure or union Inspector

window l05
6.7: A C function Inspector window 106
6.8: A Pascal scalar Inspector window .. 106
6.9: A Pascal pointer Inspector window . 107
6.10: A Pascal array Inspector window .. 107
6.11: A Pascal record Inspector window. 108
6.12: A Pascal procedure Inspector

window 108
6.13: An assembler scalar Inspector

window l08
6.14: An assembler pointer Inspector

window l09
6.15: An assembler array Inspector

window ll0
6.16: An assembler structure Inspector

window ll0
7.1: The Breakpoints window 118
7.2: The Breakpoint Options dialog box . 119
7.3: The Log window 122
8.1: The Module window 130
8.2: The File window 134
8.3: The File window showing hex data. 134
10.1: The Hierarchy window 156
10.2: An object type/ class Inspector

window 158
10.3: An object/ class instance Inspector

window 160
11.1: The CPU window 166
11.2: The Dump window 182

11.3: The Registers window 183
12.1: The Numeric Processor window ... 186
13.1: The Turbo Debugger menu tree ... 209
D.1: Customizing colors for windows ... 281
D.2: Customizing colors for dialog

boxes 282

xii

D.3: The Display Options dialog box ... 283
D.4: The User Input and Prompting dialog

box 287
D.5: The Source Debugging dialog box . 288
D.6: The Miscellaneous Options dialog

box 289

N T R o D u c T o

Turbo Debugger is a state-of-the-art, source-level debugger
designed for Borland Turbo language programmers and pro­
grammers using other' compilers who want a more powerful
debugging environment.

N

Multiple, overlapping windows, a combination of pull-down and
pqp-uP menus, and mouse support provide a fast, interactive
environment. An online context-sensitive help system provides
you with help during all phases of operation.

Here are just some of Turbo Debugger's features:

• uses the expanded Illemory specification (EMS) for debugging
large programs

• full C, Pascal, and assembler expression evalua tion

• reconfigurable screen layout
• assembler /CPU access when needed
• po~erful breakpoint and logging facility
• keystroke recording (macros)

• back tracing
• remote system for debugging large programs
• s~pport for 80386 and other vendors' debugging hardware
• full support for object-oriented programming in Turbo Pascal
·5.5 .

• full support for C++ in Turbo C++
• TSR and device driver debugging

Hardware and software requirements

Introduction

Turbo Debugger runs on the IBM PC family of computers,
including the XT and AT, the PS/2 series, and all true IBM

compatibles. DOS 2.0 or higher is required and at least 384K of
RAM. It runs on any 80-column monitor, either color or mono­
chrome. We recommend a hard disk. If you want to run Turbo
Debugger on a two-floppy system, you must use high-density
disks. You can also use 3.5-inch, 720K disks; INSTALL won't
install Turbo Debugger on these, so you will have to copy the files
over yourself.

¢ Turbo Debugger does not require an 8087 math coprocessor chip.

¢ To use Turbo Debugger with Borland products, you must have
Turbo Pascal 5.0 or later, Turbo C 2.0, Turbo C++, or Turbo
Assembler 1.0 or later. You must already have compiled your
source code into an executable (.EXE file) with full debugging
information turned on.

-=:> When you run Turbo Debugger, you'll need both the .EXE file and
the original source files. Turbo Debugger searches for source files
first in the directory where the compiler found them when it
compiled, second in the directory specified in the Options/Path
for Source command, third in the current directory, and fourth in
the directory the .EXE file is in.

A note on terminology

For convenience and brevity, we use a couple of terms in this
manual in slightly more generic ways than usual. These terms are
module, function, and argument.

Module Refers to what is usually called a module in C and in assembler,
but also to what is called a unit in Pascal.

Function Refers to both a C function and to what is known in Pascal as a
subprogram (or routine), which encompasses functions, procedures,
and object methods. In C, a function can return a value (like a
Pascal function) or not (like a Pascal procedure). (When a C
function doesn't return a value, it's called a void function.) In the
interest of brevity, we often use function in a generic way to stand
for both C functions and Pascal functions and procedures­
except, of course, in the language-specific areas of the manual.

Argument Is used interchangeably with parameter in this manual. This
applies to references to command-line arguments (or parameters),
as well as to arguments (or parameters) passed to procedures and
functions.

2 Turbo Debugger User's Guide

What's in the manual

Introduction

Here is a brief synopsis of the chapters and appendixes in this
manual:

Chapter 1: Getting started describes the contents of the distri­
bution disk and tells you how to load Turbo Debugger files into
your system. It also gives you advice on which chapter to go to
next, depending on your level of expertise.

Chapter 2: Debugging and Turbo Debugger explains the Turbo
Debugger environment, menus, and windows, and shows you
how to respond to prompts and error messages.

Chapter 3: A quick example leads you through a sample session-­
using either a Pascal or C program-that demonstrates many of
the powerful capabilities of Turbo Debugger.

Chapter 4: Starting Turbo Debugger shows how to run the
debugger from the DOS prompt, when to use command-line
options, and how to record commonly used settings in
configuration files.

Chapter 5: Controlling program execution demonstrates the
various ways of starting and stopping your program, as well as
how to restart a session or replay the last session.

Chapter 6: Examining and modifying data explains the unique
capabilities Turbo Debugger has for examining and changing data
inside your program.

Chapter 7: Breakpoints introduces the concept of actions, and
how they encompass the behavior of what are sometimes referred
to as breakpoints, watchpoints, and tracepoints. Both conditional
and unconditional actions are explained, as well as the various
things that can happen when an action is triggered.

Chapter 8: Examining and modifying files describes how to
examine and change program source files, as well as how to
examine and modify arbitrary disk files, either as text or binary
data.

Chapter 9: Expressions describes the syntax of C, Pascal, and
assembler expressions accepted by the debugger, as well as the
format control characters used to modify how an expression's
value is displayed.

3

4

Chapter 10: C++ and object-oriented Pascal debugging explains
the debugger's special features that let you examine objects in
Turbo Pascal 5.5 programs and classes in Turbo C++ programs.

Chapter 11: Assembler-level debugging explains how to view
and change memory as raw hex data, how to use the built-in
assembler and disassembler, and how to examine or modify the
CPU registers and flags.

Chapter 12: The 80x87 coprocessor chip and emulator discusses
how to examine and modify the contents of the floating-point
hardware or emulator.

Chapter 13: Command reference is a complete listing of all main
menu commands and all local menu commands for each window
type.

Chapter 14: How to debug a program is an introduction to
strategies for effective debugging of your programs.

Chapter 15: Virtual debugging on the 80386 processor describes
how you can take ad vantage of the extended memory and power
of an 80386 computer by letting the program you're debugging
use the full address space below 640K, as if no debugger were
loaded.

Chapter 16: Protected-mode debugging with TD286 tells you
how to use TD286 to run Turbo Debugger in protected mode,
freeing up memory for debugging large programs.

Chapter 17: Debugging TSRs and device drivers explains how to
debug terminate and stay resident programs and programs that
become resident at startup time with Turbo Debugger, and how to
load a symbol table manually.

Appendix A: Summary of command-line options is a summary
of all the command-line options that are completely described in
Chapter 4.

Appendix B: Technical notes is for experienced programmers. It
describes implementation details of Turbo Debugger that explain
how it interacts with both your program and with DOS.

Appendix C: Inline assembler keywords lists all instruction
mnemonics and other special words used for entering inline
8086/80286/80386 and 8087/80287/80837 instructions.

Turbo Debugger User's Guide

Appendix 0: Customizing Turbo Debugger explains how to use
the installation program (TDINST) to customize screen colors and
change default options.

Appendix E: Remote debugging explains how to use the
TDREMOTE utility so that you can run Turbo Debugger on one
system and the program you are debugging on another.

Appendix F: Dialog boxes and error messages lists all the
prompts and error messages that can occur, with suggestions on
how to respond to them.

Appendix G: Using Turbo Debugger with different languages
provides several tips when you're debugging programs written in
C, assembler, or Pascal.

Glossary is an alphabetical list of commonly used terms in this
manual, with short definitions.

How to contact Borland'

Introduction

The best way to contact Borland is to log on to Borland's Forum
on CompuServe: Type GO BOR from the main CompuServe menu
and choose "Borland Programming Forum B (Turbo Prolog,
Turbo Assembler, Turbo Debugger, & Turbo C)" from the Borland
main menu. Leave your questions or comments there for the
support staff to process.

If you prefer, write a letter with your comments and send it to

Borland International
Technical Support Department - Turbo Debugger
1800 Green Hills Road
P.O. Box 660001
Scotts Valley, CA 95066-0001, USA

408-438-5300 You can also telephone our Technical Support department. Please
have the following information handy before you call:

1. Product name and serial number on your original distribution
disk. Please have your serial number ready, or we won't be
able to process your call.

2. Product version number. The version number for Turbo
Debugger is displayed when you first load the program and
before you press any keys. If you are in Turbo Debugger,
choose About from the == (System) menu.

5

3. Computer brand, model, and the brands and model numbers
of any additional hardware.

4. Operating system and version number. (The version number
can be determined by typing VER at the MS-DOS prompt.)

5. Contents of your AUTOEXEC.BAT file.

6. Contents of your CONFIG.SYS file.

Recommended reading

6

Many leading publishers support Borland products with a wide
range of excellent books, serving everyone from beginning
programmers to advanced users. Here are a few titles that offer
additional information on Turbo Debugger and Tools:

Ackerman, Charles. Turbo Debugger and Tools: A Self-Teaching
Guide, John Wiley and Sons (New York: 1990).

Swan, Tom. Mastering Turbo Assembler, Howard W. Sams and Co.
(Carmel, IN: 1989).

Swan, Tom. Mastering Turbo Debugger and Tools, Howard W. Sams
and Co. (Carmel, IN: 1990).

Syck, Gary. The Waite Group's Turbo Assembler Bible, Howard W.
Sams and Co. (Carmel, IN: 1990).

Turbo Debugger User's Guide

c H

Chapter 1, Getting started

A p T E R

1

Getting started

Your Turbo Debugger package consists of a set of distribution
disks and the Turbo Debugger User's Guide (this manual). The
distribution disks contain all the programs, files, and utilities
needed to debug programs written in Turbo C, Turbo Assembler,
Turbo Pascal, and any program written with a Microsoft compiler.
In the README and the HELPME!.DOC files, the Turbo
Debugger package also contains documentation on subjects not
covered in this manual.

The Turbo Debugger User's Guide provides a subject-by-subject
introduction of Turbo Debugger's capabilities and a complete
command reference.

Before you get started using Turbo Debugger, you should make a
complete working copy of the distribution disks, then store the
original disks in a safe place. Use the original distribution disks as
your backup only, and run Turbo Debugger off of the copy you've
just made-the distribution disks are your only backup in case
anything happens to your working files.

H you are not familiar with Borland's no-nonsense license state­
ment, now's the time to read the agreement. Mail your filled-in
product registration card, so you'll be notified about updates and
new products as they become available.

7

The distribution disks

When you install Turbo Debugger on your system, files from the
distribution disks are copied to your working floppies or to your
hard disk. Just run INSTALL.EXE, the easy-to-use installation
program on your distribution disks. The distribution disks are
formatted for double-sided, double-density disk drives and can be
read by IBM PCs and close compatibles.

For a list of the files on your distribution disks, see the README
file on the Installation disk.

The README file

¢ It is very important that you take the time to look at the README
file on the Installation disk before you do anything else with
Turbo Debugger. This file contains last-minute information that
may not be in the manual. It also lists every file on the distri­
bution disks, with a brief description of each.

To access the README file, insert the Installation disk in drive A,
switch to drive A by typing A: and pressing Enter, then type README

and press Enter again. Once you are in README, use the i and J,
keys to scroll through the file. Press Esc to exit.

The HELPMELDOC file

8

Your Installation disk also contains a file called HELPME!.DOC,
which contains answers to problems that users commonly run
into. Consult it if you find yourself having difficulties. Among
other things, the HELPME!.DOC file deals with:

• Screen output for graphics and text-based programs
• Executing other programs while you are still using the

debugger

Turbo Debugger User's Guide

EI Breaking out of a program

a The syntactic and parsing differences between Turbo Debugger
and the Turbo languages

D Debugging multi-language programs with Turbo Debugger
[J Tandy lOOOA, IBM PC Convertible, or NEC MultiSpeed, and

other computers that use the NMI (nonmaskable interrupt)

Turbo Debugger utilities

Your Turbo Debugger package comes with several utility pro­
grams. Detailed information on these utilities is available on your
distribution disks. See the README file for how to access this
disk-based documentation.

Here is a brief description of each of the Turbo Debugger utilities:

IJ The CodeView to Turbo Debugger utility, TDCONVRT.EXE,
lets you debug C and assembler programs developed with
Microsoft compilers.

IJ The remote file transfer utility, TDRF.EXE, works in conjunction
with remote debugging and lets you issue basic file-
main tenance commands to a remote system.

r:I The symbol table stripping utility, TDSTRIP.EXE, lets you strip
the debugging information (the "symbol table") from your pro­
grams without relinking.

IJ TDP ACK.EXE lets you pack the debugging information.

IJ TDMAP.EXE appends debugging information to a .MAP file.
D Finally, TDUMP.EXE is a generic object module and .EXE file

disassembler program.
IJ Additionally, we give you a small TSR program, TDNMI.COM

that resets the breakout-switch latch if you are using a
Periscope I board.

¢ For a list of all the command-line options available for
TDCONVRT.EXE, TDRF.EXE, TDSTRIP.EXE, TDPACK.EXE,
TDMAP.EXE, or TDUMP.EXE, just type the program name and
press Enter. For example, to see the command-line options for
TDMAP.EXE, you would enter

TDMAP

Chapter 7 I Getting started 9

Installing Turbo Debugger

10

The Installation disks contain a program called INST ALL.EXE
that will assist you with the installation of Turbo Debugger 2.0.

To start the installation, change your current drive to the one that
has the INSTALL program on it and enter INSTALL. You are given
instructions in a box at the bottom of the screen for each prompt.

INSTALL copies all Turbo Debugger files onto your hard disk and
puts them into subdirectories. The default subdirectories are

Turbo Debugger directory: C: \ TD
Example subdirectory: C: \ TD

By default, all files from the distribution disks are placed in the
Turbo Debugger directory. !fyou would rather separate the demo
programs into their own subdirectory as well, edit the default
example files path before selecting START INSTALLATION.

You should read the README file to get further information
about Turbo Debugger after you install Turbo Debugger.

¢ For a list of all the command-line options available for
INSTALL.EXE, enter the program name followed by -h:

INSTALL -h

Unzipping
example files The Turbo Debugger distribution disks contain a file with a .ZIP

file name extension: TDEXAMPL.ZIP.

These files contain several other files that have been compressed
and placed inside an archive. You can de-archive them yourself
by using the UNZIP .EXE utility.

For example, entering

UNZIP TDEXAMPL

unpacks all the files stored in the TDEXAMPL.ZIP archive into
the current directory.

INSTALL gives you a choice of copying the .ZIP files intact or de­
archiving and copying all of the individual files onto your hard
disk during the installation process.

Turbo Debugger User's Guide

LCD and B/W
monitors If you have difficulty reading the text displayed by the INSTALL

utility, it accepts an optional 18 command-line parameter that
forces it to use black-and-white (BW80) mode:

A:INSTALL /B

Specifying the 18 parameter may be necessary if you are using an
LCD screen or a system that has a color graphics adapter and a
monochrome or composite monitor.

Hardware debugging

If you're using an 80386 system, you can install the TDH386.SYS
device driver supplied with Turbo Debugger. This device driver
will vastly speed up breakpoints that watch for changed memory
areas and I/O port accesses.

Copy this file to the directory where you keep your device drivers
and put a line in your CONFIG.SYS file that loads the driver, such
as

DEVICE = \SYS\TDH386.SYS

The next time you boot up your system, Turbo Debugger will be
able to find and use this device driver.

See the disk-based documentation on the hardware debugger
interface for complete information on this device driver interface.

¢ If you have a hardware debugging board (such as Atron,
Periscope, Purart Trapper, and so on), you may be able to use the
board with Turbo Debugger. Check with the vendor of your
board for its compatibility with Turbo Debugger.

Where to now?

Chapter 7, Getting started

Now that you've loaded all the files, you can start learning about
Turbo Debugger. Since this User's Guide is written for two types of
users, different chapters of the manual may appeal to you. The
following roadmap will guide you.

11

12

Programmers
learning a Turbo

language

Programmers
already using a

Turbo language

If you are just starting to learn one of the languages in the Turbo
family, you will want to be able to create small programs using it
before you learn about the debugger. What better way to learn
how to use the debugger than to have a real live problem of your
own to debug! After you have gained a working knowledge of the
language, work your way through Chapter 3, "A quick example,"
for a speedy tour of the major functions of Turbo Debugger. There
you'll learn enough about the features you need to debug your
first program; you'll find out about the debugger's more
sophisticated capabilities in later chapters.

If you are an experienced Turbo family programmer, you can
learn about the exciting new features of the Turbo Debugger
environment by reading Chapter 2, "Debugging and Turbo
Debugger." If it suits your style, you can then work through the
tutorial or, if you prefer, move straight on to Chapter 4, "Starting
Turbo Debugger." For a complete rundown of all commands, tum
to Chapter 13, "Command reference."

Turbo Debugger User's Guide

c H A p T E R

2

Debugging and Turbo Debugger

The simple truth is that no one's perfect; we all make mistakes.
Whether it's with simple things like walking or complicated
things like programming, we all stumble sometimes.

If you're a programmer, stumbling is a way of life. You hardly
ever write an error-free program the first time out the gate. That's
nothing to be ashamed of. Stumbling also implies picking yourself
up off the floor and trying again, and again, and maybe again. In
programming parlance, that's debugging.

What is debugging?

Debugging is the process of finding and correcting errors (''bugs'')
in your programs. It's not unusual to spend more time on finding
and fixing bugs in your program than on writing the program in
the first place. Debugging is not an exact science; the best debug­
ging tool you have is your own "feel" for where a program has
gone wrong. Nonetheless, you can always profit from a syste­
matic method of debugging.

Chapter 2, Debugging and Turbo Debugger 13

Is there a bug?

Where is it?

What is it?

Fixing it

14

The debugging process can be broadly divided into four steps:

1. Realizing you have an error
2. Finding where the error is

3. Finding the cause of the error
4. Fixing the error

The first step can be really obvious. The computer freezes up (or
hangs) whenever you run it. Or perhaps it crashes in a shower of
meaningless characters. Sometimes, however, the presence of a
bug is not so obvious. The program might work fine until you
enter a certain number (like 0 or a negative number) or until you
examine the output closely. Only then do you notice that the
result is off by a factor of .2 or that the middle initials in a list of
names are wrong.

The second step is sometimes the hardest: isolating where the
error occurs. Let's face it, you simply can't keep the entire pro­
gram in your head at one time (unless it's a very small program
indeed). Your best approach is to divide and conquer-break up
the program into parts and debug them separately. Structured
programming is perfect for this type of debugging.

The third step, finding the cause of the error, is probably the
second-hardest part of debugging. Once you've discovered where
the bug is, it's usually somewhat easier to find out why the pro­
gram is misbehaving. For example, if you've determined the error
is in a procedure called PrintNames, you have only to examine the
lines of that procedure instead of the entire program. Even so, the
error can be elusive and you might need to experiment a bit
before you succeed in tracking down.

The final step is fixing the error. Armed with your knowledge of
the program language and knowing where the error is, you can

Turbo Debugger User's Guide

See Chapter 14 for a more
detailed discussion of the

debugging process.

squash the bug. Now you run the program again, wait for the
next error to show up, and start the debugging process again.

Many times this four-step process is accomplished when you are
writing the program itself. Syntax errors, for example, prevent
your programs from compiling until they're corrected. The
Borland language products have built-in syntax checkers that
inform you of these errors and let you fix them on the spot.

But other errors are more insidious and subtle. They lie in wait
until you enter a negative number, or they're so elusive you're
stymied. That's where Turbo Debugger comes in.

What Turbo Debugger can do for you

Adding a full-feature
debugger to the compiler

itself would make it too big.

You must use a conversion
utility that we supply before

you debug a program
written In a Microsoft

language.

With the standalone Turbo Debugger, you have access to a much
more powerful debugger than exists in your language compiler.

You can use Turbo Debugger with any program written in C,
Pascal, or assembly language, either the Borland Turbo languages
or those from other manufacturers if the compiler generates
CodeView information. You can also debug any program created
with another manufacturer's language product, but you'll be
restricted to debugging on the assembly level-unless CodeView
information is present. Then you must use the TDCONVRT utility
described in the documentation on Turbo Debugger utilities on
your distribution disks.

Turbo Debugger helps with the two hardest parts of the debug­
ging process: finding where the error is and finding the cause of
the error. It does this by slowing down program execution so you
can examine the state of the program at any given spot. You can
even test new values in variables to see how they affect your pro­
gram. With Turbo Debugger, you can perform tracing, stepping,
viewing, inspecting, changing, and watching.

Tracing You can execute your program one line at a time.

Back tracing You can step backward through your executed
code, reversing the execution as you go.

Stepping You can execute your program one line at a time
but step over any procedure or function calls. If
you're sure your procedures and functions are

Chapter 2, Debugging and Turbo Debugger 15

What Turbo
Debugger won't

do

16

Viewing

Inspecting

Changing

Watching

error-free, stepping over them speeds up
debugging.

You can have Turbo Debugger open a special
window to show you the state of your program
from various perspectives: variables, their values,
breakpoints, the contents of the stack, a log, a
data file, a source file, CPU code, memory, regis­
ters, numeric coprocessor information, object or
class hierarchies, execution history, or program
output.

You can have Turbo Debugger delve deeper into
the workings of your program and show you the
contents of complicated data structures like
arrays.

You can replace the current value of a variable,
either globally or locally, with a value you
specify.

You can isolate program variables and keep track
of their changing values as the program runs.

You can use these powerful tools to dissect your program into
discrete chunks, confirming that one chunk works before moving
to the next. In this way, you can burrow through the program, no
matter how large or complicated, until you find where that bug is
hiding. Maybe you'll find there's a function that inadvertently
reassigns a value to a variable, or maybe the program gets stuck
in an endless loop, or maybe it gets pulled into an unfortunate
recursion. Whatever the problem, Turbo Debugger helps you find
where it is and what's at fault.

Turbo Debugger 2.0 has even been enhanced to let you debug
C++ and object-oriented Pascal programs. It is smart about objects
and classes, and it correctly handles late binding of virtual
methods or member functions so that it always executes and
displays the correct code.

With all the features built into Turbo Debugger, you might be
thinking that it's got it all. In truth, there are at least three things
Turbo Debugger won't do for you.

Turbo Debugger User's Guide

How Turbo

• Turbo Debugger does not have a built-in editor to change your
source code. Most programmers have their favorite editor and
are comfortable with it. You can, however, easily transfer con­
trol to your text editor by choosing the local Edit command
from a File window (more on local commands in a minute).
Turbo Debugger uses the editor you specified with the TDINST
installation program. Better still, if you have Turbo C++, you
can use the new Transfer feature to run Turbo Debugger from
inside the Turbo language's integrated environment.

• Turbo Debugger cannot recompile your program for you. You
need the original program compiler (like Turbo Pascal or Turbo
C) to do that.

• Turbo Debugger does not take the place of thinking. When
you're debugging a program, your greatest asset is simple
thought. Turbo Debugger is a powerful tool, but if you use it
mindlessly, it's unlikely to save you time or effort.

Debugger does it Here's the really good news: Turbo Debugger gives you all this
power and sophistication, and at the same time it's easy-dare we
say intuitive-to use.

Turbo Debugger accomplishes this artful blend of power and ease
by offering an exciting environment. The next section examines
the advantages of Turbo Debugger's revolutionary environment.

The Turbo Debugger advantage

Once you start using Turbo Debugger, we think you'll be totally
addicted to it. Turbo Debugger has been especially designed to be
as easy and convenient as possible. To this end, Turbo Debugger
offers you these powerful features:

.. Convenient and logical global menus.

• Context-sensitive local menus throughout the product, which
practically do away with memorizing and typing commands.

• Dialog boxes in which you can choose, set, and toggle options
and type in information.

• When you need to type, Turbo Debugger keeps a history list of
the text you've typed in similar situations. You can choose text
from the history list, edit the text, or type in new text.

Chapter 2, Debugging and Turbo Debugger 17

18

Menus and
dialog boxes

ri

• Full macro control to speed up series of commands and
keystrokes.

• Convenient, complete window management.

• Mouse support.
• Access to several types of online help.
• Session recording and reverse execution.

The rest of this chapter discusses these six features of the Turbo
Debugger environment.

As with many Borland products, Turbo Debugger has a
convenient global menu system accessible from a menu bar
running along the top of the screen. This menu system is always
available, no matter which of the debugger windows is active (that
is, has a cursor in it).

A pull-down menu is available for each item on the menu bar.
Through the pull-down menus, you can

• execute a command.
II open a pop-up menu. Pop-up menus appear when you choose a

menu item that is followed by a menu icon (~).

• open a dialog box. Dialog boxes appear when you choose a
menu item that is followed by a dialog box icon (...).

USing the menus There are four ways you can open the menus on the menu bar:

Gefflng In • Press F10, use ~ or ~ to go to the desired menu, and press
Enter.

m Press F10, then press the first letter of the menu name (Spacebar,
F, V, R, a, 0, 0, W, H).

II Press Alt plus the first letter of any menu bar command
(Spacebar, F, V, R, a, 0, 0, W, H). For example, wherever you are
in the system, Aft-F takes you to the File menu. The == (System)
menu opens with Aft-Spacebar.

... • Click the menu bar command with the mouse.

Once you are in the global menu system, here is how you move
around in it:

Turbo Debugger User's Guide

Getting around II Use ~ and ~ to move from one pull-down menu to another.
(For example, when you are in the File menu, pressing ~ takes
you to the View menu.)

El Use i and J, to scroll through the commands in a specific menu.
g Use Home and End to go to the first and last menu items,

respectively.
tl Highlight a menu command and press Enter to move to a

lower-level (pop-up) menu or dialog box.
III Click the mouse on a command to move to a lower-level (pop­

up) menu or dialog box.

This is how you get out of a menu or the menu system:

Getting out D Press Esc to exit a lower-level menu and return to the previous
menu.

IJ Press Esc in a pull-down menu to leave the menu system and
return to the active window.

D Press F10 at any menu level (but not in a dialog box) to leave the
menu system and return to the active window.

~ III Click the active window with the mouse to leave the menu·
system and return to the active window.

Some menu commands have a shortcut hot key that you press to
execute them. The hot key appears in the menu to the right of
these commands.

Figure 13.1 in Chapter 13 shows the complete pull-down menu
tree for Turbo Debugger. Table 13.1 on page 192 lists all the hot
keys. For a summary of all the commands available in Turbo De­
bugger, refer to Chapter 13.

Chapter 2, Debugging and Turbo Debugger 19

Dialog boxes Many of Turbo Debugger's command options are available to you
in dialog boxes. A dialog box contains one or more of the following
items:

Table 2.1
What goes In a dialog box

The hot key for the OK button
Is Alt-K.

[X]

1-

THISFILE.EXE
ImJl"·!I!a­

TOTHERFL.EXE

Item

Buttons

Check boxes

Radio buttons

Input boxes

List boxes

What it looks like, what it does

Buttons are "shadowed" text (on monochrome systems
they appear in reverse video). If you choose a button,
Turbo Debugger carries out the related action imme­
diately. Get out of a dialog box by pressing the button
marked OK to confirm your choices, or Cancel to cancel
them. Dialog boxes also contain a Help button that
brings up online help.

A check box is an on/off toggle. Choose it to turn the
option on or off. When a check box option is turnea on,
an X appears in brackets: [X].

Radio buttons are multi-setting toggles that come in
sets: You can choose only one radio button in a set at a
time. When you do, a bullet appears between the
parentheses: (.).

An input box prompts you to type in a string (the name
of a file, for example). An input box often has a history
list associated with it (see the section "History lessons"
for more on these).

A list box contains a list of items from which you can
choose (for example, a list of possible files to open).

You navigate around dialog boxes by pressing Tab and Shift-Tab.
Within sets of radio buttons, use the arrow keys to change the
settings. To choose a button, tab to it and press Enter.

w.. If you have a mouse, it is even easier to get around in a dialog
box. Just click the item you want to choose. To close the dialog
box, click the close box in the upper left comer.

-=:> You can also choose items in a dialog box by pressing their hot
key, the highlighted letter in each command.

20 Turbo Debugger User's Guide

Knowing where
you're at In addition to the convenient system of Borland pull-down

menus, the Turbo Debugger advantage consists of a powerful
feature that lessens confusion by actually reducing the number of
menus.

To understand this feature, you must realize that first and fore­
most, Turbo Debugger is context-sensitive. That means it keeps
tabs on exactly which window you have open, what text is
selected, and which subdivision, or pane, of the window your
cursor is in. In other words, it knows precisely what you're look­
ing at and where the cursor is when you choose a command. And
it uses this information when it responds. Let's take an example to
illustrate.

Suppose your Pascal program has a line like this:

MyCounter[TheGrade] := MyCounter[TheGrade] + 1;

As you'll discover when you work with Turbo Debugger, getting
information on data structures is easy; all you do is press etrl-I, the
hot key that opens an Inspector window, to inspect it. When the
cursor is at MyCounter, Turbo Debugger shows you information
on the contents of the entire array variable. But if you were to
select (that is, highlight) the whole array name and the index and
then press etrl-I, Turbo Debugger knows that you want to inspect
one member and shows you only that member.

You can tunnel down to finer and finer program detail in this
way. Pressing etrl-I while you're already inspecting an array gives
you a look a t a particular member.

This sort of context-sensitivity makes Turbo Debugger extremely
easy to use. It saves you the trouble of memorizing and typing
complicated strings of menu commands or arcane command-line
switches. You simply move to the item you want to examine (or
select it using the Ins key or drag over it with the mouse), and then
invoke the command (etrl-/ for Inspect, for example). Turbo
Debugger always does its best on delivering the goods for the
particular item.

This context-sensitivity, which makes life easy for the user, also
makes the task of documenting commands difficult. This is
because etrl-I, for example, in Turbo Debugger does not have a

Chapter 2, Debugging and Turbo Debugger 21

22

single result; instead, the outcome of a command depends on where
your cursor is or what text is selected.

Local menus Another aspect of Turbo Debugger's context-sensitivity is in its
use of local menus specific to different windows or panes within
windows.

Figure 2.1
Global VS. local menus

Local menus in Turbo Debugger are tailored to the particular
window or pane you are in. It's important not to confuse them
with global menus. Here is a composite screen shot of both kinds
of menus (when you're actually working in Turbo Debugger,
however, you could never have both types of menus showing at
the same time):

Compare the following two lists:

Global menus • Global menus are those that you access by pressing F10 and
using the arrow keys or typing the first letter of the menu name.

• The global menus are always available from the menu bar,
visible at the top of the screen.

• Their contents never change.
• Some of the menu commands have hot key shortcuts that are

available from any part of Turbo Debugger.

Local menus • You call up a local menu by pressing AIt-F10 or Ctrl-F10, or by
clicking the right button on your mouse.

• The placement and contents of the menu depends on which
window or pane you are in and where your cursor is.

Turbo Debugger User's Guide

History lessons

II Contents can vary from one local menu to another. (Even so,
many of the local commands appear in almost all of the local
menus, so that there's a predictable core of commands from one
to another.) The results of like-named commands can be
different, however, depending on the context.

iii Every command on a local menu has a hot key shortcut
consisting of Gtrl plus the highlighted letter in the command.
Because of this arrangement, a hot key, say Glrl-S, might mean
one thing in one context but quite another in a different context.
(A core of commands, however, is still consistent across the
local menus. For example, the Goto command and the Search
command always do the same thing, even when they are
invoked from different panes.)

From a user's standpoint, local menus are a great convenience. All
possible command choices relevant to the moment are laid out at
a glance. This prevents you from trying to choose inappropriate
commands and keeps the menus small and uncluttered.

Menus and context-sensitivity comprise just two aspects of the
convenient environment of Turbo Debugger. Another habit­
forming feature is the history list.

Conforming to the philosophy that the user shouldn't have to
type more than absolutely necessary, Turbo Debugger remembers
whatever you enter into input boxes and displays that text when­
ever you call up the box again.

For example, to search for the function called MyPercentage, you
have to type in all or part of that word. Then suppose you search
for a variable called ReturnOnInvestment. When you see the dialog
box this time, you'll notice that ReturnOnlnvestment appears in the
input box. When you search for another text string, both pre­
viously entered strings appear in the input box. The list keeps
growing as you continue to use the Search command.

Chapter 2, Debugging and Turbo Debugger 23

Figure 2.2
A history list In an Input box

The first Item In a search list Is
always the word the cursor Is

on In the Module window.

24

Automatic name
completion

Warning!

The search input box might look like this:

begin { progran }
Init;
Buffer :- GetL1ne;
whll e Buffer <> II do
begin

ProcessL1 ne (Buffer) ;

Buffer:- ~.ii.iii ••• iiiiij~ end; III
ShowResul ts;
PamsOnHeap;

end.

ROMPT

You can use this history list as a shortcut to typing by using the
arrow keys to select any previous entry then pressing Enter to start
the search. If you have a mouse, you can also use the scroll bar to
scroll to the entry you want. If you use an unaltered entry from
the history list, that entry is copied to the top of the list.

You can also edit entries (use the arrow keys to insert the cursor
in the highlighted text, then edit as usual, using Del or Backspace).
For example, you can select MyPercentage and change it to
HisPercentage, instead of typing in the entire text. If you start to
type a new item when an entry is highlighted, you will overwrite
the highligh ted item.

A history list lists the last five responses unless you tell it other­
wise. (You can change its size using the TDINST program.)

Turbo Debugger keeps a separate history list for most input
boxes. That way, the text you enter to do a search does not clutter
up the box for, say, going to a particular label or line number.

Whenever you are prompted for text entry in an input box, you
can type in just part of a symbol name in your program, then
press Ctrl-N.

When the word READY ••• appears in the upper right comer of the
screen with three dots after it, it means the symbol table is being
sorted. Ctrl-Nwon't work until the three dots go away, indicating
that the symbol table is available for name completion.

Turbo Debugger User's Guide

Incremental
matching

Making macros
Whenever you find yourself
repeating a series of steps,
say to yourself, ·Shouldn't I
be using a macro for this?·

Create Alt=
Stop recording Alt­
Remove
Delete all

Window shopping

[] If you have typed enough of a name to uniquely identify it,
Turbo Debugger simply fills in the rest of it.

[] If the name you have typed so far is not the beginning of any
known symbol name, nothing happens.

[] If what you have typed matches the beginning of more than
one symbol name, a list of matching names is presented for you
to pick the one you want.

Turbo Debugger also lets you use incremental matching to find
entries in a dialog box list of file and directory names. Start typing
the name of the file or directory; if the file is available from the list
box, the highlight bar moves to the name as soon as you have
typed enough characters to identify it uniquely. Then all you have
to do is choose the OK button.

Macros are simply hot keys that you define.

You can assign any series of Turbo Debugger commands and
keystrokes to a single key, for playback whenever you want.

To create a macro, choose Options I Macros. At this point, you
have a choice of four commands: Create, Stop Recording,
Remove, and Delete All. Choose Create; Turbo Debugger prompts
you for a key to save the upcoming macro to. Press a little-used or
easily remembered key or key combination (for example, Shift-F1
for rerunning a program). Now go through all the steps and com­
mands you want to save to that key.

To end the macro recording session, do one of these things:

[] Choose Options I Macros I Stop Recording.

[] Press the newly defined macro key (Shift-F1 in this example).

[] Press Alt - (hold down Alt and press the hyphen or minus sign).

Lots of programs do windows these days, but Turbo Debugger
does them better. Turbo Debugger displays all information and
data in menus (local and global), dialog boxes (which you use to
set options and enter information), and windows. There are many

Chapter 2, Debugging and Turbo Debugger 25

Windows from the View
menu

Breakpoints
Stack
Log
Watches
Variables
Module... F3
File •••
CPU
Dump
Registers
Numeric processor
Execution history
Hierarchy
Another ~

Chapter 8 details the Module
window and its commands.

See Chapter 6 for more
about the Watches window.

See Chapter 7 for a
complete description of this

type of window and how
breakpoints work.

26

types of windows; a window's type depends on what sort of
information it holds. You open and close all windows using menu
commands (or hot key shortcuts for those commands). Most of
Turbo Debugger's windows come from the View menu, which
lists fourteen types of windows. Another class of window, called
the Inspector window, is opened by choosing either Data I Inspect
or Inspect from a local menu.

Here is a list of the thirteen types of windows that you can open
from the View menu:

Once you have opened one or more of these windows, you can
move, resize, close, and otherwise manage them with commands
from the Window and == (System) menus, which are discussed in
the section "Working with windows."

Module window

Displays the program code that you're debugging. You can move
around inside the module and examine data and code by posi­
tioning the cursor on program variable names and issuing the
appropriate local menu command.

You will probably spend more time in Module windows than in
any other type, so take the time to learn about all the various local
menu commands for this type of window.

You can also press F3 to open a Module window.

Watches window

Displays variables and their changing values. You can add a
variable to the window by pressing Cfrl-Wwhen the cursor is on
the variable in the Module window.

Breakpoints window

Displays the breakpoints you have set. A breakpoint defines a
location in your program where execution stops so you can
examine the program's status. The left pane lists the position of
every breakpoint (or indicates that it is global), and the right pane
indicates the conditions under which the currently highlighted
breakpoint executes.

Use this window to modify, delete, or add breakpoints.

Turbo Debugger User's Guide

Chapter 5 provides more
Information on the Stack

window.

Stack window

Displays the current state of the stack, with the function called
first on the bottom (in C programs, this is function main) and all
subsequently called functions on top, in the order they were
called.

You can bring up and examine the source code of any function in
the stack by highlighting it and pressing Ctr/-I.

By highlighting a function name in the stack and pressing Ctrl-L,
you open a Variables window displaying variables global to the
program, variables local to the function, and the arguments with
which the function was called.

Log window

Chapter 7 tells you more Displays the contents of the message log. The log contains a
about the Log window. scrolling list of messages and information generated as you work

Chapter 5 describes the
Variables window in more

detail.

You can learn more about
the File window in Chapter 8.

in Turbo Debugger. It tells you such things as why your program
stopped, the results of breakpoints, and the contents of windows
you saved in the log.

This window lets you look back into the past and see what led up
to the current state of affairs.

Variables window

Displays all the variables accessible from a given spot in your pro­
gram. The upper pane has global variables; the lower pane shows
variables local to the current function or module, if any.

This window is helpful when you want to find a function or
variable that you know begins with, say, "abc," and you can't
remember its exact name. You can look in the global Symbol pane
and quickly find what you want.

File window

Displays the contents of a disk file. You can view the file either as
raw hex bytes or as ASCII text. You can search for specific text or
byte sequences, as well as directly patching any part of the file on
disk.

This is handy if you are debugging a program that uses disk files
and you want to alter the program's behavior by changing the

Chapter 2, Debugging and Turbo Debugger 27

Chapter 11 discusses the
CPU window and assembler­

level debugging.

See Chapter 11, which
discusses assembler

debugging, for more on this
window.

Chapter 11, which discusses
assembler debugging, has

more Information on this
window.

28

contents of one of its files. You can also correct a mistake in the
contents of a file, or examine a file produced by a program to
make sure the contents are correct.

CPU window

Displays the current state of the central processing unit (CPU).
This window has five panes: one that contains disassembled
machine instructions, one that shows hex data bytes, one that
displays a raw stack of hex words, one that lists the contents of
the CPU registers, and one that indicates the state of the CPU
flags.

The CPU window is useful when you want to watch the exact
sequence of instructions that make up a line of source code or the
bytes that comprise a data structure. If you know assembler code,
this can help locate subtle bugs. You do not need to use this
window to debug the majority of programs.

Turbo Debugger sometimes opens a CPU window automatically,
if your program stops on an instruction in the middle of a line of
source code.

Dump window

Displays a raw display of an area of memory. (This window is the
same as the Data pane of a CPU window.) You can view the data
as characters, hex bytes, words, double words, or any floating­
point format. You can use this window to look at some raw data
when you don't need to see the rest of the CPU state. The local
menu has commands to let you modify the displayed data,
change the format in which you view the data, and manipulate
blocks of data.

Registers window

Displays the contents of the CPU registers and flags. This window
has two panes, which are the same as the registers pane and flags
pane, respectively, of a CPU window. Use this window when you
want to look at the contents of the registers but don't need to see
the rest of the CPU state. You can change the value of any of the
registers or flags through commands in the local menu.

Turbo Debugger User's Guide

See Chapter 12 for more
information about using the
Numeric Processor window.

See Chapter 5 for more
Information on the Execution

History window.

See Chapter 10 for more
information about using the

Hierarchy window.

Numeric Processor window

Displays the current state of the math coprocessor. This window
has three panes: one pane that shows the contents of the floating­
point registers, one that shows the status flag values, and one that
shows the control flag values.

This window can help you diagnose problems in programs that
use floating-point numbers. You need to have a fair understand­
ing of the inner workings of the math coprocessor in order to
really reap the benefits of this window.

Execution History window

Displays assembly code and source lines for your program, up to
the last line executed. The upper pane contains the assembly code
that has been executed, so you can reverse back through it; the
lower pane displays

1. whether you are tracing or stepping
2. the line of source code for the instruction about to be executed
3. the line number of the source code

You can examine it or use it to rerun your program to a particular
spot.

Hierarchy window

Lists and displays a hierarchy tree of all object or class types used
by the current module. The window has two panes: one for the
object/ class type list, the other for the object/ class hierarchy tree.
(If you're debugging a C++ program with multiple inheritance, a
third pane also opens, showing the parents of the highlighted
class type.)

This window shows you the relationship of the objects or classes
used by the current module. It also makes it possible for you to
examine any object or class type, as well as its component data
fields or members, and its methods or member functions, via its
local menus.

Chapter 2, Debugging and Turbo Debugger 29

30

Module •••
DUIfl)
Flle •••

User screen

AIt-F5Is the hot key that
toggles between the

environment and the User
screen.

Inspector windows

Duplicate windows

You can also open duplicates of three types of windows-Dump,
File, and Module-by choosing View I Another. This lets you keep
track of several separate areas of assembly code, different files the
program uses or generates, or several distinct program modules
at once.

Don't be alarmed if Turbo Debugger opens one of these windows
all by itself. It will do this in some cases in response to a com­
mand.

The User screen shows your program's full output screen. The
screen you see is exactly the same as the one you would see if
your program was running directly from DOS and not under
Turbo Debugger.

You can use this screen to check that your program is at the place
in your code that you expect it to be, as well as to verify that it is
displaying what you want on the screen. To switch to the User
screen, choose Window I User Screen. After viewing the User
screen, press any key to go back to the debugger screen.

An Inspector window displays the current value of a selected
variable. Open it by choosing Data I Inspect or Inspect from a local
menu. Usually, you close this window by pressing Esc or clicking
the close box with the mouse. If you've opened more than one
Inspector window in succession, as often happens when you
examine a complex data structure, you can remove all the Inspec­
tor windows by pressing AIt-F3 or using the Window I Close
command.

You can open an Inspector window to look at an array of items or
at the contents of a variable or expression. The number of panes in
the window depends on the nature of the data you are inspecting.
An Inspector window adapts to the type of data being displayed.
It can display not only simple scalars (lnt, float, and so on), but
also pointers, arrays, records, structures, and unions. Each type of
data item is displayed in a way that closely mimics the way you
are used to seeing it in your program's source code.

You create additional Inspector windows simply by choosing the
Inspect command, whereas you can create additional Module,
File, or CPU windows only by choosing View I Another.

Turbo Debugger User's Guide

The active window Even though you can have many windows open in Turbo Debug­
ger at the same time, only one window can be active. You can spot
the active window by the following criteria:

Figure 2.3
Can you spot the active

window?

e The active window has a double outline around it, not a single
line.

e The active window contains the cursor or highlight bar.
e If your windows are overlapping, the active window is the

topmost one.

When you issue commands, enter text, or scroll, you affect only
the active window, not any other windows that are open.

• begin {
Initi
Buffer :- .. c.l==t

while [[I
begin ds:OOOO CD 20 00 AO 00 9A FO FE = a lEI

Proc ds:0008 A4 02 D3 01 C5 41 9D 01 iloliotAVo
Buff ds:0010 C5 41 8D 02 DE 3B D7 2D tAtol;l-

end. ds:0018 01 01 01 00 03 FF FF FF cxo • ~
ShowRe .1Wl1!&lllilr:.rS!m!Wlt"J'.:~~iilmm~
PamsOnHeapi

end'.

............... ~ ' I,READY

What's in a window A window always has most or all of the following features, which
give you information about it or let you do things to it:

Chapter 2, Debugging and Turbo Debugger 31

Figure 2.4
A typical window

ZOOII ancI
W1ndaw Icon1z.

10 •• box Titl. nuIIber boxe.
~ ~ ~ ~

[1]=Module: TCDEI«l File: tcdel1lO.c (lIOdified) 31=1=[t] [~]
static void showargs(int argc. char *argvDh

/* progran entry point
*/

~ int l'IIlin(int argc. char **argv) (
unsigned int nlines. nwords. wordcount;
unsigned long total characters;

nl fnes - 0;
nwords - 0;
total characters - 0;
showa1s(argc. 4r9v);
while readaline() I- 0) (

wordcount - I'II4kei ntowords (buffer) ;

.. Scroll bar

Scroll bar
t

bliz. box

• An outline (double if the window is active, single otherwise).

• A title, located at the left top.
a&. • A scroll bar or bars on the right or bottom if the window opens

on more information than it can hold at one time. You operate
the scroll bars with the mouse:

• Click the direction arrows at the ends of the bar to move one
line or one character in the indica ted direction.

• Click the gray area in the middle of the bar to move one
window size in the indicated direction.

• Drag the scroll box to move as much as you want in the
direction you want.

a&. m A resize box in the lower right corner. Drag this with your
mouse to make the window larger or smaller.

• A window number in the upper right, reflecting the order in
which the window was opened.

a&. • A zoom box and iconize box in the upper right comer. The one
on the left contains the zoom icon, the one on the right the
iconize icon. Click these with your mouse to expand the
window to full screen size, restore it to its original size, or
iconize it. (When a window is zoomed to full size, only the
iconize box is available, and when it is iconized, only the zoom
box is available.)

a&. • A close box in the upper left comer. Click it with your mouse to
close the window.

32 Turbo Debugger User's Guide

Working with windows

Press Alt-Spacebar to open the
== menu, or Alt-W to open the

Windows menu.

F61s the hot key for the
Window I Next Window.

Tab and Shift-Tab are the hot
keys for Window I Next Pane.

With all these different windows to work with, you will probably
have several open onscreen at a time. Turbo Debugger makes it
easy for you to move from one window to another, move them
around, pile them on top of one another, shrink them to get them
out of your way, expand them to work in them more easily, and
close them when you are through.

Most of the window-management commands are in the Windows
menu. You'll find a few more commands in the == (System) menu,
the menu marked with the == icon at the far left of the menu bar.

Window hopping

Each window that you open is numbered in the upper right
corner. Usually, the Module window is window 1 and the
Watches window is window 2. Whatever window you open after
that will be window 3, and so on.

This numbering system gives you a quick, easy means of moving
from one window to another. You can make any of the first nine
open windows the active window by pressing Aft in combination
with the window number. If you press Alt-2, for example, to make
the Watches window active, any commands you choose will affect
that window and the items in it.

You can also cycle through the windows on screen by choosing
Window I Next or pressing F6. This is handy if an open window's
number is covered up ~o you don't know which number to press
to make it active.

If you have a mouse, you can also activate a window by clicking
it.

To see a list of all open windows, choose Window from the menu
bar. The bottom half of the Window menu lists up to nine open
windows from which you can make a selection. Just press the
number of a window to make it the active one.

If you have more than nine windows open, the window list will
include a Window Pick command; choose it to open a pop-up
menu of all the windows open onscreen.

If a window has panes-areas of the window reserved for a
specific type of data-you can move from one pane to another by
choosing Window I Next Pane or pressing Tab or Shift-Tab.

Chapter 2, Debugging and Turbo Debugger 33

34

..... You can also click the pane with the mouse.

The most pane-ful window in Turbo Debugger is the CPU
window, which has five panes.

As you hop from pane to pane, you'll notice that a blinking cursor
appears in some panes, and a highlight bar appears in others. If a
cursor appears, you move around the text using standard keypad
commands. (PgUp, Gtr/-Home, and Gtri-PgUp, for example, move the
cursor up one screen, to the top of pane, or to the top of the list,
respectively.) You can also use WordStar-like hot keys for moving
around in the pane. Refer to Chapter 13 for a table of keystroke
commands in panes.

If there's a highlight bar in a pane instead of a cursor, you can still
use standard cursor-movement keys to get around, but a couple
of special keystrokes also apply. In alphabetical lists, for example,
you can select by typing. As you type each letter, the highlight bar
moves to the first item starting with the letters you've just typed.
The position of the cursor in the highlighted item indicates how
much of the name you have already typed. Once the highlight bar
is on the desired item, your search is complete. This incremental
matching or select by typing minimizes the number of characters
you must type in order to choose an item from a list.

Once an item is selected (highlighted) from a list, you can press
Alt-F10 or Gtrl-F10 to choose a command relevant to it from its local
menu. In many lists, you can also just press Enter once you have
selected an item. This acts as a hot key to one of the commonly
used local menu commands. The exact function of the Enter key in
these cases is described in the reference section starting on page
197.

Finally, a number of panes let you start typing a new value or
search string without choosing a command first. This usually
applies to the most frequently used local menu command in a
pane or window-like Goto in a Module window, Search in a File
window, or Change in a Registers window.

Moving and resizing windows

When you open a new window in Turbo Debugger, it appears
near the current cursor location and has a default size suitable for
the kind of window it is. If you find either the size or the location

Turbo Debugger User's Guide

Ctrl-F5 is the hot key for the
Window I Size/Move

command.

F5 is the hot key for the
Window I Zoom command.

AIt-F3 is the hot key for
Window I Close.

Alt-F6 Is the hot key for
Window I Undo Close.

of the window inconvenient, you can use the Window I Size/
Move command to adjust the size or location of the window.

When you move or resize a window, your active window border
changes to a single-line border. You can then use the arrow keys
to move the window around or Shift with the arrow keys to
change the size of the window onscreen. Press Enter when you're
satisfied.

If you have a mouse, moving and resizing a window is even
easier:

II Drag the resize box in the lower right comer to change the size
of the window.

m Drag the title bar or any edge (but not the scroll bars) to move
the window around.

If you want to enlarge or reduce a window quickly, choose
Window I Zoom, or click the mouse on the zoom box or the iconize
box in the upper right comer.

Finally, if you want to get a window out of the way temporarily
but don't want to close it, make the window active, then choose
Window Ilconize/Restore. The window will shrink to a tiny box
(icon) with only its name, close box, and zoom box visible. To
restore the window to its original form, make it active and choose
Window Ilconize/Restore again, or click your mouse on the zoom
box.

Closing and recovering windows

When you are through working in a window, you can close it by
choosing Window I Close, or pressing Alt-F3, the hot key for this
command.

If you have a mouse, you can also click the close box in the upper
left corner of the window.

If you close a window by mistake, you can recover it by choosing
Window I Undo Close or by pressing AIt-F6. This works only for the
last window you closed.

You can also restore your Turbo Debugger screen to the layout it
had when you first entered the program. Just choose == (System) I
Restore Standard.

Chapter 2, Debugging and Turbo Debugger 35

Getting help

36

Finally, if your program has overwritten your environment screen
with output (because you turned off screen swapping), you can
clean it up again with == (System) I Repaint Desktop.

Saving your window layout

Use the Options I Save Options command to save a specific
window configuration once you have the screen arranged the way
you like. In the Save Configuration dialog box, tab to Layout and
press Spacebar to toggle it on. The screen will then appear with
your chosen layout each time you start Turbo Debugger from
DOS, if the configuration has been saved to a file called
TOCONFIG.TD. This is the only configuration file that is loaded
automatically when Turbo Debugger is loaded. Other
configurations can be loaded by using the Options I Restore
Options command, if they have been saved to configuration files
with a different name.

As you've seen, Turbo Debugger goes out of its way to make
debugging easy for you. It doesn't require you to remember
obscure commands; it keeps lists of what you type, in case you
want to repeat it; it lets you define macros; and it offers incredible
control of windows. Even so, Turbo Debugger is a sophisticated
program with lots of features and commands. To avoid potential
confusion, Turbo Debugger offers the following help features:

• An activity indicator in the upper right corner always displays
the current activity. For example, if your cursor is in a window,
the activity indicator reads READY; if there's a menu visible, it
reads MENU; if you're in a dialog box, it reads PROMPT. If you ever
get confused about what's happening in Turbo Debugger, look
at the activity indicator for help. (Other activity indicator
modes are SIZE/MOVE, MOVE, ERROR, RECORDING, WAIT, RUNNING, MENU,
HELP, STATUS, and PLAYBACK.)

• The active window is always topmost and has a double line
around it.

• You can access an extensive context-sensitive help system by
pressing F1. Press F1 again to bring up an index of help topics
from which you can select what you need.

• The status line at the bottom of the screen always offers a quick
reference summary of keystroke commands. The line changes

Turbo Debugger User's Guide

Online help

Index Sh1ft-Fl
Previous topic Alt-Fl
Help on help

You can get online help for
reserved words via

THELP.COM.

as you press Alt or Girl. Whenever you are in the menu system,
the status line offers a one-line synopsis of the current menu
command.

For more information on the last two avenues for help, read the
following two sections.

Turbo Debugger,like other Borland products, gives context­
sensitive onscreen help at the touch of a single key. Help is
available anytime you're within a menu or window, as well as
when an error message or prompt is displayed.

Press F1 to bring up a Help screen showing information pertinent
to the current context (window or menu). If you have a mouse,
you can also bring up help by clicking FI in the status line. Some
Help screens contain highlighted keywords that let you get addi­
tional help on that topic. Use Tab and Shift-Tab to move to any key­
word and then press Enlerto get to its screen. Use the Home and
End keys to go to the first and last keywords on the screen,
respectively.

You can also access the onscreen help feature by choosing Help
from the menu bar (Alt-J-f).

If you want to return to a previous Help screen, press AIt-F1 or
choose Previous from the Help menu. From within the Help
system, use PgUp to scroll back through the last 20 help screens.
(pgDn only works when you're in a group of related screens.) To
access the Help Index, press Shift-F1 (or F1 from within the Help
system), or choose Index from the Help menu. To get help on
Help, choose Help I Help on Help. To exit from Help, press Esc.

If you are using Turbo Pascal or Turbo C, and you want help on
language-specific reserved words and functions such as you have
in the integrated debuggers for these languages, you can get it via
a RAM-resident utility called THELP.COM that comes with Turbo
Pascal and Turbo C. To use THELP.COM,

1. Make sure that both THELP.COM and the help file for the
language you are using (TURBO.HLP for Turbo Pascal,
TCHELP.TCH for Turbo C) are copied into your Turbo
Debugger directory or a directory on your path.

2. Type THELP and press Enter.

3. Go into Turbo Debugger.

Chapter 2, Debugging and Turbo Debugger 37

4. To open a Help screen on any reserved word or function,
position the cursor under the word you want help on, then
press 5 on the numeric keypad. (THELP won't work if you use
the 5 on your keyboard.)

5. You can then use the help just as you would in the integrated
debugger, paging through related screens, using A/t-F1 to
return to previous screens, and pressing Enter to bring up a
screen on a selected keyword.

6. To exit the Help screen, press Esc.

-=:> For more information on THELP, consult the THELP.DOC file for
the Turbo language you are using.

The status line Wherever you're in Turbo Debugger, a quick-reference help line
appears at the bottom of the screen. This status line provides at­
a-glance keystroke or menu command help for your current
context.

In a window

The normal status line shows the commands performed by the
function keys and looks like this:

If you hold down the A1tkey for a second or two, the commands
performed by the A1tkeys are displayed.

Figure 2.6
The status line with Altpressed Alt: F~~F4=m:IF~F~F7mi1m1F~F~F1~

38

If you hold down the Ctr/ key for a second or two, the commands
performed by the Ctr/letter keys are displayed. This status line
changes depending on the current window and current pane, and
it shows the single-keystroke equivalents for the current local
menu. If there are more local menu commands than can be
described on the status line, only the first keys are shown. You
can view all the available commands on a local menu by pressing
A/t-F10 or Ctr/-F10 to pop up the entire menu.

Turbo Debugger User's Guide

Figure 2.7
ThestatuslinewithCtri Ctrl: I~~ltiaB·j.jiBI~mf3

pressed

ibra. !fyou have a mouse, all you have to do to execute an All- or elr/­
key command is click the command in the status line.

In a menu or dialog box

Whenever you are in a menu or a dialog box, the status line
displays a one-line explanation of what the current item does. For
example, if you have highlighted View I Registers, the status line
says Open a CPU registers window.

The status line gives you menu help whether you are in a global
menu or a local menu.

Chapter 2, Debugging and Turbo Debugger 39

40 Turbo Debugger User's Guide

c H A p T E R

3

A quick example

If you are itching to use Turbo Debugger and aren't the sort of
person to work through the whole manual first, this chapter gives
you enough knowledge to debug your first program. Once you've
learned the basic concepts described here, the well-integrated,
intuitive environment and context-sensitive help system let you
learn as you go along.

This chapter leads you through all Turbo Debugger's basic fea­
tures. After describing the demo programs-one in C and one in
Pascal-provided on the distribution disks, it shows you how to

Ell run and stop program execution

I!I examine the contents of program variables

m look at complex data objects, like arrays and structures
II change the value of variables

The demo programs

Chapter 3, A quick example

The demo programs (TCDEMO.C for C and TPDEMO.P AS for
Pascal) introduce you to the two main things you need to know to
debug a program: how to stop and start your program, and how
to examine your program's variables and data structures. The
programs themselves are not meant to be terribly useful: Some of
their code and data structures exist solely to show you Turbo
Debugger's capabilities.

41

Each demo program lets you type in some lines of text or the
name of a data file, then counts the number of words and letters
that you entered or that it reads from the file. At the end of the
program, each displays some statistics about the text, including
the average number of words per line and the frequency of each
letter.

-=:> Make sure that your current directory contains the two files
needed for each tutorial: TCDEMO.C and TCDEMO.EXE for the
C example, TPDEMO.P AS and TPDEMO.EXE for the Pascal
example.

Getting In To start the C program, enter

Figure 3.1
The startup screen showing

TCDEMO

TO TCOEMO

To start the Pascal program, enter

TO TPOEMO

Turbo Debugger loads the demo program, displays the startup
screen, and positions the cursor at the start of the program.

static void showargs(1nt argc. char *argv[]); II.

/* progratll entry pOint I
*/

• 1nt 1141n(1nt argc. char **argv) {
uns 1 gned 1 nt n 11 nes. nwords. word count ;
unsigned long total characters;

nlines - 0;
nwords - 0; •
total characters - °t I showargs(argc. ar:vvJ:
while (readal1neO I- 0) (

wordcount - make1ntowords(buffer);
nwords +- wordcount;
total characters +- ana1yzewords (buffer);
n11nes++;

} ~ t::,::,:,:,,:,::,:J
The startup screen consists of the menu bar, the Module and
Watches windows, and the status line.

Getting out To exit from the tutorial at any time and return to 005, press Aft-X.
If you get hopelessly lost following the tutorial, press Ctrl-F2 to
reload the program and start at the beginning. However, Ctrl-F2
doesn't clear breakpoints or watches; you'll have to use AIt-F 0 to
do that. (Alt-8 D deletes all breakpoints too, of course, but some­
times it's faster to reload with Aft-F 0.)

42 Turbo Debugger User's Guide

Getting help Press F1 whenever you need help about the current window,
menu command, dialog box, or error message. You can learn a lot
by working your way through the menu system and pressing F1
at each command to get a summary of what it does.

Using Turbo Debugger

The menus
The top line of the screen shows the menu bar. To pull down a
menu from it, press F10, use ~ or ~ to highlight your selection,
and press Enter, or else press Alt in combination with the first letter
of one of the menu names.

Figure 3.2
The menu bar 1I"~E(Ul3·!·ii!il~· READY

The status line

Press F10 now. Notice that the cursor disappears from the Module
window, and the File command on the menu bar becomes high­
lighted. The bottom line of the screen also changes to indicate
what sort of commands the File menu contains.

Use the arrow keys to move around the menu system. Press J, to
pull down the menu for the highlighted item on the menu bar.

You can also open a menu by clicking an item in the menu bar
with your mouse.

Press Esc to move back through the levels of the menu system.
When just one menu item on the menu bar is highlighted, pres­
sing Esc returns you to the Module window, with the menu bar no
longer active.

The status line at the bottom of the screen shows relevant function
keys and what they do.

Figure 3.3
The status line FlmI!lF2I:IllEIF39l:DF~F~F~F7I:l1:ml1F~F~FlO9E!l

Chapter 3, A quick example

This line changes depending on what you are entering (menu
commands, data in a dialog box, and so on). Hold Alt down for a

43

44

second or two, for example. Notice that the status line changes to
show you the function keys you can use with Alt.

Now press etrl for a second. The commands shown on the status
line are the hot keys to the local menu commands for the current
pane (area of the window). They change depending on which sort
of window and which pane you are in. More about these later.

As soon as you enter the menu system, the status line changes
again to show you what the currently highlighted menu option
does. Press F10 to go to the menu bar, and press ~ to highlight the
File option. The status line now reads, "File oriented functions."
Use J, to scroll through the options on the File menu, and watch

... the message Change. Press Esc or click the Module window with
your mouse to leave the menu system.

The windows

Figure 3.4
The Module and Watches

windows, tiled

The window area takes up most of the screen. This is where you
examine various parts of your program through the different
windows.

The display starts up with two windows: a Module window and
the Watches window. Until you open more windows or adjust
these two, they remain tiled. This means they fill the entire screen
without overlapping. New windows automatically overlap
existing windows until you move them.

This is the Module window

Turbo Debugger User's Guide

Notice that the Module window has a double-line border and a
highlighted title. This means it is the active window. You use the
cursor keys (the arrow keys, Home, End, PgUp, and so on) to move
around inside the active window. Now press F6to switch to
another window. The Watches window becomes active, with a
double-line border and a highlighted title.

You use commands from the View menu to create new windows.
For example, choose View I Stack to open a Stack window. The
Stack window pops up on top of the Module window.

Now press Alt-F3 to remove the active window. The Stack window
disa ppears.

Turbo Debugger stores the last-closed window so you can recover
it if you need to. If you accidentally close a window, choose
Window I Undo Close. The Stack window reappears. You can also
press AIt-F6 to recover the last-closed window.

The Window menu contains the commands that let you adjust the
appearance of the windows you already have onscreen. You can
both move the window around the screen and change its size.
(You can use Ctrl-F5 to do this too.)

Choose Window I Size/Move and use the arrow keys to reposition
the active window (the Stack window) on the screen. Next, hold
Shift down and use the arrow keys to adjust the size of the
window. Press Enter when you have defined a new size and
position that you like.

Now, to prepare for the next section, remove the Stack window by
pressing Alt-F3. Depending on whether you've loaded the C or
Pascal demo program, you should either continue with the next
section (for the C sample) or move to the Pascal section on page
52.

Using the C demo program

Chapter 3, A quick example

The filled arrow (~) in the left column of the Module window
shows where Turbo Debugger stopped your program. Since you
haven't run your program yet, the arrow is on the first line of the
program. Press F7 to trace a single source line. The arrow and
cursor are now on the next executable line.

45

Figure 3.5
Program stops on return from

function showargs

46

Look at the right margin of the Module window title. It shows the
line that the cursor is on. Move the cursor up and down with the
arrow keys and notice how the line number in the title changes.

As you can see from the Run menu, there are a number of ways to
control the execution of your program. Let's say you want to
execute the program until it reaches line 39.

First, position the cursor on line 39, then press F4. This runs the
program up to (but not including) line 39. Now press F7, which
executes one line of source code at a time; in this case, it executes
line 39, a call to the function showargs. The cursor immediately
jumps to line 151, where the definition of showargs is found.
Continuing to press F7would step you through the function
showargs and then return you to the line following the call-line
40. Instead, press Aft-FB to make the program stop when showargs
returns. This too returns you to line 40. This command is very
useful when you want to jump past the end of a function.

If you had pressed FB instead of F7 on line 39, the cursor would
have gone directly to line 40 instead of into the function. FB is
similar to F7in that it executes functions, but it doesn't step
through their source code.

[I U e: DE F e: ic emo.c
nwords - Oi
total characters - 0t
showargs(argc. ar:\JY/i
while (readalineO I- 0) {

wordcount - malte1 ntowords (buffer) i
nwords +- wordcounti
total characters +- analyzewords(buffer);

}
nl1nes++i

pr1ntstat1st1cs(nlines. nwords. total characters);
retum(O);

/* make the buffer into a list of null-tem1nated words that end in
* in two nulls. squish out white space
*/

stati c i nt ilia Ite 1 ntowords (char *bufp) {

•

I
I

t:::,:,::,::,,::,:,:,=
To execute the program until a specific place is reached, you can
directly name the function or line number, without moving the
cursor to that line in a source file and then running to that point.
Press Alt-F9 to specify a label to run to. A dialog box appears. Type
readaline and press Enter. The program runs, then stops at the
beginning of function readallne (line 142).

Turbo Debugger User's Guide

Setting
breakpoints

Figure 3.6
A breakpoint at line 44

Chapter 3, A quick example

Another way to control where your program stops running is to
set breakpoints. The simplest way to set a breakpoint is with the
F2 key. Move the cursor to line 44 and press F2. Turbo Debugger
highlights the line, indicating there is a breakpoint set on it.

You can also use the mouse to toggle breakpoints by clicking the
first two columns of the Module window.

}
pri n tstat 1st i cs (n 1 i nes. nwrds. to ta 1 cha racters);
retum(O);

Now press F9 to execute your program without interruption. The
screen switches to the program's display. The demo program is
now running and waiting for you to enter a line of text. Type abc,
a space, def, and then press Enter. The display returns to the Turbo
Debugger screen with the arrow on line 44, where you set a break­
point that has stopped the program. Now press F2 again to toggle
it off.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

47

Using watches

...
Figure 3.1

A C variable in the Watches
window

Examining simple
C data objects

48

The Watches window at the bottom of the screen shows the value
of variables you specify. For example, to watch the value of the
variable nwords, move the cursor to the variable name on line 42
and choose Watch from the Module window local menu (bring it
up with Alt-F10 or choose the shortcut, Gtrl-W, from the status line).

Click Gtrl-Win the status line with your mouse .

• =Me u e: T D 1 e: tc emo.c 44
nwords - OJ
total characters - OJ
showargs (argc. argyl;
while (readalineO I- 0) (

wordcount - makeintowords{buffer)j
nwords +- wordcountj
total characters +- analyzewords(buffer)j

• nl1nes++j
)
pri ntstatisti cs (n 11 nes. nwords. total cha racters);
return(O);

/* make the buffer into a list of null-tenninated words that end in
* in two nulls. squish out white space
*/

static int makeintowords(char *bufp) (

I-Nn~
•

I •

'::,::1-===
nwords now appears in the Watches window at the bottom of the
screen, along with its type (unsigned Int) and value. As you
execute the program, Turbo Debugger updates this value to
reflect the variable's current value.

Once you have stopped your program, there are a number of
ways of looking at data using the Inspect command. This very
powerful facility lets you examine data structures in the same
way that you visualize them when you write a program.

The Inspect commands (in various local menus and in the Data
menu) let you examine any variable you specify. Suppose you
want to look at the value of the variable nlines. Move the cursor so
it is und~r one of the letters in nlines and choose Inspect from the
Module window local menu (press Gtrl-I). An Inspector window
pops up.

Turbo Debugger User's Guide

Figure 3.8
An Inspector window

Chapter 3, A quick example

1I~~~·i.ii'i£~.
du e: TCDEf() Fie: tcdenlO.c 44

nwords - 0;
total characters - 0;
ShowlF'!ls(argc. a~v);
while (readalineO ,- 0) (

wordcount - makei ntowords (buffer) ;
nwords +- wordcount:
total characters +- analyzewords(bufferh

• nl1nes++:
} ~[.l=Inspecting nl1nes=3=[t] ['1,
printstati 1!l793E:FFCO .. ~(rs);

return (0) : ill _BIIBH~ lIB I IE llii Signed int 0 OxO I

.:;:. : .. :; ::: ;':: :';;::;:: :';:: :': ::'; :':':';':',:::: ::::: : :': :':'::;; ~ .
/* make the buffer into a 11st of null-teminated words that end in
* in two nulls. squish out white space
*/

static 1nt lIakeintowords (char *bufp) (
unsigned int nwords;

READY

The title tells you the variable name; the next line shows you its
address in memory. The third line shows you what type of data is
stored in nlines (it's a C unsigned Int). To the right is the current
value of the variable.

Now, having examined the variable, press Esc to close the
Inspector window. You can also use AIt-F3 to remove the Inspector
window, just like any other window, or you can click the close box
with your mouse.

Let's review what you actually did here. By pressing Gtrl, you took
a shortcut to the local menu commands in the Module window.
Pressing I specified the Inspect command.

To examine a data item that is not conveniently displayed in the
Module window, choose Data I Inspect. A dialog box appears,
asking you to enter the variable to inspect. Type letterinfo and
press Enter. An Inspector window appears, showing the values of
the letterinfo array elements. The title of the Inspector window
shows the name of the data you are inspecting. The first line
under the title is the address in main memory of the first element
of the array letterinfo. Use the arrow keys to scroll through the 26
elements that make up the letterinfo array. The next section shows
you how to examine this compound data object.

49

Examining
compound C
data objects

Figure 3.9
Inspecting a structure

Changing C data
values

50

A compound data object, such as an array or structure, contains
multiple components. Move to the fourth element of the letterinfo
array (the one indicated by [3]). Press Alt-F10 to bring up the local
menu for the Inspector window, then press I to choose Inspect. A
new Inspector window appears, showing the contents of that
element in the array. This Inspector window shows the contents
of a structure of type linfo.

nwords - 0;
total characters - 0t
showargs(argc. a'.1lY];
while (readaline{) \-

wordcount -
nwords +- wonilcoll1
total characters

• nlines++;
}
printstati stics(nlines.
return (0);

/* IIIIlke the buffer into a list of Alm13E:ltl85E
* in two nulls. squish out white
*/

static int makeintowords{char *bu
unsigned 1nt nwords;

When you place the cursor over one of the member names, the
data type of that member appears in the bottom pane of the
Inspector window. If one of these members were in turn a
compound data object, you could issue an Inspect command and
dig down further into the data structure.

Press Alt-F3 to remove both Inspector windows and return to the
Module window. (Alt-F3 is a convenient way of removing several
Inspector windows at once. If you had pressed Esc, only the latest
Inspector window would have been deleted.)

So far, you've learned how to look at data in the program. Now,
let's change the value of da ta items.

Use the arrow keys to go to line 38 in the source file. Place the
cursor at the variable totalcharacters and press etrl-I to inspect its

Turbo Debugger User's Guide

Figure 3.10
The Change dialog box

Chapter 3, A quick example

value. With the Inspector window open, press Alt-F10 to bring up
the Inspector's local menu, and choose the Change option. (You
could also have done this directly by pressing Ctr/-C.) A dialog box
appears, asking for the new value.

.1I~~·i.)'S*~ptf"ii'f':;'·!iPROHPT
-MOcJiiTe:-frn"E;;C-F e: tc emo:c~

static void showargs(int argc. char *argv[]};

/* progr411 entry point
*/

int l14in(int argc.
unsigned i
unsigned 1

total characters +- analyzewords(buffer):
nlines++;

· ... '1

At this point, you can enter any C expression that evaluates to a
number. Type total characters + 4 and press Enter. The value in the
Inspector window now shows the new value, 10L (OxA).

To change a data item that isn't displayed in the Module window,
choose Data I Evaluate/Modify. A dialog box appears. Enter the
name of the variable to change in the first input box: Type argc
and press Enter. Then press Tab twice to move to the input box
labeled New Value. Type 123 and press Enter. The result (second
box) changes to int 123 (Ox7B).

51

Figure 3.11
The Evaluate/Modify dialog

box
ule: T DE F e: tcdeno.c' .

.~~~'!"II'{~' ROHPT

static void showargs{int argc. char *argvOh

, 'DIl.!4

nter new .. I, iiiiii 'I
That's a quick introduction to using the Turbo Debugger with a
Turbo C program. Chapter 14 offers a more extensive debugging
sample.

Using the Pascal sample program

52

The filled arrow (~) in the left column of the Module window
shows where Turbo Debugger stopped your program. Since you
haven't run your program yet, the arrow is on the first line of the
program. Press F7 to trace a single source line. The arrow and
cursor are now on the next executable line.

Look at the right margin of the Module window title. It shows the
line that the cursor is on. Move the cursor up and down with the
arrow keys and notice how the line number in the title changes.

To make the program execute until it reaches line 221, move the
cursor to that line and then press F4. TPDEMO prompts you to
enter a string. Type ABC, a space, DEF, and then press Enter. Now,
with the cursor still on line 221, press F7 twice to execute two
more lines of source code. Since the second line you executed is a
call to a different procedure, the arrow now appears on the first
line of the function ProcessLine. Continuing to press F7 would step
you through the function Process Line and then return you to the
line following the call-line 224. Instead, press Alt-FB to make the
program stop when ProcessLine returns. This command is very

Turbo Debugger User's Guide

Figure 3.12
The program stops after

returning from a procedure

Setting
breakpoints

[ill

Chapter 3, A quick example

useful when you want to jump past the end of a function or
procedure.

If you had pressed FB instead of F7 on line 221, the cursor would
have gone directly to line 224 instead of into the function. FB is
similar to F7in that it executes functions, but it doesn't step
through their source code.

u e: e:
while Buffer <> II do
begin

ProcessLine(Buffer} •
• Buffer :- GetLine.

end.
ShowResults.
PannsOnHeapi

end.

To execute the program until a specific place is reached, you can
directly name the function or line number, without moving the
cursor to that line in a source file and then running to that point.
Press AIt-F9 to specify a label to run to. A dialog box appears. Type
GetLine and press Enter. The program runs, then stops at the
beginning of function GetLine.

Another way to control where your program stops running is to
set breakpoints. The simplest way to set a breakpoint is with the
F2key. Move the cursor to line 121 and press F2. Turbo Debugger
highlights the line, indicating there is a breakpoint set on it.

You can also use the mouse to toggle breakpoints by clicking the
first two columns of the Module window.

53

54

Figure 3.13
A breakpoint at line 121

Using watches

Now press F9 to execute your program without interruption. The
screen switches to the program's display. The demo program is
now running and waiting for you to enter a line of text. Type abc,
a space, def, and then press Enter. The display returns to the Turbo
Debugger screen with the arrow on line 121, where you set a
breakpoint that has stopped the program. Now press F2 again to
toggle it off.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

The Watches window at the bottom of the screen shows the value
of variables you specify. For example, to watch the value of the
variable Num Words, move the cursor to the variable name on line
144 and choose Watch from the Module window local menu
(bring it up with A/t-F10, or choose the shortcut, Ctr/-W, from the
status line).

You can also click Ctr/-Win the status line with your mouse.

Turbo Debugger User's Guide

Figure 3.1
A Pascal variable in the

Watches window

Examining simple
Pascal data

objects

Chapter 3, A quick example

Inc(letterTable[UpCase(S[i])] .Count):
if Wordlen - 0 then (bump counter)

Inc(letterTable[UpCase (S[1])]. f1 rstletter):
Inc(l) :
Inc (Wordlen) :

end:

(Bump word count info)
if Word len > 0 then
begin

Inc(NulllWords) :
if Wordlen <- HaxWordlen then

Inc(WordlenTable [Wordlen]):
end:

end: (while)
end: (Processline)

NumW1rds now appears in the Watches window at the bottom of
the screen, along with its type (Word) and value. As you execute
the program, Turbo Debugger updates this value to reflect the
variable's current value.

Once you have stopped your program, there are a number of
ways of looking at data using the Inspect command. This very
powerful facility lets you examine data structures in the same
way that you visualize them when you write a program.

The Inspect commands (in various local menus and in the Data
menu) let you examine any variable you specify. Suppose you
want to look at the value of the variable NumLines. Move the
cursor back to line 121 so it's under one of the letters in NumLines
and press etrl-I. An Inspector window pops up.

55

56

Figure 3.15
An Inspector window dule: TPDEKl File: TPDEMO.PAS 121

1 : Integer;
Wordlen : Word;

begin {
~ Inc(NIIIL1

1 :- h
while 1
begin

{ Skip
while (1 <- " ... ", .. '"

Inc(1);

{ F1 nd end of word. bll!lp 1 etter 1 word counters }
wardlen :- 0;
while (1 <- length(S» and Isletter(S[1]) do
begin

Inc(NulIletters) ;
Inc(letterTable[UpCese(S[1])] .Count);

-Watches-----------~-

READY

The first line tells you the variable name; the second line shows its
address in memory. The third line tells you what type of data is
stored in NumLines (it's a Pascal Word) and displays the current
value of the variable.

Now, having examined the variable, press Esc to close the
Inspector window. You can also use Alt-F3 to remove the Inspector
window, just like any other window, or you can click the close box
with your mouse.

Let's review what you actually did here. By pressing Gtrl, you used
a hot key for the local menu commands in the Module window.
Pressing I specified the Inspect command.

To examine a data item that is not conveniently displayed in the
Module window, choose Data I Inspect. A dialog box appears,
asking you to enter the variable to inspect. Type LetterTable and
press Enter. An Inspector window appears, showing the value of
LetterTable. Use the arrow keys to scroll through the 26 elements
that make up LetterTable. The title of the Inspector window shows
the name and type of the data you are inspecting, exactly as the
declaration for this data appears in the source file. The next
section shows you how to examine this compound data object.

Turbo Debugger User's Guide

Examining
compound

Pascal data
objects

Figure 3.16
Inspecting a record

Changing Pascal
data values

Chapter 3, A quick example

A compound data object, such as an array or structure, contains
multiple components. Move to the fourth element of the
LetterTable array (the one indicated by [' 0']). Press Alt-F10 to bring
up the local menu for the Inspector window, then choose Inspect.
A new Inspector window appears, showing the contents of that
element in the array. This Inspector window shows the contents
of a record of type UnfoRec.

·=II~PI~·i.il'i~ u e: PD Fl e: TPDEH .P 1
1 : Integeri
Wordlen : Wordi

beg1 n { Processli ne }
• Inc (Numli nes) i

i :- Ii
while i <- length(S)
be!1in

I Skip non­
while (1 <- lengt

Inc(l) i

{ F1 nd end of war
Wordlen :- Oi I!::::::============--I
while (1 <- length(S» and Isletter(S[1]) do
begin

Inc (Numletters) i
Inc(letterTable[UpCase(S [i])] .Count) i

.1 READY

When you place the cursor over one of the member names, the
data type of that member appears in the bottom pane of the
Inspector window. If one of these members were in turn a
compound data object, you could issue an Inspect command and
dig down further into the data structure.

Press Alt-F3 to remove both Inspector windows and return to the
Module window. (Alt-F3 is a convenient way of removing several
Inspector windows at once. If you had pressed Esc, only the
topmost Inspector window would have been deleted.)

So far, you've learned how to look at data in the program. Now,
let's change the value of data items.

Use the arrow keys to go to line 103 in the source file. Place the
cursor at the variable called NumLetters and press etrl-I to inspect

57

58

Figure 3.17
The Change dialog box

its value. With the Inspector window open, press Alt-F10 to bring
up the Inspector window's local menu. Choose the Change option.
(You could also have done this directly by pressing Ctr/-C.) A
dialog box appears, asking for the new value.

procedure Init:
begin

Numlines :- 0: NWlWords :- 0
Fi 11 Char(letterTabl e. S;i~ z.:eO:~;..f}~~~:r.;~;;I.~~
Fi 11 Char(WordlenTable. :004Z
Writeln('Enter a string to

end: { Init } .
[1]=Enter new va

procedure Processline(va

function Isletter(ch : C
begin

ROMPT

Isletter : - UpCase(ch)
end: { Isletter } ,,================:!I

var
i : Integer:

lumwo~r4 Z ($2) : WORD

I ~;:n;te;:r:=l;t;en==p;:romp~t;;e;d :;fo;:r==l!;n~d;l a;;';og;:t=l*t ,*lliiiiiiii 'I
At this point, you can enter any Pascal expression that evaluates
to a number. Type NumLetters + 4 and press Enter. The value in the
Inspector window now shows the new value, 10.

To change a data item that isn't displayed in the Module window,
choose Data I Evaluate/Modify. A dialog box appears. Enter the
name of the variable to change. Type NumLines and press Enter. The
result is displayed in the middle pane. Press Tab twice, then type
123 and press Enter. This sets the variable NumLines to 123.

Turbo Debugger User's Guide

Figure 3.18
The Evaluate/Modify dialog

box

Chapter 3, A quick example

procedure Ini

~gin ~~iiiiiiiiii~Eiva~l~~~~iiiiiiii~ii~~ NLIIIUnes : III
FillChar(L
Fill Char(W
Writeln('E

end; { Init

procedure Pr

function IsL
~in

IsLetter :

end; { ISLetll,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~!!!!~~
var II:

i : Integer; I :!lllul umWords

nt.r new ,ai.

That wraps up our quick introduction to using Turbo Debugger
with a Turbo Pascal program. Chapter 14 offers a more extensive
debugging sample.

59

60 Turbo Debugger User's Guide

c H A p T E R

4

Starting Turbo Debugger

This chapter tells you how to prepare programs for debugging.
We show you how to start Turbo Debugger from the DOS com­
mand line, and how to tailor its many command-line options to
suit the program you are debugging. We explain how to make
these options permanent in a configuration file. You also learn
how to run a DOS command processor from within a Turbo
Debugger session and, finally, how to return to DOS when you
are done.

Preparing programs for debugging

When you compile and link with one of Borland's Turbo
languages, you can tell the compiler to generate full debugging
information. If you have compiled your program's object modules
without any debugging information, you must recompile all its
modules to have full source debugging capabilities throughout
your program. It is possible to generate debug information only
for specific modules (you might have to do this if you're
debugging a large program), but you will find it annoying later to
enter a module that doesn't have any debug information
available. We suggest recompiling all modules.

Chapter 4, Starting Turbo Debugger 61

Preparing Turbo C
programs

Preparing Turbo
Pascal programs

Just like this, with no spaces

62

If you're using the Turbo C++ integrated environment (TC), open
the Debugger dialog box (choose Options I Debugger) and set the
Source Debugging radio button to Standalone before you compile
your source modules. For Turbo C 2.0, set Debug I Source
Debugging to Standalone.

If you're using the command-line compiler (TCC), specify the -v
command-line option.

If you're using TLINK as a standalone linker, you must use the Iv
option to append debugging information at the end of the .EXE
file.

You also should make sure optimizing is disabled. Either don't
use the -0 option or specify -0- to tum off the -0 in your
TURBOC.CFG file. This eliminates the few occasions when Turbo
Debugger appears to skip over lines of source code when you're
stepping through a program.

First, make sure that you have version 5.0 or later of Turbo Pascal.
Earlier versions do not have the ability to bundle debugging
information into the .EXE file so that Turbo Debugger can use it.

If you're using the integrated environment (TURBO.EXE), go to
the Debug menu and change the Standalone Debugging setting to
On. Tum Options I Compiler I Debug Information On or use the
{$D+} compiler directive. If you want to be able to reference local
symbols (any declared within procedures and functions), you
must either set Options I Compiler I Local Symbols to On or put
this directive at the start of your program:

{$L+)

You can then compile your program.

If you're using the command-line version (TPC.EXE), you must
compile using the Iv command-line option. Debug information
and local symbols are, by default, generated. If you don't want
them, you can use 1$ command-line options to disable them.

Turbo Debugger User's Guide

Preparing Turbo
Assembler To debug a Turbo Assembler program, specify the -zi command­
programs line option to get full debugging information.

Preparing
Microsoft
programs

To link your program with TLINK, use the Iv option to append
debugging information at the end of the .EXE file.

See the documentation on your distribution disks for information
about how to use the utility program TDCONVRT.EXE, which
converts CodeView executable programs to Turbo Debugger
format.

Running Turbo Debugger

To debug a program with Turbo Debugger, simply type TO at the
DOS prompt, followed by an optional set of command-line
arguments and the name of the program, and press Enter. Turbo
Debugger then loads your program, displaying its source code so
you can step through your program statement by statement.

The generic command-line format is

TD [options] [progname [progargs]]

The items enclosed in brackets are optional; if you include any,
type them without the brackets. Progname is the name of the pro­
gram to debug. You can follow a program name with arguments.
Here are some example command lines:

Command

td -sc progl a b

td prog2 -x

Action

Starts the debugger with -sc option and loads
program progl with two command-line
arguments, a and b.

Starts the debugger with default options and
loads program prog2 with one argument, -x.

If you simply type TO Enter, Turbo Debugger loads and uses its
default options.

Chapter 4, Starting Turbo Debugger 63

-=:> When you run a program in Turbo Debugger, you need to have
both its .EXE file and the original source files available. Turbo
Debugger searches for source files first in the directory the
compiler found them in when it compiled, second in the directory
specified in the Options I Path for Source command, third in the
current directory, and fourth in the directory the .EXE file is in.

-=:> You must have already compiled your source code into an
executable (.EXE) file with full debugging information turned on
before debugging with Turbo Debugger.

-=:> Remember, Turbo Debugger works only with programs in Turbo
Pascal 5.0 or later, Turbo C 2.0 or later, or Turbo Assembler 1.0 or
later.

If you're running your program from the DOS prompt and notice
a bug, you have to exit from your program and load it under the
debugger before you can begin debugging.

Command-line options

Appendix A has an easy-to­
use list of Turbo Debugger's

command-line options.

Loading the
configuration file

(-c)

64

All Turbo Debugger command-line options start with a hyphen (-)
and are separated from the TD command and each other by at
least one space. You can explicitly tum a command-line option off
by following the option with another hyphen. For example, -vg­
turns off a complete graphics save. You can do this if an option
has been permanently enabled in the configuration file. You can
modify the configuration file by using the TDINST configuration
program described in Appendix D.

The following sections describe all available command-line
options.

This option loads the specified configuration file. There must not
be a space between -c and the file name.

If the -c option isn't included, TDCONFIG.TD is loaded if it
exists. Here's an example:

TO -cMYCONF.TO TCOEMO

This loads the configuration file MYCONF.TD and the source
code for TCDEMO.

Turbo Debugger User's Guide

Display updating
(-d)

Getting help (-h
and -?)

Process ID
switching (-i)

Keystroke
recording (-k)

All-d options affect the way in which display updating is
performed.

-do Runs Turbo Debugger on your secondary display. View
your program's screen on the primary display, and run
the debugger on the secondary one.

-dp The default option for color displays. Shows the debugger
on one display page and the program being debugged on
another, minimizing the time it takes to swap between the
two screens. You can use this option only on a display
that has multiple display pages. You can't use this option
if the program you are debugging uses multiple display
pages itself. This is the default for display updating.

-ds The default option for monochrome displays. Maintains a
separate screen image for the debugger and the program
being debugged by loading the entire screen from
memory each time your program is run or the debugger
is restarted. This is the most time-consuming method of
displaying the two screen images, but works on any
display hardware and with programs that do unusual
things to the display.

These options display a screenful of help that describes Turbo
Debugger's command-line syntax and options.

This option enables process ID switching. Don't use this option
when you are debugging inside 005 or when 005 system calls
are active. See Appendix B for more technical information on this
feature. You needn't be concerned with this option to debug most
programs.

This option enables keystroke recording in the Keystroke
Recording pane of the Execution History window.

Chapter 4, Starting Turbo Debugger 65

Assembler-mode
startup (-I)

Setting heap size
(-m)

66

Mouse support
(-p)

If you use this option, all keystrokes that you type during a
debugging session will be recorded to a disk file. Then you can
recover to a previous point in your debugging session by having
Turbo Debugger reload your program and play back the recorded
keystrokes. Turbo Debugger records both the keys you press
while you're in Turbo Debugger and the keys you press while
your program is running.

This option forces startup in assembler mode, showing the CPU
window. Turbo Debugger does not execute your program's
startup code, which usually executes automatically when you
load your program into the debugger. This means that you can
step through your startup code.

This option sets the working heap used by Turbo Debugger to
NK, where the syntax is

-mN

and N is the number of kilobytes. A space must not exist between
the -rn option and the size of the heap. Here's an example:

TO -mlG TCOEMO.EXE

The default heap size is 18K; the low boundary is 7K. If you need
memory, use this option to reduce the amount of heap Turbo
Debugger uses. Turbo Debugger stores transient information,
such as command history lists and breakpoints, in the heap.

If you specify a heap size of 0 (zero) with the -rn command-line
option (-rnO), Turbo Debugger uses the maximum that it's able to
use, usually 18K.

This option enables mouse support. However, since the default
for mouse support in Turbo Debugger is On, you won't have
much use for the -p option unless you use TDINST to change the
default to Off. If you want to disable the mouse, use -p-.

Turbo Debugger User's Guide

Remote
debugging (-r) All-r options affect the remote debugging link.

Source code
handling (-5)

-r Enables debugging on a remote system over the serial
link. Uses the default serial port (COMl) and speed (115
Kbaud), unless you have changed them with TDINST.

-rpN Sets the remote link port to port N. N can be 1 or 2 to
indicate COMI or COM2, respectively.

-rsN Sets the remote link speed. N can be 1 for 9600 baud, 2 for
40 Kbaud, or 3 for 115 Kbaud.

AlI-s options affect the way Turbo Debugger handles source
code and program identifiers.

This opt/on does not affect -se
Pascal, because It Is not

case-sensitive.

Ignores case when you enter symbol names, even if your
program has been linked with case sensitivity enabled.

Without the -se option, Turbo Debugger ignores case
only if you've linked your program with the case ignore
option enabled.

-sd Sets one or more source directories to scan for source files;
the syntax is

-sddirname

To set multiple directories, use the -sd option
repeatedly-only one directory name can be specified
with each -sd option. Directories are searched in the
order specified. dirname can be a relative or absolute path
and can include a disk letter. If the configuration file
specifies any directories, the ones specified by the -sd
option are added to the end of that list.

-smN This option sets the symbol table reserved memory size.

Chapter 4, Starting Turbo Debugger

Follow it with the number of kilobytes you want to
reserve, like this:

-smN

where N is the number of kilobytes. Use this option if you
want to load a symbol table manually with the

67

Video hardware
(-v)

Overlay pool size
(-y)

Use TO/NSf to set a
permanent overlay code

poo/slze.

File I Symbol Load command. You may have to
experiment with the amount of memory to reserve.

All-v options affect how Turbo Debugger handles the video
hardware.

-vg Saves complete graphics image on program screen.
Requires an extra 8K of memory, but can debug programs
that use certain graphics display modes. Try this option if
your program's graphics screen becomes corrupted when
running under Turbo Debugger.

-vn 43 ISO-line display is not allowed. Specifying this option
saves some memory. Use this if you're running on an
EGA or VGA and know you won't switch into 43- or SO­
line mode once Turbo Debugger is running.

-vp Enables the EGA palette save.

The -y options are used to set the size of the overlay pool size,
either in main memory or in EMS memory.

-yN This option sets the overlay pool size in main memory.
The syntax is as follows, where N is the number of
ki1obyte~ you want to reserve:

-yN

Normally, Turbo Debugger uses a 80K code pool size. The
smallest pool size that you can set is 20K, and the largest
is 200K.

Use this option if you do not have enough memory to
load your program under Turbo Debugger, or if you are
debugging small programs and want to improve Turbo
Debugger's performance. The smaller the code pool size,
the more often Turbo Debugger loads program overlays
from disk, and the slower it responds. With a larger code
pool, there is less memory available for the program you
are debugging, but Turbo Debugger runs faster.

-yeN This option sets the overlay pool size in EMS memory .
Use this option if you need to free up some EMS memory
for the program you are debugging. The syntax is as

68 Turbo Debugger User's Guide

follows, where N is the number of 16K EMS pages you
want to reserve:

-yeN

For example, -ye4 sets the overlay pool to four pages. The
default is twelve 16K EMS pages.

Use -yeO to disable the EMS overlay pool.

Configuration files

Appendix 0 describes how
to use the installation pro­

gram to create configuration
files.

Turbo Debugger uses a configuration file to override built-in
default values for command-line options. You can use TDINST to
set the options that Turbo Debugger will default to if there is no
configuration file. You can also use it to build configuration files.

Turbo Debugger looks for the configuration file TDCONFIG.TD
first in the current directory, next in the TURBO directory set up
with the TDINST installation program, and then in the directory
that contains TD.EXE. If you are running on DOS 2.x, Turbo De­
bugger won't look for TDCONFIG.TD in the TD.EXE directory.

If Turbo Debugger finds a configuration file, the settings in that
file override its built-in defaults. Any command-line options that
you supply when you start Turbo Debugger from DOS override
those default options and any values in TDCONFIG.TD.

The Options menu

Language... Source
Macros ~
Displayoptions •••
Path for source •••
Save options •••
Restore options •••

The Language
command

The Options menu lets you set or adjust a number of parameters
that control the overall appearance and operation of Turbo
Debugger. The following sections describe each menu command
and refer you to other sections of the manual where you can find
more details.

Chapter 9 describes how to set the current expression language
and how it affects the way you enter expressions.

Chapter 4, Starting Turbo Debugger 69

The Macros menu

70

Create Alt­
Stop recording Alt­
Remove
Delete all

Create

Stop Recording

Remove

Delete All

Display Options
command

The Macros command displays another menu that lets you define
new keystroke macros or delete ones that you have already
assigned to a key. It has the following commands: Create, Stop
Recording, Remove, and Delete All.

Starts recording keystrokes that you are assigning to a key (for
example, Alt-M). To begin a recording session, choose Options I
Macros I Create. You are prompted for the key you want to assign
the macro to. The message RECORDING is displayed in the upper
right-hand comer of the screen while the recording session is in
progress. Type the keystrokes you want to record. These key­
strokes are acted upon by Turbo Debugger exactly as if you were
not recording a macro.

Once you have finished recording keystrokes, issue the Options I
Macros I Stop Recording command or its hot key, All-Hyphen. You
can also press the key you assigned the macro to (Alt-M) once
more.

Alt = is the hot key for starting to record a macro.

Stops recording keystrokes that are assigned to a key. Use this
command after issuing the Options I Macros I Create command to
assign keystrokes to a key.

Alt-Hyphen is the hot key for ending a macro.

Removes a macro assigned to a single key. You are prompted to
press the key of the macro you want to delete.

Removes all keystroke macro definitions and restores all keys to
the meaning that they originally had.

This command opens a dialog box in which you can set several
options that control the appearance of the Turbo Debugger
display.

Turbo Debugger User's Guide

Figure 4.1
The Display Options dialog

box
[I =f4odu e: TPOE Fe: TPOEHO.PAS 217

end;
Writeln;

end; { PamsOnHeap }

• begin { progrll'l }
Init;
Buffer :- GetL1ne;
whl1 e Buffer <> I I

begin
ProcessLi ne(Buffer}
Buffer :- GetLine;

end;
ShowResul ts;
PamsOnHeap;

end.

. :: ':. :' ~': :::: : :: '::: : : ::::::::: :.::: :::: :.::::': :.:.: :::.::: :~.:,~: :.: :::.!.:,:.:::?~::-: ~:.~:.~: :,i ... ::: ~!.:~.:.::.:: :.::~::: :.: ~::::: :::.:.: :;.::: :{: ::: :.: :,;;,:.:.:;~ ~::": :.~~:.:,:~.:.~:::.
atches----'----.----. ------2 -~ ::! :""I;".11IIIlI1III1III111III111 III

'eee.t current set T n ••• n5 'n>Cee~
Display Swapping The Display Swapping radio buttons let you choose from three

ways of controlling how the User screen gets swapped back and
forth with Turbo Debugger's screen:

None Don't swap between the two screens. Use this option if
you're debugging a program that does not output to
the User screen.

Smart Swap to the User screen only when display output may
occur. Turbo Debugger swaps the screens any time that
you step over a routine, or if you execute an instruction
or source line that appears to read from or write to
video memory. This is the default option.

Always Swap to the User screen every time the user program
runs. Use this option if the Smart option is not catching
all the occurrences of your program writing to screen.
If you choose this option, the screen flickers every time
you step through your program, since Turbo De­
bugger's screen is replaced for a short time with the
User screen.

Chapter 4, Starting Turbo Debugger 71

72

Integer Format These radio buttons let you choose from three display formats for
displaying integers:

Decimal Shows integers as ordinary decimal numbers.

Hex Shows integers as hexadecimal numbers, displayed in
a format appropriate to the current language.

Both Shows integers as both decimal numbers and as hex
numbers in parentheses after the decimal value.

Screen Lines These radio buttons are used to determine whether Turbo
Debugger's screen uses the normal 25-line display or the 43- or
50-line display available on EGA and VGA display adapters.

Tab Size This input box lets you set how many columns each tab stop
occupies. You can reduce the tab column width to see more text in
source files that have a lot of code indented with tabs. You can set
the tab column width from 1 to 32.

Path for Source
command

Save Options
command

Sets the directories that Turbo Debugger searches for your source
files. See the discussion of the Module window in Chapter 8 for
more information.

This command opens a dialog box from which you can save your
current options to a configuration file on disk. These options are

• your macros
• the current window layout and pane formats
• all settings made in the Options menu

Turbo Debugger User's Guide

Figure 4.2
The Save Options dialog box

Restore Options
command

ROMPT
1=[t] Ul91

A

:
Turbo Debugger lets you save your options in any or all of these
ways, depending on which of the Save Configuration check boxes
you turn on:

Options Saves all settings made in the Options menu.

Layout Saves only the windowing layout.

Macros Saves only the currently defined macros.

You can also use the Save To input box to change the name of the
configuration file to which you are saving the options.

Restores your options from a disk file. You can have multiple
configuration files, containing different macros, window layouts,
and so forth. You must choose a configuration file that was
created by the Save Options command or with TDINST.

Running DOS in Turbo Debugger

When debugging a program, you sometimes need to use another
program or utility. Do this via File I DOS Shell.

When you start the DOS command processor, the program you
are debugging is swapped to disk if necessary. This lets you
perform DOS commands even while you are debugging a

Chapter 4, Starting Turbo Debugger 73

program that takes all the available memory. Of course, this
means that there may be a few seconds of delay while your pro­
gram is being swapped to and from the disk.

Wamlng! Do not load TSRs (terminate and stay resident programs) on top
of Turbo Debugger while you are shelled to DOS.

When you have finished issuing commands to 005, type EXIT and
press Enter to return to your debugging session.

Returning to DOS

74

You can end your debugging session and return to DOS at any
time by pressing Alt-X, except when a dialog box is active (in that
case, first close the dialog box by pressing Esc). You can also
choose File I Quit.

All the memory initially alloca ted to the program being debugged
is freed. If the program you are debugging allocates memory via
the 005 block memory allocation routines, that memory is also
freed.

Turbo Debugger User's Guide

c H A p T E R

5

Controlling program execution

When you debug a program, you usually execute portions of it
and check at a stopping point to see that it is behaving correctly.
Turbo Debugger gives you many ways to control your program's
execution. You can

• execute single machine instructions or single source lines

• skip over calls to functions or procedures
• "animate" the debugger (perform continuous tracing)
• run until the current function or procedure returns to its caller
.. run to a specified location

• continue until a breakpoint is reached
II reverse program execution

A debugging session consists of alternating periods when either
your program or the debugger is running. When the debugger is
running, you can cause your program to run by choosing one of
the Run menu's command options or pressing its hot key equiva­
lent. When your program is running, the debugger starts up again
when either the specified section of your program has been exe­
cuted, or you interrupt execution with a special key sequence, or
Turbo Debugger encounters a breakpoint.

This chapter shows you how to examine the state of your pro­
gram whenever Turbo Debugger is in control. You'll see various
ways to execute portions of your program, and also how to inter­
rupt your program while it's running. Finally, you'll learn the

Chapter 5, Controlling program execution 75

ways you can restart a debugging session, either with the same
program or with a different program.

Examining the current program state

76

The Variables

The "state" of your program consists of the following elements:

• its DOS command-line arguments
• the stack of active functions or procedures
• the current location in the source code or machine code

• register values
• the contents of memory
• the reason the debugger stopped your program
• the value of your program data variables

The following sections explain how to use the Variables window,
the Stack window, the local menus of the Global and Static panes,
and the Origin and Get Info commands. See Chapter 6 for more
information on how to examine and change the values of your
program data variables.

window You open the Variables window by choosing View I Variables.

Figure 5.1
The Variables window

This window shows you all the variables (names and values) that
are accessible from the current location in your program. Use it to
find variables whose names you can't remember. You can then
use the local menu commands to further examine or change their
values. You can also use this window to examine the variables
local to any function that has been called.

Turbo Debugger User's Guide

¢ When you're debugging a Turbo Pascal program, the variables
won't be arranged alphabetically.

You open a Variables window by choosing View I Variables. A
Variables window has two panes:

I::J The Global pane (top) shows all the global symbols in your
program.

a The Static pane (bottom) shows all the static symbols in the
current module (the module containing the current program
location, CS:IP) and all the symbols local to the current
function.

Both panes show the name of the variable at the left margin and
its value at the right margin. If Turbo Debugger can't find any
data type information for the symbol, it displays four question
marks (????).

Press AIt-F10 (as with all local menus) to pop up the Global pane's
local menu. If control-key shortcuts are enabled, you can also
press Gfrl with the first letter of the desired command to access it.

If your program contains functions that perform recursive calls, or
if you want to view the variables local to a function that has been
called, you can examine the value of a specific instance of a func­
tion's local data. First create a Stack window with View I Stack,
then move the highlight to the desired instance of the function
call. Next, press Alf-F10 and choose Locals. The Static pane of the
Variables window then shows the values for that specific instance
of the function.

The Global pane local This local menu consists of two commands: Inspect and Change.
menu

See Chapter 6 for more
Information on how Inspector

windows behave.

Inspect

Opens an Inspector window that shows you the contents of the
currently highlighted global symbol.

If the variable you want to inspect is the name of a function, you
are shown the source code for that function, or if there is no
source file, a CPU window shows you the disassembled code.

If the variable you inspect has a name that is superseded by a
local variable with the same name, you'll see the actual value of
the global variable, not the local one. This characteristic is slightly
different than the usual behavior of Inspector windows, which

Chapter 5, Controlling program execution 77

See Chapter 9 for more
Information on assignment
and data type conversion.

The Static pane local
menu

See Chapter 6 for more
Information on how Inspector

windows behave.

78

See Chapter 9 for more
Information on assignment
and data type conversion.

normally show you the value of a variable from the point of view
of your current program location (CS:IP). This difference gives
you a convenient way of looking at the value of global variables
whose names are also used as local variables.

Change

Changes the value of the currently selected (highlighted) global
symbol to the value you enter at the Change dialog box. Turbo
Debugger performs any necessary data type conversion exactly as
if the assignment operator for your current language had been
used to change the variable.

You can also change the value of the currently highlighted symbol
by opening the Inspector window and typing a new value. When
you do this, the same dialog box appears as if you had first
specified the Change command.

Press the A/t-F10 key combination to pop up the Static pane's local
menu; if control-key shortcuts are enabled, use the etr/key with
the first letter of the desired command to access it.

The Static pane has these two local menu commands: Inspect and
Change.

Inspect

Opens an Inspector window that displays the contents of the
currently highlighted module's local symbol.

Change

Changes the value of the currently selected (highlighted) local
symbol to the value you enter at the Change dialog box. Turbo
Debugger performs any da ta type conversion necessary, exactly as
if the assignment operator for your current language had been
used to change the variable.

You can also change the value of the currently highlighted symbol
by opening the Inspector window (see previous command) and
starting to type a new value. When you do this, the same dialog
box appears as if you had first specified the Change command.

Turbo Debugger User's Guide

The Stack window

Figure 5.2
The Stack window

You create a Stack window by choosing View I Stack. The Stack
window lists all active functions or procedures. The most recently
called routine is displayed first, followed by its caller and the
previous caller, all the way back to the first function or procedure
in the program (the main program in Pascal; in C programs,
usually the function called main). For each procedure or function,
you see the value of each parameter it was called with.

The Stack window likewise displays the names of object methods
or class member functions, prefixed with the name of the object or
class type that defines the method or member function:

SHAPES.ACIRCLE(174, 360, 75.0) {Turbo Pascal}

Press Alt-F10 to pop up the Stack window local menu, or press GIrl
with the first letter of the desired command to access it.

The Stack window local The Stack window local menu has two commands: Inspect and
menu Locals.

Inspect

Opens a Module window positioned at the active line in the
currently highlighted function. If the highlighted function is the
top (most recently called) function, the Module window shows
the current program location (CS:IP). If the highlighted function is
one of the functions that called the most recent function, the
cursor is positioned on the line in the function that will be
executed after the called function returns.

You can also invoke this command by positioning the highlight
bar over a function, then pressing Enter.

Locals

Opens a Variables window that shows the symbols local to the
current module, as well as the symbols local to the currently high-

Chapter 5, Controlling program execution 79

lighted function. If a function calls itself recursively, there are
multiple instances of the function in the Stack window. By posi­
tioning the highlight bar on one instance of the function, you can
use this command to look at the local variables in that instance.

The Origin local
menu command Both the Module window and the Code pane of a CPU window

have an Origin command on their local menus. Origin positions
the cursor at the current code segment (CS:IP). This is very useful
when you have been looking at your code and want to get back to
where your program stopped.

80

The Get Info
command You can choose File I Get Info to look at memory use and to

determine why the debugger gained control. This and other
information appears in a text box (see Figure 0) that disappears
with your next keystroke:

• The name of the program you're debugging.
• A description of why your program stopped.
• The amount of memory used by 005, Turbo Debugger, and

your program.

• If you have EMS memory, its use appears to the right of main
memory use.

• A list of interrupts intercepted by the program you're
debugging.

• The OOS version you're running.
• Whether breakpoints are handled entirely in software or if they

have hardware assistance.

Turbo Debugger User's Guide

Figure 5.3
The Get Info text box

Here are the messages you'll see on the second (status) line,
describing why your program stopped:

Stopped at_
Your program stopped as the result of a completed Run I Execute
To, Run I Go to Cursor, or Run I Until Return command. This
status line message also appears when your program is first
loaded, and the compiler startup code in your program has been
executed to put you at the start of your source code.

No program loaded
You started Turbo Debugger without loading a program. You
cannot execute any code until you either load a program or
assemble some instructions using the Assemble local menu
command in the Code pane of a CPU window.

Control Break
You interrupted execution of your program with Girl-Break.

Trace
You executed a single source line or machine instruction with F7
(Run I Trace).

Breakpoint at _
Your program encountered a breakpoint that was set to stop your
program. The text after "at" is the address in your program where
the breakpoint occurred.

Terminated, exit code _
Your program has finished executing. The text after "code" is the
numeric exit code returned to DOS by your program. If your pro­
gram does not explicitly return a value, a garbage value may be
displayed. You cannot run your program until you reload it with
Run I Program Reset.

Chapter 5, Controlling program execution 81

The Run menu

82

Loaded
You loaded Turbo Debugger and specified a program and the
option that prevents the compiler startup code from executing.
No instructions have been executed at this point, including those
that set up your stack and segment registers. This means that if
you try to examine certain data in your program, you may see
incorrect values.

Step
You executed a single source line or machine instruction, skipping
function calls, with FB (Run I Step Over).

Interrupt
You pressed the interrupt key (usually GIrl-Break) to regain control.
Your program was interrupted and control passed back to the
debugger.

Exceptlon_
You were using TD386, and a processor exception has occurred.
This usually happens when your program attempts to execute an
illegal instruction opcode. The Intel processor documentation
describes each exception code in complete detail.

Hardware device driver stuck
You were using a hardware debugger and set a hardware break­
point in a stack variable that is conflicting with Turbo Debugger.
You must remove the hardware breakpoint before you proceed.

Divide by zero
Your program has executed a divide instruction where the
dividend is zero.

Global breakpoint _ at _
A global breakpoint has been triggered. You are told the
breakpoint number and the location in your program where the
breakpoint occurred.

The Run menu has a number of options for executing different
parts of your program. Since you use these options frequently,
they are all available on function keys.

Turbo Debugger User's Guide

Run

Go to Cursor

Trace Into

Step Over

Run
Go to cursor
Trace into
Step over
Execute to •••
Until return
Animate •••
Back trace
Instruction trace

Arguments •••
Progratl reset

F9
F4
F7
F8

Alt-F9
Alt-F8

Alt-F4
Alt-F7

Ctrl-F2

Runs your program at full speed. Control returns to the debugger
when one of the following events occurs:

II Your program terminates.
Ell A breakpoint with a break action is encountered.
II You interrupt execution with elrl-Break.

Executes your program up to the line that the cursor is on in the
current Module window or CPU Code pane. If the current
window is a Module window, the cursor must be on a line of
source code.

Executes a single source line or assembly level instruction. If the
current window is a Module window, a single line of source code
is executed; if it's a CPU window, a single machine instruction. If
the current line contains any procedure or function calls, Turbo
Debugger traces into the routine. However, if the current window
is a CPU window, only a single machine instruction is executed.

Turbo Debugger treats object methods and class member func­
tions just like any other procedure or function. F7 traces into the
source code if it's available.

Executes a single source line or machine instruction, skipping
over any procedure or function call(s). If the current window is a
Module window, this command usually executes a single source

Chapter 5, Controlling program execution 83

Execute To ...

Until Return

84

line. However, if the current window is a CPU window, only a
single machine instruction is executed.

If you step over a single source line, Turbo Debugger treats any
function or procedure call(s) in that line as part of the line. You
don't end up at the start of one of the functions. Instead, you end
up at the next line in the cUrrent routine or at the previous routine
that called the current one.

If you are in a CPU window, Turbo Debugger treats certain
instructions as a single instruction, even when they cause mul­
tiple assembly instructions to be executed. Here is a complete list
of the instructions Turbo Debugger treats as single instructions:

CALL
INT
LOOP
LOOPZ
LOOPNZ

Subroutine call, near, and far
Interrupt call
Loop control with ex counter
Loop control with ex counter
Loop control with ex counter

Also stepped over are REP, REPNZ, or REPZ followed by CMPS,
CMPS, CMPSW, LODSS, LODSW, MOVS, MOVSS, MOVSW, SCAS,
SCASS, SCASW, STOS, STOSS, or STOSW.

The Run I Step Over command treats a call to an object method or
a class member function like a single statement, and steps over it
like any other procedure or function call.

Executes your program until the address you specify in the dialog
box is reached. The address you specify may never be reached if a
breakpoint action is encountered first, or if you interrupt
execution.

Executes until the current function returns to its caller. This is
useful in two circumstances: When you have accidentally exe­
cuted into a function or procedure that you are not interested in
with Run I Trace instead of Run I Step, or when you have deter­
mined that the current function works to your satisfaction, and
you don't want to slowly step through the rest of it.

Turbo Debugger User's Guide

Animate ...

Back Trace

Wamlng!

Instruction Trace

Arguments ...

Performs a continuous series of Trace Into commands, updating
the screen after each one. (The effect is to run your program in
slow motion.) You can watch the current location in your source
code and see the values of variables changing. You interrupt this
command by pressing any key.

After you choose Run I Animate, you will be prompted for a time
delay between successive traces. The time delay is measured in
tenths of a second; the default is 3.

If you are tracing (F7 or Alt-F7) through your program, reverses the
order of execution. This is handy if you trace beyond the point
where you think there may be a bug, and want to reverse
program execution back to that point. This lets you "undo" the
execution of your program by stepping backward through the
code, either a single step at a time or to a specified point
highlighted in the Instructions pane of the Execution History
window.

Some restrictions apply. See the section, "The Instructions pane
(page 86)."

Executes a single machine instruction. Use this when you want to
trace into an interrupt, or when you're in a Module window and
you want to trace into a procedure or function that's in a module
with no debug information (for example, a library routine).

Since you will no longer be at the start of a source line, this
command usually places you in a CPU window.

This command lets you set new command-line arguments for
your program. This is discussed more in Chapter 5.

Chapter 5, Controlling program execution 85

Program Reset
Reloads from disk the program you're debugging. Use this when
you've executed past the place where you think there is a bug.

If you're in a Module or CPU window, the debugger won't return
to the start of the program. Instead, you'll stay exactly where you
were when you chose the Program Reset command. If you chose
Program Reset because you just executed one source statement
more than you intended, you can position the cursor up a few
lines in your source file and press F4 to run to that location, or
choose Run I Back Trace to step back through previously executed
code instead of choosing Program Reset.

The Execution History window

Figure 5.4
The Execution History window

The Instructions

Turbo Debugger has a special feature called the execution history
that keeps track of each instruction as it is executed (provided you
are tracing into the code), and also, if you want, records the key­
strokes you input to get to a given point in your program. You
can examine these instructions, and also undo them to return to a
point in the program where you think there might be a bug. If you
don't have EMS memory, Turbo Debugger can record about 400
instructions. If you have EMS, it can record approximately 3000
instructions.

You can examine the execution history in the Execution History
window, which you open by choosing View I Execution History.

This window has two panes: the Instructions pane on top and the
Keystroke Recording pane on the bottom.

pane The Instructions pane shows instructions already executed that
you can examine or undo. Use the highlight bar to make your
selection.

86 Turbo Debugger User's Guide

The Instructions pane
local menu

Inspect
Reverse execute

Full hi story Yes

The hot key for this
command Is Alt·F4.

Wamlngl

Wamlngl

The execution history only keeps track of instructions that have
been executed with the Trace Into command (Fl) or the Instruction
Trace command (AIt-Fl). It also tracks for Step Over, as long as you
don't encounter one of the commands listed on page 84. As soon
as you use the Run command or execute an interrupt, the
execution history is deleted. (It starts being recorded again as
soon as you go back to tracing.)

You cannot backtrace into an interrupt call.

If you step over a procedure or function call, you will not be able
to trace back beyond the instruction following the return.

Backtracing through a port-related instruction has no effect, since
you can't undo reads and writes.

The local menu for the Instructions pane contains three
instructions:

Inspect

This command takes you to the command highlighted in the
Instructions pane. If it is a line of source code, you are shown that
line in the Module window; if there is no source code, the CPU
window opens, with the instruction highlighted in the Code pane.

Reverse Execute

This command reverses program execution to the loca tion
highlighted in the Instructions pane. If you selected a line of
source code, you are returned to the Module window; otherwise,
the CPU window appears with the highlight bar of the Code pane
on the instruction.

You can never reverse back over a section of your program that
you didn't trace through. For example, if you set a breakpoint and
then pressed F9 to run until the breakpoint was reached, all your
reverse execution history will be thrown away. In this case, if you
want to recover, you can use the keystroke replay facility of the
Execution History window to reload your program and run
forward to that point.

The INT instruction causes any previous execution history to be
thrown out. You can't reverse back over this instruction, unless
you press Alt-F7 to trace into the interrupt.

Chapter 5, Controlling program execution 87

The Keystroke
Recording pane

The Keystroke
Recording pane local

menu

88

The following instructions do not cause the history to be thrown
out, but they cannot have their effects undone. You should be on
the lookout for unexpected side effects if you back up over these
instructions:

IN
OUT
INSB

Full History

INSW
OUTSB
OUTSW

This command is a toggle. If it is set to On, backtracing is enabled.
If it is Off, backtracing is disabled.

Even if you do inadvertently destroy your execution history, you
can quickly execute back to a given point in your program, if you
have keystroke recording enabled.

Keystroke recording works in conjunction with the reverse pro­
gram execution capability to give you different ways of recover­
ing to a previous point in your debugging session. It keeps a
record of all the keys that you press, both when you're issuing
commands to Turbo Debugger and when you're interacting with
the program you are debugging. The keystrokes are recorded in a
file named PROGNAME.TDK, where progname is the name of the
program you are debugging.

Use the bottom pane of the Execution History window to replay
keystrokes and recover to a previous point in your session. Each
line in the keystroke history list shows the reason that Turbo
Debugger gained control (breakpoint, trace, and so forth) and
your program's current location at that time. If the location corre­
sponds to a line of source code, that line is displayed. Otherwise,
the instruction at that address is disassembled.

The -k command-line option enables keystroke recording. (See
page 65.) You can also use TDINST to set the default to On.

The local menu for the Keystroke Recording pane contains two
commands: Inspect and Keystroke Restore.

Turbo Debugger User's Guide

Inspect
Keystroke restore

Inspect

If you highlight a line in the Keystroke Recording pane, then
choose Inspect from the local menu, the Module window comes
up with the cursor on the line of source code at which that key­
stroke occurred.

If this line does not correspond to a source code position, the CPU
window opens with the highlight positioned on the instruction.

Keystroke Restore

If you highlight a line in the Keystroke Recording pane, then
choose Keystroke Restore, Turbo Debugger reloads your program
and runs it to the highlighted context. This is especially useful if
you have executed a Turbo Debugger command that has deleted
your execution history.

Interrupting program execution

Ctrl-Break

With interactive programs, the quickest way to get to a specific
place in your program is sometimes to simply run it, interact with
it until it gets to the desired part of the code, and then interrupt
execution. This is particularly true if the piece of code you want to
examine is called several times before the one time of particular
interest to you.

You may also want to interrupt program execution when, for
some unexpected reason, control does not return to the debugger.
This can happen when a piece of code contains an infinite loop:
You expect a piece of code to be executed, so you set a breakpoint,
but the breakpoint is never reached.

This key combination will almost always interrupt your program
and return control to the debugger. It takes effect as soon as you
press it, so you might sometimes appear to be in an unexpected
piece of code. This code could be in the ROM keyboard BIOS if
your program is waiting for a keystroke, or at any instruction in
the loop being executed. elrl-Break is unable to override the follow­
ing two conditions-if either of these conditions occur, you will
need to reboot your system:

Chapter 5, Controlling program execution 89

• You are stuck in a loop with interrupts disabled .

• The system has crashed due to execution of erroneous code.

If you are debugging a program that needs to act upon the etr/­
Break key combination itself, you can change the interrupt key.
Use the TDINST installation program. You can set the interrupt
key to be any key combina tion.

Program termination

When your program terminates and exits back to DOS, Turbo
Debugger regains control. It displays a message showing the exit
code that your program returned to 005. Once your program
terminates, you cannot use any of the Run menu options until you
reload the program with Run I Program Reset.

The segment registers and stack are usually not correct when your
program has terminated, so do not examine or modify any pro­
gram variables after termination.

Restarting a debugging session

90

Reloading your
program

Turbo Debugger has several features that make restarting a de­
bugging session as painless as possible. When you're debugging a
program, it's easy to go just a little too far and overshoot the real
cause of the problem. In that case, Turbo Debugger lets you
restart debugging but suspends execution before the last few
commands that caused you to miss the problem that you wanted
to observe.

Most debuggers force you to type in manually what could be a
very long sequence of commands to get back to the place where
the error OCcurred. Turbo Debugger has the powerful capability to
record the keystrokes that made up the last session and to replay
them on demand. It also lets you reload your last program from
disk, with its previous DOS command-line arguments.

To reload the program you were debugging, choose Run I Pro­
gram Reset. Turbo Debugger reloads the program from disk, with
any data you have added since you last saved to disk. This is the

Turbo Debugger User's Guide

Keystroke macro
recording and

playback

safest way to restart a program. Restarting by executing at the
start of the program can be risky, since many programs expect
certain data to be initialized from the disk image of the program.
Note that Program Reset leaves breakpoints and watchpoints intact.

You can use the keystroke macro facility to record keystroke
sequences that you use frequently. During debugging, you often
repeat the same sequence of commands to get to a certain place in
your program. This can be very tedious.

To get around this problem, you can define a keystroke macro
that records all the keys you press, from when you first start
Turbo Debugger until you have your program in the desired
state. At that point, you can stop recording keystrokes. If you
have to get back to the same place in your program, all you have
to do is replay the keystroke macro.

You can't use this utility to record keystrokes that must be typed
to your program. You can only record Turbo Debugger command
keystrokes.

The first thing you must do after starting Turbo Debugger from
DOS is define a keystroke macro. Choose Options I Macros I Create
to do this. You're prompted to press a key to assign the keystroke
macro to. Choose a key that hasn't been assigned to a function
yet, such as Shift and one of the function keys, say Shift-Ft. Now
take your program to its point of crashing.

At that point, stop recording the keystroke macro by choosing
Options I Macros I Stop Recording. Save the macro to disk by
choosing the Options I Save Options command and turning on the
Macros option in the Save Configuration dialog box. Continue
running your program. After your program crashes, and you
have reloaded it and Turbo Debugger, you can simply press Shift­
Ft to restart the program.

If your program requires you to type things to get to the next part
of the recorded command sequence, you still have to enter those
keystrokes manually. (You can do this while the macro is
running.) For programs that do not require you to enter anything,
this keystroke recording mechanism can completely automate the
restarting procedure, saving many keystrokes.

¢ When a macro is saved to a configuration file, the configuration of
the total environment is saved, including opened and zoomed

Chapter 5. Controlling program execution 91

windows. Thus if you record a macro that opens a window and
don't close the window before saving the macro, the next time
you restore that configuration file, the window will be open
automatically even though you haven't executed the macro.

Opening a new program to debug

92

Figure 5.5
The Load Program dialog

box

You load a new program to debug by choosing File I Open to open
the Load Program dialog box.

sp.exe
donuthin.exe
dototal.exe
dnmappy.exe
echo.exe
hello.exe
little.exe
l'I,)'test.exe
pwrs.exe
reverse. exe
small.exe
tcdemo.exe

You can enter a file name (extension .EXE) in the File Name input
box, or press Enter to active a list box of all the .EXE files in the
current directory. Move the highlight bar to the file you want to
load and press Enter.

If, instead, you type in the name of the file you want to load, the
highlight bar moves to the file that begins with the first letter(s)
you typed. When the bar is positioned on the file you want, press
Enter.

You can supply arguments to the program to debug by placing
them after the program name, exactly as you would at the DOS
prompt:

myprog abc

This loads program MyProg with three command-line arguments,
a, h, and c.

Turbo Debugger User's Guide

Changing the program arguments

If you forgot to supply some necessary arguments to your pro­
gram when you loaded it, you can use the Run I Arguments
command to set or change the arguments. Enter new arguments
exactly as you would following the name of your program on the
DOS command line.

Once you have entered new arguments, Turbo Debugger asks you
if you want to reload your program from disk. You should
answer Yes, because for most programs, the new arguments will
only take effect if you reload the program first.

Chapter 5, Controlling program execution 93

94 Turbo Debugger User's Guide

c H A p T E R

6

Examining and modifying data

For how to examine or
modify arbitrary blocks of

memory as hex data bytes,
see Chapter 11.

Turbo Debugger provides a unique and intuitive way to examine
and even change your program's data.

C Inspector windows let you look at your data as it appears in
your source file. You can "follow" pointers, scroll through
arrays, and see structures, records, and unions exactly as you
wrote them.

1:1 You can also put variables and expressions into the Watches
window, where you can watch their values as your program
executes.

13 The Evaluate/Modify dialog box shows you the contents of any
variable and lets you assign a new value to it.

This chapter assumes that you understand the various data types
that can be used in the language you're using (C, Pascal, or
assembler). If you are fairly new to a language and have not yet
explored all its data types (char, Int, integer, Boolean, real, single­
and double-precision floating point, string, long integer, and so
on), this chapter can still give you valuable information about
them. When you have delved into the more complex data types
(arrays, pointers, records, structures, unions, and so on), return to
this chapter to learn more about looking at them with Turbo
Debugger.

In this chapter, we show you how to examine and modify vari­
ables in your program. First, we explain the Data menu and its
options. We then discuss how you can modify program data by
evaluating expressions that have side effects, and show you how

Chapter 6, Examining and modifying data 95

The Data menu

Inspect •••
Eva 1 uate/modi fy ... Ctrl-F4
Add watch... Ctrl-F7
Function return

96

Inspect ...

Evaluate/
Modify ...

See Chapter 9 for a
complete discussion of

expressions.

to point directly at data items in your source modules. Finally, we
introduce the Watches window and describe the way that the data
types of each language appear in Inspector windows.

The Data menu lets you choose how to examine and change pro­
gram data. You can evaluate an expression, change the value of a
variable, and open Inspector windows to display the contents of
your variables.

Prompts you for the variable that references the data you want to
inspect, then opens an Inspector window that shows the contents
of the program variable or expression. You can enter a simple
variable name or a complex expression.

If the cursor is on a variable in a text pane when you issue this
command, the dialog box automatically contains the variable at
the cursor, if any. If you select an expression in a text pane (using
Ins), the dialog box contains the selected expression.

Inspector windows really come into their own when you want to
examine a complicated data structure, such as an array of
structures or a linked list of items. Since you can inspect items
within an Inspector window, you can "walk" through your pro­
gram's data objects as easily as you scroll through your source
code in the Mcdule window.

See the "Inspector windows" section later in this chapter for a
complete description of how Inspector windows behave.

Opens the Evaluate/Modify dialog box (Figure 6.1), which
prompts you for an expression to evaluate, then evaluates it,
exactly as the compiler would during compila tion when you
choose the Eval button.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable at the cursor, if
any. If you select an expression (using Ins), the dialog box contains
the marked expression.

Turbo Debugger User's Guide

Figure 6.1
The Evaluate/Modify dialog

box

See Chapter 9 for a
discussion of format control.

Remember that you can add a format control string after the
expression that you want to watch. Turbo Debugger displays the
result in a format suitable for the data type of the result. To
display the result in a different format, put a comma (,) separator,
then a format control string after the expression. This is useful
when you want to watch something but have it displayed in a
format other than Turbo Debugger's default display format for the
data type.

The dialog box has three fields. You type the expression you want
to evaluate in the top one. This is the Evaluate input box, and it
has a history list just like any other input box. The middle field
displays the result of evaluating your expression. The bottom
field is an input box where you can enter a new value for the
expression. If the expression can't be modified, this box reads <Not

available>, and you can't move your cursor into it.

Your entry in the New Value input box takes effect when you
choose the Modify button. Use Tab and Shift-Tab to move from one
box to another, just as you do in other dialog boxes. Press Esc from

~ inside any input box to remove the dialog box, or click the Cancel
button with your mouse.

Data strings too long to display in the Result input box are termi­
nated by an arrow (~). You can see more of the string by scrolling
to the right.

If you are debugging a C++ or object-oriented Pascal program, the
Evaluate/Modify dialog box also lets you display the fields of an
object instance or the members of a class instance. You can use
any format specifier with an instance that can be used in
evaluating a record.

When you're tracing inside a method or member function, Turbo
Debugger knows about the scope and presence of the Self/this

Chapter 6, Examining and modifying data 97

98

You cannot execute
constructor or destructor

methods or member
functions In the Evaluate

window.

parameter. You can evaluate Self/this and follow it with format
specifiers and qualifiers.

Turbo Debugger also lets you call a method or member function
from inside the Evaluate/Modify dialog box. Just type the
instance name followed by a dot, followed by the method or
member function name, followed by the actual parameters (or
empty parentheses if there are no parameters). With these
deClarations,

type
Point = object

X, Y : Integer;
Visible : Boolean;
conatructor Init(InitX, InitY Integer);
deatructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
procedure MoveTo(NewX, NewY : Integer);

end;

var
APoint : Point;

you could enter any of these expressions in Turbo Debugger's
Evaluate window:

Expression

APoint.X
APoint
APoint.MoveTo
APoint.MoveTo(10, 10)
APoint.Show()

Result

5 ($5) : Integer
(S,23,FALSE) : Point
@6F4F:OOBE
calls method MoveTo
calls method Show

C programmers The C language has a feature called expressions with side effects that
can be powerful and convenient, as well as a source of surprises
and confusion.

An expression with side effects alters the value of one or more
variables or memory areas when it is evaluated. For example, the
C increment (++) and decrement (- -) operators and the assign­
ment operators (=, +=, and so on) have this effect. If you execute
functions in your program within a C expression (for example,
myfunc(2}), note that your function can have unexpected side
effects.

If you don't intend to modify the value of any variable but merely
want to evaluate an expression containing some of your program
variables, don't use any of the operators that have side effects. On

Turbo Debugger User's Guide

Add Watch ...

Function Return

the other hand, side effects can be a quick and easy way to change
the value of a variable or memory area. For example, to add 1 to
the value of your variable named count, evaluate the C expression
count++.

You can also use the Evaluate/Modify dialog box as a simple
calculator by typing in numbers as operands instead of program
variables.

Prompts you for an expression to watch, then places the expres­
sion or program variable on the list of variables displayed in the
Watches window when you press Enter or choose the OK button.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable at the cursor, if
any. If you select an expression (using Ins), the dialog box contains
the selected expression.

Shows you the value the current function is about to return. Use
this command only when the function is about to return to its
caller.

The return value is displayed in an Inspector window, so you can
easily exanline return values that are pointers to compound data
objects.

This command saves you having to switch to a CPU window to
examine the return value that is placed in the CPU registers. And
since it also knows the data type being returned and formats it
appropriately, it is much easier to use than a hex dump.

Pointing at data objects in source files

See Chapter 8 for a full
discussion of using Module

windows.

Turbo Debugger has a powerful mechanism to relieve you from
always typing in the names of program variables that you want to
inspect. From within any Module window, you can place the
cursor anywhere within a variable name and use the local menu
Inspect command to create an Inspector window showing the
contents of that variable. You can also select an expression or

Chapter 6, Examining and modifying data 99

variable to inspect by pressing Ins and using the cursor keys to
highlight it before choosing the Inspect command.

The Watches window

Figure 6.2
The Watches window

See Chapter 9 for a
complete discussIon of

scopes and when a variable
or parameter is valid.

Wamlngl

100

The Watches window lets you list variables and expressions in
your program whose values you want to track. You can watch the
value of both simple variables (such as integers) and complex
data objects (such as arrays). In addition, you can watch the value
of a calculated expression that does not refer directly to a memory
location. For example, x * y + 4.

2 [t] U],

tlerlable 2.2. 2.0 • 2.0 • 2.2 • 2.0 • 2.0 • 0.0 • 0.0 • 0.0 • 0.0 • 0.0
~['I tCh"

mletters 12 ($C) : lONGINT '
mWords 4 ($4) : WORD ':
mlines 2 ($2) : WORD
: .,' :,'-= :,::'-:.:::.;.:::',:,:,:,:, :-'::::::.:. :-:,::'::,:.,::',:,:,: :.:.:::,:::,:, :::::::::';.:: :::::::.::.:::,:::::.::::::;::::::: .. ::::::::::': ..

Choose View I Watches to access the Watches window. It holds a
list of variables or expressions whose values you want to watch.
For each item, the variable name or expression appears on the left
and its data type and value on the right. Compound values like
arrays and structures appear with their values between braces ({})
for C programs, and between parentheses for Pascal programs. If
there isn't room to display the entire name or expression, it is
truncated.

When you enter an expression to be watched, feel free to use
variable names that are not yet valid because they are in a
function that has not yet been called. This lets you set up a watch
expression before its scope becomes active. This is the only
situation in Turbo Debugger where you can enter an expression
that cannot be immediately evaluated.

This means that if you mistype the name of a variable, the mistake
won't be detected because Turbo Debugger assumes it is the name
of a variable that becomes available as your program executes.

Unless you use the scope-overriding mechanism discussed in
Chapter 9, Turbo Debugger evaluates expressions in the Watches
window in the scope of the current location where your program
is stopped. Hence an expression in the Watches window is
evaluated' as if it appeared in your program at the place where the
program is stopped. If a watch expression contains a variable
name that is not accessible from the current scope-for example, if

Turbo Debugger User's Guide

The Watches
window local

menu

Watch ...

Edit ...

Watch •••
Edit •••
ReIOOve
Delete all

Inspect
Change

Remove

Delete All

Inspect

Change

See Chapter 9 for more
information on the

assignment operator and
type conversion (casting).

it's private to another module-the value of the expression is
undefined and is displayed as four question marks (????).

When you're tracing inside an object method, you can add the
Self/this parameter to the Watches window.

As with all local menus, press Alt-F10 to pop up the Watches
window local menu. If you have control-key shortcuts enabled,
press Gtrl with the first letter of the desired command to access it.

Prompts you for the variable name or expression to add to the
Watches window. It is added to the beginning of the list.

Opens a dialog box in which you can edit an expression in the
Watches window. You can change any watch expression that's
there, or enter a new one.

You can also invoke this command by pressing Enter once you've
positioned the highlight bar over the watch expression you want
to change. Press Enter or choose the OK button to put the edited
expression into the Watches window.

Removes the currently selected item from the Watches window.

Removes all the items from the Watches window. This command
is useful if you move from one area of your program to another,
and the variables you were watching are no longer relevant.
(Then use the Watch command to enter more variables.)

Opens an Inspector window to show you the contents of the
currently highlighted item in the Watches window. If the item is a
compound object (array, record, or structure), this lets you view
all its elements, not just the ones that fit in the Watches window.
(The section "Inspector windows" on page 102 explains all about
Inspector windows.)

Changes the value of the currently highlighted item in the
Watches window to the value you enter in the dialog box. If the
current language you are using permits it, Turbo Debugger
performs any necessary type conversion exactly as if the appro-

Chapter 6, Examining and modifying data 101

priate assignment operator (= or :=) had been used to change the
variable.

Inspector windows

102

An Inspector window displays your program data appropriately,
depending on the data type you're inspecting. Inspector windows
behave differently for scalars (for example, char or Int), pointers
(char· in C, 1\ in Pascal), arrays (long x[4], array [1,,10] of Word),
functions, structures, records, unions, and sets.

The Inspector window lists the items that make up the data object
being inspected. The title of the window shows the data type of
the inspected data and its name, if there is one.

The first item in an Inspector window is always the memory
address of the data item being inspected, expressed as a segment:
offset pair, unless it has been optimized to a register or is a
constant (for example, 3).

To examine the contents of an Inspector window as raw data
bytes, select the View I Dump command while you're in the
Inspector window. The Dump window comes up, with the cursor
positioned to the data displayed in the Inspector window. You
can return to the Inspector window by closing the window with
the Window I Close command (Alt-F3), or clicking the close box
with your mouse.

The following sections describe the different Inspector windows
that can appear for each of the languages supported by Turbo
Debugger: C, Pascal, and assembler. The programming language
used dictates the format of the information displayed in Inspector
windows. Data items and their values always appear in a format
similar to the one they were declared with in the source file.

Remember that you don't have to do anything special to cause the
different Inspector windows to appear. The right one appears
automatically, depending on the data you're inspecting.

Turbo Debugger User's Guide

C data Inspector
windows

Scalars Scalar Inspector windows show you the value of simple data
items, such as

Figure 6.3
A C scalar Inspector window

Pointers

char x = 4;
unsigned long y = 1234561;

Following the top line, these Inspector windows have only a
single line of information that gives the address of the variable. To
the left on the following line appears the type of the scalar
variable (char, unsigned long, and so forth), and to the right
appears its present value. The value can be displayed as decimal,
hex, or both. It's usually displayed first in decimal, with the hex
values in parentheses (using the standard C hex prefix of Ox). Use
TDINST to change how the value is displayed.

If the variable being displayed is of type char, the equivalent
character is also displayed. If the present value does not have a
printing character equivalent, use the backslash (\) followed by a
hex value to display the character value. This character value
appears before the decimal or hex values.

~
.]=Inspecting wordcount=3=[t] U]

IlI76B2:FFC4 .. , ,
•

Pointer Inspector windows show you the value of data items that
point to other data items, such as

char *p = "abc";
int tip = 0;
int **ipp = &ip;

Pointer Inspector windows usually have a top line that contains
the address of the variable, followed by a single line of informa­
tion about the data pointed to. To the left appears [01, indicating
the first member of an array. To the right appears the value of the
item being pointed to. If the value is a complex data item, such as
a structure or an array, however, only as much of it as possible is
displayed with the values enclosed in braces «(and D.
If the pointer is of type char and appears to be pointing to a null­
terminated character string, more information appears, showing
the value of each item in the character array. To the left in each

Chapter 6, Examining and modifying data 103

104

Figure 6.4
A C pointer Inspector

window

line appears the array index ([1], [2], and so on), and the value
appears to the right as it would in a scalar Inspector window. In
this case, the entire string is also displayed on the top line, along
with the address of the pointer variable and the address of the
string that it points to.

You also get multiple lines if you open the Inspector window and
then use the Range local menu command. This is an important
technique for C programmers who use pointers to point to arrays
of items as well as single items. For example, if you had the code

int array[lO];
int *arrayp = array;

and you wanted to look at what arrayp pointed to, use the Range
local command on arrayp, specifying a start index of 0 and a range
of 10. If you had not done this, you would only have seen the first
item in the array.

Pointer Inspector windows also have a lower pane indicating the
data type to which the pointer points.

Arrays Array Inspector windows show you the value of arrays of data
items, such as

long thread[3] [4] [5];
char message[] = "eat these words";

There is a line for each member of the array. To the left on each
line appears the array index of the item. To the right appears the
value of the item. If the value is a complex data item such as a
structure or array, as much of it as possible is displayed.

You can use the Range local menu command to examine any
portion of an array. This is useful if the array has a lot of elements,
and you want to look at something in the middle of the array.

Turbo Debugger User's Guide

Figure 6.5
A C array Inspector window

Structures and unions Structure and union Inspector windows show you the value of
the members in your structure and union data items. For
example,

Figure 6.6
A C structure or union

Inspector window

struct date {
int year;
char month;
char day;

today;

union {
int small;
long large;

holder;

These Inspector windows have another pane below the one that
shows the values of the members. This additional pane shows the
data type of the member highlighted in the top pane.

[1]=Inspecting letteri nfo [n]=3=[t] [~]
97937:0852
count . 2 Ox2
fi rstletter . 2 (Ox2)

:.~;i·:,::·:.:::{:~:::::.:.:::·:;.:~:.::.::.:::.;::::::::.::.:.:.:::=::::::=:::=;::::;::::::"
struct.l info

Structures and unions appear the same in Inspector windows. The
lower pane of the Inspector window tells you whether you are
looking at a structure or a union. These Inspector windows have
as many items after the address as there are members in the struc­
ture or union. Each item shows the name of the member on the
left and its value on the right, displayed in a format appropriate
to its C data type.

Functions Function Inspector windows show each parameter that a function
is called with, below the memory address at the top of the
window.

Chapter 6, Examining and modifying data 105

106

Figure 6.7
A C function Inspector

window

Pascal data
Inspector
windows

They also give you information about the calling parameters,
return data type, and calling conventions for a function. The
lower pane indicates the data type returned by the function.

Scalars Scalar Inspector windows show you the value of simple data
items, such as

Figure 6.8
A Pascal scalar Inspector

window

Pointers

var
X : Integer;
Y : Longint;

These Inspector windows have only a single line of information
following the top line that gives the address of the variable. To the
left appears the type of the scalar variable (Byte, Word, Integer,
Longint, and so forth), and to the right appears its present value.
The value can be displayed as decimal, hex, or both. It's usually
displayed first in decimal, with the hex values in parentheses
(using the Turbo Pascal hex prefix $). You can use TDINST to
change how the value is displayed.

If the variable being displayed is of type Char, the character
equivalent is also displayed. If the present value does not have a
printing character equivalent, use a pound sign (#) followed by a
number to display the character value. This character value
appears before the decimal or hex values.

~
.]=Inspecting WordLen=3=[f] Ul

(lI8810:3EFO
1'1 I I

•

Pointer Inspector windows in a Pascal program show you the
value of data items that point to other data items, such as

var
IP : "integer;
LP : ""pointer;

Turbo Debugger User's Guide

Figure 6.9
A Pascal pointer Inspector

window

Arrays

Figure 6.10
A Pascal array Inspector

window

Records

Pointer Inspector windows usually have only a single line of
information following the top line that gives the address of the
variable. To the left appears [1], indicating the first member of an
array. To the right appears the value of the item being pointed to.
If the value is a complex data item such as a record or an array,
however, only as much of it as possible is displayed, with the
values enclosed in parentheses.

You also get multiple lines if you open the Inspector window and
issue the Range local command, specifying a count greater than 1.

[1]=Inspect1ng Temp=3=[t] U]
~10:3EF4 : 8CI0:0000

Array Inspector windows in Pascal programs show you the value
of arrays of data items, such as

var
A : array(1 .• 10,1 .. 20] of Integer;
B : array[1 .. 50] of Boolean;

There is a line for each member of the array. To the left on each
line appears the array index of the item and to the right is its
present value. If the value is a complex data item such as a record
or an array, as much of it as possible is displayed, with the values
enclosed in parentheses.

You can use the Range command to examine any portion of an
array. This is useful if the array has a lot of elements, and you
want to look at something in the middle of the array.

[1]=Inspecting LetterTable=3=[t] [~]9
~7D6:0058 •

Record Inspector windows in Pascal programs show you the
value of the fields in your records. For example,

rocord
year Integer;
month 1. .12;
day 1..31;

Chapter 6, Examining and modifying data 107

Figure 6.11
A Pascal record Inspector

window

Procedures and
functions

Figure 6.12
A Pascal procedure

Inspector window

Assembler data
Inspector
windows

end

These Inspector windows have another pane below the one that
shows the values of the fields. This additional pane shows the
data type of the field highlighted in the top pane.

~['J'lnsP"'tl n. LetterTIh 1. [' A 'J =40-[1) [lJ~

f~'OO~ ~

In the upper pane, procedure and function Inspector windows in
Pascal programs give you information about calling parameters.
These wiridows have a second pane, in which the routine is
identified as a procedure or function, as well as the data type
returned by a function.

~:'lnsP"'tln. pioeessUne=l= .. [tJ] P8340:0486' . . '. '

IjimU1T -

Scalars Scalar Inspector windows in assembly language programs show

108

Figure 6.13
An assembler scalar

Inspector window

you the value of simple data items, such as

VAR1 DW 99
MAGIC DT 4.608
BIGNUM DD 123456

These Inspector windows have only a single line of information
following the top line that gives the address of the variable. To the
left appears the type of the scalar variable (BYTE, WORD,
DWORD, aWaRD, and so forth), and to the right appears its
present value. The value can be displayed as decimal, hex, or
both. It's usually displayed first in decimal, with the hex values in
parentheses (using the standard assembler hex postfix H). You
can use TDINST to change how the value is displayed.

~
[.]=Inspect1ng Count=3=[t] U]~

'72ED:0019

au

Turbo Debugger User's Guide

Pointers Pointer Inspector windows in assembler programs show you the

Figure 6.14
An assembler pointer

Inspector window

value of data items that point to other data items, such as

x DW 0
XPTR DW X
FARPTR DD x

Pointer Inspector windows usually have only a single line of
information following the top line that gives the address of the
variable. To the left appears [0], indicating the first member of an
array. To the right appears the value of the item being pointed to.
If the value is a complex data item such as a STRUC or array,
however, only as much of it as possible is displayed, with the
values enclosed in braces ({ and D.
If the pointer is of type BYTE and appears to be pointing to a
null-terminated character string, more information appears,
showing the value of each item in the character array. To the left
in each line appears the array index ([1], [2], and so on), and the
value appears to the right as it would in a scalar Inspector win­
dow. In this case, the entire string is also displayed on the top
line, along with the address of the variable and the address of the
string that it points to.

You also get multiple lines if you open the Inspector window with
a Range local command and specify a count greater than 1.

Arrays Array Inspector windows in assembler programs show you the
value of arrays of data items, such as

WARRAY DW 10 DUP (0)
MSG DB "Greetings",O

Chapter 6, Examining and modifying data 109

Figure 6.15
An assembler array Inspector

window

There is a line for each member of the array. To the left on each
line appears the array index of the item and to the right is its
present value. If the value is a complex data item such as a
STRUC, however, only as much of it as possible is displayed.

You can use the Range local command to examine a portion of an
array. This is useful if the array has a lot of elements, and you
want to look at something in the middle of the array.

Structures and unions Structure Inspector windows in assembler programs show you
the value of the fields in your STRUC and UNION data objects. For
example,

110

Figure 6.16
An assembler structure

Inspector window

X STRUC
MEM1 DB 1
MEM2 DD 1
X ENDS
ANX X <l,ANX>

Y UNION
ASBYTES DB 10 DUP (1)
ASFLT DT 1
Y ENDS
AY Y <1,1.0>

These Inspector windows have another pane below the one that
shows the values of the fields. This additional pane shows the
data type of the field highlighted in the top pane.

[1]=Inspecting Names=3=[t] U]
P72ED:00ID
fi rstname "Carleton "
lastname "Whitehall "
ge '" 35 (23hl
ex 'H' 77 (4Dh

income 30000 (7530h
st~:J~::~~~~~~~:~:\:::::::::::\::::::::::::::::::'

Turbo Debugger User's Guide

The Inspector window local menu

Range •••
Change •••

Inspect
Descend
Newexpression •••
Type cast •••

Range ...

Change ...

Inspect

The commands in this menu give the Inspector window its real
power. By choosing the Inspect local menu command, for
example, you crea te another Inspector window that lets you go
into your data objects. Other commands in the menu let you
inspect a range of values and inspect a new variable.

Press AIt-F10 to pop up the Inspector window local menu. If you
have control-key shortcuts enabled, press GIrl with the first letter
of the desired command to access it.

Sets the starting element and number of elements that you want
to display. Use this command when you are inspecting an array,
and you only want to look at a certain subrange of all the
members of the array.

If you have a long array and want to look at a few members near
the middle, use this command to open the Inspector window at
the array index that you want to examine.

This command is particularly useful in C where you often declare
a pointer to a data item-like char *p-but what you really mean
is that p points to an array of characters, not just a single character.

Changes the value of the currently highlighted item to the value
you enter in the dialog box. If the current language permits it,
Turbo Debugger performs any necessary casting exactly as if the
appropriate assignment operator had been used to change the
variable. See Chapter 9 for more information on the assignment
operator and casting.

Opens a new Inspector window that shows you the contents of
the currently highlighted item. This is useful if an item in the
Inspector window contains more items itself (like a structure or
array), and you want to see each of those items.

Chapter 6, Examining and modifying data 111

If the current Inspector window is inspecting a function, issuing
the Inspect command shows you the source code for that
function.

You can also invoke this command by pressing Enter after high­
lighting the item you want to inspect.

You can return to the previous Inspector window by pressing Esc
to close the new Inspector window. If you are through inspecting
a data structure and want to remove all the Inspector windows,

... use the Window I Close command or its shortcut, AIt-F3, or click the
close box with your mouse.

Descend
This command works like the Inspect local menu command
except that instead of opening a new Inspector window to show
the contents of the highlighted item, it puts the new item in the
current Inspector window. This is like a hybrid of the New
Expression and Inspect commands.

¢ Once you have descended into a data structure like this, you can't
go back to the previous unexpanded data structure. Use this
command when you want to work your way through a compli­
cated data structure or long linked list, but you don't care about
returning to a previous level of data. This helps reduce the
number of Inspector windows onscreen.

New Expression ...

Type Cast ...

112

Prompts you for a variable name or expression to inspect, without
creating another Inspector window. This lets you examine other
data without having to put more Inspector windows on the
screen. Use this command if you are no longer interested in the
data in the current Inspector window.

Inspector windows for Pascal objects and C++ classes are some­
what different from regular Inspector windows. See Chapter 10
for a description of object type/class Inspector windows.

Lets you specify a different data type (Byte, Word, Int, Char
pointer) for the item being inspected. This is useful if the
Inspector window contains a symbol for which there is no type

Turbo Debugger User's Guide

Chapter 7, Breakpoints

information, as well as for explicitly setting the type for untyped
pointers.

113

114 Turbo Debugger User's Guide

c H

Chapter 7, Breakpoints

A p T E R

7

Breakpoints

Turbo Debugger uses the single term ''breakpoint'' to refer to the
debugger functions usually called breakpoints, watchpoints, and
tracepoints.

Traditionally, breakpoints, watchpoints, and tracepoints are
defined like this: A breakpoint is a place in your program where
you want execution to stop so that you can examine program
variables and data structures. A watchpoint causes your program
to be executed one instruction or source line at a time, watching
for the value of an expression to become true. A tracepoint causes
your program to be executed one instruction or source line at a
time, watching for the value of certain program variables or
memory-referencing expressions to change.

Turbo Debugger unifies these three concepts by defining a
breakpoint in three parts:

III the location in the program where the breakpoint occurs
D the condition under which the breakpoint is triggered
II what happens when the breakpoint is triggered

The location can be at either a single or global location in your
program (if it is global, the breakpoint can occur at any source line
or instruction in your program).

The "condition" can be

III always
• when an expression is true
II when a data object changes value

115

A "pass count" can also be specified, which requires "condition"
to be true a certain number of times before the breakpoint can be
triggered.

The "what happens" can be one of these:

• stop program execution (a breakpoint)
• log the value of an expression
• execute an expression (splice code)

In this chapter, we'll show you how Turbo Debugger breakpoints
give you more power and flexibility than traditional breakpoints,
watchpoints, and tracepoints. You'll learn about the Br~akpoints
and Log windows; how to set simple breakpoints, conditional
breakpoints, and breakpoints that log the value of your program
variables; and how to set breakpoints that watch for the exact
moment when a program variable, expression, or data object
changes value.

Many times, you just want to set a few simple breakpoints, so that
if your program reaches anyone of these locations, it stops. You
can set or clear a breakpoint at any location in your program by
simply placing the cursor on the source code line and pressing F2.
You can also set a breakpoint on any line of machine code by
pressing F2 when you are pointing at an instruction in the Code
pane of a CPU window. Or, ifydu have a mouse, just click the
first two columns of the line where you want to set the breakpoint
(If you're in the right columri, a Q appears in the position
indicator). There is no limit to the number of breakpoints you can
set.

The Breakpoints menu

116

You can access the Breakpoints menu at any time by pressing the
AIt-8 hot key.

Toggle F2
At... Alt-F2
Chiilged memory global •••
ExpreSSion true global •••
Hardware breakpoint •••
Delete all

Turbo Debugger User's Guide

Toggle

At ...

Changed
Memory Global ...

Expression True
Global ...

Hardware
Breakpoint ...

Wamlngl

Delete All

Chapter 7, Breakpoints

Sets or clears a breakpoint at the currently highlighted address in
a Module window or CPU window Code pane. The hot key is F2.

Lets you set a breakpoint at a specific location in your program. It
opens a dialog box in which you can set all breakpoint options.
Alt-F2 is the hot key.

Sets a breakpoint that's triggered when an area of memory
changes value. You are prompted for the area of memory to
watch. For more information, see the Changed Memory command
in "The Breakpoints window local menu" section later in this
chapter.

Sets a breakpoint that is triggered when the value of an expres­
sion you supply becomes true. You are prompted for the expres­
sion. For more information, see the Condition Expression True
command in ''The Breakpoints window local menu" section later
in this chapter.

Information on the hardware debugger interface is available in a
file on your distribution disks. Refer to the README file for how
to access this disk-based documentation.

You must have a hardware debugging board in order to use
hardware debugging.

Removes all the breakpoints you have set.

117

Scope of breakpoint expressions

Both the action that a breakpoint perfonns and the condition
under which it is triggered can be controlled by an expression you
supply. That expression is evaluated using the scope of the
address at which the breakpoint is set, not the scope of the current
location where the program is stopped. This means that your
breakpoint expression can use only variable names that are valid
at the address in your program where you set the breakpoint,
unless you use scope overrides. See Chapter 9 for a complete
discussion of scopes.

If you use variables that are local to a routine as part of an expres­
sion, that breakpoint will execute much more slowly than a break­
point that uses only global or module local variables.

The Breakpoints window

118

Figure 7.1
The Breakpoints window

The Breakpoints
window local

menu

You open a Breakpoints window by choosing the View I
Breakpoints command. This gives you a way of looking at and
adjusting the conditions that trigger a breakpoint. You can use
this window to add new breakpoints, delete breakpoints, and
adjust existing breakpoints.

Breakpoint
Always
Enabled

Breakpoints windows have two panes. The left pane (Breakpoint
List) shows a list of all the addresses at which breakpoints are set.
The right pane (Breakpoint Detail) shows the details of the cur­
rently highlighted breakpoint in the left pane. Only the break­
point list pane has a local menu, which you get to by pressing AIt­
F10. Its options affect whatever breakpoint is highlighted in the
Breakpoint List pane.

The commands in this menu let you add new breakpoints, delete
existing breakpoints, or change how a breakpoint behaves.

Turbo Debugger User's Guide

Set options •••
Hardware options •••

Add •••
Remove
Delete all
Inspect

Alt-F10 popS Up the Breakpoints window local menu. If you have
control-key shortcuts enabled, press etrl with the first letter of the
desired command to access the command directly.

Set Options... Opens the Breakpoint Options dialog box, which contains two
sets of radio buttons, one input box, and one check box. In this
dialog box, you can

Figure 7.2
The Breakpoint Options

dialog box

Chapter 7, Breakpoints

CI define what happens when the breakpoint highlighted in the
Breakpoin ts List pane is triggered

III control the conditions under which the breakpoint is triggered
m set the number of times an action is encountered before the

breakpoint triggers
[J enable or disable the breakpoint
EI set or change the breakpoint address
• make the breakpoint global

The Action radio buttons have three settings:

Break

Execute

Causes your program to stop when the break­
point is triggered. The Turbo Debugger screen
reappears, and you can once again enter
commands to look around at your program's data
structures.

Causes an expression to be executed. Enter the
expression in the Action Expression input box.
The expression should have some side effect,

119

120

Log

such as setting a variable to a value. This option
can act as a "code splice," letting you insert an
expression that will execute before the code in
your program at the current line number.

Causes the value of an expression to be recorded
in the Log window. You are prompted for the
expression whose value you want to log. Be
careful that the expression doesn't have any
unexpected side effects. See Chapter 9 for a
description of expressions and side effects.

The Condition radio buttons have four settings:

Always Indicates that no additional conditions need be
true before the breakpoint is triggered.

Changed
Memory

Watches a memory variable or object and allows
the breakpoint to be triggered if the object
changes. Use the Condition Expression input box
to enter an expression reproducing the object you
want to watch, followed by the number of objects
to watch. The total number of bytes in the
memory area is the size of the object that the
expression references times the number of objects.
For example, if you used C to enter

(long) at 4

the area watched for change would be 16 bytes
long, since a long is 4 bytes and you said to watch
four of them.

If you attach this condition to a global breakpoint,
your program executes much more slowly
because the memory area will have to be checked
for change after every source line has been
executed. If you've installed a hardware debugger
device driver, changed memory breakpoints may
become much faster. If a changed memory break­
point has hardware assistance, an asterisk (*)
appears after the breakpoint name in the left
pane. You can expect then that the breakpoint
will not slow down your program's execution.

By setting this condition on a breakpoint at a
specific address, you do not incur the speed
penalty of the global breakpoint, and you can still

Turbo Debugger User's Guide

See disk-based
documentation about the

hardware debugger
interface and the options

available under this menu.

Expression
True

check the variable each time a specific line of code
is executed.

Allows the breakpoint to be triggered when an
expression becomes true (nonzero). Use the
Condition Expression input box to enter an
expression to evaluate each time the action is
encountered.

Hardware Causes the breakpoint to be triggered by the
hardware-assisted device driver. Use this menu
either if you have a 386 system and are using the
TDH386.5YS device driver, or if yo~ have a
hardware debugger board installed in your
system and the board vendor supplies a Turbo
Debugger device driver.

The Pass Count input box lets you set the number of times the
breakpoint action must occur before the breakpoint is triggered.
The default number is 1. The pass count is decremented only
when the condition attached to the breakpoint is true. This means
that if you set a pass count as well as a condition, it causes the
breakpoint to be triggered the nth time that the condition is true.

The Breakpoint Disabled check box lets you enable or disable the
currently highlighted breakpoint. A disabled breakpoint is
"invisible" until you enable it again; it behaves as if it had been
deleted.

This check box is useful if you have defined a complex breakpoint
that you don't want to use just now, but will want to use again
later. It saves you from having to delete the breakpoint, and then
re-enter it along with its conditions and action.

Hardware Options... Refer to the disk-based documentation about the hardware
debugger interface for how to use this option.

Wamlngl You must have a hardware debugging board in order to use
hard ware debugging.

Add. .. Opens a dialog box like the Set Options dialog box. You must
enter an address in the Address input box.

You can also add a breakpoint by simply starting to type the
address at which you want to set it. A dialog box appears just as if
you had invoked the Add command.

Chapter 7, Breakpoints 121

Once you've added the breakpoint, you can use the other local
menu commands to modify its behavior. When you first add a
breakpoint, it has a pass count of 1, its condition is set to always
occur, and the action is to break (stop) your program.

Remove Removes the currently highlighted breakpoint.

Delete All Removes all breakpoints, both global and those set at specific
addresses. You will have to set more breakpoints if you want your
program to stop on a breakpoint.

Inspect Shows you the source code line or assembler instruction that
corresponds to the currently highlighted breakpoint item. If the
breakpoint is set at an address that corresponds to a source line in
your program, a Module window is opened and set to that line.
Otherwise, a CPU window is opened, with the Code pane set to
show the instruction at which the breakpoint is set.

You can also invoke this command by pressing Enter once you
have the highlight bar positioned over a breakpoint.

The Log window

122

Figure 7.3
The Log window

You create a Log window by choosing the View I log command.
This window lets you review a list of significant events that have
taken place in your debugging session.

Log windows show a scrolling list of the lines output to the
window. If more than 50 lines have been written to the log, the
oldest lines are lost from the top of the scrolled list. To adjust the
number of lines, use either a command-line option at startup or
permanently change the number using the TDINST customization
program. You can preserve the entire log, continuously writing it
to a disk file, by using the Open Log File local menu command.

Here's a list of what can cause lines to be written to the log:

Turbo Debugger User's Guide

The Log window
local menu

Open log file •••
Close log file
Logging Yes
Add cornnent •••
Erase log

Open Log File ...

.. Your program stops at a location you specified. The location it
stops at is recorded in the log.

II You issue the Add Comment local menu command. You are
prompted for a comment to write to the log.

a A breakpoint is triggered that logs the value of an expression.
This value is put in the log.

a You use the Window I Dump Pane to Log command (from the
menu bar) to record the current contents of a pane in a window.

The commands in this menu let you control writing the log to a
disk file, stopping and starting logging, adding a comment to the
log, and clearing the log.

AIt-F10 pops up the Log window local menu. If you have control­
key shortcuts enabled, pressing Clrl and the first letter of the
desired command accesses the command directly.

Causes all lines written to the log to be written to a disk file as
well. A dialog box appears that prompts you for the name of the
file to write the log to (or you can select a directory and file from
the list boxes).

When you open a log file, all the lines already displayed in the log
window's scrolling list are written to the disk file. This lets you
open a disk log file after you see something interesting in the log
that you want to record to disk.

If you want to start a disk log that does not start with the lines
already in the Log window, first choose Erase Log File before
choosing Open Log File. .

Close Log File Stops writing lines to the log file specified in the Open Log File
local menu command, and the file is closed.

Logging Enables or disables the log, controlling whether anything is
actually written to the Log window.

Chapter 7, Breakpoints 123

Add Comment... Lets you insert a comment in the log. You are prompted for a line
of text that can contain any characters you desire.

Erase Log Clears the log list. The Log window will now be blank. This does
not affect writing the log to a disk file.

Simple breakpoints

One of the most common things you'll want to do during debug­
ging is cause your program to stop if certain pieces of code are
about to be executed.

There are a number of ways to set a breakpoint. Each one is
convenient in different circumstances:

III! Move to the desired source line in a Module window and issue
the Breakpoints I Toggle command (or press F2 or click the line
with your mouse). Doing this on a line that already has a break­
point set causes that breakpoint to be deleted.

~ Move to an instruction in the Code pane of a CPU window and
issue t1:1e Breakpoints I Toggle command (or press F2 or click the
line with your mouse). Doing this on a line that already has a
breakpoint set causes that breakpoint to be deleted .

• Issue the Breakpoints I At command and enter a code address at
which to set a breakpoint. (A code address has the same format
as a pointer in the current language. See Chapter 9 about
expressions.)

• Issue the Add local menu command from the Breakpoint List
pane of the Breakpoints window and enter a code address at
which to set a breakpoint.

Conditional breakpoints and pass counts

124

There are many occasions where you do not want a breakpoint to
be triggered every time a certain source statement is executed,
particularly if that line of code is executed many times before the
occurrence you are interested in. Turbo Debugger gives you two
ways to qualify when a breakpoint is actually triggered: pass
counts and conditions.

Turbo Debugger User's Guide

If you want to stop your program on the tenth call to a function,
you can set a breakpoint at the start of the function and use the
Pass Count input box in the Breakpoint Options dialog box to set
the number of times you want to skip the breakpoint before it is
actually triggered.

If you want to stop your program at a specific location but only
when a certain condition is true, you can specify an expression
using the Expression True radio button in the Breakpoint Options
dialog box. Each time the breakpoint is encountered, the expres­
sion will be evaluated, and if it is true (nonzero), the breakpoint
will be triggered. This can be used in combination with the pass
coun t to trigger a breakpoint only after the expression has been
true a certain number of times.

You can use the Changed Memory radio button to specify a
breakpoint that occurs only after a data item changes value. This
can be a lot more efficient than specifying a global breakpoint that
watches for exactly when something changes. If you only watch
for something to change when a specific source statement is
reached, it reduces the amount of processing Turbo Debugger
does in order to detect when the change occurred.

Global breakpoints

Chapter 7, Breakpoints

If you want to have a breakpoint occur every time a source line or
instruction is encountered, use global breakpoints. There are a
number of ways to create a global breakpoint, each best-suited for
a particular situation:

tI In the Breakpoint Options dialog box, turn on the Global check
box. Use this method when you want to set a qualifying condi­
tion or pass count, or when you want to do something other
than stop when the breakpoint is triggered.

c Choose the Breakpoints I Changed Memory Global command to
stop when a specific area of memory changes.

IJ Choose the Breakpoints I Expression True Global command to
stop execution when an expression becomes true.

When you set a global breakpoint, you usually use the local menu
in the Breakpoints window to modify the condition or the action;
otherwise, all you end up with is a breakpoint action that occurs
on every source line-just like using the Run I Trace Into main
menu command.

125

If you want to test your global breakpoints each time a source line
is about to be executed, make sure your current window is not a
CPU window, then restart your program with one of the Run
commands from the menu bar (or its function-key equivalents).

To test your global actions each time a single instruction is
executed, make sure your current window is a CPU window
when you restart your program.

Warning! A global action will occur on every source line or instruction. Use
a global breakpoint when you want to find out exactly when a
variable changes or when some condition becomes true.

Global breakpoints greatly slow the execution of your program.
However, they can be very convenient for finding where your
program is ''bashing'' data.

¢ After adding the global breakpoint, you must set a condition that
will trigger it.

Breaking for changed data objects

126

When you want to find out where in your program a certain data
object is being changed, first set a global breakpoint using one of
the techniques outlined in the previous section. Then use the
Changed Memory radio button in the Breakpoint Options dialog
box. When the input box appears, enter an expression that refers
to the memory area you want to keep track of, along with an
optional count of the number of objects to track.

Your program will execute slowly when you use this command.
You may want to localize the problem before using this technique
to find the exact location where a data item changes.

If you have installed a hardware device driver, Turbo Debugger
will try to set a hardware breakpoint to watch for a change in the
data area. Different hardware debuggers support different
numbers and types of hardware breakpoints. You can see if a
breakpoint has used the hardware by opening a Breakpoint
window with the View I Breakpoints command. Any breakpoint
that is hardware assisted will have an asterisk (*) beside it. These
breakpoints will be much faster than global breakpoints that are
not hard ware assisted.

Turbo Debugger User's Guide

Logging variable values

You can only set one break­
point per address.

Sometimes, you may find it useful to log the value of certain
variables each time you reach a certain place in your program.
You can log the value of any expression, including, for example,
the values of the parameters a function is called with. By looking
at the log each time the function is called, you can detennine
when it was called with erroneous parameters.

Choose the Log radio button from the Breakpoint Options dialog
box. You are prompted for the expression whose value is to be
logged each time the breakpoint is triggered. If you want to log
the value of multiple variables, you must set multiple break­
points.

Executing expressions

Chapter 7, Breakpoints

By executing an expression that has side effects each time a break­
point is triggered, you can effectively "splice in" new pieces of
code before a given source line. This is useful when you want to
alter the behavior of a routine to test a diagnosis or bug fix. This
saves you from going through the compile-and-link cycle just to
test a minor change to a routine.

Of course, this technique is limited to the insertion of an expres­
sion before an already existing line of code is executed; you can't
use this technique to modify existing source lines directly.

127

128 Turbo Debugger User's Guide

c H A p T E R

8

Examining and modifying files

Turbo Debugger treats disk files as a natural extension of the
program you're debugging. You can examine and modify any file
on the disk, viewing it either as ASCII text or as hex data. You can
also make changes to text files using your favorite word processor
or text editor, all from within Turbo Debugger.

This chapter shows you how to examine and modify two sorts of
disk files: those that contain your program source code, and other
files on disk.

Examining program source files

Program source files are your source files that are compiled and
that generate an object module (an .EXE file). You usually
examine them when you want to look at the behavior or design of
a portion of your code. During debugging, you often need to look
at the source code for a function to verify either that its arguments
are valid or that it is returning a correct value.

As you step through your program, Turbo Debugger automati­
cally displays the source code for the current location in your
program.

Files that are included in a source file by a compiler directive and
generate line #s (like #Include in C and INCLUDE in assembler) are
also considered to be program source files (that is, when you
choose View I Module, they appear in the Pick a Module list pane).

Chapter 8, Examining and modifying files 129

130

The Module

You should always use a Module window to look at your
program source files because this informs Turbo Debugger that
the file is a source module. It can then let you do things like
setting breakpoints or examining program variables simply by
moving to the a ppropria te place in your file. These techniques
and others are described in the following sections.

window You create a Module window by choosing the View I Module
command from the menu bar (or pressing the hot key, F3).

Figure 8.1
The Module window

[1]=Module; TPDEP«> File; TPDEI«>.PAS 217'========I=[t] [U9I
end. A

Writeln.
end. { PannsOnHeap }

~ begin { program }
Init.
Buffer ;- GetLine.
whi 1 e Buffer <> I I do
begin

ProcessLi ne(Buffer).
Buffer ;- GetLine.

end.
ShowResults.
PannsOnHeap.

end.
I

I ...
~ U U U U U U U U U • U U I

A dialog box appears in which you can enter the name of the
module you want to view.

Turbo Debugger will then load the source file for the module that
you select. It searches for the source file in the following places:

1. in the directory where the compiler found the .EXE file

2. in the directories specified by the Options I Path for Source
command or the -sd command-line option

3. in the current directory

4. in the directory that contains the program you're debugging

Module windows show the contents of the source file for the
module you've selected. The title of the Module window shows
the name of the module you're viewing, along with the source file
name and the line number the cursor is on. An arrow (~) in the
first column of the window shows the current program location
(CS:IP).

Note that when you run Turbo Debugger, you'll need both the
.EXE file and the original source file. Turbo Debugger searches for

Turbo Debugger User's Guide

The Module
window local

menu
Inspect
Watch

Module •••
File •••

Previous
Line •••
Search •••
Next
Origin
Goto •••
Edit

source files first in the directory the compiler found them in when
it compiled, second in the directory specified in the Options I Path
for Source command, third in the current directory, and fourth in
the directory the .EXE file is in.

If the word modified appears after the file name in the title, the file
has been changed since it was last compiled or linked to make the
program you are debugging. This means that the routines in the
updated source file may no longer have the same line numbers as
those in the version used to build the program you are debug­
ging. This can cause the arrow that shows the current program
location (CS:IP) to be displayed on the wrong line.

The Module window local menu provides a number of com­
mands that let you move around in the displayed module, point
at data items and examine them, and set the window to display a
new file or module.

You will probably use this menu more than any other menu in
Turbo Debugger, so you should become quite familiar with its
various options.

Use the AIt-F10 key combination to pop up the Module window
local menu or, if you have control-key shortcuts enabled, use the
Clrl key with the first letter of the desired command to access that
command (for example, Ctrl-S for Search).

Inspect Opens an Inspector window to show you the contents of the
program variable at the current cursor position. Before issuing
this command, you can place the cursor at the program variables
in the source file that you want to inspect, or you can enter it in
the input box of the dialog box that appears.

You can also use the Ins key to select (highlight) an expression to
inspect. This saves you from typing in an expression that is in
plain view in the source module.

Because this command saves you from having to type in each
name you are interested in, you'll end up using it a lot to examine
the contents of your program variables.

Chapter 8, Examining and modifying files 131

Watch Adds the variable at the current cursor position to the Watches
window. This is useful if you want to monitor the value of a
variable continuously as your program executes. Before issuing
this command, you can place the cursor at the program variables
in the source file that you want to inspect, or you can enter it in
the input box of the dialog box that appears.

You can also use the Ins key to mark an expression to watch. This
saves you from typing in an expression that is in plain view in the
source module.

Module... Lets you view a different module by picking the one you want
from the list of modules displayed. This command is useful when
you are no longer interested in the current module, and you don't
want to end up with more Module windows onscreen.

File... Lets you switch to view one of the other source files that makes
up the module you are viewing. Pick the file that you want to
view from the list of files presented. Most modules only have a
single source file that contains code. Other files included in a
module usually only define constants and data structures. Use
this command if your module has source code in more than one
file.

Use View I File to look at the first file. If you want to see more than
one, use View I Another I File to open subsequent File windows.

Previous Returns you to the last source module location you were viewing.
You can also use this command to return to your previous
loca tion after you've issued a command tha t changed your
position in the current module.

Line... Positions you at a new line number in the file. Enter the new line
number to go to. If you enter a line number after the last line in
the file, you will be positioned at the last line in the file.

Search.. . Searches for a character string, starting at the current cursor
position. Enter the string to search for. If the cursor is positioned
over something that looks like a variable name, the search dialog
box will come up initialized to that name. Also, if you have
marked a block in the file using the Ins key, that block will be used

132 Turbo Debugger User's Guide

to initialize the search dialog box. This saves you from typing if
what you want to search for is a string that is already in the file
you are viewing.

You can search using simple wildcards, with? indicating a match
on any single character, and" matching zero or more characters.
The search does not wrap around from the end of the file to the
beginning. To search the entire file, go to the first line by pressing
Ctrl-PgUp.

Next Searches for the next instance of the character string you specified
with the Search command; you can only use this after issuing a
Search command.

Sometimes, a search command matches an unexpected string
before reaching the one you really wanted to find. Next lets you
repeat the search without having to reenter what you want to
search for.

Origin Positions you at the module and line number that is the current
program location (CS:IP). If the module you are currently viewing
is not the module that contains the current program location, the
Module window will be switched to show that module. This com­
mand is useful after you have looked around in your code and
want to return to where your program is currently stopped.

Goto... Positions you at any location within your program. Enter the
address you want to examine; you can enter a line number, a
function name, or a hex address. See Chapter 9 for a complete
description of the ways to enter an address.

You can also invoke this command by simply starting to type the
label to go to. This brings up a dialog box exactly as if you had
specified the Run I Execute To command. This is a handy hot key
for this frequently used command.

Edit Starts up your choice of an editor so that you can make changes to
the source file for the module you are viewing. You can specify
the command that starts your editor from the installation
program TDINST.

Chapter 8, Examining and modifying files 133

Examining other disk files

The File window

Figure 8.2
The File window

Figure 8.3
The File window showing hex

data

134

The File window
local menu

You can examine or modify any file on your system by using a
File window. You can view the file either as ASCII text or as hex
data bytes, using the Display As command described in a later
section of this chapter.

You create a File window by choosing the View I File command
from the menu bar. You can use DOS-style wildcards to get a list
of file choices, or you can type a specific file name to load.

[

[11=File g:\netfiles\debug\program\tcde3=[t1 [+],
1* file <tcdemo.c> A

* I

* Demonstrati on prograra to show off Turb,
* Reads words from standard input. analyz
*1

linclude <stdarg.h> .,
IU II II II II II II III I

File windows show the contents of the file you've selected. The
name of the file you are viewing is displayed at the top of the
window, along with the line number the cursor is on if the file is
displayed as ASCII text.

When you first crea te a File window, the file will appear either as
ASCII text or as hexadecimal bytes, depending on whether the file
contains what Turbo Debugger thinks is ASCII text or binary
data. You can switch between ASCII and hex display at any time
using the Display As local menu command described later.

1
[11 =Fil e g: \netfil es \debug\program\ tcde3=[t1 [+],

00000: 2f 2a 09 66 69 6c 65 20 I*o(ile A

00008: 3c 74 63 64 65 6d 6f 2e <tcdemo. •
00010: 63 3e Od Oa 20 2a Od Oa c>Jt *)11 I
00018: 20 2a 09 44 65 6d 6f 6e *oDemon
00020: 73 74 72 61 74 69 6f 6e stration
00028: 20 70 72 6f 67 72 61 6d program
00030: 20 74 6f 20 73 68 6f 77 to show .,
IU II II II IIIP! ID II III I

The File window local menu has a number of commands for
moving around in a disk file, changing the way the contents of the
file are displayed, and making changes to the file.

Turbo Debugger User's Guide

Gata

Search

See Chapter 9 for complete
information about byte lists.

Goto
Search
Next

Display as Ascii
File •••
Edit

Use the Alt-F10 key combination to pop up the File window local
menu or, if you have control-key shortcuts enabled, use the Ctrl
key with the first letter of the desired command to access it.

Positions you at a new line number or offset in the file. If you are
viewing the file as ASCII text, enter the new line number to go to.
If you are viewing the file as hexadecimal bytes, enter the offset
from the start of the file at which to start displaying. You can use
the full expression parser for entering the offset. If you enter a line
number after the last line in the file or an offset beyond the end of
the file, you will be positioned at the end of the file.

Searches for a character string, starting at the current cursor
position. You are prompted to enter the string to search for. If the
cursor is positioned on something that looks like a symbol name,
the Search dialog box comes up initialized to that name. Also, if
you have marked a block in the file using the Ins key, that block
will be used to initialize the Search dialog box. This saves you
from typing if what you want to search for is a string that is
already in the file you are viewing. The format of the search string
depends on whether the file is displayed in ASCII or hex.

If the file is displayed in ASCII, you can use simple wildcards,
with? indicating a match on any single character, and * matching
o or more characters.

If the file is displayed in hexadecimal bytes, enter a byte list
consisting of a series of byte values or quoted character strings,
using the syntax of whatever language you are using for
expressions.

The search does not wrap around from the end of the file to the
beginning. To search the entire file, go to the first line of the file by
pressing Ctrl-PgUp.

You can also invoke this command by simply starting to type the
string that you want to search for. This brings up a dialog box
exactly as if you had specified the Search command.

Chapter 8, Examining and modifying files 135

Next

Display As

File ...

Edit

Chapter 9 has a complete
description of byte lists.

136

Searches for the next instance of the character string you specified
with the Search command; you can only use this command after
first issuing a Search command.

This is useful when your Search command didn't find the
instance of the string you wanted. You can keep issuing this
command until you find what you want.

Toggles between displaying the file as ASCII text or hexadecimal
bytes. When you select ASCII display, the file appears as you are
used to seeing it on the screen in an editor or word processor. If
you select Hex display, each line starts with the hex offset from the
beginning of the file for the bytes on the line. Eight bytes of data
are displayed on a line. To the right of the hex display of the
bytes, the display character for each byte appears. The full display
character set can be displayed, so byte values less than 32 or
greater than 127 appear as the corresponding display symbol.

Lets you switch to a different file. You can use DOS-style
wildcards to get a list of file choices, or you can type a specific file
name to load. This lets you view a different file without putting a
new File window onscreen. If you want to view two different files
or two parts of the same file simultaneously, issue the View I
Another I File command to make another File window.

If you are viewing the file as ASCII text, this command lets you
make changes to the file you are viewing by invoking the editor
you specified with the TDINST installation program.

If you are viewing the file as hex data bytes, the debugger does
not start your editor. Instead, you are prompted for the bytes to
replace those at the current cursor position. Enter a byte list, just
as if you were entering a list of bytes to search for.

Turbo Debugger User's Guide

c H

Each language evaluates an
expression differently.

Chapter 9, Expressions

A p T E R

9

Expressions
Expressions can be a mixture of symbols from your program (that
is, variables and names of routines), and constants and operators
from one of the supported languages: C, Pascal, or assembler.

Turbo Debugger can evaluate expressions and tell you their value.
You can also use expressions to indicate a data item in memory
whose value you want to know. You can supply an expression in
any dialog box that asks for a value or an address in memory.

Use Data I Evaluate/Modify to open the Evaluate/Modify dialog
box, which tells you the value of an expression. (You can also use
this dialog box as a simple calculator.)

In this chapter, you'll learn how Turbo Debugger chooses which
language to use for evalua ting an expression, and how you can
make it use a specific language. We describe the components of
expressions that are common to all the languages, such as source­
line numbers and access to the processor registers. We then
describe the components that can make up an expression in each
language, including constants, program variables, strings, and
operators. For each language, we also list the operators that Turbo
Debugger supports and the syntax of expressions.

For a complete discussion of C, Pascal, and assembler expressions,
refer to your Turbo C Getting Started and Programmer's Guide, the
Turbo Pascal User's Guide and Reference Guide, or the Turbo
Assembler Reference Guide.

137

Choosing the language for expression evaluation

138

Turbo Debugger normally determines which expression evaluator
and language to use from the language of the current module.
This is the module in which your program is stopped. You can
override this by using the Options I Language command to open
the Expression Language dialog box; in it you can set radio
buttons to Source, C, Pascal, or Assembler. If you choose Source,
expressions are evaluated in the manner of the module's
language. (If Turbo Debugger can't determine the module's
language, it uses the expression rules for Turbo Assembler.)

Usually, you let Turbo Debugger choose which language to use.
Sometimes, however, you'll find it useful to set the language
explicitly; for example, when you are debugging an assembler
module that is called from one of the other languages. Byexpli­
citly setting expression evaluation to use a particular language,
you can access your data in the way you refer to it with that
language, even though your current module uses a different
language.

Sometimes it is convenient to treat expressions or variables as if
they had been written in a different language; for example, if you
are debugging a Pascal program, assembly language or C conven­
tions may offer an easier way to change the value of a byte stored
in a string.

So long as your initial choice of language is correct when you
enter Turbo Debugger, you should have no difficulty using other
language conventions. Turbo Debugger still retains information
about the original source language and will handle the conver­
sions and data storage appropriately. If the language seems ambi­
guous, Turbo Debugger defaults to assembly language.

Even if you deliberately choose the wrong language when you
enter Turbo Debugger, it will still be able to get some information
about the original source language from the symbol table and the
original source file. Under some circumstances, however, it may
be possible to confuse Turbo Debugger into storing data
incorrectly.

Turbo Debugger User's Guide

Code addresses, data addresses, and line numbers

Normally, when you want to access a variable or the name of a
routine in your program, you simply type its name. However, you
can also type an expression that evalutes to a memory pointer, or
specify code addresses as source line numbers by preceding the
line number with a pound sign (#), like #123. The next section
describes how to access symbols outside the current scope.

Of course, you can also specify a regular segment:offset address,
using the hexadecimal syntax for the source code language of
your program:

Language Format Example

C Oxnnnn Ox1234:0xOO10
Pascal $nnnn $1234:$0010
assembler nnnnh 1234h:0010h

1234h:OB234h
In assembler, hex numbers starting with A to F must be prefixed with a zero.

Accessing symbols outside the current scope

Chapter 9, Expressions

Where the debugger looks for a symbol is known as the scope of
that symbol. Accessing symbols outside of the current scope is an
advanced concept that you don't really need to understand in
order to use Turbo Debugger in most situations.

Normally, Turbo Debugger looks for a symbol in an expression
the same way a compiler would. For example, C first looks in the
current function, then in the current module for a static (local)
symbol, then for a global symbol. Pascal first looks in the current
procedure or function, then in an lIouter" subprogram (if the
active scope is nested inside another), then in the implementation
section of the current unit (if the current scope resides in a unit),
and then for a global symbol.

If Turbo Debugger doesn't find a symbol using these techniques,
it searches through all the other modules to find a static symbol
that matches. This lets you reference identifiers in other modules
without having to explicitly mention the module name.

If you want to force Turbo Debugger to look elsewhere for a
symbol, you can exert total control over where to look for a

139

140

Scope override
syntax

symbol name by specifying a module, a file within a module, or a
routine to look inside. You can access any symbol in your pro­
gram that has a defined value, even symbols that are private to a
function or procedure and have names that conflict with other
symbols.

No matter what language you're using, you use the same method
to override the scope of a symbol name.

Normally, you use a pound sign (#) to separate the components of
the scope. If it's not ambiguous in the current language, you can
also use a period (.) instead of # and omit the initial pound sign.

The following syntax describes scope overriding; brackets ([J)
indicate optional items:

[tmodule[lfilename]]tlinenumber[lvariablename]

or

[lmodule[lfilename]] [lfunctionname]lvariablename

If you don't specify a module, the current module is assumed.
Here are some examples of valid symbol expressions with scope
overrides. There is one example for each of the legal combinations
of elements that you can use to override a scope.

The first six examples show various ways of using line numbers
to generate addresses and override scopes:

t123 Line 123 in the current module

11231myvarl Symbol myvarl accessible from line
123 of the current module

Imymodulet123 Line 123 in module mymodule

Imymodulet123lmyvarl Symbol myvarl accessible from line
123 in module mymodule

ImymoduleHilelt123 Line 123 in source file filel, which is
part of module mymodule

ImymoduleHilelt123tmyvarl Symbol myvarl accessible from line
123 in source file filel, which is part
ofmymodule

The next six examples show various ways of overriding the scope
of a variable by using a module, file, or function name:

Turbo Debugger User's Guide

tmyvar2

tmyfunctmyvar2

tmymoduletmyvar2

tmymoduletmyfunctmyvar2

tmymoduletfile2tmyvar2

tmymoduletfile2tmyfunc
tmyvar2

Same as myvar2 without the #

Variable myvar2 accessible from
routine myfunc

Variable myvar2 accessible from
module mymodule

Variable myvar2 accessible from
routine myfunc in module mymodule

Variable myvar2 accessible from
file2, which is included in mymodule

Variable myvar2 accessible from
myfunc defined in file file2, which is
included in mymodule

Turbo Debugger also supports Pascal's unit-override syntax:

unitname.symbolname

Finally, Turbo Debugger lets you override scope by using object,
class, method, and member function names. Here's some
examples:

Anlnstance

Anlnstance.AField

AnObjectType.AMethod

Anlnstance.AMethod

Instance Anlnstance accessible in the
current scope.

Field AField accessible in instance
Anlnstance accessible in the current
scope

Method AMethod accessible in object
type AnObjectType accessible in the
current scope

Method AMethod accessible in
instance Anlnstance accessible in the
current scope

AUnit.Anlnstance.AField Field AMethod accessible in instance
Anlnstance accessible in unit AUnit

AUnit.AnObjectType.AMethod Method AMethod accessible in object
type AnObjectType accessible in unit
AUnit

Chapter 9, Expressions 141

AUnit.AnObjectType.AMethod. Local variable AVar accessible in
ANestedProc.AVar procedure ANestedProc accessible in

method AMethod accessible in object
type AnObjectType accessible in unit
AUnit

You can enter such qualified identifier expressions anywhere an
expression is valid, including in the Evaluate/Modify dialog box
and the Watches window, or when you're changing an expression
in an Inspector window or using the local menu in the Module
window to Goto a method, member function, or procedure
address in the source code.

¢ If you are debugging a C++ program and want to examine a
function with an overloaded name, just enter the name of the
function in the appropriate input box. Turbo Debugger opens the
Pick a Symbol Name dialog box with a list box of all the functions
of that name, with their arguments, so you can choose the one
you want.

Implied scope for
expression
evaluation

Whenever Turbo Debugger evaluates an expression, it must
decide where in your program the "current scope" is that is used
for any symbol names without an explicit scope override. Deter­
mining scope is important because in many languages you can
have symbols inside functions or procedures with the same name
as global symbols; Turbo Debugger must know which instance of
a symbol you mean.

142

Turbo Debugger usually uses the current cursor position as the
context for "deciding" about scope. Thus, you can set the scope
where an expression will be evaluated by moving the cursor to a
specific line in a Module window.

This means that if you have moved the cursor off the current line
where your program is stopped, you may get unexpected results
from evaluating expressions. If you want to be sure that expres­
sions are evaluated in your program's current scope, use the
Origin local menu command in the Module window to return to
the current location in the source code. You can also set the
expression scope by moving around inside the Code pane of a
CPU window, by cursoring to a routine in the Stack window, or
by cursoring to a routine name in a Variables window.

Turbo Debugger User's Guide

Byte lists

C expressions

C symbols

Chapter 9, Expressions

Several commands ask you to enter a list of bytes, including the
Search and Change local menu commands in the Data pane of the
CPU window, and the Search and Change local menu commands
of the File window when it's displaying a file in hexadecimal
format.

A byte list can be any mixture of scalar (non-floating-point) num­
bers and strings in the syntax of the current language, determined
by the Options I Language command. Both strings and scalars use
the same syntax as expressions. Scalars are converted into a
corresponding byte sequence. For example, a Pascal Longint
value of 123456 becomes a 4-byte hex quantity 40 E2 01 00.

Language

C
Pascal
Assembler

Byte list

"ab" Ox04 "c"
'ab'#4'c'
1234 "AB"

Hex data

61620463
61620463
34124142

Turbo Debugger supports the complete C expression syntax. A C
expression consists of a mixture of symbols, operators, strings,
variables, and constants. Each of these components is described in
one of the following sections.

A symbol is the name of a data object or routine in your program.
A symbol name starts with a letter (a-z, A-Z) or underscore L).
Subsequent characters in the symbol may contain these characters
and also the digits 0 through 9. You can omit the beginning
underscore from symbol names; if you enter a symbol name
without an underscore and that name cannot be found, it is
searched for again with an underscore at the beginning. The
compiler automatically puts an underscore at the start of your
symbol names, which saves you from having to remember to add
it.

143

C register
pseudovariables

144

Turbo Debugger lets you access the processor registers using the
same technique as the Turbo C compiler, namely pseudovariables.
A pseudovariable is a variable name that corresponds to a given
processor register.

Pseudovariable Type Register

- AX unsigned int AX
- AL unsigned char AL
- AH unsigned char AH

-BX unsigned int BX
- BL unsigned char BL
- BH unsigned char BH

- CX unsigned int CX
- CL unsigned char CL
- CH unsigned char CH

- OX unsigned int OX
- OL unsigned char OL
- OH unsigned char OH
_C5 unsigned int CS
- 05 unsigned char OS
- 55 unsigned char 55
- E5 unsigned char ES

-5P unsigned int 5P
-BP unsigned char BP
- 01 unsigned char 01
_51 unsigned char 51
_IP unsigned int IP

Turbo Debugger User's Guide

C constants and

The following pseudovariables let you access the 80386 processor
registers:

Pseudovariable Type Register

_EAX unsigned long EAX
_EBX unsigned long EBX
_ECX unsigned long ECX

- EDX unsigried long EDX

- ESP unsigned long ESP

- EBP unsigned long EBP
- EDI unsigned long EDI

- ESI unsigned long ESI

- FS unsigned int FS

- GS unsigned int GS

number formats Constants can be either floating point or integer.

Escape

An integer constant is specified in decimal, unless one of the C
conventions for overriding this is used:

Format

digits
Odigits

OXdigits
Oxdigits

Radix

decimal
octal

hexadecimal
hexadecimal

Constants are normally of type int (16 bits). If you want to define a
long (32-bit) constant, you must add an 1 or L at the end of the
number. For example, 123456L.

A floating-point constant contains a decimal point and can use
decimal or scientific notation. For example,

1.234 4.Se+1l

sequences A string is a sequence of characters enclosed in double quotes (1111).

You can use the standard C backslash (\) as an escape character.

Chapter 9, Expressions 145

146

C operators
precedence

Sequence Value Character

\\ OX5C Backslash
\a OX07 Bell
\b OX08 Backspace
\f OXOC Formfeed
\n OXOA Newline
\r OXOD Carriage return
\t OX09 Horizontal tab
\v OXOB Vertical tab
\xnn nn Hex byte value
\nnn nnn Octal byte value

If you follow the backslash with any other character than those
listed here, that character is inserted into the string unchanged.

Turbo Debugger uses the same operators as C, with the same
precedence. The debugger has one operator that is part of the C++
set of operators: the double colon (::). This operator has a higher
priority than any of the regular C operators. It is used to make a
constant far address out of the expression that precedes it and the
expression that follows it; for example,

OX1234::0XIOOO

ES:: BX

The primary expression opera tors

n -> slzeof

have the highest priority, from left to right. The unary operators

'" & ++

are of a lower priority than the primary operators but a greater
priority than the binary operators, grouped from right to left. The
priority of the binary operators, in descending order, is as follows
(operators on the same line have the same priority):

Turbo Debugger User's Guide

Executing C
functions in your

program

Chapter 9, Expressions

highest * / %
+
» «
<> <= >=
-- !=
&
"
I
&&

lowest II

The single ternary operator, 7:, has a priority below that of the
binary operators.

The assignment operators are below the ternary operator in
priority. They are all of equal priority, and group from right to
left:

= += -= *= /= %= »= «= &= "= 1=

You can call functions from a C expression exactly as you do in
your source code. Turbo Debugger actually executes your pro­
gram code with the function arguments that you supply. This can
be a very useful way of quickly testing the behavior of a function
you've written. You can repeatedly call it with different argu­
ments and then check that the returned value is correct each time.

The following function raises one integer number to a power (xY):

long power(int x, int y)
(

long temp = Ii
while (y--)

temp *= Xi
return(temp)i

The following table shows the result of calls to this function with
different function arguments:

C expression

power(3,2) * 2
25 + po~er(5,8)
power(2)

Result

18
390650
Error (missing argument)

147

C expressions with
side effects

C reserved words
and type

conversion

148

A side effect occurs when you evaluate a C expression that
changes the value of a data item in the process of being evaluated.
In some cases, you may want a side effect, using it to intentionally
modify the value of a program variable. At other times, you want
to be careful to avoid them, so it's important to understand when
a side effect can occur.

The assignment operators (=, +=, and so on) change the value of
the data item on the left side of the operator. The increment and
decrement (++ and - -) operators change the value of the data
item that they precede or follow, depending on whether they are
used as prefix or postfix operators.

A more subtle type of side effect can occur if you execute a func­
tion that's part of your program. For example, if you evaluate the
C expression

myfunc(1,2,3) + 7

your program may misbehave later if myfunc changed the value
of other variables in your program.

Turbo Debugger lets you perform type conversions on (cast)
pointers exactly as you would do in a C program. A type conver­
sion consists of a C data-type declaration between parentheses. It
must come before an expression that evaluates to a memory
pointer.

Type conversions are useful if you want to examine the contents
of a memory location pointed to by a far address you generated
using the double colon (::) operator, for example,

(long far *}Ox3456::0

(char far *}_ES::_BX

You can use a type conversion to access a program variable for
which there is no type information, which happens when you
compile a module without generating debugging-type informa­
tion. Rather than recompiling and relinking, if you know the data
type of a variable, you can simply put that in a type conversion
before the name of the variable.

Turbo Debugger User's Guide

For example, if your variable iptr is a pointer to an integer, you
can examine the integer that it points to by evaluating the C
expression

*(int *)iptr

You can also use the Type Cast command in the Inspector
window local menu for this purpose.

Use the following C reserved words to perform type conversions
for Turbo Debugger:

char
double
enum
far
float

huge
Int
long
near
short

struct
union
unsigned

Pascal expressions

Pascal symbols

Pascal constants
and number

formats

Chapter 9, Expressions

Turbo Debugger supports the Pascal expression syntax, with the
exception of string concatenation and set operators. A Pascal
expression consists of a mixture of symbols, operators, strings,
variables, and constants. The following sections describe each of
the components that make up an expression.

Symbols in Pascal are user-defined names for da ta items or rou­
tines in your program. A Pascal symbol name can start with a
letter (a-z, A-Z) or an underscore (_). Subsequent characters in the
name can contain the digits (0 to 9) and the underscore, as well as
letters.

Normally, a symbol obeys the Pascal scoping rules, with "nested"
local symbols overriding other symbols of the same name. You
can override this scoping if you want to access symbols in other
scopes. For more details, see the section "Accessing symbols
outside the current scope" on page 139.

Constants can be either real (floating-point) or integer constants.
Negative constants start with a minus sign (-). If the number con-

149

Pascal strings

Pascal operators
and operator
precedence

150

tains a decimal point or an e that introduces an exponent, it is a
real number; for example,

123.4 456e34 123.45e-5

Integer-type constants are normally decimal, unless they start
with a dollar sign ($) to indicate hexadecimal. Decimal integer
constants must be between -2,137,483,648 and 2,147,483,647.
Hexadecimal constants must be between $00000000 and
$FFFFFFFF.

A string is simply a group of characters surrounded by single
quotes; for example:

, abc'

You can embed control characters in a string by preceding the
decimal control character value with a #. For example,

'def'17'xyz'

Turbo Debugger supports all the Pascal expression operators.

The unary operators are of the highest precedence and are of
equal priority.

@
1\

not
typeid
+

Takes address of an identifier
Contents of pointer
Bitwise complement
Typecast
Unary plus, positive
Unary minus, negative

The binary operators are of a lower precedence than the unary
operators. They are listed here in descending order (operators on
the same line have the same priority):

* / dlv mod and shl shr

In + or xor

< <= > >= = <>

The assignment operator (:=) has the lowest precedence; it returns
a value, as in C.

Turbo Debugger User's Guide

Calling Pascal
functions and

procedures
You can reference Pascal functions and procedures in expressions.
For example, assume you have declared a function called
HalfFunc that divides an integer by 2:

function HalfFunc(i:lnteger) Reali

You can then choose the Data I Evaluate/Modify command and
call HalfFunc as follows:

HalfFunc (3)
HalfFunc(lO) = HalfFunc(lO div 2)

You can also call procedures, although not in an expression, of
course. When you enter a procedure or function name by itself,
Turbo Debugger reports its address and declaration. To call a
function or procedure that has no parameter, place a set of empty
parentheses after the symbol name. For example,

MyProc () Calls MyProc
MyProc Reports MyProc's address, and so on
MyFunc = 5 Compares address of MyFunc to 5
MyFunc () = 5 Calls MyFunc and compares returned value to 5

Assembler expressions

Assembler
symbols

Chapter 9, Expressions

Turbo Debugger supports the complete assembler expression
syntax. An assembler expression consists of a mixture of symbols,
operators, strings, variables, and constants. Each of these compo­
nents is described in this section.

Symbols are user-defined names for da ta items and routines in
your program. An assembler symbol name starts with a letter (a-z,
A-Z) or one of these symbols: @ ? _ $. Subsequent characters in
the symbol can contain the digits 0 to 9, as well as these
characters. The period (.) can also be used as the first character of
a symbol name, but not within the name.

The special symbol $ refers to your current program location as
indicated by the CS:IP register pair.

151

152

Assembler
constants Constants can be either floating point or integer. A floating-point

constant contains a decimal point and may use decimal or scien­
tific notation. For example,

Assembler

1.234 4.5e+11

Integer constants are hexadecimal unless you use one of the
assembler conventions for overriding the radix:

Format Radix

digitsH Hexadecimal

digitsO Octal

digitsQ Octal

digitsD Decimal

digitsB Binary

You must always start a hexadecimal number with one of the
digits 0 to 9. If you want to enter a number that starts with one of
the letters A to F, you must first precede it with a 0 (zero).

operators Turbo Debugger supports most of the assembler operators, listed
here in order of priority:

xxx PTR (BYTE PTR ...)
. (structure member selector)
: (segment override)
OR XOR
AND
NOT
EQ NE L T LE GT GE
+-
* / MOD SHR SHL
Unary + Unary­
OFFSET SEG
() [I

Variables can be changed using the = assignment operator. For
example,

a = [BYTE PTR DS:4]

Turbo Debugger User's Guide

Format control

Chapter 9, Expressions

When you supply an expression to be displayed, Turbo Debugger
displays it in a format based on the type of data it is. Turbo
Debugger ignores a format control that is wrong for a particular
data type.

If you want to change the default display format for an expres­
sion, place a comma at the end of the expression and supply an
optional repeat coun t followed by an optional fonna t letter. You
can only supply a repeat count for pointers or arrays.

Character

c

d

f[#]

m

md

p

s

xorh

Format

Displays a character or string expression as raw
characters. Normally, nonprinting character values are
displayed as some type of escape or numeric format.
This option forces the characters to be displayed using
the full IBM display character set.

Displays an integer as a decimal number.

Displays as floating-point format with the specified
number of digits. If you don't supply a number of
digits, as many as necessary are used.

Displays a memory-referencing expression as hex
bytes.

Displays a memory-referencing expression as decimal
bytes.

Displays a raw pointer value, showing segment as a
register name if applicable. Also shows the object
pointed to. This is the default if no format control is
specified.

Displays an array or a pointer to an array of characters
as a quoted character string. The string is terminated
with a null character.

Displays an integer as a hexadecimal number.

153

154 Turbo Debugger User's Guide

c H A p T E R

10

c++ and object-oriented Pascal
debugging

To meet the needs of the C++ and object-oriented Pascal
revolution, Turbo Debugger has been enhanced to support
object-oriented programming. To use these new features, you
must have version 5.5 of Turbo Pascal or Turbo C++, and version
2.0 of Turbo Debugger.

Besides extensions that let you trace into object methods or class
member functions and examine objects or classes in the Evaluate/
Modify dialog box and the Watches window, Turbo Debugger 2.0
comes equipped with a special set of windows and local menus
specifically designed for objects and classes.

The Hierarchy window

Turbo Debugger provides a special window for examining object
or class hierarchies. You can bring up the Hierarchy window by
choosing View I Hierarchy.

Chapter 70, C++ and object-oriented Pascal debugging 155

Figure 10.1
The Hierarchy window

Use Tab to move between
the two panes.

The Object Type
List pane

The Object Type/Class
List pane local menu

156

----Point .
L---Rectangl e

~-Device*
L_-l extWi ndow

Range
L--Device

--GlowGauge

Parents of Device

t----Range
---Rectangle

L----Point

The Hierarchy window displays information on object or class
types rather than instances. The left pane lists in alphabetical order
the types used by the module being debugged. The right pane
(two panes if you are running a C++ program with multiple
inheritance) shows all objects or classes in their hierarchies, using
a line graphic that places the base type at the left margin of the
pane and displays descendants (also ancestors for classes with
multiple inheritance) beneath and to the right of the base type,
with lines indicating ancestor and descendant relationships.

The left pane provides an alphabetical list of all object or class
types used by the current module. It supports an incremental
matching feature to eliminate the need to cursor through large
lists of types: When the highlight bar is in the left pane, simply
start typing the name of the object or class type you're looking for.
At each keypress, Turbo Debugger highlights the first type
matching all keys pressed up to that point.

Press Enter to open an object type/class Inspector window for the
highlighted type. Object type/ class Inspector windows are
described on page 158.

Press AIt-F10 to display the local menu for the pane. You can use
the control-key shortcuts if you've enabled hot keys with TDINST.
This local menu contains two items: Inspect and Tree.

Inspect

Displays an object type/class Inspector window for the
highlighted type.

Turbo Debugger User's Guide

The Hierarchy
Tree pane

The Hierarchy Tree
pane local menu(s)

Inspect

Inspect
Parents Yes

Tree

Moves to the right pane of the window, in which the hierarchy
tree is displayed, and places the highlight bar on the type that was
highlighted in the left pane.

The right pane displays the hierarchy tree for all objects or classes
used by the current module. Ancestor and descendant relation­
ships are indicated by lines, with descendants to the right of and
below their ancestors.

To locate a single object or class type in a complex hierarchy tree,
go back to the left pane and use the incremental search feature;
then choose the Tree item from the local menu to move back into
the hierarchy tree. The matched type appears under the highlight
bar.

When you press Enter, an object type/ class Inspector window
appears for the highlighted type.

If you have loaded a C++ program that uses classes with multiple
inheritance, a third pane, the Parent Tree pane, appears below the
Hierarchy Tree pane in the Hierarchy window. If the class you are
examining has multiple ancestors, and if the Parent command in
the Hierarchy Tree pane local menu is set to Yes, a reverse tree
appears in the Parent Tree pane with the message Parents of
Class at the left margin of the pane and the ancestors displayed
beneath and to the right, with lines indicating descendant and an­
cestor relationships.

You can open an object type/ class Inspector window for any class
that appears in the Parent Tree pane, just as you can in the
Hierarchy Tree pane.

The Hierarchy Tree pane local menu (Alt-F10 in the right pane) has
only one item: Inspect. When you choose it, an object type/class
Inspector window appears for the highlighted type. However, a
faster and easier method is simply to press Enter when you want
to inspect the highlighted type.

If you have loaded a C++ program that uses classes with multiple
inheritance, the Hierarchy Tree pane local menu contains a
second command, Parents. This is a toggle with which you can
control whether to show the ancestors of a class in the Parent Tree

Chapter 10, C++ and object-oriented Pascal debugging 157

The Parent Tree pane
local menu

I Inspect

pane. This is useful if a class you are examining has multiple
inheritance. The default for Parents is Yes.

Finally, the Parent Tree pane, if it exists, has a local menu of its
own, with a single command, Inspect. It works just the same as
the Inspect command in the Hierarchy Tree pane local menu: It
opens an Inspector window for the highlighted object type or
class.

Object type/class Inspector windows

158

Figure 10.2
An object type/class

Inspector window

Turbo Debugger provides a special type of Inspector window to
let you inspect the details of an object type: the object type/class
Inspector window. The window summarizes type information,
but does not reference any particular instance.

The window is divided horizontally into two panes, with the top
pane listing the data fields or members of the type and the bottom
pane listing the method or member function names and (if the
selected item is a function rather than a procedure) the function
return type. Use the Tab key to move between the two panes of
the object type/class Inspector window.

If the highlighted data field is an object or class type, or a pointer
to an object or class type, pressing Enter opens another object
type/ class Inspector window for the highlighted type. (This
action is identical to selecting the Inspect command in the local
menu for this pane.) In this way, complex nested structures of
objects or classes can be inspected quickly with a minimum of
keystrokes.

For brevity's sake, method or member function parameters are not
shown in the object type/class Inspector window. To examine
parameters, highlight the method or member function and press
Enter. A method/member function Inspector window appears.
The top pane of the window displays the code address for the

Turbo Debugger User's Guide

The object type/
class Inspector
window local

menus

Inspect

Hierarchy

Show Inherited

Inspect
Hierarchy
Show inherited Yes

object or class type's implementation of the selected method or
member function, and the names and types of all its parameters. If
your source program is in object-oriented Pascal, the bottom pane
of the window indicates whether the method is a procedure or a
function.

Pressing Enlerfrom anywhere within the method/member func­
tion Inspector window brings the Module window to the fore­
ground, with the cursor at the code that implements the method
or member function being inspected.

As with standard inspectors, Esc closes the current Inspector
window and AII-F3 closes them all.

Pressing AIt-F10 brings up the local menu for either pane. If
control-key shortcuts are enabled (through TDINST), you can get
to a local menu item by pressing GIrl and the first letter of the item.

Inspect
Hierarchy
Show inherited Yes

The Object Data Field pane local menu contains these items:

If the highlighted field is an object or class type or a pointer to
one, a new object type/class Inspector window is opened for the
highlighted field.

Opens an Hierarchy window for the object or class type being
inspected. The Hierarchy window is described on page 155.

Yes is the default value of this toggle. When it is set to Yes, all data
fields or members are shown, whether they are defined within the
type of the inspected object or class or inherited from an ancestor
type. When it is set to No, only those fields/members defined
within the type being inspected are displayed.

The local menu commands for the bottom Object Method pane
are Inspect, Hierarchy, and Show Inherited.

Chapter 70, C++ and object-oriented Pascal debugging 159

Inspect A method/member function Inspector window is opened for the
highlighted item. If you press elrl-I when the cursor is positioned
over the address shown in the method/member function
Inspector window, the Module window is brought to the fore­
ground with the cursor at the code that implements what is being
inspected.

Hierarchy Opens an Hierarchy window for the object or class type being
inspected. The Hierarchy window is described on page 155.

Show Inherited Yes is the default value of this toggle. When it is set to Yes, all
methods or member functions are shown, whether they are
defined within the type being inspected or inherited from an
ancestor. When it is set to No, only those methods or member
functions are displayed that are defined within the object type
being inspected.

Object instance Inspector windows

160

Figure 10.3
An object/class Instance

Inspector window

Object type/class Inspector windows provide information about
object or class types, but say nothing about the data contained in a
particular object or class instance at a particular time during pro­
gram execution. Turbo Debugger provides an extended form of
the familiar record Inspector window specifically to inspect object
and class instances.

Bring up this window by placing your cursor on an object or class
instance in the Module window, then pressing elrl-I.

class TextWindow

Most Turbo Debugger data record Inspector windows have two
panes: a top pane summarizing the record's field names/ members
and their current values, and a bottom pane displaying the type of
the field or member highlighted in the top pane. An object/class
instance Inspector window provides both of those panes, and also

Turbo Debugger User's Guide

The object/class
instance

Inspector window
local menus

a third pane between them. This third pane summarizes the
instance's methods or member functions, with the code address of
each. (The code address takes into account polymorphic objects
and the VMT.)

Each of the top two panes of the object/class instance Inspector
window has its own local menu, displayed by pressing Alt-F10 in
that pane. "Gse the control-key shortcuts to get to individual menu
items if you've enabled hot keys with TDINST.

Range •••
Change •••
Methods Yes
Show ; nher; ted Yes

Inspect
Descend
Newexpression .•.
Type cast
Hierarchy

As with record Inspector windows, the bottom pane serves only
to display the type of the highlighted field and doesn't have a
local menu.

The top pane, which summarizes the data fields or members for
the selected item, are described here.

Range... This command is unchanged from earlier versions. It displays the
range of array items. If the inspected item is not an array or a
pointer, the item cannot be accessed.

Change... By choosing this command, you can load a new value into the
highlighted data field or member. This command is also
unchang'ed from earlier versions of Turbo Debugger.

Methods This command is a Yes/No toggle, with Yes as the default condi­
tion. When it is set to Yes, methods or member functions are sum­
marized in the middle pane. When it is set to No, the middle pane
does not appear. This toggle is remembered by the next Inspector
window to be opened.

Chapter 70, C++ and object-oriented Pascal debugging 161

Show Inherited

Inspect

Descend

Use Descend to Inspect a
complex data structure
when you don't want to

open a separate Inspector
window for each item.

162

New Expression ...

Type Cast ...

Hierarchy

The middle and
bottom panes

This command is also a Yes/No toggle. When it is set to Yes, all
da ta fields or members and all methods or member functions are
shown, whether they are defined within the type being inspected
or inherited from an ancestor type. When it is set to No, only those
fields and methods defined within the type being inspected are
displayed.

As with earlier versions of Turbo Debugger, choosing this
command opens an Inspector window on the highlighted field or
member. Pressing Enter over a highlighted field or member does
the same thing.

This command has not changed from earlier versions of Turbo
Debugger. The highlighted item takes the place of the item in the
current Inspector window. No new Inspector window is opened.
However, you cannot return to the previously inspected field, as
you could if you had used the Inspect option.

No change from earlier versions. This command prompts you for
a new data item or expression to inspect. The new item replaces
the current one in the window; it doesn't open another window.

Lets you specify a different data type (Byte, Word, Int, Char
pointer) for the item being inspected. This is useful if the
Inspector window contains a symbol for which there is no type
information, as well as for explicitly setting the type for untyped
pointers.

When you choose this command, an Hierarchy window opens.
For a full description of this window, see page 155.

The middle pane summarizes the methods of an object or the
member functions of a class. The only difference between the
Object Method pane's local menu and the local menu for the top
pane is the absence of the Change command. Unlike data fields
and members, methods and member functions cannot be changed
during execution, so there is no need for this command.

Turbo Debugger User's Guide

The bottom pane displays the type of the item highlighted in the
upper two windows.

Chapter 7 7, Assembler-level debugging 163

164 Turbo Debugger User's Guide

c H

You don't need to use the
information in this chapter to

debug your programs-but
there are certain problems
that may be easier to find

using techniques discussed in
this chapter.

A p T E R

1 1

Assembler-level debugging

This chapter is for programmers who are familiar with pro­
gramming the 80x86 processor family in assembler.

We explain when you might want to use assembler-level debug­
ging and describe the CPU window with its built-in disassembler
and assembler. You then learn how to examine and modify raw
hex data bytes, how to peruse the function calling stack, how to
examine and modify the CPU registers, and finally how to
examine and modify the CPU flags.

When source debugging isn't enough

When you are debugging a program, most of the time you refer to
data and code at the source level; you refer to symbol names
exactly as you typed them in your source code, and you proceed
through your program by executing pieces of source code.

Sometimes, however, you can gain insight into a problem by
looking at the exact instructions that the compiler generated, the
contents of the CPU registers, and the contents of the stack. To do
this, you need to be familiar with both the 80x86 family of proces­
sors and with how the compiler turns your source code into
machine instructions. Because many excellent books are available
about the internal workings of the CPU, we won't go into that in
detail here. You can quickly learn how the compiler turns your

Chapter 7 7, Assembler-level debugging 165

source code into machine instructions by looking at the
instructions generated for each line of source code.

C and Pascal, for example, let you write lines of source code that
perform many actions at once, and Turbo Debugger lets you step
one source line at a time, not one expression at a time. However,
you sometimes want to know the result of executing a small piece
of one source line. By stepping through your program one
machine instruction at a time, you can examine intermediate
results, although it does require some effort to figure out how the
compiler translated your source statements into machine code.

The CPU window

166

Figure 11.1
The CPU window

The CPU window shows you the entire state of the CPU. You can
examine and change the bits and bytes that make up your pro­
gram's code and data. You can use the built-in assembler in the
Code pane to patch your program temporarily by entering
instructions exactly as you would type assembler source state­
ments. You can also access the underlying bytes of any data struc­
ture, display them in a number of formats, and change them.

[I]=CPU 80286
TPDEI«>.217: begin { program }
cs:084E~9A00004B62 call
cs:0853 9AAE164B62 call
cs:0858 55 push
cs:0859 89E5 mov
cs:085B 81ECOOOl sub

TPDEI«>.218: Init;

624B:0000
624B:16AE
bp
bp.sp
sp.0100

cs:085F ESAOFB call TPDEI«>.INIT
TPDEI«>.219: Buffer:- GetL1ne;

cs:0862 8DBEOOFF lea di. [bp-0100]
cs :0866 16 push 55
cs:0867 57 push di

I 3=[t] ~]
... ax 0000 c-O
I bx 0000 z-O

cx 0000 5-0
dx 0000 0-0
51 0000 p-O
d1 0000 a-O
bp 0000 i-I
sp 3FFE d-O
ds 61AF
es 61AF
55 668F

cs:0868 E83BFD call TPDEI«>.GETLINY
cs 61BF
1p 084E

5: D F FE = Un
ds:0008 1B 02 B2 01 22 31 7C 01 ... ·110
ds:0010 22 31 88 02 52 2B E2 1D ·l~R+r"
ds:0018 01 01 01 00 03 FF FF FF 000 •

55:4004 0000
55:4002 0000
55:4000 0000
55: 3FFE~0000

Open a CPU window by choosing View I CPU from the menu bar.
Depending on what you are viewing in the current window, the
new CPU window comes up positioned at the appropriate code,
data, or stack location. This provides a convenient method for
taking a "low-level" look at the code, data, or stack location your
cursor is currently on.

The following table shows where your cursor will be positioned
w hen you choose the CPU command:

Turbo Debugger User's Guide

Current window

Stack window
Mod ule window
Variable window
Inspector window
Breakpoint
(if not global)

CPU
window pane

Stack
Code
Data'"
Data
Code

"Code pane, if item in window is a routine

Position

Current SS:SP
Current CS:IP
Address of item
Address of item
Breakpoint address

CPU windows have five panes. To go from one pane to the next,
press Tab or Shift-Tab, or click the pane with your mouse. The line
at the top of the CPU window shows what processor type you
have (8086, 80286, 80386, or 80486). The top left pane (Code pane)
shows the disassembled program code intermixed with the source
lines. The second top pane (Register pane) shows the contents of
the CPU registers. The right pane is the Flags pane, showing the
state of the eight CPU flags. The bottom left pane (Data pane)
shows a raw hex dump of any area of memory you choose. The
bottom right pane (Stack pane) shows the contents of the stack.

In the Code pane, an arrow (~) shows the current program loca­
tion (CS:IP). In the Stack pane, an arrow (~) shows the current
stack pointer (SS:SP).

If the highlighted instruction in the Code pane references a
memory location, the memory address and its current contents
are displayed on the top line of the CPU window. This lets you
see both where an instruction operand points in memory and the
value that is about to be read or written over.

The Flags pane shows the value of each of the CPU flags.

As with all windows and panes, pressing Alt-F10 pops up the Code
pane local menu or, if control-key shortcuts are enabled, the etr!
key with the first letter of the desired command gets you to it.

In the Code, Data, and Stack panes, you can press etrl J, and etrl i
to shift the starting display address of the pane by 1 byte up or
down. This is easier than using the Goto command if you just
want to adjust the display slightly.

Chapter 11, Assembler-level debugging 167

The Code pane

The disassembler

168

This pane shows the disassembled instructions at an address that
you choose.

The left part of each disassembled line shows the address of the
instruction. The address is displayed either as a hex segment and
offset, or with the segment value replaced with the CS register
name if the segment value is the same as the current CS register. If
the window is wide enough (zoomed or resized), the bytes that
make up the instruction are displayed. The disassembled instruc­
tion appears to the right.

The Code pane automatically disassembles and displays your
program instructions. If an address corresponds to either a global
symbol, static symbol, or a line number, the line before the dis­
assembled instruction displays the symbol if the Mixed display
mode is set to Yes. Also, if there is a line of source code that corre­
sponds to the symbol address, it is displayed after the symbol.

Global symbols appear simply as the symbol name. Static symbols
appear as the module name, followed by a pound sign (#) or a
period (.), followed by the static symbol name. Line numbers
appear as the module name, followed by a pound sign (#) or a
period (.), followed by the decimal line number.

When an immediate operand is displayed, you can infer its size
from the number of digits: A byte immediate has 2 digits, and a
word immediate has 4 digits.

Turbo Debugger can detect an 8087, 80287, or 80387 numeric
coprocessor and disassemble those instructions if a floating-point
chip or emulator is present.

The instruction mnemonic RETF indicates that this is a far return
instruction. The normal RET mnemonic indicates a near return.

Where possible, the target of JMP and CALL instructions is
displayed symbolically. If CS:IP is a JMP or conditional jump
instruction, an arrow (lor J-) that shows jump direction will be
displayed only if the executing instruction will cause the jump to
occur. Also, memory addresses used by MOV, ADD, and other
instructions display symbolic addresses.

Turbo Debugger User's Guide

The Code pane
local menu If you don't come up in the Code pane, use Tab or Shift-Tab to get

there. Then press AIt-F10 to bring up the local menu.

Goto
Origin
Follow
Caller
Previous
Search
View source
Mixed Yes

New cs:i p
Assemble •••
I/O •

Goto After choosing this command, you're prompted for the new
address to go to. You can enter addresses that" are outside of your
program, to examine code in the BIOS ROM, inside DOS, and in
resident utilities. See Chapter 9 for complete information on
entering addresses.

The Previous command restores the Code pane to the position it
had before the Go.to command was issued.

Origin Positions you at the current program location as indicated by the
CS:IP register pair. This command is useful when you want to
return to where you started.

The Previous command restores the Code pane to the position it
had before the Origin command was issued.

Follow Positions you at the destination address of the currently high­
lighted instruction. The Code pane is repositioned to display the
code at the address where the currently highlighted instruction
will transfer control. For conditional jumps, the address is shown
as if the jump occurred.

This command can be used with the CALL, JMP, conditional jump
(JZ, JNE, LOOP, JCXZ, and so forth) and INT instructions.

The Previous command restores the Code pane to the position it
had before the Follow command was selected.

Chapter 7 7, Assembler-level debugging 169

170

Caller Positions you at the instruction that called the current interrupt or
subroutine.

This command won't always work. If the interrupt routine or
subroutine has pushed data items onto the stack, sometimes
Turbo Debugger can't figure out where the routine was called
from.

The Previous command restores the Code pane to the position it
had before the Caller command was selected.

Previous Restores the Code pane position to the address before the last
command that explicitly changed the display address. Using the
arrow keys and PgUp and PgDn does not cause the position to be
remembered.

When you choose Previous, the Code pane position is remem­
bered, so that repeated use of the Previous command causes the
Code pane to switch back and forth between two addresses.

Search Lets you enter an instruction or byte list to search for. Enter an
instruction exactly as you would with the Assemble command.

Be careful which instructions you try to search for; you should
only search for instructions that don't change the bytes they
assemble to, depending on their location in memory. For example,
searching for the following instructions is no problem:

PUSH ox
POP [0I+4]
ADD AX,100

but searching for the following instructions can cause unpre­
dictable results:

JE 123
CALL MYFUNC
LOOP 100

You can also enter a byte list instead of an instruction. See
Chapter 9 for more on entering byte lists.

Turbo Debugger User's Guide

Mixed Toggles between the three ways of displaying disassembled
instructions and source code:

No No source code is displayed, only disassembled
instructions.

Yes Source code lines appear before the first disassembled
instruction for that source line. The pane is set to this
display mode if your current module is a high-level
language source module.

Both Source code lines replace disassembled lines for those
lines that have corresponding source code; otherwise, the
disassembled instruction appears. Use this mode when
you are debugging an assembler module, and you want
to see the original source code, instead of the correspond­
ing disassembled instruction. The pane is set to this
display mode if your current module is an assembler
source module.

New CS:IP Sets the program location counter (CS:IP registers) to the current­
ly highlighted address. When you rerun your program, execution
starts at this address. This is useful when you want to skip over a
piece of code without executing it.

¢ Use this command with extreme care. If you adjust the CS:IP to a
location where the stack is in a different state than at the current
CS:IP, you will almost certainly crash your program. Do not use
this command to set the CS:IP to an address outside of the current
routine.

Assemble... Assembles an instruction, replacing the one at the currently
highlighted location. You are prompted for the instruction to
assemble. See the section called liThe assembler" in this chapter
(page 180) for more details.

You can also invoke this command by simply starting to type the
statement you want to assemble. When you do this, a dialog box
appears exactly as if you had specified Assemble.

Chapter 7 7, Assembler-level debugging 171

I/O

In byte
Out byte
Read word
Write word

Reads or writes a value in the CPU's I/O space and lets you
examine the contents of I/O registers on cards and write things to
them.

It pops up this menu.

In Byte

Reads a byte from an I/O port. You are prompted for the I/O port
whose value you want to examine. Use the Read Word option to
read from a word-sized I/O port.

Out Byte

Writes a byte to an I/O port. You are prompted for the I/O port
to write to and the value you want to write. Use the Write Word
option to write to a word-sized I/O port.

Read Word

Reads a word from an I/O port. You are prompted for the I/O
port whose value you want to examine. Use the In Byte option to
read from a byte-sized I/O port.

Write Word

Writes a word to an I/O port. You are prompted for the I/O port
to write to and the value you want to write. Use the Out Byte
option to write to a byte-sized I/O port.

IN and OUT instructions access the I/O space where peripheral
device controllers (such as serial cards, disk controllers, and video
adapters) reside.

¢ Be careful when you use these commands. Some I/O devices consider
reading their ports to be a significant event that causes the device
to perform some action, such as resetting status bits or loading a
new data byte into the port. You may disrupt the normal
operation of the program you are debugging or the device with
indiscriminate use of these commands.

172 Turbo Debugger User's Guide

The Register and Flags panes

The Register pane
local menu

The Register pane, which is the top pane to the right of the Code
pane, shows the contents of the CPU registers.

The top right pane is the Flags pane, which shows the state of the
eight CPU flags. The following table lists the different flags and
how they are shown in the Flags pane:

Letter in pane

c
z
s
o
p
a
i
d

Rag name

Carry
Zero
Sign
Overflow
Parity
A uxiliary carry
Interrupt enable
Direction

Press Alt-F10 to pop up the Register pane local menu. Or, if
control-key shortcuts are enabled, use the etrl key with the first
letter of the desired command to access the command.

Increment
Decrement
Zero
Change •••
Registers 3Z-bit No

Increment Adds 1 to the value in the currently highlighted register. This is an
easy way to make small adjustments in the value of a register to
compensate for "off-by-one" bugs.

Decrement Subtracts 1 from the value in the currently highlighted register.

Zero Sets the value of the currently highlighted register to O.

Change... Changes the value of the currently highlighted register. You are
prompted for the new value. You can make full use of the expres­
sion evaluator to ellter a new value.

Chapter 7 7, Assembler-level debugging 173

Registers 32-bit

The Flags pane
local menu

I Toggle I

Toggle

The Data pane

174

You can also invoke this command by simply starting to type the
new value for the register. A dialog box appears exactly as if you
had specified the Change command.

On an 80386 processor, toggles between displaying the CPU
registers as 16-bit or 32-bit values. You will usually see 16-bit
registers, unless you use this command to set the display to 32-bit
registers. You really need to see 32-bit registers only if you're de­
bugging a program that uses the 32-bit addressing capabilities of
the 386 chip. If you are debugging an ordinary program that uses
only normal 16-bit addressing, use the 16-bit register display.

Press AIt-F10 to pop up the Flags pane local menu or, if control-key
shortcuts are enabled, use the etrl key with the first letter of the
desired command to access the command.

Sets the value of the flag to 0 if it was 1, and to 1 if it was O. The
value 0 corresponds to "clear," and 1 indicates "set." You can also
press Enterto toggle the value of the currently highlighted flag.

This pane shows a raw display of an area of memory you've
selected. The leftmost part of each line shows the address of the
data displayed in that line. The address is displayed either as a
hex segment and offset, or with the segment value replaced with
the DS register name if the segment value is the same as the
current DS register.

Next, the raw display of one or more data items is displayed. The
format of this area depends on the display format selected with
the Display As local menu command. If you choose one of the
floating-point display formats (Comp, Float, Real, Double,
Extended), a single floating-point number is displayed on each
line. Byte format displays 8 bytes per line, Word format displays 4
words per line, and Long format displays 2 long words per line.

When the data is displayed as bytes, the rightmost part of each
line shows the display characters that correspond to the data
bytes displayed. Turbo Debugger displays all byte values as their

Turbo Debugger User's Guide

The Data pane
local menu

display equivalents, so don't be surprised if you see funny
symbols displayed to the right of the hex dump area-these are
just the display equivalents of the hex byte values.

If you use the Data pane to examine the contents of the display
memory, the ROM BIOS data area, or the vectors in low memory,
you will see the values that are there when the program being
debugged runs, not the actual values in memory when Turbo
Debugger is running. These are not the same values that are in
these memory areas at the time you look a t them. Turbo De­
bugger detects when you're accessing areas of memory that it
uses as well, and it gets the correct data value from where it stores
the user program's copy of these data areas.

Once you are positioned in the Data pane, press AIt-F10 to pop up
the local menu or, if control-key shortcuts are enabled, use the Girl
key with the first letter of the desired command to access it.

Goto
Search
Next
Change
Follow •
Previous

Display as •
Block •

Goto Positions you at an address in your data. Enter the new address
you want to go to. You can enter addresses inside DOS, in resi­
dent utilities, or outside of your program, which lets you examine
data in the BIOS data area. See Chapter 9 for a complete
discussion of how to enter addresses.

Search Searches for a character string, starting at the current memory
address as indicated by the cursor position. Enter the byte list to
search for. The search does not wrap around from the end of the
segment to the beginning. See Chapter 9 for a complete discussion
of byte lists.

Chapter 7 7 I Assembler-level debugging 175

176

Next Searches for the next instance of the byte list you previously
specified with the Search command.

Change... Lets you change the bytes at the current cursor location. If you're
over an ASCII display or the format is Byte, you're prompted for
a byte list. Otherwise, you're prompted for an item of the current
display type. See Chapter 9 for a discussion of byte lists.

You can also invoke this command by sinlply starting to type the
new value or values. This brings up a dialog box exactly as if you
had chosen the Change command.

Follow This command opens a menu that lets you follow near or far
pointer chains.

Near code
Far code

Offset to data
Segment:offset to data
Base segment:O to data

Near Code

This command interprets the word under the cursor in the Data
pane as an offset into the current code segment as specified by the
CS register. The Code pane becomes the current pane and is posi­
tioned to this address.

For Code

This command interprets the doubleword under the cursor in the
Data pane as a far address (segment and offset). The Code pane
becomes the current pane and is positioned to this address.

Offset to Data

This command lets you follow word (near, offset only) pointer
chains. The Data pane is set to the offset specified by the word in
memory at the current cursor location.

Turbo Debugger User's Guide

Segment:Offset to Data

This command lets you follow long (far, segment, and offset)
pointer chains. The Data pane is set to the offset specified by the
two words in memory at the current cursor location.

Base Segment:O to Data

This command interprets the word under the cursor as a segment
address and positions the Data pane to the start of that segment.

Previous Restores the Data pane address to the address before the last
command that explicitly changed the display address. Using the
arrow keys and PgUp and PgDn does not cause the position to be
remembered.

Display As

Byte
Word
Long
Camp
Float
Real
Double
Extended

Turbo Debugger maintains a stack of the last five addresses, so
you can backtrack through multiple uses of the Follow menu or
Goto commands.

Lets you choose how data appears in the Data pane. You can
choose from any data format used by C, Pascal, and assembler.
The menu options are described here.

Byte

Sets the Data pane to display as hexadecimal bytes. This
corresponds to the C char data type, the Pascal double type, and
the Pascal Byte type.

Word

Sets the Data pane to display as word hexadecimal numbers. The
2-byte hexadecimal value is shown. This corresponds to the C int
da ta type and the Pascal Word type.

Long

Sets the Data pane to display as long hexadecimal integers. The
4-byte hex value is shown. This corresponds to the C long data
type and the Pascal Longint type.

Chapter 7 7, Assembler-level debugging 177

178

Block

Clear
Move
Set
Read
Write

Comp

Sets the Data pane to display 8-byte integers. The decimal value of
the integer is shown. This is the Pascal Comp (IEEE) data type.

Float

Sets the Data pane to display as short floating-point numbers. The
scientific notation floating-point value is shown. This is the same
as the C float data type and the Pascal Single (IEEE) type.

Real

Sets the Data pane to display Pascal's 6-byte floating-point
numbers. The scientific notation floating-point value is shown.
This is the Pascal Real type.

Double

Sets the data pane to display 8-byte floating-point numbers. The
scientific notation floating-point value is shown. This is the same
as the C long double data type, the Pascal Double type, and the
assembler TBYTE type.

Extended

Sets the Data pane to display lO-byte floating-point numbers. The
scientific notation floating-point value is shown. This is the
internal format used by the 80x87 coprocessor. It also corresponds
to the C long double data type and the Pascal Extended (IEEE)
type.

Lets you manipulate blocks of memory. You can move, clear and
set memory blocks, and read and write memory blocks to and
from disk files. Block brings up the pop-up menu shown.

Clear

Sets a contiguous block of memory to zero (0). You are prompted
for the address and the number of bytes to clear.

Turbo Debugger User's Guide

The Stack pane

The Stack pane
local menu

Move

Copies a block of memory from one address to another. You are
prompted for the source address, the destination address, and
how many bytes to copy.

Set

Sets a contiguous block of memory to a specific byte value. You
are prompted for the address of the block, how many bytes to set,
and the value to set them to.

Read

Reads all or a portion of a file into a block of memory. You are
prompted first for the file name to read from, then for the address
to read it into, and finally for how many bytes to read.

Write

Writes a block of memory to a file. You are prompted first for the
file name to write to, then for the address of the block to write and
how many bytes to write.

The Stack pane, in the lower right corner of the CPU window,
shows the contents of the stack.

At the Stack pane, press Alt-F10 to pop up the local menu or, if
control-key shortcuts are enabled, use the etr! key with the first
letter of the desired command to access the command.

Goto
Origin
Follow
Previous
Change •••

Chapter 7 7 I Assembler-level debugging 179

Goto Positions you at an address in the stack. Enter the new stack
address. If you want, you can enter addresses outside your pro­
gram's stack, although you would usually use the Data pane to
examine arbitrary data outside your program. See Chapter 9 for
information about how to enter addresses.

The Previous command restores the Stack pane to the position it
had before the Goto command was issued.

Origin Positions you at the current stack location as indicated by the
SS:SP register pair. This command is useful when you want to
return to where you started.

The Previous command restores the Stack pane to the position it
had before the Origin command was issued.

Follow Positions you at the word in the stack pointed to by the currently
highlighted word. This is useful for following stack-frame threads
back to a calling function.

The Previous command restores the Stack pane to the position it
had before the Follow command was issued.

Previous Restores the Stack pane position to the address before the last
command that explicitly changed the display address. Using the
arrow keys and PgUp and PgDn does not cause the position to be
remembered.

Repeated use of the Previous command causes the Stack pane to
switch back and forth between two addresses.

Change Lets you enter a new word value for the currently highlighted
stack word.

You can also invoke this command by simply starting to type the
new value for the highlighted stack item. A dialog box will
appear, exactly as if you had specified the Change command.

The assembler

180

Via the Assemble command in the Code pane local menu, Turbo
Debugger lets you assemble instructions for the 8086,80186,

Turbo Debugger User's Guide

Operand address
size overrides

Memory and
immediate operands

80286, 80386, and 80486 processors, and also for the 8087, 80287,
and 80387 numeric coprocessors.

When you use Turbo Debugger's built-in assembler to modify
your program, the changes you make are not permanent. If you
reload your program using the Run I Program Reset command, or
if you load another program using the File I Open command,
you'll lose any changes you've made.

Normally you use the assembler to test an idea for fixing your
program. Once you've verified that the change works, you must
change your source code and recompile and link your program.

The following sections describes the differences between the
built-in assembler and the syntax accepted by Turbo Assembler.

For the call (CALL), jump (JMP), and conditional jump (JNE, JL,
and so forth) instructions, the assembler automatically generates
the smallest instruction that can reach the destination address.
You can use the NEAR and FAR overrides before the destination
address to assemble the instruction with a specific size. For
example,

CALL FAR XYZ
JMP NEAR Al

When you use a symbol from your program as an instruction
operand, you must tell the built-in assembler whether you mean
the contents of the symbol or the address of the symbol. If you use
just the symbol name, the assembler treats it as an address, exact­
ly as if you had used the assembler OFFSET operator before it. If
you put the symbol inside brackets ([]), it becomes a memory
reference. For example, if your program contains the data
definition

A OW 4

then [AJ references the area of memory where A is stored.

When you assemble an instruction or evaluate an assembler
expression to refer to the contents of a variable, use the name of
the variable alone or between brackets:

mov dx,a
mov ax, [a)

Chapter 7 7, Assembler-level debugging 181

Operand data
size overrides

String instructions

To refer to the address of the variable, use the OFFSET operator:

mov ax, offset a

For some instructions, you must specify the operand size using
one of the following expressions before the operand:

BYTE PTR
WORD PTR

Here are examples of instructions using these overrides:

add BYTE PTR[si],lO
mov WORD PTR[bp+lO],99

In addition to these size overrides, you can use the following
overrides to assemble 8087/80287/80387 numeric coprocessor
instructions:

DWORD PTR
QWORD PTR
TBYTE PTR

Here are some examples using these overrides:

fild QWORD PTR[bx]
stp TBYTE PTR[bp+4]

When you assemble a string instruction, you must include the
size (byte or word) as part of the instruction mnemonic. The
assembler does not accept the form of the string instructions that
uses a sizeless mnemonic with an operand that specifies the size.
For example, use STOSW rather than STOS WORD PTR[di1.

The Dump window

182

Figure 11.2
The Dump window

The Dump window shows you a raw data dump of any area of
memory. It works exactly like the Data pane in the CPU window.
M~~ ~Mm9
ds:OOOO CD 20 00 AO 00 9A FO FE = a Un £

ds:0008 18 02 82 01 22 31 7C 01 ·110 •
ds:0010 22 31 88 02 52 28 E2 ID ·1~R+t., I
ds:0018 01 01 01 00 03 FF FF FF GOO • 'Y

Turbo Debugger User's Guide

See liThe Data pane local menu" section earlier in this chapter
(page 175) for a description of the contents and local menu for this
window.

Typically, you'd use this window when you're debugging an
assembler program at the source level, and you want to take a
low-level look at some data areas. Use View I Dump to open a
Dump window.

You can also use this window if you're in an Inspector window,
and you want to look at the raw bytes that make up the object you
are inspecting. Use View I Dump to get a Dump window that's
positioned to the data in the Inspector window.

The Registers window

Figure 11.3
The Registers window

You can shrink the size of
your Module window and

put up a Registers window
alongside It.

The Registers window shows you the contents of the CPU
registers and flags. It works like a combination of the Registers
and Flags panes in the CPU window.
[.]~s=3= ']
ax 0000 c-O
bx 0000 z-O
cx 0000 5-0
dx 0000 0-0
si 0000 p-O
di 0000 a-O
bp 0000 i-1
sp 3FFE d-O
ds 61AF
es 61AF
55 668F
cs 61BF
ip 084E

See liThe Register pane local menu" (page 173) and "The Flags
pane local menu" (page 174) sections earlier in this chapter for a
description of the contents and local menus for this window.

Use this window when you're debugging an assembler program
at the source level and want to look at the register values.

Turbo C code generation

The Turbo C compiler does a number of predictable things when
it generates machine code. Once you become familiar with the
compiler, you'll quickly see exactly how the machine instructions
correspond to your source code.

Chapter 7 1, Assembler-level debugging 183

184

Function return values are placed in the following registers:

Return type

int
long
float
double
long double
near *
far *

Register(s)

AX
DX:AX
ST(O)
ST(O)
ST(O)
AX
DX:AX

The compiler places heavily used tnt and near pointers into regis­
ters, using first the SI register, then the DI register.

Your autovariables and function-calling parameters are accessed
fromSS:BP.

The AX, BX, ex, and DX registers are not necessarily preserved
across function calls.

Registers are always used as word registers, not as byte registers,
even if you use char data types.

Switch statements can be compiled into one of three forms,
depending on which will produce the most efficient code:

• conditional jumps as if the switch were an tf ... else chain

• a jump table of code addresses

• a jump table of switch values and code addresses

Refer to your Turbo e manuals for more information on Turbo e
code generation.

Turbo Debugger User's Guide

c H A p T E R

12

The 80x87 coprocessor chip and
emulator

This chapter is for pro­
grammers who are familiar

with the operation of the
80x87 math coprocessor.

If your program uses floating-point numbers, Turbo Debugger
lets you examine and change the state of the numeric coprocessor
or software emulator. You don't need to use the capabilities
described in this chapter to debug programs that use floating­
point numbers, although some very subtle bugs may be easier to
find.

In this chapter, we discuss the differences between the 80x87 chip
and the software emula tor. We also describe the Numeric
Processor window and show you how to examine and modify the
floating-point registers, the status bits, and the control bits.

The 80x87 chip VS. the emulator

Turbo Debugger automatically detects whether your program is
using the math chip or the emulator and adjusts its behavior
accordingly.

Note that most programs use either the emulator or the math
chip, not both within the same program. If you have written
special assembler code that uses both, Turbo Debugger won't be
able to show you the status of the math chip; it will report on the
emulator only.

Chapter 72, The BOxB7 coprocessor chip and emulator 185

The Numeric Processor window

Figure 12.1
The Numeric Processor

window

The Register pane

The 80-bit floating-point
registers

186

You create a Numeric Processor window by choosing the View I
Numeric Processor command from the menu bar. The line at the
top of the window shows the current instruction pointer, data
pointer, and instruction opcode. The data pointer and instructions
pointer are both shown as 20-bit physical addresses. You can con­
vert these addresses to a segment and offset form by using the
first four digits as the segment value, and the last digit as the
offset value.

For example, if the top line shows IPTR=5A669, you can treat this as
the address Sa66:9 if you want to examine the current data and
instruction in a CPU window. This window has three panes: The
left pane (Register pane) shows the contents of the floating-point
registers, the middle pane (Control pane) shows the control flags,
and the right pane (Status pane) shows the status flags.

[I]=£mul ator IP1R-00000 OPCOOE-OOO OP1R-00003=[t] [~]
Empty 51 0 1m-O 1e-O
Empty 51 1 dm-O de-O
Empty 51 2 zm-O ze-O
Empty 51 3 0l'Il-0 oe-O
Empty 51 4 urn-I ue-O
Empty S1 5 pm-I pe-O
Empty S1 6 1 em-O 1 r-O
Empty 51 7 pc-3 cc-g

rc-O st-O
1c-l

The top line shows you information about the last floating-point
operation that was executed. The IPTR shows the 20-bit physical
address from which the last floating-point instruction was
fetched. The OPCODE shows the instruction type that was
fetched. The OPTR shows the 20-bit physical address of the
memory address that the instruction referenced, if any.

The Register pane shows each of the floating-point registers, ST(O)
to ST(7), along with its status (valid/zero/special/empty). The
contents are shown as an 80-bit floating-point number.

If you've zoomed the Numeric Processor window (by pressing F5)

or made it wider by using Window I Size/Move, you'll also see
the floating-point registers displayed as raw hex bytes.

Turbo Debugger User's Guide

The Register pane local
menu

Zero
Empty
Change

The Control pane

To bring up the Register pane local menu, press AIt-F10, or use the
Clrl key with the first letter of the desired command to directly
access the command.

Zero

Sets the value of the currently highlighted register to zero.

Empty

Sets the value of the currently highlighted register to empty. This
is a special status that indicates that the register no longer
contains valid data.

Change

Loads a new value into the currently highlighted register. You are
prompted for the value to load. You can enter an integer or float­
ing-point value, using the current language's expression parser.
The value you enter will be automatically converted to the 80-bit
temporary real format used by the numeric coprocessor.

You can also invoke this command by simply starting to type the
new value for the floating-point register. A dialog box will appear
exactly as if you had specified the Change command.

The control bits The following table lists the different control flags and how they
appear in the Control pane:

Name in pane

im
dm
zm
om
urn
pm
iem
pc
rc
ic

Chapter 72, The 80x87 coprocessor chip and emulator

Flag description

Invalid operation mask
Denormalized operand mask
Zero divide mask
Overflow mask
Underflow mask
Precision mask
Interrupt enable mask (8087 only)
Precision control
Rounding control
Infinity control

187

The Control pane local
. menu

I Toggle I

The Status pane

Press Tab to go to the Control pane, then press Alt-F10 to pop up
the local menu. (Alternatively, you can use the Gtrl key with the
first letter of the desired command to access it.)

Toggle

Cycles through the values that the currently highlighted control
flag can be set to. Most flags Cqn only be set or cleared (0 or 1), so
this command just toggles the flag to the other value. Some other
flags have more than two values; for those flags, this command
increments the flag value unt~ the maximum value is reached,
and then it sets it back to zero.

You can also toggle the control flag values by highlighting them
and pressing Enter.

The status bits The following table lists the different status flags and how they
a ppear in the Status pane:

The Status pane local
menu

I Toggle I

188

Name in pane

ie
de
ze
oe
ue
pe
ir
cc
st

Flag description

Invalid operation
Denormalized operand
Zero divide
Overflow
Underflow
Precision
Interrupt request
Condition code
Stack top pointer

Press Tab to move to the Status pane, then press Alt-F10 to
pop up the local menu. (You can also use the Gtrl key with
the first letter of the desired command to access the
command directly.)

Toggle

Cycles through the values that the currently highlighted
status flag can be set to. Most flags can only be set or cleared
(0 or 1), so this command just toggles the flag to the other

Turbo Debugger User's Guide

value. Some other flags have more than two values; for
those flags, this command increments the flag value until
the maximum value is reached, and then sets it back to zero.

You can also toggle the status flag values by highlighting
them and pressing Enter.

Chapter 72, The BOxB7 coprocessor chip and emulator 189

190 Turbo Debugger User's Guide

c H

Hot keys

A p T E R

13

Command reference

Now that you've read about all the commands, here's a quick
summary. This chapter lists and describes

• all the single-keystroke commands available on the function
and other keys

• all the menu bar commands and the commands for the local
menu of each window type

• keystrokes used in the two types of panes <those in which you
enter text and those from which you select an item)

• keystrokes for moving and resizing windows

A hot key is a key that performs its action no matter where you
are in the Turbo Debugger environment. Table 13.1 on page 192
lists all the hot keys.

Chapter 73, Command reference 191

Table 13.1
The function key and hot key

commands

192

Key

F1
F2
F3
F4
FS
F6
Fl

FB

F9
FlO

AIt-FI
AIt-F2
AIt-F3
AIt-F4
Alt-FS
AIt-F6
Alt-Fl
AIt-FB
AIt-F9
AIt-FI0
AIt-1-9

Alt-Space
AIt-8
AIt-O
AIt-F
AIt-H
AIt-O
AIt-R
AIt-V
AIt-W

Menu command Function

Brings up context-sensitive help
Breakpoints 'Toggle Sets breakpoint at cursor position
View 'Module Module pick list
Run' Go to Cursor Runs to cursor position
Window' Zoom Zooms/ unzooms current window
Window' Next Window Goes to next window
Run I Trace Into Executes single source line or

instruction
Run I Step Over Executes single source line or

instruction, skipping calls
Run' Run Runs program

Help' Previous Topic
Breakpoints' At
Window' Close
Run' Back Trace
Window I User Screen
Window I Undo Close
Run 'Instruction Trace
Run I Until Return
Run' Execute To

Invokes the menu bar, takes you
out of menus

Brings up last help screen
Sets breakpoint at an address
Closes current window
Reverses program execution
Shows your program's screen
Reopens the last-dosed window
Executes a single instruction
Runs until return from function
Runs to a specified address
Invokes the window's local menu
Switch to numbered window 1
through 9
Goes to the System menu
Goes to the Breakpoints menu
Goes to the Data menu
Goes to the File menu
Goes to the Help menu
Goes to the Options menu
Goes to the Run menu
Goes to the View menu
Goes to the Window menu

A It-X File' Quit Quits Turbo Debugger and returns
you to DOS

AIt= Options I Macros I Create
AIt- Options' Macros' Stop

Recording

Defines a keystroke macro
Ends a macro recording

Turbo Debugger User's Guide

Table 13.1: The function key and hot key commands (continued)

Key Menu command Function

Ctrl-F2 Run I Program Reset Stops debug session and resets the

Ctrl-F4 Data I Evaluate
Ctrl-F5 ~indow I Size/Move

Ctrl-F7 Data I Add Watch

Ctrl-FB Breakpoints I Toggle
9trl-p9 Run I Run
9trl-F10
Ctrl-?

Ctr/~

Ctrl-A
Ctrl-C
Ctrl-D
Ctrl-E
Ctrl-F
Ctrl-R
Ctrl-S
Ctrl-X

Shift-F1 Help I Index
Shift-Tab

Shift -?

Shift~
Shift i
Shift !

Esc

Ins

Tab

Chapter 73, Command reference

Window I Next Pane

program to start again
Evaluates an expression
Initiates window moving or
resizing
Adds a variable to the Watches
window
Toggles a breakpoint at cursor
Runs a program
Invokes the window's local menu
Shifts the starting address in a
Code, Data, or Stack pane in a CPU
window 1 byte up
Shifts the starting address in a
Code, Dat~, or Stack pane in a CPU
winqow 1 byte down
Moves to previous word
Scrolls down one screen
Moves right one column
Moves up one line
Moves to next word
Scrolls up one screen
Moves left one column
Moves down one line

Goes to the index for online help
Moves cursor to previous window
pane or dialog box item
Moves cursor between the panes
in a window (the pane in the
direction of the arrow becomes
the active pane.)

Closes an Inspector window, goes
out of menus
Starts text block selection
(~ighlight); use ~ and -? to
highlight
Moves cursor to next window pane
or dialog box item

193

Commands from the menu bar

194

The == (System)
menu

The File menu

The View menu

You invoke the menu bar by pressing the F10key; you can then go
directly to one of the individual menus by

• cursoring to the menu title and pressing Enter
• pressing the highlighted letter of the menu title

You can also open a menu directly (without first moving to the
menu bar) by pressing Altin combination with the first letter of the
menu name you desire.

Restore Standard

Repaint Desktop
About

Open
Change Dir
Get Info
DOS Shell
Resident

Symbol Load

Table Relocate
Quit

Breakpoints
Stack
Log
Watches
Variables
Module
File
CPU

Dump

Restores standard window
layout
Redisplays entire screen
Displays information about
Turbo Debugger

Opens a new program to debug
Changes to new disk or directory
Displays program information
Starts a 005 command processor
Causes Turbo Debugger to
terminate and stay resident
Loads symbol table independent of
.EXE file
Sets base segment of symbol table
Returns to DOS

Displays breakpoints
Displays function-calling stack
Displays log of events and data
Displays variables being watched
Displays global and local variables
Displays program source module
Displays disk file as ASCII or hex
Displays CPU instructions, data,
stack
Displays raw data dump

Turbo Debugger User's Guide

Registers Displays CPU registers and flags
Numeric Processor Displays coprocessor or emulator
Execution History Displays assembler code saved for

backtracking or keystroke playback

~
Hierarchy Displays object or class type list and

hierarchy tree
Another

Module Makes another Module window
Dump Makes another Dump window
File Makes another File window

The Run menu
Run Runs your program without

stopping
Go To Cursor Runs to current cursor location
Trace Into Executes one source line or

instruction
Step Over Traces, skipping calls
Execute To Runs to specified address
Until Return Runs until function returns
Animate Continuously steps your program
Back Trace Reverses program execution for one

source line or instruction
Instruction Trace Executes a single instruction
Arguments Sets program command -line

arguments
Program Reset Reloads current program

The Breakpoints
menu Toggle Tog~es breakpoint at cursor

At Sets reakpoint at specified address
Changed Memory Global Sets global breakpoint on memory

area
Expression True Global Sets global breakpoint on

expression
Delete All Removes all breakpoints

The Data menu
Inspect Inspects a data object
Evaluate /Modify Evaluates an expression
Add Watch Adds variable to Watches window
Function Return Inspects current routine's return

value

Chapter 73, Command reference 195

The Options
menu Language Sets expression language from

source module
Macros

Create Defines a keystroke macro
Stop Recording Ends the recording session
Remove Removes a keystroke macro
Delete All Removes all keystroke macros

Display Options Lets you set screen display options
(screen swapping, size, tabs)

Path for Source Directory list for source files
Save Options Saves options, screen layout, and

macros to disk
Restore Options Restores options from disk

The Window
menu Zoom Zooms window to full screen size

and back
Next Activates successive windows open

onscreen
Next Pane Goes to the next pane in a window
Size/Move Moves window or changes its size
Iconize /Res tore Reduces window to a small symbol

or restores it
Close Closes window
Undo Close Reopens the last window closed
Dump Pane to Log Writes current pane to Log window
User Screen Displays your program output
Open window list Displays list of open windows to

activate
Window Pick Displays a men~ of open menus, if

more than 9 are open onscreen

The Help Menu
Index Goes to the index for online help
Previous Topic Brings up last help screen
Help on Help Accesses online help on the help

system

196 Turbo Debugger User's Guide

The local menu commands

Each type of window and
each pane INithin a window

has a different local menu.

The menus in this section are
arranged in alphabetical

order to make lookups easier.

Breakpoints

You invoke the local menu for the current window by pressing
Alt-F10. If control-key shortcuts are enabled, you can go directly to
one of the individual menu items by pressing the Gtrl key in
combination with the first letter of the item you desire. (Use the
installation program TDINST to enable control-key shortcuts, if
they've been disabled.)

The following sections describe the local menu for each window
and pane.

Some panes have shortcuts to commonly used commands on their
local menu. In the following section, these special keys are listed
before the menu commands for the pane to which they apply. In
many panes, the Enter key is a shortcut to examining or changing
the currently highlighted item. The Del key often invokes the local
menu command that deletes the highlighted item. Some panes let
you start typing letters or numbers without first invoking a local
menu command. In these cases, the dialog box for one of the local
menu items pops up to accept your input.

window The Breakpoints window has two panes, the List pane on the left
and the Detail pane on the right. Only the List pane has a local
menu.

Set Options

Hard ware Options
Add
Remove
Delete All
Inspect

Sets breakpoint actions, conditions,
pass count, and enable/disable
Lets you set hardware breakpoints
Adds a new breakpoin t
Removes highlighted breakpoint
Deletes all breakpoints
Looks at code where breakpoint is
set

Delis the shortcut for Remove in this window.

The CPU window
menus The CPU window has five panes, each with a local menu: the

Code pane, the Data pane, the Stack pane, the Register pane, and
the Flags pane.

Chapter 13, Command reference 197

198

Code pane Goto
Origin
Follow

Caller
Previous
Search
View Source
Mixed

NewCS:IP
Assemble

In Byte
Out Byte
Read Word
Write Word

Displays code at new address
Displays code at CS:IP
Displays code at JMP or CALL
target
Displays code at calling function
Displays code at last address
Searches for instruction or bytes
Switches to Module window
Mixes source code with dis­
assembly: NojYesfBoth
Sets CS:IP to execute at new address
Assembles instruction at cursor I/O
Reads a byte from an I/O location
Writes a byte to an I/O location
Reads a word from an I/O location
Writes a word to an I/O location

Typing any character is a shortcut for the Assemble local menu
command in this pane.

Data pane Goto

Search
Next

Change

Follow
Near Code

Far Code

Offset to Data

Segment:Offset to Data

Base Segment:O to Data

Previous
Display As

Byte
Word
Long

Displays data at new address
Searches for string or data bytes

Searches again for next occurrence
Changes data bytes at cursor
address

Sets Code pane to the near address
under the cursor
Sets Code pane to the far address
under the cursor
Sets Data pane to the near address
under the cursor
Sets Data pane to the far address
under the cursor
Sets Data pane to start of segment
that contains the address under the
cursor
Displays data at last address

Displays hex bytes
Displays hex words
Displays hex 32-bit long words

Turbo Debugger User's Guide

Flags pane

Register pane

Stack pane

Comp

Float

Real

Double

Extended

Block

Displays 8-byte Pascal comp
integers
Displays short (4-byte) floating­
point numbers (Pascal singles, C
floats)
Displays 6-byte floating-point
numbers (Pascal reals)
Displays 8-byte floating-point
numbers (Pascal and C doubles)
Displays lO-byte floating-point
numbers (C long double, Pascal
extended)

Clear Sets memory block to zero
Move Moves memory block
Set Sets memory block to value
Read Reads from file to memory
Write Writes from memory to file

Typing any character is a shortcut for the Change local menu
command in this pane.

Toggle Sets or clears highligh ted flag

Pressing Enter or Spacebar is a shortcut for the Toggle local menu
command in this pane.

Increment
Decrement

Zero
Change

Registers 32-bit

Adds one to highlighted register
Subtracts one from highlighted
register
Clears highlighted register
Sets highlighted register to new
value
Toggles 32-bit register display: No/
Yes

Typing any character is a shortcut for the Change local menu
command in this pane.

Goto
Origin
Follow

Previous
Change

Displays stack at new address
Displays data at SS:SP
Displays code pointed to by current
item
Restores display to last address
Allows you to edit information

Chapter 73, Command reference 199

Dump window

File window

Log window

Typing any character is a shortcut for the Change local menu
command in this pane.

The Dump window is identical to the Data pane of the CPU
window. Its local menu is identical to the Data pane local menu.

The File window shows the contents of the disk file as hex bytes
or as a disk file.

Goto
Search
Next
Display As
File
Edit

Displays line number or hex offset
Searches for string or da ta bytes
Searches again for next occurrence
Sets file display mode: ASCII/Hex
Switches to view new file
Edits file or changes bytes at cursor

Typing any character is a shortcut for the Search local menu
command.

menu The Log window shows messages sent to the log.

Module window

200

Open Log File Starts logging to a file
Close Log File Stops logging to a file
Logging Toggles logging: No/Yes
Add Comment Writes user comment to log
Erase Log Clears all log messages

Typing any character is a shortcut for the Add Comment local
menu command.

The Module window shows the source file for the program
module.

Inspect

Watch

Module

Shows contents of variable under
cursor
Adds variable under cursor to
watch list
Changes to display different
module

Turbo Debugger User's Guide

Numeric

File
Previous
Line
Search
Next

Origin
Goto

Edit

Changes to display different file
Displays last module and position
Displays source at line in module
Searches for text string
Searches for next occurrence of
string
Displays current program location
Shows source or instructions at
address
Starts editor to edit source file

Typing any character is a shortcut for the Goto local menu
command.

Processor window The Numeric Processor window has three panes: the Register
pane, the Status pane, and the Control pane.

Register pane These are the local menu commands in this pane:

Zero Clears the highlighted register
Empty Sets the highlighted register to

empty
Change Sets the highlighted register to a

value

Typing any character is a shortcut for the Change local menu
command in this pane.

Status pane This is the loca~ menu command in this pane:

Toggle Cycles through valid flag values

Pressing Enter is a shortcut for the Toggle local menu command in
this pane.

Control pane This is the local menu command in this pane:

Toggle Cycles through vali4 flag values

Pressing Enter is a shortcut for the Toggle local menu command in
this pane.

Chapter 73, Command reference 201

Hierarchy window

Object Type/Class List
pane

Hierarchy Tree pane

Parent Tree pane

Registers window

The Hierarchy window has two panes, the Object Type/Class List
pane and the Hierarchy Tree pane. It also has a third pane, the
Parent Tree pane, if you are running a C++ program with
multiple inheritance.

Inspect

Tree

Inspect

Parents

Inspect

Shows contents of highlighted
object or class type
Moves to the Hierarchy Tree pane

Shows contents of highlighted
object or class type
Toggles whether Parent Tree pane is
displayed if you are running a C++
program with multiple inheritance

Shows contents of highlighted
object or class type

menu The Registers window is identical to the Register and Flags panes
of the CPU window. Its local menus are identical to the Register
pane local menu and the Flags pane local menu.

Stack window

Variables window

202

The Stack window shows the currently active functions.

Inspect Shows source code for highlighted
function

Locals Shows local variables for
highlighted function

Pressing Enter is a shortcut for the Inspect local menu command.

The Variables window has two panes, each with a local menu:
The Global Symbol pane and the Local Symbol pane.

Turbo Debugger User's Guide

Global Symbol pane

Local Symbol pane

Watches window

Inspect

Change

Shows contents of highlighted
symbol
Changes value of highlighted
symbol

Pressing Enter is a shortcut for the Inspect local menu command in
this pane.

Inspect

Change

Shows contents of highlighted
symbol
Changes value of highlighted
symbol

Pressing Enter is a shortcut for the Inspect local menu command in
this pane.

The Watches window has a single pane that shows the names and
values of the variables you're watching.

Watch Adds a variable or expression to
watch

Edit Lets you edit a watch variable or

Remove

Delete All

expression
Deletes highlighted variable or
expression
Deletes all watch variables or
expressions

Inspect Shows contents of highlighted
variable or expression

Change Changes contents of highlighted
variable; does not affect expressions

The following keys are shortcuts to local menu commands in this
window:

any character
Enter
Del

Watch
Edit
Remove

Chapter 13, Command reference 203

Inspector window

Object Type/
Class Inspector

window
El

Object/class
instance

Inspector window
~

204

An Inspector window shows the contents of a data item.

Range Selects array members to inspect
Change Changes the value of highlighted

item
Inspect Opens new Inspector window for

highlighted item
Descend Expands highlighted item into this

Inspector window
New Expression Inspects a new expression in this

Inspector window
Type Cast Type casts highlighted item to new

type

Object type/class Inspector windows have two panes that show
the contents (data fields or members, and methods or member
functions) of an object or class. Their local menus, the same for
both panes, are quite different from the local menu of regular
Inspector windows.

Inspect

Hierarchy
Show Inherited

Shows the contents of the
highlighted type
Returns to the Hierarchy window
Toggles between showing all
contents of object or class, and
contents declared in current object
or class

Object/ class instance Inspector windows contain three panes, of
which only the first two have local menus. (The third displays
only the object type or class to which the instance belongs). Both
local menus are the same, and contain the following commands:

Range Selects array members to inspect
Change Changes the value of highlighted

item
Methods Toggles whether methods or

member functions are summarized
in the middle pane

Turbo Debugger User's Guide

Text panes

Table 13.2
Text pane key commands

Show Inherited

Inspect

Descend

New Expression

TypeCast

Hierarchy

Toggles between showing all
contents of object or class and
contents declared in current object
or class
Opens new Inspector window for
highlighted item
Expands highlighted item into this
Inspector window
Inspects a new expression in this
Inspector window
Type casts highlighted data item to
new type
Returns to the Object Hierarchy
window

This is the generic name for a pane that displays the contents of a
text file. The blinking cursor shows your current position in the
file. The following table lists all the commands:

Key

Ins
i
J.
~

~

Ctr/~
Ctr/~
Home
End
PgUp
PgDn
Ctr/-Home
Ctr/-End
Ctr/-PgUp
Ctr/-PgDn

Function

Marks text block
Moves up one line
Moves down one line
Moves right one column
Moves left one column
Moves to next word
Moves to previous word
Goes to start of line
Goes to last character on line
Scrolls up one screen
Scrolls down one screen
Goes to top line of pane
Goes to bottom line of pane
Goes to first line of file
Goes to last line of file

If you are not using the control-key shortcuts, you can also use the
WordStar-style control keys for moving around a text pane.

Chapter 73, Command reference 205

List panes

Table 13.3
Ust pane key commands

This is the generic name for a pane that lists information you can
scroll through. A highlight bar shows your current position in the
list. Here's a list of all the commands available to you.

Key

t
J.
~

t-

Horne
End
PgUp
PgDn
Ctr/-Home
Ctr/-End
Ctr/-PgUp
Ctr/-PgDn
Backspace
Letter

Function

Moves up one item
Moves down one item
Scroll right
Scroll left
Goes to start of line
Goes to last character on line
Scrolls up one screen
Scrolls down one screen
Goes to top line of list pane
Goes to bottom line of list pane
Goes to first item in list
Goes to last item in list
Backs up one character in incremental match
Makes incremental search (select by typing)

You can also use the WordStar-style control keys for moving
around a List pane.

Commands in input and history list boxes

206

The following table shows the commands available when you're
inside an input or list box.

Turbo Debugger User's Guide

Table 13.4
Dialog box key commands Key

i
!
~

f-

Ctrl~
Ctr/ f­
Home
End
PgUp
PgDn
Ctr/-Home
Ctr/-End
Ctr/-PgUp
Ctrl-PgDn
Backspace
Enter
De/
Esc
Ctrl-N

Function

Moves up one list item
Moves down one list item
Moves right one character
Moves left one character
Moves to next word
Moves to previous word
Goes to start of line
Goes to last character on line
Scrolls up one screen
Scrolls down one screen
Goes to top line of list pane
Goes to bottom line of list pane
Goes to first item in list
Goes to last item in list
Deletes the character before the cursor
Accepts your input and proceed
Deletes the character at the cursor
Cancels the dialog box and returns to menu
Completes partially typed name in input box

Window movement commands

Table 13.5
Window movement key

commands

Key

Ctr/-F5
i
!
~

f-

Shift i
Shift !
Shift~
Shift f­
Home
End
PgUp
PgDn
Enter
Esc

Chapter 73, Command reference

Function

Toggles window-positioning mode
Moves window up one line
Moves window down one line
Moves window right one column
Moves window left one column
Resizes window; moves bottom up
Resizes window; moves bottom down
Resizes window; moves right side away from left
Resizes window; moves right side toward left
Moves to left side of screen
Moves to right side of screen
Moves to top line of screen
Moves to bottom line of screen
Accepts current position
Cancels window-positioning command

207

Wildcard search templates

You can use wildcard search templates in two circumstances:

• when you enter a file name to load or examine

• when you enter a text search expression in a text pane

The? (question mark) matches any single character in the search
expression. The"" (asterisk) matches 0 or more characters in the
search expression.

Complete menu tree

208

Figure 13.1 shows the complete structure of Turbo Debugger's
pull-down menus.

Turbo Debugger User's Guide

Figure 13.1: The Turbo Debugger menu tree

II DID mD 1m l:rw3'I'lllllJI ImI 1I!l!J11'h~1 EIIml'ilII mDll
I I I

B (System) Run Options

Repaint desktop Run F9 Language ... Source
Restore standard Go to cursor F4 Macros ~I-

Trace into F7 Displayoptions •••
About ... Step over FB Path for source •••

Execute to ... Alt-F9 Save options •••
Until return Alt-FB Restore opti ons •••
Animate •••
Back trace Alt-F4

I Instruction trace Alt-F7
Create ... Alt •

Arguments ••• Stop recording Alt -
Program reset Ctrl-F2 Remove

Delete all

I I I
File Breakpoints Window

Open ... Toggle F2 Zoom F5
Change dir ••• At ••• Alt-F2 Next F6
Get info ... Changed memory global ••• Next pane Tab
DOS shell Expression true global ••• Size/roove Ctrl-F5

Hardware breakpoint ... Iconize/restore
Resident Delete all Close Alt-FJ
Symbo 1 load ... Undo close Alt-F6
Table relocate ...

Dump pane to 1 og
Quit Alt-X User screen Alt-F5

1 Module TPDEMO
2 Watches

I I I
View Data Help

Breakpoints Inspect ••• Index Shi ft-Fl
Stack Eva 1 uate/roodi fy ••• Ctrl-F4 Previous topic Alt-Fl
Log Add watch ••• Ctrl-F7 Help on help
Watches Function return
Variables
Module ... F3
File ...
CPU
Dump
Registers
Numeric processor
Execution history

~J
Modul e •••

Hierarchy Dump
Another File ...

Chapter 14, How to debug a program 209

210 Turbo Debugger User's Guide

c H A p T E R

14

How to debug a program

Debugging is like the other phases of designing and imple­
menting a program-part science and part art. There are specific
procedures that you can use to track down a problem, but at the
same time, a little intuition goes a long way toward making a long
job shorter.

The more programs you debug, the better you get at rapidly
locating the source of problems in your code. You learn
techniques that suit you well, and you unlearn methods that have
caused you problems.

In this chapter, we discuss some different approaches to debug­
ging, talk over the different types of bugs you may find in your
programs, and suggest some ways to test your program to make
sure that it works-and keeps on working.

Let's begin by looking at where to start when you have a program
that doesn't work correctly.

When things don't work

First and foremost, don't panic! Even the most expert pro­
grammer seldom writes a program that works the first time.

To avoid wasting a lot of time on fruitless searches, try to resist
the temptation to randomly guess where a bug might be. It is

Chapter 74, How to debug a program 211

better to use a Universally tried-and-true approach: divide and
conquer.

Make a series of assumptions, testing each one in turn. For
example, you can say, liThe bug must be occurring before function
Xyz is called," and then test your assumption by stopping your
progtam at the cail to xyz, to see if there's a problem. If you do
discover a problem at this point, you can make a new assumption
that the problem occurs even earlier in your program.

If, on the other hand, everything looks fine at function~, your
initial assumption was wrong. You must now modify that
assumption to liThe bug is occurring sometime after function xyz
is called." By performing a series of tests like this, you can soon
find the area of code that is causing the problem.

That's all very well, you say, but how do I determine whether my
program is behaving correctly when I stop it to take a look? One
of the best ways of checking your program's behavior is to
examine the values of program variables and data objects. For
example, if you have a routine that clears an array, you can check
its operation by stopping the program after the function has
executed, and then examining each member of the array to make
sure that it's cleared.

Debugging style

212

Everyone has their own style of writing a program, and everyone
develops their own style of debugging. The debugging sugges­
tion~ we give here are just starting points that you can build on to
mold your own personal approach.

Many times, the intended use of a program influences the
approach you take to debug it. If a program is for your own use or
will only be used once or twice to perform a specific task, a full­
scale testing of all its components is probably a waste of time,
particularly if you can determine that it is working correctly by
inspecting its output. If a program is to be distributed to other
people or performs a task of which the accuracy is hard to
determine by inspection, your testing must be far more rigorous.

Turbo Debugger User's Guide

Run the whole
thing

Incremental
testing

Types of bugs

For a simple or throwaway program, the best approach is often
just to run it and "see what happens." If your test case has
problems, run the program with the simplest possible input and
check the output. You can then move on to testing more compli­
cated input cases until the output is wrong. This will give you a
good feeling for just how much or how little of the program is
working.

When you want to be very sure that a program is healthy, you
must test the individual routines, as well as checking that the
program works as expected for some test input data. You can do
this in a couple of ways: You can test each routine as you write it
by making it part of a test program that calls it with test data. Or
you can use Turbo Debugger to step through the execution of
each routine when the whole program is finished.

Bugs fall into two broad categories: those peculiar to the language
you're working in (C, Pascal, or assembler), and those that are
cornmon to any programming language or environment.

By making mental notes as you debug your programs, you learn
both the language-specific constructs you have trouble with, and
also the more general programming errors you make. You can
then use this knowledge to avoid making the same mistakes in
the future, and to give you a good starting point for debugging
future programs.

Understanding that each bug is an instance of a general family of
bugs or misunderstandings will improve your ability to write
errorless code. After all, it's better to write bug-free code than to
be really good at finding bugs.

Chapter 74, How to debug a program 213

General bugs
The following examples barely scratch the surface of the kinds of
problems you can encounter in your programs.

Hidden effects If you are careless about using global variables in functions, a call
to a function can leave unexpected contents in a variable or data
structure:

Assuming initialized
data

char workbuf[20);
strcpy(workbuf,"all done\n");
convert("xyz");
printf(workbuf);

convert(char *p)
I

strcpy(workbuf, p);
while (*p)

Here, the correct thing to do would be to have the function use its
own private work buffer.

Don't assume that another routine has already set a variable for
you:

char *workbuf;
addworkstring(char is)
I

strcpy(workbuf, s); /* oops */

You should code a routine of this sort defensively by adding the
statement

if (workbuf == 0) workbuf = (char *)malloc(20);

Not cleaning up This sort of bug can crash your program by exhausting heap
space:

214 Turbo Debugger User's Guide

crunch_string(char *p)
{

char *work = (char *)malloc(strlen(p))i
strcpy(work, p);

return(p)i /* whoops--work still allocated */

Fencepost errors These bugs are named after the old brain teaser that goes IIIf I
want to put up a 100-foot fence with posts every 10 feet, how
many fenceposts do I need?" A quick but wrong answer is ten
(what about the final post at the far end?). Here's a simple
example from the world of C programming:

C-specific bugs

Using uninitialized auto­
variables

for (n = 1; n < 10; n++)
{

/* oops--only 9 times */

Here you can easily see the numbers 1 and 10, and you think that
your loop goes from one to ten. (Better make that < into a <=.)

The Turbo C User's Guide has a section on pitfalls in C program­
ming. However, this lesson on how to debug is a good place to
reiterate those pitfalls and expand on them.

The Turbo C compiler is very good at finding C-specific bugs that
other compilers don't warn you about. You can save yourself
some debugging time by turning on all the warnings that the
compiler is capable of generating. (See the Turbo C User's Guide for
information on setting these warnings.)

What follows is by no means an exhaustive list of ways you can
get in trouble with C. For some of these errors, the Turbo C
compiler issues a warning message. Remember to examine the
cause of any warning messages; they may be telling you about a
bug in the making.

In C, an auto variable declared inside a function is undefined until
you assign a value to it:

do_ten _times ()
{

int n;
while (n < 10)

Chapter 74, How to debug a program 215

n++;

This function executes the while loop an unpredictable number of
times because n is not initialized to 0 before being used as a
counter.

Confusing = and == C lets you both assign a value (=) and test for equality (==) within
an expression; for example,

Confusing operator
precedence

if (x = y)

This inadvertently loads y into x and perfonns the statements in
the If expression if the value of y is not O. You almost certainly
meant to say

if (x == y)

C has so many operators that it is hard to remember which ones
are applied first when an expression is evaluated. One combi­
nation that often causes grief is the mixture of shift operators with
addition or subtraction. For example,

x=3«1+1

evaluates to 12, not 7, as you might expect if «took effect before
the +.

Bad pOinter arithmetic When you use a pointer to step through an array, be careful how
you increment and decrement it. For example,

216

int *intp;
intp += sizeof(int);

does not increment intp to point to the next element of an integer
array. Instead, intp is advanced by two array elements because in
adding to or subtracting from a pointer, C takes into account the
size of the item the pointe! is pointing to. All you have to do to
move the pointer to the next element is

intp++

Turbo Debugger User's Guide

Unexpected sign Be careful about assigning between integers of different sizes:
extension

int i = OXFFFE;
long Ii
1 = i;
if (1 & OX80000000)

1* this DOES get executed *f

One of C's strong points can cause you trouble if you are not
a ware of how it opera tes. C lets you assign freely between scalar
values (char, Int, and so on). When you copy an integer scalar into
a larger scalar, the sign (positive or negative) is preserved in the
larger scalar by propagating the sign (highest) bit throughout the
high portion of the larger scalar. For example, an Int value of-2
(Oxfffe) becomes a long value of -2 (Oxfffffffe).

Unexpected truncation This problem is the opposite of the previous one:

int i;
long 1 = OX10000;
i = 1;
while (i > 0)

1* this does NOT get executed *1

Here, the assignment of 1 to i resulted in the top 16 bits of 1 being
truncated, leaving a value of zero in i.

Misplaced semicolons The following code fragment may appear to be fine at first glance:

for (x = 0; x < 10; x++);
{

1* only executed once *1

Why does the code between the braces execute only once? Closer
inspection reveals a semicolon (;) at the end of the for expression.
This hard-to-find bug causes the loop to execute ten times, but
does nothing. The subsequent block is then executed once. This is
a ,nasty problem because you can't find it with the usual technique
of examining the formatting and indenting of code blocks in your
program.

Chapter 74, How to debug a program 217

Macros with side
effects

The following problem is enough to make you swear off #define
macros for life:

fdefine toupper(c) 'a'<= (c)&&(c)<='z' ? (c)-'a'-'A' : (c)
char c, *p;
c = toupper(*p++);

Here, p is incremented two or three times, depending on whether
the character is uppercase. This type of problem is very hard to
find, because the side effect is hidden within the macro definition.

Repeated Another hard one to find:
autovariable names

myfunc ()
{

int n;
for (n = 5; n >= OJ n--)
{

int n = 10;

if (n == 0)
{

1* never gets executed *1

Here, the autovariable name n is reused in an inner block, hiding
access to the one declared in the outer block. You must be careful
about reusing variable names in this manner. You can get into
trouble more easily than you might think, especially if you use a
limited number of variable names for local loop counters (for
example, i, n, and so forth).

Misuse of autovariables This function means to return a pointer to the result:

218

int *divide_by_3(int n)
{

int i;
i = n I 3;
return (&i) ;

The trouble is that by the time the function returns, the auto­
variable is no longer valid and is likely to have been overwritten
by other stack data.

Turbo Debugger User's Guide

Undefined function
return value

Misuse of break
keyword

If you don't end a function with the return keyword followed by
an expression, it returns an indeterminate value; for example,

char *first_capital_letter(char *p)
{

while (*p)
{

if ('A' <= *p && *p <= 'Z')
return (p) ;

pH;

/* Oops--nothing returned here */

If there are no capital letters in the string, a garbage value is
returned. You should put a return (0) as the last line of this
function.

The break keyword exits from only a single level of do, for,
switch, or while loops:

for (...)
{

while (...)
if (...)

break; /* we want to exit for loop */

Here, the break exits only from the while loop. This is one of the
few cases where it is excusable to use the goto statement.

Code has no effect Sometimes a typo results in perfectly compilable source code.

Pascal-specific
bugs

However, it probably doesn't do what you want it to, and it may
not do anything at all:

a + b;

Here, the intended line of code was a += b.

Because of the strong type- and error-checking features of Pascal,
there are few bugs specific to the language itself. However,
because Turbo Pascal gives you the power to tum off much of that

Chapter 74, How to debug a program 219

error checking, you can introduce errors that you might not have
o~herwise. And even with Pascal, there are ways of getting into
trouble.

Uninitialized variables Turbo Pascal does not initialize variables for you; you must do it
yourself, either through assignment statements or by declaring
them as typed constants. Consider the following program:

220

p~r .. Test;
var

I,J,Count : Integer;
begin

for I := 1 to Count do begin
J := 1*1;
Writeln(I:2,' ',J:4)

end
end.

Count has whatever random value occupied its location in
memory when it was created, so you have no idea how many
times this loop is going to execute.

Furthermore, variables declared within a procedure or function
are created each time you enter that routine and destroyed when
you exit; you cannot count on those variables retaining their
values between calls to that routine.

Dangling pOinters Three common errors occur with pointers. The first is using them
before you have assigned them a value (nil or otherwise). Just like
any other variable or data structure, a pointer is not automatically
initialized just by being declared. It should be explicitly set to an
initiaI'value (by passing it to New or assigning it nil) as soon as
possible.

Second, don't reference a nil pointer, that is, don't try to access the
data type or structure that the pointer points to if the pointer itself
is nil. For example, suppose you have a linear linked list of
records, and you want to search it for a record with a given value.
Your code might look like this:

Turbo Debugger User's Guide

function FindNode(Head : NodePtr; KeyVal Integer) NodePtr;
var

Temp : NodePtr;
begin

Temp := Head;
while (Temp~.KeyVal <> Val) and (Temp <> nil) do

Temp := TempA.Next;
FindNode := Temp

end; { of function FindNode

If Val isn't equal to the Key field in any of the nodes in the linked
list, this code tries to evaluate Temp". Key when Temp is nil,
resulting in unpredictable behavior. Solution? Rewrite the
expression to read

while (Temp <> nil) and (TempA.Key <> Val)

and enable short-circuit Boolean evaluation, using the Turbo
Pascal {$B-} option or the Options I Compiler I Boolean command.
That way, if Temp does equal nil, the second term is never
evaluated.

Finally, don't assume that a pointer is set to nil just because you've
passed it to Dispose or FreeMem. The pointer still has its original
value; however, the memory it points to is now free to be used for
other dynamic variables. You should explicitly set a pointer to nil
after disposing of its da ta structure.

Scope confusion Pascal lets you nest procedures and function very deep, and each
of those procedures and functions can have its own declarations.
Consider the following program:

program Confused;
var'

A,B,T : Integer;

procedure Swap(var A,B Integer);
var

T : Integer:
begin

Writeln('2: A,B,T = ',A:3,B:3,' ',T);
T := A;
A := B;
B := T;
Writeln('3: A,B,T = , ,A:3,B:3,' I,T)

end: {of procedure Swap }

begin { main body of Confused }
A := 10; B := 20: T := 30;
Writeln{'1: A,B,T = ',A:3,B:3,' ',T);

Chapter 74, How to debug a program 221

Swap{B,A);
Writeln{'4: A,B,T = ',A:3,B:3,' ',T);

end. {of program Confused }

What's the output of this program? It will look something like
this:

1: A,B,T = 10 20 30
2: A,B,T = 20 10 22161
3: A,B,T = 10 20 20
4: A,B,T = 20 10 30

What's happening here is that you have two versions each of A, B,
and T. The global versions are used in the main body of the pro­
gram, while Swap has versions local to itself-its formal
parameters A and B, and its local variable T. To further confuse
things, we made the call Swap(B,A), which means that the formal
parameter A is actually the global variable B and vice versa. And,
of course, there is no correlation between the local and global
versions of T.

There was no real ''bug'' here, but problems can arise when you
think that you're modifying something that you aren't. For
example, the variable T in the main body didn't get changed, even
though you thought it might have. This is the opposite of the
"hidden effects" bug mentioned on page 214.

If you also had the following record declaration, things could get
even more confusing:

type
RecType = record

A,B : Integer;
end;

var
A,B : Integer;
Rec : RecType;

Inside a with statement, a reference to A or B would reference the
fields, not the variables.

Superfluous semicolons Like C, Pascal allows a "null" statement (one consisting only of a
semicolon). Placed at the wrong spot, this can create all kinds of
problems. Consider the following program:

222 Turbo Debugger User's Guide

Undefined function
return value

prograa Test;
var

I,J : Integer;
begin

for I := 1 to 20 do;
begin

J := I * I;
Writeln(I:2,' ',J:4)

end;
Writeln('AII done!')

end.

The output of this program is not a list of the first 20 integers and
their squares; it's simply

20 400
All done!

That's because the statement for I : = 1 to 20 do; ends with a
semicolon. This means it executes the null statement 20 times.
After that, the statements in the begln .. end block are executed, the
final Writeln statement. To fix this, just eliminate the semicolon
following the do keyword.

If you write a function, you must be sure that the function name
has some value assigned to it before you exit the function.
Consider the following section of code:

const
NLMax = 100;

type
NumList = array[l .. N1Max) of Integer;

function FindMax(List : NumList; Count: Integer) : Integer;
var

I,Max : Integer;
begin

Max := List (1);
for I := 2 to Count do

if List[I) > Max then
begin

Max := List[I);
FindMax := Max

end
end; { of function FindMax

This function works fine-as long as the highest value in List isn't
in List[ll. In that case, FindMax never gets assigned a value. A
correct version of the function would use this:

Chapter 74, How to debug a program 223

Decrementing Word or
Byte variables

Ignoring boundary or
special cases

224

begin
Max := List[!];
for I := 2 to Count do

if List[I] > Max then
Max := List[I];

FindMax := Max
end; { of function Findt1ax }

Be careful not to decrement an unsigned scalar (Byte or Word)
while testing for >= O. The following code produces an infinite
loop:

var
w : Word;

begin
w := 5;
while w >= a do

w := w - 1;
end.

After the fifth iteration, w equals O. The next time through, it's
decremented to 65,535 (because words range from 0 to 65,535),
which is still >= O. You should use an Integer or Longint in such
cases.

Note that both versions of the function FindMax in the previous
section assume that Count >= 1. However, there may be times
when Count = 0; that is, the list is empty. If you call FindMax in
that situation, it returns whatever happens to be in List[1]. Like­
wise, if Count> NLMax, you'll end up either generating a run­
time error (if range-checking is enabled) or searching through
memory locations not contained in List for the maximum value.

There are two possible solutions to this. One, of course, is never to
call FindMax unless Count is in the range 1..NLMax. This isn't a
flip comment; a serious part of good software design is to define
the requirements for calling a given routine, then ensuring they
are met each time that routine is called.

The other solution is to test Count and return some predetermined
value if it isn't in the range 1..NLMax. For example, you might
rewrite the body of FindMax to look like this:

Turbo Debugger User's Guide

begin
if (Count < 1) or (Count > NLMax) then

Max := -32768
el,.
begin

Max := List[l];
for I := 2 to Count do

if List[I] > Max then
Max := List[I~

end;

FindMax := Max
end; {of function FindMax }

This leads to the next type of Pascal pitfall: range errors.

Range errors Turbo Pascal has range-checking turned off by default. This
produces faster, more compact code, but it also lets you commit
certain types of errors, such as assigning to variables values
outside their allowed range or indexing nonexistent elements in
arrays as shown in the previous example.

The first step in finding such errors is to tum range-checking back
on by inserting the ($R+) compiler option into your program,
compiling the program, and running it again. If you know (or
suspect) where the error is, you can put this directive above that
section and add, a corresponding ($R-) directive afterward, thus
enabling range-checking for that section only. If a range error
does occur, your program stops with a run-time error, and Turbo
Pascal shows you where the error occurred.

One common type of range error happens when you are indexing
through an array using a while or repeat loop. For example,
suppose you are looking for an array element containing a certain
value. You want to stop when you've found it or when you reach
the end of the array. If you've found it, you want to return the
index of the element; otherwise, you want to return o. Your first
effort might look like this:

function FindVal(List : NumList; Count, Val : Integer) : Integer;
var

I : Integer;
begin

FindVal := 0;
I := 1;
whilo (I <= Count) and (List[I] <> Val) do

Inc(I) ;
if I <= Count then

FindVal := I

Chapter 74, How to debug a program 225

Assembler­
specific bugs

Forgetting to return to
DOS

226

Forgetting a RET
instruction

end; { of function FindVal }

This is all very nice, but it could result in a run-time error if Val
isn't in List, and you're using normal Boolean evaluation. Why?
Because the last time the test is made at the top of the while loop, I
equals Count+ 1. If Count = NLMax, you're beyond the limits for
List.

There are two solutions to this type of problem. One is to turn off
range-checking. However, that could end up introducing subtle
bugs, especially if the code involved actually changes values. A
better solution, shown earlier, is to select short-circuit Boolean
evaluation, either by using the Options I Compiler I Boolean
command or by using the ($B-} directive. That way, if I> Count,
the expression

List[I) <> Val

is never evalua ted.

Here are some of the common pitfalls of assembly language pro­
gramming. You should refer to the Turbo Assembler User's Guide
for a fuller explanation on these oft-encountered errors-and tips
on how to avoid them.

In Pascal, C, and other languages, a program ends automatically
and returns to DOS when there is no more code to execute, even if
no explicit termination command was written into the program.
Not so in assembly language, where only those actions that you
explicitly request are performed. When you run a program that
has no command to return to DOS, execution simply continues
right past the end of the program's code and into whatever code
ha ppens to be in the ad jacen t memory.

The proper invocation of a subroutine consists of a call to the
subroutine from another section of code, execution of the
subroutine, and a return from the subroutine to the calling code.
Remember to insert a RET instruction in each subroutine, so that
the RETurn to the calling code occurs. When you're typing a pro­
gram, it's easy to skip a RET and end up with an error.

Turbo Debugger User's Guide

Generating the wrong
type of return

The PROC directive has two effects. First, it defines a name by
which a procedure can be called. Second, it controls whether the
procedure is a near or far procedure.

The RET instructions in a procedure should match the type of the
procedure, shouldn't they?

Yes and no. The problem is that it's possible and often desirable to
group several subroutines in the same procedure. Since these
subroutines lack an associated PROC directive, their RET instruc­
tions take on the type of the overall procedure, which is not
necessarily the correct type for the individual subroutines.

Reversing operands To many people, the order of instruction operands in 8086
assembly language seems backward (and there is certainly some
justification for this viewpoint). If the line

Forgetting the stack or
reseNing a too-small

stack

Calling a subroutine
that wipes out registers

mov ax,bx

meant "move AX to BX," the line would scan smoothly from left
to right, and this is exactly the way in which many micro­
processor manufacturers have designed their assembly languages.
However, Intel took a different approach with 8086 assembly
language; for us, the line means "move BX to AX," and that can
sometimes cause confusion.

In most cases, you are treading on thin ice if you don't explicitly
allocate space for a stack. Programs without an allocated stack
sometimes run, but there is no assurance that these programs will
run under all circumstances. Most programs should have a
.STACK directive to reserve space for the stack, and for each pro­
gram that directive should reserve more than enough space for
the deepest stack you can conceive of the program using.

When you're writing assembler code, it's easy to think of the
registers as local variables, dedicated to the use of the procedure
you're working on at the moment. In particular, there's a tendency
to assume that registers are unchanged by calls to other
procedures. It just isn't so-the registers are global variables, and
each procedure can preserve or destroy any or all registers.

Chapter 74, How to debug a program 227

Using the wrong sense
for a conditional jump

Forgetting about REP
string overrun

Relying on a zero ex to
cover a whole

segment

Using incorrect
direction flag settings

228

The profusion of conditional jumps in assembly language (JE,
JNE, JC, JNC, JA, JB, JG, and so on) allows tremendous flexibility
in writing code-and also makes it easy to select the wrong jump
for a given purpose. Moreover, since condition-handling in
assembly language requires at least two separate lines, one for the
comparison and one for the conditional jump (it requires many
more lines for complex conditions), assembly language
condition-handling is less intuitive and more prone to errors than
condition-handling in e and Pascal. .

String instructions have a curious property: After they're exe­
cuted, the pointers they use wind up pointing to an address 1 byte
away (or 2 bytes for a word instruction) from the last address
processed. This can cause some confusion with repeated string
instructions, especially REP SCAS and REP CMPS.

Any repeated string instruction executed with ex equal to zero
does nothing. Period. This can be convenient in that there's no
need to check for the zero case before executing a repeated string
instruction; on the other hand, there's no way to access every byte
in a segment with a byte-sized string instruction.

When a string instruction is executed, its associated pointer or
pointers-51 or DI or both-increment or decrement. It all
depends on the state of the direction flag.

The direction flag can be cleared with CLD to cause string
instructions to increment (count up) and can be set with STO to
cause string instructions to decrement (count down). Once cleared
or set, the direction flag stays in the same state until either
another CLD or STO is executed, or until the flags are popped
from the stack with POPF or IRET. While it's handy to be able to
program the direction flag once and then execute a series of string
instructions that all operate in the same direction, the direction
flag can also be responsible for intermittent and hard-to-find bugs
by causing the behavior of string instructions to depend on code
that executed much earlier.

Turbo Debugger User's Guide

Using the wrong sense
for a repeated string

comparison

Forgetting about string
segment defaults

Converting incorrectly
from byte to word

operations

Using multiple prefixes

Relying on the
operand(s) to a string

instruction

Wiping out a register
with multiplication

The CMPS instruction compares two areas of memory; the SCAS
instruction compares the accumula tor to an area of memory.
Prefixed by REPE, either of these instructions can perform a
comparison until either ex becomes zero or a not-equal
comparison occurs. Unfortunately, it's easy to become confused
about which of the REP prefixes does what.

Each of the string instructions defaults to using a source segment
(if any) of DS, and a destination segment (if any) of ES. It's easy to
forget this and try to perform, say, a STOSB to the data segment,
since that's where all the data you're processing with nonstring
instructions normally resides.

In general, it's desirable to use the largest possible data size
(usually word, but dword on an 80386) for a string instruction,
since string instructions with larger data sizes often run faster.

There are a couple of potential pitfalls here. First, the conversion
from a byte count to a word count by a simple

shr ex,!

loses a byte if ex is odd, since the least-significant bit is shifted
out.

Second, make sure you remember SHR divides the byte count by
two. Using, say, STOSW with a byte rather than a word count can
wipe out other data and cause problems of all sorts.

String instructions with multiple prefixes are error-prone and
should generally be avoided.

The optional operand or operands to a string instruction are used
for data sizing and segment overrides only, and do not guarantee
that the memory location referenced is accessed.

Multiplication-whether 8 bit by 8 bit, 16 bit by 16 bit, or 32 bit by
32 bit-always destroys the contents of at least one register other
than the portion of the accumulator used as a source operand.

Chapter 74, How to debug a program 229

Forgetting that string
instructions alter
several registers

Expecting certain
instructions to alter the

carry flag

Waiting too long to use
flags

230

Confusing memory
and immediate

operands

Causing segment
wraparound

Failing to preseNe
everything in an
interrupt handler

The string instructions, MOVS, STOS, LODS, CMPS, and SeAS,
can affect several of the flags and as many as three registers
during execution of a single instruction. When you use string
instructions, remember that 51, DI, or both either increment or
decrement (depending on the state of the direction flag) on each
execution of a string instruction. ex is also decremented at least
once, and possibly as far as zero, each time a string instruction
with a REP prefix is used.

While some instructions affect registers or flags unexpectedly,
other instructions don't even affect all the flags you might expect
them to.

Flags last only until the next instruction that alters them, which is
usually not very long. It's a good practice to act on flags as soon as
possible after they're set, thereby avoiding all sorts of potential
bugs.

An assembler program may refer either to the offset of a memory
variable or to the value stored in that memory variable.
Unfortunately, assembly language is neither strict nor intuitive
about the ways in which these two types of references can be
made, and as a result, offset and value references to a memory
variable are often confused.

One of the most difficult aspects of programming the 8086 is that
memory isn't accessible as one long array of bytes, but is rather
made available in chunks of 64K relative to segment registers.
Segments can introduce subtle bugs; if a program attempts to
access an address past the end of a segment, it actually ends up
wrapping back to access the start of that segment instead.

Every interrupt handler should explicitly preserve the contents of
all registers. While it is valid to preserve explicitly only those
registers that the handler modifies, it's good insurance just to
push all registers on entry to an interrupt handler and pop all
registers on exit.

Turbo Debugger User's Guide

Forgetting group
overrides in operands

and data tables

Segment groups let you partition data logically into a number of
areas without having to load a segment register every time you
want to switch from one of those logical data areas to another.

Unfortunately, there are a few problems with the way the
Microsoft Macro Assembler (MASM) handles segment groups, so
until Turbo Assembler came along, segment groups were quite a
nuisance in assembler. They were, however, an unavoidable
nuisance, for they are required in order to link assembler code to
high-level languages such as C.

In MASM Quirks mode, Turbo Assembler emulates MASM, warts
and all. This means that in MASM Quirks mode, Turbo
Assembler has the same problems with segment groups that
MASM has. If you're not planning to use MASM Quirks mode,
read no more, but if you are going to use MASM Quirks mode,
refer to the Turbo Assembler User's Guide for more information.

Accuracy testing

Testing boundary

Making a program work with valid input is only part of the job of
testing. The following sections discuss some important test cases
that any program or routine should be subjected to before being
given a clean bill of health.

conditions Once you think a routine works with a range of data values, you
should subject it to data at the limits of the range of valid input.
For example, if you have a routine to display a list from 1 to 20
items long, you should make sure it behaves correctly both when
there is exactly 1 item and exactly 20 items in the list. This can
flush out the one-too- few and one-too-many "fencepost" errors
(described on page 215).

Invalid data input
Once you are sure that a routine works with a full range of valid
input, check that it behaves correctly when it's given invalid
input. Check that erroneous input is rejected, even when it's very
close to valid data. For example, the previous routine that

Chapter 14, How to debug a program 231

Empty data input

accepted values from 1 to 20 should make sure that 0 and 21 are
rejected.

This is a frequently overlooked area, both in testing and in
designing a program. If you write a program to have reasonable
default behavior when some input is omitted, you greatly
enhance its ease of use.

Debugging as part of program design

When you first start designing your program, you can plan for the
debugging phase. One of the most basic tradeoffs in program
design involves the degree to which the different parts of your
program check that they are getting valid input and that their
output is reasonable.

If you do a lot of checking, you end up with a very resilient pro­
gram that can often tell you about an error condition but
continues to run after performing some reasonable recovery. You
also end up with a larger and slower program. This type of pro­
gram can be fairly easy to debug because the routines themselves
inform you of invalid data before the dangers can be propagated.

You can also implement a program whose routines do little or no
validation of input or output data. Your program will be smaller
and faster, but bad input data or a small bug can bring things to a
grinding halt. This type of program can be the most difficult to
debug, since a small problem can end up manifesting itself much
later during execution. This makes it hard to track down the
original error.

Most programs end up being a mixture of these two techniques.
You should treat in put from external sources (such as the user or
a disk file) with greater suspicion than data from one internal
routine calling another.

The sample debugging session

232

This sample session uses some of the techniques we talked about
in the previous sections. The program you are debugging is a

Turbo Debugger User's Guide

version of the demonstration program used in Chapter 3
(TCDEMO.C or TPDEMO.P AS), except this one has some
deliberate bugs in it.

Make sure that your current directory contains the two files
needed for the debugging demonstration. If you're a C program­
mer, you'll need TCDEMOB.C and TCDEMOB.EXE. If you're
debugging a Pascal program, you'll need TPDEMOB.P AS and
TPDEMOB.EXE. (The B in t~ese file names stands for "buggy .")

Go ahead and compile the source code program to generate your
.EXE file. (If you are compiling TCDEMOB.C, open it in the
integrated development environment and set the Options I
Compiler I Optimization I ~se Register Variables switch to Off
before you compile.) ,

C debugging session

Looking for errors

This section uses a Turbo C program as its example. If you're a
Pascal programmer, refer to page 238 for the sample debugging
session using a Turbo Pascal program.

Before we start the debugging session, let's run the buggy demo
program to see what's wrong with it. To start the program, type

TCDEMOB

You are prompted for lines of text. Enter two lines of text

one two three
four five six

A final empty line ends your input. TCDEMOB then prints out its
analysis of your input:

Arguments:
Enter a line (empty line to end): one two three
Enter a line (empty line to end): four five six
Enter a line (empty line to end) :
Total number of letters = 7
Total number of lines = 6
Total word count = 2
Average number of words per line = 0.3333333
'E' occurs 1 times, 0 times at start of a word
'F' occurs 1 times, 1 times at start of a word

Chapter 14, How to debug a program 233

234

Deciding your
plan of attack

Starting Turbo
Debugger

'N' occurs 1 times, 0 times at start of a word
'0' occurs 2 times, 1 times at start of a word
'R' occurs 1 times, 0 times at start of a word
'u' occurs 1 times, 0 times at start of a word
There is 1 word 3 characters long
There is 1 word 4 characters long

Notice there are erroneous numbers for the total number of
words,letters, and word count. Later on, the letter and word
frequency tables seem to be based on an erroneous letter and
word count. This is an all-too-typical situation-the program
must have more than one thing wrong. This happens frequently
in the early stages of debugging a program.

Your first task is to decide which problem to attack first. A good
rule of thumb is to start with the problem that appears to be
happening "first." In this program, each input line is broken
down into words, then analyzed, and finally, after all the lines
have been entered, the tables are displayed. Since the word and
letter counts are off as well as the tables, it's a good bet that
something is wrong during the initial breaking down and
counting phase.

Now is the time to start debugging, after you've thought about the
problem for a moment and decided on a rough plan of attack.
Here, the strategy is to examine the routine makeintowords, to see if
it is correctly chopping the line into null-tenninated words, and
then see if analyzewords is correctly counting the analyzed line.

To start the debugging session, type

TD TCDEMOB

Turbo Debugger loads the buggy demo program and then
displays its startup screen. If you wish to exit from the tutorial
session and return to DOS, press Alt-X at any time. If you get
hopelessly lost, you can reload the demonstration program at any
time and start at the beginning by pressing Ctrl-F2. (Note that this
doesn't clear breakpoints or watches.)

Since the first thing you want to do is to check that makeintowords
is working correctly, run the program up to that routine and then
check it. There are two approaches you can use: Either step

Turbo Debugger User's Guide

Inspecting

Breakpoints

through makeintowords as it executes, making sure that it does the
right thing, or stop the program after makeintowords has done its
stuff and see if it did the right thing.

Since makeintowords has a clearly defined task and it's easy to
determine whether it's working correctly by inspecting the output
buffer it produces, let's opt for the second approach. To do this,
move down to line 42 and press F4 to run to this line. When the
program screen appears, type

one two three

and press the Enter key.

You are now stopped at the source line after the call to
makeintowords. Look at the contents of buffer to see if the right
thing happened. Move the cursor up a line, place it under the
word buffer, and press Aft-F10 I (for Inspector) to open an Inspector
window to show the contents of buffer. Use the arrow keys to
scroll through the elements in the array. Notice that makeintowords
has indeed put a single null character (0) at the end of each word
as it is meant to. This means that you should execute more of the
program and see if analyzewords is doing the right thing. First,
remove the Inspector window by pressing Esc. Then, press F7
twice to execute to the start of analyzewords.

Check that analyzewords has been called with the correct pointer to
the buffer by moving the cursor under bufp and pressing Alt-F10 I.
You can see that bufp indeed points to the null-terminated string
'one' . Press Esc to remove the Inspector window. Since there
seems to be a problem with counting characters and words, let's
put a breakpoint at the places where a character and a word are
counted:

1. Move to line 93 and press F2 to set a breakpoint.

2. Move to line 97 and set another breakpoint.
3. Finally, set a breakpoint on line 99 so you can look at the

character count this function returns.

Setting multiple breakpoints like this is a typical way to learn
about whether things are happening in the right order in a pro-

Chapter 74, How to debug a program 235

236

The Watches
window

The Evaluate/
Modify dialog

box

Eureka!

gram, and lets you check on important data values each time the
program stops at a breakpoint.

Run the program by pressil;tg F9. The program stops when it
reaches the breakpoint on line 93. Now you want to look at the
value of charcount. Since you'll want to check it each time you hit
a breakpoint, this is an ideal time to use the Watch command to
place it in the Watches window. Move the cursor under charcount
and press AIt-F10 W. The Watches window at the bottom of the
screen now displays the current value of O. To make sure that the
character is being counted properly, execute a single line by
pressing F7. The Watches window now shows that charcount is 1.

Run the program again by pressing F9. You are now back at line
93 for another character. Press F9 again twice to read the last letter
on the word and the terminating null. charcount now correctly
shows 3, and the wordcounts array is about to be updated to count
a word. Everything is fine so far. Press F9 again to start processing
the next word in the buffer. AHA! Something is wrong.

You expected the program to stop again on line 93 as it processed
the next word, but it didn't. It went straight to the statement that
returns from the function. The only way to end up on line 99 is if
the while loop that started on line 83 no longer has a true test
value. This means that *bufp != 0 must evaluate to false (that is, 0).

To check this, move back to line 83 and mark the entire expression
*bufp != 0 by putting the cursor under the *, pressing Ins, and
moving the cursor to the final' 0' before the')'. Now evaluate
this expression by opening the Data I Evaluate Modify dialog box
and pressing Enter, and choosing the Eval button to accept the
marked expression. The value is indeed o. Press Esc to return to
the Module window.

Now here comes the analytical leap that causes you to "solve" the
bug. The reason bufp points to a 0 is because that is where the
inner while loop starting on line 86 left it at the end of a word. To
continue to the next word, you must increment bufp past the 0
that ended the previous word. To do this, you need to add a

Turbo Debugger User's Guide

"bufp++" statement before line 97. You could recompile your pro­
gram with this statement added, but Turbo Debugger lets you
"splice" in expressions by using a fancy sort of breakpoint.

To do this, first reload the program by pressing Ctrl-F2 so you can
test with a clean slate. Now remove all the breakpoints you set in
the previous session by typing AIt-8 D. Go back to line 97 and set a
breakpoint again by pressing F2. Now, open a Breakpoints
window by pressing Alt-V B. Set this breakpoint to execute the
expression bufp++ each time it is encountered:

1. Choose View I Breakpoints.
2. Open the Breakpoints window local menu by pressing Alt-F10.

3. Choose Set Options to open the Breakpoint Options dialog
box.

4. Set the Action radio buttons to Execute.

5. Press Tab to get to the Action Expression prompt.
6. Enter bufpH.

7. Press Esc to close the dialog box and Alt-F3 to return to the
Module window.

Now run the program. Enter the usual two input lines

one two three
four five six

Press Enter at the third prompt, and when the program has
terminated, press Alt-FS to look at your output on the User screen.

You'll notice that things have improved considerably. The total
number of words and lines seem to be wrong, but the tables are
correct. Stop at the beginning of the printstatistics routine and see
if it is given the correct values to print. First reload the program
by pressing Ctrl-F2 to retest. Then go to line 104 and press F4 to
execute to there. Move the cursor to the nlines argument and press
Alt-F10 I to look at its value. Note that the value is 6 where it
should be2.

Now go back to where nlines is called from in main and look at
the its value there. Move the cursor to line 36, place it under
nlines, and press AIt-F10 I to look at the value. The value of nlines in
main is 2, which is correct! If you go down to line 46, you will
notice that the two arguments nwords and nlines have been
reversed. There is no way that the compiler could have known
that you meant to have them the other way around.

Chapter 74, How to debug a program 237

If you correct these two bugs, the program will run correctly. The
files TCDEMO.EXE is a corrected version that you may run if you
are curious.

Pascal debugging session

Looking for errors

238

This section uses a Turbo Pascal program as its example. If you're
a C programmer, you should look at the preceding section, start­
ing on page 233, which takes you through a session using a Turbo
C program.

Before we start the Pascal debugging session, let's run the buggy
Pascal demo program to see what's wrong with it. The program is
already compiled and on your distribution disk.

To start the program, enter the program name and pass it three
command-line arguments:

TPDEMOB first second third

You'll be prompted for lines of text. Enter two lines of text exactly
as follows:

ABC DEF GHI
abc def ghi

A final empty line ends your input. TPDEMOB then prints out its
analysis of your input:

9 char(s) in 3 word(s) in 2 line(s)
Average of 0.67 words per line

Word length: 2 3 4 5 6 8 9 10
Frequency: 0 0 3 0 0 0 0 0 0 0

Letter: M
Frequency: 1 1 0 0 0 0
Word starts: 1 0 0 0 0 0 0 0 0 0 0

Letter: Z
Frequency: 0 0 0 0 0 0 0 0 0 0 0 0 0
Word starts: 0 0 0 0 0 0 0 0 0 0 0 0 0

Program name: C:\td\tpdemob.ex.
Command line parameters: firso seco~ third

Turbo Debugger User's Guide

Deciding your
plan of attack

There are five separate problems with this output:

1. The number of words is wrong (3 instead of 6).

2. The number of words per line is wrong (0.67 instead of 3.00).

3. The column headings for the second and third tables display
only one letter each (instead of A .. M and N .. Z).

4. You typed two lines, each containing a letter from A . .I, but the
letter frequency tables show only a count of one each for those
letters.

5. The last character of each command-line parameter entered
was lost and random characters are being displayed (although
the last parameter is okay).

Your first task is to decide which problem to attack first. A good
rule of thumb is to start with the problem that appears to be
happening first. In this program, after procedure Init is called to
initialize data, keyboard input is read by function GetLine and
then processed by procedure ProcessLine until the user enters an
empty string. ProcessLine scans each input string and updates the
global counters. Then, the results are displayed by procedure
ShowResults. Finally, in a completely independent subprogram,
procedure ParmsOnHeap builds a linked list of command-line
parameters on the heap and then traverses and displays that list
at the end of the program.

The average number of words per line is computed by
ShowResults, using the number of lines and words. Since the word
count seems to be off, take a look at ProcessLine to see how
Num WJrds is updated. Even though Num Words is wrong, the 0.67
words-per-line figure doesn't make sense. There's probably an
error in the ShowResults calculation, which needs your attention as
well.

The column titles for all the tables are drawn at the request of
ShowResults. You should wait until the main loop terminates
before tracking down the second and third bugs. Since the letter
and word counts are wrong, it's a good bet that something is
amiss inside ProcessLine, and that's where you should start
looking for the first and fourth bugs.

Chapter 74, How to debug a program 239

Starting Turbo

Finally, once you've scrutinized the word and letter counting
parts of the program, take a look at ParmsOnHeap to find and fix
the last (fifth) bug.

Now is the time to actually start debugging-after you've thought
about the problem for a moment and decided on a rough plan of
attack.

Debugger To start the debugging sample session, load the debugger and
give it the same command-line parameters you gave it earlier:

Moving through
the program

240

TD TPDEMOB first second third

Turbo Debugger loads the buggy demo program and displays the
startup screen. If you wish to exit from the tutorial session and
return to DOS, press Alt-X at any time. If you get hopelessly lost,
you can always reload the demonstration program and start from
the beginning again by pressing Ctrl-F2. (Note that this doesn't
clear breakpoints or watches.)

There are two approaches to debugging a routine like Process Line:
Either step through it line-by-line as it executes and make sure it
does the right thing, or stop the program immediately after
ProcessLine has done its stuff and see if it did the right thing. Since
both the letter and word counts are wrong, you probably ought to
look inside Process Line carefully and see how characters are
processed.

Now you're going to run the program and step inside the call to
ProcessLine. There are many ways to do that. You can press FB four
times (to step over procedure and function calls), then press F7
once (to trace into the call to ProcessLine). You can also move the
cursor down to line 231, press F4 (Go to Cursor command), and
press F7 once to step into ProcessLine.

There are even more ways to get into ProcessLine. Try this one:
Press AIt-F9. A dialog box pops up, prompting you to enter a code
address to run to. Type processline, and press Enter. The program
will now run until ProcessLine gains control. When you are
prompted to enter a string, enter the same data as before (that is,
ABC DEF GHI).

Turbo Debugger User's Guide

The Evaluate/
Modify dialog

box

ProcessLine contains several loops. An outer one scans the entire
string. Inside that loop, there's one loop to skip over non-letters,
and a second one to process words and letters. Move the cursor to
the while loop on line 133 and press F4 (Go to Cursor).

This loop keeps scanning until it reaches the end of the string or
until it finds a letter. Each character scanned is checked via a call
to a Boolean function, IsLetter. Press F7 to trace into IsLetter.
IsLetter is a nested function that takes a character value and
returns True if it's a letter; otherwise, False. A not-very-close look
reveals that it checks only for uppercase letters. It should either
check for characters in the range A to Z and a to z, or it should
convert the character to uppercase before performing the test.

A quick look at both lines of input that you originally entered
provides a further clue to the soutce of the bug: You entered both
uppercase and lowercase letters from A to I, but only the upper­
case letters entered were displayed in the totals. Now you can see
why.

Get back to the line that called Is Letter by another navigation
technique: Press Alt-FB, which runs past the end statement of the
current procedure or function. Since the second line of input you
originally entered, abc def ghi, contained only lowercase letters,
each character was treated as whitespace and skipped. This
throws off both the letter counts and the word count, and solves
the mysteries of bugs #1 and #4.

By the way, there's another powerful way to verify Is Letter's
misbehavior. Invoke the Evaluate/Modify dialog box by pressing
Alt-O E and enter the following expression:

IsLetter('a') = IsLetter('A')

A and a are both letters, but the evaluation False confirms that
they're not treated the same by IsLetter. (You can lise the
Evaluate/Modify dialog box and Watches window to evaluate
expressions, perform assignments, or, as you did here, call proce­
dures and functions. For more information, refer to Chapter 6.)

Chapter 74, How to debug a program 241

Inspecting

242

Two bugs down, three to go. Bug #2 is much easier to find than
the previous ones. Press Aft-FB to exit ProcessLine, then move the
cursor to line 234 and press F4 to run to the cursor position.

TPDEMOB prompts you for a string. Type abc def ghi and press
Enter, then press Enter the second time the prompt appears. Now
press F7 to step into ShowResults.

Remember, you're trying to find out why the average number of
words per line is incorrect. The first line in ShowResults calculates
the number of lines per word instead of words per line. Clearly,
those two terms should be reversed.

As long as you're here, you might as well make sure that
NumLines and Num V\brds have the values you'd expect. NumLines
should equal 2, and-because of the IsLetter bug you've
uncovered but haven't fixed-NumWords should equal 3. Move
the cursor to NumLines and press Alt-F10 I to inspect a variable. The
Inspector window shows you NumLines' address, type, and
current value in both decimal and hexadecimal. The value is
indeed equal to 2, so you can move on and have a look at
Num V\brds. Press Esc to close the Inspector window, move the
cursor forward to NumWords, and press Alt-F10 I again (you can
also use the hot key, etrl-f). NumW7rds has the expected (incorrect)
value of 3, so you can move on.

Or can you? There's another problem with this calculation, and it's
not even on our list. There is no check to see whether the second
term is 0 before the division is performed. If you run the program
from the beginning and enter no data at all (just press Enterwhen
prompted), the program crashes (even after you reverse the
divisor and the dividend).

To confirm this, press Esc to close the Inspector window, type Alt-R
P to end the current debug session, press F9 to run the program
from the beginning, and press Enter at TPDEMOB's string prompt.
The program terminates and an error box displays a run-time
error. You should modify this statement to read

if NumLines <> 0 then
AvgWords := NumWords / NumLines

else
AvgWords := 0;

Turbo Debugger User's Guide

Watches

So much for bugs #2 and #2b. As long as you're tinkering with the
Inspector window, try using it to "walk" through a data structure.
Move the cursor up to the declaration of LetterTable on line 50.
Place the cursor on the word LetterTable, and press Alt-F10 I. You
can see it's an array of records, 26 elements long. Use the cursor
keys to scroll through each element of the array, and press Enter to
step into one of the array elements. This is a very powerful way of
examining your data structures, and will be especially handy
when you traverse ParmsOnHeap's linked list later on.

You've still got to squash that column title bug (#3) in ShowResults.
Since you already terminated the program when you tracked the
divide-by-zero error, prepare for another session by pressing Alt-
R P (to reset the program). Then press Alt-F9, type showresul ts, and
press Enter. Now type the all-too-familiar data ABC DEF GHI and
press Enter again. Finally, type abc def ghi and press Enter twice.
Turbo Debugger should be stopped at ShowResults.

ShowResults uses a nested procedure, ShowLetterlnfo, to display
the letter tables. Move the cursor down to line 103, press F4, then
press F7 to step into ShowLetterlnfo.

There are three for loops. The first one displays the column titles,
and the second and third display frequency counts. Use F7 to step
to the first loop on line 63. Position the cursor over FromLet and
ToLet and use AIt-F10 I to check their values. They look okay (the
first equals A, and the second equals M). Press Alt-F5 to view the
User screen and see where things stand. Press any key to return to
the Module window.

When you're stepping through a loop like this, the Watches
window is very handy; position the cursor over ch and press elrl­
W. Now use F7 to step through the for loop. As expected, it steps
down to the Write statement on line 64. If you look at the Watches
window, though, you'll see that ch's value is already M. (It already
executed the entire loop!) There's an extra semicolon right after
the keyword do, making the for loop do absolutely nothing 13
times. When control falls through to the Write statement on line
64, the current value of ch, M, is output and the program moves
on. Removing that extra semicolon eliminates bug #3.

Chapter 74, How to debug a program 243

244

Just one more
bug ... It's time to track down that strange bug with the command-line

parameters. To refresh your memory, the last character of all but
the last command-line parameter was garbage. Perhaps the string
length byte was wrong, or perhaps the string data was over­
wriHen by some later assignment.

Use the Watches window to find out. Press AIt-F9, type parmsonheap
and press Enter. The for statement loops through all the
command-line parameters, constructing a linked list and copying
each string onto the heap as it goes. One pointer, Head, points to
the beginning of the list; Tail points to the last node in the list; and
Temp is used as temporary storage to allocate and initialize a new
node. Since the string data is corrupted, press Ctrl-F7 and add the
followlng expression to the Watches window:

Tail". Parm"

This keeps track of the string data stored in the last node in the
list. Of course, this value will be garbage until Tail is initialized on
line 207.

Rather than step through line-by-line, just keep an eye on the
Watches window at the end of each iteration. Move the cursor to
line 208 and press F2 to set a breakpoint there. Now press F9 to
run to that breakpoint. If you're using DOS 3.x, you'll see the full
path to TPDEMOB.EXE in the Watches window. Of you're using
DOS 2.x, you'll see an empty string; in that case, just press F9
again and then go on.) The string data looks just fine.

Press F9 to execute the loop another time. Again, the data looks
okay. Now you know that the string is being copied onto the heap
correctly. You can use the Inspector window to find out whether
it's been corrupted yet. Move the cursor over Head on line 203 and
press AIt-F10 I.

Look at the value referenced by Parm by pressing~, followed by
Enter. You're looking at the first node in the list, and its string data
is already corrupted. If you press Esc,~, and then press Enter
again, you'll open an Inspector window onto the second node in
the list. Press "', followed by Enter, to inspect its string data. It's
intact, and, in fact, is the same node referenced by the Tail pointer.
Something is definitely clobbering the tail end of the string data.

Turbo Debugger User's Guide

Keep your eye on the Watches window while you use F7 to step
through the loop. The call to GetMem on line 199 is the culprit;
before that call, Tail/\.Parm/\ is equal to first. Immediately after the
call to GetMem, the last character in Tail/\Parm/\ is trashed.

What's happening? For each command-line parameter, the for
loop allocates first a record, then the string data, then the next
record, and so on. The GetMem call on line 199 should allocate
enough for the length of the string plus the length byte, but you
can see it does not add 1 to Length(s). Though the string assign­
ment on line 200 succeeds in doing the copy, it actually uses 1
more byte than was allocated to it. Thus, the last character of the
string is overlapped by the first byte of the next record allocated
when a call is made to New(Temp). The last parameter escapes
unscathed because it's not followed by another ParmRec.

Whew. That's all the (known) bugs in this program. Perhaps
you'll find some more as you step through the code. You can fix
the bugs (they are marked with two asterisks (**) for your
convenience) and then recompile; or you can run TPDEMO.P AS,
the bug-free version of this program, discussed in Chapter 3.

Chapter 74, How to debug a program 245

246 Turbo Debugger User's Guide

c H A p T E R

15

Virtual debugging on the 80386
processor

Turbo Debugger lets you use the full power of systems that have
the 80386 processor. Virtual debugging lets the program you're
debugging use the full address space below 640K, just as if no
debugger were loaded. (Turbo Debugger is loaded in to extended
memory, above the 1MB address point.)

You debug exactly as you would normally use Turbo Debugger,
except that once the TDH386 device driver is loaded, your
program loads and runs at exactly the same address whether or
not it's being debugged. Virtual debugging is extremely useful
both for debugging programs that are large, and for finding bugs
that go away if the program is loaded higher in memory, as it is
when it is being debugged normally.

Virtual debugging also lets you watch for reads or writes to arbi­
trary memory or I/O locations, all at full or nearly full processor
speed. This gives you some of the power of a hardware debugger
at no additional cost.

80286 users! If you have an 80286 processor, you can make more memory
available than you would normally have with Turbo Debugger by
using the protected-mode debugger, TD286. See Chapter 16 for
more information.

Chapter 75, Virtual debugging on the 80386 processor 247

Equipment required for virtual debugging

You must have a computer based on the 80386 processor in order
to use the virtual debugger. You must also have 640K of available
extended memory. If you have used up your extended memory
for RAM disks, caches, and so forth, you may want to make a
special CONFIG.SYS or AUTOEXEC.BA T file that removes some
of these programs when you want to use virtual debugging.

Installing the virtual debugger device driver

Before starting the virtual debugger, you must make sure that you
have installed its device driver in your CONFIG.SYS file. Do this
by including a line similar to the following in CONFIG.SYS:

DEVICE = TDH386.SYS

If you have placed the TDH386.SYS device driver somewhere
other than in the root directory, make sure that you include that
directory path as part of the device driver file name.

Normally, the virtual debugger lets you have up to 256 bytes of
DOS environment strings. If this is not enough, or if you don't
need that much and would like to conserve as much memory as
possible, use the -e option in CONFIG.SYS to set the number of
bytes of environment. For example,

DEVICE = TDH386.SYS -e2000

reserves 2000 bytes for your 005 environment variables.

Starting the virtual debugger

248

You start the virtual debugger much as you would normally start
Turbo Debugger, with a command line like this:

TD386 [options) program [program options)

In other words, you simply enter TD386 instead of TD. TD386 then
takes care of finding the Turbo Debugger executable program and
loading it in to extended memory.

If you have other programs or device drivers that use extended
memory, such as RAM disks, caches, or whatever, you must tell

Turbo Debugger User's Guide

TD386 how much extended memory to set aside for these other
programs. Do this by using the -e command-line option. Follow
the -e with the number of kilobytes (K) of extended memory used
by the other programs. For example,

TD386 -e512 myprog

This command line iriforms TD386 that you want to reserve the
first 512K of extended memory for other programs.

-=:> Normally, if your system supports the XMS standard, it is not
necessary to inform TD386 how much memory to set aside for
programs in extended memory; the programs have already
passed that information to TD386. You need to use -e only with
programs (such as VDISK) that don't communicate with the XMS
standard.

Since you probably always reserve the same amount of extended
memory for other programs, TD386 gives you a way to perma­
nently set the amount of extended memory to reserve. Use the -w
option with the -e option to specify that you want the -e value to
be permanently set in the TD386 executable program file.

You'll then be prompted for the name of the executable program.
If you are running on DOS 3.0 or later, the prompt indicates the
path and file name that you executed TD386 from. You can accept
this name by pressing Enter, or you can enter a new executable file
name. The new name must already exist and be a copy of the
TD386 program that you have already made.

If you are running on version 2.x of DOS, you will have to supply
the full path and file name of the TD386 executable program.

Here is a complete list of command-line options for TD386.EXE:

-?,-h

-b

-e####

-f####

Accesses help on TD386.

Lets you break out of programs with etrl-Break,
even when interrupts are disabled.

Specifies the number of kilobytes of extended
memory being used by other programs or by the
program you're debugging. (You don't need this
option if your system supports the XMS
standard.)

Enables EMS emulation· through paging (in
extended memory) and sets the page frame
segment to #### (in hex). The last three digits

Chapter 75, Virtual debugging on the 80386 processor 249

must be 000 (like COOO or EOOO). Note that this
option only applies to Turbo Debugger's EMS
calls. If you don't use this option when you load
TD386, TD386 will not be able to use EMS. If you
cannot load your symbol table, try using the -t
option to force TD386 to borrow from extended
memory.

No real EMS: -fDooO
Real EMS a t DODO: -fEOoo
Real EMS at EOOO: -fD 00 0

-t- Disables EMS emulation (presumably to override
a previous command-line option).

-w Modifies TD386.EXE with the new default value
of -e or -t. You can enter a new executable file
name that does not already exist, and TD386 will
create the new executable file.

Note that TD386.EXE options must appear first in the
command line before any Turbo Debugger options or the
program name. For example,

T0386 -el024 -fOOOO -w

reserves 1024K of extended memory, enables EMS
emu1ation with a page frame of DODO, and modifies
TD386.EXE with these values.

For a list of all the command-line options available for
TD386.EXE, just type T0386 -? or T0386 -h and press Enter.

Note: If you have an 80386-based machine and want to read
the command -line options for TD386.EXE, TDH386.SYS
must be loaded.

Differences between normal and virtual
debugging

250

Most things work exactly the same whether you are debug­
ging normally or using the 80386 virtual debugging
capability. The following items behave differently:

EiI When you use the File I DOS Shell command to run a DOS
command, the program you're debugging is never

Turbo Debugger User's Guide

swapped to disk. This means you may not always have
enough memory to run other programs from the DOS
prompt.

[] Your program can use nearly all of the 80386 instructions,
with the exception of the privileged protected-mode
instructions: CL TS, LMSW, L TR, LGDT, LlDT, LLDT.

[] Even though you can use all the 80386 extended address­
ing modes and 32-bit registers during virtual debugging,
you can't access memory above the 1MB point. If you try
to do so, an exception interrupt will be generated, and
Turbo Debugger will regain control.

c You can't use virtual debugging if you're already running
a program or device driver that uses the virtual and
protected modes of the 80386 processor. This includes pro­
grams such as:

o DesqView operating environment

o Microsoft Windows-386 operating environment
o QEMM.SYS, the QuarterDeck EMS simulator

o CEMM.SYS Compaq EMS simulator

o 386"'MAX

If you normally use one of these or similar programs, you
will have to stop them or unload them before using
TD386.

c If you are using virtual debugging, TD386 can catch
exceptions generated by your program. If an exception
occurs, your program stops, and TD386 reports the
exception that occured. The error message that appears
indicates the nature of the exceptions, and the arrow in
the CPU window Code pane-or the cursor in the Module
window-marks the instruction that caused the
exception.

[] You should not get an unexpected interrupt. If you do,
contact Borland technical support.

TD386 error messages

TD386 generates one of the following messages when it
can't start, and then returns to the DOS prompt. You must

Chapter 75, Virtual debugging on the 80386 processor 251

correct the condition before you can start TD386
successfully.

T0386 error: 80386 device driver missing or wrong version
You must install the TDH386.SYS device driver in your
CONFIG.SYS file before you invoke TD386 from the DOS
command line.

T0386 error: Can't enable the A20 address line
TD386 can't access the memory above 1MB. This may
happen if you're running on a system that is not exactly IBM
compatible.

T0386 error: Can't find TO.EXE
TD386 could not find TD.EXE.

T0386 error: Couldn't execute TO.EXE
TD386 could not run TD.EXE.

T0386 error: Environment too long; use -e#### switch with
TOH386.SYS
You need to change the -e option as described on page 248.

T0386 error: Not enough Extended Memory available
TD386 ran out of memory. You need to get more memory
for your machine or free up memory (by reducing a RAM
disk, for example).

T0386 error: Wrong CPU type (not an 80386)
You are not running on a system with an 80386 processor.

The following errors might occur if you're trying to modify
TD386 with the -w option:

T0386 error: Cannot open program file

T0386 error: Cannot read program file

T0386 error: Cannot write program file

T0386 error: Program file corrupted or wrong version

TDH386.SYS error messages

252

There are only two possible error messages associated with
the TDH386.SYS driver:

Wrong CPU type: TOH386 driver not Installed

Invalid command line: TOH386 driver not Installed

Turbo Debugger User's Guide

c H A p T E R

16

Protected-mode debugging with
TD286

The TD286 protected-mode debugger takes advantage of the
capabilities of the 80286 processor to free more memory for the
program you are debugging. TD286 puts the Turbo Debugger
program into extended memory above the 1MB address point,
and leaves a relatively small loader in the lower 640K. This gives
you more room for the program you are debugging and its
symbol table.

Use Turbo Debugger exactly as you nonnally would. The only
difference is that your program has more memory to run in.

80386 users! If you have an 80386 processor, you can get even more capabilities
and memory savings by using the ID368 virtual debugger. See
Chapter 15 for more infonnation.

Equipment required for the protected-mode
debugger

To use the TD286 protected-mode debugger, you must have a
computer based on the 80286 or 80386 processor. You must also
have at least 640K of available extended memory.

Chapter 76, Protected-mode debugging with TD286 253

Installing the protected-mode debugger

Before you use TD286 for the first time, you must run the
TD286INS configuration program to let TD286 determine some
hardware characteristics of the system you are running on. To
configure TD286, run the configuration program by entering
TD286INS at the DOS prompt.

TD286INS asks you to press Spacebar a number of times as it
determines the characteristics of your hardware. If at any point
your system hangs and the program does not proceed, just reboot
and restart the configuration program. The configuration program
knows where it had a problem and continues with the next phase
of its testing.

Once TD286INS runs to completion, TD286 is ready to use.

Starting the protected-mode debugger

You start the protected-mode debugger with this command-line
syntax:

TD286 [options] program [program options]

TD286 has the same command-line options as regular Turbo
Debugger, with the exception that it does not allow the -yoption
that sets the overlay code pool size. This option is not necessary
because TD286 does not use overlays.

Differences between Turbo Debugger and
protected-mode

254

There are a few things you can do in regular Turbo Debugger that
you can't do with TD286:

• When you use the File I DOS Shell command to run a DOS
command, the program you are debugging is not swapped to
disk. This means that you may not always have enough
memory to run other programs from the DOS prompt.

Turbo Debugger User's Guide

• You can't use TD286 to debug programs that run in protected
mode, or use a DOS extender that conflicts with that used by
TD286.

Running TD286 on different machines

TD286 knows the hardware characteristics of dozens of different
machines. When you run TD286INS and it reports "Machine
already In file's database" your machine is already known to
TD286 and no modifica tion is necessary.

If TD286INS does execute its tests, it will store your machine's
hardware characteristics in TD286 and create a file with the .DB
extension. This file should be sent back to Borland or uploaded
onto one of our forums on Compuserve so that future versions of
TD286 will automatically know your computer's hardware
characteristics. TD286 can store the characteristics of 10 machines
other than the ones it starts with.

Chapter 76, Protected-mode debugging with TD286 255

256 Turbo Debugger User's Guide

c H A p T E R

17

Debugging TSRs and device drivers

What's a TSR?

With Turbo Debugger 2.0 you can debug terminate and stay
resident (TSR) programs and device drivers, as well as conven­
tional executable files. You can also run Turbo Debugger itself as
a TSR, while you perform other operations at DOS level or run
other programs. .

Turbo Debugger 2.0 has three new commands on the file menu
that are specifically designed to be used for debugging TSRs and
device drivers. These are the File I Resident, File I Symbol Load,
and File I Table Relocate commands.

This chapter gives a brief explanation of what TSRs and device
drivers are, and provides information on how to debug them with
Turbo Debugger 2.0.

TSR stands for "terminate and stay resident." TSRs are programs
that stay in RAM after they are finished running. SideKick and
SuperKey are TSRs; they stay in RAM all the time and are
invoked using special hot keys. Other TSRs are invoked from
programs that issue an appropriate software interrupt. Turbo C
provides a function, genlnterrupt, that issues such software
interrupts.

TSRs consist of two parts: a transient portion and a resident portion.
The transient portion is responsible for loading the resident

Chapter 17, Debugging TSRs and device drivers 257

Debugging a TSR

258

portion into RAM, and for installing an interrupt handler that
determines how the TSR is invoked. If the TSR is to be invoked
through a software interrupt, the transient portion places the
address of the resident portion of the code in the appropriate
interrupt vector. If the TSR is to be invoked through a hot key, the
resident portion must modify the DOS interrupt handler for key­
board presses.

When the transient portion is finished executing, it invokes a DOS
function that allows a portion of the .EXE file to stay resident in
RAM after execution is terminated-hence the phrase "terminate
and stay resident." The transient portion of the TSR knows the
size of the resident portion as well as the resident portion's
location in memory, and passes this information along to DOS.
DOS then leaves the specified block of memory alone, but is free
to overwrite the unprotected portion of memory. Thus the resi­
dent portion stays in memory, while the transient portion can be
overwritten.

The trick to debugging TSRs is that you want to be able to debug
the resident portion as well as the transient portion. When the
.EXE file executes, the only code that is executed is the transient
portion of the TSR. So when you run Turbo Debugger as usual, by
specifying a file name, the only code you see executed is the
transient portion, as it installs the resident portion and its inter­
rupt handlers. In order to debug the resident portion, you must
set a debugger breakpoint and make Turbo Debugger itself go
resident. More about this later.

Debugging the transient portion of a TSR is the same as debug­
ging any other file. It is only when you start to debug the resident
portion that anything novel happens.

Here is how you debug a TSR program:

1. Compile or assemble the TSR, being sure to incorporate
symbolic (debugging) information. Use the T ASM IZI or TCC
-v command-line option, for example, or TPC IV.

2. If you have to link the TSR, use the Iv option to incorporate
symbolic information. You can use the TDSTRIP -s option to
move the symbolic information into a separate file, though
you don't have to if the program is an .EXE file.

Turbo Debugger User's Guide

3. Now load the TSR program into Turbo Debugger and run the
transien t portion, using the Run I Run command as usual. Go
ahead and debug the transient portion in the usual way. When
you finish running the transient portion, the resident portion
is installed in RAM. The trick now is to debug the resident
portion.

4. Set a breakpoint at the beginning of the resident portion of
your code, using F2. You can instead set breakpoints at some
other positions in the resident portion, if you want.

5. Choose the File I Resident command to make Turbo Debugger
itself go resident. This has nothing to do with making your
TSR memory-resident; it makes itself go resident when you
run it in Turbo Debugger, just as it would if you had run it
from the command line. The only reason you are making
Turbo Debugger go resident is so you can go back to DOS and
invoke your TSR, making its resident portion start executing.

6. When you are back at the DOS command line, execute the
resident portion of your TSR by pressing its hot key or doing
whatever else you do to invoke it. Execute your program as
usual.

7. When your program hits the breakpoint, Turbo Debugger
comes back up, with your TSR displayed at the appropriate
point. Now you can start debugging the resident part of your
code. (You can also re-enter Turbo Debugger from DOS by
pressing etrl-Break twice.)

A second method of debugging a TSR's resident portion is to
execute the TSR from the DOS command line, then use Turbo
Debugger to debug the area of RAM containing the TSR.

To use this method, you need the utilities TDMEM, which
displays a map of how your system's RAM memory is used, and
TDDEV, which gives the segment address where your TSR's
resident portion is loaded.

To use this method:

1. Follow Steps 1 through 2 of the first method to compile or
assemble your code, and to strip off its symbol table if
necessary and place it in a .IDS file. If necessary for your
application, run IDSTRIP with the -c option as well, to
convert your TSR from an .EXE to a .COM file.

Chapter 77, Debugging TSRs and device drivers 259

260

2. Execute your TSR ·from the 005 command line by typing its
name. For example, if your TSR is called TSR.EXE, type TSR at
the DOS prompt and press Enter.

3. Run IDMEM to see a memory map of your computer. Note
the segment address at which the resident portion of your TSR
is loaded. We refer to this segment as Seg.

4. Next, you need to determine the amount of symbol table
memory you are going to want Turbo Debugger to allocate
when you call it up. To do this, note the size of your TSR's
symbol table (.IDS) file by doing a DIR command from DOS.

This size is a lower limit on the amount of symbol table
memory you need to allocate when you load Turbo Debugger,
since, in addition to the information stored here, Turbo
Debugger creates a number of tables, temporary and other­
wise, when it loads the symbol table. A useful rule of thumb is
that you need to allocate about one and a half times as much
symbol table memory as the .TDS file occupies on the disk,
though sometimes you might need more and sometimes you
can get by with less. Turbo Debugger lets you know if you've
allocated too little symbol table memory by displaying the
message ''Not enough memory to load symbol table" when
you do a File I Symbol Load (discussed later), so feel free to
experimen t.

5. Load Turbo Debugger without specifying a file name,
allocating symbol table memory as appropriate with the -sm
command-line option. The -sm option takes as an argument
the number of kilobytes of symbol table memory to be
allocated. For example, if you want to reserve 3K of symbol
table memory, enter TO -sm3 at the 005 prompt. When you
load Turbo Debugger, do not specify a file name, since you are
debugging something that is already in memory. You should
have the .TDS and source files for your TSR available in your
default directory, however, so that they can be accessed to
supply symbolic information.

6. You could now start debugging your TSR by setting break­
pOints, making Turbo Debugger go resident, and performing
some action from the DOS command level that would trigger
your breakpoint. This opens Turbo Debugger at the
a ppropria te place in your code. However, your debugging
task can be simplified by recalling the symbolic informa tion
present in your symbol table and source file first.

Turbo Debugger User's Guide

7. Once Turbo Debugger comes up, clear the sign-on message by
pressing Esc, then load in your TSR's symbol table with the
File I Symbol Load command, specifying the appropriate
symbol table name. If you get a message that there is not
enough memory to load your symbol table, exit Turbo
Debugger and start it up again from the DOS prompt using a
higher value as an argument to -sm.

8. The symbol table contains a set of symbols tied to relative
memory locations in your code. The symbols in the symbol
table are all prefixed by the characters # FILENAME # , where
FILENAME is the name of your TSR source file. For example, if
your source file was called TSR.ASM and contained a label
Intr, the symbol # TSR#INTR marks a location in memory.
The symbols in the symbol table are offset from each other by
the correct number of bytes, but the absolute location of the
first symbol has not been determined because DOS might have
loaded your TSR at a different absolute memory location than
the one at which it was assembled. For this reason, you must
use a command to explicitly locate the first symbol in memory ..

9. Use File I Table Relocate to place the first symbol from the
symbol table at the proper location in memory. In this way, the
symbolic information present corresponds with your code. To
do this, when you are prompted by Turbo Debugger, specify
the segment address Seg for your TSR that you determined
fromTDMEM.
The disassembled statements from memory are synchronized
with information from the symbol table. !fyour source file is
present, source statements are printed on the same line as the
information from the symbol table.

10. Use the Goto command (Gtrl-G) to go to the segment of RAM
containing your TSR. Do this either by giving the segment
address of your TSR, followed by offset OOOOH, or by going to
a specific symbolic label in your code.

From here on, continue as in the first method, from Step 4 on.

What's a device driver?

Device drivers are collections of routines used by DOS to control
low-level I/O functions. Installable device drivers (as opposed to
those intrinsic to DOS) are installed by inserting lines such as

Chapter 77, Debugging TSRs and device drivers 261

262

device = clock.sys

in your CONFIG.SYS file. When DOS has to perform an I/O
operation involving a single character, it scans through a linked
list of device headers looking for a device with the appropriate
logical name (for example, COMl). In the case of block device
drivers such as disk drives, DOS keeps track of how many block
devices have been installed and designates each by a letter, with A
for the first block device driver installed, B for the second, and so
on. When you make a reference to drive C, for example, DOS
knows to call the third block device driver.

The linked list of device headers contains offsets to the two
components of the device driver itself, the strategy routine and the
interrupt routine.

When DOS determines that a given device driver needs to be
invoked, it calls the driver twice. The first time the driver is called,
DOS talks to the strategy routine and passes it a pointer to a
memory buffer called the request header. The request header
contains information about what DOS wants the device driver to
do. The strategy routine simply stores this pointer away for later
use. On the second call to the device driver, DOS invokes the
interrupt routine, which does the actual work specified by DOS in
the request header, such as transferring characters in from a disk.

The request header specifies what the device driver is to do
through a byte in the request header called a command code. This
specifies one of a predefined set of operations all device drivers
must perform. The set of command codes is different for character
device drivers than for block device drivers.

The problem with debugging device drivers is that there is no
.EXE file to run, since for proper operation, the driver must be
installed using a DEVICE = DRIVER.EXT command at boot,
where .EXT = .SYS, .COM or .BIN. This means the device driver
to be debugged is already resident in memory before debugging,
as it must be for proper operation. Hence the functions to load
and relocate symbol tables become very usefut since they can
restore symbolic information to the disassembled segment of
memory where the device driver is loaded. The File I Resident
command is also very useful, as we shall see.

Turbo Debugger User's Guide

Debugging a
device driver Here is how you debug a device driver using TDREMOTE:

1. Compile or assemble the device driver, being sure to
incorporate symbolic (debugging) information. Use the TASM
IZI or TCC -v command -line option, for example.

2. Link the device driver using the Iv option to incorporate
symbolic information.

3. Type TDSTRIP -5 -c FILENAME, where FILENAME is the name of
the device you're debugging, to move the symbolic
information from the .EXE file into a separate .TDS file, and to
transform the existing .EXE file into a .COM file.

TDSTRIP -s -c FILENAME

where FILENAME is the name of the device driver you're
debugging. Copy the .COM file to the remote system.

4. Modify your CONFIG.SYS file on the remote system by
adding the line

device = FILENAME. COM

5. Make sure FILENAME includes the correctpath to find the
device driver.

6. Reboot your remote system to load the device driver.

7. Run TDDEV to tell you the location in memory on the remote
system where DOS has loaded your device driver. Note the
address where your device driver is loaded. We refer to the
segment portion of this address as Seg.

8. Next you need to determine the amount of symbol table
memory you will need Turbo Debugger to allocate when you
call it up. To do this, note the size of your device driver's
symbol table (.TDS) file by doing a DIR command from DOS.

This size is a lower limit on the amount of symbol table
memory you will need to allocate when you load Turbo
Debugger, since in addition to the information stored here,
Turbo Debugger creates a number of temporary and other
tables when loading the symbol table. A useful rule of thumb
is that you need to allocate about one and a half times as much
symbol table memory as the .TDS file occupies on disk, though
sometimes you need more, and sometimes you can get by with
less. Turbo Debugger lets you know if you've allocated too
little symbol table memory by displaying the message ''Not

Chapter 77, Debugging TSRs and device drivers 263

264

enough memory to load symbol table" when you do a File I
Symbol Load (discussed later), so feel free to experiment.

9. Load TDREMOTE on the remote system.
10. Load Turbo Debugger (using the -r option and the -rp and -rs

options as needed) without specifying a file name, allocating
symbol table memory as appropriate by using the -sm
command line switch. The -sm switch takes as an argument
the number of kilobytes of symbol table memory to be
allocated. For example, if you wish to reserve 3K of symbol
table memory, type TD -sm3 at the DOS prompt. When you
load Turbo Debugger, you do not specify a file name because
you are debugging something that is already in memory. You
should have the .IDS and source files for your device driver
available in your default directory, however, so that they can
be accessed to supply symbolic information.

11. You could now start debugging your device driver by setting
breakpoints, making Turbo Debugger go resident, and
performing some action from the DOS command level on the
remote system which would trigger your breakpoint. This
would open Turbo Debugger at the appropriate place in your
code. However, your debugging task can be simplified by
recalling the symbolic information present in your symbol
table and source file first.

12. Once Turbo Debugger comes up, clear the sign-on message by
pressing Esc, then load in your device driver's symbol table
using the File I Symbol Load command, specifying the
appropriate symbol table name. !fyou get a message that there
is not enough memory to load your symbol table, exit Turbo
Debugger and start it up again from the DOS prompt using a
higher value as an argument to -sm.

13. The symbol table contains a set of symbols tied to relative
memory locations in your code. The symbols in the symbol
table are all prefixed by the characters #FlLENAME#, where
FILENAME is the name of your device driver source file. For
example, if your source file was called DRIVER.ASM and
contained a label Intr, the symbol #DRIVER# INTR marks a
location in memory.

The symbols in the symbol table are offset from each other by
the correct number of bytes, but the absolute location of the
first symbol is not determined, since DOS may load your
device driver at a different absolute memory location than the

Turbo Debugger User's Guide

one at which it was assembled. For this reason, you must use a
command to explicitly locate the first symbol in memory.

14. Use the File I Table Relocate command to place the first symbol
from the symbol table at the proper location in memory. In
this way, the symbolic information present will correspond
with your code. To do this, specify the segment address Seg for
your device driver which you determined in Step 6.
The disassembled statements from m~mory are synchronized
with information from the symbol table. If your source file is
present, source statements will be printed on the same line as
the information from the symbol table.

15. Set any breakpoints in your code.

16. Choose the File I Resident command to make Turbo Debugger
itself go resident. This has nothing to do with making your
device driver memory resident; it goes resident at boot on the
remote system as a result of the device command in
CONFIG.SYS. The only reason you are ~king Tprbo
pebugger go resident is so you can go back to DOS and do
whatever is necessary to invoke yoUr device driver.

17. When you are back to the DOS command line on the remote
system, do whatever is necessary to activate your device
driver. For example, send information to whatever device it
controls.

18. When your program hits the breakpoint, Turbo Debugger
comes back up with your device driver displayed at the
appropriate point, and you can begin debugging your code.
(You can also re-enter Turbo Debugger while DOS is nmning,
by pressing elr/-Break.)

Terminating the debugging session

To terminate a debugging session, get out of Turbo Debugger ill
the usual way, by choosing the File I Quit command or pressing
A/l-X. If you're debugging a TSR, it will be unloaded automatically.

Chapter 77, Debugging TSRs and device drivers 265

266 Turbo Debugger User's Guide

A p p E N D x

A

Summary of command-line options

When you start up Turbo Debugger from the DOS command line,
you can at the same time configure it using certain options. Here's
the general forma t to use:

td [options] [progra~name [program_args]]

Items enclosed in brackets are optional. Following an option with
a hyphen disables that option if it was already enabled in the
configuration file.

Appendix A, Summary of command-line options 267

TableAl
Turbo Debugger command­

line options

268

Option

-cfilename

-do
-dp
-ds

-h,-?

-i

-k

-I

-mN

-p

-r
-rpN
-rsN

-sc
-sddirectory
-smN

-vg
-vn
-vp

-yN
-yeN

Whitt it means

Startup configuration file

Other display
Page ffipping
Swap user screen contents

Display help screen listing all the
command-line options

Process ID switching

Enable keystroke recording

Assembler startup

Set heap size (K)

Enable mouse

Debug on remote system; COM1, fast
COM port for remote link
Link speed: 1=slow, 2=med, 3=fast

No case-checking
Source file directory
Set symbol table memory size (K)

Complete graphics save
43/50 line display not allowed
EGA palette save

Set overlay pool size (K)
Set EMS overlay area size to N 16K pages

Turbo Debugger User's Guide

A p p E N D x

B

Technical notes

This appendix is for advanced users who want to understand
some of the technical details that underlie the operation of Turbo
Debugger. Don't be put off if this chapter appears to have been
written in Greek; you don't have to understand the issues pre­
sented here in order to become a productive and successful Turbo
Debugger user.

Some of the information in this chapter will let you understand
how Turbo Debugger interacts with 005, the hardware, and your
program. This can help you understand how your program's
behavior might differ while running under Turbo Debugger.

You will also learn why you can crash the system without too
much efforl, and, even better, how to a void it.

Changed load address and free memory

Appendix B, Technical notes

When Turbo Debugger loads your program, it is placed after the
debugger in memory. This has two important results: Your pro­
gram loads at a higher segment address, and it has less free
memory available. By loading at a different address, some bugs
tha t are the result of accessing memory outside your program
may appear or disappear. By changing the amount of free
memory, bugs in your memory allocation or use may be hard to
duplicate.

269

If you're using a 386-based computer, you can use the TD386
virtual debugging program to eliminate those problems. See
Chapter 15 for information on virtual debugging.

Crashing the system

Since the debugger can read and write memory at any address in
your system, you can inadvertently cause a crash by modifying
certain memory locations outside your program, such as some
inside 005, or the interrupt table starting at memory address
loca tion zero.

As an example, changing the hardware clock interrupt vector at
location OOOOh:0040h is almost certain to cause a problem.

Tracing through DOS and process ID switching

Turbo Debugger keeps track of the process that is running (either
itself or your program) so that it can open and close files without
interfering with your program's file handles. This switching is
done by using a DOS function call. The switch occurs each time
your program is started from Turbo Debugger, and each time the
debugger is re-entered from your program. Since 005 is not re­
entrant, you can get into trouble by setting breakpoints or tracing
inside DOS.

You should use the -1- command-line option to disable process ID
switching if you want to poke around inside 005. However, your
program will then share Turbo Debugger's file handles, which
may cause either your program or the debugger to run out of
them.

Using the 8087 /80287 math coprocessor and emulator

270

Turbo Debugger uses neither the math coprocessor nor the
software emulator, leaving them both free to be used by your pro­
gram. You shouldn't experience any difference between using a
standalone floating-point program and running it under Turbo
Debugger.

Turbo Debugger User's Guide

Interrupts used by Turbo Debugger

Turbo Debugger intercepts several interrupt vectors in order to
debug your program. The following descriptions let you
determine if there may be interactions between your program and
Turbo Debugger.

Interrupt 1/1nterrupt 3
Turbo Debugger uses these interrupts to process breakpoints and
instruction single-stepping. If these interrupts are modified by
your program, Turbo Debugger may not be able to regain control
at the next breakpoint. Normal applications never use these inter­
rupts because they are reserved for programs such as debuggers
that must control the execution of other programs.

Interrupt 2
Many hardware debuggers use this interrupt to signal that a
match condition has occurred. If your program takes over this
interrupt, these boards and their supporting device drivers may
not work properly. If you must take over this interrupt, chain on
to the previous owner of it if you do not want to service the
interrupt.

Interrupt 9
This is the keyboard hardware interrupt, which is used for track­
ing key presses and release codes. Turbo Debugger chains into
this interrupt when the user program is running, so that it can
regain control of a program stuck in a loop. Turbo Debugger
reinstalls this vector each time your program is restarted, thereby
allowing a program that modifies this interrupt to keep working
correctly.

Debugging using INT 3 and INT 1

Appendix B, Technical notes

If you want to debug a program that uses these interrupts, the
version of the program you are debugging should only load these
interrupt vectors when it absolutely must, and restore the old
contents as soon as it is done using them. This technique mini­
mizes the amount of code that cannot be debugged. While your
program has these vectors loaded, you cannot use Turbo
Debugger to step through your code.

271

Display-saving and mode-switching

Turbo Debugger usually attempts to save and restore your pro­
gram's display mode whenever it runs a piece of your program. If
you only use the standard ROM BIOS calls to change the display
mode, all will be well. If you directly manipulate the display
controller registers, Turbo Debugger may disturb those settings.

Memory consumption

EMS support

272

When you first start Turbo Debugger, DOS loads it into the first
free memory above DOS and any resident programs. Then, Turbo
Debugger allocates a working stack and heap above its program
code. Your program's symbol table comes next in memory,
followed by the actual program that you want to debug.

When you exit back to DOS, Turbo Debugger frees the memory
used by the symbol table and the program being debugged. If
your program has allocated any memory blocks with the DOS
memory allocate function (48), Turbo Debugger frees that
memory as well.

If your system has an expanded memory specification (EMS)
board, Turbo Debugger will use it to store the symbol table for
your program being debugged. This leaves more main memory
free for your program. Turbo Debugger saves and restores the
state of the EMS driver, letting you debug programs that use EMS
memory.

If your program must use all of EMS memory, or if you exper­
ience interaction problems between your program and Turbo De­
bugger with both using EMS memory, you can disable EMS
symbol table use by Turbo Debugger. Use the TDINST installation
utility to do this or specify -yeO to disable overlay caching in
EMS.

Turbo Debugger User's Guide

Interrupt vector saving and restoring

Appendix B, Technical notes

Turbo Debugger maintains three separate copies of the first 48
interrupt vectors in low memory (00 through 2F).

When Turbo Debugger first starts from the DOS command line, a
copy is made of the vectors. These vectors are restored when you
return back to DOS by using the File I Quit (or Aft-X) command.
These vectors are also restored if you use the File I DOS Shell
command to enter a DOS command while debugging a program.

The second set of vectors are Turbo Debugger's vectors. These are
in effect whenever Turbo Debugger is running and onscreen.
They are restored every time Turbo Debugger regains control
after running your program.

The third set of vectors are for the program you're debugging.
These vectors are restored every time you run or step your pro­
gram, and are saved every time your program stops and Turbo
Debugger regains control. This lets you debug programs that
change interrupt vectors, and at the same time allows Turbo De­
bugger to use its own version of those same interrupts.

273

274 Turbo Debugger User's Guide

A p p E N D x

c

Inline assembler keywords

This appendix lists the instruction mnemonics and other special
symbols that you use when entering instructions with the inline
assembler. The keywords presented here are the same as those
used by Turbo Assembler and MASM.

Appendix C, Inline assembler keywords 275

Table C.l AAA INC LlDT** REPNZ
8086/80186/80286 Instruction AAD INSB* LLDT** REPZ

mnemonics AAM INSW* LMSW** RET
AAS INT LOCK REFT
ADC INTO LODSB ROL
ADD IRET LODSW ROR
AND JB LOOP SAHF
ARPL** JBE LOOPNZ SAR
BOUND* JCXZ LOOPZ SBB
CALL JE LSL** SCASB
CLC JL LTR** SCASW
CLD JLE MOV SGDT**
CLI JMP MOVSB SHL
CLTS** JNB MOVSW SHR
CMC JNBE MUL SLDT**
Cr!lP 1

JNE NEG SMSW**
CMPSB JNLE NOP STC
CMPSW JNO NOT STD
CWO JNP OR STI
DAA JO OUT STOSB
DAS JP OUTSB STOSW
DEC JS OUTSW* STR**
DIV LAHF POP SUB
ENTER* LAR** POPA* TEST
ESC LOS POPF WAIT
HLT LEA PUSH VERR**
IDIV LEAVE* PUSHA* VERW**
IMUL LES PUSHF XCHG
IN LGDT** RCL XLAT

XOR
.. Available only when running on the 186 and 286 processor
.... Available only when running on the 286 processor

Table C.2 BSF LSS SETG SETS 80386 Instruction mnemonics BSR MOVSX SETL SHLD
BT MOVZX SETLE SHRD
BTC POPAD SETNB CMPSD
BTR POPFD SETNE STOSD
BTS PUSHAD SETNL LODSD
COO PUSHFD SETNO MOVSD
CWOE SETA SETNP SCASO
IRETO SETB SETNS INSD
LFS SETBE SETO OUTSO
LGS SETE SETP JECXZ

276 Turbo Debugger User's Guide

Table C.3
80486 instruction mnemonics

Table C.4
80386 registers

Table C.S
CPU registers

Table C.6
Special keywords

BSWAP
CMPXCHG
INVO

EAX
EBX
ECX
EOX
ESI

INVLPG
WBPINVO
XAOO

EOI
EBP
ESP
FS
GS

Byte registers AH,AL,BH,BL,CH,CL,OH,OL

Word registers AX, BX, CX, OX, SI, 01, SP, BP, FLAGS

Segment registers CS, OS, ES, SS

Floating registers ST, ST(O), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6),
ST(7)

WORDPTR
BYTE PTR
DWORD PTR
QWORD PTR

TBYTE PTR
NEAR
FAR
SHORT

Appendix C, Inline assembler keywords 277

Table 0.1
8087/80287 numeric

coprocessor Instruction
mnemonics

Table 0.2
80387 instruction mnemonics

278

FABS
FADD
FADDP
FBLD
FBSTP
FCHS
FCLEX
FCOM
FCOMP
FCOMPP
FDECSTP
FDISI
FDIV
FDIVP
FDIVR
FDIVRP
FENI
FFREE

FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FILD
FIMUL
FINCSTP
FINIT
FIST
FISTP
FISUB
FISUBR
FLO
FLDCW
FLDENV
FLDLG2
FLDLN2

FLDL2E
FLDL2T
FLDPI
FLDZ
FLD1
FMUL
FMULP
FNOP
FNSTS"
FPATAN
FPREM
FPTAN
FRNDINT
FRSTOR
FSAVE
FSCALE
FSETPM*
FSQRT

FST
FSTCW
FSTENV
FSTP
FSTSW*
FSUB
FSUBP
FSUBR
FSUBRP
FTST
FWAIT
FXAM
FXCH
FXTRACT
FYL2X
FYL2XP1
F2XM1

.. Available only when running on the 287 numeric coprocessor .

.... On the 80287, the fstsw and fnstsw instructions can use the AX register as an
operand, as well as the normal memory operand.

FCOS
FSIN
FPREM1
FSINCOS

FUCOM
FUCOMP
FUCOMPP

Turbo Debugger User's Guide

A p p E N D x

D

Customizing Turbo Debugger

Turbo Debugger is ready to run as soon as you make working
copies of the files on the distribution disk. However, you can
change many of the default settings by running the customization
program called TDINST. You also can change some of the options
using command-line options when you start Turbo Debugger
from DOS. If you find yourself frequently specifying the same
command-line options over and over, you can make those options
permanent by running the customization program.

The customization program lets you set the following items:

• Window, dialog box, and menu colors

• Display parameters: screen swapping mode, integer display
format, beginning display (source or assembler code), screen
lines, tab column width, maximum tiled Watches size, fast
screen update, 43-/50-line mode, full graphiCS saving, User
screen updating, and log list length

• Your editor startup command and directories to search for
source files and the Turbo Debugger help and configuration
files

• User input and prompting parameters: interrupt key, history
list length, beep on error, mouse, keystroke recording, and
control-key shortcuts

Appendix D, Customizing Turbo Debugger 279

Running TDINST

Colors ~
Display •••
Options ~
Mode for display ~
Save ~
Quit

• Source debugging: language options and case sensitivity

• NMI intercept, DOS process ID switching, expanded memory
specification (EMS) for symbol table, remote debugging, OS
shell swap size, and symbol memory size

• Display mode

To run the customization program, enter TDINST at the DOS
prompt. As soon as TDINST comes up, it displays its main menu.
You can either press the highlighted first letter of a menu option
or use the i and J, keys to move to the item you want and then
press Enter. For instance, press 0 to change the display settings.
Use this same technique for choosing from the other menus in the
installation utility. To return to a previous menu, press Esc. You
may have to press Esc several times to get back to the main menu.

Setting the screen colors

280

Customizing
screen colors

Windows

Choose Colors from the main menu to bring up the Colors menu.
It offers you two choices: Customize and Default Color Set.

If you choose Customize, a third menu appears, with options for
customizing windows, dialog boxes, menus, and screens.

To customize windows, choose the Windows command. This
opens a fourth menu, from which you can choose the kind of
window you want to customize: Text, Data, Low Level (for
example, the CPU window), and Other (for example, the
Breakpoints window). Choosing one of these options brings up
yet another menu listing the window elements, together with a
pair of sample windows (one active, one inactive) in which you
can test various color combinations. The screen looks like this:

Turbo Debugger User's Guide

Figure 0.1
Customizing colors for

windows

Alt: I-exit

[.]=Text Windo
Nomal text
Se 1 ected text
Breakpoint

. :. ':" : ... : ',. ': ...

II

When you select an item you want to change, a palette box pops
up over the menu. Use the arrow keys to move around in the
palette box. As you move the selection box through the various
color choices, the window element whose color you are changing
is updated to show the current selection. When you find the color
you like, press Enter to accept it.

¢ Turbo Debugger maintains three color tables: one for color, one
for black and white, and one for monochrome. You can only
change one set of colors a t a time, based on your current video
mode and display hardware. So, if you are running on a color
display and want to adjust the black-and-white table, first set
your video mode to black and white by typing MODE BW80 at the
DOS prompt, and then run TDINST.

Dialog boxes If you choose Dialogs from the Customize menu, a menu appears
listing dialog box and menu elements, with a sample dialog box
for you to experiment with.

Appendix 01 Customizing Turbo Debugger 281

Figure D.2
Customizing colors for dialog

Menus

Menu background
Standard item
Active item
Hot letter

Screen
Pattern for background.

Pattern background
Pattern foreground
Window move background

Window move foreground

The default colors

282

The screen looks like this:

Alt: 4-exit

As with the Windows menu, choosing an item from the current
menu opens a palette from which you can choose the color for
that item.

If you choose Menus from the Customize menu, a menu of menu
options opens, along with a sample menu. Choosing an item from
the menu causes the usual palette to appear.

Choosing Screen from the Customize menu opens a menu from
which you can access another menu with screen patterns and
palettes for screen elements, as well as a sample screen back­
ground on which to test them.

If you choose Default Color Set from the Colors menu, an active
text window and an inactive window appear onscreen, so you can
see what the default colors for their elements are.

Turbo Debugger User's Guide

Setting Turbo Debugger display parameters

Figure D.3
The Display Options dialog

box

Choose Display from the main menu to bring up the Display
Options dialog box.

¢ These display options include some you can set from the DOS
command line when you start up Turbo Debugger, as well as
some you can set only with TDINST. See page 291 for a table of
Turbo Debugger command-line options and corresponding
TDINST settings.

Display Swapping
You use the Display Swapping radio buttons to control how
Turbo Debugger switches between its own display and the output
of the program you're debugging. You can toggle between the
following settings:

None Don't swap between the two screens. Use this option if
you're debugging a program that does not output to
the User screen.

Smart Swap to the User screen only when display output may
occur. Turbo Debugger swaps the screens any time that
you step over a routine, or if you execute any
instruction or source line that appears to read or write
video memory. This is the default option.

Always Swap to the User screen every time the user program
runs. Use this option if the Smart option is not catching
all the occurrences of your program writing to screen.
If you choose this option, the screen flickers every time
you step through your program, since Turbo
Debugger's screen is replaced for a short time with the
User screen.

Appendix D, Customizing Turbo Debugger 283

Integer Format

Beginning Display

Screen Lines

The Integer Format radio buttons let you set how integers are
displayed. You can toggle between the following options:

Hex

Decimal

Both

Chooses hexadecimal number display.

Chooses decimal number display.

Displays both hexadecimal and decimal.

The Beginning Display radio buttons determines the language in
which your program is displayed when Turbo Debugger starts.
They have the following settings:

Assembler Assembler Startup: None of your program is
executed, and a CPU window shows the first
instruction in your program.

Source Source startup: Your program's compiler beginning
code runs, and you start in a Module window,
where your source code begins.

Use these radio buttons to toggle whether Turbo Debugger
should start up with a display screen of 25 lines or a display
screen of 43 or 50 lines.

-=:> Only the EGA and VGA can display more than 25 lines.

Tab Size

Maximum Tiled

In this input box, you can set the number of columns between tab
stops in a text or source file display. You are prompted for the
number of columns (a number from 1 to 32); the d~fault is 8.

Watch This input box sets the number of lines that the Watches window
can expand to when it's in Tiled mode. You are prompted for the
number of lines (1 to 20).

284 Turbo Debugger User's Guide

Fast Screen
Update

Permit 43/50 Lines

Full Graphics
Saving

User Screen
Updating

The Fast Screen Update check box lets you toggle whether your
displays will be updated quickly. Toggle this option off if you get
"snow" on your display with fast updating enabled. You need to
disable this option only if the "snow" annoys you. (Some people
prefer the snowy screen because it gets updated more quickly.)

Turning this check box on allows big (43-/S0-line) display modes.
If you turn it off, you save approximately 8K, since the large
screen modes need more window buffer space in Turbo
Debugger. This may be helpful if you are debugging a very large
program that needs as much memory as possible to execute in.
When the option is disabled, you will not be able to switch the
display into 43-/S0-line mode even if your system is capable of
handling it.

Turning this check box on causes the entire graphics display
buffer to be saved whenever there is a switch between the Turbo
Debugger screen and the User screen. If you turn it off, you can
save approximately 8K of memory. This is helpful if you are
debugging a very large program that needs as much memory as
possible to execute. Generally the only drawback to disabling this
option is a small number of corrupted locations on the User
screen in graphics mode that don't usually interfere with
debugging.

The User Screen Updating radio buttons set how the User screen
is updated when Turbo Debugger switches between its screen and
your program's User screen. There are three settings:

Flip Pages Puts Turbo Debugger's screen on a separate
display page. This option works only if your
display adapter has multiple display pages, like a
eGA, EGA, or VGA. You can't use this option on
a monochrome display. This option works for the
majority of debugging situations; it is fast and

Appendix 0, Customizing Turbo Debugger 285

Log List Length

disturbs only the operation of programs that use
multiple display pages, such as graphics
programs.

Swap Uses a single display adapter and display page,
and swaps the contents of the User and Turbo De­
bugger screens in software. This is the slowest
method of display swapping, but it is the most
protective and least disruptive. If you are de­
bugging a program that uses multiple display
pages, like a graphics program, use this option.
Also use the Swap option if you shell to DOS and
run other utilities or if you are using a TSR (such
as SideKick Plus) and want to keep the current
Turbo Debugger screen as well.

Other Display Runs Turbo Debugger on the other display in
your system. If you have both a color and
monochrome display adapter, this option lets you
view your program's screen on one display and
Turbo Debuggers on the other.

Use this input box to set how many previous entries are saved in
the log file. The maximum number is 200; the minimum is 4.

Turbo Debugger options

286

Directories •••
Input & prompting •••
Source debugging •••
Miscellaneous •••

Directories ...

The Options command in the main menu opens a menu of
options, which in turn open dialog boxes for you.

This dialog box contains input boxes in which you can enter:

Editor program name Specifies the OOS command that starts
your editor. This lets Turbo Debugger
start up your favorite editor when you
are debugging and want to change some­
thing in a file. Turbo Debugger adds to
the end of this command the name of the

Turbo Debugger User's Guide

Input and
Prompting ...

Figure D.4
The User Input and Prompting

dialog box

Source directories

Turbo directory

file that it wants to edit, separated by a
space.

Sets the list of directories Turbo
Debugger searches for source files.

Sets the directory that Turbo Debugger
will look in for its help and configuration
files.

This dialog box lets you set options that control how you input
infonnation to Turbo Debugger, and how Turbo Debugger
prompts you for infonna tion:

History List Length This input box lets you specify how many earlier entries are to be
saved in an history list input box.

Interrupt Key These radio buttons let you assign a default interrupt key.

Set Key If you choose Other, press the Set Key button to choose the actual
interrupt key. You are prompted for the key to use.

Mouse Enabled This check box controls whether Turbo Debugger defaults to
mouse support.

Beep on Error By default, Turbo Debugger gives a warning beep when you press
an invalid key or do something that generates an error message.
The Beep on Error check box lets you change this default.

Appendix D, Customizing Turbo Debugger 287

Keystroke Recording

Control Key Shortcuts

Source
Debugging ...

Figure D.5
The Source Debugging

dialog box

This check box determines whether the Execution History
window defaults to automatic keystroke recording.

This check box enables or disables the control-key shortcuts.
When control-key shortcuts are enabled, you can invoke any local
menu command directly by pressing the etri key in combination
with the first letter of the menu item. However, in that case, you
can't use those control keys as WordStar-style cursor-movement
commands.

The Source Debugging dialog box lets you specify what language
Turbo Debugger will use for evaluating expressions, and enables
and disables case sensitivity.

Language The Language radio buttons toggle the language Turbo Debugger
uses for evalua ting expressions:

Source Module Choose what language to use based on the
languages of the current source module.

c

Pascal

Assembler

Always use C expressions, no matter what
language the current module was written in.

Always use Pascal expressions, no matter
language the current module was written in.

Always use assembler expressions, no matter
what language the current module was written
in.

Ignore Symbol Case If this check box is turned on, Turbo Debugger defaults to treating
uppercase and lowercase the same. If it is off, case sensitivity is in
effect.

288 Turbo Debugger User's Guide

Miscellaneous
Options ... The Miscellaneous Options dialog box contains options con trol­

ling NMI interrupts, EMS memory, use of process IDs DOS shell
swapping, symbol table size, and remote debugging.

Figure D.6
The Miscellaneous Options

dialog box

NMI Intercept If your computer is a Tandy 1000A, IBM PC Convertible, or NEC
MultiSpeed, or if Turbo Debugger hangs loading your system,
run TDINST and turn off the NMI Intercept check box. Some
computers use the NMI (nonmaskable interrupt) in ways that
conflict with Turbo Debugger, so you must disable Turbo
Debugger's use of this interrupt in order to run the program.

Use Expanded Memory Use this check box to toggle whether Turbo Debugger uses EMS
memory for symbol tables. You can enable this option even if
your program uses EMS as well.

Change Process ID Use this check box to control whether Turbo Debugger uses
process ID switching.

Warning! Do not turn this check box off unless you are tracing through DOS
and have a good understanding of the technical issues discussed
in Appendix B.

DOS Shell Swap Size Determines how much of the user program is swapped to disk
when you shell to DOS; if you enter 0, the whole program is
swapped.

Spare Symbol Memory This input box lets you specify the amount of memory set aside
for manually loaded symbol tables.

Appendix 0, Customizing Turbo Debugger 289

Remote Debugging This check box lets you toggle between enabling and disabling the
remote link.

Wamlng! Usually you won't want to turn this check box on, since that will
mean that Turbo Debugger will start up every time using the
remote link.

Remote Link Port The Remote Link Port radio buttons let you choose between using
the COM1 or COM2 serial port for the remote link.

Link Speed The Link Speed radio buttons let you choose one of the three
speeds that are available for the remote link: 9600 baud, 40,000
baud, or 115,000 baud.

Setting the mode for display

290

Default
Color
Black and white
Monochrome
LCP

Choosing Mode for Display from the main menu opens a menu
from which you can select the display mode for your system.

Default

Turbo Debugger detects the kind of graphics adapter on your
system and selects the display mode appropriate for it.

Color

If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter
and choose this as your default, the display will be in color.

Black and White

If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter
and choose this as your default, the display will be in black and
white.

Monochrome

Choose this if you are using a color monitor with a Hercules or
monochrome text-only adapter.

Turbo Debugger User's Guide

LCD

Choose this if you have an LCD monitor.

Command-line options and installation equivalents

Table 0.1
Turbo Debugger command-

line options

Some of the options described in the previous section can be over­
ridden when you start Turbo Debugger from DOS. The following
table shows the correspondence between Turbo Debugger com­
mand-line options and the TDINST program command that
permanently sets that option.

Option TDINST menu path Dialog box and option

Display Dis~lay Options
-do (e Other Display
-dp (e) Fli p Pages
-ds (e) Swap

Options I Miscellaneous
-i

Miscellaneous Options
[X] Change Process ID

-i- [] Change Process ID

-k
Options I Input and Prompting User Input and Prompting

[X] Keystroke Recording
-k- [] Keystroke Recordi ng

Display Dis~lay Options
-I (e Assembler
-1- (e) Source

Options I Input and Prompting User Input and Prompting
-p [X] Mouse Enabled
-p- [] Mouse Enab1 ed

Options I Miscellaneous Miscellaneous Options
-r [X] Remote Debugging
-r- [] Remote Debuggi ng

Options I Miscellaneous Miscellaneous Options
-rp1 (e) COMl
-rp2 (e) COM2

Options I Miscellaneous Miscellaneous Options
-rs1 (e) 9600 Baud
-rs2 (e) 40 KBaud
-rs3 (e) 115 KBaud

Options I Source Debugging Source Debugging
-sc [X] Ignore Sym 01 Case
-sc- [] Ignore Symbol Case

Options I Directories Directories
-sd Source Directories

Appendix 0, Customizing Turbo Debugger 291

Table D.l: Turbo Debugger command-line options (continued)

Option TDINST menu path Dialog box and option

Options I Miscellaneous
-sm

Display
-vn
-vn-

Miscellaneous Options
Spare Symbol Memory

Display Options
[J Permit 43/50 Lines
[X] Permit 43/50 Lines

¢ For a list of all the command-line options available for
TDINST.EXE, enter the program name followed by -h:

When you're through. II

Saving changes

Save configuration file •••
Modify td.exe

Save Configuration File

When you have all your Turbo Debugger options set the way you
want, choose Save from the main menu to determine how you
want them saved.

If you choose Save Configuration File, a dialog box opens, initial­
ized to the default configuration file TDCONFIG.TD. You can
accept this name by pressing Enter, or you can type a new
configura tion file name. If you specify a different file name, you
can load that configuration by using the -c command-line option
when you start Turbo Debugger. For example,

td -cmycfg myprog

You can also use the Turbo Debugger Options I Restore Configu­
ration command to load a configuration once you have started
Turbo Debugger.

Modify TD.EXE If you choose Modify m.EXE, any changes that you have made to
the configuration are saved directly into the Turbo Debugger
executable program file m.EXE. The next time you enter Turbo
Debugger, those settings will be your defaults.

¢ If at any time, you want to return to the default configuration that
Turbo Debugger is shipped with, copy TD.EXE from your master
disk onto your working system disk, overwriting the m.EXE file
tha t you modified.

292 Turbo Debugger User's Guide

Exiting TDINST
To get out of TDINST at any time, choose Quit from the main
menu.

Appendix D, Customizing Turbo Debugger 293

294 Turbo Debugger User's Guide

A p p E N D x

E

Remote debugging

Turbo Debugger's remote capability is not like that offered by
other debuggers. With other debuggers, you merely control the
debugger from the remote system; the debugger and the program
being debugged are both still on the same system. This can cause
problems if the program you are debugging requires more
memory than that left after the debugger is loaded. TDREMOTE,
supplied as part of the Turbo Debugger package, solves this
problem by letting you run Turbo Debugger on one system and
the program you are debugging on another system.

In this appendix, we'll look at how to debug very large programs
by using a second PC connected to your main PC.

Of course, you're probably wondering, "Why use remote de­
bugging?" As an example, if the program you want to debug
won't load under Turbo Debugger, you're a candidate for remote
debugging. If you get the message "Not enough memory to load
symbol table," or the message ''Not enough memory" when you
attempt to load a program to debug, you may want to consider
remote debugging.

Sometimes, your program will load properly under Turbo
Debugger, but there may not be enough memory left for it to
operate properly. This is another situation where you may want
to use remote debugging.

If you're experiencing memory problems debugging a program
and your system has EMS memory, make sure you're using EMS
it for symbol tables. Usually, Turbo Debugger does this automati-

Appendix E, Remote debugging 295

cally. You can use the configuration utility (TDINST) to control
whether Turbo Debugger uses EMS for symbol tables. You can
use TDREMOTE to debug TSRs and device drivers that can't be
debugged on a single machine.

Setting up a remote debugging system

In order to use the remote debugging facility, you'll need the
following equipment:

• a development system with a serial port
• another PC with a serial port and enough memory and disk

space to hold the program you want to debug

• a "null modem" or "printer" cable to connect the two systems

Make sure that the cable you use to connect the two systems is set
up properly. You can't use a "straight through" extension-type
cable. The cable must, at the very least, swap the transmit and
receive data lines. (A good computer store should be able to sell
you what you need.)

Once you have procured a suitable cable, use it to connect the two
serial ports. This completes the hard ware setup required for the
remote link.

Remote software installation

296

Copy the remote debugging driver TDREMOTE.EXE onto the
remote system. You must also put on the remote system any files
required by the program you are debugging. This includes data
input files, configuration files, help files, and so on.

You can put files on the remote system by using floppy disks, or
you can use the TDRF remote file transfer utility described in the
disk-based documentation for the Turbo Debugger utilities.

You can, if you want, put a copy of the program you want to
debug onto the remote system. This is not essential, since Turbo
Debugger will send it over the remote link if necessary.

Turbo Debugger User's Guide

Starting the
remote link When you start the TDREMOTE driver program on the remote

system, make sure that your current directory is set where you
want it. This is important because TDREMOTE puts the program
you are going to debug into the current directory at the time
TDREMOTE was started.

Starting Turbo
Debugger on the

remote link

Before starting TDREMOTE, determine whether your serial port
on the remote system is set up as COMI or COM2. If your serial
port is set up as COMl, start up TDREMOTE by typing

TDREMOTE -rpl -rs3

If your serial port is set up as COM2, start up TDREMOTE by
typing

TDREMOTE -rp2 -rs3

Both of these commands start the remote link at its maximum
speed (115 Kbaud). This will work with most PCs anq. cable
setups. Later, we'll tell you how to start the link at a slower speed
if you experience communication difficulties.

TDREMOTE will sign on with a copyright message and indicate
that it is waiting for yo~ to start Turbo pebugger on the other end
of the link. If you want to stop and return to OOS, just press etr/-
Break. '

To start Turbo Debugger using the remote link, add the following
options to the command line you use to start Turbo Debugger
from DOS:

Ell For serial port COM1: -rpl -rs3

II For serial port COM2: -rp2 -rs3

When the link is successfully started, the message "Turbo
Debugger online" appears on the remote system, and the message
"TDREMOTE online" appears on the Turbo Debugger screen.
This will be quickly replaced with Turbo Debugger's normal
window display.

Notice that both Turbo Debugger and TDREMOTE use the same
command-line options to set the speed and serial port. Both Turbo

Appendix E. Remote debugging 297

About loading the pro­
gram to the remote

system

TDREMOTE

Debugger and TDREMOTE must be set to the same speed (-rs
option) to work properly.

Turbo Debugger also has the -r command-line option, which
indicates to start the remote link using the default speed and
serial port. Unless you've changed the defaults using TDINST,-r
specifies COM1 at 115,000 baud (the fastest baud speed.)

Here's a typical Turbo Debugger command line to start the remote
link:

td -rs3 myprog

This begins the link on the default serial port (usually COMl) at
the highest link speed (115 Kbaud), and loads the program myprog
into the remote system if it's not already there.

Turbo Debugger is smart about loading the program onto the
remote system. It looks at the date and time of the copy of the
program on the local system and the remote system. If the local
copy is later than the remote copy, it presumes you've recompiled
or linked the program and sends it over the link at the highest
link speed; this happens at a rate of about 11K/second. This
means a typical60K program will take about 6 seconds to transfer,
so don't be alarmed if there's a delay when you want to load a
new program.

To indicate that something's happening, the screen on the remote
system counts up the bytes of the file as they are transferred.

command-line Here is a complete list of all the command-line options supported
options by TDREMOTE. You can start an option with either a hyphen (-)

or a slash (/).

298

-? or-h

-rp1
-rp2

-rs1
-rs2
-rs3

Displays a help screen

Port 1 (COM1); default
Port 2 (COM2)

Slow speed, 9600 baud
Medium speed, 40,000 baud
High speed, 115,000 baud (default)

-w Writes options to executable program file

If you start TDREMOTE with no command-line options, it uses
the default port and speed built into the executable program file

Turbo Debugger User's Guide

(COM1 and 115,000 baud), unless you have changed them with
the -w option.

You can make the TDREMOTE command-line options permanent
by writing them back into the TDREMOTE executable program
file on disk. Do this by specifying the -w command-line option
along with the other options that you want to make permanent.
You are then prompted for the name of the executable program.
You can enter a new executable file name that does not already
exist. TDREMOTE will create the new executable file.

Note: For a list of all the command-line options available for
TDREMOTE, enter the program name followed by -h:

TDREMOTE -h

If you are running on DOS 3.0 or later, the prompt indicates the
path and file name that you executed TDREMOTE from. You can
accept this name by pressing Enter, or you can enter a new
executable file name. The new name must already exist and be a
copy of the TDREMOTE program that you have already made.

If you are running on a DOS 2.0, you'll have to supply the full
path and file name of the executable program.

Remote debugging sessions

Once you've started TDREMOTE and Turbo Debugger in remote
mode, you can debug your program much as if you were doing it
on a single system. Turbo Debugger commands work exactly as
usual; there is nothing new to learn.

Remember that since the program you are debugging is actually
running on the remote system, any screen output or keyboard
input to the program happens on the remote system. The
Window I User Screen command has no effect when you are
running on the remote link.

The CPU type of the remote system appears as part of the CPU
window title, with the word "REMOTE" before it.

If you want to send files over to the remote system while you are
running Turbo Debugger, you can go to DOS using the File I DOS
Shell command and then use the TDRF utility to perform file
maintenance activities on the remote system. You can then return
to Turbo Debugger by typing EXIT at the DOS prompt and

Appendix E, Remote debugging 299

300

TDREMOTE

continue debugging your program. TDRF is described in the
disk-based documentation for Turbo Debugger utilities.

messages Here is a list of the ,messages you might receive when you're
working with TDREMOTE.

nn bytes downloaded
A file is being sent to the remote system. This message shows the
progress of the file transfer. At the highest link speed (115,000
baud), transfer speed is about 10K per second.

Can't create file
TDREMOTE can't create a file that needs to be sent to it. This can
happen either if the disk is full, or the file name already exists as a
directory.

Can't modify exe file
The file name you specified to modify is not a valid copy of the
TDREMOTE utility. You can only modify a copy of the
TDREMOTE utility with the -w option.

Can't open exe file to modify
The file name you specified to be modified can't be opened. You
have probably entered an invalid or nonexistent file name.

Download complete
A file has bee? successfully sent to TDREMOTE.

Download failed, write error on disk
TDREMOTE can't write part of a received file to disk. This usually
happens when the disk fills up. You will have to delete some files
before the file can be successfully downloaded.

Enter program file name to modify
II you are running on OOS 3.0 or later, the prompt will indicate
the path and file name that you executed TDREMOTE from. You
can accept this name by pressing Enter, or you can enter a new
executable file name. The new name must already exist and be a
copy of the TDREMOTE program that you have already made.

If you're running DOS 2.0, you will have to supply the full path
and file name of the executable program.

Interrupted
You have pressed Ctrl-Breakwhile waiting for communications to
be established with the other system.

Turbo Debugger User's Guide

Invalid command-line option
You have given an invalid command-line option when starting
TDRF from the 005 command line.

Link broken
The program communicating with TDREMOTE has stopped and
returned to DOS.

Link established
A program on the other system has just started to communicate
with TDREMOTE.

Loading program "name" from disk
Turbo Debugger has told TDREMOTE to load a program from
disk into memory in preparation for debugging it.

Program load failed, EXEC failure
DOS could not load the program into memory. This can happen if
the program has become corrupted or truncated. You should
delete the program file from disk to force Turbo Debugger to send
a new copy over the link. If this message happens again after
deleting the file, you should relink it on the other system and try
again.

Program load failed; not enough memory
The remote system does not have enough free memory to load the
program that you want to debug. This won't happen except with
very large programs, since TDREMOTE takes only about 15K of
memory.

Program load failed; program not found
TDREMOTE could not find the program on its disk. This should
never happen because Turbo Debugger downloads the program
to the remote system if it can't find it.

Program load successful
TDREMOTE has finished loading the program Turbo Debugger
wants to debug.

Reading file "name" from Turbo Debugger
A file is being sent to Turbo Debugger.

Unknown request: message
TDREMOTE has received an invalid request from the other
system. This message should never occur if the link is working
properly. If you get this message, check that the link cable is in
good working order, and if you still keep getting this error, try
reducing the link speed by using the -rs command-line option.

Appendix E, Remote debugging 301

Waiting for handshake (press Ctrl-Break to quit)
TDREMOTE has been started and is waiting for a program on the
other system to start talking to it. If you want to return to DOS
before the other system initiates communication, press the
GIrl-Break key combination.

Getting it all to work

302

Since the remote debugging setup involves two different
computers and a cable going between them, there's a chance
you'll run into some difficulty getting everything to work
together.

If you do experience any problems, first check your cable hook­
ups. Next, try running the link at the slowest speed by using the
-rs1 command-line option when starting up both TDREMOTE
and Turbo Debugger. If it works okay using -rs1, try -rs2 (the
middle speed). Some hard ware and cable combinations don't
always work properly at the highest speed, so if you can only get
it to work at a lower speed, you might want to try a different
cable or different computers.

Turbo Debugger User's Guide

A p p E N D x

F

Dialog boxes and error messages

Dialog boxes

Turbo Debugger displays error messages and dialog boxes at the
current cursor location. This chapter describes the dialog boxes
and error and information messages Turbo Debugger generates.

We tell you how to respond to both dialog boxes and error
messages. All the dialog boxes and error messages (including the
startup fatal error messages) are listed in alphabetical order, with
a description provided for each one.

Turbo Debugger displays a dialog box when you must supply
additional information to complete a command. The title of the
dialog box describes the information that's needed. The contents
may show a history list (previous responses) that you have given.

You can respond to a dialog box in one of two ways:

• Enter a response and accept it by pressing Enter .
• Press Esc to cancel the dialog box and return to the menu

command that preceded the dialog box.

Some dialog boxes only present a choice between two items (like
Yes/No). You can use Tab to select the choice you want and then
press Enter, or press Yor N directly. Cancel the command by press­
ing Esc.

Appendix F, Dialog boxes and error messages 303

304

For a more complete discussion of the keystroke commands to use
when a dialog box is active, refer to Chapter 2.

Here's an alphabetical list of all the messages generated by dialog
boxes:

Already recording, do you want to abort?
You are already recording a keystroke macro. You can't start
recording another keystroke macro until you finish the current
one. Press Y to stop recording the macro; N to continue recording
the macro.

Device error - Retry?
An error has occurred while writing to a character device, such as
the printer. This could be caused by the printer being unplugged,
offline, or out of paper. Correct the condition and then press Y to
retry or N to cancel the operation.

Disk error on drive _ - Retry?
A hard error has occurred while accessing the indicated drive.
This may mean you don't have a floppy disk in the drive or, in the
case of a hard disk, it may indicate an unreadable or unwritable
portion of the disk. You can press Y to see if a retry will help;
otherwise, press N to cancel the operation.

Edit watch expression
Modify or replace the watch expression. The dialog box is
initialized to the currently highlighted watch expression.

Enter address, count, byte value
Enter the address of the block of memory you want to set to a
particular byte value, then the number of bytes you want to set,
followed by the value to fill the block with.

Enter address to position to
Enter the address you want to view in your program. You can
enter a function name, a line number, an absolute address, or a
memory pointer expression. See Chapter 9 for more on entering
addresses.

Enter animate delay (10ths of sec)
Specify how fast you want the Animate command to proceed. The
higher the number, the longer between successive steps during
animation.

Enter code address to execute to
Enter the address in your program where you want execution to
stop. See Chapter 9 for more information on entering addresses.

Turbo Debugger User's Guide

Enter command-line arguments
Enter the command-line parameters for the program you're
debugging.

Enter comment to add to end of log
Enter an arbitrary line of text to add to the messages displayed by
the Log window. You can enter any text you want; it will be
placed in the log exactly as you type it.

Enter expression for conditional breakpoint
Enter an expression that must be true (nonzero) in order for the
breakpoint to be triggered. This expression will be evaluated each
time the breakpoint is encountered as your program executes. Be
careful about any side effects it may have.

Enter expression to evaluate
Enter an expression whose value you want to know. The value
and type of the result will be displayed in an error-type window,
which disappears once the next keystroke is pressed.

Enter expression to watch
Enter a variable name or expression whose value you want to
watch in the Watches window. If you want, you can enter an
expression that does not refer to a memory location, such as x * y
+ 4). If the dialog box is initialized from a text pane, you can
accept the entry by pressing Enter, or change it and enter some­
thing else entirely.

Enter Inspect start Index, range
Enter the index of the first item in the array you want to view,
followed by the number of items you want to view. Separate the
two scalars by a space or a comma (,).

Enter instruction to assemble
Enter an assembler instruction to replace the one at the current
address in the Code pane. Appendix C has a condensed listing of
all assembler keywords, and Chapter 11 discusses the assembler
language in more detail.

Enter log file name
Enter the name of the file you want to write the log to. Until you
issue a Close Log File command, all lines sent to the log will be
written to the file, as well as displayed in the window. The default
file name has the extension .LOG and is the same file name as the
program you are debugging. You can accept this name by press­
ing Enter, or type a new name instead.

Appendix F, Dialog boxes and error messages 305

306

Enter memory address
En ter a single memory address. You can use a symbol name or a
complete expression.

Enter memory address, count
Enter a memory address, followed by an optional comma and the
number of items. You can use a symbol name or a complete
expression.

Enter name of configuration file
Enter the name of a configuration file to read or write. If you are
reading from a configuration file, you can enter a wildcard mask
and get a list of matching files.

Enter name of file to view
You can use DOS-style wildcards to get a list of file choices, or
you can type a specific file name to load.

Enter new bytes
Enter a byte list that will replace the bytes at the position in the
file marked by the cursor. See Chapter 9 for a complete descrip­
tion of byte lists.

Enter new coprocessor register value
Enter a new value for the currently highlighted numeric
coprocessor register. You can enter a full expression to generate
the new value. The expression will be converted to the correct
floating-point format before being loaded into the register.

Enter new data bytes
Enter a byte list to replace the bytes at the position in the segment
marked by the cursor. See Chapter 9 for a complete description of
byte lists.

Enter new directory
Enter the new drive or directory name that you want to become
the current drive and directory.

Enter new file offset
You are viewing a disk file as hexadecimal data bytes. Enter the
offset from the start of the file where you want to view the data
bytes. The file will be positioned at the line that contains the offset
you specified.

Enter new line number
Enter the line number you want to see in the current module. If
you enter a line number that is past the end of the file, you'll see
the last line in the file. Line numbers start at 1 for the first line in

Turbo Debugger User's Guide

the file. The current line number that the cursor is on is shown as
the first line of the Module window.

Enter new relocation segment value
Enter an expression in the current language. This value will be
used to set the base segment address of a symbol table that you
loaded with the File I Symbol Load command. The expression that
you enter should evaluate to the segment number of the start of
the code for which the symbol table applies.

Enter new value
Enter a new value for the currently highlighted CPU register. You
can enter a full expression to form the new value.

Enter port number
Enter the I/O port number you want to read from; valid port
numbers are from 0 to 65,535.

Enter port number, value to output
Enter the I/O port number you want to write to, and the value to
write; separate the two expressions with a comma. Valid port
numbers are from 0 to 65,535.

Enter program name to load
Enter the name of a program to debug. You can use DOS-style
wildcards to get a list of file choices, or you can type a specific file
name to load. If you do not supply an extension to the file name,
.EXE will be appended.

Enter read file name
Enter a file name or a wildcard specification for the file you want
to read into memory. If you supply a wildcard specification or
accept the default *.*, a list of matching files will be displayed for
you to select from.

Enter search bytes
Enter a byte list to search for starting at the position in memory
marked by the cursor. See Chapter 9 for a complete description of
byte lists.

Enter search instruction or bytes
Enter an instruction, as you would for the Assemble local menu
command, or enter a byte list as you would for a Search com­
mand in a Data pane.

Enter search string
Enter a character string to search for. You can use a simple wild­
card matching facility to specify an inexact search string; for

Appendix F, Dialog boxes and error messages 307

308

example, use'" to match zero or more of any characters, and? to
match any single character.

Enter source address, destination, count
Enter the address of the block you want to move, the number of
bytes to move, and the address you want to move them to.
Separate the three expressions with commas.

Enter source directory path
Enter a list of directories, separated by spaces or semicolons (;).
These directories will be searched, in the order that they appear in
this list, for your source files.

Enter symbol table name
Enter the name of a symbol table to load from disk. Usually these
files have an extension of .IDS. You must explicitly supply the
file-name extension.

Enter tab column spacing
Enter a number between 1 and 32 that specifies how far apart tab
columns will be when Turbo Debugger displays files in a File or
Module window.

Enter variable to Inspect
Enter the name of a variable or expression whose contents you
want to examine. If the dialog box is initialized from a text pane,
you can accept the entry by pressing Enter or change it and enter
something else.

Enter write file name
Enter the name of the file you want to write the block of memory
to.

Overwrite ?
You have specified a file name to write to that already exists. You
can choose to overwrite the file, replacing its previous contents, or
you can cancel the command and leave the previous file intact.

Overwrite existing macro on selected key?
You have pressed a key to record a macro, and that key already
has a macro assigned to it. If you want to overwrite the existing
macro, press Y; otherwise, press N to cancel the command.

Pick a method name
You have specified a routine name that can refer to more than one
method in an object. Pick the correct one from the list presented.

Turbo Debugger User's Guide

Pick a module
Select a module name to view in the Module window. You are
presented with a list of all the modules in your program. If you
want to view a file that is not a program module, use the View I
File menu command.

Pick a source file
Select a source file from the list displayed; only the source files
that make up the current module are shown.

Pick a symbol
Pick a symbol from the list of displayed symbols. You can start to
type a name, and you will be positioned to the first symbol, start­
ing with what you have typed so far.

Pick a window
Pick a window from the list of active window titles.

Press key to assign macro to
Press the key that you want to assign the macro to. Then, press
the keys to do the command sequence that you want to assign to
the macro key. The command sequence will actually be per­
formed as you type it. To end the macro recording sequence,
press the key you assigned the macro to. This macro will be
recorded on disk along with any other keystroke macros.

Press key to delete macro from
Press the key for the macro that you want to delete. The key will
then be returned to its original pre-macro function.

Program already terminated, reload?
You have attempted to run or step your program after it has
already terminated. If you choose Y, your program will be
reloaded. If you choose N, your program will not be reloaded, and
your run or step command will not be executed.

Program out of date on remote; send over link?
You are running Turbo Debugger over the remote link, and the
program you want to debug is either not on the remote system or
it is older than the version on the main system. If you respond Y,
the new program will be sent over the remote link. If you respond
N, the load command will be aborted. If you are running at the
slowest remote speed, you may want to copy the program to the
remote system manually by using a floppy disk. At the highest
link speed, the data transfer rate is at least as fast as using a
floppy disk.

Appendix F, Dialog boxes and error messages 309

Error messages

Fatal errors

310

Reload program so arguments take effect?
You have just changed the command-line arguments for the pro­
gram you're debugging. If you type Y, your program will be
reloaded and set back to the start. You usually want to do this
after changing the arguments because programs written in many
Borland languages only look at their arguments once-just as the
program is loaded. Any subsequent changes to the program
arguments won't be noticed until the program is restarted.

Turbo Debugger uses error messages to tell you about things you
haven't quite expected. Sometimes the command you have issued
cannot be processed. At other times the message warns that
things didn't go exactly as you wanted.

Error messages are normally accompanied by a beep. You can
turn off the beep in the customization program, TDINST.

All fatal errors cause Turbo Debugger to quit and return to DOS.
Some fatal errors are the result of trying to start Turbo Debugger
from DOS. A few others occur if something unrecoverable
happens while you are using the debugger. In either case, after
having solved the problem, your only remedy is to restart Turbo
Debugger from the 005 prompt.

Bad configuration file
The configuration file is either corrupted or not a Turbo Debugger
configuration file.

Could not create dummy PSP segment
When starting the TD386 virtual debugger with no program to
load, the dummy program could not be created. Try starting
TD386 with a program to debug.

Fatal EMS Error
The EMS memory driver returned an unrecoverable error indi­
cation. Either your EMS hardware is malfunctioning, or the
software driver has become corrupted. Reboot your system and
try again. If the problem persists, it's probably a problem with
your EMS hardware.

Turbo Debugger User's Guide

Other error
messages

Invalid switch:
You supplied an invalid option switch on the DOS command line.
Appendix A has an abbreviated list of all command-line switches,
and Chapter 4 discusses each one in detail.

Not enough memory
Turbo Debugger ran out of working memory while loading.

Old configuration file
You have attempted to start Turbo Debugger with a configuration
file for a previous version. You must create new configuration
files for this version of Turbo Debugger.

Remote link timeout
The connection to the remote system has been disrupted. Try
rebooting both systems and starting again. If the problem persists,
refer to Appendix E, where debugging on a remote system is
discussed.

Unsupported video adapter
Turbo Debugger can't determine what display adapter you are
using; MDA, CGA, EGA, VGA, MCGA, Hercules, Compaq
composite, AT&T, and close compatibles are supported.

Wrong version of TDREMOTE
You have an incompatible version of TDREMOTE running on the
remote system. You must use the same release of Turbo Debugger
and TDREMOTE together.

')' expected
While evaluating an expression, a right parenthesis was found to
be missing. This happens if a correctly formed expression starts
with a left parenthesis and does not end with a matching right
one. For example,

3 * (7 + 4

should have been

3 * (7 + 4)

I:' expected
While evaluating a C expression, a question mark (?) separating
the first two expressions of the ternary ?: operator was encoun­
tered; however, no matching: (colon) to separate the second and
third expressions was found. For example,

Appendix F, Dialog boxes and error messages 311

312

x < 0 ? 4 6

should have been

x < 0 ? 4 : 6

']' expected
While evaluating an expression, a left bracket ([) starting an array
index expression was encountered without a matching right
bracket (]) to end the index expression. For example,

table[4

should have been

table[4]

This error can also occur when entering an assembler instruction
using the built-in assembler. In this case, a left bracket was en­
countered that introduced a base or index register memory access,
and there was no corresponding right bracket. For example,

movax,4[si

should have been

movax,4[sij

Already logging to a file
You issued an Open Log File command after having already
issued the same command without an intervening Close Log File
command. If you want to log to a different file, first close the
current log by issuing the Close Log File command.

Ambiguous symbol name
You have entered a symbol name in an expression that does not
uniquely identify a method in a C++ or object Pascal program,
and you have chosen not to pick the correct symbol from a list.
You must pick the proper symbol from the list presented before
your expression can be evaluated.

Assignment out of range
When doing a Pascal assignment, you have attempted to assign a
value to a variable that is beyond the range of legal values for the
variable.

Bad configuration file name
You have specified a nonexistent file name with the -c
command-line option.

Turbo Debugger User's Guide

Cannot be changed
You tried to change a symbol that can't be changed. The only
symbols that can be changed directly are scalars (lnt, long, and so
forth in C; Byte, Integer, Longint, and Strings in Pascal) and
pointers and strings in Pascal. If you want to change a structure or
array, you must change individual elements one at a time.

Can't execute DOS command processor
Either there was not enough memory to execute the DOS
command processor, or the command processor could not be
found. Make sure that the COMSPEC environment variable
correctly specifies where to find the DOS command processor.

Can't go resident until user program terminates
You have attempted to make Turbo Debugger residen t before the
program you are debugging has gone resident itself. Turbo
Debugger can go resident only when there is no program loaded
or when the loaded program has run and terminated.

Can't have more than one segment override
You attempted to assemble an instruction where both operands
have a segment override. Only one operand can have a segment
override. For example,

moyes:[bx],ds:ax

should have been

moy es: [bx] , ax

Can't set a breakpoint at this address
You tried to set a breakpoint in ROM, nonexistent memory, or in
segment O. The only way to view a program executing in ROM is
to use the Run I Trace Into command to watch it one instruction at
a time.

Can't set any more hardware breakpoints
You can't set another hardware breakpoint without first deleting
one you have already set. Different hardware debuggers support
different numbers and types of hardware breakpoints.

Can't set hardware condition on this breakpoint
You have attempted to set a hardware condition on a breakpoint
that is not a global breakpoint. Hardware conditions can only be
set on global breakpoints.

Can't set that sort of hardware breakpoint
The hardw~re device driver that you have installed in your
CONFIG.SYS file can't do a hardware breakpoint with the

Appendix F, Dialog boxes and error messages 313

314

combination of cycle type, address match, and data match that
you have specified.

Can't swap user program to disk
You issued a command that required the program being debug­
ged to be written to disk, but there is no room on your current
disk to write it. You will have to make some space on your disk
before issuing any commands that require the program to be
swapped. The File I DOS Shell and Edit commands in text panes
both require the program to be swapped.

Can't use same register twice
You attempted to assemble an instruction that use~ a base or
index register twice in the same memory operand. You can only
use a register once in any operand. For example,

mov ax, [bxtbx]

should have been

mov ax, [bxtsi]

Cannot access an Inactive scope
You entered an expression or pointed to a variable in a Module
window that is not in an active function. Variables in inactive
functions do not have a defined value, so you can't use them in
expressions or look at their values.

Constructors and destructors cannot be called
This error message appears only if you are debugging a program
that uses objects. You probably tried to evaluate an object method
that's either a constructor or a destructor. This is not allowed.

Destination too far away
You attempted to assemble a conditional jump instruction where
the target address is too far from the current address. The target
for a conditional jump instruction must be within -128 and 127
bytes of the instruction itself.

Divide by zero
You entered an expression using the divide (I, dlv) or modulus
operators (mod, %) that had on its right side an expression that
evaluated to zero. Since the divide and modulus operators do not
have defined values in this case, an error message is issued.

Edit program not specified
You tried to use the Edit local menu command from a Module or
Disk File window, but you did not specify an editor startup com­
mand by using the installation program.

Turbo Debugger User's Guide

Error loading program
DOS was not able to load the program you specified. This could
mean the file you specified is not a valid .EXE file, or that the .EXE
file has been corrupted.

Error opening file _
Turbo Debugger couldn't open the file that you want to look at in
the File window.

Error opening log file_
The file name you supplied for the Open Log File local menu
command can't be opened. Either there is not enough room to
create the file, or the disk, directory path, or file name you
specified is invalid. Either make room for the file by deleting
some files from your disk, or supply a correct disk, path, and file
name.

Error reading block into memory
The block you specified could not be read from the file into
memory. You probably specified a byte count that exceeded the
number of bytes in the file.

Error recording keystroke macros
An error occurred while writing the recorded macro keystrokes to
the configuration file. The macro was probably not recorded to
disk.

Error saving configuration
Turbo Debugger could not write your configuration to disk. Make
sure that there is some free space on your disk.

Error swapping in user program, press key to reload
After swapping your program to disk to execute another program
that you specified, Turbo Debugger is unable to reload your pro­
gram. This most likely means that you accidentally deleted the
disk file that your program was swapped to (SWAP.$$$). The
only thing that the debugger can do is to reload your program
exactly as if you had issued the File I Open menu command.

Error writing block to disk
The block that you specified could not be written to the file that
you specified. You probably specified a count that exceeded the
amount of free file space available on the disk.

Error writing log file
An error occurred while writing to the log file collecting the
output from the log window. Your disk is probably full.

Appendix F, Dialog boxes and error messages 315

316

Error writing to file
Turbo Debugger could not write your changes back to the file.
The file may be marked as read-only, or a hard error may have
occurred while writing to disk.

Expression a~cesses more than one scope
In conjunction with a breakpoint, you entered an expression that
contains references to variables from too many scopes. In Pascal,
you can reference local variables and parameters, globals, and
locals from an outer subprogram (if the breakpoint is in a nested
procedure or function). In C, you can reference function autos,
module statics, and program globals, but not autos from more
than one function.

E;xpresslon too complex
The expression you supplied is too complicated; you must supply
an expression that has fewer operators and operands. You can
have up to 64 operators and operands in an expression. Examples
of operands are constants and variable names. Examples of
operators are plus (+), assignment (= or :=), structure member
selection (-», and set membership (In).

J:xpresslon with side effects not permitted
You have entered an expression that modifies a memory location
when it gets evaluated. You can't enter this type of expression
whenever Turbo Debugger might need to repeatedly evaluate an
expression, such as when it is in an Inspector window or Watches
window.

Extra Input after expression
You entered an expression that was valid, but there was more text
after the valid expression. This sometimes indicates that you omit­
ted an operator in your expression. For example,

3 * 4 + 5 2

should have been

3 * 4 + 5 / 2

Another example,

add ax,4 5

should have been

add ax,45

Turbo Debugger User's Guide

You could also have entered a number in the wrong syntax for the
language you are using, for example, OxFOOO instead of OFOOOh
when you are in assembler mode.

Help file _ not found
You asked for help but the disk file that contains the help screens
could not be found. Make sure that the help file is in the same
directory as the debugger program.

Illegal procedure or function call
You have attempted to evaluate a function at a time when you
can't do so. This can happen in one of three circumstances:

II You are attempting to call a function that is in a Pascal overlay.
ri1 You are attempting to call a function while your current

program location is in a Pascal overlay.
Il You are attempting to call an Object Pascal method that has

been removed by the Turbo Pascal smart linker.

Immediate operand out of range
You entered an instruction that had a byte-sized operand com­
bined with an immediate operand that is too large to fit in a byte.
For example,

add BYTE PTR[bx],300

should have been

add WORD PTR[bx],300

Initialization not complete
You have attempted to access a variable in your program before
the data segment has been set up properly by the compiler's
initialization code. You must let the compiler initialization code
execute to the start of your source code before you can access
most program variables.

Invalid argument list
The expression you entered contains a procedure or function call
that does not have a correctly formed argument list. An argument
list starts with a left parenthesis, has zero or more comma-sepa­
rated expressions for arguments, and ends with a right paren­
thesis. Note that Turbo Debugger requires empty parentheses to
call a parameterless Pascal function or procedure. For example,

rnyfunc (1, 2 3)

should have been

Appendix F, Dialog boxes and error messages

318

myfunc(1,2,3)

or

myfunc ()

Invalid character constant
The expression you entered contains a badly formed character
constant. A character constant consists of a single quote character
(') followed by a single character, ending with another single
quote character. For example,

'A = 'a'

should have been

'A' = 'a'

Invalid far address
When entering an instruction to assemble, you supplied a badly
formed far address for the target of a JMP or CALL instruction. A
far address consists of a pair of hex numbers separated by a colon.
For example,

JMP 1234:XYZ

should have been

JMP 1234:1000

Invalid format string
You have entered a format control string after an expression, but
it is not a valid format control string. See Chapter 9 for a
description of format strings.

Invalid function parameters
You have attempted to call a function in an expression, but you
have not supplied the proper parameters to the function call.

Invalid instruction
You entered an instruction to assemble that had a valid instruc­
tion mnemonic, but the operand you supplied is not allowed. This
usually happens if you attempt to assemble a POP CS instruction.

Invalid instruction mnemonic
When entering an instruction to be assembled, you failed to
supply an instruction mnemonic. An instruction consists of an
instruction mnemonic followed by optional arguments. For
example,

AX, 123

Turbo Debugger User's Guide

should have been

MOVax,123

Invalid operand separator
You entered an instruction to assemble but didn't separate the
operands with a comma. If an instruction has more than one
operand, you must always use a comma between the operands.
For example,

ADD ax 12

should have been

ADD ax,12

Invalid operand(s)
The instruction you are trying to assemble has one or more oper­
ands that are not allowed. For example, a MOV instruction cannot
have two operands that reference memory, and some instructions
only work on word-sized operands. For example,

POP al

should have been

POP ax

Invalid operator/data combination
You have entered an expression where an operator has been given
an operand that can't have the selected operation performed on it.
For example, you attempt to multiply a constant by the address of
a function in your program.

Invalid pass count entered
You have entered a breakpoint pass count that is not between 1
and 65,535. You can't set a pass count ofD. While your code is
running, a pass count of 1 means that the breakpoint is eligible to
be triggered the first time it is encountered.

Invalid register
You entered an invalid floating-point register as part of an
instruction being assembled. A floating-point register consists of
the letters ST, optionally followed by a number between D and 7
within parentheses; for example, ST or ST(4).

Invalid register combination in address expression
When entering an instruction to assemble, you supplied an oper­
and that did not contain one of the permitted combinations of
base and index registers. An address expression can contain a

Appendix F, Dialog boxes and error messages 319

320

base register, an index register, or one of each. The base registers
are BX and BP, and the index registers are 51 and DI. Here are the
valid address register combinations:

BX BX+Sl
BP BP+Sl
01 BX+Ol
Sl BP+Ol

Invalid register In address expression
You entered an instruction to assemble that tried to use an invalid
register as part of a memory address expression between brackets
([D. You can only use the BX, BP, 51, and DI registers in address
expressions.

Invalid symbol In operand
When entering an instruction to assemble, you started an operand
with a character that can never be used to start an operand, for
example, the colon (:).

Invalid typecast
You entered a expression that contained an incorrectly fonned
typecast. A correct C cast starts with a left parenthesis, contains a
possibly complex data type declaration (excluding the variable
name), and ends with a right parenthesis. For example,

(x *) p

should have been

(struct x *)p

A correct Pascal typecast starts with a known data type, then a left
parenthesis, then an expression, then ends with a right
parenthesis. For example,

Longint(p)

or

Word(p")

Invalid value entered
When prompted to enter a memory address, you supplied a float­
ing-point value instead of an integer value.

Keyword not a symbol (C and assembler only)
The C expression you entered contains a keyword where a
variable name was expected. You can only use keywords as part

Turbo Debugger User's Guide

of typecast operations, with the exception of the slzeof special
operator. For example,

float val = char charval

should have been

floatval = (char)charval

Left side not a record, structure, or union
You entered an expression that used one of the C structure
member selectors (. or -» or the Pascal record field qualifier (.).
This symbol, however, was not preceded by a recorc:i or structure
name, nor was it preceded by a pointer to a record or structure.

No coprocessor or emulator Installed
You tried to create a Numeric Processor window using the View I
Numeric Processor command, but there is no numeric processor
chip installed on your system, nor does the program you're
debugging use the software emulator. Or the emulator has not
been initialized.

No hardware debugging available
You have tried to set a breakpoint that requires hardware
debugging support, but you don't have a hardware debugging
device driver installed. You can also get this error if your hard­
ware debugging device driver does not find the hardware it
needs.

No help for this context
You pressed F1 to get help, but Turbo Debugger could not find a
relevant help screen. Please report this to Borland technical
support.

No modules with line number Information
You have used the View I Module command, but Turbo Debugger
can't find any modules with enough debug information in them
to let you look at any source modules. This message usually
happens when you're debugging a program without a symbol
table. See the "Program has no symbol table" error message entry
on page 325 for more information on symbol tables.

N~ previous search expression
You attempted to perform a Next command from the local menu
of a text pane, but you had not previously issued a Search com­
mand to specify what to search for. You can only use Next after
issl.}~g a Search command in a pane.

Appendix F, Dialog boxes and e"or messages 321

322

No program loaded
You attempted to issue a command that requires a program to be
loaded. There are many commands that can only be issued when
a program is loaded. For example, none of the commands in the
Run menu can be performed without having a program loaded.
Use the File I Open command to load a program before issuing
these commands.

No source file for module
No source file can be found for the module you want to view. If
the source file is not in the current directory, you can use the
Options I Path for Source command to specify which directory
your source file(s) are in.

No type Information for this symbol
You have entered an expression that contains a program variable
name without debug information attached to it. This can happen
when the variable is in a module compiled without the correct
debug information being generated. You can supply type infor­
mation by preceding the variable name with a typecast expression
to indicate its data type.

Not a function name
You have entered an expression that contains a function call, but
the name preceding the left parenthesis introducing the function
call is not a function name. Any time a parenthesis immediately
follows a name, the expression parser presumes that you intend it
to be a function call.

Not a memory referencing expression
, memory areas and
You have entered an expression that does not refer to a memory
location. There are many cases where the expression must refer­
ence a memory location, not just return a value. For example, the
Data I Inspect command requires that the data item you inspect be
a memory area, not just an expression with a result. For example,

3 * 4 < (9 - 1)

does not reference memory, but

myarray [4]

does reference a memory loea tion.

Not an Object Pascal or C++ program

Turbo Debugger User's Guide

Your program is not an object Pascal or C++ program, so it does
not contain any objects; therefore, command you selected cannot
be performed.

Not a record, structure, or union member
You entered an expression that used one of the C structure
member selectors (. or -» or the Pascal record field qualifier (.).
This symbol, however, was not preceded by a record or structure
name, nor was it preceded by a pointer to a record or structure.

Not enough memory for selected operation
You issued a command that needed to create a window, but there
is not enough memory left for the new window. You must first
remove or reduce the size of some of your windows before you
can reissue the command.

Not enough memory to load program
Your program's symbol table has been successfully loaded into
memory, but there is not enough memory left to load your pro­
gram. If your system has EMS memory, make sure that Turbo
Debugger is set to use it for the symbol table. You can use
TDINST to set it.

If you don't have EMS or your program doesn't load even with
EMS, you can hook two systems together and run Turbo
Debugger on one system and the program you're debugging on
the other. See Appendix E for more information on how to do this.
Or consider using TD286 protected -mode or TD386 virtual
debugging. See Chapters 15 and 16 for more information.

Not enough memory to load symbol table
There is not enough room to load your program's symbol table
into memory. The symbol table contains the information that
Turbo Debugger uses when showing you your source code and
program variables. If you have any resident utilities consuming
memory, you may want to remove them and then restart Turbo
Debugger. You can also try making the symbol table smaller by
having the compiler only generate debug information for those
modules you are interested in debugging. If you're using TD386,
try the -f option to force TD to emulate expanded memory. See
Chapter15 for details.

When this message is issued, your program itself has not even
been loaded. This means you must free enough memory for the
symbol table and your program.

Appendix F, Dialog boxes and error messages 323

324

Only one operand size allowed
You entered an instruction to assemble that had more than one
size indicator. Once you have set the size of an operand, you can't
change it. For example,

rnov WORD PTR BYTE PTR[bx],l

should have been

rnov BYTE PTR[bx],l

Operand must be memory location
You entered an expression that contained a subexpression that
should have referenced a memory location but did not. Some
things that must reference memory include the assignment
operators (=, +=, and so on) and the increment and decrement (++
and - -) operators.

Operand size unknown
You entered an instruction to assemble, but did not specify the
size of the operand. Some instructions that can act on bytes or
words require you to specify which size to use if it cannot be
deduced from the operands. For example,

add [bx],l

should have been

add BYTE PTR[bx],l

Overlay not loaded
You've tried to set a pane in the CPU window to a location in your
program that is not presently loaded into memory. You can use a
Module window to examine source code that has not yet been
loaded into memory, but you can't look at the underlying instruc­
tions since they haven't yet been loaded into memory.

Path not found
You entered a drive and directory combination that does not exist.
Check that you have specified the correct drive and that the direc­
tory path is spelled correctly.

Path or file not found
You specified a non-existent or invalid file name or path when
prompted for a file name to load. If you do not know the exact
name of the file you want to load, you can pick the file name from
a list by pressing Enter when the dialog box first appears. The
names in the list that end with a backslash (\) are directories,

Turbo Debugger User's Guide

letting you move up and down the directory tree through the
lists.

Program has invalid symbol table
The symbol table attached to the end of your program has become
corrupted. Re-create an .EXE file and reload it.

Program has no symbol table
The program you want to debug has been successfully loaded,
but it does not contain any debug symbol information. You'll still
be able to step through the program using a CPU window and
examining raw data, but you will not be able to refer to any code
or data by name.

To create a symbol table in Turbo Pascal (5.0 or later), turn on
Debug I Standalone Debugging (or use the Iv command-line
option with TPC.EXE). If you're using Turbo C or Turbo C++, you
must compile with Iv and link your program with TLINK, using
the Iv option, in order to get debug symbol information. If you're
using Turbo Assembler, assemble with Izi and link with Iv.

Program linked with wrong linker version
You are attempting to debug a program with out-of-date debug
information. Relink your program using the latest version of the
linker or recompile it with the latest version of Turbo Pascal.

Program not found
The program name you specified does not exist. Either supply the
correct name or pick the program name from the file list.

Register cannot be used with this operator
You have entered an instruction to assemble that attempts to use a
base or index register as a negative displacement. You can only
use base and index registers as positive offsets. For example,

INC WORD PTR[12-BX]

should have been

INC WORD PTR[12+BX]

Register or displacement expected
You have entered an instruction to assemble that has a badly
formed expression between brackets ([D. You can only put
register names or constant displacement values between the
brackets that form a base-indexed operand.

Appendix F, Dialog boxes and error messages 325

326

Repeat count not allowed
You have entered a format control string that has a repeat count,
but the expression that you are applying it to can't have a repeat
count.

Run out of space for keystroke macros
The macro you are recording has run out of space. You can record
up to 256 keystrokes for all macros.

Search expression not found
The text or bytes that you specified could not be found. The
search starts at the current location in the file, as indicated by the
cursor, and proceeds forward. !fyou want to search the entire file,
press Ctrl-PgUp before issuing the search command.

Source file not found
Turbo Debugger can't find the source file for the module you
want to examine. Before issuing this message, it has looked in
several places:

• where the compiler found it
• in the directories specified by the -sd command-line option and

the Options I Path for Source command

• in the current directory
• in the directory where Turbo Debugger found the program

you're debugging

You should add the directory that contains the source file to the
directory search list by using the Options I Path for Source
command.

Symbol not found
You entered an expression that contains an invalid variable name.
You may have mistyped the variable name, or it may be in some
procedure or function other than the active one, or out of scope in
a different module.

Symbol table file not found
The symbol table file that you have specified does not exist. You
can specify either a .TDS or .EXE file for the symbol file.

Syntax error
You entered an expression in the wrong format. This is a general
error message when a more specific message is not applicable.

Too many files match wildcard mask
You specified a wildcard file mask that included more than 100
files. Only the first 100 file names will be displayed.

Turbo Debugger User's Guide

Type EXIT to return to Turbo Debugger
You have issued the File I DOS Shell command. This message
informs you that when you are done running 005 commands,
you must type EXIT to return to your debugging session.

Unexpected end of line
While evaluating an expression, the end of your expression was
encountered before a valid expression was recognized.

For example,

99 - 22 *
should have been

99 - 22 * 4

And this example,

SUB AX,

should have been

SUB AX,4

Unknown character
You have entered an expression that contains a character that can
never be used in an expression, such as a reverse single quote (')
inC.

Unknown record or structure name
You have entered an expression that contains a typecast with an
unknown record, structure, union, or enum name. (Note that C
and assembler structures have their own name space different
from variables.)

Unknown symbol
You entered an expression that contained an invalid local variable
name. Either the module name is invalid, or the local symbol
name or line number is incorrect.

Untermlnated string
You entered a string that did not end with a closing quote (II in C,
, in Pascal) If you want to enter a string that contains quote char­
acters in Pascal, they must contain additional quote characters (,).
To enter a C string with quote characters, you must precede the
quote with a backslash (\) character.

Value must be between 1 and 32
You have entered an invalid value for the tab width. Tab columns
must be at least 1 column wide, but no more than 32 columns.

Appendix F, Dialog boxes and e"or messages 327

Value out of range.
You have entered a value for a Pascal variable that is outside the
range of allowed values.

Video mode not available
You have attempted to switch to 43-/50-line mode, but your
display adapter does not support this mode; you can only use
43-/50-line mode on an EGA or VGA.

Video mode switched while flipping pages
Your program has changed the video display mode when Turbo
Debugger is in page flipping mode. This means that the contents
of your program's screen may have been lost. You can avoid this
by using the -ds command-line option to set video swapping
mode.

Information messages

328

Turbo Debugger generates some information messages that
appear before the normal windowed display starts up. Here's a
description of them.

TDREMOTE online
Turbo Debugger has succeeded in establishing communications
with the TDREMOTE remote debug driver program on the
remote system. If you specified a program name to load on the
DOS command line, that file will now be loaded into the remote
system.

Waiting for handshake from TDREMOTE (Ctrl-Break to quit)
You have told Turbo Debugger to debug your program on the
remote system connected via the serial port (-r, -rs, and -rp
command-line options). Turbo Debugger is now waiting for the
remote system to inform it that it is running.

You can interrupt Turbo Debugger and return to the DOS prompt
by pressing GIrl-Break.

Turbo Debugger User's Guide

A p p E N D x

G

Using Turbo Debugger with different
languages

In this appendix, we have gathered together some tips on how to
most effectively use Turbo Debugger with different l~nguages.

Turbo C tips

Compiler code
optimizing If you have used the -0 command-line option with TCC or the

Options I Compiler I Optimization command with the Turbo C
integrated environment to specify optimized code generation, you
may have difficulty stepping through certain source code areas. In
particular, if you have multiple or nested If..else statements, it
may be difficult to stop as each else clause is encountered. A for
loop is also rearranged in a manner which makes tracing through
it a little odd in some situations.

To get around these (infrequent) problems, you can either switch
to assembler-level debugging by 9pening a CPU window, or you
can disable optimizing in the compiler while you are debugging.

Appendix G, Using Turbo Debugger with different languages 329

Accessing pointer
data

Stepping through
complex

expressions

330

Many times in C, you use pointers to refer to arrays of data items.
Normally, Turbo Debugger shows you the single pointed-to item
when you inspect a pointer variable. To access a pointer as an
array, you can first inspect the data item with one of the usual
techniques, such as placing the cursor over the variable in a
Module window and pressing etr/-I, and then set a range of items
to look at by using the Range command on the Inspector window
local menu. For example, if your program contained

char *p, buf[80];
for (p = buf; p < buf + sizeof(buf); p++)

you can examine p as an array of characters by choosing the
Range command in the Inspector window's local menu, and
entering a starting index of 0 and a count of 80.

If you have a complex expression, such as

if (isvalid(x) && !useless(xll {

you may want to see the result of each subexpression that makes
up the conditional expression. If there are function calls in the
expression, press F7 to trace into a function, put the cursor on the
closing} at the end of the function, and press F4 to run to that
point. Then, choose the Data I Function Return command to look
at the value about to be returned. If there are other function calls
in the conditional expression, you can then press F7 to stop on the
first line of the next function in the conditional expression. You
can then repeat this procedure to examine its return value.

If you have a complex expression that does not contain function
calls, for example,

if (x <= 5 && Y [z] > 8) {

Turbo Debugger User's Guide

and you want to see the result of evaluating each subexpression,
you will have to open a CPU window, do assembler-level
stepping, and watch the subexpression results being put in CPU
registers.

Turbo Assembler tips

Looking at raw
hex data You can use the Data I Add Watch and Data I Evaluate/Modify

commands with a format modifier to look at raw data dumps. For
example,

Source-level
debugging

Examining and
changing

registers

[ES:Dlj,20m

specifies that you want to look at a raw hex memory dump of the
20 bytes pointed to by the ES:DI register pair.

You can step through your assembler code using a Module win­
dow just as with any of the high-level languages. If you want to
see the register values, you can put a Registers window to the
right of the Module window.

Sometimes, you may want to use a CPU window and see your
source code as well. To do this, open a CPU window and choose
the Code pane's Mixed command until it reads Both. That way
you can see both your source code and machine code bytes.
Remember to zoom the CPU window (by pressing F5) if you want
to see the machine code bytes.

The obvious way to change registers is to highlight a register in
either a CPU window or Registers window. A quick way to
change a register is to use the Data I Evaluate/Modify command.
You can enter an assignment expression that directly modifies a
register's contents. For example,

SI = 99

loads the 5I register with 99.

Appendix G, Using Turbo Debugger with different languages 331

Likewise, you can examine registers using the same technique.
For example,

Alt-D E AX

shows you the value of the AX register.

Turbo PaScal ~ips

Stepping through
initialization code When you first load your program into Turbo Debugger, the

right-pointing filled arrow points to the begin keyword of the
main program. The begin actually corresponds to a series of calls
to the initializa tion sections of all the units that your program
uses (assuming they have initialization code). All programs begin
with a call to the initialization code of the System unit.

Stepping through
exit procedures

Constants

332

At this point, if you press F7 (the hot key for the Run I Trace Into
command), you'll trace into the the first unit that has initialization
code with debug information enabled. If you use F7 to step past
the end of the first unit's initialization code, you'll trace into the
next unit; eventually you'll return to the main program, ready to
execute the first statement.

If, on the other hand, you press FB (the hot key for the Run I Step
Over command) at the beginning of the program, you will skip
over all initialization code and begin stepping through the body
of the main program.

When your program terminates, control is passed down a chain of
exit procedures (refer to the chapter titled ''Inside Turbo Pascal"
in the Turbo Pascal Object-Oriented Programming Guide). When you
step past the end of the main program, Turbo Debugger does not
trace into the exit procedures. In order to step through this chain,
place a breakpoint in each exit of the procedures you want to
debug.

Constant identifiers are recognized only for scalar and typed
constants; for example,

Turbo Debugger User's Guide

String and set
temporaries on

the stack

Clever
typecasting

proqraa Test;
const

A = 5;
B = Pi;
Message = 'Testing';
Caps = ['A' •. 'Z');
Digits: .tr1ng[10) = '0123456789';

begin
Writeln (A) ;
Writeln (B) ;

Writeln(Message);
Writeln('A' in Caps)i
Writeln(Digits);

end.

In this program, you can inspect A (a scalar constant), Digits (a
typed constant), B (a floating-point constant), or Message (a string
constant), but not Caps (a set constant).

If you're using the CPU window, be ad vised that Turbo Pascal
automatically allocates string and set temporaries on the stack in
the following way:

The plus (+) operator, when used with strings, and all string
functions will reserve stack space for results of these operations.
This stack space is reserved in the caller's stack frame. Likewise,
the +, -, and * set operators will also reserve stack space for inter­
mediate results.

The Dos unit defines the internal data format for all the prede­
fined file types. You can use these declarations to examine the
data of any file variable. Try entering this program:

program Typecast;
uses Dos;
var

TextFile : Text;
IntFile : file of Integer;

begin
Assign (TextFile, 'TEXT.DTA')i
Rewrite(TextFile);
Assign(IntFile, 'INT.DTA')i

Appendix G, Using Turbo Debugger with different languages 333

CPU window tips
for Pascal

334

Rewrite(IntFile);
Close(TextFile);
Close (IntFile) ;

end.

Now add these four watch expressions:

IntFile
TextFile
FileRec(IntFile),r
TextRec(TextFile),r

The first two will display the file status (CLOSED, OPEN, INPUT,
OUTPUT) and disk file name, while the second two use typecast­
ing to reveal internal field names and values for the file variables.

• Routines in the System unit are unnamed. When watching a call
instruction in the CPU window, you will see a call to an abso­
lute address instead of a symbolic name.

• A number of I/O routines (for example Readln and Writeln)
often generate multiple assembler-language calls.

• Range-checking, stack-checking, and I/O-checking generate
calls to library routines to perform their respective functions.

• A number of operators (Longint multiplication, string concat­
enation, and so on) are implemented via calls to library
routines.

• The literal constants (string, set, and floating-point) of a
procedure are placed in the code segment, just before the
procedure's entry point.

Turbo Debugger User's Guide

G L o s s A R y

The terms listed here are used frequently in this manual. Some of
them are general terms about software and computers, and others
are specific to the Turbo Debugger environment.

action What happens when a breakpoint gets triggered. Actions can stop
your program, log the value of an expression, or execute an
expression.

active pane The pane in the active window that is accepting user input. All
cursor motion and local menu commands act upon this pane.

active window The window on the display that the user is interacting with. Only
one window can be the active window. It has its title in reverse
video, and a double-line rather than a single-line border.

array A data item composed of one or more items of the same data type.

ASCII The native character set of the IBM PC and many other
computers.

assembler A form of machine instructions that humans can read, with
opcode mnemonics. The Code pane of a CPU window lets you
assemble instructions directly into memory.

autovariable In the C language, this is a variable in a program that is local to an
instance of a called function. These variables are stored on the
stack, and their scope is that of the enclosing block (in C, source
lines between a pair of {}).

block scope The region of the program in which a specific data item is
"visible." For example, some variables have global scope, meaning
they are accessible anywhere in your program; other variables
may be local to a module or procedure.

breakpoint An address in the program you are debugging where some action
is to be performed. See also action.

button A dialog box item, represented by shadowed text, that executes a
command or confirms settings you have made in the dialog box.

Glossary 335

casting Converting an expression from one data type to another. For
example, converting from an integer to a floating-point number.
In C, a cast consists of a data type enclosed in parentheses, like
(int). In Pascal, a typecast consists of a type, followed by an
expression surrounded by parentheses, like word(5). (Also called
typecasting and type conversion.)

C expression An expression using the C language syntax. Turbo Debugger lets
you evaluate any C expression, including those that assign values
to memory locations.

check box A dialog box item that toggles a setting between On and Off.
When the option is set to On, an X appears between the square
brackets of the check box: [Xl.

CPU The central processing unit; refers to the 80x86 processor in your
system. The CPU has a number of flags and registers. The CPU
window shows the current CPU state.

CPU flag One of the control bits in the CPU that either affects subsequent
instructions or is set to reflect the results of an operation.

CPU register A fast storage location inside the CPU chip. The register names
are AX, BX, CX, DX, 51, DI, BP, SP, CS, DE, ES, 55.

configuration file A file in either the current directory or in the path that sets Turbo
Debugger default parameters.

CS:IP The current program location, as specified by the code segment
(CS) CPU register, and the instruction pointer OP) register.

default A value automatically supplied when none is specified by the
user.

dialog box An onscreen box in which you can view and adjust settings and
input information.

disassembler A program that converts machine code into assembler code that
you can read. The Code pane in a CPU window automatically
disassembles instructions in one of its panes.

EMS Expanded memory specification. Turbo Debugger can put your
program's symbol table in EMS to conserve main memory.

expression A combination of operators and operands conforming to the
syntax of one of the languages supported by Turbo Debugger: C,
Pascal, and assembler.

global breakpoint A breakpoint that can occur on every instruction or source line.

336 Turbo Debugger User's Guide

history list

inspector

local menu

menu bar

operand

operator

pane

PATH

pop-up menu

postfix

prefix

pull-down menu

radio buttons

record

reverse execution

Glossary

A list of previous user input lines maintained for each input box.
This lets you select a previous entry instead of having to type it in.

A window used to examine or change the values in a data
element, array, or structure.

The menu of commands that apply only to a particular window or
pane. Press Alt-F10 to pop up the local menu for the current pane.

The bar at the top of the screen from which pull-down menus come.
The commands on these menus are always available regardless of
what you're doing in Turbo Debugger. Press the Altkey in combi­
nation with the highlighted letter of a menu bar item to access
these menus.

The data item that an operator acts on; for example, in 3 * 4, both
3 and 4 are operands.

An action that is performed on one or more operands, such as
addition (+) or multiplication (*).

A section of a window that contains logically related information.
Panes can be scrolled independently of each other. When the size
of a window is changed, its panes are adjusted to make the best
use of the new window size. Each pane has a local menu of
commands. See also active pane.

The DOS environment variable that indicates where to search for
executable programs. Turbo Debugger searches the path for a
configuration file.

A menu that appears in midscreen, instead of pulling down from
the menu bar.

An operator that comes after its operand, like x++ in C.

An operator that comes before its operand, like - -x in C.

A menu of commands that pulls down from the menu bar.

A set of three or more options, one and only one of which must be
active at any given time. If a radio button is on, a bullet appears
between parentheses: (.).

See structure.

The process of stepping backward through your program one
instruction at a time, undoing the effects of program execution as
you go.

337

338

scalar A basic data type consisting of ordered components such as Byte,
Integer, Char, and Boolean in Pascal or char, int, and float in C.
Scalars can be the individual elements of larger data items, such
as arrays or structures.

scope See block scope.

set An unordered group of elements, all of the same scalar type.

stack The region of memory that stores procedure and function return
addresses, parameters, and other data related to an instance of a
called procedure or function.

side effect An expression that alters the value of a variable or memory
location; for example, an assignment statement or one that calls a
function in your program that modifies some data.

step To execute the program being debugged one instruction or source
line at a time, while treating procedure or function calls as a
single instruction. This lets you skip over calls to routines that
you don't want to examine one line at a time.

structure A data item composed of one or more elements of possibly
dissimilar types.

symbol A name of any variable, constant, procedure, or function.

trace To execute a program one instruction or source line at a time.

tracepoint A global breakpoint that watches for a variable or memory area to
change.

triggered A breakpoint is triggered when all the things controlling it
become true: Your program must have reached the specified
address, the pass count must have been reached, and the
condition must have been satisfied.

type Data items in your program have different types indicating their
purpose. For example, your program can contain pointers,
floating-point numbers, arrays, and so on.

watchpoint A global breakpoint that watches for an expression to become
true.

wildcards The characters * and ?, used in file matching expressions.

? matches any single character
* matches zero or more characters

For example, abc*.l matches abc99.1 and abcdef.1 but not xyz99.1.

Turbo Debugger User's Guide

window A rectangular area of the screen containing information that can
be viewed independently of the contents of other windows. In
Turbo Debugger, windows can partially or completely obscure
one another. See also active window.

Glossary 339

340 Turbo Debugger User's Guide

N

????
in Variables window 77
in Watches window 101

8514 graphics adapter 290
:: (double colon) operator 146, 148
386A MAX 251
/$ option (TPC) 62
32-bit register display 174
-? option (display help)

TD386 virtual debugger 250
-? option (help) 65

TD386 virtual debugger 249
TDREMOTE 298

== (System) menu 194
activating 18

80x87 coprocessors 270, See also numeric
coprocessors
control bits 187
CPU data display 178
instruction mnemonics 278
registers 277
status bits 188

80x86 processors See also 80286 processor;
80386 processor
CPU register display 174
debugging 165-184

triggering breakpoints 121
instructions

assembling 180-182
mnemonics 276
operands and 227

memory allocation 230
type, in CPU window 167

80286 processor See also 80x86 processors
debugging 253-255

80386 processor See also 80x86 processors
debugging 247-252

device driver 11, 248
exception handlers and 82

Index

D

A

E

extended address modes 251
instructions 229

mnemonics 276
TD386 virtual debugger and 251

registers 145,251,276

About command 5
accuracy testing 231
Action Expression input box 119
Action radio button 119
active window 31

returning to 19
activity indicators 36

x

adapters See graphics adapters; video adapters
Add command 121, 124
Add Comment command 123, 124
Add Watch command 99, 331
address, Borland 5
Address input box 121
addresses 139, 269

backtracking through 177
far 318
instruction, disassembled 168
instructions, disassembled 168
memory See memory, addresses
returning to previous 170
running to specified 133, 167, 169, 175

problems with 84
scope override for 140
segment:offset

physical addresses and 186
size overrides (built-in assembler) 181
stack 180

resetting 180
switching between 170, 180
symbol tables, base segment 307
word pointer chain 176-177

341

addressing modes, 80386 processor 251
Alt-key shortcuts See hot keys
Always option

breakpoints condition 120
display swapping 71

ancestor and descendant relationships 156, 157
ancestor types 162
Animate command 85, 304
Another command 30
arguments 2, See also parameters

calling function 27
command-line options 63, 310

changing 93
setting 85, 92

list 317
Arguments command 93
arrays

changing 313
indexes 305
inspecting 21, 3D, See also Inspector windows

C tutorial 48
Pascal tutorial 55
subranges of 104, 107, 110, 111

quoted character strings and 153
watching 100, See also Watches window

arrow keys See also keys
history lists and 24
Inspector windows and 49
menu commands and 18
radio buttons and 20
README file and 8
resizing windows with 35

ASCII
files 205

editing 136
searching 135

text
viewing files as 134, 135, 136

text editors and 136
ASCII display option (files) 136
.ASM files 260, 264
Assemble command 171, 180
assembler See also Turbo Assembler

built-in 166, 180-182, See also Code pane
problems with 312
Turbo Assembler vs. 181-182

bytes, changing 176

342

character strings, searching for 175, 176
code 29, 185

skipping over 171
tracking 30

conditional jumps 168, 169, 181
data, formatting 174, 177-178
debugging techniques 165-184

modules 171
inline, keywords 275-278

problems with 320
instructions 168, 171, See also instructions

back tracing and unexpected side effects 87
breakpoints and 122
disassembled 171
executing single 83
execution history and 87
multiple, treated as single 84
peripheral device control 172
protected-mode 251
recording 88
referencing variables 181
returning 169, 170
searching for 170

problems with 170
size overrides and 181-182
watching 28, See also CPU window

memory dumps 174, 178, 182
mode, starting Turbo Debugger in 66
OFFSET operator 181
operands

size overrides 181, 182
programs

display modes 171
returning to 169

registers 183, See also CPU, registers
altered 230
I/O read/writes 172
incrementing/decrementing 173

returns, far and near 168, 176, 181
routines 171
stack See also Stack window

examining 179-180
symbols 168

Assembler option (language convention) 138
assignment operators See also operators

language-specific 78, 102
Turbo C 147

Turbo Debugger User's Guide

expressions with side effects and 98, 148
Turbo Pascal 151

At command 117, 124
Atron debugging board 11
AUTOEXEC.BAT 6

virtual debugging and 248

B
/B option (black-and-white mode) 11
Back Trace command 85
backward trace 15,87, See also Back Trace

command; reversing program execution
addresses, near and far and 177
assembler instructions 87
interrupts and 86

Base Segment:O to Data command 177
beep on error, setting 287
Beep on Error check box (fDINST) 287
Beginning Display radio buttons (TDINST) 284
binary operators See also operators

Turbo C 146
Turbo Pascal 150

bits 166
control, 80x87 coprocessor 187
CPU register display 174
status, 80x87 coprocessor 188

blinking cursor 34
Block command 178
blocks

memory See memory, blocks
moving 308
reading from, problems with 315
writing to files, problems with 315

Borland
CompuServe Forum 5
license agreement 7
mailing address 5
technical support 5

Both option (integer display) 72
bottom line See also reference line
boundary errors 215

Pascal-specific 224
testing for 231

Break option (breakpoints action) 119
breaking out of programs 9
Breakpoint Detail pane 118
Breakpoint Disabled check box 121

Index

Breakpoint List pane 118
Breakpoint Options dialog box 119
breakpoints 26, 115-127, See also Breakpoints

window
Boolean 121, 125
complex 121
conditional 121, 124, 125
controlling 118
disabling/enabling 121
global 82, 125

memory variables and 120
testing 125

hardware-assisted 11, 80
80386 systems and 121
device drivers and 126,313
memory variables and 120
problems with 82, 313, 321

infinite loops and 89
inspecting 122
multiple 127
pass counts See pass counts
process ID switching and 270
processing

interrupts and 271
reloading programs and 91
removing 116, 122
returning information on 80
running programs to 47, 54
saving temporarily 121
scope 118
setting 116, 118, 121

conditional 124
pass counts 121, 124, 125
problems with 313
program termination and 81
simple 124
tutorial 47, 53

skipping 125
triggering 124
TSR programs and 258

resident portion 259
using 237

with demo programs 235
viewing 118

Breakpoints command 118
Breakpoints menu 116, 195
Breakpoints window 26, 118-122

343

local menu 118, 197
opening 118
panes 118

bugs 13-15,211,213-215
accuracy testing 231
assembler-specific 226-231

Quirks mode 231
boundary errors 215

Pascal-specific 224
testing for 231

C-specific 215-219
finding 14, 15, 86,211-212

backward trace and 85
demo programs 232-245
execution history and 86
history lists and 122
interrupting program execution and 89
memory allocation and 247, 269
in subroutines 214

fixing 127
built-in assembler and 181

incremental testing 213
off-by-one 173
Pascal-specific 219-226
range errors 225
returning information on 80

built-in assembler 166, 180-182, See also
assembler, built-in

built-in syntax checkers 15
bullets (e)

Result box and 97
Watches window and 100

buttons 20, See also dialog boxes
Help 20
radio See radio buttons

Byte command 177
byte lists

entering 135, 143
searching for 170, 175, 176
text editors and 136

bytes 166, 168, 176
command codes and 262
formatting 174, 177
hexadecimal

floating-point registers 186
viewing files as 134, 136

memory blocks 179

344

memory blocks set to 304
raw data 306

examining 102
floating-point registers and 186

reserving in memory 67
searching for 326
symbol tables and 261, 264
watching 28

c
c++ programs

class instances
formatting 97
inspecting 160-163

class member functions 29, 79
inspecting 158

class types 156
hierarchy tree 29
inspecting 158-160

compatibility with Turbo Debugger 155
debugging 16, 155-163

nested class structures 158
this parameter and 97

expressions, problems with 312
multiple inheritance 29, 156, 157
scope override 141
stepping through 84
tracing into 83

-c option (load configuration file) 64
problems with 312

C option (language convention) 138
C programming language See Turbo C
calculator 99
Caller command 170
case sensitivity

enabling 289
overriding 67

casting See type conversion
central processing unit See CPU
CGA 11, See also graphics adapters; video

adapters
Change command

Data pane local menu 176
Global pane local menu 78
Inspector window local menu 111
Object Data Field pane local menu 161
Register pane local menu 173, 187

Turbo Debugger User's Guide

Stack pane local menu 180
Static pane local menu 78
Watches window local menu 101

Change dialog box
global symbols and 78
local symbols and 78

Change Process ID check box (TDINST) 289
Changed Memory Global command 117, 125
Changed Memory option (breakpoints

condition) 120
Changed Memory radio button 125, 126
character constants 318
character devices, problems with 304
character strings

null-terminated 103, 109
quoted 135

arrays as 153
problems with 327

searching 132, 133, 135, 136
searching for 175, 176, 307
TurboC 145
Turbo Pascal 150

characters
control (Pascal programs) 150
display (ASCII vs. hex) 136
esca pe (Turbo C) 145
invalid 327
problems with scalar variables and 103, 106
raw 153
value of 103, 106

check boxes 20, See also dialog boxes
Beep on Error (TDINSf) 287
Breakpoint Disabled 121
Change Process ID (TDINST) 289
Control Key (TDINST) 288
Fast Screen (TDINST) 285
Full Graphics Saving (TDINSf) 285
Global 125
Ignore Symbol Case (TDINSf) 289
Keystroke Recording (TDINST) 288
Mouse Enabled (TDINST) 287
NMI Intercept (TDINST) 289
Permit 43/50 Lines (TDINST) 285
Remote Debugging (TDINST) 290
Save Configuration 73
Use Expanded Memory (TDINST) 289

class instances See C++ programs

Index

class member functions and types See C++
programs

Clear command 178
close box 32
Close command 3D, 35, 112
Close Log File command 123
code See also specific language application

breakpoints and 122, 124, 125, 126
checking onscreen 30
command-line options and source 67
current segment See programs, current
location
debugging See debugging
disassembled 171

problems with 77
editing 129-130
executing

TSR programs and 258
exit, returned to DOS 81
inspecting 87, 88, See also Inspector windows
interrupts and, problems with 89
pool size, setting 68
skipping over 171
splice 119
splicing in 127
stepping through 84, See also Step Over

command
problems with 271

tracing into 83, See also Trace Into command
execution history and 86

viewing 166
execution history and 29
in multiple files 132, 136

watching See also Watches window
in slow motion 85

Code pane 168-172
8Ox87 coprocessors and 168
addresses

symbolic memory 168
current program location 167
disassembler and 168
display modes 171
immediate operands and 168
instruction addresses 168
local menu 169, 198

codes, release 271

345

color graphics adapters 11, See also graphics
adapters

color monitors 65, See also monitors
customizing 280-282

color tables 281
Colors command (TDINST) 280
command codes 262
command-line options 63-69, See also specific

switch
arguments 310

changing 93
setting 85, 92

disabling 64
INSTALL

/B (black-and-white mode) 11
-h (help) 10

overriding 291
saving 279
summary of 267-268
symbol table allocation

device drivers and 264
problems with 264

TSRsand 260
problems with 261

symbolic debugging information
device drivers and 263

symbolic information
TSRsand 258

syntax 63
help with 65

TD286 protected-mode debugger 254
TD386 virtual debugger 249

-? (help) 250
-h (help) 250

TDINST vs. 291-293
TDREMOTE 298-299
Turbo Debugger utilities 9

commands 21, See also specific menu command
assigning as macros 70
choosing 18

active windows and 31
problems with 322

dialog boxes and 303
escaping out of 19
hot keys and menu 19
local menu 23
recording frequently used 91

346

summary of 191-209
onscreen 36, 38

comments
adding to history lists 123
adding to log 305

communications, remote systems 290,301
debugging over 67, 299, See also
TDREMOTE

problems with 302, 311
Comp command 178
Compaq EMS simulator 251
compiler directives See also specific language

application
files and 129

complex data objects 100
complex data types 95
composite monitors 11
compound data objects 99

inspecting 101
compressed files, unarchiving 10
CompuServe Forum, Borland 5
COM SPEC environment variable (DOS) 313
Condition Expression input box 120, 121
Condition radio button 120
conditional breakpoints See breakpoints
conditions See also breakpoints

controlling 118
qualifying 125
setting 124

CONFIG.SYS See configuration files
configuration files 6, 69

changing default name 73,293
device driver debugging and 263
directory paths 67

setting 287
loading 64, 306
overriding 64, 69
problems with 310, 311, 312
saving 293

macros to 91
options to 72
problems with 315

TDCONFIG.TD 36, 64, 69
virtual debugging and 248

constants
Inspector windows and 102
problems with 318

Turbo Debugger User's Guide

TASM 152
Turbo C 145
Turbo Pascal 150, 332, 334

constructor methods 98
problems with 314

context-sensitive help 36-39
context-sensitivity 21,22
continuous trace 85
control bits, viewing 187
control flags 187
Control Key check box (TDINST) 288
control-key shortcuts 288, See also hot keys;

keys
Control pane 187

local menu 187, 202
conversion See type conversion
coprocessors See 8Ox87 coprocessors; numeric

coprocessors
CPU See also CPU window

flags 174
state of 173
viewing 28, 167, 183

memorydump 174
registers 144, 165, 183, 277

80386 processor 145
16-bit vs. 32-bit display 174
compound data types and 99
decrementing 173
incrementing 173
I/O 172
optimization with 49, 56
resetting 173
viewing 28, 173-174, 183

state, examining 28, 166
TDREMOTE and 299

CPU command 102, 166
CPU window 28, 166-180

cursor in 167
disassembled code and 77
opening 166
panes 28, 167-180
problems with 324
processor type in 167
program execution and 82-88

crashes See system, crashes
Create command 25, 70
Ctrl-Break (interrupt key) 89

Index

device drivers and 265
problems with 81
resetting 90,287
TSR programs and 259

current activity, help with 36
current code segment See programs, current

location
cursor 34

CPU window 167
running programs to 83

tutorial 46, 52
cursor-movement keys See keys
customer assistance 5
customizing Turbo Debugger 69, 279-294

D
data 96-99, See also Data pane

accessing 138
bashing

global breakpoints and 126
formatting 97
incorrect values 82
input 232
inspecting 95-112, See also Inspector

windows
in recursive functions 79

manipulating 28
modifying 51, 58
objects

complex 100
compound 99, 101
inspecting 96, 183, See also Inspector
windows
pointing at 99
watching 100, See also Watches window

raw
displaying 174
examining 102, 174-179
inspecting 183
viewing 28, 182, 306

size overrides (built-in assembler) 182
structures

inspecting 162
structures, inspecting 21
testing, invalid input and 231
truncated 97
types 95

347

complex 95
converting 78, See type conversion
formatting 177-178
inspecting 30, 102-110, See also Inspector
windows
problems with 77, 97, 153
tracking 126
variables and 322

values 231
setting breakpoints for 125

viewing 166
in recursive functions 77
pointers to 186

watching See Watches window
Data menu 96-99, 196
Data pane 174-179

display formats 177-178
local menu 175, 198
memory addresses in 174
pointer chains 176
problems with, memory values 175

Debug Information command 62
Debugger command 62
Debugger dialog box 62
debugging 13-18, 165, See also programs,

debugging
80286 processors 253-255
80386 processors 247-252
8Ox86 processors 165-184
assembler

modules 171
programs 165-184

C++ programs See C++ programs,
debugging

continuous trace 85
control 75-93, 139

infinite loops and 89, 271
interrupt vectors and 271, 273
memory use and 80
returning to Turbo Debugger 83, 89, 90
symbol tables and 253
TD386 virtual debugger and 251

defined 13
demo programs See demo programs
device drivers 263-265

problems with 262
features 1, 17

348

functions 127, 129, 147
recursive 77, 79

hard ware See hard ware, debugging
large programs 247

display modes and 285
problems with 301
TDREMOTE and 295

message logs and 27
multi-language programs 9
multiple components 50, 57
object-oriented programs See object-oriented

programs, debugging
protected-mode See TD286 protected-mode

debugger
remote systems 67, 299, See also TDREMOTE

defaults, setting 290
problems with 302, 311

required files 2
restrictions 15
routines 214
sessions 75

preparing programs for 61-74, 232
restarting 90-92
starting 92

simple programs 213
small programs 66, 68
source files and 2
steps 14
strategies 234, 239
techniques 211-245
terminology 2
tools 15
TSR programs 258-261
tutorial 41-59, 232-245

help with 42
variables 214

uninitialized 214
virtual See TD386 virtual debugger

debugging boards 117, 121, See also hard ware
compatibility with Turbo Debugger 11
problems with 271
triggering breakpoints 121

decimal numbers 72
integers displayed as 153

Decimal option (integer display) 72
Decrement command 173
Default Color Set command (TDINST) 282

Turbo Debugger User's Guide

default directories, changing 10
default settings 279

overriding 69, See also TDINST
restoring 73, 293

Delete All command
Breakpoints menu 117
Breakpoints window local menu 122
Macros menu 70
Watches window local menu 101

demo programs 41-59, 232-245
help with 42
reloading 42
source files 41
starting 42, 234, 240
Turbo C 45-52, 233-238
Turbo Pascal 52-59, 238-245

Descend command
Inspector window local menu 112
Object Data Field pane local menu 162

descendant relationships 156, 157
DesqView 251
destructor methods 98

problems with 314
device drivers 261-262, See also hardware

activating 265
breakpoints and 120, 126

problems with 321
character vs. block 262
debugging 263-265

problems with 262
virtual 251

interrupt routine 262
interrupts and 271
loading 263
strategy routine 262
symbol tables,loading 264
symbolic information, incorporating 263
TDH386.SYS 11

error messages 252
installing 248

TDREMOTE.EXE 296
XMS249

dialog boxes 20
bottom line in 39
Breakpoint Options 119
Change 78
dosing 74

Index

commands and 303
customizing 281
Debugger 62
Directories (TDINST) 286
Display Options 71

TDINST 283
escaping out of 303
Evaluate/Modify 97, 137, 236, 241
Expression Language 138
icons 18
Load Program 92
messages 303-310
Miscellaneous Options (TDINST) 289
moving around in 20
responding to 303
Save Options 73
search 133, 135
Source Debugging (TDINST) 288

Dialogs command (TDINST) 281
directories

default 10, 286
paths 2

multiple 67
problems with 324
setting 67, 72,308
TDREMOTE and 297

Directories dialog box (TDINST) 286
disassembled instructions 168
disassembler 168

display modes 171
disk drives 262

accessing, problems with 304
running Turbo Debugger on two-floppy 2

disks
controllers 172
distribution 7, 8
files on See files, disk
writing to, problems with 314,315,316

display
buffer, saving 285
formats

data types 177-178
expressions 153
integers 72, 177, 178,284

modes 281
Code pane (CPU) 171
controller registers 272

349

defaults, setting 70, 290
problems with 11,328
ROM BIOS calls and 272

options 283-286
colors 280-282
saving 36

output 71
problems with 291

pages 285
problems with 35
swapping See screens, swapping
updating 285

Display As command
Data pane local menu 174, 177
File window local menu 136

Display command (TDINSf) 283
Display Options command 70
Display Options dialog box 71

TDINST 283
display pages

multiple 65
Display Swapping radio buttons 71

TDINST 283
distribution disks 7

copying 8
-<10 option (run on secondary display) 65
DOS

command processor, problems with 313
COMSPEC environment variable 313
debugging programs from 65
device drivers and 261
examining code inside 169, 175
exit code and 81
function calls 270
interrupt handlers and TSR programs 258
overwriting 270
returning to 74
running programs from 64, 272, 273

TD286 protected-mode debugger and 254
TD386 virtual debugger and 248,251
TDREMOTE and 299

shelling to 73
display swapping and 286

system calls, Turbo Debugger and 65
tracing through 289

problems with 270

350

TSR programs
executing from 259

versions 6, 80
compatible with Turbo Debugger 1
problems with TDCONFIG.TD and 69
TD386 virtual debugger and 249
TDREMOTE and 299

wildcards, choosing files and 134
DOS Shell command 73, 314

TD286 protected-mode debugger and 254
TDREMOTE and 299

DOS Shell command, TD386 virtual debugger and
250

double colon (::) operator 146, 148
Double command 178
-<ip option (use two display pages) 65
drives See disk drives
-<is option (swap screens) 65
Dump command 183
Dump Pane to Log command 123
Dump window 28, 182

local menu 200
opening 183

duplicate windows, opening 30

E
-e option (TD386 virtual debugger) 249
Edit command 314

File window local menu 17, 136
Module window local menu 133
problems with 314
Watches window local menu 101

editing
ASCII files 136
expressions 101
history lists 24

editors, text See text editors
EGA See also graphics adapters; video adapters

line display 68, 72, 284
palette 68

Empty command 187
EMS 80,272

disabling 272
drivers 272
emulation and TD386 virtual debugger 249
enabling 289
execution history and 86

Turbo Debugger User's Guide

problems with 310
simulators 251
symbol tables and 295

emulator, 80x87 coprocessor 185
end of lines, problems with 327
Enhanced Graphics Adapters See EGA
Erase Log command 124
Erase Log File command 123
error messages 310-328

beep, enabling 287
fatal 310
TD386 virtual debugger 251-252

errors, boundary See boundary errors
escape sequences, Turbo C 145
Evaluate command 331
Evaluate input box 97
Evaluate/Modify command 96-99, 137
Evaluate/Modify dialog box 97, 137

using 236, 241
executable program files See files
Execute option (breakpoints action) 119
Execute To command 84
execution history 86, See also Execution History

window
backward trace and 87
deleting 88
losing 87
recovering 87, 88, 89

Execution History command 86
Execution History window 29, 86-89

keystroke recording and 288
opening 86
panes 86

exit code, returned to DOS 81
exiting

TDINST 294
Turbo Debugger 74

TSR debugging and 265
tutorial 42

expanded memory specification See EMS
Expression Language dialog box 138
Expression True Global command 117, 125
Expression True option (breakpoints condition)

121
Expression True radio button 125
expressions 137-153

complex 96

Index

editing 101
entering, problems with 314, 316, 321, 322,
323

argument lists and 317
character constants and 318
invalid characters and 327
invalid variables and 326,327
memory areas and 324
operators and 314,316,319

evaluating 96-99, 236,241
functions in 151
implied scope 142
language conventions 138
problems with 142,311,312,316,327
procedures in 151
return values 305

formatting 153
problems with 318

inspecting 30, 96, 112, 308, See also Inspector
windows

language options 138, 288
pointing at 99
return values 100, 137
scope override 140, 142
syntax

TASM 151-153
Turbo C 143-149
Turbo Pascal 149-151

undefined 101
updating 101
watching 99, 305, See also Watches window

format specifiers and 97
with side effects (C programs) 98, 148
WORD entering

problems with 322
Extended command 178
extended memory 247

F

protected-mode debugging and 253
TD386 virtual debugger and 248

problems with 252

-f option (TD386 virtual debugger) 249
Far Code command 176
Fast Screen Update check box (TDINST) 285
fatal errors 310

351

File command
File window local menu 136
Module window local menu 132
View menu 134

File menu 194
File window 27, 134-136

local menu 134, 200
opening 132

files See also File menu; File window
.ARC 10
.ASM 260, 264
AUTOEXEC.BAT 6

virtual debugging and 248
compiler directives and 129
compressed 10
configuration See configuration files
demo program 41
disk 27, 129, 134

history lists and 123
problems with 315

editing 133
executable program 129, 307

required for debugging 2
TD386 virtual debugger and 249, 250

handles 270
HELPME!.DOC 7, 8, 287
include 129
INST ALL.EXE 8, 10
list boxes and 25
loading See files, opening
log 305

problems with 312,315
saving entries to 286

modifying, byte lists and 143
moving to specific line number in 132, 135
multiple

viewing 132, 136
opening 92, 134, 306

problems with 68,315,324
wildcard masks and 327

overriding 138
overwriting 308
PROGNAME.TDK 88
reading to memory 179
README 7, 8, 10
searching 135
searching for 208

352

source See source files
SWAP.$$$ 315
TCDEMO.C41
TCDEMO.EXE 238
TD.EXE293
TDCONFIG.TD 36, 64, 69
TDH386.SYS 11, 121,248,250
TDREMOTE.EXE 296
.TDS 260, 263, 264
text 205, See also ASCII, files
THELP.COM 37
TPDEMO.PAS 41, 245
tracking 30
unarchiving and unpacking 10
viewing 27, 130, 134, 136

as ASCII text 134, 136
text editors and 136

as hex data 134, 136
offset address 306
text editors and 136

multiple 132, 136
source code 130

writing to, problems with 316
filled arrow 45
flags

BOx87 coprocessor
control 187
status 188

CPU See CPU, flags
Flags pane 167, 173

local menu 174
Float command 178
floating point

constants
TASM 152
TurboC 145
Turbo Pascal 150

numbers 185
formatting 153, 174, 178
problems with 29

registers 186, 306
problems with 319

Follow command
Code pane local menu 169
Data pane local menu 176
Stack pane local menu 180

format specifiers 97, 153

Turbo Debugger User's Guide

problems with 318
repeat counts and 326

Full Graphics Saving check box (TDINST) 285
Full History command 88
function keys 38, See also hot keys; keys

summary of 191-193
Function Return command 99, 330
functions 2, See also specific language

calling 99
problems with 317, 318, 322

class-member See C++ programs
debugging 127, 129, 147
inspecting 79, 111, See also Inspector

windows
variable with same name as 77

method See object-oriented programs
names, finding 27 .
recursive, local data and 77, 79
return values and current 99
returning from 84, 170
returning to 180
stepping over 15
stepping through 84
variables and inactive 314
viewing in stack 27, 79
watching See Watches window

G
Get Info command 80
Get Info text box 80
global breakpoints See breakpoints
Global check box 125
global menus 18, See also menus

local vs. 22
reference 194-196

Global pane 77
local menu 77

Global Symbol pane local menu 203
global symbols 203

disassembler and 168
global variables See also variables

changing 78
debugging, in subroutines 214
inspecting 77, See also Inspector windows
same name as local 78
viewing 27, 77

in stack 27

Index

Go to Cursor command 83
Goto command

Code pane local menu 169
Data pane local menu 175
File window local menu 135
Module window local menu 133
Stack pane local menu 180

graphics 8
adapters, monochrome text-only 291
color tables 281
display buffer, saving 285
modes See display, modes
palettes 68
problems with 68

snow 285
graphics adapters 290, See also hardware

CGA, problems with 11
display options 291
display pages 285
EGA 68, 72, 284
Hercules 291
problems with 328
supported 311
VGA 68, 72, 284

H
-h option

INSTALL 10
-h option (help) 65

TD386 virtual debugger 249
TDREMOTE 298

hardware
adapters See graphics adapters; video
adapters
debugging 11, 117, 121, See also breakpoints,
hard ware-assisted

problems with 82, 313, 321
debugging boards See debugging boards
keyboard interupts 271
math chips 2, 168, 185
peripheral device controllers 172
primary and secondary displays 65
requirements 1

TD286 protected-mode debugger 253
TD386 virtual debugger 248
TDREMOTE 296

Hardware Breakpoint command 117

353

Hardware option (breakpoints condition) 121
Hardware Options command 121
heap

allocation 214
size, setting 66

help 36-39
accessing 36

problems with 317, 321
additional topics for 37
command-line options 65

TD386 virtual debugger 250
TDINST 293
TDREMOTE 298
Turbo Debugger utilities 9

context-sensitive 36-39
current activity 36
demo programs 42
dialog boxes 20
language-specific 37
online 36-38

Help button 20
Help Index 37
Help menu 37, 197
Help on Help command 37 .
Help screen

activating 37
highlighted keywords in 37

HELPME!.DOC 7, 8
setting directory path for 287

Hercules graphics adapter 291
Hex display option (files) 136
Hex option (integer display) 72
hexadecimal bytes 135

floating-point registers 186
viewing

data as 175, 177
files as 134, 136

hexadecimal constants
TASM 152
Turbo Pascal 150

hexadecimal numbers 72
integers displayed as 153

hierarchies, object type\class 155, See also
Hierarchy window

Hierarchy command
Object Data Field pane local menu 159, 162
Object Methods pane local menu 160

354

View menu 155
Hierarchy Tree pane 156, 157

local menu 157, 202
Hierarchy window 29, 155, 202

opening 155
panes 156-158

highlight bar in windows 34
History List Length input box (TDINST) 287
history lists 23-24, See also execution history

breakpoints 122
editing 24
length, setting 287
logging to 123
moving around in 207

hot keys 19, See also keys
Alt = (Create Macros) 70
Alt - (Stop Recording) 70
Alt-B (Breakpoints) 116
Alt-F4 (Back Trace) 85
Alt-F3 (Close) 35
Alt-F9 (Execute To) 84
Alt-F7 (Instruction Trace) 85
Alt-F4 (Reverse Execution) 87
Alt-F6 (Undo Close) 35
Alt-F5 (User screen) 30
Ctrl-F2 (Program Reset) 86
Ctrl-F5 (Size/Move) 35
Ctrl-I (Inspect) 21
Ctrl-N (text entry) 24
dialog boxes 20
enabling 288
F2 (Breakpoints) 47
F4 (Go to Cursor) 83
F3 (Module window) 26
F6 (Next Window) 33
F9 (Run) 83
F8 (Step Over) 83
F7 (Trace Into) 83
F8 (Until Return) 84
F5 (Zoom) 35
help with 38
local menus 23,38
macros as 25, 70
summary of 191-193
Tab/Shift-Tab (Next Pane) 33

Turbo Debugger User's Guide

-i option (enable ID switching) 65, 270
IBM display character set 153
IBM PC Convertible and NMI 9 289
iconize box 32 '
Iconize/Restore command 35
icons

dialog boxes 18
menu 18
reducing windows to 32, 35
zoom 32

ID switching See process ID switching
identifiers

program, handling 67
referencing in other modules 139
scope override 142

Ignore Symbol Case check box (TDINST) 289
In Byte command 172
include files 129
Increment command 173
incremental matching 25
Index command 37
indicators, activity 36
initialization code 332
inline assembler keywords 275-278

problems with 320
input See I/O
input boxes 20, See also dialog boxes

Action Expression 119
Address 121
Condition Expression 120, 121
entering text in 24
Evaluate 97
History List Length (TDINST) 287
history lists and 23-24
Log List Length (TDINST) 286
Maximum Tiled Watch (TDINST) 284
moving around in 207
New Value 97
Pass Count 121, 124
Result 97
Save To 73
Spare Symbol Memory (TDINST) 290
Tab Size 72

TDINST 284
Inspect command 48

Breakpoints window local menu 122

Index

Data menu 30, 96
Global pane local menu 77
Hierarchy Tree pane local menu 157
Inspector window local menu 111
Instructions pane local menu 87
Keystroke Recording local menu 88
Module window local menu 131
Object Data Field pane local menu 158, 159
162 '
Object Methods pane local menu 160
Object Type List pane local menu 156
Parent Tree pane local menu 158
Stack window local menu 79
Static pane local menu 78
Watches window local menu 101

Inspector windows 16,21,30, 102-112
arrays 104, 107, 109
closing 30
compound data objects and 96, 112
functions 105, 108

method/member 158
global symbols and 77
language-specific programs and 102
local menus 111-112

object/ class instance 205
object type/ class 204

local symbols and 78
object/ class instance 160-163
object type/class 158-160
opening 26

additional 30
panes

object/ class instance 160
object type/class 158

pointers 103, 106, 109
problems with

character values in 103, 106
multiple lines and 104, 107, 109
pointers to arrays 104

proced ures 108
records 107
reducing number on screen 112
scalars 103, 106, 108
structures 105, 110
unions 105, 110
using

C tutorial 48-50

355

in demo programs 235, 242
Pascal tutorial 55-57

variables in 77
viewing contents as raw data bytes 102

INST ALL.EXE 8, 10
problems with graphics display and 11

installation 10
command-iine options, help 10
compressed (.ZIP) files and 10
problems with, graphic display and 11
TD286 protected-mode debugger 253, 254
TD386 virtual debugger 248
TDH386.SYS device driver 11,248
TDINST utility and See TDINST
TDREMOTE 296

instruction opcodes 186
illegal 82

instruction pointers, viewing 186
Instruction Trace command 85

execution history and 88
instructions 165, See also Instructions pane

assembling 166, 171, 180-182
problems with 317, 318,319,320

base and index registers 314, 319, 325
instruction mnemonics 318
invalid registers 320
size indicators 324
target addresses 314, 318

referencing variables 181
back tracing into 87
breakpoints and 125, 126
built-in assembler and 166, 181-182
current interrupt 170
disassembled 88
divide, information about 82
execution history and 86-88
inspecting 87, See also Inspector windows
machine 166

executing 83, 85
stepping through 166
Turbo C compiler and 183

multiple assembly treated as single 84
referencing memory 167
single-stepping

interrupts and 271
viewing 86

coprocessor 186

356

watching See also CPU window; Watches
window

Instructions pane 86-88
local menu 87

Integer Format radio buttons 72
TDINST 284

integers
constants

TASM 152
Turbo C 145
Turbo Pascal 150

formatting 72, 177, 178, 284
viewing

decimal 153
hexadecimal 153

watching 100, See also Watches window
interrupt handlers 258
Interrupt Key radio button (TDINST) 287
interrupt routine 262
interrupt vectors 271, 273

loading 271
interrupts 170

back tracing into 86
device drivers and 265
exception, TD386 virtual debugger and 251
handlers

TSR programs 257
keyboard 271
NMI9,289
problems with 81, 170
program 89, See also Ctrl-Break (interrupt

key)
messages about 82
TDREMOTE 297, 302

software 257, 258
tracing into 85
TSR programs and 259

I/O
CPU 172
functions, low-level 261
options 287
ports 172

reading from 307
writing to 307

TDREMOTE and 299
video 71
watching, TD386 virtual debugger and 247

Turbo Debugger User's Guide

I/O command 172

K
-k option (enable keystroke recording) 65
keyboard interrupt 271
keys See also arrow keys; function keys; hot

keys
assigning as macros 25, 70
Ctrl-Break (interrupt) 81,89,287
cursor-movement 34, 208

CPU window 167
dialog boxes 20, 207
Help window 37
menu commands 19
TDINST 280
text boxes 206
text files 206

recording as macros See keystrokes,
recording

keystroke macro facility 91
Keystroke Recording check box (TDINST) 288
Keystroke Recording pane 88

local menu 88
Keystroke Restore command 89
keystrokes

assigning as macros 25, 70
displayed 29
recording 65, 91, 326

automatic 288
execution history and 86, 88
problems with 304
restoring to previous 70

replaying 88
keywords, inline assembler 275-278

problems with 320
keywords in Help window 37

L
-1 option (assembler mode) 66
labels, running programs to 84

tutorial 46, 53
Language command 138
Language radio buttons (TDINST) 288
language-specific applications See also specific

language
assignment operators and 78

Index

conventions 138
debugging 215-231,329-334

preparing for 61-63
expressions and 137
help with 37
Inspector windows and 102
options 284, 288
scope override and 140
using 15, 137

Layout option (save configuration) 73
layouts

restoring 35, 36
LCD screens 291

problems with 11
license agreement, Borland 7
Line command 132
line numbers 306

Code pane 168
displaying current 45
generating scope override 140
moving to specific 132, 135
problems with, source files and current 131

lines, multiple, problems with 104, 107, 109
Link Speed radio buttons (TDINST) 290
linked lists 112
list boxes 20, See also dialog boxes

incremental matching in 25
moving around in 206, 207

list panes, Pick a Module 129
lists, choosing items from 34
Load Program dialog box 92
local menus 22-23, See also menus

accessing 22
Breakpoints window 118-122, 197
Code pane 169-172, 198
Control pane 187, 202
Data pane 175-179, 198
Dump window 200
File window 134-136,200
Flags pane 174
Global pane 77
Global Symbol pane 203
Hierarchy Tree pane 157, 202
Inspector windows 111-112, 204
Instructions pane 87
Keystroke Recording pane 88
Local Symbol pane 203

357

Log window 123, 200
Module window 131-133,201
Ob~ect Data Field pane 159, 161
Object Method pane 160, 162
Object Type/Class List pane 156,202
Parent Tree pane 158, 202
Register pane

CPU window 173-174, 199
Numeric Processor window 187 201

Registers window 202 '
Stack pane 179-180, 200
Stack window 79, 203
Static pane 78
Status pane 188, 202
Varibles window 203
viewing hot keys in 38
Watches window 101,203

Local Symbol pane local menu 203
Local Symbols command 62
local variables See also variables

breakpoints and 118
changing 78
global values and 77
inspecting 78, See also Inspector windows
problems with 327
viewing 27

in stack 27
specific instances of 77, 79

Locals command 77, 79
Log command 122
log files 305

opening, problems with 312, 315
saving entries to 286
writing to, problems with 315

Log List Length input box (TDINST) 286
Log option (breakpoints action) 120
Log radio button 127
Log To File command 315
Log window 27, 122-124

adding comments to 305
local menu 123,200
opening 122

Logging command 123
Long command 177
loops, infinite 271

problems with debugging and 89

358

M
-m option (set heap size) 66
machine instructions 166

executing 83, 85
stepping through 166
Turbo C compiler and 183

macros 25
recording 25

keystrokes as 70, 91
problems with 308, 315, 326
terminating 25

removing 70
restoring to previous 70
saving 73, 91

to configuration files 91
Macros command 25, 70
Macros option (save configuration) 73
MASM See Microsoft languages
math chips 2

8Ox87 coprocessor 185
disassembler and 168

math coprocessor See numeric coprocessors
Maximum Tiled Watch input box (TDINST) 284
memory 68, 285, 295

accessing
problems with 175
TD386 virtual debugger and 251

addresses 137, 270, 306
disassembler and 167

symbolic 168
dump 174
entering 306
high 247
Numeric Processor window 186
problems with 320
references vs. 181

allocation 74,272
inspecting 80
problems with 74,214,323
TD386 virtual debugger and 248

allocation for symbol tables
device drivers and 263
TSR programs and 260

blocks 272, 304
manipulating 178
problems with 315

buffer 262

Turbo Debugger User's Guide

device drivers and 262
dump 28, 174-179, 182

problems with 175
extended See extended memory
freeing 253, 269
graphics mode and 68
heap size and, problems with 66
interrupt vectors and 273
locations 270

problems with 316, 324
symbol tables and 261, 264

mapping 80
device drivers and 263
TSR programs and 259, 260

operands, problems with 314
problems with 323
random access See RAM
read-only 169, 175,313
references

built-in assembler 181
formatting 153
problems with 322

symbol tables and 68,290
tracking 126
watching 120

specific areas of 125
TD386 virtual debugger and 247

menu bar 18, 43
activating 18
commands 194

menu trees 208-209
menus 18-19

== (System) 18, 194
activating 18
Breakpoints 116, 195
commands See commands
customizing 281, 282
Data 96-99, 196
exiting 19
File 194
global 18

local vs. 22
reference 194-196

Help 37, 197
hot keys and 19
local See local menus
Options 69-73, 196

Index

pop-up 18
pull-down 18
Run 75, 82-85, 195

program termination and 90
TDINST 280
tutorial 43
View 26, 194
Window 33, 45, 196

Menus command (TDINST) 282
message log 27, See also log files
messages See also error messages

dialog boxes 303-310
informational 328
program termination 81
TDREMOTE 300-302

methods See functions; object-oriented
programs

Methods command 161
Microsoft

languages, Turbo Debugger and 7, 15
MASM, Quirks mode 231
Windows 251

Miscellaneous Options dialog box (TDINSf)
289

Mixed command 168, 171
Mode for Display menu (TDINSf) 290
modes See display modes
Modify TD.EXE command (TDINSf) 293
Module command 321

Module window local menu 132
View menu 130

Module window 26, 130-133
filled arrow and 45
local menu 13t 201
opening 130

duplicate 132
program execution and 82-89
source files and 130

modules 2, 129, See also Module window
assembler 171
compiling 61
current, overriding 138
hierarchy tree (object/ class types) 29
high-level source 171
language options 288
loading 130, 309

new 132

359

problems with 133
referencing identifiers in other 139
scope override and 101, 140
tracing into 85
tracking 30
viewing 26, 130-133

duplicate 132
problems with 321, 322,326
source code in 306

modulus operator, problems with 314
monitors See also hardware; screens

color 65,291
customizing 280-282

compatible with Turbo Debugger 1
composite 11
customizing color tables 281
display options 290
display swapping 65, 286
monochrome 65

problems with 11
problems with 11

monochrome monitors See monitors,
monochrome

mouse
choosing menu commands 18-19
executing Alt- or Ctrl-key commands 39
moving around in dialog boxes 20
setting breakpoints 47, 116
support

disabling/ enabling 66, 287
online help 37
windows and 31-32

Mouse Enabled check box (TDINSf) 287
Move command 179
multi-language programs 9
multiple inheritance 29, 156, 157

N
Near Code command 176
NEe MultiSpeed and NMI 9, 289
New CS:IP command 171
New Expression command

Inspector window local menu 112
Object Data Field pane local menu 162

New Value input box 97
Next command See also Search command

Data pane local menu 176

360

File window local menu 136
Module window local menu 133
problems with 321

Next Pane command 33
Next Window command 33
NMI, systems using 9, 289
NMI Intercept check box (TDINST) 289
None option (display swapping) 71
nonmaskable interrupt See NMI
non printing characters 103, 106

return value 153
null modem cable 296
null-terminated character string 103, 109
numbering system, windows 33
numbers 99

decimal 72
floating-point See floating point, numbers
formatting 153, 284

problems with 316
TASM 152
Turbo C 145
Turbo Pascal 150

hexadecimal 72
real 150
scalar 143

numeric coprocessors See also 8Ox87
coprocessors
changing 185-189
control flags 187
current state, viewing 29
data size overrides 182
disassembler and 168
instructions

assembling 180-182
mnemonics 278

registers 186, 277
entering new values for 306

status flags 188
numeric exit code 81
Numeric Processor command 186
Numeric Processor window 29, 186-189

opening 186
problems with 321

panes 186, 201

o
-0- option (fCC) 62

Turbo Debugger User's GuIde

Object Data Field pane 158
local menu 159, 161

Object Method pane 158
local menu 160, 162

object methods See functions; object-oriented
programs

object modules 129
object-oriented programs

compatibility with Turbo Debugger 155
debugging 16, 155-163

nested object structures 158
Self parameter and 101
Self! this parameter and 97

expressions, problems with 312
object hierarchies 156
object instances

formatting 97
inspecting 160-163

object methods 29, 79
inspecting 158
problems with 314
tracing into 83

object types
hierarchy tree 29
inspecting 158-160

scope override 141
stepping through single statements 84

Object Type/Class List pane, local menu 156
Object Type List pane 156

local menu 202
objects, data See data, objects
Offset to Data command 176
online help 36-38, See also help

dialog boxes 20
OOP See object-oriented programs
opcodes, illegal instruction 82
Open command 92
Open Log File command 122, 123
operands 99, 316

instruction, memory pointers and 167, 181
problems with 324

invalid 319
invalid separators and 319
out of range 317
segment overrides and 313
size 168

problems with 324

Index

size overrides 181, 182
operators 316

assignment See assignment operators
binary 146, 150
C programs and 98
invalid 319
modulus, problems with 314
OFFSET (built-in assembler) 181
precedence

TASM 152
TurboC 146
Turbo Pascal 150

options 69, 286, See also Options menu
command-line See command-line options
customizing 279
display 283-286
display swapping 71, 283
input 287
language 284

expressions 288
program execution 82
restoring defaults 73,293
saving 72

Options menu 69-73, 196
TDINST 286

Options option (save configuration) 73
Origin command 80

Code pane local menu 169
Module window local menu 133, 142
Stack pane local menu 180

Out Byte command 172
output See also I/O

display onscreen 71
overlays

p

pool size 68
problems with 324
protected-mode debugging and 254

-p option (mouse support) 66
panes

blinking cursor in 34
Breakpoints window 26, 118
Code See Code pane
Control 187
CPU window 28

cycling through 167

361

Data See Data pane
Execution History window 29, 86
Flags 167, 173, 174
Hierarchy window 29, 156-158
highlight bar in 34
Inspector windows 30

object/ class instance 160
object type/class 158

list boxes 206
local menus and 22
moving between window 33
Numeric Processor window 29, 186,201
recording current contents of 123
Register

CPU window 173-174
Numeric Processor window 186-187

Registers window 28
Stack 167, 179-180
Status 188
text See text panes
Variables window 27, 77

parameters 2, See also arguments
logging 127
Self 97, 101
this 97
viewing, program-calling 79

Parent Tree pane 157
local menu 158,202

Parents command 157
parsing, Turbo Debugger vs. Turbo languages 9
Pascal option (language convention) 138
Pascal programming language See Turbo Pascal
Pass Count input box 121, 125
pass counts 115

decrementing 121
problems with 319
setting 121, 124, 125

Path for Source command 2, 72
paths, directory See directories
Periscopy debugging board 11
Permit 43/50 Lines check box (TDINST) 285
Pick a Module list pane 129
pointers 153, 176-177

compound data objects 99
current instruction 186
memory 139, 167, 181
stack, current location 167

362

pointing at data objects 99
polymorphic objects 161
pop-up menus 18
ports

I/O 172,307
remote link 67
serial 67, 290

precedence, operators See operators
Previous command 37

Code pane local menu 170
Data pane local menu 177
Mod ule window local menu 132
Stack pane local menu 180

primary display 65, See also screens, swapping
printers, problems with 304
procedures See also functions; specific language

calling, problems with 317
stepping over 15
viewing in stack 79

process ID switching 65, 270, 289
processors See 8Ox86 processors; CPU
PROGNAME.TDK 88
Program Reset command 86, 90, 91
programs 67, 232, 286

accuracy testing 231
altering 27, 181
breaking out of 9
compiling 17
current location 45, 151

CPU window 167
Inspector windows 78
Module window 79
problems with 86, 131
returning to 80, 133, 142, 169
scope 142

overriding mechanism and 100
setting 171
stack 180
verifying 30
watching 85, 129, See also Watches
window

current state 76
inspecting 76-82, See also Inspector
windows

debugging 15, 16,61-64, 124,211-212, See
also debugging
current scope and 142

Turbo Debugger User's Guide

infinite loops and 89, 271
interrupt vectors and 271

using 27t 273
planning for 74,232
problems with

disassembler and 172
memory allocation and 74

returning information on 80-82
starting Turbo Debugger 63
with no debug information 85, 325
with out-of-date debug information 325

demo See demo prograrits
execution 8, See also programs, running

controlling 75-93
interrupting 89
menu options 82
problems with 81, 82
reversing 85, 87, 88

problems with 88
terminating See programs, stopping

fatal errors and 310
full output screen 30
incremental testing 213
inspecting 21, See also Inspector windows
interrupt key, resetting 90, 287
language options 284, 288

overriding 138
language-options See also TDINSf
loading 247, 272, 307, See also files, opening

load address, changing 269
memory allocation and 272
new 92
problems with 68,295,315,322,325

symbol tables and 323
remote systems 298, See also TDREMOTE

message logs and 27
modifying See programs, altering
multi-language 9
opening See programs, loading
patching, temporarily 166
recompiling 17
recovering 65, 87

from crashes 91
keystroke recording and 88, 91
to a previous point 88

reloading 86, 90
problems with 315

Index

restarting a debugging session 90, 91
returning from 46, 53
returning to 80, 132
running 29, 75, 92, See also programs,

execution
to breakpoints 47, 54
command -line options and 93
to cursor 46, 52, 83
DOS level, from 64, 251
execution history and 86-89
from DOS 254, 299
at full speed 83
to labels 46, 53, 84
nonmaskable interrupts and 289
returning information on 80
in slow motion 85

scope See scope
source code See code
source files and 130
stepping through 166

problems with 82
tutorial 46, 53

stopping 90, 116, 118, See also breakpoints
at specific locations 125
messages about 81

swapping to disk 74
problems with 314

terminate and stay resident See TSR
programs

text-based 8
watching See Watches window
with floating-point numbers 185, 270

prompts, setting 287
protected-mode debugging See TD286

protected-mode debugger
pseudovariables (Turbo C) 144
pull-down menus 18

Q
QuarterDeck EMS simulator 251
Quit command 74

TDINST 294

R
-r option (remote serial link) 67
radio buttons 20, See also dialog boxes

363

Action 119
Beginning Display (TDINST) 284
Changed Memory 125, 126
changing settings 20
Condition 120
Display Swapping 71

TDINST 283
Expression Language 138
Expression True 125
Integer Format 72

TDINST 284
Interrupt Key (TDINST) 287
Language (TDINST) 288
Link Speed (TDINST) 290
Log 127
Remote Link Port (TDINST) 290
Screen Lines 72

TDINST 284
Source Debugging 62
User Screen Updating (TDINST) 285

RAM
requirements, Turbo Debugger 1
resident utilities 169, 175

running Turbo Debugger as 259, 265
problems with 313

system map 259, 260
TSR programs and 257

segment containing 261
Range command

Inspector window local menu 111
Object Data Field pane local menu 161

range errors 225
Read command 179
read-only memory See ROM
Read Word command 172
README file 7, 8, 10
READY indicator 24
Real command 178
RECORDING indicator 70
records, problems with 323, 327
recursive functions 77, 79
reference line

dialog boxes 39
Register pane

CPU window 173-174
local menu 173, 199

364

Numeric Processor window 186-187
local menu 187, 201

registers 102, See also Registers window
80386 processor, virtual debugging and 251
8Ox87 coprocessors 186, 186-189
assembling See Turbo Assembler

valid address combinations 320
CPU See CPU, registers
display controller 272
floating-point 186, 306
problems with 314, 325

invalid 319,320
segment 90, 153
values, accessing 28, 183

Registers 32-bit command 174
Registers window 28, 183

local menu 202
panes 28

release codes 271
Relocate Table command 265
remote debugging See TDREMOTE
Remote Debugging check box (TDINST) 290
remote file transfer utility (TDRF) 296, 299
REMOTE indicator 299
Remote Link Port radio buttons (TDINST) 290
remote links 67

defaults, setting 290
hardware requirements 296
maximum speed 297
problems with 301, 309
reducing link speed 302
using 297-298

remote systems See communications, remote
systems

Remove command
Breakpoints window local menu 122
Macros menu 70
Watches window local menu 101

Repaint Desktop command 35
repeat counts 153

problems with 326
Resident command 259, 265
resize box 32
resizing windows See windows, resizing
restarting a debugging session 90, 90-92
Restore Options command 36, 73
Restore Standard command 35

Turbo Debugger User's Guide

Result input box 97
return values 127, 137

bytes 176
changing 101, 111
CPU flags 174
CPU registers 173, 183
expressions 305
inspecting 99, See also Inspector windows
memory blocks 179
nonprinting characters 153
problems with 81, 175,320,328

assignment 312
tracking 100
variables See variables

Reverse Execute command 87
reversing program execution 85,87, See also

backward trace
problems with 88

ROM
accessing 169
examining 175
programs executing in 313

routines 127, See also functions
accessing 139

problems with 308
debugging 214
testing 231
viewing in stack 79

-rp option (remote link port) 67
TDREMOTE 298

-rs option (remote link speed) 67
TDREMOTE 297, 298

Run command 83
execution history and 88

Run menu 75, 82-85, 195
program tennination and 90

running
programs See programs, running
TD286 protected-mode debugger 253-255
TD386 virtual debugger 247-252
TDINST 279-294
TDREMOTE 297-298
Turbo Debugger 130

as RAM resident program 259, 265
problems with 313

on two-floppy systems 2

Index

5
sample programs See demo programs
Save Configuration check box 73
Save Configuration File command (TDINST)

293
Save menu (TDINST) 293
Save Options command 36, 72
Save Options dialog box 73
Save To input box 73
-sc option (ignore case) 67
scalar numbers 143,305
scalar variables 103, 106
scientific notation 145, 152, 178
scope 1 DO, 139-142

breakpoint expressions 118
current 139, 142

accessing symbols outside 139
implied, evaluating expressions and 142
overriding 140-142, 149
problems with 316

inactive 314
Self parameter 97
this parameter 97

Screen command (TDINSf) 282
Screen Lines radio buttons 72

TDINST 284
screens See also hardware; monitors

background, customizing 282
colors, customizing 280-282
display modes See display, modes
layouts, restoring 35
LCD 291
lines per, setting 68, 72,284,285
problems with

graphiCS display 35, 68, 272
and INSf ALL 11

snow 285
writing to 71

repainting 285
startup 42

options 284
swapping 71, 283, 286

multiple display pages and 65
problems with 251, 254

updating 285
User See User screen

scroll bars 32

365

scrolling 31
dialog boxes 207
Help screens 37
Inspector windows 49, 56
menus 19
text boxes 206
text panes 206

-sd option (set source directories) 67
Search command See also Next command

Code pane local menu 170
Data pane local menu 175
File window local menu 135
history lists and 23
Module window local menu 132

search templates 208
secondary display 65, See also display,

swapping
segment

overrides, problems with 313
pointers to register 153
PSP, problems with 310

segment offset addresses
physical addresses and 186

Segment:Offset to Data command 177
segment registers, program termination and 90
select by typing 25
Self parameter 97

watching 101
serial cards 172
serial links, remote 290, See also WORD

communications, remote systems
debugging over 67
TDREMOTE and 297

Set command 179
Set Options command 119
shelling to DOS 73
shortcuts See hot keys
Show Inherited command

Object Data Field pane local menu 159, 162
Object Methods pane local menu 160

SideKick 257
Size/Move command 35
-sm option (set symbol table memory size) 67

device drivers and 264
TSR debugging and 260, 261

Smart option (display swapping) 71
snow 285

366

software
emulator 168, 185

changing 185-189
using 270

requirements 2
source code See code
Source Debugging dialog box (TDINST) 288
Source Debugging radio button 62
source files 2, 129-136, See also files

language conventions and 138
loading 130, 309

problems with 322, 326
setting directory path 287

Source option (language convention) 138
Spare Symbol Memory input box (TDINST) 290
stack 90, 165, 166, See also Stack pane; Stack

window
current state 27, 79-80
examining 179-180
pointer, current location 167

Stack command 77, 79
Stack pane 179-180

current stack pointer 167
local menu 179, 200

Stack window 27, 79-80
local menu 79,203
opening 77, 79

Standalone Debugging command 62
standalone linkers 62, 63
Standalone option 62
starting Turbo Debugger 63

in assembler mode 66
command-line options and 267
remote systems 297

problems with 290
startup screen 42

options 284
Static pane 77

local menu 78
static symbols, disassembler and 168
status bits, viewing 188
status flags 188
status line 36, 38
Status pane 188

local menu 188, 202
Step Over command 83, 332

execution history and 88

Turbo Debugger User's Guide

stepping over
functions 15
proced ures 15

stepping through See also specific language
application
functions 84
programs 166

problems with 82
Stop Recording command 25, 70
strategy routine 262
strings 153, 182

byte lists and 143
character

null-terminated 103, 109
quoted 135

problems with 327
searching 132, 133, 135, 136
searching for 175, 176,307
Turbo C 145
Turbo Pascal 150

concatenation (Turbo Pascal) 149
format control See format specifiers
text, searching for 23
truncated 97, 100

structures
changing 313
inspecting complicated data 96, 112
problems with 323, 327

subdirectories, default 10
subprograms See functions; routines
subroutines, calling 170

problems with 170
SuperKey 257
SWAP.$$$ 315
switches See command-line options
Symbol Load command 260, 264
symbol names, problems with 312
Symbol pane 27
symbol tables 138,261,264,325

base segment address 307
device drivers and 262
invalid 325
loading 308

problems with 323, 326
memory allocation 289, 295

device drivers and 263
setting 67, 290

Index

TSR programs and 260
T0286 protected-mode debugger and 253

symbols 77, 137
accessing 139-142, 309

in other scopes 149
as memory reference 181
disassembler and 168
global 203
problems with 313, 326, 327

invalid 320
type information and 322

scope 139
Turbo C 143
Turbo Pascal 149

syntax
checkers, built-in 15
errors 15,326

system
crashes 90, 171,270

recovering from 91
rebooting 89

System menu See == (System) menu

T
Tab Size input box 72

TOINST 284
Table Load command 68, 307
Table Relocate command 261
tabs, setting 72, 284

problems with 328
T AEXAMPLx.ARC 10
Tandy lOOOA and NMI 9, 289
TCOEMO.C41
TCOEMO.EXE 238
T0286 protected-mode debugger 253-255

command-line options 254
installation 254

system requirements 253
instructions 251
running programs, problems with 254
starting 254

T0386 virtual debugger 247-252
command-line options 249

syntax 250
error messages 251-252
exception codes 82

367

installation
device driver 11,248
system requirements 248

problems with 251, 310
setting breakpoints 121
starting 248

problems with 251
TD286INS 254
TD.EXE293
TDCONFIG.TD 36, 69

loading 64
overriding 69

TDDEV 259
TDEXAMPL.ZIP 10
TDH386.SYS 11, 121,248,250

error messages 252
TDINSf 279-294

command-line options vs. 291-293
exiting 294
main menu 280
options, saving 293

TDMEM 259,260
TORE MOTE 295-302

command-line options 298-299
saving 299

hardware requirements 296
messages 300-302
problems with 311
running 297-298

problems with 309
software requirements 296

TDREMOTE.EXE 296
.TDS files 260, 263, 264
technical support, Borland 5
terminate and stay resident See TSR programs
ternary operators (Turbo C) 147
text 72

editing See Edit command; editing
entering

active windows and 31
in input boxes 24
incremental matching 25
in log 305

searching for 208, 326
strings, searching for 23

text-based programs 8
text boxes, Get Info 80

368

text editors 133, 136, 286
compatibility with Turbo Debugger 16
problems with 314

text files 205, See also ASCII, files
text modes See also display, modes

problems with 11
text panes 205, 305, 308, 314

moving around in 206
THELP.COM 37
this parameter 97
tiled windows 44, 284
time delays, setting 85, 304
Toggle command

Breakpoints menu 117, 124
Control pane local menu 188
Flags pane local menu 174
Status pane local menu 188

TPDEMO.PAS 41,245
Trace Into command 83, 332

continuous tracing 85
execution history and 88
programs executing in ROM and 313

tracepoints 115, See also breakpoints
tracing 15, 86-89, See also Trace Into command

backward See backward trace
continuous (animation) 85, 304
execution history and 86
information about 81
into interrupts 85
into functions 45, 52
Self parameter and 97, 101
this parameter and 97

Tree command 157
TSR programs 74

debugging 258-261
resident portion 258, 259
transient portion 257

display swapping and 286
executing from DOS 259
resident portion 257, 259
symbol tables,loading 260
transient portion 257, 258

Turbo Assembler See also assembler
arrays

inspecting 109
bugs specific to 226-231
built-in assembler vs. 181-182

Turbo Debugger User's Guide

code, stepping through 331
command-line options 63
conditional jumps 228
constants 152
data, inspecting 108-110
debugging techniques 165-184
example program files 10
expressions 151-153

assignment 331
flags altered by instructions 230
functions

returning from 227
functions, returning from 226
hex data, examining 331
INCLUDE compiler directive 129
instruction mnemonics 168, 169

size overrides 181, 182
instructions See also instructions

carry flags and 230
mnemonics 275-278
string 228 .

byte to word conversions 229
comparisons 229
direction flags and 228
multiple prefixes 229
operands to 229
registers, altered 230
segment defaults and 229

interrupt handlers 230
machine code bytes, viewing 331
operands

memory variables and 230
order of 227

operators, precedence 152
pointers

inspecting 109
programs 331-332

debugging 226
preparation for 63

Quirks mode, using MASM and 231
registers

multiplication and 229
preserving 227
saved in interrupt handler 230
viewing 331

registers, altering 331
scalars, inspecting 108

Index

segment groups 231
segment wraparound 230
stack allocation 227
structures, inspecting 110
symbols 151
unions, inspecting 110
variables

immediate operands vs. 230
versions compatible with Turbo Debugger 2

Turbo C 215, 316, See also C++ programs
arrays 50, 216

inspecting 104
problems with 104

autovariables 218, See also variables herein
scope 218
uninitialized 215

bugs specific to 215-219
character strings 145
code

stepping through 329
tracing into 45

command-line options 62
compiler 183,215

directives, #include 129
optimizing 329

constants 145
CPU registers, use of 183
data

inspecting 103-106
types 48-49

compound 50
converting 148

debugging techniques 329-331
preparing programs for 62

demo programs 41, 45-52
debugging 233-238
starting 42

escape sequences 145
expressions 143-149, 216

complex, stepping through 330
entering in dialog boxes 51
problems with 311
with side effects 98, 148

#define macros and 218
functions 46, 147, 330

inspecting 105
problems with 98

369

returning from 46, 218
tracing into 45

integer assignment 217
keywords 148

problems with 320
language-specific help 37
loops, exiting 219
operators 216

expressions with side effects and 98, 148
precedence 146, 216

optimization 62
pointers 330

incrementing and decrementing 216
inspecting 103

pseudovariables 144, 145, See also variables
herein

scalars, inspecting 103
source code 217, 219
source files 42
structures, inspecting 105
symbols 143
Transfer utility 17
unions, inspecting 105
variables See also autovariables;

pseudovariables herein
inspecting 48-50
return values 50-52, 100
watching 48

versions compatible with Turbo Debugger 2
Turbo Pascal See also object-oriented programs

arrays 57
inspecting 107

bugs specific to 219-226
code

skipping over 332
stepping through 332
tracing into 52

command-line options 62
compiler directives

$B option 221, 226
$R option 225

constants 150, 332, 334
data

370

inspecting 106-108
types 55-56

compound 57

converting 333
debugging techniques 332-334

preparing programs for 62
Variables window and 76

demo programs 41, 52-59
debugging 238-245
starting 42

expressions 149-151
entering in dialog boxes 58

functions 151,317,333
executing 53
inspecting 108
returning from 53, 223
tracing into 52

language-specific help 37
operators 149, 333, 334

precedence 150
pointers 220

inspecting 106
procedures 151,317

inspecting 108
stepping through 332

range-checking 225, 334
records, inspecting 107
routines, watching 334
scalars, inspecting 106
source code 67, 222
source files 42
strings 150, 333

concatenation 149
symbols 62, 149
units See also modules

override syntax 141
variables 220, 221

decrementing 224
inspecting 55-57
problems with 312, 328
return values 57-59, 100
watching 54, 333

versions compatible with Turbo Debugger 2
two-floppy systems, Turbo Debugger on 2
type conversion 78, 101

problems with 320, 327
Turbo C reserved words and 148
Turbo Pascal 333

typecasting See type conversion

Turbo Debugger User's Guide

types

u

class member See C++ programs
data See data, types
object See objects, types

unarchiving example files 10
unary operators

TurboC 146
Turbo Pascal 150

Undo Close command 35
union members, problems with 323
Until Return command 84
UNZIP.EXE utility 10
Use Expanded Memory check box (TDINSf)

289
User screen 3D, 71

display buffer 285
updating 285

User Screen command 30
remote links and 299

User Screen Updating radio buttons (fDINST)
285

utilities
disk-based documentation for 9
INSTALL 10

problems with graphics display and 11
TDINST See TDINST

v

TDREMOTE See TDREMOTE
TDRF (remote file transfer) 296, 299
THELP37
UNPACK 10

/voption
TLINK 62, 63
TPC 62

-v option (TCC) 62
values, return See return values
variables 27, 96-99, See also Variables window

accessing 139
problems with 317
with no type information 148

built-in assembler and 181
debugging 214

Index

global See global variables
inactive functions and 314
inspecting 3D, 96, 102-110, 112, 308, See also

Inspector windows
function with same name as 77
in recursive functions 79

language conventions and 138
local See local variables
logging 127
multiple 127
names 100

finding 27
problems with 322

pointing at 99
private 101
program termination and 90
return values 16, 98

inspecting 30
problems with 77, 103, 106

scalar, character values and 103, 106
scope override 140
uninitialized 214
updating 101
viewing 76-78

in recursive functions 77
watching 26, 99, 1 DO, 305, See also Watches

window
Variables command 77
Variables window 27, 76-78

local menu 203
opening 77

vectors, interrupt See interrupt vectors
-vg option (save graphics image) 68
VGA See also graphics adapters; video adapters

line display 68, 72, 284
video adapters 172,290, See also graphics

adapters, hardware
command-line options 68
display options 72

setting 284, 285
display pages 285
problems with 328
supported 311

Video Graphics Array Adapter See VGA
videos See monitors; screens
View menu 26, 194
virtual debugging See TD386 virtual debugger

371

virtual methods table (YMT) 161
-vn option (no EGA/VGA display) 68
-vp option (EGA palette save) 68

w
-woption

TD386 virtual debugger 250, 252
TDREMOTE 298

warning beeps, enabling 287
Watch command

Module window local menu 132
Watches window local menu 101

Watches command 100
Watches window 26, 100-102

local menu 101, 203
maximum tiled size 284
opening 100
using 236, 243

C tutorial 48
Pascal tutorial 54

watch points 16, 115, See also breakpoints
C tutorial 48
Pascal tutorial 54
reloading programs and 91

wildcards
DOS 134,327
searching with 133, 208

Window menu 45, 196
opening 33
window management and 33

Window Pick command 33
windows 16, 25-36

active 31
returning to 19

bottom line in 38
Breakpoints 26, 118-122
closing 35

temporarily 35
CPU See CPU window
customizing 280
Dump 28, 182,200
Execution History 29, 86-89, 288

opening 86
File 27, 134-136,200

opening 132
Hierarchy 29, 155, 202

372

Inspector See Inspector windows
layout, saving 36, 73
local menus and 22
Log 27, 122-124,200
Module See Module window
mouse support 31-32
moving 34
moving around in 208
multiple 33, 132, 136, 183

moving between 33
Numeric Processor 29, 186-189,201

problems with 321
opening

duplicate 30
new 26

panes See panes
problems with 28, 30, 323

current program location and 86
recovering last closed 35
reducing to icon 32, 35
Registers 28, 183, 202
repainting 35, See also display updating
resizing 32, 34
saving layout 91
single-line borders and 35
Stack 27, 79-80, 203

opening 77
tiled 44

maximum size 284
tutorial 44
Variables 27,76-78,203

opening 77
Watches See Watches windows

Windows command (TDINSf) 280
word 168

formatting 174, 177
pointer chains 176-177
read/writes 172

Word command 177
WordStar-style cursor-movement commands

206,288
Write command 179
Write Word command 172

X
XMS standard 249

Turbo Debugger User's Guide

y
-y option (set overlay pool size) 68

Z
Zero command 173, 187

Index

-zi option IT ASM) 63
.zIP files 10
zoom box 32
Zoom command 35
zoom icon 32

373

TURB
DEBU

BORLAND

1800 GREEN HILLS ROAD, P.O. BOX 660001, scons VALLEY, CA 95067-0001, (408) 438-5300 • PART II 15MN-ASD01-20 • BOR 1489
UNIT 8 PAVILIONS, RUSCOMBE BUSINESS PARK, TWYFORD, BERKSHIRE RG10 9NN, ENGLAND
43 AVENUE DE L'EUROPE-BP 6, 78141 VELIZY VILLACOUBLAY CEDEX FRANCE

